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This is a comment on the preprint arXiv:2105.00538v3 (Eoghan McDowell, Mark
Wildon, Modular plethystic isomorphisms for two-dimensional linear groups, arXiv:2105.00538v3,
to appear in Journal of Algebra), in which I (believe I) prove Theorem 1.4 and The-
orem 1.2 of said preprint in more transparent (and certainly less combinatorial)
ways. I try to imitate the notation of the preprint, but in some places I cannot
help reverting to my own (in particular, my groups all act from the left). I let K be
an arbitrary commutative ring (not necessarily a field) throughout this comment
(however, I will only work with free K-modules).

0.1. The modular Wronskian isomorphism

Let K be an arbitrary commutative ring. Let E be the natural representation of
the group GL2 (K) on the free K-module K2. Let m, ℓ ∈ N. In Theorem 1.4 of
arXiv:2105.00538v3, you show that

Symm Symℓ E ⊗ (det E)⊗m(m−1)/2 ∼= Λm Symℓ+m−1 E

as GL2 (K)-representations via a certain isomorphism that you call ζ in Definition
4.2.

Let me prove this in a somewhat simpler way. Specifically, I will show that ζ is
GL2 (K)-equivariant. The bijectivity of ζ follows easily enough from a triangularity
argument (which is what you do in your proof of Lemma 4.5).

Let K [X, Y] be the polynomial ring in 2 variables X, Y. We will identify Sym E
with K [X, Y], thus writing elements of Sym E as f (X, Y). The group GL2 (K) acts
on K [X, Y] by the rule(

a b
c d

)
· f (X, Y) = f (aX + cY, bX + dY)

for all
(

a b
c d

)
∈ GL2 (K) and f (X, Y) ∈ K [X, Y] .

Let K [X, Y] be the polynomial ring in 2m variables X1, X2, . . . , Xm, Y1, Y2, . . . , Ym.
The symmetric group Sm acts on this ring K [X, Y] by K-algebra automorphisms
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(with any σ ∈ Sm sending each Xi to Xσ(i) and sending each Yi to Yσ(i)). Let
K [X, Y]sym be the invariant ring of this action. The group GL2 (K) acts on K [X, Y]
by acting on each (Xi, Yi)-pair separately – i.e., by the rule(

a b
c d

)
· f (Xi, Yi) = f (aXi + cYi, bXi + dYi)

for all
(

a b
c d

)
∈ GL2 (K) and i ∈ [m] and f (Xi, Yi) ∈ K [Xi, Yi] .

This GL2 (K)-action commutes with the action of Sm, and thus induces a GL2 (K)-
action on K [X, Y]sym.

We will build a commutative diagram

Symm

(
Symℓ E

)
�� //

_�

α

��

(
Symℓ E

)⊗m

_�

ι
��

ω // Λm Symℓ+m−1 E
_�

γ

��

Symm (Sym E) �� //

β∼=
��

(Sym E)⊗m

κ∼=
��

Λm Sym E
_�

δ
��

K [X, Y]sym �� // K [X, Y]
ψ

// K [X, Y]

where the horizontal ↪→ maps are the obvious inclusions and where the other maps
(all of them K-linear) are defined as follows:

• The injection α : Symm

(
Symℓ E

)
↪→ Symm (Sym E) is obtained by applying

the Symm functor to the (split) injection Symℓ E ↪→ Sym E. This is clearly
GL2 (K)-equivariant.

• The isomorphism κ : (Sym E)⊗m → K [X, Y] is the well-known isomorphism
that sends each tensor

f1 (X, Y)⊗ f2 (X, Y)⊗ · · · ⊗ fm (X, Y)
to f1 (X1, Y1) f2 (X2, Y2) · · · fm (Xm, Ym) .

This is clearly GL2 (K)-equivariant and Sm-equivariant.

• The isomorphism β : Symm (Sym E) → K [X, Y]sym is the restriction of κ to the
Sm-fixed spaces. It is clearly GL2 (K)-equivariant (since κ is).

• The injection γ : Λm Symℓ+m−1 E ↪→ Λm Sym E is obtained by applying the
Λm functor to the (split) injection Symℓ+m−1 E ↪→ Sym E. This is clearly
GL2 (K)-equivariant.
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• The map δ : Λm Sym E ↪→ K [X, Y] sends each

f1 (X, Y) ∧ f2 (X, Y) ∧ · · · ∧ fm (X, Y)

to ∑
σ∈Sm

(sgn σ) · fσ(1) (X1, Y1) fσ(2) (X2, Y2) · · · fσ(m) (Xm, Ym) .

This map δ is clearly GL2 (K)-equivariant, and furthermore is easily seen to
be injective (since it factors as δ = κ ◦ δ′, where δ′ : Λm Sym E ↪→ (Sym E)⊗m

is the canonical injection sending each f1 (X, Y)∧ f2 (X, Y)∧ · · · ∧ fm (X, Y) to
∑

σ∈Sm

(sgn σ) · fσ(1) (X, Y)⊗ fσ(2) (X, Y)⊗ · · · ⊗ fσ(m) (X, Y)).

• The injection ι :
(

Symℓ E
)⊗m

↪→ (Sym E)⊗m is obtained by applying the ⊗m

functor to the (split) injection Symℓ E ↪→ Sym E. This is clearly GL2 (K)-
equivariant.

• The map ω :
(

Symℓ E
)⊗m

→ Λm Symℓ+m−1 E sends each tensor

f1 (X, Y)⊗ f2 (X, Y)⊗ · · · ⊗ fm (X, Y)

to f1 (X, Y) Xm−1Y0 ∧ f2 (X, Y) Xm−2Y1 ∧ · · · ∧ fm (X, Y) Xm−mYm−1.

This is the map you describe in Theorem 1.4.

• We let alt : K [X, Y] → K [X, Y] be the K-linear map that sends each polynomial
g ∈ K [X, Y] to

alt g := ∑
σ∈Sm

(sgn σ) · (σ · g)︸ ︷︷ ︸
=g(Xσ(1),Xσ(2),...,Xσ(m),Yσ(1),Yσ(2),...,Yσ(m))

.

This map alt is called the alternator, and its image is the space of all alternating
polynomials in K [X, Y] (but we won’t use this). The map alt is easily seen to
be a K [X, Y]sym-module morphism: i.e., we have

alt ( f g) = f · alt g (1)

for any f ∈ K [X, Y]sym and any g ∈ K [X, Y].

• The map ψ : K [X, Y] → K [X, Y] sends each polynomial f ∈ K [X, Y] to
alt
(

f XdYe), where

Xd := Xm−1
1 Xm−2

2 · · · Xm−m
m =

m

∏
i=1

Xm−i
i

and Ye := Y0
1 Y1

2 · · ·Ym−1
m =

m

∏
i=1

Yi−1
i .

This is not per se GL2 (K)-equivariant (for m > 1 and K ̸= 0).
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The commutativity of the above diagram is easy to see: The top-left and the
bottom-left square obviously commute, while the commutativity of the right rect-
angle boils down to the equality

∑
σ∈Sm

(sgn σ) ·
m

∏
i=1

(
fi

(
Xσ(i), Yσ(i)

)
Xm−i

σ(i) Yi−1
σ(i)

)
= ∑

σ∈Sm

(sgn σ) ·
m

∏
i=1

(
fσ(i) (Xi, Yi) Xm−σ(i)

i Yσ(i)−1
i

)
(for all f1, f2, . . . , fm ∈ K [X, Y]), which is easily checked (just substitute σ−1 for σ
in the sum).

Now, your ζ is the restriction ω |Symm Symℓ E. Thus, we need to prove that ω

restricts to an GL2 (K)-equivariant map

from Symm Symℓ E ⊗ (det E)⊗m(m−1)/2 to Λm Symℓ+m−1 E

(where “⊗ (det E)⊗m(m−1)/2” is seen as a twist of the GL2 (K)-action – i.e., we iden-
tify Symm Symℓ E ⊗ (det E)⊗m(m−1)/2 with Symm Symℓ E as a K-module1).

In other words, we need to prove that

A · ω (v) = (det A)m(m−1)/2 · ω (Av) (2)

for any A ∈ GL2 (K) and any v ∈ Symm Symℓ E. In view of the above commutative
diagram (and in view of the injectivity of γ and δ), it suffices to show that

A · ψ (w) = (det A)m(m−1)/2 · ψ (Aw) (3)

for any A ∈ GL2 (K) and any w ∈ K [X, Y]sym (because if we have proved (3), then
we can apply (3) to w = β (α (v)) and then “unapply” the GL2 (K)-equivariant map
δ ◦ γ to obtain (2)).

So let us prove (3). We fix A ∈ GL2 (K) and w ∈ K [X, Y]sym. Then, Aw ∈
K [X, Y]sym (since the actions of GL2 (K) and of Sm on K [X, Y] commute). Now, the
definition of ψ yields

ψ (Aw) = alt
(
(Aw)XdYe

)
= (Aw) · alt

(
XdYe

)
(4)

(by (1), since Aw ∈ K [X, Y]sym). On the other hand,

ψ (w) = alt
(

wXdYe
)
= w · alt

(
XdYe

) (
by (1), since w ∈ K [X, Y]sym) ,

so that
A · ψ (w) = A ·

(
w · alt

(
XdYe

))
= (Aw) · A

(
alt
(

XdYe
))

. (5)

1because (det E)⊗m(m−1)/2 is canonically isomorphic to K as a K-module, and of course we have
W ⊗ K ∼= W for any K-module W
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However, I claim that A
(
alt
(
XdYe)) = (det A)m(m−1)/2 · alt

(
XdYe). Indeed, this

is probably easiest to see by factoring alt
(
XdYe) explicitly: We have

alt
(

XdYe
)
= ∑

σ∈Sm

(sgn σ) ·
(

σ ·
(

XdYe
))

︸ ︷︷ ︸
=

m
∏
i=1

(
Xm−i

σ(i) Yi−1
σ(i)

)
= ∑

σ∈Sm

(sgn σ) ·
m

∏
i=1

(
Xm−i

σ(i) Yi−1
σ(i)

)

= det
((

Xm−i
j Yi−1

j

)
1≤i≤m, 1≤j≤m

)

= (Y1Y2 · · ·Ym)
m−1 det


(Xj

Yj

)m−i


1≤i≤m, 1≤j≤m


︸ ︷︷ ︸

= ∏
1≤i<j≤m

Xi

Yi
−

Xj

Yj


(by the Vandermonde determinant)

= (Y1Y2 · · ·Ym)
m−1 ∏

1≤i<j≤m

(
Xi

Yi
−

Xj

Yj

)
= ∏

1≤i<j≤m

(
XiYj − XjYi

)
,

so that

A
(

alt
(

XdYe
))

= A

(
∏

1≤i<j≤m

(
XiYj − XjYi

))
= ∏

1≤i<j≤m
A
(
XiYj − XjYi

)︸ ︷︷ ︸
=det A·(XiYj−XjYi)

(straightforward to verify)

= (det A)m(m−1)/2 · ∏
1≤i<j≤m

(
XiYj − XjYi

)
︸ ︷︷ ︸

=alt(XdYe)

= (det A)m(m−1)/2 · alt
(

XdYe
)

.

Thus, (5) becomes

A · ψ (w) = (Aw) · A
(

alt
(

XdYe
))

︸ ︷︷ ︸
=(det A)m(m−1)/2·alt(XdYe)

= (det A)m(m−1)/2 · (Aw) · alt
(

XdYe
)

︸ ︷︷ ︸
=ψ(Aw)
(by (4))

= (det A)m(m−1)/2 · ψ (Aw) .

This proves (3), and thus (2), and with it the Wronskian isomorphism.
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0.2. The complementary partition isomorphism

Let K be an arbitrary commutative ring. Let d ∈ N. Let G be a group, and
let V be the K-module Kd with some action of G. Let s ∈ N, and let λ =
(λ1, λ2, . . . , λd) be a partition with length ≤ d and largest part ≤ s. Let λ◦ =
(s − λd, s − λd−1, . . . , s − λ1) denote the complement of λ in the d × s-rectangle. In
Theorem 1.2 of arXiv:2105.00538v3, you claim that

∇λV ∼= ∇λ◦
V⋆ ⊗ (det V)⊗s

as G-modules.
Again, let me prove this in a way I believe to be simpler. I will use Section 8.1 of

[Ful97] (Fulton’s book Young tableaux). In this section, Fulton defines and analyzes
the Schur module Eλ, which (as we will soon see) is isomorphic to ∇λV. (Note
that, just as we do, Fulton works in full generality, not just over the field C.)

We WLOG assume that G = GLd (K), since any group action on Kd factors
through GLd (K). Consider the polynomial ring K [Z] in d2 indeterminates

z1,1, z1,2, . . . , z1,d,
z2,1, z2,2, . . . , z2,d,
...
zd,1, zd,2, . . . , zd,d

over K. Let Z be the d × d-matrix
(
zi,j
)

1≤i≤d, 1≤j≤d over K [Z]. The determinant
det Z of this matrix is a regular element of K [Z]. Hence, the ring K [Z] embeds as a
subring into its localization K [Z]det Z at the multiplicative set of all powers of det Z.
The latter localization K [Z]det Z is, of course, the coordinate ring of the affine group
scheme GLd. We will work in the K-algebra K [Z]det Z, so that Z−1 and (det Z)−1

are well-defined.
We let [p] := {1, 2, . . . , p} for any p ∈ N. For any U ⊆ [d], we let Ũ denote the

set [d] \ U (that is, the complement of U in [d]). For any p × q-matrix A and any
two subsets U ⊆ [p] and V ⊆ [q], we let AU,V denote the |U| × |V|-submatrix of
A obtained by removing all rows other than the U-rows and removing all columns
other than the V-columns. The Jacobi complementary minor theorem says that if A is
an invertible d × d-matrix over some commutative ring, and if U ⊆ [d] and V ⊆ [d],
then

det (AU,V) = ±det A · det
((

A−1
)

Ṽ,Ũ

)
. (6)

(The ± sign is actually (−1)sum U+sum V , where sum U denotes the sum of all ele-
ments of U. But we don’t care what it is.) Applying (6) to A = Z, we find

det (ZU,V) = ±det Z · det
((

Z−1
)

Ṽ,Ũ

)
,

http://arxiv.org/abs/2105.00538v3
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so that

det
((

Z−1
)

Ṽ,Ũ

)
= ±det (ZU,V)

det Z
. (7)

We WLOG assume that B = {1, 2, . . . , d}, and we let (v1, v2, . . . , vd) be the stan-
dard basis of V = Kd. We identify Sym V with the polynomial ring K [v1, v2, . . . , vd].
We consider the K-algebra isomorphism

i : (Sym V)⊗d → K [Z] ,

f1 ⊗ · · · ⊗ fd 7→
d

∏
i=1

fi (zi,1, zi,2, . . . , zi,d) .

We will use this isomorphism i to identify (Sym V)⊗d with K [Z].
We will use the notation Au,v for the (u, v)-th entry of a matrix A. Thus, in

particular, Zu,v = zu,v for all u, v ∈ [d].
The polynomial ring K [Z] is a G-module2, with G acting by K-algebra automor-

phisms according to the rule

A · zi,j = (ZA)i,j =
d

∑
k=1

Zi,k︸︷︷︸
=zi,k

Ak,j =
d

∑
k=1

zi,k Ak,j

for all A ∈ G and i, j ∈ [d] .

In other words, a matrix A ∈ G sends any polynomial p (Z) ∈ K [Z] to p (ZA) ∈
K [Z] (which is the result of substituting each zi,j by (ZA)i,j in the polynomial
p (Z)). This is probably the more illuminating way of thinking about our action of
G on K [Z]. In particular, it shows that each A ∈ G satisfies

A · det Z = det (ZA) = det Z · det A. (8)

Since det Z is invertible in K [Z]det Z, this shows that the action of G on K [Z] can
be extended to an action of G on the localization K [Z]det Z (still by K-algebra auto-
morphisms). Thus, K [Z] is a G-submodule of K [Z]det Z.

Our isomorphism i : Sym V → K [Z] is G-equivariant. (This is easiest to show by
checking the commutativity on each vj in each of the d factors of (Sym V)⊗d, and
then arguing that everything is a K-algebra homomorphism.)

The definition of Symλ V yields Symλ V ⊆ (Sym V)⊗d (or at least that there is
a canonical G-equivariant injection Symλ V → (Sym V)⊗d, but we consider this
injection as an inclusion). If t is a λ-tableau with entries in B, then the element

2Recall that G = GLd (K).



Comments on arXiv:2105.00538v3 page 8

e (t) ∈ Symλ V ⊆ (Sym V)⊗d you define in §2.1 can now be rewritten as follows:3

e (t) = ∑
σ∈CPP(λ)

sgn (σ) · s (t · σ)︸ ︷︷ ︸
=

ℓ(λ)⊗
i=1

λi
∏
j=1

v(t·σ)(i,j)

(by the definition of s(t·σ))

= ∑
σ∈CPP(λ)

sgn (σ) ·
ℓ(λ)⊗
i=1

λi

∏
j=1

v(t·σ)(i,j)

= ∑
σ∈CPP(λ)

sgn (σ) ·
ℓ(λ)

∏
i=1

λi

∏
j=1︸ ︷︷ ︸

=
s

∏
j=1

λ′j
∏
i=1

zi,(t·σ)(i,j)

(
since we are using i to

identify (Sym V)⊗d with K [Z]

)

= ∑
σ∈CPP(λ)

sgn (σ) ·
s

∏
j=1

λ′
j

∏
i=1

zi,(t·σ)(i,j)

= ∑
σ1∈S′

λ1

∑
σ2∈S′

λ2

· · · ∑
σs∈S′

λs

sgn (σ1) sgn (σ2) · · · sgn (σs) ·
s

∏
j=1

λ′
j

∏
i=1

zi,t(σj(i),j)(
since the permutations σ ∈ CPP (λ) are in bijection with

the s-tuples of permutations σ1 ∈ Sλ′
1
, σ2 ∈ Sλ′

2
, . . . , σs ∈ Sλ′

s

)

=
s

∏
j=1

 ∑
σ∈Sλ′j

sgn (σ) ·
λ′

j

∏
i=1

zi,t(σ(i),j)


︸ ︷︷ ︸

=det

(
(zu,t(v,j))1≤u≤λ′j , 1≤v≤λ′j

)
(by the product rule)

=
s

∏
j=1

det

((
zu,t(v,j)

)
1≤u≤λ′

j, 1≤v≤λ′
j

)
︸ ︷︷ ︸

=Z[
λ′j

]
,colj t

up to permuting the rows

= ±
s

∏
j=1

det
(

Z[
λ′

j

]
,colj t

)
.

Thus,

∇λV = span

(
s

∏
j=1

det
(

Z[
λ′

j

]
,colj t

)
| t is a λ-tableau

)
(9)

(since ∇λV was defined as the span of all e (t) for λ-tableaux t). The right hand side
of this equality is the G-module Dλ defined at the end of [Ful97, §8.1] (although

3I let colj t denote the set of all entries of the j-th column of t.
My symmetric group actions might be in conflict with yours, since I’m used to everything

acting from the left. I believe this shouldn’t be a problem, since sgn
(
σ−1) = sgn σ for any

permutation σ.
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[Ful97] works with the monoid Md (K) instead of GLd (K), and uses the notations
R and m instead of K and d). Thus, ∇λV ∼= Dλ ∼= Eλ (by [Ful97, §8.1, Exercise
5]), where Eλ is the Schur module defined in [Ful97, §8.1]. This shows that ∇λV is
always isomorphic to Fulton’s Eλ, whatever K is.

We can replace “λ-tableau” by “column-standard λ-tableau” on the right hand
side of (9), since any λ-tableau either yields a 0 determinant or can be made
column-standard by a CPP-permutation (which can at most flip the sign of the
respective product). Thus, (9) becomes

∇λV = span

(
s

∏
j=1

det
(

Z[
λ′

j

]
,colj t

)
| t is a column-standard λ-tableau

)

= span

(
s

∏
j=1

det
(

Z[
λ′

j

]
,Uj

)
| Uj is a λ′

j-element subset of [d]

)
. (10)

Applying this to λ◦ instead of λ, we obtain

∇λ◦
V = span

(
s

∏
j=1

det
(

Z[
d−λ′

j

]
,Uj

)
| Uj is a

(
d − λ′

j

)
-element subset of [d]

)
(

since (λ◦)′j = d − λ′
j for each j ∈ [s]

)
= span

(
s

∏
j=1

det
(

Z[
d−λ′

j

]
,Ũj

)
| Uj is a λ′

j-element subset of [d]

)
(11)

(here, we have substituted Ũj for Uj).
Next, we need one more piece of notation. If γ is an automorphism of the group

G, and if W is a G-module, then W ◦ γ shall mean the G-module W twisted by γ
(that is, it is the same K-module as W, but the action of G on it is ρ ◦ γ : G →
GL (W), where ρ : G → GL (W) is the action of G on W). We will use one specific
automorphism of G, which we shall call γ from now on: namely, the automorphism
sending each A ∈ G to

(
A−1)T. It is well-known that V⋆ ∼= V ◦ γ as G-modules.4

Hence, ∇λ◦
V∗ ∼= ∇λ◦

(V ◦ γ) ∼=
(
∇λ◦

V
)
◦ γ. Thus, we just need to show that

∇λV ∼=
((

∇λ◦
V
)
◦ γ
)
⊗ (det V)⊗s . (12)

We shall do so by constructing an explicit isomorphism. We define a K-algebra
endomorphism Ω of K [Z]det Z by requiring that

Ω
(
zi,j
)
=
(

Z−1
)

j,d+1−i
for all i, j ∈ [d] .

This endomorphism Ω is well-defined (by the universal property of the localization
K [Z]det Z, because the K-algebra morphism K [Z] → K [Z]det Z that sends each zi,j

4This is essentially the definition of the G-action on V⋆.
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to
(
Z−1)

j,d+1−i sends det Z to ±det
(
Z−1) = ± (det Z)−1, which is an invertible

element of K [Z]det Z).
This endomorphism Ω is an automorphism of K [Z]det Z (actually, Ω4 = id if

I am not wrong, but either way Ω is a composition of some rather well-known
involutions: one that “sends” Z to ZT, another that “sends” Z to Z−1, and another
that sends zi,j to zd+1−i,j).

It is not hard to see that the map Ω is a G-module isomorphism from K [Z]det Z
to K [Z]det Z ◦ γ. Indeed, this boils down to proving the equality

Ω (A · f ) = γ (A) · Ω ( f ) for all A ∈ G and f ∈ K [Z]det Z .

To prove this equality, we can WLOG assume that f ∈ K [Z]. Since Ω is a K-algebra
morphism, this equality needs to be proved for f = zi,j only. But this is rather
straightforward: Setting f = zi,j, we can compare

Ω (A · f ) = Ω
(

A · zi,j
)
= Ω

(
d

∑
k=1

zi,k Ak,j

)
=

d

∑
k=1

Ω (zi,k)︸ ︷︷ ︸
=(Z−1)k,d+1−i

Ak,j︸︷︷︸
=(AT)j,k

=
d

∑
k=1

(
Z−1

)
k,d+1−i

(
AT
)

j,k
=
(

ATZ−1
)

j,d+1−i

with

γ (A) · Ω ( f ) = γ (A)︸ ︷︷ ︸
=(A−1)

T

· Ω
(
zi,j
)︸ ︷︷ ︸

=(Z−1)j,d+1−i

=
(

A−1
)T

·
(

Z−1
)

j,d+1−i

=

((
Z
(

A−1
)T
)−1

)
j,d+1−i

=
(

ATZ−1
)

j,d+1−i
,

and get precisely this claim.
So we conclude that Ω is a G-module isomorphism from K [Z]det Z to K [Z]det Z ◦

γ.
If U is a k-element subset of [d], then the definition of Ω yields

Ω
(

det
(

Z[k],U

))
= det

((
Z−1

)
U,{d−k+1,d−k+2,...,d}

)

= ±
det

(
Z[d−k],Ũ

)
det Z

(by (7)) .

Since Ω is a K-algebra morphism, we therefore have

Ω

(
s

∏
j=1

det
(

Z[
λ′

j

]
,Uj

))
= ± 1

(det Z)s

s

∏
j=1

det
(

Z[
d−λ′

j

]
,Ũj

)
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whenever U1, U2, . . . , Us are subsets of [d] of sizes λ′
1, λ′

2, . . . , λ′
s. In view of (10)

and (11), this entails Ω
(
∇λV

)
=

1
(det Z)s · ∇λ◦

V. In other words, Ω
(
∇λV

)
·

(det Z)s = ∇λ◦
V. Thus, multiplication by (det Z)s is a K-module isomorphism

from Ω
(
∇λV

)
to ∇λ◦

V. This isomorphism is furthermore G-equivariant as a map
from

(
Ω
(
∇λV

))
⊗ (det V)⊗s to ∇λ◦

V, because any A ∈ G and any f ∈ Ω
(
∇λV

)
satisfy

A ·
(

f · (det Z)s) = (A · f ) ·

 A · det Z︸ ︷︷ ︸
=det(ZA)

=det Z·det A


s

= (A · f ) · (det Z · det A)s

= (det A)s · (A · f ) · (det Z)s .

Hence, we conclude that(
Ω
(
∇λV

))
⊗ (det V)⊗s ∼= ∇λ◦

V as G-modules. (13)

Applying this to λ◦ instead of λ, we obtain(
Ω
(
∇λ◦

V
))

⊗ (det V)⊗s ∼= ∇λV as G-modules (14)

(since (λ◦)◦ = λ).
However,

(
Ω
(
∇λV

))
◦ γ ∼= ∇λV (since Ω is a G-module isomorphism from

K [Z]det Z to K [Z]det Z ◦ γ). Since γ is an involution, this entails

Ω
(
∇λV

)
∼=
(

Ω
(
∇λV

))
◦ γ︸ ︷︷ ︸

∼=∇λV

◦γ ∼=
(
∇λV

)
◦ γ.

Applying this to λ◦ instead of λ, we obtain Ω
(
∇λ◦

V
) ∼=

(
∇λ◦

V
)
◦ γ. Thus, (14)

rewrites as ((
∇λ◦

V
)
◦ γ
)
⊗ (det V)⊗s ∼= ∇λV as G-modules.

This proves (12) and thus proves Theorem 1.2.
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