Three questions on symmetric group algebras

Darij Grinberg (Drexel University)

2024-06-20, Sophus Lie Conference Center, Nordfjordeid, NO

slides: http: //www.cip.ifi.lmu.de/~grinberg/algebra/nfe2024.pdf

- Fix an $n \in \mathbb{N}$ and a commutative ring **k**.
- Let $\mathcal{A} = \mathbf{k} [S_n]$ be the group algebra of the symmetric group S_n (aka \mathfrak{S}_n) over \mathbf{k} .

- Fix an $n \in \mathbb{N}$ and a commutative ring **k**.
- Let $\mathcal{A} = \mathbf{k} [S_n]$ be the group algebra of the symmetric group S_n (aka \mathfrak{S}_n) over \mathbf{k} .
- It consists of formal linear combinations of the n! permutations w ∈ S_n. Multiplication is composition of permutations (+ expanding sums).

- Fix an $n \in \mathbb{N}$ and a commutative ring **k**.
- Let $\mathcal{A} = \mathbf{k} [S_n]$ be the group algebra of the symmetric group S_n (aka \mathfrak{S}_n) over \mathbf{k} .
- It consists of formal linear combinations of the n! permutations w ∈ S_n. Multiplication is composition of permutations (+ expanding sums).
- **Example:** For n = 3, we have

$$(1+s_1)(1-s_1) = 1+s_1-s_1-s_1^2 = 1+s_1-s_1-1 = 0;$$

 $(1+s_2)(1+s_1+s_1s_2) = 1+s_2+s_1+s_2s_1+s_1s_2+s_2s_1s_2$
 $= \sum_{w \in S_3} w.$

Here, s_i is the simple transposition swapping *i* with i + 1.

- Fix an $n \in \mathbb{N}$ and a commutative ring **k**.
- Let $\mathcal{A} = \mathbf{k} [S_n]$ be the group algebra of the symmetric group S_n (aka \mathfrak{S}_n) over \mathbf{k} .
- It consists of formal linear combinations of the n! permutations w ∈ S_n. Multiplication is composition of permutations (+ expanding sums).
- **Example:** For n = 3, we have

$$(1+s_1)(1-s_1) = 1+s_1-s_1-s_1^2 = 1+s_1-s_1-1 = 0;$$

 $(1+s_2)(1+s_1+s_1s_2) = 1+s_2+s_1+s_2s_1+s_1s_2+s_2s_1s_2$
 $= \sum_{w \in S_3} w.$

Here, s_i is the simple transposition swapping *i* with i + 1.

• As a k-module, A is just the *n*-th graded component of the Malvenuto-Reutenauer Hopf algebra FQSym, but its multiplication is the inner (not the standard) multiplication.

• Some of the nicest elements of *A* are the **Young–Jucys–Murphy elements**

 $\mathbf{m}_k := t_{1,k} + t_{2,k} + \dots + t_{k-1,k} \qquad \text{for all } 1 \le k \le n,$

• Some of the nicest elements of A are the **Young–Jucys–Murphy elements**

 $\mathbf{m}_k := t_{1,k} + t_{2,k} + \dots + t_{k-1,k} \qquad \text{ for all } 1 \le k \le n,$

where $t_{i,j}$ is the transposition swapping *i* with *j*.

Note that **m**₁ = 0.

• Some of the nicest elements of *A* are the **Young–Jucys–Murphy elements**

 $\mathbf{m}_k := t_{1,k} + t_{2,k} + \dots + t_{k-1,k} \qquad \text{for all } 1 \le k \le n,$

where $t_{i,j}$ is the transposition swapping *i* with *j*.

• Theorem (easy exercise). The *n* elements $\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_n$ commute.

• Some of the nicest elements of *A* are the **Young–Jucys–Murphy elements**

 $\mathbf{m}_k := t_{1,k} + t_{2,k} + \dots + t_{k-1,k} \qquad \text{ for all } 1 \le k \le n,$

- Theorem (easy exercise). The *n* elements $\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_n$ commute.
- The subalgebra of A they generate is called the **Gelfand–Tsetlin subalgebra** GZ_n .

• Some of the nicest elements of *A* are the **Young–Jucys–Murphy elements**

 $\mathbf{m}_k := t_{1,k} + t_{2,k} + \dots + t_{k-1,k} \qquad \text{ for all } 1 \le k \le n,$

where $t_{i,j}$ is the transposition swapping *i* with *j*.

- Theorem (easy exercise). The *n* elements $\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_n$ commute.
- The subalgebra of A they generate is called the **Gelfand–Tsetlin subalgebra** GZ_n .
- **Theorem (Murphy, ca. 1980?).** If **k** is a field of characteristic 0, then GZ_n (as a **k**-vector space) has dimension equal to

(# of involutions in S_n)

 $=\sum_{\lambda\vdash n}(\# ext{ of standard Young tableaux of shape }\lambda)$

(OEIS sequence A000085).

• Some of the nicest elements of *A* are the **Young–Jucys–Murphy elements**

 $\mathbf{m}_k := t_{1,k} + t_{2,k} + \dots + t_{k-1,k} \qquad \text{ for all } 1 \le k \le n,$

- Theorem (easy exercise). The *n* elements $\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_n$ commute.
- The subalgebra of A they generate is called the **Gelfand–Tsetlin subalgebra** GZ_n .
- Question 1: Does GZ_n have a basis for arbitrary k ? (equivalently, for k = Z)

• Some of the nicest elements of *A* are the **Young–Jucys–Murphy elements**

 $\mathbf{m}_k := t_{1,k} + t_{2,k} + \dots + t_{k-1,k} \qquad \text{ for all } 1 \le k \le n,$

- Theorem (easy exercise). The *n* elements $\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_n$ commute.
- The subalgebra of A they generate is called the **Gelfand–Tsetlin subalgebra** GZ_n .
- Question 1: Does GZ_n have a basis for arbitrary k ? (equivalently, for k = Z)
- Question 1': Let k = Z/p for a prime p. Is dim_k GZ_n independent on p ?

• Some of the nicest elements of *A* are the **Young–Jucys–Murphy elements**

 $\mathbf{m}_k := t_{1,k} + t_{2,k} + \dots + t_{k-1,k} \qquad \text{ for all } 1 \le k \le n,$

- Theorem (easy exercise). The *n* elements $\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_n$ commute.
- The subalgebra of A they generate is called the **Gelfand–Tsetlin subalgebra** GZ_n .
- Question 1: Does GZ_n have a basis for arbitrary k ? (equivalently, for k = Z)
- Question 1': Let k = Z/p for a prime p. Is dim_k GZ_n independent on p ?
- Question 1+: Does GZ_n have a combinatorially meaningful basis for k = Z ?

• Some of the nicest elements of *A* are the **Young–Jucys–Murphy elements**

 $\mathbf{m}_k := t_{1,k} + t_{2,k} + \dots + t_{k-1,k} \qquad \text{ for all } 1 \le k \le n,$

- Theorem (easy exercise). The *n* elements $\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_n$ commute.
- The subalgebra of A they generate is called the **Gelfand–Tsetlin subalgebra** GZ_n .
- Question 1: Does GZ_n have a basis for arbitrary k ? (equivalently, for k = Z)
- Question 1': Let k = Z/p for a prime p. Is dim_k GZ_n independent on p ?
- Question 1+: Does GZ_n have a combinatorially meaningful basis for k = Z ?
- For k = Q, it has a basis

 (e_{T,T})_{λ⊢n; T is a standard tableau of shape λ} coming from the seminormal basis of k [S_n].

• Some of the nicest elements of *A* are the **Young–Jucys–Murphy elements**

 $\mathbf{m}_k := t_{1,k} + t_{2,k} + \dots + t_{k-1,k} \qquad \text{ for all } 1 \le k \le n,$

- Theorem (easy exercise). The *n* elements $\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_n$ commute.
- The subalgebra of A they generate is called the **Gelfand–Tsetlin subalgebra** GZ_n .
- Question 1: Does GZ_n have a basis for arbitrary k ? (equivalently, for k = Z)
- Question 1': Let k = Z/p for a prime p. Is dim_k GZ_n independent on p ?
- Question 1+: Does GZ_n have a combinatorially meaningful basis for k = Z ?
- Questions 1 and 1' true for $n \leq 6$.

Specht modules: a quick introduction

• Let *D* be a diagram with *n* cells. For instance, for n = 9, we can have

Specht modules: a quick introduction

• Let *D* be a diagram with *n* cells. For instance, for n = 9, we can have

• Let *T* be any filling of *D* with the numbers 1, 2, ..., *n*. (Not necessarily standard!) For example, if *D* is the first diagram above, we can have

• The **Specht module** S^D is the left ideal of A generated by

$$\left(\sum_{\substack{w \in S_n \text{ preserves} \\ \text{the columns of } T}} (-1)^w w\right) \left(\sum_{\substack{w \in S_n \text{ preserves} \\ \text{the rows of } T}} w\right).$$

• The **Specht module** S^D is the left ideal of A generated by

$$\left(\sum_{\substack{w \in S_n \text{ preserves} \\ \text{the columns of } T}} (-1)^w w\right) \left(\sum_{\substack{w \in S_n \text{ preserves} \\ \text{the rows of } T}} w\right)$$

• Alternatively we can define S^D as a span of polytabloids or of determinants or in several other ways.

• The **Specht module** S^D is the left ideal of A generated by

$$\left(\sum_{\substack{w \in S_n \text{ preserves} \\ \text{the columns of } T}} (-1)^w w\right) \left(\sum_{\substack{w \in S_n \text{ preserves} \\ \text{the rows of } T}} w\right)$$

 If D is a (skew) Young diagram, S^D has many famous properties and relates to Schur functions. I am interested here in the general case.

• The **Specht module** S^D is the left ideal of A generated by

$$\left(\sum_{\substack{w \in S_n \text{ preserves} \\ \text{the columns of } T}} (-1)^w w\right) \left(\sum_{\substack{w \in S_n \text{ preserves} \\ \text{the rows of } T}} w\right)$$

- Question 2: Is \mathcal{S}^D a direct addend of \mathcal{A} as a **k**-module?
- Proving this for $\mathbf{k} = \mathbb{Z}$ would suffice.
- Question 2': Let k = Z/p for a prime p. Is dim_k S^D independent on p ?
- Question 2+: Does S^D have a combinatorially meaningful basis?

• The **Specht module** S^D is the left ideal of A generated by

$$\left(\sum_{\substack{w \in S_n \text{ preserves} \\ \text{the columns of } T}} (-1)^w w\right) \left(\sum_{\substack{w \in S_n \text{ preserves} \\ \text{the rows of } T}} w\right)$$

- Question 2: Is S^D a direct addend of A as a k-module?
- Proving this for $\mathbf{k} = \mathbb{Z}$ would suffice.
- Question 2': Let k = Z/p for a prime p. Is dim_k S^D independent on p ?
- Question 2+: Does S^D have a combinatorially meaningful basis?
- Well-known positive answers when *D* is a skew Young diagram (Garnir's standard basis theorem).
- The answers are still positive when D is row-convex (Reiner/Shimozono 1993).
- Same questions exist for Schur and Weyl modules (over GL_n), but not sure if still equivalent.

Another unexpected commutativity

• For any permutation $w \in S_n$, define

$$\operatorname{exc} w := (\# \text{ of } i \in [n] \text{ such that } w(i) > i)$$
 and
 $\operatorname{anxc} w := (\# \text{ of } i \in [n] \text{ such that } w(i) < i).$

• For any $a, b \in \mathbb{N}$, define

$$\mathbf{X}_{a,b} := \sum_{\substack{w \in S_n; \\ exc \ w = a; \\ anxc \ w = b}} w \in \mathcal{A} = \mathbf{k} \left[S_n \right].$$

- Question 3: Is it true that all these X_{a,b} commute (for fixed n and varying a, b) ? In other words, do we have X_{a,b}X_{c,d} = X_{c,d}X_{a,b} for all a, b, c, d ∈ N ?
- Checked for all $n \leq 7$.
- This generalizes a limiting case of the Bethe subalgebra (Mukhin/Tarasov/Varchenko).