Petrie symmetric functions

Darij Grinberg

April 22, 2021

Abstract. For any positive integer \(k \) and nonnegative integer \(m \), we consider the symmetric function \(G(k, m) \) defined as the sum of all monomials of degree \(m \) that involve only exponents smaller than \(k \). We call \(G(k, m) \) a Petrie symmetric function in honor of Flinders Petrie, as the coefficients in its expansion in the Schur basis are determinants of Petrie matrices (and thus belong to \(\{0, 1, -1\} \) by a classical result of Gordon and Wilkinson). More generally, we prove a Pieri-like rule for expanding a product of the form \(G(k, m) \cdot s_\mu \) in the Schur basis whenever \(\mu \) is a partition; all coefficients in this expansion belong to \(\{0, 1, -1\} \). We also show that \(G(k, 1), G(k, 2), G(k, 3), \ldots \) form an algebraically independent generating set for the symmetric functions when \(1 - k \) is invertible in the base ring, and we prove a conjecture of Liu and Polo about the expansion of \(G(k, 2k - 1) \) in the Schur basis.

Keywords: symmetric functions, Schur functions, Schur polynomials, combinatorial Hopf algebras, Petrie matrices, Pieri rules, Murnaghan–Nakayama rule.

MSC2010 Mathematics Subject Classifications: 05E05.
Considered as a ring, the symmetric functions (which is short for “formal power series in countably many indeterminates \(x_1, x_2, x_3, \ldots\) that are of bounded degree and fixed under permutations of the indeterminates”) are hardly a remarkable object: By a classical result essentially known to Gauss, they form a polynomial ring in countably many indeterminates. The true theory of symmetric functions is rather the study of specific families of symmetric functions, often defined by combinatorial formulas (e.g., as multivariate generating functions) but interacting deeply with many other fields of mathematics. Classical families are, for example, the monomial symmetric functions \(m_\lambda\), the complete homogeneous symmetric functions \(h_n\), the power-sum symmetric functions \(p_n\), and the Schur functions \(s_\lambda\). Some of these
families – such as the monomial symmetric functions m_λ and the Schur functions s_λ – form bases of the ring of symmetric functions (as a module over the base ring).

In this paper, we introduce a new family $(G(k,m))_{k \geq 1; m \geq 0}$ of symmetric functions, which we call the Petrie symmetric functions in honor of Flinders Petrie. For any integers $k \geq 1$ and $m \geq 0$, we define $G(k,m)$ as the sum of all monomials of degree m (in x_1, x_2, x_3, \ldots) that involve only exponents smaller than k. When $G(k,m)$ is expanded in the Schur basis (i.e., as a linear combination of Schur functions s_λ), all coefficients belong to $\{0, 1, -1\}$ by a classical result of Gordon and Wilkinson, as they are determinants of so-called Petrie matrices (whence our name for $G(k,m)$).

We give an explicit combinatorial description for the coefficients as well. More generally, we prove a Pieri-like rule for expanding a product of the form $G(k,m) \cdot s_\mu$ in the Schur basis whenever μ is a partition; all coefficients in this expansion again belong to $\{0, 1, -1\}$ (although we have no explicit combinatorial rule for them). We show some further properties of $G(k,m)$ and prove that if k is a fixed positive integer such that $1 - k$ is invertible in the base ring, then $G(k,1), G(k,2), G(k,3), \ldots$ form an algebraically independent generating set for the symmetric functions. We prove a conjecture of Liu and Polo in [LiuPol19, Remark 1.4.5] about the expansion of $G(k,2k-1)$ in the Schur basis.

This paper begins with Section 1, in which we introduce the notions and notations that the paper will rely on. (Further notations will occasionally be introduced as the need arises.) The rest of the paper consists of two essentially independent parts. The first part comprises Section 2, in which we define the Petrie symmetric functions $G(k,m)$ (and the related power series $G(k)$) and state several of their properties, and Section 3, in which we prove said properties. The second part is Section 4, which is devoted to proving the conjecture of Liu and Polo. A final Section 5 adds comments, formulates two conjectures, and (in its last subsection) explores a more general family of symmetric functions that still shares some of the properties of the Petrie functions $G(k,m)$. (As a byproduct of the latter generalization, a formula for the antipode of $G(k,m)$ – Corollary 5.26 – emerges.)

Acknowledgments

I thank Moussa Ahmia, Per Alexandersson, François Bergeron, Steve Doty, Ira Gessel, Jim Haglund, Linyuan Liu, Patrick Polo, Sasha Postnikov, Christopher Ryba, Richard Stanley, Ole Warnaar and Mark Wildon for interesting and helpful conversations, and two referees for helpful suggestions. Special thanks are due to Sasha Postnikov for his permission to include his generalization of the Petrie symmetric functions.

This paper was started at the Mathematisches Forschungsinstitut Oberwolfach, where I was staying as a Leibniz fellow in Summer 2019, and finished during a semester program at the Institut Mittag–Leffler in 2020. I thank both institutes.

1This proof is independent of the first part of the paper, except that it uses the very simple Proposition 2.3 (c).
for their hospitality. The SageMath computer algebra system [SageMath] has been used in discovering some of the results.

This material is based upon work supported by the Swedish Research Council under grant no. 2016-06596 while the author was in residence at Institut Mittag–Leffler in Djursholm, Sweden during Spring 2020.

Remarks

1. A short exposition of the main results of this paper (without proofs), along with an additional question motivated by it, can be found in [Grinbe20a].

2. While finishing this work, I have become aware of three independent discoveries of the Petrie symmetric functions $G(k, m)$:

 (a) In [DotWal92, §3.3], Stephen Doty and Grant Walker define a modular complete symmetric function h_d', which is precisely our Petrie symmetric function $G(k, m)$ up to a renaming of variables (namely, their m and d correspond to our k and m). Some of our results appear in their work: Our Theorem 2.22 is (a slight generalization of) [DotWal92, Corollary 3.9]; our Theorem 2.29 is (part of) [DotWal92, Proposition 3.15] restated in the language of Hopf algebras. The h_d' are studied further in Walker’s follow-up paper [Walker94], some of whose results mirror ours again (in particular, the maps ψ_p and ψ_p from [Walker94] are our f_p and v_p).

 (b) The preprint [FuMei20] by Houshan Fu and Zhousheng Mei introduces the Petrie symmetric functions $G(k, m)$ and refers to them as truncated homogeneous symmetric functions $h_m^{(k-1)}$. Some results below are also independently obtained in [FuMei20]. In particular, Theorem 2.9 is a formula in [FuMei20, §2], and Theorem 2.15 is equivalent to [FuMei20, Proposition 2.9]. The particular case of Theorem 2.22 when $k = Q$ is part of [FuMei20, Theorem 2.7].

 (c) The paper [BaAhBe18] by Bazeniar, Ahmia and Belbachir introduces the symmetric functions $G(k, m)$ as well, or rather their evaluations $(G(k, m))(x_1, x_2, \ldots, x_n)$ at finitely many variables; it denotes them by $E_m^{(k-1)}(n) = E_m^{(k-1)}(x_1, x_2, \ldots, x_n)$.

Ahmia and Merca continue the study of these $E_m^{(k-1)}(x_1, x_2, \ldots, x_n)$ in [AhmMer20]. Our Theorem 2.21 is equivalent to the second formula in [AhmMer20, Theorem 3.3] (although we are using infinitely many variables).

(d) The formal power series $G(k)$ also appears in [FullLan85, Chapter I, §6], under the guise of Bott’s cannibalistic class $\theta^j(e)$ (for $j = k$ and rewritten in the language of λ-ring operations \mathbb{P}); it is used there to prove an abstract Riemann–Roch theorem. An application to group representations appears in [AtiTal69].

2See [Hazewi08, §16.74] for the connection between symmetric functions (over \mathbb{Z}) and universal operations on λ-rings. To be specific: If a is an element of a λ-ring A, then the canonical λ-ring morphism $\Lambda_\mathbb{Z} \to A$ (where $\Lambda_\mathbb{Z}$ is the ring of symmetric functions over \mathbb{Z}) that sends $e_1 = x_1 + x_2 + x_3 + \cdots \in \Lambda_\mathbb{Z}$ to $a \in A$ will send the Petrie symmetric function $G(k, m)$ to
3. The Petrie symmetric functions have been added to Per Alexandersson’s collection of symmetric functions at https://www.math.upenn.edu/~peal/polynomials/petrie.htm.

Remark on alternative versions

This paper also has a detailed version [Grinbe20b], which includes some proofs that have been omitted from the present version (mostly basic properties of symmetric functions).

1. **Notations**

We will use the following notations (most of which are also used in [GriRei20, §2.1]):

- We let $\mathbb{N} = \{0, 1, 2, \ldots\}$.
- The words “positive”, “larger”, etc. will be used in their Anglophone meaning (so that 0 is neither positive nor larger than itself).
- We fix a commutative ring k; we will use this k as the base ring in what follows.
- A **weak composition** means an infinite sequence of nonnegative integers that contains only finitely many nonzero entries (i.e., a sequence $(\alpha_1, \alpha_2, \alpha_3, \ldots) \in \mathbb{N}^\infty$ such that all but finitely many $i \in \{1, 2, 3, \ldots\}$ satisfy $\alpha_i = 0$).
- We let WC denote the set of all weak compositions.
- For any weak composition α and any positive integer i, we let α_i denote the i-th entry of α (so that $\alpha = (\alpha_1, \alpha_2, \alpha_3, \ldots)$). More generally, we use this notation whenever α is an infinite sequence of any kind of objects.
- The **size** $|\alpha|$ of a weak composition α is defined to be $\alpha_1 + \alpha_2 + \alpha_3 + \cdots \in \mathbb{N}$.
- A **partition** means a weak composition whose entries weakly decrease (i.e., a weak composition α satisfying $\alpha_1 \geq \alpha_2 \geq \alpha_3 \geq \cdots$).
- If $n \in \mathbb{Z}$, then a **partition of n** means a partition α having size n (that is, satisfying $|\alpha| = n$).
- We let Par denote the set of all partitions. For each $n \in \mathbb{Z}$, we let Par_n denote the set of all partitions of n.

the “m-th graded component” of Bott’s cannibalistic class $\theta^k(a)$. (Bott’s cannibalistic class $\theta^k(a)$ itself is defined only if a is a “positive element” in the sense of [FulLan85] (or can only be defined in an appropriate closure of \hat{A}). When it is defined, it is the image of the series $G(k)$. Otherwise, its “graded components” are the right object to consider.)
• We will sometimes omit trailing zeroes from partitions: i.e., a partition \(\lambda = (\lambda_1, \lambda_2, \lambda_3, \ldots) \) will be identified with the \(k \)-tuple \((\lambda_1, \lambda_2, \ldots, \lambda_k)\) whenever \(k \in \mathbb{N} \) satisfies \(\lambda_{k+1} = \lambda_{k+2} = \lambda_{k+3} = \cdots = 0 \). For example, \((3, 2, 1, 0, 0, 0, \ldots) = (3, 2, 1, 0)\).

• The partition \((0, 0, 0, \ldots) = ()\) is called the **empty partition** and denoted by \(\emptyset \).

• A **part** of a partition \(\lambda \) means a nonzero entry of \(\lambda \). For example, the parts of the partition \((3, 1, 1) = (3, 1, 1, 0, 0, 0, \ldots)\) are 3, 1, 1.

• We will use the notation \(1^k \) for “1, 1, \ldots, 1 \(k \) times” in partitions. (For example, \((2, 1^4) = (2, 1, 1, 1, 1)\). This notation is a particular case of the more general notation \(m^k \) for “\(m, m, \ldots, m \) \(k \) times” in partitions, used, e.g., in [GriRei20, Definition 2.2.1].)

• We let \(\Lambda \) denote the ring of symmetric functions in infinitely many variables \(x_1, x_2, x_3, \ldots \) over \(\mathbb{k} \). This is a subring of the ring \(\mathbb{k} [[x_1, x_2, x_3, \ldots]] \) of formal power series. To be more specific, \(\Lambda \) consists of all power series in \(\mathbb{k} [[x_1, x_2, x_3, \ldots]] \) that are symmetric (i.e., invariant under permutations of the variables) and of bounded degree (see [GriRei20, §2.1] for the precise meaning of this).

• A **monomial** shall mean a formal expression of the form \(x^{\alpha_1}_1 x^{\alpha_2}_2 x^{\alpha_3}_3 \cdots \) with \(\alpha \in \text{WC} \). Formal power series are formal infinite \(\mathbb{k} \)-linear combinations of such monomials.

• For any weak composition \(\alpha \), we let \(x^\alpha \) denote the monomial \(x^{\alpha_1}_1 x^{\alpha_2}_2 x^{\alpha_3}_3 \cdots \).

• The **degree** of a monomial \(x^\alpha \) is defined to be \(|\alpha| \).

• A formal power series is said to be **homogeneous of degree** \(n \) (for some \(n \in \mathbb{N} \)) if all monomials appearing in it (with nonzero coefficient) have degree \(n \). In particular, the power series 0 is homogeneous of any degree.

• If \(f \in \mathbb{k} [[x_1, x_2, x_3, \ldots]] \) is a power series, then there is a unique family \((f_i)_{i \in \mathbb{N}} = (f_0, f_1, f_2, \ldots) \) of formal power series \(f_i \in \mathbb{k} [[x_1, x_2, x_3, \ldots]] \) such that each \(f_i \) is homogeneous of degree \(i \) and such that \(f = \sum_{i \in \mathbb{N}} f_i \). This family \((f_i)_{i \in \mathbb{N}} \) is called the **homogeneous decomposition** of \(f \), and its entry \(f_i \) (for any given \(i \in \mathbb{N} \)) is called the \(i \)-th degree homogeneous component of \(f \).

• The \(\mathbb{k} \)-algebra \(\Lambda \) is graded: i.e., any symmetric function \(f \) can be uniquely written as a sum \(\sum_{i \in \mathbb{N}} f_i \), where each \(f_i \) is a homogeneous symmetric function of degree \(i \), and where all but finitely many \(i \in \mathbb{N} \) satisfy \(f_i = 0 \).
We shall use the symmetric functions $m_\lambda, h_n, e_n, p_n, s_\lambda$ in Λ as defined in [GriRei20, Sections 2.1 and 2.2]. Let us briefly recall how they are defined:

- For any partition λ, we define the monomial symmetric function $m_\lambda \in \Lambda$ by
 \[m_\lambda = \sum x^\alpha, \]
 where the sum ranges over all weak compositions $\alpha \in \text{WC}$ that can be obtained from λ by permuting entries.\(^3\) For example,
 \[m_{(2,2,1)} = \sum_{i<j<k} x_i^2 x_j^2 x_k + \sum_{i<j<k} x_i^2 x_j x_k^2 + \sum_{i<j<k} x_i x_j^2 x_k^2. \]
 The family $(m_\lambda)_{\lambda \in \text{Par}}$ (that is, the family of the symmetric functions m_λ as λ ranges over all partitions) is a basis of the k-module Λ.

- For each $n \in \mathbb{Z}$, we define the complete homogeneous symmetric function $h_n \in \Lambda$ by
 \[h_n = \sum_{i_1 \leq i_2 \leq \cdots \leq i_n} x_{i_1} x_{i_2} \cdots x_{i_n} = \sum_{\alpha \in \text{WC}; |\alpha| = n} x^\alpha = \sum_{\lambda \in \text{Par}_n} m_\lambda. \]
 Thus, $h_0 = 1$ and $h_n = 0$ for all $n < 0$.
 We know (e.g., from [GriRei20, Proposition 2.4.1]) that the family $(h_n)_{n \geq 1} = (h_1, h_2, h_3, \ldots)$ is algebraically independent and generates Λ as a k-algebra. In other words, Λ is freely generated by h_1, h_2, h_3, \ldots as a commutative k-algebra.

- For each $n \in \mathbb{Z}$, we define the elementary symmetric function $e_n \in \Lambda$ by
 \[e_n = \sum_{i_1 < i_2 < \cdots < i_n} x_{i_1} x_{i_2} \cdots x_{i_n} = \sum_{\alpha \in \text{WC} \cap \{0,1\}^\infty; |\alpha| = n} x^\alpha. \]
 Thus, $e_0 = 1$ and $e_n = 0$ for all $n < 0$. If $n \geq 0$, then $e_n = m_{(1^n)}$, where, as we have agreed above, the notation (1^n) stands for the n-tuple $(1,1,\ldots,1)$.

- For each positive integer n, we define the power-sum symmetric function $p_n \in \Lambda$ by
 \[p_n = x_1^n + x_2^n + x_3^n + \cdots = m_{(n)}. \]

- For each partition λ, we define the Schur function $s_\lambda \in \Lambda$ by
 \[s_\lambda = \sum x_T, \]
 where the sum ranges over all standard Young tableaux T with shape λ.

\(^3\)This definition of m_λ is not the same as the one given in [GriRei20, Definition 2.1.3]; but it is easily seen to be equivalent to the latter (i.e., it defines the same m_λ). See [Grinbe20b] for the details of the proof.

\(^4\)Here, we understand λ to be an infinite sequence, not a finite tuple, so the entries being permuted include infinitely many 0’s.
where the sum ranges over all semistandard tableaux T of shape λ, and where x_T denotes the monomial obtained by multiplying the x_i for all entries i of T. We refer the reader to [GriRei20, Definition 2.2.1] or to [Stanle01, §7.10] for the details of this definition and further descriptions of the Schur functions. One of the most important properties of Schur functions (see, e.g., [GriRei20, (2.4.16) for $\mu = \emptyset$] or [MenRem15, Theorem 2.32] or [Stanle01, Theorem 7.16.1 for $\mu = \emptyset$] or [Sagan20, Theorem 7.2.3 (a)]) is the fact that

$$s_\lambda = \det \left((h_{\lambda_i-i+j})_{1 \leq i \leq \ell, 1 \leq j \leq \ell} \right)$$

(1)

for any partition $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell)$. This is known as the (first, straight-shape) Jacobi–Trudi formula.

The family $(s_\lambda)_{\lambda \in \operatorname{Par}}$ is a basis of the k-module Λ, and is known as the Schur basis. It is easy to see that each $n \in \mathbb{N}$ satisfies $s_{(n)} = h_n$ and $s_{(1^n)} = e_n$. Moreover, for each partition λ, the Schur function $s_\lambda \in \Lambda$ is homogeneous of degree $|\lambda|$.

Among the many relations between these symmetric functions is an expression for the power-sum symmetric function p_n in terms of the Schur basis:

Proposition 1.1. Let n be a positive integer. Then,

$$p_n = \sum_{i=0}^{n-1} (-1)^i s_{(n-i,1^i)}.$$

Proof. This is a classical formula, and appears (e.g.) in [Egge19, Problem 4.21], [GriRei20, Exercise 5.4.12(g)] and [MenRem15, Exercise 2.2]. Alternatively, this is an easy consequence of the Murnaghan–Nakayama rule (see [MenRem15, Theorem 6.3] or [Sam17, Theorem 4.4.2] or [Stanle01, Theorem 7.17.3] or [Wildon15, (1)]), applied to the product $p_n s_\emptyset$ (since $s_\emptyset = 1$). \square

Finally, we will sometimes use the Hall inner product $\langle \cdot, \cdot \rangle : \Lambda \times \Lambda \to k$ as defined in [GriRei20, Definition 2.5.12].\footnote{However, it is denoted by $\langle \cdot, \cdot \rangle$ rather than by $\langle \cdot, \cdot \rangle$ in [GriRei20]. (That is, what we call $\langle a, b \rangle$ is denoted by (a, b) in [GriRei20].) The Hall inner product also appears (for $k = \mathbb{Z}$ and $k = \mathbb{Q}$) in [Egge19, Definition 7.5], in [Stanle01, §7.9] and in [Macdon95, Section I.4] (note that it is called the "scalar product" in the latter two references). The definitions of the Hall inner product in [Stanle01, §7.9] and in [Macdon95, Section I.4] are different from ours, but they are equivalent to ours (because of [Stanle01, Corollary 7.12.2] and [Macdon95, Chapter I, (4.8)]).} This is the k-bilinear form on Λ that is defined by the requirement that

$$\langle s_\lambda, s_\mu \rangle = \delta_{\lambda,\mu} \quad \text{for any } \lambda, \mu \in \operatorname{Par}.$$
(where $\delta_{\lambda,\mu}$ denotes the Kronecker delta). Thus, the Schur basis $(s_\lambda)_{\lambda \in \Par}$ of Λ is an orthonormal basis with respect to the Hall inner product. It is easy to see6 that the Hall inner product (\cdot, \cdot) is graded: i.e., we have

$$\langle f, g \rangle = 0$$

if f and g are two homogeneous symmetric functions of different degrees. We shall also use the following two known evaluations of the Hall inner product:

- **Proposition 1.2.** Let n be a positive integer. Then, $\langle h_n, p_n \rangle = 1$.

- **Proposition 1.3.** Let n be a positive integer. Then, $\langle e_n, p_n \rangle = (-1)^{n-1}$.

See Subsection 3.2 for the proofs of these two propositions.

2. Theorems

2.1. Definitions

The main role in this paper is played by two power series that we will now define:

- **Definition 2.1.** (a) For any positive integer k, we let7

$$G(k) = \sum_{\substack{\alpha \in WC; \\ \alpha_i < k \text{ for all } i}} x^\alpha. \tag{3}$$

This is a symmetric formal power series in $k[[x_1, x_2, x_3, \ldots]]$ (but does not belong to Λ in general).

(b) For any positive integer k and any $m \in \mathbb{N}$, we let

$$G(k, m) = \sum_{\substack{\alpha \in WC; \\ |\alpha| = m; \\ \alpha_i < k \text{ for all } i}} x^\alpha \in \Lambda. \tag{4}$$

6See, e.g., [GriRei20, Exercise 2.5.13(a)] for a proof.

7Here and in all similar situations, “for all i” means “for all positive integers i”.

Example 2.2. (a) We have

\[G(2) = \sum_{\alpha \in WC; \ a_i < 2 \text{ for all } i} x^\alpha = \sum_{m \in \mathbb{N}} \sum_{1 \leq i_1 < i_2 < \cdots < i_m} x_{i_1} x_{i_2} \cdots x_{i_m} = \sum_{m \in \mathbb{N}} e_m. \]

(b) For each \(m \in \mathbb{N} \), we have

\[G(2, m) = \sum_{\alpha \in WC; |\alpha| = m; a_i < 2 \text{ for all } i} x^\alpha = \sum_{m \in \mathbb{N}} m_\lambda = \prod_{i=1}^{\infty} \left(x_i^0 + x_i^1 + \cdots + x_i^{k-1} \right). \]

We suggest the name \(k \)-Petrie symmetric series for \(G(k) \) and the name \((k,m)\)-Petrie symmetric function for \(G(k,m) \). The reason for this naming is that the coefficients of these functions in the Schur basis of \(\Lambda \) are determinants of Petrie matrices, as we will see in Subsection \(\text{[3.7]} \).

2.2. Basic identities

We begin our study of the \(G(k) \) and \(G(k,m) \) with some simple properties:

Proposition 2.3. Let \(k \) be a positive integer.

(a) The symmetric function \(G(k,m) \) is the \(m \)-th degree homogeneous component of \(G(k) \) for each \(m \in \mathbb{N} \).

(b) We have

\[G(k) = \sum_{\alpha \in WC; \ a_i < k \text{ for all } i} x^\alpha = \sum_{\lambda \in \text{Par}; \lambda_i < k \text{ for all } i} m_\lambda = \prod_{i=1}^{\infty} \left(x_i^0 + x_i^1 + \cdots + x_i^{k-1} \right). \]

(c) We have

\[G(k,m) = \sum_{\alpha \in WC; |\alpha| = m; a_i < k \text{ for all } i} x^\alpha = \sum_{\lambda \in \text{Par}; |\lambda| = m; \lambda_i < k \text{ for all } i} m_\lambda \]

for each \(m \in \mathbb{N} \).

(d) If \(m \in \mathbb{N} \) satisfies \(k > m \), then \(G(k,m) = h_m \).

(e) If \(m \in \mathbb{N} \) and \(k = 2 \), then \(G(k,m) = e_m \).

(f) If \(m = k \), then \(G(k,m) = h_m - p_m \).
Proving Proposition 2.3 makes good practice in understanding the definitions of $m_{\lambda}, h_n, e_n, p_n, G(k)$ and $G(k, n)$. We omit the proof here; it can be found in full (hardly necessary) detail in [Grinbe20b].

Parts (d) and (e) of Proposition 2.3 show that the Petrie symmetric functions $G(k, m)$ can be seen as interpolating between the h_m and the e_m.

2.3. The Schur expansion

The solution to [Stanle01, Exercise 7.3] gives an expansion of $G(3)$ in terms of the elementary symmetric functions (due to I. M. Gessel); this expansion can be rewritten as

$$G(3) = \sum_{n \in \mathbb{N}} e_n^2 + \sum_{m < n} c_{m,n} e_m e_n,$$

where $c_{m,n} = (-1)^{m-n} \begin{cases} 2, & \text{if } 3 \mid m-n; \\ -1, & \text{if } 3 \nmid m-n. \end{cases}$

We shall instead expand $G(k)$ in terms of Schur functions. For this, we need to define some notations.

Convention 2.4. We shall use the Iverson bracket notation: i.e., if A is a logical statement, then $[A]$ shall denote the truth value of A (that is, the integer
$$\begin{cases} 1, & \text{if } A \text{ is true;} \\ 0, & \text{if } A \text{ is false}. \end{cases}$$

We shall furthermore use the notation $(a_{i,j})_{1 \leq i \leq \ell, 1 \leq j \leq \ell}$ for the $\ell \times \ell$-matrix whose (i,j)-th entry is $a_{i,j}$ for each $i, j \in \{1, 2, \ldots, \ell\}$.

Definition 2.5. Let $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell) \in \text{Par}$ and $\mu = (\mu_1, \mu_2, \ldots, \mu_\ell) \in \text{Par}$, and let k be a positive integer. Then, the k-Petrie number $\text{pet}_k(\lambda, \mu)$ of λ and μ is the integer defined by

$$\text{pet}_k(\lambda, \mu) = \det \left(\left[0 \leq \lambda_i - \mu_j - i + j < k \right] \right)_{1 \leq i \leq \ell, 1 \leq j \leq \ell}.$$

Note that this integer does not depend on the choice of ℓ (in the sense that it does not change if we enlarge ℓ by adding trailing zeroes to the representations of λ and μ); this follows from Lemma 2.7 below.

Example 2.6. Let λ be the partition $(3,2,1) \in \text{Par}$, let μ be the partition $(1,1) \in \text{Par}$, let $\ell = 3$, and let k be a positive integer. Then, the definition of $\text{pet}_k(\lambda, \mu)$
yields

\[\text{pet}_k(\lambda, \mu) = \det \left(\left[\begin{array}{cccc} 0 \leq \lambda_i - \mu_j - i + j & 0 \leq \lambda_i - \mu_j + 1 & 0 \leq \lambda_i - \mu_j + 2 & 0 \leq \lambda_i - \mu_j + 3 \\ 0 \leq \lambda_i - \mu_j + 4 & 0 \leq \lambda_i - \mu_j + 5 & 0 \leq \lambda_i - \mu_j + 6 & 0 \leq \lambda_i - \mu_j + 7 \\ 0 \leq \lambda_i - \mu_j + 8 & 0 \leq \lambda_i - \mu_j + 9 & 0 \leq \lambda_i - \mu_j + 10 & 0 \leq \lambda_i - \mu_j + 11 \\ 0 \leq \lambda_i - \mu_j + 12 & 0 \leq \lambda_i - \mu_j + 13 & 0 \leq \lambda_i - \mu_j + 14 & 0 \leq \lambda_i - \mu_j + 15 \\ \end{array} \right] \right) \]

\[= \det \left(\left[\begin{array}{cccc} 0 \leq \lambda_1 - \mu_1 - k & 0 \leq \lambda_1 - \mu_2 + 1 & 0 \leq \lambda_1 - \mu_3 + 2 & 0 \leq \lambda_1 - \mu_4 + 3 \\ 0 \leq \lambda_2 - \mu_1 - 1 & 0 \leq \lambda_2 - \mu_2 & 0 \leq \lambda_2 - \mu_3 & 0 \leq \lambda_2 - \mu_4 \\ 0 \leq \lambda_3 - \mu_1 - 2 & 0 \leq \lambda_3 - \mu_2 - 1 & 0 \leq \lambda_3 - \mu_3 & 0 \leq \lambda_3 - \mu_4 \\ 0 \leq \lambda_4 - \mu_1 - 3 & 0 \leq \lambda_4 - \mu_2 & 0 \leq \lambda_4 - \mu_3 & 0 \leq \lambda_4 - \mu_4 \\ \end{array} \right] \right) \]

\[= \det \left(\left[\begin{array}{cccc} 0 \leq \lambda_1 - \mu_1 & 0 \leq \lambda_2 - \mu_2 & 0 \leq \lambda_3 - \mu_3 & 0 \leq \lambda_4 - \mu_4 \\ \end{array} \right] \right) \]

Thus, taking \(k = 4 \), we obtain

\[\text{pet}_4(\lambda, \mu) = \det \left(\left[\begin{array}{cccc} 0 \leq \lambda_1 - \mu_1 & 0 \leq \lambda_2 - \mu_2 & 0 \leq \lambda_3 - \mu_3 & 0 \leq \lambda_4 - \mu_4 \\ \end{array} \right] \right) \]

\[= \det \left(\left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ \end{array} \right] \right) = 0. \]

On the other hand, taking \(k = 3 \), we obtain

\[\text{pet}_3(\lambda, \mu) = \det \left(\left[\begin{array}{cccc} 0 \leq \lambda_1 - \mu_1 & 0 \leq \lambda_2 - \mu_2 & 0 \leq \lambda_3 - \mu_3 & 0 \leq \lambda_4 - \mu_4 \\ \end{array} \right] \right) \]

\[= \det \left(\left[\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} \right] \right) = 1. \]

Lemma 2.7. Let \(\lambda \in \text{Par} \) and \(\mu \in \text{Par} \), and let \(k \) be a positive integer. Let \(\ell \in \mathbb{N} \) be such that \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell) \) and \(\mu = (\mu_1, \mu_2, \ldots, \mu_\ell) \). Then, the determinant \(\det \left(\left[\begin{array}{cccc} 0 \leq \lambda_i - \mu_j & 0 \leq \lambda_i - \mu_j + 1 & 0 \leq \lambda_i - \mu_j + 2 & 0 \leq \lambda_i - \mu_j + 3 \\ \end{array} \right] \right) \) does not depend on the choice of \(\ell \).

See Subsection 3.6 for the simple proof of Lemma 2.7.

Surprisingly, the \(k \)-Petrie numbers \(\text{pet}_k(\lambda, \mu) \) can take only three possible values:
Proposition 2.8. Let \(\lambda \in \text{Par} \) and \(\mu \in \text{Par} \), and let \(k \) be a positive integer. Then, \(\text{pet}_k(\lambda, \mu) \in \{-1, 0, 1\} \).

Proposition 2.8 will be proved in Subsection 3.7.

We can now expand the Petrie symmetric functions \(G(k, m) \) and the power series \(G(k) \) in the basis \((s_\lambda)_{\lambda \in \text{Par}} \) of \(\Lambda \):

Theorem 2.9. Let \(k \) be a positive integer. Then,

\[
G(k) = \sum_{\lambda \in \text{Par}} \text{pet}_k(\lambda, \emptyset) s_\lambda.
\]

(Recall that \(\emptyset \) denotes the empty partition \(() = (0, 0, 0, \ldots) \).)

We will not prove Theorem 2.9 directly; instead, we will first show a stronger result (Theorem 2.17), and then derive Theorem 2.9 from it in Subsection 3.10.

Corollary 2.10. Let \(k \) be a positive integer. Let \(m \in \mathbb{N} \). Then,

\[
G(k, m) = \sum_{\lambda \in \text{Par}_m} \text{pet}_k(\lambda, \emptyset) s_\lambda.
\]

Corollary 2.10 easily follows from Theorem 2.9 using Proposition 2.3 (a); but again, we shall instead derive it from a stronger result (Corollary 2.18) in Subsection 3.10.

We will see a more explicit description of the \(k \)-Petrie numbers \(\text{pet}_k(\lambda, \emptyset) \) in Subsection 2.4.

Remark 2.11. Corollary 2.10 in combination with Proposition 2.8 shows that each \(k \)-Petrie function \(G(k, m) \) (for any \(k > 0 \) and \(m \in \mathbb{N} \)) is a linear combination of Schur functions, with all coefficients belonging to \(\{-1, 0, 1\} \). It is natural to expect the more general symmetric functions

\[
\tilde{G}(k, k', m) = \sum_{\alpha \in \text{WC}_{k'}; |\alpha| = m; k' \leq a_i < k \text{ for all } i} x^\alpha,
\]

where \(0 < k' \leq k \),

to have the same property. However, this is not the case. For example,

\[
\tilde{G}(4, 2, 5) = m_{(3,2)} = -2s_{(1,1,1,1,1)} + 2s_{(2,1,1,1)} - s_{(2,2,1)} - s_{(3,1,1)} + s_{(3,2)}.
\]

2.4. An explicit description of the \(k \)-Petrie numbers \(\text{pet}_k(\lambda, \emptyset) \)

Can the \(k \)-Petrie numbers \(\text{pet}_k(\lambda, \emptyset) \) from Definition 2.5 be described more explicitly than as determinants? To be somewhat pedantic, the answer to this question
depends on one’s notion of “explicit”, as determinants are not hard to compute, and another algorithm for calculating $\text{pet}_k(\lambda, \emptyset)$ can be extracted from our proof of Proposition 2.8 (when combined with [GorWil74, proof of Theorem 1]). Nevertheless, there is a more explicit description. This description will be stated in Theorem 2.15 further below.

First, let us get a simple case out of the way:

Proposition 2.12. Let $\lambda \in \text{Par}$, and let k be a positive integer such that $\lambda_1 \geq k$. Then, $\text{pet}_k(\lambda, \emptyset) = 0$.

Proof of Proposition 2.12. Write $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell)$. Thus, $\ell \geq 1$ (since $\lambda_1 \geq k > 0$). Moreover, the empty partition \emptyset can be written as $\emptyset = (\emptyset_1, \emptyset_2, \ldots, \emptyset_\ell)$ (since $\emptyset_i = 0$ for each integer $i > \ell$).

Thus, we have $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell)$ and $\emptyset = (\emptyset_1, \emptyset_2, \ldots, \emptyset_\ell)$. Hence, the definition of $\text{pet}_k(\lambda, \emptyset)$ yields

$$
\text{pet}_k(\lambda, \emptyset) = \det \left(\begin{bmatrix}
0 & \ldots & 0 \\
0 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & 0
\end{bmatrix}
\begin{bmatrix}
\lambda_1 - j - i < k \\
\lambda_2 - j - i < k \\
\vdots \\
\lambda_\ell - j - i < k
\end{bmatrix}
\begin{bmatrix}
1 \\
1 \\
\vdots \\
1
\end{bmatrix}
\right). \tag{5}
$$

But each $j \in \{1, 2, \ldots, \ell\}$ satisfies $0 \leq \lambda_1 - 1 + j < k = 0$ (since $\lambda_1 - 1 + j \geq \lambda_1 - 1 + 1 = \lambda_1 \geq k$). In other words, the $\ell \times \ell$-matrix $([0 \leq \lambda_i - i + j < k])_{1 \leq i \leq \ell, 1 \leq j \leq \ell}$ has first row $(0, 0, \ldots, 0)$. Therefore, its determinant is 0. In other words, $\text{pet}_k(\lambda, \emptyset) = 0$ (since $\text{pet}_k(\lambda, \emptyset)$ is its determinant). This proves Proposition 2.12.

Stating Theorem 2.15 will require some notation:

Definition 2.13. For any $\lambda \in \text{Par}$, we define the **transpose** of λ to be the partition $\lambda^t \in \text{Par}$ determined by

$$(\lambda^t)_i = |\{j \in \{1, 2, 3, \ldots\} \mid \lambda_j \geq i\}| \text{ for each } i \geq 1.$$

This partition λ^t is also known as the **conjugate** of λ, and is perhaps easiest to understand in terms of Young diagrams: To wit, the Young diagram of λ^t is obtained from that of λ by a flip across the main diagonal.

One important use of transpose partitions is the following fact (see, e.g., [GriRei20, (2.4.17) for $\mu = \emptyset$] or [MenRem15, Theorem 2.32] or [Stanle01, Theorem 7.16.2 applied to λ^t and \emptyset instead of λ and μ] for proofs): We have

$$s_{\lambda^t} = \det \left((e_{\lambda_i - i + j})_{1 \leq i \leq \ell, 1 \leq j \leq \ell} \right). \tag{6}$$

\[8\text{by (5)}\]
for any partition $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell)$. This is known as the (second, straight-shape) Jacobi–Trudi formula.

We will use the following notation for quotients and remainders:

Convention 2.14. Let k be a positive integer. Let $n \in \mathbb{Z}$. Then, $n\%k$ shall denote the remainder of n divided by k, whereas $n//k$ shall denote the quotient of this division (an integer). Thus, $n//k$ and $n\%k$ are uniquely determined by the three requirements that $n//k \in \mathbb{Z}$ and $n\%k \in \{0, 1, \ldots, k-1\}$ and $n = (n//k) \cdot k + (n\%k)$.

The “//” and “%” signs bind more strongly than the “+” and “−” signs. That is, for example, the expression "a + b\%k" shall be understood to mean "a + (b\%k)" rather than "(a + b) \%k".

Now, we can state our “formula” for k-Petrie numbers of the form $\text{pet}_k (\lambda, \emptyset)$.

Theorem 2.15. Let $\lambda \in \text{Par}$, and let k be a positive integer. Let $\mu = \lambda^t$.

(a) If $\mu_k \neq 0$, then $\text{pet}_k (\lambda, \emptyset) = 0$.

From now on, let us assume that $\mu_k = 0$.

Define a $(k-1)$-tuple $(\beta_1, \beta_2, \ldots, \beta_{k-1}) \in \mathbb{Z}^{k-1}$ by setting

$$\beta_i = \mu_i - i \quad \text{for each } i \in \{1, 2, \ldots, k-1\}. \quad (7)$$

Define a $(k-1)$-tuple $(\gamma_1, \gamma_2, \ldots, \gamma_{k-1}) \in \{1, 2, \ldots, k\}^{k-1}$ by setting

$$\gamma_i = 1 + (\beta_i - 1) \%k \quad \text{for each } i \in \{1, 2, \ldots, k-1\}. \quad (8)$$

(b) If the $k-1$ numbers $\gamma_1, \gamma_2, \ldots, \gamma_{k-1}$ are not distinct, then $\text{pet}_k (\lambda, \emptyset) = 0$.

(c) Assume that the $k-1$ numbers $\gamma_1, \gamma_2, \ldots, \gamma_{k-1}$ are distinct. Let

$$g = \left| \left\{ (i, j) \in \{1, 2, \ldots, k-1\}^2 \mid i < j \text{ and } \gamma_i < \gamma_j \right\} \right|.$$

Then, $\text{pet}_k (\lambda, \emptyset) = (-1)^{g} (\beta_1 + \beta_2 + \cdots + \beta_{k-1}) + (\gamma_1 + \gamma_2 + \cdots + \gamma_{k-1})$.

The proof of this theorem is technical and will be given in Subsection 3.11.

It is possible to restate part of Theorem 2.15 without using λ^t:

Proposition 2.16. Let $\lambda \in \text{Par}$, and let k be a positive integer. Assume that $\lambda_1 < k$.

Define a subset B of \mathbb{Z} by

$$B = \{\lambda_i - i \mid i \in \{1, 2, 3, \ldots\}\}.$$

Let $\overline{0}, \overline{1}, \ldots, \overline{k-1}$ be the residue classes of the integers $0, 1, \ldots, k-1$ modulo k (considered as subsets of \mathbb{Z}). Let W be the set of all integers smaller than $k-1$.

Then, $\text{pet}_k (\lambda, \emptyset) \neq 0$ if and only if each $i \in \{0, 1, \ldots, k-1\}$ satisfies $|\overline{i} \cap W \setminus B| \leq 1$.

In Subsection 3.11, we will outline how this proposition can be derived from Theorem 2.15.

The sets B and $(i \cap W) \setminus B$ in Proposition 2.16 are related to the k-modular structure of the partition λ, such as the β-set, the k-abacus, the k-core and the k-quotient (see [Olsson93, §§1–3] for some of these concepts). Essentially equivalent concepts include the Maya diagram of λ (see, e.g., [Crane18, §3.3]) and the first column hook lengths of λ (see [Olsson93, Proposition (1.3)]).

2.5. A “Pieri” rule

Now, the following generalization of Theorem 2.9 holds:

Theorem 2.17. Let k be a positive integer. Let $\mu \in \text{Par}$. Then,

$$G(k) \cdot s_\mu = \sum_{\lambda \in \text{Par}} \text{pet}_k(\lambda, \mu) s_\lambda.$$

Theorem 2.9 is the particular case of Theorem 2.17 for $\mu = \emptyset$.

We shall give two proofs of Theorem 2.17 in Subsections 3.8 and 3.9.

We can also generalize Corollary 2.10 to obtain a Pieri-like rule for multiplication by $G(k,m)$:

Corollary 2.18. Let k be a positive integer. Let $m \in \mathbb{N}$. Let $\mu \in \text{Par}$. Then,

$$G(k,m) \cdot s_\mu = \sum_{\lambda \in \text{Par}_{m+\vert \mu \vert}} \text{pet}_k(\lambda, \mu) s_\lambda.$$

Corollary 2.18 follows from Theorem 2.17 by projecting onto the $(m + \vert \mu \vert)$-th graded component of Λ. (We shall explain this argument in more detail in Subsection 3.10.)

2.6. Coproducts of Petrie functions

In the following, the “\otimes” sign will always stand for \otimes_k (that is, tensor product of k-modules or of k-algebras).

The k-algebra Λ is a Hopf algebra due to the presence of a comultiplication $\Delta : \Lambda \to \Lambda \otimes \Lambda$. We recall (from [GriRei20, §2.1]) one way to define this comultiplication:

9The Maya diagram of λ is a coloring of the set $\left\{ z + \frac{1}{2} \mid z \in \mathbb{Z} \right\}$ with the colors black and white, in which the elements $\lambda_i - i + \frac{1}{2}$ (for all $i \in \{1, 2, 3, \ldots\}$) are colored black while all remaining elements are colored white. Borcherds’s proof of the Jacobi triple product identity ([Camero94, §13.3]) also essentially constructs this Maya diagram (wording it in terms of the “Dirac sea” model for electrons).
Consider the rings

\[k[[x]] := k[[x_1, x_2, x_3, \ldots]] \quad \text{and} \quad k[[x, y]] := k[[x_1, x_2, x_3, \ldots, y_1, y_2, y_3, \ldots]] \]

of formal power series. We shall use the notations \(x \) and \(y \) for the sequences \((x_1, x_2, x_3, \ldots)\) and \((y_1, y_2, y_3, \ldots)\) of indeterminates. If \(f \in k[[x]] \) is any formal power series, then \(f(y) \) shall mean the result of substituting \(y_1, y_2, y_3, \ldots \) for the variables \(x_1, x_2, x_3, \ldots \) in \(f \). (This will be a formal power series in \(k[[y_1, y_2, y_3, \ldots]] \).)

For the sake of symmetry, we also use the analogous notation \(f(x) \) for the result of substituting \(x_1, x_2, x_3, \ldots \) for \(x_1, x_2, x_3, \ldots \) in \(f \); of course, this \(f(x) \) is just \(f \). Finally, if the power series \(f \in k[[x]] \) is symmetric, then we use the notation \(f(x, y) \) for the result of substituting the variables \(x_1, x_2, x_3, \ldots, y_1, y_2, y_3, \ldots \) for the variables \(x_1, x_2, x_3, \ldots \) in \(f \) (that is, choosing some bijection \(\phi : \{x_1, x_2, x_3, \ldots\} \to \{x_1, x_2, x_3, \ldots, y_1, y_2, y_3, \ldots\} \)) and substituting \(\phi(x_i) \) for each \(x_i \) in \(f \). This result does not depend on the order in which the former variables are substituted for the latter (i.e., on the choice of the bijection \(\phi \)) because \(f \) is symmetric.

Now, the comultiplication of \(\Lambda \) is the map \(\Delta : \Lambda \to \Lambda \otimes \Lambda \) determined as follows:

For a symmetric function \(f \in \Lambda \), we have

\[\Delta (f) = \sum_{i \in I} f_{1,i} \otimes f_{2,i}, \tag{9} \]

where \(f_{1,i}, f_{2,i} \in \Lambda \) are such that

\[f(x, y) = \sum_{i \in I} f_{1,i}(x) f_{2,i}(y). \tag{10} \]

More precisely, if \(f \in \Lambda \), if \(I \) is a finite set, and if \((f_{1,i})_{i \in I} \in \Lambda^I \) and \((f_{2,i})_{i \in I} \in \Lambda^I \) are two families satisfying \(^{10}\) \(f(x, y) \), then \(\Delta (f) \) is given by \(^9\) \(f \). \(^{11}\)

For example, for any \(n \in \mathbb{N} \), it is easy to see that

\[e_n(x, y) = \sum_{i=0}^{n} e_i(x) e_{n-i}(y), \]

and thus the above definition of \(\Delta \) yields

\[\Delta (e_n) = \sum_{i=0}^{n} e_i \otimes e_{n-i}. \]

A similar formula exists for the image of a Petrie symmetric function under \(\Delta \):

\(^{10}\)Such bijections clearly exist, since the sets \(\{x_1, x_2, x_3, \ldots\} \) and \(\{x_1, x_2, x_3, \ldots, y_1, y_2, y_3, \ldots\} \) have the same cardinality (namely, \(\aleph_0 \)). This is one of several observations commonly illustrated by the metaphor of “Hilbert’s hotel”.

\(^{11}\)In the language of [GriRei20, §2.1], this can be restated as \(\Delta (f) = f(x, y) \), because \(\Lambda \otimes \Lambda \) is identified with a certain subring of \(k[[x, y]] \) in [GriRei20, §2.1] (via the injection \(\Lambda \otimes \Lambda \to k[[x, y]] \) that sends any \(u \otimes v \in \Lambda \otimes \Lambda \) to \(u(x) v(y) \in k[[x, y]] \)).
Theorem 2.19. Let k be a positive integer. Let $m \in \mathbb{N}$. Then,

$$\Delta (G(k,m)) = \sum_{i=0}^{m} G(k,i) \otimes G(k,m-i).$$

The proof of Theorem 2.19 is given in Subsection 3.12; it is a simple consequence (albeit somewhat painful to explain) of (9).

It is well-known that $\Delta : \Lambda \to \Lambda \otimes \Lambda$ is a k-algebra homomorphism. Equipping the k-algebra Λ with the comultiplication Δ (as well as a counit $\varepsilon : \Lambda \to k$, which we won’t need here) yields a connected graded Hopf algebra. (See, e.g., [GriRei20, §2.1] for proofs.)

2.7. The Frobenius endomorphisms and Petrie functions

We shall next derive another formula for the Petrie symmetric functions $G(k,m)$. For this formula, we need the following definition ([GriRei20, Exercise 2.9.9]):

Definition 2.20. Let $n \in \{1,2,3,\ldots\}$. We define a map $f_n : \Lambda \to \Lambda$ by

$$(f_n (a)) = a(x_1^n, x_2^n, x_3^n, \ldots) \quad \text{for each } a \in \Lambda).$$

This map f_n is called the n-th Frobenius endomorphism of Λ.

Clearly, this map f_n is a k-algebra endomorphism of Λ (since it amounts to a substitution of indeterminates). It is known (from [GriRei20, Exercise 2.9.9(d)]) that this map $f_n : \Lambda \to \Lambda$ is a Hopf algebra endomorphism of Λ.

Using the notion of plethysm (see, e.g., [Stanle01, Chapter 7, Definition A2.6] or [Macdon95, §I.8]12), we can view the map f_n as a plethysm with the n-th power-sum symmetric function p_n, in the sense that any $a \in \Lambda$ satisfies $f_n (a) = a[p_n] = p_n[a]$ as long as $k = \mathbb{Z}$. (Plethysm becomes somewhat subtle when the base ring k is complicated; $f_n (a) = a[p_n]$ holds for any k, while $f_n (a) = p_n[a]$ relies on good properties of k.) The plethystic viewpoint makes some properties of f_n clear, but we shall avoid it for reasons of elementarity.

Now, we can express the Petrie symmetric functions $G(k,m)$ using Frobenius endomorphisms as follows:

Theorem 2.21. Let k be a positive integer. Let $m \in \mathbb{N}$. Then,

$$G(k,m) = \sum_{i \in \mathbb{N}} (-1)^i h_{m-ki} \cdot f_k (e_i).$$

(The sum on the right hand side of this equality is well-defined, since all sufficiently high $i \in \mathbb{N}$ satisfy $m-ki < 0$ and thus $h_{m-ki} = 0$.)

12Note that [Stanle01] uses the notation $f[g]$ for the plethysm of f with g, whereas [Macdon95] uses the notation $f \circ g$ for this. We shall use $f[g]$.

Theorem 2.21 will be proved in Subsection 3.13 below.

2.8. The Petrie functions as polynomial generators of Λ

We now claim the following:

Theorem 2.22. Fix a positive integer k. Assume that $1 - k$ is invertible in k.

Then, the family $(G(k,m))_{m \geq 1} = (G(k,1), G(k,2), G(k,3), \ldots)$ is an algebraically independent generating set of the commutative k-algebra Λ. (In other words, the canonical k-algebra homomorphism

$$k[u_1, u_2, u_3, \ldots] \to \Lambda, \quad u_m \mapsto G(k,m)$$

is an isomorphism.)

We shall prove Theorem 2.22 in Subsection 3.14. The proof uses the following two formulas for Hall inner products:

Lemma 2.23. Let k and m be positive integers. Let $j \in \mathbb{N}$. Then,

$$\langle p_m, f_k(e_j) \rangle = (-1)^{j-1} [m = kj] k.$$

Proposition 2.24. Let k and m be positive integers. Then,

$$\langle p_m, G(k,m) \rangle = 1 - [k \mid m] k.$$

Both of these formulas will be proved in Subsection 3.14 as well.

2.9. The Verschiebung endomorphisms

Now we recall another definition ([GriRei20, Exercise 2.9.10]):

Definition 2.25. Let $n \in \{1, 2, 3, \ldots\}$. We define a k-algebra homomorphism

$$v_n : \Lambda \to \Lambda$$

by

$$v_n(h_m) = \begin{cases} h_{m/n}, & \text{if } n \mid m; \\ 0, & \text{if } n \nmid m \end{cases} \quad \text{for each } m > 0.$$

(This is well-defined, since the sequence (h_1, h_2, h_3, \ldots) is an algebraically independent generating set of the commutative k-algebra Λ.)

This map v_n is called the n-th Verschiebung endomorphism of Λ.

Again, it is known ([GriRei20, Exercise 2.9.10(e)]) that this map $v_n : \Lambda \to \Lambda$ is a Hopf algebra endomorphism of Λ. Moreover, the following holds ([GriRei20, Exercise 2.9.10(f)]):

\footnote{Here, we are again using the Iverson bracket notation.}
Proposition 2.26. Let $n \in \{1, 2, 3, \ldots\}$. Then, the maps $f_n : \Lambda \to \Lambda$ and $v_n : \Lambda \to \Lambda$ are adjoint with respect to the Hall inner product on Λ. That is, any $a \in \Lambda$ and $b \in \Lambda$ satisfy

$$\langle a, f_n (b) \rangle = \langle v_n (a), b \rangle.$$

Furthermore, any positive integers n and m satisfy

$$v_n (p_m) = \begin{cases} np_{m/n}, & \text{if } n \mid m; \\ 0, & \text{if } n \nmid m. \end{cases} \quad (11)$$

(This is [GriRei20, Exercise 2.9.10(a)].)

2.10. The Hopf endomorphisms U_k and V_k

In this final subsection, we shall show another way to obtain the Petrie symmetric functions $G(k, m)$ using the machinery of Hopf algebras. We refer, e.g., to [GriRei20 Chapters 1 and 2] for everything we will use about Hopf algebras.

Convention 2.27. As already mentioned, Λ is a connected graded Hopf algebra. We let S denote its antipode.

Definition 2.28. If C is a k-coalgebra and A is a k-algebra, and if $f, g : C \to A$ are two k-linear maps, then the convolution $f \star g$ of f and g is defined to be the k-linear map $m_A \circ (f \otimes g) \circ \Delta_C : C \to A$, where $\Delta_C : C \to C \otimes C$ is the comultiplication of the k-coalgebra C, and where $m_A : A \otimes A \to A$ is the k-linear map sending each pure tensor $a \otimes b \in A \otimes A$ to $ab \in A$.

We also recall Definition 2.25 and Definition 2.20. We now claim the following.

Theorem 2.29. Fix a positive integer k. Let U_k be the map $f_k \circ S \circ v_k : \Lambda \to \Lambda$. Let V_k be the map $\text{id}_\Lambda \star U_k : \Lambda \to \Lambda$. (This is well-defined by Definition 2.28, since Λ is both a k-coalgebra and a k-algebra.) Then:

(a) The map U_k is a k-Hopf algebra homomorphism.

(b) The map V_k is a k-Hopf algebra homomorphism.

(c) We have $V_k (h_m) = G(k, m)$ for each $m \in \mathbb{N}$.

(d) We have $V_k (p_n) = (1 - [k \mid n]) p_n$ for each positive integer n.

See Subsection 3.15 for a proof of this theorem.

Note that Theorem 2.29 can be used to give a second proof of Theorem 2.19; see [GriRei20b] for this.

We also obtain the following corollary from Theorem 2.19.
Corollary 2.30. Let \(k \) and \(n \) be two positive integers. Then, there exists a polynomial \(f \in k \{x_1, x_2, x_3, \ldots\} \) such that
\[
(1 - \left\lfloor k \mid n \right\rfloor k) p_n = f (G(k, 1), G(k, 2), G(k, 3), \ldots).
\] (12)

This corollary will be proved in Subsection 3.16.

3. Proofs

3.1. The symmetric functions \(h_\lambda \)

We shall now approach the proofs of the claims made above. First, let us introduce a family of symmetric functions, obtained by multiplying several \(h_n \)’s:

Definition 3.1. Let \(\lambda \) be a partition. Write \(\lambda \) in the form \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell) \), where \(\lambda_1, \lambda_2, \ldots, \lambda_\ell \) are positive integers. Then, we define a symmetric function \(h_\lambda \in \Lambda \) by
\[
h_\lambda = h_{\lambda_1} h_{\lambda_2} \cdots h_{\lambda_\ell}.
\]

The symmetric function \(h_\lambda \) is called the complete homogeneous symmetric function corresponding to the partition \(\lambda \).

From [GriRei20, Corollary 2.5.17(a)], we know that the families \((h_\lambda)_{\lambda \in \text{Par}}\) and \((m_\mu)_{\mu \in \text{Par}}\) are dual bases with respect to the Hall inner product. Thus,
\[
\langle h_\lambda, m_\mu \rangle = \delta_{\lambda, \mu} \quad \text{for any } \lambda \in \text{Par} \text{ and } \mu \in \text{Par}.
\] (13)

Let us record a slightly different way to express \(h_\lambda \):

Proposition 3.2. Let \(\lambda \) be a partition. Then,
\[
h_\lambda = h_{\lambda_1} h_{\lambda_2} h_{\lambda_3} \cdots.
\]

(Here, the infinite product \(h_{\lambda_1} h_{\lambda_2} h_{\lambda_3} \cdots \) is well-defined, since every sufficiently high positive integer \(i \) satisfies \(\lambda_i = 0 \) and thus \(h_{\lambda_i} = h_0 = 1 \).)

This is how \(h_\lambda \) is defined in [Macdon95, Section I.2].

Proof of Proposition 3.2. This is an easy consequence of \(h_0 = 1 \).

3.2. Proofs of Proposition 1.2 and Proposition 1.3

Proof of Proposition 1.2. There are myriad ways to prove this. Here is perhaps the simplest one: Let us use the notation \(h_\lambda \) as defined in Definition 3.1. Thus, \(h_{(n)} = h_n \) (since \(n \) is a positive integer). Applying (13) to \(\lambda = (n) \) and \(\mu = (n) \), we obtain...
\[\langle h(n), m(n) \rangle = \delta_{(n),(n)} = 1. \] In view of \(h(n) = h_n \) and \(m(n) = p_n \), this rewrites as \(\langle h_n, p_n \rangle = 1. \) This proves Proposition 1.2. \hfill \qed

Proof of Proposition 1.3. This is [GriRei20, Exercise 2.8.8(a)]. But here is a self-contained proof: Proposition 1.1 yields

\[\langle e_n, p_n \rangle = \sum_{i=0}^{n-1} (-1)^i \langle e_n, s_{(n-i,1^i)} \rangle = \langle s_{(1^n)} s_{(n-i,1^i)} \rangle \]

(\(s_{(1^n)} = s_{(n,1)} \))

\[= \sum_{i=0}^{n-1} (-1)^i \left\{ \begin{array}{ll} 1, & \text{if } (1^n) = (n-i,1^i); \\ 0, & \text{if } (1^n) \neq (n-i,1^i) \end{array} \right. \]

(\(\delta_{(1^n),(n-i,1^i)} \))

(\(\text{since the basis } (s_{\lambda})_{\lambda \in \text{Par}} \text{ of } \Lambda \text{ is orthonormal with respect to the Hall inner product) \))

\[= \sum_{i=0}^{n-1} (-1)^i \left\{ \begin{array}{ll} 1, & \text{if } i = n - 1; \\ 0, & \text{if } i \neq n - 1 \end{array} \right. \]

(\(\text{since we have } (1^n) = (n-i,1^i) \)

if only if \(i=n-1) \)

\[= \sum_{i=0}^{n-1} (-1)^i = (-1)^{n-1}. \]

\hfill \qed

3.3. Skew Schur functions

Let us define a classical partial order on \(\text{Par} \) (see, e.g., [GriRei20, Definition 2.3.1]):

Definition 3.3. Let \(\lambda \) and \(\mu \) be two partitions.

- We say that \(\mu \subseteq \lambda \) if each \(i \in \{1,2,3,\ldots\} \) satisfies \(\mu_i \leq \lambda_i \).
- We say that \(\mu \not\subseteq \lambda \) if we don’t have \(\mu \subseteq \lambda \).

For example, \((3,2) \subseteq (4,2,1)\), but \((3,2,1) \not\subseteq (4,2)\) (since \((3,2,1)_3 = 1 \) is not \(\leq \) to \((4,2)_3 = 0 \)).

For any two partitions \(\lambda \) and \(\mu \), a symmetric function \(s_{\lambda/\mu} \) called a skew Schur function is defined in [GriRei20, Definition 2.3.1] and in [Macdon95, §I.5] (see also [Stanle01, Definition 7.10.1] for the case when \(\mu \subseteq \lambda \)). We shall not recall its standard definition here, but rather state a few properties.

The first property (which can in fact be used as an alternative definition of \(s_{\lambda/\mu} \)) is the first Jacobi–Trudi formula for skew shapes; it states the following:
Theorem 3.4. Let \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell) \) and \(\mu = (\mu_1, \mu_2, \ldots, \mu_\ell) \) be two partitions. Then,

\[
s_{\lambda/\mu} = \det \left((h_{\lambda_i - \mu_j - i + j})_{1 \leq i \leq \ell, 1 \leq j \leq \ell} \right). \tag{14}
\]

Theorem 3.4 appears (with proof) in [GriRei20, (2.4.16)] and in [Macdon95, Chapter I, (5.4)].

The following properties of skew Schur functions are easy to see:

- If \(\lambda \) is any partition, then \(s_{\lambda/\emptyset} = s_{\lambda} \). (Recall that \(\emptyset \) denotes the empty partition.)
- If \(\lambda \) and \(\mu \) are two partitions satisfying \(\mu \nsubseteq \lambda \), then \(s_{\lambda/\mu} = 0 \).

3.4. A Cauchy-like identity

We shall use the following identity, which connects the skew Schur functions \(s_{\lambda/\mu} \), the symmetric functions \(h_\lambda \) from Definition 3.1 and the monomial symmetric functions \(m_\lambda \):

Theorem 3.5. Recall the symmetric functions \(h_\lambda \) defined in Definition 3.1. Let \(\mu \) be any partition. Then, in the ring \(k[[x,y]] \), we have

\[
\sum_{\lambda \in \text{Par}} s_{\lambda/\mu}(x) s_\lambda(y) = s_\mu(y) \cdot \sum_{\lambda \in \text{Par}} h_\lambda(x) m_\lambda(y).
\]

Here, we are using the notations introduced in Subsection 2.6.

Theorem 3.5 appears in [Macdon95, fourth display on page 70], but let us give a proof for the sake of completeness:

Proof of Theorem 3.5. A well-known identity (proved, e.g., in [Macdon95, Chapter I, (4.2)] and in [GriRei20, proof of Proposition 2.5.15]) says that

\[
\prod_{i,j=1}^\infty (1 - x_i y_j)^{-1} = \sum_{\lambda \in \text{Par}} h_\lambda(x) m_\lambda(y). \tag{15}
\]

(Here, the product sign “\(\prod \)” means “\(\prod_{(i,j) \in \{1,2,3,\ldots\}^2} \).”)

Another well-known identity (proved, e.g., in [Macdon95, §I.5, example 26] and in [GriRei20, Exercise 2.5.11(a)]) says that

\[
\sum_{\lambda \in \text{Par}} s_\lambda(x) s_{\lambda/\mu}(y) = s_\mu(x) \cdot \prod_{i,j=1}^\infty (1 - x_i y_j)^{-1}.
\]
If we swap the roles of \(x = (x_1, x_2, x_3, \ldots) \) and \(y = (y_1, y_2, y_3, \ldots) \) in this identity, then we obtain
\[
\sum_{\lambda \in \text{Par}} s_\lambda (y) s_{\lambda/\mu} (x) = s_\mu (y) \cdot \prod_{i,j=1}^{\infty} \left(1 - y_i x_j \right)^{-1}.
\]

In view of
\[
\sum_{\lambda \in \text{Par}} s_\lambda (y) s_{\lambda/\mu} (x) = \sum_{\lambda \in \text{Par}} s_{\lambda/\mu} (x) s_\lambda (y)
\]
and
\[
\prod_{i,j=1}^{\infty} \left(1 - y_i x_j \right)^{-1} = \prod_{j,i=1}^{\infty} \left(1 - x_j y_i \right)^{-1} = \prod_{i,j=1}^{\infty} (1 - x_i y_j)^{-1} = \sum_{\lambda \in \text{Par}} h_\lambda (x) m_\lambda (y)
\]
(by (15)),

this rewrites as
\[
\sum_{\lambda \in \text{Par}} s_{\lambda/\mu} (x) s_\lambda (y) = s_\mu (y) \cdot \sum_{\lambda \in \text{Par}} h_\lambda (x) m_\lambda (y).
\]

This proves Theorem 3.5. \(\square \)

3.5. The \(k \)-algebra homomorphism \(\alpha_k : \Lambda \to k \)

Recall that the family \((h_n)_{n \geq 1} = (h_1, h_2, h_3, \ldots) \) is algebraically independent and generates \(\Lambda \) as a \(k \)-algebra. Thus, \(\Lambda \) can be viewed as a polynomial ring in the (infinitely many) indeterminates \(h_1, h_2, h_3, \ldots \). The universal property of a polynomial ring thus shows that if \(A \) is any commutative \(k \)-algebra, and if \((a_1, a_2, a_3, \ldots) \) is any sequence of elements of \(A \), then there is a unique \(k \)-algebra homomorphism from \(\Lambda \) to \(A \) that sends \(h_i \) to \(a_i \) for all positive integers \(i \). We shall refer to this as the \(h \)-universal property of \(\Lambda \). It lets us make the following definition.

\[\text{Definition 3.6.} \text{ Let } k \text{ be a positive integer. The } h \text{-universal property of } \Lambda \text{ shows that there is a unique } k \text{-algebra homomorphism } \alpha_k : \Lambda \to k \text{ that sends } h_i \text{ to } [i < k] \text{ for all positive integers } i. \text{ Consider this } \alpha_k.\]

\[\text{We are using the Iverson bracket notation (see Convention 2.4) here.}\]
We will use this homomorphism α_k several times in what follows; let us thus begin by stating some elementary properties of α_k.

Lemma 3.7. Let k be a positive integer.

(a) We have

$$\alpha_k(h_i) = [i < k] \quad \text{for all } i \in \mathbb{N}. \quad (16)$$

(b) We have

$$\alpha_k(h_i) = [0 \leq i < k] \quad \text{for all } i \in \mathbb{Z}. \quad (17)$$

(c) Let λ be a partition. Define h_λ as in Definition 3.1. Then,

$$\alpha_k(h_\lambda) = [\lambda_i < k \text{ for all } i]. \quad (18)$$

(Here, “for all i” means “for all positive integers i”.)

Proof of Lemma 3.7.

Note that $0 < k$ (since k is positive).

(a) Let $i \in \mathbb{N}$. We must prove that $\alpha_k(h_i) = [i < k]$. If $i > 0$, then this follows from the definition of α_k. Thus, we WLOG assume that we don’t have $i > 0$. Hence, $i = 0$ (since $i \in \mathbb{N}$). Therefore, $h_i = h_0 = 1$, so that $\alpha_k(h_i) = \alpha_k(1) = 1$ (since α_k is a k-algebra homomorphism). On the other hand, $i = 0 < k$, so that $[i < k] = 1$. Comparing this with $\alpha_k(h_i) = 1$, we obtain $\alpha_k(h_i) = [i < k]$. This proves Lemma 3.7 (a).

(b) Let $i \in \mathbb{Z}$. We must prove that $\alpha_k(h_i) = [0 \leq i < k]$. If $i < 0$, then this boils down to $0 = 0$ (since $i < 0$ entails $h_i = 0$ and thus $\alpha_k(h_i) = \alpha_k(0) = 0$, but also $[0 \leq i < k] = 0$). Hence, we WLOG assume that $i \geq 0$. Thus, $i \in \mathbb{N}$. Hence, Lemma 3.7 (a) yields $\alpha_k(h_i) = [i < k]$. On the other hand, the statement “$0 \leq i < k$” is equivalent to the statement “$i < k$” (since $0 \leq i$ holds automatically); thus, $[0 \leq i < k] = [i < k]$. Comparing this with $\alpha_k(h_i) = [i < k]$, we obtain $\alpha_k(h_i) = [0 \leq i < k]$. This proves Lemma 3.7 (b).

(c) We recall the following simple property of truth values: If $\ell \in \mathbb{N}$, and if A_1, A_2, \ldots, A_ℓ are ℓ logical statements, then

$$\prod_{i=1}^\ell [A_i] = [A_1] [A_2] \cdots [A_\ell] = [A_1 \land A_2 \land \cdots \land A_\ell]$$

$$= [A_i \text{ for all } i \in \{1, 2, \ldots, \ell\}]. \quad (19)$$

Now, write the partition λ in the form $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell)$, where $\lambda_1, \lambda_2, \ldots, \lambda_\ell$ are positive integers. Then, the definition of h_λ yields

$$h_\lambda = h_{\lambda_1} h_{\lambda_2} \cdots h_{\lambda_\ell} = \prod_{i=1}^\ell h_{\lambda_i}. \quad (15)$$

15because $i \geq 0$
Applying the map α_k to both sides of this equality, we find

$$\alpha_k (h_\lambda) = \alpha_k \left(\prod_{i=1}^\ell h_{\lambda_i} \right) = \prod_{i=1}^\ell \alpha_k (h_{\lambda_i}) = [\lambda_i < k]$$

(by (16), applied to λ, instead of i)

(since α_k is a k-algebra homomorphism)

$$= \prod_{i=1}^\ell [\lambda_i < k] = [\lambda_i < k \text{ for all } i \in \{1, 2, \ldots, \ell\}]$$

(20)

(by (19), applied to $\lambda_i = (\lambda_i < k)$).

But we have $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell)$ and thus $\lambda_{\ell+1} = \lambda_{\ell+2} = \lambda_{\ell+3} = \cdots = 0$. In other words, we have $\lambda_i = 0$ for all $i \in \{\ell + 1, \ell + 2, \ell + 3, \ldots\}$. Hence, we have $\lambda_i < k$ for all $i \in \{\ell + 1, \ell + 2, \ell + 3, \ldots\}$ (since all these i satisfy $\lambda_i = 0 < k$).

Thus, the statement “$\lambda_i < k$ for all i” is equivalent to the statement “$\lambda_i < k$ for all $i \in \{1, 2, \ldots, \ell\}$”.

Hence,

$$[\lambda_i < k \text{ for all } i] = [\lambda_i < k \text{ for all } i \in \{1, 2, \ldots, \ell\}] .$$

Comparing this with (20), we obtain $\alpha_k (h_\lambda) = [\lambda_i < k \text{ for all } i]$. Thus, Lemma 3.7 (c) is proved.

3.6. Proof of Lemma 2.7

Lemma 2.7 can be proved directly using Laplace expansion of determinants. But the homomorphism α_k from Definition 3.6 allows for a slicker proof:

Proof of Lemma 2.7 Recall that α_k is a k-algebra homomorphism. Thus, α_k respects determinants; i.e., if $(a_{ij})_{1 \leq i \leq m, 1 \leq j \leq m} \in \Lambda^{m \times m}$ is an $m \times m$-matrix, then

$$\alpha_k \left(\det \left((a_{ij})_{1 \leq i \leq m, 1 \leq j \leq m} \right) \right) = \det \left((\alpha_k (a_{ij}))_{1 \leq i \leq m, 1 \leq j \leq m} \right) .$$

(21)
Applying α_k to both sides of (14), we obtain

$$\alpha_k(s_{\lambda/\mu}) = \alpha_k \left(\det \left(h_{\lambda_i - \mu_j - i + j} \right)_{1 \leq i \leq \ell, 1 \leq j \leq \ell} \right)$$

$$= \det \left(\begin{array}{c}
\alpha_k \left(h_{\lambda_i - \mu_j - i + j} \right) \\
= [0 \leq \lambda_i - \mu_j - i + j < k] \\
(\text{by (17)})
\end{array} \right)_{1 \leq i \leq \ell, 1 \leq j \leq \ell}
$$

(by (21), applied to $m = \ell$ and $a_{i,j} = h_{\lambda_i - \mu_j - i + j}$)

$$= \det \left(\left([0 \leq \lambda_i - \mu_j - i + j < k] \right)_{1 \leq i \leq \ell, 1 \leq j \leq \ell} \right). \quad (22)$$

Thus, $\det \left(\left([0 \leq \lambda_i - \mu_j - i + j < k] \right)_{1 \leq i \leq \ell, 1 \leq j \leq \ell} \right)$ does not depend on the choice of ℓ (since $\alpha_k(s_{\lambda/\mu})$ does not depend on the choice of ℓ). This proves Lemma 2.7.

We record a useful consequence of the above proof:

Lemma 3.8. Let k be a positive integer. Let λ and μ be two partitions. Then, the homomorphism $\alpha_k : \Lambda \rightarrow k$ from Definition 3.6 satisfies

$$\alpha_k(s_{\lambda/\mu}) = \text{pet}_k(\lambda, \mu). \quad (23)$$

Proof of Lemma 3.8 Write the partitions λ and μ in the forms $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell)$ and $\mu = (\mu_1, \mu_2, \ldots, \mu_\ell)$ for some $\ell \in \mathbb{N}$. Then, the equality (22) (which we showed in our proof of Lemma 2.7) yields

$$\alpha_k(s_{\lambda/\mu}) = \det \left(\left([0 \leq \lambda_i - \mu_j - i + j < k] \right)_{1 \leq i \leq \ell, 1 \leq j \leq \ell} \right) = \text{pet}_k(\lambda, \mu)$$

(by the definition of $\text{pet}_k(\lambda, \mu)$). This proves Lemma 3.8.
3.7. Proof of Proposition 2.8

Proof of Proposition 2.8 Write the partitions λ and μ in the forms $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell)$ and $\mu = (\mu_1, \mu_2, \ldots, \mu_\ell)$ for some $\ell \in \mathbb{N}$. The definition of $\text{pet}_k (\lambda, \mu)$ yields

$$\text{pet}_k (\lambda, \mu) = \det \left(\left[\begin{array}{c} 0 \leq \lambda_i - \mu_j - i + j < k \\ \text{This is equivalent to } \mu_j - j \leq \lambda_i - i < \mu_j - j + k \end{array} \right] \right)_{1 \leq i \leq \ell, 1 \leq j \leq \ell}$$

$$= \det \left((\mu_j - j \leq \lambda_i - i < \mu_j - j + k) \right)_{1 \leq i \leq \ell, 1 \leq j \leq \ell}. \quad (24)$$

Let B be the $\ell \times \ell$-matrix $\left((\mu_j - j \leq \lambda_i - i < \mu_j - j + k) \right)_{1 \leq i \leq \ell, 1 \leq j \leq \ell} \in \mathbb{K}^{\ell \times \ell}$. Then, (24) rewrites as follows:

$$\text{pet}_k (\lambda, \mu) = \det B. \quad (25)$$

We will use the concept of Petrie matrices (see \cite[Theorem 1]{GorWil74}). Namely, a Petrie matrix is a matrix whose entries all belong to $\{0, 1\}$ and such that the 1’s in each column occur consecutively (i.e., as a contiguous block). In other words, a Petrie matrix is a matrix whose each column has the form

$$\begin{pmatrix} 0, 0, \ldots, 0, 1, 1, \ldots, 1, 0, 0, \ldots, 0 \end{pmatrix}^T$$

for some nonnegative integers a, b, c (where any of a, b, c can be 0). For example,

$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

is a Petrie matrix, but

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

is not.

A well-known result due to Fulkerson and Gross (first stated in \cite[§8]{FulGro65}) says that if a square matrix A is a Petrie matrix, then

$$\det A \in \{-1, 0, 1\}. \quad (27)$$

Now, we shall show that B is a Petrie matrix.

Indeed, fix some $j \in \{1, 2, \ldots, \ell\}$. We have $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\ell$ (since λ is a partition) and thus $\lambda_1 - 1 > \lambda_2 - 2 > \cdots > \lambda_\ell - \ell$. In other words, the numbers $\lambda_i - i$ for $i \in \{1, 2, \ldots, \ell\}$ decrease as i increases. Hence, the set of all $i \in \{1, 2, \ldots, \ell\}$ satisfying $\mu_j - j \leq \lambda_i - i < \mu_j - j + k$ is a (possibly empty) integer interval. Let us denote this integer interval by I_j. Therefore, if we let i range over $\{1, 2, \ldots, \ell\}$, then the truth value $\mu_j - j \leq \lambda_i - i < \mu_j - j + k$ will be 1 for all $i \in I_j$, and 0 for some ℓ can always be found, since each of λ and μ has only finitely many nonzero entries.

\cite[Theorem 1]{GorWil74} for an explicit proof.

An integer interval means a subset of \mathbb{Z} that has the form $\{a, a + 1, \ldots, b\}$ for some $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$. (If $a > b$, then this is the empty set.)
all other i. Since I_j is an integer interval, this means that this truth value will be 1 when i lies in a certain integer interval (namely, I_j) and 0 when i lies outside it. In other words, the j-th column of the matrix B has a contiguous (but possibly empty) block of 1's (in the rows corresponding to all $i \in I_j$), while all other entries of this column are 0 (because the entries of the j-th column of B are precisely these truth values $[\mu_j - j \leq \lambda_i - i < \mu_j - j + 1]$ for all $i \in \{1, 2, \ldots, \ell\}$). Therefore, this column has the form $[26]$ for some nonnegative integers a, b, c.

Now, forget that we fixed j. We thus have proved that for each $j \in \{1, 2, \ldots, \ell\}$, the j-th column of B has the form $[26]$ for some nonnegative integers a, b, c. In other words, each column of B has this form. Hence, B is a Petrie matrix (by the definition of a Petrie matrix). Therefore, $[27]$ (applied to $A = B$) yields $\det B \in \{-1, 0, 1\}$. Thus, $[25]$ becomes $\text{pet}_k(\lambda, \mu) = \det B \in \{-1, 0, 1\}$. This proves Proposition 2.8.

3.8. First proof of Theorem 2.17

We are now ready for our first proof of Theorem 2.17.

First proof of Theorem 2.17. We shall use the notations $k[[x]], k[[x, y]], x, y, f(x)$ and $f(y)$ introduced in Subsection 2.6. If R is any commutative ring, then $R[[y]]$ shall denote the ring $R[[y_1, y_2, y_3, \ldots]]$ of formal power series in the indeterminates y_1, y_2, y_3, \ldots over the ring R. We will identify the ring $k[[x, y]]$ with the ring $(k[[x]])[[y]] = (k[[x_1, x_2, x_3, \ldots]])[[y_1, y_2, y_3, \ldots]]$. Note that $\Lambda \subseteq k[[x]]$ and thus $\Lambda[[y]] \subseteq (k[[x]])[[y]] = k[[x, y]]$. We equip the rings $k[[y]], \Lambda[[y]]$ and $k[[x, y]]$ with the usual topologies that are defined on rings of power series, where Λ itself is equipped with the discrete topology. This has the somewhat confusing consequence that $\Lambda[[y]] \subseteq k[[x, y]]$ is an inclusion of rings but not of topological spaces; however, this will not cause us any trouble, since all infinite sums in $\Lambda[[y]]$ we will consider (such as $\sum_{\lambda \in \text{Par}} s_{\lambda/\mu}(x) s_{\lambda}(y)$ and $\sum_{\lambda \in \text{Par}} h_{\lambda}(x) m_{\lambda}(y)$) will converge to the same value in either topology.

We consider both $k[[y]]$ and Λ as subrings of $\Lambda[[y]]$ (indeed, $k[[y]]$ embeds into $\Lambda[[y]]$ because k is a subring of Λ, whereas Λ embeds into $\Lambda[[y]]$ because $\Lambda[[y]]$ is a ring of power series over Λ).

In this proof, the word “monomial” may refer to a monomial in any set of variables (not necessarily in x_1, x_2, x_3, \ldots).

Recall the k-algebra homomorphism $\alpha_k : \Lambda \rightarrow k$ from Definition 3.6. This k-algebra homomorphism $\alpha_k : \Lambda \rightarrow k$ induces a $k[[y]]$-algebra homomorphism $\alpha_k[[y]] : \Lambda[[y]] \rightarrow k[[y]]$, which is given by the formula

$$
(\alpha_k[[y]]) \left(\sum_{\text{n is a monomial in } y_1, y_2, y_3, \ldots} f_n n \right) = \sum_{\text{n is a monomial in } y_1, y_2, y_3, \ldots} \alpha_k(f_n) n
$$
for any family \((f_n)\) of elements of \(\Lambda\). This induced \(k[[y]]\)-algebra homomorphism \(\alpha_k[y]\) is \(k[[y]]\)-linear and continuous (with respect to the usual topologies on the power series rings \(\Lambda[[y]]\) and \(k[[y]]\)), and thus preserves infinite \(k[[y]]\)-linear combinations. Moreover, it extends \(\alpha_k\) (that is, for any \(f \in \Lambda\), we have \((\alpha_k[y])(f) = \alpha_k(f)\)).

Recall the skew Schur functions \(s_{\lambda/\mu}\) defined in Subsection 3.3. Also, recall the symmetric functions \(h_\lambda\) defined in Definition 3.1. Theorem 3.5 yields
\[
\sum_{\lambda \in \text{Par}} s_{\lambda/\mu}(x)s_\lambda(y) = s_\mu(y) \cdot \sum_{\lambda \in \text{Par}} h_\lambda(x)m_\lambda(y) = \sum_{\lambda \in \text{Par}} s_\mu(y)h_\lambda(x)m_\lambda(y)
\]
Comparing this with
\[
\sum_{\lambda \in \text{Par}} s_{\lambda/\mu}(x)s_\lambda(y) = \sum_{\lambda \in \text{Par}} s_\lambda(y)s_{\lambda/\mu}(x) = \sum_{\lambda \in \text{Par}} s_\lambda(y)s_{\lambda/\mu}
\]
we obtain
\[
\sum_{\lambda \in \text{Par}} s_\lambda(y)s_{\lambda/\mu} = \sum_{\lambda \in \text{Par}} s_\mu(y)m_\lambda(y)h_\lambda.
\]
Consider this as an equality in the ring \(\Lambda[[y]] = \Lambda[[y_1, y_2, y_3, \ldots]]\). Apply the map \(\alpha_k[y] : \Lambda[[y]] \rightarrow k[[y]]\) to both sides of this equality. We obtain
\[
(\alpha_k[y]) \left(\sum_{\lambda \in \text{Par}} s_\lambda(y)s_{\lambda/\mu} \right) = (\alpha_k[y]) \left(\sum_{\lambda \in \text{Par}} s_\mu(y)m_\lambda(y)h_\lambda \right).
\]
Comparing this with
\[
(\alpha_k[y]) \left(\sum_{\lambda \in \text{Par}} s_\lambda(y)s_{\lambda/\mu} \right) = \sum_{\lambda \in \text{Par}} s_\lambda(y) \cdot \left(\alpha_k[y] \left(s_{\lambda/\mu} \right) \right) = \sum_{\lambda \in \text{Par}} s_\lambda(y) \cdot \left(\alpha_k[y] \left(s_{\lambda/\mu} \right) \right)
\]
(since the map \(\alpha_k[y]\) preserves infinite \(k[[y]]\)-linear combinations)
\[
= \sum_{\lambda \in \text{Par}} s_\lambda(y) \cdot \alpha_k(s_{\lambda/\mu}) = \sum_{\lambda \in \text{Par}} s_\lambda(y) \cdot \text{pet}_k(\lambda, \mu) = \sum_{\lambda \in \text{Par}} \text{pet}_k(\lambda, \mu) \cdot s_\lambda(y),
\]

we obtain
\[
\sum_{\lambda \in \text{Par}} \operatorname{pet}_k (\lambda, \mu) \cdot s_{\lambda} (y)
= (a_k (\lfloor y \rfloor)) \left(\sum_{\lambda \in \text{Par}} s_{\mu} (y) m_{\lambda} (y) h_{\lambda} \right)
= \sum_{\lambda \in \text{Par}} s_{\mu} (y) m_{\lambda} (y) \left(a_k (\lfloor y \rfloor) \right) (h_{\lambda})
\]
(since the map \(a_k (\lfloor y \rfloor) \) preserves infinite \(k \lfloor y \rfloor \)-linear combinations)
\[
= \sum_{\lambda \in \text{Par}} s_{\mu} (y) m_{\lambda} (y) \alpha_k (h_{\lambda})
= \sum_{\lambda \in \text{Par}} s_{\mu} (y) m_{\lambda} (y) \cdot \sum_{\lambda_i < k \text{ for all } i} \lambda
\]
(by (18))
\[
= \sum_{\lambda \in \text{Par}} [\lambda_i < k \text{ for all } i] \cdot s_{\mu} (y) m_{\lambda} (y).
\]

Renaming the indeterminates \(y = (y_1, y_2, y_3, \ldots) \) as \(x = (x_1, x_2, x_3, \ldots) \) on both sides of this equality, we obtain
\[
\sum_{\lambda \in \text{Par}} \operatorname{pet}_k (\lambda, \mu) \cdot s_{\lambda} (x)
= \sum_{\lambda \in \text{Par}} [\lambda_i < k \text{ for all } i] \cdot s_{\mu} (x) m_{\lambda} (x)
= \sum_{\lambda \in \text{Par}} [\lambda_i < k \text{ for all } i] \cdot s_{\mu} m_{\lambda}
= \sum_{\lambda \in \text{Par; } \lambda_i < k \text{ for all } i} [\lambda_i < k \text{ for all } i] \cdot s_{\mu} m_{\lambda}
+ \sum_{\lambda \in \text{Par; } \lambda_i < k \text{ for all } i} [\lambda_i < k \text{ for all } i] \cdot s_{\mu} m_{\lambda}
\]
(since any \(\lambda \in \text{Par} \) satisfies either \(\lambda_i < k \text{ for all } i \) or not \(\lambda_i < k \text{ for all } i \))
\[
= \sum_{\lambda \in \text{Par; } \lambda_i < k \text{ for all } i} s_{\mu} m_{\lambda}
+ \sum_{\lambda \in \text{Par; } \lambda_i < k \text{ for all } i} 0 s_{\mu} m_{\lambda}
= \sum_{\lambda \in \text{Par; } \lambda_i < k \text{ for all } i} s_{\mu} m_{\lambda}.
\]

Comparing this with
\[
G (k) \cdot s_{\mu} = s_{\mu} \cdot \sum_{\lambda \in \text{Par; } \lambda_i < k \text{ for all } i} m_{\lambda} = \sum_{\lambda \in \text{Par; } \lambda_i < k \text{ for all } i} s_{\mu} m_{\lambda},
\]
(by Proposition 2.3 (b))
we obtain
\[
G (k) \cdot s_{\mu} = \sum_{\lambda \in \text{Par}} \operatorname{pet}_k (\lambda, \mu) \cdot s_{\lambda} (x) = \sum_{\lambda \in \text{Par}} \operatorname{pet}_k (\lambda, \mu) s_{\lambda}.
\]
This proves Theorem 2.17.
3.9. Second proof of Theorem 2.17

Our second proof of Theorem 2.17 will rely on [GriRei20, §2.6] and specifically on the notion of alternants. We shall give only a sketch of it; the reader can consult [Grinbe20b] for the full version.

Second proof of Theorem 2.17 (sketched). If \(f \in k[[x_1, x_2, x_3, \ldots]] \) is any formal power series, and if \(\ell \in \mathbb{N} \), then \(f(x_1, x_2, \ldots, x_\ell) \) shall denote the formal power series

\[
f(x_1, x_2, \ldots, x_\ell, 0, 0, 0, \ldots) \in k[[x_1, x_2, \ldots, x_\ell]]
\]

that is obtained by substituting 0, 0, 0, \ldots for the variables \(x_{\ell+1}, x_{\ell+2}, x_{\ell+3}, \ldots \) in \(f \). Equivalently, \(f(x_1, x_2, \ldots, x_\ell) \) can be obtained from \(f \) by removing all monomials that contain any of the variables \(x_{\ell+1}, x_{\ell+2}, x_{\ell+3}, \ldots \). This makes it clear that any \(f \in k[[x_1, x_2, x_3, \ldots]] \) satisfies

\[
f = \lim_{\ell \to \infty} f(x_1, x_2, \ldots, x_\ell)
\]

(where the limit is taken with respect to the usual topology on \(k[[x_1, x_2, x_3, \ldots]] \)).

Let \(\ell (\mu) \) denote the number of parts of \(\mu \). Fix an \(\ell \in \mathbb{N} \) such that \(\ell \geq \ell (\mu) \). We shall show that

\[
(G(k))(x_1, x_2, \ldots, x_\ell) \cdot s_\mu(x_1, x_2, \ldots, x_\ell) = \sum_{\lambda \in \text{Par}} \text{pet}_k(\lambda, \mu) s_\lambda(x_1, x_2, \ldots, x_\ell).
\]

Once this is done, the usual “let \(\ell \) tend to \(\infty \)” argument (analogous to [GriRei20, proof of Corollary 2.6.11]) will yield the validity of Theorem 2.17.

Let \(P_\ell \) denote the set of all partitions with at most \(\ell \) parts. Any partition \(\lambda \in P_\ell \) satisfies \(\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell) \), and thus can be regarded as an \(\ell \)-tuple of nonnegative integers. In other words, \(P_\ell \subseteq \mathbb{N}^\ell \). More precisely, the partitions \(\lambda \in P_\ell \) are precisely the \(\ell \)-tuples \((\lambda_1, \lambda_2, \ldots, \lambda_\ell) \in \mathbb{N}^\ell \) satisfying \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\ell \).

Define the \(\ell \)-tuple \(\rho = (\ell - 1, \ell - 2, \ldots, 0) \in \mathbb{N}^\ell \).

For any \(\ell \)-tuple \(\alpha \in \mathbb{N}^\ell \) and each \(i \in \{1, 2, \ldots, \ell\} \), we shall write \(\alpha_i \) for the \(i \)-th entry of \(\alpha \).

For any \(\ell \)-tuple \(\alpha \in \mathbb{N}^\ell \), we let \(x^\alpha \) denote the monomial \(x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_\ell^{\alpha_\ell} \).

Let \(\mathcal{S}_\ell \) denote the symmetric group of the set \(\{1, 2, \ldots, \ell\} \). This group \(\mathcal{S}_\ell \) acts by \(k \)-algebra homomorphisms on the polynomial ring \(k[x_1, x_2, \ldots, x_\ell] \). It also acts on the set \(\mathbb{N}^\ell \) by permuting the entries of an \(\ell \)-tuple; namely,

\[
\sigma \cdot \beta = \left(\beta_{\sigma^{-1}(1)}, \beta_{\sigma^{-1}(2)}, \ldots, \beta_{\sigma^{-1}(\ell)} \right)
\]

for any \(\sigma \in \mathcal{S}_\ell \) and \(\beta \in \mathbb{N}^\ell \).

For any \(\sigma \in \mathcal{S}_\ell \), we let \((-1)^\sigma\) denote the sign of the permutation \(\sigma \).

If \(\alpha \in \mathbb{N}^\ell \) is any \(\ell \)-tuple, then we define the polynomial \(a_\alpha \in k[x_1, x_2, \ldots, x_\ell] \) (called the \(\alpha \)-alternant) by

\[
a_\alpha = \sum_{\sigma \in \mathcal{S}_\ell} (-1)^\sigma \sigma(x^\alpha) = \det \left(\left(x_i^j \right)_{1 \leq i \leq \ell, 1 \leq j \leq \ell} \right).
\]
We define addition of ℓ-tuples $\alpha \in \mathbb{N}^\ell$ entrywise (so that $(\alpha + \beta)_i = \alpha_i + \beta_i$ for every $\alpha, \beta \in \mathbb{N}^\ell$ and $i \in \{1, 2, \ldots, \ell\}$). Thus, $\lambda + \rho \in \mathbb{N}^\ell$ for each $\lambda \in P_\ell$ (since $\lambda \in P_\ell \subseteq \mathbb{N}^\ell$).

It is known ([GriRei20, Corollary 2.6.7]) that
\[
s_\lambda(x_1, x_2, \ldots, x_\ell) = \frac{a_{\lambda + \rho}}{a_\rho}
\] (30)
for every $\lambda \in P_\ell$.

The partition μ has at most ℓ parts (since $\ell \geq \ell(\mu)$). In other words, $\mu \in P_\ell$. Now, define $\alpha \in \mathbb{N}^\ell$ by $\alpha = \mu + \rho$. Proposition 2.3 (b) yields
\[
G(k) = \prod_{i=1}^{\ell} \left(x_i^0 + x_i^1 + \cdots + x_i^{k-1} \right). \tag{31}
\]
Substituting $0, 0, 0, \ldots$ for $x_{\ell+1}, x_{\ell+2}, x_{\ell+3}, \ldots$ in this equality, we obtain
\[
(G(k))(x_1, x_2, \ldots, x_\ell)
\]
\[
= \left(\prod_{i=1}^{\ell} \left(x_i^0 + x_i^1 + \cdots + x_i^{k-1} \right) \right) \cdot \left(\prod_{i=\ell+1}^{\infty} \left(0^0 + 0^1 + \cdots + 0^{k-1} \right) \right) \tag{32}
\]
\[
= \prod_{i=1}^{\ell} \left(x_i^0 + x_i^1 + \cdots + x_i^{k-1} \right) \tag{31}
\]
\[
= \sum_{(j_1, j_2, \ldots, j_\ell) \in \{0, 1, \ldots, k-1\}^\ell} x_1^{j_1} x_2^{j_2} \cdots x_\ell^{j_\ell} \quad \text{(by the product rule)}
\]
\[
= \sum_{\beta \in \mathbb{N}^\ell; \beta_i < k \text{ for all } i} x^\beta \text{ (here, we have substituted } \beta \text{ for } (j_1, j_2, \ldots, j_\ell) \text{ in the sum).}
\]
(Here and in the rest of this proof, “for all i” means “for all $i \in \{1, 2, \ldots, \ell\}$”.) From (31), we see that $(G(k))(x_1, x_2, \ldots, x_\ell)$ is a polynomial in $k[x_1, x_2, \ldots, x_\ell]$ (not merely a power series). From (31), we moreover see that this polynomial $(G(k))(x_1, x_2, \ldots, x_\ell) \in k[x_1, x_2, \ldots, x_\ell]$ is invariant under the action of S_ℓ.

Petrie symmetric functions
But from \(a_\alpha = \sum_{\sigma \in \mathfrak{S}_\ell} (-1)^\sigma \sigma (x^\alpha) \), we obtain

\[
(G(k)) (x_1, x_2, \ldots, x_\ell) \cdot a_\alpha = (G(k)) (x_1, x_2, \ldots, x_\ell) \cdot \sum_{\sigma \in \mathfrak{S}_\ell} (-1)^\sigma \sigma (x^\alpha)
\]

\[
= \sum_{\sigma \in \mathfrak{S}_\ell} (-1)^\sigma \left(G(k) \left(x_1, x_2, \ldots, x_\ell \right) \right) \cdot \sigma (x^\alpha)
\]

(since the polynomial \((G(k))(x_1, x_2, \ldots, x_\ell)\)

\[
= \sum_{\sigma \in \mathfrak{S}_\ell} (-1)^\sigma \sigma \left(\left(G(k) \left(x_1, x_2, \ldots, x_\ell \right) \right) \cdot \sigma (x^\alpha) \right)
\]

(since \(\mathfrak{S}_\ell\) acts on \(k[x_1, x_2, \ldots, x_\ell]\)

\[
= \sum_{\sigma \in \mathfrak{S}_\ell} (-1)^\sigma \sigma \left(G(k) \left(x_1, x_2, \ldots, x_\ell \right) \cdot x^\alpha \right)
\]

by \(k\)-algebra homomorphisms)

\[
= \sum_{\sigma \in \mathfrak{S}_\ell} (-1)^\sigma \sigma \left(G(k) \left(x_1, x_2, \ldots, x_\ell \right) \cdot x^\alpha \right)
\]

(by (32))

\[
= \sum_{\beta \in \mathbb{N}_\ell; \beta_i < k \text{ for all } i} \sum_{\sigma \in \mathfrak{S}_\ell} (-1)^\sigma \left(x^\beta \cdot x^\alpha \right)
\]

\[
= \sum_{\beta \in \mathbb{N}_\ell; \beta_i < k \text{ for all } i} \sum_{\sigma \in \mathfrak{S}_\ell} (-1)^\sigma \left(x^\beta \cdot x^\alpha \right)
\]

\[
= \sum_{\beta \in \mathbb{N}_\ell; \beta_i < k \text{ for all } i} (-1)^\sigma \left(x^{\alpha+\beta} \right) = \sum_{\beta \in \mathbb{N}_\ell; \beta_i < k \text{ for all } i} a_{\alpha+\beta}
\]

(by the definition of \(a_{\alpha+\beta}\))

\[
= \sum_{\gamma \in \mathbb{N}_\ell; 0 \leq \gamma_i - \alpha_i < k \text{ for all } i} a_\gamma
\]

(here, we have substituted \(\gamma\) for \(\alpha + \beta\) in the sum).

It is well-known (and easy to check using the properties of determinants\(^{19}\)) that if an \(\ell\)-tuple \(\gamma \in \mathbb{N}_\ell\) has two equal entries, then

\[
a_\gamma = 0. \quad (34)
\]

Moreover, any \(\ell\)-tuple \(\gamma \in \mathbb{N}_\ell\) and any \(\sigma \in \mathfrak{S}_\ell\) satisfy

\[
a_{\sigma \cdot \gamma} = (-1)^\sigma \cdot a_\gamma. \quad (35)
\]

(This, too, follows from the properties of determinants\(^{20}\)).

\(^{19}\) specifically: using the fact that a square matrix with two equal rows always has determinant 0

\(^{20}\) specifically: using the fact that permuting the rows of a square matrix results in its determinant getting multiplied by the sign of the permutation
Let SP_ℓ denote the set of all ℓ-tuples $\delta \in \mathbb{N}^\ell$ such that $\delta_1 > \delta_2 > \cdots > \delta_\ell$. Then, the map

$$P_\ell \rightarrow SP_\ell, \quad \lambda \mapsto \lambda + \rho$$

is a bijection.

If an ℓ-tuple $\gamma \in \mathbb{N}^\ell$ has no two equal entries, then γ can be uniquely written in the form $\sigma \cdot \delta$ for some $\sigma \in S_\ell$ and some $\delta \in SP_\ell$ (indeed, δ is the result of sorting γ into decreasing order, while σ is the permutation that achieves this sorting). In other words, the map

$$S_\ell \times SP_\ell \rightarrow \left\{ \gamma \in \mathbb{N}^\ell \mid \text{the } \ell\text{-tuple } \gamma \text{ has no two equal entries} \right\}, \quad (\sigma, \delta) \mapsto \sigma \cdot \delta$$

is a bijection.
Now, (33) becomes
\[
(G(k))(x_1, x_2, \ldots, x_\ell) \cdot a_\alpha = \sum_{\gamma \in N_\ell'; 0 \leq \gamma_i - a_i < k \text{ for all } i} a_\gamma + \sum_{\gamma \in N_\ell'; 0 \leq \gamma_i - a_i < k \text{ for all } i; \text{ the } \ell\text{-tuple } \gamma \text{ has no two equal entries}} a_\gamma
\]
\[
\text{by (34)}
\]
\[
= \sum_{\gamma \in N_\ell'; 0 \leq \gamma_i - a_i < k \text{ for all } i; \text{ the } \ell\text{-tuple } \gamma \text{ has two equal entries}} a_\gamma
\]
\[
\text{by (35)}
\]
\[
= \sum_{\gamma \in N_\ell'; 0 \leq \gamma_i - a_i < k \text{ for all } i; \text{ the } \ell\text{-tuple } \gamma \text{ has no two equal entries}} [0 \leq \gamma_i - a_i < k \text{ for all } i] \cdot a_\gamma
\]
\[
= \sum_{(\sigma, \delta) \in S_\ell \times SP_\ell} \left(\left[0 \leq (\sigma \cdot \delta)_i - \alpha_i < k \text{ for all } i \right] \cdot a_{\sigma \cdot \delta} \right)
\]
\[
\text{(here, we have substituted } \sigma \cdot \delta \text{ for } \gamma \text{ in the sum,}
\]
\[
\text{since the map (37) is a bijection)}
\]
\[
= \sum_{\delta \in SP_\ell} \sum_{\sigma \in S_\ell} \left(\prod_{i=1}^\ell \left[0 \leq \delta_i - \alpha_{\sigma(i)} < k \right] \right) \cdot (-1)^\sigma a_\delta
\]
\[
\text{(here, we have substituted } \sigma(i) \text{ for } i \text{ in the product, since } \sigma \text{ is a bijection)}
\]
\[
= \sum_{\delta \in SP_\ell} \sum_{\sigma \in S_\ell} \left(\prod_{i=1}^\ell \left[0 \leq \delta_i - \alpha_{\sigma(i)} < k \right] \right) \cdot (-1)^\sigma a_\delta
\]
\[
= \sum_{\lambda \in P_\ell} \det \left(\left[0 \leq (\lambda + \rho)_i - \alpha_j < k \right]_{1 \leq i \leq \ell, 1 \leq j \leq \ell} \right) a_{\lambda + \rho}
\]
\[
\text{(here, we have substituted } \lambda + \rho \text{ for } \delta \text{ in the sum, since the map (36) is a bijection).}
\]
Using the definitions of ρ and α, it is easy to see that

$$ (\lambda + \rho)_i - \alpha_j = \lambda_i - \mu_j - i + j $$

for every $\lambda \in P_\ell$ and every $i, j \in \{1, 2, \ldots, \ell\}$.

Now, (30) (applied to $\lambda = \mu$) yields

$$ s_\mu (x_1, x_2, \ldots, x_\ell) = \frac{a_{\mu + \rho}}{a_\rho} = \frac{a_\alpha}{a_\rho} $$

(since $\mu + \rho = \alpha$). Multiplying this equality by $(G(k)) (x_1, x_2, \ldots, x_\ell)$, we find

$$ (G(k)) (x_1, x_2, \ldots, x_\ell) \cdot s_\mu (x_1, x_2, \ldots, x_\ell) = (G(k)) (x_1, x_2, \ldots, x_\ell) \cdot \frac{a_\alpha}{a_\rho} $$

$$ = \sum_{\lambda \in P_\ell} \det \left(\left[\begin{array}{c} 0 \\ \vdots \\ \left(\begin{array}{c} \lambda_i - \mu_j - i + j \\ \end{array} \right) \end{array} \right] \right)_{0 \leq i \leq \ell, 1 \leq j \leq \ell} \cdot \frac{a_{\lambda + \rho}}{a_\rho} \cdot s_\lambda (x_1, x_2, \ldots, x_\ell) $$

(by (38))

$$ = \sum_{\lambda \in P_\ell} \det \left(\left[\begin{array}{c} 0 \\ \vdots \\ \left(\begin{array}{c} \lambda_i - \mu_j - i + j \leq k \\ \end{array} \right) \end{array} \right] \right)_{0 \leq i \leq \ell, 1 \leq j \leq \ell} \cdot \frac{a_{\lambda + \rho}}{a_\rho} \cdot s_\lambda (x_1, x_2, \ldots, x_\ell) $$

(by (39))

$$ = \sum_{\lambda \in P_\ell} \det \left(\left[\begin{array}{c} 0 \\ \vdots \\ \left(\begin{array}{c} \mu_i - i + j < k \\ \end{array} \right) \end{array} \right] \right)_{1 \leq i \leq \ell, 1 \leq j \leq \ell} \cdot \frac{a_{\lambda + \rho}}{a_\rho} \cdot s_\lambda (x_1, x_2, \ldots, x_\ell) $$

(by the definition of $\text{pet}_k(\lambda, \mu)$)

$$ = \sum_{\lambda \in P_\ell} \text{pet}_k (\lambda, \mu) \cdot s_\lambda (x_1, x_2, \ldots, x_\ell) $$

where the last equality sign is owed to the well-known fact (see, e.g., [GriRei20, Exercise 2.3.8(b)]) that every $\lambda \in \text{Par} \setminus P_\ell$ (that is, every partition λ having more than ℓ parts) satisfies $s_\lambda (x_1, x_2, \ldots, x_\ell) = 0$. Thus, (29) has been proved.

Forget that we fixed ℓ. Thus, we have proved (29) for each $\ell \in \mathbb{N}$ that satisfies $\ell \geq \ell (\mu)$. As we mentioned above, we can now use a standard limiting argument (using (28)) to obtain the claim of Theorem 2.17.

3.10. Proofs of Corollary 2.18, Theorem 2.9 and Corollary 2.10

Having proved Theorem 2.17, we can now obtain Corollary 2.18, Theorem 2.9 and Corollary 2.10 as easy consequences:
Proof of Corollary 2.18 Proposition 2.3 yields that the m-th degree homogeneous component of $G(k)$ is $G(k,m)$. Hence, the $(m + |\mu|)$-th degree homogeneous component of $G(k) \cdot s_\mu$ is $G(k,m) \cdot s_\mu$ (because s_μ is homogeneous of degree $|\mu|$).

Theorem 2.17 yields

$$G(k) \cdot s_\mu = \sum_{\lambda \in \text{Par}_k} \text{Pet}_k(\lambda, \mu)s_\lambda.$$

Taking the $(m + |\mu|)$-th degree homogeneous components on both sides of this equality, we obtain

$$G(k,m) \cdot s_\mu = \sum_{\lambda \in \text{Par}_{m+|\mu|}} \text{Pet}_k(\lambda, \mu)s_\lambda$$

(because each Schur function s_λ is homogeneous of degree $|\lambda|$, whereas the $(m + |\mu|)$-th degree homogeneous component of $G(k) \cdot s_\mu$ is $G(k,m) \cdot s_\mu$). This proves Corollary 2.18.

Proof of Theorem 2.9 Theorem 2.17 (applied to $\mu = \emptyset$) yields

$$G(k) \cdot s_\emptyset = \sum_{\lambda \in \text{Par}} \text{Pet}_k(\lambda, \emptyset)s_\lambda.$$

Comparing this with $G(k) \cdot s_\emptyset = G(k)$, we obtain

$$G(k) = \sum_{\lambda \in \text{Par}} \text{Pet}_k(\lambda, \emptyset)s_\lambda.$$

This proves Theorem 2.9.

Proof of Corollary 2.10 Corollary 2.18 (applied to $\mu = \emptyset$) yields

$$G(k,m) \cdot s_\emptyset = \sum_{\lambda \in \text{Par}_{m+|\emptyset|}} \text{Pet}_k(\lambda, \emptyset)s_\lambda.$$

In view of $G(k,m) \cdot s_\emptyset = G(k,m)$ and $m + |\emptyset| = m$, we can rewrite this as

$$G(k,m) = \sum_{\lambda \in \text{Par}_m} \text{Pet}_k(\lambda, \emptyset)s_\lambda.$$

This proves Corollary 2.10.

3.11. Proof of Theorem 2.15

Our proof of Theorem 2.15 will depend on two lemmas about determinants:
Lemma 3.9. Let \(m \in \mathbb{N} \). Let \(R \) be a commutative ring. Let \((a_{ij})_{1 \leq i \leq m, 1 \leq j \leq m} \in R^{m \times m} \) be an \(m \times m \)-matrix.

(a) If \(\tau \) is any permutation of \(\{1, 2, \ldots, m\} \), then

\[
\det \left((a_{\tau(i)j})_{1 \leq i \leq m, 1 \leq j \leq m} \right) = (-1)^{\tau} \cdot \det \left((a_{ij})_{1 \leq i \leq m, 1 \leq j \leq m} \right).
\]

Here, \((-1)^{\tau}\) denotes the sign of the permutation \(\tau \).

(b) Let \(u_1, u_2, \ldots, u_m \) be \(m \) elements of \(R \). Let \(v_1, v_2, \ldots, v_m \) be \(m \) elements of \(R \). Then,

\[
\det \left((u_i v_j a_{ij})_{1 \leq i \leq m, 1 \leq j \leq m} \right) = \left(\prod_{i=1}^{m} (u_i v_i) \right) \cdot \det \left((a_{ij})_{1 \leq i \leq m, 1 \leq j \leq m} \right).
\]

Proof of Lemma 3.9 (a) This is just the well-known fact that if the rows of a square matrix are permuted using a permutation \(\tau \), then the determinant of this matrix gets multiplied by \((-1)^{\tau}\).

(b) This follows easily from the definition of the determinant. \(\square \)

Lemma 3.10. Let \(k \) be a positive integer. Let \(\gamma_1, \gamma_2, \ldots, \gamma_{k-1} \) be \(k-1 \) elements of the set \(\{1, 2, \ldots, k\} \).

Let \(G \) be the \((k-1) \times (k-1) \)-matrix

\[
\left((-1)^{(\gamma_i + j) \% k} \left[(\gamma_i + j) \% k \in \{0, 1\} \right] \right)_{1 \leq i \leq k-1, 1 \leq j \leq k-1}.
\]

(a) If the \(k-1 \) numbers \(\gamma_1, \gamma_2, \ldots, \gamma_{k-1} \) are not distinct, then

\[
\det G = 0.
\]

(b) If \(\gamma_1 > \gamma_2 > \cdots > \gamma_{k-1} \), then

\[
\det G = (-1)^{((\gamma_1 + \gamma_2 + \cdots + \gamma_{k-1}) - (1+2+\cdots+(k-1)))}.
\]

(c) Assume that the \(k-1 \) numbers \(\gamma_1, \gamma_2, \ldots, \gamma_{k-1} \) are distinct. Let

\[
g = \left| \{(i,j) \in \{1,2,\ldots,k-1\}^2 \mid i < j \text{ and } \gamma_i < \gamma_j \} \right|.
\]

Then,

\[
\det G = (-1)^{g + ((\gamma_1 + \gamma_2 + \cdots + \gamma_{k-1}) - (1+2+\cdots+(k-1)))}.
\]

Proof of Lemma 3.10 (a) Assume that the \(k-1 \) numbers \(\gamma_1, \gamma_2, \ldots, \gamma_{k-1} \) are not distinct. In other words, there exist two elements \(u \) and \(v \) of \(\{1,2,\ldots,k-1\} \) such that \(u < v \) and \(\gamma_u = \gamma_v \). Consider these \(u \) and \(v \). Now, from \(\gamma_u = \gamma_v \), we conclude
that the u-th and the v-th rows of the matrix G are equal (by the construction of G). Hence, the matrix G has two equal rows (since $u < v$). Thus, $\det G = 0$. This proves Lemma 3.10 (a).

(b) Assume that $\gamma_1 > \gamma_2 > \cdots > \gamma_{k-1}$. Thus, $\gamma_1, \gamma_2, \ldots, \gamma_{k-1}$ are distinct. Hence, $\{\gamma_1, \gamma_2, \ldots, \gamma_{k-1}\}$ is a $(k - 1)$-element set. But $\{\gamma_1, \gamma_2, \ldots, \gamma_{k-1}\}$ is a subset of $\{1, 2, \ldots, k\}$ (since $\gamma_1, \gamma_2, \ldots, \gamma_{k-1}$ are elements of $\{1, 2, \ldots, k\}$). Therefore, $\{\gamma_1, \gamma_2, \ldots, \gamma_{k-1}\}$ is a $(k - 1)$-element subset of $\{1, 2, \ldots, k\}$.

Hence, $\{\gamma_1, \gamma_2, \ldots, \gamma_{k-1}\} = \{1, 2, \ldots, k\} \setminus \{u\}$ for some $u \in \{1, 2, \ldots, k\}$ (since any $(k - 1)$-element subset of $\{1, 2, \ldots, k\}$ has such a form). Consider this u. From $\{\gamma_1, \gamma_2, \ldots, \gamma_{k-1}\} = \{1, 2, \ldots, k\} \setminus \{u\}$, we conclude that $\gamma_1, \gamma_2, \ldots, \gamma_{k-1}$ are the $k - 1$ elements of the set $\{1, 2, \ldots, k\} \setminus \{u\}$, listed in decreasing order (since $\gamma_1 > \gamma_2 > \cdots > \gamma_{k-1}$). In other words,

$$\gamma_1, \gamma_2, \ldots, \gamma_{k-1} = (k, k-1, \ldots, \hat{u}, \ldots, 2, 1),$$

where the “hat” over the u signifies that u is omitted from the list (i.e., the expression “$(k, k-1, \ldots, \hat{u}, \ldots, 2, 1)$” is understood to mean the $(k - 1)$-element list $(k, k-1, \ldots, u+1, u-1, \ldots, 2, 1)$, which contains all k integers from 1 to k in decreasing order except for u).

Now, we claim that

$$(-1)^{(\gamma_i + j) \% k} [(\gamma_i + j) \% k \in \{0, 1\}] = (-1)^{\gamma_i + j - k} [\gamma_i + j \in \{k, k+1\}]$$

for any $i \in \{1, 2, \ldots, k-1\}$ and $j \in \{1, 2, \ldots, k-1\}$.

Proof of (41): Let $i \in \{1, 2, \ldots, k-1\}$ and $j \in \{1, 2, \ldots, k-1\}$. We must prove the equality (41).

From $i \in \{1, 2, \ldots, k-1\}$, we obtain $1 \leq i \leq k - 1$ and thus $k - 1 \geq 1$. Thus, $k > k - 1 \geq 1$. Hence, $k + 1 < 2k$, so that $(k + 1) \% k = 1$.

If we don’t have $(\gamma_i + j) \% k \in \{0, 1\}$, then both truth values $[(\gamma_i + j) \% k \in \{0, 1\}]$ and $[\gamma_i + j \in \{k, k+1\}]$ are 0 (indeed, the statement “$\gamma_i + j \in \{k, k+1\}$” is false, since otherwise it would imply $(\gamma_i + j) \% k \in \{0, 1\}$), and therefore the equality (41) simplifies to $(-1)^{(\gamma_i + j) \% k} 0 = (-1)^{\gamma_i + j - k} 0$ in this case, which is obviously true. Hence, for the rest of this proof, we WLOG assume that we do have $(\gamma_i + j) \% k \in \{0, 1\}$.

Adding $\gamma_i \in \{1, 2, \ldots, k\}$ with $j \in \{1, 2, \ldots, k-1\}$, we find $\gamma_i + j \in \{2, 3, \ldots, 2k - 1\}$. But if $p \in \{2, 3, \ldots, 2k - 1\}$ satisfies $p \% k \in \{0, 1\}$, then $p \in \{k, k+1\}$ (since the only numbers in $\{2, 3, \ldots, 2k - 1\}$ that leave the remainders 0 and 1 upon division by k are k and $k+1$). Applying this to $p = \gamma_i + j$, we obtain $\gamma_i + j \in \{k, k+1\}$ (since $\gamma_i + j \in \{2, 3, \ldots, 2k - 1\}$ and $(\gamma_i + j) \% k \in \{0, 1\}$). Hence, $k \leq \gamma_i + j < 2k$ (since $k + 1 < 2k$), so that $(\gamma_i + j) / k = 1$. But every integer n satisfies $n = (n / k) k + (n \% k)$. Applying this to $n = \gamma_i + j$, we obtain $\gamma_i + j = \boxed{(\gamma_i + j) / k} k + 1 \boxed{= 1}$.
\((\gamma_i + j) \mod k = k + ((\gamma_i + j) \mod k)\). Hence, \((\gamma_i + j) \mod k = \gamma_i + j - k\). Thus,

\[
\frac{(-1)^{((\gamma_i + j) \mod k)}}{= \begin{cases}
(-1)^{\gamma_i + j - k} & \text{(since } (\gamma_i + j) \mod k = \gamma_i + j - k) \\
\frac{1}{1} & \text{(since } (\gamma_i + j) \mod k \in \{0, 1\})
\end{cases}
\]

Comparing this with

\[
(-1)^{\gamma_i + j - k \mod k \in \{0, 1\}} \left[\gamma_i + j \in \{k, k + 1\}\right] = (-1)^{\gamma_i + j - k}.
\]

we obtain

\[
(-1)^{\gamma_i + j \mod k \in \{0, 1\}} \left[\gamma_i + j \in \{k, k + 1\}\right] = (-1)^{\gamma_i + j - k} \left[\gamma_i + j \in \{k, k + 1\}\right].
\]

This proves (41).

Now, \(G\) is a \((k - 1) \times (k - 1)\)-matrix. For each \(i \in \{1, 2, \ldots, k - 1\}\) and \(j \in \{1, 2, \ldots, k - 1\}\), we have

\[
(\text{the } (i, j)\text{-th entry of } G) = (-1)^{(\gamma_i + j) \mod k} \left[\left(\gamma_i + j \mod k \in \{0, 1\}\right)\right] \quad \text{(by the definition of } G) = (-1)^{\gamma_i + j - k} \left[\left(\gamma_i + j \in \{k, k + 1\}\right)\right] \quad \text{(by (41))}
\]

\[
\begin{cases}
1, & \text{if } \gamma_i + j = k; \\
-1, & \text{if } \gamma_i + j = k + 1; \\
0, & \text{otherwise}
\end{cases}
\begin{cases}
1, & \text{if } j = k - \gamma_i; \\
-1, & \text{if } j = k - \gamma_i + 1; \\
0, & \text{otherwise}
\end{cases}
\]

Thus, we can explicitly describe the matrix \(G\) as follows: For each \(i \in \{1, 2, \ldots, k - 1\}\), the \(i\)-th row of \(G\) has an entry equal to 1 in position \(k - \gamma_i\) if \(k - \gamma_i > 0\), and an entry equal to \(-1\) in position \(k - \gamma_i + 1\) if \(k - \gamma_i + 1 < k\); all remaining entries of this row are 0. Recalling (40), we thus see that \(G\) has the following form:

\[
G = \begin{pmatrix}
-1 & 1 & -1 & 1 & -1 & \cdots & \cdots & 1 & -1 \\
1 & -1 & 1 & -1 & \cdots & \cdots & 1 & -1 \\
-1 & 1 & -1 & 1 & -1 & \cdots & \cdots & 1 & -1 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
1 & -1 & 1 & -1 & \cdots & \cdots & 1 & -1 \\
\end{pmatrix},
\]

\text{21Empty cells are understood to have entry 0.}
where the horizontal bar separates the \((k-u)\)-th row from the \((k-u+1)\)-st row, while the vertical bar separates the \((k-u)\)-th column from the \((k-u+1)\)-st column. Thus, \(G\) can be written as a block-diagonal matrix

\[
G = \begin{pmatrix} A & 0_{(k-u)\times(u-1)} \\ 0_{(u-1)\times(k-u)} & B \end{pmatrix},
\]

where \(A\) is a lower-triangular \((k-u)\times(k-u)\)-matrix with all diagonal entries equal to \(-1\), and where \(B\) is an upper-triangular \((u-1)\times(u-1)\)-matrix with all diagonal entries equal to \(1\). Since the determinant of a block-diagonal matrix equals the product of the determinants of its diagonal blocks, we thus conclude that

\[
\det G = \det A \cdot \det B = (-1)^{k-u} \cdot 1 = (-1)^{k-u}.
\]

But (40) yields

\[
\gamma_1 + \gamma_2 + \cdots + \gamma_{k-1} = k + (k-1) + \cdots + \hat{u} + \cdots + 2 + 1
\]

\[
= (k + (k-1) + \cdots + 2 + 1) - u
\]

\[
= (1 + 2 + \cdots + (k-1)) + k - u.
\]

Solving this for \(k-u\), we find

\[
k - u = (\gamma_1 + \gamma_2 + \cdots + \gamma_{k-1}) - (1 + 2 + \cdots + (k-1)).
\]

Hence, (43) rewrites as

\[
\det G = (-1)^{(\gamma_1+\gamma_2+\cdots+\gamma_{k-1})-(1+2+\cdots+(k-1))}.
\]

This proves Lemma 3.10(b).

(c) Assume that the \(k-1\) numbers \(\gamma_1, \gamma_2, \ldots, \gamma_{k-1}\) are distinct. Then, there exists a unique permutation \(\sigma\) of \(\{1, 2, \ldots, k-1\}\) such that \(\gamma_{\sigma(1)} > \gamma_{\sigma(2)} > \cdots > \gamma_{\sigma(k-1)}\) (indeed, this is simply saying that the \((k-1)\)-tuple \((\gamma_1, \gamma_2, \ldots, \gamma_{k-1})\) can be sorted into decreasing order by a unique permutation). Consider this \(\sigma\).

Let \(\tau\) denote the permutation \(\sigma^{-1}\). Thus, \(\tau\) is a permutation of \(\{1, 2, \ldots, k-1\}\) and satisfies \(\sigma \circ \tau = \text{id}\).

Let \(\delta_1, \delta_2, \ldots, \delta_{k-1}\) denote the \(k-1\) elements \(\gamma_{\sigma(1)}, \gamma_{\sigma(2)}, \ldots, \gamma_{\sigma(k-1)}\) of \(\{1, 2, \ldots, k\}\). Thus, for each \(j \in \{1, 2, \ldots, k-1\}\), we have

\[
\delta_j = \gamma_{\sigma(j)}.
\]
Hence, the chain of inequalities $\gamma_{\sigma(1)} > \gamma_{\sigma(2)} > \cdots > \gamma_{\sigma(k-1)}$ (which is true) can be rewritten as $\delta_1 > \delta_2 > \cdots > \delta_{k-1}$.

Moreover, from (44), we obtain
\[
\delta_1 + \delta_2 + \cdots + \delta_{k-1} = \gamma_{\sigma(1)} + \gamma_{\sigma(2)} + \cdots + \gamma_{\sigma(k-1)} = \gamma_1 + \gamma_2 + \cdots + \gamma_{k-1} \tag{45}
\]
(since σ is a permutation of $\{1, 2, \ldots, k-1\}$).

Moreover, for each $i \in \{1, 2, \ldots, k-1\}$, we have
\[
\delta_{\tau(i)} = \gamma_{\sigma(\tau(i))} = \gamma_i \quad \text{(by (44), applied to $j = \tau(i)$)}.
\tag{46}
\]

Recall that an inversion of the permutation τ is defined to be a pair (i, j) of elements of $\{1, 2, \ldots, k-1\}$ satisfying $i < j$ and $\tau(i) > \tau(j)$. Hence,
\[
\{\text{the inversions of } \tau\} = \left\{ (i, j) \in \{1, 2, \ldots, k-1\}^2 \mid i < j \text{ and } \tau(i) > \tau(j) \right\} = \left\{ (i, j) \in \{1, 2, \ldots, k-1\}^2 \mid i < j \text{ and } \gamma_i < \gamma_j \right\} \tag{47}
\]
by (46).

Recall that the length $\ell(\tau)$ of the permutation τ is defined to be the number of inversions of τ. Thus,
\[
\ell(\tau) = (\text{the number of inversions of } \tau) = |\{\text{the inversions of } \tau\}| = \left| \left\{ (i, j) \in \{1, 2, \ldots, k-1\}^2 \mid i < j \text{ and } \gamma_i < \gamma_j \right\} \right| \tag{47}
\]
(by the definition of g).

Recall that the sign $(-1)^{\tau}$ of the permutation τ is defined by $(-1)^{\tau} = (-1)^{\ell(\tau)}$. Hence, $(-1)^{\tau} = (-1)^{\ell(\tau)} = (-1)^g$ (since $\ell(\tau) = g$).
Let H be the $(k - 1) \times (k - 1)$-matrix

$$\left((-1)^{\binom{i+j}{k}} \left[(\delta_i + j) \% k \in \{0, 1\}\right]\right)_{1 \leq i \leq k - 1, 1 \leq j \leq k - 1}.$$

Then, we can apply Lemma 3.10 (b) to δ_i and H instead of γ_i and G (since $\delta_1, \delta_2, \ldots, \delta_{k-1}$ are $k - 1$ elements of $\{1, 2, \ldots, k\}$ and satisfy $\delta_1 > \delta_2 > \cdots > \delta_{k-1}$). We thus obtain

$$\det H = (-1)^{\binom{\delta_1 + \delta_2 + \cdots + \delta_{k-1} - (1+2+\cdots+(k-1))}{k}} = (-1)^{\binom{\gamma_1 + \gamma_2 + \cdots + \gamma_{k-1} - (1+2+\cdots+(k-1))}{k}}$$

(by (45)).

But the definition of G yields

$$G = \left((-1)^{\binom{i+j}{k}} \left[(\gamma_i + j) \% k \in \{0, 1\}\right]\right)_{1 \leq i \leq k - 1, 1 \leq j \leq k - 1} = \left((-1)^{\binom{i+j}{k}} \left[(\delta_{\tau(i)} + j) \% k \in \{0, 1\}\right]\right)_{1 \leq i \leq k - 1, 1 \leq j \leq k - 1}$$

by Lemma 3.9 (a), applied to $m = k - 1$ and $R = k$ and $a_{ij} = (-1)^{\binom{i+j}{k}} \left[(\delta_i + j) \% k \in \{0, 1\}\right] = (-1)^{\binom{\gamma_1 + \gamma_2 + \cdots + \gamma_{k-1} - (1+2+\cdots+(k-1))}{k}} = (-1)^{\binom{\gamma_1 + \gamma_2 + \cdots + \gamma_{k-1} - (1+2+\cdots+(k-1))}{k}}.$

This proves Lemma 3.10 (c). \hfill \Box

Next, we recall a well-known property of symmetric functions:
Lemma 3.11. Consider the ring $\Lambda[[t]]$ of formal power series in one indeterminate t over Λ. In this ring, we have
\begin{equation}
1 = \left(\sum_{n \geq 0} (-1)^n e_n t^n \right) \left(\sum_{n \geq 0} h_n t^n \right).
\end{equation}

Lemma 3.11 is a well-known identity (see, e.g., [Stanle01, proof of Theorem 7.6.1] or [GriRei20, (2.4.3)]); for the sake of completeness, let us nevertheless give a proof:

Proof of Lemma 3.11. Consider the ring $(k[[x_1, x_2, x_3, \ldots]])[[t]]$ of formal power series in one indeterminate t over $k[[x_1, x_2, x_3, \ldots]]$. In this ring, we have the equalities
\begin{equation}
\prod_{i=1}^{\infty} (1 - x_i t)^{-1} = \sum_{n \geq 0} h_n t^n
\end{equation}
and
\begin{equation}
\prod_{i=1}^{\infty} (1 + x_i t) = \sum_{n \geq 0} e_n t^n.
\end{equation}
(Indeed, the first of these two equalities is [GriRei20, (2.2.18)], whereas the second is [GriRei20, (2.2.19)].)

Substituting $-t$ for t in the equality (50), and multiplying the resulting equality by (49), we obtain
\begin{equation}
\left(\prod_{i=1}^{\infty} (1 - x_i t) \right) \left(\prod_{i=1}^{\infty} (1 - x_i t)^{-1} \right) = \left(\sum_{n \geq 0} e_n (-t)^n \right) \left(\sum_{n \geq 0} h_n t^n \right).
\end{equation}
The left hand side of this equality simplifies to 1, while the right hand side is the right hand side of (48). Thus, (48) holds, which proves Lemma 3.11.

Next, we shall prove yet another evaluation of the homomorphism α_k:

Lemma 3.12. Let k be a positive integer such that $k > 1$. Consider the k-algebra homomorphism $\alpha_k : \Lambda \to k$ from Definition 3.6. Also, recall Convention 2.4. Let r be an integer such that $r > -k + 1$. Then,
\begin{equation}
\alpha_k (e_r) = (-1)^{r + r \% k} \{ r \% k \in \{0, 1\} \}.
\end{equation}

Proof of Lemma 3.12. Consider the ring $\Lambda[[t]]$ of formal power series in one indeterminate t over Λ. Consider also the analogous ring $k[[t]]$ over k. \qed
The map \(\alpha_k : \Lambda \to k \) is a \(k \)-algebra homomorphism. Hence, it induces a continuous \(k[[t]] \)-algebra homomorphism

\[
\alpha_k[[t]] : \Lambda[[t]] \to k[[t]]
\]

that sends each formal power series \(\sum_{n \geq 0} a_n t^n \in \Lambda[[t]] \) (with \(a_n \in \Lambda \)) to \(\sum_{n \geq 0} \alpha_k(a_n) t^n \).

Consider this \(k[[t]] \)-algebra homomorphism \(\alpha_k[[t]] \).

Applying the map \(\alpha_k[[t]] \) to both sides of the equality (48), we obtain

\[
(\alpha_k[[t]]) (1) = (\alpha_k[[t]]) \left(\sum_{n \geq 0} (-1)^n e_n t^n \right) \left(\sum_{n \geq 0} h_n t^n \right)
\]

\[
= (\alpha_k[[t]]) \left(\sum_{n \geq 0} (1^n) e_n t^n \right) \cdot (\alpha_k[[t]]) \left(\sum_{n \geq 0} h_n t^n \right)
\]

(by the definition of \(\alpha_k[[t]] \))

\[
= \sum_{n \geq 0} \alpha_k((-1)^n e_n) t^n
\]

(since \(\alpha_k[[t]] \) is a \(k[[t]] \)-algebra homomorphism)

\[
= \sum_{n \geq 0} \alpha_k(n) t^n
\]

(by the definition of \(\alpha_k[[t]] \))

\[
= \sum_{n \geq 0} (-1)^n \alpha_k(e_n) t^n \cdot \sum_{n \geq 0} h_n t^n
\]

\[
= \sum_{n \geq 0} (-1)^n \alpha_k(e_n) t^n \cdot \left(\sum_{n \geq 0} [n < k] t^n \right)
\]

\[
= \sum_{n \geq 0} (-1)^n \alpha_k(e_n) t^n \cdot \frac{1 - t^k}{1 - t}
\]

Comparing this with

\[
(\alpha_k[[t]]) (1) = 1
\]

(since \(\alpha_k[[t]] \) is a \(k[[t]] \)-algebra homomorphism),

we obtain

\[
\sum_{n \geq 0} (-1)^n \alpha_k(e_n) t^n \cdot \frac{1 - t^k}{1 - t} = 1.
\]

\footnote{Continuity is defined with respect to the usual topologies on \(\Lambda[[t]] \) and \(k[[t]] \), where we equip both \(\Lambda \) and \(k \) with the discrete topologies.}
Hence,
\[\sum_{n \geq 0} (-1)^n \alpha_k (e_n) t^n = \frac{1-t}{1-t^k} = (1-t) \cdot \frac{1}{1-\left(1+t+t^2+t^3+\ldots\right)}\]
\[= (1-t) \cdot \left(1+t^k + t^{2k} + t^{3k} + \ldots \right)
= 1-t + t^k - t^{k+1} + t^{2k} - t^{2k+1} + t^{3k} - t^{3k+1} \pm \ldots
= \sum_{n \geq 0} (-1)^{n\%k} [n\%k \in \{0,1\}] t^n\]
(here, we have used that \(k > 1\), since for \(k = 1\) there would be cancellations in the sum \(1-t + t^k - t^{k+1} + t^{2k} - t^{2k+1} + t^{3k} - t^{3k+1} \pm \ldots\)). Comparing coefficients before \(t^m\) on both sides of this equality, we obtain
\[(-1)^m \alpha_k (e_m) = (-1)^{m\%k} [m\%k \in \{0,1\}]\]
(52)
for each \(m \in \mathbb{N}\).

Multiplying both sides of this equality by \((-1)^m\), we obtain
\[\alpha_k (e_m) = (-1)^{m+m\%k} [m\%k \in \{0,1\}] . \tag{53}\]

We must prove that
\[\alpha_k (e_r) = (-1)^{r+r\%k} [r\%k \in \{0,1\}] .\]
If \(r \in \mathbb{N}\), then this follows by applying (53) to \(m = r\). Hence, for the rest of this proof, we WLOG assume that \(r \not\in \mathbb{N}\). Thus, \(r\) is negative, so that \(r \in \{-k+2, -k+3, \ldots, -1\}\) (since \(r > -k+1\)). Hence, \(r\%k \in \{2,3,\ldots, k-1\}\), so that \(r\%k \not\in \{0,1\}\). Consequently, \([r\%k \in \{0,1\}] = 0\). Also, \(e_r = 0\) (since \(r\) is negative) and thus \(\alpha_k (e_r) = \alpha_k (0) = 0\). Comparing this with \((-1)^{r+r\%k} [r\%k \in \{0,1\}] = 0\), we obtain \(\alpha_k (e_r) = (-1)^{r+r\%k} [r\%k \in \{0,1\}]\). This concludes the proof of Lemma 3.12.

\[\square\]

Proof of Theorem 2.15 (a) Assume that \(\mu_k \neq 0\). But \(\mu = \lambda^l\), whence
\[\mu_k = (\lambda^l)_k = |\{j \in \{1,2,3,\ldots\} \mid \lambda_j \geq k\}| \quad \text{(by the definition of } \lambda^l) .\]
Hence,
\[|\{j \in \{1,2,3,\ldots\} \mid \lambda_j \geq k\}| = \mu_k \neq 0.\]
In other words, the set \(\{j \in \{1,2,3,\ldots\} \mid \lambda_j \geq k\}\) is nonempty. Hence, there exists some \(j \in \{1,2,3,\ldots\}\) satisfying \(\lambda_j \geq k\). Consider this \(j\). We have \(\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \)
(... (since \(\lambda \in \text{Par} \)) and thus \(\lambda_1 \geq \lambda_j \) (since \(1 \leq j \)). Hence, \(\lambda_1 \geq \lambda_j \geq k \). Thus, Proposition 2.12 yields \(\text{pet}_k (\lambda, \emptyset) = 0 \). This proves Theorem 2.15 (a).

Now, let us prepare for the proof of parts (b) and (c).

Consider the k-algebra homomorphism \(\alpha_k : \Lambda \to k \) from Definition 3.6.

For each \(i \in \{1, 2, \ldots, k - 1\} \), we have \((\beta_i - 1) \% k \in \{0, 1, \ldots, k - 1\} \) (by the definition of a remainder) and thus \(\gamma_i \in \{1, 2, \ldots, k\} \) (by \((8) \)). In other words, \(\gamma_1, \gamma_2, \ldots, \gamma_{k-1} \) are \(k - 1 \) elements of the set \(\{1, 2, \ldots, k\} \).

Assume that \(\mu_k = 0 \). Thus, \(\mu = (\mu_1, \mu_2, \ldots, \mu_{k-1}) \) (since \(\mu \in \text{Par} \)).

It is known that taking the transpose of the transpose of a partition returns the original partition. Thus, \((\lambda^t)^t = \lambda \). In view of \(\mu = \lambda^t \), this rewrites as \(\mu^t = \lambda \). Hence, \(\lambda = \mu^t \). Therefore,

\[
s_\lambda = s_{\mu^t} = \det \left((e_{\mu_i-i+j})_{1 \leq i \leq k-1, 1 \leq j \leq k-1} \right)
\]

(by \((6) \), applied to \(\mu \) and \(k - 1 \) instead of \(\lambda \) and \(\ell \)), because \(\mu = (\mu_1, \mu_2, \ldots, \mu_{k-1}) \).

Applying the map \(\alpha_k \) to both sides of this equality, we find

\[
\alpha_k (s_\lambda) = \alpha_k \left(\det \left((e_{\mu_i-i+j})_{1 \leq i \leq k-1, 1 \leq j \leq k-1} \right) \right)
\]

(since \(\alpha_k \) is a k-algebra homomorphism, and thus commutes with taking determinants of matrices). On the other hand,

\[
\alpha_k \left(\left(s_\lambda \right) = \frac{s_\lambda}{s_\lambda/\emptyset} \right) = \alpha_k (s_{\lambda/\emptyset}) = \text{pet}_k (\lambda, \emptyset)
\]

(by \((23) \), applied to \(\emptyset \) instead of \(\mu \)). Comparing these two equalities, we obtain

\[
\text{pet}_k (\lambda, \emptyset) = \det \left((\alpha_k (e_{\beta_i+j}))_{1 \leq i \leq k-1, 1 \leq j \leq k-1} \right).
\]

But each \(i \in \{1, 2, \ldots, k - 1\} \) and \(j \in \{1, 2, \ldots, k - 1\} \) satisfy \(k > 1 \) and

\[
\frac{\beta_i + j = \mu_i - \frac{i}{k-1} + \frac{j}{0} > 0 - (k-1) + 0 = -k + 1}{(by (7))}
\]

Indeed, if \(i \in \{1, 2, \ldots, k - 1\} \), then \(1 \leq i \leq k - 1 \) and thus \(k - 1 \geq 1 > 0 \), so that \(k > 1 \).
and thus
\[\alpha_k (e_{\beta_i+j}) = (-1)^{(\beta_i+j)+(\beta_i+j)\%k} \left[(\beta_i + j) \% k \in \{0,1\} \right] \] (by (51), applied to \(r = \beta_i + j \)).

Furthermore, each \(i \in \{1,2,\ldots,k-1\} \) and \(j \in \{1,2,\ldots,k-1\} \) satisfy
\[
(-1)^{(\beta_i+j)+(\beta_i+j)\%k} \left[(\beta_i + j) \% k \in \{0,1\} \right] = (-1)^{\beta_i} (-1)^{j+1} (\gamma_i+j)\%k \left[(\gamma_i + j) \% k \in \{0,1\} \right].
\] (56)

Proof of (56): Let \(i \in \{1,2,\ldots,k-1\} \) and \(j \in \{1,2,\ldots,k-1\} \). The definition of \(\gamma_i \) yields
\[
\gamma_i = 1 + \left(\beta_i - 1 \right) \% k \equiv 1 + (\beta_i - 1) = \beta_i \mod k.
\] (since \(u \% k \equiv u \mod k \) for any \(u \in \mathbb{Z} \))

Hence, \(\gamma_i + j \equiv \beta_i + j \mod k \). But if \(u \in \mathbb{Z} \) and \(v \in \mathbb{Z} \) satisfy \(u \equiv v \mod k \), then \(u\%k = v\%k \). Applying this to \(u = \gamma_i + j \) and \(v = \beta_i + j \), we obtain \((\gamma_i + j) \% k = (\beta_i + j) \% k \). Hence,
\[
(-1)^{\beta_i} (-1)^{j+1} (\gamma_i+j)\%k \left[(\gamma_i + j) \% k \in \{0,1\} \right]
= (-1)^{\beta_i} (-1)^{j+1} (\beta_i+j)\%k \left[(\beta_i + j) \% k \in \{0,1\} \right]
= (-1)^{(\beta_i+j)+(\beta_i+j)\%k} \left[(\beta_i + j) \% k \in \{0,1\} \right].
\]

This proves (56).
Now, (54) becomes

\[
\text{pet}_k(\lambda, \emptyset)
\]

\[
= \det \left(\begin{pmatrix}
\alpha_k(e_{\beta_i+j}) \\
= (-1)(\beta_i+j) + (\beta_i+j) \times k \times k \in \{0,1\} \\
\end{pmatrix} \right)
\]

\[
= \det \left(\begin{pmatrix}
(-1)(\beta_i+j) + (\beta_i+j) \times k \times k \in \{0,1\} \\
= (-1)^0(\beta_i+j) + (\beta_i+j) \times k \times k \in \{0,1\} \\
\end{pmatrix} \right)
\]

\[
= \det \left(\begin{pmatrix}
((-1)^0(\beta_i+j) - (\gamma_i+j) \right) \times k \times k \in \{0,1\} \\
= \prod_{i=1}^{k-1}((-1)^0(\beta_i) - (\gamma_i) \right) \times k \times k \in \{0,1\} \\
\end{pmatrix} \right)
\]

\[
= \prod_{i=1}^{k-1}((-1)^0(\beta_i) - (\gamma_i) \right) \times k \times k \in \{0,1\} \\
\]

(\text{by Lemma 3.9(b), applied to } m = k - 1 \text{ and } R = k \text{ and})

\[
a_{i,j} = (-1)^{\gamma_i+j} \times k \times k \in \{0,1\} \text{ and } u_i = (-1)^\beta_i \text{ and } v_i = (-1)^j.
\]

Define a \((k - 1) \times (k - 1)\)-matrix \(G\) as in Lemma 3.10. Then, this becomes

\[
\text{pet}_k(\lambda, \emptyset)
\]

\[
= \prod_{i=1}^{k-1}((-1)^\beta_i (-1)^j) \times \det \left(\begin{pmatrix}
((-1)^{\gamma_i+j} \times k \times k \in \{0,1\}) \\
= \prod_{i=1}^{k-1}((-1)^\beta_i (-1)^j) \times \det G.
\end{pmatrix} \right)
\]

(57)

Now, we can readily prove parts (b) and (c) of Theorem 2.15

(b) Assume that the \(k - 1\) numbers \(\gamma_1, \gamma_2, \ldots, \gamma_{k-1}\) are not distinct. Then, Lemma 3.10(a) yields \(\det G = 0\). Hence, (57) yields

\[
\text{pet}_k(\lambda, \emptyset) = \prod_{i=1}^{k-1}((-1)^\beta_i (-1)^j) \times \det G = 0.
\]

This proves Theorem 2.15(b).
(c) The equality (57) becomes

\[
\begin{align*}
\text{pet}_k(\lambda, \emptyset) &= \left(\prod_{i=1}^{k-1} \left((-1)^{\beta_i} (-1)^{i} \right) \right) \cdot \det C \\
&= \left(\prod_{i=1}^{k-1} (-1)^{\beta_i} \right) \left(\prod_{i=1}^{k-1} (-1)^{i} \right) \\
&= (-1)^{\beta_1 + \beta_2 + \cdots + \beta_{k-1}} \cdot (-1)^{1+2+\cdots+(k-1)} \\
&= (-1)^{\beta_1 + \beta_2 + \cdots + \beta_{k-1} + (1+2+\cdots+(k-1))} = (-1)^{g + (\gamma_1 + \gamma_2 + \cdots + \gamma_{k-1}) - (1+2+\cdots+(k-1))}
\end{align*}
\]

(by Lemma 3.10(c))

This proves Theorem 2.15 (c). \(\square\)

The proof of Proposition 2.16 relies on the following known fact:

Proposition 3.13. Let \(\lambda \in \text{Par} \). Let \(\mu = \lambda^t\). Then:

(a) If \(i\) and \(j\) are two positive integers satisfying \(\lambda_i \geq j\), then \(\mu_j \geq i\).

(b) If \(i\) and \(j\) are two positive integers satisfying \(\lambda_i < j\), then \(\mu_j < i\).

(c) Any two positive integers \(i\) and \(j\) satisfy \(\lambda_i + \mu_j - i - j \neq -1\).

For each positive integer \(i\), set \(\alpha_i = \lambda_i - i\). For each positive integer \(j\), set \(\beta_j = \mu_j - j\) and \(\eta_j = -1 - \beta_j\). Then:

(d) The two sets \(\{\alpha_1, \alpha_2, \alpha_3, \ldots\}\) and \(\{\eta_1, \eta_2, \eta_3, \ldots\}\) are disjoint, and their union is \(\mathbb{Z}\).

(e) Let \(p\) be an integer such that \(p \geq \lambda_1\). Then, the two sets \(\{\alpha_1, \alpha_2, \alpha_3, \ldots\}\) and \(\{\eta_1, \eta_2, \ldots, \eta_p\}\) are disjoint, and their union is

\[
\{\ldots, p-3, p-2, p-1\} = \{k \in \mathbb{Z} \mid k < p\}.
\]

(f) Let \(p\) and \(q\) be two integers such that \(p \geq \lambda_1\) and \(q \geq \mu_1\). Then, the two sets \(\{\alpha_1, \alpha_2, \ldots, \alpha_q\}\) and \(\{\eta_1, \eta_2, \ldots, \eta_p\}\) are disjoint, and their union is

\[
\{-q, -q + 1, \ldots, p - 1\} = \{k \in \mathbb{Z} \mid -q \leq k < p\}.
\]

Note that Proposition 3.13(f) is a restatement of [Macdon95, Chapter I, (1.7)].

Proof of Proposition 3.13 (sketched). Left to the reader (see [Grinbe20b] for a detailed proof). The easiest way to proceed is by proving (a) and (b) first, then deriving (c) as their consequence, then deriving (f) from it, then concluding (d) and (e). \(\square\)
Proof of Proposition 2.16 (sketched). Let $\mu = \lambda^t$. Then, the number of parts of μ is λ_1. Hence, from $\lambda_1 < k$, we conclude that μ has fewer than k parts. Thus, $\mu_k = 0$.

For each positive integer i, set $\alpha_i = \lambda_i - i$. Hence,

$$\{\alpha_1, \alpha_2, \alpha_3, \ldots\} = \left\{\alpha_i \mid i \in \{1,2,3,\ldots\}\right\} = \{\lambda_i - i \mid i \in \{1,2,3,\ldots\}\} = B \quad \text{(by the definition of B.)}$$

For each positive integer j, set $\beta_j = \mu_j - j$ and $\eta_j = -1 - \beta_j$. Note that $(\beta_1, \beta_2, \ldots, \beta_{k-1}) \in \mathbb{Z}^{k-1}$ is thus the same $(k-1)$-tuple that was called $(\beta_1, \beta_2, \ldots, \beta_{k-1})$ in Theorem 2.15. It is easy to see that $\beta_1 > \beta_2 > \cdots > \beta_{k-1}$ and $\lambda_1 - 1 > \lambda_2 - 2 > \lambda_3 - 3 > \cdots$.

From $\lambda_1 < k$, we obtain $k - 1 \geq \lambda_1$. Hence, Proposition 3.13 (e) (applied to $p = k - 1$) yields that the two sets $\{\alpha_1, \alpha_2, \alpha_3, \ldots\}$ and $\{\eta_1, \eta_2, \ldots, \eta_{k-1}\}$ are disjoint, and their union is

$$\{\ldots, (k-1)-3, (k-1)-2, (k-1)-1\} = \{\text{all integers smaller than } k-1\} = W.$$

Since $\{\alpha_1, \alpha_2, \alpha_3, \ldots\} = B$, we can restate this as follows: The two sets B and $\{\eta_1, \eta_2, \ldots, \eta_{k-1}\}$ are disjoint, and their union is W. Hence, $\{\eta_1, \eta_2, \ldots, \eta_{k-1}\} = W \setminus B$.

It is also easy to see that $\beta_1 > \beta_2 > \cdots > \beta_{k-1}$, so that $\eta_1 < \eta_2 < \cdots < \eta_{k-1}$. Hence, $\eta_1, \eta_2, \ldots, \eta_{k-1}$ are the elements of the set $\{\eta_1, \eta_2, \ldots, \eta_{k-1}\}$ listed in increasing order (with no repetition).

Let us define a $(k-1)$-tuple $(\gamma_1, \gamma_2, \ldots, \gamma_{k-1}) \in \{1,2,\ldots,k\}^{k-1}$ as in Theorem
Now, we have the following chain of logical equivalences:

\[(\text{pet}_k (\lambda, \emptyset) \neq 0) \iff (\text{the } k - 1 \text{ numbers } \gamma_1, \gamma_2, \ldots, \gamma_{k-1} \text{ are distinct})\]
\[\iff (\text{by parts (b) and (c) of Theorem 2.15})\]
\[\iff (\text{the } k - 1 \text{ numbers } (\beta_1 - 1) \%k, (\beta_2 - 1) \%k, \ldots, (\beta_{k-1} - 1) \%k \text{ are distinct})\]
\[\iff (\text{since } \gamma_i = 1 + (\beta_i - 1) \%k \text{ for each } i)\]
\[\iff (\text{no two of the } k - 1 \text{ numbers } \beta_1 - 1, \beta_2 - 1, \ldots, \beta_{k-1} - 1 \text{ are congruent modulo } k)\]
\[\iff (\text{no two of the } k - 1 \text{ numbers } \beta_1, \beta_2, \ldots, \beta_{k-1} \text{ are congruent modulo } k)\]
\[\iff (\text{no two of the } k - 1 \text{ numbers } -1 - \beta_1, -1 - \beta_2, \ldots, -1 - \beta_{k-1} \text{ are congruent modulo } k)\]
\[\iff (\text{no two of the } k - 1 \text{ numbers } \eta_1, \eta_2, \ldots, \eta_{k-1} \text{ are congruent modulo } k)\]
\[\iff (\text{since } \eta_j = -1 - \beta_j \text{ for each } j)\]
\[\iff (\text{no two of the } k - 1 \text{ elements of } \{\eta_1, \eta_2, \ldots, \eta_{k-1}\} \text{ are congruent modulo } k)\]
\[\iff (\text{since } \eta_1, \eta_2, \ldots, \eta_{k-1} \text{ are the elements of the set } \{\eta_1, \eta_2, \ldots, \eta_{k-1}\} \text{ listed in increasing order (with no repetition)})\]
\[\iff (\text{no two of the } k - 1 \text{ elements of } W \setminus B \text{ are congruent modulo } k)\]
\[\iff (\text{since } \{\eta_1, \eta_2, \ldots, \eta_{k-1}\} = W \setminus B)\]
\[\iff (\text{each congruence class } \tilde{i} \text{ has at most 1 element in common with } W \setminus B)\]
\[\iff (\text{each } i \in \{0, 1, \ldots, k - 1\} \text{ satisfies } |\tilde{i} \cap (W \setminus B)| \leq 1)\]
\[\iff (\text{each } i \in \{0, 1, \ldots, k - 1\} \text{ satisfies } |(\tilde{i} \cap W) \setminus B| \leq 1)\]

(since \(\tilde{i} \cap (W \setminus B) = (\tilde{i} \cap W) \setminus B \text{ for each } i\)). This proves Proposition 2.16.

\[\square\]

3.12. Proof of Theorem 2.19

Proof of Theorem 2.19 In this proof, the word “monomial” may refer to a monomial in any set of variables (not necessarily in \(x_1, x_2, x_3, \ldots\)).

In the following, an i-monomial (where \(i \in \mathbb{N}\)) shall mean a monomial of degree \(i\).

We shall say that a monomial is \(k\)-bounded if all exponents in this monomial are < \(k\). In other words, a monomial is \(k\)-bounded if it can be written in the form \(z_1^{a_1}z_2^{a_2}\cdots z_s^{a_s}\), where \(z_1, z_2, \ldots, z_s\) are distinct variables and \(a_1, a_2, \ldots, a_s\) are nonnegative integers < \(k\). Thus, the \(k\)-bounded monomials in the variables \(x_1, x_2, x_3, \ldots\) are precisely the monomials of the form \(x^\alpha\) for \(\alpha \in WC\) satisfying \(\alpha_i < k \text{ for all } i\).

Hence, the \(k\)-bounded \(m\)-monomials in the variables \(x_1, x_2, x_3, \ldots\) are precisely the monomials of the form \(x^\alpha\) for \(\alpha \in WC\) satisfying \(|\alpha| = m\) and \(\alpha_i < k \text{ for all } i\).

Now, the definition of \(G(k,m) \) yields
\[
G(k,m) = \sum_{\alpha \in \text{WC}; |\alpha|=m; \alpha_i<k \text{ for all } i} x^\alpha
= (\text{the sum of all } k\text{-bounded } m\text{-monomials in the variables } x_1, x_2, x_3, \ldots)
\] (58)

(since the \(k\text{-bounded } m\text{-monomials in the variables } x_1, x_2, x_3, \ldots \) are precisely the monomials of the form \(x^\alpha \) for \(\alpha \in \text{WC} \) satisfying \(|\alpha|=m \) and \((\alpha_i<k \text{ for all } i) \)).

Let us now substitute the variables \(x_1, x_2, x_3, \ldots, y_1, y_2, y_3, \ldots \) for the variables \(x_1, x_2, x_3, \ldots \) on both sides of the equality (58). (This means that we choose some bijection \(\phi : \{x_1, x_2, x_3, \ldots\} \to \{x_1, x_2, x_3, \ldots, y_1, y_2, y_3, \ldots\} \), and substitute \(\phi(x_i) \) for each \(x_i \) on both sides of (58).) The left hand side of (58) turns into \((G(k,m))(x,y) \) upon this substitution, whereas the right hand side turns into
\[
(\text{the sum of all } k\text{-bounded } m\text{-monomials in the variables } x_1, x_2, x_3, \ldots, y_1, y_2, y_3, \ldots)
\]
Thus, our substitution transforms the equality (58) into
\[
(G(k,m))(x,y)
= (\text{the sum of all } k\text{-bounded } m\text{-monomials in the variables } x_1, x_2, x_3, \ldots, y_1, y_2, y_3, \ldots).
\] (59)

But any monomial \(m \) in the variables \(x_1, x_2, x_3, \ldots, y_1, y_2, y_3, \ldots \) can be uniquely written as a product \(np \), where \(n \) is a monomial in the variables \(x_1, x_2, x_3, \ldots \) and where \(p \) is a monomial in the variables \(y_1, y_2, y_3, \ldots \). Moreover, if \(m \) is written in this form, then:

- the degree of \(m \) equals the sum of the degrees of \(n \) and \(p \);
- thus, \(m \) is an \(m\text{-monomial if and only if there exists some } i \in \{0,1,\ldots,m\} \) such that \(n \) is an \(i\text{-monomial and } p \) is an \((m-i)\text{-monomial};\)
- furthermore, \(m \) is \(k\text{-bounded if and only if both } n \) and \(p \) are \(k\text{-bounded}.

Thus, any \(k\text{-bounded } m\text{-monomial } m \) in the variables \(x_1, x_2, x_3, \ldots, y_1, y_2, y_3, \ldots \) can be uniquely written as a product \(np \), where \(i \in \{0,1,\ldots,m\} \), where \(n \) is a \(k\text{-bounded } i\text{-monomial in the variables } x_1, x_2, x_3, \ldots \) and where \(p \) is a \(k\text{-bounded } (m-i)\text{-monomial in the variables } y_1, y_2, y_3, \ldots \). Conversely, every such product \(np \)

24 because this is how \((G(k,m))(x,y) \) was defined

25 Indeed, the substitution can be regarded as simply renaming the variables \(x_1, x_2, x_3, \ldots \) as \(x_1, x_2, x_3, \ldots, y_1, y_2, y_3, \ldots \) (in some order). Thus, it turns the \(k\text{-bounded } m\text{-monomials in the variables } x_1, x_2, x_3, \ldots \) into the \(k\text{-bounded } m\text{-monomials in the variables } x_1, x_2, x_3, \ldots, y_1, y_2, y_3, \ldots \).
is a k-bounded m-monomial m in the variables $x_1, x_2, x_3, \ldots, y_1, y_2, y_3, \ldots$. Thus, we obtain a bijection

$$
\bigcup_{i \in \{0, 1, \ldots, m\}} \left(\{k\text{-bounded } i\text{-monomials in the variables } x_1, x_2, x_3, \ldots\} \right. \\
\times \left. \{k\text{-bounded } (m - i)\text{-monomials in the variables } y_1, y_2, y_3, \ldots\} \right) \\
\to \{k\text{-bounded } m\text{-monomials in the variables } x_1, x_2, x_3, \ldots, y_1, y_2, y_3, \ldots\}
$$

that sends each pair (n, p) to np. Hence,

$$(\text{the sum of all } k\text{-bounded } m\text{-monomials in the variables } x_1, x_2, x_3, \ldots, y_1, y_2, y_3, \ldots)$$

$$= \sum_{i \in \{0, 1, \ldots, m\}} \sum_{\text{n is a } k\text{-bounded } i\text{-monomial in the variables } x_1, x_2, x_3, \ldots} \sum_{\text{p is a } k\text{-bounded } (m - i)\text{-monomial in the variables } y_1, y_2, y_3, \ldots} np$$

$$= \sum_{i \in \{0, 1, \ldots, m\}} \left(\sum_{\text{n is a } k\text{-bounded } i\text{-monomial in the variables } x_1, x_2, x_3, \ldots} n \right) \left(\sum_{\text{p is a } k\text{-bounded } (m - i)\text{-monomial in the variables } y_1, y_2, y_3, \ldots} p \right)$$

$$= \sum_{i \in \{0, 1, \ldots, m\}} \left(\text{the sum of all } k\text{-bounded } i\text{-monomials in the variables } x_1, x_2, x_3, \ldots \right) \cdot \left(\text{the sum of all } k\text{-bounded } (m - i)\text{-monomials in the variables } y_1, y_2, y_3, \ldots \right).$$

(60)

Now, let $i \in \{0, 1, \ldots, m\}$. The same reasoning that gave us (58) can be applied to i instead of m. Thus we obtain

$$G (k, i) = \left(\text{the sum of all } k\text{-bounded } i\text{-monomials in the variables } x_1, x_2, x_3, \ldots \right).$$

(61)

Also, $i \in \{0, 1, \ldots, m\}$, so that $m - i \in \{0, 1, \ldots, m\} \subseteq \mathbb{N}$. Hence, the same reasoning that gave us (58) can be applied to $m - i$ instead of m. Thus we obtain

$$G (k, m - i) = \left(\text{the sum of all } k\text{-bounded } (m - i)\text{-monomials in the variables } x_1, x_2, x_3, \ldots \right).$$

Renaming the variables x_1, x_2, x_3, \ldots as y_1, y_2, y_3, \ldots in this equality, we obtain

$$\left(G (k, m - i) \right) (y) = \left(\text{the sum of all } k\text{-bounded } (m - i)\text{-monomials in the variables } y_1, y_2, y_3, \ldots \right).$$

(62)

Forget that we fixed i. We thus have proved (61) and (62) for each $i \in \{0, 1, \ldots, m\}$.
Now, (59) becomes
\[
\left(G \left(k, m \right) \right) \left(x, y \right) = \left(\sum_{i \in \{0, 1, \ldots, m\}} \left(\sum_{i' \in \{0, 1, \ldots, m\}} \left(\sum_{i'' \in \{0, 1, \ldots, m\}} \ldots \right) \right) \right).
\]

Hence, (10) holds for \(f = G \left(k, m \right), I = \{0, 1, \ldots, m\}, (f_{i,i})_{i \in I} = (G \left(k, i \right))_{i \in \{0, 1, \ldots, m\}} \)
and \((f_{2,i})_{i \in I} = (G \left(k, m - i \right))_{i \in \{0, 1, \ldots, m\}} \). Therefore, (9) (applied to these \(f, I, (f_{1,i})_{i \in I} \)
and \((f_{2,i})_{i \in I} \)) yields
\[
\Delta \left(G \left(k, m \right) \right) = \sum_{i \in \{0, 1, \ldots, m\}} G \left(k, i \right) \otimes G \left(k, m - i \right) = \sum_{i=0}^{m} G \left(k, i \right) \otimes G \left(k, m - i \right).
\]
This proves Theorem 2.19.

3.13. Proof of Theorem 2.21

Proof of Theorem 2.21 Consider the ring \(\left(k \left[[x_1, x_2, x_3, \ldots] \right] \right) \left[[t] \right] \) of formal power series in one indeterminate \(t \) over \(k \left[[x_1, x_2, x_3, \ldots] \right] \). We equip this ring with the topology that is obtained by identifying it with \(k \left[[x_1, x_2, x_3, \ldots, t] \right] \) (or, equivalently, which is obtained by considering \(k \left[[x_1, x_2, x_3, \ldots] \right] \) itself as equipped with the standard topology on a ring of formal power series, and then adjoining the extra indeterminate \(t \).

Now, consider the map
\[
F_k : k \left[[x_1, x_2, x_3, \ldots] \right] \to k \left[[x_1, x_2, x_3, \ldots] \right],
\]
\[
a \mapsto a \left(x_{1}^{k}, x_{2}^{k}, x_{3}^{k}, \ldots \right).
\]

This map \(F_k \) is a continuous \(k \)-algebra homomorphism (since it is an evaluation homomorphism).
Hence, it induces a continuous \(k \left[[t] \right] \)-algebra homomorphism
\[
F_k \left([t] \right) : \left(k \left[[x_1, x_2, x_3, \ldots] \right] \right) \left[[t] \right] \to \left(k \left[[x_1, x_2, x_3, \ldots] \right] \right) \left[[t] \right].
\]
\(\text{[26] It is well-defined, since } k \text{ is positive.} \)
\(\text{[27] Continuity is defined with respect to the topology that we defined on } \left(k \left[[x_1, x_2, x_3, \ldots] \right] \right) \left[[t] \right]. \)
that sends each formal power series \(\sum_{n \geq 0} a_n t^n \in (k[[x_1, x_2, x_3, \ldots]])[[t]] \) (with \(a_n \in k[[x_1, x_2, x_3, \ldots]] \)) to \(\sum_{n \geq 0} F_k(a_n) t^n \). Consider this \(k[[t]] \)-algebra homomorphism \(F_k[[t]] \). In particular, it satisfies

\[
(F_k[[t]])(t^i) = t^i \quad \text{for each } i \in \mathbb{N}.
\]

The definition of \(F_k \) yields

\[
F_k(x_i) = x_k^i \quad \text{for each } i \in \{1, 2, 3, \ldots\}. \tag{63}
\]

Also, for each \(a \in \Lambda \), we have

\[
F_k(a) = a \left(x_1^k, x_2^k, x_3^k, \ldots \right) \quad \text{(by the definition of } F_k) \tag{64}
\]

(since the definition of \(f_k \) yields \(f_k(a) = a \left(x_1^k, x_2^k, x_3^k, \ldots \right) \)). Thus, in particular, each \(n \in \mathbb{N} \) satisfies

\[
F_k(e_n) = f_k(e_n) \tag{65}
\]

(by (64), applied to \(a = e_n \)).

Applying the map \(F_k[[t]] \) to both sides of the equality (50), we obtain

\[
(F_k[[t]]) \left(\prod_{i=1}^\infty (1 + x_i t) \right) = \left(F_k[[t]] \right) \left(\sum_{n \geq 0} e_n t^n \right) = \sum_{n \geq 0} F_k(e_n) t^n
\]

(by the definition of \(F_k[[t]] \)). Hence,

\[
\sum_{n \geq 0} F_k(e_n) t^n = (F_k[[t]]) \left(\prod_{i=1}^\infty (1 + x_i t) \right) = \prod_{i=1}^\infty \left(F_k[[t]] \right) \left(1 + x_i t \right)
\]

(by the definition of \(F_k[[t]] \)).

(\(F_k[[t]] \) is a continuous \(k[[t]] \)-algebra homomorphism, and thus respects infinite products)

\[
= \prod_{i=1}^\infty \left(\underbrace{1 + F_k(x_i) t}_{=x_i^k t} \right) = \prod_{i=1}^\infty \left(1 + x_i^k t \right).
\]
Substituting \(-t^k\) for \(t\) in this equality, we find

\[
\sum_{n \geq 0} F_k(e_n)(-t^k)^n = \prod_{i=1}^{\infty} \left(1 + x_i^k \left(-t^k\right)\right)
\]

\[
= 1 - (x_i t)^k
= (1 - x_i t)\left((x_i t)^0 + (x_i t)^1 + \cdots + (x_i t)^{k-1}\right)
\]

(since \(1 - u^k = (1 - u)(u^0 + u^1 + \cdots + u^{k-1})\) for any element \(u\) of any ring)

\[
= \prod_{i=1}^{\infty} \left((1 - x_i t)\left((x_i t)^0 + (x_i t)^1 + \cdots + (x_i t)^{k-1}\right)\right)
\]

We can divide both sides of this equality by \(\prod_{i=1}^{\infty} (1 - x_i t)\) (since the formal power series \(\prod_{i=1}^{\infty} (1 - x_i t)\) has constant term 1 and thus is invertible), and thus obtain

\[
\sum_{n \geq 0} F_k(e_n)(-t^k)^n \prod_{i=1}^{\infty} (1 - x_i t)^n = \prod_{i=1}^{\infty} \left((x_i t)^0 + (x_i t)^1 + \cdots + (x_i t)^{k-1}\right) = \prod_{i=1}^{k-1} \sum_{u=0}^{\infty} (x_i t)^u
\]

\[
= \sum_{\alpha \in \{0,1,\ldots,k-1\}^\infty, \alpha_i = 0 \text{ for all but finitely many } i} (x_1 t)^{a_1} (x_2 t)^{a_2} (x_3 t)^{a_3} \cdots
\]

(here, we have expanded the product)

\[
= \sum_{\alpha \in \{0,1,\ldots,k-1\}^\infty, \alpha_i = 0 \text{ for all } i} (x_1 t)^{a_1} (x_2 t)^{a_2} (x_3 t)^{a_3} \cdots
\]

(by the definition of \(x^\alpha\))

\[
= x^{t_1 + t_2 + \cdots + t_{|\alpha|}} = t_{|\alpha|}^t
\]

(since \(a_1 + a_2 + a_3 + \cdots = |\alpha|\))
Hence,
\[
\sum_{\alpha \in \text{WC}; \; \alpha_i < k \text{ for all } i} x^{|\alpha|} = \sum_{n \geq 0} \prod_{i=1}^{\infty} (1 - x_i t^n) = \left(\sum_{n \geq 0} f_k (e_n) \left(-t^k\right)^n \right) \cdot \prod_{i=1}^{\infty} (1 - x_i t)^{-1} = \sum_{n \geq 0} h_n t^n \quad \text{(by (49))}
\]

\[
= \left(\sum_{n \geq 0} f_k (e_n) (-1)^n t^{kn} \right) \cdot \left(\sum_{n \geq 0} h_n t^n \right) = \left(\sum_{n \geq 0} f_k (e_n) (-1)^n t^{kn} \right) \cdot \left(\sum_{j \geq 0} h_j t^j \right)
\]

\[
= \sum_{n \geq 0} \sum_{j \geq 0} f_k (e_n) (-1)^n t^{kn} h_j t^j = \sum_{(n,j) \in \mathbb{N}^2} f_k (e_n) (-1)^n h_j t^{kn+j}.
\]

This is an equality between two power series in \((k [[x_1, x_2, x_3, \ldots]]) [[t]]\). If we compare the coefficients of \(t^m\) on both sides of it (where \(x_1, x_2, x_3, \ldots\) are considered scalars, not monomials), we obtain

\[
\sum_{\alpha \in \text{WC}; \; \alpha_i < k \text{ for all } i; \; |\alpha| = m} x^\alpha = \sum_{(n,j) \in \mathbb{N}^2; \; kn+j = m} f_k (e_n) (-1)^n h_j = \sum_{n \in \mathbb{N}; \; kn+j = m} h_j.
\]

Now, the definition of \(G(k, m)\) yields

\[
G(k, m) = \sum_{\alpha \in \text{WC}; \; |\alpha| = m; \; \alpha_i < k \text{ for all } i} x^\alpha = \sum_{\alpha \in \text{WC}; \; |\alpha| = m} x^\alpha
\]

\[
= \sum_{n \in \mathbb{N}} f_k (e_n) (-1)^n \cdot \sum_{j \in \mathbb{N}; \; kn+j = m} h_j. \quad (66)
\]

But the right hand side of this equality can be simplified. Namely, for each \(n \in \mathbb{N}\), we have

\[
\sum_{j \in \mathbb{N}; \; kn+j = m} h_j = h_{m-kn}. \quad (67)
\]
Proof of (67): Let $n \in \mathbb{N}$. We must prove the equality (67). If $m - kn < 0$, then $h_{m - kn} = 0$ and $\sum_{j \in \mathbb{N};\, kn + j = m} h_j = (\text{empty sum}) = 0$. Thus, if $m - kn < 0$, then (67) boils down to $0 = 0$, which is obviously true. Therefore, for the rest of the proof of (67), we WLOG assume that $m - kn \geq 0$. Hence, the sum $\sum_{j \in \mathbb{N};\, kn + j = m} h_j$ has exactly one addend, namely the addend for $j = m - kn$. Therefore, $\sum_{j \in \mathbb{N};\, kn + j = m} h_j = h_{m - kn}$. This proves (67).

Now, (66) becomes

$$G(k, m) = \sum_{n \in \mathbb{N}} f_k(e_n)(-1)^n \cdot \sum_{j \in \mathbb{N};\, kn + j = m} h_j = \sum_{n \in \mathbb{N}} f_k(e_n)(-1)^n \cdot h_{m - kn}$$

(by (67))

$$= \sum_{n \in \mathbb{N}} (-1)^n h_{m - kn} \cdot f_k(e_n) = \sum_{i \in \mathbb{N}} (-1)^i h_{m - ki} \cdot f_k(e_i)$$

(here, we have renamed the summation index n as i). This proves Theorem 2.21.

Another proof of Theorem 2.21 is sketched in a footnote in Section 4 below.

3.14. Proofs of the results from Section 2.8

We shall now prove the results from Section 2.8. We begin with Lemma 2.23. This will rely on the Verschiebung endomorphisms v_n introduced in Definition 2.25, and on Proposition 2.26 and the equality (11).

Proof of Lemma 2.23 Applying (11) to $n = k$, we obtain

$$v_k(p_m) = \begin{cases} kp_m/k, & \text{if } k \mid m; \\ 0, & \text{if } k \nmid m \end{cases}.$$ \hspace{1cm} (68)

Applying Proposition 2.26 to $n = k$, $a = p_m$ and $b = e_j$, we obtain

$$\langle p_m, f_k(e_j) \rangle = \langle v_k(p_m), e_j \rangle.$$ \hspace{1cm} (69)

Now, we are in one of the following three cases:

Case 1: We have $m = kj$.
Case 2: We have $k \nmid m$.
Case 3: We have neither $m = kj$ nor $k \nmid m$.

Let us first consider Case 1. In this case, we have \(m = kj \). Thus, \(k \mid m \) (since \(j \in \mathbb{N} \subseteq \mathbb{Z} \)) and \(m/k = j \). Hence, \(j = m/k \), so that the integer \(j \) is positive (since \(m \) and \(k \) are positive). But (68) becomes

\[
\nu_k(p_m) = \begin{cases}
kp_{m/k}, & \text{if } k \mid m; \\
0, & \text{if } k \nmid m
\end{cases} \quad (\text{since } k \mid m)
\]

Thus, (69) becomes

\[
\langle p_m, f_k(e_j) \rangle = \begin{cases}
kp_{m/k}, & \text{if } k \mid m; \\
0, & \text{if } k \nmid m
\end{cases} \quad (\text{since the Hall inner product is symmetric})
\]

\[
= k \quad (\text{since } m/k \text{ is homogeneous of degree } m/k)\]

(by Proposition 1.3 applied to \(n = j \))

Comparing this with

\[
(-1)^{j-1} [m = kj] k = (-1)^{j-1} k,
\]

we obtain \(\langle p_m, f_k(e_j) \rangle = (-1)^{j-1} [m = kj] k \). Thus, Lemma 2.23 is proven in Case 1.

A similar (but simpler) argument can be used to prove Lemma 2.23 in Case 2. The main “idea” here is that \(k \nmid m \) implies \(m \neq kj \). The details are left to the reader.

Let us finally consider Case 3. In this case, we have neither \(m = kj \) nor \(k \nmid m \). In other words, we have \(m \neq kj \) and \(k \mid m \). From \(k \mid m \), we conclude that \(m/k \) is a positive integer. From \(m \neq kj \), we obtain \(m/k \neq j \). Thus, the symmetric functions \(p_{m/k} \) and \(e_j \) are homogeneous of different degrees, and therefore satisfy

\[
\langle p_{m/k}, e_j \rangle = 0 \quad (\text{by (2), applied to } f = p_{m/k} \text{ and } g = e_j).
\]

Now, (68) becomes

\[
\nu_k(p_m) = \begin{cases}
kp_{m/k}, & \text{if } k \mid m; \\
0, & \text{if } k \nmid m
\end{cases} \quad (\text{since } k \mid m).
\]

Thus, (69) becomes

\[
\langle p_m, f_k(e_j) \rangle = \begin{cases}
kp_{m/k}, & \text{if } k \mid m; \\
0, & \text{if } k \nmid m
\end{cases} = kp_{m/k} = k \langle p_{m/k}, e_j \rangle = 0.
\]

\[\text{28} \text{Indeed, it is positive since } m \text{ and } k \text{ are positive.}\]

\[\text{29} \text{since } p_{m/k} \text{ is homogeneous of degree } m/k, \text{ whereas } e_j \text{ is homogeneous of degree } j.\]
Comparing this with
\[(−1)^{j−1} \left\lfloor m = kj \right\rfloor k = 0, \quad (\text{since } m \neq kj)\]
we obtain \(\langle p_m, f_k (e_j) \rangle = (−1)^{j−1} \left\lfloor m = kj \right\rfloor k \). Thus, Lemma 2.23 is proven in Case 3.

We have thus proven Lemma 2.23 in all three Cases 1, 2 and 3. Thus, Lemma 2.23 always holds.

Next, let us prove a simple property of Hall inner products:

Lemma 3.14. Let \(m, \alpha \) and \(\beta \) be positive integers. Let \(a \) be a homogeneous symmetric function of degree \(\alpha \). Let \(b \) be a homogeneous symmetric function of degree \(\beta \). Then, \(\langle p_m, ab \rangle = 0\).

Proof of Lemma 3.14. For each \(n \in \mathbb{N} \), let \(\Lambda_n \) denote the \(n\)-th homogeneous component of the graded \(k\)-algebra \(\Lambda\). Thus, \(a \in \Lambda_\alpha \) and \(b \in \Lambda_\beta \) (since \(a \) and \(b \) are homogeneous symmetric functions of degrees \(\alpha \) and \(\beta \)).

But it is known that the family \((h_\lambda)_{\lambda \in \text{Par}}\) is a graded basis of the graded \(k\)-module \(\Lambda\); this means that for each \(n \in \mathbb{N} \), its subfamily \((h_\lambda)_{\lambda \in \text{Par}_n}\) is a basis of the \(k\)-module \(\Lambda_n\). Applying this to \(n = \alpha \), we conclude that the subfamily \((h_\lambda)_{\lambda \in \text{Par}_\alpha}\) is a basis of \(\Lambda_\alpha\). Hence, \(a\) is a \(k\)-linear combination of this family \((h_\lambda)_{\lambda \in \text{Par}_\alpha}\) (since \(a \in \Lambda_\alpha\)).

We must prove the equality \(\langle p_m, ab \rangle = 0\). Both sides of this equality depend \(k\)-linearly on \(a\). Thus, in proving it, we can WLOG assume that \(a\) belongs to the family \((h_\lambda)_{\lambda \in \text{Par}_\alpha}\) (because we know that \(a\) is a \(k\)-linear combination of this family). In other words, we can WLOG assume that \(a = h_\lambda\) for some \(\lambda \in \text{Par}_\alpha\). Assume this. For similar reasons, we can WLOG assume that \(b = h_\mu\) for some \(\mu \in \text{Par}_\beta\). Assume this, too. Consider these two partitions \(\lambda\) and \(\mu\).

We have \(\lambda \in \text{Par}_\alpha\) and thus \(|\lambda| = \alpha > 0\), so that \(\lambda \neq \emptyset\). Hence, the partition \(\lambda\) has at least one part. Likewise, the partition \(\mu\) has at least one part.

Now, let \(\lambda \sqcup \mu\) be the partition obtained by listing all parts of \(\lambda\) and of \(\mu\) and sorting the resulting list in weakly decreasing order. Using Definition 3.1, we can easily see that \(h_{\lambda \sqcup \mu} = h_\lambda h_\mu\). Comparing this with \(\frac{a}{h_\lambda} \cdot \frac{b}{h_\mu} = h_\lambda h_\mu\), we obtain \(ab = h_{\lambda \sqcup \mu}\).

But the partition \(\lambda \sqcup \mu\) has as many parts as \(\lambda\) and \(\mu\) have combined. Thus, the partition \(\lambda \sqcup \mu\) has at least 2 parts (since \(\lambda\) has at least one part, and \(\mu\) has at least one part). Therefore, \(\lambda \sqcup \mu \neq (m)\) (since the partition \(\lambda \sqcup \mu\) has at least 2 parts, while the partition \((m)\) has only 1 part). Now, recall that \(p_m = m_{(m)}\) where, of

30This fact appears, e.g., in [GriRei20, Proposition 2.4.3(j)].

31For example: If \(\lambda = (5,3,2)\) and \(\mu = (6,4,3,1,1)\), then \(\lambda \sqcup \mu = (6,5,4,3,3,2,1,1)\).
course, the two "m"s in "m(m)" mean completely unrelated things). Thus,

\[
\langle p_m, \frac{ab}{m} _{\text{by } h_{\lambda \sqcup \mu}} \rangle = \langle m_{(m)}, h_{\lambda \sqcup \mu} \rangle = \langle h_{\lambda \sqcup \mu}, m_{(m)} \rangle \quad \text{(since the Hall inner product is symmetric)}
\]

= \delta_{\lambda \sqcup \mu,(m)} \quad \text{(by (13))}

= 0 \quad \text{(since } \lambda \sqcup \mu \neq (m)\).

This proves Lemma 3.14.

See [Grinbe20b] for a different proof of Lemma 3.14, using the graded dual \(\Lambda^o \) of the Hopf algebra \(\Lambda \) and the primitivity of the element \(p_m \in \Lambda \).

We can now prove Proposition 2.24:

Proof of Proposition 2.24 Theorem 2.21 yields

\[
G(k, m) = \sum_{i \in \mathbb{N}} (-1)^i h_{m-ki} \cdot f_k(e_i).
\]

Hence,

\[
\langle p_m, G(k, m) \rangle = \langle p_m, \sum_{i \in \mathbb{N}} (-1)^i h_{m-ki} \cdot f_k(e_i) \rangle
\]

= \sum_{i \in \mathbb{N}} (-1)^i \langle p_m, h_{m-ki} \cdot f_k(e_i) \rangle
\]

(since the Hall inner product is \(k \)-bilinear).

Now, we claim that every \(i \in \mathbb{N} \setminus \{0, m/k\} \) satisfies

\[
\langle p_m, h_{m-ki} \cdot f_k(e_i) \rangle = 0.
\]

[Proof of (71)]. Let \(i \in \mathbb{N} \setminus \{0, m/k\} \). Thus, \(i \in \mathbb{N} \) and \(i \notin \{0, m/k\} \). From \(i \notin \{0, m/k\} \), we obtain \(i \neq 0 \) and \(i \neq m/k \). From \(i \neq m/k \), we obtain \(ki \neq m \), so that \(m - ki \neq 0 \).

We must prove the equality (71). If \(m - ki < 0 \), then \(h_{m-ki} = 0 \), and therefore

\[
\langle p_m, h_{m-ki} \cdot f_k(e_i) \rangle = \langle p_m, 0 \rangle = 0.
\]

Hence, the equality (71) is proven if \(m - ki < 0 \). Thus, for the rest of this proof, we WLOG assume that \(m - ki \geq 0 \). Combining this with \(m - ki \neq 0 \), we obtain \(m - ki > 0 \). Thus, \(m - ki \) is a positive integer. Also, \(i \) is a positive integer (since \(i \in \mathbb{N} \) and \(i \neq 0 \)), and thus \(ki \) is a positive integer (since \(k \) is a positive integer).

The map \(f_k : \Lambda \to \Lambda \) operates by replacing each \(x_i \) by \(x_i^k \) in a symmetric function (by the definition of \(f_k \)). Thus, if \(g \in \Lambda \) is any homogeneous symmetric function of some degree \(\gamma \), then \(f_k(g) \) is a homogeneous symmetric function of degree \(k\gamma \). Applying this to \(g = e_i \) and \(\gamma = i \), we conclude that \(f_k(e_i) \) is a homogeneous symmetric function of degree \(ki \) (since \(e_i \) is a homogeneous symmetric function of degree \(i \)). Also, \(h_{m-ki} \) is a homogeneous symmetric function of degree \(m - ki \).
Hence, Lemma 3.14 (applied to \(a = m - ki\), \(a = h_{m-ki}\), \(\beta = ki\) and \(b = f_k(e_i)\)) yields \(\langle p_m, h_{m-ki} \cdot f_k(e_i) \rangle = 0\). This proves (71).]

Note that \(e_0 = 1\) and thus \(f_k(e_0) = f_k(1) = 1\) (by the definition of \(f_k\)).

Note that \(m/k > 0\) (since \(m\) and \(k\) are positive). Hence, \(m/k \neq 0\). Now, we are in one of the following two cases:

Case 1: We have \(k \mid m\).

Case 2: We have \(k \nmid m\).

Let us consider Case 1 first. In this case, we have \(k \mid m\). Hence, \(m/k\) is a positive integer (since \(m\) and \(k\) are positive integers). Thus, 0 and \(m/k\) are two distinct elements of \(\mathbb{N}\) (indeed, they are distinct because \(m/k \neq 0\)). Lemma 2.23 (applied to \(j = m/k\)) yields

\[
\langle p_m, f_k(e_{m/k}) \rangle = (-1)^{m/k-1} \left\{ \sum_{i=1}^{m/k} \langle m = k (m/k) \rangle \right\} k = (-1)^{m/k-1} k.
\]

Now, (70) becomes

\[
\langle p_m, G(k,m) \rangle = \sum_{i \in \mathbb{N}} (-1)^i \langle p_m, h_{m-ki} \cdot f_k(e_i) \rangle
\]

\[
= (1) \left[\langle p_{m, h_{m-ki} \cdot f_k(e_0) \rangle + (-1)^{m/k} \langle p_m, h_{m-k-m/k} = h_0 \rangle \cdot f_k(e_{m/k}) \rangle \right.
\]

\[
+ \sum_{i \in \mathbb{N} \setminus \{0,m/k\}} (-1)^i \langle p_m, h_{m-ki} \cdot f_k(e_i) \rangle
\]

\[
= \langle p_m, h_m \rangle \left\{ \sum_{i \in \mathbb{N} \setminus \{0,m/k\}} \langle p_m, f_k(e_{m/k}) \rangle \right\} + \sum_{i \in \mathbb{N} \setminus \{0,m/k\}} (-1)^0
\]

\[
= \langle h_m, p_m \rangle + (-1)^{m/k} \langle p_m, f_k(e_{m/k}) \rangle \left\{ \sum_{i \in \mathbb{N} \setminus \{0,m/k\}} \langle p_m, f_k(e_{m/k}) \rangle \right\}
\]

\[
= (1) \left\{ \sum_{i \in \mathbb{N} \setminus \{0,m/k\}} \langle p_m, f_k(e_{m/k}) \rangle \right\} = 1 + (-1)^{m/k} \left\{ \sum_{i \in \mathbb{N} \setminus \{0,m/k\}} \langle p_m, f_k(e_{m/k}) \rangle \right\} = 1 - k.
\]

Comparing this with

\[
1 - \left\{ k \mid m \right\} k = 1 - k,
\]

we obtain \(\langle p_m, G(k,m) \rangle = 1 - \left\{ k \mid m \right\} k\). Hence, Proposition 2.24 is proven in Case 1.
Case 2 is similar to Case 1, but simpler because we no longer need to split off the addend for \(i = m/k \) from the sum (since \(m/k \notin \mathbb{N} \) in this case). We leave it to the reader.

We have now proven Proposition 2.24 both in Case 1 and in Case 2. Hence, Proposition 2.24 always holds.

Theorem 2.22 will follow from Proposition 2.24 using the following general criterion for generating sets of \(\Lambda \):

Proposition 3.15. For each positive integer \(m \), let \(v_m \in \Lambda \) be a homogeneous symmetric function of degree \(m \).

Assume that \(\langle p_m, v_m \rangle \) is an invertible element of \(k \) for each positive integer \(m \). Then, the family \((v_m)_{m \geq 1} = (v_1, v_2, v_3, \ldots) \) is an algebraically independent generating set of the commutative \(k \)-algebra \(\Lambda \).

Proof of Proposition 3.15 Proposition 3.15 is [GriRei20, Exercise 2.5.24].

Proof of Theorem 2.22 Let \(m \) be a positive integer. Proposition 2.24 yields that

\[
\langle p_m, G(k, m) \rangle = 1 - k = 1 - \begin{cases} 1, & \text{if } k \mid m; \\ 0, & \text{if } k \nmid m \end{cases} \cdot k
\]

\[
= \begin{cases} 1, & \text{if } k \mid m; \\ 0, & \text{if } k \nmid m \end{cases} \cdot k = \begin{cases} 1 - 1 \cdot k, & \text{if } k \mid m; \\ 1 - 0 \cdot k, & \text{if } k \nmid m \end{cases} = \begin{cases} 1 - k, & \text{if } k \mid m; \\ 1, & \text{if } k \nmid m \end{cases} .
\]

Hence, \(\langle p_m, G(k, m) \rangle \) is an invertible element of \(k \) (because both \(1 - k \) and 1 are invertible elements of \(k \)).

Forget that we fixed \(m \). We thus have shown that \(\langle p_m, G(k, m) \rangle \) is an invertible element of \(k \) for each positive integer \(m \). Also, clearly, for each positive integer \(m \), the element \(G(k, m) \in \Lambda \) is a homogeneous symmetric function of degree \(m \). Thus, Proposition 3.15 (applied to \(v_m = G(k, m) \)) shows that the family \((G(k, m))_{m \geq 1} = (G(k, 1), G(k, 2), G(k, 3), \ldots) \) is an algebraically independent generating set of the commutative \(k \)-algebra \(\Lambda \). This proves Theorem 2.22.

3.15. **Proof of Theorem 2.29**

Proof of Theorem 2.29 The \(k \)-Hopf algebra \(\Lambda \) is both commutative and cocommutative (by [GriRei20, Exercise 2.3.7(a)]).

The antipode \(S \) of this Hopf algebra \(\Lambda \) is a \(k \)-Hopf algebra homomorphism (by [GriRei20, Proposition 2.4.3(g)]).

(a) The map \(f_k \) is a \(k \)-Hopf algebra homomorphism (by [GriRei20, Exercise 2.9.9(d)], applied to \(n = k \)). The map \(v_k \) is a \(k \)-Hopf algebra homomorphism (by [GriRei20, Exercise 2.9.10(e)], applied to \(n = k \)). Thus, we have shown that all three
maps f_k, S and v_k are k-Hopf algebra homomorphisms. Hence, their composition $f_k \circ S \circ v_k$ is a k-Hopf algebra homomorphism as well. In other words, U_k is a k-Hopf algebra homomorphism (since $U_k = f_k \circ S \circ v_k$). This proves Theorem 2.29 (a).

(b) Recall (from [GriRei20, Exercise 1.5.11(a)]) the following fact:

Claim 1: If H is a k-bialgebra and A is a commutative k-algebra, then the convolution $f \ast g$ of any two k-algebra homomorphisms $f, g : H \to A$ is again a k-algebra homomorphism.

The following fact is dual to Claim 1:

Claim 2: If H is a k-bialgebra and C is a cocommutative k-coalgebra, then the convolution $f \ast g$ of any two k-coalgebra homomorphisms $f, g : C \to H$ is again a k-coalgebra homomorphism.

(See [GriRei20, solution to Exercise 1.5.11(h)] for why exactly Claim 2 is dual to Claim 1, and how it can be proved.)

Theorem 2.29 (a) yields that the map U_k is a k-Hopf algebra homomorphism. Hence, U_k is both a k-algebra homomorphism and a k-coalgebra homomorphism.

Now, recall that Λ is commutative, and that \id_Λ and U_k are two k-algebra homomorphisms from Λ to Λ. Hence, Claim 1 (applied to $H = \Lambda$, $A = \Lambda$, $f = \id_\Lambda$ and $g = U_k$) shows that the convolution $\id_\Lambda \ast U_k$ is a k-algebra homomorphism. In other words, V_k is a k-algebra homomorphism (since $V_k = \id_\Lambda \ast U_k$).

Next, recall that Λ is cocommutative, and that \id_Λ and U_k are two k-coalgebra homomorphisms from Λ to Λ. Hence, Claim 2 (applied to $H = \Lambda$, $C = \Lambda$, $f = \id_\Lambda$ and $g = U_k$) shows that the convolution $\id_\Lambda \ast U_k$ is a k-coalgebra homomorphism. In other words, V_k is a k-coalgebra homomorphism (since $V_k = \id_\Lambda \ast U_k$).

So we know that the map V_k is both a k-algebra homomorphism and a k-coalgebra homomorphism. Thus, V_k is a k-bialgebra homomorphism, thus a k-Hopf algebra homomorphism.

(c) The map v_k is a k-algebra homomorphism; thus, $v_k(1) = 1$. Now, we have

$$v_k(h_m) = \begin{cases} h_{m/k} & \text{if } k \mid m; \\ 0 & \text{if } k \nmid m \end{cases} \quad (72)$$

for each $m \in \mathbb{N}$. (Indeed, if $m > 0$, then this follows from the definition of v_k. But if $m = 0$, then this follows from $v_k(1) = 1$, since $h_0 = 1$.)

We have

$$S(h_n) = (-1)^n e_n \quad \text{for each } n \in \mathbb{N}. \quad (73)$$

(This follows from [GriRei20, Proposition 2.4.1(iii)].)

\[\text{32 since any } k\text{-bialgebra homomorphism between two } k\text{-Hopf algebras is automatically a } k\text{-Hopf algebra homomorphism}\]
Each \(i \in \mathbb{N} \) satisfies
\[
 v_k (h_{ki}) = \begin{cases}
 \frac{h_{ki}}{k}, & \text{if } k \mid ki; \\
 0, & \text{if } k \nmid ki
 \end{cases} \quad \text{(by (72), applied to } m = ki) \\
 = \frac{h_{ki}}{k} \quad \text{(since } k \mid ki) \\
 = h_i \quad \text{(since } ki/k = i) \quad \text{(74)}
\]
and
\[
 U_k (h_{ki}) = (f_k \circ S \circ v_k) (h_{ki}) \quad \text{(since } U_k = f_k \circ S \circ v_k) \\
 = f_k \left(S \left(v_k (h_{ki}) \right) \right) = f_k \left(S (h_i) \right) = f_k \left((-1)^i e_i \right) \\
 = (-1)^i f_k (e_i) \quad \text{(75)}
\]
(since the map \(f_k \) is \(k \)-linear).

On the other hand, if \(j \in \mathbb{N} \) satisfies \(k \nmid j \), then
\[
 v_k (h_j) = \begin{cases}
 \frac{h_j}{k}, & \text{if } k \mid j; \\
 0, & \text{if } k \nmid j
 \end{cases} \quad \text{(by (72), applied to } m = j) \\
 = 0 \quad \text{(since } k \nmid j) \quad \text{(76)}
\]
and
\[
 U_k (h_j) = (f_k \circ S \circ v_k) (h_j) \quad \text{(since } U_k = f_k \circ S \circ v_k) \\
 = (f_k \circ S) \left(v_k (h_j) \right) = (f_k \circ S) (0) \\
 = 0 \quad \text{(77)}
\]
(since the map \(f_k \circ S \) is \(k \)-linear).

Let \(\Delta_\Lambda \) be the comultiplication \(\Delta : \Lambda \rightarrow \Lambda \otimes \Lambda \) of the \(k \)-coalgebra \(\Lambda \). Let \(m_\Lambda : \Lambda \otimes \Lambda \rightarrow \Lambda \) be the \(k \)-linear map sending each pure tensor \(a \otimes b \in \Lambda \otimes \Lambda \) to \(ab \in \Lambda \). Definition \ref{def:2.28} then yields \(\text{id}_\Lambda \star U_k = m_\Lambda \circ (\text{id}_\Lambda \otimes U_k) \circ \Delta_\Lambda \). Thus,
\[
 V_k = \text{id}_\Lambda \star U_k = m_\Lambda \circ (\text{id}_\Lambda \otimes U_k) \circ \Delta_\Lambda = m_\Lambda \circ (\text{id}_\Lambda \otimes U_k) \circ \Delta \quad \text{(78)}
\]
Let \(m \in \mathbb{N} \) (not to be mistaken for the map \(m_\Lambda \)). Then, [GriRei20, Proposition 2.3.6(iii)] (applied to \(n = m \)) yields

\[
\Delta (h_m) = \sum_{i+j=m} h_i \otimes h_j
\]

(where the sum ranges over all pairs \((i, j) \in \mathbb{N} \times \mathbb{N} \) with \(i + j = m \))

\[
= \sum_{j=0}^{m} h_{m-j} \otimes h_j
\]

(here, we have substituted \((m - j, j)\) for \((i, j)\) in the sum). Applying the map \(\text{id}_\Lambda \otimes U_k \) to both sides of this equality, we obtain

\[
(\text{id}_\Lambda \otimes U_k)(\Delta (h_m)) = (\text{id}_\Lambda \otimes U_k)\left(\sum_{j=0}^{m} h_{m-j} \otimes h_j\right) = \sum_{j=0}^{m} h_{m-j} \otimes U_k (h_j).
\]

Applying the map \(m_\Lambda \) to both sides of this equality, we find

\[
m_\Lambda ((\text{id}_\Lambda \otimes U_k)(\Delta (h_m)))
\]

\[
= m_\Lambda \left(\sum_{j=0}^{m} h_{m-j} \otimes U_k (h_j)\right) = \sum_{j=0}^{m} h_{m-j} U_k (h_j) \quad \text{(by the definition of } m_\Lambda)
\]

\[
= \sum_{j=0}^{\infty} h_{m-j} U_k (h_j) - \sum_{j=0}^{\infty} h_{m-j} U_k (h_j)
\]

\[
\quad = \sum_{j=0}^{\infty} h_{m-j} U_k (h_j) \quad \text{since } m-j < 0 \quad \text{(because } j \geq m+1 > m)\]

\[
= \sum_{j=0}^{\infty} h_{m-j} U_k (h_j) - \sum_{j=0}^{\infty} 0 U_k (h_j)\]

\[
= \sum_{j=0}^{\infty} h_{m-j} U_k (h_j) \quad \text{(since each } j \in \mathbb{N} \text{ satisfies either } k \mid j \text{ or } k \nmid j \text{ but not both)}
\]

\[
= \sum_{j=0}^{\infty} h_{m-j} U_k (h_j) + \sum_{j=0}^{\infty} h_{m-j} U_k (h_j)\]

\[
= \sum_{j=0}^{\infty} h_{m-j} U_k (h_j) \quad \text{(here, we have substituted } ki \text{ for } j \text{ in the sum)}
\]

\[
= \sum_{i \in \mathbb{N}} (-1)^i h_{m-ki} \cdot f_k (e_i). \]

Comparing this with

\[
G(k, m) = \sum_{i \in \mathbb{N}} (-1)^i h_{m-ki} \cdot f_k (e_i) \quad \text{(by Theorem 2.21),}
\]
we obtain
\[
G(k, m) = m_\Lambda \left((\text{id}_\Lambda \otimes U_k)(\Delta(h_m)) \right) = \left(m_\Lambda \circ (\text{id}_\Lambda \otimes U_k) \circ \Delta \right)(h_m) = V_k(h_m).
\]

This proves Theorem 2.29 (c).

(d) Let us recall a few facts from [GriRei20].

From [GriRei20, Exercise 2.9.10(a)], we know that every positive integers \(n \) and \(m \) satisfy
\[
v_n(p_m) = \begin{cases} np_{m/n}, & \text{if } n \mid m; \\ 0, & \text{if } n \nmid m. \end{cases}
\]
(79)

On the other hand, it is easy to see (directly using the definition of \(f_n \)) that every positive integers \(n \) and \(m \) satisfy
\[
f_n(p_m) = p_{nm}.
\]
(80)

Finally, [GriRei20, Proposition 2.4.1(i)] yields that every positive integer \(n \) satisfies
\[
S(p_n) = -p_n.
\]
(81)

Now, let \(n \) be a positive integer. We first claim the following:

Claim 1: We have \(U_k(p_n) = -[k \mid n] kp_n. \)

[Proof of Claim 1: We are in one of the following two cases:
Case 1: We have \(k \mid n. \)
Case 2: We have \(k \nmid n. \)

Let us first consider Case 1. In this case, we have \(k \mid n. \) Hence, \(n/k \) is a positive integer. Now, (79) (applied to \(k \) and \(n \) instead of \(n \) and \(m \)) yields
\[
v_k(p_n) = \begin{cases} kp_{n/k}, & \text{if } k \mid n; \\ 0, & \text{if } k \nmid n \end{cases} = kp_{n/k} \quad \text{(since } k \mid n \}. \]

Applying the map \(S \) to both sides of this equality, we find
\[
S(v_k(p_n)) = S(kp_{n/k}) = k \quad \text{(since the map } S \text{ is } k\text{-linear)}
\]
= \(-p_{n/k} \) \quad \text{(applied to } n/k \text{ instead of } n \)
= \(-kp_{n/k}. \)

Applying the map \(f_k \) to both sides of this equality, we find
\[
f_k(S(v_k(p_n))) = f_k(-kp_{n/k}) = -k \quad \text{(since the map } f_k \text{ is } k\text{-linear)}
\]
= \(-kp_{n/k}. \)
= \(-kp_{n}. \)
Now, the definition of U_k yields $U_k = f_k \circ S \circ v_k$. Hence,

$$U_k(p_n) = (f_k \circ S \circ v_k)(p_n) = f_k(S(v_k(p_n))) = -kp_n.$$

Comparing this with

$$-\left\lfloor \frac{k}{n} \right\rfloor kp_n = -kp_n,$$

we obtain $U_k(p_n) = -\left\lfloor \frac{k}{n} \right\rfloor kp_n$. Hence, Claim 1 is proved in Case 1.

Let us now consider Case 2. In this case, we have $k \nmid n$. But (79) (applied to k and n instead of n and m) yields

$$v_k(p_n) = \begin{cases} kp_n/k, & \text{if } k \mid n; \\ 0, & \text{if } k \nmid n \end{cases} = 0 \quad \text{(since } k \nmid n).$$

But the definition of U_k yields $U_k = f_k \circ S \circ v_k$. Hence,

$$U_k(p_n) = (f_k \circ S \circ v_k)(p_n) = (f_k \circ S)\left(v_k(p_n) = 0\right) = 0$$

(since the map $f_k \circ S$ is k-linear). Comparing this with

$$-\left\lfloor \frac{k}{n} \right\rfloor kp_n = 0,$$

we obtain $U_k(p_n) = -\left\lfloor \frac{k}{n} \right\rfloor kp_n$. Hence, Claim 1 is proved in Case 2.

We have now proved Claim 1 in both Cases 1 and 2. Thus, Claim 1 always holds.

Theorem 2.29 (a) shows that the map U_k is a k-Hopf algebra homomorphism. Hence, U_k is a k-algebra homomorphism. Thus, $U_k(1) = 1$.

Now, let Δ_Λ be the comultiplication $\Delta : \Lambda \to \Lambda \otimes \Lambda$ of the k-coalgebra Λ. Let $m_\Lambda : \Lambda \otimes \Lambda \to \Lambda$ be the k-linear map sending each pure tensor $a \otimes b \in \Lambda \otimes \Lambda$ to $ab \in \Lambda$. Then, the definition of V_k yields $V_k = \text{id}_\Lambda \ast U_k = m_\Lambda \circ (\text{id}_\Lambda \otimes U_k) \circ \Delta_\Lambda$ (by the definition of convolution).
But \cite{GriRei20} Proposition 2.3.6(i) yields $\Delta_A(p_n) = 1 \otimes p_n + p_n \otimes 1$. Now,

$$
\begin{align*}
V_k^{-1}(p_n) &= m_A \circ (id_A \otimes U_k) \circ \Delta_A \\
&= (m_A \circ (id_A \otimes U_k) \circ \Delta_A)(p_n) \\
&= m_A \left((id_A \otimes U_k) \left(\frac{\Delta_A(p_n)}{1 \otimes p_n + p_n \otimes 1} \right) \right) \\
&= m_A \left((id_A \otimes U_k) \left(1 \otimes p_n + p_n \otimes 1 \right) \right) \\
&= m_A \left(id_A(1) \otimes U_k(p_n) + id_A(p_n) \otimes U_k(1) \right) \\
&= id_A(1) \cdot U_k(p_n) + id_A(p_n) \cdot U_k(1) \\
&= 1 = -[k \mid n] kp_n = p_n = 1 \\
&= - [k \mid n] kp_n + p_n = (1 - [k \mid n] k) p_n.
\end{align*}
$$

This proves Theorem \ref{thm:2.29} (d). \hfill \Box

\subsection{3.16. Proof of Corollary \ref{cor:2.30}}

\textit{Proof of Corollary} \ref{cor:2.30}. Recall that the family $(h_n)_{n \geq 1} = (h_1, h_2, h_3, \ldots)$ generates Λ as a k-algebra. Hence, each $g \in \Lambda$ can be written as a polynomial in h_1, h_2, h_3, \ldots. Applying this to $g = p_n$, we conclude that p_n can be written as a polynomial in h_1, h_2, h_3, \ldots. In other words, there exists a polynomial $f \in k[x_1, x_2, x_3, \ldots]$ such that

$$
p_n = f(h_1, h_2, h_3, \ldots). \quad (82)
$$

Consider this f. We shall show that this f satisfies (12). This will clearly prove Corollary \ref{cor:2.30}.

Consider the map V_k defined in Theorem \ref{thm:2.29}. Theorem \ref{thm:2.29} (c) yields that $V_k(h_m) = G(k, m)$ for each positive integer m. In other words,

$$
(V_k(h_1), V_k(h_2), V_k(h_3), \ldots) = (G(k, 1), G(k, 2), G(k, 3), \ldots). \quad (83)
$$

The map V_k is a k-Hopf algebra homomorphism (by Theorem \ref{thm:2.29} (b)), and thus is a k-algebra homomorphism. Hence, it commutes with polynomials over k. Thus,

$$
V_k(f(h_1, h_2, h_3, \ldots)) = f(V_k(h_1), V_k(h_2), V_k(h_3), \ldots) = f(G(k, 1), G(k, 2), G(k, 3), \ldots) \quad (\text{by (83)}).
$$

Now, applying the map V_k to both sides of the equality (82), we obtain

$$
V_k(p_n) = V_k(f(h_1, h_2, h_3, \ldots)) = f(G(k, 1), G(k, 2), G(k, 3), \ldots).
$$

\vspace{1cm}
Comparing this with
\[V_k(p_n) = (1 - \lfloor k \mid n \rfloor) p_n \quad \text{(by Theorem 2.29(d))}, \]
we obtain
\[(1 - \lfloor k \mid n \rfloor) p_n = f(G(k, 1), G(k, 2), G(k, 3), \ldots). \]
Thus, we have shown that our f satisfies (12). As we said, this proves Corollary 2.30. \hfill \Box

4. Proof of the Liu–Polo conjecture

Let us recall a well-known partial order on the set of partitions of a given $n \in \mathbb{N}$:

Definition 4.1. Let $n \in \mathbb{N}$. We define a binary relation \triangleright on the set Par_n as follows: Two partitions $\lambda, \mu \in \text{Par}_n$ shall satisfy $\lambda \triangleright \mu$ if and only if we have
\[\lambda_1 + \lambda_2 + \cdots + \lambda_k \geq \mu_1 + \mu_2 + \cdots + \mu_k \quad \text{for each } k \in \{1, 2, \ldots, n\}. \]

This relation \triangleright is the greater-or-equal relation of a partial order on Par_n, which is known as the dominance order (or the majorization order).

This definition is precisely [GriRei20, Definition 2.2.7]. Note that if we replace “for each $k \in \{1, 2, \ldots, n\}$” by “for each $k \in \{1, 2, 3, \ldots\}$” in this definition, then the relation \triangleright does not change.

Our goal in this section is to prove the conjecture made in [LiuPol19, Remark 1.4.5]. We state this conjecture as follows:

Theorem 4.2. Let n be an integer such that $n > 1$. Then:
(a) We have
\[\sum_{\lambda \in \text{Par}_n; (n-1,1) \triangleright \lambda} m_\lambda = \sum_{i=0}^{n-2} (-1)^i s_{(n-1-i,1^{i+1})}. \]

(b) We have
\[\sum_{\lambda \in \text{Par}_{2n-1}; (n-1,1,n-1,1) \triangleright \lambda} m_\lambda = \sum_{i=0}^{n-2} (-1)^i s_{(n-1,n-1-i,1^{i+1})}. \]

Example 4.3. For this example, let $n = 3$. Then, $n-1 = 2$ and $2n-1 = 5$. Hence, the left hand side of the equality in Theorem 4.2 (b) is
\[\sum_{\lambda \in \text{Par}_{2n-1}; (n-1,n-1,1) \triangleright \lambda} m_\lambda = m_{(2,2,1)} + m_{(2,1,1,1)} + m_{(1,1,1,1,1)}. \]

\[33\text{Note that } (n-1,n-1,1) \text{ is a partition whenever } n > 1 \text{ is an integer.}\]
Meanwhile, the right hand side of the equality in Theorem 4.2 (b) is
\[\sum_{i=0}^{n-2} (-1)^i s_{(n-1, n-1-i, 1^{i+1})} = \sum_{i=0}^{1} (-1)^i s_{(2, 2-i, 1)} = s_{(2, 2, 1)} - s_{(2, 1, 1)}. \]
Thus, Theorem 4.2 (b) claims that \(m_{(2, 2, 1)} + m_{(2, 1, 1, 1)} + m_{(1, 1, 1, 1, 1)} = s_{(2, 2, 1)} - s_{(2, 1, 1, 1)} \) in this case.

We will pave our way to the proof of Theorem 4.2 by several lemmas. We begin with a particularly simple one:

Lemma 4.4. Let \(n \) be an integer such that \(n > 1 \). Let \(\lambda \in \textrm{Par}_{2n-1} \). Then, \((n-1, n-1, 1) \rhd \lambda \) if and only if all positive integers \(i \) satisfy \(\lambda_i < n \).

Proof. This simple proof (an exercise in following Definition 4.1) is left to the reader.

Lemma 4.5. Let \(n \) be an integer such that \(n > 1 \). Let \(\lambda \in \textrm{Par}_n \). Then, \((n-1, 1) \rhd \lambda \) if and only if all positive integers \(i \) satisfy \(\lambda_i < n \).

Proof of Lemma 4.5. This is analogous to the proof of Lemma 4.4.

The next lemma identifies the left hand side of Theorem 4.2 (a) as the Petrie symmetric function \(G(n, n) \), and the left hand side of Theorem 4.2 (b) as the Petrie symmetric function \(G(n, 2n-1) \):

Corollary 4.6. Let \(n \) be an integer such that \(n > 1 \). Then:
\(\begin{align*}
(\text{a}) & \quad \sum_{\lambda \in \textrm{Par}_n; (n-1,1) \rhd \lambda} m_\lambda = G(n, n). \\
(\text{b}) & \quad \sum_{\lambda \in \textrm{Par}_{2n-1}; (n-1,n-1,1) \rhd \lambda} m_\lambda = G(n, 2n-1).
\end{align*} \)

Proof. (b) Proposition 2.3 (c) (applied to \(k = n \) and \(m = 2n-1 \)) yields
\[G(n, 2n-1) = \sum_{\alpha \in \textrm{WC}; |\alpha| = 2n-1; \alpha_i < n \text{ for all } i} x^\alpha = \sum_{\lambda \in \textrm{Par}; |\lambda| = 2n-1; \lambda_i < n \text{ for all } i} m_\lambda. \quad (84) \]
But Lemma 4.4 yields the following equality of summation signs:
\[\sum_{\lambda \in \textrm{Par}_{2n-1}; (n-1,n-1,1) \rhd \lambda} m_\lambda = \sum_{\lambda \in \textrm{Par}; |\lambda| = 2n-1; \lambda_i < n \text{ for all } i} m_\lambda. \]
Hence,

\[
\sum_{\lambda \in \text{Par}_{2n-1}; (n-1,n-1,1) \triangleright \lambda} m_\lambda = \sum_{\lambda \in \text{Par}_{2n-1}; |\lambda| = 2n-1; \lambda_i < n \text{ for all } i} m_\lambda.
\]

Comparing this with (84), we obtain

\[
\sum_{\lambda \in \text{Par}_{2n-1}; (n-1,n-1,1) \triangleright \lambda} m_\lambda = G(n, 2n-1).
\]

This proves Corollary 4.6(b).

(a) This is analogous to Corollary 4.6(b), but uses Lemma 4.5 instead of Lemma 4.4.

It was Corollary 4.6 that led the author to introduce and study the Petrie symmetric functions \(G(k, m)\) in general, even if little of their general properties has proven relevant to Theorem 4.2.

The next proposition gives a simple formula for certain kinds of Petrie symmetric functions:

Proposition 4.7. Let \(n\) be a positive integer. Let \(k \in \{0, 1, \ldots, n-1\}\). Then,

\[
G(n, n+k) = h_{n+k} - h_k p_n.
\]

Proposition 4.7 can be viewed as a particular case of Theorem 2.21 (applied to \(n\) and \(n+k\) instead of \(k\) and \(m\)), after realizing that in the sum on the right hand side of Theorem 2.21, only the first two addends will (potentially) be nonzero in this case. However, let us give an independent proof of the proposition.

Proof of Proposition 4.7. From \(k \in \{0, 1, \ldots, n-1\}\), we obtain \(k < n\) and thus \(n+k < n+n\). Thus we conclude:

Observation 1: A monomial of degree \(n+k\) cannot have more than one variable appear in it with exponent \(\geq n\) (since this would require it to have degree \(\geq n+n > n+k\)).

Let \(M_k\) be the set of all monomials of degree \(k\). The definition of \(h_k\) shows that \(h_k\) is the sum of all monomials of degree \(k\). In other words,

\[
h_k = \sum_{m \in M_k} m. \quad (85)
\]

Let \(M_{n+k}\) be the set of all monomials of degree \(n+k\). The definition of \(h_{n+k}\) shows that \(h_{n+k}\) is the sum of all monomials of degree \(n+k\). In other words,

\[
h_{n+k} = \sum_{n \in M_{n+k}} n. \quad (86)
\]
Let \mathcal{N} be the set of all monomials of degree $n+k$ in which all exponents are $< n$. These monomials are exactly the x^α for $\alpha \in \text{WC}$ satisfying $|\alpha| = n+k$ and $(\alpha_i < n$ for all $i)$. Hence,

$$\sum_{n \in \mathcal{N}} n = \sum_{\alpha \in \text{WC}; \atop |\alpha|=n+k; \atop \alpha_i < n \text{ for all } i} x^\alpha.$$ \hfill (87)

But Proposition 2.3(c) (applied to n and $n+k$ instead of k and m) yields

$$G(n, n+k) = \sum_{\alpha \in \text{WC}; \atop |\alpha|=n+k; \atop \alpha_i < n \text{ for all } i} x^\alpha = \sum_{\lambda \in \text{Par}; \atop |\lambda|=n+k; \atop \lambda_i < n \text{ for all } i} m_\lambda.$$ \hfill (88)

Hence,

$$G(n, n+k) = \sum_{\alpha \in \text{WC}; \atop |\alpha|=n+k; \atop \alpha_i < n \text{ for all } i} x^\alpha = \sum_{n \in \mathcal{N}} n$$ \hfill (by (87)).

Clearly, the set \mathcal{N} is a subset of M_{n+k}, and furthermore its complement $M_{n+k} \setminus \mathcal{N}$ is the set of all monomials of degree $n+k$ in which at least one exponent is $\geq n$. Hence, the map

$$M_k \times \{1, 2, 3, \ldots\} \to M_{n+k} \setminus \mathcal{N},$$

$$(m, i) \mapsto m \cdot x_i^n$$

is well-defined (because if m is a monomial of degree k, and if $i \in \{1, 2, 3, \ldots\}$, then $m \cdot x_i^n$ is a monomial of degree $k+n = n+k$, and the variable x_i appears in it with exponent $\geq n$). This map is furthermore surjective (for simple reasons) and injective (in fact, if $n \in M_{n+k} \setminus \mathcal{N}$, then n is a monomial of degree $n+k$, and thus Observation 1 yields that there is at most one variable x_i that appears in n with exponent $\geq n$; but this means that the only preimage of n under our map is $\left(\frac{n}{x_i^n}, i\right)$). Hence, this map is a bijection. We can thus use it to substitute $m \cdot x_i^n$ for n in the sum $\sum_{n \in M_{n+k} \setminus \mathcal{N}} n$. We thus obtain

$$\sum_{n \in M_{n+k} \setminus \mathcal{N}} n = \sum_{(m,i) \in M_k \times \{1,2,3,\ldots\}} m \cdot x_i^n = \left(\sum_{m \in M_k} m\right) \cdot \sum_{i \in \{1,2,3,\ldots\}} x_i^n = h_k \cdot (\text{by (85)})$$

$$= h_k p_n.$$ \hfill (89)
But (86) becomes
\[h_{n+k} = \sum_{n \in \mathcal{M}_{n+k}} n = \sum_{n \in \mathcal{M}_n \cap \mathcal{M}_k} n + \sum_{n \in \mathcal{M}_{n+k} \setminus \mathcal{M}_n} n \quad \text{(since } \mathcal{M} \subseteq \mathcal{M}_{n+k}) \]
\[= G(n, n+k) \quad \text{(by (88))} \]
\[= G(n, n+k) + h_k p_n. \]

In other words,
\[G(n, n+k) = h_{n+k} - h_k p_n. \]

This proves Proposition 4.7.

We note in passing that the idea used in the above proof of Proposition 4.7 can be generalized to yield a second proof of Theorem 2.21 using an inclusion/exclusion argument.

Corollary 4.8. Let \(n \) be an integer such that \(n > 1 \). Then:

(a) We have
\[\sum_{\lambda \in \text{Par}_n; \ (n-1,1) \triangleright \lambda} m_\lambda = h_n - p_n. \]

34Here is an outline of this second proof: For any positive integer \(k \) and any \(m \in \mathbb{N} \), we have

\[G(k, m) = \sum_{a \in \mathcal{WC}; \ |a| = m; \ a_i < k \text{ for all } i} x^a = \sum_{l \subseteq \{1,2,3,\ldots\}} (-1)^{|l|} \sum_{a \in \mathcal{WC}; \ |a| = m; \ a_i \geq k \text{ for all } i \in l} x^a \]
\[= \left(\prod_{i \in I} x^i \right) \sum_{\beta \in \mathcal{WC}; \ |\beta| = m-k|l|} x^\beta \]
\[= \left(\prod_{i \in I} x^i \right) \sum_{\beta \in \mathcal{WC}; \ |\beta| = m-k|l|} h_{m-k|l|} \]
\[= \left(\prod_{i \in I} x^i \right) \sum_{p \in \mathbb{N}} (-1)^p h_{m-kp} \]
\[= \left(\prod_{i \in I} x^i \right) \sum_{p \in \mathbb{N}} (-1)^p h_{m-kp} \cdot f_k(e_p) \]
\[= \left(\prod_{i \in I} x^i \right) \sum_{p \in \mathbb{N}} (-1)^p h_{m-kp} \cdot f_k(e_p) \]
\[= \left(\prod_{i \in I} x^i \right) \sum_{p \in \mathbb{N}} (-1)^p h_{m-kp} \cdot f_k(e_p). \]
We have
\[\sum_{\lambda \in \text{Par}_{2n-1}; \ (n-1,n-1,1) \triangleright \lambda} m_{\lambda} = h_{2n-1} - h_{n-1} p_n. \]

Proof. (b) Corollary 4.6 yields
\[\sum_{\lambda \in \text{Par}_{2n-1}; \ (n-1,n-1,1) \triangleright \lambda} m_{\lambda} = G(n,2n-1) = G(n,n + (n-1)) \] (since \(2n-1 = n + (n-1)\))
\[= h_{n+(n-1)} - h_{n-1} p_n \] (by Proposition 4.7, applied to \(k = n-1\))
\[= h_{2n-1} - h_{n-1} p_n. \]

This proves Corollary 4.8 (b).

(a) Corollary 4.6 (a) yields
\[\sum_{\lambda \in \text{Par}_n; \ (n-1,1) \triangleright \lambda} m_{\lambda} = G(n,n) = G(n,n + 0) \]
\[= h_{n+0} - h_0 p_n \] (by Proposition 4.7, applied to \(k = 0\))
\[= h_n - p_n. \]

This proves Corollary 4.8 (a).

Our next claim is an easy consequence of Proposition 1.1:

Corollary 4.9. Let \(n\) be a positive integer. Then,
\[h_n - p_n = \sum_{i=0}^{n-2} (-1)^i s_{(n-1-i,1^{i+1})}. \]

Proof. Proposition 1.1 yields
\[p_n = \sum_{i=0}^{n-1} (-1)^i s_{(n-i,1^i)} = (-1)^0 s_{(n-0,1^0)} + \sum_{i=1}^{n-1} (-1)^i s_{(n-i,1^i)} \]
\[= h_n + \sum_{i=1}^{n-1} (-1)^i s_{(n-i,1^i)}, \]
so that
\[h_n - p_n = -\sum_{i=1}^{n-1} (-1)^i s_{(n-i,1^i)} = \sum_{i=1}^{n-1} (-(-1)^i) s_{(n-i,1^i)} = \sum_{i=1}^{n-1} (-1)^{i-1} s_{(n-i,1^i)} \]
\[= \sum_{i=0}^{n-2} (-1)^i s_{(n-1-i,1^{i+1})}. \]
(here, we have substituted $i+1$ for i in the sum).

We can now immediately prove Theorem 4.2 (a):

Proof of Theorem 4.2 (a). Corollary 4.8 (a) yields

$$
\sum_{\lambda \in \text{Par}_n; (n-1,1) \triangleright \lambda} m_\lambda = h_n - p_n = \sum_{i=0}^{n-2} (-1)^i s_{(n-1-i,i+1)} \quad \text{(by Corollary 4.9)}.
$$

This proves Theorem 4.2 (a).

We shall use the *skewing operators* $f^\perp : \Lambda \to \Lambda$ for all $f \in \Lambda$ as defined in [GriRei20 §2.8] or in [Macdon95 Chapter I, Section 5, Example 3]. The easiest way to define them (following [Macdon95 Chapter I, Section 5, Example 3]) is as follows: For each $f \in \Lambda$, we let $f^\perp : \Lambda \to \Lambda$ be the k-linear map adjoint to the map $L_f : \Lambda \to \Lambda$, $g \mapsto fg$ (that is, to the map that multiplies every element of Λ by f) with respect to the Hall inner product. That is, f^\perp is the k-linear map from Λ to Λ that satisfies

$$
\langle g, f^\perp (a) \rangle = \langle fg, a \rangle \quad \text{for all } a \in \Lambda \text{ and } g \in \Lambda.
$$

It is not hard to show that such an operator f^\perp exists. The definition of f^\perp in [GriRei20 §2.8] is different but equivalent (because of [GriRei20 Proposition 2.8.2(i)]). One of the most important properties of skewing operators is the following fact ([GriRei20 (2.8.2))]:

Lemma 4.10. Let λ and μ be any two partitions. Then,

$$
s^\perp_\mu (s_\lambda) = s_{\lambda/\mu}.
$$

(Here, $s_{\lambda/\mu}$ is a skew Schur function, defined in Subsection 3.3.)

Using skewing operators, we can define another helpful family of operators on Λ:

Definition 4.11. For any $m \in \mathbb{Z}$, we define a map $B_m : \Lambda \to \Lambda$ by setting

$$
B_m (f) = \sum_{i \in \mathbb{N}} (-1)^i h_m + i e_i^\perp f \quad \text{for all } f \in \Lambda.
$$

It is known ([GriRei20 Exercise 2.9.1(a)]) that this map B_m is well-defined and k-linear.

35This is not completely automatic: Not every k-linear map from Λ to Λ has an adjoint with respect to the Hall inner product! (For example, the k-linear map $\Lambda \to \Lambda$ that sends each Schur function s_λ to 1 has none.) The reason why the map $L_f : \Lambda \to \Lambda$, $g \mapsto fg$ has an adjoint is that when f is homogeneous of degree k, this map L_f sends each graded component Λ_m of Λ to Λ_{m+k} and both of these graded components Λ_m and Λ_{m+k} are k-modules with finite bases. (The case when f is not homogeneous can be reduced to the case when f is homogeneous, since each $f \in \Lambda$ is a sum of finitely many homogeneous elements.)
(Actually, the well-definedness of B_m is easy to check: If $f \in \Lambda$ has degree d, then all integers $i > d$ satisfy $e_i^+ f = 0$ for degree reasons, and thus the sum $\sum_{i \in \mathbb{N}} (-1)^i h_{m+i} e_i^+ f$ has only finitely many nonzero addends. The k-linearity of B_m is even clearer.)

The operators B_m for $m \in \mathbb{Z}$ have first appeared in Zelevinsky’s [Zelevi81 §4.20] (in the different-looking but secretly equivalent setting of a PSH-algebra), where they are credited to J. N. Bernstein. They have since been dubbed the Bernstein creation operators and proved useful in various contexts (e.g., the definition of the “dual immaculate functions” in [BBSSZ13] takes them for inspiration). One of their most fundamental properties is the following fact (which originates in [Zelevi81, 4.20, (**)] and appears implicitly in [Macdon95 Chapter I, Section 5, Example 29]):

Proposition 4.12. Let λ be any partition. Let $m \in \mathbb{Z}$ satisfy $m \geq \lambda_1$. Then,

$$\sum_{i \in \mathbb{N}} (-1)^i h_{m+i} e_i^+ s_{\lambda} = s_{(m, \lambda_1, \lambda_2, \lambda_3, \ldots)}.$$ \hspace{1cm} (91)

See [GriRei20 Exercise 2.9.1(b)] for a proof of Proposition 4.12. Thus, if λ is any partition, and if $m \in \mathbb{Z}$ satisfies $m \geq \lambda_1$, then

$$B_m (s_\lambda) = \sum_{i \in \mathbb{N}} (-1)^i h_{m+i} e_i^+ s_{\lambda} \quad \text{ (by the definition of B_m)}$$

$$= s_{(m, \lambda_1, \lambda_2, \lambda_3, \ldots)} \quad \text{ (by (91))}.$$ \hspace{1cm} (92)

Lemma 4.13. Let n be a positive integer. Let $m \in \mathbb{N}$. Then, $B_m (h_n) = h_m h_n - h_{m+1} h_{n-1}$.

Proof of Lemma 4.13. We have $e_0 = 1$ and thus $e_0^+ = 1^\perp = \text{id}$. Hence, $e_0^+ (h_n) = h_n$.

We shall use the notion of skew Schur functions $s_{\lambda/\mu}$ (as in Subsection 3.3). Recall that $s_{\lambda/\mu} = 0$ when $\mu \not\subseteq \lambda$.

From $e_1 = s_{(1)}$ and $h_n = s_{(n)}$, we obtain

$$e_1^+ (h_n) = s_{(1)}^+ (s_{(n)}) = s_{(n)/1} \quad \text{ (by (90))}.$$ \hspace{1cm} (90)

But it is easy to see that $s_{(n)/1} = s_{(n-1)}$. (Indeed, this follows from the combinatorial definition of skew Schur functions, since the skew Ferrers diagram of $(n) / (1)$ can be obtained from the Ferrers diagram of $(n-1)$ by parallel shift.)

Alternatively, this follows easily from Theorem 3.4, because $s_{(n-1)} = h_{n-1}$. Thus, we obtain

$$e_1^+ (h_n) = s_{(n)/1} = s_{(n-1)} = h_{n-1}.$$ \hspace{1cm} (90)

See [GriRei20 §2.3] for the notions we are using here.
For each integer \(i > 1 \), we have
\[
e_i^+ (h_n) = s_{(1^i)}/(1^i) \quad \text{(since } e_i = s_{(1^i)} \text{ and } h_n = s_{(n)})
\]
\[
= s_{(n)/(1^i)} \quad \text{(by } (90)\text{)}
\]
\[
= 0 \quad \text{(since } (1^i) \not\subseteq (n) \text{ (because } i > 1)\text{).} \quad (93)
\]

Now, the definition of \(B_m \) yields
\[
B_m (h_n) = \sum_{i \in \mathbb{N}} (-1)^i h_{m+i} e_i^+ (h_n)
\]
\[
= (-1)^0 h_{m+0} e_0^+ (h_n) + (-1)^1 h_{m+1} e_1^+ (h_n) + \sum_{i \geq 2} (-1)^i h_{m+i} e_i^+ (h_n)
\]
\[
= h_m h_n - h_{m+1} h_{n-1}. \quad (93)
\]

\[\square\]

Corollary 4.14. Let \(n \) be a positive integer. Then, \(B_{n-1} (h_n) = 0 \).

Proof. Apply Lemma 4.13 to \(m = n - 1 \) and simplify. \[\square\]

Lemma 4.15. Let \(m \in \mathbb{N} \). Let \(n \) be a positive integer. Then, \(B_m (p_n) = h_m p_n - h_{m+n} \).

Proof. This is [GriRei20, Exercise 2.9.1(f)]. But here is a more direct proof: We will use the comultiplication \(\Delta : \Lambda \to \Lambda \otimes \Lambda \) of the Hopf algebra \(\Lambda \) (see [GriRei20, §2.3]). Here and in the following, the “\(\otimes \)” sign denotes \(\otimes_k \). The power-sum symmetric function \(p_n \) is primitive \(^{37}\) (see [GriRei20, Proposition 2.3.6(i)]); thus,
\[
\Delta (p_n) = 1 \otimes p_n + p_n \otimes 1.
\]
Hence, for each \(i \in \mathbb{N} \), the definition of \(e_i^+ \) given in [GriRei20, Definition 2.8.1] (not the equivalent definition we gave above) yields
\[
e_i^+ (p_n) = \langle e_i, 1 \rangle p_n + \langle e_i, p_n \rangle 1. \quad (94)
\]

\(^{37}\)Recall that an element \(x \) of a Hopf algebra \(H \) is said to be primitive if the comultiplication \(\Delta_H \) of \(H \) satisfies \(\Delta_H (x) = 1 \otimes x + x \otimes 1 \).
Now, the definition of \mathbf{B}_m yields

$$
\mathbf{B}_m (p_n) = \sum_{i \in \mathbb{N}} (-1)^i h_{m+i} \quad \mathcal{E}^i (p_n)
= \langle e_i, 1 \rangle p_n + \langle e_i, p_n \rangle 1
= \sum_{i \in \mathbb{N}} (-1)^i h_{m+i} \langle e_i, 1 \rangle p_n + \langle e_i, p_n \rangle 1
= \sum_{i \in \mathbb{N}} (-1)^i h_{m+i} \cdot \langle e_i, 1 \rangle p_n + \sum_{i \in \mathbb{N}} \langle e_i, p_n \rangle 1
= (\langle e_0, 1 \rangle p_n) + \sum_{i \in \mathbb{N}} \langle e_i, 1 \rangle p_n
= h_m p_n + \sum_{i=0}^n (-1)^i h_{m+n} \cdot (-1)^{n-1} 1
= h_m p_n - h_{m+n}.
$$

\[\square \]

Lemma 4.16. Let n be a positive integer. Then,

$$
\mathbf{B}_{n-1} (h_n - p_n) = h_{2n-1} - h_{n-1} p_n.
$$

Proof. The map \mathbf{B}_{n-1} is k-linear. Thus,

$$
\mathbf{B}_{n-1} (h_n - p_n) = \mathbf{B}_{n-1} (h_n) - \mathbf{B}_{n-1} (p_n)
= h_{n-1} p_n - h_{(n-1)+n} (n-1) = h_{n-1} - h_{n-1} p_n.
$$

\[\square \]

Lemma 4.17. Let n be a positive integer. Then,

$$
\mathbf{B}_{n-1} (h_n - p_n) = \sum_{i=0}^{n-2} (-1)^i s_{(n-1, n-1-i, i+1)^{i+1}}.
$$
Proof of Lemma 4.17. We have

\[B_{n-1} (h_n - p_n) = B_{n-1} \left(\sum_{i=0}^{n-2} (-1)^i s_{n-1-i,1^{i+1}} \right) \]
(by Corollary 4.9)

\[= \sum_{i=0}^{n-2} (-1)^i B_{n-1} s_{n-1-i,1^{i+1}} \]
(since \(B_{n-1} \) is \(k \)-linear)

\[= \sum_{i=0}^{n-2} (-1)^i s_{n-1,n-1-i,1^{i+1}}. \]

Now the proof of Theorem 4.2 (b) is a trivial concatenation of equalities:

Proof of Theorem 4.2 (b). Corollary 4.8 (b) yields

\[\sum_{\lambda \in \Par_{2n-1}^2 \setminus \{ (n-1,n-1,1^{i+1}) \}} m_\lambda = h_{2n-1} - h_{n-1} p_n = B_{n-1} (h_n - p_n) \]
(by Lemma 4.16)

\[= \sum_{i=0}^{n-2} (-1)^i s_{n-1,n-1-i,1^{i+1}} \]
(by Lemma 4.17).

5. Final remarks

5.1. SageMath code

The SageMath computer algebra system \([\text{SageMath}]\) does not (yet) natively know the Petrie symmetric functions \(G(k,m) \); but they can be easily constructed in it. For example, the code that follows computes \(G(k,n) \) expanded in the Schur basis:

```python
Sym = SymmetricFunctions(QQ) # Replace QQ by your favorite base ring.
m = Sym.m() # monomial symmetric functions
s = Sym.s() # Schur functions

def G(k, n): # a Petrie function
    return s(m.sum(m[lam] for lam in Partitions(n, max_part=k-1)))
```
5.2. Understanding the Petrie numbers

Combining Corollary 2.10 with Theorem 2.15 yields an explicit expression of all coefficients in the expansion of a Petrie symmetric function $G(k,m)$ in the Schur basis. It would stand to reason if the identity in Theorem 4.2 (b) (whose left hand side is $G(n,2n-1)$) could be obtained from this expression. Surprisingly, we have been unable to do so, which suggests that the description of pet$_k(\lambda,\emptyset)$ in Theorem 2.15 might not be optimal.

As to pet$_k(\lambda,\mu)$, we do not have an explicit description at all, unless we count the recursive one that can be extracted from the proof in [GorWil74].

5.3. MNable symmetric functions

Combining Theorem 2.17 with Proposition 2.8, we conclude that for any $k > 0$ and $m \in \mathbb{N}$, the symmetric function $G(k,m) \in \Lambda$ has the following property: For any $\mu \in \text{Par}$, its product $G(k,m) \cdot s_{\mu}$ can be written in the form $\sum_{\lambda \in \text{Par}} u_{\lambda}s_{\lambda}$ with $u_{\lambda} \in \{-1,0,1\}$ for all $\lambda \in \text{Par}$. It has this property in common with the symmetric functions h_m and e_m (according to the Pieri rules) and p_m (according to the Murnaghan–Nakayama rule) as well as several others. The study of symmetric functions having this property – which we call MNable symmetric functions (in honor of Murnaghan and Nakayama) – has been initiated in [Grinbe20a, §8], but there is much to be done.

5.4. A conjecture of Per Alexandersson

In February 2020, Per Alexandersson suggested the following conjecture:

Conjecture 5.1. Let k be a positive integer, and $m \in \mathbb{N}$. Then, $G(k,m) \cdot p_2 \in \Lambda$ can be written in the form $\sum_{\lambda \in \text{Par}} u_{\lambda}s_{\lambda}$ with $u_{\lambda} \in \{-1,0,1\}$ for all $\lambda \in \text{Par}$.

For example,

$$G(3,4) \cdot p_2 = s_{(1,1,1,1,1)} + s_{(2,2,2)} - s_{(3,1,1,1)} - s_{(3,3)} + s_{(4,2)}.$$

Conjecture 5.1 has been verified for all k and m satisfying $k + m \leq 30$.

Note that Conjecture 5.1 becomes false if p_2 is replaced by p_3. For example,

$$G(3,4) \cdot p_3 = -s_{(1,1,1,1,1,1)} + s_{(2,2,1,1)} - 2s_{(2,2,2,1)} + s_{(3,2,1,1)} - s_{(4,1,1,1)} - s_{(4,3)} + s_{(5,2)}.$$

5.5. A conjecture of François Bergeron

An even more mysterious conjecture was suggested by François Bergeron in April 2020:
Conjecture 5.2. Let k and n be positive integers, and $m \in \mathbb{N}$. Let ∇ be the nabla operator as defined (e.g.) in [Berger19, §3.2.1]. Then, there exists a sign $\sigma_{n,k,m} \in \{1, -1\}$ such that $\sigma_{n,k,m} \nabla^n (G(k,m))$ is an $\mathbb{N}[q,t]$-linear combination of Schur functions.

Using SageMath, this conjecture has been checked for $n = 1$ and all $k,m \in \{0,1,\ldots,9\}$; the signs $\sigma_{1,k,m}$ are given by the following table:

$$
\begin{array}{cccccccccc}
 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & + & + & + & + & + & + & + & + & + \\
3 & + & - & - & - & + & + & - & - & - \\
4 & + & - & + & + & - & + & + & + & + \\
5 & + & - & - & - & - & + & - & + & + \\
6 & + & - & + & + & + & + & - & + & - \\
7 & + & - & - & + & + & - & - & + & + \\
8 & + & - & + & + & + & + & + & + & + \\
9 & + & - & - & + & + & + & + & - & - \\
\end{array}
$$

(where the entry in the row indexed k and the column indexed m is the sign $\sigma_{1,k,m}$, represented by a “+” sign if it is 1 and by a “−” sign if it is −1). I am not aware of a pattern in these signs, apart from the fact that $\sigma_{1,2,m} = 1$ for all $m \in \mathbb{N}$ (a consequence of Haiman’s famous interpretation of $\nabla(e_m)$ as a character), and that $\sigma_{1,k,m}$ appears to be $(-1)^{m-1}$ whenever $1 \leq m < k$ (which would follow from the conjecture that $(-1)^{m-1} \nabla(h_m)$ is an $\mathbb{N}[q,t]$-linear combination of Schur functions for any $m \geq 1$).

5.6. “Petriefication” of Schur functions

Theorem 2.29 shows the existence of a Hopf algebra homomorphism $V_k : \Lambda \to \Lambda$ that sends the complete homogeneous symmetric functions h_1, h_2, h_3, \ldots to the Petrie symmetric functions $G(k,1), G(k,2), G(k,3), \ldots$. It thus is natural to consider the images of all Schur functions s_λ under this homomorphism V_k. Experiments with small λ’s may suggest that these images $V_k(s_\lambda)$ all can be written in the form $\sum_{\lambda \in \text{Par}} u_\lambda s_\lambda$ with $u_\lambda \in \{-1, 0, 1\}$. But this is not generally the case; counterexamples include $V_3(s_{(4,4,4)})$, $V_4(s_{(4,4)})$ and $V_4(s_{(5,1,1,1,1)})$. (Of course, it is true when λ is a single row, because of $V_k(s_{(m)}) = V_k(h_m) = G(k,m)$; and it is also true when λ is a single column, because the Hopf algebra homomorphism V_k commutes with the antipode S that sends $h_m \mapsto (-1)^m e_m$ and $s_\lambda \mapsto (-1)^{|\lambda|} s_\lambda$.)

Note that these images $V_k(s_\lambda)$ are precisely the modular Schur functions s'_λ studied in [Walker94].
5.7. Postnikov’s generalization

At the MIT Algebraic Combinatorics preseminar roundtable (2020), Alexander Postnikov has suggested a generalization of the Petrie symmetric functions that preserves some of their more elementary properties. In this subsection, we shall survey this generalization.

Proofs will be sketched (at best); the reader can find the details in the detailed version [Grinbe20b].

Convention 5.3. We fix a formal power series \(F \in k[[t]] \) whose constant term is 1. (We will keep this \(F \) fixed throughout the present subsection.)

The notations in the following definition will also be used throughout this subsection:

Definition 5.4. (a) Let \(f_0, f_1, f_2, \ldots \) be the coefficients of the formal power series \(F \), so that \(F = \sum_{n \in \mathbb{N}} f_n t^n \). Thus, \(f_0 \) is the constant term of \(F \); hence, \(f_0 = 1 \) (since the constant term of \(F \) is 1).

(b) We set \(f_i = 0 \) for each negative integer \(i \).

(c) For any weak composition \(\alpha \), we define an element \(f_\alpha \in k \) by

\[
 f_\alpha = f_{\alpha_1} f_{\alpha_2} f_{\alpha_3} \cdots .
\]

(Here, the infinite product \(f_{\alpha_1} f_{\alpha_2} f_{\alpha_3} \cdots \) is well-defined, since every sufficiently high positive integer \(i \) satisfies \(\alpha_i = 0 \) and thus \(f_{\alpha_i} = f_0 = 1 \).)

(d) We define the power series

\[
 G_F = \sum_{\alpha \in \text{WC}} f_\alpha x^\alpha. \tag{95}
\]

This is a formal power series in \(k[[x_1, x_2, x_3, \ldots]] \).

(e) For any \(m \in \mathbb{N} \), we define the power series

\[
 G_{F,m} = \sum_{\substack{\alpha \in \text{WC}; \\ |\alpha| = m}} f_\alpha x^\alpha. \tag{96}
\]

This is a formal power series in \(k[[x_1, x_2, x_3, \ldots]] \).

Example 5.5. Let us see how these power series \(G_F \) and \(G_{F,m} \) look for specific values of \(F \).

(a) Let \(F = \frac{1}{1 - t} = 1 + t + t^2 + t^3 + \cdots \). Then, \(f_i = 1 \) for each \(i \in \mathbb{N} \). Hence, \(f_\alpha = 1 \cdot 1 \cdot 1 \cdots = 1 \) for any weak composition \(\alpha \). Thus,

\[
 G_F = \sum_{\alpha \in \text{WC}} f_\alpha x^\alpha = \sum_{\alpha \in \text{WC}} x^\alpha
\]
and
\[G_{F,m} = \sum_{\alpha \in \text{WC}; |\alpha| = m} f_{\alpha} x^\alpha = \sum_{\alpha \in \text{WC}; |\alpha| = m} x^\alpha = h_m \quad \text{for each } m \in \mathbb{N}. \]

(b) Now, let \(F = 1 \). Then, \(f_i = [i = 0] \) for each \(i \in \mathbb{N} \) (where we are using the Iverson bracket notation from Convention 2.4). Hence, \(f_{\alpha} = [\alpha = \varnothing] \) for any weak composition \(\alpha \). Thus, it is easy to see that \(G_F = 1 \) and \(G_{F,m} = [m = 0] \) for each \(m \in \mathbb{N} \).

(c) Now, fix a positive integer \(k \), and set \(F = 1 + t + t^2 + \cdots + t^{k-1} \). Then, \(f_i = [i < k] \) for each \(i \in \mathbb{N} \). Hence, \(f_{\alpha} = \prod_{i \geq 1} [\alpha_i < k] = [\alpha_i < k \text{ for all } i] \) for any weak composition \(\alpha \). Thus, \(G_F \) and the \(G_{F,m} \) are generalizations of the Petrie symmetric series \(G(k) \) and the Petrie symmetric functions \(G(k,m) \), respectively.

Likewise, we can see that \(G_{F,m} = G(k,m) \) for each \(m \in \mathbb{N} \). This shows that the \(G_F \) and the \(G_{F,m} \) are generalizations of the Petrie symmetric series \(G(k) \) and the Petrie symmetric functions \(G(k,m) \), respectively.

The next proposition generalizes parts (a), (b) and (c) of Proposition 2.3:

Proposition 5.6. (a) The formal power series \(G_{F,m} \) is the \(m \)-th degree homogeneous component of \(G_F \) for each \(m \in \mathbb{N} \).

(b) We have
\[G_F = \sum_{\alpha \in \text{WC}} f_{\alpha} x^\alpha = \sum_{\lambda \in \text{Par}} f_{\lambda} m_\lambda = \prod_{i=1}^{\infty} F(x_i). \]

(c) We have
\[G_{F,m} = \sum_{\alpha \in \text{WC}; |\alpha| = m} f_{\alpha} x^\alpha = \sum_{\lambda \in \text{Par}; |\lambda| = m} f_{\lambda} m_\lambda \in \Lambda \]

for each \(m \in \mathbb{N} \).

(d) The formal power series \(G_F \) is symmetric.

(e) We have \(G_{F,0} = 1 \).

Proof of Proposition 5.6 (sketched). Parts (a), (b) and (c) of Proposition 5.6 generalize the corresponding parts of Proposition 2.3 and are proved more or less analogously. (The only novelty is the use of a fact that says that \(f_{\alpha} = f_{\lambda} \) whenever a weak composition \(\alpha \) is obtained by permuting the entries of a partition \(\lambda \). Of course, this fact follows from the definitions of \(f_{\alpha} \) and \(f_{\lambda} \).)
Part (d) of Proposition 5.6 is clear from part (b). Part (e) follows from $f_\emptyset = 1$.

Next, let us generalize Definition 2.5:

Definition 5.7. Let $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell) \in \text{Par}$ and $\mu = (\mu_1, \mu_2, \ldots, \mu_\ell) \in \text{Par}$. Then, the F-Petrie number $\text{pet}_F(\lambda, \mu)$ of λ and μ is the element of k defined by

$$\text{pet}_F(\lambda, \mu) = \det \left(f_{\lambda_i - \mu_j - i + j} \right)_{1 \leq i \leq \ell, 1 \leq j \leq \ell}.$$

(97)

Note that this integer does not depend on the choice of ℓ (in the sense that it does not change if we enlarge ℓ by adding trailing zeroes to the representations of λ and μ); this follows from Lemma 5.9 below.

Example 5.8. For $\ell = 3$, the equality (97) rewrites as

$$\text{pet}_F(\lambda, \mu) = \det \begin{pmatrix} f_{\lambda_1 - \mu_1} & f_{\lambda_1 - \mu_2 + 1} & f_{\lambda_1 - \mu_3 + 2} \\ f_{\lambda_2 - \mu_1 - 1} & f_{\lambda_2 - \mu_2} & f_{\lambda_2 - \mu_3 + 1} \\ f_{\lambda_3 - \mu_1 - 2} & f_{\lambda_3 - \mu_2 - 1} & f_{\lambda_3 - \mu_3} \end{pmatrix}.$$

We can now state the generalization of Lemma 2.7 that is needed to justify Definition 5.7:

Lemma 5.9. Let $\lambda \in \text{Par}$ and $\mu \in \text{Par}$. Let $\ell \in \mathbb{N}$ be such that $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_\ell)$ and $\mu = (\mu_1, \mu_2, \ldots, \mu_\ell)$. Then, the determinant $\det \left(f_{\lambda_i - \mu_j - i + j} \right)_{1 \leq i \leq \ell, 1 \leq j \leq \ell}$ does not depend on the choice of ℓ.

The slickest way to prove Lemma 5.9 is using a k-algebra homomorphism $\alpha_F : \Lambda \to k$ that generalizes the homomorphism α_k from Definition 3.6. Let us introduce this homomorphism α_F (which will also be used in other proofs). We recall the h-universal property of Λ, which was stated in Subsection 3.5:

Definition 5.10. The h-universal property of Λ shows that there is a unique k-algebra homomorphism $\alpha_F : \Lambda \to k$ that sends h_i to f_i for all positive integers i. Consider this α_F.

We will use this homomorphism α_F several times in what follows; let us thus begin by stating some elementary properties of α_F.

Lemma 5.11. (a) We have

$$\alpha_F(h_i) = f_i \quad \text{for all } i \in \mathbb{N}. \quad (98)$$

(b) We have

$$\alpha_F(h_i) = f_i \quad \text{for all } i \in \mathbb{Z}. \quad (99)$$
(c) Let λ be a partition. Define h_λ as in Definition 3.1. Then,

$$\alpha_F(h_\lambda) = f_\lambda.$$ \hspace{1cm} (100)

Proof of Lemma 5.11 (sketched). Analogous to the proof of Lemma 3.7.

Proof of Lemma 5.9 (sketched). Adapt any of the two proofs of Lemma 2.7. (In adapting the first proof, use α_F instead of α_k.)

We now come to more substantive properties of $G(k)$ and $G(k,m)$. The following theorem generalizes Theorem 2.9.

Theorem 5.12. We have

$$G_F = \sum_{\lambda \in \text{Par}} \text{pet}_F(\lambda,\emptyset)s_\lambda.$$

(Recall that \emptyset denotes the empty partition $() = (0,0,0,\ldots)$.)

The following corollary (which already appeared in [Stanle01, Exercise 7.91 (d)]) generalizes Corollary 2.10.

Corollary 5.13. Let $m \in \mathbb{N}$. Then,

$$G_{F,m} = \sum_{\lambda \in \text{Par}_m} \text{pet}_F(\lambda,\emptyset)s_\lambda.$$

The following theorem generalizes Theorem 2.17:

Theorem 5.14. Let $\mu \in \text{Par}$. Then,

$$G_F \cdot s_\mu = \sum_{\lambda \in \text{Par}} \text{pet}_F(\lambda,\mu)s_\lambda.$$

The following corollary generalizes Corollary 2.18:

Corollary 5.15. Let $m \in \mathbb{N}$. Let $\mu \in \text{Par}$. Then,

$$G_{F,m} \cdot s_\mu = \sum_{\lambda \in \text{Par}_{m+|\mu|}} \text{pet}_F(\lambda,\mu)s_\lambda.$$

Proofs of Theorem 5.14, Corollary 5.15, Theorem 5.12 and Corollary 5.13 (sketched). These proofs are analogous to the proofs of Theorem 2.17, Corollary 2.18, Theorem 2.9 and Corollary 2.10, respectively (but using α_F instead of α_k).
Proposition 5.6 (c) shows that $G_{F,m} \in \Lambda$ for each $m \in \mathbb{N}$. Hence, we can apply the comultiplication Δ of the Hopf algebra Λ to $G_{F,m}$. The next theorem (which generalizes Theorem 2.19) gives a simple expression for the result of this:

Theorem 5.16. Let $m \in \mathbb{N}$. Then,

$$\Delta (G_{F,m}) = \sum_{i=0}^{m} G_{F,i} \otimes G_{F,m-i}.$$

Proof of Theorem 5.16 (sketched). Proposition 5.6 (b) tells us that $G_F = \prod_{i=1}^{\infty} F(x_i)$. Comparing this with the equality $G_F = \sum_{k \in \mathbb{N}} G_{F,k}$ (which follows from Proposition 5.6 (a)), we obtain

$$\sum_{k \in \mathbb{N}} G_{F,k} = \prod_{i=1}^{\infty} F(x_i). \quad (101)$$

Substituting the variables y_1, y_2, y_3, \ldots for the variables x_1, x_2, x_3, \ldots in this equality, we obtain

$$\sum_{k \in \mathbb{N}} G_{F,k} (y) = \prod_{i=1}^{\infty} F(y_i). \quad (102)$$

Substituting the variables $x_1, x_2, x_3, \ldots, y_1, y_2, y_3, \ldots$ for the variables x_1, x_2, x_3, \ldots on both sides of the equality $G_F = \prod_{i=1}^{\infty} F(x_i)$, we obtain

$$G_F (x, y) = \left(\prod_{i=1}^{\infty} F(x_i) \right) \left(\prod_{i=1}^{\infty} F(y_i) \right) = \left(\sum_{k \in \mathbb{N}} G_{F,k} \right) \left(\sum_{k \in \mathbb{N}} G_{F,k} (y) \right)$$

(by 101) (by 102)

$$= \left(\sum_{k \in \mathbb{N}} G_{F,k} (x) \right) \left(\sum_{k \in \mathbb{N}} G_{F,k} (y) \right) = \sum_{(i,j) \in \mathbb{N} \times \mathbb{N}} G_{F,i} (x) G_{F,j} (y).$$

Comparing the m-th degree homogeneous components of both sides of this equality, we find

$$G_{F,m} (x, y) = \sum_{(i,j) \in \mathbb{N} \times \mathbb{N}; i+j=m} G_{F,i} (x) G_{F,j} (y)$$

(since Proposition 5.6 (a) shows that the m-th degree homogeneous component of $G_F (x, y)$ is $G_{F,m} (x, y)$, while that of the sum $\sum_{(i,j) \in \mathbb{N} \times \mathbb{N}} G_{F,i} (x) G_{F,j} (y)$ is the homogeneous of degree $i+j$.
subsum \(\sum_{(i,j) \in \mathbb{N} \times \mathbb{N}; i+j=m} G_{F,i}(x) G_{F,j}(y) \)). Thus,

\[
G_{F,m}(x,y) = \sum_{(i,j) \in \mathbb{N} \times \mathbb{N}; i+j=m} G_{F,i}(x) G_{F,j}(y) = \sum_{i \in \{0,1,\ldots,m\}} G_{F,i}(x) G_{F,m-i}(y).
\]

Hence, (10) holds for \(f = G_{F,m}, I = \{0,1,\ldots,m\} \), \((f_1,i)_{i \in I} = (G_{F,i})_{i \in \{0,1,\ldots,m\}} \) and \((f_2,i)_{i \in I} = (G_{F,m-i})_{i \in \{0,1,\ldots,m\}} \). Therefore, (9) (applied to these \(f, I, (f_1,i)_{i \in I} \) and \((f_2,i)_{i \in I} \)) yields

\[
\Delta(G_{F,m}) = \sum_{i \in \{0,1,\ldots,m\}} G_{F,i} \otimes G_{F,m-i} = \sum_{i=0}^{m} G_{F,i} \otimes G_{F,m-i}.
\]

This proves Theorem 5.16. \(\Box\)

The next few results we will state rely on the following definition:

Definition 5.17. Let \(F' \) be the derivative of the formal power series \(F \in k[[t]]. \)

Let us write the formal power series \(\frac{F'}{F} \in k[[t]] \) (which is well-defined, since \(F \) has constant term 1) in the form \(\frac{F'}{F} = \sum_{n \in \mathbb{N}} \gamma_n t^n \) for some \(\gamma_0, \gamma_1, \gamma_2, \ldots \in k \).

Example 5.18. Let us see how \(F' \) and \(\gamma_n \) look for specific values of \(F \).

(a) Let \(F = \frac{1}{1-t} = 1 + t + t^2 + t^3 + \cdots \). Then, \(F' = \frac{1}{(1-t)^2} \), so that

\[
\frac{F'}{F} = \frac{1}{1-t} = 1 + t + t^2 + t^3 + \cdots = \sum_{n \in \mathbb{N}} t^n.
\]

Therefore, \(\gamma_n = 1 \) for each \(n \in \mathbb{N} \).

(b) Now, let \(F = 1 \). Then, \(F' = 0 \), so that \(\frac{F'}{F} = 0 = \sum_{n \in \mathbb{N}} 0 t^n \). Therefore, \(\gamma_n = 0 \) for each \(n \in \mathbb{N} \).

(c) Now, fix a positive integer \(k \), and set \(F = 1 + t + t^2 + \cdots + t^{k-1} \). Then, \(F = \frac{1 - t^k}{1-t} \), and thus a simple calculation using the quotient rule shows that
\[F' = \frac{1 + (k - 1) t^k - k t^{k-1}}{(1 - t)^2}. \] Hence,

\[\frac{F'}{F} = \frac{1 + (k - 1) t^k - k t^{k-1}}{(1 - t) (1 - t^k)} = \frac{1}{1 - t} - k t^{k-1} \cdot \frac{1}{1 - t^k} = \sum_{n \in \mathbb{N}} t^n - \sum_{n \in \mathbb{N}; k | n+1} k t^n.
\]

Therefore, \(\gamma_n = 1 - \lfloor k \mid n+1 \rfloor k \) for each \(n \in \mathbb{N} \).

The next proposition is easily seen to generalize Proposition 2.24.

Proposition 5.19. Let \(m \) be a positive integer. Then, \(\langle p_m, G_{F,m} \rangle = \gamma_{m-1} \).

The proof of this proposition relies on the following property of the \(k \)-algebra homomorphism \(\alpha_F : \Lambda \rightarrow k \) from Definition 5.10.

Lemma 5.20. We have \(\alpha_F (p_m) = \gamma_{m-1} \) for each positive integer \(m \).

Proof of Lemma 5.20 (sketched). Consider the ring \(\Lambda [[t]] \) of formal power series in one indeterminate \(t \) over \(\Lambda \). Consider also the analogous ring \(k [[t]] \) over \(k \).

The map \(\alpha_F : \Lambda \rightarrow k \) is a \(k \)-algebra homomorphism, and therefore induces a \(k [[t]] \)-algebra homomorphism

\[\alpha_F [[t]] : \Lambda [[t]] \rightarrow k [[t]] \]

that sends each formal power series \(\sum_{n \geq 0} a_n t^n \in \Lambda [[t]] \) (with \(a_n \in \Lambda \)) to \(\sum_{n \geq 0} \alpha_F (a_n) t^n \).

Consider this \(k [[t]] \)-algebra homomorphism \(\alpha_F [[t]] \).

Define the formal power series

\[H(t) = \prod_{i=1}^{\infty} (1 - x_i t)^{-1} \in (k [[x_1, x_2, x_3, \ldots]]) [[t]]. \] (103)

Then, from [GriRei20 (2.4.1)], we know that

\[H(t) = \sum_{n \geq 0} h_n(x) t^n = \sum_{n \geq 0} h_n t^n \in \Lambda [[t]]. \]
It is now easy to see that
\[(\alpha_F [[t]]) (H (t)) = F. \] (104)

(Indeed, this follows by straightforward computations using the definition of \(\alpha_F [[t]] \) from \(H (t) = \sum_{n \geq 0} h_n t^n \) and from Lemma 5.11 (a).)

Also, it is easy to see that the map \(\alpha_F [[t]] \) respects derivatives: i.e., any power series \(u \in \Lambda [[t]] \) satisfies \((\alpha_F [[t]]) (u') = ((\alpha_F [[t]]) (u))' \). Applying this to \(u = H (t) \), we obtain
\[(\alpha_F [[t]]) (H' (t)) = (\alpha_F [[t]]) (H (t))' = F'. \] (105)

From [GriRei20, Exercise 2.5.21], we know that
\[\sum_{m \geq 0} p_{m+1} t^m = \frac{H' (t)}{H (t)}. \] (106)

Applying the map \(\alpha_F [[t]] \) to both sides of this equality, we find
\[(\alpha_F [[t]]) \left(\sum_{m \geq 0} p_{m+1} t^m \right) = \frac{H' (t)}{H (t)} = \frac{(\alpha_F [[t]]) (H' (t))}{(\alpha_F [[t]]) (H (t))} \]
\[= F' \quad \text{(since } \alpha_F [[t]] \text{ is a } k\text{-algebra homomorphism)} \]
\[= \sum_{n \in \mathbb{N}} \gamma_n t^n = \sum_{n \geq 0} \gamma_n t^n. \]

Comparing this with
\[(\alpha_F [[t]]) \left(\sum_{m \geq 0} p_{m+1} t^m \right) = \sum_{m \geq 0} \alpha_F (p_{m+1}) t^m \quad \text{(by the definition of } \alpha_F [[t]]), \]
we obtain
\[\sum_{m \geq 0} \alpha_F (p_{m+1}) t^m = \sum_{n \geq 0} \gamma_n t^n. \]

Comparing \(t^n \)-coefficients on both sides of this equality, we find
\[\alpha_F (p_{n+1}) = \gamma_n \quad \text{for each } n \in \mathbb{N}. \]

In other words, \(\alpha_F (p_m) = \gamma_{m-1} \) for each positive integer \(m \). This proves Lemma 5.20. \(\square \)
Proof of Proposition 5.19 (sketched). Proposition 5.6 (c) yields \(G_{F,m} = \sum_{\lambda \in \text{Par}; |\lambda| = m} f_{\lambda} m_{\lambda} \). Hence,

\[
\langle p_m, G_{F,m} \rangle = \left\langle p_m, \sum_{\lambda \in \text{Par}; |\lambda| = m} f_{\lambda} m_{\lambda} \right\rangle = \sum_{\lambda \in \text{Par}; |\lambda| = m} f_{\lambda} \left\langle p_m, m_{\lambda} \right\rangle \tag{107}
\]

(since the Hall inner product is \(k \)-bilinear).

Now, recall that the bases \((m_{\lambda})_{\lambda \in \text{Par}}\) and \((h_{\lambda})_{\lambda \in \text{Par}}\) of \(\Lambda \) are dual to each other with respect to the Hall inner product \(\langle \cdot, \cdot \rangle \). Hence, every \(a \in \Lambda \) satisfies

\[
a = \sum_{\lambda \in \text{Par}; |\lambda| = m} \langle m_{\lambda}, a \rangle h_{\lambda}
\]

(by a general property of dual bases with respect to symmetric bilinear forms).

Applying this to \(a = p_m \), we obtain

\[
p_m = \sum_{\lambda \in \text{Par}; |\lambda| = m} \langle m_{\lambda}, p_m \rangle h_{\lambda} = \sum_{\lambda \in \text{Par}; |\lambda| = m} \left\langle m_{\lambda}, p_m \right\rangle h_{\lambda} + \sum_{\lambda \in \text{Par}; |\lambda| \neq m} \left\langle m_{\lambda}, p_m \right\rangle h_{\lambda} \tag{by \ref{lemma:innerproduct}}
\]

Applying the map \(\alpha_F \) to both sides of this equality, we find

\[
\alpha_F (p_m) = \sum_{\lambda \in \text{Par}; |\lambda| = m} \langle p_m, m_{\lambda} \rangle \alpha_F (h_{\lambda}) = \sum_{\lambda \in \text{Par}; |\lambda| = m} \langle p_m, m_{\lambda} \rangle \alpha_F (h_{\lambda}) \tag{since the map \(\alpha_F \) is \(k \)-linear}
\]

Comparing this with \ref{eqn:innerproduct}, we obtain

\[
\langle p_m, G_{F,m} \rangle = \alpha_F (p_m) = \gamma_{m-1} \tag{by Lemma \ref{lemma:innerproduct}}.
\]

This proves Proposition 5.19. \(\square \)

We can now generalize Theorem 2.22:

Theorem 5.21. Assume that all the elements \(\gamma_0, \gamma_1, \gamma_2, \ldots \) are invertible in \(k \).

Then, the family \((G_{F,m})_{m \geq 1} = (G_{F,1}, G_{F,2}, G_{F,3}, \ldots)\) is an algebraically independent generating set of the commutative \(k \)-algebra \(\Lambda \). (In other words, the canonical \(k \)-algebra homomorphism

\[
k [u_1, u_2, u_3, \ldots] \rightarrow \Lambda,
\]

\(u_m \mapsto G_{F,m} \)
Proof of Theorem 5.21 (sketched). Analogous to the proof of Theorem 2.22, but using Proposition 5.19 (and Proposition 5.6) instead of Proposition 2.24 (and Proposition 2.3).

Remark 5.22. It is not hard to verify that the converse of Theorem 5.21 also holds: If the family \((G_{F,m})_{m \geq 1} = (G_{F,1}, G_{F,2}, G_{F,3}, \ldots)\) generates the \(k\)-algebra \(\Lambda\), then all the elements \(\gamma_0, \gamma_1, \gamma_2, \ldots\) are invertible in \(k\). We omit the proof of this.

The next theorem generalizes parts of Theorem 2.29 (specifically, it generalizes the properties of the map \(V_k\) stated in Theorem 2.29, even though it defines this map differently).\(^{38}\)

Theorem 5.23. The \(h\)-universal property of \(\Lambda\) shows that there is a unique \(k\)-algebra homomorphism \(V_F : \Lambda \to \Lambda\) that sends \(h_i\) to \(G_{F,i}\) for all positive integers \(i\) (since \(G_{F,i} \in \Lambda\) for each positive integer \(i\)). Consider this \(V_F\).

(a) This map \(V_F\) is a \(k\)-Hopf algebra homomorphism.

(b) We have \(V_F(h_m) = G_{F,m}\) for each \(m \in \mathbb{N}\).

(c) We have \(V_F(p_n) = \gamma_{n-1}p_n\) for each positive integer \(n\). (See Definition 5.17 for the meaning of \(\gamma_{n-1}\).)

Proof of Theorem 5.23 (sketched). (b) When \(m\) is positive, this follows from the very definition of \(V_F\). It remains to prove this for \(m = 0\). However, this boils down to showing that \(V_F(1) = 1\), which is clear (since \(V_F\) is a \(k\)-algebra homomorphism).

(a) Let \(\Delta\) and \(\varepsilon\) be the comultiplication and the counit of the Hopf algebra \(\Lambda\). Both \(\Delta\) and \(\varepsilon\) are \(k\)-algebra homomorphisms. It suffices to show that \(\Delta \circ V_F = (V_F \otimes V_F) \circ \Delta\) and \(\varepsilon \circ V_F = \varepsilon\). We shall show that \(\Delta \circ V_F = (V_F \otimes V_F) \circ \Delta\) only; the proof of \(\varepsilon \circ V_F = \varepsilon\) is similar but much simpler (since \(\varepsilon\) sends any homogeneous symmetric function of positive degree to 0).

Recall that the family \((h_n)_{n \geq 1}\) generates \(\Lambda\) as a \(k\)-algebra. Thus, in order to prove that \(\Delta \circ V_F = (V_F \otimes V_F) \circ \Delta\), it suffices to prove the equality \((\Delta \circ V_F)(h_n) = ((V_F \otimes V_F) \circ \Delta)(h_n)\) for each \(n \geq 1\) (since both \(\Delta \circ V_F\) and \((V_F \otimes V_F) \circ \Delta\) are \(k\)-algebra homomorphisms). In view of Theorem 5.23 (b), this equality rewrites as \(\Delta(G_{F,n}) = \sum_{i=0}^{n} G_{F,i} \otimes G_{F,n-i}\). But this follows directly from Theorem 5.16.

(c) This is best proved using the notion of a logarithmic derivative. Let us first define it in full generality, without any assumptions on \(k\).

If \(R\) is a commutative ring, and if \(F \in R[[t]]\) is any formal power series whose constant term is 1 (or, more generally, any formal power series that has a multiplicative inverse), then the logarithmic derivative of \(F\) is defined to be the formal power series \(F' = F' / F^2 \in R[[t]]\) (this is well-defined, since \(F\) is invertible). This logarithmic derivative is denoted by \(I\operatorname{der} F\).

\(^{38}\)We recall the “\(h\)-universal property of \(\Lambda\)”, which we stated in Subsection 3.5.
The following properties of logarithmic derivatives are easy to prove:

1. Let R be a commutative ring. Let $u, v \in R[[t]]$ be two formal power series whose constant terms are 1. Then, $\text{l}d_{\text{er}}(uv) = \text{l}d_{\text{er}}u + \text{l}d_{\text{er}}v$.

 \textit{(Proof: Just recall the definition of logarithmic derivatives and the Leibniz law $(uv)' = u'v + uv'$.)}

2. Let R be a commutative topological ring. Let $(u_n)_{n \in \mathbb{N}} = (u_0, u_1, u_2, \ldots) \in R[[t]]^\mathbb{N}$ be a sequence of formal power series whose constant terms are 1. Let $u \in R[[t]]$ be a formal power series whose constant term is 1. Assume that $\lim_{n \to \infty} u_n = u$ (with respect to the standard topology on $R[[t]]$ induced by the topology on R). Then, $\lim_{n \to \infty} (\text{l}d_{\text{er}} u_n) = \text{l}d_{\text{er}} u$ (with respect to the same topology on $R[[t]]$).

 \textit{(Proof: Let $R[[t]]_1$ be the set of power series in $R[[t]]$ whose constant term is 1. Argue that $\lim_{n \to \infty} (u_n') = u'$ first; then argue that the map $R[[t]] \times R[[t]]_1 \to R[[t]], (v, w) \mapsto \frac{v}{w}$ is continuous.)}

3. Let R be a commutative ring. Let $u_1, u_2, \ldots, u_n \in R[[t]]$ be finitely many formal power series whose constant terms are 1. Then,

$$\text{l}d_{\text{er}} \left(\prod_{i=1}^{n} u_i \right) = \sum_{i=1}^{n} \text{l}d_{\text{er}} u_i.$$

\textit{(Proof: Induction on n, using Property 1 in the induction step.)}

4. Let R be a commutative topological ring. Let $u_1, u_2, u_3, \ldots \in R[[t]]$ be infinitely many formal power series whose constant terms are 1. Assume that the infinite product $\prod_{i=1}^{\infty} u_i$ converges (with respect to the standard topology on $R[[t]]$ induced by the topology on R). Then, the infinite sum $\sum_{i=1}^{\infty} \text{l}d_{\text{er}} u_i$ converges as well, and we have

$$\text{l}d_{\text{er}} \left(\prod_{i=1}^{\infty} u_i \right) = \sum_{i=1}^{\infty} \text{l}d_{\text{er}} u_i.$$

\textit{(Proof: This is the \textit{n} \to \infty limit of Property 3. Use Property 2 to pass to this limit.)}

39If R is a commutative \mathbb{Q}-algebra, then the logarithmic derivative $\text{l}d_{\text{er}} F$ of a power series $F \in R[[t]]$ equals the derivative of $\log F$. This trivializes many of the properties stated below; but this shortcut is not available when R is merely an arbitrary commutative ring.
5. Let R be a commutative ring. Let $u \in R[[t]]$ be a formal power series whose constant term is 1. Let $\lambda \in R$. Then,

$$\text{Ider} \left(u (\lambda t) \right) = \lambda \cdot (\text{Ider} \ u) \left(\lambda t \right).$$

(Proof: This follows from the equality $u'(\lambda t) = \lambda \cdot u'(\lambda t)$, which is an easy consequence of the chain rule but also easy to check directly.)

6. Let R and S be two commutative k-algebras. Let $\alpha : R \to S$ be a k-algebra homomorphism. As we know, α induces a $k[[t]]$-algebra homomorphism

$$\alpha [[t]] : R[[t]] \to S[[t]]$$

that sends each power series $\sum_{n \geq 0} a_n t^n \in R[[t]]$ (with $a_n \in R$) to $\sum_{n \geq 0} \alpha(a_n) t^n \in S[[t]]$.

Let $u \in R[[t]]$ be a formal power series whose constant term is 1. Then, the constant term of the power series $(\alpha[[t]])(u)$ is 1, and we have

$$\text{Ider} \left((\alpha[[t]])(u) \right) = (\alpha[[t]]) \left(\text{Ider} \ u \right).$$

(Proof: This is essentially saying that the logarithmic derivative is functorial with respect to the base ring. The proof is straightforward.)

Now, let us come back to proving Theorem 5.23 (c):

Consider the ring $(k[[x_1, x_2, x_3, \ldots]])[[t]]$ of formal power series in one indeterminate t over $k[[x_1, x_2, x_3, \ldots]]$. This ring is a topological ring, where the topology is the standard one induced by the standard topology on $k[[x_1, x_2, x_3, \ldots]]$ (not the discrete topology). This topological ring $(k[[x_1, x_2, x_3, \ldots]])[[t]]$ is, of course, isomorphic to $k[[x_1, x_2, x_3, \ldots, t]]$. The ring $\Lambda[[t]]$ is a subring of $(k[[x_1, x_2, x_3, \ldots]])[[t]]$.

Now, for each $m \in \mathbb{N}$, we know that $G_{F,m}$ is homogeneous of degree m (by Proposition 5.6 (a)), and therefore satisfies

$$G_{F,m}(tx_1, tx_2, tx_3, \ldots) = t^m \cdot G_{F,m} \quad (108)$$

(since any formal power series $u \in k[[x_1, x_2, x_3, \ldots]]$ that is homogeneous of degree m satisfies $u(tx_1, tx_2, tx_3, \ldots) = t^m \cdot u$).

On the other hand, from (101), we obtain

$$\prod_{i=1}^{\infty} F(x_i) = \sum_{k \in \mathbb{N}} G_{F,k} = \sum_{m \in \mathbb{N}} G_{F,m}.$$

Substituting tx_1, tx_2, tx_3, \ldots for x_1, x_2, x_3, \ldots on both sides of this equality, we obtain

$$\prod_{i=1}^{\infty} F(tx_i) = \sum_{m \in \mathbb{N}} G_{F,m} \left(tx_1, tx_2, tx_3, \ldots \right) \quad \text{(by (108))}$$

$$= \sum_{m \in \mathbb{N}} t^m \cdot G_{F,m}. \quad (109)$$
The map $V_F : \Lambda \to \Lambda$ is a k-algebra homomorphism. Hence, it induces a $k[[t]]$-algebra homomorphism

$$V_F : \Lambda[[t]] \to \Lambda[[t]]$$

that sends each formal power series $\sum_{n \geq 0} a_n t^n \in \Lambda[[t]]$ (with $a_n \in \Lambda$) to $\sum_{n \geq 0} V_F(a_n) t^n$.

Consider this $V_F[[t]]$.

Define the formal power series $H(t)$ as in (103). Then, from [GriRei20, (2.4.1)], we know that

$$H(t) = \sum_{n \geq 0} h_n \left(x \right) t^n = \sum_{n \geq 0} h_n t^n \in \Lambda[[t]].$$

Moreover, $H(t) = \sum_{n \geq 0} h_n t^n$ shows that the constant term of $H(t)$ is $h_0 = 1$. Thus, lder ($H(t)$) is well-defined.

Applying the map $V_F[[t]]$ to both sides of the equality $H(t) = \sum_{n \geq 0} h_n t^n$, we obtain

$$\left(V_F[[t]] \right) (H(t)) = \left(V_F[[t]] \right) \left(\sum_{n \geq 0} h_n t^n \right) = \sum_{n \geq 0} \underbrace{V_F(h_n)}_{=G_{F,n}} t^n \quad \text{(by Theorem 5.23(b))}$$

(by the definition of $V_F[[t]]$)

$$= \sum_{n \in \mathbb{N}} G_{F,n} t^n = \sum_{n \in \mathbb{N}} t^n \cdot G_{F,n} = \sum_{m \in \mathbb{N}} t^m \cdot G_{F,m}.$$

Comparing this with (109), we find

$$\left(V_F[[t]] \right) (H(t)) = \prod_{i=1}^{\infty} F(tx_i). \quad (110)$$

Now, the definition of lder ($H(t)$) yields

$$\text{lder} \left(H(t) \right) = H'(t) H(t) = \sum_{m \geq 0} p_{m+1} t^m \quad \text{(by (106))}$$

$$= \sum_{n \geq 0} p_{n+1} t^n.$$

Applying the map $V_F[[t]]$ to both sides of this equality, we find

$$\left(V_F[[t]] \right) (\text{lder} \left(H(t) \right)) = \left(V_F[[t]] \right) \left(\sum_{n \geq 0} p_{n+1} t^n \right) = \sum_{n \geq 0} \underbrace{V_F(p_{n+1})}_{=G_{F,n}} t^n \quad \text{(by the definition of } V_F[[t]])$$

$$= \sum_{n \in \mathbb{N}} V_F(p_{n+1}) t^n. \quad (111)$$
Now is the time to use our above list of properties of logarithmic derivatives. Recall that the constant term of $H(t)$ is 1. Hence, Property 6 of logarithmic derivatives shows that the constant term of the power series $(V_F [[t]]) (H(t))$ is 1, and that we have

$$\operatorname{lder} ((V_F [[t]]) (H(t))) = (V_F [[t]]) (\operatorname{lder} (H(t))).$$ \hfill (112)

Now, (111) yields

$$\sum_{n \in \mathbb{N}} V_F (p_{n+1}) t^n = (V_F [[t]]) (\operatorname{lder} (H(t)))$$

$$\quad = \operatorname{lder} ((V_F [[t]]) (H(t))) \quad \text{(by (112))}$$

$$\quad = \operatorname{lder} \left(\prod_{i=1}^{\infty} F (tx_i) \right) \quad \text{(by (110))}$$

(by (110)).

Now, the infinite product $\prod_{i=1}^{\infty} F (tx_i)$ converges (as we know from (109)). Hence, Property 4 of logarithmic derivatives yields that the infinite sum $\sum_{i=1}^{\infty} \operatorname{lder} (F (tx_i))$ converges as well, and that we have

$$\operatorname{lder} \left(\prod_{i=1}^{\infty} F (tx_i) \right) = \sum_{i=1}^{\infty} \operatorname{lder} (F (tx_i)).$$

Hence, (113) rewrites as

$$\sum_{n \in \mathbb{N}} V_F (p_{n+1}) t^n = \sum_{i=1}^{\infty} \operatorname{lder} \left(F \left(\frac{tx_i}{x_i t} \right) \right) = \sum_{i=1}^{\infty} \operatorname{lder} (F (x_i t)) = x_i \cdot \operatorname{lder} (F) (x_i t) \quad \text{(by Property 5 of logarithmic derivatives)} \quad \text{(114)}$$

The definition of $\operatorname{lder} F$ yields

$$\operatorname{lder} F = \frac{F'}{F} = \sum_{n \in \mathbb{N}} \gamma_n t^n.$$

Hence, for each $i \in \{1, 2, 3, \ldots\}$, we have

$$\left(\operatorname{lder} F \right) (x_i t) = \sum_{n \in \mathbb{N}} \gamma_n \left(\frac{x_i t}{x_i t} \right)^n = \sum_{n \in \mathbb{N}} \gamma_n x_i^n t^n. \quad \text{(115)}$$
Now, (114) becomes

\[
\sum_{n \in \mathbb{N}} V_F(p_{n+1}) t^n = \sum_{i=1}^{\infty} x_i \cdot (\text{Ider } F)(x_it) = \sum_{i=1}^{\infty} x_i \cdot \sum_{n \in \mathbb{N}} \gamma_n x_i^n t^n = \sum_{n \in \mathbb{N}} \sum_{i=1}^{\infty} x_i \gamma_n x_i^n t^n = \sum_{n \in \mathbb{N}} \sum_{i=1}^{\infty} x_i \gamma_n x_i^{n+1} t^n = \sum_{n \in \mathbb{N}} \gamma_n x_i^{n+1} t^n = \sum_{n \in \mathbb{N}} \gamma_n p_{n+1} t^n.
\]

Comparing coefficients before \(t^n\) in this equality, we conclude that

\[V_F(p_{n+1}) = \gamma_n p_{n+1} \quad \text{for each } n \in \mathbb{N}. \]

In other words, \(V_F(p_n) = \gamma_{n-1} p_n \) for each positive integer \(n\). This proves Theorem 5.23(c).

Our next (and last) few results are not generalizations of any properties of Petrie functions. To state them, we take a somewhat more high-level point of view. We forget that we fixed the power series \(F\). Instead, for every power series \(F \in k[[t]]\) whose constant term is 1, we define a power series \(G_F\) according to Definition 5.4(d). Moreover, for every power series \(F \in k[[t]]\) whose constant term is 1, and for every \(m \in \mathbb{N}\), we define a power series \(G_{F,m}\) according to Definition 5.4(e). We then have the following:

Proposition 5.24. Let \(A\) and \(B\) be two power series in \(k[[t]]\) whose constant terms are 1. Then:

(a) We have \(G_{AB} = G_A G_B\).

(b) Let \(n \in \mathbb{N}\). We have \(G_{AB,n} = \sum_{i=0}^{n} G_{A,i} G_{B,n-i}\).

Proof of Proposition 5.24 (sketched). The power series \(AB\) has constant term 1 (since \(A\) and \(B\) have constant term 1). Thus, \(G_{AB}\) is well-defined, as is \(G_{AB,n}\) for each \(n \in \mathbb{N}\).

(a) **Proposition 5.6(b)** yields that \(G_F = \prod_{i=1}^{\infty} F(x_i)\) for any power series \(F \in k[[t]]\) whose constant term is 1. Applying this to \(F = A\) and to \(F = B\) and to \(F = AB\) yields \(G_A = \prod_{i=1}^{\infty} A(x_i)\) and \(G_B = \prod_{i=1}^{\infty} B(x_i)\) and

\[
G_{AB} = \prod_{i=1}^{\infty} \left((AB)(x_i) = A(x_i) B(x_i) \right) = \left(\prod_{i=1}^{\infty} A(x_i) \right) \left(\prod_{i=1}^{\infty} B(x_i) \right) = G_A G_B.
\]
This proves Proposition 5.24(a).

(b) Proposition 5.24(a) yields \(G_{AB} = G_A G_B \). Thus, the \(n \)-th degree homogeneous components of \(G_{AB} \) and of \(G_A G_B \) are equal. But this means precisely that

\[
G_{AB,n} = \sum_{i=0}^{n} G_{A,i} G_{B,n-i} \quad \text{(by Proposition 5.6(a)).}
\]

This proves Proposition 5.24(b). \(\square \)

Finally, we can express the image of the symmetric function \(G_{F,n} \) under the antipode of \(\Lambda \) (a result suggested by Sasha Postnikov):

Theorem 5.25. Let \(S \) be the antipode of the Hopf algebra \(\Lambda \). Let \(F \in \mathbf{k}[[t]] \) be a formal power series whose constant term is 1. Then, for each \(n \in \mathbb{N} \), we have

\[
S(G_{F,n}) = G_{F^{-1},n}. \tag{116}
\]

Proof of Theorem 5.25 (sketched). Let \(\Delta \) and \(\varepsilon \) be the comultiplication and the counit of the Hopf algebra \(\Lambda \). Let \(\eta : \mathbf{k} \to \Lambda \) be the map that sends each \(u \in \mathbf{k} \) to \(u \cdot 1_{\Lambda} \in \Lambda \). It is easy to see that each positive integer \(n \) satisfies

\[
\varepsilon(G_{F,n}) = 0. \tag{117}
\]

(Indeed, \(\varepsilon \) sends each homogeneous symmetric function of positive degree to 0; but \(G_{F,n} \) is a homogeneous symmetric function of degree \(n \).) Also, Proposition 5.6(e) yields \(G_{F,0} = 1 \) and thus \(\varepsilon(G_{F,0}) = 1 \).

We shall use the convolution \(\star \) introduced in Definition 2.28. The antipode \(S \) of \(\Lambda \) is the \(\star \)-inverse of the map \(\text{id}_{\Lambda} : \Lambda \to \Lambda \) (by the definition of the antipode of a Hopf algebra). In other words,

\[
S \star \text{id}_{\Lambda} = \text{id}_{\Lambda} \star S = \eta \circ \varepsilon
\]

(since \(\eta \circ \varepsilon : \Lambda \to \Lambda \) is the neutral element with respect to \(\star \)). We also have \(S(1) = 1 \) (by one of the fundamental properties of the antipode of a Hopf algebra).

Now, for each \(n \in \mathbb{N} \), we have

\[
\Delta(G_{F,n}) = \sum_{i=0}^{n} G_{F,i} \otimes G_{F,n-i} \quad \text{(by Theorem 5.16)}
\]

and therefore

\[
(S \star \text{id}_{\Lambda})(G_{F,n}) = \sum_{i=0}^{n} S(G_{F,i}) \cdot \text{id}(G_{F,n-i}) \quad \text{(by the definition of convolution)}
\]

\[
= \sum_{i=0}^{n} S(G_{F,i}) \cdot G_{F,n-i},
\]

so that
\[
\sum_{i=0}^{n} S ((G_{F,i}) \cdot G_{F,n-i}) = \left(S \star \text{id}_{\Lambda} \right) (G_{F,n}) = (\eta \circ \epsilon) (G_{F,n})
\]
\[
= [n = 0]
\]
(118)

(the last equality sign here follows easily from (117) and from \(\epsilon (G_{F,0}) = 1 \).

On the other hand, the constant term of the power series \(F^{-1} \) is 1 (since the constant term of \(F \) is 1). Hence, \(G_{F^{-1},n} \) is well-defined for each \(n \in \mathbb{N} \).

For each \(n \in \mathbb{N} \), we have
\[
G_{F^{-1},n} = \sum_{i=0}^{n} G_{F^{-1,i}} G_{F,n-i}
\]
(by Proposition 5.24 (b), applied to \(A = F^{-1} \) and \(B = F \)) and thus
\[
\sum_{i=0}^{n} G_{F^{-1,i}} G_{F,n-i} = G_{F^{-1},n} = G_{1,n} = [n = 0]
\]
(119)

(the last equality sign here has been shown in Example 5.5 (b)).

Recall that \(G_{F,0} = 1 \). Hence, the equalities (119) (for all \(n \in \mathbb{N} \)) can be recursively solved for \(G_{F^{-1,0}}, G_{F^{-1,1}}, G_{F^{-1,2}}, \ldots \) (starting with \(G_{F,0}, G_{F,1}, G_{F,2}, \ldots \)); we obtain
\[
G_{F^{-1},n} = [n = 0] - \sum_{i=0}^{n-1} G_{F^{-1,i}} G_{F,n-i} \quad \text{for each} \ n \in \mathbb{N}
\]
The same argument, but using the equalities (118) instead of (119), yields
\[
S (G_{F,n}) = [n = 0] - \sum_{i=0}^{n-1} S (G_{F,i}) \cdot G_{F,n-i} \quad \text{for each} \ n \in \mathbb{N}
\]
Comparing these two recursive formulas for \(G_{F^{-1,n}} \) and \(S (G_{F,n}) \), we see that they are the same. Thus, by strong induction on \(n \), we conclude that
\[
S (G_{F,n}) = G_{F^{-1,n}} \quad \text{for each} \ n \in \mathbb{N}
\]
This completes the proof of Theorem 5.25. \(\square \)

As a consequence of Theorem 5.25, we obtain a formula for the antipode of a Petrie symmetric function:

Corollary 5.26. Let \(k \) be a positive integer such that \(k > 1 \). A weak composition \(\alpha \) will be called \(k \)-friendly if each \(i \in \{1, 2, 3, \ldots\} \) satisfies \(\alpha_i \equiv 0 \mod k \) or \(\alpha_i \equiv 1 \mod k \). If \(\alpha \) is a weak composition, then \(w (\alpha) \) shall denote the number of all \(i \in \{1, 2, 3, \ldots\} \) satisfying \(\alpha_i \equiv 1 \mod k \).
Let S be the antipode of the Hopf algebra Λ. Then, for each $n \in \mathbb{N}$, we have

$$S \left(G(k, n) \right) = \sum_{\alpha \in WC; \atop |\alpha| = n; \atop \alpha \text{ is } k\text{-friendly}} (-1)^{w(\alpha)} x^\alpha = \sum_{\lambda \in \text{Par}; \atop |\lambda| = n; \atop \lambda \text{ is } k\text{-friendly}} (-1)^{w(\lambda)} m_{\lambda}.$$

Proof of Corollary 5.26 (sketched). Let $F = 1 + t + t^2 + \cdots + t^{k-1} \in \mathbb{k}[[t]]$. Then, F is a power series whose constant term is 1. Hence, its reciprocal F^{-1} is well-defined and again is a power series whose constant term is 1. Let us denote this reciprocal F^{-1} by Q; thus, $Q = F^{-1}$.

Let q_0, q_1, q_2, \ldots be the coefficients of the formal power series Q, so that $Q = \sum_{n \in \mathbb{N}} q_n t^n$. Thus, q_0 is the constant term of Q; hence, $q_0 = 1$ (since the constant term of Q is 1).

On the other hand,

$$Q = F^{-1} = \left(\frac{1 - t^k}{1 - t} \right)^{-1} = \frac{1 - t}{1 - t^k} \cdot \left(1 - t^k \right)^{-1} = (1 - t) \cdot \left(1 + t^k + t^{2k} + t^{3k} + \cdots \right)$$

$$= \left(t^0 + t^k + t^{2k} + t^{3k} + \cdots \right) - t \cdot \left(t^0 + t^k + t^{2k} + t^{3k} + \cdots \right)$$

$$= \sum_{n \in \mathbb{N}; \atop n \equiv 0 \mod k} t^n - \sum_{n \in \mathbb{N}; \atop n \equiv 1 \mod k} t^n$$

$$= \sum_{n \in \mathbb{N}} \left([n \equiv 0 \mod k] - [n \equiv 1 \mod k] \right) t^n.$$

Comparing this with $Q = \sum_{n \in \mathbb{N}} q_n t^n$, we obtain

$$\sum_{n \in \mathbb{N}} q_n t^n = \sum_{n \in \mathbb{N}} \left([n \equiv 0 \mod k] - [n \equiv 1 \mod k] \right) t^n.$$

Comparing coefficients on both sides of this equality, we find

$$q_n = [n \equiv 0 \mod k] - [n \equiv 1 \mod k] \quad \text{for each } n \in \mathbb{N}. \quad (120)$$

For any weak composition α, we define an element $q_\alpha \in \mathbb{k}$ by

$$q_\alpha = q_{\alpha_1} q_{\alpha_2} q_{\alpha_3} \cdots.$$
(Here, the infinite product \(q_{\alpha_1}q_{\alpha_2}q_{\alpha_3} \cdots \) is well-defined, since every sufficiently high positive integer \(i \) satisfies \(\alpha_i = 0 \) and thus \(q_{\alpha_i} = q_0 = 1 \).

It is now easy to see (using (120)) that
\[
q_\alpha = [\alpha \text{ is } k\text{-friendly}] \cdot (-1)^{w(\alpha)}
\]
(121)
for any weak composition \(\alpha \).

Now, let \(n \in \mathbb{N} \). Recall that our scalars \(q_i \) and \(q_\alpha \) were defined in the exact same way as the scalars \(f_i \) and \(f_\alpha \) were defined in Definition 5.4, but using the power series \(Q \) instead of \(F \). Hence, Proposition 5.6 (c) (applied to \(Q, q_i, q_\alpha \) and \(n \) instead of \(F, f_i, f_\alpha \) and \(m \)) yields that
\[
G_{Q,n} = \sum_{\alpha \in WC; \ |\alpha| = n} q_\alpha x^\alpha = \sum_{\alpha \in WC; \ |\alpha| = n} [\alpha \text{ is } k\text{-friendly}] \cdot (-1)^{w(\alpha)} x^\alpha
\]
(122)
(since the factor \([\alpha \text{ is } k\text{-friendly}] \) inside the sum makes all the addends vanish except for those that satisfy \(\alpha \text{ is } k\text{-friendly} \) and
\[
G_{Q,n} = \sum_{\lambda \in Par; \ |\lambda| = n} q_\lambda m_\lambda = \sum_{\lambda \in Par; \ |\lambda| = n} [\lambda \text{ is } k\text{-friendly}] \cdot (-1)^{w(\lambda)} m_\lambda
\]
(123)
(since the factor \([\lambda \text{ is } k\text{-friendly}] \) inside the sum makes all the addends vanish except for those that satisfy \(\lambda \text{ is } k\text{-friendly} \)).

However, in Example 5.5 (c), we have seen that \(G_{F,m} = G(k,m) \) for each \(m \in \mathbb{N} \). Applying this to \(m = n \), we obtain \(G_{F,n} = G(k,n) \). Thus, \(G(k,n) = G_{F,n} \), so that
\[
S(G(k,n)) = S(G_{F,n}) = G_{F^{-1},n} \quad \text{(by Theorem 5.25)}
\]
\[
= G_{Q,n} \quad \text{(since } F^{-1} = Q) \]
\[
= \sum_{\alpha \in WC; \ |\alpha| = n; \ \alpha \text{ is } k\text{-friendly}} (-1)^{w(\alpha)} x^\alpha \quad \text{(by (122))}.
\]
Combining this with
\[S(G(k,n)) = G_{Q,n} = \sum_{\lambda \in \text{Par}; \quad |\lambda| = n; \quad \lambda \text{ is } k\text{-friendly}} (-1)^{w(\lambda)} m_\lambda \] (by (123)),
we obtain
\[S(G(k,n)) = \sum_{a \in WC; \quad |a| = n; \quad a \text{ is } k\text{-friendly}} (-1)^{w(a)} x^a = \sum_{\lambda \in \text{Par}; \quad |\lambda| = n; \quad \lambda \text{ is } k\text{-friendly}} (-1)^{w(\lambda)} m_\lambda. \]

This proves Corollary 5.26. \(\square\)

One last property of \(G_{F,n}\) shall be noted in passing:

Proposition 5.27. For any power series \(F \in k[[t]]\) whose constant term is 1, we define a \(k\)-algebra homomorphism \(V_F : \Lambda \to \Lambda\) as in Theorem 5.23. Then:

(a) If \(A\) and \(B\) are two power series in \(k[[t]]\) whose constant terms are 1, then \(V_{AB} = V_A \circ V_B\).

(b) We have \(V_1 = \eta \circ \epsilon\).

(c) For any power series \(F \in k[[t]]\) whose constant term is 1, we have \(V_{F^{-1}} = V_F \circ S\), where \(S\) is the antipode of \(\Lambda\).

We leave the proof of Proposition 5.27 (which follows easily from Proposition 5.24) to the reader.

References

https://www.cip.ifi.lmu.de/~grinberg/algebra/fps20pet.pdf

(These notes are also available at the URL http://www.cip.ifi.lmu.de/~grinberg/algebra/HopfComb-sols.pdf. However, the version at this URL will be updated in the future, and eventually its numbering will no longer match our references.)

