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Abstract. Using the description of multiline queues as functions on words, we
introduce the notion of a spectral weight of a word by defining a new weighting
on multiline queues. We show that the spectral weight of a word is invariant un-
der a natural action of the symmetric group, giving a proof of the commutativity
conjecture of Arita, Ayyer, Mallick, and Prolhac. We give a determinant formula
for the spectral weight of a word, which gives a proof of a conjecture of the first
author and Linusson.

Contents

1. Introduction 2
1.1. Acknowledgements 3
2. Background and definitions 4
2.1. Words and queues 4
2.2. Multiline queues 6
2.3. Symmetric polynomials 7
3. Main results 8
3.1. σ-independence of the spectral weight 8
3.2. Queue action and merges 8
3.3. Spectral weights of merged words 9
3.4. A Jacobi-Trudi-like formula for special u 10
3.5. Conclusions for Aas–Linusson MLQs 11
4. The TASEP connection 12
5. Proof of Theorem 3.9 14
5.1. Lattice paths and the Lindström–Gessel–Viennot theorem 14
5.2. Pseudo-partitions and tableaux 16
5.3. Interlacing MLQs 19
5.4. Proof of Theorem 3.9 25
6. Proof of Theorem 3.1 26
7. Final remarks 34
Appendix A. Connections with other constructions 37
A.1. Connection with Ferrari–Martin and Aas–Linusson MLQs 38
A.2. Connection with Kohnert diagrams and Assaf–Searles theory 38
References 40

Date: October 18, 2018.
2010 Mathematics Subject Classification. 60C05, 05A19, 16T25, 05E05.
Key words and phrases. multiline queue, TASEP, R-matrix, symmetric function.
TS was partially supported by the Australian Research Council DP170102648 and the National Science
Foundation RTG grant DMS-1148634.

1



2 E. AAS, D. GRINBERG, AND T. SCRIMSHAW

1. Introduction

One of the fundamental models of particles moving in a 1-dimensional lattice
is the asymmetric simple exclusion process (ASEP), and it has received broad at-
tention in many different variations. The earliest known publication of the ASEP
was done to model the dynamics of ribosomes along RNA [MGP68]. For statisti-
cal mechanics, it is a model for gas particles in a lattice with an induced current,
where the exclusion mimics the short-range interactions among the particles. De-
spite admitting very simple descriptions of the particle dynamics, the ASEP has
very rich macroscopic behaviors, such as

• boundary-induced phase transitions [Kru91],
• spontaneous symmetry breaking with possibly multiple broken symme-

try phases [AHR98, AHR99, CEM01, EFGM95, EPSZ05, GLE+95, PK07],
• describing the formations of shocks [DJLS93, Fer92, FF94a, FF94b, Lig76],

and
• phase separation and condensation [EKKM98, JNH+09, KLM+02, RSS00].

We also refer the reader to [PEM09, Sch01, SZ95, TJHJ17] and references therein.
The term exclusion process was coined by Spitzer [Spi70], where he was fo-

cused on an application with Brownian motion with hard-core interactions. More-
over, it was [Spi70] that initiated the investigation of exclusion processes using
probability theory. However, the applications of the ASEP (and its variations) has
since spread to other areas, such as

• transportation processes in capillary vessels [Lev73] or proteins within the
cells along actin filaments [KNL05],
• anistropic conductors known as solid electrolytes [CL99],
• discrete models of traffic flow [Sch00],
• partition growth processes [Lam15],
• (non)symmetric Macdonald polynomials, Koornwinder polynomials, and

(deformed) Knizhnik–Zamolodchikov (KZ) equations [CdGW15, KT07],
• random matrix theory [Joh00, TW09], and
• moments of Askey–Wilson polynomials [CW11, USW04].

If we prohibit the particles from moving backwards, we obtain the totally
asymmetric exclusion process (TASEP), a non-equilibrium stochastic process that
has its own vast literature. For example, we refer the reader to [AL18, AAMP11,
BE07, BP14, DEHP93, KMO15, KMO16b, Lig99] and references therein. In this
paper, we consider the TASEP on a ring with n sites and ` species of particles.
Thus, we will consider the states to be words u in the alphabet {1, . . . , `} of length
n, where we take the indices to be Z/nZ. We will also consider our process to
be discrete in time, where our transition map interchanges a pair uiui+1 with
ui > ui+1 to ui+1ui and is done at a uniform rate.

The steady state of the TASEP on a ring is known in terms of another pro-
cess using ordinary multiline queues (MLQs) and applying the Ferrari–Martin
(FM) algorithm [FM06, FM07]. This is a generalization of 2-line queues used
by Angel [Ang06] and the work of Ferrari, Fontes, and Kohayakawa [FFK94].
In [KMO15, KMO16b], the FM algorithm was reformulated in terms of the com-
binatorial R-matrix [NY97, Shi02] and using type A(1)

n−1 Kirillov–Reshetikhin crys-
tals [KKM+92]. This interpretation gives a connection with five-vertex models,
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corner transfer matrices [Bax89], 3D integrable lattice models, and the tetrahe-
dron equation [Zam80], yielding a matrix product formula for the steady state
distribution different than [CdGW15, EFM09, PEM09].

In this paper, we introduce a new weighting of MLQs, which is the weight of
the MLQ considered as a tensor product of Kirillov–Reshetikhin crystals. We also
interpret MLQs as functions on words of a fixed length n following [AAMP11],
where it was referred to as the generalized FM algorithm. This allows us to
define the spectral weight or amplitude of a word u to be the sum over all the
weight of all ordinary MLQs q such that u = q(1n), where 1n is the word 1 · · · 1.
Furthermore, we introduce the notion of a σ-twisted MLQ, where σ is a permuta-
tion, although this is implicitly considered in [AAMP11]. Our main result (Theo-
rem 3.1) is that for a fixed permutation σ, the sum of the weights of all σ-twisted
MLQs qσ such that u = qσ(1n) equals the spectral weight of u. To this end, we
construct an action of the symmetric group on MLQs that corresponds, under
the usual FM algorithm, to the natural action by letters on words. We show that
does not change the MLQ as a function on words. This action has previously ap-
peared in a number of different guises, such as in Danilov and Koshevoy [DK05]
(see also [Gor17, Ch. 4]), van Leeuwen [vL06, Lemma 2.3], and Lothaire [Lot02,
Ch. 5, (5.6.3)]. In the context of Kirillov–Reshetikhin crystals, it can be described
as applying a combinatorial R-matrix to an MLQ, where the weight remaining
invariant is a condition of being a crystal isomorphism.

As a consequence of this action and specializing our weight parameters to 1, we
obtain a proof of the commutativity conjecture of [AAMP11]. However, we note
that the interlacing property of [AAMP11] does not generalize to our weighting of
MLQs. Furthermore, we give a determinant expression for the spectral weight of
decreasing words by using the Lindström–Gessel–Viennot Lemma [GV85, Lin73].
By combining these results, we obtain a proof of [AL18, Conj. 3.10], which in turn
proves a number of other conjectures in [AL18].

We note that our weighting scheme can be extended to multiline process used
to determine the steady state distribution of the totally asymmetric zero range
process (TARZP) on a ring, where multiple particles can occupy the same site.
This comes from the fact that the TARZP steady state distribution can also be
computed using a tensor product of Kirillov–Reshetikhin crystals (under rank-
level duality) using combinatorial R-matrices with analogous connections to cor-
ner transfer matrices and the tetrahedron equation [KMO16c, KMO16d]. Thus,
we expect that a similar description of σ-twisted multiline process can be de-
fined such that the weighting is invariant under the action of the combinatorial
R-matrix. Yet it seems unlikely that our weighting is related to the steady state
distribution for the inhomogeneous TASEP [AM13, AL14] or TARZP [KMO16a].

This paper is organized as follows. In Section 2, we give the necessary back-
ground and definitions of MLQs and spectral weight. In Section 3, we give our
main results, and use them to prove some of the conjectures in [AL18]. In Sec-
tion 4, we describe the connection between MLQs and the TASEP. In Section 5,
we give a proof of our Jacobi-Trudi-type formula (Theorem 3.9). In Section 6,
we give a proof of our main theorem (Theorem 3.1). In Section 7, we give some
additional remarks about our results.

1.1. Acknowledgements. We thank Atsuo Kuniba for explaining the results in
his papers [KMO15, KMO16a, KMO16b, KMO16c, KMO16d]. We thank Olya



4 E. AAS, D. GRINBERG, AND T. SCRIMSHAW

Mandelshtam for useful discussions on the inhomogeneous TASEP. We thank Jae-
Hoon Kwon for pointing out that the Sn-action on MLQs comes from an (slm ⊕
sln)-action. This work benefited from computations using SageMath [Sag18,
SCc08].

2. Background and definitions

Fix a positive integer n. For a nonnegative integer k, let [k] denote the set
{1, 2, . . . , k}, and so [0] = ∅. Let Sk denote the symmetric group on [k], and let
si ∈ Sk be the simple transposition of i and i + 1. Let w0 ∈ Sk be the longest ele-
ment: the permutation k(k− 1) · · · 321 (written in one line notation) that reverses
the order of all elements.

We shall refer to the elements 1, 2, . . . , n ∈ Z/nZ as sites. We visualize them
as points on a line that “wraps around” cyclically; thus, for example, the sites
weakly to the right of a site i are i, i + 1, . . . , n− 1, n, 1, 2, 3, . . . (in this order).

2.1. Words and queues. Let Wn be the set of words u = u1 · · · un in the ordered
alphabet A := {1 < 2 < 3 < · · · }. We consider the indices of letters in a word
to be taken modulo n (that is, uk+n = uk for all k). Thus, if u is a word and
i ∈ Z/nZ is a site, then the i-th letter ui of u is well-defined. We sometimes refer
to a letter ui = t as a particle at site i of class t.

The type of a word u is the vector m = (m1, m2, . . .), where mi is the number
of occurrences of i in u. Let ` = max{i | mi 6= 0}, which we say is the number
of classes in u or m. A word u or type m with ` classes is packed if mi 6= 0 for
all 1 ≤ i ≤ `. A word w of type m is standard if mi ≤ 1 for all i. We will write
1n = 1 · · · 1 for the (unique) word of type (n, 0, . . . ).

We merge two adjacent classes i, i + 1 in a word u to obtain a new word
by replacing all occurrences of j by j − 1 in u for each j = i + 1, i + 2, . . . in
that order. We denote the merging of i and i + 1 in u by ∨iu. Note that ∨iu
is packed whenever u is packed. For T = {t1 < · · · < tk} ⊆ [`− 1], we set∨

T u := ∨t1 · · · ∨tk u. Similarly, the merging of i, i + 1 in a type m = (m1, m2, . . .)
is ∨i(m) = (m1, . . . , mi−1, mi + mi+1, mi+2, . . .). Likewise, we define

∨
T m for a

type m. These operations interact as one would hope: If the type of a word u is
m, then the type of ∨iu is ∨i(m).

Fix a word u ∈ Wn, and let m = (m1, m2, . . .) be the type of u. For each i ≥ 0,
set

pi(m) := m1 + m2 + · · ·+ mi. (2.1)

When m is clear, we simply write pi for this. (Thus, p0 = 0 and pi = n for
sufficiently large i.)

We define an r-queue q to be any subset of [n] of size r. When r is clear, we
will simply call q a queue. We equate q with a function from Wn to itself defined
as follows. For any u ∈ Wn, the following algorithm from [AAMP11, Sec. 4.5]
computes v = q(u). In the beginning, no letter of v ∈ Wn is set. Choose a
permutation (i1, i2, . . . , in) of (1, 2, . . . , n) such that ui1 ≤ ui2 ≤ · · · ≤ uin .

Phase I: For i = in, in−1, . . . , i|q|+1, do the following. Find the first site j
weakly to the left (cyclically) of i such that j /∈ q and vj is not set. Then
set vj = ui + 1.
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Phase II: For i = i1, i2, . . . , i|q|, do the following. Find the first site j weakly
to the right (cyclically) of i such that j ∈ q and vj is not set. Then set
vj = ui.

Remark 2.1. Consider the above algorithm. Notice that Phase I sets vj for all j /∈ q
(because it contains n− |q| steps, and sets one such vj per step), whereas Phase II
sets vj for all j ∈ q (for similar reasons). Hence, at the end of the algorithm, all
letters of v are set, and we never run out of j’s in either phase.

Since Phase I only deals with j /∈ q, and Phase II only with j ∈ q, the two phases
can be arbitrarily interleaved (i.e., we can perform the steps of the algorithm in
any order as long as the steps of Phase I (resp. Phase II) are processed in the order
i = in, in−1, . . . , i|q|+1 (resp. i = i1, i2, . . . , i|q|).

Lemma 2.2. The resulting word v = q(u) does not depend on the choice of permutation
(i1, i2, . . . , in) (as long as ui1 ≤ ui2 ≤ · · · ≤ uin holds).

Proof. Consider some k ∈ [n− 1] such that uik = uik+1
. If we switch the two

adjacent entries ik and ik+1 of the permutation (i1, i2, . . . , in), then the resulting
word v is unchanged. Indeed, if we set h = uik = uik+1

, then:

• If k < |q|, then this switch interchanges two consecutive steps in Phase II,
causing the corresponding letters vj to get set in a possibly different order;
but this does not change v because these two letters are set to the same
value (namely, to h + 1).
• If k > |q|, then a similar argument works (using Phase I instead).
• If k = |q|, then recall from Remark 2.1 that the two phases can be ar-

bitrarily interleaved. In particular, we can first perform all but the last
step of Phase I, then perform all but the last step of Phase II, and finally
perform the remaining two steps. The switch only affects these final two
steps. However, the effect of these two steps is simply that the unique
remaining unset vj with j ∈ q gets set to h, and the unique remaining
unset vj with j /∈ q gets set to h + 1. The switch clearly does not change
this behavior, since it does not depend on ik and ik+1.

�

Lemma 2.2 states that the order between sites i with equal ui does not matter.

Remark 2.3. Let u and q be as before. Let r = |q|. There exists a t ∈ [`] such that
pt−1 ≤ r ≤ pt. The word v = q(u) then has type

(m1, . . . , mt−1, r− pt−1, pt − r, mt+1, mt+2, . . .). (2.2)

Note that pt − r = mt + (pt−1 − r). We think of this as splitting the class t into
two new classes t and t + 1.

For all i processed in Phase I (resp. Phase II) of the algorithm, we have ui ≥ t
(resp. ui ≤ t). The queue q can be reconstructed from v and t as the set of all
j ∈ [n] satisfying vj ≤ t.

Example 2.4. We consider the 4-queue q = {1, 4, 8, 9}, and let u = 346613321.
Thus, the type of u is m = (2, 1, 3, 1, 0, 2, 0, . . .) with p2 = 3 and p3 = 6. Thus,
the t in Remark 2.3 equals 3. To compute q(u), draw the following diagram
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(whose upper row shows u, whose lower row shows q(u), and whose middle
row represents the set q by balls in the positions of its elements):

3 4 6 6 1 3 3 2 1

2 7 7 3 4 4 5 1 1

where the paths in red correspond to Phase I and those in blue are from Phase II.
Hence, we have q(346613321) = 277344511, which has type (2, 1, 1, 2, 1, 0, 2, . . .).

We illustrate the situation v = q(u) with a 2× n array, where the first row is
the word u and the second row has a circle labeled vj for j ∈ q or a square labeled
vj for j /∈ q in position j. Using this convention, we can write Example 2.4 as

1 123 3 34 6 6

1 12 3 4 4 57 7
(2.3)

We call this the graveyard diagram of q and u.
There is a natural duality in the algorithm above. For each queue q, let q∗ be

the contragredient dual queue, defined by (i ∈ q∗) ⇐⇒ (n + 1− i /∈ q). Similarly,
for each word u with ` classes, let u∗ be the contragredient dual word defined by
u∗i = `+ 1− un+1−i. For a fixed k ∈ [`], we call `+ 1− k the contragredient dual
letter of k. Note that if q is an r-queue, then q∗ is the (n− r)-queue obtained by
reflecting [n] \ q through the middle of [n]. Similarly, u∗ is obtained by reversing
the word u and taking the contragredient dual letters.

Lemma 2.5 (Contragredient duality). Let q be a queue and u be a word with ` classes.
Then we have

(
q(u)

)∗
= q∗(u∗), i.e., we have q(u)i = `+ 2− q∗(u∗)n+1−i for all i.

Here, we treat q(u) as a word with ` + 1 classes, even if it may have only `
classes (in the degenerate case when q = [n]).

Proof. Phase I (resp. II) in the construction of q(u) corresponds to Phase II (resp. I)
in the construction of q∗(u∗) when the word is reversed and the letters are re-
placed by their contragredient duals. Hence the claim follows. �

We note that our construction is a minor variation of the construction given
by [AAMP11, §3.1], which is a reformulation of that of [FM07]. We more precisely
describe the relationship with [FM07] in Appendix A, where we also discuss a
small variant that has appeared in [AS18].

2.2. Multiline queues. We now give our main definition of a multiline queue
and spectral weight.

Definition 2.6. For σ ∈ S`−1, a σ-twisted multiline queue (MLQ) of type m =
(m1, m2, . . . , m`, 0, 0, . . .), with ` classes, is a sequence of queues q = (q1, . . . , q`−1)
such that qi is a pσ(i)(m)-queue and m` = n − p`−1(m) (that is, p`(m) = n).
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When σ is the identity permutation, we simply call q an (ordinary) MLQ of type
m. We also consider q as a function on words by

q(u) := q`−1
(
· · · q2

(
q1(u)

)
· · ·
)
.

Remark 2.7. Our notion of an (ordinary) MLQ is equivalent to what is called a
“discrete MLQ” in [AL18, §2.2], where we can recover the labeling of level k from
the word qk(· · · q1(1n) · · · ). See Appendix A for more details. We omit the word
“discrete” as these are the only MLQs in this note.

We shall now introduce generating functions for queues.

Definition 2.8. Let x := {x1, x2, . . . , xn} be commuting indeterminates indexed
by elements of Z/nZ. (Thus, xn+k = xk for all k ∈ Z.) The weight of a queue q is

wt(q) := ∏
i∈q

xi.

The weight of a σ-twisted MLQ q = (q1, . . . , q`−1) is

wt(q) :=
`−1

∏
i=1

wt(qi).

Definition 2.9. For σ ∈ S`−1 and a packed word u of type m with ` classes, we
define the σ-spectral weight or σ-amplitude as

〈u〉σ := ∑
q

wt(q),

where the sum is over all σ-twisted MLQs q of type m satisfying u = q(1n).
(Recall that 1n denotes the word in Wn whose all letters are 1.) When σ = id is
the identity permutation, we simply call this the spectral weight or amplitude and
denote it by 〈u〉 := 〈u〉id.

Lemma 2.10. Let ` ≥ 1 and σ ∈ S`−1. Let q be a σ-twisted MLQ. Then the type of the
word q(1n) is the type of q.

Proof. Repeatedly apply (2.2). �

Example 2.11. Let ` ≥ 1. Let u be a packed word with ` classes and type m. For
each k ∈ [`− 1], let qk be the set of all sites i such that ui ≤ k. It is then easy to
check that q := (q1, q2, . . . , q`−1) is an MLQ of type m satisfying q(1n) = u and

has weight wt(q) = ∏
j∈Z/nZ

x
`−uj
j . Hence, 〈u〉 6= 0 (as a polynomial over Z).

2.3. Symmetric polynomials. We also need the elementary symmetric polynomials
and complete homogeneous symmetric polynomials. Recall that they are defined for
each N ∈N and k ≥ 0 and any N indeterminates y1, y2, . . . , yN by

ek(y1, y2, . . . , yN) = ∑
1≤i1<···<ik≤N

yi1 · · · yik ,

hk(y1, y2, . . . , yN) = ∑
1≤i1≤···≤ik≤N

yi1 · · · yik ,

respectively. We define ek(y1, . . . , yN) = 0 and hk(y1, . . . , yN) = 0 for k < 0. For
more details on symmetric polynomials, we refer the reader to [Sta99, Ch. 7].
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3. Main results

In this section, we state our main results and use them to prove the commuta-
tivity conjecture of [AAMP11] and [AL18, Conj. 3.10].

3.1. σ-independence of the spectral weight.

Theorem 3.1. Let u be a packed word of type m with ` classes. For any σ ∈ S`−1, we
have

〈u〉 = 〈u〉σ .

We will give the proof of Theorem 3.1 in Section 6.

3.2. Queue action and merges. We shall next study the interplay between the
action of queues on words and the merging of adjacent classes.

If w is a word of type m, and if j ≥ 0, then pj(m) is the number of letters of w
that are at most j.

For a word w and a nonnegative integer k, we let ∨(k)w be the word obtained
from w by decrementing (by 1) all but the k smallest letters of w. This is only well-
defined if these k smallest letters are determined uniquely and the remaining n−
k letters are > 1. In other words, this is only well-defined if k ∈

{
pj(m) | j ≥ 1

}
,

where m is the type of w. Note that ∨(k)w = ∨jw, where j is such that k = pj(m).

Lemma 3.2. Let u ∈ Wn be a word of type m. Let k ∈
{

pj(m) | j ≥ 1
}

. If q is a queue,
then

∨(k)q(u) = q(∨(k)u).
In particular, both ∨(k)q(u) and ∨(k)u are well-defined.

Proof. The word ∨(k)u is well-defined since k = pj(m) for some j ≥ 1; further-
more, ∨(k)q(u) is well-defined since the type n of q(u) satisfies

k ∈
{

pj(m) | j ≥ 1
}
⊆
{

pj(m) | j ≥ 1
}
∪ {|q|} =

{
pj(n) | j ≥ 1

}
.

Thus, it remains to prove ∨(k)q(u) = q(∨(k)u). The permutation (i1, i2, . . . , in)

in the construction of q(u) also works for the construction of q(∨(k)u), since
(∨(k)u)a ≤ (∨(k)u)b whenever ua ≤ ub. Consequently, the construction of q(∨(k)u)
proceeds exactly like the construction of q(u) (with the same entries being set in
the same order), except that all but the k smallest letters are now smaller by 1.
Hence, q(∨(k)u) is obtained from q(u) by decrementing (by 1) all but the k small-
est letters of q(u). However, the word ∨(k)q(u) is obtained from q(u) in exactly
the same way. Therefore, we have ∨(k)q(u) = q(∨(k)u) as claimed. �

Example 3.3. Consider q = {1, 4, 5, 9, 10} and v = 3455313321:

1 123 3 3 34 5 5

1 12 3 3 4 4 56 6 .

Let u = 3566413321, and note that v = ∨3u = ∨(6)u and

1 123 3 345 6 6

1 12 3 3 4 5 67 7 ,
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where we have 2663344511 = ∨42773345611 = ∨(6)2773345611. Similarly, let
u′ = 4566413421, and note that v = ∨3u′ and

1 1234 4 45 6 6

1 12 3 4 5 5 67 7 ,

where we have 2663344511 = ∨42773455611.

Lemma 3.4. Let q′ be a pi(m)-queue for some type m and some i ≥ 1. Let the type m
have ` classes, and let σ ∈ S`−1. Let q be a σ-twisted MLQ of type ∨im. For the word
u = q

(
q′(1n)

)
, we have

q(1n) = ∨iu.

Proof. Write the σ-twisted MLQ q as (q1, . . . , q`−1). It has type ∨im.
Set q′ := (q′, q1, . . . , q`−1); this is easily seen to be a ζ-twisted MLQ of type

m, for some ζ ∈ S` (since the multiset of the pk(∨im) for k ≥ 1 is precisely
the multiset of the pk(m) for k ≥ 1 with one copy of pi(m) = |q′| removed).
Furthermore, the definition of u becomes u = q′(1n). Hence, the type of u is m
(by Lemma 2.10).

Set k = pi(m). Then, q′ is a k-queue, so that the type n of the word q′(1n)
satisfies p1(n) = k. Hence, any word obtained by actions of queues on q′(1n) will
have its type n satisfy k ∈

{
pj(n) | j ≥ 1

}
.

Since the type of u is m, and since k = pi(m), we have

∨i u = ∨(k)(u) = ∨(k)q
(
q′(1n)

)
= q

(
∨(k)q′(1n)

)
(3.1)

by repeated use of Lemma 3.2 (since any word obtained by actions of queues on
q′(1n) will have its type n satisfy k ∈

{
pj(n) | j ≥ 1

}
). It is clear that ∨(k)q′(1n) =

1n, and so (3.1) becomes q(1n) = ∨iu. �

3.3. Spectral weights of merged words. The preceding lemmas will help us es-
tablish a rule for products of spectral weights with elementary symmetric poly-
nomials (somewhat similar to the dual Pieri rule, e.g., [Sta99, Section 7.15]):

Theorem 3.5. Let m be a type with mi 6= 0 and mi+1 6= 0. Let v be a packed word of
type ∨im. Then,

〈v〉 epi(m)(x1, . . . , xn) = ∑
u
〈u〉 ,

where we sum over all u of type m such that v = ∨iu.

Proof. The type m is packed (since mi 6= 0 and mi+1 6= 0, and since ∨im is
packed). Let ∨im have ` classes; then, m has `+ 1 classes. First note that

〈v〉 epi(m)(x1, . . . , xn) = ∑
(q,q′)

wt(q)wt(q′),

where we sum over all pairs (q, q′) such that
• q = (q1, . . . , q`−1) is an MLQ of type ∨im such that v = q(1n) and
• q′ is a pi(m)-queue.

Given any such pair (q, q′), we set

θ(q, q′) := (q′, q1, . . . , q`−1);
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the result is a (si−1 · · · s2s1)-twisted MLQ of type m with weight wt
(
θ(q, q′)

)
=

wt(q)wt(q′). But recall that v = q(1n); thus, by Lemma 3.4, we have

v = q(1n) = ∨iq
(
q′(1n)

)
= ∨i

(
θ(q, q′)(1n)

)
.

Thus, we have defined a weight preserving bijection θ from the set of all pairs
(q, q′) as above to the set of all (si−1 · · · s1)-twisted MLQs q̃ of type m satisfying
v = ∨iq̃(1n). Hence, we have

∑
(q,q′)

wt(q)wt(q′) = ∑
q̃

wt(q̃) = ∑
u
〈u〉si−1···s1

,

where the last sum is over all words u of type m satisfying v = ∨iu. Finally, we
have 〈u〉si−1···s1

= 〈u〉 for all such u by Theorem 3.1. Combining all the above
equalities, we find 〈v〉 epi(m)(x1, . . . , xn) = ∑

u
〈u〉. �

Remark 3.6. Our proof of Theorem 3.1 is by constructing a bijection ω, and hence,
we can give a bijective proof of Theorem 3.5 by the composition ω ◦ θ.

Example 3.7. Suppose n = 5. Let v = 13234, and we have that v = ∨3u if and
only if u ∈ {13245, 14235}. By examining all possible MLQs for these words, we
obtain

〈13234〉 = x1x2x2
3x4(x2

1 + x1x4 + x1x5 + x4x5 + x2
5),

〈13245〉 = x1x2x2
3x4(x2

1 + x1x4 + x1x5 + x2
4 + x4x5 + x2

5)

× (x1x2x3 + x1x2x5 + x1x3x5 + x2x3x5),

〈14235〉 = x1x2x2
3x2

4(x3
1x2 + x3

1x3 + x3
1x5 + x2

1x2x3 + x2
1x2x4 + 2x2

1x2x5

+ x2
1x3x4 + 2x2

1x3x5 + x2
1x4x5 + x2

1x2
5 + x1x2x3x5

+ x1x2x4x5 + 2x1x2x2
5 + x1x3x4x5 + 2x1x3x2

5 + x1x4x2
5

+ x1x3
5 + x2x3x2

5 + x2x4x2
5 + x2x3

5 + x3x4x2
5 + x3x3

5).

(We have factored the expressions for readability only.) We verify Theorem 3.5 in
this case by computing 〈13234〉 e3(x1, x2, x3, x4, x5) = 〈13245〉+ 〈14235〉.

By repeated applications of Theorem 3.5, we obtain the following:

Corollary 3.8. Let T be a finite set of positive integers. Let m be a type such that every
t ∈ T satisfies mt 6= 0 and mt+1 6= 0. Let v be a packed word of type ∨Tm. Then,

〈v〉∏
t∈T

ept(m)(x1, . . . , xn) = ∑
u
〈u〉 ,

where we sum over all u of type m such that v =
∨

T u.

3.4. A Jacobi-Trudi-like formula for special u. Throughout this subsection, we
shall regard the sites 1, 2, . . . , n as elements of {1, 2, . . . , n} rather than of Z/nZ.
In particular, they are totally ordered by 1 < 2 < · · · < n.

Let ` and r be positive integers. Let B = {b1 < b2 < · · · < br} ⊆ [n]. Let
v = (v1, v2, . . . , vr) be an r-tuple of elements of [`− 1]. Define a word u(v) ∈ Wn
with ` classes by (

u(v)
)

i =

{
vj if i = bj for some j,
` otherwise.

(3.2)
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We shall now state a determinantal formula for the special case of 〈u(v)〉 when
v is a weakly decreasing r-tuple whose entries cover [`− 1]:

Theorem 3.9. Let ` be a positive integer. Let B = {b1 < b2 < · · · < br} ⊆ [n]. Let
(v1 ≥ v2 ≥ · · · ≥ vr) be a weakly decreasing r-tuple of integers such that {v1, v2, . . . , vr} =
[`− 1]. For each j ∈ [r], set γj = `− vj. (The value γj can also be described as the num-
ber of distinct letters among v1, v2, . . . , vj.) Then

〈u(v)〉 =
(

∏
b∈B

xb

)
det

(
hγj+i−j−1(x1, . . . , xbj

)
)

i,j∈[r]
.

The proof of this theorem is given in Section 5.

3.5. Conclusions for Aas–Linusson MLQs. We can use Theorem 3.9 to settle two
conjectures from [AL18].

Fix a set of sites B = {b1 < b2 < · · · < br}. We say that a set S of integers
is lacunar if i ∈ S implies i + 1 /∈ S. Let S ⊆ [r− 1] be lacunar, and define

the permutation σS :=
(

∏
i∈S

si

)
w0, where si, w0 ∈ Sr. Note that the elements

{si | i ∈ S} all commute, so their product, and hence σS, is well-defined. In one-
line notation, σS is the list of all elements of [r] in decreasing order, except that
for each i ∈ S, the pair (i, i + 1) is sorted back into increasing order.

For each permutation τ ∈ Sr, we let vτ be the r-tuple (τ1, τ2, . . . , τr) (that is,
the one-line notation of τ). To ease notation, we shall identify any τ ∈ Sr with
the corresponding word u(vτ) ∈ Wn defined by (3.2), where we set ` = r + 1.

In [AL18, Conj. 3.10], a formula for the spectral weight 〈σS〉 at x1 = · · · = xn =
1 is conjectured. We now prove a version of this conjecture for general xi.

Corollary 3.10. Let B = {b1 < b2 < · · · < br} ⊆ [n]. Let T ⊆ [r− 1] be lacunar, and
let ψ(T) = ∑

S⊆T
〈σS〉. Then we have

ψ(T) =

(
∏
t∈T

et(x1, . . . , xn)

)〈∨
T

w0

〉

=

(
∏
b∈B

xb

)(
∏
t∈T

et(x1, . . . , xn)

)
det
(
hγj+i−j−1(x1, . . . , xbj

)
)

i,j∈[r],

where γj = j− |{t ∈ T | t > r− j}|.

Proof. Recall that we identify the permutation w0 ∈ Sr with the word u(vw0) ∈
Wn; the latter word has type m := (1, 1, . . . , 1, n− r, 0, 0, . . .) (starting with r ones).
Hence, the word

∨
T w0 has type

∨
T m. By Corollary 3.8 (applied to v =

∨
T w0),

we thus have (
∏
t∈T

et(x1, . . . , xn)

)〈∨
T

w0

〉
= ∑

〈
u′
〉

,

where the sum ranges over all words u′ ∈ Wn of type m satisfying
∨

T u′ =
∨

T w0.
But the words u′ ∈ Wn of type m satisfying

∨
T u′ =

∨
T w0 are precisely the words

of the form σS for S ⊆ T. Hence, the ∑ 〈u′〉 in the above equality rewrites as ψ(T).
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This proves the first equality of the corollary. To prove the second equality, we
consider ` = r− |T|+ 1 and the r-tuple

v =
(
vj = `− j + |{t ∈ T | t > r− j}| = `− γj

)r
j=1.

Note that v1 = r− |T| = `− 1 and vr = 1 and

vi+1 = vi −
{

0 if r− i ∈ T,
1 if r− i /∈ T,

for each i ∈ [r− 1].

Thus, v is weakly decreasing and {v1, v2, . . . , vr} = [`− 1] and u(v) =
∨

T w0.
Hence, the second equality follows from Theorem 3.9. �

Example 3.11. Consider n = 8, B = {1, 2, 5, 6, 8}, and T = {1, 4}. Then we have∨
T w0 = 33442141, and

ψ(T) = 〈54663261〉+ 〈45663261〉+ 〈54663162〉+ 〈45663162〉 .

Applying Theorem 3.5 to t = 4 twice and then to t = 1, we obtain

ψ(T) = e4(x1, . . . , x8)
(
〈44553251〉+ 〈44553152〉

)
= e1(x1, . . . , x8) e4(x1, . . . , x8) 〈33442141〉 .

Using Theorem 3.9, this further becomes

ψ(T) = x1x2x5x6x8 e1(x1, . . . , x8) e4(x1, . . . , x8)

× det


1 0 0 0 0

h1[1] 1 1 1 0
h2[1] h1[2] h1[5] h1[6] 1
h3[1] h2[2] h2[5] h2[6] h1[8]
h4[1] h3[2] h3[5] h3[6] h2[8]

 ,

where hi[k] := hi(x1, . . . , xk).

Note that the well-known formula for Möbius inversion on the boolean lattice
yields

〈σS〉 = ∑
T⊆S

(−1)|S|−|T|ψ(T)

for any S ⊆ [r− 1]. Therefore, by specializing Corollary 3.10 at x1 = · · · = xn = 1,
we obtain [AL18, Conj. 3.10] (which is a generalization of [AL18, Conj. 3.9]).
Additionally, this proves [AL18, Conj. 3.6] (which is a generalization of [AL18,
Conj. 3.4]).

4. The TASEP connection

We now explain how our proof of Theorem 3.1 gives a proof of the commuta-
tivity conjecture of [AAMP11].

There are 2n−1 packed types for words of length n, as they are the compositions
of n (see [Sta12, Section 1.2]). We let the subset S ⊆ [n− 1] correspond to the type
of the word obtained by merging i and i + 1 in 12 · · · n for each i ∈ S. Denote
this type by mS. Note that {p1(mS), . . . , p`−1(mS)} = [n− 1] \ S, where mS has
` classes; this is the complement of the usual bijection between subsets of [n− 1]
and compositions of n. LetWS denote the set of words of type mS. Let VS be the
vector space over R with basis {εw | w ∈ WS}.
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Example 4.1. For n = 4, we have

m∅ = (1, 1, 1, 1)

m{1} = (2, 1, 1)m{2} = (1, 2, 1)m{3} = (1, 1, 2)

m{1,2} = (3, 1)m{1,3} = (2, 2)m{2,3} = (1, 3)

m{1,2,3} = (4)

where we have drawn an arrow mS → mS∪{i} for each S ⊆ [n − 1] and each
i ∈ [n − 1] \ S (this is the Hasse diagram of the Boolean lattice of subsets of
[n− 1]).

The totally asymmetric simple exclusion process (TASEP) is a Markov chain on
WS, where S ⊆ [n− 1], as follows. For a state u ∈ WS, we move to a new state
by picking a random i ∈ [n] and either

• if ui > ui+1, swap the positions ui and ui+1, or
• do nothing (i.e. stay at u).

Let MS : VS → VS be the transition matrix of this Markov chain. Note that these
moves preserve the type of the words; thus we could consider this as a Markov
chain on Wn, where WS becomes an irreducible component. For i /∈ S, we have
the merging map Φi : WS → WS∪{i} given by Φi(εu) = ε∨(i)u. It is easy to see
that Φi MS = MS∪{i}Φi.

Building on work by Ferrari and Martin [FM06, FM07], the paper [AAMP11]
introduced opposite operators Ψi : WS → WS\{i} given by Ψi(εu) = ∑

q
εq(u),

where the sum is taken over all i-queues q, and showed that Ψi MS = MS\{i}Ψi.
Furthermore they proposed the commutativity conjecture: that ΨiΨj = ΨjΨi. By
looking at the (u, v) entry of both sides of this equation, the commutativity con-
jecture is asking whether the number of (i, j)-configurations C such that v = C(u)
equals the number of (j, i)-configurations C′ such that v = C′(u). Thus, our proof
of Theorem 3.1 shows that Ψ̃iΨ̃j = Ψ̃jΨ̃i for the weighted operators Ψ̃i given by

Ψ̃i(εu) = ∑
q

wt(q)εq(u),

where we also sum over all i-queues q. Note that Ψ̃i = Ψi when we specialize x1 =
· · · = xn = 1, giving the connection between our MLQs and the multi-species
TASEP. We note that the proof of interlacing given in [AAMP11] is significantly
different from our approach.
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Figure 1. The states and transitions for W∅ for n = 3 (left) and
W{2} for n = 4 (right). All probabilities of the drawn transitions
are 1/n.

We have not managed to find a process similar to the TASEP whose transition
matrix M̃S would satisfy M̃SΨ̃i = Ψ̃i M̃S\{i} for our Ψ̃i operators. Note however
that queues give us a random process with this property: for a word u ∈ WS, a
move in the chain is given by

(1) picking a random i-queue q
(2) going to the state ∨tq(u) ∈ WS, where t = min {k | pk(mS) ≥ i}.

5. Proof of Theorem 3.9

The goal of this section is to prove Theorem 3.9. Along the way, we shall derive
a number of intermediate results, some of which may be of independent interest.

As in Subsection 3.4, we shall consider the sites as elements of the totally
ordered set {1, 2, . . . , n} (ordered by 1 < 2 < · · · < n) throughout this sec-
tion. Moreover, we shall use infinitely many distinct commuting indeterminates
. . . , x−2, x−1, x0, x1, x2, . . . instead of those indexed by Z/nZ; thus we do not have
xn+k = xk in this section.

5.1. Lattice paths and the Lindström–Gessel–Viennot theorem. Our arguments
will rely on the Lindström–Gessel–Viennot (LGV) Lemma [GV85, Lin73] and on a
re-interpretation of MLQs as a certain kind of semistandard tableaux (of non-
partition shape). This takes inspiration from the “bully paths” of [AL18] as well as
from the standard proof of the Jacobi–Trudi identities for Schur functions [Sta99,
First proof of Theorem 7.16.1]. We begin with basic definitions.
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The lattice shall mean the (infinite) directed graph whose vertices are all pairs
of integers (that is, its vertex set is Z2), and whose arcs are

(i, j)→ (i, j + 1) for all (i, j) ∈ Z2, and

(i, j)→ (i + 1, j) for all (i, j) ∈ Z2.

The arcs of the first kind are called north-steps, whereas the arcs of the second
kind are called east-steps. We consider the lattice as the usual integer lattice in the
Cartesian plane.

For each vertex v = (i, j) ∈ Z2, we set x(v) = i and y(v) = j. We refer to
x(v) (resp. y(v)) as the x-coordinate (resp. y-coordinate) of v. The y-coordinate of an
east-step (i, j)→ (i + 1, j) is defined to be j.

For each arc a of the lattice, we define the weight of a as the monomial

wt(a) :=

{
xj if a is an east-step (i, j)→ (i + 1, j),
1 if a is a north-step (i, j)→ (i, j + 1).

Thus, all north-steps have weight 1, while east-steps with y-coordinate j have
weight xj.

Fix k ∈ N. A k-tuple of vertices of the lattice will be called a k-vertex. A path
simply means a (directed) path in the lattice. The weight of a path p, denoted
wt(p), is defined as the product of the weights of all arcs of this path; this weight
is a monomial. If A and B are two vertices, then N(A, B) shall denote the set of
all paths from A to B.

It is easy to see (see, e.g., [Sta12, (2.36)]) that any two vertices A = (a, b) and
B = (c, d) satisfy

∑
p∈N(A,B)

wt(p) = hc−a(xb, xb+1, . . . , xd). (5.1)

If (A1, A2, . . . , Ak) and (B1, B2, . . . , Bk) are two k-vertices, then a non-intersecting
lattice path tuple (NILP) from (A1, A2, . . . , Ak) to (B1, B2, . . . , Bk) shall mean a k-
tuple (p1, p2, . . . , pk) of paths such that

• each pi is a path from Ai to Bi;
• no two of the paths p1, p2, . . . , pk have a vertex in common.

(Visually speaking, the paths must neither cross nor touch.)
The weight of a NILP p = (p1, p2, . . . , pk) is the monomial wt(p) defined by

wt(p) :=
k

∏
i=1

wt(pi).

See Figure 2 for an illustration.
If u and v are two k-vertices, then N(u, v) denotes the set of all NILPs from u

to v.
We now shall state a folklore result, which follows from the Lindström–Gessel–

Viennot lemma:1

1See the proof of Corollary 4 in https://math.stackexchange.com/questions/2870640 (applied to
ωa = wt(a)) for a detailed derivation of Proposition 5.1.

https://math.stackexchange.com/questions/2870640
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Figure 2. A NILP from the 3-vertex (A1, A2, A3) to the 3-vertex
(B1, B2, B3) of weight x1x2x2

4x5. The weights of the edges of the
paths are written next to the edges.

Proposition 5.1. Let k ∈ N. Let u = (A1, A2, . . . , Ak) and v = (B1, B2, . . . , Bk) be
two k-vertices such that

x(A1) ≥ x(A2) ≥ · · · ≥ x(Ak),

y(A1) ≤ y(A2) ≤ · · · ≤ y(Ak),

x(B1) ≥ x(B2) ≥ · · · ≥ x(Bk),

y(B1) ≤ y(B2) ≤ · · · ≤ y(Bk).

Then,

∑
p∈N(u,v)

wt(p) = det

 ∑
p∈N(Ai ,Bj)

wt(p)


i,j∈[k]

.

The situation of this proposition is illustrated in Figure 2.

5.2. Pseudo-partitions and tableaux. We shall next introduce the concepts of
pseudo-partitions and their corresponding semistandard tableaux; we will then
express a generating function for these tableaux by a determinantal formula (The-
orem 5.3) akin to the Jacobi–Trudi formula for Schur functions (and, like the latter,
the proof will rely on Proposition 5.1). A pseudo-partition is similar to the con-
cept of a partition, except it allows entries to increase by 1. The semistandard
tableaux of a pseudo-partition shape are defined just like for partitions. The
generating function in our determinantal formula is going to be a sum over the
semistandard tableaux of a fixed pseudo-partition shape with given rightmost
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entries in each row. Later we will translate these tableaux into MLQs that yield a
specific word when applied to 1n.

Let us formalize these definitions. A pseudo-partition shall mean a k-tuple λ =
(λ1, λ2, . . . , λk) of positive integers (for some k ∈N) such that

each i ∈ [k− 1] satisfies λi + 1 ≥ λi+1.

For example, both (5, 3, 4, 2, 2) and (6, 2, 3, 4, 1) are pseudo-partitions.
The diagram [λ] of a pseudo-partition λ = (λ1, λ2, . . . , λk) is defined as the set

{(i, j) ∈ [k]× {1, 2, 3, . . .} | j ≤ λi}. This diagram is drawn in the plane like usual
Young diagrams, in English notation.

If λ = (λ1, λ2, . . . , λk) is a pseudo-partition, then a tableau of shape λ is a map
T : [λ] → {1, 2, 3, . . .}. For each such tableau T and each (i, j) ∈ [λ], we refer to
the value T(i, j) as the entry of T in cell (i, j). As usual, we represent a tableau T
of shape λ by placing the entry T(i, j) into the box corresponding to (i, j) ∈ [λ].

A tableau T of shape λ is said to be semistandard if and only if
• the entries of T are weakly increasing along each row (i.e., we have T(i, j1) ≤

T(i, j2) whenever (i, j1) ∈ [λ] and (i, j2) ∈ [λ] satisfy j1 < j2);
• the entries of T are strictly increasing down each column (i.e., we have

T(i1, j) < T(i2, j) whenever (i1, j) ∈ [λ] and (i2, j) ∈ [λ] satisfy i1 < i2).
If λ = (λ1, λ2, . . . , λk) is a pseudo-partition, and if T is a tableau of shape λ,

then the surface of T is defined to be the k-tuple (s1, s2, . . . , sk), where si is the
rightmost entry of the i-th row of T (that is, si = T(i, λi)).

If T is a tableau of shape λ whose entries belong to [n], then the weight of T is
defined as the monomial

wt(T) := ∏
(i,j)∈[λ]

xT(i,j)

(that is, the product of xd for d ranging over all entries of T). Let SST(λ, s) denote
the set of all semistandard tableaux of shape λ and surface s.

Example 5.2. The diagram of the pseudo-partition (3, 2, 3, 1) is drawn as

.

The following are two tableaux of shape (3, 2, 3, 1):

1 2 5

2 3

3 4 5

7

and 1 1 4

2 3

4 5 5

5

.

The right tableau is semistandard, while the left one is not (the two 5’s in the
rightmost column). These tableaux have surfaces (5, 3, 5, 7) and (4, 3, 5, 5), respec-
tively, and weights x1x2

2x2
3x4x2

5x7 and x2
1x2x3x2

4x3
5, respectively.

We now state the main result of this subsection.
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Figure 3. A semistandard tableau of surface (2, 3, 5, 6) (left) and
the corresponding NILP (right). Note that the final horizontal
steps are fixed and correspond to the surface.

Theorem 5.3. Let λ = (λ1, λ2, . . . , λk) be a pseudo-partition. Let s = (s1, s2, . . . , sk)
be a strictly increasing sequence of elements of [n]. Then,

∑
T∈SST(λ,s)

wt(T) =

(
k

∏
i=1

xsi

)
det

(
hλj−j+i−1(x1, x2, . . . , xsj)

)
i,j∈[k]

.

We remark that the determinant in Theorem 5.3 is an instance of a multi-Schur
function as defined in [LLPT18, (SCHUR.2.2)].

Proof of Theorem 5.3. The proof is similar to the usual bijection relating semistan-
dard tableaux and NILPs that is used in proving the Jacobi–Trudi identity. For
example, see [Sta99, First proof of Thm. 7.16.1].2 Thus, we define two k-vertices
u = (A1, . . . , Ak) and v = (B1, . . . , Bk) with

Ai = (k− i, 1) and Bi = (λi + k− i− 1, si).

We can then define a bijection Φ : N(u, v) → SST(λ, s) by requiring that if p =
(p1, p2, . . . , pk) ∈ N(u, v) is a NILP, then the first λi − 1 entries of the i-th row of
the tableau Φ(p) will be the y-coordinates of the east-steps of the path pi (while
the last entry of the i-th row must of course be si). Then, Proposition 5.1 and (5.1)
yield Theorem 5.3. We comment on the differences to [Sta99, First proof of Thm.
7.16.1]:

• The points B1, B2, . . . , Bk no longer lie on a horizontal line; but the condi-
tions of Proposition 5.1 are still satisfied since s is strictly increasing and
λ is a pseudo-partition.

2Note that in this proof, those paths go west instead of east, but this is just a reflection across the
y-axis.
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• In the tableau Φ(p), only the first λi − 1 entries of the i-th row come from

the path pi; the last entry is si. Thus the
k

∏
i=1

xsi factor in ∑
T∈SST(λ,s)

wt(T).

• Since λ is only a pseudo-partition, a column of [λ] can have gaps be-
tween cells. Thus, we need to argue that if a tableau T of shape λ with
surface s has weakly increasing rows and its columns are strictly increas-
ing between consecutive rows (i.e., we have T(i, j) < T(i + 1, j) whenever
both entries exist), then the columns of T are also strictly increasing across
gaps (i.e., we have T(i1, j) < T(i2, j) for all i1 < i2). This is an easy exercise
using the assumption that s is strictly increasing.

�

See Figure 3 for an example of the bijection Φ used in the proof of Theorem 5.3.

5.3. Interlacing MLQs. Let us introduce some further notations now.
First, we define two binary relations � and� on the powerset of [n]:
• Given two subsets A = {a1 > · · · > aα} and B =

{
b1 > · · · > bβ

}
of [n],

we say that A � B if and only if α = β and every 1 ≤ k ≤ α satisfies
ak ≥ bk.

• Given two subsets A and B of [n], we say that A� B if and only if every
a ∈ A and b ∈ B satisfy a > b. (For nonempty A and B, this is equivalent
to min A > max B).

For example, {10, 8} � {4, 6, 7} � {4, 5, 7} � {2, 5, 6} � {1}. Note that
A � ∅ and ∅ � A for any subset A of [n] (for vacuous reasons), so that � is
not a partial order (but it becomes a partial order if we forbid ∅).

The following criterion (proof left to the reader) will be useful:

Lemma 5.4. Let A, B ⊆ [n]. We have A � B if and only if there exists a bijection
φ : B→ A satisfying φ(b) ≥ b for each b ∈ B.

Fix some ` ∈ N and a type m = (m1, m2, . . . , m`, 0, 0, . . .) with ≤ ` classes.
Assume that mi > 0 for all i ∈ [`− 1] (but m` may be 0).

Our next few definitions concern MLQs. Consider an (ordinary) MLQ q =
(q1, . . . , q`−1) of type m. Thus, for each i ∈ [`− 1], we have |qi| = pi(m) =
m1 + m2 + · · ·+ mi. Hence, for each i ∈ [`− 1], we can subdivide the set qi into
i blocks: the block containing the largest m1 elements; the block containing the
next-largest m2 elements; and so on, until the block containing the smallest mi

elements. Denote these i blocks by q(1)i , q(2)i , . . . , q(i)i , respectively. Pictorially, we
can thus write qi as{

a1 > · · · > ap1(m)︸ ︷︷ ︸
=q(1)i

> ap1(m)+1 > · · · > ap2(m)︸ ︷︷ ︸
=q(2)i

> · · · > api−1(m)+1 > · · · > api(m)︸ ︷︷ ︸
=q(i)i

}
.

Thus, q(1)i , q(2)i , . . . , q(i)i are pairwise disjoint nonempty subsets of [n] satisfying

qi = q(1)i ∪ q(2)i ∪ · · · ∪ q(i)i and (5.2a)

q(1)i � q(2)i � · · · � q(i)i and (5.2b)∣∣∣q(j)
i

∣∣∣ = mj for all j ∈ [i] . (5.2c)
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Thus, we have defined nonempty queues q(j)
i ⊆ [n] for all i ∈ [`− 1] and j ∈ [i]

whenever q = (q1, . . . , q`−1) is an MLQ of type m.

Example 5.5. Consider n = 15. Let m = (4, 2, 2) and q = (q1, q2, q3), where

q1 = {2, 4, 9, 12} , q2 = {1, 5, 6, 8, 12, 15} , q3 = {1, 2, 4, 5, 8, 9, 13, 14} .

Therefore, we have

q(1)1 = {2, 4, 9, 12} ,

q(2)2 = {1, 5} , q(1)2 = {6, 8, 12, 15} ,

q(3)3 = {1, 2} , q(2)3 = {4, 5} , q(1)3 = {8, 9, 13, 14} .

Similar to the graveyard diagram (2.3), we define the graveyard diagram of an
MLQ q = (q1, q2, . . . , q`−1) as a matrix with `− 1 rows, whose entries are circles
and squares; its row i has each element p ∈ qi represented as a circle at position p
labeled by the letter

(
qi(· · · q1(1n) · · · )

)
p, and each element of [n] \ qi represented

as an unlabeled square (i.e., we suppress filling the squares with an i + 1). The q
in this example is represented by the following graveyard diagram:

1 1 1 1

1 1 112 2

1 2 3 1 1 12 3

.

Definition 5.6. We say that the MLQ q = (q1, . . . , q`−1) is interlacing if each i ∈
{2, 3, . . . , `− 1} satisfies

q(1)i � q(1)i−1 � q(2)i � q(2)i−1 � q(3)i � q(3)i−1 � · · · � q(i)i (5.3)

(that is, q(j)
i � q(j)

i−1 � q(j+1)
i for all j ∈ [i− 1]).

Example 5.7. Consider n = 15. Let m = (3, 2, 4, 0, . . .) and q = (q1, q2, q3), where

q1 = {9, 12, 13} , q2 = {7, 8, 11, 12, 14} , q3 = {1, 3, 5, 6, 8, 10, 11, 14, 15} .

Therefore, we have

q(1)1 = {9, 12, 13} ,

q(2)2 = {7, 8} , q(1)2 = {11, 12, 14} ,

q(3)3 = {1, 3, 5, 6} , q(2)3 = {8, 10} , q(1)3 = {11, 14, 15} .

Thus q is interlacing. In this case, the elements of q(j)
i will be labeled by j (as we

shall see more generally in the proof of Lemma 5.13 below), and so the graveyard
diagram of q is

1 1 1

2 2 1 1 1

3 3 3 3 2 2 1 1 1

.
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Define a pseudo-partition

λm := (1, 1, . . . , 1︸ ︷︷ ︸
m`−1 times

, 2, 2, . . . , 2︸ ︷︷ ︸
m`−2 times

, . . . , `− 1, `− 1, . . . , `− 1︸ ︷︷ ︸
m1 times

). (5.4)

Thus, the columns of the diagram [λm] are aligned to the bottom and have lengths
p`−1(m), p`−2(m), . . . , p1(m) (from left to right).

For the following lemma, note that m is fixed but q is not.

Lemma 5.8. Let `, m, and mi be as above. Then, there is an injection

P : {MLQs of type m} → {tableaux of shape λm}
with the following properties:

(a) We have wt
(

P(q)
)
= wt(q) for each MLQ q of type m.

(b) If q = (q1, q2, . . . , q`−1) is an MLQ of type m, then the surface of P(q) is the
list of all elements of q`−1 in increasing order.

(c) The map P restricts to a bijection

P : {interlacing MLQs of type m} → {semistandard tableaux of shape λm} .

(In the border case ` = 1, we interpret q0 as the empty set whenever q = (q1, q2, . . . , q`−1)
is an MLQ.)

Proof. We define a map P as follows. Let q = (q1, q2, . . . , q`−1) be any MLQ of
type m. Let q̃(j)

i denote the entries of q(j)
i written vertically in a column, strictly

increasing from top to bottom. For example, if q(j)
i = {2, 5, 6}, then

q̃(j)
i =

2

5

6

.

We construct P(q) as the following tableau of shape λm:

m`−1 rows
{

q̃(`−1)
`−1

m`−2 rows
{

q̃(`−2)
`−2 q̃(`−2)

`−1

m`−3 rows
{

q̃(`−3)
`−3 q̃(`−3)

`−2 q̃(`−3)
`−1

...
...

...
...

. . .

m2 rows
{

q̃(2)2 q̃(2)3 q̃(2)4 · · · q̃(2)`−1

m1 rows
{

q̃(1)1 q̃(1)2 q̃(1)3 · · · q̃(1)`−2 q̃(1)`−1

(5.5)

Formally speaking, this is the tableau of shape λm whose ` − 1 columns are
given as follows: For each j ∈ [`− 1], the j-th column consists of the columns
q̃(`−j)
`−1 , q̃(`−j−1)

`−2 , . . . , q̃(1)j stacked atop each other (with q̃(`−j)
`−1 at the very top, q̃(`−j−1)

`−2
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coming next under it, and so on). Note that for each i ∈ [`− 1], the parts
q̃(i)i , q̃(i)i+1, . . . , q̃(i)`−1 of columns 1, 2, . . . , `− i align with each other horizontally (and
together form the topmost mi among the bottommost m1 + m2 + · · ·+ mi rows of
P(q)).

Thus, the map P : {MLQs of type m} → {tableaux of shape λm} is defined.
This map P is an injection, because the MLQ q can be recovered from the tableau
P(q) (indeed, each of the elements of each of the queues of q lands in some
predictable cell of P(q)).

We shall now prove the three properties we claimed about this injection P to
complete the proof.

Property (a) is clear, since the entries of q1, q2, . . . , q`−1 are in 1-to-1 correspon-
dence with the entries of the tableau P(q).

Furthermore, the surface of P(q) is simply

q(`−1)
`−1 ∪ q(`−2)

`−1 ∪ · · · ∪ q(2)`−1 ∪ q(1)`−1 = q`−1

written in increasing order from top to bottom because of (5.2a) and (5.2b). In
other words, the surface of P(q) is the list of all elements of q`−1 in increasing
order. This proves (b).

Let q be an MLQ of type m. Recall that the columns q̃(j)
i are strictly increasing.

Hence, from (5.5), we see the following:

• The entries of the tableau P(q) are weakly increasing along each row if
and only if all i ∈ [`− 1] and j ∈ [i− 1] satisfy q(j)

i � q(j)
i−1.

• The entries of the tableau P(q) are strictly increasing down each column
if and only if all i ∈ [`− 1] and j ∈ [i− 1] satisfy q(j)

i−1 � q(j+1)
i . (Here, we

are also tacitly using the fact that the sets q(j)
i are nonempty. This ensures

that the southern neighbor of a cell in q̃(j)
i belongs either to q̃(j)

i again or

to q̃(j−1)
i−1 , rather than (say) to q̃(j−2)

i−2 .)

Combining these two observations, we conclude that the tableau P(q) is semis-
tandard if and only if the sets q(j)

i satisfy (5.3). In other words, the tableau P(q)
is semistandard if and only if q is interlacing. Moreover, it is clear that given
any semistandard tableau T of shape λm, we can construct an interlacing MLQ q
of type m satisfying P(q) = T. (Namely, we can construct this q by recovering
the sets q(j)

i from the appropriate cells of T in (5.5) and combining them to ob-
tain queues qi and an MLQ q.) Hence, the map P restricted to interlacing MLQs
is surjective onto the set of semistandard tableaux of shape λm, and since P is
injective, we have a bijection. This proves (c). �

Corollary 5.9. Let `, m, and mi be as above. Let k ∈N and λ1, λ2, . . . , λk be such that
λm = (λ1, λ2, . . . , λk). Let S = {s1 < s2 < · · · < sk} be a k-queue. Then,

∑
q=(q1,q2,...,q`−1) is an interlacing

MLQ of type m with q`−1=S

wt(q)

=

(
k

∏
i=1

xsi

)
det

(
hλj−j+i−1(x1, x2, . . . , xsj)

)
i,j∈[k]

.
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Proof. Consider the bijection P from Lemma 5.8(c), and recall the properties (a)
and (b). Hence, we can substitute P(q) = P(q) for T in the sum on the left hand
side of Theorem 5.3 (applied to λ = λm). We thus obtain

∑
T∈SST(λm ,s)

wt(T) = ∑
q=(q1,q2,...,q`−1) is an interlacing

MLQ of type m such that
the surface of P(q) is s

wt
(

P(q)
)

= ∑
q=(q1,q2,...,q`−1) is an interlacing

MLQ of type m with q`−1=S

wt(q)

where the second equality follows from Property (a) and Property (b) and that
s = S (where we consider s as a set). Therefore, the claim of Corollary 5.9 follows
from Theorem 5.3. �

Next, we shall connect the interlacingness of an MLQ with its action on the
word 1n. First, we need another notion: If u ∈ Wn and t ∈ N, then we say that u
is weakly decreasing up to level t if and only if every two sites i < j in [n] satisfying
uj ≤ t must satisfy ui ≥ uj. Equivalently, u is weakly decreasing up to level
t if and only if u becomes weakly decreasing when all letters larger than t are
removed. For example, the word 5455433252215 is weakly decreasing up to level
4 (and up to any level ≤ 4). We also need the following auxiliary lemma about
what queues can yield weakly decreasing words.

Lemma 5.10. Let u ∈ Wn and t > 0. Let q be a queue. Assume that the word q(u) has
at least one letter equal to t, is weakly decreasing up to level t, and has exactly |q| letters
that are at most t. Then:

(a) The word u is weakly decreasing up to level t− 1.
(b) For each h ∈ [t− 1], we have{
p ∈ [n] |

(
q(u)

)
p = h

}
�
{

p ∈ [n] | up = h
}
�
{

p ∈ [n] |
(
q(u)

)
p = h + 1

}
.

Example 5.11.
• Let n = 9, u = 322131133, t = 3 and q = {1, 2, 3, 5, 6, 7}. Then, q(u) =

322411144 satisfies all assumptions of Lemma 5.10. Thus, part (a) of the
lemma says that u is weakly decreasing up to level 2 (which is evident).
Part (b) of the lemma, applied to h = 1, says that

{5, 6, 7} � {4, 6, 7} � {2, 3} .

• The assumption that q(u) has at least one letter equal to t cannot be re-
moved from Lemma 5.10. Indeed, if n = 4, u = 3312, t = 3 and q = {1, 3},
then q(u) = 2414 satisfies all assumptions except for this one, but the
claim of Lemma 5.10(a) does not hold.
• The assumption that q(u) is weakly decreasing up to level t cannot be

removed from Lemma 5.10. Indeed, if n = 4, u = 1233, t = 3 and
q = {1, 2, 3}, then q(u) = 1234 satisfies all assumptions except for this
one, but the claim of Lemma 5.10(a) does not hold.
• The assumption that q(u) has exactly |q| letters that are at most t cannot

be removed from Lemma 5.10. Indeed, if n = 5, u = 32112, t = 3 and
q = {2, 3, 5}, then q(u) = 32141 satisfies all assumptions except for this
one, but the claim of Lemma 5.10(a) does not hold.



24 E. AAS, D. GRINBERG, AND T. SCRIMSHAW

Proof of Lemma 5.10. Fix a permutation (i1, i2, . . . , in) of (1, 2, . . . , n) such that ui1 ≤
ui2 ≤ · · · ≤ uin . From the definition of q(u) and since q(u) has precisely |q| letters
at most t, we see that all letters set during Phase II of the algorithm computing
q(u) are at most t, while all letters set during Phase I are strictly greater than t
(see also Remark 2.3). Therefore, it is sufficient to consider the letters set during
Phase II. We first show that no “wrapping around the cycle” can occur during
Phase II. Let jκ denote the site set in the κ-th step of Phase II (that is, the site j
found at the time when i = iκ). Hence,

{
j1, j2, . . . , j|q|

}
= q.

Claim 5.12. We have jκ ≥ iκ for all κ ≤ |q| satisfying uiκ ≤ t− 1.

Proof. Assume the contrary. Thus, there exists a κ ≤ |q| satisfying uiκ ≤ t− 1
such that jκ < iκ (i.e., the path of uiκ “wraps around the cycle”). Without loss of
generality, assume κ is minimal. Then either jκ = min q or min q has already been
set on a previous step of Phase II, and in either case, we have

(
q(u)

)
min q < t.

Since q(u) contains at least one t (which is set during Phase II), there exists an
h > κ such that

(
q(u)

)
jh
= t with jh > min q. However, this contradicts that q(u)

is weakly decreasing up to level t. �

Next, suppose Lemma 5.10(a) does not hold. Thus, there exists a k such that
ik′ < ik and uik′ < uik ≤ t− 1 for some k′ < k. Without loss of generality, assume
k is minimal with this property. Since q(u)jκ = uiκ for all κ ≤ |q|, we thus have
q(u)jk′ < q(u)jk ≤ t− 1. From our assumption that q(u) is weakly decreasing up
to level t, we have jk′ > jk. Claim 5.12 shows that jk ≥ ik. Hence, ik′ < ik ≤ jk ≤ jk′ .
Thus, during Phase II, at the time when i = ik′ , the first site j weakly to the right
of i such that j ∈ q and (q(u))j is not set cannot be jk′ (because jk comes before
it, and (q(u))ik is still not set). This contradicts the definition of jk′ . This proves
Lemma 5.10(a).

Now we prove Lemma 5.10(b). Let h ∈ [t− 1], and set

A =
{

p ∈ [n] |
(
q(u)

)
p = h

}
,

B =
{

p ∈ [n] | up = h
}

,

C =
{

p ∈ [n] |
(
q(u)

)
p = h + 1

}
.

We first show A � B. Define a map φ : B → A by φ(ik) = jk, where ik ∈ B.
The map φ is well-defined (i.e., we have jk ∈ A for all applicable k) and bijective
from the definition of Phase II (see also Remark 2.3 for why |A| = |B|). We have
φ(ik) = jk ≥ ik by Claim 5.12. Hence A � B by Lemma 5.4.

To prove B � C, assume the contrary. Thus, there exist b ∈ B and c ∈ C
such that b ≤ c. Let k be minimal such that ik ∈ B and ik ≤ c. Since q(u) is
weakly decreasing up to level t and h < t, we must have A � C. Hence, we
have ik ≤ c < jk since jk ∈ A. However, this is a contradiction since q(u)c would
instead have been set during the k-th step of Phase II. This shows B� C. �

Now we prove our main technical lemma:

Lemma 5.13. Let ` be a positive integer. Let m = (m1, m2, . . . , m`, 0, 0, . . .) be such
that mi > 0 for all 1 ≤ i < `. Let q = (q1, q2, . . . , q`−1) be an ordinary MLQ with
`− 1 queues. Then, the following are equivalent:
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(α) The word q(1n) has type m and is weakly decreasing up to level `− 1.
(β) The MLQ q has type m and is interlacing.

Example 5.14.
• We require that mi > 0 for all 1 ≤ i ≤ `− 1. To see why, consider u =

2414, which is of type m = (1, 1, 0, 2, 0, . . .) and is weakly decreasing up
to level 3. However, the MLQ q = ({2} , {3, 4} , {1, 3}) is not interlacing
but q(1111) = u:

12 2 2

1 23 3

2 14 4

• The interlacing of the MLQ (equivalently the weakly decreasing up to
level `− 1) is necessary as seen by Example 5.5.

Proof of Lemma 5.13. We prove the claim by induction on `. The base case of ` = 1
is trivial. Thus, we assume the claim holds for `. Let m = (m1, m2, . . . , m`+1, 0, . . .)
with mi > 0 for all 1 ≤ i < `+ 1. Let q = (q1, q2, . . . , q`) be an ordinary MLQ.
The word u := q(1n) has type m if and only if q has type m by Lemma 2.10.
Thus we can assume that both of these statements hold, and it is remains to show
that u = q(1n) is weakly decreasing up to level ` if and only if q is interlacing.
We shall prove the =⇒ and⇐= directions separately.

First, let us prepare. Let q′ := (q1, . . . , q`−1) and u′ := q′(1n). Thus, u =
q(1n) = q`(u′). Both the word u′ and the ordinary MLQ q′ have type

m′ := (m1, m2, . . . , m`−1, n− p`−1(m), 0, . . .)

since |q`| = p`(m).
Recall the definition of q(h)i given by (5.2).
=⇒: Suppose u = q(1n) is weakly decreasing up level `. Thus, Lemma 5.10(a)

(applied to u′, q` and ` instead of u, q and t) shows that u′ is weakly decreasing
up to level `− 1 (since u = q`(u′) has type m with m` > 0 and p`(m) = |q`|).
Hence, by our induction assumption, q′ is interlacing. Since u′ has type m′ and
is weakly decreasing up to level `− 1, we see that q(h)`−1 = {p | u′p = h} for all

h ∈ [`− 1]. Similarly, we have q(h)` = {p | up = h} for all h ∈ [`]. Therefore, by

Lemma 5.10(b), we obtain q(h)` � q(h)`−1 � q(h+1)
` for each h ∈ [`− 1]. Hence, q is

interlacing.
⇐=: Suppose the MLQ q is interlacing. Thus, q′ is also interlacing. Hence,

by our induction assumption, the word u′ = q′(1n) is weakly decreasing up to
level `− 1; recall that this word has type m′. Hence, writing u′ as u′1u′2 · · · u′n, we

have q(h)`−1 =
{

p | u′p = h
}

for all h ∈ [`− 1]. We compute u = q`(u′) by choosing

the permutation such that for each h, we pick all letters h in u′ from left to right.
Therefore, the interlacingness of q shows that q(h)` =

{
p | up = h

}
for all h ∈ [`].

Hence, the word u is weakly decreasing up to level `. �

5.4. Proof of Theorem 3.9. We are now ready to prove Theorem 3.9.
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Proof of Theorem 3.9. Write the r-tuple (v1, v2, . . . , vr) in the form

(v1, v2, . . . , vr) = (`− 1, . . . , `− 1︸ ︷︷ ︸
m`−1 times

, `− 2, . . . , `− 2︸ ︷︷ ︸
m`−2 times

, . . . , 1, . . . , 1︸ ︷︷ ︸
m1 times

) (5.6)

for some m1, m2, . . . , m`−1 > 0 (we can do this, since {v1, v2, . . . , vr} = [`− 1]
and v1 ≥ v2 ≥ · · · ≥ vr). Also set m` = n − r, and define a type m =
(m1, m2, . . . , m`, 0, 0, . . .). Then, the word u(v) has type m by the construction
of u(v). Additionally, the word u(v) is packed (since m1, m2, . . . , m`−1 > 0). Fur-
thermore, the definition of m shows that r = m1 + m2 + · · ·+ m`−1 = p`−1(m).

The word u(v) is weakly decreasing up to level ` − 1. Moreover, the letters
≤ ` − 1 of this word lie in the positions j ∈ B. Therefore, for an MLQ q =
(q1, . . . , q`−1) of type m, the following are equivalent:

(1) We have u(v) = q(1n).
(2) The word q(1n) has type m and is weakly decreasing up to level ` − 1

and its letters ≤ `− 1 lie in the positions j ∈ B.
(3) The word q(1n) has type m and is weakly decreasing up to level ` − 1

and we have q`−1 = B.
(4) The MLQ q has type m and is interlacing, and we have q`−1 = B.

It is straightforward to see (1) ⇐⇒ (2) ⇐⇒ (3), and we have (3) ⇐⇒ (4) by
Lemma 5.13.

Define the pseudo-partition λm by (5.4). Comparing (5.4) with (5.6), we obtain

λm = (`− v1, `− v2, . . . , `− vr) = (γ1, γ2, . . . , γr)

(since `− vj = γj for all j ∈ [r]).
The definition of 〈u(v)〉 yields

〈u(v)〉 = ∑
q is an MLQ of type m;

u(v)=q(1n)

wt(q)

= ∑
q=(q1,q2,...,q`−1) is an interlacing

MLQ of type m with q`−1=B

wt(q) (by (1)⇐⇒ (4))

=

(
r

∏
i=1

xbi

)
det
(

hγj−j+i−1

(
x1, x2, . . . , xbj

))
i,j∈[r]

,

where the last equality is from Corollary 5.9 (applied to r, γi, B and bi instead of
k, λi, S and si). �

6. Proof of Theorem 3.1

In this section, we shall prove Theorem 3.1 by relying on the braid relation for
dual configurations. We need some definitions first.

An (r1, r2)-configuration shall mean a pair C = (q1, q2), where q1 is an r1-queue
and q2 is an r2-queue. As usual, we consider C as a function on words by C(u) :=
q2
(
q1(u)

)
, and we define the weight of C by wt(C) := wt(q1)wt(q2). We construct

the dual3 (r2, r1)-configuration to C, which we denote by C′, as follows.
We begin by constructing a sequence of parentheses as follows: For each j =

1, 2, . . . , n (in that order), we write

3This is a different duality than the contragredient duality of Lemma 2.5.
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• an opening parenthesis ‘(’ if j ∈ q1 and j /∈ q2;
• a closing parenthesis ‘)’ if j /∈ q1 and j ∈ q2;
• a matched pair of parentheses ‘()’ if j ∈ q1 and j ∈ q2;
• nothing otherwise.

We say that these parentheses are contributed by the site j. Next, we match as
many parentheses as possible following the standard parenthesis-matching algo-
rithm: every time you find an opening parenthesis to the left of a closing one,
with only frozen parentheses between them, you match these two parentheses
and declare them frozen. Here, we understand our sequence of parentheses as
being written on a circle – so the last opening parenthesis can be matched with
the first closing parenthesis if all parentheses “between them” (i.e., to the right of
the former and to the left of the latter) are frozen.

At the end of this algorithm, there will be exactly |r1 − r2| parentheses left
unmatched; these unmatched parentheses will be opening if r1 > r2 and closing
if r1 < r2. The unmatched parentheses will not depend on the order in which
we perform the matching. This can be easily seen by considering the parentheses
as an infinite shifted-periodic Motzkin path (see Figure 5), where a “nothing”
corresponds to a flat step. If r1 > r2, then the unmatched positions correspond
to down steps in the Motzkin path such that the path never returns to the same
height. When r1 < r2, the unmatched positions correspond to the up steps where
the Motzkin path first obtains a certain height.

We define SP(q1, q2) to be the following data:
• the sequence of parentheses obtained from q1 and q2;
• the matching obtained by the algorithm; and
• the correspondence between sites and closing parentheses (i.e., which site

contributes which closing parenthesis).
Note that each j ∈ Z/nZ that belongs to both q1 and q2 contributes a pair

of parentheses ‘()‘, which can be immediately matched (to each other) at the be-
ginning of the algorithm. Thus, if we disregard these pairs of parentheses, the
outcome of the algorithm does not change (apart from these pairs disappear-
ing). Hence, if we skip the sites j ∈ q1 ∩ q2 in the definition of our sequence of
parentheses, then the outcome of the algorithm (specifically, the set of unmatched
parentheses) will be the same. The sequence of parentheses obtained as above,
but skipping these sites j, will be called the reduced parenthesis sequence.

A site j ∈ Z/nZ is unbalanced if it contributes an unmatched parenthesis;
otherwise we say j is balanced. There are exactly |r1 − r2| unbalanced sites.

We construct C′ = (q′1, q′2) as follows. For balanced j, we have j ∈ q′i if and only
if j ∈ qi for i = 1, 2. For unbalanced j, we have j ∈ q′i if and only if j ∈ q3−i for
i = 1, 2. Note that C and C′ have the same balanced sites, since the parentheses
that were matched for C remain matched in C′ and the remaining parentheses
are all of one kind. Hence, we have C′′ = C. Also, we have wt(C) = wt(C′).

Example 6.1. Consider the configuration

C = (q1, q2) = ({1, 2, 5, 6, 8, 11, 13, 14, 17, 18, 19}, {2, 12, 15, 16, 18, 19, 20})

which is given pictorially in Figure 4. Converting C to a parenthesis sequence,
we obtain

( () · · ( ( · ( · · ( ) ( ( ) ) ( () () ),
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Figure 4. We draw a © in position i in row j corresponding to
i ∈ qj and a � if i /∈ qj. The shaded boxes mark the balanced
sites.

Figure 5. The Motzkin path corresponding to the configuration
in Figure 4. The corresponding unbalanced up-steps are marked
by dots.

which results in 4 unpaired (’s from positions {1, 5, 6, 8}. Therefore, we have
q′1 = q1 \ {1, 5, 6, 8} and q′2 = q2 ∪ {1, 5, 6, 8}. Alternatively, the dual configuration
C′ is given by sliding all of the circles not in a shaded box from the upper level
to the lower level.

Recall the notations introduced just before Lemma 2.5.

Remark 6.2. Let C = (q1, q2) be an (r1, r2)-configuration. Thus, the dual configu-
ration of the (n− r1, n− r2)-configuration C∗ =

(
q∗1 , q∗2

)
is obtained from the dual

configuration
(
q′1, q′2

)
of C by

(C∗)′ =
(
(q′1)

∗, (q′2)
∗). (6.1)

To see this, we compute the dual configurations of both C and C∗ using the
reduced parenthesis sequences. The sequence for C∗ is obtained from that for C
by reflecting both the parentheses (i.e., opening become closing and vice versa)
and the sequence itself. Thus, the parenthesis matching algorithm proceeds in
the same way.

In addition, applying Lemma 2.5 twice, we obtain

C(u) = q2
(
q1(u)

)
= q2

(
(q∗1(u

∗))∗
)
=
(
q∗2
(
q∗1(u

∗)
))∗

=
(
C∗(u∗)

)∗.
Fix k ≥ 1. In the following, we simplify our terminology and say that an MLQ

is a k-tuple of queues (without any restriction on their sizes). We want to define
an action of Sk on MLQs. For each i ∈ [k− 1], we define a map si : {MLQs} →
{MLQs} by

si(q1, q2, . . . , qk) = (q1, . . . , qi−1, q′i, q′i+1, qi+2, . . . , qk),

where
(
q′i, q′i+1

)
is the dual configuration of (qi, qi+1). From the definition of a

dual configuration, it is clear that sisiq = q. It is also clear from the definition
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that sisjq = sjsiq if |i− j| > 1. Thus, the following proposition shows that si
defines an action of Sk on the set of all MLQs.

Proposition 6.3. We have

sisi+1siq = si+1sisi+1q

for any MLQ q = (q1, . . . , qk) and any i ∈ {1, 2, . . . , k− 2}.
Proof. We shall deduce the claim from [Lot02, Ch. 5, (5.6.3)].

Let A be the (k + 1)-element set {◦, 1, 2, . . . , k}. Let A∗ denote the set of all
words on the alphabet A (of any finite length).

We construct a k× n-matrix Mq ∈ Ak×n from q by setting the (i, j)-th entry to i
if j ∈ qi and ◦ otherwise. We then construct a word word(q) ∈ A∗ by reading Mq
from top-to-bottom, left-to-right (i.e., column by column). For example, if n = 5,
k = 3, then

q = ({1, 3} , {2} , {2, 5})←→ Mq =
1 ◦ 1 ◦ ◦
◦ 2 ◦ ◦ ◦
◦ 3 ◦ ◦ 3

−→ word(q) = 1 ◦ ◦ ◦ 231 ◦ ◦ ◦ ◦ ◦ ◦ ◦ 3.

Clearly, an MLQ q is uniquely determined by word(q) since n is fixed. In other
words, the map word : {MLQs} → A∗ is injective.

Following [Lot02, §5.5], for each i ∈ {1, 2, . . . , k− 1}, we give an operator
σi : A∗ → A∗. This operator σi acts on a word p ∈ A∗ as follows:

(1) Treat all letters i in p as opening parentheses ‘(’, all letters i + 1 as closing
parentheses ‘)’, and consider all other letters to be frozen. Now, match
as many parentheses as possible according to the standard parenthesis-
matching algorithm, but treating the word as a word in the usual sense
(i.e., not written on a circle, but having a beginning and an end). The
result is independent of the choices in the algorithm, and is always a word
whose non-frozen part (i.e., the word obtained by removing all frozen
letters) is

)) · · · )︸ ︷︷ ︸
a parentheses

((· · · (︸ ︷︷ ︸
b parentheses

(6.2)

for some integers a, b ≥ 0.
(2) Now, replace the non-frozen part (6.2) by

)) · · · )︸ ︷︷ ︸
b parentheses

((· · · (︸ ︷︷ ︸
a parentheses

while keeping all frozen letters in their places. The resulting word is σi p.
From [Lot02, Eq. (5.6.3)], these operators σi satisfy

σiσi+1σi = σi+1σiσi+1 (6.3)

for all i ∈ {1, 2, . . . , k− 2}. (See Remark 6.6 for another reference for this identity.)
Let ζ : Wn → Wn be the cyclic shift map that sends each word w1w2 · · ·wn to

w2w3 · · ·wnw1. We also abuse the notation ζ for the map that sends each queue q
to the queue ζq = {i− 1 | i ∈ q} (recall that 0 = n as sites). This map ζ shall act
on MLQs entrywise (since an MLQ is a tuple of queues). Clearly,

word(ζq) = ζk word(q) (6.4)
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for any MLQ q = (q1, . . . , qk).
Now, we claim that

word(siq) = σi
(
word(q)

)
for each MLQ q and each i. (6.5)

Note that it is sufficient to show that word(s1q) = σ1
(
word(q)

)
for q = (q1, q2)

(because the definition of σi only relies on the letters i and i + 1, while all other
letters stay in their places and have no effect).

Thus, let q = (q1, q2). We want to show word(s1q) = σ1
(
word(q)

)
. If |q1| =

|q2|, then s1q = q by the definition of s1. Moreover, we have σ1
(
word(q)

)
=

word(q) in this case, since the word word(q) has as many letters 1 as it has
letters 2, but the map σ1 leaves such words unchanged. Hence, the claim holds
when |q1| = |q2|. Thus, we assume that |q1| 6= |q2|. Therefore, there exists at least
one unbalanced site for the configuration q = (q1, q2).

The operator s1 commutes with the cyclic shift map ζ on MLQs because the
standard parenthesis-matching algorithm used in the definition of dual configu-
rations is clearly invariant under cyclic shift. The operator σ1 commutes with the
cyclic shift map ζ on words in A∗ by [Lot02, Prop. 5.6.1]. Hence, and because
of (6.4), we can apply ζ to q any number of times without loss of generality.
Thus, we assume that the site 1 is unbalanced for the configuration q = (q1, q2),
since at least one unbalanced site j exists and we can cyclically shift until it is 1.
Thus, in the standard parenthesis-matching algorithm used in the construction of
the dual configuration s1q, the site 1 induces a parenthesis that stays unmatched
throughout the algorithm. Hence, no two parentheses that get matched to each
other during this algorithm have this parenthesis lying between them. Therefore,
it does not matter whether we regard the sequence of parentheses as written on
a cycle or on a straight line (as the wrapping-around is not used in the match-
ing process). Hence, the standard parenthesis-matching algorithm used in the
construction of the dual configuration s1q proceeds exactly the same way as the
standard parenthesis-matching algorithm used when applying σ1 to word(q) (ig-
noring the letters that are neither i nor i + 1). That is, the parentheses that get
matched in the former are the same as those that get matched in the latter. Now,
recall that s1 merely toggles the unbalanced sites between q1 and q2, whereas
σ1 switches the number of unmatched ‘)’s with the number of unmatched ‘(’s
(which, in the case of word(q), boils down to just turning each unmatched ‘)’
into a ‘(’ or vice versa, because one of these numbers is 0). Since the sites of the
unmatched parentheses are precisely the unbalanced sites, this shows that the
two maps agree – that is, we have word(s1q) = σ1

(
word(q)

)
. This proves (6.5).

The equality (6.5) can be rewritten as the commutative diagram

{MLQs}
si //

word
��

{MLQs}

word
��

A∗
σi

// A∗

for all i ∈ {1, 2, . . . , k− 1}. In view of the injectivity of the map word : {MLQs} →
A∗, this diagram allows us to translate (6.3) into sisi+1si = si+1sisi+1. �
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Remark 6.4. Our letters 1, . . . , k correspond to the letters ak, . . . , a1 in [Lot02],
since the definition of σi in [Lot02] involves ai rather than i + 1 as closing paren-
thesis and ai+1 rather than i as opening one. Also, [Lot02] does not include the
letter ◦ in the alphabet, but this makes no difference to the proof, since all letters
◦ are always frozen.

Remark 6.5. The operator σi is essentially a combination of co-plactic operators.
Moreover, it corresponds to the Weyl group action on a tensor product of crys-
tals [BS17]. Note that the bracketing rule given above is precisely the usual signa-
ture rule (see, e.g., [BS17, Sec. 2.4] for a description) for computing tensor prod-
ucts. This arises from considering the MLQ as a binary m × n matrix and the
natural (slm ⊕ sln)-action.

Remark 6.6. The identity (6.3) can also be derived from [vL06, Lemma 2.3]. In-
deed, to each word p = p1 p2 · · · pd ∈ A∗, we assign a (k + 1) × d-matrix Bp (a
“binary matrix” in the parlance of [vL06]), whose j-th column has an entry 1
in its k + 1 − pj-th position (we are treating ◦ as 0 here) and entries 0 every-
where else. Clearly, p is uniquely determined by Bp. Now, van Leeuwen notices
in [vL06, before Proposition 1.3.5] that the “upward” and “downward” moves
between two consecutive rows of a binary matrix correspond to changing un-
matched parentheses in a certain parenthesis sequence. When the binary matrix
is Bp and the two consecutive rows are the rows k − i and k − i + 1, this latter
sequence is exactly the sequence of parentheses constructed in our definition of
σi. Thus, applying the operator σi to a word p ∈ A∗ is tantamount to applying
van Leeuwen’s operator σ

l
k−i to the binary matrix Bp. Hence, (6.3) follows from

the relation σ
l
k−iσ

l
k−(i+1)σ

l
k−i = σ

l
k−(i+1)σ

l
k−iσ

l
k−(i+1) between the latter operators

on binary matrices, but the latter relation is part of [vL06, Lemma 2.3].

Next, we define two queues corresponding to a word w ∈ Wn of type m.
Namely, for k ∈ {pi(m) | i ≥ 0}, let [w]k denote the set of the indices i ∈ [n]
corresponding to the k smallest letters wi of w.

Our proof of Theorem 3.1 will rely on a connection between dual configura-
tions and the action of queues on words. We begin with a string of lemmas.

Lemma 6.7. Let w, w′ ∈ Wn be two words of the same type m. Assume that [w]k =
[w′]k for each k ∈ {pi(m) | i ≥ 0}. Then, w = w′.

Proof. Fix some i ≥ 1. The sites containing the letter i in w are the elements
of [w]pi(m) \ [w]pi−1(m) (since w has type m). Likewise, the sites containing the
letter i in w′ are the elements of [w′]pi(m) \ [w′]pi−1(m). Since our assumption
([w]k = [w′]k) yields [w]pi(m) \ [w]pi−1(m) = [w′]pi(m) \ [w′]pi−1(m), we conclude
that these are the same sites. Since this holds for all letters i, we have w = w′. �

Lemma 6.8. Let (q1, q2) be a configuration with |q1| ≤ |q2|. Let i ∈ q1. Let j be
the first site weakly to the right of i that belongs to q2. Then, SP(q1 \ {i} , q2 \ {j})
is obtained from SP(q1, q2) by removing a pair of matched parentheses.4 Moreover, the
closing parenthesis of that pair is contributed by j ∈ q2.

4The matching of all other parentheses remains the same, and so does the correspondence between
sites and closing parentheses (except for the one we removed).
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Proof. The assumption |q1| ≤ |q2| implies that all closing parentheses in SP(q1, q2)
are matched. In particular, the closing parenthesis γ contributed by j ∈ q2 is
matched. Let α be the opening parenthesis contributed by i ∈ q1. All parentheses
between α and γ are opening (by the minimality of j). We know that γ is matched
to an opening parenthesis β. Hence, the parenthesis sequence SP(q1, q2) between
α and γ (inclusive) is

( ( ( · · · ( )
α β γ,

where α and β may be the same parenthesis. Therefore SP(q1 \ {i} , q2 \ {j}) is
obtained from SP(q1, q2) by removing α and γ. Yet this is tantamount to removing
β and γ from SP(q1, q2), since both times we are simply shortening the string of
opening parentheses before γ by 1 (and since we do not store the positions of the
opening parentheses). �

Lemma 6.9. Let u ∈ Wn be a word of type m. Let k = pα(m) for some α. Let q be a
queue such that k ≤ |q|. Each site j ∈ [q(u)]k contributes a matched closing parenthesis
to SP([u]k , q).

Proof. Choose a permutation (i1, i2, . . . , in) of (1, 2, . . . , n) such that ui1 ≤ ui2 ≤
· · · ≤ uin . Use this permutation to construct q(u) as per the definition. For
each p ∈ [n], let jp denote the site that is set while processing i = ip when
constructing q(u). Thus, (q(u))jp = uip whenever p ≤ |q| (since these entries of
q(u) are set in Phase II), and (q(u))jp = uip + 1 otherwise (Phase I). Therefore,
[q(u)]k = {j1, j2, . . . , jk} (since k ≤ |q|). Thus, we only need to prove that each
of the sites j1, j2, . . . , jk contributes a matched closing parenthesis to SP([u]k , q).

Denote q(p)
1 := q1 \ {i1, i2, . . . , ip} and q(p)

2 := q2 \ {j1, j2, . . . , jp}.

Claim 6.10. Let p ∈ {0, 1, . . . , k}. Then, SP(q(p)
1 , q(p)

2 ) is obtained from SP(q1, q2) by
removing p pairs of matched parentheses. The closing parentheses of these p pairs are
contributed by j1, j2, . . . , jp.

Proof. We shall prove Claim 6.10 by induction on p. The base case (p = 0)
is obvious. For the induction step, we assume that Claim 6.10 holds for p − 1.
The site jp is chosen in Phase II (since p ≤ k ≤ |q|), and therefore jp is the first

site weakly to the right of ip that belongs to q(p−1)
2 . Hence, Lemma 6.8 (applied

to q(p−1)
1 , q(p−1)

2 , ip and jp instead of q1, q2, i and j) implies that SP(q(p)
1 , q(p)

2 )

is obtained from SP(q(p−1)
1 , q(p−1)

2 ) by removing a pair of matched parentheses.

Moreover, the closing parenthesis of that pair is contributed by jp ∈ q(p−1)
2 . Thus,

Claim 6.10 follows from the induction hypothesis. This completes the induction
step. �

The above claim applied to p = k shows that SP(q(k)1 , q(k)2 ) is obtained from
SP(q1, q2) by removing k pairs of matched parentheses, and that the closing
parentheses of these k pairs are contributed by j1, j2, . . . , jk. Hence, each of the
sites j1, j2, . . . , jk contributes a matched closing parenthesis to SP([u]k , q). �

Proposition 6.11. Let u ∈ Wn be a word of type m. Let k = pα(m) for some α. Let
q be a queue. The dual configuration of ([u]k, q) has the form

(
q†, [q(u)]k

)
, where q† is

some queue.
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Proof. Let
(
q′1, q′2

)
be the dual configuration of ([u]k, q). We must then prove that

q′2 = [q(u)]k. Note that |q′2| = |[u]k| = k = |[q(u)]k|.
Suppose k ≤ |q|. Then, Lemma 6.9 shows that each site j ∈ [q(u)]k contributes

a matched closing parenthesis to SP([u]k , q). Therefore, all of these sites are
balanced, and hence belong to q′2. Thus, q′2 ⊇ [q(u)]k, whence q′2 = [q(u)]k (since
|q′2| = |[q(u)]k|).

Now suppose k > |q|. Let ` be the number of classes in u, and consider the
contragredient duals q∗ and u∗ as in Lemma 2.5. Thus, n− k < n− |q| = |q∗|.
Hence, applying the k ≤ |q| case (proven above) to n− k, u∗ and q∗ instead of k,
u and q, we see that ([u∗]n−k, q∗)′ =

(
q†, [q∗(u∗)]n−k

)
for some queue q†. Now,(

(q′1)
∗, (q′2)

∗) = (([u]k)∗, q∗
)′

= ([u∗]n−k, q∗)′

=
(

q†, [q∗(u∗)]n−k

)
=
(

q†,
[(

q(u)
)∗]

n−k

)
,

where

• the first equality follows from (6.1);
• the second equality is because ([u]k)∗ = [u∗]n−k; and
• the fourth equality follows from Lemma 2.5.

Therefore, (q′2)
∗ =

[(
q(u)

)∗]
n−k = ([q(u)]k)∗, so that q′2 = [q(u)]k. Hence, Propo-

sition 6.11 is proven in the case when k > |q|. �

Proof of Theorem 3.1. Recall that any permutation in S`−1 is a product of simple
transpositions s1, s2, . . . , s`−2. Hence, in order to prove Theorem 3.1, it suffices to
show that 〈u〉σ = 〈u〉σsi

for each σ ∈ S`−1 and i ∈ [`− 2]. Then, Theorem 3.1
follows by induction on length, i.e. the minimal number of simple transpositions
needed to write σ.

In order to prove 〈u〉σ = 〈u〉σsi
, we need to show, for a σ-twisted MLQ q of

type m satisfying u = q(1n), that siq is a σsi-twisted MLQ of type m satisfying
u = (siq)(1n) (since this will show that si bijects the former MLQs to the latter).
The only nontrivial part is showing u = (siq)(1n). More generally, we will show
that (siq)(w) = q(w) for any word w ∈ Wn. The proof of this claim reduces to
showing that for any configuration C = (q1, q2) and any word w ∈ Wn the dual
configuration s1C = C′ = (q′1, q′2) of C satisfies C′(w) = C(w).

Each word w can be obtained from a standard word by a sequence of merges
(each of which sends a word u to ∨(k)u for some k ∈

{
pj(m) | j ≥ 1

}
, where m is

the type of u). Lemma 3.2 shows that these merges commute with the action of
a queue (and thus of an MLQ). Hence, it is sufficient to consider standard words
w. Thus, assume that w is standard of type m. It is straightforward to see (using
Equation (2.2) and |q′2| = |q1| and

∣∣q′1∣∣ = |q2|) that the words C(w) = q2
(
q1(w)

)
and C′(w) = q′2

(
q′1(w)

)
have the same type. Let n be this type. We shall now

show that [C′(w)]k = [C(w)]k for all k ∈ {pi(n) | i ≥ 0}. According to Lemma 6.7,
this will yield C′(w) = C(w), and thus our proof will be complete.

Let k ∈ {pi(n) | i ≥ 0}. Thus, k ∈ {0, 1, . . . , n} = {pi(m) | i ≥ 0} (since w
is standard). Hence, [w]k is well-defined. Note that qi(w) and q′i(w) are also
standard words. Using Proposition 6.11 to compute dual configurations, we can
see how the MLQ q = ([w]k, q1, q2) transforms under the action of s1s2s1: Namely,
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[w]k

q1

q2

∗

[q1(w)]k

q2

∗

∗

[
q2
(
q1(w)

)]
k

∗

∗

[
q2
(
q1(w)

)]
k

[w]k

q1

q2

[w]k

q′1

q′2

∗

[q′1(w)]k

q′2

∗

∗

[
q′2
(
q′1(w)

)]
k

Figure 6. Crossing diagrams representing the action of s1s2s1
(top) and s2s1s2 (bottom).

we have

([w]k, q1, q2)
s17−→ (∗, [q1(w)]k, q2)

s27−→
(
∗, ∗,

[
q2
(
q1(w)

)]
k

)
s17−→
(
∗, ∗,

[
q2
(
q1(w)

)]
k

)
,

where ∗ denotes some queue. Likewise, the action of s2s1s2 is given by

([w]k, q1, q2)
s27−→
(
[w]k, q′1, q′2

)
s17−→
(
∗, [q′1(w)]k, q′2

)
s27−→
(
∗, ∗,

[
q′2
(
q′1(w)

)]
k

)
.

(See Figure 6 for the actions depicted using crossing diagrams.) Yet, the two maps
are equal by Proposition 6.3. Thus, the resulting MLQs must be identical:(

∗, ∗,
[
q′2
(
q′1(w)

)]
k

)
=
(
∗, ∗,

[
q2
(
q1(w)

)]
k

)
.

Hence, we have [
q′2
(
q′1(w)

)]
k =

[
q2
(
q1(w)

)]
k.

In other words, [C′(w)]k = [C(w)]k. �

Remark 6.12. Theorem 3.1 for the special case of x1 = · · · = xn = 1 was proven
in [AAMP11] using different techniques. We also sketch an alternative direct
approach in the FPSAC extended abstract version of this work [AGS18].

7. Final remarks

We conclude by giving some additional examples, remarks, and comments
about our results. We begin with an example to illustrate the proof of Theorem 3.5
in more detail.
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Example 7.1. In order to compute 〈135452〉, we need to examine MLQs of type
(1, 1, 1, 1, 2, 0, 0, . . .). We take a particular MLQ q and add the 5-queue {1, 2, 3, 5, 6}
as follows:

q =

2 2 2 1 2 2

3 3 2 3 3 1

1 3 4 4 2 4

1 3 5 4 5 2

−−−−−→

1 1 1 2 1 1

2 2 3 1 2 2

3 4 2 3 3 1

1 3 4 4 2 5

1 3 5 4 6 2

= q̃.

Thus, we obtain a (s4s3s2s1)-twisted MLQ q̃ of type (1, 1, 1, 1, 1, 1, 0, . . .). Further-
more, note that 135452 = ∨5135462. Now, by Theorem 3.1, such MLQs q̃ are
in bijection with ordinary MLQs contributing to, in this case, 〈135462〉. In more
detail, let Ri(q̃) be the MLQ formed by taking the configuration C = (q̃i, q̃i+1)
and replacing it with the dual configuration. By taking R4R3R2R1(q̃) to bring the
top row to the bottom, we obtain the ordinary MLQ as follows:

q̃
R1−−→

2 2 1 2 2 2

2 2 3 1 2 2

3 4 2 3 3 1

1 3 4 4 2 5

1 3 5 4 6 2

R2−−→

2 2 1 2 2 2

3 2 3 3 3 1

3 4 2 3 3 1

1 3 4 4 2 5

1 3 5 4 6 2

R3−−→

2 2 1 2 2 2

3 2 3 3 3 1

3 4 4 4 2 1

1 3 4 4 2 5

1 3 5 4 6 2

R4−−→

2 2 1 2 2 2

3 2 3 3 3 1

3 4 4 4 2 1

1 3 5 4 2 5

1 3 5 4 6 2

= q̃′,

which contributes to 〈135462〉.

There is the natural cyclic symmetry on our spectral weights.

Proposition 7.2. Let Cn ⊆ Sn denote the cyclic group of order n generated by the
n-cycle (1 2 · · · n) and u ∈ Wn. We have 〈u〉τ σ = 〈uσ〉τ for any σ ∈ Cn and
τ ∈ S`−1, where Sn acts on Wn from the right by (u1 · · · un)σ = uσ(1) · · · uσ(n), that
is to say permutations act on positions, and similarly on monomials in x.

Proof. For a queue q, define σq := {σ(i) | i ∈ q}. It is clear from the definition
of a queue that q(uσ) =

(
(σq)(u)

)
σ. Hence, for any τ-twisted MLQ q of type

m, we have q(uσ) =
(
(σq)(u)

)
σ, where the action of Cn on MLQs is obtained

by acting on each queue separately. Thus, in particular, for any τ-twisted MLQ
q of type m, we have q(1n) =

(
(σq)(1n)

)
σ. From here, the claim follows by an
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obvious bijection (given by the action of σ) between the sums defining 〈u〉τ σ and
〈uσ〉τ . �

Let Br,s, where r ∈ [n− 1] and s ∈ Z>0, be a Kirillov–Reshetikhin (KR) crystal in
type A(1)

n−1 [KKM+92]. Recall from [NY97, Shi02] that the combinatorial R-matrix
is the unique crystal isomorphism

R : Br1,s1 ⊗ Br2,s2 → Br2,s2 ⊗ Br1,s1 .

There is a well-known (in slightly different terminology) bijection Ξr relating
r-queues with an element of the KR crystal Br,1 in type A(1)

n−1 by considering
q = {b1 < · · · < br} as a single-column Young tableau of height r. In [KMO15],
this was extended to a bijection Ξ between multiline queues of type m with `+ 1
classes and Bp1,1 ⊗ Bp2,1 ⊗ · · · ⊗ Bp`,1 by

Ξ(q) = Ξp1(q1)⊗ Ξp2(q2)⊗ · · · ⊗ Ξp`(q`).

Thus, by comparing the description of the combinatorial R-matrix for Br1,1 and
Br2,1 from [NY97], we obtain that taking the dual configuration is equivalent to
applying the combinatorial R-matrix under Ξ.

Proposition 7.3. Let C be an (r1, r2)-configuration. Then

Ξ(C′) = R
(
Ξ(C)

)
,

where C′ is the dual configuration of C.

Note that Proposition 7.3 gives another proof of Proposition 6.3 since the com-
binatorial R-matrix is well-known to satisfy the Yang-Baxter equation.

Example 7.4. Suppose n = 9. Consider the (4, 6)-configuration and dual (6, 4)-
configuration

C = ({1, 4, 5, 6} , {2, 3, 4, 6, 7, 8}), C′ = ({1, 3, 4, 5, 6, 8} , {2, 4, 6, 7}).

We have

1
4
5
6

⊗

2
3
4
6
7
8

1
3
4
5
6
8

⊗
2
4
6
7

dual

Ξ

R

Ξ
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Since the combinatorial R-matrix satisfies the Yang–Baxter equation, we have
an action of the symmetric group S` acting on MLQs with `+ 1 queues. Given the
description of the combinatorial R-matrix using the Robinson–Schensted–Knuth
(RSK) bijection [Shi02], this S`-action can be considered as corresponding to the
one given by van Leeuwen [vL06, Lemma 2.3].5 Furthermore, the S`-action on
MLQs has been considered by Danilov and Koshevoy [DK05] in a different con-
text (see also [Gor17, Ch. 4]). Unlike the combinatorial R-matrix perspective, they
do not have the natural interpretation of the weight since wt(q) = wt

(
Ξ(q)

)
,

where the crystal weight is the usual tableaux weight.
Next, we describe how to interpret our action from looking at the corner trans-

fer matrix described in [KMO15], which can be given diagrammatically by

b`

b`−1

b`−2

b1

b2

b3

· · ·

...

where every crossing is a combinatorial R-matrix and bi ∈ Bpi ,1. Our action
effectively does the following on the corner transfer matrix:

b`

b1

bi

bi+1

· · ·

...

· · ·

...
=

b`

b1

bi

bi+1

· · ·

...

· · ·

...

where the equality comes from applying the Yang–Baxter equation and R2 = id.
It could be interesting to see if our proof has any implications for the work of

Danilov and Koshevoy [DK05] or van Leeuwen [vL06].

Appendix A. Connections with other constructions

We describe how our definition of q(u) (when q is a queue and u a word) is
connected to the construction of [FM07], which was coined bully paths in [AL18],
and the tableaux combinatorics of [AS18].

To clarify the connection, we recall our visualization of a queue q in (2.3) by
a row of circles and squares. We modify this visualization slightly: Namely, we
still represent each i ∈ q by a circle as in Example 2.4, but we no longer represent
the i /∈ q by squares. We refer to the circles as “boxes”.

5This could also be considered as an interpretation of the Littlewood–Richardson rule, along with
the fact that sλsµ, where sλ and sµ are Schur functions corresponding to rectangles, is multiplicity
free [Ste01], and using Howe duality [BS17, Ch. 9,App. B].
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A.1. Connection with Ferrari–Martin and Aas–Linusson MLQs. We first con-
nect our MLQs with those from [FM07]. We will use the language of [AL18],
where we are only considering “discrete MLQs” as we consider our ring to have
a finite number of sites.

Consider a MLQ q = (q1, q2, . . . , q`). A labeling of q is a sequence of maps
f = ( f1, . . . , f`), where fi : qi → [i]. We represent this by placing an fi(j), which
we call the label, inside of the circle corresponding to j ∈ qi. The canonical labeling
fq of q is the labeling ( f1, . . . , f`) defined by

fk(j) =
(
qk(· · · q1(1n) · · · )

)
j. (A.1)

For example, the labeling of each MLQ in Example 7.1 is precisely the circled
values. When q is an ordinary MLQ, we can also construct this canonical labeling
recursively as follows:

(1) Set q0 = ∅, and let f0 : q0 → [0] be the trivial map.
(2) For each k = 0, 1, . . . , `− 1:

• Suppose fk : qk → [k] is already defined. Let (j1, j2, . . . , jr) be a list
of all elements of qk in the order of increasing label in fk; that is,
fk(j1) ≤ fk(j2) ≤ · · · ≤ fk(jr). (The relative order between elements
with equal label is immaterial.)
• For i = i1, i2, . . . , ir, do the following: Find the first site j weakly to

the right (cyclically) of i such that j ∈ qk+1 and fk+1(j) is not set; then
set fk+1(j) = fk(i).
• For all sites j ∈ qk+1 for which fk+1(j) is not set yet, set fk+1(j) =

k + 1.
This defines fk+1 : qk+1 → [k + 1].

Note that the canonical labeling fq are the elements in the circles in the graveyard
diagram of q (as in Example 5.5).

Now consider the labeling procedure in [AL18, §2.2] given by k-bully paths.
Note that a k-bully path from one queue to the next precisely corresponds to
the path of a letter k under Phase II of our definition of a queue as a function
on words. For example, the bully paths would correspond to the blue paths in
Example 2.4. In addition, this is exactly the recursive labeling procedure given
above. Thus, the labeling fq is equivalently constructed following the labeling
procedure of [AL18] using bully paths.

A.2. Connection with Kohnert diagrams and Assaf–Searles theory. Next we re-
late the action of queues on words with the Kohnert labelings in [AS18, Def. 2.5]
and the thread decomposition in [AS18, Def. 3.5]. We remark that the thread decom-
position is the same as the Kohnert labeling when the shape is an antipartition
(i.e. a weakly increasing sequence of positive integers). Roughly speaking, Kohn-
ert diagrams are MLQs built of queues that live on a half-line (instead of a circle),
and the construction of the Kohnert labeling (and the thread decomposition) is a
standardization of the bully path construction.

In more detail (and using the notations of [AS18]): If α is a weak composition,
and if D ∈ KM(α) is a Kohnert diagram, then we view the columns of D as
queues. This time, our queues are subsets of N (or Z) instead of Z/nZ; thus,
there is no “wrapping around”. We consider the reflection of D across the line
x = y as an MLQ qD = (q1, . . . , q`): namely, a cell in row i and column j in the
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reflected diagram corresponds to a j ∈ qi, and ` is the number of columns in D.
We then apply the bully path construction to the boxes of this reflected Kohnert
diagram. To obtain the thread decomposition we need to distinguish paths with a
fixed label such that these paths are also constructed by the bully path algorithm,
where we consider the labels to be decreasing from left to right. Hence, this can
be considered as a standardization of our construction or, equivalently, as fixing
specific permutations for how the queues act on words.

Example A.1. Consider the thread decomposition of the Kohnert diagram

4

43

3 32

2

given in [AS18, Fig. 11]. Thus, the corresponding MLQ is ({2} , {1, 2, 3} , {2, 3, 4});
we can draw it using bully paths as follows:

where each bully path matches with a thread in the decomposition. Note that for
each fixed k, the k-bully paths must be constructed from left to right.6 If not, the
diamond and square in the bottom row would be interchanged.

Note that the distinction between N and Z/nZ never arises since, for qD and
all i, we have

|{j ∈ qi | j ≥ k}| ≤ |{j ∈ qi+1 | j ≥ k}| ,
(by [AS18, Lemma 2.2]), which means that there is no “wrapping” around the
cylinder.

To obtain a Kohnert labeling from a Kohnert diagram of height K (for this, we
require n� 1), we can construct an MLQ

q̃D = (q̃1, q̃2, . . . , q̃˜̀, q1, q2, . . . , q`)

from the MLQ qD = (q1, q2, . . . , q`) to obtain the correct labelings, where `+ `′

is the largest label appearing in the Kohnert labeling. Indeed, a label added in
column i comes from a k ∈ q with k > K for sufficiently many queues q before
qi. In particular, when a smaller label appears, it must be in the bottom row
of the Kohnert diagram, which would correspond to the bully path wrapping
around the cylinder. We then only consider the labels in the regime k ∈ qi for all
1 ≤ k ≤ K and all 1 ≤ i ≤ `. We leave the precise details for the interested reader.

6In terms of our permutation (i1, i2, . . . , in) for Phase II, for uij = uij+1 = · · · = uij′
= k, we must have

ij < ij+1 < · · · < ij′ .
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Example A.2. We consider the Kohnert labeling from Example A.1. The following
MLQ, given as a graveyard diagram, is an MLQ that gives the corresponding
Kohnert labeling:

2

2

2

2

3

3

3

4

4

where we have suppressed the (i + 1)’s that appear in row i. Note that all circles
that appear to the left of the dashed line correspond to the Kohnert labeling and
that the labels match.
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