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[not completed, not proofread]

This note is mostly an auxiliary note for Rep#2. We are going to prove a fact
which is used rather often in algebra:

Theorem 1. Let A be a field, and let G be a finite subgroup of the
multiplicative group A×. Then, G is a cyclic group.

This theorem generalizes the (well-known) fact that the multiplicative group of a
finite field is cyclic. Most proofs of this fact can actually be used to prove Theorem
1 in all its generality, so there is not much need to provide another proof here. But
yet, let us sketch a proof of Theorem 1 that requires only basic number theory. The
downside is that it is very ugly. First, an easy number-theoretical lemma:

Lemma 2. Let i, g and a be three integers such that a is positive, such
that g | a, and such that i is coprime to g. Then, there exists an integer I
such that I ≡ imod g and such that I is coprime to a.

Proof of Lemma 2. For every integer n, let us denote by PFn the set of all prime
divisors of n. By the unique factorization theorem, for any positive integer n, the set
PFn is finite and satisfies n =

∏
p∈PFn

pvp(n).

Clearly, a 6= 0 (since a is positive) and g 6= 0 (since a 6= 0 and g | a). Now, g | a
yields PF g ⊆ PF a. We have

a =
∏

p∈PF a
pvp(a) =

∏
p∈PF g

pvp(a) ·
∏

p∈PF a\PF g
pvp(a) (since PF g ⊆ PF a) .

In other words, a = a1a2, where a1 =
∏

p∈PF g
pvp(a) and a2 =

∏
p∈PF a\PF g

pvp(a).

The number g is not divisible by any prime p ∈ PF a \ PF g (because if g is divis-
ible by a prime p, then p ∈ PF g, so that p cannot lie in PF a \ PF g). Hence, g is
coprime to pvp(a) for every p ∈ PF a \ PF g. Consequently, g is coprime to the product∏
p∈PF a\PF g

pvp(a). In other words, g is coprime to a2 (since
∏

p∈PF a\PF g
pvp(a) = a2). Thus,

by Bezout’s Theorem1, there exist integers ρ1 and ρ2 such that ρ1g + ρ2a2 = 1. Thus,
1 − ρ1g = ρ2a2 ≡ 0 mod a2. Now, let I = i − (i− 1) ρ1g. Then, I = i − (i− 1) ρ1g ≡
imod g. Hence, I is coprime to g (since i is coprime to g). Hence, I is not divisible
by any prime p ∈ PF g. Thus, I is coprime to pvp(a) for every p ∈ PF g. Consequently,
I is coprime to the product

∏
p∈PF g

pvp(a). In other words, I is coprime to a1 (since∏
p∈PF g

pvp(a) = a1). On the other hand, I is coprime to a2 (since

I = i− (i− 1) ρ1g = i (1− ρ1g)︸ ︷︷ ︸
≡0mod a2

+ρ1g ≡ ρ1g ≡ ρ1g + ρ2a2 = 1 mod a2

1Bezout’s theorem states that if λ1 and λ2 are two coprime integers, then there exist integers
ρ1 and ρ2 such that ρ1λ1 + ρ2λ2 = 1.
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). Hence, I is coprime to a1a2 (since I is coprime to a1 and to a2). In other words, I
is coprime to a (since a1a2 = a). This proves Lemma 2.

Proof of Theorem 1. We first notice that

if α and β are two elements of G, then there exists γ ∈ G such that

α ∈ 〈γ〉 and β ∈ 〈γ〉 . (1)

Proof of (1). Let a be the order of α in G, and let b be the order of β in G. Let g
be gcd (a, b). Then, g | a and g | b. Thus, (a�g) | a and (b�g) | b.

The order of α in G is a. Hence, the order of αa�g in G is
a

a�g
= g (since

(a�g) | a). Consequently, the elements
(
αa�g

)0
,
(
αa�g

)1
, ...,

(
αa�g

)g−1
are pair-

wise distinct, and we have
(
αa�g

)g
= 1. Now, for every i ∈ {0, 1, ..., g − 1}, we

have
((
αa�g

)i)g
=

(αa�g)g︸ ︷︷ ︸
=1


i

= 1, and thus the element
(
αa�g

)i
is a root of the

polynomial Xg − 1 ∈ A [X]. In other words, the elements
(
αa�g

)0
,
(
αa�g

)1
, ...,(

αa�g
)g−1

are roots of the polynomial Xg − 1 ∈ A [X]. Since we know that these

elements
(
αa�g

)0
,
(
αa�g

)1
, ...,

(
αa�g

)g−1
are pairwise distinct, we thus see that the

elements
(
αa�g

)0
,
(
αa�g

)1
, ...,

(
αa�g

)g−1
are pairwise distinct roots of the polynomial

Xg − 1 ∈ A [X]. But the polynomial Xg − 1 ∈ A [X] can only have at most g roots
(since any nonzero polynomial of degree g over a field can only have at most g roots),

so these roots
(
αa�g

)0
,
(
αa�g

)1
, ...,

(
αa�g

)g−1
must be all the roots of the polyno-

mial Xg − 1 ∈ A [X]. Consequently, the polynomial Xg − 1 equals a constant times(
X −

(
αa�g

)0)(
X −

(
αa�g

)1)
...
(
X −

(
αa�g

)g−1)
. But the constant just mentioned

must be 1 (since the polynomials Xg − 1 and(
X −

(
αa�g

)0)(
X −

(
αa�g

)1)
...
(
X −

(
αa�g

)g−1)
have the same leading term); hence,

this becomes

Xg − 1 =
(
X −

(
αa�g

)0)(
X −

(
αa�g

)1)
...
(
X −

(
αa�g

)g−1)
.

In other words, Xg − 1 =
g−1∏
i=0

(
X −

(
αa�g

)i)
. Applying this identity to X = βb�g, we

obtain
(
βb�g

)g
− 1 =

g−1∏
i=0

(
βb�g −

(
αa�g

)i)
. Since

(
βb�g

)g
− 1 = βb − 1 = 0 (since b

is the order of β, and thus βb = 1), this becomes 0 =
g−1∏
i=0

(
βb�g −

(
αa�g

)i)
. Hence,

there must exist some i ∈ {0, 1, ..., g − 1} such that βb�g −
(
αa�g

)i
= 0 (because

if a product of elements of a field is zero, then one of the factors must be zero).

Consequently, this i ∈ {0, 1, ..., g − 1} satisfies βb�g =
(
αa�g

)i
. Similarly, there exists

some j ∈ {0, 1, ..., g − 1} satisfying αa�g =
(
βb�g

)j
. Thus, αa�g =

 βb�g︸ ︷︷ ︸
=(αa�g)i


j

=
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((
αa�g

)i)j
=
(
αa�g

)ij
, so that 1 =

(
αa�g

)ij
αa�g

=
(
αa�g

)ij−1
. Since the order of the

element αa�g is g, this yields g | ij−1, so that ij ≡ 1 mod g. Hence, ij is coprime to g,
so that i must also be coprime to g. Thus, by Lemma 2, there exists an integer I such
that I ≡ imod g and such that I is coprime to a. Since I ≡ imod g, we have g | I − i,
and thus

(
αa�g

)I−i
= 1 (since g is the order of αa�g), so that

(
αa�g

)I
=
(
αa�g

)(I−i)+i
=
(
αa�g

)I−i
︸ ︷︷ ︸

=1

(
αa�g

)i
=
(
αa�g

)i
= βb�g. (2)

Now, the integers a�g and b�g are coprime (since gcd (a�g, b�g) = gcd (a, b)︸ ︷︷ ︸
=g

�g =

g�g = 1); hence, by Bezout’s Theorem, there exist integers u and v such that
u · a�g + v · b�g = 1. Now, let γ = αIvβu. Then, γ ∈ G and

γb�g =
(
αIvβu

)b�g
=
(
αIv

)b�g
︸ ︷︷ ︸
=αIv·b�g

(βu)b�g︸ ︷︷ ︸
=(βb�g)

u

= αIv·b�g

 βb�g︸ ︷︷ ︸
=(αa�g)

I

(by (2))



u

= αIv·b�g
((
αa�g

)I)u
︸ ︷︷ ︸

=(αa�g)Iu=αIu·a�g

= αIv·b�gαIu·a�g = αIv·b�g+Iu·a�g = αI

(since Iv · b�g + Iu · a�g = I (u · a�g + v · b�g)︸ ︷︷ ︸
=1

= I). Since I is coprime to a, there

exist integers x and y such that xI + ya = 1 (according to Bezout’s theorem). Thus,

α = α1 = αIx+ay (since 1 = xI + ya = Ix+ ay)

= αIx︸︷︷︸
=(αI)x

αay︸︷︷︸
=(αa)y

=

 αI︸︷︷︸
=γb�g


x

 αa︸︷︷︸
=1 (since a is
the order of α)


y

=
(
γb�g

)x
1y =

(
γb�g

)x
∈ 〈γ〉 .

On the other hand, since γ = αIvβu, we have

γa�g =
(
αIvβu

)a�g
=

(
αIv

)a�g
︸ ︷︷ ︸

=αIv·α�g=α(a�g)·Iv

=(αa�g)
Iv

=

(
(αa�g)

I
)v
· (βu)a�g︸ ︷︷ ︸
=βu·(a�g)

=


(
αa�g

)I
︸ ︷︷ ︸
=βb�g

(by (2))



v

· βu·(a�g)

=
(
βb�g

)v
︸ ︷︷ ︸

=β(b�g)·v=βv·(b�g)

·βu·(a�g) = βv·(b�g) · βu·(a�g) = βv·(b�g)+u·(a�g)

= β1 (since v · (b�g) + u · (a�g) = u · a�g + v · b�g = 1)

= β,

and therefore β = γa�g ∈ 〈γ〉.
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Altogether, we have proven that γ ∈ G, that α ∈ 〈γ〉 and that β ∈ 〈γ〉. This proves
(1).

Now, let us finally prove Theorem 1: Clearly, there exists a subset P of the group
G such that G = 〈P 〉 (in fact, the whole group G is an example of such a subset P ).
Let U be such a subset with the smallest number of elements.2 Then, U is a subset of
the group G such that G = 〈U〉, but there is no subset U ′ of G with less elements than
U that satisfies G = 〈U ′〉.

We let k = |U |, and we write the set U as U = {u1, u2, ..., uk}, where u1, u2, ..., uk
are the k (pairwise distinct) elements of U . Assume now that k > 1. Then, u1 and u2
are well-defined. Now, there exists an element γ ∈ G such that u1 ∈ 〈γ〉 and u2 ∈ 〈γ〉
(by (1), applied to α = u1 and β = u2), and therefore ui ∈ 〈γ, u3, u4, ..., uk〉 for every
i ∈ {1, 2, ..., k} 3. Hence, 〈u1, u2, ..., uk〉 ⊆ 〈γ, u3, u4, ..., uk〉, so that

G = 〈U〉 = 〈{u1, u2, ..., uk}〉 = 〈u1, u2, ..., uk〉 ⊆ 〈γ, u3, u4, ..., uk〉 = 〈{γ, u3, u4, ..., uk}〉 = 〈U ′〉 ,

where U ′ denotes the subset {γ, u3, u4, ..., uk} of G. But clearly, also G ⊇ 〈U ′〉. Thus,
G = 〈U ′〉. Besides, the subset U ′ of G has less elements than U (because U ′ =
{γ, u3, u4, ..., uk} has at most k − 1 elements, while U has |U | = k elements). This
contradicts to the fact that there is no subset U ′ of G with less elements than U that
satisfies G = 〈U ′〉. This contradiction shows that our assumption k > 1 was wrong.
Hence, k ≤ 1, so that k = 1 or k = 0. If k = 0, then |U | = k = 0 and thus U = ∅,
which leads to G = 〈∅〉 = 1, so that G is a cyclic group. If k = 1, then |U | = k = 1, so
that U = {u} for some u ∈ G, and therefore G = 〈U〉 = 〈{u}〉 = 〈u〉 is a cyclic group.
Hence, in both cases, G is a cyclic group. This proves Theorem 1.

Here is an easy consequence of Theorem 1:

Lemma 3. Let A be a field. Let n be a positive integer, and for every
i ∈ {1, 2, ..., n}, let ξi be a root of unity in A. Then, there exists some root
of unity ζ of A and a sequence (k1, k2, ..., kn) of nonnegative integers such

that
(
ξi = ζki for every i ∈ {1, 2, ..., n}

)
and gcd (k1, k2, ..., kn) = 1.

Proof of Lemma 3. Let G be the subgroup 〈ξ1, ξ2, ..., ξn〉 of the multiplicative group
A×. Then, the map

Φ : 〈ξ1〉 × 〈ξ2〉 × ...× 〈ξn〉 → 〈ξ1, ξ2, ..., ξn〉 defined by

(x1, x2, ..., xn) 7→ x1x2...xn

is surjective (because every element of 〈ξ1, ξ2, ..., ξn〉 has the form
n∏
i=1

ξfii for some n-tuple

(f1, f2, ..., fn) of integer, and thus is Φ
(
ξf11 , ξ

f2
2 , ..., ξ

fn
n

)
), and the set 〈ξ1〉×〈ξ2〉×...×〈ξn〉

is finite (since the set 〈ξi〉 is finite for every i ∈ {1, 2, ..., n} , because ξi is a root of unity).
Hence, the set 〈ξ1, ξ2, ..., ξn〉 is finite. Thus, G = 〈ξ1, ξ2, ..., ξn〉 is a finite subgroup of

2Indeed, such a U exists, because the set of all subsets of the group G is finite (since G itself is
finite).

3In fact, three cases are possible: either i = 1, or i = 2, or i ≥ 3. If i = 1, then ui ∈ 〈γ, u3, u4, ..., uk〉
follows from u1 ∈ 〈γ〉 ⊆ 〈γ, u3, u4, ..., uk〉. If i = 2, then ui ∈ 〈γ, u3, u4, ..., uk〉 follows from u2 ∈ 〈γ〉 ⊆
〈γ, u3, u4, ..., uk〉. Finally, if i ≥ 3, then ui ∈ 〈γ, u3, u4, ..., uk〉 is trivial. Thus, ui ∈ 〈γ, u3, u4, ..., uk〉
holds in all cases.
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A×. Hence, by Theorem 1, this group G is cyclic, so that there exists some τ ∈ G such
that G = 〈τ〉. Now, if u is the order of τ in the group G, then 〈τ〉 = {τ 0, τ 1, ..., τu−1}.
Hence, for every i ∈ {1, 2, ..., n}, there exists some nonnegative integer `i such that
ξi = τ `i (since ξi ∈ G = 〈τ〉 = {τ 0, τ 1, ..., τu−1}). Now, let ` = gcd (`1, `2, ..., `n).
Let ζ = τ `, and let ki = `i�` for every i ∈ {1, 2, ..., n}. Then, `i = `ki for every
i ∈ {1, 2, ..., n}.

Now we know that ζ is a root of unity (since ζ ∈ G, and thus Lagrange’s theorem

yields ζ |G| = 1), and for every i ∈ {1, 2, ..., n} we have ξi = τ `i = τ `ki =

 τ `︸︷︷︸
=ζ

ki = ζki .

Finally, recall that ki = `i�` for every i ∈ {1, 2, ..., n}. Thus, gcd (k1, k2, ..., kn) =
gcd (`1�`, `2�`, ..., `n�`) = gcd (`1, `2, ..., `n)︸ ︷︷ ︸

=`

�` = 1. Thus, Lemma 3 is proven.
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