Sign functions for reduced expressions in Coxeter groups: proof of a conjecture of Bergeron, Ceballos and Labbé

Darij Grinberg (UMN) joint work with Alexander Postnikov (MIT)

30 October 2016
University of St. Thomas, Minneapolis
slides:
http://mit.edu/~darij/www/algebra/october06.pdf
paper: arXiv:1603.03138 or
http://mit.edu/~darij/www/algebra/bcl.pdf

A motivating example, part 1

- Fix a positive integer n.
- The symmetric group S_{n} can be presented by generators $s_{1}, s_{2}, \ldots, s_{n-1}$ and relations
- $s_{i}^{2}=1$ (the quadratic relations);
- $s_{i} s_{j}=s_{j} s_{i}$ whenever $|i-j|>1$ (the 2-braid relations);
- $s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}$ whenever $|i-j|=1$ (the 3-braid relations).
(Coxeter presentation, aka Moore presentation).

A motivating example, part 1

- Fix a positive integer n.
- The symmetric group S_{n} can be presented by generators $s_{1}, s_{2}, \ldots, s_{n-1}$ and relations
- $s_{i}^{2}=1$ (the quadratic relations);
- $s_{i} s_{j}=s_{j} s_{i}$ whenever $|i-j|>1$ (the 2-braid relations);
- $s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}$ whenever $|i-j|=1$ (the 3-braid relations).
(Coxeter presentation, aka Moore presentation).
- An expression for $w \in S_{n}$ is a way to write w as $s_{i_{1}} s_{i_{2}} \cdots s_{i_{k}}$.
- A reduced expression for $w \in S_{n}$ is an expression for w having minimum length (i.e., minimum k).
- Example: In S_{5}, the permutation $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4\end{array}\right)$ has reduced expressions

$$
s_{2} s_{4} s_{1} s_{2}, \quad s_{2} s_{1} s_{4} s_{2}, \quad s_{1} s_{4} s_{2} s_{1}, \quad \text { and } 5 \text { others. }
$$

A motivating example, part 2

- Fix a positive integer n and a permutation $w \in S_{n}$.
- The braid relations give ways to transform reduced expressions into other reduced expressions:

$$
\begin{aligned}
& \text { - } \cdots s_{i} s_{j} \cdots \mapsto \cdots s_{j} s_{i} \cdots \text { for }|i-j|>1 \\
& \quad \text { (a 2-braid move); } \\
& \text { - } \cdots s_{i} s_{j} s_{i} \cdots \mapsto \cdots s_{j} s_{i} s_{j} \cdots \text { for }|i-j|=1 \\
& \quad \text { (a 3-braid move). }
\end{aligned}
$$

These are called braid moves.

- Example:

$$
s_{2} s_{4} s_{1} s_{2} \stackrel{\text { 2-braid move with } i=4 \text { and } j=1}{\text { at positions } 2 \text { and } 3} s_{2} s_{1} s_{4} s_{2} .
$$

A motivating example, part 3

- The natural thing to do: Define an edge-colored directed graph $\mathcal{R}_{0}(w)$ with
- vertices $=$ reduced expressions for w;
- an arc going from one expression \vec{a} to another expression \vec{b} whenever a braid move takes \vec{a} to \vec{b};
- color each arc with a 2 if we used a 2-braid move, and a 3 if we used a 3-braid move.

A motivating example, part 4

- Example: In S_{5}, the permutation $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4\end{array}\right)$ has the following $\mathcal{R}_{0}(w)$:
(The number over any edge is its color.)

A motivating example, part 5

- What do we see on the example?

A motivating example, part 5

- What do we see on the example?

- A single bidirected cycle.

A motivating example, part 5

- What do we see on the example?

- A single bidirected cycle. (Does not generalize.)

A motivating example, part 5

- What do we see on the example?

- A single bidirected cycle. (Does not generalize.)
- Strongly connected.

A motivating example, part 5

- What do we see on the example?

- A single bidirected cycle. (Does not generalize.)
- Strongly connected. (Generalizes to arbitrary Coxeter groups: Matsumoto-Tits theorem.)

A motivating example, part 6

- What do we see on the example?

- Walk down the long cycle counterclockwise.

A motivating example, part 6

- What do we see on the example?

- Walk down the long cycle counterclockwise.
- The total number of 2-braid moves used is even.
- The total number of 3 -braid moves used is even.

A motivating example, part 7

- These latter observations do generalize:

For any $n \geq 1$ and any $w \in S_{n}$, any directed cycle in $\mathcal{R}_{0}(w)$ uses an even number of 2-braid relations and an even number of 3-braid relations.

- This was found by Bergeron, Ceballos and Labbé (arXiv:1404.7380v2). Their proof used hyperplane arrangement geometry.
- Let (W, S) be a Coxeter group with Coxeter matrix $\left(m_{s, t}\right)_{(s, t) \in S \times S}$.
- Set

$$
\mathfrak{M}=\left\{(s, t) \in S \times S \mid s \neq t \text { and } m_{s, t}<\infty\right\} .
$$

- Recall that W has generators s (for $s \in S$) and relations
- $s^{2}=1$ for all $s \in S$ (the quadratic relations);
- sts $\cdots=t s t \cdots$ (where both sides have $m_{s, t}$ factors) for all $(s, t) \in \mathfrak{M}$ (the braid relations).
- Let (W, S) be a Coxeter group with Coxeter matrix $\left(m_{s, t}\right)_{(s, t) \in S \times S}$.
- Set

$$
\mathfrak{M}=\left\{(s, t) \in S \times S \mid s \neq t \text { and } m_{s, t}<\infty\right\}
$$

- Recall that W has generators s (for $s \in S$) and relations
- $s^{2}=1$ for all $s \in S$ (the quadratic relations);
- sts $\cdots=t s t \cdots$ (where both sides have $m_{s, t}$ factors) for all $(s, t) \in \mathfrak{M}$ (the braid relations).
- An expression for $w \in W$ is a way to write w as a product $a_{1} a_{2} \cdots a_{k}$ where $a_{1}, a_{2}, \ldots, a_{k} \in S$.
- A reduced expression for $w \in W$ is an expression for w having minimum length (i.e., minimum k).

Coxeter groups: braid moves

- The braid relations give ways to transform reduced expressions into other reduced expressions:

$$
\cdots(\text { sts } \cdots) \cdots \mapsto \cdots(\text { tst } \cdots) \cdots
$$

(where both parenthesized products have $m_{s, t}$ factors) for $(s, t) \in \mathfrak{M}$.
These are called braid moves.

- The braid relations give ways to transform reduced expressions into other reduced expressions:

$$
\cdots(\text { sts } \cdots) \cdots \mapsto \cdots(\text { tst } \cdots) \cdots
$$

(where both parenthesized products have $m_{s, t}$ factors) for $(s, t) \in \mathfrak{M}$.
These are called braid moves.

- We can again assemble the reduced expressions of a given $w \in W$ into an edge-colored directed graph.
Examples: (courtesy Rob Edman, Victor Reiner)
- H_{3} (longest element);
- B_{3} (longest element);
- A_{3} (longest element).

But we can do better than take $m_{s, t}$'s as colors.

Coxeter groups: the edge-colored digraph $\mathcal{R}(w)$

- Define an equivalence relation \sim ("simultaneous conjugation") on \mathfrak{M} as follows:

$$
(s, t) \sim\left(s^{\prime}, t^{\prime}\right)
$$

\Longleftrightarrow there exists a $q \in W$ such that $q s q^{-1}=s^{\prime}$ and $q t q^{-1}=t^{\prime}$.

Coxeter groups: the edge-colored digraph $\mathcal{R}(w)$

- Define an equivalence relation \sim ("simultaneous conjugation") on \mathfrak{M} as follows:

$$
(s, t) \sim\left(s^{\prime}, t^{\prime}\right)
$$

\Longleftrightarrow there exists a $q \in W$ such that $q s q^{-1}=s^{\prime}$ and $q t q^{-1}=t^{\prime}$.

- For each $(s, t) \in \mathfrak{M}$, we get an equivalence class $[(s, t)] \in \mathfrak{M} / \sim$.
- Define an equivalence relation \sim ("simultaneous conjugation") on \mathfrak{M} as follows:

$$
(s, t) \sim\left(s^{\prime}, t^{\prime}\right)
$$

\Longleftrightarrow there exists a $q \in W$ such that $q s q^{-1}=s^{\prime}$ and $q t q^{-1}=t^{\prime}$.

- For each $(s, t) \in \mathfrak{M}$, we get an equivalence class $[(s, t)] \in \mathfrak{M} / \sim$.
- Define an edge-colored directed graph $\mathcal{R}(w)$ as follows:
- vertices $=$ reduced expressions for w;
- an arc going from one expression \vec{a} to another expression \vec{b} whenever a braid move takes \vec{a} to \vec{b};
- color each arc with the equivalence class $[(s, t)]$ if the braid move used was

$$
\cdots(\text { sts } \cdots) \cdots \mapsto \cdots(\text { tst } \cdots) \cdots
$$

- Theorem (Postnikov, G.). Let C be a directed cycle in the graph $\mathcal{R}(w)$ for some $w \in W$.
Let $c \in \mathfrak{M} / \sim$ be an equivalence class (under simultaneous conjugation).
Let c^{op} denote the equivalence class of the opposite pair (i.e., if $c=[(s, t)]$, then $\left.c^{\mathrm{op}}=[(t, s)]\right)$.
- Theorem (Postnikov, G.). Let C be a directed cycle in the graph $\mathcal{R}(w)$ for some $w \in W$.
Let $c \in \mathfrak{M} / \sim$ be an equivalence class (under simultaneous conjugation).
Let c^{op} denote the equivalence class of the opposite pair (i.e., if $c=[(s, t)]$, then $\left.c^{\mathrm{op}}=[(t, s)]\right)$.
(a)
(the number of arcs colored c in C)
$=\left(\right.$ the number of arcs colored c^{op} in $\left.C\right)$.
- Theorem (Postnikov, G.). Let C be a directed cycle in the graph $\mathcal{R}(w)$ for some $w \in W$.
Let $c \in \mathfrak{M} / \sim$ be an equivalence class (under simultaneous conjugation).
Let c^{op} denote the equivalence class of the opposite pair (i.e., if $c=[(s, t)]$, then $\left.c^{\mathrm{op}}=[(t, s)]\right)$.
(a)
(the number of arcs colored c in C)
$=\left(\right.$ the number of arcs colored c^{op} in $\left.C\right)$.
(b)
(the number of arcs colored c or c^{op} in C) $\equiv 0 \bmod 2$.
- Theorem (Postnikov, G.). Let C be a directed cycle in the graph $\mathcal{R}(w)$ for some $w \in W$.
Let $c \in \mathfrak{M} / \sim$ be an equivalence class (under simultaneous conjugation).
Let c^{op} denote the equivalence class of the opposite pair (i.e., if $c=[(s, t)]$, then $\left.c^{\mathrm{op}}=[(t, s)]\right)$.
(a)
(the number of arcs colored c in C)
$=\left(\right.$ the number of arcs colored c^{op} in $\left.C\right)$.
(b)
(the number of arcs colored c or c^{op} in $\left.C\right) \equiv 0 \bmod 2$.
- Note: Neither of (a) and (b) implies the other!
- Bergeron, Ceballos, Labbé proved a special case of (b).
- Let $T=\bigcup_{w \in W} w S w^{-1}$ (the set of reflections in W).
- Extend the relation \sim to T (same definition).
- Every reduced expression $\vec{a}=a_{1} a_{2} \cdots a_{k}$ for w gives rise to a list ("inversion word", aka "reflection order")

$$
\begin{aligned}
& \text { Invs } \vec{a}=\left(t_{1}, t_{2}, \ldots, t_{k}\right) \in T^{k}, \quad \text { where } \\
& t_{i}=a_{1} a_{2} \cdots a_{i} \cdots a_{2} a_{1} \quad \text { ("up to } a_{i} \text { and then down"). }
\end{aligned}
$$

- Let $T=\bigcup_{w \in W} w S w^{-1}$ (the set of reflections in W).
- Extend the relation \sim to T (same definition).
- Every reduced expression $\vec{a}=a_{1} a_{2} \cdots a_{k}$ for w gives rise to a list ("inversion word", aka "reflection order")

$$
\begin{aligned}
& \text { Invs } \vec{a}=\left(t_{1}, t_{2}, \ldots, t_{k}\right) \in T^{k}, \quad \text { where } \\
& t_{i}=a_{1} a_{2} \cdots a_{i} \cdots a_{2} a_{1} \quad \text { ("up to } a_{i} \text { and then down"). }
\end{aligned}
$$

- If

$$
\vec{a} \xrightarrow{\text { braid move involving } s \text { and } t} \vec{b} \text {, }
$$

then Invs $\vec{a} \longrightarrow$ revert a certain factor $\operatorname{Invs} \vec{b}$.

Strategy of the proof, part 2

- If

then Invs $\vec{a} \longrightarrow \operatorname{lnvs} \vec{b}$.

Strategy of the proof, part 2

- If

then Invs $\vec{a} \longrightarrow$ revert a certain factor $\operatorname{Invs} \vec{b}$.
- Which factor? Let's say the braid move replaces some $a_{i+1} a_{i+2} \cdots a_{i+k}=s t s \cdots$ in \vec{a} by
$b_{i+1} b_{i+2} \cdots b_{i+k}=t s t \cdots$.
Then, the factor that gets reverted is in positions $i+1, i+2, \ldots, i+k$ again.
- If

$$
\vec{a} \xrightarrow{\text { braid move involving } s \text { and } t} \vec{b}
$$

$$
\text { then } \operatorname{Invs} \vec{a} \longrightarrow \operatorname{lnvs} \vec{b}
$$

- Which factor? Let's say the braid move replaces some $a_{i+1} a_{i+2} \cdots a_{i+k}=s t s \cdots$ in \vec{a} by $b_{i+1} b_{i+2} \cdots b_{i+k}=t s t \cdots$.
Then, the factor that gets reverted is in positions $i+1, i+2, \ldots, i+k$ again.
- The dihedral subgroup $\langle s, t\rangle$ has $m_{s, t}$ reflections, and two canonical ways to list them:

$$
\begin{aligned}
& \rho_{s, t}=(s, \text { sts, ststs, } \cdots, \underbrace{s t s \cdots s}_{2 m_{s, t}-1 \text { factors }}) \\
& \rho_{t, s}=(t, t s t, t s t s t, \cdots, \underbrace{t s t \cdots t}_{2 m_{s, t}-1 \text { factors }})
\end{aligned}
$$

(These are mutually reverse.)

- If

then Invs $\vec{a} \xrightarrow[\text { in positions } i+1, i+2, \ldots, i+k]{\text { revert the word } q \rho_{s, t} q^{-1}} \operatorname{Invs} \vec{b}$, where $q=a_{1} a_{2} \cdots a_{i}$. (Words are conjugated letter-wise. Reverting $q \rho_{s, t} q^{-1}$ gives $q \rho_{t, s} q^{-1}$.)
- If

then Invs $\vec{a} \xrightarrow[\text { in positions } i+1, i+2, \ldots, i+k]{\text { revert the word } q \rho_{s, t} q^{-1}} \operatorname{Invs} \vec{b}$, where $q=a_{1} a_{2} \cdots a_{i}$. (Words are conjugated letter-wise. Reverting $q \rho_{s, t} q^{-1}$ gives $q \rho_{t, s} q^{-1}$.)
- This is why we had to take \sim-conjugacy classes (and not plain pairs) as colors!
- If

$$
\vec{a} \xrightarrow[\text { in positions } i+1, i+2, \ldots, i+k]{\text { braid move involving } s \text { and } t} \vec{b}
$$

then Invs $\vec{a} \xrightarrow[\text { in positions } i+1, i+2, \ldots, i+k]{\text { revert the word } q \rho_{s, t} q^{-1}}$ Invs \vec{b}, where $q=a_{1} a_{2} \cdots a_{i}$. (Words are conjugated letter-wise. Reverting $q \rho_{s, t} q^{-1}$ gives $q \rho_{t, s} q^{-1}$.)

- This is why we had to take \sim-conjugacy classes (and not plain pairs) as colors!
- Thus we can try a parity argument: Count how often a $q \rho_{s, t} q^{-1}$ appears as a subword in Invs \vec{a} (either never or once), and notice that our braid move changes this count by 1 $\bmod 2$.
- Complications:
- Be careful with redundant counts (counting everything twice makes mod 2 useless).
- Subwords start out as factors, but can get broken apart by other braid moves.
- Need to show that other braid moves never mutate our subword (even though they can spread its letters apart / move them together). Need some subtle descent/length/parabolic-coset arguments.
- The $c=c^{\mathrm{op}}$ and $c \neq c^{\mathrm{op}}$ cases need separate proofs at the end.
See paper for details.

Conjecture 1

- What happens if we replace "reduced expression" by "expression" everywhere?
- Conjecture 1. Let C be a directed cycle in the graph $\mathcal{E}(w)$ (defined as $\mathcal{R}(w)$, but using all expressions) for some $w \in W$. Let $c \in \mathfrak{M} / \sim$ be an equivalence class (under simultaneous conjugation).
Let c^{OP} denote the equivalence class of the opposite pair (i.e., if $c=[(s, t)]$, then $\left.c^{\mathrm{op}}=[(t, s)]\right)$.

Conjecture 1

- What happens if we replace "reduced expression" by "expression" everywhere?
- Conjecture 1. Let C be a directed cycle in the graph $\mathcal{E}(w)$ (defined as $\mathcal{R}(w)$, but using all expressions) for some $w \in W$. Let $c \in \mathfrak{M} / \sim$ be an equivalence class (under simultaneous conjugation).
Let c^{OP} denote the equivalence class of the opposite pair (i.e., if $c=[(s, t)]$, then $\left.c^{\mathrm{op}}=[(t, s)]\right)$.
(a)
(the number of arcs colored c in C)
$=\left(\right.$ the number of arcs colored c^{op} in $\left.C\right)$.

Conjecture 1

- What happens if we replace "reduced expression" by "expression" everywhere?
- Conjecture 1. Let C be a directed cycle in the graph $\mathcal{E}(w)$ (defined as $\mathcal{R}(w)$, but using all expressions) for some $w \in W$. Let $c \in \mathfrak{M} / \sim$ be an equivalence class (under simultaneous conjugation).
Let $c^{\text {op }}$ denote the equivalence class of the opposite pair (i.e., if $c=[(s, t)]$, then $\left.c^{\mathrm{op}}=[(t, s)]\right)$.
(a)
(the number of arcs colored c in C)
$=\left(\right.$ the number of arcs colored c^{op} in $\left.C\right)$.
(b)
(the number of arcs colored c or c^{op} in $\left.C\right) \equiv 0 \bmod 2$.

Conjecture 2

- An attempt to explain at least part (b)...

Conjecture 2

- Conjecture 2. For every $(s, t) \in \mathfrak{M}$, let $c_{s, t} \in\{1,-1\}$.

Assume that $c_{s, t}=c_{s^{\prime}, t^{\prime}} \quad$ whenever $(s, t) \sim\left(s^{\prime}, t^{\prime}\right)$;

$$
c_{s, t}=c_{t, s} \quad \text { for all }(s, t) \in \mathfrak{M} .
$$

Let W^{\prime} be the group given by:

- Generators: the elements $s \in S$ and an extra generator q.
- Relations:

$$
\begin{aligned}
s^{2} & =1 & & \text { for every } s \in S ; \\
q^{2} & =1 ; & & \\
q s & =s q & & \text { for every } s \in S ; \\
(s t)^{m_{s, t}} & =1 & & \text { for every }(s, t) \in \mathfrak{M} \text { satisfying } c_{s, t}=1 ; \\
(s t)^{m_{s, t}} & =q & & \text { for every }(s, t) \in \mathfrak{M} \text { satisfying } c_{s, t}=-1 .
\end{aligned}
$$

Then, $q \neq 1$ in W^{\prime}. Equivalently, this sequence is exact:
$1 \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \xrightarrow{\overline{1} \mapsto q} W^{\prime} \xrightarrow[q \mapsto 1]{s_{i} \mapsto s_{i}} W$ \qquad

Conjecture 2

- Conjecture 2. For every $(s, t) \in \mathfrak{M}$, let $c_{s, t} \in\{1,-1\}$.

Assume that $c_{s, t}=c_{s^{\prime}, t^{\prime}} \quad$ whenever $(s, t) \sim\left(s^{\prime}, t^{\prime}\right)$;

$$
c_{s, t}=c_{t, s} \quad \text { for all }(s, t) \in \mathfrak{M} .
$$

Let W^{\prime} be the group given by:

- Generators: the elements $s \in S$ and an extra generator q.
- Relations: (think spin symmetric groups!)

$$
\begin{aligned}
s^{2} & =1 & & \text { for every } s \in S ; \\
q^{2} & =1 ; & & \\
q s & =s q & & \text { for every } s \in S ; \\
(s t)^{m_{s, t}} & =1 & & \text { for every }(s, t) \in \mathfrak{M} \text { satisfying } c_{s, t}=1 ; \\
(s t)^{m_{s, t}} & =q & & \text { for every }(s, t) \in \mathfrak{M} \text { satisfying } c_{s, t}=-1 .
\end{aligned}
$$

Then, $q \neq 1$ in W^{\prime}. Equivalently, this sequence is exact:
$1 \longrightarrow \mathbb{Z} / 2 \mathbb{Z} \xrightarrow{\overline{1} \mapsto q} W^{\prime} \xrightarrow[q \mapsto 1]{s_{i} \mapsto s_{i}} W$

- Darij Grinberg, Alexander Postnikov, Proof of a conjecture of Bergeron, Ceballos and Labbé, arXiv:1603.03138v2.
- Nantel Bergeron, Cesar Ceballos, Jean-Philippe Labbé, Fan realizations of subword complexes and multi-associahedra via Gale duality, arXiv:1404.7380v2.
- Victor Reiner, Yuval Roichman, Diameter of graphs of reduced words and galleries, Trans. Amer. Math. Soc. 365 (2013), pp. 2779-2802.
Preprint: arXiv:0906.4768v3.
- Darij Grinberg, Alexander Postnikov, Proof of a conjecture of Bergeron, Ceballos and Labbé, arXiv:1603.03138v2.
- Nantel Bergeron, Cesar Ceballos, Jean-Philippe Labbé, Fan realizations of subword complexes and multi-associahedra via Gale duality, arXiv:1404.7380v2.
- Victor Reiner, Yuval Roichman, Diameter of graphs of reduced words and galleries, Trans. Amer. Math. Soc. 365 (2013), pp. 2779-2802.
Preprint: arXiv:0906.4768v3.

Thanks to

- Nantel Bergeron for an invitation to York U, and Cesar Ceballos for advertising the results of 1404.7380 v 2 to me;
- Franco Saliola for fixing a bug in these slides;
- you for the attention!

