
Multiline queues with spectral parameters

Darij Grinberg
joint work with Erik Aas and Travis Scrimshaw

15 October 2018
North Carolina State University

slides: http:

//www.cip.ifi.lmu.de/~grinberg/algebra/ncsu2018.pdf

paper:
http://www.cip.ifi.lmu.de/~grinberg/algebra/mlqs.pdf

1 / 23

http://www.cip.ifi.lmu.de/~grinberg/
https://sites.google.com/view/tscrim/home
http://www.cip.ifi.lmu.de/~grinberg/algebra/ncsu2018.pdf
http://www.cip.ifi.lmu.de/~grinberg/algebra/ncsu2018.pdf
http://www.cip.ifi.lmu.de/~grinberg/algebra/mlqs.pdf

Sites and words

We study a combinatorial algorithm by which queues act on
words.

Fix a positive integer n.

For a nonnegative integer k, let [k] be the set {1, 2, . . . , k}.

We shall refer to the elements 1, 2, . . . , n ∈ Z/nZ as sites.
Regard them as points on a line that “wraps around”
cyclically:

· · · n − 1 n 1 2 · · · n − 1 n 1 2 · · ·

A word means a map {sites} → {positive integers}.
If u is a word and i is a site, then ui := u (i).

Write u1u2 · · · un for a word u (“one-line notation”).
Example: The word 33122 (for n = 5) is the map

i = · · · 4 5 1 2 3 4 5 1 2 · · ·
7→ ui = · · · 2 2 3 3 1 2 2 3 3 · · ·

2 / 23

Sites and words

We study a combinatorial algorithm by which queues act on
words.

Fix a positive integer n.

For a nonnegative integer k, let [k] be the set {1, 2, . . . , k}.
We shall refer to the elements 1, 2, . . . , n ∈ Z/nZ as sites.
Regard them as points on a line that “wraps around”
cyclically:

· · · n − 1 n 1 2 · · · n − 1 n 1 2 · · ·

A word means a map {sites} → {positive integers}.
If u is a word and i is a site, then ui := u (i).

Write u1u2 · · · un for a word u (“one-line notation”).
Example: The word 33122 (for n = 5) is the map

i = · · · 4 5 1 2 3 4 5 1 2 · · ·
7→ ui = · · · 2 2 3 3 1 2 2 3 3 · · ·

2 / 23

Sites and words

We study a combinatorial algorithm by which queues act on
words.

Fix a positive integer n.

For a nonnegative integer k, let [k] be the set {1, 2, . . . , k}.
We shall refer to the elements 1, 2, . . . , n ∈ Z/nZ as sites.
Regard them as points on a line that “wraps around”
cyclically:

· · · n − 1 n 1 2 · · · n − 1 n 1 2 · · ·

A word means a map {sites} → {positive integers}.
If u is a word and i is a site, then ui := u (i).

Write u1u2 · · · un for a word u (“one-line notation”).
Example: The word 33122 (for n = 5) is the map

i = · · · 4 5 1 2 3 4 5 1 2 · · ·
7→ ui = · · · 2 2 3 3 1 2 2 3 3 · · ·

2 / 23

Sites and words

We study a combinatorial algorithm by which queues act on
words.

Fix a positive integer n.

For a nonnegative integer k, let [k] be the set {1, 2, . . . , k}.
We shall refer to the elements 1, 2, . . . , n ∈ Z/nZ as sites.
Regard them as points on a line that “wraps around”
cyclically:

· · · n − 1 n 1 2 · · · n − 1 n 1 2 · · ·

A word means a map {sites} → {positive integers}.
If u is a word and i is a site, then ui := u (i).

Write u1u2 · · · un for a word u (“one-line notation”).

Example: The word 33122 (for n = 5) is the map

i = · · · 4 5 1 2 3 4 5 1 2 · · ·
7→ ui = · · · 2 2 3 3 1 2 2 3 3 · · ·

2 / 23

Sites and words

We study a combinatorial algorithm by which queues act on
words.

Fix a positive integer n.

For a nonnegative integer k, let [k] be the set {1, 2, . . . , k}.
We shall refer to the elements 1, 2, . . . , n ∈ Z/nZ as sites.
Regard them as points on a line that “wraps around”
cyclically:

· · · n − 1 n 1 2 · · · n − 1 n 1 2 · · ·

A word means a map {sites} → {positive integers}.
If u is a word and i is a site, then ui := u (i).

Write u1u2 · · · un for a word u (“one-line notation”).
Example: The word 33122 (for n = 5) is the map

i = · · · 4 5 1 2 3 4 5 1 2 · · ·
7→ ui = · · · 2 2 3 3 1 2 2 3 3 · · ·

2 / 23

Sites and words

We study a combinatorial algorithm by which queues act on
words.

Fix a positive integer n.

For a nonnegative integer k, let [k] be the set {1, 2, . . . , k}.
We shall refer to the elements 1, 2, . . . , n ∈ Z/nZ as sites.
Regard them as points on a line that “wraps around”
cyclically:

· · · n − 1 n 1 2 · · · n − 1 n 1 2 · · ·

A word means a map {sites} → {positive integers}.
If u is a word and i is a site, then ui := u (i).

Write u1u2 · · · un for a word u (“one-line notation”).
Example: The word 33122 (for n = 5) is the map

i = · · · 4 5 1 2 3 4 5 1 2 · · ·
7→ ui = · · · 2 2 3 3 1 2 2 3 3 · · ·

2 / 23

Queues

A queue means a set of sites.

Draw a queue q by putting circles on all the sites i ∈ q.

Example: The queue {2, 5} (for n = 7) is represented by

We shall omit all the grey parts in the future (i.e., we will
draw only one copy of each site).

3 / 23

Queues

A queue means a set of sites.

Draw a queue q by putting circles on all the sites i ∈ q.
Example: The queue {2, 5} (for n = 7) is represented by

We shall omit all the grey parts in the future (i.e., we will
draw only one copy of each site).

3 / 23

Queues

A queue means a set of sites.

Draw a queue q by putting circles on all the sites i ∈ q.
Example: The queue {2, 5} (for n = 7) is represented by

· · · 6 7 1 2 3 4 5 6 7 1 2 · · ·

We shall omit all the grey parts in the future (i.e., we will
draw only one copy of each site).

3 / 23

Queues

A queue means a set of sites.

Draw a queue q by putting circles on all the sites i ∈ q.
Example: The queue {2, 5} (for n = 7) is represented by

· · · 6 7 1 2 3 4 5 6 7 1 2 · · ·

We shall omit all the grey parts in the future (i.e., we will
draw only one copy of each site).

3 / 23

Queues

A queue means a set of sites.

Draw a queue q by putting circles on all the sites i ∈ q.
Example: The queue {2, 5} (for n = 7) is represented by

1 2 3 4 5 6 7

We shall omit all the grey parts in the future (i.e., we will
draw only one copy of each site).

3 / 23

Action of queues on words, 1: example

Let q be a queue, and u a word. We shall define a word q(u).
Algorithm:

Draw u on top.
Draw q as circles in the middle.
Build q(u) letter by letter, as follows...

Example: n = 9 and u = 346613321 and q = {1, 4, 8, 9}:

3 4 6 6 1 3 3 2 1

4 / 23

Action of queues on words, 1: example

Let q be a queue, and u a word. We shall define a word q(u).
Algorithm:

Draw u on top.
Draw q as circles in the middle.
Build q(u) letter by letter, as follows...

Example: n = 9 and u = 346613321 and q = {1, 4, 8, 9}:

3 4 6 6 1 3 3 2 1

4 / 23

Action of queues on words, 1: example

Let q be a queue, and u a word. We shall define a word q(u).
Algorithm:

Draw u on top.
Draw q as circles in the middle.
Build q(u) letter by letter, as follows...

Example: n = 9 and u = 346613321 and q = {1, 4, 8, 9}:

3 4 6 6 1 3 3 2 1

7

Phase I: For each of the largest n − |q| letters of u (in
decreasing order),

drop this letter down and add 1 to it;
move it left until hitting some unoccupied site i /∈ q;
place it there.

4 / 23

Action of queues on words, 1: example

Let q be a queue, and u a word. We shall define a word q(u).
Algorithm:

Draw u on top.
Draw q as circles in the middle.
Build q(u) letter by letter, as follows...

Example: n = 9 and u = 346613321 and q = {1, 4, 8, 9}:

3 4 6 6 1 3 3 2 1

7 7

Phase I: For each of the largest n − |q| letters of u (in
decreasing order),

drop this letter down and add 1 to it;
move it left until hitting some unoccupied site i /∈ q;
place it there.

4 / 23

Action of queues on words, 1: example

Let q be a queue, and u a word. We shall define a word q(u).
Algorithm:

Draw u on top.
Draw q as circles in the middle.
Build q(u) letter by letter, as follows...

Example: n = 9 and u = 346613321 and q = {1, 4, 8, 9}:

3 4 6 6 1 3 3 2 1

7 7 5

Phase I: For each of the largest n − |q| letters of u (in
decreasing order),

drop this letter down and add 1 to it;
move it left until hitting some unoccupied site i /∈ q;
place it there.

4 / 23

Action of queues on words, 1: example

Let q be a queue, and u a word. We shall define a word q(u).
Algorithm:

Draw u on top.
Draw q as circles in the middle.
Build q(u) letter by letter, as follows...

Example: n = 9 and u = 346613321 and q = {1, 4, 8, 9}:

3 4 6 6 1 3 3 2 1

7 7 4 5

Phase I: For each of the largest n − |q| letters of u (in
decreasing order),

drop this letter down and add 1 to it;
move it left until hitting some unoccupied site i /∈ q;
place it there.

4 / 23

Action of queues on words, 1: example

Let q be a queue, and u a word. We shall define a word q(u).
Algorithm:

Draw u on top.
Draw q as circles in the middle.
Build q(u) letter by letter, as follows...

Example: n = 9 and u = 346613321 and q = {1, 4, 8, 9}:

3 4 6 6 1 3 3 2 1

7 7 4 4 5

Phase I: For each of the largest n − |q| letters of u (in
decreasing order),

drop this letter down and add 1 to it;
move it left until hitting some unoccupied site i /∈ q;
place it there.

4 / 23

Action of queues on words, 1: example

Let q be a queue, and u a word. We shall define a word q(u).
Algorithm:

Draw u on top.
Draw q as circles in the middle.
Build q(u) letter by letter, as follows...

Example: n = 9 and u = 346613321 and q = {1, 4, 8, 9}:

3 4 6 6 1 3 3 2 1

7 7 4 4 5 1

Phase II: For each of the smallest |q| letters of u (in
increasing order),

drop this letter down;
move it right until hitting some unoccupied site i ∈ q;
place it there.

4 / 23

Action of queues on words, 1: example

Let q be a queue, and u a word. We shall define a word q(u).
Algorithm:

Draw u on top.
Draw q as circles in the middle.
Build q(u) letter by letter, as follows...

Example: n = 9 and u = 346613321 and q = {1, 4, 8, 9}:

3 4 6 6 1 3 3 2 1

7 7 4 4 5 1 1

Phase II: For each of the smallest |q| letters of u (in
increasing order),

drop this letter down;
move it right until hitting some unoccupied site i ∈ q;
place it there.

4 / 23

Action of queues on words, 1: example

Let q be a queue, and u a word. We shall define a word q(u).
Algorithm:

Draw u on top.
Draw q as circles in the middle.
Build q(u) letter by letter, as follows...

Example: n = 9 and u = 346613321 and q = {1, 4, 8, 9}:

3 4 6 6 1 3 3 2 1

2 7 7 4 4 5 1 1

Phase II: For each of the smallest |q| letters of u (in
increasing order),

drop this letter down;
move it right until hitting some unoccupied site i ∈ q;
place it there.

4 / 23

Action of queues on words, 1: example

Let q be a queue, and u a word. We shall define a word q(u).
Algorithm:

Draw u on top.
Draw q as circles in the middle.
Build q(u) letter by letter, as follows...

Example: n = 9 and u = 346613321 and q = {1, 4, 8, 9}:

3 4 6 6 1 3 3 2 1

2 7 7 3 4 4 5 1 1

Phase II: For each of the smallest |q| letters of u (in
increasing order),

drop this letter down;
move it right until hitting some unoccupied site i ∈ q;
place it there.

4 / 23

Action of queues on words, 1: example

Let q be a queue, and u a word. We shall define a word q(u).
Algorithm:

Draw u on top.
Draw q as circles in the middle.
Build q(u) letter by letter, as follows...

Example: n = 9 and u = 346613321 and q = {1, 4, 8, 9}:

3 4 6 6 1 3 3 2 1

2 7 7 3 4 4 5 1 1

The letters on the bottom now form q(u).

4 / 23

Action of queues on words, 1: example

Let q be a queue, and u a word. We shall define a word q(u).
Algorithm:

Draw u on top.
Draw q as circles in the middle.
Build q(u) letter by letter, as follows...

Example: n = 9 and u = 346613321 and q = {1, 4, 8, 9}:

3 4 6 6 1 3 3 2 1

2 7 7 3 4 4 5 1 1

The letters on the bottom now form q(u).

Proposition. Equal letters can be processed in any order.

4 / 23

Action of queues on words, 2: formal definition

Let q be a queue, and u a word. Define a word q(u) as
follows:
In the beginning, v = q(u) is a word whose letters are unset.
Choose a permutation (i1, i2, . . . , in) of (1, 2, . . . , n) such that
ui1 ≤ ui2 ≤ · · · ≤ uin .

Phase I. For i = in, in−1, . . . , i|q|+1, do the following:
Find the first site j weakly to the left (cyclically)
of i such that j /∈ q and vj is not set. Then set
vj = ui + 1.

Phase II. For i = i1, i2, . . . , i|q|, do the following:
Find the first site j weakly to the right
(cyclically) of i such that j ∈ q and vj is not set.
Then set vj = ui .

Proposition.
The resulting word v = q(u) does not depend on the
choice of permutation (i1, i2, . . . , in).
Phase I and Phase II can be done in parallel.

5 / 23

Action of queues on words, 2: formal definition

Let q be a queue, and u a word. Define a word q(u) as
follows:
In the beginning, v = q(u) is a word whose letters are unset.
Choose a permutation (i1, i2, . . . , in) of (1, 2, . . . , n) such that
ui1 ≤ ui2 ≤ · · · ≤ uin .

Phase I. For i = in, in−1, . . . , i|q|+1, do the following:
Find the first site j weakly to the left (cyclically)
of i such that j /∈ q and vj is not set. Then set
vj = ui + 1.

Phase II. For i = i1, i2, . . . , i|q|, do the following:
Find the first site j weakly to the right
(cyclically) of i such that j ∈ q and vj is not set.
Then set vj = ui .

Proposition.
The resulting word v = q(u) does not depend on the
choice of permutation (i1, i2, . . . , in).
Phase I and Phase II can be done in parallel.

5 / 23

Remark on TASEP connection

This action of queues on words is the “generalized
Ferrari–Martin algorithm” of Arita, Ayyer, Mallick and Prolhac
(arXiv:1104.3752, J. Phys. A, 2011), extending a simpler
procedure by Ferrari and Martin (arXiv:math-ph/0509045).

Their motivation: compute stationary distribution of
multi-species TASEP (totally asymmetric simple exclusion
process) on a circle.
The algorithm intertwines different TASEPs, and lets one
transport the stationary distribution from one to another.

Aas and Linusson (arXiv:1501.04417, Ann. Inst. Henri
Poincaré D) later attempted to obtain explicit formulas for
steady state probabilities.
Our work proves two of their conjectures.

6 / 23

http://www.arxiv.org/abs/1104.3752
http://www.arxiv.org/abs/math-ph/0509045
http://www.arxiv.org/abs/1501.04417

Remark on TASEP connection

This action of queues on words is the “generalized
Ferrari–Martin algorithm” of Arita, Ayyer, Mallick and Prolhac
(arXiv:1104.3752, J. Phys. A, 2011), extending a simpler
procedure by Ferrari and Martin (arXiv:math-ph/0509045).

Their motivation: compute stationary distribution of
multi-species TASEP (totally asymmetric simple exclusion
process) on a circle.
The algorithm intertwines different TASEPs, and lets one
transport the stationary distribution from one to another.

Aas and Linusson (arXiv:1501.04417, Ann. Inst. Henri
Poincaré D) later attempted to obtain explicit formulas for
steady state probabilities.
Our work proves two of their conjectures.

6 / 23

http://www.arxiv.org/abs/1104.3752
http://www.arxiv.org/abs/math-ph/0509045
http://www.arxiv.org/abs/1501.04417

Remark on TASEP connection

This action of queues on words is the “generalized
Ferrari–Martin algorithm” of Arita, Ayyer, Mallick and Prolhac
(arXiv:1104.3752, J. Phys. A, 2011), extending a simpler
procedure by Ferrari and Martin (arXiv:math-ph/0509045).

Their motivation: compute stationary distribution of
multi-species TASEP (totally asymmetric simple exclusion
process) on a circle.
The algorithm intertwines different TASEPs, and lets one
transport the stationary distribution from one to another.

Aas and Linusson (arXiv:1501.04417, Ann. Inst. Henri
Poincaré D) later attempted to obtain explicit formulas for
steady state probabilities.
Our work proves two of their conjectures.

6 / 23

http://www.arxiv.org/abs/1104.3752
http://www.arxiv.org/abs/math-ph/0509045
http://www.arxiv.org/abs/1501.04417

Types of words

The type of a word u is the sequence m = (m1,m2, . . .),
where mk = (# of all sites i such that ui = k).
Example: The word 1255135 has type (2, 1, 1, 0, 3, 0, 0, 0, . . .).

We omit trailing zeroes from infinite sequences.
That is, we abbreviate (m1,m2, . . . ,mk , 0, 0, 0, . . .) as
(m1,m2, . . . ,mk).

A word u is packed with ` classes if its type m has
m1,m2, . . . ,m` > 0 and m`+1 = m`+2 = · · · = 0.

Example: The word 1255135 is not packed.
The word 1244134 is packed with 4 classes.

7 / 23

Types of words

The type of a word u is the sequence m = (m1,m2, . . .),
where mk = (# of all sites i such that ui = k).
Example: The word 1255135 has type (2, 1, 1, 0, 3, 0, 0, 0, . . .).

We omit trailing zeroes from infinite sequences.
That is, we abbreviate (m1,m2, . . . ,mk , 0, 0, 0, . . .) as
(m1,m2, . . . ,mk).

A word u is packed with ` classes if its type m has
m1,m2, . . . ,m` > 0 and m`+1 = m`+2 = · · · = 0.

Example: The word 1255135 is not packed.
The word 1244134 is packed with 4 classes.

7 / 23

Types of words

The type of a word u is the sequence m = (m1,m2, . . .),
where mk = (# of all sites i such that ui = k).
Example: The word 1255135 has type (2, 1, 1, 0, 3, 0, 0, 0, . . .).

We omit trailing zeroes from infinite sequences.
That is, we abbreviate (m1,m2, . . . ,mk , 0, 0, 0, . . .) as
(m1,m2, . . . ,mk).

A word u is packed with ` classes if its type m has
m1,m2, . . . ,m` > 0 and m`+1 = m`+2 = · · · = 0.

Example: The word 1255135 is not packed.
The word 1244134 is packed with 4 classes.

7 / 23

Types of words

The type of a word u is the sequence m = (m1,m2, . . .),
where mk = (# of all sites i such that ui = k).
Example: The word 1255135 has type (2, 1, 1, 0, 3).

We omit trailing zeroes from infinite sequences.
That is, we abbreviate (m1,m2, . . . ,mk , 0, 0, 0, . . .) as
(m1,m2, . . . ,mk).

A word u is packed with ` classes if its type m has
m1,m2, . . . ,m` > 0 and m`+1 = m`+2 = · · · = 0.

Example: The word 1255135 is not packed.
The word 1244134 is packed with 4 classes.

7 / 23

Types of words

The type of a word u is the sequence m = (m1,m2, . . .),
where mk = (# of all sites i such that ui = k).
Example: The word 1255135 has type (2, 1, 1, 0, 3).

We omit trailing zeroes from infinite sequences.
That is, we abbreviate (m1,m2, . . . ,mk , 0, 0, 0, . . .) as
(m1,m2, . . . ,mk).

A word u is packed with ` classes if its type m has
m1,m2, . . . ,m` > 0 and m`+1 = m`+2 = · · · = 0.

Example: The word 1255135 is not packed.
The word 1244134 is packed with 4 classes.

7 / 23

Types of words

The type of a word u is the sequence m = (m1,m2, . . .),
where mk = (# of all sites i such that ui = k).
Example: The word 1255135 has type (2, 1, 1, 0, 3).

We omit trailing zeroes from infinite sequences.
That is, we abbreviate (m1,m2, . . . ,mk , 0, 0, 0, . . .) as
(m1,m2, . . . ,mk).

A word u is packed with ` classes if its type m has
m1,m2, . . . ,m` > 0 and m`+1 = m`+2 = · · · = 0.

Example: The word 1255135 is not packed.
The word 1244134 is packed with 4 classes.

7 / 23

MLQs

A MLQ (short for “multiline queue”) is a tuple of queues.

If q = (q1, q2, . . . , qk) is an MLQ, and u is a word, then

q(u) := qk (qk−1 (· · · (q1(u)))) .

Let ` > 0, and let σ be a permutation of [`− 1].
Let m = (m1,m2, . . . ,m`) be a sequence of positive integers.
A σ-twisted MLQ of type m means an MLQ
q = (q1, q2, . . . , q`−1) such that

|qi | = m1 + m2 + · · ·+ mσ(i) for all i , and

n = m1 + m2 + · · · .

8 / 23

MLQs

A MLQ (short for “multiline queue”) is a tuple of queues.

If q = (q1, q2, . . . , qk) is an MLQ, and u is a word, then

q(u) := qk (qk−1 (· · · (q1(u)))) .

Let ` > 0, and let σ be a permutation of [`− 1].
Let m = (m1,m2, . . . ,m`) be a sequence of positive integers.
A σ-twisted MLQ of type m means an MLQ
q = (q1, q2, . . . , q`−1) such that

|qi | = m1 + m2 + · · ·+ mσ(i) for all i , and

n = m1 + m2 + · · · .

8 / 23

MLQs

A MLQ (short for “multiline queue”) is a tuple of queues.

If q = (q1, q2, . . . , qk) is an MLQ, and u is a word, then

q(u) := qk (qk−1 (· · · (q1(u)))) .

Let ` > 0, and let σ be a permutation of [`− 1].
Let m = (m1,m2, . . . ,m`) be a sequence of positive integers.
A σ-twisted MLQ of type m means an MLQ
q = (q1, q2, . . . , q`−1) such that

|qi | = m1 + m2 + · · ·+ mσ(i) for all i , and

n = m1 + m2 + · · · .

8 / 23

MLQs

A MLQ (short for “multiline queue”) is a tuple of queues.

If q = (q1, q2, . . . , qk) is an MLQ, and u is a word, then

q(u) := qk (qk−1 (· · · (q1(u)))) .

Let ` > 0, and let σ be a permutation of [`− 1].
Let m = (m1,m2, . . . ,m`) be a sequence of positive integers.
A σ-twisted MLQ of type m means an MLQ
q = (q1, q2, . . . , q`−1) such that

|qi | = m1 + m2 + · · ·+ mσ(i) for all i , and

n = m1 + m2 + · · · .
Example: n = 6 and m = (2, 3, 1) and ` = 3 and σ = (2, 1)
(one-line notation). Then, a σ-twisted MLQ of type m is an
MLQ q = (q1, q2) with |q1| = m1 + m2 = 2 + 3 = 5 and
|q2| = m1 = 2.

8 / 23

MLQs

A MLQ (short for “multiline queue”) is a tuple of queues.

If q = (q1, q2, . . . , qk) is an MLQ, and u is a word, then

q(u) := qk (qk−1 (· · · (q1(u)))) .

Let ` > 0, and let σ be a permutation of [`− 1].
Let m = (m1,m2, . . . ,m`) be a sequence of positive integers.
A σ-twisted MLQ of type m means an MLQ
q = (q1, q2, . . . , q`−1) such that

|qi | = m1 + m2 + · · ·+ mσ(i) for all i , and

n = m1 + m2 + · · · .
Example: n = 6 and m = (2, 3, 1) and ` = 3 and σ = (2, 1)
(one-line notation). Then, a σ-twisted MLQ of type m is an
MLQ q = (q1, q2) with |q1| = m1 + m2 = 2 + 3 = 5 and
|q2| = m1 = 2. For example, q = ({1, 3, 4, 5, 6} , {2, 3})

8 / 23

MLQs

A MLQ (short for “multiline queue”) is a tuple of queues.

If q = (q1, q2, . . . , qk) is an MLQ, and u is a word, then

q(u) := qk (qk−1 (· · · (q1(u)))) .

Let ` > 0, and let σ be a permutation of [`− 1].
Let m = (m1,m2, . . . ,m`) be a sequence of positive integers.
A σ-twisted MLQ of type m means an MLQ
q = (q1, q2, . . . , q`−1) such that

|qi | = m1 + m2 + · · ·+ mσ(i) for all i , and

n = m1 + m2 + · · · .
Example: n = 6 and m = (2, 3, 1) and ` = 3 and σ = (2, 1)
(one-line notation). Then, a σ-twisted MLQ of type m is an
MLQ q = (q1, q2) with |q1| = m1 + m2 = 2 + 3 = 5 and
|q2| = m1 = 2. For example, q = ({1, 3, 4, 5, 6} , {2, 3})
and q(111111) = 311222.

8 / 23

MLQs

A MLQ (short for “multiline queue”) is a tuple of queues.

If q = (q1, q2, . . . , qk) is an MLQ, and u is a word, then

q(u) := qk (qk−1 (· · · (q1(u)))) .

Let ` > 0, and let σ be a permutation of [`− 1].
Let m = (m1,m2, . . . ,m`) be a sequence of positive integers.
A σ-twisted MLQ of type m means an MLQ
q = (q1, q2, . . . , q`−1) such that

|qi | = m1 + m2 + · · ·+ mσ(i) for all i , and

n = m1 + m2 + · · · .
Example: n = 6 and m = (2, 3, 1) and ` = 3 and σ = (2, 1)
(one-line notation). Then, a σ-twisted MLQ of type m is an
MLQ q = (q1, q2) with |q1| = m1 + m2 = 2 + 3 = 5 and
|q2| = m1 = 2. For example, q = ({1, 3, 4, 5, 6} , {4, 5})

8 / 23

MLQs

A MLQ (short for “multiline queue”) is a tuple of queues.

If q = (q1, q2, . . . , qk) is an MLQ, and u is a word, then

q(u) := qk (qk−1 (· · · (q1(u)))) .

Let ` > 0, and let σ be a permutation of [`− 1].
Let m = (m1,m2, . . . ,m`) be a sequence of positive integers.
A σ-twisted MLQ of type m means an MLQ
q = (q1, q2, . . . , q`−1) such that

|qi | = m1 + m2 + · · ·+ mσ(i) for all i , and

n = m1 + m2 + · · · .
Example: n = 6 and m = (2, 3, 1) and ` = 3 and σ = (2, 1)
(one-line notation). Then, a σ-twisted MLQ of type m is an
MLQ q = (q1, q2) with |q1| = m1 + m2 = 2 + 3 = 5 and
|q2| = m1 = 2. For example, q = ({1, 3, 4, 5, 6} , {4, 5})
and q(111111) = 232112.

8 / 23

MLQs

A MLQ (short for “multiline queue”) is a tuple of queues.

If q = (q1, q2, . . . , qk) is an MLQ, and u is a word, then

q(u) := qk (qk−1 (· · · (q1(u)))) .

Let ` > 0, and let σ be a permutation of [`− 1].
Let m = (m1,m2, . . . ,m`) be a sequence of positive integers.
A σ-twisted MLQ of type m means an MLQ
q = (q1, q2, . . . , q`−1) such that

|qi | = m1 + m2 + · · ·+ mσ(i) for all i , and

n = m1 + m2 + · · · .

Equivalently: A σ-twisted MLQ of type m can be defined as
an MLQ q = (q1, q2, . . . , q`−1) such that

the word q(1 · · · 1) has type m (where 1 · · · 1 is the word
whose entries all equal 1);
we have 0 <

∣∣qσ−1(1)

∣∣ < ∣∣qσ−1(2)

∣∣ < · · · < ∣∣qσ−1(`−1)
∣∣.

8 / 23

Generating functions, 1: definition

Now, let x1, x2, . . . , xn be commuting variables.
For any ` ≥ 1, any permutation σ of [`− 1], and any packed
word u of type m with ` classes, we define the σ-spectral
weight 〈u〉σ by

〈u〉σ :=
∑

q is a σ-twisted
MLQ of type m

satisfying u=q(1···1)

wt q.

Here:

1 · · · 1 denotes the word whose all entries are 1.

wt q :=
k∏

p=1

∏
i∈qp

xi for any MLQ q = (q1, q2, . . . , qk).

9 / 23

Generating functions, 1: definition

Now, let x1, x2, . . . , xn be commuting variables.
For any ` ≥ 1, any permutation σ of [`− 1], and any packed
word u of type m with ` classes, we define the σ-spectral
weight 〈u〉σ by

〈u〉σ :=
∑

q is a σ-twisted
MLQ of type m

satisfying u=q(1···1)

wt q.

Here:

1 · · · 1 denotes the word whose all entries are 1.

wt q :=
k∏

p=1

∏
i∈qp

xi for any MLQ q = (q1, q2, . . . , qk).

9 / 23

Generating functions, 1: definition

Now, let x1, x2, . . . , xn be commuting variables.
For any ` ≥ 1, any permutation σ of [`− 1], and any packed
word u of type m with ` classes, we define the σ-spectral
weight 〈u〉σ by

〈u〉σ :=
∑

q is a σ-twisted
MLQ of type m

satisfying u=q(1···1)

wt q.

Here:

1 · · · 1 denotes the word whose all entries are 1.

wt q :=
k∏

p=1

∏
i∈qp

xi for any MLQ q = (q1, q2, . . . , qk).

Example: Recall that ({1, 3, 4, 5, 6} , {4, 5}) is a σ-twisted
MLQ of type m for n = 6 and m = (2, 3, 1) and ` = 3 and
σ = (2, 1) (one-line notation) satisfying q(111111) = 232112.
It contributes a monomial

(x1x3x4x5x6) (x4x5) = x1x3x
2
4x

2
5x6 to 〈232112〉σ . 9 / 23

Generating functions, 1: definition

Now, let x1, x2, . . . , xn be commuting variables.
For any ` ≥ 1, any permutation σ of [`− 1], and any packed
word u of type m with ` classes, we define the σ-spectral
weight 〈u〉σ by

〈u〉σ :=
∑

q is a σ-twisted
MLQ of type m

satisfying u=q(1···1)

wt q.

Here:

1 · · · 1 denotes the word whose all entries are 1.

wt q :=
k∏

p=1

∏
i∈qp

xi for any MLQ q = (q1, q2, . . . , qk).

Set 〈u〉 := 〈u〉id for the permutation id of [`− 1].

9 / 23

Generating functions, 2: more examples

Example: For n = 5, ` = 5 and m = (1, 1, 2, 1), we have

〈13234〉 = x1x2x
2
3x4(x21 + x1x4 + x1x5 + x4x5 + x25).

Examples: For n = 5, ` = 5 and m = (1, 1, 1, 1, 1), we have

〈13245〉 = x1x2x
2
3x4(x21 + x1x4 + x1x5 + x24 + x4x5 + x25)

· (x1x2x3 + x1x2x5 + x1x3x5 + x2x3x5),

〈14235〉 = x1x2x
2
3x

2
4 (x31x2 + x31x3 + x31x5 + x21x2x3 + x21x2x4

+ 2x21x2x5 + x21x3x4 + 2x21x3x5 + x21x4x5

+ x21x
2
5 + x1x2x3x5 + x1x2x4x5 + 2x1x2x

2
5

+ x1x3x4x5 + 2x1x3x
2
5 + x1x4x

2
5 + x1x

3
5

+ x2x3x
2
5 + x2x4x

2
5 + x2x

3
5 + x3x4x

2
5 + x3x

3
5).

10 / 23

Generating functions, 2: more examples

Example: For n = 5, ` = 5 and m = (1, 1, 2, 1), we have

〈13234〉 = x1x2x
2
3x4(x21 + x1x4 + x1x5 + x4x5 + x25).

Examples: For n = 5, ` = 5 and m = (1, 1, 1, 1, 1), we have

〈13245〉 = x1x2x
2
3x4(x21 + x1x4 + x1x5 + x24 + x4x5 + x25)

· (x1x2x3 + x1x2x5 + x1x3x5 + x2x3x5),

〈14235〉 = x1x2x
2
3x

2
4 (x31x2 + x31x3 + x31x5 + x21x2x3 + x21x2x4

+ 2x21x2x5 + x21x3x4 + 2x21x3x5 + x21x4x5

+ x21x
2
5 + x1x2x3x5 + x1x2x4x5 + 2x1x2x

2
5

+ x1x3x4x5 + 2x1x3x
2
5 + x1x4x

2
5 + x1x

3
5

+ x2x3x
2
5 + x2x4x

2
5 + x2x

3
5 + x3x4x

2
5 + x3x

3
5).

10 / 23

The symmetry theorem, 1: statement

Theorem. For any ` ≥ 1, any permutation σ of [`− 1], and
any packed word u of type m with ` classes, we have

〈u〉σ = 〈u〉 .
This yields the “commutativity conjecture” by Arita, Ayyer,
Mallick and Prolhac on the TASEP (arXiv:1104.3752).

This is proven bijectively, using a “duality transformation” on
MLQs that leaves their action on words unchanged.
Main lemma. If q1 and q2 are two queues, then there are
two queues q′1 and q′2 satisfying∣∣q′1∣∣ = |q2| and

∣∣q′2∣∣ = |q1| and∏
i∈q′1

xi

∏
i∈q′2

xi

 =

∏
i∈q1

xi

∏
i∈q2

xi

such that every word u satisfies

q′1
(
q′2 (u)

)
= q1 (q2 (u)) .

11 / 23

http://www.arxiv.org/abs/1104.3752

The symmetry theorem, 1: statement

Theorem. For any ` ≥ 1, any permutation σ of [`− 1], and
any packed word u of type m with ` classes, we have

〈u〉σ = 〈u〉 .
This yields the “commutativity conjecture” by Arita, Ayyer,
Mallick and Prolhac on the TASEP (arXiv:1104.3752).
This is proven bijectively, using a “duality transformation” on
MLQs that leaves their action on words unchanged.
Main lemma. If q1 and q2 are two queues, then there are
two queues q′1 and q′2 satisfying∣∣q′1∣∣ = |q2| and

∣∣q′2∣∣ = |q1| and∏
i∈q′1

xi

∏
i∈q′2

xi

 =

∏
i∈q1

xi

∏
i∈q2

xi

such that every word u satisfies

q′1
(
q′2 (u)

)
= q1 (q2 (u)) .

11 / 23

http://www.arxiv.org/abs/1104.3752

The symmetry theorem, 1: statement

Theorem. For any ` ≥ 1, any permutation σ of [`− 1], and
any packed word u of type m with ` classes, we have

〈u〉σ = 〈u〉 .
This yields the “commutativity conjecture” by Arita, Ayyer,
Mallick and Prolhac on the TASEP (arXiv:1104.3752).
This is proven bijectively, using a “duality transformation” on
MLQs that leaves their action on words unchanged.
Main lemma. If q1 and q2 are two queues, then there are
two queues q′1 and q′2 satisfying∣∣q′1∣∣ = |q2| and

∣∣q′2∣∣ = |q1| and∏
i∈q′1

xi

∏
i∈q′2

xi

 =

∏
i∈q1

xi

∏
i∈q2

xi

such that every word u satisfies

q′1
(
q′2 (u)

)
= q1 (q2 (u)) .

11 / 23

http://www.arxiv.org/abs/1104.3752

The symmetry theorem, 2: idea of proof

The construction of q′1 and q′2 is combinatorial:

Encode the pair (q1, q2) as a 2n-letter word
b = (b1, b2, . . . , b2n) over the 3-letter alphabet {), (, ◦}.
Namely, for each i ,

let b2i−1 be an opening parenthesis “(” if i ∈ q1,
otherwise a neutral symbol “◦”;
let b2i be a closing parenthesis “)” if i ∈ q2,
otherwise a neutral symbol “◦”.

Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically.
Replace the unmatched parentheses by their duals – e.g.,
if they were)’s, make them (’s.
Turn the resulting word b′ into two sets q′1 and q′2 as
follows:

q′1 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “(”

}
;

q′2 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “)”

}
.

12 / 23

The symmetry theorem, 2: idea of proof

The construction of q′1 and q′2 is combinatorial:

Encode the pair (q1, q2) as a 2n-letter word
b = (b1, b2, . . . , b2n) over the 3-letter alphabet {), (, ◦}.
Namely, for each i ,

let b2i−1 be an opening parenthesis “(” if i ∈ q1,
otherwise a neutral symbol “◦”;
let b2i be a closing parenthesis “)” if i ∈ q2,
otherwise a neutral symbol “◦”.

Convenient example:

n = 10;

q1 = {2, 6, 7, 9} ;

q2 = {1, 3, 5, 7, 8} .

Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically.
Replace the unmatched parentheses by their duals – e.g.,
if they were)’s, make them (’s.
Turn the resulting word b′ into two sets q′1 and q′2 as
follows:

q′1 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “(”

}
;

q′2 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “)”

}
.

12 / 23

The symmetry theorem, 2: idea of proof

The construction of q′1 and q′2 is combinatorial:

Encode the pair (q1, q2) as a 2n-letter word
b = (b1, b2, . . . , b2n) over the 3-letter alphabet {), (, ◦}.
Namely, for each i ,

let b2i−1 be an opening parenthesis “(” if i ∈ q1,
otherwise a neutral symbol “◦”;
let b2i be a closing parenthesis “)” if i ∈ q2,
otherwise a neutral symbol “◦”.

Convenient example:

n = 10;

q1 = {2, 6, 7, 9} ;

q2 = {1, 3, 5, 7, 8} .
Then,

b = ◦) (◦ ◦) ◦◦ ◦) (◦ () ◦) (◦ ◦◦
i = 1 2 3 4 5 6 7 8 9 10

Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically.
Replace the unmatched parentheses by their duals – e.g.,
if they were)’s, make them (’s.
Turn the resulting word b′ into two sets q′1 and q′2 as
follows:

q′1 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “(”

}
;

q′2 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “)”

}
.

12 / 23

The symmetry theorem, 2: idea of proof

The construction of q′1 and q′2 is combinatorial:

Encode the pair (q1, q2) as a 2n-letter word
b = (b1, b2, . . . , b2n) over the 3-letter alphabet {), (, ◦}.
Namely, for each i ,

let b2i−1 be an opening parenthesis “(” if i ∈ q1,
otherwise a neutral symbol “◦”;
let b2i be a closing parenthesis “)” if i ∈ q2,
otherwise a neutral symbol “◦”.

Convenient example:

n = 10;

q1 = {2, 6, 7, 9} ;

q2 = {1, 3, 5, 7, 8} .
Then,

b = ◦) (◦ ◦) ◦◦ ◦) (◦ () ◦) (◦ ◦◦

Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically.
Replace the unmatched parentheses by their duals – e.g.,
if they were)’s, make them (’s.
Turn the resulting word b′ into two sets q′1 and q′2 as
follows:

q′1 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “(”

}
;

q′2 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “)”

}
.

12 / 23

The symmetry theorem, 2: idea of proof

The construction of q′1 and q′2 is combinatorial:

Encode the pair (q1, q2) as a 2n-letter word
b = (b1, b2, . . . , b2n) over the 3-letter alphabet {), (, ◦}.
Namely, for each i ,

let b2i−1 be an opening parenthesis “(” if i ∈ q1,
otherwise a neutral symbol “◦”;
let b2i be a closing parenthesis “)” if i ∈ q2,
otherwise a neutral symbol “◦”.

Convenient example:

n = 10;

q1 = {2, 6, 7, 9} ;

q2 = {1, 3, 5, 7, 8} .
Then,

b = ◦)(◦◦)◦◦◦)(◦()◦)(◦◦◦
Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically.

Replace the unmatched parentheses by their duals – e.g.,
if they were)’s, make them (’s.
Turn the resulting word b′ into two sets q′1 and q′2 as
follows:

q′1 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “(”

}
;

q′2 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “)”

}
.

12 / 23

The symmetry theorem, 2: idea of proof

The construction of q′1 and q′2 is combinatorial:

Encode the pair (q1, q2) as a 2n-letter word
b = (b1, b2, . . . , b2n) over the 3-letter alphabet {), (, ◦}.
Namely, for each i ,

let b2i−1 be an opening parenthesis “(” if i ∈ q1,
otherwise a neutral symbol “◦”;
let b2i be a closing parenthesis “)” if i ∈ q2,
otherwise a neutral symbol “◦”.

Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically. In our above
example:

b = ◦)(◦◦)◦◦◦)(◦()◦)(◦◦◦

Replace the unmatched parentheses by their duals – e.g.,
if they were)’s, make them (’s.
Turn the resulting word b′ into two sets q′1 and q′2 as
follows:

q′1 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “(”

}
;

q′2 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “)”

}
.

12 / 23

The symmetry theorem, 2: idea of proof

The construction of q′1 and q′2 is combinatorial:

Encode the pair (q1, q2) as a 2n-letter word
b = (b1, b2, . . . , b2n) over the 3-letter alphabet {), (, ◦}.
Namely, for each i ,

let b2i−1 be an opening parenthesis “(” if i ∈ q1,
otherwise a neutral symbol “◦”;
let b2i be a closing parenthesis “)” if i ∈ q2,
otherwise a neutral symbol “◦”.

Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically. In our above
example:

b = ◦)(1◦◦)1◦◦◦)(◦()◦)(◦◦◦

Replace the unmatched parentheses by their duals – e.g.,
if they were)’s, make them (’s.
Turn the resulting word b′ into two sets q′1 and q′2 as
follows:

q′1 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “(”

}
;

q′2 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “)”

}
.

12 / 23

The symmetry theorem, 2: idea of proof

The construction of q′1 and q′2 is combinatorial:

Encode the pair (q1, q2) as a 2n-letter word
b = (b1, b2, . . . , b2n) over the 3-letter alphabet {), (, ◦}.
Namely, for each i ,

let b2i−1 be an opening parenthesis “(” if i ∈ q1,
otherwise a neutral symbol “◦”;
let b2i be a closing parenthesis “)” if i ∈ q2,
otherwise a neutral symbol “◦”.

Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically. In our above
example:

b = ◦)(1◦◦)1◦◦◦)(◦(2)2◦)(◦◦◦

Replace the unmatched parentheses by their duals – e.g.,
if they were)’s, make them (’s.
Turn the resulting word b′ into two sets q′1 and q′2 as
follows:

q′1 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “(”

}
;

q′2 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “)”

}
.

12 / 23

The symmetry theorem, 2: idea of proof

The construction of q′1 and q′2 is combinatorial:

Encode the pair (q1, q2) as a 2n-letter word
b = (b1, b2, . . . , b2n) over the 3-letter alphabet {), (, ◦}.
Namely, for each i ,

let b2i−1 be an opening parenthesis “(” if i ∈ q1,
otherwise a neutral symbol “◦”;
let b2i be a closing parenthesis “)” if i ∈ q2,
otherwise a neutral symbol “◦”.

Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically. In our above
example:

b = ◦)(1◦◦)1◦◦◦)(3◦(2)2◦)3(◦◦◦

Replace the unmatched parentheses by their duals – e.g.,
if they were)’s, make them (’s.
Turn the resulting word b′ into two sets q′1 and q′2 as
follows:

q′1 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “(”

}
;

q′2 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “)”

}
.

12 / 23

The symmetry theorem, 2: idea of proof

The construction of q′1 and q′2 is combinatorial:

Encode the pair (q1, q2) as a 2n-letter word
b = (b1, b2, . . . , b2n) over the 3-letter alphabet {), (, ◦}.
Namely, for each i ,

let b2i−1 be an opening parenthesis “(” if i ∈ q1,
otherwise a neutral symbol “◦”;
let b2i be a closing parenthesis “)” if i ∈ q2,
otherwise a neutral symbol “◦”.

Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically. In our above
example:

b = ◦)4(1◦◦)1◦◦◦)(3◦(2)2◦)3(4◦◦◦
Replace the unmatched parentheses by their duals – e.g.,
if they were)’s, make them (’s.

Turn the resulting word b′ into two sets q′1 and q′2 as
follows:

q′1 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “(”

}
;

q′2 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “)”

}
.

12 / 23

The symmetry theorem, 2: idea of proof

The construction of q′1 and q′2 is combinatorial:

Encode the pair (q1, q2) as a 2n-letter word
b = (b1, b2, . . . , b2n) over the 3-letter alphabet {), (, ◦}.
Namely, for each i ,

let b2i−1 be an opening parenthesis “(” if i ∈ q1,
otherwise a neutral symbol “◦”;
let b2i be a closing parenthesis “)” if i ∈ q2,
otherwise a neutral symbol “◦”.

Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically.
Replace the unmatched parentheses by their duals – e.g.,
if they were)’s, make them (’s.

Turn the resulting word b′ into two sets q′1 and q′2 as
follows:

q′1 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “(”

}
;

q′2 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “)”

}
.

12 / 23

The symmetry theorem, 2: idea of proof

The construction of q′1 and q′2 is combinatorial:

Encode the pair (q1, q2) as a 2n-letter word
b = (b1, b2, . . . , b2n) over the 3-letter alphabet {), (, ◦}.
Namely, for each i ,

let b2i−1 be an opening parenthesis “(” if i ∈ q1,
otherwise a neutral symbol “◦”;
let b2i be a closing parenthesis “)” if i ∈ q2,
otherwise a neutral symbol “◦”.

Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically.
Replace the unmatched parentheses by their duals – e.g.,
if they were)’s, make them (’s.
In our above example:

b = ◦)4(1◦◦)1◦◦◦)(3◦(2)2◦)3(4◦◦◦

Turn the resulting word b′ into two sets q′1 and q′2 as
follows:

q′1 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “(”

}
;

q′2 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “)”

}
.

12 / 23

The symmetry theorem, 2: idea of proof

The construction of q′1 and q′2 is combinatorial:

Encode the pair (q1, q2) as a 2n-letter word
b = (b1, b2, . . . , b2n) over the 3-letter alphabet {), (, ◦}.
Namely, for each i ,

let b2i−1 be an opening parenthesis “(” if i ∈ q1,
otherwise a neutral symbol “◦”;
let b2i be a closing parenthesis “)” if i ∈ q2,
otherwise a neutral symbol “◦”.

Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically.
Replace the unmatched parentheses by their duals – e.g.,
if they were)’s, make them (’s.
In our above example:

b = ◦)4(1◦◦)1◦◦◦)(3◦(2)2◦)3(4◦◦◦

Turn the resulting word b′ into two sets q′1 and q′2 as
follows:

q′1 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “(”

}
;

q′2 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “)”

}
.

12 / 23

The symmetry theorem, 2: idea of proof

The construction of q′1 and q′2 is combinatorial:

Encode the pair (q1, q2) as a 2n-letter word
b = (b1, b2, . . . , b2n) over the 3-letter alphabet {), (, ◦}.
Namely, for each i ,

let b2i−1 be an opening parenthesis “(” if i ∈ q1,
otherwise a neutral symbol “◦”;
let b2i be a closing parenthesis “)” if i ∈ q2,
otherwise a neutral symbol “◦”.

Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically.
Replace the unmatched parentheses by their duals – e.g.,
if they were)’s, make them (’s.
In our above example:

b′ = ◦)4(1◦◦)1◦◦◦((3◦(2)2◦)3(4◦◦◦
Turn the resulting word b′ into two sets q′1 and q′2 as
follows:

q′1 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “(”

}
;

q′2 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “)”

}
.

12 / 23

The symmetry theorem, 2: idea of proof

The construction of q′1 and q′2 is combinatorial:

Encode the pair (q1, q2) as a 2n-letter word
b = (b1, b2, . . . , b2n) over the 3-letter alphabet {), (, ◦}.
Namely, for each i ,

let b2i−1 be an opening parenthesis “(” if i ∈ q1,
otherwise a neutral symbol “◦”;
let b2i be a closing parenthesis “)” if i ∈ q2,
otherwise a neutral symbol “◦”.

Match parentheses in b “the usual way” but keeping in
mind that the word wraps around cyclically.
Replace the unmatched parentheses by their duals – e.g.,
if they were)’s, make them (’s.
Turn the resulting word b′ into two sets q′1 and q′2 as
follows:

q′1 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “(”

}
;

q′2 =
{
i ∈ [n] | either b′2i−1 or b′2i is a “)”

}
.

12 / 23

The symmetry theorem, 3: comments

Note that
if |q1| < |q2|, then q′1 is obtained from q1 by adding some
elements from q2, whereas q′2 is obtained from q2 by
removing these elements;
if |q1| = |q2|, then q′1 = q1 and q′2 = q2;
if |q1| > |q2|, then q′1 is obtained from q1 by removing
some elements, whereas q′2 is obtained from q2 by adding
these elements.

This is closely connected to the Lascoux-Schützenberger
action of the symmetric group on words (a.k.a. the Weyl
group action on the word crystal of type A).

Note: the map (q1, q2) 7→ (q′1, q
′
2) is an involution.

Actually, it is a known object from crystal base theory: the
combinatorial R-matrix for two single columns.

13 / 23

The symmetry theorem, 3: comments

Note that
if |q1| < |q2|, then q′1 is obtained from q1 by adding some
elements from q2, whereas q′2 is obtained from q2 by
removing these elements;
if |q1| = |q2|, then q′1 = q1 and q′2 = q2;
if |q1| > |q2|, then q′1 is obtained from q1 by removing
some elements, whereas q′2 is obtained from q2 by adding
these elements.

This is closely connected to the Lascoux-Schützenberger
action of the symmetric group on words (a.k.a. the Weyl
group action on the word crystal of type A).

Note: the map (q1, q2) 7→ (q′1, q
′
2) is an involution.

Actually, it is a known object from crystal base theory: the
combinatorial R-matrix for two single columns.

13 / 23

The symmetry theorem, 3: comments

Note that
if |q1| < |q2|, then q′1 is obtained from q1 by adding some
elements from q2, whereas q′2 is obtained from q2 by
removing these elements;
if |q1| = |q2|, then q′1 = q1 and q′2 = q2;
if |q1| > |q2|, then q′1 is obtained from q1 by removing
some elements, whereas q′2 is obtained from q2 by adding
these elements.

This is closely connected to the Lascoux-Schützenberger
action of the symmetric group on words (a.k.a. the Weyl
group action on the word crystal of type A).

Note: the map (q1, q2) 7→ (q′1, q
′
2) is an involution.

Actually, it is a known object from crystal base theory: the
combinatorial R-matrix for two single columns.

13 / 23

A Jacobi-Trudi-like formula

But can we compute 〈u〉 without enumerating all MLQs?

Theorem. Let B = {b1 < b2 < · · · < br} ⊆ [n].
Let v1v2 · · · vr be a weakly decreasing (non-cyclic) packed
word of length r with `− 1 classes.
Define a word u of length n by ui = vj if i = bj for some j ,
otherwise ui = `.
Then

〈u〉 =

(∏
i∈B

xi

)
det
(
hi−j−1+`−vj (x1, x2, . . . , xbj)

)
1≤i ,j≤r .

Example: n = 8 and r = 4 and B = {1 < 3 < 4 < 7} and
` = 4 and v1v2 · · · vr = 3321. Then,

〈3432441〉 = (x1x3x4x7)∣∣∣∣∣∣∣∣
h0(x1) h−1(x1, x2, x3) h−1(x1, x2, x3, x4) h−1(x1, x2, . . . , x7)
h1(x1) h0(x1, x2, x3) h0(x1, x2, x3, x4) h0(x1, x2, . . . , x7)
h2(x1) h1(x1, x2, x3) h1(x1, x2, x3, x4) h1(x1, x2, . . . , x7)
h3(x1) h2(x1, x2, x3) h2(x1, x2, x3, x4) h2(x1, x2, . . . , x7)

∣∣∣∣∣∣∣∣

14 / 23

A Jacobi-Trudi-like formula

But can we compute 〈u〉 without enumerating all MLQs?
We have a partial answer (which subsumes two conjectures by
Aas and Linusson).
Theorem. Let B = {b1 < b2 < · · · < br} ⊆ [n].
Let v1v2 · · · vr be a weakly decreasing (non-cyclic) packed
word of length r with `− 1 classes.
Define a word u of length n by ui = vj if i = bj for some j ,
otherwise ui = `.
Then

〈u〉 =

(∏
i∈B

xi

)
det
(
hi−j−1+`−vj (x1, x2, . . . , xbj)

)
1≤i ,j≤r .

Example: n = 8 and r = 4 and B = {1 < 3 < 4 < 7} and
` = 4 and v1v2 · · · vr = 3321. Then,

〈3432441〉 = (x1x3x4x7)∣∣∣∣∣∣∣∣
h0(x1) h−1(x1, x2, x3) h−1(x1, x2, x3, x4) h−1(x1, x2, . . . , x7)
h1(x1) h0(x1, x2, x3) h0(x1, x2, x3, x4) h0(x1, x2, . . . , x7)
h2(x1) h1(x1, x2, x3) h1(x1, x2, x3, x4) h1(x1, x2, . . . , x7)
h3(x1) h2(x1, x2, x3) h2(x1, x2, x3, x4) h2(x1, x2, . . . , x7)

∣∣∣∣∣∣∣∣

14 / 23

A Jacobi-Trudi-like formula

Theorem. Let B = {b1 < b2 < · · · < br} ⊆ [n].
Let v1v2 · · · vr be a weakly decreasing (non-cyclic) packed
word of length r with `− 1 classes.
Define a word u of length n by ui = vj if i = bj for some j ,
otherwise ui = `.
Then

〈u〉 =

(∏
i∈B

xi

)
det
(
hi−j−1+`−vj (x1, x2, . . . , xbj)

)
1≤i ,j≤r .

Example: n = 8 and r = 4 and B = {1 < 3 < 4 < 7} and
` = 4 and v1v2 · · · vr = 3321. Then,

〈3432441〉 = (x1x3x4x7)∣∣∣∣∣∣∣∣
h0(x1) h−1(x1, x2, x3) h−1(x1, x2, x3, x4) h−1(x1, x2, . . . , x7)
h1(x1) h0(x1, x2, x3) h0(x1, x2, x3, x4) h0(x1, x2, . . . , x7)
h2(x1) h1(x1, x2, x3) h1(x1, x2, x3, x4) h1(x1, x2, . . . , x7)
h3(x1) h2(x1, x2, x3) h2(x1, x2, x3, x4) h2(x1, x2, . . . , x7)

∣∣∣∣∣∣∣∣
14 / 23

A Jacobi-Trudi-like formula

Theorem. Let B = {b1 < b2 < · · · < br} ⊆ [n].
Let v1v2 · · · vr be a weakly decreasing (non-cyclic) packed
word of length r with `− 1 classes.
Define a word u of length n by ui = vj if i = bj for some j ,
otherwise ui = `.
Then

〈u〉 =

(∏
i∈B

xi

)
det
(
hi−j−1+`−vj (x1, x2, . . . , xbj)

)
1≤i ,j≤r .

Example: n = 8 and r = 4 and B = {1 < 3 < 4 < 7} and
` = 4 and v1v2 · · · vr = 3321. Then,

〈3432441〉 = (x1x3x4x7)∣∣∣∣∣∣∣∣
h0(x1) h−1(x1, x2, x3) h−1(x1, x2, x3, x4) h−1(x1, x2, . . . , x7)
h1(x1) h0(x1, x2, x3) h0(x1, x2, x3, x4) h0(x1, x2, . . . , x7)
h2(x1) h1(x1, x2, x3) h1(x1, x2, x3, x4) h1(x1, x2, . . . , x7)
h3(x1) h2(x1, x2, x3) h2(x1, x2, x3, x4) h2(x1, x2, . . . , x7)

∣∣∣∣∣∣∣∣
14 / 23

Bonus problem

Bonus problem

Dual stable Grothendieck polynomials

15 / 23

Reminder on Schur functions

The following is not related to MLQs (or is it?), but a
conjecture I’m very curious to hear ideas about.
(And it’s a Jacobi-Trudi type formula, too.)

Fix a commutative ring k.
Recall that for any skew partition λ/µ, the (skew) Schur
function sλ/µ is defined as the power series∑

T is an SST of shape λ/µ

xcontT ∈ k [[x1, x2, x3, . . .]] ,

where “SST” is short for “semistandard Young tableau”, and
where

xcontT =
∏
k≥1

xnumber of times T contains entry k
k .

Let us generalize this by extending the sum and introducing
extra parameters.

16 / 23

Reminder on Schur functions

The following is not related to MLQs (or is it?), but a
conjecture I’m very curious to hear ideas about.
(And it’s a Jacobi-Trudi type formula, too.)

Fix a commutative ring k.
Recall that for any skew partition λ/µ, the (skew) Schur
function sλ/µ is defined as the power series∑

T is an SST of shape λ/µ

xcontT ∈ k [[x1, x2, x3, . . .]] ,

where “SST” is short for “semistandard Young tableau”, and
where

xcontT =
∏
k≥1

xnumber of times T contains entry k
k .

Let us generalize this by extending the sum and introducing
extra parameters.

16 / 23

Reminder on Schur functions

The following is not related to MLQs (or is it?), but a
conjecture I’m very curious to hear ideas about.
(And it’s a Jacobi-Trudi type formula, too.)

Fix a commutative ring k.
Recall that for any skew partition λ/µ, the (skew) Schur
function sλ/µ is defined as the power series∑

T is an SST of shape λ/µ

xcontT ∈ k [[x1, x2, x3, . . .]] ,

where “SST” is short for “semistandard Young tableau”, and
where

xcontT =
∏
k≥1

xnumber of times T contains entry k
k .

Let us generalize this by extending the sum and introducing
extra parameters.

16 / 23

Dual stable Grothendieck polynomials, 1: RPPs

A reverse plane partition (RPP) is defined like an SST
(semistandard Young tableau), but entries increase weakly
both along rows and down columns. For example,

1 2 2

2 2

2 4

is an RPP.

(In detail: An RPP is a map T from a skew Young diagram to
{positive integers} such that

T (i , j) ≤ T (i , j + 1) and T (i , j) ≤ T (i + 1, j)

whenever these are defined.)

Let k be a commutative ring, and fix any elements
t1, t2, t3, . . . ∈ k.

17 / 23

Dual stable Grothendieck polynomials, 1: RPPs

A reverse plane partition (RPP) is defined like an SST
(semistandard Young tableau), but entries increase weakly
both along rows and down columns. For example,

1 2 2

2 2

2 4

is an RPP.

(In detail: An RPP is a map T from a skew Young diagram to
{positive integers} such that

T (i , j) ≤ T (i , j + 1) and T (i , j) ≤ T (i + 1, j)

whenever these are defined.)
Let k be a commutative ring, and fix any elements
t1, t2, t3, . . . ∈ k.

17 / 23

Dual stable Grothendieck polynomials, 1: RPPs

A reverse plane partition (RPP) is defined like an SST
(semistandard Young tableau), but entries increase weakly
both along rows and down columns. For example,

1 2 2

2 2

2 4

is an RPP.

(In detail: An RPP is a map T from a skew Young diagram to
{positive integers} such that

T (i , j) ≤ T (i , j + 1) and T (i , j) ≤ T (i + 1, j)

whenever these are defined.)
Let k be a commutative ring, and fix any elements
t1, t2, t3, . . . ∈ k.

17 / 23

Dual stable Grothendieck polynomials, 2: definition

Given a skew partition λ/µ, we define the refined dual stable
Grothendieck polynomial g̃λ/µ to be the formal power series∑

T is an RPP of shape λ/µ

xircontT tceqT ∈ k [[x1, x2, x3, . . .]] ,

where

xircontT =
∏
k≥1

xnumber of columns of T containing entry k
k

and
tceqT =

∏
i≥1

t
number of j such that T (i ,j)=T (i+1,j)
i

(where T (i , j) = T (i + 1, j) implies, in particular, that both
(i , j) and (i + 1, j) are cells of T).
This is a formal power series in x1, x2, x3, . . . (despite the
name “polynomial”).

18 / 23

Dual stable Grothendieck polynomials, 3: examples on xircontT

Recall:

xircontT =
∏
k≥1

xnumber of columns of T containing entry k
k .

If T = 1 2 2

2 2

2 3

, then xircontT = x1x
4
2x3. The x2 has

exponent 4, not 5, because the two 2’s in column 3 count only
once.

If T is an SST, then xircontT = xcontT .

19 / 23

Dual stable Grothendieck polynomials, 3: examples on xircontT

Recall:

xircontT =
∏
k≥1

xnumber of columns of T containing entry k
k .

If T = 1 2 2

2 2

2 3

, then xircontT = x1x
4
2x3. The x2 has

exponent 4, not 5, because the two 2’s in column 3 count only
once.

If T is an SST, then xircontT = xcontT .

19 / 23

Dual stable Grothendieck polynomials, 3: examples on tceqT

Recall that

tceqT =
∏
i≥1

t
number of j such that T (i ,j)=T (i+1,j)
i

If T = 1 2 2

2 2

2 3

, then tceqT = t1, due to

T (1, 3) = T (2, 3).

If T is an SST, then tceqT = 1.

In general, tceqT measures “how often” T breaks the SST
condition.

20 / 23

Dual stable Grothendieck polynomials, 3: examples on tceqT

Recall that

tceqT =
∏
i≥1

t
number of j such that T (i ,j)=T (i+1,j)
i

If T = 1 2 2

2 2

2 3

, then tceqT = t1, due to

T (1, 3) = T (2, 3).

If T is an SST, then tceqT = 1.

In general, tceqT measures “how often” T breaks the SST
condition.

20 / 23

Dual stable Grothendieck polynomials, 5

If we set t1 = t2 = t3 = · · · = 0, then g̃λ/µ = sλ/µ.

If we set t1 = t2 = t3 = · · · = 1, then g̃λ/µ = gλ/µ, the dual
stable Grothendieck polynomial of Lam and Pylyavskyy
(arXiv:0705.2189).

The general case, to our knowledge, is new.

Theorem (Galashin, G., Liu, arXiv:1509.03803): The
power series g̃λ/µ is symmetric in the xi (not in the ti).

Example 1: If λ = (n) and µ = (), then g̃λ/µ = hn, the n-th
complete homogeneous symmetric function.

Example 2: If λ =

1, 1, . . . , 1︸ ︷︷ ︸
n ones

 and µ = (), then

g̃λ/µ = en (t1, t2, . . . , tn−1, x1, x2, x3, . . .), where en is the n-th
elementary symmetric function.

Example 3: If λ = (2, 1) and µ = (), then
g̃λ/µ =

∑
a≤b; a<c

xaxbxc + t1
∑
a≤b

xaxb = s(2,1) + t1s(2).

21 / 23

http://www.arxiv.org/abs/0705.2189
http://www.arxiv.org/abs/1509.03803

Dual stable Grothendieck polynomials, 5

If we set t1 = t2 = t3 = · · · = 0, then g̃λ/µ = sλ/µ.

If we set t1 = t2 = t3 = · · · = 1, then g̃λ/µ = gλ/µ, the dual
stable Grothendieck polynomial of Lam and Pylyavskyy
(arXiv:0705.2189).

The general case, to our knowledge, is new.

Theorem (Galashin, G., Liu, arXiv:1509.03803): The
power series g̃λ/µ is symmetric in the xi (not in the ti).

Example 1: If λ = (n) and µ = (), then g̃λ/µ = hn, the n-th
complete homogeneous symmetric function.

Example 2: If λ =

1, 1, . . . , 1︸ ︷︷ ︸
n ones

 and µ = (), then

g̃λ/µ = en (t1, t2, . . . , tn−1, x1, x2, x3, . . .), where en is the n-th
elementary symmetric function.

Example 3: If λ = (2, 1) and µ = (), then
g̃λ/µ =

∑
a≤b; a<c

xaxbxc + t1
∑
a≤b

xaxb = s(2,1) + t1s(2).

21 / 23

http://www.arxiv.org/abs/0705.2189
http://www.arxiv.org/abs/1509.03803

Dual stable Grothendieck polynomials, 5

If we set t1 = t2 = t3 = · · · = 0, then g̃λ/µ = sλ/µ.

If we set t1 = t2 = t3 = · · · = 1, then g̃λ/µ = gλ/µ, the dual
stable Grothendieck polynomial of Lam and Pylyavskyy
(arXiv:0705.2189).

The general case, to our knowledge, is new.

Theorem (Galashin, G., Liu, arXiv:1509.03803): The
power series g̃λ/µ is symmetric in the xi (not in the ti).

Example 1: If λ = (n) and µ = (), then g̃λ/µ = hn, the n-th
complete homogeneous symmetric function.

Example 2: If λ =

1, 1, . . . , 1︸ ︷︷ ︸
n ones

 and µ = (), then

g̃λ/µ = en (t1, t2, . . . , tn−1, x1, x2, x3, . . .), where en is the n-th
elementary symmetric function.

Example 3: If λ = (2, 1) and µ = (), then
g̃λ/µ =

∑
a≤b; a<c

xaxbxc + t1
∑
a≤b

xaxb = s(2,1) + t1s(2).

21 / 23

http://www.arxiv.org/abs/0705.2189
http://www.arxiv.org/abs/1509.03803

Dual stable Grothendieck polynomials, 5

If we set t1 = t2 = t3 = · · · = 0, then g̃λ/µ = sλ/µ.

If we set t1 = t2 = t3 = · · · = 1, then g̃λ/µ = gλ/µ, the dual
stable Grothendieck polynomial of Lam and Pylyavskyy
(arXiv:0705.2189).

The general case, to our knowledge, is new.

Theorem (Galashin, G., Liu, arXiv:1509.03803): The
power series g̃λ/µ is symmetric in the xi (not in the ti).

Example 1: If λ = (n) and µ = (), then g̃λ/µ = hn, the n-th
complete homogeneous symmetric function.

Example 2: If λ =

1, 1, . . . , 1︸ ︷︷ ︸
n ones

 and µ = (), then

g̃λ/µ = en (t1, t2, . . . , tn−1, x1, x2, x3, . . .), where en is the n-th
elementary symmetric function.

Example 3: If λ = (2, 1) and µ = (), then
g̃λ/µ =

∑
a≤b; a<c

xaxbxc + t1
∑
a≤b

xaxb = s(2,1) + t1s(2).

21 / 23

http://www.arxiv.org/abs/0705.2189
http://www.arxiv.org/abs/1509.03803

Dual stable Grothendieck polynomials, 5

If we set t1 = t2 = t3 = · · · = 0, then g̃λ/µ = sλ/µ.

If we set t1 = t2 = t3 = · · · = 1, then g̃λ/µ = gλ/µ, the dual
stable Grothendieck polynomial of Lam and Pylyavskyy
(arXiv:0705.2189).

The general case, to our knowledge, is new.

Theorem (Galashin, G., Liu, arXiv:1509.03803): The
power series g̃λ/µ is symmetric in the xi (not in the ti).

Example 1: If λ = (n) and µ = (), then g̃λ/µ = hn, the n-th
complete homogeneous symmetric function.

Example 2: If λ =

1, 1, . . . , 1︸ ︷︷ ︸
n ones

 and µ = (), then

g̃λ/µ = en (t1, t2, . . . , tn−1, x1, x2, x3, . . .), where en is the n-th
elementary symmetric function.

Example 3: If λ = (2, 1) and µ = (), then
g̃λ/µ =

∑
a≤b; a<c

xaxbxc + t1
∑
a≤b

xaxb = s(2,1) + t1s(2).

21 / 23

http://www.arxiv.org/abs/0705.2189
http://www.arxiv.org/abs/1509.03803

Dual stable Grothendieck polynomials, 5

If we set t1 = t2 = t3 = · · · = 0, then g̃λ/µ = sλ/µ.

If we set t1 = t2 = t3 = · · · = 1, then g̃λ/µ = gλ/µ, the dual
stable Grothendieck polynomial of Lam and Pylyavskyy
(arXiv:0705.2189).

The general case, to our knowledge, is new.

Theorem (Galashin, G., Liu, arXiv:1509.03803): The
power series g̃λ/µ is symmetric in the xi (not in the ti).

Example 1: If λ = (n) and µ = (), then g̃λ/µ = hn, the n-th
complete homogeneous symmetric function.

Example 2: If λ =

1, 1, . . . , 1︸ ︷︷ ︸
n ones

 and µ = (), then

g̃λ/µ = en (t1, t2, . . . , tn−1, x1, x2, x3, . . .), where en is the n-th
elementary symmetric function.

Example 3: If λ = (2, 1) and µ = (), then
g̃λ/µ =

∑
a≤b; a<c

xaxbxc + t1
∑
a≤b

xaxb = s(2,1) + t1s(2).

21 / 23

http://www.arxiv.org/abs/0705.2189
http://www.arxiv.org/abs/1509.03803

Jacobi-Trudi identity?

Conjecture: Let the conjugate partitions of λ and µ be
λt = ((λt)1 , (λ

t)2 , . . . , (λ
t)N) and

µt = ((µt)1 , (µ
t)2 , . . . , (µ

t)N). Then,

g̃λ/µ

= det

((
e(λt)i−i−(µt)j+j

(
x, t
[(
µt
)
j

+ 1 :
(
λt
)
i

]))
1≤i≤N, 1≤j≤N

)
.

Here, (x, t [k : `]) denotes the alphabet
(x1, x2, x3, . . . , tk , tk+1, . . . , t`−1).
Warning: If ` ≤ k , then tk , tk+1, . . . , t`−1 means nothing. No
“antimatter” variables!

This would generalize the Jacobi-Trudi identity for Schur
functions in terms of ei ’s.

I have some even stronger conjectures, with less evidence...

The case µ = ∅ has been proven by Damir Yeliussizov in
arXiv:1601.01581.

22 / 23

http://www.arxiv.org/abs/1601.01581

Jacobi-Trudi identity?

Conjecture: Let the conjugate partitions of λ and µ be
λt = ((λt)1 , (λ

t)2 , . . . , (λ
t)N) and

µt = ((µt)1 , (µ
t)2 , . . . , (µ

t)N). Then,

g̃λ/µ

= det

((
e(λt)i−i−(µt)j+j

(
x, t
[(
µt
)
j

+ 1 :
(
λt
)
i

]))
1≤i≤N, 1≤j≤N

)
.

Here, (x, t [k : `]) denotes the alphabet
(x1, x2, x3, . . . , tk , tk+1, . . . , t`−1).
Warning: If ` ≤ k , then tk , tk+1, . . . , t`−1 means nothing. No
“antimatter” variables!

This would generalize the Jacobi-Trudi identity for Schur
functions in terms of ei ’s.

I have some even stronger conjectures, with less evidence...

The case µ = ∅ has been proven by Damir Yeliussizov in
arXiv:1601.01581.

22 / 23

http://www.arxiv.org/abs/1601.01581

Jacobi-Trudi identity?

Conjecture: Let the conjugate partitions of λ and µ be
λt = ((λt)1 , (λ

t)2 , . . . , (λ
t)N) and

µt = ((µt)1 , (µ
t)2 , . . . , (µ

t)N). Then,

g̃λ/µ

= det

((
e(λt)i−i−(µt)j+j

(
x, t
[(
µt
)
j

+ 1 :
(
λt
)
i

]))
1≤i≤N, 1≤j≤N

)
.

Here, (x, t [k : `]) denotes the alphabet
(x1, x2, x3, . . . , tk , tk+1, . . . , t`−1).
Warning: If ` ≤ k , then tk , tk+1, . . . , t`−1 means nothing. No
“antimatter” variables!

This would generalize the Jacobi-Trudi identity for Schur
functions in terms of ei ’s.

I have some even stronger conjectures, with less evidence...

The case µ = ∅ has been proven by Damir Yeliussizov in
arXiv:1601.01581.

22 / 23

http://www.arxiv.org/abs/1601.01581

Jacobi-Trudi identity?

Conjecture: Let the conjugate partitions of λ and µ be
λt = ((λt)1 , (λ

t)2 , . . . , (λ
t)N) and

µt = ((µt)1 , (µ
t)2 , . . . , (µ

t)N). Then,

g̃λ/µ

= det

((
e(λt)i−i−(µt)j+j

(
x, t
[(
µt
)
j

+ 1 :
(
λt
)
i

]))
1≤i≤N, 1≤j≤N

)
.

Here, (x, t [k : `]) denotes the alphabet
(x1, x2, x3, . . . , tk , tk+1, . . . , t`−1).
Warning: If ` ≤ k , then tk , tk+1, . . . , t`−1 means nothing. No
“antimatter” variables!

This would generalize the Jacobi-Trudi identity for Schur
functions in terms of ei ’s.

I have some even stronger conjectures, with less evidence...

The case µ = ∅ has been proven by Damir Yeliussizov in
arXiv:1601.01581.

22 / 23

http://www.arxiv.org/abs/1601.01581

Thank you

Ricky Liu for the invitation.

Erik Aas and Travis Scrimshaw for collaboration.

you for attending.

23 / 23

