Similar matrices and equivalent polynomial matrices

Darij Grinberg

August 25, 2022

The purpose of this note is to prove a classical result in linear algebra: that two $m \times m$-matrices a and b over a commutative ring K are similar if and only if the polynomial matrices $t I_{m}-a$ and $t I_{m}-b$ (where I_{m} is the identity matrix, and t is a polynomial indeterminate) are equivalent (i.e., satisfy $\left(t I_{m}-a\right) p=$ $q\left(t I_{m}-b\right)$ for two invertible polynomial matrices p and $\left.q\right)$.

Even better, we shall prove a generalization of this result, replacing the matrices a and b by two elements a and b of a (not necessarily commutative) ring R, and replacing the polynomial matrices $t I_{m}-a$ and $t I_{m}-b$ by the polynomials $t-a$ and $t-b$ in $R[t]$. Here, $R[t]$ denotes the polynomial ring over R in a single indeterminate t; we will define this object precisely in Definition 1.2.

Neither this generalization nor our proof is really new. The generalization was observed by @user20948 in a comment at MathOverflow (https:// mathoverflow.net/questions/66269/\#comment866429_96046), who proved it tersely but nicely using a commutative diagram of $R[t]$-modules and their quotients. The proof I give below is merely an elementary rewording of @user20948's proof - much less slick, but fully elementary and self-contained. A similar proof appears in [Gantma77, Chapter VI, §4-§5].

1. Notations and definitions regarding polynomials

Convention 1.1. In the following, rings are always understood to be associative and with unity, but not necessarily commutative.

We will use the concept of a polynomial ring $R[t]$ over a ring R that is not necessarily commutative. This notion is widely known in the case when R is commutative. The definition in the general case is more or less the same, except
that certain shortcuts requiring are not available (e.g., the polynomial ring $R[t]$ is not an R-algebra in general, and we have to distinguish between left and right multiplication). Here is the general definition:

Definition 1.2. Let R be a ring. Then, $R[t]$ shall denote the ring of polynomials in a single indeterminate t over R. The definition of this ring is well-known when R is commutative; we use the same definition in the general case: A polynomial $p \in R[t]$ means an infinite sequence $\left(p_{0}, p_{1}, p_{2}, \ldots\right)$ of elements of R such that all but finitely many $n \geqslant 0$ satisfy $p_{n}=0$. We define sums and products of such polynomials by the usual formulas:

$$
\begin{aligned}
\left(p_{0}, p_{1}, p_{2}, \ldots\right)+\left(q_{0}, q_{1}, q_{2}, \ldots\right) & :=\left(p_{0}+q_{0}, p_{1}+q_{1}, p_{2}+q_{2}, \ldots\right) ; \\
\left(p_{0}, p_{1}, p_{2}, \ldots\right) \cdot\left(q_{0}, q_{1}, q_{2}, \ldots\right) & :=\left(r_{0}, r_{1}, r_{2}, \ldots\right),
\end{aligned}
$$

where $r_{n}:=\sum_{i=0}^{n} p_{i} q_{n-i}$ for each $n \geqslant 0$.
We identify each $a \in R$ with the polynomial $(a, 0,0,0, \ldots) \in R[t]$. This makes R into a subring of $R[t]$. Hence, a polynomial

$$
p=\left(p_{0}, p_{1}, p_{2}, \ldots\right) \in R[t]
$$

can be multiplied by an element $a \in R$ both from the left and from the right: namely,

$$
\begin{array}{ll}
a p=\left(a p_{0}, a p_{1}, a p_{2}, \ldots\right) \\
p a & =\left(p_{0} a, p_{1} a, p_{2} a, \ldots\right) . \tag{1}
\end{array}
$$

Now, define the indeterminate t as the sequence $(0,1,0,0,0, \ldots) \in R[t]$ (only the second entry is 1). Then, each polynomial $p=\left(p_{0}, p_{1}, p_{2}, \ldots\right) \in$ $R[t]$ satisfies

$$
p=\sum_{n \geqslant 0} p_{n} t^{n}=\sum_{n \geqslant 0} t^{n} p_{n} .
$$

This is, of course, the standard way of writing polynomials.
Note that the indeterminate t commutes with every polynomial $p \in R[t]$, since multiplying p by t (in either order) is tantamount to shifting all coefficients of p by one position to the right: If $p=\left(p_{0}, p_{1}, p_{2}, \ldots\right) \in R[t]$, then

$$
\begin{equation*}
p t=t p=\left(0, p_{0}, p_{1}, p_{2}, \ldots\right) . \tag{2}
\end{equation*}
$$

Remark 1.3. The main difference between the general case (i.e., the case when R is arbitrary ring) and the classical commutative case (i.e., the case when R is a commutative ring) is that in the general case, it is not clear how to evaluate a polynomial $p=\left(p_{0}, p_{1}, p_{2}, \ldots\right) \in R[t]$ at a given element $a \in R$. Indeed, we can define the "left evaluation" $\sum_{n \geqslant 0} p_{n} a^{n}$ and the "right evaluation" $\sum_{n \geqslant 0} a^{n} p_{n}$,
but these are in general not the same (unless a belongs to the center of R), and neither of them is as well-behaved as in the commutative case. (More on that below.)

Another difference is that, as mentioned above, $R[t]$ is not an R-algebra if R is not commutative (since the notion of an R-algebra does not exist in this case).

2. The claim

Recall that an element p of a ring R is called invertible if and only if it has an inverse (i.e., if there is an element $q \in R$ such that $p q=q p=1$).

We need one more definition before we can state the main result:
Definition 2.1. Let R be a ring. Let a and b be two elements of R.
(a) We say that a and b are conjugate in R if there exists an invertible element $p \in R$ such that $a p=p b$.
(b) We say that a and b are equivalent in R if there exist invertible elements $p, q \in R$ such that $a p=q b$.

I'm not sure how standard the word "equivalent" is; I think other authors use "unit-equivalent" or "associate" for the same notion.

Our goal is to prove the following:
Theorem 2.2. Let R be a ring. Let $a, b \in R$ be two elements. Then, a and b are conjugate in R if and only if the polynomials $t-a$ and $t-b$ are equivalent in $R[t]$.

Before we prove this theorem, let us see how it can be used to prove the result promised at the beginning of this note:

Corollary 2.3. Let K be a ring. Let $a, b \in K^{m \times m}$ be two $m \times m$-matrices over K. Then, the matrices a and b are similar if and only if the matrices $t I_{m}-a$ and $t I_{m}-b$ in $(K[t])^{m \times m}$ are equivalent in $(K[t])^{m \times m}$. (Here, I_{m} denotes the $m \times m$-identity matrix.)

Proof of Corollary [2.3 The polynomial ring $K^{m \times m}[t]$ is known to be isomorphic to the matrix ring $(K[t])^{m \times m}$. Indeed, there is a ring isomorphism

$$
\rho: K^{m \times m}[t] \rightarrow(K[t])^{m \times m}
$$

that sends each polynomial $\sum_{n \geqslant 0} A_{n} t^{n} \in K^{m \times m}[t]$ (with $A_{n} \in K^{m \times m}$ for all $n \geqslant 0$) to the matrix $\sum_{n \geqslant 0} t^{n} A_{n} \in(K[t])^{m \times m}$ (where each A_{n} is now regarded as a matrix
over $K[t]$). This isomorphism ρ sends the polynomial $t-a \in K^{m \times m}[t]$ to the matrix $t I_{m}-a \in(K[t])^{m \times m}$; that is, we have $\rho(t-a)=t I_{m}-a$. Similarly, $\rho(t-b)=t I_{m}-b$.

Conjugate elements of $K^{m \times m}$ are better known as similar matrices. Thus, we have the following chain of logical equivalences:
(the matrices a and b are similar)
\Longleftrightarrow (the matrices a and b are conjugate in $K^{m \times m}$)
\Longleftrightarrow (the polynomials $t-a$ and $t-b$ are equivalent in $\left.K^{m \times m}[t]\right)$
(by Theorem 2.2, applied to $R=K^{m \times m}$)
$\Longleftrightarrow\left(\right.$ the matrices $\rho(t-a)$ and $\rho(t-b)$ are equivalent in $\left.(K[t])^{m \times m}\right)$

$$
\left(\begin{array}{c}
\text { since } \rho \text { is a ring isomorphism, and thus } \\
\text { two elements } c \text { and } d \text { of } K^{m \times m}[t] \\
\text { are equivalent in } K^{m \times m}[t] \text { if and only if } \\
\text { their images } \rho(c) \text { and } \rho(d) \text { are equivalent in }(K[t])^{m \times m}
\end{array}\right)
$$

\Longleftrightarrow (the matrices $t I_{m}-a$ and $t I_{m}-b$ are equivalent in $\left.(K[t])^{m \times m}\right)$
(since $\rho(t-a)=t I_{m}-a$ and $\left.\rho(t-b)=t I_{m}-b\right)$. This proves Corollary 2.3.

3. Right evaluations

The trick to the proof of Theorem 2.2 is the following definition:
Definition 3.1. Let R be a ring, and let $a \in R$ be arbitrary. Then, we let $r_{a}: R[t] \rightarrow R$ be the map that sends each polynomial $\left(p_{0}, p_{1}, p_{2}, \ldots\right) \in R[t]$ (with $p_{0}, p_{1}, p_{2}, \ldots \in R$) to $\sum_{n \geqslant 0} a^{n} p_{n}$.

This map r_{a} can be called the right evaluation map at a, since it "evaluates" polynomials at $t=a$. But this shouldn't be taken too literally; in particular, it is not always true that any two polynomials $p, q \in R[t]$ satisfy $r_{a}(p q)=$ $r_{a}(p) \cdot r_{a}(q)$. (However, this equality still holds if a lies in the center of R.)

The following property of r_{a} is straightforward:
Proposition 3.2. Let R be a ring, and let $a \in R$ be arbitrary. Then, the map $r_{a}: R[t] \rightarrow R$ is a right R-linear map, i.e., a homomorphism of right R modules.

Proof of Proposition 3.2 If $p=\left(p_{0}, p_{1}, p_{2}, \ldots\right)$ and $q=\left(q_{0}, q_{1}, q_{2}, \ldots\right)$ are two polynomials in $R[t]$ (with $p_{0}, p_{1}, p_{2}, \ldots \in R$ and $q_{0}, q_{1}, q_{2}, \ldots \in R$), then their
sum is $p+q=\left(p_{0}+q_{0}, p_{1}+q_{1}, p_{2}+q_{2}, \ldots\right)$, and thus the definition of r_{a} yields

$$
\begin{aligned}
& r_{a}(p+q)=\sum_{n \geqslant 0} \underbrace{a^{n}\left(p_{n}+q_{n}\right)}_{=a^{n} p_{n}+a^{n} q_{n}}=\sum_{n \geqslant 0}\left(a^{n} p_{n}+a^{n} q_{n}\right) \\
& =\underbrace{\sum_{n \geqslant 0} a^{n} p_{n}}_{=r_{a}(p)}+\underbrace{\sum_{n \geqslant 0} a^{n} q_{n}}_{=r_{a}(q)} \\
& \text { (by the definition of } r_{a} \text {) (by the definition of } r_{a} \text {) } \\
& =r_{a}(p)+r_{a}(q) \text {. }
\end{aligned}
$$

Thus, the map r_{a} respects addition.
If $p=\left(p_{0}, p_{1}, p_{2}, \ldots\right)$ is a polynomial in $R[t]$ (with $p_{0}, p_{1}, p_{2}, \ldots \in R$), and if $c \in R$, then

$$
\begin{array}{rlr}
p c & =\left(p_{0}, p_{1}, p_{2}, \ldots\right) c & \left(\text { since } p=\left(p_{0}, p_{1}, p_{2}, \ldots\right)\right) \\
& =\left(p_{0} c, p_{1} c, p_{2} c, \ldots\right) & (\text { by (1), applied to } c \text { instead of } a),
\end{array}
$$

and thus the definition of r_{a} yields

$$
r_{a}(p c)=\sum_{n \geqslant 0} a^{n} p_{n} c=\underbrace{\sum_{n \geqslant 0} a^{n} p_{n}}_{\substack{=r_{a}(p) \\ \text { (by the definition of } r_{a} \text {) }}} \cdot c=r_{a}(p) \cdot c .
$$

Thus, the map r_{a} is right R-linear (since we already know that r_{a} respects addition). This proves Proposition 3.2 .

We will also need the following properties of r_{a} :
Proposition 3.3. Let R be a ring, and let $a \in R$ be arbitrary. Let $s \in R[t]$. Then:
(a) We have $r_{a}(s c)=r_{a}(s) c$ for any $c \in R$.
(b) We have $r_{a}(s t)=a r_{a}(s)$.
(c) We have $r_{a}((t-a) s)=0$.
(d) There exists a polynomial $\bar{s} \in R[t]$ such that $s=r_{a}(s)+(t-a) \bar{s}$.

Proof of Proposition 3.3. Write the polynomial $s \in R[t]$ in the form $s=\left(s_{0}, s_{1}, s_{2}, \ldots\right)$. Thus, the definition of r_{a} yields $r_{a}(s)=\sum_{n \geqslant 0} a^{n} s_{n}$.
(a) This follows immediately from Proposition 3.2.
(b) From $s=\left(s_{0}, s_{1}, s_{2}, \ldots\right)$, we obtain $s t=\left(0, s_{0}, s_{1}, s_{2}, \ldots\right)$ (by (2), applied to $p=s$). Setting $s_{-1}:=0$, we can rewrite this as

$$
s t=\left(s_{-1}, s_{0}, s_{1}, s_{2}, \ldots\right) .
$$

Hence, the definition of r_{a} yields

$$
\begin{aligned}
r_{a}(s t)= & \sum_{n \geqslant 0} a^{n} s_{n-1}=a^{0} \underbrace{s_{0-1}}_{=s_{-1}=0}+\sum_{n \geqslant 1} \underbrace{a^{n}}_{=a a^{n-1}} s_{n-1} \\
= & \underbrace{a^{0} 0}_{=0}+\sum_{n \geqslant 1} a a^{n-1} s_{n-1}=\sum_{n \geqslant 1} a a^{n-1} s_{n-1} \\
= & \sum_{n \geqslant 0} a a^{n} s_{n} \quad\binom{\text { here, we have substituted } n}{\text { for } n-1 \text { in the sum }} \\
= & a \quad \underbrace{}_{\begin{array}{c}
=r_{a}(s) \\
\sum_{n \geqslant 0} a^{n} s_{n}
\end{array}=a r_{a}(s) .} \\
& \text { (by the definition of } \left.r_{a}\right)
\end{aligned}
$$

This proves Proposition 3.3 (b).
(c) From $s=\left(s_{0}, s_{1}, s_{2}, \ldots\right)$, we obtain $a s=\left(a s_{0}, a s_{1}, a s_{2}, \ldots\right)$. Thus, the definition of r_{a} yields

$$
r_{a}(a s)=\sum_{n \geqslant 0} \underbrace{a^{n} a}_{\substack{=a^{n+1} \\=a a^{n}}} s_{n}=\sum_{n \geqslant 0} a a^{n} s_{n}=a \underbrace{\sum_{n \geqslant 0} a^{n} s_{n}}_{\substack{\left.=r_{a}(s) \\ \text { (by the definition of } r_{a}\right)}}=a r_{a}(s) .
$$

Now, (2) (applied to $p=s$) yields $s t=t$. Hence, $(t-a) s=\underbrace{t s}_{=s t}-a s=$ $s t$ - as. Therefore,

$$
\begin{aligned}
r_{a}((t-a) s)= & r_{a}(s t-a s) \\
= & \underbrace{}_{\substack{=a r_{a}(s) \\
r_{a}(s t)}} \quad-\underbrace{r_{a}(a s)}_{=a r_{a}(s)} \quad \text { (by Proposition } \sqrt{3.3}(\mathbf{b})) \\
= & a r_{a}(s)-a r_{a}(s)=0 .
\end{aligned}
$$

This proves Proposition 3.3 (c).
(d) The element t of $R[t]$ commutes with a (since $t a=(0, a, 0,0,0, \ldots)=a t)$. Hence, the equality

$$
x^{n}-y^{n}=(x-y) \sum_{k=0}^{n-1} x^{k} y^{n-1-k}
$$

(which holds for any two commuting elements x and y and any $n \geqslant 0$) can be applied to $x=t$ and $y=a$. Thus, for any $n \geqslant 0$, we have

$$
\begin{equation*}
t^{n}-a^{n}=(t-a) \sum_{k=0}^{n-1} t^{k} a^{n-1-k} . \tag{3}
\end{equation*}
$$

Subtracting the equality $r_{a}(s)=\sum_{n \geqslant 0} a^{n} s_{n}$ from the equality $s=\left(s_{0}, s_{1}, s_{2}, \ldots\right)=$ $\sum_{n \geqslant 0} t^{n} s_{n}$, we obtain

$$
\begin{aligned}
& s-r_{a}(s)= \sum_{n \geqslant 0} t^{n} s_{n}-\sum_{n \geqslant 0} a^{n} s_{n}=\sum_{n \geqslant 0} \underbrace{\left(t^{n} s_{n}-a^{n} s_{n}\right)}_{=\left(t^{n}-a^{n}\right) s_{n}} \\
&= \sum_{n \geqslant 0} \underbrace{\left(t^{n}-a^{n}\right)}_{\begin{array}{c}
(t-a) \\
\sum_{n=1}^{n-1} t^{k} a^{n-1-k} \\
\text { (by (3) } 3 \text {) }
\end{array}} s_{n}=\sum_{n \geqslant 0}(t-a)\left(\sum_{k=0}^{n-1} t^{k} a^{n-1-k}\right) s_{n} \\
&=(t-a) \underbrace{}_{\underbrace{\sum_{n \geqslant 0}\left(\sum_{k=0}^{n-1} t^{k} a^{n-1-k}\right) s_{n}}_{\begin{array}{c}
\text { This sum is well-defined, } \\
\text { since all but finitely many } \\
\text { of its addends are 0 (because } \\
\text { aut but finitely many } \left.n \text { satisfy } s_{n}=0\right)
\end{array}} .} .
\end{aligned}
$$

Thus, there exists a polynomial $\bar{s} \in R[t]$ such that $s-r_{a}(s)=(t-a) \bar{s}$ (namely, $\left.\bar{s}=\sum_{n \geqslant 0}\left(\sum_{k=0}^{n-1} t^{k} a^{n-1-k}\right) s_{n}\right)$. In other words, there exists a polynomial $\bar{s} \in R[t]$ such that $s=r_{a}(s)+(t-a) \bar{s}$. This proves Proposition 3.3 (d).

4. Proof of Theorem 2.2

We are now ready to prove Theorem 2.2:
Proof of Theorem $2.2 \Longrightarrow$: Assume that a and b are conjugate in R. We must show that the polynomials $t-a$ and $t-b$ are equivalent in $R[t]$.

Since a and b are conjugate in R, there exists an invertible element $r \in R$ such that $a r=r b$ (by the definition of "conjugate"). Consider this r. Then, $r \in R \subseteq R[t]$, and furthermore the element r is invertible in $R[t]$ (since r is invertible in R). In the ring $R[t]$, we have

$$
(t-a) r=\underbrace{t r}_{\substack{=r t \\ \text { (by }(2), \text { applied } \\ \text { to } p=r)}}-\underbrace{a r}_{=r b}=r t-r b=r(t-b) .
$$

Thus, there exist invertible elements $p, q \in R[t]$ such that $(t-a) p=q(t-b)$ (namely, $p=r$ and $q=r$). In other words, the polynomials $t-a$ and $t-b$ are equivalent in $R[t]$ (by the definition of "equivalent"). This proves the " \Longrightarrow " direction of Theorem 2.2.
\Longleftarrow : Assume that the polynomials $t-a$ and $t-b$ are equivalent in $R[t]$. We must show that a and b are conjugate in R.

We have assumed that the polynomials $t-a$ and $t-b$ are equivalent in $R[t]$. In other words, there exist invertible elements $p, q \in R[t]$ such that

$$
\begin{equation*}
(t-a) p=q(t-b) \tag{4}
\end{equation*}
$$

(by the definition of "equivalent"). Consider these p and q. Note that p and q are invertible; thus, p^{-1} and q^{-1} are invertible as well.

We now claim that

$$
\begin{equation*}
r_{a}(q) \cdot r_{b}\left(q^{-1}\right)=1 \tag{5}
\end{equation*}
$$

[Proof of (5): Proposition 3.3 (a) (applied to $s=q$ and $c=r_{b}\left(q^{-1}\right)$) yields

$$
\begin{equation*}
r_{a}\left(q r_{b}\left(q^{-1}\right)\right)=r_{a}(q) \cdot r_{b}\left(q^{-1}\right) \tag{6}
\end{equation*}
$$

However, Proposition 3.3 (d) (applied to b and q^{-1} instead of a and s) yields that there exists a polynomial $\bar{s} \in R[t]$ such that $q^{-1}=r_{b}\left(q^{-1}\right)+(t-b) \bar{s}$. Consider this \bar{s}. Then, solving the equality $q^{-1}=r_{b}\left(q^{-1}\right)+(t-b) \bar{s}$ for $r_{b}\left(q^{-1}\right)$, we find

$$
r_{b}\left(q^{-1}\right)=q^{-1}-(t-b) \bar{s}
$$

Thus,

$$
q \underbrace{r_{b}\left(q^{-1}\right)}_{=q^{-1}-(t-b) \bar{s}}=q\left(q^{-1}-(t-b) \bar{s}\right)=1-\underbrace{q(t-b)}_{\begin{array}{c}
(t-a) p \\
(\text { by }(4))
\end{array}} \bar{s}=1-(t-a) p \bar{s} .
$$

Applying the map r_{a} to this equality, we find

$$
\begin{aligned}
r_{a}\left(q r_{b}\left(q^{-1}\right)\right)= & r_{a}(1-(t-a) p \bar{s}) \\
= & \underbrace{r_{a}(1)}_{\begin{array}{c}
=1 \\
\text { (this follows easily } \\
\text { from the } \\
\text { definition of } \left.r_{a}\right)
\end{array}}-\underbrace{r_{a}((t-a) p \bar{s})}_{\begin{array}{c}
\text { (by Proposition 3.3(c), } \\
\text { applied to } p \bar{s} \text { instead of } s \text {) }
\end{array}} \\
= & 1-0=1 .
\end{aligned}
$$

$$
=\underbrace{r_{a}(1)}_{-1}-\underbrace{r_{a}((t-a) p \bar{s})}_{-0} \quad \text { (by Proposition 3.2) }
$$

Comparing this with (6), we obtain $r_{a}(q) \cdot r_{b}\left(q^{-1}\right)=1$. Thus, (5) is proven.]
Now, we notice a symmetry slightly hidden in our setting: If we multiply both sides of the equality (4) by q^{-1} on the left and by p^{-1} on the right, then
we obtain $q^{-1}(t-a) p p^{-1}=q^{-1} q(t-b) p^{-1}$. This simplifies to $q^{-1}(t-a)=$ $(t-b) p^{-1}$ (since $q^{-1}(t-a) \underbrace{p p^{-1}}_{=1}=q^{-1}(t-a)$ and $\underbrace{q^{-1} q}_{=1}(t-b) p^{-1}=(t-b) p^{-1})$.
In other words,

$$
(t-b) p^{-1}=q^{-1}(t-a) .
$$

This equality has the same form as (4), but with the elements b, a, p^{-1} and q^{-1} playing the roles of a, b, p and q. Hence, we can prove the equality

$$
r_{b}\left(q^{-1}\right) \cdot r_{a}\left(\left(q^{-1}\right)^{-1}\right)=1
$$

using the same reasoning that we used to prove (5) (but with a, b, p and q replaced by b, a, p^{-1} and q^{-1}). Since $\left(q^{-1}\right)^{-1}=q$, this equality rewrites as

$$
r_{b}\left(q^{-1}\right) \cdot r_{a}(q)=1
$$

Combining this equality with (5), we conclude that the elements $r_{a}(q)$ and $r_{b}\left(q^{-1}\right)$ are mutually inverse in R. Thus, the element $r_{a}(q) \in R$ is invertible.

Finally, applying the map r_{a} to both sides of (4), we obtain

$$
\begin{align*}
& r_{a}((t-a) p)=r_{a}(\underbrace{q(t-b)}_{=q t-q b})=r_{a}(q t-q b) \\
& =\underbrace{r_{a}(q t)}_{=a r_{a}(q)}-\underbrace{r_{a}(q b)}_{=r_{a}(q) b} \tag{byProposition3.2}\\
& \text { (by Proposition 3.3(b), (by Proposition } 3.3 \text { (a), } \\
& \text { applied to } s=q \text {) applied to } s=q \text { and } c=b \text {) } \\
& =a r_{a}(q)-r_{a}(q) b .
\end{align*}
$$

Hence,

$$
\operatorname{ar}_{a}(q)-r_{a}(q) b=r_{a}((t-a) p)=0
$$

(by Proposition 3.3 (c), applied to $s=p$). In other words, $\operatorname{ar}_{a}(q)=r_{a}(q) b$. Since $r_{a}(q) \in R$ is invertible, this shows that there exists an invertible element $z \in R$ such that $a z=z b$ (namely, $z=r_{a}(q)$). In other words, a and b are conjugate in R. This proves the " $\Longleftarrow "$ direction of Theorem 2.2. The proof of Theorem 2.2 is thus complete.

References

[Gantma77] F. R. Gantmacher, The Theory of Matrices, volume 1, AMS Chelsea Publishing 1977.

