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What is this about?

From a modern point of view, Schubert calculus is about
two cohomology rings:

H∗

 Gr (k , n)︸ ︷︷ ︸
Grassmannian

 and H∗

 Fl (n)︸ ︷︷ ︸
flag variety


(both varieties over C).

In this talk, we are concerned with the first.

Classical result: as rings,

H∗ (Gr (k , n))
∼= (symmetric polynomials in x1, x2, . . . , xk over Z)

� (hn−k+1, hn−k+2, . . . , hn)ideal

(where the hi are complete homogeneous symmetric
polynomials).
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Quantum cohomology of Gr(k , n)

(Small) Quantum cohomology is a deformation of
cohomology from the 1980–90s. For the Grassmannian, it is

QH∗ (Gr (k , n))
∼= (symmetric polynomials in x1, x2, . . . , xk over Z [q])

�
(
hn−k+1, hn−k+2, . . . , hn−1, hn + (−1)k q

)
ideal

.

Many properties of classical cohomology still hold here. In
particular: QH∗ (Gr (k , n)) has a Z [q]-module basis (sλ)λ∈Pk,n

of (projected) Schur polynomials, with λ ranging over all
partitions with ≤ k parts and each part ≤ n − k. The
structure constants are the Gromov–Witten invariants.
References:

Aaron Bertram, Ionut Ciocan-Fontanine, William Fulton,
Quantum multiplication of Schur polynomials, 1999.
Alexander Postnikov, Affine approach to quantum
Schubert calculus, 2005.
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A more general setting: P and S

We will now deform H∗ (Gr (k , n)) using k parameters instead
of one, generalizing QH∗ (Gr (k , n)).

Let k be a commutative ring. Let N = {0, 1, 2, . . .}. Let
n ≥ k ≥ 0 be integers.

Let P = k [x1, x2, . . . , xk ].

For each α ∈ Nk and each i ∈ {1, 2, . . . , k}, let αi be the i-th
entry of α. Same for infinite sequences (like partitions).

For each α ∈ Nk , let xα be the monomial xα1
1 xα2

2 · · · x
αk
k , and

let |α| be the degree α1 + α2 + · · ·+ αk of this monomial.

Let S denote the ring of symmetric polynomials in P.

Theorem (Artin ≤1944): The S-module P is free with basis

(xα)α∈Nk ; αi<i for each i .
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Reminders on symmetric polynomials

The ring S of symmetric polynomials in P = k [x1, x2, . . . , xk ]
has several bases, usually indexed by certain sets of (integer)
partitions.
We need the following ones:
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Reminders on symmetric polynomials: the e-basis

For each m ∈ Z, we let em denote the m-th elementary
symmetric polynomial:

em =
∑

1≤i1<i2<···<im≤k
xi1xi2 · · · xim =

∑
α∈{0,1}k ;
|α|=m

xα ∈ S.

(Thus, e0 = 1, and em = 0 when m < 0.)

For each ν = (ν1, ν2, . . . , ν`) ∈ Z` (e.g., a partition), set

eν = eν1eν2 · · · eν` ∈ S.

Then, (eλ)λ is a partition with λ1≤k is a basis of the k-module S.
(Gauss’s theorem.)

Note that em = 0 when m > k .
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Reminders on symmetric polynomials: the h-bases

For each m ∈ Z, we let hm denote the m-th complete
homogeneous symmetric polynomial:

hm =
∑

1≤i1≤i2≤···≤im≤k
xi1xi2 · · · xim =

∑
α∈Nk ;
|α|=m

xα ∈ S.

(Thus, h0 = 1, and hm = 0 when m < 0.)

For each ν = (ν1, ν2, . . . , ν`) ∈ Z` (e.g., a partition), set

hν = hν1hν2 · · · hν` ∈ S.

Then, (hλ)λ is a partition with λ1≤k is a basis of the k-module S.

Also, (hλ)λ is a partition with `(λ)≤k is a basis of the k-module S.

Here, ` (λ) is the length of λ, that is, the number of parts (=
nonzero entries) of λ.
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Reminders on symmetric polynomials: the s-basis

For each partition λ = (λ1, λ2, λ3, . . .), we let sλ be the λ-th
Schur polynomial:

sλ =
∑

T is a semistandard tableau
of shape λ with entries 1,2,...,k

k∏
i=1

x
(number of i ’s in T )
i

= det
(

(hλi−i+j)1≤i≤`(λ), 1≤j≤`(λ)

)
(Jacobi-Trudi) .

If ` (λ) > k , then sλ = 0.

If ` (λ) ≤ k , then

sλ =

det

((
x
λj+k−j
i

)
1≤i≤k, 1≤j≤k

)
det

((
xk−ji

)
1≤i≤k, 1≤j≤k

) (alternant formula) .

Now, (sλ)λ is a partition with `(λ)≤k is a basis of the k-module S.
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A more general setting: a1, a2, . . . , ak and J

Let a1, a2, . . . , ak ∈ P such that deg ai < n − k + i for all i .
(For example, this holds if ai ∈ k.)

Let J be the ideal of P generated by the k differences

hn−k+1 − a1, hn−k+2 − a2, . . . , hn − ak .

Theorem (G.): The k-module P�J is free with basis

(xα)α∈Nk ; αi<n−k+i for each i ,

where the overline means “projection” onto whatever
quotient we need (here: from P onto P�J).
(This basis has n (n − 1) · · · (n − k + 1) elements.)
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A slightly less general setting: symmetric a1, a2, . . . , ak and J

FROM NOW ON, assume that a1, a2, . . . , ak ∈ S.

Let I be the ideal of S generated by the k differences

hn−k+1 − a1, hn−k+2 − a2, . . . , hn − ak .

(Same differences as for J, but we are generating an ideal of
S now.)

For each partition λ, let sλ ∈ S be the corresponding Schur
polynomial.

Let

Pk,n = {λ is a partition | λ1 ≤ n − k and ` (λ) ≤ k}
= {partitions λ ⊆ ω} ,

where ω = (n − k, n − k , . . . , n − k)︸ ︷︷ ︸
k entries

.

Theorem (G.): The k-module S�I is free with basis

(sλ)λ∈Pk,n
.
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S now.)

For each partition λ, let sλ ∈ S be the corresponding Schur
polynomial.

Let

Pk,n = {λ is a partition | λ1 ≤ n − k and ` (λ) ≤ k}
= {partitions λ ⊆ ω} ,

where ω = (n − k, n − k , . . . , n − k)︸ ︷︷ ︸
k entries

.

Theorem (G.): The k-module S�I is free with basis

(sλ)λ∈Pk,n
.
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An even less general setting: constant a1, a2, . . . , ak

FROM NOW ON, assume that a1, a2, . . . , ak ∈ k.

This setting still is general enough to encompass several that
we know:

If k = Z and a1 = a2 = · · · = ak = 0, then S�I becomes
the cohomology ring H∗ (Gr (k, n)); the basis (sλ)λ∈Pk,n

corresponds to the Schubert classes.
If k = Z [q] and a1 = a2 = · · · = ak−1 = 0 and
ak = − (−1)k q, then S�I becomes the quantum
cohomology ring QH∗ (Gr (k , n)).

The above theorem lets us work in these rings (and more
generally) without relying on geometry.
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S3-symmetry of the Gromov–Witten invariants

Recall that (sλ)λ∈Pk,n
is a basis of the k-module S�I .

For each µ ∈ Pk,n, let coeffµ : S�I → k send each element to
its sµ-coordinate wrt this basis.

For every partition ν = (ν1, ν2, . . . , νk) ∈ Pk,n, we define

ν∨ := (n − k − νk , n − k − νk−1, . . . , n − k − ν1) ∈ Pk,n.

This partition ν∨ is called the complement of ν.
For any three partitions α, β, γ ∈ Pk,n, let

gα,β,γ := coeffγ∨ (sαsβ) ∈ k.

These generalize the Littlewood–Richardson numbers and
(3-point) Gromov–Witten invariants.
Theorem (G.): For any α, β, γ ∈ Pk,n, we have

gα,β,γ = gα,γ,β = gβ,α,γ = gβ,γ,α = gγ,α,β = gγ,β,α

= coeffω (sαsβsγ) .

Equivalent restatement: Each ν ∈ Pk,n and f ∈ S�I satisfy
coeffω (sν f ) = coeffν∨ (f ).
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The h-basis

Theorem (G.): The k-module S�I is free with basis(
hλ
)
λ∈Pk,n

.

The transfer matrix between the two bases (sλ)λ∈Pk,n
and(

hλ
)
λ∈Pk,n

is unitriangular wrt the “size-then-anti-dominance”

order, but seems hard to describe.

Proposition (G.): Let m be a positive integer. Then,

hn+m =
k−1∑
j=0

(−1)j ak−js(m,1j ),

where
(
m, 1j

)
:= (m, 1, 1, . . . , 1︸ ︷︷ ︸

j ones

) (a hook-shaped partition).
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A Pieri rule

Theorem (G.): Let λ ∈ Pk,n. Let j ∈ {0, 1, . . . , n − k}.
Then,

sλhj =
∑

µ∈Pk,n;
µ�λ is a

horizontal j-strip

sµ −
k∑

i=1

(−1)i ai
∑
ν⊆λ

cλ(n−k−j+1,1i−1),νsν ,

where cγα,β are the usual Littlewood–Richardson coefficients.
This generalizes the Bertram/Ciocan-Fontanine/Fulton Pieri
rule, but note that cλ

(n−k−j+1,1i−1),ν
may be > 1.

Example:

s(4,3,2)h2 = s(4,4,3) + a1

(
s(4,2) + s(3,2,1) + s(3,3)

)
− a2

(
s(4,1) + s(2,2,1) + s(3,1,1) + 2s(3,2)

)
+ a3

(
s(2,2) + s(2,1,1) + s(3,1)

)
.

Multiplying by ej appears harder:

s(2,2,1)e2 = a1s(2,2)−2a2s(2,1)+a3

(
s(2) + s(1,1)

)
+a2

1s(1)−2a1a2s().
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Positivity?

Conjecture: Let bi = (−1)n−k−1 ai for each i ∈ {1, 2, . . . , k}.
Let λ, µ, ν ∈ Pk,n. Then, (−1)|λ|+|µ|−|ν| coeffν (sλsµ) is a
polynomial in b1, b2, . . . , bk with coefficients in N.

Verified for all n ≤ 7 using SageMath.

This would generalize positivity of Gromov–Witten invariants.
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More questions

Question: Does S�I have a geometric meaning? If not, why
does it behave so nicely?
Question: What other bases does S�I have? Monomial
symmetric? Power-sum?

Question: Do other properties of QH∗ (Gr (k , n)) (such as
“curious duality” and “cyclic hidden symmetry”) generalize to
S�I?
(The Gr(k, n)→ Gr(n − k, n) duality isomorphism does not exist in

general: If k = C and a1 = 6 and a2 = 16, then

(S�I )k=2, n=3, a1=6, a2=16
∼= C [x ] /

(
(x − 10) (x + 2)2), which can never

be a (S�I )k=1, n=3, since (S�I )k=1, n=3
∼= C [x ] /

(
x3 − a1

)
.)

Question: Is there an analogous generalization of
QH∗ (Fl (n)) ? Is it connected to Fulton’s “universal Schubert
polynomials”?
Question: Is there an equivariant analogue?
Question: “Straightening rules” for sλ when λ /∈ Pk,n, similar
to the Bertram/Ciocan-Fontanine/Fulton “rim hook
algorithm”?
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Sk-module structure

The symmetric group Sk acts on P, with invariant ring S.

What is the Sk -module structure on P�J ?

Almost-theorem (G., needs to be checked): Assume that
k is a Q-algebra. Then, as Sk -modules,

P�J ∼=
(
P�PS+

)×(nk
)
∼=

 kSk︸︷︷︸
regular rep

×
(
n

k

)
,

where PS+ is the ideal of P generated by symmetric
polynomials with constant term 0.
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Deforming symmetric functions, 1

Let us recall symmetric functions (not polynomials) now;
we’ll need them soon anyway.

S := {symmetric polynomials in x1, x2, . . . , xk} ;

Λ := {symmetric functions in x1, x2, x3, . . .} .
We use standard notations for symmetric functions, but in
boldface:

e = elementary symmetric,

h = complete homogeneous,

s = Schur (or skew Schur).

We have

S ∼= Λ� (ek+1, ek+2, ek+3, . . .)ideal , thus

S�I ∼= Λ� (hn−k+1 − a1, hn−k+2 − a2, . . . , hn − ak ,

ek+1, ek+2, ek+3, . . .)ideal .

So why not replace the ej by ej − bj too?
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Deforming symmetric functions, 2

Theorem (G.): Assume that a1, a2, . . . , ak as well as
b1, b2, b3, . . . are elements of k. Then,

Λ� (hn−k+1 − a1, hn−k+2 − a2, . . . , hn − ak ,

ek+1 − b1, ek+2 − b2, ek+3 − b3, . . .)ideal

is a free k-module with basis (sλ)λ∈Pk,n
.
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On the proofs, 1

Proofs of all the above (except for the Sk -action) can be
found in

Darij Grinberg, A basis for a quotient of symmetric
polynomials (draft), http://www.cip.ifi.lmu.de/

~grinberg/algebra/basisquot.pdf .

Main ideas:

Use Gröbner bases to show that P�J is free with basis
(xα)α∈Nk ; αi<n−k+i for each i .
(This was already outlined in Aldo Conca, Christian
Krattenthaler, Junzo Watanabe, Regular Sequences of
Symmetric Polynomials, 2009.)

Using that + Jacobi–Trudi, show that S�I is free with
basis (sλ)λ∈Pk,n

.
As for the rest, compute in Λ... a lot.
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On the proofs, 2: the Gröbner basis argument

The Gröbner basis argument relies on the easy identity

hp (xi ..k) =
i−1∑
t=0

(−1)t et (x1..i−1) hp−t (x1..k)

for all i ∈ {1, 2, . . . , k + 1} and p ∈ N.
Here, xa..b means xa, xa+1, . . . , xb.

Use it to show that(
hn−k+i (xi ..k)−

i−1∑
t=0

(−1)t et (x1..i−1) ai−t

)
i∈{1,2,...,k}

is a Gröbner basis of the ideal J wrt the degree-lexicographic
term order, where the variables are ordered by
x1 > x2 > · · · > xk .

This Gröbner basis leads to a basis of P�J, which is precisely
our (xα)α∈Nk ; αi<n−k+i for each i .
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On the proofs, 3: the first basis of S�I

How to prove that S�I is free with basis (sλ)λ∈Pk,n
?

Jacobi–Trudi lets you recursively reduce each sλ with λ /∈ Pk,n

into smaller sµ’s.

=⇒ (sλ)λ∈Pk,n
spans S�I .

On the other hand, (xα)α∈Nk ; αi<i for each i spans P as an
S-module (Artin).

Combining these yields that (sλxα)λ∈Pk,n; α∈Nk ; αi<i for each i

spans P�IP = P�J.

But we also know that the family (xα)α∈Nk ; αi<n−k+i for each i

is a basis of P�J.

What can you say if a k-module has a basis (av )v∈V and a
spanning family (bu)u∈U of the same finite size
(|U| = |V | <∞)?
Easy exercise: You can say that (bu)u∈U is also a basis.

Thus, (sλxα)λ∈Pk,n; α∈Nk ; αi<i for each i is a basis of P�J.

=⇒ (sλ)λ∈Pk,n
is a basis of S�I .
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On the proofs, 4: Bernstein’s identity

The rest of the proofs are long computations inside Λ, using
various identities for symmetric functions.

Maybe the most important one:
Bernstein’s identity: Let λ be a partition. Let m ∈ Z be
such that m ≥ λ1. Then,∑

i∈N
(−1)i hm+i (ei )

⊥ sλ = s(m,λ1,λ2,λ3,...).

Here, f⊥g means “g skewed by f” (so that (sµ)⊥ sλ = sλ�µ).
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