Rep\#1: Deformations of a bimodule algebra

Darij Grinberg [not completed, not proofread]

The purpose of this short note is to generalize Problem 2.24 in [1]. First a couple of definitions:

Definition 1. In the following, a ring will always mean a (not necessarily commutative) ring with unity. Ring homomorphisms are always assumed to respect the unity. For every ring R, we denote the unity of R by 1_{R}.
Furthermore, if A is a ring, an A-algebra will mean a (not necessarily commutative) ring R along with a ring homomorphism $\rho: A \rightarrow R$. In the case of such an A-algebra R, we will denote the product $\rho(a) r$ by ar and the product $r \rho(a)$ by $r a$ for any $a \in A$ and any $r \in R$.

An A-algebra R is said to be symmetric ${ }^{1}$ if $a r=r a$ for every $a \in A$ and $r \in R$.
Definition 2. Let A be a ring. An A-bimodule algebra will be defined as a ring B along with an A-left module structure on B and an A-right module structure on B which satisfy the following three axioms:

$$
\begin{array}{lr}
(a b) b^{\prime}=a\left(b b^{\prime}\right) & \text { for any } a \in A, b \in B \text { and } b^{\prime} \in B ; \\
b\left(b^{\prime} a\right)=\left(b b^{\prime}\right) a & \text { for any } a \in A, b \in B \text { and } b^{\prime} \in B ; \\
(a b) a^{\prime}=a\left(b a^{\prime}\right) & \text { for any } a \in A, b \in B \text { and } a^{\prime} \in A .
\end{array}
$$

Definition 3. Let B be a ring. Then, we denote by $B[[t]]$ the ring of formal power series over B in the indeterminate t, where t is supposed to commute with every element of B. Formally, this means that we define $B[[t]]$ as the ring of all sequences $\left(b_{0}, b_{1}, b_{2}, \ldots\right) \in B^{\mathbb{N}}$ (where \mathbb{N} means the set $\{0,1,2, \ldots\}$), with addition defined by

$$
\left(b_{0}, b_{1}, b_{2}, \ldots\right)+\left(b_{0}^{\prime}, b_{1}^{\prime}, b_{2}^{\prime}, \ldots\right)=\left(b_{0}+b_{0}^{\prime}, b_{1}+b_{1}^{\prime}, b_{2}+b_{2}^{\prime}, \ldots\right)
$$

and multiplication defined by

$$
\left(b_{0}, b_{1}, b_{2}, \ldots\right) \cdot\left(b_{0}^{\prime}, b_{1}^{\prime}, b_{2}^{\prime}, \ldots\right)=\left(\sum_{\substack{(i, j) \in \mathbb{N}^{2} ; \\ i+j=0}} b_{i} b_{j}^{\prime}, \sum_{\substack{(i, j) \in \mathbb{N}^{2} ; \\ i+j=1}} b_{i} b_{j}^{\prime}, \sum_{\substack{(i, j) \in \mathbb{N}^{2} ; \\ i+j=2}} b_{i} b_{j}^{\prime}, \ldots\right),
$$

and we denote a sequence $\left(b_{0}, b_{1}, b_{2}, \ldots\right)$ by $\sum_{i=0}^{\infty} b_{i} t^{i}$. For every $m \in \mathbb{N}$, the element $b_{m} \in B$ is called the coefficient of the power series $\left(b_{0}, b_{1}, b_{2}, \ldots\right)=$ $\sum_{i=0}^{\infty} b_{i} t^{i}$ before t^{m}. The element $b_{0} \in B$ is also called the constant term of the power series $\left(b_{0}, b_{1}, b_{2}, \ldots\right)=\sum_{i=0}^{\infty} b_{i} t^{i}$.

[^0]Definition 4. Let B be a ring, and let $\left(b_{m}, b_{m+1}, \ldots, b_{n}\right)$ be a sequence of elements of B. Then, we denote by $\prod_{i=m}^{n} b_{i}$ the product $b_{n} b_{n-1} \ldots b_{m}$ (this product is supposed to mean 1 if $m>n$).

Now comes the generalization of Problem 2.24 (a) in $[1]^{2}$:
Theorem 1. Let K be a commutative ring. Let A be a symmetric K algebra. Let B be an A-bimodule algebra such that B is a symmetric K-algebra (where the K-algebra structure on B is given by the ring homomorphism $\left.K \rightarrow B, k \mapsto\left(k \cdot 1_{A}\right) \cdot 1_{B}\right)$.
Assume that

$$
\left(\begin{array}{c}
\text { for every } K \text {-linear map } f: A \rightarrow B \text { which satisfies } \tag{1}\\
\left(f\left(a a^{\prime}\right)=a f\left(a^{\prime}\right)+f(a) a^{\prime} \text { for all } a \in A \text { and } a^{\prime} \in A\right), \\
\text { there exists an element } s \in B \text { such that } \\
(f(a)=a s-s a \text { for all } a \in A) .
\end{array}\right)
$$

Let $B[[t]]$ be the ring of formal power series over B in the indeterminate t, where t is supposed to commute with every element of B.

Here and in the following, let 1 denote the unity 1_{B} of the ring B.
Let $\bar{\rho}: A \rightarrow B[t t]]$ be a K-linear homomorphism such that any $a \in A$ and any $a^{\prime} \in A$ satisfy $\bar{\rho}\left(a a^{\prime}\right)=\bar{\rho}(a) \bar{\rho}\left(a^{\prime}\right)$, and such that for every $a \in A$, the constant term of the power series $\bar{\rho}(a)$ equals $a \cdot 1$. (Note that $a \cdot 1$ is simply the canonical image of a in the A-algebra B).
Then, there exists a power series $b \in B[[t]]$ such that for every $a \in A$, the power series $b \bar{\rho}(a) b^{-1} \in B[[t]]$ equals the (constant) power series $a \cdot 1$.

Proof of Theorem 1. First, we endow the ring $B[t t]]$ with the (t)-adic topology. This topology is defined in such a way that for every $p \in B[[t]]$, the family $\left(p+t^{0} B[[t]], p+t^{1} B[[t]], p+t^{2} B[[t]], \ldots\right)$ is a basis of open neighbourhoods of p. This topology makes $B[[t]]$ a topological ring, since $t^{i} B[[t]]$ is a two-sided ideal of $B[[t]]$ for every $i \in \mathbb{N}$.

For any k elements $u_{1}, u_{2}, \ldots, u_{k}$ of B, and for every $a \in A$, let us denote by $\bar{\rho}_{u_{1}, u_{2}, \ldots, u_{k}}(a)$ the element

$$
\prod_{i=1}^{\overleftarrow{k}}\left(1-u_{i} t^{i}\right) \cdot \bar{\rho}(a) \cdot\left(\overleftarrow{\prod_{i=1}^{k}}\left(1-u_{i} t^{i}\right)\right)^{-1} \in B[[t]]
$$

Clearly, $\bar{\rho}_{u_{1}, u_{2}, \ldots, u_{k}}: A \rightarrow B[[t]]$ is a K-linear map for any k elements $u_{1}, u_{2}, \ldots, u_{k}$ of B.

Now, we are going to recursively construct a sequence $\left(u_{1}, u_{2}, u_{3}, \ldots\right) \in B^{\{1,2,3, \ldots\}}$ of elements of B such that every $n \in \mathbb{N}$ satisfies

$$
\begin{equation*}
\left(\bar{\rho}_{u_{1}, u_{2}, \ldots, u_{n}}(a) \equiv a \cdot 1 \bmod t^{n+1} B[[t]] \quad \text { for every } a \in A\right) \tag{2}
\end{equation*}
$$

[^1]In fact, we first notice that the equation (2) is satisfied for $n=0$ (note that the product $\prod_{i=1}^{n}\left(1-u_{i} t^{i}\right)$ is an empty product when $n=0$, because in the case $n=0$, we have $\bar{\rho}_{u_{1}, u_{2}, \ldots, u_{n}}(a)=($ empty product $) \cdot \bar{\rho}(a) \cdot(\text { empty product })^{-1}=\bar{\rho}(a) \equiv a \cdot$ $1 \bmod t B[[t]]$ (since the constant term of the power series $\bar{\rho}(a)$ equals $a \cdot 1$). Now, we are going to construct our sequence $\left(u_{1}, u_{2}, u_{3}, \ldots\right) \in B^{\{1,2,3, \ldots\}}$ by induction: Let $m \in \mathbb{N}$ be such that $m>0$. Assume that we have constructed some elements u_{1}, u_{2}, \ldots, u_{m-1} of B such that (2) holds for $n=m-1$. Then, we are going to construct a new element u_{m} of B such that (2) holds for $n=m$.

In fact, applying (2) to $n=m-1$ (we can do this since we have assumed that (2) holds for $n=m-1$), we obtain

$$
\bar{\rho}_{u_{1}, u_{2}, \ldots, u_{m-1}}(a) \equiv a \cdot 1 \bmod t^{m} B[[t]] \quad \text { for every } a \in A
$$

In other words, every $a \in A$ satisfies

$$
\bar{\rho}_{u_{1}, u_{2}, \ldots, u_{m-1}}(a)-a \cdot 1 \in t^{m} B[[t]] .
$$

Denoting the power series $\bar{\rho}_{u_{1}, u_{2}, \ldots, u_{m-1}}(a)-a \cdot 1$ by $p(a)$, we thus have $p(a) \in t^{m} B[[t]]$. Hence, $p_{0}(a)=p_{1}(a)=\ldots=p_{m-1}(a)=0$, where $p_{i}(a)$ denotes the coefficient of the power series $p(a)$ before t^{i} for every $i \in \mathbb{N}$. Thus,

$$
\begin{aligned}
p(a) & =\sum_{i=0}^{\infty} p_{i}(a) t^{i}=\sum_{i=0}^{m-1} \underbrace{p_{i}(a)}_{\begin{array}{c}
=0(\text { since } \\
\left.p_{0}(a)=p_{1}(a)=\ldots=p_{m-1}(a)=0\right)
\end{array}} t^{i}+p_{m}(a) t^{m}+\sum_{i=m+1}^{\infty} \underbrace{p_{i}(a) t^{i}}_{\begin{array}{c}
\equiv 0 \\
\text { since } t^{m+1} B[[t]] \\
\text { since } i \geq m+1 \text { ivelds } \\
\left.t^{i} \equiv 0 \bmod t^{m+1} B[[t]]\right)
\end{array}} \\
& \equiv \sum_{i=0}^{m-1} 0 t^{i}+p_{m}(a) t^{m}+\sum_{i=m+1}^{\infty} 0=p_{m}(a) t^{m} \bmod t^{m+1} B[[t]] .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\bar{\rho}_{u_{1}, u_{2}, \ldots, u_{m-1}}(a)=\underbrace{\left(\bar{\rho}_{u_{1}, u_{2}, \ldots, u_{m-1}}(a)-a \cdot 1\right)}_{=p(a) \equiv p_{m}(a) t^{m} \bmod t^{m+1} B[[t]]}+a \cdot 1 \equiv p_{m}(a) t^{m}+a \cdot 1 \bmod t^{m+1} B[[t]] . \tag{3}
\end{equation*}
$$

Let us notice that the map $p: A \rightarrow B[[t]]$ is K-linear (by its definition, since the map $\bar{\rho}_{u_{1}, u_{2}, \ldots, u_{m-1}}: A \rightarrow B[[t]]$ is K-linear), and thus the map $p_{m}: A \rightarrow B$ is K-linear as well (since $p_{m}=\operatorname{coeff}_{m} \circ p$, where coeff $m: B[[t]] \rightarrow B$ is the map that takes every power series to its coefficient before t^{m}, and thus p_{m} is K-linear because both coeff ${ }_{m}$ and p are K-linear).

Now, any $a \in A$ and $a^{\prime} \in A$ satisfy

$$
\begin{aligned}
& \bar{\rho}_{u_{1}, u_{2}, \ldots, u_{m-1}}(a) \cdot \bar{\rho}_{u_{1}, u_{2}, \ldots, u_{m-1}}\left(a^{\prime}\right) \\
& =\left(\prod_{i=1}^{\overleftarrow{m-1}}\left(1-u_{i} t^{i}\right) \cdot \bar{\rho}(a) \cdot\left(\prod_{i=1}^{m-1}\left(1-u_{i} t^{i}\right)\right)^{-1}\right) \cdot\left(\prod_{i=1}^{\overleftarrow{m-1}}\left(1-u_{i} t^{i}\right) \cdot \bar{\rho}\left(a^{\prime}\right) \cdot\left(\prod_{i=1}^{\overleftarrow{m-1}}\left(1-u_{i} t^{i}\right)\right)^{-1}\right) \\
& =\prod_{i=1}^{\overleftarrow{m-1}}\left(1-u_{i} t^{i}\right) \cdot \underbrace{\bar{\rho}(a) \cdot \bar{\rho}\left(a^{\prime}\right)}_{\substack{\bar{\rho}\left(a a^{\prime}\right)(\text { by a condition } \\
\text { of Theorem 1) }}} \cdot\left(\prod_{i=1}^{\overleftarrow{m-1}}\left(1-u_{i} t^{i}\right)\right)^{-1}=\prod_{i=1}^{\overleftarrow{m-1}}\left(1-u_{i} t^{i}\right) \cdot \bar{\rho}\left(a a^{\prime}\right) \cdot\left(\prod_{i=1}^{\overleftarrow{m-1}}\left(1-u_{i} t^{i}\right)\right)^{-1} \\
& =\bar{\rho}_{u_{1}, u_{2}, \ldots, u_{m-1}}\left(a a^{\prime}\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \underbrace{\bar{\rho}_{u_{1}, u_{2}, \ldots, u_{m-1}}(a)}_{\begin{array}{c}
\equiv p_{m}(a) t^{m}+a \cdot 1 \bmod t^{m+1} \\
\text { (by }(3))
\end{array}} \cdot \underbrace{\bar{\rho}_{u_{1}, u_{2}, \ldots, u_{m-1}}\left(a^{\prime}\right)}_{\begin{array}{c}
\equiv p_{m}\left(a^{\prime}\right) t^{m}+a^{\prime} \cdot 1 \bmod t^{m+1} \\
\text { (by } \left.(3), \text { applied to } a^{\prime} \text { instead of } a\right)
\end{array}} \\
& \equiv\left(p_{m}(a) t^{m}+a \cdot 1\right) \cdot\left(p_{m}\left(a^{\prime}\right) t^{m}+a^{\prime} \cdot 1\right)=\underbrace{p_{m}(a) p_{m}\left(a^{\prime}\right) t^{2 m}}_{\begin{array}{c}
\equiv 0 \bmod t^{m+1} B[t t](\text { since } 2 m \geq m+1 \\
\text { yields } \left.t^{2 m} \equiv 0 \bmod t^{m+1} B[t t]\right)
\end{array}}+\underbrace{p_{m}(a) a^{\prime} t^{m}+a p_{m}\left(a^{\prime}\right) t^{m}}_{=\left(p_{m}(a) a^{\prime}+a p_{m}\left(a^{\prime}\right)\right) t^{m}}+a a^{\prime} \cdot 1 \\
& \equiv 0+\left(p_{m}(a) a^{\prime}+a p_{m}\left(a^{\prime}\right)\right) t^{m}+a a^{\prime} \cdot 1=\left(p_{m}(a) a^{\prime}+a p_{m}\left(a^{\prime}\right)\right) t^{m}+a a^{\prime} \cdot 1 \bmod t^{m+1} B[[t]]
\end{aligned}
$$

and

$$
\left.\bar{\rho}_{u_{1}, u_{2}, \ldots, u_{m-1}}\left(a a^{\prime}\right) \equiv p_{m}\left(a a^{\prime}\right) t^{m}+a a^{\prime} \cdot 1 \bmod t^{m+1} B[[t]] \quad \text { (by }(3)\right),
$$

this equation yields

$$
\left(p_{m}(a) a^{\prime}+a p_{m}\left(a^{\prime}\right)\right) t^{m}+a a^{\prime} \cdot 1 \equiv p_{m}\left(a a^{\prime}\right) t^{m}+a a^{\prime} \cdot 1 \bmod t^{m+1} B[[t]] .
$$

In other words,

$$
\left(p_{m}(a) a^{\prime}+a p_{m}\left(a^{\prime}\right)\right) t^{m} \equiv p_{m}\left(a a^{\prime}\right) t^{m} \bmod t^{m+1} B[[t]]
$$

Hence, for every $i \in\{0,1, \ldots, m\}$, the coefficient of the power series $\left(p_{m}(a) a^{\prime}+a p_{m}\left(a^{\prime}\right)\right) t^{m}$ before t^{i} equals the coefficient of the power series $p_{m}\left(a a^{\prime}\right) t^{m}$ before t^{i}. Applying this to $i=m$, we see that the coefficient of the power series $\left(p_{m}(a) a^{\prime}+a p_{m}\left(a^{\prime}\right)\right) t^{m}$ before t^{m} equals the coefficient of the power series $p_{m}\left(a a^{\prime}\right) t^{m}$ before t^{m}. But the coefficient of the power series $\left(p_{m}(a) a^{\prime}+a p_{m}\left(a^{\prime}\right)\right) t^{m}$ is $p_{m}(a) a^{\prime}+a p_{m}\left(a^{\prime}\right)$, and the coefficient of the power series $p_{m}\left(a a^{\prime}\right) t^{m}$ before t^{m} is $p_{m}\left(a a^{\prime}\right)$. Hence, $p_{m}(a) a^{\prime}+a p_{m}\left(a^{\prime}\right)$ equals $p_{m}\left(a a^{\prime}\right)$. In other words, $p_{m}\left(a a^{\prime}\right)=p_{m}(a) a^{\prime}+a p_{m}\left(a^{\prime}\right)=a p_{m}\left(a^{\prime}\right)+p_{m}(a) a^{\prime}$. Since p_{m} is a K-linear map, the condition (1) (applied to $f=p_{m}$) yields that there exists an element $s \in B$ such that

$$
\left(p_{m}(a)=a s-s a \text { for all } a \in A\right) .
$$

Now, let u_{m} be the element $-s$. Then, we conclude that

$$
\begin{equation*}
p_{m}(a)=u_{m} a-a u_{m} \text { for all } a \in A \tag{4}
\end{equation*}
$$

(since $u_{m}=-s$ yields $s=-u_{m}$ and thus $p_{m}(a)=a s-s a=a\left(-u_{m}\right)-\left(-u_{m}\right) a=$ $\left.u_{m} a-a u_{m}\right)$. Now, we must prove that (2) holds for $n=m$. In fact, every $a \in A$
satisfies

$$
\begin{aligned}
& \bar{\rho}_{u_{1}, u_{2}, \ldots, u_{m}}(a) \\
& =\underbrace{\overleftarrow{\rho}(a)}_{=\left(1-u_{m} t^{m}\right) \cdot \prod_{\prod_{i=1}^{m-1}\left(1-u_{i} t^{i}\right)}^{\prod_{i=1}^{m}\left(1-u_{i} t^{i}\right)}} \cdot(\underbrace{\prod_{i=1}^{\stackrel{m}{p}}\left(1-u_{i} t^{i}\right)}_{\left(1-u_{m} t^{m}\right) \cdot \prod_{i=1}^{m-1}\left(1-u_{i} t^{i}\right)})^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \equiv\left(1-u_{m} t^{m}\right)\left(p_{m}(a) t^{m}+a \cdot 1\right)\left(1+u_{m} t^{m}\right) \\
& =p_{m}(a) t^{m}+p_{m}(a) u_{m} t^{2 m}+a \cdot 1+a u_{m} t^{m}-u_{m} p_{m}(a) t^{2 m}-u_{m} p_{m}(a) u_{m} t^{3 m}-u_{m} a t^{m}-u_{m} a u_{m} t^{2 m} \\
& \equiv p_{m}(a) t^{m}+a \cdot 1+a u_{m} t^{m}-u_{m} a t^{m} \\
& \binom{\text { here we have removed all addends where } t^{2 m} \text { or } t^{3 m} \text { occurs, because } 2 m \geq m+1 \text { yields }}{t^{2 m} \equiv 0 \bmod t^{m+1} B[[t]] \text { and because } 3 m \geq m+1 \text { yields } t^{3 m} \equiv 0 \bmod t^{m+1} B[[t]]} \\
& =\left(u_{m} a-a u_{m}\right) t^{m}+a \cdot 1+a u_{m} t^{m}-u_{m} a t^{m} \\
& \text { (by (4)) } \\
& =a \cdot 1 \bmod t^{m+1} B[[t]] \text {. }
\end{aligned}
$$

Hence, (2) holds for $n=m$.
Thus we have shown that, if we have constructed some elements $u_{1}, u_{2}, \ldots, u_{m-1}$ of B such that (2) holds for $n=m-1$, then we can define a new element u_{m} of B in a way such that (2) holds for $n=m$. This way, we can recursively construct elements $u_{1}, u_{2}, u_{3}, \ldots$ of B which satisfy the equation (2) for every $n \in \mathbb{N}$. Now, define a power series $b \in B[[t]]$ by $b=\lim _{n \rightarrow \infty} \prod_{i=1}^{n}\left(1-u_{i} t^{i}\right)$ (this power series b is well-defined since the sequence $\left(\prod_{i=1}^{\stackrel{n}{\prod}}\left(1-u_{i} t^{i}\right)\right)_{n \in \mathbb{N}}$ is a Cauchy sequence with respect to the (t)-adic topology
on the ring $B[[t]] \quad{ }^{3}$ and therefore converges). Then, every $a \in A$ satisfies

$$
\begin{aligned}
b \bar{\rho}(a) b^{-1} & =\lim _{n \rightarrow \infty} \prod_{i=1}^{\overleftarrow{n}}\left(1-u_{i} t^{i}\right) \cdot \bar{\rho}(a) \cdot\left(\lim _{n \rightarrow \infty} \prod_{i=1}^{\overleftarrow{n}}\left(1-u_{i} t^{i}\right)\right)^{-1} \\
& =\lim _{n \rightarrow \infty}\left(\overleftarrow{\prod_{i=1}^{n}}\left(1-u_{i} t^{i}\right) \cdot \bar{\rho}(a) \cdot\left(\prod_{i=1}^{\prod_{n}}\left(1-u_{i} t^{i}\right)\right)^{-1}\right)=\lim _{n \rightarrow \infty} \bar{\rho}_{u_{1}, u_{2}, \ldots, u_{n}}(a)=a \cdot 1
\end{aligned}
$$

(because of $\left.(2) \quad{ }^{4}\right)$. This proves Theorem 1.

References

[1] Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Elena Udovina and Dmitry Vaintrob, Introduction to representation theory, July 13, 2010.
http://math.mit.edu/~etingof/replect.pdf

[^2](namely, take $j=k$; then, any $n \geq j$ satisfies
and similarly any $m \geq j$ satisfies
$$
\prod_{i=1}^{\overleftarrow{m}}\left(1-u_{i} t^{i}\right) \equiv \overleftarrow{\prod_{i=1}^{j}}\left(1-u_{i} t^{i}\right) \bmod t^{k} B[[t]],
$$
so that any $n \geq j$ and $m \geq j$ satisfy $\left.\overleftarrow{\prod_{i=1}^{n}}\left(1-u_{i} t^{i}\right) \equiv \overleftarrow{\prod_{i=1}^{m}}\left(1-u_{i} t^{i}\right) \bmod t^{k} B[[t]]\right)$.
${ }^{4}$ In fact, for every $i \in \mathbb{N}$, there exists some $k \in \mathbb{N}$ such that every $n \in \mathbb{N}$ satisfying $n \geq k$ satisfies $\bar{\rho}_{u_{1}, u_{2}, \ldots, u_{n}}(a) \equiv a \cdot 1 \bmod t^{i} B[[t]]$ (namely, set $k=i-1$; then, (2) yields $\bar{\rho}_{u_{1}, u_{2}, \ldots, u_{n}}(a) \equiv$ $\left.a \cdot 1 \bmod t^{n+1} B[t t]\right]$ and thus also $\left.\bar{\rho}_{u_{1}, u_{2}, \ldots, u_{n}}(a) \equiv a \cdot 1 \bmod t^{i} B[t t]\right]$ because $t^{n+1} B[[t]] \subseteq t^{i} B[[t]]$ (since $n \geq k$ yields $n+1 \geq k+1=(i-1)+1=i)$.

[^0]: ${ }^{1}$ What we call "symmetric A-algebra" happens to be what most authors call " A-algebra".

[^1]: ${ }^{2}$ Problem 2.24 in [1] is recovered from this generalization by setting $B=\operatorname{End} V$.

[^2]: ${ }^{3}$ This is because for every $k \in \mathbb{N}$, there exists some $j \in \mathbb{N}$ such that

 $$
 \left.\left(\prod_{i=1}^{n}\left(1-u_{i} t^{i}\right) \equiv \prod_{i=1}^{\overleftarrow{m}}\left(1-u_{i} t^{i}\right) \bmod t^{k} B[t t]\right] \text { for every } n \in \mathbb{N} \text { and } m \in \mathbb{N} \text { satisfying } n \geq j \text { and } m \geq j\right)
 $$

