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Abstract. Let D = (V, A) be a digraph with n vertices, where each arc
a ∈ A is a pair (u, v) of two vertices. We study the Redei–Berge symmetric
function UD, defined as the quasisymmetric function

∑ LDes(w,D), n ∈ QSym .

Here, the sum ranges over all lists w = (w1, w2, . . . , wn) that contain
each vertex of D exactly once, and the corresponding addend is

LDes(w,D), n := ∑
i1≤i2≤···≤in;

ip<ip+1 for each p satisfying (wp,wp+1)∈A

xi1 xi2 · · · xin

(an instance of Gessel’s fundamental quasisymmetric functions).
While UD is a specialization of Chow’s path-cycle symmetric function,

which has been studied before, we prove some new formulas that ex-
press UD in terms of the power-sum symmetric functions. We show that
UD is always p-integral, and furthermore is p-positive whenever D has
no 2-cycles. When D is a tournament, UD can be written as a polynomial
in p1, 2p3, 2p5, 2p7, . . . with nonnegative integer coefficients. By special-
izing these results, we obtain the famous theorems of Redei and Berge
on the number of Hamiltonian paths in digraphs and tournaments, as
well as a modulo-4 refinement of Redei’s theorem.
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1. Definitions and the main theorems

We begin with introducing the notations, some of which come from [EC2sup22,
Problem 120]. We use standard notations as defined, e.g., in [Stanle01, Chapter 7]
and [GriRei20, Chapters 2 and 5].

1.1. Digraphs, V-listings and D-descents

We let N := {0, 1, 2, . . .} and P := {1, 2, 3, . . .}. We set [n] := {1, 2, . . . , n} for each
n ∈ Z. (This set [n] is empty if n ≤ 0.)

The words “list” and “tuple” will be used interchangeably, and will always mean
finite ordered tuples.

We shall next introduce some basic notations regarding digraphs (i.e., directed
graphs):

Definition 1.1. A digraph means a pair (V, A), where V is a finite set and where A
is a subset of V ×V. The elements of V are called the vertices of this digraph, and
the elements of A are called the arcs of this digraph. For any further notations,
we refer to standard literature (the definitions in [Grinbe17, §1.1-§1.2] should
suffice) and common sense. (Our digraphs are allowed to have loops, but this
has no effect on what follows.)

Definition 1.2. Let D = (V, A) be a digraph. Then, the digraph (V, (V × V) \ A)
will be denoted by D and called the complement of the digraph D. Its arcs will
be called the non-arcs of D (since they are precisely the pairs (u, v) ∈ V × V that
are not arcs of D).

Example 1.3. If D is the digraph

({1, 2, 3} , {(1, 2) , (2, 2) , (3, 3)}) ,

then its complement D is the digraph

({1, 2, 3} , {(1, 1) , (1, 3) , (2, 1) , (2, 3) , (3, 1) , (3, 2)}) .

Here are the two digraphs, drawn side by side:

1

2

3

1

2

3

D D

.
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Definition 1.4. Let V be a finite set. A V-listing will mean a list of elements of V
that contains each element of V exactly once.

For example, (2, 1, 3) is a {1, 2, 3}-listing.
Of course, if V is a finite set, then there are exactly |V|! many V-listings. They

are in a canonical bijection with the bijective maps from [|V|] to V, and in a non-
canonical bijection with the permutations of V.

Convention 1.5. If w is any list (i.e., tuple), and if i is a positive integer, then
wi shall denote the i-th entry of w. (Thus, w = (w1, w2, . . . , wk), where k is the
length of w.)

Definition 1.6. Let D = (V, A) be a digraph. Let w = (w1, w2, . . . , wn) be a
V-listing. Then:

(a) A D-descent of w means an i ∈ [n − 1] satisfying (wi, wi+1) ∈ A.

(b) We let Des (w, D) denote the set of all D-descents of w.

Example 1.7. Let D be the digraph D from Example 1.3, and let w be the V-
listing (3, 1, 2). Then, 2 is a D-descent of w (since (w2, w3) = (1, 2) ∈ A), but 1 is
not a D-descent of w (since (w1, w2) = (3, 1) /∈ A). Hence, Des (w, D) = {2}.

Example 1.8. Let n ∈ N, and let V = [n]. Let D be the digraph whose vertices
are the elements of V and whose arcs are all the pairs (i, j) ∈ [n]2 satisfying i > j.
Let w be a V-listing. Then, the D-descents of w are exactly the descents of w in
the usual sense (i.e., the numbers i ∈ [n − 1] satisfying wi > wi+1).

We note that D-descents for general digraphs D have already implicitly ap-
peared in the work of Foata and Zeilberger [FoaZei96], which considers the number
maj′D w := ∑

i∈Des(w,D)
i for each V-listing w. We would not be surprised if what fol-

lows can shed some new light on the results of [FoaZei96], but so far we have not
found any deeper connections.

1.2. Quasisymmetric functions

Next, we introduce some notations from the theory of quasisymmetric functions
(see, e.g., [Stanle01, §7.19] or [GriRei20, Chapter 5]):

Definition 1.9.
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(a) A composition means a finite list of positive integers. If α = (α1, α2, . . . , αk)
is a composition, then the number k is called the length of α, whereas the
number α1 + α2 + · · ·+ αk is called the size of α. If n ∈ N, then a composition
of n shall mean a composition having size n.

(b) A partition (or integer partition) means a composition that is weakly decreas-
ing.

For example, (2, 5, 3) is a composition of 10 that has length 3 and is not a partition
(since 2 < 5).

Definition 1.10. Let n ∈ N. For any subset I of [n − 1], we let comp (I, n) be the
list

(i1 − i0, i2 − i1, i3 − i2, . . . , ik − ik−1) ,

where i0, i1, . . . , ik are the elements of {0} ∪ I ∪ {n} listed in strictly increasing
order. This list comp (I, n) is a composition of n.

Example 1.11. If n = 6 and I = {2, 3, 5}, then comp (I, n) = (2, 1, 2, 1).

Note that comp (I, n) is denoted by co (I) in [Stanle01, §7.19], but we prefer to
make the dependence on n explicit here. In the notation of [GriRei20, Definition
5.1.10], the composition comp (I, n) is the preimage of I under the bijection D :
Compn → 2[n−1].

For any n ∈ N, the map

{subsets of [n − 1]} → {compositions of n} ,
I 7→ comp (I, n)

is a bijection.

Definition 1.12. Consider the ring Z [[x1, x2, x3, . . .]] of formal power series
in countably many indeterminates x1, x2, x3, . . .. Two subrings of this ring
Z [[x1, x2, x3, . . .]] are:

• the ring Λ of symmetric functions (defined, e.g., in [Stanle01, §7.1] or in
[GriRei20, §2.1]);

• the ring QSym of quasisymmetric functions (defined, e.g., in [Stanle01, §7.19]
or in [GriRei20, §5.1]).

We will not actually use any properties of these rings Λ and QSym anywhere
except in Sections 8, 6 and 7 (and even there, only Λ will be used); thus, a reader
unfamiliar with symmetric functions can read Z [[x1, x2, x3, . . .]] instead of Λ or
QSym everywhere else.
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Definition 1.13. Let α be a composition. Then, Lα will denote the fundamental
quasisymmetric function corresponding to α. This is a formal power series in
QSym, and is defined as follows: Let I be the unique subset of [n − 1] satisfying
α = comp (I, n). Then, we set

Lα = ∑
i1≤i2≤···≤in;

ip<ip+1 for each p∈I

xi1 xi2 · · · xin ∈ QSym

(where the summation indices i1, i2, . . . , in range over P).

See [Stanle01, §7.19] or [GriRei20, §5] for more about these fundamental qua-
sisymmetric functions Lα (originally introduced by Ira Gessel)1. We will actually
find it easier to index them not by the compositions α but rather by the correspond-
ing subsets I of [n − 1]. Thus, we define:

Definition 1.14. Let n ∈ N, and let I be a subset of [n − 1]. Then, we will use
the notation LI,n for Lcomp(I,n). Explicitly, we have

LI,n = ∑
i1≤i2≤···≤in;

ip<ip+1 for each p∈I

xi1 xi2 · · · xin ∈ QSym (1)

(where the summation indices i1, i2, . . . , in range over P).

Example 1.15. If n = 3 and I = {2}, then

LI,n = L{2},3 = ∑
i1≤i2≤i3;

ip<ip+1 for each p∈{2}

xi1 xi2 xi3 = ∑
i1≤i2<i3

xi1 xi2 xi3

= x1x1x2 + x1x1x3 + · · ·+ x1x2x3 + x1x2x4 + · · ·+ · · ·+ x2x2x3 + · · · .

1.3. The Redei–Berge symmetric function

We are now ready to define the main protagonist of this paper:

Definition 1.16. Let n ∈ N. Let D = (V, A) be a digraph with n vertices. We
define the Redei–Berge symmetric function UD to be the quasisymmetric function

∑
w is a V-listing

LDes(w,D), n ∈ QSym .

1Note that the definition of Lα given in [GriRei20, Definition 5.2.4] differs from ours. However, it
is equivalent to ours, since [GriRei20, Proposition 5.2.9] shows that the Lα defined in [GriRei20,
Definition 5.2.4] satisfy the same formula that we used to define our Lα.
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Example 1.17. Let D be the digraph D from Example 1.3. Then,

UD = ∑
w is a V-listing

LDes(w,D), 3

= LDes((1,2,3),D), 3 + LDes((1,3,2),D), 3 + LDes((2,1,3),D), 3

+ LDes((2,3,1),D), 3 + LDes((3,1,2),D), 3 + LDes((3,2,1),D), 3

= L{1}, 3 + L∅, 3 + L∅, 3 + L∅, 3 + L{2}, 3 + L∅, 3

= 4 · L∅, 3︸︷︷︸
= ∑

i1≤i2≤i3
xi1

xi2 xi3

+ L{1}, 3︸ ︷︷ ︸
= ∑

i1<i2≤i3
xi1

xi2 xi3

+ L{2}, 3︸ ︷︷ ︸
= ∑

i1≤i2<i3
xi1

xi2 xi3

= 4 · ∑
i1≤i2≤i3

xi1 xi2 xi3 + ∑
i1<i2≤i3

xi1 xi2 xi3 + ∑
i1≤i2<i3

xi1 xi2 xi3 .

From this expression, we can easily see that UD is actually a symmetric function,
and can be written (e.g.) as p3

1 + 2p1p2 + p3, where pk := xk
1 + xk

2 + xk
3 + · · · is

the k-th power-sum symmetric function for each k ≥ 1.

The name “Redei–Berge symmetric function” for the power series UD was chosen
because (as we will soon see) it is actually a symmetric function and is related to
two classical results of Redei and Berge on the number of Hamiltonian paths in
digraphs. In [EC2sup22, Problem 120], it is called UX, where X is what we call A
(that is, the set of arcs of D); but we shall here put the entire digraph D into the
subscript.

The Redei–Berge symmetric function UD equals the quasisymmetric function
ΞD (x, 0) from Chow’s [Chow96].2 It also is denoted by ΠD in [Wisema07].3 Several
properties of UD have been shown in [Chow96] and in [Wisema07], and some of
them will be reproved here for the sake of self-containedness and variety. However,
our main results – Theorems 1.31, 1.39 and 1.41 – appear to be new.

Question 1.18. Can these results be extended to the more general functions
ΞD (x, y) from [Chow96]?

1.4. Arcs and cyclic arcs

The main results of this paper are explicit (albeit not, in general, subtraction-free)
expansions of UD in terms of the power-sum symmetric functions. To state these,
we need some more notations. We shall soon define cycles of digraphs and cycles
of permutations, and we will then connect the two notions. First, some auxiliary
notations:

2Indeed, this equality follows immediately from [Chow96, Proposition 7], since the quasisymmet-
ric function we call LI,n appears under the name of QI,n in [Chow96], and since our Des

(
w, D

)
is what is called S (w) in [Chow96].

3Indeed, comparing the definition of ΠD in [Wisema07, Definition 2.2] with the definition of ΞD
in [Chow96, §2] shows that ΠD = ΞD (x, 0). Thus, ΠD = ΞD (x, 0) = UD (as we already know).
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Definition 1.19. Let V be a set. Let v = (v1, v2, . . . , vk) ∈ Vk be a nonempty tuple
of elements of V.

(a) We define a subset Arcs v of V × V by

Arcs v := {(vi, vi+1) | i ∈ [k − 1]}
= {(v1, v2) , (v2, v3) , . . . , (vk−1, vk)} (2)
⊆ V × V.

This subset Arcs v is called the arc set of the tuple v. Its elements (vi, vi+1)
are called the arcs of v.

(b) We define a subset CArcs v of V × V by

CArcs v := {(vi, vi+1) | i ∈ [k]}
= {(v1, v2) , (v2, v3) , . . . , (vk−1, vk) , (vk, v1)} (3)
⊆ V × V,

where we set vk+1 := v1. This subset CArcs v is called the cyclic arc set of
the tuple v. Its elements (vi, vi+1) are called the cyclic arcs of v.

(c) The reversal of v is defined to be the tuple (vk, vk−1, . . . , v1) ∈ Vk.

Example 1.20. Let V = N and v = (1, 4, 2, 6) ∈ V4. Then,

Arcs v = {(1, 4) , (4, 2) , (2, 6)} and
CArcs v = {(1, 4) , (4, 2) , (2, 6) , (6, 1)} .

Note that if we cyclically rotate a nonempty tuple v ∈ Vk, then the set CArcs v
remains unchanged: i.e., for any (v1, v2, . . . , vk) ∈ Vk, we have

CArcs (v1, v2, . . . , vk) = CArcs (v2, v3, . . . , vk, v1) .

1.5. Permutations and their cycles

Now, let us discuss permutations and their cycles. We start with some basic nota-
tions:

Definition 1.21. Let V be a finite set. Then, SV shall denote the symmetric group
of V (that is, the group of all permutations of V).

Note that the order of this group is |SV | = |V|!.



The Redei–Berge symmetric functions page 9

Definition 1.22. Let V be a set.

(a) Two tuples v ∈ Vk and w ∈ Vℓ of elements of V are said to be rotation-
equivalent if w can be obtained from v by cyclic rotation, i.e., if ℓ = k and
w = (vi, vi+1, . . . , vk, v1, v2, . . . , vi−1) for some i ∈ [k].

(b) The relation “rotation-equivalent” is an equivalence relation on the set of
all nonempty tuples of elements of V. Its equivalence classes are called the
rotation-equivalence classes. In other words, the rotation-equivalence classes
are the orbits of the operation

(a1, a2, . . . , ak) 7→ (a2, a3, . . . , ak, a1)

on the set of all nonempty tuples of elements of V.

(c) The rotation-equivalence class that contains a given nonempty tuple v ∈ Vk

will be denoted by v∼.

For instance, the tuple (1, 2, 3, 4) is rotation-equivalent to (3, 4, 1, 2), but not to
(4, 3, 2, 1). Thus,

(1, 2, 3, 4)∼ = (3, 4, 1, 2)∼ ̸= (4, 3, 2, 1)∼ .

Also,
(1, 3, 6)∼ = {(1, 3, 6) , (3, 6, 1) , (6, 1, 3)} .

Definition 1.23. Let V be a set. Let γ be a rotation-equivalence class (of
nonempty tuples of elements of V). Then:

(a) All tuples v ∈ γ have the same length (i.e., number of entries). This length
is denoted by ℓ (γ), and is called the length of γ. Thus, if γ = v∼ for some
tuple v ∈ Vk, then ℓ (γ) = k.

(b) All tuples v ∈ γ have the same cyclic arc set CArcs v (since CArcs v re-
mains unchanged if we cyclically rotate v). This cyclic arc set is denoted
by CArcs γ, and is called the cyclic arc set of γ. Thus, the cyclic arc set of a
rotation-equivalence class γ = (v1, v2, . . . , vk)∼ is

CArcs γ = {(v1, v2) , (v2, v3) , . . . , (vk−1, vk) , (vk, v1)} .

(c) All tuples v ∈ γ have the same entries (up to order). These entries are
called the entries of γ. Thus, the entries of a rotation-equivalence class
γ = (v1, v2, . . . , vk)∼ are v1, v2, . . . , vk.

(d) The reversals of all tuples v ∈ γ are the elements of a single rotation-
equivalence class rev γ. This latter class will be called the reversal of γ.
Thus, the reversal of a rotation-equivalence class γ = (v1, v2, . . . , vk)∼ is the
rotation-equivalence class (vk, vk−1, . . . , v1)∼.
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(e) We say that γ is nontrivial if ℓ (γ) > 1.

For instance, the rotation-equivalence class (3, 1, 4)∼ has length 3, cyclic arc set
{(3, 1) , (1, 4) , (4, 3)}, and entries 3, 1, 4. Its reversal is (4, 1, 3)∼, and it is nontrivial
(since ℓ ((3, 1, 4)∼) = 3 > 1).

Definition 1.24. Let V be a finite set. Let σ ∈ SV be any permutation.

(a) The cycles of σ are the rotation-equivalence classes of the tuples of the form(
σ0 (i) , σ1 (i) , . . . , σk−1 (i)

)
,

where i is some element of V, and where k is the smallest positive integer
satisfying σk (i) = i.

For example, the permutation w0 ∈ S[7] that sends each i ∈ [7] to 8 − i has
cycles (1, 7)∼, (2, 6)∼, (3, 5)∼ and (4)∼. (Note that we do allow a cycle to
have length 1.)

(b) The cycle type of σ means the partition whose entries are the lengths of the
cycles of σ. We denote this cycle type by type σ. It is a partition of the
number |V|.

(c) We let Cycs σ denote the set of all cycles of σ.

Example 1.25. Let w0 ∈ S[7] be the permutation that sends each i ∈ [7] to 8 − i.
We have already seen that w0 has cycles (1, 7)∼, (2, 6)∼, (3, 5)∼ and (4)∼. Their
respective lengths are 2, 2, 2, 1. Thus, the cycle type of w0 is type w0 = (2, 2, 2, 1).
We have Cycs σ = {(1, 7)∼ , (2, 6)∼ , (3, 5)∼ , (4)∼}. The first three of the four
cycles (1, 7)∼, (2, 6)∼, (3, 5)∼ and (4)∼ are nontrivial.

1.6. D-paths and D-cycles

Next, we define paths and cycles in a digraph:

Definition 1.26. Let D = (V, A) be a digraph.

(a) A D-path (or path of D) shall mean a nonempty tuple v of distinct elements
of V such that Arcs v ⊆ A.

(b) A D-cycle (or cycle of D) shall mean a rotation-equivalence class γ of
nonempty tuples of distinct elements of V such that CArcs γ ⊆ A.
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We note that our notion of “cycle of D” differs slightly from the common one
used in graph theory4.

Example 1.27. Let D be the digraph D from Example 1.3. Then:

(a) The pair (1, 2) as well as the three 1-tuples (1), (2) and (3) are D-paths.
The triple (1, 2, 2) is not a D-path (even though it satisfies the “Arcs v ⊆ A”
condition), since its entries 1, 2, 2 are not distinct. The triple (1, 2, 3) is not
a D-path, since (2, 3) is not an arc of D.

The triple (2, 3, 1) is a D-path (and there are several others).

(b) The only D-cycles are the rotation-equivalence classes (2)∼ and (3)∼. The
D-cycles are (1)∼, (1, 3)∼, (2, 3)∼ and (2, 1, 3)∼.

1.7. The sets SV (D) and SV
(

D, D
)

Now, we can connect digraphs with permutations by comparing their cycles:

Definition 1.28. Let D = (V, A) be a digraph. Then, we define

SV (D) := {σ ∈ SV | each nontrivial cycle of σ is a D-cycle}

and

SV
(

D, D
)

:=
{

σ ∈ SV | each cycle of σ is a D-cycle or a D-cycle
}

.

Note that we could just as well replace “each cycle” by “each nontrivial cycle”
in the definition of SV

(
D, D

)
, since a cycle of length 1 is always a D-cycle or a

D-cycle (depending on whether its only cyclic arc belongs to A or not). However,
we could not replace “nontrivial cycle” by “cycle” in the definition of SV (D).

Example 1.29. Let D be the digraph D from Example 1.3. Let V = {1, 2, 3} be its
set of vertices. Then:

(a) We have SV (D) = {idV}, since the only D-cycles have length 1.

(b) We have
SV

(
D, D

)
=
{

idV , cyc1,3, cyc2,3, cyc1,3,2

}
,

where cyci1,i2,...,ik
denotes the permutation that cyclically permutes the ele-

ments i1, i2, . . . , ik while leaving all other elements of V unchanged.

4Namely, cycles in graph theory have their first vertex repeated at the end, whereas our cycles
don’t. However, this difference is purely notational: A cycle (v1, v2, . . . , vk)∼ in our sense corre-
sponds to the cycle (v1, v2, . . . , vk, v1) in the graph-theorists’ terminology.
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1.8. Formulas for UD

1.8.1. The power-sum symmetric functions

We now introduce some of the best-known (and easiest to define) symmetric func-
tions:

Definition 1.30.

(a) For each positive integer n, we define the power-sum symmetric function

pn := xn
1 + xn

2 + xn
3 + · · · ∈ Λ.

(b) If λ = (λ1, λ2, . . . , λk) is a partition with k positive entries, then we set

pλ := pλ1 pλ2 · · · pλk ∈ Λ.

For instance, p(2,2,1) = p2p2p1 =
(
x2

1 + x2
2 + x2

3 + · · ·
)2

(x1 + x2 + x3 + · · · ).

1.8.2. The first main theorem: general digraphs

We now state our first main theorem (which will be proved in Section 2):

Theorem 1.31. Let D = (V, A) be a digraph. Set

φ (σ) := ∑
γ∈Cycs σ;

γ is a D-cycle

(ℓ (γ)− 1) for each σ ∈ SV .

Then,
UD = ∑

σ∈SV(D,D)

(−1)φ(σ) ptype σ.

Example 1.32. Let V = {1, 2, 3, 4, 5, 6} and D = (V, V × V). Let σ ∈ SV be the
permutation whose cycles are (1, 3)∼, (2, 4, 5)∼ and (6)∼. Then, every cycle of σ
is a D-cycle, and the number φ (σ) (as defined in Theorem 1.31) is

(ℓ ((1, 3)∼)− 1) + (ℓ ((2, 4, 5)∼)− 1) + (ℓ ((6)∼)− 1)
= (2 − 1) + (3 − 1) + (1 − 1) = 3.



The Redei–Berge symmetric functions page 13

Example 1.33. Let D be the digraph D from Example 1.3. Recall that
SV

(
D, D

)
=
{

idV , cyc1,3, cyc2,3, cyc1,3,2

}
. Thus, Theorem 1.31 yields

UD = (−1)φ(idV)︸ ︷︷ ︸
=(−1)0=1

ptype(idV)︸ ︷︷ ︸
=p(1,1,1)=p3

1

+ (−1)φ(cyc1,3)︸ ︷︷ ︸
=(−1)0=1

ptype(cyc1,3)︸ ︷︷ ︸
=p(2,1)=p2 p1

+ (−1)φ(cyc2,3)︸ ︷︷ ︸
=(−1)0=1

ptype(cyc2,3)︸ ︷︷ ︸
=p(2,1)=p2 p1

+ (−1)φ(cyc1,3,2)︸ ︷︷ ︸
=(−1)0=1

ptype(cyc1,3,2)︸ ︷︷ ︸
=p(3)=p3

= p3
1 + p2p1 + p2p1 + p3 = p3

1 + 2p1p2 + p3.

This agrees with the result found in Example 1.17.

Example 1.34. Let D be the digraph (V, A), where V = {1, 2, 3} and

A = {(1, 3) , (2, 1) , (3, 1) , (3, 2)} .

Then, a straightforward computation using Theorem 1.31 shows that UD = p3
1 −

p1p2 + p3. (This example is due to Ira Gessel.)

The following two corollaries can be easily obtained from Theorem 1.31 (see
Section 4 for their proofs):

Corollary 1.35. Let D = (V, A) be a digraph. Then, UD is a p-integral symmet-
ric function (i.e., a symmetric function that can be written as a polynomial in
p1, p2, p3, . . .). That is, we have UD ∈ Z [p1, p2, p3, . . .].

Corollary 1.36. Let D = (V, A) be a digraph. Assume that every D-cycle has
odd length. Then,

UD = ∑
σ∈SV(D,D)

ptype σ ∈ N [p1, p2, p3, . . .] .

1.8.3. The second main theorem: tournaments

After we will have proved Theorem 1.31, we will use it to derive a simpler for-
mula, which however is specific to tournaments. First, we recall the definition of a
tournament:

Definition 1.37. A tournament means a digraph D = (V, A) that satisfies the
following two axioms:

• Looplessness: We have (u, u) /∈ A for any u ∈ V.
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• Tournament axiom: For any two distinct vertices u and v of D, exactly one
of the two pairs (u, v) and (v, u) is an arc of D.

Example 1.38. Neither the digraph D from Example 1.3, nor its complement D,
is a tournament. Here is a tournament:

1

2

3

4

5 .

We can now state our second main theorem (which we will prove in Section 3):

Theorem 1.39. Let D = (V, A) be a tournament. For each σ ∈ SV , let ψ (σ)
denote the number of nontrivial cycles of σ. Then,

UD = ∑
σ∈SV(D);

all cycles of σ have odd length

2ψ(σ)ptype σ.

Once this is proved, the following corollary will be easy to derive (see Section 4
for the details):

Corollary 1.40. Let D = (V, A) be a tournament. Then,

UD ∈ N [p1, 2p3, 2p5, 2p7, . . .] = N [p1, 2pi | i > 1 is odd] .

(Here, N [p1, 2p3, 2p5, 2p7, . . .] means the set of all values of the form
f (p1, 2p3, 2p5, 2p7, . . .), where f is a polynomial in countably many indetermi-
nates with coefficients in N.)

1.8.4. The third main theorem: digraphs with no 2-cycles

A more general version of Theorem 1.39 is the following:
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Theorem 1.41. Let D = (V, A) be a digraph. Assume that there exist no two
distinct vertices u and v of D such that both pairs (u, v) and (v, u) belong to A.

(a) Then, UD is a p-positive symmetric function (i.e., a symmetric function that
can be written as a polynomial in p1, p2, p3, . . . with coefficients in N). That
is, we have UD ∈ N [p1, p2, p3, . . .].

(b) A rotation-equivalence class γ of nonempty tuples of elements of V will be
called risky if its length is even and it has the property that either γ or the
reversal of γ is a D-cycle. Then,

UD = ∑
σ∈SV(D,D);

no cycle of σ is risky

ptype σ.

We will prove this in Section 5. Note that Theorem 1.41 (a) generalizes [Chow96,
Theorem 7].5

Remark 1.42. The converse of Theorem 1.41 (a) does not hold. Indeed, consider
the digraph D = (V, A) with V = {1, 2, 3, 4} and

A = {(1, 2) , (2, 1) , (2, 3) , (2, 4) , (3, 4)} .

Then, D does not satisfy the assumption of Theorem 1.41 (since the two distinct
vertices 1 and 2 satisfy both (1, 2) ∈ A and (2, 1) ∈ A), but the corresponding
symmetric function UD is p-positive (indeed, UD = p4

1 + p2p2
1 + p3p1). It would

be interesting to know some more precise criteria for the p-positivity of UD.

The next sections are devoted to the proofs of the above results. Afterwards, we
will proceed with further properties of the Redei-Berge symmetric functions UD
(Section 8), applications to reproving Redei’s and Berge’s theorems (Section 6) and
a (not very substantial) generalization (Section 9).

Remark on alternative versions

You are reading the detailed version of this paper. For the standard version (which
is shorter by virtue of omitting some straightforward proofs and some details), see

5To see how, one needs to observe that

1. any acyclic digraph D satisfies the assumption of Theorem 1.41;

2. the ωxΞD from [Chow96] equals our UD in the case when D is acyclic.

The first of these two observations is obvious. The second follows from the equality (84)
further below, combined with the fact that ΞD = ΞD (x, 0) when D acyclic (since the y-variables
do not actually appear in ΞD for lack of cycles), and the fact that UD = ΞD (x, 0) (stated above
in the equivalent form UD = ΞD (x, 0)).
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[GriSta23].

2. Proof of Theorem 1.31

In the following, we will outline the proof of Theorem 1.31. We hope that the proof
can still be simplified further.

2.1. Basic conventions

The following two conventions are popular in enumerative combinatorics, and we
too will use them on occasion:

Convention 2.1. The symbol # shall mean “number”. For instance,
(# of subsets of {1, 2, 3}) = 8.

Convention 2.2. We shall use the Iverson bracket notation: For any logical
statement A, we let [A] denote the truth value of A. This is the number{

1, if A is true;
0, if A is false.

Our proof of Theorem 1.31 will rely on many lemmas. The first is a well-known
cancellation lemma (see, e.g., [Grinbe21, Proposition 7.8.10]):

Lemma 2.3. Let B be a finite set. Then, ∑
F⊆B

(−1)|F| = [B = ∅].

2.2. Path covers and linear sets

We begin with some more notations:

Definition 2.4. Let V be a finite set.

(a) A path of V means a nonempty tuple of distinct elements of V.

(b) An element v is said to belong to a given tuple t if v is an entry of t.

(c) A path cover of V means a set of paths of V such that each v ∈ V belongs to
exactly one of these paths.

For example, {(1, 4, 3) , (2, 8) , (5) , (7, 6)} is a path cover of [8]. We stress once
again the words “exactly one” in the definition of a path cover. Thus, the paths
constituting a path cover are disjoint (i.e., have no entries in common). For instance,
{(1, 2) , (2, 3)} is not a path cover of [3].
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In Definition 1.19 (a), we have introduced the arc set of a path of V (and, more
generally, of any nonempty tuple of elements of V). We now extend this to path
covers in the obvious way:

Definition 2.5. Let V be a finite set.

(a) If C is a path cover of V, then the arc set of C is defined to be the subset⋃
v∈C

Arcs v of V × V.

This arc set will be denoted by Arcs C.

(b) A subset F of V × V will be called linear if it is the arc set of some path
cover of V.

For example, the path cover {(1, 4, 3) , (2, 8) , (5) , (7, 6)} of [8] has arc set

Arcs {(1, 4, 3) , (2, 8) , (5) , (7, 6)}
= Arcs (1, 4, 3) ∪ Arcs (2, 8) ∪ Arcs (5) ∪ Arcs (7, 6)
= {(1, 4) , (4, 3)} ∪ {(2, 8)} ∪∅∪ {(7, 6)}
= {(1, 4) , (4, 3) , (2, 8) , (7, 6)} .

Thus, the latter set is linear (as a subset of [8]× [8]).
Note that the notion of “path of V” depends on V alone, not on any digraph

structure on V. Thus, if V is the vertex set of a digraph D = (V, A), then a path of
V is not the same as a D-path; in fact, the D-paths are precisely the paths v of V
that satisfy Arcs v ⊆ A.

We shall now see a few properties and characterizations of linear subsets of
V × V. Here is a first one, which will not be used in what follows but might help
in visualizing the concept:

Proposition 2.6. Let V be a finite set. Let F be a subset of V ×V. Then, F is linear
if and only if the digraph (V, F) has no cycles and no vertices with outdegree
> 1 and no vertices with indegree > 1.

We omit the proof of this proposition, since we shall have no use for it.
The following is also easy to see:

Proposition 2.7. Let V be a finite set. Let F be a linear subset of V × V. Then,
any subset of F is linear as well.

Proof. It suffices to show that removing a single element e from a linear subset F of
V × V yields a linear subset. But this is easy:

Let F be a linear subset of V × V, and let e be an element of F. We must prove
that F \ {e} is again a linear subset.
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The set F is linear, i.e., is the arc set of some path cover of V (by the definition
of “linear”). In other words, we have F = Arcs C for some path cover C of V.
Consider this path cover C.

We have e ∈ F = Arcs C. Thus, e is an arc of some path p ∈ C. Consider this p.
If we remove an arc f from a path, then the path breaks up into two smaller

paths (the “part before f ” and the “part after f ”) 6. Thus, if we remove the arc e
from the path p, then this path p breaks up into the “part before e” and the “part
after e”. Let us denote these two parts by p′ and p′′. Let C′ be the path cover of V
obtained from C by breaking up the path p into its two parts p′ and p′′ (that is, let
C′ := (C \ {p}) ∪ {p′, p′′}). Then, Arcs (C′) = (Arcs C)︸ ︷︷ ︸

=F

\ {e} = F \ {e}. This shows

that F \ {e} is the arc set of a path cover of V (namely, of C′). In other words, F \ {e}
is linear. As explained above, this completes our proof of Proposition 2.7.

This quickly leads to the following alternative characterization of linear subsets:

Proposition 2.8. Let V be a finite set. Let F be a subset of V × V. Then:

(a) If the subset F is not linear, then there exists no V-listing v satisfying F ⊆
Arcs v.

(b) If F = Arcs C for some path cover C of V, then there are exactly |C|! many
V-listings v satisfying F ⊆ Arcs v. (Note that |C| is the number of paths in
C.)

(c) The subset F is linear if and only if it is a subset of Arcs v for some V-listing
v.

Proof. (a) We shall prove the contrapositive: i.e., that if there exists a V-listing v
satisfying F ⊆ Arcs v, then F is linear.

Indeed, assume that there exists a V-listing v satisfying F ⊆ Arcs v. Consider this
v. Then, v is a path of V that contains all elements of V. Hence, the 1-element set
{v} is a path cover of V. Its arc set Arcs {v} is therefore linear (by the definition of
“linear”). In other words, the set Arcs v is linear (since Arcs {v} = Arcs v). Hence,
Proposition 2.7 (applied to Arcs v instead of F) shows that any subset of Arcs v is
linear as well. Thus, F is linear (since F is a subset of Arcs v). This completes the
proof of Proposition 2.8 (a).

(b) Assume that F = Arcs C for some path cover C of V. Consider this C.
Then, each V-listing v satisfying F ⊆ Arcs v can be obtained by concatenating the

6To be specific: If the path is (v1, v2, . . . , vk), and if the arc f is (vi, vi+1), then the resulting two
smaller paths are (v1, v2, . . . , vi) and (vi+1, vi+2, . . . , vk).
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paths in C in some order7 (and conversely, each such concatenation is a V-listing v
satisfying F ⊆ Arcs v). There are clearly |C|! many orders in which the paths in C
can be concatenated, and they all lead to different concatenations (since the paths
in C are disjoint and nonempty8), i.e., to different V-listings v. Hence, there are

7Proof. This might appear intuitively clear, but let us give a proof nevertheless.
Let v be a V-listing satisfying F ⊆ Arcs v. We must prove that v can be obtained by concate-

nating the paths in C in some order.
Let p1, p2, . . . , pk be the paths in C (listed with no repetitions). Thus, we must prove that v is

a concatenation of p1, p2, . . . , pk in some order.
Note that the paths p1, p2, . . . , pk are the distinct paths of the path cover C. Thus, they are

disjoint, i.e., have no entries in common. Moreover, every element of V belongs to one of the
paths p1, p2, . . . , pk (since C is a path cover of V).

Note that v is a V-listing. Hence, each element of V appears exactly once in v. In particular,
no entry appears more than once in v.

Fix i ∈ [k]. Write the path pi as pi = (w1, w2, . . . , wℓ).
Let j ∈ [ℓ− 1]. Then, in particular, wj appears exactly once in v (since each element of V

appears exactly once in v). Moreover, we have(
wj, wj+1

)
∈ Arcs (pi) ⊆ Arcs C (since pi ∈ C)

= F ⊆ Arcs v.

Thus, the tuple v must have the form
(
. . . , wj, wj+1, . . .

)
(where each “. . .” stands for an arbitrary

number of entries). In other words, wj+1 must be the next entry after wj in the V-listing v (since
wj appears exactly once in v).

Forget that we fixed j. We thus have shown that for each j ∈ [ℓ− 1], the element wj+1 must
be the next entry after wj in the V-listing v. In other words, the entries w1, w2, . . . , wℓ must
appear in v in this order and as a contiguous block. In other words, the tuple (w1, w2, . . . , wℓ)
is a factor of the tuple v (where a “factor” of a tuple

(
a1, a2, . . . , ag

)
means a contiguous block(

aj, aj+1, . . . , aj+s
)

of this tuple). In other words, the path pi is a factor of the tuple v (since
pi = (w1, w2, . . . , wℓ)).

Forget that we fixed i. We thus have shown that for each i ∈ [k], the path pi is a factor of v. In
other words, all k paths p1, p2, . . . , pk are factors of v. These factors are nonempty (since paths
are nonempty by definition) and do not overlap (since the paths p1, p2, . . . , pk have no entries
in common), and therefore appear in v in a well-defined order. In other words, there exists
a permutation σ of [k] such that the paths pσ(1), pσ(2), . . . , pσ(k) appear as factors of v in this
order (i.e., the factor pσ(1) appears before pσ(2), which in turn appears before pσ(3), and so on).
Consider this σ. Note that every element of V belongs to one of the paths pσ(1), pσ(2), . . . , pσ(k)
(since every element of V belongs to one of the paths p1, p2, . . . , pk).

We claim that these k factors pσ(1), pσ(2), . . . , pσ(k) cover the entire tuple v (that is, every entry
of v belongs to one of these factors). In fact, if this was not the case, then some entry of v
would lie outside all of these k factors pσ(1), pσ(2), . . . , pσ(k); but then this same entry would also
appear again inside one of these k factors (since every element of V belongs to one of the paths
pσ(1), pσ(2), . . . , pσ(k)), and therefore would appear in v twice (once outside the k factors, and once
again inside one of them), which would contradict the fact that no entry appears more than once
in v. Hence, the k factors pσ(1), pσ(2), . . . , pσ(k) cover the entire tuple v. Since these k factors do
not overlap (because they are just a permutation of the k factors p1, p2, . . . , pk, which do not
overlap), and since they appear in v in this order, we thus conclude that v is the concatenation of
pσ(1), pσ(2), . . . , pσ(k) in this order. Therefore, v is a concatenation of p1, p2, . . . , pk in some order.
This completes our proof.

8Here is this argument in more detail: If you concatenate the paths in C in some order, then the
order in which you concatenate them can be reconstructed from the resulting concatenation,
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exactly |C|! many V-listings v satisfying F ⊆ Arcs v. This proves Proposition 2.8
(b).

(c) =⇒: Assume that F is linear. Thus, F is the arc set of a path cover of V. In
other words, F = Arcs C for some path cover C of V. Consider this C. Proposition
2.8 (b) yields that there are exactly |C|! many V-listings v satisfying F ⊆ Arcs v.
Hence, there is at least one such V-listing v (since |C|! ≥ 1). Thus, F is a subset of
Arcs v for some V-listing v (namely, the V-listing we just mentioned). This proves
the “=⇒” direction of Proposition 2.8 (c).
⇐=: Assume that F is a subset of Arcs v for some V-listing v. In other words,

there exists a V-listing v satisfying F ⊆ Arcs v. However, if the set F was not linear,
then Proposition 2.8 (a) would yield that there exists no such V-listing; this would
contradict the preceding sentence. Hence, the set F must be linear. This proves the
“⇐=” direction of Proposition 2.8 (c).

Next, let us address a technical issue. We defined the notion of a “linear subset
of V × V” using path covers of V. When we say that a certain set is “linear”, we
are thus tacitly assuming that it is clear what the relevant set V is. This may cause
an ambiguity: Sometimes, two different sets V1 and V2 can reasonably qualify as V,
and we may have a subset F of V1 × V1 that is also a subset of V2 × V2. In that case,
when we say that F is “linear”, do we mean that F is linear as a subset of V1 × V1
or as a subset of V2 × V2 ? Fortunately, this does not matter (at least when V1 is a
subset of V2), as the following proposition shows:

Proposition 2.9. Let V be a finite set. Let W be a subset of V. Let F be a subset
of W × W. Then, F is linear as a subset of W × W if and only if F is linear as a
subset of V × V.

Proof. A path (v1, v2, . . . , vk) of V will be called trivial if k = 1, and nontrivial oth-
erwise. Clearly, if v is a trivial path, then Arcs v = ∅. On the other hand, if v is a
nontrivial path, then Arcs v ̸= ∅ (since a path cannot be empty).

Now, we shall prove the “=⇒” and “⇐=” directions of Proposition 2.9 sepa-
rately:
=⇒: Assume that F is linear as a subset of W × W. Thus, F is the arc set of

some path cover of W. Let C = {c1, c2, . . . , ck} be this path cover; thus, F = Arcs C.
Now, let v1, v2, . . . , vℓ be the elements of V \W (each listed exactly once), and let us
define a set

D := {c1, c2, . . . , ck, (v1) , (v2) , . . . , (vℓ)} = C ∪ {(v1) , (v2) , . . . , (vℓ)} .

Then, D is a path cover of V (in fact, D is just the result of extending C to a path

since it is precisely the order in which the first entries of the paths appear in the concatenation.
This relies on the fact that the paths are nonempty (so that these first entries exist) and disjoint
(so that each of these first entries appears only once in the concatenation). Thus, different orders
in which we can concatenate the paths lead to different resulting concatenations.
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cover of V by inserting a trivial path (v) for each v ∈ V \ W). Furthermore,

Arcs D = Arcs (C ∪ {(v1) , (v2) , . . . , (vℓ)}) (since D = C ∪ {(v1) , (v2) , . . . , (vℓ)})
= (Arcs C) ∪ (Arcs ((v1))) ∪ (Arcs ((v2))) ∪ · · · ∪ (Arcs ((vℓ)))︸ ︷︷ ︸

=∅
(since each trivial path (vi) satisfies Arcs((vi))=∅)

= Arcs C.

Hence, F = Arcs C = Arcs D. This shows that F is the arc set of some path cover of
V (since D is a path cover of V). In other words, F is linear as a subset of V × V.
The “=⇒” direction of Proposition 2.9 is thus proved.
⇐=: Assume that F is linear as a subset of V × V. Thus, F is the arc set of

some path cover of V. Let C = {c1, c2, . . . , ck} be this path cover; thus, F = Arcs C.
Now, let v1, v2, . . . , vℓ be the elements of V \ W (each listed exactly once). Thus,
V \ W = {v1, v2, . . . , vℓ}.

Let i ∈ [ℓ]. We shall prove that the trivial path (vi) belongs to C.
Indeed, from vi ∈ V \ W, we obtain vi ∈ V and vi /∈ W. The element vi

must clearly belong to some path in C (since C is a path cover of V). Let p =
(p1, p2, . . . , pr) be this path. Thus, vi = ps for some s ∈ [r]. Consider this s.

Since the path p belongs to C, we have Arcs p ⊆ Arcs C = F ⊆ W × W.
However, if we had s < r, then we would have (ps, ps+1) ∈ Arcs p ⊆ W × W,

which would entail ps ∈ W, which contradicts ps = vi /∈ W. Thus, we cannot have
s < r. Hence, s = r (since s ∈ [r]).

Furthermore, if we had s > 1, then we would have (ps−1, ps) ∈ Arcs p ⊆ W ×W,
which would entail ps ∈ W, which contradicts ps = vi /∈ W. Thus, we cannot have
s > 1. Hence, s = 1 (since s ∈ [r]). Therefore, ps = p1, so that p1 = ps = vi.

Comparing s = 1 with s = r, we obtain r = 1, so that (p1, p2, . . . , pr) = (p1) =
(vi) (since p1 = vi). Thus, p = (p1, p2, . . . , pr) = (vi), so that (vi) = p ∈ C. In other
words, the trivial path (vi) belongs to C.

Forget that we fixed i. We thus have shown that for each i ∈ [ℓ], the trivial path
(vi) belongs to C. In other words, all ℓ trivial paths (v1) , (v2) , . . . , (vℓ) belong to C.
Let us set D := C \ {(v1) , (v2) , . . . , (vℓ)}. Then,

C = D ∪ {(v1) , (v2) , . . . , (vℓ)}

(since (v1) , (v2) , . . . , (vℓ) belong to C), so that

Arcs C = Arcs (D ∪ {(v1) , (v2) , . . . , (vℓ)})
= (Arcs D) ∪ (Arcs ((v1))) ∪ (Arcs ((v2))) ∪ · · · ∪ (Arcs ((vℓ)))︸ ︷︷ ︸

=∅
(since each trivial path (vi) satisfies Arcs((vi))=∅)

= Arcs D.

In other words, F = Arcs D (since F = Arcs C).
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Recall that C is a path cover of V. Hence, each v ∈ V belongs to exactly one path
in C. Thus, it is easy to see that each path in D is a path of W 9. Therefore, D
is a set of paths of W. Furthermore, each v ∈ W belongs to exactly one of these
paths10. Hence, D is a path cover of W. Since F = Arcs D, we thus conclude that
F is the arc set of some path cover of W. In other words, F is linear as a subset of
W × W. The “⇐=” direction of Proposition 2.9 is thus proved.

We will also use the following fact:

Proposition 2.10. Let V be a finite set. Let V1, V2, . . . , Vk be several disjoint subsets
of V such that V = V1 ∪V2 ∪ · · · ∪Vk. For each i ∈ [k], let Fi be a subset of Vi ×Vi.
Let F = F1 ∪ F2 ∪ · · · ∪ Fk. Then, the set F is linear (as a subset of V × V) if and
only if all the subsets Fi for i ∈ [k] are linear.

Proof. =⇒: Assume that F is linear. Then, for each i ∈ [k], the set Fi is a subset of F
(since F = F1 ∪ F2 ∪ · · · ∪ Fk ⊇ Fi) and therefore is also linear11 (by Proposition 2.7).
Thus, the “=⇒” direction of Proposition 2.10 is proved.
⇐=: Assume that all the subsets Fi for i ∈ [k] are linear. We must prove that F is

linear.
Let i ∈ [k]. Then, Fi is a linear subset of Vi × Vi. In other words, Fi is the arc set

of some path cover of Vi. Let Ci be this path cover; thus, Fi = Arcs (Ci).

9Proof. Assume the contrary. Thus, some path in D is not a path of W. In other words, some path
in D contains an element of V \ W (since each path in D is a path of V). Let p be this path, and
let v be this element. Thus, p ∈ D and v ∈ V \ W, and v belongs to p. Note that p ∈ D ⊆ C (by
the definition of D).

However, v ∈ V \ W = {v1, v2, . . . , vℓ}. Thus, v = vi for some i ∈ [ℓ]. Consider this i. Thus,
v belongs to the trivial path (vi) (since v = vi). We have (vi) ∈ C (since all ℓ trivial paths
(v1) , (v2) , . . . , (vℓ) belong to C) and (vi) /∈ D (since D was defined as C \ {(v1) , (v2) , . . . , (vℓ)}).

Recall that v belongs to exactly one path in C (since C is a path cover of V). Since v belongs
to both paths (vi) and p (both of which are paths in C, since (vi) ∈ C and p ∈ C), this entails
that these two paths (vi) and p must be identical. Hence, (vi) = p ∈ D. But this contradicts
(vi) /∈ D. This contradiction shows that our assumption was false, qed.

10Proof. Let v ∈ W. We must prove that v belongs to exactly one of the paths in D.
First of all, v ∈ W ⊆ V. Hence, v belongs to exactly one path in C (since C is a path cover of

V).
On the other hand, we have v /∈ {v1, v2, . . . , vℓ} (because otherwise, we would have v ∈

{v1, v2, . . . , vℓ} = V \ W, which would entail v /∈ W, but this would contradict v ∈ W). In other
words, v is not one of the ℓ elements v1, v2, . . . , vℓ. In other words, v belongs to none of the
trivial paths (v1) , (v2) , . . . , (vℓ). In other words, v belongs to no paths in {(v1) , (v2) , . . . , (vℓ)}.

Now we know that:

• the element v belongs to exactly one path in C, but

• the element v belongs to no paths in {(v1) , (v2) , . . . , (vℓ)}.

Combining these two facts, we see that v must belong to exactly one path in C \
{(v1) , (v2) , . . . , (vℓ)}. In other words, v belongs to exactly one path in D (since D = C \
{(v1) , (v2) , . . . , (vℓ)}). This completes our proof.

11Here, we are tacitly using Proposition 2.9, which allows us to equivocate between “linear as a
subset of V × V” and “linear as a subset of Vi × Vi”.
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Forget that we fixed i. Thus, for each i ∈ [k], we have constructed a path cover
Ci of Vi satisfying Fi = Arcs (Ci). It is easy to see that the union C1 ∪ C2 ∪ · · · ∪
Ck of these path covers C1, C2, . . . , Ck is a path cover of V1 ∪ V2 ∪ · · · ∪ Vk (since
V1, V2, . . . , Vk are disjoint sets). In other words, C1 ∪ C2 ∪ · · · ∪ Ck is a path cover of
V (since V = V1 ∪ V2 ∪ · · · ∪ Vk). Moreover, the arc set of this path cover is

Arcs (C1 ∪ C2 ∪ · · · ∪ Ck) = (Arcs (C1)) ∪ (Arcs (C2)) ∪ · · · ∪ (Arcs (Ck))

= F1 ∪ F2 ∪ · · · ∪ Fk (since Arcs (Ci) = Fi for each i ∈ [k])
= F.

Hence, F is the arc set of a path cover of V (namely, of the path cover C1 ∪ C2 ∪
· · · ∪Ck). In other words, F is linear. This proves the “⇐=” direction of Proposition
2.10.

2.3. The arrow set of a permutation

We will now see another way to obtain subsets of V × V:

Definition 2.11. Let V be a finite set. Let σ be a permutation of V. Then, Aσ

shall denote the subset

{(v, σ (v)) | v ∈ V} =
⋃

c∈Cycs σ

CArcs c

of V × V.

Example 2.12. Let V = {1, 2, 3, 4, 5, 6}, and let σ be the permutation of V that
sends 1, 2, 3, 4, 5, 6 to 2, 3, 1, 5, 4, 6 (respectively). Then,

Cycs σ = {(1, 2, 3) , (4, 5) , (6)}

and

Aσ = {(1, 2) , (2, 3) , (3, 1) , (4, 5) , (5, 4) , (6, 6)}
= CArcs (1, 2, 3)︸ ︷︷ ︸

={(1,2), (2,3), (3,1)}

∪CArcs (4, 5)︸ ︷︷ ︸
={(4,5), (5,4)}

∪CArcs (6)︸ ︷︷ ︸
={(6,6)}

.

The following is a counterpart to Proposition 2.8 (b):

Proposition 2.13. Let V be a finite set. Let F be a subset of V × V. If F = Arcs C
for some path cover C of V, then there are exactly |C|! many permutations σ ∈
SV satisfying F ⊆ Aσ. (Note that |C| is the number of paths in C.)

Proposition 2.13 is easily proved, but the proof is tricky to formalize due to
its reliance on some enumerative ideas that are intuitively clear yet notationally
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intricate. To prepare for this proof, we begin with some basic enumerative results.
First, a notation:

Definition 2.14. An injection shall mean an injective map.

(Of course, this is analogous to the concept of a bijection, which means a bijective
map.)

Now, we can state our first enumerative result:12

Proposition 2.15. Let X, Y and Z be three finite sets such that Y ⊆ X. Let
f : Y → Z be any injection. Then,

(# of injections g : X → Z such that g |Y = f ) =
|X|−|Y|−1

∏
k=0

(|Z| − |Y| − k) .

Proof. We proceed by induction on |X \ Y|:
Base case: If |X \ Y| = 0, then the claim of Proposition 2.15 is easy to verify13.

This completes the base case.
Induction step: Let m ∈ N. Assume (as the induction hypothesis) that Proposition

2.15 holds for |X \ Y| = m. We must now prove that Proposition 2.15 holds for
|X \ Y| = m + 1 as well.

12Recall Convention 2.1.
13Proof. Assume that |X \ Y| = 0. Then, X \ Y = ∅, so that X ⊆ Y. Combining this with Y ⊆ X, we

obtain Y = X. Hence, for any injection g : X → Z, we have g |Y = g |X = g. Thus,# of injections g : X︸︷︷︸
=Y

→ Z such that g |Y︸︷︷︸
=g

= f


= (# of injections g : Y → Z such that g = f )
= 1

(since f itself is an injection g : Y → Z such that g = f , and clearly there are no other such
injections). Comparing this with

|X|−|Y|−1

∏
k=0

(|Z| − |Y| − k)

=
−1

∏
k=0

(|Z| − |Y| − k)

since |X| −

∣∣∣∣∣∣ Y︸︷︷︸
=X

∣∣∣∣∣∣− 1 = |X| − |X| − 1 = −1


= (empty product) = 1,

we obtain

(# of injections g : X → Z such that g |Y = f ) =
|X|−|Y|−1

∏
k=0

(|Z| − |Y| − k) .

Thus, Proposition 2.15 is proved under the assumption that |X \ Y| = 0.
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So let X, Y and Z be three finite sets such that Y ⊆ X. Let f : Y → Z be any
injection. Assume that |X \ Y| = m + 1. We must then prove that

(# of injections g : X → Z such that g |Y = f ) =
|X|−|Y|−1

∏
k=0

(|Z| − |Y| − k) .

It is well-known that if A and B are two finite sets, and if φ : A → B is an
injection, then |φ (A)| = |A| (since an injection sends distinct elements to distinct
elements, and thus all the |A| distinct elements of A give rise to |A| distinct ele-
ments of φ (A)). We can apply this to A = Y and B = Z and φ = f (since f : Y → Z
is an injection); thus we obtain | f (Y)| = |Y|.

From Y ⊆ X, we obtain |X \ Y| = |X| − |Y|, so that |X| − |Y| = |X \ Y| = m+ 1 ≥
1 (since m ≥ 0). Hence, |X| − |Y| − 1 ≥ 0.

We have |X \ Y| = m + 1 > m ≥ 0, so that the set X \ Y is nonempty. In other
words, the set X \ Y has at least one element p. Consider this p. (We can choose p
arbitrarily, but we then keep it fixed for the rest of this proof.)

Thus, p ∈ X \ Y. In other words, p ∈ X and p /∈ Y. Let Y′ be the set Y ∪ {p}.
Thus,

Y′ = Y ∪ {p} ⊆ X (since Y ⊆ X and p ∈ X) .

Furthermore, from Y′ = Y ∪ {p}, we obtain∣∣Y′∣∣ = |Y ∪ {p}| = |Y|+ 1 (since p /∈ Y) .

Since Y′ ⊆ X, we have∣∣X \ Y′∣∣ = |X| −
∣∣Y′∣∣︸︷︷︸

=|Y|+1

= |X| − (|Y|+ 1) = |X| − |Y|︸ ︷︷ ︸
=|X\Y|

(since Y⊆X)

−1

= |X \ Y|︸ ︷︷ ︸
=m+1

−1 = (m + 1)− 1 = m.

From Y′ = Y ∪ {p}, we also obtain

Y′ \ {p} = (Y ∪ {p}) \ {p} = Y (since p /∈ Y) .

Also,
Y ⊆ Y ∪ {p} = Y′.

If y ∈ Y′ is an element that satisfies y ̸= p, then y ∈ Y (since y ∈ Y′ and y ̸= p
lead to y ∈ Y′ \ {p} = Y), and therefore f (y) is well-defined (since f : Y → Z is a
map).

For any z ∈ Z \ f (Y), we define a map fp→z : Y′ → Z by setting

fp→z (y) =

{
z, if y = p;
f (y) , if y ̸= p

for each y ∈ Y′.
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This is well-defined, because if y ∈ Y′ is an element that satisfies y ̸= p, then f (y)
is well-defined (as we saw in the previous paragraph).

Now we claim the following:

Claim 1: Let z ∈ Z \ f (Y). Then, the map fp→z : Y′ → Z is an injection.

Proof of Claim 1. Let u and v be two elements of Y′ satisfying fp→z (u) = fp→z (v).
We shall show that u = v.

Indeed, we are in one of the following four cases:
Case 1: We have u = p and v = p.
Case 2: We have u = p but not v = p.
Case 3: We have v = p but not u = p.
Case 4: We have neither u = p nor v = p.
Let us first consider Case 1. In this case, we have u = p and v = p. Hence,

u = p = v. Thus, u = v has been proved in Case 1.
Let us now consider Case 2. In this case, we have u = p but not v = p. Hence,

v ̸= p (since we do not have v = p). Combining v ∈ Y′ with v ̸= p, we obtain
v ∈ Y′ \ {p} = Y.

The definition of fp→z yields

fp→z (u) =

{
z, if u = p;
f (u) , if u ̸= p

= z (since u = p) ,

so that

z = fp→z (u) = fp→z (v)

=

{
z, if v = p;
f (v) , if v ̸= p

(
by the definition of fp→z

)
= f (v) (since v ̸= p)
∈ f (Y) (since v ∈ Y) .

However, from z ∈ Z \ f (Y), we obtain z /∈ f (Y). This contradicts z ∈ f (Y). Thus
we have obtained a contradiction in Case 2. Hence, Case 2 cannot occur.

A similar argument (with the roles of u and v swapped) shows that Case 3 cannot
occur.

Let us finally consider Case 4. In this case, we have neither u = p nor v = p. In
other words, we have u ̸= p and v ̸= p. Combining v ∈ Y′ with v ̸= p, we obtain
v ∈ Y′ \ {p} = Y. Similarly, u ∈ Y.

The definition of fp→z yields

fp→z (u) =

{
z, if u = p;
f (u) , if u ̸= p

= f (u) (since u ̸= p) .
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Hence,

f (u) = fp→z (u) = fp→z (v)

=

{
z, if v = p;
f (v) , if v ̸= p

(
by the definition of fp→z

)
= f (v) (since v ̸= p) .

However, the map f is an injection, i.e., is injective. Thus, if a and b are two
elements of Y satisfying f (a) = f (b), then a = b. Applying this to a = u and
b = v, we obtain u = v (since f (u) = f (v)). Thus, we have proved u = v in Case 4.

Let us summarize: We have proved that Cases 2 and 3 cannot occur; thus, we
must actually be in one of the two Cases 1 and 4. But we have also proved that
u = v in each of the latter two Cases 1 and 4. Hence, u = v always holds.

Forget that we fixed u and v. We thus have shown that if u and v are two
elements of Y′ satisfying fp→z (u) = fp→z (v), then u = v. In other words, the map
fp→z : Y′ → Z is injective, i.e., an injection. This proves Claim 1.

Claim 2: Let g : X → Z be any injection such that g |Y = f . Then,
g (p) ∈ Z \ f (Y).

Proof of Claim 2. Clearly, g (p) ∈ Z. We shall now show that g (p) /∈ f (Y).
Indeed, assume the contrary. Thus, g (p) ∈ f (Y). In other words, g (p) = f (y)

for some y ∈ Y. Consider this y. From y ∈ Y, we obtain (g |Y) (y) = g (y). Hence,
g (y) = (g |Y)︸ ︷︷ ︸

= f

(y) = f (y) = g (p) (since g (p) = f (y)).

However, the map g is an injection, i.e., is injective. Hence, if a and b are two
elements of X satisfying g (a) = g (b), then a = b. Applying this to a = y and
b = p, we obtain y = p (since g (y) = g (p)). Hence, p = y ∈ Y. But this contradicts
p /∈ Y. This contradiction shows that our assumption was false.

Hence, g (p) /∈ f (Y) is proved. Now, combining g (p) ∈ Z with g (p) /∈ f (Y),
we obtain g (p) ∈ Z \ f (Y). This proves Claim 2.

Claim 3: Let g : X → Z be any injection. Let z ∈ Z \ f (Y). Then,
the statement “ g |Y = f and g (p) = z” is equivalent to the statement
“ g |Y′ = fp→z”.

Proof of Claim 3. We must prove that these two statements are equivalent, i.e., that
each of them implies the other.

Let us first show that the statement “ g |Y = f and g (p) = z” implies the state-
ment “ g |Y′ = fp→z”.

Proof that “ g |Y = f and g (p) = z” implies “ g |Y′ = fp→z”: Assume that the
statement “ g |Y = f and g (p) = z” holds. We must prove that “ g |Y′ = fp→z”
holds as well.
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Indeed, let y ∈ Y′. We shall prove the equality g (y) = fp→z (y). This equality is
easily proved in the case when y = p 14. Thus, for the rest of this proof, we WLOG
assume that y ̸= p. Combining y ∈ Y′ with y ̸= p, we obtain y ∈ Y′ \ {p} = Y.
Hence, (g |Y) (y) = g (y). However, g |Y = f (since we assumed “ g |Y = f and
g (p) = z”). Thus, (g |Y)︸ ︷︷ ︸

= f

(y) = f (y). Furthermore, the definition of fp→z yields

fp→z (y) =

{
z, if y = p;
f (y) , if y ̸= p

= f (y) (since y ̸= p)

= (g |Y) (y) (since (g |Y) (y) = f (y))
= g (y) .

In other words, g (y) = fp→z (y). Thus, we have proved the equality g (y) =
fp→z (y).

Hence, (g |Y′) (y) = g (y) = fp→z (y).
Forget that we fixed y. We thus have shown that (g |Y′) (y) = fp→z (y) for each

y ∈ Y′. In other words, g |Y′ = fp→z. We conclude that the statement “ g |Y′ =
fp→z” holds.

Thus, we have proved that the statement “ g |Y = f and g (p) = z” implies the
statement “ g |Y′ = fp→z”.

Let us now prove the reverse implication:
Proof that “ g |Y′ = fp→z” implies “ g |Y = f and g (p) = z”: Assume that the

statement “ g |Y′ = fp→z” holds. We must prove that “ g |Y = f and g (p) = z”
holds as well.

Indeed, we have g |Y′ = fp→z (since we assumed that “ g |Y′ = fp→z” holds).
Now, for each y ∈ Y′, we have

g (y) = (g |Y′)︸ ︷︷ ︸
= fp→z

(y)
(
since y ∈ Y′)

= fp→z (y)

=

{
z, if y = p;
f (y) , if y ̸= p

(4)

(by the definition of fp→z).

14Proof. Assume that y = p. We must prove that g (y) = fp→z (y).
Indeed, from y = p, we obtain g (y) = g (p) = z (since we assumed “ g |Y = f and g (p) = z”).

On the other hand, the definition of fp→z yields

fp→z (y) =

{
z, if y = p;
f (y) , if y ̸= p

= z (since y = p) .

Comparing this with g (y) = z, we obtain g (y) = fp→z (y). Qed.
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Hence, each y ∈ Y satisfies

(g |Y) (y) = g (y) (since y ∈ Y)

=

{
z, if y = p;
f (y) , if y ̸= p

(
by (4) (since y ∈ Y ⊆ Y′)

)
= f (y) (since y ̸= p (because y ∈ Y, but p /∈ Y)) .

In other words, g |Y = f . Furthermore, we have p ∈ {p} ⊆ Y ∪ {p} = Y′. Hence,
(4) (applied to y = p) yields

g (p) =

{
z, if p = p;
f (p) , if p ̸= p

= z (since p = p) .

Thus, we have shown that g |Y = f and g (p) = z. In other words, “ g |Y = f
and g (p) = z” holds. This completes the proof that the statement “ g |Y′ = fp→z”
implies “ g |Y = f and g (p) = z”.

Altogether, we have now shown that the statement “ g |Y = f and g (p) = z”
implies the statement “ g |Y′ = fp→z”, and vice versa. In other words, these two
statements are equivalent. This proves Claim 3.

Claim 4: Let z ∈ Z \ f (Y). Then,

(# of injections g : X → Z such that g |Y = f and g (p) = z)

=
|X|−|Y|−1

∏
k=1

(|Z| − |Y| − k) .

Proof of Claim 4. Recall that Y′ ⊆ X and |X \ Y′| = m. Also, the map fp→z : Y′ → Z
is an injection (by Claim 1). However, our induction hypothesis says that Proposi-
tion 2.15 holds for |X \ Y| = m. Thus, we can apply Proposition 2.15 to Y′ and fp→z
instead of Y and f . As a result, we obtain(

# of injections g : X → Z such that g |Y′ = fp→z
)

=
|X|−|Y′|−1

∏
k=0

(
|Z| −

∣∣Y′∣∣− k
)

=
|X|−(|Y|+1)−1

∏
k=0︸ ︷︷ ︸

=
|X|−|Y|−1−1

∏
k=0

(since |X|−(|Y|+1)−1=|X|−|Y|−1−1)

(|Z| − (|Y|+ 1)− k)︸ ︷︷ ︸
=|Z|−|Y|−(k+1)

(
since

∣∣Y′∣∣ = |Y|+ 1
)

=
|X|−|Y|−1−1

∏
k=0

(|Z| − |Y| − (k + 1))

=
|X|−|Y|−1

∏
k=1

(|Z| − |Y| − k)
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(here, we have substituted k for k + 1 in the product).
However, for any injection g : X → Z, the statement “ g |Y = f and g (p) = z” is

equivalent to the statement “ g |Y′ = fp→z” (by Claim 3). Hence, we have

(# of injections g : X → Z such that g |Y = f and g (p) = z)
=
(
# of injections g : X → Z such that g |Y′ = fp→z

)
=

|X|−|Y|−1

∏
k=1

(|Z| − |Y| − k) .

This proves Claim 4.

We are now almost done. Since f (Y) is a subset of Z, we have |Z \ f (Y)| =
|Z| − | f (Y)|︸ ︷︷ ︸

=|Y|

= |Z| − |Y|.

However, if g : X → Z is any injection such that g |Y = f , then g (p) ∈ Z \ f (Y)
(by Claim 2). Hence, in order to count the injections g : X → Z such that g |Y = f ,
we can split them up according to the value of g (p) as follows:

(# of injections g : X → Z such that g |Y = f )

= ∑
z∈Z\ f (Y)

(# of injections g : X → Z such that g |Y = f and g (p) = z)︸ ︷︷ ︸
=

|X|−|Y|−1
∏

k=1
(|Z|−|Y|−k)

(by Claim 4)

= ∑
z∈Z\ f (Y)

|X|−|Y|−1

∏
k=1

(|Z| − |Y| − k) = |Z \ f (Y)|︸ ︷︷ ︸
=|Z|−|Y|

=|Z|−|Y|−0

·
|X|−|Y|−1

∏
k=1

(|Z| − |Y| − k)

= (|Z| − |Y| − 0) ·
|X|−|Y|−1

∏
k=1

(|Z| − |Y| − k) .

Comparing this with

|X|−|Y|−1

∏
k=0

(|Z| − |Y| − k) = (|Z| − |Y| − 0) ·
|X|−|Y|−1

∏
k=1

(|Z| − |Y| − k)(
here, we have split off the factor for k = 0
from the product, since |X| − |Y| − 1 ≥ 0

)
,

we obtain

(# of injections g : X → Z such that g |Y = f ) =
|X|−|Y|−1

∏
k=0

(|Z| − |Y| − k) .

In other words, the claim of Proposition 2.15 holds for our X, Y, Z and f .
This completes the induction step. Thus, we have proved Proposition 2.15 by

induction.
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From Proposition 2.15, we can easily derive the following:

Corollary 2.16. Let X be a finite set, and let Y be a subset of X. Let f : Y → X
be any injection. Then,

(# of permutations σ ∈ SX such that σ |Y = f ) = (|X| − |Y|)!.

Proof. We have Y ⊆ X (since Y is a subset of X) and thus |Y| ≤ |X|. Hence,
|X| − |Y| ∈ N.

We recall the following basic fact about finite sets (one of the Pigeonhole Princi-
ples): If U and V are two finite sets having the same size (i.e., satisfying |U| = |V|),
then any injective map from U to V is bijective.

Applying this to U = X and V = X, we conclude that any injective map from X
to X is bijective (since X and X are two finite sets having the same size). In other
words, any injection from X to X is bijective (since an injection is the same as an
injective map). Hence, any injection from X to X is a bijection from X to X. The
converse of this claim is true as well (since any bijection is obviously an injection).
Combining the preceding two sentences, we conclude that the injections from X to
X are precisely the bijections from X to X. Therefore,

{injections from X to X}
= {bijections from X to X}

= {permutations of X}
(

since a permutation of X is defined
as a bijection from X to X

)
= {permutations σ ∈ SX} (by the definition of SX) .

Thus,
{permutations σ ∈ SX} = {injections from X to X} .

In other words, the permutations σ ∈ SX are precisely the injections from X to X.
Hence,

(# of permutations σ ∈ SX such that σ |Y = f )
= (# of injections σ from X to X such that σ |Y = f )
= (# of injections σ : X → X such that σ |Y = f )
= (# of injections g : X → X such that g |Y = f )

(here, we have renamed the index σ as g)

=
|X|−|Y|−1

∏
k=0

(|X| − |Y| − k) (by Proposition 2.15, applied to Z = X)

=
|X|−|Y|

∏
i=1

i (here, we have substituted i for |X| − |Y| − k in the product)

= 1 · 2 · · · · · (|X| − |Y|)
= (|X| − |Y|)! (since |X| − |Y| ∈ N) .
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This proves Corollary 2.16.

Next, we introduce some notations for paths:

Definition 2.17. Let V be a finite set. Let p be a path of V. Then:

(a) We let plast denote the last entry of p. (This is well-defined, since p is a
path, thus a nonempty tuple, and therefore has a last entry.)

(b) Let v be any entry of p distinct from plast. Then, the tuple p contains v
exactly once15. Furthermore, v is an entry of p, but is not the last entry of p
(since v is distinct from plast, which is the last entry of p). Hence, the tuple
p has at least one entry coming after v. We let next (p, v) denote the next
entry after v in the tuple p. (This is well-defined, since the tuple p contains
v exactly once and has at least one entry coming after v.)

Example 2.18. Assume that V = [10] and p = (3, 4, 1, 6, 7). Then, plast = 7 and
next (p, 3) = 4 and next (p, 4) = 1 and next (p, 1) = 6 and next (p, 6) = 7.

Definition 2.19. Let V be a finite set. Let C be a path cover of V. Let w ∈ V.
Recall that C is a path cover of V. In other words, C is a set of paths of V

such that each v ∈ V belongs to exactly one of these paths (by the definition of
a path cover). In particular, each v ∈ V belongs to exactly one of the paths in C.
Applying this to v = w, we conclude that w belongs to exactly one of the paths
in C. In other words, there is exactly one path p ∈ C such that w belongs to p.
In other words, there is exactly one path p ∈ C that contains w. We shall denote
the latter path p by path (C, w).

Example 2.20. Assume that V = [6] and C = {(1, 6, 4) , (5) , (2, 3)}. Then,

path (C, 1) = path (C, 6) = path (C, 4) = (1, 6, 4) ;
path (C, 5) = (5) ;
path (C, 2) = path (C, 3) = (2, 3) .

The following lemma will help us reduce Proposition 2.13 to Corollary 2.16:

15Proof. Clearly, the tuple p contains v (since v is an entry of p). Furthermore, p is a path of V,
that is, a nonempty tuple of distinct elements of V (by the definition of a path of V). Hence, in
particular, the entries of p are distinct. In other words, p does not contain any entry more than
once. Hence, p contains each entry of p exactly once. Thus, in particular, p contains v exactly
once (since v is an entry of p).
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Lemma 2.21. Let V be a finite set. Let C be a path cover of V.
Let L = {plast | p ∈ C}. This is a subset of V.
Define a map f : V \ L → V as follows: Let w ∈ V \ L. Thus, w ∈ V and w /∈ L.

Let q be the path path (C, w). Thus, q is the unique path p ∈ C that contains w
(by the definition of path (C, w)). Hence, q ∈ C is a path that contains w. We
have w ̸= qlast (because otherwise, we would have

w = qlast ∈ {plast | p ∈ C} (since q ∈ C)
= L,

which would contradict w /∈ L). Hence, w is an entry of q (since q contains w)
that is distinct from qlast (since w ̸= qlast). Thus, next (q, w) is well-defined (by
Definition 2.17 (b)). We set f (w) := next (q, w).

Thus, we have defined a map f : V \ L → V.
Now, we claim the following:

(a) This map f is an injection.

(b) Let σ ∈ SV . Let F = Arcs C. Then, we have F ⊆ Aσ if and only if
σ |V\L = f .

Proof. We begin by showing a general property of the map f :

Claim 1: For any w ∈ V \ L, we have f (w) = next (path (C, w) , w) and
path (C, f (w)) = path (C, w).

Proof of Claim 1. Let w ∈ V \ L. Thus, w ∈ V and w /∈ L. Let q be the path
path (C, w). Thus, q is the unique path p ∈ C that contains w (by the defini-
tion of path (C, w)). Hence, q ∈ C is a path that contains w. The definition
of f yields f (w) = next (q, w). Since q = path (C, w), we can rewrite this as
f (w) = next (path (C, w) , w).

However, next (q, w) is defined as the next entry after w in the tuple q. Hence, in
particular, next (q, w) is an entry of q. In other words, f (w) is an entry of q (since
f (w) = next (q, w)). In other words, the path q contains f (w).

However, path (C, f (w)) is defined as the unique path p ∈ C that contains f (w).
Hence, if p ∈ C is a path that contains f (w), then p = path (C, f (w)). Applying
this to p = q, we obtain q = path (C, f (w)) (since q ∈ C is a path that contains
f (w)). Comparing this with q = path (C, w), we find path (C, f (w)) = path (C, w).

Thus, we have now shown that f (w) = next (path (C, w) , w) and path (C, f (w)) =
path (C, w). This proves Claim 1.

We shall now prove the two parts of Lemma 2.21:

(a) Let u and v be two elements of V \ L satisfying f (u) = f (v). We shall prove
that u = v.
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Claim 1 (applied to w = u) yields f (u) = next (path (C, u) , u) and path (C, f (u)) =
path (C, u).

Claim 1 (applied to w = v) yields f (v) = next (path (C, v) , v) and path (C, f (v)) =
path (C, v).

From path (C, f (u)) = path (C, u), we obtain

path (C, u) = path

C, f (u)︸ ︷︷ ︸
= f (v)

 = path (C, f (v)) = path (C, v) .

Let us set q := path (C, u). Thus, q = path (C, u) = path (C, v).
We have q = path (C, u). In other words, q is the unique path p ∈ C that contains

u (since path (C, u) is defined to be the unique path p ∈ C that contains u). Hence,
q ∈ C is a path that contains u. The same argument (applied to v instead of u)
shows that q ∈ C is a path that contains v (since q = path (C, v)).

In particular, q is a path of V. In other words, q is a nonempty tuple of distinct
elements of V (by the definition of a path of V). Hence, in particular, the entries of
q are distinct.

Write the path q as q = (q1, q2, . . . , qk). Then, u = qi for some i ∈ [k] (since q
contains u). Similarly, v = qj for some j ∈ [k] (since q contains v). Consider this i
and this j.

But next (q, u) is the next entry after u in the tuple q (by the definition of next (q, u)).
In other words,

next (q, u) = (the next entry after u in the tuple q) .

Now,

f (u) = next

path (C, u)︸ ︷︷ ︸
=q

, u

 = next (q, u)

= (the next entry after u in the tuple q)
= (the next entry after qi in the tuple q) (since u = qi)

= qi+1

(
since q = (q1, q2, . . . , qk) , so that the entry qi

is followed by qi+1 in the tuple q

)
.

The same argument (applied to v and j instead of u and i) shows that f (v) = qj+1
(since path (C, v) = q and v = qj). Note that the equalities f (u) = qi+1 and
f (v) = qj+1 show (in particular) that qi+1 and qj+1 are well-defined, i.e., that the
elements i + 1 and j + 1 belong to [k].

Now, from f (u) = qi+1, we obtain

qi+1 = f (u) = f (v) = qj+1.
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But we know that the entries of q are distinct. In other words, q1, q2, . . . , qk are
distinct (since q1, q2, . . . , qk are the entries of q (because q = (q1, q2, . . . , qk))). In
other words, if a and b are two elements of [k] satisfying qa = qb, then a = b.
Applying this to a = i + 1 and b = j + 1, we conclude that i + 1 = j + 1 (since
qi+1 = qj+1). Therefore, i = j. Hence, qi = qj = v (since v = qj), so that u = qi = v.

Now, forget that we fixed u and v. We thus have shown that if u and v are two
elements of V \ L satisfying f (u) = f (v), then u = v. In other words, the map f is
injective. In other words, f is an injection. This proves Lemma 2.21 (a).

(b) We must prove the equivalence (F ⊆ Aσ) ⇐⇒
(

σ |V\L = f
)

. In order to do

so, it clearly suffices to prove the two implications (F ⊆ Aσ) =⇒
(

σ |V\L = f
)

and (F ⊆ Aσ) ⇐=
(

σ |V\L = f
)

. Let us do so:

Proof of the implication (F ⊆ Aσ) =⇒
(

σ |V\L = f
)

. Assume that F ⊆ Aσ holds.
We must show that σ |V\L = f holds.

Indeed, let w ∈ V \ L. Thus, f (w) is well-defined.
Let q be the path path (C, w). Thus, q is the unique path p ∈ C that contains w

(by the definition of path (C, w)). Hence, q ∈ C is a path that contains w.
Write the path q as q = (q1, q2, . . . , qk). Then, w = qi for some i ∈ [k] (since q

contains w). Consider this i.
The definition of f yields

f (w) = next (q, w)

= (the next entry after w in the tuple q)(
since next (q, w) is defined to be the

next entry after w in the tuple q

)
= (the next entry after qi in the tuple q) (since w = qi)

= qi+1

(
since q = (q1, q2, . . . , qk) , so that the entry qi

is followed by qi+1 in the tuple q

)
.

In particular, qi+1 is well-defined, so that i + 1 ∈ [k]. Hence, i ∈ {0, 1, . . . , k − 1}.
Since i is positive, we thus conclude that i ∈ [k − 1].

Now,

F = Arcs C =
⋃

v∈C
Arcs v (by the definition of Arcs C)

⊇ Arcs q

(
since Arcs q is one of the terms in the union

⋃
v∈C

Arcs v

(because q ∈ C)

)
= Arcs (q1, q2, . . . , qk) (since q = (q1, q2, . . . , qk))

= {(q1, q2) , (q2, q3) , . . . , (qk−1, qk)}
(
by (2), applied to v = q and vj = qj

)
.
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However, from w = qi and f (w) = qi+1, we obtain

(w, f (w)) = (qi, qi+1)

∈ {(q1, q2) , (q2, q3) , . . . , (qk−1, qk)} (since i ∈ [k − 1])
⊆ F (since F ⊇ {(q1, q2) , (q2, q3) , . . . , (qk−1, qk)})
⊆ Aσ

= {(v, σ (v)) | v ∈ V} (by the definition of Aσ) .

In other words, (w, f (w)) = (v, σ (v)) for some v ∈ V. Consider this v. From
(w, f (w)) = (v, σ (v)), we obtain w = v and f (w) = σ (v).

Now, w ∈ V \ L, so that
(

σ |V\L

)
(w) = σ

(
w︸︷︷︸
=v

)
= σ (v) = f (w) (since f (w) =

σ (v)).
Forget that we fixed w. We thus have shown that

(
σ |V\L

)
(w) = f (w) for each

w ∈ V \ L. In other words, σ |V\L = f .
Altogether, we have now proved that σ |V\L = f under the assumption that F ⊆

Aσ. In other words, we have proved the implication (F ⊆ Aσ) =⇒
(

σ |V\L = f
)

.

Proof of the implication (F ⊆ Aσ) ⇐=
(

σ |V\L = f
)

. Assume that σ |V\L = f holds.
We must show that F ⊆ Aσ holds.

Indeed, let a ∈ F. Then,

a ∈ F = Arcs C =
⋃

v∈C
Arcs v (by the definition of Arcs C)

=
⋃

q∈C
Arcs q (here, we have renamed the index v as q) .

In other words, a ∈ Arcs q for some q ∈ C. Consider this q.
Recall that C is a path cover of V. In other words, C is a set of paths of V such

that each v ∈ V belongs to exactly one of these paths (by the definition of a path
cover). Hence, C is a set of paths of V. Thus, q is a path of V (since q ∈ C).

Write the path q as q = (q1, q2, . . . , qk). Thus,

Arcs q
= Arcs (q1, q2, . . . , qk)

= {(q1, q2) , (q2, q3) , . . . , (qk−1, qk)}
(
by (2), applied to v = q and vj = qj

)
.

Hence,
a ∈ Arcs q = {(q1, q2) , (q2, q3) , . . . , (qk−1, qk)} .

In other words, a = (qi, qi+1) for some i ∈ [k − 1]. Consider this i.
Clearly, qi is an entry of q. In other words, the path q contains qi.
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Recall that path (C, qi) is defined as the unique path p ∈ C that contains qi.
Hence, if p ∈ C is a path that contains qi, then p = path (C, qi). Applying this to
p = q, we conclude that q = path (C, qi) (since q ∈ C is a path that contains qi).

We shall next show that qi /∈ L.
Indeed, assume the contrary. Thus, qi ∈ L = {plast | p ∈ C} (by the definition

of L). In other words, qi = plast for some p ∈ C. Consider this p. Clearly, plast is the
last entry of p (by the definition of plast), and thus belongs to p. In other words, qi
belongs to p (since qi = plast). But qi also belongs to q (since qi is an entry of q).

Recall that C is a set of paths of V such that each v ∈ V belongs to exactly one
of these paths. Hence, in particular, each v ∈ V belongs to exactly one of the paths
in C. Applying this to v = qi, we conclude that qi belongs to exactly one of the
paths in C. However, both p and q are paths in C. Thus, if the paths p and q were
distinct, then qi would belong to (at least) two distinct paths in C (since qi belongs
to both p and q), which would contradict the fact that qi belongs to exactly one of
the paths in C. Hence, the paths p and q cannot be distinct. In other words, p = q.

Thus,

plast = qlast = (the last entry of q) (by the definition of qlast)

= qk (since q = (q1, q2, . . . , qk)) .

In other words, qi = qk (since qi = plast).
However, q is a path of V. In other words, q is a nonempty tuple of distinct

elements of V (by the definition of a path of V). Hence, in particular, the entries
of q are distinct. In other words, q1, q2, . . . , qk are distinct (since q1, q2, . . . , qk are
the entries of q (because q = (q1, q2, . . . , qk))). In other words, if b and c are two
elements of [k] satisfying qb = qc, then b = c. Applying this to b = i and c = k, we
conclude that i = k (since qi = qk). Hence, i = k /∈ [k − 1] (since k > k − 1). But this
contradicts i ∈ [k − 1].

This contradiction shows that our assumption was false. Hence, qi /∈ L is proved.
Combining qi ∈ V with qi /∈ L, we obtain qi ∈ V \ L. Hence, f (qi) is well-defined.
Now, Claim 1 (applied to w = qi) yields f (qi) = next (path (C, qi) , qi) and

path (C, f (qi)) = path (C, qi). Hence,

f (qi) = next

 path (C, qi)︸ ︷︷ ︸
=q

(since q=path(C,qi))

, qi

 = next (q, qi)

= (the next entry after qi in the tuple q)(
since next (q, qi) is defined to be the

next entry after qi in the tuple q

)
= qi+1

(
since q = (q1, q2, . . . , qk) , so that the entry qi

is followed by qi+1 in the tuple q

)
.
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However, we assumed that σ |V\L = f holds. Thus,
(

σ |V\L

)
(qi) = f (qi) = qi+1.

Therefore,
qi+1 =

(
σ |V\L

)
(qi) = σ (qi) .

Now,

a =

qi, qi+1︸︷︷︸
=σ(qi)

 = (qi, σ (qi))

∈ {(v, σ (v)) | v ∈ V} (since qi ∈ V)

= Aσ (since Aσ is defined to be {(v, σ (v)) | v ∈ V}) .

Forget that we fixed a. We thus have shown that a ∈ Aσ for each a ∈ F. In other
words, F ⊆ Aσ.

Altogether, we have now proved that F ⊆ Aσ under the assumption that σ |V\L =

f . In other words, we have proved the implication (F ⊆ Aσ) ⇐=
(

σ |V\L = f
)

.

We have now proved the two implications (F ⊆ Aσ) =⇒
(

σ |V\L = f
)

and

(F ⊆ Aσ) ⇐=
(

σ |V\L = f
)

. Combining them, we obtain the equivalence

(F ⊆ Aσ) ⇐⇒
(

σ |V\L = f
)

.

Thus, Lemma 2.21 (b) is proved.

We are now ready to prove Proposition 2.13:

Proof of Proposition 2.13. Assume that F = Arcs C for some path cover C of V. Con-
sider this path cover C. Define the set L and the map f : V \ L → V as in Lemma
2.21. Clearly, L is a subset of V. Hence, |V \ L| = |V| − |L|. Also, V \ L is a subset
of V.

It is now easy to show that |L| = |C|. Indeed:

Proof of |L| = |C|. Let p and q be two distinct paths in C. We shall show that plast ̸=
qlast.

Indeed, assume the contrary. Thus, plast = qlast.
Note that plast is the last entry of p (by the definition of plast). Hence, in particular,

plast belongs to p. Similarly, qlast belongs to q. In other words, plast belongs to q
(since plast = qlast).

Now, we know that plast belongs to both p and q. Since p and q are two distinct
paths in C, we thus conclude that plast belongs to (at least) two distinct paths in C.

However, C is a path cover of V. In other words, C is a set of paths of V such
that each v ∈ V belongs to exactly one of these paths (by the definition of a path
cover). In particular, each v ∈ V belongs to exactly one of the paths in C. Applying
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this to v = plast, we conclude that plast belongs to exactly one of the paths in C. But
this contradicts the fact that plast belongs to (at least) two distinct paths in C.

This contradiction shows that our assumption was false. Hence, plast ̸= qlast is
proved.

Forget that we fixed p and q. We thus have shown that if p and q are two distinct
paths in C, then plast ̸= qlast. In other words, the elements plast for all p ∈ C
are distinct. Hence, there are |C| many such elements in total. In other words,
|{plast | p ∈ C}| = |C|. Since L = {plast | p ∈ C} (by the definition of L), we can
rewrite this as |L| = |C|. Thus, |L| = |C| is proved.

Now, Lemma 2.21 (a) yields that the map f is an injection. On the other hand, if
σ ∈ SV is a permutation, then the statement “F ⊆ Aσ” is equivalent to “σ |V\L =
f ” (by Lemma 2.21 (b)). Hence,

(# of permutations σ ∈ SV satisfying F ⊆ Aσ)

=
(

# of permutations σ ∈ SV satisfying σ |V\L = f
)

=
(

# of permutations σ ∈ SV such that σ |V\L = f
)

=

|V| − |V \ L|︸ ︷︷ ︸
=|V|−|L|

! (by Corollary 2.16, applied to X = V and Y = V \ L)

=

|V| − (|V| − |L|)︸ ︷︷ ︸
=|L|

! = |L|︸︷︷︸
=|C|

! = |C|!.

In other words, there are exactly |C|! many permutations σ ∈ SV satisfying
F ⊆ Aσ. This proves Proposition 2.13.

2.4. Counting hamps by inclusion-exclusion

Our next lemma will be about counting Hamiltonian paths – which we abbreviate
as “hamps”. Here is how they are defined:

Definition 2.22. Let D be a digraph. A hamp of D means a D-path that contains
each vertex of D. (The word “hamp” is short for “Hamiltonian path”.)

For a digraph D = (V, A), there is an obvious connection between the linear
subsets of A and the hamps of D: If v is a hamp of D, then Arcs v is a maximum-
size linear subset of A (and this maximum size is |V| − 1 if V is nonempty). More
interestingly, there is a far less obvious connection between the linear subsets of A
and the hamps of the complement D:
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Lemma 2.23. Let D = (V, A) be a digraph with V ̸= ∅. Then,

∑
F⊆A is linear

(−1)|F| · (# of σ ∈ SV satisfying F ⊆ Aσ) =
(
# of hamps of D

)
.

(We are using Convention 2.1 here.)

Proof. The hamps of D are precisely the D-paths that contain each vertex of D. In
other words, the hamps of D are precisely the D-paths that are V-listings (because
a D-path contains each vertex of D if and only if it is a V-listing). In other words,
the hamps of D are precisely the V-listings that are D-paths. In other words, the
hamps of D are precisely the nonempty V-listings that are D-paths (since every V-
listing is nonempty16). In other words, the hamps of D are precisely the V-listings
v that satisfy Arcs v ⊆ A (since a nonempty V-listing v is a D-path if and only if it
satisfies Arcs v ⊆ A).

Applying the same reasoning to the digraph D = (V, (V × V) \ A) instead of
the digraph D = (V, A), we obtain the following: The hamps of D are precisely
the V-listings v that satisfy Arcs v ⊆ (V × V) \ A. In other words, the hamps of D
are precisely the V-listings v that satisfy A ∩Arcs v = ∅ (because if v is a V-listing,
then Arcs v is a subset of V × V, and thus the statement “Arcs v ⊆ (V × V) \ A” is
equivalent to “A ∩ Arcs v = ∅”). Hence,(

# of hamps of D
)

= (# of V-listings v that satisfy A ∩ Arcs v = ∅) . (5)

We will use the Iverson bracket notation (as in Convention 2.2). We have

∑
v is a V-listing

∑
F⊆A;

F⊆Arcs v

(−1)|F|

︸ ︷︷ ︸
= ∑

F⊆A∩Arcs v
(−1)|F|

=[A∩Arcs v=∅]
(by Lemma 2.3)

= ∑
v is a V-listing

[A ∩ Arcs v = ∅]

= ∑
v is a V-listing;
A∩Arcs v=∅

[A ∩ Arcs v = ∅]︸ ︷︷ ︸
=1

(since A∩Arcs v=∅)

+ ∑
v is a V-listing;

we don’t have A∩Arcs v=∅

[A ∩ Arcs v = ∅]︸ ︷︷ ︸
=0

(since we don’t
have A∩Arcs v=∅)

= ∑
v is a V-listing;
A∩Arcs v=∅

1 + ∑
v is a V-listing;

we don’t have A∩Arcs v=∅

0

︸ ︷︷ ︸
=0

= ∑
v is a V-listing;
A∩Arcs v=∅

1

= (# of V-listings v that satisfy A ∩ Arcs v = ∅) .

16This is because V ̸= ∅.
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Comparing this with (5), we obtain(
# of hamps of D

)
= ∑

v is a V-listing
∑

F⊆A;
F⊆Arcs v

(−1)|F|

= ∑
F⊆A

∑
v is a V-listing;

F⊆Arcs v

(−1)|F|

= ∑
F⊆A is linear

∑
v is a V-listing;

F⊆Arcs v

(−1)|F| + ∑
F⊆A is not linear

∑
v is a V-listing;

F⊆Arcs v

(−1)|F|

︸ ︷︷ ︸
=0

(because Proposition 2.8 (a)
shows that this sum is empty)

= ∑
F⊆A is linear

∑
v is a V-listing;

F⊆Arcs v

(−1)|F| + ∑
F⊆A is not linear

0︸ ︷︷ ︸
=0

= ∑
F⊆A is linear

∑
v is a V-listing;

F⊆Arcs v

(−1)|F| . (6)

Now, let F be a linear subset of A. Thus, F = Arcs C for some path cover C of
V. Consider this C. Then, Proposition 2.13 yields that there are exactly |C|! many
permutations σ ∈ SV satisfying F ⊆ Aσ. In other words, we have

(# of σ ∈ SV satisfying F ⊆ Aσ) = |C|!. (7)

On the other hand, Proposition 2.8 (b) yields that there are exactly |C|! many V-
listings v satisfying F ⊆ Arcs v. In other words, we have

(# of V-listings v satisfying F ⊆ Arcs v) = |C|!.

Comparing this with (7), we find

(# of V-listings v satisfying F ⊆ Arcs v)
= (# of σ ∈ SV satisfying F ⊆ Aσ) . (8)

Hence,

∑
v is a V-listing;

F⊆Arcs v

(−1)|F| = (# of V-listings v satisfying F ⊆ Arcs v)︸ ︷︷ ︸
=(# of σ∈SV satisfying F⊆Aσ)

(by (8))

· (−1)|F|

= (# of σ ∈ SV satisfying F ⊆ Aσ) · (−1)|F|

= (−1)|F| · (# of σ ∈ SV satisfying F ⊆ Aσ) . (9)
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Forget that we fixed F. We thus have proved (9) for each linear subset F of A.
Now, (6) becomes(

# of hamps of D
)
= ∑

F⊆A is linear
∑

v is a V-listing;
F⊆Arcs v

(−1)|F|

︸ ︷︷ ︸
=(−1)|F|·(# of σ∈SV satisfying F⊆Aσ)

(by (9))

= ∑
F⊆A is linear

(−1)|F| · (# of σ ∈ SV satisfying F ⊆ Aσ) .

This proves Lemma 2.23.

2.5. Level decomposition and maps f satisfying f ◦ σ = f

This entire subsection is devoted to building up some language that will only
ever be used in the proof of Lemma 2.39. A reader familiar with combinatorial
tropes should be able to skip all proofs in this subsection, along with many of the
statements; nothing substantial is being done here, and all hindrances being sur-
mounted are notational. We would not be surprised if the entire argument could
be simplified or made slicker using some algebraic notions, but we have not been
able to find such notions.

We shall study what happens when a function f : V → P is introduced into a
digraph D = (V, A). The nonempty fibers of f (i.e., the sets f−1 (j) for all j ∈ f (V))
partition the vertex set V, and this leads to a decomposition of D into subdigraphs.
Let us introduce some notation for this, starting with the case of an arbitrary set V
(we will later specialize to digraphs):

Definition 2.24. Let V be any set. Let f : V → P be any map.

(a) For each v ∈ V, we will refer to the number f (v) as the level of v (with
respect to f ).

(b) For each j ∈ P, the subset f−1 (j) of V shall be called the j-th level set of f .

Example 2.25. Let V = {1, 2, 3}. Let f : V → P be given by f (1) = 1, f (2) = 4
and f (3) = 1. Then, the level sets of f are

f−1 (1) = {1, 3} , f−1 (4) = {2} , and

f−1 (j) = ∅ for all j ∈ P \ {1, 4} .
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Remark 2.26. Let V be any set. Let f : V → P be any map. Let j ∈ P. Then, the
j-th level set f−1 (j) is empty if and only if j /∈ f (V). Hence, the nonempty level
sets of f correspond to the elements of f (V).

Definition 2.27. Let D = (V, A) be a digraph. Let f : V → P be any map.

(a) For each j ∈ P, we define a subset Aj of A by

Aj : =
{
(u, v) ∈ A | u, v ∈ f−1 (j)

}
(10)

= {(u, v) ∈ A | f (u) = f (v) = j} (11)

= A ∩
(

f−1 (j)× f−1 (j)
)

. (12)

This set Aj is also a subset of f−1 (j)× f−1 (j), of course.

(b) We let A f denote the subset

{(u, v) ∈ A | f (u) = f (v)}

of A.

(c) For each j ∈ P, we let Dj denote the digraph
(

f−1 (j) , Aj
)
. This digraph Dj

is the restriction of the digraph D to the subset f−1 (j) (that is, the digraph
obtained from D by removing all vertices that don’t belong to f−1 (j) and
all arcs that contain any of these vertices).

This digraph Dj will be called the j-th level subdigraph of D with respect to
f . (We should properly call it Dj, f instead of Dj, but we will usually keep
f fixed when we study it.)

Example 2.28. Let D be as in Example 1.3. Let f : V → P be given by f (1) = 1,
f (2) = 4 and f (3) = 1. Then,

A1 = {(3, 3)} , A4 = {(2, 2)} ,
Aj = ∅ for all j ∈ P \ {1, 4} ,

and
A f = {(3, 3) , (2, 2)} .

The level subdigraphs of D are the two digraphs

D1 = ({1, 3} , {(3, 3)}) and D4 = ({2} , {(2, 2)})

(as well as the infinitely many empty digraphs Dj for all j ∈ P \ {1, 4}). Note that
the arc (3, 3) of D is contained in D1, and the arc (2, 2) is contained in D4, but the
arc (1, 2) is contained in none of the level subdigraphs (since its two endpoints 1
and 2 have different levels).
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Remark 2.29. Let D = (V, A) be a digraph. Let f : V → P be any map. Let
j ∈ P. Then, the j-th level subdigraph Dj and its arc set Aj are empty if j /∈ f (V).
(However, Aj can be empty even if j does belong to f (V).)

In the following, the symbols “⊔” and “
⊔

” stand for unions of disjoint sets. Thus,
for example, “A1 ⊔ A2 ⊔ A3 ⊔ · · · ” will mean the union of some (pairwise) disjoint
sets A1, A2, A3, . . ..

Proposition 2.30. Let V and J be two finite sets. Let Vj be a subset of V for each
j ∈ J. Assume that the sets Vj for different j ∈ J are disjoint. Let Cj be a path
cover of Vj for each j ∈ J. Then:

(a) The sets Cj for different j ∈ J are disjoint.

(b) Their union
⊔
j∈J

Cj is a path cover of
⊔
j∈J

Vj, and its arc set is Arcs

(⊔
j∈J

Cj

)
=⊔

j∈J
Arcs

(
Cj
)
.

Proof. (a) It suffices to show that if A and B are two disjoint finite sets, then any
path cover of A is disjoint from any path cover of B. But this is clear, since the
elements of a path cover of A are paths of A, whereas the elements of a path cover
of B are paths of B, and clearly a path of A cannot be a path of B (since A and B
are disjoint).

(b) This is obvious from the definitions of path covers and arc sets.

Corollary 2.31. Let V and J be two finite sets. Let Vj be a subset of V for each
j ∈ J. Assume that the sets Vj for different j ∈ J are disjoint. For each j ∈ J, let Fj
be a linear subset of Vj × Vj. Then, the union

⋃
j∈J

Fj is a linear subset of V × V.

Proof. Let W be the union
⋃
j∈J

Vj. This union W =
⋃
j∈J

Vj is a subset of V (since Vj is

a subset of V for each j ∈ J).
The sets Vj for different j ∈ J are disjoint (by assumption). Thus, their union⋃

j∈J
Vj is a disjoint union. In other words,

⋃
j∈J

Vj =
⊔
j∈J

Vj. In other words, W =
⊔
j∈J

Vj

(since W =
⋃
j∈J

Vj).

For each j ∈ J, the set Fj is a linear subset of Vj × Vj (by assumption), and thus
is the arc set of some path cover Cj of Vj (by the definition of “linear”). In other
words, for each j ∈ J, there exists a path cover Cj of Vj such that

Fj = Arcs
(
Cj
)

. (13)

Consider these path covers Cj.
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Proposition 2.30 (a) shows that these path covers Cj for different j ∈ J are disjoint.
Hence, their union

⋃
j∈J

Cj is a disjoint union. In other words,
⋃
j∈J

Cj =
⊔
j∈J

Cj.

Proposition 2.30 (b) shows that their union
⊔
j∈J

Cj is a path cover of
⊔
j∈J

Vj, and its

arc set is Arcs

(⊔
j∈J

Cj

)
=
⊔
j∈J

Arcs
(
Cj
)
.

In particular,
⊔
j∈J

Cj is a path cover of
⊔
j∈J

Vj = W. The arc set of this path cover is

Arcs

⊔
j∈J

Cj

 =
⊔
j∈J

Arcs
(
Cj
)︸ ︷︷ ︸

=Fj
(by (13))

=
⊔
j∈J

Fj =
⋃
j∈J

Fj.

Hence,
⋃
j∈J

Fj is the arc set of some path cover of W (namely, of the path cover⊔
j∈J

Cj). In other words, F is linear as a subset of W × W (by the definition of

“linear”). Therefore, F is linear as a subset of V × W (by Proposition 2.9). This
proves Corollary 2.31.

Proposition 2.32. Let D = (V, A) be a digraph. Let f : V → P be any map.
Then, the sets A1, A2, A3, . . . are disjoint, and their union is

A1 ⊔ A2 ⊔ A3 ⊔ · · · =
⊔

j∈ f (V)

Aj = A f .

Proof. The sets
Aj = {(u, v) ∈ A | f (u) = f (v) = j} (14)

for different j ∈ P are clearly disjoint, because a pair (u, v) ∈ A cannot satisfy
f (u) = f (v) = j for two different values of j at the same time. In other words, the
sets A1, A2, A3, . . . are disjoint. Hence, their union is

A1 ⊔ A2 ⊔ A3 ⊔ · · · =
⊔
j∈P

Aj

=
⊔
j∈P

{(u, v) ∈ A | f (u) = f (v) = j} (by (14))

= {(u, v) ∈ A | f (u) = f (v) = j for some j ∈ P}
= {(u, v) ∈ A | f (u) = f (v)}
= A f

(
by the definition of A f

)
.

It remains to observe that A1 ⊔ A2 ⊔ A3 ⊔ · · · =
⊔

j∈ f (V)
Aj (since Aj is empty

whenever j /∈ f (V)).
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Let us now connect the level decomposition to linear sets:

Proposition 2.33. Let D = (V, A) be a digraph. Let f : V → P be any map. Let
F be any set. Then:

(a) The set F is a linear subset of A f if and only if F can be written as F =⊔
j∈ f (V)

Fj, where each Fj is a linear subset of Aj.

(b) In this case, the subsets Fj are uniquely determined by F (namely, Fj =
F ∩ Aj for each j ∈ f (V)).

Proof. (a) ⇐=: Assume that F can be written as F =
⊔

j∈ f (V)
Fj, where each Fj is a

linear subset of Aj. Consider these linear subsets Fj.
Each Fj is a linear subset of Aj (by assumption) and therefore is a linear subset

of f−1 (j) × f−1 (j) as well (since Aj ⊆ f−1 (j) × f−1 (j)). The level sets f−1 (j)
for different j’s are disjoint. Thus, Corollary 2.31 (applied to J = f (V) and Vj =

f−1 (j)) shows that the union
⋃

j∈ f (V)
Fj is a linear subset of V × V. In other words, F

is a linear subset of V × V (since F =
⊔

j∈ f (V)
Fj =

⋃
j∈ f (V)

Fj). Furthermore,

F =
⊔

j∈ f (V)

Fj︸︷︷︸
⊆Aj

(since Fj is a linear subset of Aj
(by assumption))

⊆
⊔

j∈ f (V)

Aj = A f

(by Proposition 2.32). Hence, F is a subset of A f . This shows that F is a linear
subset of A f (since F is linear). This proves the “⇐=” direction of Proposition 2.33
(a).
=⇒: Assume that F is a linear subset of A f . In particular, F is linear. Thus, F is

the arc set of a path cover C of V. Consider this C. Thus, F = Arcs C.
We say that a path of V is level if all entries of this path have the same level (with

respect to f ). If p is a level path of V, then the level of p will mean the level of each
entry of p.

We claim that each path in C is level. Indeed, let v = (v1, v2, . . . , vk) be a path
in C. Then, the pairs (v1, v2) , (v2, v3) , . . . , (vk−1, vk) are arcs of v, thus belong to
Arcs v, therefore belong to Arcs C (since v is a path in C, and thus we have Arcs v ⊆
Arcs C). In other words, each i ∈ [k − 1] satisfies (vi, vi+1) ∈ Arcs C. Hence, each
i ∈ [k − 1] satisfies (vi, vi+1) ∈ Arcs C = F ⊆ A f and therefore f (vi) = f (vi+1)
(by the definition of A f ). In other words, f (v1) = f (v2) = · · · = f (vk). In other
words, all entries v1, v2, . . . , vk of v have the same level. In other words, v is level.
Forget now that we fixed v. We thus have shown that each path v = (v1, v2, . . . , vk)
in C is level. In other words, each path in C is level.
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Hence, each path in C has a (unique) level. Set

Cj := {all paths of level j in C} for each j ∈ P.

Then, the sets C1, C2, C3, . . . are disjoint (since a path cannot have two different
levels simultaneously), and their union C1 ⊔ C2 ⊔ C3 ⊔ · · · is C (since each path in
C has a level). In particular, C = C1 ⊔ C2 ⊔ C3 ⊔ · · · .

Let j ∈ P. Then, Cj is a path cover of f−1 (j) 17. Hence, Arcs
(
Cj
)

is a linear
subset of f−1 (j)× f−1 (j) (by the definition of “linear”). Furthermore, Cj ⊆ C (by
the definition of Cj) and therefore Arcs

(
Cj
)
⊆ Arcs C = F ⊆ A f ⊆ A. Combining

this with Arcs
(
Cj
)
⊆ f−1 (j)× f−1 (j), we obtain

Arcs
(
Cj
)
⊆ A ∩

(
f−1 (j)× f−1 (j)

)
= Aj

(
since Aj is defined to be A ∩

(
f−1 (j)× f−1 (j)

))
.

Thus, Arcs
(
Cj
)

is a linear subset of Aj (since Arcs
(
Cj
)

is linear).
Forget that we fixed j. We thus have shown that Arcs

(
Cj
)

is a linear subset of Aj
for each j ∈ P.

In other words, the sets Arcs (C1) , Arcs (C2) , Arcs (C3) , . . . are subsets of the
sets A1, A2, A3, . . ., respectively. Since the latter sets A1, A2, A3, . . . are disjoint (by
Proposition 2.32), we thus conclude that their subsets Arcs (C1) , Arcs (C2) , Arcs (C3) , . . .
are disjoint as well.

Moreover, each positive integer j /∈ f (V) satisfies Arcs
(
Cj
)
= ∅ 18.

17Proof. Let p ∈ Cj be a path. Then, p is a path of level j in C (since p ∈ Cj =
{all paths of level j in C}). Therefore, all entries of p have level j. In other words, all entries
of p belong to f−1 (j). Hence, p is a path of f−1 (j) (not just a path of V).

Forget that we fixed p. Thus, we have shown that each path p ∈ Cj is a path of f−1 (j). In
other words, Cj is a set of paths of f−1 (j).

Any element v ∈ f−1 (j) belongs to V, and therefore must belong to a unique path in C (since
C is a path cover of V). This latter path must have level j (since v has level j) and therefore
belong to Cj (by the definition of Cj). Hence, we conclude that any element v ∈ f−1 (j) belongs
to a unique path in Cj. This shows that Cj is a path cover of f−1 (j) (since Cj is a set of paths of
f−1 (j)).

18Proof. Let j be a positive integer such that j /∈ f (V). Then, f−1 (j) = ∅. However, we have shown
above that Arcs

(
Cj
)

is a linear subset of Aj. Hence,

Arcs
(
Cj
)
⊆ Aj = A ∩

(
f−1 (j)× f−1 (j)

) (
by the definition of Aj

)
⊆ f−1 (j)︸ ︷︷ ︸

=∅

× f−1 (j)︸ ︷︷ ︸
=∅

= ∅×∅ = ∅,

so that Arcs
(
Cj
)
= ∅.
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From C = C1 ⊔ C2 ⊔ C3 ⊔ · · · = ⊔
j∈P

Cj =
⋃

j∈P

Cj, we obtain

Arcs C = Arcs

⋃
j∈P

Cj

 =
⋃
j∈P

Arcs
(
Cj
)

=
⊔
j∈P

Arcs
(
Cj
)  since the

sets Arcs (C1) , Arcs (C2) , Arcs (C3) , . . .
are disjoint


=

⊔
j∈ f (V)

Arcs
(
Cj
)

(15)

(since each j /∈ f (V) satisfies Arcs
(
Cj
)
= ∅).

Thus, Arcs C can be written as
⊔

j∈ f (V)
Fj, where each Fj is a linear subset of Aj

(since Arcs
(
Cj
)

is a linear subset of Aj for each j ∈ P). In other words, F can
be written in this way (since F = Arcs C). This proves the “=⇒” direction of
Proposition 2.33 (a).

(b) Assume that F is written as F =
⊔

j∈ f (V)
Fj, where each Fj is a linear subset of

Aj. We must show that Fj = F ∩ Aj for each j ∈ f (V).
Indeed, we have F =

⊔
j∈ f (V)

Fj =
⊔

i∈ f (V)
Fi.

Now, let j ∈ f (V). Then, Fj is a subset of F (since F =
⊔

i∈ f (V)
Fi) and also a subset

of Aj (by definition of Fj). In other words, Fj is a subset of both F and Aj. Thus,
Fj is a subset of the intersection F ∩ Aj as well. Let us now show that F ∩ Aj is a
subset of Fj.

Indeed, let α ∈ F ∩ Aj. Then, α ∈ F ∩ Aj ⊆ F =
⊔

i∈ f (V)
Fi, so that α ∈ Fi for some

i ∈ f (V). Consider this i. Then, α ∈ Fi ⊆ Ai (by the definition of Fi). However,
α ∈ F ∩ Aj ⊆ Aj. Thus, the element α belongs to both sets Ai and Aj. Therefore,
the sets Ai and Aj are not disjoint. However, Proposition 2.32 shows that the sets
A1, A2, A3, . . . are disjoint. The only way to reconcile the previous two sentences is
when i = j.

Thus, we obtain i = j. Hence, α ∈ Fj (since α ∈ Fi).
Forget that we fixed α. We thus have shown that α ∈ Fj for each α ∈ F ∩ Aj. In

other words, F ∩ Aj ⊆ Fj. Since Fj is (in turn) a subset of F ∩ Aj, we thus conclude
that Fj = F ∩ Aj. This completes the proof of Proposition 2.33 (b).

Next, we return to studying permutations.
When a set V is a union of two disjoint subsets A and B, and we are given a

permutation σA of A and a permutation σB of B, then we can combine these two
permutations to obtain a permutation σA ⊕ σB of V: Namely, this latter permutation
sends each a ∈ A to σA (a), and sends each b ∈ B to σB (b). That is, this permutation
σA ⊕ σB is “acting as σA” on the subset A and “acting as σB” on the subset B.
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The same construction can be performed when V is a union of more than two
disjoint subsets (and we are given a permutation of each of these subsets). We will
encounter this situation when a map f : V → P subdivides the set V into its level
sets f−1 (1) , f−1 (2) , f−1 (3) , . . ., and we are given a permutation σj ∈ S f−1(j)

of each level set f−1 (j) (to be more precise, we only need σj to be given when
j ∈ f (V), since the level set f−1 (j) is empty otherwise). The permutation of V
obtained by combining these permutations σj will then be denoted by

⊕
j∈ f (V)

σj.

Here is its explicit definition:

Definition 2.34. Let V be any set. Let f : V → P be any map.
For each j ∈ f (V), let σj ∈ S f−1(j) be a permutation of the level set f−1 (j).
Then,

⊕
j∈ f (V)

σj shall denote the permutation of V that sends each v ∈ V to

σf (v) (v). This is the permutation that acts as σj on each level set f−1 (j).

Proposition 2.35. Let V be any set. Let f : V → P be any map. Let σ ∈ SV be
any permutation. Then:

(a) We have f ◦ σ = f if and only if σ can be written in the form σ =
⊕

j∈ f (V)
σj,

where σj ∈ S f−1(j) for each j ∈ f (V).

(b) In this case, the permutations σj for all j ∈ f (V) are uniquely determined
by σ (namely, σj is the restriction of σ to the subset f−1 (j) for each j ∈
f (V)).

Proof. (a) =⇒: Assume that f ◦ σ = f .
Let j ∈ f (V). Let v ∈ f−1 (j). Then, f (v) = j. However, f (σ (v)) = ( f ◦ σ)︸ ︷︷ ︸

= f

(v) =

f (v) = j, so that σ (v) ∈ f−1 (j).
Forget that we fixed v. We thus have shown that σ (v) ∈ f−1 (j) for each v ∈

f−1 (j). Hence, the map

f−1 (j) → f−1 (j) ,
v 7→ σ (v)

is well-defined. Let us denote this map by σj. This map σj is the restriction of σ to
the subset f−1 (j) of V.

The map σ is a permutation, thus has an inverse σ−1. From f ◦ σ = f , we
obtain f︸︷︷︸

= f ◦σ

◦σ−1 = f ◦ σ ◦ σ−1︸ ︷︷ ︸
=id

= f . Hence, just as we have constructed a map

σj : f−1 (j) → f−1 (j) by restricting the map σ to f−1 (j), we can likewise construct
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a map
(
σ−1)

j : f−1 (j) → f−1 (j) by restricting the map σ−1 to f−1 (j). These two

maps σj and
(
σ−1)

j are mutually inverse (since they are restrictions of the mutually

inverse maps σ and σ−1). Hence, the map σj is invertible, i.e., is a permutation of
f−1 (j). In other words, σj ∈ S f−1(j).

Forget now that we fixed j. Thus, for each j ∈ f (V), we have constructed a
permutation σj ∈ S f−1(j) by restricting the map σ to f−1 (j). These permutations
clearly satisfy σ =

⊕
j∈ f (V)

σj (since V =
⊔

j∈ f (V)
f−1 (j)). This proves the “=⇒” direc-

tion of Proposition 2.35 (a).
⇐=: Assume that σ can be written in the form σ =

⊕
j∈ f (V)

σj, where σj ∈ S f−1(j)

for each j ∈ f (V).
Let v ∈ V. Let i = f (v). Thus, i ∈ f (V). From σ =

⊕
j∈ f (V)

σj, we obtain

σ (v) = σf (v) (v)

by the definition of
⊕

j∈ f (V)

σj


= σi (v) (since f (v) = i)

∈ f−1 (i)
(

since σi ∈ S f−1(i) is a map from f−1 (i) to f−1 (i)
)

.

In other words, f (σ (v)) = i. Hence, ( f ◦ σ) (v) = f (σ (v)) = i = f (v).
Forget that we fixed v. We thus have shown that ( f ◦ σ) (v) = f (v) for each

v ∈ V. In other words, f ◦ σ = f . We thus have proved the “⇐=” direction of
Proposition 2.35 (a).

(b) This is obvious.

Now, we recall the set Aσ defined in Definition 2.11 for any finite set V and any
permutation σ of V.

Proposition 2.36. Let V be a finite set. Let f : V → P be any map. Let σ ∈ SV
be a permutation satisfying f ◦ σ = f . Write σ in the form σ =

⊕
j∈ f (V)

σj, where

σj ∈ S f−1(j) for each j ∈ f (V). (This can be done, because of Proposition 2.35
(a).) Then,

Aσ =
⊔

j∈ f (V)

Aσj .

Proof. We have σ =
⊕

j∈ f (V)
σj. Thus, for each j ∈ f (V) and each v ∈ f−1 (j), we have

σ (v) = σf (v) (v) = σj (v) (16)

(since f (v) = j (because v ∈ f−1 (j))).
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It is easy to see that the sets Aσj for different j ∈ f (V) are disjoint19. Hence, the
union of these sets is a disjoint union. That is,⋃

j∈ f (V)

Aσj =
⊔

j∈ f (V)

Aσj .

The definition of Aσ yields

Aσ = {(v, σ (v)) | v ∈ V}
=

⋃
j∈ f (V)

{(v, σ (v)) | v ∈ V and f (v) = j}︸ ︷︷ ︸
={(v,σ(v)) | v∈ f−1(j)}

(since the elements v∈V satisfying f (v)=j
are precisely the elements of f−1(j))

(since each v ∈ V satisfies f (v) = j for some j ∈ f (V))

=
⋃

j∈ f (V)



v, σ (v)︸ ︷︷ ︸
=σj(v)

(by (16))

 | v ∈ f−1 (j)


=

⋃
j∈ f (V)

{(
v, σj (v)

)
| v ∈ f−1 (j)

}
︸ ︷︷ ︸

=Aσj

(since Aσj is defined as {(v,σj(v)) | v∈ f−1(j)})

=
⋃

j∈ f (V)

Aσj =
⊔

j∈ f (V)

Aσj .

This proves Proposition 2.36.

Next, we connect the above construction with the level subdigraphs of a digraph:

19Proof. Let i and j be two distinct elements of f (V). We must prove that Aσi and Aσj are disjoint.
Indeed, the sets f−1 (i) and f−1 (j) are disjoint (since i and j are distinct). In other words,

f−1 (i)∩ f−1 (j) = ∅. However, Aσj ⊆ f−1 (j)× f−1 (j) (since σj is a permutation of f−1 (j)) and
Aσi ⊆ f−1 (i)× f−1 (i) (likewise). Hence,

Aσi︸︷︷︸
⊆ f−1(i)× f−1(i)

∩ Aσj︸︷︷︸
⊆ f−1(j)× f−1(j)

⊆
(

f−1 (i)× f−1 (i)
)
∩
(

f−1 (j)× f−1 (j)
)

=
(

f−1 (i) ∩ f−1 (j)
)

︸ ︷︷ ︸
=∅

×
(

f−1 (i) ∩ f−1 (j)
)

︸ ︷︷ ︸
=∅

= ∅×∅ = ∅.

Hence, Aσi ∩ Aσj = ∅. In other words, Aσi and Aσj are disjoint. This completes our proof.
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Proposition 2.37. Let D = (V, A) be a digraph. Let f : V → P be any map. Let
σ ∈ SV be a permutation satisfying f ◦ σ = f . Then,

Aσ ∩ A ⊆ A f .

Proof. Let α ∈ Aσ ∩ A. Thus, α ∈ Aσ and α ∈ A. In particular, α ∈ Aσ =
{(v, σ (v)) | v ∈ V} (by the definition of Aσ). Hence, α = (v, σ (v)) for some
v ∈ V. Consider this v. We have f (σ (v)) = ( f ◦ σ)︸ ︷︷ ︸

= f

(v) = f (v). In other

words, f (v) = f (σ (v)). Hence, (v, σ (v)) ∈ A f (by the definition of A f , since
(v, σ (v)) = α ∈ A). In other words, α ∈ A f (since α = (v, σ (v))).

Forget that we fixed α. We thus have proved that α ∈ A f for each α ∈ Aσ ∩ A. In
other words, Aσ ∩ A ⊆ A f .

Our last result in this section is the following trivial yet complex-looking lemma,
which will be used in the proof after it:

Lemma 2.38. Let D = (V, A) be a digraph. Let f : V → P be any map. Let
σj ∈ S f−1(j) be a permutation for each j ∈ f (V). Let Fj be a subset of Aj for each
j ∈ f (V). Then, we have the following logical equivalence: ⊔

j∈ f (V)

Fj ⊆
⊔

j∈ f (V)

Aσj

 ⇐⇒
(

Fj ⊆ Aσj for each j ∈ f (V)
)

.

Proof. The sets f−1 (j) for different j ∈ f (V) are clearly disjoint. Hence, the sets
f−1 (j)× f−1 (j) for different j ∈ f (V) are disjoint as well20.

For each j ∈ f (V), we have

Fj ⊆ Aj
(
by the definition of Fj

)
= A ∩

(
f−1 (j)× f−1 (j)

) (
by the definition of Aj

)
⊆ f−1 (j)× f−1 (j) . (17)

20Proof. Let r and s be two distinct elements of f (V). We must prove that the sets f−1 (r)× f−1 (r)
and f−1 (s)× f−1 (s) are disjoint.

Indeed, r and s are distinct. Hence, f−1 (r) ∩ f−1 (s) = ∅ (since the sets f−1 (j) for different
j ∈ f (V) are disjoint). Now,(

f−1 (r)× f−1 (r)
)
∩
(

f−1 (s)× f−1 (s)
)
=
(

f−1 (r) ∩ f−1 (s)
)

︸ ︷︷ ︸
=∅

×
(

f−1 (r) ∩ f−1 (s)
)

︸ ︷︷ ︸
=∅

= ∅×∅ = ∅.

In other words, the sets f−1 (r)× f−1 (r) and f−1 (s)× f−1 (s) are disjoint. Qed.
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In other words, for each j ∈ f (V), the set Fj is a subset of f−1 (j)× f−1 (j). Hence,
the sets Fj for different j ∈ f (V) are disjoint21. The disjoint union

⊔
j∈ f (V)

Fj thus is

well-defined.
For each j ∈ f (V), the set Aσj is a subset of f−1 (j)× f−1 (j) (since σj is a permu-

tation of f−1 (j)). In other words, for each j ∈ f (V), we have

Aσj ⊆ f−1 (j)× f−1 (j) . (18)

Hence, the sets Aσj for different j ∈ f (V) are disjoint22. The disjoint union⊔
j∈ f (V)

Aσj thus is well-defined.

Our goal is to prove the equivalence ⊔
j∈ f (V)

Fj ⊆
⊔

j∈ f (V)

Aσj

 ⇐⇒
(

Fj ⊆ Aσj for each j ∈ f (V)
)

.

The “⇐=” direction of this equivalence is obvious. Thus, we only need to prove
the “=⇒” direction.

Let us do this. We assume that
⊔

j∈ f (V)
Fj ⊆

⊔
j∈ f (V)

Aσj . We must prove that Fj ⊆ Aσj

for each j ∈ f (V).

21Proof. Let r and s be two distinct elements of f (V). We must prove that the sets Fr and Fs are
disjoint.

Recall that the sets f−1 (j) × f−1 (j) for different j ∈ f (V) are disjoint. Hence, the sets
f−1 (r)× f−1 (r) and f−1 (s)× f−1 (s) are disjoint (since r and s are distinct elements of f (V)).
In other words,

(
f−1 (r)× f−1 (r)

)
∩
(

f−1 (s)× f−1 (s)
)
= ∅.

We have

Fr︸︷︷︸
⊆ f−1(r)× f−1(r)

(by (17),
applied to j=r)

∩ Fs︸︷︷︸
⊆ f−1(s)× f−1(s)

(by (17),
applied to j=s)

⊆
(

f−1 (r)× f−1 (r)
)
∩
(

f−1 (s)× f−1 (s)
)
= ∅.

Hence, Fr ∩ Fs = ∅. In other words, the sets Fr and Fs are disjoint. Qed.
22Proof. Let r and s be two distinct elements of f (V). We must prove that the sets Aσr and Aσs are

disjoint.
Recall that the sets f−1 (j) × f−1 (j) for different j ∈ f (V) are disjoint. Hence, the sets

f−1 (r)× f−1 (r) and f−1 (s)× f−1 (s) are disjoint (since r and s are distinct elements of f (V)).
In other words,

(
f−1 (r)× f−1 (r)

)
∩
(

f−1 (s)× f−1 (s)
)
= ∅.

We have

Aσr︸︷︷︸
⊆ f−1(r)× f−1(r)

(by (18),
applied to j=r)

∩ Aσs︸︷︷︸
⊆ f−1(s)× f−1(s)

(by (18),
applied to j=s)

⊆
(

f−1 (r)× f−1 (r)
)
∩
(

f−1 (s)× f−1 (s)
)
= ∅.

Hence, Aσr ∩ Aσs = ∅. In other words, the sets Aσr and Aσs are disjoint. Qed.
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Let i ∈ f (V). Let α ∈ Fi. Then,

α ∈ Fi ⊆
⊔

j∈ f (V)

Fj ⊆
⊔

j∈ f (V)

Aσj .

In other words, α ∈ Aσk for some k ∈ f (V). Consider this k. The set Fi is a
subset of f−1 (i) × f−1 (i) (because for each j ∈ f (V), the set Fj is a subset of
f−1 (j)× f−1 (j)). Thus, Fi ⊆ f−1 (i)× f−1 (i), so that α ∈ Fi ⊆ f−1 (i)× f−1 (i).

However, Aσk is a subset of f−1 (k)× f−1 (k) (because for each j ∈ f (V), the set
Aσj is a subset of f−1 (j)× f−1 (j)). In other words, Aσk ⊆ f−1 (k)× f−1 (k). Hence,
α ∈ Aσk ⊆ f−1 (k)× f−1 (k).

Thus, the two sets f−1 (i)× f−1 (i) and f−1 (k)× f−1 (k) both contain the element
α. However, if we had i ̸= k, then these two sets would be disjoint (since the sets
f−1 (j) × f−1 (j) for different j ∈ f (V) are disjoint), which would contradict the
previous sentence. Thus, we have i = k. Hence, we can rewrite α ∈ Aσk (which we
know to be true) as α ∈ Aσi .

Forget that we fixed α. We thus have shown that α ∈ Aσi for each α ∈ Fi. In other
words, Fi ⊆ Aσi .

Forget that we fixed i. We thus have proved that Fi ⊆ Aσi for each i ∈ f (V). In
other words, Fj ⊆ Aσj for each j ∈ f (V). This proves the “=⇒” direction of the
above equivalence. Thus, the proof of Lemma 2.38 is complete.

2.6. An alternating sum involving permutations σ with f ◦ σ = f

Now, we come to a crucial lemma, which generalizes Lemma 2.23 to the case of a
digraph D = (V, A) “shattered” by a map f : V → P:

Lemma 2.39. Let D = (V, A) be a digraph. Let f : V → P be any map. For each
j ∈ P, we define a digraph Dj as in Definition 2.27 (c). Then,

∑
σ∈SV ;
f ◦σ= f

∑
F⊆Aσ∩A
is linear

(−1)|F| = ∏
j∈ f (V)

(
# of hamps of Dj

)
.

Proof. We shall use the notations from Definition 2.24, Definition 2.27 and Defini-
tion 2.34. We recall that every j ∈ P satisfies Dj =

(
f−1 (j) , Aj

)
(by definition of

Dj).
Let σ ∈ SV be a permutation satisfying f ◦ σ = f . Then, Proposition 2.37 yields

Aσ ∩ A ⊆ A f . Hence, Aσ ∩ A = Aσ ∩ A f (because Aσ︸︷︷︸
=Aσ∩Aσ

∩A = Aσ ∩ Aσ ∩ A︸ ︷︷ ︸
⊆A f

⊆
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Aσ ∩ A f and conversely Aσ ∩ A f︸︷︷︸
⊆A

⊆ Aσ ∩ A). Hence,

∑
F⊆Aσ∩A
is linear

(−1)|F| = ∑
F⊆Aσ∩A f

is linear

(−1)|F|

= ∑
F⊆A f is linear;

F⊆Aσ

(−1)|F| (19)

(since a subset of Aσ ∩ A f is the same thing as a subset F of A f that satisfies
F ⊆ Aσ).

Forget that we fixed σ. We thus have proved (19) for every σ ∈ SV satisfying
f ◦ σ = f .

Summing up the equality (19) over all permutations σ ∈ SV satisfying f ◦ σ = f ,
we obtain

∑
σ∈SV ;
f ◦σ= f

∑
F⊆Aσ∩A
is linear

(−1)|F|

= ∑
σ∈SV ;
f ◦σ= f

∑
F⊆A f is linear;

F⊆Aσ

(−1)|F|

= ∑
F⊆A f is linear

∑
σ∈SV ;
F⊆Aσ;
f ◦σ= f

(−1)|F|

︸ ︷︷ ︸
=(−1)|F|·(# of σ∈SV satisfying F⊆Aσ and f ◦σ= f )

= ∑
F⊆A f is linear

(−1)|F| · (# of σ ∈ SV satisfying F ⊆ Aσ and f ◦ σ = f ) . (20)

Now, we observe the following: If Fj is a linear subset of Aj for each j ∈ f (V),
then the disjoint union

⊔
j∈ f (V)

Fj is well-defined23, and is a linear subset of A f (by

the “⇐=” direction of Proposition 2.33 (a), applied to F =
⊔

j∈ f (V)
Fj). Hence, the

map

from
{

families
(

Fj
)

j∈ f (V)
, where each Fj is a linear subset of Aj

}
to
{

linear subsets of A f
}

that sends each family
(

Fj
)

j∈ f (V)
to

⊔
j∈ f (V)

Fj

23Proof. Let Fj be a linear subset of Aj for each j ∈ f (V). The sets Aj for different j ∈ f (V)
are disjoint (since Proposition 2.32 yields that the sets A1, A2, A3, . . . are disjoint). Hence, their
subsets Fj must be disjoint as well (since Fj is a subset of Aj for each j ∈ f (V)). Thus, the disjoint
union

⊔
j∈ f (V)

Fj is well-defined.
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is well-defined. Moreover, this map is injective (since Proposition 2.33 (b) shows
that the sets Fj are uniquely determined by their union

⊔
j∈ f (V)

Fj) and surjective (by

the “=⇒” direction of Proposition 2.33 (a)). Thus, it is bijective. Hence, we can
substitute

⊔
j∈ f (V)

Fj for F in the sum on the right hand side of (20). We thus obtain

∑
F⊆A f is linear

(−1)|F| · (# of σ ∈ SV satisfying F ⊆ Aσ and f ◦ σ = f )

= ∑
(Fj)j∈ f (V)

is a family

of linear subsets Fj⊆Aj

(−1)

∣∣∣∣∣ ⊔
j∈ f (V)

Fj

∣∣∣∣∣

·

# of σ ∈ SV satisfying
⊔

j∈ f (V)

Fj ⊆ Aσ and f ◦ σ = f

 . (21)

Now, fix a family
(

Fj
)

j∈ f (V)
of linear subsets Fj ⊆ Aj.

A permutation σ ∈ SV satisfies f ◦ σ = f if and only if it can be written in the
form σ =

⊕
j∈ f (V)

σj, where σj ∈ S f−1(j) for each j ∈ f (V) (by Proposition 2.35 (a)).

Moreover, if σ is written in this way, then we have Aσ =
⊔

j∈ f (V)
Aσj (by Proposition

2.36).
Hence, if

(
σj
)

j∈ f (V)
∈ ∏

j∈ f (V)
S f−1(j) is a family of permutations (i.e., if we are

given a permutation σj ∈ S f−1(j) for each j ∈ f (V)) satisfying
⊔

j∈ f (V)
Fj ⊆

⊔
j∈ f (V)

Aσj ,

then
⊕

j∈ f (V)
σj is a permutation σ ∈ SV satisfying

⊔
j∈ f (V)

Fj ⊆ Aσ and f ◦ σ = f 24.

24Proof. Let
(
σj
)

j∈ f (V)
∈ ∏

j∈ f (V)
S f−1(j) be a family of permutations satisfying

⊔
j∈ f (V)

Fj ⊆
⊔

j∈ f (V)
Aσj .

Set σ =
⊕

j∈ f (V)
σj. Then, we must prove that

⊔
j∈ f (V)

Fj ⊆ Aσ and f ◦ σ = f .

However, this is easy: The “⇐=” direction of Proposition 2.35 (a) yields f ◦ σ = f (since
σ =

⊕
j∈ f (V)

σj with σj ∈ S f−1(j) for each j ∈ f (V)). Thus, Proposition 2.36 yields Aσ =
⊔

j∈ f (V)
Aσj .

Hence,
⊔

j∈ f (V)
Fj ⊆

⊔
j∈ f (V)

Aσj = Aσ. Thus, both
⊔

j∈ f (V)
Fj ⊆ Aσ and f ◦ σ = f are proved.
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Thus, the map

from

families
(
σj
)

j∈ f (V)
∈ ∏

j∈ f (V)

S f−1(j) satisfying
⊔

j∈ f (V)

Fj ⊆
⊔

j∈ f (V)

Aσj


to

σ ∈ SV satisfying
⊔

j∈ f (V)

Fj ⊆ Aσ and f ◦ σ = f


that sends each family

(
σj
)

j∈ f (V)
to

⊕
j∈ f (V)

σj

is well-defined. This map is furthermore surjective (this follows easily from the
“=⇒” direction of Proposition 2.35 (a)25) and injective (since Proposition 2.35 (b)
shows that the permutations σj are uniquely determined by σ when σ =

⊕
j∈ f (V)

σj).

Thus, this map is bijective.

25Proof. Let σ ∈ SV be a permutation satisfying
⊔

j∈ f (V)
Fj ⊆ Aσ and f ◦ σ = f . We must prove

that σ is an image of some family
(
σj
)

j∈ f (V)
∈ ∏

j∈ f (V)
S f−1(j) under the map we just constructed.

In other words, we must prove that there exists a family
(
σj
)

j∈ f (V)
∈ ∏

j∈ f (V)
S f−1(j) satisfying⊔

j∈ f (V)
Fj ⊆

⊔
j∈ f (V)

Aσj such that σ =
⊕

j∈ f (V)
σj.

However, the “=⇒” direction of Proposition 2.35 (a) yields that σ can be written in the form
σ =

⊕
j∈ f (V)

σj, where σj ∈ S f−1(j) for each j ∈ f (V). In other words, there exists a family(
σj
)

j∈ f (V)
∈ ∏

j∈ f (V)
S f−1(j) such that σ =

⊕
j∈ f (V)

σj. This family
(
σj
)

j∈ f (V)
furthermore satisfies⊔

j∈ f (V)
Fj ⊆ Aσ =

⊔
j∈ f (V)

Aσj (by Proposition 2.36). Thus, we have proved that there exists a family(
σj
)

j∈ f (V)
∈ ∏

j∈ f (V)
S f−1(j) satisfying

⊔
j∈ f (V)

Fj ⊆
⊔

j∈ f (V)
Aσj such that σ =

⊕
j∈ f (V)

σj.
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Hence, by the bijection principle, we have# of σ ∈ SV satisfying
⊔

j∈ f (V)

Fj ⊆ Aσ and f ◦ σ = f


=

# of families
(
σj
)

j∈ f (V)
∈ ∏

j∈ f (V)

S f−1(j) satisfying
⊔

j∈ f (V)

Fj ⊆
⊔

j∈ f (V)

Aσj


=

# of families
(
σj
)

j∈ f (V)
∈ ∏

j∈ f (V)

S f−1(j) satisfying Fj ⊆ Aσj for each j ∈ f (V)




since the condition “
⊔

j∈ f (V)
Fj ⊆

⊔
j∈ f (V)

Aσj”

is equivalent to “Fj ⊆ Aσj for each j ∈ f (V) ”
(by Lemma 2.38)


= ∏

j∈ f (V)

(
# of σj ∈ S f−1(j) satisfying Fj ⊆ Aσj

)
(by the product rule)

= ∏
j∈ f (V)

(
# of σ ∈ S f−1(j) satisfying Fj ⊆ Aσ

)
(22)(

here, we have renamed the index σj as σ
)

.

Also, we have

∣∣∣∣∣ ⊔
j∈ f (V)

Fj

∣∣∣∣∣ = ∑
j∈ f (V)

∣∣Fj
∣∣ (by the sum rule), and thus

(−1)

∣∣∣∣∣ ⊔
j∈ f (V)

Fj

∣∣∣∣∣
= (−1)

∑
j∈ f (V)

|Fj|
= ∏

j∈ f (V)

(−1)|Fj| . (23)

Multiplying the equalities (23) and (22), we obtain

(−1)

∣∣∣∣∣ ⊔
j∈ f (V)

Fj

∣∣∣∣∣ ·
# of σ ∈ SV satisfying

⊔
j∈ f (V)

Fj ⊆ Aσ and f ◦ σ = f


=

 ∏
j∈ f (V)

(−1)|Fj|
 · ∏

j∈ f (V)

(
# of σ ∈ S f−1(j) satisfying Fj ⊆ Aσ

)
= ∏

j∈ f (V)

(
(−1)|Fj| ·

(
# of σ ∈ S f−1(j) satisfying Fj ⊆ Aσ

))
. (24)

Forget that we fixed
(

Fj
)

j∈ f (V)
. We thus have proved the equality (24) for any

family
(

Fj
)

j∈ f (V)
of linear subsets Fj ⊆ Aj.
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Now, (21) becomes

∑
F⊆A f is linear

(−1)|F| · (# of σ ∈ SV satisfying F ⊆ Aσ and f ◦ σ = f )

= ∑
(Fj)j∈ f (V)

is a family

of linear subsets Fj⊆Aj

· (−1)

∣∣∣∣∣ ⊔
j∈ f (V)

Fj

∣∣∣∣∣ ·
# of σ ∈ SV satisfying

⊔
j∈ f (V)

Fj ⊆ Aσ and f ◦ σ = f


︸ ︷︷ ︸

= ∏
j∈ f (V)

(
(−1)|Fj|·

(
# of σ∈S f−1(j) satisfying Fj⊆Aσ

))
(by (24))

= ∑
(Fj)j∈ f (V)

is a family

of linear subsets Fj⊆Aj

∏
j∈ f (V)

(
(−1)|Fj| ·

(
# of σ ∈ S f−1(j) satisfying Fj ⊆ Aσ

))

= ∏
j∈ f (V)

∑
Fj⊆Aj is linear

(−1)|Fj| ·
(

# of σ ∈ S f−1(j) satisfying Fj ⊆ Aσ

)
(by the product rule)

= ∏
j∈ f (V)

∑
F⊆Aj is linear

(−1)|F| ·
(

# of σ ∈ S f−1(j) satisfying F ⊆ Aσ

)
︸ ︷︷ ︸

=(# of hamps of Dj)
(by Lemma 2.23, applied to Dj=( f−1(j), Aj) instead of D=(V,A)

(since f−1(j) ̸=∅ (because j∈ f (V))))(
here, we have renamed the summation index Fj as F

)
= ∏

j∈ f (V)

(
# of hamps of Dj

)
. (25)

Now, (20) becomes

∑
σ∈SV ;
f ◦σ= f

∑
F⊆Aσ∩A
is linear

(−1)|F|

= ∑
F⊆A f is linear

(−1)|F| · (# of σ ∈ SV satisfying F ⊆ Aσ and f ◦ σ = f )

= ∏
j∈ f (V)

(
# of hamps of Dj

)
(by (25)) .

This proves Lemma 2.39.
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2.7. ( f , D)-friendly V-listings

The following restatement of Lemma 2.39 will be useful for us:

Lemma 2.40. Let D = (V, A) be a digraph. Let f : V → P be any map. A
V-listing v = (v1, v2, . . . , vn) will be called ( f , D)-friendly if it has the properties
that f (v1) ≤ f (v2) ≤ · · · ≤ f (vn) and that

f
(
vp
)
< f

(
vp+1

)
for each p ∈ [n − 1] satisfying

(
vp, vp+1

)
∈ A. (26)

Then,
∑

σ∈SV ;
f ◦σ= f

∑
F⊆Aσ∩A
is linear

(−1)|F| = (# of ( f , D) -friendly V-listings) .

Proof. For each j ∈ f (V), we define a digraph Dj as in Definition 2.27 (c). The
vertex set of this digraph Dj is f−1 (j). In other words, its vertices are precisely
those vertices of D that have level j (with respect to f ).

Clearly, a V-listing v = (v1, v2, . . . , vn) satisfies f (v1) ≤ f (v2) ≤ · · · ≤ f (vn) if
and only if it lists the vertices of D in the order of increasing level, i.e., if it first lists
the vertices of the smallest level, then the vertices of the second-smallest level, and
so on.

If
(
aj
)

j∈ f (V)
is a family of (finite) lists (one list aj for each j ∈ f (V)), then

⊗
j∈ f (V)

aj

shall denote the concatenation of these lists aj in the order of increasing j (that is,
the list starting with the entries of aj for the smallest j ∈ f (V), then continuing
with the entries of aj for the second-smallest j ∈ f (V), and so on). For instance,
if f (V) = {2, 3, 5} and a2 = (u, v) and a3 = (x, y, z) and a5 = (p), then

⊗
j∈ f (V)

aj =

(u, v, x, y, z, p). The lists aj are called the factors of the concatenation
⊗

j∈ f (V)
aj.

Now, we shall prove five claims:

Claim 1: Let
(

v(j)
)

j∈ f (V)
be a family of lists, where each v(j) is an f−1 (j)-

listing. Write the concatenation
⊗

j∈ f (V)
v(j) in the form

⊗
j∈ f (V)

v(j) = v = (v1, v2, . . . , vn) .

Then, v is a V-listing and satisfies f (v1) ≤ f (v2) ≤ · · · ≤ f (vn).

[Proof of Claim 1: For each j ∈ f (V), the list v(j) is an f−1 (j)-listing, thus a list of
elements of f−1 (j), therefore a list of elements of V (since f−1 (j) ⊆ V). Hence, the
concatenation

⊗
j∈ f (V)

v(j) of these lists v(j) is a list of elements of V as well. In other

words, v is a list of elements of V (since
⊗

j∈ f (V)
v(j) = v).
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Moreover, each element of V is contained exactly once in v 26. Hence, v is a
V-listing (since v is a list of elements of V).

It remains to show that f (v1) ≤ f (v2) ≤ · · · ≤ f (vn).
We fix p ∈ [n − 1]. We shall show that f

(
vp
)
≤ f

(
vp+1

)
.

Indeed, assume the contrary. Thus, f
(
vp
)
> f

(
vp+1

)
. Set α = f

(
vp
)

and
β = f

(
vp+1

)
. Thus, α = f

(
vp
)
> f

(
vp+1

)
= β. Moreover, α = f

(
vp
)
∈ f (V) and

β = f
(
vp+1

)
∈ f (V). Furthermore, from f

(
vp
)
= α, we see that vp is an element

of f−1 (α). From f
(
vp+1

)
= β, we see that vp+1 is an element of f−1 (β).

We recall that v is a V-listing. Thus, each entry of v appears only once in v.
Recall that for each j ∈ f (V), the list v(j) is an f−1 (j)-listing. Hence, in particular,

v(α) is an f−1 (α)-listing. Hence, each element of f−1 (α) appears in v(α). Thus, in
particular, vp appears in v(α) (since vp is an element of f−1 (α)). The same argument
(applied to p + 1 and β instead of p and α) shows that vp+1 appears in v(β).

However, β < α (since α > β). Thus, in the concatenation
⊗

j∈ f (V)
v(j), the factor

v(β) appears to the left of the factor v(α) (since this concatenation is concatenating
the lists v(j) in the order of increasing j). Hence, in particular, in this concatenation⊗
j∈ f (V)

v(j), the entry vp+1 appears to the left of the entry vp (since vp+1 appears

in v(β), whereas vp appears in v(α)). In other words, in the list v, the entry vp+1

appears to the left of the entry vp (since v =
⊗

j∈ f (V)
v(j)). On the other hand, it is

clear that the entry vp+1 appears to the right of the entry vp in the list v (since
v = (v1, v2, . . . , vn) and p + 1 > p).

Thus, we have shown that in the list v, the entry vp+1 appears both to the left
and to the right of the entry vp. Clearly, this is only possible if one of these entries

26Proof. Let p be an arbitrary element of V. We must then show that p is contained exactly once in
v.

Indeed, let i = f (p). Then, p is an element of f−1 (i). Also, i = f (p) ∈ f (V).
Moreover, the list v(i) is an f−1 (i)-listing (because for each j ∈ f (V), the list v(j) is an f−1 (j)-

listing). Hence, this list v(i) contains each element of f−1 (i) exactly once. In particular, this
shows that v(i) contains p exactly once (since p is an element of f−1 (i)). In other words, p
appears exactly once in the list v(i).

Now, let j ∈ f (V) be distinct from i. Then, j ̸= i = f (p), so that f (p) ̸= j. Therefore, p is not
an element of f−1 (j). However, the list v(j) is an f−1 (j)-listing (by assumption), and thus is a
list of elements of f−1 (j). Hence, this list v(j) does not contain p (since p is not an element of
f−1 (j)). In other words, p does not appear in this list v(j).

Forget that we fixed j. We thus have shown that if j ∈ f (V) is distinct from i, then p does not
appear in the list v(j).

Altogether, we now know that p appears exactly once in the list v(i) but does not appear in the
list v(j) for any j ∈ f (V) that is distinct from i. In other words, p appears exactly once in the list
v(i) and does not appear in any other list v(j) with j ̸= i. Consequently, p appears exactly once
in the concatenation

⊗
j∈ f (V)

v(j). In other words, p appears exactly once in v (since v =
⊗

j∈ f (V)
v(j)).

In other words, p is contained exactly once in v. Qed.
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appears more than once in the list v. We thus conclude that one of these entries
appears more than once in the list v. However, this contradicts the fact that each
entry of v appears only once in v.

This contradiction shows that our assumption was false. Hence, f
(
vp
)
≤ f

(
vp+1

)
is proved.

Forget that we fixed p. We thus have shown that f
(
vp
)
≤ f

(
vp+1

)
for each

p ∈ [n − 1]. In other words, f (v1) ≤ f (v2) ≤ · · · ≤ f (vn). This completes the
proof of Claim 1.]

Claim 2: Let
(

v(j)
)

j∈ f (V)
be a family of lists, where each v(j) is an f−1 (j)-

listing. Then, this family
(

v(j)
)

j∈ f (V)
can be uniquely reconstructed

from the concatenation
⊗

j∈ f (V)
v(j).

[Proof of Claim 2: Fix i ∈ f (V). Then, v(i) is an f−1 (i)-listing (since each v(j) is
an f−1 (j)-listing). This f−1 (i)-listing v(i) is a factor of the concatenation

⊗
j∈ f (V)

v(j).

This factor v(i) consists entirely of elements of f−1 (i) (since it is an f−1 (i)-listing),
whereas all the other factors v(j) of the concatenation

⊗
j∈ f (V)

v(j) contain no elements

of f−1 (i) whatsoever27. Thus, we can reconstruct v(i) from
⊗

j∈ f (V)
v(j) by removing

all entries that don’t belong to f−1 (i) (since this removal preserves the factor v(i)

but makes all the other factors v(j) disappear).
Forget that we fixed i. Thus, we have shown that for each i ∈ f (V), we can recon-

struct v(i) from
⊗

j∈ f (V)
v(j). In other words, we can reconstruct the family

(
v(i)
)

i∈ f (V)

from
⊗

j∈ f (V)
v(j). In other words, we can reconstruct the family

(
v(j)
)

j∈ f (V)
from

⊗
j∈ f (V)

v(j) (since
(

v(i)
)

i∈ f (V)
=
(

v(j)
)

j∈ f (V)
). This proves Claim 2.]

27Proof. We must prove that if j ∈ f (V) is distinct from i, then v(j) contains no elements of f−1 (i)
whatsoever.

So let j ∈ f (V) be distinct from i. We must prove that v(j) contains no elements of f−1 (i)
whatsoever.

Assume the contrary. Thus, v(j) contains some element of f−1 (i). Let p be this element. Then,
f (p) = i (since p is an element of f−1 (i)). However, v(j) is an f−1 (j)-listing (by assumption),
and thus is a list of elements of f−1 (j). Hence, each entry of v(j) belongs to f−1 (j). Since p is
an entry of v(j) (because v(j) contains p), we thus conclude that p belongs to f−1 (j). In other
words, f (p) = j. Therefore, j = f (p) = i, which contradicts the fact that j is distinct from i.

This contradiction shows that our assumption was false. Hence, we have shown that v(j)

contains no elements of f−1 (i) whatsoever.
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Claim 3: Let
(

v(j)
)

j∈ f (V)
be a family of lists, where each v(j) is a hamp

of Dj. Then, the concatenation
⊗

j∈ f (V)
v(j) is an ( f , D)-friendly V-listing.

[Proof of Claim 3: Let us write the concatenation
⊗

j∈ f (V)
v(j) in the form

⊗
j∈ f (V)

v(j) = v = (v1, v2, . . . , vn) .

For each j ∈ f (V), the list v(j) is a hamp of Dj and thus an f−1 (j)-listing28. Hence,
Claim 1 shows that v is a V-listing and satisfies f (v1) ≤ f (v2) ≤ · · · ≤ f (vn).

We shall now show that this V-listing v is ( f , D)-friendly. Indeed, as we just
proved, it satisfies f (v1) ≤ f (v2) ≤ · · · ≤ f (vn). In order to prove that it is
( f , D)-friendly, it thus suffices to show that it satisfies

f
(
vp
)
< f

(
vp+1

)
for each p ∈ [n − 1] satisfying

(
vp, vp+1

)
∈ A.

So let us do this. Let p ∈ [n − 1] be such that
(
vp, vp+1

)
∈ A. We must prove that

f
(
vp
)
< f

(
vp+1

)
.

Assume the contrary. Thus, f
(
vp
)
≥ f

(
vp+1

)
. Combining this with f

(
vp
)
≤

f
(
vp+1

)
(which follows from f (v1) ≤ f (v2) ≤ · · · ≤ f (vn)), we obtain f

(
vp
)
=

f
(
vp+1

)
. Set i = f

(
vp
)
. Then, i = f

(
vp
)
∈ f (V) and i = f

(
vp
)
= f

(
vp+1

)
. We

have vp ∈ f−1 (i) (since f
(
vp
)
= i) and vp+1 ∈ f−1 (i) (since f

(
vp+1

)
= i). In other

words, vp and vp+1 belong to f−1 (i).
In the above proof of Claim 2, we noticed the following: The factor v(i) of the

concatenation
⊗

j∈ f (V)
v(j) consists entirely of elements of f−1 (i), whereas all the

28Proof. Let j ∈ f (V). Then, the list v(j) is a hamp of Dj. In other words, this list v(j) is a Dj-path
that contains each vertex of Dj (by the definition of a “hamp”).

We recall that the digraph Dj was defined to be
(

f−1 (j) , Aj
)
. Hence, its complement Dj is(

f−1 (j) ,
(

f−1 (j)× f−1 (j)
)
\ Aj

)
(by the definition of the complement of a digraph). Thus,

the vertices of Dj are the elements of f−1 (j), whereas the arcs of Dj are the elements of(
f−1 (j)× f−1 (j)

)
\ Aj.

Now, recall that the list v(j) is a Dj-path. In other words, v(j) is a nonempty tuple of distinct

elements of f−1 (j) such that Arcs
(

v(j)
)
⊆
(

f−1 (j)× f−1 (j)
)
\ Aj (by the definition of a “Dj-

path”, since Dj =
(

f−1 (j) ,
(

f−1 (j)× f−1 (j)
)
\ Aj

)
). Thus, in particular, v(j) is a tuple of

distinct elements of f−1 (j). Hence, v(j) contains no entry more than once.
Furthermore, recall that the tuple v(j) contains each vertex of Dj. In other words, v(j) contains

each element of f−1 (j) (since the vertices of Dj are the elements of f−1 (j)). Hence, v(j) contains
each element of f−1 (j) exactly once (since v(j) contains no entry more than once).

Thus, we know that v(j) is a list of elements of f−1 (j) that contains each element of f−1 (j)
exactly once. In other words, v(j) is an f−1 (j)-listing. Qed.
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other factors v(j) of this concatenation contain no elements of f−1 (i) whatsoever.
Hence, any entry of the concatenation

⊗
j∈ f (V)

v(j) that belongs to f−1 (i) must appear

only in the v(i) factor of this concatenation.
However, vp and vp+1 are consecutive entries of the concatenation

⊗
j∈ f (V)

v(j)

(since
⊗

j∈ f (V)
v(j) = v = (v1, v2, . . . , vn)). Since these two entries vp and vp+1 be-

long to f−1 (i), we thus conclude that vp and vp+1 appear only in the v(i) factor
of this concatenation (since any entry of the concatenation

⊗
j∈ f (V)

v(j) that belongs

to f−1 (i) must appear only in the v(i) factor of this concatenation). Therefore,
vp and vp+1 are two consecutive entries of v(i) (since vp and vp+1 are consecutive
entries of the concatenation

⊗
j∈ f (V)

v(j)). In other words, the list v(i) has the form(
. . . , vp, vp+1, . . .

)
(where each “. . .” stands for some number of entries). Therefore,

the pair
(
vp, vp+1

)
is an arc of v(i). In other words,

(
vp, vp+1

)
∈ Arcs

(
v(i)
)

.

However, v(i) is a hamp of Di (since each v(j) is a hamp of Dj). In other words,
v(i) is a Di-path that contains each vertex of Di (by the definition of a “hamp”).

We recall that the digraph Di was defined to be
(

f−1 (i) , Ai
)
. Hence, its comple-

ment Di is
(

f−1 (i) ,
(

f−1 (i)× f−1 (i)
)
\ Ai

)
(by the definition of the complement

of a digraph). Since v(i) is a Di-path, we thus have Arcs
(

v(i)
)
⊆
(

f−1 (i)× f−1 (i)
)
\

Ai (by the definition of a “Di-path”).
Hence,

(
vp, vp+1

)
∈ Arcs

(
v(i)
)
⊆
(

f−1 (i)× f−1 (i)
)
\ Ai. In other words,

(
vp, vp+1

)
∈

f−1 (i)× f−1 (i) and
(
vp, vp+1

)
/∈ Ai.

Combining
(
vp, vp+1

)
∈ A with

(
vp, vp+1

)
∈ f−1 (i)× f−1 (i), we obtain(

vp, vp+1
)
∈ A ∩

(
f−1 (i)× f−1 (i)

)
= Ai

(since (12) (applied to j = i) yields Ai = A ∩
(

f−1 (i)× f−1 (i)
)
). But this con-

tradicts
(
vp, vp+1

)
/∈ Ai. This contradiction shows that our assumption was false.

Hence, we have shown that f
(
vp
)
< f

(
vp+1

)
.

Forget that we fixed p. We thus have proved that

f
(
vp
)
< f

(
vp+1

)
for each p ∈ [n − 1] satisfying

(
vp, vp+1

)
∈ A.

Since we furthermore know that f (v1) ≤ f (v2) ≤ · · · ≤ f (vn), we thus conclude
that the V-listing v = (v1, v2, . . . , vn) is ( f , D)-friendly (by the definition of “( f , D)-
friendly”). Hence, v is an ( f , D)-friendly V-listing. In other words,

⊗
j∈ f (V)

v(j) is an

( f , D)-friendly V-listing (since v =
⊗

j∈ f (V)
v(j)). This proves Claim 3.]
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Claim 4: Let v be an ( f , D)-friendly V-listing. Then, v can be written in
the form v =

⊗
j∈ f (V)

v(j), where v(j) is a hamp of Dj for each j ∈ f (V).

[Proof of Claim 4: Let j1, j2, . . . , jq be the elements of f (V), listed in increasing
order (so that j1 < j2 < · · · < jq). Thus, j1, j2, . . . , jq are all the levels (with respect
to f ) that a vertex of D can have, listed in increasing order.

Write the V-listing v in the form v = (v1, v2, . . . , vn). As we assumed, this V-
listing v is ( f , D)-friendly. In other words, it has the properties that f (v1) ≤
f (v2) ≤ · · · ≤ f (vn) and that

f
(
vp
)
< f

(
vp+1

)
for each p ∈ [n − 1] satisfying

(
vp, vp+1

)
∈ A (27)

(by the definition of “( f , D)-friendly”).
In particular, we have f (v1) ≤ f (v2) ≤ · · · ≤ f (vn). In other words, the entries

of the V-listing v appear in v in the order of increasing level. In other words,
the V-listing v first lists the vertices of the smallest level, then the vertices of the
second-smallest level, and so on. Since v is a V-listing (i.e., contains each element of
V exactly once), we can restate this as follows: The V-listing v first lists each vertex
of the smallest level exactly once, then lists each vertex of the second-smallest level
exactly once, and so on. In other words, the V-listing v first lists each vertex of
level j1 exactly once, then lists each vertex of level j2 exactly once, and so on (since
j1, j2, . . . , jq are all the levels that a vertex of D can have, listed in increasing order).
In other words, the V-listing v first lists each element of f−1 (j1) exactly once, then
lists each element of f−1 (j2) exactly once, and so on. In other words, the V-listing
v can be written as a concatenation of an f−1 (j1)-listing, an f−1 (j2)-listing, and so
on (in this order).

In other words, v can be written as a concatenation
⊗

j∈ f (V)
v(j), where v(j) is an

f−1 (j)-listing for each j ∈ f (V) (since j1, j2, . . . , jq are the elements of f (V), listed
in increasing order).

Let us write v in this way. Thus, v(j) is an f−1 (j)-listing for each j ∈ f (V), and
we have v =

⊗
j∈ f (V)

v(j).

We shall now show that v(j) is a hamp of Dj for each j ∈ f (V).
Indeed, let i ∈ f (V) be arbitrary. We recall that the digraph Di was defined to be(

f−1 (i) , Ai
)
. Hence, its complement Di is

(
f−1 (i) ,

(
f−1 (i)× f−1 (i)

)
\ Ai

)
(by

the definition of the complement of a digraph). In particular, the vertices of Di are
the elements of f−1 (i).

Note that v(i) is an f−1 (i)-listing (since v(j) is an f−1 (j)-listing for each j ∈
f (V)). Thus, v(i) is a list of all elements of f−1 (i). In particular, all entries of the
list v(i) belong to f−1 (i). Note that the set f−1 (i) is nonempty (since i ∈ f (V)),
so that any f−1 (i)-listing must also be nonempty. Hence, v(i) is nonempty (since
v(i) is an f−1 (i)-listing). Furthermore, v(i) is a tuple of distinct elements of f−1 (i)
(since v(i) is an f−1 (i)-listing).
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Clearly, v(i) is a factor of the concatenation
⊗

j∈ f (V)
v(j). Thus, v(i) is a contiguous

block of the list
⊗

j∈ f (V)
v(j). In other words, v(i) is a contiguous block of the list

v (since v =
⊗

j∈ f (V)
v(j)). In other words, v(i) = (vk, vk+1, . . . , vℓ) for some two

elements k and ℓ of [n] (since v = (v1, v2, . . . , vn)). Consider these k and ℓ. From
v(i) = (vk, vk+1, . . . , vℓ), we obtain

Arcs
(

v(i)
)
= Arcs ((vk, vk+1, . . . , vℓ))

= {(vk, vk+1) , (vk+1, vk+2) , . . . , (vℓ−1, vℓ)}
=
{(

vp, vp+1
)

| p ∈ {k, k + 1, . . . , ℓ− 1}
}

. (28)

Now, let p ∈ {k, k + 1, . . . , ℓ− 1}. We shall show that
(
vp, vp+1

)
∈
(

f−1 (i)× f−1 (i)
)
\

Ai.
Indeed, p ∈ {k, k + 1, . . . , ℓ− 1} ⊆ {1, 2, . . . , n − 1} (since k ≥ 1 and ℓ︸︷︷︸

≤n

−1 ≤

n − 1). In other words, p ∈ [n − 1] (since [n − 1] = {1, 2, . . . , n − 1}).
Also, from p ∈ {k, k + 1, . . . , ℓ− 1}, we see that both p and p+ 1 belong to the set

{k, k + 1, . . . , ℓ}. Hence, both vp and vp+1 are entries of the list (vk, vk+1, . . . , vℓ). In
other words, both vp and vp+1 are entries of the list v(i) (since v(i) = (vk, vk+1, . . . , vℓ)).
Hence, both vp and vp+1 belong to f−1 (i) (since all entries of the list v(i) belong to
f−1 (i)). Therefore,

(
vp, vp+1

)
∈ f−1 (i)× f−1 (i).

Now, we shall show that
(
vp, vp+1

)
/∈ Ai. Indeed, assume the contrary. Thus,(

vp, vp+1
)
∈ Ai = A ∩

(
f−1 (i)× f−1 (i)

)
(by (12), applied to j = i)

⊆ A

and therefore f
(
vp
)
< f

(
vp+1

)
(by (27)). However, f

(
vp
)
= i (since vp belongs

to f−1 (i)) and f
(
vp+1

)
= i (since vp+1 belongs to f−1 (i)), so that f

(
vp
)
= i =

f
(
vp+1

)
. This contradicts f

(
vp
)
< f

(
vp+1

)
. This contradiction shows that our

assumption was false. Hence,
(
vp, vp+1

)
/∈ Ai is proved.

Combining
(
vp, vp+1

)
∈ f−1 (i)× f−1 (i) with

(
vp, vp+1

)
/∈ Ai, we obtain

(
vp, vp+1

)
∈(

f−1 (i)× f−1 (i)
)
\ Ai.

Forget that we fixed p. We thus have proved that
(
vp, vp+1

)
∈
(

f−1 (i)× f−1 (i)
)
\

Ai for each p ∈ {k, k + 1, . . . , ℓ− 1}. In other words,{(
vp, vp+1

)
| p ∈ {k, k + 1, . . . , ℓ− 1}

}
⊆
(

f−1 (i)× f−1 (i)
)
\ Ai.

In view of (28), we can rewrite this as

Arcs
(

v(i)
)
⊆
(

f−1 (i)× f−1 (i)
)
\ Ai.
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Now, we know that v(i) is a nonempty tuple of distinct elements of f−1 (i) and
has the property that Arcs

(
v(i)
)
⊆
(

f−1 (i)× f−1 (i)
)
\ Ai. In other words, v(i) is a

Di-path (by the definition of a “Di-path”, since the digraph Di is
(

f−1 (i) ,
(

f−1 (i)× f−1 (i)
)
\ Ai

)
).

This Di-path v(i) furthermore contains each element of f−1 (i) (since it is an f−1 (i)-
listing). In other words, this Di-path v(i) contains each vertex of Di (since the ver-
tices of Di are the elements of f−1 (i)).

In other words, v(i) is a hamp of Di (by the definition of a hamp).
Forget that we fixed i. We thus have shown that v(i) is a hamp of Di for each

i ∈ f (V). Renaming the variable i as j in this sentence, we obtain the following:
v(j) is a hamp of Dj for each j ∈ f (V).

We have thus written v in the form v =
⊗

j∈ f (V)
v(j), where v(j) is a hamp of Dj

for each j ∈ f (V). This shows that v can be written in this form. Claim 4 is thus
proven.]

Claim 5: Let
(

v(j)
)

j∈ f (V)
be a family of lists, where each v(j) is a hamp

of Dj. Then, this family
(

v(j)
)

j∈ f (V)
can be uniquely reconstructed from

the concatenation
⊗

j∈ f (V)
v(j).

[Proof of Claim 5: For each j ∈ f (V), the list v(j) is a hamp of Dj and thus an

f−1 (j)-listing29. Hence, Claim 2 shows that the family
(

v(j)
)

j∈ f (V)
can be uniquely

reconstructed from the concatenation
⊗

j∈ f (V)
v(j). This proves Claim 5.]

Now, if
(

v(j)
)

j∈ f (V)
∈ ∏

j∈ f (V)

{
hamps of Dj

}
is any family (i.e., if

(
v(j)
)

j∈ f (V)
is

any family of lists such that each v(j) is a hamp of Dj), then the concatenation⊗
j∈ f (V)

v(j) is an ( f , D)-friendly V-listing (by Claim 3). Hence, the map

∏
j∈ f (V)

{
hamps of Dj

}
→ {( f , D) -friendly V-listings} ,(

v(j)
)

j∈ f (V)
7→

⊗
j∈ f (V)

v(j)

is well-defined. This map is furthermore injective (since Claim 5 shows that a
family

(
v(j)
)

j∈ f (V)
∈ ∏

j∈ f (V)

{
hamps of Dj

}
can be uniquely reconstructed from

29This can be shown just as in the proof of Claim 3.
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the concatenation
⊗

j∈ f (V)
v(j)) and surjective (since Claim 4 says that any ( f , D)-

friendly V-listing v can be written in the form v =
⊗

j∈ f (V)
v(j) for some family(

v(j)
)

j∈ f (V)
∈ ∏

j∈ f (V)

{
hamps of Dj

}
). Therefore, this map is bijective. The bijection

principle thus yields

|{( f , D) -friendly V-listings}|

=

∣∣∣∣∣∣ ∏
j∈ f (V)

{
hamps of Dj

}∣∣∣∣∣∣ = ∏
j∈ f (V)

∣∣{hamps of Dj
}∣∣︸ ︷︷ ︸

=(# of hamps of Dj)

= ∏
j∈ f (V)

(
# of hamps of Dj

)
.

However, Lemma 2.39 yields

∑
σ∈SV ;
f ◦σ= f

∑
F⊆Aσ∩A
is linear

(−1)|F| = ∏
j∈ f (V)

(
# of hamps of Dj

)
.

Comparing these two equalities, we obtain

∑
σ∈SV ;
f ◦σ= f

∑
F⊆Aσ∩A
is linear

(−1)|F| = |{( f , D) -friendly V-listings}|

= (# of ( f , D) -friendly V-listings) .

This proves Lemma 2.40.

2.8. A bit of Pólya counting

The following lemma is well-known, e.g., from the theory of Pólya enumeration:

Lemma 2.41. Let V be a finite set. Let σ ∈ SV be a permutation of V. Then,

∑
f :V→P;
f ◦σ= f

∏
v∈V

x f (v) = ptype σ.

Proof. Let γ1, γ2, . . . , γk be the cycles of σ, listed with no repetition30. For each
i ∈ [k], let Vi be the set of entries of the cycle γi. We shall now collect some basic
properties of these cycles γi and the corresponding sets Vi:

30Keep in mind that a cycle is a rotation-equivalence class. Thus, “listed with no repetition” means
that no two of γ1, γ2, . . . , γk are the same rotation-equivalence class. For example, if γ1 is (1, 2)∼,
then γ2 cannot be (2, 1)∼.
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Claim 1: Let v ∈ V. Then, there exists a unique i ∈ [k] such that v ∈ Vi.

[Proof of Claim 1: We know that σ is a permutation of V. Hence, each element of
V belongs to exactly one cycle of σ. In particular, v belongs to exactly one cycle of
σ. In other words, there exists exactly one cycle of σ such that v is an entry of this
cycle. In other words, there exists a unique i ∈ [k] such that v is an entry of γi (since
γ1, γ2, . . . , γk are the cycles of σ, listed with no repetition). In other words, there
exists a unique i ∈ [k] such that v ∈ Vi (since the statement “v ∈ Vi” is equivalent
to the statement “v is an entry of γi” 31). This proves Claim 1.]

Claim 2: Let i ∈ [k]. Then:

(a) We have σ (Vi) ⊆ Vi.

(b) There exists an element vi ∈ Vi such that

Vi =
{

σj (vi) | j ∈ N
}

.

[Proof of Claim 2: It is well-known (from Definition 1.24 (a)) that each cycle of σ
has the form (

σ0 (w) , σ1 (w) , σ2 (w) , . . . , σq−1 (w)
)

,

where w is an element of V and where q is the smallest positive integer satisfying
σq (w) = w. Thus, in particular, γi has this form (since γi is a cycle of σ). In other
words, there exists an element w of V such that

γi =
(

σ0 (w) , σ1 (w) , σ2 (w) , . . . , σq−1 (w)
)

,

where q is the smallest positive integer satisfying σq (w) = w. Let us consider this
w and this q.

We have γi =
(
σ0 (w) , σ1 (w) , σ2 (w) , . . . , σq−1 (w)

)
. Thus, the entries of the

cycle γi are σ0 (w) , σ1 (w) , σ2 (w) , . . . , σq−1 (w).
The set Vi was defined as the set of entries of the cycle γi. Thus,

Vi =
{

σ0 (w) , σ1 (w) , σ2 (w) , . . . , σq−1 (w)
}

(since the entries of the cycle γi are σ0 (w) , σ1 (w) , σ2 (w) , . . . , σq−1 (w)). Since q
is a positive integer, we have q − 1 ∈ N and thus 0 ∈ {0, 1, . . . , q − 1}. Hence,

σ0 (w) ∈
{

σ0 (w) , σ1 (w) , σ2 (w) , . . . , σq−1 (w)
}
= Vi.

In other words, w ∈ Vi (since σ0︸︷︷︸
=id

(w) = id (w) = w).

(a) Let g ∈ Vi. We shall prove that σ (g) ∈ Vi.

31because Vi is the set of entries of γi
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Indeed, g ∈ Vi =
{

σ0 (w) , σ1 (w) , σ2 (w) , . . . , σq−1 (w)
}

. In other words, g =
σr (w) for some r ∈ {0, 1, . . . , q − 1}. Consider this r. Applying the map σ to both
sides of g = σr (w), we obtain σ (g) = σ (σr (w)) = (σ ◦ σr)︸ ︷︷ ︸

=σr+1

(w) = σr+1 (w).

We are in one of the following two cases:
Case 1: We have r ̸= q − 1.
Case 2: We have r = q − 1.
Let us first consider Case 1. In this case, we have r ̸= q − 1. Combining this with

r ∈ {0, 1, . . . , q − 1}, we obtain r ∈ {0, 1, . . . , q − 1} \ {q − 1} = {0, 1, . . . , q − 2}.
Hence, r + 1 ∈ {1, 2, . . . , q − 1} ⊆ {0, 1, . . . , q − 1}. Thus,

σr+1 (w) ∈
{

σ0 (w) , σ1 (w) , σ2 (w) , . . . , σq−1 (w)
}
= Vi.

Now, σ (g) = σr+1 (w) ∈ Vi. Hence, σ (g) ∈ Vi is proved in Case 1.
Let us next consider Case 2. In this case, we have r = q − 1. Hence, r + 1 = q.

Now, σ (g) = σr+1 (w) = σq (w) (since r + 1 = q), so that σ (g) = σq (w) = w ∈ Vi.
Hence, σ (g) ∈ Vi is proved in Case 2.

We have now proved σ (g) ∈ Vi in both Cases 1 and 2. Hence, σ (g) ∈ Vi always
holds.

Forget that we fixed g. We thus have shown that σ (g) ∈ Vi for each g ∈ Vi. In
other words, σ (Vi) ⊆ Vi. This proves Claim 2 (a).

(b) We shall first show that σj (w) ∈ Vi for each j ∈ N.
Indeed, we shall prove this by induction on j:
Base case: Our claim σj (w) ∈ Vi holds for j = 0, since σ0 (w) ∈ Vi.
Induction step: Let s ∈ N. Assume (as the induction hypothesis) that σj (w) ∈ Vi

holds for j = s. We must prove that σj (w) ∈ Vi holds for j = s + 1.
We have assumed that σj (w) ∈ Vi holds for j = s. In other words, σs (w) ∈ Vi.

Now,

σs+1︸︷︷︸
=σ◦σs

(w) = (σ ◦ σs) (w) = σ

σs (w)︸ ︷︷ ︸
∈Vi

 ∈ σ (Vi) ⊆ Vi

(by Claim 2 (a)). In other words, σj (w) ∈ Vi holds for j = s + 1. This completes the
induction step.

Thus, we have proved that σj (w) ∈ Vi for each j ∈ N. In other words,{
σj (w) | j ∈ N

}
⊆ Vi.

Combining this with

Vi =
{

σ0 (w) , σ1 (w) , σ2 (w) , . . . , σq−1 (w)
}

=
{

σj (w) | j ∈ {0, 1, . . . , q − 1}
}

⊆
{

σj (w) | j ∈ N
}

(since {0, 1, . . . , q − 1} ⊆ N) ,
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we obtain Vi =
{

σj (w) | j ∈ N
}

. Since we know that w ∈ Vi, we can thus con-
clude that there exists an element vi ∈ Vi such that Vi =

{
σj (vi) | j ∈ N

}
(namely,

vi = w). This proves Claim 2 (b).]

Claim 3: The entries of the partition type σ are the numbers |V1| , |V2| , . . . , |Vk|
in some order.

[Proof of Claim 3: For each i ∈ [k], we have

(the length of the cycle γi) = |Vi| (29)

32. However, we defined type σ to be the partition whose entries are the lengths of
the cycles of σ. Thus,

(the entries of type σ)

= (the lengths of the cycles of σ)

(where we disregard the order of the entries)
= (the lengths of the cycles γ1, γ2, . . . , γk)(

since the cycles of σ are γ1, γ2, . . . , γk
(listed without repetition)

)
= (the numbers |V1| , |V2| , . . . , |Vk|) (by (29)) .

In other words, the entries of type σ are the numbers |V1| , |V2| , . . . , |Vk| in some
order. This proves Claim 3.]

Now, we introduce two crucial pieces of notation:

• For each v ∈ V, we let ind v denote the unique i ∈ [k] such that v ∈ Vi. (This
is well-defined, since Claim 1 shows that there indeed exists a unique i ∈ [k]
such that v ∈ Vi.)

32Proof. Let i ∈ [k]. Then, Vi is the set of entries of γi (by the definition of Vi). Hence, the elements
of Vi are the entries of γi.

The cycle γi of σ is a rotation-equivalence class of tuples of distinct elements (since any cycle
of any permutation is such a class). Hence, its entries are distinct.

Now,

|Vi| = (the number of distinct elements of Vi)

= (the number of distinct entries of γi)

(since the elements of Vi are the entries of γi)

= (the number of entries of γi)

(since the entries of γi are distinct)
= (the length of the cycle γi) .

Therefore, (the length of the cycle γi) = |Vi|.
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• For any k-tuple (a1, a2, . . . , ak) ∈ Pk, we define a map

g [a1, a2, . . . , ak] : V → P

by setting

((g [a1, a2, . . . , ak]) (v) := aind v for each v ∈ V) .

We observe the following:

Claim 4: Let j ∈ [k], and let v ∈ Vj. Then, ind v = j.

[Proof of Claim 4: Recall that ind v is defined as the unique i ∈ [k] such that v ∈ Vi.
Hence, if some i ∈ [k] satisfies v ∈ Vi, then ind v = i. Applying this to i = j, we
obtain ind v = j (since v ∈ Vj). This proves Claim 4.]

Claim 5: For any k-tuple (a1, a2, . . . , ak) ∈ Pk, we have g [a1, a2, . . . , ak] ∈
{ f : V → P | f ◦ σ = f }.

[Proof of Claim 5: Let (a1, a2, . . . , ak) ∈ Pk be a k-tuple. Then, g [a1, a2, . . . , ak] is a
map from V to P. We shall now show that (g [a1, a2, . . . , ak]) ◦ σ = g [a1, a2, . . . , ak].

Indeed, let v ∈ V be arbitrary. Recall that ind v is defined as the unique i ∈ [k]
such that v ∈ Vi. Hence, ind v ∈ [k] and v ∈ Vind v. Thus, Claim 2 (a) (applied to
i = ind v) yields σ (Vind v) ⊆ Vind v. From v ∈ Vind v, we obtain σ (v) ∈ σ (Vind v) ⊆
Vind v.

Therefore, Claim 4 (applied to ind v and σ (v) instead of j and v) yields ind (σ (v)) =
ind v (since σ (v) ∈ Vind v).

The definition of g [a1, a2, . . . , ak] yields

(g [a1, a2, . . . , ak]) (v) = aind v and
(g [a1, a2, . . . , ak]) (σ (v)) = aind(σ(v)) = aind v (since ind (σ (v)) = ind v) .

Comparing these two equalities, we obtain

(g [a1, a2, . . . , ak]) (v) = (g [a1, a2, . . . , ak]) (σ (v)) = ((g [a1, a2, . . . , ak]) ◦ σ) (v) .

Forget that we fixed v. We thus have proved that
(g [a1, a2, . . . , ak]) (v) = ((g [a1, a2, . . . , ak]) ◦ σ) (v) for each v ∈ V. In other words,
g [a1, a2, . . . , ak] = (g [a1, a2, . . . , ak]) ◦ σ. In other words, (g [a1, a2, . . . , ak]) ◦ σ =
g [a1, a2, . . . , ak].

Thus, g [a1, a2, . . . , ak] is a map f : V → P satisfying f ◦ σ = f . In other words,
g [a1, a2, . . . , ak] ∈ { f : V → P | f ◦ σ = f }. This proves Claim 5.]

Claim 5 allows us to define a map

Γ : Pk → { f : V → P | f ◦ σ = f } ,
(a1, a2, . . . , ak) 7→ g [a1, a2, . . . , ak] .

Consider this map Γ. Next, we claim:
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Claim 6: The map Γ is injective.

[Proof of Claim 6: Let (a1, a2, . . . , ak) and (b1, b2, . . . , bk) be two elements of Pk

satisfying Γ (a1, a2, . . . , ak) = Γ (b1, b2, . . . , bk). We shall show that (a1, a2, . . . , ak) =
(b1, b2, . . . , bk).

Indeed, let us fix i ∈ [k]. Claim 2 (b) shows that there exists an element vi ∈ Vi
such that

Vi =
{

σj (vi) | j ∈ N
}

.

Consider this vi. Claim 4 (applied to j = i and v = vi) yields ind (vi) = i (since
vi ∈ Vi). The definition of g [a1, a2, . . . , ak] yields

(g [a1, a2, . . . , ak]) (vi) = aind(vi)
= ai (since ind (vi) = i) .

The definition of Γ yields Γ (a1, a2, . . . , ak) = g [a1, a2, . . . , ak]. Thus,

(Γ (a1, a2, . . . , ak))︸ ︷︷ ︸
=g[a1,a2,...,ak]

(vi) = (g [a1, a2, . . . , ak]) (vi) = ai. (30)

The same argument (applied to (b1, b2, . . . , bk) instead of (a1, a2, . . . , ak)) yields

(Γ (b1, b2, . . . , bk)) (vi) = bi. (31)

However, (30) yields

ai = (Γ (a1, a2, . . . , ak))︸ ︷︷ ︸
=Γ(b1,b2,...,bk)

(vi) = (Γ (b1, b2, . . . , bk)) (vi) = bi (by (31)) .

Forget that we fixed i. We thus have proved that ai = bi for each i ∈ [k]. In other
words, (a1, a2, . . . , ak) = (b1, b2, . . . , bk).

Forget that we fixed (a1, a2, . . . , ak) and (b1, b2, . . . , bk). We thus have shown that if
(a1, a2, . . . , ak) and (b1, b2, . . . , bk) are two elements of Pk satisfying Γ (a1, a2, . . . , ak) =
Γ (b1, b2, . . . , bk), then (a1, a2, . . . , ak) = (b1, b2, . . . , bk). In other words, the map Γ is
injective. This proves Claim 6.]

Claim 7: The map Γ is surjective.

[Proof of Claim 7: Let h ∈ { f : V → P | f ◦ σ = f }. We shall construct a k-tuple
(a1, a2, . . . , ak) ∈ Pk such that h = Γ (a1, a2, . . . , ak).

Indeed, we have h ∈ { f : V → P | f ◦ σ = f }. In other words, h is a map f :
V → P satisfying f ◦ σ = f . In other words, h is a map from V to P and satisfies
h ◦ σ = h. Hence,

h ◦ σj = h (32)

for each j ∈ N 33.

33Proof of (32): We prove (32) by induction on j:
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For each i ∈ [k], there exists an element vi ∈ Vi such that

Vi =
{

σj (vi) | j ∈ N
}

(33)

(by Claim 2 (b)). Consider such a vi for each i ∈ [k]. For each i ∈ [k], we set

ai := h (vi) .

Thus, we have defined k elements a1, a2, . . . , ak ∈ P. Hence, (a1, a2, . . . , ak) ∈ Pk.
Now, we shall show that h = Γ (a1, a2, . . . , ak).
Indeed, let v ∈ V be arbitrary. Recall that ind v is defined as the unique i ∈ [k]

such that v ∈ Vi. Hence, ind v ∈ [k] and v ∈ Vind v. Therefore,

v ∈ Vind v =
{

σj (vind v) | j ∈ N
}

(by (33), applied to i = ind v). In other words, v = σj (vind v) for some j ∈ N.
Consider this j. Now,

h

 v︸︷︷︸
=σj(vind v)

 = h
(

σj (vind v)
)
=
(

h ◦ σj
)

︸ ︷︷ ︸
=h

(by (32))

(vind v) = h (vind v) .

Comparing this with

(Γ (a1, a2, . . . , ak))︸ ︷︷ ︸
=g[a1,a2,...,ak]

(by the definition of Γ)

(v) = (g [a1, a2, . . . , ak]) (v)

= aind v (by the definition of g [a1, a2, . . . , ak])

= h (vind v) (by the definition of aind v) ,

we obtain
h (v) = (Γ (a1, a2, . . . , ak)) (v) .

Forget that we fixed v. We thus have proved that h (v) = (Γ (a1, a2, . . . , ak)) (v)
for each v ∈ V. In other words, h = Γ (a1, a2, . . . , ak). Hence, h ∈ Γ

(
Pk) (since

(a1, a2, . . . , ak) ∈ Pk).

Base case: We have h ◦ σ0︸︷︷︸
=id

= h ◦ id = h. In other words, (32) holds for j = 0.

Induction step: Let i ∈ N. Assume (as the induction hypothesis) that (32) holds for j = i. We
must prove that (32) holds for j = i + 1.

We have assumed that (32) holds for j = i. In other words, h ◦ σi = h. Now,

h ◦ σi+1︸︷︷︸
=σ◦σi

= h ◦ σ︸︷︷︸
=h

◦σi = h ◦ σi = h.

In other words, (32) holds for j = i + 1. This completes the induction step. Thus, we have proved
(32) by induction.
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Forget that we fixed h. We thus have proved that h ∈ Γ
(
Pk) for each h ∈

{ f : V → P | f ◦ σ = f }. In other words, { f : V → P | f ◦ σ = f } ⊆ Γ
(
Pk). In

other words, the map Γ is surjective. This proves Claim 7.]

Claim 8: Let (a1, a2, . . . , ak) ∈ Pk. Then,

∏
v∈V

x(Γ(a1,a2,...,ak))(v) =
k

∏
i=1

x|Vi|
ai .

[Proof of Claim 8: For each v ∈ V, we have

(Γ (a1, a2, . . . , ak))︸ ︷︷ ︸
=g[a1,a2,...,ak]

(by the definition of Γ)

(v) = (g [a1, a2, . . . , ak]) (v)

= aind v (by the definition of g [a1, a2, . . . , ak]) .

Thus, for each v ∈ V, we have

x(Γ(a1,a2,...,ak))(v) = xaind v .

Multiplying these equalities for all v ∈ V, we obtain

∏
v∈V

x(Γ(a1,a2,...,ak))(v) = ∏
v∈V

xaind v =
k

∏
j=1

∏
v∈V;

ind v=j

xaind v︸ ︷︷ ︸
=xaj

(since ind v=j)(
here, we have split the product
according to the value of ind v

)
=

k

∏
j=1

∏
v∈V;

ind v=j

xaj . (34)

Now, fix j ∈ [k]. Then, {v ∈ V | ind v = j} = Vj
34. Hence, the product sign

“ ∏
v∈V;

ind v=j

” can be rewritten as “ ∏
v∈Vj

”. Thus, in particular,

∏
v∈V;

ind v=j

xaj = ∏
v∈Vj

xaj = x|Vj|
aj . (35)

34Proof. If v ∈ Vj, then v ∈ V (since Vj is a subset of V) and ind v = j (by Claim 4). Thus, every
element of Vj is an element v ∈ V satisfying ind v = j. In other words, Vj ⊆ {v ∈ V | ind v = j}.

Let v ∈ V satisfy ind v = j. Recall that ind v is defined as the unique i ∈ [k] such that v ∈ Vi.
Hence, ind v ∈ [k] and v ∈ Vind v. Thus, v ∈ Vind v = Vj (since ind v = j). In other words, v
belongs to Vj.

Forget that we fixed v. We thus have shown that every v ∈ V satisfying ind v = j must belong
to Vj. In other words, {v ∈ V | ind v = j} ⊆ Vj. Combining this with Vj ⊆ {v ∈ V | ind v = j},
we obtain {v ∈ V | ind v = j} = Vj.
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Now, forget that we fixed j. We thus have proved (35) for each j ∈ [k]. Now, (34)
becomes

∏
v∈V

x(Γ(a1,a2,...,ak))(v) =
k

∏
j=1

∏
v∈V;

ind v=j

xaj

︸ ︷︷ ︸
=x

|Vj|
aj

(by (35))

=
k

∏
j=1

x|Vj|
aj =

k

∏
i=1

x|Vi|
ai

(here, we have renamed the index j as i in the product). This proves Claim 8.]

Now, our proof is almost complete. The map Γ : Pk → { f : V → P | f ◦ σ = f }
is injective (by Claim 6) and surjective (by Claim 7); thus, it is bijective. In other
words, Γ is a bijection. Hence, we can substitute Γ (a1, a2, . . . , ak) for f in the sum

∑
f :V→P;
f ◦σ= f

∏
v∈V

x f (v). We thus obtain

∑
f :V→P;
f ◦σ= f

∏
v∈V

x f (v) = ∑
(a1,a2,...,ak)∈Pk

∏
v∈V

x(Γ(a1,a2,...,ak))(v)︸ ︷︷ ︸
=

k
∏
i=1

x|Vi|
ai

(by Claim 8)

= ∑
(a1,a2,...,ak)∈Pk

k

∏
i=1

x|Vi|
ai . (36)

On the other hand, Claim 3 shows that the entries of the partition type σ are
the numbers |V1| , |V2| , . . . , |Vk| in some order. In other words, there exists a per-
mutation τ of [k] such that type σ =

(∣∣∣Vτ(1)

∣∣∣ ,
∣∣∣Vτ(2)

∣∣∣ , . . . ,
∣∣∣Vτ(k)

∣∣∣). Consider this
τ. The map τ : [k] → [k] is a bijection (since it is a permutation of [k]). From
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type σ =
(∣∣∣Vτ(1)

∣∣∣ ,
∣∣∣Vτ(2)

∣∣∣ , . . . ,
∣∣∣Vτ(k)

∣∣∣), we obtain

ptype σ = p(|Vτ(1)|,|Vτ(2)|,...,|Vτ(k)|)
= p|Vτ(1)|p|Vτ(2)| · · · p|Vτ(k)|

(
by the definition of p(|Vτ(1)|,|Vτ(2)|,...,|Vτ(k)|)

)
= ∏

i∈[k]
p|Vτ(i)|

= ∏
i∈[k]︸︷︷︸
=

k
∏
i=1

p|Vi|︸︷︷︸
=x|Vi|

1 +x|Vi|
2 +x|Vi|

3 +···
(by the definition of p|Vi|)

(
here, we have substituted i for τ (i) in the
product, since τ : [k] → [k] is a bijection

)

=
k

∏
i=1

(
x|Vi|

1 + x|Vi|
2 + x|Vi|

3 + · · ·
)

︸ ︷︷ ︸
= ∑

a∈P

x|Vi|
a

=
k

∏
i=1

∑
a∈P

x|Vi|
a

= ∑
(a1,a2,...,ak)∈Pk

k

∏
i=1

x|Vi|
ai (by the product rule) .

Comparing this with (36), we obtain

∑
f :V→P;
f ◦σ= f

∏
v∈V

x f (v) = ptype σ.

Thus, Lemma 2.41 is proven.

2.9. A final alternating sum

We need one more alternating-sum identity:

Proposition 2.42. Let D = (V, A) be a digraph. Let σ ∈ SV be a permutation of
V. Then,

∑
F⊆Aσ∩A
is linear

(−1)|F| =

{
(−1)φ(σ) , if σ ∈ SV

(
D, D

)
;

0, else,

where we set
φ (σ) := ∑

γ∈Cycs σ;
γ is a D-cycle

(ℓ (γ)− 1) .

Our proof of this proposition requires several auxiliary results. We begin by
proving some lemmas on the linearity of certain sets:
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Lemma 2.43. Let V be a finite set. Let p be a path of V. Then, Arcs p is a linear
subset of V × V.

Proof. Recall that a path of V means a nonempty tuple of distinct elements of V.
Hence, p is a nonempty tuple of distinct elements of V (since p is a path of V).

Let W be the set of all entries of p. Then, W is a subset of V (since p is a tuple of
elements of V). Moreover, the entries of p are precisely the elements of W (since W
is the set of all entries of p). Thus, all entries of p belong to W. Hence, p is a tuple
of elements of W. Thus, p is a nonempty tuple of distinct elements of W (since p is
a nonempty tuple of distinct elements of V). In other words, p is a path of W (by
the definition of a “path of W”).

Each v ∈ W is an element of W. In other words, each v ∈ W is an entry of p
(since the entries of p are precisely the elements of W). In other words, each v ∈ W
belongs to the path p.

Now, we claim that the 1-element set {p} is a path cover of W. Indeed, {p} is
clearly a set of paths of W (since p is a path of W) and has the property that each
v ∈ W belongs to exactly one of these paths (because each v ∈ W belongs to the
path p). In other words, {p} is a path cover of W (by the definition of a “path
cover”). The arc set Arcs {p} of this path cover is

Arcs {p} =
⋃

v∈{p}
Arcs v (by the definition of Arcs {p})

= Arcs p.

Thus, Arcs p is the arc set of some path cover of W (namely, of the path cover {p}).
It is furthermore easy to see that Arcs p is a subset of W × W 35.
Now, recall that a subset F of W ×W is said to be linear if it is the arc set of some

path cover of W (by the definition of “linear”). Hence, the subset Arcs p of W × W
is linear (since it is the arc set of some path cover of W).

However, Proposition 2.9 (applied to F = Arcs p) shows that Arcs p is linear as a
subset of W × W if and only if Arcs p is linear as a subset of V × V. Thus, Arcs p
is linear as a subset of V × V (since Arcs p is linear as a subset of W × W). This
proves Lemma 2.43.

35Proof. Write the path p as (v1, v2, . . . , vk). Then, the entries of p are v1, v2, . . . , vk. However, we
know that all entries of p belong to W. In other words, all of v1, v2, . . . , vk belong to W (since
the entries of p are v1, v2, . . . , vk). Hence, the pairs (v1, v2) , (v2, v3) , . . . , (vk−1, vk) belong to
W × W.

However, p = (v1, v2, . . . , vk). Thus,

Arcs p = Arcs (v1, v2, . . . , vk)

= {(v1, v2) , (v2, v3) , . . . , (vk−1, vk)} (by the definition of Arcs (v1, v2, . . . , vk))

⊆ W × W (since the pairs (v1, v2) , (v2, v3) , . . . , (vk−1, vk) belong to W × W) .

In other words, Arcs p is a subset of W × W.
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Lemma 2.44. Let V be a finite set. Let σ ∈ SV be a permutation of V. Let γ be a
cycle of σ. Let a ∈ CArcs γ. Then, there exists a tuple w = (w1, w2, . . . , wk) ∈ γ
such that a = (wk, w1).

Proof. The cycle γ is a cycle of σ, and thus is a rotation-equivalence class of nonempty
tuples of distinct elements of V (since any cycle of σ is such a class). Hence, we can
write γ in the form γ = v∼, where v is a nonempty tuple of distinct elements of V.
Consider this v.

Write this tuple v as v = (v1, v2, . . . , vk). Then, k ≥ 1 (since v is nonempty), and
the entries v1, v2, . . . , vk of v are distinct (since v is a tuple of distinct elements of
V). Let us set vk+1 := v1. We have

CArcs γ = CArcs (v∼) (since γ = v∼)
= CArcs v (by the definition of CArcs (v∼) , since v ∈ v∼)
= {(vi, vi+1) | i ∈ [k]} (37)

(by the definition of CArcs v, since v = (v1, v2, . . . , vk) and vk+1 = v1). Thus,

CArcs γ = {(vi, vi+1) | i ∈ [k]}
= {(v1, v2) , (v2, v3) , . . . , (vk, vk+1)} . (38)

We have
a ∈ CArcs γ = {(vi, vi+1) | i ∈ [k]} (by (37)) .

In other words, there exists some i ∈ [k] such that a = (vi, vi+1). Consider this i.
We now define a k-tuple w ∈ Vk by

w := (vi+1, vi+2, . . . , vk, v1, v2, . . . , vi) .

Thus, w can be obtained from v by a cyclic rotation (specifically, by cyclically ro-
tating v a total of i steps to the left). Hence, w is rotation-equivalent to v. Thus, w
belongs to the same rotation-equivalence class as v. In other words, w ∈ v∼ (since
v∼ is the rotation-equivalence class to which v belongs). In other words, w ∈ γ
(since γ = v∼). In other words, (w1, w2, . . . , wk) ∈ γ (since w = (w1, w2, . . . , wk)).

Let us write the k-tuple w ∈ Vk as w = (w1, w2, . . . , wk). Then, it is easy to see
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that vi = wk
36 and vi+1 = w1

37. Now,

a =

 vi︸︷︷︸
=wk

, vi+1︸︷︷︸
=w1

 = (wk, w1) .

We have thus found a tuple w = (w1, w2, . . . , wk) ∈ γ such that a = (wk, w1).
Hence, such a tuple exists. This proves Lemma 2.44.

Lemma 2.45. Let V be a finite set. Let σ ∈ SV be a permutation of V. Let γ be a
cycle of σ. Let C = CArcs γ. Then:

(a) The subset C of V × V is not linear.

(b) Every proper subset of C is linear.

36Proof. We have w = (vi+1, vi+2, . . . , vk, v1, v2, . . . , vi). Thus,

(the last entry of the k-tuple w)

= (the last entry of the k-tuple (vi+1, vi+2, . . . , vk, v1, v2, . . . , vi))

= vi (since i ∈ [k]) .

Hence,
vi = (the last entry of the k-tuple w) = wk

(since w = (w1, w2, . . . , wk)).
37Proof. We are in one of the following two cases:

Case 1: We have i ̸= k.
Case 2: We have i = k.
Let us first consider Case 1. In this case, we have i ̸= k. Combining i ∈ [k] with i ̸= k, we find

i ∈ [k] \ {k} = [k − 1]. However, we have w = (vi+1, vi+2, . . . , vk, v1, v2, . . . , vi). Thus,

(the first entry of the k-tuple w)

= (the first entry of the k-tuple (vi+1, vi+2, . . . , vk, v1, v2, . . . , vi))

= vi+1 (since i ∈ [k − 1]) .

Hence, vi+1 = (the first entry of the k-tuple w) = w1 (since w = (w1, w2, . . . , wk)). Thus, vi+1 =
w1 is proved in Case 1.

Let us now consider Case 2. In this case, we have i = k. Hence, vi+1 = vk+1 = v1. However,
we have

w = (vi+1, vi+2, . . . , vk, v1, v2, . . . , vi)

= (vk+1, vk+2, . . . , vk, v1, v2, . . . , vk) (since i = k)
= (v1, v2, . . . , vk) .

Hence,
(the first entry of the k-tuple w) = v1 = vi+1 (since vi+1 = v1) .

Thus, vi+1 = (the first entry of the k-tuple w) = w1 (since w = (w1, w2, . . . , wk)). Thus, vi+1 =
w1 is proved in Case 2.

We have now proved vi+1 = w1 in both Cases 1 and 2. Thus, vi+1 = w1 always holds.
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Proof of Lemma 2.45. The cycle γ is a cycle of σ, and thus is a rotation-equivalence
class of nonempty tuples of distinct elements of V (since any cycle of σ is such a
class). Hence, we can write γ in the form γ = v∼, where v is a nonempty tuple of
distinct elements of V. Consider this v.

Write the tuple v as v = (v1, v2, . . . , vk). Then, k ≥ 1 (since v is nonempty), and
the entries v1, v2, . . . , vk of v are distinct (since v is a tuple of distinct elements of
V). Let us set vk+1 := v1. We have

C = CArcs γ = CArcs (v∼) (since γ = v∼)
= CArcs v (by the definition of CArcs (v∼) , since v ∈ v∼)
= {(vi, vi+1) | i ∈ [k]} (39)

(by the definition of CArcs v, since v = (v1, v2, . . . , vk) and vk+1 = v1).

(a) Assume the contrary. Thus, C is linear. In other words, C is the arc set of
some path cover of V (by the definition of “linear”). Let P be this path cover. Thus,
C is the arc set of P. In other words, C = Arcs P.

We have C = Arcs P =
⋃

q∈P
Arcs q (by the definition of Arcs P).

Now, 1 ∈ [k] (since k ≥ 1) and therefore

(v1, v2) ∈ {(vi, vi+1) | i ∈ [k]} = C (by (39))

=
⋃

q∈P
Arcs q.

In other words, there exists a path q ∈ P such that (v1, v2) ∈ Arcs q. Consider such
a path q, and denote it by w. Thus, w ∈ P and (v1, v2) ∈ Arcs w.

Let us write the path w as w = (w1, w2, . . . , wℓ). Thus, the definition of Arcs w
yields

Arcs w = {(w1, w2) , (w2, w3) , . . . , (wℓ−1, wℓ)} .

Hence, (v1, v2) ∈ Arcs w = {(w1, w2) , (w2, w3) , . . . , (wℓ−1, wℓ)}. In other words,
there exists a p ∈ [ℓ− 1] such that (v1, v2) =

(
wp, wp+1

)
. Consider this p.

From (v1, v2) =
(
wp, wp+1

)
, we obtain v1 = wp and v2 = wp+1.

Note that w1, w2, . . . , wℓ are the entries of w (because w = (w1, w2, . . . , wℓ)).
We know that w is a path of V (since w ∈ P, but P is a path cover of V), thus

a nonempty tuple of distinct elements of V (since a path of V is defined to be a
nonempty tuple of distinct elements of V). Hence, the entries of w are distinct. In
other words, w1, w2, . . . , wℓ are distinct (since w1, w2, . . . , wℓ are the entries of w).

We now claim the following:

Claim 1: For each i ∈ [k + 1], we have p − 1 + i ∈ [ℓ] and vi = wp−1+i.

[Proof of Claim 1: We proceed by induction on i:
Base case: We have p − 1 + 1 = p ∈ [ℓ− 1] ⊆ [ℓ] and v1 = wp = wp−1+1 (since

p = p − 1 + 1). In other words, Claim 1 holds for i = 1.
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Induction step: Let j ∈ [k]. Assume (as the induction hypothesis) that Claim 1
holds for i = j. We must prove that Claim 1 holds for i = j + 1 as well.

We have assumed that Claim 1 holds for i = j. In other words, we have p− 1+ j ∈
[ℓ] and vj = wp−1+j.

We have j ∈ [k]. Thus,(
vj, vj+1

)
∈ {(vi, vi+1) | i ∈ [k]} =

⋃
q∈P

Arcs q.

Hence, there exists a path q ∈ P such that
(
vj, vj+1

)
∈ Arcs q. Consider this q. From(

vj, vj+1
)
∈ Arcs q, it follows that vj and vj+1 are two entries of the path q (since

both entries of any pair in Arcs q are entries of q). Hence, in particular, vj is an
entry of q. Also, from vj = wp−1+j, it follows that vj is an entry of the path w (since
w1, w2, . . . , wℓ are the entries of w).

Now, vj is both an entry of q and an entry of w. In other words, vj belongs to the
paths q and w.

Recall that P is a path cover of V. Hence, each v ∈ V belongs to exactly one of
the paths in P. In particular, vj belongs to exactly one of the paths in P.

However, we know that vj belongs to the paths q and w. If these paths q and
w were distinct, then this would mean that vj belongs to at least two of the paths
in P (since both q and w are paths in P); but this would contradict the fact that
vj belongs to exactly one of the paths in P. Hence, the paths q and w cannot be
distinct.

In other words, q = w. However,(
vj, vj+1

)
∈ Arcs q︸︷︷︸

=w

= Arcs w = {(w1, w2) , (w2, w3) , . . . , (wℓ−1, wℓ)} .

In other words, there exists some z ∈ [ℓ− 1] such that
(
vj, vj+1

)
= (wz, wz+1).

Consider this z.
From

(
vj, vj+1

)
= (wz, wz+1), we obtain vj = wz and vj+1 = wz+1. Comparing

vj = wz with vj = wp−1+j, we obtain wz = wp−1+j. This entails z = p − 1 + j (since
w1, w2, . . . , wℓ are distinct). Hence, p − 1 + j = z ∈ [ℓ− 1], so that p − 1 + j ≤ ℓ− 1.
Adding 1 to both sides of this inequality, we obtain p + j ≤ ℓ. In other words,
p − 1 + (j + 1) ≤ ℓ (since p − 1 + (j + 1) = p + j). Thus, p − 1 + (j + 1) ∈ [ℓ].
Moreover, we now know that vj+1 = wz+1 = wp−1+(j+1) (since z︸︷︷︸

=p−1+j

+1 = p −

1 + j + 1 = p − 1 + (j + 1)).
Altogether, we have shown that p − 1 + (j + 1) ∈ [ℓ] and vj+1 = wp−1+(j+1). In

other words, Claim 1 holds for i = j + 1. This completes the induction step. Thus,
Claim 1 is proven.]

Now, k + 1 ∈ [k + 1] (since k + 1 ≥ k ≥ 1). Hence, we can apply Claim 1 to
i = k + 1, and thus obtain p − 1 + (k + 1) ∈ [ℓ] and vk+1 = wp−1+(k+1). In other
words, p + k ∈ [ℓ] and vk+1 = wp+k (since p − 1 + (k + 1) = p + k).
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However, vk+1 = v1 = wp. Hence, wp = vk+1 = wp+k. This entails p = p + k
(since w1, w2, . . . , wℓ are distinct). Hence, k = 0, which contradicts k ≥ 1 > 0.
This contradiction shows that our assumption was false. Thus, Lemma 2.45 (a) is
proved.

(b) Let D be a proper subset of C. We must show that D is linear.
We have C \ D ̸= ∅ (since D is a proper subset of C). Hence, there exists some

a ∈ C \ D. Consider this a.
We have a ∈ C \ D. In other words, a ∈ C and a /∈ D.
We have a ∈ C = CArcs γ. Hence, Lemma 2.44 shows that there exists a tu-

ple w = (w1, w2, . . . , wk) ∈ γ such that a = (wk, w1). Consider this tuple w =
(w1, w2, . . . , wk). The entries of w are w1, w2, . . . , wk (since w = (w1, w2, . . . , wk)).

The tuple w belongs to γ (since w ∈ γ), but γ is a rotation-equivalence class
of nonempty tuples of distinct elements of V. Hence, w is a nonempty tuple of
distinct elements of V. Hence, w is a path of V (by the definition of a “path of V”).

In particular, w is a tuple of distinct elements of V. In other words, the entries of
w are distinct. In other words, w1, w2, . . . , wk are distinct (since the entries of w are
w1, w2, . . . , wk). The arc set of this path w is

Arcs w = {(w1, w2) , (w2, w3) , . . . , (wk−1, wk)} (40)

(by (2), applied to w = (w1, w2, . . . , wk) instead of v = (v1, v2, . . . , vk)).
We have a = (wk, w1), thus (wk, w1) = a.
We know that γ is a rotation-equivalence class that contains w (since w ∈ γ).

Hence, γ is the rotation-equivalence class of w. In other words, γ = w∼. Hence,

CArcs γ = CArcs (w∼)

= CArcs w (by the definition of CArcs (w∼) , since w ∈ w∼)

= {(w1, w2) , (w2, w3) , . . . , (wk−1, wk) , (wk, w1)}

(by (3), applied to w = (w1, w2, . . . , wk) instead of v = (v1, v2, . . . , vk)). Hence,

CArcs γ = {(w1, w2) , (w2, w3) , . . . , (wk−1, wk) , (wk, w1)}

= {(w1, w2) , (w2, w3) , . . . , (wk−1, wk)}︸ ︷︷ ︸
=Arcs w
(by (40))

∪

(wk, w1)︸ ︷︷ ︸
=a


= (Arcs w) ∪ {a} .

The k pairs (w1, w2) , (w2, w3) , . . . , (wk−1, wk) , (wk, w1) are distinct (since their
first entries w1, w2, . . . , wk are distinct). Hence, in particular, the last of these k pairs
is not among the remaining k − 1 pairs. In other words,

(wk, w1) /∈ {(w1, w2) , (w2, w3) , . . . , (wk−1, wk)} = Arcs w

(by (40)). Thus,
a = (wk, w1) /∈ Arcs w.
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Now,

C︸︷︷︸
=CArcs γ

=(Arcs w)∪{a}

\ {a} = ((Arcs w) ∪ {a}) \ {a} = (Arcs w) \ {a}

= Arcs w (since a /∈ Arcs w) .

However, D is a subset of C that does not contain a (since a /∈ D). In other
words, D is a subset of C \ {a}. In other words, D is a subset of Arcs w (since
C \ {a} = Arcs w).

However, w is a path of V. Hence, Lemma 2.43 (applied to p = w) shows that
Arcs w is a linear subset of V × V. Thus, Proposition 2.7 (applied to F = Arcs w)
shows that any subset of Arcs w is linear as well. Thus, D is linear (since D is a
subset of Arcs w). This completes the proof of Lemma 2.45 (b).

Lemma 2.46. Let V be a finite set. Let σ ∈ SV be a permutation of V. Let γ be a
cycle of σ. Then, |CArcs γ| = ℓ (γ) ≥ 1.

Proof. The cycle γ is a cycle of σ, and thus is a rotation-equivalence class of nonempty
tuples of distinct elements of V (since any cycle of σ is such a class). Hence, we can
write γ in the form γ = v∼, where v is a nonempty tuple of distinct elements of V.
Consider this v.

Write the tuple v as v = (v1, v2, . . . , vk). Then, the entries v1, v2, . . . , vk of v are
distinct (since v is a tuple of distinct elements of V). We have ℓ (v) = k (since
v = (v1, v2, . . . , vk) is a k-tuple) and ℓ (v) ≥ 1 (since v is nonempty).

From γ = v∼, we obtain ℓ (γ) = ℓ (v∼) = ℓ (v) (by Definition 1.23 (a)). Hence,
ℓ (γ) = ℓ (v) = k and ℓ (γ) = ℓ (v) ≥ 1.

On the other hand, from γ = v∼, we obtain

CArcs γ = CArcs (v∼)
= CArcs v (by the definition of CArcs (v∼) , since v ∈ v∼)
= {(v1, v2) , (v2, v3) , . . . , (vk−1, vk) , (vk, v1)}

(by (3), since v = (v1, v2, . . . , vk)).
However, the k pairs (v1, v2) , (v2, v3) , . . . , (vk−1, vk) , (vk, v1) are distinct (since

their first entries v1, v2, . . . , vk are distinct). Hence, the set
{(v1, v2) , (v2, v3) , . . . , (vk−1, vk) , (vk, v1)} of these k pairs has size k. In other
words,

|{(v1, v2) , (v2, v3) , . . . , (vk−1, vk) , (vk, v1)}| = k.

This rewrites as |CArcs γ| = ℓ (γ) (since we have ℓ (γ) = k and
CArcs γ = {(v1, v2) , (v2, v3) , . . . , (vk−1, vk) , (vk, v1)}). Hence, |CArcs γ| = ℓ (γ) ≥
1. Thus, Lemma 2.46 is proved.
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Lemma 2.47. Let D = (V, A) be a digraph. Let σ ∈ SV be a permutation of V.
Let γ be a cycle of σ. Let C = CArcs γ. Then:

(a) If γ is a D-cycle, then ∑
F⊆C∩A
is linear

(−1)|F| = (−1)ℓ(γ)−1.

(b) If γ is a D-cycle, then ∑
F⊆C∩A
is linear

(−1)|F| = 1.

(c) If γ is neither a D-cycle nor a D-cycle, then ∑
F⊆C∩A
is linear

(−1)|F| = 0.

Proof. We know that γ is a cycle of σ, thus a rotation-equivalence class of nonempty
tuples of distinct elements of V (since any cycle of σ is such a rotation-equivalence
class).

Lemma 2.46 yields |CArcs γ| = ℓ (γ) ≥ 1. From C = CArcs γ, we obtain |C| =
|CArcs γ| = ℓ (γ) ≥ 1 > 0, so that the set C is nonempty. In other words, C ̸= ∅.
Also, C = CArcs γ ⊆ V × V.

(a) Assume that γ is a D-cycle. Thus, CArcs γ ⊆ A (by the definition of a D-
cycle). In other words, C ⊆ A (since C = CArcs γ). Therefore, C ∩ A = C. Hence,

∑
F⊆C∩A
is linear

(−1)|F| = ∑
F⊆C

is linear

(−1)|F| = ∑
F is a linear
subset of C

(−1)|F| . (41)

On the other hand, Lemma 2.3 (applied to B = C) yields ∑
F⊆C

(−1)|F| = [C = ∅] =

0 (since C ̸= ∅). Hence,

0 = ∑
F⊆C

(−1)|F| = (−1)|C| + ∑
F⊆C;
F ̸=C

(−1)|F|

(here, we have split off the addend for F = C from the sum). Therefore,

∑
F⊆C;
F ̸=C

(−1)|F| = − (−1)|C| = (−1)|C|−1 = (−1)ℓ(γ)−1 (42)

(since |C| = ℓ (γ)).
However, from Lemma 2.45, we easily obtain

{F ⊆ C | F ̸= C} = {linear subsets of C}
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38. Hence, the summation sign “ ∑
F⊆C;
F ̸=C

” can be rewritten as “ ∑
F is a linear
subset of C

”. Thus,

∑
F⊆C;
F ̸=C

(−1)|F| = ∑
F is a linear
subset of C

(−1)|F| .

Comparing this with (41), we find

∑
F⊆C∩A
is linear

(−1)|F| = ∑
F⊆C;
F ̸=C

(−1)|F| = (−1)ℓ(γ)−1 (by (42)) .

This proves Lemma 2.47 (a).

(b) Assume that γ is a D-cycle. Thus, CArcs γ ⊆ (V × V) \ A (by the definition
of a D-cycle, since D = (V, (V × V) \ A)). In other words, C ⊆ (V × V) \ A (since
C = CArcs γ). Therefore, C ∩ A = ∅ 39. Hence,

∑
F⊆C∩A
is linear

(−1)|F| = ∑
F⊆∅

is linear

(−1)|F| . (43)

38Proof. We shall first prove that {F ⊆ C | F ̸= C} ⊆ {linear subsets of C}.
Indeed, let G ∈ {F ⊆ C | F ̸= C}. Thus, G is a subset F ⊆ C satisfying F ̸= C. In other

words, G is a subset of C such that G ̸= C. In other words, G is a proper subset of C. Hence, G
is linear (since Lemma 2.45 (b) shows that every proper subset of C is linear). Therefore, G is a
linear subset of C. Hence, G ∈ {linear subsets of C}.

Forget that we fixed G. We thus have proved that each G ∈ {F ⊆ C | F ̸= C} satisfies G ∈
{linear subsets of C}. In other words, we have

{F ⊆ C | F ̸= C} ⊆ {linear subsets of C} .

Let us now prove the reverse inclusion.
Indeed, let H ∈ {linear subsets of C}. Thus, H is a linear subset of C. Hence, H is a subset

of C, so that H ⊆ C. The set H is linear, whereas the set C is not (by Lemma 2.45 (a)). Thus, H
cannot be identical with C. In other words, H ̸= C. Combining H ⊆ C with H ̸= C, we see that
H is a subset F of C satisfying F ̸= C. In other words, H ∈ {F ⊆ C | F ̸= C}.

Forget that we fixed H. We thus have proved that each H ∈ {linear subsets of C} satisfies
H ∈ {F ⊆ C | F ̸= C}. In other words, we have

{linear subsets of C} ⊆ {F ⊆ C | F ̸= C} .

Combining this with

{F ⊆ C | F ̸= C} ⊆ {linear subsets of C} ,

we obtain
{F ⊆ C | F ̸= C} = {linear subsets of C} .

39Proof. Let c ∈ C ∩ A. Thus, c ∈ C ∩ A ⊆ C ⊆ (V × V) \ A, so that c /∈ A. But this contradicts
c ∈ C ∩ A ⊆ A.

Forget that we fixed c. We thus have obtained a contradiction for each c ∈ C ∩ A. Hence, there
is no c ∈ C ∩ A. In other words, C ∩ A = ∅.
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However, the set ∅ is linear (as a subset of V ×V) 40. Thus, the only linear subset
of ∅ is ∅ itself (since ∅ is a linear subset of ∅, and is clearly the only subset of
∅). Therefore, the sum ∑

F⊆∅
is linear

(−1)|F| has only one addend, namely the addend for

F = ∅. Thus, this sum rewrites as follows:

∑
F⊆∅

is linear

(−1)|F| = (−1)|∅| = (−1)0 (since |∅| = 0)

= 1.

Hence, (43) rewrites as

∑
F⊆C∩A
is linear

(−1)|F| = 1.

This proves Lemma 2.47 (b).

(c) Assume that γ is neither a D-cycle nor a D-cycle. Hence, C ̸⊆ A 41. Hence,
C ∩ A ̸= C. However, C ∩ A is clearly a subset of C. Thus, C ∩ A is a proper subset
of C (since C ∩ A ̸= C).

Furthermore, C ∩ A ̸= ∅ 42.
Now, from Lemma 2.45, we easily obtain

{F ⊆ C ∩ A} = {linear subsets of C ∩ A}

40Proof. We have ∅ ⊆ C and ∅ ̸= C (since C ̸= ∅). Hence, ∅ is a proper subset of C. However,
Lemma 2.45 (b) shows that every proper subset of C is linear. Thus, ∅ is linear (since ∅ is a
proper subset of C).

41Proof. Assume the contrary. Thus, C ⊆ A. In other words, CArcs γ ⊆ A (since C = CArcs γ).
Recall that γ is a rotation-equivalence class of nonempty tuples of distinct elements of V.

Hence, from CArcs γ ⊆ A, we conclude that γ is a D-cycle (by the definition of a D-cycle). This
contradicts the fact that γ is not a D-cycle. This contradiction shows that our assumption was
false, qed.

42Proof. Assume the contrary. Thus, C ∩ A = ∅. However, we have X \Y = X \ (X ∩ Y) for any two
sets X and Y. Applying this to X = C and Y = A, we obtain C \ A = C \ (C ∩ A)︸ ︷︷ ︸

=∅

= C \∅ = C.

Therefore, C = C︸︷︷︸
⊆V×V

\A ⊆ (V × V) \ A. In other words, CArcs γ ⊆ (V × V) \ A (since C =

CArcs γ).
Recall that γ is a rotation-equivalence class of nonempty tuples of distinct elements of V.

Hence, from CArcs γ ⊆ (V × V) \ A, we conclude that γ is a D-cycle (by the definition of a
D-cycle, since D = (V, (V × V) \ A)). This contradicts the fact that γ is not a D-cycle. This
contradiction shows that our assumption was false, qed.
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43. Hence, the summation sign “ ∑
F⊆C∩A

” can be rewritten as “ ∑
F is a linear

subset of C∩A

”. Thus,

∑
F⊆C∩A

(−1)|F| = ∑
F is a linear

subset of C∩A

(−1)|F| = ∑
F⊆C∩A
is linear

(−1)|F| .

Therefore,

∑
F⊆C∩A
is linear

(−1)|F| = ∑
F⊆C∩A

(−1)|F|

= [C ∩ A = ∅] (by Lemma 2.3, applied to B = C ∩ A)

= 0 (since C ∩ A ̸= ∅) .

This proves Lemma 2.47 (c).

Before we state the next lemma, let us again recall that the symbols “⊔” and “
⊔

”
stand for unions of disjoint sets.

Lemma 2.48. Let D = (V, A) be a digraph. Let σ ∈ SV be a permutation of V.
Let γ1, γ2, . . . , γk be the cycles of σ, listed with no repetition44. For each i ∈ [k],
let Ci := CArcs (γi).

Let F be any set. Then:

43Proof. We shall first prove that {F ⊆ C ∩ A} ⊆ {linear subsets of C ∩ A}.
Indeed, let G ∈ {F ⊆ C ∩ A}. Thus, G is a subset of C ∩ A. Hence, G is a proper subset of C

(since G is a subset of C ∩ A, but C ∩ A is a proper subset of C). Hence, G is linear (since Lemma
2.45 (b) shows that every proper subset of C is linear). Therefore, G is a linear subset of C ∩ A.
Hence, G ∈ {linear subsets of C ∩ A}.

Forget that we fixed G. We thus have proved that each G ∈ {F ⊆ C ∩ A} satisfies G ∈
{linear subsets of C ∩ A}. In other words, we have

{F ⊆ C ∩ A} ⊆ {linear subsets of C ∩ A} .

Let us now prove the reverse inclusion.
Indeed, let H ∈ {linear subsets of C ∩ A}. Thus, H is a linear subset of C ∩ A. Hence, H is a

subset of C ∩ A, so that H ⊆ C ∩ A. In other words, H ∈ {F ⊆ C ∩ A}.
Forget that we fixed H. We thus have proved that each H ∈ {linear subsets of C ∩ A} satisfies

H ∈ {F ⊆ C ∩ A}. In other words, we have

{linear subsets of C ∩ A} ⊆ {F ⊆ C ∩ A} .

Combining this with

{F ⊆ C ∩ A} ⊆ {linear subsets of C ∩ A} ,

we obtain
{F ⊆ C ∩ A} = {linear subsets of C ∩ A} .
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(a) The set F is a linear subset of Aσ ∩ A if and only if F can be written as
F =

⊔
j∈[k]

Fj, where each Fj is a linear subset of Cj ∩ A.

(b) In this case, the subsets Fj are uniquely determined by F (namely, Fj =
F ∩ Cj for each j ∈ [k]).

Proof. Recall that γ1, γ2, . . . , γk are the cycles of σ, listed with no repetition. Thus,
these cycles γ1, γ2, . . . , γk are distinct, and we have Cycs σ = {γ1, γ2, . . . , γk} (since
Cycs σ is defined to be the set of all cycles of σ).

We know that σ is a permutation of V. Hence, each element of V belongs to
exactly one cycle of σ. In other words, each element of V belongs to exactly one
of the cycles γ1, γ2, . . . , γk (since γ1, γ2, . . . , γk are the cycles of σ, listed with no
repetition).

For each i ∈ [k], let Vi be the set of all entries of the cycle γi. Thus, V1, V2, . . . , Vk
are k subsets of V. These k subsets V1, V2, . . . , Vk are furthermore disjoint45. In other
words, the sets Vj for different j ∈ [k] are disjoint.

For any given i ∈ [k] and any given v ∈ V, we have the following logical equiva-
lence:

(v ∈ Vi) ⇐⇒ (v is an entry of the cycle γi) (44)

(since Vi is the set of all entries of the cycle γi).

44Keep in mind that a cycle is a rotation-equivalence class. Thus, “listed with no repetition” means
that no two of γ1, γ2, . . . , γk are the same rotation-equivalence class. For example, if γ1 is (1, 2)∼,
then γ2 cannot be (2, 1)∼.

45Proof. Let i and j be two distinct elements of [k]. We shall show that Vi ∩ Vj = ∅.
Indeed, assume the contrary. Thus, Vi ∩ Vj ̸= ∅. Hence, there exists some element v ∈ Vi ∩ Vj.

Consider this v.
We have v ∈ Vi ∩ Vj ⊆ Vi. In other words, v is an entry of the cycle γi (since Vi was defined as

the set of all entries of the cycle γi).
We have v ∈ Vi ∩ Vj ⊆ Vj. In other words, v is an entry of the cycle γj (since Vj was defined as

the set of all entries of the cycle γj).
The two cycles γi and γj have the entry v in common (since v is an entry of the cycle γi, and

since v is an entry of the cycle γj).
However, the cycles γ1, γ2, . . . , γk are distinct. Hence, the two cycles γi and γj are distinct

(since i and j are distinct). However, two distinct cycles of σ cannot have any entries in common
(by the basic properties of the cycles of a permutation). Thus, γi and γj have no entries in
common (since γi and γj are two distinct cycles of σ). This contradicts the fact that the two
cycles γi and γj have the entry v in common. This contradiction shows that our assumption was
false. In other words, we have Vi ∩ Vj = ∅.

Forget that we fixed i and j. We thus have proved that Vi ∩ Vj = ∅ whenever i and j are two
distinct elements of [k]. In other words, the subsets V1, V2, . . . , Vk are disjoint.
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We have V = V1 ∪ V2 ∪ · · · ∪ Vk
46. Thus,

V = V1 ∪ V2 ∪ · · · ∪ Vk =
⋃

j∈[k]
Vj =

⊔
j∈[k]

Vj

(since the sets Vj for different j ∈ [k] are disjoint).
For each i ∈ [k], we have Ci ⊆ Vi × Vi

47. Renaming the variable i as j in this
sentence, we obtain the following: For each j ∈ [k], we have

Cj ⊆ Vj × Vj. (45)

Hence, the sets C1, C2, . . . , Ck are disjoint48.

46Proof. Let v ∈ V. Then, v belongs to exactly one of the cycles γ1, γ2, . . . , γk (since each element of
V belongs to exactly one of the cycles γ1, γ2, . . . , γk). In other words, there is exactly one i ∈ [k]
such that v belongs to γi. Consider this i. Now, v belongs to γi. In other words, v is an entry
of the cycle γi. Hence, v ∈ Vi (by (44)). Thus, v ∈ Vi ⊆ V1 ∪ V2 ∪ · · · ∪ Vk (since Vi is one of the
terms in the union V1 ∪ V2 ∪ · · · ∪ Vk).

Forget that we fixed v. We thus have shown that v ∈ V1 ∪V2 ∪ · · · ∪Vk for each v ∈ V. In other
words, V ⊆ V1 ∪ V2 ∪ · · · ∪ Vk. Combining this with V1 ∪ V2 ∪ · · · ∪ Vk ⊆ V (which is obvious,
since V1, V2, . . . , Vk are subsets of V), we obtain V = V1 ∪ V2 ∪ · · · ∪ Vk.

47Proof. Let i ∈ [k]. Then, Ci = CArcs (γi) (by the definition of Ci). Write the cycle γi in
the form γi =

(
a1, a2, . . . , ap

)
∼. Thus, the entries of the cycle γi are a1, a2, . . . , ap. Hence,

Vi =
{

a1, a2, . . . , ap
}

(since Vi was defined as the set of all entries of the cycle γi). Therefore,
a1, a2, . . . , ap are elements of Vi. Hence, the pairs (a1, a2) , (a2, a3) , . . . ,

(
ap−1, ap

)
,
(
ap, a1

)
are

elements of Vi × Vi (since all their entries belong to Vi).
However, from γi =

(
a1, a2, . . . , ap

)
∼, we obtain

CArcs (γi) = CArcs
((

a1, a2, . . . , ap
)
∼
)

= CArcs
(
a1, a2, . . . , ap

) (
since Definition 1.23 (b) yields

that CArcs (w∼) = CArcs w for each w ∈ Vp

)
=
{
(a1, a2) , (a2, a3) , . . . ,

(
ap−1, ap

)
,
(
ap, a1

)}(
by (3), applied to a =

(
a1, a2, . . . , ap

)
instead of v = (v1, v2, . . . , vk)

)
⊆ Vi × Vi

(since the pairs (a1, a2) , (a2, a3) , . . . ,
(
ap−1, ap

)
,
(
ap, a1

)
are elements of Vi × Vi). Therefore,

Ci = CArcs (γi) ⊆ Vi × Vi,

qed.
48Proof. Let i and j be two distinct elements of [k]. We shall show that Ci ∩ Cj = ∅.

Indeed, i and j are distinct, and thus we have Vi ∩ Vj = ∅ (since the k subsets V1, V2, . . . , Vk
are disjoint). However, Cj ⊆ Vj × Vj (by (45)) and Ci ⊆ Vi × Vi (similarly). Hence,

Ci︸︷︷︸
⊆Vi×Vi

∩ Cj︸︷︷︸
⊆Vj×Vj

⊆ (Vi × Vi) ∩
(
Vj × Vj

)
=
(
Vi ∩ Vj

)︸ ︷︷ ︸
=∅

×
(
Vi ∩ Vj

)︸ ︷︷ ︸
=∅

= ∅×∅ = ∅.

Therefore, Ci ∩ Cj = ∅.
Forget that we fixed i and j. We thus have shown that Ci ∩ Cj = ∅ whenever i and j are two

distinct elements of [k]. In other words, the sets C1, C2, . . . , Ck are disjoint.
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The definition of Aσ yields

Aσ =
⋃

c∈Cycs σ

CArcs c

= (CArcs (γ1)) ∪ (CArcs (γ2)) ∪ · · · ∪ (CArcs (γk))

(since Cycs σ = {γ1, γ2, . . . , γk})
=
⋃

j∈[k]
CArcs

(
γj
)︸ ︷︷ ︸

=Cj
(since Cj was defined

to be CArcs(γj))

=
⋃

j∈[k]
Cj. (46)

(a) We must prove that F is a linear subset of Aσ ∩ A if and only if F can be
written as F =

⊔
j∈[k]

Fj, where each Fj is a linear subset of Cj ∩ A.

We shall prove the “⇐=” and “=⇒” directions of this equivalence separately:
⇐=: Assume that F can be written as F =

⊔
j∈[k]

Fj, where each Fj is a linear subset

of Cj ∩ A. Consider these subsets Fj.
Let j ∈ [k]. Then, Fj is a linear subset of Cj ∩ A (according to the preceding

paragraph). Thus, Fj ⊆ Cj ∩ A ⊆ Cj ⊆ Vj × Vj (by (45)). Therefore, Fj is a linear
subset of Vj × Vj (since Fj is linear).

Forget that we fixed j. We thus have shown that for each j ∈ [k], the set Fj is a
linear subset of Vj × Vj. Hence, Corollary 2.31 (applied to J = [k]) shows that the
union

⋃
j∈J

Fj is a linear subset of V ×V. In other words, F is a linear subset of V ×V

(since F =
⊔

j∈[k]
Fj =

⋃
j∈J

Fj).

Finally,

F =
⊔

j∈[k]
Fj =

⋃
j∈[k]

Fj︸︷︷︸
⊆Cj∩A

(since Fj is a linear subset of Cj∩A
(by assumption))

⊆
⋃

j∈[k]

(
Cj ∩ A

)

=

 ⋃
j∈[k]

Cj


︸ ︷︷ ︸

=Aσ
(by (46))

∩A = Aσ ∩ A.

Hence, F is a subset of Aσ ∩ A. This shows that F is a linear subset of Aσ ∩ A (since
F is linear). This proves the “⇐=” direction of Lemma 2.48 (a).
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=⇒: Assume that F is a linear subset of Aσ ∩ A. Thus,

F ⊆ Aσ ∩ A ⊆ Aσ =
⋃

j∈[k]
Cj (by (46))

= C1 ∪ C2 ∪ · · · ∪ Ck.

For each j ∈ [k], let us set Gj := F ∩ Cj. Thus,

G1 ∪ G2 ∪ · · · ∪ Gk = (F ∩ C1) ∪ (F ∩ C2) ∪ · · · ∪ (F ∩ Ck)

= F ∩ (C1 ∪ C2 ∪ · · · ∪ Ck)

(since (X ∩ Y1) ∪ (X ∩ Y2) ∪ · · · ∪ (X ∩ Yn) = X ∩ (Y1 ∪ Y2 ∪ · · · ∪ Yn) for any sets
X, Y1, Y2, . . . , Yn). Hence,

G1 ∪ G2 ∪ · · · ∪ Gk = F ∩ (C1 ∪ C2 ∪ · · · ∪ Ck) = F

(since F ⊆ C1 ∪ C2 ∪ · · · ∪ Ck).
Now, for each j ∈ [k], the set Gj is a linear subset of Cj ∩ A 49. Moreover, the sets

G1, G2, . . . , Gk are disjoint50. Thus, the disjoint union G1 ⊔ G2 ⊔ · · · ⊔ Gk =
⊔

j∈[k]
Gj is

well-defined. This disjoint union is⊔
j∈[k]

Gj = G1 ⊔ G2 ⊔ · · · ⊔ Gk = G1 ∪ G2 ∪ · · · ∪ Gk = F.

Thus, F =
⊔

j∈[k]
Gj.

Altogether, we have now shown that F =
⊔

j∈[k]
Gj, and that each Gj is a linear

subset of Cj ∩ A. Hence, F can be written as F =
⊔

j∈[k]
Fj, where each Fj is a linear

49Proof. Let j ∈ [k]. Then, Gj = F︸︷︷︸
⊆Aσ∩A⊆A

∩Cj ⊆ A ∩ Cj = Cj ∩ A. In other words, Gj is a subset of

Cj ∩ A. Furthermore, Gj = F ∩ Cj ⊆ F, so that Gj is a subset of F. However, F is a linear subset
of V ×V (since F is linear, and F ⊆ Aσ ⊆ V ×V). Thus, Proposition 2.7 shows that any subset of
F is linear as well. Therefore, Gj is linear (since Gj is a subset of F). Hence, Gj is a linear subset
of Cj ∩ A (since Gj is a subset of Cj ∩ A), qed.

50Proof. Let i and j be two distinct elements of [k]. We shall show that Gi ∩ Gj = ∅.
Indeed, i and j are distinct, and thus we have Ci ∩ Cj = ∅ (since the k sets C1, C2, . . . , Ck are

disjoint). However, the definition of Gj yields

Gj = F ∩ Cj ⊆ Cj.

The same argument (applied to i instead of j) yields Gi ⊆ Ci. Hence,

Gi︸︷︷︸
⊆Ci

∩ Gj︸︷︷︸
⊆Cj

⊆ Ci ∩ Cj = ∅.

Therefore, Gi ∩ Gj = ∅.
Forget that we fixed i and j. We thus have shown that Gi ∩ Gj = ∅ whenever i and j are two

distinct elements of [k]. In other words, the sets G1, G2, . . . , Gk are disjoint.
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subset of Cj ∩ A (namely, for Fj = Gj). This proves the “=⇒” direction of Lemma
2.48 (a).

(b) Assume that F is written as F =
⊔

j∈[k]
Fj, where each Fj is a linear subset of

Cj ∩ A. We must show that Fj = F ∩ Cj for each j ∈ [k].
Indeed, we have F =

⊔
j∈[k]

Fj =
⊔

i∈[k]
Fi.

Now, let j ∈ [k]. Then, Fj is a subset of F (since F =
⊔

i∈[k]
Fi) and also a subset

of Cj ∩ A (since we required that each Fj be a linear subset of Cj ∩ A). In other
words, Fj is a subset of both F and Cj ∩ A. Thus, Fj is a subset of the intersection
F ∩

(
Cj ∩ A

)
as well. In other words,

Fj ⊆ F ∩
(
Cj ∩ A

)︸ ︷︷ ︸
⊆Cj

⊆ F ∩ Cj.

Let us now show that F ∩ Cj ⊆ Fj.
Indeed, let α ∈ F ∩ Cj. Then, α ∈ F ∩ Cj ⊆ F =

⊔
i∈[k]

Fi. Hence, α ∈ Fi for some

i ∈ [k]. Consider this i. Recall that Fj is a subset of Cj ∩ A; thus, Fj ⊆ Cj ∩ A ⊆ Cj.
The same argument (applied to i instead of j) yields Fi ⊆ Ci. Hence, α ∈ Fi ⊆ Ci.
However, α ∈ F ∩ Cj ⊆ Cj. Thus, the element α belongs to both sets Ci and Cj.
Therefore, the sets Ci and Cj have at least one element in common. In other words,
the sets Ci and Cj are not disjoint. However, we know that the sets C1, C2, . . . , Ck
are disjoint. The only way to reconcile the previous two sentences is when i = j.

Thus, we obtain i = j. Hence, α ∈ Fi = Fj (since i = j).
Forget that we fixed α. We thus have shown that α ∈ Fj for each α ∈ F ∩ Cj.

In other words, F ∩ Cj ⊆ Fj. Combining this with Fj ⊆ F ∩ Cj, we conclude that
Fj = F ∩ Cj. This completes the proof of Lemma 2.48 (b).

We can now prove Proposition 2.42:

Proof of Proposition 2.42. Let γ1, γ2, . . . , γk be the cycles of σ, listed with no repeti-
tion (as in Lemma 2.48). Thus, these cycles γ1, γ2, . . . , γk are distinct, and we have
Cycs σ = {γ1, γ2, . . . , γk} (since Cycs σ is defined to be the set of all cycles of σ).

For each i ∈ [k], let Ci := CArcs (γi). Then, the sets C1, C2, . . . , Ck are disjoint51.
Now, we observe the following: If Fj is a linear subset of Cj ∩ A for each j ∈ [k],

then the disjoint union
⊔

j∈[k]
Fj is well-defined52, and is a linear subset of Aσ ∩ A (by

51Indeed, this was shown during our above proof of Lemma 2.48.
52Proof. Let Fj be a linear subset of Cj ∩ A for each j ∈ [k]. Then, in particular, we have Fj ⊆ Cj ∩ A ⊆

Cj for each j ∈ [k]. In other words, Fj is a subset of Cj for each j ∈ [k]. In other words, the sets
F1, F2, . . . , Fk are subsets of C1, C2, . . . , Ck, respectively.

However, the sets C1, C2, . . . , Ck are disjoint. Thus, their subsets F1, F2, . . . , Fk are disjoint as
well (since the sets F1, F2, . . . , Fk are subsets of C1, C2, . . . , Ck, respectively). In other words, the
sets Fj for different j ∈ [k] are disjoint. Thus, the disjoint union

⊔
j∈[k]

Fj is well-defined.
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the “⇐=” direction of Lemma 2.48 (a), applied to F =
⊔

j∈[k]
Fj). Hence, the map

from
{

families
(

Fj
)

j∈[k] , where each Fj is a linear subset of Cj ∩ A
}

to {linear subsets of Aσ ∩ A}
that sends each family

(
Fj
)

j∈[k] to
⊔

j∈[k]
Fj

is well-defined. Moreover, this map is injective (since Lemma 2.48 (b) shows that
the sets Fj are uniquely determined by their union

⊔
j∈[k]

Fj) and surjective (by the

“=⇒” direction of Lemma 2.48 (a)). Thus, it is bijective. Hence, we can substitute⊔
j∈[k]

Fj for F in the sum ∑
F⊆Aσ∩A
is linear

(−1)|F|. We thus obtain

∑
F⊆Aσ∩A
is linear

(−1)|F|

= ∑
(Fj)j∈[k] is a family

of linear subsets Fj⊆Cj∩A

(−1)

∣∣∣∣∣ ⊔j∈[k]
Fj

∣∣∣∣∣ . (47)

However, if
(

Fj
)

j∈[k] is a family of linear subsets Fj ⊆ Cj ∩ A, then∣∣∣∣∣∣ ⊔j∈[k] Fj

∣∣∣∣∣∣ = ∑
j∈[k]

∣∣Fj
∣∣ (by the sum rule)

and thus

(−1)

∣∣∣∣∣ ⊔j∈[k]
Fj

∣∣∣∣∣
= (−1)

∑
j∈[k]

|Fj|
= ∏

j∈[k]
(−1)|Fj| . (48)
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Hence, (47) becomes

∑
F⊆Aσ∩A
is linear

(−1)|F|

= ∑
(Fj)j∈[k] is a family

of linear subsets Fj⊆Cj∩A

(−1)

∣∣∣∣∣ ⊔j∈[k]
Fj

∣∣∣∣∣︸ ︷︷ ︸
= ∏

j∈[k]
(−1)|Fj|

(by (48))

= ∑
(Fj)j∈[k] is a family

of linear subsets Fj⊆Cj∩A

∏
j∈[k]

(−1)|Fj|

= ∏
j∈[k]

∑
Fj⊆Cj∩A
is linear︸ ︷︷ ︸

= ∑
Fj⊆(CArcs(γj))∩A

is linear
(since Cj=CArcs(γj)

(by the definition of Cj))

(−1)|Fj| (by the product rule)

= ∏
j∈[k]

∑
Fj⊆(CArcs(γj))∩A

is linear

(−1)|Fj|

= ∏
j∈[k]

∑
F⊆(CArcs(γj))∩A

is linear

(−1)|F| (49)

(here, we have renamed the summation index Fj as F).
On the other hand, recall that the cycles γ1, γ2, . . . , γk are distinct, and that we

have Cycs σ = {γ1, γ2, . . . , γk}. Hence, γ1, γ2, . . . , γk are the elements of the set
Cycs σ, listed with no repetition. In other words, the map

[k] → Cycs σ,
j 7→ γj

is a bijection. Hence, we can substitute γj for γ in the product

∏
γ∈Cycs σ

∑
F⊆(CArcs γ)∩A

is linear

(−1)|F|. We thus obtain

∏
γ∈Cycs σ

∑
F⊆(CArcs γ)∩A

is linear

(−1)|F| = ∏
j∈[k]

∑
F⊆(CArcs(γj))∩A

is linear

(−1)|F| .
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Comparing this with (49), we obtain

∑
F⊆Aσ∩A
is linear

(−1)|F|

= ∏
γ∈Cycs σ

∑
F⊆(CArcs γ)∩A

is linear

(−1)|F| . (50)

Next, the following three claims follow easily from Lemma 2.47:

Claim 1: Let γ ∈ Cycs σ. Assume that γ is a D-cycle. Then,

∑
F⊆(CArcs γ)∩A

is linear

(−1)|F| = (−1)ℓ(γ)−1 .

Claim 2: Let γ ∈ Cycs σ. Assume that γ is a D-cycle. Then,

∑
F⊆(CArcs γ)∩A

is linear

(−1)|F| = 1.

Claim 3: Let γ ∈ Cycs σ. Assume that γ is neither a D-cycle nor a
D-cycle. Then,

∑
F⊆(CArcs γ)∩A

is linear

(−1)|F| = 0.

Proof of Claim 1. We have γ ∈ Cycs σ. In other words, γ is a cycle of σ (since Cycs σ
is the set of all cycles of σ). Hence, Lemma 2.47 (a) (applied to C = CArcs γ) yields

∑
F⊆(CArcs γ)∩A

is linear

(−1)|F| = (−1)ℓ(γ)−1. This proves Claim 1.

Proof of Claim 2. We have γ ∈ Cycs σ. In other words, γ is a cycle of σ (since Cycs σ
is the set of all cycles of σ). Hence, Lemma 2.47 (b) (applied to C = CArcs γ) yields

∑
F⊆(CArcs γ)∩A

is linear

(−1)|F| = 1. This proves Claim 2.

Proof of Claim 3. We have γ ∈ Cycs σ. In other words, γ is a cycle of σ (since Cycs σ
is the set of all cycles of σ). Hence, Lemma 2.47 (c) (applied to C = CArcs γ) yields

∑
F⊆(CArcs γ)∩A

is linear

(−1)|F| = 0. This proves Claim 3.

Now, we shall prove the following two claims:

Claim 4: If σ ∈ SV
(

D, D
)
, then ∑

F⊆Aσ∩A
is linear

(−1)|F| = (−1)φ(σ).
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Claim 5: If σ /∈ SV
(

D, D
)
, then ∑

F⊆Aσ∩A
is linear

(−1)|F| = 0.

Proof of Claim 4. Assume that σ ∈ SV
(

D, D
)
. Then, each cycle of σ is a D-cycle or

a D-cycle (by the definition of SV
(

D, D
)
). In other words, if γ ∈ Cycs σ is not a

D-cycle, then γ is a D-cycle53 and thus satisfies

∑
F⊆(CArcs γ)∩A

is linear

(−1)|F| = 1 (51)

(by Claim 2).
Now, (50) becomes

∑
F⊆Aσ∩A
is linear

(−1)|F|

= ∏
γ∈Cycs σ

∑
F⊆(CArcs γ)∩A

is linear

(−1)|F|

=


∏

γ∈Cycs σ;
γ is a D-cycle

∑
F⊆(CArcs γ)∩A

is linear

(−1)|F|

︸ ︷︷ ︸
=(−1)ℓ(γ)−1

(by Claim 1)


·


∏

γ∈Cycs σ;
γ is not a D-cycle

∑
F⊆(CArcs γ)∩A

is linear

(−1)|F|

︸ ︷︷ ︸
=1

(by (51))


 here, we have split our product in two: one

that contains all γ’s that are D-cycles, and
one that contain all other γ’s



=

 ∏
γ∈Cycs σ;

γ is a D-cycle

(−1)ℓ(γ)−1

 ·

 ∏
γ∈Cycs σ;

γ is not a D-cycle

1


︸ ︷︷ ︸

=1

= ∏
γ∈Cycs σ;

γ is a D-cycle

(−1)ℓ(γ)−1 .

53Proof. Let γ ∈ Cycs σ be not a D-cycle. We must prove that γ is a D-cycle.
We have γ ∈ Cycs σ. In other words, γ is a cycle of σ (since Cycs σ is the set of all cycles of σ).

Hence, γ is a D-cycle or a D-cycle (since each cycle of σ is a D-cycle or a D-cycle). Since γ is not
a D-cycle, we thus conclude that γ is a D-cycle. Qed.
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Comparing this with

(−1)φ(σ) = (−1)

∑
γ∈Cycs σ;

γ is a D-cycle

(ℓ(γ)−1)  since φ (σ) = ∑
γ∈Cycs σ;

γ is a D-cycle

(ℓ (γ)− 1)

(by the definition of φ (σ) )


= ∏

γ∈Cycs σ;
γ is a D-cycle

(−1)ℓ(γ)−1 ,

we obtain ∑
F⊆Aσ∩A
is linear

(−1)|F| = (−1)φ(σ). Thus, Claim 4 is proven.

Proof of Claim 5. Assume that σ /∈ SV
(

D, D
)
. Then, not each cycle of σ is a D-cycle

or a D-cycle (by the definition of SV
(

D, D
)
). In other words, there exists some

cycle of σ that is neither a D-cycle nor a D-cycle. Let δ be such a cycle. Then, δ is
a cycle of σ. In other words, δ ∈ Cycs σ (since Cycs σ is the set of all cycles of σ).
We know that δ is neither a D-cycle nor a D-cycle (by its definition). Thus, Claim 3
(applied to γ = δ) yields

∑
F⊆(CArcs δ)∩A

is linear

(−1)|F| = 0. (52)

However, δ ∈ Cycs σ. Thus, the sum ∑
F⊆(CArcs δ)∩A

is linear

(−1)|F| is one of the factors of

the product ∏
γ∈Cycs σ

∑
F⊆(CArcs γ)∩A

is linear

(−1)|F| (namely, the factor for γ = δ). Since the

former sum is 0 (by (52)), we can rewrite this as follows: The number 0 is one of
the factors of the product ∏

γ∈Cycs σ
∑

F⊆(CArcs γ)∩A
is linear

(−1)|F|. In other words, the latter

product has a factor equal to 0. Therefore, this product must be 0 (because if a
product has a factor equal to 0, then this product must be 0). In other words,

∏
γ∈Cycs σ

∑
F⊆(CArcs γ)∩A

is linear

(−1)|F| = 0.

Now, (50) becomes

∑
F⊆Aσ∩A
is linear

(−1)|F| = ∏
γ∈Cycs σ

∑
F⊆(CArcs γ)∩A

is linear

(−1)|F| = 0.

This proves Claim 5.
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Combining Claim 4 with Claim 5, we obtain

∑
F⊆Aσ∩A
is linear

(−1)|F| =

{
(−1)φ(σ) , if σ ∈ SV

(
D, D

)
;

0, else.

This proves Proposition 2.42.

2.10. A trivial lemma

We need one more trivial “data conversion” lemma:

Lemma 2.49. Let V be a finite set. Let w = (w1, w2, . . . , wn) be a V-listing. Then,
the map

{maps f : V → P} → Pn,
f 7→ ( f (w1) , f (w2) , . . . , f (wn))

is well-defined and is a bijection.

Proof. Recall that (w1, w2, . . . , wn) is a V-listing, i.e., a list of elements of V that
contains each element of V exactly once (by the definition of a V-listing). Hence,
in particular, (w1, w2, . . . , wn) is a list of elements of V. In other words, wi ∈ V for
each i ∈ [n].

Now, if f : V → P is a map, then each i ∈ [n] satisfies f (wi) ∈ P (since wi ∈ V by
the preceding sentence), and thus the n-tuple ( f (w1) , f (w2) , . . . , f (wn)) belongs
to Pn. Thus, the map

{maps f : V → P} → Pn,
f 7→ ( f (w1) , f (w2) , . . . , f (wn))

is well-defined. Let us denote this map by K. It remains to prove that this map K
is a bijection.

Let us first show that K is injective. Indeed, let f and g be two maps from V to
P that satisfy K ( f ) = K (g). We shall show that f = g.

The definition of K yields

K ( f ) = ( f (w1) , f (w2) , . . . , f (wn)) (53)
and K (g) = (g (w1) , g (w2) , . . . , g (wn)) . (54)

We assumed that K ( f ) = K (g). In view of (53) and (54), we can rewrite this as

( f (w1) , f (w2) , . . . , f (wn)) = (g (w1) , g (w2) , . . . , g (wn)) .

In other words,
f (wi) = g (wi) for each i ∈ [n] . (55)
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Now, let v ∈ V be arbitrary. Then, the list (w1, w2, . . . , wn) contains v exactly once
(since this list (w1, w2, . . . , wn) contains each element of V exactly once). In other
words, there is exactly one i ∈ [n] such that wi = v. Consider this i. From (55), we
obtain f (wi) = g (wi). In view of wi = v, we can rewrite this as f (v) = g (v).

Forget that we fixed v. We thus have shown that f (v) = g (v) for each v ∈ V. In
other words, f = g.

Forget that we fixed f and g. We have thus shown that if f and g are two maps
from V to P that satisfy K ( f ) = K (g), then f = g. In other words, the map K is
injective.

Now, let us prove that K is surjective. Indeed, let a ∈ Pn be arbitrary. We shall
construct a map f : V → P such that K ( f ) = a.

According to Convention 1.5, we can write the n-tuple a ∈ Pn as a = (a1, a2, . . . , an).
Recall that (w1, w2, . . . , wn) is a V-listing, i.e., a list of elements of V that contains

each element of V exactly once (by the definition of a V-listing).
Now, we define a map f : V → P as follows:
Let v ∈ V. Then, the list (w1, w2, . . . , wn) contains v exactly once (since this list

(w1, w2, . . . , wn) contains each element of V exactly once). In other words, there is
exactly one i ∈ [n] such that wi = v. Consider this i. Define f (v) to be ai. This is
an element of P (since it is an entry of the n-tuple a ∈ Pn).

Thus, we have defined an element f (v) of P for each v ∈ V. In other words, we
have defined a map f : V → P. Its definition has the following consequence: If
v ∈ V is arbitrary, and if i ∈ [n] is an element satisfying wi = v, then

f (v) = ai. (56)

Now, we shall show that K ( f ) = a.
Indeed, the definition of K yields K ( f ) = ( f (w1) , f (w2) , . . . , f (wn)). However,

each i ∈ [n] satisfies wi = wi (obviously) and thus f (wi) = ai (by (56), applied to
v = wi). In other words, we have

( f (w1) , f (w2) , . . . , f (wn)) = (a1, a2, . . . , an) .

In view of K ( f ) = ( f (w1) , f (w2) , . . . , f (wn)) and a = (a1, a2, . . . , an), we can
rewrite this as K ( f ) = a. Thus, the map K takes a as a value (namely, at the input
f ).

Forget that we fixed a. We thus have shown that if a ∈ Pn is arbitrary, then the
map K takes a as a value. In other words, the map K is surjective.

Now we know that the map K is both injective and surjective. In other words, K
is bijective. In other words, K is a bijection.

So we have shown that the map K is well-defined and is a bijection. In other
words, the map

{maps f : V → P} → Pn,
f 7→ ( f (w1) , f (w2) , . . . , f (wn))

is well-defined and is a bijection (since this map is what we called K). This com-
pletes the proof of Lemma 2.49.
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2.11. The proof of Theorem 1.31

We are now ready to prove Theorem 1.31:

Proof of Theorem 1.31. Let n = |V|. Thus, the digraph D = (V, A) has n ver-
tices. Moreover, each V-listing w has n entries (since |V| = n), thus satisfies
w = (w1, w2, . . . , wn).

We will use a definition that we made back in Lemma 2.40: If f : V → P is a
map, and if v = (v1, v2, . . . , vn) is a V-listing, then this V-listing v will be called
( f , D)-friendly if it has the properties that f (v1) ≤ f (v2) ≤ · · · ≤ f (vn) and that

f
(
vp
)
< f

(
vp+1

)
for each p ∈ [n − 1] satisfying

(
vp, vp+1

)
∈ A.

The definition of UD yields

UD = ∑
w is a V-listing

LDes(w,D), n.

We shall now try to understand the addends in this sum better.
We fix a V-listing w. Then, w has n entries (since |V| = n), and thus satisfies

w = (w1, w2, . . . , wn). Moreover, the list (w1, w2, . . . , wn) = w is a V-listing, i.e.,
consists of all elements of V and contains each of these elements exactly once.
In other words, (w1, w2, . . . , wn) is a list of all elements of V, with no repetitions.
Hence, if we are given an element cv of Z [[x1, x2, x3, . . .]] for each v ∈ V, then

∏
v∈V

cv = cw1cw2 · · · cwn . (57)

Thus, if f : V → P is any map, then

∏
v∈V

x f (v) = x f (w1)x f (w2) · · · x f (wn) (58)

(by (57), applied to cv = x f (v)).
However, the definition of LDes(w,D), n yields

LDes(w,D), n = ∑
i1≤i2≤···≤in;

ip<ip+1 for each p∈Des(w,D)

xi1 xi2 · · · xin

= ∑
(i1,i2,...,in)∈Pn;
i1≤i2≤···≤in;

ip<ip+1 for each p∈Des(w,D)

xi1 xi2 · · · xin (59)

(here, we have added the “(i1, i2, . . . , in) ∈ Pn” condition under the summation
sign, since this condition is tacitly implied when we sum over i1 ≤ i2 ≤ · · · ≤ in).

We recall that Des (w, D) is defined as the set of all D-descents of w, but these D-
descents are defined as the elements i ∈ [n − 1] satisfying (wi, wi+1) ∈ A. Hence,
Des (w, D) is the set of all elements i ∈ [n − 1] satisfying (wi, wi+1) ∈ A. Thus,
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an element of Des (w, D) is the same thing as an element i ∈ [n − 1] satisfying
(wi, wi+1) ∈ A. Renaming the variable i as p in this sentence, we obtain the follow-
ing: An element of Des (w, D) is the same thing as an element p ∈ [n − 1] satisfying(
wp, wp+1

)
∈ A.

Lemma 2.49 yields that the map

{maps f : V → P} → Pn,
f 7→ ( f (w1) , f (w2) , . . . , f (wn))

is well-defined and is a bijection. Hence, we can substitute ( f (w1) , f (w2) , . . . , f (wn))
for (i1, i2, . . . , in) in the sum on the right hand side of (59). We thus obtain

∑
(i1,i2,...,in)∈Pn;
i1≤i2≤···≤in;

ip<ip+1 for each p∈Des(w,D)

xi1 xi2 · · · xin

= ∑
f :V→P is a map;

f (w1)≤ f (w2)≤···≤ f (wn);
f (wp)< f (wp+1) for each p∈Des(w,D)

x f (w1)x f (w2) · · · x f (wn)︸ ︷︷ ︸
= ∏

v∈V
x f (v)

(by (58))

= ∑
f :V→P is a map;

f (w1)≤ f (w2)≤···≤ f (wn);
f (wp)< f (wp+1) for each p∈Des(w,D)

∏
v∈V

x f (v)

= ∑
f :V→P is a map;

f (w1)≤ f (w2)≤···≤ f (wn);
f (wp)< f (wp+1) for each p∈[n−1]

satisfying (wp,wp+1)∈A

∏
v∈V

x f (v)

(here, we have replaced the condition “p ∈ Des (w, D)” under the summation sign
by the equivalent condition “p ∈ [n − 1] satisfying

(
wp, wp+1

)
∈ A”, because

an element of Des (w, D) is the same thing as an element p ∈ [n − 1] satisfying(
wp, wp+1

)
∈ A). Thus, (59) becomes

LDes(w,D), n = ∑
(i1,i2,...,in)∈Pn;
i1≤i2≤···≤in;

ip<ip+1 for each p∈Des(w,D)

xi1 xi2 · · · xin

= ∑
f :V→P is a map;

f (w1)≤ f (w2)≤···≤ f (wn);
f (wp)< f (wp+1) for each p∈[n−1]

satisfying (wp,wp+1)∈A

∏
v∈V

x f (v). (60)

The sum on the right hand side of (60) ranges over all maps f : V → P that
satisfy the condition

“ f (w1) ≤ f (w2) ≤ · · · ≤ f (wn) ”

∧ “ f
(
wp
)
< f

(
wp+1

)
for each p ∈ [n − 1] satisfying

(
wp, wp+1

)
∈ A”.
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However, this condition is equivalent to the condition “the V-listing w is ( f , D)-
friendly” (because this is how the notion of “( f , D)-friendly” was defined). There-
fore, we can replace the former condition by the latter condition under the summa-
tion sign on the right hand side of (60). Thus, we can rewrite (60) as follows:

LDes(w,D), n = ∑
f :V→P is a map;

the V-listing w is ( f ,D)-friendly

∏
v∈V

x f (v). (61)

Now, forget that we fixed w. We thus have proved (61) for each V-listing w.
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Now,

UD = ∑
w is a V-listing

LDes(w,D), n

= ∑
w is a V-listing

∑
f :V→P is a map;

the V-listing w is ( f ,D)-friendly︸ ︷︷ ︸
= ∑

f :V→P is a map
∑

w is a V-listing;
the V-listing w is ( f ,D)-friendly

∏
v∈V

x f (v) (by (61))

= ∑
f :V→P is a map︸ ︷︷ ︸

= ∑
f :V→P

∑
w is a V-listing;

the V-listing w is ( f ,D)-friendly︸ ︷︷ ︸
= ∑

w is an ( f ,D)-friendly V-listing

∏
v∈V

x f (v)

= ∑
f :V→P

∑
w is an ( f ,D)-friendly V-listing

∏
v∈V

x f (v)︸ ︷︷ ︸
=(# of ( f ,D)-friendly V-listings)· ∏

v∈V
x f (v)

(since all addends of this sum have the same value ∏
v∈V

x f (v))

= ∑
f :V→P

(# of ( f , D) -friendly V-listings)︸ ︷︷ ︸
= ∑

σ∈SV ;
f ◦σ= f

∑
F⊆Aσ∩A
is linear

(−1)|F|

(by Lemma 2.40)

· ∏
v∈V

x f (v)

= ∑
f :V→P

∑
σ∈SV ;
f ◦σ= f

∑
F⊆Aσ∩A
is linear︸ ︷︷ ︸

= ∑
σ∈SV

∑
F⊆Aσ∩A
is linear

∑
f :V→P;
f ◦σ= f

(−1)|F| · ∏
v∈V

x f (v)

= ∑
σ∈SV

∑
F⊆Aσ∩A
is linear

∑
f :V→P;
f ◦σ= f

(−1)|F| · ∏
v∈V

x f (v)

= ∑
σ∈SV

∑
F⊆Aσ∩A
is linear

(−1)|F|

︸ ︷︷ ︸
=

(−1)φ(σ) , if σ ∈ SV
(

D, D
)

;
0, else

(by Proposition 2.42)

∑
f :V→P;
f ◦σ= f

∏
v∈V

x f (v)

︸ ︷︷ ︸
=ptype σ

(by Lemma 2.41)
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= ∑
σ∈SV

{
(−1)φ(σ) , if σ ∈ SV

(
D, D

)
;

0, else
ptype σ

= ∑
σ∈SV ;

σ∈SV(D,D)︸ ︷︷ ︸
= ∑

σ∈SV(D,D)

(since SV(D,D)
is a subset of SV)

{
(−1)φ(σ) , if σ ∈ SV

(
D, D

)
;

0, else︸ ︷︷ ︸
=(−1)φ(σ)

(since we have σ∈SV(D,D))

ptype σ

+ ∑
σ∈SV ;

we don’t have σ∈SV(D,D)

{
(−1)φ(σ) , if σ ∈ SV

(
D, D

)
;

0, else︸ ︷︷ ︸
=0

(since we don’t have σ∈SV(D,D))

ptype σ

(
since each σ ∈ SV either satisfies σ ∈ SV

(
D, D

)
or doesn’t

)
= ∑

σ∈SV(D,D)

(−1)φ(σ) ptype σ + ∑
σ∈SV ;

we don’t have σ∈SV(D,D)

0ptype σ

︸ ︷︷ ︸
=0

= ∑
σ∈SV(D,D)

(−1)φ(σ) ptype σ.

3. Proof of Theorem 1.39

Theorem 1.39 can be derived from Theorem 1.31 by combining some addends that
have the same ptype σ factor. Depending on the respective (−1)φ(σ) factors, these
addends either cancel each other out or combine to form a multiple of ptype σ.

Proof of Theorem 1.39. We have assumed that D is a tournament. Hence, for any two
distinct vertices u and v of D, we have the logical equivalences

((u, v) is an arc of D) ⇐⇒
(
(v, u) is an arc of D

)
and (

(u, v) is an arc of D
)

⇐⇒ ((v, u) is an arc of D) .

Therefore, the reversal54 of a nontrivial D-cycle is always a nontrivial D-cycle, and
vice versa.

54See Definition 1.23 for the meanings of “reversal” and “nontrivial”.
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We define a map Ψ : SV
(

D, D
)
→ SV (D) as follows: If σ ∈ SV (D), then we

let Ψ (σ) be the permutation obtained from σ by reversing each cycle of σ that is a
nontrivial D-cycle (i.e., replacing this cycle of σ by its reversal, i.e., replacing σ by
σ−1 on all entries of this cycle)55. This map Ψ is well-defined (i.e., we really have
Ψ (σ) ∈ SV (D) for each σ ∈ SV

(
D, D

)
), because as we just said, the reversal of a

nontrivial D-cycle is always a nontrivial D-cycle. Moreover, the map Ψ preserves
the cycle type of a permutation – i.e., we have

type (Ψ (σ)) = type σ (62)

for each σ ∈ SV
(

D, D
)
.

Now, Theorem 1.31 yields

UD = ∑
σ∈SV(D,D)

(−1)φ(σ) ptype σ︸ ︷︷ ︸
=ptype(Ψ(σ))

(by (62))

= ∑
σ∈SV(D,D)

(−1)φ(σ) ptype(Ψ(σ))

= ∑
τ∈SV(D)

∑
σ∈SV(D,D);

Ψ(σ)=τ

(−1)φ(σ) ptype τ

(
here, we have split up the sum
according to the value of Ψ (σ)

)

= ∑
τ∈SV(D)

 ∑
σ∈SV(D,D);

Ψ(σ)=τ

(−1)φ(σ)

 ptype τ. (63)

Now, we claim that each τ ∈ SV (D) satisfies

∑
σ∈SV(D,D);

Ψ(σ)=τ

(−1)φ(σ) =

{
2ψ(τ), if all cycles of τ have odd length;
0, otherwise.

(64)

[Proof of (64): Let τ ∈ SV (D). Then, τ has exactly ψ (τ) many nontrivial cycles
(by the definition of ψ (τ)), and all of these nontrivial cycles are D-cycles (by the

55Here is what this means in rigorous terms: We let Ψ (σ) be the permutation of V defined by
setting

(Ψ (σ)) (z) =

{
σ−1 (z) , if z is an entry of a cycle of σ that is a nontrivial D-cycle;
σ (z) , otherwise

for each z ∈ V.

The cycles of this permutation Ψ (σ) are precisely

• the reversals of those cycles of σ that are nontrivial D-cycles, and

• the remaining cycles of σ.
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definition of SV (D)). The permutations σ ∈ SV
(

D, D
)

that satisfy Ψ (σ) = τ can
be obtained by choosing some of these nontrivial cycles and reversing them, which
turns them into D-cycles. This can be done in 2ψ(τ) many ways, since each of the
ψ (τ) many nontrivial cycles can be either reversed or not. If all cycles of τ have odd
length, then all 2ψ(τ) permutations σ obtained in this way will satisfy (−1)φ(σ) = 1

(because φ (σ) = ∑
γ∈Cycs σ;

γ is a D-cycle

ℓ (γ)︸︷︷︸
odd

−1

 will always be even); therefore, the sum

∑
σ∈SV(D,D);

Ψ(σ)=τ

(−1)φ(σ) will be a sum of 2ψ(τ) many 1s and therefore simplify to 2ψ(τ).

On the other hand, if not all cycles of τ have odd length, then there is at least one
cycle δ of τ that has even length, and of course this cycle δ will be nontrivial (since
a trivial cycle has odd length); thus, among the permutations σ ∈ SV

(
D, D

)
that

satisfy Ψ (σ) = τ, there will be as many that have δ reversed as ones that have δ not
reversed, and the parities of φ (σ) for the former will be opposite from the parities
of φ (σ) for the latter; thus, the sum ∑

σ∈SV(D,D);
Ψ(σ)=τ

(−1)φ(σ) will have equally many 1s

and −1s among its addends, and therefore will simplify to 0. In either case, we
obtain (64).]

Now, (63) becomes

UD = ∑
τ∈SV(D)

 ∑
σ∈SV(D,D);

Ψ(σ)=τ

(−1)φ(σ)


︸ ︷︷ ︸

=

2ψ(τ), if all cycles of τ have odd length;
0, otherwise

(by (64))

ptype τ

= ∑
τ∈SV(D)

{
2ψ(τ), if all cycles of τ have odd length;
0, otherwise

ptype τ

= ∑
τ∈SV(D);

all cycles of τ have odd length

2ψ(τ)ptype τ = ∑
σ∈SV(D);

all cycles of σ have odd length

2ψ(σ)ptype σ.

This proves Theorem 1.39.

4. Proving the corollaries

Let us now quickly go through the proofs of the corollaries we stated after Theorem
1.31 and after Theorem 1.39:



The Redei–Berge symmetric functions page 108

Proof of Corollary 1.35. We let N [p1, p2, p3, . . .] denote the set of all polynomials in
p1, p2, p3, . . . with coefficients in N.

For each integer partition λ, we have

pλ ∈ N [p1, p2, p3, . . .] (65)

(by the definition of pλ).
Theorem 1.31 yields

UD = ∑
σ∈SV(D,D)

(−1)φ(σ) ptype σ︸ ︷︷ ︸
∈N[p1,p2,p3,...]

(by (65))

∈ ∑
σ∈SV(D,D)

(−1)φ(σ)
N [p1, p2, p3, . . .] ⊆ Z [p1, p2, p3, . . .] .

This proves Corollary 1.35.

Proof of Corollary 1.36. Let 2Z denote the set of all even integers.
Let σ ∈ SV

(
D, D

)
. The definition of φ (σ) in Theorem 1.31 yields

φ (σ) = ∑
γ∈Cycs σ;

γ is a D-cycle

(ℓ (γ)− 1)︸ ︷︷ ︸
∈2Z

(since ℓ(γ) is odd
(because every D-cycle

has odd length))

∈ 2Z,

so that
(−1)φ(σ) = 1. (66)

Theorem 1.31 now yields

UD = ∑
σ∈SV(D,D)

(−1)φ(σ)︸ ︷︷ ︸
=1

(by (66))

ptype σ

= ∑
σ∈SV(D,D)

ptype σ︸ ︷︷ ︸
∈N[p1,p2,p3,...]

(by (65))

∈ ∑
σ∈SV(D,D)

N [p1, p2, p3, . . .] ⊆ N [p1, p2, p3, . . .] .

This proves Corollary 1.36.

Proof of Corollary 1.40. For each σ ∈ SV , let ψ (σ) denote the number of nontrivial
cycles of σ.

Let σ ∈ SV (D) be a permutation whose all cycles have odd length. We shall
show that 2ψ(σ)ptype σ ∈ N [p1, 2p3, 2p5, 2p7, . . .].
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Indeed, let k1, k2, . . . , ks be the lengths of all cycles of σ, listed in decreasing order.
Then, the numbers k1, k2, . . . , ks are odd (since all cycles of σ have odd length).
Moreover, the definition of type σ yields type σ = (k1, k2, . . . , ks). Furthermore,

ψ (σ) = (# of nontrivial cycles of σ)

= (# of cycles of σ that have length > 1)
= (# of i ∈ [s] such that ki > 1)

(since the lengths of all cycles of σ are k1, k2, . . . , ks)

=
s

∑
i=1

[ki > 1]

(here, we are using the Iverson bracket notation), so that

2ψ(σ) = 2

s
∑

i=1
[ki>1]

=
s

∏
i=1

2[ki>1]. (67)

Now, recall that type σ = (k1, k2, . . . , ks). Hence, the definition of ptype σ yields

ptype σ = pk1 pk2 · · · pks =
s

∏
i=1

pki . (68)

Multiplying the equalities (67) and (68), we obtain

2ψ(σ)ptype σ =

(
s

∏
i=1

2[ki>1]

)(
s

∏
i=1

pki

)
=

s

∏
i=1

(
2[ki>1]pki

)
︸ ︷︷ ︸

∈{p1,2p3,2p5,2p7,...}
(since ki is odd

(because k1,k2,...,ks are odd))

= (a product of s elements of the set {p1, 2p3, 2p5, 2p7, . . .})
∈ N [p1, 2p3, 2p5, 2p7, . . .] . (69)

Forget that we fixed σ. We thus have proved (69) for each permutation σ ∈
SV (D) whose all cycles have odd length. Now, Theorem 1.39 yields

UD = ∑
σ∈SV(D);

all cycles of σ have odd length

2ψ(σ)ptype σ︸ ︷︷ ︸
∈N[p1,2p3,2p5,2p7,...]

(by (69))

∈ N [p1, 2p3, 2p5, 2p7, . . .] .

This proves Corollary 1.40.

5. Proof of Theorem 1.41

The proof of Theorem 1.41 is a slightly more complicated variant of our above proof
of Theorem 1.39.
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Proof of Theorem 1.41. (b) First, we attempt to gain a better understanding of risky
cycles.

We start by noticing that the reversal of a risky rotation-equivalence class is again
risky.

We have assumed that there exist no two distinct vertices u and v of D such that
both pairs (u, v) and (v, u) belong to A. In other words, if (u, v) is an arc of D with
u ̸= v, then (v, u) is not an arc of D, and thus (v, u) must be an arc of D.

Hence, if v is any D-cycle of length ≥ 2, then the reversal of v must be a D-cycle,
and thus cannot be a D-cycle. Therefore, in particular, if v is a risky rotation-
equivalence class of tuples of elements of V, then either v or the reversal of v is a
D-cycle (by the definition of “risky”), but not both at the same time.

Consequently, if v is a risky rotation-equivalence class of tuples of elements of V,
then v and the reversal of v cannot be identical, i.e., we must have

v ̸= rev v. (70)

We define a subset S◦
V
(

D, D
)

of SV
(

D, D
)

by

S◦
V
(

D, D
)

:=
{

σ ∈ SV
(

D, D
)

| each risky cycle of σ is a D-cycle
}

.

We define a map Γ : SV
(

D, D
)
→ S◦

V
(

D, D
)

as follows: If σ ∈ SV
(

D, D
)
, then

we let Γ (σ) be the permutation obtained from σ by reversing each risky cycle of
σ that is not a D-cycle (i.e., replacing this cycle of σ by its reversal, i.e., replacing
σ by σ−1 on all entries of this cycle). This map Γ is well-defined (i.e., we really
have Γ (σ) ∈ S◦

V
(

D, D
)

for each σ ∈ SV
(

D, D
)
), because if a risky tuple is not a

D-cycle, then its reversal is a D-cycle (by the definition of “risky”). Moreover, the
map Γ preserves the cycle type of a permutation – i.e., we have

type (Γ (σ)) = type σ (71)

for each σ ∈ SV
(

D, D
)
.

Now, Theorem 1.31 yields

UD = ∑
σ∈SV(D,D)

(−1)φ(σ) ptype σ︸ ︷︷ ︸
=ptype(Γ(σ))

(by (71))

= ∑
σ∈SV(D,D)

(−1)φ(σ) ptype(Γ(σ))

= ∑
τ∈S◦

V(D,D)
∑

σ∈SV(D,D);
Γ(σ)=τ

(−1)φ(σ) ptype τ

(
here, we have split up the sum
according to the value of Γ (σ)

)

= ∑
τ∈S◦

V(D,D)

 ∑
σ∈SV(D,D);

Γ(σ)=τ

(−1)φ(σ)

 ptype τ. (72)
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Now, we claim that each τ ∈ S◦
V
(

D, D
)

satisfies

∑
σ∈SV(D,D);

Γ(σ)=τ

(−1)φ(σ) =

{
(−1)φ(τ) , if no cycle of τ is risky;
0, otherwise.

(73)

[Proof of (73): Let τ ∈ S◦
V
(

D, D
)
. Let c1, c2, . . . , ck be the risky cycles of τ. All

of these k risky cycles c1, c2, . . . , ck are D-cycles (since τ ∈ S◦
V
(

D, D
)
). The per-

mutations σ ∈ SV
(

D, D
)

that satisfy Γ (σ) = τ can be obtained by choosing some
of these k risky cycles c1, c2, . . . , ck of τ and reversing them, which turns them into
D-cycles (because if v is any D-cycle of length ≥ 2, then the reversal of v must
be a D-cycle). This can be done in 2k many ways, since each of the k risky cycles
c1, c2, . . . , ck can be either reversed or not56. The sum ∑

σ∈SV(D,D);
Γ(σ)=τ

(−1)φ(σ) thus has

2k many addends, and each of these addends corresponds to one way to decide
which of the k risky cycles c1, c2, . . . , ck to reverse and which not to reverse. If
k = 0, then this sum therefore simplifies to (−1)φ(τ). If, on the other hand, we have
k ̸= 0, then this sum equals 0 57. Combining the results from both of these cases,

56Fineprint: All of these k risky cycles are distinct from their reversals (by (70)). Thus, each of the
2k possible choices of risky cycles to reverse leads to a different permutation σ ∈ SV

(
D, D

)
.

57Proof. Assume that k ̸= 0. Thus, k ≥ 1, so that the risky cycle c1 exists. If σ ∈ SV
(

D, D
)

is such
that Γ (σ) = τ, then either the cycle c1 or its reversal (but not both) is a cycle of σ. Thus,

∑
σ∈SV(D,D);

Γ(σ)=τ

(−1)φ(σ)

= ∑
σ∈SV(D,D);

Γ(σ)=τ;
c1 is a cycle of σ

(−1)φ(σ) + ∑
σ∈SV(D,D);

Γ(σ)=τ;
c1 is not a cycle of σ

(−1)φ(σ) . (74)

The two sums on the right hand side of this equality have the same number of addends, and
there is in fact a bijection between the addends of the former and those of the latter (given by
replacing the cycle c1 by its reversal or vice versa). Moreover, this bijection toggles the parity of
the number φ (σ) (that is, it changes this number from odd to even or vice versa), since φ (σ)
is defined to be the sum ∑

γ∈Cycs σ;
γ is a D-cycle

(ℓ (γ)− 1) (which contains the odd addend ℓ (c1)− 1 when

c1 is a cycle of σ, but does not contain this addend when c1 is not a cycle of σ). Hence, this
bijection flips the sign (−1)φ(σ). Therefore, the addends in the first sum on the right hand side
of (74) cancel those in the second. Therefore, the two sums add up to 0. The equality (74) thus
simplifies to ∑

σ∈SV(D,D);
Γ(σ)=τ

(−1)φ(σ) = 0, qed.
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we obtain

∑
σ∈SV(D,D);

Γ(σ)=τ

(−1)φ(σ) =

{
(−1)φ(τ) , if k = 0;
0, otherwise

=

{
(−1)φ(τ) , if no cycle of τ is risky;
0, otherwise.

(since k is the number of risky cycles of τ). This proves (73).]

Now, (72) becomes

UD = ∑
τ∈S◦

V(D,D)

 ∑
σ∈SV(D,D);

Γ(σ)=τ

(−1)φ(σ)


︸ ︷︷ ︸

=

(−1)φ(τ) , if no cycle of τ is risky;
0, otherwise

(by (73))

ptype τ

= ∑
τ∈S◦

V(D,D)

{
(−1)φ(τ) , if no cycle of τ is risky;
0, otherwise

ptype τ

= ∑
τ∈S◦

V(D,D);
no cycle of τ is risky

(−1)φ(τ)︸ ︷︷ ︸
=1

(since no cycle of τ is risky,
and thus it is easy to see

that φ(τ) is even)

ptype τ

= ∑
τ∈S◦

V(D,D);
no cycle of τ is risky

ptype τ = ∑
τ∈SV(D,D);

no cycle of τ is risky

ptype τ

(since the permutations τ ∈ S◦
V
(

D, D
)

that have no risky cycles are precisely the
permutations τ ∈ SV

(
D, D

)
that have no risky cycles58). Renaming the summation

index τ as σ on the right hand side, we obtain

UD = ∑
σ∈SV(D,D);

no cycle of σ is risky

ptype σ.

This proves Theorem 1.41 (b).
(a) This follows trivially from part (b), since pλ ∈ N [p1, p2, p3, . . .] for each par-

tition λ.
58This follows trivially from the definition of S◦

V
(

D, D
)
.
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6. Recovering Redei’s and Berge’s theorems

We shall now derive two well-known theorems from Theorem 1.31 and Theorem
1.39.

We recall Convention 2.1 and Definition 2.22. The two theorems we shall derive
are the following:

Theorem 6.1 (Rédei’s Theorem). Let D be a tournament. Then, the # of hamps
of D is odd. Here, we agree to consider the empty list () as a hamp of the empty
tournament with 0 vertices.

Theorem 6.2 (Berge’s Theorem). Let D be a digraph. Then,(
# of hamps of D

)
≡ (# of hamps of D)mod 2.

Theorem 6.1 originates in Laszlo Rédei’s 1933 paper [Redei33] (see [Moon13,
proof of Theorem 14] for an English translation of his proof). Theorem 6.2 was
found by Claude Berge (see [Berge76, §10.1, Theorem 1], [Berge91, §10.1, Theorem
1], [Tomesc85, solution to problem 7.8], [Lovasz07, Exercise 5.19] or [Grinbe17,
Theorem 1.3.6] for his proof, and [Lass02, Corollaire 5.1] for another). Berge used
Theorem 6.2 to give a new and simpler proof of Theorem 6.1 (see [Berge91, §10.2,
Theorem 6] or [Lovasz07, Exercise 5.20] or [Grinbe17, Theorem 1.6.1]).

We can now give new proofs for both theorems. This will rely on the symmetric
function UD and also on a few simple tools:

We define ζ : QSym → Z to be the evaluation homomorphism that sends each
quasisymmetric function f ∈ QSym to its evaluation f (1, 0, 0, 0, . . .) (obtained by
setting x1 to be 1 and setting all other variables x2, x3, x4, . . . to be 0). Note that ζ is
a Z-algebra homomorphism.59 We shall show two simple lemmas:

Lemma 6.3. Let n ∈ N. Let I be a subset of [n − 1]. Then, ζ (LI, n) = [I = ∅]
(where we are using the Iverson bracket notation).

Proof. The definition of LI, n yields

LI, n = ∑
i1≤i2≤···≤in;

ip<ip+1 for each p∈I

xi1 xi2 · · · xin .

When we apply ζ to the sum on the right hand side (i.e., substitute 1 for x1
and substitute 0 for x2, x3, x4, . . .), any addend that contains at least one of the
variables x2, x3, x4, . . . becomes 0, whereas any addend that only contains copies

59We don’t really need QSym here. We could just as well define ζ on the ring of bounded-degree
power series (that is, of all power series f ∈ Z [[x1, x2, x3, . . .]] for which there exists an N ∈ N

such that no monomial of degree > N appears in f ). However, we cannot define ζ on the whole
ring Z [[x1, x2, x3, . . .]], since ζ would have to send 1+ x1 + x2

1 + x3
1 + · · · to 1+ 1+ 12 + 13 + · · · .
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of x1 becomes 1. Hence, ζ (LI, n) is the number of addends that only contain
copies of x1. But this number is 1 if I = ∅ (namely, in this case, the addend for
(i1, i2, . . . , in) = (1, 1, . . . , 1) fits the bill), and is 0 if I ̸= ∅ (because in this case, the
condition “ip < ip+1 for each p ∈ I” forces at least one of the n numbers i1, i2, . . . , in
in each addend xi1 xi2 · · · xin to be larger than 1, and therefore each addend contains
at least one of x2, x3, x4, . . .). Thus, altogether, this number is [I = ∅]. This proves
Lemma 6.3.

Lemma 6.4. Let λ be any partition. Then,

ζ (pλ) = 1.

Proof. Write the partition λ in the form λ = (λ1, λ2, . . . , λk), where the k entries
λ1, λ2, . . . , λk are positive. Then, the definition of pλ yields pλ = pλ1 pλ2 · · · pλk .
Hence,

ζ (pλ) = ζ
(

pλ1 pλ2 · · · pλk

)
= ζ

(
pλ1

)
ζ
(

pλ2

)
· · · ζ

(
pλk

)
(since ζ is a Z-algebra homomorphism)

=
k

∏
i=1

ζ
(

pλi

)
. (75)

However, for each positive integer n, we have pn = xn
1 + xn

2 + xn
3 + · · · (by the

definition of pn) and

ζ (pn) = pn (1, 0, 0, 0, . . .) (by the definition of ζ)

= 1n︸︷︷︸
=1

+ 0n + 0n + 0n + · · ·︸ ︷︷ ︸
=0

(since n is positive)

(since pn = xn
1 + xn

2 + xn
3 + · · · )

= 1. (76)

Hence, (75) becomes

ζ (pλ) =
k

∏
i=1

ζ
(

pλi

)︸ ︷︷ ︸
=1

(by (76),
since λi is positive)

=
k

∏
i=1

1 = 1.

This proves Lemma 6.4.

Lemma 6.5. Let D be a digraph. Then,

ζ (UD) =
(
# of hamps of D

)
.



The Redei–Berge symmetric functions page 115

Proof. Write D as D = (V, A), and set n := |V|. Then, D = (V, (V × V) \ A).
Hence, a hamp of D is the same as a V-listing w such that each i ∈ [n − 1] satisfies
(wi, wi+1) ∈ (V × V) \ A. In other words, a hamp of D is the same as a V-listing w
such that no i ∈ [n − 1] satisfies (wi, wi+1) ∈ A. In other words, a hamp of D is the
same as a V-listing w that satisfies Des (w, D) = ∅ (because Des (w, D) is defined
to be the set of all i ∈ [n − 1] satisfying (wi, wi+1) ∈ A). Therefore,(

# of hamps of D
)

= (# of V-listings w that satisfy Des (w, D) = ∅) . (77)

The definition of UD yields

UD = ∑
w is a V-listing

LDes(w,D), n.

Hence,

ζ (UD) = ζ

(
∑

w is a V-listing
LDes(w,D), n

)
= ∑

w is a V-listing
ζ
(

LDes(w,D), n

)
︸ ︷︷ ︸
=[Des(w,D)=∅]
(by Lemma 6.3)

(since the map ζ is Z-linear)

= ∑
w is a V-listing

[Des (w, D) = ∅]

= (# of V-listings w that satisfy Des (w, D) = ∅)

=
(
# of hamps of D

)
(by (77)) .

This proves Lemma 6.5.

We can now state a formula for the # of hamps of D for any digraph D:

Theorem 6.6. Let D = (V, A) be a digraph. Then:
(a) Set

φ (σ) := ∑
γ∈Cycs σ;

γ is a D-cycle

(ℓ (γ)− 1) for each σ ∈ SV .

Then, (
# of hamps of D

)
= ∑

σ∈SV(D,D)

(−1)φ(σ) .

(b) We have
(
# of hamps of D

)
≡
∣∣SV

(
D, D

)∣∣mod 2.

Proof. (a) Theorem 1.31 yields

UD = ∑
σ∈SV(D,D)

(−1)φ(σ) ptype σ.
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Hence,

ζ (UD) = ζ

 ∑
σ∈SV(D,D)

(−1)φ(σ) ptype σ


= ∑

σ∈SV(D,D)

(−1)φ(σ) ζ
(

ptype σ

)︸ ︷︷ ︸
=1

(by Lemma 6.4,
applied to λ=type σ)

(since ζ is Z-linear)

= ∑
σ∈SV(D,D)

(−1)φ(σ) .

However, Lemma 6.5 yields

ζ (UD) =
(
# of hamps of D

)
.

Comparing these two equalities, we find(
# of hamps of D

)
= ∑

σ∈SV(D,D)

(−1)φ(σ) .

This proves Theorem 6.6 (a).
(b) Theorem 6.6 (a) yields(

# of hamps of D
)
= ∑

σ∈SV(D,D)

(−1)φ(σ)︸ ︷︷ ︸
≡1 mod 2

(since (−1)k≡1 mod 2
for any k∈Z)

≡ ∑
σ∈SV(D,D)

1 =
∣∣SV

(
D, D

)∣∣mod 2.

This proves Theorem 6.6 (b).

We are now ready to prove Rédei’s and Berge’s theorems:

Proof of Theorem 6.2. We have SV
(

D, D
)
= SV

(
D, D

)
(since the digraphs D and D

play symmetric roles in the definition of SV
(

D, D
)
). However, it is also easy to see

(using the definition of the complement of a digraph) that D = D.
Theorem 6.6 (b) yields(

# of hamps of D
)
≡
∣∣SV

(
D, D

)∣∣mod 2. (78)

However, Theorem 6.6 (b) (applied to D instead of D) yields(
# of hamps of D

)
≡
∣∣∣SV

(
D, D

)∣∣∣mod 2.

We can rewrite this as

(# of hamps of D) ≡
∣∣SV

(
D, D

)∣∣mod 2
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(since D = D). Hence,

(# of hamps of D) ≡
∣∣SV

(
D, D

)∣∣ = ∣∣SV
(

D, D
)∣∣ (

since SV
(

D, D
)
= SV

(
D, D

))
≡
(
# of hamps of D

)
mod 2 (by (78)) .

This proves Theorem 6.2.

Proof of Theorem 6.1. Write the tournament D as D = (V, A). Set n := |V|.
For each σ ∈ SV , let ψ (σ) denote the number of nontrivial cycles of σ. Then,

Theorem 1.39 yields

UD = ∑
σ∈SV(D);

all cycles of σ have odd length

2ψ(σ)ptype σ.

Hence,

ζ (UD) = ζ

 ∑
σ∈SV(D);

all cycles of σ have odd length

2ψ(σ)ptype σ


= ∑

σ∈SV(D);
all cycles of σ have odd length

2ψ(σ) ζ
(

ptype σ

)︸ ︷︷ ︸
=1

(by Lemma 6.4,
applied to λ=type σ)

(since ζ is Z-linear)

= ∑
σ∈SV(D);

all cycles of σ have odd length

2ψ(σ) (79)

= 2ψ(idV)︸ ︷︷ ︸
=1

(since ψ(idV)=0)

+ ∑
σ∈SV(D);

all cycles of σ have odd length;
σ ̸=idV

2ψ(σ)︸ ︷︷ ︸
≡0 mod 2

(since ψ(σ)≥1
(because σ ̸=idV shows

that σ has at least
one nontrivial cycle)) here, we have split off the addend for σ = idV

from the sum (since idV ∈ SV (D) , and since
all cycles of idV have odd length)


≡ 1 + ∑

σ∈SV(D);
all cycles of σ have odd length;

σ ̸=idV

0

︸ ︷︷ ︸
=0

= 1 mod 2.

In view of

ζ (UD) =
(
# of hamps of D

)
(by Lemma 6.5)

≡ (# of hamps of D)mod 2 (by Theorem 6.2) ,
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we can rewrite this as
(# of hamps of D) ≡ 1 mod 2.

In other words, the # of hamps of D is odd. This proves Theorem 6.1.

7. A modulo-4 improvement of Redei’s theorem

We can extend Redei’s theorem (Theorem 6.1) to a somewhat stronger result:

Theorem 7.1. Let D be a tournament. Then,

(# of hamps of D) ≡ 1 + 2 (# of nontrivial odd D-cycles)mod 4.

Here:

• We agree to consider the empty list () as a hamp of the empty tournament
with 0 vertices (even though it is not a path).

• We say that a D-cycle is odd if its length is odd.

• We say that a D-cycle is nontrivial if its length is > 1. (This was already
said in Definition 1.23 (e).)

To prove this, we shall need a simple lemma:

Lemma 7.2. Let D = (V, A) be a digraph. For each σ ∈ SV , let ψ (σ) denote the
number of nontrivial cycles of σ. Let Sodd

V (D) denote the set of all permutations
σ ∈ SV (D) such that all cycles of σ have odd length. Then,(

# of permutations σ ∈ Sodd
V (D) satisfying ψ (σ) = 1

)
= (# of nontrivial odd D-cycles) .

(We are here using the same notations as in Theorem 7.1.)

Proof. If γ = (a1, a2, . . . , ak)∼ is any D-cycle (or, more generally, any cycle of the
digraph (V, V × V)), then perm γ shall denote the permutation of V that sends the
elements a1, a2, . . . , ak−1, ak to a2, a3, . . . , ak, a1 (respectively) while leaving all other
elements of V unchanged. (This permutation perm γ is what is usually called “the
cycle (a1, a2, . . . , ak)” in group theory.)

If γ is any nontrivial D-cycle, then the permutation perm γ belongs to SV (D)
(since its only nontrivial cycle is γ, which is a D-cycle) and satisfies ψ (perm γ) = 1
(by the definition of ψ (perm γ)). Moreover, if γ is a nontrivial odd D-cycle, then
this permutation perm γ furthermore has the property that all its cycles have odd
length (since its only nontrivial cycle γ is odd, whereas its trivial cycles have length
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1, which is also odd), i.e., belongs to Sodd
V (D) (since we know that it belongs to

SV (D)). Thus, we obtain a map

from {nontrivial odd D-cycles}

to
{

permutations σ ∈ Sodd
V (D) satisfying ψ (σ) = 1

}
which sends each nontrivial odd D-cycle γ to the permutation perm γ. This map is
furthermore injective (because any distinct nontrivial D-cycles γ and δ will always
give rise to different permutations perm γ and perm δ) and surjective60. Thus, this
map is bijective. Hence, the bijection principle yields

(# of nontrivial odd D-cycles)

=
(

# of permutations σ ∈ Sodd
V (D) satisfying ψ (σ) = 1

)
.

This proves Lemma 7.2.

We can now prove Theorem 7.1:

Proof of Theorem 7.1. We use the same notations as in Section 6. Write the tourna-
ment D as D = (V, A).

For each σ ∈ SV , let ψ (σ) denote the number of nontrivial cycles of σ. Let
Sodd

V (D) denote the set of all permutations σ ∈ SV (D) such that all cycles of σ

have odd length. Note that the identity permutation idV belongs to Sodd
V (D), since

all its cycles are trivial.

60Proof. If σ ∈ SV (D) is a permutation satisfying ψ (σ) = 1, then σ = perm γ where γ is the unique
nontrivial cycle of σ. Moreover, this cycle γ is a D-cycle (since σ ∈ SV (D)). If we furthermore
assume that σ ∈ Sodd

V (D), then this cycle γ has odd length (since σ ∈ Sodd
V (D) entails that all

cycles of σ have odd length), i.e., is odd.
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Then, from (79), we have

ζ (UD) = ∑
σ∈SV(D);

all cycles of σ have odd length

2ψ(σ) = ∑
σ∈Sodd

V (D)

2ψ(σ)

(
since the permutations σ ∈ SV (D) such that all cycles

of σ have odd length are precisely the elements of Sodd
V (D)

)
≡ ∑

σ∈Sodd
V (D);

ψ(σ)=0

2ψ(σ)︸ ︷︷ ︸
=1

(since ψ(σ)=0)

+ ∑
σ∈Sodd

V (D);
ψ(σ)=1

2ψ(σ)︸ ︷︷ ︸
=2

(since ψ(σ)=1)

+ ∑
σ∈Sodd

V (D);
ψ(σ)≥2

2ψ(σ)︸ ︷︷ ︸
≡0 mod 4

(since ψ(σ)≥2)(
here, we have split our sum according to

whether ψ (σ) is 0 or 1 or ≥ 2

)
≡ ∑

σ∈Sodd
V (D);

ψ(σ)=0

1 + ∑
σ∈Sodd

V (D);
ψ(σ)=1

2 + ∑
σ∈Sodd

V (D);
ψ(σ)≥2

0

︸ ︷︷ ︸
=0

= ∑
σ∈Sodd

V (D);
ψ(σ)=0

1

︸ ︷︷ ︸
=(# of permutations σ∈Sodd

V (D) satisfying ψ(σ)=0)·1

+ ∑
σ∈Sodd

V (D);
ψ(σ)=1

2

︸ ︷︷ ︸
=(# of permutations σ∈Sodd

V (D) satisfying ψ(σ)=1)·2

=
(

# of permutations σ ∈ Sodd
V (D) satisfying ψ (σ) = 0

)
︸ ︷︷ ︸

=1
(since the only permutation σ∈Sodd

V (D)
satisfying ψ(σ)=0 is the identity permutation)

· 1

+
(

# of permutations σ ∈ Sodd
V (D) satisfying ψ (σ) = 1

)
︸ ︷︷ ︸

=(# of nontrivial odd D-cycles)
(by Lemma 7.2)

· 2

= 1 · 1 + (# of nontrivial odd D-cycles) · 2
= 1 + 2 (# of nontrivial odd D-cycles)mod 4.

Comparing this with

ζ (UD) =
(
# of hamps of D

)
(by Lemma 6.5) ,

we obtain (
# of hamps of D

)
≡ 1 + 2 (# of nontrivial odd D-cycles)mod 4. (80)
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However, recall that D is a tournament. Hence, the tournament axiom shows
that a pair (u, v) of two distinct elements of V is an arc of D if and only if the pair
(v, u) is not. In other words, a pair (u, v) of two distinct elements of V is an arc of
D if and only if the pair (v, u) is an arc of D. Thus, if v = (v1, v2, . . . , vk) is a hamp
of D, then its reversal rev v = (vk, vk−1, . . . , v1) is a hamp of D. Hence, we obtain a
map

{hamps of D} →
{

hamps of D
}

,
v 7→ rev v.

This map is furthermore easily seen to be injective and surjective. Hence, it is
bijective. Thus, the bijection principle yields

(# of hamps of D) =
(
# of hamps of D

)
≡ 1 + 2 (# of nontrivial odd D-cycles)mod 4

(by (80)). This proves Theorem 7.1.

8. The antipode and the omega involution

Next, we will discuss how the Redei-Berge symmetric functions UD interplay with
two well-known involutions on the ring Λ: the omega involution ω and the an-
tipode map S.

We shall not recall the standard definitions of these involutions ω and S (see,
e.g., [GriRei20, §2.4]); however, we shall briefly state the few properties that will
be used in what follows. Both the omega involution ω and the antipode S of Λ are
endomorphisms of the Z-algebra Λ; they satisfy the equalities

S (pn) = −pn (81)

and
ω (pn) = (−1)n−1 pn (82)

for every positive integer n (see [GriRei20, Proposition 2.4.1 (i)] and [GriRei20,
Proposition 2.4.3 (c)]). Moreover, if f ∈ Λ is a homogeneous power series of degree
n, then

S ( f ) = (−1)n ω ( f ) (83)

(this is [GriRei20, Proposition 2.4.3 (e)]). We now claim the following theorem:

Theorem 8.1. Let D = (V, A) be a digraph. Then,

ω (UD) = UD. (84)

Furthermore, if n := |V|, then

S (UD) = (−1)n UD. (85)
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Proof. The definition of D yields that D = D. Hence, the definition of SV
(

D, D
)

yields that SV
(

D, D
)
= SV

(
D, D

)
.

For each σ ∈ SV , we set

φ (σ) := ∑
γ∈Cycs σ;

γ is a D-cycle

(ℓ (γ)− 1) and φ (σ) := ∑
γ∈Cycs σ;

γ is a D-cycle

(ℓ (γ)− 1) .

Now, it is easy to see that

ω
(
(−1)φ(σ) ptype σ

)
= (−1)φ(σ) ptype σ (86)

for each σ ∈ SV
(

D, D
)
.

[Proof of (86): Let σ ∈ SV
(

D, D
)
. Let k1, k2, . . . , ks be the lengths of all cycles

of σ, listed in decreasing order. Then, the definition of type σ yields type σ =
(k1, k2, . . . , ks). Hence,

ptype σ = p(k1,k2,...,ks) = pk1 pk2 · · · pks = ∏
γ∈Cycs σ

pℓ(γ) (87)

(since k1, k2, . . . , ks are the lengths of all cycles of σ). Hence,

ω
(
(−1)φ(σ) ptype σ

)
= ω

(
(−1)φ(σ) ∏

γ∈Cycs σ

pℓ(γ)

)

= (−1)φ(σ) ∏
γ∈Cycs σ

ω
(

pℓ(γ)
)

︸ ︷︷ ︸
=(−1)ℓ(γ)−1 pℓ(γ)

(by (82))

(
since ω is a Z-algebra

homomorphism

)

= (−1)φ(σ) ∏
γ∈Cycs σ

(
(−1)ℓ(γ)−1 pℓ(γ)

)
= (−1)φ(σ)

(
∏

γ∈Cycs σ

(−1)ℓ(γ)−1

)
︸ ︷︷ ︸

=(−1)
∑

γ∈Cycs σ
(ℓ(γ)−1)

∏
γ∈Cycs σ

pℓ(γ)︸ ︷︷ ︸
=ptype σ

(by (87))

= (−1)φ(σ) (−1)
∑

γ∈Cycs σ
(ℓ(γ)−1)

ptype σ. (88)

However, each γ ∈ Cycs σ is either a D-cycle or a D-cycle (since σ ∈ SV
(

D, D
)
),

but cannot be both at the same time (since D and D have no arcs in common).
Thus,

∑
γ∈Cycs σ

(ℓ (γ)− 1) = ∑
γ∈Cycs σ;

γ is a D-cycle

(ℓ (γ)− 1)

︸ ︷︷ ︸
=φ(σ)

(by the definition of φ(σ))

+ ∑
γ∈Cycs σ;

γ is a D-cycle

(ℓ (γ)− 1)

︸ ︷︷ ︸
=φ(σ)

(by the definition of φ(σ))

= φ (σ) + φ (σ) .
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Thus, (88) rewrites as

ω
(
(−1)φ(σ) ptype σ

)
= (−1)φ(σ) (−1)φ(σ)+φ(σ)︸ ︷︷ ︸

=(−1)φ(σ)

ptype σ = (−1)φ(σ) ptype σ.

This proves (86).]

Now, Theorem 1.31 yields

UD = ∑
σ∈SV(D,D)

(−1)φ(σ) ptype σ. (89)

Also, Theorem 1.31 (applied to D, (V × V) \ A and φ instead of D, A and φ) yields

UD = ∑
σ∈SV(D,D)

(−1)φ(σ) ptype σ

= ∑
σ∈SV(D,D)

(−1)φ(σ) ptype σ︸ ︷︷ ︸
=ω

(
(−1)φ(σ)ptype σ

)
(by (86))

(
since SV

(
D, D

)
= SV

(
D, D

))

= ∑
σ∈SV(D,D)

ω
(
(−1)φ(σ) ptype σ

)

= ω


∑

σ∈SV(D,D)

(−1)φ(σ) ptype σ

︸ ︷︷ ︸
=UD

(by (89))


(since ω is Z-linear)

= ω (UD) .

This proves (84).
Now, let n := |V|. Then, the definition of UD easily yields that UD is homoge-

neous of degree n. Hence, (83) (applied to f = UD) yields

S (UD) = (−1)n ω (UD) = (−1)n UD (by (84)) .

Thus, (85) is proved. This completes the proof of Theorem 8.1.

Theorem 8.1 can also be proved directly from the definition of UD, using the
formula for the antipode of a fundamental quasisymmetric function ([GriRei20,
(5.2.7)]). Indeed, three different proofs of Theorem 8.1 (specifically, of (84)) are
found in [Chow96] (where (84) appears as [Chow96, Corollary 2]), one of which is
doing just this. A fourth proof can be found in [Wisema07, (6)].

We can use Theorem 8.1 to give a new proof of Berge’s theorem (Theorem 6.2).
For this purpose, we recall the Z-algebra homomorphism ζ introduced in Section
6. We need another simple property of this ζ:
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Lemma 8.2. Let f ∈ Z [p1, p2, p3, . . .]. Then, ζ (ω ( f )) ≡ ζ ( f )mod 2.

Proof. Let π : Z → Z/2 be the projection map that sends each integer to its con-
gruence class modulo 2. This π is a Z-algebra homomorphism.

For each positive integer n, we have

ζ (ω (pn)) = ζ
(
(−1)n−1 pn

)
(by (82))

= (−1)n−1︸ ︷︷ ︸
≡1 mod 2

ζ (pn) (since ζ is Z-linear)

≡ ζ (pn)mod 2

and thus
π (ζ (ω (pn))) = π (ζ (pn))

(since two integers a and b satisfy a ≡ b mod 2 if and only if π (a) = π (b)). In other
words, for each positive integer n, we have

(π ◦ ζ ◦ ω) (pn) = (π ◦ ζ) (pn) .

In other words, the two maps π ◦ ζ ◦ ω and π ◦ ζ agree on each of the gener-
ators p1, p2, p3, . . . of the Z-algebra Z [p1, p2, p3, . . .]. Since these two maps are Z-
algebra homomorphisms (because π, ζ and ω are Z-algebra homomorphisms), this
shows that these two maps agree on the entire Z-algebra Z [p1, p2, p3, . . .]. Hence,
(π ◦ ζ ◦ ω) ( f ) = (π ◦ ζ) ( f ). In other words, π (ζ (ω ( f ))) = π (ζ ( f )). In other
words, ζ (ω ( f )) ≡ ζ ( f )mod 2 (since two integers a and b satisfy a ≡ b mod 2 if
and only if ζ (a) = ζ (b)). This proves Lemma 8.2.

Second proof of Theorem 6.2. From (84), we obtain ω (UD) = UD.
Corollary 1.35 yields UD ∈ Z [p1, p2, p3, . . .]. Hence, Lemma 8.2 (applied to f =

UD) yields that
ζ (ω (UD)) ≡ ζ (UD)mod 2.

In view of
ζ (UD) =

(
# of hamps of D

)
(by Lemma 6.5)

and

ζ

ω (UD)︸ ︷︷ ︸
=UD

 = ζ (UD) =
(

# of hamps of D
) (

by Lemma 6.5,
applied to D instead of D

)

= (# of hamps of D)
(

since D = D
)

,

we can rewrite this as

(# of hamps of D) ≡
(
# of hamps of D

)
mod 2.

This proves Theorem 6.2 again.
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9. A multiparameter deformation

Let us now briefly discuss a multiparameter deformation of the Redei-Berge sym-
metric functions UD, which replaces the digraph D by an arbitrary matrix.

We fix a commutative ring k, which we shall now be using instead of Z as a base
ring for our power series.

We fix an n ∈ N, and a set V with n elements.
For any a ∈ V × V, we fix an element ta ∈ k. (Thus, the family

(
t(i,j)

)
i,j∈V

of

these elements can be viewed as a V × V-matrix.)
For any a ∈ V × V, we set sa := ta + 1 ∈ k.
The following definition is inspired by a comment from Mike Zabrocki:

Definition 9.1. We define the deformed Redei–Berge symmetric function Ũt to be the
formal power series

Ũt = ∑
w=(w1,w2,...,wn)

is a V-listing

∑
i1≤i2≤···≤in

 ∏
k∈[n−1];
ik=ik+1

s(wk,wk+1)

 xi1 xi2 · · · xin

∈ k [[x1, x2, x3, . . .]] .

For example, if n = 2 and V = {1, 2}, then

Ũt = ∑
i1<i2

xi1 xi2 + ∑
i1=i2

t(1,2)xi1 xi2 + ∑
i1<i2

xi1 xi2 + ∑
i1=i2

t(2,1)xi1 xi2

= ∑
i<j

xixj + ∑
i

t(1,2)x
2
i + ∑

i<j
xixj + ∑

i
t(2,1)x

2
i

= p2
1 +

(
s(1,2) + s(2,1) − 1

)
p2

= p2
1 +

(
t(1,2) + t(2,1) + 1

)
p2

For a more complicated example, if n = 3 and V = {1, 2, 3}, then a longer
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computation shows that

Ũt = p3
1 +

(
s(1,2) + s(2,1) + s(1,3) + s(3,1) + s(2,3) + s(3,2) − 3

)
p2p1

+
(

s(1,2)s(2,3) + s(2,3)s(3,1) + s(3,1)s(1,2)

+ s(1,3)s(3,2) + s(3,2)s(2,1) + s(2,1)t(1,3)

− s(1,2) − s(2,1) − s(1,3) − s(3,1) − s(2,3) − s(3,2) + 2
)

p3

= p3
1 +

(
t(1,2) + t(2,1) + t(1,3) + t(3,1) + t(2,3) + t(3,2) + 3

)
p2p1

+
(

t(1,2)t(2,3) + t(2,3)t(3,1) + t(3,1)t(1,2)

+ t(1,3)t(3,2) + t(3,2)t(2,1) + t(2,1)t(1,3)

+ t(1,2) + t(2,1) + t(1,3) + t(3,1) + t(2,3) + t(3,2) + 2
)

p3.

Why are we calling Ũt a deformation of UD ?

Example 9.2. Let D = (V, A) be a digraph. Set k = Z, and let

ta :=

{
−1, if a ∈ A;
0, if a /∈ A

for each a ∈ V × V.

Then, Ũt = UD, as can be seen by comparing the definitions.

All the above results leading up to Theorem 1.31 can be extended to this defor-
mation, culminating in the following deformation of Theorem 1.31:

Theorem 9.3. We have

Ũt = ∑
σ∈SV

(
∏

γ is a cycle of σ

(
∏

a∈CArcs γ

sa − ∏
a∈CArcs γ

ta

))
ptype σ.

Alternatively, Theorem 9.3 can be deduced from Theorem 1.31 via the “multi-
linearity trick”: View each ta as an indeterminate, and argue that both sides in
Theorem 9.3 are polynomials in degree ≤ 1 in these indeterminates (over the base
ring k [[x1, x2, x3, . . .]]). Thus, in order to prove their equality, it suffices to prove
that they are equal when each ta is specialized to either 0 or −1. But this is precisely
the claim of Theorem 1.31. (Thus, Theorem 9.3 is not essentially more general than
Theorem 1.31.)

Theorem 9.3 shows that the Ũt are p-integral symmetric functions (taking the ta
as “integers”). There do not seem to be any good opportunities for generalizing
any of Theorem 1.39 and Theorem 1.41, however.
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