The Pelletier-Ressayre hidden symmetry for Littlewood-Richardson coefficients

Darij Grinberg
detailed version
January 2, 2022
(Extended version of a paper published in: Combinatorial Theory 1 (2021), \#16.)

Abstract

We prove an identity for Littlewood-Richardson coefficients conjectured by Pelletier and Ressayre. The proof relies on a novel birational involution defined over any semifield.

Keywords: symmetric functions, Schur functions, Schur polynomials, Littlewood-Richardson coefficients, birational combinatorics, detropicalization, partitions.

MSC2010 Mathematics Subject Classifications: 05E05.

Contents

1. Notations 3
2. The theorem 5
3. A birational involution 9
3.1. Semifields 9
3.2. The birational involution 11
4. Proof of the main theorem 37
4.1. From the life of snakes 38
4.2. h_{k}^{+}, h_{k}^{-}and the Pieri rule 54
4.3. Computing \bar{s}_{α} 65
4.4. The sets $R_{\mu, a, b}(\gamma)$ and a formula for $h_{a}^{-} h_{b}^{+} \bar{s}_{\mu}$ 69
4.5. The map \mathbf{f}_{μ} 74
4.6. The finale 87
5. Final remarks 89
5.1. Aside: A Jacobi-Trudi formula for Schur Laurent polynomials 89
5.2. Questions on \mathbf{f}_{u} 90
5.2.1. \mathbf{f}_{u} as a composition? 90
5.2.2. Characterizing $\mathbf{f}_{u}(x)$ via the cyclic equations 91
5.2.3. Characterizing $\mathbf{f}_{u}(x)$ via the cyclic equations and the product equation 100
5.2.4. Understanding Lemma 3.12 101
5.3. On the genesis of φ (and $\left.\mathbf{f}_{u}\right)$ 102
5.4. The birational R-matrix connection 106

One of the central concepts in the theory of symmetric functions are the LittlewoodRichardson coefficients $c_{\mu, v}^{\lambda}$: the coefficients when a product $s_{\mu} s_{v}$ of two Schur functions is expanded back in the Schur basis $\left(s_{\lambda}\right)_{\lambda \in \operatorname{Par}}$. Various properties of these coefficients have been found, among them combinatorial interpretations, vanishing results, bounds and symmetries (i.e., equalities between $c_{\mu, \nu}^{\lambda}$ for different λ, μ, v). A recent overview of the latter can be found in [BriRos20].

In [PelRes20], Pelletier and Ressayre conjectured a further symmetry of LittlewoodRichardson coefficients. Unless the classical ones, it is a partial symmetry (i.e., it does not cover every Littlewood-Richardson coefficient); it is furthermore much less simple to state, to the extent that Pelletier and Ressayre have conjectured its existence while leaving open the question which exact coefficients it matches up. In this paper, we answer this question and prove the conjecture thus concretized.

The conjecture, in its original (unconcrete) form, can be stated as follows: Let $n \geq 2$, and consider the set Par [n] of all partitions having length $\leq n$. Let a and b be two nonnegative integers, and define the two partitions $\alpha=\left(a+b, a^{n-2}\right)$ and $\beta=$ $\left(a+b, b^{n-2}\right)$ (where c^{n-2} means $\underbrace{c, c, \ldots, c}_{n-2 \text { times }}$, as usual in partition combinatorics). Fix another partition $\mu \in \operatorname{Par}[n]$. Then, the families $\left(c_{\alpha, \mu}^{\omega}\right)_{\omega \in \operatorname{Par}[n]}$ and $\left(c_{\beta, \mu}^{\omega}\right)_{\omega \in \operatorname{Par}[n]}$ of Littlewood-Richardson coefficients seem to be identical up to permutation. (We can restate this in terms of Schur polynomials in the n variables $x_{1}, x_{2}, \ldots, x_{n}$; this then becomes the claim that the products $s_{\alpha}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \cdot s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $s_{\beta}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \cdot s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, when expanded in the basis of Schur polynomials, have the same multiset of coefficients.)

Pelletier and Ressayre have proved this conjecture for $n=3$ (see [PelRes20, Corollary 2]) and in some further cases. We shall prove it in full generality, and construct what is essentially a bijection $\varphi: \operatorname{Par}[n] \rightarrow \operatorname{Par}[n]$ that makes it explicit
(i.e., that satisfies $c_{\alpha, \mu}^{\omega}=c_{\beta, \mu}^{\varphi(\omega)}$ for each $\omega \in \operatorname{Par}[n]$). To be fully precise, φ will not be a bijection Par $[n] \rightarrow \operatorname{Par}[n]$, but rather a bijection from \mathbb{Z}^{n} to \mathbb{Z}^{n}, and it will satisfy $c_{\alpha, \mu}^{\omega}=c_{\beta, \mu}^{\varphi(\omega)}$ with the understanding that $c_{\alpha, \mu}^{\omega}=c_{\beta, \mu}^{\omega}=0$ when $\omega \notin \operatorname{Par}[n]$. (Here, $\operatorname{Par}[n]$ is understood to be a subset of \mathbb{Z}^{n} by identifying each partition $\lambda \in \operatorname{Par}[n]$ with the n-tuple ($\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$).)

We will define this bijection φ by explicit (if somewhat intricate) formulas that "mingle" the entries of the partition it is being applied to with those of μ (as well as a and b) using the min and + operators. These formulas are best understood in the birational picture, in which these min and + operators are generalized to the addition and the multiplication of an arbitrary semifield. (Our proof does not require this generality, but the birational picture has the advantage of greater familiarity and better notational support. It also reveals a connection with a known birational map known as a "birational R-matrix" (see Section 5.4 for details), which throws some light on the otherwise rather mysterious bijection.)

Another ingredient of our proof is an explicit formula for $s_{\alpha}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for the above-mentioned partition α.

Acknowledgments

I thank Sunita Chepuri, Grigori Olshanski, Pasha Pylyavskyy and Tom Roby for interesting and helpful conversations.

Parts of this paper were written at the Mathematisches Forschungsinstitut Oberwolfach, where I was staying as a Leibniz fellow in Summer 2020. The SageMath computer algebra system [SageMath] has been used in discovering some of the results.

Remark on alternative versions

You are reading the detailed version of this paper. For the standard version (which is shorter by virtue of omitting some straightforward or well-known proofs), see [Grinbe20].

An older version of this paper appeared as Oberwolfach Preprint OWP-2020-18

1. Notations

We will use the following notations (most of which are also used in [GriRei20 §2.1]):

- We let $\mathbb{N}=\{0,1,2, \ldots\}$.
- We fix a commutative ring \mathbf{k}; we will use this \mathbf{k} as the base ring in what follows.
- A weak composition means an infinite sequence of nonnegative integers that contains only finitely many nonzero entries (i.e., a sequence $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right) \in$ \mathbb{N}^{∞} such that all but finitely many $i \in\{1,2,3, \ldots\}$ satisfy $\alpha_{i}=0$).
- We let WC denote the set of all weak compositions.
- For any weak composition α and any positive integer i, we let α_{i} denote the i th entry of α (so that $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right)$). More generally, we use this notation whenever α is an infinite sequence of any kind of objects.
- The size $|\alpha|$ of a weak composition α is defined to be $\alpha_{1}+\alpha_{2}+\alpha_{3}+\cdots \in \mathbb{N}$.
- A partition means a weak composition whose entries weakly decrease (i.e., a weak composition α satisfying $\alpha_{1} \geq \alpha_{2} \geq \alpha_{3} \geq \cdots$).
- We let Par denote the set of all partitions.
- We will sometimes omit trailing zeroes from partitions: i.e., a partition $\lambda=$ $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$ will be identified with the k-tuple $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ whenever $k \in$ \mathbb{N} satisfies $\lambda_{k+1}=\lambda_{k+2}=\lambda_{k+3}=\cdots=0$. For example, $(3,2,1,0,0,0, \ldots)=$ $(3,2,1)=(3,2,1,0)$.
As a consequence of this, an n-tuple $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}$ (for any given $n \in \mathbb{N}$) is a partition if and only if it satisfies $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$.
- A part of a partition λ means a nonzero entry of λ. For example, the parts of the partition $(3,1,1)=(3,1,1,0,0,0, \ldots)$ are $3,1,1$.
- The length of a partition λ means the smallest $k \in \mathbb{N}$ such that $\lambda_{k+1}=\lambda_{k+2}=$ $\lambda_{k+3}=\cdots=0$. Equivalently, the length of a partition λ is the number of parts of λ (counted with multiplicity). This length is denoted by $\ell(\lambda)$. For example, $\ell((4,2,0,0))=\ell((4,2))=2$ and $\ell((5,1,1))=3$.
- We will use the notation m^{k} for " $\underbrace{m, m, \ldots, m}_{k \text { times }}$ " in partitions and tuples (whenever $m \in \mathbb{N}$ and $k \in \mathbb{N}$). (For example, $\left(2,1^{4}\right)=(2,1,1,1,1)$.)
- We let Λ denote the ring of symmetric functions in infinitely many variables $x_{1}, x_{2}, x_{3}, \ldots$ over \mathbf{k}. This is a subring of the ring $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ of formal power series. To be more specific, Λ consists of all power series in $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ that are symmetric (i.e., invariant under permutations of the variables) and of bounded degree (see [GriRei20, §2.1] for the precise meaning of this).
- A monomial shall mean a formal expression of the form $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} x_{3}^{\alpha_{3}} \cdots$ with $\alpha \in$ WC. Formal power series are formal infinite \mathbf{k}-linear combinations of such monomials.
- For any weak composition α, we let \mathbf{x}^{α} denote the monomial $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} x_{3}^{\alpha_{3}} \cdots$.
- The degree of a monomial \mathbf{x}^{α} is defined to be $|\alpha|$.

We shall use the symmetric functions h_{n} and s_{λ} in Λ as defined in GriRei20, Sections 2.1 and 2.2]. Let us briefly recall how they are defined:

- For each $n \in \mathbb{Z}$, we define the complete homogeneous symmetric function $h_{n} \in \Lambda$ by

$$
h_{n}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}=\sum_{\substack{\alpha \in W C_{;} \\|\alpha|=n}} \mathbf{x}^{\alpha} .
$$

Thus, $h_{0}=1$ and $h_{n}=0$ for all $n<0$.

- For each partition λ, we define the Schur function $s_{\lambda} \in \Lambda$ by

$$
s_{\lambda}=\sum \mathbf{x}_{T}
$$

where the sum ranges over all semistandard tableaux T of shape λ, and where \mathbf{x}_{T} denotes the monomial obtained by multiplying the x_{i} for all entries i of T. We refer the reader to [GriRei20, Definition 2.2.1] or to [Stanle01, §7.10] for the details of this definition and further descriptions of the Schur functions.
The family $\left(s_{\lambda}\right)_{\lambda \in \operatorname{Par}}$ is a basis of the \mathbf{k}-module Λ, and is known as the Schur basis. It is easy to see that each $n \in \mathbb{N}$ satisfies $s_{(n)}=h_{n}$.

- We shall use the Littlewood-Richardson coefficients $c_{\mu, v}^{\lambda}$ (for $\lambda, \mu, v \in \operatorname{Par}$), as defined in [GriRei20, Definition 2.5.8], in [Stanle01, §7.15] or in [Egge19, Chapter 10]. One of their defining properties is the following fact (see, e.g., [GriRei20, (2.5.6)] or [Stanle01, (7.64)] or [Egge19, (10.1)]): Any two partitions $\mu, v \in \operatorname{Par}$ satisfy

$$
\begin{equation*}
s_{\mu} s_{v}=\sum_{\lambda \in \operatorname{Par}} c_{\mu, \nu}^{\lambda} s_{\lambda} . \tag{1}
\end{equation*}
$$

2. The theorem

Convention 2.1.

(a) For the rest of this paper, we fix a positive integer n.
(b) Let Par $[n]$ be the set of all partitions having length $\leq n$. In other words,

$$
\begin{aligned}
\operatorname{Par}[n] & =\left\{\lambda \in \operatorname{Par} \mid \lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)\right\}=\operatorname{Par} \cap \mathbb{N}^{n} \\
& =\left\{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n} \mid \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0\right\}
\end{aligned}
$$

(where we are using our convention that trailing zeroes can be omitted from partitions, so that a partition of length $\leq n$ can always be identified with an n-tuple).
(c) A family $\left(u_{i}\right)_{i \in \mathbb{Z}}$ of objects (e.g., of numbers) is said to be n-periodic if each $j \in \mathbb{Z}$ satisfies $u_{j}=u_{j+n}$. Equivalently, a family $\left(u_{i}\right)_{i \in \mathbb{Z}}$ of objects is n periodic if and only if it has the property that

$$
\left(u_{j}=u_{j^{\prime}} \text { whenever } j \text { and } j^{\prime} \text { are two integers satisfying } j \equiv j^{\prime} \bmod n\right) .
$$

Thus, an n-periodic family $\left(u_{i}\right)_{i \in \mathbb{Z}}$ is uniquely determined by the n entries $u_{1}, u_{2}, \ldots, u_{n}$ (because for any integer j, we have $u_{j}=u_{j^{\prime}}$, where j^{\prime} is the unique element of $\{1,2, \ldots, n\}$ that is congruent to j modulo n).

Example 2.2. If $n=3$, then both partitions $(3,2)$ and $(3,2,2)$ belong to $\operatorname{Par}[n]$, while the partition $(3,2,2,2)$ does not. The n-tuples $(4,2,1)$ and $(3,3,0)$ are partitions, while the n-tuples $(1,0,-1)$ and $(2,0,1)$ are not.

If ζ is an n-th root of unity, then the family $\left(\zeta^{i}\right)_{i \in \mathbb{Z}}$ of complex numbers is n-periodic.

We can now state our main theorem, which is a concretization of [PelRes20, Conjecture 1]:

Theorem 2.3. Assume that $n \geq 2$. Let $a, b \in \mathbb{N}$.
Define the two partitions $\alpha=\left(a+b, a^{n-2}\right)$ and $\beta=\left(a+b, b^{n-2}\right)$.
Fix any partition $\mu \in \operatorname{Par}[n]$.
Define a map $\varphi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ as follows:
Let $\omega \in \mathbb{Z}^{n}$. Define an n-tuple $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{Z}^{n}$ by

$$
v_{i}=\omega_{i}-a \quad \text { for each } i \in\{1,2, \ldots, n\},
$$

where ω_{i} means the i-th entry of ω.
For each $i \in \mathbb{Z}$, we let i \# denote the unique element of $\{1,2, \ldots, n\}$ congruent to i modulo n.

For each $j \in \mathbb{Z}$, set

$$
\begin{gathered}
\tau_{j}=\min \left\{\left(v_{(j+1) \#}+v_{(j+2) \#}+\cdots+v_{(j+k) \#}\right)\right. \\
+\left(\mu_{(j+k+1) \#}+\mu_{(j+k+2) \#}+\cdots+\mu_{(j+n-1) \#}\right) \\
\\
\mid k \in\{0,1, \ldots, n-1\}\} .
\end{gathered}
$$

Define an n-tuple $\eta=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right) \in \mathbb{Z}^{n}$ by setting
$\eta_{i}=\mu_{i \#}+\left(\mu_{(i-1) \#}+\tau_{(i-1) \#}\right)-\left(v_{(i+1) \#}+\tau_{(i+1) \#}\right) \quad$ for each $i \in\{1,2, \ldots, n\}$.
Let $\varphi(\omega)$ be the n-tuple $\left(\eta_{1}+b, \eta_{2}+b, \ldots, \eta_{n}+b\right) \in \mathbb{Z}^{n}$. Thus, we have defined a map $\varphi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$.

Then:
(a) The map φ is a bijection.
(b) We have

$$
c_{\alpha, \mu}^{\omega}=c_{\beta, \mu}^{\varphi(\omega)} \quad \text { for each } \omega \in \mathbb{Z}^{n} .
$$

Here, we are using the convention that every n-tuple $\omega \in \mathbb{Z}^{n}$ that is not a partition satisfies $c_{\alpha, \mu}^{\omega}=0$ and $c_{\beta, \mu}^{\omega}=0$.

This theorem will be proved at the end of this paper, after we have shown several (often seemingly unrelated, yet eventually useful) results.

Example 2.4. Let $n=4$ and $a=1$ and $b=4$. The partitions α and β defined in Theorem 2.3 then take the forms $\alpha=\left(1+4,1^{2}\right)=(5,1,1)$ and $\beta=\left(1+4,4^{2}\right)=$ $(5,4,4)$.
Let $\mu \in \operatorname{Par}[n]$ be the partition $(2,1)=(2,1,0,0)$. Let $\omega \in \operatorname{Par}[n]$ be the partition $(5,3,2)=(5,3,2,0)$. We shall compute the n-tuple $\varphi(\omega)$ defined in Theorem 2.3.

Indeed, the n-tuple v from Theorem 2.3 is

$$
v=\left(\omega_{1}-a, \omega_{2}-a, \omega_{3}-a, \omega_{4}-a\right)=(5-1,3-1,2-1,0-1)=(4,2,1,-1)
$$

The integers $i \#$ from Theorem 2.3 form an n-periodic family

$$
(i \#)_{i \in \mathbb{Z}}=(\ldots, 0 \#, 1 \#, 2 \#, 3 \#, 4 \#, 5 \#, 6 \#, 7 \#, \ldots)=(\ldots, 4,1,2,3,4,1,2,3, \ldots) .
$$

The integers τ_{j} (for $j \in \mathbb{Z}$) from Theorem 2.3 are given by

$$
\begin{aligned}
\tau_{1} & =\min \left\{\left(v_{2 \#}+v_{3 \#}+\cdots+v_{(k+1) \#}\right)+\left(\mu_{(k+2) \#}+\mu_{(k+3) \#}+\cdots+\mu_{4 \#}\right)\right. \\
& \quad \mid k \in\{0,1,2,3\}\} \\
& =\min \left\{\mu_{2 \#}+\mu_{3 \#}+\mu_{4 \#} \quad v_{2 \#}+\mu_{3 \#}+\mu_{4 \#,} \quad v_{2 \#}+v_{3 \#}+\mu_{4 \# \prime} \quad v_{2 \#}+v_{3 \#}+v_{4 \#}\right\} \\
& =\min \left\{\mu_{2}+\mu_{3}+\mu_{4}, \quad v_{2}+\mu_{3}+\mu_{4}, \quad v_{2}+v_{3}+\mu_{4}, \quad v_{2}+v_{3}+v_{4}\right\} \\
& =\min \{1+0+0, \quad 2+0+0, \quad 2+1+0, \quad 2+1+(-1)\} \\
& =\min \{1,2,3,2\}=1
\end{aligned}
$$

and

$$
\left.\left.\left.\begin{array}{rl}
\tau_{2} & =\min \left\{\left(v_{3 \#}+v_{4 \#}+\cdots+v_{(k+2) \#}\right)+\left(\mu_{(k+3) \#}+\mu_{(k+4) \#}+\cdots+\mu_{5 \#}\right)\right. \\
& \quad \mid k \in\{0,1,2,3\}\}
\end{array}\right] . \quad v_{3 \#}+\mu_{4 \#}+\mu_{5 \#,} \quad v_{3 \#}+v_{4 \#}+\mu_{5 \#,} \quad v_{3 \#}+v_{4 \#}+v_{5 \#}\right\}\right\}
$$

and

$$
\begin{aligned}
\tau_{3} & =\min \left\{\left(v_{4 \#}+v_{5 \#}+\cdots+v_{(k+3) \#}\right)+\left(\mu_{(k+4) \#}+\mu_{(k+5) \#}+\cdots+\mu_{6 \#}\right)\right. \\
& \mid k \in\{0,1,2,3\}\} \\
& =\min \left\{\mu_{4 \#}+\mu_{5 \#}+\mu_{6 \#,} \quad v_{4 \#}+\mu_{5 \#}+\mu_{6 \#,} \quad v_{4 \#}+v_{5 \#}+\mu_{6 \#,} \quad v_{4 \#}+v_{5 \#}+v_{6 \#}\right\} \\
& =\min \left\{\mu_{4}+\mu_{1}+\mu_{2}, \quad v_{4}+\mu_{1}+\mu_{2}, \quad v_{4}+v_{1}+\mu_{2}, \quad v_{4}+v_{1}+v_{2}\right\} \\
= & \min \{0+2+1, \quad(-1)+2+1, \quad(-1)+4+1, \quad(-1)+4+2\} \\
& =\min \{3,2,4,5\}=2
\end{aligned}
$$

and

$$
\begin{aligned}
\tau_{4} & =\min \left\{\left(v_{5 \#}+v_{6 \#}+\cdots+v_{(k+4) \#}\right)+\left(\mu_{(k+5) \#}+\mu_{(k+6) \#}+\cdots+\mu_{7 \#}\right)\right. \\
& \quad \mid k \in\{0,1,2,3\}\} \\
& =\min \left\{\mu_{5 \#}+\mu_{6 \#}+\mu_{7 \#}, \quad v_{5 \#}+\mu_{6 \#}+\mu_{7 \# \prime} \quad v_{5 \#}+v_{6 \#}+\mu_{7 \#,} \quad v_{5 \#}+v_{6 \#}+v_{7 \# \#}\right\} \\
& =\min \left\{\mu_{1}+\mu_{2}+\mu_{3}, \quad v_{1}+\mu_{2}+\mu_{3}, \quad v_{1}+v_{2}+\mu_{3}, \quad v_{1}+v_{2}+v_{3}\right\} \\
& =\min \{2+1+0, \quad 4+1+0, \quad 4+2+0, \quad 4+2+1\} \\
& =\min \{3,5,6,7\}=3
\end{aligned}
$$

and

$$
\tau_{j}=\tau_{j^{\prime}} \quad \text { whenever } j \equiv j^{\prime} \bmod 4
$$

(the latter equality follows from the n-periodicity of the family $(i \#)_{i \in \mathbb{Z}}$). Thus, the n-tuple $\eta=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right)$ from Theorem 2.3 is given by

$$
\eta_{1}=\underbrace{\mu_{1 \#}}_{=\mu_{1}=2}+(\underbrace{\mu_{0 \#}}_{=\mu_{4}=0}+\underbrace{\tau_{0 \#}}_{=\tau_{4}=3})-(\underbrace{v_{2 \#}}_{=v_{2}=2}+\underbrace{\tau_{2 \#}}_{=\tau_{2}=2})=2+(0+3)-(2+2)=1
$$

and

$$
\eta_{2}=\underbrace{\mu_{2 \#}}_{=\mu_{2}=1}+(\underbrace{\mu_{1 \#}}_{=\mu_{1}=2}+\underbrace{\tau_{1 \#}}_{=\tau_{1}=1})-(\underbrace{v_{3 \#}}_{=v_{3}=1}+\underbrace{\tau_{3 \#}}_{=\tau_{3}=2})=1+(2+1)-(1+2)=1
$$

and
$\eta_{3}=\underbrace{\mu_{3 \#}}_{=\mu_{3}=0}+(\underbrace{\mu_{2 \#}}_{=\mu_{2}=1}+\underbrace{\tau_{2 \#}}_{=\tau_{2}=2})-(\underbrace{v_{4 \#}}_{=v_{4}=-1}+\underbrace{\tau_{4 \#}}_{=\tau_{4}=3})=0+(1+2)-((-1)+3)=1$
and
$\eta_{4}=\underbrace{\mu_{4 \#}}_{=\mu_{4}=0}+(\underbrace{\mu_{3 \#}}_{=\mu_{3}=0}+\underbrace{\tau_{3 \#}}_{=\tau_{3}=2})-(\underbrace{v_{5 \#}}_{=v_{1}=4}+\underbrace{\tau_{5 \#}}_{=\tau_{1}=1})=0+(0+2)-(4+1)=-3$,
so $\eta=(1,1,1,-3)$. Hence, $\varphi(\omega)=(1+b, 1+b, 1+b,-3+b)=(5,5,5,1)$ (since $b=4$). This is a partition. Theorem 2.3 (b) now yields $c_{\alpha, \mu}^{\omega}=c_{\beta, \mu}^{\varphi(\omega)}$, that is, $c_{(5,1,1),(2,1)}^{(5,3,2)}=c_{(5,4,4),(2,1)}^{(5,5,1)}$. And indeed, this equality holds (both of its sides being equal to 1).

Question 2.5. Can the bijection φ in Theorem 2.3 be defined in a more "intuitive" way, similar to (e.g.) jeu-de-taquin or the RSK correspondence? (Of course, there is no tableau being transformed here, just a partition, but this should make this construction easier.)

3. A birational involution

The leading role in our proof of Theorem 2.3 will be played by a certain piecewiselinear involution (which is similar to the bijection φ in Theorem 2.3. but without the shifting by $-a$ and b). For the sake of convenience, we prefer to study this involution in a more general setting, in which the operations min, + and - are replaced by the structure operations,$+ \cdot$ and / of a semifield. This kind of generalization is called detropicalization (or birational lifting, or tropicalization in the older combinatorial literature); see, e.g., [Kirill01], [NouYam02], [EinPro13, Sections 5 and 9] or [Roby15, §4.2] for examples of this procedure (although our use of it will be conceptually simpler).

3.1. Semifields

We recall some basic definitions from basic abstract algebra (mostly to avoid confusion arising from slight terminological differences):

- A semigroup means a pair $(S, *)$, where S is a set and where $*$ is an associative binary operation on S. We do not require this operation $*$ to have a neutral element. We usually write the operation $*$ infix (i.e., we write $a * b$ instead of $*(a, b)$ when $a, b \in S)$.
- A semigroup $(S, *)$ is said to be abelian if the operation $*$ is commutative (i.e., we have $a * b=b * a$ for all $a, b \in S$).
- A monoid means a triple $(S, *, e)$, where $(S, *)$ is a semigroup and where e is a neutral element for the operation $*$ (that is, e is an element of S that satisfies $e * a=a * e=a$ for each $a \in S$). Usually, the monoid ($S, *, e$) is equated with the semigroup $(S, *)$ because the neutral element is uniquely determined by S and $*$.
- If $(S, *, e)$ is a monoid and a is an element of S, then an inverse of a (with respect to $*$) means an element b of S satisfying $a * b=b * a=e$. Such an inverse of a is always unique when it exists.
- A group means a monoid $(S, *, e)$ such that each element of S has an inverse (with respect to $*$).
We next recall the definition of a semifield (more precisely, the one we will be using, as there are many competing ones):

Definition 3.1. A semifield means a set \mathbb{K} endowed with

- two binary operations called "addition" and "multiplication", and denoted by + and \cdot, respectively, and both written infix (i.e., we write $a+b$ and $a \cdot b$ instead of $+(a, b)$ and $\cdot(a, b))$, and
- an element called "unity" and denoted by 1
such that $(\mathbb{K},+)$ is an abelian semigroup and $(\mathbb{K}, \cdot, 1)$ is an abelian group, and such that the following axiom is satisfied:
- Distributivity: We have $a \cdot(b+c)=(a \cdot b)+(a \cdot c)$ and $(a+b) \cdot c=(a \cdot c)+$ ($b \cdot c$) for all $a \in \mathbb{K}, b \in \mathbb{K}$ and $c \in \mathbb{K}$.

Thus, a semifield is similar to a field, except that it has no additive inverses and no zero element, but, on the other hand, has multiplicative inverses for all its elements (not just the nonzero ones).

Example 3.2. Let Q_{+}be the set of all positive rational numbers. Then, \mathbb{Q}_{+}(endowed with its standard addition and multiplication and the number 1) is a semifield.

Example 3.3. Let $(\mathbb{A}, *, e)$ be any totally ordered abelian group (whose operation is $*$ and whose neutral element is e). Then, \mathbb{A} becomes a semifield if we endow it with the "addition" \min (that is, we set $a+b:=\min \{a, b\}$ for all $a, b \in \mathbb{A}$), the "multiplication" * (that is, we set $a \cdot b:=a * b$ for all $a, b \in \mathbb{A}$), and the "unity" e. This semifield $(\mathbb{A}, \min , *, e)$ is called the min tropical semifield of $(\mathbb{A}, *, e)$.

Convention 3.4. All conventions that are typically used for fields will be used for semifields as well, to the extent they apply. Specifically:

- If \mathbb{K} is a semifield, and if $a, b \in \mathbb{K}$, then $a \cdot b$ shall be abbreviated by $a b$.
- We shall use the standard "PEMDAS" convention that multiplication-like operations have higher precedence than addition-like operations; thus, e.g., the expression " $a b+a c$ " must be understood as " $(a b)+(a c)$ " (and not, for example, as " $a(b+a) c$ ").
- If \mathbb{K} is a semifield, then the inverse of any element $b \in \mathbb{K}$ in the abelian group $(\mathbb{K}, \cdot, 1)$ will be denoted by b^{-1}. Note that this inverse is always defined (unlike when \mathbb{K} is a field).
- If \mathbb{K} is a semifield, and if $a, b \in \mathbb{K}$, then the product $a b^{-1}$ will be denoted by a / b and by $\frac{a}{b}$. Note that this is always defined (unlike when \mathbb{K} is a field).
- Finite products $\prod_{i \in I} a_{i}$ of elements of a semifield are defined in the same way as in commutative rings. The same applies to finite sums $\sum_{i \in I} a_{i}$ as long as they are nonempty (i.e., as long as $I \neq \varnothing$). The empty sum is not defined in a semifield, since there is no zero element.

3.2. The birational involution

For the rest of Section 3, we agree to the following two conventions:
| Convention 3.5. We fix a positive integer n and a semifield \mathbb{K}. We also fix an n-tuple $u \in \mathbb{K}^{n}$.

Convention 3.6. If $a \in \mathbb{K}^{n}$ is an n-tuple, and if $i \in \mathbb{Z}$, then a_{i} shall denote the i^{\prime}-th entry of a, where i^{\prime} is the unique element of $\{1,2, \ldots, n\}$ satisfying $i^{\prime} \equiv i \bmod n$. Thus, each n-tuple $a \in \mathbb{K}^{n}$ satisfies $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $a_{i}=a_{i+n}$ for each $i \in \mathbb{Z}$. Therefore, if $a \in \mathbb{K}^{n}$ is any n-tuple, then the family $\left(a_{i}\right)_{i \in \mathbb{Z}}$ is n-periodic.

We shall soon use the letter x for an n-tuple in \mathbb{K}^{n}; thus, $x_{1}, x_{2}, \ldots, x_{n}$ will be the entries of this n-tuple. This has nothing to do with the indeterminates $x_{1}, x_{2}, x_{3}, \ldots$ from Section 1 (that unfortunately use the same letters); we actually forget all conventions from Section 1 (apart from $\mathbb{N}=\{0,1,2, \ldots\}$) for the entire Section 3 . The following is obvious:

Lemma 3.7. If $a \in \mathbb{K}^{n}$ is any n-tuple, then $a_{k+1} a_{k+2} \cdots a_{k+n}=a_{1} a_{2} \cdots a_{n}$ for each $k \in \mathbb{Z}$.

Proof of Lemma 3.7 Let $a \in \mathbb{K}^{n}$ be an n-tuple. For each $k \in \mathbb{Z}$, we set $b_{k}=$ $a_{k+1} a_{k+2} \cdots a_{k+n}$. Now, it is easy to see that

$$
\begin{equation*}
b_{p}=b_{p+1} \quad \text { for each } p \in \mathbb{Z} \tag{2}
\end{equation*}
$$

1. In other words,

$$
\cdots=b_{-2}=b_{-1}=b_{0}=b_{1}=b_{2}=\cdots
$$

[^0]In other words, all of the elements $\ldots, b_{-2}, b_{-1}, b_{0}, b_{1}, b_{2}, \ldots$ are equal. Hence, $b_{k}=$ b_{0} for each $k \in \mathbb{Z}$. Thus, for each $k \in \mathbb{Z}$, we have

$$
\begin{aligned}
a_{k+1} a_{k+2} \cdots a_{k+n} & =b_{k} \quad\left(\text { since } b_{k}=a_{k+1} a_{k+2} \cdots a_{k+n}\right) \\
& =b_{0}=a_{0+1} a_{0+2} \cdots a_{0+n} \quad\left(\text { by the definition of } b_{0}\right) \\
& =a_{1} a_{2} \cdots a_{n} .
\end{aligned}
$$

This proves Lemma 3.7 .
Definition 3.8. We define a map $f_{u}: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ as follows:
Let $x \in \mathbb{K}^{n}$ be an n-tuple. For each $j \in \mathbb{Z}$ and $r \in \mathbb{N}$, define an element $t_{r, j} \in \mathbb{K}$ by

$$
t_{r, j}=\sum_{k=0}^{r} \underbrace{x_{j+1} x_{j+2} \cdots x_{j+k}}_{=\prod_{i=1}^{k} x_{j+i}} \cdot \underbrace{u_{j+k+1} u_{j+k+2} \cdots u_{j+r}}_{=\prod_{i=k+1}^{r} u_{j+i}} .
$$

Define $y \in \mathbb{K}^{n}$ by setting

$$
y_{i}=u_{i} \cdot \frac{u_{i-1} t_{n-1, i-1}}{x_{i+1} t_{n-1, i+1}} \quad \text { for each } i \in\{1,2, \ldots, n\} .
$$

Set $\mathbf{f}_{u}(x)=y$.
Example 3.9. Set $n=4$ for this example. Let $x \in \mathbb{K}^{n}$ be an n-tuple; thus, $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$. Let us see what the definition of $\mathbf{f}_{u}(x)$ in Definition 3.8 boils down to in this case.

Let us first compute the elements $t_{n-1, j}=t_{3, j}$ from Definition 3.8. The definition of $t_{3,0}$ yields

$$
\begin{aligned}
t_{3,0} & =\sum_{k=0}^{3} x_{0+1} x_{0+2} \cdots x_{0+k} \cdot u_{0+k+1} u_{0+k+2} \cdots u_{0+3} \\
& =\sum_{k=0}^{3} x_{1} x_{2} \cdots x_{k} \cdot u_{k+1} u_{k+2} \cdots u_{3} \\
& =u_{1} u_{2} u_{3}+x_{1} u_{2} u_{3}+x_{1} x_{2} u_{3}+x_{1} x_{2} x_{3} .
\end{aligned}
$$

The definition of b_{p} yields

$$
b_{p}=a_{p+1} a_{p+2} \cdots a_{p+n}=\underbrace{a_{p+1}}_{=a_{p+n+1}}\left(a_{p+2} a_{p+3} \cdots a_{p+n}\right)=a_{p+n+1}\left(a_{p+2} a_{p+3} \cdots a_{p+n}\right) .
$$

The definition of b_{p+1} yields

$$
\begin{aligned}
b_{p+1} & =a_{(p+1)+1} a_{(p+1)+2} \cdots a_{(p+1)+n}=a_{p+2} a_{p+3} \cdots a_{p+n+1} \\
& =\left(a_{p+2} a_{p+3} \cdots a_{p+n}\right) a_{p+n+1}=a_{p+n+1}\left(a_{p+2} a_{p+3} \cdots a_{p+n}\right) .
\end{aligned}
$$

Comparing these two equalities, we obtain $b_{p}=b_{p+1}$. This proves (2).

Similarly,

$$
\begin{aligned}
t_{3,1} & =u_{2} u_{3} u_{4}+x_{2} u_{3} u_{4}+x_{2} x_{3} u_{4}+x_{2} x_{3} x_{4} ; \\
t_{3,2} & =u_{3} u_{4} u_{5}+x_{3} u_{4} u_{5}+x_{3} x_{4} u_{5}+x_{3} x_{4} x_{5} \\
= & u_{3} u_{4} u_{1}+x_{3} u_{4} u_{1}+x_{3} x_{4} u_{1}+x_{3} x_{4} x_{1} \\
& \quad\left(\text { since } u_{5}=u_{1} \text { and } x_{5}=x_{1}\right) ; \\
t_{3,3} & =u_{4} u_{5} u_{6}+x_{4} u_{5} u_{6}+x_{4} x_{5} u_{6}+x_{4} x_{5} x_{6} \\
= & u_{4} u_{1} u_{2}+x_{4} u_{1} u_{2}+x_{4} x_{1} u_{2}+x_{4} x_{1} x_{2}
\end{aligned}
$$

(since $u_{5}=u_{1}$ and $x_{5}=x_{1}$ and $u_{6}=u_{2}$ and $x_{6}=x_{2}$).
We don't need to compute any further $t_{3, j}$'s, since we can easily see that

$$
\begin{equation*}
t_{3, j}=t_{3, j^{\prime}} \text { for any integers } j \text { and } j^{\prime} \text { satisfying } j \equiv j^{\prime} \bmod 4 \tag{3}
\end{equation*}
$$

Thus, in particular, $t_{3,4}=t_{3,0}$ and $t_{3,5}=t_{3,1}$.
Now, let us compute the 4 -tuple $y \in \mathbb{K}^{n}=\mathbb{K}^{4}$ from Definition 3.8. By its definition, we have

$$
\begin{aligned}
y_{1}= & u_{1} \cdot \frac{u_{1-1} t_{3,1-1}}{x_{1+1} t_{3,1+1}}=u_{1} \cdot \frac{u_{0} t_{3,0}}{x_{2} t_{3,2}}=u_{1} \cdot \frac{u_{4} t_{3,0}}{x_{2} t_{3,2}} \\
& \left(\text { since } u_{0}=u_{4}\right) \\
= & u_{1} \cdot \frac{u_{4}\left(u_{1} u_{2} u_{3}+x_{1} u_{2} u_{3}+x_{1} x_{2} u_{3}+x_{1} x_{2} x_{3}\right)}{x_{2}\left(u_{3} u_{4} u_{1}+x_{3} u_{4} u_{1}+x_{3} x_{4} u_{1}+x_{3} x_{4} x_{1}\right)}
\end{aligned}
$$

(by our formulas for $t_{3,0}$ and $t_{3,2}$). Similar computations lead to

$$
\begin{aligned}
& y_{2}=u_{2} \cdot \frac{u_{1}\left(u_{2} u_{3} u_{4}+x_{2} u_{3} u_{4}+x_{2} x_{3} u_{4}+x_{2} x_{3} x_{4}\right)}{x_{3}\left(u_{4} u_{1} u_{2}+x_{4} u_{1} u_{2}+x_{4} x_{1} u_{2}+x_{4} x_{1} x_{2}\right)} ; \\
& y_{3}=u_{3} \cdot \frac{u_{2}\left(u_{3} u_{4} u_{1}+x_{3} u_{4} u_{1}+x_{3} x_{4} u_{1}+x_{3} x_{4} x_{1}\right)}{x_{4}\left(u_{1} u_{2} u_{3}+x_{1} u_{2} u_{3}+x_{1} x_{2} u_{3}+x_{1} x_{2} x_{3}\right)} ; \\
& y_{4}=u_{4} \cdot \frac{u_{3}\left(u_{4} u_{1} u_{2}+x_{4} u_{1} u_{2}+x_{4} x_{1} u_{2}+x_{4} x_{1} x_{2}\right)}{x_{1}\left(u_{2} u_{3} u_{4}+x_{2} u_{3} u_{4}+x_{2} x_{3} u_{4}+x_{2} x_{3} x_{4}\right)} .
\end{aligned}
$$

Of course, knowing one of these four equalities is enough; the expression for y_{i+1} is obtained from the expression for y_{i} by shifting all indices (other than the " 3 "s that were originally " $n-1$ "s) forward by 1 .

Remark 3.10. Instead of assuming \mathbb{K} to be a semifield, we could have assumed that \mathbb{K} is an infinite field. In that case, the \mathbf{f}_{u} in Definition 3.8 would be a birational map instead of a map in the usual sense of this word, since the denominators $x_{i+1} t_{n-1, i+1}$ in the definition of y can be zero. Everything we say below about \mathbf{f}_{u} would nevertheless still hold on the level of birational maps.

The map f_{u} we just defined has the following properties:

Theorem 3.11.

(a) The map \mathbf{f}_{u} is an involution (i.e., we have $\mathbf{f}_{u} \circ \mathbf{f}_{u}=\mathrm{id}$).
(b) Let $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ be such that $y=\mathbf{f}_{u}(x)$. Then,

$$
y_{1} y_{2} \cdots y_{n} \cdot x_{1} x_{2} \cdots x_{n}=\left(u_{1} u_{2} \cdots u_{n}\right)^{2} .
$$

(c) Let $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ be such that $y=\mathbf{f}_{u}(x)$. Then,

$$
\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right)=\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right)
$$

for each $i \in \mathbb{Z}$.
(d) Let $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ be such that $y=\mathbf{f}_{u}(x)$. Then,

$$
\prod_{i=1}^{n} \frac{u_{i}+x_{i}}{x_{i}}=\prod_{i=1}^{n} \frac{u_{i}+y_{i}}{u_{i}} .
$$

Theorem 3.11 will be crucial for us; but before we can prove it, we will need a few lemmas.

Lemma 3.12. Let $x \in \mathbb{K}^{n}$ be an n-tuple. Let $t_{r, j}$ and y be as in Definition 3.8 . Then:
(a) We have $t_{r, j}=t_{r, j^{\prime}}$ for any $r \in \mathbb{N}$ and any two integers j and j^{\prime} satisfying $j \equiv j^{\prime} \bmod n$. In other words, for each $r \in \mathbb{N}$, the family $\left(t_{r, j}\right)_{j \in \mathbb{Z}}$ is n periodic.
(b) We have $t_{0, j}=1$ for each $j \in \mathbb{Z}$.
(c) For each $r \in \mathbb{N}$ and $j \in \mathbb{Z}$, we have

$$
x_{j} t_{r, j}+u_{j} u_{j+1} \cdots u_{j+r}=t_{r+1, j-1} .
$$

(d) For each $r \in \mathbb{N}$ and $j \in \mathbb{Z}$, we have

$$
u_{j+r+1} t_{r, j}+x_{j+1} x_{j+2} \cdots x_{j+r+1}=t_{r+1, j}
$$

(e) For each $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$, we have

$$
x_{a} t_{n-1, a}+u_{b-1} t_{n-1, b-1}=x_{b} t_{n-1, b}+u_{a-1} t_{n-1, a-1} .
$$

(f) For each $i \in \mathbb{Z}$, we have

$$
x_{i+1} t_{n-1, i+1}+u_{i-1} t_{n-1, i-1}=\left(x_{i}+u_{i}\right) t_{n-1, i} .
$$

(g) For each $j \in \mathbb{Z}$ and each positive integer q, we have

$$
t_{n-1, j+q+1} \cdot x_{j+2} x_{j+3} \cdots x_{j+q+1}+u_{j} t_{n-1, j} t_{q-1, j+1}=t_{n-1, j+1} t_{q, j} .
$$

(h) For each $i \in \mathbb{Z}$, we have

$$
y_{i}=u_{i} \cdot \frac{u_{i-1} t_{n-1, i-1}}{x_{i+1} t_{n-1, i+1}}
$$

Now, for each $j \in \mathbb{Z}$ and $r \in \mathbb{N}$, let us define an element $t_{r, j}^{\prime} \in \mathbb{K}$ by

$$
t_{r, j}^{\prime}=\sum_{k=0}^{r} \underbrace{y_{j+1} y_{j+2} \cdots y_{j+k}}_{=\prod_{i=1}^{k} y_{j+i}} \cdot \underbrace{u_{j+k+1} u_{j+k+2} \cdots u_{j+r}}_{=\prod_{i=k+1}^{r} u_{j+i}} .
$$

(This is precisely how $t_{r, j}$ was defined, except that we are using y in place of x now.) Then:
(i) For each $j \in \mathbb{Z}$ and $q \in \mathbb{N}$, we have

$$
\frac{t_{q, j}^{\prime}}{u_{j+1} u_{j+2} \cdots u_{j+q}}=\frac{t_{n-1, j+1}}{t_{n-1, j+q+1}} \cdot \frac{t_{q, j}}{x_{j+2} x_{j+3} \cdots x_{j+q+1}} .
$$

(j) For each $j \in \mathbb{Z}$, we have

$$
\frac{t_{n-1, j}^{\prime} u_{j}}{u_{1} u_{2} \cdots u_{n}}=\frac{t_{n-1, j+1} x_{j+1}}{x_{1} x_{2} \cdots x_{n}} .
$$

(k) For each $i \in \mathbb{Z}$, we have

$$
x_{i}=u_{i} \cdot \frac{u_{i-1} t_{n-1, i-1}^{\prime}}{y_{i+1} t_{n-1, i+1}^{\prime}} .
$$

Proof of Lemma 3.12. The proof of this lemma is long but unsophisticated: Each part follows by rather straightforward computations (and, in the cases of parts (g) and (i), an induction on q) from the previously proven parts. We shall show the details, but a computationally inclined reader may have a better time reconstructing them independently ${ }^{2}$

[^1]Let $r \in \mathbb{N}$. Let $j \in \mathbb{Z}$. We shall show that $t_{r, j}=t_{r, j+n}$.
Indeed, Convention 3.6 yields that the family $\left(u_{i}\right)_{i \in \mathbb{Z}}$ is n-periodic. Thus, $u_{i}=$ u_{i+n} for each $i \in \mathbb{Z}$. In other words,

$$
\begin{equation*}
u_{i+n}=u_{i} \quad \text { for each } i \in \mathbb{Z} \tag{4}
\end{equation*}
$$

Likewise,

$$
\begin{equation*}
x_{i+n}=x_{i} \quad \text { for each } i \in \mathbb{Z} \tag{5}
\end{equation*}
$$

Now, the definition of $t_{r, j}$ yields

$$
\begin{aligned}
t_{r, j} & =\sum_{k=0}^{r} \underbrace{x_{j+1} x_{j+2} \cdots x_{j+k}}_{=\prod_{i=1}^{k} x_{j+i}} \cdot \underbrace{u_{j+k+1} u_{j+k+2} \cdots u_{j+r}}_{=\prod_{i=k+1}^{r} u_{j+i}} \\
& =\sum_{k=0}^{r}\left(\prod_{i=1}^{k} x_{j+i}\right) \cdot\left(\prod_{i=k+1}^{r} u_{j+i}\right) .
\end{aligned}
$$

The same argument (applied to $j+n$ instead of j) yields

$$
\begin{aligned}
& =\sum_{k=0}^{r}\left(\prod_{i=1}^{k} x_{j+i}\right) \cdot\left(\prod_{i=k+1}^{r} u_{j+i}\right) .
\end{aligned}
$$

Comparing these two equalities, we obtain $t_{r, j}=t_{r, j+n}$.
Now, forget that we fixed j. We thus have shown that $t_{r, j}=t_{r, j+n}$ for each $j \in \mathbb{Z}$. In other words, the family $\left(t_{r, j}\right)_{j \in \mathbb{Z}}$ is n-periodic. In other words, we have $t_{r, j}=t_{r, j^{\prime}}$ for any two integers j and j^{\prime} satisfying $j \equiv j^{\prime} \bmod n$. This proves Lemma 3.12(a).
(b) Let $j \in \mathbb{Z}$. The definition of $t_{0, j}$ yields

$$
\begin{aligned}
t_{0, j} & =\sum_{k=0}^{0} x_{j+1} x_{j+2} \cdots x_{j+k} \cdot u_{j+k+1} u_{j+k+2} \cdots u_{j+0} \\
& =\underbrace{x_{j+1} x_{j+2} \cdots x_{j+0}}_{=\text {(empty product })=1} \cdot \underbrace{u_{j+0+1} u_{j+0+2} \cdots u_{j+0}}_{=(\text {empty product })=1} \\
& =1
\end{aligned}
$$

This proves Lemma 3.12 (b).
(c) Let $r \in \mathbb{N}$ and $j \in \mathbb{Z}$. Then, the definition of $t_{r+1, j-1}$ yields

$$
\begin{aligned}
& t_{r+1, j-1} \\
& =\sum_{k=0}^{r+1} \underbrace{x_{(j-1)+1} x_{(j-1)+2} \cdots x_{(j-1)+k}}_{=x_{j} x_{j+1} \cdots x_{j+k-1}} \cdot \underbrace{u_{(j-1)+(k+1)} u_{(j-1)+(k+2)} \cdots u_{(j-1)+(r+1)}}_{=u_{j+k} u_{j+k+1} \cdots u_{j+r}} \\
& =\sum_{k=0}^{r+1} x_{j} x_{j+1} \cdots x_{j+k-1} \cdot u_{j+k} u_{j+k+1} \cdots u_{j+r} \\
& =\underbrace{x_{j} x_{j+1} \cdots x_{j+0-1}}_{=(\text {empty product })=1} \cdot \underbrace{u_{j+0} u_{j+0+1} \cdots u_{j+r}}_{=u_{j} u_{j+1} \cdots u_{j+r}}+\sum_{k=1}^{r+1} \underbrace{x_{j} x_{j+1} \cdots x_{j+k-1}}_{=x_{j} \cdot x_{j+1} x_{j+2} \cdots x_{j+k-1}} \cdot u_{j+k} u_{j+k+1} \cdots \cdot u_{j+r}
\end{aligned}
$$

(here, we have split off the addend for $k=0$ from the sum)

$$
=u_{j} u_{j+1} \cdots u_{j+r}+\underbrace{\sum_{k=1}^{r+1} x_{j} \cdot x_{j+1} x_{j+2} \cdots x_{j+k-1} \cdot u_{j+k} u_{j+k+1} \cdots u_{j+r}}_{=x_{j} \sum_{k=1}^{r+1} x_{j+1} x_{j+2} \cdots x_{j+k-1} \cdot u_{j+k} u_{j+k+1} \cdots u_{j+r}}
$$

$$
=u_{j} u_{j+1} \cdots u_{j+r}+x_{j} \underbrace{\sum_{k=1}^{r+1} x_{j+1} x_{j+2} \cdots x_{j+k-1} \cdot u_{j+k} u_{j+k+1} \cdots u_{j+r}}
$$

$$
=\sum_{k=0}^{r} x_{j+1} x_{j+2} \cdots x_{j+k} \cdot u_{j+k+1} u_{j+k+2} \cdots u_{j+r}
$$

$$
\text { (here, we have substituted } k \text { for } k-1 \text { in the sum) }
$$

$$
=u_{j} u_{j+1} \cdots u_{j+r}+x_{j} \underbrace{\sum_{k=0}^{r} x_{j+1} x_{j+2} \cdots x_{j+k} \cdot u_{j+k+1} u_{j+k+2} \cdots u_{j+r}}_{\substack{=t_{r, j} \\ \text { (by the definition of } t_{r, j} \text {) }}}
$$

$$
\text { (by the definition of } t_{r, j} \text {) }
$$

$$
=u_{j} u_{j+1} \cdots u_{j+r}+x_{j} t_{r, j}=x_{j} t_{r, j}+u_{j} u_{j+1} \cdots u_{j+r}
$$

This proves Lemma 3.12 (c).
(d) Let $r \in \mathbb{N}$ and $j \in \mathbb{Z}$. Then, the definition of $t_{r+1, j}$ yields

$$
\begin{aligned}
t_{r+1, j}= & \sum_{k=0}^{r+1} x_{j+1} x_{j+2} \cdots x_{j+k} \cdot u_{j+k+1} u_{j+k+2} \cdots u_{j+r+1} \\
= & \sum_{k=0}^{r} x_{j+1} x_{j+2} \cdots x_{j+k} \cdot \underbrace{u_{j+k+1} u_{j+k+2} \cdots u_{j+r+1}}_{=u_{j+k+1} u_{j+k+2} \cdots u_{j+r} \cdot u_{j+r+1}} \\
& +x_{j+1} x_{j+2} \cdots x_{j+r+1} \cdot \underbrace{u_{j+(r+1)+1} u_{j+(r+1)+2} \cdots u_{j+r+1}}_{=(\text {empty product })=1} \\
= & \underbrace{\sum_{k=0}^{r} x_{j+1} x_{j+2} \cdots x_{j+k} \cdot u_{j+k+1} u_{j+k+2} \cdots u_{j+r} \cdot u_{j+r+1}}_{=u_{j+r+1} \sum_{k=0}^{r} x_{j+1} x_{j+2} \cdots x_{j+k} \cdot u_{j+k+1} u_{j+k+2 \cdots} \cdots u_{j+r}}+x_{j+1} x_{j+2} \cdots x_{j+r+1} \\
= & u_{j+r+1} \sum_{\text {here, we have split off the addend for } k=r+1 \text { from the sum) }}^{\sum_{k=0}^{r} x_{j+1} x_{j+2} \cdots x_{j+k} \cdot u_{j+k+1} u_{j+k+2} \cdots u_{j+r}}+x_{j+1} x_{j+2} \cdots x_{j+r+1} \\
= & u_{j+r+1} t_{r, j}+x_{j+1} x_{j+2} \cdots x_{j+r+1} .
\end{aligned}
$$

This proves Lemma 3.12 (d).
(e) We WLOG assume that $n \neq 1$, since otherwise the claim is easy to check by hand. Thus, $n \geq 2$, so that $n-2 \in \mathbb{N}$.

Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}$. Then, Lemma 3.12 (c) (applied to $r=n-2$ and $j=a$) yields

$$
x_{a} t_{n-2, a}+u_{a} u_{a+1} \cdots u_{a+n-2}=t_{(n-2)+1, a-1}=t_{n-1, a-1}
$$

(since $(n-2)+1=n-1$). Multiplying both sides of this equality by u_{a-1}, we obtain

$$
u_{a-1}\left(x_{a} t_{n-2, a}+u_{a} u_{a+1} \cdots u_{a+n-2}\right)=u_{a-1} t_{n-1, a-1}
$$

Hence,

$$
\begin{aligned}
& u_{a-1} t_{n-1, a-1}=u_{a-1}\left(x_{a} t_{n-2, a}+u_{a} u_{a+1} \cdots u_{a+n-2}\right)
\end{aligned}
$$

$$
\begin{align*}
& \text { (by Lemma } 3.7 \\
& =x_{a} u_{a-1} t_{n-2, a}+u_{1} u_{2} \cdots u_{n} . \tag{6}
\end{align*}
$$

Also, Lemma 3.12 (d) (applied to $r=n-2$ and $j=b$) yields

$$
u_{b+(n-2)+1} t_{n-2, b}+x_{b+1} x_{b+2} \cdots x_{b+(n-2)+1}=t_{(n-2)+1, b} .
$$

In view of $(n-2)+1=n-1$, this rewrites as

$$
u_{b+n-1} t_{n-2, b}+x_{b+1} x_{b+2} \cdots x_{b+n-1}=t_{n-1, b} .
$$

Multiplying both sides of this equality by x_{b}, we obtain

$$
x_{b}\left(u_{b+n-1} t_{n-2, b}+x_{b+1} x_{b+2} \cdots x_{b+n-1}\right)=x_{b} t_{n-1, b}
$$

so that

$$
\begin{aligned}
& x_{b} t_{n-1, b}=x_{b}\left(u_{b+n-1} t_{n-2, b}+x_{b+1} x_{b+2} \cdots x_{b+n-1}\right) \\
& =x_{b} \underbrace{u_{b+n-1}}_{=u_{(b-1)+n}=u_{b-1}} t_{n-2, b}+\underbrace{\substack{x_{n}}}_{\begin{array}{c}
=x_{b} x_{b+1} \cdots x_{b+n-1} \\
=x_{(b-1)+1} x_{b-1} x_{1}+x_{1} \cdots x_{1} \cdots x_{(b-1)+n} \\
x_{b} \cdot x_{b+1} x_{b+2} \cdots x_{b+n-1}
\end{array}} \\
& \text { (by Lemma 3.7) } \\
& =x_{b} u_{b-1} t_{n-2, b}+x_{1} x_{2} \cdots x_{n} .
\end{aligned}
$$

Adding (6) to this equality, we obtain

$$
\begin{align*}
& x_{b} t_{n-1, b}+u_{a-1} t_{n-1, a-1} \\
& =x_{b} u_{b-1} t_{n-2, b}+x_{1} x_{2} \cdots x_{n}+x_{a} u_{a-1} t_{n-2, a}+u_{1} u_{2} \cdots u_{n} \tag{7}\\
& =x_{a} u_{a-1} t_{n-2, a}+x_{1} x_{2} \cdots x_{n}+x_{b} u_{b-1} t_{n-2, b}+u_{1} u_{2} \cdots u_{n} .
\end{align*}
$$

The same argument (applied to b and a instead of a and b) yields

$$
\begin{aligned}
& x_{a} t_{n-1, a}+u_{b-1} t_{n-1, b-1} \\
& =x_{b} u_{b-1} t_{n-2, b}+x_{1} x_{2} \cdots x_{n}+x_{a} u_{a-1} t_{n-2, a}+u_{1} u_{2} \cdots u_{n} .
\end{aligned}
$$

Comparing this with (7), we obtain $x_{a} t_{n-1, a}+u_{b-1} t_{n-1, b-1}=x_{b} t_{n-1, b}+u_{a-1} t_{n-1, a-1}$. This proves Lemma 3.12 (e).
(f) Applying Lemma 3.12 (e) to $a=i+1$ and $b=i$, we obtain

$$
\begin{aligned}
x_{i+1} t_{n-1, i+1}+u_{i-1} t_{n-1, i-1} & =x_{i} t_{n-1, i}+\underbrace{u_{i+1-1}}_{=u_{i}} \underbrace{t_{n-1, i+1-1}}_{=t_{n-1, i}} \\
& =x_{i} t_{n-1, i}+u_{i} t_{n-1, i}=\left(x_{i}+u_{i}\right) t_{n-1, i} .
\end{aligned}
$$

This proves Lemma 3.12(f).
(g) We shall prove Lemma 3.12 (g) by induction on q :

Induction base: Let us show that Lemma 3.12 (g) holds for $q=1$.
Indeed, let $j \in \mathbb{Z}$. The definition of $t_{1, j}$ yields

$$
\begin{aligned}
t_{1, j} & =\sum_{k=0}^{1} x_{j+1} x_{j+2} \cdots x_{j+k} \cdot u_{j+k+1} u_{j+k+2} \cdots u_{j+1} \\
& =\underbrace{x_{j+1} x_{j+2} \cdots x_{j+0}}_{=(\text {empty product })=1} \cdot \underbrace{u_{j+0+1} u_{j+0+2} \cdots u_{j+1}}_{=u_{j+1}}+\underbrace{x_{j+1} x_{j+2} \cdots x_{j+1}}_{=x_{j+1}} \cdot \underbrace{u_{j+1+1} u_{j+1+2} \cdots u_{j+1}}_{=(\text {empty product })=1} \\
& =u_{j+1}+x_{j+1}=x_{j+1}+u_{j+1} .
\end{aligned}
$$

Hence,

$$
t_{n-1, j+1} \underbrace{t_{1, j}}_{=x_{j+1}+u_{j+1}}=t_{n-1, j+1}\left(x_{j+1}+u_{j+1}\right)=\left(x_{j+1}+u_{j+1}\right) t_{n-1, j+1} .
$$

Comparing this with

$$
\begin{aligned}
& \underbrace{t_{n-1, j+1+1}}_{=t_{n-1, j+2}} \cdot \underbrace{x_{j+2} x_{j+3} \cdots x_{j+1+1}}_{\substack{x_{j+2} x_{j+3} \cdots x_{j+2} \\
x_{j+2}}}+u_{j} t_{n-1, j} \quad \underbrace{t_{1-1, j+1}}_{\begin{array}{c}
=t_{0, j+1}=1 \\
\text { (by Lemma } 3,12
\end{array}} \\
& \text { (by Lemma } 3.12 \text { (b), } \\
& \text { applied to } j+1 \text { instead of } j \text {) } \\
& =t_{n-1, j+2} x_{j+2}+u_{j} t_{n-1, j}=\underbrace{x_{j+2} t_{n-1, j+2}}_{\begin{array}{c}
=x_{j+2)+1} t_{n-1,(j+1)+1} \\
\text { (since } j+2=(j+1)+1)
\end{array}}+\underbrace{u_{j} t_{n-1, j}}_{\begin{array}{c}
=u_{(j+1)-1} t_{n-1,(j+1)-1} \\
(\text { since } j=(j+1)-1)
\end{array}} \\
& =x_{(j+1)+1} t_{n-1,(j+1)+1}+u_{(j+1)-1} t_{n-1,(j+1)-1}=\left(x_{j+1}+u_{j+1}\right) t_{n-1, j+1}
\end{aligned}
$$

(by Lemma 3.12 (f), applied to $i=j+1$),
we obtain

$$
t_{n-1, j+1+1} \cdot x_{j+2} x_{j+3} \cdots x_{j+1+1}+u_{j} t_{n-1, j} t_{1-1, j+1}=t_{n-1, j+1} t_{1, j} .
$$

Now, forget that we fixed j. We thus have proved that

$$
t_{n-1, j+1+1} \cdot x_{j+2} x_{j+3} \cdots x_{j+1+1}+u_{j} t_{n-1, j} t_{1-1, j+1}=t_{n-1, j+1} t_{1, j}
$$

for each $j \in \mathbb{Z}$. In other words, Lemma $3.12 \mathbf{(g)}$ holds for $q=1$. This completes the induction base 3^{3}

Induction step: Fix a positive integer p. Assume (as induction hypothesis) that Lemma 3.12 (g) holds for $q=p$. We must now show that Lemma 3.12 (g) holds for $q=p+1$.

We have assumed that Lemma 3.12 (g) holds for $q=p$. In other words, each $j \in \mathbb{Z}$ satisfies

$$
\begin{equation*}
t_{n-1, j+p+1} \cdot x_{j+2} x_{j+3} \cdots x_{j+p+1}+u_{j} t_{n-1, j} t_{p-1, j+1}=t_{n-1, j+1} t_{p, j} . \tag{8}
\end{equation*}
$$

Now, let $j \in \mathbb{Z}$ be arbitrary. Then, Lemma 3.12 (d) (applied to $r=p$) yields

$$
u_{j+p+1} t_{p, j}+x_{j+1} x_{j+2} \cdots x_{j+p+1}=t_{p+1, j} .
$$

Multiplying both sides of this equality by $t_{n-1, j+1}$, we obtain

$$
t_{n-1, j+1}\left(u_{j+p+1} t_{p, j}+x_{j+1} x_{j+2} \cdots x_{j+p+1}\right)=t_{n-1, j+1} t_{p+1, j} .
$$

[^2]
Hence,

$$
\text { (by Lemma } 3.12 \text { (e), applied to } a=j+1 \text { and } b=j+p+2 \text {) }
$$

$$
\begin{aligned}
& =(x_{j+p+2} t_{n-1, j+p+2}+\underbrace{u_{(j+1)-1}}_{=u_{j}} \underbrace{t_{n-1,(j+1)-1}}_{=t_{n-1, j}}) \cdot x_{j+2} x_{j+3} \cdots x_{j+p+1}+u_{j+p+1} u_{j} t_{n-1, j} t_{p-1, j+1} \\
& =\left(x_{j+p+2} t_{n-1, j+p+2}+u_{j} t_{n-1, j}\right) \cdot x_{j+2} x_{j+3} \cdots x_{j+p+1}+u_{j+p+1} u_{j} t_{n-1, j} t_{p-1, j+1} \\
& =x_{j+p+2} t_{n-1, j+p+2} \cdot x_{j+2} x_{j+3} \cdots x_{j+p+1}+u_{j} t_{n-1, j} \cdot x_{j+2} x_{j+3} \cdots x_{j+p+1} \\
& \quad+u_{j+p+1} u_{j} t_{n-1, j} t_{p-1, j+1}
\end{aligned}
$$

$$
\begin{aligned}
& t_{n-1, j+1} t_{p+1, j} \\
& =t_{n-1, j+1}\left(u_{j+p+1} t_{p, j}+x_{j+1} x_{j+2} \cdots x_{j+p+1}\right) \\
& =\underbrace{t_{n-1, j+1} u_{j+p+1}}_{=u_{j+p+1} t_{n-1, j+1}} t_{p, j}+t_{n-1, j+1} \cdot x_{j+1} x_{j+2} \cdots x_{j+p+1} \\
& =u_{j+p+1} \underbrace{t_{n-1, j+1} t_{p, j}}_{=t_{n-1, j+p+1} \cdot x_{j+2} x_{j+3} \cdots x_{j+p+1}+u_{j} t_{n-1, j} t_{p-1, j+1}}+t_{n-1, j+1} \cdot \underbrace{x_{j+1} x_{j+2} \cdots x_{j+p+1}}_{=x_{j+1} \cdot x_{j+2} x_{j+3} \cdots x_{j+p+1}} \\
& \text { (by (8) } \\
& =u_{j+p+1}\left(t_{n-1, j+p+1} \cdot x_{j+2} x_{j+3} \cdots x_{j+p+1}+u_{j} t_{n-1, j} t_{p-1, j+1}\right) \\
& +t_{n-1, j+1} \cdot x_{j+1} \cdot x_{j+2} x_{j+3} \cdots x_{j+p+1} \\
& =u_{j+p+1} t_{n-1, j+p+1} \cdot x_{j+2} x_{j+3} \cdots x_{j+p+1}+u_{j+p+1} u_{j} t_{n-1, j} t_{p-1, j+1} \\
& +t_{n-1, j+1} \cdot x_{j+1} \cdot x_{j+2} x_{j+3} \cdots x_{j+p+1} \\
& =\underbrace{\left(u_{j+p+1} t_{n-1, j+p+1}+t_{n-1, j+1} \cdot x_{j+1}\right)}_{=x_{j+1} t_{n-1, j+1}+u_{j+p+1} t_{n-1, j+p+1}} \cdot x_{j+2} x_{j+3} \cdots x_{j+p+1}+u_{j+p+1} u_{j} t_{n-1, j} t_{p-1, j+1} \\
& =x_{j+1} t_{n-1, j+1}+u_{(j+p+2)-1} t_{n-1,(j+p+2)-1} \\
& \text { (since } j+p+1=(j+p+2)-1) \\
& =\underbrace{\left(x_{j+1} t_{n-1, j+1}+u_{(j+p+2)-1} t_{n-1,(j+p+2)-1}\right)}_{=x_{j+p+2} t_{n-1, j+p+2}+u_{(j+1)-1} t_{n-1,(j+1)-1}} \cdot x_{j+2} x_{j+3} \cdots x_{j+p+1}+u_{j+p+1} u_{j} t_{n-1, j} t_{p-1, j+1}
\end{aligned}
$$

$$
\begin{aligned}
& =u_{j} t_{n-1, j}(\underbrace{u_{j+p+1}}_{=u_{(j+1)+(p-1)+1}} t_{p-1, j+1}+\underbrace{x_{j+2} x_{j+3} \cdots x_{j+p+1}}_{=x_{(j+1)+1} x_{(j+1)+2} \cdots x_{(j+1)+(p-1)+1}}) \\
& +\underbrace{x_{j+p+2} t_{n-1, j+p+2} \cdot x_{j+2} x_{j+3} \cdots x_{j+p+1}}_{=t_{n-1, j+p+2} \cdot x_{j+2} x_{j+3} \cdots x_{j+p+1} \cdot x_{j+p+2}} \\
& =u_{j} t_{n-1, j} \underbrace{\left(u_{(j+1)+(p-1)+1} t_{p-1, j+1}+x_{(j+1)+1} x_{(j+1)+2} \cdots x_{(j+1)+(p-1)+1}\right)}_{=t_{(p-1)+1, j+1}} \\
& \text { (by Lemma 3.12(d), applied to } j+1 \text { and } p-1 \text { instead of } j \text { and } r \text {) } \\
& +t_{n-1, j+p+2} \cdot \underbrace{x_{j+2} x_{j+3} \cdots x_{j+p+1} \cdot x_{j+p+2}}_{=x_{j+2} x_{j+3} \cdots x_{j+p+2}} \\
& =u_{j} t_{n-1, j} \underbrace{t_{(p-1)+1, j+1}}_{=t_{(p+1)-1, j+1}}+\underbrace{t_{n-1, j+p+2}}_{=t_{n-1, j+(p+1)+1}} \cdot \underbrace{x_{j+2} x_{j+3} \cdots x_{j+p+2}}_{=x_{j+2} x_{j+3} \cdots x_{j+(p+1)+1}} \\
& =u_{j} t_{n-1, j} t_{(p+1)-1, j+1}+t_{n-1, j+(p+1)+1} \cdot x_{j+2} x_{j+3} \cdots x_{j+(p+1)+1} \\
& =t_{n-1, j+(p+1)+1} \cdot x_{j+2} x_{j+3} \cdots x_{j+(p+1)+1}+u_{j} t_{n-1, j} t_{(p+1)-1, j+1} .
\end{aligned}
$$

In other words,

$$
t_{n-1, j+(p+1)+1} \cdot x_{j+2} x_{j+3} \cdots x_{j+(p+1)+1}+u_{j} t_{n-1, j} t_{(p+1)-1, j+1}=t_{n-1, j+1} t_{p+1, j}
$$

Now, forget that we fixed j. We thus have proved that each $j \in \mathbb{Z}$ satisfies

$$
t_{n-1, j+(p+1)+1} \cdot x_{j+2} x_{j+3} \cdots x_{j+(p+1)+1}+u_{j} t_{n-1, j} t_{(p+1)-1, j+1}=t_{n-1, j+1} t_{p+1, j}
$$

In other words, Lemma 3.12 (g) holds for $q=p+1$. This completes the induction step. Hence, Lemma $3.12(\mathbf{g})$ is proved by induction.
(h) In short, this follows from the definition of y because "everything is n periodic". Here is the argument in detail:

Convention 3.6 entails that the families $\left(u_{i}\right)_{i \in \mathbb{Z}^{\prime}}\left(x_{i}\right)_{i \in \mathbb{Z}}$ and $\left(y_{i}\right)_{i \in \mathbb{Z}}$ are n-periodic. In other words, the families $\left(u_{j}\right)_{j \in \mathbb{Z}^{\prime}}\left(x_{j}\right)_{j \in \mathbb{Z}}$ and $\left(y_{j}\right)_{j \in \mathbb{Z}}$ are n-periodic (here, we have renamed the index i as j).

Let $i \in \mathbb{Z}$. Let i^{\prime} be the unique element of $\{1,2, \ldots, n\}$ that is congruent to i modulo n. Thus, $i^{\prime} \equiv i \bmod n$. Hence, $u_{i^{\prime}}=u_{i}$ (since the family $\left(u_{j}\right)_{j \in \mathbb{Z}}$ is n periodic) and $y_{i^{\prime}}=y_{i}$ (since the family $\left(y_{j}\right)_{j \in \mathbb{Z}}$ is n-periodic). Also, from $i^{\prime} \equiv$ $i \bmod n$, we obtain $i^{\prime}+1 \equiv i+1 \bmod n$, so that $x_{i^{\prime}+1}=x_{i+1}$ (since the family $\left(x_{j}\right)_{j \in \mathbb{Z}}$ is n-periodic) and $t_{n-1, i^{\prime}+1}=t_{n-1, i+1}$ (by Lemma 3.12 (a), applied to $r=n-1$, $j=i^{\prime}+1$ and $j^{\prime}=i+1$. Also, from $i^{\prime} \equiv i \bmod n$, we obtain $i^{\prime}-1 \equiv i-1 \bmod n$, so that $u_{i^{\prime}-1}=u_{i-1}$ (since the family $\left(u_{j}\right)_{j \in \mathbb{Z}}$ is n-periodic) and $t_{n-1, i^{\prime}-1}=t_{n-1, i-1}$ (by Lemma 3.12 (a), applied to $r=n-1, j=i^{\prime}-1$ and $j^{\prime}=i-1$). Now, recall that
$y_{i^{\prime}}=y_{i}$; hence,

$$
\begin{aligned}
y_{i} & \left.=y_{i^{\prime}}=u_{i^{\prime}} \cdot \frac{u_{i^{\prime}-1} t_{n-1, i^{\prime}-1}}{x_{i^{\prime}+1} t_{n-1, i^{\prime}+1}} \quad \text { (by the definition of } y \text {, since } i^{\prime} \in\{1,2, \ldots, n\}\right) \\
= & u_{i} \cdot \frac{u_{i-1} t_{n-1, i-1}}{x_{i+1} t_{n-1, i+1}} \\
& \binom{\text { since } u_{i^{\prime}}=u_{i} \text { and } u_{i^{\prime}-1}=u_{i-1} \text { and } t_{n-1, i^{\prime}-1}=t_{n-1, i-1}}{\text { and } x_{i^{\prime}+1}=x_{i+1} \text { and } t_{n-1, i^{\prime}+1}=t_{n-1, i+1}} .
\end{aligned}
$$

Thus, Lemma 3.12 (h) is proved.
(i) We shall prove Lemma 3.12 (i) by induction on q :

Induction base: For each $j \in \mathbb{Z}$, we have

$$
\frac{t_{0, j}^{\prime}}{u_{j+1} u_{j+2} \cdots u_{j+0}}=\frac{t_{n-1, j+1}}{t_{n-1, j+0+1}} \cdot \frac{t_{0, j}}{x_{j+2} x_{j+3} \cdots x_{j+0+1}}
$$

4 In other words, Lemma 3.12 (i) holds for $q=0$. This completes the induction base.

Induction step: Fix $r \in \mathbb{N}$. Assume (as induction hypothesis) that Lemma 3.12 (i) holds for $q=r$. We must now show that Lemma 3.12 (i) holds for $q=r+1$.

We have assumed that Lemma 3.12 (i) holds for $q=r$. In other words, each $j \in \mathbb{Z}$ satisfies

$$
\begin{equation*}
\frac{t_{r, j}^{\prime}}{u_{j+1} u_{j+2} \cdots u_{j+r}}=\frac{t_{n-1, j+1}}{t_{n-1, j+r+1}} \cdot \frac{t_{r, j}}{x_{j+2} x_{j+3} \cdots x_{j+r+1}} . \tag{9}
\end{equation*}
$$

Now, let $j \in \mathbb{Z}$ be arbitrary. Then, (9) (applied to $j+1$ instead of j) yields

$$
\frac{t_{r, j+1}^{\prime}}{u_{(j+1)+1} u_{(j+1)+2} \cdots u_{(j+1)+r}}=\frac{t_{n-1,(j+1)+1}}{t_{n-1,(j+1)+r+1}} \cdot \frac{t_{r, j+1}}{x_{(j+1)+2^{2}} x_{(j+1)+3} \cdots x_{(j+1)+r+1}} .
$$

${ }^{4}$ Proof. Let $j \in \mathbb{Z}$. Lemma 3.12 (b) yields $t_{0, j}=1$. The same argument (applied to y and $t_{r, j}^{\prime}$ instead of x and $t_{r, j}$) yields $t_{0, j}^{\prime}=1$. From this equality, and from $u_{j+1} u_{j+2} \cdots u_{j+0}=($ empty product $)=$ 1 , we obtain

$$
\frac{t_{0, j}^{\prime}}{u_{j+1} u_{j+2} \cdots u_{j+0}}=\frac{1}{1}=1 .
$$

Comparing this with

$$
\begin{aligned}
& \frac{t_{n-1, j+1}}{t_{n-1, j+0+1}} \cdot \frac{t_{0, j}}{x_{j+2} x_{j+3} \cdots x_{j+0+1}} \\
& =\frac{t_{n-1, j+1}}{t_{n-1, j+0+1}} \cdot \frac{1}{1} \\
& \quad \quad\left(\text { since } t_{0, j}=1 \text { and } x_{j+2} x_{j+3} \cdots x_{j+0+1}=(\text { empty product })=1\right) \\
& =\frac{t_{n-1, j+1}}{t_{n-1, j+0+1}}=\frac{t_{n-1, j+1}}{t_{n-1, j+1}}=1,
\end{aligned}
$$

we obtain $\frac{t_{0, j}^{\prime}}{u_{j+1} u_{j+2} \cdots u_{j+0}}=\frac{t_{n-1, j+1}}{t_{n-1, j+0+1}} \cdot \frac{t_{0, j}}{x_{j+2} x_{j+3} \cdots x_{j+0+1}}$. Qed.

In other words,

$$
\begin{equation*}
\frac{t_{r, j+1}^{\prime}}{u_{j+2} u_{j+3} \cdots u_{j+r+1}}=\frac{t_{n-1, j+2}}{t_{n-1, j+r+2}} \cdot \frac{t_{r, j+1}}{x_{j+3} x_{j+4} \cdots x_{j+r+2}} \tag{10}
\end{equation*}
$$

(since $(j+1)+1=j+2$ and $(j+1)+2=j+3$ and $(j+1)+r+1=j+r+2$ and $(j+1)+r=j+r+1$ and $(j+1)+3=j+4)$.

But Lemma 3.12 (c) (applied to $j+1$ instead of j) yields

$$
x_{j+1} t_{r, j+1}+u_{j+1} u_{(j+1)+1} \cdots u_{(j+1)+r}=t_{r+1,(j+1)-1}=t_{r+1, j}
$$

(since $(j+1)-1=j)$. Hence,

$$
t_{r+1, j}=x_{j+1} t_{r, j+1}+u_{j+1} u_{(j+1)+1} \cdots u_{(j+1)+r}=x_{j+1} t_{r, j+1}+u_{j+1} u_{j+2} \cdots u_{j+r+1}
$$

(since $(j+1)+1=j+2$ and $(j+1)+r=j+r+1$). The same reasoning (applied to y and $t_{r, j}^{\prime}$ instead of x and $t_{r, j}$) yields

$$
t_{r+1, j}^{\prime}=y_{j+1} t_{r, j+1}^{\prime}+u_{j+1} u_{j+2} \cdots u_{j+r+1} .
$$

Hence,

$$
\begin{align*}
& \frac{t_{r+1, j}^{\prime}}{u_{j+1} u_{j+2} \cdots u_{j+r+1}}=\frac{y_{j+1} t_{r, j+1}^{\prime}+u_{j+1} u_{j+2} \cdots u_{j+r+1}}{u_{j+1} u_{j+2} \cdots u_{j+r+1}} \\
& =\underbrace{}_{\begin{array}{c}
\underbrace{}_{\left(\text {since } u_{j+1} u_{j+2} \cdots u_{j+r+1}=u_{j+1} \cdot u_{j+2} u_{j+3} \cdots u_{j+r+1}\right)} \\
\frac{y_{j+1} t_{r, j+1}^{\prime}}{u_{j+1} u_{j+2} \cdots u_{j+r+1}}
\end{array}+1}+1 \\
& =\underbrace{\frac{y_{j+1} t_{r, j+1}^{\prime}}{u_{j+1} \cdot u_{j+2} u_{j+3} \cdots u_{j+r+1}}}_{t^{\prime}}+1 \\
& =\frac{y_{j+1}}{u_{j+1}} \cdot \frac{t_{r, j+1}^{\prime}}{u_{j+2} u_{j+3} \cdots u_{j+r+1}} \\
& =\frac{y_{j+1}}{u_{j+1}} \cdot \underbrace{\frac{t_{r, j+1}^{\prime}}{u_{j+2} u_{j+3} \cdots u_{j+r+1}}} \quad+1 \\
& =\frac{t_{n-1, j+2}}{t_{n-1, j+r+2}} \cdot \frac{t_{r, j+1}}{x_{j+3} x_{j+4} \cdots x_{j+r+2}} \\
& \text { (by } \sqrt{10} \text {) } \\
& =\frac{y_{j+1}}{u_{j+1}} \cdot \frac{t_{n-1, j+2}}{t_{n-1, j+r+2}} \cdot \frac{t_{r, j+1}}{x_{j+3} x_{j+4} \cdots x_{j+r+2}}+1 . \tag{11}
\end{align*}
$$

But Lemma 3.12 (h) (applied to $i=j+1$) yields

$$
y_{j+1}=u_{j+1} \cdot \frac{u_{(j+1)-1} t_{n-1,(j+1)-1}}{x_{(j+1)+1} t_{n-1,(j+1)+1}}=u_{j+1} \cdot \frac{u_{j} t_{n-1, j}}{x_{j+2} t_{n-1, j+2}}
$$

(since $(j+1)-1=j$ and $(j+1)+1=j+2$). Dividing this equality by u_{j+1}, we find

$$
\frac{y_{j+1}}{u_{j+1}}=\frac{u_{j} t_{n-1, j}}{x_{j+2} t_{n-1, j+2}} .
$$

Hence, (11) becomes

$$
\begin{aligned}
\frac{t_{r+1, j}^{\prime}}{u_{j+1} u_{j+2} \cdots u_{j+r+1}} & =\underbrace{\frac{y_{j+1}}{u_{j+1}}} \cdot \frac{t_{n-1, j+2}}{t_{n-1, j+r+2}} \cdot \frac{t_{r, j+1}}{x_{j+3} x_{j+4} \cdots x_{j+r+2}}+1 \\
& =\frac{u_{j} t_{n-1, j}}{x_{j+2} t_{n-1, j+2}} \\
= & \frac{u_{j} t_{n-1, j}}{x_{j+2} t_{n-1, j+2}} \cdot \frac{t_{n-1, j+2}}{t_{n-1, j+r+2}} \cdot \frac{t_{r, j+1}}{x_{j+3} x_{j+4} \cdots x_{j+r+2}}+1 \\
& =\frac{u_{j} t_{n-1, j} t_{r, j+1}}{t_{n-1, j+r+2} \cdot x_{j+2} \cdot x_{j+3} x_{j+4} \cdots x_{j+r+2}}+1 \\
& =\frac{u_{j} t_{n-1, j} t_{r, j+1}}{t_{n-1, j+r+2} \cdot x_{j+2} x_{j+3} \cdots x_{j+r+2}}+1
\end{aligned}
$$

$$
\left(\text { since } x_{j+2} \cdot x_{j+3} x_{j+4} \cdots x_{j+r+2}=x_{j+2} x_{j+3} \cdots x_{j+r+2}\right)
$$

$$
=\frac{u_{j} t_{n-1, j} t_{r, j+1}+t_{n-1, j+r+2} \cdot x_{j+2} x_{j+3} \cdots x_{j+r+2}}{t_{n-1, j+r+2} \cdot x_{j+2} x_{j+3} \cdots x_{j+r+2}}
$$

$$
\begin{equation*}
=\frac{t_{n-1, j+r+2} \cdot x_{j+2} x_{j+3} \cdots x_{j+r+2}+u_{j} t_{n-1, j} t_{r, j+1}}{t_{n-1, j+r+2} \cdot x_{j+2} x_{j+3} \cdots x_{j+r+2}} . \tag{12}
\end{equation*}
$$

But Lemma 3.12 (g) (applied to $q=r+1$) yields

$$
t_{n-1, j+(r+1)+1} \cdot x_{j+2} x_{j+3} \cdots x_{j+(r+1)+1}+u_{j} t_{n-1, j} t_{(r+1)-1, j+1}=t_{n-1, j+1} t_{r+1, j} .
$$

This rewrites as

$$
\begin{equation*}
t_{n-1, j+r+2} \cdot x_{j+2} x_{j+3} \cdots x_{j+r+2}+u_{j} t_{n-1, j} t_{r, j+1}=t_{n-1, j+1} t_{r+1, j} \tag{13}
\end{equation*}
$$

(since $j+(r+1)+1=j+r+2$ and $(r+1)-1=r$). Hence, 12 becomes

$$
\begin{align*}
\frac{t_{r+1, j}^{\prime}}{u_{j+1} u_{j+2} \cdots u_{j+r+1}} & =\frac{t_{n-1, j+r+2} \cdot x_{j+2} x_{j+3} \cdots x_{j+r+2}+u_{j} t_{n-1, j} t_{r, j+1}}{t_{n-1, j+r+2} \cdot x_{j+2} x_{j+3} \cdots x_{j+r+2}} \\
& =\frac{t_{n-1, j+1} t_{r+1, j}}{t_{n-1, j+r+2} \cdot x_{j+2} x_{j+3} \cdots x_{j+r+2}} \quad(\text { by (13)) } \tag{13}\\
& =\frac{t_{n-1, j+1}}{t_{n-1, j+r+2}} \cdot \frac{t_{r+1, j}}{x_{j+2} x_{j+3} \cdots x_{j+r+2}} \\
& =\frac{t_{n-1, j+1}}{t_{n-1, j+(r+1)+1}} \cdot \frac{t_{r+1, j}}{x_{j+2} x_{j+3} \cdots x_{j+(r+1)+1}}
\end{align*}
$$

(since $j+r+2=j+(r+1)+1$).
Forget that we fixed j. We thus have shown that each $j \in \mathbb{Z}$ satisfies

$$
\frac{t_{r+1, j}^{\prime}}{u_{j+1} u_{j+2} \cdots u_{j+r+1}}=\frac{t_{n-1, j+1}}{t_{n-1, j+(r+1)+1}} \cdot \frac{t_{r+1, j}}{x_{j+2} x_{j+3} \cdots x_{j+(r+1)+1}} .
$$

In other words, Lemma 3.12 (i) holds for $q=r+1$. This completes the induction step. Hence, Lemma 3.12 (i) is proved by induction.
(j) Let $j \in \mathbb{Z}$. Then, $u_{j+n}=u_{j}$ (by Convention 3.6). Lemma 3.12 (i) (applied to $q=n-1$) yields

$$
\begin{align*}
\frac{t_{n-1, j}^{\prime}}{u_{j+1} u_{j+2} \cdots u_{j+n-1}} & =\frac{t_{n-1, j+1}}{t_{n-1, j+(n-1)+1}} \cdot \frac{t_{n-1, j}}{x_{j+2} x_{j+3} \cdots x_{j+(n-1)+1}} \\
& =\frac{t_{n-1, j+1}}{t_{n-1, j+n}} \cdot \frac{t_{n-1, j}}{x_{j+2} x_{j+3} \cdots x_{j+n}} \tag{14}
\end{align*}
$$

(since $(n-1)+1=n)$. But $j \equiv j+n \bmod n$; hence, Lemma 3.12 (a) (applied to $r=n-1$ and $j^{\prime}=j+n$) yields $t_{n-1, j}=t_{n-1, j+n}$. Hence, (14) becomes

$$
\begin{aligned}
& \frac{t_{n-1, j}^{\prime}}{u_{j+1} u_{j+2} \cdots u_{j+n-1}}= \frac{t_{n-1, j+1}}{t_{n-1, j+n}} \cdot \frac{t_{n-1, j}}{x_{j+2} x_{j+3} \cdots x_{j+n}}=\frac{t_{n-1, j+1}}{t_{n-1, j+n}} \cdot \frac{t_{n-1, j+n}}{x_{j+2} x_{j+3} \cdots x_{j+n}} \\
& \quad\left(\text { since } t_{n-1, j}=t_{n-1, j+n}\right) \\
&= \frac{t_{n-1, j+1}}{x_{j+2} x_{j+3} \cdots x_{j+n}}=\frac{t_{n-1, j+1} x_{j+1}}{x_{j+2} x_{j+3} \cdots x_{j+n} \cdot x_{j+1}}=\frac{t_{n-1, j+1} x_{j+1}}{x_{1} x_{2} \cdots x_{n}}
\end{aligned}
$$

(since $x_{j+2} x_{j+3} \cdots x_{j+n} \cdot x_{j+1}=x_{j+1} \cdot x_{j+2} x_{j+3} \cdots x_{j+n}=x_{j+1} x_{j+2} \cdots x_{j+n}=x_{1} x_{2} \cdots x_{n}$ (by Lemma 3.7). Hence,

$$
\begin{aligned}
\frac{t_{n-1, j+1} x_{j+1}}{x_{1} x_{2} \cdots x_{n}} & =\frac{t_{n-1, j}^{\prime}}{u_{j+1} u_{j+2} \cdots u_{j+n-1}}=\frac{t_{n-1, j}^{\prime} u_{j+n}}{u_{j+1} u_{j+2} \cdots u_{j+n-1} \cdot u_{j+n}}=\frac{t_{n-1, j}^{\prime} u_{j+n}}{u_{j+1} u_{j+2} \cdots u_{j+n}} \\
& =\frac{\left(\text { since } u_{j+1} u_{j+2} \cdots u_{j+n-1} \cdot u_{j+n}=u_{j+1} u_{j+2} \cdots u_{j+n}\right)}{u_{j+1} u_{j+2} \cdots u_{j+n}} \quad\left(\text { since } u_{j+n}=u_{j}\right) \\
& =\frac{t_{n-1, j}^{\prime} u_{j}}{u_{1} u_{2} \cdots u_{n}}
\end{aligned}
$$

(since $u_{j+1} u_{j+2} \cdots u_{j+n}=u_{1} u_{2} \cdots u_{n}$ (by Lemma 3.7)). This proves Lemma 3.12 (\mathbf{j}).
(k) Let $i \in \mathbb{Z}$. Applying Lemma 3.12 (\mathbf{j}) to $j=i-1$, we obtain

$$
\frac{t_{n-1, i-1}^{\prime} u_{i-1}}{u_{1} u_{2} \cdots u_{n}}=\frac{t_{n-1,(i-1)+1} x_{(i-1)+1}}{x_{1} x_{2} \cdots x_{n}}=\frac{t_{n-1, i} x_{i}}{x_{1} x_{2} \cdots x_{n}}
$$

(since $(i-1)+1=i$). Applying Lemma $3.12(\mathbf{j})$ to $j=i+1$, we obtain

$$
\frac{t_{n-1, i+1}^{\prime} u_{i+1}}{u_{1} u_{2} \cdots u_{n}}=\frac{t_{n-1,(i+1)+1} x_{(i+1)+1}}{x_{1} x_{2} \cdots x_{n}}=\frac{t_{n-1, i+2} x_{i+2}}{x_{1} x_{2} \cdots x_{n}}
$$

(since $(i+1)+1=i+2$). Dividing the former equality by the latter, we obtain

$$
\frac{t_{n-1, i-1}^{\prime} u_{i-1}}{u_{1} u_{2} \cdots u_{n}} / \frac{t_{n-1, i+1}^{\prime} u_{i+1}}{u_{1} u_{2} \cdots u_{n}}=\frac{t_{n-1, i} x_{i}}{x_{1} x_{2} \cdots x_{n}} / \frac{t_{n-1, i+2} x_{i+2}}{x_{1} x_{2} \cdots x_{n}} .
$$

This rewrites as

$$
\frac{t_{n-1, i-1}^{\prime} u_{i-1}}{t_{n-1, i+1}^{\prime} u_{i+1}}=\frac{t_{n-1, i} x_{i}}{t_{n-1, i+2} x_{i+2}}
$$

(since $\frac{t_{n-1, i-1}^{\prime} u_{i-1}}{u_{1} u_{2} \cdots u_{n}} / \frac{t_{n-1, i+1}^{\prime} u_{i+1}}{u_{1} u_{2} \cdots u_{n}}=\frac{t_{n-1, i-1}^{\prime} u_{i-1}}{t_{n-1, i+1}^{\prime} u_{i+1}}$ and
$\left.\frac{t_{n-1, i} x_{i}}{x_{1} x_{2} \cdots x_{n}} / \frac{t_{n-1, i+2} x_{i+2}}{x_{1} x_{2} \cdots x_{n}}=\frac{t_{n-1, i} x_{i}}{t_{n-1, i+2} x_{i+2}}\right)$. Multiplying both sides of this equality by u_{i+1}, we obtain

$$
\begin{equation*}
\frac{t_{n-1, i-1}^{\prime} u_{i-1}}{t_{n-1, i+1}^{\prime}}=u_{i+1} \cdot \frac{t_{n-1, i} x_{i}}{t_{n-1, i+2} x_{i+2}} . \tag{15}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& \text { applied to } i+1 \text { instead of } i \text {) } \\
& =u_{i+1} \cdot \frac{t_{n-1, i} x_{i}}{t_{n-1, i+2} x_{i+2}} \cdot u_{i} /\left(u_{i+1} \cdot \frac{u_{(i+1)-1} t_{n-1,(i+1)-1}}{x_{(i+1)+1} t_{n-1,(i+1)+1}}\right) \\
& =u_{i+1} \cdot \frac{t_{n-1, i} x_{i}}{t_{n-1, i+2} x_{i+2}} \cdot u_{i} /\left(u_{i+1} \cdot \frac{u_{i} t_{n-1, i}}{x_{i+2} t_{n-1, i+2}}\right) \\
& =x_{i} .
\end{aligned}
$$

This proves Lemma 3.12 (k).
Lemma 3.13. Let $x \in \mathbb{K}^{n}$ be an n-tuple. For each $j \in \mathbb{Z}$, let

$$
q_{j}=\sum_{k=0}^{n-1} \underbrace{x_{j+1} x_{j+2} \cdots x_{j+k}}_{\prod_{i=1}^{k} x_{j+i}} \cdot \underbrace{u_{j+k+1} u_{j+k+2} \cdots u_{j+n-1}}_{=\prod_{i=k+1}^{n-1} u_{j+i}} .
$$

Let $z \in \mathbb{K}^{n}$ be such that

$$
z_{i}=u_{i} \cdot \frac{u_{i-1} q_{i-1}}{x_{i+1} q_{i+1}} \quad \text { for each } i \in\{1,2, \ldots, n\}
$$

| Then, $\mathbf{f}_{u}(x)=z$.
Proof of Lemma 3.13. Let $t_{r, j}$ and y be as in Definition 3.8. Then, for each $j \in \mathbb{Z}$, we have

$$
\begin{align*}
& t_{n-1, j}= \sum_{k=0}^{n-1} \underbrace{x_{j+1} x_{j+2} \cdots x_{j+k}}_{=\prod_{i=1}^{k} x_{j+i}} \cdot \underbrace{u_{j+k+1} u_{j+k+2} \cdots u_{j+n-1}}_{=\prod_{i=k+1}^{n-1} u_{j+i}} \\
&\left.=q_{j} \quad \text { (by the definition of } t_{n-1, j}\right) \\
&\left.\quad \text { (by the definition of } q_{j}\right) . \tag{16}
\end{align*}
$$

Now, let $i \in\{1,2, \ldots, n\}$. Then, $t_{n-1, i-1}=q_{i-1}$ (by (16), applied to $j=i-1$) and $t_{n-1, i+1}=q_{i+1}$ (by (16), applied to $j=i+1$). Now, the definition of y yields

$$
\begin{aligned}
y_{i} & =u_{i} \cdot \frac{u_{i-1} t_{n-1, i-1}}{x_{i+1} t_{n-1, i+1}}=u_{i} \cdot \frac{u_{i-1} q_{i-1}}{x_{i+1} q_{i+1}} \quad\left(\text { since } t_{n-1, i-1}=q_{i-1} \text { and } t_{n-1, i+1}=q_{i+1}\right) \\
& =z_{i}
\end{aligned}
$$

(since we assumed that $z_{i}=u_{i} \cdot \frac{u_{i-1} q_{i-1}}{x_{i+1} q_{i+1}}$).
Forget that we fixed i. We thus have shown that $y_{i}=z_{i}$ for each $i \in\{1,2, \ldots, n\}$. In other words, $y=z$. Hence, $z=y=\mathbf{f}_{u}(x)$ (since $\mathbf{f}_{u}(x)$ was defined to be y). This proves Lemma 3.13 .

For future convenience, let us restate Lemma 3.13 with different labels:
Lemma 3.14. Let $y \in \mathbb{K}^{n}$ be an n-tuple. For each $j \in \mathbb{Z}$, let

$$
r_{j}=\sum_{k=0}^{n-1} \underbrace{y_{j+1} y_{j+2} \cdots y_{j+k}}_{=\prod_{i=1}^{k} y_{j+i}} \cdot \underbrace{u_{j+k+1} u_{j+k+2} \cdots u_{j+n-1}}_{=\prod_{i=k+1}^{n-1} u_{j+i}} .
$$

Let $x \in \mathbb{K}^{n}$ be such that

$$
x_{i}=u_{i} \cdot \frac{u_{i-1} r_{i-1}}{y_{i+1} r_{i+1}} \quad \text { for each } i \in\{1,2, \ldots, n\}
$$

Then, $\mathbf{f}_{u}(y)=x$.
Proof of Lemma 3.14. Lemma 3.14 is just Lemma 3.13, with x, q_{j} and z renamed as y, r_{j} and x.

We are now ready for the proof of Theorem 3.11:

Proof of Theorem 3.11 (a) Let $x \in \mathbb{K}^{n}$. We shall prove that $\left(\mathbf{f}_{u} \circ \mathbf{f}_{u}\right)(x)=x$.
Let $t_{r, j}$ and y be as in Definition 3.8. Then, $\mathbf{f}_{u}(x)=y$ (by the definition of \mathbf{f}_{u}), so that $y=\mathbf{f}_{u}(x)$. Let $t_{r, j}^{\prime}$ (for each $r \in \mathbb{N}$ and $j \in \mathbb{Z}$) be as in Lemma 3.12. The definition of $t_{n-1, j}^{\prime}$ shows that

$$
t_{n-1, j}^{\prime}=\sum_{k=0}^{n-1} \underbrace{y_{j+1} y_{j+2} \cdots y_{j+k}}_{=\prod_{i=1}^{k} y_{j+i}} \cdot \underbrace{u_{j+k+1} u_{j+k+2} \cdots u_{j+n-1}}_{=\prod_{i=k+1}^{n-1} u_{j+i}}
$$

for each $j \in \mathbb{Z}$. Lemma $3.12 \mathbf{(k)}$ shows that

$$
x_{i}=u_{i} \cdot \frac{u_{i-1} t_{n-1, i-1}^{\prime}}{y_{i+1} t_{n-1, i+1}^{\prime}} \quad \text { for each } i \in\{1,2, \ldots, n\}
$$

Thus, Lemma 3.14 (applied to $r_{j}=t_{n-1, j}^{\prime}$) yields that $\mathbf{f}_{u}(y)=x$. Hence, $x=$ $\mathbf{f}_{u}(\underbrace{y}_{=\mathbf{f}_{u}(x)})=\mathbf{f}_{u}\left(\mathbf{f}_{u}(x)\right)=\left(\mathbf{f}_{u} \circ \mathbf{f}_{u}\right)(x)$. In other words, $\left(\mathbf{f}_{u} \circ \mathbf{f}_{u}\right)(x)=x$.

Forget that we fixed x. We thus have proved that $\left(\mathbf{f}_{u} \circ \mathbf{f}_{u}\right)(x)=x$ for each $x \in \mathbb{K}^{n}$. In other words, $\mathbf{f}_{u} \circ \mathbf{f}_{u}=$ id. In other words, \mathbf{f}_{u} is an involution. This proves Theorem 3.11 (a).
(b) Let $t_{r, j}$ be as in Definition 3.8. Note that the y from Definition 3.8 is precisely the y in Theorem 3.11 (b) (because both y^{\prime} s satisfy $\mathbf{f}_{u}(x)=y$).

Lemma 3.12 (a) yields $t_{n-1,0}=t_{n-1, n}($ since $0 \equiv n \bmod n)$ and $t_{n-1,1}=t_{n-1, n+1}$ (since $1 \equiv n+1 \bmod n$). Multiplying these two equalities, we obtain $t_{n-1,0} t_{n-1,1}=$ $t_{n-1, n} t_{n-1, n+1}$, whence

$$
\begin{equation*}
\frac{t_{n-1,0} t_{n-1,1}}{t_{n-1, n} t_{n-1, n+1}}=1 . \tag{17}
\end{equation*}
$$

We have

$$
\begin{aligned}
& y_{1} y_{2} \cdots y_{n}=\prod_{i=1}^{n} \underbrace{y_{i}}=\prod_{i=1}^{n}\left(u_{i} \cdot \frac{u_{i-1} t_{n-1, i-1}}{x_{i+1} t_{n-1, i+1}}\right) \\
& =u_{i} \cdot \frac{u_{i-1} t_{n-1, i-1}}{x_{i+1} t_{n-1, i+1}} \\
& \text { (by the definition of } y \\
& \text { in Definition } 3.8 \\
& =\left(\prod_{i=1}^{n} u_{i}\right) \cdot \frac{\left(\prod_{i=1}^{n} u_{i-1}\right) \cdot\left(\prod_{i=1}^{n} t_{n-1, i-1}\right)}{\left(\prod_{i=1}^{n} x_{i+1}\right) \cdot\left(\prod_{i=1}^{n} t_{n-1, i+1}\right)} \\
& =\underbrace{\left(\prod_{i=1}^{n} u_{i}\right)}_{=u_{1} u_{2} \cdots u_{n}} \cdot \underbrace{\left(\prod_{i=1}^{n} u_{i-1}\right)}_{\substack{=u_{0} u_{1} \cdots u_{n-1} \\
=u_{1} u_{2} \cdots u_{n}}} \cdot \underbrace{\left(\prod_{i=1}^{n} t_{n-1, i-1}\right)}_{=t_{n-1,0} t_{n-1,1} \cdots t_{n-1, n-1}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(u_{1} u_{2} \cdots u_{n}\right) \cdot\left(u_{1} u_{2} \cdots u_{n}\right) \cdot \frac{t_{n-1,0} t_{n-1,1} \cdots t_{n-1, n+1}}{t_{n-1, n} t_{n-1, n+1}} \\
& /\left(\left(x_{1} x_{2} \cdots x_{n}\right) \cdot \frac{t_{n-1,0} t_{n-1,1} \cdots t_{n-1, n+1}}{t_{n-1,0} t_{n-1,1}}\right) \\
& =\frac{\left(u_{1} u_{2} \cdots u_{n}\right)^{2}}{x_{1} x_{2} \cdots x_{n}} \cdot \underbrace{\frac{t_{n-1,0} t_{n-1,1}}{t_{n-1, n} t_{n-1, n+1}}}_{\text {(by } \begin{array}{c}
\text { (17) })
\end{array}}=\frac{\left(u_{1} u_{2} \cdots u_{n}\right)^{2}}{x_{1} x_{2} \cdots x_{n}},
\end{aligned}
$$

so that

$$
y_{1} y_{2} \cdots y_{n} \cdot x_{1} x_{2} \cdots x_{n}=\left(u_{1} u_{2} \cdots u_{n}\right)^{2}
$$

This proves Theorem 3.11 (b).
(c) Let $t_{r, j}$ be as in Definition 3.8. Note that the y from Definition 3.8 is precisely the y in Theorem 3.11 (c) (because both y^{\prime} s satisfy $\mathbf{f}_{u}(x)=y$).

Let $i \in \mathbb{Z}$. Then,

$$
\begin{align*}
& u_{i}+ \\
& =u_{i} \cdot \underbrace{x_{i+1} t_{n-1, i+1}}_{\frac{u_{i-1} t_{n-1, i-1}}{y_{i}}} \\
& \text { (by Lemma } 3.12 \text { (h)) } \\
& =u_{i}+u_{i} \cdot \frac{u_{i-1} t_{n-1, i-1}}{x_{i+1} t_{n-1, i+1}}=u_{i}\left(1+\frac{u_{i-1} t_{n-1, i-1}}{x_{i+1} t_{n-1, i+1}}\right)=u_{i} \cdot \frac{x_{i+1} t_{n-1, i+1}+u_{i-1} t_{n-1, i-1}}{x_{i+1} t_{n-1, i+1}} \\
& =\frac{u_{i}}{x_{i+1} t_{n-1, i+1}} \underbrace{\left(x_{i+1} t_{n-1, i+1}+u_{i-1} t_{n-1, i-1}\right)}_{=\left(x_{i}+u_{i}\right) t_{n-1, i}} \\
& \text { (by Lemma } 3.12 \text { (f)) } \\
& =\frac{u_{i}}{x_{i+1} t_{n-1, i+1}}\left(x_{i}+u_{i}\right) t_{n-1, i} . \tag{18}
\end{align*}
$$

Now,

$$
\begin{aligned}
& \frac{1}{u_{i}}+\frac{1}{y_{i}}=\underbrace{\left(u_{i}+y_{i}\right)}_{u_{i}} \quad /\left(u_{i} \cdot y_{i}\right)=\frac{u_{i}}{x_{i+1} t_{n-1, i+1}}\left(x_{i}+u_{i}\right) t_{n-1, i} /\left(u_{i} \cdot y_{i}\right) \\
& =\frac{u_{i}}{x_{i+1} t_{n-1, i+1}}\left(x_{i}+u_{i}\right) t_{n-1, i} \\
& \text { (by 18) } \\
& =\frac{1}{x_{i+1} t_{n-1, i+1}}\left(x_{i}+u_{i}\right) t_{n-1, i} / \quad \underbrace{y_{i}} \\
& =u_{i} \cdot \frac{u_{i-1} t_{n-1, i-1}}{x_{i+1} t_{n-1, i+1}} \\
& \text { (by Lemma 3.12 (h)) } \\
& =\frac{1}{x_{i+1} t_{n-1, i+1}}\left(x_{i}+u_{i}\right) t_{n-1, i} /\left(u_{i} \cdot \frac{u_{i-1} t_{n-1, i-1}}{x_{i+1} t_{n-1, i+1}}\right)=\frac{\left(x_{i}+u_{i}\right) t_{n-1, i}}{u_{i} u_{i-1} t_{n-1, i-1}} .
\end{aligned}
$$

The same argument (applied to $i+1$ instead of i) yields

$$
\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}=\frac{\left(x_{i+1}+u_{i+1}\right) t_{n-1, i+1}}{u_{i+1} u_{(i+1)-1} t_{n-1,(i+1)-1}}=\frac{\left(x_{i+1}+u_{i+1}\right) t_{n-1, i+1}}{u_{i+1} u_{i} t_{n-1, i}}
$$

(since $(i+1)-1=i$). Multiplying (18) with this equality, we obtain

$$
\begin{aligned}
\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right)= & \frac{u_{i}}{x_{i+1} t_{n-1, i+1}}\left(x_{i}+u_{i}\right) t_{n-1, i} \cdot \frac{\left(x_{i+1}+u_{i+1}\right) t_{n-1, i+1}}{u_{i+1} u_{i} t_{n-1, i}} \\
= & \underbrace{\left(x_{i}+u_{i}\right)}_{=u_{i}+x_{i}}
\end{aligned} \cdot \underbrace{x_{i+1} u_{i+1}}_{\underbrace{}_{i+1}+u_{i+1}}=\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right) .
$$

This proves Theorem 3.11 (c).
(d) Let $t_{r, j}$ be as in Definition 3.8. Note that the y from Definition 3.8 is precisely the y in Theorem 3.11 (d) (because both y^{\prime} s satisfy $\mathbf{f}_{u}(x)=y$).

We have

$$
\begin{align*}
\prod_{i=1}^{n} x_{i+1} & =x_{2} x_{3} \cdots x_{n+1}=x_{1} x_{2} \cdots x_{n} \\
& =\prod_{i=1}^{n} x_{i} \tag{19}
\end{align*}
$$

(by Lemma 3.7)
and

$$
\begin{align*}
\prod_{i=1}^{n} t_{n-1, i+1}= & \prod_{i=2}^{n+1} t_{n-1, i} \quad \text { (here, we have substituted } \\
= & \underbrace{t_{n-1, n+1}}_{\substack{\left.=t_{n-1,1} \\
\text { s. by Lemman 3.12 (a), } \\
\text { since } n+1 \equiv 1 \bmod n\right)}} \prod_{i=2}^{n} t_{n-1, i}=t_{n-1,1} \prod_{i=2}^{n} t_{n-1, i} \\
= & \prod_{i=1}^{n} t_{n-1, i .} .
\end{align*}
$$

Every $i \in \mathbb{Z}$ satisfies (18) (as we have shown in the proof of Theorem 3.11 (c) above). Hence,

$$
\begin{aligned}
& \prod_{i=1}^{n} \underbrace{\left(u_{i}+y_{i}\right)}_{u_{i}}=\prod_{i=1}^{n}\left(\frac{u_{i}}{x_{i+1} t_{n-1, i+1}}\left(x_{i}+u_{i}\right) t_{n-1, i}\right) \\
& =\frac{\prod_{i=1}^{n} u_{i}}{\left(\prod_{i=1}^{n} x_{i+1}\right)\left(\prod_{i=1}^{n} t_{n-1, i+1}\right)}\left(\prod_{i=1}^{n}\left(x_{i}+u_{i}\right)\right)\left(\prod_{i=1}^{n} t_{n-1, i}\right) \\
& =\frac{\prod_{i=1}^{n} u_{i}}{\left(\prod_{i=1}^{n} x_{i}\right)\left(\prod_{i=1}^{n} t_{n-1, i}\right)}\left(\prod_{i=1}^{n}\left(x_{i}+u_{i}\right)\right)\left(\prod_{i=1}^{n} t_{n-1, i}\right) \\
& \text { (by (19) and (20)) } \\
& =\left(\prod_{i=1}^{n} u_{i}\right) \underbrace{\prod_{i=1}^{n}\left(x_{i}+u_{i}\right)}_{\prod_{i=1}^{\prod_{i=1}^{n} x_{i}}} \prod_{i=1}^{n} u_{i}) \prod_{i=1}^{n} \frac{x_{i}+u_{i}}{x_{i}} . \\
& =\prod_{i=1}^{n} \frac{x_{i}+u_{i}}{x_{i}}
\end{aligned}
$$

Thus,

$$
\begin{gathered}
\frac{\prod_{i=1}^{n}\left(u_{i}+y_{i}\right)}{\prod_{i=1}^{n} u_{i}}=\prod_{i=1}^{n} \underbrace{\frac{x_{i}+u_{i}}{x_{i}}}_{\underbrace{}_{i}+x_{i}}=\prod_{i=1}^{n} \frac{u_{i}+x_{i}}{x_{i}}, \\
=\frac{x_{i}}{x_{i}}
\end{gathered}
$$

so that

$$
\prod_{i=1}^{n} \frac{u_{i}+x_{i}}{x_{i}}=\frac{\prod_{i=1}^{n}\left(u_{i}+y_{i}\right)}{\prod_{i=1}^{n} u_{i}}=\prod_{i=1}^{n} \frac{u_{i}+y_{i}}{u_{i}} .
$$

This proves Theorem 3.11 (d).
Let us observe one more property of the involution \mathbf{f}_{u} (even though we will have no use for it):

Proposition 3.15. Let $x \in \mathbb{K}^{n}$ be such that $x_{1} x_{2} \cdots x_{n}=u_{1} u_{2} \cdots u_{n}$. Then, $\mathbf{f}_{u}(x)=x$.

Proof of Proposition 3.15. Let $t_{r, j}$ and y be as in Definition 3.8. Then, $\mathbf{f}_{u}(x)=y$ (by the definition of \mathbf{f}_{u}).

Let $i \in \mathbb{Z}$. We shall first show that $u_{i-1} t_{n-1, i-1}=x_{i} t_{n-1, i}$.
Indeed, the definition of $t_{n-1, i}$ yields

$$
t_{n-1, i}=\sum_{k=0}^{n-1} x_{i+1} x_{i+2} \cdots x_{i+k} \cdot u_{i+k+1} u_{i+k+2} \cdots u_{i+n-1} .
$$

Multiplying both sides of this equality by x_{i}, we find
(here, we have split off the addend for $k=n-1$ from the sum)

$$
=u_{1} u_{2} \cdots u_{n}+\sum_{k=1}^{n-1} \underbrace{x_{i} x_{i+1} \cdots x_{i+(k-1)}}_{=x_{i} x_{i+1} \cdots x_{i+k-1}} \cdot \underbrace{u_{i+(k-1)+1} u_{i+(k-1)+2} \cdots u_{i+n-1}}_{=u_{i+k} u_{i+k+1} \cdots u_{i+n-1}}
$$

$$
\begin{equation*}
=u_{1} u_{2} \cdots u_{n}+\sum_{k=1}^{n-1} x_{i} x_{i+1} \cdots x_{i+k-1} \cdot u_{i+k} u_{i+k+1} \cdots u_{i+n-1} . \tag{21}
\end{equation*}
$$

On the other hand, Convention 3.6 yields that $u_{j}=u_{j+n}$ for each $j \in \mathbb{Z}$. Applying this to $j=i-1$, we obtain

$$
u_{i-1}=u_{i-1+n}=u_{i+n-1} \quad(\text { since } i-1+n=i+n-1) .
$$

Furthermore,

$$
\begin{aligned}
t_{n-1, i-1}= & \sum_{k=0}^{n-1} \underbrace{x_{(i-1)+1} x_{(i-1)+2} \cdots x_{(i-1)+k}}_{=x_{i} x_{i+1} \cdots x_{i+k-1}} \cdot \underbrace{u_{(i-1)+k+1} u_{(i-1)+k+2} \cdots u_{(i-1)+n-1}}_{=u_{i+k} u_{i+k+1} \cdots u_{i+n-2}} \\
& \left.\quad \text { (by the definition of } t_{n-1, i-1}\right) \\
= & \sum_{k=0}^{n-1} x_{i} x_{i+1} \cdots x_{i+k-1} \cdot u_{i+k} u_{i+k+1} \cdots u_{i+n-2} .
\end{aligned}
$$

$$
\begin{aligned}
& =\underbrace{x_{1} x_{2} \cdots x_{n}}_{=u_{1} u_{2} \cdots u_{n}}+\underbrace{\sum_{k=0}^{n-2} x_{i} x_{i+1} \cdots x_{i+k} \cdot u_{i+k+1} u_{i+k+2} \cdots u_{i+n-1}} \\
& \begin{array}{l}
=\sum_{k=1}^{n-1} x_{i} x_{i+1} \cdots x_{i+(k-1)} \cdot u_{i+(k-1)+1} u_{i+(k-1)+2} \cdots u_{i+n-1} \\
\text { (here, we have substituted } k-1 \text { for } k \text { in the sum) }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x_{i} t_{n-1, i}=x_{i} \sum_{k=0}^{n-1} x_{i+1} x_{i+2} \cdots x_{i+k} \cdot u_{i+k+1} u_{i+k+2} \cdots u_{i+n-1} \\
& =\sum_{k=0}^{n-1} \underbrace{x_{i} \cdot x_{i+1} x_{i+2} \cdots x_{i+k}}_{=x_{i} x_{i+1} \cdots x_{i+k}} \cdot u_{i+k+1} u_{i+k+2} \cdots u_{i+n-1} \\
& =\sum_{k=0}^{n-1} x_{i} x_{i+1} \cdots x_{i+k} \cdot u_{i+k+1} u_{i+k+2} \cdots u_{i+n-1} \\
& =\underbrace{x_{i} x_{i+1} \cdots x_{i+n-1}}_{\begin{array}{c}
=x_{(i-1)+1} x_{i(i-1)++2} \cdots x_{(i-1)+n} \\
=x_{1} x_{2} \cdots x_{n} \\
\text { by }
\end{array}} \cdot \underbrace{u_{i+(n-1)+1} u_{i+(n-1)+2} \cdots u_{i+n-1}}_{\begin{array}{r}
=u_{i+n} u_{i+n+1 \cdots u_{i+n}} \\
=(\text { empty product })=1
\end{array}} \\
& \text { (by Lemma 3.7) } \\
& +\sum_{k=0}^{n-2} x_{i} x_{i+1} \cdots x_{i+k} \cdot u_{i+k+1} u_{i+k+2} \cdots u_{i+n-1}
\end{aligned}
$$

Multiplying these two equalities, we obtain

$$
\begin{aligned}
& u_{i-1} t_{n-1, i-1}=u_{i+n-1} \sum_{k=0}^{n-1} x_{i} x_{i+1} \cdots x_{i+k-1} \cdot u_{i+k} u_{i+k+1} \cdots u_{i+n-2} \\
& =\sum_{k=0}^{n-1} x_{i} x_{i+1} \cdots x_{i+k-1} \cdot \underbrace{u_{i+k} u_{i+k+1} \cdots u_{i+n-2} \cdot u_{i+n-1}}_{=u_{i+k} u_{i+k+1} \cdots u_{i+n-1}} \\
& =\sum_{k=0}^{n-1} x_{i} x_{i+1} \cdots x_{i+k-1} \cdot u_{i+k} u_{i+k+1} \cdots u_{i+n-1} \\
& =\underbrace{x_{i} x_{i+1} \cdots x_{i+0-1}}_{=(\text {empty product })=1} \cdot \underbrace{}_{\begin{array}{c}
=u_{i} u_{i+1} \cdots u_{i+n-1} \\
\begin{array}{c}
(i-1)+1 \\
=u_{(i-1)+2} \cdots u_{(i-1)+n} \\
=u_{1} u_{2} \cdots u_{n}
\end{array}
\end{array} \underbrace{}_{i+0} u_{i+0+1} \cdots u_{i+n-1}} \\
& \text { (by Lemma } 3.7 \\
& +\sum_{k=1}^{n-1} x_{i} x_{i+1} \cdots x_{i+k-1} \cdot u_{i+k} u_{i+k+1} \cdots u_{i+n-1}
\end{aligned}
$$

(here, we have split off the addend for $k=0$ from the sum)

$$
=u_{1} u_{2} \cdots u_{n}+\sum_{k=1}^{n-1} x_{i} x_{i+1} \cdots x_{i+k-1} \cdot u_{i+k} u_{i+k+1} \cdots u_{i+n-1} .
$$

Comparing this with (21), we obtain

$$
\begin{equation*}
u_{i-1} t_{n-1, i-1}=x_{i} t_{n-1, i} . \tag{22}
\end{equation*}
$$

The same argument (applied to $i+1$ instead of i) yields

$$
u_{(i+1)-1} t_{n-1,(i+1)-1}=x_{i+1} t_{n-1, i+1} .
$$

In other words,

$$
\begin{equation*}
u_{i} t_{n-1, i}=x_{i+1} t_{n-1, i+1} \tag{23}
\end{equation*}
$$

(since $(i+1)-1=i$).
Now, the definition of y yields

$$
\begin{aligned}
y_{i} & =u_{i} \cdot \frac{u_{i-1} t_{n-1, i-1}}{x_{i+1} t_{n-1, i+1}}=u_{i} \underbrace{u_{i-1} t_{n-1, i-1}}_{\substack{x_{i} t_{n-1, i} \\
(\text { by } 221)^{2}}} / \underbrace{\left(x_{i+1} t_{n-1, i+1}\right)}_{\begin{array}{c}
=u_{i} t_{n-1, i} \\
\left(\text { by }(23)^{2}\right)
\end{array}} \\
& =u_{i} x_{i} t_{n-1, i} /\left(u_{i} t_{n-1, i}\right)=x_{i} .
\end{aligned}
$$

Now, forget that we fixed i. We thus have proved that $y_{i}=x_{i}$ for each $i \in \mathbb{Z}$. Thus, in particular, $y_{i}=x_{i}$ for each $i \in\{1,2, \ldots, n\}$. In other words, $y=x$. Hence, $\mathbf{f}_{u}(x)=y=x$. This proves Proposition 3.15

Remark 3.16. There is an alternative proof of Theorem 3.11 (a) that avoids the use of the more complicated parts of Lemma 3.12 (specifically, of parts (g), (i), (j) and (\mathbf{k})). Let us outline this proof:

The claim of Theorem 3.11 (a) can be restated as the equality $\mathbf{f}_{u}\left(\mathbf{f}_{u}(x)\right)=x$ for each $x \in \mathbb{K}^{n}$ and each $u \in \mathbb{K}^{n}$ (we are not regarding u as fixed here). This equality boils down to a set of identities between rational functions in the variables $u_{1}, u_{2}, \ldots, u_{n}, x_{1}, x_{2}, \ldots, x_{n}$ (since each entry of $\mathbf{f}_{u}(x)$ is a rational function in these variables, and each entry of $\mathbf{f}_{u}\left(\mathbf{f}_{u}(x)\right)$ is a rational function in the former entries as well as $u_{1}, u_{2}, \ldots, u_{n}$). These rational functions are subtraction-free (i.e., no subtraction signs appear in them), and thus are defined over any semifield. But there is a general principle saying that if we need to prove an identity between two subtraction-free rational functions, it is sufficient to prove that it holds over the semifield Q_{+}from Example 3.2. (Indeed, this principle follows from the fact that any subtraction-free rational function can be rewritten as a ratio of two polynomials with nonnegative integer coefficients, and thus an identity between two subtraction-free rational functions can be rewritten as an identity between two such polynomials; but the latter kind of identity will necessarily be true if it has been checked on all positive rational numbers.)

As a consequence of this discussion, in order to prove Theorem 3.11 (a) in full generality, it suffices to prove Theorem 3.11 (a) in the case when $\mathbb{K}=Q_{+}$. So let us restrict ourselves to this case. Let $x \in \mathbb{K}^{n}$. We must show that $\mathbf{f}_{u}\left(\mathbf{f}_{u}(x)\right)=x$.

Let $y=\mathbf{f}_{u}(x)$, and let $z=\mathbf{f}_{u}(y)$. We will show that $z=x$.
Assume the contrary. Thus, $z \neq x$. Hence, there exists some $i \in\{1,2, \ldots, n\}$ such that $z_{i} \neq x_{i}$. Consider this i. Hence, either $z_{i}>x_{i}$ or $z_{i}<x_{i}$. We WLOG assume that $z_{i}>x_{i}$ (since the proof in the case of $z_{i}<x_{i}$ is identical, except that all inequality signs are reversed). But Theorem 3.11 (c) yields

$$
\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right)=\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right) .
$$

Likewise, Theorem 3.11 (c) (applied to y and z instead of x and y) yields

$$
\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right)=\left(u_{i}+z_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{z_{i+1}}\right)
$$

(since $\left.z=\mathbf{f}_{u}(y)\right)$. Hence,

$$
\begin{aligned}
\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right) & =\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right) \\
& =(u_{i}+\underbrace{z_{i}}_{>x_{i}})\left(\frac{1}{u_{i+1}}+\frac{1}{z_{i+1}}\right) \\
& >\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{z_{i+1}}\right) .
\end{aligned}
$$

Cancelling the positive number $u_{i}+x_{i}$ from this inequality, we obtain $\frac{1}{u_{i+1}}+$ $\frac{1}{x_{i+1}}>\frac{1}{u_{i+1}}+\frac{1}{z_{i+1}}$. Hence, $\frac{1}{x_{i+1}}>\frac{1}{z_{i+1}}$, so that $z_{i+1}>x_{i+1}$. Thus, from $z_{i}>x_{i}$, we have obtained $z_{i+1}>x_{i+1}$. The same reasoning (but applied to $i+1$ instead of i) now yields $z_{i+2}>x_{i+2}$ (since $z_{i+1}>x_{i+1}$). Proceeding in the same way, we successively obtain $z_{i+3}>x_{i+3}$ and $z_{i+4}>x_{i+4}$ and $z_{i+5}>x_{i+5}$ and so on. Hence,

$$
\begin{equation*}
\underbrace{z_{i}}_{>x_{i}} \underbrace{z_{i+1}}_{>x_{i+1}} \cdots \underbrace{z_{i+n-1}}_{>x_{i+n-1}}>x_{i} x_{i+1} \cdots x_{i+n-1} . \tag{24}
\end{equation*}
$$

But Theorem 3.11 (b) yields

$$
y_{1} y_{2} \cdots y_{n} \cdot x_{1} x_{2} \cdots x_{n}=\left(u_{1} u_{2} \cdots u_{n}\right)^{2}
$$

Also, Theorem 3.11 (b) (applied to y and z instead of x and y) yields

$$
z_{1} z_{2} \cdots z_{n} \cdot y_{1} y_{2} \cdots y_{n}=\left(u_{1} u_{2} \cdots u_{n}\right)^{2}
$$

(since $z=\mathbf{f}_{u}(y)$). Comparing these two equalities, we find $y_{1} y_{2} \cdots y_{n}$. $x_{1} x_{2} \cdots x_{n}=z_{1} z_{2} \cdots z_{n} \cdot y_{1} y_{2} \cdots y_{n}$, so that

$$
\begin{equation*}
x_{1} x_{2} \cdots x_{n}=z_{1} z_{2} \cdots z_{n} \tag{25}
\end{equation*}
$$

But Lemma 3.7 yields $z_{i} z_{i+1} \cdots z_{i+n-1}=z_{1} z_{2} \cdots z_{n}$ and $x_{i} x_{i+1} \cdots x_{i+n-1}=$ $x_{1} x_{2} \cdots x_{n}$. In light of these two equalities, we can rewrite (24) as $z_{1} z_{2} \cdots z_{n}>$ $x_{1} x_{2} \cdots x_{n}$. This, however, contradicts (25). This contradiction shows that our assumption was false, thus concluding our proof of $z=x$.
Now, $\mathbf{f}_{u}(\underbrace{\mathbf{f}_{u}(x)}_{=y})=\mathbf{f}_{u}(y)=z=x$, as we wanted to prove. Hence, Theorem 3.11 (a) is proved again.

We shall take up the study of the birational involution \mathbf{f}_{u} again in Subsection 5.2 , where we will pose several questions about its meaning and uniqueness properties.

4. Proof of the main theorem

We shall now slowly approach the proof of Theorem 2.3 through a long sequence of auxiliary results, some of them easy, some well-known.

4.1. From the life of snakes

Recall the conventions introduced in Section 1 and in Convention 2.1. Let us next introduce some further notations.

Definition 4.1.

(a) Let \mathcal{L} denote the ring $\mathbf{k}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$ of Laurent polynomials in the n indeterminates $x_{1}, x_{2}, \ldots, x_{n}$ over \mathbf{k}. Clearly, the polynomial ring $\mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a subring of \mathcal{L}.
(b) We let x_{Π} denote the monomial $x_{1} x_{2} \cdots x_{n} \in \mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] \subseteq \mathcal{L}$.

If $f \in \Lambda$ is a symmetric function ${ }^{5}$, and if $a_{1}, a_{2}, \ldots, a_{n}$ are n elements of a commutative \mathbf{k}-algebra A, then $f\left(a_{1}, a_{2}, \ldots, a_{n}, 0,0,0, \ldots\right)$ means the result of substituting $a_{1}, a_{2}, \ldots, a_{n}, 0,0,0, \ldots$ for $x_{1}, x_{2}, \ldots, x_{n}, x_{n+1}, x_{n+2}, x_{n+3}, \ldots$ in f. This is a welldefined element of A (see [GriRei20, Exercise 2.1.2] for the proof), and is denoted by $f\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. It is called the evaluation of f at $a_{1}, a_{2}, \ldots, a_{n}$.

For any symmetric function $f \in \Lambda$, the evaluation

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}, x_{2}, \ldots, x_{n}, 0,0,0, \ldots\right)
$$

is a polynomial in $\mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and thus a Laurent polynomial in \mathcal{L}. Moreover, for any symmetric function $f \in \Lambda$, the evaluation

$$
f\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right)=f\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}, 0,0,0, \ldots\right)
$$

is a Laurent polynomial in \mathcal{L} as well.
Convention 4.2. For the rest of Section 4 , let us agree to the following notation: If γ is an n-tuple (of any objects), then we let γ_{i} denote the i-th entry of γ whenever $i \in\{1,2, \ldots, n\}$. Thus, each n-tuple γ satisfies $\gamma=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right)$.

Definition 4.3.

(a) A snake means an n-tuple $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ of integers (not necessarily nonnegative) such that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$.
(b) A snake λ is said to be nonnegative if it belongs to \mathbb{N}^{n} (that is, if all its entries are nonnegative). Thus, a nonnegative snake is the same as a partition having length $\leq n$. In other words, a nonnegative snake is the same as a partition $\lambda \in \operatorname{Par}[n]$.

[^3](c) If $\lambda \in \mathbb{Z}^{n}$ is an n-tuple, and d is an integer, then $\lambda+d$ denotes the n-tuple $\left(\lambda_{1}+d, \lambda_{2}+d, \ldots, \lambda_{n}+d\right) \in \mathbb{Z}^{n}$ (which is obtained from λ by adding d to each entry), whereas $\lambda-d$ denotes the n-tuple $\left(\lambda_{1}-d, \lambda_{2}-d, \ldots, \lambda_{n}-d\right) \in \mathbb{Z}^{n}$. (Thus, $\left.\lambda-d=\lambda+(-d).\right)$
(d) If $\lambda \in \mathbb{Z}^{n}$, then λ^{\vee} denotes the n-tuple $\left(-\lambda_{n},-\lambda_{n-1}, \ldots,-\lambda_{1}\right) \in \mathbb{Z}^{n}$.
(e) We regard \mathbb{Z}^{n} as a \mathbb{Z}-module in the obvious way. Thus, if $\lambda \in \mathbb{Z}^{n}$ and $\mu \in \mathbb{Z}^{n}$ are two n-tuples of integers, then
\[

$$
\begin{aligned}
& \lambda+\mu=\left(\lambda_{1}+\mu_{1}, \lambda_{2}+\mu_{2}, \ldots, \lambda_{n}+\mu_{n}\right), \\
& \lambda-\mu=\left(\lambda_{1}-\mu_{1}, \lambda_{2}-\mu_{2}, \ldots, \lambda_{n}-\mu_{n}\right) .
\end{aligned}
$$
\]

(f) We let ρ denote the nonnegative snake $(n-1, n-2, \ldots, 2,1,0)$. Thus,

$$
\begin{equation*}
\rho_{i}=n-i \quad \text { for each } i \in\{1,2, \ldots, n\} . \tag{26}
\end{equation*}
$$

Example 4.4. In this example, let $n=3$.
(a) The four 3-tuples $(3,1,0),(2,2,1),(1,0,-1)$ and $(-1,-2,-5)$ are examples of snakes.
(b) The first two of these four snakes (but not the last two) are nonnegative.
(c) We have $(5,3,1)+3=(8,6,4)$ and $(5,3,1)-3=(2,0,-2)$.
(d) We have $(5,2,2)^{\vee}=(-2,-2,-5)$.
(e) We have $(2,1,2)+(3,4,5)=(5,5,7)$.
(f) We have $\rho=(2,1,0)$.

Note that what we call a "snake" here is called a "staircase of height n " in Stembridge's work [Stembr87], where he uses these snakes to index finite-dimensional polynomial representations of the group $\mathrm{GL}_{n}(\mathbb{C})$. We avoid calling them "staircases", as that word has since been used for other things (in particular, ρ is often called "the n-staircase" in the jargon of combinatorialists).

The notations introduced in Definition 4.3 have the following properties:

Proposition 4.5.

(a) If λ is a snake, and d is an integer, then $\lambda+d$ and $\lambda-d$ are snakes as well.
(b) If λ is a snake, then λ^{\vee} is a snake as well.
(c) We have $(\lambda+\mu)+d=(\lambda+d)+\mu$ for any $\lambda \in \mathbb{Z}^{n}, \mu \in \mathbb{Z}^{n}$ and $d \in \mathbb{Z}$.
(d) We have $\lambda+(d+e)=(\lambda+d)+e$ for any $\lambda \in \mathbb{Z}^{n}, d \in \mathbb{Z}$ and $e \in \mathbb{Z}$.
(e) We have $(\lambda+d)-d=(\lambda-d)+d=\lambda$ for any $\lambda \in \mathbb{Z}^{n}$ and $d \in \mathbb{Z}$.

Proof of Proposition 4.5. Completely straightforward.

Let us now assign a Laurent polynomial a_{λ} to each $\lambda \in \mathbb{Z}^{n}$:
Definition 4.6. Let $\lambda \in \mathbb{Z}^{n}$ be any n-tuple. Then, we define the Laurent polynomial

$$
a_{\lambda}:=\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} x_{w(1)}^{\lambda_{1}} x_{w(2)}^{\lambda_{2}} \cdots x_{w(n)}^{\lambda_{n}} \in \mathcal{L},
$$

where \mathfrak{S}_{n} is the symmetric group of the set $\{1,2, \ldots, n\}$ (and where $(-1)^{w}$ denotes the sign of a permutation w). This Laurent polynomial a_{λ} is called the alternant corresponding to the n-tuple λ.
(The " a " in the notation " a_{λ} " has nothing to do with the a in Theorem 2.3.)
Example 4.7. We have

$$
\begin{aligned}
a_{(5,3,2)} & =\sum_{w \in \mathfrak{S}_{3}}(-1)^{w} x_{w(1)}^{5} x_{w(2)}^{3} x_{w(3)}^{2} \\
& =x_{1}^{5} x_{2}^{3} x_{3}^{2}+x_{2}^{5} x_{3}^{3} x_{1}^{2}+x_{3}^{5} x_{1}^{3} x_{2}^{2}-x_{1}^{5} x_{3}^{3} x_{2}^{2}-x_{2}^{5} x_{1}^{3} x_{3}^{2}-x_{3}^{5} x_{2}^{3} x_{1}^{2} .
\end{aligned}
$$

The sum in Definition 4.6 is the same kind of sum that appears in the definition of a determinant. Therefore, we can rewrite the alternant as follows:

Proposition 4.8. Let $\lambda \in \mathbb{Z}^{n}$ be an n-tuple. Then, the alternant $a_{\lambda} \in \mathcal{L}$ satisfies

$$
a_{\lambda}=\operatorname{det}\left(\left(x_{j}^{\lambda_{i}}\right)_{1 \leq i \leq n, 1 \leq j \leq n}\right)=\operatorname{det}\left(\left(x_{i}^{\lambda_{j}}\right)_{1 \leq i \leq n, 1 \leq j \leq n}\right) .
$$

Proof of Proposition 4.8. The definition of a determinant yields

$$
\operatorname{det}\left(\left(x_{j}^{\lambda_{i}}\right)_{1 \leq i \leq n, 1 \leq j \leq n}\right)=\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} \underbrace{\prod_{i=1}^{n} x_{w(i)}^{\lambda_{i}}}_{=x_{w(1)}^{\lambda_{1}} x_{w(2)}^{\lambda_{2}} \cdots x_{w(n)}^{\lambda_{n}}}=\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} x_{w(1)}^{\lambda_{1}} x_{w(2)}^{\lambda_{2}} \cdots x_{w(n)}^{\lambda_{n}} .
$$

Comparing this with

$$
\left.a_{\lambda}=\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} x_{w(1)}^{\lambda_{1}} x_{w(2)}^{\lambda_{2}} \cdots x_{w(n)}^{\lambda_{n}} \quad \text { (by the definition of } a_{\lambda}\right)
$$

we obtain

$$
\begin{aligned}
a_{\lambda}= & \operatorname{det}\left(\left(x_{j}^{\lambda_{i}}\right)_{1 \leq i \leq n, 1 \leq j \leq n}\right)=\operatorname{det}\left(\left(\left(x_{j}^{\lambda_{i}}\right)_{1 \leq i \leq n, 1 \leq j \leq n}\right)^{T}\right) \\
& \left(\text { since } \operatorname{det} A=\operatorname{det}\left(A^{T}\right) \text { for any square matrix } A\right) \\
= & \operatorname{det}\left(\left(x_{i}^{\lambda_{j}}\right)_{1 \leq i \leq n, 1 \leq j \leq n}\right) \quad\left(\text { since }\left(\left(x_{j}^{\lambda_{i}}\right)_{1 \leq i \leq n, 1 \leq j \leq n}\right)^{T}=\left(x_{i}^{\lambda_{j}}\right)_{1 \leq i \leq n, 1 \leq j \leq n}\right) .
\end{aligned}
$$

This proves Proposition 4.8.
Thus, in particular, we can compute the alternant a_{ρ} corresponding to the snake

$$
\rho=(n-1, n-2, \ldots, 2,1,0)=(n-1, n-2, \ldots, n-n) .
$$

Indeed, Proposition 4.8 (applied to $\lambda=\rho$) yields

$$
\begin{aligned}
a_{\rho} & =\operatorname{det}\left(\left(x_{j}^{\rho_{i}}\right)_{1 \leq i \leq n, 1 \leq j \leq n}\right)=\operatorname{det}\left(\left(x_{i}^{\rho_{j}}\right)_{1 \leq i \leq n, 1 \leq j \leq n}\right) \\
& =\operatorname{det}\left(\left(x_{i}^{n-j}\right)_{1 \leq i \leq n, 1 \leq j \leq n}\right) \quad\binom{\text { since } \rho_{j}=n-j \text { for each } j \in\{1,2, \ldots, n\}}{(\text { because } \rho=(n-1, n-2, \ldots, n-n))} \\
& =\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)
\end{aligned}
$$

(by the classical formula for the Vandermonde determinant).
We recall a standard concept from commutative algebra: An element a of a commutative ring A is said to be regular if it has the property that every $x \in A$ satisfying $a x=0$ must satisfy $x=0$. (Thus, regular elements are the same as elements that are not zero-divisors, if one does not require zero-divisors to be nonzerd ${ }^{6}$.)
| Lemma 4.9. The alternant a_{ρ} is a regular element of \mathcal{L}.
Proof of Lemma 4.9 Let $b \in \mathcal{L}$ be such that $a_{\rho} b=0$. We want to show that $b=0$.
We know that b is a Laurent polynomial, and thus has the form $b=\frac{c}{x_{1}^{u_{1}} x_{2}^{u_{2}} \cdots x_{n}^{u_{n}}}$ for some $u_{1}, u_{2}, \ldots, u_{n} \in \mathbb{Z}$ and some polynomial $c \in \mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Consider these $u_{1}, u_{2}, \ldots, u_{n}$ and this c. From $b=\frac{c}{x_{1}^{u_{1}} x_{2}^{u_{2}} \cdots x_{n}^{u_{n}}}$, we obtain $c=$ $b \cdot x_{1}^{u_{1}} x_{2}^{u_{2}} \cdots x_{n}^{u_{n}}$. Multiplying this equality by a_{ρ}, we obtain

$$
a_{\rho} c=\underbrace{a_{\rho} b}_{=0} \cdot x_{1}^{u_{1}} x_{2}^{u_{2}} \cdots x_{n}^{u_{n}}=0
$$

[^4]But it is a well-known fact (see, e.g., [Grinbe19, Corollary 4.4]) that the polynomial $\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)$ is a regular element of $\mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. In other words, a_{ρ} is a regular element of $\mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ (since $a_{\rho}=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)$). Hence, from $a_{\rho} c=0$, we obtain $c=0$. Now, $b=\frac{c}{x_{1}^{u_{1}} x_{2}^{u_{2}} \cdots x_{n}^{u_{n}}}=0$ (since $c=0$).

Forget that we fixed b. We thus have shown that each $b \in \mathcal{L}$ satisfying $a_{\rho} b=0$ satisfies $b=0$. In other words, a_{ρ} is a regular element of \mathcal{L}. This proves Lemma 4.9

Lemma 4.9 shows that fractions of the form $\frac{u}{a_{\rho}}$ (where $u \in \mathcal{L}$) are well-defined if u is a multiple of a_{ρ}. (That is, there is never more than one $b \in \mathcal{L}$ that satisfies $a_{\rho} b=u$.)

We notice that the element $x_{\Pi}=x_{1} x_{2} \cdots x_{n}$ of \mathcal{L} is invertible (since $x_{1}, x_{2}, \ldots, x_{n}$ are invertible in \mathcal{L}).
| Lemma 4.10. Let $\lambda \in \mathbb{Z}^{n}$ be any n-tuple, and let $d \in \mathbb{Z}$. Then, $a_{\lambda+d}=x_{\Pi}^{d} a_{\lambda}$.
Proof of Lemma 4.10. The definition of a_{λ} yields

$$
\begin{equation*}
a_{\lambda}=\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} x_{w(1)}^{\lambda_{1}} x_{w(2)}^{\lambda_{2}} \cdots x_{w(n)}^{\lambda_{n}} . \tag{27}
\end{equation*}
$$

But the definition of $\lambda+d$ yields $\lambda+d=\left(\lambda_{1}+d, \lambda_{2}+d, \ldots, \lambda_{n}+d\right)$. Hence,

$$
\begin{equation*}
(\lambda+d)_{i}=\lambda_{i}+d \quad \text { for each } i \in\{1,2, \ldots, n\} \tag{28}
\end{equation*}
$$

Now, the definition of $a_{\lambda+d}$ yields

$$
\begin{aligned}
& a_{\lambda+d}=\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} \underbrace{x_{w(1)}^{(\lambda+d)_{1}} x_{w(2)}^{(\lambda+d)_{2}} \cdots x_{w(n)}^{(\lambda+d)_{n}}}_{{ }_{i \in\{1,2, \ldots, n\}} x_{w(i)}^{(\lambda+d)_{i}}}=\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} \prod_{i \in\{1,2, \ldots, n\}} \\
& \underbrace{x_{w(i)}^{(\lambda+d)_{i}}}_{\begin{array}{c}
x_{w(i)}^{\lambda_{i}+d}
\end{array}} \\
& \text { (since (28) } \\
& \text { yields } \left.(\lambda+d)_{i}=\lambda_{i}+d\right) \\
& =\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} \prod_{i \in\{1,2, \ldots, n\}} \underbrace{x_{w(i)}^{\lambda_{i}+d}}_{\left.=x_{w(i)}^{\lambda_{i}}\right)_{w(i)}^{\lambda_{i}^{d}}} \\
& =\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} \underbrace{\prod_{i \in\{1,2, \ldots, n\}}\left(x_{w(i)}^{\lambda_{i}} x_{w(i)}^{d}\right)} \\
& =(\underbrace{}_{i \in\{1,2, \ldots, n\}} x_{w(i)}^{\lambda_{i}}))_{\left(\prod_{i \in\{1,2, \ldots, n\}} x_{w(i)}^{d}\right)} \\
& =\sum_{w \in \mathfrak{S}_{n}}(-1)^{w}\left(\prod_{i \in\{1,2, \ldots, n\}} x_{w(i)}^{\lambda_{i}}\right) \quad \underbrace{\left(\prod_{i \in\{1,2, \ldots, n\}} x_{w(i)}^{d}\right)}_{=\underset{i \in\{1,2, \ldots, n\}}{ } x_{i}^{d}} \\
& \text { (here, we have substituted } i \text { for } w(i) \\
& \text { in the product, since } w:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\} \\
& \text { is a bijection) } \\
& =\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} \underbrace{\left.\prod_{i \in\{1,2, \ldots, n\}} x_{w(i)}^{\lambda_{i}}\right)}_{=x_{w(1)}^{\lambda_{1}} x_{w(2)}^{\lambda_{2}} \cdots x_{w(n)}^{\lambda_{n}}} \underbrace{\prod_{i \in\{1,2, \ldots, n\}} x_{i}^{d}}_{\begin{array}{c}
x_{1}^{d} x_{2}^{d} \cdots x_{n}^{d}=\left(x_{1} x_{2} \cdots x_{n}\right)^{d}=x_{\Pi}^{d} \\
\text { (since } \left.x_{1} x_{2} \cdots x_{n}=x_{\Pi}\right)
\end{array}} \\
& =\sum_{w \in \mathfrak{S}_{n}}(-1)^{w}\left(x_{w(1)}^{\lambda_{1}} x_{w(2)}^{\lambda_{2}} \cdots x_{w(n)}^{\lambda_{n}}\right) x_{\Pi}^{d} \\
& =x_{\Pi}^{d} \underbrace{\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} x_{w(1)}^{\lambda_{1}} x_{w(2)}^{\lambda_{2}} \cdots x_{w(n)}^{\lambda_{n}}}_{\begin{array}{c}
=a_{\lambda} \\
\text { (by }[27)
\end{array}}=x_{\Pi}^{d} a_{\lambda} .
\end{aligned}
$$

This proves Lemma 4.10
Clearly, $\mathbb{N}^{n} \subseteq \mathbb{Z}^{n}$. For any $\alpha \in \mathbb{N}^{n}$, a polynomial a_{α} has been defined in [GriRei20, Definition 2.6.2]. This polynomial a_{α} is identical with the alternant a_{α}
we have defined in Definition 4.6, since
(the polynomial a_{α} as defined in [GriRei20, Definition 2.6.2])

$$
=\sum_{w \in \mathfrak{S}_{n}} \underbrace{\operatorname{sgn}(w)}_{=(-1)^{w}} w(\underbrace{\mathbf{x}^{\alpha}}_{=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2} \ldots x_{n}^{\alpha_{n}}}=\prod_{i=1}^{n} x_{i}^{\alpha_{i}}})
$$

(where we are using the notation of GriRei20, Definition 2.6.2])

$$
\begin{aligned}
& =\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} \underbrace{w\left(\prod_{i=1}^{n} x_{i}^{\alpha_{i}}\right)}=\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} \prod_{i=1}^{n}(\underbrace{w\left(x_{i}\right)}_{=x_{w(i)}})^{\alpha_{i}} \\
& \text { (since } \mathfrak{S}_{n} \text { acts on } \mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] \\
& \text { by } \mathbf{k} \text {-algebra automorphisms) } \\
& =\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} \underbrace{\prod_{i=1}^{n} x_{w(i)}^{\alpha_{i}}}_{=x_{w(1)}^{\alpha_{1}} x_{w(2)}^{\alpha_{2}} \cdots x_{w v(n)}^{\alpha_{n}}}=\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} x_{w(1)}^{\alpha_{1}} x_{w(2)}^{\alpha_{2}} \cdots x_{w(n)}^{\alpha_{n}}
\end{aligned}
$$

$=\left(\right.$ the alternant a_{α} as defined in Definition 4.6).
Thus, we can freely use results from [GriRei20, §2.6] without worrying about conflicting definitions of a_{α}. (But we need to keep in mind that what is called \mathbf{x} in [GriRei20, §2.6] is $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in our terminology, and that [GriRei20, §2.6] only studies alternants a_{α} for $\alpha \in \mathbb{N}^{n}$, while we are also interested in a_{λ} with $\lambda \in \mathbb{Z}^{n}$.)
| Lemma 4.11. Let λ be a snake. Then, $a_{\lambda+\rho}$ is a multiple of a_{ρ} in \mathcal{L}.
Proof of Lemma 4.11. Our proof will consist of two steps:
Step 1: We will prove Lemma 4.11 in the particular case when λ is nonnegative.

Step 2: We will use Lemma 4.10 to derive the general case of Lemma 4.11 from this particular case.

We will use this strategy again further on; we shall refer to it as the right-shift strategy.

Here are the details of the two steps:
Step 1: Let us prove that Lemma 4.11 holds in the particular case when λ is nonnegative.

Indeed, let us assume that λ is nonnegative. We must show that $a_{\lambda+\rho}$ is a multiple of a_{ρ} in \mathcal{L}.

We know that λ is a nonnegative snake, thus a partition of length $\leq n$. Hence, [GriRei20, Corollary 2.6.7] shows that $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{a_{\lambda+\rho}}{a_{\rho}}$. Thus, $a_{\lambda+\rho}=a_{\rho}$. $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. This shows that $a_{\lambda+\rho}$ is a multiple of a_{ρ} in \mathcal{L} (since $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in$ $\left.\mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right] \subseteq \mathcal{L}\right)$. Thus, Lemma 4.11 is proved under the assumption that λ is nonnegative. This completes Step 1.

Step 2: Let us now prove Lemma 4.11 in the general case.
We know that λ is a snake. Thus, $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Hence, each $i \in$ $\{1,2, \ldots, n\}$ satisfies $\lambda_{i} \geq \lambda_{n}$ and thus

$$
\begin{equation*}
\lambda_{i}-\lambda_{n} \geq 0 \tag{29}
\end{equation*}
$$

The snake λ may or may not be nonnegative. However, there exists some integer d such that the snake $\lambda+d$ is nonnegative ${ }^{7}$. Consider this d. Proposition 4.5 (c) (applied to $\mu=\rho$) yields $(\lambda+\rho)+d=(\lambda+d)+\rho$.

The snake $\lambda+d$ is nonnegative; thus, we can apply Lemma 4.11 to $\lambda+d$ instead of λ (because in Step 1, we have proved that Lemma 4.11 holds in the particular case when λ is nonnegative). Thus we conclude that $a_{(\lambda+d)+\rho}$ is a multiple of a_{ρ} in \mathcal{L}. In other words, there exists some $u \in \mathcal{L}$ such that $a_{(\lambda+d)+\rho}=a_{\rho} u$. Consider this u. From $(\lambda+\rho)+d=(\lambda+d)+\rho$, we obtain $a_{(\lambda+\rho)+d}=a_{(\lambda+d)+\rho}=a_{\rho} u$.

Lemma 4.10 (applied to $\lambda+\rho$ instead of λ) yields $a_{(\lambda+\rho)+d}=x_{\Pi}^{d} a_{\lambda+\rho}$. Since the element x_{Π} of \mathcal{L} is invertible, we thus obtain

$$
a_{\lambda+\rho}=\underbrace{\left(x_{\Pi}^{d}\right)^{-1}}_{=x_{\Pi}^{-d}} \underbrace{a_{(\lambda+\rho)+d}}_{=a_{\rho} u}=x_{\Pi}^{-d} a_{\rho} u=a_{\rho} \cdot x_{\Pi}^{-d} u .
$$

Hence, $a_{\lambda+\rho}$ is a multiple of a_{ρ} (since $x_{\Pi}^{-d} u \in \mathcal{L}$). This proves Lemma 4.11. Thus, Step 2 is complete, and Lemma 4.11 is proven.

Definition 4.12. Let λ be a snake. We define an element $\bar{s}_{\lambda} \in \mathcal{L}$ by $\bar{s}_{\lambda}=\frac{a_{\lambda+\rho}}{a_{\rho}}$. (This is well-defined, because Lemma 4.11 shows that $a_{\lambda+\rho}$ is a multiple of a_{ρ} in \mathcal{L}, and because Lemma 4.9 shows that the fraction $\frac{a_{\lambda+\rho}}{a_{\rho}}$ is uniquely defined.)

It makes sense to refer to the elements \bar{s}_{λ} just defined as "Schur Laurent polynomials". In fact, as the following lemma shows, they are identical with the Schur polynomials $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ when the snake λ is nonnegative:
${ }^{7}$ Indeed, for example, we can take $d=-\lambda_{n}$. Then, all entries of $\lambda+d$ have the form $\lambda_{i}+\underbrace{d}_{=-\lambda_{n}}=$ $\lambda_{i}-\lambda_{n}$ for some $i \in\{1,2, \ldots, n\}$, and thus are nonnegative (because of 29); this shows that the snake $\lambda+d$ is nonnegative.

Lemma 4.13. Let $\lambda \in \operatorname{Par}[n]$. Then,

$$
\bar{s}_{\lambda}=s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Proof of Lemma 4.13. We know that λ is a partition of length $\leq n$ (since $\lambda \in \operatorname{Par}[n]$). Hence, λ is a nonnegative snake. Furthermore, since λ is a partition of length $\leq n$, we can apply [GriRei20, Corollary 2.6.7] and obtain $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{a_{\lambda+\rho}}{a_{\rho}}=\bar{s}_{\lambda}$ (since \bar{s}_{λ} was defined to be $\frac{a_{\lambda+\rho}}{a_{\rho}}$). This proves Lemma 4.13 .

The Schur Laurent polynomials \bar{s}_{λ} appear in Stembridge's [Stembr87], where they are named s_{λ}. (The equivalence of our definition with his follows from [Stembr87, Theorem 7.1].)

Furthermore, from Lemma 4.10, we can easily obtain an analogous property for Schur Laurent polynomials:

Lemma 4.14. Let $\lambda \in \mathbb{Z}^{n}$ be any snake, and let $d \in \mathbb{Z}$. Then, $\bar{s}_{\lambda+d}=x_{\Pi}^{d} \bar{s}_{\lambda}$.
Proof of Lemma 4.14. Proposition 4.5 (c) (applied to $\mu=\rho$) yields $(\lambda+\rho)+d=$ $(\lambda+d)+\rho$. But Lemma 4.10 (applied to $\lambda+\rho$ instead of λ) yields $a_{(\lambda+\rho)+d}=$ $x_{\Pi}^{d} a_{\lambda+\rho}$. This rewrites as $a_{(\lambda+d)+\rho}=x_{\Pi}^{d} a_{\lambda+\rho}$ (since $\left.(\lambda+\rho)+d=(\lambda+d)+\rho\right)$.

The definition of $\bar{s}_{\lambda+d}$ yields

$$
\bar{s}_{\lambda+d}=\frac{a_{(\lambda+d)+\rho}}{a_{\rho}}=\frac{x_{\Pi}^{d} a_{\lambda+\rho}}{a_{\rho}} \quad\left(\text { since } a_{(\lambda+d)+\rho}=x_{\Pi}^{d} a_{\lambda+\rho}\right)
$$

Comparing this with

$$
\begin{aligned}
& x_{\Pi}^{d} \quad \underbrace{\bar{s}_{\lambda}}_{\substack{a_{\lambda+\rho} \\
a_{\rho}}}=x_{\Pi}^{d} \cdot \frac{a_{\lambda+\rho}}{a_{\rho}}=\frac{x_{\Pi}^{d} a_{\lambda+\rho}}{a_{\rho}}, \\
& \text { (by the definition of } \bar{s}_{\lambda} \text {) }
\end{aligned}
$$

we obtain $\bar{s}_{\lambda+d}=x_{\Pi}^{d} \bar{s}_{\lambda}$. This proves Lemma 4.14 .
Lemma 4.15. Let $\mu, v \in \operatorname{Par}[n]$. Then,

$$
\bar{s}_{\mu} \bar{s}_{v}=\sum_{\lambda \in \operatorname{Par}[n]} c_{\mu, \nu}^{\lambda} \bar{s}_{\lambda} .
$$

Proof of Lemma 4.15. It is well-known (see, e.g., [GriRei20, Exercise 2.3.8(b)]) that if λ is a partition having length $>n$, then

$$
\begin{equation*}
s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \tag{30}
\end{equation*}
$$

We know that $\mu \in \operatorname{Par}[n]$. Hence, Lemma 4.13 (applied to $\lambda=\mu$) yields $\bar{s}_{\mu}=s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Likewise, $\bar{s}_{v}=s_{v}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Multiplying these two equalities, we obtain

$$
\begin{aligned}
& \bar{s}_{\mu} \bar{s}_{v}=s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \cdot s_{v}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\underbrace{\left(s_{\mu} s_{v}\right)}_{\substack{\left.\sum_{\begin{subarray}{c}{\lambda \\
\text { (Par } \\
\text { (by } 11)} }}^{\left(s_{\mu}\right)_{1} s_{\lambda}}\right)}\end{subarray}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =\left(\sum_{\lambda \in \operatorname{Par}} c_{\mu, v}^{\lambda} s_{\lambda}\right)\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{\lambda \in \operatorname{Par}} c_{\mu, v}^{\lambda} s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =\underbrace{}_{\substack{\lambda \in \operatorname{Par;} \\
\lambda \text { has length } \leq n}} c_{\mu, v}^{\lambda} s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\sum_{\begin{array}{c}
\lambda \in \operatorname{Par;} \\
\lambda \text { has length }>n
\end{array}} c_{\mu, v}^{\lambda} \underbrace{s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)}_{\begin{array}{c}
=0 \\
\text { (by (30) })
\end{array}} \\
& \text { (by the definition of } \operatorname{Par}[n] \text {) } \\
& \binom{\text { since each } \lambda \in \text { Par either has length } \leq n \text { or has length }>n}{\text { (but not both at the same time) }} \\
& =\sum_{\lambda \in \operatorname{Par}[n]} c_{\mu, v}^{\lambda} \underbrace{s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)}_{\substack{\left.=\bar{s}_{\lambda} \\
\text { (by Lemma } 4.13\right]}}+\underbrace{\sum_{\begin{array}{c}
\lambda \in \operatorname{Par} ; \\
\lambda \text { has length }>n
\end{array}} c_{\mu, v}^{\lambda} 0}_{=0}=\sum_{\lambda \in \operatorname{Par}[n]} c_{\mu, \nu}^{\lambda} \bar{s}_{\lambda} .
\end{aligned}
$$

This proves Lemma 4.15
Lemma 4.16. The family $\left(\bar{s}_{\lambda}\right)_{\lambda \in\{\text { snakes }\}}$ of elements of \mathcal{L} is \mathbf{k}-linearly independent.

Proof of Lemma 4.16. Let us define a strict snake to be an n-tuple $\alpha \in \mathbb{Z}^{n}$ of integers satisfying $\alpha_{1}>\alpha_{2}>\cdots>\alpha_{n}$. It is easy to see that the map

$$
\begin{align*}
\{\text { snakes }\} & \rightarrow\{\text { strict snakes }\}, \\
\lambda & \mapsto \lambda+\rho \tag{31}
\end{align*}
$$

is a bijection.
It is also easy to see that if α and β are two strict snakes, then

$$
\begin{equation*}
\left(\text { the coefficient of } x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n}^{\beta_{n}} \text { in } a_{\alpha}\right)=\delta_{\alpha, \beta} \tag{32}
\end{equation*}
$$

where $\delta_{\alpha, \beta}$ is the Kronecker delta of α and β (that is, the integer $\left\{\begin{array}{ll}1, & \text { if } \alpha=\beta ; \\ 0, & \text { if } \alpha \neq \beta\end{array}\right.$).
[Proof of (32): Let α and β be two strict snakes. Thus, $\alpha_{1}>\alpha_{2}>\cdots>\alpha_{n}$ and $\beta_{1}>\beta_{2}>\cdots>\beta_{n}$ (by the definition of a strict snake).

The definition of a_{α} says that

$$
\begin{align*}
& a_{\alpha}=\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} x_{w(1)}^{\alpha_{1}} x_{w(2)}^{\alpha_{2}} \cdots x_{w(n)}^{\alpha_{n}}=\sum_{w \in \mathfrak{S}_{n}}(-1)^{w^{-1}} x_{w^{-1}(1)}^{\alpha_{1}} x_{w^{-1}(2)}^{\alpha_{2}} \cdots x_{w^{-1}(n)}^{\alpha_{n}} \\
& \binom{\text { here, we have substituted } w^{-1} \text { for } w \text { in the sum, }}{\text { since the map } \mathfrak{S}_{n} \rightarrow \mathfrak{S}_{n}, w \mapsto w^{-1} \text { is a bijection }} \\
& =\underbrace{(-1)^{\mathrm{id}^{-1}}}_{\substack{(-1)^{\mathrm{id}} \\
=1}} \underbrace{x_{\mathrm{id}^{-1}(1)}^{\alpha_{1}} x_{\mathrm{id}^{-1}(2)}^{\alpha_{2}} \cdots x_{\mathrm{id}_{n}^{-1}(n)}^{\alpha_{n}}}_{=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}}+\sum_{\substack{w \in \mathfrak{S}_{n} \\
w \neq \mathrm{id}}} \underbrace{(-1)^{w^{-1}}}_{=(-1)^{w}} x_{w^{-1}(1)}^{\alpha_{1}} x_{w^{-1}(2)}^{\alpha_{2}} \cdots x_{w^{-1}(n)}^{\alpha_{n}} \\
& \text { (since } \text { id }^{-1}(i)=i \text { for each } i \in\{1,2, \ldots, n\} \text {) } \\
& \text { (here, we have split off the addend for } w=\mathrm{id} \text { from the sum) } \\
& =x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}+\sum_{\substack{w \in \mathfrak{S}_{n} ; \\
w \neq i d}}(-1)^{w} x_{w^{-1}(1)}^{\alpha_{1}} x_{w^{-1}(2)}^{\alpha_{2}} \cdots x_{w^{-1}(n)}^{\alpha_{n}} . \tag{33}
\end{align*}
$$

But every permutation $w \in \mathfrak{S}_{n}$ satisfies
 $\binom{$ here, we have substituted $w(i)$ for i in the product, }{ since $w:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$ is a bijection }

$$
\begin{equation*}
=\prod_{i \in\{1,2, \ldots, n\}} x_{i}^{\alpha_{w(i)}}=x_{1}^{\alpha_{w v(1)}} x_{2}^{\alpha_{w(2)}} \cdots x_{n}^{\alpha_{w v(n)}} . \tag{34}
\end{equation*}
$$

Hence, (33) becomes

$$
\begin{align*}
& =x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}+\sum_{\substack{w \in \mathfrak{S}_{n} ; \\
w \neq i \mathrm{~d}}}(-1)^{w} x_{1}^{\alpha_{w(1)}} x_{2}^{\alpha_{w(2)}} \cdots x_{n}^{\alpha_{w(n)}} . \tag{35}
\end{align*}
$$

Now, let us fix a permutation $w \in \mathfrak{S}_{n}$ satisfying $w \neq \mathrm{id}$. Then, the two n-tuples $\left(\alpha_{w(1)}, \alpha_{w(2)}, \ldots, \alpha_{w(n)}\right)$ and $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$ are distinct ${ }^{8}$. Hence, $x_{1}^{\alpha_{w(1)}} x_{2}^{\alpha_{w(2)}} \ldots x_{n}^{\alpha_{w(n)}}$
${ }^{8}$ Proof. Assume the contrary. Thus, $\left(\alpha_{w(1)}, \alpha_{w(2)}, \ldots, \alpha_{w(n)}\right)=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$.
If we had $w(1)<w(2)<\cdots<w(n)$, then we would have $w=\mathrm{id}$ (since w is a permutation of $\{1,2, \ldots, n\}$), which would contradict $w \neq$ id. Thus, we cannot have $w(1)<w(2)<\cdots<$ $w(n)$. Hence, there exists some $i \in\{1,2, \ldots, n-1\}$ such that $w(i) \geq w(i+1)$. Consider this i.

But if u and v are two elements of $\{1,2, \ldots, n\}$ satisfying $u \geq v$, then $\alpha_{u} \leq \alpha_{v}$ (since $\alpha_{1}>$
and $x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n}^{\beta_{n}}$ are two distinct monomials. Thus,

$$
\begin{align*}
& \text { (the coefficient of } \left.x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n}^{\beta_{n}} \text { in } x_{1}^{\alpha_{w v(1)}} x_{2}^{\alpha_{w(2)}} \cdots x_{n}^{\alpha_{w(n)}}\right) \\
& =0 . \tag{36}
\end{align*}
$$

Now, forget that we fixed w. We thus have proved (36) for every permutation $w \in \mathfrak{S}_{n}$ satisfying $w \neq \mathrm{id}$. Now,
(the coefficient of $x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n}^{\beta_{n}}$ in $\left.a_{\alpha}\right)$
$=\left(\right.$ the coefficient of $x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n}^{\beta_{n}}$ in $\left.x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}+\sum_{\substack{w \in \mathfrak{F}_{n} ; \\ w \neq \mathrm{id}}}(-1)^{w} x_{1}^{\alpha_{w v(1)}} x_{2}^{\alpha_{w(2)}} \cdots x_{n}^{\alpha_{w(n)}}\right)$
(by (35))
$=\underbrace{\left(\text { the coefficient of } x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n}^{\beta_{n}} \text { in } x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}\right)}_{\begin{array}{c}=\delta_{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right),\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)=\delta_{\alpha, \beta}} \\ \left(\text { since }\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=\alpha \text { and }\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)=\beta\right)\end{array}}$

$=\delta_{\alpha, \beta}+\underbrace{\sum_{\substack{w \in \mathfrak{S}_{n} ; \\ w \neq \mathrm{id}}}(-1)^{w} 0}_{=0}=\delta_{\alpha, \beta}$.
This proves (32).]
Now, assume that $\left(u_{\lambda}\right)_{\lambda \in\{\text { snakes }\}} \in \mathbf{k}^{\{\text {snakes }\}}$ be a family of scalars with the property that (all but finitely many snakes λ satisfy $u_{\lambda}=0$) and

$$
\begin{equation*}
\sum_{\lambda \in\{\text { snakes }\}} u_{\lambda} \bar{s}_{\lambda}=0 . \tag{37}
\end{equation*}
$$

We shall show that $u_{\lambda}=0$ for all snakes λ.
Indeed, fix a snake μ. Then, $\mu+\rho$ is a strict snake (since the map (31) is a bijection). Let us denote this strict snake by β. Thus, $\beta=\mu+\rho$.
$\left.\alpha_{2}>\cdots>\alpha_{n}\right)$. Applying this to $u=w(i)$ and $v=w(i+1)$, we obtain $\alpha_{w(i)} \leq \alpha_{w(i+1)}$ (since $w(i) \geq w(i+1))$. But $\alpha_{w(i)}=\beta_{i}\left(\right.$ since $\left(\alpha_{w(1)}, \alpha_{w(2)}, \ldots, \alpha_{w(n)}\right)=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right)$) and $\alpha_{w(i+1)}=\beta_{i+1}$ (for the same reason). Hence, $\beta_{i}=\alpha_{w(i)} \leq \alpha_{w(i+1)}=\beta_{i+1}$. However, from $\beta_{1}>\beta_{2}>\cdots>\beta_{n}$, we obtain $\beta_{i}>\beta_{i+1}$. This contradicts $\beta_{i} \leq \beta_{i+1}$. This contradiction shows that our assumption was false. Qed.

If λ is any snake, then $\lambda+\rho$ is a strict snake (since the map (31) is a bijection), and thus satisfies

$$
\begin{align*}
& \text { (the coefficient of } x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n}^{\beta_{n}} \text { in } a_{\lambda+\rho} \text {) } \\
& =\delta_{\lambda+\rho, \beta} \quad(\text { by }(32), \text { applied to } \alpha=\lambda+\rho) \\
& =\delta_{\lambda+\rho, \mu+\rho} \quad(\text { since } \beta=\mu+\rho) \\
& =\delta_{\lambda, \mu} \tag{38}
\end{align*}
$$

(since $\lambda+\rho=\mu+\rho$ holds if and only if $\lambda=\mu$ holds).
From (37), we obtain

$$
\begin{aligned}
& 0=\sum_{\lambda \in\{\text { snakes }\}} u_{\lambda} \underbrace{=\frac{a_{\lambda+\rho}}{a_{\rho}}}=\sum_{\lambda \in\{\text { snakes }\}} u_{\lambda} \frac{a_{\lambda+\rho}}{a_{\rho}}=\frac{1}{a_{\rho}} \sum_{\lambda \in\{\text { snakes }\}} u_{\lambda} a_{\lambda+\rho} . \\
& \text { (by the definition of } \bar{s}_{\lambda} \text {) }
\end{aligned}
$$

Multiplying both sides of this equality by a_{ρ}, we obtain

$$
0=\sum_{\lambda \in\{\text { snakes }\}} u_{\lambda} a_{\lambda+\rho} .
$$

Hence,

$$
\begin{aligned}
& \left(\text { the coefficient of } x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n}^{\beta_{n}}\right. \text { in 0) } \\
& =\left(\text { the coefficient of } x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n}^{\beta_{n}} \text { in } \sum_{\lambda \in\{\text { snakes }\}} u_{\lambda} a_{\lambda+\rho}\right) \\
& =\sum_{\lambda \in\{\text { snakes }\}} u_{\lambda} \underbrace{\left(\text { the coefficient of } x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n}^{\beta_{n}} \text { in } a_{\lambda+\rho}\right)}_{\substack{=\delta_{\lambda, \mu} \\
(\text { by } \\
(38))}} \\
& =\sum_{\lambda \in\{\text { snakes }\}} u_{\lambda} \delta_{\lambda, \mu}=u_{\mu},
\end{aligned}
$$

so that

$$
u_{\mu}=\left(\text { the coefficient of } x_{1}^{\beta_{1}} x_{2}^{\beta_{2}} \cdots x_{n}^{\beta_{n}} \text { in } 0\right)=0
$$

Now, forget that we fixed μ. We thus have proved that $u_{\mu}=0$ for all snakes μ. In other words, $u_{\lambda}=0$ for all snakes λ.

Forget that we fixed $\left(u_{\lambda}\right)_{\lambda \in\{\text { snakes }\}}$. We thus have shown that if $\left(u_{\lambda}\right)_{\lambda \in\{\text { snakes }\}} \in$ $\mathbf{k}^{\text {\{snakes }\}}$ is a family of scalars with the property that (all but finitely many snakes λ satisfy $u_{\lambda}=0$) and $\sum_{\lambda \in\{\text { snakes }\}} u_{\lambda} \bar{s}_{\lambda}=0$, then $u_{\lambda}=0$ for all snakes λ. In other words, the family $\left(\bar{s}_{\lambda}\right)_{\lambda \in\{\text { snakes }\}}$ of elements of \mathcal{L} is \mathbf{k} linearly independent. This proves Lemma 4.16.

Lemma 4.16 is actually part of a stronger claim: The family $\left(\bar{s}_{\lambda}\right)_{\lambda \in\{\text { snakes }\}}$ is a basis of the k -module of symmetric Laurent polynomials in $x_{1}, x_{2}, \ldots, x_{n}$. We shall not need this, however, so we omit the proof ${ }^{9}$.

Recall Definition 4.3 (d). Our next lemma connects the Laurent polynomials \bar{s}_{λ} and $\bar{s}_{\lambda \vee}$ for every snake λ; it is folklore (see [GriRei20, Exercise 2.9.15(d)] for an equivalent version), but we shall prove it for the sake of completeness.

Lemma 4.17. Let λ be a snake. Then,

$$
\bar{s}_{\lambda \vee}=\bar{s}_{\lambda}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right) .
$$

Here, of course, $\bar{s}_{\lambda}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right)$ means the result of substituting $x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}$ for $x_{1}, x_{2}, \ldots, x_{n}$ in the Laurent polynomial $\bar{s}_{\lambda} \in \mathcal{L}$.

Proof of Lemma 4.17. Let $w_{0} \in \mathfrak{S}_{n}$ be the permutation of $\{1,2, \ldots, n\}$ that sends each $i \in\{1,2, \ldots, n\}$ to $n+1-i$. The map $\mathfrak{S}_{n} \rightarrow \mathfrak{S}_{n}, w \mapsto w \circ w_{0}$ is a bijection (since \mathfrak{S}_{n} is a group).

For each $i \in\{1,2, \ldots, n\}$, we have

$$
\begin{equation*}
(\lambda+\rho)_{i}=\lambda_{i}+\underbrace{\rho_{i}}_{\substack{n-i \\(\text { by } \\(26)}}=\lambda_{i}+n-i . \tag{39}
\end{equation*}
$$

Proposition 4.5 (b) shows that λ^{\vee} is a snake. Thus, using Proposition 4.5 (a), we conclude that $\lambda^{\vee}+(1-n)$ is a snake. Let us denote this snake by μ. Thus, $\mu=\lambda^{\vee}+(1-n)$. Hence, $\mu+\rho=\left(\lambda^{\vee}+(1-n)\right)+\rho=\left(\lambda^{\vee}+\rho\right)+(1-n)$ (this follows from Proposition 4.5 (c), applied to λ^{\vee}, ρ and $1-n$ instead of λ, μ and d). Therefore,

$$
\begin{equation*}
a_{\mu+\rho}=a_{\left(\lambda^{\vee}+\rho\right)+(1-n)}=x_{\Pi}^{1-n} a_{\lambda^{\vee}+\rho} \tag{40}
\end{equation*}
$$

(by Lemma 4.10, applied to $\lambda^{\vee}+\rho$ and $1-n$ instead of λ and d).
The definition of λ^{\vee} yields $\lambda^{\vee}=\left(-\lambda_{n},-\lambda_{n-1}, \ldots,-\lambda_{1}\right)$. Hence, for each $i \in$ $\{1,2, \ldots, n\}$, we have

$$
\begin{equation*}
\left(\lambda^{\vee}\right)_{i}=-\lambda_{n+1-i} . \tag{41}
\end{equation*}
$$

Thus, for each $i \in\{1,2, \ldots, n\}$, we have

$$
\begin{align*}
(\mu+\rho)_{i} & =\underbrace{\mu_{i}}_{\begin{array}{c}
=\left(\lambda^{\vee}+(1-n)\right)_{i} \\
\left(\text { since } \mu=\lambda^{\vee}+(1-n)\right)
\end{array}}+\underbrace{\rho_{i}}_{\begin{array}{c}
=n-i \\
(\text { by } \\
(26))
\end{array}}=\underbrace{\left(\lambda^{\vee}+(1-n)\right)_{i}}_{\begin{array}{c}
=\left(\lambda^{\vee}\right)_{i}+(1-n) \\
\text { (by the definition of } \left.\lambda^{\vee}+(1-n)\right)
\end{array}}+n-i \\
& =\underbrace{\left(\text { by }(41)^{2}\right)}_{\substack{-\lambda_{n+1-i} \\
\left(\lambda^{\vee}\right)_{i}}} \\
& =-\underbrace{(1-n)+n-i}_{n+1-i}+1-i .
\end{align*}
$$

[^5]Hence, the definition of $a_{\mu+\rho}$ yields

$$
\begin{align*}
a_{\mu+\rho} & =\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} \underbrace{x_{w(1)}^{(\mu+\rho)_{1}} x_{w(2)}^{(\mu+\rho)_{2}} \cdots x_{w(n)}^{(\mu+\rho)_{n}}}_{=\prod_{i \in\{1,2, \ldots, n\}} x_{w(i)}^{(\mu+\rho)_{i}}} \\
& =\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} \prod_{i \in\{1,2, \ldots, n\}} \underbrace{x_{w(i)}^{(\mu+\rho)_{i}}}_{=x_{w v i n}^{-\lambda_{n+1-i+1-i}}} \\
& =\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} \prod_{i \in\{1,2, \ldots, n\}} x_{w(i)}^{-\lambda_{n+1-i}+1-i} .
\end{align*}
$$

The definition of $a_{\lambda+\rho}$ yields

$$
\begin{aligned}
& a_{\lambda+\rho}=\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} \underbrace{x_{w(1)}^{(\lambda+\rho)_{1}} x_{w(2)}^{(\lambda+\rho)_{2}} \cdots x_{w(\rho)}^{(\lambda+\rho)_{n}}}_{=\prod_{i \in\{1,2, \ldots, n\}} x_{w(i)}^{(\lambda+\rho)_{i}}} \\
& =\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} \prod_{i \in\{1,2, \ldots, n\}} \underbrace{x_{w w(i)}^{(\lambda+\rho)_{i}}}_{=x_{w(i)}^{\lambda_{i}+n-i}} \\
& \text { (since (39) yields } \left.(\lambda+\rho)_{i}=\lambda_{i}+n-i\right) \\
& =\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} \prod_{i \in\{1,2, \ldots, n\}} x_{w(i)}^{\lambda_{i}+n-i} .
\end{aligned}
$$

Substituting $x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}$ for $x_{1}, x_{2}, \ldots, x_{n}$ on both sides of this equality, we
obtain
$\binom{$ here, we have substituted $w \circ w_{0}$ for w in the sum, }{ since the map $\mathfrak{S}_{n} \rightarrow \mathfrak{S}_{n}, w \mapsto w \circ w_{0}$ is a bijection }

$$
\begin{aligned}
& =\sum_{w \in \mathfrak{S}_{n}}(-1)^{w}(-1)^{w_{0}} \prod_{i \in\{1,2, \ldots, n\}} x_{w(n+1-i)}^{-\lambda_{i}-n+i} \\
& =(-1)^{w_{0}} \sum_{w \in \mathfrak{S}_{n}}(-1)^{w} \underbrace{\prod_{i \in\{1,2, \ldots, n\}} x_{w(n+1-i)}^{-\lambda_{i}-n+i}}_{\prod_{i \in\{1,2, \ldots, n\}} x_{w(n+1-(n+1-i))}^{-\lambda_{n+1-i-n+(n+1-i)}}}
\end{aligned}
$$

$$
\text { (here, we have substituted } n+1-i \text { for } i
$$

in the product)

$$
\begin{equation*}
=(-1)^{w_{0}} x_{\Pi}^{1-n} a_{\lambda^{\vee}+\rho} . \tag{44}
\end{equation*}
$$

On the other hand, let us denote the snake $(\underbrace{0,0, \ldots, 0}_{n \text { times }}) \in \mathbb{Z}^{n}$ by \varnothing; note that it satisfies $\varnothing^{\vee}=(\underbrace{-0,-0, \ldots,-0}_{n \text { times }})=(\underbrace{0,0, \ldots, 0}_{n \text { times }})=\varnothing$. We have proved 444 for any snake λ; thus, we can apply (44) to \varnothing instead of λ. We thus obtain

$$
a_{\varnothing+\rho}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right)=(-1)^{w_{0}} x_{\Pi}^{1-n} a_{\varnothing^{\vee}+\rho} .
$$

$$
\begin{aligned}
& =(-1)^{w_{0}} \sum_{w \in \mathfrak{S}_{n}}(-1)^{w} \prod_{i \in\{1,2, \ldots, n\}} \underbrace{x_{w(n+1-(n+1-i))}^{-\lambda_{n+1-i}+n+(n+1-i)}}_{=x_{w(i)}^{-\lambda_{n+1-i}+1-i}} \\
& \text { (since }-\lambda_{n+1-i}-n+(n+1-i)=-\lambda_{n+1-i}+1-i \\
& \text { and } n+1-(n+1-i)=i)
\end{aligned}
$$

$$
\begin{aligned}
& a_{\lambda+\rho}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right) \\
& =\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} \prod_{i \in\{1,2, \ldots, n\}} \underbrace{\left(x_{w(i)}^{-1}\right)^{\lambda_{i}+n-i}}_{=x_{w(i)}^{-\left(\lambda_{i}+n-i\right)}}=\sum_{w \in \mathfrak{S}_{n}}(-1)^{w} \prod_{i \in\{1,2, \ldots, n\}} x_{w(i)}^{-\left(\lambda_{i}+n-i\right)} \\
& =\sum_{w \in \mathfrak{S}_{n}} \underbrace{(-1)^{w o w_{0}}}_{=(-1)^{w}(-1)^{w_{0}}} \prod_{i \in\{1,2, \ldots, n\}} \\
& \underbrace{x_{\left(w o w v_{0}\right)(i)}^{-\left(\lambda_{i}+n-i\right)}}_{=x_{w(n+1-i)}^{-\lambda_{i}-n+i}} \\
& \text { (since }-\left(\lambda_{i}+n-i\right)=-\lambda_{i}-n+i \\
& \text { and }\left(w \circ w_{0}\right)(i)=w\left(w_{0}(i)\right)=w(n+1-i) \\
& \text { (because } \left.w_{0}(i)=n+1-i\right) \text {) }
\end{aligned}
$$

In view of $\varnothing+\rho=\rho$ and $\underbrace{\varnothing^{\vee}}_{=\varnothing}+\rho=\varnothing+\rho=\rho$, we can rewrite this as

$$
\begin{equation*}
a_{\rho}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right)=(-1)^{w_{0}} x_{\Pi}^{1-n} a_{\rho} . \tag{45}
\end{equation*}
$$

The definition of \bar{s}_{λ} yields $\bar{s}_{\lambda}=\frac{a_{\lambda+\rho}}{a_{\rho}}$. Hence, $a_{\lambda+\rho}=\bar{s}_{\lambda} a_{\rho}$. Substituting $x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}$ for $x_{1}, x_{2}, \ldots, x_{n}$ on both sides of this equality, we obtain

$$
\begin{aligned}
& a_{\lambda+\rho}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right)=\left(\bar{s}_{\lambda} a_{\rho}\right)\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right) \\
&=\bar{s}_{\lambda}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right) \cdot \underbrace{(\text { by } 45)}_{=(-1)^{w_{0}} x_{1}^{1-n} a_{\rho}} \begin{array}{l}
a_{\rho}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right) \\
\end{array} \\
&=\bar{s}_{\lambda}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right) \cdot(-1)^{w_{0}} x_{\Pi}^{1-n} a_{\rho} .
\end{aligned}
$$

Comparing this with (44), we find

$$
\begin{equation*}
\bar{s}_{\lambda}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right) \cdot(-1)^{w_{0}} x_{\Pi}^{1-n} a_{\rho}=(-1)^{w_{0}} x_{\Pi}^{1-n} a_{\lambda^{\vee}+\rho} . \tag{46}
\end{equation*}
$$

The element $(-1)^{w_{0}} x_{\Pi}^{1-n}$ of \mathcal{L} is invertible (since x_{Π} is invertible), and thus we can cancel it from the equality (46). As a result, we obtain

$$
\begin{equation*}
\bar{s}_{\lambda}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right) \cdot a_{\rho}=a_{\lambda^{\vee}+\rho} . \tag{47}
\end{equation*}
$$

But the definition of $\bar{s}_{\lambda \vee}$ yields

$$
\bar{s}_{\lambda \vee}=\frac{a_{\lambda \vee}+\rho}{a_{\rho}}=\bar{s}_{\lambda}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right)
$$

(by (47)). This proves Lemma 4.17.

4.2. h_{k}^{+}, h_{k}^{-}and the Pieri rule

Definition 4.18. Let $k \in \mathbb{Z}$. Then, we define two Laurent polynomials $h_{k}^{+} \in \mathcal{L}$ and $h_{k}^{-} \in \mathcal{L}$ by

$$
\begin{aligned}
& h_{k}^{+}=h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad \text { and } \\
& h_{k}^{-}=h_{k}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right)
\end{aligned}
$$

Note that if $k \in \mathbb{Z}$ is negative, then $h_{k}^{+}=\underbrace{h_{k}}_{=0}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ and $h_{k}^{-}=0$ (similarly).

We begin by describing h_{k}^{+}as a Schur Laurent polynomial:

Lemma 4.19. Let $k \in \mathbb{N}$. Then, the partition (k) is a nonnegative snake (when regarded as the n-tuple $(k, 0,0, \ldots, 0)$), and satisfies

$$
\bar{s}_{(k)}=h_{k}^{+} .
$$

Proof of Lemma 4.19. The partition (k) has length $\leq n$ (since it has length ≤ 1, but we have $n \geq 1$). Thus, it is a nonnegative snake (since every partition having length $\leq n$ is a nonnegative snake) and belongs to Par $n]$. Hence, Lemma 4.13 (applied to $\lambda=(k)$) yields $\bar{s}_{(k)}=s_{(k)}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ (since $\left.s_{(k)}=h_{k}\right)$. Comparing this with $h_{k}^{+}=h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, we obtain $\bar{s}_{(k)}=h_{k}^{+}$. This proves Lemma 4.19

Next, we need to know what happens when a Schur Laurent polynomial \bar{s}_{λ} is multiplied by some h_{k}^{+}. The answer to this question is classically given by the first Pieri rule; we shall state it in a form that will be most convenient to us. To do so, we introduce some more notation:

Definition 4.20. Let $\lambda \in \mathbb{Z}^{n}$. Then, we define the size $|\lambda|$ of λ to be the integer $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}$.

Definition 4.21. Let $\lambda, \mu \in \mathbb{Z}^{n}$. Then, we write that $\mu \rightharpoonup \lambda$ if and only if we have

$$
\begin{equation*}
\mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq \lambda_{2} \geq \cdots \geq \mu_{n} \geq \lambda_{n} \tag{48}
\end{equation*}
$$

In other words, we write that $\mu \rightharpoonup \lambda$ if and only if we have

$$
\begin{aligned}
& \left(\mu_{i} \geq \lambda_{i} \text { for each } i \in\{1,2, \ldots, n\}\right) \quad \text { and } \\
& \left(\lambda_{i} \geq \mu_{i+1} \text { for each } i \in\{1,2, \ldots, n-1\}\right) .
\end{aligned}
$$

The following properties of the sizes of n-tuples are obvious:

Proposition 4.22.

(a) If $\lambda, \mu \in \mathbb{Z}^{n}$, then $|\lambda+\mu|=|\lambda|+|\mu|$.
(b) If $\lambda \in \mathbb{Z}^{n}$ and $d \in \mathbb{Z}$, then $|\lambda+d|=|\lambda|+n d$.
(c) If $\lambda \in \mathbb{Z}^{n}$, then $\left|\lambda^{\vee}\right|=-|\lambda|$.

The relation \rightharpoonup defined in Definition 4.21 has the following simple properties:

Proposition 4.23. Let $\lambda, \mu \in \mathbb{Z}^{n}$.
(a) If $\mu \rightharpoonup \lambda$, then both λ and μ are snakes.
(b) We have $\mu \rightharpoonup \lambda$ if and only if $\lambda^{\vee} \rightharpoonup \mu^{\vee}$.
(c) Let $d \in \mathbb{Z}$. Then, we have $\mu \rightharpoonup \lambda$ if and only if $\mu+d \rightharpoonup \lambda+d$.

Proof of Proposition 4.23 (a) Assume that $\mu \rightharpoonup \lambda$. Thus, the chain of inequalities (48) holds (by Definition 4.21). But this chain of inequalities implies both $\mu_{1} \geq$ $\mu_{2} \geq \cdots \geq \mu_{n}$ and $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Thus, μ and λ are snakes. This proves Proposition 4.23 (a).
(b) The definition of μ^{\vee} yields $\mu^{\vee}=\left(-\mu_{n},-\mu_{n-1}, \ldots,-\mu_{1}\right)$. Similarly, $\lambda^{\vee}=$ $\left(-\lambda_{n},-\lambda_{n-1}, \ldots,-\lambda_{1}\right)$. Hence, we have $\lambda^{\vee} \rightharpoonup \mu^{\vee}$ if and only if we have

$$
-\lambda_{n} \geq-\mu_{n} \geq-\lambda_{n-1} \geq-\mu_{n-1} \geq \cdots \geq-\lambda_{1} \geq-\mu_{1}
$$

(because of Definition 4.21).
Thus, we have the following chain of equivalences:

$$
\begin{aligned}
\left(\lambda^{\vee}-\mu^{\vee}\right) & \Longleftrightarrow\left(-\lambda_{n} \geq-\mu_{n} \geq-\lambda_{n-1} \geq-\mu_{n-1} \geq \cdots \geq-\lambda_{1} \geq-\mu_{1}\right) \\
& \Longleftrightarrow\left(\lambda_{n} \leq \mu_{n} \leq \lambda_{n-1} \leq \mu_{n-1} \leq \cdots \leq \lambda_{1} \leq \mu_{1}\right) \\
& \Longleftrightarrow\left(\mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq \lambda_{2} \geq \cdots \geq \mu_{n} \geq \lambda_{n}\right) \\
& \Longleftrightarrow(\mu \rightharpoonup \lambda) \quad \text { (by Definition 4.21) }
\end{aligned}
$$

In other words, we have $\mu \rightharpoonup \lambda$ if and only if $\lambda^{\vee} \rightharpoonup \mu^{\vee}$. This proves Proposition 4.23 (b).
(c) This follows easily from Definition 4.21

We can now state the Pieri rule in the form we need:
Proposition 4.24. Let λ be a snake. Let $k \in \mathbb{Z}$. Then,

$$
\begin{equation*}
h_{k}^{+} \cdot \bar{s}_{\lambda}=\sum_{\substack{\mu \text { is a snake; } \\ \mu+\lambda ;|\mu|-|\lambda|=k}} \bar{s}_{\mu} . \tag{49}
\end{equation*}
$$

This can be proven directly using alternants; but let us give a proof based on known theory:

Proof of Proposition 4.24 We follow the same right-shift strategy as we did in our proof of Lemma 4.11. Thus, our proof shall consist of two steps:

Step 1: We will prove Proposition 4.24 in the particular case when λ is nonnegative.

Step 2: We will use Lemma 4.14 to derive the general case of Proposition 4.24 from this particular case.

Here are the details of the two steps:
Step 1: Let us prove that Proposition 4.24 holds in the particular case when λ is nonnegative.

Indeed, let us assume that λ is nonnegative. We must prove the equality (49).
If $k<0$, then both sides of this equality are $0 \quad 10$. Thus, the equality (49) holds if $k<0$. Therefore, for the rest of Step 1 , we WLOG assume that $k \geq 0$. In other words, $k \in \mathbb{N}$.

Note that λ is a partition of length $\leq n$ (since λ is a nonnegative snake). In other words, $\lambda \in \operatorname{Par}[n]$.

We note that if μ is a partition of length $\leq n$, then we have defined $|\mu|$ in two different ways: On the one hand, $|\mu|$ was defined as the infinite sum $\mu_{1}+\mu_{2}+\mu_{3}+$ \cdots (in the definition of the size of a partition); on the other hand, $|\mu|$ was defined as the finite sum $\mu_{1}+\mu_{2}+\cdots+\mu_{n}$ (because we can regard μ as a snake, and then interpret $|\mu|$ according to Definition 4.20). Fortunately, these two definitions do not clash, since the infinite sum $\mu_{1}+\mu_{2}+\mu_{3}+\cdots$ equals the finite sum $\mu_{1}+\mu_{2}+\cdots+$ μ_{n} whenever μ is a partition of length $\leq n$. (In fact, if μ is a partition of length $\leq n$, then

$$
\begin{aligned}
& \mu_{1}+\mu_{2}+\mu_{3}+\cdots \\
& =\left(\mu_{1}+\mu_{2}+\cdots+\mu_{n}\right)+\underbrace{\left(\mu_{n+1}+\mu_{n+2}+\mu_{n+3}+\cdots\right)}_{\begin{array}{c}
\text { since all of } \mu_{n+1}, \mu_{n+2}, \mu_{n+3}, \ldots \text { are } 0 \\
\text { because } \mu \text { has length } \leq n)
\end{array}} \\
& =\left(\mu_{1}+\mu_{2}+\cdots+\mu_{n}\right)+\underbrace{(0+0+0+\cdots)}_{=0}=\mu_{1}+\mu_{2}+\cdots+\mu_{n} .
\end{aligned}
$$

${ }^{10}$ Proof. Assume that $k<0$. We must show that both sides of 49 are 0 .
Indeed, from $k<0$, we obtain $h_{k}=0$, thus $h_{k}^{+}=\underbrace{h_{k}}_{=0}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$. Hence, $\underbrace{h_{k}^{+}}_{=0} \cdot \bar{s}_{\lambda}=0$.
In other words, the left hand side of (49) is 0 .
It remains to show that the right hand side of (49) is 0 . This will follow if we can show that the sum on this right hand side is empty, i.e., that there exists no snake μ such that $\mu \rightharpoonup \lambda$ and $|\mu|-|\lambda|=k$. So let us show this.

Let μ be a snake such that $\mu \rightarrow \lambda$ and $|\mu|-|\lambda|=k$. We shall derive a contradiction.
From $\mu \rightharpoonup \lambda$, we obtain $\mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq \lambda_{2} \geq \cdots \geq \mu_{n} \geq \lambda_{n}$ (by the definition of " $\mu \rightharpoonup \lambda^{\prime \prime}$). Hence, $\mu_{i} \geq \lambda_{i}$ for each $i \in\{1,2, \ldots, n\}$. Thus, $\sum_{i=1}^{n} \underbrace{\mu_{i}}_{\geq \lambda_{i}} \geq \sum_{i=1}^{n} \lambda_{i}$. In other words, $|\mu| \geq|\lambda|$ (since $|\mu|=\mu_{1}+\mu_{2}+\cdots+\mu_{n}=\sum_{i=1}^{n} \mu_{i}$ and similarly $\left.|\lambda|=\sum_{i=1}^{n} \lambda_{i}\right)$. Hence, $|\mu|-|\lambda| \geq 0$. But this contradicts $|\mu|-|\lambda|=k<0$.

Forget that we fixed μ. We thus have found a contradiction whenever μ is a snake such that $\mu \rightharpoonup \lambda$ and $|\mu|-|\lambda|=k$. Hence, there exists no such snake μ. In other words, the sum on the right hand side of (49) is empty. Hence, the right hand side of (49) is 0 . This completes our proof.

Thus, the infinite sum $\mu_{1}+\mu_{2}+\mu_{3}+\cdots$ equals the finite sum $\mu_{1}+\mu_{2}+\cdots+\mu_{n}$.) We will use some standard notations concerning partitions. Specifically:

- If $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right)$ and $\beta=\left(\beta_{1}, \beta_{2}, \beta_{3}, \ldots\right)$ are two partitions, then we will write $\alpha \subseteq \beta$ if and only if each $i \in\{1,2,3, \ldots\}$ satisfies $\alpha_{i} \leq \beta_{i}$. (This is precisely the definition of $\alpha \subseteq \beta$ given in [GriRei20, Definition 2.3.1].)
- If $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right)$ and $\beta=\left(\beta_{1}, \beta_{2}, \beta_{3}, \ldots\right)$ are two partitions, then we say that α / β is a horizontal strip if they satisfy

$$
\beta \subseteq \alpha \text { and }\left(\text { every } i \in\{1,2,3, \ldots\} \text { satisfies } \beta_{i} \geq \alpha_{i+1}\right)
$$

(This is not literally how a "horizontal strip" is defined in [GriRei20], but it is equivalent to that definition; the equivalence follows from [GriRei20, Exercise 2.7.5(a)].)

- If α and β are two partitions, and if $k \in \mathbb{N}$, then we say that α / β is a horizontal k-strip if α / β is a horizontal strip and we have $|\alpha|-|\beta|=k$. (This is equivalent to the definition of a "horizontal k-strip" in [GriRei20, §2.7]).

We note the following claim:
Claim 1: We have
\{partitions $\mu \in \operatorname{Par}[n]$ such that μ / λ is a horizontal k-strip $\}$ $=\{$ snakes μ such that $\mu \rightharpoonup \lambda$ and $|\mu|-|\lambda|=k\}$.
[Proof of Claim 1: Let us notice that $\lambda_{n} \geq 0$ (since the snake λ is nonnegative).
Any snake μ satisfying $\mu \rightharpoonup \lambda$ must be nonnegative ${ }^{111}$. Hence,
$\{$ snakes μ such that $\mu \rightharpoonup \lambda$ and $|\mu|-|\lambda|=k\}$
$=\{$ nonnegative snakes μ such that $\mu \rightharpoonup \lambda$ and $|\mu|-|\lambda|=k\}$
$=\{$ partitions μ of length $\leq n$ such that $\mu \rightharpoonup \lambda$ and $|\mu|-|\lambda|=k\}$
(since the nonnegative snakes are precisely the partitions of length $\leq n$)
$=\{$ partitions $\mu \in \operatorname{Par}[n]$ such that $\mu \rightharpoonup \lambda$ and $|\mu|-|\lambda|=k\}$
(since the partitions of length $\leq n$ are precisely the partitions $\mu \in \operatorname{Par}[n]$).

[^6]However, if $\mu \in \operatorname{Par}[n]$ is a partition, then the statement " $\mu \rightharpoonup \lambda^{\prime}$ " is equivalent to the statement " μ / λ is a horizontal strip" ${ }^{12}$. Hence,

$$
\begin{aligned}
& \{\text { partitions } \mu \in \operatorname{Par}[n] \text { such that } \mu \rightharpoonup \lambda \text { and }|\mu|-|\lambda|=k\} \\
& =\{\text { partitions } \mu \in \operatorname{Par}[n] \text { such that } \mu / \lambda \text { is a horizontal strip and }|\mu|-|\lambda|=k\} \\
& =\{\text { partitions } \mu \in \operatorname{Par}[n] \text { such that } \mu / \lambda \text { is a horizontal } k \text {-strip }\}
\end{aligned}
$$

(because the statement " μ / λ is a horizontal k-strip" was defined to mean " μ / λ is a horizontal strip and $|\mu|-|\lambda|=k^{\prime \prime}$). Thus, (50) becomes

$$
\begin{aligned}
& \{\text { snakes } \mu \text { such that } \mu \rightharpoonup \lambda \text { and }|\mu|-|\lambda|=k\} \\
& =\{\text { partitions } \mu \in \operatorname{Par}[n] \text { such that } \mu \rightharpoonup \lambda \text { and }|\mu|-|\lambda|=k\} \\
& =\{\text { partitions } \mu \in \operatorname{Par}[n] \text { such that } \mu / \lambda \text { is a horizontal } k \text {-strip }\} .
\end{aligned}
$$

This proves Claim 1.]

```
\({ }^{12}\) Proof. Let \(\mu \in \operatorname{Par}[n]\) be a partition. Let us write both partitions \(\mu \in \operatorname{Par}[n]\) and \(\lambda \in \operatorname{Par}[n]\) as
    infinite sequences
                    \(\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}, \ldots\right)\) and \(\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)\).
    Then, every integer \(i>n\) satisfies \(\mu_{i}=0\) (since \(\mu \in \operatorname{Par}[n]\) ) and \(\lambda_{i}=0\) (since \(\lambda \in \operatorname{Par}[n]\) ). In
    other words, all the numbers \(\mu_{n+1}, \mu_{n+2}, \mu_{n+3}, \ldots\) as well as \(\lambda_{n+1}, \lambda_{n+2}, \lambda_{n+3}, \ldots\) equal 0 .
        Now, we have the following chain of equivalences:
( \(\mu / \lambda\) is a horizontal strip)
\(\Longleftrightarrow\left(\lambda \subseteq \mu\right.\) and \(\left(\right.\) every \(i \in\{1,2,3, \ldots\}\) satisfies \(\left.\left.\lambda_{i} \geq \mu_{i+1}\right)\right)\)
            (by the definition of a "horizontal strip")
\(\Longleftrightarrow \underbrace{(\lambda \subseteq \mu)}_{\substack{\left.\left(\text { each } i \in\{1,2,3, \ldots\} \text { satisfies } \lambda_{i} \leq \mu_{i}\right) \\ \text { (by the definition of " } \lambda \subseteq \mu^{\prime \prime}\right)}} \wedge\left(\right.\) every \(i \in\{1,2,3, \ldots\}\) satisfies \(\left.\lambda_{i} \geq \mu_{i+1}\right)\)
\(\Longleftrightarrow(\) each \(i \in\{1,2,3, \ldots\}\) satisfies \(\underbrace{\lambda_{i} \leq \mu_{i}}_{\Longleftrightarrow\left(\mu_{i} \geq \lambda_{i}\right)}) \wedge\left(\right.\) every \(i \in\{1,2,3, \ldots\}\) satisfies \(\left.\lambda_{i} \geq \mu_{i+1}\right)\)
\(\Longleftrightarrow\left(\right.\) each \(i \in\{1,2,3, \ldots\}\) satisfies \(\left.\mu_{i} \geq \lambda_{i}\right) \wedge\left(\right.\) every \(i \in\{1,2,3, \ldots\}\) satisfies \(\left.\lambda_{i} \geq \mu_{i+1}\right)\)
\(\Longleftrightarrow\left(\mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq \lambda_{2} \geq \mu_{3} \geq \lambda_{3} \geq \cdots\right)\)
\(\Longleftrightarrow\left(\mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq \lambda_{2} \geq \cdots \geq \mu_{n} \geq \lambda_{n}\right) \wedge \underbrace{\left(\lambda_{n} \geq \mu_{n+1} \geq \lambda_{n+1} \geq \mu_{n+2} \geq \lambda_{n+2} \geq \mu_{n+3} \geq \lambda_{n+3} \geq \cdots\right)}\)
                                    \(\Longleftrightarrow\left(\lambda_{n} \geq 0 \geq 0 \geq 0 \geq 0 \geq 0 \geq 0 \geq \cdots\right)\)
                                    since all the numbers \(\mu_{n+1}, \mu_{n+2}, \mu_{n+3}, \ldots\)
                                    as well as \(\lambda_{n+1}, \lambda_{n+2}, \lambda_{n+3}, \ldots\) equal 0 )
\(\Longleftrightarrow\left(\mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq \lambda_{2} \geq \cdots \geq \mu_{n} \geq \lambda_{n}\right) \wedge \underbrace{\left(\lambda_{n} \geq 0 \geq 0 \geq 0 \geq 0 \geq 0 \geq 0 \geq \cdots\right)}_{\substack{\left.\left(\lambda_{n} \geq 0\right) \\ \text { (since } \lambda_{n} \geq 0\right)}} \underset{\substack{(\text { true })}}{\Longleftrightarrow}\)
\(\Longleftrightarrow\left(\mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq \lambda_{2} \geq \cdots \geq \mu_{n} \geq \lambda_{n}\right) \Longleftrightarrow(\mu \rightharpoonup \lambda)\)
```

(since the statement " $\mu \rightharpoonup \lambda^{\prime}$ " was defined to mean " $\mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq \lambda_{2} \geq \cdots \geq \mu_{n} \geq \lambda_{n}$ "). In other words, the statement " $\mu \rightharpoonup \lambda^{\prime}$ " is equivalent to the statement " μ / λ is a horizontal strip". Qed.

From the first Pieri rule ([GriRei20, (2.7.1)] ${ }^{13}$, applied to k instead of n), we obtain

$$
s_{\lambda} h_{k}=\sum_{\substack{\lambda^{+} \in \operatorname{Par} ; \\ \lambda^{+} / \lambda \text { is a horizontal } k \text {-strip }}} s_{\lambda^{+}}=\sum_{\mu / \lambda \text { is a horizontal } k \text {-strip }} s_{\mu}
$$

(here, we have renamed the summation index λ^{+}as μ).
Evaluating both sides of this equality at $x_{1}, x_{2}, \ldots, x_{n}$, we find

$$
\binom{\text { since each } \mu \in \text { Par either has length } \leq n \text { or has length }>n}{\text { (but not both at the same time) }}
$$

$$
=\sum_{\substack{\mu \in \text { Par; } \\
\mu / \lambda \text { is a horizontal } k \text {-strip; } \\
\mu \text { has length } \leq n}} s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\sum_{\substack{\mu \in \text { Par; } \\
\begin{array}{c}
\mu / \lambda \text { is a horizontal } k \text {-strip; } \\
\mu \text { has length }>n
\end{array}}} 0
$$

$$
=\sum_{\substack{\mu \in \text { Par; } \\ \mu / \lambda \text { is a horizontal } \\ k \text {-strin. }}} s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

$$
\mu / \lambda \text { is a horizontal } k \text {-strip; }
$$

$$
\mu \text { has length } \leq n
$$

In view of

$$
\begin{aligned}
\left(s_{\lambda} h_{k}\right)\left(x_{1}, x_{2}, \ldots, x_{n}\right)= & \underbrace{(\text { by Lemma } 4.13)}_{\begin{array}{c}
=\bar{s}_{\lambda} \\
s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array}} \underbrace{h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)}_{=h_{k}^{+}} \\
= & \bar{s}_{\lambda} \cdot h_{k}^{+}=h_{k}^{+} \cdot \bar{s}_{\lambda},
\end{aligned}
$$

we can rewrite this as

$$
\begin{equation*}
h_{k}^{+} \cdot \bar{s}_{\lambda}=\sum_{\substack{\mu \in \text { Par; } \\ \mu / \lambda \text { is a horizontal } k \text {-strip; } \\ \mu \text { has length } \leq n}} s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right) . \tag{51}
\end{equation*}
$$

[^7]\[

$$
\begin{aligned}
& \left(s_{\lambda} h_{k}\right)\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =\left(\sum_{\substack{\mu \in \operatorname{Par} ; \\
\mu / \lambda \text { is a horizontal } k \text {-strip }}} s_{\mu}\right)\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =\sum_{\mu / \lambda \text { is a horizontal } k \text {-strip }} s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$
\]

But we have the following equality of summation signs:
(since the partitions $\mu \in$ Par that have length $\leq n)$.
Thus, we can rewrite (51) as

$$
\begin{aligned}
& h_{k}^{+} \cdot \bar{s}_{\lambda}=\sum_{\mu / \lambda \text { is a horizontal } k \text {-strip }} \underbrace{s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)}_{=\bar{s}_{\mu}} \\
& \text { (since Lemma } 4.13 \\
& \text { (applied to } \mu \text { instead of } \lambda \text {) } \\
& \text { yields } \left.\bar{s}_{\mu}=s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \\
& =\sum_{\substack{\mu \in \operatorname{Par}[n] ; \\
\mu / \lambda \text { is a horizontal } \\
k \text {-strip }}} \bar{s}_{\mu}=\sum_{\substack{\mu \text { is a s snake; } \\
\mu+\lambda ;|\mu|-|\lambda|=k}} \bar{s}_{\mu} . \\
& \underbrace{\mu / \lambda \text { is a horizontal } k \text {-strip }}_{=} \quad \mu-\lambda ;|\mu|-|\lambda|=k \\
& \xrightarrow{\mu \text { is a snake; }} \\
& \text { (by Claim 1) }
\end{aligned}
$$

This proves (49). Thus, Proposition 4.24 is proved under the assumption that λ is nonnegative. This completes Step 1.

Step 2: Let us now prove Proposition 4.24 in the general case.
The snake λ may or may not be nonnegative. However, there exists some integer d such that the snake $\lambda+d$ is nonnegative ${ }^{14}$. Consider this d.

The map \{snakes $\} \rightarrow$ snakes $\}, \mu \mapsto \mu+d$ is a bijection. (Indeed, its inverse is the map $\{$ snakes $\} \rightarrow\{$ snakes $\}, \mu \mapsto \mu-d$.) Moreover, every snake μ satisfies

$$
\underbrace{|\mu+d|}_{\begin{array}{c}
=|\mu|+n d \\
\text { (by Proposition } 4.22(\text { b)) }
\end{array}}-\underbrace{|\lambda+d|}_{\begin{array}{c}
=|\lambda|+n d \\
\text { (by Proposition } 4.22(\mathbf{b}))
\end{array}}=(|\mu|+n d)-(|\lambda|+n d)
$$

$$
\begin{equation*}
=|\mu|-|\lambda| . \tag{52}
\end{equation*}
$$

For any snake μ, we have the logical equivalence

$$
(\mu \rightharpoonup \lambda) \Longleftrightarrow(\mu+d \rightharpoonup \lambda+d)
$$

(by Proposition 4.23 (c)). In other words, for any snake μ, we have the logical equivalence

$$
(\mu+d \rightharpoonup \lambda+d) \Longleftrightarrow(\mu \rightharpoonup \lambda) .
$$

[^8]Hence, we have the following equality of summation signs:

$$
\begin{equation*}
\sum_{\substack{\mu \text { is a snake; } \\ \mu+d \rightarrow \lambda+d ;|\mu+d|-|\lambda+d|=k}}=\sum_{\substack{\mu \text { is a snake; } \\ \mu-\lambda ;|\mu+d|-|\lambda+d|=k}}=\sum_{\substack{\mu \text { is a snake; } \\ \mu \xrightarrow{\mu ;}|\mu|-|\lambda|=k}} \tag{53}
\end{equation*}
$$

(by (52)).
The snake $\lambda+d$ is nonnegative; thus, we can apply Proposition 4.24 to $\lambda+d$ instead of λ (because in Step 1, we have proved that Proposition 4.24 holds in the particular case when λ is nonnegative). Thus we conclude that

$$
\begin{aligned}
& \text { (by (53)) }
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
\text { here, we have substituted } \mu+d \text { for } \mu \text { in the sum, } \\
\text { since the map }\left\{\begin{array}{c}
\text { snakes }\} \rightarrow\{\text { snakes }\}, \mu \mapsto \mu+d \\
\text { is a bijection }
\end{array}\right. \\
\end{array} \sum_{\substack{\mu \text { is a snake; } \\
\mu \rightharpoonup \lambda ;|\mu|-|\lambda|=k}} x_{\Pi}^{d} \bar{s}_{\mu}=x_{\Pi}^{d} \sum_{\substack{\mu \text { is a snake; } \\
\mu \rightarrow \lambda ;|\mu|-|\lambda|=k}} \bar{s}_{\mu} .\right.
\end{aligned}
$$

Comparing this with

$$
h_{k}^{+} \cdot \underbrace{\overline{4.14}^{2}}_{\substack{=x_{\Pi}^{d} \bar{s}_{\lambda} \\ \text { (by Lemma } \\ \bar{s}_{\lambda+d}}}=h_{k}^{+} \cdot x_{\Pi}^{d} \bar{s}_{\lambda},
$$

we obtain

$$
h_{k}^{+} \cdot x_{\Pi}^{d} \bar{s}_{\lambda}=x_{\Pi}^{d} \sum_{\substack{\mu \text { is a snake; } \\ \mu \rightharpoonup \lambda ;|\mu|-|\lambda|=k}} \bar{s}_{\mu} .
$$

We can divide both sides of this equality by x_{Π}^{d} (since $x_{\Pi}^{d} \in \mathcal{L}$ is invertible (because $x_{\Pi} \in \mathcal{L}$ is invertible)), and thus obtain

$$
h_{k}^{+} \cdot \bar{s}_{\lambda}=\sum_{\substack{\mu \text { is a snake; } \\ \mu \rightharpoonup \lambda ;|\mu|-|\lambda|=k}} \bar{s}_{\mu} .
$$

This proves Proposition 4.24 Thus, Step 2 is complete, and Proposition 4.24 is proven.

Using Lemma 4.17, we can "turn Proposition 4.24 upside down", obtaining the following analogous result for h_{k}^{-}instead of h_{k}^{+}:

Proposition 4.25. Let λ be a snake. Let $k \in \mathbb{Z}$. Then,

$$
\begin{equation*}
h_{k}^{-} \cdot \bar{s}_{\lambda}=\sum_{\substack{\mu \text { is a snake; } \\ \lambda-\mu ;|\lambda|-|\mu|=k}} \bar{s}_{\mu} . \tag{54}
\end{equation*}
$$

Proof of Proposition 4.25. It is easy to see (from Definition 4.3 (d)) that $\left(\lambda^{\vee}\right)^{\vee}=\lambda$. Likewise, $\left(\mu^{\vee}\right)^{\vee}=\mu$ for any snake μ. Hence, the map \{snakes $\} \rightarrow\{$ snakes $\}, \mu \mapsto$ μ^{\vee} (which is well-defined because of Proposition 4.5 (b)) is inverse to itself. Thus, this map is a bijection.

If μ is a snake, then

$$
\begin{equation*}
\text { we have } \mu \rightharpoonup \lambda \text { if and only if } \lambda^{\vee} \rightharpoonup \mu^{\vee} \tag{55}
\end{equation*}
$$

(by Proposition 4.23 (b)). Moreover, if μ is a snake, then

$$
\begin{align*}
& \underbrace{=(-|\lambda|)-(-|\mu|)=|\mu|-|\lambda| .}_{\begin{array}{c}
=-|\lambda| \\
\text { (by Proposition } \\
\left|4 \lambda^{\vee}\right|
\end{array}-\underbrace{\left|\mu^{\vee}\right|}_{\substack{=-|\mu| \\
\text { (by Proposition } \\
|4.22|(c))}}}
\end{align*}
$$

But we have

$$
\begin{aligned}
& h_{k}^{-}=h_{k}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right)=h_{k}^{+}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right) \\
& \quad\binom{\text { since } h_{k}^{+}=h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \text { and }}{\text { thus } h_{k}^{+}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right)=h_{k}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right)} .
\end{aligned}
$$

Also, Lemma 4.17 yields $\bar{s}_{\lambda^{\vee}}=\bar{s}_{\lambda}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right)$. Multiplying these two equal-
ities, we obtain

$$
\begin{aligned}
& h_{k}^{-} \cdot \bar{s}_{\lambda \vee}=h_{k}^{+}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right) \cdot \bar{s}_{\lambda}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right) \\
& =\underbrace{\left(h_{k}^{+} \cdot \bar{s}_{\lambda}\right)}_{\Sigma}{ }_{\bar{s}_{\mu}}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right) \\
& \stackrel{\mu \text { is a snake; }}{\mu \stackrel{\text { a }}{ }} \\
& \text { (by Proposition 4.24) } \\
& =\left(\sum_{\substack{\mu \text { is a snake; } \\
\mu \rightarrow \lambda ;|\mu|-|\lambda|=k}} \bar{s}_{\mu}\right)\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right) \\
& =\sum_{\mu \text { is a snake; }} \bar{s}_{\mu}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right) \\
& =\underbrace{\mu-\lambda ;|\mu|-|\lambda|=k}_{\mu \text { is a snake; }} \\
& \lambda^{\vee}-\mu^{\vee} ;|\mu|-|\lambda|=k \\
& \text { (since the statement " } \mu>\lambda \text { " } \\
& \text { is equivalent to " } \lambda^{\vee} \rightarrow \mu^{\vee} \text { " } \\
& \text { (by (55)) } \\
& =\sum_{\substack{\mu \text { is a snake, } \\
\lambda^{\vee} \Delta \mu^{\vee} \vee|\mu|-|\lambda|=k}} \bar{s}_{\mu}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right) .
\end{aligned}
$$

Comparing this with

$$
\begin{aligned}
& \binom{\text { here, we have substituted } \mu^{\vee} \text { for } \mu \text { in the sum, since }}{\text { the map }\{\text { snakes }\} \rightarrow\{\text { snakes }\}, \mu \mapsto \mu^{\vee} \text { is a bijection }} \\
= & \sum_{\substack{\mu \text { is a snake; } \\
\lambda^{\vee}-\mu^{\vee} ;|\mu|-|\lambda|=k}} \bar{s}_{\mu}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right),
\end{aligned}
$$

we obtain

$$
h_{k}^{-} \cdot \bar{s}_{\lambda^{v}}=\sum_{\substack{\mu \text { is a snake; } \\ \lambda^{\vee}-\mu ;\left|\lambda^{\vee}\right|-|\mu|=k}} \bar{s}_{\mu} .
$$

We have proved this equality for any snake λ. Thus, we can apply it to λ^{\vee} instead
of λ (since Proposition 4.5 (b) shows that λ^{\vee} is a snake). We thus obtain

$$
h_{k}^{-} \cdot \bar{s}_{\left(\lambda^{\vee}\right)^{\vee}}=\sum_{\substack{ \\\left(\lambda^{\vee}\right)^{\vee}-\mu ;\left|\left(\lambda^{\vee}\right)^{\vee}\right|-|\mu|=k}} \bar{s}_{\mu} .
$$

In view of $\left(\lambda^{\vee}\right)^{\vee}=\lambda$, this can be rewritten as follows:

$$
h_{k}^{-} \cdot \bar{s}_{\lambda}=\sum_{\substack{\mu \text { is a snake; } \\ \lambda-\mu ;|\lambda|-|\mu|=k}} \bar{s}_{\mu} .
$$

This proves Proposition 4.25.

4.3. Computing \bar{s}_{α}

I Convention 4.26. From now on, for the rest of Section 4, we assume that $n \geq 2$.
Our next goal is to obtain a simple formula for the Schur polynomial $\bar{s}_{\alpha}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where α is as in Theorem 2.3. The first step is the following definition:

Definition 4.27. Let $a, b \in \mathbb{N}$. Then, $b \ominus a$ will denote the snake $\left(b, 0^{n-2},-a\right)$. (This is indeed a well-defined snake, since $n \geq 2$ and since $b \geq 0 \geq-a$.)

Proposition 4.28. Let $a, b \in \mathbb{Z}$. Then,

$$
\begin{equation*}
h_{a}^{-} h_{b}^{+}=\sum_{k=0}^{\min \{a, b\}} \bar{s}_{(b-k) \ominus(a-k)} . \tag{57}
\end{equation*}
$$

Proof of Proposition 4.28 We must prove the equality (57). If (at least) one of the integers a and b is negative, then this equality boils down to $0=0{ }^{15}$. Hence, for the rest of this proof, we WLOG assume that none of the integers a and b is negative. Hence, $a, b \in \mathbb{N}$.

Note that each $k \in\{0,1, \ldots, \min \{a, b\}\}$ satisfies $b-k \in \mathbb{N}$ (since $k \leq \min \{a, b\} \leq$ b) and $a-k \in \mathbb{N}$ (likewise). Hence, the snakes $(b-k) \ominus(a-k)$ on the right hand side of the equality (57) are well-defined.

Lemma 4.19 (applied to $k=b$) yields that the partition (b) is a nonnegative snake (when regarded as the n-tuple $(b, 0,0, \ldots, 0)$), and satisfies $\bar{s}_{(b)}=h_{b}^{+}$.

Now, Proposition 4.25 (applied to $\lambda=(b)$ and $k=a$) yields

$$
h_{a}^{-} \cdot \bar{s}_{(b)}=\sum_{\substack{\mu \text { is a snake; } \\(b) \rightarrow \mu ;|(b)|-|\mu|=a}} \bar{s}_{\mu} .
$$

[^9]In view of $\bar{s}_{(b)}=h_{b}^{+}$and $|(b)|=b$, we can rewrite this as

$$
\begin{equation*}
h_{a}^{-} \cdot h_{b}^{+}=\sum_{\substack{\mu \text { is a snake; } \\(b) \rightarrow \mu ; b-|\mu|=a}} \bar{s}_{\mu} . \tag{58}
\end{equation*}
$$

Now, we claim the following:
Claim 1: The snakes μ satisfying $(b) \rightharpoonup \mu$ and $b-|\mu|=a$ are precisely the snakes of the form $(b-k) \ominus(a-k)$ for $k \in\{0,1, \ldots, \min \{a, b\}\}$.
[Proof of Claim 1: Let μ be a snake satisfying $(b) \rightharpoonup \mu$ and $b-|\mu|=a$. We shall show that $\mu=(b-k) \ominus(a-k)$ for some $k \in\{0,1, \ldots, \min \{a, b\}\}$.

Indeed, we have $(b) \rightharpoonup \mu$. In other words, $(b, \underbrace{0,0, \ldots, 0}_{n-1 \text { times }}) \rightharpoonup \mu$ (since we are identifying (b) with the snake $(b, \underbrace{0,0, \ldots, 0}_{n-1 \text { times }})$. But Definition 4.21 shows that we have $(b, \underbrace{0,0, \ldots, 0}_{n-1 \text { times }}) \rightharpoonup \mu$ if and only if we have

$$
b \geq \mu_{1} \geq 0 \geq \mu_{2} \geq 0 \geq \mu_{3} \geq \cdots \geq 0 \geq \mu_{n} .
$$

Hence, we have

$$
b \geq \mu_{1} \geq 0 \geq \mu_{2} \geq 0 \geq \mu_{3} \geq \cdots \geq 0 \geq \mu_{n}
$$

(since we have $(b, \underbrace{0,0, \ldots, 0}_{n-1 \text { times }}) \rightharpoonup \mu$). This chain of inequalities yields that each of the numbers $\mu_{2}, \mu_{3}, \ldots, \mu_{n-1}$ equals 0 (since it is sandwiched between 0 and 0 in this chain). Hence, $\mu=(\mu_{1}, \underbrace{0,0, \ldots, 0}_{n-2 \text { times }}, \mu_{n})=\left(\mu_{1}, 0^{n-2}, \mu_{n}\right)$. Therefore,

$$
|\mu|=\mu_{1}+\underbrace{0+0+\cdots+0}_{n-2 \text { times }}+\mu_{n}=\mu_{1}+\mu_{n}
$$

so that $\mu_{1}=|\mu|-\mu_{n}$. Moreover, from $0 \geq \mu_{n}$, we obtain $\mu_{n} \leq 0$, so that $-\mu_{n} \in \mathbb{N}$ and $\mu_{1}=|\mu|-\underbrace{\mu_{n}}_{\leq 0} \geq|\mu|$.
Set $g=b-\mu_{1}$. Thus, $\mu_{1}=b-g$. Also, $g=\underbrace{b}_{\geq \mu_{1}}-\mu_{1} \geq \mu_{1}-\mu_{1}=0$. Furthermore, from $|\mu|=\mu_{1}+\mu_{n}$, we obtain

$$
\mu_{n}=|\mu|-\mu_{1}=\underbrace{\left(b-\mu_{1}\right)}_{=g}-\underbrace{(b-|\mu|)}_{=a}=g-a=-(a-g) .
$$

Combining the inequalities $g=b-\underbrace{\mu_{1}}_{\geq|\mu|} \leq b-|\mu|=a$ and $g=b-\underbrace{\mu_{1}}_{\geq 0} \leq b$, we obtain $g \leq \min \{a, b\}$. Combining this with $g \geq 0$, we find $0 \leq g \leq \min \{a, b\}$, so that $g \in\{0,1, \ldots, \min \{a, b\}\}$. Furthermore,

$$
\mu=(\underbrace{\mu_{1}}_{=b-g}, 0^{n-2}, \underbrace{\mu_{n}}_{=-(a-g)})=\left(b-g, 0^{n-2},-(a-g)\right)=(b-g) \ominus(a-g)
$$

(since $(b-g) \ominus(a-g)$ was defined to be the snake $\left.\left(b-g, 0^{n-2},-(a-g)\right)\right)$. Thus, $\mu=(b-k) \ominus(a-k)$ for some $k \in\{0,1, \ldots, \min \{a, b\}\}$ (namely, for $k=g$).

Forget that we fixed μ. We thus have shown that if μ is a snake satisfying (b) $\rightharpoonup \mu$ and $b-|\mu|=a$, then we have $\mu=(b-k) \ominus(a-k)$ for some $k \in$ $\{0,1, \ldots, \min \{a, b\}\}$. It is straightforward to see that the converse holds as well (i.e., that if $\mu=(b-k) \ominus(a-k)$ for some $k \in\{0,1, \ldots, \min \{a, b\}\}$, then μ is a snake satisfying $(b) \rightharpoonup \mu$ and $b-|\mu|=a)$. Combining these two facts, we conclude that the snakes μ satisfying $(b) \rightharpoonup \mu$ and $b-|\mu|=a$ are precisely the snakes of the form $(b-k) \ominus(a-k)$ for $k \in\{0,1, \ldots, \min \{a, b\}\}$. This proves Claim 1.]

Now, Claim 1 shows that

$$
\sum_{\substack{\mu \text { is a snake; } \\(b) \rightarrow \mu ; b-|\mu|=a}} \bar{s}_{\mu}=\sum_{k \in\{0,1, \ldots, \min \{a, b\}\}} \bar{s}_{(b-k) \ominus(a-k)}
$$

(indeed, it is clear that the snakes $(b-k) \ominus(a-k)$ for $k \in\{0,1, \ldots, \min \{a, b\}\}$ are all distinct). Hence, (58) becomes

$$
h_{a}^{-} \cdot h_{b}^{+}=\sum_{\substack{\mu \text { is a snake; } \\(b) \rightarrow \mu ; b-|\mu|=a}} \bar{s}_{\mu}=\sum_{k \in\{0,1, \ldots, \min \{a, b\}\}} \bar{s}_{(b-k) \ominus(a-k)}=\sum_{k=0}^{\min \{a, b\}} \bar{s}_{(b-k) \ominus(a-k)} .
$$

This proves Proposition 4.28 .
Proposition 4.29. Let $a, b \in \mathbb{N}$. Then,

$$
\bar{s}_{b \ominus a}=h_{a}^{-} h_{b}^{+}-h_{a-1}^{-} h_{b-1}^{+} .
$$

(Recall that every negative integer k satisfies $h_{k}^{-}=0$ and $h_{k}^{+}=0$.)
Proof of Proposition 4.29. We have $\min \{a, b\} \in \mathbb{N}($ since $a, b \in \mathbb{N})$, so that min $\{a, b\} \geq$ 0.

Proposition 4.28 yields

$$
\begin{align*}
h_{a}^{-} h_{b}^{+}= & \sum_{k=0}^{\min \{a, b\}} \bar{s}_{(b-k) \ominus(a-k)}=\underbrace{\bar{s}_{(b-0) \ominus(a-0)}}_{=\bar{s}_{b \ominus a}}+\sum_{k=1}^{\min \{a, b\}} \bar{s}_{(b-k) \ominus(a-k)} \\
& \binom{\text { here, we have split off the addend for } k=0 \text { from the sum, }}{\quad \text { since min }\{a, b\} \geq 0} \\
= & \bar{s}_{b \ominus a}+\sum_{k=1}^{\min \{a, b\}} \bar{s}_{(b-k) \ominus(a-k)} . \tag{59}
\end{align*}
$$

Proposition 4.28 (applied to $a-1$ and $b-1$ instead of a and b) yields

$$
\begin{aligned}
h_{a-1}^{-} h_{b-1}^{+}= & \sum_{k=0}^{\min \{a-1, b-1\}} \bar{s}_{((b-1)-k) \ominus((a-1)-k)}=\sum_{k=0}^{\min \{a, b\}-1} \bar{s}_{((b-1)-k) \ominus((a-1)-k)} \\
& \quad(\text { since } \min \{a-1, b-1\}=\min \{a, b\}-1) \\
= & \sum_{k=1}^{\min \{a, b\}} \bar{s}_{((b-1)-(k-1)) \ominus((a-1)-(k-1))}
\end{aligned}
$$

(here, we have substituted $k-1$ for k in the sum)

$$
=\sum_{k=1}^{\min \{a, b\}} \bar{s}_{(b-k) \ominus(a-k)}
$$

$$
\text { (since }(b-1)-(k-1)=b-k \text { and }(a-1)-(k-1)=a-k)
$$

Subtracting this equality from (59), we obtain

$$
h_{a}^{-} h_{b}^{+}-h_{a-1}^{-} h_{b-1}^{+}=\left(\bar{s}_{b \ominus a}+\sum_{k=1}^{\min \{a, b\}} \bar{s}_{(b-k) \ominus(a-k)}\right)-\sum_{k=1}^{\min \{a, b\}} \bar{s}_{(b-k) \ominus(a-k)}=\bar{s}_{b \ominus a} .
$$

This proves Proposition 4.29 .
Corollary 4.30. Let $a, b \in \mathbb{N}$. Define the partition $\alpha=\left(a+b, a^{n-2}\right)$. Then, α is a nonnegative snake and satisfies

$$
\bar{s}_{\alpha}=x_{\Pi}^{a} \cdot\left(h_{a}^{-} h_{b}^{+}-h_{a-1}^{-} h_{b-1}^{+}\right) .
$$

Proof of Corollary 4.30. From $a, b \in \mathbb{N}$, we obtain $a+\underbrace{b}_{\geq 0} \geq a \geq 0$. Hence, α is a partition of length $\leq n$ (since $n-1 \leq n$). In other words, α is a nonnegative snake.

We have

$$
\begin{aligned}
& \underbrace{(b \ominus a)}+a \\
& =\left(b, 0^{n-2},-a\right)=(b, \underbrace{0,0, \ldots, 0}_{n-2 \text { times }},-a) \\
& =(b, \underbrace{0,0, \ldots, 0}_{n-2 \text { times }},-a)+a=(b+a, \underbrace{0+a, 0+a, \ldots, 0+a}_{n-2 \text { times }},-a+a) \\
& =(a+b, \underbrace{a, a, \ldots, a}_{n-2 \text { times }}, 0)=\left(a+b, a^{n-2}\right)=\alpha
\end{aligned}
$$

(since $\left.\alpha=\left(a+b, a^{n-2}\right)\right)$. Hence, $\alpha=(b \ominus a)+a$, so that

$$
\bar{s}_{\alpha}=\bar{s}_{(b \ominus a)+a}=x_{\Pi}^{a} \underbrace{\bar{s}_{b \ominus a}}_{\begin{array}{c}
h_{a}^{-} h_{b}^{+}-h_{a-1}^{-} h_{b-1}^{+} \\
\text {(by Proposition } 4.29
\end{array}}
$$

(by Lemma 4.14, applied to $\lambda=b \ominus a$ and $d=a$)

$$
=x_{\Pi}^{a} \cdot\left(h_{a}^{-} h_{b}^{+}-h_{a-1}^{-} h_{b-1}^{+}\right)
$$

This proves Corollary 4.30.
We notice that the expression $h_{a}^{-} h_{b}^{+}-h_{a-1}^{-} h_{b-1}^{+}$in Proposition 4.29 can be rewritten as $\operatorname{det}\left(\begin{array}{cc}h_{a}^{-} & h_{a-1}^{-} \\ h_{b-1}^{+} & h_{b}^{+}\end{array}\right)$. This suggests a way to generalize Proposition 4.29 (as well as the first Jacobi-Trudi formula [GriRei20, (2.4.16)]). Such a generalization indeed exists, and has been proved by Koike as well as by Hamel and King; see Proposition 5.1 below.

4.4. The sets $R_{\mu, a, b}(\gamma)$ and a formula for $h_{a}^{-} h_{b}^{+} \bar{s}_{\mu}$

We shall next aim for a formula for $h_{a}^{-} h_{b}^{+} \bar{s}_{\mu}$ (for a snake μ and integers $a, b \in \mathbb{Z}$), which will be obtained in a straightforward way by applying Propositions 4.24 and 4.25. We will need the following definition:

Definition 4.31. Let $\mu, \gamma \in \mathbb{Z}^{n}$ and $a, b \in \mathbb{Z}$. Then, $R_{\mu, a, b}(\gamma)$ shall denote the set of all snakes v satisfying the four conditions

$$
\mu \rightharpoonup v \quad \text { and } \quad|\mu|-|v|=a \quad \text { and } \quad \gamma \rightharpoonup v \quad \text { and } \quad|\gamma|-|v|=b .
$$

Lemma 4.32. Let $\mu, \gamma \in \mathbb{Z}^{n}$ and $a, b \in \mathbb{Z}$. Assume that γ is not a snake. Then, $\left|R_{\mu, a, b}(\gamma)\right|=0$.

Proof of Lemma 4.32. Let $v \in R_{\mu, a, b}(\gamma)$. We shall obtain a contradiction.
Indeed, we have $v \in R_{\mu, a, b}(\gamma)$. In other words, v is a snake satisfying the four conditions
$\mu \rightharpoonup v \quad$ and $\quad|\mu|-|v|=a \quad$ and $\quad \gamma \rightharpoonup v \quad$ and $\quad|\gamma|-|v|=b$
(by the definition of $R_{\mu, a, b}(\gamma)$). Thus, in particular, we have $\gamma \rightharpoonup v$. Hence, Proposition 4.23 (a) (applied to γ and v instead of μ and λ) yields that both v and γ are snakes. Hence, γ is a snake. This contradicts the fact that γ is not a snake.

Now, forget that we fixed v. We thus have obtained a contradiction for each $v \in R_{\mu, a, b}(\gamma)$. Hence, there exists no $v \in R_{\mu, a, b}(\gamma)$. In other words, the set $R_{\mu, a, b}(\gamma)$ is empty. Thus, $\left|R_{\mu, a, b}(\gamma)\right|=0$. This proves Lemma 4.32 .

Lemma 4.33. Let μ be a snake. Let $a, b \in \mathbb{Z}$. Then,

$$
h_{a}^{-} h_{b}^{+} \bar{s}_{\mu}=\sum_{\gamma \text { is a snake }}\left|R_{\mu, a, b}(\gamma)\right| \bar{s}_{\gamma} .
$$

Proof of Lemma 4.33. Proposition 4.25 (with the letters λ, k and μ renamed as μ, a and v) says that

$$
\begin{equation*}
h_{a}^{-} \cdot \bar{s}_{\mu}=\sum_{\substack{v \text { is a snake; } \\ \mu-v ;|\mu|-|v|=a}} \bar{s}_{v} . \tag{60}
\end{equation*}
$$

Proposition 4.24 (with the letters λ, k and μ renamed as ν, b and γ) says that

$$
\begin{equation*}
h_{b}^{+} \cdot \bar{s}_{v}=\sum_{\substack{\gamma \text { is a s snake; } \\ \gamma-v ;|\gamma|-|v|=b}} \bar{s}_{\gamma} \tag{61}
\end{equation*}
$$

for each snake v.

Now,

$$
\begin{aligned}
& h_{a}^{-} h_{b}^{+} \bar{s}_{\mu}=h_{b}^{+} \cdot \underbrace{h_{a}^{-} \cdot \bar{s}_{\mu}}_{\substack{v \text { is a snake; } \\
\mu \rightarrow v ;|\mu|-|v|=a}}=h_{b}^{+} . \sum_{\substack{v \text { is a snake; } \\
\mu \rightharpoonup v ;|\mu|-|v|=a}} \bar{s}_{v} \\
& \text { (by (60)) }
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\gamma \text { is a snake }} \underbrace{\sum_{i}}_{\substack{v \text { is a snake; } \\
\begin{array}{c}
\mu-|\mu|-|v|=a ; \\
\gamma-v ;|\gamma|-|v|=b \\
\sum_{v \in R_{\mu, a, b}(\gamma)}
\end{array} \\
\bar{s}_{\gamma}=\sum_{\gamma \text { is a snake }} \underbrace{}_{=\left|R_{\mu, a, b}(\gamma)\right| \bar{s}_{\gamma}} \sum_{v \in R_{\mu, a, b}(\gamma)} \bar{s}_{\gamma}}} \\
& \text { (by the definition of } R_{\mu, a, b}(\gamma) \text {) } \\
& =\sum_{\gamma \text { is a snake }}\left|R_{\mu, a, b}(\gamma)\right| \bar{s}_{\gamma} .
\end{aligned}
$$

This proves Lemma 4.33 .
Corollary 4.34. Let $\mu \in \operatorname{Par}[n]$. Let $a, b \in \mathbb{N}$. Define the partition $\alpha=$ $\left(a+b, a^{n-2}\right)$. Then, every $\lambda \in \mathbb{Z}^{n}$ satisfies

$$
\begin{equation*}
c_{\alpha, \mu}^{\lambda}=\left|R_{\mu, a, b}(\lambda-a)\right|-\left|R_{\mu, a-1, b-1}(\lambda-a)\right| . \tag{62}
\end{equation*}
$$

Here, we understand $c_{\alpha, \mu}^{\lambda}$ to mean 0 if λ is not a partition (i.e., if λ is not a nonnegative snake).

Proof of Corollary 4.34. Corollary 4.30 shows that α is a nonnegative snake and satisfies

$$
\begin{equation*}
\bar{s}_{\alpha}=x_{\Pi}^{a} \cdot\left(h_{a}^{-} h_{b}^{+}-h_{a-1}^{-} h_{b-1}^{+}\right) . \tag{63}
\end{equation*}
$$

Every snake γ satisfies

$$
\begin{equation*}
\bar{s}_{\gamma+a}=x_{\Pi}^{a} \bar{s}_{\gamma} \tag{64}
\end{equation*}
$$

(by Lemma 4.14, applied to γ and a instead of λ and d).
We have $\alpha \in \operatorname{Par}[n]$ (since α is a nonnegative snake). Hence, Lemma 4.15 (applied
to α and μ instead of μ and v) yields

$$
\begin{aligned}
& \bar{s}_{\alpha} \bar{s}_{\mu}= \\
& =\underbrace{\sum_{\lambda \text { is a snake; }}}_{\sum_{\lambda}} \\
& c_{\alpha, \mu}^{\lambda} \bar{s}_{\lambda}=\sum_{\substack{\lambda \text { is a snake; } \\
\lambda \text { is nonnegative }}} c_{\alpha, \mu}^{\lambda} \bar{s}_{\lambda} \\
& \lambda \text { is nonnegative } \\
& \text { (since the partitions } \lambda \in \operatorname{Par}[n] \text { are } \\
& \text { precisely the nonnegative snakes) } \\
& =\sum_{\lambda \text { is a snake }} c_{\alpha, \mu}^{\lambda} \bar{s}_{\lambda}-\sum_{\substack{\lambda \text { is a snake; } \\
\lambda \text { is not nonnegative }}} \\
& \text { (since we understand } c_{\alpha, \mu}^{\lambda} \\
& \text { to mean } 0 \text { if } \lambda \text { is not } \\
& \text { a nonnegative snake) }
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \sum_{\lambda \text { is a snake }} c_{\alpha, \mu}^{\lambda} \bar{s}_{\lambda}=\underbrace{\left.\bar{s}_{\alpha-1}^{+}\right)}_{\substack{x_{\Pi}^{a} \\
\\
\begin{array}{c}
\left(h_{a}^{-} h_{b}^{+}-h_{a}^{-} \\
\text {(by } \\
(63)\right)^{-1}
\end{array}}} \bar{s}_{\mu}=x_{\Pi}^{a} \cdot\left(h_{a}^{-} h_{b}^{+}-h_{a-1}^{-} h_{b-1}^{+}\right) \bar{s}_{\mu} \\
& =x_{\Pi}^{a} \cdot \underbrace{h_{a}^{-} h_{b}^{+} \bar{s}_{\mu}}_{\gamma_{\text {is a snake }}\left|R_{\mu, a, b}(\gamma)\right| \bar{s}_{\gamma}}-x_{\Pi}^{a} \cdot \underbrace{\sum_{a-1}\left|R_{\mu, a-1, b-1}(\gamma)\right| \bar{s}_{\gamma}}_{\gamma \text { is a snake }} h_{b-1}^{-} h^{+} \bar{s}_{\mu} . \\
& \text { (by Lemma 4.33) (by Lemma 4.33, } \\
& \text { applied to } a-1 \text { and } b-1 \\
& \text { instead of } a \text { and } b \text {) } \\
& =x_{\Pi}^{a} \cdot \sum_{\gamma \text { is a snake }}\left|R_{\mu, a, b}(\gamma)\right| \bar{s}_{\gamma}-x_{\Pi}^{a} \cdot \sum_{\gamma \text { is a snake }}\left|R_{\mu, a-1, b-1}(\gamma)\right| \bar{s}_{\gamma} \\
& =\sum_{\gamma \text { is a snake }}\left|R_{\mu, a, b}(\gamma)\right| x_{\Pi}^{a} \bar{s}_{\gamma}-\sum_{\gamma \text { is a snake }}\left|R_{\mu, a-1, b-1}(\gamma)\right| x_{\Pi}^{a} \bar{s}_{\gamma} \\
& =\sum_{\gamma \text { is a snake }}\left(\left|R_{\mu, a, b}(\gamma)\right|-\left|R_{\mu, a-1, b-1}(\gamma)\right|\right) \underbrace{x_{\Pi}^{a} \bar{s}_{\gamma}}_{=\bar{s}_{\gamma+a}} \\
& \text { (by (64)) } \\
& =\sum_{\gamma \text { is a snake }}\left(\left|R_{\mu, a, b}(\gamma)\right|-\left|R_{\mu, a-1, b-1}(\gamma)\right|\right) \bar{s}_{\gamma+a} \\
& =\sum_{\lambda \text { is a snake }}\left(\left|R_{\mu, a, b}(\lambda-a)\right|-\left|R_{\mu, a-1, b-1}(\lambda-a)\right|\right) \underbrace{\bar{s}_{(\lambda-a)+a}}_{=\bar{s}_{\lambda}} \\
& \left(\begin{array}{c}
\text { here, we have substituted } \lambda-a \text { for } \gamma \text { in the sum, } \\
\text { since the map }\{\text { snakes }\} \rightarrow\{\text { snakes }\}, \lambda \mapsto \lambda-a \\
\text { is a bijection }
\end{array}\right) \\
& =\sum_{\lambda \text { is a snake }}\left(\left|R_{\mu, a, b}(\lambda-a)\right|-\left|R_{\mu, a-1, b-1}(\lambda-a)\right|\right) \bar{s}_{\lambda} .
\end{aligned}
$$

We can compare coefficients on both sides of this equality (since Lemma 4.16 shows that the family $\left(\bar{s}_{\lambda}\right)_{\lambda \in\{\text { snakes }\}}$ of elements of \mathcal{L} is \mathbf{k}-linearly independent), and thus conclude that

$$
c_{\alpha, \mu}^{\lambda}=\left|R_{\mu, a, b}(\lambda-a)\right|-\left|R_{\mu, a-1, b-1}(\lambda-a)\right| \quad \text { for every snake } \lambda .
$$

This proves (62) in the case when λ is a snake.
However, it is easy to see that (62) also holds in the case when λ is not a snake ${ }^{16}$ Thus, (62) always holds. This proves Corollary 4.34 .

[^10]
4.5. The $\operatorname{map} \mathrm{f}_{\mu}$

Convention 4.35. For the whole Subsection 4.5, we shall use Convention 3.6(not only for n-tuples $a \in \mathbb{K}^{n}$, but for any n-tuples a). This convention does not conflict with Convention 4.2, because both conventions define γ_{i} in the same way when γ is an n-tuple and $i \in\{1,2, \ldots, n\}$ (whereas the latter convention does not define γ_{i} for any other values of i).

Convention 3.6 does conflict with our old convention (from Section 1) to identify partitions with finite tuples: Indeed, if we let γ be the n-tuple $(\underbrace{1,1, \ldots, 1}_{n \text { times }})$, then Convention 3.6 yields $\gamma_{n+1}=\gamma_{1}=1$ when we regard γ as an n-tuple, but we get $\gamma_{n+1}=0$ if we regard γ as a partition. We shall resolve this conflict by agreeing not to identify partitions with finite tuples in Subsection 4.5. (Thus, in particular, we will not identify a nonnegative snake $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right) \in \mathbb{Z}^{n}$ with its corresponding partition $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}, 0,0,0, \ldots\right) \in \operatorname{Par}[n]$.)

Let us now apply the results of Section 3. The abelian group $(\mathbb{Z},+, 0)$ of integers is totally ordered (in the usual way). Thus, Example 3.3 (applied to $(\mathbb{A}, *, e)=$ $(\mathbb{Z},+, 0))$ shows that there is a semifield $(\mathbb{Z}, \min ,+, 0)$ (that is, a semifield with ground set \mathbb{Z}, addition min, multiplication + and unity 0), called the min tropical semifield of $(\mathbb{Z},+, 0)$. We have the following little dictionary between various operations on this semifield $(\mathbb{Z}, \min ,+, 0)$ and familiar operations on integers:

- The addition operation of the semifield $(\mathbb{Z}, \min ,+, 0)$ is the binary operation \min on \mathbb{Z}. That is, for any $a, b \in \mathbb{Z}$, the sum $a+b$ understood with respect to the semifield $(\mathbb{Z}, \min ,+, 0)$ is precisely the integer $\min \{a, b\}$.
- Thus, (nonempty) finite sums in the semifield $(\mathbb{Z}, \min ,+, 0)$ are minima of finite sets of integers. That is, if $r \in \mathbb{N}$, and if $a_{0}, a_{1}, \ldots, a_{r}$ are any $r+1$ integers, then the sum $\sum_{k=0}^{r} a_{k}$ understood with respect to the semifield $(\mathbb{Z}, \min ,+, 0)$ is $\min \left\{a_{0}, a_{1}, \ldots, a_{r}\right\}=\min \left\{a_{k} \mid k \in\{0,1, \ldots, r\}\right\}$.
- Furthermore, the multiplication operation of the semifield $(\mathbb{Z}, \min ,+, 0)$ is the addition + of integers. That is, for any $a, b \in \mathbb{Z}$, the product $a b$ understood with respect to the semifield ($\mathbb{Z}, \min ,+, 0$) is precisely the sum $a+b$ understood with respect to the integer ring \mathbb{Z}. Meanwhile, the unity of the semifield $(\mathbb{Z}, \min ,+, 0)$ is the integer 0 .
nonnegative snake). Comparing this with $\underbrace{\left|R_{\mu, a, b}(\lambda-a)\right|}_{=0}-\underbrace{\left|R_{\mu, a-1, b-1}(\lambda-a)\right|}_{=0}=0$, we obtain
$c_{\alpha, \mu}^{\lambda}=\left|R_{\mu, a, b}(\lambda-a)\right|-\left|R_{\mu, a-1, b-1}(\lambda-a)\right|$. In other words, 62 holds.
Thus, we have shown that $\sqrt{62}$ holds in the case when λ is not a snake.
- Thus, the division operation of the semifield $(\mathbb{Z}, \min ,+, 0)$ is the subtraction - of integers. That is, for any $a, b \in \mathbb{Z}$, the quotient $\frac{a}{b}$ understood with respect to the semifield $(\mathbb{Z}, \min ,+, 0)$ is precisely the difference $a-b$ understood with respect to the integer ring \mathbb{Z}.
- For the same reason, squaring an element of the semifield $(\mathbb{Z}, \min ,+, 0)$ is tantamount to doubling it as an integer. That is, for any $a \in \mathbb{Z}$, the square a^{2} understood with respect to the semifield $(\mathbb{Z}, \min ,+, 0)$ is the product $2 a$ understood with respect to the integer ring \mathbb{Z}.
- For the same reason, taking reciprocals in the semifield $(\mathbb{Z}, \min ,+, 0)$ is tantamount to negation of integers. That is, for any $a \in \mathbb{Z}$, the reciprocal $\frac{1}{a}$ understood with respect to the semifield $(\mathbb{Z}, \min ,+, 0)$ is the integer $-a$ understood with respect to the integer ring \mathbb{Z}.
- For the same reason, finite products in the semifield $(\mathbb{Z}, \mathrm{min},+, 0)$ are sums of integers. That is, if $r \in \mathbb{N}$, and if $a_{1}, a_{2}, \ldots, a_{r}$ are any r integers, then the product $\prod_{k=1}^{r} a_{k}$ understood with respect to the semifield $(\mathbb{Z}, \min ,+, 0)$ is the sum $\sum_{k=1}^{r} a_{k}$ understood with respect to the integer ring \mathbb{Z}.

Thus, applying Definition 3.8 to $\mathbb{K}=(\mathbb{Z}, \min ,+, 0)$ (and renaming everything ${ }^{17}$), we obtain the following:

Definition 4.36. Fix any n-tuple $\mu \in \mathbb{Z}^{n}$.
We define a map $\mathbf{f}_{\mu}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ as follows:
Let $\gamma \in \mathbb{Z}^{n}$ be an n-tuple. For each $j \in \mathbb{Z}$ and $r \in \mathbb{N}$, define an element $\tau_{r, j} \in \mathbb{Z}$ by

$$
\tau_{r, j}=\min \{\underbrace{\sum_{\sum_{i=k+1}^{r} \mu_{j+i}}^{\mu_{j+k+1}+\mu_{j+k+2}+\cdots+\mu_{j+r}}}_{\sum_{\sum_{i=1}^{k} \gamma_{j+i}}^{\gamma_{j+1}+\gamma_{j+2}+\cdots+\gamma_{j+k}}}
$$

${ }^{17}$ Namely, we are

- renaming the (fixed) n-tuple u as μ;
- renaming the (variable) n-tuple x as γ (in order to avoid a clash with the variables $\left.x_{1}, x_{2}, \ldots, x_{n}\right)$;
- renaming the elements $t_{r, j}$ as $\tau_{r, j}$;
- renaming the n-tuple y as η.

Define $\eta \in \mathbb{Z}^{n}$ by setting
$\eta_{i}=\mu_{i}+\left(\mu_{i-1}+\tau_{n-1, i-1}\right)-\left(\gamma_{i+1}+\tau_{n-1, i+1}\right) \quad$ for each $i \in\{1,2, \ldots, n\}$.
Set $\mathbf{f}_{\mu}(\gamma)=\eta$.
Applying Theorem 3.11 to $\mathbb{K}=(\mathbb{Z}, \min ,+, 0)$ (and renaming everything ${ }^{18}$, and using our above dictionary), we thus obtain the following:

Theorem 4.37. Fix any n-tuple $\mu \in \mathbb{Z}^{n}$.
(a) The map \mathbf{f}_{μ} is an involution (i.e., we have $\mathbf{f}_{\mu} \circ \mathbf{f}_{\mu}=\mathrm{id}$).
(b) Let $\gamma \in \mathbb{Z}^{n}$ and $\eta \in \mathbb{Z}^{n}$ be such that $\eta=\mathbf{f}_{\mu}(\gamma)$. Then,

$$
\left(\eta_{1}+\eta_{2}+\cdots+\eta_{n}\right)+\left(\gamma_{1}+\gamma_{2}+\cdots+\gamma_{n}\right)=2\left(\mu_{1}+\mu_{2}+\cdots+\mu_{n}\right) .
$$

(c) Let $\gamma \in \mathbb{Z}^{n}$ and $\eta \in \mathbb{Z}^{n}$ be such that $\eta=\mathbf{f}_{\mu}(\gamma)$. Then,

$$
\min \left\{\mu_{i}, \gamma_{i}\right\}+\min \left\{-\mu_{i+1},-\gamma_{i+1}\right\}=\min \left\{\mu_{i}, \eta_{i}\right\}+\min \left\{-\mu_{i+1},-\eta_{i+1}\right\}
$$

for each $i \in \mathbb{Z}$.
(d) Let $\gamma \in \mathbb{Z}^{n}$ and $\eta \in \mathbb{Z}^{n}$ be such that $\eta=\mathbf{f}_{\mu}(\gamma)$. Then,

$$
\sum_{i=1}^{n}\left(\min \left\{\mu_{i}, \gamma_{i}\right\}-\gamma_{i}\right)=\sum_{i=1}^{n}\left(\min \left\{\mu_{i}, \eta_{i}\right\}-\mu_{i}\right)
$$

We obtain the following corollaries from Theorem 4.37
Corollary 4.38. Fix any n-tuple $\mu \in \mathbb{Z}^{n}$. Let $\gamma \in \mathbb{Z}^{n}$ and $\eta \in \mathbb{Z}^{n}$ be such that $\eta=\mathbf{f}_{\mu}(\gamma)$. Then:
(a) We have $|\eta|-|\mu|=|\mu|-|\gamma|$.
(b) We have

$$
\min \left\{\mu_{i}, \eta_{i}\right\}-\min \left\{\mu_{i}, \gamma_{i}\right\}=\max \left\{\mu_{i+1}, \eta_{i+1}\right\}-\max \left\{\mu_{i+1}, \gamma_{i+1}\right\}
$$

for each $i \in\{1,2, \ldots, n-1\}$.

[^11]- renaming the (fixed) n-tuple u as μ;
- renaming the (variable) n-tuple x as γ;
- renaming the n-tuple y as η.
(c) We have

$$
\sum_{i=1}^{n}\left(\mu_{i}-\min \left\{\mu_{i}, \eta_{i}\right\}+\min \left\{\mu_{i}, \gamma_{i}\right\}\right)=\sum_{i=1}^{n} \gamma_{i} .
$$

(d) We have $\gamma=\mathbf{f}_{\mu}(\eta)$.

Proof of Corollary 4.38 , (a) Theorem 4.37 (b) yields

$$
\left(\eta_{1}+\eta_{2}+\cdots+\eta_{n}\right)+\left(\gamma_{1}+\gamma_{2}+\cdots+\gamma_{n}\right)=2\left(\mu_{1}+\mu_{2}+\cdots+\mu_{n}\right) .
$$

In view of the equalities

$$
\begin{array}{ll}
|\eta|=\eta_{1}+\eta_{2}+\cdots+\eta_{n}, & |\gamma|=\gamma_{1}+\gamma_{2}+\cdots+\gamma_{n} \\
|\mu|=\mu_{1}+\mu_{2}+\cdots+\mu_{n}, &
\end{array}
$$

we can rewrite this as $|\eta|+|\gamma|=2|\mu|$. Equivalently, $|\eta|-|\mu|=|\mu|-|\gamma|$. This proves Corollary 4.38 (a).
(b) Let $i \in\{1,2, \ldots, n-1\}$. Then, Theorem 4.37 (c) yields

$$
\min \left\{\mu_{i}, \gamma_{i}\right\}+\min \left\{-\mu_{i+1},-\gamma_{i+1}\right\}=\min \left\{\mu_{i}, \eta_{i}\right\}+\min \left\{-\mu_{i+1},-\eta_{i+1}\right\} .
$$

In view of $\min \left\{-\mu_{i+1},-\gamma_{i+1}\right\}=-\max \left\{\mu_{i+1}, \gamma_{i+1}\right\}$ and $\min \left\{-\mu_{i+1},-\eta_{i+1}\right\}=$ $-\max \left\{\mu_{i+1}, \eta_{i+1}\right\}$, we can rewrite this as

$$
\min \left\{\mu_{i}, \gamma_{i}\right\}+\left(-\max \left\{\mu_{i+1}, \gamma_{i+1}\right\}\right)=\min \left\{\mu_{i}, \eta_{i}\right\}+\left(-\max \left\{\mu_{i+1}, \eta_{i+1}\right\}\right)
$$

In other words,

$$
\min \left\{\mu_{i}, \gamma_{i}\right\}-\max \left\{\mu_{i+1}, \gamma_{i+1}\right\}=\min \left\{\mu_{i}, \eta_{i}\right\}-\max \left\{\mu_{i+1}, \eta_{i+1}\right\} .
$$

Equivalently,

$$
\min \left\{\mu_{i}, \eta_{i}\right\}-\min \left\{\mu_{i}, \gamma_{i}\right\}=\max \left\{\mu_{i+1}, \eta_{i+1}\right\}-\max \left\{\mu_{i+1}, \gamma_{i+1}\right\} .
$$

This proves Corollary 4.38 (b).
(c) Theorem 4.37 (d) yields

$$
\begin{equation*}
\sum_{i=1}^{n}\left(\min \left\{\mu_{i}, \gamma_{i}\right\}-\gamma_{i}\right)=\sum_{i=1}^{n}\left(\min \left\{\mu_{i}, \eta_{i}\right\}-\mu_{i}\right) . \tag{65}
\end{equation*}
$$

Now, we have

$$
\begin{aligned}
& \sum_{i=1}^{n} \underbrace{\left(\mu_{i}-\min \left\{\mu_{i}, \eta_{i}\right\}+\min \left\{\mu_{i}, \gamma_{i}\right\}\right)}_{=\min \left\{\mu_{i}, \gamma_{i}\right\}-\left(\min \left\{\mu_{i}, \eta_{i}\right\}-\mu_{i}\right)} \\
& =\sum_{i=1}^{n}\left(\min \left\{\mu_{i}, \gamma_{i}\right\}-\left(\min \left\{\mu_{i}, \eta_{i}\right\}-\mu_{i}\right)\right) \\
& =\sum_{i=1}^{n} \min \left\{\mu_{i}, \gamma_{i}\right\}-\underbrace{\sum_{(\text {by }}^{n}(\min)}_{=\sum_{i=1}^{n}\left(\min \left\{\mu_{i}, \gamma_{i}\right\}-\gamma_{i}\right)}\left\{\mu_{i}, \eta_{i}\right\}-\mu_{i}) \\
& =\sum_{i=1}^{n} \min \left\{\mu_{i}, \gamma_{i}\right\}-\sum_{i=1}^{n}\left(\min \left\{\mu_{i}, \gamma_{i}\right\}-\gamma_{i}\right) \\
& =\sum_{i=1}^{n} \underbrace{\left(\min \left\{\mu_{i}, \gamma_{i}\right\}-\left(\min \left\{\mu_{i}, \gamma_{i}\right\}-\gamma_{i}\right)\right)}_{=\gamma_{i}}=\sum_{i=1}^{n} \gamma_{i} .
\end{aligned}
$$

This proves Corollary 4.38 (c).
(d) Theorem 4.37 (a) shows that $\mathbf{f}_{\mu} \circ \mathbf{f}_{\mu}=$ id. But recall that $\eta=\mathbf{f}_{\mu}(\gamma)$. Applying the map \mathbf{f}_{μ} to both sides of this equality, we obtain

$$
\mathbf{f}_{\mu}(\eta)=\mathbf{f}_{\mu}\left(\mathbf{f}_{\mu}(\gamma)\right)=\underbrace{\left(\mathbf{f}_{\mu} \circ \mathbf{f}_{\mu}\right)}_{=\mathrm{id}}(\gamma)=\gamma .
$$

This proves Corollary 4.38 (d).
We are now ready to prove the key lemma:
Lemma 4.39. Fix any n-tuple $\mu \in \mathbb{Z}^{n}$. Let $\gamma \in \mathbb{Z}^{n}$. Let $a, b \in \mathbb{Z}$. Then,

$$
\left|R_{\mu, b, a}\left(\mathbf{f}_{\mu}(\gamma)\right)\right|=\left|R_{\mu, a, b}(\gamma)\right| .
$$

Proof of Lemma 4.39. Define $\eta \in \mathbb{Z}^{n}$ by $\eta=\mathbf{f}_{\mu}(\gamma)$. We must then prove that $\left|R_{\mu, b, a}(\eta)\right|=\left|\overline{R_{\mu, a, b}}(\gamma)\right|$.

We know that $R_{\mu, a, b}(\gamma)$ is the set of all snakes v satisfying the four conditions
$\mu \rightharpoonup v \quad$ and $\quad|\mu|-|v|=a \quad$ and $\quad \gamma \rightharpoonup v \quad$ and $\quad|\gamma|-|v|=b$.

Likewise, $R_{\mu, b, a}(\eta)$ is the set of all snakes v satisfying the four conditions $\mu \rightharpoonup v \quad$ and $\quad|\mu|-|v|=b \quad$ and $\quad \eta \rightharpoonup v \quad$ and $\quad|\eta|-|v|=a$.

Now, fix $v \in R_{\mu, a, b}(\gamma)$. Thus, v is a snake satisfying the four conditions
$\mu \rightharpoonup v \quad$ and
$|\mu|-|v|=a$
and
$\gamma \rightharpoonup v \quad$ and
$|\gamma|-|v|=b$
(by the definition of $R_{\mu, a, b}(\gamma)$). In particular, we have $\mu \rightharpoonup v$. In other words, we have

$$
\begin{equation*}
\mu_{1} \geq v_{1} \geq \mu_{2} \geq v_{2} \geq \cdots \geq \mu_{n} \geq v_{n} \tag{66}
\end{equation*}
$$

(by the definition of " $\mu \rightharpoonup v^{\prime \prime}$). Likewise, from $\gamma \rightharpoonup v$, we obtain

$$
\begin{equation*}
\gamma_{1} \geq v_{1} \geq \gamma_{2} \geq v_{2} \geq \cdots \geq \gamma_{n} \geq v_{n} \tag{67}
\end{equation*}
$$

We define an n-tuple $\zeta \in \mathbb{Z}^{n}$ by setting

$$
\zeta_{i}=\min \left\{\mu_{i}, \eta_{i}\right\}-\min \left\{\mu_{i}, \gamma_{i}\right\}+v_{i} \quad \text { for each } i \in\{1,2, \ldots, n\}
$$

We shall prove that $\zeta \in R_{\mu, b, a}(\eta)$.
We begin by proving several auxiliary claims:
Claim 1: We have min $\left\{\mu_{i}, \eta_{i}\right\} \geq \zeta_{i}$ for each $i \in\{1,2, \ldots, n\}$.
[Proof of Claim 1: Let $i \in\{1,2, \ldots, n\}$. From (66), we obtain $\mu_{i} \geq v_{i}$. From (67), we obtain $\gamma_{i} \geq v_{i}$. Combining $\mu_{i} \geq v_{i}$ and $\gamma_{i} \geq v_{i}$, we obtain $\min \left\{\mu_{i}, \gamma_{i}\right\} \geq v_{i}$. Now, the definition of ζ yields

$$
\zeta_{i}=\min \left\{\mu_{i}, \eta_{i}\right\}-\underbrace{\min \left\{\mu_{i}, \gamma_{i}\right\}}_{\geq v_{i}}+v_{i} \leq \min \left\{\mu_{i}, \eta_{i}\right\}-v_{i}+v_{i}=\min \left\{\mu_{i}, \eta_{i}\right\} .
$$

In other words, $\min \left\{\mu_{i}, \eta_{i}\right\} \geq \zeta_{i}$. This proves Claim 1.]
Claim 2: We have $\zeta_{i} \geq \max \left\{\mu_{i+1}, \eta_{i+1}\right\}$ for each $i \in\{1,2, \ldots, n-1\}$.
[Proof of Claim 2: Let $i \in\{1,2, \ldots, n-1\}$. From (66), we obtain $v_{i} \geq \mu_{i+1}$. From (67), we obtain $v_{i} \geq \gamma_{i+1}$. Combining $v_{i} \geq \mu_{i+1}$ and $v_{i} \geq \gamma_{i+1}$, we obtain $v_{i} \geq$ $\max \left\{\mu_{i+1}, \gamma_{i+1}\right\}$. Now, the definition of ζ yields

$$
\begin{aligned}
\zeta_{i} & =\underbrace{}_{=\underset{\substack{\left.\max \left\{\mu_{i+1}, \eta_{i+1}\right\}-\max \left\{\mu_{i+1}, \gamma_{i+1}\right\} \\
\text { Corollary } 4.38(\mathbf{b})\right)}}{\min \left\{\mu_{i}, \eta_{i}\right\}-\min \left\{\mu_{i}, \gamma_{i}\right\}}+\underbrace{v_{i}}_{\geq \max \left\{\mu_{i+1}, \gamma_{i+1}\right\}}} \\
& \geq \max \left\{\mu_{i+1}, \eta_{i+1}\right\}-\max \left\{\mu_{i+1}, \gamma_{i+1}\right\}+\max \left\{\mu_{i+1}, \gamma_{i+1}\right\}=\max \left\{\mu_{i+1}, \eta_{i+1}\right\} .
\end{aligned}
$$

This proves Claim 2.]
Claim 3: The n-tuple ζ is a snake and satisfies $\mu \rightharpoonup \zeta$ and $\eta \rightharpoonup \zeta$.
[Proof of Claim 3: For each $i \in\{1,2, \ldots, n\}$, we have $\mu_{i} \geq \zeta_{i}$ (since $\mu_{i} \geq \min \left\{\mu_{i}, \eta_{i}\right\} \geq$ ζ_{i} (by Claim 1)). For each $i \in\{1,2, \ldots, n-1\}$, we have $\zeta_{i} \geq \mu_{i+1}$ (since Claim 2 yields $\zeta_{i} \geq \max \left\{\mu_{i+1}, \eta_{i+1}\right\} \geq \mu_{i+1}$). Combining the preceding two sentences, we obtain

$$
\mu_{1} \geq \zeta_{1} \geq \mu_{2} \geq \zeta_{2} \geq \cdots \geq \mu_{n} \geq \zeta_{n}
$$

In other words, $\mu \rightharpoonup \zeta$ (by the definition of " $\mu \rightharpoonup \zeta$ ").

For each $i \in\{1,2, \ldots, n\}$, we have $\eta_{i} \geq \zeta_{i}$ (since $\eta_{i} \geq \min \left\{\mu_{i}, \eta_{i}\right\} \geq \zeta_{i}$ (by Claim 1)). For each $i \in\{1,2, \ldots, n-1\}$, we have $\zeta_{i} \geq \eta_{i+1}$ (since Claim 2 yields $\zeta_{i} \geq \max \left\{\mu_{i+1}, \eta_{i+1}\right\} \geq \eta_{i+1}$). Combining the preceding two sentences, we obtain

$$
\eta_{1} \geq \zeta_{1} \geq \eta_{2} \geq \zeta_{2} \geq \cdots \geq \eta_{n} \geq \zeta_{n}
$$

In other words, $\eta \rightharpoonup \zeta$ (by the definition of " $\eta \rightharpoonup \zeta^{\prime \prime}$). Hence, Proposition 4.23 (a) (applied to η and ζ instead of μ and λ) yields that both ζ and η are snakes. Hence, ζ is a snake. This completes the proof of Claim 3.]

Claim 4: We have $|\mu|-|\zeta|=b$ and $|\eta|-|\zeta|=a$.
[Proof of Claim 4: We have

$$
\begin{aligned}
& |\mu|=\mu_{1}+\mu_{2}+\cdots+\mu_{n}=\sum_{i=1}^{n} \mu_{i} \quad \text { and } \\
& |\zeta|=\zeta_{1}+\zeta_{2}+\cdots+\zeta_{n}=\sum_{i=1}^{n} \zeta_{i} .
\end{aligned}
$$

Subtracting these two equalities from one another, we find

$$
\begin{aligned}
& |\mu|-|\zeta|=\sum_{i=1}^{n} \mu_{i}-\sum_{i=1}^{n} \underbrace{\zeta_{i}}_{\begin{array}{c}
\min \left\{\mu_{i}, \eta_{i}\right\}-\min \left\{\mu_{i}, \gamma_{i}\right\}+v_{i} \\
\text { (by the definition of } \zeta \text {) }
\end{array}} \\
& =\sum_{i=1}^{n} \mu_{i}-\sum_{i=1}^{n}\left(\min \left\{\mu_{i}, \eta_{i}\right\}-\min \left\{\mu_{i}, \gamma_{i}\right\}+v_{i}\right) \\
& =\sum_{i=1}^{n} \underbrace{\left(\mu_{i}-\left(\min \left\{\mu_{i}, \eta_{i}\right\}-\min \left\{\mu_{i}, \gamma_{i}\right\}+v_{i}\right)\right)}_{=\left(\mu_{i}-\min \left\{\mu_{i}, \eta_{i}\right\}+\min \left\{\mu_{i}, \gamma_{i}\right\}\right)-v_{i}} \\
& =\sum_{i=1}^{n}\left(\left(\mu_{i}-\min \left\{\mu_{i}, \eta_{i}\right\}+\min \left\{\mu_{i}, \gamma_{i}\right\}\right)-v_{i}\right) \\
& =\underbrace{\sum_{i=1}^{n}\left(\mu_{i}-\min \left\{\mu_{i}, \eta_{i}\right\}+\min \left\{\mu_{i}, \gamma_{i}\right\}\right)}_{=\sum_{i=1}^{n} \gamma_{i}}-\sum_{i=1}^{n} v_{i} \\
& \text { (by Corollary } 4.38 \text { (c)) } \\
& =\underbrace{\sum_{i=1}^{n} \gamma_{i}}_{=|\gamma|} \quad-\quad \underbrace{\sum_{i=1}^{n} v_{i}}_{=|v|} \quad=|\gamma|-|v|=b \text {. } \\
& \text { (since } \left.|\gamma|=\gamma_{1}+\gamma_{2}+\cdots+\gamma_{n}=\sum_{i=1}^{n} \gamma_{i}\right) \quad \text { (since }|v|=v_{1}+v_{2}+\cdots+v_{n}=\sum_{i=1}^{n} v_{i} \text {) }
\end{aligned}
$$

Furthermore,

$$
|\mu|-|\gamma|=\underbrace{(|\mu|-|v|)}_{=a}-\underbrace{(|\gamma|-|v|)}_{=b}=a-b
$$

and

$$
|\eta|-|\zeta|=\underbrace{(|\eta|-|\mu|)}_{\begin{array}{c}
=|\mu|-|\gamma| \\
\text { (by Corollary } 4.38 \text { (a)) }
\end{array}}+\underbrace{(|\mu|-|\zeta|)}_{=b}=\underbrace{|\mu|-|\gamma|}_{=a-b}+b=(a-b)+b=a .
$$

Thus, Claim 4 is proven.]
We have now shown (in Claim 3 and Claim 4) that ζ is a snake satisfying the four conditions
$\mu \rightharpoonup \zeta \quad$ and $\quad|\mu|-|\zeta|=b \quad$ and $\quad \eta \rightharpoonup \zeta \quad$ and $\quad|\eta|-|\zeta|=a$.
In other words, $\zeta \in R_{\mu, b, a}(\eta)$ (by the definition of $R_{\mu, b, a}(\eta)$).
Forget that we fixed v. Thus, for each $v \in R_{\mu, a, b}(\gamma)$, we have constructed a $\zeta \in R_{\mu, b, a}(\eta)$. Let us denote this ζ by \widetilde{v}. We thus have defined a map

$$
\begin{aligned}
R_{\mu, a, b}(\gamma) & \rightarrow R_{\mu, b, a}(\eta), \\
v & \mapsto \widetilde{v} .
\end{aligned}
$$

Let us denote this map by $\mathbf{g}_{\gamma, a, b}$. Its definition shows that

$$
\begin{aligned}
(\underbrace{\mathbf{g}_{\gamma, a, b}(v)}_{=\widetilde{v}})_{i}=\widetilde{v}_{i}= & \min \left\{\mu_{i}, \eta_{i}\right\}-\min \left\{\mu_{i}, \gamma_{i}\right\}+v_{i} \\
& \binom{\text { since } \widetilde{v} \text { was defined as the } n \text {-tuple } \zeta, \text { whose entries }}{\text { are given by } \zeta_{i}=\min \left\{\mu_{i}, \eta_{i}\right\}-\min \left\{\mu_{i}, \gamma_{i}\right\}+v_{i}}
\end{aligned}
$$

for each $v \in R_{\mu, a, b}(\gamma)$ and each $i \in\{1,2, \ldots, n\}$.
However, from $\eta=\mathbf{f}_{\mu}(\gamma)$, we obtain $\gamma=\mathbf{f}_{\mu}(\eta)$ (by Corollary 4.38 (d)). The relation between γ and η is thus symmetric. Hence, in the same way as we defined a map $\mathbf{g}_{\gamma, a, b}: R_{\mu, a, b}(\gamma) \rightarrow R_{\mu, b, a}(\eta)$, we can define a $\operatorname{map} \mathbf{g}_{\eta, b, a}: R_{\mu, b, a}(\eta) \rightarrow$ $R_{\mu, a, b}(\gamma)$ (by repeating the above construction of $\mathbf{g}_{\gamma, a, b}$ with b, a, η and γ taking the roles of a, b, γ and η, respectively). The resulting map $\mathbf{g}_{\eta, b, a}$ satisfies

$$
\begin{equation*}
\left(\mathbf{g}_{\eta, b, a}(v)\right)_{i}=\min \left\{\mu_{i}, \gamma_{i}\right\}-\min \left\{\mu_{i}, \eta_{i}\right\}+v_{i} \tag{69}
\end{equation*}
$$

for each $v \in R_{\mu, b, a}(\eta)$ and each $i \in\{1,2, \ldots, n\}$. (Indeed, this can be proved just as we proved (68), but with b, a, η and γ taking the roles of a, b, γ and η.)

Now, it is easy to see that $\mathbf{g}_{\gamma, a, b} \circ \mathbf{g}_{\eta, b, a}=$ id ${ }^{19}$ and $\mathbf{g}_{\eta, b, a} \circ \mathbf{g}_{\gamma, a, b}=$ id ${ }^{20}$. Thus, the two maps $\mathbf{g}_{\gamma, a, b}$ and $\mathbf{g}_{\eta, b, a}$ are mutually inverse. Hence, these two maps are invertible, i.e., are bijections.

Thus, there exists a bijection from $R_{\mu, a, b}(\gamma)$ to $R_{\mu, b, a}(\eta)$ (namely, $\mathbf{g}_{\gamma, a, b}$). This yields $\left|R_{\mu, a, b}(\gamma)\right|=\left|R_{\mu, b, a}(\eta)\right|=\left|R_{\mu, b, a}\left(\mathbf{f}_{\mu}(\gamma)\right)\right|$ (since $\left.\eta=\mathbf{f}_{\mu}(\gamma)\right)$. This proves Lemma 4.39

Having learned a lot about the map f_{μ}, let us now connect it to the map φ defined in Theorem 2.3. For this, we shall use the following lemma:

Lemma 4.40. Fix any n-tuple $\mu \in \mathbb{Z}^{n}$.
Let $v \in \mathbb{Z}^{n}$ be an n-tuple. For each $j \in \mathbb{Z}$, let

$$
\tau_{j}=\min \{\underbrace{\underbrace{v_{j+1}+v_{j+2}+\cdots+v_{j+k}}_{\mid k \in\{0,1, \ldots, n-1\}\}}}_{\substack{\sum_{i=1}^{k} v_{j+i}}}+\underbrace{\mu_{j+k+1}+\mu_{j+k+2}+\cdots+\mu_{j+n-1}}_{\substack{\sum_{i=k+1}^{n-1} \mu_{j+i}}}, ~
$$

Let $\eta \in \mathbb{Z}^{n}$ be such that

$$
\eta_{i}=\mu_{i}+\left(\mu_{i-1}+\tau_{i-1}\right)-\left(v_{i+1}+\tau_{i+1}\right) \quad \text { for each } i \in\{1,2, \ldots, n\}
$$

Then, $\mathbf{f}_{\mu}(v)=\eta$.
${ }^{19}$ Proof. Let $v \in R_{\mu, b, a}(\eta)$. Thus, $\mathbf{g}_{\eta, b, a}(v) \in R_{\mu, a, b}(\gamma)$. Now, both $\left(\mathbf{g}_{\gamma, a, b} \circ \mathbf{g}_{\eta, b, a}\right)(v)$ and v are n-tuples. Furthermore, for each $i \in\{1,2, \ldots, n\}$, we have

$$
\begin{aligned}
& (\underbrace{\left(\mathbf{g}_{\gamma, a, b} \circ \mathbf{g}_{\eta, b, a}\right)(v)}_{=\mathbf{g}_{\gamma, a, b}\left(\mathbf{g}_{\eta, b, a}(v)\right)})_{i}=\left(\mathbf{g}_{\gamma, a, b}\left(\mathbf{g}_{\eta, b, a}(v)\right)\right)_{i} \\
& =\min \left\{\mu_{i}, \eta_{i}\right\}-\min \left\{\mu_{i}, \gamma_{i}\right\}+\underbrace{\left(\boldsymbol{g}_{\eta, b, a}(v)\right)_{i}}_{=\min \left\{\mu_{i}, \gamma_{i}\right\}-\min _{(\text {by }}^{(69))}\left\{\mu_{i}, \eta_{i}\right\}+v_{i}} \\
& \text { (by } \sqrt{68} \text {, applied to } \mathbf{g}_{\eta, b, a}(v) \text { instead of } v \text {) } \\
& =\min \left\{\mu_{i}, \eta_{i}\right\}-\min \left\{\mu_{i}, \gamma_{i}\right\}+\min \left\{\mu_{i}, \gamma_{i}\right\}-\min \left\{\mu_{i}, \eta_{i}\right\}+v_{i} \\
& =v_{i} \text {. }
\end{aligned}
$$

In other words, the two n-tuples $\left(\mathbf{g}_{\gamma, a, b} \circ \mathbf{g}_{\eta, b, a}\right)(v)$ and v agree in each entry. Hence, $\left(\mathbf{g}_{\gamma, a, b} \circ \mathbf{g}_{\eta, b, a}\right)(v)=v=\operatorname{id}(v)$.
Forget that we fixed v. We thus have shown that $\left(\mathbf{g}_{\gamma, a, b} \circ \mathbf{g}_{\eta, b, a}\right)(v)=\operatorname{id}(v)$ for each $v \in$ $R_{\mu, b, a}(\eta)$. In other words, $\mathbf{g}_{\gamma, a, b} \circ \mathbf{g}_{\eta, b, a}=\mathrm{id}$.
${ }^{20}$ for similar reasons

Proof of Lemma 4.40. Lemma 4.40 is obtained when we apply Lemma 3.13 to $\mathbb{K}=(\mathbb{Z}, \min ,+, 0)$ (and rename everything ${ }^{21}$, and use our above dictionary again).

We can now connect the map f_{μ} with the map φ from Theorem 2.3
Lemma 4.41. Let $a, b \in \mathbb{N}$. Fix any n-tuple $\mu \in \mathbb{Z}^{n}$. Define a map $\varphi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ as in Theorem 2.3. Then,

$$
\varphi(\omega)=\mathbf{f}_{\mu}(\omega-a)+b \quad \text { for each } \omega \in \mathbb{Z}^{n}
$$

Proof of Lemma 4.41. Let $\omega \in \mathbb{Z}^{n}$.
Define an n-tuple $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathbb{Z}^{n}$ by

$$
v_{i}=\omega_{i}-a \quad \text { for each } i \in\{1,2, \ldots, n\} .
$$

Thus,

$$
\begin{aligned}
& v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)=\left(\omega_{1}-a, \omega_{2}-a, \ldots, \omega_{n}-a\right) \\
& \quad\left(\text { since } v_{i}=\omega_{i}-a \text { for each } i \in\{1,2, \ldots, n\}\right) \\
&=\omega-a .
\end{aligned}
$$

For each $i \in \mathbb{Z}$, we let $i \#$ denote the unique element of $\{1,2, \ldots, n\}$ congruent to i modulo n.

For each $j \in \mathbb{Z}$, set

$$
\begin{gather*}
\tau_{j}=\min \left\{\left(v_{(j+1) \#}+v_{(j+2) \#}+\cdots+v_{(j+k) \#}\right)\right. \\
+\left(\mu_{(j+k+1) \#}+\mu_{(j+k+2) \#}+\cdots+\mu_{(j+n-1) \#}\right) \\
 \tag{70}\\
\mid k \in\{0,1, \ldots, n-1\}\} .
\end{gather*}
$$

Define an n-tuple $\eta=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right) \in \mathbb{Z}^{n}$ by setting

$$
\eta_{i}=\mu_{i \#}+\left(\mu_{(i-1) \#}+\tau_{(i-1) \#}\right)-\left(v_{(i+1) \#}+\tau_{(i+1) \#}\right) \quad \text { for each } i \in\{1,2, \ldots, n\}
$$

The definition of φ then yields

$$
\begin{equation*}
\varphi(\omega)=\left(\eta_{1}+b, \eta_{2}+b, \ldots, \eta_{n}+b\right)=\eta+b . \tag{71}
\end{equation*}
$$

${ }^{21}$ Namely, we are

- renaming the (fixed) n-tuple u as μ;
- renaming the n-tuple x as v;
- renaming the elements q_{j} as τ_{j};
- renaming the n-tuple z as η.

Our plan is now to show that $\mathbf{f}_{\mu}(v)=\eta$. We shall achieve this by applying Lemma 4.40; but in order to do so, we need to show that the assumptions of Lemma 4.40 are satisfied.

We shall do this piece by piece. First we claim the following:
Claim 1: We have $v_{p \#}=v_{p}$ for each $p \in \mathbb{Z}$.
[Proof of Claim 1: Let $p \in \mathbb{Z}$. Then, $p \# \equiv p \bmod n$ (by the definition of $p \#$).
Convention 3.6 ensures that the family $\left(v_{i}\right)_{i \in \mathbb{Z}}$ is n-periodic. In other words, if j and j^{\prime} are two integers satisfying $j \equiv j^{\prime} \bmod n$, then $v_{j}=v_{j^{\prime}}$. We can apply this to $j=p \#$ and $j^{\prime}=p$, and thus obtain $v_{p \#}=v_{p}$. This proves Claim 1.]

Claim 2: We have $\mu_{p \#}=\mu_{p}$ for each $p \in \mathbb{Z}$.
[Proof of Claim 2: This is analogous to the proof of Claim 1.]
Claim 3: For each $j \in \mathbb{Z}$, we have

$$
\tau_{j}=\min \{\underbrace{\underbrace{v_{j+1}+v_{j+2}+\cdots+v_{j+k}}_{=\sum_{i=k+1}^{n-1} \mu_{j+i}}}_{\begin{array}{c}
=\sum_{i=1}^{k} v_{j+i} \\
\mid k \in\{0,1, \ldots, n-1\}\}
\end{array}}+\underbrace{\mu_{j+k+1}+\mu_{j+k+2}+\cdots+\mu_{j+n-1}}
$$

[Proof of Claim 3: Let $j \in \mathbb{Z}$. Then, the definition of τ_{j} yields

$$
\begin{aligned}
& \tau_{j}=\min \left\{\left(\begin{array}{l}
\underbrace{v_{(j+1) \#}}_{\begin{array}{c}
=v_{j+1} \\
\text { (by Claim 1) }
\end{array}}+\underbrace{v_{(j+2) \#}}_{\begin{array}{c}
\text { (by Claim 1) }
\end{array}}+\cdots+\underbrace{v_{(j+k) \#}}_{\begin{array}{c}
=v_{j+k} \\
\text { (by Claim 1) }
\end{array}})
\end{array}\right.\right. \\
& +\left(\begin{array}{c}
\underbrace{\mu_{(j+k+1) \#}}_{\begin{array}{c}
=\mu_{j+k+1} \\
\text { (by Claim 2) }
\end{array}}+\underbrace{\mu_{(j+k+2}}_{\begin{array}{c}
\text { (by Claim 2) }
\end{array}}+\cdots+\underbrace{\mu_{(j+n-1) \#}}_{\begin{array}{c}
\text { by } \mu_{j+n-1} \\
\text { (by Claim 2) }
\end{array}})
\end{array}\right. \\
& \mid k \in\{0,1, \ldots, n-1\}\} \\
& =\min \{\underbrace{v_{j+1}+v_{j+2}+\cdots+v_{j+k}}_{=\sum_{i=1}^{k} v_{j+i}}+\underbrace{\mu_{j+k+1}+\mu_{j+k+2}+\cdots+\mu_{j+n-1}}_{=\sum_{i=k+1}^{n-1} \mu_{j+i}} \\
& \mid k \in\{0,1, \ldots, n-1\}\} \text {. }
\end{aligned}
$$

This proves Claim 3.]
The next claim is an easy fact from elementary number theory:
Claim 4: We have $(p \#+q) \#=(p+q) \#$ for any $p \in \mathbb{Z}$ and $q \in \mathbb{Z}$.
[Proof of Claim 4: Let $p \in \mathbb{Z}$ and $q \in \mathbb{Z}$. Recall that $p \#$ is defined as the unique element of $\{1,2, \ldots, n\}$ congruent to p modulo n. Hence, $p \#$ is congruent to p modulo n. In other words, $p \# \equiv p \bmod n$. Thus, $\underbrace{p \#}_{\equiv p \bmod n}+q \equiv p+q \bmod n$.

Recall that $(p \#+q) \#$ is defined as the unique element of $\{1,2, \ldots, n\}$ congruent to $p \#+q$ modulo n. Hence, $(p \#+q) \#$ is congruent to $p \#+q$ modulo n. In other words, $(p \#+q) \# \equiv p \#+q \bmod n$. Thus, $(p \#+q) \# \equiv p \#+q \equiv p+q \bmod n$. In other words, $(p \#+q) \#$ is congruent to $p+q$ modulo n.

Moreover, $(p \#+q) \#$ is an element of $\{1,2, \ldots, n\}$ (since $(p \#+q) \#$ is the unique element of $\{1,2, \ldots, n\}$ congruent to $p \#+q$ modulo n). Hence, $(p \#+q) \#$ is an element of $\{1,2, \ldots, n\}$ congruent to $p+q$ modulo n.

But let us now recall that $(p+q) \#$ is defined as the unique element of $\{1,2, \ldots, n\}$ congruent to $p+q$ modulo n. Hence, $(p+q)$ \# is the only such element. In other words, if i is an element of $\{1,2, \ldots, n\}$ congruent to $p+q$ modulo n, then $i=$ $(p+q) \#$. Applying this to $i=(p \#+q) \#$, we conclude that $(p \#+q) \#=(p+q)$ \# (since $(p \#+q) \#$ is an element of $\{1,2, \ldots, n\}$ congruent to $p+q$ modulo n). This proves Claim 4.]

Using Claim 4, we easily obtain the following:
Claim 5: We have $\tau_{p \#}=\tau_{p}$ for each $p \in \mathbb{Z}$.
[Proof of Claim 5: Let $p \in \mathbb{Z}$. Then, the definition of $\tau_{p \#}$ yields

$$
\begin{aligned}
& \tau_{p \#}=\min \{\underbrace{\left(v_{(p \#+1) \#}+v_{(p \#+2) \#}+\cdots+v_{(p \#+k) \#}\right)}_{=\sum_{i=1}^{k} v_{(p \#+i) \#}} \\
& +\underbrace{\left(\mu_{(p \#+k+1) \#}+\mu_{(p \#+k+2) \#}+\cdots+\mu_{(p \#+n-1) \#}\right)}_{=\sum_{i=k+1}^{n-1} \mu_{(p \#+i) \#}} \\
& \mid k \in\{0,1, \ldots, n-1\}\} \\
& =\min \{\left.\sum_{i=1}^{k} \underbrace{v_{(p \#+i) \#}}_{\begin{array}{c}
=v_{(p+i)} \\
(\text { since Claim } \\
\text { applied to } q=i) \\
\text { yields }(p \#+i) \#=(p+i) \#)
\end{array}}+\sum_{i=k+1}^{n-1} \underbrace{\mu_{(p \#+i) \#}}_{\begin{array}{c}
\text { (since Claim } \\
\text { (applied to } q=i) \\
\text { yields }(p \#+i) \#=(p+i) \#)
\end{array}} \right\rvert\, k \in\{0,1, \ldots, n-1\}\} \\
& =\min \left\{\sum_{i=1}^{k} v_{(p+i) \#}+\sum_{i=k+1}^{n-1} \mu_{(p+i) \#} \mid k \in\{0,1, \ldots, n-1\}\right\} .
\end{aligned}
$$

Comparing this with

$$
\left.\begin{array}{l}
\tau_{p}=\min \left\{\begin{array}{l}
\underbrace{\left(v_{(p+1) \#}+v_{(p+2) \#}+\cdots+v_{(p+k) \#}\right)}_{=\sum_{i=1}^{k} v_{(p+i) \#}} \\
\quad+\underbrace{\left(\mu_{(p+k+1) \#}+\mu_{(p+k+2) \#}+\cdots+\mu_{(p+n-1) \#}\right)}_{=\sum_{i=k+1}^{n-1} \mu_{(p+i) \#}}
\end{array}\right. \\
\quad \mid k \in\{0,1, \ldots, n-1\}\}
\end{array}\right\} \begin{aligned}
& \left(\text { by the definition of } \tau_{p}\right)
\end{aligned}
$$

we obtain $\tau_{p \#}=\tau_{p}$. This proves Claim 5.]

Now, let $i \in\{1,2, \ldots, n\}$. Then, the definition of η yields

$$
\begin{aligned}
\eta_{i} & =\underbrace{\mu_{i \#}}_{\begin{array}{c}
=\mu_{i} \\
\text { (by Claim 2) }
\end{array}}+(\underbrace{\mu_{(i-1) \#}}_{\begin{array}{c}
=\mu_{i-1} \\
\text { (by Claim 2) }
\end{array}}+\underbrace{\tau_{(i-1) \#}}_{\begin{array}{c}
=\tau_{i-1} \\
\text { (by Claim } 5)
\end{array}})-(\underbrace{v_{(i+1) \#}}_{\begin{array}{c}
v_{i+1} \\
(\text { by Claim 1) }
\end{array}}+\underbrace{\tau_{(i+1) \#}}_{\begin{array}{c}
=\tau_{i+1} \\
\text { (by Claim 5) }
\end{array}}) \\
& =\mu_{i}+\left(\mu_{i-1}+\tau_{i-1}\right)-\left(v_{i+1}+\tau_{i+1}\right) .
\end{aligned}
$$

Now, forget that we fixed i. We thus have proved that

$$
\eta_{i}=\mu_{i}+\left(\mu_{i-1}+\tau_{i-1}\right)-\left(v_{i+1}+\tau_{i+1}\right) \quad \text { for each } i \in\{1,2, \ldots, n\} .
$$

Combining this with Claim 3, we conclude that the assumptions of Lemma 4.40 are satisfied. Hence, Lemma 4.40 yields $\mathbf{f}_{\mu}(v)=\eta$. In view of $v=\omega-a$, this rewrites as $\mathbf{f}_{\mu}(\omega-a)=\eta$. Hence, $\eta=\mathbf{f}_{\mu}(\omega-a)$, so that (71) becomes

$$
\varphi(\omega)=\underbrace{\eta}_{=\mathbf{f}_{\mu}(\omega-a)}+b=\mathbf{f}_{\mu}(\omega-a)+b .
$$

This proves Lemma 4.41

4.6. The finale

Now, let us again use the convention (from Section 1) by which we identify partitions with finite tuples (and therefore identify partitions in Par $[n]$ with nonnegative snakes). This is no longer problematic, since we are not using Convention 3.6 any more.

Lemma 4.42. Let $a, b \in \mathbb{N}$. Define the two partitions $\alpha=\left(a+b, a^{n-2}\right)$ and $\beta=\left(a+b, b^{n-2}\right)$.

Fix any partition $\mu \in \operatorname{Par}[n]$. Consider the map $\mathbf{f}_{\mu}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ defined in Definition 4.36

Then, for any $\lambda \in \mathbb{Z}^{n}$, we have

$$
c_{\alpha, \mu}^{\lambda+a}=c_{\beta, \mu}^{\mathbf{f}_{\mu}(\lambda)+b} .
$$

Here, we understand $c_{\alpha, \mu}^{\lambda+a}$ to mean 0 if $\lambda+a$ is not a partition, and likewise we understand $c_{\beta, \mu}^{\mathbf{f}_{\mu}(\lambda)+b}$ to mean 0 if $\mathbf{f}_{\mu}(\lambda)+b$ is not a partition.

Proof of Lemma 4.42. Let $\lambda \in \mathbb{Z}^{n}$. Corollary 4.34 (applied to $\lambda+a$ instead of λ) yields

$$
\begin{align*}
c_{\alpha, \mu}^{\lambda+a} & =\left|R_{\mu, a, b}((\lambda+a)-a)\right|-\left|R_{\mu, a-1, b-1}((\lambda+a)-a)\right| \\
& =\left|R_{\mu, a, b}(\lambda)\right|-\left|R_{\mu, a-1, b-1}(\lambda)\right| \tag{72}
\end{align*}
$$

(since $(\lambda+a)-a=\lambda$). On the other hand, $\beta=(\underbrace{a+b}_{=b+a}, b^{n-2})=\left(b+a, b^{n-2}\right)$. Hence, Corollary 4.34 (applied to b, a, β and $\mathbf{f}_{\mu}(\lambda)+b$ instead of a, b, α and λ) yields

$$
\begin{aligned}
& c_{c_{\beta, \mu}}^{\mathbf{f}_{\mu}(\lambda)+b}=\left|R_{\mu, b, a}\left(\left(\mathbf{f}_{\mu}(\lambda)+b\right)-b\right)\right|-\left|R_{\mu, b-1, a-1}\left(\left(\mathbf{f}_{\mu}(\lambda)+b\right)-b\right)\right| \\
& =\underbrace{\left|R_{\mu, b, a}\left(\mathbf{f}_{\mu}(\lambda)\right)\right|}_{\begin{array}{c}
=\left|R_{\mu, a, b}(\lambda)\right| \\
\text { (by Lemma } \\
\text { applied to } \\
\gamma=\lambda)
\end{array}}-\underbrace{\left|R_{\mu, b-1, a-1}\left(\mathbf{f}_{\mu}(\lambda)\right)\right|}_{\begin{array}{c}
=\left|R_{\mu, a-1, b-1}(\lambda)\right| \\
\text { by Lemma } 4.39
\end{array}} \\
& \text { applied to } \gamma=\lambda \text {) applied to } \lambda, a-1 \text { and } b-1 \\
& \text { (since } \left.\left(\mathbf{f}_{\mu}(\lambda)+b\right)-b=\mathbf{f}_{\mu}(\lambda)\right) \\
& =\left|R_{\mu, a, b}(\lambda)\right|-\left|R_{\mu, a-1, b-1}(\lambda)\right| \text {. }
\end{aligned}
$$

Comparing this with 72 , we find $c_{\alpha, \mu}^{\lambda+a}=c_{\beta, \mu}^{\mathbf{f}_{\mu}(\lambda)+b}$. This proves Lemma 4.42.
We are now ready to prove Theorem 2.3
Proof of Theorem 2.3 The map \mathbf{f}_{μ} is an involution (by Theorem 4.37 (a)), thus a bijection.

Let $\mathbf{a}^{-}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be the map that sends each $\omega \in \mathbb{Z}^{n}$ to $\omega-a$. This map \mathbf{a}^{-}is clearly a bijection.

Let $\mathbf{b}^{+}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ be the map that sends each $\omega \in \mathbb{Z}^{n}$ to $\omega+b$. This map \mathbf{b}^{+}is clearly a bijection.

From Lemma 4.41, we can easily see that

$$
\varphi=\mathbf{b}^{+} \circ \mathbf{f}_{\mu} \circ \mathbf{a}^{-}
$$

[Proof: Let $\omega \in \mathbb{Z}^{n}$. Then, the definition of \mathbf{a}^{-}yields $\mathbf{a}^{-}(\omega)=\omega-a$. Hence, $\omega-a=\mathbf{a}^{-}(\omega)$. But Lemma 4.41 yields

$$
\begin{aligned}
\varphi(\omega) & =\mathbf{f}_{\mu}(\omega-a)+b=\mathbf{b}^{+}(\mathbf{f}_{\mu}(\underbrace{\omega-a}_{=\mathbf{a}^{-}(\omega)})) \\
& \left(\text { since the definition of } \mathbf{b}^{+} \text {yields } \mathbf{b}^{+}\left(\mathbf{f}_{\mu}(\omega-a)\right)=\mathbf{f}_{\mu}(\omega-a)+b\right) \\
= & \mathbf{b}^{+}\left(\mathbf{f}_{\mu}\left(\mathbf{a}^{-}(\omega)\right)\right)=\left(\mathbf{b}^{+} \circ \mathbf{f}_{\mu} \circ \mathbf{a}^{-}\right)(\omega) .
\end{aligned}
$$

Forget that we fixed ω. Thus we have shown that $\varphi(\omega)=\left(\mathbf{b}^{+} \circ \mathbf{f}_{\mu} \circ \mathbf{a}^{-}\right)(\omega)$ for each $\omega \in \mathbb{Z}^{n}$. In other words, $\varphi=\mathbf{b}^{+} \circ \mathbf{f}_{\mu} \circ \mathbf{a}^{-}$, qed.]

Recall that the maps $\mathbf{b}^{+}, \mathbf{f}_{\mu}$ and \mathbf{a}^{-}are bijections. Hence, their composition $\mathbf{b}^{+} \circ \mathbf{f}_{\mu} \circ \mathbf{a}^{-}$is a bijection as well. In other words, φ is a bijection (since $\varphi=$ $\left.\mathbf{b}^{+} \circ \mathbf{f}_{\mu} \circ \mathbf{a}^{-}\right)$. This proves Theorem 2.3 (a).
(b) Let $\omega \in \mathbb{Z}^{n}$. Then, Lemma 4.41 yields $\varphi(\omega)=\mathbf{f}_{\mu}(\omega-a)+b$. Hence, $\mathbf{f}_{\mu}(\omega-a)+b=\varphi(\omega)$. But Lemma 4.42 (applied to $\left.\lambda=\omega-a\right)$ yields

$$
c_{\alpha, \mu}^{(\omega-a)+a}=c_{\beta, \mu}^{\mathbf{f}_{\mu}(\omega-a)+b}=c_{\beta, \mu}^{\varphi(\omega)} \quad\left(\text { since } \mathbf{f}_{\mu}(\omega-a)+b=\varphi(\omega)\right) .
$$

In view of $(\omega-a)+a=\omega$, this rewrites as $c_{\alpha, \mu}^{\omega}=c_{\beta, \mu}^{\varphi(\omega)}$. This proves Theorem 2.3 (b).

5. Final remarks

5.1. Aside: A Jacobi-Trudi formula for Schur Laurent polynomials

As mentioned above, Proposition 4.29 has the following generalization, which can be obtained from an identity of Koike [Koike89, Proposition 2.8] (via the map $\widetilde{\pi}_{n}$ from [Koike89] and the correspondence between Schur Laurent polynomials and rational representations of GL (n)), which has later been extended by Hamel and King [HamKin11] (see [HamKin11, (6) and (10)] for the connection). ${ }^{22}$

Proposition 5.1. Let $p, q \in \mathbb{N}$ with $p+q \leq n$. Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{p}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{q}\right)$ be two partitions. Let $\mathbf{b} \ominus \mathbf{a}$ denote the snake $\left(b_{1}, b_{2}, \ldots, b_{q}, 0^{n-p-q},-a_{p},-a_{p-1}, \ldots,-a_{1}\right)$. Let M be the $(p+q) \times(p+q)$ matrix

$$
\begin{aligned}
& \left(\begin{array}{ll}
h_{a_{p-i+1}+i-j}^{-}, & \text {if } i \leq p ; \\
h_{b_{i-p}-i+j}^{+} & \text {if } i>p
\end{array}\right)_{i, j \in\{1,2, \ldots, p+q\}} \\
& =\left(\begin{array}{cccccccc}
h_{a_{p}}^{-} & h_{a_{p}-1}^{-} & \cdots & h_{a_{p}-p+1}^{-} & h_{a_{p}-p}^{-} & h_{a_{p}-p-1}^{-} & \cdots & h_{a_{p}-p-q+1}^{-} \\
h_{a_{p-1}+1}^{-} & h_{a_{p-1}}^{-} & \cdots & h_{a_{p-1}-p+2}^{-} & h_{a_{p-1}-p+1}^{-} & h_{a_{p-1}-p}^{-} & \cdots & h_{a_{p-1}-p-q+2}^{-} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
h_{a_{1}+p-1}^{-} & h_{a_{1}+p-2}^{-} & \cdots & h_{a_{1}}^{-} & h_{a_{1}-1}^{-} & h_{a_{1}-2}^{-} & \cdots & h_{a_{1}-q}^{-} \\
h_{b_{1}-p}^{+} & h_{b_{1}-p+1}^{+} & \cdots & h_{b_{1}-1}^{+} & h_{b_{1}}^{+} & h_{b_{1}+1}^{+} & \cdots & h_{b_{1}+q-1}^{+} \\
h_{b_{2}-p-1}^{+} & h_{b_{2}-p}^{+} & \cdots & h_{b_{2}-2}^{+} & h_{b_{2}-1}^{+} & h_{b_{2}}^{+} & \cdots & h_{b_{2}+q-2}^{+} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
h_{b_{q}-p-q+1}^{+} & h_{b_{q}-p-q+2}^{+} & \cdots & h_{b_{q}-q}^{+} & h_{b_{q}-q+1}^{+} & h_{b_{q}-q+2}^{+} & \cdots & h_{b_{q}}^{+}
\end{array}\right) .
\end{aligned}
$$

Then,

$$
\bar{s}_{\mathbf{b} \ominus \mathbf{a}}=\operatorname{det} M .
$$

[^12]Remark 5.2. The analogous generalization of the second Jacobi-Trudi formula ([GriRei20, (2.4.17)]) can easily be proved (although we leave both stating and proving it to the reader). What makes it easy is the (fairly obvious) fact that the elementary symmetric functions e_{k} satisfy

$$
e_{k}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right)=x_{\Pi}^{-1} e_{n-k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

for all $k \in \mathbb{Z}$. (See [GriRei20, Definition 2.2.1] for the definition of e_{k}.)
Proposition 5.1 generalizes Proposition 4.29 (which corresponds to the particular case when $p=1$ and $q=1$) as well as the first Jacobi-Trudi formula [GriRei20, (2.4.16)] (which corresponds to the particular case $p=0$).

We notice that what we called $\mathbf{b} \ominus \mathbf{a}$ in Proposition 5.1 has been called $[\mathbf{b}, \mathbf{a}]$ in [Stembr87].

We thank Grigori Olshanski for informing us of the provenance of Proposition 5.1

5.2. Questions on f_{u}

We shall now pose several questions about the birational involution \mathbf{f}_{u} studied in Section 3. Convention 3.4, Convention 3.5 and Convention 3.6 will be used throughout Subsection 5.2 .

5.2.1. f_{u} as a composition?

Most of our questions are meant to attempt seeing the involution \mathbf{f}_{u} from different directions. The first one is inspired by what is now known as the "toggle approach" to dynamical combinatorics (see, e.g., [Roby15]), but is really an application of the age-old "divide and conquer" paradigm to complicated maps:

Question 5.3. Is there an equivalent definition of \mathbf{f}_{u} as a composition of toggles? (A toggle here means a birational map $\mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ that changes only one entry of the n-tuple. An example for a birational map that can be defined as a composition of toggles is birational rowmotion - see, e.g., [EinPro13]. Cluster mutations, as in the theory of cluster algebras, are another example of toggles.)

Another set of questions concern the uniqueness of \mathbf{f}_{u}. While we defined the map \mathbf{f}_{u} explicitly, all we have then used are the properties listed in Theorem 3.11. Thus, it is a natural question to ask whether these properties characterize \mathbf{f}_{u} uniquely. A pointwise version of this question can be asked as well: Given $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ satisfying some of the equalities in parts (b), (c) and (d) of Theorem 3.11, does it follow that $y=\mathbf{f}_{u}(x)$? (Keep in mind that u is fixed.)

Depending on which equalities we require, we may of course get different answers. Let us first ask what happens if we require the equalities from Theorem 3.11 (c) only:

5.2.2. Characterizing $\mathbf{f}_{u}(x)$ via the cyclic equations

Question 5.4. Given $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ satisfying

$$
\begin{equation*}
\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right)=\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right) \tag{73}
\end{equation*}
$$

for all $i \in \mathbb{Z}$. Does it follow that $y=\mathbf{f}_{u}(x)$ or $y=x$?
Note that the "or $y=x$ " part is needed here, since $y=x$ is obviously a solution to the equations (73).

The following example shows that the answer to Question 5.4 is "no" if \mathbb{K} is the \min tropical semifield $(\mathbb{Z}, \min ,+, 0)$ of the totally ordered abelian group \mathbb{Z}.

Example 5.5. Let $k, g \in \mathbb{N}$ with $g \geq k$. Let $\mathbb{K}=(\mathbb{Z}, \min ,+, 0)$ and $n=3$ and $u=(0,0, g)$ and $x=(1,2,0)$. Set $y=(k+1,2, k)$ (where the " + " sign in " $k+1$ " stands for addition of integers, not addition in \mathbb{K}). Then, the equations (73) hold in \mathbb{K} for all $i \in \mathbb{Z}$. (Restated in terms of standard operations on integers, this is saying that

$$
\min \left\{u_{i}, x_{i}\right\}+\min \left\{-u_{i+1},-x_{i+1}\right\}=\min \left\{u_{i}, y_{i}\right\}+\min \left\{-u_{i+1},-y_{i+1}\right\}
$$

for all $i \in \mathbb{Z}$.) This is straightforward to verify, and shows that for a given x there can be an arbitrarily high (finite) number of $y \in \mathbb{K}^{n}$ satisfying the equations (73) for all $i \in \mathbb{Z}$.

We note that this number cannot be infinite. In fact, this follows from the following proposition ${ }^{23}$,

Proposition 5.6. Let $x \in \mathbb{R}^{n}$ and $z \in \mathbb{R}^{n}$ be fixed.
(a) Let $y \in \mathbb{R}^{n}$ be such that

$$
\begin{equation*}
z_{i}=\min \left\{u_{i}, y_{i}\right\}+\min \left\{-u_{i+1},-y_{i+1}\right\} \tag{74}
\end{equation*}
$$

for all $i \in \mathbb{Z}$. Then, we have $z_{i}+u_{i+1} \leq y_{i} \leq u_{i-1}-z_{i-1}$ for each $i \in \mathbb{Z}$.
(b) There are only finitely many $y \in \mathbb{Z}^{n}$ such that (74) holds for all $i \in \mathbb{Z}$.

[^13] $z \in \mathbb{R}^{n}$ defined by
$$
z_{i}=\min \left\{u_{i}, x_{i}\right\}+\min \left\{-u_{i+1},-x_{i+1}\right\} \quad \text { for all } i \in \mathbb{Z}
$$

Proof of Proposition 5.6 (sketched). (a) Let $i \in \mathbb{Z}$. Then, (74) yields

$$
z_{i}=\underbrace{\min \left\{u_{i}, y_{i}\right\}}_{\leq y_{i}}+\underbrace{\min \left\{-u_{i+1},-y_{i+1}\right\}}_{\leq-u_{i+1}} \leq y_{i}-u_{i+1},
$$

so that $z_{i}+u_{i+1} \leq y_{i}$. Furthermore, (74) (applied to $i-1$ instead of i) yields

$$
z_{i-1}=\underbrace{\min \left\{u_{i-1}, y_{i-1}\right\}}_{\leq u_{i-1}}+\underbrace{\min \left\{-u_{i}-y_{i}\right\}}_{\leq-y_{i}} \leq u_{i-1}-y_{i}
$$

so that $y_{i} \leq u_{i-1}-z_{i-1}$. Combining this with $z_{i}+u_{i+1} \leq y_{i}$, we obtain $z_{i}+u_{i+1} \leq$ $y_{i} \leq u_{i-1}-z_{i-1}$. This proves Proposition 5.6 (a).
(b) If $y \in \mathbb{Z}^{n}$ is such that (74) holds for all $i \in \mathbb{Z}$, then Proposition 5.6 (a) shows that each entry y_{i} of y lies in the finite set

$$
F_{i}:=\left\{\text { all integers between } z_{i}+u_{i+1} \text { and } u_{i-1}-z_{i-1} \text { (inclusive) }\right\} .
$$

Thus, the whole n-tuple y lies in the finite set $F_{1} \times F_{2} \times \cdots \times F_{n}$. Therefore, there are only finitely many such y^{\prime} s. This proves Proposition 5.6 (b).

Example 5.5 has shown that the answer to Question 5.4 is "no" when $\mathbb{K}=$ $(\mathbb{Z}, \min ,+, 0)$. However, the answer to Question 5.4 is "yes" if $\mathbb{K}=Q_{+}$and, more generally, if the semifield \mathbb{K} embeds into an integral domain:

Proposition 5.7. Assume that there is an integral domain \mathbb{L} such that the semifield \mathbb{K} is a subsemifield of \mathbb{L} (in the sense that $\mathbb{K} \subseteq \mathbb{L}$ and that the operations + and \cdot of \mathbb{K} are restrictions of those of \mathbb{L}, whereas the unity of \mathbb{K} is the unity of $\mathbb{L})$. Let $x \in \mathbb{K}^{n}$. Then, the only n-tuples $y \in \mathbb{K}^{n}$ satisfying the equations (73) for all $i \in \mathbb{Z}$ are $y=\mathbf{f}_{u}(x)$ and $y=x$.

Proof of Proposition 5.7(sketched). The following is a rough outline, as we don't have any need for Proposition 5.7.

We define the elements $t_{r, j} \in \mathbb{K}$ for all $r \in \mathbb{N}$ and $j \in \mathbb{Z}$ as in Definition 3.8. We further set $t_{-1, j}=0 \in \mathbb{L}$ for each $j \in \mathbb{Z}$. (This is in line with our definition of $t_{r, j}$, because an empty sum should be understood as 0 .) Thus, $t_{r, j} \in \mathbb{L}$ is defined for each $r \in \mathbb{N} \cup\{-1\}$ and each $j \in \mathbb{Z}$.

For any $k \in \mathbb{N}$, we set $g_{k}=t_{k,-1} \in \mathbb{K}$.
For any integer $k \geq 1$, we set $h_{k}=t_{k-2,1} \in \mathbb{L}$. Note that $h_{k} \in \mathbb{K}$ if $k \geq 2$; however, $h_{1}=t_{1-2,1}=t_{-1,1}=0$ (by the definition of $t_{-1,1}$).

It is clear that $\mathbf{f}_{u}(x)$ and x are two n-tuples $y \in \mathbb{K}^{n}$ satisfying the equations (73) for all $i \in \mathbb{Z}$. (Indeed, for $\mathbf{f}_{u}(x)$, this follows from Theorem 3.11 (c), while for x, it is obvious.) We thus only need to prove the converse: Let $y \in \mathbb{K}^{n}$ be an n-tuple satisfying the equations (73) for all $i \in \mathbb{Z}$. We must show that $y=\mathbf{f}_{u}(x)$ or $y=x$.

We WLOG assume that $n \geq 2$, since otherwise (i.e., for $n=1$) this claim is easily checked by hand.

For any integer $k \geq 1$, we set $w_{k}=g_{k}-x_{1} y_{0} h_{k} \in \mathbb{L}$. We shall see soon (as a consequence of Claim 3) that this w_{k} actually belongs to \mathbb{K}.

We begin with the following claim:

Claim 1: (a) We have $u_{k-1} x_{k} g_{k-1}+g_{k+1}=\left(u_{k}+x_{k}\right) g_{k}$ for each integer $k \geq 1$.
(b) We have $u_{k-1} x_{k} h_{k-1}+h_{k+1}=\left(u_{k}+x_{k}\right) h_{k}$ for each integer $k \geq 2$.
[Proof of Claim 1: We shall prove something more general. Namely, for any $p \in \mathbb{Z}$ and any integer $k \geq p-1$, we set

$$
\begin{equation*}
z_{k, p}=t_{k-p, p-1} \in \mathbb{L} \tag{75}
\end{equation*}
$$

Thus, for each integer $k \geq-1$, we have

$$
\begin{equation*}
z_{k, 0}=t_{k-0,0-1}=t_{k,-1}=g_{k} . \tag{76}
\end{equation*}
$$

Moreover, for each integer $k \geq 1$, we have

$$
\begin{equation*}
z_{k, 2}=t_{k-2,2-1}=t_{k-2,1}=h_{k} . \tag{77}
\end{equation*}
$$

Now, we claim that

$$
\begin{equation*}
u_{k-1} x_{k} z_{k-1, p}+z_{k+1, p}=\left(u_{k}+x_{k}\right) z_{k, p} \tag{78}
\end{equation*}
$$

for any $p \in \mathbb{Z}$ and any integer $k \geq p$. Once this is proved, then Claim 1 will easily follow. (Indeed, Claim 1 (a) will follow by applying (78) to $p=0$ and rewriting the result using (76). Likewise, Claim 1 (b) will follow by applying (78) to $p=2$ and rewriting the result using (77).)

So it suffices to prove (78). Let us do this. Fix $p \in \mathbb{Z}$ and $k \geq p$. We must prove the equality (78). If $k=p$, then this equality boils down to $u_{p-1} x_{p} \cdot 0+$ $\left(u_{p}+x_{p}\right)=\left(u_{p}+x_{p}\right) \cdot 1$ (since it is easily seen that $z_{p-1, p}=t_{-1, p-1}=0$ and $z_{p+1, p}=t_{1, p-1}=u_{p}+x_{p}$ and $z_{p, p}=t_{0, p-1}=1$), which is obvious. Thus, for the rest of this proof of (78), we WLOG assume that $k \neq p$. Hence, $k \geq p+1$ (since $k \geq p$), so that $k-p-1 \in \mathbb{N}$.

We can thus apply Lemma 3.12 (d) to $r=k-p-1$ and $j=p-1 \quad{ }^{24}$. This results in

$$
u_{k-1} t_{k-p-1, p-1}+x_{p} x_{p+1} \cdots x_{k-1}=t_{k-p, p-1}=z_{k, p}
$$

(by (75)). Multiplying both sides of this equality by x_{k}, we find

$$
x_{k}\left(u_{k-1} t_{k-p-1, p-1}+x_{p} x_{p+1} \cdots x_{k-1}\right)=x_{k} z_{k, p},
$$

so that

$$
\left.\begin{array}{rl}
x_{k} z_{k, p} & =x_{k}\left(u_{k-1} t_{k-p-1, p-1}+x_{p} x_{p+1} \cdots x_{k-1}\right) \\
& =u_{k-1} x_{k} \underbrace{}_{\substack{ \\
=t_{k-1-p, p-1} \\
=z_{k-1, p} \\
t_{k-p-1, p-1}}}+\underbrace{\left(x_{p} x_{p+1} \cdots x_{k-1}\right) x_{k}}_{=x_{p} x_{p+1} \cdots x_{k}} \\
& \text { (by (75), applied to } k-1 \\
\text { instead of } k)
\end{array}\right)
$$

[^14]On the other hand, we can apply Lemma 3.12 (d) to $r=k-p$ and $j=p-1$. This results in

$$
u_{k} t_{k-p, p-1}+x_{p} x_{p+1} \cdots x_{k}=t_{k-p+1, p-1}=t_{k+1-p, p-1}=z_{k+1, p}
$$

(by (75), applied to $k+1$ instead of k). Hence,

$$
z_{k+1, p}=u_{k} t_{k-p, p-1}+x_{p} x_{p+1} \cdots x_{k} .
$$

Adding $u_{k-1} x_{k} z_{k-1, p}$ to both sides of this equality, we obtain

$$
\begin{aligned}
& u_{k-1} x_{k} z_{k-1, p}+z_{k+1, p} \\
& =u_{k-1} x_{k} z_{k-1, p}+u_{k} t_{k-p, p-1}+x_{p} x_{p+1} \cdots x_{k} \\
& =\underbrace{u_{k-1} x_{k} z_{k-1, p}+x_{p} x_{p+1} \cdots x_{k}}_{=x_{k} z_{k, p}}+u_{k} \underbrace{t_{k-p, p-1}}_{=z_{k, p}} \\
& \text { (by (79)) } \\
& \text { (by 75) } \\
& =x_{k} z_{k, p}+u_{k} z_{k, p}=\left(u_{k}+x_{k}\right) z_{k, p} .
\end{aligned}
$$

This proves (78). As we said, this completes the proof of Claim 1.]
As a consequence, we can easily conclude the following:
Claim 2: We have

$$
\begin{equation*}
u_{k-1} x_{k} w_{k-1}+w_{k+1}=\left(u_{k}+x_{k}\right) w_{k} \tag{80}
\end{equation*}
$$

for each integer $k \geq 2$.
[Proof of Claim 2: Let $k \geq 2$ be an integer. Then, Claim 1 (a) yields $u_{k-1} x_{k} g_{k-1}+$ $g_{k+1}=\left(u_{k}+x_{k}\right) g_{k}$, so that $g_{k+1}=\left(u_{k}+x_{k}\right) g_{k}-u_{k-1} x_{k} g_{k-1}$. Also, Claim 1 (b) yields $u_{k-1} x_{k} h_{k-1}+h_{k+1}=\left(u_{k}+x_{k}\right) h_{k}$, so that $h_{k+1}=\left(u_{k}+x_{k}\right) h_{k}-u_{k-1} x_{k} h_{k-1}$. Now, the definition of w_{k+1} yields

$$
\begin{aligned}
w_{k+1} & =\underbrace{g_{k+1}}_{=\left(u_{k}+x_{k}\right) g_{k}-u_{k-1} x_{k} g_{k-1}}-x_{1} y_{0} \quad \underbrace{h_{k+1}}_{\left(u_{k}+x_{k}\right) h_{k}-u_{k-1} x_{k} h_{k-1}} \\
& =\left(\left(u_{k}+x_{k}\right) g_{k}-u_{k-1} x_{k} g_{k-1}\right)-x_{1} y_{0}\left(\left(u_{k}+x_{k}\right) h_{k}-u_{k-1} x_{k} h_{k-1}\right) \\
& =\left(u_{k}+x_{k}\right) \underbrace{\left(g_{k}-x_{1} y_{0} h_{k}\right)}_{\text {(by the definition of } \left.w_{k}\right)}-u_{k-1} x_{k} \underbrace{\left(g_{k-1}-x_{1} y_{0} h_{k-1}\right)}_{=w_{k-1}} \\
& =\left(u_{k}+x_{k}\right) w_{k}-u_{k-1} x_{k} w_{k-1} .
\end{aligned}
$$

Hence, $u_{k-1} x_{k} w_{k-1}+w_{k+1}=\left(u_{k}+x_{k}\right) w_{k}$. This proves Claim 2.]
We now claim the following:
Claim 3: Let k be a positive integer. Then, the elements $w_{1}, w_{2}, \ldots, w_{k+1}$
belong to \mathbb{K}. Moreover, if $k \geq 2$, then

$$
\begin{equation*}
y_{k}=\frac{u_{k-1} u_{k} x_{k} w_{k-1}}{w_{k+1}} \tag{81}
\end{equation*}
$$

[Proof of Claim 3: Proceed by induction on k.
Induction base: We shall use two base cases: the cases $k=1$ and $k=2$. These require us to show that the elements w_{1}, w_{2}, w_{3} belong to \mathbb{K} and that the equality (81) is true for $k=2$.

The definition of w_{1} says $w_{1}=g_{1}-x_{1} y_{0} \underbrace{h_{1}}_{=0}=g_{1}=t_{1,-1}=u_{0}+x_{0}$. Thus, w_{1} belongs to \mathbb{K}.

The definition of w_{2} yields

$$
w_{2}=\underbrace{g_{2}}_{\substack{=t_{2,-1} \\=u_{0} u_{1}+x_{0} u_{1}+x_{0} x_{1}}}-x_{1} y_{0} \underbrace{h_{2}}_{=t_{0,1}=1}=u_{0} u_{1}+x_{0} u_{1}+x_{0} x_{1}-x_{1} y_{0}
$$

The definition of w_{3} yields

$$
\begin{aligned}
& w_{3}=\underbrace{}_{\substack{=t_{3,-1} \\
g_{3}} x_{1} y_{0} \underbrace{h_{3}}_{=t_{1,1}=u_{2}+x_{2}}} \\
&=u_{0} u_{1} u_{2}+x_{0} u_{1} u_{2}+x_{0} x_{1} u_{2}+x_{0} x_{1} x_{2} \\
&=u_{0} u_{1} u_{2}+x_{0} u_{1} u_{2}+x_{0} x_{1} u_{2}+x_{0} x_{1} x_{2}-x_{1} y_{0}\left(u_{2}+x_{2}\right) .
\end{aligned}
$$

The equations (73) are satisfied for all $i \in \mathbb{Z}$, and thus are satisfied for $i=0$. In other words, we have

$$
\left(u_{0}+x_{0}\right)\left(\frac{1}{u_{1}}+\frac{1}{x_{1}}\right)=\left(u_{0}+y_{0}\right)\left(\frac{1}{u_{1}}+\frac{1}{y_{1}}\right) .
$$

Solving this equation for $\frac{1}{y_{1}}$, we obtain

$$
\begin{align*}
\frac{1}{y_{1}} & =\frac{\left(u_{0}+x_{0}\right)\left(\frac{1}{u_{1}}+\frac{1}{x_{1}}\right)}{u_{0}+y_{0}}-\frac{1}{u_{1}}=\frac{u_{0} u_{1}+x_{0} u_{1}+x_{0} x_{1}+x_{1} u_{0}}{u_{1} x_{1}\left(u_{0}+y_{0}\right)}-\frac{1}{u_{1}} \\
& =\frac{u_{0} u_{1}+x_{0} u_{1}+x_{0} x_{1}+x_{1} u_{0}-x_{1}\left(u_{0}+y_{0}\right)}{u_{1} x_{1}\left(u_{0}+y_{0}\right)} \\
& =\frac{w_{2}}{u_{1} x_{1}\left(u_{0}+y_{0}\right)} \tag{82}
\end{align*}
$$

since $u_{0} u_{1}+x_{0} u_{1}+x_{0} x_{1}+x_{1} u_{0}-x_{1}\left(u_{0}+y_{0}\right)=u_{0} u_{1}+x_{0} u_{1}+x_{0} x_{1}-x_{1} y_{0}=w_{2}$. This shows that $w_{2}=u_{1} x_{1}\left(u_{0}+y_{0}\right) \cdot \frac{1}{y_{1}} \in \mathbb{K}$ (since $\left.u_{1}, x_{1}, u_{0}, y_{0}, y_{1} \in \mathbb{K}\right)$. Thus, we have shown that w_{2} belongs to \mathbb{K}.

Furthermore, by taking reciprocals on both sides of (82), we obtain

$$
y_{1}=\frac{u_{1} x_{1}\left(u_{0}+y_{0}\right)}{w_{2}} .
$$

Hence,

$$
\begin{align*}
u_{1}+y_{1} & =u_{1}+\frac{u_{1} x_{1}\left(u_{0}+y_{0}\right)}{w_{2}}=u_{1} \cdot \frac{w_{2}+x_{1}\left(u_{0}+y_{0}\right)}{w_{2}} \\
& =u_{1} \cdot \frac{\left(u_{0}+x_{0}\right)\left(u_{1}+x_{1}\right)}{w_{2}} \tag{83}
\end{align*}
$$

(since a straightforward computation yields $\left.w_{2}+x_{1}\left(u_{0}+y_{0}\right)=\left(u_{0}+x_{0}\right)\left(u_{1}+x_{1}\right)\right)$.
The equations (73) are satisfied for all $i \in \mathbb{Z}$, and thus are satisfied for $i=1$. In other words, we have

$$
\left(u_{1}+x_{1}\right)\left(\frac{1}{u_{2}}+\frac{1}{x_{2}}\right)=\left(u_{1}+y_{1}\right)\left(\frac{1}{u_{2}}+\frac{1}{y_{2}}\right) .
$$

Solving this equation for $\frac{1}{y_{2}}$, we obtain

$$
\begin{align*}
\frac{1}{y_{2}} & =\frac{\left(u_{1}+x_{1}\right)\left(\frac{1}{u_{2}}+\frac{1}{x_{2}}\right)}{u_{1}+y_{1}}-\frac{1}{u_{2}}=\frac{\left(u_{1}+x_{1}\right)\left(\frac{1}{u_{2}}+\frac{1}{x_{2}}\right)}{u_{1} \cdot \frac{\left(u_{0}+x_{0}\right)\left(u_{1}+x_{1}\right)}{w_{2}}}-\frac{1}{u_{2}} \\
& =\frac{(\text { by (83)) }}{u_{1} \cdot \frac{u_{0}+x_{0}}{w_{2}}+\frac{1}{x_{2}}}-\frac{1}{u_{2}}=\frac{w_{2}\left(u_{2}+x_{2}\right)}{u_{1} u_{2} x_{2}\left(u_{0}+x_{0}\right)}-\frac{1}{u_{2}} \\
& =\frac{w_{2}\left(u_{2}+x_{2}\right)-u_{1} x_{2}\left(u_{0}+x_{0}\right)}{u_{1} u_{2} x_{2}\left(u_{0}+x_{0}\right)} \\
& =\frac{w_{3}}{u_{1} u_{2} x_{2} w_{1}}
\end{align*}
$$

(since straightforward computations yield $w_{2}\left(u_{2}+x_{2}\right)-u_{1} x_{2}\left(u_{0}+x_{0}\right)=w_{3}$ and $u_{0}+x_{0}=w_{1}$). This shows that $w_{3}=u_{1} u_{2} x_{2} w_{1} \cdot \frac{1}{y_{2}} \in \mathbb{K}$ (since $u_{1}, u_{2}, x_{2}, w_{1}, y_{2} \in \mathbb{K}$). Thus, we have shown that w_{3} belongs to \mathbb{K}.

Taking reciprocals on both sides of (84), we find

$$
y_{2}=\frac{u_{1} u_{2} x_{2} w_{1}}{w_{3}} .
$$

In other words, (81) is true for $k=2$. Thus, the induction base is complete.
Induction step: Let $i \geq 2$ be an integer. Assume (as the induction hypothesis) that Claim 3 holds for $k=i$. We shall now show that Claim 3 holds for $k=i+1$.

Claim 2 (applied to $k=i$) yields

$$
\begin{equation*}
u_{i-1} x_{i} w_{i-1}+w_{i+1}=\left(u_{i}+x_{i}\right) w_{i} . \tag{85}
\end{equation*}
$$

We have assumed that Claim 3 holds for $k=i$. In other words, the elements $w_{1}, w_{2}, \ldots, w_{i+1}$ belong to \mathbb{K}, and the equality (81) is true for $k=i$.

Thus, in particular, (81) is true for $k=i$. In other words, we have

$$
\begin{equation*}
y_{i}=\frac{u_{i-1} u_{i} x_{i} w_{i-1}}{w_{i+1}} \tag{86}
\end{equation*}
$$

Adding u_{i} to both sides of this equality, we obtain

$$
\begin{align*}
u_{i}+y_{i} & =u_{i}+\frac{u_{i-1} u_{i} x_{i} w_{i-1}}{w_{i+1}}=\frac{u_{i}\left(u_{i-1} x_{i} w_{i-1}+w_{i+1}\right)}{w_{i+1}} \\
& =\frac{u_{i}\left(u_{i}+x_{i}\right) w_{i}}{w_{i+1}} \tag{87}
\end{align*}
$$

(by (85)).
But Claim 2 (applied to $k=i+1$) yields $u_{i} x_{i+1} w_{i}+w_{i+2}=\left(u_{i+1}+x_{i+1}\right) w_{i+1}$, so that

$$
\begin{equation*}
\left(u_{i+1}+x_{i+1}\right) w_{i+1}-u_{i} x_{i+1} w_{i}=w_{i+2} . \tag{88}
\end{equation*}
$$

Now, recall that the equation 73 is true. Solving this equation for $\frac{1}{y_{i+1}}$, we find

$$
\begin{align*}
\frac{1}{y_{i+1}} & =\frac{\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right)}{u_{i}+y_{i}}-\frac{1}{u_{i+1}}=\frac{\left(u_{i}+x_{i}\right)\left(u_{i+1}+x_{i+1}\right)}{u_{i+1} x_{i+1}\left(u_{i}+y_{i}\right)}-\frac{1}{u_{i+1}} \\
& =\frac{\left(u_{i}+x_{i}\right)\left(u_{i+1}+x_{i+1}\right)}{u_{i+1} x_{i+1} \cdot \frac{u_{i}\left(u_{i}+x_{i}\right) w_{i}}{w_{i+1}}-\frac{1}{u_{i+1}} \quad(\text { by (87)) }} \\
& =\frac{\left(u_{i+1}+x_{i+1}\right) w_{i+1}}{u_{i} u_{i+1} x_{i+1} w_{i}}-\frac{1}{u_{i+1}}=\frac{\left(u_{i+1}+x_{i+1}\right) w_{i+1}-u_{i} x_{i+1} w_{i}}{u_{i} u_{i+1} x_{i+1} w_{i}} \\
& =\frac{w_{i+2}}{u_{i} u_{i+1} x_{i+1} w_{i}} \quad \quad(\text { by (88) }) . \tag{89}
\end{align*}
$$

Hence,

$$
w_{i+2}=u_{i} u_{i+1} x_{i+1} w_{i} \cdot \frac{1}{y_{i+1}} \in \mathbb{K}
$$

(since $u_{i+1}, x_{i+1}, w_{i+1}, u_{i}, x_{i+1}, w_{i} \in \mathbb{K}$). Hence, w_{i+2} belongs to \mathbb{K}.
Taking reciprocals on both sides of the equality (89), we obtain

$$
y_{i+1}=\frac{u_{i} u_{i+1} x_{i+1} w_{i}}{w_{i+2}}
$$

In other words, (81) is true for $k=i+1$.
We have now proved that the elements $w_{1}, w_{2}, \ldots, w_{i+2}$ belong to \mathbb{K} (since we already know that $w_{1}, w_{2}, \ldots, w_{i+1}$ belong to \mathbb{K}, and since w_{i+2} belongs to \mathbb{K}), and that the equality (81) is true for $k=i+1$. In other words, Claim 3 holds for $k=i+1$. This completes the induction step, and therefore Claim 3 is proved.]

Claim 4: For each $k \geq 1$, we have

$$
\begin{equation*}
g_{k}=\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{k-1}+x_{0} x_{1} h_{k} \tag{90}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{k}=\frac{g_{k}-\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{k-1}}{x_{0} x_{1}} . \tag{91}
\end{equation*}
$$

[Proof of Claim 4: The equality (90) is easily checked directly. The equality (91) follows by solving (90) for h_{k}.]

Now, Claim 3 (applied to $k=n$) shows that the elements $w_{1}, w_{2}, \ldots, w_{n+1}$ belong to \mathbb{K} and satisfy

$$
\begin{equation*}
y_{n}=\frac{u_{n-1} u_{n} x_{n} w_{n-1}}{w_{n+1}} . \tag{92}
\end{equation*}
$$

The definition of w_{n-1} yields

$$
\begin{aligned}
& w_{n-1}=g_{n-1}-x_{1} y_{0} \\
& =\frac{g_{n-1}-\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n-2}}{x_{0} x_{1}} \\
& \text { (by (91), applied to } k=n-1 \text {) } \\
& =g_{n-1}-x_{1} y_{0} \cdot \frac{g_{n-1}-\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n-2}}{x_{0} x_{1}} \\
& =\left(1-\frac{y_{0}}{x_{0}}\right) \underbrace{g_{n-1}}_{\begin{array}{c}
t_{n-1,-1} \\
\text { (by the definition } \\
\text { of } \left.g_{n-1}\right)
\end{array}}+\frac{y_{0} \cdot\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n-2}}{x_{0}} \\
& =\left(1-\frac{y_{0}}{x_{0}}\right) t_{n-1,-1}+\frac{y_{0} \cdot\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n-2}}{x_{0}} \\
& =\frac{1}{x_{0}}\left(\left(x_{0}-y_{0}\right) t_{n-1,-1}+y_{0} \cdot\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n-2}\right) \text {. }
\end{aligned}
$$

Thus,

$$
\begin{aligned}
x_{n} w_{n-1} & =\underbrace{x_{n} \cdot \frac{1}{x_{0}}}_{=1}\left(\left(x_{0}-y_{0}\right) t_{n-1,-1}+y_{0} \cdot\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n-2}\right) \\
& =\left(x_{0}-y_{0}\right) t_{n-1,-1}+y_{0} \cdot\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n-2} .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
& u_{n-1} u_{n} x_{n} w_{n-1} \\
& =u_{n-1} u_{n}\left(\left(x_{0}-y_{0}\right) t_{n-1,-1}+y_{0} \cdot\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n-2}\right) \\
& =u_{n-1} \underbrace{u_{n}}_{=u_{0}}\left(x_{0}-y_{0}\right) t_{n-1,-1}+\underbrace{u_{n-1} u_{n} \cdot y_{0} \cdot\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n-2}}_{=y_{0} \cdot\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n}} \\
& =u_{n-1} u_{0}\left(x_{0}-y_{0}\right) t_{n-1,-1}+y_{0} \cdot\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n} . \tag{93}
\end{align*}
$$

The definition of w_{n+1} yields

$$
\begin{align*}
w_{n+1} & =\underbrace{g_{n+1}}_{\begin{array}{c}
=\left(u_{0}+x_{0}\right) \cdot u_{1} 2_{2} \cdots u_{n}+x_{0} x_{1} h_{n+1} \\
(\text { by } \\
\left.90), a_{1} \text { aplied to } k=n+1\right)
\end{array}}-x_{1} y_{0} h_{n+1} \\
= & \left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n}+x_{0} x_{1} h_{n+1}-x_{1} y_{0} h_{n+1} \\
= & \left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n}+x_{1}\left(x_{0}-y_{0}\right) \underbrace{h_{n+1}}_{\begin{array}{c}
=t_{n-1,1} \\
\text { (by the definition } \\
\text { of } \left.h_{n+1}\right)
\end{array}}
\end{align*}
$$

Now, (92) becomes

$$
y_{n}=\frac{u_{n-1} u_{n} x_{n} w_{n-1}}{w_{n+1}}=\frac{u_{n-1} u_{0}\left(x_{0}-y_{0}\right) t_{n-1,-1}+y_{0} \cdot\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n}}{\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n}+x_{1}\left(x_{0}-y_{0}\right) t_{n-1,1}}
$$

(by (93) and (94)). Comparing this with $y_{n}=y_{0}$, we obtain

$$
y_{0}=\frac{u_{n-1} u_{0}\left(x_{0}-y_{0}\right) t_{n-1,-1}+y_{0} \cdot\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n}}{\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n}+x_{1}\left(x_{0}-y_{0}\right) t_{n-1,1}} .
$$

In other words,

$$
\begin{aligned}
& y_{0} \cdot\left(\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n}+x_{1}\left(x_{0}-y_{0}\right) t_{n-1,1}\right) \\
& =u_{n-1} u_{0}\left(x_{0}-y_{0}\right) t_{n-1,-1}+y_{0} \cdot\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
0= & u_{n-1} u_{0}\left(x_{0}-y_{0}\right) t_{n-1,-1}+y_{0} \cdot\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n} \\
& \quad-y_{0} \cdot\left(\left(u_{0}+x_{0}\right) \cdot u_{1} u_{2} \cdots u_{n}+x_{1}\left(x_{0}-y_{0}\right) t_{n-1,1}\right) \\
= & u_{n-1} u_{0}\left(x_{0}-y_{0}\right) t_{n-1,-1}-y_{0} x_{1}\left(x_{0}-y_{0}\right) t_{n-1,1} \\
= & \left(x_{0}-y_{0}\right)\left(u_{n-1} u_{0} t_{n-1,-1}-y_{0} x_{1} t_{n-1,1}\right) .
\end{aligned}
$$

Since \mathbb{L} is an integral domain, we thus conclude that either $0=x_{0}-y_{0}$ or $0=$ $u_{n-1} u_{0} t_{n-1,-1}-y_{0} x_{1} t_{n-1,1}$. In the former case, we obtain $y_{0}=x_{0}$; in the latter, we find

$$
\begin{aligned}
y_{0} & =\frac{u_{n-1} u_{0} t_{n-1,-1}}{x_{1} t_{n-1,1}}=u_{0} \cdot \frac{u_{n-1} t_{n-1,-1}}{x_{1} t_{n-1,1}}=u_{0} \cdot \frac{u_{-1} t_{n-1,-1}}{x_{1} t_{n-1,1}} \quad \quad\left(\text { since } u_{n-1}=u_{-1}\right) \\
& =\left(\mathbf{f}_{u}(x)\right)_{0}
\end{aligned}
$$

(by Lemma 3.12 (h) (applied to $\mathbf{f}_{u}(x)$ and 0 instead of y and i), because the y in Lemma $3.12(\mathbf{h})$ equals $\mathbf{f}_{u}(x)$). Thus, we have shown that either $y_{0}=x_{0}$ or $y_{0}=\left(\mathbf{f}_{u}(x)\right)_{0}$.

However, the equalities (81) holding for all $k \geq 2$ show that y_{k} is uniquely determined by y_{0} for all $k \geq 2$. The same formula determines x_{k} in terms of x_{0} and determines $\left(\mathbf{f}_{u}(x)\right)_{k}$ in terms of $\left(\mathbf{f}_{u}(x)\right)_{0}$ (since both n-tuples x and $\mathbf{f}_{u}(x)$ satisfy the same equalities (73) as y does). Thus, if $y_{0}=x_{0}$, then $y_{k}=x_{k}$ for all $k \geq 2$, and therefore $y=x$; likewise, if $y_{0}=\left(\mathbf{f}_{u}(x)\right)_{0}$, then $y_{k}=\left(\mathbf{f}_{u}(x)\right)_{k}$ for all $k \geq 2$, and therefore $y=\mathbf{f}_{u}(x)$. Hence, we conclude that either $y=x$ or $y=\mathbf{f}_{u}(x)$ (since we know that either $y_{0}=x_{0}$ or $\left.y_{0}=\left(\mathbf{f}_{u}(x)\right)_{0}\right)$. This completes the proof of Proposition 5.7

5.2.3. Characterizing $\mathbf{f}_{u}(x)$ via the cyclic equations and the product equation

Another avatar of the uniqueness question is the following:
Question 5.8. Given $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ satisfying both (73) for all $i \in \mathbb{Z}$ and

$$
\begin{equation*}
y_{1} y_{2} \cdots y_{n} \cdot x_{1} x_{2} \cdots x_{n}=\left(u_{1} u_{2} \cdots u_{n}\right)^{2} . \tag{95}
\end{equation*}
$$

Does it follow that $y=\mathbf{f}_{u}(x)$?
The answer to this question is definitely "yes" when $\mathbb{K}=Q_{+}$, by essentially the same argument that was used in Remark 3.16. Again, however, the answer is "no" when $\mathbb{K}=(\mathbb{Z}, \min ,+, 0)$. For example, if $\mathbb{K}=(\mathbb{Z}, \min ,+, 0)$ and $n=4$ and $u=(2,1,1,0)$ and $x=(1,1,1,1)$, then the two n-tuples $(1,1,1,1)$ and $(2,2,0,0)$ both can be taken as y in Question 5.8, but clearly cannot both equal $\mathbf{f}_{u}(x)$. (On the other hand, if $\mathbb{K}=(\mathbb{Z}, \min ,+, 0)$ and $n=3$, then the answer is "yes" again; this can be shown by an unenlightening yet not particularly arduous case analysis.)

An even stronger version of Question 5.8 holds when $\mathbb{K}=Q_{+}$:
Proposition 5.9. Assume that $\mathbb{K}=\mathbb{Q}_{+}$. Let $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$. Assume that (73) holds for all $i \in\{1,2, \ldots, n-1\}$, and assume that (95) holds. Then, $y=\mathbf{f}_{u}(x)$.

Proof of Proposition 5.9 (sketched). Let $z=\mathbf{f}_{u}(x)$. We have either $y_{1} \geq z_{1}$ or $y_{1} \leq z_{1}$. Assume WLOG that $y_{1} \geq z_{1}$ holds (since in the other case, we can use the same argument with all inequality signs reversed).

Now, we notice the following:
Claim 1: We have $y_{k} \geq z_{k}$ for each $k \in\{1,2, \ldots, n\}$.
[Proof of Claim 1: We shall prove Claim 1 by induction on k :
Induction base: We have assumed that $y_{1} \geq z_{1}$. In other words, Claim 1 holds for $k=1$. This completes the induction base.

Induction step: Let $i \in\{1,2, \ldots, n-1\}$. Assume that Claim 1 holds for $k=i$. We must prove that Claim 1 holds for $k=i+1$.

We have assumed that Claim 1 holds for $k=i$. In other words, we have $y_{i} \geq z_{i}$.

We have $i \in\{1,2, \ldots, n-1\}$; thus, (73) holds (by our assumption). In other words,

$$
\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right)=\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right) .
$$

On the other hand, Theorem 3.11 (c) (applied to z instead of y) yields

$$
\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right)=\left(u_{i}+z_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{z_{i+1}}\right)
$$

(since $z=\mathbf{f}_{u}(x)$). Comparing these two equalities, we obtain

$$
\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right)=\left(u_{i}+z_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{z_{i+1}}\right) .
$$

Hence,
$\left(u_{i}+z_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{z_{i+1}}\right)=(u_{i}+\underbrace{y_{i}}_{\geq z_{i}})\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right) \geq\left(u_{i}+z_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right)$.
We can cancel $u_{i}+z_{i}$ from this inequality (since $u_{i}+z_{i}$ is a positive rational number), and obtain $\frac{1}{u_{i+1}}+\frac{1}{z_{i+1}} \geq \frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}$. In other words, $\frac{1}{z_{i+1}} \geq \frac{1}{y_{i+1}}$. Thus, $y_{i+1} \geq z_{i+1}$. In other words, Claim 1 holds for $k=i+1$. This completes the induction step. Thus, Claim 1 is proven by induction.]

On the other hand, Theorem 3.11 (b) (applied to z instead of y) yields

$$
\begin{aligned}
z_{1} z_{2} \cdots z_{n} \cdot x_{1} x_{2} \cdots x_{n} & =\left(u_{1} u_{2} \cdots u_{n}\right)^{2} \quad\left(\text { since } z=\mathbf{f}_{u}(x)\right) \\
& =y_{1} y_{2} \cdots y_{n} \cdot x_{1} x_{2} \cdots x_{n}
\end{aligned}
$$

(by (95)). We can cancel $x_{1} x_{2} \cdots x_{n}$ from this equality (since $x_{1} x_{2} \cdots x_{n}$ is a positive rational number), and obtain $z_{1} z_{2} \cdots z_{n}=y_{1} y_{2} \cdots y_{n}$.

Claim 1 shows that $y_{1} \geq z_{1}$ and $y_{2} \geq z_{2}$ and \ldots and $y_{n} \geq z_{n}$. Multiplying these n inequalities yields

$$
y_{1} y_{2} \cdots y_{n} \geq z_{1} z_{2} \cdots z_{n} .
$$

But this inequality must be an equality (since $z_{1} z_{2} \cdots z_{n}=y_{1} y_{2} \cdots y_{n}$). Hence, all the n inequalities $y_{1} \geq z_{1}$ and $y_{2} \geq z_{2}$ and \ldots and $y_{n} \geq z_{n}$ (which we multiplied to obtain it) must be equalities (indeed, since we are working with positive rational numbers, we will always obtain a strict inequality if we multiply a strict inequality with a weak inequality). In other words, we have $y_{1}=z_{1}$ and $y_{2}=z_{2}$ and \ldots and $y_{n}=z_{n}$. In other words, $y=z$. In other words, $y=\mathbf{f}_{u}(x)$ (since $z=\mathbf{f}_{u}(x)$). This proves Proposition 5.9 .

5.2.4. Understanding Lemma 3.12

Another question concerns Lemma 3.12

Question 5.10. What is the "real meaning" of some of the more complicated parts of Lemma 3.12? In particular, Lemma 3.12 (g) reminds of the Plücker relation for minors of a $2 \times m$-matrix; can it be viewed that way? (Such a proof would not be superior to the one given above, as it wouldn't be subtraction-free and thus wouldn't work natively over arbitrary semifields. But it would shine more light on the lemma.)

5.3. On the genesis of φ (and \mathbf{f}_{u})

As we mentioned in the introduction to this paper, Pelletier and Ressayre did not conjecture Theorem 2.3 in this exact form; instead, they conjectured the existence of a mysterious bijection φ that satisfies Theorem 2.3(b). Our definition of φ appears ex caelis oblatus; while we have seen that our φ duly plays its part, it is far from clear how we have found it in the first place. The following few paragraphs are meant to demystify this process.

We were looking for a bijection $\varphi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ satisfying Theorem 2.3(b). In other words, we were looking for a way to match ${ }^{25}$ the nonzero coefficients in the product $s_{\alpha}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \cdot s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ (when expanded in the basis $\left(s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)_{\lambda \in \operatorname{Par}[n]}$ of the \mathbf{k}-module of symmetric polynomials in $x_{1}, x_{2}, \ldots, x_{n}$) with the nonzero coefficients in the product $s_{\beta}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \cdot s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in such a way that matching coefficients are equal.

The first step towards this goal was the discovery of the formula $s_{\alpha}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ $x_{\Pi}^{a} \cdot\left(h_{a}^{-} h_{b}^{+}-h_{a-1}^{-} h_{b-1}^{+}\right)$: our Corollary 4.30 . We originally proved this formula combinatorially, by analyzing the structure of semistandard tableaux of shape α. ${ }^{26}$ The proof of Corollary 4.30 given above (using the Pieri rule) was an afterthought.

Corollary 4.30 was a visible step in the right direction, as it moved the problem from the world of Littlewood-Richardson coefficients into the simpler world of Pieri rules. Indeed, instead of expanding $s_{\alpha}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \cdot s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, we now only had to expand $x_{\Pi}^{a} \cdot\left(h_{a}^{-} h_{b}^{+}-h_{a-1}^{-} h_{b-1}^{+}\right) \cdot s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, which looked like an expansion that the Pieri rule could help with (to be fully honest, we only knew the Pieri rule for multiplying by h_{k}^{+}; but we soon would find one for multiplying by h_{k}^{-}). The x_{Π}^{a} factor was clearly a mere distraction, but in order to get rid of it , we had to extend our polynomial ring to the ring \mathcal{L} of Laurent polynomials (since $\left(h_{a}^{-} h_{b}^{+}-h_{a-1}^{-} h_{b-1}^{+}\right) \cdot s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is, in general, not a polynomial). This extension had already been done by Stembridge in [Stembr87], and all we had to do was rename "staircases" as "snakes", define Schur Laurent polynomials (by generalizing the alternant formula for Schur polynomials in the most obvious

[^15]way), extend some basic properties of Schur polynomials to Schur Laurent polynomials, and find the "upside-down" Pieri rule (Proposition 4.25). None of this was difficult; in particular, the "upside-down" Pieri rule followed easily from the usual Pieri rule using Lemma 4.17 (which is our main device for turning things "upside down"). The Schur polynomial $s_{v}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ was generalized to the Schur Laurent polynomial \bar{s}_{v}.

Thus our problem was reduced to matching the nonzero coefficients in the product $\left(h_{a}^{-} h_{b}^{+}-h_{a-1}^{-} h_{b-1}^{+}\right) \cdot \bar{s}_{\mu}$ with the nonzero coefficients in the product $\left(h_{b}^{-} h_{a}^{+}-h_{b-1}^{-} h_{a-1}^{+}\right)$. \bar{s}_{μ}. The products could both be expressed using the Pieri rules, but the differences were still a distraction. At this point, we made a fortunate guess: We hoped it would suffice to match the nonzero coefficients in the product $h_{a}^{-} h_{b}^{+} \cdot \bar{s}_{\mu}$ with the nonzero coefficients in the product $h_{b}^{-} h_{a}^{+} \cdot \bar{s}_{\mu}$. More precisely, we hoped to find such a matching that would not depend on a and b; then it would also provide a matching between the nonzero coefficients in the product $h_{a-1}^{-} h_{b-1}^{+} \cdot \bar{s}_{\mu}$ and the nonzero coefficients in the product $h_{b-1}^{-} h_{a-1}^{+} \cdot \bar{s}_{\mu}$, and therefore by taking differences we would obtain a matching between the nonzero coefficients in the product $\left(h_{a}^{-} h_{b}^{+}-h_{a-1}^{-} h_{b-1}^{+}\right) \cdot \bar{s}_{\mu}$ and the nonzero coefficients in the product $\left(h_{b}^{-} h_{a}^{+}-h_{b-1}^{-} h_{a-1}^{+}\right) \cdot \bar{s}_{\mu}$.

Thus we needed to expand $h_{a}^{-} h_{b}^{+} \cdot \bar{s}_{\mu}$. Using the Pieri rules, this was straightforward - the answer is in Lemma 4.33. Our problem was to connect this result with what we would similarly obtain from expanding $h_{b}^{-} h_{a}^{+} \cdot \bar{s}_{\mu}$. In other words, we wanted to construct a bijection $\mathbf{f}_{\mu}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ that would satisfy

$$
\left|R_{\mu, b, a}\left(\mathbf{f}_{\mu}(\gamma)\right)\right|=\left|R_{\mu, a, b}(\gamma)\right| \quad \text { for any } a, b \in \mathbb{Z} \text { and } \gamma \in \mathbb{Z}^{n}
$$

Fixing $\gamma \in \mathbb{Z}^{n}$, we thus were looking for an n-tuple η (our $\mathbf{f}_{\mu}(\gamma)$-to-be) that would satisfy $\left|R_{\mu, b, a}(\eta)\right|=\left|R_{\mu, a, b}(\gamma)\right|$.

In the case when $b=0$ (in which case this equality would be equivalent to saying " $\eta \rightharpoonup \mu$ if and only if $\mu \rightharpoonup \gamma$ "), we found such an η directly, by setting

$$
\eta_{i}=\mu_{i}+\mu_{i+1}-\gamma_{i+1} \quad \text { for each } i \in\{1,2, \ldots, n\},
$$

where indices are cyclic modulo n (so that $\mu_{0}=\mu_{n}$ and $\nu_{0}=v_{n}$). This formula surprised us with its cyclic symmetry (which was not expected from the original problem, and which foreshadowed the usefulness of Convention 3.6, although we thought nothing of it at that point). Nevertheless, the formula failed in various examples for $b>0$, and we could not easily fix it.

We tried to be more systematic. It was easy to rewrite the definition of $R_{\mu, a, b}(\gamma)$ as

$$
\begin{aligned}
& R_{\mu, a, b}(\gamma) \\
& =\left\{v \in \mathbb{Z}^{n} \mid\left(\min \left\{\mu_{i}, \gamma_{i}\right\} \geq v_{i} \geq \max \left\{\mu_{i+1}, \gamma_{i+1}\right\} \text { for each } i \in\{1,2, \ldots, n-1\}\right)\right. \\
& \text { and }|\mu|-|v|=a \text { and }|\gamma|-|v|=b\} .
\end{aligned}
$$

Thus, the size of this set would depend only

- on the differences $\min \left\{\mu_{i}, \gamma_{i}\right\}-\max \left\{\mu_{i+1}, \gamma_{i+1}\right\}$ for $i \in\{1,2, \ldots, n-1\}$ (each of which differences would determine the "breathing space" for the corresponding v_{i}),
- on the difference $|\mu|-|\gamma|$ (which would have to equal $a-b$ in order for the two conditions $|\mu|-|v|=a$ and $|\gamma|-|v|=b$ to be satisfiable simultaneously),
- as well as on something else we could not quite pinpoint (in order for $|\mu|-$ $|\nu|=a$ and $|\gamma|-|v|=b$ to actually hold, as opposed to merely $|\mu|-|\gamma|=$ $a-b)$.

Analogous observations held for $R_{\mu, b, a}(\eta)$. With Occam's razor in hand, we suspected that $\left|R_{\mu, b, a}(\eta)\right|=\left|R_{\mu, a, b}(\gamma)\right|$ could best be achieved by requiring these differences to be the same for (μ, a, b, γ) as for (μ, b, a, η). Thus, in particular, we hoped to have

$$
\begin{array}{r}
\min \left\{\mu_{i}, \gamma_{i}\right\}-\max \left\{\mu_{i+1}, \gamma_{i+1}\right\}=\min \left\{\mu_{i}, \eta_{i}\right\}-\max \left\{\mu_{i+1}, \eta_{i+1}\right\} \\
\text { for each } i \in\{1,2, \ldots, n-1\}
\end{array}
$$

and

$$
|\mu|-|\gamma|=|\eta|-|\mu| .
$$

(Due to the "mystery ingredient", this would likely neither be necessary nor sufficient for $\left|R_{\mu, b, a}(\eta)\right|=\left|R_{\mu, a, b}(\gamma)\right|$, but it looked like the right tree to bark up.) This is a system of equations that whose solution is neither unique nor straightforward. However, the system was a beacon rather than a destination to us, so we merely needed something like a good solution.

Systems of equations involving sums, differences, minima and maxima belong to tropical geometry - a discipline we were not expert in and could not hope to master quickly. However, we were aware of a surprisingly successful strategy for taming such systems: detropicalization. The mainstay of this strategy is the observation (made above in Example 3.3) that the binary operations min, max, + and - are the addition, the "harmonic addition" 27 , the multiplication and the division of a certain semifield (the min tropical semifield of $(\mathbb{Z},+, 0)$, or of whatever totally ordered abelian group our numbers belong to). Thus, even if we could not solve our system, we could generalize it to arbitrary semifields by replacing min, max, + and - by addition, "harmonic addition", multiplication and division, respectively. Thus our system would become

$$
\left(\mu_{i}+\gamma_{i}\right) / \frac{1}{\frac{1}{\mu_{i+1}}+\frac{1}{\gamma_{i+1}}}=\left(\mu_{i}+\eta_{i}\right) / \frac{1}{\frac{1}{\mu_{i+1}}+\frac{1}{\eta_{i+1}}}
$$

for each $i \in\{1,2, \ldots, n-1\}$

[^16]and
$$
\frac{\mu_{1} \mu_{2} \cdots \mu_{n}}{\gamma_{1} \gamma_{2} \cdots \gamma_{n}}=\frac{\eta_{1} \eta_{2} \cdots \eta_{n}}{\mu_{1} \mu_{2} \cdots \mu_{n}} .
$$

Renaming μ, γ and η as u, x and y, and simplifying the fractions somewhat, we rewrote this as

$$
\begin{aligned}
& \left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right)=\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right) \\
& \quad \text { for each } i \in\{1,2, \ldots, n-1\}
\end{aligned}
$$

and

$$
y_{1} y_{2} \cdots y_{n} \cdot x_{1} x_{2} \cdots x_{n}=\left(u_{1} u_{2} \cdots u_{n}\right)^{2} .
$$

This new system was a system of polynomial equations (at least after clearing denominators), so we did the obvious thing: We left it to the computer for small values of n (specifically, $n=2, n=3$ and $n=4$) and looked at the results. For $n=3$, the computer (SageMath's solve function, to be precise) laid out the following two solutions:

- Solution 1:

$$
\begin{aligned}
& y_{1}=\frac{u_{1}\left(u_{1} u_{2} u_{3}+x_{1} u_{2} u_{3}+x_{1} x_{2} u_{3}+x_{1} x_{2} x_{3}\right)}{u_{1} x_{2} u_{3}-x_{1} x_{2} x_{3}}, \\
& y_{2}=\frac{-u_{1} u_{2} u_{3}}{x_{1} x_{3}}, \\
& y_{3}=\frac{u_{2} u_{3}\left(x_{1} x_{3}-u_{1} u_{3}\right)}{u_{1} u_{2} u_{3}+x_{1} u_{2} u_{3}+x_{1} x_{2} u_{3}+x_{1} x_{2} x_{3}} .
\end{aligned}
$$

- Solution 2:

$$
\begin{aligned}
& y_{1}=\frac{u_{1} u_{3}\left(u_{1} u_{2}+x_{1} u_{2}+x_{1} x_{2}\right)}{x_{2}\left(u_{1} u_{3}+u_{1} x_{3}+x_{1} x_{3}\right)}, \\
& y_{2}=\frac{u_{1} u_{2}\left(u_{2} u_{3}+x_{2} u_{3}+x_{2} x_{3}\right)}{x_{3}\left(u_{1} u_{2}+x_{1} u_{2}+x_{1} x_{2}\right)}, \\
& y_{3}=\frac{u_{2} u_{3}\left(u_{1} u_{3}+u_{1} x_{3}+x_{1} x_{3}\right)}{x_{1}\left(u_{2} u_{3}+x_{2} u_{3}+x_{2} x_{3}\right)} .
\end{aligned}
$$

The computer did not know that we were trying to work over a semifield (which had no subtraction), but we did, so we immediately discarded Solution 1 as useless due to the minus signs. The question was whether Solution 2 would be of any use. The omens were favorable: There were no minus signs; the (unexpected, but not unwelcome) cyclic symmetry reared its head again; finally, the nontrivial factors (such as $u_{1} u_{2}+x_{1} u_{2}+x_{1} x_{2}$) had a structure that appeared in the definition of the geometric crystal R-matrix (see, e.g., [Etingo03, (5)] or [NouYam02, (4.19)]) a known successful case of detropicalization.

Solution 2 turned out to be generalizable indeed. Proving that the general formula indeed produced a solution to our system (parts (b) and (c) of Theorem 3.11) was not completely trivial, but not hard either. (The first few parts of Lemma 3.12 were discovered along the way.) Thus we had a candidate for the map f_{μ} (and thus for the map φ, which was obtained from \mathbf{f}_{μ} by shifting by a and b, corresponding to the x_{Π}^{a} factor that we had dropped).

Why was this map f_{μ} a bijection? Again, we believed that the easiest way lay through the birational realm (i.e., we had to detropicalize). Computer experiments suggested that \mathbf{f}_{μ} was not only a bijection but actually an involution (part (a) of Theorem 3.11). The first proof of this we found was the one sketched in Remark 3.16; the alternative, computational proof that we gave first was found afterwards.

Having found our bijection f_{μ}, we had to retrace our steps. Most of this was straightforward. The equality $\left|R_{\mu, b, a}\left(\mathbf{f}_{\mu}(\gamma)\right)\right|=\left|R_{\mu, a, b}(\gamma)\right|$ still had to be proved, but this turned out to be rather easy (part (d) of Theorem 3.11 was discovered along the way, as the missing ingredient from our previous analysis of the size of $R_{\mu, a, b}(\gamma)$). The way the proof was written up in the end was mostly decided by concerns of readability rather than authenticity; we believe that, had we followed the logic of its discovery in our writeup, we would have lost more in clarity than would be gained in motivation. We placed the study of the birational map \mathbf{f}_{u} (Section (3) in front due to its self-contained nature and possible applicability to different problems; likewise, Section 4 begins with general properties of Schur Laurent polynomials and slowly progresses towards more technical lemmas tailored for the proof of Theorem 2.3. We would not be too surprised if some unnecessary detours were made along our way (Lemma 3.12 appears a particularly likely place for such), for which we apologize in advance (any simplifications are appreciated).

5.4. The birational R-matrix connection

In this section, we shall connect the map \mathbf{f}_{u} from our Definition 3.8 with the birational R-matrix η defined in [LamPyl12, §6] and studied further (e.g.) in [CheLin20].

We fix a positive integer n and a semifield \mathbb{K}. We shall use Convention 3.4 and Convention 3.6. Let us recall the definition of the birational R-matrix η (no relation to the η in Theorem 2.3):

Definition 5.11. We define a map $\eta: \mathbb{K}^{n} \times \mathbb{K}^{n} \rightarrow \mathbb{K}^{n} \times \mathbb{K}^{n}$ as follows:
Let $a \in \mathbb{K}^{n}$ and $b \in \mathbb{K}^{n}$ be two n-tuples. For any $i \in \mathbb{Z}$, define an element $\kappa_{i}(a, b) \in \mathbb{K}$ by

$$
\kappa_{i}(a, b)=\sum_{j=i}^{i+n-1} \underbrace{b_{i+1} b_{i+2} \cdots b_{j}}_{\prod_{p=i+1}^{j} b_{p}} \cdot \underbrace{a_{j+1} a_{j+2} \cdots a_{i+n-1}}_{\substack{\prod_{p=j+1}^{i+n-1} a_{p}}} .
$$

Define $a^{\prime} \in \mathbb{K}^{n}$ and $b^{\prime} \in \mathbb{K}^{n}$ by setting

$$
a_{i}^{\prime}=\frac{a_{i-1} \kappa_{i-1}(a, b)}{\kappa_{i}(a, b)} \quad \text { for each } i \in\{1,2, \ldots, n\}
$$

and

$$
b_{i}^{\prime}=\frac{b_{i+1} \kappa_{i+1}(a, b)}{\kappa_{i}(a, b)} \quad \text { for each } i \in\{1,2, \ldots, n\}
$$

Set $\eta(a, b)=\left(a^{\prime}, b^{\prime}\right)$.
The map η we just defined is known as a birational R-matrix; related maps have previously appeared in the literature ([BraKaz00, Lemma 8.6], [Yamada01, Definition 2.1], [Etingo03, Proposition 3.1]). In particular, the map R from [Etingo03, Proposition 3.1] is equivalent to η (at least up to technical issues of where it is defined ${ }^{288}$. Indeed, it is not hard to see that the map η from Definition 5.11 becomes the map R from [Etingo03, Proposition 3.1] if we set $x_{i}=b_{i+1}$ and $y_{i}=a_{i}$ and $x_{i}^{\prime}=b_{i}^{\prime}$ and $y_{i}^{\prime}=a_{i+1}^{\prime}$ (that is, if we define $x_{i}, y_{i}, x_{i}^{\prime}, y_{i}^{\prime}$ this way, then the equalities [Etingo03, (8), (9) and (10)] are satisfied, so that we have $R(x, y)=\left(x^{\prime}, y^{\prime}\right)$ where R is as defined in [Etingo03, Proposition 3.1]). This birational R-matrix R has its origins in the theory of geometric crystals and total positivity. A related map is the transformation $(x, a) \mapsto(y, b)$ in [NouYam02, §2.2] (see also [Zygour18]).

Now, we shall see that the map η is intimately related to our map f_{u} (even though \mathbf{f}_{u} transforms a single n-tuple x into a single n-tuple y using the fixed n-tuple u, while η takes a pair of two n-tuples to another such pair). In order to state this relation, we define some more notation:

Definition 5.12. If $a \in \mathbb{K}^{n}$ and $b \in \mathbb{K}^{n}$ are two n-tuples, then we define two new n-tuples $a b \in \mathbb{K}^{n}$ and $\frac{a}{b} \in \mathbb{K}^{n}$ by setting

$$
(a b)_{i}=a_{i} b_{i} \quad \text { and } \quad\left(\frac{a}{b}\right)_{i}=\frac{a_{i}}{b_{i}} \quad \text { for each } i \in\{1,2, \ldots, n\} .
$$

We can now express the map \mathbf{f}_{u} from Definition 3.8 through the map η from Definition 5.11 as follows:

Theorem 5.13. Let $u \in \mathbb{K}^{n}$ and $x \in \mathbb{K}^{n}$ be two n-tuples. Let $\left(a^{\prime}, b^{\prime}\right)=\eta(u, x)$. Then,

$$
\mathbf{f}_{u}(x)=u \frac{a^{\prime}}{b^{\prime}} .
$$

[^17]Proof of Theorem 5.13 Set $a=u$ and $b=x$. We shall use the notations $\kappa_{i}(a, b)$ from Definition 5.11 and the notations $t_{r, j}$ and y from Definition 3.8. Then, $\mathbf{f}_{u}(x)=y$ (by Definition 3.8).

For each $i \in \mathbb{Z}$, we have

$$
\begin{align*}
\kappa_{i}(a, b) & \left.=\sum_{j=i}^{i+n-1} b_{i+1} b_{i+2} \cdots b_{j} \cdot a_{j+1} a_{j+2} \cdots a_{i+n-1} \quad \text { (by the definition of } \kappa_{i}(a, b)\right) \\
& =\sum_{j=i}^{i+n-1} x_{i+1} x_{i+2} \cdots x_{j} \cdot u_{j+1} u_{j+2} \cdots u_{i+n-1} \quad \quad \text { (since } a=u \text { and } b=x \text {) } \\
& =\sum_{k=0}^{n-1} x_{i+1} x_{i+2} \cdots x_{i+k} \cdot u_{i+k+1} u_{i+k+2} \cdots u_{i+n-1} \\
& \quad \text { (here, we have substituted } i+k \text { for } j \text { in the sum) } \\
& =t_{n-1, i} \tag{96}
\end{align*}
$$

(since the definition of $t_{n-1, i}$ yields $t_{n-1, i}=\sum_{k=0}^{n-1} x_{i+1} x_{i+2} \cdots x_{i+k} \cdot u_{i+k+1} u_{i+k+2} \cdots u_{i+n-1}$).
However, $\left(a^{\prime}, b^{\prime}\right)=\eta(u, x)=\eta(a, b)$ (since $u=a$ and $\left.x=b\right)$. Hence, Definition 5.11 yields that

$$
a_{i}^{\prime}=\frac{a_{i-1} \kappa_{i-1}(a, b)}{\kappa_{i}(a, b)} \quad \text { for each } i \in\{1,2, \ldots, n\}
$$

and

$$
b_{i}^{\prime}=\frac{b_{i+1} \kappa_{i+1}(a, b)}{\kappa_{i}(a, b)} \quad \text { for each } i \in\{1,2, \ldots, n\} .
$$

Hence, for each $i \in\{1,2, \ldots, n\}$, we have

$$
\begin{align*}
a_{i}^{\prime} / b_{i}^{\prime} & =\frac{a_{i-1} \kappa_{i-1}(a, b)}{\kappa_{i}(a, b)} / \frac{b_{i+1} \kappa_{i+1}(a, b)}{\kappa_{i}(a, b)}=\frac{a_{i-1} \kappa_{i-1}(a, b)}{b_{i+1} \kappa_{i+1}(a, b)}=\frac{a_{i-1} t_{n-1, i-1}}{b_{i+1} t_{n-1, i+1}} \\
& \quad\binom{\text { since } \kappa_{i-1}(a, b)=t_{n-1, i-1}(\text { by (96), applied to } i-1 \text { instead of } i)}{\text { and } \kappa_{i+1}(a, b)=t_{n-1, i+1}(\text { by (96), applied to } i+1 \text { instead of } i)} \\
& =\frac{u_{i-1} t_{n-1, i-1}}{x_{i+1} t_{n-1, i+1}} \quad \quad(\text { since } a=u \text { and } b=x) \\
& =y_{i} / u_{i} \tag{97}
\end{align*}
$$

(since the definition of y yields $\left.y_{i}=u_{i} \cdot \frac{u_{i-1} t_{n-1, i-1}}{x_{i+1} t_{n-1, i+1}}\right)$. Now, for each $i \in\{1,2, \ldots, n\}$, we have

$$
\begin{aligned}
\left(u \frac{a^{\prime}}{b^{\prime}}\right)_{i} & =u_{i} \frac{a_{i}^{\prime}}{b_{i}^{\prime}} \quad \quad \text { (by Definition 5.12) } \\
& =u_{i} \cdot \underbrace{a_{i}^{\prime} / b_{i}^{\prime}}_{\substack{=y_{i} / u_{i} \\
(\text { by }(97)}}=u_{i} \cdot y_{i} / u_{i}=y_{i} .
\end{aligned}
$$

In other words, $u \frac{a^{\prime}}{b^{\prime}}=y$. Comparing this with $\mathbf{f}_{u}(x)=y$, we obtain $\mathbf{f}_{u}(x)=u \frac{a^{\prime}}{b^{\prime}}$. This proves Theorem 5.13.

We finish by stating some "gauge-invariance" properties for \mathbf{f}_{u} and η :
| Proposition 5.14. Let $g, u, x \in \mathbb{K}^{n}$. Then, $\mathbf{f}_{g u}(g x)=g f_{u}(x)$.
Proposition 5.15. Let $g, a, b \in \mathbb{K}^{n}$. Let $\left(a^{\prime}, b^{\prime}\right)=\eta(a, b)$. Then, $\left(g a^{\prime}, g b^{\prime}\right)=$ $\eta(g a, g b)$.

Proof of Proposition 5.14 Clearly, we have

$$
\begin{equation*}
(a b)_{i}=a_{i} b_{i} \tag{98}
\end{equation*}
$$

for any $a, b \in \mathbb{K}^{n}$ and any $i \in \mathbb{Z}$. (Indeed, because of Convention 3.6, it suffices to prove this in the case when $i \in\{1,2, \ldots, n\}$. However, in this case, this follows from Definition 5.12.)

We shall use the notations $t_{r, j}$ and y from Definition 3.8. Then, $\mathbf{f}_{u}(x)=y$ (by Definition 3.8).

For each $j \in \mathbb{Z}$, define an element $q_{j} \in \mathbb{K}$ by

$$
q_{j}=\sum_{k=0}^{n-1} \underbrace{(g x)_{j+1}(g x)_{j+2} \cdots(g x)_{j+k}}_{=\prod_{i=1}^{k}(g x)_{j+i}} \cdot \underbrace{(g u)_{j+k+1}(g u)_{j+k+2} \cdots(g u)_{j+n-1}}_{\substack{n-1 \\=\prod_{i=k+1}(g u)_{j+i}}} .
$$

Thus, for each $j \in \mathbb{Z}$, we have

$$
\begin{aligned}
& q_{j}=\sum_{k=0}^{n-1} \underbrace{(g x)_{j+1}(g x)_{j+2} \cdots(g x)_{j+k}}_{=\prod_{i=1}^{k}(g x)_{j+i}} \cdot \underbrace{(g u)_{j+k+1}(g u)_{j+k+2} \cdots(g u)_{j+n-1}}_{=\prod_{i=k+1}^{n-1}(g u)_{j+i}} \\
& =\sum_{k=0}^{n-1}(\prod_{i=1}^{k} \underbrace{(g x)_{j+i}}_{\left.\begin{array}{c}
=g_{j+i} x_{j+i} \\
(\text { by } 98)
\end{array}\right)}) \cdot(\prod_{i=k+1}^{n-1} \underbrace{(g u)_{j+i}}_{\begin{array}{c}
g_{j+i} u_{j+i} \\
(\text { by } 98) \cdot
\end{array}}) \\
& \left.\begin{array}{r}
=\sum_{k=0}^{n-1} \underbrace{\left(\prod_{i=1}^{k}\left(g_{j+i} x_{j+i}\right)\right)} \cdot \underbrace{\left(\prod_{i=k+1}^{n-1}\left(g_{j+i} u_{j+i}\right)\right)} \\
=\left(\prod_{i=1}^{k} g_{j+i}\right) \cdot\left(\prod_{i=1}^{k} x_{j+i}\right)
\end{array}=\prod_{\left(\prod_{i=k+1}^{n-1} g_{j+i}\right) \cdot\left(\begin{array}{c}
n-1 \\
i=k+1
\end{array} u_{j+i}\right)}^{\left(\sum_{n-1}^{n-1}\right.}\right) \\
& \begin{array}{r}
=\sum_{k=0}^{n-1} \underbrace{\left(\prod_{i=1}^{k}\left(g_{j+i} x_{j+i}\right)\right)} \cdot \underbrace{\left(\prod_{i=k+1}^{n-1}\left(g_{j+i} u_{j+i}\right)\right)} \\
=\left(\prod_{i=1}^{k} g_{j+i}\right) \cdot\left(\prod_{i=1}^{k} x_{j+i}\right)
\end{array}=\left(\prod_{i=k+1}^{n-1} g_{j+i}\right) \cdot\binom{n-1}{\left.\prod_{i=k+1}+u_{j+i}\right)} \\
& =\sum_{k=0}^{n-1}\left(\prod_{i=1}^{k} g_{j+i}\right) \cdot \underbrace{\left(\prod_{i=1}^{k} x_{j+i}\right) \cdot\left(\prod_{i=k+1}^{n-1} g_{j+i}\right)}_{=\left(\begin{array}{l}
n-1 \\
i=k+1
\end{array} g_{j+i}\right) \cdot\left(\prod_{i=1}^{k} x_{j+i}\right)} \cdot\left(\prod_{i=k+1}^{n-1} u_{j+i}\right) \\
& =\sum_{k=0}^{n-1} \underbrace{\left(\prod_{i=1}^{k} g_{j+i}\right) \cdot\left(\prod_{i=k+1}^{n-1} g_{j+i}\right)}_{=\prod_{i=1}^{n-1} g_{j+i}} \cdot\left(\prod_{i=1}^{k} x_{j+i}\right) \cdot\left(\prod_{i=k+1}^{n-1} u_{j+i}\right) \\
& =\sum_{k=0}^{n-1}\left(\prod_{i=1}^{n-1} g_{j+i}\right) \cdot\left(\prod_{i=1}^{k} x_{j+i}\right) \cdot\left(\prod_{i=k+1}^{n-1} u_{j+i}\right)
\end{aligned}
$$

$$
\begin{align*}
& =\left(\prod_{i=1}^{n-1} g_{j+i}\right) \cdot \sum_{k=0}^{n-1} \underbrace{\left(\prod_{i=1}^{k} x_{j+i}\right)}_{=x_{j+1} x_{j+2} \cdots x_{j+k}} \cdot \underbrace{\left(\prod_{i=k+1}^{n-1} u_{j+i}\right)}_{=u_{j+k+1} u_{j+k+2} \cdots u_{j+n-1}} \\
& =\left(\prod_{i=1}^{n-1} g_{j+i}\right) \cdot \underbrace{\sum_{k=0}^{n-1} x_{j+1} x_{j+2} \cdots x_{j+k} \cdot u_{j+k+1} u_{j+k+2} \cdots u_{j+n-1}}_{\text {(by the definition of } \left.t_{n-1, j}\right)} \\
& =\left(\prod_{i=1}^{n-1} g_{j+i}\right) \cdot t_{n-1, j} .
\end{align*}
$$

However, for each $j \in \mathbb{Z}$, we have

$$
\left(\prod_{i=1}^{n-1} g_{j+i}\right) \cdot g_{j+n}=\prod_{i=1}^{n} g_{j+i}=g_{j+1} g_{j+2} \cdots g_{j+n}=g_{1} g_{2} \cdots g_{n}
$$

(by Lemma 3.7, applied to $a=g$ and $k=j$) and therefore

$$
\begin{equation*}
\prod_{i=1}^{n-1} g_{j+i}=\frac{g_{1} g_{2} \cdots g_{n}}{g_{j+n}}=\frac{g_{1} g_{2} \cdots g_{n}}{g_{j}} \tag{100}
\end{equation*}
$$

(since Convention 3.6 yields $g_{j+n}=g_{j}$).
Thus, for each $j \in \mathbb{Z}$, we have

$$
\begin{align*}
q_{j} & =\underbrace{\left(\prod_{i=1}^{n-1} g_{j+i}\right)} \cdot t_{n-1, j} \tag{99}\\
& =\frac{g_{1} g_{2} \cdots g_{n}}{g_{j}} \\
& =\frac{g_{1 g_{2} \cdot \cdots g_{n}}^{g_{j}} \cdot t_{n-1, j} .}{} . \tag{101}
\end{align*}
$$

Now, let $i \in\{1,2, \ldots, n\}$. Applying (101) to $j=i-1$, we obtain

$$
\begin{equation*}
q_{i-1}=\frac{g_{1} g_{2} \cdots g_{n}}{g_{i-1}} \cdot t_{n-1, i-1} . \tag{102}
\end{equation*}
$$

Applying (101) to $j=i+1$, we obtain

$$
\begin{equation*}
q_{i+1}=\frac{g_{1} g_{2} \cdots g_{n}}{g_{i+1}} \cdot t_{n-1, i+1} . \tag{103}
\end{equation*}
$$

Dividing the equality (102) by the equality (103), we obtain

$$
\begin{equation*}
\frac{q_{i-1}}{q_{i+1}}=\frac{\frac{g_{1} g_{2} \cdots g_{n}}{g_{i-1}} \cdot t_{n-1, i-1}}{\frac{g_{1} g_{2} \cdots g_{n}}{g_{i+1}} \cdot t_{n-1, i+1}}=\frac{t_{n-1, i-1}}{t_{n-1, i+1}} \cdot \frac{g_{i+1}}{g_{i-1}} . \tag{104}
\end{equation*}
$$

However, the definition of y yields

$$
\begin{equation*}
y_{i}=u_{i} \cdot \frac{u_{i-1} t_{n-1, i-1}}{x_{i+1} t_{n-1, i+1}} . \tag{105}
\end{equation*}
$$

On the other hand, from (98), we obtain the equalities $(g u)_{i}=g_{i} u_{i}$ and $(g u)_{i-1}=$ $g_{i-1} u_{i-1}$ and $(g x)_{i+1}=g_{i+1} x_{i+1}$. Thus,

$$
\begin{aligned}
(g u)_{i} \cdot \frac{(g u)_{i-1} q_{i-1}}{(g x)_{i+1} q_{i+1}} & =g_{i} u_{i} \cdot \frac{g_{i-1} u_{i-1} q_{i-1}}{g_{i+1} x_{i+1} q_{i+1}}=g_{i} u_{i} \cdot \frac{g_{i-1} u_{i-1}}{g_{i+1} x_{i+1}} \cdot \frac{q_{i-1}}{q_{i+1}} \\
& =g_{i} u_{i} \cdot \frac{g_{i-1} u_{i-1}}{g_{i+1} x_{i+1}} \cdot \frac{t_{n-1, i-1}}{t_{n-1, i+1}} \cdot \frac{g_{i+1}}{g_{i-1}} \quad \quad \text { (by (104)) } \\
& =g_{i} \underbrace{\left(\text { by } \frac{y_{i}}{105)}\right)}_{\substack{u_{i} \cdot \frac{u_{i-1} t_{n-1, i-1}}{x_{i+1} t_{n-1, i+1}}} g_{i} y_{i}=(g y)_{i}}
\end{aligned}
$$

(since the definition of $g y$ yields $\left.(g y)_{i}=g_{i} y_{i}\right)$. Therefore,

$$
(g y)_{i}=(g u)_{i} \cdot \frac{(g u)_{i-1} q_{i-1}}{(g x)_{i+1} q_{i+1}} .
$$

Now, forget that we fixed i. We thus have proved that

$$
(g y)_{i}=(g u)_{i} \cdot \frac{(g u)_{i-1} q_{i-1}}{(g x)_{i+1} q_{i+1}} \quad \text { for each } i \in\{1,2, \ldots, n\} .
$$

Hence, Lemma 3.13 (applied to $g u, g x$ and $g y$ instead of u, x and z) yields that $\mathbf{f}_{g u}(g x)=g \underbrace{y}_{=\mathbf{f}_{u}(x)}=g \mathbf{f}_{u}(x)$. Proposition 5.14 is thus proved.

Proof of Proposition 5.15. For any $i \in \mathbb{Z}$, we consider the element $\kappa_{i}(a, b)$ defined in Definition 5.11, and we also consider the element $\kappa_{i}(g a, g b)$ defined in the same way as $\kappa_{i}(a, b)$ (but using $g a$ and $g b$ instead of a and b).

Define two n-tuples $a^{\prime} \in \mathbb{K}^{n}$ and $b^{\prime} \in \mathbb{K}^{n}$ as in Definition 5.11. Furthermore, let $(g a)^{\prime} \in \mathbb{K}^{n}$ and $(g b)^{\prime} \in \mathbb{K}^{n}$ be the two n-tuples defined in the same way (but using $g a$ and $g b$ instead of a and b). Definition 5.11 yields that $\eta(a, b)=\left(a^{\prime}, b^{\prime}\right)$. The same argument (applied to $g a$ and $g b$ instead of a and b) yields

$$
\begin{equation*}
\eta(g a, g b)=\left((g a)^{\prime},(g b)^{\prime}\right) . \tag{106}
\end{equation*}
$$

We shall now show that $(g a)^{\prime}=g a^{\prime}$ and $(g b)^{\prime}=g b^{\prime}$.

Indeed, let $i \in \mathbb{Z}$ be arbitrary. Then, the definition of $\kappa_{i}(g a, g b)$ yields

$$
\begin{align*}
& \kappa_{i}(g a, g b)=\sum_{j=i}^{i+n-1} \underbrace{(g b)_{i+1}(g b)_{i+2} \cdots(g b)_{j}}_{=\prod_{p=i+1}^{j}(g b)_{p}} \cdot \underbrace{(g a)_{j+1}(g a)_{j+2} \cdots(g a)_{i+n-1}}_{=\prod_{p=j+1}^{i+n-1}(g a)_{p}} \\
& =\sum_{j=i}^{i+n-1}(\prod_{p=i+1}^{j} \underbrace{(g b)_{p}}_{\substack{=g_{p} b_{p} \\
(\text { by }(98))}}) \cdot(\prod_{p=j+1}^{i+n-1} \underbrace{(g a)_{p}}_{\left.\begin{array}{c}
=g a_{p} \\
(\text { by }(98))
\end{array}\right)}) \\
& \begin{array}{r}
=\sum_{j=i}^{i+n-1} \underbrace{\left(\prod_{p=i+1}^{j}\left(g_{p} b_{p}\right)\right)} \cdot \underbrace{\left(\prod_{p=j+1}^{j}\left(g_{p} a_{p}\right)\right)} \\
=\left(\prod_{p=i+1}^{i+n-1} g_{p}\right) \cdot\left(\begin{array}{l}
j \\
p=i+1
\end{array} b_{p}\right)
\end{array}=\left(\begin{array}{l}
\left(\prod_{p=j+1}^{i+n-1} g_{p}\right) \cdot\left(\begin{array}{l}
i+n-1 \\
p=j+1
\end{array} a_{p}\right)
\end{array}\right. \\
& =\sum_{j=i}^{i+n-1}\left(\prod_{p=i+1}^{j} g_{p}\right) \cdot \underbrace{\left(\prod_{p=i+1}^{j} b_{p}\right) \cdot\left(\prod_{p=j+1}^{i+n-1} g_{p}\right)}_{=\left(\begin{array}{l}
i+n-1 \\
p=j+1
\end{array} g_{p}\right) \cdot\left(\begin{array}{c}
j \\
p=i+1
\end{array} b_{p}\right)} \cdot\left(\prod_{p=j+1}^{i+n-1} a_{p}\right) \\
& =\sum_{j=i}^{i+n-1} \underbrace{\left(\prod_{p=i+1}^{j} g_{p}\right) \cdot\left(\prod_{p=j+1}^{i+n-1} g_{p}\right)}_{=_{p=i+1}^{i+n-1} g_{p}} \cdot\left(\prod_{p=i+1}^{j} b_{p}\right) \cdot\left(\prod_{p=j+1}^{i+n-1} a_{p}\right) \\
& =\sum_{j=i}^{i+n-1}\left(\prod_{p=i+1}^{i+n-1} g_{p}\right) \cdot\left(\prod_{p=i+1}^{j} b_{p}\right) \cdot\left(\prod_{p=j+1}^{i+n-1} a_{p}\right) \\
& =\left(\prod_{p=i+1}^{i+n-1} g_{p}\right) \cdot \sum_{j=i}^{i+n-1} \underbrace{\left(\prod_{p=i+1}^{j} b_{p}\right)}_{=b_{i+1} b_{i+2} \cdots b_{j}} \cdot \underbrace{\left(\prod_{p=j+1}^{i+n-1} a_{p}\right)}_{=a_{j+1} a_{j+2} \cdots a_{i+n-1}} \\
& =\left(\prod_{p=i+1}^{i+n-1} g_{p}\right) \cdot \underbrace{\sum_{j=i}^{i+n-1} b_{i+1} b_{i+2} \cdots b_{j} \cdot a_{j+1} a_{j+2} \cdots a_{i+n-1}}_{=\mathcal{K}_{i}(a, b)} \\
& \text { (by the definition of } \kappa_{i}(a, b) \text {) } \\
& =\left(\prod_{p=i+1}^{i+n-1} g_{p}\right) \cdot \kappa_{i}(a, b) . \tag{107}
\end{align*}
$$

However, for each $i \in \mathbb{Z}$, we have

$$
\left(\prod_{p=i+1}^{i+n-1} g_{p}\right) \cdot g_{i+n}=\prod_{p=i+1}^{i+n} g_{p}=g_{i+1} g_{i+2} \cdots g_{i+n}=g_{1} g_{2} \cdots g_{n}
$$

(by Lemma 3.7, applied to g and i instead of a and k) and therefore

$$
\begin{equation*}
\prod_{p=i+1}^{i+n-1} g_{p}=\frac{g_{1} g_{2} \cdots g_{n}}{g_{i+n}}=\frac{g_{1} g_{2} \cdots g_{n}}{g_{i}} \tag{108}
\end{equation*}
$$

(since Convention 3.6 yields $g_{i+n}=g_{i}$).
Thus, for each $i \in \mathbb{Z}$, we have

$$
\begin{align*}
\kappa_{i}(g a, g b)= & \underbrace{\left(\frac{\prod_{1}}{i+n-1} g_{p}\right)}_{g_{p=i+1}^{g_{1}} g_{2} \cdots g_{n}} \cdot \kappa_{i}(a, b) \quad(\text { by }(107)) \\
& \frac{g_{i}}{\left(\text { by } \frac{108)}{(108)}\right.} \tag{109}\\
& =\frac{g_{1} g_{2} \cdots g_{n}}{g_{i}} \cdot \kappa_{i}(a, b) .
\end{align*}
$$

Now, let $i \in\{1,2, \ldots, n\}$. Then, the definition of a_{i}^{\prime} yields

$$
\begin{equation*}
a_{i}^{\prime}=\frac{a_{i-1} \kappa_{i-1}(a, b)}{\kappa_{i}(a, b)} \tag{110}
\end{equation*}
$$

Likewise, the definition of $(g a)_{i}^{\prime}$ yields

$$
\begin{aligned}
& =g_{i-1} a_{i-1} \cdot \frac{g_{1} g_{2} \cdots g_{n}}{g_{i-1}} \cdot \kappa_{i-1}(a, b) /\left(\frac{g_{1} g_{2} \cdots g_{n}}{g_{i}} \cdot \kappa_{i}(a, b)\right) \\
& =g_{i} \cdot \underbrace{\frac{a_{i-1} \kappa_{i-1}(a, b)}{\kappa_{i}(a, b)}}_{=a_{i}^{\prime}}=g_{i} a_{i}^{\prime}=\left(g a^{\prime}\right)_{i} \\
& \text { (by 110) }
\end{aligned}
$$

(since the definition of $g a^{\prime}$ yields $\left.\left(g a^{\prime}\right)_{i}=g_{i} a_{i}^{\prime}\right)$.

Forget that we fixed i. We thus have shown that $(g a)_{i}^{\prime}=\left(g a^{\prime}\right)_{i}$ for each $i \in$ $\{1,2, \ldots, n\}$. In other words, $(g a)^{\prime}=g a^{\prime}$. A similar argument shows that $(g b)^{\prime}=$ $g b^{\prime}$. Thus, 106) becomes

$$
\eta(g a, g b)=(\underbrace{(g a)^{\prime}}_{=g a^{\prime}}, \underbrace{(g b)^{\prime}}_{=g b^{\prime}})=\left(g a^{\prime}, g b^{\prime}\right) .
$$

This proves Proposition 5.15 .

References

[BraKaz00] Alexander Braverman, David Kazhdan, Gamma-functions of representations and lifting, arXiv:math/9912208v4
[BriRos20] Emmanuel Briand, Mercedes Rosas, The 144 symmetries of the LittlewoodRichardson coefficients of SL_{3}, arXiv:2004.04995v1.
[CheLin20] Sunita Chepuri, Feiyang Lin, Symmetric Group Action of the Birational R-matrix, arXiv:2011.10128v1
[Egge19] Eric S. Egge, An Introduction to Symmetric Functions and Their Combinatorics, Student Mathematical Library 91, AMS 2019 See http://www.ericegge.net/cofsf/for errata.
[EinPro13] David Einstein, James Propp, Combinatorial, piecewise-linear, and birational homomesy for products of two chains, arXiv:1310.5294v3.
[Etingo03] Pavel Etingof, Geometric Crystals and Set-Theoretical Solutions to the Quantum Yang-Baxter Equation, Communications in Algebra 31, no. 4, pp. 1961-1973, 2003, arXiv:math/0112278v1.
[Grinbe19] Darij Grinberg, Regular elements of a ring, monic polynomials and "lcmcoprimality", 5 August 2019.
https://www.cip.ifi.lmu.de/~grinberg/algebra/regpol.pdf
[Grinbe20] Darij Grinberg, The Pelletier-Ressayre hidden symmetry for LittlewoodRichardson coefficients, standard version of the present paper. Also available (possibly in an older edition) as arXiv:2008.06128v4.
[GriRei20] Darij Grinberg, Victor Reiner, Hopf algebras in Combinatorics, version of 27 July 2020, arXiv:1409.8356v7.
(These notes are also available at the URL http://www.cip.ifi.lmu. de/~grinberg/algebra/HopfComb-sols.pdf. However, the version at this URL will be updated in the future, and eventually its numbering will no longer match our references.)
[HamKin11] A. M. Hamel, R. C. King, Extended Bressoud-Wei and Koike skew Schur function identities, Journal of Combinatorial Theory, Series A 118 (2011) pp. 545-557.
[Kirill01] Anatol N. Kirillov, Introduction to Tropical Combinatorics, in: Physics and Combinatorics 2000 (Proceedings of the Nagoya 2000 International Workshop on Physics and Combinatorics, Nagoya University, August 21-26, 2000), pp. 82-149, World Scientific, Singapore, 2001
[Koike89] Kazuhiko Koike, On the decomposition of tensor products of the representations of the classical groups: By means of the universal characters, Advances in Mathematics 74, Issue 1, March 1989, pp. 57-86.
[LamPyl12] Thomas Lam, Pavlo Pylyavskyy, Total positivity in loop groups I: whirls and curls, Advances in Mathematics 230, Issue 3, 20 June 2012, pp. 12221271. A preprint is available at arXiv:0812.0840v3.
[Macdon95] Ian G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, 2nd edition, Oxford Science Publications 1995.
[MenRem15] Anthony Mendes, Jeffrey Remmel, Counting with Symmetric Functions, Developments in Mathematics 43, Springer 2015.
[NouYam02] Masatoshi Noumi, Yasuhiko Yamada, Tropical Robinson-SchenstedKnuth correspondence and birational Weyl group actions, arXiv:mathph/0203030v2.
[PelRes20] Maxime Pelletier, Nicolas Ressayre, Some unexpected properties of Littlewood-Richardson coefficients, arXiv:2005.09877v3.
[Roby15] Tom Roby, Dynamical Algebraic Combinatorics and the Homomesy Phenomenon, in: A. Beveridge, J. Griggs, L. Hogben, G. Musiker, P. Tetali, eds., Recent Trends in Combinatorics (IMA Volume in Mathematics and its Applications), Springer, 2016
[SageMath] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.1), 2020.
[Stanle01] Richard Stanley, Enumerative Combinatorics, volume 2, First edition, Cambridge University Press 2001. See http://math.mit.edu/~rstan/ec/for errata.
[Stembr87] John R. Stembridge, Rational Tableaux and the Tensor Algebra of $g l_{n}$, Journal of Combinatorial Theory, Series A 46 (1987), pp. 79-120.
[Yamada01] Y. Yamada, A birational representation of Weyl group, combinatorial R matrix and discrete Toda equation, in: A.N. Kirillov, N. Liskova (Eds.), Physics and Combinatorics 2000: Proceedings of the Nagoya 2000 International Workshop, World Scientific, 2001, pp. 305-319.
[Zygour18] Nikos Zygouras, Some algebraic structures in the KPZ universality, arXiv:1812.07204v2.

[^0]: ${ }^{1}$ Proof of (22): Let $p \in \mathbb{Z}$. Recall that the family $\left(a_{i}\right)_{i \in \mathbb{Z}}$ is n-periodic (by Convention 3.6). In other words, we have

 $$
 a_{j}=a_{j^{\prime}} \text { whenever } j \text { and } j^{\prime} \text { are two integers satisfying } j \equiv j^{\prime} \bmod n
 $$

 Applying this to $j=p+1$ and $j^{\prime}=p+n+1$, we obtain $a_{p+1}=a_{p+n+1}$ (since $p+1 \equiv p+n+$ $1 \bmod n)$.

[^1]: ${ }^{2}$ We note that the hardest parts of the proof - namely, the proofs of parts (g), (i), (j) and (k) - can be sidestepped entirely, as these parts will only be used in the proof of Theorem 3.11(a), but we will give an alternative proof of Theorem 3.11 (a) later on (in Remark 3.16), which avoids using them.

[^2]: ${ }^{3} \mathrm{We}$ could have simplified this part of the proof by taking $q=0$ as induction base instead. But this would have required extending the semifield \mathbb{K} to a semiring $\mathbb{K} \sqcup\{0\}$ by adjoining a zero (since $t_{-1, j}$ would be an empty sum). It is not hard to do this, but we prefer computations to technicalities.

[^3]: ${ }^{5}$ or, more generally, any formal power series in $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ that is of bounded degree

[^4]: ${ }^{6}$ Unfortunately, there is no agreement in the literature on whether zero-divisors should be required to be nonzero. This is one of the reasons why we are avoiding this notion.

[^5]: ${ }^{9}$ Just in case: It follows easily from Lemma 4.14 and [GriRei20, Remark 2.3.9(d)].

[^6]: ${ }^{11}$ Proof. Let μ be a snake satisfying $\mu \rightharpoonup \lambda$. Thus, we have the chain of inequalities $\mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq$ $\lambda_{2} \geq \cdots \geq \mu_{n} \geq \lambda_{n}$ (since $\mu \rightharpoonup \lambda$ was defined to be equivalent to this chain of inequalities). Hence, in particular, we have $\mu_{i} \geq \lambda_{i}$ for each $i \in\{1,2, \ldots, n\}$. Thus, for each $i \in\{1,2, \ldots, n\}$, we have $\mu_{i} \geq \lambda_{i} \geq 0$ (since λ is nonnegative). In other words, μ is nonnegative. Qed.

[^7]: ${ }^{13}$ This also appears in MenRem15, Theorem 5.3], in Stanle01, Theorem 7.15.7] and in Egge19. Theorem 9.3].

[^8]: ${ }^{14}$ Indeed, this can be proved in the same way as it was proved during Step 2 of the proof of Lemma 4.11 above.

[^9]: ${ }^{15}$ Indeed, its left hand side is 0 in this case because every negative integer k satisfies $h_{k}^{-}=0$ and $h_{k}^{+}=0$; but its right hand side is also 0 in this case, because the negativity of $\min \{a, b\}$ causes the sum to become empty.

[^10]: ${ }^{16}$ Proof. Let $\lambda \in \mathbb{Z}^{n}$ be such that λ is not a snake. We must show that 62 holds for this λ.
 We have assumed that λ is not a snake. Hence, $\lambda-a$ is not a snake (because it is easy to see from Definition 4.3 that λ is a snake if and only if $\lambda-a$ is a snake). Thus, Lemma 4.32 (applied to $\gamma=\lambda-a$) yields $\left|R_{\mu, a, b}(\lambda-a)\right|=0$. Also, Lemma 4.32 (applied to $\lambda-a, a-1$ and $b-1$ instead of γ, a and b) yields $\left|R_{\mu, a-1, b-1}(\lambda-a)\right|=0$. On the other hand, λ is not a snake, and thus not a nonnegative snake. Hence, $c_{\alpha, \mu}^{\lambda}=0$ (since we have defined $c_{\alpha, \mu}^{\lambda}$ to be 0 if λ is not a

[^11]: ${ }^{18}$ Namely, we are

[^12]: ${ }^{22}$ We recall Definition 4.1, Definition 4.3 (a), Definition 4.6. Definition 4.12 and Definition 4.18, as well as the conventions made in Section 1 for the notations used in this proposition.

[^13]: ${ }^{23}$ To be more precise, this claimed finiteness follows from Proposition 5.6 (b), applied to the n-tuple

[^14]: ${ }^{24}$ This might appear strange, since one of the conditions in Lemma 3.12 is not satisfied (namely, we do not have a guarantee that y is as in Definition 3.8). However, this does not matter, since Lemma 3.12 (d) does not depend on this condition (as is clear from the proof).

[^15]: 25 "Matching" means "perfect matching" here - i.e., every coefficient on either side should get a unique partner.
 ${ }^{26}$ Each of the first a columns of such a tableau would have the form $(1,2, \ldots, i-1, i+1, \ldots, n)$ for some $i \in\{1,2, \ldots, n\}$, and these numbers i would weakly increase as one moves right.

[^16]: ${ }^{27}$ Harmonic addition is a binary operation defined on any semifield. It sends any pair (a, b) of elements of the semifield to $\frac{1}{\frac{1}{a}+\frac{1}{b}}=\frac{a b}{a+b}$.

[^17]: ${ }^{28}$ Namely: We have defined our map η as a literal map $\mathbb{K}^{n} \times \mathbb{K}^{n} \rightarrow \mathbb{K}^{n} \times \mathbb{K}^{n}$ for any semifield \mathbb{K}, whereas [Etingo03, Proposition 3.1] defines R as a birational map $\left(\mathbb{C}^{\times}\right)^{n} \times\left(\mathbb{C}^{\times}\right)^{n} \rightarrow\left(\mathbb{C}^{\times}\right)^{n} \times$ $\left(\mathrm{C}^{\times}\right)^{n}$. Neither of these two settings generalizes the other, but it is not hard to transfer identities from one to the other (as long as they are subtraction-free, i.e., no minus signs appear in them).

