Errata to “Algorithms in Invariant Theory” January 18, 2026

Algorithms in Invariant Theory
Bernd Sturmfels
Second Edition 2008
Comments and corrections by Darij Grinberg

The following list contains my comments to Bernd Sturmfels’s book Algorithms
in Invariant Theory, specifically its 2nd edition (Springer, 2008). Some of these
comments are corrections; others are more subjective improvements.

I have read the following parts of the book: Chapter 1, the elementary parts
of Chapter 2 (§2.1, §2.2 until Example 2.2.4, §2.4), most of Chapter 3 (§3.1, §3.2,
§3.3 until Algorithm 3.3.4, §3.6, §3.7 sans the second proof of Proposition 3.7.4
and until Lemma 3.7.6), and the early bits of Chapter 4 (§4.1, §4.3).

7. Errata and comments

1. page 4, proof of Proposition 1.1.2: It should be said that py is to be under-
stood as 1. (Otherwise, “p;, p;, . . . pi,” might not make sense.)

2. page 5, Proposition 1.1.3: This proposition requires n > 1.

3. page 5, proof of Proposition 1.1.3: After “and therefore D divides h.”, add
“Furthermore, the polynomial /D is symmetric, since each permutation
o € Sy satisfies

(Xoys -0 Xar,) _ sign(a)ﬁ(xl,...,xn)
(Xoy, .- X)) sign(o)-D(x1,...,%n)
I (

X1, )
—h D.
D)

(h/D) (Xoy, o e 0 Xo,) = [};

4

4. page 6: After “The polynomials a, are precisely the nonzero images of
monomials under antisymmetrization”, add “(up to sign)”.

5. page 6: The definition of “antisymmetrization” here uses the notion of
“canonical projection”, which is not explained here. Better to say that the
antisymmetrization of a polynomial f (x1,...,x,) is defined tobe Y sign (¢)-

eSS,
f (X, ee0 Xay)-

6. page 6: The word “discriminant”, as it is used here, simply means the
polynomial D = D (x,...,x,). This should be clarified.

7. page 6, Corollary 1.1.4: It should be explained that “partitions of d into
at most n parts” means “partitions of d with n entries (not necessarily all
positive)”.



https://www.math.ens.psl.eu/~benoist/refs/Sturmfels.pdf
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8.

10.

11.

12.

page 8: “The largest monomial of a polynomial” — “The largest monomial
of a nonzero polynomial”.

page 8: “by the initial monomials of all polynomials” — “by the initial
monomials of all nonzero polynomials”.

page 8, Example 1.2.1: “versus a Grobner bases” — “versus a Grobner
basis”.

page 11, proof of Theorem 1.2.4: “By Corollary 1.2.3, the set of initial
monomials {init (f) : f € I\ {G}} has a minimal element init ( f) with re-
spect to “<””: In my opinion, this is not obvious enough to be left unex-
plained, at least for a reader who has not already seen this kind of (highly
non-constructive) argument before. The argument being made here is the
following: The set of initial monomials {init (f) : f € I\ (G)} is nonempty
(since we assumed that I \ (G) is nonempty). If this set had no minimal
element (with respect to “<”), then we could recursively construct an in-
tinite chain my > my > m3 > --- of monomials in this set by picking m;
arbitrary (this is possible, since the set {init (f) : f € I\ (G)} is nonempty)
and then choosing each further element m; to be smaller than m;_; (this is
possible, since m;_1 is not minimal in this set, because this set has no min-
imal element). But such a chain would contradict Corollary 1.2.3. Hence,
the set {init (f) : f € I'\ (G)} must have a minimal element after all.

page 12, proof of Theorem 1.2.7: Here is a proof of the identity

k .
hy (xk,. . .,xn) + Z (—1)1 hy_; (xk, .. .,xn) o (xl, ey Xj—1, Xky - - .,xn) =0.
i=1
(1)
Proof of (I): We work in the polynomial ring C[x1,xy,...,x,] (actually, C
could be replaced by any base ring here). Let P (1) denote the set of all

subsets of {1,2,...,n}. We define the complete homogeneous symmetric
polynomials

h; (xx.,) := (sum of all monomials in xy, x;,1,. .., X, that have degree i)
(2)
for all i € N (so that hg (x¢_,) = 1 because the only monomial of degree 0
is 1) and the elementary symmetric polynomials

0i (x1.4) 1= Z XjnXjp + 00 Xj;
f1<jo<---<j;in {1,2,...,n}

= 2 = ©

SeP(n); s€S
|S|=i

for all i € N (so that 0p (x1.,) = 1 because the only 0-element subset of
{1,2,...,n} is @). Note that these polynomials h; (xx_,) and o; (x; ) are
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denoted by h; (xi, ..., x,) and 0; (x1,. .., Xk_1, Xk, - - ., Xn) in the book. Thus,
the identity (I), which we must prove, can be rewritten as follows:

k

xkn +Z hk i xk n)Uz(xl n)zo- (4)
i=1

But we can simplify this identity even further. Namely, we observe that

k
Z hk i (Xk.n) 07 (X1.0)

i=0
k
= (1)’ o (k) 00 (x1.0) + Y et (X)) 0 (21.0)
N~ ——— 1:1
=1 :hk(xk ) =1

= i (Xk.n +2 hkl(xkn)az(xln)
i=1

Hence, the identity @[), which we must prove, can be rewritten as

k

Y (1) i (xpn) 03 (x1.) = O 5)

i=0
It is this latter identity (5) that we shall now prove; the original identity
will then follow.

Let 91 be the set of all monomials in the variables xi, xx1, ..., X,. Thus, we
can restate the definition (2) of h; (xy_,,) as follows: For all i € N, we have

hi (Xeqn) = ), m (6)
me;
deg m=i

For any subset S of [n], let xg denote the monomial [] x;. Thus, we can

seS
restate the definition (3) of 0; (x1.,) as follows: For all i € N, we have
Ui (xl..n) - Z Xs- (7)
SeP(n);
5| =i
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Thus,
k ,
1
Y (=1 Iy (xin) 0 (X1.n)
= r m = X X5
mei; 567?( n);
deg m=k—i |S|=i
(by (6), applied to k—i by @)
instead of 1)
k
=L L m| ) s
i=0 meN; SeP(n)
degm=k—i |S|=i
k :
=Y ) Y, (1) mxg
i=0 meN; SeP(n); —
deg m=k—i |S|=i :(—1)‘5‘
(since i=|S])
k S
-y ¥ Y (1) mas. 8)
=0  meM;  SeP(n);
degm=k—i |§|=;
k
However, the triple summation sign ) ) Y" can be rewritten
i=0 meN; SeP(n);
degm=k—i  |§|=;
as a single summation sign Y. , because the conditions degm =
(m,S)eMmxP(n);
degm+|S|=k

k—iand |S| =i add up to degm + |S| = (k—1i) +i = k (and conversely,
degm + |S| = k implies that degm = k —i and |S| = i for a unique 7).
Hence, we can rewrite (8) as

k
Z hk i xk n) Y (xl n)
= Y (D) 9)
(m,S)eMxP(n);
degm+|S|=k

Now, for any monomial m in the variables x1, x, ..., x5, let Supp m denote
the set of all i € {1,2,...,n} such that the variable x; appears in m (that
is, such that m is divisible by x; as a monomial). Clearly, if m € 9, then
Suppm C {k,k+1,...,n} (since m € 9 means that m is a monomial in
Xk, Xk41, - - - » Xn Only). Furthermore, for any S € P (1), we have Supp (xg) =
S. More generally, for any m € 9t and S € P (n), we have

Supp (mxg) = SUSuppm (10)
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(and more generally, we have Supp (mn) = Suppm U Suppn for any two
monomials m and n).

It is easy to see that for every pair (m,S) € M x P (n) satisfying degm +
|S| = k, we have

max (Supp (mxg)) € {k,k+1,...,n} (11)

ﬂ Hence, we can split up the sum on the right hand side of @) according
to the value of max (Supp (mxs)) as follows:

). (—1) muxs
(m,S)eMxP(n);
degm+|S|=k

-y y (—1)/* mxs. (12)
=k  (m,S)eMxP(n);
deg m+|S|=k;
max(Supp(mxs))=j

Now, fix j € {k,k+1,...,n}. We shall prove that the sum
Y (=1)% mxg (13)

(m,S)eMmxP(n);
deg m+|S|=k;
max(Supp(mxs))=j
is 0 by breaking it up into two mutually cancelling parts. Namely, we
define the set

A:={(m,S) e MxP(n) | degm+|S| =k and max (Supp (mxs)) = j};

LProof of : Let (m,S) € M x P (n) be a pair satisfying degm + |S| = k. We must
prove that max (Supp (mxs)) € {k,k+1,...,n}. In other words, we must prove that
max (SUSuppm) € {k,k+1,...,n} (since says that Supp (mxg) = S U Supp m).
We are in one of the following two cases:

e Case 1: We have m = 1. Then, degm = 0 and thus k = degm + |S| = |S|. Hence, S is a

0

k-element subset of {1,2,...,n} and thus contains at least one of the numbers k,k+1,...,n
(since otherwise, S would be a subset of {1,2, ...,k — 1} and therefore would have at most
k —1 many elements). Therefore, the union S U Supp m must also contain at least one of
the numbers k, k+ 1, ..., n (since it contains any element that S contains). Since S U Suppm
is a subset of {1,2,...,n}, we conclude that max (SUSuppm) € {k,k+1,...,n}.

e Case 2: We have m # 1. Hence, the monomial m is not constant, and thus must con-
tain at least one of the indeterminates xi, xx,1,...,%, (since it is a monomial in these
indeterminates). In other words, the set Suppm contains at least one of the numbers
k,k+1,...,n. Therefore, the union S U Supp m must also contain at least one of the num-
bers k,k+1,...,n (since it contains any element that Supp m contains). Since S U Suppm
is a subset of {1,2,...,n}, we conclude that max (SUSuppm) € {k,k+1,...,n}.

Hence, in both of these cases, we have shown that max (SUSuppm) € {k,k+1,...,n}.
This completes the proof of (11).
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this is the indexing set of our sum (13).

Now, if (m,S) € 2 is a pair satisfying j ¢ S, then x; | m (because (m,S) € 2
entails max (Supp (mxs)) = j, so that j = max (Supp (mxs)) € Supp (mxg) =
S USupp m (by (10)), which yields j € Supp m (because j ¢ S) and therefore
xj | m), and therefore m/x; € M and thus (m/x;, SU{j}) € A ﬂ Thus,
we obtain a map

{(m,5)eA | j&S} = {(mS)eA | jeS},
(m,S) — (m/x;,SU{j}). (14)

Conversely, if (m,S) € 2 is a pair satisfying j € S, then (mxj, S\ {j}) € A
ﬂ Thus, we obtain a map
{(m,S)ed | jeS} —>{(mS)eA | j&S},
(m,S) — (mx;, S\ {j}). (15)

2Proof. We must show that (m/x;,SU{j}) € M x P (n) and deg (m/xj) +|SU{j}| = k and

max (Supp ((m/x]-) xsu{;‘})) =]j.
The first of these three statements is clear because m/x; € 9 and SU {j} € P (n). The
second statement follows from

deg (m/x]-) +|SU{j}| = (degm—1)+ (|S| +1)
—— N———

=degm-—1 =|S[+1
(since j¢5S)
=degm+ S| =k (since (m,S) € A).
It remains to prove the third statement. But xg (y = Xs%j (since j ¢ S) and

thus (m/xj) xsu;p = (m/x)) (xsx;) = mxs. Hence, max (Supp ((m/xj) xSu{j})) =
max (Supp (mxg)) = j because of (m,S) € 2. This proves the third of the three statements
we needed.

Hence, (m/x]-, SU{j}) € A follows.

3Proof. We must show that (mx;, S\ {j}) € M x P (n) and deg (mx;) + [S\ {j}| = k and

max (Supp ((mxj) xs\{j})) =].

The first of these three statements is clear because mx; € 9 (since j € {k,k+1,...,n}) and
S\ {j} € P (n). The second statement follows from

deg (mx;) + |S\ {j}| = (degm +1) + (|| - 1)

=degm-+1 =[5]-1
(since j€S)

=degm+|S| =k (since (m,S) € 2A).

It remains to prove the third statement. But x5 = xg\ (V% (since j € S) and thus xg\ gy =

Xs/xj, so that (mx;) xg\(jy = (mx;) (xs/x;) = mxs. Hence, max (Supp ((mx]-) xS\{j})) =
max (Supp (mxg)) = j because of (m,S) € 2. This proves the third of the three statements

we needed.
Hence, (mx;j, S\ {j}) € 2 follows.
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These two maps and are mutually inverse. Hence, they are bijec-
tions.

Now,
Y (—1) muxg
(m,S)eMxP(n);

deg m+|S|=k;
max(Supp(mxs))=j

-~

_(m,S)EQ(
(by the definition of ()

= ¥ (=1)Plmx

(m,S)e

= Y (- D)Fmxs+ Y (-1 s
(m,S)e; (m,S)e;
jes i¢S
(since each (m,S) € 2 satisfies j € S or j ¢ S but never both)
— Z (_1)\SU{]'}| (m/x]) Xsugjy + Z (- 1)IS| mxg
(m,S)€; Tflslj“ — (mS)eu;
j#S =(-1) TXsX; i¢s
(since j¢S (since j¢S)
entails |[SU{j}|=|S|+1)

here, we have substituted (m/xj,SU{j}) for (m,S)
in the first sum, since the map is a bijection

= L O w/x)asy+ Y (1) mag

(mS)e, " ———"  (m,9)e;

jés =—(-pf = j#s
== Y (-D)Pfhmxs+ ¥ (1) mxs=0. (16)
(m,S)e; (m,S)e;
j&S j&S

Forget that we fixed j. We thus have proved (16) foreachj € {k,k+1,...,n}.
Hence, becomes

n
Y (D) mxs =Y Yy (1)1 mxg = 20 = 0.
(m,S)eMxP(n); j=k  (m,S)eMxP(n);
degm+|S|=k degm+|S|=k;
max(Supp(mxs))=j

V

(by | 1l
Thus, (9) rewrites as

k
Z 1) i (Xin) 05 (x1.0) = 0.

This proves (5), and thus proves (1) as well. B
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13.

14.

15.
16.

17.

18.
19.

20.

21.

pages 12-13, proof of Theorem 1.2.7: The uniqueness of the reduced Grob-
ner basis of I is not proved here. But it follows from a general fact saying
that any ideal of a polynomial ring over a field has a unique reduced Grob-
ner basis (at least unique up to scaling; or literally unique, if we require
the elements of a Grobner basis to have leading coefficients 1). For a proof
of this fact, see, for example, Satz 2.6.4 in Birgit Reinert, Grobnerbasen, Win-
tersemester 1996/1997, or Theorem 5 in §2.7 of David A. Cox, John Little,
Donal O’Shea, Ideals, Varieties, and Algorithms, 5th edition, Springer 2025.

page 13, before the Exercises: “monomials 07052 -+ -0 in the elemen-

: o1 w“ : i1 i in »
tary symmetric polynomial” — “monomials ¢;'c;’ - - - 03 in the elementary
symmetric polynomials”.

page 17, Example 1.3.4: “has distance 7” should be “has distance v/7”.

page 19, §1.4: The “monoid defined by A” is a semigroup, not a monoid
(since it does not contain (0,0, ...,0) and thus has no neutral element).

page 20: “The invariant monomials are in bijection with the elements of the
monoid M 4” should be “The invariant monomials are in bijection with the
elements of the monoid M 4 U {0}” (since M 4 itself is not a monoid).

page 20, Lemma 1.4.2: Replace “€ M 4" by “€ M 44U {0}".

page 20, proof of Lemma 1.4.2: Replace “of the monoid M 4” by “of the
monoid M 4 U {0}".

page 21, proof of correctness for Algorithms 1.4.3 and 1.4.4: Here it is
claimed that “In each step in the reduction of x¥ a monomial reduces to
another monomial”. This tacitly uses the fact that the reduced Grobner
basis G of I consists of “monomial differences” (i.e., of polynomials of the
form m —n where m and n are two monomials). To prove this fact, it
suffices to show the same about G’ (since G C G’). But G’ is the reduced
Grobner basis of an ideal of C [to, t1,...,t4,X1,...,Xy], and the latter ideal is
generated by “monomial differences” (namely, the differences tot; - - - t; —1

and x; — _dl_[lt?ij fori = 1,2,...,n, where all negative powers t;i’j in the
j=

latter monomials should be replaced by (tot1 - - tj_1tj11tjpo---tg) 7). It

is easy to see that if a ideal of a polynomial ring is generated by “monomial

differences”, then its reduced Grobner basis (with respect to any monomial

order) consists of “monomial differences”. Thus, G’ consists of “monomial

differences”, and therefore so does G.

page 25, proof of Proposition 2.1.1: The polynomial P; is not “monic”, but

Tl

very close (its leading coefficient is (—1)"', which is invertible; thus, the

polynomial (_1)|r\ P; is monic).



https://annas-archive.org/md5/18e7f4c79d74ce0f6031ddd5a15ea1dd
https://annas-archive.org/md5/18e7f4c79d74ce0f6031ddd5a15ea1dd
https://www.idealsvarietiesalgorithms.org/
https://www.idealsvarietiesalgorithms.org/
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22.

23.

24.

25.

page 25, proof of Proposition 2.1.1: “Hence the invariant subring C [x]r
and the full polynomial ring C [x] have the same transcendence degree n
over the ground field C”: This argument seems to tacitly use the facts that

a) the polynomial ring C [x] has transcendence degree n over the ground
field C, and

b) if C C A C Bis an inclusion of integral domains such that B is integral
over A, then the transcendence degrees of A and B are equal.

I know how to prove the first of these facts (indeed, it would follow from
Lemma 4.7.2 if not for the homogeneity requirement in the latter lemma;
but this homogeneity requirement can be easily removed by introducing
an extra slack variable), but I'm less sure about the second.

page 26, proof of Theorem 2.1.3: This proof tacitly uses the fact that if
I € CIx] is an invariant of T, then all homogeneous components of I are
invariants of I' as well. (This is easy, since the action of I' does not change
the degree of a homogeneous polynomial.) This fact allows us to restrict
ourselves to homogeneous invariants.

page 26, proof of Theorem 2.1.3: “Hence there exist finitely many homoge-
neous invariants Iy, I, ..., I, such that Zr = (I3, I, . .., I;)”. Let me explain
in more detail why this holds: Indeed, this is a consequence of the follow-
ing general fact:

Fact. If an ideal | of some commutative ring is finitely generated,
and if G is any generating set of | (not necessarily finite), then
there exists a finite subset of G that already generates J.

(To prove this general fact, pick a finite generating set K of J, and expand
each k € K in terms of the generators in G. Only finitely many elements of
G altogether are used in these expansions, and so they form a finite subset
of G that already generates J.)

S
page 26, proof of Theorem 2.1.3: “Since I € Zr, we have I = }_ f;I; for
j=1
some homogeneous polynomials f; € C[x] of degree less than deg (I)":
More precisely, this follows from the fact that I € Zr is homogeneous
and that the polynomials I, I, ..., I;; are also homogeneous of positive
degrees. Namely, the fact that [ € Iy = (I3, I, ..., L) shows that I can

S
be written as I = Y g;l; for some polynomials g; € C|x| that are not
=1

]
necessarily homogeneous. But now, projecting this equality onto the deg I-

S
th homogeneous component of C [x], we conclude that I = }_ f;I;, where
j=1
fj is the (degI — deg I]-)-th homogeneous component of g;; and this is the
expansion we are looking for.
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26.

27.

28.

29.

30.

31.

32.

33.

34.

page 26: In “the remarkable statement that every ideal basis {I;,..., L}
of Zr is automatically an algebra basis for C[x]'”, add the word “homo-
geneous” in front of “ideal basis” (though arguably, the whole statement
is probably meant informally, since there is no definition of “ideal basis”
anywhere in the book).

It is worth remarking that in some places (e.g., in Proposition 2.1.5), “alge-

bra basis” means “graded generating set of C [x]r” (that is, “generating set
consisting of homogeneous elements”).

page 26: “the finiteness of the group I' has not been used until the last
paragraph” is not literally true: The Reynolds operator * has already made
an appearance in the first paragraph of the proof.

page 28, Proposition 2.1.5: Replace “n,p > 2" by “n,p > 1”.

page 29, Theorem 2.2.1: Add “Let I' C GL (C") be a finite matrix group.”
at the beginning of this theorem.

page 29, proof of Theorem 2.2.1: The word “d-form” means “homoge-
neous polynomial of degree d” here.

page 30, proof of Theorem 2.2.1: When applying Lemma 2.2.2 here, one
should be careful: As stated, Lemma 2.2.2 would yield a sum over all
the elements of the group {ﬂ(d) | e F}, not over all the elements of

I'. This difference sometimes matters, since different 7t’s in I' might lead
to the same 71(4)’s. The cleanest way to correct this little discrepancy is
to generalize Lemma 2.2.2 by replacing the subgroup I' C GL (C") by an
arbitrary finite group I’ that acts on C". (Of course, trace (7r) must then be
understood as the trace of the action of 7w on C".) If we generalize Lemma
2.2.2 this way, then we can apply it to the group T acting on C[x ] 4 Vvia
7 — 719), and this immediately yields

dim (C [x] ) m Z trace ( ) |F| Y Y pilll g

el di+--+dy,=d

as desired.

page 30, Lemma 2.2.3: Replace Z " by “ Z "
n=0 d=0

page 31, proof of Example 2.2.4: “Molien series” just means “Hilbert se-
ries” here (computed using Molien’s formula, i.e., Theorem 2.2.1).

page 37, §2.3: The claims about Krull dimensions and h.s.o.p.s made here
need some further assumptions. Clearly, the algebra R must be com-
mutative, but even this does not seem to be enough; e.g., the algebra

10
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35.
36.

C[x1,x2,x3,...] / (x3,x3,x3,...) has no algebraically independent elements

at all, but is not finitely generated as a module over its subring C, so it is
not free over a subalgebra generated by an h.s.o.p., at least not if h.s.o.p.s
are defined as they are here.

The claim that the maximal number of algebraically independent elements
of C is the Krull dimension of R is true when R is finitely generated as a
C-algebra, according to Theorem 5.9 in Kemper’s book (Gregor Kemper, A
Course in Commutative Algebra, Springer 2011).

page 41, Proposition 2.3.6 (ii): Replace “¢r (z)” by “®r (z)”.

pages 44-50, §2.4: For most of the book (and, in particular, for all of the text
before §2.4), the group I' has always been acting from the left on C", and
thus from the right on the polynomial ring C [V] (since the polynomials in
C [V] are viewed as polynomial functions from V to C). However, in §2.4,
the group I' suddenly acts from the left on C [V] instead (as witnessed, e.g.,
in the notation “of” in Lemma 2.4.2). Here are two ways how this can be
reconciled with the rest of the book:

* One way is to replace all the “of”s (for c € T'and f € C[V]) in §2.4
by “f o ¢”s. (Thus, for example, in the proof of Proposition 2.4.3, each
“ohy” should become a “hy o ¢”.) Also, in the proof of Proposition
2.4.3, on page 46, the computation “

-1
7Th1 — h1 = 2 (0'1 .. .0'1'0'1'+1]’l1 —01.. .O'ihl)
i=1

-1
=Y (01...01(0ip1ln — 1)) € I
i—1

” should be replaced by “

-1
hiom—hy =) (hoooiy1...00—h 00 110i42...07)
i—1
1
=) (mooi—hi)o0i10i42...01) € Ir

i—1

— =

”. This is likely the intended way.

* An alternative way is to define of := foo~! for each ¢ € T and
f € C[V]. This way, the right I'-action on C [V] is “translated” into
a left I'-action on C [V] that carries the same information and has the
same invariants (since a polynomial f € C[V] and a group element
o € T satisfy cf = f if and only if foo~! = f, that is, if and only if
foo=p.

11


https://doi.org/10.1007/978-3-642-03545-6
https://doi.org/10.1007/978-3-642-03545-6
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37. page 44, §2.4: The definition of a reflection given here (as a linear transfor-

38.

39.

mation 7t € GL (C") such that “precisely one eigenvalue of 7 is not equal
to one”) is somewhat eccentric. In the context of a finite reflection group,
it does its job well, however, viewed in isolation, it does not agree with
any of the commonly used definitions. Normally, one defines a reflection
(or pseudo-reflection) to be a linear transformation 7w € GL (C") such that
dim (Ker (r —id)) = n — 1. Some authors also require 71 to be of finite
order, but this is automatically satisfies when 7 is an element of a finite
group. The fact that precisely one eigenvalue of 7 is not equal to one fol-
lows automatically from the condition dim (Ker (7w —id)) = n — 1, but the
converse implication again requires the assumption that 77 is an element of
a finite group (this ensures that 7t is diagonalizable, so that all the n — 1
eigenvalues equal to 1 cause Ker (77 — id) to have dimension n — 1). If not

1 -1 0
for the latter assumption, the matrix [ 0 1 0 would be a “reflec-
0 0 -1

tion” in the sense of the book (a linear transformation 7 € GL (C") such
that precisely one eigenvalue of 7t is not equal to one), but would satisfy
rather little of what a reflection is commonly expected to satisfy.

page 45, proof of Lemma 2.4.2: The use of Hilbert’s Nullstellensatz here is
overkill. The only thing needed is the following easy fact:

Fact: Let L € C|[x] be a homogeneous linear polynomial (i.e., a
homogeneous polynomial of degree 1). Let ¢ € C[x] be a polyno-
mial such that each v € C" satisfying L (v) = 0 satisfies ¢ (v) = 0.
Then, L is a divisor of g in C [x].

(Proof of the fact: By an appropriate coordinate transformation (i.e., com-
position with some invertible matrix 7 € GL (C")), we can ensure that
the linear polynomial L is simply x;. Thus, WLOG assume that L = x;.
Then, the condition “each v € C" satisfying L (v) = 0 satisfies ¢ (v) = 0”
becomes “g vanishes on each vector whose 1-st coordinate is 0”, that is,
“¢(0,x2,x3,...,%,) = 0”. But this entails that all monomials in g that have
degree 0 with respect to x1 have coefficient 0, and thus all monomials that
actually appear in ¢ must have x; in some nonzero power. Consequently,
g is divisible by xj, that is, by L. In other words, L is a divisor of g. This
proves the fact.)

page 45, proof of Proposition 2.4.3: The claim that “hy - Ly € Ir” at the
end of page 45 is not entirely obvious: It requires showing that degh; > 0
(since Zr is the ideal generated by all homogeneous invariants of positive

degree) But this is easy: If h1 = 0, then h1 LU = 0 € Zr is obvious; if
hi1 is a nonzero constant, then g1h1 + gzhz + -+ gmhm = 0 entails g1 =

1
—ilf (gzhz 4. +gmhm> (g2,...,9m), contradicting g1 € (g2,...,qm)-
1

12
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40. page 46, proof of Theorem 2.4.1 (if-part): The first sentence of this proof
again uses the following fact (already mentioned above):

Fact. If an ideal | of some commutative ring is finitely generated,
and if G is any generating set of | (not necessarily finite), then
there exists a finite subset of G that already generates J.

Here this fact is being applied to | = Zr and G = {homogeneous invariants of I'}.

41. page 46, proof of Theorem 2.4.1 (if-part): “We need to prove that m = n,
or, equivalently, that the invariants f1, f2, ..., fi are algebraically indepen-
dent over C”: I don’t see why these two claims are equivalent. The proof
given here is showing the second claim (i.e., that the invariants fi, f2,..., fu
are algebraically independent over C). The first claim m = n can then be
derived from this by asymptotically comparing the Hilbert series (essen-
tially following the proof of Corollary 2.4.5, but without assuming that the
number of generators is n E[)

42. page 47, proof of Theorem 2.4.1 (if-part): “Euler’s formula” is the (eas-
ily verified) fact that any homogeneous polynomial f € C|[x| satisfies

n af B
sgl xsa_xs = (degf) f

43. page 47, Lemma 2.4.4: Talking about “the Laurent expansion of the Molien
series about z = 17, it is important to keep in mind that the Laurent series
is a rational function (not just a formal power series), by Theorem 2.2.1,
and therefore can be expanded into a Laurent series about any complex
number.

44. page 49, proof of Theorem 2.4.2 (only-if-part): The claim that “the Jaco-
bian determinant det (96;/91;) is nonzero” could use a bit of explanation.
It relies on the so-called Jacobian criterion, which says that n polynomi-
als p1,p2, ..., pn in the polynomial ring C[x] = C[x1,x2,...,x,] are alge-
braically independent over C if and only if their Jacobian det (dp;/dx;) is
nonzero. Here, this criterion is being applied not to the polynomial ring
C[x] = C[x1,x2,...,x,] but rather to its subring C [¢1, {2, ..., ] (which,
too, is a polynomial ring, since the polynomials 1,,..., 9, are alge-
braically independent) and to the n polynomials 6,65, ..., 0, therein.

4That is, we need the following generalization of Corollary 2.4.5:

Corollary 2.4.5. Let T C GL (C") be a finite matrix group whose invariant ring C [x]"

is generated by m algebraically independent homogeneous invariants 6, ...,60;
where d; := deg0;. Let v be the number of reflections in I'. Then,

m=n and IT| =didy---dy and r=di+dy+---+d,—n.

The proof of this generalization is just a slight modification of the proof of the original
Corollary 2.4.5.

13



Errata to “Algorithms in Invariant Theory” January 18, 2026

45.

46.

47.

48.
49.

50.

51.

52.

For a proof of the Jacobian criterion, see, e.g., Theorem 2.2 in the paper
Richard Ehrenborg, Gian-Carlo Rota, Apolarity and Canonical Forms for Ho-
mogeneous Polynomials, European Journal of Combinatorics 14, Issue 3, May
1993, pp. 157-181. (This proof relies on the fact that if py, pa,..., pn are n
algebraically independent polynomials in C [x], then each of the (n + 1)-
tuples (x;, p1,p2,...,pn) is algebraically dependent. This follows from
Lemma 4.7.2 in Sturmfels’s book, after some tweaking to make the polyno-
mials homogeneous.)
page 52: The formula “f* := L o (f)” should be “f* := L Y, fod”
T'| ger T| ver
(since the group I acts on C [x] from the right, not from the left).

page 53, proof of Lemma 2.5.7: This is unnecessary. After all, Lemma 2.5.7
simply follows from Proposition 2.6.4 (applied to M instead of I).

page 55, proof of Lemma 2.5.11: In the first displayed equation, replace

n d: n n d
“T1 <1 —z ]>” by either “TT (1 —z%)” or “ (1 —z f)”.
i=1 i=1 =1

page 56: “where a € ranges” should be “where a ranges”.

page 57, Algorithm 2.5.14: In step 0, replace “® (z)” by “Pr (z)”.

n
page 57, Algorithm 2.5.14: In step 2, replace “J] (1 —zdf>” by either
i=1
n n
IIH (1 - Zdl-)lr or //H (1 - Zdj>”.
i=1 j=1
page 59, Algorithm 2.6.2: “Grébner basis G; for F U Gy” should be “Grob-
ner basis G; for (F U Gp)”.

page 61, proof of Proposition 2.6.4: This proof can be significantly simpli-
tied, removing the use of the Nullstellensatz:

Simpler proof of Proposition 2.6.4. Since I’ C I, we clearly have Rad (I') C
Rad (I). It remains to show that Rad (I) C Rad (I’). For this purpose,
it suffices to show that I C Rad (I') (since this would entail Rad (I) C
Rad (Rad (I')) = Rad (I")).

So let f € I. We must show that f € Rad (I'). We shall show that fI'l € I’;
this will clearly do the trick.

Consider the polynomial [] (z — f (¢x)) € (C[x]) [z] in the new indeter-
oel

minate z over C[x|. This is clearly a monic polynomial of degree |I'| in z,
hence can be written as

IT[—1 ,
]—[r(z —flox)) =2+ Zé pi ()2, (17)
oc =

14
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53.

where the p; (x) € C[x] are its coefficients (and are themselves polynomials
in x). Consider these p; (x). Furthermore, the polynomial [] (z — f (0x))
oel

is invariant under the action of I' (since the action of I' merely permutes
the factors of the product [] (z — f (0x))). Hence, all its coefficients p; (x)
oel

are invariant under I' as well.

Now, let j € {0,1,...,|['| — 1} be arbitrary. Then, as we just showed, p; (x)
is invariant under I'. Furthermore, shows that p; (x) equals (up to
sign) the (|T| —j)-th elementary symmetric polynomial evaluated at the
IT'| many inputs f (0x) for ¢ € I'; thus, in particular, it is a polynomial in
these |I'| many inputs f (0x) with no constant term (since j < |I'| entails
IT| —j > 0). Hence, p; (x) belongs to the ideal I (since all the f (0x) belong
to I (because f belongs to I, and because [ is I'-invariant)). Since p; (x) is
furthermore invariant under I', we thus conclude that p; (x) is an invariant
in I. Hence, p; (x) € I’ (by the definition of I').

Forget that we fixed j. We thus have shown that

pi(x) el foreach j € {0,1,...,|T| —1}. (18)

Now, substituting f = f (x) for z on both sides of (17), we obtain

r|-1

| .
[TU-fex)=f"+ ;;J pi (%) fI.
£

oel

Since the product [] (f — f (0x)) is O (because one of the factors of this
cel
productis f — f (idx) = f — f (x) = f — f = 0), this can be rewritten as

IT[-1

0=fT+ Y pi(x)f.
j=0
Hence,

T|—1 .
f|r\ - _ Z pj(x) fl e I (since I' is an ideal) ,

el
(by (18))
and therefore f € Rad (I'), qed. B
page 63, proof of Proposition 2.6.6: “By Hilbert’s Nullstellensatz” — “By
Hilbert’s Nullstellensatz, this shows that C [x] = [ +Z (T'a), where I'a is the

ideal of polynomials vanishing on the finite set I'a. Hence, by the Chinese
Remainder Theorem, C[x] / (I)”.
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54.

55.

56.

57.

58.

59.

60.

(Alternatively, we can avoid the use of Hilbert’s Nullstellensatz by defining
a maximal ideal

Ib = <X1—b1, Xz—bz, ceey xn—bn>

of C|x] for each point b = (by,by,...,b,) € I'a. Then, any two distinct
points b, ¢ € T'a satisfy C[x] = 7}, + Z,, and furthermore TanV (I) = &
shows that all b € T'a satisfy C[x] = [+ 7y, (since b ¢ V (I) and thus
I ¢ 7). Hence, the Chinese Remainder Theorem can be applied to the
ideals I, Zy,, Iy,, - - - , Ip,, where {by,bo,...,b;;} :=Ta.)

page 69, Algorithm 2.7.3, step 3: “solution monoid” — “solution monoid
F C N".

page 71: “This means that each factor group I';/T’;y; is cyclic of prime
order p;”: This is not what a composition series means. Rather, it is an
extra requirement that you want to impose here.

page 71, algorithm: “It follows from Theorem 2.3.5 that C [x]r"+1 is a free

ir

module of rank p; over C[x]"” is not true in general. For example, in

Example 2.7.6, C [x] {id} is not a free module over C [x]" =%,

page 72, Remark 2.7.7: The meaning of “cycle type ¢ (o) = (¢1,42,...,4n)”
should be explained (since the notation is quite nonstandard). It means
that o has exactly ¢; cycles of length i for each i € {1,2,...,n}.

page 81, second paragraph: What is called a “standard tableau” here is
better known as a “transpose semistandard tableau of rectangular shape”
to combinatorialists (although invariant theorists often do call it “standard
tableau”).

page 81, third paragraph: In the definition of “straightening syzygy”, the
condition “Bs < 71” is understood to be tautologically true if 1 does not
exist (i.e., if s = d).

page 82, proof of Theorem 3.1.7: Lemma 3.1.8 is not entirely obvious. Its
proof requires checking three facts:

Fact 1: Sorting each column in an arbitrary tableau T yields a standard tableau

T.

~ ~ k
Fact 2: This resulting tableau T satisfies init ¢, 4 (T) = i];[l Xpi1Xpip Xig-

Fact 3: This tableau T is the only standard tableau S such that init $na(S) =

k
XyiqXpin " Xpige
11;[1 Ai1¥A52 Md
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Fact 1 is a version of the non-messing-up lemma, saying that if the entries of
an integer matrix are strictly increasing along the rows, then sorting each
column of the matrix will result in a matrix whose entries are again strictly
increasing along the rows (as well as weakly increasing down the columns,
which is clear because we just sorted them). Proving this is a nice and easy

exerciseﬂ Fact 2 is clear, because if we write T as T = [7&1] [7&2] . [7\"} ,
then the standardness of T (see Fact 1) yields

k k d
init ¢, 4 <T> = | |X7U'1x/~\i2'--x/~\id: | | | |x7\(-
i e d s
i=1 i=1 j=1
d k d k
=11 [ 1% =11 ITxy
. ! il ! ) ]
j=1 i=1 =1 i=1
k
:H x)Ll-.

i=1 j]
(since the entries in the j-th column of T
are the same as those in the j-th column of T)

k d
Bl

k
i / i=1

j=1

Finally, it remains to prove Fact 3. It suffices to show that different standard
tableaux S induce different monomials init¢,, ; (S). But this is not hard: If

we write a standard tableau S as S = [u!] [2] - - - [1¥], then the monomial
k
initg, 4 (S) = 11:11 Xyi1Xyin Xyig uniquely determines which entries lie in

which column of S (namely: for each j < d, the entries in the j-th column
of S are exactly the integers k such that x;; appears in this monomial, and
their multiplicities in the j-th column are precisely their multiplicities in
this monomial), and thus uniquely determines S itself (since S is standard,
so the entries in each column appear in increasing order). In other words,
different standard tableaux S induce different monomials init ¢, 4 (S). This
yields Fact 3.

This all said, Lemma 3.1.8 is not actually used in the proof of Theorem
3.1.7 (though it is used later on). Indeed, in the last sentence of the proof
of Theorem 3.1.7 (“This is a contradiction to Lemma 3.1.8”), the only thing
that is actually being used is that different standard tableaux S induce

SThe analogous claim with “strictly increasing” replaced by “weakly increasing” is Remark
6.42 in |Darij Grinberg, Notes on the combinatorial fundamentals of algebra, arXiv:2008.09862v3.
The version with “strictly increasing” can be proved in the exact same way, or reduced to
the “weakly increasing” version by an appropriate tweak of the matrix (if we subtract j from
each entry in the j-th column of a matrix, then its strictly increasing rows become weakly
increasing, while the relative order of entries in a given column does not change).

17
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61.

62.

63.

64.

different monomials init ¢, 4 (S). This is a much simpler claim than Lemma
3.1.8 (and we have proved it above, during our proof of Fact 3).

page 88, proof of Lemma 3.2.5: Replace “¢,, 24 ,,” by “¢,1244" twice in this
proof.

page 88, proof of Lemma 3.2.5: The matrix denoted by Adj(A) and called
the “adjoint matrix of A” in this proof is not actually the adjoint matrix of
A in the standard meaning of this word, but rather the transpose of the
adjoint matrix of A. However, this does not affect the argument, since its
determinant is the same as that of the actual adjoint matrix.

page 88, proof of Lemma 3.2.5: The computation (specifically, the equality
“det (A)PU~D . ] (xi) = det(Adj(A))? - I(x;j)”) relies on the classical re-
sult that det (Adj (A)) = (det (A))?7! (see, for instance, Theorem 5.12 (a)
in Darij Grinberg, The trace Cayley-Hamilton theorem, arXiv:2510.20689v1).

page 89, proof of Theorem 3.2.1: In the first paragraph of this proof, the
straightening algorithm is applied not to the polynomials

[b1by - - bg)P9 "V 1 ([a1...a-1xiaj41 . .. a4)) and

[ﬂlaz cee ad]p(d_l) -1 ([bl e b]-,lxbjﬂ N bd}) ’
but rather to the polynomials

I ([Lll e a]-,lxiajﬂ e ad]) and
I ([bl .. b]'_lxb]'_H . bd}) .

The factors [byby - - - b)P“ D and [a1a5 - - - a4]P* V) are then multiplied onto
the resulting expansions. This does not destroy the standardness of the
tableaux in these expansions, because

e the factor [b1b; - - - bd]p(d_l) merely inserts p (d — 1) many rows of the
form [b1b; - - - by] at the bottom of the standard tableaux appearing in
the expansion of I ([a;...aj_1%aj;1...a4]) (and these new rows do
not destroy the standardness of the tableaux, since each of the b;’s is
larger than any of the letters ay,a, ..., a4, x1, X2, .. ., x;, that can appear
in the expansion of I ([a1...aj_1%;a;11...a4)));

e the factor [ajay - - - a4)? (@=1) merely inserts p (d — 1) many rows of the
form [ajay---a4] at the top of the standard tableaux appearing in
the expansion of I ([by...bj_1xbjy1...bs]) (and these new rows do
not destroy the standardness of the tableaux, since each of the a]"s
is smaller than any of the letters by, b, ..., b4, x1,x2,...,x, that can
appear in the expansion of I ([b;...bj_1xbj1...b,))).

18
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65. page 89, proof of Theorem 3.2.1: “both polynomials in question are equal
to” should be “both polynomials in question evaluate in C [x;;] to”.

66. page 90, third paragraph: I think that the order “<” defined here is not
the “diagonal order” from Sect. 3.1, but a close relative of it (the variable
order is exactly the opposite one); fortunately all its important properties
are analogous.

67. page 91: In the description of the “subduction algorithm”, replace “f —
L by “f —cf{ - fa, where c is the coefficient of inits f in f”
(don’t forget that the leading coefficient is not necessarily 1).

68. page 95, definition of an extensor: An “extensor (of step k)” should be
defined not as an element of the form A = a;Va, V ---V a; for some
ai,...,ar € V,butrather as an element of the form A = A-a1Va, V---Va;
for some ay,...,ar € V and A € C. The scalar factor A does not make a
real difference when k > 1 (since it can be simply incorporated into the
a1 factor), but it becomes important for k = 0, where it allows any scalar
(rather than just 1) to be considered as an extensor. And this is necessary
for Theorem 3.3.2 (b) to be true (since the meet of two extensors of steps j
and k with j + k = d can be any scalar).

69. page 96, definition of the meet A A B: It is not obvious that the meet oper-
ation A on A (V) is well-defined. To prove this, we need to show that the
right hand side of (3.3.6) is multilinear in the inputs a1, ay, . . ., aj, by, by, ..., by
as well as alternating in ai,az,...,4 and alternating in by, b, ..., by (be-
cause then, by the universal property of the exterior powers A/ (V) and
A¥(V), it will follow that this right hand side is a function of aja; - - - aj
and blbz ce bk)

The multilinearity is obvious (since the determinant form [vq,vy,...,v4] is
multilinear in its inputs vy, vy, . . ., v4, and since the wedge product wyw; - - - Wy
is multilinear in its factors wy, wy, . . ., wp). The alternatingness in by, by, .. ., by
is also clear (since the determinant form [v1, vy, ...,v,] is alternating in its
inputs vy, vy, ...,74). It remains to show that the right hand side of (3.3.6)
is alternating in ay,ay, ..., aj. In other words, we must prove that if two of
ay,ay, ..., 4; are equal, then the right hand side of (3.3.6) is 0. Actually, it
suffices to show that if some p € {1,2,...,j — 1} satisfies a, = a,1, then
the right hand side of (3.3.6) is 0 (because it is well-known that this con-
dition, combined with the multilinearity of the right hand side of (3.3.6),
entails that this right hand side is alternatingﬁb.

®Let me explicitly state the fact that I am using here:

Fact: Let V be a vector space over a field k. Let f : V/ — k be any multilinear form
on V. If we have

f (01,02, ..,vj) =0 whenever some p € {1,2,...,j— 1} satisfies v, = v,4,
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Let me prove this now. Assume that some p € {1,2,...,j — 1} satisfies
ap = ap1. Consider this p. Now, the right hand side of (3.3.6) is

Zsign (0') |:El(7(1), .. ,aa(d_k),bl, R /bk] . ao*(d—k—|—1) s LZO_(]'),
o

where the sum is over all permutations ¢ of {1,2,...,j} such that o (1) <
c(2) < -~ <ocd-k)yando(d—k+1) <oc(d—k+2) < --- < 0o()).
We shall refer to these permutations ¢ as the shuffles. For any permutation
o €S (thus, in particular, for any shuffle ¢), we shall denote the sets
{c(1),0(2),...,0(d—k)} and {c(d—k+1),0(d—k+2),...,0(j)} as
L, and R, respectively; we call them the left half and the right half of o
(although they are not really “halves” as they usually have different sizes).
Clearly, any o € §; satisfies Lo "Ry = @ and L, UR, = {1,2,...,d}, so
that each i € {1,2,...,d} lies in either L, or R, (but not in both). Hence,
we can classify the permutations o € §; into four classes:

Class LL: those that satisfy p,p +1 € L.
Class RR: those that satisfy p,p +1 € R,.
Class LR: those that satisfy p € Ly, and p+1 € R,.
Class RL: those that satisfy p € R, and p+1 € L.

Each permutation o € S]- is of exactly one of the four Classes LL, RR, LR
and RL.

Ifo e Sj is a permutation of Class LL, then

Sigl’l (0’) aU(l),. ey aa(d—k)/ bl/ ey bk . aU(d—k—i—l) SR HU(]')

. /
-~

=0
(since this bracket contains
the equal vectors a, and a1

(because p,p+1€Lo={c(1),0(2),....0(d—k)}))
— 0. (19)

then f is alternating (i.e., satisfies f (vq,v,..., v]-) = 0 whenever two of the j vectors
v1,0,...,0j are equal).

For a proof of this fact, see Lemma 1.6 in Bernhard Leeb, Some multilinear algebra, Jan-
uary 25, 2020, or Corollary 2.9 in Keith Conrad, Exterior powers, 2026, or Proposition 6.4 in
Jean Gallier and Jocelyn Quaintance, Linear Algebra for Computer Vision, Robotics, and Machine
Learning, October 24, 2025, or Theorem 6 in [Jordan Bell, Alternating multilinear forms, August
21, 2018| (but beware that the last two sources define “alternating” differently from us).
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If o € §; is a permutation of Class RR, then

sign (0’) [ag(l), . ,ag(d_k), bl, ey bk] . fla(d—k—i—l) cee aa(]-)

J

-

=0
(since this wedge product contains
the equal vectors a, and a,, 1

(because p,p+1€Ro={0(d—k+1),0(d—k+2),...,0(j)}))
— 0. (20)

Hence, in the sum on the right hand side of (3.3.6), all the addends cor-
responding to shuffles ¢ of Class LL and of Class RR are 0 and can thus
be discarded. The remaining addends correspond to shuffles ¢ of Class
LR and of Class RL. These addends are not (usually) 0, but rather can be
paired up in such a way that any two addends in a pair cancel out; here is
how this pairing works: Let s, € S; be the transposition that swaps p and

p + 1. Clearly, s5 = id and sign (s,) = —1. If ¢ is a shuffle of Class LR,
then s,0 € §; is a shulffle of Class R Hence, we can define a map

{shuffles of Class LR} — {shuffles of Class RL},
0 8p0. (21)

Likewise, we can define a map

{shuffles of Class RL} — {shuffles of Class LR},
0 5,0,

7Proof. Let o be a shuffle of Class LR. Then, s,0 is obtained from ¢ by swapping the entries p
and p+1in thelist (¢ (1),0(2),...,0(j)). Since ¢ is of Class LR, we know that

pely={c(1),0(2),...,0(d—k} and
p+1eR, ={o(d—k+1),0(d—k+2),...,0(j)}.

In other words, p is one of the first d — k entries of the list (¢ (1),0(2),...,0(j)), while p +1
is one of the last j — (d — k) entries of this list. When we swap the entries p and p + 1 in
the list (¢ (1),0(2),...,0(j)), this positionality clearly gets reversed; thus, we have p € R ¢
and p+1¢€ Lspg. Hence, the permutation s,0 is of Class RL.

Moreover, ¢ is a shuffle, so we have 0 (1) < 0(2) < --- <o(d—k)and o (d—k+1) <
c(d—k+2)<--- <0 (j). The number p appears in the chain of inequalities o (1) < ¢ (2) <
- <0o(d—k)(sincep € Ly ={c(1),0(2),...,0(d—k)}), but the number p + 1 does not
(sincep+1 € Ryand thus p+1¢ L, = {c(1),0(2),...,0(d—k)}). When we swap the
entries p and p + 1 in the list (¢ (1),0(2),...,0(j)), the number p is replaced by p + 1, but
the chain of inequalities 0 (1) < ¢(2) < --- < 0 (d —k) remains valid (indeed, the only
inequality that would be invalidated when we swap the entries p and p + 1 is the inequality
p < p+1; but this inequality is not part of the chain, because p 41 does not appear in this
chain), and so does the chain of inequalities 0 (d —k+1) < o (d—k+2) < --- < o (j) (for
a similar reason: the number p + 1 appears in this chain, but p does not). Thus, when we
swap the entries p and p + 1 in the list (¢ (1),0(2),...,0(j)), the permutation ¢ remains a
shuffle. In other words, s,0 is a shuffle.

Hence, s,0 is a shuffle of Class RL (since we have shown that s,,0 is of Class RL).
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. . _ 2 o
These two maps are mutually inverse (since s, (s,0) = s; ¢ = ¢ for any

p
~—

=id
o € §j), and thus are bijections.

However, if we replace a given shuffle ¢ by s,0, then the product

ag(l), ey ag(d_k), bl/ ey bk . aa(d—k—l—l) cee LZU(]') (22)

does not change (indeed, s,0 is obtained from ¢ by swapping the values p
and p + 1; but our assumption a, = a,,1 ensures that this swap does not
change the vectors ay,a,...,a; and therefore the expression ). In other
words, for any shuffle o, we have

[a(spa)(l),. . "a(spa)(dfk)’ bl;- . -/bk} : a(spg)(d7k+1) s a(spa)(j)

= |:El(7(1), N aa(d_k), bl/ ey bk] : aa(d_kﬂ) cot LZO_(]'). (23)

Hence, for any shuffle o, we have

sign (s,0) Ia(spu)(1)/- c (50 (k) D1 bk} A (sp0) k1) (s,0) ()

:sign(sp)-sign(tf) =g (1) el (g1, b T,b Ay(g—pr1) (i
S o) [20(1) - 0(a b )] (d—k+1)" ()
(since sign(sp):—l)
= — Sigl’l (0’) [ag(l), . ,ag(d,k), bl/ ey bki| . aa(d,qu) s llo-(]'). (24)
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Now let us summarize: The right hand side of (3.3.6) is

Z sign (0’) [ﬂo.(l), ce ,aa(d,k), bl,. ey bk} . aa(dfqul) SR ao(]')

o is a shuffle

= Z sign (0’) [aa(l), . ,ﬂa(d,k), bl/ ey bk} . aa(d,kJrl) SR aa(]-)

o ifsCa1 shu{%e ~- .
of Class =0
(by )
+ Z sign (0’) [aa(l), Ao (d—k) by,..., bk} Ag(d—k+1) """ o(f)
o is a shuffle ~ -
of Class RR -0
(by @)

+ Z sign (0’) |:L10-(1),. . '/aa(d—k)/bll---rbk} . aO’(d—k+1) e 'Llo-(]')
o is a shuffle
of Class RL

+ Z sign (0’) [[1(7(1),. cey ag(d_k), bl/ ey bk} : aa(d—k—H) s Lla(]')
o is a shuffle
of Class LR

since each shuffle belongs to exactly one of the
four Classes LL, RR, RL and LR

= Z sign (0’) [ag(l), N ,aa(d_k), bl, ceey bk} : aa(d_kH) T a(,(]-)
o is a shuffle
of Class RL

+ Z sign (0') |:IZU(1),. ey aa(d,k), bl/ ey bki| . ao-(d,k+1) cee Elo-(]-)
o is a shuffle
of Class LR

= X sign(590) [y e O o) )
U%s&shu{%e\ d

=— sign(a) [aa(l)/"'/acr(d—k)/bll""bk] -ug(d_k_,_l) ~~a(7(]-)

(by 49)
+ Z sign (0') |:El(7(1),. cey aa(d,k), bl/ ey bki| . ao-(d,k+1) cee LIU-(]-)

o is a shuffle
of Class LR

here, we have substituted s, for ¢ in the first sum,
since the map is a bijection

= — Z sign (0’) [ag(l), . /aa(d—k)/ bl/ ey bk} . aa(d_kH) s aa(j)
o is a shuffle
of Class LR

+ Z sign (0’) [[1(7(1),. ey ag(d_k), bl/ ey bk} : aa(d—k—H) ce 61(7(]')
o is a shuffle
of Class LR

=0.

This completes the proof of the claim that the right hand side of (3.3.6) is
alternating in ay,ay, .. -, aj, and thus (ultimately) the proof that the meet
operation on A (V) is well-defined. B
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70. page 97, proof of Theorem 3.3.2: I am not sure how part (a) of the theorem
is being proved here (e.g., where is the associativity of A proved?). Let me
instead prove Theorem 3.3.2 using the Hodge star operation. Here is an
outline:

o Let [d] :={1,2,...,d}. For any subset | = {j1 <j» <--- <jp} of [d],
let ¢j be the extensor e, Vej, V---Vej € AP (V). It is known that the
family (ej) jcq 18 @ basis of the C-vector space A (V).

In particular, e;; = 1 € A% (V) and e =e1VerV:---Vey € A (V).

It is well-known (and easy to see) that any two subsets U and V of [d]
satisfy

eyVey = (—1)|UI|V‘ ey Vey. (25)
More generally, any a € AF (V) and any b € A! (V) satisfy

avbh=(-1)"bva. (26)
Moreover, if U and V are two subsets of [d] that are not disjoint, then
egVey =0 (27)

(since there is a common element r € U NV, and the corresponding
basis vector e, appears as a factor in both ¢;; and ey). On the other
hand, if U and V are two disjoint subsets of [d], then

ey Vey =sign (1) - equv, (28)

where 17 € S71|y| is the permutation that transforms the increasing
lisiﬁ of U UV into the concatenation of the increasing lists of U and of
V.

e For each subset | of [d], we let 07 € S; be the permutation that sends
the numbers 1,2,...,|]J| to the elements of | listed in increasing order
and sends the numbers |J| +1,|]| +2,...,d to the elements of [d] \ |
listed in increasing order. For instance:

- If n =5and | = {2,5}, then 0; € S5 is the permutation sending
1,2,3,4,5t02,5,1,3,4.

- If n = 4 and | = {2}, then 0} € S4 is the permutation sending
1,2,3,4t02,1,3,4.

It is easy to see that any subset | of [d] satisfies

e]\/e[d]\] = sign (0']) ) (29)

8The increasing list of a finite set K of integers means the list of all elements of K in increasing
order.
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(since ey V epg\ s is the extensor obtained by multiplying the e; for j € |
in increasing order and then the e; for j € [d] \ ] in increasing order;
but this is just the wedge product e; VeV --- Ve = ey with its
factors permuted by o7).

* Define the Hodge star operation to be the C-linear map * : A (V) —
A (V) that sends each element e; (with | C [d]) to sign (07) - efg)\ ;- For
instance:

- If n =5and | = {2,5}, then 0; € S5 is the permutation sending

1,2,3,4,5t02,5,1, 3,4, and thus we have *e(p5) = sign <0’{2’5}) “e5)\ {25} =
\ ) N —
=1 =€{1,34}

€{1,34}

- If n = 4 and | = {2}, then 0} € S4 is the permutation sending
1,2,3,4t02,1,3,4, and thus we have *e(p) = sign <0{2}> e\ {2} =

—_—

=—1 =€{1,34}
—€{1,34}

It is easy to see that every k € N and A € A (V) satisfy
*A € AR (V) (30)

and
* (xA) = (=1)FE=0) 4, (31)

(Proof sketch: By linearity, it suffices to prove both and in
the case when A = ¢; for some k-element subset | of [d]. So let |
be a k-element subset of [d], and let A = ¢;. Then, |J| = k, so that
I[d]\ ]| = d — k. But A = ¢}, and thus the definition of the Hodge star
* yields xA = sign (07) - e[q\j € AR (V) (since |[d] \ J| = d — k); this
immediately proves (30). It remains to prove (31).

From xA = sign (0y) - e4)\j, e obtain

*(xA) = * (sign (07) 'e[d}\]> = sign (07) - * €\
N——

=sign (ola)\ 1) €(a) ()

(by the definition of %)

= sign (07) - sign (‘T[d]\ll' €\ (4)\))

(.

~\~ :E]

=sign(clap) s1gn(71)  (since [d)\ ([d)\))=))
=A
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Hence, in order to complete the proof of (3I), we only need to show
that

sign (U[d]\]> -sign (07) = (—l)k(d_k). (32)

For this purpose, we let 7, € S; be the permutation that sends the
numbers 1,2,...,ktod —k+1,d —k+2,...,d and sends the numbers
k+1,k+2,...,d to the numbers 1,2,...,d — k. Then, it is easy to see

that sign (nx) = (—l)k(d_k) and 07 = o\ 7k ﬂ The latter equality
yields

sign (07) = sign (a[d]\]iyk> = sign <‘7[d]\]> - sign (1)
—(—1)KEH)

— sy - (1,
and therefore we have
sign (U[d}\l> -sign (07) = fign (U[d]\]) sign ( ) (—1)KER)
~ (sm(aiq )=

(since sign(ad]\]) is 1 or —1)
= (-1, (33)

This proves (32), and so the proof of is complete.)

e The Hodge star x : A(V) — A (V) is a vector space isomorphism.
(Indeed, shows that the composition x o x is the linear map that

sends each A € A* (V) to (—1)k(d_k) A. But the latter map is clearly a
vector space isomorphism. Thus, x is an isomorphism as well.)

e Now we claim that any 4,b € A (V) satisfy

*x(aADb) = (xa) V (%b). (34)

(Proof sketch: By linearity, we WLOG assume that a = ej and b = ¢j,
where [ and | are two subsets of [d]. Then, the definition of the Hodge

9Proof. The permutation 0(4)\j 1k sends the numbers 1,2,..., k to the elements of | in increasing
order (because the permutation #; sends the numbers 1,2, ...,k to the numbers d —k+1,d —
k+2,...,d, and then the permutation Old\g sends the latter numbers to the elements of
[d]\ ([d] \ ]) = ] in increasing order), and furthermore sends the numbers k +1,k+2,...,d
to the elements of [d] \ ] in increasing order (because the permutation 7, sends the numbers
k+1,k+2,...,d to the numbers 1,2,...,d — k, and then the permutation Old)\J sends the
latter numbers to the elements of [d] \ ] in increasing order). But the permutation o7 does the
exact same things (by its definition). Hence, the two permutations oy, ;77x and ¢ agree on all
the numbers 1,2, ...,k and on all the numbers k+ 1,k + 2,...,d. In other words, these two
permutations are equal. That is, o7 = o)\ j7k-
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star entails that xa = sign (07) - ey ; and xb = sign (07) - efy)\ ;- Thus,

(*El) V (*b) = (sign (0’1) . e[d]\1> V <Sigl’1 (0']) : e[d]\]>
= sign (o7) - sign (0']) “ela\I V e\ J- (35)

Meanwhile, let us write the subsets [ and [ as [ = {il <ip << ip}
and | = {]1 <o < v <jq}.Thus,a:elzeileiz---eip and b = ¢j =
6]'16]'2 s ejq’ so that

aNb= <5i1€i2 - '€i,,> A (ejlejz X -ejq>
- ngn (o) [eigm, s i€y ,e]-q] iy oy
g

(36)

(by the definition of the meet operation), where the sum ranges over
certain permutations ¢ € S, (namely, those that satisfy o (1) < 0 (2) <
o <od—gq)ando(d—gq+1) <oc(d—q+2) <--- <o(p). We
shall denote the latter permutations ¢ as the shuffles. Thus, the sum in
ranges over the shuffles ¢.

Now we are in one of the following two cases:
Case 1: We have [ U | # [d].
Case 2: We have U | = [d].

Let us first consider Case 1. In this case, we have I U] # [d]. Hence,
there exists some r € [d] such that ¥ ¢ I and r ¢ ]J. Consider this r.

Now, each permutation ¢ € S, satisfies [eim), ce s iy sy ,ejq} =
0 (since r € I and r ¢ | shows that the basis vector e, does not ap-
pear among e, ., , -, €, €€y which entails by the pigeon-
hole principle that two entries of the list Ciyayr v 1 Cigg_gys Cjs+ - -1 €y ATE
equa]@. Hence, all the addends in the sum on the right hand side of
equal 0. Thus, simplifies to a Ab = 0. Hence * (a Ab) = %0 =
0. On the other hand, we have r € [d|\ I (since r ¢ I) and r € [d]\ ]
(since r ¢ ]); thus, the extensor e\ V e\ has two equal factors
(namely, e,, which appears as a factor in both e\ T and ey, \ ]). Hence,
this extensor is 0. Thus, ejg\; V ey ; = 0. Therefore, simplifies
to (xa) V (xb) = 0. Comparing this with x(a Ab) = 0, we obtain
x (a Ab) = (xa) V (xb). Thus, is proved in Case 1.

Now, let us consider Case 2. In this case, we have I U ] = [d]. Hence,
[d]\ ] C I. Thus, [d]\ ] is a (d — q)-element subset of I (since |J| = ¢

10Tndeed, there are only d basis vectors ey, ey,...,¢e, available. Thus, any list that contains d of
these vectors but does not contain e, must contain two equal entries.
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and thus |[d] \ J| = d — g). In other words,
[d] \] — {irl < i1"2 <0 < ird_q}

for some d — g elements 1y < 1, < -+ <71y, of {1,2,...,p} (since
I={i1 <ip<---<ip}). Consider these elements.

It is easy to see that for any d — g elements h; < hy < -+ < hy 4
of {1,2,...,p}, there is a unique shuffle o;, whose first d — g values
on (1),03,(2),...,05 (d — q) are the elements hy, hy, ... hy_, (indeed,
its remaining p — (d — q) values 0y, (d —q+1),0, (d—q+2),...,04,(p)
must then be the remaining p — (d — q) elements of {1,2, ..., p} listed
in increasing order). Applying this to h, = ry, we see that there is a
unique shuffle op whose first d — g values oy (1),09(2),...,00(d —q)
are the elements r,7,...,75 4 (because r; <1y < --- <ry4). Con-
sider this shuffle oy. It satisfies

e%m, ce ’eivo(d—q)’ejl" . "ejq] = |:€ir1, .. .,e,'rdiq,ejl, .. .,qu}

= Sigl‘l <O[d]\]) ’ (37)

since the vectors CiyrevsCiy sCfse s €y inside the bracket are pre-
—-q

cisely the d basis vectors ey, ey, ...,e5 of V permuted using the permu-
tation o)\ (because we have {ir1 <dpy < -0 < ird_q} = [d]\ ] and
{h<ip<-<jp=D.
Furthermore, since 0y is a shuffle, we have oy (d — g+ 1) < 0p(d —g+2) <

- < 09 (p), so that iy i1y < lga—gra) < < lgy(p) (since
i1 <ip <--- <ip). Since we also have

{%(d—qﬂ)r oy(d—q+2)7 - -+ Loy (p) }

= {ivia g} N {iay o2y iap(ag) |

N J/

={ij<ip<-<ip} 7{1. L }
:I - 71/ 721---/ T‘d_q
(since the numbers 0p(1),00(2),...,00(d—9q)
are the elements rl,rz,...,rd,q)

(because oy is a permutation of {1,2,...,p})

- I\iirl,irz,...,ird_q} = I\ ([d\])=1n]J,

J/

={in <ir2:-~<ird7q}
=[d]\J

we thus conclude that the numbers iao(d—q+1)/iao(d—q+2)r .. .,iao(p) are
the elements of I N | listed in increasing order. Hence,

= €inJ- (38)

Cigy(a—g+1) Clog(a—g+2) * " Clag(p)
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Recall that the sum on the right hand side of ranges over all
shuffles ; one of these shuffles ¢ is 0. All other shuffles ¢ are distinct
from 0y, and thus satisfy

|:€l"7(1>, N ,€i(7<d7q>,€]'1, e ,qu:| = 0,

since the bracket [eim),. + 1 Ciyq gy G .,ejq} contains two equal vec-

torﬂ Thus, all the addends in the sum on the right hand side of
equal 0, except for the addend for ¢ = 0y, which is

sign (0p) [e%u), €y g G .,ejq} iy agrn " G

v J/

- -

:slgn((f[d]\[) (b:e)
(by G7) Y

= sign (0p) - sign (O'[d}\]) “erny-
Thus, rewrites as
a A\ b = sign (0p) - sign <(7[d]\]) -erny-
Thus,
*(aNb) =% (sign (0p) - sign (‘T[d}\]> : em]>

= sign (0p) - sign (a[d]\]> . *einy

=sign(ciny ) -e(a (10))
(by the definition of )

= sign (0p) - sign ((T[d]\]> -sign (o1n7) - e\ (1n))- (39)

On the other hand, I U] = [d] entails that the sets [d] \ I and [d] \ |
are disjoint. Hence, shows that

e 1 Ve = sign (17) - eap nu (i)

11Why? Because if it didn't, then the indices ia(l), s, ig(d_q), Ji,---,]jqg would be distinct, so that
we would have

{ia(l),...,ig(d,q)} = [\ {ji-- g} = A1\ ] = {irl <y << z‘,dfq};
=]

but this would entail {¢ (1),...,0(d—¢q)} = {rl,rz, ... ,rd,q} (since the iy, iy, ..., i, are dis-

tinct), and therefore (¢ (1),...,0(d—q)) = (rl,rz,...,rd,q) (sinceo (1) < --- < o(d—gq)
(because o is a shuffle) and 1y < rp < --- < r;y_,), and this would entail o = 0y (since ¢ is a
shuffle, but oy is the only shuffle such that the numbers oy (1),00 (2),...,00 (d — q) are the
elements r1,15,..., rd,q).
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where 7 € 54\ 14|41\ j| 1S the permutation that transforms the increas-

ing list of ([d]\ I) U ([d]\]) into the concatenation of the increasing
lists of [d] \ I and of [d] \ J. In view of ([d]\ ) U ([d]\]) = [d]\(IN]),

we can rewrite this as
eV ega)y = sign (17) - egap (1ny)- (40)
Hence, rewrites as

(xa) V (xb) = sign (o7) - sign (o7) - sign (17) “ e[\ (In])-

Comparing this with (39), we see that the vectors x (2 A b) and (xa) V
(xb) are equal up to sign. All that remains to be proved now is that
their signs agree as well. In other words, we must prove that

sign (0p) - sign (U[d]\]> - sign (o)

= sign (o7) - sign (07) - sign (17) . (41)
The easiest way to prove this equality is as follows: First, we observe
that [d]\I = J\ I (since IU] = [d]) and thus |[IN]| + |[d]\I| =
[INJ[+[J\I| = []| = g. Thus, the extensor ejn; V ejq\; has step
[INJ|+[d] \ I| = q. Hence, e;n; Ve € AT(V). Moreover, |[d] \ ]| =

d — g (since |J| = q) and thus e\ ; € A9 (V). Hence, (applied
tok=gand ! =d—ganda=ejn; Ve and b = ey ;) yields

erny \Y e\ I \Y e\ = (—1)q(d7q) e

g Verny Ve - (42)
But (applied to I N ] instead of J) yields
erny V e\ (iny) = sign (01ny) - efq)-

Hence,

sign (Ulﬁ]) : e[d}

=einy vV Cld)\(IN])

1
“sign (1) eV
(by (0D)
1
= vV Vv
sign () LN 0
—sign(p) =T e verny Ve
(since sign() (by (¢2))
is1or —1)
. d—
= sign (1) - (= 1) ey Verny Vg (43)
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Now, recall that the values og(1),00(2),...,00(d —q) are the ele-
ments r1,72,..., 744 (by the definition of op). Hence,

= el

Ciag) Cog2) """ Clog(a—g)  Cin iy T iy,

(since [d]\ ] = {ir1 <dpy < -0 < iy d_q}). Multiplying this equality
with (using the join operation V), we obtain

(eivomeiaom o 'eiaow—q)) v (eioo<d—q+1>eivo<d—q+z> o ei(,o(p))
= e[d]\] V em].

Hence,

ey v ey

= (eia()(l)eioom " 'efao<dfq>> v (eiao<d—q+1>elao<d—q+z> " 'efao<p>>
= Cigy 1) Cigya) iy = 5181 (00) - €iyeiy €, = sign (o) - e
:eI

Hence, becomes

Sigl’l (U]m]) : €[d]
= sign (17) - (=1)"" Ve s Verny Ve
—_———
=sign(op)-e;

= sign () - (=1)7“"" - sign (00) - €7 V e
———’
=sign(o7) ey

(by %)
= sign () - (=1)"“"7 - sign () - sign (07) - ey

Since e|y is nonzero (and in fact an element of a basis of A (V)), we
can cancel ejy from this equality, and obtain

Sigl’l (Ulﬂ])
. d— . .
= sign () - (- “sign (09) - sign (07)
=sign (oja)\y) sign(y )
(since |J|=g, and thus (83) (applied to k=¢q)
yields sign(tf[d]\])~sign(a]):(_1)q(d*®)

= sign (1) - sign <0'[d]\]> -sign (oy) - sign (0p) - sign (07) .
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Multiplying this equality by sign (0p) - sign (O’[d]\ ]), we obtain

sign (0p) - sign ((T[dw> - sign (o7ny)
= sign (0p) - sign (0[,1}\]) -sign (77) - sign (U[d]\]> -sign (o7) - sign (09) - sign (07)

= sign (o7) - sign (07) - sign (17) - (sign (U[d]\]»zj- (sign (0p))?
~ =1

=1

= sign (o7) - sign (07) - sign (17) .
This proves (1)), and thus completes the proof of in Case 2.

Thus, is proved in both Cases 1 and 2; this completes the proof of
(2N

* Now, it is easy to see that the meet is anticommutative: i.e., any a €
N (V) and b € AF (V) satisfy

anb = (-1 g, (44)

(Proof sketch: Let a € AJ (V) and b € A* (V). Then, (30) yields xa €
AT (V) and xb € AF (V). Hence, (applied to d —j, d — k, *a
and b instead of k, j, a and b) yields

(xa) V (xb) = (=1) DK (4p) v (xa). (45)

However, yields x (a Ab) = (xa) V (xb) and x (bAa) = (xb) V
(*a). In light of these two equalities, we can rewrite as

% (@AD) = (=)@ NI 4 (hag) =« ((—1)<d—f><d—k> (b Aa)) .

Since the map * is injective (because * is a vector space isomorphism),

this entails a Ab = (—1)(d7j)(d7k) (bAa) = (—1)(d7k)(d7j) b Aa. This
proves (44).)

* Now, it is easy to see that the meet is associative: i.e., any a,b,c €
A (V) satisfy

aN(bAc)=(aNnb)Ac. (46)

(Proof sketch: This is similar to the proof of (@#4): Again, we use
to reduce the claim a A (bAc) = (aAb) Ac to the equality (xa) V
((xb) V (xc)) = ((xa) V (b)) V (xc), which is true because the join is
associative.)

Thus, Theorem 3.3.2 (a) is proved. B
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71.

72.

page 97, proof of Theorem 3.3.2: “In view of the assumption A+ B = V"
This is somewhat inappropriate, since no such assumption has been made.
Instead, the case A + B # V must be considered separately. Fortunately,
this case is very easy: In this case, we can easily see that AAB = 0,

because all the brackets [ag(l), e lAg(d—k) b1, bk} on the right hand side
of (3.3.6) are 0 (indeed, A + B # V shows that A + B is a proper subspace

of V, and obviously all the d vectors Ag(1)r - .,aa(d_k),bl, ..., by belong to
this proper subspace; but this entails that these d vectors cannot be linearly

independent, and thus must satisfy [ag(l), e g (d—k) b1 bk} =0).

page 97, proof of Theorem 3.3.2: Let me add a few remarks about Theorem
3.3.2 (b).

a) Somewhat surprisingly, Theorem 3.3.2 (b) is not true if we replace the
base field C by a commutative ring. For a specific counterexample,
let k be the polynomial ring R [x,y,z], and let d = 4 and k = 3 and
j = 3. In the exterior algebra Ay (k*), let A = ejeze3 and B = by bybs,
where (e1,es,e3,¢4) is the standard basis of k* and where by, by, b3
are the vectors (1,0, O,x)T, (0, 1,O,y)T, (0,0, 1,Z)T. Then, A and B are
extensors, but

AN B = [e1,b1,by, b3] exez — [ep, b1, by, b3] ere3 + [e3, by, by, b3] eren
= Xepez — yeje3 + ze1ep

is not. (Indeed, if xeye3 — yeje3 + zeje, was an extensor v V w, then we
could write v as v = (a, 8,7, (5)T, and obtain

0= v V vV w
~ A
:(0‘/,3/)/,5)T =Xxepez—Yyeje3+zejen
=we1+pex+yez+dey

= (aeq + Bex + ez + deq) V (xepe3 — yeres + zeqen)
= (ax + By + vz) erexe3 + dey (xepes — yeres + zeier),

which would entail ax + By + vz = 0 and § = 0, and thus the vec-
tor (a, ,B,’)/)T would be a nonvanishing tangent vector field on the
2-sphere R3 (nonvanishing because vV w = xeyez — yejes + zejey is
nonvanishing and thus v is nonvanishing); but this would contradict
the hairy ball theorem| (which says that no such tangent vector fields
exist, even if we replace polynomials by continuous functions). Thus,
xepe3 — yeje3 + zejep is not an extensor.)

This explains why the proof of Theorem 3.3.2 (b) must use linear al-
gebra that is specific to vector spaces (over fields).
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73.

74.
75.

76.

b) The Hodge star x has a similar property to Theorem 3.3.2 (b): If A €
A (V) is any extensor, then xA is an extensor again. This, too, would
fail if we replaced C by a commutative ring such as R [x,y,z]| (and
again, a counterexample can be built based on the hairy ball theorem).

page 103, Theorem: This theorem is very easy to prove without any alge-
bra.

Proof sketch: WLOG assume that ({3, ¢4) is the pair of lines whose intersec-
tion we must prove (while all the other five pairs are known to intersect).
The two lines ¢; and /¢, are distinct (otherwise, ¢1, />, /3 would lie in a
plane), and thus span a plane H and intersect at a point P. The line /3
intersects both ¢ and ¢, but cannot lie on the plane H (otherwise, ¢1, {5, {3
would lie in a plane); thus, /3 must pass through P. Similarly, /4 must pass
through P. Hence, all four lines ¢4, {5, {3, ¢4 pass through P; in particular,
the pair (¢3,¢4) intersects. W

page 111: “the weight of a tableaux” should be “the weight of a tableau”.

page 111: It is not true that “the property of being homogeneous depends
only on the image in B, ;7. Indeed, an inhomogeneous bracket polyomial
can lie in I, ; (an example is a linear combination of syzygies of different
weights) and thus turn into the homogeneous polynomial 0 in B,, 4.

page 118, Proposition 3.6.1: It is worth saying that the proof of Proposition
3.6.1 is entirely straightforward:
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Proof of Proposition 3.6.1. The equality (3.6.3) becomeﬂ
f(xy)
o n n _ _\k — —\n—k
= Z k aj (cnx + Clz]/) (021x + szy)
— N—— ~

-~

k N k=] h— n—k—1
=L j (c11%)’ (c12) :§ ] (c21%) (c229)
]
(by the binomial theorem)  (by the binomial theorem)

=) (Z) ﬂkZ( ) c11%) (c127) _]Z (n l_ k) (ca1 @) (c0y)" !
- f ]Z Z\(Z) ay <I;) (C11f)] (C12y)k ]( ] k) (czﬁ)l (czzy)”_k_l

n\ (k\ (n—k
_ ' avch KT n—k=lgjtgn—j-l
(k (])< i ) k€11€12 C2122 y

1 n\ /k\ (n—k k o
— Z Z Z(k)()( ] )tlkcjllcu]clzlcgzk lx]+lyn j—!

k=0 ] 1 ]
_n n k n—k jo k=i i=j n—k—=(i=]) —j+(i—j) zn—j—(i—j)
—k;) ; Zl: \(k) (]> (i—j)/ ”kcnclz €1 22 ic_v_/l/

n—i—k+ =x'

T n\ (i\ (n—i = -
e G0
=R i)\j) \k—j

(this is easy to check using the
definition of binomial coefficients)

—h—i

(here, we substituted i — j for [ in the third sum)

n\ (i\ /n—i k—j ktj—i—
— J J =] n—i—ktji—n—i
_Z )3 : <z)<) (k— )akcnclz €91 €22 ry
j

i k=0 ) ]
_ . n\ (k\ (n—k j il k=i n—k—itjkon—k
_; i;:) ;(k) (]-><i_])‘”11012 Cr1 € Xy

(here, we renamed the summation indices i and k as k and i)

LS00 )a) e

In other words,

fEy =Y (’,Z)ﬁkf"y” ‘

— 1 k n — k / k k—
= Z (Z (]> <i—]) ]11C112]C21] ;2 1+]> a;. (47)

i=0 \ j

where

12 Any sum with no upper or lower limits is understood to range over all integers.

35



Errata to “Algorithms in Invariant Theory” January 18, 2026

The latter equality is precisely the equality (3.6.5), except that the sec-
ond sum ranges over all j € Z instead of only ranging from max (0,i — n + k)
to min (i,k). But this little difference in summation ranges does not af-
fect the value of the sum, since all addends with j < max (0,i —n + k) or

j > min (i, k) are 0 anyway (indeed, (I]{) = 01if j < 0 or j > k, whereas

(n—k) =0if j <i—n+korj>i). Thus, by proving , we have

=]
proved (3.6.5) and therefore Proposition 3.6.1. B
77. page 122: “defines a C-algebra homomorphism” should be “defines a

C [x, y]-algebra homomorphism” (or you should say separately that ¥ is
supposed to send x — x and y — v).

1)k
78. page 122, (3.6.7): In ”um e Up - O (ﬂ,. . V—n) ”, the “n!” should be
n! M1 Un

n
“ (k) ”. (But the “n!” one line above is correct.)

79. page 123, proof of Lemma 3.6.3: Here is an alternative proof:

Second proof of Lemma 3.6.3. Equip the polynomial ring C [p1,v1, . .., Yn, Vn, X, Y]
with a monomial order that is lexicographic with py > pp > -+ > u, >
V1 >Vp > -+ >V, >x >y. Then, for each k € {0,1,...,n}, we have

1 n—k
k4 (ak) = % Z Va)Vn(2) " Vamn—k)Brn(n—k+1)Brn(n—k+2) = " B (n)

TEeSy,
and therefore
init (¥ (ax)) = papa - - UVks1Viso - - - Vn (48)
(with coefficient o which we ignore). Also, of course, init (¥ (x)) =

x (since ¥ (x) = x) and init (¥ (y)) = v (likewise). Hence, for any product
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ap’ayt -+ - ay"xPy® (with ug, uy,. .., us,v,w € N), we have

init (¥ (a5°ay" - - - 4y x"y"))

= init (¥ (x"y“ay’ay" - - - apt))

= init (¥ (x)"¥ () ¥ (a0)" ¥ (a1)" -+ - ¥ (an)"™")
(since ¥ is an algebra morphism)

Uk
w

n

0

= | init (¥ (x)) init (Y (v)) | 1 init (‘¥ (ay))
N’ e g =0 N’
=X =y =H1p2 PV 1 V2 Vn
(by (@)

since the initial monomial of a product of several polynomials
is the product of the initial monomials of the factors

n
= x"y" H (Mip2 - - PicVks1 Vi - - -Vn)”"
k=0

J

~"

Mj+1/l]‘+1+"‘+1lnv1/lo+u1+"'+ll]'71
i .

n
:H],[ f
=1

i

n
LU Ujtujpr+-tup uptugte+ujg
=x"y Hy]. Vi .

j=1

We can easily recover the original exponents ug,uy,...,u,,v,w from this
monomial (indeed, v and w are simply the exponents of x and y, whereas
the exponents u; +u;j,1 + - - + u, on the p;’s allow us to find uy, uy, ..., uy
by taking differences, and the exponents ug + u; + --- + ;1 on the v;’s
allow us to recover ug,uy,...,u,_1 by taking differences). Thus, the ini-
tial monomials init (¥ (a,%a;" - - - ay"x"y®)) for all ug,uq,...,us,v,w € N
are pairwise distinct. Hence, the polynomials ¥ (a,°a;" - - - ap"x"y") are
C-linearly independent (since a family of polynomials that have pairwise
distinct initial monomials must always be C-linearly independent).

But the family (ay°ay" -+ ay"xy®), . Of monomials is a basis of
the C-vector space C[ag, a1, ...,an, X,y]. We have just proved that the map
Y sends this basis to a linearly independent family (since the polynomials
Y (ay°ay’ - - - ay"x"y") are C-linearly independent). Thus, the map V¥ is
injective (since a linear map that sends a basis of its domain to a linearly
independent family in its target must always be injective). This proves

Lemma 3.6.3 again. B

80. page 124, proof of Proposition 3.6.4: “Then R can be rewritten as

~ (v v
R (p1,v1, . o)ty Vi, X, Y) = (yl...yn)d-R (—1,...,—”,x,y> ,
1251 Un
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5 . . . . . . Vi
where R is a symmetric function (in the usual sense) in the ratios y—l”:
i
Let me explain why this is the case. We define the polynomial R =

ﬁ(ocl,...,(xn,x,y) € Clay, ..., an x,y] by

~

R(a1,...,an,%,y):=R(1L,ay,1,a,...,1,a4x,7)

(that is, R is the evaluation of R at i == 1 and v; := «;). This poly-
nomial R is symmetric in «q,...,a,, since R is symmetric. Furthermore,
since R is regular of degree d, we know that if we multiply the inputs
U1,V1, U2, V2, ..., Un, Vy by some scalars (or indeterminates) wy, w1, wy, wo, . .., Wy, Wy,
respectively (that is, if we multiply both u; and v; by w; for each i €
{1,2,...,n}), then the value R (y1,v1,..., tn,Vn, X, y) gets multiplied by

w{lwg .- -wz. In other words, for any wy, wy, ..., w,, we have

R (wyp1, v, - - ., Wnkn, WV, X, Y)

= (wfwg . w,‘i) R(p1,v1, - HnyVn, X, Y) -

Applying this to w; = ;, we obtain

1

R(i L T )
ﬂlyl,]/ll 1/"'/]/ln]/ln/ " nr /y

_ ((%)d (VL) (yi)) R (1,1t Vs 1)

(. J

N

(H1---pn)
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Solving this for R (y1,v1, ..., hn,Vn, X, Yy), We obtain

R(‘l’lllvlr""]’l”’vn’x’y)

Ny a% 1%
=R (—1,...,—n,x,y)
U1 Un

(by the definition of R)

d 5 (V1 Vn
= (1. .. R, .. xy).
(B1---pn) (Vl 0 y)

Thus, we have rewritten R as desired.

81. page 124, proof of Proposition 3.6.4: “Multiplying Q by (yg... ‘un)d and
distributing factors of i ... u,, we obtain a representation of R as a poly-
nomial function in the magnitudes puq - - - ;0% (;—1, e, ;—") ”: This argu-

1 n
ment is slightly incomplete. If we do what is suggested here, then we
obtain a representation of R as a polynomial function in the magnitudes
Ui+ Uy and oy (ﬂ,...,v—n). In order to rewrite this as a polynomial
1

Un
L v v
function in the products py - - - 0% (y—l, e, y—”) , we must make sure that
1 n
each of the monomials contains at least as many pq - - - y,’s as it contains

v v : .
O (—1, ceey —n> ’s; otherwise, we get only a Laurent polynomial.
H1 Hn

There are several ways to fix this. In my opinion, the easiest way to prove

the “if” direction of Proposition 3.6.4 correctly is to proceed as in the proof

of Theorem 1.1.1 (that is, in essence, by showing that the ¥ (ag) , ¥ (a1),...,¥ (a,)
form a Sagbi basis of the ring of regular symmetric polynomials R €
Clp1,v1,..., 4n, v, x,y] as a C|[x,y|-algebra, even though we don’t ever

have to use this language). Here are the details:

Proof of the “if” direction of Proposition 3.6.4: We give an algorithm to express
each regular symmetric polynomial R € C [p1, V1, ..., Hn, Vn, X, Y] as a poly-
nomial function of the images ¥ (ag), ¥ (a1),..., ¥ (an) over C [x, y] (which
will, of course, show that R lies in the image of ¥). To do so, we view x and
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82.

83.

84.

85.

86.

87.

y as constants, and we equip the polynomial ring C [y1, V1, ..., Yn, Vn, X, Y] =
(Clx,y]) [H1,v1,- -, Hn, vu] with a monomial order that is lexicographic with
W1 > Mg > - > Uy > V3 > Vp > --- > vy Then, for a nonzero regular
symmetric polynomial R € C [y, V1,..., Hn, Vn, X, Y], the initial monomial
init R must have the form p!1 b2 . . lnyd ="y~ 12 =1 (since R is reg-
ular) with u; > up > --- > u, (since otherwise, by the symmetry of R,
we could obtain a larger monomial of R by swapping two of the y;’s along

with the corresponding v;’s). But this is precisely the initial monomial
n
init (R’) of the polynomial R" := TT (¥ (ax))"* "', where we set uy := d
k=0

and 1,1 := 0 (this follows easily from (48)). Thus, subtracting an appro-
priate scalar multiple of R’ from R, we cancel the initial term of R and
obtain a smaller polynomial in C [y, vy, ..., Hn, Vn, X, Y| that is still regular
and symmetric (since R and R’ are regular and symmetric). Repeating this
procedure again and again, we eventually end up with the polynomial 0
(since Corollary 1.2.3 shows that this process cannot go on forever). Thus,
R equals the sum of all the polynomials we have subtracted, hence a poly-
nomial function of the ¥ (ag), ¥ (a1),..., ¥ (a,) over C [x,y|. Therefore, R
lies in the image of Y. This finishes the proof. B

page 125, definition of the bracket [i u]: Replace “[i u] := u;y — v;x” by
“liu] == pix —viy”.

page 125, proof of Lemma 3.6.5: Add commas before “[1 n]”, before “[n — 1
and before “[n u]”.

page 125, Theorem 3.6.6: It is worth pointing out that “bracket polyno-
mial” here means a polynomial in C [y1,v1,..., Un, Vs, X, y] that lies in the
bracket ring. The notions of “symmetric” and “regular” are inherited from
Clp1,v1,-- -, tn,Vn, x,y]. (Hence, in particular, a “symmetric bracket poly-
nomial” means a symmetric polynomial that lies in the bracket ring. Such a
polynomial is symmetric under all permutations of the subscripts 1,2,...,n
when written as a polynomial in 1, v, ..., pn, Vn, X, y, and furthermore can
be expressed as a polynomial in the brackets [i j] and [i u]; but the latter
expression might not be invariant under all permutations of the symbols
1,2,...,n)

page 126, proof of Theorem 3.6.6: “The expansion map ¥ commutes with”
should better be “The expansion map ¥ is injective (by Lemma 3.6.3) and
commutes with”.

page 127, definition of the bracket [i(k) u}: Replace “ [i(k) u] = yfk)x —
iy by [0 u] = e =y

i i

page 127, middle of the page: In “f (x,y) = axx* + 2ayxy + a%y”, replace

“aky” by “apy?”. Likewise, on the next line, replace “b3y” by “boy>”.
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88. page 129, proof of Lemma 3.7.2: I find this proof confusing (what does
“canonical preimage” mean), so let me give my own:

Proof of Lemma 3.7.2. (a) For any polynomial f € C|xy,...,x,], we let f
denote its residue class f + I (that is, the projection of f onto the quotient
ring C[x1,..., %] /).

Clearly, the residue classes pj, . .., i are invariant under I (since the poly-
nomials py, ..., pm are invariant under I').

Letp € (Clxy,...,x] /1) be any invariant residue class in C [x1,..., x| /1.
We must show that p can be written as a polynomial function of py, ..., Pu.

The polynomial p € C|xy,...,x,] itself might not be I'-invariant, but its
image p* under the Reynolds operator is. Furthermore, p* = p*, because
the Reynolds operator (being defined as the average of the actions of all
elements of I') commutes with the projection onto C[xq,...,x,] /I. But
P* = P because P is T-invariant. Hence, p = p* = p*.

But p* belongs to C[xq, .. .,xr]r and thus can be written as a polynomial
function u (p1,...,pm) of p1,..., pm. Hence, p can be written as the same
polynomial function u (p1,...,Pm) of P1,...,Pm (since p* = u (p1,...,pm)
entails p* = u (p1,...,pm) = u(P1,...,Pm) and thusp = p* = u (p1, ..., Pm))-
This completes the proof of Lemma 3.7.2 (a).

(b) In the proof of Noether’s degree bound (Theorem 2.1.4), it was shown
that the invariant ring C [xl,...,xr]r is generated by the Reynolds im-
ages (xgl xéz e x?) ' of all monomials x?xéz e x? with degree iy + iy +
-+ +1i, < |T'|. Hence, applying part (a) (with the py,..., pm being these
Reynolds images), we conclude that the ring (C[xy,...,x,] /)" is gener-

ated by the images of these Reynolds images under the canonical surjection
Clx1,...,x] = C|xy,...,x;] /1. This proves Lemma 3.7.2 (b). B

89. page 130, proof of Theorem 3.7.1: In the first sentence of this proof, add
commas before “[1 n]”, before “[n — 1 n]”, and before “[n u]”.

90. page 130, proof of Theorem 3.7.1: “Since minimally regular monomials
remain minimally regular after permuting letters”: This is not literally true,
since (e.g.) the transposition f1, sends the bracket [12] to —[12]. The
action of a permutation ¢ € S, sends a bracket monomial to & a bracket
monomial.

The easiest way to fix this is by introducing additional brackets [i j] for
i > j. These new brackets are defined in the same way as the old brackets
(that is, [i j] := pvj — vip;). Of course, they are redundant as generators,
since [i j] = — [j i] for all i # j; but they serve to make the set of generators
more symmetric. After we introduce these new brackets, the set of bracket
monomials (i.e., products of brackets) becomes fixed under the S;-action

41



Errata to “Algorithms in Invariant Theory” January 18, 2026

91.

that permutes the letters 1,2, .. ., n (fixing u), and so is the subset of regular
bracket monomials; hence, the minimially regular bracket monomials also
form an S;-set. With these changes made, the proof goes through as stated.

page 131, discussion of the monomial order <..: “Establishing the ex-
istence of such a monomial order is a nontrivial exercise”: But not a
hard exercise at any rate. For instance, we can introduce a (rather exotic)
grading on the polynomial ring C[A (n,2)] by assigning to each indeter-
minate [i j| the degree (2 — % n! (this is a positive integer, because
j—i€{1,2,...,n} is a positive divisor of n!). Then, we totally order the
bracket monomials as follows: If two monomials m and n have different
degrees, then we set m > n if and only if m has larger degree than n; other-
wise, we let m > n if m is lexicographically larger than n. This is easily seen
to be a monomial order (indeed, this holds for any grading on a polyno-
mial ring in which each indeterminate is homogeneous and has its degree
equal to a positive integer). Moreover, for any 1 < i < ip < i3 <ig < n,
the initial monomial of the syzygy

Pijiyigiy, = [i1 i3] [iz 1a] — [i1 2] [i3 1a] — [i1 ia] [i2 i3]

is [i1 i3] [i2 ig]. (Indeed, the three monomials [i] i3] [iz ig], [i1 i2] [i3 is] and
i1 14] [i2 i3] have respective degrees

(2—. 1.)n!+<2—. 1.)n!,

I3—11 g — 12

(2—, 1,)n!+<2—. 1.)11! and
I —1N 1y — 13
1 1

but the first of these three degrees is larger than the other twoﬁ)

13Let us show this. We must prove that

1 1 1 1
(2—. .)n!+(2—. .)n!><2—, ,)n!—i—(Z—. .)n! and
13 —17 1y — 12 I — 11 g — 13
(2—.1.)n!+<2—.1.>n!><2—.1.)n!+(2—.1.>n!.
13— 11 1y — 1 1y — 11 13 — 1o

Upon cancelling the 2’s and #!’s, these two inequalities rewrite as

1 1 1 1
13 —1 g — 1o I —1 1y — 13
1 1 1 1
— T < —.
13— 11 gy — 1o Iy — 1 13 —1p

and

Upon setting p := ip —i; and g := i3 —ip and r := iy — iy (so that i3 —i; = p+ g and
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Thus, the monomial order we have just introduced is (one option for) the
monomial order <. that we need.

92. page 131, first proof of Proposition 3.7.4: This is somewhat confused. The
set S, 2 is a subset of the bracket polynomial ring C [A (n,2)], not of the
polynomial ring C [, v1,..., tn, Va, X, y]; hence, the brackets [i j] are the
indeterminates here. Thus, if the initial monomials of P, j,;,;, and P} j,,;, are
not relatively prime, then the sets {[i1 i3], [i2 i4]} and {[j1 j3], [j2 ja]} have
nonempty intersection, which is a stronger claim than “the set of indices
{i1,12, 13,14, j1, J2, j3, ja} has cardinality at most seven” (in fact, it shows that
the set of indices {i1, ip, 13,14, j1, J2, j3, ja} has cardinality at most 6, but even
this is unnecessarily weak a statement). As a consequence, we only need
to verify the Grobner basis property in the cases n = 5,6, not in the cases
n=>5,6,7.

This is not as painful as it sounds, even without the use of a computer. All
we have to do is show that for any two distinct 4-tuples (i1 < ip < i3 < iy)
and (j1 < j2 < j3 < js) such that the initial monomials of P ;,;,;, and P j,i.i,
are not relatively prime (i.e., the the sets {[i1 i3], [i2 ia]} and {[j1 j3], [j2 ja]}
have nonempty intersection), the S-polynomial S (Pi1i2i3i4,Pj1 j2j3j4) can be
reduced to 0 modulo S, 5. For n = 5, the only S-polynomials we need to

check are
S (P13, P1235), S (Pipa5, Pi13a5),
S (P1234,Pr3as), S (P1235 P1245),
S (P1345,Pasas)

E For n = 6, the only additional S-polynomials we need to check (aside

iy —ip = q+rand iy —i; = p+q+7), these two inequalities rewrite as

1 1 1 1
—_— < -4 - and
p+tq gq+r p 1

1 1 1 1

+ < + —.
p+q q—+r p+q+r ¢
Since p, g, r are positive (because iy < ip < i3 < ig), the first of these two inequalities is obvious

< —and —
p q+r
and cancelling the numerator p +29+71) to (p+q+71)q < (p+4) (9+r), which is again
clear (since (p+q) (g+7r) — (p+q+7r)q = pr > 0). Thus, both inequalities are true.

141 have omitted the “mirror versions” of these S-polynomials (where the mirror version of an
S-polynomial S (f, g) means the S-polynomial S (g, f)), because these need not be checked
separately (in fact, we always have S (g, f) = =S (f,2))-

There is an additional symmetry in the definitions of A (n,2) and S, that we could use
to simplify our life (namely, we can replace [u v] by [v/ ©], where ' = n+1—u and v =
n+1—v). We leave it to the reader to check how it can be exploited.

(since

< %), whereas the second boils down (upon cross-multiplying
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93.

from the above ones and their variants with relabelled variables) are

S (P1235, Prase), S (Pipa5, Pr3se),
S (P1346,52356) S (Pi1356, Pasag),
S (Pi245,P13ag), S (P14 P13a5)

E In each case, we must check that the respective S-polynomial can be
reduced to 0 modulo S,». According to a known crlterlor@ it suffices

to express these S-polynomials in the form ) ass;gs, where S is a finite
seS
set, where a; € C are scalars, where s; are monomials and where g; are

(not necessarily distinct) elements of S, 5 such that all the monomials s; -
init (g;) are distinct (where init means the initial monomial with respect to
the monomial order <r.). But such expressions can be explicitly provided:

S (P1234,P1235) = [25] Pr1osa—[24] Pio3s
=[12] Py345—1[23] Pioas

(with [1 2] and [2 3] playing the role of the monomials s; and with P53 45
and Pj,45 acting as the gs; it is easy to see that the monomials [1 2] -
init Py345 = [12]-[24]-[35] and [23] -initPyp45 = [23] - [1 4] - [2 5] are
distinct) and similarly

S (P1245 P1345) = [45] Pioss—[15] Paaas;
S (P1234: Po3a5) = [34] Pross—1[23] Pisas;
S (P35 Pipas) =[15] Piosa—[12] Piaas;
S (P1345 Pa3as) = [34] Pioas—[45] Pipsa
S (P1235 Pras6) = [56] Pioza+[45] Pioze—1[23] Prase—[12] P3ase;
S (P1245 Pa3s56) = [35] Proas—[24] Piase—[56] Pioza—+[12] P3ase;
S (P46 P2356) = [16] Pazas—[23] Prase—[46] Pioss+ (35 Pioae;
S (P1356 P23a6) = —[16] Pazas+ (23] Prase—1[56] Pipza+[34] Prase;
S (P1245 Pi3a6) = —[16] Pazas+[45] Pioze+[13] Prase—[24] Pi3se;
S (Pipa6 Pi3as) = —[16] Pazas+[45] Pipze—[12] P3ase+[34] Piose

page 132, Lemma 3.7.5: This lemma is false. A counterexample is the
bracket monomial

[12][13][23]*-[45][46][56]*-[78][79][89]*[1x][4x][7x]

in C [A (10,2)], which is regular of degree 3 and elemental.

15 Again, I have omitted the “mirror versions” of these S-polynomials.

16See, e.g., Lemma 3.6 in Darij Grinberg, t-unique reductions for Mészdros’s subdivision algebra
[detailed version], ancillary file to arXiv:1704.00839v6. (This lemma appears as Lemma 4.6 in
the published version, but without the proof.)
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However, there is an alternative way of proving Theorem 3.7.3, which by-
passes Lemma 3.7.5. It goes back to the paper B. Howard, ]. Millson,
A. Snowden, R. Vakil, The equations for the moduli space of n points on the
line, Duke Math. J. 146 (2009), no. 2, pp. 175-226 (see also the proof
of Theorem 31 in Giorgio Ottaviani, Five Lectures on Projective Invariants,
arXiv:1305.2749v1). Here is an outline:

Correct proof of Theorem 3.7.3 (sketched). We rename the letter u as n + 1 and
rename the indeterminates y and x as p,+1 and v, 41 (so that our brackets
have the form [i j] for 1 < i < j < n+ 1). Furthermore, we rename 7 as
n — 1 (so that our brackets now have the form [i j] for 1 <i < j < n). We
also introduce the shorthand [i j] := [j i] for all i > j, so that the bracket
i j] is defined for all i # j (not only for i < j). (Note that this differs from
the convention I suggested on page 130.)

It is easy to see (indeed, it follows from Example 3.1.6 upon renaming the
variables) that

[il i3] [iz i4] = [il iz] [i3 i4] + [il i4] [iz ig] (49)

forany 1 < i < ip < i3 < iy < n. Hence, for any four distinct elements
a,B,v,00f{1,2,...,n}, we have

(] [B o] ==x[aplly ol =[ad][p7] (50)
for an appropriate choice of + signs (the two =& signs need not be the same
sign). (Indeed, follows by applying with iy, 1y, i3, i4 being the num-
bers w, B,, 0 listed in increasing order, and then solving for [« ] [ J].)

In the following, a lowlie will mean a bracket monomial that is regular of
degree 1 or 2. For example, [12][23]---[n—1n][n 1] is a lowlie that is
regular of degree 2. Lowlies that are regular of degree 1 exist only when n
is even; an example of such a lowlie is [1 2] [34]---[n —1 n].

We view any bracket monomial [i1 j1] [i2 j2] - - - [ik jk] as a multigraph with
vertex set {1,2,...,n} and edges {i1,j1}, {i2, j2}, ..., {ix jx}. Such multi-
graphs can have parallel edges, but cannot have loops. A bracket monomial
is regular of degree d if and only if it is a d-regular multigraph (i.e., each
vertex has degree d).

Now we want to prove Theorem 3.7.3. This theorem claims that the ring
Breg of regular bracket polynomials is generated by the lowlies. In other
words, it claims that every bracket polynomial that is regular of degree d
(for some d € N) is a polynomial function of the lowlies. We shall prove
this by distinguishing between two cases, depending on the parity of d:

e Case 1: The number d is even. Hence, Petersen’s 2-factor theorem
shows that every d-regular multigraph (that is, every bracket mono-
mial that is regular of degree d) can be partitioned into d/2 edge-
disjoint 2-factors, i.e., (regarded as a bracket monomial), can be fac-
tored as a product of d/2 bracket monomials that are regular of degree
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2. Of course, the latter monomials are lowlies. Hence, we have shown
that every bracket monomial that is regular of degree 4 is a product
of lowlies. Thus, every bracket polynomial that is regular of degree d
is a polynomial function of the lowlies. So our proof is complete in
Case 1.

* Case 2: The number d is odd. We must prove that every bracket poly-
nomial that is regular of degree d is a polynomial function of the
lowlies. Clearly, it is enough to prove this for bracket monomials.
Thus, we let m be a bracket monomial that is regular of degree d. As
a multigraph, m is thus a d-regular multigraph with n vertices. Since
the sum of the degrees of all vertices in a multigraph is even, we thus
conclude that nd is even, so that n must be even (since d is odd).

If the multigraph m is bipartite, then Frobenius’s matching theorem
shows that m has a perfect matching (since m is d-regular), i.e., a span-
ning 1-regular subgraph. Rewritten in terms of brackets, this is saying
that if m is bipartite, then m is divisible by a bracket monomial n that
is regular of degree 1. The quotient m/n of this division must then
be a bracket monomial that is regular of degree d — 1, and hence is
a polynomial function of the lowlies (by Case 1, since d — 1 is even).
Multiplying this polynomial function by n (which itself is a lowlie),
we obtain an expression for m as a polynomial function of the lowlies.
Thus, our proof is finished if the multigraph m is bipartite.

What can we do if m is not bipartite? In this case, m contains at least
one edge {e1, e} whose both endpoints are even'’} as well as at least
one edge {01,0,} whose both endpoints are odd'®, Consider these
two edges. Thus, the bracket monomial m is divisible by [e; €3] [01 02].
In other words,

m = [eg ez] [01 02] P (51)

for some bracket monomial p. Consider this p. But (applied to

17Recall that n is even, so the even vertices are 2,4,6,...,n, while the odd vertices are
1,3,5,...,n—1.
18Indeed:

— If neither {ej, e} nor {o01,0,} existed, then m would be bipartite (with all the even vertices
being left vertices, and all the odd vertices being right vertices); but we have assumed that
m is not.

— If {e1, 2} existed but {01,02} did not, then the sum of the degrees of all odd vertices would
equal the number of even-odd edges (i.e., edges that have an even and an odd endpoint),
whereas the sum of the degrees of all even vertices would be larger than the number of
even-odd edges (since it would count the edge {e1,e2} as well); but this is impossible, since
both of these sums ared +d +---+d = dn/2.

n/2 times
- If {01,0,} existed but {e1,e;} did not, then we would obtain a similar contradiction.

So the only possibility is that both {ej,e;} and {o01,0,} exist.
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a =ej, B =01, 7 =eyand § = 0p) shows that

[61 62] [01 02] ==+ [61 01] [62 02] + [61 02] [01 62] .

Hence, we can rewrite (51) as

m = (:|: [61 01] [62 02] + [61 02] [01 62]) p
= =+ [eg 01] [e2 02] p £ [e1 02] [01 €2] . (52)

However, both bracket monomials [e; 01] [e2 02] p and [eq 02] [01 €2] P
are regular of degree d again (since they are obtained from [ej €3] [01 02] p =
m by replacing the [e; ;] [01 0] factor with [e1 01] [e2 03] or [e1 03] [01 €2],
respectively; but this replacement takes away equally many edges
from each vertex as it adds to that vertex), but have a higher num-
ber of even-odd edgeﬂ than m does (since all the four new edges
{e1,01}, {e2, 02}, {e1, 02}, {01, ex} are even-odd edges, while the
original two edges {e1,e;} and {01,02} are not). By descending in-
duction on the number of even-odd edges, we can thus assume that
le1 01] [e2 02] p and [e1 02] [01 e2] p are polynomial functions of the
lowlies (the base case is the case when m is bipartite; this case has
already been handled). Then, the equality shows that m is a poly-
nomial function of the lowlies as well. This completes our proof in
Case 2.

Hence, the proof of Theorem 3.7.3 is complete in both cases. B

(Note that Case 1 and Case 2 in the above proof are not as different as they
look, since the proof of Petersen’s 2-factor theorem| also relies on Frobe-
nius’s matching theorem.)

(Note also that the proof of Theorem 3.7.3 given in §6.3 of Joseph P. S.
Kung, Gian-Carlo Rota, The invariant theory of binary forms, Bull. Amer.
Math. Soc. (N.S.) 10(1) (1984), pp. 27-85. appears fairly similar to the
above.)

94. page 135, exercise (4): “set for” should be “sets for”.

95. page 137: “A comprehensive introduction with many geometric applica-
tions can be found in Fulton and Harris (1991)”: Here are a few other
references (which I found more readable than Fulton and Harris):

¢ William Fulton, Young Tableaux, With Applications to Representation The-
ory and Geometry, Cambridge University Press 1999, Chapter 8. (Exr-
rata.)

19 An even-odd edge means an edge that has an even and an odd endpoint.
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* Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwend-
ner, Dmitry Vaintrob, Elena Yudovina, Introduction to Representation
Theory, Student Mathematical Library 59, AMS 2011, Sections §5.19—
5.23.

¢ William Crawley-Boevey, Lectures on representation theory and invariant
theory, 1999. (Errata.)

¢ Hanspeter Kraft, Claudio Procesi, Classical Invariant Theory: A Primer,
July 1996. (Errata.)

96. page 138: “Note that det(A)”*1 is a common denominator” should be
“Note that det (A) is a common denominator”.

97. page 139, Examples 4.1.5 (e): Replace “V = S,C3” by “V = S3C?".

98. page 140, definition of irreducibility: “We say that (V, p) is irreducible if”
should be “We say that a nonzero I'-representation (V, p) is irreducible if”.

99. page 140: After “For instance, the representations S;C" and A;C" are irre-
ducible”, add “(except that A;C" = 0 for d > n)”.

100. page 140, Theorem 4.1.7: “of irreducible representation” should be “of
irreducible representations”.

101. page 141, definition of standard Young tableaux: It is worth pointing out
that the notion of a “standard Young tableaux” as defined here is different
from than the notion of a “standard tableau” defined in §3.1. (The latter
tableaux can have equal entries, while the former can have non-rectangular
shapes.)

102. page 141, definition of the Young symmetrizer: The Young symmetrizer
cr is not “an idempotent linear map”, but only a quasi-idempotent linear
map —i.e., we have CZT = ket for some nonzero rational number k. Specifi-
cally, this factor k is the positive integer n!/ f*, where f* is the number of

A

sYTA. Thus, the scalar multiple <—cr of cr is an actual idempotent. Maybe
n!

it is this multiple that you want to call the “Young symmetrizer”.

(It is worth noting that many authors define the Young symmetrizer to be

not the linear operator ct, but rather the element

) Y. (signo)-oT in the group algebra C[S,],
oecolstb(T) Terowstb(T)

whose action on ®;C" (from the right, by permuting tensorands) is your
linear operator ct. Some also define it as the element

) Y. (signo)-T0 in the group algebra C[S;],
oecolstb(T) Terowstb(T)
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103.

104.

whose action on ®;C" (now from the left, by permuting tensorands) is
your linear operator cr.)

page 141: “Thus WrC" is the subspace of all tensors in ®;C" which are
symmetric with respect to the rows of T and antisymmetric with respect
to the columns of T”: This is false. For instance, for n = 2 and d = 3 and
A=(21)and T = 515
its first two tensor factors and antisymmetric in its first and third tensor
factors is 0, but Wy C" is not 0.

2 . . -
, the only tensor in ®;C" that is symmetric in

page 141, Theorem 4.1.11: Let me outline a proof of this theorem, as it is
not easily found in the literature.

Proof of Theorem 4.1.11 (sketched). We shall show that

2,C" =P PH wrC" (53)

Ad T syt

(an internal direct sum, not just an isomorphism). For this purpose, we

define some notations. If T is any standard Young tableau with d entries,

then 7 (T) shall denote the sequence (r4,74_1,...,71) € N9, where 7; is the

number of the row of T that contains the entry i (that is, entry i appears in
13 4

the r;-th row of T). For example, v | 2 5 = (3,3,2,1,1,2,1). Clearly,
6 7

a standard Young tableau T is uniquely determined by this sequence r (T)

(since 7 (T) tells us which row contains which entries, and the order of the

entries in a row must be increasing in order for T to be standard).

Now, consider the set

SYT (d) := | {T syrA}
AbHd

of all standard Young tableaux of shape A for all partitions A of d. We
equip this set SYT (d) with the following total order: For two standard
Young tableaux S and T of shapes A and y, we say that S > T if and only
if

e either A > yu in the lexicographic order on N”,

e or A = pand r (S) > r (T) in the lexicographic order on N¥,

It is clear that this gives a well-defined total order on SYT (d) (in fact, it is
simply the lexicographic order for the concatenations A & (T)).
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Next, for each T € SYT (d), we let Er denote the element

( Y. (signo) -0) ( Y. T)
oecolstb(T) Terowstb(T)
= ) Y. (signo)-oT (54)

oecolstb(T) Terowstb(T)

in the group algebra C[S;]. This element E7 is called the Young sym-
metrizer of T (and is denoted by Er) in my notes Darij Grinberg, An in-
troduction to the symmetric group algebra [Math 701, Spring 2024 lecture notes],
arXiv:2507.20706v1 (which I shall henceforth cite as [sga]). Note that this
element Et is quasi-idempotent, and specifically, its square is

n!
Ef = AE (55)

where f)‘ is the number of syrA (by Theorem 5.11.3 in [sga]). The Young
symmetrizer cr as you define it is the action of this element Er on ®,;C"
from the right (by permuting tensorands). Thus,

WrC" = cr - ®,C" = (®dC”) Er (56)

for each T € SYT (d).

Now, it can be shown that any two standard Young tableaux S, T € SYT (d)
satisfy

EsEr = 0 if S>T (57)
(with respect to the above-defined total order on SYT (d)). Indeed, letting
S and T have shapes A and p, respectively, we can argue as follows:

e If A > p in the lexicographic order on N”, then A # pu, and thus
EsEr = 0 follows from Proposition 5.11.15 in [sga] (which makes the
even stronger claim that EsaEr = 0 for each a € C[Sy]).

e If A\ = yand r(S) > r(T) in the lexicographic order on N, then
EsEr = 0 follows from Lemma 5.15.21 in [sga], since r (S) > r(T)
is saying that S > T with respect to the Young last letter order on
n-tabloids (see [sga] for details).

In either case, we get EsEr = 0, so that is proved.

Now, we claim the following:

Claim 1: The sum

Y. wrCt (58)
TESYT(d)

of subspaces of ®;C" is a direct sum.
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Claim 2: We have
®,C" = Z WrC".
TeSYT(d)

Proof of Claim 1. Assume the contrary. Thus, there exists a family (wr) rcgyr(4)
of vectors wr € WrC" such that not all these vectors wr are zero, but the

sum Y, wr is 0. Consider such a family. Thus, there exists some
TeSYT(d)

Q € SYT (d) such that wg # 0. Pick the smallest such Q (with respect to
the above-defined total order). Thus,

wp =0 forall P < Q. (59)
We have wg € WpC" = (®,C") Eg (by .) But shows that E2Q =
f_EQ Hence, each a € WoC" satisfies aEg = f—a (because a € WpC" =

(®4C") Eq allows us to write a as a = bEg for some b € ®;C", and there-

!
fore we have aEg = b EgEgq = n_/\ bEg = Aa) Applying this to
—— '~ f
n! =a
:Eé:f—AEQ
a = wg, we obtain woEg = waQ #0 (smce f/\ # 0 and wg # 0).
On the other hand, if P € SYT (d) satisfies P > Q, then EpEg = 0 (by (57))
and thus
E C"YEpEp =0,
wp Q€ (®d ) P Q/
eWpC" =0
=(®4C")Ep

so that

wpEq = 0. (60)
Now, we assumed that the sum Y. wris0. Thus,0 = Y wr=

TESYT(d) TESYT(d)
Y.  wp. Multiplying this equality by Eg from the right, we obtain
PeSYT(d)
0= Z wp EQ = Z ZUpEQ
PeSYT(d) PeSYT(d)
= Z Jp, Eq+woEq + Y. wrEg
PeSYT(d PeSYT(d);

since each P € SYT (d) satisfies
either P< QorP=QorP >Q

= ?/UQEQ 75 0.
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This obvious contradiction shows that our assumption was false; hence,

Claim 1 is proved. O
Proof of Claim 2. Let A = C|[S;]. From Corollary 5.15.25 in [sga], we know
that
A=P P AEr= P AEr= ) AEp.
AFd T syrA TeSYT(d) TeSYT(d)
h\/_/
= &
TeSYT(d)
Hence, in particular, 14 € Y. AE7, so that we can write 14 in the
TeSYT(d)

form

14 = Z arEr for some ar € A. (61)

TESYT(d)

Consider these ap. Now, for each w € ®,C", we have

w=wly=w Y  arEr (by 1))

TeSYT(d)
= Z warET € Z WTCn.
TeSYT(d)€(®an);T TESYT(d)
—WrC?

In other words, ®,C* C Y.  WpC". Hence,
TeSYT(d)

®C" = ). WrC
TeSYT(d)

This proves Claim 2. O
Combining Claim 1 with Claim 2, we obtain

2,C"= P WwrC” (internal direct sum)
TESYT(d)

=Pp { wrcn

Ad T sytA

This proves and therefore also Theorem 4.1.11. W

105. page 142, (4.1.5): Replace ”c% @c12” by “c12@® c%” in order to match the
order of the addends to the right of the arrow.
Also, it would be better to multiply “(v1 ® v3 + v @ v1) + (V1 ® V) — V2 ® v7)”
by %, so that the map becomes the identity map.
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106. page 142, Theorem 4.1.12: It is worth saying that this theorem is a direct
consequence of Corollary 4.1.14 (1) (which I prove below) and of the direct
sum decomposition (53).

107. page 143, Corollary 4.1.14: Let me give a reference for the proof of this
corollary, since it is not easy to locate in the literature.

I will use the book William Fulton, Young Tableaux, With Applications to
Representation Theory and Geometry, Cambridge University Press 1999, (see
also the errata). In the following, this book will be cited as [Fulton].

Proof of Corollary 4.1.14. (1) Set E := C". Let Er € C|[S;] be the Young
symmetrizer defined in (54). By the definition of WrC", we have

WrC" = cr (®,C") (by the definition of Wy C")
= c1 (®4E) (since C" = E)
. ( E®d> ( here, we switched from the notation ®, E to the )
more convenient notation E®? for the same thing

— E®E; (since c7 is right multiplication by E7) .

Note that [Fulton] denotes Et as c7.

Now, [Fulton] considers the I-module E*, about which he claims (on page
119 of [Fulton], in the paragraph below Exercise 11 in §8.3) that (in his
notations, which are different from ours!) “EA is isomorphic to the im-
age of the map E®" — E®" that is right multiplication by ¢;”. Translated
into our notations (noting that our d,n, E, T, U, Et correspond to [Fulton]’s
n,d,C", U, T,cy), this is saying that [Fulton]’s EA is isomorphic to the im-
age of the map E¥? — E®? that is right multiplication by Er. In other
words, [Fulton]’s E* is isomorphic to E®¥E; = WpC". This isomorphism
is constructed as follows:

EM=E <SA> (by Proposition 1 in [Fulton]’s §8.3)
= E®¢ Qcs,] st (by the definition of the E functor)
%C[Sd}-ET
> E @s,) (C[Sa] - Er)
= (62)

>~

(where the last = sign is a particular case of the isomorphism M ® 4 (Ae)
Me for each ring A, each right A-module M and each idempotent e € A).

Using the above isomorphism E* — WrC", the basis of E* constructed in
Theorem 1 of [Fulton]’s §8.1 can be translated into a basis of WrC". Let
us see what comes out of this translation. Theorem 1 of [Fulton]’s §8.1
claims that the vectors e;;, where U ranges over all semistandard tableaux
of shape A, form a basis of the vector space E* (recall that our T is [Fulton]’s
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U, and vice versa!). Consider a semistandard tableau U of shape A, and
the corresponding basis vector e;. The isomorphism E* — E (S') from
Proposition 1 in [Fulton]’s §8.3 maps this basis vector e;; € E* to the ten-
sor v (T) ® vt (again, our T is [Fulton]’s U, so this looks like “v (U) ® vy”
in [Fulton]), where v (T) € E®“ is the pure tensor that we call e(ru) (de-
fined in the exact same way), while vt is the polytabloid in the Specht
module S* corresponding to the standard tableau T. The isomorphism
S* — C[S4] - Er sends this latter polytabloid v7 to ET, and thus the induced
isomorphism E®4 Rcs,) St — E®4 ®c(s,] (C[Sa] - Er) sends v (T) ® vt to
v(T) ® Er. Finally, the isomorphism E®4 ®c(s, (C[S4] - Er) — E®9Er
sends v(T) ® Er to v(T)Er = e y)Er (since v(T) = e(yy). Alto-
gether, we thus see that our isomorphism E* — WrC" constructed in (62)
sends ey to e(r,7)Er (with the intermediate steps being ey — v (T) @ vr

v (T) ® Er — e(r,u)Er). Hence, it sends the whole basis (ew) ; ssyry Of E* to

a basis (e Er of WrC". We can rewrite this latter basis further
(T.U) U ssytA

as (CT (e(T,U) U sovn (since cr is right multiplication by Er, so that we
SSYT
have cr (e(T,u) = e(ru)Er for each U ssyrA). Thus, we have shown that
(cT (e(T u))) is a basis of WrC". This proves Corollary 4.1.14 (1).
! U ssytA

(2) Consider a diagonal matrix diag (t1,f2,...,tx) € I'. We compute the
trace trace (p (diag (t1,t2,...,tx))) using the basis of WrC" given in Corol-

lary 4.1.14 (1). The map p (diag (¢, t2, ..., t,)) acts on a basis vector ct <e(T,u))
by scaling it by the factor

n

p (diag (t1,t2, ..., tn)) - CT <€<T,u>) — [ty
i=1

(since cT (E(T,u)> is a linear combination of permutations of the pure tensor
e(r,u), and the latter pure tensor contains each e; as many times as there
are i’s in U). Thus, trace (p (diag (t1,t,...,t4))) is the sum of these factors

[1t#7sint over all U ssyrA. That is,
i=1

n .
trace (o (diag (t1,t2, ..., ta))) = Y. [ ™Y =sy(t1,t2, ... tn).
U ssyrA i=1

This proves Corollary 4.1.14 (2). &

108. page 144: “Any partition A - d can be encoded into a monomial w (A) :=
t]'t* - - - £ as follows: the exponent v; is the cardinality of the i-th column
in the Ferrers diagram of A. Equivalently, v; = # { j: /\]- > } It is easy to
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see that w (A) is the lexicographically leading monomial of the Schur poly-
nomial s, (f1,f2,...,t)” should be “Any partition A I d can be encoded
into a monomial w (A) := ti‘l tgz .-y as follows. It is easy to see that
w (A) is the lexicographically leading monomial of the Schur polynomial
sy (t1,t2,...,tn) (Where the variables are ordered by t; > t, > --- > t,)".

109. page 144, (4.1.8): The “cy W,C"” here means a direct sum of ¢, many
copies of W,C".

110. page 144: I am not sure I would call Algorithm 4.1.16 a “subduction algo-
rithm (cf. Algorithm 3.2.8)”; the Schur polynomials form a Z-module basis

of Z[ty,..., tn]s“, not a sagbi basis.
111. page 145, Algorithm 4.1.16: In Step 2, replace “£'£52 - - - /1" by “#11£)2 - - - t41”".

112. page 145, Example 4.1.17: “the space of polynomial functions” should be
“the space of homogeneous polynomial functions”.

113. page 145, Example 4.1.17: In (4.1.12), replace “s333)"” by “s(32.2)"-

114. page 146: “the space of homogeneous polynomials of degree d in the co-
efficients of a generic homogeneous polynomials of degree m” should be
“the space of homogeneous polynomials of degree m in the coefficients of
a generic homogeneous polynomial of degree d”.

115. page 147, §4.2: Replace “Ao f” by “f o A” everywhere in the third para-
graph of §4.2. (The group I acts on C [V] is a right action, not a left action.)

116. page 147, §4.2: “The symmetric power S (V) is a vector space of dimension
m+k—1

k
functions of degree k on V”: This identification is unnatural, and does not

. We identify it with the space of homogeneous polynomial

respect the I'-action in general. The vector space C [V]£ of all homogeneous
polynomial functions of degree k on V can be naturally identified with the
symmetric power Sy (V*), where I' acts on the dual space V* of V by the
transpose matrix (i.e., where the action of I' on V* is given by (f o A) (v) =
f(Av) forall A €T, f € V*and v € V). On both of these spaces, I' acts
from the right. Meanwhile, on the symmetric power S (V), the group T
acts from the left. Even if we transform the left action into a right action
by taking inverses (i.e., we define Af to be f o A~1), and even if we assume
that V = C" (in which case there is a “natural” vector space isomorphism
C [V]£ = Sk (V*) = S¢ (V) by way of the standard basis), the actions do
not become the same (unless you restrict them to the orthogonal group
o (C")).

This discrepancy prevents much of what is being done in Chapter 4 of the
book from being true “on the nose”. However, the approach to invariants
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by means of symmetric powers is nevertheless a valid one, and much of
what is done in Chapter 4 can be adapted once proper fixes are made. In
many cases, it suffices to read Sy (V*) for Si (V) and make sure to adapt
the representation theory of I to right (as opposed to left) I-actions. Even
without such an adaptation, the invariant-theoretical insights can often be
salvaged, since it can be shown that for any k € N and any representation
(V,p) of T, we have

dim (8¢ (v*)") = dim ((Sx (V))") (63)
(despite the lack of a I'-equivariant isomorphism Sy (V*) = S (V).
Let me outline a proof of (63). It relies on the following two facts:

Fact 1: Let (W, T) be any I'-representation. Then, dim ((W*)r> =
dim (WT).

Fact 2: Let (V,p) be any I'-representation. Let k € N. Then,
Sk (V*) = (S (V)" as I'-representations.

Proof of Fact 1 (sketched). Let’s say that W is a left ['-representation. Decom-
pose Winto a direct sum I) & I, @ - - - @ I of irreducible left I'-representations.
Then, dim (Wr) is the number of i € {1,2,...,k} for which I; is isomorphic
to the trivial 1-dimensional representation C. But W= L, @ L --- @ I as
left I'-representations yields

W2 (Lohd --0L) 2oL o- oI
as right I'-representations, and moreover, the addends I here are again
irreducible (since the dual of an irreducible left I'-representation is an ir-

reducible right I'-representation). Hence, dim ((W*)r) is the number of

i € {1,2,...,k} for which I’ is isomorphic to the trivial 1-dimensional
representation C.

Butthei € {1,2,...,k} thatsatisfy I; = C are precisely thosei € {1,2,...,k}
that satisfy I = C (since C* = C). Thus, the above descriptions of

dim ((W*)r> and of dim (W") boil down to the same thing, and we con-
clude that dim ((W*)F> = dim (WT). This proves Fact 1. [

Proof of Fact 2 (sketched). There is an obvious bilinear form
‘B : Sk (V*) X Sk (V) — C,
(fifa:- fir v102- - 0) = Y A <Ua(1)> f2 (%(2)) o J (%(k))

O’ESk

= Y. foy (01) fo2) (v2) - fory (vi),

UGSk
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which is easily seen to be I'-tensorial (i.e., any ¢ € Sx (V*) and w € S (V)
and A € T satisfy B(go A, w) = B(g, Aw)) and nondegenerate (i.e., it
produces an isomorphism Sy (V*) — (S¢(V))*) P% Thus, it gives rise
to an isomorphism S (V*) = (Sx (V)" of right [-representations. This
proves Fact 2. O

Now follows from

dim ((Sk (v*))f) = dim (((Sk (V))*)F) (by Fact 2)
= dim ((Sk (V))r> (by Fact 1, applied to W = S (V).

117. page 147, §4.2: After “This implies that f is a homogeneous polynomial
of degree gn/d”, I would add “(in fact, we can WLOG assume that f
is homogeneous; then, the assumption fo A = (detA)® - f rewrites as
f(p(A)-v) = (detA)? - f (v), but the left hand side of the latter equality
is homogeneous of degree d - deg f in the entries of A, while the right hand
side is homogeneous of degree gn in the entries of A; thus, d - deg f = gn
and therefore deg f = gn/d)”.

118. page 148, Proposition 4.2.1: As remarked above, the polynomial ring C [V]
is not isomorphic to the symmetric algebra S (V') of V as a I''module. Con-
sequently, “C [V]” should be replaced by “S (V)" throughout this proposi-
tion and its proof.

119. page 150, proof of Lemma 4.2.4: The “typical such ssyrA” looks not like
1 -« 1 1 1 1 --- 1
1 ««v 1 2 ... 2

but like

120. page 150, proof of Lemma 4.2.4: “By Corollary 4.1.14 (b)” should be “By
Corollary 4.1.14 (2)”.

121. page 157: “which we denote with (), ()¢ and ), respectively” should be
“which we denote with (), ()g and (), respectively”.

122. page 157: “Given a matrix-valued polynomial function ¢” should be “Given
a polynomial function ¢ € C[t]”.

123. page 157, proof of Theorem 4.3.4: Replace each “k” in this proof by an

“ 7

n-.

20For the nondegeneracy, we have to thank the facts that V is finite-dimensional and that our
base field C has characteristic 0.
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124. page 157, proof of Theorem 4.3.4: In the equality (4.3.5) and further on,
the notation

"¢ (u = st)
auUL?Tl auUzﬂz o aul‘fn,ﬂn

should be understood as

"¢ (u) et

auUlﬂl auﬂzlﬂz au(fn,ﬂn a
. . . . "¢ (u
(that is, we first compute the n-th partial derivative ¢ (u)
aug'lln'l au0—2/7-[2 A augnlnn

in the ring C [u], and then substitute the entries of the matrix st for the re-
spective entries of u in the result we obtained). An alternative (and more
standard) way to express the same thing is

"¢ (u) (st).

auallnl auJZ/nz T augﬂ/nn

125. page 157, proof of Theorem 4.3.4: Here is a quick outline of how (4.3.5)
can be proved. Namely, (4.3.5) follows by n-times repeated application of

the formula
99 (st) _ i (847 (u)) (st) - Sop, (64)

atp,q auglq

=1

which holds for all p,q € {1,2,...,n}. This formula (64), in turn, is a par-
ticular case of the multivariate chain rule (since ¢ (st) = ¢ (¢ (t)), where ¥
is the function sending each entry ¢; ; of the matrix t to the respective entry

n

Y Sintp,; of st). Alternatively, 1} can be proved by induction on deg ¢,
h=1
using the fact that both sides of (64) are functions w (¢) of ¢ that satisfy
the recurrence

w (@) = ¢ (st) - w () +w (¢) - w (st)

” .
(by the Leibniz rule) and send each indeterminate ¢;; to {O’ Tf 97 ] !

Si,p/ irg=j
(this is easy to check directly).

126. page 157, proof of Theorem 4.3.4: “antisymmetrize the expression (4.3.5)
with respect to 7 € S,,” simply means “multiply (4.3.5) by sign (71) and
sum the result over all 7 € S,,”. (No further substitution of variables is
required, unlike in a usual antisymmetrization of polynomials.)

127. page 158, proof of Theorem 4.3.4: “The proof of the second identity in
(4.3.4) is analogous”: This needs some caveats. Instead of applying (4.3.3)
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128.

129.
130.

131.

132.

133.

directly with each t; ; replaced by s; ;, we have to apply the identity

0(g) = Y sign(n) 5=t

nes, tnl,l atnz,Z T atm,,n

(which follows from (4.3.3) by first reindexing the sum using the bijection
n
7 — 71! and then rewriting the expression 9P as
atlln{l atzlngl e Ob,
"¢ )
Ot 1 Oty + -+ Otryn’
Instead of (64), we need the analogous formula
o¢ (st L (0¢ (u
M - Z (M) (st) - too- (65)

0Sp,q =i\ dupe

Instead of (4.3.5), we need the formula
"¢ (st)
0S7,1 95,2 *+* OS,
i "¢ (u = st)

- ¥

01,02,--,0n

,01%2,0 n,oy:.
=1 auﬂ:l/Ul auﬂZ/UZ T auﬂnzgn "

page 158, Corollary 4.3.6: It can be shown that this constant ¢, equals
p(p+1)(p+2)---(p+n—1). Indeed, Corollary 4.3.6 with this particu-
lar formula for c, is known as the Cayley identity, and appears (e.g.) as
Corollary A.4 in Sergio Caracciolo, Andrea Sportiello, Alan D. Sokal, Non-
commutative determinants, Cauchy-Binet formulae, and Capelli-type identities. L.
Generalizations of the Capelli and Turnbull identities, arXiv:0809.3516v2 (see
my errata).

page 159: “its image to f = f (tv)” should be “its image f ot = f (tv)”.

page 163, proof of Proposition 4.4.2: “as polynomial functions” should be
“as rational functions”.

page 163, proof of Proposition 4.4.2: In (4.4.5), the “dx; dx;” on the right
hand side should be “dx; dx;”.

page 163, definition of the discriminant of a quadratic form: You prob-
n n n n

ably want to replace ”El ]giai]-xix]-” by ”El ];1 a;x;xj (with a;; = aj;)” in

order to recover the factors 2 in (4.4.7).

page 164, Theorem 4.4.3: “ring a quadratic” should be “ring of a quadratic”.
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134. page 169, proof of Lemma 4.5.1: The “if” direction of the lemma can also
be proved without any reference to connectedness and Lie groups. Here is
an outline of this proof:

Proof of the “if” direction of Lemma 4.5.1. Let v € V be a vector. Assume that
0" (Eij) -v=0 foralli,j € {1,2,...,n} withi#j,
and that
p*(Eij)-v=g-v forallie {1,2,...,n}.

We can combine these two assumptions into one: namely, for all i,j €
{1,2,...,n}, we have

p* (Ei,]‘) U= 51‘,]‘8 -0, (66)
where §; ; is the Kronecker delta of i and j. (This covers both the case i = j
and the case i # j.)

Let us set
Y(T) := (detT) ¢ -p(T) € GL(V) foreach T € T.

Thus, - is a rational map from I' to GL (V) (that is, if we choose a basis of
V and coordinatize GL (V) C End (V) in the obvious way using this basis,
then all the coordinates of y (T) are rational functions in the coordinates of
T). By the definition of 7y, we have

v(1) = (det1) ¢ -p (1) =idy .
———— N
=1-8=1 =idy
Moreover, for each T € T', we have
p(T) = (detT)® v (T) (67)

(since 7y (T) = (detT) ¢ - p(T)). Thus, for each i,j € {1,2,...,n}, we have

0
(T
<ati'fp( )>T—1

- (s (e (m)

T=1
d d
=\ 35 (detT)3 (1) + (det1)$ - 5 (T)
. L] T=1 :gv/ V:lgzl 1] T—1

=0i;8
(this is easy to check)

(by the Leibniz rule for noncommutative products)

, 9
= ;g idy + (at,_v(T)> /
v T=1
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so that
0 0 . « .
57 (T) =5~ (T) —0;;gidv = p* (Eij) — digidy
b =1 \ Y T=1
=0"(Ei))
(by (45.2)

and therefore
0 . .
—7(T) v = (p" (E;j) — 6;;8idy) - v
ot; | -

= p* (Ei’]’) -0 — 5,',]'g c0=20 (by ) .

Thus, we have shown that

(8?..7(T)) v=0 foreachi,je {1,2,...,n}. (68)
b T=1

Now, fix S € I'. Leti,j € {1,2,...,n}. Foreach T € T, we have
p(ST)=p(S)-p(T)

(since p is a group action) and thus

-8
v (ST) = ( det (ST) ) - p(ST) (by the definition of 7y)
~— ~——
=detS-detT =p(S)-p(T)

= (detS-detT) ¥ -p(S)-p(T)

(.

=(detS)"8-(detT) ¢
— (detS)¥-p(S) - (detT) & -p(T)

() (1)
(by the definition of ) (by the definition of 7)
=7(5) -7 (T)

and therefore
Y(ST)-v="7(S5) - 7(T) v

Applying the operator

d
5 |7=1 to this equality (i.e., taking the derivative
i,j
with respect to ¢;; at the point T = 1), we obtain
d 0

ot (v (ST) - 0)7q = ot

(Y (S) v (T) v)p—y =7(S)- (a?.j’y(T)> )
b T=1

(by €9)

-0 (69)

i,j

J/
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On the other hand, the map I' — V, T +— 7 (ST) - v can be written as the
composition of the mapsI' - I, T — STand T — V, U — o (U) - 0.
Thus, the chain rule for multivariate functions yields

0
ot; (v (ST) - 0) 4

& 0
_kl 1( <STkl)>Tl.(Wk,l(7(U)'v))us;

(.

. d
_Jskir D=7 =<a—7(U)> v
0, ifl#] ”g'l u=s1
(since (ST)kfl:;lé Sktnl) = (auk_,l ’Y(U)> . S.v

(since S1=5) -

where uy ; denotes the (k, 1) -th entry of the matrix U € T,
and where (ST),, denotes the (k,I)-th entry of the matrix ST

" . .
ski, ifl=7; ( 0 )
= S Dol s—y ) ¥
kz—l {O, if [ #] aukll U=S

)
> s (aa <u>) o
k= "k u=s

here, we have removed all addends with [ # |
from the sum, since these addends are 0 )

—_

Comparing this with (69), we obtain

Zskl (au (u)) -0 =0. (70)

u=s

Now forget that we fixed i. We thus have proved the equality for all
ie{l,2,...,n}.

But the matrix S is invertible (since S € T = GL (C")). Let S~ = (s’ )
PA) pae{1,2,...n}

be its inverse matrix. Then, SS™! =1, so that all k,q € {1,2,...,n} satisfy
n

Y Skisig = kg (71)
i=1

(by comparing the (k,q)-th entries of the matrices SS~! and 1). Now, for
any q € {1,2,...,n}, we have

isiq‘ iskﬂ" (i (U)> v=0
u=s

auk,j

. i

(by (O
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and thus

0
u -0
Oty ( )> u=s

(c
(a

u Y
auk'f ( )> u=s

n
S 1,q Z Sk,l

k=1

n
Z Sk 1 1,q
:1

1 M: LIM=

_(5k/ 3 e ’
by @) = ( (V(U)'U))
auk,] Ues
= Yy (ai <v<u>-v>> - (ai (v (U) -v))
k=1 Ukj U=$ Haj u=s

(since all the addends of the sum are 0 except for the addend for k = ¢). In
other words,

(i('y(U)v)> =0 forallg € {1,2,...,n}.

auq,j U—s

Now, forget that we fixed j. We thus have shown that

(L(y(u)v)) =0 forallg,je{1,2,...,n}.

auq,]' U—s

In other words, all the partial derivatives of v (U) - v (as a function in
U €7T) at the point U = S are 0. Since S € I' was also chosen arbitrary, this
shows that all the partial derivatives of ¢ (U) - v (as a function in U € I') at
every point are 0. Therefore, this function o (U) - v must be constant (since
a rational function whose all partial derivatives at every point are 0 must
be ConstantEI) In particular, every T € I thus satisfies

W(T)-v:z\(/l_z-v:v

—idy
and therefore
p(T) -v=(detT) - (T) v (by (67))
h\,d

=0

= (detT)*

2lFor those who want to prove this without the use of analysis: First, reduce the result to the
case of a univariate rational function with values in C (by focussing on a single coordinate
of the output and on a change in a single coordinate of the input); then express this rational
function as a ratio f/g of two coprime polynomials f and g, and argue that (f/g)" = 0 entails
f'e¢ = fg', which can be combined with the coprimality of f and g to yield f | f' and ¢ | ¢/,
which is absurd unless f and g are constant.
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135.

136.

137.

In other words, v is a I'-invariant of index g. This proves the “if” direction
of Lemma 4.5.1.

page 170, Theorem 4.5.2: In the first equality in the display (4.5.7), replace
“tori =j,2,...,n" by “forj=1,2,...,n".

page 174, proof of Lemma 4.5.4: On the right hand side of the display,

U(i),]: 7 b //xvi,j

replace ”xZ(i)’] a(i),].” (otherwise, we don’t get an S;,-invariant sum).

page 185, Lemma 4.7.2: Remark: If t > 1, then the bound “< s (t 4 1)5_1”
can be replaced by the (slightly less horrible) bound “< s (#*~1 — 1)” (since

sl ZlforeachkzO).
rt+k — t
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