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This is a comment on the preprint arXiv:2105.00538v3 (Eoghan McDowell, Mark
Wildon, Modular plethystic isomorphisms for two-dimensional linear groups, arXiv:2105.00538v3,
to appear in Journal of Algebra), in which I (believe I) prove Theorem 1.4 and The-
orem 1.2 of said preprint in more transparent (and certainly less combinatorial)
ways. I try to imitate the notation of the preprint, but in some places I cannot
help reverting to my own (in particular, my groups all act from the left). I let K be
an arbitrary commutative ring (not necessarily a field) throughout this comment
(however, I will only work with free K-modules).

0.1. The modular Wronskian isomorphism

Let K be an arbitrary commutative ring. Let E be the natural representation of
the group GL, (K) on the free K-module K2. Let m,/ € IN. In Theorem 1.4 of
arXiv:2105.00538v3, you show that

Sym,, Symg E® (detE)®m(m*1)/2 N Sym@rmfl E

as GL; (K)-representations via a certain isomorphism that you call { in Definition
4.2.

Let me prove this in a somewhat simpler way. Specifically, I will show that ¢ is
GL; (K)-equivariant. The bijectivity of { follows easily enough from a triangularity
argument (which is what you do in your proof of Lemma 4.5).

Let K[X, Y] be the polynomial ring in 2 variables X,Y. We will identify Sym E
with K[X, Y], thus writing elements of SymE as f (X,Y). The group GL; (K) acts
on K [X, Y] by the rule

(i Z) F(X,Y) = f(aX +cY,bX +dY)

b

a
for all (c q

) € GL; (K) and f (X,Y) € K[X,Y].

Let K [X, Y] be the polynomial ring in 2m variables X1, Xo, ..., X, Y1, Y2, ..., Y.
The symmetric group S, acts on this ring K [X, Y] by K-algebra automorphisms
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(with any 0 € S sending each X; to X,(;) and sending each Y; to Y,(;)). Let
K [X, Y]*¥™ be the invariant ring of this action. The group GL; (K) acts on K [X,Y]
by acting on each (Xj, Y;)-pair separately - i.e., by the rule

(00) 000 = F (a4 03, b )

b

a
for all (c J

) € GL, (K) and i € [m] and f (X;,Y;) € K[X;,Y]].

This GL; (K)-action commutes with the action of S, and thus induces a GL; (K)-
action on K [X, Y]*™.
We will build a commutative diagram

Sym,, <Symé E) — <Sym£ E) T _w pm Syrr)@rm_1 E

1& L Y

Sym,, (Sym E)c—— (Sym E)“" A" SymE

m

zlﬁ >~ 0

KX, Y e K[X, Y] ———— K[X, Y]

where the horizontal < maps are the obvious inclusions and where the other maps
(all of them K-linear) are defined as follows:

* The injection « : Sym,, (Syme E) — Sym,, (SymE) is obtained by applying

the Sym  functor to the (split) injection Sym’E < SymE. This is clearly
GL; (K)-equivariant.

e The isomorphism « : (Sym E)®™ — K [X, Y] is the well-known isomorphism
that sends each tensor
AXY)®H(XY)@: @ fu (X, Y)
to f1 (X1, Y1) f2 (X2, Y2) =+ fin (X, Yom) -

This is clearly GL; (K)-equivariant and S,-equivariant.

e The isomorphism 8 : Sym,  (SymE) — K [X, Y]*™ is the restriction of « to the
Sw-fixed spaces. It is clearly GL, (K)-equivariant (since x is).

e The injection 7y : A" Sym‘ " 1E < A™SymE is obtained by applying the
A™ functor to the (split) injection Sym‘*™ 1E < SymE. This is clearly
GL; (K)-equivariant.
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* The map ¢ : A" Sym E — K [X, Y] sends each

fAXY)ANLRXY)A A fu(X,Y)
to Z (sgna) ’ f(T(l) (Xll Yl) fa(Z) (Xz, YZ) o 'fa(m) (Xm; Ym) .

eSS,

This map 0 is clearly GL;, (K)-equivariant, and furthermore is easily seen to

be injective (since it factors as § = x 0 &', where &' : A” SymE < (Sym E)®"

is the canonical injection sending each f1 (X, Y) A fo (X, Y)A--- A fiu (X, Y) to
Y (sgno) - fo) (X,Y) @ foo) (X, Y) @+ @ fr(m) (X, X))

€Sy

0\ o ®
* The injection ¢ : (Sym E> — (Sym E)“"™ is obtained by applying the ©™
functor to the (split) injection Sym‘E < SymE. This is clearly GL; (K)-
equivariant.

* The map w: (S ¢ E) . " Grm=1
p w: (Sym — A" Sym E sends each tensor

HXY)QL(XY)Q: @ fu (X,Y)
to f1 (X, Y) X" WYON £ (X, Y) X" 2YL A - A fi (X, Y) XY™ L

This is the map you describe in Theorem 1.4.

e Weletalt: K[X,Y] — KX, Y] be the K-linear map that sends each polynomial
g € K[X, Y] to

altg:= )  (sgno)- L(T : gl
eSSy T
=8(Xo (1) Ko@) Xer(m) Yor(1) Yor(2) o Yor(m) )

This map alt is called the alternator, and its image is the space of all alternating
polynomials in K [X, Y] (but we won’t use this). The map alt is easily seen to
be a K [X, Y]*Y™-module morphism: i.e., we have

alt(fg) = f -altg (1)
for any f € K[X,Y]*™ and any ¢ € K[X,Y].

e The map ¢ : K[X, Y] — K[X,Y] sends each polynomial f € K[X, Y] to
alt ( fXdY"), where
m .
X4 = XXy xmem = T X
i=1

m .
and Y =YYyt =T Y
i=1

This is not per se GL; (K)-equivariant (for m > 1 and K # 0).
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The commutativity of the above diagram is easy to see: The top-left and the
bottom-left square obviously commute, while the commutativity of the right rect-
angle boils down to the equality

) (sgno)- ﬁ(f (%ot You) X0 Yei)

oESy, i=1

= ) (sgno)- ﬁ( (X, Y:) X" (Z)Yf(i)*l)
TES, i=1

(for all f1, fa, ..., fm € K[X,Y]), which is easily checked (just substitute ¢! for ¢
in the sum).
Now, your ( is the restriction w ‘Symm Sym! E- Thus, we need to prove that w

restricts to an GL, (K)-equivariant map
from Sym, Symf E ® (det E)®m(m—1)/2 to A™ Sym£+m—1 E

(where “® (det E)®m(m*1)/2” is seen as a twist of the GL, (K)-action —i.e., we iden-
tify Sym, Sym‘E ® (det E )Emm=172 \ith Sym, Sym‘E as a K-modul.
In other words, we need to prove that

A-w(v) = (det A)"" D/ 4 (Av) (2)

for any A € GL, (K) and any v € Sym,, Sym’ E. In view of the above commutative
diagram (and in view of the injectivity of v and J), it suffices to show that

At (w) = (det A)""D2 g (Aw) 3)

for any A € GL, (K) and any w € K [X, Y]*™ (because if we have proved (3), then
we can apply (3) to w = B (a (v)) and then “unapply” the GL, (K)-equivariant map
J oy to obtain (2)).

So let us prove (). We fix A € GL, (K) and w € K[X,Y]”™. Then, Aw €
K [X, Y]?¥™ (since the actions of GL; (K) and of S;; on K [X, Y] commute). Now, the
definition of ¢ yields

¥ (Aw) = alt ((Aw) deE) = (Aw) - alt (xdw) (4)
(by (@), since Aw € K [X, Y]*™). On the other hand,
¥ (w) = alt (deW) —w - alt (xdy‘j (by (@), since w € K[X,Y]¥™),
T b= A (e (6¥)) = (aw) A (e (X))

because (det E)“"™ (m=1)/2 4 canonically isomorphic to K as a K-module, and of course we have
W ® K = W for any K-module W
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However, I claim that A (alt (X?Y?)) = (det A)"" /2. alt (XY?). Indeed, this
is probably easiest to see by factoring alt (X?Y?) explicitly: We have

alt (XdY“”) = ) (sgno)- <0’- (X"lYe>> = ) (sgno)- (Xm IYI 1)

oeSy, N———— €S, i=1
_ i m—iyi—1
_il;ll(Xa(i) %)

— det ((xm—iyi—1> )
] ] 1<i<m, 1<j<m

m—i
X
—C
J 1<i<im, 1<j<m

_ Xi %

19-139" Yi Y

(by the Vandermonde determinant)

::13

X, X
= (V1Yo - Y)" ! <_l — _J)
; 19‘1:][911 Yi Y
= JI XY;-XxyY),
1<i<j<m
so that
A <alt (dee)) = A ( T (xv- XjYi)) = J] AXY;-XY)
1<i<j<m 1<i<j<m

:detA~(;(:Yj—X]-Y,-)
(straightforward to verify)
-1)/2 H
= (detA)m(m ) . (XZY] — X]Yl)

1<i<j<m

-

=alt(X4Y)

= (det A)""1/2 (de@> .
Thus, (5) becomes
A-p(w) = (Aw)- A (alt (xdye))
:(d;tA)m<”’*1>/2~a1t(x/dw)

= (det A)"" V72 (Aw) - alt (xdw) = (det A)"" V72 4 (Aw) .

s

—p(Aw)
(by @)

This proves , and thus , and with it the Wronskian isomorphism.
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0.2. The complementary partition isomorphism

Let K be an arbitrary commutative ring. Let 4 € IN. Let G be a group, and
let V be the K-module K? with some action of G. Let s € N, and let A =
(A1, A2, ..., A4) be a partition with length < d and largest part < s. Let A° =
(s—Ags—Ag-1,...,5— Aq) denote the complement of A in the d x s-rectangle. In
Theorem 1.2 of arXiv:2105.00538v3, you claim that

VAV 2 VYV @ (det V)®*

as G-modules.

Again, let me prove this in a way I believe to be simpler. I will use Section 8.1 of
[Ful97] (Fulton’s book Young tableaux). In this section, Fulton defines and analyzes
the Schur module E*, which (as we will soon see) is isomorphic to V*V. (Note
that, just as we do, Fulton works in full generality, not just over the field C.)

We WLOG assume that G = GL; (K), since any group action on K¢ factors
through GL; (K). Consider the polynomial ring K [Z] in d? indeterminates

Zl,l/ Zl,Z/ ceey Zl,dl
221, 2225 «++s 224,

Zd,l/ Zd,2/ ey Zd,d

over K. Let Z be the d x d-matrix (z;;), ., , <j<q Over K[Z]. The determinant

det Z of this matrix is a regular element of K [Z]. Hence, the ring K [Z] embeds as a
subring into its localization K [Z] 4, , at the multiplicative set of all powers of det Z.
The latter localization K [Z] ., , is, of course, the coordinate ring of the affine group

scheme GL,;. We will work in the K-algebra K [Z] .., so that Z~! and (detZ)™"
are well-defined. N

We let [p] := {1,2,...,p} for any p € N. For any U C [d], we let U denote the
set [d] \ U (that is, the complement of U in [d]). For any p x g-matrix A and any
two subsets U C [p] and V C [g], we let Ay denote the |U| x |V|-submatrix of
A obtained by removing all rows other than the U-rows and removing all columns
other than the V-columns. The Jacobi complementary minor theorem says that if A is
an invertible d x d-matrix over some commutative ring, and if U C [d] and V C [d],
then

det (Ayy) = £ det A - det ((A—l)m). (6)

(The + sign is actually (—1)**™Y ™Y where sum U denotes the sum of all ele-

ments of U. But we don’t care what it is.) Applying (6) to A = Z, we find

det (Zyy) = +det Z - det ((z—l)‘7 ﬁ) ,
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so that

_ det (Zyyv)
1 _ uyv
dlet ((Z >x7,a) T etz 7

We WLOG assume that B = {1,2,...,d}, and we let (v1,0vy,...,v4) be the stan-
dard basis of V = K. We identify Sym V with the polynomial ring K [0, 05, .. ., 04].
We consider the K-algebra isomorphism

i:(SymV)¥ = K[z],

d
fl K .- - ®fd — Hfl (Zi,llzi,Z" . -/Zi,d) .
i=1

We will use this isomorphism i to identify (Sym V)® with K [Z].

We will use the notation A, , for the (u,v)-th entry of a matrix A. Thus, in
particular, Z, , = zy, for all u,v € [d].

The polynomial ring K [Z] is a G-moduleﬂ with G acting by K-algebra automor-
phisms according to the rule

A- Zi,j = <ZA)1] =

’

d d

Zik Akj =) Zi)Arj
— =1
=Zik

forall A€ Gandi,je [d].

k=1

In other words, a matrix A € G sends any polynomial p (Z) € K[Z] to p (ZA) €
K[Z] (which is the result of substituting each z;; by (ZA),; in the polynomial
p (2)). This is probably the more illuminating way of thinking about our action of
G on K [Z]. In particular, it shows that each A € G satisfies

A-detZ =det(ZA) =detZ-detA. (8)

Since det Z is invertible in K [Z] 4., this shows that the action of G on K [Z] can
be extended to an action of G on the localization K [Z] 4, , (still by K-algebra auto-
morphisms). Thus, K [Z] is a G-submodule of K [Z] ;.. -

Our isomorphism i : Sym V — K [Z] is G-equivariant. (This is easiest to show by
checking the commutativity on each v; in each of the d factors of (Sym V)®d, and
then arguing that everything is a K-algebra homomorphism.)

The definition of Sym”* V yields Sym* V C (Sym V)®d (or at least that there is

a canonical G-equivariant injection Sym*V — (Sym V)®d, but we consider this
injection as an inclusion). If t is a A-tableau with entries in B, then the element

ZRecall that G = GLy (K).
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e(t) € Sym* V C (Sym v)ed you define in §2.1 can now be rewritten as follows

LA) N
e(t)= )  sgn(o)- i(t-a) = Y sgn(c ® Hvta )(ij)
ceCPP(A) ~ c€CPP()) i=1
LA) A
=® w06
i=1 j=1
(by the definition of s(t-0))
_ Z sgn (0) _E(A) ﬁz- N since we are using i to
c€CPP(A) 5 i=1 j=1 HE0) ) identify (SymV)®d with K [Z]
——
.
=TI
=1 i=1
.y
= ) sgn(o) Zi (£0) (i f)
oeCPP(A) j=1 i=1

s A
Z Z sgn(a'l)sgl’l((fz) Sgn O-S lj qzzt

! / !
(71€SA1 0265)‘2 0'565/\5 1

since the permutations o € CPP (A) are in bijection with
the s-tuples of permutations oy € S N2 ESy, o, 05 €5y

j
= Z sgn (o) - Hzi,t(a(z'),j) (by the product rule)
j=1 \ ves,, i=1

]

-~

_det<(zu,t(v,j>)1<u<A}f 1<) )
_Hdet(( utv]>1<u</\’ 1<U<)\/) ﬂ:Hdet( [ ;}/Coljt>.

-~

/ .
[)\]. ,col ; t

up to permuting the rows

Thus,

S
VMV = span det (Z , ) t is a A-tableau 9
p <]11 [)‘j] ,coljt | > ( )

(since VAV was defined as the span of all e (t) for A-tableaux t). The right hand side
of this equality is the G-module D" defined at the end of [Ful97, §8.1] (although

31 let col; t denote the set of all entries of the j-th column of .

My symmetric group actions might be in conflict with yours, since I'm used to everything
acting from the left. I believe this shouldn’t be a problem, since sgn (¢~1) = sgno for any
permutation o.
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[Ful97] works with the monoid M, (K) instead of GL; (K), and uses the notations
R and m instead of K and d). Thus, VAV = D* = E* (by [Ful97, §8.1, Exercise
5]), where E* is the Schur module defined in [Ful97, §8.1]. This shows that VAV is
always isomorphic to Fulton’s E?, whatever K is.

We can replace “A-tableau” by “column-standard A-tableau” on the right hand
side of (9), since any A-tableau either yields a 0 determinant or can be made
column-standard by a CPP-permutation (which can at most flip the sign of the
respective product). Thus, (9) becomes

VMV = span <
J

S
det (Z , ) | tis a column-standard A-tableau
1 [Aj] ,col; t

S
= span < det (Z[/\;]u) | Ujisa A}-element subset of [d]) . (10)
j=1

Applying this to A° instead of A, we obtain

VA’V = span (
J

S
i det (Z[d—A;],u) | Ujisa (d — /\;> -element subset of [d])
(since (/\O);- =d — A foreach j € [s])

S
= span ( det (Z[d—m] U]> | Ujisa A}—element subset of [d]) (11)
j=1 "

(here, we have substituted /lf] for Uj).

Next, we need one more piece of notation. If 7y is an automorphism of the group
G, and if W is a G-module, then W o y shall mean the G-module W twisted by
(that is, it is the same K-module as W, but the action of G on itis poy : G —
GL (W), where p : G — GL (W) is the action of G on W). We will use one specific
automorphism of G, which we shall call -y from now on: namely, the automorphism
sending each A € G to (A’l)T. It is well-known that V* 2 V oy as G-modules

Hence, VY V* 2 VA" (Vo y) = (VA'V) o 4. Thus, we just need to show that

VWV = ((VFV) or) @ (detV)™. (12)

We shall do so by constructing an explicit isomorphism. We define a K-algebra
endomorphism Q) of K [Z] 4., , by requiring that

Q(z)) = (Z_l)j,d+1—i for all i,j € [d].

This endomorphism () is well-defined (by the universal property of the localization
K[Z] 4et 7, because the K-algebra morphism K [Z] — K[Z];., that sends each z;;

4This is essentially the definition of the G-action on V*.
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to (Z’l)].dﬂ_i sends detZ to +det (Z~') = +(detZ) ', which is an invertible

element of K [Z] .. )-

This endomorphism (Q is an automorphism of K [Z],, (actually, O* = id if
I am not wrong, but either way (2 is a composition of some rather well-known
involutions: one that “sends” Z to ZT, another that “sends” Z to Z~!, and another
that sends z;; to z4,1 ).

It is not hard to see that the map Q) is a G-module isomorphism from K [Z] 4, ,
to K [Z] 4017 © - Indeed, this boils down to proving the equality

QA f) =7(A)-Q(f) forall A€ Gand f € K[Z] -

To prove this equality, we can WLOG assume that f € K [Z]. Since () is a K-algebra
morphism, this equality needs to be proved for f = z;; only. But this is rather
straightforward: Setting f = z; ;, we can compare

d d
Q(A- =0((A-z;;) =0Q ziAri | = Q(z; Ap i
( f ) ( 1,]) (kzil ik k,]> k; ( z,k) \I;]/

:(Zil)k,dJrlfi =(AT)jx

d
=X (2 (A= (A1) L

with

Y(A)-Q(f)= 7v(A) - Q(z;) = (A_1>T' (Z_1>j,d+1—i

_ ((z (A‘1>T> _1> = (a2 i’

jd+1—i

and get precisely this claim.
So we conclude that Q2 is a G-module isomorphism from K [Z] ., to K[Z] .7 ©

7.
If U is a k-element subset of [d], then the definition of () yields

Q (det (Z[k]”)) = det <(Z_1> u,{d—k+1,d—k+2,...,d})

det (Z ~)
[d—k),U

Since () is a K-algebra morphism, we therefore have

S

! <Jlj et (Z["}]'UJ)) B i@gdet <Z[dA;],aj)
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whenever Uy, Uy, ..., Us are subsets of [d] of sizes Aj, A}, ..., AL, In view of
1 o
and , this entails Q (V'V) = et Z)° - VMV, In other words, Q (VAV) -
e
(detZ)° = VA'V. Thus, multiplication by (detZ)® is a K-module isomorphism
from Q (VAV) to VA'V. This isomorphism is furthermore G-equivariant as a map
from (Q (VAV)) ® (det V)** to VA’V, because any A € G and any f € Q (VV)

satisfy

A-(f-(detZ)’) = (A-f)- | A-detZ | =(A-f)-(detZ-detA)
=det(ZA)

=detZ-det A
= (detA)’-(A-f)-(detZ).
Hence, we conclude that
(Q (VAV>> ® (detV)®* = VAV as G-modules. (13)
Applying this to A° instead of A, we obtain
(Q (V)‘O V>> ® (det V)®°* = VAV as G-modules (14)
(since (A°)° = A).

However, () (V*V)) oy = VMV (since Q) is a G-module isomorphism from
K [Z] 4otz t0 K[Z] 4otz © 7)- Since 7 is an involution, this entails

O (VAV) o (Q (vAv)) 0 yoy = (vW) 0.

~VAV

Applying this to A° instead of A, we obtain Q (VA}'V) = (VA'V) o+. Thus,
rewrites as

((VAO V) o ’)/) ® (detV)®* = VAV as G-modules.

This proves and thus proves Theorem 1.2.
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