
Errata to “Algorithms in Invariant Theory” January 18, 2026

Algorithms in Invariant Theory
Bernd Sturmfels

Second Edition 2008
Comments and corrections by Darij Grinberg

The following list contains my comments to Bernd Sturmfels’s book Algorithms
in Invariant Theory, specifically its 2nd edition (Springer, 2008). Some of these
comments are corrections; others are more subjective improvements.

I have read the following parts of the book: Chapter 1, the elementary parts
of Chapter 2 (§2.1, §2.2 until Example 2.2.4, §2.4), most of Chapter 3 (§3.1, §3.2,
§3.3 until Algorithm 3.3.4, §3.6, §3.7 sans the second proof of Proposition 3.7.4
and until Lemma 3.7.6), and the early bits of Chapter 4 (§4.1, §4.3).

7. Errata and comments

1. page 4, proof of Proposition 1.1.2: It should be said that p0 is to be under-
stood as 1. (Otherwise, “pi1 pi2 . . . pin” might not make sense.)

2. page 5, Proposition 1.1.3: This proposition requires n > 1.

3. page 5, proof of Proposition 1.1.3: After “and therefore D divides h̃.”, add
“Furthermore, the polynomial h̃/D is symmetric, since each permutation
σ ∈ Sn satisfies(

h̃/D
)
(xσ1 , . . . , xσn) =

h̃ (xσ1 , . . . , xσn)

D (xσ1 , . . . , xσn)
=

sign (σ) · h̃ (x1, . . . , xn)

sign (σ) · D (x1, . . . , xn)

=
h̃ (x1, . . . , xn)

D (x1, . . . , xn)
= h̃/D.

”.

4. page 6: After “The polynomials aλ are precisely the nonzero images of
monomials under antisymmetrization”, add “(up to sign)”.

5. page 6: The definition of “antisymmetrization” here uses the notion of
“canonical projection”, which is not explained here. Better to say that the
antisymmetrization of a polynomial f (x1, . . . , xn) is defined to be ∑

σ∈Sn

sign (σ) ·

f (xσ1 , . . . , xσn).

6. page 6: The word “discriminant”, as it is used here, simply means the
polynomial D = D (x1, . . . , xn). This should be clarified.

7. page 6, Corollary 1.1.4: It should be explained that “partitions of d into
at most n parts” means “partitions of d with n entries (not necessarily all
positive)”.
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8. page 8: “The largest monomial of a polynomial” → “The largest monomial
of a nonzero polynomial”.

9. page 8: “by the initial monomials of all polynomials” → “by the initial
monomials of all nonzero polynomials”.

10. page 8, Example 1.2.1: “versus a Gröbner bases” → “versus a Gröbner
basis”.

11. page 11, proof of Theorem 1.2.4: “By Corollary 1.2.3, the set of initial
monomials {init ( f ) : f ∈ I \ {G}} has a minimal element init ( f0) with re-
spect to “≺””: In my opinion, this is not obvious enough to be left unex-
plained, at least for a reader who has not already seen this kind of (highly
non-constructive) argument before. The argument being made here is the
following: The set of initial monomials {init ( f ) : f ∈ I \ ⟨G⟩} is nonempty
(since we assumed that I \ ⟨G⟩ is nonempty). If this set had no minimal
element (with respect to “≺”), then we could recursively construct an in-
finite chain m1 ≻ m2 ≻ m3 ≻ · · · of monomials in this set by picking m1
arbitrary (this is possible, since the set {init ( f ) : f ∈ I \ ⟨G⟩} is nonempty)
and then choosing each further element mi to be smaller than mi−1 (this is
possible, since mi−1 is not minimal in this set, because this set has no min-
imal element). But such a chain would contradict Corollary 1.2.3. Hence,
the set {init ( f ) : f ∈ I \ ⟨G⟩} must have a minimal element after all.

12. page 12, proof of Theorem 1.2.7: Here is a proof of the identity

hk (xk, . . . , xn) +
k

∑
i=1

(−1)i hk−i (xk, . . . , xn) σi (x1, . . . , xk−1, xk, . . . , xn) = 0.

(1)

Proof of (1): We work in the polynomial ring C [x1, x2, . . . , xn] (actually, C
could be replaced by any base ring here). Let P (n) denote the set of all
subsets of {1, 2, . . . , n}. We define the complete homogeneous symmetric
polynomials

hi (xk..n) := (sum of all monomials in xk, xk+1, . . . , xn that have degree i)
(2)

for all i ∈ N (so that h0 (xk..n) = 1 because the only monomial of degree 0
is 1) and the elementary symmetric polynomials

σi (x1..n) := ∑
j1<j2<···<ji in {1,2,...,n}

xj1 xj2 · · · xji

= ∑
S∈P(n);
|S|=i

∏
s∈S

xs (3)

for all i ∈ N (so that σ0 (x1..n) = 1 because the only 0-element subset of
{1, 2, . . . , n} is ∅). Note that these polynomials hi (xk..n) and σi (x1..n) are
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denoted by hi (xk, . . . , xn) and σi (x1, . . . , xk−1, xk, . . . , xn) in the book. Thus,
the identity (1), which we must prove, can be rewritten as follows:

hk (xk..n) +
k

∑
i=1

(−1)i hk−i (xk..n) σi (x1..n) = 0. (4)

But we can simplify this identity even further. Namely, we observe that

k

∑
i=0

(−1)i hk−i (xk..n) σi (x1..n)

= (−1)0︸ ︷︷ ︸
=1

hk−0 (xk..n)︸ ︷︷ ︸
=hk(xk..n)

σ0 (x1..n)︸ ︷︷ ︸
=1

+
k

∑
i=1

(−1)i hk−i (xk..n) σi (x1..n)

= hk (xk..n) +
k

∑
i=1

(−1)i hk−i (xk..n) σi (x1..n) .

Hence, the identity (4), which we must prove, can be rewritten as

k

∑
i=0

(−1)i hk−i (xk..n) σi (x1..n) = 0. (5)

It is this latter identity (5) that we shall now prove; the original identity (1)
will then follow.

Let M be the set of all monomials in the variables xk, xk+1, . . . , xn. Thus, we
can restate the definition (2) of hi (xk..n) as follows: For all i ∈ N, we have

hi (xk..n) = ∑
m∈M;

degm=i

m. (6)

For any subset S of [n], let xS denote the monomial ∏
s∈S

xs. Thus, we can

restate the definition (3) of σi (x1..n) as follows: For all i ∈ N, we have

σi (x1..n) = ∑
S∈P(n);
|S|=i

xS. (7)
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Thus,

k

∑
i=0

(−1)i hk−i (xk..n)︸ ︷︷ ︸
= ∑

m∈M;
degm=k−i

m

(by (6), applied to k−i
instead of i)

σi (x1..n)︸ ︷︷ ︸
= ∑

S∈P(n);
|S|=i

xS

(by (7))

=
k

∑
i=0

(−1)i

 ∑
m∈M;

degm=k−i

m

 ∑
S∈P(n);
|S|=i

xS

=
k

∑
i=0

∑
m∈M;

degm=k−i

∑
S∈P(n);
|S|=i

(−1)i︸ ︷︷ ︸
=(−1)|S|

(since i=|S|)

mxS

=
k

∑
i=0

∑
m∈M;

degm=k−i

∑
S∈P(n);
|S|=i

(−1)|S|mxS. (8)

However, the triple summation sign
k
∑

i=0
∑

m∈M;
degm=k−i

∑
S∈P(n);
|S|=i

can be rewritten

as a single summation sign ∑
(m,S)∈M×P(n);

degm+|S|=k

, because the conditions degm =

k − i and |S| = i add up to degm+ |S| = (k − i) + i = k (and conversely,
degm + |S| = k implies that degm = k − i and |S| = i for a unique i).
Hence, we can rewrite (8) as

k

∑
i=0

(−1)i hk−i (xk..n) σi (x1..n)

= ∑
(m,S)∈M×P(n);

degm+|S|=k

(−1)|S|mxS. (9)

Now, for any monomial m in the variables x1, x2, . . . , xn, let Suppm denote
the set of all i ∈ {1, 2, . . . , n} such that the variable xi appears in m (that
is, such that m is divisible by xi as a monomial). Clearly, if m ∈ M, then
Suppm ⊆ {k, k + 1, . . . , n} (since m ∈ M means that m is a monomial in
xk, xk+1, . . . , xn only). Furthermore, for any S ∈ P (n), we have Supp (xS) =
S. More generally, for any m ∈ M and S ∈ P (n), we have

Supp (mxS) = S ∪ Suppm (10)
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(and more generally, we have Supp (mn) = Suppm ∪ Supp n for any two
monomials m and n).

It is easy to see that for every pair (m, S) ∈ M× P (n) satisfying degm+
|S| = k, we have

max (Supp (mxS)) ∈ {k, k + 1, . . . , n} (11)

1. Hence, we can split up the sum on the right hand side of (9) according
to the value of max (Supp (mxS)) as follows:

∑
(m,S)∈M×P(n);

degm+|S|=k

(−1)|S|mxS

=
n

∑
j=k

∑
(m,S)∈M×P(n);

degm+|S|=k;
max(Supp(mxS))=j

(−1)|S|mxS. (12)

Now, fix j ∈ {k, k + 1, . . . , n}. We shall prove that the sum

∑
(m,S)∈M×P(n);

degm+|S|=k;
max(Supp(mxS))=j

(−1)|S|mxS (13)

is 0 by breaking it up into two mutually cancelling parts. Namely, we
define the set

A := {(m, S) ∈ M×P (n) | degm+ |S| = k and max (Supp (mxS)) = j} ;

1Proof of (11): Let (m, S) ∈ M × P (n) be a pair satisfying degm + |S| = k. We must
prove that max (Supp (mxS)) ∈ {k, k + 1, . . . , n}. In other words, we must prove that
max (S ∪ Suppm) ∈ {k, k + 1, . . . , n} (since (10) says that Supp (mxS) = S ∪ Suppm).

We are in one of the following two cases:

• Case 1: We have m = 1. Then, degm = 0 and thus k = degm︸ ︷︷ ︸
=0

+ |S| = |S|. Hence, S is a

k-element subset of {1, 2, . . . , n} and thus contains at least one of the numbers k, k+ 1, . . . , n
(since otherwise, S would be a subset of {1, 2, . . . , k − 1} and therefore would have at most
k − 1 many elements). Therefore, the union S ∪ Suppm must also contain at least one of
the numbers k, k + 1, . . . , n (since it contains any element that S contains). Since S∪ Suppm
is a subset of {1, 2, . . . , n}, we conclude that max (S ∪ Suppm) ∈ {k, k + 1, . . . , n}.

• Case 2: We have m ̸= 1. Hence, the monomial m is not constant, and thus must con-
tain at least one of the indeterminates xk, xk+1, . . . , xn (since it is a monomial in these
indeterminates). In other words, the set Suppm contains at least one of the numbers
k, k + 1, . . . , n. Therefore, the union S ∪ Suppm must also contain at least one of the num-
bers k, k + 1, . . . , n (since it contains any element that Suppm contains). Since S ∪ Suppm
is a subset of {1, 2, . . . , n}, we conclude that max (S ∪ Suppm) ∈ {k, k + 1, . . . , n}.

Hence, in both of these cases, we have shown that max (S ∪ Suppm) ∈ {k, k + 1, . . . , n}.
This completes the proof of (11).
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this is the indexing set of our sum (13).

Now, if (m, S) ∈ A is a pair satisfying j /∈ S, then xj | m (because (m, S) ∈ A
entails max (Supp (mxS)) = j, so that j = max (Supp (mxS)) ∈ Supp (mxS) =
S∪ Suppm (by (10)), which yields j ∈ Suppm (because j /∈ S) and therefore
xj | m), and therefore m/xj ∈ M and thus

(
m/xj, S ∪ {j}

)
∈ A 2. Thus,

we obtain a map

{(m, S) ∈ A | j /∈ S} → {(m, S) ∈ A | j ∈ S} ,

(m, S) 7→
(
m/xj, S ∪ {j}

)
. (14)

Conversely, if (m, S) ∈ A is a pair satisfying j ∈ S, then
(
mxj, S \ {j}

)
∈ A

3. Thus, we obtain a map

{(m, S) ∈ A | j ∈ S} → {(m, S) ∈ A | j /∈ S} ,

(m, S) 7→
(
mxj, S \ {j}

)
. (15)

2Proof. We must show that
(
m/xj, S ∪ {j}

)
∈ M× P (n) and deg

(
m/xj

)
+ |S ∪ {j}| = k and

max
(

Supp
((

m/xj
)

xS∪{j}

))
= j.

The first of these three statements is clear because m/xj ∈ M and S ∪ {j} ∈ P (n). The
second statement follows from

deg
(
m/xj

)︸ ︷︷ ︸
=degm−1

+ |S ∪ {j}|︸ ︷︷ ︸
=|S|+1

(since j/∈S)

= (degm− 1) + (|S|+ 1)

= degm+ |S| = k (since (m, S) ∈ A) .

It remains to prove the third statement. But xS∪{j} = xSxj (since j /∈ S) and

thus
(
m/xj

)
xS∪{j} =

(
m/xj

) (
xSxj

)
= mxS. Hence, max

(
Supp

((
m/xj

)
xS∪{j}

))
=

max (Supp (mxS)) = j because of (m, S) ∈ A. This proves the third of the three statements
we needed.

Hence,
(
m/xj, S ∪ {j}

)
∈ A follows.

3Proof. We must show that
(
mxj, S \ {j}

)
∈ M × P (n) and deg

(
mxj

)
+ |S \ {j}| = k and

max
(

Supp
((

mxj
)

xS\{j}

))
= j.

The first of these three statements is clear because mxj ∈ M (since j ∈ {k, k + 1, . . . , n}) and
S \ {j} ∈ P (n). The second statement follows from

deg
(
mxj

)︸ ︷︷ ︸
=degm+1

+ |S \ {j}|︸ ︷︷ ︸
=|S|−1

(since j∈S)

= (degm+ 1) + (|S| − 1)

= degm+ |S| = k (since (m, S) ∈ A) .

It remains to prove the third statement. But xS = xS\{j}xj (since j ∈ S) and thus xS\{j} =

xS/xj, so that
(
mxj

)
xS\{j} =

(
mxj

) (
xS/xj

)
= mxS. Hence, max

(
Supp

((
mxj

)
xS\{j}

))
=

max (Supp (mxS)) = j because of (m, S) ∈ A. This proves the third of the three statements
we needed.

Hence,
(
mxj, S \ {j}

)
∈ A follows.
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These two maps (14) and (15) are mutually inverse. Hence, they are bijec-
tions.

Now,

∑
(m,S)∈M×P(n);

degm+|S|=k;
max(Supp(mxS))=j︸ ︷︷ ︸

= ∑
(m,S)∈A

(by the definition of A)

(−1)|S|mxS

= ∑
(m,S)∈A

(−1)|S|mxS

= ∑
(m,S)∈A;

j∈S

(−1)|S|mxS + ∑
(m,S)∈A;

j/∈S

(−1)|S|mxS

(since each (m, S) ∈ A satisfies j ∈ S or j /∈ S but never both)

= ∑
(m,S)∈A;

j/∈S

(−1)|S∪{j}|︸ ︷︷ ︸
=(−1)|S|+1

(since j/∈S
entails |S∪{j}|=|S|+1)

(
m/xj

)
xS∪{j}︸ ︷︷ ︸
=xSxj

(since j/∈S)

+ ∑
(m,S)∈A;

j/∈S

(−1)|S|mxS

(
here, we have substituted

(
m/xj, S ∪ {j}

)
for (m, S)

in the first sum, since the map (14) is a bijection

)
= ∑

(m,S)∈A;
j/∈S

(−1)|S|+1︸ ︷︷ ︸
=−(−1)|S|

(
m/xj

)
xSxj︸ ︷︷ ︸

=mxS

+ ∑
(m,S)∈A;

j/∈S

(−1)|S|mxS

= − ∑
(m,S)∈A;

j/∈S

(−1)|S|mxS + ∑
(m,S)∈A;

j/∈S

(−1)|S|mxS = 0. (16)

Forget that we fixed j. We thus have proved (16) for each j ∈ {k, k + 1, . . . , n}.
Hence, (12) becomes

∑
(m,S)∈M×P(n);

degm+|S|=k

(−1)|S|mxS =
n

∑
j=k

∑
(m,S)∈M×P(n);

degm+|S|=k;
max(Supp(mxS))=j

(−1)|S|mxS

︸ ︷︷ ︸
=0

(by (16))

=
n

∑
j=k

0 = 0.

Thus, (9) rewrites as

k

∑
i=0

(−1)i hk−i (xk..n) σi (x1..n) = 0.

This proves (5), and thus proves (1) as well. ■
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13. pages 12–13, proof of Theorem 1.2.7: The uniqueness of the reduced Gröb-
ner basis of I is not proved here. But it follows from a general fact saying
that any ideal of a polynomial ring over a field has a unique reduced Gröb-
ner basis (at least unique up to scaling; or literally unique, if we require
the elements of a Gröbner basis to have leading coefficients 1). For a proof
of this fact, see, for example, Satz 2.6.4 in Birgit Reinert, Gröbnerbasen, Win-
tersemester 1996/1997, or Theorem 5 in §2.7 of David A. Cox, John Little,
Donal O’Shea, Ideals, Varieties, and Algorithms, 5th edition, Springer 2025.

14. page 13, before the Exercises: “monomials σi1
1 σi2

2 · · · σin
n in the elemen-

tary symmetric polynomial” → “monomials σi1
1 σi2

2 · · · σin
n in the elementary

symmetric polynomials”.

15. page 17, Example 1.3.4: “has distance 7” should be “has distance
√

7”.

16. page 19, §1.4: The “monoid defined by A” is a semigroup, not a monoid
(since it does not contain (0, 0, . . . , 0) and thus has no neutral element).

17. page 20: “The invariant monomials are in bijection with the elements of the
monoid MA” should be “The invariant monomials are in bijection with the
elements of the monoid MA ∪ {0}” (since MA itself is not a monoid).

18. page 20, Lemma 1.4.2: Replace “∈ MA” by “∈ MA ∪ {0}”.

19. page 20, proof of Lemma 1.4.2: Replace “of the monoid MA” by “of the
monoid MA ∪ {0}”.

20. page 21, proof of correctness for Algorithms 1.4.3 and 1.4.4: Here it is
claimed that “In each step in the reduction of xβ a monomial reduces to
another monomial”. This tacitly uses the fact that the reduced Gröbner
basis G of I consists of “monomial differences” (i.e., of polynomials of the
form m − n where m and n are two monomials). To prove this fact, it
suffices to show the same about G ′ (since G ⊆ G ′). But G ′ is the reduced
Gröbner basis of an ideal of C [t0, t1, . . . , td, x1, . . . , xn], and the latter ideal is
generated by “monomial differences” (namely, the differences t0t1 · · · td − 1

and xi −
d

∏
j=1

t
aij
j for i = 1, 2, . . . , n, where all negative powers t

ai,j
j in the

latter monomials should be replaced by
(
t0t1 · · · tj−1tj+1tj+2 · · · td

)−ai,j). It
is easy to see that if a ideal of a polynomial ring is generated by “monomial
differences”, then its reduced Gröbner basis (with respect to any monomial
order) consists of “monomial differences”. Thus, G ′ consists of “monomial
differences”, and therefore so does G.

21. page 25, proof of Proposition 2.1.1: The polynomial Pi is not “monic”, but
very close (its leading coefficient is (−1)|Γ|, which is invertible; thus, the
polynomial (−1)|Γ| Pi is monic).
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22. page 25, proof of Proposition 2.1.1: “Hence the invariant subring C [x]Γ

and the full polynomial ring C [x] have the same transcendence degree n
over the ground field C”: This argument seems to tacitly use the facts that

a) the polynomial ring C [x] has transcendence degree n over the ground
field C, and

b) if C ⊆ A ⊆ B is an inclusion of integral domains such that B is integral
over A, then the transcendence degrees of A and B are equal.

I know how to prove the first of these facts (indeed, it would follow from
Lemma 4.7.2 if not for the homogeneity requirement in the latter lemma;
but this homogeneity requirement can be easily removed by introducing
an extra slack variable), but I’m less sure about the second.

23. page 26, proof of Theorem 2.1.3: This proof tacitly uses the fact that if
I ∈ C [x] is an invariant of Γ, then all homogeneous components of I are
invariants of Γ as well. (This is easy, since the action of Γ does not change
the degree of a homogeneous polynomial.) This fact allows us to restrict
ourselves to homogeneous invariants.

24. page 26, proof of Theorem 2.1.3: “Hence there exist finitely many homoge-
neous invariants I1, I2, . . . , Im such that IΓ = ⟨I1, I2, . . . , Im⟩”. Let me explain
in more detail why this holds: Indeed, this is a consequence of the follow-
ing general fact:

Fact. If an ideal J of some commutative ring is finitely generated,
and if G is any generating set of J (not necessarily finite), then
there exists a finite subset of G that already generates J.

(To prove this general fact, pick a finite generating set K of J, and expand
each k ∈ K in terms of the generators in G. Only finitely many elements of
G altogether are used in these expansions, and so they form a finite subset
of G that already generates J.)

25. page 26, proof of Theorem 2.1.3: “Since I ∈ IΓ, we have I =
s
∑

j=1
f j Ij for

some homogeneous polynomials f j ∈ C [x] of degree less than deg (I)”:
More precisely, this follows from the fact that I ∈ IΓ is homogeneous
and that the polynomials I1, I2, . . . , Im are also homogeneous of positive
degrees. Namely, the fact that I ∈ IΓ = ⟨I1, I2, . . . , Im⟩ shows that I can

be written as I =
s
∑

j=1
gj Ij for some polynomials gj ∈ C [x] that are not

necessarily homogeneous. But now, projecting this equality onto the deg I-

th homogeneous component of C [x], we conclude that I =
s
∑

j=1
f j Ij, where

f j is the
(
deg I − deg Ij

)
-th homogeneous component of gj; and this is the

expansion we are looking for.

9
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26. page 26: In “the remarkable statement that every ideal basis {I1, . . . , Im}
of IΓ is automatically an algebra basis for C [x]Γ”, add the word “homo-
geneous” in front of “ideal basis” (though arguably, the whole statement
is probably meant informally, since there is no definition of “ideal basis”
anywhere in the book).

It is worth remarking that in some places (e.g., in Proposition 2.1.5), “alge-
bra basis” means “graded generating set of C [x]Γ” (that is, “generating set
consisting of homogeneous elements”).

27. page 26: “the finiteness of the group Γ has not been used until the last
paragraph” is not literally true: The Reynolds operator ∗ has already made
an appearance in the first paragraph of the proof.

28. page 28, Proposition 2.1.5: Replace “n, p ≥ 2” by “n, p ≥ 1”.

29. page 29, Theorem 2.2.1: Add “Let Γ ⊂ GL (Cn) be a finite matrix group.”
at the beginning of this theorem.

30. page 29, proof of Theorem 2.2.1: The word “d-form” means “homoge-
neous polynomial of degree d” here.

31. page 30, proof of Theorem 2.2.1: When applying Lemma 2.2.2 here, one
should be careful: As stated, Lemma 2.2.2 would yield a sum over all
the elements of the group

{
π(d) | π ∈ Γ

}
, not over all the elements of

Γ. This difference sometimes matters, since different π’s in Γ might lead
to the same π(d)’s. The cleanest way to correct this little discrepancy is
to generalize Lemma 2.2.2 by replacing the subgroup Γ ⊂ GL (Cn) by an
arbitrary finite group Γ that acts on Cn. (Of course, trace (π) must then be
understood as the trace of the action of π on Cn.) If we generalize Lemma
2.2.2 this way, then we can apply it to the group Γ acting on C [x]Γd via
π 7→ π(d), and this immediately yields

dim
(

C [x]Γd
)
=

1
|Γ| ∑

π∈Γ
trace

(
π(d)

)
=

1
|Γ| ∑

π∈Γ
∑

d1+···+dn=d
ρd1

π,1 · · · ρdn
π,n,

as desired.

32. page 30, Lemma 2.2.3: Replace “
∞
∑

n=0
” by “

∞
∑

d=0
”.

33. page 31, proof of Example 2.2.4: “Molien series” just means “Hilbert se-
ries” here (computed using Molien’s formula, i.e., Theorem 2.2.1).

34. page 37, §2.3: The claims about Krull dimensions and h.s.o.p.s made here
need some further assumptions. Clearly, the algebra R must be com-
mutative, but even this does not seem to be enough; e.g., the algebra

10
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C [x1, x2, x3, . . .] /
(
x2

1, x2
2, x2

3, . . .
)

has no algebraically independent elements
at all, but is not finitely generated as a module over its subring C, so it is
not free over a subalgebra generated by an h.s.o.p., at least not if h.s.o.p.s
are defined as they are here.

The claim that the maximal number of algebraically independent elements
of C is the Krull dimension of R is true when R is finitely generated as a
C-algebra, according to Theorem 5.9 in Kemper’s book (Gregor Kemper, A
Course in Commutative Algebra, Springer 2011).

35. page 41, Proposition 2.3.6 (ii): Replace “ϕΓ (z)” by “ΦΓ (z)”.

36. pages 44–50, §2.4: For most of the book (and, in particular, for all of the text
before §2.4), the group Γ has always been acting from the left on Cn, and
thus from the right on the polynomial ring C [V] (since the polynomials in
C [V] are viewed as polynomial functions from V to C). However, in §2.4,
the group Γ suddenly acts from the left on C [V] instead (as witnessed, e.g.,
in the notation “σ f ” in Lemma 2.4.2). Here are two ways how this can be
reconciled with the rest of the book:

• One way is to replace all the “σ f ”s (for σ ∈ Γ and f ∈ C [V]) in §2.4
by “ f ◦ σ”s. (Thus, for example, in the proof of Proposition 2.4.3, each
“σh1” should become a “h1 ◦ σ”.) Also, in the proof of Proposition
2.4.3, on page 46, the computation “

πh1 − h1 =
l−1

∑
i=1

(σ1 . . . σiσi+1h1 − σ1 . . . σih1)

=
l−1

∑
i=1

(σ1 . . . σi (σi+1h1 − h1)) ∈ IΓ

” should be replaced by “

h1 ◦ π − h1 =
l−1

∑
i=1

(h1 ◦ σiσi+1 . . . σl − h1 ◦ σi+1σi+2 . . . σl)

=
l−1

∑
i=1

((h1 ◦ σi − h1) ◦ σi+1σi+2 . . . σl) ∈ IΓ

”. This is likely the intended way.

• An alternative way is to define σ f := f ◦ σ−1 for each σ ∈ Γ and
f ∈ C [V]. This way, the right Γ-action on C [V] is “translated” into
a left Γ-action on C [V] that carries the same information and has the
same invariants (since a polynomial f ∈ C [V] and a group element
σ ∈ Γ satisfy σ f = f if and only if f ◦ σ−1 = f , that is, if and only if
f ◦ σ = f ).

11
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37. page 44, §2.4: The definition of a reflection given here (as a linear transfor-
mation π ∈ GL (Cn) such that “precisely one eigenvalue of π is not equal
to one”) is somewhat eccentric. In the context of a finite reflection group,
it does its job well; however, viewed in isolation, it does not agree with
any of the commonly used definitions. Normally, one defines a reflection
(or pseudo-reflection) to be a linear transformation π ∈ GL (Cn) such that
dim (Ker (π − id)) = n − 1. Some authors also require π to be of finite
order, but this is automatically satisfies when π is an element of a finite
group. The fact that precisely one eigenvalue of π is not equal to one fol-
lows automatically from the condition dim (Ker (π − id)) = n − 1, but the
converse implication again requires the assumption that π is an element of
a finite group (this ensures that π is diagonalizable, so that all the n − 1
eigenvalues equal to 1 cause Ker (π − id) to have dimension n − 1). If not

for the latter assumption, the matrix

 1 −1 0
0 1 0
0 0 −1

 would be a “reflec-

tion” in the sense of the book (a linear transformation π ∈ GL (Cn) such
that precisely one eigenvalue of π is not equal to one), but would satisfy
rather little of what a reflection is commonly expected to satisfy.

38. page 45, proof of Lemma 2.4.2: The use of Hilbert’s Nullstellensatz here is
overkill. The only thing needed is the following easy fact:

Fact: Let L ∈ C [x] be a homogeneous linear polynomial (i.e., a
homogeneous polynomial of degree 1). Let g ∈ C [x] be a polyno-
mial such that each v ∈ Cn satisfying L (v) = 0 satisfies g (v) = 0.
Then, L is a divisor of g in C [x].

(Proof of the fact: By an appropriate coordinate transformation (i.e., com-
position with some invertible matrix π ∈ GL (Cn)), we can ensure that
the linear polynomial L is simply x1. Thus, WLOG assume that L = x1.
Then, the condition “each v ∈ Cn satisfying L (v) = 0 satisfies g (v) = 0”
becomes “g vanishes on each vector whose 1-st coordinate is 0”, that is,
“g (0, x2, x3, . . . , xn) = 0”. But this entails that all monomials in g that have
degree 0 with respect to x1 have coefficient 0, and thus all monomials that
actually appear in g must have x1 in some nonzero power. Consequently,
g is divisible by x1, that is, by L. In other words, L is a divisor of g. This
proves the fact.)

39. page 45, proof of Proposition 2.4.3: The claim that “h̃1 · Lσ ∈ IΓ” at the
end of page 45 is not entirely obvious: It requires showing that deg h̃1 > 0
(since IΓ is the ideal generated by all homogeneous invariants of positive
degree). But this is easy: If h̃1 = 0, then h̃1 · Lσ = 0 ∈ IΓ is obvious; if
h̃1 is a nonzero constant, then g1h̃1 + g2h̃2 + · · ·+ gmh̃m = 0 entails g1 =

− 1

h̃1

(
g2h̃2 + · · ·+ gmh̃m

)
∈ ⟨g2, . . . , gm⟩, contradicting g1 /∈ ⟨g2, . . . , gm⟩.

12
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40. page 46, proof of Theorem 2.4.1 (if-part): The first sentence of this proof
again uses the following fact (already mentioned above):

Fact. If an ideal J of some commutative ring is finitely generated,
and if G is any generating set of J (not necessarily finite), then
there exists a finite subset of G that already generates J.

Here this fact is being applied to J = IΓ and G = {homogeneous invariants of Γ}.

41. page 46, proof of Theorem 2.4.1 (if-part): “We need to prove that m = n,
or, equivalently, that the invariants f1, f2, . . . , fm are algebraically indepen-
dent over C”: I don’t see why these two claims are equivalent. The proof
given here is showing the second claim (i.e., that the invariants f1, f2, . . . , fm
are algebraically independent over C). The first claim m = n can then be
derived from this by asymptotically comparing the Hilbert series (essen-
tially following the proof of Corollary 2.4.5, but without assuming that the
number of generators is n 4).

42. page 47, proof of Theorem 2.4.1 (if-part): “Euler’s formula” is the (eas-
ily verified) fact that any homogeneous polynomial f ∈ C [x] satisfies

n
∑

s=1
xs

∂ f
∂xs

= (deg f ) f .

43. page 47, Lemma 2.4.4: Talking about “the Laurent expansion of the Molien
series about z = 1”, it is important to keep in mind that the Laurent series
is a rational function (not just a formal power series), by Theorem 2.2.1,
and therefore can be expanded into a Laurent series about any complex
number.

44. page 49, proof of Theorem 2.4.2 (only-if-part): The claim that “the Jaco-
bian determinant det

(
∂θi/∂ψj

)
is nonzero” could use a bit of explanation.

It relies on the so-called Jacobian criterion, which says that n polynomi-
als p1, p2, . . . , pn in the polynomial ring C [x] = C [x1, x2, . . . , xn] are alge-
braically independent over C if and only if their Jacobian det

(
∂pi/∂xj

)
is

nonzero. Here, this criterion is being applied not to the polynomial ring
C [x] = C [x1, x2, . . . , xn] but rather to its subring C [ψ1, ψ2, . . . , ψn] (which,
too, is a polynomial ring, since the polynomials ψ1, ψ2, . . . , ψn are alge-
braically independent) and to the n polynomials θ1, θ2, . . . , θn therein.

4That is, we need the following generalization of Corollary 2.4.5:

Corollary 2.4.5’. Let Γ ⊂ GL (Cn) be a finite matrix group whose invariant ring C [x]Γ

is generated by m algebraically independent homogeneous invariants θ1, . . . , θm
where di := deg θi. Let r be the number of reflections in Γ. Then,

m = n and |Γ| = d1d2 · · · dn and r = d1 + d2 + · · ·+ dn − n.

The proof of this generalization is just a slight modification of the proof of the original
Corollary 2.4.5.

13
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For a proof of the Jacobian criterion, see, e.g., Theorem 2.2 in the paper
Richard Ehrenborg, Gian-Carlo Rota, Apolarity and Canonical Forms for Ho-
mogeneous Polynomials, European Journal of Combinatorics 14, Issue 3, May
1993, pp. 157–181. (This proof relies on the fact that if p1, p2, . . . , pn are n
algebraically independent polynomials in C [x], then each of the (n + 1)-
tuples (xi, p1, p2, . . . , pn) is algebraically dependent. This follows from
Lemma 4.7.2 in Sturmfels’s book, after some tweaking to make the polyno-
mials homogeneous.)

45. page 52: The formula “ f ∗ :=
1
|Γ| ∑

σ∈Γ
σ ( f )” should be “ f ∗ :=

1
|Γ| ∑

σ∈Γ
f ◦ σ”

(since the group Γ acts on C [x] from the right, not from the left).

46. page 53, proof of Lemma 2.5.7: This is unnecessary. After all, Lemma 2.5.7
simply follows from Proposition 2.6.4 (applied to M instead of I).

47. page 55, proof of Lemma 2.5.11: In the first displayed equation, replace

“
n
∏
i=1

(
1 − zdj

)
” by either “

n
∏
i=1

(
1 − zdi

)
” or “

n
∏
j=1

(
1 − zdj

)
”.

48. page 56: “where α ∈ ranges” should be “where α ranges”.

49. page 57, Algorithm 2.5.14: In step 0, replace “Φ (z)” by “ΦΓ (z)”.

50. page 57, Algorithm 2.5.14: In step 2, replace “
n
∏
i=1

(
1 − zdj

)
” by either

“
n
∏
i=1

(
1 − zdi

)
” or “

n
∏
j=1

(
1 − zdj

)
”.

51. page 59, Algorithm 2.6.2: “Gröbner basis G1 for F ∪ G0” should be “Gröb-
ner basis G1 for ⟨F ∪ G0⟩”.

52. page 61, proof of Proposition 2.6.4: This proof can be significantly simpli-
fied, removing the use of the Nullstellensatz:

Simpler proof of Proposition 2.6.4. Since I′ ⊆ I, we clearly have Rad (I′) ⊆
Rad (I). It remains to show that Rad (I) ⊆ Rad (I′). For this purpose,
it suffices to show that I ⊆ Rad (I′) (since this would entail Rad (I) ⊆
Rad (Rad (I′)) = Rad (I′)).

So let f ∈ I. We must show that f ∈ Rad (I′). We shall show that f |Γ| ∈ I′;
this will clearly do the trick.

Consider the polynomial ∏
σ∈Γ

(z − f (σx)) ∈ (C [x]) [z] in the new indeter-

minate z over C [x]. This is clearly a monic polynomial of degree |Γ| in z,
hence can be written as

∏
σ∈Γ

(z − f (σx)) = z|Γ| +
|Γ|−1

∑
j=0

pj (x) zj, (17)
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where the pj (x) ∈ C [x] are its coefficients (and are themselves polynomials
in x). Consider these pj (x). Furthermore, the polynomial ∏

σ∈Γ
(z − f (σx))

is invariant under the action of Γ (since the action of Γ merely permutes
the factors of the product ∏

σ∈Γ
(z − f (σx))). Hence, all its coefficients pj (x)

are invariant under Γ as well.

Now, let j ∈ {0, 1, . . . , |Γ| − 1} be arbitrary. Then, as we just showed, pj (x)
is invariant under Γ. Furthermore, (17) shows that pj (x) equals (up to
sign) the (|Γ| − j)-th elementary symmetric polynomial evaluated at the
|Γ| many inputs f (σx) for σ ∈ Γ; thus, in particular, it is a polynomial in
these |Γ| many inputs f (σx) with no constant term (since j < |Γ| entails
|Γ| − j > 0). Hence, pj (x) belongs to the ideal I (since all the f (σx) belong
to I (because f belongs to I, and because I is Γ-invariant)). Since pj (x) is
furthermore invariant under Γ, we thus conclude that pj (x) is an invariant
in I. Hence, pj (x) ∈ I′ (by the definition of I′).

Forget that we fixed j. We thus have shown that

pj (x) ∈ I′ for each j ∈ {0, 1, . . . , |Γ| − 1} . (18)

Now, substituting f = f (x) for z on both sides of (17), we obtain

∏
σ∈Γ

( f − f (σx)) = f |Γ| +
|Γ|−1

∑
j=0

pj (x) f j.

Since the product ∏
σ∈Γ

( f − f (σx)) is 0 (because one of the factors of this

product is f − f (id x) = f − f (x) = f − f = 0), this can be rewritten as

0 = f |Γ| +
|Γ|−1

∑
j=0

pj (x) f j.

Hence,

f |Γ| = −
|Γ|−1

∑
j=0

pj (x)︸ ︷︷ ︸
∈I′

(by (18))

f j ∈ I′
(
since I′ is an ideal

)
,

and therefore f ∈ Rad (I′), qed. ■

53. page 63, proof of Proposition 2.6.6: “By Hilbert’s Nullstellensatz” → “By
Hilbert’s Nullstellensatz, this shows that C [x] = I + I (Γa), where Γa is the
ideal of polynomials vanishing on the finite set Γa. Hence, by the Chinese
Remainder Theorem, C [x] / (I)”.

15
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(Alternatively, we can avoid the use of Hilbert’s Nullstellensatz by defining
a maximal ideal

Ib := ⟨x1 − b1, x2 − b2, . . . , xn − bn⟩

of C [x] for each point b = (b1, b2, . . . , bn) ∈ Γa. Then, any two distinct
points b, c ∈ Γa satisfy C [x] = Ib + Ic, and furthermore Γa ∩ V (I) = ∅
shows that all b ∈ Γa satisfy C [x] = I + Ib (since b /∈ V (I) and thus
I ̸⊆ Ib). Hence, the Chinese Remainder Theorem can be applied to the
ideals I, Ib1 , Ib2 , . . . , Ibm where {b1, b2, . . . , bm} := Γa.)

54. page 69, Algorithm 2.7.3, step 3: “solution monoid” → “solution monoid
F ⊂ Nn”.

55. page 71: “This means that each factor group Γi/Γi+1 is cyclic of prime
order pi”: This is not what a composition series means. Rather, it is an
extra requirement that you want to impose here.

56. page 71, algorithm: “It follows from Theorem 2.3.5 that C [x]Γi+1 is a free
module of rank pi over C [x]Γi” is not true in general. For example, in
Example 2.7.6, C [x]{id} is not a free module over C [x]Γ=A3 .

57. page 72, Remark 2.7.7: The meaning of “cycle type ℓ (σ) = (ℓ1, ℓ2, . . . , ℓn)”
should be explained (since the notation is quite nonstandard). It means
that σ has exactly ℓi cycles of length i for each i ∈ {1, 2, . . . , n}.

58. page 81, second paragraph: What is called a “standard tableau” here is
better known as a “transpose semistandard tableau of rectangular shape”
to combinatorialists (although invariant theorists often do call it “standard
tableau”).

59. page 81, third paragraph: In the definition of “straightening syzygy”, the
condition “βs < γ1” is understood to be tautologically true if γ1 does not
exist (i.e., if s = d).

60. page 82, proof of Theorem 3.1.7: Lemma 3.1.8 is not entirely obvious. Its
proof requires checking three facts:

Fact 1: Sorting each column in an arbitrary tableau T yields a standard tableau
T̃.

Fact 2: This resulting tableau T̃ satisfies init ϕn,d

(
T̃
)
=

k
∏
i=1

xλi
11xλi

22 · · · xλi
dd.

Fact 3: This tableau T̃ is the only standard tableau S such that init ϕn,d (S) =
k

∏
i=1

xλi
11xλi

22 · · · xλi
dd.

16
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Fact 1 is a version of the non-messing-up lemma, saying that if the entries of
an integer matrix are strictly increasing along the rows, then sorting each
column of the matrix will result in a matrix whose entries are again strictly
increasing along the rows (as well as weakly increasing down the columns,
which is clear because we just sorted them). Proving this is a nice and easy
exercise5. Fact 2 is clear, because if we write T̃ as T̃ =

[
λ̃1
] [

λ̃2
]
· · ·
[
λ̃k
]
,

then the standardness of T̃ (see Fact 1) yields

init ϕn,d

(
T̃
)
=

k

∏
i=1

x
λ̃i

11x
λ̃i

22 · · · x
λ̃i

dd =
k

∏
i=1

d

∏
j=1

x
λ̃i

j j

=
d

∏
j=1

k

∏
i=1

x
λ̃i

j j︸ ︷︷ ︸
=

k
∏
i=1

x
λi

j j

(since the entries in the j-th column of T̃
are the same as those in the j-th column of T)

=
d

∏
j=1

k

∏
i=1

xλi
j j

=
k

∏
i=1

d

∏
j=1

xλi
j j
=

k

∏
i=1

xλi
11xλi

22 · · · xλi
dd.

Finally, it remains to prove Fact 3. It suffices to show that different standard
tableaux S induce different monomials init ϕn,d (S). But this is not hard: If
we write a standard tableau S as S =

[
µ1] [µ2] · · · [µk], then the monomial

init ϕn,d (S) =
k

∏
i=1

xµi
11xµi

22 · · · xµi
dd uniquely determines which entries lie in

which column of S (namely: for each j ≤ d, the entries in the j-th column
of S are exactly the integers k such that xkd appears in this monomial, and
their multiplicities in the j-th column are precisely their multiplicities in
this monomial), and thus uniquely determines S itself (since S is standard,
so the entries in each column appear in increasing order). In other words,
different standard tableaux S induce different monomials init ϕn,d (S). This
yields Fact 3.

This all said, Lemma 3.1.8 is not actually used in the proof of Theorem
3.1.7 (though it is used later on). Indeed, in the last sentence of the proof
of Theorem 3.1.7 (“This is a contradiction to Lemma 3.1.8”), the only thing
that is actually being used is that different standard tableaux S induce

5The analogous claim with “strictly increasing” replaced by “weakly increasing” is Remark
6.42 in Darij Grinberg, Notes on the combinatorial fundamentals of algebra, arXiv:2008.09862v3.
The version with “strictly increasing” can be proved in the exact same way, or reduced to
the “weakly increasing” version by an appropriate tweak of the matrix (if we subtract j from
each entry in the j-th column of a matrix, then its strictly increasing rows become weakly
increasing, while the relative order of entries in a given column does not change).

17

https://arxiv.org/abs/2008.09862v3


Errata to “Algorithms in Invariant Theory” January 18, 2026

different monomials init ϕn,d (S). This is a much simpler claim than Lemma
3.1.8 (and we have proved it above, during our proof of Fact 3).

61. page 88, proof of Lemma 3.2.5: Replace “ϕn+2d,n” by “ϕn+2d,d” twice in this
proof.

62. page 88, proof of Lemma 3.2.5: The matrix denoted by Adj (A) and called
the “adjoint matrix of A” in this proof is not actually the adjoint matrix of
A in the standard meaning of this word, but rather the transpose of the
adjoint matrix of A. However, this does not affect the argument, since its
determinant is the same as that of the actual adjoint matrix.

63. page 88, proof of Lemma 3.2.5: The computation (specifically, the equality
“det (A)p(d−1) · I

(
xij
)
= det (Adj (A))p · I

(
xij
)
”) relies on the classical re-

sult that det (Adj (A)) = (det (A))d−1 (see, for instance, Theorem 5.12 (a)
in Darij Grinberg, The trace Cayley-Hamilton theorem, arXiv:2510.20689v1).

64. page 89, proof of Theorem 3.2.1: In the first paragraph of this proof, the
straightening algorithm is applied not to the polynomials

[b1b2 · · · bd]
p(d−1) · I

([
a1 . . . aj−1xiaj+1 . . . ad

])
and

[a1a2 · · · ad]
p(d−1) · I

([
b1 . . . bj−1xbj+1 . . . bd

])
,

but rather to the polynomials

I
([

a1 . . . aj−1xiaj+1 . . . ad
])

and

I
([

b1 . . . bj−1xbj+1 . . . bd
])

.

The factors [b1b2 · · · bd]
p(d−1) and [a1a2 · · · ad]

p(d−1) are then multiplied onto
the resulting expansions. This does not destroy the standardness of the
tableaux in these expansions, because

• the factor [b1b2 · · · bd]
p(d−1) merely inserts p (d − 1) many rows of the

form [b1b2 · · · bd] at the bottom of the standard tableaux appearing in
the expansion of I

([
a1 . . . aj−1xiaj+1 . . . ad

])
(and these new rows do

not destroy the standardness of the tableaux, since each of the bj’s is
larger than any of the letters a1, a2, . . . , ad, x1, x2, . . . , xn that can appear
in the expansion of I

([
a1 . . . aj−1xiaj+1 . . . ad

])
);

• the factor [a1a2 · · · ad]
p(d−1) merely inserts p (d − 1) many rows of the

form [a1a2 · · · ad] at the top of the standard tableaux appearing in
the expansion of I

([
b1 . . . bj−1xbj+1 . . . bd

])
(and these new rows do

not destroy the standardness of the tableaux, since each of the aj’s
is smaller than any of the letters b1, b2, . . . , bd, x1, x2, . . . , xn that can
appear in the expansion of I

([
b1 . . . bj−1xbj+1 . . . bd

])
).
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65. page 89, proof of Theorem 3.2.1: “both polynomials in question are equal
to” should be “both polynomials in question evaluate in C

[
xij
]

to”.

66. page 90, third paragraph: I think that the order “≺” defined here is not
the “diagonal order” from Sect. 3.1, but a close relative of it (the variable
order is exactly the opposite one); fortunately all its important properties
are analogous.

67. page 91: In the description of the “subduction algorithm”, replace “ f −
f ν1
1 · · · f νm

m ” by “ f − c f ν1
1 · · · f νm

m , where c is the coefficient of init≺ f in f ”
(don’t forget that the leading coefficient is not necessarily 1).

68. page 95, definition of an extensor: An “extensor (of step k)” should be
defined not as an element of the form A = a1 ∨ a2 ∨ · · · ∨ ak for some
a1, . . . , ak ∈ V, but rather as an element of the form A = λ · a1 ∨ a2 ∨ · · · ∨ ak
for some a1, . . . , ak ∈ V and λ ∈ C. The scalar factor λ does not make a
real difference when k ≥ 1 (since it can be simply incorporated into the
a1 factor), but it becomes important for k = 0, where it allows any scalar
(rather than just 1) to be considered as an extensor. And this is necessary
for Theorem 3.3.2 (b) to be true (since the meet of two extensors of steps j
and k with j + k = d can be any scalar).

69. page 96, definition of the meet A ∧ B: It is not obvious that the meet oper-
ation ∧ on Λ (V) is well-defined. To prove this, we need to show that the
right hand side of (3.3.6) is multilinear in the inputs a1, a2, . . . , aj, b1, b2, . . . , bk
as well as alternating in a1, a2, . . . , aj and alternating in b1, b2, . . . , bk (be-
cause then, by the universal property of the exterior powers Λj (V) and
Λk (V), it will follow that this right hand side is a function of a1a2 · · · aj
and b1b2 · · · bk).

The multilinearity is obvious (since the determinant form [v1, v2, . . . , vd] is
multilinear in its inputs v1, v2, . . . , vd, and since the wedge product w1w2 · · ·wp
is multilinear in its factors w1, w2, . . . , wp). The alternatingness in b1, b2, . . . , bk
is also clear (since the determinant form [v1, v2, . . . , vd] is alternating in its
inputs v1, v2, . . . , vd). It remains to show that the right hand side of (3.3.6)
is alternating in a1, a2, . . . , aj. In other words, we must prove that if two of
a1, a2, . . . , aj are equal, then the right hand side of (3.3.6) is 0. Actually, it
suffices to show that if some p ∈ {1, 2, . . . , j − 1} satisfies ap = ap+1, then
the right hand side of (3.3.6) is 0 (because it is well-known that this con-
dition, combined with the multilinearity of the right hand side of (3.3.6),
entails that this right hand side is alternating6).

6Let me explicitly state the fact that I am using here:

Fact: Let V be a vector space over a field k. Let f : V j → k be any multilinear form
on V. If we have

f
(
v1, v2, . . . , vj

)
= 0 whenever some p ∈ {1, 2, . . . , j − 1} satisfies vp = vp+1,

19



Errata to “Algorithms in Invariant Theory” January 18, 2026

Let me prove this now. Assume that some p ∈ {1, 2, . . . , j − 1} satisfies
ap = ap+1. Consider this p. Now, the right hand side of (3.3.6) is

∑
σ

sign (σ)
[

aσ(1), . . . , aσ(d−k), b1, . . . , bk

]
· aσ(d−k+1) · · · aσ(j),

where the sum is over all permutations σ of {1, 2, . . . , j} such that σ (1) <
σ (2) < · · · < σ (d − k) and σ (d − k + 1) < σ (d − k + 2) < · · · < σ (j).
We shall refer to these permutations σ as the shuffles. For any permutation
σ ∈ Sj (thus, in particular, for any shuffle σ), we shall denote the sets
{σ (1) , σ (2) , . . . , σ (d − k)} and {σ (d − k + 1) , σ (d − k + 2) , . . . , σ (j)} as
Lσ and Rσ, respectively; we call them the left half and the right half of σ
(although they are not really “halves” as they usually have different sizes).
Clearly, any σ ∈ Sj satisfies Lσ ∩ Rσ = ∅ and Lσ ∪ Rσ = {1, 2, . . . , d}, so
that each i ∈ {1, 2, . . . , d} lies in either Lσ or Rσ (but not in both). Hence,
we can classify the permutations σ ∈ Sj into four classes:

• Class LL: those that satisfy p, p + 1 ∈ Lσ.

• Class RR: those that satisfy p, p + 1 ∈ Rσ.

• Class LR: those that satisfy p ∈ Lσ and p + 1 ∈ Rσ.

• Class RL: those that satisfy p ∈ Rσ and p + 1 ∈ Lσ.

Each permutation σ ∈ Sj is of exactly one of the four Classes LL, RR, LR
and RL.

If σ ∈ Sj is a permutation of Class LL, then

sign (σ)
[

aσ(1), . . . , aσ(d−k), b1, . . . , bk

]
︸ ︷︷ ︸

=0
(since this bracket contains

the equal vectors ap and ap+1
(because p,p+1∈Lσ={σ(1),σ(2),...,σ(d−k)}))

· aσ(d−k+1) · · · aσ(j)

= 0. (19)

then f is alternating (i.e., satisfies f
(
v1, v2, . . . , vj

)
= 0 whenever two of the j vectors

v1, v2, . . . , vj are equal).

For a proof of this fact, see Lemma 1.6 in Bernhard Leeb, Some multilinear algebra, Jan-
uary 25, 2020, or Corollary 2.9 in Keith Conrad, Exterior powers, 2026, or Proposition 6.4 in
Jean Gallier and Jocelyn Quaintance, Linear Algebra for Computer Vision, Robotics, and Machine
Learning, October 24, 2025, or Theorem 6 in Jordan Bell, Alternating multilinear forms, August
21, 2018 (but beware that the last two sources define “alternating” differently from us).
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If σ ∈ Sj is a permutation of Class RR, then

sign (σ)
[

aσ(1), . . . , aσ(d−k), b1, . . . , bk

]
· aσ(d−k+1) · · · aσ(j)︸ ︷︷ ︸

=0
(since this wedge product contains

the equal vectors ap and ap+1
(because p,p+1∈Rσ={σ(d−k+1),σ(d−k+2),...,σ(j)}))

= 0. (20)

Hence, in the sum on the right hand side of (3.3.6), all the addends cor-
responding to shuffles σ of Class LL and of Class RR are 0 and can thus
be discarded. The remaining addends correspond to shuffles σ of Class
LR and of Class RL. These addends are not (usually) 0, but rather can be
paired up in such a way that any two addends in a pair cancel out; here is
how this pairing works: Let sp ∈ Sj be the transposition that swaps p and
p + 1. Clearly, s2

p = id and sign
(
sp
)
= −1. If σ is a shuffle of Class LR,

then spσ ∈ Sj is a shuffle of Class RL7. Hence, we can define a map

{shuffles of Class LR} → {shuffles of Class RL} ,
σ 7→ spσ. (21)

Likewise, we can define a map

{shuffles of Class RL} → {shuffles of Class LR} ,
σ 7→ spσ.

7Proof. Let σ be a shuffle of Class LR. Then, spσ is obtained from σ by swapping the entries p
and p + 1 in the list (σ (1) , σ (2) , . . . , σ (j)). Since σ is of Class LR, we know that

p ∈ Lσ = {σ (1) , σ (2) , . . . , σ (d − k)} and
p + 1 ∈ Rσ = {σ (d − k + 1) , σ (d − k + 2) , . . . , σ (j)} .

In other words, p is one of the first d − k entries of the list (σ (1) , σ (2) , . . . , σ (j)), while p + 1
is one of the last j − (d − k) entries of this list. When we swap the entries p and p + 1 in
the list (σ (1) , σ (2) , . . . , σ (j)), this positionality clearly gets reversed; thus, we have p ∈ Rspσ

and p + 1 ∈ Lspσ. Hence, the permutation spσ is of Class RL.
Moreover, σ is a shuffle, so we have σ (1) < σ (2) < · · · < σ (d − k) and σ (d − k + 1) <

σ (d − k + 2) < · · · < σ (j). The number p appears in the chain of inequalities σ (1) < σ (2) <
· · · < σ (d − k) (since p ∈ Lσ = {σ (1) , σ (2) , . . . , σ (d − k)}), but the number p + 1 does not
(since p + 1 ∈ Rσ and thus p + 1 /∈ Lσ = {σ (1) , σ (2) , . . . , σ (d − k)}). When we swap the
entries p and p + 1 in the list (σ (1) , σ (2) , . . . , σ (j)), the number p is replaced by p + 1, but
the chain of inequalities σ (1) < σ (2) < · · · < σ (d − k) remains valid (indeed, the only
inequality that would be invalidated when we swap the entries p and p + 1 is the inequality
p < p + 1; but this inequality is not part of the chain, because p + 1 does not appear in this
chain), and so does the chain of inequalities σ (d − k + 1) < σ (d − k + 2) < · · · < σ (j) (for
a similar reason: the number p + 1 appears in this chain, but p does not). Thus, when we
swap the entries p and p + 1 in the list (σ (1) , σ (2) , . . . , σ (j)), the permutation σ remains a
shuffle. In other words, spσ is a shuffle.

Hence, spσ is a shuffle of Class RL (since we have shown that spσ is of Class RL).
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These two maps are mutually inverse (since sp
(
spσ
)
= s2

p︸︷︷︸
=id

σ = σ for any

σ ∈ Sj), and thus are bijections.

However, if we replace a given shuffle σ by spσ, then the product[
aσ(1), . . . , aσ(d−k), b1, . . . , bk

]
· aσ(d−k+1) · · · aσ(j) (22)

does not change (indeed, spσ is obtained from σ by swapping the values p
and p + 1; but our assumption ap = ap+1 ensures that this swap does not
change the vectors a1, a2, . . . , aj and therefore the expression (22)). In other
words, for any shuffle σ, we have[

a(spσ)(1), . . . , a(spσ)(d−k), b1, . . . , bk

]
· a(spσ)(d−k+1) · · · a(spσ)(j)

=
[

aσ(1), . . . , aσ(d−k), b1, . . . , bk

]
· aσ(d−k+1) · · · aσ(j). (23)

Hence, for any shuffle σ, we have

sign
(
spσ
)︸ ︷︷ ︸

=sign(sp)·sign(σ)
=− sign(σ)

(since sign(sp)=−1)

[
a(spσ)(1), . . . , a(spσ)(d−k), b1, . . . , bk

]
· a(spσ)(d−k+1) · · · a(spσ)(j)︸ ︷︷ ︸

=[aσ(1),...,aσ(d−k),b1,...,bk]·aσ(d−k+1)···aσ(j)
(by (23))

= − sign (σ)
[

aσ(1), . . . , aσ(d−k), b1, . . . , bk

]
· aσ(d−k+1) · · · aσ(j). (24)

22



Errata to “Algorithms in Invariant Theory” January 18, 2026

Now let us summarize: The right hand side of (3.3.6) is

∑
σ is a shuffle

sign (σ)
[

aσ(1), . . . , aσ(d−k), b1, . . . , bk

]
· aσ(d−k+1) · · · aσ(j)

= ∑
σ is a shuffle
of Class LL

sign (σ)
[

aσ(1), . . . , aσ(d−k), b1, . . . , bk

]
· aσ(d−k+1) · · · aσ(j)︸ ︷︷ ︸

=0
(by (19))

+ ∑
σ is a shuffle
of Class RR

sign (σ)
[

aσ(1), . . . , aσ(d−k), b1, . . . , bk

]
· aσ(d−k+1) · · · aσ(j)︸ ︷︷ ︸

=0
(by (20))

+ ∑
σ is a shuffle
of Class RL

sign (σ)
[

aσ(1), . . . , aσ(d−k), b1, . . . , bk

]
· aσ(d−k+1) · · · aσ(j)

+ ∑
σ is a shuffle
of Class LR

sign (σ)
[

aσ(1), . . . , aσ(d−k), b1, . . . , bk

]
· aσ(d−k+1) · · · aσ(j)

(
since each shuffle belongs to exactly one of the

four Classes LL, RR, RL and LR

)
= ∑

σ is a shuffle
of Class RL

sign (σ)
[

aσ(1), . . . , aσ(d−k), b1, . . . , bk

]
· aσ(d−k+1) · · · aσ(j)

+ ∑
σ is a shuffle
of Class LR

sign (σ)
[

aσ(1), . . . , aσ(d−k), b1, . . . , bk

]
· aσ(d−k+1) · · · aσ(j)

= ∑
σ is a shuffle
of Class LR

sign
(
spσ
) [

a(spσ)(1), . . . , a(spσ)(d−k), b1, . . . , bk

]
· a(spσ)(d−k+1) · · · a(spσ)(j)︸ ︷︷ ︸

=− sign(σ)[aσ(1),...,aσ(d−k),b1,...,bk]·aσ(d−k+1)···aσ(j)
(by (24))

+ ∑
σ is a shuffle
of Class LR

sign (σ)
[

aσ(1), . . . , aσ(d−k), b1, . . . , bk

]
· aσ(d−k+1) · · · aσ(j)

(
here, we have substituted spσ for σ in the first sum,

since the map (21) is a bijection

)
= − ∑

σ is a shuffle
of Class LR

sign (σ)
[

aσ(1), . . . , aσ(d−k), b1, . . . , bk

]
· aσ(d−k+1) · · · aσ(j)

+ ∑
σ is a shuffle
of Class LR

sign (σ)
[

aσ(1), . . . , aσ(d−k), b1, . . . , bk

]
· aσ(d−k+1) · · · aσ(j)

= 0.

This completes the proof of the claim that the right hand side of (3.3.6) is
alternating in a1, a2, . . . , aj, and thus (ultimately) the proof that the meet
operation on Λ (V) is well-defined. ■
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70. page 97, proof of Theorem 3.3.2: I am not sure how part (a) of the theorem
is being proved here (e.g., where is the associativity of ∧ proved?). Let me
instead prove Theorem 3.3.2 using the Hodge star operation. Here is an
outline:

• Let [d] := {1, 2, . . . , d}. For any subset J =
{

j1 < j2 < · · · < jp
}

of [d],
let eJ be the extensor ej1 ∨ ej2 ∨ · · · ∨ ejp ∈ Λp (V). It is known that the
family (eJ)J⊆[d] is a basis of the C-vector space Λ (V).

In particular, e∅ = 1 ∈ Λ0 (V) and e[d] = e1 ∨ e2 ∨ · · · ∨ ed ∈ Λd (V).

It is well-known (and easy to see) that any two subsets U and V of [d]
satisfy

eU ∨ eV = (−1)|U|·|V| eV ∨ eU. (25)

More generally, any a ∈ Λk (V) and any b ∈ Λl (V) satisfy

a ∨ b = (−1)kl b ∨ a. (26)

Moreover, if U and V are two subsets of [d] that are not disjoint, then

eU ∨ eV = 0 (27)

(since there is a common element r ∈ U ∩ V, and the corresponding
basis vector er appears as a factor in both eU and eV). On the other
hand, if U and V are two disjoint subsets of [d], then

eU ∨ eV = sign (η) · eU∪V , (28)

where η ∈ S|U|+|V| is the permutation that transforms the increasing
list8 of U ∪ V into the concatenation of the increasing lists of U and of
V.

• For each subset J of [d], we let σJ ∈ Sd be the permutation that sends
the numbers 1, 2, . . . , |J| to the elements of J listed in increasing order
and sends the numbers |J|+ 1, |J|+ 2, . . . , d to the elements of [d] \ J
listed in increasing order. For instance:

– If n = 5 and J = {2, 5}, then σJ ∈ S5 is the permutation sending
1, 2, 3, 4, 5 to 2, 5, 1, 3, 4.

– If n = 4 and J = {2}, then σJ ∈ S4 is the permutation sending
1, 2, 3, 4 to 2, 1, 3, 4.

It is easy to see that any subset J of [d] satisfies

eJ ∨ e[d]\J = sign (σJ) · e[d] (29)

8The increasing list of a finite set K of integers means the list of all elements of K in increasing
order.
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(since eJ ∨ e[d]\J is the extensor obtained by multiplying the ej for j ∈ J
in increasing order and then the ej for j ∈ [d] \ J in increasing order;
but this is just the wedge product e1 ∨ e2 ∨ · · · ∨ ed = e[d] with its
factors permuted by σJ).

• Define the Hodge star operation to be the C-linear map ⋆ : Λ (V) →
Λ (V) that sends each element eJ (with J ⊆ [d]) to sign (σJ) · e[d]\J . For
instance:

– If n = 5 and J = {2, 5}, then σJ ∈ S5 is the permutation sending

1, 2, 3, 4, 5 to 2, 5, 1, 3, 4, and thus we have ⋆e{2,5} = sign
(

σ{2,5}

)
︸ ︷︷ ︸

=1

· e[5]\{2,5}︸ ︷︷ ︸
=e{1,3,4}

=

e{1,3,4}.

– If n = 4 and J = {2}, then σJ ∈ S4 is the permutation sending

1, 2, 3, 4 to 2, 1, 3, 4, and thus we have ⋆e{2} = sign
(

σ{2}

)
︸ ︷︷ ︸

=−1

· e[4]\{2}︸ ︷︷ ︸
=e{1,3,4}

=

−e{1,3,4}.

It is easy to see that every k ∈ N and A ∈ Λk (V) satisfy

⋆A ∈ Λd−k (V) (30)

and
⋆ (⋆A) = (−1)k(d−k) A. (31)

(Proof sketch: By linearity, it suffices to prove both (30) and (31) in
the case when A = eJ for some k-element subset J of [d]. So let J
be a k-element subset of [d], and let A = eJ . Then, |J| = k, so that
|[d] \ J| = d − k. But A = eJ , and thus the definition of the Hodge star
⋆ yields ⋆A = sign (σJ) · e[d]\J ∈ Λd−k (V) (since |[d] \ J| = d − k); this
immediately proves (30). It remains to prove (31).

From ⋆A = sign (σJ) · e[d]\J , we obtain

⋆ (⋆A) = ⋆
(

sign (σJ) · e[d]\J

)
= sign (σJ) · ⋆ e[d]\J︸ ︷︷ ︸

=sign(σ[d]\J)·e[d]\([d]\J)
(by the definition of ⋆)

= sign (σJ) · sign
(

σ[d]\J

)
︸ ︷︷ ︸

=sign(σ[d]\J)·sign(σJ)

· e[d]\([d]\J)︸ ︷︷ ︸
=eJ

(since [d]\([d]\J)=J)

= sign
(

σ[d]\J

)
· sign (σJ) · eJ︸︷︷︸

=A

= sign
(

σ[d]\J

)
· sign (σJ) · A.
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Hence, in order to complete the proof of (31), we only need to show
that

sign
(

σ[d]\J

)
· sign (σJ) = (−1)k(d−k) . (32)

For this purpose, we let ηk ∈ Sd be the permutation that sends the
numbers 1, 2, . . . , k to d − k + 1, d − k + 2, . . . , d and sends the numbers
k + 1, k + 2, . . . , d to the numbers 1, 2, . . . , d − k. Then, it is easy to see
that sign (ηk) = (−1)k(d−k) and σJ = σ[d]\Jηk

9. The latter equality
yields

sign (σJ) = sign
(

σ[d]\Jηk

)
= sign

(
σ[d]\J

)
· sign (ηk)︸ ︷︷ ︸
=(−1)k(d−k)

= sign
(

σ[d]\J

)
· (−1)k(d−k) ,

and therefore we have

sign
(

σ[d]\J

)
· sign (σJ) = sign

(
σ[d]\J

)
· sign

(
σ[d]\J

)
︸ ︷︷ ︸

=(sign(σ[d]\J))
2
=1

(since sign(σ[d]\J) is 1 or −1)

· (−1)k(d−k)

= (−1)k(d−k) . (33)

This proves (32), and so the proof of (31) is complete.)

• The Hodge star ⋆ : Λ (V) → Λ (V) is a vector space isomorphism.
(Indeed, (31) shows that the composition ⋆ ◦ ⋆ is the linear map that
sends each A ∈ Λk (V) to (−1)k(d−k) A. But the latter map is clearly a
vector space isomorphism. Thus, ⋆ is an isomorphism as well.)

• Now we claim that any a, b ∈ Λ (V) satisfy

⋆ (a ∧ b) = (⋆a) ∨ (⋆b) . (34)

(Proof sketch: By linearity, we WLOG assume that a = eI and b = eJ ,
where I and J are two subsets of [d]. Then, the definition of the Hodge

9Proof. The permutation σ[d]\Jηk sends the numbers 1, 2, . . . , k to the elements of J in increasing
order (because the permutation ηk sends the numbers 1, 2, . . . , k to the numbers d − k + 1, d −
k + 2, . . . , d, and then the permutation σ[d]\J sends the latter numbers to the elements of
[d] \ ([d] \ J) = J in increasing order), and furthermore sends the numbers k + 1, k + 2, . . . , d
to the elements of [d] \ J in increasing order (because the permutation ηk sends the numbers
k + 1, k + 2, . . . , d to the numbers 1, 2, . . . , d − k, and then the permutation σ[d]\J sends the
latter numbers to the elements of [d] \ J in increasing order). But the permutation σJ does the
exact same things (by its definition). Hence, the two permutations σ[d]\Jηk and σJ agree on all
the numbers 1, 2, . . . , k and on all the numbers k + 1, k + 2, . . . , d. In other words, these two
permutations are equal. That is, σJ = σ[d]\Jηk.
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star entails that ⋆a = sign (σI) · e[d]\I and ⋆b = sign (σJ) · e[d]\J . Thus,

(⋆a) ∨ (⋆b) =
(

sign (σI) · e[d]\I

)
∨
(

sign (σJ) · e[d]\J

)
= sign (σI) · sign (σJ) · e[d]\I ∨ e[d]\J . (35)

Meanwhile, let us write the subsets I and J as I =
{

i1 < i2 < · · · < ip
}

and J =
{

j1 < j2 < · · · < jq
}

. Thus, a = eI = ei1ei2 · · · eip and b = eJ =
ej1ej2 · · · ejq , so that

a ∧ b =
(

ei1ei2 · · · eip

)
∧
(

ej1ej2 · · · ejq

)
= ∑

σ

sign (σ)
[
eiσ(1) , . . . , eiσ(d−q)

, ej1 , . . . , ejq

]
· eiσ(d−q+1)

· · · eiσ(p)

(36)

(by the definition of the meet operation), where the sum ranges over
certain permutations σ ∈ Sp (namely, those that satisfy σ (1) < σ (2) <
· · · < σ (d − q) and σ (d − q + 1) < σ (d − q + 2) < · · · < σ (p)). We
shall denote the latter permutations σ as the shuffles. Thus, the sum in
(36) ranges over the shuffles σ.

Now we are in one of the following two cases:

Case 1: We have I ∪ J ̸= [d].

Case 2: We have I ∪ J = [d].

Let us first consider Case 1. In this case, we have I ∪ J ̸= [d]. Hence,
there exists some r ∈ [d] such that r /∈ I and r /∈ J. Consider this r.
Now, each permutation σ ∈ Sp satisfies

[
eiσ(1) , . . . , eiσ(d−q)

, ej1 , . . . , ejq

]
=

0 (since r /∈ I and r /∈ J shows that the basis vector er does not ap-
pear among eiσ(1) , . . . , eiσ(d−q)

, ej1 , . . . , ejq , which entails by the pigeon-
hole principle that two entries of the list eiσ(1) , . . . , eiσ(d−q)

, ej1 , . . . , ejq are
equal10). Hence, all the addends in the sum on the right hand side of
(36) equal 0. Thus, (36) simplifies to a ∧ b = 0. Hence ⋆ (a ∧ b) = ⋆0 =
0. On the other hand, we have r ∈ [d] \ I (since r /∈ I) and r ∈ [d] \ J
(since r /∈ J); thus, the extensor e[d]\I ∨ e[d]\J has two equal factors
(namely, er, which appears as a factor in both e[d]\I and e[d]\J). Hence,
this extensor is 0. Thus, e[d]\I ∨ e[d]\J = 0. Therefore, (35) simplifies
to (⋆a) ∨ (⋆b) = 0. Comparing this with ⋆ (a ∧ b) = 0, we obtain
⋆ (a ∧ b) = (⋆a) ∨ (⋆b). Thus, (34) is proved in Case 1.

Now, let us consider Case 2. In this case, we have I ∪ J = [d]. Hence,
[d] \ J ⊆ I. Thus, [d] \ J is a (d − q)-element subset of I (since |J| = q

10Indeed, there are only d basis vectors e1, e2, . . . , ed available. Thus, any list that contains d of
these vectors but does not contain er must contain two equal entries.
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and thus |[d] \ J| = d − q). In other words,

[d] \ J =
{

ir1 < ir2 < · · · < ird−q

}
for some d − q elements r1 < r2 < · · · < rd−q of {1, 2, . . . , p} (since
I =

{
i1 < i2 < · · · < ip

}
). Consider these elements.

It is easy to see that for any d − q elements h1 < h2 < · · · < hd−q
of {1, 2, . . . , p}, there is a unique shuffle σh whose first d − q values
σh (1) , σh (2) , . . . , σh (d − q) are the elements h1, h2, . . . , hd−q (indeed,
its remaining p− (d − q) values σh (d − q + 1) , σh (d − q + 2) , . . . , σh (p)
must then be the remaining p − (d − q) elements of {1, 2, . . . , p} listed
in increasing order). Applying this to hk = rk, we see that there is a
unique shuffle σ0 whose first d − q values σ0 (1) , σ0 (2) , . . . , σ0 (d − q)
are the elements r1, r2, . . . , rd−q (because r1 < r2 < · · · < rd−q). Con-
sider this shuffle σ0. It satisfies[

eiσ0(1)
, . . . , eiσ0(d−q)

, ej1 , . . . , ejq

]
=
[
eir1

, . . . , eird−q
, ej1 , . . . , ejq

]
= sign

(
σ[d]\J

)
, (37)

since the vectors eir1
, . . . , eird−q

, ej1 , . . . , ejq inside the bracket are pre-
cisely the d basis vectors e1, e2, . . . , ed of V permuted using the permu-
tation σ[d]\J (because we have

{
ir1 < ir2 < · · · < ird−q

}
= [d] \ J and{

j1 < j2 < · · · < jq
}
= J).

Furthermore, since σ0 is a shuffle, we have σ0 (d − q + 1) < σ0 (d − q + 2) <
· · · < σ0 (p), so that iσ0(d−q+1) < iσ0(d−q+2) < · · · < iσ0(p) (since
i1 < i2 < · · · < ip). Since we also have{

iσ0(d−q+1), iσ0(d−q+2), . . . , iσ0(p)

}
=
{

i1, i2, . . . , ip
}︸ ︷︷ ︸

={i1<i2<···<ip}
=I

\
{

iσ0(1), iσ0(2), . . . , iσ0(d−q)

}
︸ ︷︷ ︸

=
{

ir1 ,ir2 ,...,ird−q

}
(since the numbers σ0(1),σ0(2),...,σ0(d−q)

are the elements r1,r2,...,rd−q)

(because σ0 is a permutation of {1, 2, . . . , p})

= I \
{

ir1 , ir2 , . . . , ird−q

}
︸ ︷︷ ︸
=
{

ir1<ir2<···<ird−q

}
=[d]\J

= I \ ([d] \ J) = I ∩ J,

we thus conclude that the numbers iσ0(d−q+1), iσ0(d−q+2), . . . , iσ0(p) are
the elements of I ∩ J listed in increasing order. Hence,

eiσ0(d−q+1)
eiσ0(d−q+2)

· · · eiσ0(p)
= eI∩J . (38)
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Recall that the sum on the right hand side of (36) ranges over all
shuffles σ; one of these shuffles σ is σ0. All other shuffles σ are distinct
from σ0, and thus satisfy[

eiσ(1) , . . . , eiσ(d−q)
, ej1 , . . . , ejq

]
= 0,

since the bracket
[
eiσ(1) , . . . , eiσ(d−q)

, ej1 , . . . , ejq

]
contains two equal vec-

tors11. Thus, all the addends in the sum on the right hand side of (36)
equal 0, except for the addend for σ = σ0, which is

sign (σ0)
[
eiσ0(1)

, . . . , eiσ0(d−q)
, ej1 , . . . , ejq

]
︸ ︷︷ ︸

=sign(σ[d]\J)
(by (37))

· eiσ0(d−q+1)
· · · eiσ0(p)︸ ︷︷ ︸

=eI∩J
(by (38))

= sign (σ0) · sign
(

σ[d]\J

)
· eI∩J .

Thus, (36) rewrites as

a ∧ b = sign (σ0) · sign
(

σ[d]\J

)
· eI∩J .

Thus,

⋆ (a ∧ b) = ⋆
(

sign (σ0) · sign
(

σ[d]\J

)
· eI∩J

)
= sign (σ0) · sign

(
σ[d]\J

)
· ⋆ eI∩J︸ ︷︷ ︸
=sign(σI∩J)·e[d]\(I∩J)
(by the definition of ⋆)

= sign (σ0) · sign
(

σ[d]\J

)
· sign (σI∩J) · e[d]\(I∩J). (39)

On the other hand, I ∪ J = [d] entails that the sets [d] \ I and [d] \ J
are disjoint. Hence, (28) shows that

e[d]\I ∨ e[d]\J = sign (η) · e([d]\I)∪([d]\J),

11Why? Because if it didn’t, then the indices iσ(1), . . . , iσ(d−q), j1, . . . , jq would be distinct, so that
we would have{

iσ(1), . . . , iσ(d−q)

}
= [d] \

{
j1, . . . , jq

}︸ ︷︷ ︸
=J

= [d] \ J =
{

ir1 < ir2 < · · · < ird−q

}
;

but this would entail {σ (1) , . . . , σ (d − q)} =
{

r1, r2, . . . , rd−q

}
(since the i1, i2, . . . , ip are dis-

tinct), and therefore (σ (1) , . . . , σ (d − q)) =
(

r1, r2, . . . , rd−q

)
(since σ (1) < · · · < σ (d − q)

(because σ is a shuffle) and r1 < r2 < · · · < rd−q), and this would entail σ = σ0 (since σ is a
shuffle, but σ0 is the only shuffle such that the numbers σ0 (1) , σ0 (2) , . . . , σ0 (d − q) are the
elements r1, r2, . . . , rd−q).
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where η ∈ S|[d]\I|+|[d]\J| is the permutation that transforms the increas-
ing list of ([d] \ I) ∪ ([d] \ J) into the concatenation of the increasing
lists of [d] \ I and of [d] \ J. In view of ([d] \ I)∪ ([d] \ J) = [d] \ (I ∩ J),
we can rewrite this as

e[d]\I ∨ e[d]\J = sign (η) · e[d]\(I∩J). (40)

Hence, (35) rewrites as

(⋆a) ∨ (⋆b) = sign (σI) · sign (σJ) · sign (η) · e[d]\(I∩J).

Comparing this with (39), we see that the vectors ⋆ (a ∧ b) and (⋆a) ∨
(⋆b) are equal up to sign. All that remains to be proved now is that
their signs agree as well. In other words, we must prove that

sign (σ0) · sign
(

σ[d]\J

)
· sign (σI∩J)

= sign (σI) · sign (σJ) · sign (η) . (41)

The easiest way to prove this equality is as follows: First, we observe
that [d] \ I = J \ I (since I ∪ J = [d]) and thus |I ∩ J| + |[d] \ I| =
|I ∩ J| + |J \ I| = |J| = q. Thus, the extensor eI∩J ∨ e[d]\I has step
|I ∩ J|+ |[d] \ I| = q. Hence, eI∩J ∨ e[d]\I ∈ Λq (V). Moreover, |[d] \ J| =
d − q (since |J| = q) and thus e[d]\J ∈ Λd−q (V). Hence, (26) (applied
to k = q and l = d − q and a = eI∩J ∨ e[d]\I and b = e[d]\J) yields

eI∩J ∨ e[d]\I ∨ e[d]\J = (−1)q(d−q) e[d]\J ∨ eI∩J ∨ e[d]\I . (42)

But (29) (applied to I ∩ J instead of J) yields

eI∩J ∨ e[d]\(I∩J) = sign (σI∩J) · e[d].

Hence,

sign (σI∩J) · e[d]
= eI∩J ∨ e[d]\(I∩J)︸ ︷︷ ︸

=
1

sign (η)
e[d]\I∨e[d]\J

(by (40))

=
1

sign (η)︸ ︷︷ ︸
=sign(η)

(since sign(η)
is 1 or −1)

eI∩J ∨ e[d]\I ∨ e[d]\J︸ ︷︷ ︸
=(−1)q(d−q)e[d]\J∨eI∩J∨e[d]\I

(by (42))

= sign (η) · (−1)q(d−q) e[d]\J ∨ eI∩J ∨ e[d]\I . (43)
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Now, recall that the values σ0 (1) , σ0 (2) , . . . , σ0 (d − q) are the ele-
ments r1, r2, . . . , rd−q (by the definition of σ0). Hence,

eiσ0(1)
eiσ0(2)

· · · eiσ0(d−q)
= eir1

eir2
· · · eird−q

= e[d]\J

(since [d] \ J =
{

ir1 < ir2 < · · · < ird−q

}
). Multiplying this equality

with (38) (using the join operation ∨), we obtain(
eiσ0(1)

eiσ0(2)
· · · eiσ0(d−q)

)
∨
(

eiσ0(d−q+1)
eiσ0(d−q+2)

· · · eiσ0(p)

)
= e[d]\J ∨ eI∩J .

Hence,

e[d]\J ∨ eI∩J

=
(

eiσ0(1)
eiσ0(2)

· · · eiσ0(d−q)

)
∨
(

eiσ0(d−q+1)
eiσ0(d−q+2)

· · · eiσ0(p)

)
= eiσ0(1)

eiσ0(2)
· · · eiσ0(p)

= sign (σ0) · ei1ei2 · · · eip︸ ︷︷ ︸
=eI

= sign (σ0) · eI .

Hence, (43) becomes

sign (σI∩J) · e[d]

= sign (η) · (−1)q(d−q) e[d]\J ∨ eI∩J︸ ︷︷ ︸
=sign(σ0)·eI

∨ e[d]\I

= sign (η) · (−1)q(d−q) · sign (σ0) · eI ∨ e[d]\I︸ ︷︷ ︸
=sign(σI)·e[d]

(by (29))

= sign (η) · (−1)q(d−q) · sign (σ0) · sign (σI) · e[d].

Since e[d] is nonzero (and in fact an element of a basis of Λ (V)), we
can cancel e[d] from this equality, and obtain

sign (σI∩J)

= sign (η) · (−1)q(d−q)︸ ︷︷ ︸
=sign(σ[d]\J)·sign(σJ)

(since |J|=q, and thus (33) (applied to k=q)
yields sign(σ[d]\J)·sign(σJ)=(−1)q(d−q))

· sign (σ0) · sign (σI)

= sign (η) · sign
(

σ[d]\J

)
· sign (σJ) · sign (σ0) · sign (σI) .
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Multiplying this equality by sign (σ0) · sign
(

σ[d]\J

)
, we obtain

sign (σ0) · sign
(

σ[d]\J

)
· sign (σI∩J)

= sign (σ0) · sign
(

σ[d]\J

)
· sign (η) · sign

(
σ[d]\J

)
· sign (σJ) · sign (σ0) · sign (σI)

= sign (σI) · sign (σJ) · sign (η) ·
(

sign
(

σ[d]\J

))2

︸ ︷︷ ︸
=1

· (sign (σ0))
2︸ ︷︷ ︸

=1

= sign (σI) · sign (σJ) · sign (η) .

This proves (41), and thus completes the proof of (34) in Case 2.

Thus, (34) is proved in both Cases 1 and 2; this completes the proof of
(34).)

• Now, it is easy to see that the meet is anticommutative: i.e., any a ∈
Λj (V) and b ∈ Λk (V) satisfy

a ∧ b = (−1)(d−k)(d−j) b ∧ a. (44)

(Proof sketch: Let a ∈ Λj (V) and b ∈ Λk (V). Then, (30) yields ⋆a ∈
Λd−j (V) and ⋆b ∈ Λd−k (V). Hence, (26) (applied to d − j, d − k, ⋆a
and ⋆b instead of k, j, a and b) yields

(⋆a) ∨ (⋆b) = (−1)(d−j)(d−k) (⋆b) ∨ (⋆a) . (45)

However, (34) yields ⋆ (a ∧ b) = (⋆a) ∨ (⋆b) and ⋆ (b ∧ a) = (⋆b) ∨
(⋆a). In light of these two equalities, we can rewrite (45) as

⋆ (a ∧ b) = (−1)(d−j)(d−k) ⋆ (b ∧ a) = ⋆
(
(−1)(d−j)(d−k) (b ∧ a)

)
.

Since the map ⋆ is injective (because ⋆ is a vector space isomorphism),
this entails a ∧ b = (−1)(d−j)(d−k) (b ∧ a) = (−1)(d−k)(d−j) b ∧ a. This
proves (44).)

• Now, it is easy to see that the meet is associative: i.e., any a, b, c ∈
Λ (V) satisfy

a ∧ (b ∧ c) = (a ∧ b) ∧ c. (46)

(Proof sketch: This is similar to the proof of (44): Again, we use (34)
to reduce the claim a ∧ (b ∧ c) = (a ∧ b) ∧ c to the equality (⋆a) ∨
((⋆b) ∨ (⋆c)) = ((⋆a) ∨ (⋆b)) ∨ (⋆c), which is true because the join is
associative.)

Thus, Theorem 3.3.2 (a) is proved. ■
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71. page 97, proof of Theorem 3.3.2: “In view of the assumption A + B = V”:
This is somewhat inappropriate, since no such assumption has been made.
Instead, the case A + B ̸= V must be considered separately. Fortunately,
this case is very easy: In this case, we can easily see that A ∧ B = 0,
because all the brackets

[
aσ(1), . . . , aσ(d−k), b1, . . . , bk

]
on the right hand side

of (3.3.6) are 0 (indeed, A + B ̸= V shows that A + B is a proper subspace
of V, and obviously all the d vectors aσ(1), . . . , aσ(d−k), b1, . . . , bk belong to
this proper subspace; but this entails that these d vectors cannot be linearly
independent, and thus must satisfy

[
aσ(1), . . . , aσ(d−k), b1, . . . , bk

]
= 0).

72. page 97, proof of Theorem 3.3.2: Let me add a few remarks about Theorem
3.3.2 (b).

a) Somewhat surprisingly, Theorem 3.3.2 (b) is not true if we replace the
base field C by a commutative ring. For a specific counterexample,
let k be the polynomial ring R [x, y, z], and let d = 4 and k = 3 and
j = 3. In the exterior algebra Λk

(
k4), let A = e1e2e3 and B = b1b2b3,

where (e1, e2, e3, e4) is the standard basis of k4, and where b1, b2, b3

are the vectors (1, 0, 0, x)T , (0, 1, 0, y)T , (0, 0, 1, z)T. Then, A and B are
extensors, but

A ∧ B = [e1, b1, b2, b3] e2e3 − [e2, b1, b2, b3] e1e3 + [e3, b1, b2, b3] e1e2

= xe2e3 − ye1e3 + ze1e2

is not. (Indeed, if xe2e3 − ye1e3 + ze1e2 was an extensor v ∨ w, then we
could write v as v = (α, β, γ, δ)T, and obtain

0 = v︸︷︷︸
=(α,β,γ,δ)T

=αe1+βe2+γe3+δe4

∨ v ∨ w︸ ︷︷ ︸
=xe2e3−ye1e3+ze1e2

= (αe1 + βe2 + γe3 + δe4) ∨ (xe2e3 − ye1e3 + ze1e2)

= (αx + βy + γz) e1e2e3 + δe4 (xe2e3 − ye1e3 + ze1e2) ,

which would entail αx + βy + γz = 0 and δ = 0, and thus the vec-
tor (α, β, γ)T would be a nonvanishing tangent vector field on the
2-sphere R3 (nonvanishing because v ∨ w = xe2e3 − ye1e3 + ze1e2 is
nonvanishing and thus v is nonvanishing); but this would contradict
the hairy ball theorem (which says that no such tangent vector fields
exist, even if we replace polynomials by continuous functions). Thus,
xe2e3 − ye1e3 + ze1e2 is not an extensor.)

This explains why the proof of Theorem 3.3.2 (b) must use linear al-
gebra that is specific to vector spaces (over fields).
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b) The Hodge star ⋆ has a similar property to Theorem 3.3.2 (b): If A ∈
Λ (V) is any extensor, then ⋆A is an extensor again. This, too, would
fail if we replaced C by a commutative ring such as R [x, y, z] (and
again, a counterexample can be built based on the hairy ball theorem).

73. page 103, Theorem: This theorem is very easy to prove without any alge-
bra.

Proof sketch: WLOG assume that (ℓ3, ℓ4) is the pair of lines whose intersec-
tion we must prove (while all the other five pairs are known to intersect).
The two lines ℓ1 and ℓ2 are distinct (otherwise, ℓ1, ℓ2, ℓ3 would lie in a
plane), and thus span a plane H and intersect at a point P. The line ℓ3
intersects both ℓ1 and ℓ2 but cannot lie on the plane H (otherwise, ℓ1, ℓ2, ℓ3
would lie in a plane); thus, ℓ3 must pass through P. Similarly, ℓ4 must pass
through P. Hence, all four lines ℓ1, ℓ2, ℓ3, ℓ4 pass through P; in particular,
the pair (ℓ3, ℓ4) intersects. ■

74. page 111: “the weight of a tableaux” should be “the weight of a tableau”.

75. page 111: It is not true that “the property of being homogeneous depends
only on the image in Bn,d”. Indeed, an inhomogeneous bracket polyomial
can lie in In,d (an example is a linear combination of syzygies of different
weights) and thus turn into the homogeneous polynomial 0 in Bn,d.

76. page 118, Proposition 3.6.1: It is worth saying that the proof of Proposition
3.6.1 is entirely straightforward:
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Proof of Proposition 3.6.1. The equality (3.6.3) becomes12

f (x, y)

=
n

∑
k=0

(
n
k

)
ak (c11x + c12y)k︸ ︷︷ ︸

=∑
j

(
k
j

)
(c11x)j(c12y)k−j

(by the binomial theorem)

(c21x + c22y)n−k︸ ︷︷ ︸
=∑

l

(
n − k

l

)
(c21x)l(c22y)n−k−l

(by the binomial theorem)

=
n

∑
k=0

(
n
k

)
ak ∑

j

(
k
j

)
(c11x)j (c12y)k−j ∑

l

(
n − k

l

)
(c21x)l (c22y)n−k−l

=
n

∑
k=0

∑
j

∑
l

(
n
k

)
ak

(
k
j

)
(c11x)j (c12y)k−j

(
n − k

l

)
(c21x)l (c22y)n−k−l︸ ︷︷ ︸

=

(
n
k

)(
k
j

)(
n − k

l

)
akcj

11ck−j
12 cl

21cn−k−l
22 xj+lyn−j−l

=
n

∑
k=0

∑
j

∑
l

(
n
k

)(
k
j

)(
n − k

l

)
akcj

11ck−j
12 cl

21cn−k−l
22 xj+lyn−j−l

=
n

∑
k=0

∑
j

∑
i︸ ︷︷ ︸

=∑
i

n
∑

k=0
∑
j

(
n
k

)(
k
j

)(
n − k
i − j

)
︸ ︷︷ ︸
=

(
n
i

)(
i
j

)(
n − i
k − j

)
(this is easy to check using the

definition of binomial coefficients)

akcj
11ck−j

12 ci−j
21 cn−k−(i−j)

22︸ ︷︷ ︸
=cn−i−k+j

22

xj+(i−j)︸ ︷︷ ︸
=xi

yn−j−(i−j)︸ ︷︷ ︸
=yn−i

(here, we substituted i − j for l in the third sum)

= ∑
i

n

∑
k=0

∑
j

(
n
i

)(
i
j

)(
n − i
k − j

)
akcj

11ck−j
12 ci−j

21 cn−i−k+j
22 xiyn−i

= ∑
k

n

∑
i=0

∑
j

(
n
k

)(
k
j

)(
n − k
i − j

)
aic

j
11ci−j

12 ck−j
21 cn−k−i+j

22 xkyn−k

(here, we renamed the summation indices i and k as k and i)

= ∑
k

(
n
k

)( n

∑
i=0

(
∑

j

(
k
j

)(
n − k
i − j

)
cj

11ci−j
12 ck−j

21 cn−k−i+j
22

)
ai

)
xkyn−k.

In other words,

f (x, y) = ∑
k

(
n
k

)
akxkyn−k,

where

ak =
n

∑
i=0

(
∑

j

(
k
j

)(
n − k
i − j

)
cj

11ci−j
12 ck−j

21 cn−k−i+j
22

)
ai. (47)

12Any sum with no upper or lower limits is understood to range over all integers.
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The latter equality (47) is precisely the equality (3.6.5), except that the sec-
ond sum ranges over all j ∈ Z instead of only ranging from max (0, i − n + k)
to min (i, k). But this little difference in summation ranges does not af-
fect the value of the sum, since all addends with j < max (0, i − n + k) or

j > min (i, k) are 0 anyway (indeed,
(

k
j

)
= 0 if j < 0 or j > k, whereas(

n − k
i − j

)
= 0 if j < i − n + k or j > i). Thus, by proving (47), we have

proved (3.6.5) and therefore Proposition 3.6.1. ■

77. page 122: “defines a C-algebra homomorphism” should be “defines a
C [x, y]-algebra homomorphism” (or you should say separately that Ψ is
supposed to send x 7→ x and y 7→ y).

78. page 122, (3.6.7): In “
(−1)k

n!
µ1 · · · µn · σk

(
ν1

µ1
, . . . ,

νn

µn

)
”, the “n!” should be

“
(

n
k

)
”. (But the “n!” one line above is correct.)

79. page 123, proof of Lemma 3.6.3: Here is an alternative proof:

Second proof of Lemma 3.6.3. Equip the polynomial ring C [µ1, ν1, . . . , µn, νn, x, y]
with a monomial order that is lexicographic with µ1 > µ2 > · · · > µn >
ν1 > ν2 > · · · > νn > x > y. Then, for each k ∈ {0, 1, . . . , n}, we have

Ψ (ak) =
(−1)n−k

n! ∑
π∈Sn

νπ(1)νπ(2) · · · νπ(n−k)µπ(n−k+1)µπ(n−k+2) · · · µπ(n)

and therefore

init (Ψ (ak)) = µ1µ2 · · · µkνk+1νk+2 · · · νn (48)

(with coefficient
(−1)n−k

n!
, which we ignore). Also, of course, init (Ψ (x)) =

x (since Ψ (x) = x) and init (Ψ (y)) = y (likewise). Hence, for any product
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au0
0 au1

1 · · · aun
n xvyw (with u0, u1, . . . , un, v, w ∈ N), we have

init
(
Ψ
(
au0

0 au1
1 · · · aun

n xvyw))
= init

(
Ψ
(
xvywau0

0 au1
1 · · · aun

n
))

= init
(
Ψ (x)v Ψ (y)w Ψ (a0)

u0 Ψ (a1)
u1 · · ·Ψ (an)

un
)

(since Ψ is an algebra morphism)

=

init (Ψ (x))︸ ︷︷ ︸
=x

v
init (Ψ (y))︸ ︷︷ ︸

=y


w

n

∏
k=0

 init (Ψ (ak))︸ ︷︷ ︸
=µ1µ2···µkνk+1νk+2···νn

(by (48))


uk

(
since the initial monomial of a product of several polynomials

is the product of the initial monomials of the factors

)
= xvyw

n

∏
k=0

(µ1µ2 · · · µkνk+1νk+2 · · · νn)
uk

︸ ︷︷ ︸
=

n
∏
j=1

µ
uj+uj+1+···+un
j ν

u0+u1+···+uj−1
j

= xvyw
n

∏
j=1

µ
uj+uj+1+···+un
j ν

u0+u1+···+uj−1
j .

We can easily recover the original exponents u0, u1, . . . , un, v, w from this
monomial (indeed, v and w are simply the exponents of x and y, whereas
the exponents uj + uj+1 + · · ·+ un on the µj’s allow us to find u1, u2, . . . , un
by taking differences, and the exponents u0 + u1 + · · · + uj−1 on the νj’s
allow us to recover u0, u1, . . . , un−1 by taking differences). Thus, the ini-
tial monomials init

(
Ψ
(
au0

0 au1
1 · · · aun

n xvyw)) for all u0, u1, . . . , un, v, w ∈ N
are pairwise distinct. Hence, the polynomials Ψ

(
au0

0 au1
1 · · · aun

n xvyw) are
C-linearly independent (since a family of polynomials that have pairwise
distinct initial monomials must always be C-linearly independent).

But the family
(
au0

0 au1
1 · · · aun

n xvyw)
u0,u1,...,un,v,w∈N of monomials is a basis of

the C-vector space C [a0, a1, . . . , an, x, y]. We have just proved that the map
Ψ sends this basis to a linearly independent family (since the polynomials
Ψ
(
au0

0 au1
1 · · · aun

n xvyw) are C-linearly independent). Thus, the map Ψ is
injective (since a linear map that sends a basis of its domain to a linearly
independent family in its target must always be injective). This proves
Lemma 3.6.3 again. ■

80. page 124, proof of Proposition 3.6.4: “Then R can be rewritten as

R (µ1, ν1, . . . , µn, νn, x, y) = (µ1 . . . µn)
d · R̂

(
ν1

µ1
, . . . ,

νn

µn
, x, y

)
,
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where R̂ is a symmetric function (in the usual sense) in the ratios
νi

µi
”:

Let me explain why this is the case. We define the polynomial R̂ =

R̂ (α1, . . . , αn, x, y) ∈ C [α1, . . . , αn, x, y] by

R̂ (α1, . . . , αn, x, y) := R (1, α1, 1, α2, . . . , 1, αn, x, y)

(that is, R̂ is the evaluation of R at µi := 1 and νi := αi). This poly-
nomial R̂ is symmetric in α1, . . . , αn, since R is symmetric. Furthermore,
since R is regular of degree d, we know that if we multiply the inputs
µ1, ν1, µ2, ν2, . . . , µn, νn by some scalars (or indeterminates) ω1, ω1, ω2, ω2, . . . , ωn, ωn,
respectively (that is, if we multiply both µi and νi by ωi for each i ∈
{1, 2, . . . , n}), then the value R (µ1, ν1, . . . , µn, νn, x, y) gets multiplied by
ωd

1ωd
2 · · ·ωd

n. In other words, for any ω1, ω2, . . . , ωn, we have

R (ω1µ1, ω1ν1, . . . , ωnµn, ωnνn, x, y)

=
(

ωd
1ωd

2 · · ·ωd
n

)
R (µ1, ν1, . . . , µn, νn, x, y) .

Applying this to ωi =
1
µi

, we obtain

R
(

1
µ1

µ1,
1
µ1

ν1, . . . ,
1

µn
µn,

1
µn

νn, x, y
)

=

((
1
µ1

)d ( 1
µ2

)d
· · ·
(

1
µn

)d
)

︸ ︷︷ ︸
=

1

(µ1 . . . µn)
d

R (µ1, ν1, . . . , µn, νn, x, y)

=
1

(µ1 . . . µn)
d R (µ1, ν1, . . . , µn, νn, x, y) .
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Solving this for R (µ1, ν1, . . . , µn, νn, x, y), we obtain

R (µ1, ν1, . . . , µn, νn, x, y)

= (µ1 . . . µn)
d · R


1
µ1

µ1︸ ︷︷ ︸
=1

,
1
µ1

ν1︸︷︷︸
=

ν1

µ1

, . . . ,
1

µn
µn︸ ︷︷ ︸

=1

,
1

µn
νn︸ ︷︷ ︸

=
νn

µn

, x, y


= (µ1 . . . µn)

d · R
(

1,
ν1

µ1
, . . . , 1,

νn

µn
, x, y

)
︸ ︷︷ ︸

=R̂

(
ν1

µ1
,...,

νn

µn
,x,y

)
(by the definition of R̂)

= (µ1 . . . µn)
d · R̂

(
ν1

µ1
, . . . ,

νn

µn
, x, y

)
.

Thus, we have rewritten R as desired.

81. page 124, proof of Proposition 3.6.4: “Multiplying Q by (µ1 . . . µn)
d and

distributing factors of µ1 . . . µn, we obtain a representation of R as a poly-

nomial function in the magnitudes µ1 · · · µnσk

(
ν1

µ1
, . . . ,

νn

µn

)
”: This argu-

ment is slightly incomplete. If we do what is suggested here, then we
obtain a representation of R as a polynomial function in the magnitudes

µ1 · · · µn and σk

(
ν1

µ1
, . . . ,

νn

µn

)
. In order to rewrite this as a polynomial

function in the products µ1 · · · µnσk

(
ν1

µ1
, . . . ,

νn

µn

)
, we must make sure that

each of the monomials contains at least as many µ1 · · · µn’s as it contains

σk

(
ν1

µ1
, . . . ,

νn

µn

)
’s; otherwise, we get only a Laurent polynomial.

There are several ways to fix this. In my opinion, the easiest way to prove
the “if” direction of Proposition 3.6.4 correctly is to proceed as in the proof
of Theorem 1.1.1 (that is, in essence, by showing that the Ψ (a0) , Ψ (a1) , . . . , Ψ (an)
form a Sagbi basis of the ring of regular symmetric polynomials R ∈
C [µ1, ν1, . . . , µn, νn, x, y] as a C [x, y]-algebra, even though we don’t ever
have to use this language). Here are the details:

Proof of the “if” direction of Proposition 3.6.4: We give an algorithm to express
each regular symmetric polynomial R ∈ C [µ1, ν1, . . . , µn, νn, x, y] as a poly-
nomial function of the images Ψ (a0) , Ψ (a1) , . . . , Ψ (an) over C [x, y] (which
will, of course, show that R lies in the image of Ψ). To do so, we view x and
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y as constants, and we equip the polynomial ring C [µ1, ν1, . . . , µn, νn, x, y] =
(C [x, y]) [µ1, ν1, . . . , µn, νn] with a monomial order that is lexicographic with
µ1 > µ2 > · · · > µn > ν1 > ν2 > · · · > νn. Then, for a nonzero regular
symmetric polynomial R ∈ C [µ1, ν1, . . . , µn, νn, x, y], the initial monomial
init R must have the form µu1

1 µu2
2 · · · µun

n νd−u1
1 νd−u2

2 · · · νd−un
n (since R is reg-

ular) with u1 ≥ u2 ≥ · · · ≥ un (since otherwise, by the symmetry of R,
we could obtain a larger monomial of R by swapping two of the µi’s along
with the corresponding νi’s). But this is precisely the initial monomial

init (R′) of the polynomial R′ :=
n
∏

k=0
(Ψ (ak))

uk−uk+1 , where we set u0 := d

and un+1 := 0 (this follows easily from (48)). Thus, subtracting an appro-
priate scalar multiple of R′ from R, we cancel the initial term of R and
obtain a smaller polynomial in C [µ1, ν1, . . . , µn, νn, x, y] that is still regular
and symmetric (since R and R′ are regular and symmetric). Repeating this
procedure again and again, we eventually end up with the polynomial 0
(since Corollary 1.2.3 shows that this process cannot go on forever). Thus,
R equals the sum of all the polynomials we have subtracted, hence a poly-
nomial function of the Ψ (a0) , Ψ (a1) , . . . , Ψ (an) over C [x, y]. Therefore, R
lies in the image of Ψ. This finishes the proof. ■

82. page 125, definition of the bracket [i u]: Replace “[i u] := µiy − νix” by
“[i u] := µix − νiy”.

83. page 125, proof of Lemma 3.6.5: Add commas before “[1 n]”, before “[n − 1 n]”,
and before “[n u]”.

84. page 125, Theorem 3.6.6: It is worth pointing out that “bracket polyno-
mial” here means a polynomial in C [µ1, ν1, . . . , µn, νn, x, y] that lies in the
bracket ring. The notions of “symmetric” and “regular” are inherited from
C [µ1, ν1, . . . , µn, νn, x, y]. (Hence, in particular, a “symmetric bracket poly-
nomial” means a symmetric polynomial that lies in the bracket ring. Such a
polynomial is symmetric under all permutations of the subscripts 1, 2, . . . , n
when written as a polynomial in µ1, ν1, . . . , µn, νn, x, y, and furthermore can
be expressed as a polynomial in the brackets [i j] and [i u]; but the latter
expression might not be invariant under all permutations of the symbols
1, 2, . . . , n.)

85. page 126, proof of Theorem 3.6.6: “The expansion map Ψ commutes with”
should better be “The expansion map Ψ is injective (by Lemma 3.6.3) and
commutes with”.

86. page 127, definition of the bracket
[
i(k) u

]
: Replace “

[
i(k) u

]
:= µ

(k)
i x −

µ
(l)
j y” by “

[
i(k) u

]
:= µ

(k)
i x − ν

(k)
i y”.

87. page 127, middle of the page: In “ f (x, y) = a2x2 + 2a1xy + a2
0y”, replace

“a2
0y” by “a0y2”. Likewise, on the next line, replace “b2

0y” by “b0y2”.
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88. page 129, proof of Lemma 3.7.2: I find this proof confusing (what does
“canonical preimage” mean), so let me give my own:

Proof of Lemma 3.7.2. (a) For any polynomial f ∈ C [x1, . . . , xr], we let f
denote its residue class f + I (that is, the projection of f onto the quotient
ring C [x1, . . . , xr] /I).

Clearly, the residue classes p1, . . . , pm are invariant under Γ (since the poly-
nomials p1, . . . , pm are invariant under Γ).

Let p ∈ (C [x1, . . . , xr] /I)Γ be any invariant residue class in C [x1, . . . , xr] /I.
We must show that p can be written as a polynomial function of p1, . . . , pm.

The polynomial p ∈ C [x1, . . . , xr] itself might not be Γ-invariant, but its
image p∗ under the Reynolds operator is. Furthermore, p∗ = p∗, because
the Reynolds operator (being defined as the average of the actions of all
elements of Γ) commutes with the projection onto C [x1, . . . , xr] /I. But
p∗ = p because p is Γ-invariant. Hence, p = p∗ = p∗.

But p∗ belongs to C [x1, . . . , xr]
Γ and thus can be written as a polynomial

function u (p1, . . . , pm) of p1, . . . , pm. Hence, p can be written as the same
polynomial function u (p1, . . . , pm) of p1, . . . , pm (since p∗ = u (p1, . . . , pm)

entails p∗ = u (p1, . . . , pm) = u (p1, . . . , pm) and thus p = p∗ = u (p1, . . . , pm)).
This completes the proof of Lemma 3.7.2 (a).

(b) In the proof of Noether’s degree bound (Theorem 2.1.4), it was shown
that the invariant ring C [x1, . . . , xr]

Γ is generated by the Reynolds im-

ages
(

xi1
1 xi2

2 · · · xir
r

)∗
of all monomials xi1

1 xi2
2 · · · xir

r with degree i1 + i2 +
· · · + ir ≤ |Γ|. Hence, applying part (a) (with the p1, . . . , pm being these
Reynolds images), we conclude that the ring (C [x1, . . . , xr] /I)Γ is gener-
ated by the images of these Reynolds images under the canonical surjection
C [x1, . . . , xr] → C [x1, . . . , xr] /I. This proves Lemma 3.7.2 (b). ■

89. page 130, proof of Theorem 3.7.1: In the first sentence of this proof, add
commas before “[1 n]”, before “[n − 1 n]”, and before “[n u]”.

90. page 130, proof of Theorem 3.7.1: “Since minimally regular monomials
remain minimally regular after permuting letters”: This is not literally true,
since (e.g.) the transposition t1,2 sends the bracket [1 2] to − [1 2]. The
action of a permutation σ ∈ Sn sends a bracket monomial to ± a bracket
monomial.

The easiest way to fix this is by introducing additional brackets [i j] for
i > j. These new brackets are defined in the same way as the old brackets
(that is, [i j] := µiνj − νiµj). Of course, they are redundant as generators,
since [i j] = − [j i] for all i ̸= j; but they serve to make the set of generators
more symmetric. After we introduce these new brackets, the set of bracket
monomials (i.e., products of brackets) becomes fixed under the Sn-action
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that permutes the letters 1, 2, . . . , n (fixing u), and so is the subset of regular
bracket monomials; hence, the minimially regular bracket monomials also
form an Sn-set. With these changes made, the proof goes through as stated.

91. page 131, discussion of the monomial order ≺circ: “Establishing the ex-
istence of such a monomial order is a nontrivial exercise”: But not a
hard exercise at any rate. For instance, we can introduce a (rather exotic)
grading on the polynomial ring C [Λ (n, 2)] by assigning to each indeter-

minate [i j] the degree
(

2 − 1
j − i

)
n! (this is a positive integer, because

j − i ∈ {1, 2, . . . , n} is a positive divisor of n!). Then, we totally order the
bracket monomials as follows: If two monomials m and n have different
degrees, then we set m ≻ n if and only if m has larger degree than n; other-
wise, we let m ≻ n if m is lexicographically larger than n. This is easily seen
to be a monomial order (indeed, this holds for any grading on a polyno-
mial ring in which each indeterminate is homogeneous and has its degree
equal to a positive integer). Moreover, for any 1 ≤ i1 < i2 < i3 < i4 ≤ n,
the initial monomial of the syzygy

Pi1i2i3i4 = [i1 i3] [i2 i4]− [i1 i2] [i3 i4]− [i1 i4] [i2 i3]

is [i1 i3] [i2 i4]. (Indeed, the three monomials [i1 i3] [i2 i4], [i1 i2] [i3 i4] and
[i1 i4] [i2 i3] have respective degrees(

2 − 1
i3 − i1

)
n! +

(
2 − 1

i4 − i2

)
n!,(

2 − 1
i2 − i1

)
n! +

(
2 − 1

i4 − i3

)
n! and(

2 − 1
i4 − i1

)
n! +

(
2 − 1

i3 − i2

)
n!,

but the first of these three degrees is larger than the other two13.)

13Let us show this. We must prove that(
2 − 1

i3 − i1

)
n! +

(
2 − 1

i4 − i2

)
n! >

(
2 − 1

i2 − i1

)
n! +

(
2 − 1

i4 − i3

)
n! and(

2 − 1
i3 − i1

)
n! +

(
2 − 1

i4 − i2

)
n! >

(
2 − 1

i4 − i1

)
n! +

(
2 − 1

i3 − i2

)
n!.

Upon cancelling the 2’s and n!’s, these two inequalities rewrite as

1
i3 − i1

+
1

i4 − i2
<

1
i2 − i1

+
1

i4 − i3
and

1
i3 − i1

+
1

i4 − i2
<

1
i4 − i1

+
1

i3 − i2
.

Upon setting p := i2 − i1 and q := i3 − i2 and r := i4 − i2 (so that i3 − i1 = p + q and
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Thus, the monomial order we have just introduced is (one option for) the
monomial order ≺circ that we need.

92. page 131, first proof of Proposition 3.7.4: This is somewhat confused. The
set Sn,2 is a subset of the bracket polynomial ring C [Λ (n, 2)], not of the
polynomial ring C [µ1, ν1, . . . , µn, νn, x, y]; hence, the brackets [i j] are the
indeterminates here. Thus, if the initial monomials of Pi1i2i3i4 and Pj1 j2 j3 j4 are
not relatively prime, then the sets {[i1 i3] , [i2 i4]} and {[j1 j3] , [j2 j4]} have
nonempty intersection, which is a stronger claim than “the set of indices
{i1, i2, i3, i4, j1, j2, j3, j4} has cardinality at most seven” (in fact, it shows that
the set of indices {i1, i2, i3, i4, j1, j2, j3, j4} has cardinality at most 6, but even
this is unnecessarily weak a statement). As a consequence, we only need
to verify the Gröbner basis property in the cases n = 5, 6, not in the cases
n = 5, 6, 7.

This is not as painful as it sounds, even without the use of a computer. All
we have to do is show that for any two distinct 4-tuples (i1 < i2 < i3 < i4)
and (j1 < j2 < j3 < j4) such that the initial monomials of Pi1i2i3i4 and Pj1 j2 j3 j4
are not relatively prime (i.e., the the sets {[i1 i3] , [i2 i4]} and {[j1 j3] , [j2 j4]}
have nonempty intersection), the S-polynomial S

(
Pi1i2i3i4 , Pj1 j2 j3 j4

)
can be

reduced to 0 modulo Sn,2. For n = 5, the only S-polynomials we need to
check are

S (P1,2,3,4, P1,2,3,5) , S (P1,2,4,5, P1,3,4,5) ,
S (P1,2,3,4, P2,3,4,5) , S (P1,2,3,5, P1,2,4,5) ,
S (P1,3,4,5, P2,3,4,5)

14. For n = 6, the only additional S-polynomials we need to check (aside

i4 − i2 = q + r and i4 − i1 = p + q + r), these two inequalities rewrite as

1
p + q

+
1

q + r
<

1
p
+

1
r

and

1
p + q

+
1

q + r
<

1
p + q + r

+
1
q

.

Since p, q, r are positive (because i1 < i2 < i3 < i4), the first of these two inequalities is obvious

(since
1

p + q
<

1
p

and
1

q + r
<

1
r

), whereas the second boils down (upon cross-multiplying

and cancelling the numerator p + 2q + r) to (p + q + r) q < (p + q) (q + r), which is again
clear (since (p + q) (q + r)− (p + q + r) q = pr > 0). Thus, both inequalities are true.

14I have omitted the “mirror versions” of these S-polynomials (where the mirror version of an
S-polynomial S ( f , g) means the S-polynomial S (g, f )), because these need not be checked
separately (in fact, we always have S (g, f ) = −S ( f , g)).

There is an additional symmetry in the definitions of Λ (n, 2) and Sn,2 that we could use
to simplify our life (namely, we can replace [u v] by [v′ u′], where u′ = n + 1 − u and v′ =
n + 1 − v). We leave it to the reader to check how it can be exploited.
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from the above ones and their variants with relabelled variables) are

S (P1,2,3,5, P2,4,5,6) , S (P1,2,4,5, P2,3,5,6) ,
S (P1,3,4,6,S2,3,5,6) , S (P1,3,5,6, P2,3,4,6) ,
S (P1,2,4,5, P1,3,4,6) , S (P1,2,4,6, P1,3,4,5)

15. In each case, we must check that the respective S-polynomial can be
reduced to 0 modulo Sn,2. According to a known criterion16, it suffices
to express these S-polynomials in the form ∑

s∈S
asssgs, where S is a finite

set, where as ∈ C are scalars, where ss are monomials and where gs are
(not necessarily distinct) elements of Sn,2 such that all the monomials ss ·
init (gs) are distinct (where init means the initial monomial with respect to
the monomial order ≺circ). But such expressions can be explicitly provided:

S (P1,2,3,4, P1,2,3,5) = [2 5] P1,2,3,4 − [2 4] P1,2,3,5

= [1 2] P2,3,4,5 − [2 3] P1,2,4,5

(with [1 2] and [2 3] playing the role of the monomials ss and with P2,3,4,5
and P1,2,4,5 acting as the gs; it is easy to see that the monomials [1 2] ·
init P2,3,4,5 = [1 2] · [2 4] · [3 5] and [2 3] · init P1,2,4,5 = [2 3] · [1 4] · [2 5] are
distinct) and similarly

S (P1,2,4,5, P1,3,4,5) = [4 5] P1,2,3,5 − [1 5] P2,3,4,5;
S (P1,2,3,4, P2,3,4,5) = [3 4] P1,2,3,5 − [2 3] P1,3,4,5;
S (P1,2,3,5, P1,2,4,5) = [1 5] P1,2,3,4 − [1 2] P1,3,4,5;
S (P1,3,4,5, P2,3,4,5) = [3 4] P1,2,4,5 − [4 5] P1,2,3,4;
S (P1,2,3,5, P2,4,5,6) = [5 6] P1,2,3,4 + [4 5] P1,2,3,6 − [2 3] P1,4,5,6 − [1 2] P3,4,5,6;
S (P1,2,4,5, P2,3,5,6) = [3 5] P1,2,4,6 − [2 4] P1,3,5,6 − [5 6] P1,2,3,4 + [1 2] P3,4,5,6;
S (P1,3,4,6, P2,3,5,6) = [1 6] P2,3,4,5 − [2 3] P1,4,5,6 − [4 6] P1,2,3,5 + [3 5] P1,2,4,6;
S (P1,3,5,6, P2,3,4,6) = − [1 6] P2,3,4,5 + [2 3] P1,4,5,6 − [5 6] P1,2,3,4 + [3 4] P1,2,5,6;
S (P1,2,4,5, P1,3,4,6) = − [1 6] P2,3,4,5 + [4 5] P1,2,3,6 + [1 3] P2,4,5,6 − [2 4] P1,3,5,6;
S (P1,2,4,6, P1,3,4,5) = − [1 6] P2,3,4,5 + [4 5] P1,2,3,6 − [1 2] P3,4,5,6 + [3 4] P1,2,5,6.

93. page 132, Lemma 3.7.5: This lemma is false. A counterexample is the
bracket monomial

[1 2] [1 3] [2 3]2 · [4 5] [4 6] [5 6]2 · [7 8] [7 9] [8 9]2 · [1 x] [4 x] [7 x]

in C [Λ (10, 2)], which is regular of degree 3 and elemental.

15Again, I have omitted the “mirror versions” of these S-polynomials.
16See, e.g., Lemma 3.6 in Darij Grinberg, t-unique reductions for Mészáros’s subdivision algebra

[detailed version], ancillary file to arXiv:1704.00839v6. (This lemma appears as Lemma 4.6 in
the published version, but without the proof.)
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However, there is an alternative way of proving Theorem 3.7.3, which by-
passes Lemma 3.7.5. It goes back to the paper B. Howard, J. Millson,
A. Snowden, R. Vakil, The equations for the moduli space of n points on the
line, Duke Math. J. 146 (2009), no. 2, pp. 175–226 (see also the proof
of Theorem 31 in Giorgio Ottaviani, Five Lectures on Projective Invariants,
arXiv:1305.2749v1). Here is an outline:

Correct proof of Theorem 3.7.3 (sketched). We rename the letter u as n + 1 and
rename the indeterminates y and x as µn+1 and νn+1 (so that our brackets
have the form [i j] for 1 ≤ i < j ≤ n + 1). Furthermore, we rename n as
n − 1 (so that our brackets now have the form [i j] for 1 ≤ i < j ≤ n). We
also introduce the shorthand [i j] := [j i] for all i > j, so that the bracket
[i j] is defined for all i ̸= j (not only for i < j). (Note that this differs from
the convention I suggested on page 130.)

It is easy to see (indeed, it follows from Example 3.1.6 upon renaming the
variables) that

[i1 i3] [i2 i4] = [i1 i2] [i3 i4] + [i1 i4] [i2 i3] (49)

for any 1 ≤ i1 < i2 < i3 < i4 ≤ n. Hence, for any four distinct elements
α, β, γ, δ of {1, 2, . . . , n}, we have

[α γ] [β δ] = ± [α β] [γ δ]± [α δ] [β γ] (50)

for an appropriate choice of ± signs (the two ± signs need not be the same
sign). (Indeed, (50) follows by applying (49) with i1, i2, i3, i4 being the num-
bers α, β, γ, δ listed in increasing order, and then solving for [α γ] [β δ].)

In the following, a lowlie will mean a bracket monomial that is regular of
degree 1 or 2. For example, [1 2] [2 3] · · · [n − 1 n] [n 1] is a lowlie that is
regular of degree 2. Lowlies that are regular of degree 1 exist only when n
is even; an example of such a lowlie is [1 2] [3 4] · · · [n − 1 n].
We view any bracket monomial [i1 j1] [i2 j2] · · · [ik jk] as a multigraph with
vertex set {1, 2, . . . , n} and edges {i1, j1} , {i2, j2} , . . . , {ik, jk}. Such multi-
graphs can have parallel edges, but cannot have loops. A bracket monomial
is regular of degree d if and only if it is a d-regular multigraph (i.e., each
vertex has degree d).

Now we want to prove Theorem 3.7.3. This theorem claims that the ring
Breg of regular bracket polynomials is generated by the lowlies. In other
words, it claims that every bracket polynomial that is regular of degree d
(for some d ∈ N) is a polynomial function of the lowlies. We shall prove
this by distinguishing between two cases, depending on the parity of d:

• Case 1: The number d is even. Hence, Petersen’s 2-factor theorem
shows that every d-regular multigraph (that is, every bracket mono-
mial that is regular of degree d) can be partitioned into d/2 edge-
disjoint 2-factors, i.e., (regarded as a bracket monomial), can be fac-
tored as a product of d/2 bracket monomials that are regular of degree
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2. Of course, the latter monomials are lowlies. Hence, we have shown
that every bracket monomial that is regular of degree d is a product
of lowlies. Thus, every bracket polynomial that is regular of degree d
is a polynomial function of the lowlies. So our proof is complete in
Case 1.

• Case 2: The number d is odd. We must prove that every bracket poly-
nomial that is regular of degree d is a polynomial function of the
lowlies. Clearly, it is enough to prove this for bracket monomials.
Thus, we let m be a bracket monomial that is regular of degree d. As
a multigraph, m is thus a d-regular multigraph with n vertices. Since
the sum of the degrees of all vertices in a multigraph is even, we thus
conclude that nd is even, so that n must be even (since d is odd).

If the multigraph m is bipartite, then Frobenius’s matching theorem
shows that m has a perfect matching (since m is d-regular), i.e., a span-
ning 1-regular subgraph. Rewritten in terms of brackets, this is saying
that if m is bipartite, then m is divisible by a bracket monomial n that
is regular of degree 1. The quotient m/n of this division must then
be a bracket monomial that is regular of degree d − 1, and hence is
a polynomial function of the lowlies (by Case 1, since d − 1 is even).
Multiplying this polynomial function by n (which itself is a lowlie),
we obtain an expression for m as a polynomial function of the lowlies.
Thus, our proof is finished if the multigraph m is bipartite.

What can we do if m is not bipartite? In this case, m contains at least
one edge {e1, e2} whose both endpoints are even17, as well as at least
one edge {o1, o2} whose both endpoints are odd18. Consider these
two edges. Thus, the bracket monomial m is divisible by [e1 e2] [o1 o2].
In other words,

m = [e1 e2] [o1 o2] p (51)

for some bracket monomial p. Consider this p. But (50) (applied to

17Recall that n is even, so the even vertices are 2, 4, 6, . . . , n, while the odd vertices are
1, 3, 5, . . . , n − 1.

18Indeed:

– If neither {e1, e2} nor {o1, o2} existed, then m would be bipartite (with all the even vertices
being left vertices, and all the odd vertices being right vertices); but we have assumed that
m is not.

– If {e1, e2} existed but {o1, o2} did not, then the sum of the degrees of all odd vertices would
equal the number of even-odd edges (i.e., edges that have an even and an odd endpoint),
whereas the sum of the degrees of all even vertices would be larger than the number of
even-odd edges (since it would count the edge {e1, e2} as well); but this is impossible, since
both of these sums are d + d + · · ·+ d︸ ︷︷ ︸

n/2 times

= dn/2.

– If {o1, o2} existed but {e1, e2} did not, then we would obtain a similar contradiction.

So the only possibility is that both {e1, e2} and {o1, o2} exist.
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α = e1, β = o1, γ = e2 and δ = o2) shows that

[e1 e2] [o1 o2] = ± [e1 o1] [e2 o2]± [e1 o2] [o1 e2] .

Hence, we can rewrite (51) as

m = (± [e1 o1] [e2 o2]± [e1 o2] [o1 e2]) p

= ± [e1 o1] [e2 o2] p± [e1 o2] [o1 e2] p. (52)

However, both bracket monomials [e1 o1] [e2 o2] p and [e1 o2] [o1 e2] p
are regular of degree d again (since they are obtained from [e1 e2] [o1 o2] p =
m by replacing the [e1 e2] [o1 o2] factor with [e1 o1] [e2 o2] or [e1 o2] [o1 e2],
respectively; but this replacement takes away equally many edges
from each vertex as it adds to that vertex), but have a higher num-
ber of even-odd edges19 than m does (since all the four new edges
{e1, o1} , {e2, o2} , {e1, o2} , {o1, e2} are even-odd edges, while the
original two edges {e1, e2} and {o1, o2} are not). By descending in-
duction on the number of even-odd edges, we can thus assume that
[e1 o1] [e2 o2] p and [e1 o2] [o1 e2] p are polynomial functions of the
lowlies (the base case is the case when m is bipartite; this case has
already been handled). Then, the equality (52) shows that m is a poly-
nomial function of the lowlies as well. This completes our proof in
Case 2.

Hence, the proof of Theorem 3.7.3 is complete in both cases. ■

(Note that Case 1 and Case 2 in the above proof are not as different as they
look, since the proof of Petersen’s 2-factor theorem also relies on Frobe-
nius’s matching theorem.)

(Note also that the proof of Theorem 3.7.3 given in §6.3 of Joseph P. S.
Kung, Gian-Carlo Rota, The invariant theory of binary forms, Bull. Amer.
Math. Soc. (N.S.) 10(1) (1984), pp. 27–85. appears fairly similar to the
above.)

94. page 135, exercise (4): “set for” should be “sets for”.

95. page 137: “A comprehensive introduction with many geometric applica-
tions can be found in Fulton and Harris (1991)”: Here are a few other
references (which I found more readable than Fulton and Harris):

• William Fulton, Young Tableaux, With Applications to Representation The-
ory and Geometry, Cambridge University Press 1999, Chapter 8. (Er-
rata.)

19An even-odd edge means an edge that has an even and an odd endpoint.
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• Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwend-
ner, Dmitry Vaintrob, Elena Yudovina, Introduction to Representation
Theory, Student Mathematical Library 59, AMS 2011, Sections §5.19–
5.23.

• William Crawley-Boevey, Lectures on representation theory and invariant
theory, 1999. (Errata.)

• Hanspeter Kraft, Claudio Procesi, Classical Invariant Theory: A Primer,
July 1996. (Errata.)

96. page 138: “Note that det (A)n−1 is a common denominator” should be
“Note that det (A) is a common denominator”.

97. page 139, Examples 4.1.5 (e): Replace “V = S2C3” by “V = S3C2”.

98. page 140, definition of irreducibility: “We say that (V, ρ) is irreducible if”
should be “We say that a nonzero Γ-representation (V, ρ) is irreducible if”.

99. page 140: After “For instance, the representations SdCn and ∧dCn are irre-
ducible”, add “(except that ∧dCn = 0 for d > n)”.

100. page 140, Theorem 4.1.7: “of irreducible representation” should be “of
irreducible representations”.

101. page 141, definition of standard Young tableaux: It is worth pointing out
that the notion of a “standard Young tableaux” as defined here is different
from than the notion of a “standard tableau” defined in §3.1. (The latter
tableaux can have equal entries, while the former can have non-rectangular
shapes.)

102. page 141, definition of the Young symmetrizer: The Young symmetrizer
cT is not “an idempotent linear map”, but only a quasi-idempotent linear
map – i.e., we have c2

T = kcT for some nonzero rational number k. Specifi-
cally, this factor k is the positive integer n!/ f λ, where f λ is the number of

sytλ. Thus, the scalar multiple
f λ

n!
cT of cT is an actual idempotent. Maybe

it is this multiple that you want to call the “Young symmetrizer”.

(It is worth noting that many authors define the Young symmetrizer to be
not the linear operator cT, but rather the element

∑
σ∈colstb(T)

∑
T∈rowstb(T)

(sign σ) · στ in the group algebra C [Sd] ,

whose action on ⊗dCn (from the right, by permuting tensorands) is your
linear operator cT. Some also define it as the element

∑
σ∈colstb(T)

∑
T∈rowstb(T)

(sign σ) · τσ in the group algebra C [Sd] ,
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whose action on ⊗dCn (now from the left, by permuting tensorands) is
your linear operator cT.)

103. page 141: “Thus WTCn is the subspace of all tensors in ⊗dCn which are
symmetric with respect to the rows of T and antisymmetric with respect
to the columns of T”: This is false. For instance, for n = 2 and d = 3 and

λ = (2, 1) and T =
1 2
3 , the only tensor in ⊗dCn that is symmetric in

its first two tensor factors and antisymmetric in its first and third tensor
factors is 0, but WTCn is not 0.

104. page 141, Theorem 4.1.11: Let me outline a proof of this theorem, as it is
not easily found in the literature.

Proof of Theorem 4.1.11 (sketched). We shall show that

⊗dCn =
⊕
λ⊢d

⊕
T sytλ

WTCn (53)

(an internal direct sum, not just an isomorphism). For this purpose, we
define some notations. If T is any standard Young tableau with d entries,
then r (T) shall denote the sequence (rd, rd−1, . . . , r1) ∈ Nd, where ri is the
number of the row of T that contains the entry i (that is, entry i appears in

the ri-th row of T). For example, r

 1 3 4
2 5
6 7

 = (3, 3, 2, 1, 1, 2, 1). Clearly,

a standard Young tableau T is uniquely determined by this sequence r (T)
(since r (T) tells us which row contains which entries, and the order of the
entries in a row must be increasing in order for T to be standard).

Now, consider the set

SYT (d) :=
⋃
λ⊢d

{T sytλ}

of all standard Young tableaux of shape λ for all partitions λ of d. We
equip this set SYT (d) with the following total order: For two standard
Young tableaux S and T of shapes λ and µ, we say that S > T if and only
if

• either λ > µ in the lexicographic order on Nn,

• or λ = µ and r (S) > r (T) in the lexicographic order on Nd.

It is clear that this gives a well-defined total order on SYT (d) (in fact, it is
simply the lexicographic order for the concatenations λ ⊕ r (T)).
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Next, for each T ∈ SYT (d), we let ET denote the element ∑
σ∈colstb(T)

(sign σ) · σ

 ∑
T∈rowstb(T)

τ


= ∑

σ∈colstb(T)
∑

T∈rowstb(T)
(sign σ) · στ (54)

in the group algebra C [Sd]. This element ET is called the Young sym-
metrizer of T (and is denoted by ET) in my notes Darij Grinberg, An in-
troduction to the symmetric group algebra [Math 701, Spring 2024 lecture notes],
arXiv:2507.20706v1 (which I shall henceforth cite as [sga]). Note that this
element ET is quasi-idempotent, and specifically, its square is

E2
T =

n!
f λ

ET, (55)

where f λ is the number of sytλ (by Theorem 5.11.3 in [sga]). The Young
symmetrizer cT as you define it is the action of this element ET on ⊗dCn

from the right (by permuting tensorands). Thus,

WTCn = cT · ⊗dCn = (⊗dCn) ET (56)

for each T ∈ SYT (d).

Now, it can be shown that any two standard Young tableaux S, T ∈ SYT (d)
satisfy

ESET = 0 if S > T (57)

(with respect to the above-defined total order on SYT (d)). Indeed, letting
S and T have shapes λ and µ, respectively, we can argue as follows:

• If λ > µ in the lexicographic order on Nn, then λ ̸= µ, and thus
ESET = 0 follows from Proposition 5.11.15 in [sga] (which makes the
even stronger claim that ESaET = 0 for each a ∈ C [Sd]).

• If λ = µ and r (S) > r (T) in the lexicographic order on Nd, then
ESET = 0 follows from Lemma 5.15.21 in [sga], since r (S) > r (T)
is saying that S > T with respect to the Young last letter order on
n-tabloids (see [sga] for details).

In either case, we get ESET = 0, so that (57) is proved.

Now, we claim the following:

Claim 1: The sum
∑

T∈SYT(d)
WTCn (58)

of subspaces of ⊗dCn is a direct sum.
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Claim 2: We have

⊗dCn = ∑
T∈SYT(d)

WTCn.

Proof of Claim 1. Assume the contrary. Thus, there exists a family (wT)T∈SYT(d)
of vectors wT ∈ WTCn such that not all these vectors wT are zero, but the
sum ∑

T∈SYT(d)
wT is 0. Consider such a family. Thus, there exists some

Q ∈ SYT (d) such that wQ ̸= 0. Pick the smallest such Q (with respect to
the above-defined total order). Thus,

wP = 0 for all P < Q. (59)

We have wQ ∈ WQCn = (⊗dCn) EQ (by (56)). But (55) shows that E2
Q =

n!
f λ

EQ. Hence, each a ∈ WQCn satisfies aEQ =
n!
f λ

a (because a ∈ WQCn =

(⊗dCn) EQ allows us to write a as a = bEQ for some b ∈ ⊗dCn, and there-

fore we have aEQ = b EQEQ︸ ︷︷ ︸
=E2

Q=
n!
f λ

EQ

=
n!
f λ

bEQ︸︷︷︸
=a

=
n!
f λ

a). Applying this to

a = wQ, we obtain wQEQ =
n!
f λ

wQ ̸= 0 (since
n!
f λ

̸= 0 and wQ ̸= 0).

On the other hand, if P ∈ SYT (d) satisfies P > Q, then EPEQ = 0 (by (57))
and thus

wP︸︷︷︸
∈WPCn

=(⊗dCn)EP

EQ ∈ (⊗dCn) EPEQ︸ ︷︷ ︸
=0

= 0,

so that
wPEQ = 0. (60)

Now, we assumed that the sum ∑
T∈SYT(d)

wT is 0. Thus, 0 = ∑
T∈SYT(d)

wT =

∑
P∈SYT(d)

wP. Multiplying this equality by EQ from the right, we obtain

0 =

 ∑
P∈SYT(d)

wP

 EQ = ∑
P∈SYT(d)

wPEQ

= ∑
P∈SYT(d);

P<Q

wP︸︷︷︸
=0

(by (59))

EQ + wQEQ + ∑
P∈SYT(d);

P>Q

wPEQ︸ ︷︷ ︸
=0

(by (60))(
since each P ∈ SYT (d) satisfies
either P < Q or P = Q or P > Q

)
= wQEQ ̸= 0.
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This obvious contradiction shows that our assumption was false; hence,
Claim 1 is proved.

Proof of Claim 2. Let A = C [Sd]. From Corollary 5.15.25 in [sga], we know
that

A =
⊕
λ⊢d

⊕
T sytλ︸ ︷︷ ︸

=
⊕

T∈SYT(d)

AET =
⊕

T∈SYT(d)

AET = ∑
T∈SYT(d)

AET.

Hence, in particular, 1A ∈ ∑
T∈SYT(d)

AET, so that we can write 1A in the

form
1A = ∑

T∈SYT(d)
aTET for some aT ∈ A. (61)

Consider these aT. Now, for each w ∈ ⊗dCn, we have

w = w1A = w ∑
T∈SYT(d)

aTET (by (61))

= ∑
T∈SYT(d)

waTET︸ ︷︷ ︸
∈(⊗dCn)ET
=WTCn

∈ ∑
T∈SYT(d)

WTCn.

In other words, ⊗dCn ⊆ ∑
T∈SYT(d)

WTCn. Hence,

⊗dCn = ∑
T∈SYT(d)

WTCn.

This proves Claim 2.

Combining Claim 1 with Claim 2, we obtain

⊗dCn =
⊕

T∈SYT(d)

WTCn (internal direct sum)

=
⊕
λ⊢d

⊕
T sytλ

WTCn.

This proves (53) and therefore also Theorem 4.1.11. ■

105. page 142, (4.1.5): Replace “c1
2
⊕ c1 2” by “c1 2 ⊕ c1

2
” in order to match the

order of the addends to the right of the arrow.

Also, it would be better to multiply “(v1 ⊗ v2 + v2 ⊗ v1)+ (v1 ⊗ v2 − v2 ⊗ v1)”

by
1
2

, so that the map becomes the identity map.
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106. page 142, Theorem 4.1.12: It is worth saying that this theorem is a direct
consequence of Corollary 4.1.14 (1) (which I prove below) and of the direct
sum decomposition (53).

107. page 143, Corollary 4.1.14: Let me give a reference for the proof of this
corollary, since it is not easy to locate in the literature.

I will use the book William Fulton, Young Tableaux, With Applications to
Representation Theory and Geometry, Cambridge University Press 1999, (see
also the errata). In the following, this book will be cited as [Fulton].

Proof of Corollary 4.1.14. (1) Set E := Cn. Let ET ∈ C [Sd] be the Young
symmetrizer defined in (54). By the definition of WTCn, we have

WTCn = cT (⊗dCn) (by the definition of WTCn)

= cT (⊗dE) (since Cn = E)

= cT

(
E⊗d

) (
here, we switched from the notation ⊗d E to the
more convenient notation E⊗d for the same thing

)
= E⊗dET (since cT is right multiplication by ET) .

Note that [Fulton] denotes ET as cT.

Now, [Fulton] considers the Γ-module Eλ, about which he claims (on page
119 of [Fulton], in the paragraph below Exercise 11 in §8.3) that (in his
notations, which are different from ours!) “Eλ is isomorphic to the im-
age of the map E⊗n → E⊗n that is right multiplication by cU”. Translated
into our notations (noting that our d, n, E, T, U, ET correspond to [Fulton]’s
n, d, Cn, U, T, cU), this is saying that [Fulton]’s Eλ is isomorphic to the im-
age of the map E⊗d → E⊗d that is right multiplication by ET. In other
words, [Fulton]’s Eλ is isomorphic to E⊗dET = WTCn. This isomorphism
is constructed as follows:

Eλ ∼= E
(

Sλ
)

(by Proposition 1 in [Fulton]’s §8.3)

= E⊗d ⊗C[Sd]
Sλ︸︷︷︸

∼=C[Sd]·ET

(by the definition of the E functor)

∼= E⊗d ⊗C[Sd]
(C [Sd] · ET)

∼= E⊗dET (62)

(where the last ∼= sign is a particular case of the isomorphism M⊗A (Ae) ∼=
Me for each ring A, each right A-module M and each idempotent e ∈ A).

Using the above isomorphism Eλ → WTCn, the basis of Eλ constructed in
Theorem 1 of [Fulton]’s §8.1 can be translated into a basis of WTCn. Let
us see what comes out of this translation. Theorem 1 of [Fulton]’s §8.1
claims that the vectors eU, where U ranges over all semistandard tableaux
of shape λ, form a basis of the vector space Eλ (recall that our T is [Fulton]’s
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U, and vice versa!). Consider a semistandard tableau U of shape λ, and
the corresponding basis vector eU. The isomorphism Eλ → E

(
Sλ
)

from
Proposition 1 in [Fulton]’s §8.3 maps this basis vector eU ∈ Eλ to the ten-
sor v (T)⊗ vT (again, our T is [Fulton]’s U, so this looks like “v (U)⊗ vU”
in [Fulton]), where v (T) ∈ E⊗d is the pure tensor that we call e(T,U) (de-
fined in the exact same way), while vT is the polytabloid in the Specht
module Sλ corresponding to the standard tableau T. The isomorphism
Sλ → C [Sd] ·ET sends this latter polytabloid vT to ET, and thus the induced
isomorphism E⊗d ⊗C[Sd]

Sλ → E⊗d ⊗C[Sd]
(C [Sd] · ET) sends v (T)⊗ vT to

v (T) ⊗ ET. Finally, the isomorphism E⊗d ⊗C[Sd]
(C [Sd] · ET) → E⊗dET

sends v (T) ⊗ ET to v (T) ET = e(T,U)ET (since v (T) = e(T,U)). Alto-
gether, we thus see that our isomorphism Eλ → WTCn constructed in (62)
sends eU to e(T,U)ET (with the intermediate steps being eU 7→ v (T)⊗ vT 7→
v (T)⊗ ET 7→ e(T,U)ET). Hence, it sends the whole basis (eU)U ssytλ of Eλ to

a basis
(

e(T,U)ET

)
U ssytλ

of WTCn. We can rewrite this latter basis further

as
(

cT

(
e(T,U)

))
U ssytλ

(since cT is right multiplication by ET, so that we

have cT

(
e(T,U)

)
= e(T,U)ET for each U ssytλ). Thus, we have shown that(

cT

(
e(T,U)

))
U ssytλ

is a basis of WTCn. This proves Corollary 4.1.14 (1).

(2) Consider a diagonal matrix diag (t1, t2, . . . , tn) ∈ Γ. We compute the
trace trace (ρ (diag (t1, t2, . . . , tn))) using the basis of WTCn given in Corol-
lary 4.1.14 (1). The map ρ (diag (t1, t2, . . . , tn)) acts on a basis vector cT

(
e(T,U)

)
by scaling it by the factor

ρ (diag (t1, t2, . . . , tn)) · cT

(
e(T,U)

)
=

n

∏
i=1

t# i’s in U
i

(since cT

(
e(T,U)

)
is a linear combination of permutations of the pure tensor

e(T,U), and the latter pure tensor contains each ei as many times as there
are i’s in U). Thus, trace (ρ (diag (t1, t2, . . . , tn))) is the sum of these factors

n
∏
i=1

t# i’s in U
i over all U ssytλ. That is,

trace (ρ (diag (t1, t2, . . . , tn))) = ∑
U ssytλ

n

∏
i=1

t# i’s in U
i = sλ (t1, t2, . . . , tn) .

This proves Corollary 4.1.14 (2). ■

108. page 144: “Any partition λ ⊢ d can be encoded into a monomial ω (λ) :=
tν1
1 tν2

2 · · · tνn
n as follows: the exponent νi is the cardinality of the i-th column

in the Ferrers diagram of λ. Equivalently, νi = #
{

j : λj ≥ i
}

. It is easy to
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see that ω (λ) is the lexicographically leading monomial of the Schur poly-
nomial sλ (t1, t2, . . . , tn)” should be “Any partition λ ⊢ d can be encoded
into a monomial ω (λ) := tλ1

1 tλ2
2 · · · tλn

n as follows. It is easy to see that
ω (λ) is the lexicographically leading monomial of the Schur polynomial
sλ (t1, t2, . . . , tn) (where the variables are ordered by t1 > t2 > · · · > tn)”.

109. page 144, (4.1.8): The “cλ WλCn” here means a direct sum of cλ many
copies of WλCn.

110. page 144: I am not sure I would call Algorithm 4.1.16 a “subduction algo-
rithm (cf. Algorithm 3.2.8)”; the Schur polynomials form a Z-module basis
of Z [t1, . . . , tn]

Sn , not a sagbi basis.

111. page 145, Algorithm 4.1.16: In Step 2, replace “tν1
1 tν2

2 · · · tνn
n ” by “tλ1

1 tλ2
2 · · · tλn

n ”.

112. page 145, Example 4.1.17: “the space of polynomial functions” should be
“the space of homogeneous polynomial functions”.

113. page 145, Example 4.1.17: In (4.1.12), replace “s(3,3,3)” by “s(2,2,2)”.

114. page 146: “the space of homogeneous polynomials of degree d in the co-
efficients of a generic homogeneous polynomials of degree m” should be
“the space of homogeneous polynomials of degree m in the coefficients of
a generic homogeneous polynomial of degree d”.

115. page 147, §4.2: Replace “A ◦ f ” by “ f ◦ A” everywhere in the third para-
graph of §4.2. (The group Γ acts on C [V] is a right action, not a left action.)

116. page 147, §4.2: “The symmetric power Sk (V) is a vector space of dimension(
m + k − 1

k

)
. We identify it with the space of homogeneous polynomial

functions of degree k on V”: This identification is unnatural, and does not
respect the Γ-action in general. The vector space C [V]Γk of all homogeneous
polynomial functions of degree k on V can be naturally identified with the
symmetric power Sk (V∗), where Γ acts on the dual space V∗ of V by the
transpose matrix (i.e., where the action of Γ on V∗ is given by ( f ◦ A) (v) =
f (Av) for all A ∈ Γ, f ∈ V∗ and v ∈ V). On both of these spaces, Γ acts
from the right. Meanwhile, on the symmetric power Sk (V), the group Γ
acts from the left. Even if we transform the left action into a right action
by taking inverses (i.e., we define A f to be f ◦ A−1), and even if we assume
that V = Cn (in which case there is a “natural” vector space isomorphism
C [V]Γk

∼= Sk (V∗) ∼= Sk (V) by way of the standard basis), the actions do
not become the same (unless you restrict them to the orthogonal group
O (Cn)).

This discrepancy prevents much of what is being done in Chapter 4 of the
book from being true “on the nose”. However, the approach to invariants
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by means of symmetric powers is nevertheless a valid one, and much of
what is done in Chapter 4 can be adapted once proper fixes are made. In
many cases, it suffices to read Sk (V∗) for Sk (V) and make sure to adapt
the representation theory of Γ to right (as opposed to left) Γ-actions. Even
without such an adaptation, the invariant-theoretical insights can often be
salvaged, since it can be shown that for any k ∈ N and any representation
(V, ρ) of Γ, we have

dim
(
(Sk (V∗))Γ

)
= dim

(
(Sk (V))Γ

)
(63)

(despite the lack of a Γ-equivariant isomorphism Sk (V∗) ∼= Sk (V)).

Let me outline a proof of (63). It relies on the following two facts:

Fact 1: Let (W, τ) be any Γ-representation. Then, dim
(
(W∗)Γ

)
=

dim
(
WΓ).

Fact 2: Let (V, ρ) be any Γ-representation. Let k ∈ N. Then,
Sk (V∗) ∼= (Sk (V))∗ as Γ-representations.

Proof of Fact 1 (sketched). Let’s say that W is a left Γ-representation. Decom-
pose W into a direct sum I1 ⊕ I2 ⊕· · ·⊕ Ik of irreducible left Γ-representations.
Then, dim

(
WΓ) is the number of i ∈ {1, 2, . . . , k} for which Ii is isomorphic

to the trivial 1-dimensional representation C. But W ∼= I1 ⊕ I2 ⊕ · · · ⊕ Ik as
left Γ-representations yields

W∗ ∼= (I1 ⊕ I2 ⊕ · · · ⊕ Ik)
∗ ∼= I∗1 ⊕ I∗2 ⊕ · · · ⊕ I∗k

as right Γ-representations, and moreover, the addends I∗j here are again
irreducible (since the dual of an irreducible left Γ-representation is an ir-
reducible right Γ-representation). Hence, dim

(
(W∗)Γ

)
is the number of

i ∈ {1, 2, . . . , k} for which I∗i is isomorphic to the trivial 1-dimensional
representation C.

But the i ∈ {1, 2, . . . , k} that satisfy Ii
∼= C are precisely those i ∈ {1, 2, . . . , k}

that satisfy I∗i
∼= C (since C∗ ∼= C). Thus, the above descriptions of

dim
(
(W∗)Γ

)
and of dim

(
WΓ) boil down to the same thing, and we con-

clude that dim
(
(W∗)Γ

)
= dim

(
WΓ). This proves Fact 1.

Proof of Fact 2 (sketched). There is an obvious bilinear form

β : Sk (V∗)× Sk (V) → C,

( f1 f2 · · · fk, v1v2 · · · vk) 7→ ∑
σ∈Sk

f1

(
vσ(1)

)
f2

(
vσ(2)

)
· · · fk

(
vσ(k)

)
= ∑

σ∈Sk

fσ(1) (v1) fσ(2) (v2) · · · fσ(k) (vk) ,
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which is easily seen to be Γ-tensorial (i.e., any g ∈ Sk (V∗) and w ∈ Sk (V)
and A ∈ Γ satisfy β (g ◦ A, w) = β (g, Aw)) and nondegenerate (i.e., it
produces an isomorphism Sk (V∗) → (Sk (V))∗) 20. Thus, it gives rise
to an isomorphism Sk (V∗) ∼= (Sk (V))∗ of right Γ-representations. This
proves Fact 2.

Now (63) follows from

dim
(
(Sk (V∗))Γ

)
= dim

((
(Sk (V))∗

)Γ
)

(by Fact 2)

= dim
(
(Sk (V))Γ

)
(by Fact 1, applied to W = Sk (V)) .

117. page 147, §4.2: After “This implies that f is a homogeneous polynomial
of degree gn/d”, I would add “(in fact, we can WLOG assume that f
is homogeneous; then, the assumption f ◦ A = (det A)g · f rewrites as
f (ρ (A) · v) = (det A)g · f (v), but the left hand side of the latter equality
is homogeneous of degree d ·deg f in the entries of A, while the right hand
side is homogeneous of degree gn in the entries of A; thus, d · deg f = gn
and therefore deg f = gn/d)”.

118. page 148, Proposition 4.2.1: As remarked above, the polynomial ring C [V]
is not isomorphic to the symmetric algebra S (V) of V as a Γ-module. Con-
sequently, “C [V]” should be replaced by “S (V)” throughout this proposi-
tion and its proof.

119. page 150, proof of Lemma 4.2.4: The “typical such ssytλ” looks not like

1 · · · 1 1 · · · 1 1 · · · 1
1 · · · 1 2 · · · 2

but like
1 · · · 1 1 · · · 1 2 · · · 2
2 · · · 2 .

120. page 150, proof of Lemma 4.2.4: “By Corollary 4.1.14 (b)” should be “By
Corollary 4.1.14 (2)”.

121. page 157: “which we denote with Ωs, Ωt and Ωu respectively” should be
“which we denote with Ωt, Ωs and Ωu respectively”.

122. page 157: “Given a matrix-valued polynomial function ϕ” should be “Given
a polynomial function ϕ ∈ C [t]”.

123. page 157, proof of Theorem 4.3.4: Replace each “k” in this proof by an
“n”.

20For the nondegeneracy, we have to thank the facts that V is finite-dimensional and that our
base field C has characteristic 0.
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124. page 157, proof of Theorem 4.3.4: In the equality (4.3.5) and further on,
the notation

∂nϕ (u = st)
∂uσ1,π1 ∂uσ2,π2 · · · ∂uσn,πn

should be understood as

∂nϕ (u)
∂uσ1,π1 ∂uσ2,π2 · · · ∂uσn,πn

|u=st

(that is, we first compute the n-th partial derivative
∂nϕ (u)

∂uσ1,π1 ∂uσ2,π2 · · · ∂uσn,πn
in the ring C [u], and then substitute the entries of the matrix st for the re-
spective entries of u in the result we obtained). An alternative (and more
standard) way to express the same thing is

∂nϕ (u)
∂uσ1,π1 ∂uσ2,π2 · · · ∂uσn,πn

(st) .

125. page 157, proof of Theorem 4.3.4: Here is a quick outline of how (4.3.5)
can be proved. Namely, (4.3.5) follows by n-times repeated application of
the formula

∂ϕ (st)
∂tp,q

=
n

∑
σ=1

(
∂ϕ (u)
∂uσ,q

)
(st) · sσ,p, (64)

which holds for all p, q ∈ {1, 2, . . . , n}. This formula (64), in turn, is a par-
ticular case of the multivariate chain rule (since ϕ (st) = ϕ (ψ (t)), where ψ
is the function sending each entry ti,j of the matrix t to the respective entry

n
∑

h=1
si,hth,j of st). Alternatively, (64) can be proved by induction on deg ϕ,

using the fact that both sides of (64) are functions ω (ϕ) of ϕ that satisfy
the recurrence

ω (ϕψ) = ϕ (st) · ω (ψ) + ω (ϕ) · ω (st)

(by the Leibniz rule) and send each indeterminate ti,j to

{
0, if q ̸= j;
si,p, if q = j

(this is easy to check directly).

126. page 157, proof of Theorem 4.3.4: “antisymmetrize the expression (4.3.5)
with respect to π ∈ Sn” simply means “multiply (4.3.5) by sign (π) and
sum the result over all π ∈ Sn”. (No further substitution of variables is
required, unlike in a usual antisymmetrization of polynomials.)

127. page 158, proof of Theorem 4.3.4: “The proof of the second identity in
(4.3.4) is analogous”: This needs some caveats. Instead of applying (4.3.3)
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directly with each ti,j replaced by si,j, we have to apply the identity

Ω (ϕ) = ∑
π∈Sn

sign (π) · ∂nϕ

∂tπ1,1 ∂tπ2,2 · · · ∂tπn,n

(which follows from (4.3.3) by first reindexing the sum using the bijection

π 7→ π−1 and then rewriting the expression
∂nϕ

∂t1,π−1
1

∂t2,π−1
2

· · · ∂tn,π−1
n

as

∂nϕ

∂tπ1,1 ∂tπ2,2 · · · ∂tπn,n
).

Instead of (64), we need the analogous formula

∂ϕ (st)
∂sp,q

=
n

∑
σ=1

(
∂ϕ (u)
∂up,σ

)
(st) · tq,σ. (65)

Instead of (4.3.5), we need the formula

∂nϕ (st)
∂sπ1,1 ∂sπ2,2 · · · ∂sπn,n

=
n

∑
σ1,σ2,...,σn=1

∂nϕ (u = st)
∂uπ1,σ1 ∂uπ2,σ2 · · · ∂uπn,σn

t1,σ1t2,σ2 · · · tn,σn .

128. page 158, Corollary 4.3.6: It can be shown that this constant cp equals
p (p + 1) (p + 2) · · · (p + n − 1). Indeed, Corollary 4.3.6 with this particu-
lar formula for cp is known as the Cayley identity, and appears (e.g.) as
Corollary A.4 in Sergio Caracciolo, Andrea Sportiello, Alan D. Sokal, Non-
commutative determinants, Cauchy-Binet formulae, and Capelli-type identities. I.
Generalizations of the Capelli and Turnbull identities, arXiv:0809.3516v2 (see
my errata).

129. page 159: “its image t ◦ f = f (tv)” should be “its image f ◦ t = f (tv)”.

130. page 163, proof of Proposition 4.4.2: “as polynomial functions” should be
“as rational functions”.

131. page 163, proof of Proposition 4.4.2: In (4.4.5), the “∂xi ∂xj” on the right
hand side should be “∂xk ∂xl”.

132. page 163, definition of the discriminant of a quadratic form: You prob-

ably want to replace “
n
∑

i=1

n
∑
j=i

aijxixj” by “
n
∑

i=1

n
∑

j=1
aijxixj (with aij = aji)” in

order to recover the factors 2 in (4.4.7).

133. page 164, Theorem 4.4.3: “ring a quadratic” should be “ring of a quadratic”.
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134. page 169, proof of Lemma 4.5.1: The “if” direction of the lemma can also
be proved without any reference to connectedness and Lie groups. Here is
an outline of this proof:

Proof of the “if” direction of Lemma 4.5.1. Let v ∈ V be a vector. Assume that

ρ∗
(
Ei,j
)
· v = 0 for all i, j ∈ {1, 2, . . . , n} with i ̸= j,

and that
ρ∗ (Ei,i) · v = g · v for all i ∈ {1, 2, . . . , n} .

We can combine these two assumptions into one: namely, for all i, j ∈
{1, 2, . . . , n}, we have

ρ∗
(
Ei,j
)
· v = δi,jg · v, (66)

where δi,j is the Kronecker delta of i and j. (This covers both the case i = j
and the case i ̸= j.)

Let us set

γ (T) := (det T)−g · ρ (T) ∈ GL (V) for each T ∈ Γ.

Thus, γ is a rational map from Γ to GL (V) (that is, if we choose a basis of
V and coordinatize GL (V) ⊆ End (V) in the obvious way using this basis,
then all the coordinates of γ (T) are rational functions in the coordinates of
T). By the definition of γ, we have

γ (1) = (det 1)−g︸ ︷︷ ︸
=1−g=1

· ρ (1)︸︷︷︸
=idV

= idV .

Moreover, for each T ∈ Γ, we have

ρ (T) = (det T)g · γ (T) (67)

(since γ (T) = (det T)−g · ρ (T)). Thus, for each i, j ∈ {1, 2, . . . , n}, we have(
∂

∂ti,j
ρ (T)

)
T=1

=

(
∂

∂ti,j

(
(det T)g · γ (T)

))
T=1

=

(
∂

∂ti,j
(det T)g

)
T=1︸ ︷︷ ︸

=δi,jg
(this is easy to check)

· γ (1)︸ ︷︷ ︸
=idV

+ (det 1)g︸ ︷︷ ︸
=1g=1

·
(

∂

∂ti,j
γ (T)

)
T=1

(by the Leibniz rule for noncommutative products)

= δi,jg idV +

(
∂

∂ti,j
γ (T)

)
T=1

,
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so that(
∂

∂ti,j
γ (T)

)
T=1

=

(
∂

∂ti,j
ρ (T)

)
T=1︸ ︷︷ ︸

=ρ∗(Ei,j)
(by (4.5.2))

− δi,jg idV = ρ∗
(
Ei,j
)
− δi,jg idV

and therefore(
∂

∂ti,j
γ (T)

)
T=1

· v =
(
ρ∗
(
Ei,j
)
− δi,jg idV

)
· v

= ρ∗
(
Ei,j
)
· v − δi,jg · v = 0 (by (66)) .

Thus, we have shown that(
∂

∂ti,j
γ (T)

)
T=1

· v = 0 for each i, j ∈ {1, 2, . . . , n} . (68)

Now, fix S ∈ Γ. Let i, j ∈ {1, 2, . . . , n}. For each T ∈ Γ, we have

ρ (ST) = ρ (S) · ρ (T)

(since ρ is a group action) and thus

γ (ST) =

 det (ST)︸ ︷︷ ︸
=det S·det T

−g

· ρ (ST)︸ ︷︷ ︸
=ρ(S)·ρ(T)

(by the definition of γ)

= (det S · det T)−g︸ ︷︷ ︸
=(det S)−g·(det T)−g

·ρ (S) · ρ (T)

= (det S)−g · ρ (S)︸ ︷︷ ︸
=γ(S)

(by the definition of γ)

· (det T)−g · ρ (T)︸ ︷︷ ︸
=γ(T)

(by the definition of γ)

= γ (S) · γ (T)

and therefore
γ (ST) · v = γ (S) · γ (T) · v.

Applying the operator
∂

∂ti,j
|T=1 to this equality (i.e., taking the derivative

with respect to ti,j at the point T = 1), we obtain

∂

∂ti,j
(γ (ST) · v)T=1 =

∂

∂ti,j
(γ (S) · γ (T) · v)T=1 = γ (S) ·

(
∂

∂ti,j
γ (T)

)
T=1

· v︸ ︷︷ ︸
=0

(by (68))

= 0. (69)
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On the other hand, the map Γ → V, T 7→ γ (ST) · v can be written as the
composition of the maps Γ → Γ, T 7→ ST and Γ → V, U 7→ γ (U) · v.
Thus, the chain rule for multivariate functions yields

∂

∂ti,j
(γ (ST) · v)T=1

=
n

∑
k,l=1

(
∂

∂ti,j

(
(ST)k,l

))
T=1︸ ︷︷ ︸

=

sk,i, if l = j;
0, if l ̸= j

(since (ST)k,l=
n
∑

h=1
sk,hth,l)

·
(

∂

∂uk,l
(γ (U) · v)

)
U=S1︸ ︷︷ ︸

=

(
∂

∂uk,l
γ(U)

)
U=S1

·v

=

(
∂

∂uk,l
γ(U)

)
U=S

·v

(since S1=S)(
where uk,l denotes the (k, l) -th entry of the matrix U ∈ Γ,

and where (ST)k,l denotes the (k, l) -th entry of the matrix ST

)
=

n

∑
k,l=1

{
sk,i, if l = j;
0, if l ̸= j

·
(

∂

∂uk,l
γ (U)

)
U=S

· v

=
n

∑
k=1

sk,i ·
(

∂

∂uk,j
γ (U)

)
U=S

· v(
here, we have removed all addends with l ̸= j

from the sum, since these addends are 0

)
.

Comparing this with (69), we obtain

n

∑
k=1

sk,i ·
(

∂

∂uk,j
γ (U)

)
U=S

· v = 0. (70)

Now forget that we fixed i. We thus have proved the equality (70) for all
i ∈ {1, 2, . . . , n}.

But the matrix S is invertible (since S ∈ Γ = GL (Cn)). Let S−1 =
(

s′p,q

)
p,q∈{1,2,...,n}

be its inverse matrix. Then, SS−1 = 1, so that all k, q ∈ {1, 2, . . . , n} satisfy
n

∑
i=1

sk,is′i,q = δk,q (71)

(by comparing the (k, q)-th entries of the matrices SS−1 and 1). Now, for
any q ∈ {1, 2, . . . , n}, we have

n

∑
i=1

s′i,q ·
n

∑
k=1

sk,i ·
(

∂

∂uk,j
γ (U)

)
U=S

· v︸ ︷︷ ︸
=0

(by (70))

= 0
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and thus

0 =
n

∑
i=1

s′i,q ·
n

∑
k=1

sk,i ·
(

∂

∂uk,j
γ (U)

)
U=S

· v

=
n

∑
k=1

n

∑
i=1

sk,is′i,q︸ ︷︷ ︸
=δk,q

(by (71))

·
(

∂

∂uk,j
γ (U)

)
U=S

· v︸ ︷︷ ︸
=

 ∂

∂uk,j
(γ(U)·v)


U=S

=
n

∑
k=1

δk,q ·
(

∂

∂uk,j
(γ (U) · v)

)
U=S

=

(
∂

∂uq,j
(γ (U) · v)

)
U=S

(since all the addends of the sum are 0 except for the addend for k = q). In
other words,(

∂

∂uq,j
(γ (U) · v)

)
U=S

= 0 for all q ∈ {1, 2, . . . , n} .

Now, forget that we fixed j. We thus have shown that(
∂

∂uq,j
(γ (U) · v)

)
U=S

= 0 for all q, j ∈ {1, 2, . . . , n} .

In other words, all the partial derivatives of γ (U) · v (as a function in
U ∈ Γ) at the point U = S are 0. Since S ∈ Γ was also chosen arbitrary, this
shows that all the partial derivatives of γ (U) · v (as a function in U ∈ Γ) at
every point are 0. Therefore, this function γ (U) · v must be constant (since
a rational function whose all partial derivatives at every point are 0 must
be constant21). In particular, every T ∈ Γ thus satisfies

γ (T) · v = γ (1)︸ ︷︷ ︸
=idV

· v = v

and therefore

ρ (T) · v = (det T)g · γ (T) · v︸ ︷︷ ︸
=v

(by (67))

= (det T)g · v.

21For those who want to prove this without the use of analysis: First, reduce the result to the
case of a univariate rational function with values in C (by focussing on a single coordinate
of the output and on a change in a single coordinate of the input); then express this rational
function as a ratio f /g of two coprime polynomials f and g, and argue that ( f /g)′ = 0 entails
f ′g = f g′, which can be combined with the coprimality of f and g to yield f | f ′ and g | g′,
which is absurd unless f and g are constant.
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In other words, v is a Γ-invariant of index g. This proves the “if” direction
of Lemma 4.5.1.

135. page 170, Theorem 4.5.2: In the first equality in the display (4.5.7), replace
“for i = j, 2, . . . , n” by “for j = 1, 2, . . . , n”.

136. page 174, proof of Lemma 4.5.4: On the right hand side of the display,
replace “x

νσ(i),j
σ(i),j” by “x

νi,j
σ(i),j” (otherwise, we don’t get an Sm-invariant sum).

137. page 185, Lemma 4.7.2: Remark: If t ≥ 1, then the bound “≤ s (t + 1)s−1”
can be replaced by the (slightly less horrible) bound “≤ s

(
ts−1 − 1

)
” (since

r + k
rt + k

≥ 1
t

for each k ≥ 0).
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