Comments on arXiv:2105.00538v3

Darij Grinberg

March 5, 2023

This is a comment on the preprint arXiv:2105.00538v3 (Eoghan McDowell, Mark Wildon, *Modular plethystic isomorphisms for two-dimensional linear groups*, arXiv:2105.00538v3, to appear in Journal of Algebra), in which I (believe I) prove Theorem 1.4 and Theorem 1.2 of said preprint in more transparent (and certainly less combinatorial) ways. I try to imitate the notation of the preprint, but in some places I cannot help reverting to my own (in particular, my groups all act from the left). I let *K* be an arbitrary commutative ring (not necessarily a field) throughout this comment (however, I will only work with free *K*-modules).

0.1. The modular Wronskian isomorphism

Let *K* be an arbitrary commutative ring. Let *E* be the natural representation of the group $GL_2(K)$ on the free *K*-module K^2 . Let $m, \ell \in \mathbb{N}$. In Theorem 1.4 of arXiv:2105.00538v3, you show that

$$\operatorname{Sym}_m \operatorname{Sym}^{\ell} E \otimes (\det E)^{\otimes m(m-1)/2} \cong \Lambda^m \operatorname{Sym}^{\ell+m-1} E$$

as $GL_2(K)$ -representations via a certain isomorphism that you call ζ in Definition 4.2.

Let me prove this in a somewhat simpler way. Specifically, I will show that ζ is GL₂ (*K*)-equivariant. The bijectivity of ζ follows easily enough from a triangularity argument (which is what you do in your proof of Lemma 4.5).

Let K[X, Y] be the polynomial ring in 2 variables X, Y. We will identify Sym *E* with K[X, Y], thus writing elements of Sym *E* as f(X, Y). The group GL₂(*K*) acts on K[X, Y] by the rule

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot f(X,Y) = f(aX + cY, bX + dY)$$

for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(K)$ and $f(X,Y) \in K[X,Y]$.

Let K [**X**, **Y**] be the polynomial ring in 2m variables $X_1, X_2, ..., X_m, Y_1, Y_2, ..., Y_m$. The symmetric group S_m acts on this ring K [**X**, **Y**] by K-algebra automorphisms (with any $\sigma \in S_m$ sending each X_i to $X_{\sigma(i)}$ and sending each Y_i to $Y_{\sigma(i)}$). Let $K[\mathbf{X}, \mathbf{Y}]^{\text{sym}}$ be the invariant ring of this action. The group $\text{GL}_2(K)$ acts on $K[\mathbf{X}, \mathbf{Y}]$ by acting on each (X_i, Y_i) -pair separately – i.e., by the rule

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot f(X_i, Y_i) = f(aX_i + cY_i, bX_i + dY_i)$$

for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(K)$ and $i \in [m]$ and $f(X_i, Y_i) \in K[X_i, Y_i]$.

This GL₂ (*K*)-action commutes with the action of S_m , and thus induces a GL₂ (*K*)-action on $K [\mathbf{X}, \mathbf{Y}]^{\text{sym}}$.

We will build a commutative diagram

where the horizontal \hookrightarrow maps are the obvious inclusions and where the other maps (all of them *K*-linear) are defined as follows:

- The injection α : Sym_m (Sym^{ℓ} E) \hookrightarrow Sym_m (Sym E) is obtained by applying the Sym_m functor to the (split) injection Sym^{ℓ} E \hookrightarrow Sym E. This is clearly GL₂ (*K*)-equivariant.
- The isomorphism $\kappa : (\text{Sym } E)^{\otimes m} \to K[\mathbf{X}, \mathbf{Y}]$ is the well-known isomorphism that sends each tensor

$$f_1(X,Y) \otimes f_2(X,Y) \otimes \cdots \otimes f_m(X,Y)$$

to $f_1(X_1,Y_1) f_2(X_2,Y_2) \cdots f_m(X_m,Y_m)$.

This is clearly $GL_2(K)$ -equivariant and S_m -equivariant.

- The isomorphism β : Sym_{*m*} (Sym *E*) $\rightarrow K [\mathbf{X}, \mathbf{Y}]^{\text{sym}}$ is the restriction of κ to the *S*_{*m*}-fixed spaces. It is clearly GL₂ (*K*)-equivariant (since κ is).
- The injection $\gamma : \Lambda^m \operatorname{Sym}^{\ell+m-1} E \hookrightarrow \Lambda^m \operatorname{Sym} E$ is obtained by applying the Λ^m functor to the (split) injection $\operatorname{Sym}^{\ell+m-1} E \hookrightarrow \operatorname{Sym} E$. This is clearly $\operatorname{GL}_2(K)$ -equivariant.

• The map $\delta : \Lambda^m \operatorname{Sym} E \hookrightarrow K [\mathbf{X}, \mathbf{Y}]$ sends each

$$f_{1}(X,Y) \wedge f_{2}(X,Y) \wedge \cdots \wedge f_{m}(X,Y)$$

to
$$\sum_{\sigma \in S_{m}} (\operatorname{sgn} \sigma) \cdot f_{\sigma(1)}(X_{1},Y_{1}) f_{\sigma(2)}(X_{2},Y_{2}) \cdots f_{\sigma(m)}(X_{m},Y_{m}).$$

This map δ is clearly $\operatorname{GL}_2(K)$ -equivariant, and furthermore is easily seen to be injective (since it factors as $\delta = \kappa \circ \delta'$, where $\delta' : \Lambda^m \operatorname{Sym} E \hookrightarrow (\operatorname{Sym} E)^{\otimes m}$ is the canonical injection sending each $f_1(X, Y) \wedge f_2(X, Y) \wedge \cdots \wedge f_m(X, Y)$ to $\sum_{\sigma \in S_m} (\operatorname{sgn} \sigma) \cdot f_{\sigma(1)}(X, Y) \otimes f_{\sigma(2)}(X, Y) \otimes \cdots \otimes f_{\sigma(m)}(X, Y)).$

• The injection $\iota : (\operatorname{Sym}^{\ell} E)^{\otimes m} \hookrightarrow (\operatorname{Sym} E)^{\otimes m}$ is obtained by applying the \otimes^m functor to the (split) injection $\operatorname{Sym}^{\ell} E \hookrightarrow \operatorname{Sym} E$. This is clearly $\operatorname{GL}_2(K)$ -equivariant.

• The map
$$\omega : (\operatorname{Sym}^{\ell} E)^{\otimes m} \to \Lambda^m \operatorname{Sym}^{\ell+m-1} E$$
 sends each tensor
 $f_1(X,Y) \otimes f_2(X,Y) \otimes \cdots \otimes f_m(X,Y)$
to $f_1(X,Y) X^{m-1}Y^0 \wedge f_2(X,Y) X^{m-2}Y^1 \wedge \cdots \wedge f_m(X,Y) X^{m-m}Y^{m-1}.$

This is the map you describe in Theorem 1.4.

• We let alt : K [**X**, **Y**] \rightarrow K [**X**, **Y**] be the *K*-linear map that sends each polynomial $g \in K$ [**X**, **Y**] to

alt
$$g := \sum_{\sigma \in S_m} (\operatorname{sgn} \sigma) \cdot \underbrace{(\sigma \cdot g)}_{=g(X_{\sigma(1)}, X_{\sigma(2)}, \dots, X_{\sigma(m)}, Y_{\sigma(1)}, Y_{\sigma(2)}, \dots, Y_{\sigma(m)})}$$

This map alt is called the *alternator*, and its image is the space of all alternating polynomials in $K[\mathbf{X}, \mathbf{Y}]$ (but we won't use this). The map alt is easily seen to be a $K[\mathbf{X}, \mathbf{Y}]^{\text{sym}}$ -module morphism: i.e., we have

$$\operatorname{alt}(fg) = f \cdot \operatorname{alt} g \tag{1}$$

•

for any $f \in K[\mathbf{X}, \mathbf{Y}]^{\text{sym}}$ and any $g \in K[\mathbf{X}, \mathbf{Y}]$.

• The map ψ : $K[\mathbf{X}, \mathbf{Y}] \rightarrow K[\mathbf{X}, \mathbf{Y}]$ sends each polynomial $f \in K[\mathbf{X}, \mathbf{Y}]$ to alt $(f\mathbf{X}^{d}\mathbf{Y}^{e})$, where

$$\mathbf{X}^{d} := X_{1}^{m-1} X_{2}^{m-2} \cdots X_{m}^{m-m} = \prod_{i=1}^{m} X_{i}^{m-i}$$
$$\mathbf{Y}^{e} := Y_{1}^{0} Y_{2}^{1} \cdots Y_{m}^{m-1} = \prod_{i=1}^{m} Y_{i}^{i-1}.$$

and

This is not per se $GL_2(K)$ -equivariant (for m > 1 and $K \neq 0$).

The commutativity of the above diagram is easy to see: The top-left and the bottom-left square obviously commute, while the commutativity of the right rectangle boils down to the equality

$$\sum_{\sigma \in S_m} (\operatorname{sgn} \sigma) \cdot \prod_{i=1}^m \left(f_i \left(X_{\sigma(i)}, Y_{\sigma(i)} \right) X_{\sigma(i)}^{m-i} Y_{\sigma(i)}^{i-1} \right)$$
$$= \sum_{\sigma \in S_m} (\operatorname{sgn} \sigma) \cdot \prod_{i=1}^m \left(f_{\sigma(i)} \left(X_i, Y_i \right) X_i^{m-\sigma(i)} Y_i^{\sigma(i)-1} \right)$$

(for all $f_1, f_2, ..., f_m \in K[X, Y]$), which is easily checked (just substitute σ^{-1} for σ in the sum).

Now, your ζ is the restriction $\omega \mid_{\operatorname{Sym}_m \operatorname{Sym}^{\ell} E}$. Thus, we need to prove that ω restricts to an $\operatorname{GL}_2(K)$ -equivariant map

from
$$\operatorname{Sym}_m \operatorname{Sym}^{\ell} E \otimes (\det E)^{\otimes m(m-1)/2}$$
 to $\Lambda^m \operatorname{Sym}^{\ell+m-1} E$

(where " \otimes (det *E*)^{$\otimes m(m-1)/2$}" is seen as a twist of the GL₂ (*K*)-action – i.e., we identify Sym_{*m*} Sym^{ℓ} *E* \otimes (det *E*)^{$\otimes m(m-1)/2$} with Sym_{*m*} Sym^{ℓ} *E* as a *K*-module¹).

In other words, we need to prove that

$$A \cdot \omega (v) = (\det A)^{m(m-1)/2} \cdot \omega (Av)$$
⁽²⁾

for any $A \in GL_2(K)$ and any $v \in Sym_m Sym^{\ell} E$. In view of the above commutative diagram (and in view of the injectivity of γ and δ), it suffices to show that

$$A \cdot \psi(w) = (\det A)^{m(m-1)/2} \cdot \psi(Aw)$$
(3)

for any $A \in GL_2(K)$ and any $w \in K[\mathbf{X}, \mathbf{Y}]^{sym}$ (because if we have proved (3), then we can apply (3) to $w = \beta(\alpha(v))$ and then "unapply" the GL₂(*K*)-equivariant map $\delta \circ \gamma$ to obtain (2)).

So let us prove (3). We fix $A \in GL_2(K)$ and $w \in K[\mathbf{X}, \mathbf{Y}]^{sym}$. Then, $Aw \in K[\mathbf{X}, \mathbf{Y}]^{sym}$ (since the actions of $GL_2(K)$ and of S_m on $K[\mathbf{X}, \mathbf{Y}]$ commute). Now, the definition of ψ yields

$$\psi(Aw) = \operatorname{alt}\left((Aw)\,\mathbf{X}^{d}\mathbf{Y}^{e}\right) = (Aw) \cdot \operatorname{alt}\left(\mathbf{X}^{d}\mathbf{Y}^{e}\right) \tag{4}$$

(by (1), since $Aw \in K [\mathbf{X}, \mathbf{Y}]^{\text{sym}}$). On the other hand,

$$\psi(w) = \operatorname{alt}\left(w\mathbf{X}^{d}\mathbf{Y}^{e}\right) = w \cdot \operatorname{alt}\left(\mathbf{X}^{d}\mathbf{Y}^{e}\right) \qquad (by (1), \text{ since } w \in K[\mathbf{X}, \mathbf{Y}]^{\operatorname{sym}}),$$

so that

$$A \cdot \psi(w) = A \cdot \left(w \cdot \operatorname{alt} \left(\mathbf{X}^{d} \mathbf{Y}^{e} \right) \right) = (Aw) \cdot A \left(\operatorname{alt} \left(\mathbf{X}^{d} \mathbf{Y}^{e} \right) \right).$$
(5)

¹because $(\det E)^{\otimes m(m-1)/2}$ is canonically isomorphic to *K* as a *K*-module, and of course we have $W \otimes K \cong W$ for any *K*-module *W*

However, I claim that $A\left(\operatorname{alt}\left(\mathbf{X}^{d}\mathbf{Y}^{e}\right)\right) = (\det A)^{m(m-1)/2} \cdot \operatorname{alt}\left(\mathbf{X}^{d}\mathbf{Y}^{e}\right)$. Indeed, this is probably easiest to see by factoring alt $(\mathbf{X}^{d}\mathbf{Y}^{e})$ explicitly: We have

$$\operatorname{alt} \left(\mathbf{X}^{d} \mathbf{Y}^{e} \right) = \sum_{\sigma \in S_{m}} \left(\operatorname{sgn} \sigma \right) \cdot \underbrace{\left(\sigma \cdot \left(\mathbf{X}^{d} \mathbf{Y}^{e} \right) \right)}_{=\prod_{i=1}^{m} \left(X_{\sigma(i)}^{m-i} Y_{\sigma(i)}^{i-1} \right)} = \sum_{\sigma \in S_{m}} \left(\operatorname{sgn} \sigma \right) \cdot \prod_{i=1}^{m} \left(X_{\sigma(i)}^{m-i} Y_{\sigma(i)}^{i-1} \right)$$
$$= \operatorname{det} \left(\left(\left(X_{j}^{m-i} Y_{j}^{i-1} \right)_{1 \leq i \leq m, \ 1 \leq j \leq m} \right) \right)$$
$$= \left(Y_{1} Y_{2} \cdots Y_{m} \right)^{m-1} \operatorname{det} \left(\underbrace{\left(\left(\left(\frac{X_{j}}{Y_{j}} \right)^{m-i} \right)_{1 \leq i \leq m, \ 1 \leq j \leq m} \right)}_{=\prod_{1 \leq i < j \leq m} \left(\frac{X_{i}}{Y_{i}} - \frac{X_{j}}{Y_{j}} \right)} \right)$$
$$(by the Vandermonde determinant)$$
$$= \left(Y_{1} Y_{2} \cdots Y_{m} \right)^{m-1} \prod_{1 \leq i < j \leq m} \left(\frac{X_{i}}{Y_{i}} - \frac{X_{j}}{Y_{j}} \right)$$

$$= (Y_1 Y_2 \cdots Y_m)^{m-1} \prod_{1 \le i < j \le m} \left(\frac{X_i}{Y_i} - \frac{Y_j}{Y_j} \right)$$
$$= \prod_{1 \le i < j \le m} (X_i Y_j - X_j Y_i),$$

so that

$$A\left(\operatorname{alt}\left(\mathbf{X}^{d}\mathbf{Y}^{e}\right)\right) = A\left(\prod_{1 \le i < j \le m} \left(X_{i}Y_{j} - X_{j}Y_{i}\right)\right) = \prod_{1 \le i < j \le m} \underbrace{A\left(X_{i}Y_{j} - X_{j}Y_{i}\right)}_{=\operatorname{det}A \cdot \left(X_{i}Y_{j} - X_{j}Y_{i}\right)}$$

$$(\operatorname{straightforward to verify})$$

$$= (\det A)^{m(m-1)/2} \cdot \prod_{1 \le i < j \le m} (X_i Y_j - X_j Y_i)$$
$$= (\det A)^{m(m-1)/2} \cdot \operatorname{alt} \left(\mathbf{X}^d \mathbf{Y}^e \right).$$

Thus, (5) becomes

$$A \cdot \psi(w) = (Aw) \cdot \underbrace{A\left(\operatorname{alt}\left(\mathbf{X}^{d}\mathbf{Y}^{e}\right)\right)}_{=(\det A)^{m(m-1)/2} \cdot \operatorname{alt}\left(\mathbf{X}^{d}\mathbf{Y}^{e}\right)}$$
$$= (\det A)^{m(m-1)/2} \cdot \underbrace{(Aw) \cdot \operatorname{alt}\left(\mathbf{X}^{d}\mathbf{Y}^{e}\right)}_{=\psi(Aw)}_{(\operatorname{by}(4))} = (\det A)^{m(m-1)/2} \cdot \psi(Aw) \,.$$

This proves (3), and thus (2), and with it the Wronskian isomorphism.

)

0.2. The complementary partition isomorphism

Let *K* be an arbitrary commutative ring. Let $d \in \mathbb{N}$. Let *G* be a group, and let *V* be the *K*-module K^d with some action of *G*. Let $s \in \mathbb{N}$, and let $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_d)$ be a partition with length $\leq d$ and largest part $\leq s$. Let $\lambda^\circ = (s - \lambda_d, s - \lambda_{d-1}, \ldots, s - \lambda_1)$ denote the complement of λ in the $d \times s$ -rectangle. In Theorem 1.2 of arXiv:2105.00538v3, you claim that

$$\nabla^{\lambda} V \cong \nabla^{\lambda^{\circ}} V^{\star} \otimes (\det V)^{\otimes s}$$

as *G*-modules.

Again, let me prove this in a way I believe to be simpler. I will use Section 8.1 of [Ful97] (Fulton's book *Young tableaux*). In this section, Fulton defines and analyzes the Schur module E^{λ} , which (as we will soon see) is isomorphic to $\nabla^{\lambda}V$. (Note that, just as we do, Fulton works in full generality, not just over the field C.)

We WLOG assume that $G = GL_d(K)$, since any group action on K^d factors through $GL_d(K)$. Consider the polynomial ring K[Z] in d^2 indeterminates

$$z_{1,1}, z_{1,2}, \dots, z_{1,d}, z_{2,1}, z_{2,2}, \dots, z_{2,d}, \vdots z_{d,1}, z_{d,2}, \dots, z_{d,d}$$

over *K*. Let *Z* be the $d \times d$ -matrix $(z_{i,j})_{1 \le i \le d, \ 1 \le j \le d}$ over K[Z]. The determinant det *Z* of this matrix is a regular element of K[Z]. Hence, the ring K[Z] embeds as a subring into its localization $K[Z]_{\det Z}$ at the multiplicative set of all powers of det *Z*. The latter localization $K[Z]_{\det Z}$ is, of course, the coordinate ring of the affine group scheme GL_d . We will work in the *K*-algebra $K[Z]_{\det Z}$, so that Z^{-1} and $(\det Z)^{-1}$ are well-defined.

We let $[p] := \{1, 2, ..., p\}$ for any $p \in \mathbb{N}$. For any $U \subseteq [d]$, we let \tilde{U} denote the set $[d] \setminus U$ (that is, the complement of U in [d]). For any $p \times q$ -matrix A and any two subsets $U \subseteq [p]$ and $V \subseteq [q]$, we let $A_{U,V}$ denote the $|U| \times |V|$ -submatrix of A obtained by removing all rows other than the U-rows and removing all columns other than the V-columns. The *Jacobi complementary minor theorem* says that if A is an invertible $d \times d$ -matrix over some commutative ring, and if $U \subseteq [d]$ and $V \subseteq [d]$, then

$$\det(A_{U,V}) = \pm \det A \cdot \det\left(\left(A^{-1}\right)_{\widetilde{V},\widetilde{U}}\right).$$
(6)

(The \pm sign is actually $(-1)^{\operatorname{sum} U + \operatorname{sum} V}$, where sum U denotes the sum of all elements of U. But we don't care what it is.) Applying (6) to A = Z, we find

$$\det\left(Z_{U,V}\right) = \pm \det Z \cdot \det\left(\left(Z^{-1}\right)_{\widetilde{V},\widetilde{U}}\right),\,$$

so that

$$\det\left(\left(Z^{-1}\right)_{\widetilde{V},\widetilde{U}}\right) = \pm \frac{\det\left(Z_{U,V}\right)}{\det Z}.$$
(7)

We WLOG assume that $\mathcal{B} = \{1, 2, ..., d\}$, and we let $(v_1, v_2, ..., v_d)$ be the standard basis of $V = K^d$. We identify Sym V with the polynomial ring $K[v_1, v_2, ..., v_d]$. We consider the K-algebra isomorphism

$$\mathbf{i}: (\operatorname{Sym} V)^{\otimes d} \to K[Z],$$

$$f_1 \otimes \cdots \otimes f_d \mapsto \prod_{i=1}^d f_i(z_{i,1}, z_{i,2}, \dots, z_{i,d}).$$

We will use this isomorphism **i** to identify $(\text{Sym } V)^{\otimes d}$ with K[Z].

We will use the notation $A_{u,v}$ for the (u, v)-th entry of a matrix A. Thus, in particular, $Z_{u,v} = z_{u,v}$ for all $u, v \in [d]$.

The polynomial ring K[Z] is a *G*-module², with *G* acting by *K*-algebra automorphisms according to the rule

$$A \cdot z_{i,j} = (ZA)_{i,j} = \sum_{k=1}^{d} \underbrace{Z_{i,k}}_{=Z_{i,k}} A_{k,j} = \sum_{k=1}^{d} z_{i,k} A_{k,j}$$
for all $A \in G$ and $i, j \in [d]$.

In other words, a matrix $A \in G$ sends any polynomial $p(Z) \in K[Z]$ to $p(ZA) \in K[Z]$ (which is the result of substituting each $z_{i,j}$ by $(ZA)_{i,j}$ in the polynomial p(Z)). This is probably the more illuminating way of thinking about our action of G on K[Z]. In particular, it shows that each $A \in G$ satisfies

$$A \cdot \det Z = \det (ZA) = \det Z \cdot \det A.$$
(8)

Since det *Z* is invertible in $K[Z]_{det Z}$, this shows that the action of *G* on K[Z] can be extended to an action of *G* on the localization $K[Z]_{det Z}$ (still by *K*-algebra automorphisms). Thus, K[Z] is a *G*-submodule of $K[Z]_{det Z}$.

Our isomorphism **i** : Sym $V \to K[Z]$ is *G*-equivariant. (This is easiest to show by checking the commutativity on each v_j in each of the *d* factors of $(\text{Sym } V)^{\otimes d}$, and then arguing that everything is a *K*-algebra homomorphism.)

The definition of $\operatorname{Sym}^{\lambda} V$ yields $\operatorname{Sym}^{\lambda} V \subseteq (\operatorname{Sym} V)^{\otimes d}$ (or at least that there is a canonical *G*-equivariant injection $\operatorname{Sym}^{\lambda} V \to (\operatorname{Sym} V)^{\otimes d}$, but we consider this injection as an inclusion). If *t* is a λ -tableau with entries in \mathcal{B} , then the element

²Recall that $G = \operatorname{GL}_d(K)$.

 $\mathbf{e}(t) \in \operatorname{Sym}^{\lambda} V \subseteq (\operatorname{Sym} V)^{\otimes d}$ you define in §2.1 can now be rewritten as follows:³

$$\begin{aligned} \mathbf{e}\left(t\right) &= \sum_{\sigma \in \operatorname{CPP}(\lambda)} \operatorname{sgn}\left(\sigma\right) \cdot \underbrace{\mathbf{s}\left(t \cdot \sigma\right)}_{\substack{= \bigotimes_{i=1}^{\ell(\lambda)} \quad \prod_{j=1}^{i} v_{(t \cdot \sigma)(ij)} \\ (by \text{ the definition of } \mathbf{s}(t \cdot \sigma))}}_{(by \text{ the definition of } \mathbf{s}(t \cdot \sigma))} &= \sum_{\sigma \in \operatorname{CPP}(\lambda)} \operatorname{sgn}\left(\sigma\right) \cdot \bigotimes_{i=1}^{\lambda_{i}} \quad \prod_{j=1}^{\lambda_{i}} v_{(t \cdot \sigma)(ij)} \\ &= \sum_{\sigma \in \operatorname{CPP}(\lambda)} \operatorname{sgn}\left(\sigma\right) \cdot \underbrace{\prod_{i=1}^{\ell(\lambda)} \quad \prod_{j=1}^{\lambda_{i}} z_{i,(t \cdot \sigma)(i,j)}}_{i=1} \right) \left(\begin{array}{c} \text{since we are using i to} \\ \text{identify} \left(\operatorname{Sym} V \right)^{\otimes d} \text{ with } K\left[Z\right] \right) \\ &= \sum_{\sigma \in \operatorname{CPP}(\lambda)} \operatorname{sgn}\left(\sigma\right) \cdot \prod_{j=1}^{s} \prod_{i=1}^{\lambda_{j}'} z_{i,(t \cdot \sigma)(i,j)} \\ &= \sum_{\sigma \in \operatorname{CPP}(\lambda)} \operatorname{sgn}\left(\sigma\right) \cdot \prod_{j=1}^{s} \prod_{i=1}^{\lambda_{j}'} z_{i,(t \cdot \sigma)(i,j)} \\ &= \sum_{\sigma \in \operatorname{CPP}(\lambda)} \operatorname{sgn}\left(\sigma\right) \cdot \prod_{j=1}^{s} \prod_{i=1}^{\lambda_{j}'} z_{i,(t \cdot \sigma)(i,j)} \\ &= \sum_{\sigma \in \operatorname{CPP}(\lambda)} \operatorname{sgn}\left(\sigma\right) \cdot \prod_{j=1}^{s} \prod_{i=1}^{\lambda_{j}'} z_{i,(t \cdot \sigma)(i,j)} \\ &= \sum_{\sigma \in \operatorname{CPP}(\lambda)} \operatorname{sgn}\left(\sigma\right) \cdot \prod_{j=1}^{s} \sum_{i=1}^{\lambda_{j}'} z_{i,(t \cdot \sigma)(i,j)} \\ &= \sum_{\sigma \in \operatorname{CPP}(\lambda)} \operatorname{sgn}\left(\sigma\right) \cdot \prod_{j=1}^{s} \sum_{i=1}^{\lambda_{j}'} z_{i,(t \cdot \sigma)(i,j)} \\ &= \sum_{\sigma \in \operatorname{CPP}(\lambda)} \operatorname{sgn}\left(\sigma\right) \cdot \prod_{i=1}^{s} \sum_{i=1}^{\lambda_{j}'} z_{i,(t \cdot \sigma)(i,j)} \\ &= \sum_{\sigma \in \operatorname{CPP}(\lambda)} \operatorname{sgn}\left(\sigma\right) \cdot \prod_{i=1}^{s} \sum_{i=1}^{\lambda_{j}'} z_{i,(t \cdot \sigma)(i,j)} \\ &= \sum_{\sigma \in \operatorname{CPP}(\lambda)} \operatorname{sgn}\left(\sigma\right) \cdot \prod_{i=1}^{s} \sum_{i=1}^{\lambda_{j}'} z_{i,(t \cdot \sigma)(i,j)} \\ &= \sum_{\sigma \in \operatorname{CPP}(\lambda)} \operatorname{sgn}\left(\sigma\right) \cdot \prod_{i=1}^{\lambda_{j}'} z_{i,(t \cdot \sigma)(i,j)} \\ &= \operatorname{supp}\left(\sum_{\sigma \in \operatorname{S}_{\lambda_{j}'}} \operatorname{sgn}\left(\sigma\right) \cdot \prod_{i=1}^{\lambda_{j}'} z_{i,(t \cdot \sigma)(i,j)} \right) \\ &= \operatorname{supp}\left(\sum_{\sigma \in \operatorname{S}_{\lambda_{j}'}} \operatorname{sgn}\left(\sigma\right) \cdot \prod_{i=1}^{\lambda_{j}'} z_{i,(t \cdot \sigma)(i,j)} \right) \\ &= \operatorname{supp}\left(\sum_{\sigma \in \operatorname{S}_{\lambda_{j}'}} \operatorname{sgn}\left(\sigma\right) \cdot \prod_{i=1}^{\lambda_{j}'} z_{i,(t \cdot \sigma)(i,j)} \right) \\ &= \operatorname{supp}\left(\sum_{\sigma \in \operatorname{S}_{\lambda_{j}'}} \operatorname{sgn}\left(\sigma\right) \cdot \prod_{i=1}^{\lambda_{j}'} z_{i,(t \cdot \sigma)(i,j)} \right) \\ &= \operatorname{supp}\left(\sum_{\sigma \in \operatorname{S}_{\lambda_{j}'}} \operatorname{sgn}\left(\sigma\right) \cdot \prod_{i=1}^{\lambda_{j}'} z_{i,(t \cdot \sigma)(i,j)} \right) \\ &= \operatorname{supp}\left(\sum_{\sigma \in \operatorname{S}_{\lambda_{j}'}} \operatorname{supp}\left(\sum_{\sigma \in \operatorname{S}_{\lambda_{j}'}} z_{i,(t \cdot \sigma)(i,j)} \right) \\ &= \operatorname{supp}\left(\sum_{\sigma \in \operatorname{S}_{\lambda_{j}'}} \operatorname{supp}\left(\sum_{\sigma \in \operatorname{S}_{\lambda_{j}'}} z_{i,(t \cdot \sigma)(i,j)} \right) \\ &= \operatorname{supp}\left(\sum_{\sigma \in \operatorname{S}_{\lambda_{j}'}} z_{i,(t \cdot \sigma)(i,j)} z_{i,(t \cdot \sigma)(t \cdot \sigma)(t,(t \cdot \sigma)(t,j)} z_{i,(t \cdot \sigma)(t,($$

Thus,

$$\nabla^{\lambda} V = \operatorname{span}\left(\prod_{j=1}^{s} \det\left(Z_{\left[\lambda'_{j}\right],\operatorname{col}_{j}t}\right) \mid t \text{ is a } \lambda \text{-tableau}\right)$$
(9)

(since $\nabla^{\lambda} V$ was defined as the span of all $\mathbf{e}(t)$ for λ -tableaux t). The right hand side of this equality is the G-module D^{λ} defined at the end of [Ful97, §8.1] (although

.

³I let $col_i t$ denote the set of all entries of the *j*-th column of *t*.

My symmetric group actions might be in conflict with yours, since I'm used to everything acting from the left. I believe this shouldn't be a problem, since sgn $(\sigma^{-1}) = \operatorname{sgn} \sigma$ for any permutation σ .

[Ful97] works with the monoid $M_d(K)$ instead of $GL_d(K)$, and uses the notations R and m instead of K and d). Thus, $\nabla^{\lambda}V \cong D^{\lambda} \cong E^{\lambda}$ (by [Ful97, §8.1, Exercise 5]), where E^{λ} is the Schur module defined in [Ful97, §8.1]. This shows that $\nabla^{\lambda}V$ is always isomorphic to Fulton's E^{λ} , whatever K is.

We can replace " λ -tableau" by "column-standard λ -tableau" on the right hand side of (9), since any λ -tableau either yields a 0 determinant or can be made column-standard by a CPP-permutation (which can at most flip the sign of the respective product). Thus, (9) becomes

$$\nabla^{\lambda} V = \operatorname{span}\left(\prod_{j=1}^{s} \operatorname{det}\left(Z_{\left[\lambda_{j}'\right], \operatorname{col}_{j} t}\right) \mid t \text{ is a column-standard } \lambda \operatorname{-tableau}\right)$$
$$= \operatorname{span}\left(\prod_{j=1}^{s} \operatorname{det}\left(Z_{\left[\lambda_{j}'\right], U_{j}}\right) \mid U_{j} \text{ is a } \lambda_{j}' \operatorname{-element subset of } [d]\right).$$
(10)

Applying this to λ° instead of λ , we obtain

$$\nabla^{\lambda^{\circ}} V = \operatorname{span}\left(\prod_{j=1}^{s} \det\left(Z_{\left[d-\lambda_{j}^{\prime}\right]}, U_{j}\right) \mid U_{j} \text{ is a } \left(d-\lambda_{j}^{\prime}\right) \text{-element subset of } \left[d\right]\right)$$

$$\left(\operatorname{since}\left(\lambda^{\circ}\right)_{j}^{\prime} = d-\lambda_{j}^{\prime} \text{ for each } j \in [s]\right)$$

$$= \operatorname{span}\left(\prod_{j=1}^{s} \det\left(Z_{\left[d-\lambda_{j}^{\prime}\right]}, \widetilde{U_{j}}\right) \mid U_{j} \text{ is a } \lambda_{j}^{\prime} \text{-element subset of } \left[d\right]\right)$$
(11)

(here, we have substituted \widetilde{U}_i for U_i).

Next, we need one more piece of notation. If γ is an automorphism of the group G, and if W is a G-module, then $W \circ \gamma$ shall mean the G-module W twisted by γ (that is, it is the same K-module as W, but the action of G on it is $\rho \circ \gamma : G \rightarrow$ GL (W), where $\rho : G \rightarrow$ GL (W) is the action of G on W). We will use one specific automorphism of G, which we shall call γ from now on: namely, the automorphism sending each $A \in G$ to $(A^{-1})^T$. It is well-known that $V^* \cong V \circ \gamma$ as G-modules.⁴

Hence, $\nabla^{\lambda^{\circ}}V^* \cong \nabla^{\lambda^{\circ}}(V \circ \gamma) \cong (\nabla^{\lambda^{\circ}}V) \circ \gamma$. Thus, we just need to show that

$$\nabla^{\lambda} V \cong \left(\left(\nabla^{\lambda^{\circ}} V \right) \circ \gamma \right) \otimes \left(\det V \right)^{\otimes s}.$$
(12)

We shall do so by constructing an explicit isomorphism. We define a *K*-algebra endomorphism Ω of $K[Z]_{det Z}$ by requiring that

$$\Omega\left(z_{i,j}\right) = \left(Z^{-1}\right)_{j,d+1-i}$$
 for all $i,j \in [d]$.

This endomorphism Ω is well-defined (by the universal property of the localization $K[Z]_{\det Z}$, because the *K*-algebra morphism $K[Z] \to K[Z]_{\det Z}$ that sends each $z_{i,j}$

⁴This is essentially the definition of the *G*-action on V^* .

to $(Z^{-1})_{j,d+1-i}$ sends det *Z* to $\pm \det(Z^{-1}) = \pm (\det Z)^{-1}$, which is an invertible element of $K[Z]_{\det Z}$).

This endomorphism Ω is an automorphism of $K[Z]_{\det Z}$ (actually, $\Omega^4 = \text{id if}$ I am not wrong, but either way Ω is a composition of some rather well-known involutions: one that "sends" Z to Z^T , another that "sends" Z to Z^{-1} , and another that sends $z_{i,j}$ to $z_{d+1-i,j}$).

It is not hard to see that the map Ω is a *G*-module isomorphism from $K[Z]_{\det Z}$ to $K[Z]_{\det Z} \circ \gamma$. Indeed, this boils down to proving the equality

$$\Omega \left(A \cdot f \right) = \gamma \left(A \right) \cdot \Omega \left(f \right) \qquad \text{ for all } A \in G \text{ and } f \in K \left[Z \right]_{\det Z}$$

To prove this equality, we can WLOG assume that $f \in K[Z]$. Since Ω is a *K*-algebra morphism, this equality needs to be proved for $f = z_{i,j}$ only. But this is rather straightforward: Setting $f = z_{i,j}$, we can compare

$$\Omega(A \cdot f) = \Omega(A \cdot z_{i,j}) = \Omega\left(\sum_{k=1}^{d} z_{i,k} A_{k,j}\right) = \sum_{k=1}^{d} \underbrace{\Omega(z_{i,k})}_{=(Z^{-1})_{k,d+1-i}} \underbrace{A_{k,j}}_{=(A^{T})_{j,k}}$$
$$= \sum_{k=1}^{d} (Z^{-1})_{k,d+1-i} (A^{T})_{j,k} = (A^{T} Z^{-1})_{j,d+1-i}$$

with

$$\gamma(A) \cdot \Omega(f) = \underbrace{\gamma(A)}_{=(A^{-1})^T} \cdot \underbrace{\Omega(z_{i,j})}_{=(Z^{-1})_{j,d+1-i}} = (A^{-1})^T \cdot (Z^{-1})_{j,d+1-i}$$
$$= \left(\left(Z(A^{-1})^T \right)^{-1} \right)_{j,d+1-i} = (A^T Z^{-1})_{j,d+1-i},$$

and get precisely this claim.

So we conclude that Ω is a *G*-module isomorphism from $K[Z]_{\det Z}$ to $K[Z]_{\det Z} \circ \gamma$.

If *U* is a *k*-element subset of [d], then the definition of Ω yields

$$\Omega\left(\det\left(Z_{[k],U}\right)\right) = \det\left(\left(Z^{-1}\right)_{U,\{d-k+1,d-k+2,\dots,d\}}\right)$$
$$= \pm \frac{\det\left(Z_{[d-k],\widetilde{U}}\right)}{\det Z} \qquad (by (7)).$$

Since Ω is a *K*-algebra morphism, we therefore have

$$\Omega\left(\prod_{j=1}^{s} \det\left(Z_{\left[\lambda_{j}^{\prime}\right], \mathcal{U}_{j}}\right)\right) = \pm \frac{1}{\left(\det Z\right)^{s}} \prod_{j=1}^{s} \det\left(Z_{\left[d-\lambda_{j}^{\prime}\right], \widetilde{\mathcal{U}}_{j}}\right)$$

whenever U_1, U_2, \ldots, U_s are subsets of [d] of sizes $\lambda'_1, \lambda'_2, \ldots, \lambda'_s$. In view of (10) and (11), this entails $\Omega(\nabla^{\lambda}V) = \frac{1}{(\det Z)^s} \cdot \nabla^{\lambda^\circ} V$. In other words, $\Omega(\nabla^{\lambda}V) \cdot (\det Z)^s = \nabla^{\lambda^\circ} V$. Thus, multiplication by $(\det Z)^s$ is a *K*-module isomorphism from $\Omega(\nabla^{\lambda}V)$ to $\nabla^{\lambda^\circ} V$. This isomorphism is furthermore *G*-equivariant as a map from $(\Omega(\nabla^{\lambda}V)) \otimes (\det V)^{\otimes s}$ to $\nabla^{\lambda^\circ} V$, because any $A \in G$ and any $f \in \Omega(\nabla^{\lambda}V)$ satisfy

$$A \cdot (f \cdot (\det Z)^{s}) = (A \cdot f) \cdot \left(\underbrace{\underbrace{A \cdot \det Z}_{=\det(ZA)}}_{=\det Z \cdot \det A}\right)^{s} = (A \cdot f) \cdot (\det Z \cdot \det A)^{s}$$
$$= (\det A)^{s} \cdot (A \cdot f) \cdot (\det Z)^{s}.$$

Hence, we conclude that

$$\left(\Omega\left(\nabla^{\lambda}V\right)\right)\otimes\left(\det V\right)^{\otimes s}\cong\nabla^{\lambda^{\circ}}V$$
 as *G*-modules. (13)

Applying this to λ° instead of λ , we obtain

$$\left(\Omega\left(\nabla^{\lambda^{\circ}}V\right)\right)\otimes\left(\det V\right)^{\otimes s}\cong\nabla^{\lambda}V$$
 as *G*-modules (14)

(since $(\lambda^{\circ})^{\circ} = \lambda$).

However, $(\Omega(\nabla^{\lambda}V)) \circ \gamma \cong \nabla^{\lambda}V$ (since Ω is a *G*-module isomorphism from $K[Z]_{\det Z}$ to $K[Z]_{\det Z} \circ \gamma$). Since γ is an involution, this entails

$$\Omega\left(\nabla^{\lambda}V\right) \cong \underbrace{\left(\Omega\left(\nabla^{\lambda}V\right)\right) \circ \gamma}_{\cong \nabla^{\lambda}V} \circ \gamma \cong \left(\nabla^{\lambda}V\right) \circ \gamma.$$

Applying this to λ° instead of λ , we obtain $\Omega(\nabla^{\lambda^{\circ}}V) \cong (\nabla^{\lambda^{\circ}}V) \circ \gamma$. Thus, (14) rewrites as

$$\left(\left(\nabla^{\lambda^{\circ}}V\right)\circ\gamma\right)\otimes(\det V)^{\otimes s}\cong\nabla^{\lambda}V$$
 as *G*-modules.

This proves (12) and thus proves Theorem 1.2.

References

[Ful97] William Fulton, Young Tableaux With Applications to Representation Theory and Geometry, Cambridge University Press, reprint 1999.