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What is this about?

@ From a modern point of view, Schubert calculus is about
two cohomology rings:

H* | Gr(k,n) | and H* [ FI(n)
— ——

Grassmannian flag variety

(both varieties over C).
@ In this talk, we are concerned with the first.
o Classical result: as rings,

H* (Gr (k, n))
= (symmetric polynomials in xq, x2, ..., Xk over Z)

/ (hn_k+1, hn—k+27 R hn)ideal

(where the h; are complete homogeneous symmetric
polynomials).
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@ For comparison, the classical cohomology of the
Grassmannian is
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Quantum cohomology of Gr(k, n)

@ (Small) Quantum cohomology is a deformation of
cohomology from the 1980-90s. For the Grassmannian, it is

QH* (Gr (k, n))
& (symmetric polynomials in x1, x2, ..., xx over Z[q])

 (Bnksts Boszs Bt o+ (<1) )

ideal '

@ Many properties of classical cohomology still hold here. In
particular: QH™ (Gr (k, n)) has a Z [q]-module basis (5X),cp, .
of (projected) Schur polynomials, with A ranging over all ’
partitions with < k parts and each part < n— k. The
structure constants are the Gromov—Witten invariants.

@ References:

e Aaron Bertram, lonut Ciocan-Fontanine, William Fulton,
Quantum multiplication of Schur polynomials, 1999.

o Alexander Postnikov, Affine approach to quantum
Schubert calculus, 2005.
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A more general setting: P and S

@ We will now deform H* (Gr (k, n)) using k parameters instead
of one, generalizing QH* (Gr (k, n)).

@ Let k be a commutative ring. Let N ={0,1,2,...}. Let
n > k > 0 be integers.

o Let P =k|[x1,x2,...,%k]

@ For each o € N¥ and each i € {1,2,..., k}, let o be the i-th
entry of . Same for infinite sequences (like partitions).

o For each a € N, let x® be the monomial x;*x52 - - - ., and
let || be the degree oy + ap + - - - + ay of this monomial.
@ Let S denote the ring of symmetric polynomials in P.

@ Theorem (Artin <1944): The S-module P is free with basis

o
(X )aeNk; a;<i for each i *



Reminders on symmetric polynomials

@ The ring S of symmetric polynomials in P = k [x1, x2, . . . , Xk]
has several bases, usually indexed by certain sets of (integer)
partitions.

We need the following ones:
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Reminders on symmetric polynomials: the e-basis

@ For each m € Z, we let e, denote the m-th elementary
symmetric polynomial:

em = Z Xig Xiy +** X, = Z x* e S.
1<in<h<-<im<k aE{O,l}k;
|a|=m
(Thus, eg =1, and e, = 0 when m < 0.)

@ For each v = (v1,12,...,v) € Z* (e.g., a partition), set
e =66, -6, cS.

© Then, (€)) is a partition with A<k IS @ basis of the k-module S.
(Gauss's theorem.)

@ Note that e, = 0 when m > k.
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Reminders on symmetric polynomials: the h-bases

@ For each m € Z, we let h,, denote the m-th complete
homogeneous symmetric polynomial:

hm = Z Xjy Xy +** X, = Z x®eS.
1<in<p<---<im<k aeNk;
la|l=m
(Thus, hg =1, and h, = 0 when m < 0.)
e For each v = (v1,10,...,1v4) € Z' (e.g., a partition), set

hy = hy by, -+ hy, €S,

© Then, (A))) is a partition with A<k 1S @ basis of the k-module S.

e Also, (hy) <k is a basis of the k-module S.

A is a partition with £()\)

Here, () is the length of A, that is, the number of parts (=
nonzero entries) of A.
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Reminders on symmetric polynomials: the s-basis

@ For each partition A = (A1, A2, A3,...), we let s\ be the A-th
Schur polynomial:

k
(number of i'siin T)
5= 2 11

T is a semistandard tableau i=1
of shape X\ with entries 1,2,....k

= det <(h,\,._,-+j)1§i§€(/\)’ 1§i§£(>\)) (Jacobi-Trudi) .

o If £(\) > k, then sy =0.
o If £(\) < k, then

ANi+k—j
det <xi’+ J)
1<i<k, 1<j<k

cet () )
1<i<k, 1<j<k

© Now, (Sx)) is a partition with ¢(\)<k IS @ basis of the k-module S.

S\ = (alternant formula).
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A more general setting: a;,as,...,ax and J

@ Let a1,a,...,ax € P such that dega; < n— k + i for all /.
(For example, this holds if a; € k.)

@ Let J be the ideal of P generated by the k differences
hn—k+1—a1, hnki2—a2, ..., hp—ak.

@ Theorem (G.): The k-module P,J is free with basis

Y
(X )aENk; aj<n—k+i for each i

where the overline =~ means “projection” onto whatever
quotient we need (here: from P onto P, J).
(This basis has n(n—1)---(n— k + 1) elements.)
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A slightly less general setting: symmetric a;, as, ..., ax and J

e FROM NOW ON, assume that a;,as,...,ax € S.
@ Let / be the ideal of S generated by the k differences
hn—k+1— a1, hpky2 —az, ..., hnp—ak.
(Same differences as for J, but we are generating an ideal of
S now.)
@ For each partition A, let sy € S be the corresponding Schur
polynomial.
o Let
Pin={Ais a partition | Ay < n—kand £(\) <k}
= {partitions A C w},

where w = (n—k,n—k,...,n— k).

k entries

@ Theorem (G.): The k-module S, /I is free with basis

(Q)AEP,W °



An even less general setting: constant a;, ap, ..., ax

o FROM NOW ON, assume that a;,a,...,ax € k.



An even less general setting: constant a;, ap, ..., ax

o FROM NOW ON, assume that a;,a,...,ax € k.

@ This setting still is general enough to encompass several that
we know:

olfk=Zanday =a=---=a, =0, then S/ becomes
the cohomology ring H* (Gr (k, n)); the basis (Q)Aepm
corresponds to the Schubert classes.

olfk=7Z[gland a1 =a, =---=a,_1 =0 and
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An even less general setting: constant a;, ap, ..., ax

o FROM NOW ON, assume that a;,a,...,ax € k.

@ This setting still is general enough to encompass several that
we know:

olfk=Zanday =a=---=a, =0, then S/ becomes
the cohomology ring H* (Gr (k, n)); the basis (5)/\61";(,,,
corresponds to the Schubert classes.

olfk=7Z[gland a1 =a, =---=a,_1 =0 and
ax = — (—l)k g, then S /I becomes the quantum
cohomology ring QH* (Gr (k, n)).

@ The above theorem lets us work in these rings (and more
generally) without relying on geometry.
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S3-symmetry of the Gromov—Witten invariants

@ Recall that (5)),cp, , is a basis of the k-module S,//.
For each p € Py p, let coeff, : §,/I — k send each element to
its 5,-coordinate wrt this basis.

@ For every partition v = (v1,10,...,vk) € Pk pn, we define

vi=(n—k—vg,n—k—vk1,....,n—k—11) € Pxp.

This partition vV is called the complement of v.

@ For any three partitions a, 8,7 € Py, let
8a,B,y := coeff v (5,53) € k.

These generalize the Littlewood—Richardson numbers and
(3-point) Gromov-Witten invariants.
@ Theorem (G.): For any «, 3,7 € Pk n, we have

8o,y = 8oy, = 8B,ay = 8Bv,a = By, = 8v,8,x
= coeff,, (5,535) .

o Equivalent restatement: Each v € P , and f € S 7/ satisfy
coeff,, (5,f) = coeff,v (f).
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The h-basis

@ Theorem (G.): The k-module S,/I is free with basis

GV

@ The transfer matrix between the two bases (5)),cp, =~ and
(hy) cp, . IS unitriangular wrt the ‘“size-then-anti-dominance”
order, but seems hard to describe.

@ Proposition (G.): Let m be a positive integer. Then,

hom = _(—1Y ak—jSm1);

where (m, 1) := (m,1,1,...,1) (a hook-shaped partition).
———

Jj ones
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@ Theorem (G.): Let A € Py Let j€{0,1,...,n— k}.

Then,
k
s\hj = 5= (D)3 i1y S0
Al = e i (n—k—j+1,1i-1) p>v>
WEP,n; i=1 vCA
w/Xis a
horizontal j-strip

where cgﬂ are the usual Littlewood—Richardson coefficients.

@ This genéralizes the Bertram/Ciocan-Fontanine/Fulton Pieri
rule, but note that C();1—k—j+1,1"*1)7u may be > 1.
@ Example:

s32)h2 =S@a3) + a1 (Sa2) + 53621 +533))
—a (S + 35221 +5611) + 2532))
+a3 (522) + 5211 + 53.) -




Theorem (G.): Let A € Py . Let j € {0,1,...,n— k}.
Then,

S>\hj = Z Su— Z 3,2 :Cn k—j+1,1-1) y Sus

HEP n; i=1 vCA

w/Xis a
horizontal j-strip

where C’Y are the usual Littlewood—Richardson coefficients.

This generallzes the Bertram/Clocan Fontanine/Fulton Pieri
rule, but note that c( may be > 1.
Example:

n—k—j+1,1-1) v

Sesh = Saaz) + a1 (Sa2) + 5621 + 563)
— a2 (Sa1) + 3221 + 5600 + 25362))
+ a3 (5(2,2) +502,1,1) + 5(3,1)) :
Multiplying by e; appears harder:

Sean@ = 15222251 +a3 () + 1) +2150) 221225,



Positivity?

o Conjecture: Let b; = (—1)" %714 for each i € {1,2,..., k}.
Let \, u,v € Py . Then, (=1)PHIE=IT o ef, (5x8.) is a
polynomial in by, by, ..., by with coefficients in N.

@ Verified for all n < 7 using SageMath.

@ This would generalize positivity of Gromov-Witten invariants.
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More questions

Question: Does S,/ have a geometric meaning? If not, why
does it behave so nicely?

Question: What other bases does S/ have? Monomial
symmetric? Power-sum?

Question: Do other properties of QH* (Gr (k, n)) (such as
“curious duality” and “cyclic hidden symmetry”) generalize to
S/17

(The Gr(k, n) — Gr(n — k, n) duality isomorphism does not exist in
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More questions

@ Question: Does S,/ have a geometric meaning? If not, why
does it behave so nicely?

@ Question: What other bases does S 7/ have? Monomial
symmetric? Power-sum?

@ Question: Do other properties of QH* (Gr (k, n)) (such as
“curious duality” and “cyclic hidden symmetry”) generalize to
S/17
(The Gr(k, n) — Gr(n — k, n) duality isomorphism does not exist in
general: If k = C and a; = 6 and a, = 16, then
(8/Diza, ne3, ay=6, ;=16 = C[x]/ ((x —10) (x + 2)2), which can never
be a (/1) pss Since (8/1),; s ECX]/ (X° — a1).)

@ Question: Is there an analogous generalization of
QH* (FI(n)) ? Is it connected to Fulton's “universal Schubert
polynomials”?

@ Question: Is there an equivariant analogue?

® Question: “Straightening rules” for 5y when A ¢ Py ,,, similar
to the Bertram/Ciocan-Fontanine/Fulton “rim hook
algorithm™?
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Si-module structure

@ The symmetric group Sk acts on P, with invariant ring S.
@ What is the Sg-module structure on P/ J ?

o Almost-theorem (G., needs to be checked): Assume that
k is a Q-algebra. Then, as Six-modules,

(0 (%)
P/l (P/PST) \K) = ks,

il

~—~

regular rep

where PS™ is the ideal of P generated by symmetric
polynomials with constant term 0.
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Deforming symmetric functions, 1

@ Let us recall symmetric functions (not polynomials) now;

we'll need them soon anyway.
S := {symmetric polynomials in x1,x2,...,Xk};
A := {symmetric functions in x1, x2, X3, ...}

@ We use standard notations for symmetric functions, but in

boldface:
e = elementary symmetric,
h = complete homogeneous,
s = Schur (or skew Schur).
@ We have
SN/ (€kt1, €12, €435 - -)ideal » thus
h, — ax,

S/1T=N/(hp_ky1—a1, hp_ry2—a2, ...,
€x+1, ©€ky2, €k43, "')ideal‘

@ So why not replace the e; by e; — b; too?



Deforming symmetric functions, 2

@ Theorem (G.): Assume that aj, a2, ..., ax as well as
b1, by, bs, ... are elements of k. Then,

N/ (hp—k+1—a1, hp_ki2—a2, ..., hp—ay,
et1— b1, exyo—bo, exi3— b3, L. )igeal

is a free k-module with basis (S))ycp, -



On the proofs, 1

@ Proofs of all the above (except for the S-action) can be
found in

o Darij Grinberg, A basis for a quotient of symmetric
polynomials (draft), http://www.cip.ifi.lmu.de/
~grinberg/algebra/basisquot.pdf .
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@ Main ideas:

o Use Grobner bases to show that P /J is free with basis
(Xa)aeN"; aj<n—k+i for each i-
(This was already outlined in Aldo Conca, Christian
Krattenthaler, Junzo Watanabe, Regular Sequences of
Symmetric Polynomials, 2009.)
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basis (Q)AGPM.
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On the proofs, 1

@ Proofs of all the above (except for the S-action) can be
found in

e Darij Grinberg, A basis for a quotient of symmetric
polynomials (draft), http://www.cip.ifi.lmu.de/
~grinberg/algebra/basisquot.pdf .

@ Main ideas:

o Use Grobner bases to show that P /J is free with basis
(Xa)aeN"; aj<n—k+i for each i-
(This was already outlined in Aldo Conca, Christian
Krattenthaler, Junzo Watanabe, Regular Sequences of
Symmetric Polynomials, 2009.)

o Using that + Jacobi—Trudi, show that S 7/ is free with

basis (Q)AGPM.
o As for the rest, compute in A... a lot.


http://www.cip.ifi.lmu.de/~grinberg/algebra/basisquot.pdf
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On the proofs, 2: the Grobner basis argument

@ The Grobner basis argument relies on the easy identity
i—1
hp (xik) = > (=1)" et (x1.i-1) hp—t (x1.4)
t
forall ie{1,2,...,k+1} and p € N.
Here, x5 p means Xa, Xat1, - - -, Xp-
@ Use it to show that

i-1
(hnk+i (xik) = > (1) er (x1.i-1) ai—t>
t=0 ie{1,2,...,k}

is a Grobner basis of the ideal J wrt the degree-lexicographic
term order, where the variables are ordered by
X1 > Xp > -0 > Xk

@ This Grobner basis leads to a basis of P, J, which is precisely

O
our (X )aENk; a;j<n—k+i for each i-

Il
o
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@ How to prove that S,/ is free with basis (5x),cp, 7

@ Jacobi-Trudi lets you recursively reduce each 5y with X\ ¢ Py ,
into smaller 5,'s.
= (SX)xep,, sPans S/1.

@ On the other hand, (x%)
S-module (Artin).

o Combining these yields that (s\x¥)cp, . aeNk; a;<i for each i
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On the proofs, 3: the first basis of S 7/

@ How to prove that S/ is free with basis (ﬁ)AePk,n ?

@ Jacobi-Trudi lets you recursively reduce each 5y with X\ ¢ Py ,
into smaller 5,'s.
= (SX)xep,, sPans S/1.

@ On the other hand, (x%) ey, o
S-module (Artin).

o Combining these yields that (s\x¥)cp, . aeNk; a;<i for each i
spans P/IP =P,/ J.

@ But we also know that the family (x¥),cnk. o.<nkii for each i
is a basis of P/ J.

@ What can you say if a k-module has a basis (a,),c\, and a
spanning family (b,),c, of the same finite size
(U] = V| < o0)?
Easy exercise: You can say that (by),c is also a basis.

@ Thus, (syx%) is a basis of P,/ J.

<i for each i spans P as an

XEPy n; a€NK; a;<i for each i



On the proofs, 3: the first basis of S 7/

@ How to prove that S,/ is free with basis (5x),cp, 7

@ Jacobi-Trudi lets you recursively reduce each 5y with X\ ¢ Py ,

into smaller 5,'s.

= (SX)xep,, sPans S/1.

On the other hand, (x) ,enk. o</ for each i SPaNSs P as an
S-module (Artin).

Combining these yields that (S\X¥)5\cp, . aenk; aj<i for each i
spans P/IP =P,/ J.

But we also know that the family (X%) enk. . <nkti for each i
is a basis of P/ J.

What can you say if a k-module has a basis (a,),., and a
spanning family (b,),c, of the same finite size

(U] = V] < 00)?

Easy exercise: You can say that (by),c is also a basis.
ThUS, (W))\EPK"; aENK; a;<i for each i is a basis of P/J
— (SX)ep, , is @ basis of S/1.
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On the proofs, 4: Bernstein’s identity

@ The rest of the proofs are long computations inside A, using
various identities for symmetric functions.

@ Maybe the most important one:
Bernstein’s identity: Let A be a partition. Let m € Z be
such that m > A\;. Then,

Z (1) i (e) sy = S(mA1, A2 A3,...)
ieN

Here, f-g means “g skewed by f" (so that (su)L S\ =S\ u)-
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