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1. The goals

This expository note is devoted to some apocryphal properties of fields of posi-
tive characteristic. We shall use the following notations:

Definition 1.1. In the following, rings are always assumed to be associative
and with 1. If R is a commutative ring, then an R-algebra means a ring A
endowed with an R-module structure such that the map A× A→ A, (a, b) 7→
ab is R-bilinear. The characteristic of a field L is denoted by char L.
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The word “prime” always stands for “prime number”. Neither 0 nor 1
counts as a prime. The notation N stands for the set {0, 1, 2, . . .}.

Definition 1.2. Let p ∈ N. Let L be a commutative ring. A polynomial
f ∈ L [X] is said to be a p-polynomial if f is an L-linear combination of the
monomials Xp0

, Xp1
, Xp2

, . . .. For instance, the polynomial 3X − 7X2 + X4 ∈
Z [X] is a 2-polynomial but not a 3-polynomial.

Our main goal in this note is to demonstrate the following four interrelated
facts:

Theorem 1.3. Let V be a finite additive subgroup of a field L. Let p = char L.
Then, ∏

v∈V
(X + v) ∈ L [X] is a p-polynomial.

Theorem 1.4. Let V be a finite additive subgroup of a field L. Let t ∈ L \ V.
Then,

∑
v∈V

1
t + v

=

(
∏
v∈V

1
t + v

)
·

 ∏
v∈V\0

v

 .

Theorem 1.5. Let q be a prime power. Let L be a field extension of the finite
field Fq. Let V be a finite Fq-vector subspace of L. Then, ∏

v∈V
(X + v) ∈ L [X]

is a q-polynomial.

Theorem 1.6. Let q be a prime power. Let L be a commutative Fq-algebra.
Let V be a finite Fq-vector subspace of L. Then, ∏

v∈V
(X + v) ∈ L [X] is a

q-polynomial.

Note that these four theorems are essentially about fields of positive charac-
teristic. Indeed, it is easy to show that in Theorem 1.3 and in Theorem 1.4, the
finite subgroup V must be 0 if char L = 0; thus, the two theorems become fairly
trivial if char L = 0, and only the case of positive characteristic is interesting.

Let us first comment on the origins of these results:
Theorem 1.5 is a known fact (e.g., it immediately follows from [Conrad14,

Theorem A.1 2) and Corollary A.3], from [Macdon92, (7.7)] or from [Grinbe16,
Theorem 3.17]). Theorem 1.3 is a particular case of Theorem 1.5 (obtained by
setting q = p = char L when char L 6= 0), and is due to Oystein Ore ([Ore33, the
=⇒ direction of Theorem 8]).

Theorem 1.4 is an auxiliary result from unfinished work [Grinbe16, Proposi-
tion 5.3] of mine and James Borger on Carlitz polynomials.

Theorem 1.6 is also not new (it is precisely [Grinbe16, Theorem 3.17], and
appears implicitly in [Macdon92]). Clearly, it generalizes Theorem 1.5 (since any
field extension of Fq is a commutative Fq-algebra).
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All of the above four theorems are accessible without much preknowledge
(basic theory of finite fields should be sufficient), and the purpose of this note is
to collect elementary and self-contained proofs.

Theorem 1.3 and Theorem 1.4 were posed as a problem in the PRIMES 2015
application contest1. Some of the proofs below were found by students taking
part in the contest.

2. Preparations

Before we start proving the above theorems, let us prove some auxiliary facts
that will be useful. Some of these facts are actually well-known results.

Lemma 2.1. Let V be a finite additive subgroup of a field L. Let p = char L.
Assume that V 6= 0.

(a) The number p is prime.
(b) The field L is a field extension of Fp.
(c) The subset V is a finite-dimensional Fp-vector subspace of L.

Proof of Lemma 2.1. (a) We have V 6= 0. Thus, there exists a nonzero vector v ∈
V. Consider such a v. Every element of the additive group V has finite order
(because V is finite). In particular, v has finite order (since v is an element of V).
In other words, there exists some positive integer N such that Nv = 0. Consider
this N.

We have v ∈ V ⊆ L. We can divide the equality Nv = 0 by v (since v is a
nonzero element of the field L). We thus obtain N · 1L = 0 (where 1L denotes the
one of the field L). Thus, the field L cannot have characteristic 0. In other words,
char L is positive. In other words, p is positive (since p = char L). Hence, p is a
prime (since p = char L is the characteristic of a field, and thus is either prime
or 0). This completes the proof of Lemma 2.1 (a).

(b) We know that char L = p is prime (by Lemma 2.1 (a)). Hence, L is a field
extension of Fp. This proves Lemma 2.1 (b).

(c) Lemma 2.1 (b) shows that L is a field extension of Fp. Hence, L is an
Fp-vector space.

Let λ ∈ Fp and v ∈ V.
We have λ ∈ Fp = Z/pZ. Hence, there exists some n ∈ Z such that λ = n

(where n denotes the residue class of n modulo p). Consider such an n. We have
λ = n and thus λv = n v︸︷︷︸

∈V

∈ nV ⊆ V (because V is an additive group).

Now, forget that we fixed λ and v. We thus have shown that λv ∈ V for every
λ ∈ Fp and v ∈ V. Thus, V is an Fp-vector subspace of L (since we already
know that V is an additive subgroup of L). Moreover, V is finite-dimensional
(since V is finite). This proves Lemma 2.1 (c).

1See problem M6 in https://math.mit.edu/research/highschool/primes/materials/2015/
entpro2015math.pdf .
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Lemma 2.2. Let p be a prime. Let L be a commutative Fp-algebra. Any two
elements u and v of L satisfy

(u + v)p = up + vp. (1)

Proof of Lemma 2.2. For every i ∈ {1, 2, . . . , p− 1}, the binomial coefficient
(

p
i

)
is divisible by p (since p is prime), and thus reduces to 0 in L (since L is an
Fp-algebra). In other words, for every i ∈ {1, 2, . . . , p− 1}, we have(

p
i

)
= 0 in L. (2)

But L is commutative. Hence, the binomial formula yields

(u + v)p =
p

∑
i=0

(
p
i

)
uivp−i = up +

p−1

∑
i=1

(
p
i

)
︸︷︷︸
=0 in L
(by (2))

uivp−i + vp

(
here, we have split off the addends for i = 0

and for i = p from the sum

)
= up + vp.

This proves Lemma 2.2.

Lemma 2.3. Let p be a prime. Let L be a commutative Fp-algebra. Any two
elements u and v of L and any n ∈N satisfy

(u + v)pn
= upn

+ vpn
. (3)

Proof of Lemma 2.3. Lemma 2.3 follows by induction on n, using (1) and the fact

that wpn
=
(

wpn−1
)p

for every w ∈ L and every positive integer n. 2

2Here is the argument in more detail:
Proof of (3): We shall prove (3) by induction on n:
Induction base: Any u ∈ L and v ∈ L satisfy

(u + v)p0
= (u + v)1

(
since p0 = 1

)
= u︸︷︷︸

=u1=up0

(since 1=p0)

+ v︸︷︷︸
=v1=vp0

(since 1=p0)

= up0
+ vp0

.

In other words, (3) holds for n = 0. This completes the induction base.
Induction step: Let N ∈ N be positive. Assume that (3) holds for n = N − 1. We must now
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Lemma 2.4. Let p be a prime. Any λ ∈ Fp satisfies

λp = λ. (4)

Proof of Lemma 2.4. Let λ ∈ Fp. We must prove (4). If λ = 0, then (4) is obviously
true. Hence, we WLOG assume that λ 6= 0. Thus, λ ∈ Fp \ {0}.

The multiplicative group
(
Fp
)×

= Fp \ {0} of the field Fp has p− 1 elements
(since

∣∣Fp \ {0}
∣∣ = ∣∣Fp

∣∣︸︷︷︸
=p

−1 = p − 1). Hence, the order of any element of this

group
(
Fp
)× divides p− 1 (by Lagrange’s theorem). In particular, the order of

the element λ of
(
Fp
)× divides p − 1 (since λ ∈ Fp \ {0} =

(
Fp
)×). Hence,

λp−1 = 1. Now, λp = λ λp−1︸︷︷︸
=1

= λ. This proves (4). Thus, Lemma 2.4 is proven.

Lemma 2.5. Let p be a prime. Any λ ∈ Fp and any n ∈N satisfy

λpn
= λ. (5)

Proof of Lemma 2.5. Lemma 2.5 follows by induction on n, using (4) and the fact

that λpn
=
(

λpn−1
)p

for every λ ∈ Fp and every positive integer n.

Lemma 2.6. Let p be a prime. Let L be a commutative Fp-algebra. Let f ∈
L [X] be a p-polynomial. Then,

f (u + v) = f (u) + f (v) (6)

show that (3) holds for n = N.
Let u ∈ L and v ∈ L. We have assumed that (3) holds for n = N− 1. Hence, (3) (applied to

n = N − 1) yields (u + v)pN−1
= upN−1

+ vpN−1
. But every w ∈ L satisfies wpN

=
(

wpN−1
)p

.
Applying this to w = u + v, we find

(u + v)pN
=

 (u + v)pN−1︸ ︷︷ ︸
=upN−1

+vpN−1


p

=
(

upN−1
+ vpN−1

)p

=
(

upN−1
)p

︸ ︷︷ ︸
=upN

+
(

vpN−1
)p

︸ ︷︷ ︸
=vpN(

by (1), applied to upN−1
and vpN−1

instead of u and v
)

= upN
+ vpN

.

Thus, we have shown that (3) holds for n = N. This completes the induction step. The proof
of (3) is thus finished. In other words, Lemma 2.3 is proven.
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for every u ∈ L and v ∈ L.

Proof of Lemma 2.6. We know that f ∈ L [X] is a p-polynomial. Thus, f has the

form f =
d
∑

n=0
anXpn

for some d ∈ N and some a0, a1, . . . , ad ∈ L. Consider this d

and these a0, a1, . . . , ad. Every u ∈ L and v ∈ L satisfy

f (u + v) =
d

∑
n=0

an (u + v)pn︸ ︷︷ ︸
=upn

+vpn

(by (3))

(
since f =

d

∑
n=0

anXpn

)

=
d

∑
n=0

an

(
upn

+ vpn
)
=

d

∑
n=0

anupn

︸ ︷︷ ︸
= f (u)

+
d

∑
n=0

anvpn

︸ ︷︷ ︸
= f (v)

= f (u) + f (v) .

This proves Lemma 2.6.

Lemma 2.7. Let p be a prime. Let L be a commutative Fp-algebra. Let f ∈
L [X] be a p-polynomial. Then,

f (λu) = λ f (u) (7)

for every u ∈ L and λ ∈ Fp.

Proof of Lemma 2.7. We know that f ∈ L [X] is a p-polynomial. Thus, f has the

form f =
d
∑

n=0
anXpn

for some d ∈ N and some a0, a1, . . . , ad ∈ L. Consider this d

and these a0, a1, . . . , ad. Every u ∈ L and λ ∈ Fp satisfy

f (λu) =
d

∑
n=0

an (λu)pn︸ ︷︷ ︸
=λpn upn

(
since f =

d

∑
n=0

anXpn

)

=
d

∑
n=0

an λpn︸︷︷︸
=λ

(by (5))

upn
=

d

∑
n=0

anλupn
= λ

d

∑
n=0

anupn

︸ ︷︷ ︸
= f (u)

(since
d
∑

n=0
anXpn

= f )

= λ f (u) .

This proves Lemma 2.7.

Definition 2.8. Let L be a commutative ring. For every polynomial f ∈ L [X],
we let R ( f ) be the set of all roots of f (inside L).
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Lemma 2.9. Let p be a prime. Let L be a commutative Fp-algebra. Let f ∈
L [X] be a p-polynomial. Then,

R ( f ) is a Fp-vector subspace of L. (8)

Proof of Lemma 2.9. If u ∈ L and v ∈ L are such that f (u) = 0 and f (v) = 0,
then

f (u + v) = f (u)︸ ︷︷ ︸
=0

+ f (v)︸︷︷︸
=0

(by (6))

= 0.

In other words, if u and v are two roots of f , then u + v is a root of f . In other
words, the set R ( f ) of all roots of f is closed under addition. Furthermore, (7)
(applied to λ = 0 and u = 0) yields f (0) = 0 f (0) = 0. Hence, 0 is a root of f .
In other words, 0 ∈ R ( f ).

Moreover, (7) (applied to λ = −1) shows that f (−u) = − f (u) for every u ∈ L.
Hence, every u ∈ R ( f ) must satisfy f (−u) = − f (u)︸ ︷︷ ︸

=0
(since u∈R( f ))

= 0 and therefore

−u ∈ R ( f ). In other words, the set R ( f ) is closed under taking negatives.
Now, we know that the setR ( f ) contains 0 (since 0 ∈ R ( f )) and is closed un-

der addition and taking negatives. In other words,R ( f ) is an additive subgroup
of L.

Finally, if u ∈ R ( f ) and λ ∈ Fp, then (7) yields f (λu) = λ f (u)︸ ︷︷ ︸
=0

(since u∈R( f ))

= 0

and therefore λu ∈ R ( f ). Therefore, the set R ( f ) is an Fp-vector subspace of
L (since we already know that R ( f ) is an additive subgroup of L). This proves
Lemma 2.9.

Lemma 2.10. Let p be a prime. Let L be a commutative Fp-algebra. Let
f ∈ L [X] be a p-polynomial. Then,

the derivative f ′ of f equals the coefficient of f before X1. (9)

Proof of Lemma 2.10. We know that f ∈ L [X] is a p-polynomial. Thus, f has the

form f =
d
∑

n=0
anXpn

for some d ∈ N and some a0, a1, . . . , ad ∈ L. Consider this d

and these a0, a1, . . . , ad. From f =
d
∑

n=0
anXpn

, we obtain

f ′ =
d

∑
n=0

an pnXpn−1 = a0 p0︸︷︷︸
=1

Xp0−1︸ ︷︷ ︸
=X0=1

+
d

∑
n=1

an pn︸︷︷︸
=0 in L

(since p|pn)

Xpn−1 = a0.

7
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But this is clearly the coefficient of f before X1. Thus, Lemma 2.10 is proven.

Lemma 2.11. Let L be a field. If f ∈ L [X] is a polynomial which has more
than deg f roots in L, then f = 0.

Proof of Lemma 2.11. This is a general (and well-known) fact about univariate
polynomials over a field: If the number of roots of such a polynomial exceeds
its degree, then the polynomial is 0.

3. Proofs of Theorem 1.3

We now come to the proofs of Theorem 1.3.

3.1. First proof

The following proof of Theorem 1.3 was found by Meghal Gupta in the PRIMES
2015 application contest:

First proof of Theorem 1.3. We WLOG assume that V 6= 0 (since otherwise, Theo-
rem 1.3 is evident). Lemma 2.1 (a) yields that the number p is prime. Lemma
2.1 (b) shows that the field L is a field extension of Fp. Lemma 2.1 (c) says that
the subset V is a finite-dimensional Fp-vector subspace of L.

Now, let W be the polynomial ∏
v∈V

(X + v) ∈ L [X]. We need to prove that W

is a p-polynomial.
Let (e1, e2, . . . , ek) be a basis of the Fp-vector space V. Thus, dim V = k, so that
|V| = pk.

There exists a nonzero vector (a0, a1, . . . , ak) ∈ Lk+1 satisfying

k

∑
j=0

aje
pk−j

i = 0 for every i ∈ {1, 2, . . . , k} . (10)

(Proof: Let us regard (10) as a system of k homogeneous linear equations in
the k + 1 unknowns a0, a1, . . . , ak over the field L. This system has at least one
solution (namely, (0, 0, . . . , 0)), and is underdetermined (since it has more un-
knowns than it has equations). Hence, it has at least one nonzero solution (where
“nonzero” means that at least one of a0, a1, . . . , ak is nonzero). This means that
there exists a nonzero vector (a0, a1, . . . , ak) ∈ Lk+1 satisfying (10), qed.)

So let us fix some nonzero vector (a0, a1, . . . , ak) ∈ Lk+1 satisfying (10) (now
that we know that such a vector exists). Define a polynomial W̃ ∈ L [X] by

W̃ =
k
∑

j=0
ajXpk−j

. Then, (10) rewrites as follows:

W̃ (ei) = 0 for every i ∈ {1, 2, . . . , k} .

8
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In other words,

ei ∈ R
(

W̃
)

for every i ∈ {1, 2, . . . , k} (11)

(since R
(

W̃
)

is the set of all roots of W̃).

The polynomial W̃ is not identically 0 (since (a0, a1, . . . , ak) is a nonzero vector).
Notice that “identically 0” means “all coefficients are 0”; this is not the same
thing as saying that W̃ (x) = 0 for all x ∈ L. (Actually, W̃ (x) = 0 might hold for
all x ∈ L is small enough!)

Also, W̃ is a p-polynomial (by its very definition). Hence, (8) (applied to
f = W̃) shows that R

(
W̃
)

is a Fp-vector subspace of L. Since this subspace

R
(

W̃
)

contains each vector in the basis (e1, e2, . . . , ek) of V (by (11)), we can

thus conclude that R
(

W̃
)

contains V as a subset. In other words, every w ∈ V

is an element of R
(

W̃
)

, thus a root of W̃. In other words, every w ∈ V satisfies

W̃ (w) = 0.
On the other hand, W = ∏

v∈V
(X + v). Hence, every w ∈ V satisfies W (w) = 0

3.
So we conclude that every w ∈ V satisfies both W̃ (w) = 0 and W (w) = 0.

Hence, every w ∈ V satisfies(
W̃ − a0W

)
(w) = W̃ (w)︸ ︷︷ ︸

=0

−a0 W (w)︸ ︷︷ ︸
=0

= 0.

In other words, every w ∈ V is a root of W̃ − a0W. Hence, the polynomial
W̃ − a0W has at least pk roots (since |V| = pk).

The polynomial W is a product of |V| = pk terms of the form X + v, and
therefore is a monic polynomial of degree pk. Hence, both polynomials W̃ and
a0W have degree ≤ pk, and moreover, their coefficients before Xpk

are equal
(namely, both are a0). Therefore, the difference W̃ − a0W is a polynomial of de-
gree < pk (since the equal coefficients before Xpk

cancel out in the subtraction).
In other words, deg

(
W̃ − a0W

)
< pk. But we have just proven that this differ-

ence W̃ − a0W has at least pk roots; thus, it has more than deg
(

W̃ − a0W
)

roots

(since deg
(

W̃ − a0W
)

< pk). Hence, Lemma 2.11 (applied to f = W̃ − a0W)

3Proof. Let w ∈ V. Then, −w ∈ V (since V is an additive subgroup of L). Hence, the product
∏

v∈V
(w + v) contains the factor w + (−w) (this is its factor for v = −w), which is 0. Therefore,

the whole product ∏
v∈V

(w + v) must be 0. Now, evaluating both sides of the equality W =

∏
v∈V

(X + v) at X = w, we obtain W (w) = ∏
v∈V

(w + v) = 0. Qed.

9
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shows that W̃ − a0W = 0, so that W̃ = a0W. Since W̃ is not identically 0, this

shows that a0 6= 0. Hence, W̃ = a0W becomes W =
1
a0

W̃. But W̃ is a p-

polynomial. Hence, W is a p-polynomial (since W =
1
a0

W̃). Hence, Theorem 1.3

is proven.

3.2. Second proof

The following proof of Theorem 1.3 appears in [Macdon92, (7.7)]; it was also
found by Jessica Lai in the PRIMES 2015 application contest:

Second proof of Theorem 1.3. We WLOG assume that V 6= 0 (since otherwise, The-
orem 1.3 is evident). Lemma 2.1 (a) yields that the number p is prime. Lemma
2.1 (b) shows that the field L is a field extension of Fp. Lemma 2.1 (c) says that
the subset V is a finite-dimensional Fp-vector subspace of L.

Now, let W be the polynomial ∏
v∈V

(X + v) ∈ L [X]. We need to prove that W

is a p-polynomial.
Let (e1, e2, . . . , ek) be a basis of the Fp-vector space V. Thus, dim V = k, so that
|V| = pk. Also, e1, e2, . . . , ek are Fp-linearly independent.

For every n ∈ {0, 1, . . . , k}, we let mn be the n× n-matrix
ep0

1 ep1

1 · · · epn−1

1

ep0

2 ep1

2 · · · epn−1

2
...

... . . . ...

ep0

n ep1

n · · · epn−1

n

 ∈ Ln×n,

and we let Mn be the (n + 1)× (n + 1)-matrix

ep0

1 ep1

1 · · · epn−1

1 epn

1

ep0

2 ep1

2 · · · epn−1

2 epn

2
...

... . . . ...
...

ep0

n ep1

n · · · epn−1

n epn

n

Xp0
Xp1 · · · Xpn−1

Xpn


∈ (L [X])(n+1)×(n+1) .

These two matrices are related to each other by the following properties:

• The matrix mn consists of the first n rows and the first n columns of Mn.

• The matrix mn+1 (for n < k) is obtained from Mn by substituting en+1 for
X.

10
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Now, we shall prove the following4:

Lemma 3.1. Let L, V, p, (e1, e2, . . . , ek), mn and Mn be as above.
Let n ∈ {0, 1, . . . , k}. Let Vn be the Fp-vector subspace of V spanned by

e1, e2, . . . , en. (In particular, V0 is spanned by nothing, and thus equals 0. On
the other hand, Vk = V.)

(a) We have
det (Mn) = det (mn) · ∏

v∈Vn

(X + v) .

(b) The polynomial det (Mn) ∈ L [X] is a p-polynomial of degree ≤ pn, and
its coefficient before Xpn

is det (mn).

The determinants det (mn) are known as the Moore determinants, and we will
compute them soon enough. First, let us prove the above lemma:

Proof of Lemma 3.1. (b) In the matrix Mn, the indeterminate X appears only in the
last row. If we expand det (Mn) with respect to the last row (Laplace expansion),
then we obtain

det (Mn) =
n

∑
j=0

Xpj
aj, (12)

where aj is the appropriate cofactor of Mn (namely, (−1)n+j times the determi-
nant of the matrix obtained from Mn by removing the (n + 1)-th row and the
(j + 1)-th column). All of these cofactors a0, a1, . . . , an belong to L (since they
are determinants of matrices whose entries all lie in L; here we are using the
fact that the indeterminate X appears only in the last row of Mn). Thus, (12)
shows that det (Mn) is a p-polynomial of degree ≤ pn. It also shows that its co-
efficient before Xpn

is an = (−1)n+n det (mn) (because the matrix obtained from
Mn by removing the (n + 1)-th row and the (n + 1)-th column is mn). Since
(−1)n+n = 1, this simplifies to det (mn). This concludes the proof of Lemma 3.1
(b).

(a) Let f denote the polynomial det (Mn) ∈ L [X]. Lemma 3.1 (b) shows that
f is a p-polynomial of degree ≤ pn, and its coefficient before Xpn

is det (mn).
Thus, (8) shows that R ( f ) is an Fp-vector subspace of L.

Let i ∈ {1, 2, . . . , n}. We have

f = det (Mn) = det



ep0

1 ep1

1 · · · epn−1

1 epn

1

ep0

2 ep1

2 · · · epn−1

2 epn

2
...

... . . . ...
...

ep0

n ep1

n · · · epn−1

n epn

n

Xp0
Xp1 · · · Xpn−1

Xpn


.

4Lemma 3.1 is a classical result; its part (a) is essentially [Goss98, Proposition 1.3.5 2)].
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Substituting ei for X in this equality, we obtain

f (ei) = det



ep0

1 ep1

1 · · · epn−1

1 epn

1

ep0

2 ep1

2 · · · epn−1

2 epn

2
...

... . . . ...
...

ep0

n ep1

n · · · epn−1

n epn

n

ep0

i ep1

i · · · epn−1

i epn

i


︸ ︷︷ ︸

This matrix has two equal rows
(the last row and the i-th row)

= 0.

In other words, ei ∈ R ( f ) (recall that R ( f ) denotes the set of all roots of f ).
Now, let us forget that we fixed i. We thus have shown that ei ∈ R ( f ) for

every i ∈ {1, 2, . . . , n}. Since R ( f ) is an Fp-vector subspace of L, this yields
that R ( f ) contains the Fp-vector subspace of V spanned by e1, e2, . . . , en as a
subset. In other words, R ( f ) ⊇ Vn (since the Fp-vector subspace of V spanned
by e1, e2, . . . , en is Vn).

But the vectors e1, e2, . . . , ek are linearly independent. Hence, so are the vectors
e1, e2, . . . , en. Thus, the Fp-vector subspace Vn spanned by these latter vectors has
dimension n. In other words, dim (Vn) = n, so that |Vn| = pn.

Let g denote the polynomial f − det (mn) · ∏
v∈Vn

(X + v) ∈ L [X]. Then, deg g <

pn 5.
Now, let w ∈ Vn. Then, w ∈ R ( f ) (since R ( f ) ⊇ Vn) and thus f (w) = 0.

On the other hand, −w ∈ Vn (since w ∈ Vn and since Vn is a vector space).
Hence, the product ∏

v∈Vn

(w + v) contains the factor w + (−w) = 0, and therefore

vanishes. Hence, f (w)︸ ︷︷ ︸
=0

−det (mn) · ∏
v∈Vn

(w + v)︸ ︷︷ ︸
=0

= 0. In other words, w is a root

of the polynomial f − det (mn) · ∏
v∈Vn

(X + v) = g.

Now, let us forget that we fixed w. We thus have proven that every w ∈ Vn
is a root of the polynomial g. Thus, this polynomial g has at least |Vn| = pn

roots. Hence, this polynomial g has more than deg g roots (since deg g < pn).

5Proof. As we know, the polynomial f has degree ≤ pn, and its coefficient before Xpn
is det (mn).

On the other hand, ∏
v∈Vn

(X + v) is a monic polynomial of degree pn (since it is the product

of |Vn| = pn terms of the form X + v), and therefore det (mn) · ∏
v∈Vn

(X + v) is a polynomial

of degree ≤ pn whose coefficient before Xpn
is det (mn).

So both polynomials f and det (mn) · ∏
v∈Vn

(X + v) have degree ≤ pn, and their coefficients

before Xpn
are det (mn). Thus, their difference f − det (mn) · ∏

v∈Vn

(X + v) has degree < pn

(since their equal coefficients before Xpn
cancel out when they are subtracted). In other

words, g has degree < pn (since g = f − det (mn) · ∏
v∈Vn

(X + v)), qed.

12
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Applying Lemma 2.11 to g instead of f , we thus conclude that g = 0. Since
g = f − det (mn) · ∏

v∈Vn

(X + v), this rewrites as f − det (mn) · ∏
v∈Vn

(X + v) = 0.

In other words, f = det (mn) · ∏
v∈Vn

(X + v). Since f = det (Mn), this means that

Lemma 3.1 (a) is proven.

Now we can compute the Moore determinants6:

Corollary 3.2. Let n ∈ {0, 1, . . . , k}. Let L, V, p, (e1, e2, . . . , ek), mn and Mn be
as above. Let Vn be as in Lemma 3.1.

(a) We have

det (mn) =
n

∏
i=1

∏
v∈Vi−1

(ei + v) . (13)

(b) We have det (mn) 6= 0.

Proof of Corollary 3.2. (a) Corollary 3.2 (a) is proven by induction over n.
The induction base (i.e., the case n = 0) is easy: If n = 0, then the left hand side

of (13) is 1 (because m0 is a 0× 0-matrix, and the determinant of a 0× 0-matrix
is defined to be 1), whereas the right hand side is also 1 (because it is an empty
product, and empty products too are defined to be 1).

Induction step: Fix n ∈ {0, 1, . . . , k− 1}. Assume that

det (mn) =
n

∏
i=1

∏
v∈Vi−1

(ei + v) . (14)

We now must prove that

det (mn+1) =
n+1

∏
i=1

∏
v∈Vi−1

(ei + v) . (15)

Lemma 3.1 (a) shows that

det (Mn) = det (mn) · ∏
v∈Vn

(X + v) (16)

Recall that the matrix mn+1 is obtained from Mn by substituting en+1 for X.
Hence, det (mn+1) is obtained from det (Mn) by substituting en+1 for X. Thus,
substituting en+1 for X in the equality (16) yields

det (mn+1) = det (mn)︸ ︷︷ ︸
=

n
∏
i=1

∏
v∈Vi−1

(ei+v)

(by (14))

· ∏
v∈Vn

(en+1 + v)

=

(
n

∏
i=1

∏
v∈Vi−1

(ei + v)

)
· ∏

v∈Vn

(en+1 + v) =
n+1

∏
i=1

∏
v∈Vi−1

(ei + v) .

6Corollary 3.2 is [Goss98, Corollary 1.3.7].
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This proves (15), and thus completes the induction step. Corollary 3.2 (a) is thus
proven.

(b) We need to prove that det (mn) 6= 0. According to (13), this boils down to
showing that ei + v 6= 0 for every i ∈ {1, 2, . . . , n} and every v ∈ Vi−1. So let us
fix an i ∈ {1, 2, . . . , n} and an v ∈ Vi−1. We need to show that ei + v 6= 0.

Assume the contrary. Thus, ei + v = 0. But Vi−1 (by definition) is the Fp-vector
subspace of V spanned by e1, e2, . . . , ei−1. Since v ∈ Vi−1, we thus can write v
as an Fp-linear combination of e1, e2, . . . , ei−1. In other words, v = a1e1 + a2e2 +
· · ·+ ai−1ei−1 for some a1, a2, . . . , ai−1 ∈ Fp. Consider these a1, a2, . . . , ai−1. Then,
ei + v = 0 becomes ei + a1e1 + a2e2 + · · ·+ ai−1ei−1 = 0. But this contradicts the
fact that e1, e2, . . . , ek are Fp-linearly independent. This contradiction proves that
our assumption was wrong. Hence, ei + v 6= 0 is proven. This completes the
proof of Corollary 3.2 (b).

Now, Lemma 3.1 (b) (applied to n = k) yields that the polynomial det (Mk) ∈
L [X] is a p-polynomial of degree ≤ pk, and its coefficient before Xpk

is det (mk).
But Lemma 3.1 (a) (applied to n = k) yields

det (Mk) = det (mk) · ∏
v∈Vk

(X + v) = det (mk) · ∏
v∈V

(X + v)

(since Vk = V). Since det (mk) 6= 0 (by Corollary 3.2 (b), applied to n = k), this
yields

∏
v∈V

(X + v) =
1

det (mk)
· det (Mk) .

Hence, ∏
v∈V

(X + v) is a p-polynomial (since det (Mk) is a p-polynomial, while

1
det (mk)

is just an element of L). This proves Theorem 1.3 again.

3.3. Third proof

We shall soon give a third proof of Theorem 1.3. This proof is more complicated
than the preceding ones, but it is (from certain viewpoints) the most natural,
and also possibly the oldest. It appears in [Ore33, proof of Theorem 7] and also
(implicitly) in [Macdon92]. In the PRIMES 2015 application contest, it was also
found by Mehtaab Sawhney.

Before we come to this proof, let us prove a few more elementary facts:

Lemma 3.3. Let p be a prime. Let L be a commutative Fp-algebra. Any finitely
many elements u1, u2, . . . , uk of L satisfy

(u1 + u2 + · · ·+ uk)
p = up

1 + up
2 + · · ·+ up

k . (17)

Proof of Lemma 3.3. This follows from (1) by induction over k.

14
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Lemma 3.4. Let p be a prime. Let L be a commutative Fp-algebra. Let g ∈
L [X] be a p-polynomial. Then, gp is a p-polynomial as well.

Proof of Lemma 3.4. We know that g ∈ L [X] is a p-polynomial. Thus, g has the

form g =
d
∑

n=0
anXpn

for some d ∈ N and some a0, a1, . . . , ad ∈ L. Consider this d

and these a0, a1, . . . , ad.
We know that L is a commutative Fp-algebra. Thus, L [X] also is a commuta-

tive Fp-algebra. Now, any finitely many elements u1, u2, . . . , uk of L [X] satisfy

(u1 + u2 + · · ·+ uk)
p = up

1 + up
2 + · · ·+ up

k . (18)

(Indeed, this follows from Lemma 3.3, applied to L [X] instead of L.)

From g =
d
∑

n=0
anXpn

= a0Xp0
+ a1Xp1

+ · · ·+ adXpd
, we obtain

gp =
(

a0Xp0
+ a1Xp1

+ · · ·+ adXpd
)p

=
(

a0Xp0
)p

+
(

a1Xp1
)p

+ · · ·+
(

adXpd
)p

(
by (18), applied to k = d + 1 and ui = ai−1Xpi−1

)
= ap

0 Xp0 p︸︷︷︸
=Xp1

+ap
1 Xp1 p︸︷︷︸
=Xp2

+ · · ·+ ap
d Xpd p︸︷︷︸
=Xpd+1

= ap
0 Xp1

+ ap
1 Xp2

+ · · ·+ ap
d Xpd+1

.

This is clearly a p-polynomial. Thus, Lemma 3.4 is proven.

Lemma 3.5. Let p be a prime. We have

∏
λ∈Fp

(X− λ) = Xp − X (19)

in the polynomial ring Fp [X].

Proof of Lemma 3.5. This is a well-known identity, and can be proven, e.g., by
comparing the roots and the leading terms of both sides. For the sake of com-
pleteness, let us give its proof in more details:

Let G be the polynomial ∏
λ∈Fp

(X− λ)− (Xp − X) ∈ Fp [X].

Both polynomials ∏
λ∈Fp

(X− λ) and Xp − X in the ring Fp [X] are monic poly-

nomials of degree p (in fact, ∏
λ∈Fp

(X− λ) is a product of
∣∣Fp
∣∣ = p linear poly-

nomials, and thus has degree p; it is furthermore monic because those linear
polynomials all are monic). Hence, their difference ∏

λ∈Fp

(X− λ)− (Xp − X) is a

15
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polynomial of degree < p (because the coefficients of Xp in these two polyno-
mials cancel out when we subtract them). In other words, G is a polynomial of
degree < p (since G = ∏

λ∈Fp

(X− λ)− (Xp − X)). Thus, deg G < p.

But every µ ∈ Fp satisfies

G (µ) = ∏
λ∈Fp

(µ− λ)︸ ︷︷ ︸
This product has a zero factor

(indeed, its factor for λ=µ is µ−µ=0),
and thus equals 0

−

 µp︸︷︷︸
=µ

(by (4), applied
to λ=µ)

−µ


since G = ∏

λ∈Fp

(X− λ)− (Xp − X)


= 0− (µ− µ) = 0.

In other words, each µ ∈ Fp is a root of the polynomial G. Thus, the polynomial
G has at least

∣∣Fp
∣∣ = p roots. Consequently, the polynomial G has more than

deg G roots (since deg G < p). But if a polynomial Q over a field has more than
deg Q roots, then Q must be 0. Applying this to Q = G, we conclude that G = 0.
Hence, ∏

λ∈Fp

(X− λ)− (Xp − X) = G = 0, so that ∏
λ∈Fp

(X− λ) = Xp − X. This

proves Lemma 3.5.

Lemma 3.6. Let p be a prime. We have

∏
λ∈Fp

(X + λY) = Xp − XYp−1 (20)

in the polynomial ring Fp [X, Y].

Proof of Lemma 3.6. Consider the ring Fp [X, Y] as a subring of the ring Fp (X, Y)
of rational functions in X and Y. We can substitute X/Y for X in (19); as a
result, we obtain ∏

λ∈Fp

(X/Y− λ) = (X/Y)p − X/Y. Multiplying both sides of

this equality by Yp, we obtain

Yp ∏
λ∈Fp

(X/Y− λ) = Yp ((X/Y)p − X/Y
)
= Xp − XYp−1.

16
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Thus,

Xp − XYp−1 = Yp ∏
λ∈Fp

(X/Y− λ) = ∏
λ∈Fp

(Y (X/Y− λ))︸ ︷︷ ︸
=X−λY(

since the product has
∣∣Fp
∣∣ = p terms

)
= ∏

λ∈Fp

(X− λY) = ∏
λ∈Fp

(X + λY)

(here, we have substituted λ for −λ in the product, since the map Fp → Fp, λ 7→
−λ is a bijection). This proves Lemma 3.6.

Lemma 3.7. Let p be a prime. Let L be a commutative Fp-algebra. Let f ∈
L [X] be a p-polynomial. Then,

f (u + v) = f (u) + f (v) (21)

for every u ∈ L [X] and v ∈ L [X].

Proof of Lemma 3.7. The proof of Lemma 3.7 is analogous to the proof of Lemma
2.6 (except that u and v now belong to L [X] instead of L).

Lemma 3.8. Let p be a prime. Let L be a commutative Fp-algebra. Let f ∈
L [X] be a p-polynomial. Then,

f (λu) = λ f (u) (22)

for every u ∈ L [X] and λ ∈ Fp.

Proof of Lemma 3.8. The proof of Lemma 3.8 is analogous to the proof of Lemma
2.7 (except that u now belongs to L [X] instead of L).

We are now ready to prove Theorem 1.3 again:

Third proof of Theorem 1.3. We WLOG assume that V 6= 0 (since otherwise, The-
orem 1.3 is evident). Lemma 2.1 (a) yields that the number p is prime. Lemma
2.1 (b) shows that the field L is a field extension of Fp. Lemma 2.1 (c) says that
the subset V is a finite-dimensional Fp-vector subspace of L.

Now, we shall prove Theorem 1.3 by induction over dim V.
The induction base (that is, the case when dim V = 0) is easy and left to the

reader.
Induction step: Let N ∈N. Assume (as the induction hypothesis) that Theorem

1.3 is proven in the case when dim V = N. We must then show that Theorem
1.3 holds in the case when dim V = N + 1.

So let us assume that dim V = N + 1. Thus, dim V = N + 1 > 0; hence, V has
a nonzero element e. Fix such an e. Then, the Fp-vector subspace Fpe of V has
dimension 1. By a basic fact in linear algebra, there exists a complement to the

17
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subspace Fpe of the vector space V – that is, there exists an Fp-vector subspace
W of V such that V = W ⊕Fpe (internal direct sum). Fix such a W.

From V = W ⊕ Fpe, we obtain dim V = dim W + dim
(
Fpe

)︸ ︷︷ ︸
=1

= dim W +

1. Thus, dim W + 1 = dim V = N + 1, so that dim W = N. Hence (by our
induction hypothesis) Theorem 1.3 can be applied to W instead of V. As a
result, we conclude that ∏

v∈W
(X + v) ∈ L [X] is a p-polynomial. Let us denote

this p-polynomial by g. Thus,

∏
v∈W

(X + v) = g. (23)

From Lemma 3.4, we conclude that gp is a p-polynomial as well.
Now, V = W ⊕ Fpe. Thus, every v ∈ V can be uniquely written in the form

w + λe for some (w, λ) ∈ W × Fp. Thus, we can substitute w + λe for v in the
product ∏

v∈V
(X + v). We hence obtain

∏
v∈V

(X + v) = ∏
(w,λ)∈W×Fp︸ ︷︷ ︸
= ∏

λ∈Fp
∏

w∈W

(X + w + λe)︸ ︷︷ ︸
=X+λe+w

= ∏
λ∈Fp

∏
w∈W

(X + λe + w)

= ∏
λ∈Fp

∏
v∈W

(X + λe + v)︸ ︷︷ ︸
=g(X+λe)

(this follows by substituting X+λe
for X in (23))

(here, we have renamed the index w as v)

= ∏
λ∈Fp

g (X + λe)︸ ︷︷ ︸
=g(X)+g(λe)

(by (21), applied to f=g,
u=X and v=λe)

= ∏
λ∈Fp


g (X)︸ ︷︷ ︸
=g

+ g (λe)︸ ︷︷ ︸
=λg(e)

(by (22), applied to f=g
and u=e)


= ∏

λ∈Fp

(g + λg (e)) = gp − g (g (e))p−1

(this follows by substituting g and g (e) for X and Y in (20)) .

But this is clearly a p-polynomial (since both gp and g are p-polynomials, while
(g (e))p−1 is just a constant in L). Thus, we have proven that ∏

v∈V
(X + v) is a p-

polynomial. In other words, Theorem 1.3 holds in the case when dim V = N + 1.
This completes the induction step, and Theorem 1.3 is proven once again.
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4. Proofs of Theorem 1.4

4.1. First proof

First proof of Theorem 1.4. We WLOG assume that V 6= 0 (since otherwise, Theo-
rem 1.4 is evident). Let p = char L. Lemma 2.1 (a) yields that the number p is
prime. Lemma 2.1 (b) shows that the field L is a field extension of Fp. Lemma
2.1 (c) says that the subset V is a finite-dimensional Fp-vector subspace of L.

Define a polynomial W ∈ L [X] by W = ∏
v∈V

(X + v). Then, Theorem 1.3

yields that the polynomial W is a p-polynomial. Hence, its derivative equals its
coefficient before X1 (by (9), applied to f = W). But this coefficient is ∏

v∈V\0
v.

Thus, we know that the derivative of W equals ∏
v∈V\0

v. Hence, W ′ (t) = ∏
v∈V\0

v.

On the other hand, since W = ∏
v∈V

(X + v), the Leibniz formula yields

W ′ = ∑
w∈V

(X + w)′︸ ︷︷ ︸
=1

· ∏
v∈V;
v 6=w

(X + v) = ∑
w∈V

∏
v∈V;
v 6=w

(X + v) = ∑
w∈V

∏
v∈V

(X + v)

X + w

=

(
∏
v∈V

(X + v)

)
·
(

∑
w∈V

1
X + w

)
.

Applying this to X = t, we obtain

W ′ (t) =

(
∏
v∈V

(t + v)

)
·
(

∑
w∈V

1
t + w

)
,

so that

∑
w∈V

1
t + w

=
1

∏
v∈V

(t + v)︸ ︷︷ ︸
= ∏

v∈V

1
t + v

· W ′ (t)︸ ︷︷ ︸
= ∏

v∈V\0
v

=

(
∏
v∈V

1
t + v

)
·

 ∏
v∈V\0

v

 .

Rename the index w as v and obtain the claim of Theorem 1.4.

4.2. Second proof

The following alternative proof of Theorem 1.4 was found by Meghal Gupta,
Mehtaab Sawhney, Brandon Epstein and Girishvar Venkal during the PRIMES
application contest 2015:
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Second proof of Theorem 1.4. Define a polynomial f ∈ L [X] by

f = ∑
v∈V

∏
w∈V\{v}

(X + w)− ∏
v∈V\{0}

v. (24)

Clearly, deg f ≤ |V| − 1 (since each of the products ∏
w∈V\{v}

(X + w) has at most

|V| − 1 terms).
Now, let u ∈ V. We shall prove that f (u) = 0.
Indeed, substituting u for X in the identity (24), we obtain

f (u) = ∑
v∈V

∏
w∈V\{v}

(u + w)− ∏
v∈V\{0}

v. (25)

Since u ∈ V, we have −u ∈ V (since V is an additive group). Thus,

∑
v∈V

∏
w∈V\{v}

(u + w) = ∏
w∈V\{−u}

(u + w) + ∑
v∈V;

v 6=−u

∏
w∈V\{v}

(u + w)︸ ︷︷ ︸
This product contains the factor u+(−u)

(because −u∈V\{v} (since −u∈V and −u 6=v))
and thus is 0 (because this factor is 0)(

here, we have split off the addend for v = −u
from the sum

)
= ∏

w∈V\{−u}
(u + w) + ∑

v∈V;
v 6=−u

0

︸ ︷︷ ︸
=0

= ∏
w∈V\{−u}

(u + w) = ∏
v∈V\{0}

v

(here, we have substituted v for u+w in the product, since the map V \ {−u} →
V \ {0} , w 7→ u + w is a bijection7). Therefore, (25) rewrites as

f (u) = ∏
v∈V\{0}

v− ∏
v∈V\{0}

v = 0.

In other words, u is a root of f .
Now, let us forget that we fixed u. We thus have proven that every u ∈ V is

a root of f . Thus, f has at least |V| roots. Since |V| > deg f (because deg f ≤
|V| − 1), this shows that f has more than deg f roots. According to Lemma 2.11,
this entails that f = 0. Because of (24), this yields

∑
v∈V

∏
w∈V\{v}

(X + w) = ∏
v∈V\{0}

v.

Substituting t for X in this equality, we obtain

∑
v∈V

∏
w∈V\{v}

(t + w) = ∏
v∈V\{0}

v.

7Check this!

20



p-polynomials from subspaces December 9, 2016

Dividing both sides by ∏
w∈V

(t + w), we obtain

∑
v∈V

∏
w∈V\{v}

(t + w)

∏
w∈V

(t + w)
=

∏
v∈V\{0}

v

∏
w∈V

(t + w)
=

(
∏

w∈V

1
t + w

)
·

 ∏
v∈V\{0}

v


=

(
∏
v∈V

1
t + v

)
·

 ∏
v∈V\{0}

v

 .

Comparing this with

∑
v∈V

∏
w∈V\{v}

(t + w)

∏
w∈V

(t + w)
= ∑

v∈V

∏
w∈V\{v}

(t + w)

∏
w∈V

(t + w)︸ ︷︷ ︸
=

1
t + v

= ∑
v∈V

1
t + v

,

we obtain

∑
v∈V

1
t + v

=

(
∏
v∈V

1
t + v

)
·

 ∏
v∈V\{0}

v

 .

This proves Theorem 1.4 again.

4.3. A generalization

The second proof of Theorem 1.4 shown above can be easily adapted to the
following generalization:

Theorem 4.1. Let V be a finite additive subgroup of a field L. Let s ∈ L [X] be
a polynomial of degree ≤ |V| − 1. Let t ∈ L \V. Then,

∑
v∈V

s (v)
t + v

=

(
∏
v∈V

1
t + v

)
·

 ∏
v∈V\0

v

 · s (−t) .

Proof of Theorem 1.4. The polynomial s (−X) has degree ≤ |V| − 1 (since the
polynomial s has degree ≤ |V| − 1).

Define a polynomial f ∈ L [X] by

f = ∑
v∈V

s (v) ∏
w∈V\{v}

(X + w)−

 ∏
v∈V\{0}

v

 · s (−X) . (26)
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Clearly, deg f ≤ |V| − 1 (since each of the products ∏
w∈V\{v}

(X + w) has at most

|V| − 1 terms, and since the polynomial s (−X) has degree ≤ |V| − 1).
Now, let u ∈ V. We shall prove that f (u) = 0.
Indeed, substituting u for X in the identity (26), we obtain

f (u) = ∑
v∈V

s (v) ∏
w∈V\{v}

(u + w)−

 ∏
v∈V\{0}

v

 · s (−u) . (27)

Since u ∈ V, we have −u ∈ V (since V is an additive group). Thus,

∑
v∈V

s (v) ∏
w∈V\{v}

(u + w)

= s (−u) ∏
w∈V\{−u}

(u + w) + ∑
v∈V;

v 6=−u

s (v) ∏
w∈V\{v}

(u + w)︸ ︷︷ ︸
This product contains the factor u+(−u)

(because −u∈V\{v} (since −u∈V and −u 6=v))
and thus is 0 (because this factor is 0)(

here, we have split off the addend for v = −u
from the sum

)
= s (−u) ∏

w∈V\{−u}
(u + w) + ∑

v∈V;
v 6=−u

s (v) 0

︸ ︷︷ ︸
=0

= s (−u) ∏
w∈V\{−u}

(u + w) = s (−u) ∏
v∈V\{0}

v

(here, we have substituted v for u+w in the product, since the map V \ {−u} →
V \ {0} , w 7→ u + w is a bijection8). Therefore, (27) rewrites as

f (u) = s (−u) ∏
v∈V\{0}

v−

 ∏
v∈V\{0}

v

 · s (−u) = 0.

In other words, u is a root of f .
Now, let us forget that we fixed u. We thus have proven that every u ∈ V is

a root of f . Thus, f has at least |V| roots. Since |V| > deg f (because deg f ≤
|V| − 1), this shows that f has more than deg f roots. According to Lemma 2.11,
this entails that f = 0. Because of (26), this yields

∑
v∈V

s (v) ∏
w∈V\{v}

(X + w) =

 ∏
v∈V\{0}

v

 · s (−X) .

8Check this!
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Substituting t for X in this equality, we obtain

∑
v∈V

s (v) ∏
w∈V\{v}

(t + w) =

 ∏
v∈V\{0}

v

 · s (−t) .

Dividing both sides by ∏
w∈V

(t + w), we obtain

∑
v∈V

s (v) ∏
w∈V\{v}

(t + w)

∏
w∈V

(t + w)
=

(
∏

v∈V\{0}
v

)
· s (−t)

∏
w∈V

(t + w)

=

(
∏

w∈V

1
t + w

)
·

 ∏
v∈V\{0}

v

 · s (−t)

=

(
∏
v∈V

1
t + v

)
·

 ∏
v∈V\{0}

v

 · s (−t) .

Comparing this with

∑
v∈V

s (v) ∏
w∈V\{v}

(t + w)

∏
w∈V

(t + w)
= ∑

v∈V
s (v)

∏
w∈V\{v}

(t + w)

∏
w∈V

(t + w)︸ ︷︷ ︸
=

1
t + v

= ∑
v∈V

s (v)
t + v

,

we obtain

∑
v∈V

s (v)
t + v

=

(
∏
v∈V

1
t + v

)
·

 ∏
v∈V\{0}

v

 · s (−t) .

This proves Theorem 4.1.

Theorem 1.4 is the particular case of Theorem 4.1 for s = 1.

5. Proofs of Theorem 1.5

Many of the facts shown in Section 2 have analogues in which Fp is replaced
by Fq. In preparation for the proof of Theorem 1.5, we shall now prove some of
these analogues:
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Lemma 5.1. Let q > 1 be a prime power. Let L be a commutative Fq-algebra.
Any two elements u and v of L satisfy

(u + v)q = uq + vq. (28)

Proof of Lemma 5.1. We know that q > 1 is a prime power. In other words, q = pN

for some prime p and some positive integer N. Consider these p and N. Now,
Fq is a Fp-algebra (since q = pN). Hence, L is a commutative Fp-algebra. Let

u ∈ L and v ∈ L. Applying (3) to n = N, we obtain (u + v)pN
= upN

+ vpN
. Since

q = pN, this rewrites as (u + v)q = uq + vq. This proves Lemma 5.1.

Lemma 5.2. Let q > 1 be a prime power. Let L be a commutative Fq-algebra.
Any two elements u and v of L and any n ∈N satisfy

(u + v)qn
= uqn

+ vqn
. (29)

Proof of Lemma 5.2. To obtain a proof of Lemma 5.2, just replace every “p” by a
“q” in the proof of Lemma 2.3, and replace the reference to (1) by a reference to
(28).

Lemma 5.3. Let q > 1 be a prime power. Any λ ∈ Fq satisfies

λq = λ. (30)

Proof of Lemma 5.3. To obtain a proof of Lemma 5.3, just replace every “p” by a
“q” in the proof of Lemma 2.4.

Lemma 5.4. Let q > 1 be a prime power. Any λ ∈ Fq and any n ∈N satisfy

λqn
= λ. (31)

Proof of Lemma 5.4. To obtain a proof of Lemma 5.4, just replace every “p” by a
“q” in the proof of Lemma 2.5, and replace the reference to (4) by a reference to
(30).

Lemma 5.5. Let q > 1 be a prime power. Let L be a commutative Fq-algebra.
Let f ∈ L [X] be a q-polynomial. Then,

f (u + v) = f (u) + f (v) (32)

for every u ∈ L and v ∈ L.

24



p-polynomials from subspaces December 9, 2016

Proof of Lemma 5.5. To obtain a proof of Lemma 5.5, just replace every “p” by a
“q” in the proof of Lemma 2.6, and replace the reference to (3) by a reference to
(29).

Lemma 5.6. Let q > 1 be a prime power. Let L be a commutative Fq-algebra.
Let f ∈ L [X] be a q-polynomial. Then,

f (λu) = λ f (u) (33)

for every u ∈ L and λ ∈ Fq.

Proof of Lemma 5.6. To obtain a proof of Lemma 5.6, just replace every “p” by a
“q” in the proof of Lemma 2.7, and replace the reference to (5) by a reference to
(31).

Lemma 5.7. Let q > 1 be a prime power. Let L be a commutative Fq-algebra.
Let f ∈ L [X] be a q-polynomial. Then,

R ( f ) is a Fq-vector subspace of L. (34)

Proof of Lemma 5.7. To obtain a proof of Lemma 5.7, just replace every “p” by
a “q” in the proof of Lemma 2.9, and replace the references to (6) and (7) by
references to (32) and (33).

Lemma 5.8. Let q > 1 be a prime power. Let L be a commutative Fq-algebra.
Let f ∈ L [X] be a q-polynomial. Then,

the derivative f ′ of f equals the coefficient of f before X1. (35)

Proof of Lemma 5.8. To obtain a proof of Lemma 5.8, just replace every “p” by a
“q” in the proof of Lemma 2.10, and then replace the words “(since q | qn)” by
“(since char

(
Fq
)
| q | qn and thus qn = 0 in Fq)”.

Proof of Theorem 1.5. We know that q > 1 is a prime power. In other words,
q = pN for some prime p and some positive integer N. Consider these p and N.
We have char

(
Fq
)
= p (since q = pN).

In order to obtain a proof of Theorem 1.5, it suffices to take any of our three
proofs of Theorem 1.3, and replace every appearance of “p” by “q” while si-
multaneously replacing all references to (1), (3), (4), (5), (6), (7), (8), (9), Lemma
2.6 and Lemma 2.7 by references to (28), (29), (30), (31), (32), (33), (34), (35),
Lemma 5.5 and Lemma 5.6.9 Thus, three different proofs of Theorem 1.5 can be
obtained.

9Here we are regarding Lemma 3.3, Lemma 3.4, Lemma 3.5, Lemma 3.6, Lemma 3.7, Lemma
3.8 (as well as the proofs of these lemmas) as parts of the proof. So the same replacements
must be made inside these lemmas and inside their proofs.
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6. Proofs of Theorem 1.6

First proof of Theorem 1.6. As we have seen above, each of our three proofs of
Theorem 1.3 can be turned into a proof of Theorem 1.5 by certain replacements.
In particular, applying these replacements to the third proof of Theorem 1.3, we
obtain a proof of Theorem 1.5. It is straightforward to observe that the latter
proof of Theorem 1.5 doubles as a proof of Theorem 1.6 (i.e., it works just as
well if L is a commutative Fq-algebra instead of being a field extension of Fq).
Thus, Theorem 1.6 is proven.

Second proof of Theorem 1.6. We can also derive Theorem 1.6 from Theorem 1.5 as
follows:

The Fq-vector space V is finite, and thus finite-dimensional. Hence, it has a
basis (e1, e2, . . . , en). Fix such a basis.

Let M be the Fq-algebra Fq [X1, X2, . . . , Xn] (the polynomial ring over Fq in n
indeterminates X1, X2, . . . , Xn). Then, the universal property of the polynomial
ring M shows that there exists a unique Fq-algebra homomorphism Φ : M → L
satisfying

(Φ (Xi) = ei for every i ∈ {1, 2, . . . , n}) . (36)

Consider this Φ.
Let N = Fq (X1, X2, . . . , Xn) be the fraction field of M. This N is clearly

a field extension of Fq. Let W be the Fq-vector subspace of M spanned by
X1, X2, . . . , Xn. Then, W ⊆ M ⊆ N. Also, the Fq-vector space W is finite-
dimensional, and thus finite. Hence, Theorem 1.5 (applied to N and W instead
of L and V) yields that ∏

v∈W
(X + v) ∈ N [X] is a q-polynomial. In other words,

∏
v∈W

(X + v) ∈ M [X] is a q-polynomial (since ∏
v∈W

(X + v) belongs to M [X] (be-

cause W ⊆ M)).
The Fq-vector space W has basis (X1, X2, . . . , Xn), whereas the Fq-vector space

V has basis (e1, e2, . . . , en). The map Φ : M → L sends the former basis to the
latter basis (because of (36)). Hence, the map Φ restricts to an Fq-vector space
isomorphism W → V. In other words, the map W → V, v 7→ Φ (v) is well-
defined and is an Fq-vector space isomorphism. In particular, this map is a
bijection.

But the Fq-algebra homomorphism Φ : M→ L canonically induces an Fq [X]-
algebra homomorphism Φ [X] : M [X] → L [X] 10. This latter homomorphism
Φ [X] clearly sends q-polynomials to q-polynomials. In other words, if f ∈ M [X]

10Explicitly, this homomorphism Φ [X] is given by

(Φ [X])

(
∑
i≥0

aiXi

)
= ∑

i≥0
Φ (ai) Xi

for every polynomial ∑
i≥0

aiXi ∈ M [X] (with ai ∈ M).
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is a q-polynomial, then (Φ [X]) ( f ) ∈ L [X] is a q-polynomial. Applying this

to f = ∏
v∈W

(X + v), we conclude that (Φ [X])

(
∏

v∈W
(X + v)

)
∈ L [X] is a q-

polynomial. Since

(Φ [X])

(
∏

v∈W
(X + v)

)
= ∏

v∈W
(X + Φ (v)) = ∏

v∈V
(X + v) here, we have substituted v for Φ (v) in the

product, since the map W → V, v 7→ Φ (v)
is a bijection

 ,

this rewrites as follows: ∏
v∈V

(X + v) ∈ L [X] is a q-polynomial. Thus, Theorem

1.6 is proven again.

We note in passing that Lemma 3.1 and Corollary 3.2 (a) can also be general-
ized to the situation where L is just a commutative Fp-algebra (not necessarily
a field). Again, the generalizations can be derived from the original statements
using the same trick that we used in our second proof of Theorem 1.6.
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