A quotient of the ring of symmetric functions generalizing quantum cohomology

Darij Grinberg

7 December 2018
Massachusetts Institute of Technology, Cambridge, MA
slides: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/mit2018.pdf paper: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/basisquot.pdf

- From a modern point of view, Schubert calculus is about two cohomology rings:

$$
\mathrm{H}^{*}(\underbrace{\operatorname{Gr}(k, n)}_{\text {Grassmannian }}) \text { and } \mathrm{H}^{*}(\underbrace{\mathrm{Fl}(n)}_{\text {flag variety }})
$$

(both varieties over \mathbb{C}).

- From a modern point of view, Schubert calculus is about two cohomology rings:

$$
\mathrm{H}^{*}(\underbrace{\operatorname{Gr}(k, n)}_{\text {Grassmannian }}) \text { and } \mathrm{H}^{*}(\underbrace{\mathrm{Fl}(n)}_{\text {flag variety }})
$$

(both varieties over \mathbb{C}).

- In this talk, we are concerned with the first.
- From a modern point of view, Schubert calculus is about two cohomology rings:

$$
\mathrm{H}^{*}(\underbrace{\operatorname{Gr}(k, n)}_{\text {Grassmannian }}) \text { and } \mathrm{H}^{*}(\underbrace{\mathrm{Fl}(n)}_{\text {flag variety }})
$$

(both varieties over \mathbb{C}).

- In this talk, we are concerned with the first.
- Classical result: as rings,

$$
\begin{aligned}
& \mathrm{H}^{*}(\operatorname{Gr}(k, n)) \\
& \cong\left(\text { symmetric polynomials in } x_{1}, x_{2}, \ldots, x_{k} \text { over } \mathbb{Z}\right) \\
& \quad \quad /\left(h_{n-k+1}, h_{n-k+2}, \ldots, h_{n}\right)_{\text {ideal }}
\end{aligned}
$$

(where the h_{i} are complete homogeneous symmetric polynomials).

- (Small) Quantum cohomology is a deformation of cohomology from the 1980-90s. For the Grassmannian, it is

$$
\begin{aligned}
& \mathrm{QH}^{*}(\operatorname{Gr}(k, n)) \\
& \cong\left(\text { symmetric polynomials in } x_{1}, x_{2}, \ldots, x_{k} \text { over } \mathbb{Z}[q]\right) \\
& \quad \quad \quad\left(h_{n-k+1}, h_{n-k+2}, \ldots, h_{n-1}, h_{n}+(-1)^{k} q\right)_{\text {ideal }} .
\end{aligned}
$$

- For comparison, the classical cohomology of the Grassmannian is

$$
\begin{aligned}
& \mathrm{H}^{*}(\operatorname{Gr}(k, n)) \\
& \cong\left(\text { symmetric polynomials in } x_{1}, x_{2}, \ldots, x_{k} \text { over } \mathbb{Z}\right) \\
& \quad /\left(h_{n-k+1}, h_{n-k+2}, \ldots, h_{n}\right)_{\text {ideal }}
\end{aligned}
$$

(where the h_{i} are complete homogeneous symmetric polynomials).

- (Small) Quantum cohomology is a deformation of cohomology from the 1980-90s. For the Grassmannian, it is

$$
\begin{aligned}
& \mathrm{QH}^{*}(\operatorname{Gr}(k, n)) \\
& \cong\left(\text { symmetric polynomials in } x_{1}, x_{2}, \ldots, x_{k} \text { over } \mathbb{Z}[q]\right) \\
& \quad \quad \quad\left(h_{n-k+1}, h_{n-k+2}, \ldots, h_{n-1}, h_{n}+(-1)^{k} q\right)_{\text {ideal }}
\end{aligned}
$$

- Many properties of classical cohomology still hold here. In particular: $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$ has a $\mathbb{Z}[q]$-module basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ of (projected) Schur polynomials, with λ ranging over all partitions with $\leq k$ parts and each part $\leq n-k$. The structure constants are the Gromov-Witten invariants.
- References:
- Aaron Bertram, Ionut Ciocan-Fontanine, William Fulton, Quantum multiplication of Schur polynomials, 1999.
- Alexander Postnikov, Affine approach to quantum Schubert calculus, 2005.

A more general setting: \mathcal{P} and \mathcal{S}

- We will now deform $\mathrm{H}^{*}(\operatorname{Gr}(k, n))$ using k parameters instead of one, generalizing $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$.

A more general setting: \mathcal{P} and \mathcal{S}

- We will now deform $\mathrm{H}^{*}(\operatorname{Gr}(k, n))$ using k parameters instead of one, generalizing $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$.
- Let \mathbf{k} be a commutative ring. Let $\mathbb{N}=\{0,1,2, \ldots\}$. Let $n \geq k \geq 0$ be integers.

A more general setting: \mathcal{P} and \mathcal{S}

- We will now deform $\mathrm{H}^{*}(\operatorname{Gr}(k, n))$ using k parameters instead of one, generalizing $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$.
- Let \mathbf{k} be a commutative ring. Let $\mathbb{N}=\{0,1,2, \ldots\}$. Let $n \geq k \geq 0$ be integers.
- Let $\mathcal{P}=\mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$.

A more general setting: \mathcal{P} and \mathcal{S}

- We will now deform $\mathrm{H}^{*}(\operatorname{Gr}(k, n))$ using k parameters instead of one, generalizing $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$.
- Let \mathbf{k} be a commutative ring. Let $\mathbb{N}=\{0,1,2, \ldots\}$. Let $n \geq k \geq 0$ be integers.
- Let $\mathcal{P}=\mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$.
- For each $\alpha \in \mathbb{N}^{k}$ and each $i \in\{1,2, \ldots, k\}$, let α_{i} be the i-th entry of α. Same for infinite sequences (like partitions).
- We will now deform $\mathrm{H}^{*}(\operatorname{Gr}(k, n))$ using k parameters instead of one, generalizing $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$.
- Let \mathbf{k} be a commutative ring. Let $\mathbb{N}=\{0,1,2, \ldots\}$. Let $n \geq k \geq 0$ be integers.
- Let $\mathcal{P}=\mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$.
- For each $\alpha \in \mathbb{N}^{k}$ and each $i \in\{1,2, \ldots, k\}$, let α_{i} be the i-th entry of α. Same for infinite sequences (like partitions).
- For each $\alpha \in \mathbb{N}^{k}$, let x^{α} be the monomial $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{k}^{\alpha_{k}}$, and let $|\alpha|$ be the degree $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$ of this monomial.
- We will now deform $\mathrm{H}^{*}(\operatorname{Gr}(k, n))$ using k parameters instead of one, generalizing $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$.
- Let \mathbf{k} be a commutative ring. Let $\mathbb{N}=\{0,1,2, \ldots\}$. Let $n \geq k \geq 0$ be integers.
- Let $\mathcal{P}=\mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$.
- For each $\alpha \in \mathbb{N}^{k}$ and each $i \in\{1,2, \ldots, k\}$, let α_{i} be the i-th entry of α. Same for infinite sequences (like partitions).
- For each $\alpha \in \mathbb{N}^{k}$, let x^{α} be the monomial $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{k}^{\alpha_{k}}$, and let $|\alpha|$ be the degree $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$ of this monomial.
- Let \mathcal{S} denote the ring of symmetric polynomials in \mathcal{P}.
- We will now deform $\mathrm{H}^{*}(\operatorname{Gr}(k, n))$ using k parameters instead of one, generalizing $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$.
- Let \mathbf{k} be a commutative ring. Let $\mathbb{N}=\{0,1,2, \ldots\}$. Let $n \geq k \geq 0$ be integers.
- Let $\mathcal{P}=\mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$.
- For each $\alpha \in \mathbb{N}^{k}$ and each $i \in\{1,2, \ldots, k\}$, let α_{i} be the i-th entry of α. Same for infinite sequences (like partitions).
- For each $\alpha \in \mathbb{N}^{k}$, let x^{α} be the monomial $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{k}^{\alpha_{k}}$, and let $|\alpha|$ be the degree $\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$ of this monomial.
- Let \mathcal{S} denote the ring of symmetric polynomials in \mathcal{P}.
- Theorem (Artin ≤ 1944): The \mathcal{S}-module \mathcal{P} is free with basis

$$
\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i .}
$$

- The ring \mathcal{S} of symmetric polynomials in $\mathcal{P}=\mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ has several bases, usually indexed by certain sets of (integer) partitions.
We need the following ones:
- For each $m \in \mathbb{Z}$, we let e_{m} denote the m-th elementary symmetric polynomial:

$$
e_{m}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq k} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=\sum_{\substack{\alpha \in\{0,1\}^{k} ; \\|\alpha|=m}} x^{\alpha} \in \mathcal{S} .
$$

(Thus, $e_{0}=1$, and $e_{m}=0$ when $m<0$.)

- For each $m \in \mathbb{Z}$, we let e_{m} denote the m-th elementary symmetric polynomial:

$$
e_{m}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq k} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=\sum_{\substack{\alpha \in\{0,1\}^{k} \\|\alpha|=m}} x^{\alpha} \in \mathcal{S}
$$

(Thus, $e_{0}=1$, and $e_{m}=0$ when $m<0$.)

- For each $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{\ell}\right) \in \mathbb{Z}^{\ell}$ (e.g., a partition), set

$$
e_{\nu}=e_{\nu_{1}} e_{\nu_{2}} \cdots e_{\nu_{\ell}} \in \mathcal{S}
$$

- For each $m \in \mathbb{Z}$, we let e_{m} denote the m-th elementary symmetric polynomial:

$$
e_{m}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq k} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=\sum_{\substack{\alpha \in\{0,1\}^{k} ; \\|\alpha|=m}} x^{\alpha} \in \mathcal{S} .
$$

(Thus, $e_{0}=1$, and $e_{m}=0$ when $m<0$.)

- For each $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{\ell}\right) \in \mathbb{Z}^{\ell}$ (e.g., a partition), set

$$
e_{\nu}=e_{\nu_{1}} e_{\nu_{2}} \cdots e_{\nu_{\ell}} \in \mathcal{S}
$$

- Then, $\left(e_{\lambda}\right)_{\lambda}$ is a partition with $\lambda_{1} \leq k$ is a basis of the \mathbf{k}-module \mathcal{S}. (Gauss's theorem.)
- For each $m \in \mathbb{Z}$, we let e_{m} denote the m-th elementary symmetric polynomial:

$$
e_{m}=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq k} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=\sum_{\substack{\alpha \in\{0,1\}^{k} ; \\|\alpha|=m}} x^{\alpha} \in \mathcal{S} .
$$

(Thus, $e_{0}=1$, and $e_{m}=0$ when $m<0$.)

- For each $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{\ell}\right) \in \mathbb{Z}^{\ell}$ (e.g., a partition), set

$$
e_{\nu}=e_{\nu_{1}} e_{\nu_{2}} \cdots e_{\nu_{\ell}} \in \mathcal{S}
$$

- Then, $\left(e_{\lambda}\right)_{\lambda}$ is a partition with $\lambda_{1} \leq k$ is a basis of the \mathbf{k}-module \mathcal{S}. (Gauss's theorem.)
- Note that $e_{m}=0$ when $m>k$.
- For each $m \in \mathbb{Z}$, we let h_{m} denote the m-th complete homogeneous symmetric polynomial:

$$
h_{m}=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{m} \leq k} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=\sum_{\substack{\alpha \in \mathbb{N}^{k} ; \\|\alpha|=m}} x^{\alpha} \in \mathcal{S}
$$

(Thus, $h_{0}=1$, and $h_{m}=0$ when $m<0$.)

- For each $m \in \mathbb{Z}$, we let h_{m} denote the m-th complete homogeneous symmetric polynomial:

$$
h_{m}=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{m} \leq k} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=\sum_{\substack{\alpha \in \mathbb{N}^{k} ; \\|\alpha|=m}} x^{\alpha} \in \mathcal{S} .
$$

(Thus, $h_{0}=1$, and $h_{m}=0$ when $m<0$.)

- For each $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{\ell}\right) \in \mathbb{Z}^{\ell}$ (e.g., a partition), set

$$
h_{\nu}=h_{\nu_{1}} h_{\nu_{2}} \cdots h_{\nu_{\ell}} \in \mathcal{S}
$$

- For each $m \in \mathbb{Z}$, we let h_{m} denote the m-th complete homogeneous symmetric polynomial:

$$
h_{m}=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{m} \leq k} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=\sum_{\substack{\alpha \in \mathbb{N}^{k} ; \\|\alpha|=m}} x^{\alpha} \in \mathcal{S} .
$$

(Thus, $h_{0}=1$, and $h_{m}=0$ when $m<0$.)

- For each $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{\ell}\right) \in \mathbb{Z}^{\ell}$ (e.g., a partition), set

$$
h_{\nu}=h_{\nu_{1}} h_{\nu_{2}} \cdots h_{\nu_{\ell}} \in \mathcal{S}
$$

- Then, $\left(h_{\lambda}\right)_{\lambda}$ is a partition with $\lambda_{1} \leq k$ is a basis of the \mathbf{k}-module \mathcal{S}.
- For each $m \in \mathbb{Z}$, we let h_{m} denote the m-th complete homogeneous symmetric polynomial:

$$
h_{m}=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{m} \leq k} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}=\sum_{\substack{\alpha \in \mathbb{N}^{k} ; \\|\alpha|=m}} x^{\alpha} \in \mathcal{S} .
$$

(Thus, $h_{0}=1$, and $h_{m}=0$ when $m<0$.)

- For each $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{\ell}\right) \in \mathbb{Z}^{\ell}$ (e.g., a partition), set

$$
h_{\nu}=h_{\nu_{1}} h_{\nu_{2}} \cdots h_{\nu_{\ell}} \in \mathcal{S}
$$

- Then, $\left(h_{\lambda}\right)_{\lambda}$ is a partition with $\lambda_{1} \leq k$ is a basis of the \mathbf{k}-module \mathcal{S}.
- Also, $\left(h_{\lambda}\right)_{\lambda}$ is a partition with $\ell(\lambda) \leq k$ is a basis of the \mathbf{k}-module \mathcal{S}. Here, $\ell(\lambda)$ is the length of λ, that is, the number of parts $(=$ nonzero entries) of λ.
- For each partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$, we let s_{λ} be the λ-th Schur polynomial:

$$
\begin{aligned}
s_{\lambda} & =\sum_{\substack{T \text { is a semistandard tableau } \\
\text { of shape } \lambda \text { with entries } 1,2, \ldots, k}} \prod_{i=1}^{k} x_{i}^{(\text {number of } i \text { 's in } T)} \\
& =\operatorname{det}\left(\left(h_{\lambda_{i}-i+j}\right)_{1 \leq i \leq \ell(\lambda), 1 \leq j \leq \ell(\lambda)}\right) \quad \text { (Jacobi-Trudi). }
\end{aligned}
$$

- For each partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$, we let s_{λ} be the λ-th Schur polynomial:

$$
\begin{aligned}
s_{\lambda} & =\sum_{\substack{T \text { is a semistandard tableau } \\
\text { of shape } \lambda \text { with entries } 1,2, \ldots, k}} \prod_{i=1}^{k} x_{i}^{(\text {number of } i \text { 's in } T)} \\
& =\operatorname{det}\left(\left(h_{\lambda_{i}-i+j}\right)_{1 \leq i \leq \ell(\lambda), 1 \leq j \leq \ell(\lambda)}\right) \quad \text { (Jacobi-Trudi). }
\end{aligned}
$$

- If $\ell(\lambda)>k$, then $s_{\lambda}=0$.
- If $\ell(\lambda) \leq k$, then

$$
s_{\lambda}=\frac{\operatorname{det}\left(\left(x_{i}^{\lambda_{j}+k-j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}\right)}{\operatorname{det}\left(\left(x_{i}^{k-j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}\right)}
$$

(alternant formula).

- For each partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$, we let s_{λ} be the λ-th Schur polynomial:

$$
\begin{aligned}
s_{\lambda} & =\sum_{\substack{T \text { is a semistandard tableau } \\
\text { of shape } \lambda \text { with entries } 1,2, \ldots, k}} \prod_{i=1}^{k} x_{i}^{(\text {number of } i \text { 's in } T)} \\
& =\operatorname{det}\left(\left(h_{\lambda_{i}-i+j}\right)_{1 \leq i \leq \ell(\lambda), 1 \leq j \leq \ell(\lambda)}\right) \quad \text { (Jacobi-Trudi). }
\end{aligned}
$$

- If $\ell(\lambda)>k$, then $s_{\lambda}=0$.
- If $\ell(\lambda) \leq k$, then

$$
s_{\lambda}=\frac{\operatorname{det}\left(\left(x_{i}^{\lambda_{j}+k-j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}\right)}{\operatorname{det}\left(\left(x_{i}^{k-j}\right)_{1 \leq i \leq k, 1 \leq j \leq k}\right)}
$$

(alternant formula).

- Now, $\left(s_{\lambda}\right)_{\lambda}$ is a partition with $\ell(\lambda) \leq k$ is a basis of the \mathbf{k}-module \mathcal{S}.

A more general setting: $a_{1}, a_{2}, \ldots, a_{k}$ and J

- Let $a_{1}, a_{2}, \ldots, a_{k} \in \mathcal{P}$ such that $\operatorname{deg} a_{i}<n-k+i$ for all i. (For example, this holds if $a_{i} \in \mathbf{k}$.)

A more general setting: $a_{1}, a_{2}, \ldots, a_{k}$ and J

- Let $a_{1}, a_{2}, \ldots, a_{k} \in \mathcal{P}$ such that $\operatorname{deg} a_{i}<n-k+i$ for all i. (For example, this holds if $a_{i} \in \mathbf{k}$.)
- Let J be the ideal of \mathcal{P} generated by the k differences

$$
h_{n-k+1}-a_{1}, \quad h_{n-k+2}-a_{2}, \ldots, \quad h_{n}-a_{k} .
$$

A more general setting: $a_{1}, a_{2}, \ldots, a_{k}$ and J

- Let $a_{1}, a_{2}, \ldots, a_{k} \in \mathcal{P}$ such that $\operatorname{deg} a_{i}<n-k+i$ for all i. (For example, this holds if $a_{i} \in \mathbf{k}$.)
- Let J be the ideal of \mathcal{P} generated by the k differences

$$
h_{n-k+1}-a_{1}, \quad h_{n-k+2}-a_{2}, \ldots, \quad h_{n}-a_{k} .
$$

- Theorem (G.): The \mathbf{k}-module \mathcal{P} / J is free with basis

$$
\left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ; \alpha_{i}<n-k+i \text { for each } i, ~}
$$

where the overline - means "projection" onto whatever quotient we need (here: from \mathcal{P} onto \mathcal{P} / J). (This basis has $n(n-1) \cdots(n-k+1)$ elements.)

A slightly less general setting: symmetric $a_{1}, a_{2}, \ldots, a_{k}$ and J

- FROM NOW ON, assume that $a_{1}, a_{2}, \ldots, a_{k} \in \mathcal{S}$.

A slightly less general setting: symmetric $a_{1}, a_{2}, \ldots, a_{k}$ and J

- FROM NOW ON, assume that $a_{1}, a_{2}, \ldots, a_{k} \in \mathcal{S}$.
- Let l be the ideal of \mathcal{S} generated by the k differences

$$
h_{n-k+1}-a_{1}, \quad h_{n-k+2}-a_{2}, \ldots, \quad h_{n}-a_{k} .
$$

(Same differences as for J, but we are generating an ideal of \mathcal{S} now.)

A slightly less general setting: symmetric $a_{1}, a_{2}, \ldots, a_{k}$ and J

- FROM NOW ON, assume that $a_{1}, a_{2}, \ldots, a_{k} \in \mathcal{S}$.
- Let $/$ be the ideal of \mathcal{S} generated by the k differences

$$
h_{n-k+1}-a_{1}, \quad h_{n-k+2}-a_{2}, \ldots, \quad h_{n}-a_{k} .
$$

(Same differences as for J, but we are generating an ideal of \mathcal{S} now.)

- For each partition λ, let $s_{\lambda} \in \mathcal{S}$ be the corresponding Schur polynomial.
- FROM NOW ON, assume that $a_{1}, a_{2}, \ldots, a_{k} \in \mathcal{S}$.
- Let l be the ideal of \mathcal{S} generated by the k differences

$$
h_{n-k+1}-a_{1}, \quad h_{n-k+2}-a_{2}, \ldots, \quad h_{n}-a_{k} .
$$

(Same differences as for J, but we are generating an ideal of \mathcal{S} now.)

- For each partition λ, let $s_{\lambda} \in \mathcal{S}$ be the corresponding Schur polynomial.
- Let

$$
\begin{aligned}
P_{k, n} & =\left\{\lambda \text { is a partition } \mid \lambda_{1} \leq n-k \text { and } \ell(\lambda) \leq k\right\} \\
& =\{\text { partitions } \lambda \subseteq \omega\}, \\
\text { where } \omega & =\underbrace{(n-k, n-k, \ldots, n-k)}_{k \text { entries }} .
\end{aligned}
$$

- FROM NOW ON, assume that $a_{1}, a_{2}, \ldots, a_{k} \in \mathcal{S}$.
- Let l be the ideal of \mathcal{S} generated by the k differences

$$
h_{n-k+1}-a_{1}, \quad h_{n-k+2}-a_{2}, \ldots, \quad h_{n}-a_{k} .
$$

(Same differences as for J, but we are generating an ideal of \mathcal{S} now.)

- For each partition λ, let $s_{\lambda} \in \mathcal{S}$ be the corresponding Schur polynomial.
- Let

$$
\begin{aligned}
P_{k, n} & =\left\{\lambda \text { is a partition } \mid \lambda_{1} \leq n-k \text { and } \ell(\lambda) \leq k\right\} \\
& =\{\text { partitions } \lambda \subseteq \omega\}, \\
\text { where } \omega & =\underbrace{(n-k, n-k, \ldots, n-k)}_{k \text { entries }} .
\end{aligned}
$$

- Theorem (G.): The \mathbf{k}-module \mathcal{S} / I is free with basis

$$
\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}} .
$$

An even less general setting: constant $a_{1}, a_{2}, \ldots, a_{k}$

- FROM NOW ON, assume that $a_{1}, a_{2}, \ldots, a_{k} \in \mathbf{k}$.
- FROM NOW ON, assume that $a_{1}, a_{2}, \ldots, a_{k} \in \mathbf{k}$.
- This setting still is general enough to encompass several that we know:
- If $\mathbf{k}=\mathbb{Z}$ and $a_{1}=a_{2}=\cdots=a_{k}=0$, then \mathcal{S} / I becomes the cohomology ring $\mathrm{H}^{*}(\operatorname{Gr}(k, n))$; the basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ corresponds to the Schubert classes.
- If $\mathbf{k}=\mathbb{Z}[q]$ and $a_{1}=a_{2}=\cdots=a_{k-1}=0$ and $a_{k}=-(-1)^{k} q$, then \mathcal{S} / I becomes the quantum cohomology ring $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$.
- FROM NOW ON, assume that $a_{1}, a_{2}, \ldots, a_{k} \in \mathbf{k}$.
- This setting still is general enough to encompass several that we know:
- If $\mathbf{k}=\mathbb{Z}$ and $a_{1}=a_{2}=\cdots=a_{k}=0$, then \mathcal{S} / I becomes the cohomology ring $\mathrm{H}^{*}(\operatorname{Gr}(k, n))$; the basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ corresponds to the Schubert classes.
- If $\mathbf{k}=\mathbb{Z}[q]$ and $a_{1}=a_{2}=\cdots=a_{k-1}=0$ and $a_{k}=-(-1)^{k} q$, then \mathcal{S} / I becomes the quantum cohomology ring $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$.
- The above theorem lets us work in these rings (and more generally) without relying on geometry.

S_{3}-symmetry of the Gromov-Witten invariants

- Recall that $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ is a basis of the \mathbf{k}-module \mathcal{S} / I.

S_{3}-symmetry of the Gromov-Witten invariants

- Recall that $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ is a basis of the \mathbf{k}-module \mathcal{S} / I. For each $\mu \in P_{k, n}$, let coeff ${ }_{\mu}: \mathcal{S} / I \rightarrow \mathbf{k}$ send each element to its $\overline{s_{\mu}}$-coordinate wrt this basis.
- Recall that $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ is a basis of the \mathbf{k}-module \mathcal{S} / I. For each $\mu \in P_{k, n}$, let coeff $\mu: \mathcal{S} / I \rightarrow \mathbf{k}$ send each element to its $\overline{s_{\mu}}$-coordinate wrt this basis.
- For every partition $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{k}\right) \in P_{k, n}$, we define

$$
\nu^{\vee}:=\left(n-k-\nu_{k}, n-k-\nu_{k-1}, \ldots, n-k-\nu_{1}\right) \in P_{k, n} .
$$

This partition ν^{\vee} is called the complement of ν.

- Recall that $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ is a basis of the \mathbf{k}-module $\mathcal{S} / \boldsymbol{I}$. For each $\mu \in P_{k, n}$, let coeff $\mu: \mathcal{S} / \boldsymbol{I} \rightarrow \mathbf{k}$ send each element to its $\overline{s_{\mu}}$-coordinate wrt this basis.
- For every partition $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{k}\right) \in P_{k, n}$, we define

$$
\nu^{\vee}:=\left(n-k-\nu_{k}, n-k-\nu_{k-1}, \ldots, n-k-\nu_{1}\right) \in P_{k, n} .
$$

This partition ν^{\vee} is called the complement of ν.

- For any three partitions $\alpha, \beta, \gamma \in P_{k, n}$, let

$$
g_{\alpha, \beta, \gamma}:=\operatorname{coeff}_{\gamma^{\vee}}\left(\overline{s_{\alpha} \boldsymbol{s}_{\beta}}\right) \in \mathbf{k}
$$

These generalize the Littlewood-Richardson numbers and (3-point) Gromov-Witten invariants.

- Recall that $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ is a basis of the \mathbf{k}-module \mathcal{S} / I. For each $\mu \in P_{k, n}$, let coeff $\mu: \mathcal{S} / I \rightarrow \mathbf{k}$ send each element to its $\overline{s_{\mu}}$-coordinate wrt this basis.
- For every partition $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{k}\right) \in P_{k, n}$, we define

$$
\nu^{\vee}:=\left(n-k-\nu_{k}, n-k-\nu_{k-1}, \ldots, n-k-\nu_{1}\right) \in P_{k, n} .
$$

This partition ν^{\vee} is called the complement of ν.

- For any three partitions $\alpha, \beta, \gamma \in P_{k, n}$, let

$$
g_{\alpha, \beta, \gamma}:=\operatorname{coeff}_{\gamma^{\vee}}\left(\overline{s_{\alpha} \boldsymbol{s}_{\beta}}\right) \in \mathbf{k}
$$

These generalize the Littlewood-Richardson numbers and (3-point) Gromov-Witten invariants.

- Theorem (G.): For any $\alpha, \beta, \gamma \in P_{k, n}$, we have

$$
\begin{aligned}
g_{\alpha, \beta, \gamma} & =g_{\alpha, \gamma, \beta}=g_{\beta, \alpha, \gamma}=g_{\beta, \gamma, \alpha}=g_{\gamma, \alpha, \beta}=g_{\gamma, \beta, \alpha} \\
& =\operatorname{coeff}_{\omega}\left(\overline{s_{\alpha} s_{\beta} s_{\gamma}}\right) .
\end{aligned}
$$

- Recall that $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ is a basis of the \mathbf{k}-module \mathcal{S} / I. For each $\mu \in P_{k, n}$, let coeff $\mu: \mathcal{S} / \boldsymbol{I} \rightarrow \mathbf{k}$ send each element to its $\overline{s_{\mu}}$-coordinate wrt this basis.
- For every partition $\nu=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{k}\right) \in P_{k, n}$, we define

$$
\nu^{\vee}:=\left(n-k-\nu_{k}, n-k-\nu_{k-1}, \ldots, n-k-\nu_{1}\right) \in P_{k, n} .
$$

This partition ν^{\vee} is called the complement of ν.

- For any three partitions $\alpha, \beta, \gamma \in P_{k, n}$, let

$$
g_{\alpha, \beta, \gamma}:=\operatorname{coeff}_{\gamma^{\vee}}\left(\overline{s_{\alpha} \boldsymbol{s}_{\beta}}\right) \in \mathbf{k} .
$$

These generalize the Littlewood-Richardson numbers and (3-point) Gromov-Witten invariants.

- Theorem (G.): For any $\alpha, \beta, \gamma \in P_{k, n}$, we have

$$
\begin{aligned}
g_{\alpha, \beta, \gamma} & =g_{\alpha, \gamma, \beta}=g_{\beta, \alpha, \gamma}=g_{\beta, \gamma, \alpha}=g_{\gamma, \alpha, \beta}=g_{\gamma, \beta, \alpha} \\
& =\operatorname{coeff}_{\omega}\left(\overline{s_{\alpha} s_{\beta} s_{\gamma}}\right) .
\end{aligned}
$$

- Equivalent restatement: Each $\nu \in P_{k, n}$ and $f \in \mathcal{S} / I$ satisfy $\operatorname{coeff}_{\omega}\left(\overline{s_{\nu}} f\right)=\operatorname{coeff}_{\nu \vee}(f)$.

The h-basis

- Theorem (G.): The \mathbf{k}-module \mathcal{S} / I is free with basis

$$
\left(\overline{h_{\lambda}}\right)_{\lambda \in P_{k, n}} .
$$

- Theorem (G.): The \mathbf{k}-module \mathcal{S} / I is free with basis

$$
\left(\overline{h_{\lambda}}\right)_{\lambda \in P_{k, n}} .
$$

- The transfer matrix between the two bases $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ and $\left(\overline{h_{\lambda}}\right)_{\lambda \in P_{k, n}}$ is unitriangular wrt the "size-then-anti-dominance" order, but seems hard to describe.
- Theorem (G.): The \mathbf{k}-module \mathcal{S} / I is free with basis

$$
\left(\overline{h_{\lambda}}\right)_{\lambda \in P_{k, n}} .
$$

- The transfer matrix between the two bases $\left(\bar{s}_{\lambda}\right)_{\lambda \in P_{k, n}}$ and $\left(\overline{h_{\lambda}}\right)_{\lambda \in P_{k, n}}$ is unitriangular wrt the "size-then-anti-dominance" order, but seems hard to describe.
- Proposition (G.): Let m be a positive integer. Then,

$$
\overline{h_{n+m}}=\sum_{j=0}^{k-1}(-1)^{j} a_{k-j} \overline{s_{\left(m, 1^{j}\right)}},
$$

where $\left(m, 1^{j}\right):=(m, \underbrace{1,1, \ldots, 1}_{j \text { ones }})$ (a hook-shaped partition).

- Theorem (G.): Let $\lambda \in P_{k, n}$. Let $j \in\{0,1, \ldots, n-k\}$. Then,

$$
\overline{s_{\lambda} h_{j}}=\sum_{\substack{\mu \in P_{k, n ;} ; \\ \mu / \lambda \text { is a } \\ \text { horizontal } j \text {-strip }}} \overline{s_{\mu}}-\sum_{i=1}^{k}(-1)^{i} a_{i} \sum_{\nu \subseteq \lambda} c_{\left(n-k-j+1,1^{i-1}\right), \nu}^{\lambda} \overline{s_{\nu}},
$$

where $c_{\alpha, \beta}^{\gamma}$ are the usual Littlewood-Richardson coefficients.

- Theorem (G.): Let $\lambda \in P_{k, n}$. Let $j \in\{0,1, \ldots, n-k\}$. Then,

$$
\overline{s_{\lambda} h_{j}}=\sum_{\substack{\mu \in P_{k, n ;} ; \\ \mu / \lambda \text { is a } \\ \text { horizontal } j \text {-strip }}} \overline{s_{\mu}}-\sum_{i=1}^{k}(-1)^{i} a_{i} \sum_{\nu \subseteq \lambda} c_{\left(n-k-j+1,1^{i-1}\right), \nu}^{\lambda} \overline{s_{\nu}},
$$

where $c_{\alpha, \beta}^{\gamma}$ are the usual Littlewood-Richardson coefficients.

- This generalizes the Bertram/Ciocan-Fontanine/Fulton Pieri rule, but note that $c_{\left(n-k-j+1,1^{i-1}\right), \nu}^{\lambda}$ may be >1.
- Theorem (G.): Let $\lambda \in P_{k, n}$. Let $j \in\{0,1, \ldots, n-k\}$.

Then,

$$
\overline{s_{\lambda} h_{j}}=\sum_{\substack{\mu \in P_{k, n} ; \\ \mu / \lambda \text { is a } \\ \text { horizontal } j \text {-strip }}} \overline{s_{\mu}}-\sum_{i=1}^{k}(-1)^{i} a_{i} \sum_{\nu \subseteq \lambda} c_{\left(n-k-j+1,1^{i-1}\right), \nu}^{\lambda} \overline{s_{\nu}},
$$

where $c_{\alpha, \beta}^{\gamma}$ are the usual Littlewood-Richardson coefficients.

- This generalizes the Bertram/Ciocan-Fontanine/Fulton Pieri rule, but note that $c_{\left(n-k-j+1,1^{i-1}\right), \nu}^{\lambda}$ may be >1.
- Example:

$$
\begin{aligned}
\overline{s_{(4,3,2)} h_{2}}=\overline{s_{(4,4,3)}} & +a_{1}\left(\overline{s_{(4,2)}}+\overline{s_{(3,2,1)}}+\overline{s_{(3,3)}}\right) \\
& -a_{2}\left(\overline{s_{(4,1)}}+\overline{s_{(2,2,1)}}+\overline{s_{(3,1,1)}}+2 \overline{s_{(3,2)}}\right) \\
& +a_{3}\left(\overline{s_{(2,2)}}+\overline{s_{(2,1,1)}}+\overline{s_{(3,1)}}\right)
\end{aligned}
$$

- Theorem (G.): Let $\lambda \in P_{k, n}$. Let $j \in\{0,1, \ldots, n-k\}$.

Then,

$$
\overline{s_{\lambda} h_{j}}=\sum_{\substack{\mu \in P_{k, n} ; \\ \mu / \lambda \text { is a } \\ \text { horizontal } j \text {-strip }}} \overline{s_{\mu}}-\sum_{i=1}^{k}(-1)^{i} a_{i} \sum_{\nu \subseteq \lambda} c_{\left(n-k-j+1,1^{i-1}\right), \nu}^{\lambda} \overline{s_{\nu}},
$$

where $c_{\alpha, \beta}^{\gamma}$ are the usual Littlewood-Richardson coefficients.

- This generalizes the Bertram/Ciocan-Fontanine/Fulton Pieri rule, but note that $c_{\left(n-k-j+1,1^{i-1}\right), \nu}^{\lambda}$ may be >1.
- Example:

$$
\begin{aligned}
\overline{s_{(4,3,2)} h_{2}}=\overline{s_{(4,4,3)}} & +a_{1}\left(\overline{s_{(4,2)}}+\overline{s_{(3,2,1)}}+\overline{s_{(3,3)}}\right) \\
& -a_{2}\left(\overline{s_{(4,1)}}+\overline{s_{(2,2,1)}}+\overline{s_{(3,1,1)}}+2 \overline{s_{(3,2)}}\right) \\
& +a_{3}\left(\overline{s_{(2,2)}}+\overline{s_{(2,1,1)}}+\overline{s_{(3,1)}}\right)
\end{aligned}
$$

- Multiplying by e_{j} appears harder:

$$
\overline{s_{(2,2,1)} e_{2}}=a_{1} \overline{s_{(2,2)}}-2 a_{2} \overline{s_{(2,1)}}+a_{3}\left(\overline{s_{(2)}}+\overline{s_{(1,1)}}\right)+a_{1}^{2} \overline{s_{(1)}}-2 a_{1} a_{2} \overline{\left.s_{(}\right)} .
$$

- Conjecture: Let $b_{i}=(-1)^{n-k-1} a_{i}$ for each $i \in\{1,2, \ldots, k\}$. Let $\lambda, \mu, \nu \in P_{k, n}$. Then, $(-1)^{|\lambda|+|\mu|-|\nu|} \operatorname{coeff}_{\nu}\left(\overline{s_{\lambda} s_{\mu}}\right)$ is a polynomial in $b_{1}, b_{2}, \ldots, b_{k}$ with coefficients in \mathbb{N}.
- Verified for all $n \leq 7$ using SageMath.
- This would generalize positivity of Gromov-Witten invariants.

More questions

- Question: Does $\mathcal{S} /$ / have a geometric meaning? If not, why does it behave so nicely?

More questions

- Question: Does $\mathcal{S} /$ / have a geometric meaning? If not, why does it behave so nicely?
- Question: What other bases does $\mathcal{S} /$ / have? Monomial symmetric? Power-sum?
- Question: Does $\mathcal{S} /$ / have a geometric meaning? If not, why does it behave so nicely?
- Question: What other bases does $\mathcal{S} /$ / have? Monomial symmetric? Power-sum?
- Question: Do other properties of $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$ (such as "curious duality" and "cyclic hidden symmetry") generalize to \mathcal{S} / I ?
(The $\operatorname{Gr}(k, n) \rightarrow \operatorname{Gr}(n-k, n)$ duality isomorphism does not exist in
general: If $\mathbf{k}=\mathbb{C}$ and $a_{1}=6$ and $a_{2}=16$, then
$(\mathcal{S} / I)_{k=2, n=3, a_{1}=6, a_{2}=16} \cong \mathbb{C}[x] /\left((x-10)(x+2)^{2}\right)$, which can never
be a $(\mathcal{S} / I)_{k=1, n=3}$, since $(\mathcal{S} / I)_{k=1, n=3} \cong \mathbb{C}[x] /\left(x^{3}-a_{1}\right)$.)
- Question: Does $\mathcal{S} /$ / have a geometric meaning? If not, why does it behave so nicely?
- Question: What other bases does $\mathcal{S} /$ / have? Monomial symmetric? Power-sum?
- Question: Do other properties of $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$ (such as "curious duality" and "cyclic hidden symmetry") generalize to \mathcal{S} / I ?
(The $\operatorname{Gr}(k, n) \rightarrow \operatorname{Gr}(n-k, n)$ duality isomorphism does not exist in
general: If $\mathbf{k}=\mathbb{C}$ and $a_{1}=6$ and $a_{2}=16$, then
$(\mathcal{S} / I)_{k=2, n=3, a_{1}=6, a_{2}=16} \cong \mathbb{C}[x] /\left((x-10)(x+2)^{2}\right)$, which can never be a $(\mathcal{S} / I)_{k=1, n=3}$, since $(\mathcal{S} / I)_{k=1, n=3} \cong \mathbb{C}[x] /\left(x^{3}-a_{1}\right)$.)
- Question: Is there an analogous generalization of $\mathrm{QH}^{*}(\mathrm{FI}(n))$? Is it connected to Fulton's "universal Schubert polynomials"?

More questions

- Question: Does $\mathcal{S} /$ I have a geometric meaning? If not, why does it behave so nicely?
- Question: What other bases does $\mathcal{S} /$ / have? Monomial symmetric? Power-sum?
- Question: Do other properties of $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$ (such as "curious duality" and "cyclic hidden symmetry") generalize to \mathcal{S} / I ?
(The $\operatorname{Gr}(k, n) \rightarrow \operatorname{Gr}(n-k, n)$ duality isomorphism does not exist in general: If $\mathbf{k}=\mathbb{C}$ and $a_{1}=6$ and $a_{2}=16$, then $(\mathcal{S} / I)_{k=2, n=3, a_{1}=6, a_{2}=16} \cong \mathbb{C}[x] /\left((x-10)(x+2)^{2}\right)$, which can never be a $(\mathcal{S} / I)_{k=1, n=3}$, since $(\mathcal{S} / I)_{k=1, n=3} \cong \mathbb{C}[x] /\left(x^{3}-a_{1}\right)$.)
- Question: Is there an analogous generalization of $\mathrm{QH}^{*}(\mathrm{FI}(n))$? Is it connected to Fulton's "universal Schubert polynomials"?
- Question: Is there an equivariant analogue?

More questions

- Question: Does $\mathcal{S} /$ l have a geometric meaning? If not, why does it behave so nicely?
- Question: What other bases does \mathcal{S} /l have? Monomial symmetric? Power-sum?
- Question: Do other properties of $\mathrm{QH}^{*}(\operatorname{Gr}(k, n))$ (such as "curious duality" and "cyclic hidden symmetry") generalize to \mathcal{S} / I ?
(The $\operatorname{Gr}(k, n) \rightarrow \operatorname{Gr}(n-k, n)$ duality isomorphism does not exist in general: If $\mathbf{k}=\mathbb{C}$ and $a_{1}=6$ and $a_{2}=16$, then $(\mathcal{S} / I)_{k=2, n=3, a_{1}=6, a_{2}=16} \cong \mathbb{C}[x] /\left((x-10)(x+2)^{2}\right)$, which can never be a $(\mathcal{S} / I)_{k=1, n=3}$, since $(\mathcal{S} / I)_{k=1, n=3} \cong \mathbb{C}[x] /\left(x^{3}-a_{1}\right)$.)
- Question: Is there an analogous generalization of $\mathrm{QH}^{*}(\mathrm{FI}(n))$? Is it connected to Fulton's "universal Schubert polynomials"?
- Question: Is there an equivariant analogue?
- Question: "Straightening rules" for $\overline{s_{\lambda}}$ when $\lambda \notin P_{k, n}$, similar to the Bertram/Ciocan-Fontanine/Fulton "rim hook algorithm"?

S_{k}-module structure

- The symmetric group S_{k} acts on \mathcal{P}, with invariant ring \mathcal{S}.
- What is the S_{k}-module structure on \mathcal{P} / J ?
- The symmetric group S_{k} acts on \mathcal{P}, with invariant ring \mathcal{S}.
- What is the S_{k}-module structure on \mathcal{P} / J ?
- Almost-theorem (G., needs to be checked): Assume that \mathbf{k} is a \mathbb{Q}-algebra. Then, as S_{k}-modules,

$$
\mathcal{P} / J \cong\left(\mathcal{P} / \mathcal{P S}^{+}\right) \times\binom{ n}{k} \cong(\underbrace{\mathrm{k} S_{k}}_{\text {regular rep }})^{\times\binom{ n}{k}}
$$

where $\mathcal{P S}{ }^{+}$is the ideal of \mathcal{P} generated by symmetric polynomials with constant term 0 .

- Let us recall symmetric functions (not polynomials) now; we'll need them soon anyway.

$$
\begin{aligned}
\mathcal{S} & :=\left\{\text { symmetric polynomials in } x_{1}, x_{2}, \ldots, x_{k}\right\} \\
\Lambda & :=\left\{\text { symmetric functions in } x_{1}, x_{2}, x_{3}, \ldots\right\}
\end{aligned}
$$

- Let us recall symmetric functions (not polynomials) now; we'll need them soon anyway.

$$
\begin{aligned}
\mathcal{S} & :=\left\{\text { symmetric polynomials in } x_{1}, x_{2}, \ldots, x_{k}\right\} ; \\
\Lambda & :=\left\{\text { symmetric functions in } x_{1}, x_{2}, x_{3}, \ldots\right\}
\end{aligned}
$$

- We use standard notations for symmetric functions, but in boldface:

$$
\begin{aligned}
\mathbf{e} & =\text { elementary symmetric } \\
\mathbf{h} & =\text { complete homogeneous } \\
\mathbf{s} & =\text { Schur (or skew Schur) }
\end{aligned}
$$

- Let us recall symmetric functions (not polynomials) now; we'll need them soon anyway.

$$
\begin{aligned}
\mathcal{S} & :=\left\{\text { symmetric polynomials in } x_{1}, x_{2}, \ldots, x_{k}\right\} ; \\
\Lambda & :=\left\{\text { symmetric functions in } x_{1}, x_{2}, x_{3}, \ldots\right\}
\end{aligned}
$$

- We use standard notations for symmetric functions, but in boldface:

$$
\begin{aligned}
\mathbf{e} & =\text { elementary symmetric } \\
\mathbf{h} & =\text { complete homogeneous } \\
\mathbf{s} & =\text { Schur (or skew Schur) }
\end{aligned}
$$

- We have

$$
\begin{gathered}
\mathcal{S} \cong \Lambda /\left(\mathbf{e}_{k+1}, \quad \mathbf{e}_{k+2}, \quad \mathbf{e}_{k+3}, \quad \ldots\right)_{\text {ideal }}, \\
\mathcal{S} / I \cong \Lambda /\left(\mathbf{h}_{n-k+1}-a_{1}, \quad \mathbf{h}_{n-k+2}-a_{2}, \quad \ldots, \quad \mathbf{h}_{n}-a_{k},\right. \\
\left.\mathbf{e}_{k+1}, \quad \mathbf{e}_{k+2}, \quad \mathbf{e}_{k+3}, \quad \ldots\right)_{\text {ideal }} .
\end{gathered}
$$

- Let us recall symmetric functions (not polynomials) now; we'll need them soon anyway.

$$
\begin{aligned}
\mathcal{S} & :=\left\{\text { symmetric polynomials in } x_{1}, x_{2}, \ldots, x_{k}\right\} ; \\
\Lambda & :=\left\{\text { symmetric functions in } x_{1}, x_{2}, x_{3}, \ldots\right\}
\end{aligned}
$$

- We use standard notations for symmetric functions, but in boldface:

$$
\begin{aligned}
\mathbf{e} & =\text { elementary symmetric } \\
\mathbf{h} & =\text { complete homogeneous } \\
\mathbf{s} & =\text { Schur (or skew Schur) }
\end{aligned}
$$

- We have

$$
\begin{gathered}
\mathcal{S} \cong \Lambda /\left(\mathbf{e}_{k+1}, \quad \mathbf{e}_{k+2}, \quad \mathbf{e}_{k+3}, \quad \ldots\right)_{\text {ideal }}, \\
\mathcal{S} / I \cong \Lambda /\left(\mathbf{h}_{n-k+1}-a_{1}, \quad \mathbf{h}_{n-k+2}-a_{2}, \quad \ldots, \quad \mathbf{h}_{n}-a_{k},\right. \\
\left.\mathbf{e}_{k+1}, \quad \mathbf{e}_{k+2}, \quad \mathbf{e}_{k+3}, \quad \ldots\right)_{\text {ideal }} .
\end{gathered}
$$

- So why not replace the \mathbf{e}_{j} by $\mathbf{e}_{j}-b_{j}$ too?
- Theorem (G.): Assume that $a_{1}, a_{2}, \ldots, a_{k}$ as well as $b_{1}, b_{2}, b_{3}, \ldots$ are elements of \mathbf{k}. Then,

$$
\begin{aligned}
\Lambda /\left(\mathbf{h}_{n-k+1}-a_{1}, \quad \mathbf{h}_{n-k+2}-a_{2},\right. & \ldots, \quad \mathbf{h}_{n}-a_{k}, \\
\mathbf{e}_{k+1}-b_{1}, \quad \mathbf{e}_{k+2}-b_{2}, & \left.\mathbf{e}_{k+3}-b_{3}, \quad \ldots\right)_{\text {ideal }}
\end{aligned}
$$

is a free \mathbf{k}-module with basis $\left(\overline{\mathbf{s}_{\lambda}}\right)_{\lambda \in P_{k, n}}$.

- Proofs of all the above (except for the S_{k}-action) can be found in
- Darij Grinberg, A basis for a quotient of symmetric polynomials (draft), http://www.cip.ifi.lmu.de/ ~grinberg/algebra/basisquot.pdf.
- Proofs of all the above (except for the S_{k}-action) can be found in
- Darij Grinberg, A basis for a quotient of symmetric polynomials (draft), http://www.cip.ifi.lmu.de/ ~grinberg/algebra/basisquot.pdf.
- Main ideas:
- Use Gröbner bases to show that \mathcal{P} / J is free with basis $\left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<n-k+i$ for each i.
(This was already outlined in Aldo Conca, Christian Krattenthaler, Junzo Watanabe, Regular Sequences of Symmetric Polynomials, 2009.)
- Proofs of all the above (except for the S_{k}-action) can be found in
- Darij Grinberg, A basis for a quotient of symmetric polynomials (draft), http://www.cip.ifi.lmu.de/ ~grinberg/algebra/basisquot.pdf.
- Main ideas:
- Use Gröbner bases to show that \mathcal{P} / J is free with basis $\left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<n-k+i$ for each i.
(This was already outlined in Aldo Conca, Christian Krattenthaler, Junzo Watanabe, Regular Sequences of Symmetric Polynomials, 2009.)
- Using that + Jacobi-Trudi, show that \mathcal{S} / I is free with basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$.
- Proofs of all the above (except for the S_{k}-action) can be found in
- Darij Grinberg, A basis for a quotient of symmetric polynomials (draft), http://www.cip.ifi.lmu.de/ ~grinberg/algebra/basisquot.pdf.
- Main ideas:
- Use Gröbner bases to show that \mathcal{P} / J is free with basis $\left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<n-k+i$ for each i.
(This was already outlined in Aldo Conca, Christian Krattenthaler, Junzo Watanabe, Regular Sequences of Symmetric Polynomials, 2009.)
- Using that + Jacobi-Trudi, show that \mathcal{S} / I is free with basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$.
- As for the rest, compute in $\Lambda \ldots$ a lot.
- The Gröbner basis argument relies on the easy identity

$$
h_{p}\left(x_{i . . k}\right)=\sum_{t=0}^{i-1}(-1)^{t} e_{t}\left(x_{1 . . i-1}\right) h_{p-t}\left(x_{1 . . k}\right)
$$

for all $i \in\{1,2, \ldots, k+1\}$ and $p \in \mathbb{N}$.
Here, $x_{a . . b}$ means $x_{a}, x_{a+1}, \ldots, x_{b}$.

- Use it to show that

$$
\left(h_{n-k+i}\left(x_{i . . k}\right)-\sum_{t=0}^{i-1}(-1)^{t} e_{t}\left(x_{1 . . i-1}\right) a_{i-t}\right)_{i \in\{1,2, \ldots, k\}}
$$

is a Gröbner basis of the ideal J wrt the degree-lexicographic term order, where the variables are ordered by
$x_{1}>x_{2}>\cdots>x_{k}$.

- This Gröbner basis leads to a basis of \mathcal{P} / J, which is precisely $\operatorname{our}\left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ;} ; \alpha_{i}<n-k+i$ for each i.

On the proofs, 3: the first basis of \mathcal{S} / I

- How to prove that \mathcal{S} / I is free with basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$?
- How to prove that \mathcal{S} / I is free with basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$?
- Jacobi-Trudi lets you recursively reduce each $\overline{s_{\lambda}}$ with $\lambda \notin P_{k, n}$ into smaller $\overline{s_{\mu}}$'s.
- How to prove that \mathcal{S} / I is free with basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$?
- Jacobi-Trudi lets you recursively reduce each $\overline{s_{\lambda}}$ with $\lambda \notin P_{k, n}$ into smaller $\overline{s_{\mu}}$'s.
$\Longrightarrow\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ spans \mathcal{S} / I.
- How to prove that \mathcal{S} / I is free with basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$?
- Jacobi-Trudi lets you recursively reduce each $\overline{s_{\lambda}}$ with $\lambda \notin P_{k, n}$ into smaller $\overline{s_{\mu}}$'s.
$\Longrightarrow\left(\bar{s}_{\lambda}\right)_{\lambda \in P_{k, n}}$ spans \mathcal{S} / I.
- On the other hand, $\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ spans \mathcal{P} as an \mathcal{S}-module (Artin).
- How to prove that \mathcal{S} / I is free with basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$?
- Jacobi-Trudi lets you recursively reduce each $\overline{s_{\lambda}}$ with $\lambda \notin P_{k, n}$ into smaller $\overline{s_{\mu}}$'s.
$\Longrightarrow\left(\bar{s}_{\lambda}\right)_{\lambda \in P_{k, n}}$ spans \mathcal{S} / I.
- On the other hand, $\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ spans \mathcal{P} as an \mathcal{S}-module (Artin).
- Combining these yields that $\left(\overline{s_{\lambda} X^{\alpha}}\right)_{\lambda \in P_{k, n} ; \alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ spans $\mathcal{P} / I \mathcal{P}=\mathcal{P} / J$.
- How to prove that \mathcal{S} / I is free with basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$?
- Jacobi-Trudi lets you recursively reduce each $\overline{s_{\lambda}}$ with $\lambda \notin P_{k, n}$ into smaller $\overline{s_{\mu}}$'s.
$\Longrightarrow\left(\bar{s}_{\lambda}\right)_{\lambda \in P_{k, n}}$ spans \mathcal{S} / I.
- On the other hand, $\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<i$ for each i spans \mathcal{P} as an \mathcal{S}-module (Artin).
- Combining these yields that $\left(\overline{s_{\lambda} X^{\alpha}}\right)_{\lambda \in P_{k, n} ; \alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ spans $\mathcal{P} / I \mathcal{P}=\mathcal{P} / \mathrm{J}$.
- But we also know that the family $\left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<n-k+i$ for each i is a basis of \mathcal{P} / J.
- How to prove that \mathcal{S} / I is free with basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$?
- Jacobi-Trudi lets you recursively reduce each $\overline{s_{\lambda}}$ with $\lambda \notin P_{k, n}$ into smaller $\overline{s_{\mu}}$'s.
$\Longrightarrow\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ spans \mathcal{S} / I.
- On the other hand, $\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<i$ for each i spans \mathcal{P} as an \mathcal{S}-module (Artin).
- Combining these yields that $\left(\overline{s_{\lambda} X^{\alpha}}\right)_{\lambda \in P_{k, n} ; \alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ spans $\mathcal{P} / I \mathcal{P}=\mathcal{P} / \mathrm{J}$.
- But we also know that the family $\left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<n-k+i$ for each i is a basis of \mathcal{P} / J.
- What can you say if a \mathbf{k}-module has a basis $\left(a_{v}\right)_{v \in V}$ and a spanning family $\left(b_{u}\right)_{u \in U}$ of the same finite size $(|U|=|V|<\infty)$?
- How to prove that \mathcal{S} / I is free with basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$?
- Jacobi-Trudi lets you recursively reduce each $\overline{s_{\lambda}}$ with $\lambda \notin P_{k, n}$ into smaller $\overline{s_{\mu}}$'s.
$\Longrightarrow\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ spans \mathcal{S} / I.
- On the other hand, $\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<i$ for each i spans \mathcal{P} as an \mathcal{S}-module (Artin).
- Combining these yields that $\left(\overline{s_{\lambda} X^{\alpha}}\right)_{\lambda \in P_{k, n} ; \alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ spans $\mathcal{P} / I \mathcal{P}=\mathcal{P} / \mathrm{J}$.
- But we also know that the family $\left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<n-k+i$ for each i is a basis of \mathcal{P} / J.
- What can you say if a \mathbf{k}-module has a basis $\left(a_{v}\right)_{v \in V}$ and a spanning family $\left(b_{u}\right)_{u \in U}$ of the same finite size $(|U|=|V|<\infty)$?
Easy exercise: You can say that $\left(b_{u}\right)_{u \in U}$ is also a basis.
- How to prove that \mathcal{S} / I is free with basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$?
- Jacobi-Trudi lets you recursively reduce each $\overline{s_{\lambda}}$ with $\lambda \notin P_{k, n}$ into smaller $\overline{s_{\mu}}$'s.
$\Longrightarrow\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ spans \mathcal{S} / I.
- On the other hand, $\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<i$ for each i spans \mathcal{P} as an \mathcal{S}-module (Artin).
- Combining these yields that $\left(\overline{s_{\lambda} X^{\alpha}}\right)_{\lambda \in P_{k, n} ; \alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ spans $\mathcal{P} / I \mathcal{P}=\mathcal{P} / \mathrm{J}$.
- But we also know that the family $\left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<n-k+i$ for each i is a basis of \mathcal{P} / J.
- What can you say if a \mathbf{k}-module has a basis $\left(a_{v}\right)_{v \in V}$ and a spanning family $\left(b_{u}\right)_{u \in U}$ of the same finite size $(|U|=|V|<\infty)$?
Easy exercise: You can say that $\left(b_{u}\right)_{u \in U}$ is also a basis.
- Thus, $\left(\overline{s_{\lambda} X^{\alpha}}\right)_{\lambda \in P_{k, n} ; \alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ is a basis of \mathcal{P} / J.
- How to prove that \mathcal{S} / I is free with basis $\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$?
- Jacobi-Trudi lets you recursively reduce each $\overline{s_{\lambda}}$ with $\lambda \notin P_{k, n}$ into smaller $\overline{s_{\mu}}$'s.
$\Longrightarrow\left(\overline{s_{\lambda}}\right)_{\lambda \in P_{k, n}}$ spans \mathcal{S} / I.
- On the other hand, $\left(x^{\alpha}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<i$ for each i spans \mathcal{P} as an \mathcal{S}-module (Artin).
- Combining these yields that $\left(\overline{s_{\lambda} X^{\alpha}}\right)_{\lambda \in P_{k, n} ; \alpha \in \mathbb{N}^{k} ; \alpha_{i}<i \text { for each } i}$ spans $\mathcal{P} / I \mathcal{P}=\mathcal{P} / \mathrm{J}$.
- But we also know that the family $\left(\overline{x^{\alpha}}\right)_{\alpha \in \mathbb{N}^{k} ;} \alpha_{i}<n-k+i$ for each i is a basis of \mathcal{P} / J.
- What can you say if a \mathbf{k}-module has a basis $\left(a_{v}\right)_{v \in V}$ and a spanning family $\left(b_{u}\right)_{u \in U}$ of the same finite size $(|U|=|V|<\infty)$?
Easy exercise: You can say that $\left(b_{u}\right)_{u \in U}$ is also a basis.
- Thus, $\left(\overline{s_{\lambda} X^{\alpha}}\right)_{\lambda \in P_{k, n} ; ~} \in \mathbb{N}^{k} ; \alpha_{i}<i$ for each i is a basis of \mathcal{P} / J.
- $\Longrightarrow\left(\bar{s}_{\lambda}\right)_{\lambda \in P_{k, n}}$ is a basis of \mathcal{S} / I.
- The rest of the proofs are long computations inside Λ, using various identities for symmetric functions.
- The rest of the proofs are long computations inside Λ, using various identities for symmetric functions.
- Maybe the most important one:

Bernstein's identity: Let λ be a partition. Let $m \in \mathbb{Z}$ be such that $m \geq \lambda_{1}$. Then,

$$
\sum_{i \in \mathbb{N}}(-1)^{i} \mathbf{h}_{m+i}\left(\mathbf{e}_{i}\right)^{\perp} \mathbf{s}_{\lambda}=\mathbf{s}_{\left(m, \lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)}
$$

Here, $\mathbf{f}^{\perp} \mathbf{g}$ means " \mathbf{g} skewed by $\mathbf{f}^{\prime \prime}$ (so that $\left.\left(\mathbf{s}_{\mu}\right)^{\perp} \mathbf{s}_{\lambda}=\mathbf{s}_{\lambda / \mu}\right)$.

- Sasha Postnikov for the invitation and the paper that gave rise to this project 5 years ago.
- Victor Reiner, Tom Roby, Mark Shimozono, Josh Swanson, Kaisa Taipale, and Anders Thorup for enlightening discussions.
- you for your patience.

