On the straightening law for minors of a matrix

Richard G. Swan

http://www.math.uchicago.edu/~swan/strLaw.pdf

version of 18 February 2003

Errata and addenda by Darij Grinberg

I will refer to the results appearing in the preprint "On the straightening law for minors of a matrix" by the numbers under which they appear in this preprint (specifically, in its version of 18 February 2003, published on http://www.math.uchicago.edu/~swan/strLaw.pdf).

11. Errata

- **Page 1:** The name "Doubilet" is misspelt as "Doubillet" twice (once in the abstract, and once again in §1).,
- Page 2, proof of Lemma 2.3: Replace "etc. ,each" by "etc., each".
- **Page 2, proof of Theorem 2.6:** The " σ " comes out of the blue in the proof, as there is no σ in the statement of the theorem. To clarify where it comes from, I suggest adding the following sentence at the beginning of the proof: "By Corollary 2.5, we can WLOG assume that X is a permutation matrix $P(\sigma^{-1})$ for some $\sigma \in \mathcal{S}_n$.".
- **Page 3, §3:** Replace "say that S is good" by "say that S is good". (I have replaced the text-"S" by a math-"S" here.)
- **Page 3, Theorem 3.1:** It would be helpful to clarify that some of the (A_i, B_i) may be equal.
- Page 3, proof of Theorem 3.1: Replace " $B_i \leq B$, and" by " $B_i \leq B$, and".
- Page 3, proof of Theorem 3.1: Replace "all other terms" by "all other nonzero terms".
- **Page 4, proof of Theorem 4.1:** This proof is confusing due to some of its parts being out of order. The determinant $Y(P \mid Q)$ is not well-defined before the sets I and J are totally ordered; I even would not call Y a "square matrix" until the indexing set I for its rows and the indexing set J for its columns have been identified. I suggest modifying the proof as follows:
 - At the beginning of the proof, add the following sentence: "We WLOG assume that |S'| = |T'| and |S''| = |T''|, as otherwise the left hand side is 0.".

- Move the second paragraph of the proof (the paragraph that begins with "Order I by setting" and ends with "and similarly for subsets of J") to before the sentence that begins with "Define a square matrix Y".
- Before the sentence that begins with "Define a square matrix Y", add the following sentence: "Now the sets I and J are totally ordered. Let k = |I| = |J|. Then, we have order-preserving bijections $I \to \{1,2,\ldots,k\}$ and $J \to \{1,2,\ldots,k\}$. Use these bijections to identify I and J with $\{1,2,\ldots,k\}$. For every subset Q of $\{1,2,\ldots,k\}$, we will write \widetilde{Q} for the complement $\{1,2,\ldots,k\}-Q$."

Once this is done, *Y* actually becomes a honest square matrix (of size $k \times k$).

- Page 4, proof of Theorem 4.1: Replace " $(S' \mid T')(S'' \mid T'') = Y\{I' \mid J'\}$ " by " $(S' \mid T')(S'' \mid T'') = \pm Y\{I' \mid J'\}$ ". (At least I don't see a reason why the \pm must always be a +. Maybe it is?)
- **Page 5, proof of Lemma 4.2:** Add "WLOG assume that |K| = |I'| (since otherwise, $\varphi(K) \neq S'$ is obvious)." after the first sentence of the proof.
- Page 5, proof of Lemma 4.2: Remove ", $S' = \{s_1 < \cdots < s_p\}$ " (as this is unnecessary).
- **Page 5, proof of Lemma 4.2:** The argument "But i_{ν} lies in I' so k_{ν} is in I'' and therefore $k_{\nu} > i_{\nu}$ " goes a bit too fast for me. I suggest adding a few details, e.g., as follows:
 - "Recall that φ is injective on I' and on K. Thus, from $I' = \{i_1 < \cdots < i_p\}$ and $K = \{k_1 < \cdots < k_p\}$, we obtain $\varphi(I') = \{\varphi(i_1) < \cdots < \varphi(i_p)\}$ and $\varphi(K) = \{\varphi(k_1) < \cdots < \varphi(k_p)\}$. Hence, $\varphi(K) = S' = \varphi(I')$ shows that $\varphi(k_{\nu}) = \varphi(i_{\nu})$. Since $k_{\nu} \neq i_{\nu}$ and $i_{\nu} \in I'$, this entails $k_{\nu} \in I''$ and therefore $k_{\nu} > i_{\nu}$ ".
- Page 5, §5: A nitpick: Replace "whose entries are indeterminates" by "whose entries are distinct indeterminates".
- **Page 5, Theorem 5.3:** In this theorem, you probably want to state that two standard monomials which only differ by factors of the form (\emptyset, \emptyset) are considered to be identical. (You can always add (\emptyset, \emptyset) to the end of a standard monomial without changing the value of this monomial.)
- Page 6, proof of Theorem 5.3: Replace all appearances of "leading form" by "leading term" (or is "leading form" really a synonym for "leading term"?).
- Page 6, proof of Theorem 5.3: Add a period before "Similarly, if".

- Page 6, proof of Theorem 5.3: After " $z(B) = z_{b_1}^{(1)} \cdots z_{b_p}^{(p)}$ ", add "(if $N \ge |A| = |B|$)".
- Page 6, References: "Desarmenian" \rightarrow "Desarmenien" in [4].