Comments on arXiv:2105.00538v3

Darij Grinberg

March 5, 2023

This is a comment on the preprint arXiv:2105.00538v3 (Eoghan McDowell, Mark Wildon, Modular plethystic isomorphisms for two-dimensional linear groups, arXiv:2105.00538v3, to appear in Journal of Algebra), in which I (believe I) prove Theorem 1.4 and Theorem 1.2 of said preprint in more transparent (and certainly less combinatorial) ways. I try to imitate the notation of the preprint, but in some places I cannot help reverting to my own (in particular, my groups all act from the left). I let K be an arbitrary commutative ring (not necessarily a field) throughout this comment (however, I will only work with free K-modules).

0.1. The modular Wronskian isomorphism

Let K be an arbitrary commutative ring. Let E be the natural representation of the group $\mathrm{GL}_{2}(K)$ on the free K-module K^{2}. Let $m, \ell \in \mathbb{N}$. In Theorem 1.4 of arXiv:2105.00538v3, you show that

$$
\operatorname{Sym}_{m} \operatorname{Sym}^{\ell} E \otimes(\operatorname{det} E)^{\otimes m(m-1) / 2} \cong \Lambda^{m} \operatorname{Sym}^{\ell+m-1} E
$$

as $\mathrm{GL}_{2}(K)$-representations via a certain isomorphism that you call ζ in Definition 4.2.

Let me prove this in a somewhat simpler way. Specifically, I will show that ζ is $\mathrm{GL}_{2}(K)$-equivariant. The bijectivity of ζ follows easily enough from a triangularity argument (which is what you do in your proof of Lemma 4.5).

Let $K[X, Y]$ be the polynomial ring in 2 variables X, Y. We will identify Sym E with $K[X, Y]$, thus writing elements of Sym E as $f(X, Y)$. The group $\mathrm{GL}_{2}(K)$ acts on $K[X, Y]$ by the rule

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot f(X, Y)=f(a X+c Y, b X+d Y) \\
& \quad \text { for all }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}(K) \text { and } f(X, Y) \in K[X, Y]
\end{aligned}
$$

Let $K[\mathbf{X}, \mathbf{Y}]$ be the polynomial ring in $2 m$ variables $X_{1}, X_{2}, \ldots, X_{m}, Y_{1}, Y_{2}, \ldots, Y_{m}$. The symmetric group S_{m} acts on this ring $K[\mathbf{X}, \mathbf{Y}]$ by K-algebra automorphisms
(with any $\sigma \in S_{m}$ sending each X_{i} to $X_{\sigma(i)}$ and sending each Y_{i} to $Y_{\sigma(i)}$). Let $K[\mathbf{X}, \mathbf{Y}]^{\text {sym }}$ be the invariant ring of this action. The group $\mathrm{GL}_{2}(K)$ acts on $K[\mathbf{X}, \mathbf{Y}]$ by acting on each $\left(X_{i}, Y_{i}\right)$-pair separately - i.e., by the rule

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \cdot f\left(X_{i}, Y_{i}\right)=f\left(a X_{i}+c Y_{i}, b X_{i}+d Y_{i}\right) \\
& \quad \text { for all }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}(K) \text { and } i \in[m] \text { and } f\left(X_{i}, Y_{i}\right) \in K\left[X_{i}, Y_{i}\right]
\end{aligned}
$$

This $\mathrm{GL}_{2}(K)$-action commutes with the action of S_{m}, and thus induces a $\mathrm{GL}_{2}(K)$ action on $K[\mathbf{X}, \mathbf{Y}]^{\text {sym }}$.

We will build a commutative diagram

where the horizontal \hookrightarrow maps are the obvious inclusions and where the other maps (all of them K-linear) are defined as follows:

- The injection $\alpha: \operatorname{Sym}_{m}\left(\operatorname{Sym}^{\ell} E\right) \hookrightarrow \operatorname{Sym}_{m}(\operatorname{Sym} E)$ is obtained by applying the Sym_{m} functor to the (split) injection $\operatorname{Sym}^{\ell} E \hookrightarrow \operatorname{Sym} E$. This is clearly $\mathrm{GL}_{2}(K)$-equivariant.
- The isomorphism $\kappa:(\operatorname{Sym} E)^{\otimes m} \rightarrow K[\mathbf{X}, \mathbf{Y}]$ is the well-known isomorphism that sends each tensor

$$
\begin{array}{r}
\quad f_{1}(X, Y) \otimes f_{2}(X, Y) \otimes \cdots \otimes f_{m}(X, Y) \\
\text { to } f_{1}\left(X_{1}, Y_{1}\right) f_{2}\left(X_{2}, Y_{2}\right) \cdots f_{m}\left(X_{m}, Y_{m}\right) .
\end{array}
$$

This is clearly $\mathrm{GL}_{2}(K)$-equivariant and S_{m}-equivariant.

- The isomorphism $\beta: \operatorname{Sym}_{m}(\operatorname{Sym} E) \rightarrow K[\mathbf{X}, \mathbf{Y}]^{\text {sym }}$ is the restriction of κ to the S_{m}-fixed spaces. It is clearly $\mathrm{GL}_{2}(K)$-equivariant (since κ is).
- The injection $\gamma: \Lambda^{m} \operatorname{Sym}^{\ell+m-1} E \hookrightarrow \Lambda^{m} \operatorname{Sym} E$ is obtained by applying the Λ^{m} functor to the (split) injection Sym $^{\ell+m-1} E \hookrightarrow \operatorname{Sym} E$. This is clearly $\mathrm{GL}_{2}(K)$-equivariant.
- The map $\delta: \Lambda^{m} \operatorname{Sym} E \hookrightarrow K[\mathbf{X}, \mathbf{Y}]$ sends each

$$
\begin{aligned}
& \quad f_{1}(X, Y) \wedge f_{2}(X, Y) \wedge \cdots \wedge f_{m}(X, Y) \\
& \text { to } \sum_{\sigma \in S_{m}}(\operatorname{sgn} \sigma) \cdot f_{\sigma(1)}\left(X_{1}, Y_{1}\right) f_{\sigma(2)}\left(X_{2}, Y_{2}\right) \cdots f_{\sigma(m)}\left(X_{m}, Y_{m}\right) .
\end{aligned}
$$

This map δ is clearly $\mathrm{GL}_{2}(K)$-equivariant, and furthermore is easily seen to be injective (since it factors as $\delta=\kappa \circ \delta^{\prime}$, where $\delta^{\prime}: \Lambda^{m} \operatorname{Sym} E \hookrightarrow(\operatorname{Sym} E)^{\otimes m}$ is the canonical injection sending each $f_{1}(X, Y) \wedge f_{2}(X, Y) \wedge \cdots \wedge f_{m}(X, Y)$ to

$$
\left.\sum_{\sigma \in S_{m}}(\operatorname{sgn} \sigma) \cdot f_{\sigma(1)}(X, Y) \otimes f_{\sigma(2)}(X, Y) \otimes \cdots \otimes f_{\sigma(m)}(X, Y)\right) .
$$

- The injection $\iota:\left(\operatorname{Sym}^{\ell} E\right)^{\otimes m} \hookrightarrow(\operatorname{Sym} E)^{\otimes m}$ is obtained by applying the ${ }^{\otimes m}$ functor to the (split) injection $\operatorname{Sym}^{\ell} E \hookrightarrow \operatorname{Sym} E$. This is clearly $\mathrm{GL}_{2}(K)-$ equivariant.
- The $\operatorname{map} \omega:\left(\operatorname{Sym}^{\ell} E\right)^{\otimes m} \rightarrow \Lambda^{m} \operatorname{Sym}^{\ell+m-1} E$ sends each tensor

$$
\begin{aligned}
& \quad f_{1}(X, Y) \otimes f_{2}(X, Y) \otimes \cdots \otimes f_{m}(X, Y) \\
& \text { to } f_{1}(X, Y) X^{m-1} Y^{0} \wedge f_{2}(X, Y) X^{m-2} Y^{1} \wedge \cdots \wedge f_{m}(X, Y) X^{m-m} Y^{m-1}
\end{aligned}
$$

This is the map you describe in Theorem 1.4.

- We let alt : $K[\mathbf{X}, \mathbf{Y}] \rightarrow K[\mathbf{X}, \mathbf{Y}]$ be the K-linear map that sends each polynomial $g \in K[\mathbf{X}, \mathbf{Y}]$ to

$$
\operatorname{alt} g:=\sum_{\sigma \in S_{m}}(\operatorname{sgn} \sigma) \cdot \underbrace{(\sigma \cdot g)}_{=g\left(X_{\sigma(1)}, X_{\sigma(2)}, \ldots, X_{\sigma(m)}, Y_{\sigma(1)}, Y_{\sigma(2)}, \ldots, Y_{\sigma(m)}\right)} .
$$

This map alt is called the alternator, and its image is the space of all alternating polynomials in $K[\mathbf{X}, \mathbf{Y}]$ (but we won't use this). The map alt is easily seen to be a $K[\mathbf{X}, \mathbf{Y}]^{\text {sym }}$-module morphism: i.e., we have

$$
\begin{equation*}
\operatorname{alt}(f g)=f \cdot \operatorname{alt} g \tag{1}
\end{equation*}
$$

for any $f \in K[\mathbf{X}, \mathbf{Y}]^{\text {sym }}$ and any $g \in K[\mathbf{X}, \mathbf{Y}]$.

- The map $\psi: K[\mathbf{X}, \mathbf{Y}] \rightarrow K[\mathbf{X}, \mathbf{Y}]$ sends each polynomial $f \in K[\mathbf{X}, \mathbf{Y}]$ to alt $\left(f \mathbf{X}^{d} \mathbf{Y}^{e}\right)$, where

$$
\begin{aligned}
& \mathbf{X}^{d}:=X_{1}^{m-1} X_{2}^{m-2} \cdots X_{m}^{m-m}=\prod_{i=1}^{m} X_{i}^{m-i} \\
\text { and } \quad \mathbf{Y}^{e} & :=Y_{1}^{0} Y_{2}^{1} \cdots Y_{m}^{m-1}=\prod_{i=1}^{m} Y_{i}^{i-1}
\end{aligned}
$$

This is not per se $\mathrm{GL}_{2}(K)$-equivariant (for $m>1$ and $K \neq 0$).

The commutativity of the above diagram is easy to see: The top-left and the bottom-left square obviously commute, while the commutativity of the right rectangle boils down to the equality

$$
\begin{aligned}
& \sum_{\sigma \in S_{m}}(\operatorname{sgn} \sigma) \cdot \prod_{i=1}^{m}\left(f_{i}\left(X_{\sigma(i)}, Y_{\sigma(i)}\right) X_{\sigma(i)}^{m-i} Y_{\sigma(i)}^{i-1}\right) \\
& =\sum_{\sigma \in S_{m}}(\operatorname{sgn} \sigma) \cdot \prod_{i=1}^{m}\left(f_{\sigma(i)}\left(X_{i}, Y_{i}\right) X_{i}^{m-\sigma(i)} Y_{i}^{\sigma(i)-1}\right)
\end{aligned}
$$

(for all $f_{1}, f_{2}, \ldots, f_{m} \in K[X, Y]$), which is easily checked (just substitute σ^{-1} for σ in the sum).

Now, your ζ is the restriction $\left.\omega\right|_{\operatorname{Sym}_{m} \operatorname{Sym}^{\ell} E^{\prime}}$. Thus, we need to prove that ω restricts to an $\mathrm{GL}_{2}(K)$-equivariant map

$$
\text { from } \operatorname{Sym}_{m} \operatorname{Sym}^{\ell} E \otimes(\operatorname{det} E)^{\otimes m(m-1) / 2} \text { to } \Lambda^{m} \operatorname{Sym}^{\ell+m-1} E
$$

(where " $\otimes(\operatorname{det} E)^{\otimes m(m-1) / 2 "}$ is seen as a twist of the $\mathrm{GL}_{2}(K)$-action - i.e., we identify $\operatorname{Sym}_{m} \operatorname{Sym}^{\ell} E \otimes(\operatorname{det} E)^{\otimes m(m-1) / 2}$ with $\operatorname{Sym}_{m} \operatorname{Sym}^{\ell} E$ as a K-module ${ }^{1}$).

In other words, we need to prove that

$$
\begin{equation*}
A \cdot \omega(v)=(\operatorname{det} A)^{m(m-1) / 2} \cdot \omega(A v) \tag{2}
\end{equation*}
$$

for any $A \in \mathrm{GL}_{2}(K)$ and any $v \in \operatorname{Sym}_{m} \operatorname{Sym}^{\ell} E$. In view of the above commutative diagram (and in view of the injectivity of γ and δ), it suffices to show that

$$
\begin{equation*}
A \cdot \psi(w)=(\operatorname{det} A)^{m(m-1) / 2} \cdot \psi(A w) \tag{3}
\end{equation*}
$$

for any $A \in \mathrm{GL}_{2}(K)$ and any $w \in K[\mathbf{X}, \mathbf{Y}]^{\text {sym }}$ (because if we have proved (3), then we can apply (3) to $w=\beta(\alpha(v))$ and then "unapply" the $\mathrm{GL}_{2}(K)$-equivariant map $\delta \circ \gamma$ to obtain (2)).

So let us prove (3). We fix $A \in \mathrm{GL}_{2}(K)$ and $w \in K[\mathbf{X}, \mathbf{Y}]^{\text {sym }}$. Then, $A w \in$ $K[\mathbf{X}, \mathbf{Y}]^{\text {sym }}$ (since the actions of $\mathrm{GL}_{2}(K)$ and of S_{m} on $K[\mathbf{X}, \mathbf{Y}]$ commute). Now, the definition of ψ yields

$$
\begin{equation*}
\psi(A w)=\operatorname{alt}\left((A w) \mathbf{X}^{d} \mathbf{Y}^{e}\right)=(A w) \cdot \operatorname{alt}\left(\mathbf{X}^{d} \mathbf{Y}^{e}\right) \tag{4}
\end{equation*}
$$

(by (1), since $A w \in K[\mathbf{X}, \mathbf{Y}]^{\text {sym }}$). On the other hand,

$$
\psi(w)=\operatorname{alt}\left(w \mathbf{X}^{d} \mathbf{Y}^{e}\right)=w \cdot \operatorname{alt}\left(\mathbf{X}^{d} \mathbf{Y}^{e}\right) \quad\left(\text { by }(1), \text { since } w \in K[\mathbf{X}, \mathbf{Y}]^{\text {sym }}\right)
$$

so that

$$
\begin{equation*}
A \cdot \psi(w)=A \cdot\left(w \cdot \operatorname{alt}\left(\mathbf{X}^{d} \mathbf{Y}^{e}\right)\right)=(A w) \cdot A\left(\operatorname{alt}\left(\mathbf{X}^{d} \mathbf{Y}^{e}\right)\right) \tag{5}
\end{equation*}
$$

[^0]However, I claim that $A\left(\operatorname{alt}\left(\mathbf{X}^{d} \mathbf{Y}^{e}\right)\right)=(\operatorname{det} A)^{m(m-1) / 2} \cdot \operatorname{alt}\left(\mathbf{X}^{d} \mathbf{Y}^{e}\right)$. Indeed, this is probably easiest to see by factoring alt $\left(\mathbf{X}^{d} \mathbf{Y}^{e}\right)$ explicitly: We have

$$
\begin{aligned}
\operatorname{alt}\left(\mathbf{X}^{d} \mathbf{Y}^{e}\right) & =\sum_{\sigma \in S_{m}}(\operatorname{sgn} \sigma) \cdot \underbrace{\left(\sigma \cdot\left(\mathbf{X}^{d} \mathbf{Y}^{e}\right)\right)}_{=\prod_{i=1}^{m}\left(X_{\sigma(i)}^{m-i} Y_{\sigma(i)}^{i-1}\right)}=\sum_{\sigma \in S_{m}}(\operatorname{sgn} \sigma) \cdot \prod_{i=1}^{m}\left(X_{\sigma(i)}^{m-i} Y_{\sigma(i)}^{i-1}\right) \\
& =\operatorname{det}\left(\left(X_{j}^{m-i} Y_{j}^{i-1}\right)_{1 \leq i \leq m, 1 \leq j \leq m}\right) \\
& =\left(Y_{1} Y_{2} \ldots Y_{m}\right)^{m-1} \operatorname{det}\left(\left(\left(\frac{X_{j}}{Y_{j}}\right)^{m-i}\right)_{1 \leq i \leq m, 1 \leq j \leq m}\right) \\
& =\underbrace{\text { (by the Vandermonde determinant) }}_{1 \leq \prod_{1<j \leq m}\left(\frac{X_{i}}{Y_{i}}-\frac{X_{j}}{Y_{j}}\right)} \\
& =\left(Y_{1} Y_{2} \ldots Y_{m}\right)^{m-1} \prod_{1 \leq i<j \leq m}\left(\frac{X_{i}}{Y_{i}}-\frac{X_{j}}{Y_{j}}\right) \\
& =\prod_{1 \leq i<j \leq m}\left(X_{i} Y_{j}-X_{j} Y_{i}\right),
\end{aligned}
$$

so that

$$
\begin{aligned}
A\left(\operatorname{alt}\left(\mathbf{X}^{d} \mathbf{Y}^{e}\right)\right) & =A\left(\prod_{1 \leq i<j \leq m}\left(X_{i} Y_{j}-X_{j} Y_{i}\right)\right)=\prod_{1 \leq i<j \leq m} \underbrace{A\left(X_{i} Y_{j}-X_{j} Y_{i}\right)}_{\begin{array}{c}
\text { =det } A \cdot\left(X_{i} Y_{j}-X_{j} Y_{i}\right) \\
\text { (straightforward to verify) }
\end{array}} \\
& =(\operatorname{det} A)^{m(m-1) / 2} \cdot \underbrace{\prod_{1 \leq i<j \leq m}\left(X_{i} Y_{j}-X_{j} Y_{i}\right)}_{=\operatorname{alt}\left(\mathbf{X}^{d} \mathbf{Y}^{e}\right)} \\
& =(\operatorname{det} A)^{m(m-1) / 2} \cdot \operatorname{alt}\left(\mathbf{X}^{d} \mathbf{Y}^{e}\right)
\end{aligned}
$$

Thus, (5) becomes

$$
\begin{aligned}
A \cdot \psi(w) & =(A w) \cdot \underbrace{A\left(\operatorname{alt}\left(\mathbf{X}^{d} \mathbf{Y}^{e}\right)\right)}_{=(\operatorname{det} A)^{m(m-1) / 2} \cdot \operatorname{alt}\left(\mathbf{X}^{d} \mathbf{Y}^{e}\right)} \\
& =(\operatorname{det} A)^{m(m-1) / 2} \cdot \underbrace{(A w) \cdot \operatorname{alt}\left(\mathbf{X}^{d} \mathbf{Y}^{e}\right)}_{\begin{array}{c}
=\psi(A w) \\
\left.(\text { by } 4)^{2}\right)
\end{array}}=(\operatorname{det} A)^{m(m-1) / 2} \cdot \psi(A w) .
\end{aligned}
$$

This proves (3), and thus (2), and with it the Wronskian isomorphism.

0.2. The complementary partition isomorphism

Let K be an arbitrary commutative ring. Let $d \in \mathbb{N}$. Let G be a group, and let V be the K-module K^{d} with some action of G. Let $s \in \mathbb{N}$, and let $\lambda=$ $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}\right)$ be a partition with length $\leq d$ and largest part $\leq s$. Let $\lambda^{\circ}=$ $\left(s-\lambda_{d}, s-\lambda_{d-1}, \ldots, s-\lambda_{1}\right)$ denote the complement of λ in the $d \times s$-rectangle. In Theorem 1.2 of arXiv:2105.00538v3, you claim that

$$
\nabla^{\lambda} V \cong \nabla^{\lambda^{\circ}} V^{\star} \otimes(\operatorname{det} V)^{\otimes s}
$$

as G-modules.
Again, let me prove this in a way I believe to be simpler. I will use Section 8.1 of [Ful97] (Fulton's book Young tableaux). In this section, Fulton defines and analyzes the Schur module E^{λ}, which (as we will soon see) is isomorphic to $\nabla^{\lambda} V$. (Note that, just as we do, Fulton works in full generality, not just over the field \mathbb{C}.)

We WLOG assume that $G=\mathrm{GL}_{d}(K)$, since any group action on K^{d} factors through $\mathrm{GL}_{d}(K)$. Consider the polynomial ring $K[Z]$ in d^{2} indeterminates

$$
\begin{array}{llll}
z_{1,1}, & z_{1,2}, & \ldots, & z_{1, d} \\
z_{2,1}, & z_{2,2}, & \ldots, & z_{2, d} \\
\vdots & & & \\
z_{d, 1}, & z_{d, 2}, & \ldots, & z_{d, d}
\end{array}
$$

over K. Let Z be the $d \times d$-matrix $\left(z_{i, j}\right)_{1 \leq i \leq d, 1 \leq j \leq d}$ over $K[Z]$. The determinant $\operatorname{det} Z$ of this matrix is a regular element of $K[Z]$. Hence, the ring $K[Z]$ embeds as a subring into its localization $K[Z]_{\operatorname{det} Z}$ at the multiplicative set of all powers of $\operatorname{det} Z$. The latter localization $K[Z]_{\operatorname{det} Z}$ is, of course, the coordinate ring of the affine group scheme GL_{d}. We will work in the K-algebra $K[Z]_{\operatorname{det} Z}$, so that Z^{-1} and $(\operatorname{det} Z)^{-1}$ are well-defined.

We let $[p]:=\{1,2, \ldots, p\}$ for any $p \in \mathbb{N}$. For any $U \subseteq[d]$, we let \widetilde{U} denote the set $[d] \backslash U$ (that is, the complement of U in $[d]$). For any $p \times q$-matrix A and any two subsets $U \subseteq[p]$ and $V \subseteq[q]$, we let $A_{U, V}$ denote the $|U| \times|V|$-submatrix of A obtained by removing all rows other than the U-rows and removing all columns other than the V-columns. The Jacobi complementary minor theorem says that if A is an invertible $d \times d$-matrix over some commutative ring, and if $U \subseteq[d]$ and $V \subseteq[d]$, then

$$
\begin{equation*}
\operatorname{det}\left(A_{U, V}\right)= \pm \operatorname{det} A \cdot \operatorname{det}\left(\left(A^{-1}\right)_{\tilde{V}, \widetilde{U}}\right) \tag{6}
\end{equation*}
$$

(The \pm sign is actually $(-1)^{\operatorname{sum} U+\operatorname{sum} V}$, where sum U denotes the sum of all elements of U. But we don't care what it is.) Applying (6) to $A=Z$, we find

$$
\operatorname{det}\left(Z_{U, V}\right)= \pm \operatorname{det} Z \cdot \operatorname{det}\left(\left(Z^{-1}\right)_{\tilde{V}, \tilde{U}}\right)
$$

so that

$$
\begin{equation*}
\operatorname{det}\left(\left(Z^{-1}\right)_{\tilde{V}, \widetilde{U}}\right)= \pm \frac{\operatorname{det}\left(Z_{U, V}\right)}{\operatorname{det} Z} \tag{7}
\end{equation*}
$$

We WLOG assume that $\mathcal{B}=\{1,2, \ldots, d\}$, and we let $\left(v_{1}, v_{2}, \ldots, v_{d}\right)$ be the standard basis of $V=K^{d}$. We identify Sym V with the polynomial ring $K\left[v_{1}, v_{2}, \ldots, v_{d}\right]$. We consider the K-algebra isomorphism

$$
\begin{aligned}
\mathbf{i}:(\operatorname{Sym} V)^{\otimes d} & \rightarrow K[Z] \\
f_{1} \otimes \cdots \otimes f_{d} & \mapsto \prod_{i=1}^{d} f_{i}\left(z_{i, 1}, z_{i, 2}, \ldots, z_{i, d}\right) .
\end{aligned}
$$

We will use this isomorphism \mathbf{i} to identify $(\operatorname{Sym} V)^{\otimes d}$ with $K[Z]$.
We will use the notation $A_{u, v}$ for the (u, v)-th entry of a matrix A. Thus, in particular, $Z_{u, v}=z_{u, v}$ for all $u, v \in[d]$.

The polynomial ring $K[Z]$ is a G-module ${ }^{2}$, with G acting by K-algebra automorphisms according to the rule

$$
\begin{gathered}
A \cdot z_{i, j}=(Z A)_{i, j}=\sum_{k=1}^{d} \underbrace{Z_{i, k}}_{=z_{i, k}} A_{k, j}=\sum_{k=1}^{d} z_{i, k} A_{k, j} \\
\text { for all } A \in G \text { and } i, j \in[d] .
\end{gathered}
$$

In other words, a matrix $A \in G$ sends any polynomial $p(Z) \in K[Z]$ to $p(Z A) \in$ $K[Z]$ (which is the result of substituting each $z_{i, j}$ by $(Z A)_{i, j}$ in the polynomial $p(Z))$. This is probably the more illuminating way of thinking about our action of G on $K[Z]$. In particular, it shows that each $A \in G$ satisfies

$$
\begin{equation*}
A \cdot \operatorname{det} Z=\operatorname{det}(Z A)=\operatorname{det} Z \cdot \operatorname{det} A . \tag{8}
\end{equation*}
$$

Since $\operatorname{det} Z$ is invertible in $K[Z]_{\operatorname{det} Z}$, this shows that the action of G on $K[Z]$ can be extended to an action of G on the localization $K[Z]_{\operatorname{det} Z}$ (still by K-algebra automorphisms). Thus, $K[Z]$ is a G-submodule of $K[Z]_{\operatorname{det} Z}$.

Our isomorphism i : Sym $V \rightarrow K[Z]$ is G-equivariant. (This is easiest to show by checking the commutativity on each v_{j} in each of the d factors of $(\operatorname{Sym} V)^{\otimes d}$, and then arguing that everything is a K-algebra homomorphism.)

The definition of $\operatorname{Sym}^{\lambda} V$ yields $\operatorname{Sym}^{\lambda} V \subseteq(\operatorname{Sym} V)^{\otimes d}$ (or at least that there is a canonical G-equivariant injection $\operatorname{Sym}^{\lambda} V \rightarrow(\operatorname{Sym} V)^{\otimes d}$, but we consider this injection as an inclusion). If t is a λ-tableau with entries in \mathcal{B}, then the element

[^1]$\mathbf{e}(t) \in \operatorname{Sym}^{\lambda} V \subseteq(\operatorname{Sym} V)^{\otimes d}$ you define in $\S 2.1$ can now be rewritten as follows. ${ }^{3}$
$$
\mathbf{e}(t)=\sum_{\sigma \in \operatorname{CPP}(\lambda)} \operatorname{sgn}(\sigma) \cdot \underbrace{\mathbf{s}(t \cdot \sigma)}_{\ell(\lambda)} \quad=\sum_{\sigma \in \operatorname{CPP}(\lambda)} \operatorname{sgn}(\sigma) \cdot \bigotimes_{i=1}^{\ell(\lambda)} \prod_{j=1}^{\lambda_{i}} v_{(t \cdot \sigma)(i, j)}
$$
(by the definition of $\mathbf{s}(t \cdot \sigma)$)
$=\sum_{\sigma \in \operatorname{CPP}(\lambda)} \operatorname{sgn}(\sigma) \cdot \underbrace{}_{\underbrace{\ell(\lambda)} \prod_{j=1}^{\lambda_{i}} z_{i,(t \cdot \sigma)(i, j)} \quad\binom{\text { since we are using i to }}{\text { identify }(\operatorname{Sym} V)^{\otimes d} \text { with } K[Z]}}=\prod_{j=1}^{s} \prod_{i=1}^{\lambda_{j}^{\prime}}$
$=\sum_{\sigma \in \operatorname{CPP}(\lambda)} \operatorname{sgn}(\sigma) \cdot \prod_{j=1}^{s} \prod_{i=1}^{\lambda_{j}^{\prime}} z_{i,(t \cdot \sigma)(i, j)}$
$=\sum_{\sigma_{1} \in S_{\lambda_{1}}^{\prime}} \sum_{\sigma_{2} \in S_{\lambda_{2}}^{\prime}} \cdots \sum_{\sigma_{s} \in S_{\lambda_{s}}^{\prime}} \operatorname{sgn}\left(\sigma_{1}\right) \operatorname{sgn}\left(\sigma_{2}\right) \cdots \operatorname{sgn}\left(\sigma_{s}\right) \cdot \prod_{j=1}^{s} \prod_{i=1}^{\lambda_{j}^{\prime}} z_{i, t}\left(\sigma_{j}(i), j\right)$
$\binom{$ since the permutations $\sigma \in \operatorname{CPP}(\lambda)$ are in bijection with }{ the s-tuples of permutations $\sigma_{1} \in S_{\lambda_{1}^{\prime}}, \sigma_{2} \in S_{\lambda_{2}^{\prime}}^{\prime} \ldots, \sigma_{s} \in S_{\lambda_{s}^{\prime}}}$
\[

$$
\begin{aligned}
& =\prod_{j=1}^{s} \underbrace{\left(\sum_{\sigma \in S_{\lambda_{j}^{\prime}}} \operatorname{sgn}(\sigma) \cdot \prod_{i=1}^{\lambda_{j}^{\prime}} z_{i, t(\sigma(i), j)}\right)}_{=\operatorname{det}\left(\left(z_{u, t(v, j)}\right)_{1 \leq u \leq \lambda_{j}^{\prime},}\left(\leq v \leq \lambda_{j}^{\prime}\right)\right.} \quad \text { (by the product rule) } \\
& =\prod_{j=1}^{s} \operatorname{det} \underbrace{\left(\left(z_{u, t(v, j)}\right)_{1 \leq u \leq \lambda_{j}^{\prime}, 1 \leq v \leq \lambda_{j}^{\prime}}\right)}_{\left.=Z_{\left[\lambda_{j}\right]}\right], \operatorname{col}_{j} t}= \pm \prod_{j=1}^{s} \operatorname{det}\left(Z_{\left[\lambda_{j}^{\prime}\right], \operatorname{col}_{j} t}\right) .
\end{aligned}
$$
\]

up to permuting the rows
Thus,

$$
\begin{equation*}
\nabla^{\lambda} V=\operatorname{span}\left(\prod_{j=1}^{s} \operatorname{det}\left(Z_{\left[\lambda_{j}^{\prime}\right], \mathrm{col}_{j} t}\right) \mid t \text { is a } \lambda \text {-tableau }\right) \tag{9}
\end{equation*}
$$

(since $\nabla^{\lambda} V$ was defined as the span of all $\mathbf{e}(t)$ for λ-tableaux t). The right hand side of this equality is the G-module D^{λ} defined at the end of [Ful97, §8.1] (although

[^2][Ful97] works with the monoid $M_{d}(K)$ instead of $\mathrm{GL}_{d}(K)$, and uses the notations R and m instead of K and d). Thus, $\nabla^{\lambda} V \cong D^{\lambda} \cong E^{\lambda}$ (by [Ful97, §8.1, Exercise 5]), where E^{λ} is the Schur module defined in [Ful97, §8.1]. This shows that $\nabla^{\lambda} V$ is always isomorphic to Fulton's E^{λ}, whatever K is.

We can replace " λ-tableau" by "column-standard λ-tableau" on the right hand side of (9), since any λ-tableau either yields a 0 determinant or can be made column-standard by a CPP-permutation (which can at most flip the sign of the respective product). Thus, (9) becomes

$$
\begin{align*}
\nabla^{\lambda} V & =\operatorname{span}\left(\prod_{j=1}^{s} \operatorname{det}\left(Z_{\left[\lambda_{j}^{\prime}\right], \text { col }_{j} t}\right) \mid t \text { is a column-standard } \lambda \text {-tableau }\right) \\
& =\operatorname{span}\left(\prod_{j=1}^{s} \operatorname{det}\left(Z_{\left[\lambda_{j}^{\prime}\right], U_{j}}\right) \mid U_{j} \text { is a } \lambda_{j}^{\prime} \text {-element subset of }[d]\right) \tag{10}
\end{align*}
$$

Applying this to λ° instead of λ, we obtain

$$
\begin{align*}
\nabla^{\lambda^{\circ} V}= & \operatorname{span}\left(\prod_{j=1}^{s} \operatorname{det}\left(Z_{\left[d-\lambda_{j}^{\prime}\right], U_{j}}\right) \mid U_{j} \text { is a }\left(d-\lambda_{j}^{\prime}\right) \text {-element subset of }[d]\right) \\
& \left(\text { since }\left(\lambda^{\circ}\right)_{j}^{\prime}=d-\lambda_{j}^{\prime} \text { for each } j \in[s]\right) \\
= & \operatorname{span}\left(\prod_{j=1}^{s} \operatorname{det}\left(Z_{\left[d-\lambda_{j}^{\prime}\right], \widetilde{U_{j}}}\right) \mid U_{j} \text { is a } \lambda_{j}^{\prime} \text {-element subset of }[d]\right) \tag{11}
\end{align*}
$$

(here, we have substituted \widetilde{U}_{j} for U_{j}).
Next, we need one more piece of notation. If γ is an automorphism of the group G, and if W is a G-module, then $W \circ \gamma$ shall mean the G-module W twisted by γ (that is, it is the same K-module as W, but the action of G on it is $\rho \circ \gamma: G \rightarrow$ GL (W), where $\rho: G \rightarrow \mathrm{GL}(W)$ is the action of G on W). We will use one specific automorphism of G, which we shall call γ from now on: namely, the automorphism sending each $A \in G$ to $\left(A^{-1}\right)^{T}$. It is well-known that $V^{\star} \cong V \circ \gamma$ as G-modules. ${ }^{4}$

Hence, $\nabla^{\lambda^{\circ}} V^{*} \cong \nabla^{\lambda^{\circ}}(V \circ \gamma) \cong\left(\nabla^{\lambda^{\circ}} V\right) \circ \gamma$. Thus, we just need to show that

$$
\begin{equation*}
\nabla^{\lambda} V \cong\left(\left(\nabla^{\lambda^{\circ}} V\right) \circ \gamma\right) \otimes(\operatorname{det} V)^{\otimes s} \tag{12}
\end{equation*}
$$

We shall do so by constructing an explicit isomorphism. We define a K-algebra endomorphism Ω of $K[Z]_{\operatorname{det} Z}$ by requiring that

$$
\Omega\left(z_{i, j}\right)=\left(Z^{-1}\right)_{j, d+1-i} \quad \text { for all } i, j \in[d]
$$

This endomorphism Ω is well-defined (by the universal property of the localization $K[Z]_{\operatorname{det} Z}$, because the K-algebra morphism $K[Z] \rightarrow K[Z]_{\operatorname{det} Z}$ that sends each $z_{i, j}$

[^3]to $\left(Z^{-1}\right)_{j, d+1-i}$ sends $\operatorname{det} Z$ to $\pm \operatorname{det}\left(Z^{-1}\right)= \pm(\operatorname{det} Z)^{-1}$, which is an invertible element of $K[Z]_{\operatorname{det} Z}$).

This endomorphism Ω is an automorphism of $K[Z]_{\operatorname{det} Z}$ (actually, $\Omega^{4}=$ id if I am not wrong, but either way Ω is a composition of some rather well-known involutions: one that "sends" Z to Z^{T}, another that "sends" Z to Z^{-1}, and another that sends $z_{i, j}$ to $z_{d+1-i, j}$).

It is not hard to see that the map Ω is a G-module isomorphism from $K[Z]_{\operatorname{det} Z}$ to $K[Z]_{\operatorname{det} Z} \circ \gamma$. Indeed, this boils down to proving the equality

$$
\Omega(A \cdot f)=\gamma(A) \cdot \Omega(f) \quad \text { for all } A \in G \text { and } f \in K[Z]_{\operatorname{det} Z}
$$

To prove this equality, we can WLOG assume that $f \in K[Z]$. Since Ω is a K-algebra morphism, this equality needs to be proved for $f=z_{i, j}$ only. But this is rather straightforward: Setting $f=z_{i, j}$, we can compare

$$
\begin{aligned}
\Omega(A \cdot f) & =\Omega\left(A \cdot z_{i, j}\right)=\Omega\left(\sum_{k=1}^{d} z_{i, k} A_{k, j}\right)=\sum_{k=1}^{d} \underbrace{\Omega\left(z_{i, k}\right)}_{=\left(Z^{-1}\right)_{k, d+1-i}=\left(A^{T}\right)_{j, k}} \underbrace{A_{k, j}} \\
& =\sum_{k=1}^{d}\left(Z^{-1}\right)_{k, d+1-i}\left(A^{T}\right)_{j, k}=\left(A^{T} Z^{-1}\right)_{j, d+1-i}
\end{aligned}
$$

with

$$
\begin{aligned}
\gamma(A) \cdot \Omega(f)= & \underbrace{\gamma(A)} \cdot \underbrace{\Omega\left(z_{i, j}\right)}_{\left(A^{-1}\right)^{T}}=\left(A^{-1}\right)^{T} \cdot\left(Z^{-1}\right)_{j, d+1-i} \\
= & \left(\left(Z\left(A^{-1}\right)^{T}\right)^{-1}\right)_{j, d+1-i}=\left(A^{T} Z^{-1}\right)_{j, d+1-i^{\prime}}
\end{aligned}
$$

and get precisely this claim.
So we conclude that Ω is a G-module isomorphism from $K[Z]_{\operatorname{det} Z}$ to $K[Z]_{\operatorname{det} Z} \circ$ γ.

If U is a k-element subset of $[d]$, then the definition of Ω yields

$$
\begin{aligned}
\Omega\left(\operatorname{det}\left(Z_{[k], U}\right)\right) & =\operatorname{det}\left(\left(Z^{-1}\right)_{U,\{d-k+1, d-k+2, \ldots, d\}}\right) \\
& = \pm \frac{\operatorname{det}\left(Z_{[d-k], \tilde{U}}\right)}{\operatorname{det} Z} \quad(\text { by }(7)) .
\end{aligned}
$$

Since Ω is a K-algebra morphism, we therefore have

$$
\Omega\left(\prod_{j=1}^{s} \operatorname{det}\left(Z_{\left[\lambda_{j}^{\prime}\right], u_{j}}\right)\right)= \pm \frac{1}{(\operatorname{det} Z)^{s}} \prod_{j=1}^{s} \operatorname{det}\left(Z_{\left[d-\lambda_{j}^{\prime}\right], \tilde{u}_{j}}\right)
$$

whenever $U_{1}, U_{2}, \ldots, U_{s}$ are subsets of $[d]$ of sizes $\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots, \lambda_{s}^{\prime}$. In view of (10) and 11 , this entails $\Omega\left(\nabla^{\lambda} V\right)=\frac{1}{(\operatorname{det} Z)^{s}} \cdot \nabla^{\lambda^{\circ}} V$. In other words, $\Omega\left(\nabla^{\lambda} V\right)$. $(\operatorname{det} Z)^{s}=\nabla^{\lambda^{\circ}} V$. Thus, multiplication by $(\operatorname{det} Z)^{s}$ is a K-module isomorphism from $\Omega\left(\nabla^{\lambda} V\right)$ to $\nabla^{\lambda^{\circ}} V$. This isomorphism is furthermore G-equivariant as a map from $\left(\Omega\left(\nabla^{\lambda} V\right)\right) \otimes(\operatorname{det} V)^{\otimes s}$ to $\nabla^{\lambda^{\circ}} V$, because any $A \in G$ and any $f \in \Omega\left(\nabla^{\lambda} V\right)$ satisfy

$$
\begin{aligned}
A \cdot\left(f \cdot(\operatorname{det} Z)^{s}\right) & =(A \cdot f) \cdot(\underbrace{A \cdot \operatorname{det} Z}_{\begin{array}{l}
=\operatorname{det}(Z A) \\
=\operatorname{det} Z \cdot \operatorname{det} A
\end{array}})^{s}=(A \cdot f) \cdot(\operatorname{det} Z \cdot \operatorname{det} A)^{s} \\
& =(\operatorname{det} A)^{s} \cdot(A \cdot f) \cdot(\operatorname{det} Z)^{s} .
\end{aligned}
$$

Hence, we conclude that

$$
\begin{equation*}
\left(\Omega\left(\nabla^{\lambda} V\right)\right) \otimes(\operatorname{det} V)^{\otimes s} \cong \nabla^{\lambda^{\circ}} V \quad \text { as } G \text {-modules. } \tag{13}
\end{equation*}
$$

Applying this to λ° instead of λ, we obtain

$$
\begin{equation*}
\left(\Omega\left(\nabla^{\lambda^{\circ}} V\right)\right) \otimes(\operatorname{det} V)^{\otimes s} \cong \nabla^{\lambda} V \quad \text { as } G \text {-modules } \tag{14}
\end{equation*}
$$

(since $\left.\left(\lambda^{\circ}\right)^{\circ}=\lambda\right)$.
However, $\left(\Omega\left(\nabla^{\lambda} V\right)\right) \circ \gamma \cong \nabla^{\lambda} V$ (since Ω is a G-module isomorphism from $K[Z]_{\operatorname{det} Z}$ to $\left.K[Z]_{\operatorname{det} Z} \circ \gamma\right)$. Since γ is an involution, this entails

$$
\Omega\left(\nabla^{\lambda} V\right) \cong \underbrace{\left(\Omega\left(\nabla^{\lambda} V\right)\right) \circ \gamma}_{\cong \nabla^{\lambda} V} \circ \gamma \cong\left(\nabla^{\lambda} V\right) \circ \gamma
$$

Applying this to λ° instead of λ, we obtain $\Omega\left(\nabla^{\lambda^{\circ}} V\right) \cong\left(\nabla^{\lambda^{\circ}} V\right) \circ \gamma$. Thus, (14) rewrites as

$$
\left(\left(\nabla^{\lambda^{\circ}} V\right) \circ \gamma\right) \otimes(\operatorname{det} V)^{\otimes s} \cong \nabla^{\lambda} V \quad \text { as } G \text {-modules }
$$

This proves (12) and thus proves Theorem 1.2.

References

[Ful97] William Fulton, Young Tableaux With Applications to Representation Theory and Geometry, Cambridge University Press, reprint 1999.

[^0]: ${ }^{1}$ because $(\operatorname{det} E)^{\otimes m(m-1) / 2}$ is canonically isomorphic to K as a K-module, and of course we have $W \otimes K \cong W$ for any K-module W

[^1]: ${ }^{2}$ Recall that $G=\mathrm{GL}_{d}(K)$.

[^2]: ${ }^{3}$ I let $\operatorname{col}_{j} t$ denote the set of all entries of the j-th column of t.
 My symmetric group actions might be in conflict with yours, since I'm used to everything acting from the left. I believe this shouldn't be a problem, since $\operatorname{sgn}\left(\sigma^{-1}\right)=\operatorname{sgn} \sigma$ for any permutation σ.

[^3]: ${ }^{4}$ This is essentially the definition of the G-action on V^{\star}.

