Rep\#2a: Finite subgroups of multiplicative groups of fields
 Darij Grinberg
 [not completed, not proofread]

This note is mostly an auxiliary note for Rep\#2. We are going to prove a fact which is used rather often in algebra:

Theorem 1. Let A be a field, and let G be a finite subgroup of the multiplicative group A^{\times}. Then, G is a cyclic group.

This theorem generalizes the (well-known) fact that the multiplicative group of a finite field is cyclic. Most proofs of this fact can actually be used to prove Theorem 1 in all its generality, so there is not much need to provide another proof here. But yet, let us sketch a proof of Theorem 1 that requires only basic number theory. The downside is that it is very ugly. First, an easy number-theoretical lemma:

Lemma 2. Let i, g and a be three integers such that a is positive, such that $g \mid a$, and such that i is coprime to g. Then, there exists an integer I such that $I \equiv i \bmod g$ and such that I is coprime to a.

Proof of Lemma 2. For every integer n, let us denote by PF n the set of all prime divisors of n. By the unique factorization theorem, for any positive integer n, the set $\mathrm{PF} n$ is finite and satisfies $n=\prod_{p \in \operatorname{PF} n} p^{v_{p}(n)}$.

Clearly, $a \neq 0$ (since a is positive) and $g \neq 0$ (since $a \neq 0$ and $g \mid a)$. Now, $g \mid a$ yields $\mathrm{PF} g \subseteq \mathrm{PF} a$. We have

$$
a=\prod_{p \in \operatorname{PF} a} p^{v_{p}(a)}=\prod_{p \in \operatorname{PF} g} p^{v_{p}(a)} . \prod_{p \in \operatorname{PF} a \backslash \operatorname{PF} g} p^{v_{p}(a)} \quad(\text { since PF } g \subseteq \operatorname{PF} a) .
$$

In other words, $a=a_{1} a_{2}$, where $a_{1}=\prod_{p \in \operatorname{PF} g} p^{v_{p}(a)}$ and $a_{2}=\prod_{p \in \operatorname{PF} a \backslash \operatorname{PF} g} p^{v_{p}(a)}$.
The number g is not divisible by any prime $p \in \mathrm{PF} a \backslash \mathrm{PF} g$ (because if g is divisible by a prime p, then $p \in \mathrm{PF} g$, so that p cannot lie in $\mathrm{PF} a \backslash \mathrm{PF} g$). Hence, g is coprime to $p^{v_{p}(a)}$ for every $p \in \mathrm{PF} a \backslash \mathrm{PF} g$. Consequently, g is coprime to the product $\prod_{p \in \operatorname{PF} a \backslash \operatorname{PF} g} p^{v_{p}(a)}$. In other words, g is coprime to a_{2} (since $\prod_{p \in \operatorname{PF} a \backslash \operatorname{PF} g} p^{v_{p}(a)}=a_{2}$). Thus, by Bezout's Theorem ${ }^{1}$, there exist integers ρ_{1} and ρ_{2} such that $\rho_{1} g+\rho_{2} a_{2}=1$. Thus, $1-\rho_{1} g=\rho_{2} a_{2} \equiv 0 \bmod a_{2}$. Now, let $I=i-(i-1) \rho_{1} g$. Then, $I=i-(i-1) \rho_{1} g \equiv$ $i \bmod g$. Hence, I is coprime to g (since i is coprime to g). Hence, I is not divisible by any prime $p \in \mathrm{PF} g$. Thus, I is coprime to $p^{v_{p}(a)}$ for every $p \in \mathrm{PF} g$. Consequently, I is coprime to the product $\prod_{p \in \mathrm{PF} g} p^{v_{p}(a)}$. In other words, I is coprime to a_{1} (since $\left.\prod_{p \in \operatorname{PF} g} p^{v_{p}(a)}=a_{1}\right)$. On the other hand, I is coprime to a_{2} (since

$$
I=i-(i-1) \rho_{1} g=i \underbrace{\left(1-\rho_{1} g\right)}_{\equiv 0 \bmod a_{2}}+\rho_{1} g \equiv \rho_{1} g \equiv \rho_{1} g+\rho_{2} a_{2}=1 \bmod a_{2}
$$

[^0]). Hence, I is coprime to $a_{1} a_{2}$ (since I is coprime to a_{1} and to a_{2}). In other words, I is coprime to a (since $a_{1} a_{2}=a$). This proves Lemma 2 .

Proof of Theorem 1. We first notice that
if α and β are two elements of G, then there exists $\gamma \in G$ such that $\alpha \in\langle\gamma\rangle$ and $\beta \in\langle\gamma\rangle$.

Proof of (1). Let a be the order of α in G, and let b be the order of β in G. Let g be $\operatorname{gcd}(a, b)$. Then, $g \mid a$ and $g \mid b$. Thus, $(a / g) \mid a$ and $(b / g) \mid b$.

The order of α in G is a. Hence, the order of $\alpha^{a / g}$ in G is $\frac{a}{a / g}=g$ (since $(a / g) \mid a)$. Consequently, the elements $\left(\alpha^{a / g}\right)^{0},\left(\alpha^{a / g}\right)^{1}, \ldots,\left(\alpha^{a / g}\right)^{g-1}$ are pairwise distinct, and we have $\left(\alpha^{a / g}\right)^{g}=1$. Now, for every $i \in\{0,1, \ldots, g-1\}$, we have $\left(\left(\alpha^{a / g}\right)^{i}\right)^{g}=(\underbrace{\left(\alpha^{a / g}\right)^{g}}_{=1})^{i}=1$, and thus the element $\left(\alpha^{a / g}\right)^{i}$ is a root of the polynomial $X^{g}-1 \in A[X]$. In other words, the elements $\left(\alpha^{a / g}\right)^{0},\left(\alpha^{a / g}\right)^{1}, \ldots$, $\left(\alpha^{a / g}\right)^{g-1}$ are roots of the polynomial $X^{g}-1 \in A[X]$. Since we know that these elements $\left(\alpha^{a / g}\right)^{0},\left(\alpha^{a / g}\right)^{1}, \ldots,\left(\alpha^{a / g}\right)^{g-1}$ are pairwise distinct, we thus see that the elements $\left(\alpha^{a / g}\right)^{0},\left(\alpha^{a / g}\right)^{1}, \ldots,\left(\alpha^{a / g}\right)^{g-1}$ are pairwise distinct roots of the polynomial $X^{g}-1 \in A[X]$. But the polynomial $X^{g}-1 \in A[X]$ can only have at most g roots (since any nonzero polynomial of degree g over a field can only have at most g roots), so these roots $\left(\alpha^{a / g}\right)^{0},\left(\alpha^{a / g}\right)^{1}, \ldots,\left(\alpha^{a / g}\right)^{g-1}$ must be all the roots of the polynomial $X^{g}-1 \in A[X]$. Consequently, the polynomial $X^{g}-1$ equals a constant times $\left(X-\left(\alpha^{a / g}\right)^{0}\right)\left(X-\left(\alpha^{a / g}\right)^{1}\right) \ldots\left(X-\left(\alpha^{a / g}\right)^{g-1}\right)$. But the constant just mentioned must be 1 (since the polynomials $X^{g}-1$ and $\left(X-\left(\alpha^{a / g}\right)^{0}\right)\left(X-\left(\alpha^{a / g}\right)^{1}\right) \ldots\left(X-\left(\alpha^{a / g}\right)^{g-1}\right)$ have the same leading term); hence, this becomes

$$
X^{g}-1=\left(X-\left(\alpha^{a / g}\right)^{0}\right)\left(X-\left(\alpha^{a / g}\right)^{1}\right) \ldots\left(X-\left(\alpha^{a / g}\right)^{g-1}\right) .
$$

In other words, $X^{g}-1=\prod_{i=0}^{g-1}\left(X-\left(\alpha^{a / g}\right)^{i}\right)$. Applying this identity to $X=\beta^{b / g}$, we obtain $\left(\beta^{b / g}\right)^{g}-1=\prod_{i=0}^{g-1}\left(\beta^{b / g}-\left(\alpha^{a / g}\right)^{i}\right)$. Since $\left(\beta^{b / g}\right)^{g}-1=\beta^{b}-1=0$ (since b is the order of β, and thus $\beta^{b}=1$), this becomes $0=\prod_{i=0}^{g-1}\left(\beta^{b / g}-\left(\alpha^{a / g}\right)^{i}\right)$. Hence, there must exist some $i \in\{0,1, \ldots, g-1\}$ such that $\beta^{b / g}-\left(\alpha^{a / g}\right)^{i}=0$ (because if a product of elements of a field is zero, then one of the factors must be zero). Consequently, this $i \in\{0,1, \ldots, g-1\}$ satisfies $\beta^{b / g}=\left(\alpha^{a / g}\right)^{i}$. Similarly, there exists some $j \in\{0,1, \ldots, g-1\}$ satisfying $\alpha^{a / g}=\left(\beta^{b / g}\right)^{j}$. Thus, $\alpha^{a / g}=(\underbrace{\beta^{b / g}}_{=\left(\alpha^{a / g}\right)^{i}})^{j}=$
$\left(\left(\alpha^{a / g}\right)^{i}\right)^{j}=\left(\alpha^{a / g}\right)^{i j}$, so that $1=\frac{\left(\alpha^{a / g}\right)^{i j}}{\alpha^{a / g}}=\left(\alpha^{a / g}\right)^{i j-1}$. Since the order of the element $\alpha^{a / g}$ is g, this yields $g \mid i j-1$, so that $i j \equiv 1 \bmod g$. Hence, $i j$ is coprime to g, so that i must also be coprime to g. Thus, by Lemma 2, there exists an integer I such that $I \equiv i \bmod g$ and such that I is coprime to a. Since $I \equiv i \bmod g$, we have $g \mid I-i$, and thus $\left(\alpha^{a / g}\right)^{I-i}=1$ (since g is the order of $\alpha^{a / g}$), so that

$$
\begin{equation*}
\left(\alpha^{a / g}\right)^{I}=\left(\alpha^{a / g}\right)^{(I-i)+i}=\underbrace{\left(\alpha^{a / g}\right)^{I-i}}_{=1}\left(\alpha^{a / g}\right)^{i}=\left(\alpha^{a / g}\right)^{i}=\beta^{b / g} . \tag{2}
\end{equation*}
$$

Now, the integers a / g and b / g are coprime $($ since $\operatorname{gcd}(a / g, b / g)=\underbrace{\operatorname{gcd}(a, b)}_{=g} / g=$ $g / g=1$; hence, by Bezout's Theorem, there exist integers u and v such that $u \cdot a / g+v \cdot b / g=1$. Now, let $\gamma=\alpha^{I v} \beta^{u}$. Then, $\gamma \in G$ and

$$
\begin{aligned}
\gamma^{b / g} & =\left(\alpha^{I v} \beta^{u}\right)^{b / g}=\underbrace{\left(\alpha^{I v}\right)^{b / g}}_{=\alpha^{I v} \cdot b / g} \underbrace{\left(\beta^{u}\right)^{b / g}}_{=\left(\beta^{b / g}\right)^{u}}=\alpha^{I v \cdot b / g}(\underbrace{\beta^{b / g}}_{\begin{array}{c}
\left(\alpha^{a / g}\right)^{I} \\
(\mathrm{by}(2))
\end{array}})^{u}=\alpha^{I v \cdot b / g} \underbrace{\left(\left(\alpha^{a / g}\right)^{I}\right)^{u}}_{=\left(\alpha^{a / g}\right)^{I u}=\alpha^{I u \cdot a / g}} \\
& =\alpha^{I v \cdot b / g} \alpha^{I u \cdot a / g}=\alpha^{I v \cdot b / g+I u \cdot a / g}=\alpha^{I}
\end{aligned}
$$

(since $I v \cdot b / g+I u \cdot a / g=I \underbrace{(u \cdot a / g+v \cdot b / g)}_{=1}=I$). Since I is coprime to a, there exist integers x and y such that $x I+y a=1$ (according to Bezout's theorem). Thus,

$$
\begin{aligned}
& \alpha=\alpha^{1}=\alpha^{I x+a y} \quad \quad(\text { since } 1=x I+y a=I x+a y) \\
&=\underbrace{\alpha^{I x}}_{=\left(\alpha^{I}\right)^{x}} \underbrace{\alpha^{a y}}_{=\left(\alpha^{a}\right)^{y}}=(\underbrace{\alpha^{I}}_{=\gamma^{b / g}})^{x}(\underbrace{\alpha^{a}}_{\begin{array}{c}
\text { (since } a \text { is } \\
\text { the order of } \alpha)
\end{array}})^{y}=\left(\gamma^{b / g}\right)^{x} 1^{y}=\left(\gamma^{b / g}\right)^{x} \in\langle\gamma\rangle .
\end{aligned}
$$

On the other hand, since $\gamma=\alpha^{I v} \beta^{u}$, we have

$$
\begin{aligned}
& \gamma^{a / g}=\left(\alpha^{I v} \beta^{u}\right)^{a / g}=\underbrace{\left(\alpha^{I v}\right)^{a / g}}_{\begin{array}{c}
=\alpha^{I v \cdot \alpha / g}=\alpha^{(a / g) \cdot I v} \\
\\
=\left(\alpha^{a / g}\right)^{I v}=\left(\left(\alpha^{a / g}\right)^{I}\right)^{v}
\end{array}} \cdot \underbrace{\left(\beta^{u}\right)^{a / g}}_{\beta^{u \cdot(a / g)}}=(\underbrace{\left(\alpha^{a / g}\right)^{I}}_{\begin{array}{c}
=\beta^{b / g} \\
(\mathrm{by}(2))
\end{array}})^{v} \cdot \beta^{u \cdot(a / g)} \\
& =\underbrace{\left(\beta^{b / g}\right)^{v}}_{=\beta^{(b / g) \cdot v}=\beta^{v \cdot(b / g)}} \cdot \beta^{u \cdot(a / g)}=\beta^{v \cdot(b / g)} \cdot \beta^{u \cdot(a / g)}=\beta^{v \cdot(b / g)+u \cdot(a / g)} \\
& =\beta^{1} \quad(\text { since } v \cdot(b / g)+u \cdot(a / g)=u \cdot a / g+v \cdot b / g=1) \\
& =\beta,
\end{aligned}
$$

and therefore $\beta=\gamma^{a / g} \in\langle\gamma\rangle$.

Altogether, we have proven that $\gamma \in G$, that $\alpha \in\langle\gamma\rangle$ and that $\beta \in\langle\gamma\rangle$. This proves (1).

Now, let us finally prove Theorem 1: Clearly, there exists a subset P of the group G such that $G=\langle P\rangle$ (in fact, the whole group G is an example of such a subset P). Let U be such a subset with the smallest number of elements. ${ }^{2}$ Then, U is a subset of the group G such that $G=\langle U\rangle$, but there is no subset U^{\prime} of G with less elements than U that satisfies $G=\left\langle U^{\prime}\right\rangle$.

We let $k=|U|$, and we write the set U as $U=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$, where $u_{1}, u_{2}, \ldots, u_{k}$ are the k (pairwise distinct) elements of U. Assume now that $k>1$. Then, u_{1} and u_{2} are well-defined. Now, there exists an element $\gamma \in G$ such that $u_{1} \in\langle\gamma\rangle$ and $u_{2} \in\langle\gamma\rangle$ (by (1), applied to $\alpha=u_{1}$ and $\beta=u_{2}$), and therefore $u_{i} \in\left\langle\gamma, u_{3}, u_{4}, \ldots, u_{k}\right\rangle$ for every $i \in\{1,2, \ldots, k\} \quad{ }^{3}$. Hence, $\left\langle u_{1}, u_{2}, \ldots, u_{k}\right\rangle \subseteq\left\langle\gamma, u_{3}, u_{4}, \ldots, u_{k}\right\rangle$, so that
$G=\langle U\rangle=\left\langle\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}\right\rangle=\left\langle u_{1}, u_{2}, \ldots, u_{k}\right\rangle \subseteq\left\langle\gamma, u_{3}, u_{4}, \ldots, u_{k}\right\rangle=\left\langle\left\{\gamma, u_{3}, u_{4}, \ldots, u_{k}\right\}\right\rangle=\left\langle U^{\prime}\right\rangle$,
where U^{\prime} denotes the subset $\left\{\gamma, u_{3}, u_{4}, \ldots, u_{k}\right\}$ of G. But clearly, also $G \supseteq\left\langle U^{\prime}\right\rangle$. Thus, $G=\left\langle U^{\prime}\right\rangle$. Besides, the subset U^{\prime} of G has less elements than U (because $U^{\prime}=$ $\left\{\gamma, u_{3}, u_{4}, \ldots, u_{k}\right\}$ has at most $k-1$ elements, while U has $|U|=k$ elements). This contradicts to the fact that there is no subset U^{\prime} of G with less elements than U that satisfies $G=\left\langle U^{\prime}\right\rangle$. This contradiction shows that our assumption $k>1$ was wrong. Hence, $k \leq 1$, so that $k=1$ or $k=0$. If $k=0$, then $|U|=k=0$ and thus $U=\varnothing$, which leads to $G=\langle\varnothing\rangle=1$, so that G is a cyclic group. If $k=1$, then $|U|=k=1$, so that $U=\{u\}$ for some $u \in G$, and therefore $G=\langle U\rangle=\langle\{u\}\rangle=\langle u\rangle$ is a cyclic group. Hence, in both cases, G is a cyclic group. This proves Theorem 1.

Here is an easy consequence of Theorem 1:
Lemma 3. Let A be a field. Let n be a positive integer, and for every $i \in\{1,2, \ldots, n\}$, let ξ_{i} be a root of unity in A. Then, there exists some root of unity ζ of A and a sequence $\left(k_{1}, k_{2}, \ldots, k_{n}\right)$ of nonnegative integers such that $\left(\xi_{i}=\zeta^{k_{i}}\right.$ for every $\left.i \in\{1,2, \ldots, n\}\right)$ and $\operatorname{gcd}\left(k_{1}, k_{2}, \ldots, k_{n}\right)=1$.

Proof of Lemma 3. Let G be the subgroup $\left\langle\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\rangle$ of the multiplicative group A^{\times}. Then, the map

$$
\begin{aligned}
\Phi:\left\langle\xi_{1}\right\rangle \times\left\langle\xi_{2}\right\rangle \times \ldots \times\left\langle\xi_{n}\right\rangle & \rightarrow\left\langle\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\rangle \quad \text { defined by } \\
\left(x_{1}, x_{2}, \ldots, x_{n}\right) & \mapsto x_{1} x_{2} \ldots x_{n}
\end{aligned}
$$

is surjective (because every element of $\left\langle\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\rangle$ has the form $\prod_{i=1}^{n} \xi_{i}^{f_{i}}$ for some n-tuple $\left(f_{1}, f_{2}, \ldots, f_{n}\right)$ of integer, and thus is $\left.\Phi\left(\xi_{1}^{f_{1}}, \xi_{2}^{f_{2}}, \ldots, \xi_{n}^{f_{n}}\right)\right)$, and the set $\left\langle\xi_{1}\right\rangle \times\left\langle\xi_{2}\right\rangle \times \ldots \times\left\langle\xi_{n}\right\rangle$ is finite (since the set $\left\langle\xi_{i}\right\rangle$ is finite for every $i \in\{1,2, \ldots, n\}$, because ξ_{i} is a root of unity). Hence, the set $\left\langle\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\rangle$ is finite. Thus, $G=\left\langle\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\rangle$ is a finite subgroup of

[^1]A^{\times}. Hence, by Theorem 1, this group G is cyclic, so that there exists some $\tau \in G$ such that $G=\langle\tau\rangle$. Now, if u is the order of τ in the group G, then $\langle\tau\rangle=\left\{\tau^{0}, \tau^{1}, \ldots, \tau^{u-1}\right\}$. Hence, for every $i \in\{1,2, \ldots, n\}$, there exists some nonnegative integer ℓ_{i} such that $\xi_{i}=\tau^{\ell_{i}}$ (since $\left.\xi_{i} \in G=\langle\tau\rangle=\left\{\tau^{0}, \tau^{1}, \ldots, \tau^{u-1}\right\}\right)$. Now, let $\ell=\operatorname{gcd}\left(\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right)$. Let $\zeta=\tau^{\ell}$, and let $k_{i}=\ell_{i} / \ell$ for every $i \in\{1,2, \ldots, n\}$. Then, $\ell_{i}=\ell k_{i}$ for every $i \in\{1,2, \ldots, n\}$.

Now we know that ζ is a root of unity (since $\zeta \in G$, and thus Lagrange's theorem yields $\zeta^{|G|}=1$), and for every $i \in\{1,2, \ldots, n\}$ we have $\xi_{i}=\tau^{\ell_{i}}=\tau^{\ell k_{i}}=(\underbrace{\tau^{\ell}}_{=\zeta})^{k_{i}}=\zeta^{k_{i}}$.
Finally, recall that $k_{i}=\ell_{i} / \ell$ for every $i \in\{1,2, \ldots, n\}$. Thus, $\operatorname{gcd}\left(k_{1}, k_{2}, \ldots, k_{n}\right)=$ $\operatorname{gcd}\left(\ell_{1} / \ell, \ell_{2} / \ell, \ldots, \ell_{n} / \ell\right)=\underbrace{\operatorname{gcd}\left(\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right)}_{=\ell} / \ell=1$. Thus, Lemma 3 is proven.

[^0]: ${ }^{1}$ Bezout's theorem states that if λ_{1} and λ_{2} are two coprime integers, then there exist integers ρ_{1} and ρ_{2} such that $\rho_{1} \lambda_{1}+\rho_{2} \lambda_{2}=1$.

[^1]: ${ }^{2}$ Indeed, such a U exists, because the set of all subsets of the group G is finite (since G itself is finite).
 ${ }^{3}$ In fact, three cases are possible: either $i=1$, or $i=2$, or $i \geq 3$. If $i=1$, then $u_{i} \in\left\langle\gamma, u_{3}, u_{4}, \ldots, u_{k}\right\rangle$ follows from $u_{1} \in\langle\gamma\rangle \subseteq\left\langle\gamma, u_{3}, u_{4}, \ldots, u_{k}\right\rangle$. If $i=2$, then $u_{i} \in\left\langle\gamma, u_{3}, u_{4}, \ldots, u_{k}\right\rangle$ follows from $u_{2} \in\langle\gamma\rangle \subseteq$ $\left\langle\gamma, u_{3}, u_{4}, \ldots, u_{k}\right\rangle$. Finally, if $i \geq 3$, then $u_{i} \in\left\langle\gamma, u_{3}, u_{4}, \ldots, u_{k}\right\rangle$ is trivial. Thus, $u_{i} \in\left\langle\gamma, u_{3}, u_{4}, \ldots, u_{k}\right\rangle$ holds in all cases.

