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***

The purpose of this document is to prove several properties of coalgebras, bialgebras
and Hopf algebras. The proofs given here are mostly not new, and often not optimal;
however, they are very detailed and don’t use Sweedler’s notation.

Remark (2017):

This “lab notebook” has been mostly written in 2011–2013 (when I was
a graduate student), and collects various results I have encountered while
exploring the theory of Hopf algebras (e.g., variants of the Cartier-Milnor-
Moore and Leray theorems; properties of the Eulerian idempotent; facts
like the invertibility of the antipode in a connected filtered Hopf algebra).
I expect few of these results to be new; the best I can claim is that they are
stated more explicitly here than in the available literature. Unfortunately,
this notebook is rather disorganized, and the results are written down more
or less in the order in which I have found them. I have tried to give detailed
proofs of all statements (if only to make sure that they are correct); these
proofs should be “technically” readable but in practice you might have an
easier time skimming them for their main ideas (which are, unfortunately,
sometimes hidden well) and reconstructing the rest yourself. Needless to
say, the notations used in this notebook are also not the best.

Acknowledgments: Thanks to Philipp Varšo for finding an error in the proof of
Proposition 5.13 (the statement of Corollary 5.14 was insufficiently general).

§1. Notations and definitions

In this document, we shall use some standard terminology from the theory of Hopf al-
gebras (see, for example, [Schnei15] or [Mancho06]) along with the following notations:

Convention 1.1. In the following, the symbol N always denotes the set
{0, 1, 2, . . .}.

Convention 1.2. A “ring” shall always mean an associative ring with
unity.1

Definition 1.3. Let k be a field, and U and V be two k-vector spaces.
Then, L (U, V ) denotes the vector space of all k-linear maps U → V . (This
vector space is commonly denoted by Homk (U, V ).)

Convention 1.4. In the following, whenever a commutative ring k exists
in the context2, the ⊗ sign will always mean ⊗k.

1We will sometimes say “ring with unity” to additionally stress this, but even if we do not say
“with unity” we still mean unital rings only.

2Most of the time we will be working over a ground field, which will be denoted by k. Occasionally
(e.g., in §14), we will be working over a ground ring, but it will also be denoted by k.
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Convention 1.5. If Q is any set and n is any nonnegative integer, then we
shall denote the Cartesian product Q×Q× · · · ×Q︸ ︷︷ ︸

n times

by Q×n. This Carte-

sian product is usually denoted by Qn in the literature, but we shall instead
reserve the notation Qn for another meaning (which will be introduced in
Convention 15.2).

Convention 1.6. Whenever k is a field, A, B, C and D are four k-vector
spaces, and f : A → B and g : C → D are two k-linear maps, then the
notation f⊗g can mean two different things: On the one hand, it can mean
the k-linear map f ⊗ g : A⊗C → B⊗D (which maps a⊗ c to f (a)⊗ g (c)
for every a ∈ A and c ∈ C). On the other hand, it can mean the tensor
f ⊗ g ∈ L (A,B)⊗ L (C,D) (since f ∈ L (A,B) and g ∈ L (C,D)). Let us
agree that in the following, whenever a term like f ⊗ g (with f and g being
two k-linear maps) occurs, it will mean the first thing (i. e., the k-linear
map f ⊗ g : A ⊗ C → B ⊗ D) and not the second one (i. e., the tensor
f ⊗ g ∈ L (A,B)⊗ L (C,D)).

Definition 1.7. Let k be a field and A be a k-algebra. Then, µA will
always denote the multiplication map A⊗ A→ A of the k-algebra A, and
ηA will always denote the unity map k → A of the k-algebra A. When it is
clear which algebra we are talking about, we will abbreviate µA and ηA as
µ and η, respectively.

Definition 1.8. Let k be a field and C be a k-coalgebra. Then, ∆C will
always denote the comultiplication map C → C ⊗ C of the k-coalgebra C,
and εC will always denote the counit map C → k of the k-coalgebra C.
When it is clear which coalgebra we are talking about, we will abbreviate
∆C and εC as ∆ and ε, respectively.

Definition 1.9. Let k be a field, let A be a k-algebra, and let C be
a k-coalgebra. Then, the k-vector space L (C,A) becomes a k-algebra
(L (C,A) , ∗) by setting

f ∗g = µA◦(f ⊗ g)◦∆C for any f ∈ L (C,A) and g ∈ L (C,A) . (1)

This k-algebra (L (C,A) , ∗) has unity ηA ◦ εC and is called the convolution
algebra of C and A. In the following, we will simply refer to this algebra
as L (C,A).

The binary operation ∗ defined in (1) is called convolution. In particular, for
any f ∈ L (C,A) and g ∈ L (C,A), we will refer to f ∗ g as the convolution
of the maps f and g.

Convention 1.10. Let k be a field, let A be a k-algebra, and let C be a
k-coalgebra. For any n ∈ N and any f ∈ L (C,A), we will denote by f ∗n

the n-th power of the element f in the convolution algebra L (C,A).

If an element f ∈ L (C,A) has a multiplicative inverse in the k-algebra
L (C,A), then this inverse is denoted by f ∗(−1) and called the ∗-inverse of
f .
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Definition 1.11. Let k be a field. Let H be a k-Hopf algebra. Then,
SH will always denote the antipode of the k-Hopf algebra S (that is, the
∗-inverse of the identity map idH ∈ L (H,H)).

Definition 1.12. Let k be a field. Let C be a k-coalgebra. Let A be a
k-algebra. Then, eC,A shall denote the map ηA ◦ εC : C → A. This map
eC,A is the unity of the convolution algebra L (C,A).

Next, let us define some concepts related to filtrations on vector spaces. Different
authors define the words “filtered” and “filtration” in different (often non-equivalent)
ways, so some care should be taken when consulting the literature.

Definition 1.13. Let k be a field. A filtered k-vector space means a k-
vector space V equipped with a family (V≤`)`≥0 of k-vector subspaces of V
satisfying V≤0 ⊆ V≤1 ⊆ V≤2 ⊆ · · · and V =

⋃
`≥0

V≤`. Such a filtered k-vector

space will often be denoted simply by V (that is, the family (V≤`)`≥0 will
not be explicitly mentioned). The family (V≤`)`≥0 is called the filtration of
this filtered k-vector space. For each m ∈ N, the k-vector subspace V≤m of
V is called the m-th part of the filtration (V≤`)`≥0.

Convention 1.14. In the following, whenever V is a filtered vector space,
we will denote the filtration on V by (V≤`)`≥0. (This is a general convention,
so it does not only pertain to filtered vector spaces called V , but pertains
to any filtered vector space. For instance, if we have a filtered vector space
called C, then this convention yields that the filtration on C is denoted by
(C≤`)`≥0.)

Furthermore, whenever V is a filtered vector space and ` is a negative
integer, we define V≤` to mean the k-vector subspace 0 of V . (Thus, V≤` is
defined for each ` ∈ Z, not only for ` ∈ N.)

Definition 1.15. Let k be a field. A filtered k-coalgebra means a k-coalgebra
C that is simultaneously a filtered k-vector space (i.e., that is equipped with
a family (C≤`)`≥0 of k-vector subspaces of C satisfying C≤0 ⊆ C≤1 ⊆ C≤2 ⊆
· · · and C =

⋃
`≥0

C≤`) and has the property that

each n ∈ N satisfies ∆ (C≤n) ⊆
n∑
u=0

C≤u ⊗ C≤n−u.

Definition 1.16. Let k be a field, and let C be a filtered k-coalgebra. We
say that the filtered k-coalgebra C is connected if and only if the map
εC |C≤0

: C≤0 → k is a k-vector space isomorphism3.

3Recall that (C≤`)`≥0 denotes the filtration of the filtered k-coalgebra C (according to Conven-

tion 1.14).
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§2. Unital coalgebras

Next we shall define the notion of a unital coalgebra. This notion is an intermediate
step between the (rather well-known) notions of a coalgebra and of a bialgebra; it also
is an intermediate step between the notions of a coalgebra and of a filtered connected
coalgebra. Its definition is very simple:

Definition 2.1. Let k be a field. Let C be a k-coalgebra, and let i be an
element of C. Then, (C, i) is said to be a unital coalgebra4 if ∆C (i) = i⊗ i
and εC (i) = 1.

When (C, i) is a unital coalgebra, we will denote the element i by 1(C,i) and
call it the unity of the unital coalgebra (C, i).

When C is a k-coalgebra, there may be several elements i ∈ C for which (C, i)
is a unital coalgebra5 (but there also may be no such elements). Hence, a unital
coalgebra (C, i) is not uniquely determined by the coalgebra C. However, there are
many cases where we have some additional structure on C (like a k-bialgebra structure
or a connected filtered k-coalgebra structure) which gives rise to one preferred canonical
i. First we consider the case when C is a k-bialgebra. In this case, we have:

Proposition 2.2. Let k be a field. Let C be a k-bialgebra. Then, (C, 1C)
is a unital coalgebra. (Here, 1C denotes the unity of the k-algebra C, as
usual.)

Proof of Proposition 2.2. By the axioms of a k-bialgebra, we have ∆C (1C) = 1C ⊗ 1C
and εC (1C) = 1. By the definition of a unital coalgebra, this means that (C, 1C) is a
unital coalgebra. Proposition 2.2 is thus proven.

Note that Proposition 2.2 really needs the condition that C is a k-bialgebra, and
not just some k-vector space with a k-algebra structure and a k-coalgebra structure.

Now we consider the case of connected filtered coalgebras:

Proposition 2.3. Let k be a field. Let C be a connected filtered k-

coalgebra. Then,
(
C,
(
εC |C≤0

)−1
(1)
)

is a unital coalgebra.

Proof of Proposition 2.3. Since C is connected, the map εC |C≤0
: C≤0 → k is a k-vector

space isomorphism. Hence, the map
(
εC |C≤0

)−1
: k → C≤0 is well-defined.

Let us define an element i ∈ C by i =
(
εC |C≤0

)−1
(1). We are going to show that

(C, i) is a unital coalgebra.
Since εC |C≤0

: C≤0 → k is an isomorphism, we have

C≤0 =
(
εC |C≤0

)−1

(
k︸︷︷︸

=k·1

)
=
(
εC |C≤0

)−1
(k · 1) = k ·

(
εC |C≤0

)−1
(1)︸ ︷︷ ︸

=i

= k · i.

4To be completely honest, we would have to call this “unital k-coalgebra” to make clear that this
notion depends on the field k. However, since we are not going to change the field k anytime soon,
we leave the k out of the notation and simply speak of “unital coalgebras”.

5Such elements are called grouplike elements of C. Thus, a unital coalgebra is a pair (C, i) of a
coalgebra C and a grouplike element i of C.
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Since i =
(
εC |C≤0

)−1
(1), we have 1 =

(
εC |C≤0

)
(i) = εC︸︷︷︸

=ε

(i) = ε (i). Now,

i ∈ C≤0, so that ∆ (i) ∈ ∆ (C≤0) ⊆
0∑

u=0

C≤u ⊗ C≤0−u (since C is a filtered coalgebra).

Since

0∑
u=0

C≤u ⊗ C≤0−u = C≤0 ⊗ C≤0−0︸ ︷︷ ︸
=C≤0

= C≤0 ⊗ C≤0 = (k · i)⊗ (k · i) (since C≤0 = k · i)

= k · (i⊗ i) ,

this rewrites as ∆ (i) ∈ k · (i⊗ i). Thus, there exists some λ ∈ k such that ∆ (i) =
λ · (i⊗ i). Consider this λ.

Let can : C⊗k → C be the canonical k-module isomorphism (sending c⊗x to cx for
all c ∈ C and x ∈ k). Then, by the axioms of a coalgebra, we have can ◦ (id⊗ε)◦∆ = id.
But

(can ◦ (id⊗ε) ◦∆) (i) = can

(id⊗ε)

 ∆ (i)︸ ︷︷ ︸
=λ·(i⊗i)


 = can

(id⊗ε) (λ · (i⊗ i))︸ ︷︷ ︸
=λ·id(i)⊗ε(i)


= can (λ · id (i)⊗ ε (i)) = λ · id (i)︸ ︷︷ ︸

=i

· ε (i)︸︷︷︸
=1

(by the definition of can)

= λi,

so that
λi = (can ◦ (id⊗ε) ◦∆)︸ ︷︷ ︸

=id

(i) = id (i) = i.

Now, ∆ (i) = λ · (i⊗ i) = λi︸︷︷︸
=i

⊗i = i⊗ i.

So we have ∆C (i) = ∆ (i) = i ⊗ i and εC (i) = 1. By the definition of a unital

coalgebra, this shows that (C, i) is a unital coalgebra. Since i =
(
εC |C≤0

)−1
(1), this

means that
(
C,
(
εC |C≤0

)−1
(1)
)

is a unital coalgebra. Proposition 2.3 is proven.

Proposition 2.2 gives us a unital coalgebra when we start with a k-bialgebra.
Proposition 2.3 gives us a unital coalgebra when we start with a connected filtered
k-coalgebra. One might wonder what happens if we start with a connected filtered k-
bialgebra: In this case, each of Propositions 2.2 and 2.3 gives us a unital coalgebra. Are
these two unital coalgebras the same? The answer is yes, as the following proposition
shows:

Proposition 2.4. Let k be a field, and let C be a connected filtered6 k-

bialgebra. Then, 1C =
(
εC |C≤0

)−1
(1) (where 1C denotes the unity of

the k-algebra C). As a consequence, the unital coalgebras (C, 1C) and(
C,
(
εC |C≤0

)−1
(1)
)

are identic.

6Of course, when we say that the filtered k-bialgebra C is connected, we mean that the filtered
k-coalgebra C is connected.
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Proof of Proposition 2.4. By the definition of a connected filtered k-coalgebra, the map
εC |C≤0

: C≤0 → k is a k-vector space isomorphism (since C is connected). Moreover,(
εC |C≤0

)
(1C) = εC (1C) = 1, so that 1C =

(
εC |C≤0

)−1
(1). This proves Proposi-

tion 2.4.

Since it is cumbersome to explicitly mention the unity every time we are referring
to a unital coalgebra, we make the following convention:

Convention 2.5. Let k be a field. Let (C, i) be a unital coalgebra. Then,
we will often abbreviate the “unital coalgebra (C, i)” as “unital coalgebra
C”. This abbreviation is an abuse of notation, since a unital coalgebra
(C, i) is not uniquely determined by the coalgebra C; but we will only use
this abbreviation when it is clear what i we mean. In particular, we will
use this abbreviation when there is a canonical unital coalgebra structure
on C obtained from either Definition 2.6 or Definition 2.7 (below), or when
the unital coalgebra is just being defined7.

Definition 2.6. Let k be a field. Let C be a k-bialgebra. Then, according
to Proposition 2.2, the unital coalgebra (C, 1C) is well-defined (where 1C
denotes the unity of the k-algebra C). This unital coalgebra (C, 1C) is called
the unital coalgebra canonically induced by the k-bialgebra C. Whenever we
just speak of “the unital coalgebra C” (where C is a k-bialgebra), we will
always mean this unital coalgebra (C, 1C).

Definition 2.7. Let k be a field. Let C be a connected filtered k-coalgebra.

Then, the unital coalgebra
(
C,
(
εC |C≤0

)−1
(1)
)

(this is well-defined accord-

ing to Proposition 2.3) is called the unital coalgebra canonically induced by
the connected filtered k-coalgebra C. Whenever we just speak of “the unital
coalgebra C” (where C is a connected filtered k-coalgebra), we will always

mean this unital coalgebra
(
C,
(
εC |C≤0

)−1
(1)
)

.

Remark 2.8. Let k be a field. Let C be a connected filtered k-bialgebra.
Then, the “unital coalgebra C” as understood according to Definition 2.6
is identic with the “unital coalgebra C” as understood according to Defini-
tion 2.7. (This is just a rewording of Proposition 2.4.) Thus, the notations
introduced in Definitions 2.6 and 2.7 don’t conflict with each other.8

Remark 2.9. Let k be a field. Let C be a unital coalgebra. Then, the unity
of this unital coalgebra C is denoted by 1C . This is not a new notation we
introduce; it is just a consequence of our Definition 2.1 (where we stipulated

7For instance, when we write “Let C be a unital coalgebra”, we are using this abbreviation; this is
okay, because there are no elements i of C defined yet which we can confuse.

8This only pertains to the case when C is a connected filtered k-bialgebra. If C would be a
vector space with a connected filtered k-coalgebra structure on one hand and a (totally unrelated!)
k-bialgebra structure on the other, then, of course, then the “unital coalgebra C” in the sense of
Definition 2.6 would not necessarily be identic to the “unital coalgebra C” in the sense of Definition 2.7,
so the notations introduced in Definitions 2.6 and 2.7 could conflict. However, in such a case, it would
already be a very bad idea to speak of the “coalgebra C”, since this could mean any of two different
coalgebra structures, so in such a case we would have to be careful with our notations anyway.
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that the unity of a unital coalgebra (C, i) will be denoted by 1(C,i)) because
we abbreviate (C, i) by C.

This notation can conflict with the notation 1A for the unity of a k-algebra
A: In fact, if we have a vector space V which happens to be a k-algebra
and a unital coalgebra at the same time, then in general it might occur
that the unity of the unital coalgebra V is not the same as the unity of the
k-algebra V , so the notation 1V would be ambiguous (it could mean each of
these two unities). However, when we have a k-bialgebra C, then the unity
of the unital coalgebra C (which is understood according to Definition 2.6)
is the same as the unity of the k-algebra C 9, so there is no conflict in
this case. Fortunately, we are going to have this case all of the time, so we
won’t have to care about possible conflicts between these notations.

Remark 2.10. Let k be a field, and let C be a connected filtered k-
coalgebra. Then, C is a unital coalgebra (according to Definition 2.7) with

unity 1C =
(
εC |C≤0

)−1
(1).

Proof of Remark 2.10. The unital coalgebra C (as defined in Definition 2.7) is
(
C,
(
εC |C≤0

)−1
(1)
)

.

Hence, the unity of this coalgebra is
(
εC |C≤0

)−1
(1). Since we denote the unity of the

unital coalgebra C by 1C , this means that 1C =
(
εC |C≤0

)−1
(1). Remark 2.10 is

proven.

Remark 2.11. Let k be a field, and let C be a connected filtered k-
coalgebra. Then, C≤0 = k · 1C . (Here, as usual, 1C denotes the unity of the
unital coalgebra C, which unital coalgebra is defined as in Definition 2.7.)

Proof of Remark 2.11. In the proof of Proposition 2.3, we showed that C≤0 = k · i,
where i =

(
εC |C≤0

)−1
(1). But this i is equal to 1C (since i =

(
εC |C≤0

)−1
(1) = 1C

by Remark 2.10), so that C≤0 = k · i rewrites as C≤0 = k · 1C . Remark 2.11 is now
proven.

Remark 2.12. Let k be a field, and let H be a filtered k-bialgebra. Then,
H is connected if and only if H≤0 = k · 1H (where 1H denotes the unity of
the k-algebra H).

Proof of Remark 2.12. a) Let us prove that if H is connected, then H≤0 = k · 1H .
Proof. Assume that H is connected. Then, H becomes a unital coalgebra according

to Definition 2.7. Thus, the notation 1H can mean two different things: On the one
hand, it can mean the unity of the k-algebra H, but on the other hand, it can mean
the unity of the unital coalgebra H (defined by Definition 2.7). Fortunately, this does
not yield a conflict because these two things are the same (by Remark 2.9, since H is
a k-bialgebra). Remark 2.11 (applied to C = H) now yields H≤0 = k · 1H .

We thus have proven that if H is connected, then H≤0 = k · 1H .
b) Let us prove that if H≤0 = k · 1H , then H is connected.

9Proof. Let C be a k-bialgebra. According to Definition 2.6, the unital coalgebra C is (C, 1C),
where 1C denotes the unity of the k-algebra C. Hence, the unity of the unital coalgebra C is 1C ,
where 1C denotes the unity of the k-algebra C. In other words, the unity of the unital coalgebra C is
the same as the unity of the k-algebra C, qed.
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Proof. Assume that H≤0 = k ·1H . Then, every α ∈ H≤0 satisfying
(
εH |H≤0

)
(α) = 0

must satisfy α = 0 10. Hence, the k-linear map εH |H≤0
must be injective. Since

this map is also surjective11, it thus follows that the map εH |H≤0
is bijective. Hence,

εH |H≤0
is an isomorphism. By the definition of “connected”, this yields that H is

connected.
We have thus proven that if H≤0 = k · 1H , then H is connected.
Combining the above points a) and b), we obtain Remark 2.12.

Remark: The above Remark 2.12 is often used as an alternative definition of the
notion of a connected filtered k-bialgebra. However, we prefer Definition 1.16, since it
works for filtered k-coalgebras as well (and not only for filtered k-bialgebras).

Definition 2.13. Let k be a field, and let C be a unital coalgebra. Then,
we denote by ηC the map k → C which sends every λ ∈ k to λ · 1C ∈ C.
This map is called the unity map of the unital coalgebra C.

This notation could sometimes conflict with the notation ηA for the unity
map of a k-algebra A. In fact, such a conflict might emerge when we have
a k-vector space H which is both a unital coalgebra and a k-algebra at
the same time; in this case, ηH might mean two different things (namely,
the unity map of the k-algebra H on the one hand, and the unity map of
the unital coalgebra H on the other), just as 1H might mean two different
things. However, when H is a k-bialgebra, both meanings of 1H are the
same, and therefore both meanings of ηH are the same12. Thus, no conflict
can occur as long as H is a k-bialgebra.

10Proof. Let α ∈ H≤0 satisfying
(
εH |H≤0

)
(α) = 0 be arbitrary. Then, ε (α) =

(
εH |H≤0

)
(α) = 0.

On the other hand, α ∈ H≤0 = k · 1H , so that there exists some λ ∈ k such that α = λ · 1H .
Consider this λ. Then, ε (α) = ε (λ · 1H) = λ ε (1H)︸ ︷︷ ︸

=1

= λ. Thus, ε (α) = 0 becomes λ = 0, so that

α = λ︸︷︷︸
=0

·1H = 0, qed.

11In fact, every β ∈ k satisfies β ∈
(
εH |H≤0

)
(H≤0) (because β · 1H︸︷︷︸

∈H≤0

∈ H≤0 and

(
εH |H≤0

)
(β · 1H) = ε (β · 1H) = β ε (1H)︸ ︷︷ ︸

=1

= β, so that β =
(
εH |H≤0

)
(β · 1H) ∈

(
εH |H≤0

)
(H≤0)).

12Proof. Let H be a k-bialgebra. Then, the notation ηH might mean two different things: namely,
the unity map of the k-algebra H on the one hand, and the unity map of the unital coalgebra H on
the other. However, these two things are the same, since

(the unity map of the unital coalgebra H)

= (the map k → H which sends every λ ∈ k to λ · 1H , where 1H denotes the unity of the unital coalgebra H)

(because this is how the unity map of the unital coalgebra H was defined)

= (the map k → H which sends every λ ∈ k to λ · 1H , where 1H denotes the unity of the k-algebra H)(
since Remark 2.9 (applied to C = H) says that the unity of the unital coalgebra H is the same

as the unity of the k-algebra H

)
= (the unity map of the k-algebra H)

(because this is how the unity map of the k-algebra H was defined) .

Hence, both meanings of ηH are the same, qed.
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Now that we have defined the notion of unital coalgebras and cleared up some
possible and impossible confusions, let us continue introducing notation. First, we
observe that if we replace the words “k-algebra” by “unital coalgebra” in the definition
of eH,A (Definition 1.12), then this definition still makes sense (because the expression
1A makes sense not only when A is a k-algebra, but also when A is a unital coalgebra),
although of course the map eH,A it defines is no longer the unity of the convolution
algebra L (H,A) (since this convolution algebra does not exist in this situation). Thus,
we obtain the following definition:

Definition 2.14. Let k be a field. Let C be a k-coalgebra. Let A be a
unital coalgebra. Then, eC,A shall denote the map ηA ◦ εC : C → A.

Definition 2.14 does not conflict with Definition 1.12 in the case when A is a k-
bialgebra (because both interpretations of the expression 1A mean the same thing in
this case); these definitions also do not conflict in the case when A is a connected
filtered coalgebra (for the same reason). Of course, if A is simultaneously a k-algebra
and a unital coalgebra with two completely unrelated unities, then the two definitions
can conflict.

§3. Logarithms and exponentials in convolution al-

gebras

Definition 3.1. Let k be a field, let A be a k-algebra, and let H be a
connected filtered k-coalgebra.13

(a) We denote by g (H,A) the subspace {f ∈ L (H,A) | f (1H) = 0} of
L (H,A). (Here, 1H denotes the unity of the unital coalgebra H, which is
defined according to Definition 2.7.)

(b) For every n ∈ N, we denote by Ln (H,A) the subspace
{
f ∈ L (H,A) | f |H≤n−1

= 0
}

14. Then,

L0 (H,A) =
{
f ∈ L (H,A) | f |H≤0−1

= 0
}

= L (H,A)

(since every f ∈ L (H,A) satisfies f |H≤0−1
= 0 (because H≤0−1 = H≤−1 =

13We denote this k-coalgebra by H rather than by the (more appropriate) letter C because this is
how it is often called in this context in standard literature.

14Recall that (H≤`)`≥0 denotes the filtration of the filtered k-coalgebra H (according to Conven-

tion 1.14).

11



0)) and

L1 (H,A) =
{
f ∈ L (H,A) | f |H≤1−1

= 0
}

=
{
f ∈ L (H,A) | f |{λ·1H |λ∈k}= 0

}(
since H≤1−1 = H≤0 = k · 1H (by Remark 2.11, applied to C = H)

and thus H≤1−1 = k · 1H = {λ · 1H | λ ∈ k}

)

=

f ∈ L (H,A) | f (λ · 1H)︸ ︷︷ ︸
=λf(1H)

= 0 for every λ ∈ k


=

f ∈ L (H,A) | λf (1H) = 0 for every λ ∈ k︸ ︷︷ ︸
this is equivalent to f(1H)=0


= {f ∈ L (H,A) | f (1H) = 0} = g (H,A) .

(c) Let us denote by G (H,A) the subset {f ∈ L (H,A) | f (1H) = 1A} of
L (H,A). (Here, 1A denotes the unity of A.)

Definition 3.2. (a) In Definition 3.1 (a), we have defined g (H,A) when
H is a connected filtered k-coalgebra and A is a k-algebra. In the same way
(that is, by the formula

g (H,A) = {f ∈ L (H,A) | f (1H) = 0}

), we can define g (H,A) when H is a unital coalgebra and A is any k-vector
space. In particular, g (H,A) is thus defined when H is a k-bialgebra and
A is any k-vector space (because according to Definition 2.6, when H is a
k-bialgebra, H canonically becomes a unital coalgebra).

(b) In Definition 3.1 (c), we have defined G (H,A) when H is a connected
filtered k-coalgebra and A is a k-algebra. In the same way (that is, by the
formula

G (H,A) = {f ∈ L (H,A) | f (1H) = 1A}

), we can define the set G (H,A) when H is a unital coalgebra and A is
a k-algebra. Moreover, in the same way (i.e., by the same formula), we
can define the set G (H,A) when H is a unital coalgebra and A is a unital
coalgebra (because the notation 1A makes sense whenever A is a unital
coalgebra).

Remark 3.3. Let k be a field. Let A be a k-algebra. Let H be a unital
coalgebra. Recall (from Definition 1.12) that eH,A denotes the map ηA◦εH :
H → A. Recall the sets g (H,A) and G (H,A) defined in Definition 3.2.

(a) We have eH,A ∈ G (H,A).

(b) We have G (H,A) = eH,A + g (H,A).

Proof of Remark 3.3. We know that (H, 1H) is a unital coalgebra. In other words, H is
a k-coalgebra and 1H is an element of H satisfying ∆H (1H) = 1H⊗1H and εH (1H) = 1
(by the definition of a “unital coalgebra”).
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We have eH,A = ηA ◦ εH . Thus,

eH,A (1H) = (ηA ◦ εH) (1H) = ηA

εH (1H)︸ ︷︷ ︸
=1

 = ηA (1)

= 1 · 1A (by the definition of the map ηA)

= 1A.

Recall that
g (H,A) = {f ∈ L (H,A) | f (1H) = 0} (2)

and
G (H,A) = {f ∈ L (H,A) | f (1H) = 1A} . (3)

(a) Now, eH,A is an element of L (H,A) satisfying eH,A (1H) = 1A. In other
words, eH,A is an f ∈ L (H,A) satisfying f (1H) = 1A. In other words, eH,A ∈
{f ∈ L (H,A) | f (1H) = 1A}. In view of (3), this rewrites as eH,A ∈ G (H,A). This
proves Remark 3.3 (a).

(b) Let g ∈ G (H,A). Thus, g ∈ G (H,A) = {f ∈ L (H,A) | f (1H) = 1A}.
In other words, g is an element f ∈ L (H,A) satisfying f (1H) = 1A. In other
words, g is an element of L (H,A) and satisfies g (1H) = 1A. Now, (g − eH,A) (1H) =
g (1H)︸ ︷︷ ︸

=1A

− eH,A (1H)︸ ︷︷ ︸
=1A

= 1A−1A = 0. Thus, g−eH,A is an element of L (H,A) and satisfies

(g − eH,A) (1H) = 0. In other words, g − eH,A is an f ∈ L (H,A) satisfying f (1H) = 0.
In other words, g − eH,A ∈ {f ∈ L (H,A) | f (1H) = 0}. In view of (2), this rewrites
as g − eH,A ∈ g (H,A). Thus, g ∈ eH,A + g (H,A).

Now, forget that we fixed g. We thus have shown that g ∈ eH,A + g (H,A) for each
g ∈ G (H,A). In other words,

G (H,A) ⊆ eH,A + g (H,A) . (4)

On the other hand, let h ∈ eH,A + g (H,A). Thus, h ∈ L (H,A) and h − eH,A ∈
g (H,A). We have h − eH,A ∈ g (H,A) = {f ∈ L (H,A) | f (1H) = 0}. In other
words, h − eH,A is an element f of L (H,A) satisfying f (1H) = 0. In other words,
h − eH,A is an element of L (H,A) and satisfies (h− eH,A) (1H) = 0. Comparing
(h− eH,A) (1H) = 0 with (h− eH,A) (1H) = h (1H) − eH,A (1H)︸ ︷︷ ︸

=1A

= h (1H) − 1A, we

obtain h (1H)− 1A = 0. In other words, h (1H) = 1A. Now, h is an element of L (H,A)
satisfying h (1H) = 1A. In other words, h is an f ∈ L (H,A) satisfying f (1H) = 1A.
In other words, h ∈ {f ∈ L (H,A) | f (1H) = 1A}. In view of (3), this rewrites as
h ∈ G (H,A).

Now, forget that we fixed h. We thus have shown that h ∈ G (H,A) for each
h ∈ eH,A + g (H,A). In other words, eH,A + g (H,A) ⊆ G (H,A). Combining this with
(4), we obtain G (H,A) = eH,A + g (H,A). This proves Remark 3.3 (b).

Remark 3.4. If we replace the word “k-algebra” by “unital coalgebra” in
Remark 3.3, then Remark 3.3 still holds. In fact, the same proof given
above still applies in this situation.
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Remark 3.5. Let k be a field, let A be a k-algebra, and let H be a con-
nected filtered k-coalgebra. Every i ∈ N, n ∈ N and f ∈ g (H,A) such that
i > n satisfy f ∗i (H≤n) = 0.

Proof of Remark 3.5. We prove Remark 3.5 by induction over i:
Induction base: For i = 0, Remark 3.5 is vacuously true (because i > n cannot hold

(since i = 0 and n ∈ N)).
Induction step: Let j ∈ N be arbitrary. Assume that Remark 3.5 holds for i = j.

Now, we must prove that Remark 3.5 also holds for i = j + 1.

Let n ∈ N and f ∈ g (H,A) be such that j + 1 > n. Then, ∆H (H≤n) ⊆
n∑
u=0

H≤u ⊗

H≤n−u (since H is a filtered coalgebra) and

f ∗(j+1)︸ ︷︷ ︸
=f∗j∗f

(H≤n)

=
(
f ∗j ∗ f

)
(H≤n) =

(
µA ◦

(
f ∗j ⊗ f

)
◦∆H

)
(H≤n)

= µA

(f ∗j ⊗ f)
 ∆H (H≤n)︸ ︷︷ ︸
⊆

n∑
u=0

H≤u⊗H≤n−u




⊆ µA

((
f ∗j ⊗ f

)( n∑
u=0

H≤u ⊗H≤n−u

))

=
n∑
u=0

µA

(f ∗j ⊗ f) (H≤u ⊗H≤n−u)︸ ︷︷ ︸
⊆f∗j(H≤u)⊗f(H≤n−u)


⊆

n∑
u=0

µA
(
f ∗j (H≤u)⊗ f (H≤n−u)

)
=

n−1∑
u=0

µA
(
f ∗j (H≤u)⊗ f (H≤n−u)

)
+ µA

(
f ∗j (H≤n)⊗ f (H≤n−n)

)
. (5)

Now, every u ∈ {0, 1, . . . , n− 1} satisfies j > u (since j+ 1 > n = (n− 1)︸ ︷︷ ︸
≥u

+1 ≥ u+ 1).

Thus, for every u ∈ {0, 1, . . . , n− 1}, we can apply Remark 3.5 to j and u instead of i
and n (since we assumed that Remark 3.5 holds for i = j), and obtain f ∗j (H≤u) = 0.
Besides, f ∈ g (H,A) = L1 (H,A) yields f |H≤1−1

= 0 (by the definition of L1 (H,A)), so
that f (H≤1−1) = 0. Thus, f (H≤n−n) = f (H≤0) = f (H≤1−1) = 0. Now, (5) becomes

f ∗(j+1) (H≤n) ⊆
n−1∑
u=0

µA

f ∗j (H≤u)︸ ︷︷ ︸
=0

⊗f (H≤n−u)

+ µA

f ∗j (H≤n)⊗ f (H≤n−n)︸ ︷︷ ︸
=0


=

n−1∑
u=0

µA (0⊗ f (H≤n−u))︸ ︷︷ ︸
=0

+µA
(
f ∗j (H≤n)⊗ 0

)︸ ︷︷ ︸
=0

= 0 + 0 = 0.
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In other words, f ∗(j+1) (H≤n) = 0. We have thus proven that Remark 3.5 also holds
for i = j + 1. This completes the induction step.

We thus have completed the induction proof of Remark 3.5.

Definition 3.6. Let k be a field of characteristic 0, let A be a k-algebra,
and let H be a connected filtered k-coalgebra. For every f ∈ g (H,A), let
us define a map e∗f : H → A by the formula(

e∗f (x) =
∑
i≥0

f ∗i (x)

i!
for every x ∈ H

)
. (6)

This map e∗f is well-defined, because for every x ∈ H the infinite sum∑
i≥0

f ∗i (x)

i!
converges with respect to the discrete topology15. Besides, e∗f

is a k-linear map16, so that e∗f ∈ L (H,A). More precisely, e∗f ∈ G (H,A).
17

Remark. The e in the notation e∗f has nothing to do with the e in the notation eH,A.
The e in the notation e∗f is a pure symbol (in particular, e∗f is not an “f -th power” of
any e (whatever this e would be) with respect to convolution) which has been chosen
to suggest similarity with the exponential function known from analysis; despite this

15Proof. Let x ∈ H. Then, there exists some n ∈ N such that x ∈ H≤n (since H is filtered).
Consider such an n. Then, every integer i > n satisfies f∗i (x) ∈ f∗i (H≤n) = 0 (by Remark 3.5) and

thus f∗i (x) = 0. Hence, for every integer i > n, the i-th addend of the infinite sum
∑
i≥0

f∗i (x)

i!
is zero.

Hence, this infinite sum
∑
i≥0

f∗i (x)

i!
has only finitely many nonzero addends. Thus, this sum converges

with respect to the discrete topology.
16Proof. Let α ∈ k, β ∈ k, x ∈ H and y ∈ H be arbitrary. Then, (6) (applied to y instead of x)

yields e∗f (y) =
∑
i≥0

f∗i (y)

i!
. But (6) (applied to αx+ βy instead of x) yields

e∗f (αx+ βy) =
∑
i≥0

f∗i (αx+ βy)

i!
=
∑
i≥0

αf∗i (x) + βf∗i (y)

i!︸ ︷︷ ︸
=α
f∗i (x)

i!
+β
f∗i (y)

i!(
since for every i ∈ N, we have f∗i (αx+ βy) = αf∗i (x) + βf∗i (y)

(because f∗i is a k-linear map)

)
= α

∑
i≥0

f∗i (x)

i!︸ ︷︷ ︸
=e∗f (x)

+β
∑
i≥0

f∗i (y)

i!︸ ︷︷ ︸
=e∗f (y)

= αe∗f (x) + βe∗f (y) .

Since this holds for all α ∈ k, β ∈ k, x ∈ H and y ∈ H, we thus see that e∗f is k-linear, qed.
17Proof. Every integer i > 0 satisfies f∗i (H≤0) = 0 (by Remark 3.5, applied to n = 0) and thus

f∗i

 1H︸︷︷︸
∈H≤0

 ∈ f∗i (H≤0) = 0, so that f∗i (1H) = 0. Hence, every integer i > 0 satisfies

f∗i (1H)

i!
=

0

i!
= 0. (7)
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similarity, there is (in general) no “Euler number” e ≈ 2.718 . . . in L (H,A). The e in
the notation eH,A simply stands for “neutral element” (just as the neutral element of
a group is often denoted by e).

Definition 3.7. Let k be a field of characteristic 0, let A be a k-algebra,
and let H be a connected filtered k-coalgebra. For every f ∈ g (H,A), let
us define a map Log1 f : H → A by the formula(

(Log1 f) (x) =
∑
i≥1

(−1)i−1

i
f ∗i (x) for every x ∈ H

)
. (8)

This map Log1 f is well-defined, because for every x ∈ H the infinite sum∑
i≥1

(−1)i−1

i
f ∗i (x) converges with respect to the discrete topology18. Be-

sides, Log1 f is a k-linear map19, so that Log1 f ∈ L (H,A). More precisely,

But applying (6) to x = 1H , we get

e∗f (1H) =
∑
i≥0

f∗i (1H)

i!
=

f∗0 (1H)

0!︸ ︷︷ ︸
=
f∗0 (1H)

1
=f∗0(1H)

+
∑
i>0

f∗i (1H)

i!︸ ︷︷ ︸
=0

(by (7))

(here, we have split off the addend for i = 0 from the sum)

= f∗0 (1H) +
∑
i>0

0︸ ︷︷ ︸
=0

= f∗0︸︷︷︸
=eH,A

(1H) = eH,A (1H) = 1A.

Thus, e∗f ∈ G (H,A) (by the definition of G (H,A)).
18Proof. Let x ∈ H. Then, there exists some n ∈ N such that x ∈ H≤n (since H is filtered).

Consider this n. Then, every integer i > n satisfies f∗i (x) = 0 (this is proven just as in Definition 3.6).

Therefore, every integer i > n satisfies
(−1)

i−1

i
f∗i (x)︸ ︷︷ ︸

=0

= 0. In other words, for every integer i > n, the

i-th addend of the infinite sum
∑
i≥1

(−1)
i−1

i
f∗i (x) is zero. Hence, this infinite sum

∑
i≥1

(−1)
i−1

i
f∗i (x)

has only finitely many nonzero addends. Thus, this sum converges with respect to the discrete
topology, qed.

19Proof. Let α ∈ k, β ∈ k, x ∈ H and y ∈ H be arbitrary. Then, (8) (applied to y instead of x)

yields (Log1 f) (y) =
∑
i≥1

(−1)
i−1

i
f∗i (y). But (8) (applied to αx+ βy instead of x) yields

(Log1 f) (αx+ βy) =
∑
i≥1

(−1)
i−1

i
f∗i (αx+ βy)︸ ︷︷ ︸

=αf∗i(x)+βf∗i(y)

(since f∗i is a k-linear map)

=
∑
i≥1

(−1)
i−1

i

(
αf∗i (x) + βf∗i (y)

)
︸ ︷︷ ︸

=α
(−1)

i−1

i
f∗i(x)+β

(−1)
i−1

i
f∗i(y)

= α
∑
i≥1

(−1)
i−1

i
f∗i (x)︸ ︷︷ ︸

=(Log1 f)(x)

+β
∑
i≥1

(−1)
i−1

i
f∗i (y)︸ ︷︷ ︸

=(Log1 f)(y)

= α (Log1 f) (x) + β (Log1 f) (y) .

Since this holds for all α ∈ k, β ∈ k, x ∈ H and y ∈ H, we thus see that Log1 f is k-linear, qed.
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Log1 f ∈ g (H,A). 20

Definition 3.8. Let k be a field of characteristic 0, let A be a k-algebra,
and let H be a connected filtered k-coalgebra. For every F ∈ G (H,A), let
us define an element LogF ∈ g (H,A) by LogF = Log1 (F − eH,A). 21

§4. Log id in a connected filtered cocommutative bial-

gebra

We are now ready to state a first interesting result:

Theorem 4.1. Let k be a field of characteristic 0, and let H be a con-
nected filtered cocommutative bialgebra over k. Consider the convolution
algebra L (H,H). The map Log id ∈ L (H,H) is a projection from H to
the subspace PrimH of all primitive elements of H.

The map Log id ∈ L (H,H) defined in Theorem 4.1 is known as the Eulerian
idempotent of H.

Theorem 4.1 is a classical fact about the Eulerian idempotent in a bialgebra. In
particular, it has been used in [PatReu98] (more precisely, in the Example in §2 of
[PatReu98]).22

§5. Basic properties of Log and e∗

Before we start proving Theorem 4.1, we shall study the concepts of exponentiation
and logarithm closer – first, as formal power series, but then as operators on the space
L (H,A) of linear maps from a coalgebra H to an algebra A. (To be precise, they do
not act on the full space L (H,A); but we will make everything precise when we state
the results.)

20Proof. Every integer i > 0 satisfies f∗i (H≤0) = 0 (by Remark 3.5, applied to n = 0) and thus

f∗i

 1H︸︷︷︸
∈H≤0

 ∈ f∗i (H≤0) = 0, so that f∗i (1H) = 0. But applying (8) to x = 1H , we get

(Log1 f) (1H) =
∑
i≥1

(−1)
i−1

i
f∗i (1H)︸ ︷︷ ︸

=0

=
∑
i≥1

(−1)
i−1

i
0 = 0.

Thus, Log1 f ∈ g (H,A) (by the definition of g (H,A)).
21This is well-defined since

F︸︷︷︸
∈G(H,A)=eH,A+g(H,A)

−eH,A ∈ eH,A + g (H,A)− eH,A = g (H,A) .

22Actually, our Theorem 4.1 is stronger than the fact used in the Example in §2 of [PatReu98],
because [PatReu98] considers only connected graded cocommutative bialgebras, whereas our Theo-
rem 4.1 is stated (and proven) for any connected filtered cocommutative bialgebra.

Note that the L (H,H) in our Theorem 4.1 is not the L (H) of [PatReu98] in the case when H is
graded. In fact, the L (H) of [PatReu98] contains only the graded k-linear maps, while our L (H,H)
contains all k-linear maps H → H.
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§5.1. log and exp as power series

Let us first study the logarithm and the exponentials as they act on formal power
series:

Definition 5.1. Let k be a field of characteristic 0. For every power series
P ∈ k [[X]] whose coefficient before X0 is 0, let expP denote the power

series in k [[X]] defined by expP =
∑
i≥0

P i

i!
. For every power series Q ∈

k [[X]] whose coefficient before X0 is 1, let logQ denote the power series in

k [[X]] defined by logQ =
∑
i≥1

(−1)i−1

i
(Q− 1)i.

Theorem 5.2. Let k be a field of characteristic 0.

(a) Every power series P ∈ k [[X]] whose coefficient before X0 is 0 satisfies
log (expP ) = P .

(b) Every power series Q ∈ k [[X]] whose coefficient before X0 is 1 satisfies
exp (logQ) = Q.

Theorem 5.2 is an important result in mathematics; in particular, it is frequently
applied in combinatorics (e.g., in dealing with generating functions) and in algebra.
Often it is derived from the analogous fact from complex analysis (where P and Q,
rather than being formal power series, are required to be holomorphic functions). Let
us instead give an elementary proof. The proof will be based on some basic properties
of derivatives of power series:

Lemma 5.3. Let k be a field of characteristic 0. Let P ∈ k [[X]] be a

power series such that
d

dX
P = 0. Assume furthermore that the coefficient

of P before X0 is 0. Then, P = 0.

Proof of Lemma 5.3. Write the power series P ∈ k [[X]] in the form P =
∑
n∈N

pnX
n for

some sequence (p0, p1, p2, . . .) ∈ kN of elements of k. Then,

d

dX
P︸︷︷︸

=
∑
n∈N

pnXn

=
d

dX

(∑
n∈N

pnX
n

)

=
∑
n∈N;
n≥1

npnX
n−1

(
by the definition of the operator

d

dX

)

=
∑
n∈N

(n+ 1) pn+1 X(n+1)−1︸ ︷︷ ︸
=Xn

(since (n+1)−1=n)

(here, we have substituted n+ 1 for n in the sum)

=
∑
n∈N

(n+ 1) pn+1X
n.
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Thus,
∑
n∈N

(n+ 1) pn+1X
n =

d

dX
P = 0. Comparing coefficients on both sides of this

equality, we conclude that

(n+ 1) pn+1 = 0 for each n ∈ N. (9)

On the other hand, the coefficient of P before X0 is 0. Thus,

0 =

the coefficient of P︸︷︷︸
=
∑
n∈N

pnXn

before X0


=

(
the coefficient of

∑
n∈N

pnX
n before X0

)
= p0.

In other words, p0 = 0.
Now, we have

pn = 0 for each n ∈ N (10)

23. Thus, P =
∑
n∈N

pn︸︷︷︸
=0

(by (10))

Xn =
∑
n∈N

0Xn = 0. This proves Lemma 5.3.

Proposition 5.4. Let k be a field of characteristic 0. Let U ∈ k [[X]]

and V ∈ k [[X]] be two power series such that
d

dX
U =

d

dX
V . Assume

furthermore that the coefficient of U before X0 equals the coefficient of V
before X0. Then, U = V .

Proof of Proposition 5.4. We have(
the coefficient of U − V before X0

)
=
(
the coefficient of U before X0

)︸ ︷︷ ︸
=(the coefficient of V before X0)

(since the coefficient of U before X0

equals the coefficient of V before X0)

−
(
the coefficient of V before X0

)

=
(
the coefficient of V before X0

)
−
(
the coefficient of V before X0

)
= 0.

In other words, the coefficient of V before X0 is 0. Moreover,
d

dX
(U − V ) =

d

dX
U −

d

dX
V = 0 (since

d

dX
U =

d

dX
V ). Hence, Lemma 5.3 (applied to P = U − V ) yields

U − V = 0. In other words, U = V . This proves Proposition 5.4.

23Proof of (10): Let n ∈ N. We must prove (10).
If n = 0, then clearly pn = p0 = 0. Hence, (10) is proven in the case when n = 0. Thus, for the rest

of the proof of (10), we can WLOG assume that we don’t have n = 0. Assume this.
We have n 6= 0 (since we don’t have n = 0). Combined with n ∈ N, this yields n ∈ N \ {0} =

{1, 2, 3, . . .}. Thus, n−1 ∈ N. Hence, (9) (applied to n−1 instead of n) yields ((n− 1) + 1) p(n−1)+1 =
0. Since (n− 1) + 1 = n, this rewrites as npn = 0. But n ∈ {1, 2, 3, . . .}; thus, n is invertible in k
(since k is a field of characteristic 0). Hence, we can cancel n from the equality npn = 0. We thus
obtain pn = 0. This proves (10).
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Proposition 5.5. Let k be a field. Any two power series U ∈ k [[X]] and
V ∈ k [[X]] satisfy

d

dX
(UV ) =

(
d

dX
U

)
· V + U · d

dX
V. (11)

Proof of Proposition 5.5. The equality (11) is just the well-known Leibniz identity for

the derivation
d

dX
.

Proposition 5.6. Let k be a field. Let P ∈ k [[X]] be a power series such

that the coefficient of P before X0 is 1. Then,
d

dX
(P−1) = − 1

P 2
· d
dX

P .

Proof of Proposition 5.6. The multiplicative inverse P−1 of the power series P is well-
defined, since the coefficient of P before X0 is 1.

Applying Proposition 5.5 to U = P−1 and V = P , we obtain

d

dX

(
P−1P

)
=

(
d

dX

(
P−1

))
· P + P−1 · d

dX
P.

Comparing this with
d

dX

(
P−1P︸ ︷︷ ︸

=1

)
=

d

dX
1 = 0, we obtain

(
d

dX

(
P−1

))
· P + P−1 · d

dX
P = 0.

Hence,

(
d

dX
P−1

)
·P = −P−1 · d

dX
P . Multiplying both sides of this equality by P−1,

we obtain (
d

dX

(
P−1

))
· PP−1 = −P−1 ·

(
d

dX
P

)
· P−1 = − 1

P 2
· d
dX

P.

Thus,

− 1

P 2
· d
dX

P =

(
d

dX

(
P−1

))
· PP−1︸ ︷︷ ︸

=1

=
d

dX

(
P−1

)
.

This proves Proposition 5.6.

Proposition 5.7. Let k be a field of characteristic 0. Let U ∈ k [[X]] and

V ∈ k [[X]] be two power series satisfying V
d

dX
U = U

d

dX
V . Assume that

the coefficient of U before X0 is 1. Assume that the coefficient of V before
X0 is 1. Then, U = V .

Proof of Proposition 5.7. The multiplicative inverse V −1 of the power series V is well-
defined, since the coefficient of V before X0 is 1.

Let w0 be the coefficient of the power series UV −1 before X0. Then, we can regard
w0 itself as a constant power series. Of course, the coefficient of this constant power
series w0 before X0 is w0 itself. Thus, the coefficient of UV −1 before X0 equals the
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coefficient of w0 before X0 (since both of these coefficients equal w0). We have
d

dX
w0 =

0 (since w0 is a constant power series).
Proposition 5.5 (applied to V −1 instead of V ) yields

d

dX

(
UV −1

)
=

(
d

dX
U

)
· V −1 + U · d

dX

(
V −1

)︸ ︷︷ ︸
=
−1

V 2
·
d

dX
V

(by Proposition 5.6
(applied to P=V ))

=

(
d

dX
U

)
· V −1 + U · −1

V 2
· d
dX

V =
1

V

(
d

dX
U

)
− U

V 2
· d
dX

V

=
1

V 2

(
V

(
d

dX
U

)
− U

(
d

dX
V

))
︸ ︷︷ ︸

=0

(since V
d

dX
U=U

d

dX
V )

=
1

V 2
0 = 0

=
d

dX
w0

(
since

d

dX
w0 = 0

)
.

Hence, Proposition 5.4 (applied to UV −1 and w0 instead of U and V ) yields UV −1 = w0.
Thus, U = w0V . Hence,the coefficient of U︸︷︷︸

=w0V

before X0


=
(
the coefficient of w0V before X0

)
= w0

(
the coefficient of V before X0

)︸ ︷︷ ︸
=1

(since the coefficient of V before X0 is 1)

= w0,

so that
w0 =

(
the coefficient of U before X0

)
= 1

(since the coefficient of U before X0 is 1). Now, U = w0︸︷︷︸
=1

V = V . This proves

Proposition 5.7.

Proposition 5.8. Let k be a field. Let P ∈ k [[X]] be a power series.
Then, every positive integer n satisfies

d

dX
(P n) = nP n−1 d

dX
P. (12)

Proof of Proposition 5.8. We shall prove (12) by induction over n:

Induction base: We have 1 P 1−1︸︷︷︸
=P 0=1

d

dX
P = 1

d

dX
P =

d

dX
P . Comparing this with

d

dX

(
P 1︸︷︷︸
=P

)
=

d

dX
P , we conclude

d

dX
(P 1) = 1P 1−1 d

dX
P . In other words, (12) holds

for n = 1. This completes the induction base.
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Induction step: Let N be a positive integer. Assume that (12) holds for n = N .
We must now show that (12) holds for n = N + 1.

We have assumed that (12) holds for n = N . In other words, we have

d

dX

(
PN
)

= NPN−1 d

dX
P.

Now,

d

dX

PN+1︸ ︷︷ ︸
=PPN

 =
d

dX

(
PPN

)
=

(
d

dX
P

)
· PN︸ ︷︷ ︸

=PN
d

dX
P

+P · d

dX

(
PN
)︸ ︷︷ ︸

=NPN−1
d

dX
P(

by Proposition 5.5 (applied to U = P and V = PN)
)

= PN d

dX
P + P ·NPN−1︸ ︷︷ ︸

=NPN

d

dX
P = PN d

dX
P +NPN d

dX
P

= (1 +N)︸ ︷︷ ︸
=N+1

PN︸︷︷︸
=P (N+1)−1

(since N=(N+1)−1)

d

dX
P = (N + 1)P (N+1)−1 d

dX
P.

In other words, (12) holds for n = N + 1. This completes the induction step. Thus,
the induction proof of (12) is complete.

This proves Proposition 5.8.

Proposition 5.9. Let k be a field of characteristic 0. Let P ∈ k [[X]] be a
power series whose coefficient before X0 is 0. Then,

d

dX
(expP ) =

(
d

dX
P

)
· expP.

Proof of Proposition 5.9. Every positive integer n satisfies

1

n!
n =

1

(n− 1)!
(13)

24.

The definition of expP yields expP =
∑
i≥0

P i

i!
=
∑
i≥0

1

i!
P i =

∑
n≥0

1

n!
P n (here, we have

24Proof of (13): Let n be a positive integer. The recursive definition of n! yields n! = n · (n− 1)!.

Hence,
1

n!
n =

1

n · (n− 1)!
n =

1

(n− 1)!
. Qed.
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renamed the summation index i as n). Hence,

d

dX
(expP )︸ ︷︷ ︸

=
∑
n≥0

1

n!
Pn

=
d

dX

(∑
n≥0

1

n!
P n

)
=
∑
n≥0

1

n!

d

dX
(P n)

=
1

0!

d

dX

(
P 0︸︷︷︸
=1

)
+
∑
n≥1

1

n!

d

dX
(P n)︸ ︷︷ ︸

=nPn−1
d

dX
P

(by Proposition 5.8)

(here, we have split off the addend for n = 0 from the sum)

=
1

0!

d

dX
1︸ ︷︷ ︸

=0

+
∑
n≥1

1

n!
n︸︷︷︸

=
1

(n− 1)!
(by (13))

P n−1 d

dX
P

=
1

0!
0︸︷︷︸

=0

+
∑
n≥1

1

(n− 1)!
P n−1 d

dX
P =

∑
n≥1

1

(n− 1)!
P n−1 d

dX
P

=
∑
n≥0

1

n!
P n d

dX
P

(
here, we have substituted n for n− 1

in the sum

)
.

Comparing this with(
d

dX
P

)
· expP︸ ︷︷ ︸

=
∑
n≥0

1

n!
Pn

=

(
d

dX
P

)
·
∑
n≥0

1

n!
P n =

∑
n≥0

(
d

dX
P

)
· 1

n!
P n︸ ︷︷ ︸

=
1

n!
Pn

d

dX
P

=
∑
n≥0

1

n!
P n d

dX
P,

we obtain
d

dX
(expP ) =

(
d

dX
P

)
· expP . This proves Proposition 5.9.

Proposition 5.10. Let k be a field. Let Q ∈ k [[X]] be a power series
whose coefficient before X0 is 1. Then:

(a) The power series Q has a multiplicative inverse Q−1.

(b) Assume that k is a field of characteristic 0. Then, the multiplicative
inverse Q−1 of Q satisfies

d

dX
(logQ) = Q−1 · d

dX
Q.

I call Proposition 5.10 (b) the logarithmic derivative theorem, as it gives the deriva-
tive of the logarithm of a power series (provided the logarithm is well-defined).

Proof of Proposition 5.10. Define a power series R ∈ k [[X]] by R = Q− 1. Thus,

d

dX
R︸︷︷︸

=Q−1

=
d

dX
(Q− 1) =

d

dX
Q− d

dX
1︸ ︷︷ ︸

=0

=
d

dX
Q. (14)
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Also,the coefficient of R︸︷︷︸
=Q−1

before X0


=
(
the coefficient of Q− 1 before X0

)
=
(
the coefficient of Q before X0

)︸ ︷︷ ︸
=1

(since the coefficient of Q before X0 is 1)

−
(
the coefficient of 1 before X0

)︸ ︷︷ ︸
=1

= 1− 1 = 0.

In other words, the coefficient of R before X0 is 0. Hence, the sum
∑
n≥0

(−1)nRn

converges in k [[X]]. The power series
∑
n≥0

(−1)nRn is a multiplicative inverse of Q in

the commutative ring k [[X]] 25. Thus, the power series Q has a multiplicative inverse
Q−1. This proves Proposition 5.10 (a).

Notice that the multiplicative inverse Q−1 of Q must be equal to
∑
n≥0

(−1)nRn (since

25Proof. We have∑
n≥0

(−1)
n
Rn

R =
∑
n≥0

(−1)
n
RnR︸ ︷︷ ︸

=Rn+1

=
∑
n≥0

(−1)
n
Rn+1 =

∑
n≥1

(−1)
n−1︸ ︷︷ ︸

=−(−1)n

R(n−1)+1︸ ︷︷ ︸
=Rn

(here, we have substituted n− 1 for n in the sum)

=
∑
n≥1

(− (−1)
n
)Rn = −

∑
n≥1

(−1)
n
Rn.

On the other hand,∑
n≥0

(−1)
n
Rn = (−1)

0︸ ︷︷ ︸
=1

R0︸︷︷︸
=1

+
∑
n≥1

(−1)
n
Rn

(
here, we have split off the addend

for n = 0 from the sum

)
= 1 +

∑
n≥1

(−1)
n
Rn.

Now, ∑
n≥0

(−1)
n
Rn

 Q︸︷︷︸
=R+1

(since R=Q−1)

=

∑
n≥0

(−1)
n
Rn

 (R+ 1) =

∑
n≥0

(−1)
n
Rn

R

︸ ︷︷ ︸
=−

∑
n≥1

(−1)nRn

+
∑
n≥0

(−1)
n
Rn︸ ︷︷ ︸

=1+
∑
n≥1

(−1)nRn

= −
∑
n≥1

(−1)
n
Rn +

1 +
∑
n≥1

(−1)
n
Rn

 = 1.

Thus,
∑
n≥0

(−1)
n
Rn is a multiplicative inverse of Q in the commutative ring k [[X]].
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∑
n≥0

(−1)nRn is a multiplicative inverse of Q). In other words,

Q−1 =
∑
n≥0

(−1)nRn. (15)

(b) The definition of logQ yields

logQ =
∑
i≥1

(−1)i−1

i

Q− 1︸ ︷︷ ︸
=R

i

=
∑
i≥1

(−1)i−1

i
Ri =

∑
n≥1

(−1)n−1

n
Rn

(here, we have renamed the summation index i as n). Thus,

d

dX
(logQ)︸ ︷︷ ︸

=
∑
n≥1

(−1)n−1

n
Rn

=
d

dX

(∑
n≥1

(−1)n−1

n
Rn

)
=
∑
n≥1

(−1)n−1

n
· d

dX
(Rn)︸ ︷︷ ︸

=nRn−1
d

dX
R

(by Proposition 5.8
(applied to P=R))

=
∑
n≥1

(−1)n−1

n
· nRn−1︸ ︷︷ ︸

=(−1)n−1Rn−1

d

dX
R

=
∑
n≥1

(−1)n−1Rn−1 d

dX
R =

∑
n≥0

(−1)nRn d

dX
R

(here, we have substituted n for n− 1 in the sum). Comparing this with

Q−1︸︷︷︸
=
∑
n≥0

(−1)nRn

(by (15))

· d

dX
Q︸ ︷︷ ︸

=
d

dX
R

(by (14))

=

(∑
n≥0

(−1)nRn

)
· d
dX

R =
∑
n≥0

(−1)nRn d

dX
R,

we obtain
d

dX
(logQ) = Q−1 · d

dX
Q. This proves Proposition 5.10 (b).

Lemma 5.11. Let k be a field. Let U ∈ k [[X]] and V ∈ k [[X]] be two
power series such that the coefficient of U before X0 is 0. Then, the coeffi-
cient of UV before X0 is 0.

Proof of Lemma 5.11. We have (the coefficient of U before X0 is 0) = 0 (since the co-
efficient of U before X0 is 0). Now, the definition of the product of two power series
shows that

(the coefficient of UV before Xn)

=
n∑
g=0

(the coefficient of U before Xg) ·
(
the coefficient of V before Xn−g)
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for each n ∈ N. Applying this to n = 0, we find(
the coefficient of UV before X0

)
=

0∑
g=0

(the coefficient of U before Xg) ·
(
the coefficient of V before X0−g)

=
(
the coefficient of U before X0

)︸ ︷︷ ︸
=0

·
(
the coefficient of V before X0−0

)
= 0 ·

(
the coefficient of V before X0−0

)
= 0.

In other words, the coefficient of UV before X0 is 0. This proves Lemma 5.11.

Proposition 5.12. Let k be a field of characteristic 0.

(a) If P ∈ k [[X]] is a power series whose coefficient before X0 is 0, then
expP is a power series whose coefficient before X0 is 1.

(b) If Q ∈ k [[X]] is a power series whose coefficient before X0 is 1, then
logQ is a power series whose coefficient before X0 is 0.

Note that Proposition 5.12 shows that the terms log (expP ) and exp (logQ) in
Theorem 5.2 make any sense at all.

Proof of Proposition 5.12. Let us first prove a simple fact: If R ∈ k [[X]] is a power
series whose coefficient before X0 is 0, and if i is a positive integer, then(

the coefficient of Ri before X0
)

= 0 (16)

26.
(a) Let P ∈ k [[X]] is a power series whose coefficient before X0 is 0. The definition

26Proof of (16): Let R ∈ k [[X]] is a power series whose coefficient before X0 is 0. Let i be a positive
integer. Thus, Ri−1 is well-defined. But Lemma 5.11 (applied to U = R and V = Ri−1) yields that
the coefficient of RRi−1 before X0 is 0. In other words,

(
the coefficient of RRi−1 before X0

)
= 0.

This rewrites as
(
the coefficient of Ri before X0

)
= 0 (since RRi−1 = Ri). This proves (16).
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of expP yields expP =
∑
i≥0

P i

i!
=
∑
i≥0

1

i!
P i. Hence,

the coefficient of expP︸ ︷︷ ︸
=
∑
i≥0

1

i!
P i

before X0


=

(
the coefficient of

∑
i≥0

1

i!
P i before X0

)

=
∑
i≥0

1

i!

(
the coefficient of P i before X0

)
=

1

0!︸︷︷︸
=

1

1
=1

(
the coefficient of P 0︸︷︷︸

=1

before X0

)
+
∑
i≥1

1

i!

(
the coefficient of P i before X0

)︸ ︷︷ ︸
=0

(by (16) (applied to R=P ))

(here, we have split off the addend for i = 0 from the sum)

=
(
the coefficient of 1 before X0

)︸ ︷︷ ︸
=1

+
∑
i≥1

1

i!
0︸ ︷︷ ︸

=0

= 1 + 0 = 1.

In other words, expP is a power series whose coefficient before X0 is 1. This proves
Proposition 5.12 (a).

(b) Let Q ∈ k [[X]] be a power series whose coefficient before X0 is 1. Define a
power series R ∈ k [[X]] by R = Q− 1. Then, the coefficient of R before X0 is 0 27.
Thus, every positive integer i satisfies (16).

Now, the definition of logQ yields

logQ =
∑
i≥1

(−1)i−1

i

Q− 1︸ ︷︷ ︸
=R

i

=
∑
i≥1

(−1)i−1

i
Ri.

27This has already been proven in the proof of Proposition 5.10.

27



Thus, the coefficient of logQ︸ ︷︷ ︸
=
∑
i≥1

(−1)i−1

i
Ri

before X0


=

(
the coefficient of

∑
i≥1

(−1)i−1

i
Ri before X0

)

=
∑
i≥1

(−1)i−1

i

(
the coefficient of Ri before X0

)︸ ︷︷ ︸
=0

(by (16))

=
∑
i≥1

(−1)i−1

i
0 = 0.

In other words, logQ is a power series whose coefficient before X0 is 0. This proves
Proposition 5.12 (b).

Now, we can finally come to the proof of Theorem 5.2:

Proof of Theorem 5.2. (a) Let P ∈ k [[X]] is a power series whose coefficient before
X0 is 0. Then, expP is a power series whose coefficient before X0 is 1 (by Proposi-
tion 5.12 (a)). Hence, log (expP ) is a well-defined power series in k [[X]]. Furthermore,
Proposition 5.12 (b) (applied to Q = expP ) shows that log (expP ) is a power series
whose coefficient before X0 is 0. Thus, the coefficient of log (expP ) before X0 is 0. On
the other hand, the coefficient of P before X0 is 0 (by the definition of P ). Thus, the
coefficient of U before log (expP ) equals the coefficient of P before X0 (since both of
these coefficients are 0).

Also, Proposition 5.10 (b) (applied to Q = expP ) yields

d

dX
(log (expP )) = (expP )−1 · d

dX
(expP )︸ ︷︷ ︸

=

 d

dX
P

·expP

(by Proposition 5.9)

= (expP )−1 ·
(

d

dX
P

)
· expP

=
d

dX
P.

Thus, Proposition 5.4 (applied to U = log (expP ) and V = P ) shows that log (expP ) =
P . This proves Theorem 5.2 (a).

(b) Let Q ∈ k [[X]] is a power series whose coefficient before X0 is 1. Then, logQ
is a power series whose coefficient before X0 is 0 (by Proposition 5.12 (b)). Hence,
exp (logQ) is a well-defined power series in k [[X]]. Furthermore, Proposition 5.12 (a)
(applied to P = logQ) shows that exp (logQ) is a power series whose coefficient before
X0 is 1. Thus, the coefficient of exp (logQ) before X0 is 1. On the other hand, the
coefficient of Q before X0 is 1 (by the definition of Q).
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Also, Proposition 5.9 (applied to P = logQ) yields

d

dX
(exp (logQ)) =

(
d

dX
(logQ)

)
︸ ︷︷ ︸

=Q−1·
d

dX
Q

(by Proposition 5.10 (b))

· exp (logQ)

= Q−1 ·
(

d

dX
Q

)
· exp (logQ) .

Multiplying both sides of this equality by Q, we obtain

Q
d

dX
(exp (logQ)) =

(
d

dX
Q

)
· exp (logQ) = exp (logQ) · d

dX
Q.

Thus, Proposition 5.7 (applied to U = exp (logQ) and V = Q) shows that exp (logQ) =
Q. This proves Theorem 5.2 (b).

§5.2. Log : G (H,A)→ g (H,A) and g (H,A)→ G (H,A)

Next, let us prove a basic fact about the map Log : G (H,A) → g (H,A) and the
map g (H,A) → G (H,A) which sends every f to e∗f (when H is a connected filtered
k-coalgebra and A is a k-algebra, where k is a field of characteristic 0): namely, that
these two maps are mutually inverse. Here is how we state this fact:

Proposition 5.13. Let k be a field of characteristic 0, let A be a k-algebra,
and let H be a connected filtered k-coalgebra.

(a) Every map f ∈ g (H,A) satisfies Log
(
e∗f
)

= f .

(b) Every map F ∈ G (H,A) satisfies e∗(LogF ) = F .

It is easy to prove Proposition 5.13 using Theorem 5.2 and some topology to make

sense of infinite sums like
∑
i≥0

f ∗i

i!
and

∑
i≥1

(−1)i−1

i
f ∗i in L (H,A). Here is a more ele-

mentary version of this proof:
We start with a “finite version” of Theorem 5.2:

Corollary 5.14. Let k be a field of characteristic 0. Let n ∈ N.

(a) Let a be an element of a k-algebra such that an+1 = 0. Then,

n∑
i=1

(−1)i−1

i

(
n∑
j=1

aj

j!

)i

= a.

(b) Let b be an element of a k-algebra such that bn+1 = 0. Then,

n∑
j=1

(
n∑
i=1

(−1)i−1

i
bi

)j

j!
= b.
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Proof of Corollary 5.14. (a) Consider the ring of power series k [[X]]. Clearly, X is
a power series whose coefficient before X0 is 0. Thus, applying Theorem 5.2 (a) to
P = X, we obtain log (expX) = X. Now, in the ring k [[X]], we have

expX︸ ︷︷ ︸
=
∞∑
j=0

Xj

j!
=
X0

0!
+
∞∑
j=1

Xj

j!

−1 =
X0

0!︸︷︷︸
=1

+
∞∑
j=1

Xj

j!
− 1 =

∞∑
j=1

Xj

j!
=

n∑
j=1

Xj

j!
+

∞∑
j=n+1

Xj

j!︸︷︷︸
≡0 modXn+1k[[X]]

(since j≥n+1 leads to
Xj≡0 modXn+1k[[X]])

≡
n∑
j=1

Xj

j!
+

∞∑
j=n+1

0︸ ︷︷ ︸
=0

=
n∑
j=1

Xj

j!
modXn+1k [[X]] .

Thus,

n∑
i=1

(−1)i−1

i


n∑
j=1

Xj

j!︸ ︷︷ ︸
≡expX−1 modXn+1k[[X]]


i

≡
n∑
i=1

(−1)i−1

i
(expX − 1)i modXn+1k [[X]] .

On the other hand, X | expX− 1 in k [[X]] (since expX− 1 =
∞∑
j=1

Xj

j!
=
∞∑
j=1

XXj−1

j!
=

X
∞∑
j=1

Xj−1

j!
is divisible by X), and thus X i | (expX − 1)i in k [[X]] for every i ∈ N.

Thus,
(expX − 1)i ≡ 0 modXn+1k [[X]] (17)

for every i ∈ N satisfying i ≥ n+1 (because i ≥ n+1 leads to Xn+1 | X i | (expX − 1)i).
Now,

X = log (expX) =
∑
i≥1

(−1)i−1

i
(expX − 1)i (by the definition of log)

=
n∑
i=1

(−1)i−1

i

 expX − 1︸ ︷︷ ︸
≡

n∑
j=1

Xj

j!
modXn+1k[[X]]



i

+
∞∑

i=n+1

(−1)i−1

i
(expX − 1)i︸ ︷︷ ︸
≡0 modXn+1k[[X]]

(by (17))

≡
n∑
i=1

(−1)i−1

i

(
n∑
j=1

Xj

j!

)i

+
∞∑

i=n+1

(−1)i−1

i
0︸ ︷︷ ︸

=0

=
n∑
i=1

(−1)i−1

i

(
n∑
j=1

Xj

j!

)i

modXn+1k [[X]] .
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Thus, Xn+1 | X −
n∑
i=1

(−1)i−1

i

(
n∑
j=1

Xj

j!

)i

in k [[X]]. This means that the coefficient of

the power series X −
n∑
i=1

(−1)i−1

i

(
n∑
j=1

Xj

j!

)i

before Xλ is 0 for every λ ∈ {0, 1, . . . , n}.

But the power series X −
n∑
i=1

(−1)i−1

i

(
n∑
j=1

Xj

j!

)i

is actually a polynomial, so this

rewrites as follows: The coefficient of the polynomial X−
n∑
i=1

(−1)i−1

i

(
n∑
j=1

Xj

j!

)i

before

Xλ is 0 for every λ ∈ {0, 1, . . . , n}. In other words, Xn+1 | X−
n∑
i=1

(−1)i−1

i

(
n∑
j=1

Xj

j!

)i

in

k [X]. Hence, there exists a polynomial P ∈ k [X] such thatX−
n∑
i=1

(−1)i−1

i

(
n∑
j=1

Xj

j!

)i

=

Xn+1P. Consider this polynomial P.

Applying the polynomial identity X−
n∑
i=1

(−1)i−1

i

(
n∑
j=1

Xj

j!

)i

= Xn+1P to a instead

of X, we get

a−
n∑
i=1

(−1)i−1

i

(
n∑
j=1

aj

j!

)i

= an+1︸︷︷︸
=0

P (a) = 0,

so that
n∑
i=1

(−1)i−1

i

(
n∑
j=1

aj

j!

)i

= a. This proves Corollary 5.14 (a).

(b) Consider the ring of power series k [[X]]. Clearly, 1 +X is a power series whose
coefficient before X0 is 1. Thus, applying Theorem 5.2 (b) to P = 1 + X, we obtain
exp (log (1 +X)) = 1 +X. Now, in the ring k [[X]], we have

log (1 +X) =
∑
i≥1

(−1)i−1

i

(1 +X)− 1︸ ︷︷ ︸
=X

i

(by the definition of log)

=
∑
i≥1

(−1)i−1

i
X i =

n∑
i=1

(−1)i−1

i
X i +

∞∑
i=n+1

(−1)i−1

i
X i︸ ︷︷ ︸

≡0 modXn+1k[[X]]
(since i≥n+1 leads to
Xi≡0 modXn+1k[[X]])

≡
n∑
i=1

(−1)i−1

i
X i +

∞∑
i=n+1

0︸ ︷︷ ︸
=0

=
n∑
i=1

(−1)i−1

i
X i modXn+1k [[X]] .
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On the other hand,

1 +X = exp (log (1 +X)) =
∞∑
j=0

(log (1 +X))j

j!
(by the definition of exp)

=
(log (1 +X))0

0!︸ ︷︷ ︸
=

1

1
=1

+
∞∑
j=1

(log (1 +X))j

j!
= 1 +

∞∑
j=1

(log (1 +X))j

j!
.

Subtracting 1 from this yields

X =
∞∑
j=1

(log (1 +X))j

j!
.

SinceX | log (1 +X) in k [[X]] (because log (1 +X) =
∑
i≥1

(−1)i−1

i
X i︸︷︷︸

=XXi−1

= X
∑
i≥1

(−1)i−1

i
X i−1

is divisible by X), we have Xj | (log (1 +X))j for every j ∈ N. Thus every j ∈ N such
that j ≥ n+ 1 satisfies

(log (1 +X))j ≡ 0 modXn+1k [[X]] (18)

(since j ≥ n+ 1 leads to Xn+1 | Xj | (log (1 +X))j). Now,

X =
∞∑
j=1

(log (1 +X))j

j!
=

n∑
j=1

(log (1 +X))j

j!
+

∞∑
j=n+1

(log (1 +X))j

j!︸ ︷︷ ︸
≡0 modXn+1k[[X]]

(since j≥n+1 and thus

(log(1+X))j≡0 modXn+1k[[X]]
(by (18)))

≡
n∑
j=1

(log (1 +X))j

j!
+

∞∑
j=n+1

0︸ ︷︷ ︸
=0

=
n∑
j=1

(log (1 +X))j

j!

≡
n∑
j=1

(
n∑
i=1

(−1)i−1

i
X i

)j

j!
modXn+1k [[X]]

(since log (1 +X) ≡
n∑
i=1

(−1)i−1

i
X i modXn+1k [[X]]). Thus, Xn+1 | X−

n∑
j=1

(
n∑
i=1

(−1)i−1

i
X i

)j

j!

in k [[X]]. This means that the coefficient of the power series X−
n∑
j=1

(
n∑
i=1

(−1)i−1

i
X i

)j

j!

beforeXλ is 0 for every λ ∈ {0, 1, . . . , n}. But the power seriesX−
n∑
j=1

(
n∑
i=1

(−1)i−1

i
X i

)j

j!
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is actually a polynomial, so this rewrites as follows: The coefficient of the polynomial

X −
n∑
j=1

(
n∑
i=1

(−1)i−1

i
X i

)j

j!
before Xλ is 0 for every λ ∈ {0, 1, . . . , n}. In other words,

Xn+1 | X−
n∑
j=1

(
n∑
i=1

(−1)i−1

i
X i

)j

j!
in k [X]. Hence, there exists a polynomial Q ∈ k [X]

such that X −
n∑
j=1

(
n∑
i=1

(−1)i−1

i
X i

)j

j!
= Xn+1Q. Consider this polynomial Q.

Applying the polynomial identity X−
n∑
j=1

(
n∑
i=1

(−1)i−1

i
X i

)j

j!
= Xn+1Q to b instead

of X, we get

b−
n∑
j=1

(
n∑
i=1

(−1)i−1

i
bi

)j

j!
= bn+1︸︷︷︸

=0

Q (b) = 0,

so that
n∑
j=1

(
n∑
i=1

(−1)i−1

i
bi

)j

j!
= b. This proves Corollary 5.14 (b).

Next, we shall show a very easy fact:

Proposition 5.15. Let k be a field. Let H be a filtered k-coalgebra. Then,
H≤n is a subcoalgebra of H for every n ∈ N.

Proof of Proposition 5.15. Let n ∈ N. Then, since H is a filtered k-coalgebra, we have

∆H (H≤n) ⊆
n∑
u=0

H≤u︸︷︷︸
⊆H≤n

(since u≤n)

⊗ H≤n−u︸ ︷︷ ︸
⊆H≤n

(since n−u≤n)

⊆
n∑
u=0

H≤n ⊗H≤n ⊆ H≤n ⊗H≤n

(since H≤n⊗H≤n is a k-vector space). Thus, H≤n is a subcoalgebra of H. This proves
Proposition 5.15.

Now some triviality:

Proposition 5.16. Let k be a field. Let H be a k-coalgebra. Let J be a
subcoalgebra of H. Let A be a k-algebra.

(a) Then, any f ∈ L (H,A) and any g ∈ L (H,A) satisfy (f |J) ∗ (g |J) =
(f ∗ g) |J .

(b) Also, any f ∈ L (H,A) and any i ∈ N satisfy (f |J)∗i = f ∗i |J .
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Proof of Proposition 5.16. (a) Any f ∈ L (H,A) and any g ∈ L (H,A) satisfy

(f |J) ∗ (g |J) = µA ◦ ((f |J)⊗ (g |J))︸ ︷︷ ︸
=(f⊗g)|J⊗J

◦ ∆J︸︷︷︸
=∆H |J

(by the definition of convolution)

= µA ◦ ((f ⊗ g) |J⊗J) ◦ (∆H |J) = (µA ◦ (f ⊗ g) ◦∆H)︸ ︷︷ ︸
=f∗g

|J= (f ∗ g) |J .

This proves Proposition 5.16 (a).
(b) Proposition 5.16 (b) easily follows from Proposition 5.16 (a) by induction over

i.
This completes the proof of Proposition 5.16.

Now let us give a proof of Proposition 5.13. (We will give another proof of Propo-
sition 5.13 (and even of a more general fact: Proposition 14.3) in §14; it will avoid the
use of Propositions 5.15 and 5.16.)

Proof of Proposition 5.13. (a) Let f ∈ g (H,A). Let n ∈ N. Proposition 5.15 yields
that H≤n is a subcoalgebra of H.

Let g = e∗f − eH,A. Then, g ∈ g (H,A) (since e∗f ∈ G (H,A) = eH,A + g (H,A),
so that e∗f − eH,A ∈ g (H,A)). Hence, Remark 3.5 (applied to g instead of f) yields
g∗i (H≤n) = 0 for every i > n. Also, Remark 3.5 yields f ∗i (H≤n) = 0 for every i > n.

We have

Log
(
e∗f
)

= Log1

(
e∗f − eH,A

)︸ ︷︷ ︸
=g

(by the definition of Log)

= Log1 g.

Thus, every x ∈ H≤n satisfies

(
Log

(
e∗f
))

(x) = (Log1 g) (x) =
∑
i≥1

(−1)i−1

i
g∗i (x) (by the definition of Log1)

=
n∑
i=1

(−1)i−1

i
g∗i (x) +

∞∑
i=n+1

(−1)i−1

i
g∗i (x)︸ ︷︷ ︸

=0 (since
x∈H≤n and thus

g∗i(x)∈g∗i(H≤n)=0

(since i>n))

=
n∑
i=1

(−1)i−1

i
g∗i (x) +

∞∑
i=n+1

(−1)i−1

i
0︸ ︷︷ ︸

=0

=
n∑
i=1

(−1)i−1

i
g∗i (x) .

In other words,

Log
(
e∗f
)
|H≤n=

(
n∑
i=1

(−1)i−1

i
g∗i

)
|H≤n .
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Since(
n∑
i=1

(−1)i−1

i
g∗i

)
|H≤n=

n∑
i=1

(−1)i−1

i

(
g∗i |H≤n

)︸ ︷︷ ︸
=
(
g|H≤n

)∗i
(because Proposition 5.16 (b)

(applied to H≤n and g instead of

J and f) yields
(
g|H≤n

)∗i
=g∗i|H≤n )

=
n∑
i=1

(−1)i−1

i

(
g |H≤n

)∗i
,

this rewrites as

Log
(
e∗f
)
|H≤n=

n∑
i=1

(−1)i−1

i

(
g |H≤n

)∗i
.

But every x ∈ H≤n satisfies

e∗f (x) =
∑
i≥0

f ∗i (x)

i!
=

n∑
i=0

f ∗i (x)

i!
+

∞∑
i=n+1

f ∗i (x)

i!︸ ︷︷ ︸
=0 (since

x∈H≤n and thus

f∗i(x)∈f∗i(H≤n)=0

(since i>n), so that
f∗i(x)=0)

=
n∑
i=0

f ∗i (x)

i!
+

∞∑
i=n+1

0︸ ︷︷ ︸
=0

=
n∑
i=0

f ∗i (x)

i!
=

f ∗0 (x)

0!︸ ︷︷ ︸
=
eH,A (x)

1
=eH,A(x)

+
n∑
i=1

f ∗i (x)

i!
= eH,A (x) +

n∑
i=1

f ∗i (x)

i!

and thus

g︸︷︷︸
=e∗f−eH,A

(x) =
(
e∗f − eH,A

)
(x) = e∗f (x)︸ ︷︷ ︸

=eH,A(x)+
n∑
i=1

f ∗i (x)

i!

−eH,A (x) =
n∑
i=1

f ∗i (x)

i!
=

n∑
i=1

f ∗i

i!
(x)

=
n∑
j=1

f ∗j

j!
(x) (here, we substituted j for i in the sum) .

In other words,

g |H≤n =

(
n∑
j=1

f ∗j

j!

)
|H≤n=

n∑
j=1

f ∗j |H≤n
j!

=
n∑
j=1

(
f |H≤n

)∗j
j!(
since Proposition 5.16 (b) (applied to H≤n and j instead of J and i)

yields
(
f |H≤n

)∗j
= f ∗j |H≤n , so that f ∗j |H≤n=

(
f |H≤n

)∗j )
.
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Now,

Log
(
e∗f
)
|H≤n=

n∑
i=1

(−1)i−1

i


g |H≤n︸ ︷︷ ︸

=
n∑
j=1

(
f |H≤n

)∗j
j!



∗i

=
n∑
i=1

(−1)i−1

i

(
n∑
j=1

(
f |H≤n

)∗j
j!

)∗i
.

(19)
But n+ 1 > n. Hence, Remark 3.5 (applied to i = n+ 1) yields f ∗(n+1) (H≤n) = 0.

Since(
f |H≤n

)∗(n+1)
= f ∗(n+1) |H≤n

(
by Proposition 5.16 (b)

(applied to H≤n and n+ 1 instead of J and i)

)
= 0

(
since f ∗(n+1) (H≤n) = 0

)
,

we can apply Corollary 5.14 (a) to a = f |H≤n and obtain
n∑
i=1

(−1)i−1

i

(
n∑
j=1

(
f |H≤n

)∗j
j!

)∗i
=

f |H≤n . Thus, (19) becomes

Log
(
e∗f
)
|H≤n= f |H≤n .

We have thus proven this for every n ∈ N.
Now, let x ∈ H be arbitrary. Since H is filtered, there must exist some n ∈ N such

that x ∈ H≤n. Consider this n. From x ∈ H≤n, we obtain(
Log

(
e∗f
))

(x) =
(
Log

(
e∗f
)
|H≤n

)︸ ︷︷ ︸
=f |H≤n

(x) =
(
f |H≤n

)
(x) = f (x) .

Since this holds for every x ∈ H, we can now conclude that Log
(
e∗f
)

= f .
This proves Proposition 5.13 (a).
(b) Let F ∈ G (H,A). Let n ∈ N. Proposition 5.15 yields that H≤n is a subcoal-

gebra of H.
Let g = F − eH,A. Then, g ∈ g (H,A) (since F ∈ G (H,A) = eH,A + g (H,A),

so that F − eH,A ∈ g (H,A)). Hence, Remark 3.5 (applied to g instead of f) yields
g∗i (H≤n) = 0 for every i > n.

Let ϕ = LogF . Then, ϕ ∈ g (H,A), so that Remark 3.5 (applied to ϕ instead of
f) yields ϕ∗i (H≤n) = 0 for every i > n.

By the definition of Log, we have LogF = Log1 (F − eH,A)︸ ︷︷ ︸
=g

= Log1 g. Hence,

ϕ = Log f = Log1 g.
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Thus, every x ∈ H≤n satisfies

ϕ (x) = (Log1 g) (x) =
∑
i≥1

(−1)i−1

i
g∗i (x) (by the definition of Log1)

=
n∑
i=1

(−1)i−1

i
g∗i (x) +

∞∑
i=n+1

(−1)i−1

i
g∗i (x)︸ ︷︷ ︸

=0 (since
x∈H≤n and thus

g∗i(x)∈g∗i(H≤n)=0

(since i>n))

=
n∑
i=1

(−1)i−1

i
g∗i (x) +

∞∑
i=n+1

(−1)i−1

i
0︸ ︷︷ ︸

=0

=
n∑
i=1

(−1)i−1

i
g∗i (x) .

In other words,

ϕ |H≤n=

(
n∑
i=1

(−1)i−1

i
g∗i

)
|H≤n .

Since(
n∑
i=1

(−1)i−1

i
g∗i

)
|H≤n=

n∑
i=1

(−1)i−1

i

(
g∗i |H≤n

)︸ ︷︷ ︸
=
(
g|H≤n

)∗i
(because Proposition 5.16 (b)

(applied to H≤n and g instead of

J and f) yields
(
g|H≤n

)∗i
=g∗i|H≤n )

=
n∑
i=1

(−1)i−1

i

(
g |H≤n

)∗i
,

this rewrites as

ϕ |H≤n=
n∑
i=1

(−1)i−1

i

(
g |H≤n

)∗i
.

But every x ∈ H≤n satisfies

e∗ϕ (x) =
∑
i≥0

ϕ∗i (x)

i!
=

n∑
i=0

ϕ∗i (x)

i!
+

∞∑
i=n+1

ϕ∗i (x)

i!︸ ︷︷ ︸
=0 (since

x∈H≤n and thus

ϕ∗i(x)∈ϕ∗i(H≤n)=0

(since i>n), so that
ϕ∗i(x)=0)

=
n∑
i=0

ϕ∗i (x)

i!
+

∞∑
i=n+1

0︸ ︷︷ ︸
=0

=
n∑
i=0

ϕ∗i (x)

i!

=
ϕ∗0 (x)

0!︸ ︷︷ ︸
=
eH,A (x)

1
=eH,A(x)

+
n∑
i=1

ϕ∗i (x)

i!
= eH,A (x) +

n∑
i=1

ϕ∗i (x)

i!
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and thus

(e∗ϕ − eH,A) (x) = e∗ϕ (x)︸ ︷︷ ︸
=eH,A(x)+

n∑
i=1

ϕ∗i (x)

i!

−eH,A (x) =
n∑
i=1

ϕ∗i (x)

i!
=

n∑
i=1

ϕ∗i

i!
(x)

=
n∑
j=1

ϕ∗j

j!
(x) (here, we substituted j for i in the sum) .

In other words,

(e∗ϕ − eH,A) |H≤n

=

(
n∑
j=1

ϕ∗j

j!

)
|H≤n=

n∑
j=1

ϕ∗j |H≤n
j!

=
n∑
j=1

(
ϕ |H≤n

)∗j
j!(
since Proposition 5.16 (b) (applied to ϕ, H≤n and j instead of f , J and i)

yields
(
ϕ |H≤n

)∗j
= ϕ∗j |H≤n , so that ϕ∗j |H≤n=

(
ϕ |H≤n

)∗j )

=
n∑
j=1

(
n∑
i=1

(−1)i−1

i

(
g |H≤n

)∗i)∗j
j!

(
since ϕ |H≤n=

n∑
i=1

(−1)i−1

i

(
g |H≤n

)∗i)
.

(20)

But Remark 3.5 (applied to n+ 1 and g instead of i and f) yields g∗(n+1) (H≤n) = 0
(since n+ 1 > n). Since(

g |H≤n
)∗(n+1)

= g∗(n+1) |H≤n
(

by Proposition 5.16 (b)
(applied to g, H≤n and n+ 1 instead of f , J and i)

)
= 0

(
since g∗(n+1) (H≤n) = 0

)
,

we can apply Corollary 5.14 (b) to b = g |H≤n and obtain
n∑
j=1

(
n∑
i=1

(−1)i−1

i

(
g |H≤n

)∗i)∗j
j!

=

g |H≤n . Thus, (20) becomes

(e∗ϕ − eH,A) |H≤n = g |H≤n= (F − eH,A) |H≤n (since g = F − eH,A)

= F |H≤n −eH,A |H≤n .

Since (e∗ϕ − eH,A) |H≤n= e∗ϕ |H≤n −eH,A |H≤n , this rewrites as e∗ϕ |H≤n −eH,A |H≤n=
F |H≤n −eH,A |H≤n . Thus, e∗ϕ |H≤n= F |H≤n . Since ϕ = LogF , this becomes

e∗(LogF ) |H≤n= F |H≤n . We have thus proven this for every n ∈ N.
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Now, let x ∈ H be arbitrary. Since H is filtered, there must exist some n ∈ N such
that x ∈ H≤n. Consider this n. From x ∈ H≤n, we obtain

e∗(LogF ) (x) =
(
e∗(LogF ) |H≤n

)︸ ︷︷ ︸
=F |H≤n

(x) =
(
F |H≤n

)
(x) = F (x) .

Since this holds for every x ∈ H, we can now conclude that e∗(LogF ) = F .
This proves Proposition 5.13 (b).

§6. Some properties of primitive elements

Next let us recall the definition of a primitive element:

Definition 6.1. Let k be a field. LetH be a unital coalgebra. Let x ∈ H be
an element. The element x is said to be primitive if ∆ (x) = x⊗1H+1H⊗x.
Here, 1H ∈ H denotes the unity of the unital coalgebra H (as defined in
Definition 2.1).

Remark. Some authors define the notion of primitivity slightly differently: they
define an element x ∈ H to be primitive if ∆ (x) = x ⊗ 1H + 1H ⊗ x and ε (x) = 0.
However, this definition of “primitive” turns out to be equivalent to our Definition 6.1.
This is because every element x ∈ H which is primitive in the sense of Definition 6.1
satisfies ∆ (x) = x⊗ 1H + 1H ⊗ x and ε (x) = 0 (by Remark 6.3), and conversely, every
element x ∈ H satisfying ∆ (x) = x⊗ 1H + 1H ⊗ x and ε (x) = 0 is clearly primitive in
the sense of Definition 6.1.

Next we show:

Proposition 6.2. Let k be a field, let A be a k-algebra, and let H be
a unital coalgebra. Let PrimH denote the set of all primitive elements of
H.

(a) Any f ∈ g (H,A) and any g ∈ g (H,A) satisfy f ∗ g ∈ g (H,A) and
(f ∗ g) (PrimH) = 0.

(b) Every f ∈ g (H,A) satisfies f ∗i ∈ g (H,A) and f ∗i (PrimH) = 0 for
every integer i > 1.

(c) Assume that the field k has characteristic 0, and that H is a connected
filtered k-coalgebra. Then, every F ∈ G (H,A) satisfies (LogF ) |PrimH=
F |PrimH .

Before we prove this, let us show a very easy (and classical) observation about
primitive elements:

Remark 6.3. Let k be a field. LetH be a unital coalgebra. Then, ε (x) = 0
for every x ∈ PrimH.

Proof of Remark 6.3. Recall that the unity of the unital coalgebra H is denoted by
1H . Thus, (H, 1H) is a unital coalgebra. Hence, by the definition of a unital coalgebra,
we have ∆H (1H) = 1H ⊗ 1H and εH (1H) = 1. Since we abbreviate εH as ε, we have
ε (1H) = εH (1H) = 1.
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Let x ∈ PrimH. Then, x is primitive (by the definition of PrimH). In other words,
∆ (x) = x⊗ 1H + 1H ⊗ x.

Now, let can : H ⊗ k → H be the canonical k-module isomorphism (sending
c ⊗ x to cx for all c ∈ H and x ∈ k). Then, by the axioms of a coalgebra, we
have can ◦ (id⊗ε) ◦∆ = id. But

(can ◦ (id⊗ε) ◦∆) (x) = can

(id⊗ε)

 ∆ (x)︸ ︷︷ ︸
=x⊗1H+1H⊗x

 = can

(id⊗ε) (x⊗ 1H + 1H ⊗ x)︸ ︷︷ ︸
=id(x)⊗ε(1H)+id(1H)⊗ε(x)


= can (id (x)⊗ ε (1H) + id (1H)⊗ ε (x))

= id (x)︸ ︷︷ ︸
=x

· ε (1H)︸ ︷︷ ︸
=1

+ id (1H)︸ ︷︷ ︸
=1H

·ε (x) (by the definition of can)

= x+ 1H · ε (x) .

Comparing this with

can ◦ (id⊗ε) ◦∆︸ ︷︷ ︸
=id

 (x) = id (x) = x, we obtain x+1H ·ε (x) = x.

Thus, 1H · ε (x) = 0. Hence, ε (1H · ε (x)) = 0. Since ε (1H · ε (x)) = ε (1H)︸ ︷︷ ︸
=1

·ε (x) =

ε (x), this rewrites as ε (x) = 0. This proves Remark 6.3.

Proof of Proposition 6.2. Recall that the unity of the unital coalgebra H is denoted by
1H . Thus, (H, 1H) is a unital coalgebra. Hence, by the definition of a unital coalgebra,
we have ∆H (1H) = 1H ⊗ 1H and εH (1H) = 1. Since we abbreviate ∆H by ∆, we have
∆ (1H) = ∆H (1H) = 1H ⊗ 1H .

(a) Let x ∈ PrimH. Then, x is a primitive element of H (since PrimH is the set
of all primitive elements of H). In other words, ∆ (x) = x⊗ 1H + 1H ⊗ x. But by the
definition of convolution, f ∗ g = µA ◦ (f ⊗ g) ◦∆. Thus,

(f ∗ g) (x) = (µA ◦ (f ⊗ g) ◦∆) (x) = µA

(f ⊗ g) (∆ (x))︸ ︷︷ ︸
=x⊗1H+1H⊗x


= µA

(f ⊗ g) (x⊗ 1H + 1H ⊗ x)︸ ︷︷ ︸
=f(x)⊗g(1H)+f(1H)⊗g(x)



= µA

f (x)⊗ g (1H)︸ ︷︷ ︸
=0

(since g∈g(H,A))

+ f (1H)︸ ︷︷ ︸
=0

(since f∈g(H,A))

⊗g (x)


= µA

f (x)⊗ 0 + 0⊗ g (x)︸ ︷︷ ︸
=0

 = 0.

Since this holds for every x ∈ PrimH, we thus get (f ∗ g) (PrimH) = 0.
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Besides, f ∗ g = µA ◦ (f ⊗ g) ◦∆ leads to

(f ∗ g) (1H) = (µA ◦ (f ⊗ g) ◦∆) (1H) = µA

(f ⊗ g) (∆ (1H))︸ ︷︷ ︸
=1H⊗1H

 = µA

(f ⊗ g) (1H ⊗ 1H)︸ ︷︷ ︸
=f(1H)⊗g(1H)



= µA

 f (1H)︸ ︷︷ ︸
=0

(since f∈g(H,A))

⊗ g (1H)︸ ︷︷ ︸
=0

(since g∈g(H,A))

 = µA (0⊗ 0) = 0.

Thus, f ∗ g ∈ g (H,A) (by the definition of g (H,A)).
This proves Proposition 6.2 (a).
(b) We will prove Proposition 6.2 (b) by induction over i:
Induction base: Proposition 6.2 (a) (applied to g = f) yields f ∗ f ∈ g (H,A) and

(f ∗ f) (PrimH) = 0. Since f∗f = f ∗2, this rewrites as follows: We have f ∗2 ∈ g (H,A)
and f ∗2 (PrimH) = 0. This proves Proposition 6.2 (b) for i = 2. The induction base
is thus complete.

Induction step: Let j > 1 be an integer. Assume that Proposition 6.2 (b) holds for
i = j. We must then prove Proposition 6.2 (b) for i = j + 1.

Since Proposition 6.2 (b) holds for i = j, we have f ∗j ∈ g (H,A) and f ∗j (PrimH) =
0. Now, Proposition 6.2 (a) (applied to g = f ∗j) yields f ∗ f ∗j ∈ g (H,A) and
(f ∗ f ∗j) (PrimH) = 0. Since f ∗ f ∗j = f ∗(j+1), this rewrites as follows: We have
f ∗(j+1) ∈ g (H,A) and f ∗(j+1) (PrimH) = 0. In other words, Proposition 6.2 (b) holds
for i = j + 1. The induction step is thus complete.

This completes the induction proof of Proposition 6.2 (b).
(c) Let F ∈ G (H,A).
Let f = F − eH,A. Then, f ∈ g (H,A) (since F ∈ G (H,A) = eH,A + g (H,A), so

that F − eH,A ∈ g (H,A)). Proposition 6.2 (b) thus yields f ∗i (PrimH) = 0 for every
integer i > 1.

Now, the definition of Log says that LogF = Log1 (F − eH,A)︸ ︷︷ ︸
=f

= Log1 f .

Let x ∈ PrimH. Then, f ∗i (x) ∈ f ∗i (PrimH) = 0 for every integer i > 1. In
other words, f ∗i (x) = 0 for every integer i > 1. On the other hand, ε (x) = 0

(by Remark 6.3), so that eH,A︸︷︷︸
=ηA◦εH

(x) = (ηA ◦ εH) (x) = ηA

εH (x)︸ ︷︷ ︸
=ε(x)=0

 = 0. Thus,

F (x)− eH,A (x) = F (x). Since F (x)− eH,A (x) = (F − eH,A)︸ ︷︷ ︸
=f

(x) = f (x), this rewrites

as f (x) = F (x). Now,

(LogF )︸ ︷︷ ︸
=Log1 f

(x) = (Log1 f) (x) =
∑
i≥1

(−1)i−1

i
f ∗i (x) =

(−1)1−1

1︸ ︷︷ ︸
=1

f ∗1 (x) +
∑
i>1

(−1)i−1

i
f ∗i (x)︸ ︷︷ ︸

=0

= 1f ∗1 (x)︸ ︷︷ ︸
=f∗1(x)=f(x)

+
∑
i>1

(−1)i−1

i
0︸ ︷︷ ︸

=0

= f (x) = F (x) .
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Since this holds for every x ∈ PrimH, we thus conclude that (LogF ) |PrimH= F |PrimH .
This proves Proposition 6.2 (c).

§7. (ε, ε)-coderivations

We now introduce the notion of an (ε, ε)-coderivation. This notion can be defined in
two ways; we are going to take the one that is more similar to the notion of an (ε, ε)-
derivation28 as definition, and then prove the equivalence to the other one as a theorem
(Theorem 7.2).

Definition 7.1. Let k be a field. Let C be a k-coalgebra. Let H be a unital
coalgebra. Let f : C → H be a k-linear map. Then, f is said to be an (ε, ε)-
coderivation if and only if ∆H ◦ f = (f ⊗ eC,H + eC,H ⊗ f) ◦∆C . Here, the
map eC,H is defined to be the map ηH ◦ εC : C → H (this definition of the
map eC,H is identical with the definition of the map eH,A in Definition 2.14).

The following theorem shows how we can actually think of coderivations:

Theorem 7.2. Let k be a field. Let C be a k-coalgebra. Let H be a unital
coalgebra. We denote by PrimH the set of all primitive elements of H. Let
f : C → H be a k-linear map. Then, f is an (ε, ε)-coderivation if and only
if f (C) ⊆ PrimH.

Before we prove this, we recall a familiar fact from basic algebra: Any six k-vector spaces U , V , W , U ′, V ′ and W ′

and any four k-linear maps α : U → V , β : V → W , α′ : U ′ → V ′

and β′ : V ′ → W ′ satisfy (β ◦ α)⊗ (β′ ◦ α′) = (β ⊗ β′) ◦ (α⊗ α′) .

 (21)

Proof of Theorem 7.2. a) First, let us show that every x ∈ C satisfies

((f ⊗ eC,H + eC,H ⊗ f) ◦∆C) (x) = f (x)⊗ 1H + 1H ⊗ f (x) . (22)

(This holds no matter whether f is an (ε, ε)-coderivation or not, and whether f (C) ⊆
PrimH or not.)

Proof. First it is clear that every x ∈ C satisfies (εC ⊗ id) (∆C (x)) = 1⊗ x 29.
Since eC,H = ηH ◦ εC and f = f ◦ id, we have

eC,H ⊗ f = (ηH ◦ εC)⊗ (f ◦ id) = (ηH ⊗ f) ◦ (εC ⊗ id)

(by an application of (21)) ,

28The notion of an (ε, ε)-derivation is a known one; we recall its definition in §15 (Definitions 15.6
and 15.7). Note that we speak of “(εH , εH)-derivations” instead of “(ε, ε)-derivations” for reasons of
pedantry.

29Proof. Let x ∈ C. Let kan : C → k ⊗ C be the canonical isomorphism which sends every y ∈ C
to 1⊗ y. Then, by the axioms of a coalgebra, we have (εC ⊗ id) ◦∆C = kan (since C is a coalgebra),
and (εC ⊗ id) (∆C (x)) = ((εC ⊗ id) ◦∆C)︸ ︷︷ ︸

=kan

(x) = kan (x) = 1⊗ x (by the definition of kan), qed.
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so that every x ∈ C satisfies

(eC,H ⊗ f) (∆C (x)) = ((ηH ⊗ f) ◦ (εC ⊗ id)) (∆C (x)) = (ηH ⊗ f)

(εC ⊗ id) (∆C (x))︸ ︷︷ ︸
=1⊗x


= (ηH ⊗ f) (1⊗ x) = ηH (1)︸ ︷︷ ︸

=1·1H
(by the definition of ηH)

⊗f (x) = 1 · 1H︸ ︷︷ ︸
=1H

⊗f (x) = 1H ⊗ f (x) .

The same argument (but with permuted tensorands) shows that every x ∈ C satisfies

(f ⊗ eC,H) (∆C (x)) = f (x)⊗ 1H .

Now, every x ∈ C satisfies

((f ⊗ eC,H + eC,H ⊗ f) ◦∆C) (x) = (f ⊗ eC,H + eC,H ⊗ f) (∆C (x))

= (f ⊗ eC,H) (∆C (x))︸ ︷︷ ︸
=f(x)⊗1H

+ (eC,H ⊗ f) (∆C (x))︸ ︷︷ ︸
=1H⊗f(x)

= f (x)⊗ 1H + 1H ⊗ f (x) .

This proves (22). Thus, a) is proven.
b) Now, let us prove that if f is an (ε, ε)-coderivation, then f (C) ⊆ PrimH.
Proof. Assume that f is an (ε, ε)-coderivation. Then, ∆H◦f = (f ⊗ eC,H + eC,H ⊗ f)◦

∆C (by the definition of an (ε, ε)-coderivation, since f is an (ε, ε)-coderivation).
Using (22), it is easy to see that every y ∈ f (C) satisfies y ∈ PrimH. 30 In other

words, f (C) ⊆ PrimH. This proves b).
c) Now, let us prove that if f (C) ⊆ PrimH, then f is an (ε, ε)-coderivation.
Proof. Assume that f (C) ⊆ PrimH. Then, for every x ∈ C, the element f (x) ∈ H

is primitive (since x ∈ C and thus f (x) ∈ f (C) ⊆ PrimH = (the set of all primitive elements of H)).
Now, for every x ∈ C, we have

(∆H ◦ f) (x)

= ∆H (f (x)) = f (x)⊗ 1H + 1H ⊗ f (x)(
since f (x) is primitive, and since a primitive element of H was defined

as an element z ∈ H satisfying ∆H (z) = z ⊗ 1H + 1H ⊗ z

)
= ((f ⊗ eC,H + eC,H ⊗ f) ◦∆C) (x) (by (22)) .

30Proof. Let y ∈ f (C). Then, there exists some x ∈ C such that y = f (x). Consider this x. Then,

∆H (y) = ∆H (f (x)) = (∆H ◦ f)︸ ︷︷ ︸
=(f⊗eC,H+eC,H⊗f)◦∆C

(x) = ((f ⊗ eC,H + eC,H ⊗ f) ◦∆C) (x)

= f (x)︸ ︷︷ ︸
=y

⊗1H + 1H ⊗ f (x)︸ ︷︷ ︸
=y

(by (22))

= y ⊗ 1H + 1H ⊗ y.

But this yields that y is primitive (because a primitive element of H was defined as an element z ∈ H
satisfying ∆H (z) = z ⊗ 1H + 1H ⊗ z). In other words, y ∈ PrimH (since PrimH is the set of all
primitive elements of H), qed.
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Thus, ∆H ◦ f = (f ⊗ eC,H + eC,H ⊗ f) ◦∆C . In other words, f is an (ε, ε)-coderivation
(because this is how (ε, ε)-coderivations were defined). This proves c).

d) Combining the results of b) and c), we see that f is an (ε, ε)-coderivation if and
only if f (C) ⊆ PrimH. Theorem 7.2 is thus proven.

§8. The exponent-logarithm bijection between (ε, ε)-

coderivations and coalgebra homomorphisms

We are now ready to formulate a fact which will give us a major part of Theorem 4.1,
and is of significant interest in its own:

Theorem 8.1. Let k be a field of characteristic 0. Let C be a connected
filtered cocommutative k-coalgebra. Let H be a k-bialgebra. Let f ∈
g (C,H). Then, f is an (ε, ε)-coderivation if and only if e∗f is a k-coalgebra
homomorphism.

Being an “if and only if” statement, the assertion of this theorem splits into two
parts, which we will now formulate as two independent lemmas:

Lemma 8.2. Let k be a field of characteristic 0. Let C be a connected
filtered cocommutative k-coalgebra. Let H be a k-bialgebra. Let f ∈
g (C,H). If f is an (ε, ε)-coderivation, then e∗f is a k-coalgebra homomor-
phism.

Lemma 8.3. Let k be a field of characteristic 0. Let C be a connected
filtered cocommutative k-coalgebra. Let H be a k-bialgebra. Let f ∈
g (C,H). If e∗f is a k-coalgebra homomorphism, then f is an (ε, ε)-coderivation.

Of these two lemmas, only one will be used in the proof of Theorem 4.1 - namely,
Lemma 8.3. However, both of them are interesting and we will prove both for the sake
of completeness.

§9. The “(ε, ε)-coderivation =⇒ coalgebra homomor-

phism” direction

First let us prepare some auxiliary results for proving Lemma 8.2. We start with a
triviality:

Lemma 9.1. Let k be a field. Let C and D be k-coalgebras. Let A and B
be k-algebras. Let p : C → A, q : C → A, r : D → B and s : D → B be
four k-linear maps. Then,

(µA ⊗ µB) ◦ (p⊗ q ⊗ r ⊗ s) ◦ (∆C ⊗∆D) = (p ∗ q)⊗ (r ∗ s)

(this is an equality between two maps C ⊗D → A⊗B).
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Proof of Lemma 9.1. By (21) (applied to U = C, V = C ⊗ C, W = A ⊗ A, U ′ = D,
V ′ = D ⊗D, W ′ = B ⊗B, α = ∆C , β = p⊗ q, α′ = ∆D and β′ = r ⊗ s), we have

((p⊗ q) ◦∆C)⊗ ((r ⊗ s) ◦∆D) = (p⊗ q ⊗ r ⊗ s) ◦ (∆C ⊗∆D) .

By (21) (applied to U = C, V = A ⊗ A, W = A, U ′ = D, V ′ = B ⊗ B, W ′ = B,
α = (p⊗ q) ◦∆C , β = µA, α′ = (r ⊗ s) ◦∆D and β′ = µB), we have

(µA ◦ (p⊗ q) ◦∆C)⊗ (µB ◦ (r ⊗ s) ◦∆D)

= (µA ⊗ µB) ◦ (((p⊗ q) ◦∆C)⊗ ((r ⊗ s) ◦∆D))︸ ︷︷ ︸
=(p⊗q⊗r⊗s)◦(∆C⊗∆D)

= (µA ⊗ µB) ◦ (p⊗ q ⊗ r ⊗ s) ◦ (∆C ⊗∆D) .

Now,

(p ∗ q)︸ ︷︷ ︸
=µA◦(p⊗q)◦∆C

(by the definition of convolution)

⊗ (r ∗ s)︸ ︷︷ ︸
=µB◦(r⊗s)◦∆D

(by the definition of convolution)

= (µA ◦ (p⊗ q) ◦∆C)⊗ (µB ◦ (r ⊗ s) ◦∆D)

= (µA ⊗ µB) ◦ (p⊗ q ⊗ r ⊗ s) ◦ (∆C ⊗∆D) ,

so that Lemma 9.1 is proven.

Next, a definition:

Definition 9.2. Let k be a field. Let V and W be two k-vector spaces.
Then, τV,W will denote the (V,W )-flip; this is the k-linear map V ⊗W →
W⊗V which, for every v ∈ V and w ∈ W , sends the element v⊗w ∈ V ⊗W
to the element w ⊗ v ∈ W ⊗ V .

First let us show a trivial property of these flips:

Proposition 9.3. Let k be a field.

(a) Let V , W , V ′ and W ′ be four k-vector spaces, and f : V → V ′ and
g : W → W ′ be two k-linear maps. Then, (g ⊗ f) ◦ τV,W = τV ′,W ′ ◦ (f ⊗ g).

(b) Let U , V , W , T , U ′, V ′, W ′ and T ′ be eight k-vector spaces, and
e : U → U ′, f : V → V ′, g : W → W ′ and h : T → T ′ be four k-linear
maps. Then,

(idU ′ ⊗τV ′,W ′ ⊗ idT ′)◦(e⊗ f ⊗ g ⊗ h) = (e⊗ g ⊗ f ⊗ h)◦(idU ⊗τV,W ⊗ idT )

(this is an equality between k-linear maps from U ⊗ V ⊗W ⊗ T to U ′ ⊗
W ′ ⊗ V ′ ⊗ T ′).

Proof of Proposition 9.3. (a) Every v ∈ V and w ∈ W satisfy

((g ⊗ f) ◦ τV,W ) (v ⊗ w) = (g ⊗ f)

 τV,W (v ⊗ w)︸ ︷︷ ︸
=w⊗v

(by the definition of τV,W )


= (g ⊗ f) (w ⊗ v) = g (w)⊗ f (v)
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and

(τV ′,W ′ ◦ (f ⊗ g)) (v ⊗ w) = τV ′,W ′

(f ⊗ g) (v ⊗ w)︸ ︷︷ ︸
=f(v)⊗g(w)

 = τV ′,W ′ (f (v)⊗ g (w))

= g (w)⊗ f (v) (by the definition of τV ′,W ′) .

Hence, every v ∈ V and w ∈ W satisfy

((g ⊗ f) ◦ τV,W ) (v ⊗ w) = g (w)⊗ f (v) = (τV ′,W ′ ◦ (f ⊗ g)) (v ⊗ w) .

In other words, the two maps (g ⊗ f) ◦ τV,W and τV ′,W ′ ◦ (f ⊗ g) are equal on every
pure tensor. But since these two maps are k-linear, this yields that these maps must be
identic (because whenever two k-linear maps from a tensor product are equal on every
pure tensor, they must be identic). In other words, (g ⊗ f) ◦ τV,W = τV ′,W ′ ◦ (f ⊗ g).
This proves Proposition 9.3 (a).

(b) Applying (21) to V ⊗W , W ⊗ V , W ′ ⊗ V ′, T , T , T ′, τV,W , g ⊗ f , idT and h
instead of U , V , W , U ′, V ′, W ′, α, β, α′ and β′, we obtain

((g ⊗ f) ◦ τV,W )⊗ (h ◦ idT ) = (g ⊗ f ⊗ h) ◦ (τV,W ⊗ idT ) .

Applying (21) to U , U , U ′, V ⊗W ⊗ T , W ⊗ V ⊗ T , W ′ ⊗ V ′ ⊗ T ′, idU , e, τV,W ⊗ idT
and g ⊗ f ⊗ h instead of U , V , W , U ′, V ′, W ′, α, β, α′ and β′, we obtain

(e ◦ idU)⊗ ((g ⊗ f ⊗ h) ◦ (τV,W ⊗ idT )) = (e⊗ g ⊗ f ⊗ h) ◦ (idU ⊗τV,W ⊗ idT ) .

Thus,

(e⊗ g ⊗ f ⊗ h) ◦ (idU ⊗τV,W ⊗ idT ) = (e ◦ idU)︸ ︷︷ ︸
=e

⊗ ((g ⊗ f ⊗ h) ◦ (τV,W ⊗ idT ))︸ ︷︷ ︸
=((g⊗f)◦τV,W )⊗(h◦idT )

= e⊗ ((g ⊗ f) ◦ τV,W )︸ ︷︷ ︸
=τV ′,W ′◦(f⊗g)

(by Proposition 9.3 (a))

⊗ (h ◦ idT )︸ ︷︷ ︸
=h

= e⊗ (τV ′,W ′ ◦ (f ⊗ g))⊗ h. (23)

On the other hand, applying (21) to V ⊗W , V ′ ⊗W ′, W ′ ⊗ V ′, T , T ′, T ′, f ⊗ g,
τV ′,W ′ , h and idT ′ instead of U , V , W , U ′, V ′, W ′, α, β, α′ and β′, we obtain

(τV ′,W ′ ◦ (f ⊗ g))⊗ (idT ′ ◦h) = (τV ′,W ′ ⊗ idT ′) ◦ (f ⊗ g ⊗ h) .

Applying (21) to U , U ′, U ′, V ⊗W ⊗ T , V ′⊗W ′⊗ T ′, W ′⊗ V ′⊗ T ′, e, idU ′ , f ⊗ g⊗ h
and τV ′,W ′ ⊗ idT ′ instead of U , V , W , U ′, V ′, W ′, α, β, α′ and β′, we obtain

(idU ′ ◦e)⊗ ((τV ′,W ′ ⊗ idT ′) ◦ (f ⊗ g ⊗ h)) = (idU ′ ⊗τV ′,W ′ ⊗ idT ′) ◦ (e⊗ f ⊗ g ⊗ h) .

Thus,

(idU ′ ⊗τV ′,W ′ ⊗ idT ′) ◦ (e⊗ f ⊗ g ⊗ h) = (idU ′ ◦e)︸ ︷︷ ︸
=e

⊗ ((τV ′,W ′ ⊗ idT ′) ◦ (f ⊗ g ⊗ h))︸ ︷︷ ︸
=(τV ′,W ′◦(f⊗g))⊗(idT ′ ◦h)

= e⊗ (τV ′,W ′ ◦ (f ⊗ g))⊗ (idT ′ ◦h)︸ ︷︷ ︸
=h

= e⊗ (τV ′,W ′ ◦ (f ⊗ g))⊗ h.
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Compared with (23), this yields

(e⊗ g ⊗ f ⊗ h) ◦ (idU ⊗τV,W ⊗ idT ) = (idU ′ ⊗τV ′,W ′ ⊗ idT ′) ◦ (e⊗ f ⊗ g ⊗ h) .

This proves Proposition 9.3 (b).

Next, we shall show a general property of coalgebras:

Lemma 9.4. Let k be a field. Let C be a k-coalgebra. Then,

(∆C ⊗∆C) ◦∆C = (idC ⊗∆C ⊗ idC) ◦ (∆C ⊗ idC) ◦∆C .

Proof of Lemma 9.4. By the axioms of a coalgebra, we have

(idC ⊗∆C) ◦∆C = (∆C ⊗ idC) ◦∆C

(since C is a coalgebra).
On the other hand,

∆C︸︷︷︸
=∆C◦idC

⊗ ∆C︸︷︷︸
=idC⊗C ◦∆C

= (∆C ◦ idC)⊗ (idC⊗C ◦∆C) = (∆C ⊗ idC⊗C) ◦ (idC ⊗∆C)

(by (21) (applied to U = C, V = C, W = C ⊗ C, U ′ = C, V ′ = C ⊗ C, W ′ = C ⊗ C,
α = idC , β = ∆C , α′ = ∆C and β′ = idC⊗C)), and thus

(∆C ⊗∆C)︸ ︷︷ ︸
=(∆C⊗idC⊗C)◦(idC ⊗∆C)

◦∆C =

∆C ⊗ idC⊗C︸ ︷︷ ︸
=idC ⊗ idC

 ◦ (idC ⊗∆C) ◦∆C︸ ︷︷ ︸
=(∆C⊗idC)◦∆C

= (∆C ⊗ idC ⊗ idC) ◦ (∆C ⊗ idC) ◦∆C . (24)

But (21) (applied to U = C, V = C ⊗ C, W = C ⊗ C ⊗ C, U ′ = C, V ′ = C, W ′ = C,
α = ∆C , β = ∆C ⊗ idC , α′ = idC and β′ = idC) yields

((∆C ⊗ idC) ◦∆C)⊗ (idC ◦ idC) = (∆C ⊗ idC ⊗ idC) ◦ (∆C ⊗ idC) ,

so that

(∆C ⊗ idC ⊗ idC) ◦ (∆C ⊗ idC) = ((∆C ⊗ idC) ◦∆C)︸ ︷︷ ︸
=(idC ⊗∆C)◦∆C

⊗ (idC ◦ idC)

= ((idC ⊗∆C) ◦∆C)⊗ (idC ◦ idC)

= (idC ⊗∆C ⊗ idC) ◦ (∆C ⊗ idC)

(by (21), applied to U = C, V = C ⊗ C, W = C ⊗ C ⊗ C, U ′ = C, V ′ = C, W ′ = C,
α = ∆C , β = idC ⊗∆C , α′ = idC and β′ = idC). Thus, (24) becomes

(∆C ⊗∆C) ◦∆C = (∆C ⊗ idC ⊗ idC) ◦ (∆C ⊗ idC)︸ ︷︷ ︸
=(idC ⊗∆C⊗idC)◦(∆C⊗idC)

◦∆C

= (idC ⊗∆C ⊗ idC) ◦ (∆C ⊗ idC) ◦∆C .

This proves Lemma 9.4.
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Now, we turn to a basic property of cocommutative coalgebras:

Lemma 9.5. Let k be a field. Let C be a cocommutative k-coalgebra.
Then, the diagram

C
∆C //

∆C

��

C ⊗ C
∆C⊗∆C

++

C ⊗ C
∆C⊗∆C

// C ⊗ C ⊗ C ⊗ C
idC ⊗τC,C⊗idC

// C ⊗ C ⊗ C ⊗ C

(25)
commutes. In other words,

(idC ⊗τC,C ⊗ idC) ◦ (∆C ⊗∆C) ◦∆C = (∆C ⊗∆C) ◦∆C . (26)

Proof of Lemma 9.5. Lemma 9.4 yields

(∆C ⊗∆C) ◦∆C = (idC ⊗∆C ⊗ idC) ◦ (∆C ⊗ idC) ◦∆C . (27)

The equality (21) (applied to U = C, V = C, W = C, U ′ = C⊗C, V ′ = C⊗C⊗C,
W ′ = C ⊗ C ⊗ C, α = idC , β = idC , α′ = ∆C ⊗ idC and β′ = τC,C ⊗ idC) yields

(idC ◦ idC)⊗((τC,C ⊗ idC) ◦ (∆C ⊗ idC)) = (idC ⊗τC,C ⊗ idC)◦(idC ⊗∆C ⊗ idC) . (28)

But (21) (applied to U = C, V = C ⊗ C, W = C ⊗ C, U ′ = C, V ′ = C, W ′ =
C, α = ∆C , β = τC,C , α′ = idC and β′ = idC) yields (τC,C ◦∆C) ⊗ (idC ◦ idC) =
(τC,C ⊗ idC) ◦ (∆C ⊗ idC), so that

(τC,C ⊗ idC) ◦ (∆C ⊗ idC) = (τC,C ◦∆C)⊗ (idC ◦ idC)︸ ︷︷ ︸
=idC

= (τC,C ◦∆C)︸ ︷︷ ︸
=∆C

(since C is cocommutative)

⊗ idC

= ∆C ⊗ idC . (29)

Now, (28) becomes

(idC ⊗τC,C ⊗ idC) ◦ (idC ⊗∆C ⊗ idC)

= (idC ◦ idC)︸ ︷︷ ︸
=idC

⊗ ((τC,C ⊗ idC) ◦ (∆C ⊗ idC))︸ ︷︷ ︸
=∆C⊗idC
(by (29))

= idC ⊗∆C ⊗ idC . (30)

Now,

(idC ⊗τC,C ⊗ idC) ◦ (∆C ⊗∆C) ◦∆C︸ ︷︷ ︸
=(idC ⊗∆C⊗idC)◦(∆C⊗idC)◦∆C

(by (27))

= (idC ⊗τC,C ⊗ idC) ◦ (idC ⊗∆C ⊗ idC)︸ ︷︷ ︸
=idC ⊗∆C⊗idC

◦ (∆C ⊗ idC) ◦∆C

= (idC ⊗∆C ⊗ idC) ◦ (∆C ⊗ idC) ◦∆C = (∆C ⊗∆C) ◦∆C

(by (27)). Hence, (26) holds. In other words, the diagram (25) is commutative. This
proves Lemma 9.5.
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Remark: Actually, many elementary properties of coalgebras (in fact, all purely
diagrammatic properties) are “duals” of analogous properties of algebras. For instance,
Lemma 9.5 is a “dual” of the fact that for any four elements a, b, c, d of a commutative
k-algebra, we have (ac) · (bd) = (ab) · (cd). This fact is, of course, trivial. This gives us
two ways to prove Lemma 9.5:

• Either invoke the theorem that the “dual” of a true purely diagrammatic property
of k-algebras must be a true property of k-coalgebras. However, this would require
us to prove this theorem.

• Or reformulate the property of k-algebras (that for any four elements a, b, c,
d of a commutative k-algebra, we have (ac) · (bd) = (ab) · (cd)) in a purely
diagrammatic form (i. e., in form of a commutative diagram with no concrete
elements occurring) and prove it purely by diagram chasing (again, without using
elements), and then reverse all the arrows in this proof. As a result you get a
proof of Lemma 9.5. This is how I constructed the above proof of Lemma 9.5.31

So when Lemma 9.5 is just a “dual” of a fact about k-algebras, then why is the
fact about k-algebras trivial while Lemma 9.5 took us so long to prove? This is an
example of how working with coalgebras is a lot more cumbersome than working with
algebras, because working with algebras is easily done elementwise, while working with
coalgebras usually requires transforming equations into commutative diagrams and
chasing diagrams. There is a second way to efficiently work with coalgebras: namely,
by using Sweedler’s notation; however, this would require us to introduce Sweedler’s
notation32, which I don’t want to do here. Using Sweedler’s notation, we could give
a proof of Lemma 9.5 shorter than the one given above, but still not as short as the
obvious proof of the fact about k-algebras (that for any four elements a, b, c, d of a
commutative k-algebra, we have (ac) · (bd) = (ab) · (cd)).

Next, let us show another simple property of arbitrary coalgebras:

Lemma 9.6. Let k be a field. Let C be a k-coalgebra.

(a) Every x ∈ C satisfies ((εC ⊗ εC) ◦∆C) (x) = εC (x) 1⊗ 1.

(b) Consider the obvious canonical k-coalgebra structure on k (with ∆k

being the canonical isomorphism k → k ⊗ k, and εk being the identity
map). The map εC is a k-coalgebra homomorphism from C to k.

Proof of Lemma 9.6. (a) Let kan be the canonical isomorphism C → C ⊗ k which
maps every c ∈ C to c ⊗ 1. Since C is a coalgebra, we have (id⊗εC) ◦∆C = kan (by
the axioms of a coalgebra).

We have εC︸︷︷︸
=εC◦id

⊗ εC︸︷︷︸
=id ◦εC

= (εC ◦ id) ⊗ (id ◦εC) = (εC ⊗ id) ◦ (id⊗εC) (by an appli-

cation of (21)), so that

(εC ⊗ εC) ◦∆C = (εC ⊗ id) ◦ (id⊗εC) ◦∆C︸ ︷︷ ︸
=kan

= (εC ⊗ id) ◦ kan .

31Of course, if you are comparing different proofs, you need to count the proof of Lemma 9.4 as a
part of the above proof of Lemma 9.5.

32To my knowledge, there is not a single book about Hopf algebras that cares to formally and
correctly introduce Sweedler’s notation. However, I have not read too many books, so this needs not
say much.
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Hence, for every x ∈ C, we have

((εC ⊗ εC) ◦∆C) (x) = ((εC ⊗ id) ◦ kan) (x) = (εC ⊗ id) (kanx)︸ ︷︷ ︸
=x⊗1

(by the definition of kan )

= (εC ⊗ id) (x⊗ 1)

= εC (x)⊗ id (1)︸ ︷︷ ︸
=1

= εC (x)⊗ 1 = εC (x) 1⊗ 1.

This proves Lemma 9.6 (a).
(b) Let kank : k → k⊗ k be the canonical isomorphism which sends every λ ∈ k to

λ1⊗ 1 = λ⊗ 1 = 1⊗ λ ∈ k ⊗ k. Then, ∆k = kank (by the definition of the coalgebra
structure on k). Also, εk = id (by the definition of the coalgebra structure on k).

Now, every x ∈ C satisfies

((εC ⊗ εC) ◦∆C) (x)

= εC (x) 1⊗ 1 (by Lemma 9.6 (a))

= kank (εC (x)) (because kank (εC (x)) = εC (x) 1⊗ 1 (by the definition of kank ))

= (kank ◦εC) (x) .

Thus, (εC ⊗ εC) ◦∆C = kank︸︷︷︸
=∆k

◦εC = ∆k ◦ εC . Combined with εk︸︷︷︸
=id

◦εC = εC , this yields

that εC is a k-coalgebra homomorphism from C to k. This proves Lemma 9.6 (b).

Now we will show a less trivial fact, much closer to Lemma 8.2:

Lemma 9.7. Let k be a field. Let C be a cocommutative k-coalgebra. Let
H be a k-bialgebra. Let f ∈ L (C,H) be an (ε, ε)-coderivation. Then, for
every n ∈ N, we have

∆H ◦ f ∗n =
n∑
i=0

(
n

i

)(
f ∗i ⊗ f ∗(n−i)

)
◦∆C . (31)

Proof of Lemma 9.7. We are going to prove Lemma 9.7 by induction over n.
Induction base: Recall that H is a bialgebra, so that ∆H (1H) = 1H ⊗ 1H by the

axioms of a bialgebra.
We have f ∗0 = eC,H and

0∑
i=0

(
0

i

)(
f ∗i ⊗ f ∗(0−i)

)
◦∆C =

(
0

0

)
︸︷︷︸

=1

 f ∗0︸︷︷︸
=eC,H

⊗ f ∗0︸︷︷︸
=eC,H

 ◦∆C

= (eC,H ⊗ eC,H) ◦∆C . (32)

Since eC,H = ηH ◦ εC , we have

eC,H ⊗ eC,H = (ηH ◦ εC)⊗ (ηH ◦ εC) = (ηH ⊗ ηH) ◦ (εC ⊗ εC)
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(by an application of (21)). Hence, every x ∈ C satisfies (eC,H ⊗ eC,H)︸ ︷︷ ︸
=(ηH⊗ηH)◦(εC⊗εC)

◦∆C

 (x) = ((ηH ⊗ ηH) ◦ (εC ⊗ εC) ◦∆C) (x)

= (ηH ⊗ ηH)

((εC ⊗ εC) ◦∆C) (x)︸ ︷︷ ︸
=εC(x)1⊗1

(by Lemma 9.6 (a))


= (ηH ⊗ ηH) (εC (x) 1⊗ 1) = εC (x) ηH (1)⊗ ηH (1)

= εC (x) 1H ⊗ 1H︸ ︷︷ ︸
=∆H(1H)

(since the definition of ηH yields ηH (1) = 1 · 1H = 1H)

and

∆H ◦ eC,H︸︷︷︸
=ηH◦εC

 (x) = (∆H ◦ ηH ◦ εC) (x) = ∆H

 ηH (εC (x))︸ ︷︷ ︸
=εC(x)1H

(by the definition of ηH)


= ∆H (εC (x) 1H) = εC (x) ∆H (1H)︸ ︷︷ ︸

=1H⊗1H

= εC (x) 1H ⊗ 1H .

Hence, every x ∈ C satisfies

((eC,H ⊗ eC,H) ◦∆C) (x) = (∆H ◦ eC,H) (x) .

In other words, (eC,H ⊗ eC,H) ◦∆C = ∆H ◦ eC,H . Now,

∆H ◦ f ∗0︸︷︷︸
=eC,H

= ∆H ◦ eC,H = (eC,H ⊗ eC,H) ◦∆C =
0∑
i=0

(
0

i

)(
f ∗i ⊗ f ∗(0−i)

)
◦∆C

(by (32)). In other words, Lemma 9.7 holds for n = 0. This completes the induction
base.

Induction step: Let N ∈ N. Assume that Lemma 9.7 holds for n = N . To complete
the induction, we must show that Lemma 9.7 also holds for n = N + 1.

Since Lemma 9.7 holds for n = N , we have

∆H ◦ f ∗N =
N∑
i=0

(
N

i

)(
f ∗i ⊗ f ∗(N−i)

)
◦∆C . (33)

Denote the k-linear map
N∑
i=0

(
N

i

)(
f ∗i ⊗ f ∗(N−i)

)
: C ⊗ C → H ⊗H by Φ. Then, (33)
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becomes

∆H ◦ f ∗N =
N∑
i=0

(
N

i

)(
f ∗i ⊗ f ∗(N−i)

)
◦∆C =

(
N∑
i=0

(
N

i

)(
f ∗i ⊗ f ∗(N−i)

))
︸ ︷︷ ︸

=Φ

◦∆C

(since composition of k-linear maps is distributive)

= Φ ◦∆C . (34)

Now,

f ∗(N+1) = f ∗ f ∗N = µH ◦
(
f ⊗ f ∗N

)
◦∆C (by the definition of convolution) ,

so that

∆H ◦ f ∗(N+1) = ∆H ◦ µH︸ ︷︷ ︸
=(µH⊗µH)◦(idH ⊗τH,H⊗idH)◦(∆H⊗∆H)

(by the axioms of a bialgebra, since H is a bialgebra)

◦
(
f ⊗ f ∗N

)
◦∆C

= (µH ⊗ µH) ◦ (idH ⊗τH,H ⊗ idH) ◦ (∆H ⊗∆H) ◦
(
f ⊗ f ∗N

)
◦∆C . (35)

But an application of (21) yields (∆H ◦ f) ⊗
(
∆H ◦ f ∗N

)
= (∆H ⊗∆H) ◦

(
f ⊗ f ∗N

)
,

so that

(∆H ⊗∆H) ◦
(
f ⊗ f ∗N

)
= (∆H ◦ f)︸ ︷︷ ︸

=(f⊗eC,H+eC,H⊗f)◦∆C

(since f is an (ε,ε)-coderivation)

⊗
(
∆H ◦ f ∗N

)︸ ︷︷ ︸
=Φ◦∆C
(by (34))

= ((f ⊗ eC,H + eC,H ⊗ f) ◦∆C)⊗ (Φ ◦∆C)

= ((f ⊗ eC,H + eC,H ⊗ f)⊗ Φ) ◦ (∆C ⊗∆C)(
by (21), applied to U = C, V = C ⊗ C, W = H ⊗H, U ′ = C, V ′ = C ⊗ C,
W ′ = H ⊗H, α = ∆C , β = (f ⊗ eC,H + eC,H ⊗ f) , α′ = ∆C and β′ = Φ

)
.

Hence, (35) becomes

∆H ◦ f ∗(N+1)

= (µH ⊗ µH) ◦ (idH ⊗τH,H ⊗ idH) ◦ (∆H ⊗∆H) ◦
(
f ⊗ f ∗N

)︸ ︷︷ ︸
=((f⊗eC,H+eC,H⊗f)⊗Φ)◦(∆C⊗∆C)

◦∆C

= (µH ⊗ µH) ◦ (idH ⊗τH,H ⊗ idH) ◦ ((f ⊗ eC,H + eC,H ⊗ f)⊗ Φ) ◦ (∆C ⊗∆C) ◦∆C .
(36)
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But since tensoring of k-linear maps is distributive, we have

(f ⊗ eC,H + eC,H ⊗ f)⊗ Φ

= (f ⊗ eC,H)⊗ Φ + (eC,H ⊗ f)⊗ Φ

= (f ⊗ eC,H)⊗

(
N∑
i=0

(
N

i

)(
f ∗i ⊗ f ∗(N−i)

))
︸ ︷︷ ︸

=
N∑
i=0

(
N

i

)
(f⊗eC,H)⊗(f∗i⊗f∗(N−i))

(since tensoring of k-linear maps is k-bilinear)

+ (eC,H ⊗ f)⊗

(
N∑
i=0

(
N

i

)(
f ∗i ⊗ f ∗(N−i)

))
︸ ︷︷ ︸

=
N∑
i=0

(
N

i

)
(eC,H⊗f)⊗(f∗i⊗f∗(N−i))

(since tensoring of k-linear maps is k-bilinear)

(since tensoring of k-linear maps is distributive)

=
N∑
i=0

(
N

i

)
(f ⊗ eC,H)⊗

(
f ∗i ⊗ f ∗(N−i)

)︸ ︷︷ ︸
=f⊗eC,H⊗f∗i⊗f∗(N−i)

+
N∑
i=0

(
N

i

)
(eC,H ⊗ f)⊗

(
f ∗i ⊗ f ∗(N−i)

)︸ ︷︷ ︸
=eC,H⊗f⊗f∗i⊗f∗(N−i)

=
N∑
i=0

(
N

i

)
f ⊗ eC,H ⊗ f ∗i ⊗ f ∗(N−i) +

N∑
i=0

(
N

i

)
eC,H ⊗ f ⊗ f ∗i ⊗ f ∗(N−i),
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and thus

(idH ⊗τH,H ⊗ idH) ◦ ((f ⊗ eC,H + eC,H ⊗ f)⊗ Φ)

= (idH ⊗τH,H ⊗ idH) ◦

(
N∑
i=0

(
N

i

)
f ⊗ eC,H ⊗ f ∗i ⊗ f ∗(N−i) +

N∑
i=0

(
N

i

)
eC,H ⊗ f ⊗ f ∗i ⊗ f ∗(N−i)

)

= (idH ⊗τH,H ⊗ idH) ◦

(
N∑
i=0

(
N

i

)
f ⊗ eC,H ⊗ f ∗i ⊗ f ∗(N−i)

)
︸ ︷︷ ︸

=
N∑
i=0

(
N

i

)
(idH ⊗τH,H⊗idH)◦(f⊗eC,H⊗f∗i⊗f∗(N−i))

(since composition of k-linear maps is k-bilinear)

+ (idH ⊗τH,H ⊗ idH) ◦

(
N∑
i=0

(
N

i

)
eC,H ⊗ f ⊗ f ∗i ⊗ f ∗(N−i)

)
︸ ︷︷ ︸

=
N∑
i=0

(
N

i

)
(idH ⊗τH,H⊗idH)◦(eC,H⊗f⊗f∗i⊗f∗(N−i))

(since composition of k-linear maps is k-bilinear)

(since composition of k-linear maps is distributive)

=
N∑
i=0

(
N

i

)
(idH ⊗τH,H ⊗ idH) ◦

(
f ⊗ eC,H ⊗ f ∗i ⊗ f ∗(N−i)

)︸ ︷︷ ︸
=(f⊗f∗i⊗eC,H⊗f∗(N−i))◦(idC ⊗τC,C⊗idC)
(by Proposition 9.3 (b), applied to C, C, C, C,

H, H, H, H, f , eC,H , f∗i, f∗(N−i) instead of
U , V , W , T , U ′, V ′, W ′, T ′, e, f , g, h)

+
N∑
i=0

(
N

i

)
(idH ⊗τH,H ⊗ idH) ◦

(
eC,H ⊗ f ⊗ f ∗i ⊗ f ∗(N−i)

)︸ ︷︷ ︸
=(eC,H⊗f∗i⊗f⊗f∗(N−i))◦(idC ⊗τC,C⊗idC)
(by Proposition 9.3 (b), applied to C, C, C, C,

H, H, H, H, eC,H , f , f∗i, f∗(N−i) instead of
U , V , W , T , U ′, V ′, W ′, T ′, e, f , g, h)

=
N∑
i=0

(
N

i

)(
f ⊗ f ∗i ⊗ eC,H ⊗ f ∗(N−i)

)
◦ (idC ⊗τC,C ⊗ idC)︸ ︷︷ ︸

=

 N∑
i=0

(
N

i

)
(f⊗f∗i⊗eC,H⊗f∗(N−i))

◦(idC ⊗τC,C⊗idC)

(since composition of k-linear maps is k-bilinear)

+
N∑
i=0

(
N

i

)(
eC,H ⊗ f ∗i ⊗ f ⊗ f ∗(N−i)

)
◦ (idC ⊗τC,C ⊗ idC)︸ ︷︷ ︸

=

 N∑
i=0

(
N

i

)
(eC,H⊗f∗i⊗f⊗f∗(N−i))

◦(idC ⊗τC,C⊗idC)

(since composition of k-linear maps is k-bilinear)
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=

(
N∑
i=0

(
N

i

)(
f ⊗ f ∗i ⊗ eC,H ⊗ f ∗(N−i)

))
◦ (idC ⊗τC,C ⊗ idC)

+

(
N∑
i=0

(
N

i

)(
eC,H ⊗ f ∗i ⊗ f ⊗ f ∗(N−i)

))
◦ (idC ⊗τC,C ⊗ idC)

=

(
N∑
i=0

(
N

i

)(
f ⊗ f ∗i ⊗ eC,H ⊗ f ∗(N−i)

)
+

N∑
i=0

(
N

i

)(
eC,H ⊗ f ∗i ⊗ f ⊗ f ∗(N−i)

))
◦ (idC ⊗τC,C ⊗ idC)

(since composition of k-linear maps is k-bilinear) . (37)

Let us denote by Ψ the k-linear map

N∑
i=0

(
N

i

)(
f ⊗ f ∗i ⊗ eC,H ⊗ f ∗(N−i)

)
+

N∑
i=0

(
N

i

)(
eC,H ⊗ f ∗i ⊗ f ⊗ f ∗(N−i)

)
: C ⊗ C ⊗ C ⊗ C → H ⊗H ⊗H ⊗H.

Then, (37) becomes

(idH ⊗τH,H ⊗ idH) ◦ ((f ⊗ eC,H + eC,H ⊗ f)⊗ Φ)

=

(
N∑
i=0

(
N

i

)(
f ⊗ f ∗i ⊗ eC,H ⊗ f ∗(N−i)

)
+

N∑
i=0

(
N

i

)(
eC,H ⊗ f ∗i ⊗ f ⊗ f ∗(N−i)

))
︸ ︷︷ ︸

=Ψ

◦ (idC ⊗τC,C ⊗ idC)

= Ψ ◦ (idC ⊗τC,C ⊗ idC) . (38)

Hence, (36) becomes

∆H ◦ f ∗(N+1)

= (µH ⊗ µH) ◦ (idH ⊗τH,H ⊗ idH) ◦ ((f ⊗ eC,H + eC,H ⊗ f)⊗ Φ)︸ ︷︷ ︸
=Ψ◦(idC ⊗τC,C⊗idC)

◦ (∆C ⊗∆C) ◦∆C

= (µH ⊗ µH) ◦Ψ ◦ (idC ⊗τC,C ⊗ idC) ◦ (∆C ⊗∆C) ◦∆C︸ ︷︷ ︸
=(∆C⊗∆C)◦∆C

(by (26))

= (µH ⊗ µH) ◦Ψ ◦ (∆C ⊗∆C) ◦∆C . (39)

But since

Ψ =
N∑
i=0

(
N

i

)(
f ⊗ f ∗i ⊗ eC,H ⊗ f ∗(N−i)

)
+

N∑
i=0

(
N

i

)(
eC,H ⊗ f ∗i ⊗ f ⊗ f ∗(N−i)

)
,
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we have

(µH ⊗ µH) ◦Ψ

= (µH ⊗ µH) ◦

(
N∑
i=0

(
N

i

)(
f ⊗ f ∗i ⊗ eC,H ⊗ f ∗(N−i)

)
+

N∑
i=0

(
N

i

)(
eC,H ⊗ f ∗i ⊗ f ⊗ f ∗(N−i)

))

= (µH ⊗ µH) ◦

(
N∑
i=0

(
N

i

)(
f ⊗ f ∗i ⊗ eC,H ⊗ f ∗(N−i)

))
︸ ︷︷ ︸

=
N∑
i=0

(
N

i

)
(µH⊗µH)◦(f⊗f∗i⊗eC,H⊗f∗(N−i))

(since composition of k-linear maps is k-bilinear)

+ (µH ⊗ µH) ◦

(
N∑
i=0

(
N

i

)(
eC,H ⊗ f ∗i ⊗ f ⊗ f ∗(N−i)

))
︸ ︷︷ ︸

=
N∑
i=0

(
N

i

)
(µH⊗µH)◦(eC,H⊗f∗i⊗f⊗f∗(N−i))

(since composition of k-linear maps is k-bilinear)

(since composition of k-linear maps is distributive)

=
N∑
i=0

(
N

i

)
(µH ⊗ µH) ◦

(
f ⊗ f ∗i ⊗ eC,H ⊗ f ∗(N−i)

)
+

N∑
i=0

(
N

i

)
(µH ⊗ µH) ◦

(
eC,H ⊗ f ∗i ⊗ f ⊗ f ∗(N−i)

)
,
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so that

(µH ⊗ µH) ◦Ψ ◦ (∆C ⊗∆C)

=

(
N∑
i=0

(
N

i

)
(µH ⊗ µH) ◦

(
f ⊗ f ∗i ⊗ eC,H ⊗ f ∗(N−i)

)
+

N∑
i=0

(
N

i

)
(µH ⊗ µH) ◦

(
eC,H ⊗ f ∗i ⊗ f ⊗ f ∗(N−i)

))
◦ (∆C ⊗∆C)

=

(
N∑
i=0

(
N

i

)
(µH ⊗ µH) ◦

(
f ⊗ f ∗i ⊗ eC,H ⊗ f ∗(N−i)

))
◦ (∆C ⊗∆C)︸ ︷︷ ︸

=
N∑
i=0

(
N

i

)
(µH⊗µH)◦(f⊗f∗i⊗eC,H⊗f∗(N−i))◦(∆C⊗∆C)

(since composition of k-linear maps is k-bilinear)

+

(
N∑
i=0

(
N

i

)
(µH ⊗ µH) ◦

(
eC,H ⊗ f ∗i ⊗ f ⊗ f ∗(N−i)

))
◦ (∆C ⊗∆C)︸ ︷︷ ︸

=
N∑
i=0

(
N

i

)
(µH⊗µH)◦(eC,H⊗f∗i⊗f⊗f∗(N−i))◦(∆C⊗∆C)

(since composition of k-linear maps is k-bilinear)

(since composition of k-linear maps is distributive)

=
N∑
i=0

(
N

i

)
(µH ⊗ µH) ◦

(
f ⊗ f ∗i ⊗ eC,H ⊗ f ∗(N−i)

)
◦ (∆C ⊗∆C)︸ ︷︷ ︸

=(f∗f∗i)⊗(eC,H∗f∗(N−i))
(by Lemma 9.1, applied to A=H, B=H, D=C, p=f , q=f∗i, r=eC,H and s=f∗(N−i))

+
N∑
i=0

(
N

i

)
(µH ⊗ µH) ◦

(
eC,H ⊗ f ∗i ⊗ f ⊗ f ∗(N−i)

)
◦ (∆C ⊗∆C)︸ ︷︷ ︸

=(eC,H∗f∗i)⊗(f∗f∗(N−i))
(by Lemma 9.1, applied to A=H, B=H, D=C, p=eC,H , q=f∗i, r=f and s=f∗(N−i))

=
N∑
i=0

(
N

i

)(
f ∗ f ∗i

)︸ ︷︷ ︸
=f∗(i+1)

⊗
(
eC,H ∗ f ∗(N−i)

)︸ ︷︷ ︸
=f∗(N−i)

+
N∑
i=0

(
N

i

)(
eC,H ∗ f ∗i

)︸ ︷︷ ︸
=f∗i

⊗
(
f ∗ f ∗(N−i)

)︸ ︷︷ ︸
=f∗((N−i)+1)=f∗(N+1−i)

=
N∑
i=0

(
N

i

)
f ∗(i+1) ⊗ f ∗(N−i) +

N∑
i=0

(
N

i

)
f ∗i ⊗ f ∗(N+1−i).
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Compared with

N+1∑
i=0

(
N + 1

i

)
f ∗i ⊗ f ∗(N+1−i)

=
N+1∑
i=0

((
N

i− 1

)
+

(
N

i

))
f ∗i ⊗ f ∗(N+1−i)

(
since

(
N + 1

i

)
=

(
N

i− 1

)
+

(
N

i

)
by the recursion of the binomial coefficients

)
=

N+1∑
i=0

(
N

i− 1

)
f ∗i ⊗ f ∗(N+1−i)

︸ ︷︷ ︸
=

(
N

0− 1

)
f∗0⊗f∗(N+1−0)+

N+1∑
i=1

(
N

i− 1

)
f∗i⊗f∗(N+1−i)

+
N+1∑
i=0

(
N

i

)
f ∗i ⊗ f ∗(N+1−i)

︸ ︷︷ ︸
=
N∑
i=0

(
N

i

)
f∗i⊗f∗(N+1−i)+

(
N

N + 1

)
f∗(N+1)⊗f∗(N+1−(N+1))

=

(
N

0− 1

)
︸ ︷︷ ︸

=0

f ∗0 ⊗ f ∗(N+1−0) +
N+1∑
i=1

(
N

i− 1

)
f ∗i ⊗ f ∗(N+1−i)

︸ ︷︷ ︸
=
N∑
i=0

(
N

i+ 1− 1

)
f∗(i+1)⊗f∗(N+1−(i+1))

(here, we substituted i+1 for i in the sum)

+
N∑
i=0

(
N

i

)
f ∗i ⊗ f ∗(N+1−i) +

(
N

N + 1

)
︸ ︷︷ ︸

=0

f ∗(N+1) ⊗ f ∗(N+1−(N+1))

= 0f ∗0 ⊗ f ∗(N+1−0)︸ ︷︷ ︸
=0

+
N∑
i=0

(
N

i+ 1− 1

)
︸ ︷︷ ︸

=

(
N

i

) f ∗(i+1) ⊗ f ∗(N+1−(i+1))︸ ︷︷ ︸
=f∗(N−i)

+
N∑
i=0

(
N

i

)
f ∗i ⊗ f ∗(N+1−i) + 0f ∗(N+1) ⊗ f ∗(N+1−(N+1))︸ ︷︷ ︸

=0

=
N∑
i=0

(
N

i

)
f ∗(i+1) ⊗ f ∗(N−i) +

N∑
i=0

(
N

i

)
f ∗i ⊗ f ∗(N+1−i),

this yields

(µH ⊗ µH) ◦Ψ ◦ (∆C ⊗∆C) =
N+1∑
i=0

(
N + 1

i

)
f ∗i ⊗ f ∗(N+1−i).
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Hence, (39) becomes

∆H ◦ f ∗(N+1) = (µH ⊗ µH) ◦Ψ ◦ (∆C ⊗∆C)︸ ︷︷ ︸
=
N+1∑
i=0

(
N + 1

i

)
f∗i⊗f∗(N+1−i)

◦∆C

=
N+1∑
i=0

(
N + 1

i

)(
f ∗i ⊗ f ∗(N+1−i)) ◦∆C .

In other words, Lemma 9.7 holds for n = N + 1. This completes the induction step.
The induction proof of Lemma 9.7 is thus complete.

Here is a little brother of Lemma 9.7 (a similar property of εC , much easier to
prove):

Lemma 9.8. Let k be a field. Let C be a k-coalgebra. Let H be a k-
bialgebra. Let f ∈ L (C,H) be an (ε, ε)-coderivation. Then, for every
positive n ∈ N, we have εH ◦ f ∗n = 0.

Proof of Lemma 9.8. Since n is positive, we have f ∗n = f∗f ∗(n−1) = µH◦
(
f ⊗ f ∗(n−1)

)
◦

∆C (by the definition of convolution). Since H is a k-bialgebra, we have εH ◦ µH =
µk ◦ (εH ⊗ εH) (by the axioms of a bialgebra), where µk is the canonical k-module
isomorphism k ⊗ k → k.

Since f is an (ε, ε)-coderivation, we have f (C) ⊆ PrimH (since by Theorem 7.2,
we know that f is an (ε, ε)-coderivation if and only if f (C) ⊆ PrimH). Thus, every
x ∈ C satisfies f (x) ∈ f (C) ⊆ PrimH, so that ε (f (x)) = 0 (by Remark 6.3, applied
to f (x) instead of x) and therefore

(εH ◦ f) (x) = εH (f (x)) = ε (f (x)) = 0.

Since this holds for every x ∈ C, we thus conclude that εH ◦ f = 0.
Now, for every positive n ∈ N, we have

εH ◦ f ∗n︸︷︷︸
=µH◦(f⊗f∗(n−1))◦∆C

= εH ◦ µH︸ ︷︷ ︸
=µk◦(εH⊗εH)

◦
(
f ⊗ f ∗(n−1)

)
◦∆C

= µk ◦ (εH ⊗ εH) ◦
(
f ⊗ f ∗(n−1)

)
◦∆C .

Since an application of (21) yields (εH ◦ f)⊗
(
εH ◦ f ∗(n−1)

)
= (εH ⊗ εH)◦

(
f ⊗ f ∗(n−1)

)
,

this becomes

εH ◦ f ∗n = µk ◦ (εH ⊗ εH) ◦
(
f ⊗ f ∗(n−1)

)︸ ︷︷ ︸
=(εH◦f)⊗(εH◦f∗(n−1))

◦∆C

= µk ◦

(εH ◦ f)︸ ︷︷ ︸
=0

⊗
(
εH ◦ f ∗(n−1)

) ◦∆C = µk ◦
(
0⊗

(
εH ◦ f ∗(n−1)

))︸ ︷︷ ︸
=0

◦∆C

= µk ◦ 0 ◦∆C = 0 (since µk is k-linear) .

This proves Lemma 9.8.
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We can now move on to the proof of Lemma 8.2:

Proof of Lemma 8.2. Assume that f is an (ε, ε)-coderivation. Let x ∈ C.

Since ∆C (x) is a tensor in C ⊗ C, we can write ∆C (x) as ∆C (x) =
m∑
j=1

λjaj ⊗ bj

for some m ∈ N, some elements a1, a2, . . ., am of C, and some elements b1, b2, . . ., bm
of C. Consider this m, these a1, a2, . . ., am, and these b1, b2, . . ., bm.

Every n ∈ N and every i ∈ {0, 1, . . . , n} satisfy

1

n!

(
n

i

)((
f ∗i ⊗ f ∗(n−i)

)
◦∆C

)
(x)︸ ︷︷ ︸

=(f∗i⊗f∗(n−i))(∆C(x))

=
1

n!

(
n

i

)
︸︷︷︸

=
n!

i! (n− i)!

(
f ∗i ⊗ f ∗(n−i)

)
 ∆C (x)︸ ︷︷ ︸

=
m∑
j=1

λjaj⊗bj



=
1

n!
· n!

i! (n− i)!︸ ︷︷ ︸
=

1

i!
·

1

(n− i)!

(
f ∗i ⊗ f ∗(n−i)

)( m∑
j=1

λjaj ⊗ bj

)
︸ ︷︷ ︸

=
m∑
j=1

λjf∗i(aj)⊗f∗(n−i)(bj)

=
1

i!
· 1

(n− i)!
·
m∑
j=1

λjf
∗i (aj)⊗ f ∗(n−i) (bj) =

m∑
j=1

λj
f ∗i (aj)

i!
⊗ f ∗(n−i) (bj)

(n− i)!
. (40)

We have(
∆H ◦ e∗f

)
(x)

= ∆H

(
e∗f (x)

)
= ∆H


∑
i≥0

f ∗i (x)

i!︸ ︷︷ ︸
=

1

i!
f∗i(x)


(by (6))

= ∆H

(∑
i≥0

1

i!
f ∗i (x)

)
=
∑
i≥0

1

i!
∆H

(
f ∗i (x)

)︸ ︷︷ ︸
=(∆H◦f∗i)(x)

(since ∆H is k-linear)

=
∑
i≥0

1

i!

(
∆H ◦ f ∗i

)
(x) =

∑
n≥0

1

n!
(∆H ◦ f ∗n)︸ ︷︷ ︸

=
n∑
i=0

(
n

i

)
(f∗i⊗f∗(n−i))◦∆C

(by Lemma 9.7)

(x)

(here, we renamed the index i as n in the sum)

=
∑
n≥0

1

n!

(
n∑
i=0

(
n

i

)(
f ∗i ⊗ f ∗(n−i)

)
◦∆C

)
(x) .
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Compared to33((
e∗f ⊗ e∗f

)
◦∆C

)
(x)

=
(
e∗f ⊗ e∗f

)
 ∆C (x)︸ ︷︷ ︸

=
m∑
j=1

λjaj⊗bj

 =
(
e∗f ⊗ e∗f

)( m∑
j=1

λjaj ⊗ bj

)

=
m∑
j=1

λj e∗f (aj)︸ ︷︷ ︸
=
∑
i≥0

f ∗i (aj)

i!
(by (6), applied to aj

instead of x)

⊗ e∗f (bj)︸ ︷︷ ︸
=
∑
i≥0

f ∗i (bj)

i!
(by (6), applied to bj

instead of x)

=
m∑
j=1

λj

(∑
i≥0

f ∗i (aj)

i!

)
⊗

(∑
i≥0

f ∗i (bj)

i!

)
=

m∑
j=1

λj

(∑
i≥0

f ∗i (aj)

i!

)
⊗

(∑
`≥0

f ∗` (bj)

`!

)
(here, we renamed the index i as ` in the third sum)

=
m∑
j=1

λj
∑
i≥0

∑
`≥0

f ∗i (aj)

i!
⊗ f ∗` (bj)

`!
=

m∑
j=1

λj
∑
i≥0

∑
n≥0;
i≤n︸ ︷︷ ︸

=
∑
n≥0

∑
i≥0;
i≤n

f ∗i (aj)

i!
⊗ f ∗(n−i) (bj)

(n− i)!

(here, we substituted n for i+ ` in the third sum)

33The following computation is a manipulation with infinite sums. Such manipulations may be
dangerous, since infinite sums (even when they converge) may fail to satisfy some of the rules one
would expect infinite sums to satisfy: For example, switching two summation signs might not always
preserve the sum. However, the specific computation that we are going to do is safe from such troubles,
for the following reasons:

• Whenever a sum appears in the computation, it has the property that all but finitely many of
its addends are zero.

• Whenever two summation signs get switched in the computation, they have the property that all
but finitely many addends of the resulting double sum are zero. (For example, we can trans-

form the “
m∑
j=1

∑
n≥0

∑
i≥0;
i≤n

” into “
∑
n≥0

∑
i≥0;
i≤n

m∑
j=1

” in the triple sum
m∑
j=1

∑
n≥0

∑
i≥0;
i≤n

λj
f∗i (aj)

i!
⊗ f
∗(n−i) (bj)

(n− i)!
,

because all but finitely many triples (j, n, i) ∈ {1, 2, . . . ,m} × N × N satisfying i ≤ n satisfy

λj
f∗i (aj)

i!
⊗ f∗(n−i) (bj)

(n− i)!
= 0.)
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=
m∑
j=1

λj
∑
n≥0

∑
i≥0;
i≤n

f ∗i (aj)

i!
⊗ f ∗(n−i) (bj)

(n− i)!
=

m∑
j=1

∑
n≥0

∑
i≥0;
i≤n

λj
f ∗i (aj)

i!
⊗ f ∗(n−i) (bj)

(n− i)!

=
∑
n≥0

∑
i≥0;
i≤n︸︷︷︸
=

n∑
i=0

m∑
j=1

λj
f ∗i (aj)

i!
⊗ f ∗(n−i) (bj)

(n− i)!︸ ︷︷ ︸
=

1

n!

(
n

i

)
((f∗i⊗f∗(n−i))◦∆C)(x)

(by (40))

=
∑
n≥0

n∑
i=0

1

n!

(
n

i

)((
f ∗i ⊗ f ∗(n−i)

)
◦∆C

)
(x) =

∑
n≥0

1

n!

n∑
i=0

(
n

i

)((
f ∗i ⊗ f ∗(n−i)

)
◦∆C

)
(x)

=
∑
n≥0

1

n!

(
n∑
i=0

(
n

i

)(
f ∗i ⊗ f ∗(n−i)

)
◦∆C

)
(x) ,

this yields (
∆H ◦ e∗f

)
(x) =

((
e∗f ⊗ e∗f

)
◦∆C

)
(x) .

Since this holds for every x ∈ C, we thus conclude that ∆H ◦ e∗f =
(
e∗f ⊗ e∗f

)
◦∆C .

On the other hand, every x ∈ C satisfies

(
εH ◦ e∗f

)
(x) = εH

(
e∗f (x)

)
= εH


∑
i≥0

f ∗i (x)

i!︸ ︷︷ ︸
=

1

i!
f∗i(x)


(by (6))

= εH

(∑
i≥0

1

i!
f ∗i (x)

)
=
∑
i≥0

1

i!
εH
(
f ∗i (x)

)
(since εH is k-linear)

=
1

0!︸︷︷︸
=

1

1
=1

εH

 f ∗0︸︷︷︸
=eC,H=ηH◦εC

(x)

+
∑
i≥1

1

i!
εH
(
f ∗i (x)

)︸ ︷︷ ︸
=(εH◦f∗i)(x)

= εH ((ηH ◦ εC) (x))︸ ︷︷ ︸
=(εH◦ηH◦εC)(x)

+
∑
i≥1

1

i!

(
εH ◦ f ∗i

)︸ ︷︷ ︸
=0

(by Lemma 9.8,
applied to n=i)

(x)

=

 εH ◦ ηH︸ ︷︷ ︸
=id

(by the axioms of a bialgebra,
since H is a bialgebra)

◦εC

 (x) +
∑
i≥1

1

i!
0 (x)︸︷︷︸

=0

= εC (x) +
∑
i≥1

1

i!
0︸ ︷︷ ︸

=0

= εC (x) .

Thus, εH ◦ e∗f = εC . Combined with ∆H ◦ e∗f =
(
e∗f ⊗ e∗f

)
◦∆C , this yields that e∗f

is a k-coalgebra homomorphism. This proves Lemma 8.2.
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Now that we have proved Lemma 8.2, let us formulate three easy corollaries of
Lemma 9.1 and Proposition 9.3 (b). We will not use them in this paper until §22, but
they are commonly used elsewhere:

Corollary 9.9. Let k be a field. Let C and D be k-coalgebras. Let A and
B be k-algebras. Let p : C → A, q : C → A, r : D → B and s : D → B be
four k-linear maps. Then,

(p⊗ r) ∗ (q ⊗ s) = (p ∗ q)⊗ (r ∗ s)

(this is an equality between two maps C ⊗ D → A ⊗ B). Here, (p⊗ r) ∗
(q ⊗ s) denotes the convolution of the two k-linear maps p⊗ r : C ⊗D →
A⊗B and q⊗ s : C ⊗D → A⊗B. (This convolution is well-defined, since
C ⊗D is a k-coalgebra and A⊗B is a k-algebra.)

Corollary 9.10. Let k be a field. Let C and D be k-coalgebras. Let A
and B be k-algebras. Let f : C → A and g : D → B be two k-linear maps.
Let maps eC,A : C → A and eD,B : D → B be defined as in Definition 1.12.
Then,

(f ⊗ eD,B) ∗ (eC,A ⊗ g) = f ⊗ g = (eC,A ⊗ g) ∗ (f ⊗ eD,B)

(this is an equality between two maps C ⊗D → A ⊗ B). Here, ∗ denotes
the convolution of the k-linear maps C ⊗D → A⊗B. (This convolution is
well-defined, since C ⊗D is a k-coalgebra and A⊗B is a k-algebra.)

Corollary 9.11. Let k be a field. Let C and D be k-coalgebras. Let A
and B be k-algebras. Let a map eD,B : D → B be defined as in Defini-
tion 1.12. Recall that C ⊗ D is a k-coalgebra and A ⊗ B is a k-algebra;
hence, L (C ⊗D,A⊗B) becomes a k-algebra with respect to convolution.

(a) For any two k-linear maps f : C → A and g : C → A, we have

(f ⊗ eD,B) ∗ (g ⊗ eD,B) = (f ∗ g)⊗ eD,B

(this is an equality between two maps C ⊗D → A⊗B).

(b) We have eC,A ⊗ eD,B = eC⊗D,A⊗B.

(c) For any k-linear map f : C → A and any i ∈ N, we have (f ⊗ eD,B)∗i =
f ∗i ⊗ eD,B.

Proof of Corollary 9.9. By the definition of the k-algebra A ⊗ B, we have µA⊗B =
(µA ⊗ µB) ◦ (idA⊗τB,A ⊗ idB), where τB,A is defined according to Definition 9.2.

By the definition of the k-coalgebra C ⊗D, we have ∆C⊗D = (idC ⊗τC,D ⊗ idD) ◦
(∆C ⊗∆D), where τC,D is defined according to Definition 9.2.
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Now, by the definition of convolution,

(p⊗ r) ∗ (q ⊗ s)
= µA⊗B︸ ︷︷ ︸

=(µA⊗µB)◦(idA⊗τB,A⊗idB)

◦ ((p⊗ r)⊗ (q ⊗ s))︸ ︷︷ ︸
=p⊗r⊗q⊗s

◦ ∆C⊗D︸ ︷︷ ︸
=(idC ⊗τC,D⊗idD)◦(∆C⊗∆D)

= (µA ⊗ µB) ◦ (idA⊗τB,A ⊗ idB) ◦ (p⊗ r ⊗ q ⊗ s)︸ ︷︷ ︸
=(p⊗q⊗r⊗s)◦(idC ⊗τD,C⊗idD)

(by Proposition 9.3 (b), applied to
U=C, V=D, W=C, T=D, U ′=A, V ′=B, W ′=A, T ′=B,

e=p, f=r, g=q and h=s)

◦ (idC ⊗τC,D ⊗ idD) ◦ (∆C ⊗∆D)

= (µA ⊗ µB) ◦ (p⊗ q ⊗ r ⊗ s) ◦ (idC ⊗τD,C ⊗ idD) ◦ (idC ⊗τC,D ⊗ idD) ◦ (∆C ⊗∆D) .
(41)

Recall that any two k-vector spaces V and W satisfy τV,W ◦ τW,V = idW⊗V . Applied
to V = D and W = C, this yields τD,C ◦ τC,D = idC⊗D. Hence, (τD,C ◦ τC,D)︸ ︷︷ ︸

=idC⊗D

⊗ idD =

idC⊗D⊗ idD = idC⊗D⊗D. But since

(τD,C ◦ τC,D)⊗ idD︸︷︷︸
=idD ◦ idD

= (τD,C ◦ τC,D)⊗ (idD ◦ idD) = (τD,C ⊗ idD) ◦ (τC,D ⊗ idD)

(by (21), applied to U = C ⊗D, V = D ⊗ C, W = C ⊗D, U ′ = D, V ′ = D, W ′ = D,
α = τC,D, β = τD,C , α′ = idD, β′ = idD), this becomes

(τD,C ⊗ idD) ◦ (τC,D ⊗ idD) = idC⊗D⊗D .

Hence,

idC ⊗ ((τD,C ⊗ idD) ◦ (τC,D ⊗ idD))︸ ︷︷ ︸
=idC⊗D⊗D

= idC ⊗ idC⊗D⊗D = idC⊗C⊗D⊗D .

But since

idC︸︷︷︸
=idC ◦ idC

⊗ ((τD,C ⊗ idD) ◦ (τC,D ⊗ idD)) = (idC ◦ idC)⊗ ((τD,C ⊗ idD) ◦ (τC,D ⊗ idD))

= (idC ⊗τD,C ⊗ idD) ◦ (idC ⊗τC,D ⊗ idD)

(by (21), applied to U = C, V = C, W = C, U ′ = C ⊗ D ⊗ D, V ′ = D ⊗ C ⊗ D,
W ′ = C ⊗D ⊗D, α = idC , β = idC , α′ = τC,D ⊗ idD, β′ = τD,C ⊗ idD), this becomes

(idC ⊗τD,C ⊗ idD) ◦ (idC ⊗τC,D ⊗ idD) = idC⊗C⊗D⊗D .

Hence, (41) becomes

(p⊗ r) ∗ (q ⊗ s)
= (µA ⊗ µB) ◦ (p⊗ q ⊗ r ⊗ s) ◦ (idC ⊗τD,C ⊗ idD) ◦ (idC ⊗τC,D ⊗ idD)︸ ︷︷ ︸

=idC⊗C⊗D⊗D

◦ (∆C ⊗∆D)

= (µA ⊗ µB) ◦ (p⊗ q ⊗ r ⊗ s) ◦ (∆C ⊗∆D) = (p ∗ q)⊗ (r ∗ s)

(by Lemma 9.1). This proves Corollary 9.9.
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Proof of Corollary 9.10. Applying Corollary 9.9 to p = f , q = eC,A, r = eD,B and
s = g, we obtain

(f ⊗ eD,B) ∗ (eC,A ⊗ g) = (f ∗ eC,A)︸ ︷︷ ︸
=f

⊗ (eD,B ∗ g)︸ ︷︷ ︸
=g

= f ∗ g.

Applying Corollary 9.9 to p = eC,A, q = f , r = g and s = eD,B, we obtain

(eC,A ⊗ g) ∗ (f ⊗ eD,B) = (eC,A ∗ f)︸ ︷︷ ︸
=f

⊗ (g ∗ eD,B)︸ ︷︷ ︸
=g

= f ∗ g.

Thus, we have shown that (f ⊗ eD,B) ∗ (eC,A ⊗ g) = f ∗ g = (eC,A ⊗ g) ∗ (f ⊗ eD,B).
This proves Corollary 9.10.

Proof of Corollary 9.11. (a) Let f : C → A and g : C → A be two k-linear maps.
Applying Corollary 9.9 to p = f , q = g, r = eD,B and s = eD,B, we obtain

(f ⊗ eD,B) ∗ (g ⊗ eD,B) = (f ∗ g)⊗ (eD,B ∗ eD,B)︸ ︷︷ ︸
=eD,B

= (f ∗ g)⊗ eD,B.

This proves Corollary 9.11 (a).
(b) We have

eC⊗D,A⊗B = ηA⊗B︸ ︷︷ ︸
=ηA⊗ηB

(by the definition of
the k-algebra A⊗B)

◦ εC⊗D︸ ︷︷ ︸
=εC⊗εD

(by the definition of
the k-coalgebra C⊗D)

(by the definition of eC⊗D,A⊗B)

= (ηA ⊗ ηB) ◦ (εC ⊗ εD)

and

eC,A︸︷︷︸
=ηA◦εC

(by the definition of eC,A)

⊗ eD,B︸︷︷︸
=ηB◦εD

(by the definition of eD,B)

= (ηA ◦ εC)⊗(ηB ◦ εD) = (ηA ⊗ ηB)◦(εC ⊗ εD)

(by (21), applied to U = C, V = k, W = A, U ′ = D, V ′ = k, W ′ = B, α = εC , β = ηA,
α′ = εD and β′ = ηB). Thus, eC⊗D,A⊗B = (ηA ⊗ ηB) ◦ (εC ⊗ εD) = eC,A ⊗ eD,B. This
proves Corollary 9.11 (b).

(c) We are going to prove Corollary 9.11 (c) by induction over i:
Induction base: For every k-linear map f : C → A, we have

(f ⊗ eD,B)∗0 = eC⊗D,A⊗B = eC,A︸︷︷︸
=f∗0

⊗eD,B (by Corollary 9.11 (b))

= f ∗0 ⊗ eD,B.

In other words, Corollary 9.11 (c) holds for i = 0. This completes the induction base.
Induction step: Let n ∈ N. Assume that Corollary 9.11 (c) holds for i = n. Now

we will prove that Corollary 9.11 (c) also holds for i = n+ 1.
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Let f : C → A be a k-linear map. Then, (f ⊗ eD,B)∗n = f ∗n ⊗ eD,B (since Corol-
lary 9.11 (c) holds for i = n). Now,

(f ⊗ eD,B)∗(n+1) = (f ⊗ eD,B) ∗ (f ⊗ eD,B)∗n︸ ︷︷ ︸
=f∗n⊗eD,B

= (f ⊗ eD,B) ∗ (f ∗n ⊗ eD,B)

= (f ∗ f ∗n)︸ ︷︷ ︸
=f∗(n+1)

⊗eD,B (by Corollary 9.11 (a), applied to g = f ∗n)

= f ∗(n+1) ⊗ eD,B.

Thus, Corollary 9.11 (c) holds for i = n + 1. We thus have completed the induction
step. The induction proof of Corollary 9.11 (c) is thus complete.

§10. The product of coalgebra homomorphisms

The next result will be used in our proof of Lemma 8.3, but is actually much more
fundamental and important than Lemma 8.3:

Proposition 10.1. Let k be a field. Let C be a cocommutative k-coalgebra.
Let H be a k-bialgebra. Let f : C → H and g : C → H be two k-coalgebra
homomorphisms. Then, f∗g : C → H is also a k-coalgebra homomorphism.

The proof of this proposition is similar to (but much simpler than!) the induction
step in the proof of Lemma 9.7 above. (It is simpler because we don’t have to work with
sums, so we do not need distributivity and k-bilinearity of tensoring and composition.)
Here are the details that any reader should be able to see on his own anyway:

Proof of Proposition 10.1. Since f is a k-coalgebra homomorphism, we have ∆H ◦ f =
(f ⊗ f) ◦ ∆C and εH ◦ f = εC . Since g is a k-coalgebra homomorphism, we have
∆H ◦ g = (g ⊗ g) ◦∆C and εH ◦ g = εC .

By the definition of convolution, f ∗ g = µH ◦ (f ⊗ g) ◦∆C , so that

∆H ◦ (f ∗ g) = ∆H ◦ µH︸ ︷︷ ︸
=(µH⊗µH)◦(idH ⊗τH,H⊗idH)◦(∆H⊗∆H)

(by the axioms of a bialgebra, since H is a bialgebra)

◦ (f ⊗ g) ◦∆C

= (µH ⊗ µH) ◦ (idH ⊗τH,H ⊗ idH) ◦ (∆H ⊗∆H) ◦ (f ⊗ g) ◦∆C . (42)

But an application of (21) yields (∆H ◦ f)⊗ (∆H ◦ g) = (∆H ⊗∆H) ◦ (f ⊗ g), so that

(∆H ⊗∆H) ◦ (f ⊗ g)

= (∆H ◦ f)︸ ︷︷ ︸
=(f⊗f)◦∆C

⊗ (∆H ◦ g)︸ ︷︷ ︸
=(g⊗g)◦∆C

= ((f ⊗ f) ◦∆C)⊗ ((g ⊗ g) ◦∆C)

= (f ⊗ f ⊗ g ⊗ g) ◦ (∆C ⊗∆C)(
by (21), applied to U = C, V = C ⊗ C, W = H ⊗H, U ′ = C, V ′ = C ⊗ C,

W ′ = H ⊗H, α = ∆C , β = f ⊗ f , α′ = ∆C and β′ = g ⊗ g

)
.
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Hence, (42) becomes

∆H ◦ (f ∗ g)

= (µH ⊗ µH) ◦ (idH ⊗τH,H ⊗ idH) ◦ (∆H ⊗∆H) ◦ (f ⊗ g)︸ ︷︷ ︸
=(f⊗f⊗g⊗g)◦(∆C⊗∆C)

◦∆C

= (µH ⊗ µH) ◦ (idH ⊗τH,H ⊗ idH) ◦ (f ⊗ f ⊗ g ⊗ g)︸ ︷︷ ︸
=(f⊗g⊗f⊗g)◦(idC ⊗τC,C⊗idC)

(by Proposition 9.3 (b), applied to C, C, C, C,
H, H, H, H, f , f , g, g instead of

U , V , W , T , U ′, V ′, W ′, T ′, e, f , g, h)

◦ (∆C ⊗∆C) ◦∆C

= (µH ⊗ µH) ◦ (f ⊗ g ⊗ f ⊗ g) ◦ (idC ⊗τC,C ⊗ idC) ◦ (∆C ⊗∆C) ◦∆C︸ ︷︷ ︸
=(∆C⊗∆C)◦∆C

(by (26))

= (µH ⊗ µH) ◦ (f ⊗ g ⊗ f ⊗ g) ◦ (∆C ⊗∆C)︸ ︷︷ ︸
=(f∗g)⊗(f∗g)

(by Lemma 9.1, applied to A=H, B=H, D=C, p=f , q=g, r=f and s=g)

◦∆C

= ((f ∗ g)⊗ (f ∗ g)) ◦∆C .

Also, let us denote by µk the canonical isomorphism k ⊗ k → k. Then, µk is the
multiplication map of the k-algebra k. By the axioms of a bialgebra, εH is a k-algebra
homomorphism (since H is a bialgebra); thus, εH ◦µH = µk ◦ (εH ⊗ εH). On the other
hand, (εH ◦ f)⊗(εH ◦ g) = (εH ⊗ εH)◦(f ⊗ g) (by an application of (21)). Using these
equalities, we have

εH ◦ (f ∗ g)︸ ︷︷ ︸
=µH◦(f⊗g)◦∆C

= εH ◦ µH︸ ︷︷ ︸
=µk◦(εH⊗εH)

◦ (f ⊗ g) ◦∆C = µk ◦ (εH ⊗ εH) ◦ (f ⊗ g)︸ ︷︷ ︸
=(εH◦f)⊗(εH◦g)

◦∆C

= µk ◦

(εH ◦ f)︸ ︷︷ ︸
=εC

⊗ (εH ◦ g)︸ ︷︷ ︸
=εC

 ◦∆C = µk ◦ (εC ⊗ εC) ◦∆C .

But from the axioms of a coalgebra, it is easy to see that µk ◦ (εC ⊗ εC) ◦ ∆C = εC
34. Altogether, we thus have

εH ◦ (f ∗ g) = µk ◦ (εC ⊗ εC) ◦∆C = εC .

Combined with ∆H ◦ (f ∗ g) = ((f ∗ g)⊗ (f ∗ g)) ◦ ∆C , this yields that f ∗ g is a
k-coalgebra homomorphism. This proves Proposition 10.1.

As a consequence, we have:

34Proof. Every x ∈ C satisfies ((εC ⊗ εC) ◦∆C) (x) = εC (x) 1⊗ 1 (by Lemma 9.6 (a)) and thus

(µk ◦ (εC ⊗ εC) ◦∆C) (x) = µk

((εC ⊗ εC) ◦∆C) (x)︸ ︷︷ ︸
=εC(x)1⊗1

 = µk (εC (x) 1⊗ 1)

= εC (x) (by the definition of µk) .

Hence, µk ◦ (εC ⊗ εC) ◦∆C = εC , qed.
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Corollary 10.2. Let k be a field. Let C be a cocommutative k-coalgebra.
Let H be a k-bialgebra. Let f : C → H be a k-coalgebra homomorphism.
Let n ∈ N. Then, f ∗n : C → H is also a k-coalgebra homomorphism.

Proof of Corollary 10.2. We are going to prove Corollary 10.2 by induction over n.
Induction base: Consider the obvious canonical k-coalgebra structure on k (with ∆k

being the canonical isomorphism k → k⊗k, and εk being the identity map). Lemma 9.6
(b) shows that εC : C → k is a k-coalgebra homomorphism. Combined with the fact
that ηH : k → H is a k-coalgebra homomorphism (because H is a k-bialgebra), this
yields that ηH ◦ εC is a k-coalgebra homomorphism (since the composition of two k-
coalgebra homomorphisms is a k-coalgebra homomorphism). Since f ∗0 = eC,H = ηH◦εC
(by the definition of eC,H), this yields that f ∗0 is a k-coalgebra homomorphism. In other
words, Corollary 10.2 holds for n = 0. This completes the induction base.

Induction step: Let N ∈ N. Assume that Corollary 10.2 holds for n = N . We must
now prove that Corollary 10.2 also holds for n = N + 1.

Since Corollary 10.2 holds for n = N , we know that f ∗N is a k-coalgebra homomor-
phism. Proposition 10.1 (applied to g = f ∗N) now yields that f ∗ f ∗N is a k-coalgebra
homomorphism. Since f ∗ f ∗N = f ∗(N+1), this yields that f ∗(N+1) is a k-coalgebra
homomorphism. In other words, Corollary 10.2 holds for n = N + 1. This completes
the induction step. The induction proof of Corollary 10.2 is thus complete.

§11. The addition-to-multiplication property of the

exponent

One more thing we need about exponentiation (the map g (C,H)→ G (C,H), f 7→ e∗f )
is the following property (which gives us the moral claim to call it exponentiation!):

Proposition 11.1. Let k be a field of characteristic 0. Let C be a con-
nected filtered k-coalgebra. Let H be a k-algebra. Let f ∈ g (C,H) and
g ∈ g (C,H) be such that f ∗ g = g ∗ f . Then, e∗(f+g) = e∗f ∗ e∗g.

Note that the condition f ∗ g = g ∗ f in this proposition can be replaced by the
stronger condition that C be cocommutative and H be commutative: In fact, whenever
C is cocommutative and H is commutative, it is easy to see that any two k-linear maps
f : C → H and g : C → H satisfy f ∗ g = g ∗ f . We are not going to use and prove
this, though.

Before we prove Proposition 11.1, let us state a basic fact in noncommutative alge-
bra:

Proposition 11.2. Let k be a field. Let A be a k-algebra. Let S be a
subset of A such that the k-algebra A is generated by S. Assume that any
two elements of S commute. Then, the k-algebra A is commutative.

Proposition 11.2 is usually stated in the form “a k-algebra generated by pairwise
commuting generators must be commutative”.

Proof of Proposition 11.2. For every a ∈ A, let Z (a) denote the subset

{b ∈ A | ab = ba}
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of A. Then, for every a ∈ A, the subset Z (a) of A is a k-subalgebra of A 35.
The k-algebra A is generated by S. In other words, the k-subalgebra of A generated

by S is A. In other words, A is the k-subalgebra of A generated by S. In other words,
A is the smallest k-subalgebra of A which contains S as a subset (because the k-
subalgebra of A generated by S is the smallest k-subalgebra of A which contains S as
a subset). Hence,(

whenever U is a k-subalgebra of A which contains S as
a subset, we must necessarily have A ⊆ U

)
. (43)

Now, fix an s ∈ S. We know that for every a ∈ A, the subset Z (a) of A is a
k-subalgebra of A. Applying this to a = s, we obtain the following: The subset Z (s)
of A is a k-subalgebra of A (since we know that for every a ∈ A, the subset Z (a) of
A is a k-subalgebra of A). But we have S ⊆ Z (s) 36. Hence, Z (s) contains S as a
subset.

Now, we know that Z (s) is a k-subalgebra of A which contains S as a subset. Hence,
(43) (applied to U = Z (s)) yields Z (s) = A. Thus, A = Z (s) = {b ∈ A | sb = bs}
(by the definition of Z (s)).

Now, forget that we fixed s ∈ S. We thus have shown that every s ∈ S satisfies
A = {b ∈ A | sb = bs}.

Now, fix some a ∈ A. Recall that the subset Z (a) of A is a k-subalgebra of A.
Moreover, S ⊆ Z (a). 37 In other words, Z (a) contains S as a subset.

35Proof. Let a ∈ A. The definition of Z (a) yields Z (a) = {b ∈ A | ab = ba}.
We know that 0 is an element of A and satisfies a · 0 = 0 · a (since a · 0 = 0 = 0 · a). In other words,

0 ∈ {b ∈ A | ab = ba} = Z (a).
We know that 1 is an element of A and satisfies a · 1 = 1 · a (since a · 1 = a = 1 · a). In other words,

1 ∈ {b ∈ A | ab = ba} = Z (a).
Let c ∈ Z (a) and d ∈ Z (a). Then, c ∈ Z (a) = {b ∈ A | ab = ba}. In other words, c is an element

of A and satisfies ac = ca. Also, d ∈ Z (a) = {b ∈ A | ab = ba}. In other words, d is an element of
A and satisfies ad = da. Now, a (c+ d) = ac︸︷︷︸

=ca

+ ad︸︷︷︸
=da

= ca+ da = (c+ d) a and ac︸︷︷︸
=ca

d = c ad︸︷︷︸
=da

= cda.

So we know that c + d is an element of A and satisfies a (c+ d) = (c+ d) a. In other words,
c + d ∈ {b ∈ A | ab = ba} = Z (a). Also, cd is an element of A and satisfies acd = cda. In other
words, cd ∈ {b ∈ A | ab = ba} = Z (a).

Now, forget that we fixed c and d. We thus have shown that every c ∈ Z (a) and d ∈ Z (a) satisfy
c+ d ∈ Z (a) and cd ∈ Z (a).

Next, let λ ∈ k and c ∈ Z (a). Then, c ∈ Z (a) = {b ∈ A | ab = ba}. In other words, c is an
element of A and satisfies ac = ca. Now, λc is an element of A and satisfies a (λc) = (λc) a (since
a (λc) = λ ac︸︷︷︸

=ca

= λca = (λc) a). In other words, λc ∈ {b ∈ A | ab = ba} = Z (a). So we know that λc

is an element of A and satisfies λc ∈ Z (a). Combined with the fact that every c ∈ Z (a) and d ∈ Z (a)
satisfy c + d ∈ Z (a), and combined with the fact that 0 ∈ Z (a), this yields that Z (a) is a k-vector
subspace of A. Combined with the fact that 1 ∈ Z (a), and combined with the fact that c ∈ Z (a) and
d ∈ Z (a) satisfy cd ∈ Z (a), this yields that Z (a) is a k-subalgebra of A, qed.

36Proof. Let t ∈ S. Then, t is an element of S. Also, the elements s and t of S commute
(since any two elements of S commute). Thus, st = ts. Now, the definition of Z (s) yields
Z (s) = {b ∈ A | sb = bs}. But t is an element of A and satisfying st = ts. In other words,
t ∈ {b ∈ A | sb = bs} = Z (s).

Now, forget that we fixed t. We thus have proven that every t ∈ S satisfies t ∈ Z (s). In other
words, S ⊆ Z (s), qed.

37Proof. Let s ∈ S. We have a ∈ A = {b ∈ A | sb = bs}. In other words, a is an element of A and
satisfies sa = as. Thus, as = sa.
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Now, we know that Z (a) is a k-subalgebra of A which contains A as a subset.
Hence, (43) (applied to U = Z (a)) yields Z (a) = A. Hence, A = Z (a).

Now let c ∈ A be arbitrary. Then, c ∈ A = Z (a) = {b ∈ A | ab = ba} (by the
definition of Z (a)). In other words, c is an element of A and satisfies ac = ca.

Now, forget that we fixed a and c. We thus have proven that every a ∈ A and c ∈ A
satisfy ac = ca. In other words, the k-algebra A is commutative. Proposition 11.2 is
proven.

We record a corollary of Proposition 11.2 for easy reference:

Corollary 11.3. Let k be a field. Let A be a k-algebra. Let f and g be two
elements of A. Assume that f and g commute. Let H be the k-subalgebra
of A generated by f and g. Then, the k-algebra H is commutative.

Proof of Corollary 11.3. Let S = {f, g}. Recall that H is the k-subalgebra of A gener-
ated by f and g. In other words,

H = (the k-subalgebra of A generated by f and g)

=

the k-subalgebra of A generated by {f, g}︸ ︷︷ ︸
=S


= (the k-subalgebra of A generated by S) ⊇ S.

Thus, S is a subset of H. Moreover, the k-algebra H is generated by S (because H =
(the k-subalgebra of A generated by S)). Finally, any two elements of S commute.38

Hence, Proposition 11.2 (applied to H instead of A) yields that the k-algebra H is
commutative. This proves Corollary 11.3.

But recall that the definition of Z (a) yields Z (a) = {b ∈ A | ab = ba}. Now, s is an element of a
and satisfies as = sa. In other words, s ∈ {b ∈ A | ab = ba} = Z (a).

Now, forget that we fixed s. We thus have proven that every s ∈ S satisfies s ∈ Z (a). In other
words, S ⊆ Z (a), qed.

38Proof. Let u and v be two elements of S. We are going to prove that uv = vu.
We have u ∈ S = {f, g}. Hence, we must be in one of the following two cases:
Case 1: We have u = f .
Case 2: We have u = g.
Let us consider Case 1 first. In this case, we have u = f .
We have v ∈ S = {f, g}. Hence, we must be in one of the following two subcases:
Subcase 1.1: We have v = f .
Subcase 1.2: We have v = g.
Let us first consider Subcase 1.1. In this subcase, we have v = f . Now, u︸︷︷︸

=f

v︸︷︷︸
=f

= ff and

v︸︷︷︸
=f

u︸︷︷︸
=f

= ff . Hence, uv = ff = vu. Thus, uv = vu is proven in Subcase 1.1.

Let us next consider Subcase 1.2. In this subcase, we have v = g. Now, u︸︷︷︸
=f

v︸︷︷︸
=g

= fg and

v︸︷︷︸
=g

u︸︷︷︸
=f

= gf . Hence, uv = fg = gf = vu. Thus, uv = vu is proven in Subcase 1.2.

We now have proven uv = vu in each of the two Subcases 1.1 and 1.2. Since these two Subcases
cover the whole Case 1, this yields that uv = vu always holds in Case 1.

Let us now consider Case 2. In this case, we must have u = g.
We have v ∈ S = {f, g}. Hence, we must be in one of the following two subcases:
Subcase 2.1: We have v = f .
Subcase 2.2: We have v = g.
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Proof of Proposition 11.1. Let x ∈ C. By (6) (applied to f ∗ g instead of f), we have

e∗(f+g) (x) =
∑
i≥0

(f + g)∗i (x)

i!
. (44)

We have f ∗ g = g ∗ f . In other words, f and g commute (as elements of L (C,H)).
Now, let H be the k-subalgebra of L (C,H) generated by f and g. Then, the k-algebra
H is commutative (by Corollary 11.3, applied to A = L (C,H)).

Thus, H is a commutative k-algebra. Hence, we can calculate inside H as in any

commutative algebra; in particular, we thus obtain (f + g)∗i =
i∑

j=0

(
i

j

)
f ∗j ∗ g∗(i−j) (by

the binomial formula) for every i ∈ N. Hence, (44) becomes

e∗(f+g) (x) =
∑
i≥0

(
i∑

j=0

(
i

j

)
f ∗j ∗ g∗(i−j)

)
(x)

i!
=
∑
i≥0

i∑
j=0

(
i

j

)(
f ∗j ∗ g∗(i−j)

)
(x)

i!

=
∑
i≥0

1

i!

i∑
j=0

(
i

j

)(
f ∗j ∗ g∗(i−j)

)
(x)

=
∑
i≥0

i∑
j=0︸︷︷︸

=
∑
j≥0;
j≤i

1

i!

(
i

j

)
︸ ︷︷ ︸

=
1

j! (i− j)!

(since

(
i

j

)
=

i!

j! (i− j)!
)

(
f ∗j ∗ g∗(i−j)

)
(x)

=
∑
i≥0

∑
j≥0;
j≤i

1

j! (i− j)!
(
f ∗j ∗ g∗(i−j)

)
(x) . (45)

Since ∆C (x) is a tensor in C⊗C, we can write ∆C (x) as ∆C (x) =
m∑̀
=1

λ`a`⊗ b` for

some m ∈ N, some elements a1, a2, . . ., am of C, and some elements b1, b2, . . ., bm of
C. Consider this m, these a1, a2, . . ., am, and these b1, b2, . . ., bm. Then, every i ∈ N

Let us first consider Subcase 2.1. In this subcase, we have v = f . Now, u︸︷︷︸
=g

v︸︷︷︸
=f

= gf and

v︸︷︷︸
=f

u︸︷︷︸
=g

= fg = gf . Hence, uv = gf = vu. Thus, uv = vu is proven in Subcase 2.1.

Let us next consider Subcase 2.2. In this subcase, we have v = g. Now, u︸︷︷︸
=g

v︸︷︷︸
=g

= gg and

v︸︷︷︸
=g

u︸︷︷︸
=g

= gg. Hence, uv = gg = vu. Thus, uv = vu is proven in Subcase 2.2.

We now have proven uv = vu in each of the two Subcases 2.1 and 2.2. Since these two Subcases
cover the whole Case 2, this yields that uv = vu always holds in Case 2.

We now have proven uv = vu in each of the two Cases 1 and 2. Since these two Cases cover all
possibilities, this yields that uv = vu always holds. In other words, u and v commute.

Now, forget that we fixed u and v. We thus have shown that u and v commute for any two elements
u and v of S. In other words, any two elements of S commute, qed.
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and j ∈ N satisfy(
f ∗j ∗ g∗i

)︸ ︷︷ ︸
=µH◦(f∗j⊗g∗i)◦∆C

(by the definition of convolution)

(x)

=
(
µH ◦

(
f ∗j ⊗ g∗i

)
◦∆C

)
(x) = µH

(f ∗j ⊗ g∗i)
 ∆C (x)︸ ︷︷ ︸

=
m∑̀
=1
λ`a`⊗b`




= µH


(
f ∗j ⊗ g∗i

)( m∑
`=1

λ`a` ⊗ b`

)
︸ ︷︷ ︸

=
m∑̀
=1

λ`f∗j(a`)⊗g∗i(b`)


= µH

(
m∑
`=1

λ`f
∗j (a`)⊗ g∗i (b`)

)

=
m∑
`=1

λ`f
∗j (a`) g

∗i (b`) (since µH is the multiplication map) . (46)
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On the other hand,39(
e∗f ∗ e∗g

)︸ ︷︷ ︸
=µH◦(e∗f⊗e∗g)◦∆C

(by the definition of convolution)

(x)

=
(
µH ◦

(
e∗f ⊗ e∗g

)
◦∆C

)
(x) = µH

(e∗f ⊗ e∗g)
 ∆C (x)︸ ︷︷ ︸

=
m∑̀
=1
λ`a`⊗b`




= µH


(
e∗f ⊗ e∗g

)( m∑
`=1

λ`a` ⊗ b`

)
︸ ︷︷ ︸

=
m∑̀
=1

λ`e∗f (a`)⊗e∗g(b`)


= µH

(
m∑
`=1

λ`e
∗f (a`)⊗ e∗g (b`)

)
=

m∑
`=1

λ` e∗f (a`)︸ ︷︷ ︸
=
∑
i≥0

f ∗i (a`)

i!
(by (6), applied

to a` instead of x)

e∗g (b`)︸ ︷︷ ︸
=
∑
i≥0

g∗i (b`)

i!
(by (6), applied

to b` and g instead of x and f)

(because µH is the multiplication map)

39The following computation is a manipulation with infinite sums. Such manipulations may be
dangerous, since infinite sums (even when they converge) may fail to satisfy some of the rules one
would expect infinite sums to satisfy: For example, switching two summation signs might not always
preserve the sum. However, the specific computation that we are going to do is safe from such troubles,
for the following reasons:

• Whenever a sum appears in the computation, it has the property that all but finitely many of
its addends are zero.

• Whenever two summation signs get switched in the computation, they have the prop-
erty that all but finitely many addends of the resulting double sum are zero.
(For example, we can transform the “

∑
j≥0

∑
i≥0;
j≤i

” into “
∑
i≥0

∑
j≥0;
j≤i

” in the double sum

∑
j≥0

∑
i≥0;
j≤i

1

j! (i− j)!
(
f∗j ∗ g∗(i−j)

)
(x), because all but finitely many pairs (i, j) ∈ N×2 satisfying

j ≤ i satisfy
1

j! (i− j)!
(
f∗j ∗ g∗(i−j)

)
(x) = 0.)
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=
m∑
`=1

λ`

(∑
i≥0

f ∗i (a`)

i!

)(∑
i≥0

g∗i (b`)

i!

)
=

m∑
`=1

λ`

(∑
j≥0

f ∗j (a`)

j!

)(∑
i≥0

g∗i (b`)

i!

)
(here, we renamed the index i as j in the second sum)

=
m∑
`=1

λ`
∑
j≥0

∑
i≥0

f ∗j (a`)

j!

g∗i (b`)

i!︸ ︷︷ ︸
=

1

j!i!
f∗j(a`)g∗i(b`)

=
m∑
`=1

λ`
∑
j≥0

∑
i≥0

1

j!i!
f ∗j (a`) g

∗i (b`)

=
∑
j≥0

∑
i≥0

1

j!i!

m∑
`=1

λ`f
∗j (a`) g

∗i (b`)︸ ︷︷ ︸
=(f∗j∗g∗i)(x)

(by (46))

=
∑
j≥0

∑
i≥0

1

j!i!

(
f ∗j ∗ g∗i

)
(x)

=
∑
j≥0

∑
i≥j︸︷︷︸

=
∑
i≥0;
i≥j

∑
i≥0;
j≤i

1

j! (i− j)!
(
f ∗j ∗ g∗(i−j)

)
(x)

(here, we substituted i− j for i in the second sum)

=
∑
j≥0

∑
i≥0;
j≤i︸ ︷︷ ︸

=
∑
i≥0

∑
j≥0;
j≤i

1

j! (i− j)!
(
f ∗j ∗ g∗(i−j)

)
(x) =

∑
i≥0

∑
j≥0;
j≤i

1

j! (i− j)!
(
f ∗j ∗ g∗(i−j)

)
(x) .

Compared to (45), this yields
(
e∗f ∗ e∗g

)
(x) = e∗(f+g) (x). Since this is proven for all

x ∈ C, we can conclude that e∗f ∗ e∗g = e∗(f+g). Proposition 11.1 is thus proven.

As a consequence, we can describe the natural powers of exponentials:

Corollary 11.4. Let k be a field of characteristic 0. Let C be a connected
filtered k-coalgebra. Let H be a k-algebra. Let f ∈ g (C,H) and n ∈ N.
Then, e∗(nf) =

(
e∗f
)∗n

.

We could extend this corollary to hold for all n ∈ Z (it is not a priori clear that e∗f

is invertible as an element of L (C,H), but it is true), but we won’t need this extension,
so we don’t prove it.

Proof of Corollary 11.4. We are going to prove Corollary 11.4 by induction over n:

74



Induction base: We have e∗0 = eC,H
40. Thus, e∗(0f) = e∗0 = eC,H =

(
e∗f
)∗0

. In
other words, Corollary 11.4 holds for n = 0. This completes the induction base.

Induction step: Let N ∈ N be arbitrary. Assume that Corollary 11.4 holds for
n = N . We now must prove that Corollary 11.4 also holds for n = N + 1.

Since Corollary 11.4 holds for n = N , we have e∗(Nf) =
(
e∗f
)∗N

. Since f ∗ (Nf) =
N (f ∗ f) = (Nf) ∗ f , we can apply Proposition 11.1 to g = Nf , and conclude that
e∗(f+Nf) = e∗f ∗ e∗(Nf). Since (N + 1) f = f +Nf , we now have

e∗((N+1)f) = e∗(f+Nf) = e∗f ∗ e∗(Nf)︸ ︷︷ ︸
=(e∗f)

∗N

= e∗f ∗
(
e∗f
)∗N

=
(
e∗f
)∗(N+1)

.

In other words, Corollary 11.4 holds for n = N + 1. This completes the induction step.
Thus, the induction proof of Corollary 11.4 is done.

§12. The “coalgebra homomorphism =⇒ (ε, ε)-coderivation”

direction

Our proof of Lemma 8.3 will further need the following, purely linear-algebraic fact
about filtered vector spaces over a field of characteristic 0.

Proposition 12.1. Let k be a field of characteristic 0. Let V be a filtered
k-vector space. Let W be a k-vector space. For every n ∈ N, let hn : V →
W be a k-linear map such that hn (V≤n−1) = 0.

(a) Then, for every x ∈ V and every t ∈ Z, the element
∑
i≥0

tihi (x) ∈ W is

well-defined, i. e., the infinite sum
∑
i≥0

tihi (x) converges with respect to the

discrete topology.

(b) Assume that every x ∈ V and every t ∈ N satisfy
∑
i≥0

tihi (x) = 0. Then,

hn = 0 for every n ∈ N.

To get an intuition for this proposition, we should note that part (a) is more or
less trivial (we have to use that every x ∈ V lies in Vn for some high enough n), and

40Proof. Every x ∈ C satisfies

e∗0 (x) =
∑
i≥0

0∗i (x)

i!
(by (6), applied to 0 instead of f)

=
0∗0 (x)

0!︸ ︷︷ ︸
=

0∗0 (x)

1
=0∗0(x)

+
∑
i≥1

0∗i (x)

i!︸ ︷︷ ︸
=0 (since 0∗i(x)=0

(due to i≥1))

= 0∗0︸︷︷︸
=eC,H

(x) +
∑
i≥1

0︸ ︷︷ ︸
=0

= eC,H (x) .

Thus, e∗0 = eC,H , qed.
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part (b) is an assertion of the kind “if a polynomial in one variable vanishes on every
t ∈ N, then it must be the zero polynomial”. Note that part (b) is the only part which
uses the condition that k be of characteristic 0. There are two easy ways to prove part
(b): one is by using Vandermonde determinants, the other by finite differences. We
are going to follow the second way here. The proof will need the following theorem as
an auxiliary result:

Theorem 12.2. Let k be a commutative ring with unity. Let N ∈ N.
Then, the equalities

N∑
t=0

(−1)t
(
N

t

)
t` = 0 for every ` ∈ {0, 1, . . . , N − 1} (47)

and
N∑
t=0

(−1)t
(
N

t

)
tN = (−1)N N ! (48)

are satisfied in k.

Proof of Theorem 12.2. Theorem 12.2 is identical with Theorem 1 of [QEDMO09],
with the only difference that the R and the k from Theorem 1 of [QEDMO09] have
been renamed as k and t in Theorem 12.2. Since Theorem 1 of [QEDMO09] is proven
in [QEDMO09], we thus don’t need to prove Theorem 12.2 here.

Proof of Proposition 12.1. First we notice that

hn (V≤i) = 0 for any n ∈ N and i ∈ N satisfying i < n (49)

41.
(a) Let x ∈ V and t ∈ Z. Since V is filtered, there exists some n ∈ N such that

x ∈ V≤n. Consider such an n.
Every integer i > n satisfies hi (V≤n) = 0 (by (49), applied to i and n instead of n

and i) and thus hi (x) = 0 (since x ∈ V≤n and therefore hi (x) ∈ hi (V≤n) = 0, so that
hi (x) = 0), so that tihi (x) = 0. Hence, for every integer i > n, the i-th addend of
the infinite sum

∑
i≥0

tihi (x) is zero. Hence, this infinite sum
∑
i≥0

tihi (x) has only finitely

many nonzero addends. Thus, this sum converges with respect to the discrete topology.
Proposition 12.1 (a) is thus proven.

(b) Assume that every x ∈ V and every t ∈ N satisfy
∑
i≥0

tihi (x) = 0. We are now

going to show that

every x ∈ V and every n ∈ N satisfy hn (x) = 0. (50)

Proof of (50). Fix some x ∈ V . We then must prove that hn (x) = 0 for every
n ∈ N.

Since V is filtered, there exists some j ∈ N such that x ∈ V≤j. Consider such a j.

41Proof. Let n ∈ N and i ∈ N satisfy i < n. Then, i ≤ n − 1 (since i and n are integers) and
thus V≤i ⊆ V≤n−1 (since (V≤`)`≥0 is a filtration). Hence, hn (V≤i) ⊆ hn (V≤n−1) = 0. In other words,

hn (V≤i) = 0. This proves (49).
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Every integer n > j satisfies hn (x) ∈ hn (V≤j) (since x ∈ V≤j) and hn (V≤j) = 0 (by
(49), applied to j instead of i). Hence, every integer n > j satisfies hn (x) ∈ hn (V≤j) =
0. In other words, every integer n > j satisfies hn (x) = 0.

Now we are going to prove that

for every ` ∈ {0, 1, . . . , j + 1} , every integer n > j − ` satisfies hn (x) = 0. (51)

42

Proof of (51). We are going to prove (51) by induction over `:
Induction base: For ` = 0, every integer n > j− ` satisfies hn (x) = 0. 43 In other

words, (51) holds for ` = 0. This completes the induction base.
Induction step: Let L ∈ {0, 1, . . . , j}. Assume that (51) holds for ` = L. In order

to complete the induction step, we must then prove that (51) also holds for ` = L+ 1.
We know that

every integer n > j − L satisfies hn (x) = 0 (52)

(because (51) holds for ` = L). Now, let n be an integer such that n > j − (L+ 1).
We are going to prove that hn (x) = 0.

Proof of hn (x) = 0: First we notice that n > j − (L+ 1) = j − L − 1. Since n
and j − L are integers, this yields n ≥ (j − L− 1) + 1 = j − L. Hence, two cases are
possible:

Case 1: We have n > j − L.
Case 2: We have n = j − L.
In Case 1, we trivially have hn (x) = 0 (by (52)).
Now consider Case 2. In this case, n = j − L. Notice that n = j − L ∈ N (since

L ∈ {0, 1, . . . , j}). For every t ∈ N, we have

0 =
∑
i≥0

tihi (x) (by our assumption)

=

j−L∑
i=0

tihi (x) +
∑
i>j−L

ti hi (x)︸ ︷︷ ︸
=0

(by (52), applied to i instead of n)

=

j−L∑
i=0

tihi (x) +
∑
i>j−L

ti0︸ ︷︷ ︸
=0

=

j−L∑
i=0

tihi (x) .

(53)

Clearly,
N∑
t=0

(−1)t
(
j − L
t

)(j−L∑
i=0

tihi (x)

)
︸ ︷︷ ︸

=0 (by (53))

=
N∑
t=0

(−1)t
(
j − L
t

)
0 = 0.

42Note that for ` = 0, this is pretty much obvious, whereas for ` = j + 1, this is our goal.
43Proof. Let ` = 0. We know that every integer n > j satisfies hn (x) = 0. Since j = j− 0︸︷︷︸

=`

= j−`,

this rewrites as follows: Every integer n > j − ` satisfies hn (x) = 0, qed.
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Compared to

j−L∑
t=0

(−1)t
(
j − L
t

)(j−L∑
i=0

tihi (x)

)

=

j−L∑
i=0

(
j−L∑
t=0

(−1)t
(
j − L
t

)
ti

)
hi (x)

=

j−L−1∑
i=0

(
j−L∑
t=0

(−1)t
(
j − L
t

)
ti

)
︸ ︷︷ ︸

=0
(by (47), applied to N=j−L and `=i)

hi (x) +

(
j−L∑
t=0

(−1)t
(
j − L
t

)
tj−L

)
︸ ︷︷ ︸

=(−1)j−L(j−L)!
(by (48), applied to N=j−L)

hj−L (x)

=

j−L−1∑
i=0

0hi (x)︸ ︷︷ ︸
=0

+ (−1)j−L (j − L)!hj−L (x) = (−1)j−L (j − L)!hj−L (x) ,

this yields
(−1)j−L (j − L)!hj−L (x) = 0.

Since (−1)j−L (j − L)! is invertible in k (because k has characteristic 0), this simplifies
to hj−L (x) = 0. Since j − L = n, this becomes hn (x) = 0. We thus have proven
hn (x) = 0 in Case 2.

Hence, hn (x) = 0 is proven in both possible cases 1 and 2. This completes the
proof of hn (x) = 0.

We have thus shown that

every integer n > j − (L+ 1) satisfies hn (x) = 0.

In other words, we have shown that (51) holds for ` = L + 1. This completes the
induction step (of the proof of (51)). Hence, the induction proof of (51) is complete.

Now we can apply (51) to ` = j + 1, and conclude that

every integer n > j − (j + 1) satisfies hn (x) = 0. (54)

Thus, every n ∈ N satisfies hn (x) = 0 (because n ∈ N yields n > −1 = j − (j + 1),
and thus hn (x) = 0 by (54)).

So we have proven that for every n ∈ N, every x ∈ V satisfies hn (x) = 0. Thus,
for every n ∈ N, we have hn = 0 (because hn (x) = 0 for every x ∈ V ). This proves
Proposition 12.1 (b).

Our next result is a distillate of the proof of Lemma 8.2:

Lemma 12.3. Let k be a field of characteristic 0. Let C be a connected
filtered k-coalgebra. Let H be a k-bialgebra. Let f ∈ g (C,H). Let x ∈ C.
Then, (

∆H ◦ e∗f
)

(x) =
∑
n≥0

1

n!
(∆H ◦ f ∗n) (x) (55)
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and

((
e∗f ⊗ e∗f

)
◦∆C

)
(x) =

∑
n≥0

1

n!

(
n∑
i=0

(
n

i

)(
f ∗i ⊗ f ∗(n−i)

)
◦∆C

)
(x) .

(56)

(In particular, the infinite sums
∑
n≥0

1

n!
(∆H ◦ f ∗n) (x) and∑

n≥0

1

n!

(
n∑
i=0

(
n

i

)(
f ∗i ⊗ f ∗(n−i)

)
◦∆C

)
(x) converge with respect to the dis-

crete topology, i. e., each of these sums has only finitely many nonzero
addends.)

Proof of Lemma 12.3. The equalities (55) and (56) have been proven during our proof
of Lemma 8.2, without using the assumptions that C be cocommutative and f be an
(ε, ε)-coderivation. Hence, these equalities are true. Lemma 12.3 is thus true.

We now proceed to proving Lemma 8.3:

Proof of Lemma 8.3. Assume that e∗f is a k-coalgebra homomorphism.
For every n ∈ N, define a k-linear map hn : C → H by

hn =
1

n!
∆H ◦ f ∗n −

1

n!

n∑
i=0

(
n

i

)(
f ∗i ⊗ f ∗(n−i)

)
◦∆C . (57)

a) We now will prove that every n ∈ N satisfies hn (C≤n−1) = 0.
Proof. Fix some n ∈ N. If n = 0, then hn (C≤n−1) = 0 is obviously true (since if

n = 0, then C≤n−1 = C≤0−1 = 0, so that h (C≤n−1) = h (0) = 0). Hence, we can WLOG
assume (for the rest of the proof of a)) that n 6= 0. Then, n ≥ 1. Thus, n− 1 ∈ N.

We have f ∗n (C≤n−1) = 0 (by Remark 3.5, applied to C, H, n and n − 1 instead
of H, A, i and n). On the other hand, since C is a filtered coalgebra, every m ∈ N
satisfies ∆C (C≤m) ⊆

m∑
u=0

C≤u⊗C≤m−u. Applied to m = n−1, this yields ∆C (C≤n−1) ⊆
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n−1∑
u=0

C≤u ⊗ C≤n−1−u. Thus, for every i ∈ {0, 1, . . . , n}, we have

(
f ∗i ⊗ f ∗(n−i)

)
(∆C (C≤n−1))

⊆
(
f ∗i ⊗ f ∗(n−i)

)(n−1∑
u=0

C≤u ⊗ C≤n−1−u

)

=
n−1∑
u=0

(
f ∗i ⊗ f ∗(n−i)

)
(C≤u ⊗ C≤n−1−u)︸ ︷︷ ︸

⊆f∗i(C≤u)⊗f∗(n−i)(C≤n−1−u)

⊆
n−1∑
u=0

f ∗i (C≤u)⊗ f ∗(n−i) (C≤n−1−u)

=
i−1∑
u=0

f ∗i (C≤u)︸ ︷︷ ︸
=0 (by Remark 3.5

(applied to C, H, i and u
instead of H, A, i and n),

since i>u)

⊗f ∗(n−i) (C≤n−1−u) +
n−1∑
u=i

f ∗i (C≤u)⊗ f ∗(n−i) (C≤n−1−u)︸ ︷︷ ︸
=0 (by Remark 3.5

(applied to C, H, n−i and n−1−u
instead of H, A, i and n),

since n−i>n−1−u (because
i≤u, so that n−i≥n−u>n−1−u))

=
i−1∑
u=0

0⊗ f ∗(n−i) (C≤n−1−u)︸ ︷︷ ︸
=0

+
n−1∑
u=i

f ∗i (C≤u)⊗ 0︸ ︷︷ ︸
=0

=
i−1∑
u=0

0︸ ︷︷ ︸
=0

+
n−1∑
u=i

0︸ ︷︷ ︸
=0

= 0 + 0 = 0. (58)

Now, (57) yields

hn (C≤n−1) =

(
1

n!
∆H ◦ f ∗n −

1

n!

n∑
i=0

(
n

i

)(
f ∗i ⊗ f ∗(n−i)

)
◦∆C

)
(C≤n−1)

⊆
(

1

n!
∆H ◦ f ∗n

)
(C≤n−1)︸ ︷︷ ︸

=
1

n!
(∆H◦f∗n)(C≤n−1)

−

(
1

n!

n∑
i=0

(
n

i

)(
f ∗i ⊗ f ∗(n−i)

)
◦∆C

)
(C≤n−1)︸ ︷︷ ︸

=
1

n!

 n∑
i=0

(
n

i

)
(f∗i⊗f∗(n−i))◦∆C

(C≤n−1)

=
1

n!
(∆H ◦ f ∗n) (C≤n−1)︸ ︷︷ ︸

=∆H(f∗n(C≤n−1))

− 1

n!

(
n∑
i=0

(
n

i

)(
f ∗i ⊗ f ∗(n−i)

)
◦∆C

)
(C≤n−1)︸ ︷︷ ︸

⊆
n∑
i=0

(
n

i

)
((f∗i⊗f∗(n−i))◦∆C)(C≤n−1)

=
1

n!
∆H

f ∗n (C≤n−1)︸ ︷︷ ︸
=0

− 1

n!

n∑
i=0

(
n

i

)((
f ∗i ⊗ f ∗(n−i)

)
◦∆C

)
(C≤n−1)︸ ︷︷ ︸

=(f∗i⊗f∗(n−i))(∆C(C≤n−1))=0

(by (58))

=
1

n!
∆H (0)︸ ︷︷ ︸

=0

− 1

n!

n∑
i=0

(
n

i

)
0︸ ︷︷ ︸

=0

=
1

n!
0− 1

n!
0 = 0− 0 = 0.

Thus we have proven that every n ∈ N satisfies hn (C≤n−1) = 0. In other words, a) is
proven.
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b) Now, we will show that every x ∈ C and every t ∈ N satisfy
∑
i≥0

tihi (x) = 0. 44

Proof. Let x ∈ C and t ∈ N be arbitrary. By Corollary 10.2 (applied to t and

e∗f instead of n and f), we see that
(
e∗f
)∗t

is a k-coalgebra homomorphism. Since

e∗(tf) =
(
e∗f
)∗t

(by Corollary 11.4, applied to t instead of n), this rewrites as follows:

The map e∗(tf) is a k-coalgebra homomorphism. In other words,

∆H ◦ e∗(tf) =
(
e∗(tf) ⊗ e∗(tf)

)
◦∆C (59)

(by the definition of a k-coalgebra homomorphism).
But applying Lemma 12.3 to tf instead of f (this is allowed since f ∈ g (C,H)

yields tf ∈ g (C,H)), we obtain(
∆H ◦ e∗(tf)

)
(x) =

∑
n≥0

1

n!
(∆H ◦ (tf)∗n) (x) (60)

and

((
e∗(tf) ⊗ e∗(tf)

)
◦∆C

)
(x) =

∑
n≥0

1

n!

(
n∑
i=0

(
n

i

)(
(tf)∗i ⊗ (tf)∗(n−i)

)
◦∆C

)
(x) . (61)

We are now going to rewrite these two equalities by taking t out of the brackets.
Since

∑
n≥0

1

n!

∆H ◦ (tf)∗n︸ ︷︷ ︸
=tnf∗n

 (x) =
∑
n≥0

1

n!

 ∆H ◦ (tnf ∗n)︸ ︷︷ ︸
=tn·(∆H◦f∗n)

(since composition of
k-linear maps is k-bilinear)

 (x) =
∑
n≥0

1

n!
(tn · (∆H ◦ f ∗n)) (x)︸ ︷︷ ︸

=tn·(∆H◦f∗n)(x)

=
∑
n≥0

1

n!
tn · (∆H ◦ f ∗n) (x) =

∑
n≥0

tn
1

n!
(∆H ◦ f ∗n) (x) ,

the equality (60) rewrites as(
∆H ◦ e∗(tf)

)
(x) =

∑
n≥0

tn
1

n!
(∆H ◦ f ∗n) (x) . (62)

44Note that the element
∑
i≥0

tihi (x) is well-defined due to Proposition 12.1 (a) (applied to V = C

and W = H).
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Since

∑
n≥0

1

n!

 n∑
i=0

(
n

i

)(tf)∗i︸ ︷︷ ︸
=tif∗i

⊗ (tf)∗(n−i)︸ ︷︷ ︸
=tn−if∗(n−i)

 ◦∆C

 (x)

=
∑
n≥0

1

n!


n∑
i=0

(
n

i

)


tif ∗i ⊗ tn−if ∗(n−i)︸ ︷︷ ︸
=titn−i·(f∗i⊗f∗(n−i))

(since tensoring of k-linear maps
is k-bilinear)


◦∆C


(x)

=
∑
n≥0

1

n!

(
n∑
i=0

(
n

i

)(
titn−i︸ ︷︷ ︸

=tn

·
(
f ∗i ⊗ f ∗(n−i)

))
◦∆C

)
(x)

=
∑
n≥0

1

n!


n∑
i=0

(
n

i

)(
tn ·
(
f ∗i ⊗ f ∗(n−i)

))
◦∆C︸ ︷︷ ︸

=tn·((f∗i⊗f∗(n−i))◦∆C)
(since composition of k-linear

maps is k-bilinear)


(x)

=
∑
n≥0

1

n!

(
n∑
i=0

(
n

i

)
tn ·
((
f ∗i ⊗ f ∗(n−i)

)
◦∆C

))
(x)︸ ︷︷ ︸

=
n∑
i=0

(
n

i

)
tn·((f∗i⊗f∗(n−i))◦∆C)(x)

=
∑
n≥0

1

n!

(
n∑
i=0

(
n

i

)
tn ·
((
f ∗i ⊗ f ∗(n−i)

)
◦∆C

)
(x)

)
=
∑
n≥0

tn
1

n!

(
n∑
i=0

(
n

i

)((
f ∗i ⊗ f ∗(n−i)

)
◦∆C

)
(x)

)
︸ ︷︷ ︸

=

 n∑
i=0

(
n

i

)
(f∗i⊗f∗(n−i))◦∆C

(x)

=
∑
n≥0

tn
1

n!

(
n∑
i=0

(
n

i

)(
f ∗i ⊗ f ∗(n−i)

)
◦∆C

)
(x) ,

the equality (61) rewrites as

((
e∗(tf) ⊗ e∗(tf)

)
◦∆C

)
(x) =

∑
n≥0

tn
1

n!

(
n∑
i=0

(
n

i

)(
f ∗i ⊗ f ∗(n−i)

)
◦∆C

)
(x) . (63)
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Now,∑
i≥0

tihi (x) =
∑
n≥0

tnhn (x) (here, we renamed the index i as n in the sum)

=
∑
n≥0

tn

(
1

n!
∆H ◦ f ∗n −

1

n!

n∑
i=0

(
n

i

)(
f ∗i ⊗ f ∗(n−i)

)
◦∆C

)
(x)︸ ︷︷ ︸

=
1

n!
(∆H◦f∗n)(x)−

1

n!

 n∑
i=0

(
n

i

)
(f∗i⊗f∗(n−i))◦∆C

(x)

(by (57))

=
∑
n≥0

tn

(
1

n!
(∆H ◦ f ∗n) (x)− 1

n!

(
n∑
i=0

(
n

i

)(
f ∗i ⊗ f ∗(n−i)

)
◦∆C

)
(x)

)

=
∑
n≥0

tn
1

n!
(∆H ◦ f ∗n) (x)︸ ︷︷ ︸

=(∆H◦e∗(tf))(x)

(by (62))

−
∑
n≥0

tn
1

n!

(
n∑
i=0

(
n

i

)(
f ∗i ⊗ f ∗(n−i)

)
◦∆C

)
(x)︸ ︷︷ ︸

=((e∗(tf)⊗e∗(tf))◦∆C)(x)

(by (63))

=
(
∆H ◦ e∗(tf)

)︸ ︷︷ ︸
=(e∗(tf)⊗e∗(tf))◦∆C

(by (59))

(x)−
((
e∗(tf) ⊗ e∗(tf)

)
◦∆C

)
(x)

=
((
e∗(tf) ⊗ e∗(tf)

)
◦∆C

)
(x)−

((
e∗(tf) ⊗ e∗(tf)

)
◦∆C

)
(x) = 0.

We thus have proven that every x ∈ C and every t ∈ N satisfy
∑
i≥0

tihi (x) = 0. In

other words, part b) of the proof is done.
c) We know that every n ∈ N satisfies hn (C≤n−1) = 0 (by part a)), and that every

x ∈ C and every t ∈ N satisfy
∑
i≥0

tihi (x) = 0 (by part b)). Hence, Proposition 12.1

(b) (applied to C and H instead of V and W ) yields that hn = 0 for every n ∈ N.
Applied to n = 1, this yields h1 = 0. But (57) (applied to n = 1) yields

h1 =
1

1!︸︷︷︸
=

1

1
=1

∆H ◦ f ∗1︸︷︷︸
=f

− 1

1!︸︷︷︸
=

1

1
=1

1∑
i=0

(
1

i

)(
f ∗i ⊗ f ∗(1−i)

)
◦∆C︸ ︷︷ ︸

=

(
1

0

)
(f∗0⊗f∗(1−0))◦∆C+

(
1

1

)
(f∗1⊗f∗(1−1))◦∆C

= ∆H ◦ f −

(1

0

)
︸︷︷︸

=1

 f ∗0︸︷︷︸
=eC,H

⊗ f ∗(1−0)︸ ︷︷ ︸
=f∗1=f

 ◦∆C +

(
1

1

)
︸︷︷︸

=1

 f ∗1︸︷︷︸
=f

⊗ f ∗(1−1)︸ ︷︷ ︸
=f∗0=eC,H

 ◦∆C


= ∆H ◦ f − ((eC,H ⊗ f) ◦∆C + (f ⊗ eC,H) ◦∆C) .

Since h1 = 0, this rewrites as

0 = ∆H ◦ f − ((eC,H ⊗ f) ◦∆C + (f ⊗ eC,H) ◦∆C) ,
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so that

∆H ◦ f = (eC,H ⊗ f) ◦∆C + (f ⊗ eC,H) ◦∆C = (f ⊗ eC,H) ◦∆C + (eC,H ⊗ f) ◦∆C

= (f ⊗ eC,H + eC,H ⊗ f) ◦∆C

(since composition of k-linear maps is distributive) .

By the definition of “(ε, ε)-coderivation”, this means that f is an (ε, ε)-coderivation.
We thus have proven that, under the assumption that e∗f is a k-coalgebra homo-

morphism, the map f is an (ε, ε)-coderivation. Thus, Lemma 8.3 is proven.

Proof of Theorem 8.1. The assertion of Theorem 8.1 is an “if and only if” assertion.
Its “if” part was proven in Lemma 8.3, and its “only if” part was proven in Lemma 8.2.
Hence, both parts of the assertion of Theorem 8.1 are proven. This finally completes
the proof of Theorem 8.1.

§13. Proof of Theorem 4.1

Theorem 4.1 will now be merely a trivial consequence of the facts proven above.

Proof of Theorem 4.1. Let f be the map Log id ∈ L (H,H). Then, f = Log id ∈
g (H,H) (because LogF ∈ g (H,H) for every F ∈ G (H,H)). Besides, f = Log id
yields e∗f = e∗(Log id) = id (by Proposition 5.13 (b), applied to F = id and A = H).
Hence, e∗f is a k-coalgebra homomorphism. By Lemma 8.3 (applied to C = H), this
yields that f is an (ε, ε)-coderivation.

But Theorem 7.2 (applied to C = H) tells us that f is an (ε, ε)-coderivation if
and only if f (H) ⊆ PrimH. Hence, f (H) ⊆ PrimH (since we know that f is an
(ε, ε)-coderivation).

Proposition 6.2 (c) (applied to F = id and A = H) yields (Log id) |PrimH=
id |PrimH= idPrimH . Since Log id = f , this rewrites as f |PrimH= idPrimH .

So we know that f is a k-linear map satisfying f (H) ⊆ PrimH and f |PrimH=
idPrimH . In other words, f is a projection from H to the subspace PrimH. Since
f = Log id, this rewrites as follows: The map Log id is a projection from H to the
subspace PrimH. Theorem 4.1 is therefore proven.

§14. On the case of k being a ring

The above results have been formulated for k being a field (except of Theorem 12.2).
However, all of them, apart from Propositions 5.15 and 5.16, still hold if k is just a
commutative ring with unity, as long as the following replacements are made:

• Any occurrence of “k-vector space” must be replaced by “k-module”.

• Any requirement that k be a field of characteristic 0 must be replaced by a
requirement that k be a commutative Q-algebra.

• The definition of the notion of a “filtered k-coalgebra” has to be replaced by the
following Definition 14.1 (which is adjusted to the case of k being a commutative
ring with unity):
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Definition 14.1. Let k be a commutative ring with unity. Let C be a
k-coalgebra and, at the same time, a filtered k-vector space. Then, C is
said to be a filtered k-coalgebra if and only if every n ∈ N satisfies

∆C (C≤n) ⊆
n∑
u=0

(ιu ⊗ ιn−u) (C≤u ⊗ C≤n−u) .

Here, for every v ∈ N, we denote by ιv the canonical inclusion C≤v → C.

Note that this Definition 14.1 is not the only possible way to define a “filtered
k-coalgebra” in the case of k being a commutative ring with unity. There might
be the other definitions around, and possibly even non-equivalent ones. However,
Definition 14.1 makes all of our results (except of Propositions 5.15 and 5.16) valid in
the case of k being a commutative ring with unity. (I suspect that the other possible
definitions also make them valid, but I am not sure, since there might always be some
definition I haven’t thought of.)

Here is the reason why Propositions 5.15 and 5.16 do not hold when k is a commu-
tative ring with unity: If k is just a commutative ring with unity, then tensor products
might behave strangely; in particular, if U , V , U ′, V ′ are k-modules such that U ⊆ U ′

and V ⊆ V ′, then we cannot in general identify U ⊗ V with a k-submodule of U ′⊗ V ′.
(We still have a canonical map U ⊗ V → U ′ ⊗ V ′ obtained by tensoring the inclusion
maps U → U ′ and V → V ′, but this map can fail to be injective.) Hence, the notion of
a “subcoalgebra” becomes ambiguous: If we define a subcoalgebra of a coalgebra C to
be a k-submodule D of C satisfying ∆C (D) ⊆ (ι⊗ ι) (D ⊗D) (with ι being the inclu-
sion map D → C), then it is not true in general that a subcoalgebra D of a coalgebra
C is a coalgebra, so that Proposition 5.16 makes no sense anymore! On the other hand,
if we define a subcoalgebra of a coalgebra C to be a coalgebra D equipped with an
injective coalgebra homomorphism D → C, then Proposition 5.16 remains true, but I
am not sure whether Proposition 5.15 still holds (at least our proof becomes hopelessly
wrong).

While all of our results except of Propositions 5.15 and 5.16 still hold if k is just
a commutative ring with unity, the same cannot be said about the proofs. Instead,
we must take some more care. What is true is that all of our above proofs, except of
the proofs of Propositions 5.13, 5.15 and 5.16, still hold if k is just a commutative ring
with unity, as long as we make the following replacements:

• Any occurrence of “k-vector space” must be replaced by “k-module”.

• Any requirement that k be a field of characteristic 0 must be replaced by a
requirement that k be a commutative Q-algebra.

• The definition of the notion of a “filtered k-coalgebra” has to be replaced by
Definition 14.1.

• In some situations, inclusion maps have to be made more explicit. This means the
following: Whenever we have four k-modules U , V , U ′, V ′ (they need not actually
be called U , V , U ′, V ′) such that U ⊆ U ′ and V ⊆ V ′, then the assumption that
k be a field allows us to identify U ⊗ V with a k-submodule of U ′⊗ V ′ (by abuse
of notation). This identification has been done several times in our above proofs
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(because we worked with the assumption that k be a field), in order to save
space. In order to adjust the proofs to the case of k being just a commutative
ring with unity, we have to get rid of this identification (because we can no longer
identify U ⊗V with a k-submodule of U ′⊗V ′ when k is just a commutative ring
with unity). This means that every time the notation U ⊗ V is used to mean
a k-submodule of U ′ ⊗ V ′, we have to replace it by (ιU ⊗ ιV ) (U ⊗ V ), where ιU
is the canonical inclusion U ′ → U and ιV is the canonical inclusion V ′ → V .
(But when the notation U ⊗ V is used to mean just the k-module U ⊗ V itself,
then it should stay a U ⊗V .) These replacements are straightforward and we are
not going to perform them en detail. (Note that Definition 14.1 is exactly what
comes out if we take the standard definition of a filtered k-coalgebra over a field
k, and perform these replacements on that definition!)

However, even these replacement do not salvage our proof of Proposition 5.13 in
the case when k is just a commutative ring with unity. In fact, this proof made use
of Propositions 5.15 and 5.16, which both require k to be a field and are not valid
otherwise (at least not in general). Hence, in the case when k is just a commutative
ring with unity, we need a new proof of Proposition 5.13. We are going to provide one
such proof. First, let us show an auxiliary result:

Proposition 14.2. Let k be a commutative ring with unity, let A be a
k-algebra, and let H be a filtered k-coalgebra. For every n ∈ N, the sub-
set Ln (H,A) of L (H,A) is an ideal of the k-algebra L (H,A). (For the
definition of Ln (H,A), see Definition 3.1 (b).)

Proof of Proposition 14.2. In Definition 3.1 (b), we defined Ln (H,A) by

Ln (H,A) =
{
f ∈ L (H,A) | f |H≤n−1

= 0
}
.

Thus it is easy to see that Ln (H,A) is a k-submodule of L (H,A). 45 Besides,
Ln (H,A) is a left ideal of L (H,A) 46 and a right ideal of L (H,A) (similarly).
Hence, Ln (H,A) is an ideal of L (H,A). Proposition 14.2 is thus proven.

45Proof. Let α ∈ k, β ∈ k, g ∈ Ln (H,A) and h ∈ Ln (H,A) be arbitrary. Since g ∈ Ln (H,A) ={
f ∈ L (H,A) | f |H≤n−1

= 0
}

, we have g |H≤n−1
= 0. Similarly, h |H≤n−1

= 0. Now,

(αg + βh) |H≤n−1
= α g |H≤n−1︸ ︷︷ ︸

=0

+β h |H≤n−1︸ ︷︷ ︸
=0

= α0 + β0 = 0,

so that αg + βh ∈
{
f ∈ L (H,A) | f |H≤n−1

= 0
}

= Ln (H,A).
Hence, we have proven that for every α ∈ k, β ∈ k, g ∈ Ln (H,A) and h ∈ Ln (H,A), we have

αg + βh ∈ Ln (H,A). In other words, Ln (H,A) is a k-submodule of L (H,A).
46Proof. Let g ∈ L (H,A) and h ∈ Ln (H,A). Then, we are going to prove that g ∗ h ∈ Ln (H,A).
If n = 0, then this is obvious (because L0 (H,A) is the whole k-module L (H,A)), so let us now

WLOG assume that n 6= 0. Then, n ≥ 1, so that n− 1 ∈ N.
We have h ∈ Ln (H,A) =

{
f ∈ L (H,A) | f |H≤n−1

= 0
}

, so that h |H≤n−1
= 0. We now get

h (H≤n−1) =
(
h |H≤n−1

)︸ ︷︷ ︸
=0

(H≤n−1) = 0 (H≤n−1) = 0.

Now, for every v ∈ N, let ιv denote the canonical inclusion map H≤v → H. Then, by the definition
of a filtered k-coalgebra (Definition 14.1), we have

∆H (H≤m) ⊆
m∑
u=0

(ιu ⊗ ιm−u) (H≤u ⊗H≤m−u) for every m ∈ N
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Now we can finally prove the generalization of Proposition 5.13 to the case of k
being a commutative ring with unity. Our proof will be similar to the one we gave
above in the case of k being a field, but instead of restricting maps to H≤n we will now
consider their equivalence classes modulo the ideal Ln+1 (H,A).

First we formulate the generalization of Proposition 5.13 to the case of k being a
commutative ring with unity:

Proposition 14.3. Let k be a commutative Q-algebra. Let A be a k-
algebra, and let H be a connected filtered k-coalgebra.

(a) Every map f ∈ g (H,A) satisfies Log
(
e∗f
)

= f .

(b) Every map F ∈ G (H,A) satisfies e∗(LogF ) = F .

Note that the following proof of Proposition 14.3 automatically gives us a second
proof of Proposition 5.13, since Proposition 14.3 generalizes Proposition 5.13.

Proof of Proposition 14.3. Due to how we defined Ln+1 (H,A) (in Definition 3.1 (b)),
we have

Ln+1 (H,A) =

f ∈ L (H,A) | f |H≤n+1−1︸ ︷︷ ︸
=f |H≤n

= 0

 =
{
f ∈ L (H,A) | f |H≤n= 0

}
=
{
h ∈ L (H,A) | h |H≤n= 0

}
(here, we renamed f as h) (65)

for every n ∈ N.
(a) Let f ∈ g (H,A). Let n ∈ N.
According to Proposition 14.2 (applied to n+1 instead of n), the subset Ln+1 (H,A)

of L (H,A) is an ideal of L (H,A). Thus, there is a factor algebra L (H,A)�Ln+1 (H,A).

(since H is a filtered k-coalgebra). Applied to m = n− 1, this yields

∆H (H≤n−1) ⊆
n−1∑
u=0

(ιu ⊗ ιn−1−u) (H≤u ⊗H≤n−1−u) .

On the other hand, for every u ∈ {0, 1, . . . , n− 1}, we have h ◦ ιn−1−u = 0 (because every x ∈
H≤n−1−u satisfies

(h ◦ ιn−1−u) (x) = h

 ιn−1−u (x)︸ ︷︷ ︸
=x (since ιn−1−u is just an inclusion map)

 = h

 x︸︷︷︸
∈H≤n−1−u

 ∈ h (H≤n−1−u) ⊆ h (H≤n−1)

(
since (H≤`)`≥0 is a filtration, and thus H≤n−1−u ⊆ H≤n−1 (since n− 1− u ≤ n− 1)

)
= 0

and thus (h ◦ ιn−1−u) (x) = 0) and

(g ⊗ h) ◦ (ιu ⊗ ιn−1−u) = (g ◦ ιu)⊗ (h ◦ ιn−1−u)(
because an application of (21) yields

(g ◦ ιu)⊗ (h ◦ ιn−1−u) = ((g ⊗ h) ◦ (ιu ⊗ ιn−1−u))

)
= (g ◦ ιu)⊗ (h ◦ ιn−1−u)︸ ︷︷ ︸

=0

= (g ◦ ιu)⊗ 0 = 0. (64)
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For every p ∈ L (H,A), we are going to denote by p the projection of p to this factor al-
gebra (i. e., the residue class of p modulo the ideal Ln+1 (H,A)). We are going to denote
the multiplication in the factor algebra L (H,A)�Ln+1 (H,A) by the ∗ sign, and we are
going to write q∗i for the i-th power of q (in the factor algebra L (H,A)�Ln+1 (H,A))
whenever q ∈ L (H,A)�Ln+1 (H,A) and i ∈ N.

Let g = e∗f − eH,A. Then, g ∈ g (H,A) (since e∗f ∈ G (H,A) = eH,A + g (H,A),
so that e∗f − eH,A ∈ g (H,A)). Hence, Remark 3.5 (applied to g instead of f) yields
g∗i (H≤n) = 0 for every i > n. Also, Remark 3.5 yields f ∗i (H≤n) = 0 for every i > n.

We have

Log
(
e∗f
)

= Log1

(
e∗f − eH,A

)︸ ︷︷ ︸
=g

(by the definition of Log)

= Log1 g.

By the definition of convolution, g ∗ h = µH ◦ (g ⊗ h) ◦∆H , so that

(g ∗ h) (H≤n−1) = (µH ◦ (g ⊗ h) ◦∆H) (H≤n−1) = µH

(g ⊗ h) (∆H (H≤n−1))︸ ︷︷ ︸
⊆
n−1∑
u=0

(ιu⊗ιn−1−u)(H≤u⊗H≤n−1−u)



⊆ µH


(g ⊗ h)

(
n−1∑
u=0

(ιu ⊗ ιn−1−u) (H≤u ⊗H≤n−1−u)

)
︸ ︷︷ ︸

⊆
n−1∑
u=0

(g⊗h)((ιu⊗ιn−1−u)(H≤u⊗H≤n−1−u))

(since g⊗h is k-linear)



= µH

n−1∑
u=0

(g ⊗ h) ((ιu ⊗ ιn−1−u) (H≤u ⊗H≤n−1−u))︸ ︷︷ ︸
=((g⊗h)◦(ιu⊗ιn−1−u))(H≤u⊗H≤n−1−u)



= µH


n−1∑
u=0

((g ⊗ h) ◦ (ιu ⊗ ιn−1−u))︸ ︷︷ ︸
=0

(by (64))

(H≤u ⊗H≤n−1−u)



= µH

n−1∑
u=0

0 (H≤u ⊗H≤n−1−u)︸ ︷︷ ︸
=0

 = µH


n−1∑
u=0

0︸ ︷︷ ︸
=0

 = µH (0) = 0

and therefore g ∗ h ∈
{
f ∈ L (H,A) | f |H≤n−1

= 0
}
⊆ Ln (H,A).

We thus have shown that every g ∈ L (H,A) and h ∈ Ln (H,A) satisfy g ∗ h ∈ Ln (H,A). In other
words, Ln (H,A) is a left ideal of L (H,A), qed.
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Thus, every x ∈ H≤n satisfies

(
Log

(
e∗f
))

(x) = (Log1 g) (x) =
∑
i≥1

(−1)i−1

i
g∗i (x) (by the definition of Log1)

=
n∑
i=1

(−1)i−1

i
g∗i (x) +

∞∑
i=n+1

(−1)i−1

i
g∗i (x)︸ ︷︷ ︸

=0 (since
x∈H≤n and thus

g∗i(x)∈g∗i(H≤n)=0

(since i>n))

=
n∑
i=1

(−1)i−1

i
g∗i (x) +

∞∑
i=n+1

(−1)i−1

i
0︸ ︷︷ ︸

=0

=
n∑
i=1

(−1)i−1

i
g∗i (x) .

In other words,

Log
(
e∗f
)
|H≤n=

(
n∑
i=1

(−1)i−1

i
g∗i

)
|H≤n ,

so that(
Log

(
e∗f
)
−

n∑
i=1

(−1)i−1

i
g∗i

)
|H≤n = Log

(
e∗f
)
|H≤n︸ ︷︷ ︸

=

 n∑
i=1

(−1)i−1

i
g∗i

|H≤n
−

n∑
i=1

(−1)i−1

i
g∗i |H≤n

=

(
n∑
i=1

(−1)i−1

i
g∗i

)
|H≤n −

(
n∑
i=1

(−1)i−1

i
g∗i

)
|H≤n= 0

and thus

Log
(
e∗f
)
−

n∑
i=1

(−1)i−1

i
g∗i ∈

{
h ∈ L (H,A) | h |H≤n= 0

}
= Ln+1 (H,A)

(by (65)). In other words,

Log
(
e∗f
)
≡

n∑
i=1

(−1)i−1

i
g∗i modLn+1 (H,A) . (66)

89



But every x ∈ H≤n satisfies

e∗f (x) =
∑
i≥0

f ∗i (x)

i!
=

n∑
i=0

f ∗i (x)

i!
+

∞∑
i=n+1

f ∗i (x)

i!︸ ︷︷ ︸
=0 (since

x∈H≤n and thus

f∗i(x)∈f∗i(H≤n)=0

(since i>n), so that
f∗i(x)=0)

=
n∑
i=0

f ∗i (x)

i!
+

∞∑
i=n+1

0︸ ︷︷ ︸
=0

=
n∑
i=0

f ∗i (x)

i!

=
f ∗0 (x)

0!︸ ︷︷ ︸
=
eH,A (x)

1
=eH,A(x)

+
n∑
i=1

f ∗i (x)

i!
= eH,A (x) +

n∑
i=1

f ∗i (x)

i!

and thus

g︸︷︷︸
=e∗f−eH,A

(x) =
(
e∗f − eH,A

)
(x) = e∗f (x)︸ ︷︷ ︸

=eH,A(x)+
n∑
i=1

f ∗i (x)

i!

−eH,A (x) =
n∑
i=1

f ∗i (x)

i!
=

n∑
i=1

f ∗i

i!
(x)

=
n∑
j=1

f ∗j

j!
(x) (here, we substituted j for i in the sum) .

In other words,

g |H≤n=

(
n∑
j=1

f ∗j

j!

)
|H≤n .

Hence, (
g −

n∑
j=1

f ∗j

j!

)
|H≤n = g |H≤n︸ ︷︷ ︸

=

 n∑
j=1

f ∗j

j!

|H≤n
−

(
n∑
j=1

f ∗j

j!

)
|H≤n

=

(
n∑
j=1

f ∗j

j!

)
|H≤n −

(
n∑
j=1

f ∗j

j!

)
|H≤n= 0.

This yields

g −
n∑
j=1

f ∗j

j!
∈
{
h ∈ L (H,A) | h |H≤n= 0

}
= Ln+1 (H,A)

(by (65)). In other words,

g ≡
n∑
j=1

f ∗j

j!
modLn+1 (H,A) .
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Thus, (66) becomes

Log
(
e∗f
)
≡

n∑
i=1

(−1)i−1

i

 g︸︷︷︸
≡

n∑
j=1

f ∗j

j!
modLn+1(H,A)



∗i

≡
n∑
i=1

(−1)i−1

i

(
n∑
j=1

f ∗j

j!

)∗i
modLn+1 (H,A) . (67)

But since f ∗(n+1) |H≤n= 0 (since Remark 3.5 (applied to i = n+1) yields f ∗(n+1) (H≤n) =

0), we have f ∗(n+1) ∈
{
h ∈ L (H,A) | h |H≤n= 0

}
= Ln+1 (H,A) (by (65)). In other

words, f ∗(n+1) ≡ 0 modLn+1 (H,A). In other words, f ∗(n+1) = 0. Thus, f
∗(n+1)

=

f ∗(n+1) = 0. Hence, we can apply Corollary 5.14 (a) to a = f and obtain
n∑
i=1

(−1)i−1

i

(
n∑
j=1

f
∗j

j!

)∗i
=

f . Hence,

n∑
i=1

(−1)i−1

i

(
n∑
j=1

f ∗j

j!

)∗i
=

n∑
i=1

(−1)i−1

i

(
n∑
j=1

f
∗j

j!

)∗i
= f.

In other words,

n∑
i=1

(−1)i−1

i

(
n∑
j=1

f ∗j

j!

)∗i
≡ f modLn+1 (H,A) .

Combined with (67), this yields Log
(
e∗f
)
≡ f modLn+1 (H,A). In other words,

Log
(
e∗f
)
− f ∈ Ln+1 (H,A) =

{
h ∈ L (H,A) | h |H≤n= 0

}
(by (65)). In other words,

(
Log

(
e∗f
)
− f

)
|H≤n= 0. Hence,

0 =
(
Log

(
e∗f
)
− f

)
|H≤n=

(
Log

(
e∗f
))
|H≤n −f |H≤n .

Hence, (
Log

(
e∗f
))
|H≤n= f |H≤n . (68)

We have thus proven this for every n ∈ N.
Now, let x ∈ H be arbitrary. Since H is filtered, there must exist some n ∈ N such

that x ∈ H≤n. Consider this n. From x ∈ H≤n, we obtain(
Log

(
e∗f
))

(x) =
(
Log

(
e∗f
)
|H≤n

)︸ ︷︷ ︸
=f |H≤n
(by (68))

(x) =
(
f |H≤n

)
(x) = f (x) .

Since this holds for every x ∈ H, we can now conclude that Log
(
e∗f
)

= f .
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This proves Proposition 14.3 (a).
(b) Let F ∈ G (H,A). Let n ∈ N.
According to Proposition 14.2 (applied to n+1 instead of n), the subset Ln+1 (H,A)

of L (H,A) is an ideal of L (H,A). Thus, there is a factor algebra L (H,A)�Ln+1 (H,A).
For every p ∈ L (H,A), we are going to denote by p the projection of p to this factor al-
gebra (i. e., the residue class of p modulo the ideal Ln+1 (H,A)). We are going to denote
the multiplication in the factor algebra L (H,A)�Ln+1 (H,A) by the ∗ sign, and we are
going to write q∗i for the i-th power of q (in the factor algebra L (H,A)�Ln+1 (H,A))
whenever q ∈ L (H,A)�Ln+1 (H,A) and i ∈ N.

Let g = F − eH,A. Then, g ∈ g (H,A) (since F ∈ G (H,A) = eH,A + g (H,A),
so that F − eH,A ∈ g (H,A)). Hence, Remark 3.5 (applied to g instead of f) yields
g∗i (H≤n) = 0 for every i > n.

Let ϕ = LogF . Then, ϕ ∈ g (H,A), so that Remark 3.5 (applied to ϕ instead of
f) yields ϕ∗i (H≤n) = 0 for every i > n.

By the definition of Log, we have LogF = Log1 (F − eH,A)︸ ︷︷ ︸
=g

= Log1 g. Hence,

ϕ = Log f = Log1 g.
Thus, every x ∈ H≤n satisfies

ϕ (x) = (Log1 g) (x) =
∑
i≥1

(−1)i−1

i
g∗i (x) (by the definition of Log1)

=
n∑
i=1

(−1)i−1

i
g∗i (x) +

∞∑
i=n+1

(−1)i−1

i
g∗i (x)︸ ︷︷ ︸

=0 (since
x∈H≤n and thus

g∗i(x)∈g∗i(H≤n)=0

(since i>n))

=
n∑
i=1

(−1)i−1

i
g∗i (x) +

∞∑
i=n+1

(−1)i−1

i
0︸ ︷︷ ︸

=0

=
n∑
i=1

(−1)i−1

i
g∗i (x) .

In other words,

ϕ |H≤n=

(
n∑
i=1

(−1)i−1

i
g∗i

)
|H≤n .

Now,(
ϕ−

n∑
i=1

(−1)i−1

i
g∗i

)
|H≤n = ϕ |H≤n︸ ︷︷ ︸

=

 n∑
i=1

(−1)i−1

i
g∗i

|H≤n
−

(
n∑
i=1

(−1)i−1

i
g∗i

)
|H≤n

=

(
n∑
i=1

(−1)i−1

i
g∗i

)
|H≤n −

(
n∑
i=1

(−1)i−1

i
g∗i

)
|H≤n= 0.

In other words,

ϕ−
n∑
i=1

(−1)i−1

i
g∗i ∈

{
h ∈ L (H,A) | h |H≤n= 0

}
= Ln+1 (H,A)
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(by (65)). This rewrites as

ϕ ≡
n∑
i=1

(−1)i−1

i
g∗i modLn+1 (H,A) . (69)

But every x ∈ H≤n satisfies

e∗ϕ (x) =
∑
i≥0

ϕ∗i (x)

i!
=

n∑
i=0

ϕ∗i (x)

i!
+

∞∑
i=n+1

ϕ∗i (x)

i!︸ ︷︷ ︸
=0 (since

x∈H≤n and thus

ϕ∗i(x)∈ϕ∗i(H≤n)=0

(since i>n), so that
ϕ∗i(x)=0)

=
n∑
i=0

ϕ∗i (x)

i!
+

∞∑
i=n+1

0︸ ︷︷ ︸
=0

=
n∑
i=0

ϕ∗i (x)

i!

=
ϕ∗0 (x)

0!︸ ︷︷ ︸
=
eH,A (x)

1
=eH,A(x)

+
n∑
i=1

ϕ∗i (x)

i!
= eH,A (x) +

n∑
i=1

ϕ∗i (x)

i!

and thus

(e∗ϕ − eH,A) (x) = e∗ϕ (x)︸ ︷︷ ︸
=eH,A(x)+

n∑
i=1

ϕ∗i (x)

i!

−eH,A (x) =
n∑
i=1

ϕ∗i (x)

i!
=

n∑
i=1

ϕ∗i

i!
(x)

=
n∑
j=1

ϕ∗j

j!
(x) (here, we substituted j for i in the sum) .

In other words,

(e∗ϕ − eH,A) |H≤n=

(
n∑
j=1

ϕ∗j

j!

)
|H≤n .

But now, (
(e∗ϕ − eH,A)−

n∑
j=1

ϕ∗j

j!

)
|H≤n

= (e∗ϕ − eH,A) |H≤n︸ ︷︷ ︸
=

 n∑
j=1

ϕ∗j

j!

|H≤n
−

(
n∑
j=1

ϕ∗j

j!

)
|H≤n

=

(
n∑
j=1

ϕ∗j

j!

)
|H≤n −

(
n∑
j=1

ϕ∗j

j!

)
|H≤n= 0.

In other words,

(e∗ϕ − eH,A)−
n∑
j=1

ϕ∗j

j!
∈
{
h ∈ L (H,A) | h |H≤n= 0

}
= Ln+1 (H,A)
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(by (65)). This rewrites as

e∗ϕ − eH,A ≡
n∑
j=1

ϕ∗j

j!
modLn+1 (H,A) .

Substituting (69) into the right hand side of this congruence, we get

e∗ϕ − eH,A ≡
n∑
j=1

(
n∑
i=1

(−1)i−1

i
g∗i

)∗j
j!

modLn+1 (H,A) . (70)

But since g∗(n+1) |H≤n= 0 (since Remark 3.5 (applied to n + 1 and g instead of

i and f) yields g∗(n+1) (H≤n) = 0), we have g∗(n+1) ∈
{
h ∈ L (H,A) | h |H≤n= 0

}
=

Ln+1 (H,A) (by (65)). In other words, g∗(n+1) ≡ 0 modLn+1 (H,A), so that g∗(n+1) = 0.

Thus, g∗(n+1) = g∗(n+1) = 0. Hence, we can apply Corollary 5.14 (b) to b = g and

obtain
n∑
j=1

(
n∑
i=1

(−1)i−1

i
g∗i

)∗j
j!

= g. Thus,

n∑
j=1

(
n∑
i=1

(−1)i−1

i
g∗i

)∗j
j!

=
n∑
j=1

(
n∑
i=1

(−1)i−1

i
g∗i

)∗j
j!

= g.

In other words,

n∑
j=1

(
n∑
i=1

(−1)i−1

i
g∗i

)∗j
j!

≡ gmodLn+1 (H,A) .

Combined with (70), this yields e∗ϕ − eH,A ≡ gmodLn+1 (H,A). Since g = F − eH,A,
this rewrites as e∗ϕ − eH,A ≡ F − eH,A modLn+1 (H,A). This simplifies to e∗ϕ ≡
F modLn+1 (H,A). In other words,

e∗ϕ − F ∈ Ln+1 (H,A) =
{
h ∈ L (H,A) | h |H≤n= 0

}
(by (65)). In other words, (e∗ϕ − F ) |H≤n= 0. Thus,

0 = (e∗ϕ − F ) |H≤n= e∗ϕ |H≤n −F |H≤n ,

so that e∗ϕ |H≤n= F |H≤n . Since ϕ = LogF , this becomes

e∗(LogF ) |H≤n= F |H≤n . (71)

We have thus proven this for every n ∈ N.
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Now, let x ∈ H be arbitrary. Since H is filtered, there must exist some n ∈ N such
that x ∈ H≤n. Consider this n. From x ∈ H≤n, we obtain

e∗(LogF ) (x) =
(
e∗(LogF ) |H≤n

)︸ ︷︷ ︸
=F |H≤n
(by (71))

(x) =
(
F |H≤n

)
(x) = F (x) .

Since this holds for every x ∈ H, we can now conclude that e∗(LogF ) = F .
This proves Proposition 14.3 (b).
We are thus done proving Proposition 14.3.

§15. The dual theorem

Before we proceed, let us introduce two pieces of notation:

Convention 15.1. Let k be a field. Let V be a k-vector space. Let S be
a subset of V . Then, 〈S〉 will denote the k-vector subspace of V generated
by the subset S. Note that 〈S〉 is the set of all k-linear combinations of
elements of S. We have S ⊆ 〈S〉.

Convention 15.2. Let k be a field. Let A be a k-algebra.

If U and V are two k-vector subspaces of A, then we let UV denote the
k-vector subspace

〈uv | (u, v) ∈ U × V 〉

of A. This subspace is called the product of the subspaces U and V of A;
we will also denote it by U · V . (Note that it depends on the base field k.)

This definition makes the set of all k-vector subspaces of A into a multi-
plicative monoid, with neutral element k ·1A (the subspace of all scalar mul-
tiples of the unity 1A). Any k-vector subspace V of A satisfies (k · 1A) ·V =
V · (k · 1A) = V . Any three k-vector subspaces U , V and W of A sat-
isfy (UV )W = U (VW ). We will use the standard notations that are
used in multiplicative monoids (such as writing UVW for the product
(UV )W = U (VW )). In particular, if V is a k-vector subspace of A and
n is a nonnegative integer, then V n will denote the n-th power of V in the
multiplicative monoid of all k-vector subspaces of A (that is, the subspace
V V · · ·V︸ ︷︷ ︸
n times

of A).

Three remarks about this are in order. Firstly, the notation V n cannot be
misunderstood for the Cartesian product V × V × · · · × V︸ ︷︷ ︸

n times

, because we are

denoting the latter Cartesian product by V ×n and not by V n (see Conven-
tion 1.5).

Secondly, it is obvious that standard power rules that hold in monoids hold
in the multiplicative monoid of all k-vector subspaces of A. For instance,
V nV m = V n+m for any k-vector subspace V of A and every n ∈ N and
m ∈ N.
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Furthermore, if n is a nonnegative integer, and V1, V2, . . ., Vn are n arbitrary
k-vector subspaces of a k-algebra A, then

V1V2 · · ·Vn = 〈v1v2 · · · vn | (v1, v2, . . . , vn) ∈ V1 × V2 × · · · × Vn〉 . (72)

In particular, if n is a nonnegative integer, and V is a k-vector subspace of
a k-algebra A, then

V n =
〈
v1v2 · · · vn | (v1, v2, . . . , vn) ∈ V ×n

〉
. (73)

Thirdly, some authors define the notion of an n-th power of an ideal of a
ring. When the ring is A, their definition of the n-th power of an ideal I
of A differs from our definition of In in that they define it as an A-linear
span whereas we define it as a k-linear span. This difference is insubstantial
if n > 0 (that is, the reader can easily check that the two definitions are
equivalent if n > 0). But if n = 0, then their definition gives a different
result than ours. Namely, their definition leads to I0 = A while ours leads
to I0 = k ·1A. While their definition is more suitable for studying ideals (in
particular, it ensures that I0 ⊇ I1 ⊇ I2 ⊇ · · · for any ideal I, whereas our
definition only ensures that ideals I satisfy I1 ⊇ I2 ⊇ I3 ⊇ · · · but usually
not I0 ⊇ I1), our definition is more useful for arbitrary k-vector subspaces.

Now we are going to state and prove a result which is, in some sense, dual to
Theorem 4.1:

Theorem 15.3. Let k be a field of characteristic 0, and let H be a con-
nected filtered commutative bialgebra over k. Consider the convolution
algebra L (H,H). The map Log id ∈ L (H,H) is a projection such that
Ker (Log id) = (Ker (εH))2 + k · 1H . 47

Theorem 15.3 is not directly obtainable from Theorem 4.1 by dualization: First
of all, the dual of a bialgebra is not necessarily a bialgebra (the dual of a coalgebra
is always an algebra, but the dual of an algebra needs not be a coalgebra unless the
algebra is finite-dimensional), but even this technical hurdle aside, the dual of a coal-
gebra filtration is not a filtration but something reasonably called a “cofiltration” (a
decreasing filtration with intersection 0). Given these difficulties, one might be sur-
prised that Theorem 15.3 is correct at all. Fortunately, the filtration is not really an
important part of Theorems 4.1 and 15.3 - its main purpose is to make Log id (and,
more generally, Log f for f ∈ g (H,H)) well-defined. The main core of Theorem 15.3
is dual to that of Theorem 4.1. We will make this clear by giving a proof of Theo-
rem 15.3 which mirrors the above proof of Theorem 4.1 - at least it will have the same
large-scale structure, using lemmas which are duals of respective lemmas used to prove
Theorem 4.1 (though some of the lemmas will not have to be modified at all). As far
as the details of the proof are concerned (the proofs of these lemmas), they will be
simpler than those in the proof of Theorem 4.1, since we will be able to replace many
complicated computations with maps by simpler computations with elements.

First let us formulate a proposition, which is in some sense a dual of Proposition 6.2:

47Recall that (Ker (εH))
2

is to be understood according to Convention 15.2. Thus, (Ker (εH))
2

means the subspace (Ker (εH)) · (Ker (εH)) of H.
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Proposition 15.4. Let k be a field of characteristic 0. Let A be a k-
algebra, and let H be a connected filtered k-coalgebra. Let εA : A→ k be
a k-algebra homomorphism. Then:

(a) Any f ∈ L (H,A) and any g ∈ L (H,A) such that εA ◦ f = 0 and
εA ◦ g = 0 satisfy εA ◦ (f ∗ g) = 0 and (f ∗ g) (H) ⊆ (Ker (εA))2. 48

(b) Every f ∈ L (H,A) such that εA ◦ f = 0 and every integer i > 1 satisfy
εA ◦ f ∗i = 0 and f ∗i (H) ⊆ (Ker (εA))2.

(c) Every F ∈ G (H,A) satisfying εA ◦F = εH satisfies (LogF − F ) (H) ⊆
(Ker (εA))2 + k · 1A.

Note that the duality between Proposition 6.2 and Proposition 15.4 is not perfect.
The condition εA ◦F = εH of Proposition 15.4 (c) is dual to the condition F (1H) = 1A
(which is implicit in the condition F ∈ G (H,A)) of Proposition 6.2 (c), but the
condition F ∈ G (H,A) of Proposition 15.4 (c) is not dual to anything required in
Proposition 6.2 (c) - it just is there to make sure that LogF is well-defined.

Before we start proving Proposition 15.4, let us show a simple lemma:

Lemma 15.5. Let k be a field. Let A be a k-algebra. Then,

any two k-vector subspaces U and V of A satisfy µA (U ⊗ V ) = UV (74)

(where we consider U ⊗V as a k-vector subspace of A⊗A by tensoring the
inclusion maps U → A and V → A).

Proof of Lemma 15.5. Let U and V be two k-vector subspaces of A. Let tensor :
U × V → U ⊗ V be the map defined by

(tensor (u, v) = u⊗ v for every (u, v) ∈ U × V ) .

Recall that for every k-vector space M and every subset S of M , we denote by 〈S〉
the k-vector subspace of M generated by the elements of S.

For every k-vector space M , every set Φ and every map P : Φ→M , let us denote
by 〈P (v) | v ∈ Φ〉 the subspace 〈{P (v) | v ∈ Φ}〉 of M (this is the k-vector subspace
of M generated by all the elements P (v) with v ∈ Φ).

It is a known fact that any two k-vector spaces M and R, any k-linear map φ :
M → R and every subset S of M satisfy φ (〈S〉) = 〈φ (S)〉. Applied to M = A ⊗ A,
R = A, φ = µA and S = {tensor (u, v) | (u, v) ∈ U × V }, this yields

µA (〈{tensor (u, v) | (u, v) ∈ U × V }〉) = 〈µA ({tensor (u, v) | (u, v) ∈ U × V })〉 .

Since tensor (u, v) = u⊗ v, this rewrites as

µA (〈{u⊗ v | (u, v) ∈ U × V }〉) = 〈µA ({u⊗ v | (u, v) ∈ U × V })〉 .

Now, since the tensor product U ⊗ V is generated by pure tensors, we have

U ⊗ V = 〈u⊗ v | (u, v) ∈ U × V 〉 = 〈{u⊗ v | (u, v) ∈ U × V }〉 ,
48Recall that (Ker (εA))

2
is defined according to Convention 15.2. Hence, (Ker (εA))

2
means the

subspace (Ker (εA)) · (Ker (εA)) of A.
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so that

µA (U ⊗ V ) = µA (〈{u⊗ v | (u, v) ∈ U × V }〉) =

〈
µA ({u⊗ v | (u, v) ∈ U × V })︸ ︷︷ ︸

={µA(u⊗v) | (u,v)∈U×V }

〉

=

〈 µA (u⊗ v)︸ ︷︷ ︸
=uv

(since µA is the multiplication map)

| (u, v) ∈ U × V


〉

= 〈{uv | (u, v) ∈ U × V }〉 = 〈uv | (u, v) ∈ U × V 〉 = UV.

This proves Lemma 15.5.

Proof of Proposition 15.4. (a) We have εA (f (H)) = (εA ◦ f)︸ ︷︷ ︸
=0

(H) = 0 (H) = 0 and

thus f (H) ⊆ Ker (εA). Similarly, g (H) ⊆ Ker (εA).
By the definition of convolution, f ∗ g = µA ◦ (f ⊗ g) ◦∆H . Thus,

(f ∗ g) (H) = (µA ◦ (f ⊗ g) ◦∆H) (H) = µA

(f ⊗ g) (∆H (H))︸ ︷︷ ︸
⊆H⊗H

 ⊆ µA

(f ⊗ g) (H ⊗H)︸ ︷︷ ︸
=f(H)⊗g(H)


= µA

 f (H)︸ ︷︷ ︸
⊆Ker(εA)

⊗ g (H)︸ ︷︷ ︸
⊆Ker(εA)

 ⊆ µA ((Ker (εA))⊗ (Ker (εA))) .

But (74) (applied to U = Ker (εA) and V = Ker (εA)) yields µA ((Ker (εA))⊗ (Ker (εA))) =
(Ker (εA)) (Ker (εA)) = (Ker (εA))2. Thus, (f ∗ g) (H) ⊆ µA ((Ker (εA))⊗ (Ker (εA)))
rewrites as (f ∗ g) (H) ⊆ (Ker (εA))2. Hence,

εA ((f ∗ g) (H)) ⊆ εA
(
(Ker (εA))2) ⊆

εA (Ker (εA))︸ ︷︷ ︸
=0

2

(since εA is a k-algebra homomorphism)

= 02 = 0,

so that (εA ◦ (f ∗ g)) (H) = εA ((f ∗ g) (H)) = 0. In other words, εA ◦ (f ∗ g) = 0. This
completes the proof of Proposition 15.4 (a).

(b) We will prove Proposition 15.4 (b) by induction over i:
Induction base: Proposition 15.4 (a) (applied to g = f) yields εA ◦ (f ∗ f) = 0

and (f ∗ f) (H) ⊆ (Ker (εA))2. Since f ∗ f = f ∗2, this rewrites as follows: We have
εA ◦ f ∗2 = 0 and f ∗2 (H) ⊆ (Ker (εA))2. This proves Proposition 15.4 (b) for i = 2.
The induction base is thus complete.

Induction step: Let j > 1 be an integer. Assume that Proposition 15.4 (b) holds
for i = j. We must then prove Proposition 15.4 (b) for i = j + 1.

Since Proposition 15.4 (b) holds for i = j, we have εA ◦ f ∗j = 0 and f ∗j (H) ⊆
(Ker (εA))2. Now, Proposition 15.4 (a) (applied to g = f ∗j) yields εA ◦ (f ∗ f ∗j) = 0
and (f ∗ f ∗j) (H) ⊆ (Ker (εA))2. Since f ∗ f ∗j = f ∗(j+1), this rewrites as follows: We
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have εA ◦ f ∗(j+1) = 0 and f ∗(j+1) (H) ⊆ (Ker (εA))2. In other words, Proposition 15.4
(b) holds for i = j + 1. The induction step is thus complete.

This completes the induction proof of Proposition 15.4 (b).
(c) Let F ∈ G (H,A) satisfy εA ◦ F = εH .
Since εA is a k-algebra homomorphism, we have εA ◦ ηA = ηk = idk.
Let f = F − eH,A. Then,

εA ◦ f = εA ◦ (F − eH,A) = εA ◦ F︸ ︷︷ ︸
=εH

−εA ◦ eH,A︸︷︷︸
=ηA◦εH

= εH − εA ◦ ηA︸ ︷︷ ︸
=idk

◦εH

= εH − εH = 0

and f ∈ g (H,A) (since F ∈ G (H,A) = eH,A + g (H,A), so that F − eH,A ∈ g (H,A)).
Now, the definition of Log says that LogF = Log1 (F − eH,A)︸ ︷︷ ︸

=f

= Log1 f .

Let x ∈ H. Then,

(LogF )︸ ︷︷ ︸
=Log1 f

(x) = (Log1 f) (x) =
∑
i≥1

(−1)i−1

i
f ∗i (x) =

(−1)1−1

1︸ ︷︷ ︸
=1

f ∗1 (x) +
∑
i>1

(−1)i−1

i
f ∗i (x)

= 1f ∗1 (x)︸ ︷︷ ︸
=f∗1(x)=f(x)

+
∑
i>1

(−1)i−1

i
f ∗i (x) = f (x) +

∑
i>1

(−1)i−1

i
f ∗i (x) .

On the other hand, f = F − eH,A yields

f (x) = (F − eH,A) (x) = F (x)− eH,A︸︷︷︸
=ηA◦εE

(x) = F (x)− (ηA ◦ εH) (x)

= F (x)− ηA (εH (x))︸ ︷︷ ︸
=εH(x)·1A

(by the definition of ηA)

= F (x)− εH (x) · 1A,

so that F (x) = f (x) + εH (x) · 1A. Thus,

(LogF − F ) (x) = (LogF ) (x)︸ ︷︷ ︸
=f(x)+

∑
i>1

(−1)i−1

i
f∗i(x)

− F (x)︸ ︷︷ ︸
=f(x)+εH(x)·1A

=

(
f (x) +

∑
i>1

(−1)i−1

i
f ∗i (x)

)
− (f (x) + εH (x) · 1A)

=
∑
i>1

(−1)i−1

i
f ∗i (x) + εH (x) · 1A. (75)

But every integer i > 1 satisfies f ∗i (H) ⊆ (Ker (εA))2 (by Proposition 15.4 (b))
and thus f ∗i (x) ∈ (Ker (εA))2 (since x ∈ H and thus f ∗i (x) ∈ f ∗i (H)). Hence,∑
i>1

(−1)i−1

i
f ∗i (x) is a finite k-linear combination of elements of (Ker (εA))2 (it is finite

because we know that only finitely many addends of the infinite sum
∑
i>1

(−1)i−1

i
f ∗i (x)
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are nonzero). Therefore,
∑
i>1

(−1)i−1

i
f ∗i (x) is an element of (Ker (εA))2 (because (Ker (εA))2

is a k-vector space, so that every finite k-linear combination of elements of (Ker (εA))2

must be an element of (Ker (εA))2 itself). Thus, (75) becomes

(LogF − F ) (x) =
∑
i>1

(−1)i−1

i
f ∗i (x)︸ ︷︷ ︸

∈(Ker(εA))2

+ εH (x) · 1A︸ ︷︷ ︸
∈k·1A

∈ (Ker (εA))2 + k · 1A.

Since this holds for every x ∈ H, we thus have proven that (LogF − F ) (H) ⊆
(Ker (εA))2 + k · 1A. This proves Proposition 15.4 (c).

Next, just as we defined the notion of (ε, ε)-coderivations in Definition 7.1, let us
define (ε, ε)-derivations (which is, in fact, a well-known notion, after which the notion
of (ε, ε)-coderivations was modelled after):

Definition 15.6. Let k be a field. Let H be a k-algebra, and let εH : H →
k be a k-algebra homomorphism. Let A be a k-algebra. Let f : H → A be
a k-linear map. Then, f is said to be an (εH , εH)-derivation if and only if
f ◦ µH = µA ◦ (f ⊗ eH,A + eH,A ⊗ f). Here, the map eH,A is defined to be
the map ηA ◦ εH : H → A (this definition of the map eH,A is identical with
the definition of the map eH,A in Definition 1.12).

This definition can be very easily equivalently rewritten as follows:

Definition 15.7. Let k be a field. Let H be a k-algebra, and let εH : H →
k be a k-algebra homomorphism. Let A be a k-algebra. Let f : H → A be
a k-linear map. Then, f is said to be an (εH , εH)-derivation if and only if
every (a, b) ∈ H ×H satisfies f (ab) = f (a) εH (b) + εH (a) f (b).

We will be able to use both Definitions 15.6 and 15.7 in parallel as soon as we have
shown the following proposition:

Proposition 15.8. Definition 15.6 and Definition 15.7 are equivalent.

Proof of Proposition 15.8. Let k be a field. Let H be a k-algebra, and let εH : H → k
be a k-algebra homomorphism. Let A be a k-algebra. Let f : H → A be a k-linear
map.

It is well-known that two k-linear maps from a tensor product are equal if and only
if they are equal on each pure tensor. Applying this fact to the two k-linear maps
f ◦ µH : H ⊗H → A and µA ◦ (f ⊗ eH,A + eH,A ⊗ f) : H ⊗H → A, we conclude that
we have the following equivalence:

(the two maps f ◦ µH and µA ◦ (f ⊗ eH,A + eH,A ⊗ f) are equal)

⇐⇒ (the two maps f ◦ µH and µA ◦ (f ⊗ eH,A + eH,A ⊗ f) are equal on each pure tensor) .
(76)
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Since pure tensors in H⊗H are tensors of the form a⊗ b with (a, b) ∈ H×H, we have
the equivalence

(the two maps f ◦ µH and µA ◦ (f ⊗ eH,A + eH,A ⊗ f) are equal on each pure tensor)

⇐⇒ (the two maps f ◦ µH and µA ◦ (f ⊗ eH,A + eH,A ⊗ f) are

equal on a⊗ b for each (a, b) ∈ H ×H)

⇐⇒ ((f ◦ µH) (a⊗ b) = (µA ◦ (f ⊗ eH,A + eH,A ⊗ f)) (a⊗ b) for each (a, b) ∈ H ×H) .
(77)

But every (a, b) ∈ H ×H satisfies

(f ◦ µH) (a⊗ b) = f

 µH (a⊗ b)︸ ︷︷ ︸
=ab

(since µH is the multiplication map)

 = f (ab)

and

(µA ◦ (f ⊗ eH,A + eH,A ⊗ f)) (a⊗ b)

= µA

(f ⊗ eH,A + eH,A ⊗ f) (a⊗ b)︸ ︷︷ ︸
=(f⊗eH,A)(a⊗b)+(eH,A⊗f)(a⊗b)


= µA

(f ⊗ eH,A) (a⊗ b)︸ ︷︷ ︸
=f(a)⊗eH,A(b)

+ (eH,A ⊗ f) (a⊗ b)︸ ︷︷ ︸
=eH,A(a)⊗f(b)


= µA (f (a)⊗ eH,A (b) + eH,A (a)⊗ f (b))

= f (a) eH,A︸︷︷︸
=ηA◦εH

(b) + eH,A︸︷︷︸
=ηA◦εH

(a) f (b) (since µA is the multiplication map)

= f (a) (ηA ◦ εH) (b)︸ ︷︷ ︸
=ηA(εH(b))=εH(b)·1A

(by the definition of ηA)

+ (ηA ◦ εH) (a)︸ ︷︷ ︸
=ηA(εH(a))=εH(a)·1A
(by the definition of ηA)

f (b)

= f (a) εH (b) · 1A + εH (a) · 1Af (b) = f (a) εH (b) + εH (a) f (b) .
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Now, we have the following chain of equivalences:

(the map f is an (εH , εH) -derivation in the sense of Definition 15.6)

⇐⇒ (f ◦ µH = µA ◦ (f ⊗ eH,A + eH,A ⊗ f)) (by Definition 15.6)

⇐⇒ (the two maps f ◦ µH and µA ◦ (f ⊗ eH,A + eH,A ⊗ f) are equal)

⇐⇒ (the two maps f ◦ µH and µA ◦ (f ⊗ eH,A + eH,A ⊗ f) are equal on each pure tensor)

(by (76))

⇐⇒

(f ◦ µH) (a⊗ b)︸ ︷︷ ︸
=f(ab)

= (µA ◦ (f ⊗ eH,A + eH,A ⊗ f)) (a⊗ b)︸ ︷︷ ︸
=f(a)εH(b)+εH(a)f(b)

for each (a, b) ∈ H ×H


(by (77))

⇐⇒ (f (ab) = f (a) εH (b) + εH (a) f (b) for each (a, b) ∈ H ×H)

⇐⇒ (the map f is an (εH , εH) -derivation in the sense of Definition 15.7)

(by Definition 15.7) .

In other words, Definition 15.6 and Definition 15.7 are equivalent. This proves Propo-
sition 15.8.

There is another way of thinking about (εH , εH)-derivations. It is given by a result
(in some way) dual to Theorem 7.2:

Theorem 15.9. Let k be a field. Let H be a k-algebra, and let εH :
H → k be a k-algebra homomorphism. Let A be a k-algebra. Let f :
H → A be a k-linear map. Then, f is an (εH , εH)-derivation if and only if
f
(
(Ker (εH))2 + k · 1H

)
= 0. 49

Proof of Theorem 15.9. a) Let us prove that if f is an (εH , εH)-derivation, then
f
(
(Ker (εH))2 + k · 1H

)
= 0.

Proof. Assume that f is an (εH , εH)-derivation. By Definition 15.7, this means that

every (a, b) ∈ H ×H satisfies f (ab) = f (a) εH (b) + εH (a) f (b) . (78)

Applying (78) to (a, b) = (1H , 1H), we get

f (1H1H) = f (1H) εH (1H) + εH (1H) f (1H) = f (1H) 1 + 1f (1H)

(since εH is a k-algebra homomorphism, and thus εH (1H) = 1)

= f (1H) + f (1H) .

Since 1H1H = 1H , this rewrites as f (1H) = f (1H)+f (1H). This simplifies to f (1H) =
0.

On the other hand,

every (a, b) ∈ (Ker (εH))× (Ker (εH)) satisfies f (ab) = 0. (79)

49Recall that (Ker (εH))
2

is defined according to Convention 15.2; thus, (Ker (εH))
2

means the
subspace (Ker (εH)) · (Ker (εH)) of H.
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50

Now it is easy to see that f
(
(Ker (εH))2) = 0. 51

But f is k-linear, so that

f
(
(Ker (εH))2 + k · 1H

)
= f

(
(Ker (εH))2)︸ ︷︷ ︸

=0

+k · f (1H)︸ ︷︷ ︸
=0

= 0 + k · 0 = 0.

So we have shown that f
(
(Ker (εH))2 + k · 1H

)
= 0. This proves a).

b) Now let us prove that if f
(
(Ker (εH))2 + k · 1H

)
= 0, then f is an (εH , εH)-

derivation.
Proof. Assume that f

(
(Ker (εH))2 + k · 1H

)
= 0.

Let (a, b) ∈ H ×H be arbitrary. Since

εH (a− εH (a) · 1H) = εH (a)− εH (a) · 1 (since εH is a k-algebra homomorphism)

= εH (a)− εH (a) = 0,

we have a − εH (a) · 1H ∈ Ker (εH) and similarly b − εH (b) · 1H ∈ Ker (εH). Hence,
(a− εH (a) · 1H)︸ ︷︷ ︸

∈Ker(εH)

(b− εH (b) · 1H)︸ ︷︷ ︸
∈Ker(εH)

∈ (Ker (εH)) (Ker (εH)) = (Ker (εH))2. Thus,

(a− εH (a) · 1H) (b− εH (b) · 1H)︸ ︷︷ ︸
∈(Ker(εH))2

+

−εH (a) εH (b)︸ ︷︷ ︸
∈k

·1H

 ∈ (Ker (εH))2 + k · 1H ,

so that

f ((a− εH (a) · 1H) (b− εH (b) · 1H) + (−εH (a) εH (b) · 1H)) ∈ f
(
(Ker (εH))2 + k · 1H

)
= 0.

50Proof. Let (a, b) ∈ (Ker (εH))× (Ker (εH)). Then, a ∈ Ker (εH), so that εH (a) = 0 and similarly
εH (b) = 0. Now, (78) yields f (ab) = f (a) εH (b)︸ ︷︷ ︸

=0

+ εH (a)︸ ︷︷ ︸
=0

f (b) = f (a) 0 + 0f (b) = 0, and thus (79) is

proven.
51Proof. Let x ∈ (Ker (εH))

2
. Then,

x ∈ (Ker (εH))
2

= (Ker (εH)) (Ker (εH))

= (the k-vector subspace of H generated by the terms ab with (a, b) ∈ (Ker (εH))× (Ker (εH)))

= (the set of all k-linear combinations of terms of the form ab with (a, b) ∈ (Ker (εH))× (Ker (εH))) .

Hence, x is a k-linear combination of terms of the form ab with (a, b) ∈ (Ker (εH)) × (Ker (εH)). In
other words, there exists some n ∈ N, some elements λ1, λ2, . . ., λn of k, some elements a1, a2, . . .,

an of Ker (εH), and some elements b1, b2, . . ., bn of Ker (εH) such that x =
n∑
i=1

λiaibi. Consider this

n, these λ1, λ2, . . ., λn, these a1, a2, . . ., an, and these b1, b2, . . ., bn. Then, x =
n∑
i=1

λiaibi leads to

f (x) = f

(
n∑
i=1

λiaibi

)
=

n∑
i=1

λi f (aibi)︸ ︷︷ ︸
=0

(by (79), applied to (a,b)=(ai,bi))

(since f is k-linear)

=

n∑
i=1

λi0 = 0.

Since this is proven for every x ∈ (Ker (εH))
2
, we thus have f

(
(Ker (εH))

2
)

= 0, qed.
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In other words,

f ((a− εH (a) · 1H) (b− εH (b) · 1H) + (−εH (a) εH (b) · 1H)) = 0.

Thus,

0 = f

(a− εH (a) · 1H) (b− εH (b) · 1H)︸ ︷︷ ︸
=ab−aεH(b)−εH(a)b+εH(a)εH(b)1H

+ (−εH (a) εH (b) · 1H)


= f

ab− aεH (b)− εH (a) b+ εH (a) εH (b) 1H − εH (a) εH (b) · 1H︸ ︷︷ ︸
=0


= f (ab− aεH (b)− εH (a) b) = f (ab)− f (a) εH (b)− εH (a) f (b) (since f is k-linear) .

This rewrites as
f (ab) = f (a) εH (b) + εH (a) f (b) .

Forget that we fixed (a, b). We have proven that every (a, b) ∈ H × H satisfies
f (ab) = f (a) εH (b)+εH (a) f (b). By Definition 15.7, this means that f is an (εH , εH)-
derivation. This proves b).

c) Combining the results of a) and b), we see that f is an (εH , εH)-derivation if
and only if f

(
(Ker (εH))2 + k · 1H

)
= 0. This proves Theorem 15.9.

Our main thrust on Theorem 15.3 will come from the next theorem, which is (in
some ways, but not completely) a dual version of Theorem 8.1:

Theorem 15.10. Let k be a field of characteristic 0. Let H be a connected
filtered k-coalgebra and, at the same time, a k-bialgebra with the same
underlying k-coalgebra structure. Let A be a commutative k-algebra. Let
f ∈ g (H,A). Then, f is an (εH , εH)-derivation if and only if e∗f is a
k-algebra homomorphism.

Being an “if and only if” statement, the assertion of this theorem splits into two
parts, which we will now formulate as two independent lemmas:

Lemma 15.11. Let k be a field of characteristic 0. Let H be a connected
filtered k-coalgebra and, at the same time, a k-bialgebra with the same
underlying k-coalgebra structure. Let A be a commutative k-algebra. Let
f ∈ g (H,A). If f is an (εH , εH)-derivation, then e∗f is a k-algebra homo-
morphism.

Lemma 15.12. Let k be a field of characteristic 0. Let H be a connected
filtered k-coalgebra and, at the same time, a k-bialgebra with the same
underlying k-coalgebra structure. Let A be a commutative k-algebra. Let
f ∈ g (H,A). If e∗f is a k-algebra homomorphism, then f is an (εH , εH)-
derivation.

In order to prove Lemma 15.11, we first show an auxiliary result:
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Lemma 15.13. Let k be a field. Let H be a k-bialgebra. Let A be a
commutative k-algebra. Let f ∈ L (H,A) be an (εH , εH)-derivation. Then,
for every n ∈ N, we have

f ∗n (ab) =
n∑
i=0

(
n

i

)
f ∗i (a) f ∗(n−i) (b) for any a ∈ H and b ∈ H. (80)

Note that this Lemma 15.13 is the dual of Lemma 9.7 - as you can see if you rewrite
the equation (80) as

f ∗n ◦ µH =
n∑
i=0

(
n

i

)
µA ◦

(
f ∗i ⊗ f ∗(n−i)

)
.

This time, it is a true duality, without any filtrations that could prevent us from
dualizing things. As a consequence, one could obtain a proof of Lemma 15.13 by
“reversing all arrows” in our above proof of Lemma 9.7 (but first, one would have
to rewrite our above proof of Lemma 9.7 in a purely categorical form). Let us here
take a somewhat different route towards proving Lemma 15.13 - namely, by direct
computation with elements. It will turn out to be faster and easier (although still
requiring a lot of computation since we are not using Sweedler notation).

Proof of Lemma 15.13. We are going to prove Lemma 15.13 by induction over n.
Induction base: We have f ∗0 = eH,A = ηA ◦ εH . Hence, every x ∈ H satisfies

f ∗0 (x) = (ηA ◦ εH) (x) = ηA (εH (x)) = εH (x) 1A (by the definition of ηA) . (81)

Applying (81) to x = a, we obtain f ∗0 (a) = εH (a) 1A. Applying (81) to x = b, we
obtain f ∗0 (b) = εH (b) 1A. Applying (81) to x = ab, we obtain f ∗0 (ab) = εH (ab) 1A.
Since H is a bialgebra, we have εH (ab) = εH (a) εH (b) (by the axioms of a bialgebra).
Now, comparing

f ∗0 (ab) = εH (ab)︸ ︷︷ ︸
=εH(a)εH(b)

1A = εH (a) εH (b) 1A

with

0∑
i=0

(
0

i

)
f ∗i (a) f ∗(0−i) (b) =

(
0

0

)
︸︷︷︸

=1

f ∗0 (a) f ∗(0−0)︸ ︷︷ ︸
=f∗0

(b) = f ∗0 (a)︸ ︷︷ ︸
=εH(a)1A

f ∗0 (b)︸ ︷︷ ︸
=εH(b)1A

= εH (a) 1A · εH (b) 1A

= εH (a) εH (b) 1A,

we obtain f ∗0 (ab) =
0∑
i=0

(
0

i

)
f ∗i (a) f ∗(0−i) (b). In other words, Lemma 15.13 holds for

n = 0. This completes the induction base.
Induction step: Let N ∈ N. Assume that Lemma 15.13 holds for n = N . To

complete the induction, we must show that Lemma 15.13 also holds for n = N + 1.
Since Lemma 15.13 holds for n = N , we have

f ∗N (ab) =
N∑
i=0

(
N

i

)
f ∗i (a) f ∗(N−i) (b) for any a ∈ H and b ∈ H. (82)
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On the other hand, f is an (εH , εH)-derivation. By Definition 15.7, this means that

f (ab) = f (a) εH (b) + εH (a) f (b) for any (a, b) ∈ H ×H. (83)

Now let a ∈ H and b ∈ H be arbitrary.

Since ∆H (a) ∈ H ⊗H, we can write ∆H (a) in the form ∆H (a) =
M∑
j=1

λjaj ⊗ a′j for

some M ∈ N, some elements λ1, λ2, . . ., λM of k, some elements a1, a2, . . ., aM of H,
and some elements a′1, a′2, . . ., a′M of H. Consider this M , these λ1, λ2, . . ., λM , these
a1, a2, . . ., aM , and these a′1, a′2, . . ., a′M .

Since ∆H (b) ∈ H ⊗H, we can write ∆H (b) in the form ∆H (b) =
K∑̀
=1

µ`b` ⊗ b′` for

some K ∈ N, some elements µ1, µ2, . . ., µK of k, some elements b1, b2, . . ., bK of H,
and some elements b′1, b′2, . . ., b′K of H. Consider this K, these µ1, µ2, . . ., µK , these
b1, b2, . . ., bK , and these b′1, b′2, . . ., b′K .

Since H is a bialgebra,

∆H (ab) = ∆H (a)︸ ︷︷ ︸
=
M∑
j=1

λjaj⊗a′j

· ∆H (b)︸ ︷︷ ︸
=
K∑̀
=1
µ`b`⊗b′`

(by the axioms of a bialgebra)

=

(
M∑
j=1

λjaj ⊗ a′j

)
·

(
K∑
`=1

µ`b` ⊗ b′`

)
=

M∑
j=1

K∑
`=1

λjµ`
(
aj ⊗ a′j

)
(b` ⊗ b′`)︸ ︷︷ ︸

=ajb`⊗a′jb′`

=
M∑
j=1

K∑
`=1

λjµ`ajb` ⊗ a′jb′`.

Now, f ∗(N+1) = f ∗ f ∗N = µA ◦
(
f ⊗ f ∗N

)
◦∆H (by the definition of convolution),
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so that

f ∗(N+1) (ab) =
(
µA ◦

(
f ⊗ f ∗N

)
◦∆H

)
(ab)

= µA


(
f ⊗ f ∗N

)
(∆H (ab))︸ ︷︷ ︸

=
M∑
j=1

K∑̀
=1
λjµ`ajb`⊗a′jb′`

 = µA


(
f ⊗ f ∗N

)( M∑
j=1

K∑
`=1

λjµ`ajb` ⊗ a′jb′`

)
︸ ︷︷ ︸

=
M∑
j=1

K∑̀
=1
λjµ`f(ajb`)⊗f∗N(a′jb′`)

(by the definition of f⊗f∗N )


= µA

(
M∑
j=1

K∑
`=1

λjµ`f (ajb`)⊗ f ∗N
(
a′jb
′
`

))
=

M∑
j=1

K∑
`=1

λjµ` f (ajb`)︸ ︷︷ ︸
=f(aj)εH(b`)+εH(aj)f(b`)

(by (83), applied to
(aj ,b`) instead of (a,b))

·f ∗N
(
a′jb
′
`

)

(since µA is the multiplication map)

=
M∑
j=1

K∑
`=1

λjµ` (f (aj) εH (b`) + εH (aj) f (b`)) · f ∗N
(
a′jb
′
`

)︸ ︷︷ ︸
=λjµ`f(aj)εH(b`)·f∗N(a′jb′`)+λjµ`εH(aj)f(b`)·f∗N(a′jb′`)

=
M∑
j=1

K∑
`=1

(
λjµ`f (aj) εH (b`) · f ∗N

(
a′jb
′
`

)
+ λjµ`εH (aj) f (b`) · f ∗N

(
a′jb
′
`

))
=

M∑
j=1

K∑
`=1

λjµ`f (aj) εH (b`) · f ∗N
(
a′jb
′
`

)
︸ ︷︷ ︸

=
M∑
j=1

λjf(aj)
K∑̀
=1

µ`εH(b`)·f∗N(a′jb′`)

+
M∑
j=1

K∑
`=1

λjµ`εH (aj) f (b`) · f ∗N
(
a′jb
′
`

)
︸ ︷︷ ︸

=
K∑̀
=1
µ`f(b`)

M∑
j=1

λjεH(aj)·f∗N(a′jb′`)

=
M∑
j=1

λjf (aj)
K∑
`=1

µ`εH (b`) · f ∗N
(
a′jb
′
`

)
︸ ︷︷ ︸

=f∗N

(
K∑̀
=1
µ`εH(b`)a

′
jb
′
`

)
(since f∗N is k-linear)

+
K∑
`=1

µ`f (b`)
M∑
j=1

λjεH (aj) · f ∗N
(
a′jb
′
`

)
︸ ︷︷ ︸

=f∗N

(
M∑
j=1

λjεH(aj)·a′jb′`

)
(since f∗N is k-linear)

=
M∑
j=1

λjf (aj) f
∗N

(
K∑
`=1

µ`εH (b`) a
′
jb
′
`

)
+

K∑
`=1

µ`f (b`) f
∗N

(
M∑
j=1

λjεH (aj) · a′jb′`

)
.

(84)

Now, it is easy to see (using the axioms of a coalgebra and the fact that ∆H (b) =
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K∑̀
=1

µ`b` ⊗ b′`) that
K∑̀
=1

µ`εH (b`) b
′
` = b 52, and thus every j ∈ {1, 2, . . . ,M} satisfies

K∑
`=1

µ`εH (b`) a
′
jb
′
` = a′j ·

K∑
`=1

µ`εH (b`) b
′
`︸ ︷︷ ︸

=b

= a′jb,

so that

f ∗N

(
K∑
`=1

µ`εH (b`) a
′
jb
′
`

)
= f ∗N

(
a′jb
)

=
N∑
i=0

(
N

i

)
f ∗i
(
a′j
)
f ∗(N−i) (b)(

by (82), applied to a′j instead of a
)
.

Hence,

M∑
j=1

λjf (aj) f
∗N

(
K∑
`=1

µ`εH (b`) a
′
jb
′
`

)
︸ ︷︷ ︸
=
N∑
i=0

(
N

i

)
f∗i(a′j)f∗(N−i)(b)

=
M∑
j=1

λjf (aj)
N∑
i=0

(
N

i

)
f ∗i
(
a′j
)
f ∗(N−i) (b)

=
N∑
i=0

(
N

i

)( M∑
j=1

λjf (aj) f
∗i (a′j)

)
f ∗(N−i) (b) . (85)

Also, it is easy to see (using the axioms of a coalgebra and the fact that ∆H (a) =

52Proof. Let kan : k ⊗ H → H be the canonical isomorphism (which maps 1 ⊗ x to x for every
x ∈ H). Then, by the axioms of a coalgebra, kan ◦ (εH ⊗ idH) ◦∆H = idH (since H is a coalgebra).
Thus, (kan ◦ (εH ⊗ idH) ◦∆H) (b) = idH (b). Since

(kan ◦ (εH ⊗ idH) ◦∆H) (b) = kan

(εH ⊗ idH) (∆H (b))︸ ︷︷ ︸
=
K∑̀
=1

µ`b`⊗b′`

 = kan


(εH ⊗ idH)

(
K∑
`=1

µ`b` ⊗ b′`

)
︸ ︷︷ ︸

=
K∑̀
=1

µ`εH(b`)⊗idH(b′`)

(by the definition of εH⊗idH )


= kan

(
K∑
`=1

µ`εH (b`)⊗ idH (b′`)

)
=

K∑
`=1

µ`εH (b`) idH (b′`)︸ ︷︷ ︸
=b′`

(by the definition of kan)

=

K∑
`=1

µ`εH (b`) b
′
`

and idH (b) = b, this rewrites as
K∑̀
=1

µ`εH (b`) b
′
` = b, qed.
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M∑
j=1

λjaj ⊗ a′j) that
M∑
j=1

λjεH (aj) a
′
j = a 53, and thus every ` ∈ {1, 2, . . . ,M} satisfies

M∑
j=1

λjεH (aj) · a′jb′` =
M∑
j=1

λjεH (aj) a
′
j︸ ︷︷ ︸

=a

·b′` = ab′`,

so that

f ∗N

(
M∑
j=1

λjεH (aj) · a′jb′`

)
= f ∗N (ab′`) =

N∑
i=0

(
N

i

)
f ∗i (a) f ∗(N−i) (b′`)

(by (82), applied to b′` instead of b) .

Hence,

K∑
`=1

µ`f (b`) f
∗N

(
M∑
j=1

λjεH (aj) · a′jb′`

)
︸ ︷︷ ︸

=
N∑
i=0

(
N

i

)
f∗i(a)f∗(N−i)(b′`)

=
K∑
`=1

µ`f (b`)
N∑
i=0

(
N

i

)
f ∗i (a) f ∗(N−i) (b′`) =

N∑
i=0

(
N

i

) K∑
`=1

µ` f (b`) f
∗i (a)︸ ︷︷ ︸

=f∗i(a)f(b`)
(since A is commutative)

f ∗(N−i) (b′`)

=
N∑
i=0

(
N

i

) K∑
`=1

µ`f
∗i (a) f (b`) f

∗(N−i) (b′`) =
N∑
i=0

(
N

i

)
f ∗i (a)

(
K∑
`=1

µ`f (b`) f
∗(N−i) (b′`)

)
.

(86)

53Proof. Let kan : k ⊗ H → H be the canonical isomorphism (which maps 1 ⊗ x to x for every
x ∈ H). Then, by the axioms of a coalgebra, kan ◦ (εH ⊗ idH) ◦∆H = idH (since H is a coalgebra).
Thus, (kan ◦ (εH ⊗ idH) ◦∆H) (a) = idH (a). Since

(kan ◦ (εH ⊗ idH) ◦∆H) (a)

= kan

(εH ⊗ idH) (∆H (a))︸ ︷︷ ︸
=
M∑
j=1

λjaj⊗a′j

 = kan


(εH ⊗ idH)

 M∑
j=1

λjaj ⊗ a′j


︸ ︷︷ ︸

=
M∑
j=1

λjεH(aj)⊗idH(a′j)

(by the definition of εH⊗idH )


= kan

 M∑
j=1

λjεH (aj)⊗ idH
(
a′j
) =

M∑
j=1

λjεH (aj) idH
(
a′j
)︸ ︷︷ ︸

=a′j

(by the definition of kan)

=

M∑
j=1

λjεH (aj) a
′
j

and idH (a) = a, this rewrites as
M∑
j=1

λjεH (aj) a
′
j = a, qed.
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Now, (84) becomes

f ∗(N+1) (ab) =
M∑
j=1

λjf (aj) f
∗N

(
K∑
`=1

µ`εH (b`) a
′
jb
′
`

)
︸ ︷︷ ︸

=
N∑
i=0

(
N

i

)(
M∑
j=1

λjf(aj)f
∗i(a′j)

)
f∗(N−i)(b)

(by (85))

+
K∑
`=1

µ`f (b`) f
∗N

(
M∑
j=1

λjεH (aj) · a′jb′`

)
︸ ︷︷ ︸

=
N∑
i=0

(
N

i

)
f∗i(a)

(
K∑̀
=1
µ`f(b`)f

∗(N−i)(b′`)
)

(by (86))

=
N∑
i=0

(
N

i

)( M∑
j=1

λjf (aj) f
∗i (a′j)

)
f ∗(N−i) (b)

+
N∑
i=0

(
N

i

)
f ∗i (a)

(
K∑
`=1

µ`f (b`) f
∗(N−i) (b′`)

)
. (87)

But now, we notice that every i ∈ {0, 1, . . . , N} satisfies

f ∗(i+1) (a) =
(
µA ◦

(
f ⊗ f ∗i

)
◦∆H

)
(a)(

since f ∗(i+1) = f ∗ f ∗i = µA ◦
(
f ⊗ f ∗i

)
◦∆H by the definition of convolution

)

= µA


(
f ⊗ f ∗i

)
 ∆H (a)︸ ︷︷ ︸

=
M∑
j=1

λjaj⊗a′j



 = µA


(
f ⊗ f ∗i

)( M∑
j=1

λjaj ⊗ a′j

)
︸ ︷︷ ︸

=
M∑
j=1

λjf(aj)⊗f∗i(a′j)

(by the definition of f⊗f∗i)


= µA

(
M∑
j=1

λjf (aj)⊗ f ∗i
(
a′j
))

=
M∑
j=1

λjf (aj) f
∗i (a′j) (88)

(since µA is the multiplication map) and

f ∗(N−i+1) (b)

=
(
µA ◦

(
f ⊗ f ∗(N−i)

)
◦∆H

)
(b)(

since f ∗(N−i+1) = f ∗ f ∗(N−i) = µA ◦
(
f ⊗ f ∗(N−i)

)
◦∆H by the definition of convolution

)

= µA

(f ⊗ f ∗(N−i))
 ∆H (b)︸ ︷︷ ︸

=
K∑̀
=1
µ`b`⊗b′`


 = µA


(
f ⊗ f ∗(N−i)

)( K∑
`=1

µ`b` ⊗ b′`

)
︸ ︷︷ ︸

=
K∑̀
=1

µ`f(b`)⊗f∗(N−i)(b′`)

(by the definition of f⊗f∗(N−i))


= µA

(
K∑
`=1

µ`f (b`)⊗ f ∗(N−i) (b′`)

)
=

K∑
`=1

µ`f (b`) f
∗(N−i) (b′`) (89)
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(since µA is the multiplication map).
With the help of these identities, (87) becomes

f ∗(N+1) (ab) =
N∑
i=0

(
N

i

)( M∑
j=1

λjf (aj) f
∗i (a′j)

)
︸ ︷︷ ︸

=f∗(i+1)(a)
(by (88))

f ∗(N−i) (b)

+
N∑
i=0

(
N

i

)
f ∗i (a)

(
K∑
`=1

µ`f (b`) f
∗(N−i) (b′`)

)
︸ ︷︷ ︸

=f∗(N−i+1)(b)
(by (89))

=
N∑
i=0

(
N

i

)
f ∗(i+1) (a) f ∗(N−i) (b) +

N∑
i=0

(
N

i

)
f ∗i (a) f ∗(N−i+1) (b)

=
N∑
i=0

(
N

i

)
f ∗i (a) f ∗(N−i+1) (b) +

N∑
i=0

(
N

i

)
f ∗(i+1) (a) f ∗(N−i) (b)

=
N∑
i=0

(
N

i

)
f ∗i (a) f ∗(N−i+1)︸ ︷︷ ︸

=f∗(N+1−i)

(b) +
N+1∑
i=1

(
N

i− 1

)
f ∗((i−1)+1)︸ ︷︷ ︸

=f∗i

(a) f ∗(N−(i−1))︸ ︷︷ ︸
=f∗(N+1−i)

(b)

(here, we substituted i− 1 for i in the second sum)

=
N∑
i=0

(
N

i

)
f ∗i (a) f ∗(N+1−i) (b) +

N+1∑
i=1

(
N

i− 1

)
f ∗i (a) f ∗(N+1−i) (b) .
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Compared to

N+1∑
i=0

(
N + 1

i

)
f ∗i (a) f ∗(N+1−i) (b)

=
N+1∑
i=0

((
N

i

)
+

(
N

i− 1

))
f ∗i (a) f ∗(N+1−i) (b)(

since

(
N + 1

i

)
=

(
N

i

)
+

(
N

i− 1

)
by the recurrence of the binomial coefficients

)
=

N+1∑
i=0

(
N

i

)
f ∗i (a) f ∗(N+1−i) (b)︸ ︷︷ ︸

=
N∑
i=0

(
N

i

)
f∗i(a)f∗(N+1−i)(b)+

(
N

N + 1

)
f∗(N+1)(a)f∗(N+1−(N+1))(b)

+
N+1∑
i=0

(
N

i− 1

)
f ∗i (a) f ∗(N+1−i) (b)︸ ︷︷ ︸

=

(
N

0− 1

)
f∗0(a)f∗(N+1−0)(b)+

N+1∑
i=1

(
N

i− 1

)
f∗i(a)f∗(N+1−i)(b)

=


N∑
i=0

(
N

i

)
f ∗i (a) f ∗(N+1−i) (b) +

(
N

N + 1

)
︸ ︷︷ ︸

=0 (since N+1>N)

f ∗(N+1) (a) f ∗(N+1−(N+1)) (b)



+


(

N

0− 1

)
︸ ︷︷ ︸

=0 (since 0−1<0)

f ∗0 (a) f ∗(N+1−0) (b) +
N+1∑
i=1

(
N

i− 1

)
f ∗i (a) f ∗(N+1−i) (b)


=

 N∑
i=0

(
N

i

)
f ∗i (a) f ∗(N+1−i) (b) + 0f ∗(N+1) (a) f ∗(N+1−(N+1)) (b)︸ ︷︷ ︸

=0


+

0f ∗0 (a) f ∗(N+1−0) (b)︸ ︷︷ ︸
=0

+
N+1∑
i=1

(
N

i− 1

)
f ∗i (a) f ∗(N+1−i) (b)


=

N∑
i=0

(
N

i

)
f ∗i (a) f ∗(N+1−i) (b) +

N+1∑
i=1

(
N

i− 1

)
f ∗i (a) f ∗(N+1−i) (b) ,

this yields

f ∗(N+1) (ab) =
N+1∑
i=0

(
N + 1

i

)
f ∗i (a) f ∗(N+1−i) (b) .

Now forget that we fixed a and b. We thus have shown that every a ∈ H and b ∈ H
satisfy

f ∗(N+1) (ab) =
N+1∑
i=0

(
N + 1

i

)
f ∗i (a) f ∗(N+1−i) (b) .
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In other words, Lemma 15.13 holds for n = N + 1. This completes the induction step.
The induction proof of Lemma 15.13 is thus complete.

Here is a little brother of Lemma 15.13 and, unsurprisingly, the dual of Lemma 9.8:

Lemma 15.14. Let k be a field. Let H be a k-bialgebra. Let A be a
commutative k-algebra. Let f ∈ L (H,A) be an (εH , εH)-derivation. Then,
for every positive n ∈ N, we have f ∗n (1H) = 0.

Proof of Lemma 15.14. Since H is a k-bialgebra, we have ∆H (1H) = 1H ⊗ 1H (by the
axioms of a bialgebra).

Just as in part a) of the proof of Theorem 15.9, we can find that f (1H) = 0
(because H is a k-bialgebra, and thus εH is a k-algebra homomorphism (by the axioms
of a bialgebra)).

Since n is positive, we have f ∗n = f ∗ f ∗(n−1) = µA ◦
(
f ⊗ f ∗(n−1)

)
◦ ∆H (by the

definition of convolution), and thus

f ∗n (1H) =
(
µA ◦

(
f ⊗ f ∗(n−1)

)
◦∆H

)
(1H) = µA

(f ⊗ f ∗(n−1)
)

(∆H (1H))︸ ︷︷ ︸
=1H⊗1H


= µA

(f ⊗ f ∗(n−1)
)

(1H ⊗ 1H)︸ ︷︷ ︸
=f(1H)⊗f∗(n−1)(1H)

 = µA

f (1H)︸ ︷︷ ︸
=0

⊗f ∗(n−1) (1H)


= µA

(
0⊗ f ∗(n−1) (1H)

)︸ ︷︷ ︸
=0

= µA (0) = 0.

This proves Lemma 15.14.

Now, in analogy to our above proof of Lemma 8.2 (but, again, slightly simpler), we
can prove Lemma 15.11:

Proof of Lemma 15.11. Assume that f is an (εH , εH)-derivation.

Let a ∈ H and b ∈ H. Then, (6) (applied to x = a) yields e∗f (a) =
∑
i≥0

f ∗i (a)

i!
.

Also, (6) (applied to x = b) yields e∗f (b) =
∑
i≥0

f ∗i (b)

i!
=
∑
j≥0

f ∗j (b)

j!
(here, we renamed
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the index i as j in the sum). Hence,

e∗f (a) · e∗f (b) =

(∑
i≥0

f ∗i (a)

i!

)
·

(∑
j≥0

f ∗j (b)

j!

)
=
∑
i≥0

∑
j≥0

f ∗i (a)

i!
· f
∗j (b)

j!

=
∑
i≥0

∑
n≥0;
n≥i︸ ︷︷ ︸

=
∑
n≥0

∑
i≥0;
n≥i

f ∗i (a)

i!
· f
∗(n−i) (b)

(n− i)!

(here, we substituted n− i for j in the second sum)

=
∑
n≥0

∑
i≥0;
n≥i︸︷︷︸
=

n∑
i=0

f ∗i (a)

i!
· f
∗(n−i) (b)

(n− i)!︸ ︷︷ ︸
=

1

i! (n− i)!
f∗i(a)f∗(n−i)(b)

=
∑
n≥0

n∑
i=0

1

i! (n− i)!︸ ︷︷ ︸
=

1

n!

(
n

i

)
(since

n!

i! (n− i)!
=

(
n

i

)
)

f ∗i (a) f ∗(n−i) (b)

=
∑
n≥0

n∑
i=0

1

n!

(
n

i

)
f ∗i (a) f ∗(n−i) (b) =

∑
n≥0

1

n!

(
n∑
i=0

(
n

i

)
f ∗i (a) f ∗(n−i) (b)

)
.

Compared with

e∗f (ab) =
∑
i≥0

f ∗i (ab)

i!
(by (6), applied to x = ab)

=
∑
n≥0

f ∗n (ab)

n!
(here, we renamed the index i as n in the sum)

=
∑
n≥0

1

n!
f ∗n (ab) =

∑
n≥0

1

n!

(
n∑
i=0

(
n

i

)
f ∗i (a) f ∗(n−i) (b)

)
(by (80)) ,

this yields e∗f (a) · e∗f (b) = e∗f (ab).
Now forget that we fixed a and b. We thus have proven that all a ∈ H and b ∈ H
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satisfy e∗f (a) · e∗f (b) = e∗f (ab). Combined with the fact that

e∗f (1H) =
∑
i≥0

f ∗i (1H)

i!
(by (6), applied to x = 1H)

=
f ∗0 (1H)

1!
+
∑
i>0

f ∗i (1H)

i!︸ ︷︷ ︸
=0

(because Lemma 15.14
(applied to n=i)

yields f∗i(1H)=0)

=
f ∗0 (1H)

1!
+
∑
i>0

0︸ ︷︷ ︸
=0

=
f ∗0 (1H)

1!
=
f ∗0 (1H)

1

= f ∗0︸︷︷︸
=eH,A=ηA◦εH

(1H) = (ηA ◦ εH) (1H) = ηA (εH (1H)) = εH (1H)︸ ︷︷ ︸
=1

(by the axioms of a bialgebra,
since H is a bialgebra)

1A

(by the definition of ηA)

= 1 · 1A = 1A,

this shows that e∗f is a k-algebra homomorphism. This proves Lemma 15.11.

Next let us prepare for the proof of Lemma 15.12. We are not going to need a “dual”
Corollary 11.4, since Corollary 11.4 is already fine (it is as self-dual as a statement about
filtered coalgebras can get), but we need a dual of Corollary 10.2, and for this we first
need a dual of Proposition 10.1:

Proposition 15.15. Let k be a field. Let H be a k-bialgebra. Let A be a
commutative k-algebra. Let f : H → A and g : H → A be two k-algebra
homomorphisms. Then, f ∗ g : H → A is also a k-algebra homomorphism.

One possible proof of this proposition would be obtained by reversing the arrows in
the proof of Proposition 10.1 (though, of course, we would need to do the same with
Lemma 9.5). But let us (like in the proof of Lemma 15.13) work elementwise:

Proof of Proposition 15.15. First we notice that ∆H (1H) = 1H ⊗ 1H (by the axioms of
a bialgebra, since H is a bialgebra). Since f ∗ g = µA ◦ (f ⊗ g) ◦∆H (by the definition
of convolution), we have

(f ∗ g) (1H) = (µA ◦ (f ⊗ g) ◦∆H) (1H) = µA

(f ⊗ g) (∆H (1H))︸ ︷︷ ︸
=1H⊗1H

 = µA

(f ⊗ g) (1H ⊗ 1H)︸ ︷︷ ︸
=f(1H)⊗g(1H)


= µA (f (1H)⊗ g (1H)) = f (1H)︸ ︷︷ ︸

=1A
(since f is a k-algebra

homomorphism)

g (1H)︸ ︷︷ ︸
=1A

(since g is a k-algebra
homomorphism)

(since µA is the multiplication map)

= 1A · 1A = 1A.

Now, let a ∈ H and b ∈ H be arbitrary.

Since ∆H (a) ∈ H ⊗H, we can write ∆H (a) in the form ∆H (a) =
M∑
j=1

λjaj ⊗ a′j for

some M ∈ N, some elements λ1, λ2, . . ., λM of k, some elements a1, a2, . . ., aM of H,
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and some elements a′1, a′2, . . ., a′M of H. Consider this M , these λ1, λ2, . . ., λM , these
a1, a2, . . ., aM , and these a′1, a′2, . . ., a′M .

Since ∆H (b) ∈ H ⊗H, we can write ∆H (b) in the form ∆H (b) =
K∑̀
=1

µ`b` ⊗ b′` for

some K ∈ N, some elements µ1, µ2, . . ., µK of k, some elements b1, b2, . . ., bK of H,
and some elements b′1, b′2, . . ., b′K of H. Consider this K, these µ1, µ2, . . ., µK , these
b1, b2, . . ., bK , and these b′1, b′2, . . ., b′K .

Since H is a bialgebra,

∆H (ab) = ∆H (a)︸ ︷︷ ︸
=
M∑
j=1

λjaj⊗a′j

· ∆H (b)︸ ︷︷ ︸
=
K∑̀
=1
µ`b`⊗b′`

(by the axioms of a bialgebra)

=

(
M∑
j=1

λjaj ⊗ a′j

)
·

(
K∑
`=1

µ`b` ⊗ b′`

)
=

M∑
j=1

K∑
`=1

λjµ`
(
aj ⊗ a′j

)
(b` ⊗ b′`)︸ ︷︷ ︸

=ajb`⊗a′jb′`

=
M∑
j=1

K∑
`=1

λjµ`ajb` ⊗ a′jb′`.
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Since f ∗ g = µA ◦ (f ⊗ g) ◦∆H , we now have

(f ∗ g) (ab) = (µA ◦ (f ⊗ g) ◦∆H) (ab) = µA

(f ⊗ g) (∆H (ab))︸ ︷︷ ︸
=
M∑
j=1

K∑̀
=1
λjµ`ajb`⊗a′jb′`



= µA


(f ⊗ g)

(
M∑
j=1

K∑
`=1

λjµ`ajb` ⊗ a′jb′`

)
︸ ︷︷ ︸

=
M∑
j=1

K∑̀
=1
λjµ`f(ajb`)⊗g(a′jb′`)

(by the definition of f⊗g)


= µA

(
M∑
j=1

K∑
`=1

λjµ`f (ajb`)⊗ g
(
a′jb
′
`

))

=
M∑
j=1

K∑
`=1

λjµ` f (ajb`)︸ ︷︷ ︸
=f(aj)f(b`)

(since f is a k-algebra
homomorphism)

g
(
a′jb
′
`

)︸ ︷︷ ︸
=g(a′j)g(b′`)

(since g is a k-algebra
homomorphism)

(since µA is the multiplication map)

=
M∑
j=1

K∑
`=1

λjµ`f (aj) f (b`) g
(
a′j
)︸ ︷︷ ︸

=g(a′j)f(b`)

(since A is commutative)

g (b′`)

=
M∑
j=1

K∑
`=1

λjµ`f (aj) g
(
a′j
)
f (b`) g (b′`)

=

(
M∑
j=1

λjf (aj) g
(
a′j
))( K∑

`=1

µ`f (b`) g (b′`)

)
. (90)
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Since

(f ∗ g) (a) = (µA ◦ (f ⊗ g) ◦∆H) (a) (because f ∗ g = µA ◦ (f ⊗ g) ◦∆H)

= µA

(f ⊗ g) (∆H (a))︸ ︷︷ ︸
=
M∑
j=1

λjaj⊗a′j

 = µA


(f ⊗ g)

(
M∑
j=1

λjaj ⊗ a′j

)
︸ ︷︷ ︸

=
M∑
j=1

λjf(aj)⊗g(a′j)

(by the definition of f⊗g)


= µA

(
M∑
j=1

λjf (aj)⊗ g
(
a′j
))

=
M∑
j=1

λjf (aj) g
(
a′j
)

(since µA is the multiplication map)

and

(f ∗ g) (b) =
K∑
`=1

µ`f (b`) g (b′`) (by the same argument, done for b instead of a) ,

the equality (90) becomes

(f ∗ g) (ab) =

(
M∑
j=1

λjf (aj) g
(
a′j
))

︸ ︷︷ ︸
=(f∗g)(a)

(
K∑
`=1

µ`f (b`) g (b′`)

)
︸ ︷︷ ︸

=(f∗g)(b)

= (f ∗ g) (a) · (f ∗ g) (b) .

Now forget that we fixed a and b. We have now shown that any a ∈ H and b ∈ H
satisfy (f ∗ g) (ab) = (f ∗ g) (a) · (f ∗ g) (b). Combined with (f ∗ g) (1H) = 1A, this
yields that f ∗ g is a k-algebra homomorphism. Proposition 15.15 is proven.

As a consequence, we have:

Corollary 15.16. Let k be a field. Let H be a k-bialgebra. Let A be a
commutative k-algebra. Let f : H → A be a k-algebra homomorphism.
Let n ∈ N. Then, f ∗n : H → A is also a k-algebra homomorphism.

Proof of Corollary 15.16. We are going to prove Corollary 15.16 by induction over n.
Induction base: Consider the obvious canonical k-algebra structure on k (with µk

being the canonical isomorphism k⊗k → k, and ηk being the identity map). Since A is
a k-algebra, it is clear that ηA : k → A is a k-algebra homomorphism.54 Combined with

54Proof. Any two λ ∈ k and µ ∈ k satisfy

ηA (λ)︸ ︷︷ ︸
=λ·1A

(by the definition of ηA)

· ηA (µ)︸ ︷︷ ︸
=µ·1A

(by the definition of ηA)

= (λ · 1A) · (µ · 1A) = λµ · 1A = ηA (λµ)

(since ηA (λµ) = λµ ·1A by the definition of ηA). Combined with the fact that (again, as the definition
of ηA shows) ηA (1) = 1 · 1A = 1A, this yields that ηA is a k-algebra homomorphism, qed.
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the fact that εH : H → k is a k-algebra homomorphism (because H is a k-bialgebra),
this yields that ηA ◦ εH is a k-algebra homomorphism (since the composition of two
k-algebra homomorphisms is a k-algebra homomorphism). Since f ∗0 = eH,A = ηA ◦ εH
(by the definition of eH,A), this yields that f ∗0 is a k-algebra homomorphism. In other
words, Corollary 15.16 holds for n = 0. This completes the induction base.

Induction step: Let N ∈ N. Assume that Corollary 15.16 holds for n = N . We
must now prove that Corollary 15.16 also holds for n = N + 1.

Since Corollary 15.16 holds for n = N , we know that f ∗N is a k-algebra homomor-
phism. Proposition 15.15 (applied to g = f ∗N) now yields that f ∗ f ∗N is a k-algebra
homomorphism. Since f ∗ f ∗N = f ∗(N+1), this yields that f ∗(N+1) is a k-algebra homo-
morphism. In other words, Corollary 15.16 holds for n = N + 1. This completes the
induction step. The induction proof of Corollary 15.16 is thus complete.

Next, we dualize Lemma 12.3:

Lemma 15.17. Let k be a field of characteristic 0. Let H be a connected
filtered k-coalgebra and, at the same time, a k-bialgebra with the same
underlying k-coalgebra structure. Let A be a k-algebra. Let f ∈ g (H,A).
Let a ∈ H and b ∈ H. Then,

e∗f (ab) =
∑
n≥0

1

n!
f ∗n (ab) (91)

and

e∗f (a) · e∗f (b) =
∑
n≥0

1

n!

(
n∑
i=0

(
n

i

)
f ∗i (a) f ∗(n−i) (b)

)
. (92)

(In particular, the infinite sums
∑
n≥0

1

n!
f ∗n (ab) and

∑
n≥0

1

n!

(
n∑
i=0

(
n

i

)
f ∗i (a) f ∗(n−i) (b)

)
converge with respect to the discrete topology, i. e., each of these sums has
only finitely many nonzero addends.)

Proof of Lemma 15.17. The equalities (91) and (92) have been proven during our proof
of Lemma 15.11, without using the assumptions that A be commutative and f be an
(εH , εH)-derivation. Hence, these equalities are true. Lemma 15.17 is thus true.

We can now prove Lemma 15.12:

Proof of Lemma 15.12. Assume that e∗f is a k-algebra homomorphism.
Fix some (a, b) ∈ H ×H. Thus, a ∈ H and b ∈ H.
We want to prove that f (ab) = f (a) εH (b) + εH (a) f (b).
Since H is filtered, there exists some N ∈ N such that a ∈ H≤N . Consider this N .
Since H is filtered, there exists some M ∈ N such that b ∈ H≤M . Consider this M .
Since H is filtered, there exists some K ∈ N such that ab ∈ H≤K . Consider this K.
We define a filtration (k≤`)`≥0 on the k-vector space k by(

k≤` =

{
0, if ` ≤ N +M +K;
k, if ` > N +M +K

for every ` ∈ N
)
.
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For every n ∈ N, define a k-linear map hn : k → A by

hn =
1

n!
f ∗n (ab) ηA −

1

n!

(
n∑
i=0

(
n

i

)
f ∗i (a) f ∗(n−i) (b)

)
ηA. (93)

a) We now will prove that every n ∈ N satisfies hn (k≤n−1) = 0.
Proof. Fix some n ∈ N. We distinguish between two cases:
Case 1: We have n ≤ N +M +K + 1.
Case 2: We have n > N +M +K + 1.
First let us consider Case 1. In this case, n ≤ N + M + K + 1, so that n − 1 ≤

N +M +K, and thus

k≤n−1 =

{
0, if n− 1 ≤ N +M +K;
k, if n− 1 > N +M +K

(by the definition of k≤n−1)

= 0 (since n− 1 ≤ N +M +K) ,

so that hn (k≤n−1) = hn (0) = 0. Hence, hn (k≤n−1) = 0 is proven in Case 1.
Now let us consider Case 2. In this case, n > N+M+K+1 > K. Thus, Remark 3.5

(applied to n and K instead of i and n) yields f ∗n (H≤K) = 0. Since ab ∈ H≤K , this
yields f ∗n (ab) = 0. On the other hand,

every i ∈ {0, 1, . . . , N} satisfies f ∗(n−i) (b) = 0. (94)

55

Also,
every i ∈ {N + 1, N + 2, . . . , n} satisfies f ∗i (a) = 0. (95)

56

Keeping these facts in mind, we have

n∑
i=0

(
n

i

)
f ∗i (a) f ∗(n−i) (b) =

N∑
i=0

(
n

i

)
f ∗i (a) f ∗(n−i) (b)︸ ︷︷ ︸

=0
(by (94))

+
n∑

i=N+1

(
n

i

)
f ∗i (a)︸ ︷︷ ︸

=0
(by (95))

f ∗(n−i) (b)

=
N∑
i=0

(
n

i

)
f ∗i (a) 0︸ ︷︷ ︸

=0

+
n∑

i=N+1

(
n

i

)
0f ∗(n−i) (b)︸ ︷︷ ︸

=0

= 0 + 0 = 0.

Now, by the definition of hn, we have

hn =
1

n!
f ∗n (ab)︸ ︷︷ ︸

=0

ηA −
1

n!

(
n∑
i=0

(
n

i

)
f ∗i (a) f ∗(n−i) (b)

)
︸ ︷︷ ︸

=0

ηA =
1

n!
0ηA −

1

n!
0ηA = 0

55Proof. Let i ∈ {0, 1, . . . , N}. Then, i ≤ N , so that n︸︷︷︸
>N+M+K+1>N+M

− i︸︷︷︸
≤N

> N +M −N = M .

Thus, Remark 3.5 (applied to n − i and M instead of i and n) yields f∗(n−i) (H≤M ) = 0. Since
b ∈ H≤M , this yields f∗(n−i) (b) = 0, and thus (94) is proven.

56Proof. Let i ∈ {N + 1, N + 2, . . . , n}. Then, i > N . Hence, Remark 3.5 (applied to N instead of
n) yields f∗i (H≤N ) = 0. Since a ∈ H≤N , this yields f∗i (a) = 0, and thus (95) is proven.
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and thus hn (k≤n−1) = 0. Hence, hn (k≤n−1) = 0 is proven in Case 2.
Hence, in both possible cases, we have shown that hn (k≤n−1) = 0. This proves that

hn (k≤n−1) = 0 always holds. In other words, part a) is proven.
b) Now, we will show that every x ∈ k and every t ∈ N satisfy

∑
i≥0

tihi (x) = 0. 57

Proof. Let x ∈ k and t ∈ N be arbitrary. By Corollary 15.16 (applied to t and

e∗f instead of n and f), we see that
(
e∗f
)∗t

is a k-algebra homomorphism. Since

e∗(tf) =
(
e∗f
)∗t

(by Corollary 11.4, applied to H, A and t instead of C, H and n), this

rewrites as follows: The map e∗(tf) is a k-algebra homomorphism. Thus,

e∗(tf) (ab) = e∗(tf) (a) · e∗(tf) (b) . (96)

But applying Lemma 15.17 to tf instead of f (this is allowed since f ∈ g (H,A)
yields tf ∈ g (H,A)), we obtain

e∗(tf) (ab) =
∑
n≥0

1

n!
(tf)∗n (ab) (97)

and

e∗(tf) (a) · e∗(tf) (b) =
∑
n≥0

1

n!

(
n∑
i=0

(
n

i

)
(tf)∗i (a) (tf)∗(n−i) (b)

)
. (98)

We are now going to rewrite these two equalities by taking t out of the brackets.
Since∑
n≥0

1

n!
(tf)∗n︸ ︷︷ ︸
=tnf∗n

(ab) =
∑
n≥0

1

n!
(tnf ∗n) (ab)︸ ︷︷ ︸

=tnf∗n(ab)

=
∑
n≥0

1

n!
tnf ∗n (ab) =

∑
n≥0

tn
1

n!
f ∗n (ab) ,

the equality (96) rewrites as

e∗(tf) (ab) =
∑
n≥0

tn
1

n!
f ∗n (ab) . (99)

Since

∑
n≥0

1

n!

 n∑
i=0

(
n

i

)
(tf)∗i︸ ︷︷ ︸
=tif∗i

(a) (tf)∗(n−i)︸ ︷︷ ︸
=tn−if∗(n−i)

(b)


=
∑
n≥0

1

n!

 n∑
i=0

(
n

i

)(
tif ∗i

)
(a)︸ ︷︷ ︸

=tif∗i(a)

(
tn−if ∗(n−i)

)
(b)︸ ︷︷ ︸

=tn−if∗(n−i)(b)

 =
∑
n≥0

1

n!

 n∑
i=0

(
n

i

)
tif ∗i (a) tn−if ∗(n−i) (b)︸ ︷︷ ︸

=titn−if∗i(a)f∗(n−i)(b)


=
∑
n≥0

1

n!

(
n∑
i=0

(
n

i

)
titn−i︸ ︷︷ ︸

=tn

f ∗i (a) f ∗(n−i) (b)

)
=
∑
n≥0

1

n!

(
n∑
i=0

(
n

i

)
tnf ∗i (a) f ∗(n−i) (b)

)

=
∑
n≥0

tn
1

n!

(
n∑
i=0

(
n

i

)
f ∗i (a) f ∗(n−i) (b)

)
,

57Note that the element
∑
i≥0

tihi (x) is well-defined due to Proposition 12.1 (a) (applied to V = k

and W = A), but in our case even the element
∑
i≥0

tihi itself is well-defined (we can see that, for

instance, by following the proof of b)).
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the equality (98) rewrites as

e∗(tf) (a) · e∗(tf) (b) =
∑
n≥0

tn
1

n!

(
n∑
i=0

(
n

i

)
f ∗i (a) f ∗(n−i) (b)

)
. (100)

Now,∑
i≥0

tihi =
∑
n≥0

tnhn (here, we renamed the index i as n in the sum)

=
∑
n≥0

tn

(
1

n!
f ∗n (ab) ηA −

1

n!

(
n∑
i=0

(
n

i

)
f ∗i (a) f ∗(n−i) (b)

)
ηA

)
(by (93))

=
∑
n≥0

tn
1

n!
f ∗n (ab) ηA︸ ︷︷ ︸

=

 ∑
n≥0

tn
1

n!
f∗n(ab)

ηA

−
∑
n≥0

tn
1

n!

(
n∑
i=0

(
n

i

)
f ∗i (a) f ∗(n−i) (b)

)
ηA︸ ︷︷ ︸

=

 ∑
n≥0

tn
1

n!

 n∑
i=0

(
n

i

)
f∗i(a)f∗(n−i)(b)

ηA
=

(∑
n≥0

tn
1

n!
f ∗n (ab)

)
︸ ︷︷ ︸

=e∗(tf)(ab)
(by (99))

ηA −

(∑
n≥0

tn
1

n!

(
n∑
i=0

(
n

i

)
f ∗i (a) f ∗(n−i) (b)

))
︸ ︷︷ ︸

=e∗(tf)(a)·e∗(tf)(b)
(by (100))

ηA

= e∗(tf) (ab)︸ ︷︷ ︸
=e∗(tf)(a)·e∗(tf)(b)

(by (96))

ηA − e∗(tf) (a) · e∗(tf) (b) ηA

= e∗(tf) (a) · e∗(tf) (b) ηA − e∗(tf) (a) · e∗(tf) (b) ηA = 0,

so that ∑
i≥0

tihi (x) =

(∑
i≥0

tihi

)
︸ ︷︷ ︸

=0

(x) = 0 (x) = 0.

We thus have proven that every x ∈ k and every t ∈ N satisfy
∑
i≥0

tihi (x) = 0. In

other words, part b) of the proof is done.
c) We know that every n ∈ N satisfies hn (k≤n−1) = 0 (by part a)), and that every

x ∈ k and every t ∈ N satisfy
∑
i≥0

tihi (x) = 0 (by part b)). Hence, Proposition 12.1 (b)

(applied to k and A instead of V and W ) yields that hn = 0 for every n ∈ N. Applied
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to n = 1, this yields h1 = 0. But (93) (applied to n = 1) yields

h1 =
1

1!︸︷︷︸
=

1

1
=1

f ∗1︸︷︷︸
=f

(ab) ηA −
1

1!︸︷︷︸
=

1

1
=1

(
1∑
i=0

(
1

i

)
f ∗i (a) f ∗(1−i) (b)

)
︸ ︷︷ ︸

=

(
1

0

)
f∗0(a)f∗(1−0)(b)+

(
1

1

)
f∗1(a)f∗(1−1)(b)

ηA

= f (ab) ηA −

(1

0

)
︸︷︷︸

=1

f ∗0︸︷︷︸
=eH,A

(a) f ∗(1−0)︸ ︷︷ ︸
=f∗1=f

(b) +

(
1

1

)
︸︷︷︸

=1

f ∗1︸︷︷︸
=f

(a) f ∗(1−1)︸ ︷︷ ︸
=eH,A

(b)

 ηA

= f (ab) ηA − (eH,A (a) f (b) + f (a) eH,A (b)) ηA = (f (ab)− (eH,A (a) f (b) + f (a) eH,A (b))) ηA.

Since h1 = 0, this rewrites as

0 = (f (ab)− (eH,A (a) f (b) + f (a) eH,A (b))) ηA.

Hence,

0 (1) = ((f (ab)− (eH,A (a) f (b) + f (a) eH,A (b))) ηA) (1)

= (f (ab)− (eH,A (a) f (b) + f (a) eH,A (b))) (ηA (1))︸ ︷︷ ︸
=1·1A

(by the definition of the map ηA)

= (f (ab)− (eH,A (a) f (b) + f (a) eH,A (b))) 1 · 1A
= f (ab)− (eH,A (a) f (b) + f (a) eH,A (b)) .

So we have
0 = 0 (1) = f (ab)− (eH,A (a) f (b) + f (a) eH,A (b)) ,

thus
f (ab) = eH,A (a) f (b) + f (a) eH,A (b) .

Since

eH,A︸︷︷︸
=ηA◦εH

(a) = (ηA ◦ εH) (a) = ηA (εH (a)) = εH (a) · 1A (by the definition of ηA)

and
eH,A (b) = εH (b) · 1A (for similar reasons) ,

this becomes

f (ab) = eH,A (a)︸ ︷︷ ︸
=εH(a)·1A

f (b) + f (a) eH,A (b)︸ ︷︷ ︸
=εH(b)·1A

= εH (a) · 1Af (b) + f (a) εH (b) · 1A

= εH (a) f (b) + f (a) εH (b) = f (a) εH (b) + εH (a) f (b) .

d) Now forget that we fixed (a, b). What we have shown is that every (a, b) ∈ H×H
satisfies f (ab) = f (a) εH (b) + εH (a) f (b). According to Definition 15.7, this means
that f is an (εH , εH)-derivation.

We have thus proven that, under the assumption that e∗f is a k-algebra homomor-
phism, the map f is an (εH , εH)-derivation. Thus, Lemma 15.12 is proven.
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Proof of Theorem 15.10. The assertion of Theorem 15.10 is an “if and only if” asser-
tion. Its “if” part was proven in Lemma 15.12, and its “only if” part was proven in
Lemma 15.11. Hence, both parts of the assertion of Theorem 15.10 are proven. This
finally completes the proof of Theorem 15.10.

Now we can finally deal with Theorem 15.3:

Proof of Theorem 15.3. Recall that id ∈ G (H,H). Thus, Log id ∈ g (H,H) (because
LogF ∈ g (H,H) for every F ∈ G (H,H)).

Let f be the map Log id ∈ L (H,H). Then, f = Log id ∈ g (H,H). Besides,
f = Log id yields e∗f = e∗(Log id) = id (by Proposition 5.13 (b), applied to F =
id and A = H). Hence, e∗f is a k-algebra homomorphism (since id is a k-algebra
homomorphism). By Lemma 15.12 (applied to A = H), this yields that f is an
(εH , εH)-derivation.

Since H is a bialgebra, εH is a k-algebra homomorphism (by the axioms of a bial-
gebra). Hence, we can apply Theorem 15.9 and Proposition 15.4 to A = H.

Theorem 15.9 (applied to A = H) tells us that f is an (εH , εH)-derivation if and
only if f

(
(Ker (εH))2 + k · 1H

)
= 0. Hence, f

(
(Ker (εH))2 + k · 1H

)
= 0 (since we

know that f is an (εH , εH)-derivation).
We have εH ◦ id = εH . Thus, Proposition 15.4 (c) (applied to F = id and A = H)

yields (Log id− id) (H) ⊆ (Ker (εH))2 + k · 1H . Since Log id = f , this rewrites as
(f − id) (H) ⊆ (Ker (εH))2 + k · 1H . Now,

(
f 2 − f

)︸ ︷︷ ︸
=f◦(f−id)

(H) = (f ◦ (f − id)) (H) = f

 (f − id) (H)︸ ︷︷ ︸
⊆(Ker(εH))2+k·1H

 ⊆ f
(
(Ker (εH))2 + k · 1H

)
= 0,

so that (f 2 − f) (H) = 0. Thus, f 2 − f = 0, so that f 2 = f . In other words, f is a
projection. Since f = Log id, this rewrites as follows: The map Log id is a projection.

Also, f
(
(Ker (εH))2 + k · 1H

)
= 0 yields (Ker (εH))2 +k ·1H ⊆ Ker f . On the other

hand, Ker f ⊆ (f − id) (H) 58 combined with (f − id) (H) ⊆ (Ker (εH))2 + k · 1H
yields Ker f ⊆ (Ker (εH))2 + k · 1H . Combined with (Ker (εH))2 + k · 1H ⊆ Ker f , this
results in Ker f = (Ker (εH))2 +k ·1H . Since f = Log id, this rewrites as Ker (Log id) =
(Ker (εH))2 + k · 1H .

This completes the proof of Theorem 15.3.

§16. Consequences for graded bialgebras

We have hitherto been considering filtered bialgebras (and general bialgebras), but not
graded bialgebras. The reason for this is that we had no reason for considering graded
bialgebras: As long as the same statement holds for graded and for filtered bialgebras,

58Proof. Let x ∈ Ker f be arbitrary. Then, f (x) = 0, so that (f − id) (x) = f (x)︸ ︷︷ ︸
=0

− id (x)︸ ︷︷ ︸
=x

= −x.

Thus, x = − (f − id) (x) = (f − id) (−x) (since f − id is linear). Hence, x ∈ (f − id) (H) (since
−x ∈ H).

We have thus shown that every x ∈ Ker f satisfies x ∈ (f − id) (H). In other words, Ker f ⊆
(f − id) (H), qed.
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it is clearly enough to prove it for filtered ones only, since graded bialgebras can always
be seen as filtered bialgebras (by Proposition 16.8 below), but not the other way round.
In this section §16, we are going to formulate the relation between graded and filtered
bialgebras, and show some additional properties special to graded bialgebras.

Convention 16.1. In the following, whenever V is a graded vector space59,
we will denote the grading on V by (V`)`≥0. (This is a general convention,
so it does not only pertain to graded vector spaces called V , but pertains
to any graded vector space. For instance, if we have a graded vector space
called C, then this convention yields that the grading on C is denoted by
(C`)`≥0.)

Proposition 16.2. Let k be a field. Let V be a graded vector space. For

every n ∈ N, define a k-vector subspace V≤n of V by V≤n =
n⊕̀
=0

V`
60.

Then,
(
V, (V≤n)n≥0

)
is a filtered k-vector space.

Convention 16.3. Let k be a field. Let V be a graded vector space. Then,
whenever we speak of “the filtered k-vector space V ”, we are going to mean

the filtered k-vector space
(
V, (V≤n)n≥0

)
defined in Proposition 16.2. In

particular, whenever we mention some V≤n (for some n ∈ N), we are going
to mean the V≤n defined in Proposition 16.2.

Proof of Proposition 16.2. a) We have V≤n ⊆ V≤n+1 for every n ∈ N.

Proof. Let n ∈ N. By the definition of V≤n, we have V≤n =
n⊕̀
=0

V`. By the definition

of V≤n+1, we have

V≤n+1 =
n+1⊕
`=0

V` =
n⊕
`=0

V`︸ ︷︷ ︸
=V≤n

⊕Vn+1 = V≤n ⊕ Vn+1 ⊇ V≤n,

so that V≤n ⊆ V≤n+1. This proves a).
b) We have

V≤a ⊆ V≤b for every a ∈ N and b ∈ N satisfying a ≤ b. (101)

Proof. From part a), we see that the sequence (V≤n)n≥0 of k-vector subspaces of V
is monotonically increasing with respect to inclusion. This yields (101). Thus, b) is
proven.

59Note that a graded vector space is defined as a vector space V along with a family (V`)`≥0 of
subspaces of V such that V =

⊕̀
∈N
V`. There are some more general definitions of the word “graded”

in literature, but we need this one. (In particular, if you are used to the notion of a “G-graded vector
space” where G is a monoid, then you should notice that our notion of “graded vector space” means
an N-graded vector space.)

60This is well-defined, because the sum
n∑̀
=0

V` is a direct sum (in fact, since V is a graded vector

space, we have V =
⊕̀
∈N
V`; now, the sum

n∑̀
=0

V` is a partial sum of the direct sum
⊕̀
∈N
V`, and thus a

direct sum itself).
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c) We have V =
⋃
n∈N

V≤n.

Proof. Let v ∈ V . Then, v ∈ V =
⊕̀
∈N
V` (since V is a graded vector space), so there

exists some family (a`)`≥0 ∈
∏
`∈N

V` such that (all but finitely many ` ∈ N satisfy a` = 0)

and v =
∑̀
∈N
a`. Consider this family (a`)`≥0.

Notice that a` ∈ V` for each ` ∈ N (since (a`)`≥0 ∈
∏
`∈N

V`).

There exists a finite subset S of N such that

(all ` ∈ N�S satisfy a` = 0) (102)

(because all but finitely many ` ∈ N satisfy a` = 0). Consider this S. Then, S is a
finite set, and thus has a supremum in N (this supremum is actually a maximum unless
S = ∅). Let N be this supremum. Then, every m ∈ S satisfies

am ∈ V≤N (103)

61. Now we have

v =
∑
`∈N

a` =
∑
`∈S

a`︸︷︷︸
∈V≤N

(by (103) (applied to m=`))

+
∑
`∈N�S

a`︸︷︷︸
=0

(by (102))

∈
∑
`∈S

V≤N +
∑
`∈N�S

0︸ ︷︷ ︸
=0

=
∑
`∈S

V≤N ⊆ V≤N (since V≤N is a k-vector subspace)

⊆
⋃
n∈N

V≤n

(
since V≤N is a term of the union

⋃
n∈N

V≤n

)
.

Now forget that we fixed v. We have thus shown that for every v ∈ V , we have
v ∈

⋃
n∈N

V≤n. In other words, V ⊆
⋃
n∈N

V≤n. Combined with the triviality
⋃
n∈N

V≤n ⊆ V ,

this yields V =
⋃
n∈N

V≤n. This proves c).

d) Combining the statements of parts a) and c), we conclude that
(
V, (V≤n)n≥0

)
is a filtered k-vector space. This proves Proposition 16.2.

Proposition 16.4. Let k be a field. Let A be a graded k-algebra. Then,(
A, (A≤n)n≥0

)
is a filtered k-algebra.62

61Proof of (103): Let m ∈ S. Recall that N is the supremum of the set S in N. Hence, N ≥ s for
each s ∈ S. Applying this to s = m, we obtain N ≥ m. Thus, m ≤ N . Hence, m ∈ {0, 1, . . . , N}.

The definition of V≤N yields V≤N =
N⊕̀
=0

V`. But Vm is an addend of the direct sum
N⊕̀
=0

V` (since

m ∈ {0, 1, . . . , N}). Hence, Vm ⊆
N⊕̀
=0

V`. But recall that a` ∈ V` for each ` ∈ N. Applying this to

` = m, we obtain am ∈ Vm ⊆
N⊕̀
=0

V` = V≤N . This proves (103).

62Of course, the notation A≤n has to be understood here as according to Convention 16.3; that is,

A≤n is defined by A≤n =
n⊕̀
=0

A`.
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Convention 16.5. Let k be a field. Let A be a graded k-algebra. Then,
whenever we speak of “the filtered k-algebra A”, we are going to mean the

filtered k-algebra
(
A, (A≤n)n≥0

)
defined in Proposition 16.4.

Proof of Proposition 16.4. a) By Proposition 16.2 (applied to V = A), we know that(
A, (A≤n)n≥0

)
is a filtered k-vector space.

b) We have 1 ∈ A≤0.

Proof. By the definition of A≤0, we have A≤0 =
0⊕̀
=0

A` = A0. Since A is a graded

k-algebra, we have 1 ∈ A0 = A≤0. This proves b).
c) We have

Au ⊆ A≤v for any u ∈ N and v ∈ N satisfying u ≤ v. (104)

Proof. Let u ∈ N and v ∈ N satisfy u ≤ v. Then, the definition of A≤v says that

A≤v =
v⊕̀
=0

A`. Since Au is a summand in the direct sum
v⊕̀
=0

A` (because u ∈ N and

u ≤ v), this yields A≤v ⊇ Au, so that Au ⊆ A≤v. This proves c).
d) We have A≤iA≤j ⊆ A≤i+j for every i ∈ N and j ∈ N.
Proof. Since A is a graded k-algebra, we have

A`Am ⊆ A`+m for any ` ∈ N and m ∈ N. (105)

Now, let i ∈ N and j ∈ N be arbitrary. Then, by the definition of A≤i, we have

A≤i =
i⊕̀
=0

A` =
i∑̀
=0

A` (since direct sums are sums). Also, by the definition of A≤j, we

have

A≤j =

j⊕
`=0

A` =

j⊕
m=0

Am (here, we renamed the index ` as m)

=

j∑
m=0

Am (since direct sums are sums) .

Thus,

A≤i︸︷︷︸
=

i∑̀
=0
A`

A≤j︸︷︷︸
=

j∑
m=0

Am

=

(
i∑

`=0

A`

)(
j∑

m=0

Am

)
=

i∑
`=0

j∑
m=0

A`Am︸ ︷︷ ︸
⊆A`+m

(by (105))

⊆
i∑

`=0

j∑
m=0

A`+m.

Since every ` ∈ {0, 1, . . . , i} and m ∈ {0, 1, . . . , j} satisfy A`+m ⊆ A≤i+j
63, this

becomes

A≤iA≤j ⊆
i∑

`=0

j∑
m=0

A`+m︸ ︷︷ ︸
⊆A≤i+j

⊆
i∑

`=0

j∑
m=0

A≤i+j ⊆ A≤i+j (since A≤i+j is a k-vector space) .

63Proof. Let ` ∈ {0, 1, . . . , i} and m ∈ {0, 1, . . . , j} be arbitrary. Then, 0 ≤ ` ≤ i and 0 ≤ m ≤ j.
Hence, 0 ≤ `+m ≤ i+ j, so that A`+m ⊆ A≤i+j (by (104), applied to u = `+m and v = i+ j),
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This proves d).

e) By combining the results of parts b) and d), we see that
(
A, (A≤n)n≥0

)
is a

filtered k-algebra. This proves Proposition 16.4.

Proposition 16.6. Let k be a field. Let C be a graded k-coalgebra. Then,(
C, (C≤n)n≥0

)
is a filtered k-coalgebra.64

Convention 16.7. Let k be a field. Let C be a graded k-coalgebra. Then,
whenever we speak of “the filtered k-coalgebra C”, we are going to mean

the filtered k-coalgebra
(
C, (C≤n)n≥0

)
defined in Proposition 16.6.

Proof of Proposition 16.6. a) By Proposition 16.2 (applied to V = C), we know that(
C, (C≤n)n≥0

)
is a filtered k-vector space.

Since C is a graded k-coalgebra, we have

∆C (C`) ⊆
⊕

(i,j)∈N×2;
i+j=`

Ci ⊗ Cj for every ` ∈ N. (106)

Here, the sum
⊕

(i,j)∈N×2;
i+j=`

Ci⊗Cj is considered as a partial sum of the infinite direct sum

⊕
(i,j)∈N×2

Ci ⊗ Cj =

(⊕
i∈N

Ci

)
︸ ︷︷ ︸

=C

⊗

(⊕
j∈N

Cj

)
︸ ︷︷ ︸

=C

= C ⊗ C.

We can rewrite the right hand side of (106). In fact, for every ` ∈ N, the map
{0, 1, . . . , `} → {(i, j) ∈ N×2 | i+ j = `} which sends every i ∈ {0, 1, . . . , `} to (i, `− i)
is a bijection (according to elementary combinatorics). Hence, for every ` ∈ N, we have⊕
(i,j)∈N×2;
i+j=`

Ci ⊗ Cj =
⊕

i∈{0,1,...,`}︸ ︷︷ ︸
=
⊕̀
i=0

Ci ⊗ C`−i

 here, we substituted (i, `− i) for (i, j) in the direct sum,
because the map {0, 1, . . . , `} → {(i, j) ∈ N×2 | i+ j = `}

which sends every i ∈ {0, 1, . . . , `} to (i, `− i) is a bijection


=
⊕̀
i=0

Ci ⊗ C`−i.

Now, (106) becomes

∆C (C`) ⊆
⊕

(i,j)∈N×2;
i+j=`

Ci ⊗ Cj =
⊕̀
i=0

Ci ⊗ C`−i =
∑̀
i=0

Ci ⊗ C`−i (107)

64Of course, the notation C≤n has to be understood here as according to Convention 16.3; that is,

C≤n is defined by C≤n =
n⊕̀
=0

C`.
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(since direct sums are sums) for every ` ∈ N.
b) We have

Cu ⊆ C≤v for any u ∈ N and v ∈ N satisfying u ≤ v. (108)

Proof. Let u ∈ N and v ∈ N satisfy u ≤ v. Then, the definition of C≤v says that

C≤v =
v⊕̀
=0

C`. Since Cu is a summand in the direct sum
v⊕̀
=0

C` (because u ∈ N and

u ≤ v), this yields that Cu is a direct addend of
v⊕̀
=0

C` = C≤v. Thus, Cu ⊆ C≤v. This

proves b).
c) For every n ∈ N, we have

∆C (C≤n) ⊆
n∑
u=0

C≤u ⊗ C≤n−u.

Proof. Let n ∈ N. Then, C≤n =
n⊕̀
=0

C` =
n∑̀
=0

C` (since direct sums are sums), so

that

∆C (C≤n) = ∆C

(
n∑
`=0

C`

)
=

n∑
`=0

∆C (C`)︸ ︷︷ ︸
⊆
∑̀
i=0

Ci⊗C`−i

(by (107))

(since ∆C is k-linear)

=
n∑
`=0

∑̀
i=0

Ci︸︷︷︸
⊆C≤i

(by (108) (applied to
u=i and v=i), since i≤i)

⊗ C`−i︸︷︷︸
⊆C≤n−i

(by (108) (applied to u=`−i and v=n−i),
since `−i≤n−i (because `≤n))

⊆
n∑
`=0

∑̀
i=0

C≤i ⊗ C≤n−i︸ ︷︷ ︸
⊆

n∑
i=0

C≤i⊗C≤n−i

(because `≤n, and thus the sum
∑̀
i=0

C≤i⊗C≤n−i

is a partial sum of the sum
n∑
i=0

C≤i⊗C≤n−i)

⊆
n∑
`=0

n∑
i=0

C≤i ⊗ C≤n−i

⊆
n∑
i=0

C≤i ⊗ C≤n−i(
since

n∑
i=0

C≤i ⊗ C≤n−i is a k-vector space

)

=
n∑
u=0

C≤u ⊗ C≤n−u (here, we renamed i as u in the sum) .

This proves c).

d) From part c), we immediately see that
(
C, (C≤n)n≥0

)
is a filtered k-coalgebra.

This proves Proposition 16.6.
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Proposition 16.8. Let k be a field. Let H be a graded k-bialgebra. Then,(
H, (H≤n)n≥0

)
is a filtered k-bialgebra.65

Convention 16.9. Let k be a field. Let H be a graded k-bialgebra. Then,
whenever we speak of “the filtered k-bialgebra H”, we are going to mean

the filtered k-bialgebra
(
H, (H≤n)n≥0

)
defined in Proposition 16.8.

Proof of Proposition 16.8. Since
(
H, (H≤n)n≥0

)
is a filtered k-algebra (by Proposi-

tion 16.4, applied to A = H) and a filtered k-coalgebra (by Proposition 16.6, applied

to C = H), we see that
(
H, (H≤n)n≥0

)
is a filtered k-bialgebra. This proves Proposi-

tion 16.8.

Next we define the notion of a connected graded k-coalgebra:

Definition 16.10. Let k be a field. Let C be a graded k-coalgebra. We
say that the graded k-coalgebra C is connected if and only if the map
εC |C0 : C0 → k is a k-vector space isomorphism.

Note that such a definition of a connected graded k-coalgebra might bring us into
trouble: In fact, if C is a filtered k-coalgebra, then when we just say that “C is con-
nected” it is not immediately clear whether we mean that the graded k-coalgebra C
is connected, or whether we mean that the filtered k-coalgebra C (defined in Conven-
tion 16.7) is connected. Fortunately, these two meanings are the same, because we
have the following fact:

Remark 16.11. Let k be a field. Let C be a graded k-coalgebra. The
graded k-coalgebra C is connected if and only if the filtered k-coalgebra C
(defined in Convention 16.7) is connected.

Proof of Remark 16.11. Consider the filtered k-coalgebra C (defined in Convention 16.7).

Then, by the definition of C≤0, we have C≤0 =
0⊕̀
=0

C` = C0. Now, by Definition 16.10,

we have the following equivalence of assertions:

(the graded k-coalgebra C is connected)

⇐⇒ (the map εC |C0 : C0 → k is a k-vector space isomorphism)

⇐⇒
(
the map εC |C≤0

: C≤0 → k is a k-vector space isomorphism
)

(since C0 = C≤0)

⇐⇒ (the filtered k-coalgebra C is connected) (by Definition 1.16) .

This proves Remark 16.11.

Remark 16.11 was a triviality to prove, but it shows us an important thing: It
shows us that all properties of connected filtered bialgebras that we showed above au-
tomatically yield properties of connected graded bialgebras. Since connected graded

65Of course, the notation H≤n has to be understood here as according to Convention 16.3; that is,

H≤n is defined by H≤n =
n⊕̀
=0

H`.
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bialgebras have more structure than connected filtered bialgebras, we can expect con-
nected graded bialgebras to also have some additional properties that don’t hold (or
don’t even make sense) for connected filtered bialgebras. This Section §16 is devoted
to some such properties.

Here is a simple consequence of Definition 16.10:

Remark 16.12. Let k be a field. Let C be a graded k-coalgebra. Let
λ ∈ C0 be such that C0 = k · λ and εC (λ) = 1. Then, the graded k-
coalgebra C is connected.

Proof of Remark 16.12. Since the map εC is k-linear, we have εC (k · λ) = k · εC (λ)︸ ︷︷ ︸
=1

=

k · 1 = k. Now,

(εC |C0) (C0) = εC

 C0︸︷︷︸
=k·λ

 = εC (k · λ) = k.

In other words, the map εC |C0 : C0 → k is surjective.
Let x ∈ Ker (εC |C0). Then, x ∈ C0 satisfies (εC |C0) (x) = 0. Since x ∈ C0 = k · λ,

there exists a τ ∈ k such that x = τλ. Consider this τ . Since

0 = (εC |C0) (x) = εC

(
x︸︷︷︸

=τλ

)
= εC (τλ) = τ εC (λ)︸ ︷︷ ︸

=1

(since εC is k-linear)

= τ,

we have x = τ︸︷︷︸
=0

λ = 0. Now, forget that we fixed x. We thus have shown that every

x ∈ Ker (εC |C0) satisfies x = 0. In other words, Ker (εC |C0) = 0. Hence, the map
εC |C0 is injective. Combined with the fact that the map εC |C0 is surjective, this yields
that the map εC |C0 is bijective.

So εC |C0 : C0 → k is a bijective k-linear map. Hence, εC |C0 : C0 → k is a k-vector
space isomorphism.

But Definition 16.10 yields that the graded k-coalgebra C is connected if and only if
the map εC |C0 : C0 → k is a k-vector space isomorphism. Thus, the graded k-coalgebra
C is connected (because the map εC |C0 : C0 → k is a k-vector space isomorphism).
Remark 16.12 is thus proven.

An analogue of Remark 16.12 holds for filtered k-coalgebras:

Remark 16.13. Let k be a field. Let C be a filtered k-coalgebra. Let
λ ∈ C≤0 be such that C≤0 = k · λ and εC (λ) = 1. Then, the filtered
k-coalgebra C is connected.

Proof of Remark 16.13. A proof of Remark 16.13 can be obtained by making the fol-
lowing replacements to the proof of Remark 16.12:

• Any occurrence of “C0” should be replaced by “C≤0”.

• Any occurrence of “graded” should be replaced by “filtered”.
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• The reference to Definition 16.10 should be replaced by a reference to Defini-
tion 1.16.

Thus, Remark 16.13 is proven.

We next repeat some basics related to graded vector spaces:

Definition 16.14. Let k be a field. Let V and W be graded k-vector
spaces. Let f : V → W be a k-linear map. Then, the map f is said to be
graded if every n ∈ N satisfies f (Vn) ⊆ Wn.

Remark 16.15. Let k be a field. Let V be a graded k-vector space. Then,
V =

⊕̀
∈N
V`. For every n ∈ N, let πn :

⊕̀
∈N
V` → Vn be the canonical

projection from the direct sum to its n-th addend, and let ιn : Vn →
⊕̀
∈N
V`

be the canonical injection of the n-th addend into the direct sum. Since⊕̀
∈N
V` = V , the map πn :

⊕̀
∈N
V` → Vn is actually a map V → Vn, and the

map ιn : Vn →
⊕̀
∈N
V` is actually a map Vn → V . Thus, the composition

ιn ◦ πn is a map V → V . This map ιn ◦ πn maps every element v ∈ V to
the n-th graded component of v, seen as an element of V .

Definition 16.16. Let k be a field. Let V be a graded k-vector space. For
every n ∈ N, we denote the k-linear map ιn ◦πn defined in Remark 16.15 as
the n-th grade identity of V , and we denote it by pn,V . As we mentioned in
Remark 16.15, this map pn,V (which we denoted by ιn◦πn in Remark 16.15)
maps every element v ∈ V to the n-th graded component of v, seen as an
element of V .

Let us recall some well-known properties of these maps pn,V :

For every n ∈ N, the map pn,V is idempotent, i. e., it satisfies

pn,V ◦ pn,V = pn,V (109)

66. It is known that

pn,V |Vn= idV |Vn for every n ∈ N (110)

66Proof of (109). Let n ∈ N. Let us use the notations of Remark 16.15. Then, pn,V = ιn ◦ πn.
Since πn :

⊕̀
∈N
V` → Vn the canonical projection from the direct sum to its n-th addend, whereas

ιn : Vn →
⊕̀
∈N
V` is the canonical injection of the n-th addend into the direct sum, it is clear that

πn ◦ ιn = id. Now, pn,V = ιn ◦ πn yields

pn,V ◦ pn,V = ιn ◦ πn ◦ ιn︸ ︷︷ ︸
=id

◦πn = ιn ◦ id ◦πn = ιn ◦ πn = pn,V ,

thus proving (109).
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67, and that

pn,V |Vm= 0 for any n ∈ N and m ∈ N satisfying n 6= m (111)

68. Also,
pn,V (V ) = Vn for every n ∈ N (112)

69. Also,
the map pn,V is graded for every n ∈ N (113)

70.

67Proof of (110). Let n ∈ N. Let us use the notations of Remark 16.15. Then, pn,V = ιn ◦ πn.
Since πn :

⊕̀
∈N
V` → Vn the canonical projection from the direct sum to its n-th addend, it is clear

that πn |Vn= id. Now, pn,V = ιn ◦ πn yields

pn,V |Vn= (ιn ◦ πn) |Vn= ιn ◦ (πn |Vn)︸ ︷︷ ︸
=id

= ιn ◦ id = ιn = idV |Vn

(since ιn : Vn →
⊕̀
∈N
V` is the canonical injection of the n-th addend into the direct sum). This proves

(110).
68Proof of (111). Let n ∈ N and m ∈ N satisfy n 6= m. Let us use the notations of Remark 16.15.

Then, pn,V = ιn ◦ πn. Since πn :
⊕̀
∈N
V` → Vn the canonical projection from the direct sum to its n-th

addend, it is clear that πn |V`= 0 for every ` ∈ N such that ` 6= n. Applied to ` = m, this yields that
πn |Vm= 0. Now, pn,V = ιn ◦ πn yields

pn,V |Vm= (ιn ◦ πn) |Vm= ιn ◦ (πn |Vm)︸ ︷︷ ︸
=0

= ιn ◦ 0 = 0.

This proves (111).
69Proof of (112). Let n ∈ N. Let us use the notations of Remark 16.15. Then, pn,V = ιn ◦πn. Since

πn is the canonical projection
⊕̀
∈N
V` → Vn, it is clear that πn (V ) = Vn. Since ιn is the canonical

injection Vn →
⊕̀
∈N
V`, we have ιn (Vn) = Vn. Thus,

pn,V︸︷︷︸
=ιn◦πn

(V ) = (ιn ◦ πn) (V ) = ιn

πn (V )︸ ︷︷ ︸
=Vn

 = ιn (Vn) = Vn,

so that (112) is proven.
70Proof of (113). Let n ∈ N. Let m ∈ N. We are going to prove that pn,V (Vm) ⊆ Vm.
In fact, let us distinguish between two cases:
Case 1: We have m = n.
Case 2: We have m 6= n.
First let us consider Case 1. In this case, m = n, so that Vm = Vn. Now, Vm ⊆ V , so that

pn,V (Vm) ⊆ pn,V (V ) = Vn (by (112)), so that pn,V (Vm) ⊆ Vn = Vm.
We thus have proven pn,V (Vm) ⊆ Vm in Case 1.
Now let us consider Case 2. In this case, m 6= n, so that pn,V |Vm= 0 (by (111)). But now,

pn,V (Vm) = (pn,V |Vm)︸ ︷︷ ︸
=0

(Vm) = 0 (Vm) = 0 ⊆ Vm.

We thus have proven pn,V (Vm) ⊆ Vm in Case 2.
Now, pn,V (Vm) ⊆ Vm is proven in both cases 1 and 2. Since these cases are the only possible cases,

this means that pn,V (Vm) ⊆ Vm always holds.
Now forget that we fixed m. We have proved that pn,V (Vm) ⊆ Vm for every m ∈ N. In other words,

pn,V is graded. This proves (113).
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It is also known that every v ∈ V satisfies

v =
∑
`∈N

p`,V (v) (114)

(where the sum
∑̀
∈N
p`,V (v) is well-defined since it has only finitely many

nonzero terms)71.

Proposition 16.17. Let k be a field. Let V and W be graded k-vector
spaces. Let f : V → W be a graded k-linear map. Then, f ◦ pn,V =
pn,W ◦f = pn,W ◦f ◦pn,V (where pn,V and pn,W are the n-th grade identities
of V and W , as defined in Definition 16.16) for every n ∈ N.

Proof of Proposition 16.17. Let n ∈ N.
a) Every m ∈ N satisfies (f ◦ pn,V − pn,W ◦ f) (Vm) = 0.
Proof. Let m ∈ N. We distinguish between two cases:
Case 1: We have m = n.

71Proof of (114). Let v ∈ V .
Since v ∈ V =

⊕̀
∈N
V`, we can write v in the form

∑̀
∈N
v`, where (v` ∈ V` for every ` ∈ N) and

(v` = 0 for all but finitely many ` ∈ N). So let us write v in this form.
For every n ∈ N, we have

pn,V (v) = pn,V

(∑
`∈N

v`

) (
since v =

∑
`∈N

v`

)
=
∑
`∈N

pn,V (v`)︸ ︷︷ ︸
=(pn,V |V`)(v`)

(since v`∈V`)

(since pn,V is k-linear)

=
∑
`∈N

(pn,V |V`) (v`) =
∑
`∈N;
n=`

(pn,V |V`) (v`)

︸ ︷︷ ︸
=(pn,V |Vn )(vn)

+
∑
`∈N;
n 6=`

(pn,V |V`) (v`)

= (pn,V |Vn)︸ ︷︷ ︸
=idV |Vn

(by (110))

(vn) +
∑
`∈N;
n 6=`

(pn,V |V`)︸ ︷︷ ︸
=0 (by (111) (applied to m=`),

since n 6=`)

(v`)

= (idV |Vn) (vn)︸ ︷︷ ︸
=idV (vn)=vn

+
∑
`∈N;
n 6=`

0 (v`)

︸ ︷︷ ︸
=0

= vn.

Thus, ∑
n∈N

pn,V (v) =
∑
n∈N

vn =
∑
`∈N

v` (here, we renamed the index n as ` in the sum)

= v,

so that

v =
∑
n∈N

pn,V (v) =
∑
`∈N

p`,V (v) (here, we renamed the index n as ` in the sum) .

This proves (114).
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Case 2: We have m 6= n.
First, let us consider Case 1. In this case, m = n. Thus,

(f ◦ pn,V − pn,W ◦ f) (Vm) = (f ◦ pn,V − pn,W ◦ f) (Vn) . (115)

Now, let x ∈ Vn be arbitrary. Then, pn,V (x) = (pn,V |Vn)︸ ︷︷ ︸
=idV |Vn

(by (110))

(x) = (idV |Vn) (x) =

idV (x) = x. On the other hand, since x ∈ Vn, we have f (x) ∈ f (Vn) ⊆ Wn

(since f is graded), so that pn,W (f (x)) = (pn,W |Wn)︸ ︷︷ ︸
=idW |Wn

(by (110), applied
to W instead of V )

(f (x)) = (idW |Wn) (f (x)) =

idW (f (x)) = f (x). But clearly,

(f ◦ pn,V − pn,W ◦ f) (x) = (f ◦ pn,V ) (x)− (pn,W ◦ f) (x)

= f

pn,V (x)︸ ︷︷ ︸
=x

− pn,W (f (x))︸ ︷︷ ︸
=f(x)

= f (x)− f (x) = 0.

Forget that we fixed x. We have thus proven that (f ◦ pn,V − pn,W ◦ f) (x) = 0 for
every x ∈ Vn. In other words, (f ◦ pn,V − pn,W ◦ f) (Vn) = 0. Combined with (115),
this becomes (f ◦ pn,V − pn,W ◦ f) (Vm) = 0.

We thus have proven that (f ◦ pn,V − pn,W ◦ f) (Vm) = 0 in Case 1.
Now let us treat Case 2. In this case, m 6= n. Now, f (Vm) ⊆ Wm (since f is

graded). We have

(f ◦ pn,V − pn,W ◦ f) (Vm) ⊆ (f ◦ pn,V ) (Vm)︸ ︷︷ ︸
=f(pn,V (Vm))

− (pn,W ◦ f) (Vm)︸ ︷︷ ︸
=pn,W (f(Vm))

= f (pn,V (Vm))− pn,W

f (Vm)︸ ︷︷ ︸
⊆Wm

 ⊆ f

pn,V (Vm)︸ ︷︷ ︸
=0

(by (111))

− pn,W (Wm)︸ ︷︷ ︸
=0

(by (111), applied
to W instead of V )

= f (0)︸︷︷︸
=0

−0 = 0− 0 = 0.

Hence, (f ◦ pn,V − pn,W ◦ f) (Vm) = 0. This proves (f ◦ pn,V − pn,W ◦ f) (Vm) = 0 in
Case 2.

Hence, we have proven (f ◦ pn,V − pn,W ◦ f) (Vm) = 0 in each of the cases 1 and
2. Since these two cases are all cases that can occur, this means that we have proven
(f ◦ pn,V − pn,W ◦ f) (Vm) = 0 in every case. This completes the proof of a).

b) We have f ◦ pn,V = pn,W ◦ f .
Proof. Every m ∈ N satisfies (f ◦ pn,V − pn,W ◦ f) (Vm) = 0 (according to part a)).

In other words, every m ∈ N satisfies Vm ⊆ Ker (f ◦ pn,V − pn,W ◦ f). Thus,∑
m∈N

Vm ⊆
∑
m∈N

Ker (f ◦ pn,V − pn,W ◦ f) ⊆ Ker (f ◦ pn,V − pn,W ◦ f)(
since Ker (f ◦ pn,V − pn,W ◦ f) is a k-vector subspace of V

(because f ◦ pn,V − pn,W ◦ f is a k-linear map)

)
.
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But since V is graded, we have V =
⊕
m∈N

Vm =
∑
m∈N

Vm (since direct sums are sums).

Thus,

V =
∑
m∈N

Vm ⊆ Ker (f ◦ pn,V − pn,W ◦ f) ,

so that f ◦ pn,V − pn,W ◦ f = 0. In other words, f ◦ pn,V = pn,W ◦ f . This proves part
b).

c) By part b), we know that f ◦ pn,V = pn,W ◦ f . Thus, pn,W ◦ f︸ ︷︷ ︸
=f◦pn,V

◦pn,V = f ◦

pn,V ◦ pn,V︸ ︷︷ ︸
=pn,V

(by (109))

= f ◦ pn,V . Combined with f ◦ pn,V = pn,W ◦ f , this yields f ◦ pn,V =

pn,W ◦ f = pn,W ◦ f ◦ pn,V . This proves Proposition 16.17.

We now prove that gradedness is compatible with convolution:

Proposition 16.18. Let k be a field. Let C be a graded k-coalgebra. Let
A be a graded k-algebra.

(a) If f ∈ L (C,A) and g ∈ L (C,A) are two graded maps, then f ∗ g ∈
L (C,A) is graded as well.

(b) The map eC,A : C → A is graded.

(c) If f ∈ L (C,A) is a graded map and n ∈ N, then f ∗n ∈ L (C,A) is
graded as well.

(d) Assume that C is a connected filtered k-coalgebra, and that the field k
has characteristic 0. If f ∈ g (C,A) is a graded map, then e∗f is a graded
map.

(e) Assume that C is a connected filtered k-coalgebra, and that the field
k has characteristic 0. If F ∈ G (C,A) is a graded map, then LogF is a
graded map.

Proof of Proposition 16.18. (a) Let f ∈ L (C,A) and g ∈ L (C,A) be two graded
maps.

By the definition of convolution, f ∗ g = µA ◦ (f ⊗ g) ◦ ∆C . Now, since A is a
graded k-algebra, its multiplication map µA is graded (where the grading on A⊗ A is
the usual one that is given to the tensor product of two graded k-vector spaces). Since
C is a graded k-coalgebra, its comultiplication map ∆C is graded (where the grading
on C ⊗ C is the usual one that is given to the tensor product of two graded k-vector
spaces). Also, the map f ⊗ g is graded (since f and g are graded, and since the tensor
product of two graded maps is graded). Now recall that the composition of graded
maps is graded. Thus, the map µA ◦ (f ⊗ g) ◦∆C is graded (since µA, f ⊗ g and ∆C

are graded). Since µA ◦ (f ⊗ g) ◦∆C = f ∗ g, this means that the map f ∗ g is graded.
This proves Proposition 16.18 (a).

(b) Let us give k the usual grading (the one where k0 = k and kn = 0 for all
positive n ∈ N). Since A is a graded k-algebra, its unity map ηA : k → A is graded.
Since C is a graded k-coalgebra, its counity map εC : C → k is graded. Now, the map
eC,A = ηA ◦ εC is graded (since ηA and εC are graded, and since the composition of
graded maps is graded). This proves Proposition 16.18 (b).
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(c) Let us prove Proposition 16.18 (c) by induction over n:
Induction base: The map f ∗0 is graded for every f ∈ L (C,A) (because for every

f ∈ L (C,A), the map f ∗0 equals eC,A and thus is graded by Proposition 16.18 (b)).
Thus, Proposition 16.18 (c) holds for n = 0. This completes the induction base.

Induction step: Let N ∈ N. Assume that Proposition 16.18 (c) holds for n = N .
We must show that Proposition 16.18 (c) also holds for n = N + 1.

Let f ∈ L (C,A) be graded. Then, f ∗N is graded as well (since we assumed that
Proposition 16.18 (c) holds for n = N). Now, Proposition 16.18 (a) (applied to
g = f ∗N) yields that f ∗ f ∗N is graded. Since f ∗ f ∗N = f ∗(N+1), this means that
f ∗(N+1) is graded.

Thus we have shown that for every graded f ∈ L (C,A), the map f ∗(N+1) ∈ L (C,A)
is graded as well. In other words, we have proven that Proposition 16.18 (c) holds for
n = N + 1. This completes the induction step.

Thus, the induction proof of Proposition 16.18 (c) is complete.
(e) Let F ∈ G (C,A) be a graded map.
The map eC,A is graded (by Proposition 16.18 (b)).
By Definition 3.8, we have LogF = Log1 (F − eC,A). Let f = F − eC,A. Then,

f = F − eC,A is graded (because F and eC,A are graded, and because the difference
of graded maps is graded). Hence, for every integer i ≥ 1, the map f ∗i is graded
(by Proposition 16.18 (c), applied to n = i). Also, f = F − eC,A ∈ g (C,A) (since
F ∈ G (C,A) = eC,A + g (C,A)). Thus, every i ∈ N and n ∈ N such that i > n satisfy
f ∗i (C≤n) = 0 (by Remark 3.5, applied to H = C).

Now let n ∈ N. The definition of C≤n says that C≤n =
n⊕̀
=0

C` = Cn ⊕
n−1⊕̀
=0

C` ⊇ Cn.

Hence, Cn ⊆ C≤n.
Let x ∈ Cn. Then, every i ∈ N and n ∈ N such that i > n satisfy f ∗i (x) = 0 (since

f ∗i

 x︸︷︷︸
∈Cn⊆C≤n

 ∈ f ∗i (C≤n) = 0). Thus,
∑
i≥1;
i>n

(−1)i−1

i
f ∗i (x)︸ ︷︷ ︸

=0 (since i>n)

=
∑
i≥1;
i>n

(−1)i−1

i
0 = 0.

For every integer i ≥ 1, we have f ∗i (Cn) ⊆ An (since f ∗i is graded). Thus, for every
integer i ≥ 1, we have f ∗i (x) ∈ An (because x ∈ Cn and thus f ∗i (x) ∈ f ∗i (Cn) ⊆ An).
But

(Log1 f) (x) =
∑
i≥1

(−1)i−1

i
f ∗i (x) (by (8))

=
∑
i≥1;
i≤n

(−1)i−1

i
f ∗i (x)︸ ︷︷ ︸
∈An

+
∑
i≥1;
i>n

(−1)i−1

i
f ∗i (x)

︸ ︷︷ ︸
=0

∈
∑
i≥1;
i≤n

(−1)i−1

i
An ⊆ An

(since An is a k-vector space).
Now forget that we fixed x. We thus have proven that (Log1 f) (x) ∈ An for every

x ∈ Cn. In other words, (Log1 f) (Cn) ⊆ An.
Now forget that we fixed n. We have thus proven that (Log1 f) (Cn) ⊆ An for every

n ∈ N. In other words, the map Log1 f is graded.
The map LogF = Log1 (F − eC,A)︸ ︷︷ ︸

=f

= Log1 f is graded (as we just have shown).
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This proves Proposition 16.18 (e).
(d) The proof of Proposition 16.18 (d) is very similar to that of Proposition 16.18

(e) (and even easier since we do not have two maps F and f but only one map
f). We will leave it at that and let the reader fill in the details. (We won’t need
Proposition 16.18 (d) anyway.)

We now need a notation:

Convention 16.19. Let k be a field, let A be a k-algebra, and let S be a
subset of A. Then, the k-subalgebra of A generated by S can be defined in
several ways. Here are four ways to define it:

• It is the smallest k-subalgebra of A which contains S as a subset.
(“Smallest” means that it is contained in every such k-subalgebra. Of
course, it is not immediately trivial that the smallest k-subalgebra of
A which contains S exists at all.)

• It is the intersection of all k-subalgebras of A which contain S as a
subset.

• It is the subset of A formed by all elements that can be obtained by
repeated addition, multiplication and scaling with elements of k 72

from elements of S. Here, “multiplication” doesn’t only mean multipli-
cation of two elements, but can also mean multiplication of n elements
for any n ∈ N. (In particular, it can mean multiplication of 0 elements;
this gives the unity 1A as the result.)

• It is the k-vector subspace 〈S〉0 + 〈S〉1 + 〈S〉2 + · · · =
∑̀
∈N
〈S〉` of A

(where 〈S〉 denotes the k-vector subspace of A generated by the subset
S).

It is rather well-known that all of these definitions of the k-subalgebra of A
generated by S are equivalent, and that the k-subalgebra of A generated by
S is really a k-subalgebra of A. We denote by AlgGenk S the k-subalgebra
of A generated by S.

Some rather obvious properties of this notation will be used without explicit men-
tion. For example, if S and T are two subsets of a k-subalgebra A satisfying S ⊆ T ,
then AlgGenk S ⊆ AlgGenk T . (This can easily be derived from any of the definitions
of AlgGenk S.)

Here is another, even more obvious fact:

Lemma 16.20. Let k be a field. Let A be a k-algebra. Let S be any subset
of A. Then,

S ⊆ AlgGenk S. (116)

Proof of Lemma 16.20. Recall that AlgGenk S is the k-subalgebra of A generated by
S; this k-subalgebra clearly contains S as a subset. In other words, AlgGenk S contains
S as a subset. In other words, S ⊆ AlgGenk S. This proves Lemma 16.20.

72By “scaling with an element λ ∈ k ”, we mean the map A→ A which sends every a ∈ A to λa.
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Our next goal is the following theorem:

Theorem 16.21. Let k be a field of characteristic 0, and let H be a con-
nected graded k-bialgebra. Let ζ be the map Log id ∈ L (H,H).

(a) The map ζ is graded.

(b) For every n ∈ N, let pn denote the map pn,H (defined according to
Definition 16.16), and let ζn denote the map ζ ◦ pn. Then,

ζn = ζ ◦ pn = pn ◦ ζ = pn ◦ ζ ◦ pn for every n ∈ N. (117)

Besides,

AlgGenk {ζ1, ζ2, ζ3, . . .} = AlgGenk {p1, p2, p3, . . .} . (118)

Remark. In Theorem 16.21 and in the following Proposition 16.22, we are
considering the algebra L (H,H) whose multiplication is convolution, not
the algebra EndH whose multiplication is composition of mappings. Thus,
for example, AlgGenk {ζ1, ζ2, ζ3, . . .} denotes the k-subalgebra of L (H,H)
(not of EndH) generated by the subset {ζ1, ζ2, ζ3, . . .}.

Before we begin proving Theorem 16.21, let us notice that its part (a) is a trivial
consequence of Proposition 16.18 (e), and the equation (117) in part (b) follows im-
mediately from part (a) due to Proposition 16.17. The main part of Theorem 16.21 is
the equality (118). This equality was mentioned in the Example in §2 of [PatReu98]73.

First let us prove the easy part of Theorem 16.21:

Proof of Theorem 16.21, first part. (a) Applying Proposition 16.18 (e) to C = H, A =
H and f = id, we conclude that Log id is graded (since id ∈ G (H,H) is graded). Since
ζ = Log id, this rewrites as follows: The map ζ is graded. This proves Theorem 16.21
(a).

(b) Let n ∈ N. Since the map ζ is graded (by Theorem 16.21 (a)), we have

ζ ◦ pn,H = pn,H ◦ ζ = pn,H ◦ ζ ◦ pn,H

(by Proposition 16.17, applied to V = H, W = H and f = ζ). Since pn,H = pn, this
rewrites as ζ ◦ pn = pn ◦ ζ = pn ◦ ζ ◦ pn. Combined with ζn = ζ ◦ pn, this yields (117).

We thus have proven (117). We are going to prove (118) later. For the time being,
we leave the proof of Theorem 16.21.

Here is an assertion which will turn out to be somewhat stronger than (118) (we
are later going to derive (118) from it):

73More precisely, the notations F , A, e, en, D (A) and De of [PatReu98] correspond to the notations
k, H, ζ, ζn, AlgGenk {p1, p2, p3, . . .} and AlgGenk {ζ1, ζ2, ζ3, . . .} in our text (but we do not require H
to be cocommutative here). Hence, our equation (118) rewrites as D (A) = De using the notations of
[PatReu98]. This is mentioned in the Example in §2 of [PatReu98], and used afterwards in the proof
of Theorem 5.1 of [PatReu98].
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Proposition 16.22. Let k be a field of characteristic 0, and let H be a
connected graded k-bialgebra. Let ζ be the map Log id ∈ L (H,H). We
are going to use the notations of Theorem 16.21 (b).

For every n ∈ N, we have

pn − ζn ∈ AlgGenk {p1, p2, . . . , pn−1} .

And here is a “finite” version of (118):

Proposition 16.23. Let k be a field of characteristic 0, and let H be a
connected graded k-bialgebra. Let ζ be the map Log id ∈ L (H,H). We
are going to use the notations of Theorem 16.21 (b).

For every n ∈ N, we have

AlgGenk {ζ1, ζ2, . . . , ζn} = AlgGenk {p1, p2, . . . , pn} .

We will prove these two propositions before showing Theorem 16.21. But first, we
introduce another notation, and show some of its properties. First, the notation:

Definition 16.24. Let k be a field. Let H be a graded k-vector space. Let
f ∈ L (H,H) be a graded map. Let n ∈ N. Just as in Theorem 16.21 (b),
let pn denote the map pn,H (defined according to Definition 16.16). Then,
we say that f is concentrated in degree n if and only if f = pn ◦ f .

It is easily seen that (in the context of Definition 16.24) we have the following chain
of equivalences:

(f is concentrated in degree n)

⇐⇒ (f = pn ◦ f) ⇐⇒ (f = f ◦ pn) ⇐⇒ (f = pn ◦ f ◦ pn)

⇐⇒ (f (H) ⊆ Hn) ⇐⇒ (f (Hm) = 0 for all m ∈ N satisfying m 6= n) .

However, we are not going to use these equivalences (at least not explicitly).
The following properties of being concentrated in degree n will be used:

Proposition 16.25. Let k be a field. Let H be a graded k-bialgebra.

(a) The map eH,H is graded and concentrated in degree 0.

(b) Let a ∈ N, b ∈ N, f ∈ L (H,H) and g ∈ L (H,H). Assume that
f is graded and concentrated in degree a. Assume that g is graded and
concentrated in degree b. Then, f ∗ g is graded and concentrated in degree
a+ b.

(c) Let ` ∈ N. Let ai be a nonnegative integer for every i ∈ {1, 2, . . . , `}.
Let fi be an element of L (H,H) for every i ∈ {1, 2, . . . , `}. Assume that for
every i ∈ {1, 2, . . . , `}, the map fi is graded and concentrated in degree ai.
Then, f1 ∗f2 ∗ · · ·∗f` is graded and concentrated in degree a1 +a2 + · · ·+a`.

(d) For every n ∈ N, the map pn (defined in Theorem 16.21 (b)) is graded
and concentrated in degree n.

(e) If the graded k-bialgebra H is connected, then eH,H = p0 (where the
map p0 is defined as p0,H , just as in Theorem 16.21 (b)).
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Proof of Proposition 16.25. Just as in Theorem 16.21 (b), let pn denote the map pn,H
for every n ∈ N (defined according to Definition 16.16).

(a) We have eH,H = ηH ◦εH . But since H is a graded k-bialgebra, we have 1H ∈ H0.
By the definition of p0, we have p0 = p0,H . Thus, p0 |H0= p0,H |H0= idH |H0 (by

(110), applied to V = H and n = 0).
Every x ∈ H satisfies

eH,H︸︷︷︸
=ηH◦εH

(x) = (ηH ◦ εH) (x) = ηH (εH (x)) = εH (x) · 1H (by the definition of ηH)

and now

(p0 ◦ eH,H) (x)

= p0

eH,H (x)︸ ︷︷ ︸
=εH(x)·1H

 = p0 (εH (x) · 1H)

= (p0 |H0)︸ ︷︷ ︸
=idH |H0

(εH (x) · 1H)

since εH (x) · 1H︸︷︷︸
∈H0

∈ H0 (since H0 is a k-vector space)


= (idH |H0) (εH (x) · 1H) = εH (x) · 1H = eH,H (x) .

Thus, p0 ◦ eH,H = eH,H . In other words, eH,H = p0 ◦ eH,H . Combined with the
fact that eH,H is graded (by Proposition 16.18 (b), applied to C = H and A = H),
this yields that eH,H is concentrated in degree 0 (by Definition 16.24). This proves
Proposition 16.25 (a).

(b) Since f is graded and concentrated in degree a, we have f = pa ◦ f (by Defini-
tion 16.24). Thus,

f (H) = (pa ◦ f) (H) = pa︸︷︷︸
=pa,H

(by the definition of pa)

f (H)︸ ︷︷ ︸
⊆H

 ⊆ pa,H (H)

= Ha (by (112), applied to n = a and V = H) .

Similarly, g (H) ⊆ Hb.
Since H is a graded k-bialgebra, its multiplication map µH : H⊗H → H is graded,

where the grading on H ⊗H is the usual grading on the tensor product of two graded

k-vector spaces. Now, this grading is defined by (H ⊗H)n =
n∑̀
=0

H` ⊗Hn−` for every
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n ∈ N. Hence, for every a ∈ N and b ∈ N, we have

(H ⊗H)a+b =
a+b∑
`=0

H` ⊗Ha+b−`(
due to (H ⊗H)n =

n∑
`=0

H` ⊗Hn−`, applied to n = a+ b

)
⊇ Ha ⊗Ha+b−a︸ ︷︷ ︸

=Hb since Ha ⊗Ha+b−a is an addend in the sum
a+b∑̀
=0

H` ⊗Ha+b−`

(namely, the addend for ` = a)


= Ha ⊗Hb.

Thus, for every a ∈ N and b ∈ N, we have Ha ⊗Hb ⊆ (H ⊗H)a+b, so that

µH (Ha ⊗Hb) ⊆ µH
(
(H ⊗H)a+b

)
⊆ Ha+b (since µH is graded) .

Now, by the definition of convolution, f ∗ g = µH ◦ (f ⊗ g) ◦∆H , so that

(f ∗ g) (H) = (µH ◦ (f ⊗ g) ◦∆H) (H) = µH

(f ⊗ g) (∆H (H))︸ ︷︷ ︸
⊆H⊗H

 ⊆ µH

(f ⊗ g) (H ⊗H)︸ ︷︷ ︸
=f(H)⊗g(H)


= µH

f (H)︸ ︷︷ ︸
⊆Ha

⊗ g (H)︸ ︷︷ ︸
⊆Hb

 ⊆ µH (Ha ⊗Hb) ⊆ Ha+b.

Thus, every x ∈ H satisfies (f ∗ g) (x) ∈ Ha+b. Hence, every x ∈ H satisfies

(pa+b ◦ (f ∗ g)) (x) = pa+b ((f ∗ g) (x)) =

 pa+b︸︷︷︸
=pa+b,H

(by the definition of pa+b)

|Ha+b

 ((f ∗ g) (x))

(since (f ∗ g) (x) ∈ Ha+b)

=
(
pa+b,H |Ha+b

)︸ ︷︷ ︸
=idH |Ha+b

(by (110), applied to
V=H and n=a+b)

((f ∗ g) (x)) =
(
idH |Ha+b

)
((f ∗ g) (x))

= (f ∗ g) (x) .

In other words, pa+b ◦ (f ∗ g) = f ∗ g.
Hence, f ∗ g = pa+b ◦ (f ∗ g). Combined with the fact that f ∗ g is graded (by

Proposition 16.18 (a), applied to C = H and A = H), this yields that f ∗ g is
concentrated in degree a+ b (by Definition 16.24). This proves Proposition 16.25 (b).

(c) We are going to prove that for every j ∈ {0, 1, . . . , `},

the map f1 ∗f2 ∗ · · · ∗fj is graded and concentrated in degree a1 +a2 + · · ·+aj. (119)
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Proof of (119). We will prove (119) by induction over j:
Induction base: The map f1 ∗ f2 ∗ · · · ∗ f0 = eH,H is graded and concentrated in

degree 0 (by Proposition 16.25 (a)). Since 0 = a1 + a2 + · · ·+ a0, we thus have shown
that the map f1 ∗f2 ∗ · · · ∗f0 is graded and concentrated in degree a1 +a2 + · · ·+a0. In
other words, we have shown that (119) holds for j = 0. This completes the induction
base.

Induction step: Let J ∈ {0, 1, . . . , `− 1}. Assume that (119) holds for j = J . We
now must prove that (119) holds for j = J + 1.

We know that for every i ∈ {1, 2, . . . , `}, the map fi is graded and concentrated in
degree ai. Hence, the map fJ+1 is graded and concentrated in degree aJ+1.

Since (119) holds for j = J , the map f1∗f2∗· · ·∗fJ is graded and concentrated in de-
gree a1+a2+· · ·+aJ . Applying Proposition 16.25 (b) to a = a1+a2+· · ·+aJ , b = aJ+1,
f = f1 ∗ f2 ∗ · · · ∗ fJ and g = fJ+1, we now see that the map (f1 ∗ f2 ∗ · · · ∗ fJ) ∗ fJ+1 is
graded and concentrated in degree (a1 + a2 + · · ·+ aJ)+aJ+1. Since (f1 ∗ f2 ∗ · · · ∗ fJ)∗
fJ+1 = f1 ∗ f2 ∗ · · · ∗ fJ+1 and (a1 + a2 + · · ·+ aJ) + aJ+1 = a1 + a2 + · · · + aJ+1, this
rewrites as follows: The map f1 ∗ f2 ∗ · · · ∗ fJ+1 is graded and concentrated in degree
a1 + a2 + · · · + aJ+1. In other words, (119) holds for j = J + 1. This completes the
induction step.

Thus, the induction proof of (119) is complete.
Now we can apply (119) to j = `, and conclude that the map f1 ∗ f2 ∗ · · · ∗ f` is

graded and concentrated in degree a1 + a2 + · · · + a`. This proves Proposition 16.25
(c).

(d) Let n ∈ N. Since pn was defined as pn,H , we can rewrite the identity pn,H◦pn,H =
pn,H (which follows from (109), applied to V = H) as pn ◦ pn = pn.

Also, pn = pn,H is graded (by (113), applied to V = H). Thus, pn is a graded
map satisfying pn = pn ◦ pn. By Definition 16.24, this yields that pn is concentrated in
degree n. This proves Proposition 16.25 (d).

(e) Assume that the graded k-bialgebra H is connected. Then, εH |H0 : H0 → k is
a k-vector space isomorphism (because this is how a connected graded k-bialgebra was
defined in Definition 16.10).

Let us give k the usual grading (the one where k0 = k and kn = 0 for all positive
n ∈ N). Since H is a graded k-coalgebra, its counity map εH : H → k is graded.
Thus, Proposition 16.17 (applied to V = H, W = k, f = εH and n = 0) yields
εH ◦ p0,H = p0,k ◦ εH = p0,k ◦ εH ◦ p0,H . But since k0 = k, we have

p0,k = p0,k |k0= idk |k0 (by (110), applied to V = k and n = 0)

= idk (since k0 = k) ,

so that εH ◦ p0,H = p0,k ◦ εH simplifies to εH ◦ p0,H = εH . Since p0,H = p0, this further
rewrites as εH ◦ p0 = εH .

Since H is a bialgebra, we have εH ◦ ηH = idk (by the axioms of a bialgebra). But
eH,H = ηH ◦ εH (by the definition of eH,H). Thus, εH ◦ eH,H = εH ◦ ηH︸ ︷︷ ︸

=idk

◦εH = εH .

Now let x ∈ H. Then,

p0︸︷︷︸
=p0,H

(x) = p0,H (x) ∈ p0,H (H) = H0 (by (112), applied to V = H and n = 0) ,
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so that (εH |H0) (p0 (x)) is well-defined. Also,

eH,H︸︷︷︸
=ηH◦εH

(x) = (ηH ◦ εH) (x) = ηH (εH (x)) = εH (x) · 1H (by the definition of ηH)

∈ H0

(
since 1H ∈ H0 (because H is a graded k-algebra),

and since H0 is a k-vector space

)
,

so that (εH |H0) (eH,H (x)) is well-defined. Since

(εH |H0) (p0 (x)) = εH (p0 (x)) = (εH ◦ p0)︸ ︷︷ ︸
=εH=εH◦eH,H

(x) = (εH ◦ eH,H) (x)

= εH (eH,H (x)) = (εH |H0) (eH,H (x)) ,

we conclude that p0 (x) = eH,H (x) (since εH |H0 is an isomorphism). Since we have
proven this for every x ∈ H, we conclude that p0 = eH,H . This proves Proposition 16.25
(e).

Proposition 16.25 has a very easy corollary:

Corollary 16.26. Let k be a field. Let H be a graded k-bialgebra. For
every n ∈ N, let pn denote the map pn,H (defined according to Defini-
tion 16.16).

Let n ∈ N and ` ∈ N. Let ai be a nonnegative integer for every i ∈
{1, 2, . . . , `}.
(a) We have pn ◦ (pa1 ∗ pa2 ∗ · · · ∗ pa`) = 0 if n 6= a1 + a2 + · · ·+ a`.

(b) We have pn ◦ (pa1 ∗ pa2 ∗ · · · ∗ pa`) = pa1 ∗ pa2 ∗ · · · ∗ pa` if n = a1 + a2 +
· · ·+ a`.

Proof of Corollary 16.26. For every i ∈ {1, 2, . . . , `}, the map pai is graded and con-
centrated in degree ai (by Proposition 16.25 (d), applied to ai instead of n). Thus,
Proposition 16.25 (c) (applied to fi = pai) yields that pa1 ∗ pa2 ∗ · · · ∗ pa` is graded and
concentrated in degree a1 + a2 + · · · + a`. According to Definition 16.24, this means
that

pa1+a2+···+a` ◦ (pa1 ∗ pa2 ∗ · · · ∗ pa`) = pa1 ∗ pa2 ∗ · · · ∗ pa` . (120)

(a) Assume that n 6= a1 + a2 + · · · + a`. Then, pn,H |Ha1+a2+···+a`= 0 (by (111),
applied to m = a1 + a2 + · · ·+ a` and V = H).

But

(pa1 ∗ pa2 ∗ · · · ∗ pa`)︸ ︷︷ ︸
=pa1+a2+···+a`◦(pa1∗pa2∗···∗pa`)

(by (120))

(H)

= (pa1+a2+···+a` ◦ (pa1 ∗ pa2 ∗ · · · ∗ pa`)) (H)

= pa1+a2+···+a`︸ ︷︷ ︸
=pa1+a2+···+a`,H

(by the definition of pa1+a2+···+a` )

(pa1 ∗ pa2 ∗ · · · ∗ pa`) (H)︸ ︷︷ ︸
⊆H


⊆ pa1+a2+···+a`,H (H) = Ha1+a2+···+a`

(
by (112), applied to H and a1 + a2 + · · ·+ a`

instead of V and n

)
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and thus

pn ((pa1 ∗ pa2 ∗ · · · ∗ pa`) (H)) ⊆ pn︸︷︷︸
=pn,H

(by the definition of pn)

(Ha1+a2+···+a`) = pn,H (Ha1+a2+···+a`)

=
(
pn,H |Ha1+a2+···+a`

)︸ ︷︷ ︸
=0

(Ha1+a2+···+a`) = 0 (Ha1+a2+···+a`) = 0.

Since pn ((pa1 ∗ pa2 ∗ · · · ∗ pa`) (H)) = (pn ◦ (pa1 ∗ pa2 ∗ · · · ∗ pa`)) (H), this rewrites as
(pn ◦ (pa1 ∗ pa2 ∗ · · · ∗ pa`)) (H) = 0. Thus, pn ◦ (pa1 ∗ pa2 ∗ · · · ∗ pa`) = 0. This proves
Corollary 16.26 (a).

(b) Now assume that n = a1 + a2 + · · ·+ a`. Then,

pn ◦ (pa1 ∗ pa2 ∗ · · · ∗ pa`) = pa1+a2+···+a` ◦ (pa1 ∗ pa2 ∗ · · · ∗ pa`) = pa1 ∗ pa2 ∗ · · · ∗ pa`
(by (120)). This proves Corollary 16.26 (b).

Proof of Proposition 16.22. Let n ∈ N.
Let h denote the map id−eH,H (where id means idH). Then, since id ∈ G (H,H) =

eH,H + g (H,H), we have id−eH,H ∈ g (H,H), so that h = id−eH,H ∈ g (H,H).
We will now prove Proposition 16.22 in several steps:
a) Every x ∈ H≤n satisfies

h (x) = (p1 + p2 + · · ·+ pn) (x) . (121)

Proof of (121). Let x ∈ H≤n. By (114) (applied to V = H and v = x), we have
x =

∑̀
∈N
p`,H (x). Since p` = p`,H for all ` ∈ N (by the definition of p`), this becomes

x =
∑
`∈N

p`,H︸︷︷︸
=p`

(x) =
∑
`∈N

p` (x) =
∑
`∈N;
`≤n

p` (x) +
∑
`∈N;
`>n

p` (x) . (122)

But for every ` ∈ N satisfying ` > n, we have p` (H≤n) = 0. 74 Thus, for every
` ∈ N satisfying ` > n, we have p` (x) = 0 (since x ∈ H≤n, and thus, for every ` ∈ N
satisfying ` > n, we obtain p` (x) ∈ p` (H≤n) = 0, so that p` (x) = 0). Thus, (122)
becomes

x =
∑
`∈N;
`≤n

p` (x) +
∑
`∈N;
`>n

p` (x)︸ ︷︷ ︸
=0

=
∑
`∈N;
`≤n

p` (x) +
∑
`∈N;
`>n

0

︸ ︷︷ ︸
=0

=
∑
`∈N;
`≤n

p` (x) = p0 (x) + p1 (x) + · · ·+ pn (x)

(123)

= p0︸︷︷︸
=eH,H

(by Proposition 16.25 (e),
since H is connected)

(x) + (p1 (x) + p2 (x) + · · ·+ pn (x))︸ ︷︷ ︸
=(p1+p2+···+pn)(x)

= eH,H (x) + (p1 + p2 + · · ·+ pn) (x) .

(124)

74Proof. By the definition of H≤n, we have

H≤n =

n⊕
`=0

H` =

n⊕
m=0

Hm (here, we renamed the summation index ` as m)

=

n∑
m=0

Hm (since direct sums are sums) .
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Thus,

(p1 + p2 + · · ·+ pn) (x) = x︸︷︷︸
=id(x)

−eH,H (x) = id (x)− eH,H (x) = (id−eH,H)︸ ︷︷ ︸
=h

(x) = h (x) .

This proves (121) for every x ∈ H≤n. Step a) is thus done.
b) Every x ∈ H≤n and every ` ∈ N satisfy

h∗` (x) = (p1 + p2 + · · ·+ pn)∗` (x) . (125)

Proof of (125). There are several ways to derive (125) from (121). Here is one of
them:

Let ` ∈ N.
We are going to use the notation Ln (H,A) introduced in Definition 3.1 (b).
By the definition of Ln+1 (H,H), we have

Ln+1 (H,H) =

f ∈ L (H,H) | f |H≤n+1−1︸ ︷︷ ︸
=f |H≤n

= 0

 =
{
f ∈ L (H,H) | f |H≤n= 0

}
.

By Proposition 14.2 (applied to n+ 1 and H instead of n and A), the set Ln+1 (H,H)
is an ideal of the k-algebra L (H,H).

Every x ∈ H≤n satisfies

(h− (p1 + p2 + · · ·+ pn)) (x) = h (x)︸︷︷︸
=(p1+p2+···+pn)(x)

(by (121))

− (p1 + p2 + · · ·+ pn) (x)

= (p1 + p2 + · · ·+ pn) (x)− (p1 + p2 + · · ·+ pn) (x) = 0.

In other words, (h− (p1 + p2 + · · ·+ pn)) |H≤n= 0. Thus,

h− (p1 + p2 + · · ·+ pn) ∈
{
f ∈ L (H,H) | f |H≤n= 0

}
= Ln+1 (H,H) .

In other words, h ≡ p1 + p2 + · · ·+ pn modLn+1 (H,H). Thus,

h∗` ≡ (p1 + p2 + · · ·+ pn)∗` modLn+1 (H,H)

Hence, for every ` ∈ N satisfying ` > n, we have

p` (H≤n) = p`

(
n∑

m=0

Hm

)
=

n∑
m=0

p` (Hm)︸ ︷︷ ︸
=(p`|Hm )(Hm)

(since p` is k-linear)

=

n∑
m=0

 p`︸︷︷︸
=p`,H

(by the definition of H)

|Hm

 (Hm) =

n∑
m=0

(p`,H |Hm)︸ ︷︷ ︸
=0 (by (111) (applied

to ` and H instead of n and V ),
since ` 6=m (since `>n≥m))

(Hm)

=

n∑
m=0

0 (Hm) = 0,

qed.
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(because Ln+1 (H,H) is an ideal of the k-algebra L (H,H), and hence we can multiply
congruences modulo Ln+1 (H,H)). In other words,

h∗` − (p1 + p2 + · · ·+ pn)∗` ∈ Ln+1 (H,H) =
{
f ∈ L (H,H) | f |H≤n= 0

}
,

so that
(
h∗` − (p1 + p2 + · · ·+ pn)∗`

)
|H≤n= 0. Hence, every x ∈ H≤n satisfies(

h∗` − (p1 + p2 + · · ·+ pn)∗`
)

(x) = 0. As a consequence, every x ∈ H≤n satisfies

h∗` (x) = (p1 + p2 + · · ·+ pn)∗` (x) (because

h∗` (x)− (p1 + p2 + · · ·+ pn)∗` (x) =
(
h∗` − (p1 + p2 + · · ·+ pn)∗`

)
(x) = 0

). In other words, (125) is proven for every x ∈ H≤n and every ` ∈ N. This completes
step b).

c) Every x ∈ H≤n satisfies

ζ (x) =
n∑
`=1

(−1)`−1

`
h∗` (x) . (126)

Proof of (126). Since

ζ = Log id = Log1 (id−eH,H)︸ ︷︷ ︸
=h

(by the definition of Log)

= Log1 h,

every x ∈ H≤n satisfies

ζ (x) = (Log1 h) (x) =
∑
i≥1

(−1)i−1

i
h∗i (x) (by (8), applied to f = h)

=
∑
i≥1;
i≤n

(−1)i−1

i
h∗i (x) +

∑
i≥1;
i>n

(−1)i−1

i
h∗i (x)︸ ︷︷ ︸

=0 (since x∈H≤n and thus

h∗i(x)∈h∗i(H≤n)=0 (by Remark 3.5

(applied to f=h), since i>n),
so that h∗i(x)=0)

=
∑
i≥1;
i≤n︸︷︷︸
=

n∑
i=1

(−1)i−1

i
h∗i (x) +

∑
i≥1;
i>n

(−1)i−1

i
0

︸ ︷︷ ︸
=0

=
n∑
i=1

(−1)i−1

i
h∗i (x)

=
n∑
`=1

(−1)`−1

`
h∗` (x) (here, we renamed the summation index i as `) .

This proves (126), and thus our step c) is complete.
d) Every x ∈ H≤n satisfies

ζ (x) =
n∑
`=1

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`

(pa1 ∗ pa2 ∗ · · · ∗ pa`) (x) . (127)
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Proof of (127). Let x ∈ Hn. Then, for every ` ∈ N, we have

h∗` (x) = (p1 + p2 + · · ·+ pn)∗`︸ ︷︷ ︸
=

∑
(a1,a2,...,a`)∈{1,2,...,n}

×`
pa1∗pa2∗···∗pa`

(by the product rule)

(x) (by (125))

=

 ∑
(a1,a2,...,a`)∈{1,2,...,n}×`

pa1 ∗ pa2 ∗ · · · ∗ pa`

 (x) =
∑

(a1,a2,...,a`)∈{1,2,...,n}×`
(pa1 ∗ pa2 ∗ · · · ∗ pa`) (x) .

Now, (126) becomes

ζ (x) =
n∑
`=1

(−1)`−1

`
h∗` (x)︸ ︷︷ ︸

=
∑

(a1,a2,...,a`)∈{1,2,...,n}
×`

(pa1∗pa2∗···∗pa`)(x)

=
n∑
`=1

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`

(pa1 ∗ pa2 ∗ · · · ∗ pa`) (x) .

This proves (127).
e) Every x ∈ Hn satisfies75

ζ (x) =

 n∑
`=1

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(pa1 ∗ pa2 ∗ · · · ∗ pa`)

 (x) . (128)

Proof of (128). Let x ∈ Hn. Then, ζ (x) ∈ ζ (Hn) ⊆ Hn (since ζ is graded (by
Theorem 16.21 (a))). Thus,

pn (ζ (x)) =

 pn︸︷︷︸
=pn,H

(by the definition of pn)

|Hn

 (ζ (x)) = (pn,H |Hn)︸ ︷︷ ︸
=idH |Hn

(by (110), applied to V=H)

(ζ (x))

= (idH |Hn) (ζ (x)) = idH (ζ (x)) = ζ (x) . (129)

Since H≤n =
n⊕̀
=0

H` by the definition of H≤n, we have Hn ⊆ H≤n (since Hn is one

addend of the direct sum
n⊕̀
=0

H`, and thus Hn ⊆
n⊕̀
=0

H` = H≤n).

Now, (129) yields

ζ (x) = pn (ζ (x)) = pn

 n∑
`=1

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`

(pa1 ∗ pa2 ∗ · · · ∗ pa`) (x)


(by (127), since x ∈ Hn ⊆ H≤n)

=
n∑
`=1

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`

pn ((pa1 ∗ pa2 ∗ · · · ∗ pa`) (x)) (since pn is k-linear) .

75Note that here we require x ∈ Hn rather than x ∈ H≤n.
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Since every ` ∈ {1, 2, . . . , n} satisfies∑
(a1,a2,...,a`)∈{1,2,...,n}×`

pn ((pa1 ∗ pa2 ∗ · · · ∗ pa`) (x))︸ ︷︷ ︸
=(pn◦(pa1∗pa2∗···∗pa`))(x)

=
∑

(a1,a2,...,a`)∈{1,2,...,n}×`
(pn ◦ (pa1 ∗ pa2 ∗ · · · ∗ pa`)) (x)

=
∑

(a1,a2,...,a`)∈{1,2,...,n}×`;
n=a1+a2+···+a`

(pn ◦ (pa1 ∗ pa2 ∗ · · · ∗ pa`))︸ ︷︷ ︸
=pa1∗pa2∗···∗pa`

(by Corollary 16.26 (b), since
n=a1+a2+···+a`)

(x)

+
∑

(a1,a2,...,a`)∈{1,2,...,n}×`;
n6=a1+a2+···+a`

(pn ◦ (pa1 ∗ pa2 ∗ · · · ∗ pa`))︸ ︷︷ ︸
=0

(by Corollary 16.26 (a), since
n6=a1+a2+···+a`)

(x)

=
∑

(a1,a2,...,a`)∈{1,2,...,n}×`;
n=a1+a2+···+a`

(pa1 ∗ pa2 ∗ · · · ∗ pa`) (x) +
∑

(a1,a2,...,a`)∈{1,2,...,n}×`;
n6=a1+a2+···+a`

0 (x)

︸ ︷︷ ︸
=0

=
∑

(a1,a2,...,a`)∈{1,2,...,n}×`;
n=a1+a2+···+a`

(pa1 ∗ pa2 ∗ · · · ∗ pa`) (x) ,

this rewrites as

ζ (x) =
n∑
`=1

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`

pn ((pa1 ∗ pa2 ∗ · · · ∗ pa`) (x))

︸ ︷︷ ︸
=

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(pa1∗pa2∗···∗pa`)(x)

=
n∑
`=1

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(pa1 ∗ pa2 ∗ · · · ∗ pa`) (x)

=

 n∑
`=1

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(pa1 ∗ pa2 ∗ · · · ∗ pa`)

 (x) .

This proves (128).
f) Now an auxiliary result:(

Whenever f : H → H and g : H → H are two graded maps
satisfying (f (x) = g (x) for all x ∈ Hn) , then pn ◦ f = pn ◦ g

)
. (130)

Proof of (130). Let f : H → H and g : H → H be two graded maps satisfying
(f (x) = g (x) for all x ∈ Hn).

Since f is graded, Proposition 16.17 (applied to V = H and W = H) yields that
pn,H◦f = f ◦pn,H = pn,H◦f ◦pn,H . Since pn,H = pn, this rewrites as pn◦f = f ◦pn = pn◦
f ◦pn. The same argument done for g instead of f shows that pn◦g = g◦pn = pn◦g◦pn.
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Since pn = pn,H , we have pn (H) = pn,H (H) = Hn (by (112), applied to V = H).
For every y ∈ H, we have

(f ◦ pn) (y) = f (pn (y)) = g (pn (y))(
this follows from the assumption that (f (x) = g (x) for all x ∈ Hn) ,

applied to x = pn (y) (because pn (y) ∈ pn (H) = Hn)

)
= (g ◦ pn) (y) .

Thus, f ◦ pn = g ◦ pn, so that pn ◦ f = f ◦ pn = g ◦ pn = pn ◦ g. This proves (130).
g) We have

ζn =
n∑
`=1

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(pa1 ∗ pa2 ∗ · · · ∗ pa`) . (131)

Proof of (131). For every ` ∈ {1, 2, . . . , n} and every (a1, a2, . . . , a`) ∈ {1, 2, . . . , n}×`,
the map pa1 ∗ pa2 ∗ · · · ∗ pa` is graded76. Hence, the map

n∑
`=1

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(pa1 ∗ pa2 ∗ · · · ∗ pa`)

is graded (since a k-linear combination of graded maps is always graded). Also, ζ is
graded (by Theorem 16.21 (a)). The two latter facts, along with the fact that

ζ (x) =

 n∑
`=1

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(pa1 ∗ pa2 ∗ · · · ∗ pa`)

 (x)

for all x ∈ Hn (by (128)), show that we can apply (130) to f = ζ and

g =
n∑̀
=1

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(pa1 ∗ pa2 ∗ · · · ∗ pa`). As a result, we conclude that

pn ◦ ζ = pn ◦

 n∑
`=1

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(pa1 ∗ pa2 ∗ · · · ∗ pa`)

 .

76Proof. Let ` ∈ {1, 2, . . . , n} and (a1, a2, . . . , a`) ∈ {1, 2, . . . , n}×`. Then, for every i ∈ {1, 2, . . . , `},
the map pai is graded and concentrated in degree ai (by Proposition 16.25 (d), applied to ai instead
of n). Hence, by Proposition 16.25 (c) (applied to fi = pai), the map pa1 ∗ pa2 ∗ · · · ∗ pa` is graded
and concentrated in degree a1 + a2 + · · ·+ a`, qed.

150



Using this identity, we have

ζn = pn ◦ ζ (by (117))

= pn ◦

 n∑
`=1

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(pa1 ∗ pa2 ∗ · · · ∗ pa`)


=

n∑
`=1

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(pn ◦ (pa1 ∗ pa2 ∗ · · · ∗ pa`))︸ ︷︷ ︸
=pa1∗pa2∗···∗pa`

(by Corollary 16.26 (b), since
n=a1+a2+···+a`)

(since composition of k-linear maps is k-bilinear)

=
n∑
`=1

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(pa1 ∗ pa2 ∗ · · · ∗ pa`) .

This proves (131).
h) Now let us finally prove the claim of Proposition 16.22; this claims states that

pn − ζn ∈ AlgGenk {p1, p2, . . . , pn−1}.
In fact, first we assume that n 6= 0, because in the case n = 0 this is very easy77.
Now, it is very easy to see that for every ` ∈ {2, 3, . . . , n} and every (a1, a2, . . . , a`) ∈ {1, 2, . . . , n}×`

satisfying n = a1 + a2 + · · ·+ a`, we have
pa1 ∗ pa2 ∗ · · · ∗ pa` ∈ AlgGenk {p1, p2, . . . , pn−1}

 . (132)

78

77Proof. Assume that n = 0. Then, pn = p0 = eH,H (by Proposition 16.25 (e), since H is
connected). Also, by (131), we have

ζn =

n∑
`=1

(−1)
`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(pa1 ∗ pa2 ∗ · · · ∗ pa`) = (empty sum) (since n = 0)

= 0.

Thus,

pn︸︷︷︸
=eH,H

− ζn︸︷︷︸
=0

= eH,H = (unity of the k-algebra L (H,H)) ∈ AlgGenk {p1, p2, . . . , pn−1} .

Thus, the claim of Proposition 16.22 is proven in the case n = 0.
78Proof of (132). Let ` ∈ {2, 3, . . . , n} and (a1, a2, . . . , a`) ∈ {1, 2, . . . , n}×` satisfy n = a1 + a2 +
· · · + a`. Then, a1, a2, . . ., a` are elements of the set {1, 2, . . . , n} and therefore positive integers.
In other words, ai is a positive integer for every i ∈ {1, 2, . . . , `}. Also, ` ∈ {2, 3, . . . , n}, so that
` ≥ 2. Hence, for every i ∈ {1, 2, . . . , `}, the set {j ∈ {1, 2, . . . , `} ; j 6= i} is nonempty. Thus,
for every i ∈ {1, 2, . . . , `}, the sum

∑
j∈{1,2,...,`};

j 6=i

aj is nonempty. Since all addends of this sum are

positive (because a1, a2, . . ., a` are positive), this sum
∑

j∈{1,2,...,`};
j 6=i

aj is therefore > 0. Now, for every
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Now that we have assumed that n 6= 0, we have

ζn =
n∑
`=1

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(pa1 ∗ pa2 ∗ · · · ∗ pa`) (by (131))

=
(−1)1−1

1︸ ︷︷ ︸
=

1

1
=1

∑
(a1,a2,...,a1)∈{1,2,...,n}×1;

n=a1+a2+···+a1

(pa1 ∗ pa2 ∗ · · · ∗ pa1)

︸ ︷︷ ︸
=

∑
(a1)∈{1,2,...,n}×1;

n=a1

pa1=
∑

a1∈{1,2,...,n};
n=a1

pa1=pn

+
n∑
`=2

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(pa1 ∗ pa2 ∗ · · · ∗ pa`)︸ ︷︷ ︸
∈AlgGenk{p1,p2,...,pn−1}

(by (132))

∈ pn +
n∑
`=2

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

AlgGenk {p1, p2, . . . , pn−1}

︸ ︷︷ ︸
⊆AlgGenk{p1,p2,...,pn−1}

(since AlgGenk{p1,p2,...,pn−1} is a k-vector space)

⊆ pn + AlgGenk {p1, p2, . . . , pn−1} ,

so that
ζn − pn ∈ AlgGenk {p1, p2, . . . , pn−1} .

Hence,

pn−ζn = − (ζn − pn)︸ ︷︷ ︸
∈AlgGenk{p1,p2,...,pn−1}

∈ −AlgGenk {p1, p2, . . . , pn−1} ⊆ AlgGenk {p1, p2, . . . , pn−1}

(since AlgGenk {p1, p2, . . . , pn−1} is a k-vector space). This proves Proposition 16.22.

The step from Proposition 16.22 to Proposition 16.23 and Theorem 16.21 is a purely
formal one, and formalized in the following lemma:

Lemma 16.27. Let k be a field. Let A be a k-algebra. Let (x1, x2, x3, . . .)
and (y1, y2, y3, . . .) be two sequences of elements of A. Assume that

xn − yn ∈ AlgGenk {x1, x2, . . . , xn−1} (133)

i ∈ {1, 2, . . . , `}, we have

n = a1 + a2 + · · ·+ a` =
∑

j∈{1,2,...,`}

aj =
∑

j∈{1,2,...,`};
j 6=i

aj

︸ ︷︷ ︸
>0

+ai > ai.

Thus, for every i ∈ {1, 2, . . . , `}, we have ai ∈ {1, 2, . . . , n− 1} (since ai is a positive integer satisfying
ai < n) and thus pai ∈ {p1, p2, . . . , pn−1} ⊆ AlgGenk {p1, p2, . . . , pn−1}. Hence, pa1 ∗ pa2 ∗ · · · ∗ pa` ∈
AlgGenk {p1, p2, . . . , pn−1} (because the product of elements of AlgGenk {p1, p2, . . . , pn−1} always lies
in AlgGenk {p1, p2, . . . , pn−1}). This proves (132).
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for every positive integer n.

(a) Then, every n ∈ N satisfies

AlgGenk {x1, x2, . . . , xn} = AlgGenk {y1, y2, . . . , yn} .

(b) Besides,

AlgGenk {x1, x2, x3, . . .} = AlgGenk {y1, y2, y3, . . .} .

Proof of Lemma 16.27. (a) Let us prove Lemma 16.27 (a) by induction over n:
Induction base: For n = 0, both sets {x1, x2, . . . , xn} and {y1, y2, . . . , yn} are

empty, and thus {x1, x2, . . . , xn} = {y1, y2, . . . , yn}, so that AlgGenk {x1, x2, . . . , xn} =
AlgGenk {y1, y2, . . . , yn}. Thus, Lemma 16.27 (a) is true if n = 0. This completes the
induction base.

Induction step: Let N ∈ N be positive. Assume that Lemma 16.27 (a) holds for
n = N − 1. We now must prove that Lemma 16.27 (a) also holds for n = N .

The assumption (133) (applied to n = N) yields

xN − yN ∈ AlgGenk {x1, x2, . . . , xN−1} . (134)

Since Lemma 16.27 (a) holds for n = N −1, we have AlgGenk {x1, x2, . . . , xN−1} =
AlgGenk {y1, y2, . . . , yN−1}. Thus, (134) becomes xN−yN ∈ AlgGenk {y1, y2, . . . , yN−1}.
Hence,

yN − xN = − (xN − yN)︸ ︷︷ ︸
∈AlgGenk{y1,y2,...,yN−1}

∈ −AlgGenk {y1, y2, . . . , yN−1}

= AlgGenk {y1, y2, . . . , yN−1} (135)

(since AlgGenk {y1, y2, . . . , yN−1} is a k-vector space).
From (134), we have

yN ∈ xN︸︷︷︸
∈AlgGenk{x1,x2,...,xN}

−AlgGenk {x1, x2, . . . , xN−1}︸ ︷︷ ︸
⊆{x1,x2,...,xN}

⊆ AlgGenk {x1, x2, . . . , xN} − AlgGenk {x1, x2, . . . , xN} ⊆ AlgGenk {x1, x2, . . . , xN}

(since AlgGenk {x1, x2, . . . , xN} is a k-vector space).
Now, it is easy to see that every i ∈ {1, 2, . . . , N} satisfies yi ∈ AlgGenk {x1, x2, . . . , xN}

79. Thus, {y1, y2, . . . , yN} ⊆ AlgGenk {x1, x2, . . . , xN}. In other words, AlgGenk {x1, x2, . . . , xN}
79Proof. Let i ∈ {1, 2, . . . , N}. Then, only two cases are possible:
Case 1: We have i 6= N .
Case 2: We have i = N .
First let us consider Case 1. In this case, i ∈ {1, 2, . . . , N} but i 6= N ; thus, i ∈ {1, 2, . . . , N − 1},

so that

yi ∈ {y1, y2, . . . , yN−1} ⊆ AlgGenk {y1, y2, . . . , yN−1} = AlgGenk {x1, x2, . . . , xN−1}︸ ︷︷ ︸
⊆{x1,x2,...,xN}

⊆ AlgGenk {x1, x2, . . . , xN} .

Thus, yi ∈ AlgGenk {x1, x2, . . . , xN} is proven in Case 1.
In Case 2, we have i = N and thus yi = yN ∈ AlgGenk {x1, x2, . . . , xN}. Thus, yi ∈

AlgGenk {x1, x2, . . . , xN} is also proven in Case 2.
Hence, yi ∈ AlgGenk {x1, x2, . . . , xN} is proven in both cases 1 and 2. Since these two cases are the

only ones possible, this yields that yi ∈ AlgGenk {x1, x2, . . . , xN} always holds, qed.
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contains {y1, y2, . . . , yN} as a subset. Hence, AlgGenk {x1, x2, . . . , xN} is a k-subalgebra
of A containing {y1, y2, . . . , yN} as a subset80.

But we know that AlgGenk {y1, y2, . . . , yN} is the smallest k-subalgebra of A con-
taining {y1, y2, . . . , yN} as a subset. This means that whenever U is a k-subalgebra of A
containing {y1, y2, . . . , yN} as a subset, we must necessarily have AlgGenk {y1, y2, . . . , yN} ⊆
U . Applied to U = AlgGenk {x1, x2, . . . , xN}, this yields that
AlgGenk {y1, y2, . . . , yN} ⊆ AlgGenk {x1, x2, . . . , xN}.

So we have proven AlgGenk {y1, y2, . . . , yN} ⊆ AlgGenk {x1, x2, . . . , xN}. But the
same argument, with the sequences (x1, x2, x3, . . .) and (y1, y2, y3, . . .) interchanged (and
using the equality (135) instead of (134)), shows that
AlgGenk {x1, x2, . . . , xN} ⊆ AlgGenk {y1, y2, . . . , yN}.

Combining AlgGenk {y1, y2, . . . , yN} ⊆ AlgGenk {x1, x2, . . . , xN} and AlgGenk {x1, x2, . . . , xN} ⊆
AlgGenk {y1, y2, . . . , yN}, we obtain AlgGenk {x1, x2, . . . , xN} = AlgGenk {y1, y2, . . . , yN}.
In other words, Lemma 16.27 (a) holds for n = N . This completes the induction step.

Thus, the induction proof of Lemma 16.27 (a) is complete.
(b) For every positive integer n, we have

xn ∈ AlgGenk {x1, x2, . . . , xn} = AlgGenk {y1, y2, . . . , yn}︸ ︷︷ ︸
⊆{y1,y2,y3,...}

(by Lemma 16.27 (a))

⊆ AlgGenk {y1, y2, y3, . . .} .

In other words, {x1, x2, x3, . . .} ⊆ AlgGenk {y1, y2, y3, . . .}. In other words, AlgGenk {y1, y2, y3, . . .}
contains {x1, x2, x3, . . .} as a subset. Thus, AlgGenk {y1, y2, y3, . . .} is a k-subalgebra
of A containing {x1, x2, x3, . . .} as a subset81.

But we know that AlgGenk {x1, x2, x3, . . .} is the smallest k-subalgebra of A contain-
ing {x1, x2, x3, . . .} as a subset. This means that whenever U is a k-subalgebra of A con-
taining {x1, x2, x3, . . .} as a subset, we must necessarily have AlgGenk {x1, x2, x3, . . .} ⊆
U . Applied to U = AlgGenk {y1, y2, y3, . . .}, this yields that AlgGenk {x1, x2, x3, . . .} ⊆
AlgGenk {y1, y2, y3, . . .}. The same argument, but with the sequences (x1, x2, x3, . . .)
and (y1, y2, y3, . . .) interchanged, shows that AlgGenk {y1, y2, y3, . . .} ⊆ AlgGenk {x1, x2, x3, . . .}.

Combining AlgGenk {x1, x2, x3, . . .} ⊆ AlgGenk {y1, y2, y3, . . .} with AlgGenk {y1, y2, y3, . . .} ⊆
AlgGenk {x1, x2, x3, . . .}, we obtain AlgGenk {x1, x2, x3, . . .} = AlgGenk {y1, y2, y3, . . .}.
This proves Lemma 16.27 (b).

Proof of Proposition 16.23. We have

pn − ζn ∈ AlgGenk {p1, p2, . . . , pn−1}

for every n ∈ N (by Proposition 16.22). Thus, Lemma 16.27 (a) (applied to A =
L (H,H), (x1, x2, x3, . . .) = (p1, p2, p3, . . .) and (y1, y2, y3, . . .) = (ζ1, ζ2, ζ3, . . .)) yields
that every n ∈ N satisfies AlgGenk {p1, p2, . . . , pn} = AlgGenk {ζ1, ζ2, . . . , ζn}. This
proves Proposition 16.23.

Proof of Theorem 16.21, second part. We have already proven Theorem 16.21 (a) and
(117). Thus, the only thing we still need to do is proving (118).

80because AlgGenk {x1, x2, . . . , xN} is clearly a k-subalgebra of A
81since AlgGenk {y1, y2, y3, . . .} clearly is a k-subalgebra of A
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We have
pn − ζn ∈ AlgGenk {p1, p2, . . . , pn−1}

for every n ∈ N (by Proposition 16.22). Thus, Lemma 16.27 (b) (applied to A =
L (H,H), (x1, x2, x3, . . .) = (p1, p2, p3, . . .) and (y1, y2, y3, . . .) = (ζ1, ζ2, ζ3, . . .)) yields
that AlgGenk {p1, p2, p3, . . .} = AlgGenk {ζ1, ζ2, ζ3, . . .}. This proves (118). This com-
pletes the proof of Theorem 16.21.

§17. The surjectivity part of Cartier-Milnor-Moore

In this Section §17, we are going to continue what we began this paper with: namely,
studying cocommutative connected filtered bialgebras and the properties of Log id
therein. Our first goal in §17 is to derive the following corollary from Theorem 4.1:

Theorem 17.1. Let k be a field of characteristic 0, and let H be a con-
nected filtered cocommutative bialgebra over k. Then, H = AlgGenk (PrimH),
where PrimH denotes the set of all primitive elements of H.

Note that this theorem is often worded as follows: A connected filtered cocommu-
tative bialgebra over a field of characteristic 0 is always primitively generated.

Note also that Theorem 17.1 can be seen as one part of the so-called Cartier-Milnor-
Moore theorem, which we are going to prove later (in §34):

Theorem 17.2 (the Cartier-Milnor-Moore theorem). Let k be a field of
characteristic 0, and let H be a connected filtered cocommutative bialgebra
over k. Let PrimH denote the set of all primitive elements of H. For
every Lie algebra g, let U (g) denote the universal enveloping algebra of g.
Then, the canonical k-algebra homomorphism U (PrimH) → H (which is
obtained from the inclusion map PrimH → H via the universal property
of the universal enveloping algebra) is an isomorphism of k-bialgebras.

Theorem 17.1 shows that the canonical k-algebra homomorphism U (PrimH)→ H
in Theorem 17.2 is surjective. Injectivity (and being a homomorphism of k-bialgebras)
will be proven in §34.

We are going to show something stronger than Theorem 17.1:

Proposition 17.3. Let k be a field of characteristic 0, and let H be a
connected filtered cocommutative bialgebra over k. Then,

H≤` ⊆
∑̀
i=0

(PrimH)i for every ` ∈ N.

82

Actually, we shall show a somewhat more general fact:

82Recall that (PrimH)
i

means the i-th power of the subspace PrimH of the k-algebraH as explained
in Convention 15.2.
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Proposition 17.4. Let k be a field of characteristic 0, and let H be a con-
nected filtered bialgebra over k. Consider the convolution algebra L (H,H).
Let e denote the map Log id ∈ L (H,H). Let E be the k-vector subspace
e (H) of H. Then,

H≤` ⊆
∑̀
i=0

Ei for every ` ∈ N.

83

This will be proven by induction over `, but before we start this proof, we need a
very basic concept:

Definition 17.5. Let k be a field. Let V and W be two filtered k-vector
spaces. Let f : V → W be a k-linear map. We say that the map f respects
the filtration if and only if (f (V≤n) ⊆ W≤n for every n ∈ N).

First some very basic properties of this notion:

Remark 17.6. Let k be a field. Let V and W be two filtered k-vector
spaces.

(a) The map 0 : V → W (which sends every v ∈ V to 0) respects the
filtration.

(b) If a k-linear map f : V → W respects the filtration, and if λ is an
element of k, then λf respects the filtration as well.

(c) If f : V → W and g : V → W are two k-linear maps respecting the
filtration, then f + g also respects the filtration.

(d) The set of all k-linear maps V → W respecting the filtration is a
k-vector subspace of L (V,W ).

This remark is a well-known fact from basic algebra and has not much to do with
Hopf algebras. Purely for the sake of completeness, we prove part of it:

Proof of Remark 17.6. (a) For every n ∈ N, the map 0 : V → W satisfies 0 (V≤n) =
0 ⊆ W≤n. Thus, the map 0 : V → W respects the filtration. This proves Remark 17.6
(a).

(b) Let f : V → W be a k-linear map respecting the filtration. Let λ ∈ k. Then,
f (V≤n) ⊆ W≤n for every n ∈ N (since f respects the filtration). Now, (λf) (V≤n) =
λ f (V≤n)︸ ︷︷ ︸
⊆W≤n

⊆ λW≤n ⊆ W≤n (since W≤n is a k-vector space) for every n ∈ N. In other

words, λf respects the filtration. This proves Remark 17.6 (b).
(c) Let f : V → W and g : V → W be two k-linear maps respecting the filtration.

Then, f (V≤n) ⊆ W≤n for every n ∈ N (since f respects the filtration). Also, g (V≤n) ⊆
W≤n for every n ∈ N (since g respects the filtration). Now,

(f + g) (V≤n) ⊆ f (V≤n)︸ ︷︷ ︸
⊆W≤n

+ g (V≤n)︸ ︷︷ ︸
⊆W≤n

⊆ W≤n +W≤n ⊆ W≤n

83Recall that Ei means the i-th power of the subspace E of the k-algebra H as explained in Con-
vention 15.2.
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(since W≤n is a k-vector space) for every n ∈ N. In other words, f + g respects the
filtration. This proves Remark 17.6 (c).

(d) The set of all k-linear maps V → W respecting the filtration is obviously a
subset of L (V,W ). But we also know that this subset contains 0 (by Remark 17.6
(a)), is closed under multiplication with every λ ∈ k (by Remark 17.6 (b)), and is
closed under addition (by Remark 17.6 (c)). Hence, this subset is a k-vector subspace
of L (V,W ). This proves Remark 17.6 (d).

Proposition 17.7. Let k be a field. Let C be a connected filtered k-
coalgebra. Let A be a k-algebra. If f ∈ g (C,A) and g ∈ g (C,A) are two
k-linear maps, then

(f ∗ g) (C≤`) ⊆
`−1∑
u=1

f (C≤u) g (C≤`−u) for every positive ` ∈ N.

Proof of Proposition 17.7. Since C is filtered, we have C≤0 ⊆ C≤1 ⊆ C≤2 ⊆ · · · .
By the definition of g (C,A), we have

g (C,A) = {f ∈ L (C,A) | f (1C) = 0} = {h ∈ L (C,A) | h (1C) = 0}

(here we renamed f as h).
Let f ∈ g (C,A) and g ∈ g (C,A) be two k-linear maps. Let ` ∈ N be positive.
Since f ∈ g (C,A) = {h ∈ L (C,A) | h (1C) = 0}, we have f (1C) = 0. But Re-

mark 2.11 gives C≤0 = k · 1C , so that

f (C≤0) = f (k · 1C) = k · f (1C)︸ ︷︷ ︸
=0

(since f is k-linear)

= k · 0 = 0.

The same argument (applied to g instead of f) shows that g (C≤0) = 0.
Now,

∆C (C≤`)

⊆
∑̀
u=0

C≤u ⊗ C≤`−u (since C is a filtered coalgebra)

= C≤0 ⊗ C≤`−0︸ ︷︷ ︸
=C≤`

+
`−1∑
u=1

C≤u ⊗ C≤`−u + C≤` ⊗ C≤`−`︸ ︷︷ ︸
=C≤0(

here, we have split off the addend for u = 0 and the
addend for u = ` from the sum (since ` > 0)

)
= C≤0 ⊗ C≤` +

`−1∑
u=1

C≤u ⊗ C≤`−u + C≤` ⊗ C≤0.
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Applying the map f ⊗ g to both sides of this relation, we obtain

(f ⊗ g) (∆C (C≤`))

⊆ (f ⊗ g)

(
C≤0 ⊗ C≤` +

`−1∑
u=1

C≤u ⊗ C≤`−u + C≤` ⊗ C≤0

)

⊆ (f ⊗ g) (C≤0 ⊗ C≤`)︸ ︷︷ ︸
⊆f(C≤0)⊗g(C≤`)

+
`−1∑
u=1

(f ⊗ g) (C≤u ⊗ C≤`−u)︸ ︷︷ ︸
⊆f(C≤u)⊗g(C≤`−u)

+ (f ⊗ g) (C≤` ⊗ C≤0)︸ ︷︷ ︸
⊆f(C≤`)⊗g(C≤0)

(since f ⊗ g is k-linear)

⊆ f (C≤0)︸ ︷︷ ︸
=0

⊗g (C≤`) +
`−1∑
u=1

f (C≤u)⊗ g (C≤`−u) + f (C≤`)⊗ g (C≤0)︸ ︷︷ ︸
=0

⊆ 0⊗ g (C≤`)︸ ︷︷ ︸
=0

+
`−1∑
u=1

f (C≤u)⊗ g (C≤`−u) + f (C≤`)⊗ 0︸ ︷︷ ︸
=0

=
`−1∑
u=1

f (C≤u)⊗ g (C≤`−u) .

Now, f ∗ g = µA ◦ (f ⊗ g) ◦∆C , so that

(f ∗ g) (C≤`) = (µA ◦ (f ⊗ g) ◦∆C) (C≤`) = µA

 (f ⊗ g) (∆C (C≤`))︸ ︷︷ ︸
⊆
`−1∑
u=1

f(C≤u)⊗g(C≤`−u)


⊆ µA

(
`−1∑
u=1

f (C≤u)⊗ g (C≤`−u)

)

⊆
`−1∑
u=1

µA (f (C≤u)⊗ g (C≤`−u))︸ ︷︷ ︸
=f(C≤u)g(C≤`−u)
(by (74), applied to

U=f(C≤u) and V=g(C≤`−u))

(since µA is k-linear)

=
`−1∑
u=1

f (C≤u) g (C≤`−u) .

This proves Proposition 17.7.

Now we shall show some facts about maps respecting the filtration:

Proposition 17.8. Let k be a field. Let C be a filtered k-coalgebra. Let
A be a filtered k-algebra.

(a) The map eC,A : C → A respects the filtration.

(b) If f : C → A and g : C → A are two k-linear maps respecting the
filtration, then f ∗ g also respects the filtration.

(c) If f : C → A is a k-linear map respecting the filtration, and if n is a
nonnegative integer, then f ∗n also respects the filtration.
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(d) If the filtered k-coalgebra C is connected, and if f ∈ g (C,A) and
g ∈ g (C,A) are two k-linear maps respecting the filtration, then

(f ∗ g) (C≤`) ⊆
`−1∑
u=1

A≤uA≤`−u for every positive ` ∈ N. (136)

Proof of Proposition 17.8. Since C is filtered, we have C≤0 ⊆ C≤1 ⊆ C≤2 ⊆ · · · .
Since A is filtered, we have A≤0 ⊆ A≤1 ⊆ A≤2 ⊆ · · · . Since A is a filtered k-algebra,

we also have 1A ∈ A≤0 and

A≤aA≤b ⊆ A≤a+b for any a ∈ N and b ∈ N. (137)

(a) Now, for every x ∈ C, we have

eC,A︸︷︷︸
=ηA◦εC

(x) = (ηA ◦ εC) (x) = ηA (εC (x)) = εC (x) · 1A︸︷︷︸
∈A≤0

(by the definition of ηA)

∈ εC (x) · A≤0 ⊆ A≤0 (since A≤0 is a k-vector space) .

In other words, eC,A (C) ⊆ A≤0. Hence, for every n ∈ N, we have eC,A

C≤n︸︷︷︸
⊆C

 ⊆
eC,A (C) ⊆ A≤0 ⊆ A≤n (since 0 ≤ n and A≤0 ⊆ A≤1 ⊆ A≤2 ⊆ · · · ). In other words,
eC,A respects the filtration. This proves Proposition 17.8 (a).

(b) Let f : C → A and g : C → A be two k-linear maps respecting the filtration.
Then,

f (C≤n) ⊆ A≤n for every n ∈ N (138)

(since f respects the filtration), and

g (C≤n) ⊆ A≤n for every n ∈ N (139)

(since g respects the filtration).
Let n ∈ N. Let x ∈ C≤n be arbitrary. Then,

∆ (x) ∈ ∆ (C≤n) ⊆
n∑
u=0

C≤u ⊗ C≤n−u (since C is a filtered coalgebra) ,

so that

(f ⊗ g) (∆ (x)) ∈ (f ⊗ g)

(
n∑
u=0

C≤u ⊗ C≤n−u

)
⊆

n∑
u=0

(f ⊗ g) (C≤u ⊗ C≤n−u)︸ ︷︷ ︸
⊆f(C≤u)⊗g(C≤n−u)

(since f ⊗ g is k-linear)

⊆
n∑
u=0

f (C≤u)︸ ︷︷ ︸
⊆A≤u

(by (138), applied to u
instead of n)

⊗ g (C≤n−u)︸ ︷︷ ︸
⊆A≤n−u

(by (139), applied to n−u
instead of n)

⊆
n∑
u=0

A≤u ⊗ A≤n−u.
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Now, f ∗ g = µA ◦ (f ⊗ g) ◦∆C (by the definition of convolution), so that

(f ∗ g) (x) = (µA ◦ (f ⊗ g) ◦∆C) (x) = µA

(f ⊗ g) (∆C (x))︸ ︷︷ ︸
=∆(x)



= µA

(f ⊗ g) (∆ (x))︸ ︷︷ ︸
∈

n∑
u=0

A≤u⊗A≤n−u

 ∈ µA
(

n∑
u=0

A≤u ⊗ A≤n−u

)
⊆

n∑
u=0

µA (A≤u ⊗ A≤n−u)︸ ︷︷ ︸
=A≤uA≤n−u

(by (74), applied to
U=A≤u and V=A≤n−u)

(since µA is k-linear)

=
n∑
u=0

A≤uA≤n−u︸ ︷︷ ︸
⊆A≤u+(n−u)

(by (137), applied to a=u and b=n−u)

⊆
n∑
u=0

A≤u+(n−u)︸ ︷︷ ︸
=A≤n

=
n∑
u=0

A≤n ⊆ A≤n

(since A≤n is a k-vector space) .

Now forget that we fixed x. We thus have proven that (f ∗ g) (x) ∈ A≤n for every
x ∈ C≤n. In other words, (f ∗ g) (C≤n) ⊆ A≤n.

Now forget that we fixed n. We thus have proven that (f ∗ g) (C≤n) ⊆ A≤n for
every n ∈ N. In other words, f ∗ g respects the filtration. This proves Proposition 17.8
(b).

(c) We are going to prove Proposition 17.8 (c) by induction over n:
Induction base: For any k-linear map f : C → A, the map f ∗0 respects the filtration

(since f ∗0 = eC,A, and since eC,A respects the filtration by Proposition 17.8 (a)). In
other words, Proposition 17.8 (c) holds for n = 0. This completes the induction base.

Induction base: Let N ∈ N. Assume that Proposition 17.8 (c) holds for n = N .
We now must prove that Proposition 17.8 (c) holds for n = N + 1.

Let f : C → A be a k-linear map respecting the filtration. Then, f ∗N respects
the filtration (by Proposition 17.8 (c)). Hence, f ∗ f ∗N respects the filtration (by
Proposition 17.8 (b), applied to g = f ∗N). Since f ∗ f ∗N = f ∗(N+1), this rewrites as
follows: The map f ∗(N+1) respects the filtration. In other words, Proposition 17.8 (c)
holds for n = N + 1. This completes the induction step.

The induction proof of Proposition 17.8 (c) is thus complete.
(d) Assume that the filtered k-coalgebra C is connected. Let f ∈ g (C,A) and

g ∈ g (C,A) be two k-linear maps respecting the filtration. Let ` ∈ N be positive.
Note that we have (138) (since f respects the filtration) and (139) (since g respects

the filtration).
Proposition 17.7 yields

(f ∗ g) (C≤`) ⊆
`−1∑
u=1

f (C≤u)︸ ︷︷ ︸
⊆A≤u

(by (138), applied to u
instead of n)

g (C≤`−u)︸ ︷︷ ︸
⊆A≤`−u

(by (139), applied to `−u
instead of n)

⊆
`−1∑
u=1

A≤uA≤`−u.

This proves Proposition 17.8 (d).
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On a sidenote, in the above proof of Proposition 17.7, we saw that

∆C (C≤`) ⊆ C≤0 ⊗C≤` +
`−1∑
u=1

C≤u ⊗C≤`−u +C≤` ⊗C≤0 for every positive ` ∈ N

when C is a connected filtered k-coalgebra. This is a useful fact, but more useful is its
following strengthening:

Proposition 17.9. Let k be a field. Let C be a connected filtered k-
coalgebra. Let ` ∈ N be positive. Then,

∆C (x) ∈ x⊗1C +1C⊗x+
`−1∑
u=1

C≤u⊗C≤`−u for every x ∈ C≤`∩Ker ε.

This proposition is often used (e. g., it is Proposition II.2.1 in [Mancho06]; however,
the statement given in [Mancho06] is slightly wrong, and the proof is not a “Straight-
forward adaptation of proof of proposition II.1.1” as asserted in [Mancho06]). Let us
give a proof of this proposition here, although we are not going to use it until much
further in this paper.

Proof of Proposition 17.9. Since C is filtered, we have C≤0 ⊆ C≤1 ⊆ C≤2 ⊆ · · · .
By Remark 2.11, we have C≤0 = k · 1C . In particular, 1C ∈ k · 1C = C≤0. Also,

since 1C was defined as
(
εC |C≤0

)−1
(1), we have 1 =

(
εC |C≤0

)
(1C) = εC (1C) = ε (1C).

For every n ∈ N, let C≤n+ denote the k-vector subspace C≤n ∩Ker ε of C≤n. Then,
every n ∈ N satisfies

C≤n = C≤n+ + C≤0 (140)

84.

84Proof of (140). Let n ∈ N. Then, 0 ≤ n, so that C≤0 ⊆ C≤n (since C≤0 ⊆ C≤1 ⊆ C≤2 ⊆ · · · ).
Hence, C≤n+︸ ︷︷ ︸

⊆C≤n

+ C≤0︸︷︷︸
⊆C≤n

⊆ C≤n + C≤n ⊆ C≤n (since C≤n is a k-vector space).

On the other hand, every x ∈ C≤n satisfies x︸︷︷︸
∈C≤n

−ε (x) · 1C︸︷︷︸
∈k·1C=C≤0⊆C≤n

∈ C≤n− ε (x) ·C≤n ⊆ C≤n

(since C≤n is a k-vector space) and x− ε (x) · 1C ∈ Ker ε (since

ε (x− ε (x) · 1C) = ε (x)− ε (x) · ε (1C)︸ ︷︷ ︸
=1

(since ε is k-linear)

= ε (x)− ε (x) = 0

). Hence, every x ∈ C≤n satisfies

x− ε (x) · 1C ∈ C≤n ∩Ker ε (since x− ε (x) · 1C ∈ C≤n and x− ε (x) · 1C ∈ Ker ε)

= C≤n+.

Thus, every x ∈ C≤n satisfies

x = ε (x) · 1C︸ ︷︷ ︸
∈k·1C=C≤0

+ (x− ε (x) · 1C)︸ ︷︷ ︸
∈C≤n+

∈ C≤0 + C≤n+ = C≤n+ + C≤0.

In other words, C≤n ⊆ C≤n+ + C≤0. Combined with C≤n+ + C≤0 ⊆ C≤n, this yields C≤n =
C≤n+ + C≤0, qed.
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For each u ∈ {1, 2, . . . , `− 1}, we have

C≤u︸︷︷︸
=C≤u++C≤0

(by (140), applied to n=u)

⊗ C≤`−u︸ ︷︷ ︸
=C≤(`−u)++C≤0

(by (140), applied to n=`−u)

= (C≤u+ + C≤0)⊗
(
C≤(`−u)+ + C≤0

)
= C≤u+ ⊗

C≤(`−u)+ + C≤0︸ ︷︷ ︸
=C≤0+C≤(`−u)+

+ C≤0 ⊗
(
C≤(`−u)+ + C≤0

)
= C≤u+ ⊗

(
C≤0 + C≤(`−u)+

)︸ ︷︷ ︸
=C≤u+⊗C≤0+C≤u+⊗C≤(`−u)+

(since the tensor product is distributive)

+ C≤0 ⊗
(
C≤(`−u)+ + C≤0

)︸ ︷︷ ︸
=C≤0⊗C≤(`−u)++C≤0⊗C≤0

(since the tensor product is distributive)

(since the tensor product is distributive)

= C≤u+︸ ︷︷ ︸
⊆C≤u⊆C≤`
(since u≤`

and C≤0⊆C≤1⊆C≤2⊆···)

⊗C≤0 + C≤u+ ⊗ C≤(`−u)+

+ C≤0 ⊗ C≤(`−u)+︸ ︷︷ ︸
⊆C≤`−u⊆C≤`
(since `−u≤`

and C≤0⊆C≤1⊆C≤2⊆···)

+C≤0 ⊗ C≤0︸︷︷︸
⊆C≤`

(since 0≤`
and C≤0⊆C≤1⊆C≤2⊆···)

⊆ C≤` ⊗ C≤0 + C≤u+ ⊗ C≤(`−u)+ + C≤0 ⊗ C≤` + C≤0 ⊗ C≤`︸ ︷︷ ︸
⊆C≤0⊗C≤`

(since C≤0⊗C≤` is a k-vector space)

⊆ C≤` ⊗ C≤0 + C≤u+ ⊗ C≤(`−u)+ + C≤0 ⊗ C≤`. (141)
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Now, since C is a filtered coalgebra, we have

∆ (C≤`)

⊆
∑̀
u=0

C≤u ⊗ C≤`−u = C≤0 ⊗ C≤`−0 +
`−1∑
u=1

C≤u ⊗ C≤`−u + C≤` ⊗ C≤`−` (since ` > 0)

= C≤0 ⊗ C≤`−0︸ ︷︷ ︸
=C≤`

+C≤` ⊗ C≤`−`︸ ︷︷ ︸
=C≤0

+
`−1∑
u=1

C≤u ⊗ C≤`−u︸ ︷︷ ︸
⊆C≤`⊗C≤0+C≤u+⊗C≤(`−u)++C≤0⊗C≤`

(by (141))

⊆ C≤0 ⊗ C≤` + C≤` ⊗ C≤0 +
`−1∑
u=1

(
C≤` ⊗ C≤0 + C≤u+ ⊗ C≤(`−u)+ + C≤0 ⊗ C≤`

)
︸ ︷︷ ︸

=
`−1∑
u=1

C≤`⊗C≤0+
`−1∑
u=1

C≤u+⊗C≤(`−u)++
`−1∑
u=1

C≤0⊗C≤`

= C≤0 ⊗ C≤` + C≤` ⊗ C≤0 +
`−1∑
u=1

C≤` ⊗ C≤0 +
`−1∑
u=1

C≤u+ ⊗ C≤(`−u)+ +
`−1∑
u=1

C≤0 ⊗ C≤`

= C≤0 ⊗ C≤` +
`−1∑
u=1

C≤0 ⊗ C≤`︸ ︷︷ ︸
⊆C≤0⊗C≤`

(since C≤0⊗C≤` is a k-vector space)

+C≤` ⊗ C≤0 +
`−1∑
u=1

C≤` ⊗ C≤0︸ ︷︷ ︸
⊆C≤`⊗C≤0

(since C≤`⊗C≤0 is a k-vector space)

+
`−1∑
u=1

C≤u+ ⊗ C≤(`−u)+

⊆ C≤0 ⊗ C≤` + C≤` ⊗ C≤0 +
`−1∑
u=1

C≤u+ ⊗ C≤(`−u)+.

It is easy to see that

for every U ∈ C≤0 ⊗ C≤`, there exists some u ∈ C≤` such that U = 1C ⊗ u. (142)

85

85Proof of (142). Let ξ : C≤` → C≤0 ⊗ C≤` be the map which sends every t ∈ C≤` to 1C ⊗
t ∈ C≤0 ⊗ C≤` (this is well-defined since every t ∈ C≤` satisfies 1C︸︷︷︸

∈C≤0

⊗ t︸︷︷︸
∈C≤`

∈ C≤0 ⊗ C≤`). Let

kan : C≤` → k ⊗ C≤` be the canonical isomorphism which sends every t ∈ C≤` to 1⊗ t.
Since C is a connected coalgebra, εC |C≤0

: C≤0 → k is an isomorphism. Hence,
(
εC |C≤0

)
⊗ idC≤` :

C≤0 ⊗ C≤` → k ⊗ C≤` is an isomorphism as well.
Now, every t ∈ C≤` satisfies(((
εC |C≤0

)
⊗ idC≤`

)
◦ ξ
)

(t) =
((
εC |C≤0

)
⊗ idC≤`

)
(ξ (t))︸ ︷︷ ︸
=1C⊗t

(by the definition of ξ)

=
((
εC |C≤0

)
⊗ idC≤`

)
(1C ⊗ t)

=
(
εC |C≤0

)
(1C)︸ ︷︷ ︸

=1

⊗ idC≤` (t)︸ ︷︷ ︸
=t

= 1⊗ t = kan t

(since kan t = 1⊗ t by the definition of kan) .

Hence,
((
εC |C≤0

)
⊗ idC≤`

)
◦ ξ = kan. Since

(
εC |C≤0

)
⊗ idC≤` and kan are isomorphisms, this yields

that ξ is an isomorphism. Thus, the map ξ−1 is well-defined.
Now, for every U ∈ C≤0 ⊗ C≤`, we have

U = ξ
(
ξ−1 (U)

)
= 1C ⊗ ξ−1 (U) (by the definition of ξ) .

163



The same argument, but with the two tensorands transposed, shows that

for every V ∈ C≤` ⊗ C≤0, there exists some v ∈ C≤` such that V = v ⊗ 1C . (143)

Now, let x ∈ C≤`∩Ker ε. Then, x ∈ C≤`∩Ker ε ⊆ C≤` and x ∈ C≤`∩Ker ε ⊆ Ker ε.
From x ∈ Ker ε, we conclude that ε (x) = 0.

Since x ∈ C≤`, we have

∆ (x) ∈ ∆ (C≤`) ⊆ C≤0 ⊗ C≤` + C≤` ⊗ C≤0 +
`−1∑
u=1

C≤u+ ⊗ C≤(`−u)+.

Thus, there exist some U ∈ C≤0⊗C≤`, some V ∈ C≤`⊗C≤0 and some W ∈
`−1∑
u=1

C≤u+⊗

C≤(`−u)+ such that ∆ (x) = U + V +W . Consider these U , V and W .
According to (142), there exists some u ∈ C≤` such that U = 1C ⊗u. Consider this

u.
According to (143), there exists some v ∈ C≤` such that V = v⊗ 1C . Consider this

v.
Now,

∆ (x) = U︸︷︷︸
=1C⊗u

+ V︸︷︷︸
=v⊗1C

+W = 1C ⊗ u+ v ⊗ 1C +W. (144)

But
every n ∈ N satisfies ε (C≤n+) = 0 (145)

(since C≤n+ = C≤n ∩Ker ε ⊆ Ker ε).
Let kan1 be the canonical isomorphism C⊗k → C which maps c⊗λ to λc for every

(c, λ) ∈ C × k. By the axioms of a coalgebra, kan1 ◦ (id⊗ε) ◦∆ = idC .
Let kan2 be the canonical isomorphism k⊗C → C which maps λ⊗c to λc for every

(c, λ) ∈ C × k. By the axioms of a coalgebra, kan2 ◦ (ε⊗ id) ◦∆ = idC .
Now,

(id⊗ε) (W ) ∈ (id⊗ε)

(
`−1∑
u=1

C≤u+ ⊗ C≤(`−u)+

) (
since W ∈

`−1∑
u=1

C≤u+ ⊗ C≤(`−u)+

)

∈
`−1∑
u=1

(id⊗ε)
(
C≤u+ ⊗ C≤(`−u)+

)︸ ︷︷ ︸
⊆id(C≤u+)⊗ε(C≤(`−u)+)

(since id⊗ε is k-linear)

⊆
`−1∑
u=1

id (C≤u+)⊗ ε
(
C≤(`−u)+

)︸ ︷︷ ︸
=0

(by (145), applied to n=`−u)

=
`−1∑
u=1

id (C≤u+)⊗ 0︸ ︷︷ ︸
=0

=
`−1∑
u=1

0 = 0,

Hence, for every U ∈ C≤0⊗C≤`, there exists some u ∈ C≤` such that U = 1C⊗u (namely, u = ξ−1 (U)).
This proves (142).
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so that (id⊗ε) (W ) = 0. Now,

(id⊗ε) (∆ (x)) = (id⊗ε) (1C ⊗ u+ v ⊗ 1C +W ) (by (144))

= (id⊗ε) (1C ⊗ u)︸ ︷︷ ︸
=id(1C)⊗ε(u)

+ (id⊗ε) (v ⊗ 1C)︸ ︷︷ ︸
=id(v)⊗ε(1C)

+ (id⊗ε) (W )︸ ︷︷ ︸
=0

(since id⊗ε is k-linear)

= id (1C)︸ ︷︷ ︸
=1C

⊗ ε (u)︸︷︷︸
=ε(u)1

+ id (v)︸ ︷︷ ︸
=v

⊗ ε (1C)︸ ︷︷ ︸
=1

= 1C ⊗ ε (u) 1︸ ︷︷ ︸
=ε(u)1C⊗1

+v ⊗ 1

= ε (u) 1C ⊗ 1 + v ⊗ 1 = (ε (u) 1C + v)⊗ 1.

Now,

x = idC︸︷︷︸
=kan1 ◦(id⊗ε)◦∆

(x) = (kan1 ◦ (id⊗ε) ◦∆) (x) = kan1 ((id⊗ε) (∆ (x)))︸ ︷︷ ︸
=(ε(u)1C+v)⊗1

= kan1 ((ε (u) 1C + v)⊗ 1) = 1 · (ε (u) 1C + v) (by the definition of kan1)

= ε (u) 1C + v.

Thus,
v = x− ε (u) 1C . (146)

On the other hand,

(ε⊗ id) (W ) ∈ (ε⊗ id)

(
`−1∑
u=1

C≤u+ ⊗ C≤(`−u)+

) (
since W ∈

`−1∑
u=1

C≤u+ ⊗ C≤(`−u)+

)

∈
`−1∑
u=1

(ε⊗ id)
(
C≤u+ ⊗ C≤(`−u)+

)︸ ︷︷ ︸
⊆ε(C≤u+)⊗id(C≤(`−u)+)

(since ε⊗ id is k-linear)

⊆
`−1∑
u=1

ε (C≤u+)︸ ︷︷ ︸
=0

(by (145), applied to n=u)

⊗ id
(
C≤(`−u)+

)
=

`−1∑
u=1

0⊗ id
(
C≤(`−u)+

)︸ ︷︷ ︸
=0

=
`−1∑
u=1

0 = 0,

so that (ε⊗ id) (W ) = 0. Now,

(ε⊗ id) (∆ (x)) = (ε⊗ id) (1C ⊗ u+ v ⊗ 1C +W ) (by (144))

= (ε⊗ id) (1C ⊗ u)︸ ︷︷ ︸
=ε(1C)⊗id(u)

+ (ε⊗ id) (v ⊗ 1C)︸ ︷︷ ︸
=ε(v)⊗id(1C)

+ (ε⊗ id) (W )︸ ︷︷ ︸
=0

(since ε⊗ id is k-linear)

= ε (1C)︸ ︷︷ ︸
=1

⊗ id (u)︸ ︷︷ ︸
=u

+ ε (v)︸︷︷︸
=ε(v)1

⊗ id (1C)︸ ︷︷ ︸
=1C

= 1⊗ u+ ε (v) 1⊗ 1C︸ ︷︷ ︸
=1⊗ε(v)1C

= 1⊗ u+ 1⊗ ε (v) 1C = 1⊗ (u+ ε (v) 1C) .
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Now,

x = idC︸︷︷︸
=kan2 ◦(ε⊗id)◦∆

(x) = (kan2 ◦ (ε⊗ id) ◦∆) (x) = kan2 ((ε⊗ id) (∆ (x)))︸ ︷︷ ︸
=1⊗(u+ε(v)1C)

= kan2 (1⊗ (u+ ε (v) 1C))

= 1 · (u+ ε (v) 1C) (by the definition of kan2)

= u+ ε (v) 1C .

Thus,
u = x− ε (v) 1C . (147)

Hence,

ε (u) = ε (x− ε (v) 1C) = ε (x)︸︷︷︸
=0

−ε (v) ε (1C)︸ ︷︷ ︸
=1

(since ε is k-linear)

= −ε (v) ,

so that
ε (u) + ε (v) = 0. (148)

Now, (144) becomes

∆ (x) = 1C ⊗ u︸︷︷︸
=x−ε(v)1C
(by (147))

+ v︸︷︷︸
=x−ε(u)1C
(by (146))

⊗1C +W

= 1C ⊗ (x− ε (v) 1C)︸ ︷︷ ︸
=1C⊗x−ε(v)1C⊗1C

+ (x− ε (u) 1C)⊗ 1C︸ ︷︷ ︸
=x⊗1C−ε(u)1C⊗1C

+W

= 1C ⊗ x− ε (v) 1C ⊗ 1C + x⊗ 1C − ε (u) 1C ⊗ 1C +W

= x⊗ 1C + 1C ⊗ x− (ε (u) 1C ⊗ 1C + ε (v) 1C ⊗ 1C)︸ ︷︷ ︸
=(ε(u)+ε(v))1C⊗1C=0

(since ε(u)+ε(v)=0 by (148))

+W

= x⊗ 1C + 1C ⊗ x+W ∈ x⊗ 1C + 1C ⊗ x+
`−1∑
u=1

C≤u+︸ ︷︷ ︸
⊆C≤u

⊗C≤(`−u)+︸ ︷︷ ︸
⊆C≤`−u(

since W ∈
`−1∑
u=1

C≤u+ ⊗ C≤(`−u)+

)

⊆ x⊗ 1C + 1C ⊗ x+
`−1∑
u=1

C≤u ⊗ C≤`−u.

This proves Proposition 17.9.

The next lemma is essentially obvious:

Lemma 17.10. Let k be a field, let A be a k-algebra, and let H be a
connected filtered k-coalgebra. Every positive i ∈ N and every h ∈ g (H,A)
satisfy h∗i ∈ g (H,A).
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Proof of Lemma 17.10. Let i ∈ N be positive. Let h ∈ g (H,A). Since i > 0,
we can apply Remark 3.5 to n = 0 and f = h, and obtain h∗i (H≤0) = 0. Since
1H ∈ H≤0 (because H is a filtered k-algebra), this yields h∗i (1H) = 0. Thus, h∗i ∈
{f ∈ L (H,A) | f (1H) = 0} = g (H,A). This proves Lemma 17.10.

We can now prove Proposition 17.4:

Proof of Proposition 17.4. We will prove Proposition 17.4 by strong induction over `:
Induction step: Let L ∈ N be a nonnegative integer. Assume that Proposition 17.4

has already been proven whenever ` < L. Now our aim is to prove Proposition 17.4
for ` = L.

First of all, Proposition 17.4 obviously holds for ` = L if L = 0 (in fact,

H≤0 = k · 1H (by Remark 2.11, applied to C = H)

= E0
(
since E0 = k · 1H

)
=

0∑
i=0

Ei,

so that Proposition 17.4 holds for ` = 0; in other words, Proposition 17.4 holds for
` = L if L = 0). Hence, in the following, we can WLOG assume that L 6= 0. Thus, L
is positive, so that L ≥ 1.

Since Proposition 17.4 has already been proven whenever ` < L, we have

H≤` ⊆
∑̀
i=0

Ei for every nonnegative integer ` < L. (149)

Let f = id−eH,H , where id denotes the identity map idH : H → H. Then,
f ∈ g (H,H) 86.

Let g : H → H be the map
L∑
i=2

(−1)i−1

i
f ∗(i−1).

For every i ∈ {2, 3, . . . , L}, we have f ∗(i−1) ∈ g (H,H) 87. Thus,

g =
L∑
i=2

(−1)i−1

i
f ∗(i−1)︸ ︷︷ ︸
∈g(H,H)

∈
L∑
i=2

(−1)i−1

i
g (H,H) ⊆ g (H,H)

(since g (H,H) is a k-vector space).
By Remark 17.6 (d) (applied to V = H and W = H), the set of all k-linear maps

H → H respecting the filtration is a k-vector subspace of L (H,H).
Since the map id respects the filtration (obviously) and the map eH,H respects the

filtration (by Proposition 17.8 (a), applied to C = H and A = H), the map id−eH,H
also respects the filtration (since the set of all k-linear maps H → H respecting the

86Proof. We have id ∈ G (H,H) = eH,H + g (H,H), and thus id−eH,H ∈ g (H,H), so that
f = id−eH,H ∈ g (H,H).

87Proof. Let i ∈ {2, 3, . . . , L}. Then, i−1 ∈ {1, 2, . . . , L− 1}, so that i−1 is a positive element of N.
Hence, Lemma 17.10 (applied to H, f and i− 1 instead of A, h and i) shows that f∗(i−1) ∈ g (H,H).
Qed.
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filtration is a k-vector subspace of L (H,H)). Since id−eH,H = f , this means that the
map f respects the filtration.

Thus, for every i ∈ {2, 3, . . . , L}, the map f ∗(i−1) respects the filtration (by Propo-
sition 17.8 (c), applied to C = H, A = H and n = i − 1). Hence, the map
L∑
i=2

(−1)i−1

i
f ∗(i−1) also respects the filtration (since the set of all k-linear maps H → H

respecting the filtration is a k-vector subspace of L (H,H)). Since
L∑
i=2

(−1)i−1

i
f ∗(i−1) =

g, this means that the map g respects the filtration.
By the definition of Log, we have Log id = Log1 (id−eH,H)︸ ︷︷ ︸

=f

= Log1 f . Thus, e =

Log id = Log1 f .
Now let x ∈ H≤L be arbitrary. Then,

f ∗i (x) = 0 for every integer i > L (150)

88. Now, e = Log1 f leads to

e (x) = (Log1 f) (x) =
∑
i≥1

(−1)i−1

i
f ∗i (x) (by (8))

=
∑
i≥1;
i≤L

(−1)i−1

i
f ∗i (x) +

∑
i≥1;
i>L

(−1)i−1

i
f ∗i (x)︸ ︷︷ ︸

=0
(by (150))

=
∑
i≥1;
i≤L︸︷︷︸
=

L∑
i=1

(−1)i−1

i
f ∗i (x) +

∑
i≥1;
i>L

(−1)i−1

i
0

︸ ︷︷ ︸
=0

=
L∑
i=1

(−1)i−1

i
f ∗i (x)

=
(−1)1−1

1︸ ︷︷ ︸
=

1

1
=1

f ∗1︸︷︷︸
=f

(x) +
L∑
i=2

(−1)i−1

i
f ∗i︸︷︷︸

=f∗f∗(i−1)

(x)

(
here, we have split off the addend for i = 1

from the sum, because L ≥ 1

)
= f (x) +

L∑
i=2

(−1)i−1

i

(
f ∗ f ∗(i−1)

)
(x) ,

88Proof of (150): Let i > L be an integer. Then, i > L ≥ 0, so that i ∈ N. Now, Remark 3.5 (applied
to n = L and A = H) yields f∗i (H≤L) = 0 (since i > L). But x ∈ H≤L yields f∗i (x) ∈ f∗i (H≤L) = 0,
thus f∗i (x) = 0. This proves (150).
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so that

e (x)− f (x) =
L∑
i=2

(−1)i−1

i

(
f ∗ f ∗(i−1)

)
(x) =

(
L∑
i=2

(−1)i−1

i
f ∗ f ∗(i−1)

)
︸ ︷︷ ︸

=f∗

 L∑
i=2

(−1)i−1

i
f∗(i−1)


(since convolution of k-linear maps

is k-bilinear)

(x)

=

f ∗
(

L∑
i=2

(−1)i−1

i
f ∗(i−1)

)
︸ ︷︷ ︸

=g

 (x) = (f ∗ g) (x) .

This rewrites as
f (x) = e (x)− (f ∗ g) (x) .

Since

f︸︷︷︸
=id−eH,H

(x) = (id−eH,H) (x) = id (x)︸ ︷︷ ︸
=x

− eH,H︸︷︷︸
=ηH◦εH

(x)

= x− (ηH ◦ εH) (x)︸ ︷︷ ︸
=ηH(εH(x))=εH(x)·1H
(by the definition of ηH)

= x− εH (x) · 1H ,

this becomes x− εH (x) · 1H = e (x)− (f ∗ g) (x). In other words,

x = εH (x) · 1H + e (x)− (f ∗ g) (x) . (151)

But since f ∈ g (H,H) and g ∈ g (H,H), and since the maps f and g respect the
filtration, Proposition 17.8 (d) (applied to ` = L, C = H and A = H) yields

(f ∗ g) (H≤L) ⊆
L−1∑
u=1

H≤uH≤L−u. (152)

But using (149), it is easy to see that every u ∈ {1, 2, . . . , L− 1} satisfies H≤uH≤L−u ⊆
L∑
i=0

Ei 89. Hence, (152) becomes

(f ∗ g) (H≤L) ⊆
L−1∑
u=1

H≤uH≤L−u︸ ︷︷ ︸
⊆

L∑
i=0

Ei

⊆
L−1∑
u=1

L∑
i=0

Ei ⊆
L∑
i=0

Ei

89Proof. Let u ∈ {1, 2, . . . , L− 1}. Then, u ≥ 1 and u ≤ L− 1.

Since u ≤ L− 1 < L, we have H≤u ⊆
u∑
i=0

Ei (by (149) (applied to ` = u)).
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(since
L∑
i=0

Ei is a k-vector space). Hence, x ∈ H≤L yields

(f ∗ g) (x) ∈ (f ∗ g) (H≤L) ⊆
L∑
i=0

Ei.

On the other hand,

e

(
x︸︷︷︸
∈H

)
∈ e (H) = E (since E was defined to be e (H))

= E1 ⊆
L∑
i=0

Ei since L ≥ 1, so that 1 ∈ {0, 1, . . . , L} , and thus

E1 is an addend of the sum
L∑
i=0

Ei

 .

Also,

1H ∈ E0 ⊆
L∑
i=0

Ei

 since 0 ∈ {0, 1, . . . , L} , and thus

E0 is an addend of the sum
L∑
i=0

Ei

 .

Since L− u︸︷︷︸
≥1

≤ L− 1 < L, we have

H≤L−u ⊆
L−u∑
i=0

Ei (by (149) (applied to ` = L− u))

=

L−u∑
j=0

Ej (here, we renamed the index i as j in the sum) .

Multiplying H≤u ⊆
u∑
i=0

Ei and H≤L−u ⊆
L−u∑
j=0

Ej , we obtain

H≤uH≤L−u ⊆

(
u∑
i=0

Ei

)L−u∑
j=0

Ej

 =

u∑
i=0

L−u∑
j=0

EiEj︸ ︷︷ ︸
=Ei+j⊆

L∑
ν=0

Eν

(because i≤u and j≤L−u, so that
i+j≤u+(L−u)=L, so that

i+j∈{0,1,...,L}, so that Ei+j

is an addend in the sum
L∑
ν=0

Eν)

⊆
u∑
i=0

L−u∑
j=0

L∑
ν=0

Eν ⊆
L∑
ν=0

Ev

(
since

L∑
ν=0

Eν is a k-vector space

)

=

L∑
i=0

Ei (here, we renamed the summation index ν as i) ,

qed.
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Using these all facts, (151) becomes

x = εH (x) · 1H︸︷︷︸
∈
L∑
i=0

Ei

+ e (x)︸︷︷︸
∈
L∑
i=0

Ei

− (f ∗ g) (x)︸ ︷︷ ︸
∈
L∑
i=0

Ei

∈ εH (x) ·

(
L∑
i=0

Ei

)
+

L∑
i=0

Ei −
L∑
i=0

Ei

⊆
L∑
i=0

Ei

(
since

L∑
i=0

Ei is a k-vector space

)
.

Now forget that we fixed x. We thus have shown that every x ∈ H≤L satisfies x ∈
L∑
i=0

Ei. In other words, H≤L ⊆
L∑
i=0

Ei. In other words, we have proven Proposition 17.4

for ` = L. This completes the induction step.
Thus, the induction proof of Proposition 17.4 is complete.

Proof of Proposition 17.3. Consider the convolution algebra L (H,H). Let e denote
the map Log id ∈ L (H,H). Let E be the k-vector subspace e (H) of H.

Theorem 4.1 yields that Log id is a projection to PrimH. In other words, e is a
projection to PrimH (since e = Log id). Hence, e (H) = PrimH. Thus, E = e (H) =
PrimH.

Now, fix ` ∈ N. Proposition 17.4 yields

H≤` ⊆
∑̀
i=0

Ei︸︷︷︸
=(PrimH)i

(since E=PrimH)

=
∑̀
i=0

(PrimH)i .

This proves Proposition 17.3.

Proof of Theorem 17.1. For every ` ∈ N, Proposition 17.3 yields

H≤` ⊆
∑̀
i=0

(PrimH)i︸ ︷︷ ︸
⊆AlgGenk(PrimH)

⊆
∑̀
i=0

AlgGenk (PrimH) ⊆ AlgGenk (PrimH)

(since AlgGenk (PrimH) is a k-vector space). Since H is filtered, we have

H =
⋃
`∈N

H≤`︸︷︷︸
⊆AlgGenk(PrimH)

⊆
⋃
`∈N

AlgGenk (PrimH) = AlgGenk (PrimH) .

Combined with AlgGenk (PrimH) ⊆ H (which is trivial), this yieldsH = AlgGenk (PrimH).
This proves Theorem 17.1.

We will next prove a kind of strengthening of Theorem 17.1 and Proposition 17.3.
First a notation:
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Definition 17.11. Let k be a field.

(a) For every k-vector space M and every subset S of M , let us denote by
〈S〉 the k-vector subspace of M generated by the elements of S. (This is
precisely Convention 15.1; we just have repeated it for the sake of conve-
nience.)

(b) For every k-vector space M , every set Φ and every map P : Φ→M , let
us denote by 〈P (v) | v ∈ Φ〉 the subspace 〈{P (v) | v ∈ Φ}〉 of M (this is
the k-vector subspace of M generated by all the elements P (v) with v ∈ Φ).

(c) Assume that the field k has characteristic 0. For every k-algebra A,
every k-vector subspace V of A, and every n ∈ N, we denote by sympn V
the k-vector subspace〈

1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
〉

of A (where Sn denotes the n-th symmetric group). Note that this definition
yields that symp0 V = k · 1A 90 and symp1 V = V (this is also immediate
to see).

Now, the strengthening of Theorem 17.1:

Theorem 17.12. Let k be a field of characteristic 0, and let H be a con-
nected filtered cocommutative bialgebra over k. Then,

H =
∑
i∈N

sympi (PrimH) .

And here the (more concrete) strengthening of Proposition 17.3:

Proposition 17.13. Let k be a field of characteristic 0, and let H be a
connected filtered cocommutative bialgebra over k. Then,

H≤` ⊆
∑̀
i=0

sympi (PrimH) for every ` ∈ N.

90Proof. Let pt denote the 0-tuple of elements of V (i. e., the only element of V ×0), and let id0

denote the identity map ∅→ ∅. Then, V ×0 = {pt} and S0 = {id0}.
Since S0 = {id0}, we have

∑
σ∈S0

1A = 1A.

But by the definition of symp0 V , we have

symp0 V =

〈
1

0!︸︷︷︸
=

1

1
=1

∑
σ∈S0

vσ(1)vσ(2) · · · vσ(0)︸ ︷︷ ︸
=(empty product)=1A

| (v1, v2, . . . , v0) ∈ V ×0︸︷︷︸
={pt}

〉

=

〈∑
σ∈S0

1A︸ ︷︷ ︸
=1A

| (v1, v2, . . . , v0) ∈ {pt}

〉

= 〈1A | (v1, v2, . . . , v0) ∈ {pt}〉 = k · 1A,

qed.
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The path from Proposition 17.3 to Proposition 17.13 consists of two parts: one
(very easy) Hopf-algebraic computation, and one elementary algebraic (i. e., using no
coalgebra structure) argument. First, the Hopf-algebraic computation:

Proposition 17.14. Let k be a field. Let H be a k-bialgebra. Then,
xy − yx ∈ PrimH for any x ∈ PrimH and y ∈ PrimH.

This Proposition 17.14 is very easy (a straightforward computation, which we will
do in a moment) but immensely important: It shows that PrimH is a Lie subalgebra
of the Lie algebra H (with the Lie bracket being given by the commutator).

Next, we shall need a basic fact about sums, known as the telescope principle:

Lemma 17.15. Let k be a field. Let A be a k-vector space. Let m ∈ N.
Let a0, a1, . . . , am be m+ 1 elements of A.

(a) Then,
m∑
j=1

(aj−1 − aj) = a0 − am.

(b) Let M be a k-vector subspace of A. Assume that aj−1 − aj ∈ M for
each j ∈ {1, 2, . . . ,m}. Then, a0 ≡ am modM .

Less easy (but completely elementary – it could be an exercise in basic algebra) is
the following proposition:

Proposition 17.16. Let k be a field. Let A be a k-algebra. Let V be a
k-vector subspace of A. Assume that

xy − yx ∈ V for any x ∈ V and y ∈ V. (153)

(a) For any positive n ∈ N, any (v1, v2, . . . , vn) ∈ V ×n and any σ ∈ Sn, we
have

vσ(1)vσ(2) · · · vσ(n) ≡ v1v2 · · · vn modV n−1.

(b) Assume that the field k has characteristic 0. For any ` ∈ N, we have

∑̀
i=0

V i =
∑̀
i=0

sympi V.

91

Let us now step to the proofs of these facts. We begin with the straightforward
proof of Proposition 17.14:

Proof of Proposition 17.14. Let x ∈ PrimH and y ∈ PrimH.
Since x ∈ PrimH = (the set of all primitive elements of H), the element x of H is

primitive. In other words, ∆ (x) = x⊗ 1H + 1H ⊗ x (by the definition of “primitive”).
Similarly, ∆ (y) = y ⊗ 1H + 1H ⊗ y.

91Recall that V i is to be understood as in Convention 15.2. Hence, V i means the i-th power of the
subspace V of the k-algebra A.
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Since H is a bialgebra,

∆ (xy) = ∆ (x)︸ ︷︷ ︸
=x⊗1H+1H⊗x

· ∆ (y)︸ ︷︷ ︸
=y⊗1H+1H⊗y

(by the axioms of a bialgebra)

= (x⊗ 1H + 1H ⊗ x) · (y ⊗ 1H + 1H ⊗ y)

= (x⊗ 1H) · (y ⊗ 1H)︸ ︷︷ ︸
=xy⊗1H1H

+ (x⊗ 1H) · (1H ⊗ y)︸ ︷︷ ︸
=x1H⊗1Hy

+ (1H ⊗ x) · (y ⊗ 1H)︸ ︷︷ ︸
=1Hy⊗x1H

+ (1H ⊗ x) · (1H ⊗ y)︸ ︷︷ ︸
=1H1H⊗xy

= xy ⊗ 1H1H︸ ︷︷ ︸
=1H

+ x1H︸︷︷︸
=x

⊗ 1Hy︸︷︷︸
=y

+ 1Hy︸︷︷︸
=y

⊗ x1H︸︷︷︸
=x

+ 1H1H︸ ︷︷ ︸
=1H

⊗xy

= xy ⊗ 1H + x⊗ y + y ⊗ x+ 1H ⊗ xy.

The same argument, but with x and y transposed, yields

∆ (yx) = yx⊗ 1H + y ⊗ x+ x⊗ y + 1H ⊗ yx.

Now, since ∆ is k-linear, we have

∆ (xy − yx) = ∆ (xy)︸ ︷︷ ︸
=xy⊗1H+x⊗y+y⊗x+1H⊗xy

− ∆ (yx)︸ ︷︷ ︸
=yx⊗1H+y⊗x+x⊗y+1H⊗yx

= (xy ⊗ 1H + x⊗ y + y ⊗ x+ 1H ⊗ xy)− (yx⊗ 1H + y ⊗ x+ x⊗ y + 1H ⊗ yx)

= xy ⊗ 1H − yx⊗ 1H︸ ︷︷ ︸
=(xy−yx)⊗1H

+ 1H ⊗ xy − 1H ⊗ yx︸ ︷︷ ︸
=1H⊗(xy−yx)

= (xy − yx)⊗ 1H + 1H ⊗ (xy − yx) .

In other words, xy−yx is primitive (by the definition of “primitive”). Thus, xy−yx ∈
(the set of all primitive elements of H) = PrimH. This proves Proposition 17.14.

Next, let us prove Lemma 17.15.

Proof of Lemma 17.15. (a) If m = 0, then Lemma 17.15 (a) holds92. Hence, for the
rest of our proof of Lemma 17.15 (a), we can WLOG assume that we don’t have m = 0.
Assume this.

92Proof. Assume that m = 0. We must show that Lemma 17.15 (a) holds.

We have m = 0 and thus
m∑
j=1

(aj−1 − aj) =
0∑
j=1

(aj−1 − aj) = (empty sum) = 0. Comparing this

with a0 − am︸︷︷︸
=a0

(since m=0)

= a0 − a0 = 0, we obtain
m∑
j=1

(aj−1 − aj) = a0 − am. Thus, Lemma 17.15 (a)

holds. Qed.
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We have m 6= 0 (since we don’t have m = 0). Thus, m ≥ 1 (since m ∈ N). Now,

m∑
j=1

(aj−1 − aj)

=
m∑
j=1

aj−1 −
m∑
j=1

aj

=
m−1∑
j=0

aj︸ ︷︷ ︸
=a0+

m−1∑
j=1

aj

(here, we have split off the addend for j=0
from the sum, because m≥1)

−
m∑
j=1

aj︸ ︷︷ ︸
=
m−1∑
j=1

aj+am

(here, we have split off the addend for j=m
from the sum, because m≥1)

(here, we substituted j for j − 1 in the first sum)

=

(
a0 +

m−1∑
j=1

aj

)
−

(
m−1∑
j=1

aj + am

)
= a0 − am.

This proves Lemma 17.15 (a).

(b) We assumed that aj−1−aj ∈M for each j ∈ {1, 2, . . . ,m}. Thus,
m∑
j=1

(aj−1 − aj)︸ ︷︷ ︸
∈M

∈

m∑
j=1

M ⊆M (since M is a k-vector space). Now, Lemma 17.15 (a) yields

a0 − am =
m∑
j=1

(aj−1 − aj) ∈M.

In other words, a0 ≡ am modM . This proves Lemma 17.15 (b).

Before we step to the proof of Proposition 17.16, let us recall a known fact from
linear algebra:(

if M is a k-vector space, if S is a subset of M , and if Q is a
k-vector subspace of M such that S ⊆ Q, then 〈S〉 ⊆ Q

)
. (154)

Now, let us show Proposition 17.16:

Proof of Proposition 17.16. (a) Let n ∈ N, (v1, v2, . . . , vn) ∈ V ×n and σ ∈ Sn be
arbitrary.

For every i ∈ {1, 2, . . . , n− 1}, let τi denote the transposition (i, i+ 1) ∈ Sn.
Now, it is known that every element of the symmetric group Sn can be writ-

ten as a product of some transpositions from the set {τ1, τ2, . . . , τn−1} 93. Ap-
plying this to the element σ ∈ Sn, we conclude that σ can be written as a prod-
uct of some transpositions from the set {τ1, τ2, . . . , τn−1}. In other words, there ex-
ists a natural number m ∈ N and a sequence (i1, i2, . . . , im) ∈ {1, 2, . . . , n− 1}×m

93Indeed, this is precisely the claim of [Grinbe17, Exercise 5.1 (b)] (since the transpositions that
we denote by τ1, τ2, . . . , τn−1 have been denoted by s1, s2, . . . , sn−1 in [Grinbe17]).
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such that σ = τi1τi2 · · · τim . Consider this m and this (i1, i2, . . . , im). For every
j ∈ {0, 1, . . . ,m}, let σj denote the permutation τi1τi2 · · · τij ∈ Sn. Then, σ0 =
τi1τi2 · · · τi0 = (empty product) = id and σm = τi1τi2 · · · τim = σ. Moreover, every
j ∈ {1, 2, . . . ,m} satisfies vσj−1(1)vσj−1(2) · · · vσj−1(n) − vσj(1)vσj(2) · · · vσj(n) ∈ V n−1. 94

Thus, Lemma 17.15 (b) (applied to M = V n−1 and aj = vσj(1)vσj(2) · · · vσj(n)) yields

vσ0(1)vσ0(2) · · · vσ0(n) ≡ vσm(1)vσm(2) · · · vσm(n) modV n−1

(since V n−1 is a k-vector subspace of A). But from σ0 = id, we obtain

vσ0(1)vσ0(2) · · · vσ0(n) = vid(1)vid(2) · · · vid(n) = v1v2 · · · vn,
94Proof. Let j ∈ {1, 2, . . . ,m} be arbitrary. Then,

σj−1︸︷︷︸
=τi1τi2 ···τij−1

(by the formula σj=τi1τi2 ···τij ,

applied to j−1 instead of j)

τij = τi1τi2 · · · τij−1
τij = τi1τi2 · · · τij = σj ,

so that σj = σj−1τij . Denote ij by I. Then, σj = σj−1τij rewrites as σj = σj−1τI.
Since τI = (I, I + 1), every ` ∈ {1, 2, . . . , I− 1} satisfies

τI (`) = (I, I + 1) (`) = ` (since ` ∈ {1, 2, . . . , I− 1} , so that ` /∈ {I, I + 1})

and thus

vσj(`) = vσj−1(τI(`)) (since σj = σj−1τI and thus σj (`) = (σj−1τI) (`) = σj−1 (τI (`)))

= vσj−1(`) (since τI (`) = `) .

In other words, vσj(1) = vσj−1(1), vσj(2) = vσj−1(2), . . ., vσj(I−1) = vσj−1(I−1). Multiplying these I− 1
equations, we obtain vσj(1)vσj(2) · · · vσj(I−1) = vσj−1(1)vσj−1(2) · · · vσj−1(I−1).

Since τI = (I, I + 1), every ` ∈ {I + 2, I + 3, . . . , n} satisfies

τI (`) = (I, I + 1) (`) = ` (since ` ∈ {I + 2, I + 3, . . . , n} , so that ` /∈ {I, I + 1})

and thus

vσj(`) = vσj−1(τI(`)) (since σj = σj−1τI and thus σj (`) = (σj−1τI) (`) = σj−1 (τI (`)))

= vσj−1(`) (since τI (`) = `) .

In other words, vσj(I+2) = vσj−1(I+2), vσj(I+3) = vσj−1(I+3), . . ., vσj(n) = vσj−1(n). Multiplying these
n− (I + 1) equations, we obtain vσj(I+2)vσj(I+3) · · · vσj(n) = vσj−1(I+2)vσj−1(I+3) · · · vσj−1(n).

Since τI = (I, I + 1), we have τI (I) = I + 1 and

vσj(I) = vσj−1(τI(I)) (since σj = σj−1τI and thus σj (I) = (σj−1τI) (I) = σj−1 (τI (I)))

= vσj−1(I+1) (since τI (I) = I + 1) .

Since τI = (I, I + 1), we have τI (I + 1) = I and

vσj(I+1) = vσj−1(τI(I+1)) (since σj = σj−1τI and thus σj (I + 1) = (σj−1τI) (I + 1) = σj−1 (τI (I + 1)))

= vσj−1(I) (since τI (I + 1) = I) .

Since (v1, v2, . . . , vn) ∈ V ×n, we have vσj−1(I) ∈ V and vσj−1(I+1) ∈ V . Thus, (153) (applied to
x = vσj−1(I) and y = vσj−1(I+1)) yields that vσj−1(I)vσj−1(I+1) − vσj−1(I+1)vσj−1(I) ∈ V .
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so that

v1v2 · · · vn = vσ0(1)vσ0(2) · · · vσ0(n) ≡ vσm(1)vσm(2) · · · vσm(n)

= vσ(1)vσ(2) · · · vσ(n) modV n−1 (since σm = σ) .

This proves Proposition 17.16 (a).
(b) Let us prove Proposition 17.16 (b) by induction over `:
Induction base: We have

0∑
i=0

V i = V 0 = k · 1A

and
0∑
i=0

sympi V = symp0 V = k · 1A,

so that
0∑
i=0

V i =
0∑
i=0

sympi V . In other words, Proposition 17.16 (b) holds for ` = 0.

This completes the induction base.
Induction step: Let n ∈ N be positive. Assume that Proposition 17.16 (b) holds

for ` = n− 1. We now must prove that Proposition 17.16 (b) holds for ` = n as well.
Since Proposition 17.16 (b) holds for ` = n− 1, we have

n−1∑
i=0

V i =
n−1∑
i=0

sympi V. (155)

Now,

vσj−1(1)vσj−1(2) · · · vσj−1(n)︸ ︷︷ ︸
=
(
vσj−1(1)vσj−1(2)···vσj−1(I−1)

)
vσj−1(I)vσj−1(I+1)

(
vσj−1(I+2)vσj−1(I+3)···vσj−1(n)

)
− vσj(1)vσj(2) · · · vσj(n)︸ ︷︷ ︸

=
(
vσj(1)vσj(2)···vσj(I−1)

)
vσj(I)vσj(I+1)

(
vσj(I+2)vσj(I+3)···vσj(n)

)
=
(
vσj−1(1)vσj−1(2) · · · vσj−1(I−1)

)
vσj−1(I)vσj−1(I+1)

(
vσj−1(I+2)vσj−1(I+3) · · · vσj−1(n)

)
−
(
vσj(1)vσj(2) · · · vσj(I−1)

)︸ ︷︷ ︸
=vσj−1(1)vσj−1(2)···vσj−1(I−1)

vσj(I)︸ ︷︷ ︸
=vσj−1(I+1)

vσj(I+1)︸ ︷︷ ︸
=vσj−1(I)

(
vσj(I+2)vσj(I+3) · · · vσj(n)

)︸ ︷︷ ︸
=vσj−1(I+2)vσj−1(I+3)···vσj−1(n)

=
(
vσj−1(1)vσj−1(2) · · · vσj−1(I−1)

)
vσj−1(I)vσj−1(I+1)

(
vσj−1(I+2)vσj−1(I+3) · · · vσj−1(n)

)
−
(
vσj−1(1)vσj−1(2) · · · vσj−1(I−1)

)
vσj−1(I+1)vσj−1(I)

(
vσj−1(I+2)vσj−1(I+3) · · · vσj−1(n)

)
=
(
vσj−1(1)vσj−1(2) · · · vσj−1(I−1)

)︸ ︷︷ ︸
∈V I−1

(since (v1,v2,...,vn)∈V ×n, so that
vσj−1(1), vσj−1(2), ..., vσj−1(I−1)

all lie in V )

(
vσj−1(I)vσj−1(I+1) − vσj−1(I+1)vσj−1(I)

)︸ ︷︷ ︸
∈V=V 1

(
vσj−1(I+2)vσj−1(I+3) · · · vσj−1(n)

)︸ ︷︷ ︸
∈V n−(I+1)

(since (v1,v2,...,vn)∈V ×n, so that
vσj−1(I+2), vσj−1(I+3), ..., vσj−1(n)

all lie in V )

∈ V I−1 · V 1 · V n−(I+1) = V (I−1)+1+(n−(I+1)) = V n−1,

qed.
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Next, we notice that{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
}

⊆

〈{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
}〉

=

〈
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
〉

= sympn V.

Thus,

every (v1, v2, . . . , vn) ∈ V ×n satisfies
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) ∈ sympn V. (156)

On the other hand, every (v1, v2, . . . , vn) ∈ V ×n satisfies

1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n)︸ ︷︷ ︸
≡v1v2···vn modV n−1

(by Proposition 17.16 (a))

≡ 1

n!

∑
σ∈Sn

v1v2 · · · vn︸ ︷︷ ︸
=|Sn|·v1v2···vn

=
1

n!
|Sn|︸︷︷︸
=n!

·v1v2 · · · vn

=
1

n!
n! · v1v2 · · · vn = v1v2 · · · vn modV n−1,

so that v1v2 · · · vn ≡
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) modV n−1, and thus

v1v2 · · · vn ∈
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n)︸ ︷︷ ︸
∈sympn V
(by (156))

+ V n−1︸ ︷︷ ︸
⊆
n−2∑
i=0

V i+V n−1=
n−1∑
i=0

V i

=
n−1∑
i=0

sympi V

(by (155))

⊆ sympn V +
n−1∑
i=0

sympi V =
n∑
i=0

sympi V.

In other words,

{
v1v2 · · · vn | (v1, v2, . . . , vn) ∈ V ×n

}
⊆

n∑
i=0

sympi V.

Hence, (154) (applied to M = A, S = {v1v2 · · · vn | (v1, v2, . . . , vn) ∈ V ×n} and Q =
n∑
i=0

sympi V ) yields

〈{
v1v2 · · · vn | (v1, v2, . . . , vn) ∈ V ×n

}〉
⊆

n∑
i=0

sympi V.
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Since〈{
v1v2 · · · vn | (v1, v2, . . . , vn) ∈ V ×n

}〉
=
〈
v1v2 · · · vn | (v1, v2, . . . , vn) ∈ V ×n

〉
= V n (by (73)) ,

this becomes V n ⊆
n∑
i=0

sympi V . Thus,

n∑
i=0

V i =
n−1∑
i=0

V i

︸ ︷︷ ︸
=
n−1∑
i=0

sympi V

(by (155))

+ V n︸︷︷︸
⊆

n∑
i=0

sympi V

⊆
n−1∑
i=0

sympi V︸ ︷︷ ︸
⊆

n∑
i=0

sympi V

(since n−1≤n)

+
n∑
i=0

sympi V

⊆
n∑
i=0

sympi V +
n∑
i=0

sympi V ⊆
n∑
i=0

sympi V (157)

(since
n∑
i=0

sympi V is a k-vector space).

On the other hand, every (v1, v2, . . . , vn) ∈ V ×n satisfies

1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n)︸ ︷︷ ︸
∈V n

(since vσ(1), vσ(2), ..., vσ(n) all lie in V )

∈ 1

n!

∑
σ∈Sn

V n ⊆ V n

(since V n is a k-vector space). In other words,{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
}
⊆ V n.

Hence, (154) (applied toM = A, S =

{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
}

and Q = V n) yields〈{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
}〉
⊆ V n.

Since 〈{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
}〉

=

〈
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
〉

= sympn V,

this rewrites as sympn V ⊆ V n. Thus,

n∑
i=0

sympi V =
n−1∑
i=0

sympi V︸ ︷︷ ︸
=
n−1∑
i=0

V i

(by (155))

+ sympn V︸ ︷︷ ︸
⊆V n

⊆
n−1∑
i=0

V i + V n =
n∑
i=0

V i.
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Combined with (157), this yields

n∑
i=0

V i =
n∑
i=0

sympi V.

In other words, Proposition 17.16 (b) is proven for ` = n. This completes the induction
step. Thus, the induction proof of Proposition 17.16 (b) is complete.

Proof of Proposition 17.13. Let ` ∈ N.
Let A = H and V = PrimH. Then, the condition (153) of Proposition 17.16 is

satisfied (because Proposition 17.14 tells us that xy−yx ∈ PrimH for any x ∈ PrimH

and y ∈ PrimH). Thus, we can apply Proposition 17.16 (b) and conclude that
∑̀
i=0

V i =∑̀
i=0

sympi V . Since V = PrimH, this becomes
∑̀
i=0

(PrimH)i =
∑̀
i=0

sympi (PrimH). But

Proposition 17.3 yields

H≤` ⊆
∑̀
i=0

(PrimH)i =
∑̀
i=0

sympi (PrimH) .

This proves Proposition 17.13.

Proof of Theorem 17.12. For every ` ∈ N, Proposition 17.13 yields

H≤` ⊆
∑̀
i=0

sympi (PrimH) ⊆
∑
i∈N

sympi (PrimH) .

Since H is filtered, we have

H =
⋃
`∈N

H≤`︸︷︷︸
⊆
∑
i∈N

sympi(PrimH)

⊆
⋃
`∈N

∑
i∈N

sympi (PrimH) =
∑
i∈N

sympi (PrimH) .

Combined with
∑
i∈N

sympi (PrimH) ⊆ H (which is trivial), this yieldsH =
∑
i∈N

sympi (PrimH).

This proves Theorem 17.12.

§18. Intermezzo on homogeneous subspaces

As often happens with properties of filtered bialgebras, the particular case of The-
orem 17.12 for a graded bialgebra H can be somewhat extended using the grading.
Before we formulate this extension, we introduce an auxiliary notion. This is the no-
tion of homogeneous subspaces of graded vector spaces. There are several equivalent
definitions of this notion; here, we will use the following one:

Definition 18.1. Let k be a field. Let V be a graded k-vector space. Let
W be a k-vector subspace of V .

We say that W is a homogeneous subspace of V if W =
⊕
n∈N

(W ∩ Vn).
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Note that the internal direct sum
⊕
n∈N

(W ∩ Vn) is always well-defined95, and

thus always is a k-vector subspace of W 96. But it is not always the whole
W .

A basic fact from linear algebra:

Remark 18.2. Let k be a field. Let U and V be two graded k-vector
spaces. Let f : V → U be a graded k-linear map. Then, Ker f is a
homogeneous subspace of V .

Proof of Remark 18.2. Let W = Ker f . By Definition 18.1, we know that the internal
direct sum

⊕
n∈N

(W ∩ Vn) is well-defined and a k-vector subspace of W . We are now

going to show that W =
⊕
n∈N

(W ∩ Vn).

Let w ∈ W . Then, w ∈ W = Ker f ⊆ V and f (w) = 0 (since w ∈ Ker f). Now,
for every n ∈ N, we have

f (pn,V (w)) = (f ◦ pn,V )︸ ︷︷ ︸
=pn,U◦f

(by Proposition 16.17,
applied to U instead of W )

(w) = (pn,U ◦ f) (w) = pn,U

f (w)︸ ︷︷ ︸
=0

 = pn,U (0) = 0

and thus pn,V (w) ∈ Ker f . But for every n ∈ N, we also have pn,V

(
w︸︷︷︸
∈V

)
∈ pn,V (V ) =

Vn (by (112)). Thus, for every n ∈ N, we have pn,V (w) ∈ W ∩ Vn (this results from
combining pn,V (w) ∈ Ker f = W and pn,V (w) ∈ Vn). But (114) (applied to v = w)
yields

w =
∑
`∈N

p`,V (w) =
∑
n∈N

pn,V (w)︸ ︷︷ ︸
∈W∩Vn

(here, we renamed the index ` as n in the sum)

∈
∑
n∈N

(W ∩ Vn) =
⊕
n∈N

(W ∩ Vn) .

95Proof. Since V is a graded k-vector space, we have V =
⊕
n∈N

Vn. Thus,
∑
n∈N

Vn is a direct sum.

Hence, (
every family (vn)n∈N ∈

∏
n∈N

Vn satisfying
∑
n∈N

vn = 0 and

(vn = 0 for all but finitely many n ∈ N) must satisfy (vn)n∈N = (0)n∈N

)
. (158)

Now, it follows that every family (vn)n∈N ∈
∏
n∈N

(W ∩ Vn) satisfying
∑
n∈N

vn = 0 and

(vn = 0 for all but finitely many n ∈ N) must satisfy (vn)n∈N = (0)n∈N (by (158), since (vn)n∈N ∈∏
n∈N

(W ∩ Vn) yields (vn)n∈N ∈
∏
n∈N

Vn). In other words,
∑
n∈N

(W ∩ Vn) is a direct sum. Hence, the

internal direct sum
⊕
n∈N

(W ∩ Vn) is well-defined, qed.

96Proof. Since direct sums are sums, we have
⊕
n∈N

(W ∩ Vn) =
∑
n∈N

(W ∩ Vn)︸ ︷︷ ︸
⊆W

⊆
∑
n∈N

W ⊆ W (since

W is a k-vector space), qed.
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Now forget that we fixed w. We thus have proven that every w ∈ W satisfies
w ∈

⊕
n∈N

(W ∩ Vn). Thus, W ⊆
⊕
n∈N

(W ∩ Vn). Combined with the (already known)

relation
⊕
n∈N

(W ∩ Vn) ⊆ W , this yields W =
⊕
n∈N

(W ∩ Vn). Thus, W is a homogeneous

subspace of V (by the definition of “homogeneous subspace”). Since W = Ker f , this
yields that Ker f is a homogeneous subspace of V . This proves Remark 18.2.

Now we can see the following fundamental fact:

Proposition 18.3. Let k be a field. Let H be a graded k-bialgebra. Then,
PrimH (this is the set of all primitive elements of H) is a homogeneous
subspace of H.

Proof of Proposition 18.3. Define a map f : H → H by

(f (x) = ∆ (x)− x⊗ 1H − 1H ⊗ x for every x ∈ H) . (159)

Then, this map f is k-linear (because ∆ is k-linear, so that the term ∆ (x)− x⊗ 1H −
1H ⊗ x depends k-linearly on x). We are now going to prove that PrimH = Ker f and
that f is a graded map. Then, an application of Remark 18.2 will do the rest. Here
are the details:

a) We have PrimH = Ker f .
Proof. We have

PrimH = (the set of all primitive elements of H)

=

x ∈ H | x is primitive︸ ︷︷ ︸
this is equivalent to ∆(x)=x⊗1H+1H⊗x

(by the definition of “primitive”)


=

x ∈ H | ∆ (x) = x⊗ 1H + 1H ⊗ x︸ ︷︷ ︸
this is equivalent to

∆(x)−x⊗1H−1H⊗x=0


=

x ∈ H | ∆ (x)− x⊗ 1H − 1H ⊗ x︸ ︷︷ ︸
=f(x) (by (159))

= 0


= {x ∈ H | f (x) = 0} = Ker f.

This proves part a).
b) The map f is graded.
Proof. Let n ∈ N. Since ∆ is graded (because H is a graded k-coalgebra), we

have ∆ (Hn) ⊆ (H ⊗H)n. But by the definition of the tensor product of two graded

k-vector spaces, we have (H ⊗H)n =
n∑̀
=0

H` ⊗Hn−`. Hence,

(H ⊗H)n =
n∑
`=0

H` ⊗Hn−` =
n−1∑
`=0

H` ⊗Hn−` +Hn ⊗Hn−n ⊇ Hn ⊗Hn−n︸ ︷︷ ︸
=H0

= Hn ⊗H0
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and

(H ⊗H)n =
n∑
`=0

H` ⊗Hn−` = H0 ⊗Hn−0 +
n∑
`=1

H` ⊗Hn−` ⊇ H0 ⊗Hn−0︸ ︷︷ ︸
=Hn

= H0 ⊗Hn.

Also, 1H ∈ H0 (since H is a graded k-algebra).
Now, every x ∈ Hn satisfies

f (x) = ∆

 x︸︷︷︸
∈Hn

− x︸︷︷︸
∈Hn

⊗ 1H︸︷︷︸
∈H0

− 1H︸︷︷︸
∈H0

⊗ x︸︷︷︸
∈Hn

∈ ∆ (Hn)︸ ︷︷ ︸
⊆(H⊗H)n

−Hn ⊗H0︸ ︷︷ ︸
⊆(H⊗H)n

−H0 ⊗Hn︸ ︷︷ ︸
⊆(H⊗H)n

⊆ (H ⊗H)n − (H ⊗H)n − (H ⊗H)n ⊆ (H ⊗H)n

(since (H ⊗H)n is a k-vector space). In other words, f (Hn) ⊆ (H ⊗H)n.
Now forget that we fixed n. Thus, we have proven that every n ∈ N satisfies

f (Hn) ⊆ (H ⊗H)n. In other words, the map f is graded. This proves part b).
c) Since f is graded (by part b)), we can apply Remark 18.2 to U = H and V = H,

and conclude that Ker f is a homogeneous subspace of H. Since Ker f = PrimH
(by part a)), this yields that PrimH is a homogeneous subspace of H. This proves
Proposition 18.3.

§19. A graded Theorem 17.12

Now, to formulate the graded strengthening of Theorem 17.12, we define a notion:

Definition 19.1. Let k be a field of characteristic 0. Let A be a graded k-
algebra. Let V be a k-vector subspace of A. Let n ∈ N. Let µ be an n-tuple
of nonnegative integers. Then, we define a k-vector subspace sympµ V of
A as follows: Let Vi denote V ∩ Ai for every i ∈ N. Write the n-tuple µ
in the form µ = (µ1, µ2, . . . , µn). Then, we define sympµ V as the k-vector
subspace〈

1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ Vµ1 × Vµ2 × · · · × Vµn

〉

of A (where Sn denotes the n-th symmetric group).

Definition 19.2. A partition will mean a nonincreasing finite sequence97

of positive integers.

97A finite sequence, of course, means the same as a tuple (i. e., an object which, for a suitable n,
is an n-tuple). The word “nonincreasing” means the same as “weakly decreasing”: i.e., a sequence
(a1, a2, . . . , an) is said to be nonincreasing if and only if a1 ≥ a2 ≥ · · · ≥ an. (The concept of
“nonincreasing” is defined similarly for infinite sequences.)
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Note that Definition 19.2 is not the only definition of a partition. There is a
different definition, which defines a partition as a nonincreasing infinite but essentially
finite98 sequence of nonnegative integers. This definition of a partition is, of course,
not directly equivalent to Definition 19.2, but it is essentially the same, since there
exists a canonical bijection

(the set of nonincreasing finite sequences of positive integers)

→ (the set of nonincreasing infinite but essentially finite sequences of nonnegative integers) .

99. We will not care about this here (we are not really studying partitions here) and
just define a partition by Definition 19.2.

We now claim:

Theorem 19.3. Let k be a field of characteristic 0, and let H be a con-
nected graded cocommutative bialgebra over k. Then,

H =
∑

λ is a partition

sympλ (PrimH) .

Note that for every partition λ, the k-vector subspace sympλ (PrimH) of
H is well-defined (due to Definition 19.1, since λ is an n-tuple for an ap-
propriate n).

Note that Theorem 19.3 can be strengthened to:

Theorem 19.4. Let k be a field of characteristic 0, and let H be a con-
nected graded cocommutative bialgebra over k. Then,

H =
⊕

λ is a partition

sympλ (PrimH) .

Note that for every partition λ, the k-vector subspace sympλ (PrimH) of
H is well-defined (due to Definition 19.1, since λ is an n-tuple for an ap-
propriate n).

This is, however, a significantly harder result, requiring the Poincaré-Birkhoff-Witt
and Cartier-Milnor-Moore theorems to prove; we will not prove this here.

We notice that [PatReu98] makes use of Theorem 19.4 in the proof of Theorem 4.3
in [PatReu98].100 However, the proof of Theorem 4.3 in [PatReu98] does not need the

98A sequence of integers is said to be essentially finite if all but finitely many of its entries are 0.
99This bijection sends every nonincreasing finite sequence (λ1, λ2, . . . , λn) of positive integers to the

infinite sequence (λ1, λ2, . . . , λn, 0, 0, . . .). (The inverse of this bijection trims an infinite sequence after
its last nonzero entry.)

100Namely, if we work with the notations of Section 4 of [PatReu98], then applying our Theo-
rem 19.4 to H = A yields A =

⊕
λ is a partition

sympλ (PrimA). But sympλ (PrimA) is exactly what was

denoted by Aλ in [PatReu98]. Thus, we get A =
⊕

λ is a partition

Aλ (still working with the notations of

[PatReu98]). This fact is used in the proof of Theorem 4.3 in [PatReu98] (where it is proven using
the Cartier-Milnor-Moore theorem and the Poincaré-Birkhoff-Witt theorem).
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whole strength of Theorem 19.4; in fact it only uses Theorem 19.3.101 Hence, our proof
of Theorem 19.3 further below will relieve the proof of Theorem 4.3 in [PatReu98] from
having to use the Cartier-Milnor-Moore and Poincaré-Birkhoff-Witt theorems.102

We will derive Theorem 19.3 from a rather elementary fact once again:

Proposition 19.5. Let k be a field of characteristic 0. Let A be a graded
k-algebra. Let V be a homogeneous subspace of A such that V ∩ A0 = 0.
Assume that

xy − yx ∈ V for any x ∈ V and y ∈ V. (160)

Then, ∑
i∈N

V i =
∑

λ is a partition

sympλ V.

103

To prove this, we begin with a trivial consequence of Proposition 17.16:

Proposition 19.6. Let k be a field of characteristic 0. Let A be a k-
algebra. Let V be a k-vector subspace of A. Assume that

xy − yx ∈ V for any x ∈ V and y ∈ V.

Then, ∑
i∈N

V i =
∑
i∈N

sympi V.

(Here, V i is to be understood as in Proposition 19.5.)

Proof of Proposition 19.6. Every ` ∈ N satisfies

V ` ⊆ V ` +
`−1∑
i=0

V i =
∑̀
i=0

V i =
∑̀
i=0

sympi V (by Proposition 17.16 (b))

⊆
∑
i∈N

sympi V (161)

101In fact, if we work with the notations of Section 4 of [PatReu98], then applying our Theorem 19.3 to
H = A yields A =

∑
λ is a partition

sympλ (PrimA). But sympλ (PrimA) is exactly what was denoted by

Aλ in [PatReu98]. Thus, we get A =
∑

λ is a partition

Aλ (still working with the notations of [PatReu98]).

This is already enough to prove that, if the restriction of Eιλ to Aλ is the identity for every partition
λ, then

∑
|µ|=n

Im
(
Eιµ
)

= An.

102Note that the proof of Corollary 4.4 in [PatReu98] may still require these two theorems - I don’t
know (I don’t understand how Corollary 4.4 in [PatReu98] is proven).

103Recall that V i is to be understood according to Convention 15.2. Hence, V i means the i-th power
of the subspace V of the k-algebra A.
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and

symp` V ⊆ symp` V +
`−1∑
i=0

sympi V =
∑̀
i=0

sympi V

=
∑̀
i=0

V i (by Proposition 17.16 (b))

⊆
∑
i∈N

V i. (162)

Now,∑
i∈N

V i =
∑
`∈N

V `︸︷︷︸
⊆
∑
i∈N

sympi V (by (161))

(here, we renamed the index i as ` in the sum)

⊆
∑
`∈N

∑
i∈N

sympi V ⊆
∑
i∈N

sympi V

(
since

∑
i∈N

sympi V is a k-vector space

)
,

combined with∑
i∈N

sympi V =
∑
`∈N

symp` V︸ ︷︷ ︸
⊆
∑
i∈N

V i (by (162))

(here, we renamed the index i as ` in the sum)

⊆
∑
`∈N

∑
i∈N

V i ⊆
∑
i∈N

V i

(
since

∑
i∈N

V i is a k-vector space

)
,

yields
∑
i∈N

V i =
∑
i∈N

sympi V . This proves Proposition 19.6.

The next step is less obvious, but still not a large step:

Proposition 19.7. Let k be a field of characteristic 0. Let A be a graded
k-algebra. Let V be a homogeneous subspace of A such that V ∩ A0 = 0.
Then,

sympn V =
∑

µ∈{1,2,3,...}×n
sympµ V for every n ∈ N.

Note that we are not summing over all partitions µ, but over all n-tuples of positive
integers.

To prove this, we need the following purely linear-algebraic fact (which is an ana-
logue of the product rule for tensor products, and is proven in the same way as the
product rule):

Remark 19.8. Let k be a field. Let (Wi)i∈I be a family of k-vector spaces
(where I is some index set). Let m ∈ N. For every m-tuple µ ∈ I×m, let
us write the m-tuple µ in the form µ = (µ1, µ2, . . . , µm). 104. Then,(⊕

i∈I

Wi

)⊗m
=
⊕
µ∈I×m

(Wµ1 ⊗Wµ2 ⊗ · · · ⊗Wµm)

104This means that, for every s ∈ {1, 2, . . . ,m}, we denote by µs the s-th element of the m-tuple µ.
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(where Wj is considered a subspace of
⊕
i∈I
Wi for every j ∈ I, and thus

Wµ1 ⊗Wµ2 ⊗ · · · ⊗Wµm is considered a subspace of

(⊕
i∈I
Wi

)⊗m
for every

µ ∈ I×m).

Remark 19.8 is a particular case of the following, even more general fact:

Remark 19.9. Let k be a field. Let m ∈ N. Let I1, I2, . . ., Im be m sets.
For every j ∈ {1, 2, . . . ,m}, let (Wj,i)i∈Ij be a family of k-vector spaces.

For every m-tuple µ ∈ I1 × I2 × · · · × Im, let us write the m-tuple µ in the
form µ = (µ1, µ2, . . . , µm). 105. Then,(⊕

i∈I1

W1,i

)
⊗

(⊕
i∈I2

W2,i

)
⊗ · · · ⊗

(⊕
i∈Im

Wm,i

)
=

⊕
µ∈I1×I2×···×Im

(W1,µ1 ⊗W2,µ2 ⊗ · · · ⊗Wm,µm)

(where Wj,` is considered a subspace of
⊕
i∈Ij

Wj,i for every j ∈ {1, 2, . . . ,m}

and ` ∈ Ij, and thus W1,µ1⊗W2,µ2⊗· · ·⊗Wm,µm is considered a subspace of(⊕
i∈I1

W1,i

)
⊗
(⊕
i∈I2

W2,i

)
⊗· · ·⊗

(⊕
i∈Im

Wm,i

)
for every µ ∈ I1×I2×· · ·×Im).

Remark 19.9 can be proven by induction on m (just as the product rule). Re-
mark 19.8 follows from Remark 19.9 (applied to I1 = I, I2 = I, . . ., Im = I and
Wj,i = Wi).

Proof of Proposition 19.7. For every n-tuple µ ∈ I×n, let us write the n-tuple µ in the
form µ = (µ1, µ2, . . . , µn). 106

Let Vi denote V ∩Ai for every i ∈ N. Since V is a homogeneous subspace of A, we
have

V =
⊕
n∈N

(V ∩ An) (by the definition of “homogeneous subspace”)

= V ∩ A0︸ ︷︷ ︸
=0

⊕
⊕
n∈N;
n≥1︸︷︷︸

=
⊕

n∈{1,2,3,...}

(V ∩ An)︸ ︷︷ ︸
=Vn

(since Vn was defined as V ∩An)

=
⊕

n∈{1,2,3,...}

Vn

=
⊕

i∈{1,2,3,...}

Vi (here, we renamed the index n as i) .

105This means that, for every s ∈ {1, 2, . . . ,m}, we denote by µs the s-th element of the m-tuple µ.
106This means that, for every s ∈ {1, 2, . . . , n}, we denote by µs the s-th element of the n-tuple µ.
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Now, let n ∈ N be arbitrary. Then, V =
⊕

i∈{1,2,3,...}
Vi leads to

V ⊗n =

 ⊕
i∈{1,2,3,...}

Vi

⊗n =
⊕

µ∈{1,2,3,...}×n
(Vµ1 ⊗ Vµ2 ⊗ · · · ⊗ Vµn)

(by Remark 19.8, applied to I = {1, 2, 3, . . .} , m = n and Wi = Vi)

=
∑

µ∈{1,2,3,...}×n
(Vµ1 ⊗ Vµ2 ⊗ · · · ⊗ Vµn) (since direct sums are sums) .

(163)

Let tensorn : V ×n → V ⊗n be the map defined by(
tensorn (v1, v2, . . . , vn) = v1 ⊗ v2 ⊗ · · · ⊗ vn for every (v1, v2, . . . , vn) ∈ V ×n

)
.

Then, by the universal property of the n-th tensor power, every n-multilinear map from
V ×n factors through tensorn.

Now let us define a map ϕn : V ×n → A by(
ϕn (v1, v2, . . . , vn) =

1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) for every (v1, v2, . . . , vn) ∈ V ×n
)
.

Then, this map ϕn is clearly n-multilinear. Thus, ϕn factors through tensorn (since
every n-multilinear map from V ×n factors through tensorn). This means that there
exists a k-linear map ψn : V ⊗n → A such that ϕn = ψn ◦ tensorn. Consider this ψn.
Every (v1, v2, . . . , vn) ∈ V ×n satisfies

ψn (v1 ⊗ v2 ⊗ · · · ⊗ vn)︸ ︷︷ ︸
=tensorn(v1,v2,...,vn)

= ψn (tensorn (v1, v2, . . . , vn)) = (ψn ◦ tensorn)︸ ︷︷ ︸
=ϕn

(v1, v2, . . . , vn)

= ϕn (v1, v2, . . . , vn)

=
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n). (164)

Now, we recall the basic linear-algebraic fact that(
for any two k-vector spaces M and R, any k-linear map φ : M → R

and every subset S of M satisfy φ (〈S〉) = 〈φ (S)〉

)
. (165)

Since the tensor power V ⊗n is generated by pure tensors, we have

V ⊗n =
〈
v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ V ×n

〉
=
〈{
v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ V ×n

}〉
,
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so that

ψn
(
V ⊗n

)
= ψn

(〈{
v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ V ×n

}〉)
=

〈
ψn
({
v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ V ×n

})︸ ︷︷ ︸
={ψn(v1⊗v2⊗···⊗vn) | (v1,v2,...,vn)∈V ×n}

〉
(

by (165), applied to M = V ⊗n, R = A, φ = ψn and
S = {v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ V ×n}

)
=
〈{
ψn (v1 ⊗ v2 ⊗ · · · ⊗ vn) | (v1, v2, . . . , vn) ∈ V ×n

}〉
=

〈
ψn (v1 ⊗ v2 ⊗ · · · ⊗ vn)︸ ︷︷ ︸

=
1

n!
∑

σ∈Sn
vσ(1)vσ(2)···vσ(n)

(by (164))

| (v1, v2, . . . , vn) ∈ V ×n
〉

=

〈
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
〉

= sympn V. (166)

On the other hand, for every µ ∈ {1, 2, 3, . . .}×n, the tensor product Vµ1 ⊗ Vµ2 ⊗
· · · ⊗ Vµn is generated by pure tensors, so that

Vµ1 ⊗ Vµ2 ⊗ · · · ⊗ Vµn = 〈v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ Vµ1 × Vµ2 × · · · × Vµn〉
= 〈{v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ Vµ1 × Vµ2 × · · · × Vµn}〉 ,

so that

ψn (Vµ1 ⊗ Vµ2 ⊗ · · · ⊗ Vµn)

= ψn (〈{v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ Vµ1 × Vµ2 × · · · × Vµn}〉)

=

〈
ψn ({v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ Vµ1 × Vµ2 × · · · × Vµn})︸ ︷︷ ︸

={ψn(v1⊗v2⊗···⊗vn) | (v1,v2,...,vn)∈Vµ1×Vµ2×···×Vµn}

〉
(

by (165), applied to M = Vµ1 ⊗ Vµ2 ⊗ · · · ⊗ Vµn , R = A, φ = ψn and
S = {v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ Vµ1 × Vµ2 × · · · × Vµn}

)
= 〈{ψn (v1 ⊗ v2 ⊗ · · · ⊗ vn) | (v1, v2, . . . , vn) ∈ Vµ1 × Vµ2 × · · · × Vµn}〉

=

〈
ψn (v1 ⊗ v2 ⊗ · · · ⊗ vn)︸ ︷︷ ︸

=
1

n!
∑

σ∈Sn
vσ(1)vσ(2)···vσ(n)

(by (164))

| (v1, v2, . . . , vn) ∈ Vµ1 × Vµ2 × · · · × Vµn

〉

=

〈
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ Vµ1 × Vµ2 × · · · × Vµn

〉
= sympµ V.

(167)
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Now, (166) yields

sympn V = ψn
(
V ⊗n

)
= ψn

 ∑
µ∈{1,2,3,...}×n

(Vµ1 ⊗ Vµ2 ⊗ · · · ⊗ Vµn)

 (by (163))

=
∑

µ∈{1,2,3,...}×n
ψn (Vµ1 ⊗ Vµ2 ⊗ · · · ⊗ Vµn)︸ ︷︷ ︸

=sympµ V
(by (167))

(since ψn is k-linear)

=
∑

µ∈{1,2,3,...}×n
sympµ V.

This proves Proposition 19.7.

The next easy step is to prove the following fact:

Proposition 19.10. Let k be a field of characteristic 0. Let A be a graded
k-algebra. Let n ∈ N. Let µ ∈ {1, 2, 3, . . .}×n be arbitrary. Then,

sympµ V ⊆
∑

λ is a partition

sympλ V.

Proof of Proposition 19.10. Let us write the n-tuple µ in the form µ = (µ1, µ2, . . . , µn).
107

Every finite sequence of integers can be sorted into nonincreasing order by a per-
mutation. Applying this to the sequence (µ1, µ2, . . . , µn), we see that there exists a
permutation τ ∈ Sn such that µτ(1) ≥ µτ(2) ≥ · · · ≥ µτ(n). Consider such a τ .

The numbers µτ(1), µτ(2), . . ., µτ(n) are positive integers (since µ ∈ {1, 2, 3, . . .}×n)
and satisfy µτ(1) ≥ µτ(2) ≥ · · · ≥ µτ(n). Hence,

(
µτ(1), µτ(2), . . . , µτ(n)

)
is a nonincreasing

finite sequence of positive integers. In other words,
(
µτ(1), µτ(2), . . . , µτ(n)

)
is a partition

(by Definition 19.2). Denote this partition by ρ. Thus, ρ =
(
µτ(1), µτ(2), . . . , µτ(n)

)
.

Let us write the n-tuple ρ in the form ρ = (ρ1, ρ2, . . . , ρn). Since we already know
that ρ =

(
µτ(1), µτ(2), . . . , µτ(n)

)
, we obtain (ρ1, ρ2, . . . , ρn) = ρ =

(
µτ(1), µτ(2), . . . , µτ(n)

)
.

Hence,
ρj = µτ(j) for every j ∈ {1, 2, . . . , n} . (168)

Now, by the definition of sympρ V , we have

sympρ V =

〈
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ Vρ1 × Vρ2 × · · · × Vρn

〉
,

107This means that, for every s ∈ {1, 2, . . . , n}, we denote by µs the s-th element of the n-tuple µ.

190



so that{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ Vρ1 × Vρ2 × · · · × Vρn

}

⊆

〈{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ Vρ1 × Vρ2 × · · · × Vρn

}〉

=

〈
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ Vρ1 × Vρ2 × · · · × Vρn

〉
= sympρ V.

In other words,

1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) ∈ sympρ V for every (v1, v2, . . . , vn) ∈ Vρ1×Vρ2×· · ·×Vρn .

(169)
Now, let us prove that

1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) ∈ sympρ V for every (v1, v2, . . . , vn) ∈ Vµ1×Vµ2×· · ·×Vµn .

(170)
Proof of (170). Since Sn is a group, the map

Sn → Sn, σ 7→ τ ◦ σ

is a bijection.
Let (v1, v2, . . . , vn) ∈ Vµ1 × Vµ2 × · · · × Vµn be arbitrary. Then, for every i ∈

{1, 2, . . . , n}, we have vi ∈ Vµi . Hence, for every j ∈ {1, 2, . . . , n}, we have

vτ(j) ∈ Vµτ(j) (by the formula vi ∈ Vµi , applied to i = τ (j))

= Vρj
(
since µτ(j) = ρj (by (168))

)
.

In other words,
(
vτ(1), vτ(2), . . . , vτ(n)

)
∈ Vρ1 × Vρ2 × · · · × Vρn . Thus, (169) (applied to(

vτ(1), vτ(2), . . . , vτ(n)

)
instead of (v1, v2, . . . , vn)) yields

1

n!

∑
σ∈Sn

vτ(σ(1))vτ(σ(2)) · · · vτ(σ(n)) ∈ sympρ V.

But since∑
σ∈Sn

vτ(σ(1))vτ(σ(2)) · · · vτ(σ(n))︸ ︷︷ ︸
=v(τ◦σ)(1)v(τ◦σ)(2)···v(τ◦σ)(n)

(since τ(σ(1))=(τ◦σ)(1), τ(σ(2))=(τ◦σ)(2), ..., τ(σ(n))=(τ◦σ)(n))

=
∑
σ∈Sn

v(τ◦σ)(1)v(τ◦σ)(2) · · · v(τ◦σ)(n)

=
∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n)

 here, we substituted σ for τ ◦ σ in the sum, since the map
Sn → Sn, σ 7→ τ ◦ σ

is a bijection

 ,
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this rewrites as
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) ∈ sympρ V . This proves (170).

Now that (170) is proven, we can rewrite (170) as follows:{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ Vµ1 × Vµ2 × · · · × Vµn

}
⊆ sympρ V.

Thus, (154) (applied to M = A,

S =

{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ Vµ1 × Vµ2 × · · · × Vµn
}

and Q =

sympρ V ) yields〈{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ Vµ1 × Vµ2 × · · · × Vµn

}〉
⊆ sympρ V.

Thus,

sympµ V

=

〈
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ Vµ1 × Vµ2 × · · · × Vµn

〉

=

〈{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ Vµ1 × Vµ2 × · · · × Vµn

}〉
⊆ sympρ V ⊆

∑
λ is a partition

sympλ V

(since ρ is a partition, and thus sympρ V is an addend of the sum
∑

λ is a partition

sympλ V ).

This proves Proposition 19.10.

Now, finally, we prove Proposition 19.5 and Theorem 19.3:

Proof of Proposition 19.5. Proposition 19.6 yields∑
i∈N

V i =
∑
i∈N

sympi V︸ ︷︷ ︸
=

∑
µ∈{1,2,3,...}×i

sympµ V

(by Proposition 19.7, applied to n=i)

=
∑
i∈N

∑
µ∈{1,2,3,...}×i

sympµ V︸ ︷︷ ︸
⊆

∑
λ is a partition

sympλ V

(by Proposition 19.10, applied to n=i)

⊆
∑
i∈N

∑
µ∈{1,2,3,...}×i

∑
λ is a partition

sympλ V ⊆
∑

λ is a partition

sympλ V (171)

(
since

∑
λ is a partition

sympλ V is a k-vector space

)
.

192



On the other hand, for every partition λ, we have sympλ V ⊆
∑
n∈N

∑
µ∈{1,2,3,...}×n

sympµ V .

108 Thus,∑
λ is a partition

sympλ V︸ ︷︷ ︸
⊆
∑
n∈N

∑
µ∈{1,2,3,...}×n

sympµ V

⊆
∑

λ is a partition

∑
n∈N

∑
µ∈{1,2,3,...}×n

sympµ V

⊆
∑
n∈N

∑
µ∈{1,2,3,...}×n

sympµ V

︸ ︷︷ ︸
=sympn V (by Proposition 19.7)

since
∑
n∈N

∑
µ∈{1,2,3,...}×n

sympµ V is a k-vector space



=
∑
n∈N

sympn V =
∑
i∈N

sympi V (here, we renamed the index n as i in the sum)

=
∑
i∈N

V i (by Proposition 19.6) .

Combined with (171), this yields
∑
i∈N

V i =
∑

λ is a partition

sympλ V . This proves Proposi-

tion 19.5.

Proof of Theorem 19.3. First, PrimH is a homogeneous subspace of H (by Proposi-
tion 18.3).

Second, it is easy to see (PrimH) ∩H0 = 0 109.

108Proof. Let λ be a partition. Then, λ is a tuple of positive integers. In other words, there
exists an m ∈ N such that λ is an m-tuple of positive integers. Consider this m. Then, λ is an
m-tuple of positive integers, so that λ ∈ {1, 2, 3, . . .}×m. Hence, sympλ V is an addend of the sum∑
µ∈{1,2,3,...}×m

sympµ V . Thus, sympλ V ⊆
∑

µ∈{1,2,3,...}×m
sympµ V . But

∑
µ∈{1,2,3,...}×m

sympµ V is an ad-

dend of the sum
∑
n∈N

∑
µ∈{1,2,3,...}×n

sympµ V . Thus,
∑

µ∈{1,2,3,...}×m
sympµ V ⊆

∑
n∈N

∑
µ∈{1,2,3,...}×n

sympµ V .

Hence,

sympλ V ⊆
∑

µ∈{1,2,3,...}×m
sympµ V ⊆

∑
n∈N

∑
µ∈{1,2,3,...}×n

sympµ V,

qed.
109Proof. Let x ∈ (PrimH) ∩ H0. Then, x ∈ (PrimH) ∩ H0 ⊆ H0 = H≤0 (because the definition

of H≤0 yields H≤0 =
0⊕̀
=0

H` = H0). Since H≤0 = k · 1H (by Remark 2.11, applied to C = H), this

rewrites as x ∈ k · 1H . Hence, there exists some λ ∈ k such that x = λ · 1H . Consider such a λ.
On the other hand, x ∈ (PrimH)∩H0 ⊆ PrimH. Since H is a unital coalgebra (by Proposition 2.3,

applied to C = H), this yields ε (x) = 0 (by Remark 6.3). Since x = λ·1H , this becomes ε (λ · 1H) = 0.
But since

ε (λ · 1H) = λ · ε (1H)︸ ︷︷ ︸
=1

(by the axioms of a bialgebra,
since H is a bialgebra)

(since ε is k-linear)

= λ,

this means that λ = 0, so that x = λ︸︷︷︸
=0

·1H = 0.
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Third, we know from Proposition 17.14 that xy− yx ∈ PrimH for any x ∈ PrimH
and y ∈ PrimH.

Thus, we can apply Proposition 19.5 to A = H and V = PrimH. We conclude
that ∑

i∈N

(PrimH)i =
∑

λ is a partition

sympλ (PrimH) .

But since H is filtered, we know that

H =
⋃
`∈N

H≤`︸︷︷︸
⊆
∑̀
i=0

(PrimH)i

(by Proposition 17.3)

⊆
⋃
`∈N


∑̀
i=0

(PrimH)i︸ ︷︷ ︸
⊆
∑
i∈N

(PrimH)i

 ⊆
⋃
`∈N

(∑
i∈N

(PrimH)i
)

=
∑
i∈N

(PrimH)i =
∑

λ is a partition

sympλ (PrimH) .

Combined with the obvious relation
∑

λ is a partition

sympλ (PrimH) ⊆ H, this yields H =∑
λ is a partition

sympλ (PrimH). This proves Theorem 19.3.

§20. Writing pn as a sum of convolutions of ζm’s

We continue to study connected graded bialgebras. First let us make explicit one result
that we proved during the proof of Proposition 16.22:

Theorem 20.1. Let k be a field of characteristic 0, and let H be a con-
nected graded k-bialgebra. Let ζ be the map Log id ∈ L (H,H). For every
n ∈ N, let pn denote the map pn,H (defined according to Definition 16.16),
and let ζn denote the map ζ ◦ pn. Then,

ζn =
n∑
`=1

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(pa1 ∗ pa2 ∗ · · · ∗ pa`)

for every n ∈ N.

Proof of Theorem 20.1. Theorem 20.1 directly follows from (131).

Theorem 20.1 gives us a formula for writing ζn in terms of convolutions of pm’s. We
can also get a formula for writing pn in terms of convolutions of ζm’s:

Theorem 20.2. Let k be a field of characteristic 0, and let H be a con-
nected graded k-bialgebra. Let ζ be the map Log id ∈ L (H,H). For every

Now forget that we fixed x. We thus have shown that every x ∈ (PrimH) ∩H0 satisfies x = 0. In
other words, (PrimH) ∩H0 = 0, qed.
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n ∈ N, let pn denote the map pn,H (defined according to Definition 16.16),
and let ζn denote the map ζ ◦ pn. Then,

pn =
n∑
`=0

1

`!

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(ζa1 ∗ ζa2 ∗ · · · ∗ ζa`)

for every n ∈ N.

We are going to prove Theorem 20.2 now. As we could expect, the proof will be
similar to the proof of Theorem 20.1 which we did in §16. We begin with a few lemmata:

Lemma 20.3. Let k be a field of characteristic 0, and let H be a connected
graded k-bialgebra. Let ζ be the map Log id ∈ L (H,H). For every n ∈ N,
let pn denote the map pn,H (defined according to Definition 16.16), and let
ζn denote the map ζ ◦ pn. Then, ζ0 = 0.

Proof of Lemma 20.3. Theorem 20.1 (applied to n = 0) yields

ζ0 =
0∑
`=1

(−1)`−1

`

∑
(a1,a2,...,a`)∈{1,2,...,0}×`;

0=a1+a2+···+a`

(pa1 ∗ pa2 ∗ · · · ∗ pa`) = (empty sum) = 0.

This proves Lemma 20.3.

(Of course, we could have proven Lemma 20.3 much more easily.)
The following proposition is reminiscent of Proposition 16.25 (d):

Proposition 20.4. Let k be a field of characteristic 0, and let H be a
connected graded k-bialgebra. Then, for every n ∈ N, the map ζn (defined
in Theorem 20.2) is graded and concentrated in degree n.

Proof of Proposition 20.4. Let n ∈ N. Then, ζn = ζ ◦ pn is the composition of two
graded maps (since ζ is graded (by Theorem 16.21) and since pn is graded (by Propo-
sition 16.25 (d))). Since the composition of two graded maps must always be graded,
this yields that ζn is graded.

We have ζn = ζ◦pn = pn◦ζ◦pn (by (117)), thus ζn = pn◦ζ ◦ pn︸ ︷︷ ︸
=ζn

= pn◦ζn. Since ζn is

graded, this yields that ζn is concentrated in degree n. This proves Proposition 20.4.

Next, here is an analogue of Corollary 16.26:

Corollary 20.5. Let k be a field. Let H be a graded k-bialgebra. Let ζ be
the map Log id ∈ L (H,H). For every n ∈ N, let pn denote the map pn,H
(defined according to Definition 16.16), and let ζn denote the map ζ ◦ pn.

Let n ∈ N and ` ∈ N. Let ai be a nonnegative integer for every i ∈
{1, 2, . . . , `}.
(a) We have pn ◦ (ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) = 0 if n 6= a1 + a2 + · · ·+ a`.

(b) We have pn ◦ (ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) = ζa1 ∗ ζa2 ∗ · · · ∗ ζa` if n = a1 + a2 +
· · ·+ a`.
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Proof of Corollary 20.5. For every i ∈ {1, 2, . . . , `}, the map ζai is graded and concen-
trated in degree ai (by Proposition 20.4, applied to ai instead of n). Thus, Propo-
sition 16.25 (c) (applied to fi = ζai) yields that ζa1 ∗ ζa2 ∗ · · · ∗ ζa` is graded and
concentrated in degree a1 + a2 + · · · + a`. According to Definition 16.24, this means
that

pa1+a2+···+a` ◦ (ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) = ζa1 ∗ ζa2 ∗ · · · ∗ ζa` . (172)

(a) Assume that n 6= a1 + a2 + · · · + a`. Then, pn,H |Ha1+a2+···+a`= 0 (by (111),
applied to m = a1 + a2 + · · ·+ a` and V = H).

But

(ζa1 ∗ ζa2 ∗ · · · ∗ ζa`)︸ ︷︷ ︸
=pa1+a2+···+a`◦(ζa1∗ζa2∗···∗ζa`)

(by (172))

(H)

= (pa1+a2+···+a` ◦ (ζa1 ∗ ζa2 ∗ · · · ∗ ζa`)) (H) = pa1+a2+···+a`︸ ︷︷ ︸
=pa1+a2+···+a`,H

(by the definition of pa1+a2+···+a` )

(ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) (H)︸ ︷︷ ︸
⊆H


⊆ pa1+a2+···+a`,H (H) = Ha1+a2+···+a`

(
by (112), applied to H and a1 + a2 + · · ·+ a`

instead of V and n

)
and thus

pn ((ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) (H)) ⊆ pn︸︷︷︸
=pn,H

(by the definition of pn)

(Ha1+a2+···+a`) = pn,H (Ha1+a2+···+a`)

=
(
pn,H |Ha1+a2+···+a`

)︸ ︷︷ ︸
=0

(Ha1+a2+···+a`) = 0 (Ha1+a2+···+a`) = 0.

Since pn ((ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) (H)) = (pn ◦ (ζa1 ∗ ζa2 ∗ · · · ∗ ζa`)) (H), this rewrites as
(pn ◦ (ζa1 ∗ ζa2 ∗ · · · ∗ ζa`)) (H) = 0. Thus, pn ◦ (ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) = 0. This proves
Corollary 20.5 (a).

(b) Now assume that n = a1 + a2 + · · ·+ a`. Then,

pn ◦ (ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) = pa1+a2+···+a` ◦ (ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) = ζa1 ∗ ζa2 ∗ · · · ∗ ζa`

(by (172)). This proves Corollary 20.5 (b).

The next proof of Theorem 20.2 proceeds in analogy to (and occasional use of) the
proof of Proposition 16.22 above.

Proof of Theorem 20.2. Let n ∈ N.
Notice that ζ = Log id ∈ g (H,H) (by the definition of Log).
We will now prove Theorem 20.2 in several steps:
a) Every x ∈ H≤n satisfies

ζ (x) = (ζ1 + ζ2 + · · ·+ ζn) (x) . (173)

196



Proof of (173). Let x ∈ H≤n. We know that x = p0 (x) + p1 (x) + · · ·+ pn (x) (this
is the equality (123) which we proved during the proof of (121), while we were proving
Proposition 16.22). Thus,

ζ (x) = ζ (p0 (x) + p1 (x) + · · ·+ pn (x))︸ ︷︷ ︸
=

n∑
i=0

pi(x)

= ζ

(
n∑
i=0

pi (x)

)
=

n∑
i=0

ζ (pi (x))︸ ︷︷ ︸
=(ζ◦pi)(x)

(since ζ is k-linear)

=
n∑
i=0

(ζ ◦ pi)︸ ︷︷ ︸
=ζi

(since ζi was defined as ζ◦pi)

(x) =
n∑
i=0

ζi (x) = ζ0︸︷︷︸
=0

(by Lemma 20.3)

(x) +
n∑
i=1

ζi (x)

= 0 (x)︸︷︷︸
=0

+
n∑
i=1

ζi (x)︸ ︷︷ ︸
=ζ1(x)+ζ2(x)+···+ζn(x)

= ζ1 (x) + ζ2 (x) + · · ·+ ζn (x) = (ζ1 + ζ2 + · · ·+ ζn) (x) .

This proves (173). Step a) is thus done.
b) Every x ∈ H≤n and every ` ∈ N satisfy

ζ∗` (x) = (ζ1 + ζ2 + · · ·+ ζn)∗` (x) . (174)

Proof of (174). There are several ways to derive (174) from (173) (just as there
were several ways to derive (125) from (121)). Here is one of them:

Let ` ∈ N.
We are going to use the notation Ln (H,A) introduced in Definition 3.1 (b).
By the definition of Ln+1 (H,H), we have

Ln+1 (H,H) =

f ∈ L (H,H) | f |H≤n+1−1︸ ︷︷ ︸
=f |H≤n

= 0

 =
{
f ∈ L (H,H) | f |H≤n= 0

}
.

By Proposition 14.2 (applied to n+ 1 and H instead of n and A), the set Ln+1 (H,H)
is an ideal of the k-algebra L (H,H).

Every x ∈ H≤n satisfies

(ζ − (ζ1 + ζ2 + · · ·+ ζn)) (x) = ζ (x)︸︷︷︸
=(ζ1+ζ2+···+ζn)(x)

(by (173))

− (ζ1 + ζ2 + · · ·+ ζn) (x)

= (ζ1 + ζ2 + · · ·+ ζn) (x)− (ζ1 + ζ2 + · · ·+ ζn) (x) = 0.

In other words, (ζ − (ζ1 + ζ2 + · · ·+ ζn)) |H≤n= 0. Thus,

ζ − (ζ1 + ζ2 + · · ·+ ζn) ∈
{
f ∈ L (H,H) | f |H≤n= 0

}
= Ln+1 (H,H) .

In other words, ζ ≡ ζ1 + ζ2 + · · ·+ ζn modLn+1 (H,H). Thus,

ζ∗` ≡ (ζ1 + ζ2 + · · ·+ ζn)∗` modLn+1 (H,H)
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(because Ln+1 (H,H) is an ideal of the k-algebra L (H,H), and hence we can multiply
congruences modulo Ln+1 (H,H)). In other words,

ζ∗` − (ζ1 + ζ2 + · · ·+ ζn)∗` ∈ Ln+1 (H,H) =
{
f ∈ L (H,H) | f |H≤n= 0

}
,

so that
(
ζ∗` − (ζ1 + ζ2 + · · ·+ ζn)∗`

)
|H≤n= 0. Hence, every x ∈ H≤n satisfies(

ζ∗` − (ζ1 + ζ2 + · · ·+ ζn)∗`
)

(x) = 0. As a consequence, every x ∈ H≤n satisfies

ζ∗` (x) = (ζ1 + ζ2 + · · ·+ ζn)∗` (x) (because

ζ∗` (x)− (ζ1 + ζ2 + · · ·+ ζn)∗` (x) =
(
ζ∗` − (ζ1 + ζ2 + · · ·+ ζn)∗`

)
(x) = 0

). In other words, (174) is proven for every x ∈ H≤n and every ` ∈ N. This completes
step b).

c) Every x ∈ H≤n satisfies

x =
n∑
`=0

1

`!
ζ∗` (x) . (175)

Proof of (175). Since ζ = Log id, we have e∗ζ = e∗(Log id) = id (by Proposition 5.13
(b), applied to A = H and F = id). Thus, every x ∈ H≤n satisfies

x = id︸︷︷︸
=e∗ζ

(x) = e∗ζ (x) =
∑
i≥0

ζ∗i (x)

i!︸ ︷︷ ︸
=

1

i!
ζ∗i(x)

(by (6), applied to f = ζ)

=
∑
i≥0

1

i!
ζ∗i (x) =

∑
i≥0;
i≤n

1

i!
ζ∗i (x) +

∑
i≥0;
i>n

1

i!
ζ∗i (x)︸ ︷︷ ︸

=0 (since x∈H≤n and thus

ζ∗i(x)∈ζ∗i(H≤n)=0 (by Remark 3.5

(applied to f=ζ), since i>n),
so that ζ∗i(x)=0)

=
∑
i≥0;
i≤n︸︷︷︸
=

n∑
i=0

1

i!
ζ∗i (x) +

∑
i≥0;
i>n

1

i!
0

︸ ︷︷ ︸
=0

=
n∑
i=0

1

i!
ζ∗i (x) =

n∑
`=0

1

`!
ζ∗` (x)

(here, we renamed the summation index i as `) .

This proves (175), and thus our step c) is complete.
d) Every x ∈ H≤n satisfies

x =
n∑
`=0

1

`!

∑
(a1,a2,...,a`)∈{1,2,...,n}×`

(ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) (x) . (176)
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Proof of (176). Let x ∈ H≤n. Then, for every ` ∈ N, we have

ζ∗` (x) = (ζ1 + ζ2 + · · ·+ ζn)∗`︸ ︷︷ ︸
=

∑
(a1,a2,...,a`)∈{1,2,...,n}

×`
ζa1∗ζa2∗···∗ζa`

(by the product rule)

(x) (by (174))

=

 ∑
(a1,a2,...,a`)∈{1,2,...,n}×`

ζa1 ∗ ζa2 ∗ · · · ∗ ζa`

 (x) =
∑

(a1,a2,...,a`)∈{1,2,...,n}×`
(ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) (x) .

Now, (175) becomes

x =
n∑
`=0

1

`!
ζ∗` (x)︸ ︷︷ ︸

=
∑

(a1,a2,...,a`)∈{1,2,...,n}
×`

(ζa1∗ζa2∗···∗ζa`)(x)

=
n∑
`=0

1

`!

∑
(a1,a2,...,a`)∈{1,2,...,n}×`

(ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) (x) .

This proves (176).
e) Every x ∈ Hn satisfies110

x =

 n∑
`=0

1

`!

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(ζa1 ∗ ζa2 ∗ · · · ∗ ζa`)

 (x) . (177)

Proof of (177). Let x ∈ Hn.

Since H≤n =
n⊕̀
=0

H` by the definition of H≤n, we have Hn ⊆ H≤n (since Hn is one

addend of the direct sum
n⊕̀
=0

H`, and thus Hn ⊆
n⊕̀
=0

H` = H≤n).

Now, pn,H |Hn= idH |Hn (by (110), applied to V = H). Since pn = pn,H (by the
definition of pn), this rewrites as pn |Hn= idH |Hn . Since x ∈ Hn, we have

pn (x) = (pn |Hn)︸ ︷︷ ︸
=idH |Hn

(x) = (idH |Hn) (x) = idH (x) = x.

Thus,

x = pn (x) = pn

 n∑
`=0

1

`!

∑
(a1,a2,...,a`)∈{1,2,...,n}×`

(ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) (x)


(by (176), since x ∈ Hn ⊆ H≤n)

=
n∑
`=0

1

`!

∑
(a1,a2,...,a`)∈{1,2,...,n}×`

pn ((ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) (x)) (since pn is k-linear) .

110Note that here we require x ∈ Hn rather than x ∈ H≤n.
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Since every ` ∈ {0, 1, . . . , n} satisfies∑
(a1,a2,...,a`)∈{1,2,...,n}×`

pn ((ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) (x))︸ ︷︷ ︸
=(pn◦(ζa1∗ζa2∗···∗ζa`))(x)

=
∑

(a1,a2,...,a`)∈{1,2,...,n}×`
(pn ◦ (ζa1 ∗ ζa2 ∗ · · · ∗ ζa`)) (x)

=
∑

(a1,a2,...,a`)∈{1,2,...,n}×`;
n=a1+a2+···+a`

(pn ◦ (ζa1 ∗ ζa2 ∗ · · · ∗ ζa`))︸ ︷︷ ︸
=ζa1∗ζa2∗···∗ζa`

(by Corollary 20.5 (b), since
n=a1+a2+···+a`)

(x)

+
∑

(a1,a2,...,a`)∈{1,2,...,n}×`;
n6=a1+a2+···+a`

(pn ◦ (ζa1 ∗ ζa2 ∗ · · · ∗ ζa`))︸ ︷︷ ︸
=0

(by Corollary 20.5 (a), since
n6=a1+a2+···+a`)

(x)

=
∑

(a1,a2,...,a`)∈{1,2,...,n}×`;
n=a1+a2+···+a`

(ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) (x) +
∑

(a1,a2,...,a`)∈{1,2,...,n}×`;
n 6=a1+a2+···+a`

0 (x)

︸ ︷︷ ︸
=0

=
∑

(a1,a2,...,a`)∈{1,2,...,n}×`;
n=a1+a2+···+a`

(ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) (x) ,

this rewrites as

x =
n∑
`=0

1

`!

∑
(a1,a2,...,a`)∈{1,2,...,n}×`

pn ((ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) (x))

︸ ︷︷ ︸
=

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(ζa1∗ζa2∗···∗ζa`)(x)

=
n∑
`=0

1

`!

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) (x)

=

 n∑
`=0

1

`!

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(ζa1 ∗ ζa2 ∗ · · · ∗ ζa`)

 (x) .

This proves (177).
f) We are going to use the result (130) once again (but for obvious reasons, we are

not going to prove it once again).
g) Now let us finally prove Theorem 20.2:
For every ` ∈ {1, 2, . . . , n} and every (a1, a2, . . . , a`) ∈ {1, 2, . . . , n}×`, the map ζa1 ∗

ζa2 ∗· · ·∗ζa` is graded111. Hence, the map
n∑̀
=0

1

`!

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(ζa1 ∗ ζa2 ∗ · · · ∗ ζa`)

111Proof. Let ` ∈ {1, 2, . . . , n} and (a1, a2, . . . , a`) ∈ {1, 2, . . . , n}×`. Then, for every i ∈ {1, 2, . . . , `},
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is graded (since a k-linear combination of graded maps is always graded). Also, id is
graded. The two latter facts, along with the fact that

id (x) = x =

 n∑
`=0

1

`!

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(ζa1 ∗ ζa2 ∗ · · · ∗ ζa`)

 (x)

for all x ∈ Hn (by (177)), show that we can apply (130) to f = id and

g =
n∑̀
=0

1

`!

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(ζa1 ∗ ζa2 ∗ · · · ∗ ζa`). As a result, we conclude that

pn ◦ id = pn ◦

 n∑
`=0

1

`!

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(ζa1 ∗ ζa2 ∗ · · · ∗ ζa`)

 .

Using this identity, we have

pn = pn ◦ id

= pn ◦

 n∑
`=0

1

`!

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(ζa1 ∗ ζa2 ∗ · · · ∗ ζa`)


=

n∑
`=0

1

`!

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(pn ◦ (ζa1 ∗ ζa2 ∗ · · · ∗ ζa`))︸ ︷︷ ︸
=ζa1∗ζa2∗···∗ζa`

(by Corollary 20.5 (b), since
n=a1+a2+···+a`)

(since composition of k-linear maps is k-bilinear)

=
n∑
`=0

1

`!

∑
(a1,a2,...,a`)∈{1,2,...,n}×`;

n=a1+a2+···+a`

(ζa1 ∗ ζa2 ∗ · · · ∗ ζa`) .

This proves Theorem 20.2.

§21. Logarithms of commutative convolutions

In this section, we are going to study the logarithm (as defined in Definition 3.8)
further. We will prove its following property:

Theorem 21.1. Let k be a field of characteristic 0. Let A be a k-algebra,
and let C be a connected filtered k-coalgebra. Let F ∈ G (C,A) and H ∈
G (C,A) be maps satisfying F ∗H = H ∗ F . Then, F ∗H ∈ G (C,A) and
Log (F ∗H) = LogF + LogH.

the map ζai is graded and concentrated in degree ai (by Proposition 20.4, applied to ai instead of
n). Hence, by Proposition 16.25 (c) (applied to fi = ζai), the map ζa1 ∗ ζa2 ∗ · · · ∗ ζa` is graded and
concentrated in degree a1 + a2 + · · ·+ a`, qed.
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Note that this Theorem 21.1 is a kind of logarithmic “sibling” of Proposition 11.1.
It will be harder to prove, though. The proof will require a fact about power series:

Theorem 21.2. Let k be a field of characteristic 0. Consider the ring of
formal power series k [[X, Y ]] in two (commuting) indeterminates X and
Y . For every power series Q ∈ k [[X, Y ]] whose coefficient before X0Y 0

is 1, let logQ denote the power series in k [[X, Y ]] defined by logQ =∑
i≥1

(−1)i−1

i
(Q− 1)i.

Let Q and R be two power series in k [[X, Y ]] whose coefficients before
X0Y 0 are both equal to 1. Then, the coefficient of QR before X0Y 0 is also
equal to 1, and we have log (QR) = logQ+ logR.

We are not going to prove this fact, as it is rather fundamental and well-known. But
we derive a “finite version” from it (just as we derived Corollary 5.14 from Theorem 5.2):

Corollary 21.3. Let k be a field of characteristic 0. Let n ∈ N.

Let A be a commutative k-algebra. Let I be an ideal of A such that
In+1 = 0. Let a ∈ I and b ∈ I. Then,

n∑
i=1

(−1)i−1

i
ai +

n∑
i=1

(−1)i−1

i
bi =

n∑
i=1

(−1)i−1

i
(a+ b+ ab)i .

Proof of Corollary 21.3. a) First let us notice that

every (α, β) ∈ N×2 such that α + β > n satisfies aαbβ = 0. (178)

112 Also, an+1 = 0 (since a ∈ I, so that an+1 ∈ In+1 = 0), and bn+1 = 0 (for
the same reason). Finally, ab ∈ I (since a ∈ I and since I is an ideal), so that
a︸︷︷︸
∈I

+ b︸︷︷︸
∈I

+ ab︸︷︷︸
∈I

∈ I + I + I ⊆ I (since I is an ideal), so that (a+ b+ ab)n+1 = 0

(since a+ b+ ab ∈ I, so that (a+ b+ ab)n+1 ∈ In+1 = 0).
b) Consider the ring of formal power series k [[X, Y ]] in two (commuting) indeter-

minates X and Y . For every power series P ∈ k [[X, Y ]] and every (α, β) ∈ N×2, we let
coeffα,β (P ) denote the coefficient of the power series P before XαY β. Then, clearly,

every power series P ∈ k [[X, Y ]] satisfies P =
∑

(α,β)∈N×2

coeffα,β (P ) ·XαY β. (179)

By the definition of the sum of two power series, we have

coeffα,β (P +Q) = coeffα,β (P ) + coeffα,β (Q) (180)

for any (α, β) ∈ N×2, any P ∈ k [[X, Y ]] and any Q ∈ k [[X, Y ]] .

112Proof of (178). Let (α, β) ∈ N×2 satisfy α+ β > n. Then, α+ β ≥ n+ 1 (since α+ β and n+ 1
are integers), so that Iα+β ⊆ In+1 (since I is an ideal of A).

On the other hand, a ∈ I, so that aα ∈ Iα. Also, b ∈ I, so that bβ ∈ Iβ . Thus, aα︸︷︷︸
∈Iα

bβ︸︷︷︸
∈Iβ

∈ IαIβ =

Iα+β ⊆ In+1 = 0. Hence, aαbβ = 0. This proves (178).
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By the definition of the product of a power series with a scalar, we have

coeffα,β (λP ) = λ coeffα,β (P ) for any (α, β) ∈ N×2, any P ∈ k [[X, Y ]] and any λ ∈ k.
(181)

By the definition of the product of two power series, we have

coeffα,β (PQ) =
∑

(γ,δ)∈N×2;
γ≤α; δ≤β

coeffγ,δ (P ) · coeffα−γ,β−δ (Q) (182)

for any (α, β) ∈ N×2, any P ∈ k [[X, Y ]] and any Q ∈ k [[X, Y ]] .

c) Let us now define a map ρ : k [[X, Y ]]→ A byρ (P ) =
∑

(α,β)∈N×2;
α+β≤n

coeffα,β (P ) · aαbβ for every P ∈ k [[X, Y ]]

 . (183)

Note that the sum
∑

(α,β)∈N×2;
α+β≤n

coeffα,β (P ) · aαbβ is a finite sum for every P ∈ k [[X, Y ]]

(since there are only finitely many pairs (α, β) ∈ N×2 satisfying α + β ≤ n), so this
map ρ is well-defined.

d) Let us show that

ρ (P ) =
∑

(α,β)∈N×2

coeffα,β (P ) · aαbβ for every P ∈ k [[X, Y ]] . (184)

Here, the infinite sum
∑

(α,β)∈N×2

coeffα,β (P ) · aαbβ has a well-defined value because all

but finitely many addends of this sum are zero.113

Proof of (184). We already know that the sum
∑

(α,β)∈N×2

coeffα,β (P ) · aαbβ is well-

defined. Thus, we have∑
(α,β)∈N×2

coeffα,β (P ) · aαbβ =
∑

(α,β)∈N×2;
α+β≤n

coeffα,β (P ) · aαbβ

︸ ︷︷ ︸
=ρ(P )

(by (183))

+
∑

(α,β)∈N×2;
α+β>n

coeffα,β (P ) · aαbβ︸︷︷︸
=0

(by (178),
since α+β>n)

= ρ (P ) +
∑

(α,β)∈N×2;
α+β>n

coeffα,β (P ) · 0

︸ ︷︷ ︸
=0

= ρ (P ) .

113Proof. Only finitely many pairs (α, β) ∈ N×2 satisfy α+β ≤ n. Hence, all but finitely many pairs
(α, β) ∈ N×2 don’t satisfy α+ β ≤ n. In other words, all but finitely many pairs (α, β) ∈ N×2 satisfy
α + β > n. But since every pair (α, β) ∈ N×2 which satisfies α + β > n must satisfy coeffα,β (P ) ·

aαbβ︸︷︷︸
=0 (by (178))

= 0, this yields that all but finitely many pairs (α, β) ∈ N×2 satisfy coeffα,β (P ) ·aαbβ = 0.

In other words, all but finitely many addends of the sum
∑

(α,β)∈N×2

coeffα,β (P ) · aαbβ are zero. Qed.
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This proves (184).
e) The map ρ is k-linear.
Proof. Every P ∈ k [[X, Y ]] and Q ∈ k [[X, Y ]] satisfy

ρ (P +Q) =
∑

(α,β)∈N×2;
α+β≤n

coeffα,β (P +Q)︸ ︷︷ ︸
=coeffα,β(P )+coeffα,β(Q)

(by (180))

·aαbβ (by (183), applied to P +Q instead of P )

=
∑

(α,β)∈N×2;
α+β≤n

(coeffα,β (P ) + coeffα,β (Q)) · aαbβ

and

ρ (P )︸ ︷︷ ︸
=

∑
(α,β)∈N×2;
α+β≤n

coeffα,β(P )·aαbβ

(by (183))

+ ρ (Q)︸ ︷︷ ︸
=

∑
(α,β)∈N×2;
α+β≤n

coeffα,β(Q)·aαbβ

(by (183), applied to Q instead of P )

=
∑

(α,β)∈N×2;
α+β≤n

coeffα,β (P ) · aαbβ +
∑

(α,β)∈N×2;
α+β≤n

coeffα,β (Q) · aαbβ

=
∑

(α,β)∈N×2;
α+β≤n

(coeffα,β (P ) + coeffα,β (Q)) · aαbβ.

Hence, every P ∈ k [[X, Y ]] and Q ∈ k [[X, Y ]] satisfy

ρ (P +Q) =
∑

(α,β)∈N×2;
α+β≤n

(coeffα,β (P ) + coeffα,β (Q)) · aαbβ = ρ (P ) + ρ (Q) . (185)

Also, every P ∈ k [[X, Y ]] and λ ∈ k satisfy

ρ (λP ) =
∑

(α,β)∈N×2;
α+β≤n

coeffα,β (λP )︸ ︷︷ ︸
=λ coeffα,β(P )

(by (181))

·aαbβ (by (183), applied to λP instead of P )

=
∑

(α,β)∈N×2;
α+β≤n

λ coeffα,β (P ) · aαbβ = λ
∑

(α,β)∈N×2;
α+β≤n

coeffα,β (P ) · aαbβ

︸ ︷︷ ︸
=ρ(P )

(by (183))

= λρ (P ) .

(186)

So we have proven that every P ∈ k [[X, Y ]] and Q ∈ k [[X, Y ]] satisfy (185), and
that every P ∈ k [[X, Y ]] and λ ∈ k satisfy (186). In other words, we have proven that
ρ is k-linear.

f) The map ρ is a k-algebra homomorphism.
Proof. First of all, it is clear the power series 1 has coefficient 1 before X0Y 0, while

all its other coefficients are zero. In other words, coeff0,0 (1) = 1, while coeffα,β (1) = 0
for every (α, β) ∈ N×2 satisfying (α, β) 6= (0, 0).
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Now, (184) (applied to P = 1) yields

ρ (1) =
∑

(α,β)∈N×2

coeffα,β (1) · aαbβ =
∑

(α,β)∈N×2;
(α,β)=(0,0)

coeffα,β (1) · aαbβ

︸ ︷︷ ︸
=coeff0,0(1)·a0b0

+
∑

(α,β)∈N×2;
(α,β)6=(0,0)

coeffα,β (1)︸ ︷︷ ︸
=0

(since (α,β)6=(0,0))

·aαbβ

= coeff0,0 (1)︸ ︷︷ ︸
=1

· a0︸︷︷︸
=1

b0︸︷︷︸
=1

+
∑

(α,β)∈N×2;
(α,β)6=(0,0)

0 · aαbβ

︸ ︷︷ ︸
=0

= 1.

Now let P ∈ k [[X, Y ]] and Q ∈ k [[X, Y ]] be arbitrary. Then, multiplying the
equalities

ρ (P ) =
∑

(α,β)∈N×2

coeffα,β (P ) · aαbβ (by (184))

=
∑

(γ,δ)∈N×2

coeffγ,δ (P ) · aγbδ (here, we renamed the index (α, β) as (γ, δ) in the sum)

and

ρ (Q) =
∑

(α,β)∈N×2

coeffα,β (Q) · aαbβ (by (184), applied to Q instead of P ) ,
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we obtain

ρ (P ) · ρ (Q) =

 ∑
(γ,δ)∈N×2

coeffγ,δ (P ) · aγbδ
 ·

 ∑
(α,β)∈N×2

coeffα,β (Q) · aαbβ


=
∑

(γ,δ)∈N×2

∑
(α,β)∈N×2

coeffγ,δ (P ) · aγbδ · coeffα,β (Q) · aαbβ︸ ︷︷ ︸
=coeffγ,δ(P )·coeffα,β(Q)·aγaα·bδbβ

=
∑

(γ,δ)∈N×2

∑
(α,β)∈N×2

coeffγ,δ (P ) · coeffα,β (Q) · aγaα︸︷︷︸
=aγ+α

· bδbβ︸︷︷︸
=bδ+β

=
∑

(γ,δ)∈N×2

∑
(α,β)∈N×2

coeffγ,δ (P ) · coeffα,β (Q) · aγ+α · bδ+β

=
∑

(γ,δ)∈N×2

∑
(α,β)∈N×2;
α≥γ; β≥δ︸ ︷︷ ︸

=
∑

(α,β)∈N×2

∑
(γ,δ)∈N×2;
α≥γ; β≥δ

coeffγ,δ (P ) · coeffα−γ,β−δ (Q) · aγ+(α−γ)︸ ︷︷ ︸
=aα

· bδ+(β−δ)︸ ︷︷ ︸
=bβ

(here, we substituted (α, β) for (γ + α, δ + β) in the second sum)

=
∑

(α,β)∈N×2

∑
(γ,δ)∈N×2;
α≥γ; β≥δ︸ ︷︷ ︸

=
∑

(γ,δ)∈N×2;
γ≤α; δ≤β

(since the assertion (α≥γ and β≥δ)
is equivalent to (γ≤α and δ≤β))

coeffγ,δ (P ) · coeffα−γ,β−δ (Q) · aαbβ

=
∑

(α,β)∈N×2

∑
(γ,δ)∈N×2;
γ≤α; δ≤β

coeffγ,δ (P ) · coeffα−γ,β−δ (Q) · aαbβ.

Compared to

ρ (PQ) =
∑

(α,β)∈N×2

coeffα,β (PQ)︸ ︷︷ ︸
=

∑
(γ,δ)∈N×2;
γ≤α; δ≤β

coeffγ,δ(P )·coeffα−γ,β−δ(Q)

(by (182))

·aαbβ (by (184), applied to PQ instead of P )

=
∑

(α,β)∈N×2

∑
(γ,δ)∈N×2;
γ≤α; δ≤β

coeffγ,δ (P ) · coeffα−γ,β−δ (Q) · aαbβ,

this yields ρ (P ) · ρ (Q) = ρ (PQ).
Now forget that we fixed P and Q. We thus have shown that any P ∈ k [[X, Y ]]

and Q ∈ k [[X, Y ]] satisfy ρ (P ) · ρ (Q) = ρ (PQ). Combined with ρ (1) = 1, and with
the fact that ρ is k-linear, this yields that ρ is a k-algebra homomorphism. This proves
part f).

g) Both 1 + X and 1 + Y are power series in k [[X, Y ]] whose coefficients before
X0Y 0 are equal to 1. Hence, we can apply Theorem 21.2 to Q = 1+X and R = 1+Y .
As a result, we obtain that the coefficient of (1 +X) (1 + Y ) before X0Y 0 is also equal

206



to 1 (of course, this is obvious for simpler reasons...) and that

log ((1 +X) (1 + Y )) = log (1 +X) + log (1 + Y ) . (187)

h) The power series X has the coefficient 1 before X1Y 0, while all its other co-
efficients are zero. In other words, coeff1,0 (X) = 1, while coeffα,β (X) = 0 for all
(α, β) ∈ N×2 satisfying (α, β) 6= (1, 0). Now, (184) (applied to P = X) yields

ρ (X) =
∑

(α,β)∈N×2

coeffα,β (X) · aαbβ =
∑

(α,β)∈N×2;
(α,β)=(1,0)

coeffα,β (X) · aαbβ

︸ ︷︷ ︸
=coeff1,0(X)·a1b0

+
∑

(α,β)∈N×2;
(α,β)6=(1,0)

coeffα,β (X)︸ ︷︷ ︸
=0

(since (α,β) 6=(1,0))

·aαbβ

= coeff1,0 (X)︸ ︷︷ ︸
=1

· a1︸︷︷︸
=a

b0︸︷︷︸
=1

+
∑

(α,β)∈N×2;
(α,β)6=(1,0)

0 · aαbβ

︸ ︷︷ ︸
=0

= a.

The power series Y has the coefficient 1 before X0Y 1, while all its other coefficients
are zero. In other words, coeff0,1 (Y ) = 1, while coeffα,β (Y ) = 0 for all (α, β) ∈ N×2

satisfying (α, β) 6= (0, 1). Now, (184) (applied to P = Y ) yields

ρ (Y ) =
∑

(α,β)∈N×2

coeffα,β (Y ) · aαbβ =
∑

(α,β)∈N×2;
(α,β)=(0,1)

coeffα,β (Y ) · aαbβ

︸ ︷︷ ︸
=coeff0,1(Y )·a0b1

+
∑

(α,β)∈N×2;
(α,β) 6=(0,1)

coeffα,β (Y )︸ ︷︷ ︸
=0

(since (α,β) 6=(0,1))

·aαbβ

= coeff0,1 (Y )︸ ︷︷ ︸
=1

· a0︸︷︷︸
=1

b1︸︷︷︸
=b

+
∑

(α,β)∈N×2;
(α,β)6=(0,1)

0 · aαbβ

︸ ︷︷ ︸
=0

= b.

Since ρ is a k-algebra homomorphism, we have ρ (X + Y +XY ) = ρ (X)︸ ︷︷ ︸
=a

+ ρ (Y )︸ ︷︷ ︸
=b

+ ρ (X)︸ ︷︷ ︸
=a

· ρ (Y )︸ ︷︷ ︸
=b

=

a+ b+ ab.
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i) By the definition of log, we have

log (1 +X) =
∑
i≥1

(−1)i−1

i

(1 +X)− 1︸ ︷︷ ︸
=X

i

=
∑
i≥1

(−1)i−1

i
X i

=
∑
i≥1;
i<n+1︸ ︷︷ ︸
=

n∑
i=1

(−1)i−1

i
X i +

∑
i≥1;
i≥n+1

(−1)i−1

i
X i︸︷︷︸

=Xn+1·Xi−(n+1)

(since i≥n+1)

=
n∑
i=1

(−1)i−1

i
X i +

∑
i≥1;
i≥n+1

(−1)i−1

i
Xn+1 ·X i−(n+1)

︸ ︷︷ ︸
=Xn+1

∑
i≥1;
i≥n+1

(−1)i−1

i
Xi−(n+1)

=
n∑
i=1

(−1)i−1

i
X i +Xn+1

∑
i≥1;
i≥n+1

(−1)i−1

i
X i−(n+1).

Hence,

ρ (log (1 +X)) = ρ

 n∑
i=1

(−1)i−1

i
X i +Xn+1

∑
i≥1;
i≥n+1

(−1)i−1

i
X i−(n+1)


=

n∑
i=1

(−1)i−1

i
(ρ (X))i + (ρ (X))n+1

∑
i≥1;
i≥n+1

(−1)i−1

i
(ρ (X))i−(n+1)

(since ρ is a k-algebra homomorphism)

=
n∑
i=1

(−1)i−1

i
ai + an+1︸︷︷︸

=0

∑
i≥1;
i≥n+1

(−1)i−1

i
ai−(n+1) (since ρ (X) = a)

=
n∑
i=1

(−1)i−1

i
ai + 0

∑
i≥1;
i≥n+1

(−1)i−1

i
ai−(n+1)

︸ ︷︷ ︸
=0

=
n∑
i=1

(−1)i−1

i
ai. (188)

The same argument, but with X and a replaced by Y and b, yields

ρ (log (1 + Y )) =
n∑
i=1

(−1)i−1

i
bi. (189)
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On the other hand, the definition of log yields

log ((1 +X) (1 + Y ))

=
∑
i≥1

(−1)i−1

i

(1 +X) (1 + Y )− 1︸ ︷︷ ︸
=X+Y+XY

i

=
∑
i≥1

(−1)i−1

i
(X + Y +XY )i

=
∑
i≥1;
i<n+1︸ ︷︷ ︸
=

n∑
i=1

(−1)i−1

i
(X + Y +XY )i +

∑
i≥1;
i≥n+1

(−1)i−1

i
(X + Y +XY )i︸ ︷︷ ︸

=(X+Y+XY )n+1·(X+Y+XY )i−(n+1)

(since i≥n+1)

=
n∑
i=1

(−1)i−1

i
(X + Y +XY )i +

∑
i≥1;
i≥n+1

(−1)i−1

i
(X + Y +XY )n+1 · (X + Y +XY )i−(n+1)

︸ ︷︷ ︸
=(X+Y+XY )n+1 ∑

i≥1;
i≥n+1

(−1)i−1

i
(X+Y+XY )i−(n+1)

=
n∑
i=1

(−1)i−1

i
(X + Y +XY )i + (X + Y +XY )n+1

∑
i≥1;
i≥n+1

(−1)i−1

i
(X + Y +XY )i−(n+1) .

Hence,

ρ (log ((1 +X) (1 + Y )))

= ρ

 n∑
i=1

(−1)i−1

i
(X + Y +XY )i + (X + Y +XY )n+1

∑
i≥1;
i≥n+1

(−1)i−1

i
(X + Y +XY )i−(n+1)


=

n∑
i=1

(−1)i−1

i
(ρ (X + Y +XY ))i + (ρ (X + Y +XY ))n+1

∑
i≥1;
i≥n+1

(−1)i−1

i
(ρ (X + Y +XY ))i−(n+1)

(since ρ is a k-algebra homomorphism)

=
n∑
i=1

(−1)i−1

i
(a+ b+ ab)i + (a+ b+ ab)n+1︸ ︷︷ ︸

=0

∑
i≥1;
i≥n+1

(−1)i−1

i
(a+ b+ ab)i−(n+1)

(since ρ (X + Y +XY ) = a+ b+ ab)

=
n∑
i=1

(−1)i−1

i
(a+ b+ ab)i + 0

∑
i≥1;
i≥n+1

(−1)i−1

i
(a+ b+ ab)i−(n+1)

︸ ︷︷ ︸
=0

=
n∑
i=1

(−1)i−1

i
(a+ b+ ab)i .
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Compared with

ρ

log ((1 +X) (1 + Y ))︸ ︷︷ ︸
=log(1+X)+log(1+Y )

(by (187))


= ρ (log (1 +X) + log (1 + Y )) = ρ (log (1 +X))︸ ︷︷ ︸

=
n∑
i=1

(−1)i−1

i
ai

(by (188))

+ ρ (log (1 + Y ))︸ ︷︷ ︸
=

n∑
i=1

(−1)i−1

i
bi

(by (189))

(since ρ is k-linear)

=
n∑
i=1

(−1)i−1

i
ai +

n∑
i=1

(−1)i−1

i
bi,

this yields

n∑
i=1

(−1)i−1

i
ai +

n∑
i=1

(−1)i−1

i
bi =

n∑
i=1

(−1)i−1

i
(a+ b+ ab)i .

This proves Corollary 21.3.

We further prepare for proving Theorem 21.1 by showing a useful result that we
ought to have proven long ago:

Proposition 21.4. Let k be a field. Let A be a k-algebra, and let C be
a filtered k-coalgebra. In this proposition, we shall denote the convolution
on L (C,A) as ordinary multiplication (i.e., we write fg for the convolution
f ∗ g of two maps f, g ∈ L (C,A)).

(a) Any a ∈ N and b ∈ N satisfy (La (C,A)) ·
(
Lb (C,A)

)
⊆ La+b (C,A).

(b) Any n ∈ N satisfies (L1 (C,A))
n ⊆ Ln (C,A).

Proof of Proposition 21.4. (a) Let a ∈ N and b ∈ N.
Due to how we defined Ln (C,A) (in Definition 3.1 (b)), we have

Ln (C,A) =
{
f ∈ L (C,A) | f |C≤n−1

= 0
}

=
{
h ∈ L (C,A) | h |C≤n−1

= 0
}

(here, we renamed f as h) (190)

for every n ∈ N.
It is easy to see that every (f, g) ∈ (La (C,A)) ×

(
Lb (C,A)

)
satisfies f ∗ g ∈

La+b (C,A). 114 In other words,{
f ∗ g | (f, g) ∈ (La (C,A))×

(
Lb (C,A)

)}
⊆ La+b (C,A) .

114Proof. Let (f, g) ∈ (La (C,A))×
(
Lb (C,A)

)
be arbitrary. Then, f ∈ La (C,A) and g ∈ Lb (C,A).

Now, f ∈ La (C,A) =
{
h ∈ L (C,A) | h |C≤a−1

= 0
}

(by (190), applied to n = a), so that f |C≤a−1
= 0.

Hence, f (C≤a−1) =
(
f |C≤a−1

)︸ ︷︷ ︸
=0

(C≤a−1) = 0 (C≤a−1) = 0. Similarly, g (C≤b−1) = 0.

Since C is a filtered k-coalgebra, we have ∆C (C≤a+b−1) ⊆
a+b−1∑
u=0

C≤u ⊗ C≤a+b−1−u.
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Thus, (154) (applied toM = L (C,A), S =
{
f ∗ g | (f, g) ∈ (La (C,A))×

(
Lb (C,A)

)}
and Q = La+b (C,A)) yields〈{

f ∗ g | (f, g) ∈ (La (C,A))×
(
Lb (C,A)

)}〉
⊆ La+b (C,A) .

Since 〈{
f ∗ g | (f, g) ∈ (La (C,A))×

(
Lb (C,A)

)}〉
=

〈
f ∗ g︸︷︷︸
=fg

| (f, g) ∈ (La (C,A))×
(
Lb (C,A)

)〉
=
〈
fg | (f, g) ∈ (La (C,A))×

(
Lb (C,A)

)〉
= (La (C,A)) ·

(
Lb (C,A)

)
,

this becomes (La (C,A)) ·
(
Lb (C,A)

)
⊆ La+b (C,A). This proves Proposition 21.4 (a).

(b) We are going to prove Proposition 21.4 (b) by induction over n:
Induction base: From Definition 3.1 (b) (applied to C instead of H), we know that

L0 (C,A) = L (C,A). Now, clearly, (L1 (C,A))
0 ⊆ L (C,A) = L0 (C,A). In other

words, Proposition 21.4 (b) holds for n = 0. This completes the induction base.
Induction step: Let N ∈ N. Assume that Proposition 21.4 (b) holds for n = N .

We must now prove that Proposition 21.4 (b) also holds for n = N + 1.

Since Proposition 21.4 (b) holds for n = N , we have (L1 (C,A))
N ⊆ LN (C,A).

Now,(
L1 (C,A)

)N+1
=
(
L1 (C,A)

)N︸ ︷︷ ︸
⊆LN (C,A)

·
(
L1 (C,A)

)
⊆
(
LN (C,A)

)
·
(
L1 (C,A)

)
⊆ LN+1 (C,A) (by Proposition 21.4 (a), applied to a = N and b = 1) .

In other words, Proposition 21.4 (b) holds for n = N+1. This completes the induction
step. Thus, the induction proof of Proposition 21.4 (b) is complete.

Here is, finally, an equivalent version of Corollary 21.3 for use in our proof of
Theorem 21.1:

Corollary 21.5. Let k be a field of characteristic 0. Let n ∈ N.

Let B be a commutative k-algebra. Let K be an ideal of B. Let a ∈ K and
b ∈ K. Then,

n∑
i=1

(−1)i−1

i
ai +

n∑
i=1

(−1)i−1

i
bi −

n∑
i=1

(−1)i−1

i
(a+ b+ ab)i ∈ Kn+1.

Since C is filtered, we have C≤0 ⊆ C≤1 ⊆ C≤2 ⊆ · · · . This yields

C≤u ⊆ C≤a−1 for every u ∈ N satisfying u ≤ a− 1, (191)

and
C≤v ⊆ C≤b−1 for every v ∈ N satisfying v ≤ b− 1. (192)

Thus,
C≤a+b−1−u ⊆ C≤b−1 for every u ∈ N satisfying u ≥ a and u ≤ a+ b− 1 (193)

(because for every u ∈ N satisfying u ≥ a and u ≤ a + b − 1, we have a + b − 1 − u ∈ N (since
a+ b− 1︸ ︷︷ ︸
≥u

−u ≥ u− u = 0) and a+ b− 1− u︸︷︷︸
≥a

≤ a+ b− 1− a = b− 1, and thus C≤a+b−1−u ⊆ C≤b−1

(by (192), applied to v = a+ b− 1− u)).
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Proof of Corollary 21.5. Since K is an ideal of B, it is clear that Kn+1 is an ideal of B.
Let π be the canonical projection B → B�Kn+1. Then, π is a k-algebra homo-

morphism (since Kn+1 is an ideal of B, so that B�Kn+1 is a factor algebra), so that

(π (K))n+1 = π
(
Kn+1

)
= 0

(
since π is the canonical projection B→ B�Kn+1

)
.

Let A be the k-algebra B�Kn+1, and let I be the subset π (K) of B�Kn+1 = A.
The k-algebra A is commutative (because A is a quotient of the commutative k-algebra
B).

By the definition of convolution, f ∗ g = µA ◦ (f ⊗ g) ◦∆C , so that

(f ∗ g) (C≤a+b−1)

= (µA ◦ (f ⊗ g) ◦∆C) (C≤a+b−1) = µA

(f ⊗ g) (∆C (C≤a+b−1))︸ ︷︷ ︸
⊆
a+b−1∑
u=0

C≤u⊗C≤a+b−1−u



⊆ µA


(f ⊗ g)

(
a+b−1∑
u=0

C≤u ⊗ C≤a+b−1−u

)
︸ ︷︷ ︸

⊆
a+b−1∑
u=0

(f⊗g)(C≤u⊗C≤a+b−1−u)

(since f⊗g is k-linear)


⊆ µA

a+b−1∑
u=0

(f ⊗ g) (C≤u ⊗ C≤a+b−1−u)︸ ︷︷ ︸
⊆f(C≤u)⊗g(C≤a+b−1−u)



⊆ µA


a+b−1∑
u=0

f (C≤u)⊗ g (C≤a+b−1−u)︸ ︷︷ ︸
=
a−1∑
u=0

f(C≤u)⊗g(C≤a+b−1−u)+
a+b−1∑
u=a

f(C≤u)⊗g(C≤a+b−1−u)



= µA


a−1∑
u=0

f

 C≤u︸︷︷︸
⊆C≤a−1

(by (191), since u≤a−1)

⊗ g (C≤a+b−1−u) +

a+b−1∑
u=a

f (C≤u)⊗ g

 C≤a+b−1−u︸ ︷︷ ︸
⊆C≤b−1

(by (193), since u≥a and u≤a+b−1)




= µA

a−1∑
u=0

f (C≤a−1)︸ ︷︷ ︸
=0

⊗g (C≤a+b−1−u) +

a+b−1∑
u=a

f (C≤u)⊗ g (C≤b−1)︸ ︷︷ ︸
=0



= µA

a−1∑
u=0

0⊗ g (C≤a+b−1−u)︸ ︷︷ ︸
=0

+

a+b−1∑
u=a

f (C≤u)⊗ 0︸ ︷︷ ︸
=0

 = µA


a−1∑
u=0

0 +

a+b−1∑
u=a

0︸ ︷︷ ︸
=0

 = µA (0) = 0.

Hence, f ∗ g ∈
{
h ∈ L (C,A) | h |C≤a+b−1

= 0
}

. Since La+b (C,A) =
{
h ∈ L (C,A) | h |C≤a+b−1

= 0
}

(by (190), applied to n = a+ b), this becomes

f ∗ g ∈
{
h ∈ L (C,A) | h |C≤a+b−1

= 0
}

= La+b (C,A) ,

qed.
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Since π is the canonical projection B→ B�Kn+1, this map π is surjective. Thus,
π (B) = B�Kn+1 = A.

Since K is an ideal of B, we have BK ⊆ K. Now,

A︸︷︷︸
=π(B)

I︸︷︷︸
=π(K)

= π (B) π (K) = π

BK︸︷︷︸
⊆K

 (since π is a k-algebra homomorphism)

⊆ π (K) = I.

In other words, I is a right ideal of A. Since A is commutative, this yields that I is an
ideal of A. Also, I = π (K) leads to In+1 = (π (K))n+1 = 0.

Since a ∈ K, we have π (a) ∈ π (K) = I. Similarly, π (b) ∈ I. Therefore, we can
apply Corollary 21.3 to π (a) and π (b) instead of a and b. We obtain

n∑
i=1

(−1)i−1

i
(π (a))i +

n∑
i=1

(−1)i−1

i
(π (b))i =

n∑
i=1

(−1)i−1

i
(π (a) + π (b) + π (a) π (b))i .

Hence,

0 =
n∑
i=1

(−1)i−1

i
(π (a))i +

n∑
i=1

(−1)i−1

i
(π (b))i −

n∑
i=1

(−1)i−1

i
(π (a) + π (b) + π (a) π (b))i

= π

(
n∑
i=1

(−1)i−1

i
ai +

n∑
i=1

(−1)i−1

i
bi −

n∑
i=1

(−1)i−1

i
(a+ b+ ab)i

)
(since π is a k-algebra homomorphism). In other words,

n∑
i=1

(−1)i−1

i
ai +

n∑
i=1

(−1)i−1

i
bi −

n∑
i=1

(−1)i−1

i
(a+ b+ ab)i ∈ Ker π = Kn+1

(since π is the canonical projection B→ B�Kn+1). This proves Corollary 21.5.

Proof of Theorem 21.1. a) First, we notice that F ∗H ∈ G (C,A).
Proof. By the definition of G (C,A), we have

G (C,A) = {f ∈ L (C,A) | f (1C) = 1A} .

Now, F ∈ G (C,A) = {f ∈ L (C,A) | f (1C) = 1A}, so that F (1C) = 1A. Similarly,
G (1C) = 1A. But since 1C is the unity of the unital coalgebra C, we have ∆C (1C) =
1C ⊗ 1C and εC (1C) = 1 (by the definition of a unital coalgebra).

By the definition of convolution, F ∗H = µA ◦ (F ⊗H) ◦∆C . Hence,

(F ∗H) (1C) = (µA ◦ (F ⊗H) ◦∆C) (1C) = µA

(F ⊗H) (∆C (1C))︸ ︷︷ ︸
=1C⊗1C

 = µA

(F ⊗H) (1C ⊗ 1C)︸ ︷︷ ︸
=F (1C)⊗H(1C)


= µA

F (1C)︸ ︷︷ ︸
=1A

⊗H (1C)︸ ︷︷ ︸
=1A

 = µA (1A ⊗ 1A)

= 1A1A (since µA is the multiplication map)

= 1A.
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In other words,

F ∗H ∈ {f ∈ L (C,A) | f (1C) = 1A} = G (C,A) .

Thus we have proven that F ∗H ∈ G (C,A). This completes the proof of a).
b) Now let us prove that Log (F ∗H) = LogF + LogH.
Proof. Let x ∈ C. We are now going to prove that (LogF + LogH − Log (F ∗H)) (x) =

0.
Since C is filtered, there exists some n ∈ N such that x ∈ C≤n. Consider this n.
Due to how we defined Ln+1 (C,A) (in Definition 3.1 (b)), we have

Ln+1 (C,A) =

f ∈ L (C,A) | f |C≤n+1−1︸ ︷︷ ︸
=f |C≤n

= 0

 =
{
f ∈ L (C,A) | f |C≤n= 0

}
=
{
g ∈ L (C,A) | g |C≤n= 0

}
(here, we renamed f as g) . (194)

Let f = F − eC,A and h = H − eC,A. Then, f︸︷︷︸
=F−eC,A

+eC,A = F − eC,A + eC,A = F

and similarly h+ eC,A = H. Hence,

F︸︷︷︸
=f+eC,A

∗ H︸︷︷︸
=h+eC,A

−eC,A = (f + eC,A) ∗ (h+ eC,A)︸ ︷︷ ︸
=f∗h+f∗eC,A+eC,A∗h+eC,A∗eC,A

−eC,A

= f ∗ h+ f ∗ eC,A︸ ︷︷ ︸
=f

+ eC,A ∗ h︸ ︷︷ ︸
=h

+ eC,A ∗ eC,A︸ ︷︷ ︸
=eC,A

−eC,A

= f ∗ h+ f + h+ eC,A − eC,A = f + h+ f ∗ h. (195)

Note that f = F − eC,A and h = H − eC,A lead to

f︸︷︷︸
=F−eC,A

∗ h︸︷︷︸
=H−eC,A

= (F − eC,A) ∗ (H − eC,A) = F ∗H︸ ︷︷ ︸
=H∗F

− F ∗ eC,A︸ ︷︷ ︸
=F=eC,A∗F

− eC,A ∗H︸ ︷︷ ︸
=H=H∗eC,A

+eC,A ∗ eC,A

= H ∗ F − eC,A ∗ F −H ∗ eC,A + eC,A ∗ eC,A
= (H − eC,A)︸ ︷︷ ︸

=h

∗ (F − eC,A)︸ ︷︷ ︸
=f

= h ∗ f.

Since F ∈ G (C,A) = eC,A + g (C,A), we have F − eC,A ∈ g (C,A). Since F −
eC,A = f , this rewrites as f ∈ g (C,A). Similarly, h ∈ g (C,A). Moreover, since
F ∗H ∈ G (C,A) = eC,A + g (C,A), we have F ∗H − eC,A ∈ g (C,A). By (195), this
becomes f + h+ f ∗ h ∈ g (C,A).

We recall that L1 (C,A) = g (C,A) (by Definition 3.1 (b), applied to C instead of
H). Since L1 (C,A) is an ideal of L (C,A) (by Proposition 14.2, applied to 1 and C
instead of n and H), this yields that g (C,A) is an ideal of L (C,A).

We know that f ∗ h = h ∗ f . In other words, f and h commute (as elements of
L (C,A)). Let B be the k-subalgebra of L (C,A) generated by f and h. Then, the
k-algebra B is commutative (by Corollary 11.3, applied to L (C,A), h and B instead
of A, g and H).

Let K = B∩g (C,A). Then, K = B∩g (C,A) ⊆ B and K = B∩g (C,A) ⊆ g (C,A).
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Since g (C,A) is an ideal of L (C,A), we have (L (C,A)) · (g (C,A)) ⊆ g (C,A).
Now, combining

B︸︷︷︸
⊆L(C,A)

· K︸︷︷︸
⊆g(C,A)

⊆ (L (C,A)) · (g (C,A)) ⊆ g (C,A)

with
B · K︸︷︷︸

⊆B

⊆ B ·B ⊆ B (since B is a k-algebra) ,

we get B ·K ⊆ B∩g (C,A) = K. Thus, K is a left ideal of B. Since B is commutative,
this means that K is an ideal of B.

Since f ∈ B (by the definition of B) and f ∈ g (C,A), we have f ∈ B∩g (C,A) = K.
Similarly, h ∈ K. Hence, Corollary 21.5 (applied to a = f and b = h) yields

n∑
i=1

(−1)i−1

i
f ∗i +

n∑
i=1

(−1)i−1

i
h∗i −

n∑
i=1

(−1)i−1

i
(f + h+ f ∗ h)∗i ∈ Kn+1. (196)

Since K ⊆ g (C,A) = L1 (C,A), we have Kn+1 ⊆ (L1 (C,A))
n+1 ⊆ Ln+1 (C,A) (by

Proposition 21.4 (b), applied to n+ 1 instead of n). Hence, (196) becomes

n∑
i=1

(−1)i−1

i
f ∗i +

n∑
i=1

(−1)i−1

i
h∗i −

n∑
i=1

(−1)i−1

i
(f + h+ f ∗ h)∗i

∈ Kn+1 ⊆ Ln+1 (C,A) =
{
g ∈ L (C,A) | g |C≤n= 0

}
(by (194)) .

In other words,(
n∑
i=1

(−1)i−1

i
f ∗i +

n∑
i=1

(−1)i−1

i
h∗i −

n∑
i=1

(−1)i−1

i
(f + h+ f ∗ h)∗i

)
|C≤n= 0.

Hence,(
n∑
i=1

(−1)i−1

i
f ∗i +

n∑
i=1

(−1)i−1

i
h∗i −

n∑
i=1

(−1)i−1

i
(f + h+ f ∗ h)∗i

)
(x)

=

((
n∑
i=1

(−1)i−1

i
f ∗i +

n∑
i=1

(−1)i−1

i
h∗i −

n∑
i=1

(−1)i−1

i
(f + h+ f ∗ h)∗i

)
|C≤n

)
︸ ︷︷ ︸

=0

(x)

(since x ∈ C≤n)

= 0 (x) = 0. (197)
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Now, by the definition of Log, we have LogF = Log1 (F − eC,A)︸ ︷︷ ︸
=f

= Log1 f , so that

(LogF ) (x) = (Log1 f) (x)

=
∑
i≥1

(−1)i−1

i
f ∗i (x) (by the definition of Log1)

=
∑
i≥1;
i≤n︸︷︷︸
=

n∑
i=1

(−1)i−1

i
f ∗i (x) +

∑
i≥1;
i>n

(−1)i−1

i
f ∗i (x)︸ ︷︷ ︸

=0 (since

x∈C≤n and thus f∗i(x)∈f∗i(C≤n)=0

(by Remark 3.5 (applied to C
instead of H), since i>n))

=
n∑
i=1

(−1)i−1

i
f ∗i (x) +

∑
i≥1;
i>n

(−1)i−1

i
0

︸ ︷︷ ︸
=0

=
n∑
i=1

(−1)i−1

i
f ∗i (x) . (198)

The same argument, applied to H and h instead of F and f , shows that

(LogH) (x) =
n∑
i=1

(−1)i−1

i
h∗i (x) . (199)

But for every i ∈ N satisfying i > n, we have

(f + h+ f ∗ h)∗i (x) = 0 (200)

115.
Finally, by the definition of Log, we have Log (F ∗H) = Log1 (F ∗H − eC,A)︸ ︷︷ ︸

=f+h+f∗h
(by (195))

=

115Proof of (200): Let i ∈ N be such that i > n. Then, Remark 3.5 (applied to C instead of H)

yields (f + h+ f ∗ h)
∗i

(C≤n) = 0 (since f + h+ f ∗ h ∈ g (C,A) and i > n). Now,

(f + h+ f ∗ h)
∗i

 x︸︷︷︸
∈C≤n

 ∈ (f + h+ f ∗ h)
∗i

(C≤n) = 0,

so that (f + h+ f ∗ h)
∗i

(x) = 0. This proves (200).

216



Log1 (f + h+ f ∗ h). Thus,

(Log (F ∗H)) (x)

= (f + h+ f ∗ h) (x)

=
∑
i≥1

(−1)i−1

i
(f + h+ f ∗ h)∗i (x) (by the definition of Log1)

=
∑
i≥1;
i≤n︸︷︷︸
=

n∑
i=1

(−1)i−1

i
(f + h+ f ∗ h)∗i (x) +

∑
i≥1;
i>n

(−1)i−1

i
(f + h+ f ∗ h)∗i (x)︸ ︷︷ ︸

=0
(by (200))

=
n∑
i=1

(−1)i−1

i
(f + h+ f ∗ h)∗i (x) +

∑
i≥1;
i>n

(−1)i−1

i
0

︸ ︷︷ ︸
=0

=
n∑
i=1

(−1)i−1

i
(f + h+ f ∗ h)∗i (x) . (201)

Now,

(LogF + LogH − Log (F ∗H)) (x)

= (LogF ) (x)︸ ︷︷ ︸
=

n∑
i=1

(−1)i−1

i
f∗i(x)

(by (198))

+ (LogH) (x)︸ ︷︷ ︸
=

n∑
i=1

(−1)i−1

i
h∗i(x)

(by (199))

− (Log (F ∗H)) (x)︸ ︷︷ ︸
=

n∑
i=1

(−1)i−1

i
(f+h+f∗h)∗i(x)

(by (201))

=
n∑
i=1

(−1)i−1

i
f ∗i (x) +

n∑
i=1

(−1)i−1

i
h∗i (x)−

n∑
i=1

(−1)i−1

i
(f + h+ f ∗ h)∗i (x)

=

(
n∑
i=1

(−1)i−1

i
f ∗i +

n∑
i=1

(−1)i−1

i
h∗i −

n∑
i=1

(−1)i−1

i
(f + h+ f ∗ h)∗i

)
(x) = 0

(by (197)).
Now forget that we fixed x. We thus have shown that every x ∈ C satisfies

(LogF + LogH − Log (F ∗H)) (x) = 0. In other words, LogF+LogH−Log (F ∗H) =
0. Thus, LogF + LogH = Log (F ∗H). This completes the proof of b).

The proof of Theorem 21.1 is thus complete.

§22. Logarithms of tensor products

In this Section §22, we will apply Theorem 21.1 to compute the logarithm of the tensor
product of two maps (using the logarithms of these maps). First, to make sure that
we can talk about the logarithm of a tensor product, we need a proposition:

217



Proposition 22.1. Let k be a field. Let C and D be two filtered k-
coalgebras. For every ` ∈ N, define a subspace (C ⊗D)≤` of C ⊗D by

(C ⊗D)≤` =
∑

(a,b)∈N×2;
a+b=`

C≤a ⊗D≤b.

(a) Then,
(
C ⊗D,

(
(C ⊗D)≤`

)
`≥0

)
is a filtered k-coalgebra.

We are going to denote this filtered k-coalgebra
(
C ⊗D,

(
(C ⊗D)≤`

)
`≥0

)
by C ⊗ D. Thus, when we speak of “the filtered k-coalgebra C ⊗ D”, we

actually mean the filtered k-coalgebra
(
C ⊗D,

(
(C ⊗D)≤`

)
`≥0

)
.

(b) If the filtered k-coalgebras C and D are connected, then the filtered
k-coalgebra C ⊗D is connected, too.

(c) Assume that the filtered k-coalgebras C and D are connected. Then,
all three filtered k-coalgebras C, D and C ⊗D are connected116, and hence
induce unital coalgebras C, D and C⊗D according to Definition 2.7. These
unital coalgebras satisfy 1C⊗D = 1C ⊗ 1D.

A boring linear-algebraic lemma ahead:

Lemma 22.2. Let k be a field.

(a) Let U and V be two k-vector spaces. Let a be a nonnegative integer.
Let Uc be a subspace of U for every c ∈ {0, 1, . . . , a}. Then,(

a∑
c=0

Uc

)
⊗ V =

a∑
c=0

Uc ⊗ V, (202)

where both sides

(
a∑
c=0

Uc

)
⊗ V and

a∑
c=0

Uc ⊗ V of this equality are to be

understood as subspaces of U ⊗ V .

(b) Let U and V be two k-vector spaces. Let b be a nonnegative integer.
Let Vd be a subspace of V for every d ∈ {0, 1, . . . , b}. Then,

U ⊗

(
b∑

d=0

Vd

)
=

b∑
d=0

U ⊗ Vd, (203)

where both sides U ⊗
(

b∑
d=0

Vd

)
and

b∑
d=0

U ⊗ Vd of this equality are to be

understood as subspaces of U ⊗ V .

(c) Let U and V be two k-vector spaces. Let a and b be two nonnegative
integers. Let Uc be a subspace of U for every c ∈ {0, 1, . . . , a}. Let Vd be a
subspace of V for every d ∈ {0, 1, . . . , b}. Then,(

a∑
c=0

Uc

)
⊗

(
b∑

d=0

Vd

)
=

a∑
c=0

b∑
d=0

Uc ⊗ Vd, (204)

116Proof. For C and D, this is clear. For C ⊗D, this follows from Proposition 22.1 (b).
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where both sides

(
a∑
c=0

Uc

)
⊗
(

b∑
d=0

Vd

)
and

a∑
c=0

b∑
d=0

Uc ⊗ Vd of this equality

are to be understood as subspaces of U ⊗ V .

Proof of Lemma 22.2. (a) First, let us introduce some conventions:

• Whenever T is a k-vector space, Wc is a k-vector space for every c ∈ {0, 1, . . . , a},
and fc is a k-linear map Wc → T for every c ∈ {0, 1, . . . , a}, we are going to

denote by
a∑
c=0

fc the canonical k-linear map
a⊕
c=0

Wc → T induced by the family

(fc)c∈{0,1,...,a} of maps by the universal property of the direct sum. This map
a∑
c=0

fc

sends every (w0, w1, . . . , wa) ∈
a⊕
c=0

Wc to f0 (w0) + f1 (w1) + · · ·+ fa (wa) ∈ T .

• Whenever T is a k-vector space and U is a subspace of T , we denote by incU,T
the inclusion map U → T .

It is clear that, whenever T is a k-vector space and Tc is a subspace of T for every
c ∈ {0, 1, . . . , a}, then (

a∑
c=0

incTc,T

)(
a⊕
c=0

Tc

)
=

a∑
c=0

Tc (205)

where the
a⊕
c=0

Tc on the left hand side denotes an external direct sum.117

Now let us actually prove Lemma 22.2 (a). In the following, let id denote the
identity map idV . For every c ∈ {0, 1, . . . , a}, let ic denote the canonical inclusion map
incUc,U : Uc → U .

117Proof of (205): Let T be a k-vector space. Let Tc be a k-vector subspace of T for every c ∈
{0, 1, . . . , a}. We have(

a∑
c=0

incTc,T

)(
a⊕
c=0

Tc

)

=

{(
a∑
c=0

incTc,T

)
(w0, w1, . . . , wa) | (w0, w1, . . . , wa) ∈

a⊕
c=0

Tc

}
. (206)

But every (w0, w1, . . . , wa) ∈
a⊕
c=0

Tc satisfies

(
a∑
c=0

incTc,T

)
(w0, w1, . . . , wa)

= incT0,T (w0) + incT1,T (w1) + · · ·+ incTa,T (wa)

(
by the definition of

a∑
c=0

incTc,T

)

=

a∑
c=0

(incTc,T (wc))︸ ︷︷ ︸
=wc

(since incTc,T is an inclusion map)

=

a∑
c=0

wc.
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For every c ∈ {0, 1, . . . , a}, we are identifying Uc ⊗ V with a subspace of U ⊗ V .
We are doing this identification by means of the map incUc,U︸ ︷︷ ︸

=ic

⊗ incV,V︸ ︷︷ ︸
=id

= ic⊗ id. Hence,

for every c ∈ {0, 1, . . . , a}, we consider ic ⊗ id to be the canonical inclusion map
Uc ⊗ V → U ⊗ V . Thus, for every c ∈ {0, 1, . . . , a}, we have

ic ⊗ id = (the canonical inclusion map Uc ⊗ V → U ⊗ V ) = incUc⊗V,U⊗V .

Hence, (206) becomes(
a∑
c=0

incTc,T

)(
a⊕
c=0

Tc

)

=



(
a∑
c=0

incTc,T

)
(w0, w1, . . . , wa)︸ ︷︷ ︸

=
a∑
c=0

wc

| (w0, w1, . . . , wa) ∈
a⊕
c=0

Tc



=



a∑
c=0

wc | (w0, w1, . . . , wa) ∈
a⊕
c=0

Tc︸ ︷︷ ︸
this is equivalent to (w0, w1, . . . , wa) ∈

a∏
c=0

Tc, and

all but finitely many i ∈ {0, 1, . . . , a} satisfy wi = 0


(since

a⊕
c=0

Tc is the set of all (u0,u1,...,ua)∈
a∏
c=0

Tc such that

all but finitely many i∈{0,1,...,a} satisfy ui=0)


=


a∑
c=0

wc |

 (w0, w1, . . . , wa) ∈
a∏
c=0

Tc, and

all but finitely many i ∈ {0, 1, . . . , a} satisfy wi = 0

 .

Compared with

a∑
c=0

Tc =


a∑
c=0

wc |

 (w0, w1, . . . , wa) ∈
a∏
c=0

Tc, and

all but finitely many i ∈ {0, 1, . . . , a} satisfy wi = 0


(by the definition of

a∑
c=0

Tc), this yields

(
a∑
c=0

incTc,T

)(
a⊕
c=0

Tc

)
=

a∑
c=0

Tc. This proves (205).
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Hence, a∑
c=0

(ic ⊗ id)︸ ︷︷ ︸
=incUc⊗V,U⊗V

( a⊕
c=0

(Uc ⊗ V )

)
=

(
a∑
c=0

incUc⊗V,U⊗V

)(
a⊕
c=0

(Uc ⊗ V )

)

=
a∑
c=0

Uc ⊗ V

(by (205), applied to T = U ⊗ V and Tc = Uc ⊗ V ).

On the other hand, the map
a∑
c=0

ic :
a⊕
c=0

Uc → U satisfies

 a∑
c=0

ic︸︷︷︸
=incUc,U

( a⊕
c=0

Uc

)
=

(
a∑
c=0

incUc,U

)(
a⊕
c=0

Uc

)
=

a∑
c=0

Uc

(by (205), applied to T = U and Tc = Uc).
Since the tensor product is known to commute with direct sums, there is a canonical

k-vector space isomorphism

(
a⊕
c=0

Uc

)
⊗ V →

a⊕
c=0

(Uc ⊗ V ). Denote this isomorphism

by I. By the universal property of I, we know that whenever W is a k-vector space,
and fc is a k-vector space homomorphism Uc → W for every c ∈ {0, 1, . . . , a}, the
diagram (

a⊕
c=0

Uc

)
⊗ V I //

(
a∑
c=0

fc

)
⊗id

&&

a⊕
c=0

(Uc ⊗ V )

a∑
c=0

(fc⊗id)

��

W ⊗ V

commutes (where id denotes the identity map idV ). Applying this to W = U and
fc = ic, we obtain the following result: The diagram(

a⊕
c=0

Uc

)
⊗ V I //

(
a∑
c=0

ic

)
⊗id

&&

a⊕
c=0

(Uc ⊗ V )

a∑
c=0

(ic⊗id)

��

U ⊗ V

commutes (where id denotes the identity map idV ). In other words,(
a∑
c=0

ic

)
⊗ id =

(
a∑
c=0

(ic ⊗ id)

)
◦ I.
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Thus, ((
a∑
c=0

ic

)
⊗ id

)((
a⊕
c=0

Uc

)
⊗ V

)

=

((
a∑
c=0

(ic ⊗ id)

)
◦ I

)((
a⊕
c=0

Uc

)
⊗ V

)

=

(
a∑
c=0

(ic ⊗ id)

)(
I

((
a⊕
c=0

Uc

)
⊗ V

))
︸ ︷︷ ︸

=
a⊕
c=0

(Uc⊗V )

(since I is an isomorphism)

=

(
a∑
c=0

(ic ⊗ id)

)(
a⊕
c=0

(Uc ⊗ V )

)
=

a∑
c=0

Uc ⊗ V.

Compared with((
a∑
c=0

ic

)
⊗ id

)((
a⊕
c=0

Uc

)
⊗ V

)
=

((
a∑
c=0

ic

)(
a⊕
c=0

Uc

))
︸ ︷︷ ︸

=
a∑
c=0

Uc

⊗ id (V )︸ ︷︷ ︸
=V

=

(
a∑
c=0

Uc

)
⊗ V,

this yields

(
a∑
c=0

Uc

)
⊗ V =

a∑
c=0

Uc ⊗ V . This proves Lemma 22.2 (a).

(b) The proof of Lemma 22.2 (b) proceeds by the same arguments as the proof of
Lemma 22.2 (a) that we gave above (the only real difference is that this time, the sum
stands in the second tensorand rather than in the first one).

(c) We have

(
a∑
c=0

Uc

)
⊗

(
b∑

d=0

Vd

)
=

a∑
c=0


Uc ⊗

(
b∑

d=0

Vd

)
︸ ︷︷ ︸

=
b∑

d=0
Uc⊗Vd

(by Lemma 22.2 (b), applied to Uc instead of U)


(

by Lemma 22.2 (a), applied to
b∑

d=0

Vd instead of V

)

=
a∑
c=0

b∑
d=0

Uc ⊗ Vd.

This proves Lemma 22.2 (c).
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One more linear-algebraic triviality will be useful:

Lemma 22.3. Let k be a field. Let V and W be two k-vector spaces.
Let V ′ be a vector subspace of V . Let W ′ be a vector subspace of W .
Then, τV,W (V ′ ⊗W ′) = W ′ ⊗ V ′, where τV,W is the (V,W )-flip defined in
Definition 9.2.

Proof of Lemma 22.3. Since a tensor product of k-vector spaces is always generated
by pure tensors, we have

V ′ ⊗W ′ = 〈v ⊗ w | (v, w) ∈ V ′ ×W ′〉 = 〈{v ⊗ w | (v, w) ∈ V ′ ×W ′}〉 .

Hence,

τV,W (V ′ ⊗W ′) = τV,W (〈{v ⊗ w | (v, w) ∈ V ′ ×W ′}〉)

=

〈
τV,W ({v ⊗ w | (v, w) ∈ V ′ ×W ′})︸ ︷︷ ︸

={τV,W (v⊗w) | (v,w)∈V ′×W ′}

〉
(by (165))

=

〈 τV,W (v ⊗ w)︸ ︷︷ ︸
=w⊗v

(by the definition of τV,W )

| (v, w) ∈ V ′ ×W ′


〉

= 〈{w ⊗ v | (v, w) ∈ V ′ ×W ′}〉 = 〈w ⊗ v | (v, w) ∈ V ′ ×W ′〉
= 〈x⊗ y | (x, y) ∈ W ′ × V ′〉(

here, we substituted (w, v) by (x, y) ,
since the map V ′ ×W ′ → W ′ × V ′, (v, w) 7→ (w, v) is a bijection

)
.

Compared with

W ′ ⊗ V ′ = 〈x⊗ y | (x, y) ∈ W ′ × V ′〉
(since a tensor product is always generated by pure tensors) ,

this yields τV,W (V ′ ⊗W ′) = W ′ ⊗ V ′. This proves Lemma 22.3.

Proof of Proposition 22.1. (a) For every a ∈ N, we have ∆C (C≤a) ⊆
a∑
c=0

C≤c ⊗ C≤a−c

(since C is a filtered k-coalgebra). For every b ∈ N, we have ∆D (D≤b) ⊆
b∑

d=0

D≤d ⊗

D≤b−d (since D is a filtered k-coalgebra).
We notice that

C≤α ⊗D≤β ⊆ (C ⊗D)≤α+β for any (α, β) ∈ N×2. (207)

118

118Proof of (207). Let (α, β) ∈ N×2. Then, this pair (α, β) ∈ N×2 satisfies α + β = α + β. Hence,
C≤α ⊗ D≤β is an addend of the sum

∑
(a,b)∈N×2;
a+b=α+β

C≤a ⊗ D≤b (namely, the addend for (a, b) = (α, β)).
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Now, let ` ∈ N.
Let τC,D : C ⊗D → D ⊗ C be the (C,D)-flip, defined as in Definition 9.2. Then,

by the definition of the k-coalgebra C ⊗ D, we have ∆C⊗D = (idC ⊗τC,D ⊗ idD) ◦
(∆C ⊗∆D). Hence,

∆C⊗D
(
(C ⊗D)≤`

)
= ((idC ⊗τC,D ⊗ idD) ◦ (∆C ⊗∆D))

(
(C ⊗D)≤`

)

= (idC ⊗τC,D ⊗ idD)

(∆C ⊗∆D)
(
(C ⊗D)≤`

)︸ ︷︷ ︸
=

∑
(a,b)∈N×2;
a+b=`

C≤a⊗D≤b



= (idC ⊗τC,D ⊗ idD)

(∆C ⊗∆D)

 ∑
(a,b)∈N×2;
a+b=`

C≤a ⊗D≤b


 .

Thus, C≤α⊗D≤β ⊆
∑

(a,b)∈N×2;
a+b=α+β

C≤a⊗D≤b. Since (C ⊗D)≤α+β =
∑

(a,b)∈N×2;
a+b=α+β

C≤a⊗D≤b (by the definition

of (C ⊗D)≤α+β), we thus have

C≤α ⊗D≤β ⊆
∑

(a,b)∈N×2;
a+b=α+β

C≤a ⊗D≤b = (C ⊗D)≤α+β .

This proves (207).
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But since

(∆C ⊗∆D)

 ∑
(a,b)∈N×2;
a+b=`

C≤a ⊗D≤b


=

∑
(a,b)∈N×2;
a+b=`

(∆C ⊗∆D) (C≤a ⊗D≤b)︸ ︷︷ ︸
⊆(∆C(C≤a))⊗(∆D(D≤b))

(since ∆C ⊗∆D is k-linear)

⊆
∑

(a,b)∈N×2;
a+b=`

(∆C (C≤a))︸ ︷︷ ︸
⊆

a∑
c=0

C≤c⊗C≤a−c

⊗ (∆D (D≤b))︸ ︷︷ ︸
⊆

b∑
d=0

D≤d⊗D≤b−d

⊆
∑

(a,b)∈N×2;
a+b=`

(
a∑
c=0

C≤c ⊗ C≤a−c

)
⊗

(
b∑

d=0

D≤d ⊗D≤b−d

)
︸ ︷︷ ︸

=
a∑
c=0

b∑
d=0

(C≤c⊗C≤a−c)⊗(D≤d⊗D≤b−d)
(by Lemma 22.2 (c), applied to U=C⊗C, V=D⊗D,

Uc=C≤c⊗C≤a−c and Vd=D≤d⊗D≤b−d)

=
∑

(a,b)∈N×2;
a+b=`

a∑
c=0

b∑
d=0

(C≤c ⊗ C≤a−c)⊗ (D≤d ⊗D≤b−d)︸ ︷︷ ︸
=C≤c⊗C≤a−c⊗D≤d⊗D≤b−d

=
∑

(a,b)∈N×2;
a+b=`

a∑
c=0

b∑
d=0

C≤c ⊗ C≤a−c ⊗D≤d ⊗D≤b−d,
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this becomes

∆C⊗D
(
(C ⊗D)≤`

)

⊆ (idC ⊗τC,D ⊗ idD)


(∆C ⊗∆D)

 ∑
(a,b)∈N×2;
a+b=`

C≤a ⊗D≤b


︸ ︷︷ ︸
⊆

∑
(a,b)∈N×2;
a+b=`

a∑
c=0

b∑
d=0

C≤c⊗C≤a−c⊗D≤d⊗D≤b−d



⊆ (idC ⊗τC,D ⊗ idD)

 ∑
(a,b)∈N×2;
a+b=`

a∑
c=0

b∑
d=0

C≤c ⊗ C≤a−c ⊗D≤d ⊗D≤b−d


=

∑
(a,b)∈N×2;
a+b=`

a∑
c=0

b∑
d=0

(idC ⊗τC,D ⊗ idD) (C≤c ⊗ C≤a−c ⊗D≤d ⊗D≤b−d)︸ ︷︷ ︸
=idC(C≤c)⊗τC,D(C≤a−c⊗D≤d)⊗idD(D≤b−d)

(since idC ⊗τC,D ⊗ idD is k-linear)

=
∑

(a,b)∈N×2;
a+b=`

a∑
c=0

b∑
d=0

idC (C≤c)︸ ︷︷ ︸
=C≤c

⊗ τC,D (C≤a−c ⊗D≤d)︸ ︷︷ ︸
=D≤d⊗C≤a−c

(by Lemma 22.3, applied to
V=C, W=D, V ′=C≤a−c and W ′=D≤d)

⊗ idD (D≤b−d)︸ ︷︷ ︸
=D≤b−d

=
∑

(a,b)∈N×2;
a+b=`

a∑
c=0

b∑
d=0

C≤c ⊗D≤d ⊗ C≤a−c ⊗D≤b−d. (208)

But we can easily see that
for every (a, b) ∈ N×2 satisfying a+ b = `, for every

c ∈ {0, 1, . . . , a} and for every d ∈ {0, 1, . . . , b} , we have

C≤c ⊗D≤d ⊗ C≤a−c ⊗D≤b−d ⊆
∑̀
m=0

(C ⊗D)≤m ⊗ (C ⊗D)≤`−m

 . (209)
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119 Hence, (208) becomes

∆C⊗D
(
(C ⊗D)≤`

)
⊆

∑
(a,b)∈N×2;
a+b=`

a∑
c=0

b∑
d=0

C≤c ⊗D≤d ⊗ C≤a−c ⊗D≤b−d︸ ︷︷ ︸
⊆
∑̀
m=0

(C⊗D)≤m⊗(C⊗D)≤`−m

(by (209) (since (a,b)∈N×2, a+b=`,
c∈{0,1,...,a} and d∈{0,1,...,b}))

⊆
∑

(a,b)∈N×2;
a+b=`

a∑
c=0

b∑
d=0

∑̀
m=0

(C ⊗D)≤m ⊗ (C ⊗D)≤`−m

⊆
∑̀
m=0

(C ⊗D)≤m ⊗ (C ⊗D)≤`−m(
since

∑̀
m=0

(C ⊗D)≤m ⊗ (C ⊗D)≤`−m is a k-vector space

)
.

Now forget that we fixed `. We thus have proved that every ` ∈ N satisfies

∆C⊗D
(
(C ⊗D)≤`

)
⊆
∑̀
m=0

(C ⊗D)≤m⊗(C ⊗D)≤`−m. In other words,
(
C ⊗D,

(
(C ⊗D)≤`

)
`≥0

)
is a filtered k-coalgebra. This proves Proposition 22.1 (a).

(b) Assume that the filtered k-coalgebras C and D are connected.
By the definition of (C ⊗D)≤0, we have (C ⊗D)≤0 =

∑
(a,b)∈N×2;
a+b=0

C≤a⊗D≤b. But the

119Proof of (209). Let (a, b) ∈ N×2 satisfy a + b = `. Let c ∈ {0, 1, . . . , a} and d ∈ {0, 1, . . . , b}
be arbitrary. Then, 0 ≤ c ≤ a (since c ∈ {0, 1, . . . , a}) and 0 ≤ d ≤ b (since d ∈ {0, 1, . . . , b}).
Hence, c︸︷︷︸

≤a

+ d︸︷︷︸
≤b

≤ a + b = ` and c︸︷︷︸
≥0

+ d︸︷︷︸
≥0

≥ 0 + 0 = 0. Thus, c + d ∈ {0, 1, . . . , `}. Hence,

(C ⊗D)≤c+d ⊗ (C ⊗D)≤`−(c+d) is an addend of the sum
∑̀
m=0

(C ⊗D)≤m ⊗ (C ⊗D)≤`−m (namely,

the addend for m = c+ d). Thus,

(C ⊗D)≤c+d ⊗ (C ⊗D)≤`−(c+d) ⊆
∑̀
m=0

(C ⊗D)≤m ⊗ (C ⊗D)≤`−m .

But now,

C≤c ⊗D≤d︸ ︷︷ ︸
⊆(C⊗D)≤c+d

(by (207), applied to (α,β)=(c,d))

⊗ C≤a−c ⊗D≤b−d︸ ︷︷ ︸
⊆(C⊗D)≤(a−c)+(b−d)

(by (207), applied to (α,β)=(a−c,b−d))

⊆ (C ⊗D)≤c+d ⊗ (C ⊗D)≤(a−c)+(b−d) = (C ⊗D)≤c+d ⊗ (C ⊗D)≤`−(c+d)since (a− c) + (b− d) = (a+ b)︸ ︷︷ ︸
=`

− (c+ d) = `− (c+ d)


⊆
∑̀
m=0

(C ⊗D)≤m ⊗ (C ⊗D)≤`−m .

This proves (209).
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only pair (a, b) ∈ N×2 satisfying a+ b = 0 is (0, 0). Hence, the sum
∑

(a,b)∈N×2;
a+b=0

C≤a⊗D≤b

has only one addend, namely C≤0 ⊗D≤0. Thus,
∑

(a,b)∈N×2;
a+b=0

C≤a ⊗D≤b = C≤0 ⊗D≤0, so

we conclude that

(C ⊗D)≤0 =
∑

(a,b)∈N×2;
a+b=0

C≤a ⊗D≤b = C≤0 ⊗D≤0.

Since C is connected, the map εC |C≤0
: C≤0 → k is a k-vector space isomorphism (by

Definition 1.16). Similarly, the map εD |D≤0
: D≤0 → k is a k-vector space isomorphism.

Since the maps εC |C≤0
: C≤0 → k and εD |D≤0

: D≤0 → k are k-vector space

isomorphisms, their tensor product
(
εC |C≤0

)
⊗
(
εD |D≤0

)
must also be a k-vector space

isomorphism (since the tensor product of two k-vector space isomorphisms always is a
k-vector space isomorphism).

Let µk be the canonical k-vector space isomorphism k ⊗ k → k. Now, we have
µk ◦

((
εC |C≤0

)
⊗
(
εD |D≤0

))
= εC⊗D |C≤0⊗D≤0

120. Hence,

µk◦
((
εC |C≤0

)
⊗
(
εD |D≤0

))
= εC⊗D |C≤0⊗D≤0

= εC⊗D |(C⊗D)≤0

(
since C≤0 ⊗D≤0 = (C ⊗D)≤0

)
.

Since we know that µk ◦
((
εC |C≤0

)
⊗
(
εD |D≤0

))
is a k-vector space isomorphism (be-

cause µk and
(
εC |C≤0

)
⊗
(
εD |D≤0

)
are k-vector space isomorphisms, and because the

composition of two k-vector space isomorphisms is always a k-vector space isomor-
phism), we can thus conclude that εC⊗D |(C⊗D)≤0

is a k-vector space isomorphism.

Now, by Definition 1.16 (applied to C ⊗ D instead of C), the filtered k-coalgebra
C ⊗ D is connected if and only if the map εC⊗D |(C⊗D)≤0

: (C ⊗D)≤0 → k is a k-

vector space isomorphism. Since we already know that the map εC⊗D |(C⊗D)≤0
is a

120Proof. For every (x, y) ∈ C≤0 ×D≤0, we have(
µk ◦

((
εC |C≤0

)
⊗
(
εD |D≤0

)))
(x⊗ y)

= µk

((εC |C≤0

)
⊗
(
εD |D≤0

))
(x⊗ y)︸ ︷︷ ︸

=
((
εC |C≤0

)
(x)
)
⊗
((
εD|D≤0

)
(y)
)

 = µk

((εC |C≤0

)
(x)
)︸ ︷︷ ︸

=εC(x)

⊗
((
εD |D≤0

)
(y)
)︸ ︷︷ ︸

=εD(y)



= µk

(εC (x))⊗ (εD (y))︸ ︷︷ ︸
=(εC⊗εD)(x⊗y)

 = µk ((εC ⊗ εD) (x⊗ y)) = (µk ◦ (εC ⊗ εD)) (x⊗ y)

and (
εC⊗D |C≤0⊗D≤0

)
(x⊗ y) = εC⊗D (x⊗ y) = (µk ◦ (εC ⊗ εD)) (x⊗ y)

(since, by the definition of the k-coalgebra C ⊗D, we have εC⊗D = µk ◦ (εC ⊗ εD)). Thus, for every
(x, y) ∈ C≤0 ×D≤0, we have(

µk ◦
((
εC |C≤0

)
⊗
(
εD |D≤0

)))
(x⊗ y) = (µk ◦ (εC ⊗ εD)) (x⊗ y) =

(
εC⊗D |C≤0⊗D≤0

)
(x⊗ y) .

In other words, the two maps µk◦
((
εC |C≤0

)
⊗
(
εD |D≤0

))
and εC⊗D |C≤0⊗D≤0

are equal to each other
on each pure tensor in C≤0⊗D≤0. Since these two maps are k-linear, this yields that these two maps
must be identic (because any two k-linear maps from a tensor product which are equal to each other
on each pure tensor must be identic). In other words, µk ◦

((
εC |C≤0

)
⊗
(
εD |D≤0

))
= εC⊗D |C≤0⊗D≤0

,
qed.
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k-vector space isomorphism, we can thus conclude that the filtered k-coalgebra C ⊗D
is connected. This proves Proposition 22.1 (b).

(c) Assume that the filtered k-coalgebras C and D are connected.
Since 1C is the unity of the unital coalgebra C, we see that (C, 1C) is a unital

coalgebra, so that ∆C (1C) = 1C ⊗ 1C and εC (1C) = 1 (by the definition of a unital
coalgebra). Similarly to εC (1C) = 1, we can prove that εD (1D) = 1.

Let µk be the canonical k-vector space isomorphism k ⊗ k → k. Now, by the
definition of the k-coalgebra C ⊗D, we have εC⊗D = µk ◦ (εC ⊗ εD), so that

εC⊗D (1C ⊗ 1D) = (µk ◦ (εC ⊗ εD)) (1C ⊗ 1D) = µk

(εC ⊗ εD) (1C ⊗ 1D)︸ ︷︷ ︸
=εC(1C)⊗εD(1D)


= µk

εC (1C)︸ ︷︷ ︸
=1

⊗ εD (1D)︸ ︷︷ ︸
=1

 = µk (1⊗ 1) = 1 · 1 (by the definition of µk)

= 1.

By Remark 2.10, we have 1C =
(
εC |C≤0

)−1
(1) ∈ C≤0. Similarly, 1D ∈ D≤0. Thus,

1C︸︷︷︸
∈C≤0

⊗ 1D︸︷︷︸
∈D≤0

∈ C≤0 ⊗ D≤0 = (C ⊗D)≤0 (by the above proof of Proposition 22.1 (b)).

Hence,
(
εC⊗D |(C⊗D)≤0

)
(1C ⊗ 1D) is well-defined, and we have(

εC⊗D |(C⊗D)≤0

)
(1C ⊗ 1D) = εC⊗D (1C ⊗ 1D) = 1.

Since the filtered k-coalgebra C ⊗ D is connected (by Proposition 22.1 (b)), the
map εC⊗D |(C⊗D)≤0

is a k-vector space isomorphism (by the definition of “connected”).

Thus, the identity
(
εC⊗D |(C⊗D)≤0

)
(1C ⊗ 1D) = 1 (which was proven above) rewrites

as 1C ⊗ 1D =
(
εC⊗D |(C⊗D)≤0

)−1

(1).

Now,

1C⊗D =
(
εC⊗D |(C⊗D)≤0

)−1

(1) (by Remark 2.10, applied to C ⊗D instead of C)

= 1C ⊗ 1D.

This proves Proposition 22.1 (c).

Now to the question of how the logarithm acts on tensor products:

Proposition 22.4. Let k be a field of characteristic 0. Let C and D be
two connected filtered k-coalgebras. Let A and B be k-algebras. Let a map
eD,B : D → B be defined as in Definition 1.12. Recall that C ⊗ D is a
k-coalgebra and A ⊗ B is a k-algebra; hence, L (C ⊗D,A⊗B) becomes
a k-algebra with respect to convolution. We notice that the filtered k-
coalgebra C ⊗D is connected (by Proposition 22.1 (b)), so that there is a
well-defined notion of Log T for maps T ∈ G (C ⊗D,A⊗B).
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(a) For any F ∈ G (C,A), we have F ⊗ eD,B ∈ G (C ⊗D,A⊗B) and
Log (F ⊗ eD,B) = (LogF )⊗ eD,B.

(b) For any H ∈ G (D,B), we have eC,A ⊗ H ∈ G (C ⊗D,A⊗B) and
Log (eC,A ⊗H) = eC,A ⊗ (LogH).

(c) For any F ∈ G (C,A) andH ∈ G (D,B), we have F⊗H ∈ G (C ⊗D,A⊗B)
and Log (F ⊗H) = (LogF )⊗ eD,B + eC,A ⊗ (LogH).

First, again, a harmless lemma:

Lemma 22.5. Let k be a field. Let C and D be two connected filtered
k-coalgebras. Let A and B be two k-algebras. Let F ∈ G (C,A) and
H ∈ G (D,B) be arbitrary. Then, F ⊗H ∈ G (C ⊗D,A⊗B). (Here, we
are using the notation G (C ⊗D,A⊗B); this notation makes sense since
C ⊗D is a connected filtered k-coalgebra (by Proposition 22.1 (b)).)

Proof of Lemma 22.5. We have

F ∈ G (C,A) = {f ∈ L (C,A) | f (1C) = 1A} (by the definition of G (C,A)) ,

so that F (1C) = 1A. Similarly, H (1D) = 1B. Now, 1C⊗D = 1C ⊗ 1D, and thus

(F ⊗H) (1C⊗D) = (F ⊗H) (1C ⊗ 1D) = F (1C)︸ ︷︷ ︸
=1A

⊗H (1D)︸ ︷︷ ︸
=1B

= 1A ⊗ 1B = 1A⊗B,

so that

F ⊗H ∈ {f ∈ L (C ⊗D,A⊗B) | f (1C⊗D) = 1A⊗B} = G (C ⊗D,A⊗B)(
since G (C ⊗D,A⊗B) = {f ∈ L (C ⊗D,A⊗B) | f (1C⊗D) = 1A⊗B}

by the definition of G (C ⊗D,A⊗B)

)
.

This proves Lemma 22.5.

Proof of Proposition 22.4. (a) Let F ∈ G (C,A). By Lemma 22.5 (applied to H =
eD,B), we obtain F ⊗ eD,B ∈ G (C ⊗D,A⊗B). In order to prove Proposition 22.4
(a), it thus remains to show that Log (F ⊗ eD,B) = (LogF )⊗ eD,B.

Let f = F − eC,A. Then,

f︸︷︷︸
=F−eC,A

⊗eD,B = (F − eC,A)⊗ eD,B = F ⊗ eD,B − eC,A ⊗ eD,B︸ ︷︷ ︸
=eC⊗D,A⊗B

(by Corollary 9.11 (b))

= F ⊗ eD,B − eC⊗D,A⊗B. (210)

Now let (c, d) ∈ C ×D. Then, c ∈ C and d ∈ D.
By the definition of Log, we have LogF = Log1 (F − eC,A)︸ ︷︷ ︸

=f

= Log1 f , so that

(LogF ) (c) = (Log1 f) (c) =
∑
i≥1

(−1)i−1

i
f ∗i (c) (by (8), applied to C and c instead of H and x) .

230



Now,

((LogF )⊗ eD,B) (c⊗ d)

= (LogF ) (c)︸ ︷︷ ︸
=
∑
i≥1

(−1)i−1

i
f∗i(c)

⊗eD,B (d) (by the definition of (LogF )⊗ eD,B)

=

(∑
i≥1

(−1)i−1

i
f ∗i (c)

)
⊗ eD,B (d)

=
∑
i≥1

(−1)i−1

i
f ∗i (c)⊗ eD,B (d)︸ ︷︷ ︸

=(f∗i⊗eD,B)(c⊗d)

 (since the tensor product is k-bilinear)

=
∑
i≥1

(−1)i−1

i

(
f ∗i ⊗ eD,B

)
(c⊗ d) .

On the other hand, by the definition of Log, we have

Log (F ⊗ eD,B) = Log1 (F ⊗ eD,B − eC⊗D,A⊗B)︸ ︷︷ ︸
=f⊗eD,B
(by (210))

= Log1 (f ⊗ eD,B) ,

so that

(Log (F ⊗ eD,B)) (c⊗ d) = (Log1 (f ⊗ eD,B)) (c⊗ d) =
∑
i≥1

(−1)i−1

i
(f ⊗ eD,B)∗i︸ ︷︷ ︸

=f∗i⊗eD,B
(by Corollary 9.11 (c))

(c⊗ d)

(
by (8), applied to f ⊗ eD,B, C ⊗D, A⊗B and c⊗ d

instead of f , H, A and x

)
=
∑
i≥1

(−1)i−1

i

(
f ∗i ⊗ eD,B

)
(c⊗ d) .

Hence,

((LogF )⊗ eD,B) (c⊗ d) =
∑
i≥1

(−1)i−1

i

(
f ∗i ⊗ eD,B

)
(c⊗ d) = (Log (F ⊗ eD,B)) (c⊗ d) .

Now forget that we fixed (c, d). We have proven that every (c, d) ∈ C ×D satisfies
((LogF )⊗ eD,B) (c⊗ d) = (Log (F ⊗ eD,B)) (c⊗ d). In other words, we have shown
that the two maps (LogF )⊗ eD,B and Log (F ⊗ eD,B) are equal to each other on each
pure tensor in C ⊗ D. Since these two maps are k-linear, this yields that these two
maps are identic (because if two k-linear maps from a tensor product are equal to each
other on each pure tensor, then these two maps must be identic). In other words,
(LogF )⊗ eD,B = Log (F ⊗ eD,B). This proves Proposition 22.4 (a).

(b) The proof of Proposition 22.4 (b) differs from the proof of Proposition 22.4 (a)
only in the order of the tensorands, so there is no need to write down this proof here.
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(c) Let F ∈ G (C,A) andH ∈ G (D,B). Lemma 22.5 yields F⊗H ∈ G (C ⊗D,A⊗B).
In order to prove Proposition 22.4 (c), it thus remains only to prove that Log (F ⊗H) =
(LogF )⊗ eD,B + eC,A ⊗ (LogH).

Applying Corollary 9.10 to f = F and g = H, we obtain

(F ⊗ eD,B) ∗ (eC,A ⊗H) = F ⊗H = (eC,A ⊗H) ∗ (F ⊗ eD,B) .

In particular, this yields (F ⊗ eD,B) ∗ (eC,A ⊗H) = (eC,A ⊗H) ∗ (F ⊗ eD,B). Due
to this equality, and also due to the facts that F ⊗ eD,B ∈ G (C ⊗D,A⊗B) (by
Proposition 22.4 (a)) and eC,A⊗H ∈ G (C ⊗D,A⊗B) (by Proposition 22.4 (b)), we
can apply Theorem 21.1 to C ⊗D, A⊗B, F ⊗ eD,B and eC,A ⊗H instead of C, A, F
and H. This gives us (F ⊗ eD,B) ∗ (eC,A ⊗H) ∈ G (C ⊗D,A⊗B) and

Log ((F ⊗ eD,B) ∗ (eC,A ⊗H)) = Log (F ⊗ eD,B) + Log (eC,A ⊗H) .

Thus,

Log

 F ⊗H︸ ︷︷ ︸
=(F⊗eD,B)∗(eC,A⊗H)

 = Log ((F ⊗ eD,B) ∗ (eC,A ⊗H))

= Log (F ⊗ eD,B)︸ ︷︷ ︸
=(LogF )⊗eD,B

(by Proposition 22.4 (a))

+ Log (eC,A ⊗H)︸ ︷︷ ︸
=eC,A⊗(LogH)

(by Proposition 22.4 (b))

= (LogF )⊗ eD,B + eC,A ⊗ (LogH) .

This completes the proof of Proposition 22.4 (c).

§23. When graded bialgebras are Hopf

The following section (§23) is only tangentially related to the above. The only reason
I am putting this section here is that it extends Proposition 16.18 (c) to the case of
n ∈ Z for ∗-invertible f . More precisely, this section will (among other things) prove
the following fact:

Proposition 23.1. Let k be a field. Let C be a graded k-coalgebra. Let
A be a graded k-algebra. Let f : C → A be a graded ∗-invertible linear
map (i. e., a graded linear map which has an inverse with respect to the
operation ∗ in L (C,A)).

(a) The map f ∗(−1) (that is, the inverse of f with respect to the operation
∗ in L (C,A)) is graded.

(b) For every n ∈ Z, the map f ∗n is graded.

A consequence of this proposition is a curious property of graded bialgebras which
are Hopf algebras:

Theorem 23.2. Let k be a field. Let H be a graded k-bialgebra. Assume
that the k-bialgebra H is a Hopf algebra. Then, the antipode of the Hopf
algebra H is a graded map.
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Note that there is a notion of a “graded k-Hopf algebra”. There are two possible
ways to define this notion. One way is to define a graded k-Hopf algebra as a graded k-
bialgebra whose underlying k-bialgebra (without grading) is a Hopf algebra. The other
way is to define a graded k-Hopf algebra as a graded k-bialgebra whose underlying
k-bialgebra (without grading) is a Hopf algebra with its antipode being a graded map.
Theorem 23.2 shows that these two ways are equivalent.

Here is how to prove Theorem 23.2 using Proposition 23.1:

Proof of Theorem 23.2. Let S be the antipode of the Hopf algebra H. Then, S is the
∗-inverse of the identity map idH (because the antipode of a Hopf algebra is defined

as the ∗-inverse of its identity map). In other words, S = id
∗(−1)
H . As a consequence,

the map idH is ∗-invertible. Since the map idH is also graded, we can thus apply
Proposition 23.1 (a) to f = idH , and conclude that the map id

∗(−1)
H is graded. Since

id
∗(−1)
H = S is the antipode of H, this rewrites as follows: The antipode of H is graded.

This proves Theorem 23.2.

What remains to be done now is proving Proposition 23.1. For this, we will con-
struct a way to assign to every map f ∈ L (C,A) a map Tf ∈ End (A⊗ C) in such a
way that the convolution of maps in L (C,A) corresponds to the composition of maps
in End (A⊗ C) (in reverse order). (In other words, we will make A ⊗ C into a repre-
sentation of the k-algebra (L (C,A))op.) This construction does not require C or A to
be graded; it works in general.

Definition 23.3. Let k be a field. Let C be a k-coalgebra. Let A be a
k-algebra. For every k-linear map f : C → A, we define a k-linear map
Tf : A⊗ C → A⊗ C by

Tf = (µA ⊗ idC) ◦ (idA⊗f ⊗ idC) ◦ (idA⊗∆C) .

Proposition 23.4. Let k be a field. Let C be a k-coalgebra. Let A be a
k-algebra.

(a) For any two k-linear maps f : C → A and g : C → A, we have
Tf+g = Tf + Tg.

(b) We have T0 = 0.

(c) For any k-linear map f : C → A and any λ ∈ k, we have Tλf = λTf .

(d) For any two k-linear maps f : C → A and g : C → A, we have
Tg∗f = Tf ◦ Tg.
(e) We have TeC,A = idA⊗C .

(f) If C is a graded k-coalgebra, A is a graded k-algebra, and f is a graded
map, then Tf also is a graded map.

(g) For any ∗-invertible k-linear map f : C → A, the map Tf is invertible
and satisfies Tf∗(−1) = (Tf )

−1.

(h) Let kanC,k⊗C : C → k ⊗ C be the canonical isomorphism which sends
c to 1 ⊗ c for every c ∈ C. Let kanA⊗k,A : A ⊗ k → A be the canonical
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isomorphism which sends a ⊗ λ to λa for every (a, λ) ∈ A × k. For any
k-linear map f : C → A, we have

kanA⊗k,A ◦ (idA⊗εC) ◦ Tf ◦ (ηA ⊗ idC) ◦ kanC,k⊗C = f.

(i) If C is a graded k-coalgebra, A is a graded k-algebra, and f is a k-linear
map such that Tf is graded, then f is graded.

Proposition 23.4 is again an easy exercise to prove with the use of the Sweedler
notation, but we are going to stay pure and prove it by manipulation of maps. First,
let us make two general observations about vector spaces and tensor products:

• Observation 1: Any five k-vector spaces P , Q, R1, R2, R3 and any k-linear maps
ϕ : R1 → R2 and ψ : R2 → R3 satisfy

(idP ⊗ψ ⊗ idQ) ◦ (idP ⊗ϕ⊗ idQ) = idP ⊗ (ψ ◦ ϕ)⊗ idQ

 .

(211)
121

• Observation 2: Any four k-vector spaces P , Q, R and S and any two
k-linear maps γ : P → Q and δ : R→ S satisfy

(idQ⊗δ) ◦ (γ ⊗ idR) = (γ ⊗ idS) ◦ (idP ⊗δ)

 . (212)

122

121Proof of (211). Let P , Q, R1, R2, R3 be five k-vector space, and let ϕ : R1 → R2 and ψ : R2 → R3

be two k-linear maps. By (21) (applied to U = P , V = P , W = P , U ′ = R1, V ′ = R2, W ′ = R3,
α = idP , β = idP , α′ = ϕ and β′ = ψ), we have (idP ◦ idP ) ⊗ (ψ ◦ ϕ) = (idP ⊗ψ) ◦ (idP ⊗ϕ). By
(21) (applied to U = P ⊗ R1, V = P ⊗ R2, W = P ⊗ R3, U ′ = Q, V ′ = Q, W ′ = Q, α = idP ⊗ϕ,
β = idP ⊗ψ, α′ = idQ and β′ = idQ), we have

((idP ⊗ψ) ◦ (idP ⊗ϕ))⊗ (idQ ◦ idQ) = (idP ⊗ψ ⊗ idQ) ◦ (idP ⊗ϕ⊗ idQ) .

Thus,

(idP ⊗ψ ⊗ idQ) ◦ (idP ⊗ϕ⊗ idQ) = ((idP ⊗ψ) ◦ (idP ⊗ϕ))︸ ︷︷ ︸
=(idP ◦ idP )⊗(ψ◦ϕ)

⊗ (idQ ◦ idQ)︸ ︷︷ ︸
=idQ

= (idP ◦ idP )︸ ︷︷ ︸
=idP

⊗ (ψ ◦ ϕ)⊗ idQ = idP ⊗ (ψ ◦ ϕ)⊗ idQ .

This proves (211).
122Proof of (212). Let P , Q, R and S be four k-vector spaces. Let γ : P → Q and δ : R→ S be two
k-linear maps.

Applying (21) to U = P , V = Q, W = Q, U ′ = R, V ′ = R, W ′ = S, α = γ, β = idQ, α′ = idR and
β′ = δ, we obtain (idQ ◦γ)⊗ (δ ◦ idR) = (idQ⊗δ) ◦ (γ ⊗ idR), so that

(idQ⊗δ) ◦ (γ ⊗ idR) = (idQ ◦γ)︸ ︷︷ ︸
=γ

⊗ (δ ◦ idR)︸ ︷︷ ︸
=δ

= γ ⊗ δ.

Applying (21) to U = P , V = P , W = Q, U ′ = R, V ′ = S, W ′ = S, α = idP , β = γ, α′ = δ and
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Proof of Proposition 23.4. (a) Let f : C → A and g : C → A be two k-linear maps.
Since tensoring of k-linear maps is distributive, we have (f + g)⊗idC = f⊗idC +g⊗idC ,
so that

idA⊗ (f + g)⊗ idC = idA⊗ (f ⊗ idC +g ⊗ idC) = idA⊗f ⊗ idC + idA⊗g ⊗ idC

(since tensoring of k-linear maps is distributive), so that

(idA⊗ (f + g)⊗ idC) ◦ (idA⊗∆C) = (idA⊗f ⊗ idC + idA⊗g ⊗ idC) ◦ (idA⊗∆C)

= (idA⊗f ⊗ idC) ◦ (idA⊗∆C) + (idA⊗g ⊗ idC) ◦ (idA⊗∆C)

(since composition of k-linear maps is distributive), so that

(µA ⊗ idC) ◦ (idA⊗ (f + g)⊗ idC) ◦ (idA⊗∆C)

= (µA ⊗ idC) ◦ ((idA⊗f ⊗ idC) ◦ (idA⊗∆C) + (idA⊗g ⊗ idC) ◦ (idA⊗∆C))

= (µA ⊗ idC) ◦ (idA⊗f ⊗ idC) ◦ (idA⊗∆C) + (µA ⊗ idC) ◦ (idA⊗g ⊗ idC) ◦ (idA⊗∆C)

(since composition of k-linear maps is distributive). Now, by the definition of Tf+g, we
have

Tf+g = (µA ⊗ idC) ◦ (idA⊗ (f + g)⊗ idC)︸ ︷︷ ︸
=idA⊗f⊗idC + idA⊗g⊗idC

(since the tensor product of k-linear maps is distributive)

◦ (idA⊗∆C)

= (µA ⊗ idC) ◦ (idA⊗f ⊗ idC + idA⊗g ⊗ idC) ◦ (idA⊗∆C)

= (µA ⊗ idC) ◦ (idA⊗f ⊗ idC) ◦ (idA⊗∆C)︸ ︷︷ ︸
=Tf

(since Tf was defined as (µA⊗idC)◦(idA⊗f⊗idC)◦(idA⊗∆C))

+ (µA ⊗ idC) ◦ (idA⊗g ⊗ idC) ◦ (idA⊗∆C)︸ ︷︷ ︸
=Tg

(since Tg was defined as (µA⊗idC)◦(idA⊗g⊗idC)◦(idA⊗∆C))

(since the composition of k-linear maps is distributive)

= Tf + Tg.

This proves Proposition 23.4 (a).
(c) Let f : C → A be a k-linear map, and let λ ∈ k. Since tensoring of k-

linear maps is k-bilinear, we have (λf) ⊗ idC = λ (f ⊗ idC) and idA⊗ (λ (f ⊗ idC)) =
λ (idA⊗f ⊗ idC). Thus,

idA⊗ (λf)⊗ idC︸ ︷︷ ︸
=λ(f⊗idC)

= idA⊗ (λ (f ⊗ idC)) = λ (idA⊗f ⊗ idC) .

Since composition of k-linear maps is k-bilinear, we have

(λ (idA⊗f ⊗ idC)) ◦ (idA⊗∆C) = λ ((idA⊗f ⊗ idC) ◦ (idA⊗∆C)) .

β′ = idS , we obtain (γ ◦ idP )⊗ (idS ◦δ) = (γ ⊗ idS) ◦ (idP ⊗δ), so that

(γ ⊗ idS) ◦ (idP ⊗δ) = (γ ◦ idP )︸ ︷︷ ︸
=γ

◦ (idS ◦δ)︸ ︷︷ ︸
=δ

= γ ⊗ δ = (idQ⊗δ) ◦ (γ ⊗ idR) .

This proves (212).
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By the definition of Tλf , we have

Tf = (µA ⊗ idC) ◦ (idA⊗ (λf)⊗ idC)︸ ︷︷ ︸
=λ(idA⊗f⊗idC)

◦ (idA⊗∆C)

= (µA ⊗ idC) ◦ (λ (idA⊗f ⊗ idC)) ◦ (idA⊗∆C)︸ ︷︷ ︸
=λ((idA⊗f⊗idC)◦(idA⊗∆C))

= (µA ⊗ idC) ◦ (λ ((idA⊗f ⊗ idC) ◦ (idA⊗∆C)))

= λ · (µA ⊗ idC) ◦ (idA⊗f ⊗ idC) ◦ (idA⊗∆C)︸ ︷︷ ︸
=Tf

(since composition of k-linear maps is k-bilinear)

= λTf .

This proves Proposition 23.4 (c).
(b) Applying Proposition 23.4 (b) to λ = 0 and f = 0, we obtain T0·0 = 0T0 = 0.

In other words, T0 = 0. This proves Proposition 23.4 (c).
(d) Let f : C → A and g : C → A be two k-linear maps.
Applying (212) to P = A ⊗ A, Q = A, R = C, S = C ⊗ C, γ = µA and δ = ∆C ,

we obtain
(idA⊗∆C) ◦ (µA ⊗ idC) = (µA ⊗ idC⊗C) ◦ (idA⊗A⊗∆C) . (213)

Next, we notice that

(idA⊗f ⊗ idC) ◦ (µA ⊗ idC⊗C) = ((µA ⊗ idA) ◦ (idA⊗A⊗f))⊗ idC (214)

123. Using this equality, we can easily get

(µA ⊗ idC) ◦ (idA⊗f ⊗ idC) ◦ (µA ⊗ idC⊗C) = (µA ◦ (µA ⊗ idA) ◦ (idA⊗A⊗f))⊗ idC
(215)

123Proof. Applying (212) to P = A⊗A, Q = A, R = C, S = A, γ = µA and δ = f , we obtain

(idA⊗f) ◦ (µA ⊗ idC) = (µA ⊗ idA) ◦ (idA⊗A⊗f) .

Applying (21) to U = A⊗A⊗C, V = A⊗C, W = A⊗A, U ′ = C, V ′ = C, W ′ = C, α = µA⊗ idC ,
β = idA⊗f , α′ = idC and β′ = idC , we obtain

((idA⊗f) ◦ (µA ⊗ idC))⊗ (idC ◦ idC) = (idA⊗f ⊗ idC) ◦

µA ⊗ idC ⊗ idC︸ ︷︷ ︸
=idC⊗C


= (idA⊗f ⊗ idC) ◦ (µA ⊗ idC⊗C) ,

so that

(idA⊗f ⊗ idC) ◦ (µA ⊗ idC⊗C) = ((idA⊗f) ◦ (µA ⊗ idC))︸ ︷︷ ︸
=(µA⊗idA)◦(idA⊗A⊗f)

⊗ (idC ◦ idC)︸ ︷︷ ︸
=idC

= ((µA ⊗ idA) ◦ (idA⊗A⊗f))⊗ idC .

This proves (214).
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124. Since µA ◦ (µA ⊗ idA) = µA ◦ (idA⊗µA) (by the axioms of a k-algebra, since A is
a k-algebra), this becomes

(µA ⊗ idC) ◦ (idA⊗f ⊗ idC) ◦ (µA ⊗ idC⊗C)

=

µA ◦ (µA ⊗ idA)︸ ︷︷ ︸
=µA◦(idA⊗µA)

◦ (idA⊗A⊗f)

⊗ idC︸︷︷︸
=idC ◦ idC

= (µA ◦ (idA⊗µA) ◦ (idA⊗A⊗f))⊗ (idC ◦ idC)

=

(µA ◦ (idA⊗µA))⊗ idC︸︷︷︸
=idC ◦ idC

 ◦
 idA⊗A︸ ︷︷ ︸

=idA⊗ idA

⊗f ⊗ idC


(

by (21), applied to U = A⊗ A⊗ C, V = A⊗ A⊗ A, W = A, U ′ = C, V ′ = C,
W ′ = C, α = idA⊗A⊗f , β = µA ◦ (idA⊗µA) , α′ = idC and β′ = idC )

)
= ((µA ◦ (idA⊗µA))⊗ (idC ◦ idC))︸ ︷︷ ︸

=(µA⊗idC)◦(idA⊗µA⊗idC)
(by (21), applied to U=A⊗A⊗A, V=A⊗A, W=A,

U ′=C, V ′=C, W ′=C, α=idA⊗µA, β=µA, α′=idC and β′=idC )

◦ (idA⊗ idA⊗f ⊗ idC)

= (µA ⊗ idC) ◦ (idA⊗µA ⊗ idC) ◦ (idA⊗ idA⊗f ⊗ idC) . (216)

On the other hand,

(idA⊗A⊗∆C) ◦ (idA⊗g ⊗ idC) = idA⊗ ((g ⊗ idC⊗C) ◦ (idC ⊗∆C)) (217)

125. Using this equality, we can easily get

(idA⊗A⊗∆C) ◦ (idA⊗g ⊗ idC) ◦ (idA⊗∆C) = idA⊗ ((g ⊗ idC⊗C) ◦ (idC ⊗∆C) ◦∆C)
(218)

124Proof of (215). Applying (21) to U = A⊗A⊗C, V = A⊗A, W = A, U ′ = C, V ′ = C, W ′ = C,
α = (µA ⊗ idA) ◦ (idA⊗A⊗f), β = µA, α′ = idC and β′ = idC , we obtain

(µA ◦ (µA ⊗ idA) ◦ (idA⊗A⊗f))⊗ (idC ◦ idC) = (µA ⊗ idC) ◦ (((µA ⊗ idA) ◦ (idA⊗A⊗f))⊗ idC) ,

so that

(µA ⊗ idC) ◦ (((µA ⊗ idA) ◦ (idA⊗A⊗f))⊗ idC)

= (µA ◦ (µA ⊗ idA) ◦ (idA⊗A⊗f))⊗ (idC ◦ idC)︸ ︷︷ ︸
=idC

= (µA ◦ (µA ⊗ idA) ◦ (idA⊗A⊗f))⊗ idC .

Now,

(µA ⊗ idC) ◦ (idA⊗f ⊗ idC) ◦ (µA ⊗ idC⊗C)︸ ︷︷ ︸
=((µA⊗idA)◦(idA⊗A⊗f))⊗idC

(by (214))

= (µA ⊗ idC) ◦ (((µA ⊗ idA) ◦ (idA⊗A⊗f))⊗ idC)

= (µA ◦ (µA ⊗ idA) ◦ (idA⊗A⊗f))⊗ idC .

This proves (215).
125Proof. Applying (212) to P = C, Q = A, R = C, S = C ⊗ C, γ = g and δ = ∆C , we obtain

(idA⊗∆C) ◦ (g ⊗ idC) = (g ⊗ idC⊗C) ◦ (idC ⊗∆C) .

Applying (21) to U = A, V = A, W = A, U ′ = C ⊗ C, V ′ = A ⊗ C, W ′ = A ⊗ C ⊗ C, α = idA,
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126. Since (idC ⊗∆C) ◦∆C = (∆C ⊗ idC) ◦∆C (by the axioms of a k-coalgebra, since

β = idA, α′ = g ⊗ idC and β′ = idA⊗∆C , we obtain

(idA ◦ idA)⊗ ((idA⊗∆C) ◦ (g ⊗ idC)) =

idA⊗ idA︸ ︷︷ ︸
=idA⊗A

⊗∆C

 ◦ (idA⊗g ⊗ idC)

= (idA⊗A⊗∆C) ◦ (idA⊗g ⊗ idC) ,

so that

(idA⊗A⊗∆C) ◦ (idA⊗g ⊗ idC) = (idA ◦ idA)︸ ︷︷ ︸
=idA

⊗ ((idA⊗∆C) ◦ (g ⊗ idC))︸ ︷︷ ︸
=(g⊗idC⊗C)◦(idC ⊗∆C)

= idA⊗ ((g ⊗ idC⊗C) ◦ (idC ⊗∆C)) .

This proves (217).
126Proof of (218). Applying (21) to U = A, V = A, W = A, U ′ = C, V ′ = C ⊗C, W ′ = A⊗C ⊗C,
α = idA, β = idA, α′ = ∆C and β′ = (g ⊗ idC⊗C) ◦ (idC ⊗∆C), we obtain

(idA ◦ idA)⊗ ((g ⊗ idC⊗C) ◦ (idC ⊗∆C) ◦∆C) = (idA⊗ ((g ⊗ idC⊗C) ◦ (idC ⊗∆C))) ◦ (idA⊗∆C) ,

so that

(idA⊗ ((g ⊗ idC⊗C) ◦ (idC ⊗∆C))) ◦ (idA⊗∆C)

= (idA ◦ idA)︸ ︷︷ ︸
=idA

⊗ ((g ⊗ idC⊗C) ◦ (idC ⊗∆C) ◦∆C)

= idA⊗ ((g ⊗ idC⊗C) ◦ (idC ⊗∆C) ◦∆C) .

Now,

(idA⊗A⊗∆C) ◦ (idA⊗g ⊗ idC)︸ ︷︷ ︸
=idA⊗((g⊗idC⊗C)◦(idC ⊗∆C))

(by (217))

◦ (idA⊗∆C)

= (idA⊗ ((g ⊗ idC⊗C) ◦ (idC ⊗∆C))) ◦ (idA⊗∆C)

= idA⊗ ((g ⊗ idC⊗C) ◦ (idC ⊗∆C) ◦∆C) .

This proves (218).
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C is a k-coalgebra), this becomes

(idA⊗A⊗∆C) ◦ (idA⊗g ⊗ idC) ◦ (idA⊗∆C)

= idA︸︷︷︸
=idA ◦ idA

⊗

(g ⊗ idC⊗C) ◦ (idC ⊗∆C) ◦∆C︸ ︷︷ ︸
=(∆C⊗idC)◦∆C


= (idA ◦ idA)⊗ ((g ⊗ idC⊗C) ◦ (∆C ⊗ idC) ◦∆C)

=

idA⊗g ⊗ idC⊗C︸ ︷︷ ︸
=idC ⊗ idC

 ◦
 idA︸︷︷︸

=idA ◦ idA

⊗ ((∆C ⊗ idC) ◦∆C)


(

by (21), applied to U = A, V = A, W = A, U ′ = C, V ′ = C ⊗ C ⊗ C,
W ′ = A⊗ C ⊗ C, α = idA , β = idA , α′ = (∆C ⊗ idC) ◦∆C and β′ = g ⊗ idC⊗C )

)
= (idA⊗g ⊗ idC ⊗ idC) ◦ ((idA ◦ idA)⊗ ((∆C ⊗ idC) ◦∆C))︸ ︷︷ ︸

=(idA⊗∆C⊗idC)◦(idA⊗∆C)
(by (21), applied to U=A, V=A, W=A, U ′=C, V ′=C⊗C, W ′=C⊗C⊗C,

α=idA , β=idA , α′=∆C and β′=∆C⊗idC )

= (idA⊗g ⊗ idC ⊗ idC) ◦ (idA⊗∆C ⊗ idC) ◦ (idA⊗∆C) . (219)

Applying (21) to U = C, V = A, W = A, U ′ = C, V ′ = C, W ′ = A, α = g,
β = idA, α′ = idC and β′ = f , we obtain (idA ◦g)⊗ (f ◦ idC) = (idA⊗f) ◦ (g ⊗ idC), so
that

(idA⊗f) ◦ (g ⊗ idC) = (idA ◦g)︸ ︷︷ ︸
=g

⊗ (f ◦ idC)︸ ︷︷ ︸
=f

= g ⊗ f. (220)

Now, Tf = (µA ⊗ idC) ◦ (idA⊗f ⊗ idC) ◦ (idA⊗∆C) (by the definition of Tf ) and
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Tg = (µA ⊗ idC) ◦ (idA⊗g ⊗ idC) ◦ (idA⊗∆C) (by the definition of Tg), so that

Tf ◦ Tg
= (µA ⊗ idC) ◦ (idA⊗f ⊗ idC) ◦ (idA⊗∆C) ◦ (µA ⊗ idC)︸ ︷︷ ︸

=(µA⊗idC⊗C)◦(idA⊗A⊗∆C)
(by (213))

◦ (idA⊗g ⊗ idC) ◦ (idA⊗∆C)

= (µA ⊗ idC) ◦ (idA⊗f ⊗ idC) ◦ (µA ⊗ idC⊗C)︸ ︷︷ ︸
=(µA⊗idC)◦(idA⊗µA⊗idC)◦(idA⊗ idA⊗f⊗idC)

(by (216))

◦ (idA⊗A⊗∆C) ◦ (idA⊗g ⊗ idC) ◦ (idA⊗∆C)︸ ︷︷ ︸
=(idA⊗g⊗idC ⊗ idC)◦(idA⊗∆C⊗idC)◦(idA⊗∆C)

(by (219))

= (µA ⊗ idC) ◦ (idA⊗µA ⊗ idC) ◦ (idA⊗ idA⊗f ⊗ idC) ◦ (idA⊗g ⊗ idC ⊗ idC)︸ ︷︷ ︸
=idA⊗((idA⊗f)◦(g⊗idC))⊗idC

(by (211), applied to P=A, Q=C, R1=C⊗C,
R2=A⊗C, R3=A⊗A, ϕ=g⊗idC and ψ=idA⊗f)

◦ (idA⊗∆C ⊗ idC) ◦ (idA⊗∆C)

= (µA ⊗ idC) ◦ (idA⊗µA ⊗ idC) ◦

idA⊗ ((idA⊗f) ◦ (g ⊗ idC))︸ ︷︷ ︸
=g⊗f

(by (220))

⊗ idC


◦ (idA⊗∆C ⊗ idC) ◦ (idA⊗∆C)

= (µA ⊗ idC) ◦ (idA⊗µA ⊗ idC) ◦ (idA⊗g ⊗ f ⊗ idC)︸ ︷︷ ︸
=idA⊗(µA◦(g⊗f))⊗idC

(by (211), applied to P=A, Q=C, R1=C⊗C,
R2=A⊗A, R3=A, ϕ=g⊗f and ψ=µA)

◦ (idA⊗∆C ⊗ idC) ◦ (idA⊗∆C)

= (µA ⊗ idC) ◦ (idA⊗ (µA ◦ (g ⊗ f))⊗ idC) ◦ (idA⊗∆C ⊗ idC)︸ ︷︷ ︸
=idA⊗(µA◦(g⊗f)◦∆C)⊗idC

(by (211), applied to P=A, Q=C, R1=C,
R2=C⊗C, R3=A, ϕ=∆C and ψ=µA◦(g⊗f))

◦ (idA⊗∆C)

= (µA ⊗ idC) ◦ (idA⊗ (µA ◦ (g ⊗ f) ◦∆C)⊗ idC) ◦ (idA⊗∆C) . (221)

But by the definition of Tg∗f , we have

Tg∗f = (µA ⊗ idC) ◦

idA⊗ (g ∗ f)︸ ︷︷ ︸
=µA◦(g⊗f)◦∆C

(by the definition of convolution)

⊗ idC

 ◦ (idA⊗∆C)

= (µA ⊗ idC) ◦ (idA⊗ (µA ◦ (g ⊗ f) ◦∆C)⊗ idC) ◦ (idA⊗∆C) = Tf ◦ Tg
(by (221)). This proves Proposition 23.4 (d).

(e) By (211) (applied to P = A, Q = C, R1 = C, R2 = k, R3 = A, ϕ = εC and
ψ = ηA), we have

(idA⊗ηA ⊗ idC) ◦ (idA⊗εC ⊗ idC) = idA⊗ (ηA ◦ εC)︸ ︷︷ ︸
=eC,A

⊗ idC = idA⊗eC,A ⊗ idC .

Now, by the definition of TeC,A , we have

TeC,A = (µA ⊗ idC) ◦ (idA⊗eC,A ⊗ idC)︸ ︷︷ ︸
=(idA⊗ηA⊗idC)◦(idA⊗εC⊗idC)

◦ (idA⊗∆C)

= (µA ⊗ idC) ◦ (idA⊗ηA ⊗ idC) ◦ (idA⊗εC ⊗ idC) ◦ (idA⊗∆C) . (222)
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Now, consider the isomorphisms kanA⊗k,A and kanC,k⊗C defined in Proposition 23.4
(h). Then, by the axioms of a k-coalgebra, we have (εC ⊗ idC)◦∆C = kanC,k⊗C (since C
is a k-coalgebra). Also, by the axioms of a k-algebra, we have µA◦(idA⊗ηA) = kanA⊗k,A
(since A is a k-algebra).

By (21) (applied to U = A ⊗ k, V = A ⊗ A, W = A, U ′ = C, V ′ = C, W ′ = C,
α = idA⊗ηA, β = µA, α′ = idC and β′ = idC), we have

(µA ◦ (idA⊗ηA))⊗ (idC ◦ idC) = (µA ⊗ idC) ◦ (idA⊗ηA ⊗ idC) ,

so that

(µA ⊗ idC) ◦ (idA⊗ηA ⊗ idC) = (µA ◦ (idA⊗ηA))︸ ︷︷ ︸
=kanA⊗k,A

⊗ (idC ◦ idC)︸ ︷︷ ︸
=idC

= kanA⊗k,A⊗ idC .

(223)
By (21) (applied to U = A, V = A, W = A, U ′ = C, V ′ = C ⊗ C, W ′ = k ⊗ C,

α = idA, β = idA, α′ = ∆C and β′ = εC ⊗ idC), we have

(idA ◦ idA)⊗ ((εC ⊗ idC) ◦∆C) = (idA⊗εC ⊗ idC) ◦ (idA⊗∆C) ,

so that

(idA⊗εC ⊗ idC) ◦ (idA⊗∆C) = (idA ◦ idA)︸ ︷︷ ︸
=idA

⊗ ((εC ⊗ idC) ◦∆C)︸ ︷︷ ︸
=kanC,k⊗C

= idA⊗ kanC,k⊗C .

(224)
Now, (222) becomes

TeC,A = (µA ⊗ idC) ◦ (idA⊗ηA ⊗ idC)︸ ︷︷ ︸
=kanA⊗k,A⊗ idC

◦ (idA⊗εC ⊗ idC) ◦ (idA⊗∆C)︸ ︷︷ ︸
=idA⊗ kanC,k⊗C

= (kanA⊗k,A⊗ idC) ◦ (idA⊗ kanC,k⊗C) = idA⊗C

(because a very easy linear-algebraic fact says that (kanA⊗k,A⊗ idC)◦(idA⊗ kanC,k⊗C) =
idA⊗C

127). This proves Proposition 23.4 (e).

127Proof. For any (a, c) ∈ A× C, we have

((kanA⊗k,A⊗ idC) ◦ (idA⊗ kanC,k⊗C)) (a⊗ c) = (kanA⊗k,A⊗ idC) ((idA⊗ kanC,k⊗C) (a⊗ c))︸ ︷︷ ︸
=idA(a)⊗kanC,k⊗C(c)

= (kanA⊗k,A⊗ idC)

idA (a)︸ ︷︷ ︸
=a

⊗ kanC,k⊗C (c)︸ ︷︷ ︸
=1⊗c

(by the definition of kanC,k⊗C )


= (kanA⊗k,A⊗ idC) (a⊗ 1⊗ c) = kanA⊗k,A (a⊗ 1)︸ ︷︷ ︸

=1a
(by the definition of kanA⊗k,A )

⊗ idC (c)︸ ︷︷ ︸
=c

= 1a⊗ c = a⊗ c = idA⊗C (a⊗ c) .

In other words, the two k-linear maps (kanA⊗k,A⊗ idC) ◦ (idA⊗ kanC,k⊗C) and idA⊗C are equal to
each other on each pure tensor in A⊗C. Thus, these two maps must be identical (since two k-linear
maps from a tensor product which are equal to each other on each pure tensor must necessarily be
identical). In other words, (kanA⊗k,A⊗ idC) ◦ (idA⊗ kanC,k⊗C) = idA⊗C , qed.
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(f) Assume that C is a graded k-coalgebra, and that A is a graded k-algebra, and
that f is a graded map.

The map µA is graded (since A is a graded k-algebra), and so is the map ∆C (since
C is a graded k-coalgebra). Thus, the maps µA, idC , idA, f and ∆C are all graded.
Hence, the maps µA⊗ idC , idA⊗f⊗ idC and idA⊗∆C are graded (since tensor products
of graded maps are always graded). Hence, the map (µA ⊗ idC) ◦ (idA⊗f ⊗ idC) ◦
(idA⊗∆C) is graded (since compositions of graded maps are always graded). Since
(µA ⊗ idC) ◦ (idA⊗f ⊗ idC) ◦ (idA⊗∆C) = Tf , this rewrites as follows: The map Tf is
graded. Proposition 23.4 (f) is thus proven.

(g) Let f : C → A be a ∗-invertible k-linear map.
Applying Proposition 23.4 (d) to g = f ∗(−1), we obtain Tf∗(−1)∗f = Tf ◦ Tf∗(−1) .

Since f ∗(−1) ∗ f = eC,A, this rewrites as TeC,A = Tf ◦ Tf∗(−1) . Since TeC,A = idA⊗C (by
Proposition 23.4 (e)), this rewrites as idA⊗C = Tf ◦ Tf∗(−1) .

Applying Proposition 23.4 (d) to f ∗(−1) and f instead of f and g, we obtain
Tf∗f∗(−1) = Tf∗(−1) ◦ Tf . Since f ∗ f ∗(−1) = eC,A, this rewrites as TeC,A = Tf∗(−1) ◦ Tf .
Since TeC,A = idA⊗C , this rewrites as idA⊗C = Tf∗(−1) ◦ Tf .

From Tf∗(−1) ◦ Tf = idA⊗C and Tf ◦ Tf∗(−1) = idA⊗C , we conclude that the map Tf
is invertible and satisfies Tf∗(−1) = (Tf )

−1. Proposition 23.4 (g) is thus proven.
(h) Let f : C → A be a k-linear map.
By the axioms of a k-coalgebra, we have (εC ⊗ idC) ◦∆C = kanC,k⊗C (since C is a

k-coalgebra).
By the axioms of a k-algebra, we have µA ◦ (idA⊗ηA) = kanA⊗k,A (since A is a

k-algebra).
Let kanC,C⊗k : C → C ⊗ k be the canonical isomorphism which sends every c ∈ C

to c⊗ 1 ∈ C ⊗ k.
Every x ∈ C satisfies

kanC,k⊗C (x) = 1⊗ x (225)

(by the definition of kanC,k⊗C).
We have (idA⊗εC) ◦ (µA ⊗ idC) = (µA ⊗ idk) ◦ (idA⊗A⊗εC) (by (212), applied to

P = A⊗ A, Q = A, R = C, S = k, γ = µA and δ = εC).
We have (idA⊗A⊗εC) ◦ (idA⊗f ⊗ idC) = (idA⊗f ⊗ idk) ◦ (idA⊗C ⊗εC) (by (212),

applied to P = A⊗ C, Q = A⊗ A, R = C, S = k, γ = idA⊗f and δ = εC).
By the definition of ηA, we have ηA (1) = 1 · 1A = 1A.
By (21) (applied to U = A, V = A, W = A, U ′ = C, V ′ = C ⊗ C, W ′ = C ⊗ k,

α = idA, β = idA, α′ = ∆C and β′ = idC ⊗εC), we have

(idA ◦ idA)⊗ ((idC ⊗εC) ◦∆C) =

idA⊗ idC︸ ︷︷ ︸
=idA⊗C

⊗εC

 ◦ (idA⊗∆C)

= (idA⊗C ⊗εC) ◦ (idA⊗∆C) ,

so that

(idA⊗C ⊗εC) ◦ (idA⊗∆C) = (idA ◦ idA)︸ ︷︷ ︸
=idA

⊗ ((idC ⊗εC) ◦∆C)︸ ︷︷ ︸
=kanC,C⊗k

(by the axioms of a k-coalgebra,
since C is a k-coalgebra)

= idA⊗ kanC,C⊗k .
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Since Tf = (µA ⊗ idC) ◦ (idA⊗f ⊗ idC) ◦ (idA⊗∆C), we have

kanA⊗k,A ◦ (idA⊗εC) ◦ Tf ◦ (ηA ⊗ idC) ◦ kanC,k⊗C

= kanA⊗k,A ◦ (idA⊗εC) ◦ (µA ⊗ idC)︸ ︷︷ ︸
=(µA⊗idk)◦(idA⊗A⊗εC)

◦ (idA⊗f ⊗ idC) ◦ (idA⊗∆C) ◦ (ηA ⊗ idC) ◦ kanC,k⊗C

= kanA⊗k,A ◦ (µA ⊗ idk) ◦ (idA⊗A⊗εC) ◦ (idA⊗f ⊗ idC)︸ ︷︷ ︸
=(idA⊗f⊗idk)◦(idA⊗C ⊗εC)

◦ (idA⊗∆C) ◦ (ηA ⊗ idC) ◦ kanC,k⊗C

= kanA⊗k,A ◦ (µA ⊗ idk) ◦ (idA⊗f ⊗ idk) ◦ (idA⊗C ⊗εC) ◦ (idA⊗∆C)︸ ︷︷ ︸
=idA⊗ kanC,C⊗k

◦ (ηA ⊗ idC) ◦ kanC,k⊗C

= kanA⊗k,A ◦ (µA ⊗ idk) ◦ (idA⊗f ⊗ idk) ◦ (idA⊗ kanC,C⊗k) ◦ (ηA ⊗ idC) ◦ kanC,k⊗C .
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Thus, every x ∈ C satisfies

(kanA⊗k,A ◦ (idA⊗εC) ◦ Tf ◦ (ηA ⊗ idC) ◦ kanC,k⊗C) (x)

= (kanA⊗k,A ◦ (µA ⊗ idk) ◦ (idA⊗f ⊗ idk) ◦ (idA⊗ kanC,C⊗k) ◦ (ηA ⊗ idC) ◦ kanC,k⊗C) (x)

= kanA⊗k,A

(µA ⊗ idk)

(idA⊗f ⊗ idk)

(idA⊗ kanC,C⊗k)

(ηA ⊗ idC) (kanC,k⊗C (x))︸ ︷︷ ︸
=1⊗x

(by (225))






= kanA⊗k,A

(µA ⊗ idk)

(idA⊗f ⊗ idk)

(idA⊗ kanC,C⊗k) ((ηA ⊗ idC) (1⊗ x))︸ ︷︷ ︸
=ηA(1)⊗idC(x)





= kanA⊗k,A

(µA ⊗ idk)

(idA⊗f ⊗ idk)

(idA⊗ kanC,C⊗k)

ηA (1)︸ ︷︷ ︸
=1A

⊗ idC (x)︸ ︷︷ ︸
=x


= kanA⊗k,A

(µA ⊗ idk)

(idA⊗f ⊗ idk) ((idA⊗ kanC,C⊗k) (1A ⊗ x))︸ ︷︷ ︸
=idA(1A)⊗kanC,C⊗k(x)




= kanA⊗k,A

(µA ⊗ idk)

(idA⊗f ⊗ idk)

idA (1A)︸ ︷︷ ︸
=1A

⊗ kanC,C⊗k (x)︸ ︷︷ ︸
=x⊗1

(by the definition of kanC,C⊗k )





= kanA⊗k,A

(µA ⊗ idk) ((idA⊗f ⊗ idk) (1A ⊗ x⊗ 1))︸ ︷︷ ︸
=idA(1A)⊗f(x)⊗idk(1)


= kanA⊗k,A

(µA ⊗ idk)

idA (1A)︸ ︷︷ ︸
=1A

⊗f (x)⊗ idk (1)︸ ︷︷ ︸
=1


= kanA⊗k,A ((µA ⊗ idk) (1A ⊗ f (x)⊗ 1))︸ ︷︷ ︸

=µA(1A⊗f(x))⊗idk(1)

= kanA⊗k,A

 µA (1A ⊗ f (x))︸ ︷︷ ︸
=1Af(x)

(since µA is the multiplication map of A)

⊗ idk (1)︸ ︷︷ ︸
=1


= kanA⊗k,A (1Af (x) , 1) = 1 · 1Af (x) (by the definition of kanA⊗k,A)

= f (x) .

Hence, kanA⊗k,A ◦ (idA⊗εC) ◦ Tf ◦ (ηA ⊗ idC) ◦ kanC,k⊗C = f . This proves Proposi-
tion 23.4 (h).

(i) Assume that C is a graded k-coalgebra, that A is a graded k-algebra, and that
f is a k-linear map such that Tf is graded.

Consider the isomorphisms kanA⊗k,A and kanC,k⊗C defined in Proposition 23.4 (h).
These isomorphisms are clearly graded.
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Since C is a graded k-coalgebra, the map εC is graded. Since A is a graded k-
algebra, the map ηA is graded.

Thus, the maps kanA⊗k,A, idA, εC , Tf , ηA, idC and kanC,k⊗C all are graded. Hence,
the maps kanA⊗k,A, idA⊗εC , Tf , ηA ⊗ idC , kanC,k⊗C all are graded (since tensor prod-
ucts of graded maps are always graded). Hence, the map kanA⊗k,A ◦ (idA⊗εC) ◦ Tf ◦
(ηA ⊗ idC)◦kanC,k⊗C is graded (since compositions of graded maps are always graded).
Since kanA⊗k,A ◦ (idA⊗εC) ◦ Tf ◦ (ηA ⊗ idC) ◦ kanC,k⊗C = f (by Proposition 23.4 (h)),
this rewrites as follows: The map f is graded. Thus, we have verified Proposition 23.4
(i).

Now that Proposition 23.4 is completely proven, we can fulfill our debt of proving
Proposition 23.1:

Proof of Proposition 23.1. (a) Let us use Definition 23.3. By Proposition 23.4 (f),
the map Tf is graded. By Proposition 23.4 (g), this map Tf is invertible. Thus,
Tf is a graded invertible k-linear map. Hence, (Tf )

−1 is also a graded map (because
it is well-known that the inverse of a graded invertible k-linear map must always be
graded). In other words, Tf∗(−1) is a graded map (because Proposition 23.4 (g) yields

Tf∗(−1) = (Tf )
−1). Now, Proposition 23.4 (i) (applied to f ∗(−1) instead of f) yields that

f ∗(−1) is graded. This proves Proposition 23.1 (a).
(b) Let n ∈ Z. If n ∈ N, then Proposition 23.1 (b) immediately follows from

Proposition 16.18 (c). Hence, for the rest of the proof of Proposition 23.1 (b), we
can WLOG assume that n ∈ N does not hold. Assume this. Then, n /∈ N, so that
n is negative, and thus −n ∈ N. Hence, Proposition 16.18 (c) (applied to f ∗(−1) and

−n instead of f and n) yields that
(
f ∗(−1)

)∗(−n)
is graded (because Proposition 23.1

(a) shows that f ∗(−1) is a graded map). Since
(
f ∗(−1)

)∗(−n)
= f ∗((−1)·(−n)) = f ∗n, this

rewrites as follows: The map f ∗n is graded. This proves Proposition 23.1 (b).
The proof of Proposition 23.1 is thus complete, and with it Theorem 23.2 is proven.

We have used Proposition 23.4 to prove Proposition 23.1. This, however, is not
its only application. For a different application, let us show an alternative proof of
Proposition 10.1 with its help. First, a lemma:

Lemma 23.5. Let k be a field. Let C be a cocommutative k-coalgebra.
Then, ∆C is a k-coalgebra homomorphism from C to C ⊗ C, and εC is a
k-coalgebra homomorphism from C to k.

Proof of Lemma 23.5. Lemma 9.6 (b) shows that εC is a k-coalgebra homomorphism
from C to k. Hence, the only thing that remains to be done in order to prove
Lemma 23.5 is to show that ∆C is a k-coalgebra homomorphism from C to C ⊗ C.

By the definition of the k-coalgebra C ⊗ C, we have ∆C⊗C = (idC ⊗τC,C ⊗ idC) ◦
(∆C ⊗∆C). Thus,

∆C⊗C ◦∆C = (idC ⊗τC,C ⊗ idC) ◦ (∆C ⊗∆C) ◦∆C = (∆C ⊗∆C) ◦∆C

(by Lemma 9.5). Also, εC⊗C ◦∆C = εC
128.

128Proof. Lemma 9.6 (a) shows that every x ∈ C satisfies ((εC ⊗ εC) ◦∆C) (x) = εC (x) 1⊗ 1.
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We have thus proven that ∆C⊗C ◦ ∆C = (∆C ⊗∆C) ◦ ∆C and εC⊗C ◦ ∆C = εC .
These two equations combined yield that ∆C is a k-coalgebra homomorphism from C
to C ⊗ C. This completes the proof of Lemma 23.5.

Alternative proof of Proposition 10.1. Applying Definition 23.3 to A = H, we obtain
a map Tf : H ⊗ C → H ⊗ C. Similarly, we obtain maps Tg : H ⊗ C → H ⊗ C and
Tf∗g : H ⊗ C → H ⊗ C. Proposition 23.4 (d) (applied to H, g and f instead of A, f
and g) yields Tf∗g = Tg ◦ Tf .

By Lemma 23.5, we know that ∆C and εC are k-coalgebra homomorphisms.
Also, H is a k-bialgebra, so that µH and ηH are k-coalgebra homomorphisms (by

the axioms of a bialgebra).
Since µH and idC are k-coalgebra homomorphisms, the map µH ⊗ idC is also a

k-coalgebra homomorphism (because a tensor product of k-coalgebra homomorphisms
must always be a k-coalgebra homomorphism).

Since idH , f and idC are k-coalgebra homomorphisms, the map idH ⊗f⊗idC is also a
k-coalgebra homomorphism (because a tensor product of k-coalgebra homomorphisms
must always be a k-coalgebra homomorphism).

Since idH and ∆C are k-coalgebra homomorphisms, the map idH ⊗∆C is also a
k-coalgebra homomorphism (because a tensor product of k-coalgebra homomorphisms
must always be a k-coalgebra homomorphism).

Since µH ⊗ idC , idH ⊗f ⊗ idC and idH ⊗∆C are k-coalgebra homomorphisms, the
map (µH ⊗ idC) ◦ (idH ⊗f ⊗ idC) ◦ (idH ⊗∆C) is also a k-coalgebra homomorphism
(because a composition of k-coalgebra homomorphisms must always be a k-coalgebra
homomorphism).

By the definition of Tf , we have

Tf = (µH ⊗ idC) ◦ (idH ⊗f ⊗ idC) ◦ (idH ⊗∆C) .

Thus, Tf is a k-coalgebra homomorphism (because (µH ⊗ idC)◦(idH ⊗f ⊗ idC)◦(idH ⊗∆C)
is a k-coalgebra homomorphism). Similarly, Tg is a k-coalgebra homomorphism.

Since Tg and Tf are k-coalgebra homomorphisms, the map Tg ◦ Tf is also a k-
coalgebra homomorphism (because a composition of k-coalgebra homomorphisms must
always be a k-coalgebra homomorphism). Since Tg ◦Tf = Tf∗g, this rewrites as follows:
The map Tf∗g is a k-coalgebra homomorphism.

Let kanC,k⊗C : C → k⊗C be the canonical isomorphism which sends c to 1⊗ c for
every c ∈ C. Let kanH⊗k,H : H ⊗ k → H be the canonical isomorphism which sends
a ⊗ λ to λa for every (a, λ) ∈ H × k. Both kanC,k⊗C and kanH⊗k,H are k-coalgebra
homomorphisms.

By the definition of the k-coalgebra C ⊗C, we have εC⊗C = kank⊗k,k ◦ (εC ⊗ εC), where kank⊗k,k :
k ⊗ k → k is the canonical isomorphism which sends every λ⊗ λ′ ∈ k ⊗ k to λλ′ ∈ k. Now, for every
x ∈ C, we have εC⊗C︸ ︷︷ ︸

=kank⊗k,k ◦(εC⊗εC)

◦∆C

 (x) = (kank⊗k,k ◦ (εC ⊗ εC) ◦∆C (x)) = kank⊗k,k (((εC ⊗ εC) ◦∆C) (x))︸ ︷︷ ︸
=εC(x)1⊗1

= kank⊗k,k (εC (x) 1⊗ 1) = εC (x) 1 · 1 (by the definition of kank⊗k,k)

= εC (x) .

In other words, εC⊗C ◦∆C = εC , qed.
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Since idH and εC are k-coalgebra homomorphisms, the map idH ⊗εC is also a k-
coalgebra homomorphism (because a tensor product of k-coalgebra homomorphisms
must always be a k-coalgebra homomorphism).

Since ηH and idC are k-coalgebra homomorphisms, the map ηH ⊗ idC is also a k-
coalgebra homomorphism (because a tensor product of k-coalgebra homomorphisms
must always be a k-coalgebra homomorphism).

Since kanH⊗k,H , idH ⊗εC , Tf∗g, ηH ⊗ idC and kanC,k⊗C are k-coalgebra homomor-
phisms, the map kanH⊗k,H ◦ (idH ⊗εC)◦Tf∗g◦(ηH ⊗ idC)◦kanC,k⊗C is also a k-coalgebra
homomorphism (because a composition of k-coalgebra homomorphisms must always be
a k-coalgebra homomorphism).

Proposition 23.4 (h) (applied to H and f ∗ g instead of A and f) yields

kanH⊗k,H ◦ (idH ⊗εC) ◦ Tf∗g ◦ (ηH ⊗ idC) ◦ kanC,k⊗C = f ∗ g.

Thus, f ∗g is a k-coalgebra homomorphism (since we know that kanH⊗k,H ◦ (idH ⊗εC)◦
Tf∗g ◦ (ηH ⊗ idC) ◦ kanC,k⊗C is a k-coalgebra homomorphism). Proposition 10.1 is thus
proven.

A similar argument allows us to construct a new proof of Proposition 15.15. The
analogue of Lemma 23.5 now takes the following form:

Lemma 23.6. Let k be a field. Let A be a commutative k-algebra. Then,
µA is a k-algebra homomorphism from A ⊗ A to A, and ηA is a k-algebra
homomorphism from A to k.

Proof of Lemma 23.6. Every a ∈ A, b ∈ A, c ∈ A and d ∈ A satisfy

(µA ◦ µA⊗A) (a⊗ b⊗ c⊗ d)

= µA (µA⊗A (a⊗ b⊗ c⊗ d))︸ ︷︷ ︸
=(a⊗b)·(c⊗d)

(by the definition of µA⊗A)

= µA ((a⊗ b) · (c⊗ d))︸ ︷︷ ︸
=ac⊗bd

(by the definition of the k-algebra A⊗A)

= µA (ac⊗ bd) = (ac) (bd) (by the definition of µA)

= acbd = abcd (since A is commutative)

and

(µA ◦ (µA ⊗ µA)) (a⊗ b⊗ c⊗ d)

= µA ((µA ⊗ µA) (a⊗ b⊗ c⊗ d))︸ ︷︷ ︸
=µA(a⊗b)⊗µA(c⊗d)

= µA

 µA (a⊗ b)︸ ︷︷ ︸
=ab

(by the definition of µA)

⊗ µA (c⊗ d)︸ ︷︷ ︸
=cd

(by the definition of µA)


= µA (ab⊗ cd) = (ab) (cd) (by the definition of µA) .

Thus, every a ∈ A, b ∈ A, c ∈ A and d ∈ A satisfy

(µA ◦ µA⊗A) (a⊗ b⊗ c⊗ d)

= abcd = (ab) (cd) = (µA ◦ (µA ⊗ µA)) (a⊗ b⊗ c⊗ d) .
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In other words, the two maps µA ◦ µA⊗A and µA ◦ (µA ⊗ µA) are equal on every pure
tensor. But since these two maps are k-linear, this yields that these maps must be
identic (because whenever two k-linear maps from a tensor product are equal on every
pure tensor, they must be identic). In other words, µA ◦ µA⊗A = µA ◦ (µA ⊗ µA).

Besides, by the definition of the k-algebra A⊗A, we have 1A⊗A = 1A⊗ 1A, so that

µA (1A⊗A) = µA (1A ⊗ 1A) = 1A · 1A (by the definition of µA)

= 1A.

Now, every λ ∈ k satisfies

(µA ◦ ηA⊗A) (λ) = µA (ηA⊗A (λ))︸ ︷︷ ︸
=λ·1A⊗A

(by the definition of ηA⊗A)

= µA (λ · 1A⊗A)

= λ · µA (1A⊗A)︸ ︷︷ ︸
=1A

(since µA is k-linear)

= λ · 1A = ηA (λ) (since ηA (λ) = λ · 1A by the definition of ηA) .

In other words, µA ◦ ηA⊗A = ηA. Combined with µA ◦ µA⊗A = µA ◦ (µA ⊗ µA) (which
we proved above), this yields that µA is a k-algebra homomorphism (because µA is a
k-algebra homomorphism if and only if it satisfies µA ◦ ηA⊗A = ηA and µA ◦ µA⊗A =
µA ◦ (µA ⊗ µA) (due to the definition of k-algebra homomorphisms using arrows)).

Now, it remains to prove that ηA is a k-algebra homomorphism.
Any x ∈ k and y ∈ k satisfy

ηA (x)︸ ︷︷ ︸
=x·1A

(by the definition
of ηA)

· ηA (y)︸ ︷︷ ︸
=y·1A

(by the definition
of ηA)

= (x · 1A) · (y · 1A) = xy · 1A = ηA (xy)

(since ηA (xy) = xy · 1A (by the definition of ηA)). Combined with the fact that
ηA (1) = 1A (because the definition of ηA yields ηA (1) = 1 · 1A = 1A), this yields that
ηA is a k-algebra homomorphism. This completes the proof of Lemma 23.6.

Alternative proof of Proposition 15.15. Applying Definition 23.3 to C = H, we obtain
a map Tf : A ⊗ H → A ⊗ H. Similarly, we obtain maps Tg : A ⊗ H → A ⊗ H and
Tf∗g : A ⊗H → A ⊗H. Proposition 23.4 (d) (applied to H, g and f instead of C, f
and g) yields Tf∗g = Tg ◦ Tf .

Since H is a k-bialgebra, the maps ∆H and εH are k-algebra homomorphisms (by
the axioms of a bialgebra).

By Lemma 23.6, the maps µA and ηA are k-algebra homomorphisms.
Since µA and idH are k-algebra homomorphisms, the map µA ⊗ idH is also a k-

algebra homomorphism (because a tensor product of k-algebra homomorphisms must
always be a k-algebra homomorphism).

Since idA, f and idH are k-algebra homomorphisms, the map idA⊗f ⊗ idH is also
a k-algebra homomorphism (because a tensor product of k-algebra homomorphisms
must always be a k-algebra homomorphism).

Since idA and ∆H are k-algebra homomorphisms, the map idA⊗∆H is also a k-
algebra homomorphism (because a tensor product of k-algebra homomorphisms must
always be a k-algebra homomorphism).
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Since µA⊗ idH , idA⊗f⊗ idH and idA⊗∆H are k-algebra homomorphisms, the map
(µA ⊗ idH)◦ (idA⊗f ⊗ idH)◦ (idA⊗∆H) is also a k-algebra homomorphism (because a
composition of k-algebra homomorphisms must always be a k-algebra homomorphism).

By the definition of Tf , we have

Tf = (µA ⊗ idH) ◦ (idA⊗f ⊗ idH) ◦ (idA⊗∆H) .

Thus, Tf is a k-algebra homomorphism (because (µA ⊗ idH)◦(idA⊗f ⊗ idH)◦(idA⊗∆H)
is a k-algebra homomorphism). Similarly, Tg is a k-algebra homomorphism.

Since Tg and Tf are k-algebra homomorphisms, the map Tg ◦ Tf is also a k-algebra
homomorphism (because a composition of k-algebra homomorphisms must always be
a k-algebra homomorphism). Since Tg ◦ Tf = Tf∗g, this rewrites as follows: The map
Tf∗g is a k-algebra homomorphism.

Let kanH,k⊗H : H → k ⊗ H be the canonical isomorphism which sends c to 1 ⊗ c
for every c ∈ H. Let kanA⊗k,A : A ⊗ k → A be the canonical isomorphism which
sends a⊗ λ to λa for every (a, λ) ∈ A× k. Both kanH,k⊗H and kanA⊗k,A are k-algebra
homomorphisms.

Since idA and εH are k-algebra homomorphisms, the map idA⊗εH is also a k-algebra
homomorphism (because a tensor product of k-algebra homomorphisms must always
be a k-algebra homomorphism).

Since ηA and idH are k-algebra homomorphisms, the map ηA ⊗ idH is also a k-
algebra homomorphism (because a tensor product of k-algebra homomorphisms must
always be a k-algebra homomorphism).

Since kanA⊗k,A, idA⊗εH , Tf∗g, ηA ⊗ idH and kanH,k⊗H are k-algebra homomor-
phisms, the map kanA⊗k,A ◦ (idA⊗εH) ◦Tf∗g ◦ (ηA ⊗ idH) ◦ kanH,k⊗H is also a k-algebra
homomorphism (because a composition of k-algebra homomorphisms must always be
a k-algebra homomorphism).

Proposition 23.4 (h) (applied to H and f ∗ g instead of C and f) yields

kanA⊗k,A ◦ (idA⊗εH) ◦ Tf∗g ◦ (ηA ⊗ idH) ◦ kanH,k⊗H = f ∗ g.

Thus, f ∗ g is a k-algebra homomorphism (since we know that kanA⊗k,A ◦ (idA⊗εH) ◦
Tf∗g ◦ (ηA ⊗ idH) ◦ kanH,k⊗H is a k-algebra homomorphism). Proposition 15.15 is thus
proven.

§24. A graded comultiplication makes a coalgebra

graded

Next we discuss another elementary property of coalgebras which has not much to do
with what we did above. We will prove the following:

Theorem 24.1. Let k be a field. Let C be a k-coalgebra which is, at the
same time, a graded k-vector space such that the underlying vector space
of the k-coalgebra C is identical with the underlying vector space of the
graded k-vector space C. Assume that the map ∆C : C → C⊗C is graded.
Then, C is a graded k-coalgebra (i. e., the map εC : C → k is also graded).

This is an analogue of the following well-known result about algebras:
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Theorem 24.2. Let k be a field. Let A be a k-algebra which is, at the
same time, a graded k-vector space such that the underlying vector space of
the k-algebra A is identical with the underlying vector space of the graded
k-vector space A. Assume that AiAj ⊆ Ai+j for all i ∈ N and j ∈ N. Then,
A is a graded k-algebra (i. e., we have 1A ∈ A0).

Proof of Theorem 24.1. Consider the k-algebra k. Clearly, ηk = idk, and the map µk
is the canonical isomorphism k ⊗ k → k.

By applying Definition 1.9 to A = k, we obtain a convolution algebra (L (C, k) , ∗).
The unity of this k-algebra is ek,C = ηk︸︷︷︸

=idk

◦εC = εC .

Let us use the notations of Definition 16.16. Clearly, εC ◦ p0,C : C → k is also
an element of the convolution algebra (L (C, k) , ∗). Thus, εC ∗ (εC ◦ p0,C) = εC ◦ p0,C

(since εC is the unity of the k-algebra (L (C, k) , ∗)).
We will now prove that εC ◦p0,C = εC . This will very easily yield that εC is graded.
Let ` ∈ N be arbitrary. Let x ∈ C`. As in the proof of Proposition 16.6, we can

show that (107) holds, i. e., that ∆C (C`) ⊆
∑̀
i=0

Ci ⊗ C`−i. Since x ∈ C`, we now have

∆C (x) ∈ ∆C (C`) ⊆
∑̀
i=0

Ci⊗C`−i. Hence, there exists an (`+ 1)-tuple of (t0, t1, . . . , t`)

of elements of C ⊗ C such that ∆C (x) =
∑̀
i=0

ti and such that every i ∈ {0, 1, . . . , `}

satisfies ti ∈ Ci ⊗ C`−i. Consider this (`+ 1)-tuple.
For every i ∈ {0, 1, . . . , `− 1}, we have p0,C (C`−i) = 0 129 and thus

(idC ⊗p0,C) (ti) ∈ (idC ⊗p0,C) (Ci ⊗ C`−i) (since ti ∈ Ci ⊗ C`−i)
= idC (Ci)⊗ p0,C (C`−i)︸ ︷︷ ︸

=0

= 0,

so that (idC ⊗p0,C) (ti) = 0.
On the other hand, it is easy to see that (p0,C − idC) (C0) = 0 130, so that

(idC ⊗ (p0,C − idC)) (t`) ∈ (idC ⊗ (p0,C − idC))

C` ⊗ C`−`︸︷︷︸
=C0


(

since t` ∈ C` ⊗ C`−` (because every
i ∈ {0, 1, . . . , `− 1} satisfies ti ∈ Ci ⊗ C`−i)

)
= (idC ⊗ (p0,C − idC)) (C` ⊗ C0) = idC (C`)⊗ (p0,C − idC) (C0)︸ ︷︷ ︸

=0

= 0,

129Proof. For every i ∈ {0, 1, . . . , `− 1}, we have i 6= `, thus 0 6= ` − i, thus p0,C (C`−i) =(
p0,C |C`−i

)
(C`−i) = 0 (since (111) (applied to V = C, n = 0 and m = ` − i) yields p0,C |C`−i= 0),

qed.
130Proof. Since p0,C |C0

= idC |C0
(by (110), applied to V = C and n = 0), we have

(p0,C − idC) |C0
= p0,C |C0︸ ︷︷ ︸

=idC |C0

− idC |C0
= idC |C0

− idC |C0
= 0,

so that (p0,C − idC) (C0) = ((p0,C − idC) |C0
)︸ ︷︷ ︸

=0

(C0) = 0, qed.
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so that (idC ⊗ (p0,C − idC)) (t`) = 0.

From ∆C (x) =
∑̀
i=0

ti, we conclude that

(idC ⊗p0,C) (∆C (x)) = (idC ⊗p0,C)

(∑̀
i=0

ti

)
=
∑̀
i=0

(idC ⊗p0,C) (ti)

(since idC ⊗p0,C is k-linear)

=
`−1∑
i=0

(idC ⊗p0,C) (ti)︸ ︷︷ ︸
=0

(since we know that (idC ⊗p0,C)(ti)=0

for every i∈{0,1,...,`−1})

+

idC ⊗ p0,C︸︷︷︸
=idC +(p0,C−idC)

 (t`)

=
`−1∑
i=0

0︸ ︷︷ ︸
=0

+ (idC ⊗ (idC + (p0,C − idC))) (t`)

= (idC ⊗ (idC + (p0,C − idC)))︸ ︷︷ ︸
=idC ⊗ idC + idC ⊗(p0,C−idC)

(since tensoring of k-linear maps is k-bilinear)

(t`)

=

idC ⊗ idC︸ ︷︷ ︸
=idC⊗C

+ idC ⊗ (p0,C − idC)

 (t`) = (idC⊗C + idC ⊗ (p0,C − idC)) (t`)

= idC⊗C (t`)︸ ︷︷ ︸
=t`

+ (idC ⊗ (p0,C − idC)) (t`)︸ ︷︷ ︸
=0

= t` + 0 = t`. (226)

On the other hand, let kan denote the canonical isomorphism C ⊗ k → C which
sends c ⊗ λ to λc for every (c, λ) ∈ C × k. Then, clearly, kan−1 is the isomorphism
C → C ⊗ k which sends every ξ ∈ C to ξ ⊗ 1.

Every i ∈ {0, 1, . . . , `} satisfies

(idC ⊗εC) (ti) ∈ (idC ⊗εC) (Ci ⊗ C`−i) (since ti ∈ Ci ⊗ C`−i)
= idC (Ci)︸ ︷︷ ︸

=Ci

⊗ εC (C`−i)︸ ︷︷ ︸
⊆k

⊆ Ci ⊗ k = (C ⊗ k)i ,

and thus

kan ((idC ⊗εC) (ti)) ∈ kan ((C ⊗ k)i) ⊆ Ci (since kan is a graded map) . (227)

But every i ∈ {0, 1, . . . , `− 1} satisfies p`,C (Ci) = 0 131 and thus p`,C

kan ((idC ⊗εC) (ti))︸ ︷︷ ︸
∈Ci

(by (227))

 ∈
p`,C (Ci) = 0, so that

p`,C (kan ((idC ⊗εC) (ti))) = 0. (228)

131Proof. For every i ∈ {0, 1, . . . , `− 1}, we have ` 6= i, and thus p`,C (Ci) = (p`,C |Ci) (Ci) = 0
(since (111) (applied to V = C, n = ` and m = i) yields p`,C |Ci= 0), qed.
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On the other hand, (227) (applied to i = `) yields kan ((idC ⊗εC) (t`)) ∈ C`, so that

p`,C (kan ((idC ⊗εC) (t`))) = (p`,C |C`)︸ ︷︷ ︸
=idC |C`

(by (110), applied to V=C and n=`)

(kan ((idC ⊗εC) (t`)))

= (idC |C`) (kan ((idC ⊗εC) (t`)))

= kan ((idC ⊗εC) (t`)) . (229)

Now, since C is a k-coalgebra, we have kan ◦ (idC ⊗εC) ◦∆C = idC (by the axioms
of a k-coalgebra), so that (kan ◦ (idC ⊗εC) ◦∆C) (x) = idC (x) = x. Thus,

x = (kan ◦ (idC ⊗εC) ◦∆C) (x) = (kan ◦ (idC ⊗εC)) (∆C (x))︸ ︷︷ ︸
=
∑̀
i=0

ti

= (kan ◦ (idC ⊗εC))

(∑̀
i=0

ti

)

=
∑̀
i=0

(kan ◦ (idC ⊗εC)) (ti)︸ ︷︷ ︸
=kan((idC ⊗εC)(ti))

(since kan ◦ (idC ⊗εC) is k-linear)

=
∑̀
i=0

kan ((idC ⊗εC) (ti)) .

Hence,

p`,C (x) = p`,C

(∑̀
i=0

kan ((idC ⊗εC) (ti))

)

=
∑̀
i=0

p`,C (kan ((idC ⊗εC) (ti))) (since p`,C is k-linear)

=
`−1∑
i=0

p`,C (kan ((idC ⊗εC) (ti)))︸ ︷︷ ︸
=0

(by (228))

+ p`,C (kan ((idC ⊗εC) (t`)))︸ ︷︷ ︸
=kan((idC ⊗εC)(t`))

(by (229))

=
`−1∑
i=0

0︸ ︷︷ ︸
=0

+ kan ((idC ⊗εC) (t`)) = kan ((idC ⊗εC) (t`)) . (230)

Since p`,C |C`= idC |C` (by (110), applied to V = C and n = `), we have (p`,C |C`) (x) =
(idC |C`) (x) = x, so that p`,C (x) = (p`,C |C`) (x) = x. Thus, (230) rewrites as

x = kan ((idC ⊗εC) (t`)) = kan

(idC ⊗εC) ((idC ⊗p0,C) (∆C (x)))︸ ︷︷ ︸
=(idC ⊗εC)◦(idC ⊗p0,C)◦∆C


(since t` = (idC ⊗p0,C) (∆C (x)) by (226))

= kan (((idC ⊗εC) ◦ (idC ⊗p0,C) ◦∆C) (x)) .
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Since kan is an isomorphism, this rewrites as

((idC ⊗εC) ◦ (idC ⊗p0,C) ◦∆C) (x) = kan−1 (x) = x⊗ 1 (231)

(because kan−1 is the isomorphism C → C⊗k which sends every ξ ∈ C to ξ⊗1). Now
it is easy to see that idC ⊗ (εC ◦ p0,C) = (idC ⊗εC) ◦ (idC ⊗p0,C) 132. Hence, (idC ⊗ (εC ◦ p0,C))︸ ︷︷ ︸

=(idC ⊗εC)◦(idC ⊗p0,C)

◦∆C

 (x) = ((idC ⊗εC) ◦ (idC ⊗p0,C) ◦∆C) (x)

= x⊗ 1 (by (231)) ,

so that

(εC ⊗ idk) (((idC ⊗ (εC ◦ p0,C)) ◦∆C) (x)) = (εC ⊗ idk) (x⊗ 1) = εC (x)⊗idk (1)︸ ︷︷ ︸
=1

= εC (x)⊗1.

This rewrites as

εC (x)⊗ 1 = (εC ⊗ idk) (((idC ⊗ (εC ◦ p0,C)) ◦∆C) (x))

=


(εC ⊗ idk) ◦ (idC ⊗ (εC ◦ p0,C))︸ ︷︷ ︸

=(εC◦idC)⊗(idk ◦εC◦p0,C)
(because (21) (applied to U=C, V=C, W=k, U ′=C, V ′=k, W ′=k,

α=idC , β=εC , α′=εC◦p0,C and β′=idk ) yields

(εC◦idC)⊗(idk ◦εC◦p0,C)=(εC⊗idk)◦(idC ⊗(εC◦p0,C))

◦∆C


(x)

=


(εC ◦ idC)︸ ︷︷ ︸

=εC

⊗ (idk ◦εC ◦ p0,C)︸ ︷︷ ︸
=εC◦p0,C

 ◦∆C

 (x)

= ((εC ⊗ (εC ◦ p0,C)) ◦∆C) (x) . (232)

But by the definition of convolution, we have εC∗(εC ◦ p0,C) = µk◦(εC ⊗ (εC ◦ p0,C))◦
∆C , so that

(εC ∗ (εC ◦ p0,C)) (x) = (µk ◦ (εC ⊗ (εC ◦ p0,C)) ◦∆C) (x)

= µk (((εC ⊗ (εC ◦ p0,C)) ◦∆C) (x))︸ ︷︷ ︸
=εC(x)⊗1
(by (232))

= µk (εC (x)⊗ 1) = εC (x) · 1 (by the definition of µk)

= εC (x) .

132Proof. By (21) (applied to U = C, V = C, W = C, U ′ = C, V ′ = C, W ′ = k, α = idC , β = idC ,
α′ = p0,C and β′ = εC), we have (idC ◦ idC)⊗ (εC ◦ p0,C) = (idC ⊗εC) ◦ (idC ⊗p0,C), so that

(idC ⊗εC) ◦ (idC ⊗p0,C) = (idC ◦ idC)︸ ︷︷ ︸
=idC

⊗ (εC ◦ p0,C) = idC ⊗ (εC ◦ p0,C) ,

qed.
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Thus,

εC (x) = (εC ∗ (εC ◦ p0,C)) (x) = (εC ◦ p0,C) (x)(
since εC is the unity of the k-algebra (L (C, k) , ∗) , and thus satisfies

εC ∗ (εC ◦ p0,C) = εC ◦ p0,C

)
.

Now forget that we fixed x. We thus have shown that

εC (x) = (εC ◦ p0,C) (x) for every x ∈ C`. (233)

Now, it is very easy to see that εC (C`) ⊆ k`
133.

Now forget that we fixed `. We thus have shown that εC (C`) ⊆ k` for every ` ∈ N.
In other words, εC is a graded map. Combined with the fact that ∆C is a graded map,
this yields that C is a graded k-coalgebra. Theorem 24.1 is thus proven.

§25. ∗-inverses of coalgebra homomorphisms

In §23, we extended Proposition 16.18 (c) to the case of negative n whenever f is ∗-
invertible. This extension (which we formulated as Proposition 23.4) was proven using
Proposition 23.4 (particularly, parts (g) and (h)) as the main ingredient. Let us now,
in a similar manner, extend Corollary 10.2 to the case of negative n whenever f is
∗-invertible:

Proposition 25.1. Let k be a field. Let C be a cocommutative k-coalgebra.
Let H be a k-bialgebra. Let f : C → H be a ∗-invertible k-coalgebra ho-
momorphism.

(a) Then, f ∗(−1) : C → H is also a k-coalgebra homomorphism.

(b) Let n ∈ Z. Then, f ∗n : C → H is also a k-coalgebra homomorphism.

Our goal here is not just to prove Proposition 25.1; in fact, that would be pretty
easy: Proposition 25.1 (a) can be proven with the help of Proposition 23.4 in the
same way as we proved Proposition 10.1 in §24 with the help of Proposition 23.4. And
Proposition 25.1 (b) is a quick corollary of Proposition 25.1 (a). But instead of doing
this proof, we will show something more general than Proposition 25.1:

133Proof. We distinguish between two cases:
Case 1: We have ` = 0.
Case 2: We have ` 6= 0.
Let us consider Case 1 first. In this case, ` = 0, so that k` = k0 = k (because this is how the grading

on k is defined), so that εC (C`) ⊆ k = k`. Thus, εC (C`) ⊆ k` is proven in Case 1.
Next, let us consider Case 2. In this case, ` 6= 0, thus 0 6= `, so that p0,C |C`= 0 (by (111) (applied

to V = C, n = 0 and m = `)), so that every x ∈ C` satisfies p0,C (x) = (p0,C |C`)︸ ︷︷ ︸
=0

(x) = 0. Thus, every

x ∈ C` satisfies

εC (x) = (εC ◦ p0,C) (x) (by (233))

= εC (p0,C (x))︸ ︷︷ ︸
=0

= εC (0) = 0 (since εC is k-linear)

∈ k`.

In other words, εC (C`) ⊆ k`. We thus have proven εC (C`) ⊆ k` in Case 2.
Hence, εC (C`) ⊆ k` is proven in both possible cases. Thus, εC (C`) ⊆ k` always holds, qed.
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Proposition 25.2. Let k be a field. Let C be a k-coalgebra. Let A be a
k-bialgebra. Let f : C → A be a ∗-invertible k-coalgebra homomorphism.
Then, f ∗(−1) is a k-coalgebra homomorphism from Ccop to A.

Here, we are using the following definition:

Definition 25.3. Let k be a field. Let C be a k-coalgebra. The coopposite
coalgebra of C is defined to be the k-coalgebra (C, τC,C ◦∆C , εC) (this is
easily seen to be a k-coalgebra), and denoted by Ccop.

Note that Proposition 25.2 cannot be easily derived from Proposition 23.4 any-
more (mainly because there is no generalization of Lemma 23.5 to non-cocommutative
coalgebras C).

Before we prove Proposition 25.2, let us show how Proposition 25.1 can be derived
from it:

Proof of Proposition 25.1. (a) Since C is cocommutative, we have τC,C ◦ ∆C = ∆C .

By the definition of Ccop, we have Ccop =

C, τC,C ◦∆C︸ ︷︷ ︸
=∆C

, εC

 = (C,∆C , εC) = C. By

Proposition 25.2 (applied to A = H), we know that f ∗(−1) is a k-coalgebra homomor-
phism from Ccop to H. Since Ccop = C, this rewrites as follows: f ∗(−1) is a k-coalgebra
homomorphism from C to H. This proves Proposition 25.1 (a).

(b) Let us first check that, for every m ∈ N,

the map f ∗(−m) : C → H is a k-coalgebra homomorphism. (234)

Proof of (234): We will prove (234) by induction over m:
Induction base: From the proof of Corollary 10.2, we know that f ∗0 is a k-coalgebra

homomorphism. In other words, f ∗(−0) is a k-coalgebra homomorphism (since 0 = −0).
In other words, (234) holds for m = 0. This completes the induction base.

Induction step: Let N ∈ N. Assume that (234) holds for m = N . We must now
prove that (234) also holds for m = N + 1.

Since (234) holds for m = N , we know that f ∗(−N) is a k-coalgebra homomorphism.
Proposition 10.1 (applied to f ∗(−1) and f ∗(−N) instead of f and g) now yields that
f ∗(−1)∗f ∗(−N) is a k-coalgebra homomorphism (because we know from Proposition 25.1
(a) that f ∗(−1) is a k-coalgebra homomorphism). Since f ∗(−1) ∗ f ∗(−N) = f ∗(−(N+1)),
this yields that f ∗(−(N+1)) is a k-coalgebra homomorphism. In other words, (234) holds
for m = N + 1. This completes the induction step. The induction proof of (234) is
thus complete.

Now, let us distinguish between two cases:
Case 1: We have n ≥ 0.
Case 2: We have n < 0.
Let us consider Case 1 first. In this case, n ≥ 0, so that n ∈ N, and thus Corol-

lary 10.2 shows that f ∗n : C → H is a k-coalgebra homomorphism. Hence, Proposi-
tion 25.1 (b) is proven in Case 1.

Now, let us consider Case 2. In this case, n < 0, so that −n > 0 and thus
−n ∈ N. Hence, (234) (applied to m = −n) yields that the map f ∗(−(−n)) : C → H
is a k-coalgebra homomorphism. Since − (−n) = n, this rewrites as follows: The map
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f ∗n : C → H is a k-coalgebra homomorphism. Thus, Proposition 25.1 (b) is proven in
Case 2.

Hence, Proposition 25.1 (b) is proven in each of the cases 1 and 2. Since these two
cases cover all possibilities, this yields that Proposition 25.1 (b) always holds. The
proof of Proposition 25.1 (b) is thus complete (up to proving Proposition 25.2).

Let us show another consequence of Proposition 25.2:

Proposition 25.4. Let k be a field. Let H be a k-Hopf algebra. Then,
the antipode of H is a k-coalgebra homomorphism from Hcop to H.

Proof of Proposition 25.4. The antipode of H is the ∗-inverse of the identity map idH :
H → H (by the definition of the antipode of a Hopf algebra). In other words, the

antipode of H is the map id
∗(−1)
H . In particular, this yields that the map idH is ∗-

invertible. Thus, Proposition 25.2 (applied to C = H, A = H and f = idH) yields that

id
∗(−1)
H is a k-coalgebra homomorphism from Hcop to H. Since id

∗(−1)
H is the antipode

of H, this rewrites as follows: The antipode of H is a k-coalgebra homomorphism from
Hcop to H. This proves Proposition 25.4.

Let us now prepare for proving Proposition 25.2. Our proof will involve lengthy
computations, but we can simplify them by showing some lemmas first:

Lemma 25.5. Let k be a field. Let U , V and W be three k-vector spaces.
Then,

(idV ⊗τU,W ) ◦ (τU,V ⊗ idW ) = τU,V⊗W .

Proof of Lemma 25.5. Every u ∈ U , v ∈ V and w ∈ W satisfy

((idV ⊗τU,W ) ◦ (τU,V ⊗ idW )) (u⊗ v ⊗ w)

= (idV ⊗τU,W ) ((τU,V ⊗ idW ) (u⊗ v ⊗ w))︸ ︷︷ ︸
=τU,V (u⊗v)⊗idW (w)

= (idV ⊗τU,W )

 τU,V (u⊗ v)︸ ︷︷ ︸
=v⊗u

(by the definition of τU,V )

⊗ idW (w)︸ ︷︷ ︸
=w


= (idV ⊗τU,W ) (v ⊗ u⊗ w) = idV (v)︸ ︷︷ ︸

=v

⊗ τU,W (u⊗ w)︸ ︷︷ ︸
=w⊗u

(by the definition of τU,W )

= v ⊗ w ⊗ u = τU,V⊗W (u⊗ v ⊗ w)

(since τU,V⊗W (u⊗ v ⊗ w) = v ⊗ w ⊗ u by the definition of τU,V⊗W ) .

In other words, the two maps (idV ⊗τU,W )◦(τU,V ⊗ idW ) and τU,V⊗W are equal on every
pure tensor. But since these two maps are k-linear, this yields that these maps must
be identic (because whenever two k-linear maps from a tensor product are equal on
every pure tensor, they must be identic). In other words, (idV ⊗τU,W ) ◦ (τU,V ⊗ idW ) =
τU,V⊗W . This proves Lemma 25.5.
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Lemma 25.6. Let k be a field. Let U , V , W , T and Q be five k-vector
spaces. Let r : Q→ V ⊗W be a k-linear map. Then,

(idV ⊗τU,W ⊗ idT ) ◦ (τU,V ⊗ idW ⊗ idT ) ◦ (idU ⊗r ⊗ idT )

= (r ⊗ idU ⊗ idT ) ◦ (τU,Q ⊗ idT ) .

Proof of Lemma 25.6. By (21) (applied to U ⊗ V ⊗W , V ⊗ U ⊗W , V ⊗W ⊗ U , T ,
T , T , τU,V ⊗ idW , idV ⊗τU,W , idT , idT instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′), we
have

((idV ⊗τU,W ) ◦ (τU,V ⊗ idW ))⊗ (idT ◦ idT ) = (idV ⊗τU,W ⊗ idT ) ◦ (τU,V ⊗ idW ⊗ idT ) .

Thus,

(idV ⊗τU,W ⊗ idT ) ◦ (τU,V ⊗ idW ⊗ idT )

= ((idV ⊗τU,W ) ◦ (τU,V ⊗ idW ))︸ ︷︷ ︸
=τU,V⊗W

(by Lemma 25.5)

⊗ (idT ◦ idT )︸ ︷︷ ︸
=idT

= τU,V⊗W ⊗ idT . (235)

On the other hand, by (21) (applied to U ⊗Q, U ⊗ V ⊗W , V ⊗W ⊗ U , T , T , T ,
idU ⊗r, τU,V⊗W , idT , idT instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′), we have

(τU,V⊗W ◦ (idU ⊗r))⊗ (idT ◦ idT ) = (τU,V⊗W ⊗ idT ) ◦ (idU ⊗r ⊗ idT ) . (236)

By Proposition 9.3 (a) (applied to U , Q, U , V ⊗W , idU and r instead of V , W ,
V ′, W ′, f and g), we have

(r ⊗ idU) ◦ τU,Q = τU,V⊗W ◦ (idU ⊗r) . (237)

Besides, by (21) (applied to U ⊗Q, Q⊗U , V ⊗W ⊗U , T , T , T , τU,Q, r⊗ idU , idT ,
idT instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′), we have

((r ⊗ idU) ◦ τU,Q)⊗ (idT ◦ idT ) = (r ⊗ idU ⊗ idT ) ◦ (τU,Q ⊗ idT ) . (238)

Now,

(idV ⊗τU,W ⊗ idT ) ◦ (τU,V ⊗ idW ⊗ idT )︸ ︷︷ ︸
=τU,V⊗W⊗idT

(by (235))

◦ (idU ⊗r ⊗ idT )

= (τU,V⊗W ⊗ idT ) ◦ (idU ⊗r ⊗ idT )

= (τU,V⊗W ◦ (idU ⊗r))︸ ︷︷ ︸
=(r⊗idU )◦τU,Q

(by (237))

⊗ (idT ◦ idT ) (by (236))

= ((r ⊗ idU) ◦ τU,Q)⊗ (idT ◦ idT ) = (r ⊗ idU ⊗ idT ) ◦ (τU,Q ⊗ idT ) (by (238)) .

This proves Lemma 25.6.

Proof of Proposition 25.2. Let g = f ∗(−1). Then, f ∗ g = f ∗ f ∗(−1) = eC,A and g ∗ f =
f ∗(−1) ∗ f = eC,A.
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We are now going to show that

((g ⊗ g) ◦∆Ccop) ∗ (∆A ◦ f) = eC,A⊗A (239)

and
(∆A ◦ f) ∗ (∆A ◦ g) = eC,A⊗A (240)

(where ∗ stands for convolution of maps from C to A ⊗ A). Once these formulas are
shown, it will be easy to conclude that (g ⊗ g) ◦∆Ccop = ∆A ◦ g, which will settle the
hardest part of Proposition 25.2.

But let us prove (239) and (240) now:
Proof of (239): Since f is a k-coalgebra homomorphism, we have ∆A◦f = (f ⊗ f)◦
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∆C . Thus,

((g ⊗ g) ◦∆Ccop) ∗ (∆A ◦ f)︸ ︷︷ ︸
=(f⊗f)◦∆C

= ((g ⊗ g) ◦∆Ccop) ∗ ((f ⊗ f) ◦∆C)

= µA⊗A︸ ︷︷ ︸
=(µA⊗µA)◦(idA⊗τA,A⊗idA)

(by the definition of the k-algebra A⊗A)

◦ (((g ⊗ g) ◦∆Ccop)⊗ ((f ⊗ f) ◦∆C))︸ ︷︷ ︸
=(g⊗g⊗f⊗f)◦(∆Ccop⊗∆C)

(by (21), applied to C, C⊗C, A⊗A, C, C⊗C, A⊗A,
∆Ccop , g⊗g, ∆C , f⊗f instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′)

◦∆C

(by the definition of convolution)

= (µA ⊗ µA) ◦ (idA⊗τA,A ⊗ idA) ◦ (g ⊗ g ⊗ f ⊗ f)︸ ︷︷ ︸
=(g⊗f⊗g⊗f)◦(idC ⊗τC,C⊗idC)

(by Proposition 9.3 (b), applied to C, C, C, C,
A, A, A, A, g, g, f , f instead of

U , V , W , T , U ′, V ′, W ′, T ′, e, f , g, h)

◦


∆Ccop︸ ︷︷ ︸

=τC,C◦∆C

(by the definition
of the

k-coalgebra Ccop)

⊗ ∆C︸︷︷︸
=idC⊗C ◦∆C


◦∆C

= (µA ⊗ µA) ◦ (g ⊗ f ⊗ g ⊗ f) ◦ (idC ⊗τC,C ⊗ idC) ◦ ((τC,C ◦∆C)⊗ (idC⊗C ◦∆C))︸ ︷︷ ︸
=(τC,C⊗idC⊗C)◦(∆C⊗∆C)

(by (21), applied to C, C⊗C, C⊗C,
C, C⊗C, C⊗C, ∆C , τC,C , ∆C , idC⊗C

instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′)

◦∆C

= (µA ⊗ µA) ◦ (g ⊗ f ⊗ g ⊗ f)

◦ (idC ⊗τC,C ⊗ idC) ◦

τC,C ⊗ idC⊗C︸ ︷︷ ︸
=idC ⊗ idC

 ◦ (∆C ⊗∆C) ◦∆C︸ ︷︷ ︸
=(idC ⊗∆C⊗idC)◦(∆C⊗idC)◦∆C

(by Lemma 9.4)

= (µA ⊗ µA) ◦ (g ⊗ f ⊗ g ⊗ f)

◦ (idC ⊗τC,C ⊗ idC) ◦ (τC,C ⊗ idC ⊗ idC) ◦ (idC ⊗∆C ⊗ idC)︸ ︷︷ ︸
=(∆C⊗idC ⊗ idC)◦(τC,C⊗idC)

(by Lemma 25.6, applied to U=C, V=C, W=C, T=C, Q=C and r=∆C)

◦ (∆C ⊗ idC) ◦∆C

= (µA ⊗ µA) ◦ (g ⊗ f ⊗ g ⊗ f) ◦

∆C ⊗ idC ⊗ idC︸ ︷︷ ︸
=idC⊗C

 ◦ (τC,C ⊗ idC) ◦ (∆C ⊗ idC) ◦∆C

= (µA ⊗ µA) ◦ (g ⊗ f ⊗ g ⊗ f) ◦ (∆C ⊗ idC⊗C) ◦ (τC,C ⊗ idC) ◦ (∆C ⊗ idC) ◦∆C .
(241)

Applying (21) to A⊗ A, A, A, A⊗ A, A⊗ A, A, µA, idA, idA⊗A, µA instead of U ,
V , W , U ′, V ′, W ′, α, β, α′, β′, we obtain

(idA ◦µA)⊗ (µA ◦ idA⊗A) = (idA⊗µA) ◦ (µA ⊗ idA⊗A) .

Since idA ◦µA = µA and µA ◦ idA⊗A = µA, this rewrites as

µA ⊗ µA = (idA⊗µA) ◦ (µA ⊗ idA⊗A) . (242)
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Applying (21) to C ⊗C, A⊗A, A⊗A, C ⊗C, C ⊗C, A⊗A, g⊗ f , idA⊗A, idC⊗C ,
g ⊗ f instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′, we obtain

(idA⊗A ◦ (g ⊗ f))⊗ ((g ⊗ f) ◦ idC⊗C) = (idA⊗A⊗g ⊗ f) ◦ (g ⊗ f ⊗ idC⊗C) .

Since idA⊗A ◦ (g ⊗ f) = g ⊗ f and (g ⊗ f) ◦ idC⊗C = g ⊗ f , this rewrites as

g ⊗ f ⊗ g ⊗ f = (idA⊗A⊗g ⊗ f) ◦ (g ⊗ f ⊗ idC⊗C) . (243)

By (212) (applied to P = A ⊗ A, Q = A, R = C ⊗ C, S = A ⊗ A, γ = µA and
δ = g ⊗ f), we have

(idA⊗g ⊗ f) ◦ (µA ⊗ idC⊗C) = (µA ⊗ idA⊗A) ◦ (idA⊗A⊗g ⊗ f) . (244)

By the definition of convolution, g ∗ f = µA ◦ (g ⊗ f) ◦∆C , so that

µA ◦ (g ⊗ f) ◦∆C = g ∗ f = eC,A. (245)

Applying (21) to C, C ⊗C, A⊗A, C ⊗C, C ⊗C, C ⊗C, ∆C , g⊗ f , idC⊗C , idC⊗C
instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′, we obtain

((g ⊗ f) ◦∆C)⊗ (idC⊗C ◦ idC⊗C) = (g ⊗ f ⊗ idC⊗C) ◦ (∆C ⊗ idC⊗C) .

Since idC⊗C ◦ idC⊗C = idC⊗C , this rewrites as

((g ⊗ f) ◦∆C)⊗ idC⊗C = (g ⊗ f ⊗ idC⊗C) ◦ (∆C ⊗ idC⊗C) . (246)

Applying (21) to C, A ⊗ A, A, C ⊗ C, C ⊗ C, C ⊗ C, (g ⊗ f) ◦ ∆C , µA, idC⊗C ,
idC⊗C instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′, we obtain

(µA ◦ (g ⊗ f) ◦∆C)⊗ (idC⊗C ◦ idC⊗C) = (µA ⊗ idC⊗C) ◦ (((g ⊗ f) ◦∆C)⊗ idC⊗C) .
(247)

Thus,

(µA ⊗ idC⊗C) ◦ (g ⊗ f ⊗ idC⊗C) ◦ (∆C ⊗ idC⊗C)︸ ︷︷ ︸
=((g⊗f)◦∆C)⊗idC⊗C

(by (246))

= (µA ⊗ idC⊗C) ◦ (((g ⊗ f) ◦∆C)⊗ idC⊗C)

= (µA ◦ (g ⊗ f) ◦∆C)︸ ︷︷ ︸
=eC,A

(by (245))

⊗ (idC⊗C ◦ idC⊗C)︸ ︷︷ ︸
=idC⊗C

(by (247))

= eC,A ⊗ idC⊗C . (248)
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Now, (241) becomes

((g ⊗ g) ◦∆Ccop) ∗ (∆A ◦ f)

= (µA ⊗ µA)︸ ︷︷ ︸
=(idA⊗µA)◦(µA⊗idA⊗A)

(by (242))

◦ (g ⊗ f ⊗ g ⊗ f)︸ ︷︷ ︸
=(idA⊗A⊗g⊗f)◦(g⊗f⊗idC⊗C)

(by (243))

◦ (∆C ⊗ idC⊗C) ◦ (τC,C ⊗ idC) ◦ (∆C ⊗ idC) ◦∆C

= (idA⊗µA) ◦ (µA ⊗ idA⊗A) ◦ (idA⊗A⊗g ⊗ f)︸ ︷︷ ︸
=(idA⊗g⊗f)◦(µA⊗idC⊗C)

(by (244))

◦ (g ⊗ f ⊗ idC⊗C) ◦ (∆C ⊗ idC⊗C)

◦ (τC,C ⊗ idC) ◦ (∆C ⊗ idC) ◦∆C

= (idA⊗µA) ◦ (idA⊗g ⊗ f) ◦ (µA ⊗ idC⊗C) ◦ (g ⊗ f ⊗ idC⊗C) ◦ (∆C ⊗ idC⊗C)︸ ︷︷ ︸
=eC,A⊗idC⊗C

(by (248))

◦ (τC,C ⊗ idC) ◦ (∆C ⊗ idC) ◦∆C

= (idA⊗µA) ◦ (idA⊗g ⊗ f) ◦

eC,A ⊗ idC⊗C︸ ︷︷ ︸
=idC ⊗ idC

 ◦ (τC,C ⊗ idC) ◦ (∆C ⊗ idC) ◦∆C︸ ︷︷ ︸
=(idC ⊗∆C)◦∆C

(by the axioms of a
coalgebra, since C is

a coalgebra)

= (idA⊗µA) ◦ (idA⊗g ⊗ f) ◦ (eC,A ⊗ idC ⊗ idC) ◦ (τC,C ⊗ idC) ◦ (idC ⊗∆C) ◦∆C .
(249)

On the other hand, Proposition 9.3 (a) (applied to C, C, C, A, idC , eC,A instead
of V , W , V ′, W ′, f , g) yields

(eC,A ⊗ idC) ◦ τC,C = τC,A ◦ (idC ⊗eC,A) . (250)

But applying (21) to C ⊗C, C ⊗C, A⊗C, C, C, C, τC,C , eC,A⊗ idC , idC , idC instead
of U , V , W , U ′, V ′, W ′, α, β, α′, β′, we obtain

((eC,A ⊗ idC) ◦ τC,C)⊗ (idC ◦ idC) = (eC,A ⊗ idC ⊗ idC) ◦ (τC,C ⊗ idC) .

Thus,

(eC,A ⊗ idC ⊗ idC) ◦ (τC,C ⊗ idC)

= ((eC,A ⊗ idC) ◦ τC,C)︸ ︷︷ ︸
=τC,A◦(idC ⊗eC,A)

(by (250))

⊗ (idC ◦ idC) = (τC,A ◦ (idC ⊗eC,A))⊗ (idC ◦ idC)

= (τC,A ⊗ idC) ◦

idC ⊗ eC,A︸︷︷︸
=ηA◦εC

(by the definition of eC,A)

⊗ idC


(

by (21), applied to C ⊗ C, C ⊗ A, A⊗ C, C, C, C, idC ⊗eC,A, τC,A, idC , idC
instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′

)
= (τC,A ⊗ idC) ◦ (idC ⊗ (ηA ◦ εC)⊗ idC) . (251)
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But (211) (applied to P = C, Q = C, R1 = C, R2 = k, R3 = A, ϕ = εC and
ψ = ηA) yields

(idC ⊗ηA ⊗ idC) ◦ (idC ⊗εC ⊗ idC) = idC ⊗ (ηA ◦ εC)⊗ idC . (252)

Hence, (251) becomes

(eC,A ⊗ idC ⊗ idC) ◦ (τC,C ⊗ idC)

= (τC,A ⊗ idC) ◦ (idC ⊗ (ηA ◦ εC)⊗ idC)︸ ︷︷ ︸
=(idC ⊗ηA⊗idC)◦(idC ⊗εC⊗idC)

(by (252))

= (τC,A ⊗ idC) ◦ (idC ⊗ηA ⊗ idC) ◦ (idC ⊗εC ⊗ idC) . (253)

Now, let kanC,k⊗C be the canonical isomorphism C → k⊗C which sends every c ∈ C
to 1⊗c ∈ k⊗C. Then, by the axioms of a coalgebra, we have (εC ⊗ idC)◦∆C = kanC,k⊗C
(since C is a k-coalgebra).

Applying (21) to C, C, C, C, C ⊗ C, k ⊗ C, idC , idC , ∆C , εC ⊗ idC instead of U ,
V , W , U ′, V ′, W ′, α, β, α′, β′, we obtain

(idC ◦ idC)⊗ ((εC ⊗ idC) ◦∆C) = (idC ⊗εC ⊗ idC) ◦ (idC ⊗∆C) .

Thus,

(idC ⊗εC ⊗ idC) ◦ (idC ⊗∆C) = (idC ◦ idC)︸ ︷︷ ︸
=idC

⊗ ((εC ⊗ idC) ◦∆C)︸ ︷︷ ︸
=kanC,k⊗C

= idC ⊗ kanC,k⊗C . (254)

Now,

(eC,A ⊗ idC ⊗ idC) ◦ (τC,C ⊗ idC)︸ ︷︷ ︸
=(τC,A⊗idC)◦(idC ⊗ηA⊗idC)◦(idC ⊗εC⊗idC)

(by (253))

◦ (idC ⊗∆C)

= (τC,A ⊗ idC) ◦ (idC ⊗ηA ⊗ idC) ◦ (idC ⊗εC ⊗ idC) ◦ (idC ⊗∆C)︸ ︷︷ ︸
=idC ⊗ kanC,k⊗C

(by (254))

= (τC,A ⊗ idC) ◦ (idC ⊗ηA ⊗ idC) ◦ (idC ⊗ kanC,k⊗C) . (255)

Thus, (249) becomes

((g ⊗ g) ◦∆Ccop) ∗ (∆A ◦ f)

= (idA⊗µA) ◦ (idA⊗g ⊗ f) ◦ (eC,A ⊗ idC ⊗ idC) ◦ (τC,C ⊗ idC) ◦ (idC ⊗∆C)︸ ︷︷ ︸
=(τC,A⊗idC)◦(idC ⊗ηA⊗idC)◦(idC ⊗ kanC,k⊗C)

(by (255))

◦∆C

= (idA⊗µA) ◦ (idA⊗g ⊗ f) ◦ (τC,A ⊗ idC) ◦ (idC ⊗ηA ⊗ idC) ◦ (idC ⊗ kanC,k⊗C) ◦∆C .
(256)

Now, let kanA,k⊗A be the canonical isomorphism A → k ⊗ A which sends every
a ∈ A to 1⊗ a ∈ k ⊗ A. Then, it is easy to see that

(idA⊗µA) ◦ (idA⊗g ⊗ f) ◦ (τC,A ⊗ idC) ◦ (idC ⊗ηA ⊗ idC) ◦ (idC ⊗ kanC,k⊗C)

= (ηA ⊗ idA) ◦ kanA,k⊗A ◦µA ◦ (g ⊗ f) . (257)
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134 Hence, (256) becomes

((g ⊗ g) ◦∆Ccop) ∗ (∆A ◦ f)

= (idA⊗µA) ◦ (idA⊗g ⊗ f) ◦ (τC,A ⊗ idC) ◦ (idC ⊗ηA ⊗ idC) ◦ (idC ⊗ kanC,k⊗C)︸ ︷︷ ︸
=(ηA⊗idA)◦kanA,k⊗A ◦µA◦(g⊗f)

(by (257))

◦∆C

= (ηA ⊗ idA) ◦ kanA,k⊗A ◦µA ◦ (g ⊗ f) ◦∆C︸ ︷︷ ︸
=eC,A

(by (245))

= (ηA ⊗ idA) ◦ kanA,k⊗A ◦ eC,A︸︷︷︸
=ηA◦εC

(by the definition
of eC,A)

= (ηA ⊗ idA) ◦ kanA,k⊗A ◦ηA ◦ εC .
134Proof of (257): By the definition of ηA, we have ηA (1) = 1 · 1A = 1A. Every c ∈ C and d ∈ C

satisfy

((idA⊗µA) ◦ (idA⊗g ⊗ f) ◦ (τC,A ⊗ idC) ◦ (idC ⊗ηA ⊗ idC) ◦ (idC ⊗ kanC,k⊗C)) (c⊗ d)

= ((idA⊗µA) ◦ (idA⊗g ⊗ f) ◦ (τC,A ⊗ idC) ◦ (idC ⊗ηA ⊗ idC)) ((idC ⊗ kanC,k⊗C) (c⊗ d))︸ ︷︷ ︸
=idC(c)⊗kanC,k⊗C(d)

= ((idA⊗µA) ◦ (idA⊗g ⊗ f) ◦ (τC,A ⊗ idC) ◦ (idC ⊗ηA ⊗ idC))

idC (c)︸ ︷︷ ︸
=c

⊗ kanC,k⊗C (d)︸ ︷︷ ︸
=1⊗d

(by the definition
of kanC,k⊗C )


= ((idA⊗µA) ◦ (idA⊗g ⊗ f) ◦ (τC,A ⊗ idC) ◦ (idC ⊗ηA ⊗ idC)) (c⊗ 1⊗ d)

= ((idA⊗µA) ◦ (idA⊗g ⊗ f) ◦ (τC,A ⊗ idC)) ((idC ⊗ηA ⊗ idC) (c⊗ 1⊗ d))︸ ︷︷ ︸
=idC(c)⊗ηA(1)⊗idC(d)

= ((idA⊗µA) ◦ (idA⊗g ⊗ f) ◦ (τC,A ⊗ idC))

idC (c)︸ ︷︷ ︸
=c

⊗ ηA (1)︸ ︷︷ ︸
=1A

⊗ idC (d)︸ ︷︷ ︸
=d


= ((idA⊗µA) ◦ (idA⊗g ⊗ f) ◦ (τC,A ⊗ idC)) (c⊗ 1A ⊗ d)

= ((idA⊗µA) ◦ (idA⊗g ⊗ f)) ((τC,A ⊗ idC) (c⊗ 1A ⊗ d))︸ ︷︷ ︸
=τC,A(c⊗1A)⊗idC(d)

= ((idA⊗µA) ◦ (idA⊗g ⊗ f))

 τC,A (c⊗ 1A)︸ ︷︷ ︸
=1A⊗c

(by the definition
of τC,A)

⊗ idC (d)︸ ︷︷ ︸
=d


= ((idA⊗µA) ◦ (idA⊗g ⊗ f)) (1A ⊗ c⊗ d) = (idA⊗µA) ((idA⊗g ⊗ f) (1A ⊗ c⊗ d))︸ ︷︷ ︸

=idA(1A)⊗g(c)⊗f(d)

= (idA⊗µA)

idA (1A)︸ ︷︷ ︸
=1A

⊗g (c)⊗ f (d)

 = (idA⊗µA) (1A ⊗ g (c)⊗ f (d))

= idA (1A)︸ ︷︷ ︸
=1A

⊗ µA (g (c)⊗ f (d))︸ ︷︷ ︸
=g(c)f(d)

(by the definition of µA)

= 1A ⊗ g (c) f (d)
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Thus, every c ∈ C satisfies

(((g ⊗ g) ◦∆Ccop) ∗ (∆A ◦ f)) (c)

= ((ηA ⊗ idA) ◦ kanA,k⊗A ◦ηA ◦ εC) (c) = ((ηA ⊗ idA) ◦ kanA,k⊗A ◦ηA) (εC (c))

= ((ηA ⊗ idA) ◦ kanA,k⊗A) (ηA (εC (c)))︸ ︷︷ ︸
=εC(c)·1A

(by the definition
of ηA)

= ((ηA ⊗ idA) ◦ kanA,k⊗A) (εC (c) · 1A)

= (ηA ⊗ idA) (kanA,k⊗A (εC (c) · 1A))︸ ︷︷ ︸
=1⊗εC(c)·1A

(by the definition
of kanA,k⊗A )

= (ηA ⊗ idA) (1⊗ εC (c) · 1A)

= ηA (1)︸ ︷︷ ︸
=1·1A

(by the definition of ηA)

⊗ idA (εC (c) · 1A)︸ ︷︷ ︸
=εC(c)·1A

= 1 · 1A ⊗ εC (c) · 1A = εC (c) · 1A ⊗ 1A︸ ︷︷ ︸
=1A⊗A

= εC (c) · 1A⊗A = ηA⊗A (εC (c))

(since ηA⊗A (εC (c)) = εC (c) · 1A⊗A by the definition of ηA⊗A)

= (ηA⊗A ◦ εC) (c) = eC,A⊗A (c)

(since eC,A⊗A is defined as ηA⊗A ◦ εC , so that ηA⊗A ◦ εC = eC,A⊗A) .

In other words, ((g ⊗ g) ◦∆Ccop) ∗ (∆A ◦ f) = eC,A⊗A. This proves (239).

and

((ηA ⊗ idA) ◦ kanA,k⊗A ◦µA ◦ (g ⊗ f)) (c⊗ d)

= ((ηA ⊗ idA) ◦ kanA,k⊗A ◦µA) ((g ⊗ f) (c⊗ d))︸ ︷︷ ︸
=g(c)⊗f(d)

= ((ηA ⊗ idA) ◦ kanA,k⊗A ◦µA) (g (c)⊗ f (d))

= ((ηA ⊗ idA) ◦ kanA,k⊗A) (µA (g (c)⊗ f (d)))︸ ︷︷ ︸
=g(c)f(d)

(by the definition of µA)

= ((ηA ⊗ idA) ◦ kanA,k⊗A) (g (c) f (d))

= (ηA ⊗ idA) (kanA,k⊗A (g (c) f (d)))︸ ︷︷ ︸
=1⊗g(c)f(d)

(by the definition of kanA,k⊗A )

= (ηA ⊗ idA) (1⊗ g (c) f (d))

= ηA (1)︸ ︷︷ ︸
=1

⊗ idA (g (c) f (d))︸ ︷︷ ︸
=g(c)f(d)

= 1⊗ g (c) f (d) .

Thus, every c ∈ C and d ∈ C satisfy

((idA⊗µA) ◦ (idA⊗g ⊗ f) ◦ (τC,A ⊗ idC) ◦ (idC ⊗ηA ⊗ idC) ◦ (idC ⊗ kanC,k⊗C)) (c⊗ d)

= 1⊗ g (c) f (d) = ((ηA ⊗ idA) ◦ kanA,k⊗A ◦µA ◦ (g ⊗ f)) (c⊗ d) .

In other words, the two maps
(idA⊗µA) ◦ (idA⊗g ⊗ f) ◦ (τC,A ⊗ idC) ◦ (idC ⊗ηA ⊗ idC) ◦ (idC ⊗ kanC,k⊗C) and
(ηA ⊗ idA) ◦ kanA,k⊗A ◦µA ◦ (g ⊗ f) are equal on every pure tensor. But since these two maps are
k-linear, this yields that these maps must be identic (because whenever two k-linear maps from a
tensor product are equal on every pure tensor, they must be identic). In other words,

(idA⊗µA) ◦ (idA⊗g ⊗ f) ◦ (τC,A ⊗ idC) ◦ (idC ⊗ηA ⊗ idC) ◦ (idC ⊗ kanC,k⊗C)

= (ηA ⊗ idA) ◦ kanA,k⊗A ◦µA ◦ (g ⊗ f) .

This proves (257).
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Proof of (240): Since A is a k-bialgebra, the comultiplication map ∆A of A is a
k-algebra homomorphism (by the axioms of a bialgebra). Thus, µA⊗A ◦ (∆A ⊗∆A) =
∆A ◦ µA and ηA⊗A = ∆A ◦ ηA.

By the definition of convolution, f ∗ g = µA ◦ (f ⊗ g) ◦∆C . Thus,

µA ◦ (f ⊗ g) ◦∆C = f ∗ g = eC,A = ηA ◦ εC (258)

(by the definition of eC,A).
By the definition of convolution,

(∆A ◦ f) ∗ (∆A ◦ g) = µA⊗A ◦ ((∆A ◦ f)⊗ (∆A ◦ g))︸ ︷︷ ︸
=(∆A⊗∆A)◦(f⊗g)

(by (21), applied to C, A, A⊗A, C, A, A⊗A,
f , ∆A, g, ∆A instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′)

◦∆C

= µA⊗A ◦ (∆A ⊗∆A)︸ ︷︷ ︸
=∆A◦µA

◦ (f ⊗ g) ◦∆C = ∆A ◦ µA ◦ (f ⊗ g) ◦∆C︸ ︷︷ ︸
=ηA◦εC

(by (258))

= ∆A ◦ ηA︸ ︷︷ ︸
=ηA⊗A

◦εC = ηA⊗A ◦ εC = eC,A⊗A

(since eC,A⊗A is defined as ηA⊗A ◦ εC). This proves (240).
Now, let us finish the proof of Proposition 25.2: Comparing the equalities

((g ⊗ g) ◦∆Ccop) ∗ (∆A ◦ f)︸ ︷︷ ︸
=eC,A⊗A
(by (239))

∗ (∆A ◦ g)

= eC,A⊗A ∗ (∆A ◦ g) = ∆A ◦ g

and

((g ⊗ g) ◦∆Ccop) ∗ (∆A ◦ f) ∗ (∆A ◦ g)︸ ︷︷ ︸
=eC,A⊗A
(by (240))

= ((g ⊗ g) ◦∆Ccop) ∗ eC,A⊗A = (g ⊗ g) ◦∆Ccop ,

we obtain
∆A ◦ g = (g ⊗ g) ◦∆Ccop . (259)

We will now prove that εA ◦ g = εCcop .
Since A is a k-bialgebra, the counit map εA of A is a k-algebra homomorphism (by

the axioms of a bialgebra). Thus, εA ◦ µA = µk ◦ (εA ⊗ εA) and εA ◦ ηA = ηk.
Since f is a k-coalgebra homomorphism C → A, we have εA ◦ f = εC .
Applying (21) to C, A, k, C, A, k, f , εA, g, εA instead of U , V , W , U ′, V ′, W ′, α,

β, α′, β′, we obtain

(εA ◦ f)⊗ (εA ◦ g) = (εA ⊗ εA) ◦ (f ⊗ g) .

Thus,
(εA ⊗ εA) ◦ (f ⊗ g) = (εA ◦ f)︸ ︷︷ ︸

=εC

⊗ (εA ◦ g) = εC ⊗ (εA ◦ g) . (260)
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The unity of the k-algebra (L (C, k) , ∗) is ηk︸︷︷︸
=id

◦εC = εC .

But now,
εA ◦ µA ◦ (f ⊗ g) ◦∆C︸ ︷︷ ︸

=ηA◦εC
(by (258))

= εA ◦ ηA︸ ︷︷ ︸
=ηk=idk

◦εC = εC = εCcop

(since εCcop = εC by the definition of Ccop). Thus,

εCcop = εA ◦ µA︸ ︷︷ ︸
=µk◦(εA⊗εA)

◦ (f ⊗ g) ◦∆C = µk ◦ (εA ⊗ εA) ◦ (f ⊗ g)︸ ︷︷ ︸
=εC⊗(εA◦g)

(by (260))

◦∆C

= µk ◦ (εC ⊗ (εA ◦ g)) ◦∆C = εC ∗ (εA ◦ g)(
since εC ∗ (εA ◦ g) = µk ◦ (εC ⊗ (εA ◦ g)) ◦∆C

by the definition of convolution

)
= εA ◦ g (since εC is the unity of the k-algebra (L (C, k) , ∗)) .

We thus have proven that εA ◦ g = εCcop . Combined with (259), this yields that g is a
k-coalgebra homomorphism from Ccop to A. Since g = f ∗(−1), this rewrites as follows:
f ∗(−1) is a k-coalgebra homomorphism from Ccop to A. This proves Proposition 25.2.

§26. ∗-inverses of algebra homomorphisms

In this section, we are going to prove the dual versions of the results of §25, dual in
the sense that coalgebras become algebras. The proofs are mostly identical to the ones
of §25 up to “reversing arrows”, except in some of the cases when we worked with
elements in §25.

Let us extend Corollary 15.16 to the case of negative n whenever f is ∗-invertible:

Proposition 26.1. Let k be a field. Let H be a k-bialgebra. Let A be
a commutative k-algebra. Let f : H → A be a ∗-invertible k-algebra
homomorphism.

(a) Then, f ∗(−1) : H → A is also a k-algebra homomorphism.

(b) Let n ∈ Z. Then, f ∗n : H → A is also a k-algebra homomorphism.

Again, this proposition (like Proposition 25.1) can be easily shown using Propo-
sition 23.4 in the same way as we proved Proposition 15.15 in §24 with the help of
Proposition 23.4. Again, we are not going to present this proof, but instead we will
show something more general than Proposition 26.1:

Proposition 26.2. Let k be a field. Let C be a k-bialgebra. Let A be
a k-algebra. Let f : C → A be a ∗-invertible k-algebra homomorphism.
Then, f ∗(−1) is a k-algebra homomorphism from C to Aop.

Here, we are using the following definition:

Definition 26.3. Let k be a field. Let A be a k-algebra. The opposite
algebra of A is defined to be the k-algebra (A, µA ◦ τA,A, ηA) (this is easily
seen to be a k-algebra), and denoted by Aop.
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Before we prove Proposition 26.2, let us show how Proposition 26.1 can be derived
from it:

Proof of Proposition 26.1. (a) Since A is commutative, we have µA ◦ τA,A = µA
135.

By the definition of Aop, we have Aop =

A, µA ◦ τA,A︸ ︷︷ ︸
=µA

, ηA

 = (A, µA, ηA) = A. By

Proposition 26.2 (applied to C = H), we know that f ∗(−1) is a k-algebra homomor-
phism from H to Aop. Since Aop = A, this rewrites as follows: f ∗(−1) is a k-algebra
homomorphism from H to A. This proves Proposition 26.1 (a).

(b) Let us first check that, for every m ∈ N,

the map f ∗(−m) : H → A is a k-algebra homomorphism. (261)

Proof of (261): We will prove (261) by induction over m:
Induction base: From the proof of Corollary 15.16, we know that f ∗0 is a k-algebra

homomorphism. In other words, f ∗(−0) is a k-algebra homomorphism (since 0 = −0).
In other words, (261) holds for m = 0. This completes the induction base.

Induction step: Let N ∈ N. Assume that (261) holds for m = N . We must now
prove that (261) also holds for m = N + 1.

Since (261) holds for m = N , we know that f ∗(−N) is a k-algebra homomorphism.
Proposition 15.15 (applied to f ∗(−1) and f ∗(−N) instead of f and g) now yields that
f ∗(−1) ∗ f ∗(−N) is a k-algebra homomorphism (because we know from Proposition 26.1
(a) that f ∗(−1) is a k-algebra homomorphism). Since f ∗(−1) ∗ f ∗(−N) = f ∗(−(N+1)), this
yields that f ∗(−(N+1)) is a k-algebra homomorphism. In other words, (261) holds for
m = N + 1. This completes the induction step. The induction proof of (261) is thus
complete.

Now, let us distinguish between two cases:
Case 1: We have n ≥ 0.
Case 2: We have n < 0.
Let us consider Case 1 first. In this case, n ≥ 0, so that n ∈ N, and thus Corol-

lary 15.16 shows that f ∗n : H → A is a k-algebra homomorphism. Hence, Proposi-
tion 26.1 (b) is proven in Case 1.

Now, let us consider Case 2. In this case, n < 0, so that −n > 0 and thus −n ∈ N.
Hence, (261) (applied to m = −n) yields that the map f ∗(−(−n)) : H → A is a k-algebra
homomorphism. Since − (−n) = n, this rewrites as follows: The map f ∗n : H → A is
a k-algebra homomorphism. Thus, Proposition 26.1 (b) is proven in Case 2.

135Proof. Every a ∈ A and b ∈ A satisfy

(µA ◦ τA,A) (a⊗ b) = µA (τA,A (a⊗ b))︸ ︷︷ ︸
=b⊗a

(by the definition
of τA,A)

= µA (b⊗ a) = ba (by the definition of µA)

= ab (since A is commutative)

= µA (a⊗ b) (since µA (a⊗ b) = ab by the definition of µA) .

In other words, the two maps µA ◦ τA,A and µA are equal on every pure tensor. But since these
two maps are k-linear, this yields that these maps must be identic (because whenever two k-linear
maps from a tensor product are equal on every pure tensor, they must be identic). In other words,
µA ◦ τA,A = µA, qed.
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Hence, Proposition 26.1 (b) is proven in each of the cases 1 and 2. Since these two
cases cover all possibilities, this yields that Proposition 26.1 (b) always holds. The
proof of Proposition 26.1 (b) is thus complete (up to proving Proposition 26.2).

Let us show another consequence of Proposition 26.2:

Proposition 26.4. Let k be a field. Let H be a k-Hopf algebra. Then,
the antipode of H is a k-algebra homomorphism from H to Hop.

Proof of Proposition 26.4. The antipode of H is the ∗-inverse of the identity map idH :
H → H (by the definition of the antipode of a Hopf algebra). In other words, the

antipode of H is the map id
∗(−1)
H . In particular, this yields that the map idH is ∗-

invertible. Thus, Proposition 26.2 (applied to C = H, A = H and f = idH) yields that

id
∗(−1)
H is a k-algebra homomorphism from H to Hop. Since id

∗(−1)
H is the antipode of

H, this rewrites as follows: The antipode of H is a k-algebra homomorphism from H
to Hop. This proves Proposition 26.4.

Let us now prepare for proving Proposition 26.2. Our proof will involve lengthy
computations, but we can simplify them by showing some lemmas first:

Lemma 26.5. Let k be a field. Let A be a k-algebra. Then,

µA ◦ (µA ⊗ µA) = µA ◦ (µA ⊗ idA) ◦ (idA⊗µA ⊗ idA) .

Proof of Lemma 26.5. Every a ∈ A, b ∈ A, c ∈ A and d ∈ A satisfy

(µA ◦ (µA ⊗ idA) ◦ (idA⊗µA ⊗ idA)) (a⊗ b⊗ c⊗ d)

= (µA ◦ (µA ⊗ idA)) ((idA⊗µA ⊗ idA) (a⊗ b⊗ c⊗ d))︸ ︷︷ ︸
=idA(a)⊗µA(b⊗c)⊗idA(d)

= (µA ◦ (µA ⊗ idA))

idA (a)︸ ︷︷ ︸
=a

⊗ µA (b⊗ c)︸ ︷︷ ︸
=bc

(by the definition of µA)

⊗ idA (d)︸ ︷︷ ︸
=d


= (µA ◦ (µA ⊗ idA)) (a⊗ bc⊗ d) = µA ((µA ⊗ idA) (a⊗ bc⊗ d))︸ ︷︷ ︸

=µA(a⊗bc)⊗idA(d)

= µA

 µA (a⊗ bc)︸ ︷︷ ︸
=a(bc)

(by the definition of µA)

⊗ idA (d)︸ ︷︷ ︸
=d

 = µA (a (bc)⊗ d) = (a (bc)) d

(by the definition of µA)

and

(µA ◦ (µA ⊗ µA)) (a⊗ b⊗ c⊗ d)

= µA ((µA ⊗ µA) (a⊗ b⊗ c⊗ d))︸ ︷︷ ︸
=µA(a⊗b)⊗µA(c⊗d)

= µA

 µA (a⊗ b)︸ ︷︷ ︸
=ab

(by the definition of µA)

⊗ µA (c⊗ d)︸ ︷︷ ︸
=cd

(by the definition of µA)


= µA (ab⊗ cd) = (ab) (cd) (by the definition of µA) .
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Thus, every a ∈ A, b ∈ A, c ∈ A and d ∈ A satisfy

(µA ◦ (µA ⊗ µA)) (a⊗ b⊗ c⊗ d)

= (ab) (cd) = abcd = (a (bc)) d = (µA ◦ (µA ⊗ idA) ◦ (idA⊗µA ⊗ idA)) (a⊗ b⊗ c⊗ d) .

In other words, the two maps µA ◦ (µA ⊗ µA) and µA ◦ (µA ⊗ idA)◦ (idA⊗µA ⊗ idA) are
equal on every pure tensor. But since these two maps are k-linear, this yields that these
maps must be identic (because whenever two k-linear maps from a tensor product are
equal on every pure tensor, they must be identic). In other words, µA ◦ (µA ⊗ µA) =
µA ◦ (µA ⊗ idA) ◦ (idA⊗µA ⊗ idA), so that Lemma 26.5 is proven.

Lemma 26.6. Let k be a field. Let U , V and W be three k-vector spaces.
Then,

(τU,W ⊗ idV ) ◦ (idU ⊗τV,W ) = τU⊗V,W .

Proof of Lemma 26.6. Every u ∈ U , v ∈ V and w ∈ W satisfy

((τU,W ⊗ idV ) ◦ (idU ⊗τV,W )) (u⊗ v ⊗ w)

= (τU,W ⊗ idV ) ((idU ⊗τV,W ) (u⊗ v ⊗ w))︸ ︷︷ ︸
=idU (u)⊗τV,W (v⊗w)

= (τU,W ⊗ idV )

idU (u)︸ ︷︷ ︸
=u

⊗ τV,W (v ⊗ w)︸ ︷︷ ︸
=w⊗v

(by the definition of τV,W )


= (τU,W ⊗ idV ) (u⊗ w ⊗ v) = τU,W (u⊗ w)︸ ︷︷ ︸

=w⊗u
(by the definition of τU,W )

⊗ idV (v)︸ ︷︷ ︸
=v

= w ⊗ u⊗ v = τU⊗V,W (u⊗ v ⊗ w)

(since τU⊗V,W (u⊗ v ⊗ w) = w ⊗ u⊗ v by the definition of τU⊗V,W ) .

In other words, the two maps (τU,W ⊗ idV )◦ (idU ⊗τV,W ) and τU⊗V,W are equal on every
pure tensor. But since these two maps are k-linear, this yields that these maps must be
identic (because whenever two k-linear maps from a tensor product are equal on every
pure tensor, they must be identic). In other words, (τU,W ⊗ idV )◦(idU ⊗τV,W ) = τU⊗V,W .
This proves Lemma 26.6.

Lemma 26.7. Let k be a field. Let U , V , W , T and Q be five k-vector
spaces. Let r : U ⊗ V → Q be a k-linear map. Then,

(idW ⊗r ⊗ idT ) ◦ (τU,W ⊗ idV ⊗ idT ) ◦ (idU ⊗τV,W ⊗ idT )

= (τQ,W ⊗ idT ) ◦ (r ⊗ idW ⊗ idT ) .

Proof of Lemma 26.7. By (21) (applied to U ⊗ V ⊗W , U ⊗W ⊗ V , W ⊗ U ⊗ V , T ,
T , T , idU ⊗τV,W , τU,W ⊗ idV , idT , idT instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′), we
have

((τU,W ⊗ idV ) ◦ (idU ⊗τV,W ))⊗ (idT ◦ idT ) = (τU,W ⊗ idV ⊗ idT ) ◦ (idU ⊗τV,W ⊗ idT ) .
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Thus,

(τU,W ⊗ idV ⊗ idT ) ◦ (idU ⊗τV,W ⊗ idT )

= ((τU,W ⊗ idV ) ◦ (idU ⊗τV,W ))︸ ︷︷ ︸
=τU⊗V,W

(by Lemma 26.6)

⊗ (idT ◦ idT )︸ ︷︷ ︸
=idT

= τU⊗V,W ⊗ idT . (262)

On the other hand, by (21) (applied to U ⊗ V ⊗W , W ⊗ U ⊗ V , W ⊗Q, T , T , T ,
τU⊗V,W , idW ⊗r, idT , idT instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′), we have

((idW ⊗r) ◦ τU⊗V,W )⊗ (idT ◦ idT ) = (idW ⊗r ⊗ idT ) ◦ (τU⊗V,W ⊗ idT ) . (263)

By Proposition 9.3 (a) (applied to U ⊗ V , W , Q, W , r and idW instead of V , W ,
V ′, W ′, f and g), we have

(idW ⊗r) ◦ τU⊗V,W = τQ,W ◦ (r ⊗ idW ) . (264)

Besides, by (21) (applied to U ⊗ V ⊗W , Q⊗W , W ⊗Q, T , T , T , r ⊗ idW , τQ,W ,
idT , idT instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′), we have

(τQ,W ◦ (r ⊗ idW ))⊗ (idT ◦ idT ) = (τQ,W ⊗ idT ) ◦ (r ⊗ idW ⊗ idT ) . (265)

Now,

(idW ⊗r ⊗ idT ) ◦ (τU,W ⊗ idV ⊗ idT ) ◦ (idU ⊗τV,W ⊗ idT )︸ ︷︷ ︸
=τU⊗V,W⊗idT

(by (262))

= (idW ⊗r ⊗ idT ) ◦ (τU⊗V,W ⊗ idT )

= ((idW ⊗r) ◦ τU⊗V,W )︸ ︷︷ ︸
=τQ,W ◦(r⊗idW )

(by (264))

⊗ (idT ◦ idT ) (by (263))

= (τQ,W ◦ (r ⊗ idW ))⊗ (idT ◦ idT ) = (τQ,W ⊗ idT ) ◦ (r ⊗ idW ⊗ idT ) (by (265)) .

This proves Lemma 26.7.

Proof of Proposition 26.2. Let g = f ∗(−1). Then, f ∗ g = f ∗ f ∗(−1) = eC,A and g ∗ f =
f ∗(−1) ∗ f = eC,A.

We are now going to show that

(µAop ◦ (g ⊗ g)) ∗ (f ◦ µC) = eC⊗C,A (266)

and
(f ◦ µC) ∗ (g ◦ µC) = eC⊗C,A (267)

(where ∗ stands for convolution of maps from C ⊗ C to A). Once these formulas are
shown, it will be easy to conclude that µAop ◦ (g ⊗ g) = g ◦ µC , which will settle the
hardest part of Proposition 26.2.

But let us prove (266) and (267) now:
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Proof of (266): Since f is a k-algebra homomorphism, we have f◦µC = µA◦(f ⊗ f).
Thus,

(µAop ◦ (g ⊗ g)) ∗ (f ◦ µC)︸ ︷︷ ︸
=µA◦(f⊗f)

= (µAop ◦ (g ⊗ g)) ∗ (µA ◦ (f ⊗ f))

= µA ◦ ((µAop ◦ (g ⊗ g))⊗ (µA ◦ (f ⊗ f)))︸ ︷︷ ︸
=(µAop⊗µA)◦(g⊗g⊗f⊗f)

(by (21), applied to C⊗C, A⊗A, A, C⊗C, A⊗A, A,
g⊗g, µAop , f⊗f , µA instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′)

◦ ∆C⊗C︸ ︷︷ ︸
=(idC ⊗τC,C⊗idC)◦(∆C⊗∆C)

(by the definition of the k-coalgebra C⊗C)

(by the definition of convolution)

= µA ◦


µAop︸︷︷︸

=µA◦τA,A
(by the definition

of the
k-algebra Aop)

⊗ µA︸︷︷︸
=µA◦idA⊗A


◦ (g ⊗ g ⊗ f ⊗ f) ◦ (idC ⊗τC,C ⊗ idC)︸ ︷︷ ︸

=(idA⊗τA,A⊗idA)◦(g⊗f⊗g⊗f)

(since Proposition 9.3 (b) (applied to C, C, C, C,
A, A, A, A, g, f , g, f instead of

U , V , W , T , U ′, V ′, W ′, T ′, e, f , g, h) yields

(idA⊗τA,A⊗idA)◦(g⊗f⊗g⊗f)

=(g⊗g⊗f⊗f)◦(idC ⊗τC,C⊗idC))

◦ (∆C ⊗∆C)

= µA ◦ ((µA ◦ τA,A)⊗ (µA ◦ idA⊗A))︸ ︷︷ ︸
=(µA⊗µA)◦(τA,A⊗idA⊗A)

(by (21), applied to A⊗A, A⊗A, A,
A⊗A, A⊗A, A, τA,A, µA, idA⊗A , µA

instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′)

◦ (idA⊗τA,A ⊗ idA) ◦ (g ⊗ f ⊗ g ⊗ f) ◦ (∆C ⊗∆C)

= µA ◦ (µA ⊗ µA)︸ ︷︷ ︸
=µA◦(µA⊗idA)◦(idA⊗µA⊗idA)

(by Lemma 26.5)

◦

τA,A ⊗ idA⊗A︸ ︷︷ ︸
=idA⊗ idA

 ◦ (idA⊗τA,A ⊗ idA)

◦ (g ⊗ f ⊗ g ⊗ f) ◦ (∆C ⊗∆C)

= µA ◦ (µA ⊗ idA) ◦ (idA⊗µA ⊗ idA) ◦ (τA,A ⊗ idA⊗ idA) ◦ (idA⊗τA,A ⊗ idA)︸ ︷︷ ︸
=(τA,A⊗idA)◦(µA⊗idA⊗ idA)

(by Lemma 26.7, applied to U=A, V=A, W=A, T=A, Q=A and r=µA)

◦ (g ⊗ f ⊗ g ⊗ f) ◦ (∆C ⊗∆C)

= µA ◦ (µA ⊗ idA) ◦ (τA,A ⊗ idA) ◦

µA ⊗ idA⊗ idA︸ ︷︷ ︸
=idA⊗A

 ◦ (g ⊗ f ⊗ g ⊗ f) ◦ (∆C ⊗∆C)

= µA ◦ (µA ⊗ idA) ◦ (τA,A ⊗ idA) ◦ (µA ⊗ idA⊗A) ◦ (g ⊗ f ⊗ g ⊗ f) ◦ (∆C ⊗∆C) .
(268)

Applying (21) to C, C, C ⊗ C, C, C ⊗ C, C ⊗ C, idC , ∆C , ∆C , idC⊗C instead of
U , V , W , U ′, V ′, W ′, α, β, α′, β′, we obtain

(∆C ◦ idC)⊗ (idC⊗C ◦∆C) = (∆C ⊗ idC⊗C) ◦ (idC ⊗∆C) .

Since ∆C ◦ idC = ∆C and idC⊗C ◦∆C = ∆C , this rewrites as

∆C ⊗∆C = (∆C ⊗ idC⊗C) ◦ (idC ⊗∆C) . (269)
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Applying (21) to C ⊗C, C ⊗C, A⊗A, C ⊗C, A⊗A, A⊗A, idC⊗C , g⊗ f , g⊗ f ,
idA⊗A instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′, we obtain

((g ⊗ f) ◦ idC⊗C)⊗ (idA⊗A ◦ (g ⊗ f)) = (g ⊗ f ⊗ idA⊗A) ◦ (idC⊗C ⊗g ⊗ f) .

Since (g ⊗ f) ◦ idC⊗C = g ⊗ f and idA⊗A ◦ (g ⊗ f) = g ⊗ f , this rewrites as

g ⊗ f ⊗ g ⊗ f = (g ⊗ f ⊗ idA⊗A) ◦ (idC⊗C ⊗g ⊗ f) . (270)

By (212) (applied to P = C, Q = C ⊗ C, R = C ⊗ C, S = A ⊗ A, γ = ∆C and
δ = g ⊗ f), we have

(idC⊗C ⊗g ⊗ f) ◦ (∆C ⊗ idC⊗C) = (∆C ⊗ idA⊗A) ◦ (idC ⊗g ⊗ f) . (271)

By the definition of convolution, g ∗ f = µA ◦ (g ⊗ f) ◦∆C , so that

µA ◦ (g ⊗ f) ◦∆C = g ∗ f = eC,A. (272)

Applying (21) to C ⊗C, A⊗A, A, A⊗A, A⊗A, A⊗A, g ⊗ f , µA, idA⊗A, idA⊗A
instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′, we obtain

(µA ◦ (g ⊗ f))⊗ (idA⊗A ◦ idA⊗A) = (µA ⊗ idA⊗A) ◦ (g ⊗ f ⊗ idA⊗A) .

Since idA⊗A ◦ idA⊗A = idA⊗A, this rewrites as

(µA ◦ (g ⊗ f))⊗ idA⊗A = (µA ⊗ idA⊗A) ◦ (g ⊗ f ⊗ idA⊗A) . (273)

Applying (21) to C, C ⊗ C, A, A ⊗ A, A ⊗ A, A ⊗ A, ∆C , µA ◦ (g ⊗ f), idA⊗A,
idA⊗A instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′, we obtain

(µA ◦ (g ⊗ f) ◦∆C)⊗ (idA⊗A ◦ idA⊗A) = ((µA ◦ (g ⊗ f))⊗ idA⊗A) ◦ (∆C ⊗ idA⊗A) .
(274)

Thus,

(µA ⊗ idA⊗A) ◦ (g ⊗ f ⊗ idA⊗A)︸ ︷︷ ︸
=(µA◦(g⊗f))⊗idA⊗A

(by (273))

◦ (∆C ⊗ idA⊗A)

= ((µA ◦ (g ⊗ f))⊗ idA⊗A) ◦ (∆C ⊗ idA⊗A)

= (µA ◦ (g ⊗ f) ◦∆C)︸ ︷︷ ︸
=eC,A

(by (272))

⊗ (idA⊗A ◦ idA⊗A)︸ ︷︷ ︸
=idC⊗C

(by (274))

= eC,A ⊗ idA⊗A . (275)
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Now, (268) becomes

(µAop ◦ (g ⊗ g)) ∗ (f ◦ µC)

= µA ◦ (µA ⊗ idA) ◦ (τA,A ⊗ idA) ◦ (µA ⊗ idA⊗A) ◦ (g ⊗ f ⊗ g ⊗ f)︸ ︷︷ ︸
=(g⊗f⊗idA⊗A)◦(idC⊗C ⊗g⊗f)

(by (270))

◦ (∆C ⊗∆C)︸ ︷︷ ︸
=(∆C⊗idC⊗C)◦(idC ⊗∆C)

(by (269))

= µA ◦ (µA ⊗ idA) ◦ (τA,A ⊗ idA)

◦ (µA ⊗ idA⊗A) ◦ (g ⊗ f ⊗ idA⊗A) ◦ (idC⊗C ⊗g ⊗ f) ◦ (∆C ⊗ idC⊗C)︸ ︷︷ ︸
=(∆C⊗idA⊗A)◦(idC ⊗g⊗f)

(by (271))

◦ (idC ⊗∆C)

= µA ◦ (µA ⊗ idA) ◦ (τA,A ⊗ idA)

◦ (µA ⊗ idA⊗A) ◦ (g ⊗ f ⊗ idA⊗A) ◦ (∆C ⊗ idA⊗A)︸ ︷︷ ︸
=eC,A⊗idA⊗A

(by (275))

◦ (idC ⊗g ⊗ f) ◦ (idC ⊗∆C)

= µA ◦ (µA ⊗ idA)︸ ︷︷ ︸
=µA◦(idA⊗µA)

(by the axioms of an
algebra, since A is an

algebra)

◦ (τA,A ⊗ idA) ◦

eC,A ⊗ idA⊗A︸ ︷︷ ︸
=idA⊗ idA

 ◦ (idC ⊗g ⊗ f) ◦ (idC ⊗∆C)

= µA ◦ (idA⊗µA) ◦ (τA,A ⊗ idA) ◦ (eC,A ⊗ idA⊗ idA) ◦ (idC ⊗g ⊗ f) ◦ (idC ⊗∆C) .
(276)

On the other hand, Proposition 9.3 (a) (applied to C, A, A, A, eC,A, idA instead
of V , W , V ′, W ′, f , g) yields

(idA⊗eC,A) ◦ τC,A = τA,A ◦ (eC,A ⊗ idA) . (277)

But applying (21) to C ⊗A, A⊗A, A⊗A, A, A, A, eC,A ⊗ idA, τA,A, idA, idA instead
of U , V , W , U ′, V ′, W ′, α, β, α′, β′, we obtain

(τA,A ◦ (eC,A ⊗ idA))⊗ (idA ◦ idA) = (τA,A ⊗ idA) ◦ (eC,A ⊗ idA⊗ idA) .

Thus,

(τA,A ⊗ idA) ◦ (eC,A ⊗ idA⊗ idA)

= (τA,A ◦ (eC,A ⊗ idA))︸ ︷︷ ︸
=(idA⊗eC,A)◦τC,A

(by (277))

⊗ (idA ◦ idA) = ((idA⊗eC,A) ◦ τC,A)⊗ (idA ◦ idA)

=

idA⊗ eC,A︸︷︷︸
=ηA◦εC

(by the definition of eC,A)

⊗ idA

 ◦ (τC,A ⊗ idA)

(
by (21), applied to C ⊗ A, A⊗ C, A⊗ A, A, A, A, τC,A, idA⊗eC,A, idA , idA

instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′

)
= (idA⊗ (ηA ◦ εC)⊗ idA) ◦ (τC,A ⊗ idA) . (278)
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But (211) (applied to P = A, Q = A, R1 = C, R2 = k, R3 = A, ϕ = εC and
ψ = ηA) yields

(idA⊗ηA ⊗ idA) ◦ (idA⊗εC ⊗ idA) = idA⊗ (ηA ◦ εC)⊗ idA . (279)

Hence, (278) becomes

(τA,A ⊗ idA) ◦ (eC,A ⊗ idA⊗ idA)

= (idA⊗ (ηA ◦ εC)⊗ idA)︸ ︷︷ ︸
=(idA⊗ηA⊗idA)◦(idA⊗εC⊗idA)

(by (279))

◦ (τC,A ⊗ idA)

= (idA⊗ηA ⊗ idA) ◦ (idA⊗εC ⊗ idA) ◦ (τC,A ⊗ idA) . (280)

Now, let kank⊗A,A be the canonical isomorphism k ⊗ A → A which sends every
λ⊗a ∈ k⊗A to λa ∈ A. Then, by the axioms of an algebra, we have µA ◦ (ηA ⊗ idA) =
kank⊗A,A (since A is a k-algebra).

Applying (21) to A, A, A, k⊗A, A⊗A, A, idA, idA, ηA⊗ idA, µA instead of U , V ,
W , U ′, V ′, W ′, α, β, α′, β′, we obtain

(idA ◦ idA)⊗ (µA ◦ (ηA ⊗ idA)) = (idA⊗µA) ◦ (idA⊗ηA ⊗ idA) .

Thus,

(idA⊗µA) ◦ (idA⊗ηA ⊗ idA) = (idA ◦ idA)︸ ︷︷ ︸
=idA

⊗ (µA ◦ (ηA ⊗ idA))︸ ︷︷ ︸
=kank⊗A,A

= idA⊗ kank⊗A,A . (281)

Now,

(idA⊗µA) ◦ (τA,A ⊗ idA) ◦ (eC,A ⊗ idA⊗ idA)︸ ︷︷ ︸
=(idA⊗ηA⊗idA)◦(idA⊗εC⊗idA)◦(τC,A⊗idA)

(by (280))

= (idA⊗µA) ◦ (idA⊗ηA ⊗ idA)︸ ︷︷ ︸
=idA⊗ kank⊗A,A

(by (281))

◦ (idA⊗εC ⊗ idA) ◦ (τC,A ⊗ idA)

= (idA⊗ kank⊗A,A) ◦ (idA⊗εC ⊗ idA) ◦ (τC,A ⊗ idA) . (282)

Thus, (276) becomes

(µAop ◦ (g ⊗ g)) ∗ (f ◦ µC)

= µA ◦ (idA⊗µA) ◦ (τA,A ⊗ idA) ◦ (eC,A ⊗ idA⊗ idA)︸ ︷︷ ︸
=(idA⊗ kank⊗A,A)◦(idA⊗εC⊗idA)◦(τC,A⊗idA)

(by (282))

◦ (idC ⊗g ⊗ f) ◦ (idC ⊗∆C)

= µA ◦ (idA⊗ kank⊗A,A) ◦ (idA⊗εC ⊗ idA) ◦ (τC,A ⊗ idA) ◦ (idC ⊗g ⊗ f) ◦ (idC ⊗∆C) .
(283)

From this point on, our proof will not be analogous to the proof of Proposition 25.2
anymore. We can easily show that

µA ◦ (idA⊗ kank⊗A,A) ◦ (idA⊗εC ⊗ idA) ◦ (τC,A ⊗ idA) ◦ (idC ⊗g ⊗ f)

= kank⊗A,A ◦ (εC ⊗ idA) ◦ (idC ⊗ (µA ◦ (g ⊗ f))) . (284)

274



136

Also, applying (21) to C, C, C, C, C ⊗C, A, idC , idC , ∆C , µA ◦ (g ⊗ f) instead of
U , V , W , U ′, V ′, W ′, α, β, α′, β′, we obtain

(idC ◦ idC)⊗ (µA ◦ (g ⊗ f) ◦∆C) = (idC ⊗ (µA ◦ (g ⊗ f))) ◦ (idC ⊗∆C) ,

so that

(idC ⊗ (µA ◦ (g ⊗ f))) ◦ (idC ⊗∆C) = (idC ◦ idC)︸ ︷︷ ︸
=idC

⊗ (µA ◦ (g ⊗ f) ◦∆C)︸ ︷︷ ︸
=eC,A

(by (272))

= idC ⊗eC,A. (285)

136Proof of (284): Every c ∈ C, d ∈ C and e ∈ C satisfy

(µA ◦ (idA⊗ kank⊗A,A) ◦ (idA⊗εC ⊗ idA) ◦ (τC,A ⊗ idA) ◦ (idC ⊗g ⊗ f)) (c⊗ d⊗ e)
= (µA ◦ (idA⊗ kank⊗A,A) ◦ (idA⊗εC ⊗ idA) ◦ (τC,A ⊗ idA)) ((idC ⊗g ⊗ f) (c⊗ d⊗ e))︸ ︷︷ ︸

=idC(c)⊗g(d)⊗f(e)

= (µA ◦ (idA⊗ kank⊗A,A) ◦ (idA⊗εC ⊗ idA) ◦ (τC,A ⊗ idA))

idC (c)︸ ︷︷ ︸
=c

⊗g (d)⊗ f (e)


= (µA ◦ (idA⊗ kank⊗A,A) ◦ (idA⊗εC ⊗ idA) ◦ (τC,A ⊗ idA)) (c⊗ g (d)⊗ f (e))

= (µA ◦ (idA⊗ kank⊗A,A) ◦ (idA⊗εC ⊗ idA)) ((τC,A ⊗ idA) (c⊗ g (d)⊗ f (e)))︸ ︷︷ ︸
=τC,A(c⊗g(d))⊗idA(f(e))

= (µA ◦ (idA⊗ kank⊗A,A) ◦ (idA⊗εC ⊗ idA))

τC,A (c⊗ g (d))︸ ︷︷ ︸
=g(d)⊗c

(by the definition
of τC,A)

⊗ idA (f (e))︸ ︷︷ ︸
=f(e)


= (µA ◦ (idA⊗ kank⊗A,A) ◦ (idA⊗εC ⊗ idA)) (g (d)⊗ c⊗ f (e))

= (µA ◦ (idA⊗ kank⊗A,A)) ((idA⊗εC ⊗ idA) (g (d)⊗ c⊗ f (e)))︸ ︷︷ ︸
=idA(g(d))⊗εC(c)⊗idA(f(e))

= (µA ◦ (idA⊗ kank⊗A,A))

idA (g (d))︸ ︷︷ ︸
=g(d)

⊗εC (c)⊗ idA (f (e))︸ ︷︷ ︸
=f(e)


= (µA ◦ (idA⊗ kank⊗A,A)) (g (d)⊗ εC (c)⊗ f (e))

= µA ((idA⊗ kank⊗A,A) (g (d)⊗ εC (c)⊗ f (e)))︸ ︷︷ ︸
=idA(g(d))⊗kank⊗A,A(εC(c)⊗f(e))

= µA (idA (g (d))⊗ kank⊗A,A (εC (c)⊗ f (e)))

= idA (g (d))︸ ︷︷ ︸
=g(d)

· kank⊗A,A (εC (c)⊗ f (e))︸ ︷︷ ︸
=εC(c)f(e)

(by the definition of kank⊗A,A )

(by the definition of µA)

= g (d) εC (c) f (e) = εC (c) g (d) f (e)
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Now, (283) becomes

(µAop ◦ (g ⊗ g)) ∗ (f ◦ µC)

= µA ◦ (idA⊗ kank⊗A,A) ◦ (idA⊗εC ⊗ idA) ◦ (τC,A ⊗ idA) ◦ (idC ⊗g ⊗ f)︸ ︷︷ ︸
=kank⊗A,A ◦(εC⊗idA)◦(idC ⊗(µA◦(g⊗f)))

(by (284))

◦ (idC ⊗∆C)

= kank⊗A,A ◦ (εC ⊗ idA) ◦ (idC ⊗ (µA ◦ (g ⊗ f))) ◦ (idC ⊗∆C)︸ ︷︷ ︸
=idC ⊗eC,A
(by (285))

= kank⊗A,A ◦ (εC ⊗ idA) ◦ (idC ⊗eC,A) .

and

(kank⊗A,A ◦ (εC ⊗ idA) ◦ (idC ⊗ (µA ◦ (g ⊗ f)))) (c⊗ d⊗ e)
= (kank⊗A,A ◦ (εC ⊗ idA)) ((idC ⊗ (µA ◦ (g ⊗ f))) (c⊗ d⊗ e))︸ ︷︷ ︸

=idC(c)⊗(µA◦(g⊗f))(d⊗e)

= (kank⊗A,A ◦ (εC ⊗ idA))

idC (c)︸ ︷︷ ︸
=c

⊗ (µA ◦ (g ⊗ f)) (d⊗ e)︸ ︷︷ ︸
=µA((g⊗f)(d⊗e))


= (kank⊗A,A ◦ (εC ⊗ idA))

c⊗ µA ((g ⊗ f) (d⊗ e))︸ ︷︷ ︸
=g(d)⊗f(e)



= (kank⊗A,A ◦ (εC ⊗ idA))

c⊗ µA (g (d)⊗ f (e))︸ ︷︷ ︸
=g(d)f(e)

(by the definition of µA)


= (kank⊗A,A ◦ (εC ⊗ idA)) (c⊗ g (d) f (e)) = (µA ◦ kank⊗A,A) ((εC ⊗ idA) (c⊗ g (d) f (e)))︸ ︷︷ ︸

=εC(c)⊗idA(g(d)f(e))

= kank⊗A,A

εC (c)⊗ idA (g (d) f (e))︸ ︷︷ ︸
=g(d)f(e)

 = kank⊗A,A (εC (c)⊗ g (d) f (e))

= εC (c) g (d) f (e) (by the definition of kank⊗A,A) .

Thus, every c ∈ C, d ∈ C and e ∈ C satisfy

(µA ◦ (idA⊗ kank⊗A,A) ◦ (idA⊗εC ⊗ idA) ◦ (τC,A ⊗ idA) ◦ (idC ⊗g ⊗ f)) (c⊗ d⊗ e)
= εC (c) g (d) f (e) = (kank⊗A,A ◦ (εC ⊗ idA) ◦ (idC ⊗ (µA ◦ (g ⊗ f)))) (c⊗ d⊗ e) .

In other words, the two maps
µA ◦ (idA⊗ kank⊗A,A) ◦ (idA⊗εC ⊗ idA) ◦ (τC,A ⊗ idA) ◦ (idC ⊗g ⊗ f) and
kank⊗A,A ◦ (εC ⊗ idA) ◦ (idC ⊗ (µA ◦ (g ⊗ f))) are equal on every pure tensor. But since these two
maps are k-linear, this yields that these maps must be identic (because whenever two k-linear maps
from a tensor product are equal on every pure tensor, they must be identic). In other words,

µA ◦ (idA⊗ kank⊗A,A) ◦ (idA⊗εC ⊗ idA) ◦ (τC,A ⊗ idA) ◦ (idC ⊗g ⊗ f)

= kank⊗A,A ◦ (εC ⊗ idA) ◦ (idC ⊗ (µA ◦ (g ⊗ f))) .

This proves (284).
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Thus, any c ∈ C and d ∈ C satisfy

((µAop ◦ (g ⊗ g)) ∗ (f ◦ µC)) (c⊗ d)

= (kank⊗A,A ◦ (εC ⊗ idA) ◦ (idC ⊗eC,A)) (c⊗ d)

= (kank⊗A,A ◦ (εC ⊗ idA)) ((idC ⊗eC,A) (c⊗ d))︸ ︷︷ ︸
=idC(c)⊗eC,A(d)

= (kank⊗A,A ◦ (εC ⊗ idA))

idC (c)︸ ︷︷ ︸
=c

⊗ eC,A︸︷︷︸
=ηA◦εC

(by the definition
of eC,A)

(d)


= (kank⊗A,A ◦ (εC ⊗ idA))

c⊗ (ηA ◦ εC) (d)︸ ︷︷ ︸
=ηA(εC(d))


= (kank⊗A,A ◦ (εC ⊗ idA)) (c⊗ ηA (εC (d))) = kank⊗A,A ((εC ⊗ idA) (c⊗ ηA (εC (d))))︸ ︷︷ ︸

=εC(c)⊗idA(ηA(εC(d)))

= kank⊗A,A

εC (c)⊗ idA (ηA (εC (d)))︸ ︷︷ ︸
=ηA(εC(d))

 = kank⊗A,A (εC (c)⊗ ηA (εC (d)))

= εC (c) ηA (εC (d)) (by the definition of kank⊗A,A)

= ηA (εC (c) εC (d)) (since ηA is k-linear) . (286)

On the other hand, any c ∈ C and d ∈ C satisfy εC⊗C (c⊗ d) = εC (c) εC (d) 137.
Hence, every c ∈ C and d ∈ C satisfy

eC⊗C,A (c⊗ d) = (ηA ◦ εC⊗C) (c⊗ d)

(since eC⊗C,A = ηA ◦ εC⊗C by the definition of eC⊗C,A)

= ηA (εC⊗C (c⊗ d))︸ ︷︷ ︸
=εC(c)εC(d)

= ηA (εC (c) εC (d)) .

Comparing this with (286), we see that any c ∈ C and d ∈ C satisfy

((µAop ◦ (g ⊗ g)) ∗ (f ◦ µC)) (c⊗ d) = eC⊗C,A (c⊗ d) .

In other words, the two maps (µAop ◦ (g ⊗ g)) ∗ (f ◦ µC) and eC⊗C,A are equal on every
pure tensor. But since these two maps are k-linear, this yields that these maps must be

137Proof. Let c ∈ C and d ∈ C. By the definition of the k-coalgebra C ⊗ C, we have εC⊗C =
kank⊗k,k ◦ (εC ⊗ εC), where kank⊗k,k : k ⊗ k → k is the canonical isomorphism which sends every
λ⊗ λ′ ∈ k ⊗ k to λλ′ ∈ k. Thus,

εC⊗C (c⊗ d) = (kank⊗k,k ◦ (εC ⊗ εC)) (c⊗ d) = kank⊗k,k ((εC ⊗ εC) (c⊗ d))︸ ︷︷ ︸
=εC(c)⊗εC(d)

= kank⊗k,k (εC (c)⊗ εC (d)) = εC (c) εC (d)

(by the definition of kank⊗k,k), qed.
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identic (because whenever two k-linear maps from a tensor product are equal on every
pure tensor, they must be identic). In other words, (µAop ◦ (g ⊗ g))∗(f ◦ µC) = eC⊗C,A,
so that (266) is proven.

Proof of (267): Since C is a k-bialgebra, the multiplication map µC of C is a k-
coalgebra homomorphism (by the axioms of a bialgebra). Thus, (µC ⊗ µC) ◦∆C⊗C =
∆C ◦ µC and εC⊗C = εC ◦ µC .

By the definition of convolution, f ∗ g = µA ◦ (f ⊗ g) ◦∆C . Thus,

µA ◦ (f ⊗ g) ◦∆C = f ∗ g = eC,A = ηA ◦ εC (287)

(by the definition of eC,A).
By the definition of convolution,

(f ◦ µC) ∗ (g ◦ µC) = µA ◦ ((f ◦ µC)⊗ (g ◦ µC))︸ ︷︷ ︸
=(f⊗g)◦(µC⊗µC)

(by (21), applied to C⊗C, C, A, C⊗C, C, A,
µC , f , µC , g instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′)

◦∆C⊗C

= µA ◦ (f ⊗ g) ◦ (µC ⊗ µC) ◦∆C⊗C︸ ︷︷ ︸
=∆C◦µC

= µA ◦ (f ⊗ g) ◦∆C︸ ︷︷ ︸
=ηA◦εC

(by (287))

◦µC

= ηA ◦ εC ◦ µC︸ ︷︷ ︸
=εC⊗C

= ηA ◦ εC⊗C = eC⊗C,A

(since eC⊗C,A is defined as ηA ◦ εC⊗C). This proves (267).
Now, let us finish the proof of Proposition 26.2: Comparing the equalities

(µAop ◦ (g ⊗ g)) ∗ (f ◦ µC)︸ ︷︷ ︸
=eC⊗C,A
(by (266))

∗ (g ◦ µC)

= eC⊗C,A ∗ (g ◦ µC) = g ◦ µC

and

(µAop ◦ (g ⊗ g)) ∗ (f ◦ µC) ∗ (g ◦ µC)︸ ︷︷ ︸
=eC⊗C,A
(by (267))

= (µAop ◦ (g ⊗ g)) ∗ eC⊗C,A = µAop ◦ (g ⊗ g) ,

we obtain
g ◦ µC = µAop ◦ (g ⊗ g) . (288)

We will now prove that g ◦ ηC = ηAop .
We know that C is a k-bialgebra. By the axioms of a bialgebra, this yields
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∆C (1C) = 1C ⊗ 1C and εC (1C) = 1. Now,

(ηA ◦ εC)︸ ︷︷ ︸
=µA◦(f⊗g)◦∆C

(by (287))

(1C) = (µA ◦ (f ⊗ g) ◦∆C) (1C) = (µA ◦ (f ⊗ g)) (∆C (1C))︸ ︷︷ ︸
=1C⊗1C

= (µA ◦ (f ⊗ g)) (1C ⊗ 1C)

= µA ((f ⊗ g) (1C ⊗ 1C))︸ ︷︷ ︸
=f(1C)⊗g(1C)

= µA (f (1C)⊗ g (1C))

= f (1C)︸ ︷︷ ︸
=1A

(since f is a k-algebra
homomorphism)

g (1C) (by the definition of µA)

= 1Ag (1C) = g (1C) .

Compared to

(ηA ◦ εC) (1C) = ηA (εC (1C))︸ ︷︷ ︸
=1

= ηA (1) = 1 · 1A (by the definition of ηA)

= 1A,

this yields g (1C) = 1A. Thus, every λ ∈ k satisfies

(g ◦ ηC) (λ) = g (ηC (λ))︸ ︷︷ ︸
=λ·1C

(by the definition of ηC)

= g (λ · 1C) = λ g (1C)︸ ︷︷ ︸
=1A

(since g is k-linear)

= λ · 1A = ηA (λ) (since ηA (λ) = λ · 1A by the definition of ηA)

= ηAop (λ) (since ηAop = ηA (by the definition of Aop), so that ηAop (λ) = ηA (λ))

In other words, g ◦ ηC = ηAop . Combined with (288), this yields that g is a k-algebra
homomorphism from C to Aop. Since g = f ∗(−1), this rewrites as follows: f ∗(−1) is a
k-algebra homomorphism from C to Aop. This proves Proposition 26.2.

§27. The Euler operator

Recall what we did in Theorems 4.1 and 15.3: We showed that if k is a field of charac-
teristic 0, and H is a connected filtered k-bialgebra, then the map Log id ∈ L (H,H)
is a projection if H is either commutative or cocommutative. (This is not an “if and
only if” assertion since Log id can also be a projection for some connected filtered k-
bialgebras H which are neither commutative nor cocommutative; but in general, Log id
is not a projection138.) We will now study two maps that have similar properties to
those of Log id, but are defined for graded Hopf algebras only. Whereas Log id is
often referred to in literature as the Eulerian idempotent, these new maps are known
as the called Dynkin idempotents. But let us first develop some theory of graded vector
spaces.

Definition 27.1. Let k be a field. Let V be a graded k-vector space. Then,
V =

⊕̀
∈N
V`. The map

⊕̀
∈N

(` · idV`) :
⊕̀
∈N
V` →

⊕̀
∈N
V` is a k-linear map from

138Not even when H is a connected graded involutive k-Hopf algebra.
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V to V (because it is a k-linear map from
⊕̀
∈N
V` to

⊕̀
∈N
V`, but we have⊕̀

∈N
V` = V ). This map will be denoted by EV and referred to as the Euler

operator 139 of the graded k-vector space V .

Here is something pretty obvious:

Proposition 27.2. Let k be a field. Let V be a graded k-vector space.

(a) For any n ∈ N and v ∈ Vn, we have EV (v) = nv.

(b) The map EV is graded.

(c) Let k be a field of characteristic 0. Then, Ker (EV ) = V0.

We will give a detailed proof of this later.
We next state a fact about Euler operators on tensor products:

Proposition 27.3. Let k be a field. Let V and W be two graded k-vector
spaces. Then,

EV⊗W = EV ⊗ idW + idV ⊗EW .

Again, this will be shown later. Also:

Proposition 27.4. Let k be a field. Let V and W be graded k-vector
spaces. Let f : V → W be a graded k-linear map. Then, f ◦EV = EW ◦ f .

Before we show these facts, we make a definition that generalizes Definition 27.1:

Definition 27.5. Let k be a field. Let (a`)`∈N be a sequence of elements
of k. Let V be a graded k-vector space. Then, V =

⊕̀
∈N
V`. The map⊕̀

∈N
(a` · idV`) :

⊕̀
∈N
V` →

⊕̀
∈N
V` is a k-linear map from V to V (because it is

a k-linear map from
⊕̀
∈N
V` to

⊕̀
∈N
V`, but we have

⊕̀
∈N
V` = V ). This map

will be denoted by E
(a`)`∈N
V and referred to as the (a`)`∈N-Euler operator 140

of the graded k-vector space V .

Remark 27.6. Let k be a field. Let V be a graded k-vector space. Then,

EV = E
(`)`∈N
V .

Proof of Remark 27.6. By the definition of EV , we have EV =
⊕̀
∈N

(` · idV`). By the

definition of E
(`)`∈N
V , we have E

(`)`∈N
V =

⊕̀
∈N

(` · idV`). Thus, EV =
⊕̀
∈N

(` · idV`) = E
(`)`∈N
V .

This proves Remark 27.6.

Proposition 27.7. Let k be a field. Let (a`)`∈N be a sequence of elements
of k. Let V be a graded k-vector space.

(a) For any n ∈ N and v ∈ Vn, we have E
(a`)`∈N
V (v) = anv.

(b) The map E
(a`)`∈N
V is graded.

139not to be confused with the Eulerian idempotent
140not to be confused with the Eulerian idempotent
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Proof of Proposition 27.7. (a) Let n ∈ N. Let ιn : Vn →
⊕̀
∈N
V` be the canonical

injection of the n-th addend into the direct sum. Then, by the universal property of
the direct sum of linear maps, the diagram

Vn ��
ιn //

an·idVn
��

⊕̀
∈N
V`⊕̀
∈N

(a`·idV`)

��

Vn �� ιn
//
⊕̀
∈N
V`

is commutative. In other words,

(⊕̀
∈N

(a` · idV`)
)
◦ ιn = ιn ◦ (an · idVn). Now, let v ∈ Vn

be arbitrary. Then, ιn (v) = v (because we regard the canonical injection ιn as an

inclusion). Also, by the definition of EV , we have E
(a`)`∈N
V =

⊕̀
∈N

(a` · idV`) and thus

E
(a`)`∈N
V︸ ︷︷ ︸

=
⊕̀
∈N

(a`·idV`)

(v)︸︷︷︸
=ιn(v)

=

(⊕
`∈N

(a` · idV`)

)
(ιn (v)) =

((⊕
`∈N

(a` · idV`)

)
◦ ιn

)
︸ ︷︷ ︸

=ιn◦(an·idVn )

(v)

= (ιn ◦ (an · idVn)) (v) = ιn ((an · idVn) (v))︸ ︷︷ ︸
=anv

= ιn (anv) = anv

(since we regard the canonical injection ιn as an inclusion) .

This proves Proposition 27.7 (a).
(b) Let n ∈ N. Then, every v ∈ Vn satisfies

E
(a`)`∈N
V (v) = an︸︷︷︸

∈k

v︸︷︷︸
∈Vn

(by Proposition 27.2 (a))

∈ kVn ⊆ Vn (since Vn is a k-vector space) .

In other words, E
(a`)`∈N
V (Vn) ⊆ Vn.

Now, forget that we fixed v. We have thus shown that E
(a`)`∈N
V (Vn) ⊆ Vn for every

n ∈ N. In other words, E
(a`)`∈N
V is graded. This proves Proposition 27.7 (b).

Proposition 27.8. Let k be a field. Let (a`)`∈N be a sequence of elements
of k. Let V and W be graded k-vector spaces. Let f : V → W be a graded

k-linear map. Then, f ◦ E(a`)`∈N
V = E

(a`)`∈N
W ◦ f .

Proof of Proposition 27.8. Let n ∈ N be arbitrary. Let v ∈ Vn. Then, f (v) ∈ f (Vn) ⊆
Wn (since f is graded), so that E

(a`)`∈N
W (f (v)) = anf (v) (by Proposition 27.7 (a),

applied to f (v) and W instead of v and V ). On the other hand, since v ∈ Vn, we have

E
(a`)`∈N
V (v) = anv (by Proposition 27.7 (a)). Thus,(
f ◦ E(a`)`∈N

V

)
(v) = f

(
E

(a`)`∈N
V (v)

)
︸ ︷︷ ︸

=anv

= f (anv) = anf (v) (since f is k-linear)

= E
(a`)`∈N
W (f (v)) =

(
E

(a`)`∈N
W ◦ f

)
(v) ,
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so that(
f ◦ E(a`)`∈N

V − E(a`)`∈N
W ◦ f

)
(v) =

(
f ◦ E(a`)`∈N

V

)
(v)︸ ︷︷ ︸

=

(
E

(a`)`∈N
W ◦f

)
(v)

−
(
E

(a`)`∈N
W ◦ f

)
(v)

=
(
E

(a`)`∈N
W ◦ f

)
(v)−

(
E

(a`)`∈N
W ◦ f

)
(v) = 0.

Thus, v ∈ Ker
(
f ◦ E(a`)`∈N

V − E(a`)`∈N
W ◦ f

)
.

Now, forget that we fixed v. We thus have shown that every v ∈ Vn satisfies v ∈
Ker

(
f ◦ E(a`)`∈N

V − E(a`)`∈N
W ◦ f

)
. In other words, Vn ⊆ Ker

(
f ◦ E(a`)`∈N

V − E(a`)`∈N
W ◦ f

)
.

Now forget that we fixed n. We thus have shown that every n ∈ N satisfies

Vn ⊆ Ker
(
f ◦ E(a`)`∈N

V − E(a`)`∈N
W ◦ f

)
. But V is a graded k-vector space, so that

V =
⊕
n∈N

Vn =
∑
n∈N

Vn (since direct sums are sums). Thus,

V =
∑
n∈N

Vn︸︷︷︸
⊆Ker

(
f◦E

(a`)`∈N
V −E

(a`)`∈N
W ◦f

) ⊆
∑
n∈N

Ker
(
f ◦ E(a`)`∈N

V − E(a`)`∈N
W ◦ f

)

⊆ Ker
(
f ◦ E(a`)`∈N

V − E(a`)`∈N
W ◦ f

)
(since Ker

(
f ◦ E(a`)`∈N

V − E(a`)`∈N
W ◦ f

)
is a k-vector space). In other words, f◦E(a`)`∈N

V −

E
(a`)`∈N
W ◦ f = 0, so that f ◦ E(a`)`∈N

V = E
(a`)`∈N
W ◦ f . This proves Proposition 27.8.

Proof of Proposition 27.2. (a) Let n ∈ N and v ∈ Vn. Applying Proposition 27.7 (a)

to (a`)`∈N = (`)`∈N, we see that E
(`)`∈N
V (v) = nv. Since E

(`)`∈N
V = EV (by Remark 27.6),

this rewrites as EV (v) = nv. This proves Proposition 27.2 (a).

(b) Applying Proposition 27.7 (b) to (a`)`∈N = (`)`∈N, we see that E
(`)`∈N
V is graded.

Since E
(`)`∈N
V = EV (by Remark 27.6), this shows that EV is graded. This proves

Proposition 27.2 (b).
(c) Let v ∈ Ker (EV ). Then, v ∈ V and EV (v) = 0. Since v ∈ V =

⊕̀
∈N
V`, we can

write v in the form v =
∑̀
∈N
v` for some family (v`)`∈N of vectors in V satisfying the

following properties:

• All but finitely many ` ∈ N satisfy v` = 0.

• We have v` ∈ V` for every ` ∈ N.

Consider this family (v`)`∈N. Every ` ∈ N satisfies v` ∈ V` and thus EV (v`) = `v`
(by Proposition 27.2 (a), applied to ` and v` instead of n and v). Since EV (v) = 0,
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we have

0 = EV (v) = EV

(∑
`∈N

v`

) (
since v =

∑
`∈N

v`

)
=
∑
`∈N

EV (v`)︸ ︷︷ ︸
=`v`

(since EV is k-linear)

=
∑
`∈N

`v`.

In other words,
∑̀
∈N
`v` = 0.

Note that all but finitely many ` ∈ N satisfy `v` = 0 (because all but finitely many
` ∈ N satisfy v` = 0). Also, `v` ∈ V` for every ` ∈ N (because v` ∈ V` for every ` ∈ N,
and therefore `︸︷︷︸

∈k

v`︸︷︷︸
∈V`

∈ kV` ⊆ V` (since V` is a k-vector space) for every ` ∈ N).

But
⊕̀
∈N
V` is a direct sum. Therefore, the vector spaces V` for ` ∈ N are linearly

disjoint. In other words, every family (a`)`∈N satisfying the conditions

(all but finitely many ` ∈ N satisfy a` = 0) ,

(a` ∈ V` for every ` ∈ N) , and∑
`∈N

a` = 0

must satisfy (a`)`∈N = (0)`∈N. Applied to (a`)`∈N = (`v`)`∈N, this yields that (`v`)`∈N =
0 (because we have shown that (all but finitely many ` ∈ N satisfy `v` = 0), that
(`v` ∈ V` for every ` ∈ N) and that

∑̀
∈N
`v` = 0). In other words, every ` ∈ N satisfies

`v` = 0.

Now, for every positive integer `, we have v` =
1

`
`v`︸︷︷︸
=0

=
1

`
0 = 0 (here, we used that

k is a field of characteristic 0, so that
1

`
is well-defined in k). Thus,

v =
∑
`∈N

v` = v0 +
∑
`∈N;
`>0

v`︸︷︷︸
=0

(since ` is a
positive integer)

= v0 +
∑
`∈N;
`>0

0

︸ ︷︷ ︸
=0

= v0 ∈ V0

(since v` ∈ V` for every ` ∈ N).
Now, forget that we fixed v. We have thus shown that every v ∈ Ker (EV ) satisfies

v ∈ V0. In other words, Ker (EV ) ⊆ V0. Combined with the fact that V0 ⊆ Ker (EV )
141, this yields that Ker (EV ) = V0. This proves Proposition 27.2 (c).

Proof of Proposition 27.4. By Remark 27.6, we have EV = E
(`)`∈N
V . By Remark 27.6

(applied to W instead of V ), we have EW = E
(`)`∈N
W . By Proposition 27.8 (applied to

141Proof. Let v ∈ V0 be arbitrary. Then, Proposition 27.2 (a) (applied to n = 0) yields that
EV (v) = 0v = 0, so that v ∈ Ker (EV ). Now forget that we fixed v. We have thus shown that every
v ∈ V0 satisfies v ∈ Ker (EV ). In other words, V0 ⊆ Ker (EV ), qed.
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(a`)`∈N = (`)`∈N), we have f ◦E(`)`∈N
V = E

(`)`∈N
W ◦f . Since E

(`)`∈N
V = EV and E

(`)`∈N
W = EW ,

this rewrites as f ◦ EV = EW ◦ f . This proves Proposition 27.4.

Proof of Proposition 27.3. Since V is a graded k-vector space, we have V =
⊕̀
∈N
V`.

Since W is a graded k-vector space, we have W =
⊕
m∈N

Wm. Since V =
⊕̀
∈N
V` and

W =
⊕
m∈N

Wm, we have

V ⊗W =

(⊕
`∈N

V`

)
⊗

(⊕
m∈N

Wm

)
=

⊕
(`,m)∈N×2

V` ⊗Wm

(by the distributivity of the tensor product).
Now, fix any (`,m) ∈ N×2. We are going to prove that (EV ⊗ idW + idV ⊗EW − EV⊗W ) |V`⊗Wm=

0.
By the usual definition of the grading on the tensor product V ⊗W , we have

(V ⊗W )n =
n∑
i=0

Vi ⊗Wn−i for every n ∈ N. (289)

Now, let v ∈ V` and w ∈ Wm be arbitrary. Let n = ` + m. Then, 0 ≤ ` ≤ n. We
have

v︸︷︷︸
∈V`

⊗ w︸︷︷︸
∈Wm

∈ V` ⊗Wm = V` ⊗Wn−`

(
since m = `+m︸ ︷︷ ︸

=n

−` = n− `

)

⊆
n∑
i=0

Vi ⊗Wn−i

 since V` ⊗Wn−` is an addend of the sum
n∑
i=0

Vi ⊗Wn−i

(namely, the addend for i = `)


= (V ⊗W )n (by (289)) ,

so that EV⊗W (v ⊗ w) = n (v ⊗ w) (by Proposition 27.2 (a), applied to v ⊗ w and
V ⊗W instead of v and V ). On the other hand, due to v ∈ V`, we have EV (v) = `v (by
Proposition 27.2 (a), applied to ` instead of n). Due to w ∈ Wm, we have EW (w) = mw
(by Proposition 27.2 (a), applied to m, w and W instead of n, v and V ). Thus,

((EV ⊗ idW + idV ⊗EW − EV⊗W ) |V`⊗Wm) (v ⊗ w)

= (EV ⊗ idW + idV ⊗EW − EV⊗W ) (v ⊗ w)

= (EV ⊗ idW ) (v ⊗ w)︸ ︷︷ ︸
=EV (v)⊗idW (w)

+ (idV ⊗EW ) (v ⊗ w)︸ ︷︷ ︸
=idV (v)⊗EW (w)

−EV⊗W (v ⊗ w)︸ ︷︷ ︸
=n(v⊗w)

= EV (v)︸ ︷︷ ︸
=`v

⊗ idW (w)︸ ︷︷ ︸
=w

+ idV (v)︸ ︷︷ ︸
=v

⊗EW (w)︸ ︷︷ ︸
=mw

− n︸︷︷︸
=`+m

(v ⊗ w)

= `v ⊗ w︸ ︷︷ ︸
=`(v⊗w)

+ v ⊗mw︸ ︷︷ ︸
=m(v⊗w)

− (`+m) (v ⊗ w) = ` (v ⊗ w) +m (v ⊗ w)− (`+m) (v ⊗ w)

= (`+m− (`+m))︸ ︷︷ ︸
=0

(v ⊗ w) = 0 = 0 (v ⊗ w) .
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Now, forget that we fixed v and w. We thus have proven that
((EV ⊗ idW + idV ⊗EW − EV⊗W ) |V`⊗Wm) (v ⊗ w) = 0 (v ⊗ w) for any v ∈ V` and w ∈
Wm. In other words, the two maps (EV ⊗ idW + idV ⊗EW − EV⊗W ) |V`⊗Wm and 0
are equal on every pure tensor. But since these two maps are k-linear, this yields
that these maps must be identic (because whenever two k-linear maps from a ten-
sor product are equal on every pure tensor, they must be identic). In other words,
(EV ⊗ idW + idV ⊗EW − EV⊗W ) |V`⊗Wm= 0. Hence,

(EV ⊗ idW + idV ⊗EW − EV⊗W ) (V` ⊗Wm) = ((EV ⊗ idW + idV ⊗EW − EV⊗W ) |V`⊗Wm)︸ ︷︷ ︸
=0

(V` ⊗Wm)

= 0 (V` ⊗Wm) = 0.

Now, forget that we fixed ` and m. We thus have proven that every ` ∈ N and
m ∈ N satisfy

(EV ⊗ idW + idV ⊗EW − EV⊗W ) (V` ⊗Wm) = 0. (290)

But

V ⊗W =
⊕

(`,m)∈N×2

V` ⊗Wm =
∑

(`,m)∈N×2

V` ⊗Wm (since direct sums are sums) ,

so that

(EV ⊗ idW + idV ⊗EW − EV⊗W ) (V ⊗W ) = (EV ⊗ idW + idV ⊗EW − EV⊗W )

 ∑
(`,m)∈N×2

V` ⊗Wm


=

∑
(`,m)∈N×2

(EV ⊗ idW + idV ⊗EW − EV⊗W ) (V` ⊗Wm)︸ ︷︷ ︸
=0

(by (290))

(since EV ⊗ idW + idV ⊗EW − EV⊗W is k-linear)

=
∑

(`,m)∈N×2

0 = 0.

Thus, EV ⊗ idW + idV ⊗EW −EV⊗W = 0, so that EV ⊗ idW + idV ⊗EW = EV⊗W . This
proves Proposition 27.3.

We will now construct a “partial inverse” to EV in characteristic 0:

Definition 27.9. Let k be a field of characteristic 0. Let (b`)`∈N be the
sequence of elements of k defined by(

b` =

{ 1

`
, if ` > 0;

0, if ` = 0
for every ` ∈ N

)
.

Let V be a graded k-vector space. Then, V =
⊕̀
∈N
V`. The map

⊕̀
∈N

(b` · idV`) :⊕̀
∈N
V` →

⊕̀
∈N
V` is a k-linear map from V to V (because it is a k-linear map

from
⊕̀
∈N
V` to

⊕̀
∈N
V`, but we have

⊕̀
∈N
V` = V ). This map will be denoted

by Einv
V .
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Remark 27.10. Let k be a field of characteristic 0. Let (b`)`∈N be as
defined in Definition 27.9. Let V be a graded k-vector space. Then, Einv

V =

E
(b`)`∈N
V .

Proof of Remark 27.10. By the definition of Einv
V , we have Einv

V =
⊕̀
∈N

(b` · idV`). By

the definition of E
(b`)`∈N
V , we have E

(b`)`∈N
V =

⊕̀
∈N

(b` · idV`). Thus, Einv
V =

⊕̀
∈N

(b` · idV`) =

E
(b`)`∈N
V . This proves Remark 27.10.

Proposition 27.11. Let k be a field. Let (c`)`∈N and (d`)`∈N be two se-
quences of elements of k. Let V be a graded k-vector space. Then,

E
(c`)`∈N
V ◦ E(d`)`∈N

V = E
(c`d`)`∈N
V = E

(d`)`∈N
V ◦ E(c`)`∈N

V .

Proof of Proposition 27.11. Let n ∈ N. Every v ∈ Vn satisfies(
E

(c`)`∈N
V ◦ E(d`)`∈N

V

)
(v) = E

(c`)`∈N
V

(
E

(d`)`∈N
V (v)

)
︸ ︷︷ ︸

=dnv
(by Proposition 27.7 (a),

applied to (a`)`∈N=(d`)`∈N)

= E
(c`)`∈N
V (dnv)

= dn E
(c`)`∈N
V (v)︸ ︷︷ ︸

=cnv
(by Proposition 27.7 (a),

applied to (a`)`∈N=(c`)`∈N)

(
since E

(c`)`∈N
V is k-linear

)

= dncnv = cndnv = E
(c`d`)`∈N
V (v)

(since E
(c`d`)`∈N
V = cndnv by Proposition 27.7 (a) (applied to (a`)`∈N = (c`d`)`∈N)) and

thus (
E

(c`)`∈N
V ◦ E(d`)`∈N

V − E(c`d`)`∈N
V

)
(v) =

(
E

(c`)`∈N
V ◦ E(d`)`∈N

V

)
(v)︸ ︷︷ ︸

=E
(c`d`)`∈N
V (v)

−E(c`d`)`∈N
V (v)

= E
(c`d`)`∈N
V (v)− E(c`d`)`∈N

V (v) = 0,

so that v ∈ Ker
(
E

(c`)`∈N
V ◦ E(d`)`∈N

V − E(c`d`)`∈N
V

)
. Thus, Vn ⊆ Ker

(
E

(c`)`∈N
V ◦ E(d`)`∈N

V − E(c`d`)`∈N
V

)
.

Now, forget that we fixed n. We have thus shown that every n ∈ N satisfies

Vn ⊆ Ker
(
E

(c`)`∈N
V ◦ E(d`)`∈N

V − E(c`d`)`∈N
V

)
. Since V is a graded k-vector space, we have

V =
⊕
n∈N

Vn =
∑
n∈N

Vn︸︷︷︸
⊆Ker

(
E

(c`)`∈N
V ◦E

(d`)`∈N
V −E

(c`d`)`∈N
V

) ⊆
∑
n∈N

Ker
(
E

(c`)`∈N
V ◦ E(d`)`∈N

V − E(c`d`)`∈N
V

)

⊆ Ker
(
E

(c`)`∈N
V ◦ E(d`)`∈N

V − E(c`d`)`∈N
V

)
(since Ker

(
E

(c`)`∈N
V ◦ E(d`)`∈N

V − E(c`d`)`∈N
V

)
is a k-vector space), so that E

(c`)`∈N
V ◦E(d`)`∈N

V −

E
(c`d`)`∈N
V = 0, and thus E

(c`)`∈N
V ◦ E(d`)`∈N

V = E
(c`d`)`∈N
V . The same argument, but with
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the roles of (c`)`∈N and (d`)`∈N interchanged, proves that E
(d`)`∈N
V ◦E(c`)`∈N

V = E
(d`c`)`∈N
V .

Thus,

E
(c`)`∈N
V ◦ E(d`)`∈N

V = E
(c`d`)`∈N
V = E

(d`c`)`∈N
V = E

(d`)`∈N
V ◦ E(c`)`∈N

V .

This proves Proposition 27.11.

Corollary 27.12. Let k be a field of characteristic 0. Let V be a graded
k-vector space. Then:

(a) We have EV ◦ Einv
V = Einv

V ◦ EV .

(b) Every v ∈
⊕
n≥1

Vn satisfies
(
Einv
V ◦ EV

)
(v) = v.

(c) The map Einv
V is graded.

Proof of Corollary 27.12. Define (b`)`∈N as in Definition 27.9. Proposition 27.11 (ap-
plied to (c`)`∈N = (`)`∈N and (d`)`∈N = (b`)`∈N) yields

E
(`)`∈N
V ◦ E(b`)`∈N

V = E
(`b`)`∈N
V = E

(b`)`∈N
V ◦ E(`)`∈N

V .

Since E
(`)`∈N
V = EV (by Remark 27.6) and E

(b`)`∈N
V = Einv

V (by Remark 27.10), this
rewrites as

EV ◦ Einv
V = E

(`b`)`∈N
V = Einv

V ◦ EV .
This proves Corollary 27.12 (a).

(b) Since V is a graded k-vector space, we have V =
⊕
n∈N

Vn. Thus, the internal

direct sum
⊕
n≥1

Vn is well-defined (as a subsum of the direct sum
⊕
n∈N

Vn).

Now, let n ∈ N be positive. By the definition of bn, we then have

bn =

{ 1

n
, if n > 0;

0, if n = 0
=

1

n

(since n > 0), so that nbn = 1. Every v ∈ Vn satisfies

E
(`b`)`∈N
V (v) = nbn︸︷︷︸

=1

v
(
by Proposition 27.7 (a), applied to (a`)`∈N = (`b`)`∈N

)
= v,

so that
(
E

(`b`)`∈N
V − id

)
v = E

(`b`)`∈N
V (v)︸ ︷︷ ︸

=v

− id (v)︸ ︷︷ ︸
=v

= v−v = 0. Thus,
(
E

(`b`)`∈N
V − id

)
(Vn) =

0.
Now, forget that we fixed n. We thus have showed that every positive n ∈ N

satisfies
(
E

(`b`)`∈N
V − id

)
(Vn) = 0. Thus,

∑
n≥1

(
E

(`b`)`∈N
V − id

)
(Vn)︸ ︷︷ ︸

=0

=
∑
n≥1

0 = 0.

Since direct sums are sums, we have
⊕
n≥1

Vn =
∑
n≥1

Vn and thus

(
E

(`b`)`∈N
V − id

)(⊕
n≥1

Vn

)
=
(
E

(`b`)`∈N
V − id

)(∑
n≥1

Vn

)
=
∑
n≥1

(
E

(`b`)`∈N
V − id

)
(Vn)(

since the map E
(`b`)`∈N
V − id is k-linear

)
= 0.
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Hence, every v ∈
⊕
n≥1

Vn satisfies
(
E

(`b`)`∈N
V − id

)
(v) = 0 and thus

0 =
(
E

(`b`)`∈N
V − id

)
(v) = E

(`b`)`∈N
V︸ ︷︷ ︸

=Einv
V ◦EV

(v)− id (v)︸ ︷︷ ︸
=v

=
(
Einv
V ◦ EV

)
(v)− v,

so that
(
Einv
V ◦ EV

)
(v) = v. This proves Corollary 27.12 (b).

(c) Proposition 27.7 (b) (applied to (a`)`∈N = (b`)`∈N) shows that the map E
(b`)`∈N
V

is graded. Since E
(b`)`∈N
V = Einv

V (by Remark 27.10), this rewrites as follows: The map
Einv
V is graded. This proves Corollary 27.12 (c).

§28. The Dynkin idempotents in cocommutative Hopf

algebras

We are now ready to state the main property of the Dynkin idempotents in cocommu-
tative Hopf algebras:

Theorem 28.1. Let k be a field of characteristic 0. Let H be a cocommu-
tative graded k-Hopf algebra. Let S be the antipode of H. Define a map
EH : H → H according to Definition 27.1. Define a map Einv

H : H → H
according to Definition 27.9. Let PrimH denote the subspace of H consist-
ing of all primitive elements of H. Let (PrimH)+ denote the intersection

(PrimH) ∩
(⊕
n≥1

Hn

)
. Then:

(a) The map Einv
H ◦ (EH ∗ S) is a projection from H to the subspace

(PrimH)+.

(b) The map Einv
H ◦ (S ∗ EH) is a projection from H to the subspace

(PrimH)+.

Note that in the case when H is connected, it is easy to see that (PrimH)+ =
PrimH, and thus this yields:

Theorem 28.2. Let k be a field of characteristic 0. Let H be a cocom-
mutative connected graded k-Hopf algebra. Let S be the antipode of H.
Define a map EH : H → H according to Definition 27.1. Define a map
Einv
H : H → H according to Definition 27.9. Let PrimH denote the sub-

space of H consisting of all primitive elements of H. Then:

(a) The map Einv
H ◦(EH ∗ S) is a projection from H to the subspace PrimH.

(b) The map Einv
H ◦(S ∗ EH) is a projection from H to the subspace PrimH.

The maps Einv
H ◦ (EH ∗ S) and Einv

H ◦ (S ∗ EH) are called the Dynkin idempotents of
H.

We will prove Theorems 28.1 and 28.2, but also more general facts, in the rest of §28.
In §29, we will dualize them to commutative Hopf algebras (again obtaining projections,
but not necessarily on (PrimH)+ anymore). In §30, we will “interpolate” between
EH ∗ S and S ∗ EH , obtaining infinitely many “intermediate” Dynkin idempotents.

But let us first define the notion of a coderivation:
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Definition 28.3. Let k be a field. Let H be a k-coalgebra. Let f : H → H
be a k-linear map. Then, f is said to be a coderivation if and only if
∆H ◦ f = (f ⊗ idH + idH ⊗f) ◦∆H .

Keep in mind that a coderivation is not the same as an (ε, ε)-coderivation.
(The latter has been defined in Definition 7.1.) We will, however, connect these two
notions in the following results.

Definition 28.3 could be generalized to k-linear maps f : M → H with M being
a (H,H)-bicomodule; but we will not need this generalization and we will not even
define the notion of a (H,H)-bicomodule.

Before we prove anything about coderivations, let us show a technical lemma:

Lemma 28.4. Let k be a field. Let C be a cocommutative k-coalgebra.
Let A be a k-bialgebra. Let α : C → A and β : C → A be any k-linear
maps. Let g : C → A be a k-coalgebra homomorphism. Let f : C → A be
a k-linear map satisfying

∆A ◦ f = (α⊗ f + f ⊗ β) ◦∆C .

Then:

(a) We have

∆A ◦ (f ∗ g) = ((α ∗ g)⊗ (f ∗ g) + (f ∗ g)⊗ (β ∗ g)) ◦∆C .

(b) We have

∆A ◦ (g ∗ f) = ((g ∗ α)⊗ (g ∗ f) + (g ∗ f)⊗ (g ∗ β)) ◦∆C .

Proof of Lemma 28.4. By the axioms of a bialgebra, ∆A : A → A ⊗ A is a k-algebra
homomorphism (since A is a k-bialgebra). Thus, ∆A ◦ µA = µA⊗A ◦ (∆A ⊗∆A).

In the following, the sign ∗ will denote the convolution in L (C,A), but also the
convolution in L (C ⊗ C,A⊗ A) (which is well-defined since C ⊗ C is a k-coalgebra
and A⊗ A is a k-algebra).

(a) By the definition of convolution, f ∗ g = µA ◦ (f ⊗ g) ◦∆C , so that

∆A ◦ (f ∗ g)︸ ︷︷ ︸
=µA◦(f⊗g)◦∆C

= ∆A ◦ µA︸ ︷︷ ︸
=µA⊗A◦(∆A⊗∆A)

◦ (f ⊗ g) ◦∆C

= µA⊗A ◦ (∆A ⊗∆A) ◦ (f ⊗ g) ◦∆C . (291)

But applying (21) to C, A, A⊗A, C, A, A⊗A, f , ∆A, g, ∆A instead of U , V , W ,
U ′, V ′, W ′, α, β, α′, β′, we obtain

(∆A ◦ f)⊗ (∆A ◦ g) = (∆A ⊗∆A) ◦ (f ⊗ g) ,
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so that

(∆A ⊗∆A) ◦ (f ⊗ g)

= (∆A ◦ f)︸ ︷︷ ︸
=(α⊗f+f⊗β)◦∆C

⊗ (∆A ◦ g)︸ ︷︷ ︸
=(g⊗g)◦∆C

(since g is a k-coalgebra
homomorphism)

= ((α⊗ f + f ⊗ β) ◦∆C)⊗ ((g ⊗ g) ◦∆C)

= ((α⊗ f + f ⊗ β)⊗ (g ⊗ g))︸ ︷︷ ︸
=α⊗f⊗g⊗g+f⊗β⊗g⊗g

(since the tensor product of k-linear maps
is distributive)

◦ (∆C ⊗∆C)

(
by (21) (applied to C, C ⊗ C, A⊗ A, C, C ⊗ C, A⊗ A,

∆C , α⊗ f + f ⊗ β, ∆C , g ⊗ g instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′)

)
= (α⊗ f ⊗ g ⊗ g + f ⊗ β ⊗ g ⊗ g) ◦ (∆C ⊗∆C) . (292)
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Now, (291) becomes

∆A ◦ (f ∗ g)

= µA⊗A ◦ (∆A ⊗∆A) ◦ (f ⊗ g)︸ ︷︷ ︸
=(α⊗f⊗g⊗g+f⊗β⊗g⊗g)◦(∆C⊗∆C)

(by (292))

◦∆C

= µA⊗A ◦ (α⊗ f ⊗ g ⊗ g + f ⊗ β ⊗ g ⊗ g) ◦ (∆C ⊗∆C) ◦∆C︸ ︷︷ ︸
=(idC ⊗τC,C⊗idC)◦(∆C⊗∆C)◦∆C

(by (26))

= µA⊗A ◦ (α⊗ f ⊗ g ⊗ g + f ⊗ β ⊗ g ⊗ g) ◦ (idC ⊗τC,C ⊗ idC) ◦ (∆C ⊗∆C)︸ ︷︷ ︸
=∆C⊗C

(since the definition of the k-coalgebra C⊗C yields

∆C⊗C=(idC ⊗τC,C⊗idC)◦(∆C⊗∆C))

◦∆C

= µA⊗A ◦ (α⊗ f ⊗ g ⊗ g + f ⊗ β ⊗ g ⊗ g) ◦∆C⊗C︸ ︷︷ ︸
=(α⊗f⊗g⊗g)◦∆C⊗C+(f⊗β⊗g⊗g)◦∆C⊗C

(since composition of k-linear maps is distributive)

◦∆C

= µA⊗A ◦ ((α⊗ f ⊗ g ⊗ g) ◦∆C⊗C + (f ⊗ β ⊗ g ⊗ g) ◦∆C⊗C)︸ ︷︷ ︸
=µA⊗A◦(α⊗f⊗g⊗g)◦∆C⊗C+µA⊗A◦(f⊗β⊗g⊗g)◦∆C⊗C

(since composition of k-linear maps is distributive)

◦∆C

=

µA⊗A ◦ (α⊗ f ⊗ g ⊗ g) ◦∆C⊗C︸ ︷︷ ︸
=(α⊗f)∗(g⊗g)

(because the definition of convolution yields
(α⊗f)∗(g⊗g)=µA⊗A◦(α⊗f⊗g⊗g)◦∆C⊗C)

+ µA⊗A ◦ (f ⊗ β ⊗ g ⊗ g) ◦∆C⊗C︸ ︷︷ ︸
=(f⊗β)∗(g⊗g)

(because the definition of convolution yields
(f⊗β)∗(g⊗g)=µA⊗A◦(f⊗β⊗g⊗g)◦∆C⊗C)

 ◦∆C

=

 (α⊗ f) ∗ (g ⊗ g)︸ ︷︷ ︸
=(α∗g)⊗(f∗g)

(by Corollary 9.9, applied to D=C, B=A,
p=α, q=g, r=f , s=g)

+ (f ⊗ β) ∗ (g ⊗ g)︸ ︷︷ ︸
=(f∗g)⊗(β∗g)

(by Corollary 9.9, applied to D=C, B=A,
p=f , q=g, r=β, s=g)

 ◦∆C

= ((α ∗ g)⊗ (f ∗ g) + (f ∗ g)⊗ (β ∗ g)) ◦∆C .

This proves Lemma 28.4 (a).
(b) By the definition of convolution, g ∗ f = µA ◦ (g ⊗ f) ◦∆C , so that

∆A ◦ (g ∗ f)︸ ︷︷ ︸
=µA◦(g⊗f)◦∆C

= ∆A ◦ µA︸ ︷︷ ︸
=µA⊗A◦(∆A⊗∆A)

◦ (g ⊗ f) ◦∆C

= µA⊗A ◦ (∆A ⊗∆A) ◦ (g ⊗ f) ◦∆C . (293)

But applying (21) to C, A, A⊗A, C, A, A⊗A, g, ∆A, f , ∆A instead of U , V , W ,
U ′, V ′, W ′, α, β, α′, β′, we obtain

(∆A ◦ g)⊗ (∆A ◦ f) = (∆A ⊗∆A) ◦ (g ⊗ f) ,
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so that

(∆A ⊗∆A) ◦ (g ⊗ f)

= (∆A ◦ g)︸ ︷︷ ︸
=(g⊗g)◦∆C

(since g is a k-coalgebra
homomorphism)

⊗ (∆A ◦ f)︸ ︷︷ ︸
=(α⊗f+f⊗β)◦∆C

= ((g ⊗ g) ◦∆C)⊗ ((α⊗ f + f ⊗ β) ◦∆C)

= ((g ⊗ g)⊗ (α⊗ f + f ⊗ β))︸ ︷︷ ︸
=g⊗g⊗α⊗f+g⊗g⊗f⊗β

(since the tensor product of k-linear maps
is distributive)

◦ (∆C ⊗∆C)

(
by (21) (applied to C, C ⊗ C, A⊗ A, C, C ⊗ C, A⊗ A,

∆C , g ⊗ g, ∆C , α⊗ f + f ⊗ β instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′)

)
= (g ⊗ g ⊗ α⊗ f + g ⊗ g ⊗ f ⊗ β) ◦ (∆C ⊗∆C) . (294)
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Now, (293) becomes

∆A ◦ (g ∗ f)

= µA⊗A ◦ (∆A ⊗∆A) ◦ (g ⊗ f)︸ ︷︷ ︸
=(g⊗g⊗α⊗f+g⊗g⊗f⊗β)◦(∆C⊗∆C)

(by (294))

◦∆C

= µA⊗A ◦ (g ⊗ g ⊗ α⊗ f + g ⊗ g ⊗ f ⊗ β) ◦ (∆C ⊗∆C) ◦∆C︸ ︷︷ ︸
=(idC ⊗τC,C⊗idC)◦(∆C⊗∆C)◦∆C

(by (26))

= µA⊗A ◦ (g ⊗ g ⊗ α⊗ f + g ⊗ g ⊗ f ⊗ β) ◦ (idC ⊗τC,C ⊗ idC) ◦ (∆C ⊗∆C)︸ ︷︷ ︸
=∆C⊗C

(since the definition of the k-coalgebra C⊗C yields

∆C⊗C=(idC ⊗τC,C⊗idC)◦(∆C⊗∆C))

◦∆C

= µA⊗A ◦ (g ⊗ g ⊗ α⊗ f + g ⊗ g ⊗ f ⊗ β) ◦∆C⊗C︸ ︷︷ ︸
=(g⊗g⊗α⊗f)◦∆C⊗C+(g⊗g⊗f⊗β)◦∆C⊗C

(since composition of k-linear maps is distributive)

◦∆C

= µA⊗A ◦ ((g ⊗ g ⊗ α⊗ f) ◦∆C⊗C + (g ⊗ g ⊗ f ⊗ β) ◦∆C⊗C)︸ ︷︷ ︸
=µA⊗A◦(g⊗g⊗α⊗f)◦∆C⊗C+µA⊗A◦(g⊗g⊗f⊗β)◦∆C⊗C

(since composition of k-linear maps is distributive)

◦∆C

=

µA⊗A ◦ (g ⊗ g ⊗ α⊗ f) ◦∆C⊗C︸ ︷︷ ︸
=(g⊗g)∗(α⊗f)

(because the definition of convolution yields
(g⊗g)∗(α⊗f)=µA⊗A◦(g⊗g⊗α⊗f)◦∆C⊗C)

+ µA⊗A ◦ (g ⊗ g ⊗ f ⊗ β) ◦∆C⊗C︸ ︷︷ ︸
=(g⊗g)∗(f⊗β)

(because the definition of convolution yields
(g⊗g)∗(f⊗β)=µA⊗A◦(g⊗g⊗f⊗β)◦∆C⊗C)

 ◦∆C

=

 (g ⊗ g) ∗ (α⊗ f)︸ ︷︷ ︸
=(g∗α)⊗(g∗f)

(by Corollary 9.9, applied to D=C, B=A,
p=g, q=α, r=g, s=f)

+ (g ⊗ g) ∗ (f ⊗ β)︸ ︷︷ ︸
=(g∗f)⊗(g∗β)

(by Corollary 9.9, applied to D=C, B=A,
p=g, q=f , r=g, s=β)

 ◦∆C

= ((g ∗ α)⊗ (g ∗ f) + (g ∗ f)⊗ (g ∗ β)) ◦∆C .

This proves Lemma 28.4 (b).

Now comes the reason why we proved Lemma 28.4:

Theorem 28.5. Let k be a field. Let H be a cocommutative k-bialgebra.
Let P : H → H and Q : H → H be two k-coalgebra homomorphisms
satisfying P ∗ idH ∗Q = eH,H . Let K : H → H be a coderivation. Then,
P ∗K ∗Q : H → H is an (ε, ε)-coderivation. Here, the map eH,H is defined
to be the map ηH ◦εH : H → H (this definition of the map eH,H is identical
with the definition of the map eH,A in Definition 1.12).

Proof of Theorem 28.5. SinceK is a coderivation, we have ∆H◦K = (K ⊗ idH + idH ⊗K)◦
∆H (because Definition 28.3 yields that K is a coderivation if and only if ∆H ◦K =
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(K ⊗ idH + idH ⊗K) ◦∆H). Thus,

∆H ◦K = (K ⊗ idH + idH ⊗K)︸ ︷︷ ︸
=idH ⊗K+K⊗idH

◦∆H = (idH ⊗K +K ⊗ idH) ◦∆H .

Hence, Lemma 28.4 (b) (applied to C = H, A = H, α = idH , β = idH , f = K and
g = P ) yields

∆H ◦ (P ∗K) = ((P ∗ idH)⊗ (P ∗K) + (P ∗K)⊗ (P ∗ idH)) ◦∆H .

Thus, Lemma 28.4 (a) (applied to C = H, A = H, α = P ∗ idH , β = P ∗ idH , f = P ∗K
and g = Q) yields

∆H ◦ (P ∗K ∗Q) =

(P ∗ idH ∗Q)︸ ︷︷ ︸
=eH,H

⊗ (P ∗K ∗Q) + (P ∗K ∗Q)⊗ (P ∗ idH ∗Q)︸ ︷︷ ︸
=eH,H

 ◦∆H

= (eH,H ⊗ (P ∗K ∗Q) + (P ∗K ∗Q)⊗ eH,H)︸ ︷︷ ︸
=(P∗K∗Q)⊗eH,H+eH,H⊗(P∗K∗Q)

◦∆H

= ((P ∗K ∗Q)⊗ eH,H + eH,H ⊗ (P ∗K ∗Q)) ◦∆H .

Thus, P ∗K ∗Q is an (ε, ε)-coderivation (because by Definition 7.1, the map P ∗K ∗Q is
an (ε, ε)-coderivation if and only if ∆H◦(P ∗K ∗Q) = ((P ∗K ∗Q)⊗ eH,H + eH,H ⊗ (P ∗K ∗Q))◦
∆H). This proves Theorem 28.5.

Corollary 28.6. Let k be a field. Let H be a cocommutative k-Hopf al-
gebra. Let S be the antipode of H. Let K : H → H be a coderivation.

(a) Then, S ∗K is an (ε, ε)-coderivation.

(b) Then, K ∗ S is an (ε, ε)-coderivation.

Proof of Corollary 28.6. By Definition 25.3, we have Hcop = (H, τH,H ◦∆H , εH). Since

H is cocommutative, we have τH,H ◦∆H = ∆H . Thus, Hcop =

H, τH,H ◦∆H︸ ︷︷ ︸
=∆H

, εH

 =

(H,∆H , εH) = H.
Proposition 25.4 yields that the antipode of H is a k-coalgebra homomorphism from

Hcop to H. Since the antipode of H is the map S, whereas Hcop is H, this rewrites as
follows: The map S is a k-coalgebra homomorphism from H to H.

Corollary 10.2 (applied to n = 0, C = H and f = idH) yields that id∗0H is a k-
coalgebra homomorphism. Since id∗0H = eH,H , this shows that eH,H is a k-coalgebra
homomorphism (where eH,H is defined as according to Definition 1.12).

The antipode of a Hopf algebra is defined as the ∗-inverse of its identity map.
Thus, the antipode of H is the map id

∗(−1)
H . Since the antipode of H is S, this yields

that S is the map id
∗(−1)
H . In other words, S = id

∗(−1)
H . Hence, S ∗ idH ∗eH,H =

id
∗(−1)
H ∗ idH︸ ︷︷ ︸

=eH,H

∗eH,H = eH,H . Thus, Theorem 28.5 (applied to P = S and Q = eH,H)

yields that S ∗ K ∗ eH,H is an (ε, ε)-coderivation. In other words, S ∗ K is an (ε, ε)-
coderivation (since S ∗K ∗ eH,H = S ∗K). This proves Corollary 28.6 (a).
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Since S = id
∗(−1)
H , we have eH,H ∗ idH ∗S = eH,H ∗ idH ∗ id

∗(−1)
H︸ ︷︷ ︸

=eH,H

= eH,H . Thus,

Theorem 28.5 (applied to P = eH,H and Q = S) yields that eH,H ∗K ∗ S is an (ε, ε)-
coderivation. In other words, K∗S is an (ε, ε)-coderivation (since eH,H ∗K∗S = K∗S).
This proves Corollary 28.6 (b).

Next, something easy:

Proposition 28.7. Let k be a field. Let H be a k-bialgebra. Let P :
H → H, Q : H → H and K : H → H be three k-linear maps such that
P (1H) = 1H , Q (1H) = 1H and K (1H) = 0. Then, every x ∈ PrimH
satisfies (P ∗K ∗Q) (x) = K (x).

Proof of Proposition 28.7. Let x ∈ PrimH.
Since x ∈ PrimH = (the set of primitive elements of H), the element x of H is

primitive. Thus, ∆ (x) = x ⊗ 1H + 1H ⊗ x (because Definition 6.1 yields that x is
primitive if and only if ∆ (x) = x ⊗ 1H + 1H ⊗ x). Since ∆ = ∆H , this rewrites as
∆H (x) = x⊗ 1H + 1H ⊗ x.

But P ∗K = µH ◦ (P ⊗K) ◦∆H (by the definition of convolution). Thus,

(P ∗K) (x) = (µH ◦ (P ⊗K) ◦∆H) (x) = (µH ◦ (P ⊗K)) (∆H (x))︸ ︷︷ ︸
=x⊗1H+1H⊗x

= (µH ◦ (P ⊗K)) (x⊗ 1H + 1H ⊗ x)

= (µH ◦ (P ⊗K)) (x⊗ 1H)︸ ︷︷ ︸
=µH((P⊗K)(x⊗1H))

+ (µH ◦ (P ⊗K)) (1H ⊗ x)︸ ︷︷ ︸
=µH((P⊗K)(1H⊗x))

(since µH ◦ (P ⊗K) is k-linear)

= µH ((P ⊗K) (x⊗ 1H))︸ ︷︷ ︸
=P (x)⊗K(1H)

+µH ((P ⊗K) (1H ⊗ x))︸ ︷︷ ︸
=P (1H)⊗K(x)

= µH (P (x)⊗K (1H))︸ ︷︷ ︸
=P (x)K(1H)

(since µH is the
multiplication map)

+µH (P (1H)⊗K (x))︸ ︷︷ ︸
=P (1H)K(x)

(since µH is the
multiplication map)

= P (x)K (1H)︸ ︷︷ ︸
=0

+P (1H)︸ ︷︷ ︸
=1H

K (x) = P (x) 0︸ ︷︷ ︸
=0

+ 1HK (x)︸ ︷︷ ︸
=K(x)

= K (x) .

On the other hand, by the axioms of a bialgebra, we have ∆H (1H) = 1H ⊗ 1H (since
H is a k-bialgebra), so that

(P ∗K)︸ ︷︷ ︸
=µH◦(P⊗K)◦∆H

(1H) = (µH ◦ (P ⊗K) ◦∆H) (1H) = (µH ◦ (P ⊗K)) (∆H (1H))︸ ︷︷ ︸
=1H⊗1H

= (µH ◦ (P ⊗K)) (1H ⊗ 1H) = µH ((P ⊗K) (1H ⊗ 1H))︸ ︷︷ ︸
=P (1H)⊗K(1H)

= µH

P (1H)︸ ︷︷ ︸
=1H

⊗K (1H)︸ ︷︷ ︸
=0

 = µH (1H ⊗ 0)︸ ︷︷ ︸
=0

= µH (0) = 0
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(since µH is K-linear). Now, by the definition of convolution, (P ∗K) ∗ Q = µH ◦
((P ∗K)⊗Q) ◦∆, so that

((P ∗K) ∗Q) (x)

= (µH ◦ ((P ∗K)⊗Q) ◦∆H) (x) = (µH ◦ ((P ∗K)⊗Q)) (∆H (x))︸ ︷︷ ︸
=x⊗1H+1H⊗x

= (µH ◦ ((P ∗K)⊗Q)) (x⊗ 1H + 1H ⊗ x)

= (µH ◦ ((P ∗K)⊗Q)) (x⊗ 1H)︸ ︷︷ ︸
=µH(((P∗K)⊗Q)(x⊗1H))

+ (µH ◦ ((P ∗K)⊗Q)) (1H ⊗ x)︸ ︷︷ ︸
=µH(((P∗K)⊗Q)(1H⊗x))

(since µH ◦ ((P ∗K)⊗Q) is k-linear)

= µH (((P ∗K)⊗Q) (x⊗ 1H))︸ ︷︷ ︸
=(P∗K)(x)⊗Q(1H)

+µH (((P ∗K)⊗Q) (1H ⊗ x))︸ ︷︷ ︸
=(P∗K)(1H)⊗Q(x)

= µH ((P ∗K) (x)⊗Q (1H))︸ ︷︷ ︸
=(P∗K)(x)Q(1H)
(since µH is the

multiplication map)

+µH ((P ∗K) (1H)⊗Q (x))︸ ︷︷ ︸
=(P∗K)(1H)Q(x)
(since µH is the

multiplication map)

= (P ∗K) (x)︸ ︷︷ ︸
=K(x)

Q (1H)︸ ︷︷ ︸
=1H

+ (P ∗K) (1H)︸ ︷︷ ︸
=0

Q (x) = K (x) 1H︸ ︷︷ ︸
=K(x)

+ 0Q (x)︸ ︷︷ ︸
=0

= K (x) .

Since (P ∗K) ∗Q = P ∗K ∗Q, this rewrites as (P ∗K ∗Q) (x) = K (x). This proves
Proposition 28.7.

Now, let us study a particular coderivation that any graded coalgebra has: the
Euler operator:

Proposition 28.8. Let k be a field. Let H be a graded k-coalgebra. Let
EH be defined according to Definition 27.1. Then, EH : H → H is a
coderivation.

Proof of Proposition 28.8. Since H is a graded k-coalgebra, the map ∆H : H → H⊗H
is graded. Thus, Proposition 27.4 (applied to V = H, W = H⊗H and f = ∆H) yields

∆H ◦EH = EH⊗H︸ ︷︷ ︸
=EH⊗idH + idH ⊗EH

(by Proposition 27.3, applied to V=H and W=H)

◦∆H = (EH ⊗ idH + idH ⊗EH) ◦∆H .

Thus, EH is a coderivation (because Definition 28.3 yields that EH is a coderivation if
and only if ∆H ◦ EH = (EH ⊗ idH + idH ⊗EH) ◦∆H). Proposition 28.8 is proven.

Now, let us come as close as possible to Theorem 28.1 without requiring k to be of
characteristic 0:

Theorem 28.9. Let k be a field. Let H be a cocommutative graded k-
bialgebra. Let EH be defined according to Definition 27.1. Let PrimH
denote the subspace of H consisting of all primitive elements of H. Let

(PrimH)+ denote the intersection (PrimH) ∩
(⊕
n≥1

Hn

)
.

Let P : H → H and Q : H → H be two graded k-coalgebra homomor-
phisms satisfying P (1H) = 1H , Q (1H) = 1H and P ∗ idH ∗Q = eH,H . Here,
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the map eH,H is defined to be the map ηH ◦ εH : H → H (this defini-
tion of the map eH,H is identical with the definition of the map eH,A in
Definition 1.12).

(a) Then, (P ∗ EH ∗Q) (H) ⊆ (PrimH)+.

(b) Besides, EH
(
(PrimH)+) ⊆ (P ∗ EH ∗Q) (H).

(c) We have (P ∗ EH ∗Q)◦(P ∗ EH ∗Q) = EH◦(P ∗ EH ∗Q) = (P ∗ EH ∗Q)◦
EH .

Proof of Theorem 28.9. Notice that H is a k-bialgebra, thus a unital coalgebra.
By Proposition 28.8, the map EH is a coderivation. Thus, Theorem 28.5 (applied

to K = EH) yields that P ∗ EH ∗Q : H → H is an (ε, ε)-coderivation. Thus,

(P ∗ EH ∗Q) (H) ⊆ PrimH (295)

(because Theorem 7.2 (applied to C = H and f = P ∗EH ∗Q) yields that P ∗EH ∗Q
is an (ε, ε)-coderivation if and only if (P ∗ EH ∗Q) (H) ⊆ PrimH).

On the other hand, since H is a graded k-coalgebra, we have

∆H (H`) ⊆
⊕

(i,j)∈N×2;
i+j=`

Hi ⊗Hj for every ` ∈ N.

Applied to ` = 0, this yields ∆H (H0) ⊆
⊕

(i,j)∈N×2;
i+j=0

Hi ⊗Hj.

There exists only one (i, j) ∈ N×2 satisfying i+ j = 0: namely, (i, j) = (0, 0). Thus,
the direct sum

⊕
(i,j)∈N×2;
i+j=0

Hi⊗Hj has only one addend, namely the one for (i, j) = (0, 0).

As a consequence,
⊕

(i,j)∈N×2;
i+j=0

Hi ⊗Hj = H0 ⊗H0. Thus, ∆H (H0) ⊆
⊕

(i,j)∈N×2;
i+j=0

Hi ⊗Hj =

H0 ⊗H0.
Notice that EH (H0) = 0 142. By the definition of convolution, P ∗ EH =

µH ◦ (P ⊗ EH) ◦∆H . Thus,

(P ∗ EH) (H0) = (µH ◦ (P ⊗ EH) ◦∆H) (H0) = µH

(P ⊗ EH) (∆H (H0))︸ ︷︷ ︸
⊆H0⊗H0


⊆ µH ((P ⊗ EH) (H0 ⊗H0))︸ ︷︷ ︸

=P (H0)⊗EH(H0)

= µH

P (H0)⊗ EH (H0)︸ ︷︷ ︸
=0


= µH

P (H0)⊗ 0︸ ︷︷ ︸
=0

 = µH (0) = 0 (since µH is k-linear) .

142This is because every v ∈ H0 satisfies

EH (v) = 0v (by Proposition 27.2 (a), applied to n = 0)

= 0.
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By the definition of convolution, (P ∗ EH) ∗Q = µH ◦ ((P ∗ EH)⊗Q) ◦∆H . Thus,

((P ∗ EH) ∗Q) (H0) = (µH ◦ ((P ∗ EH)⊗Q) ◦∆H) (H0) = µH

((P ∗ EH)⊗Q) (∆H (H0))︸ ︷︷ ︸
⊆H0⊗H0


⊆ µH (((P ∗ EH)⊗Q) (H0 ⊗H0))︸ ︷︷ ︸

=(P∗EH)(H0)⊗Q(H0)

= µH

(P ∗ EH) (H0)︸ ︷︷ ︸
⊆0

⊗Q (H0)


⊆ µH

0⊗Q (H0)︸ ︷︷ ︸
=0

 = µH (0) = 0 (since µH is k-linear) ,

so that ((P ∗ EH) ∗Q) (H0) = 0. Since (P ∗ EH) ∗Q = P ∗ EH ∗Q, this rewrites as

(P ∗ EH ∗Q) (H0) = 0. (296)

Since EH is graded (by Proposition 27.2 (b), applied to V = H) and Q is graded,
we conclude (by Proposition 16.18 (a), applied to C = H, A = H, f = EH and g = Q)
that EH ∗Q is graded.

Since P is graded and EH ∗ Q is graded, we conclude (by Proposition 16.18 (a),
applied to C = H, A = H, f = P and g = EH ∗ Q) that P ∗ EH ∗ Q is graded.
Thus, every n ∈ N satisfies (P ∗ EH ∗Q) (Hn) ⊆ Hn. Now, since H is graded, we have
H =

⊕
n∈N

Hn =
∑
n∈N

Hn (since direct sums are sums), so that

(P ∗ EH ∗Q) (H) = (P ∗ EH ∗Q)

(∑
n∈N

Hn

)
=
∑
n∈N

(P ∗ EH ∗Q) (Hn)

(since P ∗ EH ∗Q is k-linear)

= (P ∗ EH ∗Q) (H0)︸ ︷︷ ︸
=0

(by (296))

+
∑
n≥1

(P ∗ EH ∗Q) (Hn)︸ ︷︷ ︸
⊆Hn

(since P∗EH∗Q is graded)

⊆
∑
n≥1

Hn =
⊕
n≥1

Hn

(because the sum
∑
n≥1

Hn is a direct sum (since it is a subsum of the direct sum
⊕
n∈N

Hn)).

Combining (295) with (P ∗ EH ∗Q) (H) ⊆
⊕
n≥1

Hn, we obtain

(P ∗ EH ∗Q) (H) ⊆ (PrimH) ∩

(⊕
n≥1

Hn

)
= (PrimH)+ .

This proves Theorem 28.9 (a).
(b) We have 1H ∈ H0 (since H is a graded k-algebra). Thus, Proposition 27.2

(a) (applied to V = H, n = 0 and v = 1H) yields EH (1H) = 0 · 1H = 0. Thus,
Proposition 28.7 (applied to K = EH) yields that

every x ∈ PrimH satisfies (P ∗ EH ∗Q) (x) = EH (x) . (297)
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Thus, every x ∈ PrimH satisfies EH (x) = (P ∗ EH ∗Q) (x) ∈ (P ∗ EH ∗Q) (H) (since
x ∈ H). In other words, EH (PrimH) ⊆ (P ∗ EH ∗Q) (H). Since (PrimH)+ =

(PrimH)∩
(⊕
n≥1

Hn

)
⊆ PrimH, we have EH

(
(PrimH)+) ⊆ EH (PrimH) ⊆ (P ∗ EH ∗Q) (H).

This proves Theorem 28.9 (b).
(c) Let x ∈ H. Then, (P ∗ EH ∗Q) (x) ∈ (P ∗ EH ∗Q) (H) ⊆ PrimH (by (295)).

Thus, (297) (applied to (P ∗ EH ∗Q) (x) instead of x) yields

(P ∗ EH ∗Q) ((P ∗ EH ∗Q) (x)) = EH ((P ∗ EH ∗Q) (x)) .

Thus,

((P ∗ EH ∗Q) ◦ (P ∗ EH ∗Q)) (x) = (P ∗ EH ∗Q) ((P ∗ EH ∗Q) (x))

= EH ((P ∗ EH ∗Q) (x)) = (EH ◦ (P ∗ EH ∗Q)) (x) .

Now forget that we fixed x. We thus have proven that every x ∈ H satisfies
((P ∗ EH ∗Q) ◦ (P ∗ EH ∗Q)) (x) = (EH ◦ (P ∗ EH ∗Q)) (x). In other words,

(P ∗ EH ∗Q) ◦ (P ∗ EH ∗Q) = EH ◦ (P ∗ EH ∗Q) . (298)

Since P ∗ EH ∗ Q is graded, we have (P ∗ EH ∗Q) ◦ EH = EH ◦ (P ∗ EH ∗Q) (by
Proposition 27.4, applied to V = H, W = H and f = P ∗ EH ∗ Q). Combined with
(298), this yields

(P ∗ EH ∗Q) ◦ (P ∗ EH ∗Q) = EH ◦ (P ∗ EH ∗Q) = (P ∗ EH ∗Q) ◦ EH .

This proves Theorem 28.9 (c).

Corollary 28.10. Let k be a field. Let H be a cocommutative graded k-
Hopf algebra. Let S be the antipode of H. Let EH be defined according
to Definition 27.1. Let PrimH denote the subspace of H consisting of all
primitive elements of H. Let (PrimH)+ denote the intersection (PrimH)∩(⊕
n≥1

Hn

)
.

(a) Then, (EH ∗ S) (H) ⊆ (PrimH)+.

(b) Besides, EH
(
(PrimH)+) ⊆ (EH ∗ S) (H).

(c) We have (EH ∗ S) ◦ (EH ∗ S) = EH ◦ (EH ∗ S) = (EH ∗ S) ◦ EH .

(d) Also, (S ∗ EH) (H) ⊆ (PrimH)+.

(e) Besides, EH
(
(PrimH)+) ⊆ (S ∗ EH) (H).

(f) We have (S ∗ EH) ◦ (S ∗ EH) = EH ◦ (S ∗ EH) = (S ∗ EH) ◦ EH .

Proof of Corollary 28.10. Just as in the proof of Corollary 28.6, we can prove the
following facts:

• The map S is a k-coalgebra homomorphism from H to H.

• The map eH,H is a k-coalgebra homomorphism (where eH,H is defined as according
to Definition 1.12).
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• We have S = id
∗(−1)
H .

• We have S ∗ idH ∗eH,H = eH,H and eH,H ∗ idH ∗S = eH,H .

Notice that eH,H = ηH ◦ εH (by the definition of eH,H), so that

eH,H (1H) = (ηH ◦ εH) (1H) = ηH (εH (1H))︸ ︷︷ ︸
=1

(by the axioms of a bialgebra,
since H is a k-bialgebra)

= ηH (1) = 1 · 1H (by the definition of ηH)

= 1H .

Since S = id
∗(−1)
H , we have S ∗ idH = eH,H . But the definition of convolution yields

S ∗ idH = µH ◦ (S ⊗ idH) ◦∆H . Since H is a k-bialgebra, we have ∆H (1H) = 1H ⊗ 1H .
Thus,

(S ∗ idH)︸ ︷︷ ︸
=µH◦(S⊗idH)◦∆H

(1H) = (µH ◦ (S ⊗ idH) ◦∆H) (1H) = µH

(S ⊗ idH) (∆H (1H))︸ ︷︷ ︸
=1H⊗1H



= µH

(S ⊗ idH) (1H ⊗ 1H)︸ ︷︷ ︸
=S(1H)⊗idH(1H)

 = µH (S (1H)⊗ idH (1H))

= S (1H) · idH (1H)︸ ︷︷ ︸
=1H

(since µH is the multiplication map)

= S (1H) .

Compared with (S ∗ idH)︸ ︷︷ ︸
=eH,H

(1H) = eH,H (1H) = 1H , this yields S (1H) = 1H . Also,

eH,H (1H) = 1H .
Also, the map eH,H is graded (by Proposition 16.18 (b), applied to C = H and

A = H), and the map S is graded (since S is the antipode of H, while H is a graded
k-Hopf algebra).

Thus, we can apply Theorem 28.9 to P = eH,H and Q = S.
Applying Theorem 28.9 (a) to P = eH,H andQ = S, we obtain (eH,H ∗ EH ∗ S) (H) ⊆

(PrimH)+. Since eH,H ∗EH ∗S = EH ∗S, this rewrites as (EH ∗ S) (H) ⊆ (PrimH)+.
This proves Corollary 28.10 (a).

Applying Theorem 28.9 (b) to P = eH,H and Q = S, we obtain EH
(
(PrimH)+) ⊆

(eH,H ∗ EH ∗ S) (H). Since eH,H ∗EH ∗S = EH ∗S, this rewrites as EH
(
(PrimH)+) ⊆

(EH ∗ S) (H). This proves Corollary 28.10 (b).
Applying Theorem 28.9 (c) to P = eH,H and Q = S, we obtain (eH,H ∗ EH ∗ S) ◦

(eH,H ∗ EH ∗ S) = EH ◦ (eH,H ∗ EH ∗ S) = (eH,H ∗ EH ∗ S)◦EH . Since eH,H ∗EH ∗S =
EH ∗ S, this rewrites as (EH ∗ S) ◦ (EH ∗ S) = EH ◦ (EH ∗ S) = (EH ∗ S) ◦ EH . This
proves Corollary 28.10 (c).

But we can also apply Theorem 28.9 to P = S and Q = eH,H .
Applying Theorem 28.9 (a) to P = S andQ = eH,H , we obtain (S ∗ EH ∗ eH,H) (H) ⊆

(PrimH)+. Since S ∗EH ∗ eH,H = S ∗EH , this rewrites as (S ∗ EH) (H) ⊆ (PrimH)+.
This proves Corollary 28.10 (d).
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Applying Theorem 28.9 (b) to P = S and Q = eH,H , we obtain EH
(
(PrimH)+) ⊆

(S ∗ EH ∗ eH,H) (H). Since S ∗EH ∗ eH,H = S ∗EH , this rewrites as EH
(
(PrimH)+) ⊆

(S ∗ EH) (H). This proves Corollary 28.10 (e).
Applying Theorem 28.9 (c) to P = S and Q = eH,H , we obtain (S ∗ EH ∗ eH,H) ◦

(S ∗ EH ∗ eH,H) = EH ◦ (S ∗ EH ∗ eH,H) = (S ∗ EH ∗ eH,H)◦EH . Since S ∗EH ∗ eH,H =
S ∗ EH , this rewrites as (S ∗ EH) ◦ (S ∗ EH) = EH ◦ (S ∗ EH) = (S ∗ EH) ◦ EH . This
proves Corollary 28.10 (f).

In order to specialize the above results to connected graded Hopf algebras, we first
observe a simple fact:

Proposition 28.11. Let k be a field. Let H be a connected graded k-
bialgebra. Then, PrimH ⊆

⊕
n≥1

Hn.

Proof of Proposition 28.11. Let x ∈ PrimH. Since H is graded, we have H =
⊕
n∈N

Hn.

Now, x ∈ PrimH ⊆ H =
⊕
n∈N

Hn = H0 ⊕
(⊕
n≥1

Hn

)
. Thus, there exists an α ∈ H0 and

a β ∈
⊕
n≥1

Hn such that x = α + β. Consider these α and β.

Since H is a graded k-coalgebra, we have εH (Hn) = 0 for every integer n ≥ 1.
Since β ∈

⊕
n≥1

Hn =
∑
n≥1

Hn (since direct sums are sums), we have

εH (β) ∈ εH

(∑
n≥1

Hn

)
=
∑
n≥1

εH (Hn)︸ ︷︷ ︸
=0

(since n≥1)

(since εH is k-linear)

=
∑
n≥1

0 = 0,

so that εH (β) = 0. But Remark 6.3 shows that ε (x) = 0 (since H is a k-bialgebra,
thus a unital coalgebra). Since x = α + β, we have

εH (x) = εH (α + β) = εH (α) + εH (β)︸ ︷︷ ︸
=0

= εH (α) .

Compared with εH︸︷︷︸
=ε

(x) = ε (x) = 0, this yields εH (α) = 0. Since α ∈ H0, we have

εH (α) = (εH |H0) (α). Thus, the equality εH (α) = 0 (which we just proved) rewrites
as (εH |H0) (α) = 0.

But since H is connected, the map εH |H0 : H0 → k is a k-vector space isomorphism
(because Definition 16.10 yields thatH is connected if and only if the map εH |H0 : H0 →
k is a k-vector space isomorphism). Thus, from the equality (εH |H0) (α) = 0 (which
we proved above), we can conclude that α = 0. Now, x = α︸︷︷︸

=0

+β = β ∈
⊕
n≥1

Hn.

Now, forget that we fixed x. We have thus proven that every x ∈ PrimH satisfies
x ∈

⊕
n≥1

Hn. In other words, PrimH ⊆
⊕
n≥1

Hn. Proposition 28.11 is proven.

Here come equivalent versions of parts (a) and (b) of Theorem 28.9:
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Corollary 28.12. Let k be a field. Let H be a cocommutative graded
k-bialgebra. Let EH be defined according to Definition 27.1. Let PrimH
denote the subspace of H consisting of all primitive elements of H.

Let P : H → H and Q : H → H be two graded k-coalgebra homomor-
phisms satisfying P (1H) = 1H , Q (1H) = 1H and P ∗ idH ∗Q = eH,H . Here,
the map eH,H is defined to be the map ηH ◦ εH : H → H (this defini-
tion of the map eH,H is identical with the definition of the map eH,A in
Definition 1.12).

(a) Then, (P ∗ EH ∗Q) (H) ⊆ PrimH.

(b) Besides, EH (PrimH) ⊆ (P ∗ EH ∗Q) (H).

Proof of Corollary 28.12. Define (PrimH)+ as in Theorem 28.9. Then, (PrimH)+ =

(PrimH) ∩
(⊕
n≥1

Hn

)
⊆ PrimH.

Theorem 28.9 (a) states that (P ∗ EH ∗Q) (H) ⊆ (PrimH)+. Combined with
(PrimH)+ ⊆ PrimH, this yields (P ∗ EH ∗Q) (H) ⊆ PrimH. This proves Corol-
lary 28.12 (a).

In the proof of Theorem 28.9 (b), we showed thatEH (PrimH) ⊆ (P ∗ EH ∗Q) (H).
This proves Corollary 28.12 (b).

(Note that we referred to the proof of Theorem 28.9 (b) here; but this was not
strictly necessary since we could have just as well derived Corollary 28.12 (b) from
Theorem 28.9 (b) without recourse to its proof. This would have taken a bit more
work, though.)

Now, let us do the same to parts (a), (b), (d) and (e) of Corollary 28.10:

Corollary 28.13. Let k be a field. Let H be a cocommutative graded k-
Hopf algebra. Let S be the antipode of H. Let EH be defined according
to Definition 27.1. Let PrimH denote the subspace of H consisting of all
primitive elements of H.

(a) Then, (EH ∗ S) (H) ⊆ PrimH.

(b) Besides, EH (PrimH) ⊆ (EH ∗ S) (H).

(c) Also, (S ∗ EH) (H) ⊆ PrimH.

(d) Besides, EH (PrimH) ⊆ (S ∗ EH) (H).

Proof of Corollary 28.13. Just as in the proof of Corollary 28.6, we can prove the
following facts:

• The map S is a k-coalgebra homomorphism from H to H.

• The map eH,H is a k-coalgebra homomorphism (where eH,H is defined as according
to Definition 1.12).

• We have S ∗ idH ∗eH,H = eH,H and eH,H ∗ idH ∗S = eH,H .

Just as in the proof of Corollary 28.10, we can prove the following facts:
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• We have eH,H (1H) = 1H and S (1H) = 1H .

• The maps eH,H and S are graded.

As a consequence, we can apply Corollary 28.12 to P = eH,H and Q = S.
Applying Corollary 28.12 (a) to P = eH,H andQ = S, we obtain that (eH,H ∗ EH ∗ S) (H) ⊆

PrimH. Since eH,H ∗ EH ∗ S = EH ∗ S, this rewrites as (EH ∗ S) (H) ⊆ PrimH. This
proves Corollary 28.13 (a).

Applying Corollary 28.12 (b) to P = eH,H andQ = S, we obtain that EH (PrimH) ⊆
(eH,H ∗ EH ∗ S) (H). Since eH,H ∗ EH ∗ S = EH ∗ S, this rewrites as EH (PrimH) ⊆
(EH ∗ S) (H). This proves Corollary 28.13 (b).

But we can also apply Corollary 28.12 to P = S and Q = eH,H .
Applying Corollary 28.12 (a) to P = S andQ = eH,H , we obtain that (S ∗ EH ∗ eH,H) (H) ⊆

PrimH. Since S ∗ EH ∗ eH,H = S ∗ EH , this rewrites as (S ∗ EH) (H) ⊆ PrimH. This
proves Corollary 28.13 (c).

Applying Corollary 28.12 (b) to P = S andQ = eH,H , we obtain that EH (PrimH) ⊆
(S ∗ EH ∗ eH,H) (H). Since S ∗ EH ∗ eH,H = S ∗ EH , this rewrites as EH (PrimH) ⊆
(S ∗ EH) (H). This proves Corollary 28.13 (d).

We now come to the case of fields of characteristic 0. The following generalizes
Theorem 28.1:

Theorem 28.14. Let k be a field of characteristic 0. Let H be a cocommu-
tative graded k-bialgebra. Let EH be defined according to Definition 27.1.
Let PrimH denote the subspace of H consisting of all primitive elements

of H. Let (PrimH)+ denote the intersection (PrimH) ∩
(⊕
n≥1

Hn

)
.

Let P : H → H and Q : H → H be two graded k-coalgebra homomor-
phisms satisfying P (1H) = 1H , Q (1H) = 1H and P ∗ idH ∗Q = eH,H . Here,
the map eH,H is defined to be the map ηH ◦ εH : H → H (this defini-
tion of the map eH,H is identical with the definition of the map eH,A in
Definition 1.12).

Then, the map Einv
H ◦ (P ∗ EH ∗Q) is a projection from H to the subspace

(PrimH)+.

Proof of Theorem 28.14. Recall that (PrimH)+ = (PrimH)∩
(⊕
n≥1

Hn

)
= (PrimH)∩(⊕̀

≥1

H`

)
(here, we renamed the index n as ` in the direct sum). Notice that (PrimH)+ =

(PrimH) ∩
(⊕
n≥1

Hn

)
⊆ PrimH.

Proposition 18.3 yields that PrimH is a homogeneous subspace of H. In other
words, PrimH =

⊕
n∈N

((PrimH) ∩Hn) (because Definition 18.1 yields that PrimH is

a homogeneous subspace of H if and only if PrimH =
⊕
n∈N

((PrimH) ∩Hn)).

Now, it is easy to see that every n ∈ N satisfies

Einv
H ((PrimH) ∩Hn) ⊆ (PrimH)+ . (299)
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143 Now, since PrimH =
⊕
n∈N

((PrimH) ∩Hn) =
∑
n∈N

(PrimH) ∩Hn (since direct sums

are sums), we have

Einv
H (PrimH) = Einv

H

(∑
n∈N

(PrimH) ∩Hn

)
=
∑
n∈N

Einv
H ((PrimH) ∩Hn)︸ ︷︷ ︸

⊆(PrimH)+

(by (299))

⊆
∑
n∈N

(PrimH)+ ⊆ (PrimH)+ (
since (PrimH)+ is a k-vector space

)
.

(300)

Now,

(
Einv
H ◦ (P ∗ EH ∗Q)

)
(H) = Einv

H ((P ∗ EH ∗Q) (H))︸ ︷︷ ︸
⊆(PrimH)+

(by Theorem 28.9 (a))

⊆ Einv
H

(PrimH)+︸ ︷︷ ︸
⊆PrimH


⊆ Einv

H (PrimH) ⊆ (PrimH)+ (by (300)) . (301)

On the other hand,(
Einv
H ◦ (P ∗ EH ∗Q)

)
|(PrimH)+= id(PrimH)+ . (302)

144

143Proof of (299). Let n ∈ N. Let v ∈ (PrimH)∩Hn. We will prove that Einv
H (v) ∈ (PrimH)

+
now.

In fact, define (b`)`∈N as in Definition 27.9. Note that this definition yields b0 ={
1

0
, if 0 > 0;

0, if 0 = 0
= 0 (since 0 = 0).

By Remark 27.10 (applied to V = H), we have Einv
H = E

(b`)`∈N
H .

We have v ∈ (PrimH) ∩Hn ⊆ Hn and thus E
(b`)`∈N
H (v) = bnv (by Proposition 27.7 (a), applied to

(a`)`∈N = (b`)`∈N). Since E
(b`)`∈N
H = Einv

H , this rewrites as Einv
H (v) = bnv.

We must be in one of the following two cases:
Case 1: We have n = 0.
Case 2: We have n > 0.
Let us consider Case 1 first. In this case, n = 0, so that bnv = b0︸︷︷︸

=0

v = 0v = 0. Thus, Einv
H (v) =

bnv = 0 ∈ (PrimH)
+

. Thus, Einv
H (v) ∈ (PrimH)

+
is proven in Case 1.

Next, let us consider Case 2. In this case, n > 0, so that n ≥ 1 and thus Hn ⊆
⊕̀
≥1

H`. Thus,

v ∈ Hn ⊆
⊕̀
≥1

H`. Combined with v ∈ (PrimH)∩Hn ⊆ PrimH, this yields v ∈ (PrimH)∩

(⊕̀
≥1

H`

)
=

(PrimH)
+

. Now, Einv
H (v) = bn v︸︷︷︸

∈(PrimH)+

∈ bn (PrimH)
+ ⊆ (PrimH)

+
(since (PrimH)

+
is a k-

vector space). Thus, Einv
H (v) ∈ (PrimH)

+
is proven in Case 2.

We have therefore proven Einv
H (v) ∈ (PrimH)

+
in both cases 1 and 2. Since these cases cover all

possibilities, we conclude that Einv
H (v) ∈ (PrimH)

+
always holds.

Now forget that we fixed v. We have thus shown that every v ∈ (PrimH) ∩Hn satisfies Einv
H (v) ∈

(PrimH)
+

. In other words, Einv
H ((PrimH) ∩Hn) ⊆ (PrimH)

+
, thus proving (299).

144Proof of (302). We have 1H ∈ H0 (since H is a graded k-algebra). Thus, Proposition 27.2 (a)
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So we know that Einv
H ◦(P ∗ EH ∗Q) is a k-linear map satisfying

(
Einv
H ◦ (P ∗ EH ∗Q)

)
(H) ⊆

(PrimH)+ (by (301)) and
(
Einv
H ◦ (P ∗ EH ∗Q)

)
|(PrimH)+= id(PrimH)+ (by (302)). In

other words, Einv
H ◦ (P ∗ EH ∗Q) is a projection from H to the subspace (PrimH)+.

This proves Theorem 28.14.

We can now get Theorem 28.1 as a corollary:

Proof of Theorem 28.1. Just as in the proof of Corollary 28.6, we can prove the fol-
lowing facts:

• The map S is a k-coalgebra homomorphism from H to H.

• The map eH,H is a k-coalgebra homomorphism (where eH,H is defined as according
to Definition 1.12).

• We have S = id
∗(−1)
H .

• We have S ∗ idH ∗eH,H = eH,H and eH,H ∗ idH ∗S = eH,H .

Just as in the proof of Corollary 28.10, we can prove the following facts:

• We have eH,H (1H) = 1H and S (1H) = 1H .

• The maps eH,H and S are graded.

As a consequence, we can apply Theorem 28.14 to P = eH,H and Q = S. As a
result, we obtain that the map Einv

H ◦ (eH,H ∗ EH ∗ S) is a projection from H to the
subspace (PrimH)+. Since eH,H ∗ EH ∗ S = EH ∗ S, this rewrites as follows: The
map Einv

H ◦ (EH ∗ S) is a projection from H to the subspace (PrimH)+. This proves
Theorem 28.1 (a).

But we can also apply Theorem 28.14 to P = S and Q = eH,H . As a result, we
obtain that the map Einv

H ◦ (S ∗ EH ∗ eH,H) is a projection from H to the subspace

(applied to n = 0 and v = 1H) yields EH (1H) = 0 · 1H = 0. Thus, Proposition 28.7 (applied to
K = EH) yields that

every x ∈ PrimH satisfies (P ∗ EH ∗Q) (x) = EH (x) . (303)

Now, let x ∈ (PrimH)
+

. Then, x ∈ (PrimH)
+

= (PrimH) ∩

(⊕
n≥1

Hn

)
⊆
⊕
n≥1

Hn. Hence,

Corollary 27.12 (b) (applied to V = H and v = x) yields
(
Einv
H ◦ EH

)
(x) = x.

On the other hand, x ∈ (PrimH)
+ ⊆ PrimH, so that (P ∗ EH ∗Q) (x) = EH (x) (by (303)). Now,((

Einv
H ◦ (P ∗ EH ∗Q)

)
|(PrimH)+

)
(x)

=
(
Einv
H ◦ (P ∗ EH ∗Q)

)
(x) = Einv

H ((P ∗ EH ∗Q) (x))︸ ︷︷ ︸
=EH(x)

= Einv
H (EH (x))

=
(
Einv
H ◦ EH

)
(x) = x = id(PrimH)+ (x) .

Now forget that we fixed x. We have thus proven that every x ∈ (PrimH)
+

satisfies
((
Einv
H ◦ (P ∗ EH ∗Q)

)
|(PrimH)+

)
(x) = id(PrimH)+ (x). In other words,(

Einv
H ◦ (P ∗ EH ∗Q)

)
|(PrimH)+= id(PrimH)+ . This proves (302).
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(PrimH)+. Since S ∗ EH ∗ eH,H = S ∗ EH , this rewrites as follows: The map Einv
H ◦

(S ∗ EH) is a projection from H to the subspace (PrimH)+. This proves Theorem 28.1
(b).

Next, we specialize our results to connected graded bialgebras. First, the special-
ization of Theorem 28.14:

Corollary 28.15. Let k be a field of characteristic 0. Let H be a cocom-
mutative connected graded k-bialgebra. Let EH be defined according to
Definition 27.1. Let PrimH denote the subspace of H consisting of all
primitive elements of H.

Let P : H → H and Q : H → H be two graded k-coalgebra homomor-
phisms satisfying P (1H) = 1H , Q (1H) = 1H and P ∗ idH ∗Q = eH,H . Here,
the map eH,H is defined to be the map ηH ◦ εH : H → H (this defini-
tion of the map eH,H is identical with the definition of the map eH,A in
Definition 1.12).

Then, the map Einv
H ◦ (P ∗ EH ∗Q) is a projection from H to the subspace

PrimH.

Proof of Corollary 28.15. Define (PrimH)+ as in Theorem 28.9. Then, (PrimH)+ =

(PrimH) ∩
(⊕
n≥1

Hn

)
= PrimH (since Proposition 28.11 yields PrimH ⊆

⊕
n≥1

Hn).

Theorem 28.14 says that the map Einv
H ◦ (P ∗ EH ∗Q) is a projection from H to

the subspace (PrimH)+. Since (PrimH)+ = PrimH, this rewrites as follows: The
map Einv

H ◦ (P ∗ EH ∗Q) is a projection from H to the subspace PrimH. This proves
Corollary 28.15.

The specialization of Theorem 28.1 is Theorem 28.2, and here is its (obvious) proof:

Proof of Theorem 28.2. Define (PrimH)+ as in Theorem 28.1. Then, (PrimH)+ =

(PrimH) ∩
(⊕
n≥1

Hn

)
= PrimH (since Proposition 28.11 yields PrimH ⊆

⊕
n≥1

Hn).

Theorem 28.1 (a) says that the map Einv
H ◦ (EH ∗ S) is a projection from H to

the subspace (PrimH)+. Since (PrimH)+ = PrimH, this rewrites as follows: The
map Einv

H ◦ (EH ∗ S) is a projection from H to the subspace PrimH. This proves
Theorem 28.2 (a).

Theorem 28.1 (b) says that the map Einv
H ◦ (S ∗ EH) is a projection from H to

the subspace (PrimH)+. Since (PrimH)+ = PrimH, this rewrites as follows: The
map Einv

H ◦ (S ∗ EH) is a projection from H to the subspace PrimH. This proves
Theorem 28.2 (b).

Finally, let us prove a relation between the maps S ∗ EH and EH ∗ S:

Theorem 28.16. Let k be a field. Let H be a cocommutative graded k-
Hopf algebra. Let S be the antipode of H. Let EH be defined according to
Definition 27.1.

(a) We have

(EH ∗ S) ◦ S = S ◦ (S ∗ EH) = −S ∗ EH .
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(b) We have

(S ∗ EH) ◦ S = S ◦ (EH ∗ S) = −EH ∗ S.

To prove Theorem 28.16, we need a (famous) fact:

Theorem 28.17. Let k be a field. Let H be a k-Hopf algebra. Let S be
the antipode of H.

(a) We have εH ◦ S = εH .

(b) If H is cocommutative, we have ∆H ◦ S = (S ⊗ S) ◦∆H .

(c) If H is cocommutative, we have S ◦ S = idH .

Proof of Theorem 28.17. Let us define Hcop as according to Definition 25.3. Then,
Hcop = (H, τH,H ◦∆H , εH), so that εHcop = εH .

But Proposition 25.4 yields that the antipode of H is a k-coalgebra homomorphism
from Hcop to H. Since the antipode of H is the map S, this rewrites as follows: The
map S is a k-coalgebra homomorphism from Hcop to H. Thus, εHcop ◦ S = εH . Since
εHcop = εH , this rewrites as εH ◦ S = εH . This proves Theorem 28.17 (a).

(b) Assume that H is cocommutative. Then, τH,H ◦ ∆H = ∆H , so that Hcop =H, τH,H ◦∆H︸ ︷︷ ︸
=∆H

, εH

 = (H,∆H , εH) = H.

We have showed above that the map S is a k-coalgebra homomorphism from Hcop

to H. Since Hcop = H, this rewrites as follows: The map S is a k-coalgebra homo-
morphism from H to H. Thus, ∆H ◦ S = (S ⊗ S) ◦∆H . This proves Theorem 28.17
(b).

(c) The antipode of H is the ∗-inverse of the map idH (because the antipode of
a Hopf algebra is defined as the ∗-inverse of its identity map). Since the antipode of
H is S, we thus have shown that S is the ∗-inverse of the map idH . Thus, S ∗ idH =
idH ∗S = eH,H (where eH,H is defined as according to Definition 1.12).

Applying (21) to H, H, H, H, H, H, S, S, S, idH instead of U , V , W , U ′, V ′, W ′,
α, β, α′, β′, we obtain

(S ◦ S)⊗ (idH ◦S) = (S ⊗ idH) ◦ (S ⊗ S) . (304)

Now, by the definition of convolution,

(S ◦ S) ∗ S = µH ◦

(S ◦ S)⊗ S︸︷︷︸
=idH ◦S

 ◦∆H = µH ◦ ((S ◦ S)⊗ (idH ◦S))︸ ︷︷ ︸
=(S⊗idH)◦(S⊗S)

(by (304))

◦∆H

= µH ◦ (S ⊗ idH) ◦ (S ⊗ S) ◦∆H︸ ︷︷ ︸
=∆H◦S

(by Theorem 28.17 (b))

= µH ◦ (S ⊗ idH) ◦∆H︸ ︷︷ ︸
=S∗idH
(because

S∗idH=µH◦(S⊗idH)◦∆H

by the definition of convolution)

◦S

= (S ∗ idH)︸ ︷︷ ︸
=eH,H=ηH◦εH

(by the definition of eH,H)

◦S = ηH ◦ εH ◦ S︸ ︷︷ ︸
=εH

(by Theorem 28.17 (a))

= ηH ◦ εH = eH,H
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(since eH,H = ηH ◦ εH by the definition of eH,H). Thus,

(S ◦ S) ∗ S︸ ︷︷ ︸
=eH,H

∗ idH = eH,H ∗ idH = idH .

Comparing this with

(S ◦ S) ∗ S ∗ idH︸ ︷︷ ︸
=eH,H

= (S ◦ S) ∗ eH,H = S ◦ S,

we obtain S ◦ S = idH . This proves Theorem 28.17 (c).

Furthermore, we need something very easy and well-known:

Proposition 28.18. Let k be a field. Let H be a k-Hopf algebra. Let S
be the antipode of H. Let x ∈ PrimH. Then, S (x) = −x.

Proof of Proposition 28.18. Since x ∈ PrimH = (the set of all primitive elements of H),
the element x of H is primitive. Thus, ∆ (x) = x⊗ 1H + 1H ⊗ x (since Definition 6.1
yields that x is primitive if and only if ∆ (x) = x⊗ 1H + 1H ⊗ x).

The antipode of H is the ∗-inverse of the map idH (because the antipode of a Hopf
algebra is defined as the ∗-inverse of its identity map). Since the antipode of H is S, we
thus have shown that S is the ∗-inverse of the map idH . Thus, S ∗ idH = idH ∗S = eH,H
(where eH,H is defined as according to Definition 1.12) and S = id

∗(−1)
H .

Since eH,H = ηH ◦ εH (by the definition of eH,H), we have

eH,H (x) = (ηH ◦ εH) (x) = ηH

 εH︸︷︷︸
=ε

(x)

 = ηH (ε (x))︸ ︷︷ ︸
=0

(by Remark 6.3)

= ηH (0) = 0

(since ηH is k-linear).
Just as in the proof of Corollary 28.10, we can now show that S (1H) = 1H . Now,
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since eH,H = S ∗ idH = µH ◦ (S ⊗ idH) ◦∆H (by the definition of convolution), we have

eH,H (x) = (µH ◦ (S ⊗ idH) ◦∆H) (x) = µH

(S ⊗ idH)

∆H︸︷︷︸
=∆

(x)



= µH

(S ⊗ idH) (∆ (x))︸ ︷︷ ︸
=x⊗1H+1H⊗x

 = µH

(S ⊗ idH) (x⊗ 1H + 1H ⊗ x)︸ ︷︷ ︸
=(S⊗idH)(x⊗1H)+(S⊗idH)(1H⊗x)

(since S⊗idH is k-linear)


= µH

(S ⊗ idH) (x⊗ 1H)︸ ︷︷ ︸
=S(x)⊗idH(1H)

+ (S ⊗ idH) (1H ⊗ x)︸ ︷︷ ︸
=S(1H)⊗idH(x)


= µH

S (x)⊗ idH (1H)︸ ︷︷ ︸
=1H

+S (1H)︸ ︷︷ ︸
=1H

⊗ idH (x)︸ ︷︷ ︸
=x

 = µH (S (x)⊗ 1H + 1H ⊗ x)

= µH (S (x)⊗ 1H)︸ ︷︷ ︸
=S(x)1H

(since µH is the
multiplication map)

+ µH (1H ⊗ x)︸ ︷︷ ︸
=1Hx

(since µH is the
multiplication map)

(since µH is k-linear)

= S (x) 1H + 1Hx = S (x) + x.

Compared with eH,H (x) = 0, this yields S (x) + x = 0, and thus S (x) = −x. This
proves Proposition 28.18.

Proof of Theorem 28.16. Let us first notice that

EH ◦ eH,H = 0. (305)

145

Since H is a graded k-algebra, the multiplication map µH : H ⊗ H → H of H is
graded. Thus, Proposition 27.4 (applied to V = H⊗H andW = H) yields µH◦EH⊗H =

145Proof of (305): Let x ∈ H. Then, eH,H = ηH ◦ εH (by the definition of eH,H), so that

eH,H (x) = (ηH ◦ εH) (x) = ηH (εH (x)) = εH (x)︸ ︷︷ ︸
∈k

· 1H︸︷︷︸
∈H0

(since H is a graded
k-algebra)

(by the definition of ηH)

∈ kH0 ⊆ H0 (since H0 is a k-vector space) ,

and thus EH (eH,H (x)) = 0eH,H (x) (by Proposition 27.2 (a), applied to V = H, n = 0 and v =
eH,H (x)). Thus, (EH ◦ eH,H) (x) = EH (eH,H (x)) = 0eH,H (x) = 0.

Now, forget that we fixed x. We thus have proven that every x ∈ H satisfies (EH ◦ eH,H) (x) = 0.
Thus, EH ◦ eH,H = 0, so that (305) is proven.
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EH ◦ µH . Thus,

EH ◦ µH = µH ◦ EH⊗H︸ ︷︷ ︸
=EH⊗idH + idH ⊗EH
(by Proposition 27.3,

applied to V=H and W=H)

= µH ◦ (EH ⊗ idH + idH ⊗EH)

= µH ◦ (EH ⊗ idH) + µH ◦ (idH ⊗EH)

(since composition of k-linear maps is distributive) .

This equality can be rewritten in two ways: first,

µH ◦ (EH ⊗ idH) = EH ◦ µH − µH ◦ (idH ⊗EH) ; (306)

second,
µH ◦ (idH ⊗EH) = EH ◦ µH − µH ◦ (EH ⊗ idH) . (307)

The antipode of H is the ∗-inverse of the map idH (because the antipode of a Hopf
algebra is defined as the ∗-inverse of its identity map). Since the antipode of H is S, we
thus have shown that S is the ∗-inverse of the map idH . Thus, S ∗ idH = idH ∗S = eH,H
(where eH,H is defined as according to Definition 1.12).
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(a) By the definition of convolution, EH ∗ S = µH ◦ (EH ⊗ S) ◦∆H , so that

(EH ∗ S) ◦ S
= µH ◦ (EH ⊗ S) ◦ ∆H ◦ S︸ ︷︷ ︸

=(S⊗S)◦∆H

(by
Theorem 28.17 (b))

= µH ◦ (EH ⊗ S) ◦ (S ⊗ S)︸ ︷︷ ︸
=(EH◦S)⊗(S◦S)

(because (21) (applied to H, H, H, H, H, H,
S, EH , S, S instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′)

yields (EH◦S)⊗(S◦S)=(EH⊗S)◦(S⊗S))

◦∆H

= µH ◦

(EH ◦ S)⊗ (S ◦ S)︸ ︷︷ ︸
=idH

(by Theorem 28.17 (c))

 ◦∆H = µH ◦

(EH ◦ S)⊗ idH︸︷︷︸
=idH ◦ idH

 ◦∆H

= µH ◦ ((EH ◦ S)⊗ (idH ◦ idH))︸ ︷︷ ︸
=(EH⊗idH)◦(S⊗idH)

(by (21) (applied to H, H, H, H, H, H,
S, EH , idH , idH instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′))

◦∆H

= µH ◦ (EH ⊗ idH)︸ ︷︷ ︸
=EH◦µH−µH◦(idH ⊗EH)

(by (306))

◦ (S ⊗ idH) ◦∆H = (EH ◦ µH − µH ◦ (idH ⊗EH)) ◦ (S ⊗ idH) ◦∆H

= EH ◦ µH ◦ (S ⊗ idH) ◦∆H︸ ︷︷ ︸
=S∗idH

(since S∗idH=µH◦(S⊗idH)◦∆H

by the definition of convolution)

−µH ◦ (idH ⊗EH) ◦ (S ⊗ idH)︸ ︷︷ ︸
=(idH ◦S)⊗(EH◦idH)

(because (21) (applied to H, H, H, H, H, H,
S, idH , idH , EH instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′)

yields (idH ◦S)⊗(EH◦idH)=(idH ⊗EH)◦(S⊗idH))

◦∆H

(since composition of k-linear maps is distributive)

= EH ◦ (S ∗ idH)︸ ︷︷ ︸
=eH,H

−µH ◦

(idH ◦S)︸ ︷︷ ︸
=S

⊗ (EH ◦ idH)︸ ︷︷ ︸
=EH

 ◦∆H

= EH ◦ eH,H︸ ︷︷ ︸
=0

(by (305))

− µH ◦ (S ⊗ EH) ◦∆H︸ ︷︷ ︸
=S∗EH

(since S∗EH=µH◦(S⊗EH)◦∆H

by the definition of convolution)

= −S ∗ EH . (308)

Let (PrimH)+ denote the intersection (PrimH) ∩
(⊕
n≥1

Hn

)
. Then, (PrimH)+ ⊆

PrimH.
Now, let y ∈ H. Then,

(S ∗ EH) (y) ∈ (S ∗ EH) (H) ⊆ (PrimH)+ (by Corollary 28.10 (d))

⊆ PrimH,

so that Proposition 28.18 (applied to x = (S ∗ EH) (y)) yields S ((S ∗ EH) (y)) =
− (S ∗ EH) (y). Thus,

(S ◦ (S ∗ EH)) (y) = S ((S ∗ EH) (y)) = − (S ∗ EH) (y) = (−S ∗ EH) (y) .

Now, forget that we fixed y. We have thus proven that every y ∈ H satisfies
(S ◦ (S ∗ EH)) (y) = (−S ∗ EH) (y). In other words, S ◦ (S ∗ EH) = −S ∗ EH . Com-
bined with (308), this yields (EH ∗ S) ◦ S = S ◦ (S ∗ EH) = −S ∗ EH . This proves
Theorem 28.16 (a).
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(b) By the definition of convolution, S ∗ EH = µH ◦ (S ⊗ EH) ◦∆H , so that

(S ∗ EH) ◦ S
= µH ◦ (S ⊗ EH) ◦ ∆H ◦ S︸ ︷︷ ︸

=(S⊗S)◦∆H

(by
Theorem 28.17 (b))

= µH ◦ (S ⊗ EH) ◦ (S ⊗ S)︸ ︷︷ ︸
=(S◦S)⊗(EH◦S)

(because (21) (applied to H, H, H, H, H, H,
S, S, S, EH instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′)

yields (S◦S)⊗(EH◦S)=(S⊗EH)◦(S⊗S))

◦∆H

= µH ◦

 (S ◦ S)︸ ︷︷ ︸
=idH

(by Theorem 28.17 (c))

⊗ (EH ◦ S)

 ◦∆H = µH ◦

 idH︸︷︷︸
=idH ◦ idH

⊗ (EH ◦ S)

 ◦∆H

= µH ◦ ((idH ◦ idH)⊗ (EH ◦ S))︸ ︷︷ ︸
=(idH ⊗EH)◦(idH ⊗S)

(by (21) (applied to H, H, H, H, H, H,
idH , idH , S, EH instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′))

◦∆H

= µH ◦ (idH ⊗EH)︸ ︷︷ ︸
=EH◦µH−µH◦(EH⊗idH)

(by (307))

◦ (idH ⊗S) ◦∆H = (EH ◦ µH − µH ◦ (EH ⊗ idH)) ◦ (idH ⊗S) ◦∆H

= EH ◦ µH ◦ (idH ⊗S) ◦∆H︸ ︷︷ ︸
=idH ∗S

(since idH ∗S=µH◦(idH ⊗S)◦∆H

by the definition of convolution)

−µH ◦ (EH ⊗ idH) ◦ (idH ⊗S)︸ ︷︷ ︸
=(EH◦idH)⊗(idH ◦S)

(because (21) (applied to H, H, H, H, H, H,
idH , EH , S, idH instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′)

yields (EH◦idH)⊗(idH ◦S)=(EH⊗idH)◦(idH ⊗S))

◦∆H

(since composition of k-linear maps is distributive)

= EH ◦ (idH ∗S)︸ ︷︷ ︸
=eH,H

−µH ◦

(EH ◦ idH)︸ ︷︷ ︸
=EH

⊗ (idH ◦S)︸ ︷︷ ︸
=S

 ◦∆H

= EH ◦ eH,H︸ ︷︷ ︸
=0

(by (305))

− µH ◦ (EH ⊗ S) ◦∆H︸ ︷︷ ︸
=EH∗S

(since EH∗S=µH◦(EH⊗S)◦∆H

by the definition of convolution)

= −EH ∗ S. (309)

Let (PrimH)+ denote the intersection (PrimH) ∩
(⊕
n≥1

Hn

)
. Then, (PrimH)+ ⊆

PrimH.
Now, let y ∈ H. Then,

(EH ∗ S) (y) ∈ (EH ∗ S) (H) ⊆ (PrimH)+ (by Corollary 28.10 (a))

⊆ PrimH,

so that Proposition 28.18 (applied to x = (EH ∗ S) (y)) yields S ((EH ∗ S) (y)) =
− (EH ∗ S) (y). Thus,

(S ◦ (EH ∗ S)) (y) = S ((EH ∗ S) (y)) = − (EH ∗ S) (y) = (−EH ∗ S) (y) .

Now, forget that we fixed y. We have thus proven that every y ∈ H satisfies
(S ◦ (EH ∗ S)) (y) = (−EH ∗ S) (y). In other words, S ◦ (EH ∗ S) = −EH ∗ S. Com-
bined with (309), this yields (S ∗ EH) ◦ S = S ◦ (EH ∗ S) = −EH ∗ S. This proves
Theorem 28.16 (b).
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§29. The Dynkin idempotents in commutative Hopf

algebras

This section, §29, is devoted to the dual statements of the ones from §28. Here comes
the dual of Theorem 28.1:

Theorem 29.1. Let k be a field of characteristic 0. Let H be a commu-
tative graded k-Hopf algebra. Let S be the antipode of H. Define a map
EH : H → H according to Definition 27.1. Define a map Einv

H : H → H
according to Definition 27.9. Then:

(a) The map Einv
H ◦(EH ∗ S) is a projection such that Ker

(
Einv
H ◦ (EH ∗ S)

)
=

H0 + (Ker (εH))2. 146

(b) The map Einv
H ◦(S ∗ EH) is a projection such that Ker

(
Einv
H ◦ (S ∗ EH)

)
=

H0 + (Ker (εH))2.

Note that in the case when H is connected, it is easy to see that H0 = k · 1H , and
thus this yields:

Theorem 29.2. Let k be a field of characteristic 0. Let H be a com-
mutative connected graded k-Hopf algebra. Let S be the antipode of H.
Define a map EH : H → H according to Definition 27.1. Define a map
Einv
H : H → H according to Definition 27.9. Then:

(a) The map Einv
H ◦(EH ∗ S) is a projection such that Ker

(
Einv
H ◦ (EH ∗ S)

)
=

k · 1H + (Ker (εH))2. 147

(b) The map Einv
H ◦(S ∗ EH) is a projection such that Ker

(
Einv
H ◦ (S ∗ EH)

)
=

k · 1H + (Ker (εH))2.

The maps Einv
H ◦ (EH ∗ S) and Einv

H ◦ (S ∗ EH) are called the Dynkin idempotents of
H.

We will prove these theorems through a generalization, which requires us to define
the notion of a derivation:

Definition 29.3. Let k be a field. Let H be a k-algebra. Let f : H → H
be a k-linear map. Then, f is said to be a derivation if and only if f ◦µH =
µH ◦ (f ⊗ idH + idH ⊗f).

Keep in mind that a derivation is not the same as an (εH , εH)-derivation.
(The latter has been defined in Definitions 15.6 and 15.7.) We will, however, connect
these two notions in the following results.

Definition 29.3 could be generalized to k-linear maps f : H → M with M being a
(H,H)-bimodule; but we will not need this generalization and we will not even define
the notion of a (H,H)-bimodule. Let us, however, give an equivalent rewriting of
Definition 29.3:

146Recall that the notation (Ker (εH))
2

is to be understood according to Convention 15.2. Hence,

(Ker (εH))
2

means the subspace (Ker (εH)) · (Ker (εH)) of H.
147Recall that the notation (Ker (εH))

2
is to be understood according to Convention 15.2. Hence,

(Ker (εH))
2

means the subspace (Ker (εH)) · (Ker (εH)) of H.
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Definition 29.4. Let k be a field. Let H be a k-algebra. Let f : H → H
be a k-linear map. Then, f is said to be a derivation if and only if every
(a, b) ∈ H ×H satisfies f (ab) = f (a) b+ af (b).

We will be able to use both Definitions 29.3 and 29.4 in parallel as soon as we have
shown the following proposition:

Proposition 29.5. Definition 29.3 and Definition 29.4 are equivalent.

Proof of Proposition 29.5. Let k be a field. Let H be a k-algebra. Let f : H → H be
a k-linear map.

It is well-known that two k-linear maps from a tensor product are equal if and only
if they are equal on each pure tensor. Applying this fact to the two k-linear maps
f ◦µH : H ⊗H → H and µH ◦ (f ⊗ idH + idH ⊗f) : H ⊗H → H, we conclude that we
have the following equivalence:

(the two maps f ◦ µH and µH ◦ (f ⊗ idH + idH ⊗f) are equal)

⇐⇒ (the two maps f ◦ µH and µH ◦ (f ⊗ idH + idH ⊗f) are equal on each pure tensor) .
(310)

Since pure tensors in H⊗H are tensors of the form a⊗ b with (a, b) ∈ H×H, we have
the equivalence

(the two maps f ◦ µH and µH ◦ (f ⊗ idH + idH ⊗f) are equal on each pure tensor)

⇐⇒ (the two maps f ◦ µH and µH ◦ (f ⊗ idH + idH ⊗f) are

equal on a⊗ b for each (a, b) ∈ H ×H)

⇐⇒ ((f ◦ µH) (a⊗ b) = (µH ◦ (f ⊗ idH + idH ⊗f)) (a⊗ b) for each (a, b) ∈ H ×H) .
(311)

But every (a, b) ∈ H ×H satisfies

(f ◦ µH) (a⊗ b) = f

 µH (a⊗ b)︸ ︷︷ ︸
=ab

(since µH is the multiplication map)

 = f (ab)
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and

(µH ◦ (f ⊗ idH + idH ⊗f)) (a⊗ b)

= µH

(f ⊗ idH + idH ⊗f) (a⊗ b)︸ ︷︷ ︸
=(f⊗idH)(a⊗b)+(idH ⊗f)(a⊗b)


= µH

(f ⊗ idH) (a⊗ b)︸ ︷︷ ︸
=f(a)⊗idH(b)

+ (idH ⊗f) (a⊗ b)︸ ︷︷ ︸
=idH(a)⊗f(b)


= µH

f (a)⊗ idH (b)︸ ︷︷ ︸
=b

+ idH (a)︸ ︷︷ ︸
=a

⊗f (b)

 = µH (f (a)⊗ b+ a⊗ f (b))

= µH (f (a)⊗ b)︸ ︷︷ ︸
=f(a)b

(since µH is the
multiplication map)

+ µH (a⊗ f (b))︸ ︷︷ ︸
=af(b)

(since µH is the
multiplication map)

(since µH is k-linear)

= f (a) b+ af (b) .

Now, we have the following chain of equivalences:

(the map f is a derivation in the sense of Definition 29.3)

⇐⇒ (f ◦ µH = µH ◦ (f ⊗ idH + idH ⊗f)) (by Definition 29.3)

⇐⇒ (the two maps f ◦ µH and µH ◦ (f ⊗ idH + idH ⊗f) are equal)

⇐⇒ (the two maps f ◦ µH and µH ◦ (f ⊗ idH + idH ⊗f) are equal on each pure tensor)

(by (310))

⇐⇒

(f ◦ µH) (a⊗ b)︸ ︷︷ ︸
=f(ab)

= (µH ◦ (f ⊗ idH + idH ⊗f)) (a⊗ b)︸ ︷︷ ︸
=f(a)b+af(b)

for each (a, b) ∈ H ×H


(by (311))

⇐⇒ (f (ab) = f (a) b+ af (b) for each (a, b) ∈ H ×H)

⇐⇒ (the map f is a derivation in the sense of Definition 29.4)

(by Definition 29.4) .

Now, forget that we fixed f . We have thus proven that, for every k-linear map
f : H → H, we have the equivalence

(the map f is a derivation in the sense of Definition 29.3)

⇐⇒ (the map f is a derivation in the sense of Definition 29.4) .

In other words, Definition 29.3 and Definition 29.4 are equivalent. This proves Propo-
sition 29.5.

Before we prove anything more serious about derivations, let us show a technical
lemma:
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Lemma 29.6. Let k be a field. Let C be a k-bialgebra. Let A be a
commutative k-algebra. Let α : C → A and β : C → A be any k-linear
maps. Let g : C → A be a k-algebra homomorphism. Let f : C → A be a
k-linear map satisfying

f ◦ µC = µA ◦ (α⊗ f + f ⊗ β) .

Then:

(a) We have

(f ∗ g) ◦ µC = µA ◦ ((α ∗ g)⊗ (f ∗ g) + (f ∗ g)⊗ (β ∗ g)) .

(b) We have

(g ∗ f) ◦ µC = µA ◦ ((g ∗ α)⊗ (g ∗ f) + (g ∗ f)⊗ (g ∗ β)) .

This is a dual of Lemma 28.4, and unsurprisingly the proof will be analogous.

Proof of Lemma 29.6. By the axioms of a bialgebra, µC : C ⊗C → C is a k-coalgebra
homomorphism (since C is a k-bialgebra). Thus, ∆C ◦ µC = (µC ⊗ µC) ◦∆C⊗C .

In the following, the sign ∗ will denote the convolution in L (C,A), but also the
convolution in L (C ⊗ C,A⊗ A) (which is well-defined since C ⊗ C is a k-coalgebra
and A⊗ A is a k-algebra).

(a) By the definition of convolution, f ∗ g = µA ◦ (f ⊗ g) ◦∆C , so that

(f ∗ g)︸ ︷︷ ︸
=µA◦(f⊗g)◦∆C

◦µC = µA ◦ (f ⊗ g) ◦ ∆C ◦ µC︸ ︷︷ ︸
=(µC⊗µC)◦∆C⊗C

= µA ◦ (f ⊗ g) ◦ (µC ⊗ µC) ◦∆C⊗C . (312)

But applying (21) to C ⊗C, C, A, C ⊗C, C, A, µC , f , µC , g instead of U , V , W ,
U ′, V ′, W ′, α, β, α′, β′, we obtain

(f ◦ µC)⊗ (g ◦ µC) = (f ⊗ g) ◦ (µC ⊗ µC) ,

so that

(f ⊗ g) ◦ (µC ⊗ µC)

= (f ◦ µC)︸ ︷︷ ︸
=µA◦(α⊗f+f⊗β)

⊗ (g ◦ µC)︸ ︷︷ ︸
=µA◦(g⊗g)

(since g is a k-algebra
homomorphism)

= (µA ◦ (α⊗ f + f ⊗ β))⊗ (µA ◦ (g ⊗ g))

= (µA ⊗ µA) ◦ ((α⊗ f + f ⊗ β)⊗ (g ⊗ g))︸ ︷︷ ︸
=α⊗f⊗g⊗g+f⊗β⊗g⊗g

(since the tensor product of k-linear maps
is distributive)(

by (21) (applied to C ⊗ C, A⊗ A, A, C ⊗ C, A⊗ A, A,
α⊗ f + f ⊗ β, µA, g ⊗ g, µA instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′)

)
= (µA ⊗ µA) ◦ (α⊗ f ⊗ g ⊗ g + f ⊗ β ⊗ g ⊗ g) . (313)
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Now, (312) becomes

(f ∗ g) ◦ µC
= µA ◦ (f ⊗ g) ◦ (µC ⊗ µC)︸ ︷︷ ︸

=(µA⊗µA)◦(α⊗f⊗g⊗g+f⊗β⊗g⊗g)
(by (313))

◦∆C⊗C

= µA ◦ (µA ⊗ µA)︸ ︷︷ ︸
=µA◦µA⊗A

(since µA:A⊗A→A is a k-algebra
homomorphism (by Lemma 23.6))

◦ (α⊗ f ⊗ g ⊗ g + f ⊗ β ⊗ g ⊗ g) ◦∆C⊗C

= µA ◦ µA⊗A ◦ (α⊗ f ⊗ g ⊗ g + f ⊗ β ⊗ g ⊗ g)︸ ︷︷ ︸
=µA⊗A◦(α⊗f⊗g⊗g)+µA⊗A◦(f⊗β⊗g⊗g)

(since composition of k-linear maps is distributive)

◦∆C⊗C

= µA ◦ (µA⊗A ◦ (α⊗ f ⊗ g ⊗ g) + µA⊗A ◦ (f ⊗ β ⊗ g ⊗ g)) ◦∆C⊗C︸ ︷︷ ︸
=µA⊗A◦(α⊗f⊗g⊗g)◦∆C⊗C+µA⊗A◦(f⊗β⊗g⊗g)◦∆C⊗C

(since composition of k-linear maps is distributive)

= µA ◦

µA⊗A ◦ (α⊗ f ⊗ g ⊗ g) ◦∆C⊗C︸ ︷︷ ︸
=(α⊗f)∗(g⊗g)

(because the definition of convolution yields
(α⊗f)∗(g⊗g)=µA⊗A◦(α⊗f⊗g⊗g)◦∆C⊗C)

+ µA⊗A ◦ (f ⊗ β ⊗ g ⊗ g) ◦∆C⊗C︸ ︷︷ ︸
=(f⊗β)∗(g⊗g)

(because the definition of convolution yields
(f⊗β)∗(g⊗g)=µA⊗A◦(f⊗β⊗g⊗g)◦∆C⊗C)



= µA ◦

 (α⊗ f) ∗ (g ⊗ g)︸ ︷︷ ︸
=(α∗g)⊗(f∗g)

(by Corollary 9.9, applied to D=C, B=A,
p=α, q=g, r=f , s=g)

+ (f ⊗ β) ∗ (g ⊗ g)︸ ︷︷ ︸
=(f∗g)⊗(β∗g)

(by Corollary 9.9, applied to D=C, B=A,
p=f , q=g, r=β, s=g)


= µA ◦ ((α ∗ g)⊗ (f ∗ g) + (f ∗ g)⊗ (β ∗ g)) .

This proves Lemma 29.6 (a).
(b) By the definition of convolution, g ∗ f = µA ◦ (g ⊗ f) ◦∆C , so that

(g ∗ f)︸ ︷︷ ︸
=µA◦(g⊗f)◦∆C

◦µC = µA ◦ (g ⊗ f) ◦ ∆C ◦ µC︸ ︷︷ ︸
=(µC⊗µC)◦∆C⊗C

= µA ◦ (g ⊗ f) ◦ (µC ⊗ µC) ◦∆C⊗C . (314)

But applying (21) to C ⊗C, C, A, C ⊗C, C, A, µC , g, µC , f instead of U , V , W ,
U ′, V ′, W ′, α, β, α′, β′, we obtain

(g ◦ µC)⊗ (f ◦ µC) = (g ⊗ f) ◦ (µC ⊗ µC) ,
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so that

(g ⊗ f) ◦ (µC ⊗ µC)

= (g ◦ µC)︸ ︷︷ ︸
=µA◦(g⊗g)

(since g is a k-algebra
homomorphism)

⊗ (f ◦ µC)︸ ︷︷ ︸
=µA◦(α⊗f+f⊗β)

= (µA ◦ (g ⊗ g))⊗ (µA ◦ (α⊗ f + f ⊗ β))

= (µA ⊗ µA) ◦ ((g ⊗ g)⊗ (α⊗ f + f ⊗ β))︸ ︷︷ ︸
=g⊗g⊗α⊗f+g⊗g⊗f⊗β

(since the tensor product of k-linear maps
is distributive)(

by (21) (applied to C ⊗ C, A⊗ A, A, C ⊗ C, A⊗ A, A,
g ⊗ g, µA, α⊗ f + f ⊗ β, µA instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′)

)
= (µA ⊗ µA) ◦ (g ⊗ g ⊗ α⊗ f + g ⊗ g ⊗ f ⊗ β) . (315)

Now, (314) becomes

(g ∗ f) ◦ µC
= µA ◦ (g ⊗ f) ◦ (µC ⊗ µC)︸ ︷︷ ︸

=(µA⊗µA)◦(g⊗g⊗α⊗f+g⊗g⊗f⊗β)
(by (315))

◦∆C⊗C

= µA ◦ (µA ⊗ µA)︸ ︷︷ ︸
=µA◦µA⊗A

(since µA:A⊗A→A is a k-algebra
homomorphism (by Lemma 23.6))

◦ (g ⊗ g ⊗ α⊗ f + g ⊗ g ⊗ f ⊗ β) ◦∆C⊗C

= µA ◦ µA⊗A ◦ (g ⊗ g ⊗ α⊗ f + g ⊗ g ⊗ f ⊗ β)︸ ︷︷ ︸
=µA⊗A◦(g⊗g⊗α⊗f)+µA⊗A◦(g⊗g⊗f⊗β)

(since composition of k-linear maps is distributive)

◦∆C⊗C

= µA ◦ (µA⊗A ◦ (g ⊗ g ⊗ α⊗ f) + µA⊗A ◦ (g ⊗ g ⊗ f ⊗ β)) ◦∆C⊗C︸ ︷︷ ︸
=µA⊗A◦(g⊗g⊗α⊗f)◦∆C⊗C+µA⊗A◦(g⊗g⊗f⊗β)◦∆C⊗C

(since composition of k-linear maps is distributive)

= µA ◦

µA⊗A ◦ (g ⊗ g ⊗ α⊗ f) ◦∆C⊗C︸ ︷︷ ︸
=(g⊗g)∗(α⊗f)

(because the definition of convolution yields
(g⊗g)∗(α⊗f)=µA⊗A◦(g⊗g⊗α⊗f)◦∆C⊗C)

+ µA⊗A ◦ (g ⊗ g ⊗ f ⊗ β) ◦∆C⊗C︸ ︷︷ ︸
=(g⊗g)∗(f⊗β)

(because the definition of convolution yields
(g⊗g)∗(f⊗β)=µA⊗A◦(g⊗g⊗f⊗β)◦∆C⊗C)



= µA ◦

 (g ⊗ g) ∗ (α⊗ f)︸ ︷︷ ︸
=(g∗α)⊗(g∗f)

(by Corollary 9.9, applied to D=C, B=A,
p=g, q=α, r=g, s=f)

+ (g ⊗ g) ∗ (f ⊗ β)︸ ︷︷ ︸
=(g∗f)⊗(g∗β)

(by Corollary 9.9, applied to D=C, B=A,
p=g, q=f , r=g, s=β)


= µA ◦ ((g ∗ α)⊗ (g ∗ f) + (g ∗ f)⊗ (g ∗ β)) .

This proves Lemma 29.6 (b).
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Now, let us show the reason why we proved Lemma 29.6:

Theorem 29.7. Let k be a field. Let H be a commutative k-bialgebra.
Let P : H → H and Q : H → H be two k-algebra homomorphisms
satisfying P ∗ idH ∗Q = eH,H . Let K : H → H be a derivation. Then,
P ∗K ∗Q : H → H is an (εH , εH)-derivation. Here, the map eH,H is defined
to be the map ηH ◦εH : H → H (this definition of the map eH,H is identical
with the definition of the map eH,A in Definition 1.12).

Theorem 29.7 is the dual of Theorem 28.5.

Proof of Theorem 29.7. SinceK is a derivation, we haveK◦µH = µH◦(K ⊗ idH + idH ⊗K)
(because Definition 29.3 yields that K is a derivation if and only if K ◦ µH = µH ◦
(K ⊗ idH + idH ⊗K)). Thus,

K ◦ µH = µH ◦ (K ⊗ idH + idH ⊗K)︸ ︷︷ ︸
=idH ⊗K+K⊗idH

= µH ◦ (idH ⊗K +K ⊗ idH) .

Hence, Lemma 29.6 (b) (applied to C = H, A = H, α = idH , β = idH , f = K and
g = P ) yields

(P ∗K) ◦ µH = µH ◦ ((P ∗ idH)⊗ (P ∗K) + (P ∗K)⊗ (P ∗ idH)) .

Thus, Lemma 29.6 (a) (applied to C = H, A = H, α = P ∗ idH , β = P ∗ idH , f = P ∗K
and g = Q) yields

(P ∗K ∗Q) ◦ µH = µH ◦

(P ∗ idH ∗Q)︸ ︷︷ ︸
=eH,H

⊗ (P ∗K ∗Q) + (P ∗K ∗Q)⊗ (P ∗ idH ∗Q)︸ ︷︷ ︸
=eH,H


= µH ◦ (eH,H ⊗ (P ∗K ∗Q) + (P ∗K ∗Q)⊗ eH,H)︸ ︷︷ ︸

=(P∗K∗Q)⊗eH,H+eH,H⊗(P∗K∗Q)

= µH ◦ ((P ∗K ∗Q)⊗ eH,H + eH,H ⊗ (P ∗K ∗Q)) .

Thus, P ∗K ∗Q is an (εH , εH)-derivation (because by Definition 15.6, the map P ∗K ∗Q
is an (εH , εH)-derivation if and only if
(P ∗K ∗Q) ◦ µH = µH ◦ ((P ∗K ∗Q)⊗ eH,H + eH,H ⊗ (P ∗K ∗Q))). This proves
Theorem 29.7.

The analogue of Corollary 28.6 is the following fact:

Corollary 29.8. Let k be a field. Let H be a commutative k-Hopf algebra.
Let S be the antipode of H. Let K : H → H be a derivation.

(a) Then, S ∗K is an (εH , εH)-derivation.

(b) Then, K ∗ S is an (εH , εH)-derivation.

Proof of Corollary 29.8. By Definition 26.3, we have Hop = (H,µH ◦ τH,H , ηH). Since

H is commutative, we have µH ◦ τH,H = µH . Thus, Hop =

H,µH ◦ τH,H︸ ︷︷ ︸
=µH

, ηH

 =

(H,µH , ηH) = H.

319



Proposition 26.4 yields that the antipode of H is a k-algebra homomorphism from
H to Hop. Since the antipode of H is the map S, whereas Hop is H, this rewrites as
follows: The map S is a k-algebra homomorphism from H to H.

Corollary 15.16 (applied to n = 0, A = H and f = idH) yields that id∗0H is a
k-algebra homomorphism. Since id∗0H = eH,H , this shows that eH,H is a k-algebra
homomorphism (where eH,H is defined as according to Definition 1.12).

The antipode of a Hopf algebra is defined as the ∗-inverse of its identity map.
Thus, the antipode of H is the map id

∗(−1)
H . Since the antipode of H is S, this yields

that S is the map id
∗(−1)
H . In other words, S = id

∗(−1)
H . Hence, S ∗ idH ∗eH,H =

id
∗(−1)
H ∗ idH︸ ︷︷ ︸

=eH,H

∗eH,H = eH,H . Thus, Theorem 29.7 (applied to P = S and Q = eH,H)

yields that S ∗K ∗ eH,H is an (εH , εH)-derivation. In other words, S ∗K is an (εH , εH)-
derivation (since S ∗K ∗ eH,H = S ∗K). This proves Corollary 29.8 (a).

Since S = id
∗(−1)
H , we have eH,H ∗ idH ∗S = eH,H ∗ idH ∗ id

∗(−1)
H︸ ︷︷ ︸

=eH,H

= eH,H . Thus,

Theorem 29.7 (applied to P = eH,H and Q = S) yields that eH,H ∗K ∗S is an (εH , εH)-
derivation. In other words, K ∗S is an (εH , εH)-derivation (since eH,H ∗K ∗S = K ∗S).
This proves Corollary 29.8 (b).

Next, the dual of Proposition 28.7:

Proposition 29.9. Let k be a field. Let H be a k-bialgebra. Let P :
H → H, Q : H → H and K : H → H be three k-linear maps such that
εH ◦ P = εH , εH ◦ Q = εH and εH ◦ K = 0. Then, every x ∈ H satisfies
(P ∗K ∗Q) (x)−K (x) ∈ (Ker (εH))2. 148

In order to prove this, we invoke a simple fact:

Lemma 29.10. Let k be a field. Let C be a k-coalgebra. Let A be a
k-algebra. Let f : C → A and g : C → A be two k-linear maps. Then,
(f ∗ g) (C) ⊆ f (C) · g (C).

Proof of Lemma 29.10. By the definition of convolution, f ∗ g = µA ◦ (f ⊗ g) ◦ ∆C .
Thus,

(f ∗ g) (C) = (µA ◦ (f ⊗ g) ◦∆C) (C) = (µA ◦ (f ⊗ g)) (∆C (C))︸ ︷︷ ︸
⊆C⊗C

⊆ (µA ◦ (f ⊗ g)) (C ⊗ C)

= µA ((f ⊗ g) (C ⊗ C))︸ ︷︷ ︸
=f(C)⊗g(C)

(where we consider f(C)⊗g(C) as a
vector subspace of A⊗A by tensoring the
inclusion maps f(C)→A and g(C)→A)

= µA (f (C)⊗ g (C)) = f (C) · g (C)

(by (74), applied to U = f (C) and V = g (C)). This proves Lemma 29.10.

Proof of Proposition 29.9. Let x ∈ H. Define eH,H according to Definition 1.12.

148Recall that the notation (Ker (εH))
2

is to be understood according to Convention 15.2. Hence,

(Ker (εH))
2

means the subspace (Ker (εH)) · (Ker (εH)) of H.
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Notice that
(P − eH,H) (H) ⊆ Ker (εH) (316)

149 and similarly
(Q− eH,H) (H) ⊆ Ker (εH) (317)

Also,
K (H) ⊆ Ker (εH) (318)

(because every x ∈ H satisfies K (x) ∈ Ker (εH) (since εH (K (x)) = (εH ◦K)︸ ︷︷ ︸
=0

(x) =

0 (x) = 0)).
Since H is a k-bialgebra, the map εH is a k-algebra homomorphism (by the axioms

of a bialgebra), so that Ker (εH) is an ideal of H. Thus, Ker (εH) ·H ⊆ Ker (εH) and
H ·Ker (εH) ⊆ Ker (εH).

Applying Lemma 29.10 to C = H, A = H, f = P − eH,H and g = K ∗Q, we obtain

((P − eH,H) ∗K ∗Q) (H) ⊆ (P − eH,H) (H)︸ ︷︷ ︸
⊆Ker(εH)
(by (316))

· (K ∗Q) (H)︸ ︷︷ ︸
⊆K(H)·Q(H)

(by Lemma 29.10, applied to
C=H, A=H, f=K and g=Q)

⊆ Ker (εH) · K (H)︸ ︷︷ ︸
⊆Ker(εH)
(by (318))

·Q (H)︸ ︷︷ ︸
⊆H

⊆ Ker (εH) ·Ker (εH) ·H︸ ︷︷ ︸
⊆Ker(εH)

⊆ Ker (εH) ·Ker (εH)

= (Ker (εH))2 . (319)

Applying Lemma 29.10 to C = H, A = H, f = K and g = Q− eH,H , we obtain

(K ∗ (Q− eH,H)) (H) ⊆ K (H)︸ ︷︷ ︸
⊆Ker(εH)
(by (318))

· (Q− eH,H) (H)︸ ︷︷ ︸
⊆Ker(εH)
(by (317))

⊆ Ker (εH) ·Ker (εH) = (Ker (εH))2 . (320)

149Proof of (316): Let x ∈ H. Then, eH,H = ηH ◦ εH (by the definition of eH,H), so that eH,H (x) =
(ηH ◦ εH) (x) = ηH (εH (x)) = εH (x) · 1H (by the definition of ηH). Thus,

εH (eH,H (x)) = εH (εH (x) · 1H) = εH (x) · εH (1H)︸ ︷︷ ︸
=1

(by the axioms of
a bialgebra, since H

is a k-bialgebra)

(since εH is k-linear)

= εH (x) .

On the other hand, εH (P (x)) = (εH ◦ P )︸ ︷︷ ︸
=εH

(x) = εH (x). Now,

εH ((P − eH,H) (x))︸ ︷︷ ︸
=P (x)−eH,H(x)

= εH (P (x)− eH,H (x)) = εH (P (x))︸ ︷︷ ︸
=εH(x)

− εH (eH,H (x))︸ ︷︷ ︸
=εH(x)

= εH (x)− εH (x) = 0,

so that (P − eH,H) (x) ∈ Ker (εH).
Now, forget that we fixed x. We thus have proven that every x ∈ H satisfies (P − eH,H) (x) ∈

Ker (εH). In other words, (P − eH,H) (H) ⊆ Ker (εH). This proves (316).
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Since

(P − eH,H) ∗K ∗Q︸ ︷︷ ︸
=P∗K∗Q−eH,H∗K∗Q

+K ∗ (Q− eH,H)︸ ︷︷ ︸
=K∗Q−K∗eH,H

= P ∗K ∗Q− eH,H ∗K ∗Q︸ ︷︷ ︸
=K∗Q

+K ∗Q−K ∗ eH,H︸ ︷︷ ︸
=K

= P ∗K ∗Q−K ∗Q+K ∗Q−K = P ∗K ∗Q−K, (321)

we have

(P ∗K ∗Q) (x)−K (x)

= (P ∗K ∗Q−K)︸ ︷︷ ︸
=(P−eH,H)∗K∗Q+K∗(Q−eH,H)

(x) = ((P − eH,H) ∗K ∗Q+K ∗ (Q− eH,H)) (x)

= ((P − eH,H) ∗K ∗Q)

(
x︸︷︷︸
∈H

)
+ (K ∗ (Q− eH,H))

(
x︸︷︷︸
∈H

)
∈ ((P − eH,H) ∗K ∗Q) (H)︸ ︷︷ ︸

⊆(Ker(εH))2

(by (319))

+ (K ∗ (Q− eH,H)) (H)︸ ︷︷ ︸
⊆(Ker(εH))2

(by (320))

⊆ (Ker (εH))2 + (Ker (εH))2 ⊆ (Ker (εH))2 (
since (Ker (εH))2 is a k-vector space

)
.

This proves Proposition 29.9.

Now, let us study a particular derivation that any graded algebra has: the Euler
operator. We state the dual of Proposition 28.8:

Proposition 29.11. Let k be a field. Let H be a graded k-algebra. Let EH
be defined according to Definition 27.1. Then, EH : H → H is a derivation.

Proof of Proposition 29.11. Since H is a graded k-algebra, the map µH : H ⊗H → H
is graded. Thus, Proposition 27.4 (applied to V = H ⊗H, W = H and f = µH) yields
µH ◦ EH⊗H = EH ◦ µH , so that

EH ◦ µH = µH ◦ EH⊗H︸ ︷︷ ︸
=EH⊗idH + idH ⊗EH

(by Proposition 27.3, applied to V=H and W=H)

= µH ◦ (EH ⊗ idH + idH ⊗EH) .

Thus, EH is a derivation (because Definition 29.3 yields that EH is a derivation if and
only if EH ◦ µH = µH ◦ (EH ⊗ idH + idH ⊗EH)). Proposition 29.11 is proven.

Now, let us come as close as possible to Theorem 29.1 without requiring k to be of
characteristic 0:

Theorem 29.12. Let k be a field. Let H be a commutative graded k-
bialgebra. Let EH be defined according to Definition 27.1.

Let P : H → H and Q : H → H be two graded k-algebra homomorphisms
satisfying εH ◦P = εH , εH ◦Q = εH and P ∗ idH ∗Q = eH,H . Here, the map
eH,H is defined to be the map ηH ◦ εH : H → H (this definition of the map
eH,H is identical with the definition of the map eH,A in Definition 1.12).
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(a) Then, (P ∗ EH ∗Q)
(
H0 + (Ker (εH))2) = 0. 150

(b) Besides, every x ∈ H satisfies (P ∗ EH ∗Q) (x)−EH (x) ∈ (Ker (εH))2.

(c) We have (P ∗ EH ∗Q)◦(P ∗ EH ∗Q) = EH◦(P ∗ EH ∗Q) = (P ∗ EH ∗Q)◦
EH .

This Theorem 29.12, of course, is the dual of Theorem 28.9, although not pre-
cisely (part (b) of Theorem 29.12 is slightly stronger than the dual of part (b) of
Theorem 28.9, but the difference is negligible).

Proof of Theorem 29.12. Since H is a k-bialgebra, the map εH : H → k is a k-algebra
homomorphism (by the axioms of a bialgebra).

By Proposition 29.11, the map EH is a derivation. Thus, Theorem 29.7 (applied to
K = EH) yields that P ∗ EH ∗Q : H → H is an (εH , εH)-derivation. Thus,

(P ∗ EH ∗Q)
(
(Ker (εH))2 + k · 1H

)
= 0 (322)

(because Theorem 15.9 (applied to A = H and f = P ∗EH ∗Q) yields that P ∗EH ∗Q
is an (εH , εH)-derivation if and only if (P ∗ EH ∗Q)

(
(Ker (εH))2 + k · 1H

)
= 0). Thus,

(P ∗ EH ∗Q)
(
(Ker (εH))2)︸ ︷︷ ︸
⊆(Ker(εH))2+k·1H

⊆ (P ∗ EH ∗Q)
(
(Ker (εH))2 + k · 1H

)
= 0

(by (322)), so that
(P ∗ EH ∗Q)

(
(Ker (εH))2) = 0. (323)

On the other hand, just as in the proof of Theorem 28.9, we can prove that (296) holds.
In other words,

(P ∗ EH ∗Q) (H0) = 0. (324)

Now, since P ∗ EH ∗Q is k-linear, we have

(P ∗ EH ∗Q)
(
H0 + (Ker (εH))2) = (P ∗ EH ∗Q) (H0)︸ ︷︷ ︸

=0
(by (324))

+ (P ∗ EH ∗Q)
(
(Ker (εH))2)︸ ︷︷ ︸

=0
(by (323))

= 0 + 0 = 0.

This proves Theorem 29.12 (a).
Recall that the grading on the k-vector space k satisfies k0 = k. Thus, Ek =

0 151. Since εH is a graded map (because H is a graded k-coalgebra), we have
εH ◦ EH = Ek ◦ εH (by Proposition 27.4, applied to V = H, W = k and f = εH).
Thus, εH ◦ EH = Ek︸︷︷︸

=0

◦εH = 0 ◦ εH = 0. Combined with the fact that the map EH

is graded (by Proposition 27.2 (b), applied to V = H), this shows that we can apply

150Recall that the notation (Ker (εH))
2

is to be understood according to Convention 15.2. Hence,

(Ker (εH))
2

means the subspace (Ker (εH)) · (Ker (εH)) of H.
151Proof. Every v ∈ k satisfies Ek (v) = 0 (since v ∈ k = k0, and thus Proposition 27.2 (a) (applied

to V = k and n = 0) yields Ek (v) = 0v = 0). Thus, Ek = 0, qed.
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Proposition 29.9 to K = EH . As a result, we conclude that every x ∈ H satisfies
(P ∗ EH ∗Q) (x)− EH (x) ∈ (Ker (εH))2. This proves Theorem 29.12 (b).

(c) Let x ∈ H. Then, Theorem 29.12 (b) yields

(P ∗ EH ∗Q) (x)− EH (x) ∈ (Ker (εH))2 ⊆ H0 + (Ker (εH))2 ,

so that

(P ∗ EH ∗Q) ((P ∗ EH ∗Q) (x)− EH (x)) ∈ (P ∗ EH ∗Q)
(
H0 + (Ker (εH))2) = 0

(by Theorem 29.12 (a)), thus (P ∗ EH ∗Q) ((P ∗ EH ∗Q) (x)− EH (x)) = 0. Thus,

0 = (P ∗ EH ∗Q) ((P ∗ EH ∗Q) (x)− EH (x))

= (P ∗ EH ∗Q) ((P ∗ EH ∗Q) (x))︸ ︷︷ ︸
=((P∗EH∗Q)◦(P∗EH∗Q))(x)

− (P ∗ EH ∗Q) (EH (x))︸ ︷︷ ︸
=((P∗EH∗Q)◦EH)(x)

(since P ∗ EH ∗Q is k-linear)

= ((P ∗ EH ∗Q) ◦ (P ∗ EH ∗Q)) (x)− ((P ∗ EH ∗Q) ◦ EH) (x) ,

so that ((P ∗ EH ∗Q) ◦ (P ∗ EH ∗Q)) (x) = ((P ∗ EH ∗Q) ◦ EH) (x).
Now forget that we fixed x. We thus have proven that every x ∈ H satisfies

((P ∗ EH ∗Q) ◦ (P ∗ EH ∗Q)) (x) = ((P ∗ EH ∗Q) ◦ EH) (x). In other words,

(P ∗ EH ∗Q) ◦ (P ∗ EH ∗Q) = (P ∗ EH ∗Q) ◦ EH . (325)

Since EH is graded (by Proposition 27.2 (b), applied to V = H) and Q is graded,
we conclude (by Proposition 16.18 (a), applied to C = H, A = H, f = EH and g = Q)
that EH ∗Q is graded.

Since P is graded and EH ∗ Q is graded, we conclude (by Proposition 16.18 (a),
applied to C = H, A = H, f = P and g = EH ∗ Q) that P ∗ EH ∗ Q is graded.
Thus, (P ∗ EH ∗Q)◦EH = EH ◦ (P ∗ EH ∗Q) (by Proposition 27.4, applied to V = H,
W = H and f = P ∗ EH ∗Q). Combined with (325), this yields

(P ∗ EH ∗Q) ◦ (P ∗ EH ∗Q) = EH ◦ (P ∗ EH ∗Q) = (P ∗ EH ∗Q) ◦ EH .

This proves Theorem 29.12 (c).

The dual of Corollary 28.10 (not the exact dual, though, but an almost equivalent
statement) takes the following form:

Corollary 29.13. Let k be a field. Let H be a commutative graded k-
Hopf algebra. Let S be the antipode of H. Let EH be defined according to
Definition 27.1.

(a) Then, (EH ∗ S)
(
H0 + (Ker (εH))2) = 0. 152

(b) Every x ∈ H satisfies (EH ∗ S) (x)− EH (x) ∈ (Ker (εH))2.

(c) We have (EH ∗ S) ◦ (EH ∗ S) = EH ◦ (EH ∗ S) = (EH ∗ S) ◦ EH .

(d) Also, (S ∗ EH)
(
H0 + (Ker (εH))2) = 0.

(e) Every x ∈ H satisfies (S ∗ EH) (x)− EH (x) ∈ (Ker (εH))2.

(f) We have (S ∗ EH) ◦ (S ∗ EH) = EH ◦ (S ∗ EH) = (S ∗ EH) ◦ EH .

152Recall that the notation (Ker (εH))
2

is to be understood according to Convention 15.2. Hence,

(Ker (εH))
2

means the subspace (Ker (εH)) · (Ker (εH)) of H.
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Proof of Corollary 29.13. Just as in the proof of Corollary 29.8, we can prove the
following facts:

• The map S is a k-algebra homomorphism from H to H.

• The map eH,H is a k-algebra homomorphism (where eH,H is defined as according
to Definition 1.12).

• We have S = id
∗(−1)
H .

• We have S ∗ idH ∗eH,H = eH,H and eH,H ∗ idH ∗S = eH,H .

Notice that eH,H = ηH ◦ εH (by the definition of eH,H) and εH ◦ ηH = idk (by the
axioms of a bialgebra, since H is a k-bialgebra), so that εH◦ eH,H︸︷︷︸

=εH◦ηH

= εH ◦ ηH︸ ︷︷ ︸
=idk

◦εH = εH .

Also, Theorem 28.17 (a) yields εH ◦ S = εH .
Also, the map eH,H is graded (by Proposition 16.18 (b), applied to C = H and

A = H), and the map S is graded (since S is the antipode of H, while H is a graded
k-Hopf algebra).

Thus, we can apply Theorem 29.12 to P = eH,H and Q = S.
Applying Theorem 29.12 (a) to P = eH,H and Q = S, we obtain

(eH,H ∗ EH ∗ S)
(
H0 + (Ker (εH))2) = 0. Since eH,H ∗ EH ∗ S = EH ∗ S, this rewrites

as (EH ∗ S)
(
H0 + (Ker (εH))2) = 0. This proves Corollary 29.13 (a).

Applying Theorem 29.12 (b) to P = eH,H and Q = S, we conclude that every x ∈ H
satisfies (eH,H ∗ EH ∗ S) (x)−EH (x) ∈ (Ker (εH))2. Since eH,H ∗EH ∗S = EH ∗S, this
rewrites as follows: Every x ∈ H satisfies (EH ∗ S) (x) − EH (x) ∈ (Ker (εH))2. This
proves Corollary 29.13 (b).

Applying Theorem 29.12 (c) to P = eH,H and Q = S, we obtain (eH,H ∗ EH ∗ S) ◦
(eH,H ∗ EH ∗ S) = EH ◦ (eH,H ∗ EH ∗ S) = (eH,H ∗ EH ∗ S)◦EH . Since eH,H ∗EH ∗S =
EH ∗ S, this rewrites as (EH ∗ S) ◦ (EH ∗ S) = EH ◦ (EH ∗ S) = (EH ∗ S) ◦ EH . This
proves Corollary 29.13 (c).

But we can also apply Theorem 29.12 to P = S and Q = eH,H .
Applying Theorem 29.12 (a) to P = S and Q = eH,H , we obtain

(S ∗ EH ∗ eH,H)
(
H0 + (Ker (εH))2) = 0. Since S ∗ EH ∗ eH,H = S ∗ EH , this rewrites

as (S ∗ EH)
(
H0 + (Ker (εH))2) = 0. This proves Corollary 29.13 (d).

Applying Theorem 29.12 (b) to P = S and Q = eH,H , we conclude that every x ∈ H
satisfies (S ∗ EH ∗ eH,H) (x)−EH (x) ∈ (Ker (εH))2. Since S ∗EH ∗ eH,H = S ∗EH , this
rewrites as follows: Every x ∈ H satisfies (S ∗ EH) (x) − EH (x) ∈ (Ker (εH))2. This
proves Corollary 29.13 (e).

Applying Theorem 29.12 (c) to P = S and Q = eH,H , we obtain (S ∗ EH ∗ eH,H) ◦
(S ∗ EH ∗ eH,H) = EH ◦ (S ∗ EH ∗ eH,H) = (S ∗ EH ∗ eH,H)◦EH . Since S ∗EH ∗ eH,H =
S ∗ EH , this rewrites as (S ∗ EH) ◦ (S ∗ EH) = EH ◦ (S ∗ EH) = (S ∗ EH) ◦ EH . This
proves Corollary 29.13 (f).

In order to specialize the above results to connected graded Hopf algebras, we first
observe a simple fact:

Proposition 29.14. Let k be a field. Let H be a connected graded k-
bialgebra. Then, H0 = k · 1H .
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Proof of Proposition 29.14. By the definition of H≤0, we have H≤0 =
0⊕̀
=0

H` = H0.

But since H is connected, we have H≤0 = k · 1H (because Remark 2.12 yields that H
is connected if and only if H≤0 = k · 1H), so that H0 = H≤0 = k · 1H . This proves
Proposition 29.14.

Here comes an equivalent version of part (a) of Theorem 29.12:

Corollary 29.15. Let k be a field. Let H be a commutative graded k-
bialgebra. Let EH be defined according to Definition 27.1.

Let P : H → H and Q : H → H be two graded k-algebra homomorphisms
satisfying εH ◦P = εH , εH ◦Q = εH and P ∗ idH ∗Q = eH,H . Here, the map
eH,H is defined to be the map ηH ◦ εH : H → H (this definition of the map
eH,H is identical with the definition of the map eH,A in Definition 1.12).

Then, (P ∗ EH ∗Q)
(
k · 1H + (Ker (εH))2) = 0. 153

Proof of Corollary 29.15. Since 1H ∈ H0 (because H is a graded k-algebra), we have
k · 1H ⊆ kH0 ⊆ H0 (since H0 is a k-vector space). Thus,

(P ∗ EH ∗Q)

k · 1H︸ ︷︷ ︸
⊆H0

+ (Ker (εH))2

 ⊆ (P ∗ EH ∗Q)
(
H0 + (Ker (εH))2) = 0

(by Theorem 29.12 (a)). Thus, (P ∗ EH ∗Q)
(
k · 1H + (Ker (εH))2) = 0. This proves

Corollary 29.15.

Now, let us do the same to parts (a) and (d) of Corollary 29.13:

Corollary 29.16. Let k be a field. Let H be a commutative graded k-
Hopf algebra. Let S be the antipode of H. Let EH be defined according to
Definition 27.1.

(a) Then, (EH ∗ S)
(
k · 1H + (Ker (εH))2) = 0. 154

(b) Also, (S ∗ EH)
(
k · 1H + (Ker (εH))2) = 0.

Proof of Corollary 29.16. Since 1H ∈ H0 (because H is a graded k-algebra), we have
k · 1H ⊆ kH0 ⊆ H0 (since H0 is a k-vector space).

(a) We have

(EH ∗ S)

k · 1H︸ ︷︷ ︸
⊆H0

+ (Ker (εH))2

 ⊆ (EH ∗ S)
(
H0 + (Ker (εH))2) = 0

(by Corollary 29.13 (a)), so that (EH ∗ S)
(
k · 1H + (Ker (εH))2) = 0. Corollary 29.16

(a) is proven.

153Recall that the notation (Ker (εH))
2

is to be understood according to Convention 15.2. Hence,

(Ker (εH))
2

means the subspace (Ker (εH)) · (Ker (εH)) of H.
154Recall that the notation (Ker (εH))

2
is to be understood according to Convention 15.2. Hence,

(Ker (εH))
2

means the subspace (Ker (εH)) · (Ker (εH)) of H.
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(b) We have

(S ∗ EH)

k · 1H︸ ︷︷ ︸
⊆H0

+ (Ker (εH))2

 ⊆ (S ∗ EH)
(
H0 + (Ker (εH))2) = 0

(by Corollary 29.13 (d)), so that (S ∗ EH)
(
k · 1H + (Ker (εH))2) = 0. Corollary 29.16

(b) is proven.

We now come to the case of fields of characteristic 0. The following generalizes
Theorem 29.1 and is a dual of Theorem 28.14:

Theorem 29.17. Let k be a field of characteristic 0. Let H be a commu-
tative graded k-bialgebra. Let EH be defined according to Definition 27.1.

Let P : H → H and Q : H → H be two graded k-algebra homomorphisms
satisfying εH ◦P = εH , εH ◦Q = εH and P ∗ idH ∗Q = eH,H . Here, the map
eH,H is defined to be the map ηH ◦ εH : H → H (this definition of the map
eH,H is identical with the definition of the map eH,A in Definition 1.12).

Then, the mapEinv
H ◦(P ∗ EH ∗Q) is a projection such that Ker

(
Einv
H ◦ (P ∗ EH ∗Q)

)
=

H0 + (Ker (εH))2. 155

Proof of Theorem 29.17. Let M denote the map Einv
H ◦ (P ∗ EH ∗Q). Then,

M︸︷︷︸
=Einv

H ◦(P∗EH∗Q)

(
H0 + (Ker (εH))2) =

(
Einv
H ◦ (P ∗ EH ∗Q)

) (
H0 + (Ker (εH))2)

= Einv
H

(P ∗ EH ∗Q)
(
H0 + (Ker (εH))2)︸ ︷︷ ︸
=0

(by Theorem 29.12 (a))


= Einv

H (0) = 0 (326)

(since the map Einv
H is k-linear), so that

H0 + (Ker (εH))2 ⊆ KerM. (327)

Since EH is graded (by Proposition 27.2 (b), applied to V = H) and Q is graded,
we conclude (by Proposition 16.18 (a), applied to C = H, A = H, f = EH and g = Q)
that EH ∗Q is graded.

Since P is graded and EH ∗ Q is graded, we conclude (by Proposition 16.18 (a),
applied to C = H, A = H, f = P and g = EH ∗Q) that P ∗ EH ∗Q is graded. Thus,

(P ∗ EH ∗Q) ◦ EH = EH ◦ (P ∗ EH ∗Q) (328)

(by Proposition 27.4, applied to V = H, W = H and f = P ∗ EH ∗Q).

155Recall that the notation (Ker (εH))
2

is to be understood according to Convention 15.2. Hence,

(Ker (εH))
2

means the subspace (Ker (εH)) · (Ker (εH)) of H.
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Since the map Einv
H is graded156 and the map P ∗ EH ∗ Q is graded, the map

Einv
H ◦ (P ∗ EH ∗Q) is graded as well (because the composition of two graded maps

must always be graded). Since Einv
H ◦ (P ∗ EH ∗Q) = M , we have thus shown that the

map M is graded. Since the maps M and idH are graded, the map M − idH must also
be graded (because the difference of two graded maps must always be graded).

We are now going to prove that

(M − idH) (Hm) ⊆ H0 + (Ker (εH))2 for every m ∈ N. (329)

Proof of (329): Let m ∈ N. Then, we must be in one of the following cases:
Case 1: We have m = 0.
Case 2: We have m > 0.
First, let us consider Case 1. In this case, m = 0. Thus,

(M − idH) (Hm) = (M − idH) (H0) ⊆ H0 (since M − idH is graded)

⊆ H0 + (Ker (εH))2 .

Hence, (329) is proven in Case 1.

Now, let us consider Case 2. In this case, m > 0, so that
1

m
is well-defined in k

(since k has characteristic 0). Also, since m > 0, we have m ≥ 1, and thus Hm is an
addend in the direct sum

⊕
n≥1

Hn. Thus, Hm ⊆
⊕
n≥1

Hn.

Let x ∈ Hm. Then, EH (x) = mx (by Proposition 27.2 (a), applied to V = H,
n = m and v = x). On the other hand, (P ∗ EH ∗Q) (Hm) ⊆ Hm (since P ∗ EH ∗Q is
graded). Since x ∈ Hm, we have

(P ∗ EH ∗Q) (x) ∈ (P ∗ EH ∗Q) (Hm) ⊆ Hm ⊆
⊕
n≥1

Hn.

Thus, Corollary 27.12 (b) (applied to V = H and v = (P ∗ EH ∗Q) (x)) yields(
Einv
H ◦ EH

)
((P ∗ EH ∗Q) (x)) = (P ∗ EH ∗Q) (x) . (330)

But since

(M − idH) ◦ EH = M︸︷︷︸
=Einv

H ◦(P∗EH∗Q)

◦EH − idH ◦EH︸ ︷︷ ︸
=EH

= Einv
H ◦ (P ∗ EH ∗Q) ◦ EH︸ ︷︷ ︸

=EH◦(P∗EH∗Q)
(by (328))

−EH

= Einv
H ◦ EH ◦ (P ∗ EH ∗Q)− EH ,

we have

((M − idH) ◦ EH) (x) =
(
Einv
H ◦ EH ◦ (P ∗ EH ∗Q)− EH

)
(x)

=
(
Einv
H ◦ EH ◦ (P ∗ EH ∗Q)

)
(x)︸ ︷︷ ︸

=(Einv
H ◦EH)((P∗EH∗Q)(x))=(P∗EH∗Q)(x)

(by (330))

−EH (x)

= (P ∗ EH ∗Q) (x)− EH (x) ∈ (Ker (εH))2

156Proof. Define (b`)`∈N as in Definition 27.9. By Remark 27.10 (applied to V = H), we have Einv
H =

E
(b`)`∈N
H . Since the map E

(b`)`∈N
H is graded (by Proposition 27.7 (b), applied to (a`)`∈N = (b`)`∈N),

this yields that the map Einv
H is graded, qed.
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(by Theorem 29.12 (b)). Since

((M − idH) ◦ EH) (x) = (M − idH) (EH (x))︸ ︷︷ ︸
=mx

= (M − idH) (mx) = m (M − idH) (x)

(since M − idH is k-linear), this rewrites as m (M − idH) (x) ∈ (Ker (εH))2. Hence,

(M − idH) (x) ∈ 1

m
(Ker (εH))2 ⊆ (Ker (εH))2 (since (Ker (εH))2 is a k-vector space).

Now, forget that we fixed x. We thus have proven that every x ∈ Hm satisfies
(M − idH) (x) ∈ (Ker (εH))2. In other words, (M − idH) (Hm) ⊆ (Ker (εH))2. Thus,

(M − idH) (Hm) ⊆ (Ker (εH))2 ⊆ H0 + (Ker (εH))2 .

Hence, (329) is proven in Case 2.
We have thus proven (329) in each of the two cases 1 and 2. Since these two cases

cover all possibilities, this yields that (329) always holds.
Now, since H is graded, we have H =

⊕
m∈N

Hm =
∑
m∈N

Hm (since direct sums are

sums). Thus,

(M − idH) (H) = (M − idH)

(∑
m∈N

Hm

)
=
∑
m∈N

(M − idH) (Hm)︸ ︷︷ ︸
⊆H0+(Ker(εH))2

(by (329))

(since M − idH is k-linear)

⊆
∑
m∈N

(
H0 + (Ker (εH))2) ⊆ H0 + (Ker (εH))2 (331)

(since H0 + (Ker (εH))2 is a k-vector space). Thus,M ◦M − M︸︷︷︸
=M◦idH

 (H) = (M ◦M −M ◦ idH)︸ ︷︷ ︸
=M◦(M−idH)

(since composition of k-linear maps
is distributive)

(H)

= (M ◦ (M − idH)) (H) = M

(M − idH) (H)︸ ︷︷ ︸
⊆H0+(Ker(εH))2

(by (331))


⊆M

(
H0 + (Ker (εH))2) = 0 (by (326)) ,

so that (M ◦M −M) (H) = 0. Thus, M ◦M −M = 0, so that M ◦M = M . In other
words, M is a projection.

We will now prove that KerM = H0 + (Ker (εH))2.
In fact, let x ∈ KerM be arbitrary. Then, M (x) = 0, so that (M − idH) (x) =

M (x)︸ ︷︷ ︸
=0

− idH (x)︸ ︷︷ ︸
=x

= −x. Thus,

−x = (M − idH)

(
x︸︷︷︸
∈H

)
∈ (M − idH) (H) ⊆ H0 + (Ker (εH))2
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(by (331)). Consequently, x ∈ −
(
H0 + (Ker (εH))2) ⊆ H0 + (Ker (εH))2 (since H0 +

(Ker (εH))2 is a k-vector space).
Now forget that we fixed x. We have thus proven that every x ∈ KerM satisfies

x ∈ H0 + (Ker (εH))2. In other words, KerM ⊆ H0 + (Ker (εH))2. Combined with
(327), this yields KerM = H0 + (Ker (εH))2.

So we know that the map M is a projection such that KerM = H0 + (Ker (εH))2.
Since M = Einv

H ◦ (P ∗ EH ∗Q), this rewrites as follows: The map Einv
H ◦ (P ∗ EH ∗Q)

is a projection such that Ker
(
Einv
H ◦ (P ∗ EH ∗Q)

)
= H0 + (Ker (εH))2. This proves

Theorem 29.17.

We can now get Theorem 29.1 as a corollary:

Proof of Theorem 29.1. Just as in the proof of Corollary 29.8, we can prove the fol-
lowing facts:

• The map S is a k-algebra homomorphism from H to H.

• The map eH,H is a k-algebra homomorphism (where eH,H is defined as according
to Definition 1.12).

• We have S = id
∗(−1)
H .

• We have S ∗ idH ∗eH,H = eH,H and eH,H ∗ idH ∗S = eH,H .

Just as in the proof of Corollary 29.13, we can prove the following facts:

• We have εH ◦ eH,H = εH and εH ◦ S = εH .

• The maps eH,H and S are graded.

As a consequence, we can apply Theorem 29.17 to P = eH,H and Q = S. As
a result, we obtain that the map Einv

H ◦ (eH,H ∗ EH ∗ S) is a projection such that
Ker

(
Einv
H ◦ (eH,H ∗ EH ∗ S)

)
= H0 + (Ker (εH))2. Since eH,H ∗ EH ∗ S = EH ∗ S, this

rewrites as follows: The map Einv
H ◦(EH ∗ S) is a projection such that Ker

(
Einv
H ◦ (EH ∗ S)

)
=

H0 + (Ker (εH))2. This proves Theorem 29.1 (a).
But we can also apply Theorem 29.17 to P = S and Q = eH,H . As a result, we ob-

tain that the map Einv
H ◦(S ∗ EH ∗ eH,H) is a projection such that Ker

(
Einv
H ◦ (S ∗ EH ∗ eH,H)

)
=

H0 + (Ker (εH))2. Since S ∗ EH ∗ eH,H = S ∗ EH , this rewrites as follows: The map
Einv
H ◦ (S ∗ EH) is a projection such that Ker

(
Einv
H ◦ (S ∗ EH)

)
= H0 + (Ker (εH))2.

This proves Theorem 29.1 (b).

Next, we specialize our results to connected graded bialgebras. The following fact
is the specialization of Theorem 29.17 and the dual of Corollary 28.15:

Corollary 29.18. Let k be a field of characteristic 0. Let H be a com-
mutative connected graded k-bialgebra. Let EH be defined according to
Definition 27.1.

Let P : H → H and Q : H → H be two graded k-algebra homomorphisms
satisfying εH ◦P = εH , εH ◦Q = εH and P ∗ idH ∗Q = eH,H . Here, the map
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eH,H is defined to be the map ηH ◦ εH : H → H (this definition of the map
eH,H is identical with the definition of the map eH,A in Definition 1.12).

Then, the mapEinv
H ◦(P ∗ EH ∗Q) is a projection such that Ker

(
Einv
H ◦ (P ∗ EH ∗Q)

)
=

k · 1H + (Ker (εH))2. 157

Proof of Corollary 29.18. According to Theorem 29.17, the map Einv
H ◦(P ∗ EH ∗Q) is a

projection such that Ker
(
Einv
H ◦ (P ∗ EH ∗Q)

)
= H0 + (Ker (εH))2. Since H0 = k · 1H

(by Proposition 29.14), this rewrites as follows: The map Einv
H ◦ (P ∗ EH ∗Q) is a

projection such that Ker
(
Einv
H ◦ (P ∗ EH ∗Q)

)
= k · 1H + (Ker (εH))2. This proves

Corollary 29.18.

The specialization of Theorem 29.1 is Theorem 29.2, and here is its (obvious) proof:

Proof of Theorem 29.2. Theorem 29.1 (a) says that the map Einv
H ◦ (EH ∗ S) is a pro-

jection such that Ker
(
Einv
H ◦ (EH ∗ S)

)
= H0 + (Ker (εH))2. Since H0 = k · 1H (by

Proposition 29.14), this rewrites as follows: The map Einv
H ◦ (EH ∗ S) is a projection

such that Ker
(
Einv
H ◦ (EH ∗ S)

)
= k · 1H + (Ker (εH))2. This proves Theorem 29.2 (a).

Theorem 29.1 (b) says that the map Einv
H ◦ (S ∗ EH) is a projection such that

Ker
(
Einv
H ◦ (S ∗ EH)

)
= H0+(Ker (εH))2. Since H0 = k·1H (by Proposition 29.14), this

rewrites as follows: The map Einv
H ◦(S ∗ EH) is a projection such that Ker

(
Einv
H ◦ (S ∗ EH)

)
=

k · 1H + (Ker (εH))2. This proves Theorem 29.2 (b).

Finally, let us prove a relation between the maps S ∗EH and EH ∗ S which is dual
to Theorem 28.16:

Theorem 29.19. Let k be a field. Let H be a commutative graded k-
Hopf algebra. Let S be the antipode of H. Let EH be defined according to
Definition 27.1.

(a) We have

S ◦ (EH ∗ S) = (S ∗ EH) ◦ S = −S ∗ EH .

(b) We have

S ◦ (S ∗ EH) = (EH ∗ S) ◦ S = −EH ∗ S.

We choose to prove this not in the same way as we proved Theorem 28.16, but
differently. But still, let us formulate and verify the dual of Theorem 28.17:

Theorem 29.20. Let k be a field. Let H be a k-Hopf algebra. Let S be
the antipode of H.

(a) We have S ◦ ηH = ηH .

(b) If H is commutative, we have S ◦ µH = µH ◦ (S ⊗ S).

(c) If H is commutative, we have S ◦ S = idH .

157Recall that the notation (Ker (εH))
2

is to be understood according to Convention 15.2. Hence,

(Ker (εH))
2

means the subspace (Ker (εH)) · (Ker (εH)) of H.
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Proof of Theorem 29.20. Let us define Hop as according to Definition 26.3. Then,
Hop = (H,µH ◦ τH,H , ηH), so that ηHop = ηH .

But Proposition 26.4 yields that the antipode of H is a k-algebra homomorphism
from H to Hop. Since the antipode of H is the map S, this rewrites as follows: The
map S is a k-algebra homomorphism from H to Hop. Thus, S ◦ ηH = ηHop . Since
ηHop = ηH , this rewrites as S ◦ ηH = ηH . This proves Theorem 29.20 (a).

(b) Assume that H is commutative. Then, µH ◦ τH,H = µH , so that Hop =H,µH ◦ τH,H︸ ︷︷ ︸
=µH

, ηH

 = (H,µH , ηH) = H.

We have showed above that the map S is a k-algebra homomorphism from H to
Hop. Since Hop = H, this rewrites as follows: The map S is a k-algebra homomorphism
from H to H. Thus, S ◦ µH = µH ◦ (S ⊗ S). This proves Theorem 29.20 (b).

(c) The antipode of H is the ∗-inverse of the map idH (because the antipode of
a Hopf algebra is defined as the ∗-inverse of its identity map). Since the antipode of
H is S, we thus have shown that S is the ∗-inverse of the map idH . Thus, S ∗ idH =
idH ∗S = eH,H (where eH,H is defined as according to Definition 1.12).

Applying (21) to H, H, H, H, H, H, S, S, idH , S instead of U , V , W , U ′, V ′, W ′,
α, β, α′, β′, we obtain

(S ◦ S)⊗ (S ◦ idH) = (S ⊗ S) ◦ (S ⊗ idH) . (332)

Now, by the definition of convolution,

(S ◦ S) ∗ S = µH ◦

(S ◦ S)⊗ S︸︷︷︸
=S◦idH

 ◦∆H = µH ◦ ((S ◦ S)⊗ (S ◦ idH))︸ ︷︷ ︸
=(S⊗S)◦(S⊗idH)

(by (332))

◦∆H

= µH ◦ (S ⊗ S)︸ ︷︷ ︸
=S◦µH

(by Theorem 29.20 (b))

◦ (S ⊗ idH) ◦∆H = s ◦ µH ◦ (S ⊗ idH) ◦∆H︸ ︷︷ ︸
=S∗idH
(because

S∗idH=µH◦(S⊗idH)◦∆H

by the definition of convolution)

= S ◦ (S ∗ idH)︸ ︷︷ ︸
=eH,H=ηH◦εH

(by the definition of eH,H)

= S ◦ ηH︸ ︷︷ ︸
=ηH

(by Theorem 29.20 (a))

◦εH = ηH ◦ εH = eH,H

(since eH,H = ηH ◦ εH by the definition of eH,H). Thus,

(S ◦ S) ∗ S︸ ︷︷ ︸
=eH,H

∗ idH = eH,H ∗ idH = idH .

Comparing this with

(S ◦ S) ∗ S ∗ idH︸ ︷︷ ︸
=eH,H

= (S ◦ S) ∗ eH,H = S ◦ S,

we obtain S ◦ S = idH . This proves Theorem 29.20 (c).

The following fact is (more or less) a dual of Proposition 28.18 and will be used in
our proof of Theorem 29.19:
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Proposition 29.21. Let k be a field. Let H be a k-Hopf algebra. Let S
be the antipode of H. Let x ∈ H.

(a) Then, S (x) + x ∈ k · 1H + (Ker (εH))2.

(b) Assume that H is a graded k-algebra. Then, S (x) + x ∈ H0 +
(Ker (εH))2.

Proof of Proposition 29.21. The antipode of H is the ∗-inverse of the map idH (because
the antipode of a Hopf algebra is defined as the ∗-inverse of its identity map). Since
the antipode of H is S, we thus have shown that S is the ∗-inverse of the map idH .
Thus, S ∗ idH = idH ∗S = eH,H (where eH,H is defined as according to Definition 1.12)

and S = id
∗(−1)
H .

Since H is a bialgebra, we have εH ◦ ηH = idk (by the axioms of a bialgebra). But
eH,H = ηH ◦ εH (by the definition of eH,H). Thus, εH ◦ eH,H = εH ◦ ηH︸ ︷︷ ︸

=idk

◦εH = εH .

Theorem 28.17 (a) yields εH ◦ S = εH . Now,

εH ◦ (S − eH,H) = εH ◦ S︸ ︷︷ ︸
=εH

− εH ◦ eH,H︸ ︷︷ ︸
=εH

(since composition of k-linear maps is distributive)

= εH − εH = 0.

Thus,
εH ((S − eH,H) (H)) = (εH ◦ (S − eH,H))︸ ︷︷ ︸

=0

(H) = 0 (H) = 0,

so that
(S − eH,H) (H) ⊆ Ker (εH) . (333)

Also,

εH ◦ (idH −eH,H) = εH ◦ idH︸ ︷︷ ︸
=εH

− εH ◦ eH,H︸ ︷︷ ︸
=εH

(since composition of k-linear maps is distributive)

= εH − εH = 0.

Thus,
εH ((idH −eH,H) (H)) = (εH ◦ (idH −eH,H))︸ ︷︷ ︸

=0

(H) = 0 (H) = 0,

so that
(idH −eH,H) (H) ⊆ Ker (εH) . (334)

On the other hand,

eH,H︸︷︷︸
=ηH◦εH

(H) = (ηH ◦ εH) (H) = ηH (εH (H))︸ ︷︷ ︸
⊆k

⊆ ηH (k) =

 ηH (λ)︸ ︷︷ ︸
=λ·1H

(by the definition of ηH)

| λ ∈ k

 = {λ · 1H | λ ∈ k}

= k · 1H . (335)
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Now, Lemma 29.10 (applied to C = H, A = H, f = S − eH,H and g = idH −eH,H)
yields

((S − eH,H) ∗ (idH −eH,H)) (H) ⊆ (S − eH,H) (H)︸ ︷︷ ︸
⊆Ker(εH)
(by (333))

· (idH −eH,H) (H)︸ ︷︷ ︸
⊆Ker(εH)
(by (334))

⊆ Ker (εH) ·Ker (εH) = (Ker (εH))2 . (336)

But

(S − eH,H) ∗ (idH −eH,H) = S ∗ idH︸ ︷︷ ︸
=eH,H

−S ∗ eH,H︸ ︷︷ ︸
=S

− eH,H ∗ idH︸ ︷︷ ︸
=idH

+ eH,H ∗ eH,H︸ ︷︷ ︸
=eH,H

= eH,H − S − idH +eH,H = 2eH,H − (S + idH) ,

so that
S + idH = 2eH,H − (S − eH,H) ∗ (idH −eH,H) .

Thus,

(S + idH) (x) = (2eH,H − (S − eH,H) ∗ (idH −eH,H)) (x)

= 2eH,H

(
x︸︷︷︸
∈H

)
− ((S − eH,H) ∗ (idH −eH,H))

(
x︸︷︷︸
∈H

)
∈ 2 eH,H (H)︸ ︷︷ ︸

⊆k·1H
(by (335))

− ((S − eH,H) ∗ (idH −eH,H)) (H)︸ ︷︷ ︸
⊆(Ker(εH))2

(by (336))

⊆ 2k · 1H − (Ker (εH))2 = 2k · 1H︸ ︷︷ ︸
⊆k·1H

(since k·1H is a
k-vector space)

+
(
− (Ker (εH))2)︸ ︷︷ ︸
⊆(Ker(εH))2

(since (Ker(εH))2 is a
k-vector space)

⊆ k · 1H + (Ker (εH))2 .

Since (S + idH) (x) = S (x) + idH (x)︸ ︷︷ ︸
=x

= S (x) + x, this rewrites as S (x) + x ∈ k · 1H +

(Ker (εH))2. This proves Proposition 29.21 (a).

(b) The grading on k is such that k0 = k. Thus, ηH

 k︸︷︷︸
=k0

 = ηH (k0) ⊆ H0 (since

ηH is a graded map (because H is a graded k-algebra)). But we have shown above that
ηH (k) = k · 1H . Hence, k · 1H = ηH (k) ⊆ H0.

Proposition 29.21 (a) yields

S (x) + x ∈ k · 1H︸ ︷︷ ︸
⊆H0

+ (Ker (εH))2 ⊆ H0 + (Ker (εH))2 .

This proves Proposition 29.21 (b).

We will now generalize part of Theorem 29.19 to graded Hopf algebras which are
not necessarily commutative or cocommutative:
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Theorem 29.22. Let k be a field. Let H be a graded k-Hopf algebra. Let
S be the antipode of H. Let EH be defined according to Definition 27.1.

(a) We have
S ◦ (EH ∗ S) = (S ∗ EH) ◦ S.

(b) We have
S ◦ (S ∗ EH) = (EH ∗ S) ◦ S.

Something even stronger holds:

Theorem 29.23. Let k be a field. Let H be a k-Hopf algebra. Let S be
the antipode of H. Let f : H → H and g : H → H be two k-linear maps
such that f ◦ S = S ◦ f and g ◦ S = S ◦ g. Then,

S ◦ (f ∗ g) = (g ∗ f) ◦ S.

Proof of Theorem 29.23. Proposition 9.3 (a) (applied to H, H, H, H, S and S instead
of V , W , V ′, W ′, f and g) yields

(S ⊗ S) ◦ τH,H = τH,H ◦ (S ⊗ S) . (337)

Proposition 9.3 (a) (applied to H, H, H and H instead of V , W , V ′ and W ′) yields

(g ⊗ f) ◦ τH,H = τH,H ◦ (f ⊗ g) . (338)

Let us define Hop as according to Definition 26.3. Then, Hop = (H,µH ◦ τH,H , ηH),
so that µHop = µH ◦ τH,H .

But Proposition 26.4 yields that the antipode of H is a k-algebra homomorphism
from H to Hop. In other words, S is a k-algebra homomorphism from H to Hop (since
S is the antipode of H). Thus,

S ◦ µH = µHop︸︷︷︸
=µH◦τH,H

◦ (S ⊗ S) = µH ◦ τH,H ◦ (S ⊗ S)︸ ︷︷ ︸
=(S⊗S)◦τH,H

(by (337))

= µH ◦ (S ⊗ S) ◦ τH,H . (339)

Let us defineHcop as according to Definition 25.3. Then, Hcop = (H, τH,H ◦∆H , εH),
so that ∆Hcop = τH,H ◦∆H .

But Proposition 25.4 yields that the antipode of H is a k-coalgebra homomorphism
from Hcop to H. In other words, S is a k-coalgebra homomorphism from Hcop to H
(since S is the antipode of H). Thus,

∆H ◦ S = (S ⊗ S) ◦ ∆Hcop︸ ︷︷ ︸
=τH,H◦∆H

= (S ⊗ S) ◦ τH,H︸ ︷︷ ︸
=τH,H◦(S⊗S)

(by (337))

◦∆H

= τH,H ◦ (S ⊗ S) ◦∆H . (340)

By the definition of convolution, we have f ∗ g = µH ◦ (f ⊗ g) ◦ ∆H and g ∗ f =
µH ◦ (g ⊗ f) ◦∆H .
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Now,

(g ∗ f)︸ ︷︷ ︸
=µH◦(g⊗f)◦∆H

◦S = µH ◦ (g ⊗ f) ◦ ∆H ◦ S︸ ︷︷ ︸
=τH,H◦(S⊗S)◦∆H

(by (340))

= µH ◦ (g ⊗ f) ◦ τH,H︸ ︷︷ ︸
=τH,H◦(f⊗g)

(by (338))

◦ (S ⊗ S) ◦∆H

= µH ◦ τH,H ◦ (f ⊗ g) ◦ (S ⊗ S)︸ ︷︷ ︸
=(f◦S)⊗(g◦S)

(since (21) (applied to H, H, H, H, H, H,
S, f , S, g instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′)

yields (f◦S)⊗(g◦S)=(f⊗g)◦(S⊗S))

◦∆H

= µH ◦ τH,H ◦

(f ◦ S)︸ ︷︷ ︸
=S◦f

⊗ (g ◦ S)︸ ︷︷ ︸
=S◦g

 ◦∆H

= µH ◦ τH,H ◦ ((S ◦ f)⊗ (S ◦ g))︸ ︷︷ ︸
=(S⊗S)◦(f⊗g)

(by (21), applied to H, H, H, H, H, H,
f , S, g, S instead of U , V , W , U ′, V ′, W ′, α, β, α′, β′)

◦∆H

= µH ◦ τH,H ◦ (S ⊗ S)︸ ︷︷ ︸
=(S⊗S)◦τH,H

(by (337))

◦ (f ⊗ g) ◦∆H

= µH ◦ (S ⊗ S) ◦ τH,H︸ ︷︷ ︸
=S◦µH

(by (339))

◦ (f ⊗ g) ◦∆H = S ◦ µH ◦ (f ⊗ g) ◦∆H .

Compared with
S ◦ (f ∗ g)︸ ︷︷ ︸

=µH◦(f⊗g)◦∆H

= S ◦ µH ◦ (f ⊗ g) ◦∆H ,

this yields (g ∗ f) ◦ S = S ◦ (f ∗ g). This proves Theorem 29.23.

Proof of Theorem 29.22. Since H is a graded k-Hopf algebra, the antipode of H is
graded. Since the antipode ofH is S, this shows that S is graded. Thus, S◦EH = EH◦S
(by Proposition 27.4, applied to V = H, W = H and f = S). In other words,
EH ◦ S = S ◦ EH . Also, clearly, S ◦ S = S ◦ S. Thus, we can apply Theorem 29.23 to
f = EH and g = S. As a consequence, we obtain S ◦ (EH ∗ S) = (S ∗ EH) ◦ S. This
proves Theorem 29.22 (a).

But we can also apply Theorem 29.23 to f = S and g = EH . As a consequence, we
obtain S ◦ (S ∗ EH) = (EH ∗ S) ◦ S. This proves Theorem 29.22 (b).

Proof of Theorem 29.19. (a) Let x ∈ H. Then,

(S ∗ EH) (S (x) + x)︸ ︷︷ ︸
∈H0+(Ker(εH))2

(by Proposition 29.21 (b))

∈ (S ∗ EH)
(
H0 + (Ker (εH))2) = 0

(by Corollary 29.13 (d)). Thus, (S ∗ EH) (S (x) + x) = 0. In other words,

0 = (S ∗ EH) (S (x) + x) = (S ∗ EH) (S (x))︸ ︷︷ ︸
=((S∗EH)◦S)(x)

+ (S ∗ EH) (x) (since S ∗ EH is k-linear)

= ((S ∗ EH) ◦ S) (x) + (S ∗ EH) (x) .
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Hence, ((S ∗ EH) ◦ S) (x) = − (S ∗ EH) (x) = (−S ∗ EH) (x).
Now, forget that we fixed x. We thus have proven that every x ∈ H satisfies

((S ∗ EH) ◦ S) (x) = (−S ∗ EH) (x). In other words, (S ∗ EH) ◦ S = −S ∗ EH . Com-
bined with S ◦ (EH ∗ S) = (S ∗ EH) ◦ S (which follows from Theorem 29.22 (a)), this
yields

S ◦ (EH ∗ S) = (S ∗ EH) ◦ S = −S ∗ EH .

This proves Theorem 29.19 (a).
(b) Let x ∈ H. Then,

(EH ∗ S) (S (x) + x)︸ ︷︷ ︸
∈H0+(Ker(εH))2

(by Proposition 29.21 (b))

∈ (EH ∗ S)
(
H0 + (Ker (εH))2) = 0

(by Corollary 29.13 (a)). Thus, (EH ∗ S) (S (x) + x) = 0. In other words,

0 = (EH ∗ S) (S (x) + x) = (EH ∗ S) (S (x))︸ ︷︷ ︸
=((EH∗S)◦S)(x)

+ (EH ∗ S) (x) (since EH ∗ S is k-linear)

= ((EH ∗ S) ◦ S) (x) + (EH ∗ S) (x) .

Hence, ((EH ∗ S) ◦ S) (x) = − (EH ∗ S) (x) = (−EH ∗ S) (x).
Now, forget that we fixed x. We thus have proven that every x ∈ H satisfies

((EH ∗ S) ◦ S) (x) = (−EH ∗ S) (x). In other words, (EH ∗ S) ◦ S = −EH ∗ S. Com-
bined with S ◦ (S ∗ EH) = (EH ∗ S) ◦ S (which follows from Theorem 29.22 (b)), this
yields

S ◦ (S ∗ EH) = (EH ∗ S) ◦ S = −EH ∗ S.

This proves Theorem 29.19 (b).

Note that we could have used this method (along with Proposition 28.18) to give
an alternative proof of Theorem 28.16 as well.

§30. Non-integer convolution powers and Dynkin

idempotents

In the following, we will introduce and study non-integer powers of linear maps with
respect to convolution. These powers are defined for any k-linear map f ∈ G (C,A),
where k is a field of characteristic 0 (the condition that the characteristic of k be 0
cannot be dispensed with!), C is a connected filtered k-coalgebra and A is a k-algebra.
The goal will be to obtain “interpolations” between the Dynkin idempotents EH ∗ S
and S ∗ EH found by Reutenauer and Procesi and mentioned in the Remark in §3 of
[PatReu00].

First of all, we define a generalization of the familiar notion of binomial coefficients.

Definition 30.1. Let k be a field of characteristic 0. Let γ ∈ k. Let i ∈ N.

Then, we define

(
γ

i

)
to denote the element

γ (γ − 1) · · · (γ − i+ 1)

i!
of k.
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Of course, when k = Q and γ ∈ Z, this definition agrees with the standard definition
of binomial coefficients.

Next, we define fractional powers of linear maps with respect to convolution:

Definition 30.2. Let k be a field of characteristic 0. Let γ ∈ k. Let A
be a k-algebra, and let H be a connected filtered k-coalgebra. For every
f ∈ g (H,A), let us define a map Powγ f : H → A by the formula(

(Powγ f) (x) =
∑
i∈N

(
γ

i

)
f ∗i (x) for every x ∈ H

)
(341)

(where

(
γ

i

)
is defined as in Definition 30.1). This map Powγ f is well-

defined, because for every x ∈ H the infinite sum
∑
i∈N

(
γ

i

)
f ∗i (x) converges

with respect to the discrete topology158. Besides, Powγ f is a k-linear
map159, so that Powγ f ∈ L (H,A). More precisely, Powγ f ∈ G (H,A).
160

Definition 30.3. Let k be a field of characteristic 0. Let γ ∈ k. Let A
be a k-algebra, and let H be a connected filtered k-coalgebra. For every
F ∈ G (H,A), let us define an element powγ F ∈ G (H,A) by powγ F =

158Proof. Let x ∈ H. Then, there exists some n ∈ N such that x ∈ H≤n (since H is filtered).
Consider this n. Then, every integer i > n satisfies f∗i (x) = 0 (this is proven just as in Definition 3.6).

Therefore, every integer i > n satisfies

(
γ

i

)
f∗i (x)︸ ︷︷ ︸

=0

= 0. In other words, for every integer i > n, the

i-th addend of the infinite sum
∑
i∈N

(
γ

i

)
f∗i (x) is zero. Hence, this infinite sum

∑
i∈N

(
γ

i

)
f∗i (x) has

only finitely many nonzero addends. Thus, this sum converges with respect to the discrete topology,
qed.

159Proof. Let α ∈ k, β ∈ k, x ∈ H and y ∈ H be arbitrary. Then, (341) (applied to y instead of x)

yields (Powγ f) (y) =
∑
i∈N

(
γ

i

)
f∗i (y). But (341) (applied to αx+ βy instead of x) yields

(Powγ f) (αx+ βy) =
∑
i∈N

(
γ

i

)
f∗i (αx+ βy)︸ ︷︷ ︸

=αf∗i(x)+βf∗i(y)

(since f∗i is a k-linear map)

=
∑
i∈N

(
γ

i

)(
αf∗i (x) + βf∗i (y)

)
︸ ︷︷ ︸
=α

(
γ

i

)
f∗i(x)+β

(
γ

i

)
f∗i(y)

= α
∑
i∈N

(
γ

i

)
f∗i (x)︸ ︷︷ ︸

=(Powγ f)(x)

+β
∑
i∈N

(
γ

i

)
f∗i (y)︸ ︷︷ ︸

=(Powγ f)(y)

= α (Powγ f) (x) + β (Powγ f) (y) .

Since this holds for all α ∈ k, β ∈ k, x ∈ H and y ∈ H, we thus see that Powγ f is k-linear, qed.
160Proof. Every integer i > 0 satisfies f∗i (H≤0) = 0 (by Remark 3.5, applied to n = 0) and thus

f∗i

 1H︸︷︷︸
∈H≤0

 ∈ f∗i (H≤0) = 0, so that f∗i (1H) = 0. Also, f∗0 = eH,A (where eH,A is defined according
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Powγ (F − eH,A). 161

The notation powγ F is suggestive: it generalizes the powers of F with respect to
convolution. In fact, we have:

Theorem 30.4. Let k be a field of characteristic 0. Let A be a k-algebra,
and let H be a connected filtered k-coalgebra. Let F ∈ G (H,A).

(a) The map F is ∗-invertible.

(b) Every n ∈ Z satisfies pown F = F ∗n (where the n in pown F means the
element n · 1 of k).

We will not prove Theorem 30.4 directly, but obtain this as a consequence of a
stronger result:

Theorem 30.5. Let k be a field of characteristic 0. Let γ ∈ k. Let A
be a k-algebra, and let H be a connected filtered k-coalgebra. For every
F ∈ G (H,A), we have powγ F = e∗(γ LogF ).

The proof of this theorem will (like that of Proposition 5.13) proceed by applying
identities for formal power series. Just as we used Theorem 5.2 to prove Proposi-
tion 5.13, here we need the following fact:

to Definition 1.12), so that

f∗0 (1H) = eH,A︸︷︷︸
=ηA◦εH

(by the definition
of eH,A)

(1H) = (ηA ◦ εH) (1H) = ηA (εH (1H))

= εH (1H)︸ ︷︷ ︸
=1

(by the axioms of a bialgebra,
since H is a k-bialgebra)

·1A (by the definition of ηA)

= 1A.

But applying (341) to x = 1H , we get

(Powγ f) (1H) =
∑
i∈N

(
γ

i

)
f∗i (1H) =

(
γ

0

)
︸︷︷︸

=1

f∗0 (1H)︸ ︷︷ ︸
=1A

+
∑
i>0

(
γ

i

)
f∗i (1H)︸ ︷︷ ︸

=0
(since i>0)

= 1A +
∑
i>0

(
γ

i

)
0︸ ︷︷ ︸

=0

= 1A.

Thus, Powγ f ∈ G (H,A) (by the definition of G (H,A)).
161This is well-defined for the following reason:
From Definition 30.2, we know that Powγ f ∈ G (H,A) for every f ∈ g (H,A). Since

F︸︷︷︸
∈G(H,A)=eH,A+g(H,A)

−eH,A ∈ eH,A + g (H,A)− eH,A = g (H,A) ,

we can apply this to f = F − eH,A, and conclude that Powγ (F − eH,A) ∈ G (H,A). Hence, powγ F
is well-defined, qed.
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Theorem 30.6. Let k be a field of characteristic 0. Let γ ∈ k.

Then, every power series P ∈ k [[X]] whose coefficient before X0 is 0 sat-

isfies
∑
i∈N

(
γ

i

)
P i = exp (γ log (1 + P )). (Here,

(
γ

i

)
is defined as in Defi-

nition 30.1, whereas log (1 + P ) and exp (γ (log (1 + P ))) are defined as in
Definition 5.1.)

Proof of Theorem 30.6. Here is something very easy to prove: Every i ∈ N satisfies(
γ

i+ 1

)
· (i+ 1) =

(
γ

i

)
· (γ − i) . (342)

162

Let P ∈ k [[X]] be a power series whose coefficient before X0 is 0. Write P in the
form P =

∑
i∈N

piX
i, where p0, p1, p2, . . . are elements of k. Then, p0 is the coefficient

of P before X0, and thus equals 0 (since the coefficient of P before X0 is 0). We have

162Proof of (342): Every i ∈ N satisfies(
γ

i+ 1

)
︸ ︷︷ ︸

=
γ (γ − 1) · · · (γ − (i+ 1) + 1)

(i+ 1)!

(by the definition of

(
γ

i

)
)

· (i+ 1)

=
γ (γ − 1) · · · (γ − (i+ 1) + 1)

(i+ 1)!
· (i+ 1) =

γ (γ − 1) · · · (γ − (i+ 1) + 1)︸ ︷︷ ︸
=γ−i

 · i+ 1

(i+ 1)!︸ ︷︷ ︸
=

i+ 1

(i+ 1) i!
(since (i+1)!=(i+1)i!)

= (γ (γ − 1) · · · (γ − i))︸ ︷︷ ︸
=(γ(γ−1)···(γ−i+1))·(γ−i)

· i+ 1

(i+ 1) i!︸ ︷︷ ︸
=

1

i!

= (γ (γ − 1) · · · (γ − i+ 1)) · (γ − i) · 1

i!

=
γ (γ − 1) · · · (γ − i+ 1)

i!︸ ︷︷ ︸
=

(
γ

i

)
(since

(
γ

i

)
=
γ (γ − 1) · · · (γ − i+ 1)

i!

by the definition of

(
γ

i

)
)

· (γ − i) =

(
γ

i

)
· (γ − i) .

This proves (342).

340



thus shown that p0 = 0. Now,

P =
∑
i∈N

piX
i = p0︸︷︷︸

=0

X0 +
∑
i∈N;
i≥1

pi X i︸︷︷︸
=Xi−1X

= 0X0︸︷︷︸
=0

+
∑
i∈N;
i≥1

piX
i−1X

=
∑
i∈N;
i≥1

piX
i−1X =

∑
i∈N;
i≥1

piX
i−1

X.

Hence, X | P in k [[X]]. Thus, every i ∈ N satisfies X i | P i. Hence, every positive
i ∈ N satisfies X | P i (since X | X i (because i is positive) and X i | P i). In other
words,

every positive i ∈ N satisfies P i ≡ 0 modXk [[X]] . (343)

Now, ∑
i∈N

(
γ

i

)
P i =

(
γ

0

)
︸︷︷︸

=1

P 0︸︷︷︸
=1

+
∑
i>0

(
γ

i

)
P i︸︷︷︸

≡0 modXk[[X]]
(by (343), since
i is positive)

≡ 1 +
∑
i>0

(
γ

i

)
0︸ ︷︷ ︸

=0

= 1 modXk [[X]] .

In other words, X |
∑
i∈N

(
γ

i

)
P i − 1 in k [[X]]. This means that the coefficient of the

power series
∑
i∈N

(
γ

i

)
P i − 1 before X0 is 0. In other words,

0 =

(
the coefficient of the power series

∑
i∈N

(
γ

i

)
P i − 1 before X0

)

=

(
the coefficient of the power series

∑
i∈N

(
γ

i

)
P i before X0

)
−
(
the coefficient of the power series 1 before X0

)︸ ︷︷ ︸
=1

=

(
the coefficient of the power series

∑
i∈N

(
γ

i

)
P i before X0

)
− 1.

In other words, the coefficient of the power series
∑
i∈N

(
γ

i

)
P i before X0 equals 1. Hence,∑

i∈N

(
γ

i

)
P i is a power series whose coefficient before X0 is 1. This yields that the power

series log

(∑
i∈N

(
γ

i

)
P i

)
∈ k [[X]] is well-defined.
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Since
∑
i∈N

(
γ

i

)
P i is a power series whose coefficient before X0 is 1, we can ap-

ply Proposition 5.10 to Q =
∑
i∈N

(
γ

i

)
P i. Thus, Proposition 5.10 (a) (applied to

Q =
∑
i∈N

(
γ

i

)
P i) shows that the power series

∑
i∈N

(
γ

i

)
P i has a multiplicative inverse(∑

i∈N

(
γ

i

)
P i

)−1

. Furthermore, Proposition 5.10 (a) (applied to Q =
∑
i∈N

(
γ

i

)
P i) shows

that it satisfies

d

dX
log

(∑
i∈N

(
γ

i

)
P i

)
=

(∑
i∈N

(
γ

i

)
P i

)−1

· d
dX

(∑
i∈N

(
γ

i

)
P i

)
. (344)

But

d

dX

(∑
i∈N

(
γ

i

)
P i

)
=
∑
i∈N

(
γ

i

)
d

dX

(
P i
)

=

(
γ

0

)
︸︷︷︸

=0

d

dX

(
P 0
)︸ ︷︷ ︸

=0
(since P 0=1)

+
∑
i>0

(
γ

i

)
d

dX

(
P i
)︸ ︷︷ ︸

=iP i−1·
d

dX
P

(by Proposition 5.8
(applied to i instead of n))

=
∑
i>0

(
γ

i

)
· iP i−1 ·

(
d

dX
P

)
(345)

=
∑
i∈N

(
γ

i+ 1

)
· (i+ 1)︸ ︷︷ ︸

=

(
γ

i

)
·(γ−i)

(by (342))

P (i+1)−1︸ ︷︷ ︸
=P i

·
(

d

dX
P

)

(here, we substituted i+ 1 for i in the sum)

=
∑
i∈N

(
γ

i

)
· (γ − i)P i ·

(
d

dX
P

)
, (346)
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and (
d

dX

(∑
i∈N

(
γ

i

)
P i

))
· (1 + P )

=
d

dX

(∑
i∈N

(
γ

i

)
P i

)
︸ ︷︷ ︸

=
∑
i∈N

(
γ

i

)
·(γ−i)P i·

 d

dX
P


(by (346))

+

(
d

dX

(∑
i∈N

(
γ

i

)
P i

))
︸ ︷︷ ︸
=
∑
i>0

(
γ

i

)
·iP i−1·

 d

dX
P


(by (345))

·P

=
∑
i∈N

(
γ

i

)
· (γ − i)P i ·

(
d

dX
P

)
+

(∑
i>0

(
γ

i

)
· iP i−1 ·

(
d

dX
P

))
· P︸ ︷︷ ︸

=
∑
i>0

(
γ

i

)
·iP i−1P ·

 d

dX
P


=
∑
i∈N

(
γ

i

)
· (γ − i)P i ·

(
d

dX
P

)
+
∑
i>0

(
γ

i

)
· i P i−1P︸ ︷︷ ︸

=P i

·
(

d

dX
P

)
=
∑
i∈N

(
γ

i

)
· (γ − i)P i ·

(
d

dX
P

)
+
∑
i>0

(
γ

i

)
· iP i ·

(
d

dX
P

)
. (347)

Since∑
i∈N

(
γ

i

)
· iP i ·

(
d

dX
P

)
=

(
γ

0

)
· 0P 0 ·

(
d

dX
P

)
︸ ︷︷ ︸

=0

+
∑
i>0

(
γ

i

)
· iP i ·

(
d

dX
P

)

=
∑
i>0

(
γ

i

)
· iP i ·

(
d

dX
P

)
, (348)

343



the equality (347) becomes(
d

dX

(∑
i∈N

(
γ

i

)
P i

))
· (1 + P )

=
∑
i∈N

(
γ

i

)
· (γ − i)P i ·

(
d

dX
P

)
+
∑
i>0

(
γ

i

)
· iP i ·

(
d

dX
P

)
︸ ︷︷ ︸

=
∑
i∈N

(
γ

i

)
·iP i·

 d

dX
P


(by (348))

=
∑
i∈N

(
γ

i

)
· (γ − i)P i ·

(
d

dX
P

)
+
∑
i∈N

(
γ

i

)
· iP i ·

(
d

dX
P

)
=
∑
i∈N

((
γ

i

)
· (γ − i)P i ·

(
d

dX
P

)
+

(
γ

i

)
· iP i ·

(
d

dX
P

))
︸ ︷︷ ︸

=

(
γ

i

)
·((γ−i)+i)P i·

 d

dX
P


=
∑
i∈N

(
γ

i

)
· ((γ − i) + i)︸ ︷︷ ︸

=γ

P i ·
(

d

dX
P

)
=
∑
i∈N

(
γ

i

)
· γP i ·

(
d

dX
P

)

= γ

(∑
i∈N

(
γ

i

)
P i

)
·
(

d

dX
P

)
. (349)

On the other hand,(
the coefficient of the power series 1 + P before X0

)
=
(
the coefficient of the power series 1 before X0

)︸ ︷︷ ︸
=1

+
(
the coefficient of the power series P before X0

)︸ ︷︷ ︸
=0

= 1.

In other words, the coefficient of the power series 1 + P before X0 equals 1. Hence,
1 + P is a power series whose coefficient before X0 is 1. This yields that the power
series log (1 + P ) ∈ k [[X]] is well-defined.

Since 1 + P is a power series whose coefficient before X0 is 1, we can apply by
Proposition 5.10 to Q = 1 + P . Thus, Proposition 5.10 (a) (applied to Q = 1 + P )
shows that the power series 1+P has a multiplicative inverse (1 + P )−1. Furthermore,
Proposition 5.10 (b) (applied to Q = 1 + P ) shows that it satisfies

d

dX
(log (1 + P )) = (1 + P )−1 · d

dX
(1 + P )︸ ︷︷ ︸

=
d

dX
1+

d

dX
P

= (1 + P )−1 ·

 d

dX
1︸ ︷︷ ︸

=0

+
d

dX
P



= (1 + P )−1 · d
dX

P. (350)
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Since 1 +P has a multiplicative inverse, we can divide the equality (349) by 1 +P ,
and obtain

d

dX

(∑
i∈N

(
γ

i

)
P i

)
= (1 + P )−1 · γ

(∑
i∈N

(
γ

i

)
P i

)
·
(

d

dX
P

)
. (351)

Now, (344) becomes

d

dX
log

(∑
i∈N

(
γ

i

)
P i

)
=

(∑
i∈N

(
γ

i

)
P i

)−1

· d

dX

(∑
i∈N

(
γ

i

)
P i

)
︸ ︷︷ ︸

=(1+P )−1·γ

∑
i∈N

(
γ

i

)
P i

·
 d

dX
P


(by (351))

=

(∑
i∈N

(
γ

i

)
P i

)−1

· (1 + P )−1 · γ

(∑
i∈N

(
γ

i

)
P i

)
·
(

d

dX
P

)
= γ · (1 + P )−1 · d

dX
P︸ ︷︷ ︸

=
d

dX
(log(1+P ))

(by (350))

= γ · d
dX

(log (1 + P ))

=
d

dX
(γ log (1 + P )) . (352)

Since 1 + P is a power series whose coefficient before X0 is 1, we can apply Propo-
sition 5.12 (b) to Q = 1 + P , and conclude that log (1 + P ) is a power series whose
coefficient before X0 is 0. In other words,(

the coefficient of log (1 + P ) before X0
)

= 0.

Thus, (
the coefficient of γ log (1 + P ) before X0

)
= γ ·

(
the coefficient of log (1 + P ) before X0

)︸ ︷︷ ︸
=0

= 0.

Since
∑
i∈N

(
γ

i

)
P i is a power series whose coefficient before X0 is 1, we can apply

Proposition 5.12 (b) to Q =
∑
i∈N

(
γ

i

)
P i, and conclude that log

(∑
i∈N

(
γ

i

)
P i

)
is a power

series whose coefficient before X0 is 0. In other words,(
the coefficient of log

(∑
i∈N

(
γ

i

)
P i

)
before X0

)
= 0.

Thus, (
the coefficient of log

(∑
i∈N

(
γ

i

)
P i

)
before X0

)
= 0 =

(
the coefficient of γ log (1 + P ) before X0

)
.
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In other words, the coefficient of log

(∑
i∈N

(
γ

i

)
P i

)
before X0 equals the coefficient of

γ log (1 + P ) before X0. Combined with (352), this yields that we can apply Proposi-

tion 5.4 to U = log

(∑
i∈N

(
γ

i

)
P i

)
and V = γ log (1 + P ). As a result, we obtain

log

(∑
i∈N

(
γ

i

)
P i

)
= γ log (1 + P ) . (353)

But since
∑
i∈N

(
γ

i

)
P i is a power series whose coefficient before X0 is 1, we can apply

Theorem 5.2 (b) to Q =
∑
i∈N

(
γ

i

)
P i. As a result, we obtain

exp

(
log

(∑
i∈N

(
γ

i

)
P i

))
=
∑
i∈N

(
γ

i

)
P i.

Thus,

∑
i∈N

(
γ

i

)
P i = exp


log

(∑
i∈N

(
γ

i

)
P i

)
︸ ︷︷ ︸

=γ log(1+P )
(by (353))


= exp (γ log (1 + P )) .

This proves Theorem 30.6.

Just as Corollary 5.14 was derived from Theorem 5.2, we can derive from Theo-
rem 30.6 the following corollary:

Corollary 30.7. Let k be a field of characteristic 0. Let n ∈ N. Let γ ∈ k.

Let b be an element of a k-algebra such that bn+1 = 0. Then,

n∑
j=0

(
γ

n∑
i=1

(−1)i−1

i
bi

)j

j!
=

n∑
i=0

(
γ

i

)
bi

(where

(
γ

i

)
is defined as in Definition 30.1).

Proof of Corollary 30.7. Consider the ring of power series k [[X]]. Clearly, X is a power
series whose coefficient before X0 is 0. Thus, applying Theorem 30.6 to P = X, we
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obtain
∑
i∈N

(
γ

i

)
X i = exp (γ log (1 +X)). Now, in the ring k [[X]], we have

log (1 +X) =
∑
i≥1

(−1)i−1

i

(1 +X)− 1︸ ︷︷ ︸
=X

i

(by the definition of log)

=
∑
i≥1

(−1)i−1

i
X i =

n∑
i=1

(−1)i−1

i
X i +

∞∑
i=n+1

(−1)i−1

i
X i︸ ︷︷ ︸

≡0 modXn+1k[[X]]
(since i≥n+1 leads to
Xi≡0 modXn+1k[[X]])

≡
n∑
i=1

(−1)i−1

i
X i +

∞∑
i=n+1

0︸ ︷︷ ︸
=0

=
n∑
i=1

(−1)i−1

i
X i modXn+1k [[X]] .

On the other hand, sinceX | log (1 +X) in k [[X]] (because log (1 +X) =
∑
i≥1

(−1)i−1

i
X i︸︷︷︸

=XXi−1

=

X
∑
i≥1

(−1)i−1

i
X i−1 is divisible by X), we have X | γ log (1 +X) in k [[X]]. Thus,

Xj | (γ log (1 +X))j for every j ∈ N. Thus every j ∈ N such that j ≥ n+ 1 satisfies

(γ log (1 +X))j ≡ 0 modXn+1k [[X]] (354)

(since j ≥ n+ 1 leads to Xn+1 | Xj | (γ log (1 +X))j). Now,

∑
i∈N

(
γ

i

)
X i = exp (γ log (1 +X)) =

∞∑
j=0

(γ log (1 +X))j

j!
(by the definition of exp)

=
n∑
j=0

(γ log (1 +X))j

j!
+

∞∑
j=n+1

(γ log (1 +X))j

j!︸ ︷︷ ︸
≡0 modXn+1k[[X]]

(since j≥n+1 and thus

(γ log(1+X))j≡0 modXn+1k[[X]]
(by (354)))

≡
n∑
j=0

(γ log (1 +X))j

j!
+

∞∑
j=n+1

0︸ ︷︷ ︸
=0

=
n∑
j=0

(γ log (1 +X))j

j!

≡
n∑
j=0

(
γ

n∑
i=1

(−1)i−1

i
X i

)j

j!
modXn+1k [[X]] (355)
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(since log (1 +X) ≡
n∑
i=1

(−1)i−1

i
X i modXn+1k [[X]]). On the other hand,

∑
i∈N

(
γ

i

)
X i =

n∑
i=0

(
γ

i

)
X i +

∞∑
i=n+1

(
γ

i

)
X i︸︷︷︸

≡0 modXn+1k[[X]]
(since i≥n+1, and thus Xn+1|Xi)

≡
n∑
i=0

(
γ

i

)
X i +

∞∑
i=n+1

(
γ

i

)
0︸ ︷︷ ︸

=0

=
n∑
i=0

(
γ

i

)
X i modXn+1k [[X]] ,

so that

n∑
i=0

(
γ

i

)
X i ≡

∑
i∈N

(
γ

i

)
X i ≡

n∑
j=0

(
γ

n∑
i=1

(−1)i−1

i
X i

)j

j!
modXn+1k [[X]]

(by (355)). Thus, Xn+1 |
n∑
i=0

(
γ

i

)
X i −

n∑
j=0

(
γ

n∑
i=1

(−1)i−1

i
X i

)j

j!
in k [[X]]. This means

that the coefficient of the power series
n∑
i=0

(
γ

i

)
X i−

n∑
j=0

(
γ

n∑
i=1

(−1)i−1

i
X i

)j

j!
beforeXλ is

0 for every λ ∈ {0, 1, . . . , n}. But the power series
n∑
i=0

(
γ

i

)
X i−

n∑
j=0

(
γ

n∑
i=1

(−1)i−1

i
X i

)j

j!
is actually a polynomial, so this rewrites as follows: The coefficient of the polynomial

n∑
i=0

(
γ

i

)
X i −

n∑
j=0

(
γ

n∑
i=1

(−1)i−1

i
X i

)j

j!
before Xλ is 0 for every λ ∈ {0, 1, . . . , n}. In

other words, Xn+1 |
n∑
i=0

(
γ

i

)
X i−

n∑
j=0

(
γ

n∑
i=1

(−1)i−1

i
X i

)j

j!
in k [X]. Hence, there exists

a polynomial Q ∈ k [X] such that
n∑
i=0

(
γ

i

)
X i −

n∑
j=0

(
γ

n∑
i=1

(−1)i−1

i
X i

)j

j!
= Xn+1Q.

Consider this polynomial Q.

Applying the polynomial identity
n∑
i=0

(
γ

i

)
X i −

n∑
j=0

(
γ

n∑
i=1

(−1)i−1

i
X i

)j

j!
= Xn+1Q
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to b instead of X, we get

n∑
i=0

(
γ

i

)
bi −

n∑
j=0

(
γ

n∑
i=1

(−1)i−1

i
bi

)j

j!
= bn+1︸︷︷︸

=0

Q (b) = 0,

so that
n∑
j=0

(
γ

n∑
i=1

(−1)i−1

i
bi

)j

j!
=

n∑
i=0

(
γ

i

)
bi. This proves Corollary 30.7.

Proof of Theorem 30.5. Due to how we defined Ln+1 (H,A) (in Definition 3.1 (b)), we
have

Ln+1 (H,A) =

f ∈ L (H,A) | f |H≤n+1−1︸ ︷︷ ︸
=f |H≤n

= 0

 =
{
f ∈ L (H,A) | f |H≤n= 0

}
=
{
h ∈ L (H,A) | h |H≤n= 0

}
(here, we renamed f as h) (356)

for every n ∈ N.
Let F ∈ G (H,A). Let n ∈ N.
According to Proposition 14.2 (applied to n+1 instead of n), the subset Ln+1 (H,A)

of L (H,A) is an ideal of L (H,A). Thus, there is a factor algebra L (H,A)�Ln+1 (H,A).
For every p ∈ L (H,A), we are going to denote by p the projection of p to this factor al-
gebra (i. e., the residue class of p modulo the ideal Ln+1 (H,A)). We are going to denote
the multiplication in the factor algebra L (H,A)�Ln+1 (H,A) by the ∗ sign, and we are
going to write q∗i for the i-th power of q (in the factor algebra L (H,A)�Ln+1 (H,A))
whenever q ∈ L (H,A)�Ln+1 (H,A) and i ∈ N.

Let g = F − eH,A. Then, g ∈ g (H,A) (since F ∈ G (H,A) = eH,A + g (H,A),
so that F − eH,A ∈ g (H,A)). Hence, Remark 3.5 (applied to g instead of f) yields
g∗i (H≤n) = 0 for every i > n.

Let ϕ = LogF . Then, ϕ = LogF ∈ g (H,A), so that γϕ ∈ γg (H,A) ⊆ g (H,A)
(because g (H,A) is a k-vector space). Thus, Remark 3.5 (applied to γϕ instead of f)
yields (γϕ)∗i (H≤n) = 0 for every i > n.

By the definition of Log, we have LogF = Log1 (F − eH,A)︸ ︷︷ ︸
=g

= Log1 g. Hence,

ϕ = Log f = Log1 g.
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Thus, every x ∈ H≤n satisfies

ϕ (x) = (Log1 g) (x) =
∑
i≥1

(−1)i−1

i
g∗i (x) (by the definition of Log1)

=
n∑
i=1

(−1)i−1

i
g∗i (x) +

∞∑
i=n+1

(−1)i−1

i
g∗i (x)︸ ︷︷ ︸

=0 (since
x∈H≤n and thus

g∗i(x)∈g∗i(H≤n)=0

(since i>n))

=
n∑
i=1

(−1)i−1

i
g∗i (x) +

∞∑
i=n+1

(−1)i−1

i
0︸ ︷︷ ︸

=0

=
n∑
i=1

(−1)i−1

i
g∗i (x) .

In other words,

ϕ |H≤n=

(
n∑
i=1

(−1)i−1

i
g∗i

)
|H≤n .

Now,(
ϕ−

n∑
i=1

(−1)i−1

i
g∗i

)
|H≤n = ϕ |H≤n︸ ︷︷ ︸

=

 n∑
i=1

(−1)i−1

i
g∗i

|H≤n
−

(
n∑
i=1

(−1)i−1

i
g∗i

)
|H≤n

=

(
n∑
i=1

(−1)i−1

i
g∗i

)
|H≤n −

(
n∑
i=1

(−1)i−1

i
g∗i

)
|H≤n= 0.

In other words,

ϕ−
n∑
i=1

(−1)i−1

i
g∗i ∈

{
h ∈ L (H,A) | h |H≤n= 0

}
= Ln+1 (H,A)

(by (356)). This rewrites as

ϕ ≡
n∑
i=1

(−1)i−1

i
g∗i modLn+1 (H,A) . (357)

But every x ∈ H≤n satisfies

e∗(γϕ) (x) =
∑
i≥0

(γϕ)∗i (x)

i!

(
by the definition of e∗(γϕ)

)
=

n∑
i=0

(γϕ)∗i (x)

i!
+

∞∑
i=n+1

(γϕ)∗i (x)

i!︸ ︷︷ ︸
=0 (since

x∈H≤n and thus

(γϕ)∗i(x)∈(γϕ)∗i(H≤n)=0

(since i>n), so that

(γϕ)∗i(x)=0)

=
n∑
i=0

(γϕ)∗i (x)

i!
+

∞∑
i=n+1

0︸ ︷︷ ︸
=0

=
n∑
i=0

(γϕ)∗i (x)

i!

=
n∑
i=0

(γϕ)∗i

i!
(x) =

n∑
j=0

(γϕ)∗j

j!
(x) (here, we substituted j for i in the sum) .
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In other words,

e∗(γϕ) |H≤n=

(
n∑
j=0

(γϕ)∗j

j!

)
|H≤n .

But now, (
e∗(γϕ) −

n∑
j=0

(γϕ)∗j

j!

)
|H≤n

= e∗(γϕ) |H≤n︸ ︷︷ ︸
=

 n∑
j=0

(γϕ)∗j

j!

|H≤n
−

(
n∑
j=0

(γϕ)∗j

j!

)
|H≤n

=

(
n∑
j=0

(γϕ)∗j

j!

)
|H≤n −

(
n∑
j=0

(γϕ)∗j

j!

)
|H≤n= 0.

In other words,

e∗(γϕ) −
n∑
j=0

(γϕ)∗j

j!
∈
{
h ∈ L (H,A) | h |H≤n= 0

}
= Ln+1 (H,A)

(by (356)). This rewrites as

e∗(γϕ) ≡
n∑
j=0

(γϕ)∗j

j!
modLn+1 (H,A) .

Substituting (357) into the right hand side of this congruence, we get

e∗(γϕ) ≡
n∑
j=0

(
γ

n∑
i=1

(−1)i−1

i
g∗i

)∗j
j!

modLn+1 (H,A) . (358)

But since g∗(n+1) |H≤n= 0 (since Remark 3.5 (applied to n + 1 and g instead of

i and f) yields g∗(n+1) (H≤n) = 0), we have g∗(n+1) ∈
{
h ∈ L (H,A) | h |H≤n= 0

}
=

Ln+1 (H,A) (by (356)). In other words, g∗(n+1) ≡ 0 modLn+1 (H,A), so that g∗(n+1) =

0. Thus, g∗(n+1) = g∗(n+1) = 0. Hence, we can apply Corollary 30.7 to b = g and obtain

n∑
j=0

(
γ

n∑
i=1

(−1)i−1

i
g∗i

)∗j
j!

=
n∑
i=0

(
γ

i

)
g∗i (where

(
γ

i

)
is defined as in Definition 30.1).

Thus,

n∑
j=0

(
γ

n∑
i=1

(−1)i−1

i
g∗i

)∗j
j!

=
n∑
j=0

(
γ

n∑
i=1

(−1)i−1

i
g∗i

)∗j
j!

=
n∑
i=0

(
γ

i

)
g∗i =

n∑
i=0

(
γ

i

)
g∗i.
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In other words,

n∑
j=0

(
γ

n∑
i=1

(−1)i−1

i
g∗i

)∗j
j!

≡
n∑
i=0

(
γ

i

)
g∗i modLn+1 (H,A) . (359)

Next, we notice that Definition 30.3 yields

powγ F = Powγ (F − eH,A)︸ ︷︷ ︸
=g

= Powγ g.

Thus, every x ∈ H≤n satisfies(
powγ F

)
(x) = (Powγ g) (x) =

∑
i∈N

(
γ

i

)
g∗i (x) (by (341), applied to g instead of f)

=
n∑
i=0

(
γ

i

)
g∗i (x) +

∞∑
i=n+1

(
γ

i

)
g∗i (x)︸ ︷︷ ︸

=0 (since
x∈H≤n and thus

g∗i(x)∈g∗i(H≤n)=0

(since i>n))

=
n∑
i=0

(
γ

i

)
g∗i (x)︸ ︷︷ ︸

=

 n∑
i=0

(
γ

i

)
g∗i

(x)

+
∞∑

i=n+1

(
γ

i

)
0︸ ︷︷ ︸

=0

=

(
n∑
i=0

(
γ

i

)
g∗i

)
(x) .

Thus, (
powγ F

)
|H≤n=

(
n∑
i=0

(
γ

i

)
g∗i

)
|H≤n .

Now,(
powγ F −

n∑
i=0

(
γ

i

)
g∗i

)
|H≤n=

(
powγ F

)
|H≤n︸ ︷︷ ︸

=

 n∑
i=0

(
γ

i

)
g∗i

|H≤n
−

(
n∑
i=0

(
γ

i

)
g∗i

)
|H≤n

=

(
n∑
i=0

(
γ

i

)
g∗i

)
|H≤n −

(
n∑
i=0

(
γ

i

)
g∗i

)
|H≤n= 0.

In other words,

powγ F −
n∑
i=0

(
γ

i

)
g∗i ∈

{
h ∈ L (H,A) | h |H≤n= 0

}
= Ln+1 (H,A)

(by (356)). This rewrites as

powγ F ≡
n∑
i=0

(
γ

i

)
g∗i modLn+1 (H,A) . (360)
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Hence,

powγ F ≡
n∑
i=0

(
γ

i

)
g∗i ≡

n∑
j=0

(
γ

n∑
i=1

(−1)i−1

i
g∗i

)∗j
j!

(by (359))

≡ e∗(γϕ) modLn+1 (H,A) (by (358)) .

In other words,

powγ F − e∗(γϕ) ∈ Ln+1 (H,A) =
{
h ∈ L (H,A) | h |H≤n= 0

}
(by (356)). In other words,

(
powγ F − e∗(γϕ)

)
|H≤n= 0. Thus,

0 =
(
powγ F − e∗(γϕ)

)
|H≤n=

(
powγ F

)
|H≤n −e

∗(γϕ) |H≤n ,

so that
(
powγ F

)
|H≤n= e∗(γϕ) |H≤n . Since ϕ = LogF , this becomes

(
powγ F

)
|H≤n=

e∗(γ LogF ) |H≤n .
Now, forget that we fixed n. We have thus proven that(

powγ F
)
|H≤n= e∗(γ LogF ) |H≤n for every n ∈ N. (361)

Now, let x ∈ H be arbitrary. Since H is filtered, there must exist some n ∈ N such
that x ∈ H≤n. Then,(

powγ F
)

(x) =
((

powγ F
)
|H≤n

)︸ ︷︷ ︸
=e∗(γ LogF )|H≤n

(by (361))

(x) =
(
e∗(γ LogF ) |H≤n

)
(x) = e∗(γ LogF ) (x) .

Now, forget that we fixed x. We have thus proven that every x ∈ H satisfies(
powγ F

)
(x) = e∗(γ LogF ) (x). In other words, powγ F = e∗(γ LogF ). We are thus done

proving Theorem 30.5.

Proof of Theorem 30.4. Let f = LogF . Let g = −f . Then, f + g = f + (−f) = 0.
Besides, from f = LogF , we obtain e∗f = e∗(LogF ) = F (by Proposition 5.13 (b)).

On the other hand, f = LogF ∈ g (H,A) and thus g = − f︸︷︷︸
∈g(H,A)

∈ −g (H,A) ⊆

g (H,A) (since g (H,A) is a k-vector space). Also, f ∗ g︸︷︷︸
=−f

= f ∗ (−f) = −f ∗ f and

g︸︷︷︸
=−f

∗f = (−f) ∗ f = −f ∗ f , so that f ∗ g = −f ∗ f = g ∗ f . Hence, Proposition 11.1

(applied to H and A instead of C and H) yields e∗(f+g) = e∗f ∗ e∗g. Since f + g = 0
and e∗f = F , this rewrites as e∗0 = F ∗ e∗g.

Corollary 11.4 (applied to H, A and 0 instead of C, H and n) yields e∗(0f) =
(
e∗f
)∗0

.

Since 0f = 0 and
(
e∗f
)∗0

= eH,A (where eH,A is defined as in Definition 1.12), this
rewrites as e∗0 = eH,A. Compared with e∗0 = F ∗ e∗g, this yields F ∗ e∗g = eH,A.

On the other hand, Proposition 11.1 (applied to g, f , H and A instead of f , g, C
and H) yields e∗(g+f) = e∗g ∗ e∗f . Since g + f = f + g = 0 and e∗f = F , this rewrites
as e∗0 = e∗g ∗ F . Compared with e∗0 = eH,A, this yields e∗g ∗ F = eH,A.
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Now, the map F has the ∗-inverse e∗g (since F ∗ e∗g = eH,A and e∗g ∗ F = eH,A).
Thus, F is ∗-invertible. This proves Theorem 30.4 (a).

(b) Let n ∈ Z. Since f = LogF , we have

e∗(nf) = e∗(nLogF ) = pown F (362)

(because Theorem 30.5 (applied to γ = n) yields pown F = e∗(nLogF )).
We must be in one of the following two cases:
Case 1: We have n ≥ 0.
Case 2: We have n < 0.
First, let us consider Case 1. In this case, n ≥ 0, so that n ∈ N, and thus Corol-

lary 11.4 (applied to H and A instead of C and H) yields e∗(nf) =
(
e∗f
)∗n

. Since

e∗(nf) = pown F (by (362)) and e∗f = F , this rewrites as pown F = F ∗n. Thus,
Theorem 30.4 (b) is proven in Case 1.

Next, let us consider Case 2. In this case, n < 0, so that −n > 0 and thus
−n ∈ N. Hence, Corollary 11.4 (applied to −n, H and A instead of n, C and H)

yields e∗((−n)f) =
(
e∗f
)∗(−n)

. Since e∗f = F , this rewrites as e∗((−n)f) = F ∗(−n). Thus,

e∗((−n)f)︸ ︷︷ ︸
=F ∗(−n)

∗e∗(nf) = F ∗(−n) ∗ e∗(nf).

Clearly, (−n) f︸︷︷︸
∈g(H,A)

∈ (−n) g (H,A) ⊆ g (H,A) (since g (H,A) is a k-vector space)

and n f︸︷︷︸
∈g(H,A)

∈ ng (H,A) ⊆ g (H,A) (since g (H,A) is a k-vector space). Also,

((−n) f) ∗ (nf) = −n2 (f ∗ f) = (nf) ∗ ((−n) f). Thus, Proposition 11.1 (applied
to (−n) f , nf , H and A instead of f , g, C and H) yields e∗((−n)f+nf) = e∗(−nf) ∗ e∗(nf).
Since (−n) f + nf = 0, this rewrites as e∗0 = e∗(−nf) ∗ e∗(nf). Since e∗0 = eH,A, this
rewrites as eH,A = e∗(−nf) ∗ e∗(nf). Thus,

eH,A = e∗(−nf) ∗ e∗(nf) = F ∗(−n) ∗ e∗(nf),

so that

F ∗n ∗ eH,A︸︷︷︸
=F ∗(−n)∗e∗(nf)

= F ∗n ∗ F ∗(−n)︸ ︷︷ ︸
=eH,A

∗e∗(nf) = eH,A ∗ e∗(nf) = e∗(nf) = pown F

(by (362)). Since F ∗n ∗ eH,A = F ∗n, this rewrites as F ∗n = pown F . In other words,
pown F = F ∗n. Thus, Theorem 30.4 (b) is proven in Case 2.

We have thus proven Theorem 30.4 (b) in each of the cases 1 and 2. Since these
two cases cover all possibilities, this yields that Theorem 30.4 (b) always holds. This
completes the proof of Theorem 30.4.

Another consequence of Theorem 30.5 is the following:

Theorem 30.8. Let k be a field of characteristic 0. Let γ ∈ k. Let A be a
k-bialgebra, and let H be a connected filtered cocommutative k-coalgebra.
Let F ∈ G (H,A) be a k-coalgebra homomorphism. Then, powγ F is a
k-coalgebra homomorphism.
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Proof of Theorem 30.8. Let f = LogF . Then, f = LogF ∈ g (H,A) and e∗f =
e∗(LogF ) = F (by Proposition 5.13 (b)). Since F is a k-coalgebra homomorphism, we
know that e∗f is a k-coalgebra homomorphism (because e∗f = F ). Thus, f is an (ε, ε)-
coderivation (since Theorem 8.1 (applied to H and A instead of C and H) shows that
f is an (ε, ε)-coderivation if and only if e∗f is a k-coalgebra homomorphism). Thus,

∆A ◦ f = (f ⊗ eH,A + eH,A ⊗ f) ◦∆H

(because Definition 7.1 (applied to H and A instead of C and H) shows that f is an
(ε, ε)-coderivation if and only if ∆A ◦ f = (f ⊗ eH,A + eH,A ⊗ f) ◦∆H). Hence,

∆A ◦ (γf) = γ · (∆A ◦ f)︸ ︷︷ ︸
=(f⊗eH,A+eH,A⊗f)◦∆H

(since composition of k-linear maps is k-bilinear)

= γ · ((f ⊗ eH,A + eH,A ⊗ f) ◦∆H)

= (γ · (f ⊗ eH,A + eH,A ⊗ f))︸ ︷︷ ︸
=γ·(f⊗eH,A)+γ·(eH,A⊗f)

◦∆H (since composition of k-linear maps is k-bilinear)

=

 γ · (f ⊗ eH,A)︸ ︷︷ ︸
=(γf)⊗eH,A

(since tensoring of k-linear
maps is k-bilinear)

+ γ · (eH,A ⊗ f)︸ ︷︷ ︸
=eH,A⊗(γf)

(since tensoring of k-linear
maps is k-bilinear)

 ◦∆H

= ((γf)⊗ eH,A + eH,A ⊗ (γf)) ◦∆H .

Hence, γf is an (ε, ε)-coderivation (because Definition 7.1 (applied to γf , H and A
instead of f , C and H) shows that γf is an (ε, ε)-coderivation if and only if ∆A ◦
(γf) = ((γf)⊗ eH,A + eH,A ⊗ (γf)) ◦ ∆H). Since γ f︸︷︷︸

∈g(H,A)

∈ γg (H,A) ⊆ g (H,A)

(since g (H,A) is a k-vector space), this yields that we can apply Theorem 8.1 to γf ,
H and A instead of f , C and H. As a result, we obtain that γf is an (ε, ε)-coderivation
if and only if e∗(γf) is a k-coalgebra homomorphism. Since we know that γf is an (ε, ε)-
coderivation, we thus conclude that e∗(γf) is a k-coalgebra homomorphism. Since

e∗(γf) = e∗(γ LogF ) (because f = LogF )

= powγ F (by Theorem 30.5) ,

this rewrites as follows: The map powγ F is a k-coalgebra homomorphism. This proves
Theorem 30.8.

Here is the dual statement to Theorem 30.8 (although not precisely dual due to the
presence of filtrations):

Theorem 30.9. Let k be a field of characteristic 0. Let γ ∈ k. Let H
be a connected filtered k-coalgebra and, at the same time, a k-bialgebra
with the same underlying k-coalgebra structure. Let A be a commutative
k-algebra. Let F ∈ G (H,A) be a k-algebra homomorphism. Then, powγ F
is a k-algebra homomorphism.
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Proof of Theorem 30.9. Let f = LogF . Then, f = LogF ∈ g (H,A) and e∗f =
e∗(LogF ) = F (by Proposition 5.13 (b)). Since F is a k-algebra homomorphism, we
know that e∗f is a k-algebra homomorphism (because e∗f = F ). Thus, f is an (εH , εH)-
derivation (since Theorem 8.1 shows that f is an (εH , εH)-derivation if and only if e∗f

is a k-algebra homomorphism). Thus,

f ◦ µH = µA ◦ (f ⊗ eH,A + eH,A ⊗ f)

(because Definition 15.6 shows that f is an (εH , εH)-derivation if and only if f ◦ µH =
µA ◦ (f ⊗ eH,A + eH,A ⊗ f)). Hence,

(γf) ◦ µH = γ · (f ◦ µH)︸ ︷︷ ︸
=µA◦(f⊗eH,A+eH,A⊗f)

(since composition of k-linear maps is k-bilinear)

= γ · (µA ◦ (f ⊗ eH,A + eH,A ⊗ f))

= µA ◦ (γ · (f ⊗ eH,A + eH,A ⊗ f))︸ ︷︷ ︸
=γ·(f⊗eH,A)+γ·(eH,A⊗f)

(since composition of k-linear maps is k-bilinear)

= µA ◦

 γ · (f ⊗ eH,A)︸ ︷︷ ︸
=(γf)⊗eH,A

(since tensoring of k-linear
maps is k-bilinear)

+ γ · (eH,A ⊗ f)︸ ︷︷ ︸
=eH,A⊗(γf)

(since tensoring of k-linear
maps is k-bilinear)


= µA ◦ ((γf)⊗ eH,A + eH,A ⊗ (γf)) .

Hence, γf is an (εH , εH)-derivation (because Definition 15.6 (applied to γf instead of f)
shows that γf is an (εH , εH)-derivation if and only if (γf)◦µH = µA◦((γf)⊗ eH,A + eH,A ⊗ (γf))).
Since γ f︸︷︷︸

∈g(H,A)

∈ γg (H,A) ⊆ g (H,A) (since g (H,A) is a k-vector space), this yields

that we can apply Theorem 15.10 to γf instead of f . As a result, we obtain that
γf is an (εH , εH)-derivation if and only if e∗(γf) is a k-algebra homomorphism. Since
we know that γf is an (εH , εH)-derivation, we thus conclude that e∗(γf) is a k-algebra
homomorphism. Since

e∗(γf) = e∗(γ LogF ) (because f = LogF )

= powγ F (by Theorem 30.5) ,

this rewrites as follows: The map powγ F is a k-algebra homomorphism. This proves
Theorem 30.9.

Next, we prove something fundamental:

Theorem 30.10. Let k be a field of characteristic 0. Let A be a graded
k-algebra, and let H be a connected graded k-coalgebra.

(a) For every graded map f ∈ g (H,A), the map e∗f is also graded.

(b) For every graded map F ∈ G (H,A), the map LogF is also graded.

(c) For every γ ∈ k and every graded map F ∈ G (H,A), the map powγ F
is also graded.
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Proof of Theorem 30.10. First, we notice that the graded k-coalgebra H is connected.
Thus, the filtered k-coalgebra H (defined as according to Convention 16.7) is connected
(because Remark 16.11 (applied to C = H) yields that the graded k-coalgebra H is
connected if and only if the filtered k-coalgebra H is connected).

Define eH,A as according to Definition 1.12.
(a) Let f ∈ g (H,A) be a graded map. For every i ∈ N, the map f ∗i is graded (by

Proposition 16.18 (c), applied to n = i), and thus satisfies

f ∗i (Hn) ⊆ An for every n ∈ N. (363)

Let n ∈ N. Let x ∈ Hn.

By the definition of H≤n, we have H≤n =
n⊕̀
=0

H`. But since Hn is an addend of the

direct sum
n⊕̀
=0

H`, we have Hn ⊆
n⊕̀
=0

H` = H≤n. Thus, x ∈ Hn ⊆ H≤n.

Notice that

every i ∈ N such that i > n satisfies f ∗i (x) = 0 (364)

(because every i ∈ N such that i > n satisfies x ∈ H≤n and thus f ∗i (x) ∈ f ∗i (H≤n) = 0
(by Remark 3.5), so that f ∗i (x) = 0).

From (6), we have

e∗f (x) =
∑
i≥0

f ∗i (x)

i!︸ ︷︷ ︸
=

1

i!
f∗i(x)

=
∑
i≥0

1

i!
f ∗i (x) =

n∑
i=0

1

i!
f ∗i

 x︸︷︷︸
∈Hn

+
∞∑

i=n+1

1

i!
f ∗i (x)︸ ︷︷ ︸

=0 (because i>n, and thus
(364) yields f∗i(x)=0)

∈
n∑
i=0

1

i!
f ∗i (Hn)︸ ︷︷ ︸
⊆An

(by (363))

+
∞∑

i=n+1

1

i!
0︸ ︷︷ ︸

=0

⊆
n∑
i=0

1

i!
An ⊆ An

(since An is a k-vector space).
Now forget that we fixed x. We have thus proven that every x ∈ Hn satisfies

e∗f (x) ∈ An. In other words, e∗f (Hn) ⊆ An.
Now forget that we fixed n. We thus have proven that every n ∈ N satisfies

e∗f (Hn) ⊆ An. In other words, e∗f is graded. This proves Theorem 30.10 (a).
(b) Let F ∈ G (H,A) be a graded map. Let f = F − eH,A. Since F ∈ G (H,A) =

eH,A + g (H,A), we have F − eH,A ∈ g (H,A), so that f = F − eH,A ∈ g (H,A).
For every i ∈ N, the map f ∗i is graded (by Proposition 16.18 (c), applied to n = i),

and thus satisfies
f ∗i (Hn) ⊆ An for every n ∈ N. (365)

Let n ∈ N. Let x ∈ Hn.

By the definition of H≤n, we have H≤n =
n⊕̀
=0

H`. But since Hn is an addend of the

direct sum
n⊕̀
=0

H`, we have Hn ⊆
n⊕̀
=0

H` = H≤n. Thus, x ∈ Hn ⊆ H≤n.
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Notice that

every i ∈ N such that i > n satisfies f ∗i (x) = 0 (366)

(because every i ∈ N such that i > n satisfies x ∈ H≤n and thus f ∗i (x) ∈ f ∗i (H≤n) = 0
(by Remark 3.5), so that f ∗i (x) = 0).

From (8), we have

(Log1 f) (x) =
∑
i≥1

(−1)i−1

i
f ∗i (x) =

n∑
i=1

(−1)i−1

i
f ∗i

 x︸︷︷︸
∈Hn

+
∞∑

i=n+1

(−1)i−1

i
f ∗i (x)︸ ︷︷ ︸

=0 (because i>n, and thus
(366) yields f∗i(x)=0)

∈
n∑
i=1

(−1)i−1

i
f ∗i (Hn)︸ ︷︷ ︸
⊆An

(by (365))

+
∞∑

i=n+1

(−1)i−1

i
0︸ ︷︷ ︸

=0

⊆
n∑
i=1

(−1)i−1

i
An ⊆ An

(since An is a k-vector space).
Now forget that we fixed x. We have thus proven that every x ∈ Hn satisfies

(Log1 f) (x) ∈ An. In other words, (Log1 f) (Hn) ⊆ An.
Definition 3.8 yields LogF = Log1 (F − eH,A)︸ ︷︷ ︸

=f

= Log1 f . Thus, (LogF ) (Hn) =

(Log1 f) (Hn) ⊆ An.
Now forget that we fixed n. We thus have proven that every n ∈ N satisfies

(LogF ) (Hn) ⊆ An. In other words, LogF is graded. This proves Theorem 30.10 (b).
(c) Let F ∈ G (H,A) be a graded map. Let f = F − eH,A. Since F ∈ G (H,A) =

eH,A + g (H,A), we have F − eH,A ∈ g (H,A), so that f = F − eH,A ∈ g (H,A).
For every i ∈ N, the map f ∗i is graded (by Proposition 16.18 (c), applied to n = i),

and thus satisfies
f ∗i (Hn) ⊆ An for every n ∈ N. (367)

Let n ∈ N. Let x ∈ Hn.

By the definition of H≤n, we have H≤n =
n⊕̀
=0

H`. But since Hn is an addend of the

direct sum
n⊕̀
=0

H`, we have Hn ⊆
n⊕̀
=0

H` = H≤n. Thus, x ∈ Hn ⊆ H≤n.

Notice that

every i ∈ N such that i > n satisfies f ∗i (x) = 0 (368)

(because every i ∈ N such that i > n satisfies x ∈ H≤n and thus f ∗i (x) ∈ f ∗i (H≤n) = 0
(by Remark 3.5), so that f ∗i (x) = 0).

From (341), we have

(Powγ f) (x) =
∑
i∈N

(
γ

i

)
f ∗i (x) =

∞∑
i=0

(
γ

i

)
f ∗i

 x︸︷︷︸
∈Hn

+
∞∑

i=n+1

(
γ

i

)
f ∗i (x)︸ ︷︷ ︸

=0 (because i>n, and thus
(368) yields f∗i(x)=0)

∈
n∑
i=0

(
γ

i

)
f ∗i (Hn)︸ ︷︷ ︸
⊆An

(by (367))

+
∞∑

i=n+1

(
γ

i

)
0︸ ︷︷ ︸

=0

⊆
n∑
i=0

(
γ

i

)
An ⊆ An
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(since An is a k-vector space).
Now forget that we fixed x. We have thus proven that every x ∈ Hn satisfies

(Powγ f) (x) ∈ An. In other words, (Powγ f) (Hn) ⊆ An.
Definition 30.3 yields powγ F = Powγ (F − eH,A)︸ ︷︷ ︸

=f

= Powγ f . Thus,
(
powγ F

)
(Hn) =

(Powγ f) (Hn) ⊆ An.
Now forget that we fixed n. We thus have proven that every n ∈ N satisfies(

powγ F
)

(Hn) ⊆ An. In other words, powγ F is graded. This proves Theorem 30.10
(c).

Definition 30.11. Let k be a field of characteristic 0. Let A be a k-algebra,
and let H be a connected filtered k-algebra. Let F ∈ G (H,A).

Whenever γ is an element of k, we will write F ∗γ for powγ F . This notation
does not conflict with the notation F ∗γ for the γ-th power of F with respect
to convolution when γ is an integer. (In fact, the only case in which the
former notation could conflict with the latter is when γ is an integer, but in
this case Theorem 30.4 (b) shows that the two notations are equivalent.)

We can now generalize Theorem 28.2:

Theorem 30.12. Let k be a field of characteristic 0. Let H be a cocom-
mutative connected graded k-Hopf algebra. Let S be the antipode of H.
Define a map EH : H → H according to Definition 27.1. Define a map
Einv
H : H → H according to Definition 27.9. Let PrimH denote the sub-

space of H consisting of all primitive elements of H. Let α ∈ k and β ∈ k
satisfy α + β = 1. Then, the map Einv

H ◦
(
S∗α ∗ EH ∗ S∗β

)
is a projection

from H to the subspace PrimH.

Theorem 28.2 (a) easily follows from Theorem 30.12 when α = 0 and β = 1.
Theorem 28.1 (b) easily follows from Theorem 30.12 when α = 1 and β = 0.

Proof of Theorem 30.12. Define the map eH,H as according to Definition 1.12.
It is easy to see that S ∈ G (H,H) 163.
By the definition of S∗α, we have S∗α = powα S.
Since H is a graded k-Hopf algebra, the antipode of H is graded. Since the antipode

of H is S, this yields that S is graded. Combined with S ∈ G (H,H), this yields that
we can apply Theorem 30.10 (c) to A = H, γ = α and F = S. As a result, we obtain
that the map powα S is graded.

By Definition 25.3, we have Hcop = (H, τH,H ◦∆H , εH). Since H is cocommutative,

we have τH,H ◦∆H = ∆H . Thus, Hcop =

H, τH,H ◦∆H︸ ︷︷ ︸
=∆H

, εH

 = (H,∆H , εH) = H.

Proposition 25.4 yields that the antipode of H is a k-coalgebra homomorphism
from Hcop to H. Since the antipode of H is the map S, whereas Hcop is H, this

163Proof. As in the proof of Corollary 28.10, we can show that S (1H) = 1H . Thus,

S ∈ {f ∈ L (H,H) | f (1H) = 1H} = G (H,H)

(since G (H,H) = {f ∈ L (H,H) | f (1H) = 1H} by the definition of G (H,H)), qed.
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rewrites as follows: The map S is a k-coalgebra homomorphism from H to H. Thus,
Theorem 30.8 (applied to A = H, γ = α and F = S) yields that powα S is a k-coalgebra
homomorphism.

Altogether, we have now shown that the map powα S is a graded k-coalgebra ho-
momorphism. Since powα S = S∗α, this rewrites as follows: The map S∗α is a graded
k-coalgebra homomorphism. The same argument, but with α replaced by β, shows
that the map S∗β is a graded k-coalgebra homomorphism.

We have S∗α = powα S ∈ G (H,H) (because powα F ∈ G (H,H) for every F ∈
G (H,H) (due to the definition of powα F )). Thus,

S∗α ∈ G (H,H) = {f ∈ L (H,H) | f (1H) = 1H}

(by the definition of G (H,H)), so that S∗α (1H) = 1H . The same argument, but with
α replaced by β, shows that S∗β (1H) = 1H .

Recall that S is the antipode of H. Thus, S is the ∗-inverse of idH (because the

antipode of H is defined as the ∗-inverse of idH). In other words, S = id
∗(−1)
H . Hence,

S itself is ∗-invertible and satisfies S∗(−1) = idH . But Theorem 30.4 (b) (applied to
A = H, n = −1 and F = S) yields pow−1 S = S∗(−1).

Now, Theorem 30.5 (applied to A = H, γ = α and F = S) yields powα S =
e∗(αLogS). By the definition of S∗α, we have S∗α = powα S = e∗(αLogS).

Also, Theorem 30.5 (applied to A = H, γ = −1 and F = S) yields pow−1 S =
e∗((−1) LogS). Since pow−1 S = S∗(−1) = idH and (−1) LogS = −LogS, this rewrites as
follows: idH = e∗(−LogS).

Also, Theorem 30.5 (applied to A = H, γ = β and F = S) yields powβ S =

e∗(β LogS). By the definition of S∗β, we have S∗β = powβ S = e∗(β LogS).
Since LogS ∈ g (H,H) (because LogF ∈ g (H,H) for every F ∈ G (H,H) (due to

the definition of LogF )), the elements αLogS, −LogS, −β LogS and β LogS must
also lie in g (H,H) (since g (H,H) is a k-vector space).

Since (αLogS) ∗ (−LogS) = −α ((LogS) ∗ (LogS)) = (−LogS) ∗ (αLogS), we
can apply Proposition 11.1 to C = H, f = αLogS and g = −LogS. As a result, we
obtain

e∗(αLogS+(−LogS)) = e∗(αLogS)︸ ︷︷ ︸
=S∗α

∗ e∗(−LogS)︸ ︷︷ ︸
=idH

= S∗α ∗ idH .

Since αLogS + (−LogS) = (α− 1)︸ ︷︷ ︸
=−β

(since α+β=1)

LogS = −β LogS, this rewrites as follows:

e∗(−β LogS) = S∗α ∗ idH . (369)

On the other hand, since (−β LogS) ∗ (β LogS) = −β2 ((LogS) ∗ (LogS)) =
(β LogS) ∗ (−β LogS), we can apply Proposition 11.1 to C = H, f = −β LogS
and g = β LogS. As a result, we obtain

e∗(−β LogS+β LogS) = e∗(−β LogS)︸ ︷︷ ︸
=S∗α∗idH
(by (369))

∗ e∗(β LogS)︸ ︷︷ ︸
=S∗β

= S∗α ∗ idH ∗S∗β.

Since −β LogS + β LogS = 0, this rewrites as

e∗0 = S∗α ∗ idH ∗S∗β. (370)
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Corollary 11.4 (applied to H, A, 0 and 0 instead of C, H, f and n) yields e∗(0·0) =
(e∗0)

∗0
. Since 0 · 0 = 0 and (e∗0)

∗0
= eH,H , this rewrites as e∗0 = eH,H . Compared with

(370), this yields
S∗α ∗ idH ∗S∗β = eH,H .

Thus, we can apply Corollary 28.15 to P = S∗α and Q = S∗β. As a result, we can
conclude that the map Einv

H ◦
(
S∗α ∗ EH ∗ S∗β

)
is a projection from H to the subspace

PrimH. This proves Theorem 30.12.

Here is the expectable dual of Theorem 30.12:

Theorem 30.13. Let k be a field of characteristic 0. Let H be a com-
mutative connected graded k-Hopf algebra. Let S be the antipode of H.
Define a map EH : H → H according to Definition 27.1. Define a map
Einv
H : H → H according to Definition 27.9. Let α ∈ k and β ∈ k satisfy

α + β = 1. Then, the map Einv
H ◦

(
S∗α ∗ EH ∗ S∗β

)
is a projection from H

such that Ker
(
Einv
H ◦

(
S∗α ∗ EH ∗ S∗β

))
= k · 1H + (Ker (εH))2. 164

Theorem 29.2 (a) easily follows from Theorem 30.12 when α = 0 and β = 1.
Theorem 29.1 (b) easily follows from Theorem 30.12 when α = 1 and β = 0.

Proof of Theorem 30.13. Define the map eH,H as according to Definition 1.12.
Just as in the proof of Theorem 30.12, we can see that S ∈ G (H,H).
By the definition of S∗α, we have S∗α = powα S.
By Definition 26.3, we have Hop = (H,µH ◦ τH,H , ηH). Since H is commutative, we

have µH ◦ τH,H = µH . Thus, Hop =

H,µH ◦ τH,H︸ ︷︷ ︸
=µH

, ηH

 = (H,µH , ηH) = H.

Proposition 26.4 yields that the antipode of H is a k-algebra homomorphism from
H to Hop. Since the antipode of H is the map S, whereas Hop is H, this rewrites as
follows: The map S is a k-algebra homomorphism from H to H.

Just as in the proof of Theorem 30.12, we can see that powα S is graded.
Altogether, we have now shown that the map powα S is a graded k-algebra homo-

morphism. Since powα S = S∗α, this rewrites as follows: The map S∗α is a graded
k-algebra homomorphism. The same argument, but with α replaced by β, shows that
the map S∗β is a graded k-algebra homomorphism.

Just as in the proof of Theorem 30.12, we can see that S∗α ∈ G (H,H) and
S∗α (1H) = 1H . The same argument, but with α replaced by β, shows that S∗β ∈
G (H,H) and S∗β (1H) = 1H .

It is now easy to see that

(εH ◦ S∗α − εH) (Hn) = 0 for every n ∈ N. (371)

164Recall that the notation (Ker (εH))
2

is to be understood according to Convention 15.2. Hence,

(Ker (εH))
2

means the subspace (Ker (εH)) · (Ker (εH)) of H.
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165 Now, it is easy to conclude that εH ◦S∗α = εH . 166 The same argument, but with
α replaced by β, shows that εH ◦ S∗β = εH .

Finally, just as in the proof of Theorem 30.12, we can prove that S∗α ∗ idH ∗S∗β =
eH,H .

Thus, we can apply Corollary 29.18 to P = S∗α and Q = S∗β. As a result, we can
conclude that the map Einv

H ◦
(
S∗α ∗ EH ∗ S∗β

)
is a projection such that Ker

(
Einv
H ◦

(
S∗α ∗ EH ∗ S∗β

))
=

165Proof of (371): Let n ∈ N. Let x ∈ Hn. We are going to show that (εH ◦ S∗α − εH) (x) = 0.
We must be in one of the following two cases:
Case 1: We have n = 0.
Case 2: We have n > 0.
Let us first consider Case 1. In this case, n = 0, so that Hn = H0 = k · 1H (by Proposition 29.14).

Thus, x ∈ Hn = k · 1H . In other words, there exists some λ ∈ k such that x = λ · 1H . Consider this
λ. Then,

(εH ◦ S∗α − εH) (x)︸︷︷︸
=λ·1H

= (εH ◦ S∗α − εH) (λ · 1H) = λ · (εH ◦ S∗α − εH) (1H)︸ ︷︷ ︸
=(εH◦S∗α)(1H)−εH(1H)

(since εH ◦ S∗α − εH is k-linear)

= λ ·

(εH ◦ S∗α) (1H)︸ ︷︷ ︸
=εH(S∗α(1H))

−εH (1H)


= λ ·

εH
S∗α (1H)︸ ︷︷ ︸

=1H

− εH (1H)

 = λ · (εH (1H)− εH (1H))︸ ︷︷ ︸
=0

= 0.

We have thus proven that (εH ◦ S∗α − εH) (x) = 0 in Case 1.
Next, let us consider Case 2. In this case, n > 0, so that εH (Hn) = 0 (because H is a graded

k-coalgebra). On the other hand, S∗α (Hn) ⊆ Hn (since S∗α is graded). Thus,

(εH ◦ S∗α − εH) (x) = (εH ◦ S∗α) (x)− εH (x) = εH

S∗α
 x︸︷︷︸
∈Hn

− εH
 x︸︷︷︸
∈Hn


∈ εH

S∗α (Hn)︸ ︷︷ ︸
⊆Hn

− εH (Hn)︸ ︷︷ ︸
=0

⊆ εH (Hn) = 0,

so that (εH ◦ S∗α − εH) (x) = 0. We have thus proven that (εH ◦ S∗α − εH) (x) = 0 in Case 2.
Hence, (εH ◦ S∗α − εH) (x) = 0 is proven in both cases 1 and 2. Since these two cases cover all

possibilities, this yields that (εH ◦ S∗α − εH) (x) = 0 always holds.
Now forget that we fixed x. We thus have shown that every x ∈ Hn satisfies (εH ◦ S∗α − εH) (x) = 0.

In other words, (εH ◦ S∗α − εH) (Hn) = 0. This proves (371).
166Proof. Since H is graded, we have H =

⊕
n∈N

Hn =
∑
n∈N

Hn (since direct sums are sums). Thus,

(εH ◦ S∗α − εH) (H) = (εH ◦ S∗α − εH)

(∑
n∈N

Hn

)
=
∑
n∈N

(εH ◦ S∗α − εH) (Hn)︸ ︷︷ ︸
=0

(by (371))

(since εH ◦ S∗α − εH is k-linear)

=
∑
n∈N

0 = 0,

so that εH ◦ S∗α − εH = 0, and thus εH ◦ S∗α = εH , qed.
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k · 1H + (Ker (εH))2. This proves Theorem 30.13.

§31. On convolution and composition

The following innocuous fact about convolution and composition will help us later in
proving the Cartier-Milnor-Moore theorem:

Proposition 31.1. Let k be a field. Let C and D be k-coalgebras. Let A
be a k-algebra. Let ϕ : D → C be a k-coalgebra homomorphism.

(a) Every f ∈ L (C,A) and g ∈ L (C,A) satisfy (f ◦ ϕ)∗ (g ◦ ϕ) = (f ∗ g)◦
ϕ.

(b) We have eC,A ◦ ϕ = eD,A.

(c) Every f ∈ L (C,A) and i ∈ N satisfy (f ◦ ϕ)∗i = f ∗i ◦ ϕ.

(d) Assume that the k-coalgebras C andD are connected filtered k-coalgebras.
Assume further that the map ϕ : D → C satisfies ϕ (1D) = 1C . Assume
finally that k is a field of characteristic 0. Then, every f ∈ g (C,A) satisfies
f ◦ ϕ ∈ g (D,A) and e∗(f◦ϕ) = e∗f ◦ ϕ.

(e) Assume that the k-coalgebras C andD are connected filtered k-coalgebras.
Assume further that the map ϕ : D → C satisfies ϕ (1D) = 1C . Assume fi-
nally that k is a field of characteristic 0. Then, every F ∈ G (C,A) satisfies
F ◦ ϕ ∈ G (D,A) and Log (F ◦ ϕ) = (LogF ) ◦ ϕ.

Proof of Proposition 31.1. (a) Let f ∈ L (C,A) and g ∈ L (C,A). By the definition of
the convolution f ∗ g, we have

f ∗ g = µA ◦ (f ⊗ g) ◦∆C .

By the definition of the convolution (f ◦ ϕ) ∗ (g ◦ ϕ), we have

(f ◦ ϕ) ∗ (g ◦ ϕ) = µA ◦ ((f ◦ ϕ)⊗ (g ◦ ϕ))︸ ︷︷ ︸
=(f⊗g)◦(ϕ⊗ϕ)

(by (21), applied to U=D, V=C, W=A,
U ′=D, V ′=C, W ′=A, α=ϕ, β=f , α′=ϕ and β′=g)

◦∆D

= µA ◦ (f ⊗ g) ◦ (ϕ⊗ ϕ) ◦∆D︸ ︷︷ ︸
=∆C◦ϕ

(since ϕ is a k-coalgebra
homomorphism)

= µA ◦ (f ⊗ g) ◦∆C︸ ︷︷ ︸
=f∗g

◦ϕ

= (f ∗ g) ◦ ϕ.

This proves Proposition 31.1 (a).
(b) By the definition of eC,A, we have eC,A = ηA ◦ εC . By the definition of eD,A, we

have eD,A = ηA ◦ εD. Thus,

eC,A︸︷︷︸
=ηA◦εC

◦ϕ = ηA ◦ εC ◦ ϕ︸ ︷︷ ︸
=εD

(since ϕ is a k-coalgebra
homomorphism)

= ηA ◦ εD = eD,A.

This proves Proposition 31.1 (b).
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(c) We are going to prove Proposition 31.1 (c) by induction over i:
Induction base: Every f ∈ L (C,A) satisfies

(f ◦ ϕ)∗0 = eD,A = eC,A︸︷︷︸
=f∗0

◦ϕ (by Proposition 31.1 (b))

= f ∗0 ◦ ϕ.

In other words, Proposition 31.1 (c) holds for i = 0. This completes the induction
base.

Induction step: Let I ∈ N. Assume that Proposition 31.1 (c) holds for i = I. We
now must prove that Proposition 31.1 (c) holds for i = I + 1.

Every f ∈ L (C,A) satisfies (f ◦ ϕ)∗I = f ∗I ◦ ϕ (since Proposition 31.1 (c) holds
for i = I). Now, every f ∈ L (C,A) satisfies

(f ◦ ϕ)∗(I+1) = (f ◦ ϕ)∗(1+I) = (f ◦ ϕ) ∗ (f ◦ ϕ)∗I︸ ︷︷ ︸
=f∗I◦ϕ

= (f ◦ ϕ) ∗
(
f ∗I ◦ ϕ

)
=

(
f ∗ f ∗I

)︸ ︷︷ ︸
=f∗(1+I)=f∗(I+1)

◦ϕ
(
by Proposition 31.1 (a), applied to g = f ∗I

)
= f ∗(I+1) ◦ ϕ.

In other words, Proposition 31.1 (c) holds for i = I + 1. This completes the induction
step. The induction proof of Proposition 31.1 (c) is thus finished.

(d) For every connected filtered k-coalgebra H, we have

g (H,A) = {f ∈ L (H,A) | f (1H) = 0} (by the definition of g (H,A))

= {h ∈ L (H,A) | h (1H) = 0} (372)

(here, we renamed the index f as h).
Now, let f ∈ g (C,A). Then,

f ∈ g (C,A) = {h ∈ L (C,A) | h (1C) = 0} (by (372), applied to H = C) .

Hence, f ∈ L (C,A) and f (1C) = 0. We have f ◦ ϕ ∈ L (D,A) and

(f ◦ ϕ) (1D) = f

ϕ (1D)︸ ︷︷ ︸
=1C

 = f (1C) = 0.

Hence, f ◦ ϕ ∈ {h ∈ L (D,A) | h (1D) = 0}. Applying (372) to H = D, we obtain
g (D,A) = {h ∈ L (D,A) | h (1D) = 0}. Thus, f◦ϕ ∈ {h ∈ L (D,A) | h (1D) = 0} =
g (D,A). Hence, e∗(f◦ϕ) is well-defined.

Let x ∈ D. By the definition of e∗(f◦ϕ), we have e∗(f◦ϕ) (x) =
∑
i≥0

(f ◦ ϕ)∗i (x)

i!
.

By the definition of e∗f , we have e∗f (y) =
∑
i≥0

f ∗i (y)

i!
for every y ∈ C. Applying
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this to y = ϕ (x), we obtain

e∗f (ϕ (x))

=
∑
i≥0

f ∗i (ϕ (x))

i!
=
∑
i≥0

(f ◦ ϕ)∗i (x)

i!since every i ∈ N satisfies f ∗i (ϕ (x)) =
(
f ∗i ◦ ϕ

)︸ ︷︷ ︸
=(f◦ϕ)∗i

(by Proposition 31.1 (c))

(x) = (f ◦ ϕ)∗i (x)


= e∗(f◦ϕ) (x) .

Thus, e∗(f◦ϕ) (x) = e∗f (ϕ (x)) =
(
e∗f ◦ ϕ

)
(x).

Now, forget that we fixed x. We thus have proven that e∗(f◦ϕ) (x) =
(
e∗f ◦ ϕ

)
(x)

for every x ∈ D. In other words, e∗(f◦ϕ) = e∗f ◦ ϕ. This proves Proposition 31.1 (d).
(e) For every connected filtered k-coalgebra H, we have

G (H,A) = {f ∈ L (H,A) | f (1H) = 1A} (by the definition of G (H,A))

= {h ∈ L (H,A) | h (1H) = 1A} (373)

(here, we renamed the index f as h).
Now, let F ∈ G (C,A). Then,

F ∈ G (C,A) = {h ∈ L (C,A) | h (1C) = 1A} (by (373), applied to H = C) .

Hence, F ∈ L (C,A) and F (1C) = 1A. We have F ◦ ϕ ∈ L (D,A) and

(F ◦ ϕ) (1D) = F

ϕ (1D)︸ ︷︷ ︸
=1C

 = F (1C) = 1A.

Hence, F ◦ ϕ ∈ {h ∈ L (D,A) | h (1D) = 1A}. Applying (373) to H = D, we obtain
G (D,A) = {h ∈ L (D,A) | h (1D) = 1A}. Thus, F◦ϕ ∈ {h ∈ L (D,A) | h (1D) = 1A} =
G (D,A). Hence, Log (F ◦ ϕ) is well-defined.

Let f = F − eC,A. Since f = F − eC,A, we have

f ◦ ϕ = (F − eC,A) ◦ ϕ = F ◦ ϕ− eC,A︸︷︷︸
=ηA◦εC

(by the definition of eC,A)

◦ϕ

= F ◦ ϕ− ηA ◦ εC ◦ ϕ︸ ︷︷ ︸
=εD

(since ϕ is a k-coalgebra homomorphism)

= F ◦ ϕ− ηA ◦ εD︸ ︷︷ ︸
=eD,A

(since eD,A=ηA◦εD
(by the definition of eD,A))

= F ◦ ϕ− eD,A.

Let x ∈ D. By the definition of Log (F ◦ ϕ), we have Log (F ◦ ϕ) = Log1

F ◦ ϕ− eD,A︸ ︷︷ ︸
=f◦ϕ

 =

Log1 (f ◦ ϕ). Thus,

(Log (F ◦ ϕ)) (x) = (Log1 (f ◦ ϕ)) (x) =
∑
i≥1

(−1)i−1

i
(f ◦ ϕ)∗i (x)
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(by the definition of Log1 (f ◦ ϕ)).

By the definition of LogF , we have LogF = Log1

F − eC,A︸ ︷︷ ︸
=f

 = Log1 f . Hence,

for every y ∈ C, we have

(LogF ) (y) = (Log1 f) (y) =
∑
i≥1

(−1)i−1

i
f ∗i (y)

(by the definition of Log1 f). Applying this to y = ϕ (x), we obtain

(LogF ) (ϕ (x))

=
∑
i≥1

(−1)i−1

i
f ∗i (ϕ (x)) =

∑
i≥1

(−1)i−1

i
(f ◦ ϕ)∗i (x)since every i ∈ N satisfies f ∗i (ϕ (x)) =

(
f ∗i ◦ ϕ

)︸ ︷︷ ︸
=(f◦ϕ)∗i

(by Proposition 31.1 (c))

(x) = (f ◦ ϕ)∗i (x)


= (Log (F ◦ ϕ)) (x) .

Thus, (Log (F ◦ ϕ)) (x) = (LogF ) (ϕ (x)) = ((LogF ) ◦ ϕ) (x).
Now, forget that we fixed x. We thus have proven that (Log (F ◦ ϕ)) (x) = ((LogF ) ◦ ϕ) (x)

for every x ∈ D. In other words, Log (F ◦ ϕ) = (LogF ) ◦ ϕ. This proves Proposi-
tion 31.1 (e).

The following proposition is “more or less” a dual of Proposition 31.1:

Proposition 31.2. Let k be a field. Let A and B be k-algebras. Let C be
a k-coalgebra. Let ψ : A→ B be a k-algebra homomorphism.

(a) Every f ∈ L (C,A) and g ∈ L (C,A) satisfy (ψ ◦ f) ∗ (ψ ◦ g) = ψ ◦
(f ∗ g).

(b) We have ψ ◦ eC,A = eC,B.

(c) Every f ∈ L (C,A) and i ∈ N satisfy (ψ ◦ f)∗i = ψ ◦ f ∗i.
(d) Assume that the k-coalgebra C is a connected filtered k-coalgebra.
Assume finally that k is a field of characteristic 0. Then, every f ∈ g (C,A)
satisfies ψ ◦ f ∈ g (C,B) and e∗(ψ◦f) = ψ ◦ e∗f .
(e) Assume that the k-coalgebra C is a connected filtered k-coalgebra.
Assume finally that k is a field of characteristic 0. Then, every F ∈ G (C,A)
satisfies ψ ◦ F ∈ G (C,B) and Log (ψ ◦ F ) = ψ ◦ (LogF ).

Notice that the conditions in Proposition 31.2 (d) and (e) are a bit more liberal
than those in Proposition 31.1 (d) and (e), whence it would not be proper to call
Proposition 31.2 a precise dual of Proposition 31.1; but these conditions were technical
in the first place, allowing one to define e∗(f◦ϕ) respectively Log (F ◦ ϕ).
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Proof of Proposition 31.2. (a) Let f ∈ L (C,A) and g ∈ L (C,A). By the definition of
the convolution f ∗ g, we have

f ∗ g = µA ◦ (f ⊗ g) ◦∆C .

By the definition of the convolution (ψ ◦ f) ∗ (ψ ◦ g), we have

(ψ ◦ f) ∗ (ψ ◦ g) = µB ◦ ((ψ ◦ f)⊗ (ψ ◦ g))︸ ︷︷ ︸
=(ψ⊗ψ)◦(f⊗g)

(by (21), applied to U=C, V=A, W=B,
U ′=C, V ′=A, W ′=B, α=f , β=ψ, α′=g and β′=ψ)

◦∆C

= µB ◦ (ψ ⊗ ψ)︸ ︷︷ ︸
=ψ◦µA

(since ψ is a k-algebra
homomorphism)

◦ (f ⊗ g) ◦∆C = ψ ◦ µA ◦ (f ⊗ g) ◦∆C︸ ︷︷ ︸
=f∗g

= ψ ◦ (f ∗ g) .

This proves Proposition 31.2 (a).
(b) By the definition of eC,A, we have eC,A = ηA ◦ εC . By the definition of eC,B, we

have eC,B = ηB ◦ εC . Thus,

ψ ◦ eC,A︸︷︷︸
=ηA◦εC

= ψ ◦ ηA︸ ︷︷ ︸
=ηB

(since ψ is a k-algebra
homomorphism)

◦εC = ηB ◦ εC = eC,B.

This proves Proposition 31.2 (b).
(c) We are going to prove Proposition 31.2 (c) by induction over i:
Induction base: Every f ∈ L (C,A) satisfies

(f ◦ ψ)∗0 = eC,B = ψ ◦ eC,A︸︷︷︸
=f∗0

(by Proposition 31.2 (b))

= ψ ◦ f ∗0.

In other words, Proposition 31.2 (c) holds for i = 0. This completes the induction
base.

Induction step: Let I ∈ N. Assume that Proposition 31.2 (c) holds for i = I. We
now must prove that Proposition 31.2 (c) holds for i = I + 1.

Every f ∈ L (C,A) satisfies (ψ ◦ f)∗I = ψ ◦ f ∗I (since Proposition 31.2 (c) holds
for i = I). Now, every f ∈ L (C,A) satisfies

(ψ ◦ f)∗(I+1) = (ψ ◦ f)∗(1+I) = (ψ ◦ f) ∗ (ψ ◦ f)∗I︸ ︷︷ ︸
=ψ◦f∗I

= (ψ ◦ f) ∗
(
ψ ◦ f ∗I

)
= ψ ◦

(
f ∗ f ∗I

)︸ ︷︷ ︸
=f∗(1+I)=f∗(I+1)

(
by Proposition 31.2 (a), applied to g = f ∗I

)
= ψ ◦ f ∗(I+1).

In other words, Proposition 31.2 (c) holds for i = I + 1. This completes the induction
step. The induction proof of Proposition 31.2 (c) is thus finished.
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(d) For every connected filtered k-coalgebra H and any k-algebra A, we have

g (H,A) = {f ∈ L (H,A) | f (1H) = 0} (by the definition of g (H,A))

= {h ∈ L (H,A) | h (1H) = 0} (374)

(here, we renamed the index f as h).
Now, let f ∈ g (C,A). Then,

f ∈ g (C,A) = {h ∈ L (C,A) | h (1C) = 0} (by (374), applied to H = C and A = A) .

Hence, f ∈ L (C,A) and f (1C) = 0. We have ψ ◦ f ∈ L (C,B) and

(ψ ◦ f) (1C) = ψ

f (1C)︸ ︷︷ ︸
=0

 = ψ (0) = 0

(since ψ is k-linear). Hence, ψ ◦ f ∈ {h ∈ L (C,B) | h (1C) = 0}. Applying (374)
to H = C and A = B, we obtain g (C,B) = {h ∈ L (C,B) | h (1C) = 0}. Thus,
ψ ◦ f ∈ {h ∈ L (C,B) | h (1C) = 0} = g (C,B). Hence, e∗(ψ◦f) is well-defined.

Let x ∈ C. By the definition of e∗(ψ◦f), we have e∗(ψ◦f) (x) =
∑
i≥0

(ψ ◦ f)∗i (x)

i!
.

By the definition of e∗f , we have e∗f (x) =
∑
i≥0

f ∗i (x)

i!
. Notice that the sum

∑
i≥0

f ∗i (x)

i!
converges with respect to the discrete topology. Now,

ψ
(
e∗f (x)

)
= ψ

(∑
i≥0

f ∗i (x)

i!

) (
since e∗f (x) =

∑
i≥0

f ∗i (x)

i!

)

=
∑
i≥0

ψ (f ∗i (x))

i!

 since ψ is k-linear, and since the sum
∑
i≥0

f ∗i (x)

i!
converges with respect to the discrete topology


=
∑
i≥0

(ψ ◦ f)∗i (x)

i!since every i ∈ N satisfies ψ
(
f ∗i (x)

)
=

(
ψ ◦ f ∗i

)︸ ︷︷ ︸
=(ψ◦f)∗i

(by Proposition 31.2 (c))

(x) = (ψ ◦ f)∗i (x)


= e∗(ψ◦f) (x) .

Thus, e∗(ψ◦f) (x) = ψ
(
e∗f (x)

)
=
(
ψ ◦ e∗f

)
(x).

Now, forget that we fixed x. We thus have proven that e∗(ψ◦f) (x) =
(
ψ ◦ e∗f

)
(x)

for every x ∈ C. In other words, e∗(ψ◦f) = ψ ◦ e∗f . This proves Proposition 31.2 (d).
(e) For every connected filtered k-coalgebra H and any k-algebra A, we have

G (H,A) = {f ∈ L (H,A) | f (1H) = 1A} (by the definition of G (H,A))

= {h ∈ L (H,A) | h (1H) = 1A} (375)
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(here, we renamed the index f as h).
Now, let F ∈ G (C,A). Then,

F ∈ G (C,A) = {h ∈ L (C,A) | h (1C) = 1A} (by (375), applied to H = C and A = A) .

Hence, F ∈ L (C,A) and F (1C) = 1A. We have ψ ◦ F ∈ L (C,B) and

(ψ ◦ F ) (1C) = ψ

F (1C)︸ ︷︷ ︸
=1A

 = ψ (1A) = 1B

(since ψ is a k-algebra homomorphism). Hence, ψ◦F ∈ {h ∈ L (C,B) | h (1C) = 1B}.
Applying (375) toH = C and A = B, we obtainG (C,B) = {h ∈ L (C,B) | h (1C) = 1B}.
Thus, ψ ◦ F ∈ {h ∈ L (C,B) | h (1C) = 1B} = G (C,B). Hence, Log (ψ ◦ F ) is well-
defined.

Let f = F − eC,A. Since f = F − eC,A, we have

ψ ◦ f = ψ ◦ (F − eC,A) = ψ ◦ F − ψ ◦ eC,A︸︷︷︸
=ηA◦εC

(by the definition of eC,A)

(since composition of k-linear maps is k-bilinear)

= ψ ◦ F − ψ ◦ ηA︸ ︷︷ ︸
=ηB

(since ψ is a k-algebra homomorphism)

◦εC = ψ ◦ F − ηB ◦ εC︸ ︷︷ ︸
=eC,B

(since eC,B=ηB◦εC
(by the definition of eC,B))

= ψ ◦ F − eC,B.

Let x ∈ C. By the definition of Log (ψ ◦ F ), we have Log (ψ ◦ F ) = Log1

ψ ◦ F − eC,B︸ ︷︷ ︸
=ψ◦f

 =

Log1 (ψ ◦ f). Thus,

(Log (ψ ◦ F )) (x) = (Log1 (ψ ◦ f)) (x) =
∑
i≥1

(−1)i−1

i
(ψ ◦ f)∗i (x)

(by the definition of Log1 (ψ ◦ f)).

By the definition of LogF , we have LogF = Log1

F − eC,A︸ ︷︷ ︸
=f

 = Log1 f . Hence,

(LogF ) (x) = (Log1 f) (x) =
∑
i≥1

(−1)i−1

i
f ∗i (x)

(by the definition of Log1 f). Notice that the sum
∑
i≥1

(−1)i−1

i
f ∗i (x) converges with

369



respect to the discrete topology. Now,

ψ ((LogF ) (x))

= ψ

(∑
i≥1

(−1)i−1

i
f ∗i (x)

) (
since (LogF ) (x) =

∑
i≥1

(−1)i−1

i
f ∗i (x)

)

=
∑
i≥1

(−1)i−1

i
ψ
(
f ∗i (x)

)  since ψ is k-linear, and since the sum
∑
i≥1

(−1)i−1

i
f ∗i (x)

converges with respect to the discrete topology


=
∑
i≥1

(−1)i−1

i
(ψ ◦ f)∗i (x)since every i ∈ N satisfies ψ

(
f ∗i (x)

)
=

(
ψ ◦ f ∗i

)︸ ︷︷ ︸
=(ψ◦f)∗i

(by Proposition 31.2 (c))

(x) = (ψ ◦ f)∗i (x)


= (Log (ψ ◦ F )) (x) .

Thus, (Log (ψ ◦ F )) (x) = ψ ((LogF ) (x)) = (ψ ◦ (LogF )) (x).
Now, forget that we fixed x. We thus have proven that (Log (ψ ◦ F )) (x) = (ψ ◦ (LogF )) (x)

for every x ∈ C. In other words, Log (ψ ◦ F ) = ψ ◦ (LogF ). This proves Proposi-
tion 31.2 (e).

We record, for future use, a consequence of Lemma 15.12:

Corollary 31.3. Let k be a field of characteristic 0. Let H be a connected
filtered k-coalgebra and, at the same time, a k-bialgebra with the same
underlying k-coalgebra structure. Let A be a commutative k-algebra. Let
F : H → A be a k-algebra homomorphism. Let x ∈ H and y ∈ H satisfy
εH (x) = 0 and εH (y) = 0. Then, LogF is a well-defined element of g (H,A)
and satisfies (LogF ) (xy) = 0.

Proof of Corollary 31.3. Recall that G (H,A) = {f ∈ L (H,A) | f (1H) = 1A} (by
the definition of G (H,A)). But F is a k-algebra homomorphism, and thus satisfies
F (1H) = 1A. Now,

F ∈ {f ∈ L (H,A) | f (1H) = 1A} (since F ∈ L (H,A) and F (1H) = 1A)

= G (H,A) .

Hence, LogF is a well-defined element of g (H,A).
It remains to prove that (LogF ) (xy) = 0.
Let f = LogF . Thus, e∗f = e∗(LogF ) = F (by Proposition 5.13 (b)). Hence, e∗f is

a k-algebra homomorphism (since we know that F is a k-algebra homomorphism).
We have f = LogF ∈ g (H,A). Hence, Lemma 15.12 yields that e∗f is a k-algebra

homomorphism if and only if f is an (εH , εH)-derivation. Thus, f is an (εH , εH)-
derivation (since we know that e∗f is a k-algebra homomorphism).

From Definition 15.7, we know that f is an (εH , εH)-derivation if and only if every
(a, b) ∈ H × H satisfies f (ab) = f (a) εH (b) + εH (a) f (b). Hence, every (a, b) ∈
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H×H satisfies f (ab) = f (a) εH (b)+εH (a) f (b) (because f is an (εH , εH)-derivation).
Applying this to (a, b) = (x, y), we obtain

f (xy) = f (x) εH (y)︸ ︷︷ ︸
=0

+ εH (x)︸ ︷︷ ︸
=0

f (y) = 0 + 0 = 0.

Since f = LogF , this rewrites as (LogF ) (xy) = 0. This completes the proof of
Corollary 31.3.

As the following proposition shows, the commutativity requirement on A in Corol-
lary 31.3 can be replaced by a commutativity requirement on H:

Corollary 31.4. Let k be a field of characteristic 0. Let H be a commu-
tative connected filtered k-coalgebra and, at the same time, a k-bialgebra
with the same underlying k-coalgebra structure. Let A be a k-algebra. Let
F : H → A be a k-algebra homomorphism. Let x ∈ H and y ∈ H sat-
isfy εH (x) = 0 and εH (y) = 0. Then, LogF is a well-defined element of
g (H,A) and satisfies (LogF ) (xy) = 0.

Proof of Corollary 31.4. First of all, F ∈ G (H,A) (this can be proven just as in the
proof of Corollary 31.3). Thus, LogF is a well-defined element of g (H,A).

We now need to prove that (LogF ) (xy) = 0.
Since F : H → A is a k-algebra homomorphism, its image F (H) is a k-subalgebra

of A. This k-subalgebra F (H) is commutative167.

Every x ∈ H satisfies F

(
x︸︷︷︸
∈H

)
∈ F (H). Thus, we can define a map F̃ : H →

F (H) by (
F̃ (x) = F (x) for every x ∈ H

)
.

This map F̃ is a k-algebra homomorphism168. Hence, F̃ (1H) = 1F (H). As a conse-

167Proof. Let α ∈ F (H) and β ∈ F (H).
Since α ∈ F (H), there exists an α̃ ∈ H such that α = F (α̃). Consider this α̃.

Since β ∈ F (H), there exists a β̃ ∈ H such that β = F
(
β̃
)

. Consider this β̃.

Since H is commutative, we have α̃β̃ = β̃α̃. Now, multiplying the equalities α = F (α̃) and β =

F
(
β̃
)

, we obtain αβ = F (α̃)F
(
β̃
)

= F
(
α̃β̃
)

(since F is a k-algebra homomorphism). Multiplying

the equalities β = F
(
β̃
)

and α = F (α̃), we obtain βα = F
(
β̃
)
F (α̃) = F

(
β̃α̃
)

(since F is a

k-algebra homomorphism). Thus, αβ = F

 α̃β̃︸︷︷︸
=β̃α̃

 = F
(
β̃α̃
)

= βα.

Now, forget that we fixed α and β. We thus have shown that every α ∈ F (H) and β ∈ F (H)
satisfy αβ = βα. In other words, the k-algebra F (H) is commutative, qed.

168Proof. Let λ ∈ k, µ ∈ k, a ∈ H and b ∈ H. By the definition of F̃ , we have the equalities
F̃ (λa+ µb) = F (λa+ µb), F̃ (a) = F (a) and F̃ (b) = F (b). Now,

F̃ (λa+ µb) = F (λa+ µb) = λF (a)︸ ︷︷ ︸
=F̃ (a)

+µ F (b)︸ ︷︷ ︸
=F̃ (b)

(since F is a k-algebra homomorphism)

= λF̃ (a) + µF̃ (b) .
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quence, F̃ ∈ G (H,F (H)) 169.
Let ι be the canonical inclusion F (H) → A. Clearly, ι is a k-algebra homomor-

phism. Moreover, ι ◦ F̃ = F 170.
Proposition 31.2 (e) (applied to H, F (H), A, F̃ and ι instead of C, A, B, F and

ψ) yields that ι ◦ F̃ ∈ G (H,A) and Log
(
ι ◦ F̃

)
= ι ◦

(
Log F̃

)
.

Now, Corollary 31.3 (applied to F (H) and F̃ instead of A and F ) yields that Log F̃

is a well-defined element of g (H,F (H)) and satisfies
(

Log F̃
)

(xy) = 0.

Since F = ι ◦ F̃ , we have LogF = Log
(
ι ◦ F̃

)
= ι ◦

(
Log F̃

)
, so that

(LogF ) (xy) =
(
ι ◦
(

Log F̃
))

(xy) = ι

(Log F̃
)

(xy)︸ ︷︷ ︸
=0

 = ι (0) = 0

(since ι is just an inclusion map). This completes the proof of Corollary 31.4.

Now, forget that we fixed λ, µ, a and b. We thus have shown that F̃ (λa+ µb) = λF̃ (a) + µF̃ (b)

for all λ ∈ k, µ ∈ k, a ∈ H and b ∈ H. In other words, the map F̃ is k-linear.
Since F (H) is a k-subalgebra of A, we have 1F (H) = 1A. Now, by the definition of F̃ , we have

F̃ (1H) = F (1H) = 1A (since F is a k-algebra homomorphism)

= 1F (H).

Moreover, any a ∈ H and b ∈ H satisfy

F̃ (ab) = F (ab)
(

by the definition of F̃
)

= F (a)︸ ︷︷ ︸
=F̃ (a)

(since F̃ (a)=F (a)

(by the definition of F̃ ))

F (b)︸ ︷︷ ︸
=F̃ (b)

(since F̃ (b)=F (b)

(by the definition of F̃ ))

(since F is a k-algebra homomorphism)

= F̃ (a) F̃ (b) .

Combining this with the fact that F̃ (1H) = 1F (H), we conclude that F̃ is a k-algebra homomorphism

(since F̃ is k-linear), qed.
169Proof. Recall that G (H,F (H)) =

{
f ∈ L (H,F (H)) | f (1H) = 1F (H)

}
(by the definition of

G (H,F (H))). Now,

F̃ ∈
{
f ∈ L (H,F (H)) | f (1H) = 1F (H)

} (
since F ∈ L (H,F (H)) and F (1H) = 1F (H)

)
= G (H,F (H)) ,

qed.
170Proof. Every x ∈ H satisfies(

ι ◦ F̃
)

(x) = ι
(
F̃ (x)

)
= F̃ (x) (since ι is just an inclusion map)

= F (x)
(

by the definition of F̃
)
.

In other words, ι ◦ F̃ = F , qed.
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§32. The spaces sympn V are spanned by n-th powers

We are now going to take a closer look at the vector spaces sympn V defined in Defi-
nition 17.11 (c). The backbone of this will be the following algebraic identity:

Theorem 32.1. Let A be a ring. Let n ∈ N. Let v1, v2, . . ., vn be n
elements of A. For every set X, let P (X) denote the power set of X.
Then,

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) =
∑

S∈P({1,2,...,n})

(−1)n−|S|
(∑
s∈S

vs

)n

.

It is possible to derive Theorem 32.1 from known facts (such as Lemma 1 in
[Grinbe08]), but it is more in the spirit of this note to give a self-contained proof.171

This is what we are going to do now, after we have shown the following simple lemma:

Lemma 32.2. Let A be a finite set. Let B be a subset of A. Let n ∈ Z.

(a) If B 6= A, then ∑
S∈P(A);
B⊆S

(−1)n−|S| = 0.

(b) If B = A and n = |A|, then∑
S∈P(A);
B⊆S

(−1)n−|S| = 1.

Proof of Lemma 32.2. (a) Assume that B 6= A. If we had A ⊆ B, then we would have
B = A (because A ⊆ B and B ⊆ A), contradicting B 6= A. Hence, we cannot have
A ⊆ B. Thus, A 6⊆ B. Hence, there exists an x ∈ A such that x /∈ B. Consider such
an x.

Let P1 = {W ∈ P (A) | B ⊆ W ; x /∈ W} and P2 = {W ∈ P (A) | B ⊆ W ; x ∈ W}.
For every S ∈ P1, we have S ∪ {x} ∈ P2

172. Hence, we can define a map
ρ1 : P1 → P2 by

(ρ1 (S) = S ∪ {x} for all S ∈ P1) .

Consider this map ρ1.

171Notice that Theorem 32.1 also appears as Exercise 6.50 (c) in [Grinbe17].
172Proof. Let S ∈ P1.
Since S ∈ P1 = {W ∈ P (A) | B ⊆W ; x /∈W}, we have S ∈ P (A) and B ⊆ S and x /∈ S. Since

S ∈ P (A), we have S ⊆ A. Combining S ⊆ A with {x} ⊆ A (because x ∈ A), we obtain S ∪{x} ⊆ A.
In other words, S ∪ {x} ∈ P (A). Also, B ⊆ S ⊆ S ∪ {x} and x ∈ {x} ⊆ S ∪ {x}.

Altogether, we have thus shown that S ∪ {x} ∈ P (A), that B ⊆ S ∪ {x} and x ∈ S ∪ {x}. In other
words, S ∪ {x} ∈ {W ∈ P (A) | B ⊆W ; x ∈W} = P2, qed.
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For every S ∈ P2, we have S \ {x} ∈ P1
173. Hence, we can define a map

ρ2 : P2 → P1 by
(ρ2 (S) = S \ {x} for all S ∈ P2) .

Consider this map ρ2.
We have ρ1 ◦ ρ2 = id 174 and ρ2 ◦ ρ1 = id 175. Hence, the maps ρ1 and ρ2 are

mutually inverse. Thus, ρ1 is a bijection from P1 to P2.
Notice that

(−1)n−|ρ1(S)| = − (−1)n−|S| for every S ∈ P1 (376)

176.

173Proof. Let S ∈ P2.
Since S ∈ P2 = {W ∈ P (A) | B ⊆W ; x ∈W}, we have S ∈ P (A) and B ⊆ S and x ∈ S. Since

S ∈ P (A), we have S ⊆ A. Now, S \{x} ⊆ S ⊆ A. In other words, S \{x} ∈ P (A). Also, B\{x} = B
(since x /∈ B), so that B = B︸︷︷︸

⊆S

\ {x} ⊆ S \ {x}. Finally, x /∈ S \ {x}.

Altogether, we have thus shown that S \ {x} ∈ P (A), that B ⊆ S \ {x} and x /∈ S \ {x}. In other
words, S \ {x} ∈ {W ∈ P (A) | B ⊆W ; x /∈W} = P1, qed.

174Proof. Let S ∈ P2 be arbitrary. Then, S ∈ P2 = {W ∈ P (A) | B ⊆W ; x ∈W}. In other
words, S ∈ P (A) and B ⊆ S and x ∈ S. Since x ∈ S, we have {x} ⊆ S.

Any two sets X and Y with Y ⊆ X satisfy (X \ Y )∪Y = X. Applying this to X = S and Y = {x},
we obtain (S \ {x}) ∪ {x} = S (since {x} ⊆ S).

By the definition of ρ1, we have ρ1 (ρ2 (S)) = ρ2 (S)︸ ︷︷ ︸
=S\{x}

∪{x} = (S \ {x}) ∪ {x} = S. Thus,

(ρ1 ◦ ρ2) (S) = ρ1 (ρ2 (S)) = S = id (S).
Now, forget that we fixed S. We thus have shown that (ρ1 ◦ ρ2) (S) = id (S) for every S ∈ P2. In

other words, ρ1 ◦ ρ2 = id, qed.
175Proof. Let S ∈ P1 be arbitrary. Then, S ∈ P1 = {W ∈ P (A) | B ⊆W ; x /∈W}. In other

words, S ∈ P (A) and B ⊆ S and x /∈ S. Since x /∈ S, we have S \ {x} = S.
By the definition of ρ2, we have ρ2 (ρ1 (S)) = ρ1 (S)︸ ︷︷ ︸

=S∪{x}

\ {x} = (S ∪ {x}) \ {x} = (S \ {x}) ∪

({x} \ {x})︸ ︷︷ ︸
=∅

= S \ {x} = S. Thus, (ρ2 ◦ ρ1) (S) = ρ2 (ρ1 (S)) = S = id (S).

Now, forget that we fixed S. We thus have shown that (ρ2 ◦ ρ1) (S) = id (S) for every S ∈ P1. In
other words, ρ2 ◦ ρ1 = id, qed.

176Proof of (376): Let S ∈ P1. Then, S ∈ P1 = {W ∈ P (A) | B ⊆W ; x /∈W}. In other words,
S ∈ P (A) and B ⊆ S and x /∈ S. The set S is disjoint from {x} (since x /∈ S).

Any two disjoint finite sets X and Y satisfy |X ∪ Y | = |X| + |Y |. Applying this to X = S and
Y = {x}, we obtain |S ∪ {x}| = |S|+ |{x}| (since S is disjoint from {x}).

Now, ρ1 (S) = S ∪ {x}, so that |ρ1 (S)| = |S ∪ {x}| = |S|+ |{x}|︸ ︷︷ ︸
=1

= |S|+ 1, hence

(−1)
n−|ρ1(S)|

= (−1)
n−(|S|+1)

= (−1)
n−|S|−1

=
(−1)

n−|S|

−1
= − (−1)

n−|S|
.

This proves (376).
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Now, every S ∈ P (A) satisfies either x ∈ S or x /∈ S. Hence,∑
S∈P(A);
B⊆S

(−1)n−|S| =
∑

S∈P(A);
B⊆S;
x∈S︸ ︷︷ ︸

=
∑

S∈{W∈P(A) | B⊆W ; x∈W}
=
∑

S∈P2

(since {W∈P(A) | B⊆W ; x∈W}=P2)

(−1)n−|S| +
∑

S∈P(A);
B⊆S;
x/∈S︸ ︷︷ ︸

=
∑

S∈{W∈P(A) | B⊆W ; x/∈W}
=
∑

S∈P1

(since {W∈P(A) | B⊆W ; x/∈W}=P1)

(−1)n−|S|

=
∑
S∈P2

(−1)n−|S| +
∑
S∈P1

(−1)n−|S|

=
∑
S∈P1

(−1)n−|ρ1(S)|︸ ︷︷ ︸
=−(−1)n−|S|

(by (376))

+
∑
S∈P1

(−1)n−|S|

(
here, we substituted ρ1 (S) for S in the first sum, since ρ1

is a bijection from P1 to P2

)
=
∑
S∈P1

(
− (−1)n−|S|

)
+
∑
S∈P1

(−1)n−|S|

=
∑
S∈P1

(
− (−1)n−|S| + (−1)n−|S|

)
︸ ︷︷ ︸

=0

=
∑
S∈P1

0 = 0.

This proves Lemma 32.2 (a).
(b) Assume that B = A and n = |A|. For every S ∈ P (A), the assertions B ⊆ S

and S = A are equivalent177. Hence, we can replace the sign
∑

S∈P(A);
B⊆S

by
∑

S∈P(A);
S=A

in

∑
S∈P(A);
B⊆S

(−1)n−|S|. Consequently,

∑
S∈P(A);
B⊆S

(−1)n−|S| =
∑

S∈P(A);
S=A

(−1)n−|S| = (−1)n−|A| (since A ∈ P (A))

= (−1)0

since n︸︷︷︸
=|A|

− |A| = |A| − |A| = 0


= 1.

This proves Lemma 32.2 (b).

177Proof. Let S ∈ P (A). We need to prove that the assertions B ⊆ S and S = A are equivalent.
First, assume that B ⊆ S holds. Combining S ⊆ A (since S ∈ P (A)) with A = B ⊆ S, we obtain

S = A. Now, forget that we assumed that B ⊆ S holds. We thus have shown that if B ⊆ S, then
S = A.

On the other hand, if S = A, then B ⊆ S (because if S = A, then B = A = S).
Altogether, we know that if S = A, then B ⊆ S, and we know that if B ⊆ S, then S = A. In other

words, each of the two assertions B ⊆ S and S = A implies the other. In other words, the assertions
B ⊆ S and S = A are equivalent, qed.
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Proof of Theorem 32.1. Let us first introduce some notations and make some prelimi-
nary observations.

For any sets X and Y , let Map (X, Y ) denote the set of all maps from X to Y .
It is known that for any nonnegative integer m and any set T , the m-tuples of

elements of T are in bijection with the maps from {1, 2, . . . ,m} to T . More precisely:
If m is a nonnegative integer and T is a set, then there is a bijection

Map ({1, 2, . . . ,m} , T )→ T×m

which sends every map f ∈ Map ({1, 2, . . . ,m} , T ) to them-tuple (f (1) , f (2) , . . . , f (m)) ∈
T×m. This bijection will be denoted by tupleT,m. 178 Thus,

tupleT,m (f) = (f (1) , f (2) , . . . , f (m)) for every f ∈ Map ({1, 2, . . . ,m} , T ) .
(377)

For any nonnegative integer m and any two sets X and Y satisfying Y ⊆ X, we
regard Y ×m as a subset of X×m in the obvious way.

For any nonnegative integer m and any m-tuple t and any i ∈ {1, 2, . . . ,m}, we
denote by t [i] the i-th entry of the m-tuple t. Hence, any nonnegative integer m and
any m-tuple t satisfy

t = (t [1] , t [2] , . . . , t [m]) .

Every set T , every nonnegative integer m, every i ∈ {1, 2, . . . ,m} and every f ∈
Map ({1, 2, . . . ,m} , T ) satisfy (

tupleT,m (f)
)

[i] = f (i) (378)

179. Every set T , every nonnegative integer m, every i ∈ {1, 2, . . . ,m} and any m
elements t1, t2, . . ., tm of T satisfy

(t1, t2, . . . , tm) [i] = ti. (379)

180

Here is one last piece of notation I want to introduce: If x and y are two integers
such that y ≥ x − 1, and if B is a ring, and if bx, bx+1, . . ., by are elements of B,

178Some authors actually define m-tuples of elements of T as maps from {1, 2, . . . ,m} to T . In that
case, this bijection tupleT,m is simply idT×m .

179Proof of (378): Let T be a set. Let m be a nonnegative integer. Let i ∈ {1, 2, . . . ,m}. Let
f ∈ Map ({1, 2, . . . ,m} , T ). Then, (377) shows that tupleT,m (f) = (f (1) , f (2) , . . . , f (m)). Hence,(

tupleT,m (f)
)

[i] = (f (1) , f (2) , . . . , f (m)) [i]

= (the i-th entry of the m-tuple (f (1) , f (2) , . . . , f (m)))

(by the definition of (f (1) , f (2) , . . . , f (m)) [i])

= f (i) ,

qed.
180Proof of (379): Let T be a set. Let m be a nonnegative integer. Let t1, t2, . . ., tm be m elements

of T . Let i ∈ {1, 2, . . . ,m}. Then, by the definition of (t1, t2, . . . , tm) [i], we have

(t1, t2, . . . , tm) [i] = (the i-th entry of the m-tuple (t1, t2, . . . , tm)) = ti,

qed.
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then

−→
y∏
i=x

bi will mean the product bxbx+1 · · · by ∈ B. When the ring B is commutative,

this product

−→
y∏
i=x

bi is identical with the standard product
y∏
i=x

bi, but when B is not

supposed to be commutative, the notation
y∏
i=x

bi makes no sense (unless bx, bx+1, . . .,

by commute).
For every S ∈ P ({1, 2, . . . , n}), we have(∑
s∈S

vs

)n

=
∑

(s1,s2,...,sn)∈S×n
vs1vs2 · · · vsn︸ ︷︷ ︸

=

−→
n∏
i=1

vsi

(by the product rule)

=
∑

(s1,s2,...,sn)∈S×n

−→
n∏
i=1

vsi︸︷︷︸
=v(s1,s2,...,sn)[i]

(because (379) (applied to m=n, T=S and ti=si)
yields (s1,s2,...,sn)[i]=si, so that v(s1,s2,...,sn)[i]=vsi )

=
∑

(s1,s2,...,sn)∈S×n

−→
n∏
i=1

v(s1,s2,...,sn)[i] =
∑

s∈S×n︸ ︷︷ ︸
=

∑
s∈{1,2,...,n}×n;

s∈S×n
(since S×n⊆{1,2,...,n}×n)

−→
n∏
i=1

vs[i]

(here, we renamed the summation index (s1, s2, . . . , sn) as s)

=
∑

s∈{1,2,...,n}×n;
s∈S×n

−→
n∏
i=1

vs[i] =
∑

f∈Map({1,2,...,n},{1,2,...,n});
tuple{1,2,...,n},n(f)∈S×n

−→
n∏
i=1

v(tuple{1,2,...,n},n(f))[i]︸ ︷︷ ︸
=vf(i)

(since (378) (applied to T={1,2,...,n}
and m=n) yields (tuple{1,2,...,n},n(f))[i]=f(i)) here, we substituted tuple{1,2,...,n},n (f) for s in the sum,

since tuple{1,2,...,n},n is a bijection

from Map ({1, 2, . . . , n} , {1, 2, . . . , n}) to {1, 2, . . . , n}×n


=

∑
f∈Map({1,2,...,n},{1,2,...,n});

tuple{1,2,...,n},n(f)∈S×n

−→
n∏
i=1

vf(i)︸ ︷︷ ︸
=vf(1)vf(2)···vf(n)

=
∑

f∈Map({1,2,...,n},{1,2,...,n});
tuple{1,2,...,n},n(f)∈S×n

vf(1)vf(2) · · · vf(n).
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Hence,

∑
S∈P({1,2,...,n})

(−1)n−|S|
(∑
s∈S

vs

)n

︸ ︷︷ ︸
=

∑
f∈Map({1,2,...,n},{1,2,...,n});

tuple{1,2,...,n},n(f)∈S×n

vf(1)vf(2)···vf(n)

=
∑

S∈P({1,2,...,n})

(−1)n−|S|
∑

f∈Map({1,2,...,n},{1,2,...,n});
tuple{1,2,...,n},n(f)∈S×n

vf(1)vf(2) · · · vf(n)

=
∑

S∈P({1,2,...,n})

∑
f∈Map({1,2,...,n},{1,2,...,n});

tuple{1,2,...,n},n(f)∈S×n︸ ︷︷ ︸
=

∑
f∈Map({1,2,...,n},{1,2,...,n})

∑
S∈P({1,2,...,n});

tuple{1,2,...,n},n(f)∈S×n

(−1)n−|S| vf(1)vf(2) · · · vf(n)

=
∑

f∈Map({1,2,...,n},{1,2,...,n})

∑
S∈P({1,2,...,n});

tuple{1,2,...,n},n(f)∈S×n

(−1)n−|S| vf(1)vf(2) · · · vf(n). (380)

Now, for every f ∈ Map ({1, 2, . . . , n} , {1, 2, . . . , n}) and every S ∈ P ({1, 2, . . . , n}),
we have the following equivalence of assertions:(

tuple{1,2,...,n},n (f) ∈ S×n
)
⇐⇒ (f ({1, 2, . . . , n}) ⊆ S) . (381)

181 Thus, we can replace the
∑

S∈P({1,2,...,n});
tuple{1,2,...,n},n(f)∈S×n

sign by a
∑

S∈P({1,2,...,n});
f({1,2,...,n})⊆S

sign in (380).

181Proof of (381): Let f ∈ Map ({1, 2, . . . , n} , {1, 2, . . . , n}) and S ∈ P ({1, 2, . . . , n}). Since
tuple{1,2,...,n},n (f) is an n-tuple, we have tuple{1,2,...,n},n (f) ∈ S×n if and only if every of the n

entries of tuple{1,2,...,n},n (f) belongs to S. In other words, we have tuple{1,2,...,n},n (f) ∈ S×n if and

only if every i ∈ {1, 2, . . . , n} satisfies
(

tuple{1,2,...,n},n (f)
)

[i] ∈ S. Thus, we have the following

equivalence of assertions:(
tuple{1,2,...,n},n (f) ∈ S×n

)

⇐⇒

every i ∈ {1, 2, . . . , n} satisfies
(

tuple{1,2,...,n},n (f)
)

[i]︸ ︷︷ ︸
=f(i)

(by (378) (applied to T={1,2,...,n} and m=n))

∈ S


⇐⇒ (every i ∈ {1, 2, . . . , n} satisfies f (i) ∈ S)

⇐⇒

{f (i) | i ∈ {1, 2, . . . , n}}︸ ︷︷ ︸
=f({1,2,...,n})

⊆ S

 ⇐⇒ (f ({1, 2, . . . , n}) ⊆ S) .

This proves (381).
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Hence, (380) becomes

∑
S∈P({1,2,...,n})

(−1)n−|S|
(∑
s∈S

vs

)n

=
∑

f∈Map({1,2,...,n},{1,2,...,n})

∑
S∈P({1,2,...,n});

tuple{1,2,...,n},n(f)∈S×n︸ ︷︷ ︸
=

∑
S∈P({1,2,...,n});
f({1,2,...,n})⊆S

(due to the equivalence (381))

(−1)n−|S| vf(1)vf(2) · · · vf(n)

=
∑

f∈Map({1,2,...,n},{1,2,...,n})

∑
S∈P({1,2,...,n});
f({1,2,...,n})⊆S

(−1)n−|S| vf(1)vf(2) · · · vf(n)

=
∑

f∈Map({1,2,...,n},{1,2,...,n});
f is bijective

∑
S∈P({1,2,...,n});
f({1,2,...,n})⊆S

(−1)n−|S| vf(1)vf(2) · · · vf(n)

+
∑

f∈Map({1,2,...,n},{1,2,...,n});
f is not bijective

∑
S∈P({1,2,...,n});
f({1,2,...,n})⊆S

(−1)n−|S| vf(1)vf(2) · · · vf(n). (382)

Now, every element f of Map ({1, 2, . . . , n} , {1, 2, . . . , n}) which is not bijective
satisfies ∑

S∈P({1,2,...,n});
f({1,2,...,n})⊆S

(−1)n−|S| = 0 (383)

182. Furthermore, every element f of Map ({1, 2, . . . , n} , {1, 2, . . . , n}) which is bijective
satisfies ∑

S∈P({1,2,...,n});
f({1,2,...,n})⊆S

(−1)n−|S| = 1 (384)

183.

182Proof of (383): Let f be an element of Map ({1, 2, . . . , n} , {1, 2, . . . , n}) such that f is not bijective.
We know that f is a map from {1, 2, . . . , n} to {1, 2, . . . , n} (since f ∈

Map ({1, 2, . . . , n} , {1, 2, . . . , n})). Thus, f is a map from a finite set to itself (since {1, 2, . . . , n} is a
finite set).

But it is known that every surjective map from a finite set to itself must be bijective. Hence, if f
was surjective, then f would be bijective (because f is a map from a finite set to itself), which would
contradict the fact that f is not bijective. Hence, f cannot be surjective.

We have f ({1, 2, . . . , n}) ⊆ {1, 2, . . . , n} (since f ∈ Map ({1, 2, . . . , n} , {1, 2, . . . , n})). Furthermore,
f ({1, 2, . . . , n}) 6= {1, 2, . . . , n} (because otherwise, we would have f ({1, 2, . . . , n}) = {1, 2, . . . , n}, so
that f would be surjective, which contradicts the fact that f is not surjective). Hence, Lemma 32.2

(a) (applied to A = {1, 2, . . . , n} and B = f ({1, 2, . . . , n})) yields
∑

S∈P({1,2,...,n});
f({1,2,...,n})⊆S

(−1)
n−|S|

= 0. This

proves (383).
183Proof of (384): Let f be an element of Map ({1, 2, . . . , n} , {1, 2, . . . , n}) such that f is bijective.
We know that f is a map from {1, 2, . . . , n} to {1, 2, . . . , n} (since f ∈

Map ({1, 2, . . . , n} , {1, 2, . . . , n})). Since f is surjective (because f is bijective), we have
f ({1, 2, . . . , n}) = {1, 2, . . . , n}. Moreover, n = |{1, 2, . . . , n}|. Thus, we can apply Lemma 32.2 (b) to
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Now, (382) becomes

∑
S∈P({1,2,...,n})

(−1)n−|S|
(∑
s∈S

vs

)n

=
∑

f∈Map({1,2,...,n},{1,2,...,n});
f is bijective

∑
S∈P({1,2,...,n});
f({1,2,...,n})⊆S

(−1)n−|S|

︸ ︷︷ ︸
=1

(by (384))

vf(1)vf(2) · · · vf(n)

+
∑

f∈Map({1,2,...,n},{1,2,...,n});
f is not bijective

∑
S∈P({1,2,...,n});
f({1,2,...,n})⊆S

(−1)n−|S|

︸ ︷︷ ︸
=0

(by (383))

vf(1)vf(2) · · · vf(n)

=
∑

f∈Map({1,2,...,n},{1,2,...,n});
f is bijective

1vf(1)vf(2) · · · vf(n)︸ ︷︷ ︸
=vf(1)vf(2)···vf(n)

+
∑

f∈Map({1,2,...,n},{1,2,...,n});
f is not bijective

0vf(1)vf(2) · · · vf(n)

︸ ︷︷ ︸
=0

=
∑

f∈Map({1,2,...,n},{1,2,...,n});
f is bijective︸ ︷︷ ︸

=
∑

f is a map from {1,2,...,n} to {1,2,...,n};
f is bijective

=
∑

f is a bijective map from {1,2,...,n} to {1,2,...,n}

=
∑

f is a permutation of {1,2,...,n}
(since the bijective maps from {1,2,...,n} to {1,2,...,n}

are precisely the permutations of {1,2,...,n})

vf(1)vf(2) · · · vf(n)

=
∑

f is a permutation of {1,2,...,n}︸ ︷︷ ︸
=

∑
f∈(the set of permutations of {1,2,...,n})

=
∑

f∈Sn
(since the set of permutations of {1,2,...,n} is Sn)

vf(1)vf(2) · · · vf(n)

=
∑
f∈Sn

vf(1)vf(2) · · · vf(n) =
∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n)

(here, we renamed the summation index f as σ). This proves Theorem 32.1.

Theorem 32.1 has various useful corollaries; here is probably the simplest one:184

Corollary 32.3. Let A be a commutative ring. Let n ∈ N. Let v1, v2, . . .,
vn be n elements of A. For every set X, let P (X) denote the power set of
X. Then,

n! · v1v2 · · · vn =
∑

S∈P({1,2,...,n})

(−1)n−|S|
(∑
s∈S

vs

)n

.

A = {1, 2, . . . , n} and B = f ({1, 2, . . . , n}). As a consequence, we obtain
∑

S∈P({1,2,...,n});
f({1,2,...,n})⊆S

(−1)
n−|S|

= 1.

This proves (384).
184Notice that Corollary 32.3 also appears as Exercise 6.50 (d) in [Grinbe17].
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Proof of Corollary 32.3. Let σ ∈ Sn. Then, σ is a permutation of {1, 2, . . . , n}. In
other words, σ is a bijection from {1, 2, . . . , n} to {1, 2, . . . , n}.

Since the ring A is commutative, terms like
∏

i∈{1,2,...,n}
vi and

∏
i∈{1,2,...,n}

vσ(i) make

sense. We have

vσ(1)vσ(2) · · · vσ(n) =
∏

i∈{1,2,...,n}

vσ(i) =
∏

i∈{1,2,...,n}

vi(
here, we have substituted i for σ (i) in the product,

since σ is a bijection from {1, 2, . . . , n} to {1, 2, . . . , n}

)
= v1v2 · · · vn.

Now, forget that we fixed σ. We thus have proven that vσ(1)vσ(2) · · · vσ(n) = v1v2 · · · vn
for every σ ∈ Sn. Thus,∑

σ∈Sn

vσ(1)vσ(2) · · · vσ(n)︸ ︷︷ ︸
=v1v2···vn

=
∑
σ∈Sn

v1v2 · · · vn = |Sn|︸︷︷︸
=n!

·v1v2 · · · vn = n! · v1v2 · · · vn.

Comparing this with

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) =
∑

S∈P({1,2,...,n})

(−1)n−|S|
(∑
s∈S

vs

)n

(by Theorem 32.1) ,

we obtain

n! · v1v2 · · · vn =
∑

S∈P({1,2,...,n})

(−1)n−|S|
(∑
s∈S

vs

)n

.

This proves Corollary 32.3.

A more interesting application of Theorem 32.1 concerns the vector spaces sympn V
defined in Definition 17.11 (c):

Theorem 32.4. Let k be a field of characteristic 0. Let A be a k-algebra.
Let V be a k-vector subspace of A. Let n ∈ N. Consider the k-vector
subspace sympn V of A defined in Definition 17.11 (c).

We have
sympn V = 〈vn | v ∈ V 〉 .

Proof of Theorem 32.4. Recall that sympn V was defined by

sympn V =

〈
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
〉
.

a) We have sympn V ⊆ 〈vn | v ∈ V 〉.
Proof. Let (v1, v2, . . . , vn) ∈ V ×n. Then, vs ∈ V for every s ∈ {1, 2, . . . , n}. For

every S ∈ P ({1, 2, . . . , n}), we have∑
s∈S

vs︸︷︷︸
∈V

∈
∑
s∈S

V ⊆ V
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(since V is a k-vector space). Hence, for every S ∈ P ({1, 2, . . . , n}), we have(∑
s∈S

vs

)n

∈ {vn | v ∈ V }

(because

(∑
s∈S

vs

)n
= vn for v =

∑
s∈S

vs, and because
∑
s∈S

vs ∈ V ). Thus, for every

S ∈ P ({1, 2, . . . , n}), we have(∑
s∈S

vs

)n

∈ {vn | v ∈ V } ⊆ 〈{vn | v ∈ V }〉

= 〈vn | v ∈ V 〉 . (385)

Now,

1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n)︸ ︷︷ ︸
=

∑
S∈P({1,2,...,n})

(−1)n−|S|
(∑
s∈S

vs

)n
(by Theorem 32.1)

=
1

n!

∑
S∈P({1,2,...,n})

(−1)n−|S|
(∑
s∈S

vs

)n

︸ ︷︷ ︸
∈〈vn | v∈V 〉

(by (385))

∈ 1

n!

∑
S∈P({1,2,...,n})

(−1)n−|S| 〈vn | v ∈ V 〉 ⊆ 〈vn | v ∈ V 〉

(since 〈vn | v ∈ V 〉 is a k-vector space).

Now, forget that we fixed (v1, v2, . . . , vn). We thus have shown that
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) ∈

〈vn | v ∈ V 〉 for every (v1, v2, . . . , vn) ∈ V ×n. In other words,{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
}
⊆ 〈vn | v ∈ V 〉 .

Thus, (154) (applied toM = A, S =

{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
}

and Q = 〈vn | v ∈ V 〉) yields that〈{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
}〉

⊆ 〈vn | v ∈ V 〉 .
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Now,

sympn V =

〈
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
〉

=

〈{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
}〉

⊆ 〈vn | v ∈ V 〉 .

We have thus proven that sympn V ⊆ 〈vn | v ∈ V 〉.
b) We have 〈vn | v ∈ V 〉 ⊆ sympn V .

Proof. Let v ∈ V . Then,

v, v, . . . , v︸ ︷︷ ︸
n times v

 ∈ V ×n and
1

n!

∑
σ∈Sn

vv · · · v︸ ︷︷ ︸
n times v

=
1

n!
|Sn|︸︷︷︸
=n!

vv · · · v︸ ︷︷ ︸
n times v︸ ︷︷ ︸

=vn

=

1

n!
n!vn = vn. Thus, vn =

1

n!

∑
σ∈Sn

vv · · · v︸ ︷︷ ︸
n times v

. Hence, the element vn has the form

1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) for some (v1, v2, . . . , vn) ∈ V ×n (namely, for (v1, v2, . . . , vn) =v, v, . . . , v︸ ︷︷ ︸
n times v

). In other words,

vn ∈

{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
}

⊆

〈{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
}〉

=

〈
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
〉

= sympn V.

Now, forget that we fixed v. We thus have shown that vn ∈ sympn V for ev-
ery v ∈ V . In other words, {vn | v ∈ V } ⊆ sympn V . Thus, (154) (applied to
M = A, S = {vn | v ∈ V } and Q = sympn V ) yields that 〈{vn | v ∈ V }〉 ⊆
sympn V . Thus, 〈vn | v ∈ V 〉 = 〈{vn | v ∈ V }〉 ⊆ sympn V . We have thus proven
that 〈vn | v ∈ V 〉 ⊆ sympn V .

c) We now know that sympn V ⊆ 〈vn | v ∈ V 〉 and 〈vn | v ∈ V 〉 ⊆ sympn V .
Combining these two inclusions, we obtain sympn V = 〈vn | v ∈ V 〉. Theorem 32.4 is
thus proven.

Theorem 32.4 takes a simpler form in the particular case when the algebra is com-
mutative:

Corollary 32.5. Let k be a field of characteristic 0. Let A be a commu-
tative k-algebra. Let V be a k-vector subspace of A. Let n ∈ N. Then,

V n = 〈vn | v ∈ V 〉 .
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Note that this corollary is (generally) wrong when k doesn’t have characteristic 0.

Proof of Corollary 32.5. Consider the k-vector subspace sympn V of A defined in Def-
inition 17.11 (c). Recall that sympn V was defined by

sympn V =

〈
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
〉
.

Every (v1, v2, . . . , vn) ∈ V ×n satisfies
∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) = n! · v1v2 · · · vn 185.

Hence, 〈
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n)︸ ︷︷ ︸
=n!·v1v2···vn

| (v1, v2, . . . , vn) ∈ V ×n
〉

=

〈
1

n!
n! · v1v2 · · · vn︸ ︷︷ ︸

=v1v2···vn

| (v1, v2, . . . , vn) ∈ V ×n
〉

=
〈
v1v2 · · · vn | (v1, v2, . . . , vn) ∈ V ×n

〉
= V n (by (73))

But Theorem 32.4 yields sympn V = 〈vn | v ∈ V 〉, so that

〈vn | v ∈ V 〉 = sympn V

=

〈
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
〉

= V n.

This proves Corollary 32.5.

A corollary of this corollary is the following property of symmetric powers:

Corollary 32.6. Let k be a field of characteristic 0. Let V be a k-vector
space. Let n ∈ N. Consider the n-th symmetric power Symn (V ) of the
vector space V . Then,

Symn (V ) = 〈vn | v ∈ V 〉 ,

where vn denotes the projection of v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
n times v

∈ V ⊗n onto the n-th

symmetric power Symn (V ).

Corollary 32.6 appears as Lemma 4.56 (i) in [EGHLSVY] (where it is proven using
representation theory).

Proof of Corollary 32.6. Let Sym (V ) be the symmetric algebra of the k-vector space
V . It is known that both V and Symn (V ) canonically inject into Sym (V ). We shall
identify V and Symn (V ) with k-vector subspaces of Sym (V ) using these injections.

185This can be proven in the same way as we did in the proof of Corollary 32.3.
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For every v ∈ V , the element vn of Symn (V ) is the actual n-th power of the element
v ∈ V ⊆ Sym (V ) taken in Sym (V ). 186 Hence, the notation vn in Corollary 32.6
does not conflict with the notation vn in Corollary 32.5 (applied to A = Sym (V )).
Since the symmetric algebra Sym (V ) is commutative, we can apply Corollary 32.5 to
A = Sym (V ). We obtain V n = 〈vn | v ∈ V 〉. But it is easy to see that V n = Symn (V )
as subspaces of Sym (V ) 187. Hence, Symn (V ) = V n = 〈vn | v ∈ V 〉. This proves
Corollary 32.6.

The following consequence of Theorem 32.4 will be of most importance to us:

186Proof. Let v ∈ V . Consider the tensor algebra ⊗V of the k-vector space V . Let π be the canonical
projection from ⊗V to Sym (V ). Then, π is a k-algebra homomorphism. Moreover, π (w) = w for
every w ∈ V . Applied to w = v, this yields π (v) = v.

We have

(the element vn of Symn (V ))

=

the projection of v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
n times v

∈ V ⊗n onto the n-th symmetric power Symn (V )


(by the definition of the element vn of Symn (V ))

=

the projection of v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
n times v

∈ ⊗V onto the symmetric algebra Sym (V )


(

since the canonical projection from V ⊗n onto the n-th symmetric power Symn (V )
is a restriction of the canonical projection from ⊗V onto the symmetric algebra Sym (V )

)

= π

 v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
n times v︸ ︷︷ ︸

=(the n-th power of v in the algebra ⊗V )


(since the canonical projection from ⊗V onto the symmetric algebra Sym (V ) is π)

= π (the n-th power of v in the algebra ⊗ V )

=

the n-th power of π (v)︸ ︷︷ ︸
=v

in the algebra Sym (V )

 (since π is a k-algebra homomorphism)

= (the n-th power of v in the algebra Sym (V )) .

In other words, the element vn of Symn (V ) is the n-th power of v in the algebra Sym (V ), qed.
187Proof. Consider the tensor algebra ⊗V of the k-vector space V . Let π be the canonical projection

from ⊗V to Sym (V ). Then, π is a k-algebra homomorphism. Moreover,

π (w) = w for every w ∈ V. (386)

We know that Symn (V ) is the image of V ⊗n under the canonical projection π. In other words,
Symn (V ) = π (V ⊗n).

Let (v1, v2, . . . , vn) ∈ V ×n. Then, in the k-algebra ⊗V , we have

v1v2 · · · vn = v1 ⊗ v2 ⊗ · · · ⊗ vn (387)

(since the multiplication on the k-algebra ⊗V is the tensor product). But we have vi ∈ V for every
i ∈ {1, 2, . . . , n}. Thus, π (vi) = vi for every i ∈ {1, 2, . . . , n} (by (386), applied to w = vi). In other
words, (π (v1) , π (v2) , . . . , π (vn)) = (v1, v2, . . . , vn). Hence, π (v1)π (v2) · · ·π (vn) = v1v2 · · · vn, where
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Corollary 32.7. Let k be a field of characteristic 0. Let A be a k-algebra.
Let V be a k-vector subspace of A. Assume that

xy − yx ∈ V for any x ∈ V and y ∈ V.

Assume further that A =
∑
n∈N

V n 188.

Let W be a k-vector space. Let f : A→ W and g : A→ W be two k-linear
maps. Assume that f (vn) = g (vn) for every v ∈ V and n ∈ N. Then,
f = g.

Proof of Corollary 32.7. Since f and g are k-linear maps, their difference f − g is also
a k-linear map. Hence, Ker (f − g) is a k-vector subspace of A.

both products in this equality are taken in the k-algebra Sym (V ). Now,

π

v1 ⊗ v2 ⊗ · · · ⊗ vn︸ ︷︷ ︸
=v1v2···vn
(by (387))


= π (v1v2 · · · vn)

= π (v1)π (v2) · · ·π (vn) (since π is a k-algebra homomorphism)

= v1v2 · · · vn, (388)

where the product v1v2 . . . vn is taken in the k-algebra Sym (V ).
Now, forget that we fixed (v1, v2, . . . , vn). We thus have proven the equality (388) for each

(v1, v2, . . . , vn) ∈ V ×n.
But the n-th tensor power V ⊗n is spanned by all pure tensors. In other words,

V ⊗n =
〈
v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ V ×n

〉
.

Hence,

V ⊗n =
〈
v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ V ×n

〉
=
〈{
v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ V ×n

}〉
.

Applying the map π to both sides of this equality, we obtain

π
(
V ⊗n

)
= π

(〈{
v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ V ×n

}〉)
=

〈
π
({
v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ V ×n

})︸ ︷︷ ︸
={π(v1⊗v2⊗···⊗vn) | (v1,v2,...,vn)∈V ×n}

〉
(

by (165), applied to M = ⊗V , R = Sym (V ) , φ = π
and S = {v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ V ×n}

)
=
〈{
π (v1 ⊗ v2 ⊗ · · · ⊗ vn) | (v1, v2, . . . , vn) ∈ V ×n

}〉
=

〈
π (v1 ⊗ v2 ⊗ · · · ⊗ vn)︸ ︷︷ ︸

=v1v2···vn
(by (388))

| (v1, v2, . . . , vn) ∈ V ×n
〉

=
〈
v1v2 · · · vn | (v1, v2, . . . , vn) ∈ V ×n

〉
= V n.

Thus, V n = π (V ⊗n) = Symn (V ).
188This is an equivalent way to say that the k-algebra A is generated by the subset V . But it is

easier for us to word it as
∑
n∈N

V n.
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Now, let n ∈ N. We know that every v ∈ V satisfies

(f − g) (vn) = f (vn)︸ ︷︷ ︸
=g(vn)

−g (vn) = g (vn)− g (vn) = 0.

In other words, every v ∈ V satisfies vn ∈ Ker (f − g). In other words, {vn | v ∈ V } ⊆
Ker (f − g). Hence, (154) (applied toM = A, S = {vn | v ∈ V } andQ = Ker (f − g))
yields that 〈{vn | v ∈ V }〉 ⊆ Ker (f − g). Now, consider the k-vector subspace sympn V
of A defined in Definition 17.11 (c). Theorem 32.4 yields sympn V = 〈vn | v ∈ V 〉 ⊆
Ker (f − g).

Now, forget that we have fixed n. We thus have proven that

sympn V ⊆ Ker (f − g) for every n ∈ N. (389)

Now, every ` ∈ N satisfies

V ` ⊆
∑̀
i=0

V i

(
since V ` is an addend in the sum

∑̀
i=0

V i

)

=
∑̀
i=0

sympi V︸ ︷︷ ︸
⊆Ker(f−g)

(by (389), applied to n=i)

(by Proposition 17.16 (b))

⊆
∑̀
i=0

Ker (f − g) ⊆ Ker (f − g) (390)

(since Ker (f − g) is a k-vector space). Now,

A =
∑
n∈N

V n︸︷︷︸
⊆Ker(f−g)

(by (389), applied to `=n)

⊆
∑
n∈N

Ker (f − g) ⊆ Ker (f − g)

(since Ker (f − g) is a k-vector space). In other words, f − g = 0. In other words,
f = g. This proves Corollary 32.7.

§33. Log id on powers of primitives

Our next goal is to prove the following fact:

Theorem 33.1. Let k be a field of characteristic 0. Let H be a connected
filtered k-coalgebra and, at the same time, a k-bialgebra with the same
underlying k-coalgebra structure. Let v ∈ PrimH and n ∈ N be such that
n > 1. Then,

(Log id) (vn) = 0.

This is a rather light variation on Lemma 2 ii) in [DMTCN13], and our proof is an
adaptation of the proof given in [DMTCN13]. Actually we will show a slightly more
general fact:
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Theorem 33.2. Let k be a field of characteristic 0. Let H be a connected
filtered k-coalgebra and, at the same time, a k-bialgebra with the same
underlying k-coalgebra structure. Let A be a k-algebra. Let F : H → A
be a k-algebra homomorphism. Let v ∈ PrimH and n ∈ N be such that
n > 1. Then, F ∈ G (H,A) and

(LogF ) (vn) = 0.

In order to prove these theorems, we will use the universal property of the polyno-
mial ring k [X] (a trick I learnt from [DMTCN13]). Here is this universal property:

Theorem 33.3. Let k be a field. Let X be a new symbol. Consider the
polynomial ring k [X] over k in one indeterminate X.

For every commutative k-algebra A and every a ∈ A, there exists a unique
k-algebra homomorphism ϕ : k [X]→ A satisfying ϕ (X) = a.

This Theorem 33.3 is just the universal property of the polynomial ring k [X]. This
theorem also holds if A is not required to be commutative:

Theorem 33.4. Let k be a field. Let X be a new symbol. Consider the
polynomial ring k [X] over k in one indeterminate X.

For every k-algebra A and every a ∈ A, there exists a unique k-algebra
homomorphism ϕ : k [X]→ A satisfying ϕ (X) = a.

Proof of Theorem 33.4. Let A be a k-algebra. Let a ∈ A. Let B be the k-subalgebra
of A generated by the element a. Hence, the k-algebra B is generated by the element a.
Consequently, the k-algebra B is generated by pairwise commuting elements (because
the element a is clearly pairwise commuting (since it is only one element)). Thus,
the k-algebra B is commutative (since any k-algebra generated by pairwise commuting
elements must be commutative). Moreover, we have a ∈ B (since B is the k-subalgebra
of A generated by the element a). Hence, we can apply Theorem 33.3 to B instead of
A. As a consequence, we conclude that there exists a unique k-algebra homomorphism
ϕ : k [X]→ B satisfying ϕ (X) = a. Denote this homomorphism ϕ by Φ. Thus, Φ is a
k-algebra homomorphism ϕ : k [X] → B satisfying ϕ (X) = a. In other words, Φ is a
k-algebra homomorphism k [X]→ B and satisfies Φ (X) = a.

Let ι be the canonical inclusion B → A. Clearly, ι is a k-algebra homomorphism.
Since Φ and ι are k-algebra homomorphisms, their composition ι ◦Φ is a k-algebra ho-
momorphism (because the composition of two k-algebra homomorphisms must always

be a k-algebra homomorphism). Also, (ι ◦ Φ) (X) = ι

Φ (X)︸ ︷︷ ︸
=a

 = ι (a) = a (since ι

is an inclusion map). Thus, there exists a k-algebra homomorphism ϕ : k [X] → A
satisfying ϕ (X) = a (namely, ϕ = ι ◦ Φ).

Now, let ψ1 and ψ2 be any two k-algebra homomorphisms ϕ : k [X]→ A satisfying
ϕ (X) = a. We are going to show that ψ1 = ψ2.

Let p ∈ k [X]. Then, p is a polynomial in the indeterminate X over k. Hence, there
exists some family (λi)i∈N ∈ kN such that (all but finitely many i ∈ N satisfy λi = 0)
and p =

∑
i∈N

λiX
i. Consider this family (λi)i∈N.
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We know that ψ1 is a k-algebra homomorphism ϕ : k [X]→ A satisfying ϕ (X) = a.
In other words, ψ1 is a k-algebra homomorphism k [X] → A and satisfies ψ1 (X) = a.
Since p =

∑
i∈N

λiX
i, we have

ψ1 (p) = ψ1

(∑
i∈N

λiX
i

)
=
∑
i∈N

λi

ψ1 (X)︸ ︷︷ ︸
=a

i

(since ψ1 is a k-algebra homomorphism)

=
∑
i∈N

λia
i.

The same argument, with ψ1 replaced by ψ2, yields that ψ2 (p) =
∑
i∈N

λia
i. Hence,

ψ1 (p) =
∑
i∈N

λia
i = ψ2 (p).

Now, forget that we fixed p. We thus have proven that every p ∈ k [X] satisfies
ψ1 (p) = ψ2 (p). In other words, ψ1 = ψ2.

Now, forget that we fixed ψ1 and ψ2. We thus have shown that if ψ1 and ψ2 are
any two k-algebra homomorphisms ϕ : k [X]→ A satisfying ϕ (X) = a, then ψ1 = ψ2.
In other words, there exists at most one k-algebra homomorphism ϕ : k [X] → A
satisfying ϕ (X) = a. Combining this with the fact that there exists a k-algebra
homomorphism ϕ : k [X]→ A satisfying ϕ (X) = a, we conclude the following: There
exists a unique k-algebra homomorphism ϕ : k [X] → A satisfying ϕ (X) = a. This
proves Theorem 33.4.

Definition 33.5. Let k be a field. Let X be a new symbol. Consider the
polynomial ring k [X] over k in one indeterminate X.

For every k-algebra A and every a ∈ A, there exists a unique k-algebra
homomorphism ϕ : k [X] → A satisfying ϕ (X) = a (according to The-
orem 33.4). This homomorphism ϕ will be denoted by evA, a or by eva
(when A is clear from the context). Thus, evA, a is the unique k-algebra
homomorphism ϕ : k [X] → A satisfying ϕ (X) = a. Hence, evA, a is a
k-algebra homomorphism k [X]→ A and satisfies

evA, a (X) = a. (391)

Corollary 33.6. Let X be a new symbol. Consider the polynomial ring
k [X] over k in one indeterminate X.

Let A be a k-algebra. Let f : k [X]→ A and g : k [X]→ A be two k-algebra
homomorphisms such that f (X) = g (X). Then, f = g.

Proof of Corollary 33.6. Let a = f (X). Then, a = f (X) = g (X).
We know that evA, a is the unique k-algebra homomorphism ϕ : k [X] → A satis-

fying ϕ (X) = a (by the definition of evA, a). Hence, every k-algebra homomorphism
ϕ : k [X] → A satisfying ϕ (X) = a must be equal to evA, a. In other words, if
ϕ : k [X] → A is a k-algebra homomorphism satisfying ϕ (X) = a, then ϕ = evA, a.
Applying this to ϕ = f , we obtain f = evA, a (since f (X) = a).
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On the other hand, if ϕ : k [X] → A is a k-algebra homomorphism satisfying
ϕ (X) = a, then ϕ = evA, a. Applying this to ϕ = g, we obtain g = evA, a (since
g (X) = a). Hence, f = evA, a = g. This proves Corollary 33.6.

Here are a number of properties of the k-bialgebra k [X] that we are going to need:

Theorem 33.7. Let k be a field. Let X be a new symbol. Consider the
polynomial ring k [X] over k in one indeterminate X. Equip k [X] with the
usual grading (by degree).

Let ∆X be the k-algebra homomorphism evk[X]⊗k[X], X⊗1+1⊗X : k [X] →
k [X]⊗ k [X] (where 1 means 1k[X]).

Let εX be the k-algebra homomorphism evk, 0 : k [X]→ k.

Then, (k [X] ,∆X , εX) is a commutative connected graded k-bialgebra.

Remark 33.8. The k-bialgebra (k [X] ,∆X , εX) of Theorem 33.7 is also
cocommutative, but we won’t need this in the following.

Proof of Theorem 33.7. Recall that k [X] is the free k-module with basis (Xn)n∈N.
Recall also that the grading on k [X] is such that (k [X])n is a free k-module with basis
(Xn) for every n ∈ N. (Note the difference between (Xn)n∈N and (Xn): The former is
a family indexed by nonnegative integer, while the latter is a one-element family.)

It is known that k [X] is a commutative graded algebra.
For every k-vector space V , let kanlV be the canonical isomorphism V → V ⊗ k

which sends every v ∈ V to v ⊗ 1 ∈ V ⊗ k.
For every k-vector space V , let kanrV be the canonical isomorphism V → k ⊗ V

which sends every v ∈ V to 1⊗ v ∈ k ⊗ V .
Notice that if A is a k-algebra, then kanlA and kanrA are k-algebra homomorphisms.

Applying this to A = k [X], we conclude that kanlk[X] and kanrk[X] are k-algebra
homomorphisms.

Since ∆X = evk[X]⊗k[X], X⊗1+1⊗X , we have

∆X (X) = evk[X]⊗k[X], X⊗1+1⊗X (X) = X ⊗ 1 + 1⊗X

(by (391), applied to A = k [X]⊗ k [X] and a = X ⊗ 1 + 1⊗X). Since εX = evk, 0, we
have

εX (X) = evk, 0 (X) = 0

(by (391), applied to A = k and a = 0).
We know that idk[X] and ∆X are k-algebra homomorphisms. Thus, their tensor

product idk[X]⊗∆X is a k-algebra homomorphism (since the tensor product of two
k-algebra homomorphisms is always a k-algebra homomorphism).

We know that ∆X and idk[X] are k-algebra homomorphisms. Thus, their tensor
product ∆X ⊗ idk[X] is a k-algebra homomorphism (since the tensor product of two
k-algebra homomorphisms is always a k-algebra homomorphism).

We know that idk[X] and εX are k-algebra homomorphisms. Thus, their tensor
product idk[X]⊗εX is a k-algebra homomorphism (since the tensor product of two k-
algebra homomorphisms is always a k-algebra homomorphism).
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We know that εX and idk[X] are k-algebra homomorphisms. Thus, their tensor
product εX ⊗ idk[X] is a k-algebra homomorphism (since the tensor product of two
k-algebra homomorphisms is always a k-algebra homomorphism).

We know that idk[X]⊗∆X and ∆X are k-algebra homomorphisms. Thus, their
composition

(
idk[X]⊗∆X

)
◦∆X is a k-algebra homomorphism (since the composition

of two k-algebra homomorphisms is always a k-algebra homomorphism).
We know that ∆X ⊗ idk[X] and ∆X are k-algebra homomorphisms. Thus, their

composition
(
∆X ⊗ idk[X]

)
◦∆X is a k-algebra homomorphism (since the composition

of two k-algebra homomorphisms is always a k-algebra homomorphism).
We know that idk[X]⊗εX and ∆X are k-algebra homomorphisms. Thus, their com-

position
(
idk[X]⊗εX

)
◦∆X is a k-algebra homomorphism (since the composition of two

k-algebra homomorphisms is always a k-algebra homomorphism).
We know that εX ⊗ idk[X] and ∆X are k-algebra homomorphisms. Thus, their

composition
(
εX ⊗ idk[X]

)
◦ ∆X is a k-algebra homomorphism (since the composition

of two k-algebra homomorphisms is always a k-algebra homomorphism).
Comparing((

idk[X]⊗∆X

)
◦∆X

)
(X)

=
(
idk[X]⊗∆X

) ∆X (X)︸ ︷︷ ︸
=X⊗1+1⊗X

 =
(
idk[X]⊗∆X

)
(X ⊗ 1 + 1⊗X)

= idk[X] (X)︸ ︷︷ ︸
=X

⊗ ∆X (1)︸ ︷︷ ︸
=1k[X]⊗k[X]

(since ∆X is a k-algebra
homomorphism)

+ idk[X] (1)︸ ︷︷ ︸
=1

⊗ ∆X (X)︸ ︷︷ ︸
=X⊗1+1⊗X

(
by the definition of idk[X]⊗∆X

)
= X ⊗ 1k[X]⊗k[X]︸ ︷︷ ︸

=1⊗1

+ 1⊗ (X ⊗ 1 + 1⊗X)︸ ︷︷ ︸
=1⊗X⊗1+1⊗1⊗X

(since the tensor product is distributive)

= X ⊗ 1⊗ 1 + 1⊗X ⊗ 1 + 1⊗ 1⊗X

with ((
∆X ⊗ idk[X]

)
◦∆X

)
(X)

=
(
∆X ⊗ idk[X]

) ∆X (X)︸ ︷︷ ︸
=X⊗1+1⊗X

 =
(
∆X ⊗ idk[X]

)
(X ⊗ 1 + 1⊗X)

= ∆X (X)︸ ︷︷ ︸
=X⊗1+1⊗X

⊗ idk[X] (1)︸ ︷︷ ︸
=1

+ ∆X (1)︸ ︷︷ ︸
=1k[X]⊗k[X]

(since ∆X is a k-algebra
homomorphism)

⊗ idk[X] (X)︸ ︷︷ ︸
=X

(
by the definition of ∆X ⊗ idk[X]

)
= (X ⊗ 1 + 1⊗X)⊗ 1︸ ︷︷ ︸

=X⊗1⊗1+1⊗X⊗1
(since the tensor product is distributive)

+ 1k[X]⊗k[X]︸ ︷︷ ︸
=1⊗1

⊗X

= X ⊗ 1⊗ 1 + 1⊗X ⊗ 1 + 1⊗ 1⊗X,
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we obtain ((
idk[X]⊗∆X

)
◦∆X

)
(X) =

((
∆X ⊗ idk[X]

)
◦∆X

)
(X) .

Thus, Corollary 33.6 (applied to A = k [X]⊗k [X]⊗k [X], f =
(
idk[X]⊗∆X

)
◦∆X and

g =
(
∆X ⊗ idk[X]

)
◦∆X) yields(

idk[X]⊗∆X

)
◦∆X =

(
∆X ⊗ idk[X]

)
◦∆X

(since
(
idk[X]⊗∆X

)
◦∆X and

(
∆X ⊗ idk[X]

)
◦∆X are k-algebra homomorphisms).

Comparing((
idk[X]⊗εX

)
◦∆X

)
(X)

=
(
idk[X]⊗εX

) ∆X (X)︸ ︷︷ ︸
=X⊗1+1⊗X

 =
(
idk[X]⊗εX

)
(X ⊗ 1 + 1⊗X)

= idk[X] (X)︸ ︷︷ ︸
=X

⊗ εX (1)︸ ︷︷ ︸
=1

(since εX is a k-algebra
homomorphism)

+ idk[X] (1)⊗ εX (X)︸ ︷︷ ︸
=0

(
by the definition of idk[X]⊗εX

)
= X ⊗ 1 + idk[X] (1)⊗ 0︸ ︷︷ ︸

=0

= X ⊗ 1

with
kanlk[X] (X) = X ⊗ 1

(
by the definition of kanlk[X]

)
,

we obtain ((
idk[X]⊗εX

)
◦∆X

)
(X) = kanlk[X] (X) .

Thus, Corollary 33.6 (applied to A = k [X]⊗k, f =
(
idk[X]⊗εX

)
◦∆X and g = kanlk[X])

yields (
idk[X]⊗εX

)
◦∆X = kanlk[X]

(since
(
idk[X]⊗εX

)
◦∆X and kanlk[X] are k-algebra homomorphisms).

Comparing((
εX ⊗ idk[X]

)
◦∆X

)
(X)

=
(
εX ⊗ idk[X]

) ∆X (X)︸ ︷︷ ︸
=X⊗1+1⊗X

 =
(
εX ⊗ idk[X]

)
(X ⊗ 1 + 1⊗X)

= εX (X)︸ ︷︷ ︸
=0

⊗ idk[X] (1) + εX (1)︸ ︷︷ ︸
=1

(since εX is a k-algebra
homomorphism)

⊗ idk[X] (X)︸ ︷︷ ︸
=X

(
by the definition of εX ⊗ idk[X]

)
= 0⊗ idk[X] (1)︸ ︷︷ ︸

=0

+1⊗X = 1⊗X

with
kanrk[X] (X) = 1⊗X

(
by the definition of kanrk[X]

)
,
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we obtain ((
εX ⊗ idk[X]

)
◦∆X

)
(X) = kanrk[X] (X) .

Thus, Corollary 33.6 (applied to A = k⊗k [X], f =
(
εX ⊗ idk[X]

)
◦∆X and g = kanrk[X])

yields (
εX ⊗ idk[X]

)
◦∆X = kanrk[X]

(since
(
εX ⊗ idk[X]

)
◦∆X and kanrk[X] are k-algebra homomorphisms).

Recall the definition of a k-coalgebra: If C is a k-vector space, and ∆ : C → C ⊗C
and ε : C → k are two k-linear maps, then (C,∆, ε) is a k-coalgebra if and only if the
equalities

(idC ⊗∆) ◦∆ = (∆⊗ idC) ◦∆,

(idC ⊗ε) ◦∆ = kanlC ,

(ε⊗ idC) ◦∆ = kanrC

hold. Applying this to (C,∆, ε) = (k [X] ,∆X , εX), we conclude that (k [X] ,∆X , εX)
is a k-coalgebra if and only if the equalities(

idk[X]⊗∆X

)
◦∆X =

(
∆X ⊗ idk[X]

)
◦∆X , (392)(

idk[X]⊗εX
)
◦∆X = kanlk[X], (393)(

εX ⊗ idk[X]

)
◦∆X = kanrk[X] (394)

hold. Since we know that these equalities (392), (393) and (394) hold, this yields that
(k [X] ,∆X , εX) is a k-coalgebra.

Now, let us recall the definition of a k-bialgebra, or at least one possible definition
of it: If C is a k-algebra, and ∆ : C → C ⊗ C and ε : C → k are two k-linear maps
such that (C,∆, ε) is a k-coalgebra, then (C,∆, ε) (endowed with the given k-algebra
structure on C) is a k-bialgebra if and only if the maps ∆ and ε are k-algebra homomor-
phisms. Applying this to (C,∆, ε) = (k [X] ,∆X , εX), we conclude that (k [X] ,∆X , εX)
is a k-bialgebra if and only if the maps ∆X and εX are k-algebra homomorphisms (be-
cause we already know that (k [X] ,∆X , εX) is a k-coalgebra). Thus, (k [X] ,∆X , εX) is
a k-bialgebra (since we know that the maps ∆X and εX are k-algebra homomorphisms).
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The map ∆X is graded189. The map εX is graded190.

189Proof. Recall that k [X] is a graded k-algebra. Hence, k [X]⊗ k [X] is a graded k-algebra as well
(since the tensor product of two graded k-algebras always is a graded k-algebra). Denote this graded
k-algebra k [X]⊗ k [X] by A.

We know that the map ∆X is a k-algebra homomorphism k [X]→ k [X]⊗k [X]. Since k [X]⊗k [X] =
A, this rewrites as follows: The map ∆X is a k-algebra homomorphism k [X]→ A.

By the definition of the grading on k [X]⊗k [X], we have (k [X]⊗ k [X])` =
∑̀
i=0

(k [X])i⊗ (k [X])`−i

for every ` ∈ N. Applying this to ` = 1, we obtain

(k [X]⊗ k [X])1 =

1∑
i=0

(k [X])i ⊗ (k [X])1−i = (k [X])0 ⊗ (k [X])1−0︸ ︷︷ ︸
=(k[X])1

+ (k [X])1 ⊗ (k [X])1−1︸ ︷︷ ︸
=(k[X])0

= (k [X])0 ⊗ (k [X])1 + (k [X])1 ⊗ (k [X])0 .

Now,

∆X (X) = X ⊗ 1 + 1⊗X = 1︸︷︷︸
∈(k[X])0

⊗ X︸︷︷︸
∈(k[X])1

+ X︸︷︷︸
∈(k[X])1

⊗ 1︸︷︷︸
∈(k[X])0

∈ (k [X])0 ⊗ (k [X])1 + (k [X])1 ⊗ (k [X])0 =

k [X]⊗ k [X]︸ ︷︷ ︸
=A


1

= A1.

Now, let us show that
∆X (Xn) ∈ An for every n ∈ N. (395)

Proof of (395): We will prove (395) by induction over n:
Induction base: Since X0 = 1, we have

∆X

(
X0
)

= ∆X (1) = 1A (since ∆X is a k-algebra homomorphism)

∈ A0

(
since A is a graded k-algebra, and since any

graded k-algebra B satisfies 1B ∈ B0

)
.

In other words, (395) is proven for n = 0. This completes the induction base.
Induction step: Let N ∈ N. Assume that (395) holds for n = N . We need to show that (395) holds

for n = N + 1.
We have ∆X

(
XN

)
∈ AN (since (395) holds for n = N). But every graded k-algebra B and any

two nonnegative integers u and v satisfy BuBv ⊆ Bu+v. Applying this to B = A, u = N and v = 1,
we obtain ANA1 ⊆ AN+1. Now, XN+1 = XNX, so that

∆X

(
XN+1

)
= ∆X

(
XNX

)
= ∆X

(
XN

)︸ ︷︷ ︸
∈AN

·∆X (X)︸ ︷︷ ︸
∈A1

(since ∆X is a k-algebra homomorphism)

∈ ANA1 ⊆ AN+1.

In other words, (395) holds for n = N + 1. This completes the induction step. The induction proof of
(395) is thus complete.

Now, let n ∈ N. We know that (k [X])n is a free k-module with basis (Xn). Thus, the k-module
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Let us now recall one possible definition of a graded k-coalgebra: If C is a graded
k-vector space, and ∆ : C → C ⊗ C and ε : C → k are two k-linear maps such that
(C,∆, ε) is a k-coalgebra, then the k-coalgebra (C,∆, ε) is graded if and only if the
maps ∆ and ε are graded. Applying this to (C,∆, ε) = (k [X] ,∆X , εX), we conclude
that the k-coalgebra (k [X] ,∆X , εX) is graded if and only if the maps ∆X and εX are
graded (because we already know that (k [X] ,∆X , εX) is a k-coalgebra). Thus, the
k-coalgebra (k [X] ,∆X , εX) is graded (since we know that the maps ∆X and εX are
graded). Combining this with the fact that the k-algebra k [X] is graded, we conclude
that the k-bialgebra (k [X] ,∆X , εX) is graded.

Denote the k-coalgebra (k [X] ,∆X , εX) by k [X]. Then, ∆k[X] = ∆X and εk[X] = εX .
The graded k-coalgebra k [X] is connected191. Since the graded k-coalgebra k [X]

(k [X])n is spanned by (Xn). In other words, (k [X])n = k ·Xn. Thus,

∆X ((k [X])n) = ∆X (k ·Xn) = k ·∆X (Xn)︸ ︷︷ ︸
∈An

(by (395))

(since ∆X is k-linear)

⊆ k ·An ⊆ An (since An is a k-vector space) .

Now, forget that we fixed n. We thus have proven that ∆X ((k [X])n) ⊆ An for every n ∈ N. In other
words, the map ∆X is graded, qed.

190Proof. Let us show that

εX (Xn) ∈ kn for every n ∈ N. (396)

Proof of (396): Let n ∈ N. If n > 0, then

εX (Xn) =

εX (X)︸ ︷︷ ︸
=0

n

(since εX is a k-algebra homomorphism)

= 0n = 0 (since n > 0)

∈ kn (since kn is a k-vector space) .

Hence, if n > 0, then (396) holds. Thus, for the rest of the proof of (396), we can WLOG assume that
we don’t have n > 0. Assume this.

We have n ∈ N, but we don’t have n > 0. Hence, n = 0. Thus, kn = k0 = k, so that εX (Xn) ∈
k = kn. Hence, (396) is proven.

Now, let n ∈ N. We know that (k [X])n is a free k-module with basis (Xn). Thus, the k-module
(k [X])n is spanned by (Xn). In other words, (k [X])n = k ·Xn. Thus,

εX ((k [X])n) = εX (k ·Xn) = k · εX (Xn)︸ ︷︷ ︸
∈kn

(by (396))

(since εX is k-linear)

⊆ k · kn ⊆ kn (since kn is a k-vector space) .

Now, forget that we fixed n. We thus have proven that εX ((k [X])n) ⊆ kn for every n ∈ N. In other
words, the map εX is graded, qed.

191Proof. Recall that (k [X])n is a free k-module with basis (Xn) for every n ∈ N. Applied to
n = 0, this yields that (k [X])0 is a free k-module with basis

(
X0
)
. Hence, the k-module (k [X])0 is

spanned by
(
X0
)
. In other words, (k [X])0 = k · X0. Thus, (k [X])0 = k · X0︸︷︷︸

=1

= k · 1. Moreover,

εk[X]︸ ︷︷ ︸
=εX

(1) = εX (1) = 1. Hence, Remark 16.12 (applied to C = k [X] and λ = 1) yields that the graded

k-coalgebra k [X] is connected, qed.
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is the graded k-coalgebra (k [X] ,∆X , εX), this rewrites as follows: The graded k-
coalgebra (k [X] ,∆X , εX) is connected. Combining this with the fact that (k [X] ,∆X , εX)
is a graded k-bialgebra, we conclude that (k [X] ,∆X , εX) is a connected graded k-
bialgebra. Combining this with the fact that k [X] is a commutative k-algebra, we ob-
tain that (k [X] ,∆X , εX) is a commutative connected graded k-bialgebra. This proves
Theorem 33.7.

Proposition 33.9. Let k be a field. Let X be a new symbol. Denote
the commutative connected graded k-bialgebra (k [X] ,∆X , εX) defined in
Theorem 33.7 simply by k [X].

Let A be a k-bialgebra. Let a ∈ A be a primitive element of A. Then,
evA, a : k [X]→ A is a k-bialgebra homomorphism.

Proof of Proposition 33.9. By the definition of evA, a, we know that evA, a is a k-
algebra homomorphism. Thus, evA, a (1) = 1A.

We will use the notations defined in Theorem 33.7. The k-bialgebra k [X] is defined
as (k [X] ,∆X , εX). Thus, ∆k[X] = ∆X and εk[X] = εX .

As in the proof of Theorem 33.7, we can show that

∆X (X) = X ⊗ 1 + 1⊗X and εX (X) = 0.

Since A is a k-bialgebra, we know that ∆A and εA are k-algebra homomorphisms
(due to the axioms of a k-bialgebra).

We know that evA, a and evA, a are k-algebra homomorphisms. Thus, their tensor
product evA, a⊗ evA, a is a k-algebra homomorphism (since the tensor product of two
k-algebra homomorphisms is always a k-algebra homomorphism).

We know that evA, a⊗ evA, a and ∆k[X] are k-algebra homomorphisms. Thus, their
composition (evA, a⊗ evA, a) ◦∆k[X] is a k-algebra homomorphism (since the composi-
tion of two k-algebra homomorphisms is always a k-algebra homomorphism).

We know that ∆A and evA, a are k-algebra homomorphisms. Thus, their composi-
tion ∆A ◦ evA, a is a k-algebra homomorphism (since the composition of two k-algebra
homomorphisms is always a k-algebra homomorphism).

We know that εA and evA, a are k-algebra homomorphisms. Thus, their composi-
tion εA ◦ evA, a is a k-algebra homomorphism (since the composition of two k-algebra
homomorphisms is always a k-algebra homomorphism).

Comparing(
(evA, a⊗ evA, a) ◦∆k[X]

)
(X)

= (evA, a⊗ evA, a)

∆k[X]︸ ︷︷ ︸
=∆X

(X)

 = (evA, a⊗ evA, a)

 ∆X (X)︸ ︷︷ ︸
=X⊗1+1⊗X


= (evA, a⊗ evA, a) (X ⊗ 1 + 1⊗X) = evA, a (X)︸ ︷︷ ︸

=a
(by (391))

⊗ evA, a (1)︸ ︷︷ ︸
=1A

+ evA, a (1)︸ ︷︷ ︸
=1A

⊗ evA, a (X)︸ ︷︷ ︸
=a

(by (391))

(by the definition of evA, a⊗ evA, a)

= a⊗ 1A + 1A ⊗ a
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with

(∆A ◦ evA, a) (X) = ∆A

evA, a (X)︸ ︷︷ ︸
=a

(by (391))

 = ∆A (a)

= a⊗ 1A + 1A ⊗ a (since a is primitive) ,

we obtain (
(evA, a⊗ evA, a) ◦∆k[X]

)
(X) = (∆A ◦ evA, a) (X) .

Thus, Corollary 33.6 (applied to A⊗A, (evA, a⊗ evA, a)◦∆k[X] and ∆A ◦evA, a instead
of A, f and g) yields

(evA, a⊗ evA, a) ◦∆k[X] = ∆A ◦ evA, a

(since (evA, a⊗ evA, a) ◦∆k[X] and ∆A ◦ evA, a are k-algebra homomorphisms).
But A is a k-bialgebra. Hence, Proposition 2.2 (applied to C = A) yields that

(A, 1A) is a unital coalgebra. Since a is a primitive element of A, we have a ∈ PrimA
(since PrimA is the set of all primitive elements of A). Thus, Remark 6.3 (applied to
H = A and x = a) yields that ε (a) = 0.

Comparing
εk[X]︸︷︷︸
=εX

(X) = εX (X) = 0

with

(εA ◦ evA, a) (X) = εA

evA, a (X)︸ ︷︷ ︸
=a

(by (391))

 = εA (a) = ε (a) = 0,

we obtain
εk[X] (X) = (εA ◦ evA, a) (X) .

Thus, Corollary 33.6 (applied to k, εk[X] and εA ◦ evA, a instead of A, f and g) yields

εk[X] = εA ◦ evA, a

(since εk[X] and εA ◦ evA, a are k-algebra homomorphisms).
Now, recall the definition of a k-coalgebra homomorphism: If C and D are two

k-coalgebras and f : C → D is a k-linear map, then the map f is a k-coalgebra
homomorphism if and only if it satisfies the equalities (f ⊗ f) ◦ ∆C = ∆D ◦ f and
εC = εD◦f . Applying this to C = k [X], D = A and f = evA, a, we obtain the following:
The map evA, a is a k-coalgebra homomorphism if and only if it satisfies the equalities
(evA, a⊗ evA, a)◦∆k[X] = ∆A ◦ evA, a and εk[X] = εA ◦ evA, a. Thus, the map evA, a is a
k-coalgebra homomorphism (because it satisfies the equalities (evA, a⊗ evA, a)◦∆k[X] =
∆A ◦ evA, a and εk[X] = εA ◦ evA, a). Combining this with the fact that evA, a is a k-
algebra homomorphism, we obtain that evA, a is a k-bialgebra homomorphism. This
proves Proposition 33.9.
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Proof of Theorem 33.2. Since F is a k-algebra homomorphism, we have F (1H) = 1A.
Thus, F ∈ G (H,A) 192. Hence, LogF is a well-defined element of g (H,A).

We have v ∈ PrimH. This shows that v is a primitive element of H (since PrimH
is the set of all primitive elements of H).

Let X be a new symbol. Denote the commutative connected graded k-bialgebra
(k [X] ,∆X , εX) defined in Theorem 33.7 simply by k [X]. Then, ∆k[X] = ∆X and
εk[X] = εX .

As in the proof of Theorem 33.7, we can show that εX is a k-algebra homomorphism,
and that εX (X) = 0.

Recall that k [X] is a connected graded k-bialgebra, thus a connected graded k-
coalgebra. Hence, k [X] canonically becomes a filtered k-coalgebra (according to Con-
vention 16.7, applied to C = k [X]). Remark 16.11 (applied to C = k [X]) shows that
the graded k-coalgebra k [X] is connected if and only if the filtered k-coalgebra k [X]
is connected. Thus, the filtered k-coalgebra k [X] is connected (since we know that the
graded k-coalgebra k [X] is connected).

Proposition 33.9 (applied to H and v instead of A and a) yields that evH, v : k [X]→
H is a k-bialgebra homomorphism. In particular, this shows that evH, v : k [X] → H
is a k-coalgebra homomorphism.

Since n > 1, we have n− 1 > 0. Thus,

εk[X]︸︷︷︸
=εX

(
Xn−1

)
= εX

(
Xn−1

)

=

εX (X)︸ ︷︷ ︸
=0

n−1

(since εX is a k-algebra homomorphism)

= 0n−1 = 0 (since n− 1 > 0) .

Also, εk[X]︸︷︷︸
=εX

(X) = εX (X) = 0.

We know that evH, v and F are k-algebra homomorphisms. Hence, their composi-
tion F ◦ evH, v also is a k-algebra homomorphism (since the composition of any two
k-algebra homomorphisms must be a k-algebra homomorphism). Thus, we can apply
Corollary 31.4 to k [X], F ◦ evH, v, X

n−1 and X instead of H, F , x and y (because
εk[X] (Xn−1) = 0 and εk[X] (X) = 0). As a consequence, we obtain that Log (F ◦ evH, v)
is a well-defined element of g (k [X] , A) and satisfies

(Log (F ◦ evH, v))
(
Xn−1 ·X

)
= 0. (397)

Recall that evH, v : k [X]→ H is a k-algebra homomorphism, so that evH, v
(
1k[X]

)
=

1H . Hence, Proposition 31.1 (e) (applied to k [X], H and evH, v instead of D, C and
ϕ) yields that F ◦ evH, v ∈ G (k [X] , A) and that Log (F ◦ evH, v) = (LogF ) ◦ evH, v.

192Proof. By the definition of G (H,A), we have G (H,A) = {f ∈ L (H,A) | f (1H) = 1A}.
Now, since F ∈ L (H,A) and F (1H) = 1A, we have F ∈ {f ∈ L (H,A) | f (1H) = 1A} = G (H,A),

qed.
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Thus, Log (F ◦ evH, v)︸ ︷︷ ︸
=(LogF )◦evH, v


 Xn−1 ·X︸ ︷︷ ︸

=X(n−1)+1=Xn


= ((LogF ) ◦ evH, v) (Xn)

= (LogF )

 evH, v (Xn)︸ ︷︷ ︸
=(evH, v(X))

n

(since evH, v is a k-algebra homomorphism)



= (LogF )



 evH, v (X)︸ ︷︷ ︸
=v

(by (391), applied to H and v
instead of A and a)


n = (LogF ) (vn) .

Comparing this with (397), we obtain (LogF ) (vn) = 0. This completes the proof of
Theorem 33.2.

Proof of Theorem 33.1. We know that id : H → H is a k-algebra homomorphism.
Hence, we can apply Theorem 33.2 to A = H and F = id. Thus, we conclude that
id ∈ G (H,H) and that (Log id) (vn) = 0. This proves Theorem 33.1.

Using Theorem 33.2 and Theorem 32.1, we can prove a “symmetrized-product”
version of Theorem 33.2:

Theorem 33.10. Let k be a field of characteristic 0. Let H be a connected
filtered k-coalgebra and, at the same time, a k-bialgebra with the same
underlying k-coalgebra structure. Let A be a k-algebra. Let F : H → A
be a k-algebra homomorphism. Let n ∈ N be such that n > 1. Let v1, v2,
. . ., vn be n elements of PrimH. Then, F ∈ G (H,A) and

(LogF )

(∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n)

)
= 0.

Proof of Theorem 33.10. We have F ∈ G (H,A) (this can be proven just as in the
proof of Theorem 33.2).

We have vs ∈ PrimH for every s ∈ {1, 2, . . . , n}. For every S ∈ P ({1, 2, . . . , n}),
we have ∑

s∈S

vs︸︷︷︸
∈PrimH

∈
∑
s∈S

PrimH ⊆ PrimH

(since PrimH is a k-vector space). Hence, for every S ∈ P ({1, 2, . . . , n}), we have

(LogF )

((∑
s∈S

vs

)n)
= 0 (398)
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(by Theorem 33.2, applied to v =
∑
s∈S

vs). Now, Theorem 32.1 (applied to H instead of

A) yields ∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) =
∑

S∈P({1,2,...,n})

(−1)n−|S|
(∑
s∈S

vs

)n

.

Applying LogF to this equality, we obtain

(LogF )

(∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n)

)

= (LogF )

 ∑
S∈P({1,2,...,n})

(−1)n−|S|
(∑
s∈S

vs

)n


=
∑

S∈P({1,2,...,n})

(−1)n−|S| (LogF )

((∑
s∈S

vs

)n)
︸ ︷︷ ︸

=0
(by (398))

(since LogF is k-linear)

=
∑

S∈P({1,2,...,n})

(−1)n−|S| 0 = 0.

This proves Theorem 33.10.

Of course, we can specialize Theorem 33.10 to a “symmetrized-product” version of
Theorem 33.1:

Theorem 33.11. Let k be a field of characteristic 0. Let H be a connected
filtered k-coalgebra and, at the same time, a k-bialgebra with the same
underlying k-coalgebra structure. Let n ∈ N be such that n > 1. Let v1,
v2, . . ., vn be n elements of PrimH. Then,

(Log id)

(∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n)

)
= 0.

Proof of Theorem 33.11. We know that id : H → H is a k-algebra homomorphism.
Hence, we can apply Theorem 33.10 to A = H and F = id. Thus, we conclude that id ∈

G (H,H) and that (Log id)

( ∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n)

)
= 0. This proves Theorem 33.11.

§34. Finishing the proof of Cartier-Milnor-Moore

We are now going to prepare for finishing the proof of Theorem 17.2. The final result
we need is the following universal property of the universal enveloping algebra as a
Hopf algebra. Before we state it, let us recall the universal property of the universal
enveloping algebra as an algebra:
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Proposition 34.1. Let k be a field. Let g be a Lie algebra. Consider the
universal enveloping algebra U (g) of g.

Let A be any k-algebra. Consider A as a Lie algebra under the commutator
of the multiplication.

Let ιg : g → U (g) be the canonical map from the Lie algebra g into its
universal enveloping algebra U (g).

Let f : g → A be a homomorphism of Lie algebras. Then, there exists a
unique k-algebra homomorphism F : U (g)→ A satisfying F ◦ ιg = f .

Definition 34.2. In the situation of Proposition 34.1, the unique k-algebra
homomorphism F : U (g) → A satisfying F ◦ ιg = f will be denoted by
Ulift f .

Proposition 34.3. Let k be a field. Let g be a Lie algebra. Consider the
universal enveloping algebra U (g) of g equipped with its canonical Hopf
algebra structure.

Let H be any k-bialgebra. Consider H as a Lie algebra under the commu-
tator of the multiplication.

Let f : g → H be a homomorphism of Lie algebras such that f (g) ⊆
PrimH. Then, Ulift f : U (g)→ H is a k-bialgebra homomorphism.

Proof of Proposition 34.3. Let ιg : g→ U (g) be the canonical map from the Lie algebra
g into its universal enveloping algebra U (g).

By the definition of Ulift f , we know that Ulift f is the unique k-algebra homomor-
phism F : U (g)→ H satisfying F ◦ιg = f . Hence, Ulift f is a k-algebra homomorphism
U (g)→ H and satisfies (Ulift f) ◦ ιg = f . Since Ulift f is a k-algebra homomorphism,
it satisfies (Ulift f)

(
1U(g)

)
= 1H .

Clearly, (Ulift f)⊗(Ulift f) is a k-algebra homomorphism (since Ulift f is a k-algebra
homomorphism, and since the tensor product of two k-algebra homomorphisms is a k-
algebra homomorphism).

By the axioms of a k-bialgebra, we know that ∆B and εB are k-algebra homomor-
phisms for every k-bialgebra B. Applying this to B = U (g), we see that ∆U(g) and
εU(g) are k-algebra homomorphisms.

Since ∆U(g) and (Ulift f)⊗(Ulift f) are k-algebra homomorphisms, we conclude that
((Ulift f)⊗ (Ulift f)) ◦ ∆U(g) is a k-algebra homomorphism (because the composition
of two k-algebra homomorphisms is a k-algebra homomorphism).

On the other hand, by the axioms of a k-bialgebra, we know that ∆B and εB are
k-algebra homomorphisms for every k-bialgebra B. Applying this to B = H, we see
that ∆H and εH are k-algebra homomorphisms.

Since Ulift f and ∆H are k-algebra homomorphisms, we conclude that ∆H ◦(Ulift f)
is a k-algebra homomorphism (because the composition of two k-algebra homomor-
phisms is a k-algebra homomorphism).

Consider H ⊗ H as a Lie algebra under the commutator of the multiplication.
Then, ∆H is a Lie algebra homomorphism (since ∆H is a k-algebra homomorphism).
Since ∆H and f are Lie algebra homomorphisms, the composition ∆H ◦ f is a Lie
algebra homomorphism (since the composition of two Lie algebra homomorphisms
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is a Lie algebra homomorphism). Hence, Proposition 34.1 (applied to H ⊗ H and
∆H ◦ f instead of A and f) yields that there exists a unique k-algebra homomorphism
F : U (g) → H ⊗ H satisfying F ◦ ιg = ∆H ◦ f . In particular, there exists at most
one such homomorphism. In other words,(

any two k-algebra homomorphisms F : U (g)→ H ⊗H
satisfying F ◦ ιg = ∆H ◦ f must be equal

)
. (399)

Let x ∈ g. Then, ∆U(g) (ιg (x)) = ιg (x)⊗ 1U(g) + 1U(g) ⊗ ιg (x) due to the definition
of the comultiplication on the universal enveloping algebra U (g). Now,(

((Ulift f)⊗ (Ulift f)) ◦∆U(g) ◦ ιg
)

(x)

= ((Ulift f)⊗ (Ulift f))
(
∆U(g) (ιg (x))

)︸ ︷︷ ︸
=ιg(x)⊗1U(g)+1U(g)⊗ιg(x)

= ((Ulift f)⊗ (Ulift f))
(
ιg (x)⊗ 1U(g) + 1U(g) ⊗ ιg (x)

)
= (Ulift f) (ιg (x))︸ ︷︷ ︸

=((Ulift f)◦ιg)(x)=f(x)
(since (Ulift f)◦ιg=f)

⊗ (Ulift f)
(
1U(g)

)︸ ︷︷ ︸
=1H

+ (Ulift f)
(
1U(g)

)︸ ︷︷ ︸
=1H

⊗ (Ulift f) (ιg (x))︸ ︷︷ ︸
=((Ulift f)◦ιg)(x)=f(x)
(since (Ulift f)◦ιg=f)

(by the definition of (Ulift f)⊗ (Ulift f))

= f (x)⊗ 1H + 1H ⊗ f (x) = ∆H (f (x)) since f

 x︸︷︷︸
∈g

 ∈ f (g) ⊆ PrimH, so that f (x) is primitive, and thus

∆H (f (x)) = f (x)⊗ 1H + 1H ⊗ f (x)


= (∆H ◦ f) (x) .

Now, forget that we fixed x. We thus have shown that(
((Ulift f)⊗ (Ulift f)) ◦∆U(g) ◦ ιg

)
(x) = (∆H ◦ f) (x)

for every x ∈ g. In other words, ((Ulift f)⊗ (Ulift f)) ◦ ∆U(g) ◦ ιg = ∆H ◦ f . Hence,
((Ulift f)⊗ (Ulift f))◦∆U(g) is a k-algebra homomorphism F : U (g)→ H⊗H satisfying
F ◦ ιg = ∆H ◦ f (since we know that ((Ulift f)⊗ (Ulift f)) ◦ ∆U(g) is a k-algebra
homomorphism).

On the other hand, ∆H ◦ (Ulift f) is a k-algebra homomorphism and satisfies ∆H ◦
(Ulift f) ◦ ιg︸ ︷︷ ︸

=f

= ∆H ◦f . Hence, ∆H ◦(Ulift f) is a k-algebra homomorphism F : U (g)→

H ⊗H satisfying F ◦ ιg = ∆H ◦ f .
Now, we know that ((Ulift f)⊗ (Ulift f)) ◦ ∆U(g) and ∆H ◦ (Ulift f) are two k-

algebra homomorphisms F : U (g) → H ⊗ H satisfying F ◦ ιg = ∆H ◦ f . Hence,
((Ulift f)⊗ (Ulift f))◦∆U(g) and ∆H ◦ (Ulift f) must be equal (because (399) says that
any two k-algebra homomorphisms F : U (g)→ H⊗H satisfying F ◦ ιg = ∆H ◦f must
be equal). In other words,

((Ulift f)⊗ (Ulift f)) ◦∆U(g) = ∆H ◦ (Ulift f) . (400)

On the other hand, consider k endowed with the trivial Lie algebra structure (which
is also given by the commutator of the multiplication on k). Then, 0 : U (g) → k is
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a Lie algebra homomorphism (since the zero map between two Lie algebras always is
a Lie algebra homomorphism). Hence, Proposition 34.1 (applied to k and 0 instead
of A and f) yields that there exists a unique k-algebra homomorphism F : U (g)→ k
satisfying F ◦ ιg = 0. In particular, there exists at most one such homomorphism. In
other words, (

any two k-algebra homomorphisms F : U (g)→ k
satisfying F ◦ ιg = 0 must be equal

)
. (401)

Now, every x ∈ g satisfies
(
εU(g) ◦ ιg

)
(x) = εU(g) (ιg (x)) = 0 (by the definition

of the counit on the universal enveloping algebra U (g)). Thus, every x ∈ g satisfies(
εU(g) ◦ ιg

)
(x) = 0 = 0 (x). In other words, εU(g) ◦ ιg = 0. Since εU(g) is a k-algebra

homomorphism, this yields that εU(g) is a k-algebra homomorphism F : U (g) → k
satisfying F ◦ ιg = 0.

On the other hand, let x ∈ g. Then, f

 x︸︷︷︸
∈g

 ∈ f (g) ⊆ PrimH, so that f (x) is

a primitive element of H. Since H is a unital coalgebra (by Proposition 2.2), we can
apply Remark 6.3 to f (x) instead of x. As a result, we obtain ε (f (x)) = 0. In other
words, εH (f (x)) = 0. Now,εH ◦ (Ulift f) ◦ ιg︸ ︷︷ ︸

=f

 (x) = (εH ◦ f) (x) = εH (f (x)) = 0 = 0 (x) .

Now, forget that we fixed x. We thus have proven that (εH ◦ (Ulift f) ◦ ιg) (x) =
0 (x) for every x ∈ g. In other words, εH ◦ (Ulift f) ◦ ιg = 0. Since εH and Ulift f
are k-algebra homomorphisms, their composition εH ◦ (Ulift f) is a k-algebra homo-
morphism (since the composition of any two k-algebra homomorphisms is a k-algebra
homomorphism). Since εH ◦(Ulift f)◦ιg = 0, this yields that εH ◦(Ulift f) is a k-algebra
homomorphism F : U (g)→ k satisfying F ◦ ιg = 0.

Now, we know that εU(g) and εH ◦ (Ulift f) are two k-algebra homomorphisms
F : U (g)→ k satisfying F ◦ ιg = 0. Hence, εU(g) and εH ◦ (Ulift f) must be equal (since
(401) says that any two k-algebra homomorphisms F : U (g)→ k satisfying F ◦ ιg = 0
must be equal). In other words,

εU(g) = εH ◦ (Ulift f) .

Combined with (400), this yields that Ulift f is a k-coalgebra homomorphism. Com-
bining this with the fact that Ulift f is a k-algebra homomorphism, we conclude that
Ulift f is a k-bialgebra homomorphism. This proves Proposition 34.3.

We are getting closer to the proof of the Cartier-Milnor-Moore theorem. Let us
recall the definition of the tensor Hopf algebra:

Theorem 34.4. Let k be a field. Let V be a k-vector space. Then, there
exists a unique k-bialgebra structure on the tensor algebra ⊗V whose co-
multiplication ∆⊗V and counity ε⊗V satisfy(

∆⊗V (v) = v ⊗ 1⊗V + 1⊗V ⊗ v and ε⊗V (v) = 0
for every v ∈ V

)
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(where we consider V as a subspace of ⊗V ).

Definition 34.5. Let k be a field. Let V be a k-vector space. Then,
when we speak of the “k-bialgebra ⊗V ”, we mean the tensor algebra ⊗V
endowed with the unique k-bialgebra structure whose comultiplication ∆⊗V
and counity ε⊗V satisfy(

∆⊗V (v) = v ⊗ 1⊗V + 1⊗V ⊗ v and ε⊗V (v) = 0
for every v ∈ V

)
(where we consider V as a subspace of ⊗V ). (This is well-defined due to
Theorem 34.4.)

Theorem 34.6. Let k be a field. Let V be a k-vector space. Consider V
as a subspace of ⊗V .

(a) The k-bialgebra ⊗V is a Hopf algebra, whose antipode S⊗V satisfies
S⊗V (v) = −v for every v ∈ V .

(b) The k-bialgebra ⊗V is cocommutative.

(c) The standard grading on the k-vector space⊗V (the one where (⊗V )n =
V ⊗n for every n ∈ N) makes the k-bialgebra ⊗V into a graded k-bialgebra.

(d) This graded k-bialgebra ⊗V is connected.

We are now going to state similar properties of the universal enveloping Hopf alge-
bra:

Theorem 34.7. Let k be a field. Let g be a Lie algebra. Let U (g) denote
the universal enveloping algebra of g.

Let ιg : g → U (g) be the canonical map from the Lie algebra g into its
universal enveloping algebra U (g).

Then, there exists a unique k-bialgebra structure on the k-algebra U (g)
whose comultiplication ∆U(g) and counity εU(g) satisfy(

∆U(g) (v) = v ⊗ 1U(g) + 1U(g) ⊗ v and εU(g) (v) = 0
for every v ∈ ιg (g)

)
.

Definition 34.8. Let k be a field. Let g be a Lie algebra. Let U (g) denote
the universal enveloping algebra of g.

Let ιg : g → U (g) be the canonical map from the Lie algebra g into its
universal enveloping algebra U (g).

Then, when we speak of the “k-bialgebra U (g)”, we mean the universal
enveloping algebra U (g) endowed with the unique k-bialgebra structure
whose comultiplication ∆U(g) and counity εU(g) satisfy(

∆U(g) (v) = v ⊗ 1U(g) + 1U(g) ⊗ v and εU(g) (v) = 0
for every v ∈ ιg (g)

)
.

(402)
(This is well-defined due to Theorem 34.7.)
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Theorem 34.9. Let k be a field. Let g be a Lie algebra. Let U (g) denote
the universal enveloping algebra of g.

Let ιg : g → U (g) be the canonical map from the Lie algebra g into its
universal enveloping algebra U (g).

(a) We have U (g) =
∑
n∈N

(ιg (g))n.

(b) The family

(
i∑

n=0

(ιg (g))n
)
i∈N

is a filtration of the k-vector space U (g).

(c) The k-bialgebra U (g) endowed with the filtration

(
i∑

n=0

(ιg (g))n
)
i∈N

is

a connected filtered k-bialgebra.

(d) We have ιg (g) ⊆ Prim (U (g)).

(e) The k-bialgebra U (g) is cocommutative.

(f) The k-bialgebra U (g) is a Hopf algebra.

A simple way to prove Theorem 34.9 is to deduce it from analogous properties of
the tensor algebra ⊗g (which are either part of Theorem 34.6 or trivial), because the
k-bialgebra U (g) is a quotient of ⊗g (as a k-bialgebra, not just as a k-algebra). We
will use a different strategy. We will only prove the parts of Theorem 34.9 that we
need, though.

Before we prove Theorem 34.9 proper, here is an auxiliary result:

Proposition 34.10. Let k be a field. Let H be a k-bialgebra. Let V be a
k-vector subspace of H such that H =

∑
n∈N

V n and ∆H (V ) ⊆ V ⊗ (k · 1H)+

(k · 1H)⊗ V . Then:

(a) The family

(
i∑

n=0

V n

)
i∈N

is a filtration of the k-vector space H.

(b) The k-bialgebra H endowed with the filtration

(
i∑

n=0

V n

)
i∈N

is a con-

nected filtered k-bialgebra.

(c) If V ⊆ PrimH, then the k-bialgebra H is cocommutative.

Before we prove this, let us collect some auxiliary facts. The following lemma is a
basic fact about algebras:

Lemma 34.11. Let k be a field. Let U and V be two k-algebras. Let
A and C be two k-vector subspaces of U . Let B and D be two k-vector
subspaces of V . Then,

(A⊗B) · (C ⊗D) = (AC)⊗ (BD)

(as k-vector subspaces of the k-algebra U ⊗ V ).

Proof of Lemma 34.11. a) We have

αγ ∈ (AC)⊗ (BD) for every α ∈ A⊗B and γ ∈ C ⊗D. (403)
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Proof of (403): Let α ∈ A⊗B and γ ∈ C ⊗D.
We know that every tensor in a tensor product is a k-linear combination of pure

tensors. Applying this to the tensor α in the tensor product A⊗ B, we conclude that
the tensor α is a k-linear combination of pure tensors. In other words, there exists a
p ∈ N and elements µ1, µ2, . . ., µp of k and elements a1, a2, . . ., ap of A and elements

b1, b2, . . ., bp of B such that α =
p∑
i=1

µiai ⊗ bi. Consider this p, these µ1, µ2, . . ., µp,

these a1, a2, . . ., ap and these b1, b2, . . ., bp.
We know that every tensor in a tensor product is a k-linear combination of pure

tensors. Applying this to the tensor β in the tensor product C ⊗D, we conclude that
the tensor γ is a k-linear combination of pure tensors. In other words, there exists a
q ∈ N and elements ν1, ν2, . . ., νq of k and elements c1, c2, . . ., cq of C and elements

d1, d2, . . ., dq of D such that γ =
q∑
j=1

νjcj ⊗ dj. Consider this q, these ν1, ν2, . . ., νq,

these c1, c2, . . ., cq and these d1, d2, . . ., dq.

Multiplying the equality α =
p∑
i=1

µiai ⊗ bi with the equality γ =
q∑
j=1

νjcj ⊗ dj, we

obtain

αγ =

(
p∑
i=1

µiai ⊗ bi

)(
q∑
j=1

νjcj ⊗ dj

)

=

p∑
i=1

µi

q∑
j=1

νj (ai ⊗ bi) (cj ⊗ dj)︸ ︷︷ ︸
=aicj⊗bidj

=

p∑
i=1

µi

q∑
j=1

νj ai︸︷︷︸
∈A

cj︸︷︷︸
∈C

⊗ bi︸︷︷︸
∈B

dj︸︷︷︸
∈D

∈
p∑
i=1

µi

q∑
j=1

νj (AC)⊗ (BD) ⊆ (AC)⊗ (BD)

(since (AC)⊗ (BD) is a k-vector space). This proves (403).
b) We have

(A⊗B) · (C ⊗D) ⊆ (AC)⊗ (BD) . (404)

Proof of (404): Let ξ ∈ (A⊗B) · (C ⊗D). We know that (A⊗B) · (C ⊗D) is the
k-linear span of the set of all products of the form αγ with α ∈ A⊗B and γ ∈ C ⊗D
(by the definition of (A⊗B) · (C ⊗D)). In other words,

(A⊗B) · (C ⊗D)

= (the k-linear span of the set of all products of

the form αγ with α ∈ A⊗B and γ ∈ C ⊗D)

= (the set of all k-linear combinations of products of

the form αγ with α ∈ A⊗B and γ ∈ C ⊗D) .
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Hence,

ξ ∈ (A⊗B) · (C ⊗D)

= (the set of all k-linear combinations of products of

the form αγ with α ∈ A⊗B and γ ∈ C ⊗D) .

Thus, ξ is a k-linear combination of products of the form αγ with α ∈ A ⊗ B and
γ ∈ C ⊗ D. In other words, there exists an n ∈ N and elements λ1, λ2, . . ., λn of k
and elements α1, α2, . . ., αn of A⊗B and elements γ1, γ2, . . ., γn of C ⊗D such that

ξ =
n∑̀
=1

λ`α`γ`. Consider this n, these λ1, λ2, . . ., λn, these α1, α2, . . ., αn and these

γ1, γ2, . . ., γn. Then,

ξ =
n∑
`=1

λ` α`γ`︸︷︷︸
∈(AC)⊗(BD)

(by (403), applied to α=α` and γ=γ`)

∈
n∑
`=1

λ` (AC)⊗ (BD) ⊆ (AC)⊗ (BD)

(since (AC)⊗ (BD) is a k-vector space).
Now, forget that we fixed ξ. We thus have proven that every ξ ∈ (A⊗B) · (C ⊗D)

satisfies ξ ∈ (AC)⊗ (BD). In other words, (A⊗B) · (C ⊗D) ⊆ (AC)⊗ (BD). This
proves (404).

c) We have

x⊗ y ∈ (A⊗B) · (C ⊗D) for every x ∈ AC and y ∈ BD. (405)

Proof of (405): Let x ∈ AB and y ∈ CD.
We know that AC is the k-linear span of the set of all products of the form ac with

a ∈ A and c ∈ C (by the definition of AC). In other words,

AC

= (the k-linear span of the set of all products of the form ac with a ∈ A and c ∈ C)

= (the set of all k-linear combinations of products of the form ac with a ∈ A and c ∈ C) .

Hence,

x ∈ AC
= (the set of all k-linear combinations of products of the form ac with a ∈ A and c ∈ C) .

Thus, x is a k-linear combination of products of the form ac with a ∈ A and c ∈ C. In
other words, there exists an n ∈ N and elements µ1, µ2, . . ., µn of k and elements a1,

a2, . . ., an of A and elements c1, c2, . . ., cn of C such that x =
n∑
i=1

µiaici. Consider this

n, these µ1, µ2, . . ., µn, these a1, a2, . . ., an and these c1, c2, . . ., cn.
We know that BD is the k-linear span of the set of all products of the form bd with

b ∈ B and d ∈ D (by the definition of BD). In other words,

BD

= (the k-linear span of the set of all products of the form bd with b ∈ B and d ∈ D)

= (the set of all k-linear combinations of products of the form bd with b ∈ B and d ∈ D) .
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Hence,

y ∈ BD
= (the set of all k-linear combinations of products of the form bd with b ∈ B and d ∈ D) .

Thus, y is a k-linear combination of products of the form bd with b ∈ B and d ∈ D. In
other words, there exists an m ∈ N and elements ν1, ν2, . . ., νm of k and elements b1,

b2, . . ., bm of B and elements d1, d2, . . ., dm of D such that y =
m∑
j=1

νjbjdj. Consider

this m, these ν1, ν2, . . ., νm, these b1, b2, . . ., bm and these d1, d2, . . ., dm.

Taking the tensor product of the equalities x =
n∑
i=1

µiaici and y =
m∑
j=1

νjbjdj, we

obtain

x⊗ y =

(
n∑
i=1

µiaici

)
⊗

(
m∑
j=1

νjbjdj

)

=
n∑
i=1

µi

m∑
j=1

νj (aici)⊗ (bjdj)︸ ︷︷ ︸
=(ai⊗bj)·(ci⊗dj)

(since the tensor product is k-bilinear)

=
n∑
i=1

µi

m∑
j=1

νj

 ai︸︷︷︸
∈A

⊗ bj︸︷︷︸
∈B

 ·
 ci︸︷︷︸
∈C

⊗ dj︸︷︷︸
∈D


∈

n∑
i=1

µi

m∑
j=1

νj (A⊗B) · (C ⊗D) ⊆ (A⊗B) · (C ⊗D)

(since (A⊗B) · (C ⊗D) is a k-vector space). This proves (405).
d) We have

(AC)⊗ (BD) ⊆ (A⊗B) · (C ⊗D) . (406)

Proof. Let ξ ∈ (AC)⊗ (BD).
We know that every tensor in a tensor product is a k-linear combination of pure

tensors. Applying this to the tensor ξ in the tensor product (AC)⊗ (BD), we conclude
that the tensor ξ is a k-linear combination of pure tensors. In other words, there exists
a p ∈ N and elements λ1, λ2, . . ., λp of k and elements x1, x2, . . ., xp of AC and

elements y1, y2, . . ., yp of BD such that ξ =
p∑
i=1

λixi⊗ yi. Consider this p, these λ1, λ2,

. . ., λp, these x1, x2, . . ., xp and these y1, y2, . . ., yp. Now,

ξ =

p∑
i=1

λi xi ⊗ yi︸ ︷︷ ︸
∈(A⊗B)·(C⊗D)

(by (405), applied to x=xi and y=yi)

∈
p∑
i=1

λi (A⊗B) · (C ⊗D) ⊆ (A⊗B) · (C ⊗D)

(since (A⊗B) · (C ⊗D) is a k-vector space).
Now, forget that we fixed ξ. We thus have shown that every ξ ∈ (AC) ⊗ (BD)

satisfies ξ ∈ (A⊗B) · (C ⊗D). In other words, (AC) ⊗ (BD) ⊆ (A⊗B) · (C ⊗D).
This proves (406).

e) Combining (404) with (406), we obtain (A⊗B) · (C ⊗D) = (AC)⊗ (BD). This
proves Lemma 34.11.
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Here is another very simple property of algebras:

Lemma 34.12. Let k be a field. Let A and B be two k-algebras. Let
f : A → B and g : A → B be two k-algebra homomorphisms. Then,
Ker (f − g) is a k-subalgebra of A.

Proof of Lemma 34.12. The maps f and g are k-algebra homomorphisms, therefore
k-linear. Hence, their difference f − g is also k-linear. Thus, Ker (f − g) is a k-vector
subspace of A.

Since f is a k-algebra homomorphism, we have f (1A) = 1B. Since g is a k-algebra
homomorphism, we have g (1A) = 1B. Thus, (f − g) (1A) = f (1A)︸ ︷︷ ︸

=1B

− g (1A)︸ ︷︷ ︸
=1B

= 1B−1B =

0. Hence, 1A ∈ Ker (f − g).
Now, let a ∈ Ker (f − g) and b ∈ Ker (f − g). Then, (f − g) (a) = 0 (since a ∈

Ker (f − g)) and (f − g) (b) = 0 (since b ∈ Ker (f − g)).
Since f is a k-algebra homomorphism, we have f (ab) = f (a) f (b). Since g is

a k-algebra homomorphism, we have g (ab) = g (a) g (b). Since 0 = (f − g) (a) =
f (a) − g (a), we have g (a) = f (a). Since 0 = (f − g) (b) = f (b) − g (b), we have
g (b) = f (b). Now, g (ab) = g (a)︸︷︷︸

=f(a)

g (b)︸︷︷︸
=f(b)

= f (a) f (b) = f (ab), so that 0 = f (ab) −

g (ab) = (f − g) (ab). In other words, (f − g) (ab) = 0, so that ab ∈ Ker (f − g).
Now, forget that we fixed a and b. We thus have proven that ab ∈ Ker (f − g)

for any a ∈ Ker (f − g) and b ∈ Ker (f − g). Combined with the fact that 1A ∈
Ker (f − g), this yields that Ker (f − g) is a k-subalgebra of A (since Ker (f − g) is a
k-vector subspace of A). This proves Lemma 34.12.

The next two propositions we state are completely elementary:

Proposition 34.13. Let k be a field. Let C and D be two k-coalgebras.
Let f : C → D be an invertible k-coalgebra homomorphism. Then, f is a
k-coalgebra isomorphism.

Proposition 34.14. Let k be a field. Let C and D be two k-bialgebras.
Let f : C → D be an invertible k-bialgebra homomorphism. Then, f is a
k-bialgebra isomorphism.

Propositions 34.13 and 34.14 are obvious “from the right viewpoint”, but let us give
down-to-earth proofs for them.

Proof of Proposition 34.13. The map f is an invertible k-coalgebra homomorphism,
therefore an invertible k-linear map. Thus, its inverse f−1 is also a k-linear map.

Since f is a k-coalgebra homomorphism, we have ∆D ◦ f = (f ⊗ f) ◦ ∆C and
εD ◦ f = εC . The second of these two equalities yields εC = εD ◦ f . Now, (21) (applied
to U = C, V = D, W = C, U ′ = C, V ′ = D, W ′ = C, α = f , β = f−1, γ = f and
δ = f−1) yields (f−1 ◦ f)⊗ (f−1 ◦ f) = (f−1 ⊗ f−1) ◦ (f ⊗ f). Thus,(

f−1 ⊗ f−1
)
◦ (f ⊗ f) =

(
f−1 ◦ f

)︸ ︷︷ ︸
=idC

⊗
(
f−1 ◦ f

)︸ ︷︷ ︸
=idC

= idC ⊗ idC = idC⊗C .
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Now, (
f−1 ⊗ f−1

)
◦ ∆D ◦ f︸ ︷︷ ︸

=(f⊗f)◦∆C

=
(
f−1 ⊗ f−1

)
◦ (f ⊗ f)︸ ︷︷ ︸

=idC⊗C

◦∆C = ∆C .

Hence,
(
f−1 ⊗ f−1

)
◦∆D ◦ f︸ ︷︷ ︸

=∆C

◦f−1 = ∆C ◦ f−1, so that

∆C ◦ f−1 =
(
f−1 ⊗ f−1

)
◦∆D ◦ f ◦ f−1︸ ︷︷ ︸

=idD

=
(
f−1 ⊗ f−1

)
◦∆D.

Combined with εC ◦ f−1 = εD (this follows from εC︸︷︷︸
=εD◦f

◦f−1 = εD ◦ f ◦ f−1︸ ︷︷ ︸
=idD

= εD), this

shows that f−1 is a k-coalgebra homomorphism.
Now, we know that f is a k-coalgebra homomorphism which has an inverse, and

this inverse f−1 is also a k-coalgebra homomorphism. Hence, the homomorphism
f is invertible in the category of k-coalgebras. In other words, f is a k-coalgebra
isomorphism. Proposition 34.13 is thus proven.

Proof of Proposition 34.14. The map f is a k-bialgebra homomorphism, thus a k-
coalgebra homomorphism. Hence, f is an invertible k-coalgebra homomorphism. There-
fore, Proposition 34.13 shows that f is a k-coalgebra isomorphism. Thus, the inverse
f−1 of f is also a k-coalgebra homomorphism.

Also, f is a k-algebra homomorphism (since f is a k-bialgebra homomorphism).
Thus, f is an invertible k-algebra homomorphism. It is well-known that this yields
that f is a k-algebra isomorphism. Thus, we know that f is a k-algebra isomorphism.
Hence, the inverse f−1 of f is also a k-algebra homomorphism.

Now, f−1 is both a k-algebra homomorphism and a k-coalgebra homomorphism. In
other words, f−1 is a k-bialgebra homomorphism. So we know that f is a k-bialgebra
homomorphism which has an inverse, and this inverse f−1 is also a k-bialgebra homo-
morphism. Hence, the homomorphism f is invertible in the category of k-bialgebras.
In other words, f is a k-bialgebra isomorphism. Proposition 34.14 is thus proven.

Proof of Proposition 34.10. (a) Clearly, every i ∈ N satisfies
i∑

n=0

V n ⊆
i+1∑
n=0

V n (since

i+1∑
n=0

V n =
i∑

n=0

V n + V i+1 ⊇
i∑

n=0

V n). In other words,

0∑
n=0

V n ⊆
1∑

n=0

V n ⊆
2∑

n=0

V n ⊆ · · · . (407)

Now, let x ∈ H. Then, x ∈ H =
∑
n∈N

V n. Hence, there exists a family (xn)n∈N ∈∏
n∈N

V n such that (all but finitely many n ∈ N satisfy xn = 0) and x =
∑
n∈N

xn. Consider

this family (xn)n∈N. We know that all but finitely many n ∈ N satisfy xn = 0. Hence,
there exists an N ∈ N such that every nonnegative integer n > N satisfies xn = 0.
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Consider this N . We have

x =
∑
n∈N

xn =
∑
n∈N;
n≤N︸︷︷︸
=

N∑
n=0

xn +
∑
n∈N;
n>N

xn︸︷︷︸
=0

(since n≥N)

=
N∑
n=0

xn +
∑
n∈N;
n>N

0

︸ ︷︷ ︸
=0

=
N∑
n=0

xn︸︷︷︸
∈V n

∈
N∑
n=0

V n ⊆
⋃
i∈N

(
i∑

n=0

V n

)

(since N ∈ N, and since
N∑
n=0

V n =
i∑

n=0

V n for i = N).

Now, forget that we fixed x. We thus have shown that every x ∈ H satisfies x ∈⋃
i∈N

(
i∑

n=0

V n

)
. In other words, H ⊆

⋃
i∈N

(
i∑

n=0

V n

)
. Combining this with

⋃
i∈N

(
i∑

n=0

V n

)
⊆

H (which is obvious), we obtain H =
⋃
i∈N

(
i∑

n=0

V n

)
. Combined with (407), this shows

that

(
i∑

n=0

V n

)
i∈N

is a filtration of the k-vector space H. This proves Proposition 34.10

(a).

(b) Let us denote the k-bialgebraH endowed with the filtration

(
i∑

n=0

V n

)
i∈N

simply

by H. Then,

H≤i =
i∑

n=0

V n for every i ∈ N. (408)

for every i ∈ N.
We have

H≤0 =
0∑

n=0

V n (by (408), applied to i = 0)

= V 0 = k · 1H ,

and 1H ∈ k · 1H = V 0 = H≤0.
Moreover, every j ∈ N satisfies

H≤j =

j∑
n=0

V n (by (408), applied to j instead of i)

=

j∑
m=0

V m (here, we renamed the summation index n as m) . (409)

Now, every i ∈ N and j ∈ N satisfy H≤iH≤j ⊆ H≤i+j
193. Combining this

observation with the fact that 1H ∈ H≤0, we conclude that H is a filtered k-algebra.

193Proof. Let i ∈ N and j ∈ N. Let n ∈ {0, 1, . . . , i} and m ∈ {0, 1, . . . , j}. Then, 0 ≤ n and
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On the other hand, every m ∈ N satisfies

∆H (V m) ⊆
m∑
u=0

V u ⊗ V m−u. (411)

0 ≤ m, so that 0 = 0︸︷︷︸
≤n

+ 0︸︷︷︸
≤m

≤ n + m. Also, n ≤ i and m ≤ j, so that n︸︷︷︸
≤i

+ m︸︷︷︸
≤j

≤ i + j. Hence,

0 ≤ n+m ≤ i+ j, so that n+m ∈ {0, 1, . . . , i+ j}. Hence, V n+m is an addend in the sum
i+j∑
N=0

V N .

Thus,

V n+m ⊆
i+j∑
N=0

V N . (410)

Now, forget that we fixed n and m. We thus have shown that (410) holds for all n ∈ {0, 1, . . . , i}
and m ∈ {0, 1, . . . , j}. Now,

H≤i︸︷︷︸
=

i∑
n=0

V n

(by (408))

· H≤j︸︷︷︸
=

j∑
m=0

Vm

(by (409))

=

(
i∑

n=0

V n

)
·

(
j∑

m=0

V m

)
=

i∑
n=0

j∑
m=0

V n · V m︸ ︷︷ ︸
=V n+m⊆

i+j∑
N=0

V N

(by (410))

⊆
i∑

n=0

j∑
m=0

i+j∑
N=0

V N

⊆
i+j∑
N=0

V N

(
since

i+j∑
N=0

V N is a k-vector space

)

=

i+j∑
n=0

V n (here, we renamed the summation index N as n)

= H≤i+j

(
since H≤i+j =

i+j∑
n=0

V n (by (408), applied to i+ j instead of i)

)
.

This proves H≤iH≤j ⊆ H≤i+j .
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194 Furthermore, every m ∈ N satisfies

V i ⊆ H≤m for every i ∈ {0, 1, . . . ,m} . (412)

194Proof of (411): We will prove (411) by induction over m:
Induction base: By the axioms of a k-bialgebra, the map ∆H is a k-algebra homomorphism (since

H is a k-bialgebra). Hence, ∆H (1H) = 1H⊗H = 1H ⊗ 1H .
We have V 0 = k · 1H , so that

∆H

(
V 0
)

= ∆H (k · 1H) = k ·∆H (1H)︸ ︷︷ ︸
=1H⊗1H

(since ∆H is k-linear)

= k · 1H︸︷︷︸
∈V 0

⊗ 1H︸︷︷︸
∈V 0

⊆ k · V 0 ⊗ V 0 ⊆ V 0 ⊗ V 0

(since V 0 ⊗ V 0 is a k-vector space). On the other hand,

0∑
u=0

V u ⊗ V 0−u = V 0 ⊗ V 0−0 = V 0 ⊗ V 0.

Thus, ∆H

(
V 0
)
⊆ V 0 ⊗ V 0 =

0∑
u=0

V u ⊗ V 0−u. In other words, (411) holds for m = 0. This completes

the induction base.
Induction step: Let M ∈ N. Assume that (411) holds for m = M . We must now show that (411)

also holds for m = M + 1.
We have

∆H

(
VM

)
⊆

M∑
u=0

V u ⊗ VM−u
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(since (411) holds for m = M). Now, VM+1 = VM · V , so that

∆H

(
VM+1

)
= ∆H

(
VM · V

)
= ∆H

(
VM

)︸ ︷︷ ︸
⊆
M∑
u=0

V u⊗VM−u

· ∆H (V )︸ ︷︷ ︸
⊆V⊗(k·1H)+(k·1H)⊗V

(since ∆H is a k-algebra homomorphism)

⊆

(
M∑
u=0

V u ⊗ VM−u
)
· (V ⊗ (k · 1H) + (k · 1H)⊗ V )

=

(
M∑
u=0

V u ⊗ VM−u
)
· (V ⊗ (k · 1H))

+

(
M∑
u=0

V u ⊗ VM−u
)
· ((k · 1H)⊗ V )

=

M∑
u=0

(
V u ⊗ VM−u

)
· (V ⊗ (k · 1H))︸ ︷︷ ︸

=(V u·V )⊗(VM−u·(k·1H))
(by Lemma 34.11, applied to H, H, V u, VM−u, V and k·1H

instead of U , V , A, B, C and D)

+

M∑
u=0

(
V u ⊗ VM−u

)
· ((k · 1H)⊗ V )︸ ︷︷ ︸

=(V u·(k·1H))⊗(VM−u·V )
(by Lemma 34.11, applied to H, H, V u, VM−u, k·1H and V

instead of U , V , A, B, C and D)

=

M∑
u=0

(V u · V )︸ ︷︷ ︸
=V u+1

⊗
(
VM−u · (k · 1H)

)︸ ︷︷ ︸
=VM−u·k·1H=VM−u·k⊆VM−u
(since VM−u is a k-vector space)

+

M∑
u=0

(V u · (k · 1H))︸ ︷︷ ︸
=V u·k·1H=V u·k⊆V u

(since V u is a k-vector space)

⊗
(
VM−u · V

)︸ ︷︷ ︸
=VM−u+1=VM+1−u

⊆
M∑
u=0

V u+1 ⊗ VM−u +

M∑
u=0

V u ⊗ VM+1−u
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195 Finally, every m ∈ N satisfies

∆H (H≤m) ⊆
m∑
u=0

H≤u ⊗H≤m−u. (413)

196 Hence, H is a filtered k-coalgebra.
By the axioms of a k-bialgebra, we have εH (1H) = 1 (since H is a k-bialgebra).
We have now shown that H is a filtered k-algebra, and that H is a filtered k-

coalgebra. Combining these two observations, we conclude that H is a filtered k-
bialgebra (since we know that H is a k-bialgebra). Thus, we can apply Remark 16.13

=

M+1∑
u=1

V (u−1)+1︸ ︷︷ ︸
=V u

⊗ VM−(u−1)︸ ︷︷ ︸
=VM−u+1=VM+1−u

+

M∑
u=0

V u ⊗ VM+1−u

(here, we substituted u− 1 for u in the first sum)

⊆
M+1∑
u=1

V u ⊗ VM+1−u

︸ ︷︷ ︸
⊆
M+1∑
u=0

V u⊗VM+1−u

(since 1≥0)

+

M∑
u=0

V u ⊗ VM+1−u

︸ ︷︷ ︸
⊆
M+1∑
u=0

V u⊗VM+1−u

(since M≤M+1)

⊆
M+1∑
u=0

V u ⊗ VM+1−u +

M+1∑
u=0

V u ⊗ VM+1−u ⊆
M+1∑
u=0

V u ⊗ VM+1−u

(since
M+1∑
u=0

V u ⊗ VM+1−u is a k-vector space). In other words, (411) also holds for m = M + 1. This

completes the induction step. The induction proof of (411) is thus finished.

195Proof of (412): Let m ∈ N and i ∈ {0, 1, . . . ,m}. We have H≤m =
m∑
n=0

V n (by (408), applied to

i = m). But V i is an addend in the sum
m∑
n=0

V n (since i ∈ {0, 1, . . . ,m}). Hence, V i ⊆
m∑
n=0

V n = H≤m.

This proves (412).

196Proof of (413): Let m ∈ N. Applying (408) to i = m, we obtain H≤m =
m∑
n=0

V n. Thus,

∆H (H≤m) = ∆H

(
m∑
n=0

V n

)
=

m∑
n=0

∆H (V n)︸ ︷︷ ︸
⊆

n∑
u=0

V u⊗V n−u

(by (411),
applied to n instead of m)

(since ∆H is k-linear)

⊆
m∑
n=0

n∑
u=0

V u︸︷︷︸
⊆H≤u

(by (412), applied to
u and u instead of m and i

(since u∈{0,1,...,u}))

⊗ V n−u︸ ︷︷ ︸
⊆H≤m−u

(by (412), applied to
m−u and n−u instead of m and i

(since n−u∈{0,1,...,m−u}
(because n−u≥0 (since u≤n) and

n−u≤m−u (since n≤m))))

⊆
m∑
n=0

n∑
u=0

H≤u ⊗H≤m−u︸ ︷︷ ︸
⊆

m∑
u=0

H≤u⊗H≤m−u

(since n≤m)

⊆
m∑
n=0

m∑
u=0

H≤u ⊗H≤m−u ⊆
m∑
u=0

H≤u ⊗H≤m−u

(since
m∑
u=0

H≤u ⊗H≤m−u is a k-vector space). This proves (413).
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to C = H and λ = 1H (since H≤0 = k · 1H and εH (1H) = 1). As a result, we
conclude that the filtered k-coalgebra H is connected. Thus, the filtered k-bialgebra
H is connected.

We thus have shown that H is a connected filtered k-bialgebra. Since the filtration

on H is

(
i∑

n=0

V n

)
i∈N

, this rewrites as follows: The k-bialgebra H endowed with the

filtration

(
i∑

n=0

V n

)
i∈N

is a connected filtered k-bialgebra. Thus, Proposition 34.10 (b)

is proven.
(c) Assume that V ⊆ PrimH.
Consider the (H,H)-flip τH,H : H ⊗ H → H ⊗ H (defined according to Defini-

tion 9.2).
It is known that for any two k-algebras A and B, the (A,B)-flip τA,B : A ⊗ B →

B⊗A is a k-algebra homomorphism. Applying this to A = H and B = H, we conclude
that the (H,H)-flip τH,H : H ⊗H → H ⊗H is a k-algebra homomorphism.

Also, H is a k-bialgebra. Thus, ∆H is a k-algebra homomorphism (by the axioms
of a k-bialgebra).

We know that τH,H and ∆H are k-algebra homomorphisms. Hence, their composi-
tion τH,H ◦∆H is a k-algebra homomorphism (because the composition of two k-algebra
homomorphisms must always be a k-algebra homomorphism).

Since ∆H and τH,H◦∆H are k-algebra homomorphisms, we know that Ker (∆H − τH,H ◦∆H)
is a k-subalgebra of H (by Lemma 34.12, applied to H, H ⊗ H, ∆H and τH,H ◦ ∆H

instead of A, B, f and g).
Clearly, every k-subalgebra A of H satisfies An ⊆ A for every n ∈ N. Apply-

ing this to A = Ker (∆H − τH,H ◦∆H), we conclude that (Ker (∆H − τH,H ◦∆H))n ⊆
Ker (∆H − τH,H ◦∆H) for every n ∈ N (because Ker (∆H − τH,H ◦∆H) is a k-subalgebra
of H).

Now, it is easy to see that V ⊆ Ker (∆H − τH,H ◦∆H) 197. Thus, every n ∈ N
satisfies

V n ⊆ (Ker (∆H − τH,H ◦∆H))n ⊆ Ker (∆H − τH,H ◦∆H) .

197Proof. Let v ∈ V . Then, v ∈ V ⊆ PrimH. In other words, v is a primitive element of H (since
PrimH is the set of all primitive elements of H). In other words, ∆H (x) = x⊗ 1H + 1H ⊗ x. Now,

(τH,H ◦∆H) (x) = τH,H

 ∆H (x)︸ ︷︷ ︸
=x⊗1H+1H⊗x

 = τH,H (x⊗ 1H + 1H ⊗ x)

= τH,H (x⊗ 1H)︸ ︷︷ ︸
=1H⊗x

(by the definition of τH,H)

+ τH,H (1H ⊗ x)︸ ︷︷ ︸
=x⊗1H

(by the definition of τH,H)

(since τH,H is k-linear)

= 1H ⊗ x+ x⊗ 1H = x⊗ 1H + 1H ⊗ x = ∆H (x) .

Thus,
(∆H − τH,H ◦∆H) (x) = ∆H (x)− (τH,H ◦∆H) (x)︸ ︷︷ ︸

=∆H(x)

= ∆H (x)−∆H (x) = 0.

In other words, x ∈ Ker (∆H − τH,H ◦∆H).
Now, forget that we fixed x. We thus have shown that every x ∈ V satisfies x ∈

Ker (∆H − τH,H ◦∆H). In other words, V ⊆ Ker (∆H − τH,H ◦∆H), qed.
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Now,

H =
∑
n∈N

V n︸︷︷︸
⊆Ker(∆H−τH,H◦∆H)

⊆
∑
n∈N

Ker (∆H − τH,H ◦∆H) ⊆ Ker (∆H − τH,H ◦∆H)

(since Ker (∆H − τH,H ◦∆H) is a k-vector space). In other words, every x ∈ H satisfies
x ∈ Ker (∆H − τH,H ◦∆H). In other words, every x ∈ H satisfies (∆H − τH,H ◦∆H) (x) =
0. In other words, ∆H − τH,H ◦ ∆H = 0. Thus, ∆H = τH,H ◦ ∆H . In other words,
τH,H ◦∆H = ∆H .

Now, let us recall the definition of a cocommutative k-coalgebra: A k-coalgebra
C is cocommutative if and only if τC,C ◦ ∆C = ∆C . Applying this to C = H, we
conclude that the k-coalgebra H is cocommutative if and only if τH,H ◦ ∆H = ∆H .
Thus, the k-coalgebra H is cocommutative (since τH,H ◦∆H = ∆H). In other words,
the k-bialgebra H is cocommutative. This proves Proposition 34.10 (c).

Partial proof of Theorem 34.9. First of all, we have ιg (g) ⊆ Prim (U (g)) 198. This
proves Theorem 34.9 (d).

Let π be the canonical projection ⊗g → U (g). Then, π is a surjective k-algebra
homomorphism. [Actually, π is a k-bialgebra homomorphism, but we don’t need to
know this.]

The canonical map ιg from g to U (g) factors through the projection π : ⊗g→ U (g).
More precisely, ιg (x) = π (x) for every x ∈ g (this follows from the definition of ιg).
Thus,

ιg (g) =

ιg (x)︸ ︷︷ ︸
=π(x)

| x ∈ g

 = {π (x) | x ∈ g} = π (g) . (414)

By the definition of the tensor algebra, we have ⊗g =
⊕
n∈N

g⊗n. Thus, ⊗g =⊕
n∈N

g⊗n =
∑
n∈N

g⊗n (since direct sums are sums).

For every n ∈ N, we have g⊗n = gn as k-vector subspaces of ⊗g (where gn means
g · g · · · · · g︸ ︷︷ ︸

n times

, as usual) 199. Hence,
∑
n∈N

g⊗n =
∑
n∈N

gn.

198Proof. Let v ∈ ιg (g). Then, ∆U(g) (v) = v ⊗ 1U(g) + 1U(g) ⊗ v (according to (402)). In other
words, the element v of U (g) is primitive. In other words, v ∈ Prim (U (g)) (since Prim (U (g)) is the
set of all primitive elements of U (g)).

Now, forget that we fixed v. We thus have shown that every v ∈ ιg (g) satisfies v ∈ Prim (U (g)).
In other words, ιg (g) ⊆ Prim (U (g)), qed.

199Proof. Let n ∈ N. The n-th tensor power g⊗n is spanned by all pure tensors. In other words,

g⊗n =

〈
v1 ⊗ v2 ⊗ · · · ⊗ vn︸ ︷︷ ︸

=v1v2···vn
(because the multiplication on ⊗g is the

tensor product, so we have
v1v2···vn=v1⊗v2⊗···⊗vn)

| (v1, v2, . . . , vn) ∈ g×n

〉

=
〈
v1v2 · · · vn | (v1, v2, . . . , vn) ∈ g×n

〉
.

Compared with
gn =

〈
v1v2 · · · vn | (v1, v2, . . . , vn) ∈ g×n

〉
,

this yields g⊗n = gn, qed.
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Now, ⊗g =
∑
n∈N

g⊗n =
∑
n∈N

gn. Applying the map π to this equality, we obtain

π (⊗g) = π

(∑
n∈N

gn

)
=
∑
n∈N

 π (g)︸︷︷︸
=ιg(g)

(by (414))


n

(since π is a k-algebra homomorphism)

=
∑
n∈N

(ιg (g))n .

Since π (⊗g) = U (g) (because π is surjective), this rewrites as U (g) =
∑
n∈N

(ιg (g))n.

Thus, Theorem 34.9 (a) is proven.
We have

∆U(g) (ιg (g)) ⊆ ιg (g)⊗
(
k · 1U(g)

)
+
(
k · 1U(g)

)
⊗ ιg (g) .

200 Combining this with the equality U (g) =
∑
n∈N

(ιg (g))n, we see that we can apply

Proposition 34.10 to H = U (g) and V = ιg (g).
Proposition 34.10 (a) (applied to H = U (g) and V = ιg (g)) yields that the family(
i∑

n=0

(ιg (g))n
)
i∈N

is a filtration of the k-vector space U (g). This proves Theorem 34.9

(b).
Proposition 34.10 (b) (applied to H = U (g) and V = ιg (g)) yields that the k-

bialgebra U (g) endowed with the filtration

(
i∑

n=0

(ιg (g))n
)
i∈N

is a connected filtered

k-bialgebra. This proves Theorem 34.9 (c).
Finally, Proposition 34.10 (c) (applied to H = U (g) and V = ιg (g)) yields that

the k-bialgebra U (g) is cocommutative (since ιg (g) ⊆ Prim (U (g))). This proves
Theorem 34.9 (e).

We are not going to prove Theorem 34.9 (f) (as we are not going to need it).

Now, we can finally prove the Cartier-Milnor-Moore theorem:

Proof of Theorem 17.2. Consider H as a Lie algebra under the commutator of the
multiplication of H. Then, PrimH is a Lie subalgebra of H 201.

In the following, the symbol “id” without a subscript will always mean idH .
Let i be the inclusion map PrimH → H. Clearly, i is a Lie algebra homomorphism.

Hence, a k-algebra homomorphism Ulift i : U (PrimH)→ H is well-defined (according
to Definition 34.2).

200Proof. Every v ∈ ιg (g) satisfies

∆U(g) (v) = v︸︷︷︸
∈ιg(g)

⊗ 1U(g)︸ ︷︷ ︸
∈k·1U(g)

+ 1U(g)︸ ︷︷ ︸
∈k·1U(g)

⊗ v︸︷︷︸
∈ιg(g)

(according to (402))

∈ ιg (g)⊗
(
k · 1U(g)

)
+
(
k · 1U(g)

)
⊗ ιg (g) .

In other words, ∆U(g) (ιg (g)) ⊆ ιg (g)⊗
(
k · 1U(g)

)
+
(
k · 1U(g)

)
⊗ ιg (g), qed.

201since every x ∈ PrimH and y ∈ PrimH satisfy xy−yx ∈ PrimH (according to Proposition 17.14)

418



Since i is the inclusion map PrimH → H, we have i (PrimH) = PrimH. Thus,
Proposition 34.3 (applied to g = PrimH and f = i) yields that Ulift i : U (PrimH)→
H is a k-bialgebra homomorphism.

Let ιPrimH : PrimH → U (PrimH) be the canonical map from the Lie algebra
PrimH into its universal enveloping algebra U (PrimH). By the definition of Ulift i,
we know that Ulift i is the unique k-algebra homomorphism F : U (PrimH) → H
satisfying F ◦ ιPrimH = i. Hence, Ulift i is a k-algebra homomorphism U (PrimH)→ H
and satisfies (Ulift i) ◦ ιPrimH = i.

a) The map Ulift i is surjective.
Proof. Since Ulift i is a k-algebra homomorphism, its image (Ulift i) (U (PrimH))

is a k-subalgebra of H. We have

(Ulift i) (ιPrimH (PrimH)) = ((Ulift i) ◦ ιPrimH)︸ ︷︷ ︸
=i

(PrimH) = i (PrimH) = PrimH.

Hence,

PrimH = (Ulift i)

ιPrimH (PrimH)︸ ︷︷ ︸
⊆U(PrimH)

 ⊆ (Ulift i) (U (PrimH)) .

Hence, (Ulift i) (U (PrimH)) contains PrimH as a subset. Thus, (Ulift i) (U (PrimH))
is a k-subalgebra of H containing PrimH as a subset (since (Ulift i) (U (PrimH)) is a
k-subalgebra of H).

Now, Theorem 17.1 yields

H = AlgGenk (PrimH) = (the k-subalgebra of H generated by PrimH)

(by the definition of AlgGenk (PrimH)). In other words, the k-subalgebra of H gener-
ated by PrimH is the algebra H.

But the k-subalgebra of H generated by PrimH is the smallest k-subalgebra of H
containing PrimH as a subset (by the definition of the k-subalgebra of H generated
by PrimH). Since the k-subalgebra of H generated by PrimH is the algebra H, this
rewrites as follows: The algebra H is the smallest k-subalgebra of H containing PrimH
as a subset. This means that whenever V is a k-subalgebra of H containing PrimH as a
subset, we must necessarily have H ⊆ V . Applying this to V = (Ulift i) (U (PrimH)),
we obtain H ⊆ (Ulift i) (U (PrimH)) (since (Ulift i) (U (PrimH)) is a k-subalgebra of
H containing PrimH as a subset). In other words, the map Ulift i is surjective.

b) Theorem 4.1 yields that the map Log id ∈ L (H,H) is a projection from H to
the subspace PrimH of all primitive elements of H. Thus, (Log id) (H) ⊆ PrimH.

Hence, every x ∈ H satisfies (Log id)

(
x︸︷︷︸
∈H

)
∈ (Log id) (H) ⊆ PrimH. Thus, we can

define a map eul : H → PrimH by

(eulx = (Log id) (x) for every x ∈ H) .
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This map eul is k-linear202. Moreover, eul (1H) = 0 203.
Now, let ι̃ be the map ιPrimH ◦ eul : H → U (PrimH). This map ι̃ is k-linear (since

it is the composition of the k-linear maps ιPrimH and eul). Moreover, ι̃ (1H) = 0 204.
Thus, ι̃ ∈ g (H,U (PrimH)) 205.

c) Applying Theorem 34.9 (b) to g = PrimH, we see that the family(
i∑

n=0

(ιPrimH (PrimH))n
)
i∈N

is a filtration of the k-vector space U (PrimH). Applying

Theorem 34.9 (c) to g = PrimH, we see that the k-bialgebra U (PrimH) endowed with

the filtration

(
i∑

n=0

(ιPrimH (PrimH))n
)
i∈N

is a connected filtered k-bialgebra. This

connected filtered k-bialgebra will be simply denoted by U (PrimH) in the following.

Thus, (U (PrimH))≤i =
i∑

n=0

(ιPrimH (PrimH))n for every i ∈ N.

We know that U (PrimH) is a connected filtered k-bialgebra. Hence, U (PrimH)
is a connected filtered k-coalgebra and, at the same time, a k-bialgebra with the same
underlying k-coalgebra structure.

Every k-bialgebraA satisfies idA ∈ G (A,A) 206. Applying this toA = U (PrimH),
we obtain idU(PrimH) ∈ G (U (PrimH) , U (PrimH)). Hence, Log

(
idU(PrimH)

)
is a well-

defined element of g (U (PrimH) , U (PrimH)). Therefore,(
Log

(
idU(PrimH)

)) (
1U(PrimH)

)
= 0 (415)

202Proof. Let λ ∈ k, µ ∈ k, a ∈ H and b ∈ H. By the definition of eul, we have the equalities
eul (λa+ µb) = (Log id) (λa+ µb), eul a = (Log id) (a) and eul b = (Log id) (b). Now,

eul (λa+ µb) = (Log id) (λa+ µb) = λ (Log id) (a)︸ ︷︷ ︸
=eul a

+µ (Log id) (b)︸ ︷︷ ︸
=eul b

(since Log id is k-linear)

= λ eul (a) + µ eul (b) .

Now, forget that we fixed λ, µ, a and b. We thus have shown that eul (λa+ µb) = λ eul (a)+µ eul (b)
for all λ ∈ k, µ ∈ k, a ∈ H and b ∈ H. In other words, the map eul is k-linear, qed.

203Proof. We have LogF ∈ g (H,H) for every F ∈ G (H,H). Applying this to F = id, we obtain

Log id ∈ g (H,H) = {f ∈ L (H,H) | f (1H) = 0}

(by the definition of g (H,H)). In other words, Log id is an element of L (H,H) and satisfies
(Log id) (1H) = 0.

Now, by the definition of eul, we have eul (1H) = (Log id) (1H) = 0, qed.

204Proof. Since ι̃ = ιPrimH ◦ eul, we have ι̃ (1H) = (ιPrimH ◦ eul) (1H) = ιPrimH

eul (1H)︸ ︷︷ ︸
=0

 =

ιPrimH (0) = 0 (since ιPrimH is k-linear), qed.
205Proof. By the definition of g (H,U (PrimH)), we have g (H,U (PrimH)) =
{f ∈ L (H,U (PrimH)) | f (1H) = 0}.

But ι̃ satisfies ι̃ ∈ L (H,U (PrimH)) and ι̃ (1H) = 0. In other words, ι̃ ∈
{f ∈ L (H,U (PrimH)) | f (1H) = 0} = g (H,U (PrimH)), qed.

206Proof. Let A be a k-bialgebra. By the definition of G (A,A), we have G (A,A) =
{f ∈ L (A,A) | f (1A) = 1A}. Now, idA satisfies idA ∈ L (A,A) and idA (1A) = 1A. In other words,
idA ∈ {f ∈ L (A,A) | f (1A) = 1A} = G (A,A), qed.
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207.
d) We have(

Log
(
idU(PrimH)

))
(vn) = (ι̃ ◦ (Ulift i)) (vn) for every v ∈ ιPrimH (PrimH) and n ∈ N.

(416)
Proof of (416): Let v ∈ ιPrimH (PrimH) and n ∈ N. Since v ∈ ιPrimH (PrimH),

there exists a w ∈ PrimH such that v = ιPrimH (w). Consider this w.
Theorem 34.9 (d) (applied to g = PrimH) yields ιPrimH (PrimH) ⊆ Prim (U (PrimH)).

Thus, v ∈ ιPrimH (PrimH) ⊆ Prim (U (PrimH)).
Recall that (Ulift i) ◦ ιPrimH = i. Thus, ((Ulift i) ◦ ιPrimH) (w) = i (w) = w (since i

is just an inclusion map). Thus,

w = ((Ulift i) ◦ ιPrimH) (w) = (Ulift i)

ιPrimH (w)︸ ︷︷ ︸
=v

 = (Ulift i) (v) .

Now, since Ulift i is a k-algebra homomorphism, we have

(Ulift i) (vn) =

(Ulift i) (v)︸ ︷︷ ︸
=w

n

= wn,

so that

(ι̃ ◦ (Ulift i)) (vn) = ι̃

(Ulift i) (vn)︸ ︷︷ ︸
=wn

 = ι̃ (wn) . (417)

Now, we distinguish between three cases:
Case 1: We have n = 0.
Case 2: We have n = 1.
Case 3: We have neither n = 0 nor n = 1.
Let us first consider Case 1. In this case, we have n = 0. Thus, vn = v0 = 1U(PrimH),

so that (
Log

(
idU(PrimH)

))
(vn) =

(
Log

(
idU(PrimH)

)) (
1U(PrimH)

)
= 0

(by (415)). Comparing this with

(ι̃ ◦ (Ulift i)) (vn) = ι̃ (wn) (by (417))

= ι̃ (1H)
(
since n = 0, so that wn = w0 = 1H

)
= 0,

we obtain
(
Log

(
idU(PrimH)

))
(vn) = (ι̃ ◦ (Ulift i)) (vn). Hence, (416) is proven in Case

1.

207Proof of (415): We have

Log
(
idU(PrimH)

)
∈ g (U (PrimH) , U (PrimH))

=
{
f ∈ L (U (PrimH) , U (PrimH)) | f

(
1U(PrimH)

)
= 0
}

(by the definition of g (U (PrimH) , U (PrimH))). In other words, Log
(
idU(PrimH)

)
∈

L (U (PrimH) , U (PrimH)) and
(
Log

(
idU(PrimH)

)) (
1U(PrimH)

)
= 0. This proves (415).
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Let us now consider Case 2. In this case, we have n = 1. Thus, vn = v1 = v.
Now, recall that idU(PrimH) ∈ G (U (PrimH) , U (PrimH)). Hence, Proposition 6.2

(c) (applied to U (PrimH), U (PrimH) and idU(PrimH) instead of H, A and F ) yields
that (

Log
(
idU(PrimH)

))
|Prim(U(PrimH))= idU(PrimH) |Prim(U(PrimH)) . (418)

On the other hand, recall that every k-bialgebra A satisfies idA ∈ G (A,A). Ap-
plying this to A = H, we obtain idH ∈ G (H,H). In other words, id ∈ G (H,H).
Thus, Proposition 6.2 (c) (applied to H and id instead of A and F ) yields that
(Log id) |PrimH= id |PrimH .

Now, we have(
Log

(
idU(PrimH)

))(
vn︸︷︷︸
=v

)
=
(
Log

(
idU(PrimH)

))
(v)

=

(Log
(
idU(PrimH)

))
|Prim(U(PrimH))︸ ︷︷ ︸

=idU(PrimH)|Prim(U(PrimH))

(by (418))

 (v)

(since v ∈ Prim (U (PrimH)))

=
(
idU(PrimH) |Prim(U(PrimH))

)
(v) = idU(PrimH) (v) = v.

Comparing this with

(ι̃ ◦ (Ulift i)) (vn) = ι̃ (wn) (by (417))

= ι̃ (w)
(
since n = 1, so that wn = w1 = w

)
= (ιPrimH ◦ eul) (w) (since ι̃ = ιPrimH ◦ eul)

= ιPrimH

 eulw︸ ︷︷ ︸
=(Log id)(w)

(by the definition of eul )

 = ιPrimH

 (Log id) (w)︸ ︷︷ ︸
=((Log id)|PrimH)(w)

(since w∈PrimH)


= ιPrimH

((Log id) |PrimH)︸ ︷︷ ︸
=id|PrimH

(w)

 = ιPrimH

(id |PrimH) (w)︸ ︷︷ ︸
=id(w)=w


= ιPrimH (w) = v,

we obtain
(
Log

(
idU(PrimH)

))
(vn) = (ι̃ ◦ (Ulift i)) (vn). Hence, (416) is proven in Case

2.
Let us finally consider Case 3. In this case, we have neither n = 0 nor n = 1. Since

n ∈ N, we must thus have n > 1. We have v ∈ Prim (U (PrimH)). Thus, Theorem 33.1
(applied to U (PrimH) instead of H) yields(

Log
(
idU(PrimH)

))
(vn) = 0.

On the other hand, w ∈ PrimH. Hence, Theorem 33.1 (applied to w instead of v)
yields (Log id) (wn) = 0. Now, comparing(

Log
(
idU(PrimH)

))
(vn) = 0
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with

(ι̃ ◦ (Ulift i)) (vn) = ι̃ (wn) (by (417))

= (ιPrimH ◦ eul) (wn) (since ι̃ = ιPrimH ◦ eul)

= ιPrimH

 eul (wn)︸ ︷︷ ︸
=(Log id)(wn)

(by the definition of eul )

 = ιPrimH

(Log id) (wn)︸ ︷︷ ︸
=0


= ιPrimH (0) = 0 (since ιPrimH is k-linear) ,

we obtain
(
Log

(
idU(PrimH)

))
(vn) = (ι̃ ◦ (Ulift i)) (vn). Hence, (416) is proven in Case

3.
We have thus proven (416) in each of the three cases 1, 2 and 3. Since these three

cases cover all possibilities, this yields that (416) always holds. The proof of (416) is
thus complete.

e) We have
Log

(
idU(PrimH)

)
= ι̃ ◦ (Ulift i) . (419)

Proof of (419): Let V be the k-vector subspace ιPrimH (PrimH) of U (PrimH).
Then, xy − yx ∈ V for any x ∈ V and y ∈ V 208. Moreover,

U (PrimH) =
∑
n∈N

ιPrimH (PrimH)︸ ︷︷ ︸
=V

n

(by Theorem 34.9 (a), applied to g = PrimH)

=
∑
n∈N

V n.

Finally, we have
(
Log

(
idU(PrimH)

))
(vn) = (ι̃ ◦ (Ulift i)) (vn) for every v ∈ V and n ∈

N 209. Consequently, we can apply Corollary 32.7 to U (PrimH), U (PrimH),
Log

(
idU(PrimH)

)
and ι̃ ◦ (Ulift i) instead of A, W , f and g. As a result, we obtain

Log
(
idU(PrimH)

)
= ι̃ ◦ (Ulift i). This proves (419).

f) We have
idU(PrimH) = e∗ι̃ ◦ (Ulift i) . (420)

Proof of (420): We know that idU(PrimH) ∈ G (U (PrimH) , U (PrimH)). Hence,
Proposition 5.13 (b) (applied to U (PrimH), U (PrimH) and idU(PrimH) instead of H,

A and F ) yields e∗(Log(idU(PrimH))) = idU(PrimH). Thus,

idU(PrimH) = e∗(Log(idU(PrimH))) = e∗(ι̃◦(Ulift i)) (by (419)) .

208Proof. We know that ιPrimH is the canonical map from the Lie algebra PrimH to the univer-
sal enveloping algebra U (PrimH). Hence, ιPrimH is a Lie algebra homomorphism (where the Lie
algebra structure on U (PrimH) is given by the commutator of the multiplication). Thus, its image
ιPrimH (PrimH) is a Lie subalgebra of U (PrimH). Since ιPrimH (PrimH) = V , this rewrites as
follows: The set V is a Lie subalgebra of U (PrimH). In other words, we have [x, y] ∈ V for any
x ∈ V and y ∈ V . Since [x, y] = xy − yx for any x ∈ V and y ∈ V , this rewrites as follows: We have
xy − yx ∈ V for any x ∈ V and y ∈ V , qed.

209Proof. Let v ∈ V and n ∈ N. Then, v ∈ V = ιPrimH (PrimH). Hence, (416) yields(
Log

(
idU(PrimH)

))
(vn) = (ι̃ ◦ (Ulift i)) (vn), qed.
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But recall that Ulift i is a k-bialgebra homomorphism. Hence, Ulift i is a k-coalgebra
homomorphism. Also, (Ulift i)

(
1U(PrimH)

)
= 1H (since Ulift i is a k-algebra homo-

morphism). Moreover, ι̃ ∈ g (H,U (PrimH)). Hence, Proposition 31.1 (d) (applied
to U (PrimH), H, U (PrimH), Ulift i and ι̃ instead of D, C, A, ϕ and f) yields
e∗(ι̃◦(Ulift i)) = e∗ι̃ ◦ (Ulift i).

Thus, idU(PrimH) = e∗(ι̃◦(Ulift i)) = e∗ι̃ ◦ (Ulift i). This proves (420).
g) Due to (420), we have e∗ι̃◦(Ulift i) = idU(PrimH). Hence, the map Ulift i has a left

inverse. Thus, Ulift i is injective. Combining this with the (already proven) fact that
Ulift i is surjective, we conclude that Ulift i is bijective. Since Ulift i is a k-linear map,
this yields that Ulift i is a k-vector space isomorphism (because every bijective k-linear
map is a k-vector space isomorphism). Thus, the map Ulift i is invertible. Since Ulift i
is a k-bialgebra homomorphism, this yields that

Ulift i is a k-bialgebra isomorphism (421)

(because every invertible k-bialgebra homomorphism must be a k-bialgebra isomor-
phism (by Proposition 34.14)).

Now, recall that the map Ulift i is the canonical k-algebra homomorphism U (PrimH)→
H obtained from the Lie algebra homomorphism i via the universal property of the
universal enveloping algebra. Since the Lie algebra homomorphism i is the inclusion
map PrimH → H, this rewrites as follows: The map Ulift i is the canonical k-algebra
homomorphism U (PrimH) → H obtained from the inclusion map PrimH → H via
the universal property of the universal enveloping algebra. Hence, (421) rewrites as
follows: The canonical k-algebra homomorphism U (PrimH) → H obtained from the
inclusion map PrimH → H via the universal property of the universal enveloping
algebra is a k-bialgebra isomorphism. Theorem 17.2 is thus proven.

Our above proof of Theorem 17.2 allows for a corollary:

Corollary 34.15. Let k be a field of characteristic 0, and let H be a con-
nected filtered cocommutative bialgebra over k. Let PrimH denote the set
of all primitive elements of H. For every Lie algebra g, let U (g) denote the
universal enveloping algebra of g. Consider U (PrimH) as a k-bialgebra.
Let ιPrimH : PrimH → U (PrimH) be the canonical map from the Lie
algebra PrimH into its universal enveloping algebra U (PrimH). Then,
Prim (U (PrimH)) = ιPrimH (PrimH).

Proof of Corollary 34.15. Let us work with the notations introduced in the proof of
Theorem 17.2. The connected filtered k-bialgebra U (PrimH) is cocommutative (by
Theorem 34.9 (e), applied to g = PrimH). Thus, Theorem 4.1 (applied to U (PrimH)
instead of H) yields that the map Log

(
idU(PrimH)

)
∈ L (U (PrimH) , U (PrimH)) is a

projection from U (PrimH) to the subspace Prim (U (PrimH)) of all primitive elements
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of U (PrimH). Hence,
(
Log

(
idU(PrimH)

))
(U (PrimH)) = Prim (U (PrimH)). Thus,

Prim (U (PrimH)) =
(
Log

(
idU(PrimH)

))︸ ︷︷ ︸
=ι̃◦(Ulift i)
(by (419))

(U (PrimH)) = (ι̃ ◦ (Ulift i)) (U (PrimH))

= ι̃

(Ulift i) (U (PrimH))︸ ︷︷ ︸
⊆H

 ⊆ ι̃︸︷︷︸
=ιPrimH◦eul

(H) = (ιPrimH ◦ eul) (H)

= ιPrimH

eul (H)︸ ︷︷ ︸
⊆PrimH

 ⊆ ιPrimH (PrimH) . (422)

But Theorem 34.9 (d) (applied to g = PrimH) yields ιPrimH (PrimH) ⊆ Prim (U (PrimH)).
Combining this with (422), we obtain Prim (U (PrimH)) = ιPrimH (PrimH). This
proves Corollary 34.15.

Notice that Corollary 34.15 is merely a particular case of the following fact:

Corollary 34.16. Let k be a field of characteristic 0, and let g be a k-Lie
algebra. Consider the universal enveloping algebra U (g) as a k-bialgebra.
Let ιg : g → U (g) be the canonical map from the Lie algebra g into its
universal enveloping algebra U (g). Then, Prim (U (g)) = ιg (g).

However, Corollary 34.16 is not susceptible to the attack we have led on Corol-
lary 34.15; it is commonly proven using the Poincaré-Birkhoff-Witt theorem instead.

Corollary 34.15 and Corollary 34.16 become false if the hypothesis that k have
characteristic 0 is lifted. (If k is a field of characteristic p, then the k-vector subspace
Prim (k [X]) of k [X] is spanned by X,Xp, Xp2 , Xp3 , . . ..)

§35. Maps in g (H,A) and products of primitives

We next show some properties of products of primitives with respect to maps in g (H,A)
(that is, linear maps from a k-bialgebra H to a k-algebra A that annihilate 1H).

Theorem 35.1. Let k be a field. Let H be a k-bialgebra. Let A be a
k-algebra. Let r ∈ N. Let f1, f2, . . ., fr be r maps in g (H,A).

(a) Every s ∈ {0, 1, . . . , r − 1} and every s elements a1, a2, . . ., as of PrimH
satisfy

(f1 ∗ f2 ∗ · · · ∗ fr) (a1a2 · · · as) = 0.

(b) Every r elements a1, a2, . . ., ar of PrimH satisfy

(f1 ∗ f2 ∗ · · · ∗ fr) (a1a2 · · · ar) =
∑
σ∈Sr

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fr

(
aσ(r)

)
(where Sr denotes the r-th symmetric group).

Before we prove this theorem, let us show some simple facts:
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Lemma 35.2. Let k be a field. Let H be a k-bialgebra. Let V be a k-
vector subspace of PrimH. Let s ∈ N. Let a1, a2, . . ., as be s elements of
V . Then,

∆ (a1a2 · · · as) ∈
s∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · as))

+ 1H ⊗ (a1a2 · · · as) +
s−2∑
`=0

H ⊗ V `.

210

Proof of Lemma 35.2. We will prove that every r ∈ {0, 1, . . . , s} satisfies

∆ (a1a2 · · · ar) ∈
r∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · ar))

+ 1H ⊗ (a1a2 · · · ar) +
r−2∑
`=0

H ⊗ V `. (423)

Proof of (423): We will prove (423) by induction over r:
Induction base: Let r = 0. Then, a1a2 · · · ar = a1a2 · · · a0 = (empty product) = 1H .

Applying the map ∆ to this equality, we obtain

∆ (a1a2 · · · ar) = ∆ (1H) = 1H ⊗ 1H︸︷︷︸
=a1a2···ar

(by the axioms of a bialgebra)

∈ 1H ⊗ (a1a2 · · · ar)

⊆
r∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · ar))

+ 1H ⊗ (a1a2 · · · ar) +
r−2∑
`=0

H ⊗ V `.

Thus, (423) is proven in the case when r = 0. The induction base is hence complete.
Induction step: Let R ∈ {0, 1, . . . , s− 1}. Assume that (423) has been proven for

r = R. We need to prove (423) for r = R + 1.
We know that (423) has been proven for r = R. In other words,

∆ (a1a2 · · · aR) ∈
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR))

+ 1H ⊗ (a1a2 · · · aR) +
R−2∑
`=0

H ⊗ V `. (424)

We know that aR+1 ∈ V ⊆ PrimH = (the set of all primitive elements of H). In
other words, aR+1 is a primitive element of H. Hence, ∆ (aR+1) = aR+1⊗1H+1H⊗aR+1

(by the definition of “primitive”).

210Recall that V ` is defined according to Convention 15.2. Hence, V ` means the `-th power of the
subspace V of the k-algebra H.
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It is easy to see that(
R−2∑
`=0

H ⊗ V `

)
· (aR+1 ⊗ 1H + 1H ⊗ aR+1) ⊆

R−1∑
`=0

H ⊗ V ` (425)

211.
It is also easy to find that

R+1∑
m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1))

=
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1)) + aR+1 ⊗ (a1a2 · · · aR) . (427)

211Proof of (425): Let ` ∈ {0, 1, . . . , R− 2}. Then, ` ≤ R− 2. Adding 1 to this inequality, we obtain
`+ 1 ≤ (R− 2) + 1 = R− 1.

Since ` ≤ R − 2 < R − 1, we know that H ⊗ V ` is an addend in the sum
R−1∑
h=0

H ⊗ V h. Hence,

H ⊗ V ` ⊆
R−1∑
h=0

H ⊗ V h.

Since ` + 1 ≤ R − 1, we know that H ⊗ V `+1 is an addend in the sum
R−1∑
h=0

H ⊗ V h. Hence,

H ⊗ V `+1 ⊆
R−1∑
h=0

H ⊗ V h.

We are now going to prove that

(
H ⊗ V `

)
· (aR+1 ⊗ 1H + 1H ⊗ aR+1) ⊆

R−1∑
h=0

H ⊗ V h. (426)

Indeed, let w ∈
(
H ⊗ V `

)
· (aR+1 ⊗ 1H + 1H ⊗ aR+1). Thus, there exists an x ∈ H ⊗ V ` such that

w = x · (aR+1 ⊗ 1H + 1H ⊗ aR+1) .

Consider this x. Since x is a tensor in H ⊗ V `, we can write x as x =
J∑
j=1

λjhj ⊗ yj for some J ∈ N,

some elements λ1, λ2, . . ., λJ of k, some elements h1, h2, . . ., hJ of H, and some elements y1, y2, . . .,
yJ of V `. Consider this J , these λ1, λ2, . . ., λJ , these h1, h2, . . ., hJ , and these y1, y2, . . ., yJ . We
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have

w = x︸︷︷︸
=

J∑
j=1

λjhj⊗yj

· (aR+1 ⊗ 1H + 1H ⊗ aR+1)

=

 J∑
j=1

λjhj ⊗ yj

 · (aR+1 ⊗ 1H + 1H ⊗ aR+1)

=

J∑
j=1

λj (hj ⊗ yj) · (aR+1 ⊗ 1H + 1H ⊗ aR+1)︸ ︷︷ ︸
=(hj⊗yj)·(aR+1⊗1H)+(hj⊗yj)·(1H⊗aR+1)

=

J∑
j=1

λj

(hj ⊗ yj) · (aR+1 ⊗ 1H)︸ ︷︷ ︸
=(hjaR+1)⊗(yj1H)

+ (hj ⊗ yj) · (1H ⊗ aR+1)︸ ︷︷ ︸
=(hj1H)⊗(yjaR+1)


=

J∑
j=1

λj

(hjaR+1)︸ ︷︷ ︸
∈H

⊗ (yj1H)︸ ︷︷ ︸
=yj∈V `

+ (hj1H)︸ ︷︷ ︸
∈H

⊗

 yj︸︷︷︸
∈V `

aR+1︸ ︷︷ ︸
∈V




∈
J∑
j=1

λj

H ⊗ V ` +H ⊗
(
V `V

)︸ ︷︷ ︸
=V `+1

 =

J∑
j=1

λj
(
H ⊗ V ` +H ⊗ V `+1

)
⊆ H ⊗ V `︸ ︷︷ ︸
⊆
R−1∑
h=0

H⊗V h

+ H ⊗ V `+1︸ ︷︷ ︸
⊆
R−1∑
h=0

H⊗V h

(
since H ⊗ V ` +H ⊗ V `+1 is a k-vector space

)

⊆
R−1∑
h=0

H ⊗ V h +

R−1∑
h=0

H ⊗ V h ⊆
R−1∑
h=0

H ⊗ V h

(since
R−1∑
h=0

H ⊗ V h is a k-vector space).

Now, forget that we fixed w. We thus have proven that every w ∈
(
H ⊗ V `

)
·

(aR+1 ⊗ 1H + 1H ⊗ aR+1) satisfies w ∈
R−1∑
h=0

H ⊗ V h. In other words,

(
H ⊗ V `

)
· (aR+1 ⊗ 1H + 1H ⊗ aR+1) ⊆

R−1∑
h=0

H ⊗ V h.

In other words, (426) is proven.
Now, forget that we fixed `. We thus have shown that (426) holds for every ` ∈ {0, 1, . . . , R− 2}.
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212

Also, notice that

R∑
m=1

H ⊗ V R−1 +
R−1∑
`=0

H ⊗ V ` ⊆
(R+1)−2∑
`=0

H ⊗ V ` (428)

213.
Since H is a bialgebra, the comultiplication ∆ is a k-algebra homomorphism (by

Now, (
R−2∑
`=0

H ⊗ V `
)
· (aR+1 ⊗ 1H + 1H ⊗ aR+1)

=

R−2∑
`=0

(
H ⊗ V `

)
· (aR+1 ⊗ 1H + 1H ⊗ aR+1)︸ ︷︷ ︸
⊆
R−1∑
h=0

H⊗V h

(by (426))

⊆
R−2∑
`=0

R−1∑
h=0

H ⊗ V h ⊆
R−1∑
h=0

H ⊗ V h
(

since

R−1∑
h=0

H ⊗ V h is a k-vector space

)

=

R−1∑
`=0

H ⊗ V ` (here, we renamed the summation index h as `) .

Thus, (425) is proven.
212Proof of (427): We have

R+1∑
m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1))

=

R∑
m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1))

+ aR+1 ⊗

(a1a2 · · · a(R+1)−1

)︸ ︷︷ ︸
=a1a2···aR

(
a(R+1)+1a(R+1)+2 · · · aR+1

)︸ ︷︷ ︸
=(empty product)=1H


=

R∑
m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1)) + aR+1 ⊗ ((a1a2 · · · aR) 1H)︸ ︷︷ ︸
=a1a2···aR

=

R∑
m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1)) + aR+1 ⊗ (a1a2 · · · aR) .

This proves (427).

213Proof of (428): If R = 0, then
R∑

m=1
H ⊗ V R−1 = (empty sum) = 0. Hence, if R = 0, then

R∑
m=1

H ⊗ V R−1

︸ ︷︷ ︸
=0

+
R−1∑̀

=0

H ⊗ V ` =
R−1∑̀

=0

H ⊗ V ` =
(R+1)−2∑̀

=0

H ⊗ V ` (since R − 1 = (R+ 1)− 2). Thus, if

R = 0, then (428) holds. Therefore, for the rest of this proof of (428), we can WLOG assume that we
don’t have R = 0. Assume this.

We don’t have R = 0. Thus, we have R ≥ 1, so that R − 1 ≥ 0. Hence, R − 1 ∈ {0, 1, . . . , R− 1}.
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Hence, H ⊗ V R−1 is an addend in the sum
R−1∑̀

=0

H ⊗ V `. Hence, H ⊗ V R−1 ⊆
R−1∑̀

=0

H ⊗ V `. Now,

R∑
m=1

H ⊗ V R−1 ⊆ H ⊗ V R−1
(
since H ⊗ V R−1 is a k-vector space

)
⊆
R−1∑
`=0

H ⊗ V `,

so that

R∑
m=1

H ⊗ V R−1

︸ ︷︷ ︸
⊆
R−1∑̀
=0

H⊗V `

+

R−1∑
`=0

H ⊗ V ` ⊆
R−1∑
`=0

H ⊗ V ` +

R−1∑
`=0

H ⊗ V `

⊆
R−1∑
`=0

H ⊗ V `
(

since

R−1∑
`=0

H ⊗ V ` is a k-vector space

)

=

(R+1)−2∑
`=0

H ⊗ V ` (since R− 1 = (R+ 1)− 2) .

This proves (428).
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the axioms of a bialgebra). We have

∆

 a1a2 · · · aR+1︸ ︷︷ ︸
=(a1a2···aR)aR+1


= ∆ ((a1a2 · · · aR) aR+1)

= ∆ (a1a2 · · · aR)︸ ︷︷ ︸
∈

R∑
m=1

am⊗((a1a2···am−1)(am+1am+2···aR))+1H⊗(a1a2···aR)+
R−2∑̀
=0

H⊗V `

(by (424))

· ∆ (aR+1)︸ ︷︷ ︸
=aR+1⊗1H+1H⊗aR+1

(since ∆ is a k-algebra homomorphism)

∈

(
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR)) + 1H ⊗ (a1a2 · · · aR) +
R−2∑
`=0

H ⊗ V `

)
· (aR+1 ⊗ 1H + 1H ⊗ aR+1)

⊆

(
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR))

)
· (aR+1 ⊗ 1H + 1H ⊗ aR+1)︸ ︷︷ ︸

=

(
R∑

m=1
am⊗((a1a2···am−1)(am+1am+2···aR))

)
·(aR+1⊗1H)

+

(
R∑

m=1
am⊗((a1a2···am−1)(am+1am+2···aR))

)
·(1H⊗aR+1)

+ (1H ⊗ (a1a2 · · · aR)) · (aR+1 ⊗ 1H + 1H ⊗ aR+1)︸ ︷︷ ︸
=(1H⊗(a1a2···aR))·(aR+1⊗1H)+(1H⊗(a1a2···aR))·(1H⊗aR+1)

+

(
R−2∑
`=0

H ⊗ V `

)
· (aR+1 ⊗ 1H + 1H ⊗ aR+1)︸ ︷︷ ︸
⊆
R−1∑̀
=0

H⊗V `
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⊆

(
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR))

)
· (aR+1 ⊗ 1H)︸ ︷︷ ︸

=
R∑

m=1
(am⊗((a1a2···am−1)(am+1am+2···aR)))·(aR+1⊗1H)

+

(
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR))

)
· (1H ⊗ aR+1)︸ ︷︷ ︸

=
R∑

m=1
(am⊗((a1a2···am−1)(am+1am+2···aR)))·(1H⊗aR+1)

+ (1H ⊗ (a1a2 · · · aR)) · (aR+1 ⊗ 1H)︸ ︷︷ ︸
=(1HaR+1)⊗((a1a2···aR)1H)

+ (1H ⊗ (a1a2 · · · aR)) · (1H ⊗ aR+1)︸ ︷︷ ︸
=(1H1H)⊗((a1a2···aR)aR+1)

+
R−1∑
`=0

H ⊗ V `

⊆
R∑

m=1

(am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR))) · (aR+1 ⊗ 1H)︸ ︷︷ ︸
=(amaR+1)⊗((a1a2···am−1)(am+1am+2···aR)1H)

+
R∑

m=1

(am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR))) · (1H ⊗ aR+1)︸ ︷︷ ︸
=(am1H)⊗((a1a2···am−1)(am+1am+2···aR)aR+1)

+ (1HaR+1)︸ ︷︷ ︸
=aR+1

⊗ ((a1a2 · · · aR) 1H)︸ ︷︷ ︸
=a1a2···aR

+ (1H1H)︸ ︷︷ ︸
=1H

⊗ ((a1a2 · · · aR) aR+1)︸ ︷︷ ︸
=a1a2···aRaR+1

+
R−1∑
`=0

H ⊗ V `

=
R∑

m=1

(amaR+1)⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR) 1H)︸ ︷︷ ︸
=(a1a2···am−1)(am+1am+2···aR)

+
R∑

m=1

(am1H)︸ ︷︷ ︸
=am

⊗

(a1a2 · · · am−1) (am+1am+2 · · · aR) aR+1︸ ︷︷ ︸
=am+1am+2···aRaR+1=am+1am+2···aR+1


+ aR+1 ⊗ (a1a2 · · · aR) + 1H ⊗ (a1a2 · · · aRaR+1)︸ ︷︷ ︸

=a1a2···aR+1

+
R−1∑
`=0

H ⊗ V `
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=
R∑

m=1

(amaR+1)︸ ︷︷ ︸
∈H

⊗

 (a1a2 · · · am−1)︸ ︷︷ ︸
∈Vm−1

(since ai∈V for every i∈{1,2,...,m−1})

(am+1am+2 · · · aR)︸ ︷︷ ︸
∈V R−m

(since ai∈V for every i∈{m+1,m+2,...,R})


+

R∑
m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1))

+ aR+1 ⊗ (a1a2 · · · aR) + 1H ⊗ (a1a2 · · · aR+1)

+
R−1∑
`=0

H ⊗ V `

⊆
R∑

m=1

H ⊗
(
V m−1V R−m)

+
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1))

+ aR+1 ⊗ (a1a2 · · · aR) + 1H ⊗ (a1a2 · · · aR+1)

+
R−1∑
`=0

H ⊗ V `

=
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1)) + aR+1 ⊗ (a1a2 · · · aR)︸ ︷︷ ︸
=
R+1∑
m=1

am⊗((a1a2···am−1)(am+1am+2···aR+1))

(by (427))

+ 1H ⊗ (a1a2 · · · aR+1) +
R∑

m=1

H ⊗
(
V m−1V R−m)︸ ︷︷ ︸

=V (m−1)+(R−m)=V R−1

+
R−1∑
`=0

H ⊗ V `

=
R+1∑
m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1))

+ 1H ⊗ (a1a2 · · · aR+1) +
R∑

m=1

H ⊗ V R−1 +
R−1∑
`=0

H ⊗ V `

︸ ︷︷ ︸
⊆

(R+1)−2∑̀
=0

H⊗V `

(by (428))

⊆
R+1∑
m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1))

+ 1H ⊗ (a1a2 · · · aR+1) +

(R+1)−2∑
`=0

H ⊗ V `.

In other words, (423) holds for r = R + 1. We have thus proven (423) for r = R + 1.
The induction step is thus complete.
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Hence, (423) is proven by induction. Now, applying (423) to r = s, we obtain

∆ (a1a2 · · · as) ∈
s∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · as))

+ 1H ⊗ (a1a2 · · · as) +
s−2∑
`=0

H ⊗ V `.

This proves Lemma 35.2.

From Lemma 35.2, we easily conclude the following weaker statement:

Lemma 35.3. Let k be a field. Let H be a k-bialgebra. Let V be a k-
vector subspace of PrimH. Let s ∈ N. Let a1, a2, . . ., as be s elements of
V . Then,

∆ (a1a2 · · · as) ∈ 1H ⊗ (a1a2 · · · as) +
s−1∑
`=0

H ⊗ V `.

214

Proof of Lemma 35.3. Every m ∈ {1, 2, . . . , s} satisfies

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · as)) ∈
s−1∑
`=0

H ⊗ V ` (429)

215. Hence,

s∑
m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · as))︸ ︷︷ ︸
∈
s−1∑̀
=0
H⊗V `

(by (429))

∈
s∑

m=1

s−1∑
`=0

H ⊗ V ` ⊆
s−1∑
`=0

H ⊗ V `

214Recall that V ` is defined according to Convention 15.2. Hence, V ` means the `-th power of the
subspace V of the k-algebra H.

215Proof of (429): Let m ∈ {1, 2, . . . , s}. Then, 1 ≤ m ≤ s, so that s ≥ 1 and thus s − 1 ≥ 0.

Hence, s− 1 ∈ {0, 1, . . . , s− 1}. Thus, H ⊗ V s−1 is an addend in the sum
s−1∑̀
=0

H ⊗ V `. Consequently,

H ⊗ V s−1 ⊆
s−1∑̀
=0

H ⊗ V `.

Now, (a1a2 · · · am−1)︸ ︷︷ ︸
∈Vm−1

(since ai∈V for every i∈{1,2,...,m−1})

(am+1am+2 · · · as)︸ ︷︷ ︸
∈V s−m

(since ai∈V for every i∈{m+1,m+2,...,s})

∈ V m−1V s−m =

V (m−1)+(s−m) = V s−1. Now,

am︸︷︷︸
∈H

⊗

(a1a2 · · · am−1) (am+1am+2 · · · as)︸ ︷︷ ︸
∈V s−1

 ∈ H ⊗ V s−1 ⊆
s−1∑
`=0

H ⊗ V `.

This proves (429).
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(since
s−1∑̀
=0

H ⊗ V ` is a k-vector space). Now, Lemma 35.2 yields

∆ (a1a2 · · · as) ∈
s∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · as))︸ ︷︷ ︸
∈
s−1∑̀
=0
H⊗V `

+ 1H ⊗ (a1a2 · · · as) +
s−2∑
`=0

H ⊗ V `

︸ ︷︷ ︸
⊆
s−1∑̀
=0
H⊗V `

(since s−2≤s−1)

⊆
s−1∑
`=0

H ⊗ V ` + 1H ⊗ (a1a2 · · · as) +
s−1∑
`=0

H ⊗ V `

= 1H ⊗ (a1a2 · · · as) +
s−1∑
`=0

H ⊗ V ` +
s−1∑
`=0

H ⊗ V `

︸ ︷︷ ︸
⊆
s−1∑̀
=0
H⊗V `

(since
s−1∑̀
=0

H⊗V ` is a k-vector space)

⊆ 1H ⊗ (a1a2 · · · as) +
s−1∑
`=0

H ⊗ V `.

This proves Lemma 35.3.

We are now ready to prove the following result (more or less equivalent to Theo-
rem 35.1 (a)):

Lemma 35.4. Let k be a field. Let H be a k-bialgebra. Let A be a k-
algebra. Let r ∈ N. Let f1, f2, . . ., fr be r maps in g (H,A).

Every s ∈ {0, 1, . . . , r − 1} satisfies

(f1 ∗ f2 ∗ · · · ∗ fr) ((PrimH)s) = 0.

216

Proof of Lemma 35.4. We are going to prove Lemma 35.4 by induction over r:
Induction base: If r = 0, then Lemma 35.4 is vacuously true (because if r = 0, then

there exists no s ∈ {0, 1, . . . , r − 1}). Hence, the induction base is complete.
Induction step: Let R ∈ N be positive. Assume that Lemma 35.4 is proven for

r = R− 1. We now are going to prove that Lemma 35.4 holds for r = R.
Let k be a field. Let H be a k-bialgebra. Let A be a k-algebra. Let f1, f2, . . ., fR

be R maps in g (H,A). Let s ∈ {0, 1, . . . , R− 1}. We are going to show that

(f1 ∗ f2 ∗ · · · ∗ fR) ((PrimH)s) = 0.

216Recall that (PrimH)
s

is defined according to Convention 15.2. Hence, (PrimH)
s

means the s-th
power of the subspace PrimH of the k-algebra H.
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Let g = f2∗f3∗· · ·∗fR. Then, g is a k-linear map H → A. Let ` ∈ {0, 1, . . . , s− 1}.
Hence, 0 ≤ ` ≤ s−1. But s ≤ R−1 (since s ∈ {0, 1, . . . , R− 1}), so that ` ≤ s︸︷︷︸

≤R−1

−1 ≤

(R− 1)− 1. Thus, 0 ≤ ` ≤ (R− 1)− 1. Hence, ` ∈ {0, 1, . . . , (R− 1)− 1}. Thus, we
can apply Lemma 35.4 to R− 1, (f2, f3, . . . , fR) and ` instead of r, (f1, f2, . . . , fr) and
s (since we assumed that Lemma 35.4 is proven for r = R− 1). As a result, we obtain

(f2 ∗ f3 ∗ · · · ∗ fR)
(

(PrimH)`
)

= 0. Thus,

g︸︷︷︸
=f2∗f3∗···∗fR

(
(PrimH)`

)
= (f2 ∗ f3 ∗ · · · ∗ fR)

(
(PrimH)`

)
= 0.

Now, forget that we fixed `. We thus have proven that

g
(

(PrimH)`
)

= 0 for every ` ∈ {0, 1, . . . , s− 1} . (430)

We have f1 ∈ g (H,A) = {f ∈ L (H,A) | f (1H) = 0}. In other words, f1 is an
element of L (H,A) and satisfies f1 (1H) = 0.

Now, let a1, a2, . . ., as be s elements of PrimH. We have f1 ∗ f2 ∗ · · · ∗ fR =
f1 ∗ (f2 ∗ f3 ∗ · · · ∗ fR)︸ ︷︷ ︸

=g

= f1 ∗ g = µ ◦ (f1 ⊗ g) ◦∆ (by the definition of convolution), so
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that

(f1 ∗ f2 ∗ · · · ∗ fR)︸ ︷︷ ︸
=µ◦(f1⊗g)◦∆

(a1a2 · · · as)

= (µ ◦ (f1 ⊗ g) ◦∆) (a1a2 · · · as) = µ


(f1 ⊗ g)


∆ (a1a2 · · · as)︸ ︷︷ ︸

∈1H⊗(a1a2···as)+
s−1∑̀
=0
H⊗(PrimH)`

(by Lemma 35.3, applied to V=PrimH)





∈ µ


(f1 ⊗ g)

(
1H ⊗ (a1a2 · · · as) +

s−1∑
`=0

H ⊗ (PrimH)`
)

︸ ︷︷ ︸
=(f1⊗g)(1H⊗(a1a2···as))+

s−1∑̀
=0

(f1⊗g)(H⊗(PrimH)`)
(since the map f1⊗g is k-linear)



= µ

(f1 ⊗ g) (1H ⊗ (a1a2 · · · as))︸ ︷︷ ︸
=f1(1H)⊗g(a1a2···as)

+
s−1∑
`=0

(f1 ⊗ g)
(
H ⊗ (PrimH)`

)
︸ ︷︷ ︸

⊆f1(H)⊗g((PrimH)`)



⊆ µ

f1 (1H)︸ ︷︷ ︸
=0

⊗g (a1a2 · · · as) +
s−1∑
`=0

f1 (H)⊗ g
(

(PrimH)`
)

︸ ︷︷ ︸
=0

(by (430) (since `∈{0,1,...,s−1}))



= µ

0⊗ g (a1a2 · · · as)︸ ︷︷ ︸
=0

+
s−1∑
`=0

f1 (H)⊗ 0︸ ︷︷ ︸
=0

 = µ (0) = 0.

Hence, (f1 ∗ f2 ∗ · · · ∗ fR) (a1a2 · · · as) = 0.
Now, forget that we fixed a1, a2, . . ., as. We thus have shown that whenever a1, a2,

. . ., as are s elements of PrimH, we have

(f1 ∗ f2 ∗ · · · ∗ fR) (a1a2 · · · as) = 0. (431)

Now, (73) yields

(PrimH)s =
〈
a1a2 · · · as | (a1, a2, . . . , as) ∈ (PrimH)×s

〉
=
〈{
a1a2 · · · as | (a1, a2, . . . , as) ∈ (PrimH)×s

}〉
.
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Applying the map f1 ∗ f2 ∗ · · · ∗ fR to both sides of this equality, we obtain

(f1 ∗ f2 ∗ · · · ∗ fR) ((PrimH)s)

= (f1 ∗ f2 ∗ · · · ∗ fR)
(〈{

a1a2 · · · as | (a1, a2, . . . , as) ∈ (PrimH)×s
}〉)

=

〈
(f1 ∗ f2 ∗ · · · ∗ fR)

({
a1a2 · · · as | (a1, a2, . . . , as) ∈ (PrimH)×s

})︸ ︷︷ ︸
={(f1∗f2∗···∗fR)(a1a2···as) | (a1,a2,...,as)∈(PrimH)×s}

〉
(

by (165), applied to H, A, f1 ∗ f2 ∗ · · · ∗ fR and{
a1a2 · · · as | (a1, a2, . . . , as) ∈ (PrimH)×s

}
instead of M , R, φ and S

)

=

〈(f1 ∗ f2 ∗ · · · ∗ fR) (a1a2 · · · as)︸ ︷︷ ︸
=0

(by (431))

| (a1, a2, . . . , as) ∈ (PrimH)×s


〉

=

〈{
0 | (a1, a2, . . . , as) ∈ (PrimH)×s

}︸ ︷︷ ︸
⊆0

〉
⊆ 〈0〉 = 0.

In other words, (f1 ∗ f2 ∗ · · · ∗ fR) ((PrimH)s) = 0.
Now, forget that we fixed k, H, A, (f1, f2, . . . , fR) and s. We thus have shown that

if k is a field, if H is a k-bialgebra, if A is a k-algebra, if f1, f2, . . ., fR are R maps in
g (H,A), then every s ∈ {0, 1, . . . , R− 1} satisfies (f1 ∗ f2 ∗ · · · ∗ fR) ((PrimH)s) = 0.
In other words, we have shown that Lemma 35.4 holds for r = R. This completes the
induction step. The induction proof of Lemma 35.4 is thus complete.

To proceed, we introduce a basic operation on permutations:

Lemma 35.5. As usual, let Sn denote the n-th symmetric group for every
n ∈ N.

Let n be a positive integer.

Fix m ∈ {1, 2, . . . , n}. Let Sn,m denote the subset {σ ∈ Sn | σ (1) = m}
of Sn.

(a) Define a map η : {1, 2, . . . , n− 1} → {1, 2, . . . , n} \ {m} by(
η (i) =

{
i, if i < m;

i+ 1, if i ≥ m
for every i ∈ {1, 2, . . . , n− 1}

)
.

(432)
This map η is well-defined.

(b) Define a map ω : {1, 2, . . . , n} \ {m} → {1, 2, . . . , n− 1} by(
ω (j) =

{
j, if j < m;

j − 1, if j ≥ m
for every j ∈ {1, 2, . . . , n} \ {m}

)
.

(433)
This map ω is well-defined.

(c) The maps η and ω are mutually inverse (where η is defined as in
Lemma 35.5 (a), and where ω is defined as in Lemma 35.5 (b)).
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(d) For every σ ∈ Sn−1, define a map insm σ : {1, 2, . . . , n} → {1, 2, . . . , n}
by(

(insm σ) (i) =

{
η (σ (i− 1)) , if i 6= 1;

m, if i = 1
for every i ∈ {1, 2, . . . , n}

)
(434)

(where η is defined as in Lemma 35.5 (a)). This map insm σ is well-defined.

(e) Define a map ιm : Sn−1 → Sn,m by

(ιm (σ) = insm σ for every σ ∈ Sn−1) (435)

(where insm σ is defined as in Lemma 35.5 (d)). This map ιm is well-defined.

(f) For every τ ∈ Sn,m, define a map delm τ : {1, 2, . . . , n− 1} → {1, 2, . . . , n− 1}
by

((delm τ) (i) = ω (τ (i+ 1)) for every i ∈ {1, 2, . . . , n− 1}) (436)

(where ω is defined as in Lemma 35.5 (b)). This map delm τ is well-defined.

(g) Define a map πm : Sn,m → Sn−1 by

(πm (τ) = delm τ for every τ ∈ Sn,m) (437)

(where delm τ is defined as in Lemma 35.5 (f)). This map πm is well-defined.

(h) The maps ιm and πm are mutually inverse (where ιm is defined as in
Lemma 35.5 (e), and where πm is defined as in Lemma 35.5 (g)).

Proof of Lemma 35.5. We have 1 ∈ {1, 2, . . . , n} (since n is positive).

(a) For every i ∈ {1, 2, . . . , n− 1}, we have

{
i, if i < m;

i+ 1, if i ≥ m
∈ {1, 2, . . . , n}\

{m} 217. Thus, for every i ∈ {1, 2, . . . , n− 1}, the element

{
i, if i < m;

i+ 1, if i ≥ m
is a well-defined element of {1, 2, . . . , n}\{m}. In other words, for every i ∈ {1, 2, . . . , n− 1},

217Proof. Let i ∈ {1, 2, . . . , n− 1}. We want to prove that

{
i, if i < m;

i+ 1, if i ≥ m ∈ {1, 2, . . . , n}\

{m}.
We must be in one of the following two cases:
Case 1: We have i < m.
Case 2: We have i ≥ m.
Let us first consider Case 1. In this case, we have i < m. Hence, i 6= m. Since i ∈ {1, 2, . . . , n− 1} ⊆

{1, 2, . . . , n} and i 6= m, we have i ∈ {1, 2, . . . , n} \ {m}. Now,

{
i, if i < m;

i+ 1, if i ≥ m = i (since

i < m), so that

{
i, if i < m;

i+ 1, if i ≥ m = i ∈ {1, 2, . . . , n}\{m}. Thus,

{
i, if i < m;

i+ 1, if i ≥ m ∈

{1, 2, . . . , n} \ {m} is proven in Case 1.
Let us now consider Case 2. In this case, we have i ≥ m. Hence, i + 1 ≥ m + 1 > m, so that

i+1 6= m. Also, i ∈ {1, 2, . . . , n− 1}, so that i+1 ∈ {2, 3, . . . , n} ⊆ {1, 2, . . . , n}. Combining this with

i+1 6= m, we obtain i+1 ∈ {1, 2, . . . , n}\{m}. Now,

{
i, if i < m;

i+ 1, if i ≥ m = i+1 (since i ≥ m),

so that

{
i, if i < m;

i+ 1, if i ≥ m = i + 1 ∈ {1, 2, . . . , n} \ {m}. Thus,

{
i, if i < m;

i+ 1, if i ≥ m ∈
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the right hand side of (432) is a well-defined element of {1, 2, . . . , n} \ {m}. Hence,
the map η : {1, 2, . . . , n− 1} → {1, 2, . . . , n} \ {m} is well-defined (because the map
η : {1, 2, . . . , n− 1} → {1, 2, . . . , n} \ {m} was defined by (432)). Lemma 35.5 (a) is
thus proven.

(b) For every j ∈ {1, 2, . . . , n}\{m}, we have

{
j, if j < m;

j − 1, if j ≥ m
∈ {1, 2, . . . , n− 1}

218. In other words, for every j ∈ {1, 2, . . . , n}\{m}, the element

{
j, if j < m;

j − 1, if j ≥ m
is a well-defined element of {1, 2, . . . , n− 1}. In other words, for every j ∈ {1, 2, . . . , n}\
{m}, the right hand side of (433) is a well-defined element of {1, 2, . . . , n− 1}. In
other words, Hence, the map ω : {1, 2, . . . , n} \ {m} → {1, 2, . . . , n− 1} is well-defined
(because the map ω : {1, 2, . . . , n} \ {m} → {1, 2, . . . , n− 1} was defined by (433)).
Lemma 35.5 (b) is thus proven.

(c) Clearly, the maps η ◦ ω and ω ◦ η are well-defined.

{1, 2, . . . , n} \ {m} is proven in Case 2.

We have thus proven

{
i, if i < m;

i+ 1, if i ≥ m ∈ {1, 2, . . . , n} \ {m} in each of the two Cases

1 and 2. Since these two Cases cover all possibilities, this yields that

{
i, if i < m;

i+ 1, if i ≥ m ∈

{1, 2, . . . , n} \ {m} always holds, qed.

218Proof. Let j ∈ {1, 2, . . . , n} \ {m}. We want to prove that

{
j, if j < m;

j − 1, if j ≥ m ∈

{1, 2, . . . , n− 1}.
We must be in one of the following two cases:
Case 1: We have j < m.
Case 2: We have j ≥ m.
Let us first consider Case 1. In this case, we have j < m. Hence, j < m ≤ n, so that j ≤ n − 1

(since j and n are integers). But j ∈ {1, 2, . . . , n} \ {m} ⊆ {1, 2, . . . , n}, so that 1 ≤ j. Combining
1 ≤ j and j ≤ n− 1, we obtain j ∈ {1, 2, . . . , n− 1}, so that{

j, if j < m;
j − 1, if j ≥ m = j (since j < m)

∈ {1, 2, . . . , n− 1} .

Thus,

{
j, if j < m;

j − 1, if j ≥ m ∈ {1, 2, . . . , n− 1} is proven in Case 1.

Let us now consider Case 2. In this case, we have j ≥ m. Combined with j 6= m (since j ∈
{1, 2, . . . , n} \ {m}), this yields j > m. Thus, j ≥ m + 1 (since j and m are integers), so that
j − 1 ≥ m ≥ 1. Also, j ≤ n (since j ∈ {1, 2, . . . , n}), so that j − 1 ≤ n− 1. Combining j − 1 ≥ 1 and
j − 1 ≤ n− 1, we obtain j − 1 ∈ {1, 2, . . . , n− 1}. Now,{

j, if j < m;
j − 1, if j ≥ m = j − 1 (since j ≥ m)

∈ {1, 2, . . . , n− 1} .

Thus,

{
j, if j < m;

j − 1, if j ≥ m ∈ {1, 2, . . . , n− 1} is proven in Case 2.

We now have proven

{
j, if j < m;

j − 1, if j ≥ m ∈ {1, 2, . . . , n− 1} in each of the two Cases 1 and

2. Hence,

{
j, if j < m;

j − 1, if j ≥ m ∈ {1, 2, . . . , n− 1} holds in every situation (because the Cases 1

and 2 cover all possibilities), qed.
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First, let i ∈ {1, 2, . . . , n− 1} be arbitrary. Then, we are going to show that
(ω ◦ η) (i) = i.

Clearly, i ∈ {1, 2, . . . , n− 1} ⊆ {1, 2, . . . , n}. Also, from i ∈ {1, 2, . . . , n− 1}, we
obtain i + 1 ∈ {2, 3, . . . , n} ⊆ {1, 2, . . . , n}. We must be in one of the following two
cases:

Case 1: We have i < m.
Case 2: We have i ≥ m.
Let us first consider Case 1. In this case, we have i < m. The definition of η yields

η (i) =

{
i, if i < m;

i+ 1, if i ≥ m
= i (since i < m). But

(ω ◦ η) (i) = ω

η (i)︸︷︷︸
=i

 = ω (i) =

{
i, if i < m;

i− 1, if i ≥ m
(by the definition of ω)

= i (since i < m) .

Thus, (ω ◦ η) (i) = i is proven in Case 1.
Let us now consider Case 2. In this case, we have i ≥ m. Hence, i+1 ≥ m+1 > m.

But the definition of η yields η (i) =

{
i, if i < m;

i+ 1, if i ≥ m
= i + 1 (since i ≥ m).

Now,

(ω ◦ η) (i) = ω

η (i)︸︷︷︸
=i+1

 = ω (i+ 1) =

{
i+ 1, if i+ 1 < m;

(i+ 1)− 1, if i+ 1 ≥ m

(by the definition of ω (i+ 1))

= (i+ 1)− 1 (since i+ 1 ≥ m)

= i.

Hence, (ω ◦ η) (i) = i is proven in Case 2.
Now, we have proven that (ω ◦ η) (i) = i in each of the two Cases 1 and 2. Thus,

(ω ◦ η) (i) = i holds in every situation (because these two Cases 1 and 2 cover all
situations). Hence, (ω ◦ η) (i) = i = id (i).

Now, forget that we fixed i. We thus have proven that for every i ∈ {1, 2, . . . , n− 1},
we have (ω ◦ η) (i) = id (i). In other words,

ω ◦ η = id . (438)

On the other hand, let p ∈ {1, 2, . . . , n} \ {m} be arbitrary. We will show that
(η ◦ ω) (p) = p.

Indeed, we have p ∈ {1, 2, . . . , n} and p 6= m (since p ∈ {1, 2, . . . , n} \ {m}). From
p ∈ {1, 2, . . . , n}, we obtain 1 ≤ p ≤ n. We must be in one of the following two cases:

Case 1: We have p < m.
Case 2: We have p ≥ m.
Let us first consider Case 1. In this case, we have p < m. The definition of ω (p)
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yields ω (p) =

{
p, if p < m;

p− 1, if p ≥ m
= p (since p < m). Now,

(η ◦ ω) (p) = η

ω (p)︸︷︷︸
=p

 = η (p) =

{
p, if p < m;

p+ 1, if p ≥ m

(by the definition of η (p))

= p (since p < m) .

Hence, (η ◦ ω) (p) = p is proven in Case 1.
Let us now consider Case 2. In this case, we have p ≥ m. Combined with p 6= m,

this yields p > m, and therefore p ≥ m + 1 (since p and m are integers). Hence,

p − 1 ≥ m. The definition of ω (p) yields ω (p) =

{
p, if p < m;

p− 1, if p ≥ m
= p − 1

(since p ≥ m). Now,

(η ◦ ω) (p) = η

ω (p)︸︷︷︸
=p−1

 = η (p− 1) =

{
p− 1, if p− 1 < m;

(p− 1) + 1, if p− 1 ≥ m

(by the definition of η (p− 1))

= (p− 1) + 1 (since p− 1 ≥ m)

= p.

Hence, (η ◦ ω) (p) = p is proven in Case 2.
Now, we have proven that (η ◦ ω) (p) = p in each of the two Cases 1 and 2. Thus,

(η ◦ ω) (p) = p holds in every situation (because these two Cases 1 and 2 cover all
situations). Hence, (η ◦ ω) (p) = p = id (p).

Now, forget that we fixed p. We thus have proven that for every p ∈ {1, 2, . . . , n} \
{m}, we have (η ◦ ω) (p) = id (p). In other words,

η ◦ ω = id .

Combined with (438), this yields that the maps η and ω are mutually inverse. This
yields that η and ω are bijective. This proves Lemma 35.5 (c).

(d) Let σ ∈ Sn−1. For every i ∈ {1, 2, . . . , n}, the element

{
η (σ (i− 1)) , if i 6= 1;

m, if i = 1
is a well-defined element of {1, 2, . . . , n} 219. In other words, for every i ∈ {1, 2, . . . , n},

219Proof. Let i ∈ {1, 2, . . . , n}. We need to prove that

{
η (σ (i− 1)) , if i 6= 1;

m, if i = 1
is a well-

defined element of {1, 2, . . . , n}.
If i = 1, then {

η (σ (i− 1)) , if i 6= 1;
m, if i = 1

= m (since i = 1)

is a well-defined element of {1, 2, . . . , n}. Hence, for the rest of our proof (of the fact that{
η (σ (i− 1)) , if i 6= 1;

m, if i = 1
is a well-defined element of {1, 2, . . . , n}), we can WLOG assume

that we don’t have i = 1. Assume this.
We don’t have i = 1. Thus, i 6= 1. Since i ∈ {1, 2, . . . , n} and i 6= 1, we have i ∈
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the right hand side of (434) is a well-defined element of {1, 2, . . . , n}. Hence, the
map insm σ : {1, 2, . . . , n} → {1, 2, . . . , n} is well-defined (because the map insm σ :
{1, 2, . . . , n} → {1, 2, . . . , n} was defined by (434)). Lemma 35.5 (d) is thus proven.

(e) By the definition of Sn,m, we have

Sn,m = {σ ∈ Sn | σ (1) = m} = {τ ∈ Sn | τ (1) = m} (439)

(here, we renamed the index σ as τ).
Let σ ∈ Sn−1. We are going to show that insm σ ∈ Sn,m.
Consider the map η defined in Lemma 35.5 (a) and the map ω defined in Lemma 35.5

(b). The maps η and ω are mutually inverse (by Lemma 35.5 (c)). Thus, η is bijective.
Hence, η is injective and surjective. On the other hand, σ is an element of Sn−1, thus
a permutation of {1, 2, . . . , n− 1}. Hence, σ is bijective, and thus injective.

We know that insm σ is a map {1, 2, . . . , n} → {1, 2, . . . , n}. We now will prove that
this map insm σ is injective.

In fact, let a and b be two elements of {1, 2, . . . , n} such that (insm σ) (a) =
(insm σ) (b).

We assume (for the sake of contradiction) that a 6= b.
We have a 6= 1. 220 Similarly, b 6= 1. Now, the definition of (insm σ) (a) yields

(insm σ) (a) =

{
η (σ (a− 1)) , if a 6= 1;

m, if a = 1
= η (σ (a− 1)) (since a 6= 1) .

Similarly, (insm σ) (b) = η (σ (b− 1)).
We have (insm σ) (a) = (insm σ) (b) = η (σ (b− 1)). Compared with (insm σ) (a) =

η (σ (a− 1)), this yields η (σ (a− 1)) = η (σ (b− 1)). Since η is injective, this yields
σ (a− 1) = σ (b− 1). Hence, a − 1 = b − 1 (since the map σ is also bijective). Thus,
a = b, which contradicts a 6= b. This contradiction shows that our assumption (that
a 6= b) was wrong. Thus, we cannot have a 6= b. We therefore have a = b.

{1, 2, . . . , n} \ {1} = {2, 3, . . . , n}. Hence, i ∈ {1, 2, . . . , n− 1}. Thus, σ (i− 1) is a well-defined
element of {1, 2, . . . , n− 1} (since σ ∈ Sn−1), and therefore η (σ (i− 1)) is a well-defined element of
{1, 2, . . . , n} \ {m} ⊆ {1, 2, . . . , n}.

Now, {
η (σ (i− 1)) , if i 6= 1;

m, if i = 1
= η (σ (i− 1)) (since i 6= 1)

is a well-defined element of {1, 2, . . . , n}, qed.
220Proof. Assume the contrary. Then, we don’t have a 6= 1. Hence, we have a = 1. Now, the

definition of insm σ yields

(insm σ) (a) =

{
η (σ (a− 1)) , if a 6= 1;

m, if a = 1
= m (since a = 1) ,

so that m = (insm σ) (a). But we have a 6= b, so that b 6= a = 1. The definition of insm σ yields

(insm σ) (b) =

{
η (σ (b− 1)) , if b 6= 1;

m, if b = 1
= η (σ (b− 1)) (since b 6= 1)

∈ {1, 2, . . . , n} \ {m} (since the target of η is {1, 2, . . . , n} \ {m}) ,

so that (insm σ) (b) 6= m. Now, we have m = (insm σ) (a) = (insm σ) (b) 6= m. This is a contradiction.
This contradiction proves that our assumption was wrong, qed.
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Now, forget that we fixed a and b. We thus have proven that if a and b are two
elements of {1, 2, . . . , n} such that (insm σ) (a) = (insm σ) (b), then a = b. In other
words, the map insm σ is injective.

Next, let us notice that (insm σ) (1) is well-defined (since 1 ∈ {1, 2, . . . , n}), and the
definition of insm σ yields

(insm σ) (1) =

{
η (σ (1− 1)) , if 1 6= 1;

m, if 1 = 1
= m (since 1 = 1) .

Next, let us show that the map insm σ is surjective. In order to do so, we will show
that every j ∈ {1, 2, . . . , n} satisfies j ∈ (insm σ) ({1, 2, . . . , n}).

Let j ∈ {1, 2, . . . , n}. We are going to show that j ∈ (insm σ) ({1, 2, . . . , n}).
We must be in one of the following two cases:
Case 1: We have j = m.
Case 2: We have j 6= m.
Let us first consider Case 1. In this case, we have j = m. Recall that (insm σ) (1) =

m. Hence, m = (insm σ)

 1︸︷︷︸
∈{1,2,...,n}

 ∈ (insm σ) ({1, 2, . . . , n}). Now, j = m ∈

(insm σ) ({1, 2, . . . , n}). Hence, j ∈ (insm σ) ({1, 2, . . . , n}) is proven in Case 1.
Let us now consider Case 2. In this case, we have j 6= m. Combining j ∈

{1, 2, . . . , n} and j 6= m, we obtain j ∈ {1, 2, . . . , n} \ {m} = η ({1, 2, . . . , n− 1})
(because η is surjective). Hence, there exists some i ∈ {1, 2, . . . , n− 1} such that
η (i) = j. Consider this i. We have i ∈ {1, 2, . . . , n− 1}, and thus the element σ−1 (i)
of {1, 2, . . . , n− 1} is well-defined (because σ is a permutation of {1, 2, . . . , n− 1}).
We have σ−1 (i) ∈ {1, 2, . . . , n− 1}, thus σ−1 (i) + 1 ∈ {2, 3, . . . , n} ⊆ {1, 2, . . . , n}.
Thus, (insm σ) (σ−1 (i) + 1) is well-defined. Also, σ−1 (i) + 1 6= 1 (since σ−1 (i) + 1 ∈
{2, 3, . . . , n}). The definition of (insm σ) (σ−1 (i) + 1) yields

(insm σ)
(
σ−1 (i) + 1

)
=

{
η (σ ((σ−1 (i) + 1)− 1)) , if σ−1 (i) + 1 6= 1;

m, if σ−1 (i) + 1 = 1

= η

σ
(σ−1 (i) + 1− 1

)︸ ︷︷ ︸
=σ−1(i)


 (

since σ−1 (i) + 1 6= 1
)

= η

σ (σ−1 (i)
)︸ ︷︷ ︸

=i

 = η (i) = j.

Hence,

j = (insm σ)

σ−1 (i) + 1︸ ︷︷ ︸
∈{1,2,...,n}

 ∈ (insm σ) ({1, 2, . . . , n}) .

Thus, j ∈ (insm σ) ({1, 2, . . . , n}) is proven in Case 2.
We now have proven j ∈ (insm σ) ({1, 2, . . . , n}) in each of the two Cases 1 and 2.

Since these two Cases cover all possibilities, this yields that j ∈ (insm σ) ({1, 2, . . . , n})
always holds.
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Now, forget that we fixed j. We thus have shown that every j ∈ {1, 2, . . . , n} satis-
fies j ∈ (insm σ) ({1, 2, . . . , n}). In other words, {1, 2, . . . , n} ⊆ (insm σ) ({1, 2, . . . , n}).
In other words, the map insm σ is surjective. Combining this with the fact that insm σ
is injective, we conclude that insm σ is bijective. Thus, insm σ is a bijective map
{1, 2, . . . , n} → {1, 2, . . . , n}. In other words, insm σ is a permutation of {1, 2, . . . , n}.
In other words, insm σ is an element of Sn. We thus have shown that insm σ ∈ Sn.

We now know that insm σ is an element of Sn and satisfies (insm σ) (1) = m. In
other words,

insm σ ∈ {τ ∈ Sn | τ (1) = m} = Sn,m (by (439)) .

Thus, insm σ is a well-defined element of Sn,m.
Now, forget that we fixed σ. We thus have proven that for every σ ∈ Sn−1, the map

insm σ is a well-defined element of Sn,m. In other words, for every σ ∈ Sn−1, the right
hand side of (435) is a well-defined element of Sn,m. Hence, the map ιm : Sn−1 → Sn,m
is well-defined (because the map ιm : Sn−1 → Sn,m was defined by (435)). Lemma 35.5
(e) is thus proven.

(f) Let τ ∈ Sn,m. Then, τ ∈ Sn,m = {σ ∈ Sn | σ (1) = m}. In other words, τ is
an element of Sn and satisfies τ (1) = m.

We have τ ∈ Sn. Thus, τ is a permutation of {1, 2, . . . , n}, hence a bijection. In
particular, this yields that τ is injective.

For every i ∈ {1, 2, . . . , n− 1}, the element ω (τ (i+ 1)) is a well-defined ele-
ment of {1, 2, . . . , n− 1} 221. In other words, for every i ∈ {1, 2, . . . , n− 1}, the
right hand side of (436) is a well-defined element of {1, 2, . . . , n− 1}. Hence, the
map delm σ : {1, 2, . . . , n− 1} → {1, 2, . . . , n− 1} is well-defined (because the map
delm σ : {1, 2, . . . , n− 1} → {1, 2, . . . , n− 1} was defined by (436)). Lemma 35.5 (f)
is thus proven.

(g) Let τ ∈ Sn,m. We are going to show that delm τ ∈ Sn−1.
We have τ ∈ Sn,m = {σ ∈ Sn | σ (1) = m} (by the definition of Sn,m). In other

words, τ is an element of Sn and satisfies τ (1) = m.
Consider the map η defined in Lemma 35.5 (a) and the map ω defined in Lemma 35.5

(b). The maps η and ω are mutually inverse (by Lemma 35.5 (c)). Thus, ω is bijective.
Hence, ω is injective and surjective. On the other hand, τ is an element of Sn, thus a
permutation of {1, 2, . . . , n}. Hence, τ is bijective. Thus, the inverse τ−1 of τ is also
bijective, and therefore injective. The target of τ−1 is {1, 2, . . . , n} (since τ−1 ∈ Sn).

We know that delm τ is a map {1, 2, . . . , n− 1} → {1, 2, . . . , n− 1}. We now will
prove that this map delm τ is injective.

In fact, let a and b be two elements of {1, 2, . . . , n− 1} such that (delm τ) (a) =
(delm τ) (b).

The definition of delm σ yields (delm σ) (a) = ω (τ (a+ 1)). Hence, ω (τ (a+ 1)) =
(delm σ) (a).

221Proof. Let i ∈ {1, 2, . . . , n− 1}. We need to prove that ω (τ (i+ 1)) is a well-defined element of
{1, 2, . . . , n− 1}.

We have i ∈ {1, 2, . . . , n− 1}, so that i+ 1 ∈ {2, 3, . . . , n} and thus i+ 1 6= 1.
We have i+ 1 ∈ {2, 3, . . . , n} ⊆ {1, 2, . . . , n}, so that τ (i+ 1) is well-defined.
If we had τ (i+ 1) = τ (1), then we would have i + 1 = i (since τ is injective), which would

contradict i + 1 6= i. Hence, we don’t have τ (i+ 1) = τ (1). Thus, we have τ (i+ 1) 6= τ (1) = m.
Since τ (i+ 1) ∈ {1, 2, . . . , n} (because the target of τ is {1, 2, . . . , n}) and τ (i+ 1) 6= m, we must
have τ (i+ 1) ∈ {1, 2, . . . , n} \ {m}. Thus, ω (τ (i+ 1)) is a well-defined element of {1, 2, . . . , n− 1}.
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The definition of delm σ yields (delm σ) (b) = ω (τ (b+ 1)). Now,

ω (τ (a+ 1)) = (delm σ) (a) = (delm σ) (b) = ω (τ (b+ 1)) .

Since ω is injective, this yields τ (a+ 1) = τ (b+ 1). Thus, a + 1 = b + 1 (since τ is
injective), so that a = b.

Now, forget that we fixed a and b. We thus have proven that if a and b are two
elements of {1, 2, . . . , n− 1} such that (delm τ) (a) = (delm τ) (b), then a = b. In other
words, the map delm τ is injective.

Next, let us show that the map delm τ is surjective. In order to do so, we will show
that every j ∈ {1, 2, . . . , n− 1} satisfies j ∈ (delm τ) ({1, 2, . . . , n− 1}).

Let j ∈ {1, 2, . . . , n− 1}. We are going to show that j ∈ (delm τ) ({1, 2, . . . , n− 1}).
We have j ∈ {1, 2, . . . , n− 1}. Thus, η (j) is a well-defined element of {1, 2, . . . , n}\

{m} (since η is a map {1, 2, . . . , n− 1} → {1, 2, . . . , n}\{m}). Thus, η (j) ∈ {1, 2, . . . , n}\
{m} ⊆ {1, 2, . . . , n}, so that τ−1 (η (j)) is well-defined (since τ−1 ∈ Sn). Moreover,
η (j) 6= m (since η (j) ∈ {1, 2, . . . , n} \ {m}). If we would have τ−1 (η (j)) = τ−1 (m),
then we would have η (j) = m (since τ−1 is injective), which would contradict the
fact that η (j) 6= m. Hence, we cannot have τ−1 (η (j)) = τ−1 (m). Thus, we have
τ−1 (η (j)) 6= τ−1 (m) = 1 (since τ (1) = m). But τ−1 (η (j)) ∈ {1, 2, . . . , n} (since the
target of τ−1 is {1, 2, . . . , n}). Combined with τ−1 (η (j)) 6= 1, this yields τ−1 (η (j)) ∈
{1, 2, . . . , n} \ {1} = {2, 3, . . . , n}. Hence, τ−1 (η (j)) − 1 ∈ {1, 2, . . . , n− 1}. Denote
the element τ−1 (η (j))− 1 of {1, 2, . . . , n− 1} by g. Thus, g ∈ {1, 2, . . . , n− 1} and

τ

 g︸︷︷︸
=τ−1(η(j))−1

+1

 = τ

τ−1 (η (j))− 1 + 1︸ ︷︷ ︸
=τ−1(η(j))

 = τ
(
τ−1 (η (j))

)
= η (j) .

Now, the definition of delm τ yields

(delm τ) (g) = ω

τ (g + 1)︸ ︷︷ ︸
=η(j)

 = ω (η (j)) = (ω ◦ η)︸ ︷︷ ︸
=id

(since the maps η and ω
are mutually inverse)

(j) = id (j) = j.

Thus,

j = (delm τ)

 g︸︷︷︸
∈{1,2,...,n−1}

 ∈ (delm τ) ({1, 2, . . . , n− 1}) .

Now, forget that we fixed j. We thus have shown that every j ∈ {1, 2, . . . , n− 1}
satisfies j ∈ (delm τ) ({1, 2, . . . , n− 1}). In other words,

{1, 2, . . . , n− 1} ⊆ (delm τ) ({1, 2, . . . , n− 1}) .

In other words, the map delm τ is surjective. Combining this with the fact that
delm τ is injective, we conclude that delm τ is bijective. Thus, delm τ is a bijective
map {1, 2, . . . , n− 1} → {1, 2, . . . , n− 1}. In other words, delm τ is a permutation of
{1, 2, . . . , n− 1}. In other words, delm τ is an element of Sn−1. We thus have shown
that delm τ ∈ Sn−1. Thus, delm τ is a well-defined element of Sn−1.
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Now, forget that we fixed τ . We thus have proven that for every τ ∈ Sn,m, the map
delm τ is a well-defined element of Sn−1. In other words, for every τ ∈ Sn,m, the right
hand side of (437) is a well-defined element of Sn−1. Hence, the map πm : Sn,m → Sn−1

is well-defined (because the map πm : Sn,m → Sn−1 was defined by (437)). Lemma 35.5
(g) is thus proven.

(h) Consider the map η defined in Lemma 35.5 (a) and the map ω defined in
Lemma 35.5 (b). The maps η and ω are mutually inverse (by Lemma 35.5 (c)).
Clearly, the compositions ιm ◦ πm and πm ◦ ιm are well-defined.

Consider also the notation insm σ (for every σ ∈ Sn−1) defined in Lemma 35.5 (d),
and the notation delm τ (for every τ ∈ Sn,m) defined in Lemma 35.5 (f).

Let us first prove that ιm ◦ πm = id.
Indeed, let τ ∈ Sn,m be arbitrary. We have τ ∈ Sn,m = {σ ∈ Sn | σ (1) = m} (by

the definition of Sn,m). In other words, τ is an element of Sn and satisfies τ (1) = m.
Let τ ′ = (ιm ◦ πm) (τ). Notice that τ ′ ∈ Sn,m. We have

τ ′ = (ιm ◦ πm) (τ) = ιm

 πm (τ)︸ ︷︷ ︸
=delm τ

(by the definition of πm)

 = ιm (delm τ) = insm (delm τ)

(by the definition of ιm).
Let i ∈ {1, 2, . . . , n}. We are going to prove that τ (i) = τ ′ (i).
Indeed, we must be in one of the following two cases:
Case 1: We have i = 1.
Case 2: We have i 6= 1.
Let us first consider Case 1. In this case, we have i = 1. Since i = 1, we have

τ ′ (i) = τ ′︸︷︷︸
=insm(delm τ)

(1) = (insm (delm τ)) (1) =

{
η ((delm τ) (1− 1)) , if 1 6= 1;

m, if 1 = 1

(by the definition of insm (delm τ))

= m (since 1 = 1)

= τ

(
1︸︷︷︸
=i

)
(since τ (1) = m)

= τ (i) .

Thus, τ (i) = τ ′ (i). We have thus proven τ (i) = τ ′ (i) in Case 1.
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Let us now consider Case 2. In this case, we have i 6= 1. We have

τ ′︸︷︷︸
=insm(delm τ)

(i) = (insm (delm τ)) (i) =

{
η ((delm τ) (i− 1)) , if i 6= 1;

m, if i = 1

(by the definition of insm (delm τ))

= η

 (delm τ) (i− 1)︸ ︷︷ ︸
=ω(τ((i−1)+1))

(by the definition of delm τ)

 (since i 6= 1)

= η

ω
τ
(i− 1) + 1︸ ︷︷ ︸

=i

 = η (ω (τ (i))) = (η ◦ ω)︸ ︷︷ ︸
=id

(since the maps η and ω
are mutually inverse)

(τ (i))

= id (τ (i)) = τ (i) .

In other words, τ (i) = τ ′ (i). We have thus proven τ (i) = τ ′ (i) in Case 2.
We have therefore proven τ (i) = τ ′ (i) in each of the two Cases 1 and 2. Since these

two Cases cover all possibilities, this shows that τ (i) = τ ′ (i) always holds.
Now, forget that we fixed i. We thus have shown that τ (i) = τ ′ (i) for every

i ∈ {1, 2, . . . , n}. In other words, τ = τ ′. Hence, τ = τ ′ = (ιm ◦ πm) (τ), so that
(ιm ◦ πm) (τ) = τ = id (τ).

Now, forget that we fixed τ . We thus have proven that (ιm ◦ πm) (τ) = id (τ) for
every τ ∈ Sn,m. In other words, ιm ◦ πm = id.

Next, we will show that πm ◦ ιm = id.
Let σ ∈ Sn−1. Let σ′ = (πm ◦ ιm) (σ). Notice that σ′ ∈ Sn−1. We have

σ′ = (πm ◦ ιm) (σ) = πm

 ιm (σ)︸ ︷︷ ︸
=insm σ

(by the definition of ιm)

 = πm (insm σ) = delm (insm σ)

(by the definition of πm).
Let j ∈ {1, 2, . . . , n− 1}. We are going to prove that σ (j) = σ′ (j). We have

j ∈ {1, 2, . . . , n− 1}, and therefore j + 1 ∈ {2, 3, . . . , n} and thus j + 1 6= 1. Now, the
definition of insm σ yields

(insm σ) (j + 1) =

{
η (σ ((j + 1)− 1)) , if j + 1 6= 1;

m, if j + 1 = 1

= η

σ
(j + 1)− 1︸ ︷︷ ︸

=j

 (since j + 1 6= 1)

= η (σ (j)) .
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Now,

σ′︸︷︷︸
=delm(insm σ)

(j) = (delm (insm σ)) (j) = ω

(insm σ) (j + 1)︸ ︷︷ ︸
=η(σ(j))


(by the definition of delm (insm σ))

= ω (η (σ (j))) = (ω ◦ η)︸ ︷︷ ︸
=id

(since the maps η and ω
are mutually inverse)

(σ (j))

= id (σ (j)) = σ (j) .

In other words, σ (j) = σ′ (j).
Now forget that we fixed j. We thus have shown that every j ∈ {1, 2, . . . , n− 1}

satisfies σ (j) = σ′ (j). In other words, σ = σ′. Thus, σ = σ′ = (πm ◦ ιm) (σ), so that
(πm ◦ ιm) (σ) = σ = id (σ).

Now forget that we fixed σ. We thus have proven that every σ ∈ Sn−1 satisfies
(πm ◦ ιm) (σ) = id (σ). In other words, πm ◦ ιm = id. Combined with ιm ◦ πm = id,
this yields that the maps ιm and πm are mutually inverse. Lemma 35.5 (h) is therefore
proven.

We can now proceed to the proof of Theorem 35.1.

Proof of Theorem 35.1. (a) Let s ∈ {0, 1, . . . , r − 1}. Let a1, a2, . . ., as be s elements of
PrimH. Then, a1a2 · · · as ∈ (PrimH)s (since ai ∈ PrimH for every i ∈ {1, 2, . . . , s}).
Hence,

(f1 ∗ f2 ∗ · · · ∗ fr)

a1a2 · · · as︸ ︷︷ ︸
∈(PrimH)s

 ∈ (f1 ∗ f2 ∗ · · · ∗ fr) ((PrimH)s) = 0

(by Lemma 35.4). Hence, (f1 ∗ f2 ∗ · · · ∗ fr) (a1a2 · · · as) = 0. This proves Theorem 35.1
(a).

(b) We are going to prove Theorem 35.1 (b) by induction over r:
Induction base: If r = 0, then Theorem 35.1 (b) is true222. Hence, the induction

base is complete.
Induction step: Let n ∈ N be positive. Assume that Theorem 35.1 (b) is proven

for r = n− 1. We now are going to prove that Theorem 35.1 (b) holds for r = n.
Let k be a field. Let H be a k-bialgebra. Let A be a k-algebra. Let f1, f2, . . ., fn

be n maps in g (H,A). Let a1, a2, . . ., an be n elements of PrimH. We will prove that

(f1 ∗ f2 ∗ · · · ∗ fn) (a1a2 · · · an) =
∑
σ∈Sn

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fn

(
aσ(n)

)
.

222Proof. Assume that r = 0. Let k be a field. Let H be a k-bialgebra. Let A be a k-algebra.
Let f1, f2, . . ., f0 be 0 maps in g (H,A) (that is, no maps). Let a1, a2, . . ., a0 be 0 elements of
PrimH (that is, no elements). Since r = 0, we have Sr = S0 = {id}. But since r = 0, we have
f1 ∗ f2 ∗ · · · ∗ fr = (empty product with respect to convolution) = eH,A. Also, since r = 0, we have
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Let g = f2 ∗ f3 ∗ · · · ∗ fn. Then, g is a k-linear map H → A. We have

f1 ∗ f2 ∗ · · · ∗ fn = f1 ∗ (f2 ∗ f3 ∗ · · · ∗ fn)︸ ︷︷ ︸
=g

= f1 ∗ g = µA ◦ (f1 ⊗ g) ◦∆

(by the definition of convolution). Hence,

(f1 ∗ f2 ∗ · · · ∗ fn) (a1a2 · · · an) = (µA ◦ (f1 ⊗ g) ◦∆) (a1a2 · · · an)

= µA ((f1 ⊗ g) (∆ (a1a2 · · · an))) . (440)

We are now going to study the term (f1 ⊗ g) (∆ (a1a2 · · · an)) on the right hand side of
this.

We have

(f1 ⊗ g)


∆ (a1a2 · · · an)︸ ︷︷ ︸

∈
n∑

m=1
am⊗((a1a2···am−1)(am+1am+2···an))+1H⊗(a1a2···an)+

n−2∑̀
=0

H⊗(PrimH)`

(by Lemma 35.2, applied to V=PrimH and s=n)


∈ (f1 ⊗ g)

(
n∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · an)) + 1H ⊗ (a1a2 · · · an) +
n−2∑
`=0

H ⊗ (PrimH)`
)

⊆ (f1 ⊗ g)

(
n∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · an))

)

+ (f1 ⊗ g) (1H ⊗ (a1a2 · · · an)) + (f1 ⊗ g)

(
n−2∑
`=0

H ⊗ (PrimH)`
)
. (441)

a1a2 · · · ar = (empty product) = 1H . Thus,

(f1 ∗ f2 ∗ · · · ∗ fr)︸ ︷︷ ︸
=eH,A

a1a2 · · · ar︸ ︷︷ ︸
=1H



= eH,A︸︷︷︸
=ηA◦εH

(1H) = (ηA ◦ εH) (1H) = ηA

 εH (1H)︸ ︷︷ ︸
=1

(since H is a bialgebra)

 = ηA (1)

= 1 · 1A (by the definition of ηA)

= 1A

and ∑
σ∈Sr︸︷︷︸

=
∑

σ∈{id}
(since Sr={id})

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fr

(
aσ(r)

)︸ ︷︷ ︸
=(empty product)

(since r=0)

=
∑

σ∈{id}

(empty product)︸ ︷︷ ︸
=1A

=
∑

σ∈{id}

1A = 1A.

Hence, (f1 ∗ f2 ∗ · · · ∗ fr) (a1a2 · · · ar) = 1A =
∑
σ∈Sr

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fr

(
aσ(r)

)
. Hence, Theo-

rem 35.1 (b) is true for r = 0, qed.
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But f1 ∈ g (H,A) = {f ∈ L (H,A) | f (1H) = 0}. In other words, f1 is an element
of L (H,A) and satisfies f1 (1H) = 0. Now,

(f1 ⊗ g) (1H ⊗ (a1a2 · · · an)) = f1 (1H)︸ ︷︷ ︸
=0

⊗g (a1a2 · · · an) = 0⊗g (a1a2 · · · an) = 0. (442)

Furthermore, every ` ∈ {0, 1, . . . , (n− 1)− 1} satisfies

g︸︷︷︸
=f2∗f3∗···∗fn

(
(PrimH)`

)
= (f2 ∗ f3 ∗ · · · ∗ fn)

(
(PrimH)`

)
= 0 (443)

(by Lemma 35.4, applied to n − 1, (f2, f3, . . . , fn) and ` instead of r, (f1, f2, . . . , fr)
and s). Now,

(f1 ⊗ g)

(
n−2∑
`=0

H ⊗ (PrimH)`
)

⊆
n−2∑
`=0

(f1 ⊗ g)
(
H ⊗ (PrimH)`

)
︸ ︷︷ ︸

⊆f1(H)⊗g((PrimH)`)

(since f1 ⊗ g is a k-linear map)

⊆
n−2∑
`=0

f1 (H)⊗ g
(

(PrimH)`
)

︸ ︷︷ ︸
=0

(by (443) (since
`∈{0,1,...,n−2}={0,1,...,(n−1)−1}))

=
n−2∑
`=0

f1 (H)⊗ 0︸ ︷︷ ︸
=0

=
n−2∑
`=0

0 = 0. (444)

Now, (441) becomes

(f1 ⊗ g) (∆ (a1a2 · · · an))

∈ (f1 ⊗ g)

(
n∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · an))

)

+ (f1 ⊗ g) (1H ⊗ (a1a2 · · · an))︸ ︷︷ ︸
=0

(by (442))

+ (f1 ⊗ g)

(
n−2∑
`=0

H ⊗ (PrimH)`
)

︸ ︷︷ ︸
⊆0

(by (442))

⊆ (f1 ⊗ g)

(
n∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · an))

)
+ 0 + 0

= (f1 ⊗ g)

(
n∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · an))

)
.
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In other words,

(f1 ⊗ g) (∆ (a1a2 · · · an))

= (f1 ⊗ g)

(
n∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · an))

)

=
n∑

m=1

(f1 ⊗ g) (am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · an)))︸ ︷︷ ︸
=f1(am)⊗g((a1a2···am−1)(am+1am+2···an))

(since the map f1 ⊗ g is k-linear)

=
n∑

m=1

f1 (am)⊗ g ((a1a2 · · · am−1) (am+1am+2 · · · an)) . (445)

Now, (440) becomes

(f1 ∗ f2 ∗ · · · ∗ fn) (a1a2 · · · an)

= µA

 (f1 ⊗ g) (∆ (a1a2 · · · an))︸ ︷︷ ︸
=

n∑
m=1

f1(am)⊗g((a1a2···am−1)(am+1am+2···an))

(by (445))


= µA

(
n∑

m=1

f1 (am)⊗ g ((a1a2 · · · am−1) (am+1am+2 · · · an))

)

=
n∑

m=1

µA (f1 (am)⊗ g ((a1a2 · · · am−1) (am+1am+2 · · · an)))︸ ︷︷ ︸
=f1(am)·g((a1a2···am−1)(am+1am+2···an))

(since µA is the multiplication map)

(since the map µA is k-linear)

=
n∑

m=1

f1 (am) · g ((a1a2 · · · am−1) (am+1am+2 · · · an)) . (446)

Now, we are going to show that every m ∈ {1, 2, . . . , n} satisfies

g ((a1a2 · · · am−1) (am+1am+2 · · · an)) =
∑
σ∈Sn;
σ(1)=m

f2

(
aσ(2)

)
f3

(
aσ(3)

)
· · · fn

(
aσ(n)

)
. (447)

Proof of (447): Let m ∈ {1, 2, . . . , n}.
We are going to use the subset Sn,m of Sn defined in Lemma 35.5.
We are going to use the map η : {1, 2, . . . , n− 1} → {1, 2, . . . , n} \ {m} defined in

Lemma 35.5 (a). (In particular, this means that we will not use the notation η for the
unity map of a k-algebra in this proof, so as to avoid conflict of notation.) We are also
going to use the map ω : {1, 2, . . . , n}\{m} → {1, 2, . . . , n− 1} defined in Lemma 35.5
(b). Lemma 35.5 (c) yields that the maps η and ω are mutually inverse. Hence, these
maps η and ω are bijections.
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We will use the notion of delm τ (for every τ ∈ Sn,m) defined in Lemma 35.5 (f).
We will also use the map πm : Sn,m → Sn−1 defined in Lemma 35.5 (g). We will
furthermore use the map ιm defined in Lemma 35.5 (e). Lemma 35.5 (h) shows that
the maps ιm and πm are mutually inverse. Hence, these maps ιm and πm are bijections.

For every i ∈ {1, 2, . . . , n− 1}, we know that η (i) is a well-defined element of
{1, 2, . . . , n} \ {m} (since η is a map {1, 2, . . . , n− 1} → {1, 2, . . . , n} \ {m}). Hence,
for every i ∈ {1, 2, . . . , n− 1}, we have η (i) ∈ {1, 2, . . . , n}\{m} ⊆ {1, 2, . . . , n}. Thus,
for every i ∈ {1, 2, . . . , n− 1}, the element aη(i) is a well-defined element of PrimH
(since a1, a2, . . ., an are elements of PrimH). Hence, we can define an (n− 1)-tuple

(b1, b2, . . . , bn−1) ∈ (PrimH)×(n−1) of elements of PrimH by setting(
bi = aη(i) for every i ∈ {1, 2, . . . , n− 1}

)
. (448)

Consider this (n− 1)-tuple (b1, b2, . . . , bn−1).
It is easy to see that

b1b2 · · · bn−1 = (a1a2 · · · am−1) (am+1am+2 · · · an) (449)

223.

223Proof of (449): Every i ∈ {1, 2, . . . ,m− 1} satisfies

η (i) =

{
i, if i < m;

i+ 1, if i ≥ m (by (432))

= i (since i < m (since i ∈ {1, 2, . . . ,m− 1} )) .

Hence, every i ∈ {1, 2, . . . ,m− 1} satisfies

bi = aη(i) (by (448))

= ai (since η (i) = i) .

Taking the product of these equalities over all i ∈ {1, 2, . . . ,m− 1}, we obtain b1b2 · · · bm−1 =
a1a2 · · · am−1.

Every i ∈ {m,m+ 1, . . . , n− 1} satisfies

η (i) =

{
i, if i < m;

i+ 1, if i ≥ m (by (432))

= i+ 1 (since i ≥ m (since i ∈ {m,m+ 1, . . . , n− 1} )) .

Hence, every i ∈ {m,m+ 1, . . . , n− 1} satisfies

bi = aη(i) (by (448))

= ai+1 (since η (i) = i+ 1) .

Taking the product of these equalities over all i ∈ {m,m+ 1, . . . , n− 1}, we obtain bmbm+1 · · · bn−1 =
am+1a(m+1)+1 · · · a(n−1)+1.

Now,

b1b2 · · · bn−1 =

b1b2 · · · bm−1︸ ︷︷ ︸
=a1a2···am−1


 bmbm+1 · · · bn−1︸ ︷︷ ︸

=am+1a(m+1)+1···a(n−1)+1
=am+1am+2···an


= (a1a2 · · · am−1) (am+1am+2 · · · an) .

This proves (449).
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On the other hand, we can apply Theorem 35.1 (b) to n − 1, (f2, f3, . . . , fn) and
(b1, b2, . . . , bn−1) instead of r, (f1, f2, . . . , fr) and (a1, a2, . . . , ar) (because we assumed
that Theorem 35.1 (b) holds for r = n− 1). As a result, we obtain

(f2 ∗ f3 ∗ · · · ∗ fn) (b1b2 · · · bn−1)

=
∑

σ∈Sn−1

f2

(
bσ(1)

)
f3

(
bσ(2)

)
· · · fn

(
bσ(n−1)

)
=
∑

σ∈Sn,m

f2

(
b(πm(σ))(1)

)
f3

(
b(πm(σ))(2)

)
· · · fn

(
b(πm(σ))(n−1)

)
(450)

(here, we substituted πm (σ) for σ in the sum, because the map πm : Sn,m → Sn−1 is a
bijection). But now,

g︸︷︷︸
=f2∗f3∗···∗fn

(a1a2 · · · am−1) (am+1am+2 · · · an)︸ ︷︷ ︸
=b1b2···bn−1

(by (449))


= (f2 ∗ f3 ∗ · · · ∗ fn) (b1b2 · · · bn−1)

=
∑

σ∈Sn,m

f2

(
b(πm(σ))(1)

)
f3

(
b(πm(σ))(2)

)
· · · fn

(
b(πm(σ))(n−1)

)
. (451)

Now, let σ ∈ Sn,m. Let i ∈ {1, 2, . . . , n− 1} be arbitrary. The definition of πm
yields πm (σ) = delm σ. Hence,πm (σ)︸ ︷︷ ︸

=delm σ

 (i) = (delm σ) (i) = ω (σ (i+ 1)) (by the definition of delm σ) .

Thus,

b(πm(σ))(i) = bω(σ(i+1)) = aη(ω(σ(i+1)))

(
by the definition of bω(σ(i+1))

)
= aσ(i+1)

(since η (ω (σ (i+ 1))) = (η ◦ ω)︸ ︷︷ ︸
=id

(since the maps η and ω
are mutually inverse)

(σ (i+ 1)) = id (σ (i+ 1)) = σ (i+ 1)).

Hence, fi+1

b(πm(σ))(i)︸ ︷︷ ︸
=aσ(i+1)

 = fi+1

(
aσ(i+1)

)
.

Now, forget that we fixed i. We thus have proven the equality fi+1

(
b(πm(σ))(i)

)
=

fi+1

(
aσ(i+1)

)
for every i ∈ {1, 2, . . . , n− 1}. Taking the product of these equalities over

all i ∈ {1, 2, . . . , n}, we obtain

f1+1

(
b(πm(σ))(1)

)
f2+1

(
b(πm(σ))(2)

)
· · · f(n−1)+1

(
b(πm(σ))(n−1)

)
= f1+1

(
aσ(1+1)

)
f2+1

(
aσ(2+1)

)
· · · f(n−1)+1

(
aσ((n−1)+1)

)
= f2

(
aσ(2)

)
f3

(
aσ(3)

)
· · · fn

(
aσ(n)

)
.
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Compared with

f1+1

(
b(πm(σ))(1)

)
f2+1

(
b(πm(σ))(2)

)
· · · f(n−1)+1

(
b(πm(σ))(n−1)

)
= f2

(
b(πm(σ))(1)

)
f3

(
b(πm(σ))(2)

)
· · · fn

(
b(πm(σ))(n−1)

)
,

this yields

f2

(
b(πm(σ))(1)

)
f3

(
b(πm(σ))(2)

)
· · · fn

(
b(πm(σ))(n−1)

)
= f2

(
aσ(2)

)
f3

(
aσ(3)

)
· · · fn

(
aσ(n)

)
. (452)

Now, forget that we fixed σ. We thus have shown that every σ ∈ Sn,m satisfies
(452). Hence, ∑

σ∈Sn,m

f2

(
b(πm(σ))(1)

)
f3

(
b(πm(σ))(2)

)
· · · fn

(
b(πm(σ))(n−1)

)︸ ︷︷ ︸
=f2(bσ(2))f3(bσ(3))···fn(bσ(n))

(by (452))

=
∑

σ∈Sn,m

f2

(
aσ(2)

)
f3

(
aσ(3)

)
· · · fn

(
aσ(n)

)
. (453)

Now, let us recall that Sn,m = {σ ∈ Sn | σ (1) = m}. Hence, we can replace the
summation sign “

∑
σ∈Sn,m

” by a “
∑
σ∈Sn;
σ(1)=m

” in
∑

σ∈Sn,m
f2

(
aσ(2)

)
f3

(
aσ(3)

)
· · · fn

(
aσ(n)

)
. As a

result, we obtain ∑
σ∈Sn,m

f2

(
aσ(2)

)
f3

(
aσ(3)

)
· · · fn

(
aσ(n)

)
=
∑
σ∈Sn;
σ(1)=m

f2

(
aσ(2)

)
f3

(
aσ(3)

)
· · · fn

(
aσ(n)

)
. (454)

Now, (451) becomes

g ((a1a2 · · · am−1) (am+1am+2 · · · an))

=
∑

σ∈Sn,m

f2

(
b(πm(σ))(1)

)
f3

(
b(πm(σ))(2)

)
· · · fn

(
b(πm(σ))(n−1)

)
=
∑

σ∈Sn,m

f2

(
aσ(2)

)
f3

(
aσ(3)

)
· · · fn

(
aσ(n)

)
(by (453))

=
∑
σ∈Sn;
σ(1)=m

f2

(
aσ(2)

)
f3

(
aσ(3)

)
· · · fn

(
aσ(n)

)
(by (454)) .

This proves (447).
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Now, (446) becomes

(f1 ∗ f2 ∗ · · · ∗ fn) (a1a2 · · · an)

=
n∑

m=1

f1 (am) · g ((a1a2 · · · am−1) (am+1am+2 · · · an))︸ ︷︷ ︸
=

∑
σ∈Sn;
σ(1)=m

f2(aσ(2))f3(aσ(3))···fn(aσ(n))

(by (447))

=
n∑

m=1

f1 (am) ·
∑
σ∈Sn;
σ(1)=m

f2

(
aσ(2)

)
f3

(
aσ(3)

)
· · · fn

(
aσ(n)

)

=
n∑

m=1

∑
σ∈Sn;
σ(1)=m

f1

 am︸︷︷︸
=aσ(1)

(since m=σ(1)
(since σ(1)=m))

 f2

(
aσ(2)

)
f3

(
aσ(3)

)
· · · fn

(
aσ(n)

)

=
n∑

m=1

∑
σ∈Sn;
σ(1)=m

f1

(
aσ(1)

)
f2

(
aσ(2)

)
f3

(
aσ(3)

)
· · · fn

(
aσ(n)

)︸ ︷︷ ︸
=f1(aσ(1))f2(aσ(2))···fn(aσ(n))

=
n∑

m=1

∑
σ∈Sn;
σ(1)=m

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fn

(
aσ(n)

)
.

Compared with∑
σ∈Sn

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fn

(
aσ(n)

)
=

∑
m∈{1,2,...,n}︸ ︷︷ ︸

=
n∑

m=1

∑
σ∈Sn;
σ(1)=m

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fn

(
aσ(n)

)

(since every σ ∈ Sn satisfies σ (1) ∈ {1, 2, . . . , n})

=
n∑

m=1

∑
σ∈Sn;
σ(1)=m

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fn

(
aσ(n)

)
,

this yields

(f1 ∗ f2 ∗ · · · ∗ fn) (a1a2 · · · an) =
∑
σ∈Sn

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fn

(
aσ(n)

)
.

Now, forget that we fixed k, H, A, (f1, f2, . . . , fn) and (a1, a2, . . . , an). We thus
have shown that if k is a field, if H is a k-bialgebra, if A is a k-algebra, if f1, f2, . . .,
fn are n maps in g (H,A), then every n elements a1, a2, . . ., an of PrimH satisfy

(f1 ∗ f2 ∗ · · · ∗ fn) (a1a2 · · · an) =
∑
σ∈Sn

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fn

(
aσ(n)

)
.
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In other words, we have shown that Theorem 35.1 (b) holds for r = n. This completes
the induction step. The induction proof of Theorem 35.1 (b) is thus complete.

We can obtain some corollaries of Theorem 35.1. By setting f1, f2, . . ., fn all equal
to each other, we can conclude that the following holds:

Corollary 35.6. Let k be a field. Let H be a k-bialgebra. Let A be a
k-algebra. Let r ∈ N. Let f ∈ g (H,A).

(a) Every s ∈ {0, 1, . . . , r − 1} and every s elements a1, a2, . . ., as of PrimH
satisfy

f ∗r (a1a2 · · · as) = 0.

(b) Every r elements a1, a2, . . ., ar of PrimH satisfy

f ∗r (a1a2 · · · ar) =
∑
σ∈Sr

f
(
aσ(1)

)
f
(
aσ(2)

)
· · · f

(
aσ(r)

)
(where Sr denotes the r-th symmetric group).

(c) Let a1, a2, . . ., ar be r elements of PrimH. If the elements f (a1),
f (a2), . . ., f (ar) of A commute pairwise, then

f ∗r (a1a2 · · · ar) = r! · f (a1) f (a2) · · · f (ar) .

The proof of this corollary rests on what we already know along with the following
almost trivial fact:

Lemma 35.7. Let k be a field. Let B be a k-algebra. Let n ∈ N. Let b1,
b2, . . ., bn be n elements of B which pairwise commute. Let σ ∈ Sn. Then,

bσ(1)bσ(2) · · · bσ(n) = b1b2 · · · bn.
Proof of Lemma 35.7. Let S = {b1, b2, . . . , bn}. Then, S ⊆ B (since b1, b2, . . ., bn are
elements of B). Let A be the k-subalgebra of B generated by S. Then, the k-algebra
A is generated by S. In particular, A contains S as a subset. That is, S ⊆ A.

Moreover, any two elements of S commute224. Thus, Proposition 11.2 yields that
the k-algebra A is commutative. Hence, products in the k-algebra A are well-defined
without specifying the order of the factors.

Now, every i ∈ {1, 2, . . . , n} satisfies bi ∈ {b1, b2, . . . , bn} = S ⊆ A. Hence,∏
i∈{1,2,...,n}

bi is a well-defined product in A (it is well-defined since the k-algebra A

is commutative). Since σ ∈ Sn, we know that σ is a permutation of {1, 2, . . . , n}. That
is, σ is a bijection {1, 2, . . . , n} → {1, 2, . . . , n}. Now,

b1b2 · · · bn =
∏

i∈{1,2,...,n}

bi =
∏

i∈{1,2,...,n}

bσ(i)(
here, we substituted i for σ (i) in the product,

since the map σ : {1, 2, . . . , n} → {1, 2, . . . , n} is a bijection

)
= bσ(1)bσ(2) · · · bσ(n).

This proves Lemma 35.7.
224Proof. The elements b1, b2, . . ., bn are the elements of S (because S = {b1, b2, . . . , bn}). But we

also know that the elements b1, b2, . . ., bn pairwise commute. Since the elements b1, b2, . . ., bn are
the elements of S, this rewrites as follows: The elements of S pairwise commute. In other words, any
two elements of S commute, qed.
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Proof of Corollary 35.6. (a) Let s ∈ {0, 1, . . . , r − 1}. Let a1, a2, . . ., as be s elements
of PrimH. Then,

f ∗r︸︷︷︸
=f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸

r times

(a1a2 · · · as) =

f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
r times

 (a1a2 · · · as) = 0

(by Theorem 35.1 (a), applied to (f1, f2, . . . , fr) =

f, f, . . . , f︸ ︷︷ ︸
r times

). This proves Corol-

lary 35.6 (a).
(b) Let a1, a2, . . ., ar be r elements of PrimH. Then,

f ∗r︸︷︷︸
=f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸

r times

(a1a2 · · · ar) =

f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
r times

 (a1a2 · · · ar)

=
∑
σ∈Sr

f
(
aσ(1)

)
f
(
aσ(2)

)
· · · f

(
aσ(r)

)

(by Theorem 35.1 (b), applied to (f1, f2, . . . , fr) =

f, f, . . . , f︸ ︷︷ ︸
r times

). This proves Corol-

lary 35.6 (b).
(c) Let a1, a2, . . ., ar be r elements of PrimH. Assume that the elements f (a1),

f (a2), . . ., f (ar) of A commute pairwise. Thus, for every σ ∈ Sr, we have

f
(
aσ(1)

)
f
(
aσ(2)

)
· · · f

(
aσ(r)

)
= f (a1) f (a2) · · · f (ar) (455)

(by Lemma 35.7, applied to n = r, B = A and bi = f (ai)). Now, Corollary 35.6 (b)
yields

f ∗r (a1a2 · · · ar) =
∑
σ∈Sr

f
(
aσ(1)

)
f
(
aσ(2)

)
· · · f

(
aσ(r)

)︸ ︷︷ ︸
=f(a1)f(a2)···f(ar)

(by (455))

=
∑
σ∈Sr

f (a1) f (a2) · · · f (ar) = |Sr|︸︷︷︸
=r!

·f (a1) f (a2) · · · f (ar)

= r! · f (a1) f (a2) · · · f (ar) .

This proves Corollary 35.6 (c).

We can apply Corollary 35.6 to the Eulerian idempotent:

Corollary 35.8. Let k be a field of characteristic 0. Let H be a connected
filtered bialgebra over k. Consider the convolution algebra L (H,H).

(a) Every s ∈ {0, 1, . . . , r − 1} and every s elements a1, a2, . . ., as of PrimH
satisfy

(Log id)∗r (a1a2 · · · as) = 0.
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(b) Every r elements a1, a2, . . ., ar of PrimH satisfy

(Log id)∗r (a1a2 · · · ar) =
∑
σ∈Sr

aσ(1)aσ(2) · · · aσ(r)

(where Sr denotes the r-th symmetric group).

Proof of Corollary 35.8. We know that LogF ∈ g (H,H) for every F ∈ G (H,H) (this
follows from the definition of Log). Applying this to F = id, we obtain Log id ∈
g (H,H). Thus, Corollary 35.8 (a) follows from Corollary 35.6 (a) (applied to A = H
and f = Log id).

(b) We know that H is a bialgebra, and thus a unital coalgebra. Proposition 6.2
(c) (applied to A = H and F = id) shows that (Log id) |PrimH= id |PrimH . Thus, for
every u ∈ PrimH, we have

(Log id) (u) =

(Log id) |PrimH︸ ︷︷ ︸
=id|PrimH

 (u) = (id |PrimH) (u) = id (u) = u.

Hence,
(Log id) (u) = u for every u ∈ PrimH. (456)

Now, let a1, a2, . . ., ar be r elements of PrimH. Let σ ∈ Sr. Every i ∈ {1, 2, . . . , r}
satisfies aσ(i) ∈ PrimH. Hence, every i ∈ {1, 2, . . . , r} satisfies (Log id)

(
aσ(i)

)
= aσ(i)

(by (456), applied to u = aσ(i)). Multiplying these equalities over all i ∈ {1, 2, . . . , r},
we obtain

(Log id)
(
aσ(1)

)
· (Log id)

(
aσ(2)

)
· · · · · (Log id)

(
aσ(r)

)
= aσ(1)aσ(2) · · · aσ(r). (457)

Now, forget that we fixed σ. We thus have shown that (457) holds for every σ ∈ Sr.
Now, Corollary 35.6 (b) (applied to A = H and f = Log id) yields

(Log id)∗r (a1a2 · · · ar) =
∑
σ∈Sr

(Log id)
(
aσ(1)

)
· (Log id)

(
aσ(2)

)
· · · · · (Log id)

(
aσ(r)

)︸ ︷︷ ︸
=aσ(1)aσ(2)···aσ(r)

(by (457))

=
∑
σ∈Sr

aσ(1)aσ(2) · · · aσ(r).

This proves Corollary 35.8 (b).

We record a further particular case of Theorem 35.1:

Corollary 35.9. Let k be a field. Let H be a k-bialgebra. Let A be a
k-algebra. Let r ∈ N. Let f1, f2, . . ., fr be r maps in g (H,A). Let
a ∈ PrimH.

(a) Every s ∈ {0, 1, . . . , r − 1} satisfies

(f1 ∗ f2 ∗ · · · ∗ fr) (as) = 0.

(b) We have

(f1 ∗ f2 ∗ · · · ∗ fr) (ar) = r! · f1 (a) f2 (a) · · · fr (a) .
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Proof of Corollary 35.9. (a) Let s ∈ {0, 1, . . . , r − 1}. We have

(f1 ∗ f2 ∗ · · · ∗ fr)

 as︸︷︷︸
=aa · · · a︸ ︷︷ ︸

s times

 = (f1 ∗ f2 ∗ · · · ∗ fr)

(
aa · · · a︸ ︷︷ ︸
s times

)
= 0

(by Theorem 35.1 (a), applied to (a1, a2, . . . , as) =

a, a, . . . , a︸ ︷︷ ︸
s times

). This proves Corol-

lary 35.9 (a).
(b) We have

(f1 ∗ f2 ∗ · · · ∗ fr)

 ar︸︷︷︸
=aa · · · a︸ ︷︷ ︸

r times

 = (f1 ∗ f2 ∗ · · · ∗ fr)

(
aa · · · a︸ ︷︷ ︸
r times

)

=
∑
σ∈Sr

f1 (a) f2 (a) · · · fr (a)
by Theorem 35.1 (b), applied to

(a1, a2, . . . , ar) =

a, a, . . . , a︸ ︷︷ ︸
r times




= |Sr|︸︷︷︸
=r!

·f1 (a) f2 (a) · · · fr (a) = r! · f1 (a) f2 (a) · · · fr (a) .

This proves Corollary 35.9 (b).

A further particular case involves only one map and only one primitive element:

Corollary 35.10. Let k be a field. Let H be a k-bialgebra. Let A be a
k-algebra. Let r ∈ N. Let f ∈ g (H,A). Let a ∈ PrimH.

(a) Every s ∈ {0, 1, . . . , r − 1} satisfies

f ∗r (as) = 0.

(b) We have
f ∗r (ar) = r! · (f (a))r .

Proof of Corollary 35.10. (b) Let s ∈ {0, 1, . . . , r − 1}. We have

f ∗r︸︷︷︸
=f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸

r times

(as) =

f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
r times

 (as) = 0
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(by Corollary 35.9 (a), applied to (f1, f2, . . . , fr) =

f, f, . . . , f︸ ︷︷ ︸
r times

). This proves Corol-

lary 35.10 (a).
(b) We have

f ∗r︸︷︷︸
=f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸

r times

(ar) =

f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
r times

 (ar) = r! · f (a) f (a) · · · f (a)︸ ︷︷ ︸
r times︸ ︷︷ ︸

=(f(a))r
by Corollary 35.9 (b), applied to

(f1, f2, . . . , fr) =

f, f, . . . , f︸ ︷︷ ︸
r times




= r! · (f (a))r .

This proves Corollary 35.10 (b).

§36. (ε, ε)-derivations and products

In this section, we are going to prove some results similar to those proven in §35,
although not exactly analogous (in particular, they will need new proofs). However,
before we start, let us record a really simple property of unital coalgebras:

Proposition 36.1. Let k be a field. Let H be a unital coalgebra. Let
x ∈ Ker (εH). Then,

∆ (x) ∈ x⊗ 1H + 1H ⊗ x+ (Ker (εH))⊗ (Ker (εH)) .

Proof of Proposition 36.1. The element ∆ (x) is a tensor in H ⊗ H. Hence, we can

write ∆ (x) in the form ∆ (x) =
n∑
i=1

λiai ⊗ bi for some n ∈ N, some elements λ1, λ2,

. . ., λn of k, some elements a1, a2, . . ., an of H, and some elements b1, b2, . . ., bn of H.
Consider this n, these λ1, λ2, . . ., λn, these a1, a2, . . ., an, and these b1, b2, . . ., bn.

From x = Ker (εH), we obtain εH (x) = 0. Thus, ε︸︷︷︸
=εH

(x) = εH (x) = 0.
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It is now easy to see that
n∑
i=1

λiε (bi) ai = x 225 and
n∑
i=1

λiε (ai) bi = x 226. Also,

225Proof. Let kan : H → H ⊗ k be the canonical isomorphism which sends every y ∈ H to y ⊗ 1.
Then, by the axioms of a coalgebra, we have (id⊗εH) ◦∆H = kan (since H is a coalgebra). Now,

((id⊗εH) ◦∆H) (x) = (id⊗εH)

 ∆H (x)︸ ︷︷ ︸
=∆(x)=

n∑
i=1

λiai⊗bi

 = (id⊗εH)

(
n∑
i=1

λiai ⊗ bi

)

=

n∑
i=1

λi (id⊗εH) (ai ⊗ bi)︸ ︷︷ ︸
=id(ai)⊗εH(bi)

(since the map id⊗εH is k-linear)

=

n∑
i=1

λi id (ai)︸ ︷︷ ︸
=ai

⊗ εH (bi)︸ ︷︷ ︸
=ε(bi)=ε(bi)1

=

n∑
i=1

λi ai ⊗ ε (bi) 1︸ ︷︷ ︸
=ε(bi)ai⊗1

=
n∑
i=1

λiε (bi) ai ⊗ 1 =

(
n∑
i=1

λiε (bi) ai

)
⊗ 1 = kan

(
n∑
i=1

λiε (bi) ai

)

(since kan

(
n∑
i=1

λiε (bi) ai

)
=

(
n∑
i=1

λiε (bi) ai

)
⊗ 1 (by the definition of kan)). Hence,

kan

(
n∑
i=1

λiε (bi) ai

)
=

(id⊗εH) ◦∆H︸ ︷︷ ︸
=kan

 (x) = kan (x) .

Since the map kan is injective (because kan is an isomorphism), this yields
n∑
i=1

λiε (bi) ai = x, qed.

226Proof. Let kan : H → k ⊗ H be the canonical isomorphism which sends every y ∈ H to 1 ⊗ y.
Then, by the axioms of a coalgebra, we have (εH ⊗ id) ◦∆H = kan (since H is a coalgebra). Now,

((εH ⊗ id) ◦∆H) (x) = (εH ⊗ id)

 ∆H (x)︸ ︷︷ ︸
=∆(x)=

n∑
i=1

λiai⊗bi

 (εH ⊗ id)

(
n∑
i=1

λiai ⊗ bi

)

=

n∑
i=1

λi (εH ⊗ id) (ai ⊗ bi)︸ ︷︷ ︸
=id(ai)⊗εH(bi)

(since the map εH ⊗ id is k-linear)

=

n∑
i=1

λi εH (ai)︸ ︷︷ ︸
=ε(ai)=ε(ai)1

⊗ id (bi)︸ ︷︷ ︸
=bi

=

n∑
i=1

λiε (ai) 1⊗ bi︸ ︷︷ ︸
=1⊗λiε(ai)bi

=

n∑
i=1

1⊗ λiε (ai) bi = 1⊗

(
n∑
i=1

λiε (ai) bi

)
= kan

(
n∑
i=1

λiε (ai) bi

)
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n∑
i=1

λiε (ai) ε (bi) = 0 227.

By the axioms of a unital coalgebra, we have ε (1H) = 1 (since H is a unital
coalgebra).

For every i ∈ {1, 2, . . . , n}, define an element a′i of H by a′i = ai − ε (ai) 1H . Then,
for every i ∈ {1, 2, . . . , n}, we have a′i ∈ Ker (εH) 228.

For every i ∈ {1, 2, . . . , n}, define an element b′i of H by b′i = bi − ε (bi) 1H . Then,

for every i ∈ {1, 2, . . . , n}, we have b′i ∈ Ker (εH) 229. Also,
n∑
i=1

λiε (ai) b
′
i = x 230.

(since kan

(
n∑
i=1

λiε (ai) bi

)
= 1⊗

(
n∑
i=1

λiε (ai) bi

)
(by the definition of kan)). Hence,

kan

(
n∑
i=1

λiε (ai) bi

)
=

(εH ⊗ id) ◦∆H︸ ︷︷ ︸
=kan

 (x) = kan (x) .

Since the map kan is injective (because kan is an isomorphism), this yields
n∑
i=1

λiε (ai) bi = x, qed.

227Proof. We know that
n∑
i=1

λiε (ai) bi = x. Applying the map ε to this equality, we obtain

ε

(
n∑
i=1

λiε (ai) bi

)
= ε (x) = 0. Hence,

0 = ε

(
n∑
i=1

λiε (ai) bi

)
=

n∑
i=1

λiε (ai) ε (bi) (since the map ε is k-linear) ,

qed.
228Proof. Let i ∈ {1, 2, . . . , n}. Applying the map ε to the equality a′i = ai − ε (ai) 1H , we obtain

ε (a′i) = ε (ai − ε (ai) 1H) = ε (ai)− ε (ai) ε (1H)︸ ︷︷ ︸
=1

(since the map ε is k-linear)

= ε (ai)− ε (ai) = 0,

so that a′i ∈ Ker ε︸︷︷︸
=εH

= Ker (εH), qed.

229Proof. Let i ∈ {1, 2, . . . , n}. Applying the map ε to the equality b′i = bi − ε (bi) 1H , we obtain

ε (b′i) = ε (bi − ε (bi) 1H) = ε (bi)− ε (bi) ε (1H)︸ ︷︷ ︸
=1

(since the map ε is k-linear)

= ε (bi)− ε (bi) = 0,

so that b′i ∈ Ker ε︸︷︷︸
=εH

= Ker (εH), qed.

230Proof. We have

n∑
i=1

λiε (ai) b′i︸︷︷︸
=bi−ε(bi)1H

=

n∑
i=1

λiε (ai) (bi − ε (bi) 1H) =

n∑
i=1

λiε (ai) bi︸ ︷︷ ︸
=x

−
n∑
i=1

λiε (ai) ε (bi) 1H︸ ︷︷ ︸
=

(
n∑
i=1

λiε(ai)ε(bi)

)
1H

= x−

(
n∑
i=1

λiε (ai) ε (bi)

)
︸ ︷︷ ︸

=0

1H = x− 0 · 1H︸ ︷︷ ︸
=0

= x,
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Now,

∆ (x) =
n∑
i=1

λiai ⊗ bi︸︷︷︸
=b′i+ε(bi)1H

(since b′i=bi−ε(bi)1H)

=
n∑
i=1

λi ai ⊗ (b′i + ε (bi) 1H)︸ ︷︷ ︸
=ai⊗b′i+ε(bi)ai⊗1H

=
n∑
i=1

λi (ai ⊗ b′i + ε (bi) ai ⊗ 1H)

=
n∑
i=1

λi ai︸︷︷︸
=a′i+ε(ai)1H

(since a′i=ai−ε(ai)1H)

⊗b′i +
n∑
i=1

λiε (bi) ai ⊗ 1H︸ ︷︷ ︸
=

(
n∑
i=1

λiε(bi)ai

)
⊗1H

=
n∑
i=1

λi (a
′
i + ε (ai) 1H)⊗ b′i︸ ︷︷ ︸
=a′i⊗b′i+ε(ai)1H⊗b′i

+

(
n∑
i=1

λiε (bi) ai

)
︸ ︷︷ ︸

=x

⊗1H

=
n∑
i=1

λi (a
′
i ⊗ b′i + ε (ai) 1H ⊗ b′i)︸ ︷︷ ︸

=
n∑
i=1

λia′i⊗b′i+
n∑
i=1

λiε(ai)1H⊗b′i

+x⊗ 1H

=
n∑
i=1

λi a′i︸︷︷︸
∈Ker(εH)

⊗ b′i︸︷︷︸
∈Ker(εH)

+
n∑
i=1

λiε (ai) 1H ⊗ b′i︸ ︷︷ ︸
=1H⊗

n∑
i=1

λiε(ai)b′i

+x⊗ 1H

∈
n∑
i=1

λi (Ker (εH))⊗ (Ker (εH))︸ ︷︷ ︸
⊆(Ker(εH))⊗(Ker(εH))

(since (Ker(εH))⊗(Ker(εH)) is
a k-vector space)

+1H ⊗
n∑
i=1

λiε (ai) b
′
i︸ ︷︷ ︸

=x

+x⊗ 1H

⊆ (Ker (εH))⊗ (Ker (εH)) + 1H ⊗ x+ x⊗ 1H

= x⊗ 1H + 1H ⊗ x+ (Ker (εH))⊗ (Ker (εH)) .

This proves Proposition 36.1.

The following theorem is similar to Theorem 35.1:

Theorem 36.2. Let k be a field. Let H be a k-bialgebra. Let A be a
k-algebra. Let r ∈ N. Let f1, f2, . . ., fr be r elements of L (H,A) such that
f1, f2, . . ., fr are (εH , εH)-derivations.

(a) Every s ∈ N and every s elements a1, a2, . . ., as of Ker (εH) such that
s > r satisfy

(f1 ∗ f2 ∗ · · · ∗ fr) (a1a2 · · · as) = 0.

qed.
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(b) Every r elements a1, a2, . . ., ar of Ker (εH) satisfy

(f1 ∗ f2 ∗ · · · ∗ fr) (a1a2 · · · ar) =
∑
σ∈Sr

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fr

(
aσ(r)

)
(where Sr denotes the r-th symmetric group).

We prepare for the proof of this theorem by showing a fact resembling of Lemma 35.2:

Lemma 36.3. Let k be a field. Let H be a k-bialgebra. Let s ∈ N. Let
a1, a2, . . ., as be s elements of Ker (εH). Then,

∆ (a1a2 · · · as) ∈
s∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · as))

+ (Ker (εH))2 ⊗H +H ⊗ (Ker (εH))s

231

Proof of Lemma 36.3. Let us first notice that Ker (εH) is the kernel of εH . Thus,
Ker (εH) is the kernel of an algebra homomorphism (since εH is an algebra homomor-
phism). Thus, Ker (εH) is an ideal of H (since a kernel of an algebra homomorphism
is always an ideal).

We will prove that every r ∈ {0, 1, . . . , s} satisfies

∆ (a1a2 · · · ar) ∈
r∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · ar)) + 1H ⊗ (a1a2 · · · ar)

+ (Ker (εH))2 ⊗H + (Ker (εH))⊗ (Ker (εH))r . (458)

Proof of (458): We will prove (458) by induction over r:
Induction base: Let r = 0. Then, a1a2 · · · ar = a1a2 · · · a0 = (empty product) = 1H .

Also, from r = 0, we obtain (Ker (εH))r = (Ker (εH))0 = k · 1H 3 1H , so that 1H ∈
(Ker (εH))r. Now,

∆

a1a2 · · · ar︸ ︷︷ ︸
=1H

 = ∆ (1H) = 1H ⊗ 1H︸︷︷︸
=a1a2···ar

(by the axioms of a bialgebra)

= 1H ⊗ (a1a2 · · · ar)

⊆
r∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · ar)) + 1H ⊗ (a1a2 · · · ar)

+ (Ker (εH))2 ⊗H + (Ker (εH))⊗ (Ker (εH))r .

Thus, (458) is proven in the case when r = 0. The induction base is hence complete.
Induction step: Let R ∈ {0, 1, . . . , s− 1}. Assume that (458) has been proven for

r = R. We need to prove (458) for r = R + 1.

231Recall that (Ker (εH))
`

is defined according to Convention 15.2. Hence, (Ker (εH))
`

means the
`-th power of the subspace Ker (εH) of the k-algebra H for every ` ∈ N.
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We know that (458) has been proven for r = R. In other words,

∆ (a1a2 · · · aR) ∈
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR)) + 1H ⊗ (a1a2 · · · aR)

+ (Ker (εH))2 ⊗H + (Ker (εH))⊗ (Ker (εH))R . (459)

Define a k-vector subspace R of H ⊗H by

R = (Ker (εH))2 ⊗H + (Ker (εH))⊗ (Ker (εH))R . (460)

Then, (459) becomes

∆ (a1a2 · · · aR) ∈
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR)) + 1H ⊗ (a1a2 · · · aR)

+ (Ker (εH))2 ⊗H + (Ker (εH))⊗ (Ker (εH))R︸ ︷︷ ︸
=R

=
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR)) + 1H ⊗ (a1a2 · · · aR) + R.

(461)

We have aR+1 ∈ Ker (εH). Hence, Proposition 36.1 (applied to x = aR+1) yields

∆ (aR+1) ∈ aR+1︸︷︷︸
∈Ker(εH)

⊗ 1H︸︷︷︸
∈H

+1H ⊗ aR+1 + (Ker (εH))⊗ (Ker (εH))︸ ︷︷ ︸
⊆H

(462)

∈ (Ker (εH))⊗H + 1H ⊗ aR+1 + (Ker (εH))⊗H
= (Ker (εH))⊗H + (Ker (εH))⊗H︸ ︷︷ ︸

⊆(Ker(εH))⊗H
(since (Ker(εH))⊗H is a k-vector space)

+1H ⊗ aR+1

⊆ (Ker (εH))⊗H + 1H ⊗ aR+1. (463)

Now, let us define a k-vector subspace R′ of H ⊗H by

R′ = (Ker (εH))2 ⊗H + (Ker (εH))⊗ (Ker (εH))R+1 . (464)

It is easy to see that(
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR))

)
·∆ (aR+1)

∈
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1)) + R′. (465)
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232 Also,

(1H ⊗ (a1a2 · · · aR)) ·∆ (aR+1)

∈ aR+1 ⊗ (a1a2 · · · aR) + 1H ⊗ (a1a2 · · · aR+1) + R′. (466)

232Proof of (465): Thus,(
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR))

)
· ∆ (aR+1)︸ ︷︷ ︸
∈(Ker(εH))⊗H+1H⊗aR+1

(by (463))

∈

(
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR))

)
· ((Ker (εH))⊗H + 1H ⊗ aR+1)

⊆

 R∑
m=1

am︸︷︷︸
∈Ker(εH)

⊗

(a1a2 · · · am−1) (am+1am+2 · · · aR)︸ ︷︷ ︸
∈H


 · ((Ker (εH))⊗H)

+

(
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR))

)
· (1H ⊗ aR+1)︸ ︷︷ ︸

=
R∑

m=1
(am⊗((a1a2···am−1)(am+1am+2···aR)))·(1H⊗aR+1)

⊆

(
R∑

m=1

(Ker (εH))⊗H

)
︸ ︷︷ ︸

⊆(Ker(εH))⊗H
(since (Ker(εH))⊗H
is a k-vector space)

· ((Ker (εH))⊗H)

+

R∑
m=1

(am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR))) · (1H ⊗ aR+1)︸ ︷︷ ︸
=(am1H)⊗((a1a2···am−1)(am+1am+2···aR)aR+1)
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233 Furthermore,
R ·∆ (aR+1) ⊆ R′. (467)

⊆ ((Ker (εH))⊗H) · ((Ker (εH))⊗H)︸ ︷︷ ︸
=((Ker(εH))·(Ker(εH)))⊗(H·H)

(by Lemma 34.11, applied to H, H, Ker(εH), Ker(εH), H and H
instead of U , V , A, C, B and D)

+

R∑
m=1

(am1H)︸ ︷︷ ︸
=am

⊗

(a1a2 · · · am−1) (am+1am+2 · · · aR) aR+1︸ ︷︷ ︸
=am+1am+2···aR+1


= ((Ker (εH)) · (Ker (εH)))︸ ︷︷ ︸

=(Ker(εH))2

⊗ (H ·H)︸ ︷︷ ︸
=H

+

R∑
m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1))

= (Ker (εH))
2 ⊗H︸ ︷︷ ︸

⊆(Ker(εH))2⊗H+(Ker(εH))⊗(Ker(εH))R+1

=R′

(by (464))

+

R∑
m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1))

= R′ +

R∑
m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1))

=

R∑
m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1)) + R′.

This proves (465).
233Proof of (466): We have

(1H ⊗ (a1a2 · · · aR)) · ∆ (aR+1)︸ ︷︷ ︸
∈aR+1⊗1H+1H⊗aR+1+(Ker(εH))⊗(Ker(εH))

(by (462))

∈ (1H ⊗ (a1a2 · · · aR)) · (aR+1 ⊗ 1H + 1H ⊗ aR+1 + (Ker (εH))⊗ (Ker (εH)))

⊆ (1H ⊗ (a1a2 · · · aR)) · (aR+1 ⊗ 1H)︸ ︷︷ ︸
=(1HaR+1)⊗((a1a2···aR)1H)

+ (1H ⊗ (a1a2 · · · aR)) · (1H ⊗ aR+1)︸ ︷︷ ︸
=(1H1H)⊗((a1a2···aR)aR+1)

+


1H︸︷︷︸
∈H

⊗ (a1a2 · · · aR)︸ ︷︷ ︸
∈(Ker(εH))R

(since ai∈Ker(εH) for
every i∈{1,2,...,R})


· ((Ker (εH))⊗ (Ker (εH)))

⊆ (1HaR+1)︸ ︷︷ ︸
=aR+1

⊗ ((a1a2 · · · aR) 1H)︸ ︷︷ ︸
=a1a2···aR

+ (1H1H)︸ ︷︷ ︸
=1H

⊗ ((a1a2 · · · aR) aR+1)︸ ︷︷ ︸
=a1a2···aR+1

+
(
H ⊗ (Ker (εH))

R
)
· ((Ker (εH))⊗ (Ker (εH)))︸ ︷︷ ︸

=(H·(Ker(εH)))⊗((Ker(εH))R·(Ker(εH)))
(by Lemma 34.11, applied to H, H, H, Ker(εH), (Ker(εH))R and Ker(εH)

instead of U , V , A, C, B and D)
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234

= aR+1 ⊗ (a1a2 · · · aR)

+ 1H ⊗ (a1a2 · · · aR+1)

+ (H · (Ker (εH)))⊗
(

(Ker (εH))
R · (Ker (εH))

)
= aR+1 ⊗ (a1a2 · · · aR) + 1H ⊗ (a1a2 · · · aR+1) + (H · (Ker (εH)))︸ ︷︷ ︸

⊆Ker(εH)
(since Ker(εH) is an ideal of H)

⊗
(

(Ker (εH))
R · (Ker (εH))

)
︸ ︷︷ ︸

=(Ker(εH))R+1

⊆ aR+1 ⊗ (a1a2 · · · aR) + 1H ⊗ (a1a2 · · · aR+1) + (Ker (εH))⊗ (Ker (εH))
R+1︸ ︷︷ ︸

⊆(Ker(εH))2⊗H+(Ker(εH))⊗(Ker(εH))R+1

=R′

(by (464))

⊆ aR+1 ⊗ (a1a2 · · · aR) + 1H ⊗ (a1a2 · · · aR+1) + R′,

so that (466) is proven.
234Proof of (467): We have

(Ker (εH))
2 ·H = (Ker (εH)) · (Ker (εH)) ·H︸ ︷︷ ︸

⊆Ker(εH)
(since Ker(εH) is

an ideal of H)

⊆ (Ker (εH)) · (Ker (εH)) = (Ker (εH))
2
.

We have aR+1 ∈ Ker (εH) (since ai ∈ Ker (εH) for every i ∈ {1, 2, . . . , s}). Now,

R︸︷︷︸
=(Ker(εH))2⊗H+(Ker(εH))⊗(Ker(εH))R

(by (460))

·

 1H︸︷︷︸
∈H

⊗ aR+1︸ ︷︷ ︸
∈Ker(εH)


⊆
(

(Ker (εH))
2 ⊗H + (Ker (εH))⊗ (Ker (εH))

R
)
· (H ⊗Ker (εH))

⊆
(

(Ker (εH))
2 ⊗H

)
· (H ⊗Ker (εH))︸ ︷︷ ︸

=((Ker(εH))2·H)⊗(H·Ker(εH))

(by Lemma 34.11, applied to H, H, (Ker(εH))2, H, H and Ker(εH)
instead of U , V , A, C, B and D)

+
(

(Ker (εH))⊗ (Ker (εH))
R
)
· (H ⊗Ker (εH))︸ ︷︷ ︸

=((Ker(εH))·H)⊗((Ker(εH))R·Ker(εH))
(by Lemma 34.11, applied to H, H, Ker(εH), H, (Ker(εH))R and Ker(εH)

instead of U , V , A, C, B and D)

=
(

(Ker (εH))
2 ·H

)
︸ ︷︷ ︸

⊆(Ker(εH))2

⊗ (H ·Ker (εH))︸ ︷︷ ︸
⊆H

+ ((Ker (εH)) ·H)︸ ︷︷ ︸
⊆Ker(εH)

(since Ker(εH) is an
ideal of H)

⊗
(

(Ker (εH))
R ·Ker (εH)

)
︸ ︷︷ ︸

=(Ker(εH))R+1

⊆ (Ker (εH))
2 ⊗H + (Ker (εH))⊗ (Ker (εH))

R+1
= R′ (468)

(by (464)).

We have (Ker (εH))
2

= (Ker (εH)) · (Ker (εH))︸ ︷︷ ︸
⊆H

⊆ (Ker (εH)) · H ⊆ Ker (εH) (since Ker (εH) is an
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It is also easy to find that

R+1∑
m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1))

=
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1)) + aR+1 ⊗ (a1a2 · · · aR) . (469)

235

Since H is a bialgebra, the comultiplication ∆ is a k-algebra homomorphism (by

ideal of H). Now, the definition of R yields

R = (Ker (εH))
2︸ ︷︷ ︸

=Ker(εH)

⊗H + (Ker (εH))⊗ (Ker (εH))
R︸ ︷︷ ︸

⊆H

⊆ (Ker (εH))⊗H + (Ker (εH))⊗H ⊆ (Ker (εH))⊗H

(since (Ker (εH))⊗H is a k-vector space). Thus,

R · ∆ (aR+1)︸ ︷︷ ︸
∈(Ker(εH))⊗H+1H⊗aR+1

(by (463))

⊆ R · ((Ker (εH))⊗H + 1H ⊗ aR+1)

⊆ R︸︷︷︸
⊆(Ker(εH))⊗H

· ((Ker (εH))⊗H) + R · (1H ⊗ aR+1)︸ ︷︷ ︸
⊆R′

(by (468))

⊆ ((Ker (εH))⊗H) · ((Ker (εH))⊗H)︸ ︷︷ ︸
=((Ker(εH))·(Ker(εH)))⊗(H·H)

(by Lemma 34.11, applied to H, H, Ker(εH), Ker(εH), H and H
instead of U , V , A, C, B and D)

+R′

= ((Ker (εH)) · (Ker (εH)))︸ ︷︷ ︸
=(Ker(εH))2

⊗ (H ·H)︸ ︷︷ ︸
⊆H

+R′

⊆ (Ker (εH))
2 ⊗H︸ ︷︷ ︸

⊆(Ker(εH))2⊗H+(Ker(εH))⊗(Ker(εH))R+1=R′

(by (464))

+R′ ⊆ R′ + R′ ⊆ R′

(since R′ is a k-vector space). This proves (467).
235The proof of this is identical to the proof of (427).

470



the axioms of a bialgebra). We have

∆

 a1a2 · · · aR+1︸ ︷︷ ︸
=(a1a2···aR)aR+1


= ∆ ((a1a2 · · · aR) aR+1)

= ∆ (a1a2 · · · aR)︸ ︷︷ ︸
∈

R∑
m=1

am⊗((a1a2···am−1)(am+1am+2···aR))+1H⊗(a1a2···aR)+R

(by (461))

·∆ (aR+1)

(since ∆ is a k-algebra homomorphism)

∈

(
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR)) + 1H ⊗ (a1a2 · · · aR) + R

)
·∆ (aR+1)

⊆

(
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR))

)
·∆ (aR+1)︸ ︷︷ ︸

∈
R∑

m=1
am⊗((a1a2···am−1)(am+1am+2···aR+1))+R′

(by (465))

+ (1H ⊗ (a1a2 · · · aR)) ·∆ (aR+1)︸ ︷︷ ︸
=aR+1⊗(a1a2···aR)+1H⊗(a1a2···aR+1)+R′

(by (466))

+R ·∆ (aR+1)︸ ︷︷ ︸
⊆R′

(by (467))

⊆
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1)) + R′

+ aR+1 ⊗ (a1a2 · · · aR) + 1H ⊗ (a1a2 · · · aR+1) + R′ + R′

=
R∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1)) + aR+1 ⊗ (a1a2 · · · aR)︸ ︷︷ ︸
=
R+1∑
m=1

am⊗((a1a2···am−1)(am+1am+2···aR+1))

(by (469))

+ 1H ⊗ (a1a2 · · · aR+1) + R′ + R′ + R′︸ ︷︷ ︸
⊆R′

(since R′ is a k-vector space)

⊆
R+1∑
m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1)) + 1H ⊗ (a1a2 · · · aR+1)

+ R′︸︷︷︸
=(Ker(εH))2⊗H+(Ker(εH))⊗(Ker(εH))R+1

(by the definition of R′)

=
R+1∑
m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · aR+1)) + 1H ⊗ (a1a2 · · · aR+1)

+ (Ker (εH))2 ⊗H + (Ker (εH))⊗ (Ker (εH))R+1 .
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In other words, (458) holds for r = R + 1. We have thus proven (458) for r = R + 1.
The induction step is thus complete.

Hence, (458) is proven by induction. Now, applying (458) to r = s, we obtain

∆ (a1a2 · · · as) ∈
s∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · as)) + 1H︸︷︷︸
∈H

⊗ (a1a2 · · · as)︸ ︷︷ ︸
∈(Ker(εH))s

(since ai∈Ker(εH) for
every i∈{1,2,...,s})

+ (Ker (εH))2 ⊗H + (Ker (εH))︸ ︷︷ ︸
⊆H

⊗ (Ker (εH))s

⊆
s∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · as)) +H ⊗ (Ker (εH))s

+ (Ker (εH))2 ⊗H +H ⊗ (Ker (εH))s

=
s∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · as))

+ (Ker (εH))2 ⊗H +H ⊗ (Ker (εH))s +H ⊗ (Ker (εH))s︸ ︷︷ ︸
⊆H⊗(Ker(εH))s

(since H⊗(Ker(εH))s is a k-vector space)

⊆
s∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · as))

+ (Ker (εH))2 ⊗H +H ⊗ (Ker (εH))s .

This proves Lemma 36.3.

From Lemma 36.3, we easily conclude the following weaker statement:

Lemma 36.4. Let k be a field. Let H be a k-bialgebra. Let s ∈ N be
positive. Let a1, a2, . . ., as be s elements of Ker (εH). Then,

∆ (a1a2 · · · as) ∈ H ⊗ (Ker (εH))s−1 + (Ker (εH))2 ⊗H +H ⊗ (Ker (εH))s .

236

(Note that we couldn’t remove the H ⊗ (Ker (εH))s−1 term from the right hand
side in Lemma 36.4; in fact, if s = 1, then we don’t have (Ker (εH))s ⊆ (Ker (εH))s−1,
because in this case we have (Ker (εH))s−1 = (Ker (εH))0 = k · 1H 6⊇ Ker (εH).)

Proof of Lemma 36.4. Every m ∈ {1, 2, . . . , s} satisfies

(a1a2 · · · am−1) (am+1am+2 · · · as) ∈ (Ker (εH))s−1 (470)

236Recall that (Ker (εH))
`

is defined according to Convention 15.2. Hence, (Ker (εH))
`

means the
`-th power of the subspace Ker (εH) of the k-algebra H for every ` ∈ N.
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237. Hence,

s∑
m=1

am︸︷︷︸
∈H

⊗ ((a1a2 · · · am−1) (am+1am+2 · · · as))︸ ︷︷ ︸
∈(Ker(εH))s−1

(by (470))

∈
s∑

m=1

H ⊗ (Ker (εH))s−1

⊆ H ⊗ (Ker (εH))s−1 (471)

(since H ⊗ (Ker (εH))s−1 is a k-vector space).
Now, Lemma 36.3 yields

∆ (a1a2 · · · as) ∈
s∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · as))︸ ︷︷ ︸
∈H⊗(Ker(εH))s−1

+ (Ker (εH))2 ⊗H +H ⊗ (Ker (εH))s

⊆ H ⊗ (Ker (εH))s−1 + (Ker (εH))2 ⊗H +H ⊗ (Ker (εH))s .

This proves Lemma 36.4.

We are now ready to prove the following result (more or less equivalent to Theo-
rem 36.2 (a)):

Lemma 36.5. Let k be a field. Let H be a k-bialgebra. Let A be a k-
algebra. Let r ∈ N. Let f1, f2, . . ., fr be r elements of L (H,A) such that
f1, f2, . . ., fr are (εH , εH)-derivations.

Every s ∈ N such that s > r satisfies

(f1 ∗ f2 ∗ · · · ∗ fr) ((Ker (εH))s) = 0.

238

Proof of Lemma 36.5. We are going to prove Lemma 36.5 by induction over r:
Induction base: If r = 0, then Lemma 36.5 is true239. Hence, the induction base is

complete.

237Proof of (470): Let m ∈ {1, 2, . . . , s}. Then, a1a2 · · · am−1 ∈ (Ker (εH))
m−1

(since ai ∈ Ker (εH)
for all i ∈ {1, 2, . . . ,m− 1}) and am+1am+2 · · · as ∈ (Ker (εH))

s−m
(since ai ∈ Ker (εH) for all i ∈

{m+ 1,m+ 2, . . . , s}). Now,

(a1a2 · · · am−1)︸ ︷︷ ︸
∈(Ker(εH))m−1

(am+1am+2 · · · as)︸ ︷︷ ︸
∈(Ker(εH))s−m

∈ (Ker (εH))
m−1 · (Ker (εH))

s−m

= (Ker (εH))
(m−1)+(s−m)

= (Ker (εH))
s−1

.

This proves (470).
238Recall that (Ker (εH))

`
is defined according to Convention 15.2. Hence, (Ker (εH))

`
means the

`-th power of the subspace Ker (εH) of the k-algebra H for every ` ∈ N.
239Proof. Let r = 0. Let k be a field. Let H be a k-bialgebra. Let A be a k-algebra. Let f1, f2, . . .,
f0 be 0 elements of L (H,A) (that is, no elements) such that f1, f2, . . ., f0 are (εH , εH)-derivations.
Let s ∈ N such that s > r. Recall that Ker (εH) is an ideal of H (this is proven as in the proof of
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Induction step: Let R ∈ N be positive. Assume that Lemma 36.5 is proven for
r = R− 1. We now are going to prove that Lemma 36.5 holds for r = R.

Let k be a field. Let H be a k-bialgebra. Let A be a k-algebra. Let f1, f2, . . ., fR
be R elements of L (H,A) such that f1, f2, . . ., fR are (εH , εH)-derivations. Let s be
an element of N such that s > R. We are going to show that

(f1 ∗ f2 ∗ · · · ∗ fR) ((Ker (εH))s) = 0.

We have s > R ≥ 0, and thus s is positive.
Let g = f2 ∗ f3 ∗ · · · ∗ fR. Then, g is a k-linear map H → A. Let ` ∈ N be such that

` > R− 1. Thus, we can apply Lemma 36.5 to R− 1, (f2, f3, . . . , fR) and ` instead of
r, (f1, f2, . . . , fr) and s (since we assumed that Lemma 36.5 is proven for r = R − 1).

As a result, we obtain (f2 ∗ f3 ∗ · · · ∗ fR)
(

(Ker (εH))`
)

= 0. Thus,

g︸︷︷︸
=f2∗f3∗···∗fR

(
(Ker (εH))`

)
= (f2 ∗ f3 ∗ · · · ∗ fR)

(
(Ker (εH))`

)
= 0.

Now, forget that we fixed `. We thus have proven that

g
(

(Ker (εH))`
)

= 0 for every ` ∈ N such that ` ≥ R− 1. (472)

Applying (472) to ` = s− 1, we obtain

g
(
(Ker (εH))s−1) = 0 (473)

(since s︸︷︷︸
>R

−1 > R− 1). But applying (472) to ` = s, we obtain

g ((Ker (εH))s) = 0 (474)

Lemma 36.3). We have s > r = 0, so that (Ker (εH))
s

= (Ker (εH))
s−1︸ ︷︷ ︸

⊆H

· (Ker (εH)) ⊆ H ·(Ker (εH)) ⊆

Ker (εH) (since Ker (εH) is an ideal of H). On the other hand, r = 0, so that

f1 ∗ f2 ∗ · · · ∗ fr = f1 ∗ f2 ∗ · · · ∗ f0 = (empty product in L (H,A))

= eH,A (since the unity of the k-algebra L (H,A) is eH,A)

= ηA ◦ εH (by the definition of εH) ,

so that f1 ∗ f2 ∗ · · · ∗ fr︸ ︷︷ ︸
=ηA◦εH


(Ker (εH))

s︸ ︷︷ ︸
⊆Ker(εH)

 ⊆ (ηA ◦ εH) (Ker (εH))

= ηA

 εH (Ker (εH))︸ ︷︷ ︸
=0

(by the definition of a kernel)

 = ηA (0) = 0

(since the map ηA is k-linear). Hence, (f1 ∗ f2 ∗ · · · ∗ fr) ((Ker (εH))
s
) = 0. Thus, Lemma 36.5 is

proven under the assumption that r = 0, qed.
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(since s > R > R− 1).
We know that f1 is an (εH , εH)-derivation. But the axioms of a k-bialgebra yield

that εH is a k-algebra homomorphism (since H is a k-bialgebra). Hence, Theo-
rem 15.9 (applied to f = f1) yields that f1 is an (εH , εH)-derivation if and only if
f1

(
(Ker (εH))2 + k · 1H

)
= 0. Thus, f1

(
(Ker (εH))2 + k · 1H

)
= 0 (since we know that

f1 is an (εH , εH)-derivation). Hence,

f1

 (Ker (εH))2︸ ︷︷ ︸
⊆(Ker(εH))2+k·1H

 ⊆ f1

(
(Ker (εH))2 + k · 1H

)
= 0,

so that f1

(
(Ker (εH))2) = 0. Moreover,

f1

 1H︸︷︷︸
∈k·1H⊆(Ker(εH))2+k·1H

 ∈ f1

(
(Ker (εH))2 + k · 1H

)
= 0,

so that f1 (1H) = 0.
Now, let a1, a2, . . ., as be s elements of Ker (εH). We are going to prove that

(f1 ∗ f2 ∗ · · · ∗ fR) (a1a2 · · · as) = 0. First, we have

(f1 ⊗ g)

 ∆ (a1a2 · · · as)︸ ︷︷ ︸
∈H⊗(Ker(εH))s−1+(Ker(εH))2⊗H+H⊗(Ker(εH))s

(by Lemma 36.4)


∈ (f1 ⊗ g)

(
H ⊗ (Ker (εH))s−1)︸ ︷︷ ︸

⊆f1(H)⊗g((Ker(εH))s−1)

+ (f1 ⊗ g)
(
(Ker (εH))2 ⊗H

)︸ ︷︷ ︸
⊆f1((Ker(εH))2)⊗g(H)

+ (f1 ⊗ g) (H ⊗ (Ker (εH))s)︸ ︷︷ ︸
⊆f1(H)⊗g((Ker(εH))s)

⊆ f1 (H)⊗ g
(
(Ker (εH))s−1)︸ ︷︷ ︸

=0
(by (473))

+ f1

(
(Ker (εH))2)︸ ︷︷ ︸

=0

⊗g (H) + f1 (H)⊗ g ((Ker (εH))s)︸ ︷︷ ︸
=0

(by (474))

= f1 (H)⊗ 0︸ ︷︷ ︸
=0

+ 0⊗ g (H)︸ ︷︷ ︸
=0

+ f1 (H)⊗ 0︸ ︷︷ ︸
=0

= 0.

Thus, (f1 ⊗ g) (∆ (a1a2 · · · as)) = 0. Now, f1 ∗ f2 ∗ · · · ∗ fR = f1 ∗ (f2 ∗ f3 ∗ · · · ∗ fR)︸ ︷︷ ︸
=g

=

f1 ∗ g = µ ◦ (f1 ⊗ g) ◦∆ (by the definition of convolution), so that

(f1 ∗ f2 ∗ · · · ∗ fR)︸ ︷︷ ︸
=µ◦(f1⊗g)◦∆

(a1a2 · · · as)

= (µ ◦ (f1 ⊗ g) ◦∆) (a1a2 · · · as) = µ

(f1 ⊗ g) (∆ (a1a2 · · · as))︸ ︷︷ ︸
=0

 = µ (0)

= 0 (since the map µ is k-linear) .
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Now, forget that we fixed a1, a2, . . ., as. We thus have shown that whenever a1, a2,
. . ., as are s elements of Ker (εH), we have

(f1 ∗ f2 ∗ · · · ∗ fR) (a1a2 · · · as) = 0. (475)

Now, (73) yields

(Ker (εH))s =
〈
a1a2 · · · as | (a1, a2, . . . , as) ∈ (Ker (εH))×s

〉
=
〈{
a1a2 · · · as | (a1, a2, . . . , as) ∈ (Ker (εH))×s

}〉
.

Applying the map f1 ∗ f2 ∗ · · · ∗ fR to both sides of this equality, we obtain

(f1 ∗ f2 ∗ · · · ∗ fR) ((Ker (εH))s)

= (f1 ∗ f2 ∗ · · · ∗ fR)
(〈{

a1a2 · · · as | (a1, a2, . . . , as) ∈ (Ker (εH))×s
}〉)

=

〈
(f1 ∗ f2 ∗ · · · ∗ fR)

({
a1a2 · · · as | (a1, a2, . . . , as) ∈ (Ker (εH))×s

})︸ ︷︷ ︸
={(f1∗f2∗···∗fR)(a1a2···as) | (a1,a2,...,as)∈(Ker(εH))×s}

〉
(

by (165), applied to H, A, f1 ∗ f2 ∗ · · · ∗ fR and{
a1a2 · · · as | (a1, a2, . . . , as) ∈ (Ker (εH))×s

}
instead of M , R, φ and S

)

=

〈(f1 ∗ f2 ∗ · · · ∗ fR) (a1a2 · · · as)︸ ︷︷ ︸
=0

(by (475))

| (a1, a2, . . . , as) ∈ (Ker (εH))×s


〉

=

〈{
0 | (a1, a2, . . . , as) ∈ (Ker (εH))×s

}︸ ︷︷ ︸
⊆0

〉
⊆ 〈0〉 = 0.

In other words, (f1 ∗ f2 ∗ · · · ∗ fR) ((Ker (εH))s) = 0.
Now, forget that we fixed k, H, A, (f1, f2, . . . , fR) and s. We thus have shown that

if k is a field, if H is a k-bialgebra, if A is a k-algebra, if f1, f2, . . ., fR be R elements of
L (H,A) such that f1, f2, . . ., fR are (εH , εH)-derivations, then every s ∈ N satisfying
s > R satisfies (f1 ∗ f2 ∗ · · · ∗ fR) ((Ker (εH))s) = 0. In other words, we have shown
that Lemma 36.5 holds for r = R. This completes the induction step. The induction
proof of Lemma 36.5 is thus complete.

We can now proceed to the proof of Theorem 36.2.

Proof of Theorem 36.2. (a) Let s ∈ N be such that s > r. Let a1, a2, . . ., as be s
elements of Ker (εH). Then, a1a2 · · · as ∈ (Ker (εH))s (since ai ∈ Ker (εH) for every
i ∈ {1, 2, . . . , s}). Hence,

(f1 ∗ f2 ∗ · · · ∗ fr)

a1a2 · · · as︸ ︷︷ ︸
∈(Ker(εH))s

 ∈ (f1 ∗ f2 ∗ · · · ∗ fr) ((Ker (εH))s) = 0

(by Lemma 36.5). Hence, (f1 ∗ f2 ∗ · · · ∗ fr) (a1a2 · · · as) = 0. This proves Theorem 36.2
(a).
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(b) We are going to prove Theorem 36.2 (b) by induction over r:
Induction base: If r = 0, then Theorem 36.2 (b) is true240. Hence, the induction

base is complete.
Induction step: Let n ∈ N be positive. Assume that Theorem 36.2 (b) is proven

for r = n− 1. We now are going to prove that Theorem 36.2 (b) holds for r = n.
Let k be a field. Let H be a k-bialgebra. Let A be a k-algebra. Let f1, f2, . . ., fn

be n elements of L (H,A) such that f1, f2, . . ., fn are (εH , εH)-derivations. Let a1, a2,
. . ., an be n elements of Ker (εH). We will prove that

(f1 ∗ f2 ∗ · · · ∗ fn) (a1a2 · · · an) =
∑
σ∈Sn

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fn

(
aσ(n)

)
.

Let g = f2 ∗ f3 ∗ · · · ∗ fn. Then, g is a k-linear map H → A. We have

f1 ∗ f2 ∗ · · · ∗ fn = f1 ∗ (f2 ∗ f3 ∗ · · · ∗ fn)︸ ︷︷ ︸
=g

= f1 ∗ g = µA ◦ (f1 ⊗ g) ◦∆

(by the definition of convolution). Hence,

(f1 ∗ f2 ∗ · · · ∗ fn) (a1a2 · · · an) = (µA ◦ (f1 ⊗ g) ◦∆) (a1a2 · · · an)

= µA ((f1 ⊗ g) (∆ (a1a2 · · · an))) . (476)

We are now going to study the term (f1 ⊗ g) (∆ (a1a2 · · · an)) on the right hand side of
this.

240Proof. Assume that r = 0. Let k be a field. Let H be a k-bialgebra. Let A be a k-
algebra. Let f1, f2, . . ., f0 be 0 elements of L (H,A) (that is, no elements) such that f1, f2,
. . ., f0 are (εH , εH)-derivations. Let a1, a2, . . ., a0 be 0 elements of Ker (εH) (that is, no ele-
ments). Since r = 0, we have Sr = S0 = {id}. But since r = 0, we have f1 ∗ f2 ∗ · · · ∗ fr =
(empty product with respect to convolution) = eH,A. Also, since r = 0, we have a1a2 · · · ar =
(empty product) = 1H . Thus,

(f1 ∗ f2 ∗ · · · ∗ fr)︸ ︷︷ ︸
=eH,A

a1a2 · · · ar︸ ︷︷ ︸
=1H



= eH,A︸︷︷︸
=ηA◦εH

(1H) = (ηA ◦ εH) (1H) = ηA

 εH (1H)︸ ︷︷ ︸
=1

(since H is a bialgebra)

 = ηA (1)

= 1 · 1A (by the definition of ηA)

= 1A

and ∑
σ∈Sr︸︷︷︸

=
∑

σ∈{id}
(since Sr={id})

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fr

(
aσ(r)

)︸ ︷︷ ︸
=(empty product)

(since r=0)

=
∑

σ∈{id}

(empty product)︸ ︷︷ ︸
=1A

=
∑

σ∈{id}

1A = 1A.

Hence, (f1 ∗ f2 ∗ · · · ∗ fr) (a1a2 · · · ar) = 1A =
∑
σ∈Sr

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fr

(
aσ(r)

)
. Hence, Theo-

rem 36.2 (b) is true for r = 0, qed.
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We have

(f1 ⊗ g)

 ∆ (a1a2 · · · an)︸ ︷︷ ︸
∈

n∑
m=1

am⊗((a1a2···am−1)(am+1am+2···an))+(Ker(εH))2⊗H+H⊗(Ker(εH))n

(by Lemma 36.3, applied to s=n)


∈ (f1 ⊗ g)

(
n∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · an)) + (Ker (εH))2 ⊗H +H ⊗ (Ker (εH))n
)

⊆ (f1 ⊗ g)

(
n∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · an))

)
+ (f1 ⊗ g)

(
(Ker (εH))2 ⊗H

)
+ (f1 ⊗ g) (H ⊗ (Ker (εH))n) . (477)

But f1 is an (εH , εH)-derivation. From this, it is easy to conclude that f1

(
(Ker (εH))2) =

0 241. Now,

(f1 ⊗ g)
(
(Ker (εH))2 ⊗H

)
⊆ f1

(
(Ker (εH))2)︸ ︷︷ ︸

=0

⊗g (H) = 0⊗ g (H) = 0. (478)

Furthermore, n > n− 1. Hence, Lemma 36.5 (applied to n− 1, (f2, f3, . . . , fn) and
n instead of r, (f1, f2, . . . , fr) and s) yields (f2 ∗ f3 ∗ · · · ∗ fn) ((Ker (εH))n) = 0. Thus,

g︸︷︷︸
=f2∗f3∗···∗fn

((Ker (εH))n) = (f2 ∗ f3 ∗ · · · ∗ fn) ((Ker (εH))n) = 0. (479)

Now,

(f1 ⊗ g) (H ⊗ (Ker (εH))n) ⊆ f1 (H)⊗ g ((Ker (εH))n)︸ ︷︷ ︸
=0

= f1 (H)⊗ 0 = 0. (480)

241Proof. The axioms of a k-bialgebra yield that εH is a k-algebra homomorphism (since H is a
k-bialgebra). Hence, Theorem 15.9 (applied to f = f1) yields that f1 is an (εH , εH)-derivation if and

only if f1

(
(Ker (εH))

2
+ k · 1H

)
= 0. Thus, f1

(
(Ker (εH))

2
+ k · 1H

)
= 0 (since we know that f1 is

an (εH , εH)-derivation). Hence,

f1

 (Ker (εH))
2︸ ︷︷ ︸

⊆(Ker(εH))2+k·1H

 ⊆ f1

(
(Ker (εH))

2
+ k · 1H

)
= 0,

so that f1

(
(Ker (εH))

2
)

= 0, qed.
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Now, (477) becomes

(f1 ⊗ g) (∆ (a1a2 · · · an))

∈ (f1 ⊗ g)

(
n∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · an))

)
+ (f1 ⊗ g)

(
(Ker (εH))2 ⊗H

)︸ ︷︷ ︸
⊆0

(by (478))

+ (f1 ⊗ g) (H ⊗ (Ker (εH))n)︸ ︷︷ ︸
⊆0

(by (478))

⊆ (f1 ⊗ g)

(
n∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · an))

)
+ 0 + 0

= (f1 ⊗ g)

(
n∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · an))

)
.

In other words,

(f1 ⊗ g) (∆ (a1a2 · · · an))

= (f1 ⊗ g)

(
n∑

m=1

am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · an))

)

=
n∑

m=1

(f1 ⊗ g) (am ⊗ ((a1a2 · · · am−1) (am+1am+2 · · · an)))︸ ︷︷ ︸
=f1(am)⊗g((a1a2···am−1)(am+1am+2···an))

(since the map f1 ⊗ g is k-linear)

=
n∑

m=1

f1 (am)⊗ g ((a1a2 · · · am−1) (am+1am+2 · · · an)) . (481)

Now, (476) becomes

(f1 ∗ f2 ∗ · · · ∗ fn) (a1a2 · · · an)

= µA

 (f1 ⊗ g) (∆ (a1a2 · · · an))︸ ︷︷ ︸
=

n∑
m=1

f1(am)⊗g((a1a2···am−1)(am+1am+2···an))

(by (481))


= µA

(
n∑

m=1

f1 (am)⊗ g ((a1a2 · · · am−1) (am+1am+2 · · · an))

)

=
n∑

m=1

µA (f1 (am)⊗ g ((a1a2 · · · am−1) (am+1am+2 · · · an)))︸ ︷︷ ︸
=f1(am)·g((a1a2···am−1)(am+1am+2···an))

(since µA is the multiplication map)

(since the map µA is k-linear)

=
n∑

m=1

f1 (am) · g ((a1a2 · · · am−1) (am+1am+2 · · · an)) . (482)
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Now, we are going to show that every m ∈ {1, 2, . . . , n} satisfies

g ((a1a2 · · · am−1) (am+1am+2 · · · an)) =
∑
σ∈Sn;
σ(1)=m

f2

(
aσ(2)

)
f3

(
aσ(3)

)
· · · fn

(
aσ(n)

)
. (483)

The proof of (483) proceeds exactly as the proof of (447), with the only difference
that:

– every appearance of “PrimH” has to be replaced by “Ker (εH)”;
– every reference to Theorem 35.1 has to be replaced by a reference to Theorem 36.2.
Therefore, (483) is proven.
Now, (482) becomes

(f1 ∗ f2 ∗ · · · ∗ fn) (a1a2 · · · an)

=
n∑

m=1

f1 (am) · g ((a1a2 · · · am−1) (am+1am+2 · · · an))︸ ︷︷ ︸
=

∑
σ∈Sn;
σ(1)=m

f2(aσ(2))f3(aσ(3))···fn(aσ(n))

(by (483))

=
n∑

m=1

f1 (am) ·
∑
σ∈Sn;
σ(1)=m

f2

(
aσ(2)

)
f3

(
aσ(3)

)
· · · fn

(
aσ(n)

)

=
n∑

m=1

∑
σ∈Sn;
σ(1)=m

f1

 am︸︷︷︸
=aσ(1)

(since m=σ(1)
(since σ(1)=m))

 f2

(
aσ(2)

)
f3

(
aσ(3)

)
· · · fn

(
aσ(n)

)

=
n∑

m=1

∑
σ∈Sn;
σ(1)=m

f1

(
aσ(1)

)
f2

(
aσ(2)

)
f3

(
aσ(3)

)
· · · fn

(
aσ(n)

)︸ ︷︷ ︸
=f1(aσ(1))f2(aσ(2))···fn(aσ(n))

=
n∑

m=1

∑
σ∈Sn;
σ(1)=m

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fn

(
aσ(n)

)
.

Compared with∑
σ∈Sn

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fn

(
aσ(n)

)
=

∑
m∈{1,2,...,n}︸ ︷︷ ︸

=
n∑

m=1

∑
σ∈Sn;
σ(1)=m

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fn

(
aσ(n)

)

(since every σ ∈ Sn satisfies σ (1) ∈ {1, 2, . . . , n})

=
n∑

m=1

∑
σ∈Sn;
σ(1)=m

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fn

(
aσ(n)

)
,
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this yields

(f1 ∗ f2 ∗ · · · ∗ fn) (a1a2 · · · an) =
∑
σ∈Sn

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fn

(
aσ(n)

)
.

Now, forget that we fixed H, A, (f1, f2, . . . , fn) and (a1, a2, . . . , an). We thus have
shown that if H is a k-bialgebra, if A is a k-algebra, if f1, f2, . . ., fn are n elements
of L (H,A) such that f1, f2, . . ., fn are (εH , εH)-derivations, then every n elements a1,
a2, . . ., an of Ker (εH) satisfy

(f1 ∗ f2 ∗ · · · ∗ fn) (a1a2 · · · an) =
∑
σ∈Sn

f1

(
aσ(1)

)
f2

(
aσ(2)

)
· · · fn

(
aσ(n)

)
.

In other words, we have shown that Theorem 36.2 (b) holds for r = n. This completes
the induction step. The induction proof of Theorem 36.2 (b) is thus complete.

We can obtain some corollaries of Theorem 36.2. By setting f1, f2, . . ., fn all equal
to each other, we can conclude that the following holds:

Corollary 36.6. Let k be a field. Let H be a k-bialgebra. Let A be a
k-algebra. Let r ∈ N. Let f ∈ L (H,A) be such that f is an (εH , εH)-
derivation.

(a) Every s ∈ N and every s elements a1, a2, . . ., as of Ker (εH) such that
s > r satisfy

f ∗r (a1a2 · · · as) = 0.

(b) Every r elements a1, a2, . . ., ar of Ker (εH) satisfy

f ∗r (a1a2 · · · ar) =
∑
σ∈Sr

f
(
aσ(1)

)
f
(
aσ(2)

)
· · · f

(
aσ(r)

)
(where Sr denotes the r-th symmetric group).

(c) Let a1, a2, . . ., ar be r elements of Ker (εH). If the elements f (a1),
f (a2), . . ., f (ar) of A commute pairwise, then

f ∗r (a1a2 · · · ar) = r! · f (a1) f (a2) · · · f (ar) .

Proof of Corollary 36.6. (a) Let s ∈ N be such that s > r. Let a1, a2, . . ., as be s
elements of Ker (εH). Then,

f ∗r︸︷︷︸
=f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸

r times

(a1a2 · · · as) =

f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
r times

 (a1a2 · · · as) = 0

(by Theorem 36.2 (a), applied to (f1, f2, . . . , fr) =

f, f, . . . , f︸ ︷︷ ︸
r times

). This proves Corol-

lary 36.6 (a).
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(b) Let a1, a2, . . ., ar be r elements of Ker (εH). Then,

f ∗r︸︷︷︸
=f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸

r times

(a1a2 · · · ar) =

f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
r times

 (a1a2 · · · ar)

=
∑
σ∈Sr

f
(
aσ(1)

)
f
(
aσ(2)

)
· · · f

(
aσ(r)

)

(by Theorem 36.2 (b), applied to (f1, f2, . . . , fr) =

f, f, . . . , f︸ ︷︷ ︸
r times

). This proves Corol-

lary 36.6 (b).
(c) Let a1, a2, . . ., ar be r elements of Ker (εH). Assume that the elements f (a1),

f (a2), . . ., f (ar) of A commute pairwise. Thus, for every σ ∈ Sn, we have

f
(
aσ(1)

)
f
(
aσ(2)

)
· · · f

(
aσ(r)

)
= f (a1) f (a2) · · · f (ar) (484)

(by Lemma 35.7, applied to n = r, B = A and bi = f (ai)). Now, Corollary 36.6 (b)
yields

f ∗r (a1a2 · · · ar) =
∑
σ∈Sr

f
(
aσ(1)

)
f
(
aσ(2)

)
· · · f

(
aσ(r)

)︸ ︷︷ ︸
=f(a1)f(a2)···f(ar)

(by (484))

=
∑
σ∈Sr

f (a1) f (a2) · · · f (ar) = |Sr|︸︷︷︸
=r!

·f (a1) f (a2) · · · f (ar)

= r! · f (a1) f (a2) · · · f (ar) .

This proves Corollary 36.6 (c).

We can apply Corollary 36.6 to the Eulerian idempotent:

Corollary 36.7. Let k be a field of characteristic 0. Let H be a connected
filtered commutative bialgebra over k. Consider the convolution algebra
L (H,H).

(a) Every s ∈ N and every s elements a1, a2, . . ., as of Ker (εH) such that
s > r satisfy

(Log id)∗r (a1a2 · · · as) = 0.

(b) Every r elements a1, a2, . . ., ar of Ker (εH) satisfy

(Log id)∗r (a1a2 · · · ar) = r! · (Log id) (a1) · (Log id) (a2) · · · · · (Log id) (ar) .

Notice that Corollary 36.7 generalizes an observation made in Example 3.18 of
[DPR13].

Proof of Corollary 36.7. Let f = Log id. Then, f is an (εH , εH)-derivation (this was
shown in the proof of Theorem 15.10). Hence, Corollary 36.6 (a) (applied to A = H)
yields that every s ∈ N and every s elements a1, a2, . . ., as of Ker (εH) such that s > r
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satisfy f ∗r (a1a2 · · · as) = 0. Since f = Log id, this rewrites as follows: Every s ∈ N
and every s elements a1, a2, . . ., as of Ker (εH) such that s > r satisfy

(Log id)∗r (a1a2 · · · as) = 0.

This proves Corollary 36.7 (a).
(b) Let a1, a2, . . ., ar be r elements of Ker (εH). Then, the elements f (a1), f (a2),

. . ., f (ar) of H commute pairwise (since H is commutative). Therefore, Corollary 36.6
(b) (applied to A = H) yields that f ∗r (a1a2 · · · ar) = r! · f (a1) f (a2) · · · f (ar). Since
f = Log id, this rewrites as

(Log id)∗r (a1a2 · · · ar) = r! · (Log id) (a1) · (Log id) (a2) · · · · · (Log id) (ar) .

This proves Corollary 36.7 (b).

We record a further particular case of Theorem 36.2:

Corollary 36.8. Let k be a field. Let H be a k-bialgebra. Let A be a
k-algebra. Let r ∈ N. Let f1, f2, . . ., fr be r elements of L (H,A) such that
f1, f2, . . ., fr are (εH , εH)-derivations. Let a ∈ Ker (εH).

(a) Every s ∈ N such that s > r satisfies

(f1 ∗ f2 ∗ · · · ∗ fr) (as) = 0.

(b) We have

(f1 ∗ f2 ∗ · · · ∗ fr) (ar) = r! · f1 (a) f2 (a) · · · fr (a) .

Proof of Corollary 36.8. (a) Let s ∈ N be such that s > r. We have

(f1 ∗ f2 ∗ · · · ∗ fr)

 as︸︷︷︸
=aa · · · a︸ ︷︷ ︸

s times

 = (f1 ∗ f2 ∗ · · · ∗ fr)

(
aa · · · a︸ ︷︷ ︸
s times

)
= 0

(by Theorem 36.2 (a), applied to (a1, a2, . . . , as) =

a, a, . . . , a︸ ︷︷ ︸
s times

). This proves Corol-

lary 36.8 (a).
(b) We have

(f1 ∗ f2 ∗ · · · ∗ fr)

 ar︸︷︷︸
=aa · · · a︸ ︷︷ ︸

r times

 = (f1 ∗ f2 ∗ · · · ∗ fr)

(
aa · · · a︸ ︷︷ ︸
r times

)

=
∑
σ∈Sr

f1 (a) f2 (a) · · · fr (a)
by Theorem 36.2 (b), applied to

(a1, a2, . . . , ar) =

a, a, . . . , a︸ ︷︷ ︸
r times




= |Sr|︸︷︷︸
=r!

·f1 (a) f2 (a) · · · fr (a) = r! · f1 (a) f2 (a) · · · fr (a) .
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This proves Corollary 36.8 (b).

A further particular case involves only one map and only one element of Ker (εH):

Corollary 36.9. Let k be a field. Let H be a k-bialgebra. Let A be a
k-algebra. Let r ∈ N. Let f ∈ L (H,A) be such that f is an (εH , εH)-
derivation. Let a ∈ Ker (εH).

(a) Every s ∈ N such that s > r satisfies

f ∗r (as) = 0.

(b) We have
f ∗r (ar) = r! · (f (a))r .

Proof of Corollary 36.9. (b) Let s ∈ N be such that s > r. We have

f ∗r︸︷︷︸
=f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸

r times

(as) =

f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
r times

 (as) = 0

(by Corollary 36.8 (a), applied to (f1, f2, . . . , fr) =

f, f, . . . , f︸ ︷︷ ︸
r times

). This proves Corol-

lary 36.9 (a).
(b) We have

f ∗r︸︷︷︸
=f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸

r times

(ar) =

f ∗ f ∗ · · · ∗ f︸ ︷︷ ︸
r times

 (ar) = r! · f (a) f (a) · · · f (a)︸ ︷︷ ︸
r times︸ ︷︷ ︸

=(f(a))r
by Corollary 36.8 (b), applied to

(f1, f2, . . . , fr) =

f, f, . . . , f︸ ︷︷ ︸
r times




= r! · (f (a))r .

This proves Corollary 36.9 (b).

§37. An invertibility criterion for coalgebra homo-

morphisms

We next prove a fact which comes handy when one desires to show that certain coal-
gebra maps are invertible:
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Theorem 37.1. Let k be a field. Let C be a connected filtered k-coalgebra.
As we know, C thus becomes a unital coalgebra. Let f : C → C be a k-
coalgebra homomorphism satisfying f (1C) = 1C . Assume that

f (x) = x for every primitive element x of C. (485)

(a) We have (idC −f)n (C≤n) = 0 for every integer n ≥ 1.

(b) The map f is a k-coalgebra isomorphism.

Note that f is not required to satisfy f (C≤n) ⊆ C≤n in Theorem 37.1.
Before we prove Theorem 37.1, we are going to show some lemmas. First, here is a

very basic invertibility criterion for linear maps:

Lemma 37.2. Let k be a field. Let V be a k-vector space. Let f : V → V
be a k-linear map. Let (V1, V2, V3, . . .) be a sequence of k-vector subspaces
of V such that V =

⋃
n≥1

Vn. Assume that (idV −f)n (Vn) = 0 for every

integer n ≥ 1. Then, the map f is invertible.

Proof of Lemma 37.2. Clearly, the elements f and idV of EndV commute (since f ◦
idV = f = idV ◦f). Let H be the k-subalgebra of EndV generated by the elements
f and idV . 242 Then, the k-algebra H is commutative (by Corollary 11.3, applied
to A = EndV and g = idV ). Therefore, we can apply the binomial theorem in this
k-algebra H. Since f and idV both belong to H (because H is generated by f and idV ),
the binomial theorem thus yields

(idV −f)n =
n∑
i=0

(−1)n−i
(
n

i

)
idiV︸︷︷︸
=idV

◦fn−i =
n∑
i=0

(−1)n−i
(
n

i

)
idV ◦fn−i︸ ︷︷ ︸

=fn−i

=
n∑
i=0

(−1)n−i
(
n

i

)
fn−i = (−1)n−n︸ ︷︷ ︸

=(−1)0=1

(
n

n

)
︸︷︷︸

=1

fn−n︸︷︷︸
=f0=idV

+
n−1∑
i=0

(−1)n−i
(
n

i

)
fn−i︸︷︷︸

=f (n−i−1)+1

= idV +
n−1∑
i=0

(−1)n−i
(
n

i

)
f (n−i−1)+1︸ ︷︷ ︸
=f◦fn−i−1

(since n−i−1≥0 (because i≤n−1))

(486)

= idV +
n−1∑
i=0

(−1)n−i
(
n

i

)
f ◦ fn−i−1

︸ ︷︷ ︸
=f◦

n−1∑
i=0

(−1)n−i

(
n

i

)
fn−i−1


(since composition of k-linear maps is k-bilinear)

= idV +f ◦

(
n−1∑
i=0

(−1)n−i
(
n

i

)
fn−i−1

)
(487)

242Of course, this H is also the k-subalgebra of EndV generated by the element f alone (because the
element idV is the unity of the k-algebra EndV , and thus lies in any k-subalgebra of EndV ). But we
will not need this.
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for each n ∈ N.
Let us now show that the map f is surjective.
Indeed, let v ∈ V be arbitrary. Then, v ∈ V =

⋃
n≥1

Vn. Hence, there exists an

integer n ≥ 1 such that v ∈ Vn. Consider this n.

Since v ∈ Vn, we have (idV −f)n

 v︸︷︷︸
∈Vn

 ∈ (idV −f)n (Vn) = 0, and thus (idV −f)n (v) =

0.
Now, recall that (idV −f)n (v) = 0, so that

0 = (idV −f)n︸ ︷︷ ︸
=idV +f◦

n−1∑
i=0

(−1)n−i

(
n

i

)
fn−i−1


(by (487))

(v) =

(
idV +f ◦

(
n−1∑
i=0

(−1)n−i
(
n

i

)
fn−i−1

))
(v)

= idV (v)︸ ︷︷ ︸
=v

+

(
f ◦

(
n−1∑
i=0

(−1)n−i
(
n

i

)
fn−i−1

))
(v)

= v +

(
f ◦

(
n−1∑
i=0

(−1)n−i
(
n

i

)
fn−i−1

))
(v) .

Subtracting v from this equality, we obtain

−v =

(
f ◦

(
n−1∑
i=0

(−1)n−i
(
n

i

)
fn−i−1

))
(v)

= f


(
n−1∑
i=0

(−1)n−i
(
n

i

)
fn−i−1

)
(v)︸ ︷︷ ︸

∈V

 ∈ f (V ) .

Thus, v = − (−v)︸︷︷︸
∈f(V )

∈ −f (V ) ⊆ f (V ) (since f (V ) is a k-vector space).

Now, forget that we fixed v. We thus have proven that every v ∈ V satisfies
v ∈ f (V ). In other words, V ⊆ f (V ). In other words, the map f is surjective.

Now, let v ∈ Ker f be arbitrary. Then, f (v) = 0. But on the other hand, v ∈
Ker f ⊆ V =

⋃
n≥1

Vn. Hence, there exists an integer n ≥ 1 such that v ∈ Vn. Consider

this n.

Since v ∈ Vn, we have (idV −f)n

 v︸︷︷︸
∈Vn

 ∈ (idV −f)n (Vn) = 0, and thus (idV −f)n (v) =
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0. Thus,

0 = (idV −f)n︸ ︷︷ ︸
=idV +

n−1∑
i=0

(−1)n−i

(
n

i

)
f (n−i−1)+1

(by (486))

(v)

=

(
idV +

n−1∑
i=0

(−1)n−i
(
n

i

)
f (n−i−1)+1

)
(v)

= idV (v)︸ ︷︷ ︸
=v

+
n−1∑
i=0

(−1)n−i
(
n

i

)
f (n−i−1)+1︸ ︷︷ ︸
=fn−i−1◦f

(since n−i−1≥0 (because i≤n−1))

(v)

= v +
n−1∑
i=0

(−1)n−i
(
n

i

)(
fn−i−1 ◦ f

)
(v)︸ ︷︷ ︸

=fn−i−1(f(v))

= v +
n−1∑
i=0

(−1)n−i
(
n

i

)
fn−i−1

f (v)︸︷︷︸
=0

 = v +
n−1∑
i=0

(−1)n−i
(
n

i

)
fn−i−1 (0)︸ ︷︷ ︸

=0
(since fn−i−1 is k-linear)

= v +
n−1∑
i=0

(−1)n−i
(
n

i

)
0︸ ︷︷ ︸

=0

= v,

so that v = 0.
Now, forget that we fixed v. We thus have proven that every v ∈ Ker f satisfies

v = 0. In other words, Ker f = 0. Thus, the k-linear map f is injective. Combined
with the fact that f is surjective, this yields that f is bijective. Hence, f is invertible.
This proves Lemma 37.2.

Let us show a simple property of connected filtered k-coalgebras:

Proposition 37.3. Let k be a field. Let C be a connected filtered k-
coalgebra. As we know, C thus becomes a unital coalgebra. Let x ∈ C≤1.
Then, x− ε (x) · 1C is a primitive element of C.

Proof of Proposition 37.3. By the axioms of a unital coalgebra, we have ε (1C) = 1
(since C is a unital coalgebra).

Let y = x− ε (x) · 1C . We have

ε

 y︸︷︷︸
=x−ε(x)·1C

 = ε (x− ε (x) · 1C) = ε (x)− ε (x) · ε (1C)︸ ︷︷ ︸
=1

(since the map ε is k-linear)

= ε (x)− ε (x) = 0.

Thus, y ∈ Ker ε. Combined with y ∈ C≤1, this yields y ∈ C≤1 ∩Ker ε. Thus, Proposi-
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tion 17.9 (applied to 1 and y instead of ` and x) yields

∆C (y) ∈ y ⊗ 1C + 1C ⊗ y +
1−1∑
u=1

C≤u ⊗ C≤1−u︸ ︷︷ ︸
=(empty sum)=0

= y ⊗ 1C + 1C ⊗ y.

In other words, ∆C (y) = y⊗1C+1C⊗y. In other words, y is primitive. In other words,
x− ε (x) · 1C is primitive (since y = x− ε (x) · 1C). This proves Proposition 37.3.

Next, we state two lemmas from linear algebra:

Lemma 37.4. Let k be a field. Let V and V ′ be two k-vector spaces. Let
β ∈ EndV and β′ ∈ End (V ′). Then,

βi ⊗ (β′)
i

= (β ⊗ β′)i (488)

for every i ∈ N.

Proof of Lemma 37.4. We shall prove (488) by induction over i:
Induction base: If i = 0, then

βi ⊗ (β′)
i

= β0︸︷︷︸
=idV

⊗ (β′)
0︸︷︷︸

=idV ′

= idV ⊗ idV ′ = idV⊗V ′ = (β ⊗ β′)0

(
since (β ⊗ β′)0

= idV⊗V ′
)

= (β ⊗ β′)i (since 0 = i (because i = 0)) .

Thus, (488) is proven for i = 0. This completes the induction base.
Induction step: Let K ∈ N. Assume that (488) holds for i = K. We need to show

that (488) holds for i = K + 1.
We know that (488) holds for i = K. In other words, βK ⊗ (β′)K = (β ⊗ β′)K .

Now,

βK+1︸ ︷︷ ︸
=βK◦β

⊗ (β′)
K+1︸ ︷︷ ︸

=(β′)K◦β′

=
(
βK ◦ β

)
⊗
(

(β′)
K ◦ β′

)
=
(
βK ⊗ (β′)

K
)
◦ (β ⊗ β′)

(by (21), applied to V , V , V , V ′, V ′, V ′, β, βK , β′ and (β′)K instead of U , V , W , U ′,
V ′, W ′, α, β, α′ and β′). Thus,

βK+1 ⊗ (β′)
K+1

=
(
βK ⊗ (β′)

K
)

︸ ︷︷ ︸
=(β⊗β′)K

◦ (β ⊗ β′) = (β ⊗ β′)K ◦ (β ⊗ β′) = (β ⊗ β′)K+1
.

In other words, (488) holds for i = K + 1. This completes the induction step. Thus,
(488) is proven by induction. Hence, Lemma 37.4 is proven.

Lemma 37.5. Let k be a field. Let V be a k-vector space. Let f ∈ EndV .
Let n ∈ N. Then,

(idV ⊗ idV −f ⊗ f)n =
n∑
i=0

(
n

i

)
(idV −f)n−i ⊗

(
fn−i ◦ (idV −f)i

)
.
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Proof of Lemma 37.5. First of all, it is easy to see that

(idV −f)i ◦ fn−i = fn−i ◦ (idV −f)i for every i ∈ {0, 1, . . . , n} . (489)

243

Also,

(idV −f) ◦ f = idV ◦f︸ ︷︷ ︸
=f=f◦idV

−f ◦ f (since composition of k-linear maps is k-bilinear)

= f ◦ idV −f ◦ f
= f ◦ (idV −f) (since composition of k-linear maps is k-bilinear) .

Now, (21) (applied to V , V , V , V , V , V , idV −f , idV , f and idV −f instead of U ,
V , W , U ′, V ′, W ′, α, β, α′ and β′) yields

(idV ◦ (idV −f))⊗ ((idV −f) ◦ f) = (idV ⊗ (idV −f)) ◦ ((idV −f)⊗ f) ,

so that

(idV ⊗ (idV −f)) ◦ ((idV −f)⊗ f)

=

 idV ◦ (idV −f)︸ ︷︷ ︸
=idV −f=(idV −f)◦idV

⊗
(idV −f) ◦ f︸ ︷︷ ︸

=f◦(idV −f)


= ((idV −f) ◦ idV )⊗ (f ◦ (idV −f))

= ((idV −f)⊗ f) ◦ (idV ⊗ (idV −f))

(by (21), applied to V , V , V , V , V , V , idV −f , idV , idV −f and f instead of U , V ,
W , U ′, V ′, W ′, α, β, α′ and β′). In other words, the elements idV ⊗ (idV −f) and
(idV −f)⊗ f of End (V ⊗ V ) commute.

Now, let H be the the k-subalgebra of End (V ⊗ V ) generated by the elements
idV ⊗ (idV −f) and (idV −f) ⊗ f . Then, the k-algebra H is commutative (by Corol-
lary 11.3, applied to End (V ⊗ V ), idV ⊗ (idV −f) and (idV −f) ⊗ f instead of A,
f and g). Therefore, we can apply the binomial theorem in this k-algebra H. Since
idV ⊗ (idV −f) and (idV −f)⊗f both belong to H (because H is generated by idV ⊗ (idV −f)

243Proof of (489): Let i ∈ {0, 1, . . . , n}. The elements f and idV of EndV clearly commute (since
f ◦ idV = f = idV ◦f). Let G be the k-subalgebra of EndV generated by the elements f and idV .
Then, the k-algebra G is commutative (by Corollary 11.3, applied to A = EndV , g = idV and H = G).
But the elements f and idV belong to G (because the k-algebra G is generated by f and idV ). Thus,

fn−i and (idV −f)
i

belong to G. As a consequence, fn−i ◦ (idV −f)
i

= (idV −f)
i ◦ fn−i in G (since

G is commutative). This proves (489).
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and (idV −f)⊗ f), the binomial theorem thus yields

(idV ⊗ (idV −f) + (idV −f)⊗ f)n

=
n∑
i=0

(
n

i

)
(idV ⊗ (idV −f))i︸ ︷︷ ︸

=idiV ⊗(idV −f)i

(because Lemma 37.4
(applied to V , idV and idV −f
instead of V ′, β and β′) yields

idiV ⊗(idV −f)i=(idV ⊗(idV −f))i)

◦ ((idV −f)⊗ f)n−i︸ ︷︷ ︸
=(idV −f)n−i⊗fn−i
(because Lemma 37.4

(applied to V , idV −f , f and n−i
instead of V ′, β, β′ and i) yields

(idV −f)n−i⊗fn−i=((idV −f)⊗f)n−i)

=
n∑
i=0

(
n

i

)(
idiV ⊗ (idV −f)i

)
◦
(

(idV −f)n−i ⊗ fn−i
)

︸ ︷︷ ︸
=(idiV ◦(idV −f)n−i)⊗((idV −f)i◦fn−i)
(since (21) (applied to V , V , V , V , V , V ,

(idV −f)n−i, idiV , fn−i and (idV −f)i instead of
U , V , W , U ′, V ′, W ′, α, β, α′ and β′) yields

(idiV ◦(idV −f)n−i)⊗((idV −f)i◦fn−i)
=(idiV ⊗(idV −f)i)◦((idV −f)n−i⊗fn−i))

=
n∑
i=0

(
n

i

) idiV︸︷︷︸
=idV

◦ (idV −f)n−i

⊗
(idV −f)i ◦ fn−i︸ ︷︷ ︸

=fn−i◦(idV −f)i

(by (489))


=

n∑
i=0

(
n

i

)(
idV ◦ (idV −f)n−i

)
︸ ︷︷ ︸

=(idV −f)n−i

⊗
(
fn−i ◦ (idV −f)i

)

=
n∑
i=0

(
n

i

)
(idV −f)n−i ⊗

(
fn−i ◦ (idV −f)i

)
.

This proves Lemma 37.5.

Here comes another little lemma about coalgebras:

Lemma 37.6. Let k be a field. Let C be a k-coalgebra. Let f : C → C
and g : C → C be two k-coalgebra homomorphisms. Then,

(f ⊗ f − g ⊗ g)n ◦∆C = ∆C ◦ (f − g)n (490)

for every n ∈ N.

Proof of Lemma 37.6. We will prove Lemma 37.6 by induction over n:
Induction base: If n = 0, then (490) holds.244 This completes the induction base.
Induction step: Let N ∈ N. Assume that (490) holds for n = N . We now must

show that (490) also holds for n = N + 1.

244Proof. Assume that n = 0. Then,

(f ⊗ f − g ⊗ g)
n ◦∆C = (f ⊗ f − g ⊗ g)

0︸ ︷︷ ︸
=idC⊗C

◦∆C (since n = 0)

= ∆C .
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We know that (490) holds for n = N . In other words, we have

(f ⊗ f − g ⊗ g)N ◦∆C = ∆C ◦ (f − g)N .

Since f is a k-coalgebra homomorphism, we have ∆C ◦ f = (f ⊗ f) ◦ ∆C and
εC ◦ f = εC . Since g is a k-coalgebra homomorphism, we have ∆C ◦ g = (g ⊗ g) ◦∆C

and εC ◦ g = εC .
Since composition of k-linear maps is k-bilinear, we have

∆C ◦ (f − g) = ∆C ◦ f︸ ︷︷ ︸
=(f⊗f)◦∆C

− ∆C ◦ g︸ ︷︷ ︸
=(g⊗g)◦∆C

= (f ⊗ f) ◦∆C − (g ⊗ g) ◦∆C

= (f ⊗ f − g ⊗ g) ◦∆C (since composition of k-linear maps is k-bilinear) .

Thus,
(f ⊗ f − g ⊗ g) ◦∆C = ∆C ◦ (f − g) .

But now,

(f ⊗ f − g ⊗ g)N+1︸ ︷︷ ︸
=(f⊗f−g⊗g)◦(f⊗f−g⊗g)N

◦∆C

= (f ⊗ f − g ⊗ g) ◦ (f ⊗ f − g ⊗ g)N ◦∆C︸ ︷︷ ︸
=∆C◦(f−g)N

= (f ⊗ f − g ⊗ g) ◦∆C︸ ︷︷ ︸
=∆C◦(f−g)

◦ (f − g)N = ∆C ◦ (f − g) ◦ (f − g)N︸ ︷︷ ︸
=(f−g)N+1

= ∆C ◦ (f − g)N+1 .

In other words, (490) holds for n = N + 1. This completes the induction step. The
induction proof of (490) is thus complete. Hence, Lemma 37.6 is proven.

We will now finally prove Theorem 37.1.

Proof of Theorem 37.1. (a) We need to prove that

(idC −f)n (C≤n) = 0 for every integer n ≥ 1. (491)

Proof of (491): We will prove (491) by strong induction over n:
Induction step:245 Let N be an integer ≥ 1. We assume that (491) holds whenever

n < N . We now need to prove that (491) holds for n = N .
We have assumed that (491) holds whenever n < N . In other words,

(idC −f)n (C≤n) = 0 for every integer n ≥ 1 satisfying n < N. (492)

Compared with

∆C ◦ (f − g)
n

= ∆C ◦ (f − g)
0︸ ︷︷ ︸

=idC

(since n = 0)

= ∆C ,

this yields (f ⊗ f − g ⊗ g)
n ◦∆C = ∆C ◦ (f − g)

n
. Thus, (490) holds if n = 0, qed.

245A strong induction needs no induction base.
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Now, let x ∈ C≤N be arbitrary. Let y = x− ε (x) · 1C . Then, it is easy to see that
y ∈ C≤N ∩ Ker ε 246. Hence, Proposition 17.9 (applied to N and y instead of ` and
x) yields

∆C (y) ∈ y ⊗ 1C + 1C ⊗ y +
N−1∑
u=1

C≤u ⊗ C≤N−u. (493)

But Lemma 37.6 (applied to idC , f and N − 1 instead of f , g and n) yields

(idC ⊗ idC −f ⊗ f)N−1 ◦∆C = ∆C ◦ (idC −f)N−1 . (494)

Now, define an element z ∈ C by z = (idC −f)N−1 (y). Then,

∆C

 z︸︷︷︸
=(idC −f)N−1(y)

 = ∆C

(
(idC −f)N−1 (y)

)
=

 ∆C ◦ (idC −f)N−1︸ ︷︷ ︸
=(idC ⊗ idC −f⊗f)N−1◦∆C

(by (494))

 (y)

=
(

(idC ⊗ idC −f ⊗ f)N−1 ◦∆C

)
(y)

= (idC ⊗ idC −f ⊗ f)N−1


∆C (y)︸ ︷︷ ︸

∈y⊗1C+1C⊗y+
N−1∑
u=1

C≤u⊗C≤N−u

(by (493))


∈ (idC ⊗ idC −f ⊗ f)N−1

(
y ⊗ 1C + 1C ⊗ y +

N−1∑
u=1

C≤u ⊗ C≤N−u

)
⊆ (idC ⊗ idC −f ⊗ f)N−1 (y ⊗ 1C)

+ (idC ⊗ idC −f ⊗ f)N−1 (1C ⊗ y)

+ (idC ⊗ idC −f ⊗ f)N−1

(
N−1∑
u=1

C≤u ⊗ C≤N−u

)
(495)

(since the map (idC ⊗ idC −f ⊗ f)N−1 is k-linear).

246Proof. By the axioms of a connected filtered k-coalgebra, we have 1C ∈ C≤0 (since C is a
connected filtered k-coalgebra). But C≤0 ⊆ C≤1 ⊆ C≤2 ⊆ · · · (since C is a filtered k-coalgebra), hence
C≤0 ⊆ C≤N . Thus, 1C ∈ C≤0 ⊆ C≤N . Now, y = x︸︷︷︸

∈C≤N

−ε (x) · 1C︸︷︷︸
∈C≤N

∈ C≤N − ε (x) · C≤N ⊆ C≤N

(since C≤N is a k-vector space).
By the axioms of a unital coalgebra, we have ε (1C) = 1 (since C is a unital coalgebra).
Also,

ε

 y︸︷︷︸
=x−ε(x)·1C

 = ε (x− ε (x) · 1C) = ε (x)− ε (x) · ε (1C)︸ ︷︷ ︸
=1

(since the map ε is k-linear)

= ε (x)− ε (x) = 0.

Thus, y ∈ Ker ε. Combined with y ∈ C≤N , this yields y ∈ C≤N ∩Ker ε, qed.
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Recall that N ≥ 1, hence N − 1 ≥ 0. Thus, N − 1 ∈ N. But Lemma 37.5 (applied
to V = C and n = N − 1) yields

(idC ⊗ idC −f ⊗ f)N−1

=
N−1∑
i=0

(
N − 1

i

)
(idC −f)N−1−i ⊗

(
fN−1−i ◦ (idC −f)i

)
. (496)

Also, we have
(idC −f)` (1C) = 0 for every integer ` ≥ 1. (497)

247 Moreover,
f ` (1C) = 1C for every ` ∈ N. (498)

248

Now,
(idC ⊗ idC −f ⊗ f)N−1 (y ⊗ 1C) = z ⊗ 1C (499)

249 and
(idC ⊗ idC −f ⊗ f)N−1 (1C ⊗ y) = 1C ⊗ z (501)

247Proof of (497): Let ` be an integer ≥ 1. Then, (idC −f)
`

= (idC −f)
`−1 ◦ (idC −f). But

f (1C) = 1C , so that (idC −f) (1C) = idC (1C)︸ ︷︷ ︸
=1C

− f (1C)︸ ︷︷ ︸
=1C

= 1C − 1C = 0 and

(idC −f)
`︸ ︷︷ ︸

=(idC −f)`−1◦(idC −f)

(1C) =
(

(idC −f)
`−1 ◦ (idC −f)

)
(1C)

= (idC −f)
`−1

(idC −f) (1C)︸ ︷︷ ︸
=0

 = (idC −f)
`−1

(0) = 0

(since the map (idC −f)
`−1

is k-linear). This proves (497).
248Proof of (498): We will prove (498) by induction over `:
Induction base: For ` = 0, we have f ` (1C) = f0︸︷︷︸

=idC

(1C) = idC (1C) = 1C . Hence, (498) is proven

for ` = 0. This completes the induction base.
Induction step: Let L ∈ N. Assume that (498) holds for ` = L. We need to prove that (498) holds

for ` = L+ 1.
We know that (498) holds for ` = L. In other words, fL (1C) = 1C . Now, fL+1︸ ︷︷ ︸

=f◦fL

(1C) =

(
f ◦ fL

)
(1C) = f

fL (1C)︸ ︷︷ ︸
=1C

 = f (1C) = 1C . In other words, (498) holds for ` = L + 1. This

completes the induction step. The induction proof of (498) is thus complete.
249Proof of (499): Every i ∈ {1, 2, . . . , N − 1} satisfies i ≥ 1. Hence, every i ∈ {1, 2, . . . , N − 1}

satisfies (idC −f)
i
(1C) = 0 (by (497) (applied to ` = i)). Thus, every i ∈ {1, 2, . . . , N − 1} satisfies

(
fN−1−i ◦ (idC −f)

i
)

(1C) = fN−1−i

(idC −f)
i
(1C)︸ ︷︷ ︸

=0

 = fN−1−i (0) = 0 (500)
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250. Furthermore, every u ∈ {1, 2, . . . , N − 1} and every i ∈ {0, 1, . . . , N − 1} satisfy

(idC −f)N−1−i (C≤u)⊗ fN−1−i
(

(idC −f)i (C≤N−u)
)

= 0. (503)

(since fN−1−i is k-linear). Now,

(idC ⊗ idC −f ⊗ f)
N−1︸ ︷︷ ︸

=
N−1∑
i=0

(
N − 1

i

)
(idC −f)N−1−i⊗(fN−1−i◦(idC −f)i)

(by (496))

(y ⊗ 1C)

=

(
N−1∑
i=0

(
N − 1

i

)
(idC −f)

N−1−i ⊗
(
fN−1−i ◦ (idC −f)

i
))

(y ⊗ 1C)

=

N−1∑
i=0

(
N − 1

i

)(
(idC −f)

N−1−i ⊗
(
fN−1−i ◦ (idC −f)

i
))

(y ⊗ 1C)︸ ︷︷ ︸
=(idC −f)N−1−i(y)⊗(fN−1−i◦(idC −f)i)(1C)

=

N−1∑
i=0

(
N − 1

i

)
(idC −f)

N−1−i
(y)⊗

(
fN−1−i ◦ (idC −f)

i
)

(1C)

=

N−1∑
i=1

(
N − 1

i

)
(idC −f)

N−1−i
(y)⊗

(
fN−1−i ◦ (idC −f)

i
)

(1C)︸ ︷︷ ︸
=0

(by (500))

+

(
N − 1

0

)
︸ ︷︷ ︸

=1

(idC −f)
N−1−0︸ ︷︷ ︸

=(idC −f)N−1

(y)⊗

fN−1−0︸ ︷︷ ︸
=fN−1

◦ (idC −f)
0︸ ︷︷ ︸

=idC

 (1C)

=

N−1∑
i=1

(
N − 1

i

)
(idC −f)

N−1−i
(y)⊗ 0︸ ︷︷ ︸

=0

+ 1 (idC −f)
N−1

(y)︸ ︷︷ ︸
=(idC −f)N−1(y)=z

(since z=(idC −f)N−1(y))

⊗
(
fN−1 ◦ idC

)︸ ︷︷ ︸
=fN−1

(1C)

=

N−1∑
i=1

(
N − 1

i

)
0︸ ︷︷ ︸

=0

+z ⊗ fN−1 (1C) = z ⊗ fN−1 (1C)︸ ︷︷ ︸
=1C

(by (498), applied to `=N−1)

= z ⊗ 1C .

This proves (499).
250Proof of (501): Every i ∈ {0, 1, . . . , N − 2} satisfies N−1−i ≥ 1 (since every i ∈ {0, 1, . . . , N − 2}

satisfies i ≤ N − 2 and thus N − 1− i︸︷︷︸
≤N−2

≥ N − 1− (N − 2) = 1). Hence, every i ∈ {0, 1, . . . , N − 2}

satisfies
(idC −f)

N−1−i
(1C) = 0 (502)
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251. Every u ∈ {1, 2, . . . , N − 1} satisfies

(idC ⊗ idC −f ⊗ f)N−1 (C≤u ⊗ C≤N−u) = 0. (504)

(by (497) (applied to ` = N − 1− i)). Now,

(idC ⊗ idC −f ⊗ f)
N−1︸ ︷︷ ︸

=
N−1∑
i=0

(
N − 1

i

)
(idC −f)N−1−i⊗(fN−1−i◦(idC −f)i)

(by (496))

(1C ⊗ y)

=

(
N−1∑
i=0

(
N − 1

i

)
(idC −f)

N−1−i ⊗
(
fN−1−i ◦ (idC −f)

i
))

(1C ⊗ y)

=

N−1∑
i=0

(
N − 1

i

)(
(idC −f)

N−1−i ⊗
(
fN−1−i ◦ (idC −f)

i
))

(1C ⊗ y)︸ ︷︷ ︸
=(idC −f)N−1−i(1C)⊗(fN−1−i◦(idC −f)i)(y)

=
N−1∑
i=0

(
N − 1

i

)
(idC −f)

N−1−i
(1C)⊗

(
fN−1−i ◦ (idC −f)

i
)

(y)

=

N−2∑
i=0

(
N − 1

i

)
(idC −f)

N−1−i
(1C)︸ ︷︷ ︸

=0
(by (502))

⊗
(
fN−1−i ◦ (idC −f)

i
)

(y)

+

(
N − 1

N − 1

)
︸ ︷︷ ︸

=1

(idC −f)
N−1−(N−1)︸ ︷︷ ︸

=(idC −f)0=idC

(1C)⊗

fN−1−(N−1)︸ ︷︷ ︸
=f0=idC

◦ (idC −f)
N−1

 (y)

=

N−2∑
i=0

(
N − 1

i

)
0⊗

(
fN−1−i ◦ (idC −f)

i
)

(y)︸ ︷︷ ︸
=0

+ 1 idC (1C)︸ ︷︷ ︸
=idC(1C)=1C

⊗
(

idC ◦ (idC −f)
N−1

)
︸ ︷︷ ︸

=(idC −f)N−1

(y)

=

N−2∑
i=0

(
N − 1

i

)
0︸ ︷︷ ︸

=0

+1C ⊗ (idC −f)
N−1

(y) = 1C ⊗ (idC −f)
N−1

(y)︸ ︷︷ ︸
=z

(since z=(idC −f)N−1(y))

= 1C ⊗ z.

This proves (501).
251Proof of (503): Let u ∈ {1, 2, . . . , N − 1} and i ∈ {0, 1, . . . , N − 1}. Notice that 1 ≤ u ≤ N − 1

(since u ∈ {1, 2, . . . , N − 1}), hence u ≥ 1 and u ≤ N − 1 < N . Hence, (492) (applied to n = u) yields
(idC −f)

u
(C≤u) = 0. On the other hand, N − u︸︷︷︸

≤N−1

≥ N − (N − 1) = 1 and N − u︸︷︷︸
≥1

≤ N − 1 < N ;

therefore, (492) (applied to n = N − u) yields (idC −f)
N−u

(C≤N−u) = 0.
We want to prove (503). We must be in one of the following two cases:
Case 1: We have u ≤ N − 1− i.
Case 2: We have u > N − 1− i.
Let us first consider Case 1. In this case, we have u ≤ N − 1 − i. Thus, N − 1 − i ≥ u, so that

(N − 1− i)−u is a nonnegative integer. Denote this nonnegative integer by γ. Thus, (N − 1− i)−u =
γ, so that N − 1− i = γ + u and therefore

(idC −f)
N−1−i

= (idC −f)
γ+u

= (idC −f)
γ ◦ (idC −f)

u
,
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and thus

(idC −f)
N−1−i︸ ︷︷ ︸

=(idC −f)γ◦(idC −f)u

(C≤u) = ((idC −f)
γ ◦ (idC −f)

u
) (C≤u)

= (idC −f)
γ

(idC −f)
u

(C≤u)︸ ︷︷ ︸
=0

 = (idC −f)
γ

(0) = 0

(since the map (idC −f)
γ

is k-linear). Hence,

(idC −f)
N−1−i

(C≤u)︸ ︷︷ ︸
=0

⊗fN−1−i
(

(idC −f)
i
(C≤N−u)

)
= 0⊗ fN−1−i

(
(idC −f)

i
(C≤N−u)

)
= 0.

Therefore, (503) is proven in Case 1.
Let us now consider Case 2. In this case, we have u > N − 1− i. Since u and N − 1− i are integers,

this yields u ≥ (N − 1− i) + 1 = N − i. Thus, u + i ≥ N , so that i ≥ N − u. In other words,
i − (N − u) is a nonnegative integer. Denote this nonnegative integer by γ. Thus, i − (N − u) = γ,
so that i = γ + (N − u) and therefore

(idC −f)
i

= (idC −f)
γ+(N−u)

= (idC −f)
γ ◦ (idC −f)

N−u
,

and thus

(idC −f)
i︸ ︷︷ ︸

=(idC −f)γ◦(idC −f)N−u

(C≤N−u) =
(

(idC −f)
γ ◦ (idC −f)

N−u
)

(C≤N−u)

= (idC −f)
γ

(idC −f)
N−u

(C≤N−u)︸ ︷︷ ︸
=0

 = (idC −f)
γ

(0) = 0

(since the map (idC −f)
γ

is k-linear). Thus,

(idC −f)
N−1−i

(C≤u)⊗ fN−1−i

(idC −f)
i
(C≤N−u)︸ ︷︷ ︸

=0


= (idC −f)

N−1−i
(C≤u)⊗ fN−1−i (0)︸ ︷︷ ︸

=0
(since fN−1−i is k-linear)

= (idC −f)
N−1−i

(C≤u)⊗ 0 = 0.

Thus, (503) is proven in Case 2.
We have now proven (503) in both Cases 1 and 2. Since these two Cases cover all possibilities, this

yields that (503) always holds. The proof of (503) is thus complete.
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252 Thus,

(idC ⊗ idC −f ⊗ f)N−1

(
N−1∑
u=1

C≤u ⊗ C≤N−u

)
= 0. (505)

252Proof of (504): Let u ∈ {1, 2, . . . , N − 1}. Then, 1 ≤ u ≤ N − 1. Now,

(idC ⊗ idC −f ⊗ f)
N−1︸ ︷︷ ︸

=
N−1∑
i=0

(
N − 1

i

)
(idC −f)N−1−i⊗(fN−1−i◦(idC −f)i)

(by (496))

(C≤u ⊗ C≤N−u)

=

(
N−1∑
i=0

(
N − 1

i

)
(idC −f)

N−1−i ⊗
(
fN−1−i ◦ (idC −f)

i
))

(C≤u ⊗ C≤N−u)

⊆
N−1∑
i=0

(
N − 1

i

)(
(idC −f)

N−1−i ⊗
(
fN−1−i ◦ (idC −f)

i
))

(C≤u ⊗ C≤N−u)︸ ︷︷ ︸
⊆((idC −f)N−1−i⊗(fN−1−i◦(idC −f)i))(C≤u⊗C≤N−u)

(since ((idC −f)N−1−i⊗(fN−1−i◦(idC −f)i))(C≤u⊗C≤N−u)
is a k-vector space)

⊆
N−1∑
i=0

(
(idC −f)

N−1−i ⊗
(
fN−1−i ◦ (idC −f)

i
))

(C≤u ⊗ C≤N−u)︸ ︷︷ ︸
⊆(idC −f)N−1−i(C≤u)⊗(fN−1−i◦(idC −f)i)(C≤N−u)

⊆
N−1∑
i=0

(idC −f)
N−1−i

(C≤u)⊗
(
fN−1−i ◦ (idC −f)

i
)

(C≤N−u)︸ ︷︷ ︸
=fN−1−i((idC −f)i(C≤N−u))

=

N−1∑
i=0

(idC −f)
N−1−i

(C≤u)⊗ fN−1−i
(

(idC −f)
i
(C≤N−u)

)
︸ ︷︷ ︸

=0
(by (503))

=

N−1∑
i=0

0 = 0.

In other words, (idC ⊗ idC −f ⊗ f)
N−1

(C≤u ⊗ C≤N−u) = 0. This proves (504).
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253 Now, (495) becomes

∆C (z) ∈ (idC ⊗ idC −f ⊗ f)N−1 (y ⊗ 1C)︸ ︷︷ ︸
=z⊗1C

(by (499))

+ (idC ⊗ idC −f ⊗ f)N−1 (1C ⊗ y)︸ ︷︷ ︸
=1C⊗z

(by (501))

+ (idC ⊗ idC −f ⊗ f)N−1

(
N−1∑
u=1

C≤u ⊗ C≤N−u

)
︸ ︷︷ ︸

=0
(by (505))

= z ⊗ 1C + 1C ⊗ z + 0 = z ⊗ 1C + 1C ⊗ z.

In other words, ∆C (z) = z⊗1C+1C⊗z. In other words, the element z of C is primitive
(because the definition of “primitive” yields that the element z of C is primitive if and
only if ∆C (z) = z ⊗ 1C + 1C ⊗ z). Hence, (485) (applied to z instead of x) yields

f (z) = z. (506)

Now,

(idC −f)N︸ ︷︷ ︸
=(idC −f)◦(idC −f)N−1

(y) =
(

(idC −f) ◦ (idC −f)N−1
)

(y) = (idC −f)

 (idC −f)N−1 (y)︸ ︷︷ ︸
=z

(since z=(idC −f)N−1(y))


= (idC −f) (z) = idC (z)︸ ︷︷ ︸

=z

− f (z)︸︷︷︸
=z

(by (506))

= z − z = 0.

But recall that y = x − ε (x) · 1C , so that x = y + ε (x) · 1C . Applying the map

253Proof of (505): The map (idC ⊗ idC −f ⊗ f)
N−1

is k-linear. Thus,

(idC ⊗ idC −f ⊗ f)
N−1

(
N−1∑
u=1

C≤u ⊗ C≤N−u

)

⊆
N−1∑
u=1

(idC ⊗ idC −f ⊗ f)
N−1

(C≤u ⊗ C≤N−u)︸ ︷︷ ︸
=0

(by (505))

=

N−1∑
u=1

0 = 0.

Therefore, (idC ⊗ idC −f ⊗ f)
N−1

(
N−1∑
u=1

C≤u ⊗ C≤N−u
)

= 0. This proves (505).
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(idC −f)N to both sides of this equality, we obtain

(idC −f)N (x)

= (idC −f)N (y + ε (x) · 1C)

= (idC −f)N (y)︸ ︷︷ ︸
=0

+ε (x) · (idC −f)N (1C)︸ ︷︷ ︸
=0

(by (497), applied to `=N)(
since the map (idC −f)N is k-linear

)
= 0 + ε (x) · 0 = 0.

In other words, x ∈ Ker
(

(idC −f)N
)

.

Now, forget that we fixed x. We thus have proven that every x ∈ C≤N satisfies

x ∈ Ker
(

(idC −f)N
)

. In other words, C≤N ⊆ Ker
(

(idC −f)N
)

. Hence,

(idC −f)N

 C≤N︸︷︷︸
⊆Ker((idC −f)N)

 ⊆ (idC −f)N
(

Ker
(

(idC −f)N
))

= 0.

In other words, (491) holds for n = N . This completes the induction step. Thus, the
induction proof of (491) is complete.

Now, we have proven that (491) holds for every integer n ≥ 1. In other words,
Theorem 37.1 (a) is proven.

(b) We have C≤0 ⊆ C≤1 ⊆ C≤2 ⊆ · · · (since C is filtered), so that C≤0 ⊆ C≤1 ⊆⋃
n≥1

C≤n (because C≤1 is a term in the union
⋃
n≥1

C≤n). Now, since C is filtered, we have

C =
⋃
n≥0

C≤n = C≤0︸︷︷︸
⊆
⋃
n≥1

C≤n

∪

(⋃
n≥1

C≤n

)
⊆

(⋃
n≥1

C≤n

)
∪

(⋃
n≥1

C≤n

)
=
⋃
n≥1

C≤n.

Combined with
⋃
n≥1

C≤n ⊆ C (this is obvious), this yields C =
⋃
n≥1

C≤n. Moreover,

Theorem 37.1 (a) yields that (idC −f)n (C≤n) = 0 for every integer n ≥ 1. Hence,
Lemma 37.2 (applied to V = C and Vi = C≤i) yields that the map f is invertible. Thus,
f is an invertible k-coalgebra homomorphism. Therefore, Proposition 34.13 (applied
to D = C) yields that f is a k-coalgebra isomorphism. This proves Theorem 37.1
(b).

As a consequence of Theorem 37.1, we can obtain the curious fact that the antipode
of a connected filtered k-Hopf algebra is invertible, and somewhat more:

Theorem 37.7. Let k be a field. Let H be a connected filtered k-Hopf
algebra. Let S be the antipode of H.

(a) We have (idH −S2)
n

(H≤n) = 0 for every integer n ≥ 1.

(b) The map S is invertible.
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We notice that Theorem 37.7 generalizes a result of Aguiar and Lauve ([AguLau14,
Corollary 5])254.

Before we prove Theorem 37.7, let us show a lemma concerning arbitrary Hopf
algebras:

Lemma 37.8. Let k be a field. Let H be a k-Hopf algebra. Let S be the
antipode of H.

(a) The map S2 : H → H is a k-coalgebra homomorphism.

(b) We have S2 (1H) = 1H .

(c) We have S2 (x) = x for every primitive element x of H.

Proof of Lemma 37.8. (a) Recall that the coopposite coalgebra Hcop of H is defined
as the k-coalgebra (H, τH,H ◦∆H , εH). Thus, ∆Hcop = τH,H ◦∆H and εHcop = εH .

Proposition 25.4 yields that the antipode of H is a k-coalgebra homomorphism
Hcop → H. In other words, S is a k-coalgebra homomorphism Hcop → H (since S is
the antipode of H). Thus, ∆H ◦ S = (S ⊗ S) ◦∆Hcop and εH ◦ S = εHcop .

Clearly, (21) (applied to U = H, V = H, W = H, U ′ = H, V ′ = H, W ′ = H,
α = S, β = S, α′ = S and β′ = S) yields (S ◦ S)⊗ (S ◦ S) = (S ⊗ S)◦ (S ⊗ S). Hence,

(S ⊗ S) ◦ (S ⊗ S) = (S ◦ S)︸ ︷︷ ︸
=S2

⊗ (S ◦ S)︸ ︷︷ ︸
=S2

= S2 ⊗ S2.

A very basic property of the flip maps says that if V and W are two k-vector
spaces, then τW,V ◦ τV,W = idV⊗W . Applying this to V = H and W = H, we obtain
τH,H ◦ τH,H = idH⊗H . Now,

∆H ◦ S2︸︷︷︸
=S◦S

= ∆H ◦ S︸ ︷︷ ︸
=(S⊗S)◦∆Hcop

◦S = (S ⊗ S) ◦ ∆Hcop︸ ︷︷ ︸
=τH,H◦∆H

◦S

= (S ⊗ S) ◦ τH,H ◦ ∆H ◦ S︸ ︷︷ ︸
=(S⊗S)◦∆Hcop

= (S ⊗ S) ◦ τH,H ◦ (S ⊗ S) ◦ ∆Hcop︸ ︷︷ ︸
=τH,H◦∆H

= (S ⊗ S) ◦ τH,H ◦ (S ⊗ S) ◦ τH,H︸ ︷︷ ︸
=τH,H◦(S⊗S)

(by Proposition 9.3 (a),
applied to V=H, W=H, V ′=H, W ′=H,

f=S and g=S)

◦∆H

= (S ⊗ S) ◦ τH,H ◦ τH,H︸ ︷︷ ︸
=idH⊗H

◦ (S ⊗ S) ◦∆H

= (S ⊗ S) ◦ (S ⊗ S)︸ ︷︷ ︸
=S2⊗S2

◦∆H =
(
S2 ⊗ S2

)
◦∆H .

254Here are the details:
If k is a field, and H is a connected filtered k-Hopf algebra, then Theorem 37.7 (a) shows that the

only possible eigenvalue of S2 on H≤n is 1, whence the only possible eigenvalues of S on H≤n are 1
and −1. This readily yields [AguLau14, Corollary 5], but is itself a more general result. (Note also
that the paper [AguLau14] works entirely over a field of characteristic 0, and does use this assumption
in the proof; in contrast, what we are doing makes sense over any commutative ring k.)
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Combined with

εH ◦ S2︸︷︷︸
=S◦S

= εH ◦ S︸ ︷︷ ︸
=εHcop=εH

◦S = εH ◦ S = εHcop = εH ,

this yields that S2 : H → H is a k-coalgebra homomorphism. This proves Lemma 37.8
(a).

(b) Just as in the proof of Corollary 28.10, we can show that S (1H) = 1H . Hence,

S2︸︷︷︸
=S◦S

(1H) = (S ◦ S) (1H) = S

S (1H)︸ ︷︷ ︸
=1H

 = S (1H) = 1H . This proves Lemma 37.8 (b).

(c) Let x be a primitive element of H. Then, x belongs to the set of all primitive
elements of H. In other words, x belongs to PrimH (since PrimH is the set of all
primitive elements of H). In other words, x ∈ PrimH. Hence, Proposition 28.18 yields
S (x) = −x. Thus,

S2︸︷︷︸
=S◦S

(x) = (S ◦ S) (x) = S

S (x)︸ ︷︷ ︸
=−x

 = S (−x) = −S (x)︸ ︷︷ ︸
=−x

(since the map S is k-linear)

= − (−x) = x.

This proves Lemma 37.8 (c).

Proof of Theorem 37.7. Lemma 37.8 (a) shows that the map S2 : H → H is a k-
coalgebra homomorphism.

Lemma 37.8 (b) yields S2 (1H) = 1H .
Moreover, Lemma 37.8 (c) shows that

S2 (x) = x for every primitive element x of H.

Hence, we can apply Theorem 37.1 to C = H and f = S2.
(a) Theorem 37.1 (a) (applied to C = H and f = S2) yields that we have

(idH −S2)
n

(H≤n) = 0 for every integer n ≥ 1. This proves Theorem 37.7 (a).
(b) Theorem 37.1 (b) (applied to C = H and f = S2) yields that the map S2 is

a k-coalgebra isomorphism. In particular, the map S2 is invertible. In other words,
there exists a map T : H → H satisfying S2 ◦ T = idH and T ◦ S2 = idH . Consider
this map T . We have

S ◦ (S ◦ T ) = (S ◦ S)︸ ︷︷ ︸
=S2

◦T = S2 ◦ T = idH ;

therefore, the map S is right-invertible. Also,

(T ◦ S) ◦ S = T ◦ (S ◦ S)︸ ︷︷ ︸
=S2

= T ◦ S2 = idH ;

therefore, the map S is left-invertible. Any map which is both left-invertible and right-
invertible must be invertible. Applying this to the map S, we conclude that the map S
is invertible (since we know that the map S is both left-invertible and right-invertible).
This proves Theorem 37.7 (b).
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§38. Leray’s theorem for the Eulerian idempotent

Our next goal is to prove (one form of) Leray’s theorem. We first introduce some
notation:

Definition 38.1. Let V be any k-vector space. We use the notation SymV
for the symmetric algebra of V . For every n ∈ N, we denote by Symn V the
n-th symmetric power of V . Thus, SymV =

⊕
n∈N

Symn V . Thus, Sym1 V ⊆

SymV .

There is a canonical injection V → SymV of vector spaces (obtained by
composing the canonical isomorphism V → Sym1 V with the canonical
inclusion Sym1 V → SymV ). We denote this injection by symincV . We
will often identify V with a k-vector subspace of SymV along this injection
(whenever this does not cause misunderstandings).

The universal property of SymV says that if A is any commutative k-
algebra and if ϕ : V → A is any k-linear map, then there exists a unique
k-algebra homomorphism Φ : SymV → A satisfying Φ ◦ symincV = ϕ.
This homomorphism Φ will be denoted by symliftϕ. It can be explicitly
computed by the formula

(symliftϕ) (v1v2 · · · vn) = ϕ (v1)ϕ (v2) · · ·ϕ (vn) (507)

for any n ∈ N and (v1, v2, . . . , vn) ∈ V ×n.

(Here, v1v2 · · · vn denotes the projection of the tensor v1⊗v2⊗· · ·⊗vn ∈ V ⊗n
onto the n-th symmetric power Symn V , or, equivalently, the product of the
elements v1, v2, . . ., vn of SymV .)

Theorem 38.2. Let k be a field of characteristic 0. Let H be a connected
filtered commutative bialgebra over k. Consider the convolution algebra
L (H,H). Let e denote the map Log id ∈ L (H,H).

(a) The map e is a projection.

(b) We have Ker e = (Ker (εH))2 + k · 1H . 255

(c) The map e is an (εH , εH)-derivation.

(d) Let j denote the inclusion map e (H)→ H. Define a map e′ : H → e (H)
by

(e′ (h) = e (h) for every h ∈ H) .

256 This map e′ is clearly k-linear257. Define a k-linear map q : H →
Sym (e (H)) by q = symince(H) ◦e′. Then, the two k-linear maps symlift j :
Sym (e (H)) → H and e∗q : H → Sym (e (H)) are well-defined k-algebra
homomorphisms and mutually inverse.

(e) We have Sym (e (H)) ∼= H as k-algebras.

255Recall that (Ker (εH))
2

is to be understood according to Convention 15.2. Thus, (Ker (εH))
2

means the subspace (Ker (εH)) · (Ker (εH)) of H.
256This is well-defined, since e (h) ∈ e (H) for every h ∈ H.
257In fact, this map e′ is obtained from the k-linear map e by changing the target to e (H).

502



Much of Theorem 38.2 has already been proven (e.g., parts (a) and (b) follow
readily from Theorem 15.3). It is part (d), and its consequence part (e), which are the
most important for us. Theorem 38.2 (e) is more or less a generalization of Theorem
3.8.3 in [Cartie06]258.

Before we step to proving Theorem 38.2, let us show a general fact about convolu-
tion:259

Proposition 38.3. Let k be a field. Let C be a k-coalgebra. Let A and B
be two k-algebras. Let p : A→ B be a k-algebra homomorphism.

(a) We have p◦eC,A = eC,B. (Here, the maps eC,A : C → A and eC,B : C →
B are defined in the same way as the map eH,A : H → A in Definition 1.12.)

(b) For every f ∈ L (C,A) and g ∈ L (C,A), we have p ◦ (f ∗ g) = (p ◦ f) ∗
(p ◦ g).

(c) For every f ∈ L (C,A) and n ∈ N, we have p ◦ (f ∗n) = (p ◦ f)∗n.

(d) Assume that the field k has characteristic 0. Assume also that C is a
connected filtered k-coalgebra. Let f ∈ g (C,A). (See Definition 3.1 for the
meaning of g (C,A).) Then, p ◦ f ∈ g (C,B) and p ◦ e∗f = e∗(p◦f).

Proof of Proposition 38.3. We know that p is a k-algebra homomorphism if and only
if it satisfies p ◦ ηA = ηB and p ◦ µA = µB ◦ (p⊗ p) (due to the definition of k-algebra
homomorphisms using arrows). Thus, p satisfies p ◦ ηA = ηB and p ◦ µA = µB ◦ (p⊗ p)
(since we know that p is a k-algebra homomorphism).

By the definition of g (C,A), we have

g (C,A) = {f ∈ L (C,A) | f (1C) = 0} = {h ∈ L (C,A) | h (1C) = 0}

(here we renamed f as h). By the definition of g (C,B), we have

g (C,B) = {f ∈ L (C,B) | f (1C) = 0} = {h ∈ L (C,B) | h (1C) = 0}

(here we renamed f as h).
(a) The definition of eC,A yields eC,A = ηA ◦εC . The definition of eC,B yields eC,B =

ηB ◦ εC . Now, p ◦ eC,A︸︷︷︸
=ηA◦εC

= p ◦ ηA︸ ︷︷ ︸
=ηB

◦εC = ηB ◦ εC = eC,B. This proves Proposition 38.3

(a).

258It is not exactly a generalization of Theorem 3.8.3 in [Cartie06], since [Cartie06] works with graded
k-algebras, and consequently assumes H to be graded and claims Sym (e (H)) to be isomorphic to H
as graded k-algebra. But this can also be easily derived from our Theorem 38.2 (d), since one can
easily show that e (H) is a homogeneous k-vector subspace of H and that the k-linear map symlift j
is graded (with the appropriate grading on Sym (e (H))).

259I have now realized that Proposition 38.3 is just a repetition of parts (a), (b), (c) and (d) of
Proposition 31.2 (with ψ renamed as p).
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(b) Let f ∈ L (C,A) and g ∈ L (C,A). The definition of convolution yields

(p ◦ f) ∗ (p ◦ g) = µB ◦ ((p ◦ f)⊗ (p ◦ g))︸ ︷︷ ︸
=(p⊗p)◦(f⊗g)

(by (21), applied to C, A, B, C, A, B, f , p, g and p
instead of U , V , W , U ′, V ′, W ′, α, β, α′ and β’)

◦∆C

= µB ◦ (p⊗ p)︸ ︷︷ ︸
=p◦µA

(since p◦µA=µB◦(p⊗p))

◦ (f ⊗ g) ◦∆C = p ◦ µA ◦ (f ⊗ g) ◦∆C︸ ︷︷ ︸
=f∗g

(since f∗g=µA◦(f⊗g)◦∆C

(by the definition of convolution))

= p ◦ (f ∗ g) .

This proves Proposition 38.3 (b).
(c) Let f ∈ L (C,A). We need to show that

p ◦ (f ∗n) = (p ◦ f)∗n for every n ∈ N. (508)

Proof of (508): We shall prove (508) by induction over n:
Induction base: We have p ◦

(
f ∗0
)︸ ︷︷ ︸

=eC,A

= p ◦ eC,A = eC,B (according to Proposition 38.3

(a)) and (p ◦ f)∗0 = eC,B. Hence, p ◦ (f ∗0) = eC,B = (p ◦ f)∗0. In other words, (508)
holds for n = 0. This completes the induction base.

Induction step: Let N ∈ N. Assume that (508) holds for n = N . We now need to
show that (508) holds for n = N + 1.

We know that (508) holds for n = N . In other words, we have p◦
(
f ∗N

)
= (p ◦ f)∗N .

Now,

p ◦
(
f ∗(N+1)

)︸ ︷︷ ︸
=f∗N◦f

= p ◦
(
f ∗N ◦ f

)
=
(
p ◦ f ∗N

)︸ ︷︷ ︸
=(p◦f)∗N

∗ (p ◦ f)

(
by Proposition 38.3 (b), applied to f ∗N and f instead of f and g

)
= (p ◦ f)∗N ∗ (p ◦ f) = (p ◦ f)∗(N+1) .

In other words, (508) holds for n = N + 1. This completes the induction step.
Thus, the induction proof of (508) is complete. In other words, Proposition 38.3

(c) is proven.
(d) We have f ∈ g (C,A) = {h ∈ L (C,A) | h (1C) = 0}. In other words, f is an

element of L (C,A) and satisfies f (1C) = 0. Now, (p ◦ f) (1C) = p

f (1C)︸ ︷︷ ︸
=0

 = p (0) =

0 (since the map p is k-linear). Thus, p ◦ f is an element of L (C,B) and satisfies
(p ◦ f) (1C) = 0. In other words, p◦f ∈ {h ∈ L (C,B) | h (1C) = 0} = g (C,B) (since
g (C,B) = {h ∈ L (C,B) | h (1C) = 0}). Thus, e∗(p◦f) is a well-defined k-linear map
C → B.

Now, let x ∈ C. Then, the definition of e∗(p◦f) (x) yields e∗(p◦f) (x) =
∑
i≥0

(p ◦ f)∗i (x)

i!
.

On the other hand, the definition of e∗f (x) yields

e∗f (x) =
∑
i≥0

f ∗i (x)

i!
=
∑
i≥0

1

i!
f ∗i (x) . (509)
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Notice that the sum
∑
i≥0

1

i!
f ∗i (x) converges with respect to the discrete topology.

Applying the map p to both sides of the equality (509), we obtain

p
(
e∗f (x)

)
= p

(∑
i≥0

1

i!
f ∗i (x)

)
=
∑
i≥0

1

i!
p
(
f ∗i (x)

)︸ ︷︷ ︸
=(p◦(f∗i))(x)

since the map p is k-linear, and since the

sum
∑
i≥0

1

i!
f ∗i (x) converges

with respect to the discrete topology


=
∑
i≥0

1

i!

(
p ◦
(
f ∗i
))︸ ︷︷ ︸

=(p◦f)∗i

(by Proposition 38.3 (c),
applied to n=i)

(x) =
∑
i≥0

1

i!
(p ◦ f)∗i (x) =

∑
i≥0

(p ◦ f)∗i (x)

i!

= e∗(p◦f) (x)

(
since e∗(p◦f) (x) =

∑
i≥0

(p ◦ f)∗i (x)

i!

)
.

Thus, e∗(p◦f) (x) = p
(
e∗f (x)

)
=
(
p ◦ e∗f

)
(x).

Now, let us forget that we fixed x. We thus have shown that e∗(p◦f) (x) =
(
p ◦ e∗f

)
(x)

for every x ∈ C. In other words, e∗(p◦f) = p◦e∗f . This proves Proposition 38.3 (d).

The following proposition neatly complements Proposition 38.3:260

Proposition 38.4. Let k be a field of characteristic 0. Let C be a con-
nected filtered k-coalgebra. Let A and B be two k-algebras. Let p : A→ B
be a k-algebra homomorphism. Let F ∈ G (C,A). (See Definition 3.1
for the meaning of G (C,A).) Then, p ◦ F ∈ G (C,B) and p ◦ LogF =
Log (p ◦ F ).

Proof of Proposition 38.4. By the definition of G (C,A), we have

G (C,A) = {f ∈ L (C,A) | f (1C) = 1A} .

By the definition of G (C,B), we have

G (C,B) = {f ∈ L (C,B) | f (1C) = 1B} .

We have F ∈ G (C,A) = {f ∈ L (C,A) | f (1C) = 1A}. In other words, F is an
element f ∈ L (C,A) satisfying f (1C) = 1A. In other words, F is an element of
L (C,A) and satisfies F (1C) = 1A.

But p is a k-algebra homomorphism, and therefore satisfies p (1A) = 1B. Now,

(p ◦ F ) (1C) = p

F (1C)︸ ︷︷ ︸
=1A

 = p (1A) = 1B. Hence, p ◦ F is an element of L (C,B) and

260I have now realized that Proposition 38.4 is just a repetition of Proposition 31.2 (e) (with ψ
renamed as p).
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satisfies (p ◦ F ) (1C) = 1B. In other words, p ◦ F is an element f ∈ L (C,B) satisfying
f (1C) = 1B. In other words,

p ◦ F ∈ {f ∈ L (C,B) | f (1C) = 1B} = G (C,B)

(since G (C,B) = {f ∈ L (C,B) | f (1C) = 1B}). Thus, Log (p ◦ F ) is a well-defined
k-linear map C → B.

Consider the maps eC,A : C → A and eC,B : C → B that are defined in the same
way as the map eH,A : H → A in Definition 1.12.

The definition of Log (p ◦ F ) yields Log (p ◦ F ) = Log1 (p ◦ F − eC,B). Thus, Log1 (p ◦ F − eC,B)
is well-defined; hence, p ◦ F − eC,B ∈ g (C,B) (since Log1 f is well-defined for an
f ∈ L (C,B) only when f ∈ g (C,B)).

The definition of LogF yields LogF = Log1 (F − eC,A). Thus, Log1 (F − eC,A) is
well-defined; hence, F−eC,A ∈ g (C,A) (since Log1 f is well-defined for an f ∈ L (C,A)
only when f ∈ g (C,A)).

Define an f ∈ L (C,A) by f = F − eC,A. Then, f = F − eC,A ∈ g (C,A). Also,

p ◦ f︸︷︷︸
=F−eC,A

= p ◦ (F − eC,A) = p ◦ F − p ◦ eC,A︸ ︷︷ ︸
=eC,B

(by Proposition 38.3 (a))

= p ◦ F − eC,B

∈ g (C,B) .

Now let x ∈ C. Then, the definition of Log1 f yields

(Log1 f) (x) =
∑
i≥1

(−1)i−1

i
f ∗i (x) (since f ∈ g (C,A)) . (510)

In particular, the sum
∑
i≥1

(−1)i−1

i
f ∗i (x) converges with respect to the discrete topology.

Applying the map p to both sides of the equality (510), we find

p ((Log1 f) (x)) = p

(∑
i≥1

(−1)i−1

i
f ∗i (x)

)
=
∑
i≥1

(−1)i−1

i
p
(
f ∗i (x)

)
(511)

(since the map p is k-linear, and since the sum
∑
i≥1

(−1)i−1

i
f ∗i (x) converges with respect

to the discrete topology). Also, the definition of Log1 (p ◦ f) yields

(Log1 (p ◦ f)) (x) =
∑
i≥1

(−1)i−1

i
(p ◦ f)∗i︸ ︷︷ ︸
=p◦(f∗i)

(since p◦(f∗i)=(p◦f)∗i

(by Proposition 38.3 (c),
applied to n=i))

(x) (since p ◦ f ∈ g (C,B))

=
∑
i≥1

(−1)i−1

i

(
p ◦
(
f ∗i
))

(x)︸ ︷︷ ︸
=p(f∗i(x))

=
∑
i≥1

(−1)i−1

i
p
(
f ∗i (x)

)
= p ((Log1 f) (x)) (by (511))

= (p ◦ (Log1 f)) (x) .

506



Now, forget that we fixed x. We thus have shown that (Log1 (p ◦ f)) (x) = (p ◦ (Log1 f)) (x)
for each x ∈ C. In other words, Log1 (p ◦ f) = p ◦ (Log1 f). Hence, p ◦ (Log1 f) =
Log1 (p ◦ f). But

p ◦

 LogF︸ ︷︷ ︸
=Log1(F−eC,A)

 = p ◦

Log1

F − eC,A︸ ︷︷ ︸
=f


 = p ◦ (Log1 f) = Log1

 p ◦ f︸︷︷︸
=p◦F−eC,B


= Log1 (p ◦ F − eC,B) = Log (p ◦ F )

(since we have shown that Log (p ◦ F ) = Log1 (p ◦ F − eC,B)). This completes the
proof of Proposition 38.4 (since p ◦ F ∈ G (C,B) has already been shown).

The next proposition can be regarded as an addendum to Proposition 17.8:

Proposition 38.5. Let k be a field of characteristic 0. Let C be a con-
nected filtered k-coalgebra. Let A be a filtered k-algebra.

Let F ∈ G (C,A) be a k-linear map respecting the filtration. Then, the
k-linear map LogF also respects the filtration.

Proof of Proposition 38.5. We know that the map F respects the filtration. In other
words,

F (C≤n) ⊆ A≤n for each n ∈ N. (512)

On the other hand, Proposition 17.8 (a) shows that the map eC,A : C → A respects
the filtration. In other words,

eC,A (C≤n) ⊆ A≤n for each n ∈ N. (513)

The definition of LogF yields LogF = Log1 (F − eC,A). In particular, Log1 (F − eC,A)
is well-defined; thus, F−eC,A ∈ g (C,A) (since Log1 f is well-defined for an f ∈ L (C,A)
only when f ∈ g (C,A)). Thus, we can define a k-linear map f ∈ g (C,A) by
f = F − eC,A. Consider this f . We have LogF = Log1 (F − eC,A)︸ ︷︷ ︸

=f

= Log1 f .

We have f (C≤n) ⊆ A≤n for each n ∈ N 261. In other words, the map f : C → A
respects the filtration.

Now, fix i ∈ N. Thus, i is a nonnegative integer. Recall that the map f : C → A
respects the filtration. Hence, Proposition 17.8 (c) (applied to n = i) shows that f ∗i

also respects the filtration. In other words,

f ∗i (C≤n) ⊆ A≤n for each n ∈ N. (514)

261Proof. Let n ∈ N. Then,

f︸︷︷︸
=F−eC,A

(C≤n) = (F − eC,A) (C≤n) ⊆ F (C≤n)︸ ︷︷ ︸
⊆A≤n

(by (512))

− eC,A (C≤n)︸ ︷︷ ︸
⊆A≤n

(by (513))

⊆ A≤n −A≤n

⊆ A≤n (since A≤n is a k-vector space) .

Qed.
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Now, forget that we fixed i. We thus have proven (514) for each i ∈ N.
Fix n ∈ N. Let x ∈ C≤n. Then, each integer i > n satisfies

f ∗i (x) = 0 (515)

262. Now,

(LogF )︸ ︷︷ ︸
=Log1 f

(x) = (Log1 f) (x) =
∑
i≥1

(−1)i−1

i
f ∗i (x) (by (8))

=
∑
i≥1;
i≤n︸︷︷︸
=

n∑
i=1

(−1)i−1

i
f ∗i

 x︸︷︷︸
∈C≤n

+
∑
i≥1;
i>n

(−1)i−1

i
f ∗i (x)︸ ︷︷ ︸

=0
(by (515))

∈
n∑
i=1

(−1)i−1

i
f ∗i (C≤n) +

∑
i≥1;
i>n

(−1)i−1

i
0

︸ ︷︷ ︸
=0

=
n∑
i=1

(−1)i−1

i
f ∗i (C≤n)︸ ︷︷ ︸
⊆A≤n

(by (514))

⊆
n∑
i=1

(−1)i−1

i
A≤n ⊆ A≤n (since A≤n is a k-vector space) .

Now, forget that we fixed x. We thus have proven that (LogF ) (x) ∈ A≤n for each
x ∈ C≤n. In other words, (LogF ) (C≤n) ⊆ A≤n.

Now, forget that we fixed n. We thus have shown that (LogF ) (C≤n) ⊆ A≤n for
each n ∈ N. In other words, the map LogF respects the filtration. This proves
Proposition 38.5.

Proposition 38.6. Let k be a field of characteristic 0. Let H be a con-
nected filtered commutative bialgebra over k. Consider the convolution
algebra L (H,H). Let e denote the map Log id ∈ L (H,H).

(a) We have id∗n ◦e = ne for each n ∈ N.

(b) We have e∗n ◦ e = δn,1e for each n ∈ N. Here, we are using the
Kronecker delta notation (i.e., whenever u and v are two objects, we set

δu,v =

{
1, if u = v;

0, if u 6= v
).

Proof of Proposition 38.6. Recall that LogF ∈ g (H,H) for each F ∈ G (H,H) (by
the definition of LogF ). Applying this to F = id, we obtain Log id ∈ g (H,H). Thus,
e = Log id ∈ g (H,H). Hence, e (1H) = 0 263.

262Proof of (515): Let i > n be an integer. Then, Remark 3.5 (applied to H = C) yields f∗i (C≤n) =
0 (since i > n). But from x ∈ C≤n, we obtain f∗i (x) ∈ f∗i (C≤n) = 0, thus f∗i (x) = 0. This proves
(515).

263Proof. We have e ∈ g (H,H) = {f ∈ L (H,H) | f (1H) = 0} (by the definition of g (H,H)). In
other words, e is an element f ∈ L (H,H) satisfying f (1H) = 0. In other words, e is an element of
L (H,H) and satisfies e (1H) = 0. Qed.
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Proposition 5.13 (b) (applied to A = H and F = id) yields e∗(Log id) = id. Since
e = Log id, this rewrites as e∗e = id.

(a) Let n ∈ N. Clearly, id : H → H is a k-algebra homomorphism. Hence,
Corollary 15.16 (applied to A = H and f = id) shows that id∗n : H → H is a k-algebra
homomorphism.

Also, id : H → H is an element of G (H,H).
But H is a connected filtered k-coalgebra (since H is a connected filtered bialgebra

over k). Hence, Proposition 38.4 (applied to C = H, A = H, B = H, p = id∗n and
F = id) shows that id∗n ◦ id ∈ G (H,H) and id∗n ◦Log id = Log (id∗n ◦ id). Thus,

id∗n ◦ e︸︷︷︸
=Log id

= id∗n ◦Log id = Log

(
id∗n ◦ id︸ ︷︷ ︸

=id∗n

)
= Log (id∗n) . (516)

On the other hand, n e︸︷︷︸
∈g(H,H)

∈ ng (H,H) ⊆ g (H,H) (since g (H,H) is a k-vector

space).
Recall that e ∈ g (H,H). Thus, Corollary 11.4 (applied to C = H and f = e)

yields e∗(ne) = (e∗e)∗n = id∗n (since e∗e = id). Thus, Log

(
e∗(ne)︸ ︷︷ ︸
=id∗n

)
= Log (id∗n) =

id∗n ◦e (by (516)). But Proposition 5.13 (a) (applied to A = H and f = ne) yields
Log

(
e∗(ne)

)
= ne (since ne ∈ g (H,H)). Comparing this with Log

(
e∗(ne)

)
= id∗n ◦e, we

obtain id∗n ◦e = ne. This proves Proposition 38.6 (a).
(b) For each n ∈ N, we define a k-linear map gn : H → H by gn = e∗n ◦ e − δn,1e.

Then, gn (H≤n−1) = 0 for each n ∈ N 264.

For each n ∈ N, define a k-linear map hn : H → H by hn =
1

n!
gn. Then,

264Proof. Let n ∈ N. We must show that gn (H≤n−1) = 0.
We have n ∈ N. Hence, we are in one of the following three cases:
Case 1: We have n = 0.
Case 2: We have n = 1.
Case 3: We have n > 1.
Let us first consider Case 1. In this case, we have n = 0. Thus, H≤n−1 = H≤0−1 = H≤−1 = 0.

Hence, gn

H≤n−1︸ ︷︷ ︸
=0

 = gn (0) = 0 (since the map gn is k-linear). Thus, gn (H≤n−1) = 0 is proven in

Case 1.
Let us now consider Case 2. In this case, we have n = 1. Thus, H≤n−1 = H≤1−1 = H≤0.
But the filtered k-bialgebra H is connected if and only if H≤0 = k · 1H (by Remark 2.12). Thus,

H≤0 = k · 1H (since the k-bialgebra H is connected). Hence, H≤n−1 = H≤0 = k · 1H .
Now,

gn︸︷︷︸
=e∗n◦e−δn,1◦e

(1H) = (e∗n ◦ e− δn,1 ◦ e) (1H) = (e∗n ◦ e) (1H)︸ ︷︷ ︸
=e∗n(e(1H))

−δn,1 e (1H)︸ ︷︷ ︸
=0

= e∗n (e (1H))− δn,10︸ ︷︷ ︸
=0

= e∗n

e (1H)︸ ︷︷ ︸
=0

 = e∗n (0) = 0
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hn (H≤n−1) = 0 for each n ∈ N 265.
For each i ∈ N, we have

hi =
1

i!
gi︸︷︷︸

=e∗i◦e−δi,1e
(by the definition of gi)

(by the definition of hi)

=
1

i!

(
e∗i ◦ e− δi,1e

)
. (517)

Now, let t ∈ N. Recall that e ∈ g (H,H). Thus, Corollary 11.4 (applied to C = H,
n = t and f = e) yields e∗(te) = (e∗e)∗t = id∗t (since e∗e = id).

On the other hand, t e︸︷︷︸
∈g(H,H)

∈ tg (H,H) ⊆ g (H,H) (since g (H,H) is a k-vector

space).
Let x ∈ H. Set y = e (x). Proposition 38.6 (a) (applied to n = t) yields id∗t ◦e = te.

Thus, (
id∗t ◦e

)
(x) = (te) (x) = t e (x)︸︷︷︸

=y

= ty,

(since the map e∗n is k-linear). Finally,

gn

H≤n−1︸ ︷︷ ︸
=k·1H

 = gn (k · 1H) = k · gn (1H)︸ ︷︷ ︸
=0

(since the map gn is k-linear)

= 0.

Thus, gn (H≤n−1) = 0 is proven in Case 2.
Let us finally consider Case 3. In this case, we have n > 1. Thus, n ≥ 2 (since n ∈ N), so that

n− 1 ≥ 1 and thus n− 1 ∈ N. Now, Remark 3.5 (applied to H, n, n− 1 and e instead of A, i, n and
f) shows that e∗n (H≤n−1) = 0 (since e ∈ g (H,H) and n > n − 1). Also, n 6= 1 (since n > 1) and
thus δn,1 = 0.

Furthermore, the map id ∈ G (H,H) is a k-linear map respecting the filtration. Hence, Proposi-
tion 38.5 (applied to C = H, A = H and F = id) shows that the k-linear map Log id also respects
the filtration. In other words, the k-linear map e respects the filtration (since e = Log id). In other
words, e (H≤m) ⊆ H≤m for each m ∈ N. Applying this to m = n− 1, we find e (H≤n−1) ⊆ H≤n−1.

Now,

gn︸︷︷︸
=e∗n◦e−δn,1◦e

(H≤n−1) = (e∗n ◦ e− δn,1 ◦ e) (H≤n−1) ⊆ (e∗n ◦ e) (H≤n−1)︸ ︷︷ ︸
=e∗n(e(H≤n−1))

− (δn,1 ◦ e) (H≤n−1)︸ ︷︷ ︸
=δn,1e(H≤n−1)

= e∗n

e (H≤n−1)︸ ︷︷ ︸
⊆H≤n−1

− δn,1︸︷︷︸
=0

e (H≤n−1) ⊆ e∗n (H≤n−1)︸ ︷︷ ︸
=0

− 0e (H≤n−1)︸ ︷︷ ︸
=0

= 0− 0 = 0.

Thus, gn (H≤n−1) = 0 is proven in Case 3.
We have now proven gn (H≤n−1) = 0 in all three Cases 1, 2 and 3. Since these three Cases cover

all possibilities, we therefore conclude that gn (H≤n−1) = 0 always holds. Qed.
265Proof. We have previously shown that gn (H≤n−1) = 0 for each n ∈ N. Now, for each n ∈ N, we

have

hn︸︷︷︸
=

1

n!
gn

(H≤n−1) =

(
1

n!
gn

)
(H≤n−1) =

1

n!
gn (H≤n−1)︸ ︷︷ ︸

=0

= 0.

Qed.
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so that

ty =
(
id∗t ◦e

)
(x) = id∗t︸︷︷︸

=e∗(te)

e (x)︸︷︷︸
=y

 = e∗(te) (y)

=
∑
i≥0

(te)∗i (y)

i!
(by (6), applied to te and y instead of f and x)

=
∑
i≥0

1

i!
(te)∗i︸ ︷︷ ︸
=tie∗i

(y) =
∑
i≥0

1

i!

(
tie∗i

)
(y)︸ ︷︷ ︸

=tie∗i(y)

=
∑
i≥0

1

i!
tie∗i

 y︸︷︷︸
=e(x)


=
∑
i≥0

1

i!
ti e∗i (e (x))︸ ︷︷ ︸

=(e∗i◦e)(x)

=
∑
i≥0

1

i!
ti
(
e∗i ◦ e

)
(x) . (518)

On the other hand, all but finitely many i ∈ N satisfy
1

i!
tiδi,1e (x) = 0 266. Hence,

the infinite sum
∑
i≥0

1

i!
tiδi,1e (x) converges. This infinite sum rewrites as follows:

∑
i≥0

1

i!
tiδi,1e (x) =

∑
i≥0;
i 6=1

1

i!
ti δi,1︸︷︷︸

=0
(since i 6=1)

e (x) +
1

1!︸︷︷︸
=

1

1
=1

t1︸︷︷︸
=t

δ1,1︸︷︷︸
=1

(since 1=1)

e (x)︸︷︷︸
=y

(here, we have split off the addend for i = 1 from the sum)

=
∑
i≥0;
i 6=1

1

i!
ti0e (x)

︸ ︷︷ ︸
=0

+ty = ty

=
∑
i≥0

1

i!
ti
(
e∗i ◦ e

)
(x) (by (518)) .

266Proof. Each i ∈ N satisfying i 6= 1 satisfies
1

i!
ti δi,1︸︷︷︸

=0
(since i 6=1)

e (x) = 0. Hence, all but finitely many

i ∈ N satisfy
1

i!
tiδi,1e (x) = 0 (since all but finitely many i ∈ N satisfy i 6= 1).
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Hence,

0 =
∑
i≥0

1

i!
ti
(
e∗i ◦ e

)
(x)−

∑
i≥0

1

i!
tiδi,1e (x) =

∑
i≥0

1

i!
ti︸︷︷︸

=ti·
1

i!

((
e∗i ◦ e

)
(x)− δi,1e (x)

)︸ ︷︷ ︸
=(e∗i◦e−δi,1e)(x)

=
∑
i≥0

ti · 1

i!

(
e∗i ◦ e− δi,1e

)
(x)︸ ︷︷ ︸

=

 1

i!
(e∗i◦e−δi,1e)

(x)

=
∑
i≥0

ti ·
(

1

i!

(
e∗i ◦ e− δi,1e

))
︸ ︷︷ ︸

=hi
(by (517))

(x)

=
∑
i≥0

tihi (x) .

In other words,
∑
i≥0

tihi (x) = 0.

Now, forget that we fixed x and t. We thus have shown that every x ∈ H and every
t ∈ N satisfy

∑
i≥0

tihi (x) = 0. Hence, Proposition 12.1 (b) shows that

hn = 0 for every n ∈ N (519)

(since we already have proven that hn (H≤n−1) = 0 for each n ∈ N).
Now, fix n ∈ N. From (519), we obtain hn = 0. But the definition of hn yields

hn =
1

n!
gn, so that gn = n! hn︸︷︷︸

=0

= 0. Furthermore, the definition of gn yields gn =

e∗n ◦ e − δn,1e, so that e∗n ◦ e − δn,1e = gn = 0, and thus e∗n ◦ e = δn,1e. This proves
Proposition 38.6 (b).

Proposition 38.7. Let k be a field of characteristic 0. Let H be a con-
nected filtered bialgebra over k. Consider the convolution algebra L (H,H).
Let e denote the map Log id ∈ L (H,H). Then, the image e (H) generates
the k-algebra H.

Proof of Proposition 38.7. Let E be the k-vector subspace e (H) of H.
Recall Convention 16.19. For every ` ∈ N, Proposition 17.4 yields

H≤` ⊆
∑̀
i=0

Ei︸︷︷︸
⊆AlgGenk E

⊆
∑̀
i=0

AlgGenk E ⊆ AlgGenk E

(since AlgGenk E is a k-vector space). Since H is filtered, we have

H =
⋃
`∈N

H≤`︸︷︷︸
⊆AlgGenk E

⊆
⋃
`∈N

AlgGenk E = AlgGenk E.

Combined with AlgGenk E ⊆ H (which is trivial), this yields H = AlgGenk E. In other
words, H is the k-subalgebra of H generated by E (since AlgGenk E is the k-subalgebra
of H generated by E). In other words, the subset E of H generates the k-algebra H.
Since E = e (H), this rewrites as follows: The subset e (H) of H generates the k-algebra
H. This proves Proposition 38.7.
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Lemma 38.8. Let k be a field. Let V be any k-vector space. Recall the
notations introduced in Definition 38.1.

Let A be a commutative k-algebra. Let ϕ : V → A be a k-linear map.

(a) If the image ϕ (V ) generates the k-algebra A, then the k-algebra ho-
momorphism symliftϕ : SymV → A is surjective.

(b) Let ρ : A → SymV be a k-algebra homomorphism such that ρ ◦ ϕ =
symincV . Then, ρ ◦ (symliftϕ) = idSymV .

(c) Let ρ : A → SymV be a k-algebra homomorphism such that ρ ◦ ϕ =
symincV . Assume furthermore that the image ϕ (V ) generates the k-algebra
A. Then, the two k-algebra homomorphisms symliftϕ : SymV → A and
ρ : A→ SymV are mutually inverse.

Proof of Lemma 38.8. Recall that symliftϕ is the unique k-algebra homomorphism Φ :
SymV → A satisfying Φ◦symincV = ϕ. Hence, symliftϕ is a k-algebra homomorphism
SymV → A and satisfies (symliftϕ) ◦ symincV = ϕ.

(a) Assume that the image ϕ (V ) generates the k-algebra A. In other words, the
k-subalgebra of A generated by ϕ (V ) is A.

Let S denote the image ϕ (V ).
Recall that the k-subalgebra of A generated by ϕ (V ) is A. In other words, the

k-subalgebra of A generated by S is A (since S = ϕ (V )). In other words, A is the
k-subalgebra of A generated by S. In other words, A is the smallest k-subalgebra of
A which contains S as a subset (because the k-subalgebra of A generated by S is the
smallest k-subalgebra of A which contains S as a subset). Hence,(

whenever U is a k-subalgebra of A which contains S as
a subset, we must necessarily have A ⊆ U

)
. (520)

But the map symliftϕ : SymV → A is a k-algebra homomorphism. Thus, its
image (symliftϕ) (SymV ) is a k-subalgebra of A. Furthermore, this k-subalgebra
(symliftϕ) (SymV ) contains S as a subset267. Hence, (520) (applied to U = (symliftϕ) (SymV ))
shows that A ⊆ (symliftϕ) (SymV ). Combined with (symliftϕ) (SymV ) ⊆ A (which
is obvious), this yields A = (symliftϕ) (SymV ). In other words, the map symliftϕ is
surjective. This proves Lemma 38.8 (a).

(b) The k-algebra SymV is commutative, and the map symincV : V → SymV is a
k-linear map. Hence, a k-algebra homomorphism symlift (symincV ) : SymV → SymV
is well-defined. The definition of this homomorphism shows that symlift (symincV ) is
the unique k-algebra homomorphism Φ : SymV → SymV satisfying Φ ◦ symincV =
symincV . In particular, this shows that there exists at most one k-algebra homo-
morphism Φ : SymV → SymV satisfying Φ ◦ symincV = symincV (namely, the

267Proof. We have

S = ϕ︸︷︷︸
=(symliftϕ)◦symincV

(V ) = ((symliftϕ) ◦ symincV ) (V ) = (symliftϕ)

symincV (V )︸ ︷︷ ︸
⊆SymV


⊆ (symliftϕ) (SymV ) .

In other words, (symliftϕ) (SymV ) contains S as a subset.
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homomorphism symlift (symincV )). In other words, if Φ1 and Φ2 are two k-algebra
homomorphisms Φ : SymV → SymV satisfying Φ ◦ symincV = symincV , then

Φ1 = Φ2. (521)

Now, idSymV is a k-algebra homomorphism SymV → SymV satisfying idSymV ◦ symincV =
symincV . In other words, idSymV is a k-algebra homomorphism Φ : SymV → SymV
satisfying Φ ◦ symincV = symincV .

On the other hand, ρ and symliftϕ are k-algebra homomorphisms. Thus, their
composition ρ ◦ (symliftϕ) is also a k-algebra homomorphism (since the composition
of two k-algebra homomorphisms is always a k-algebra homomorphism). Hence, ρ ◦
(symliftϕ) is a k-algebra homomorphism SymV → SymV satisfying

(ρ ◦ (symliftϕ)) ◦ symincV = ρ ◦ (symliftϕ) ◦ symincV︸ ︷︷ ︸
=ϕ

= ρ ◦ ϕ = symincV .

In other words, ρ ◦ (symliftϕ) is a k-algebra homomorphism Φ : SymV → SymV
satisfying Φ ◦ symincV = symincV .

Thus, (521) (applied to Φ1 = ρ ◦ (symliftϕ) and Φ2 = idSymV ) shows that ρ ◦
(symliftϕ) = idSymV . This proves Lemma 38.8 (b).

(c) Lemma 38.8 (a) shows that the k-algebra homomorphism symliftϕ : SymV →
A is surjective. Lemma 38.8 (b) shows that ρ◦(symliftϕ) = idSymV . Hence, (symliftϕ)◦
ρ = idA

268. Combining this with ρ ◦ (symliftϕ) = idSymV , we conclude that the
maps symliftϕ : SymV → A and ρ : A → SymV are mutually inverse. This proves
Lemma 38.8 (c).

The following lemma just recapitulates some trivial observations:

Lemma 38.9. Let k be a field. Let A be a k-algebra. Let C be a connected
filtered k-coalgebra. Let h ∈ g (C,A).

(a) We have h (1C) = 0.

(b) We have h (C≤0) = 0.

(c) Assume that the field k has characteristic 0. Then, e∗h (1C) = 1A.

Proof of Lemma 38.9. We have h ∈ g (C,A) = {f ∈ L (C,A) | f (1C) = 0} (by the
definition of g (C,A)). In other words, h is an element f ∈ L (C,A) satisfying f (1C) =

268Proof. Let a ∈ A. Then, a ∈ A = (symliftϕ) (SymV ) (since the homomorphism symliftϕ is
surjective). In other words, there exists some b ∈ SymV such that a = (symliftϕ) (b). Consider this

b. Now, (ρ ◦ (symliftϕ))︸ ︷︷ ︸
=idSymV

(b) = idSymV (b) = b, so that b = (ρ ◦ (symliftϕ)) (b) = ρ

(symliftϕ) (b)︸ ︷︷ ︸
=a

 =

ρ (a). Hence, ρ (a) = b.
Now,

((symliftϕ) ◦ ρ) (a) = (symliftϕ)

ρ (a)︸︷︷︸
=b

 = (symliftϕ) (b) = a = idA (a) .

Now, forget that we fixed a. We thus have shown that ((symliftϕ) ◦ ρ) (a) = idA (a) for each a ∈ A.
In other words, (symliftϕ) ◦ ρ = idA.
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0. In other words, h is an element of L (C,A) and satisfies h (1C) = 0. Thus,
Lemma 38.9 (a) is proven.

(b) Remark 2.11 gives C≤0 = k · 1C . Thus,

h

C≤0︸︷︷︸
=k·1C

 = h (k · 1C) = k · h (1C)︸ ︷︷ ︸
=0

(since h is k-linear)

= k · 0 = 0.

This proves Lemma 38.9 (b).
(c) In Definition 3.6, it was shown that if H is a connected filtered k-coalgebra,

and if f ∈ g (H,A), then e∗f ∈ G (H,A). Applying this to H = C and f = h, we
obtain e∗h ∈ G (C,A) = {f ∈ L (C,A) | f (1C) = 1A} (by the definition of G (C,A)).
In other words, e∗h is an element f ∈ L (C,A) satisfying f (1C) = 1A. In other words,
e∗h is an element of L (C,A) and satisfies e∗h (1C) = 1A. Thus, Lemma 38.9 (c) is
proven.

Next, we state a lemma which is somewhat similar to Lemma 16.27:

Lemma 38.10. Let k be a field. Let A be a k-algebra. Let V be a filtered
k-vector space. Let α : V → A and β : V → A be two k-linear maps.
Assume that each i ∈ N satisfies

(α− β) (V≤i) ⊆ AlgGenk (β (V≤i−1)) . (522)

Then:

(a) For each n ∈ {−1, 0, 1, . . .}, we have AlgGenk (α (V≤n)) = AlgGenk (β (V≤n)).

(b) We have AlgGenk (α (V )) = AlgGenk (β (V )).

Proof of Lemma 38.10. (a) Let us prove Lemma 38.10 (a) by induction over n:

Induction base: We have α (V≤−1) = β (V≤−1) 269 and thus AlgGenk

α (V≤−1)︸ ︷︷ ︸
=β(V≤−1)

 =

AlgGenk (β (V≤−1)). In other words, Lemma 38.10 (a) holds for n = −1. This com-
pletes the induction base.

Induction step: Let N ∈ N. Assume that Lemma 38.10 (a) holds for n = N − 1.
We now must prove that Lemma 38.10 (a) also holds for n = N .

The assumption (522) (applied to n = N) yields

(α− β) (V≤N) ⊆ AlgGenk (β (V≤N−1)) . (523)

Since Lemma 38.10 (a) holds for n = N − 1, we have AlgGenk (α (V≤N−1)) =
AlgGenk (β (V≤N−1)). Thus, (523) becomes

(α− β) (V≤N) ⊆ AlgGenk (β (V≤N−1)) = AlgGenk (α (V≤N−1)) .

269Proof. We have V≤−1 = 0 and thus α (V≤−1) = α (0) = 0 (since the map α is k-linear). The same
argument (applied to β instead of α) shows that β (V≤−1) = 0. Thus, α (V≤−1) = 0 = β (V≤−1).
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Hence,

(β − α)︸ ︷︷ ︸
=−(α−β)

(V≤N) = (− (α− β)) (V≤N) = − (α− β) (V≤N)︸ ︷︷ ︸
⊆AlgGenk(α(V≤N−1))

⊆ −AlgGenk (α (V≤N−1)) ⊆ AlgGenk (α (V≤N−1)) (524)

(since AlgGenk (α (V≤N−1)) is a k-vector space).
We have V≤N−1 ⊆ V≤N

270.
Applying (116) to S = β (V≤N), we obtain β (V≤N) ⊆ AlgGenk (β (V≤N)).
Now, define a k-linear map ξ : V → A by ξ = α− β. Then,

ξ︸︷︷︸
=α−β

(V≤N) = (α− β) (V≤N) ⊆ AlgGenk

β
V≤N−1︸ ︷︷ ︸
⊆V≤N


 (by (523))

= AlgGenk (β (V≤N)) .

But α = ξ + β (since ξ = α− β). Now,

α︸︷︷︸
=ξ+β

(V≤N) = (ξ + β) (V≤N) ⊆ ξ (V≤N)︸ ︷︷ ︸
⊆AlgGenk(β(V≤N))

+ β (V≤N)︸ ︷︷ ︸
⊆AlgGenk(β(V≤N))

⊆ AlgGenk (β (V≤N)) + AlgGenk (β (V≤N)) ⊆ AlgGenk (β (V≤N))

(since AlgGenk (β (V≤N)) is a k-vector space). In other words, AlgGenk (β (V≤N)) con-
tains α (V≤N) as a subset. Hence, AlgGenk (β (V≤N)) is a k-subalgebra of A containing
α (V≤N) as a subset271.

But we know that AlgGenk (α (V≤N)) is the smallest k-subalgebra of A containing
α (V≤N) as a subset. This means that whenever U is a k-subalgebra of A containing
α (V≤N) as a subset, we must necessarily have AlgGenk (α (V≤N)) ⊆ U . Applied to
U = AlgGenk (β (V≤N)), this yields that AlgGenk (α (V≤N)) ⊆ AlgGenk (β (V≤N)).

So we have proven AlgGenk (α (V≤N)) ⊆ AlgGenk (β (V≤N)). But the same argu-
ment, with the maps α and β interchanged (and using the equality (524) instead of
(523)), shows that AlgGenk (β (V≤N)) ⊆ AlgGenk (α (V≤N)).

Combining AlgGenk (α (V≤N)) ⊆ AlgGenk (β (V≤N)) and AlgGenk (β (V≤N)) ⊆ AlgGenk (α (V≤N)),
we obtain AlgGenk (α (V≤N)) = AlgGenk (β (V≤N)). In other words, Lemma 38.10 (a)
holds for n = N . This completes the induction step.

Thus, the induction proof of Lemma 38.10 (a) is complete.
(b) For every n ∈ N, we have

α (V≤n) ⊆ AlgGenk (α (V≤n)) (by (116), applied to S = α (V≤n))

= AlgGenk

β
V≤n︸︷︷︸
⊆V

 (by Lemma 38.10 (a))

⊆ AlgGenk (β (V )) . (525)

270Proof. If N = 0, then V≤N−1 ⊆ V≤N holds (because if N = 0, then V≤N−1 = V≤0−1 = V≤−1 =
0 ⊆ V≤N ). Hence, for the rest of this proof, we can WLOG assume that we don’t have N = 0. Assume
this. We have N 6= 0 (since we don’t have N = 0), and thus N ≥ 1 (since N ∈ N). Hence, N − 1 ∈ N.

But since V is a filtered k-algebra, we have V≤0 ⊆ V≤1 ⊆ V≤2 ⊆ · · · . Hence, V≤N−1 ⊆ V≤N (since
N − 1 ∈ N). Qed.

271since AlgGenk (β (V≤N )) is clearly a k-subalgebra of A
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But V is a filtered k-vector space. Hence, V =
⋃
n∈N

V≤n. Applying the map α to this

equality, we obtain

α (V ) = α

(⋃
n∈N

V≤n

)
=
⋃
n∈N

α (V≤n)︸ ︷︷ ︸
⊆AlgGenk(β(V ))

(by (525))

⊆
⋃
n∈N

AlgGenk (β (V )) = AlgGenk (β (V )) .

In other words, AlgGenk (β (V )) contains α (V ) as a subset. Hence, AlgGenk (β (V ))
is a k-subalgebra of A containing α (V ) as a subset272.

But we know that AlgGenk (α (V )) is the smallest k-subalgebra of A containing
α (V ) as a subset. This means that whenever U is a k-subalgebra of A containing
α (V ) as a subset, we must necessarily have AlgGenk (α (V )) ⊆ U . Applied to U =
AlgGenk (β (V )), this yields that AlgGenk (α (V )) ⊆ AlgGenk (β (V )).

So we have proven AlgGenk (α (V )) ⊆ AlgGenk (β (V )). But the same argument,
with the maps α and β interchanged, shows that AlgGenk (β (V )) ⊆ AlgGenk (α (V )).

Combining AlgGenk (α (V )) ⊆ AlgGenk (β (V )) and AlgGenk (β (V )) ⊆ AlgGenk (α (V )),
we obtain AlgGenk (α (V )) = AlgGenk (β (V )). This proves Lemma 38.10 (b).

Proposition 38.11. Let k be a field. Let C be a connected filtered k-
coalgebra. Let A be a k-algebra. Let f ∈ g (C,A). Then:

(a) For each n ∈ N and i ∈ N, we have

f ∗i (C≤n) ⊆ AlgGenk (f (C≤n)) .

(b) For each n ∈ N and i ∈ N satisfying i ≥ 2, we have

f ∗i (C≤n) ⊆ AlgGenk (f (C≤n−1)) .

Proof of Proposition 38.11. (a) We shall prove Proposition 38.11 (a) by induction on
i:

Induction base: For each n ∈ N, we have f ∗0 (C≤n) ⊆ AlgGenk (f (C≤n)) 273. In
other words, Proposition 38.11 (a) holds for i = 0. This completes the induction base.

Induction step: Let j be a positive integer. Assume that Proposition 38.11 (a)
holds for i = j − 1. We must then show that Proposition 38.11 (a) holds for i = j.

272since AlgGenk (β (V )) is clearly a k-subalgebra of A
273Proof. Let n ∈ N. The set AlgGenk (f (C≤n)) is a k-subalgebra of A, and thus contains the

element 1A. In other words, 1A ∈ AlgGenk (f (C≤n)).
But f∗0 = eC,A = ηA ◦ εC (by the definition of eC,A). Hence, each x ∈ C≤n satisfies

f∗0︸︷︷︸
=ηA◦εC

(x) = (ηA ◦ εC) (x) = ηA (εC (x)) = εC (x) · 1A︸︷︷︸
∈AlgGenk(f(C≤n))

(by the definition of ηA)

∈ εC (x) ·AlgGenk (f (C≤n)) ⊆ AlgGenk (f (C≤n))

(since AlgGenk (f (C≤n)) is a k-vector space). In other words, f∗0 (C≤n) ⊆ AlgGenk (f (C≤n)). Qed.
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We have assumed that Proposition 38.11 (a) holds for i = j − 1. In other words,
whenever k, C, A and f are as in Proposition 38.11 (a), we have

f ∗(j−1) (C≤n) ⊆ AlgGenk (f (C≤n)) (526)

for each n ∈ N.
Now, we must prove that Proposition 38.11 (a) holds for i = j. So let k, C, A and

f be as in Proposition 38.11 (a). Let n ∈ N.
Let A be the k-subalgebra AlgGenk (f (C≤n)) of A. Thus, A = AlgGenk (f (C≤n)).
Each u ∈ {0, 1, . . . , n} satisfies

f (C≤u) ⊆ A (527)

274 and
f ∗(j−1) (C≤n−u) ⊆ A (528)

275.
Since j is a positive integer, we have f ∗j = f ∗ f ∗(j−1) = µA ◦

(
f ⊗ f ∗(j−1)

)
◦∆C (by

274Proof of (527): Let u ∈ {0, 1, . . . , n}. Then, u ∈ N and u ≤ n.
Applying (116) to S = f (C≤n), we obtain f (C≤n) ⊆ AlgGenk (f (C≤n)) = A.
Since C is filtered, we have C≤0 ⊆ C≤1 ⊆ C≤2 ⊆ · · · . In other words, C≤x ⊆ C≤y whenever x and

y are two elements of N satisfying x ≤ y. Applying this to x = u and y = n, we obtain C≤u ⊆ C≤n

(since u ≤ n). Thus, f

C≤u︸︷︷︸
⊆C≤n

 ⊆ f (C≤n) ⊆ A. This proves (527).

275Proof of (528): Let u ∈ {0, 1, . . . , n}. Then, n − u ∈ {0, 1, . . . , n} ⊆ N. But u ∈ {0, 1, . . . , n}
shows that u ≥ 0 and thus n− u︸︷︷︸

≥0

≤ n.

Since C is filtered, we have C≤0 ⊆ C≤1 ⊆ C≤2 ⊆ · · · . In other words, C≤x ⊆ C≤y whenever x
and y are two elements of N satisfying x ≤ y. Applying this to x = n − u and y = n, we obtain
C≤n−u ⊆ C≤n (since n− u ≤ n). Thus,

f∗(j−1)

C≤n−u︸ ︷︷ ︸
⊆C≤n

 ⊆ f∗(j−1) (C≤n) ⊆ AlgGenk (f (C≤n)) (by (526))

= A.

This proves (528).
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the definition of convolution). Hence,

f ∗j︸︷︷︸
=µA◦(f⊗f∗(j−1))◦∆C

(C≤n)

=
(
µA ◦

(
f ⊗ f ∗(j−1)

)
◦∆C

)
(C≤n)

= µA


(
f ⊗ f ∗(j−1)

)
 ∆C (C≤n)︸ ︷︷ ︸

⊆
n∑
u=0

C≤u⊗C≤n−u

(since C is a filtered k-coalgebra)





⊆ µA


(
f ⊗ f ∗(j−1)

)( n∑
u=0

C≤u ⊗ C≤n−u

)
︸ ︷︷ ︸

⊆
n∑
u=0

(f⊗f∗(j−1))(C≤u⊗C≤n−u)

(since the map f⊗f∗(j−1) is k-linear)



⊆ µA

 n∑
u=0

(
f ⊗ f ∗(j−1)

)
(C≤u ⊗ C≤n−u)︸ ︷︷ ︸

⊆f(C≤u)⊗f∗(j−1)(C≤n−u)

 ⊆ µA


n∑
u=0

f (C≤u)︸ ︷︷ ︸
⊆A

(by (527))

⊗ f ∗(j−1) (C≤n−u)︸ ︷︷ ︸
⊆A

(by (528))



⊆ µA


n∑
u=0

A⊗ A︸ ︷︷ ︸
⊆A⊗A

(since A⊗A is a k-vector space)

 ⊆ µA (A⊗ A)

= AA (by (74), applied to U = A and V = A)

⊆ A (since A is a k-algebra)

= AlgGenk (f (C≤n)) .

Now, forget that we fixed n. We thus have proven that f ∗j (C≤n) ⊆ AlgGenk (f (C≤n))
for each n ∈ N.

Now, forget that we fixed k, C, A and f . We thus have shown that if k, C, A
and f are as in Proposition 38.11 (a), then we have f ∗j (C≤n) ⊆ AlgGenk (f (C≤n)) for
each n ∈ N. In other words, Proposition 38.11 (a) holds for i = j. This completes the
induction step. Thus, the induction proof of Proposition 38.11 (a) is complete.

(b) Let n ∈ N and i ∈ N be such that i ≥ 2.
From i ≥ 2 ≥ 1, we conclude that i is positive. Hence, Lemma 17.10 (applied to C

and f instead of H and h) yields f ∗i ∈ g (C,A). Hence, Lemma 38.9 (b) (applied to
f ∗i instead of h) yields

f ∗i (C≤0) = 0 ⊆ AlgGenk (f (C≤0−1))
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(since AlgGenk (f (C≤0−1)) is a k-subalgebra of A). In other words, Proposition 38.11
(b) holds if n = 0. Thus, for the rest of this proof, we can WLOG assume that we
don’t have n = 0. Assume this.

We have n 6= 0 (since we don’t have n = 0). Thus, n is a positive integer (since
n ∈ N). Hence, n− 1 ∈ N. Also, i− 1 ∈ N (since i is a positive integer).

Let A be the k-subalgebra AlgGenk (f (C≤n−1)) ofA. Thus, A = AlgGenk (f (C≤n−1)).
For each u ∈ {1, 2, . . . , n− 1}, we have

f (C≤u) ⊆ A (529)

276 and
f ∗(i−1) (C≤n−u) ⊆ A (530)

277.
From i ≥ 2, we obtain i − 1 ≥ 1. Thus, i − 1 is a positive element of N. Hence,

Lemma 17.10 (applied to C, f and i−1 instead of H, h and i) yields f ∗(i−1) ∈ g (C,A).
Thus, Proposition 17.7 (applied to g = f ∗(i−1) and ` = n) yields

(
f ∗ f ∗(i−1)

)
(C≤n) ⊆

n−1∑
u=1

f (C≤u)︸ ︷︷ ︸
⊆A

(by (529))

f ∗(i−1) (C≤n−u)︸ ︷︷ ︸
⊆A

(by (530))

⊆
n−1∑
u=1

AA ⊆ A

(since A is a k-subalgebra of A). Now,

f ∗i︸︷︷︸
=f∗f∗(i−1)

(C≤n) =
(
f ∗ f ∗(i−1)

)
(C≤n) ⊆ A = AlgGenk (f (C≤n−1)) .

This proves Proposition 38.11 (b).

276Proof of (529): Let u ∈ {1, 2, . . . , n− 1}. Then, 1 ≤ u ≤ n− 1.
Applying (116) to S = f (C≤n−1), we obtain f (C≤n−1) ⊆ AlgGenk (f (C≤n−1)) = A.
Since C is filtered, we have C≤0 ⊆ C≤1 ⊆ C≤2 ⊆ · · · . In other words, C≤x ⊆ C≤y whenever x

and y are two elements of N satisfying x ≤ y. Applying this to x = u and y = n − 1, we obtain

C≤u ⊆ C≤n−1 (since u ≤ n− 1). Thus, f

 C≤u︸︷︷︸
⊆C≤n−1

 ⊆ f (C≤n−1) ⊆ A. This proves (529).

277Proof of (530): Let u ∈ {1, 2, . . . , n− 1}. Then, n − u ∈ {1, 2, . . . , n− 1} ⊆ N. Also, from
u ∈ {1, 2, . . . , n− 1}, we obtain 1 ≤ u ≤ n− 1. Thus, n− u︸︷︷︸

≥1

≤ n− 1.

Since C is filtered, we have C≤0 ⊆ C≤1 ⊆ C≤2 ⊆ · · · . In other words, C≤x ⊆ C≤y whenever x
and y are two elements of N satisfying x ≤ y. Applying this to x = n − u and y = n − 1, we obtain
C≤n−u ⊆ C≤n−1 (since n− u ≤ n− 1). Thus,

f∗(i−1)

C≤n−u︸ ︷︷ ︸
⊆C≤n−1

 ⊆ f∗(i−1) (C≤n−1) ⊆ AlgGenk (f (C≤n−1))

(by Proposition 38.11 (a), applied to n− 1 and i− 1 instead of n and i)

= A.

This proves (530).
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Proposition 38.12. Let k be a field of characteristic 0. Let C be a con-
nected filtered k-coalgebra. Let A be a k-algebra. Let f ∈ g (C,A). Then:

(a) Each i ∈ N satisfies(
e∗f − f

)
(C≤i) ⊆ AlgGenk (f (C≤i−1)) .

(b) We have AlgGenk
(
e∗f (C)

)
= AlgGenk (f (C)).

Proof of Proposition 38.12. (a) Let n be a positive integer. We shall prove that(
e∗f − f

)
(C≤n) ⊆ AlgGenk (f (C≤n−1)) . (531)

Indeed, let x ∈ C≤n be arbitrary. Then,

f ∗i (x) = 0 for every integer i > n (532)

278.
Let A denote the k-subalgebra AlgGenk (f (C≤n−1)) of A. Then, 1A ∈ A (since A

is a k-subalgebra of A).
We have

f ∗i (x) ∈ A for each integer i ≥ 2 (533)

279.
On the other hand, n ≥ 1 (since n is a positive integer). Furthermore, f ∗0 = eC,A =

ηA ◦ εC (by the definition of eC,A) and thus

f ∗0︸︷︷︸
=ηA◦εC

(x) = (ηA ◦ εC) (x) = ηA (εC (x)) = εC (x) · 1A︸︷︷︸
∈A

(by the definition of ηA)

∈ εC (x) · A ⊆ A

(since A is a k-vector space).

278Proof of (532): Let i > n be an integer. Thus, i > n ≥ 0, so that i ∈ N. Now, Remark 3.5
(applied to H = C) yields f∗i (C≤n) = 0 (since i > n). But x ∈ C≤n yields f∗i (x) ∈ f∗i (C≤n) = 0,
thus f∗i (x) = 0. This proves (532).

279Proof of (533): Let i ≥ 2 be an integer. Thus, i ∈ N. Now, Proposition 38.11 (b) yields

f∗i (C≤n) ⊆ AlgGenk (f (C≤n−1)) = A (since A = AlgGenk (f (C≤n−1))). But f∗i

 x︸︷︷︸
∈C≤n

 ∈

f∗i (C≤n) ⊆ A. This proves (533).
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But the definition of e∗f yields

e∗f (x) =
∑
i≥0

f ∗i (x)

i!︸ ︷︷ ︸
=

1

i!
f∗i(x)

=
∑
i≥0

1

i!
f ∗i (x)

=
∑
i≥0;
i≤n︸︷︷︸
=

n∑
i=0

1

i!
f ∗i (x) +

∑
i≥0;
i>n

1

i!
f ∗i (x)︸ ︷︷ ︸

=0
(by (532))

=
n∑
i=0

1

i!
f ∗i (x) +

∑
i≥0;
i>n

1

i!
0

︸ ︷︷ ︸
=0

=
n∑
i=0

1

i!
f ∗i (x)

=
1

0!︸︷︷︸
=

1

1
=1

f ∗0 (x) +
n∑
i=1

1

i!
f ∗i (x)︸ ︷︷ ︸

=
1

1!
f∗1(x)+

n∑
i=2

1

i!
f∗i(x)

(here, we have split off the addend
for i=1 from the sum (since n≥1))(

here, we have split off the addend for i = 0
from the sum (because n ≥ 1 ≥ 0)

)
= f ∗0 (x) +

1

1!︸︷︷︸
=

1

1
=1

f ∗1︸︷︷︸
=f

(x) +
n∑
i=2

1

i!
f ∗i (x)

= f ∗0 (x) + f (x) +
n∑
i=2

1

i!
f ∗i (x) .

Subtracting f (x) from both sides of this equality, we obtain

e∗f (x)− f (x) = f ∗0 (x)︸ ︷︷ ︸
∈A

+
n∑
i=2

1

i!
f ∗i (x)︸ ︷︷ ︸
∈A

(by (533))

∈ A +
n∑
i=2

1

i!
A︸ ︷︷ ︸

⊆A
(since A is a k-vector space)

⊆ A + A ⊆ A (since A is a k-vector space) .

Now,
(
e∗f − f

)
(x) = e∗f (x)− f (x) ∈ A.

Now, let us forget that we fixed x. We thus have proven that
(
e∗f − f

)
(x) ∈ A for

each x ∈ C≤n. In other words,
(
e∗f − f

)
(C≤n) ⊆ A. This rewrites as

(
e∗f − f

)
(C≤n) ⊆

AlgGenk (f (C≤n−1)) (since A = AlgGenk (f (C≤n−1))). Thus, (531) is proven.
Now, let us forget that we fixed n. We thus have proven that (531) holds for each

positive integer n.
Now, let i ∈ N. We must prove that

(
e∗f − f

)
(C≤i) ⊆ AlgGenk (f (C≤i−1)). If i is

a positive integer, then this follows immediately from (531) (applied to n = i). Hence,
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for the rest of this proof, we can WLOG assume that i is not a positive integer. Assume
this.

We have i /∈ {1, 2, 3, . . .} (since i is not a positive integer). Combining this with
i ∈ N, we obtain i ∈ N \ {1, 2, 3, . . .} = {0}. In other words, i = 0. Hence, C≤i =
C≤0 = k · 1C (by Remark 2.11).

But (
e∗f − f

)
(1C) = e∗f (1C)︸ ︷︷ ︸

=1A
(by Lemma 38.9 (c),

applied to h=f)

− f (1C)︸ ︷︷ ︸
=0

(by Lemma 38.9 (a),
applied to h=f)

= 1A − 0 = 1A.

Now,

(
e∗f − f

) C≤i︸︷︷︸
=k·1C

 =
(
e∗f − f

)
(k · 1C)

= k ·
(
e∗f − f

)
(1C)︸ ︷︷ ︸

=1A

(
since the map e∗f − f is k-linear

)
= k · 1A︸︷︷︸

∈AlgGenk(f(C≤i−1))
(since AlgGenk(f(C≤i−1))

is a k-subalgebra of A)

⊆ k · AlgGenk (f (C≤i−1))

⊆ AlgGenk (f (C≤i−1))

(since AlgGenk (f (C≤i−1)) is a k-vector subspace of A). Thus,
(
e∗f − f

)
(C≤i) ⊆

AlgGenk (f (C≤i−1)) is proven. The proof of Proposition 38.12 (a) is thus complete.
(b) Proposition 38.12 (a) says that each i ∈ N satisfies

(
e∗f − f

)
(C≤i) ⊆ AlgGenk (f (C≤i−1)).

Hence, Lemma 38.10 (b) (applied to V = C, α = e∗f and β = f) shows that
AlgGenk

(
e∗f (C)

)
= AlgGenk (f (C)). This proves Proposition 38.12 (b).

Corollary 38.13. Let k be a field of characteristic 0. Let H be a connected
filtered k-coalgebra and, at the same time, a k-bialgebra with the same
underlying k-coalgebra structure. Let A be a k-algebra. Let f ∈ g (H,A)
be an (εH , εH)-derivation. Assume that the subset f (H) of A generates
the k-algebra A. Then, the map e∗f : H → A is a surjective k-algebra
homomorphism.

Proof of Corollary 38.13. Lemma 15.11 yields that e∗f is a k-algebra homomorphism.
It remains to show that this homomorphism e∗f is surjective.

The subset f (H) of A generates the k-algebra A. In other words, the k-subalgebra
ofA generated by f (H) isA. In other words, AlgGenk (f (H)) isA (since AlgGenk (f (H))
is the k-subalgebra of A generated by f (H)). In other words, AlgGenk (f (H)) = A.

Proposition 38.12 (applied to C = H) yields AlgGenk
(
e∗f (H)

)
= AlgGenk (f (H)) =

A.
The image e∗f (H) is a k-subalgebra of A (since e∗f : H → A is a k-algebra homo-

morphism).
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Let S denote the image e∗f (H). Then, S = e∗f (H). Hence, AlgGenk S︸︷︷︸
=e∗f (H)

=

AlgGenk
(
e∗f (H)

)
= A.

But S = e∗f (H). Hence, S is a k-subalgebra of A (since e∗f (H) is a k-subalgebra
of A).

The k-subalgebra of A generated by S is AlgGenk S = A. In other words, A is the
k-subalgebra of A generated by S. In other words, A is the smallest k-subalgebra of
A which contains S as a subset (because the k-subalgebra of A generated by S is the
smallest k-subalgebra of A which contains S as a subset). Hence,(

whenever U is a k-subalgebra of A which contains S as
a subset, we must necessarily have A ⊆ U

)
.

Applying this to U = S, we conclude that A ⊆ S (since S is a k-subalgebra of A that
contains S as a subset). Combined with S ⊆ A (which is obvious), this yields A = S.
Thus, A = S = e∗f (H). In other words, the map e∗f is surjective. This completes the
proof of Corollary 38.13.

Proposition 38.14. Let k be a field. Let H be a connected filtered k-
coalgebra and, at the same time, a k-bialgebra with the same underlying
k-coalgebra structure. Let A be a k-algebra. Let h : H → A be an (εH , εH)-
derivation. Then, h ∈ g (H,A).

Proof of Proposition 38.14. Theorem 15.9 (applied to f = h) shows that h is an
(εH , εH)-derivation if and only if h

(
(Ker (εH))2 + k · 1H

)
= 0. Thus, h

(
(Ker (εH))2 + k · 1H

)
=

0 (since h is an (εH , εH)-derivation).
But 1H = 1︸︷︷︸

∈k

·1H ∈ k · 1H ⊆ (Ker (εH))2 + k · 1H . Hence,

h

 1H︸︷︷︸
∈(Ker(εH))2+k·1H

 ⊆ h
(
(Ker (εH))2 + k · 1H

)
= 0.

Thus, h (1H) = 0.
Recall that g (H,A) = {f ∈ L (H,A) | f (1H) = 0} (by the definition of g (H,A)).

Now, h is an element f ∈ L (H,A) satisfying f (1H) = 0 (since h ∈ L (H,A) and
h (1H) = 0). In other words, h ∈ {f ∈ L (H,A) | f (1H) = 0}. This rewrites as
h ∈ g (H,A) (since g (H,A) = {f ∈ L (H,A) | f (1H) = 0}). This proves Proposi-
tion 38.14.

Finally, having collected all the pieces of the puzzle, we can prove Theorem 38.2:

Proof of Theorem 38.2. Theorem 15.3 shows that the map Log id ∈ L (H,H) is a pro-
jection such that Ker (Log id) = (Ker (εH))2 + k · 1H . 280

But e = Log id (by the definition of e). Hence, the map e is a projection (since the
map Log id is a projection). This proves Theorem 38.2 (a).

280Recall that (Ker (εH))
2

is to be understood according to Convention 15.2. Thus, (Ker (εH))
2

means the subspace (Ker (εH)) · (Ker (εH)) of H.
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From e = Log id, we obtain Ker e = Ker (Log id) = (Ker (εH))2 +k ·1H . This proves
Theorem 38.2 (b).

We have e = Log id ∈ g (H,H) (because LogF ∈ g (H,H) for every F ∈ G (H,H)).
Besides, e = Log id yields e∗e = e∗(Log id) = id (by Proposition 5.13 (b), applied to
F = id and A = H). Hence, e∗e is a k-algebra homomorphism (since id is a k-algebra
homomorphism). By Lemma 15.12 (applied to A = H and f = e), this yields that e is
an (εH , εH)-derivation. This proves Theorem 38.2 (c).

Definition 15.7 (applied to A = H and f = e) shows that the map e is an (εH , εH)-
derivation if and only if every (a, b) ∈ H×H satisfies e (ab) = e (a) εH (b) + εH (a) e (b).
Thus, every (a, b) ∈ H ×H satisfies

e (ab) = e (a) εH (b) + εH (a) e (b) (534)

(since the map e is an (εH , εH)-derivation). Hence, every (a, b) ∈ H ×H satisfies

q (ab) = q (a) εH (b) + εH (a) q (b) (535)

281.
Definition 15.7 (applied to A = Sym (e (H)) and f = q) shows that the map q is an

(εH , εH)-derivation if and only if every (a, b) ∈ H ×H satisfies q (ab) = q (a) εH (b) +
εH (a) q (b). Thus, the map q is an (εH , εH)-derivation (since every (a, b) ∈ H × H
satisfies q (ab) = q (a) εH (b) + εH (a) q (b)). Therefore, Proposition 38.14 (applied to
A = Sym (e (H)) and h = q) yields q ∈ g (H, Sym (e (H))). Hence, the map e∗q : H →
Sym (e (H)) is well-defined.

281Proof of (535): Let (a, b) ∈ H × H. The definition of the map e′ yields e′ (ab) = e (ab) and
e′ (a) = e (a) and e′ (b) = e (b). But recall that q = symince(H) ◦e′. Hence,

q︸︷︷︸
=symince(H) ◦e′

(a) =
(

symince(H) ◦e′
)

(a) = symince(H)

e′ (a)︸ ︷︷ ︸
=e(a)

 = symince(H) (e (a)) . (536)

The same argument (applied to b instead of a) shows that

q (b) = symince(H) (e (b)) . (537)

Finally,

q︸︷︷︸
=symince(H) ◦e′

(ab) =
(

symince(H) ◦e′
)

(ab) = symince(H)

e′ (ab)︸ ︷︷ ︸
=e(ab)

 = symince(H)

 e (ab)︸ ︷︷ ︸
=e(a)εH(b)+εH(a)e(b)

(by (534))


= symince(H) (e (a) εH (b) + εH (a) e (b))

= symince(H) (e (a))︸ ︷︷ ︸
=q(a)

(by (536))

εH (b) + εH (a) symince(H) (e (b))︸ ︷︷ ︸
=q(b)

(by (537))(
since the map symince(H) is k-linear

)
= q (a) εH (b) + εH (a) q (b) .

This proves (535).
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Furthermore, the subset q (H) of Sym (e (H)) generates the k-algebra Sym (e (H))
282. Hence, Corollary 38.13 (applied to A = Sym (e (H)) and f = q) shows that the
map e∗q : H → Sym (e (H)) is a surjective k-algebra homomorphism.

On the other hand, symlift j is the unique k-algebra homomorphism Φ : Sym (e (H))→
H satisfying Φ ◦ symince(H) = j (by the definition of symlift j). Thus, symlift j is a k-
algebra homomorphism Sym (e (H)) → H and satisfies (symlift j) ◦ symince(H) = j.
Therefore, (symlift j) ◦ q = e 283.

Now, Proposition 38.3 (d) (applied to C = H, A = Sym (e (H)), B = H, p =
symlift j and f = q) shows that (symlift j)◦q ∈ g (H, Sym (e (H))) and (symlift j)◦e∗q =
e∗((symlift j)◦q).

Now,

(symlift j) ◦ e∗q = e∗((symlift j)◦q) = e∗e (since (symlift j) ◦ q = e)

= id .

Since e∗q is surjective, we can thus easily obtain e∗q ◦ (symlift j) = id 284.
We now have shown the two equalities (symlift j) ◦ e∗q = id and e∗q ◦ (symlift j) =

id. Combining these equalities, we conclude that the maps symlift j : Sym (e (H)) →
282Proof. We have

e′ (H) =

 e′ (h)︸ ︷︷ ︸
=e(h)

(by the definition of e′)

| h ∈ H

 = {e (h) | h ∈ H} = e (H) .

On the other hand, the definition of q yields q = symince(H) ◦e′. Hence,

q︸︷︷︸
=symince(H) ◦e′

(H) =
(

symince(H) ◦e′
)

(H) = symince(H) (e′ (H)) = e′ (H)

(
since symince(H) is merely an inclusion map

)
= e (H) .

It is well-known that if V is a k-vector space, then the subset V of SymV generates the k-algebra
SymV . Applying this to V = e (H), we conclude that the subset e (H) of Sym (e (H)) generates
the k-algebra Sym (e (H)). In other words, the subset q (H) of Sym (e (H)) generates the k-algebra
Sym (e (H)) (since q (H) = e (H)).

283Proof. Each h ∈ H satisfies

(j ◦ e′) (h) = j (e′ (h)) = e′ (h) (since j is just an inclusion map)

= e (h) (by the definition of e) .

Thus, j ◦ e′ = e (since both j ◦ e′ and e are maps from H to H). Now,

(symlift j) ◦ q︸︷︷︸
=symince(H) ◦e′

= (symlift j) ◦ symince(H)︸ ︷︷ ︸
=j

◦e′ = j ◦ e′ = e.

284Proof. Let x ∈ Sym (e (H)). Thus, x ∈ Sym (e (H)) = e∗q (H) (since the map e∗q is
surjective). In other words, there exists some y ∈ H such that x = e∗q (y). Consider this

y. Now, ((symlift j) ◦ e∗q) (y) = (symlift j)

e∗q (y)︸ ︷︷ ︸
=x

 = (symlift j) (x), so that (symlift j) (x) =
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H and e∗q : H → Sym (e (H)) are mutually inverse. Furthermore, we have already
shown that these two maps are k-algebra homomorphisms. This completes the proof
of Theorem 38.2 (d).

(e) Theorem 38.2 (d) shows that the two k-algebra homomorphisms symlift j :
Sym (e (H))→ H and e∗q : H → Sym (e (H)) are mutually inverse. Hence, these two k-
algebra homomorphisms are invertible, and thus are k-algebra isomorphisms. In partic-
ular, symlift j : Sym (e (H)) → H is a k-algebra isomorphism. Thus, Sym (e (H)) ∼= H
as k-algebras. This proves Theorem 38.2 (e).

Remark 38.15. It is possible to slightly improve Theorem 38.2: Namely,
the symmetric algebra Sym (e (H)) canonically becomes a filtered k-algebra285.
With respect to this filtration, the isomorphism Sym (e (H)) ∼= H claimed
in Theorem 38.2 (e) is actually an isomorphism of filtered algebras, since
both homomorphisms symlift j : Sym (e (H))→ H and e∗q : H → Sym (e (H))
respect the filtration. Proving this is not too difficult (it is mostly an issue
of bookkeeping).

§39. More on symmetric algebras

Next, we shall show some more properties of the symmetric algebra SymV of a k-vector
space V . We begin with the following fact:

Lemma 39.1. Let k be a field of characteristic 0. Let V and W be two
k-vector spaces. Let f : SymV → W and g : SymV → W be two k-linear
maps. Assume that

f (an) = g (an) for each a ∈ symincV (V ) and n ∈ N. (538)

286 Then, f = g.

Proof of Lemma 39.1. Let A be the k-algebra SymV . Recall that symincV is a k-
linear map V → SymV . In other words, symincV is a k-linear map V → A (since
SymV = A).

((symlift j) ◦ e∗q)︸ ︷︷ ︸
=id

(y) = id (y) = y. Now,

(e∗q ◦ (symlift j)) (x) = e∗q

(symlift j) (x)︸ ︷︷ ︸
=y

 = e∗q (y) = x = id (x) .

Now, forget that we fixed x. We thus have shown that (e∗q ◦ (symlift j)) (x) = id (x) for each
x ∈ Sym (e (H)). In other words, e∗q ◦ (symlift j) = id.

285Indeed, whenever V is a filtered k-vector space, its symmetric algebra SymV becomes a filtered
k-algebra. In our situation, we can apply this to V = e (H) (indeed, the vector space e (H) becomes
filtered by virtue of being a subspace of H), and thus conclude that Sym (e (H)) canonically becomes
a filtered k-algebra.

286See Definition 38.1 for the definition of the map symincV : V → SymV .
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Let U = symincV (V ). Then, U is a k-vector subspace of A (since symincV is a
k-linear map V → A). Also, xy − yx ∈ U for any x ∈ U and y ∈ U 287.

Consider the tensor algebra ⊗V . We identify V with a k-vector subspace of ⊗V by
viewing V as the addend V ⊗1 in the direct sum

⊕
n∈N

V ⊗n = ⊗V . Thus, the canonical

injection V → ⊗V becomes an inclusion map.
Recall that the symmetric algebra SymV is defined as a quotient algebra of ⊗V .

Let π be the canonical projection ⊗V → SymV . Then, π is a surjective k-algebra
homomorphism.

The canonical map symincV : V → SymV factors through the projection π : ⊗V →
SymV . More precisely, symincV (x) = π (x) for every x ∈ V (this follows from the
definition of symincV ). Now,

U = symincV (V ) =

symincV (x)︸ ︷︷ ︸
=π(x)

| x ∈ V

 = {π (x) | x ∈ V }

= π (V ) . (539)

By the definition of the tensor algebra, we have ⊗V =
⊕
n∈N

V ⊗n. Thus, ⊗V =⊕
n∈N

V ⊗n =
∑
n∈N

V ⊗n (since direct sums are sums).

For every n ∈ N, we have V ⊗n = V n as k-vector subspaces of ⊗V (where V n means
V · V · · · · · V︸ ︷︷ ︸

n times

, as usual) 288. Hence,
∑
n∈N

V ⊗n =
∑
n∈N

V n. Thus, ⊗V =
∑
n∈N

V ⊗n =∑
n∈N

V n.

Now, the map π is surjective (since it is a projection). Hence,

A = π

 ⊗V︸︷︷︸
=
∑
n∈N

V n

 = π

(∑
n∈N

V n

)
=
∑
n∈N

 π (V )︸ ︷︷ ︸
=U

(by (539))


n

(since π is a k-algebra homomorphism)

=
∑
n∈N

Un.

287Proof. Let x ∈ U and y ∈ U . Then, x ∈ U ⊆ A and y ∈ U ⊆ A. But the k-algebra A is
commutative (since A = SymV is the symmetric algebra of a k-vector space). Hence, xy = yx (since
x ∈ A and y ∈ A). Thus, xy − yx = 0 ∈ U (since U is a k-vector subspace of A). Qed.

288Proof. Let n ∈ N. The n-th tensor power V ⊗n is spanned by all pure tensors. In other words,

V ⊗n =

〈
v1 ⊗ v2 ⊗ · · · ⊗ vn︸ ︷︷ ︸

=v1v2···vn
(because the multiplication on ⊗V is the

tensor product, so we have
v1v2···vn=v1⊗v2⊗···⊗vn)

| (v1, v2, . . . , vn) ∈ V ×n
〉

=
〈
v1v2 · · · vn | (v1, v2, . . . , vn) ∈ V ×n

〉
.

Compared with
V n =

〈
v1v2 · · · vn | (v1, v2, . . . , vn) ∈ V ×n

〉
,

this yields V ⊗n = V n, qed.
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Recall that f : SymV → W and g : SymV → W are two k-linear maps. In other
words, f : A→ W and g : A→ W are two k-linear maps (since A = SymV ).

We have f (vn) = g (vn) for every v ∈ U and n ∈ N 289. Hence, Corollary 32.7
(applied to U instead of V ) yields that f = g. This proves Lemma 39.1.

An easy corollary of Lemma 39.1 (somewhat more suited to certain applications)
is the following fact:

Lemma 39.2. Let k be a field of characteristic 0. Let V and W be two
k-vector spaces. Let f : SymV → W and g : SymV → W be two k-linear
maps. Assume that

f (an) = g (an) (540)

for each a ∈ symincV (V ) 290 and each positive integer n ∈ N. Assume
further that f (1) = g (1). Then, f = g.

Proof of Lemma 39.2. We have f (an) = g (an) for each a ∈ symincV (V ) and n ∈ N
291. Thus, Lemma 39.1 shows that f = g. This proves Lemma 39.2.

Next, we recall the notion of a symmetric map:

Definition 39.3. Let V and W be two sets. Let n ∈ N. A map f : V ×n →
W is said to be symmetric if each (v1, v2, . . . , vn) ∈ V ×n and each γ ∈ Sn
satisfy f

(
vγ(1), vγ(2), . . . , vγ(n)

)
= f (v1, v2, . . . , vn). (Recall that Sn denotes

the n-th symmetric group.)

Now, we can state the well-known universal property of the n-th symmetric power:

Proposition 39.4. Let k be a field. Let V be a k-vector space. Let
n ∈ N. Let πn be the canonical projection V ⊗n → Symn V . Let W be
any k-vector space. Let f : V ×n → W be any symmetric k-multilinear
map. Then, there exists a unique k-linear map fSym : Symn V → W such
that every (v1, v2, . . . , vn) ∈ V ×n satisfies fSym (πn (v1 ⊗ v2 ⊗ · · · ⊗ vn)) =
f (v1, v2, . . . , vn).

Proof of Proposition 39.4. Proposition 39.4 is precisely [Grinbe15, Corollary 95] (in
the particular case where k is a field)292.

We are now ready for a general construction:

289Proof. Let v ∈ U and n ∈ N. Then, v ∈ U = symincV (V ). Hence, (538) (applied to a = v) yields
f (vn) = g (vn). Qed.

290See Definition 38.1 for the definition of the map symincV : V → SymV .
291Proof. Let a ∈ symincV (V ) and n ∈ N. We must show that f (an) = g (an).
Clearly, n is an integer. If n is positive, then f (an) = g (an) follows immediately from (540). Thus,

for the rest of this proof, we can WLOG assume that n is not positive. Assume this.
We have n ≤ 0 (since n is not positive). Hence, n = 0 (since n ∈ N). Thus, an = a0 = 1. Hence,

f

 an︸︷︷︸
=1

 = f (1) = g

 1︸︷︷︸
=an

 = g (an). Qed.

292Notice that the projection that we denote by πn has been called symV,n in [Grinbe15, Corollary
95].
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Proposition 39.5. Let k be a field of characteristic 0. Let A be a k-
algebra. Let V be a k-vector subspace of A. Then, there exists a unique k-
linear map spr : SymV → A such that every n ∈ N and every (v1, v2, . . . , vn) ∈
V ×n satisfy

spr (symincV (v1) symincV (v2) · · · symincV (vn))

=
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n). (541)

Before we prove Proposition 39.5, let us recall the universal property of direct sums
of vector spaces:

Proposition 39.6. Let k be a field. Let T be a set. Let (Ut)t∈T be a family
of k-vector spaces. For each t ∈ T , let ιt : Ut →

⊕
s∈T

Us be the canonical

inclusion of the addend Ut into the direct sum
⊕
s∈T

Us.

Let W be a k-vector space. For each t ∈ T , let ft : Ut → W be a k-linear
map. Then, there exists a unique k-linear map f :

⊕
s∈T

Us → W such that

each t ∈ T satisfies ft = f ◦ ιt.

Proof of Proposition 39.5. Let n ∈ N. Let πn be the canonical projection V ⊗n →
Symn V . This projection πn is k-linear and surjective (since it is a projection).

Let us define a map ϕn : V ×n → A by(
ϕn (v1, v2, . . . , vn) =

1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) for every (v1, v2, . . . , vn) ∈ V ×n
)
.

Then, this map ϕn is clearly n-multilinear. Moreover, this map ϕn is symmetric293.
Hence, Proposition 39.4 (applied to W = A and f = ϕn) shows that there exists a

293Proof. Let (v1, v2, . . . , vn) ∈ V ×n and γ ∈ Sn.
Recall that Sn is a group. Hence, the map Sn → Sn, σ 7→ γ ◦ σ is a bijection (since γ ∈ Sn). But

the definition of ϕn yields

ϕn
(
vγ(1), vγ(2), . . . , vγ(n)

)
=

1

n!

∑
σ∈Sn

vγ(σ(1))vγ(σ(2)) · · · vγ(σ(n))︸ ︷︷ ︸
=v(γ◦σ)(1)v(γ◦σ)(2)···v(γ◦σ)(n)

(since vγ(σ(i))=v(γ◦σ)(i) for each i∈{1,2,...,n})

=
1

n!

∑
σ∈Sn

v(γ◦σ)(1)v(γ◦σ)(2) · · · v(γ◦σ)(n) =
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n)

(here, we have substituted σ for γ ◦ σ in the sum, since the map Sn → Sn, σ 7→ γ ◦ σ is a bijection).
Comparing this with

ϕn (v1, v2, . . . , vn) =
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) (by the definition of ϕn) ,

we obtain ϕn
(
vγ(1), vγ(2), . . . , vγ(n)

)
= ϕn (v1, v2, . . . , vn).

Now, forget that we fixed (v1, v2, . . . , vn) and γ. We thus have shown that each (v1, v2, . . . , vn) ∈
V ×n and each γ ∈ Sn satisfy ϕn

(
vγ(1), vγ(2), . . . , vγ(n)

)
= ϕn (v1, v2, . . . , vn). In other words, the map

ϕn is symmetric (since the map ϕn is symmetric if and only if each (v1, v2, . . . , vn) ∈ V ×n and each
γ ∈ Sn satisfy ϕn

(
vγ(1), vγ(2), . . . , vγ(n)

)
= ϕn (v1, v2, . . . , vn) (by the definition of “symmetric”)).
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unique k-linear map fSym : Symn V → A such that every (v1, v2, . . . , vn) ∈ V ×n satisfies
fSym (πn (v1 ⊗ v2 ⊗ · · · ⊗ vn)) = ϕn (v1, v2, . . . , vn). Consider this map fSym, and denote
it by ψn.

Thus, ψn is a k-linear map fSym : Symn V → A such that every (v1, v2, . . . , vn) ∈
V ×n satisfies fSym (πn (v1 ⊗ v2 ⊗ · · · ⊗ vn)) = ϕn (v1, v2, . . . , vn). In other words, ψn is
a k-linear map Symn V → A and has the property that every (v1, v2, . . . , vn) ∈ V ×n

satisfies
ψn (πn (v1 ⊗ v2 ⊗ · · · ⊗ vn)) = ϕn (v1, v2, . . . , vn) . (542)

Now, each (v1, v2, . . . , vn) ∈ V ×n satisfies

symincV (v1) symincV (v2) · · · symincV (vn) = πn (v1 ⊗ v2 ⊗ · · · ⊗ vn) (543)

294 and

ψn (πn (v1 ⊗ v2 ⊗ · · · ⊗ vn)) =
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) (546)

295.

294Proof of (543): Let (v1, v2, . . . , vn) ∈ V ×n.
Consider the tensor algebra ⊗V . We identify V with a k-vector subspace of ⊗V by viewing V as

the addend V ⊗1 in the direct sum
⊕
n∈N

V ⊗n = ⊗V . Thus, the canonical injection V → ⊗V becomes

an inclusion map.
Recall that the symmetric algebra SymV is defined as a quotient algebra of ⊗V . Let π be the

canonical projection ⊗V → SymV . Then, π is a surjective k-algebra homomorphism.
The projection πn : V ⊗n → Symn V is a restriction of the projection π : ⊗V → SymV (provided

that we regard V ⊗n and Symn V as k-vector subspaces of ⊗V and SymV , respectively). Thus,

πn (v1 ⊗ v2 ⊗ · · · ⊗ vn) = π (v1 ⊗ v2 ⊗ · · · ⊗ vn) . (544)

The canonical map symincV : V → SymV factors through the projection π : ⊗V → SymV . More
precisely,

symincV (x) = π (x) for each x ∈ V (545)

(this follows from the definition of symincV ). Now, each i ∈ {1, 2, . . . , n} satisfies the equality
symincV (vi) = π (vi) (by (545), applied to x = vi). Multiplying these equalities for all i ∈ {1, 2, . . . , n},
we obtain

symincV (v1) symincV (v2) · · · symincV (vn)

= π (v1)π (v2) · · ·π (vn)

= π

 v1v2 · · · vn︸ ︷︷ ︸
=v1⊗v2⊗···⊗vn

(since the multiplication in the
algebra ⊗V is the tensor product)

 (since π is a k-algebra homomorphism)

= π (v1 ⊗ v2 ⊗ · · · ⊗ vn) = πn (v1 ⊗ v2 ⊗ · · · ⊗ vn)

(by (544)). This proves (543).
295Proof of (546): Let (v1, v2, . . . , vn) ∈ V ×n. Then, (542) yields

ψn (πn (v1 ⊗ v2 ⊗ · · · ⊗ vn)) = ϕn (v1, v2, . . . , vn) =
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n)

(by the definition of ϕn). This proves (546).
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Now, forget that we fixed n. Thus, for each n ∈ N, we have constructed a k-linear
map ψn : Symn V → A, and we have shown that each (v1, v2, . . . , vn) ∈ V ×n satisfies
(543) and (546).

Recall that SymV =
⊕
n∈N

Symn V =
⊕
s∈N

Syms V (here, we have renamed the index

n as s). For each t ∈ N, let ιt : Symt V →
⊕
s∈N

Syms V be the canonical inclusion of the

addend Symt V into the direct sum
⊕
s∈N

Syms V . We shall use this inclusion to identify

Symt V with a subspace of
⊕
s∈N

Syms V = SymV . Thus,

ιt (q) = q for each t ∈ N and q ∈ Symt V. (547)

Proposition 39.6 (applied to T = N, (Ut)t∈T =
(
Symt V

)
t∈N, W = A and ft = ψt)

shows that there exists a unique k-linear map f :
⊕
s∈N

Syms V → A such that each t ∈ N

satisfies ψt = f ◦ ιt. Consider this f .
We know that f is a k-linear map

⊕
s∈N

Syms V → A. In other words, f is a k-linear

map SymV → A (since SymV =
⊕
s∈N

Syms V ).

Every n ∈ N and every (v1, v2, . . . , vn) ∈ V ×n satisfy

f (symincV (v1) symincV (v2) · · · symincV (vn))

=
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) (548)

296. Hence, there exists at least one k-linear map spr : SymV → A such that every
n ∈ N and every (v1, v2, . . . , vn) ∈ V ×n satisfy (541) (namely, spr = f).

Next, I shall show the following claim:
Claim 1: Let spr : SymV → A be a k-linear map such that every n ∈ N and every

(v1, v2, . . . , vn) ∈ V ×n satisfy (541). Then, spr = f .
[Proof of Claim 1: The maps spr and f are k-linear. Thus, their difference spr−f

is k-linear as well. Hence, Ker (spr−f) is a k-vector subspace of SymV .

296Proof of (548): Let n ∈ N and (v1, v2, . . . , vn) ∈ V ×n. We must prove (548).
Recall that each t ∈ N satisfies ψt = f ◦ ιt. Applying this to t = n, we obtain ψn = f ◦ ιn.
But (543) yields symincV (v1) symincV (v2) · · · symincV (vn) = πn (v1 ⊗ v2 ⊗ · · · ⊗ vn) ∈ Symn V .

Thus, (547) (applied to t = n and q = symincV (v1) symincV (v2) · · · symincV (vn)) yields

ιn (symincV (v1) symincV (v2) · · · symincV (vn)) = symincV (v1) symincV (v2) · · · symincV (vn) .

Now,

ψn︸︷︷︸
=f◦ιn

(symincV (v1) symincV (v2) · · · symincV (vn))

= (f ◦ ιn) (symincV (v1) symincV (v2) · · · symincV (vn))

= f

ιn (symincV (v1) symincV (v2) · · · symincV (vn))︸ ︷︷ ︸
=symincV (v1) symincV (v2)··· symincV (vn)


= f (symincV (v1) symincV (v2) · · · symincV (vn)) .

532



Fix n ∈ N. The k-vector space V ⊗n is spanned by its pure tensors. In other words,

V ⊗n =
〈
v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ V ×n

〉
.

Thus,

V ⊗n =
〈
v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ V ×n

〉
=
〈{
v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ V ×n

}〉
.

Applying the map πn to both sides of this equality, we obtain

πn
(
V ⊗n

)
= πn

(〈{
v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ V ×n

}〉)
=

〈
πn
({
v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ V ×n

})︸ ︷︷ ︸
={πn(v1⊗v2⊗···⊗vn) | (v1,v2,...,vn)∈V ×n}

〉
(

by (165), applied to M = V ⊗n, R = Symn V , φ = πn and
S = {v1 ⊗ v2 ⊗ · · · ⊗ vn | (v1, v2, . . . , vn) ∈ V ×n}

)
=
〈{
πn (v1 ⊗ v2 ⊗ · · · ⊗ vn) | (v1, v2, . . . , vn) ∈ V ×n

}〉
.

Comparing this with πn (V ⊗n) = Symn V (since the map πn is surjective), we obtain

Symn V =
〈{
πn (v1 ⊗ v2 ⊗ · · · ⊗ vn) | (v1, v2, . . . , vn) ∈ V ×n

}〉
. (549)

Each (v1, v2, . . . , vn) ∈ V ×n satisfies

(spr−f)

 πn (v1 ⊗ v2 ⊗ · · · ⊗ vn)︸ ︷︷ ︸
=symincV (v1) symincV (v2)··· symincV (vn)

(by (543))


= (spr−f) (symincV (v1) symincV (v2) · · · symincV (vn))

= spr (symincV (v1) symincV (v2) · · · symincV (vn))︸ ︷︷ ︸
=

1

n!
∑

σ∈Sn
vσ(1)vσ(2)···vσ(n)

(by (541))

− f (symincV (v1) symincV (v2) · · · symincV (vn))︸ ︷︷ ︸
=

1

n!
∑

σ∈Sn
vσ(1)vσ(2)···vσ(n)

(by (548))

=
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) −
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) = 0

Hence,

f (symincV (v1) symincV (v2) · · · symincV (vn))

= ψn

symincV (v1) symincV (v2) · · · symincV (vn)︸ ︷︷ ︸
=πn(v1⊗v2⊗···⊗vn)


= ψn (πn (v1 ⊗ v2 ⊗ · · · ⊗ vn)) =

1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n).

This proves (548).
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and therefore
πn (v1 ⊗ v2 ⊗ · · · ⊗ vn) ∈ Ker (spr−f) .

In other words, we have{
πn (v1 ⊗ v2 ⊗ · · · ⊗ vn) | (v1, v2, . . . , vn) ∈ V ×n

}
⊆ Ker (spr−f) .

Hence, (154) (applied to SymV , {πn (v1 ⊗ v2 ⊗ · · · ⊗ vn) | (v1, v2, . . . , vn) ∈ V ×n} and
Ker (spr−f) instead of M , S and Q) yields〈{

πn (v1 ⊗ v2 ⊗ · · · ⊗ vn) | (v1, v2, . . . , vn) ∈ V ×n
}〉
⊆ Ker (spr−f) .

Now, (549) becomes

Symn V =
〈{
πn (v1 ⊗ v2 ⊗ · · · ⊗ vn) | (v1, v2, . . . , vn) ∈ V ×n

}〉
⊆ Ker (spr−f) .

Now, forget that we fixed n. We thus have shown that Symn V ⊆ Ker (spr−f) for
each n ∈ N. Hence,∑

n∈N

Symn V︸ ︷︷ ︸
⊆Ker(spr−f)

⊆
∑
n∈N

Ker (spr−f) ⊆ Ker (spr−f)

(since Ker (spr−f) is a k-vector space).
But

SymV =
⊕
n∈N

Symn V =
∑
n∈N

Symn V (since direct sums are sums)

⊆ Ker (spr−f) .

Hence, spr−f = 0. Thus, spr = f . This proves Claim 1.]
Now, we contrast the following two facts:

• There exists at least one k-linear map spr : SymV → A such that every n ∈ N
and every (v1, v2, . . . , vn) ∈ V ×n satisfy (541).297

• There exists at most one k-linear map spr : SymV → A such that every n ∈ N
and every (v1, v2, . . . , vn) ∈ V ×n satisfy (541).298

Combining these two facts, we conclude that there exists a unique k-linear map
spr : SymV → A such that every n ∈ N and every (v1, v2, . . . , vn) ∈ V ×n satisfy (541).
This proves Proposition 39.5.

Next, let us introduce a Hopf algebra structure on the symmetric algebra SymV of
any k-vector space V :

297Indeed, this has been proven above.
298This is because each such map spr must be equal to f (by Claim 1).
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Theorem 39.7. Let k be a field. Let V be a k-vector space.

Then, there exists a unique k-bialgebra structure on the k-algebra SymV
whose comultiplication ∆SymV and counity εSymV satisfy(

∆SymV (v) = v ⊗ 1SymV + 1SymV ⊗ v and εSymV (v) = 0
for every v ∈ symincV (V )

)
.

Definition 39.8. Let k be a field. Let V be a k-vector space.

Then, when we speak of the “k-bialgebra SymV ”, we mean the symmet-
ric algebra SymV endowed with the unique k-bialgebra structure whose
comultiplication ∆SymV and counity εSymV satisfy(

∆SymV (v) = v ⊗ 1SymV + 1SymV ⊗ v and εSymV (v) = 0
for every v ∈ symincV (V )

)
.

(This is well-defined due to Theorem 39.7.)

Notice that Theorem 39.7 can be viewed as a particular case of Theorem 34.7,
because the symmetric algebra SymV is the universal enveloping algebra U (g) for g
being the abelian Lie algebra on V 299. Thus, the k-bialgebra SymV (where V is a
k-vector space) is a particular case of the k-bialgebra U (g) (where g is a Lie algebra).

We observe a simple property of primitive elements in bialgebras:

Proposition 39.9. Let k be a field. Let H be a bialgebra over k. Let
a ∈ PrimH and n ∈ N. Then,

∆H (an) =
n∑
j=0

(
n

j

)
aj ⊗ an−j.

Proof of Proposition 39.9. We have a ∈ PrimH = (the set of all primitive elements of H).
In other words, the element a of H is primitive. In other words, ∆ (a) = a⊗1H+1H⊗a
(by the definition of “primitive”).

By the axioms of a bialgebra, we know that ∆H and εH are k-algebra homomor-
phisms (since H is a k-bialgebra).

Define two elements f and g of H ⊗H by f = a⊗ 1H and g = 1H ⊗ a. Then,

f︸︷︷︸
=a⊗1H

g︸︷︷︸
=1H⊗a

= (a⊗ 1H) (1H ⊗ a) = a1H︸︷︷︸
=a

⊗ 1Ha︸︷︷︸
=a

= a⊗ a.

Comparing this with

g︸︷︷︸
=1H⊗a

f︸︷︷︸
=a⊗1H

= (1H ⊗ a) (a⊗ 1H) = 1Ha︸︷︷︸
=a

⊗ a1H︸︷︷︸
=a

= a⊗ a,

we obtain fg = gf . In other words, the two elements f and g of H ⊗ H commute.
Now, let H be the k-subalgebra of H ⊗H generated by f and g. Then, the k-algebra
H is commutative (by Corollary 11.3, applied to A = H ⊗H). Hence, we can calculate

299The abelian Lie algebra on a k-vector space V is defined to be the Lie algebra whose underlying
vector space is V , and whose Lie bracket is identically 0.
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inside H as in any commutative algebra. In particular, we can thus apply the binomial

formula to f and g. We thus obtain (f + g)i =
i∑

j=0

(
i

j

)
f jgi−j for every i ∈ N. Applying

this to i = n, we find

(f + g)n =
n∑
j=0

(
n

j

)
f j︸︷︷︸

=(a⊗1H)j

(since f=a⊗1H)

gn−j︸︷︷︸
=(1H⊗a)n−j

(since g=1H⊗a)

=
n∑
j=0

(
n

j

)
(a⊗ 1H)j︸ ︷︷ ︸

=aj⊗1H

(1H ⊗ a)n−j︸ ︷︷ ︸
=1H⊗an−j

=
n∑
j=0

(
n

j

)(
aj ⊗ 1H

) (
1H ⊗ an−j

)︸ ︷︷ ︸
=(aj1H)⊗(1Han−j)

=
n∑
j=0

(
n

j

)(
aj1H

)︸ ︷︷ ︸
=aj

⊗
(
1Ha

n−j)︸ ︷︷ ︸
=an−j

=
n∑
j=0

(
n

j

)
aj ⊗ an−j.

But recall that ∆H is a k-algebra homomorphism. Thus,

∆H (an) =

 ∆H (a)︸ ︷︷ ︸
=a⊗1H+1H⊗a

n

=

a⊗ 1H︸ ︷︷ ︸
=f

+ 1H ⊗ a︸ ︷︷ ︸
=g

n

= (f + g)n =
n∑
j=0

(
n

j

)
aj ⊗ an−j.

This proves Proposition 39.9.

As a consequence of Proposition 39.9, we obtain the following formula holding in
symmetric algebras:

Corollary 39.10. Let k be a field. Let V be a k-vector space. Let a ∈
symincV (V ) and n ∈ N. Then, the comultiplication ∆SymV of the bialgebra
SymV satisfies

∆SymV (an) =
n∑
j=0

(
n

j

)
aj ⊗ an−j.

Proof of Corollary 39.10. Let us first recall that ∆SymV (v) = v ⊗ 1SymV + 1SymV ⊗ v
for every v ∈ symincV (V ) (by the definition of ∆SymV ). Applying this to v = a, we
obtain ∆SymV (a) = a⊗ 1SymV + 1SymV ⊗ a. In other words, the element a of SymV is
primitive (by the definition of “primitive”). Thus,

a ∈ (the set of all primitive elements of SymV ) = Prim (SymV ) .

Hence, Proposition 39.9 (applied toH = SymV ) yields ∆SymV (an) =
n∑
j=0

(
n

j

)
aj⊗an−j.

This proves Corollary 39.10.

Next, we apply Proposition 39.5 to the situation of a cocommutative filtered bial-
gebra. It turns out that in this situation, we can say more:
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Proposition 39.11. Let k be a field of characteristic 0. Let H be a bial-
gebra over k. Let V denote the k-vector subspace PrimH of H. Proposi-
tion 39.5 (applied to A = H) yields that there exists a unique k-linear map
spr : SymV → H such that every n ∈ N and every (v1, v2, . . . , vn) ∈ V ×n
satisfy

spr (symincV (v1) symincV (v2) · · · symincV (vn))

=
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n). (550)

Consider this spr.

The map spr is a k-coalgebra homomorphism.

Proof of Proposition 39.11. Let a ∈ symincV (V ). We are going to show that each
n ∈ N satisfies

((spr⊗ spr) ◦∆SymV ) (an) = (∆H ◦ spr) (an) (551)

and
εSymV (an) = (εH ◦ spr) (an) . (552)

First, let us however make some preliminary work.
Recall that ∆SymV (v) = v ⊗ 1SymV + 1SymV ⊗ v for every v ∈ symincV (V ) (by the

definition of ∆SymV ). Applying this to v = a, we obtain ∆SymV (a) = a ⊗ 1SymV +
1SymV ⊗ a.

Recall that εSymV (v) = 0 for every v ∈ symincV (V ) (by the definition of εSymV ).
Applying this to v = a, we obtain εSymV (a) = 0.

By the axioms of a bialgebra, we know that ∆SymV and εSymV are k-algebra homo-
morphisms (since SymV is a k-bialgebra).

By the axioms of a bialgebra, we know that ∆H and εH are k-algebra homomor-
phisms (since H is a k-bialgebra).

We know that a ∈ symincV (V ). In other words, there exists some w ∈ V such that
a = symincV (w). Consider this w.

The equality (550) (applied to 1 and (w) instead of n and (v1, v2, . . . , vn)) yields

spr (symincV (w)) =
1

1!︸︷︷︸
=

1

1
=1

∑
σ∈S1

w =
∑
σ∈S1

w =
∑
σ∈{id}

w (since S1 = {id})

= w.

Thus, w = spr

symincV (w)︸ ︷︷ ︸
=a

 = spr a.

Let n ∈ N. The equality (550) (applied to (w,w, . . . , w) instead of (v1, v2, . . . , vn))
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yields

spr

symincV (w) symincV (w) · · · symincV (w)︸ ︷︷ ︸
n times symincV (w)


=

1

n!

∑
σ∈Sn

ww · · ·w︸ ︷︷ ︸
n times w︸ ︷︷ ︸

=|Sn|·ww · · ·w︸ ︷︷ ︸
n times w

=
1

n!
|Sn|︸︷︷︸
=n!

·ww · · ·w︸ ︷︷ ︸
n times w︸ ︷︷ ︸

=wn

=
1

n!
n! · wn = wn.

In view of symincV (w) symincV (w) · · · symincV (w)︸ ︷︷ ︸
n times symincV (w)

=

symincV (w)︸ ︷︷ ︸
=a

n

= an, this

rewrites as
spr (an) = wn. (553)

Let us forget that we fixed n. We thus have proven (553) for every n ∈ N.
Let n ∈ N. We have w ∈ V = PrimH. Hence, Proposition 39.9 (applied to w

instead of a) yields

∆H (wn) =
n∑
j=0

(
n

j

)
wj ⊗ wn−j. (554)

But Corollary 39.10 yields

∆SymV (an) =
n∑
j=0

(
n

j

)
aj ⊗ an−j.
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Hence,

((spr⊗ spr) ◦∆SymV ) (an)

= (spr⊗ spr)


∆SymV (an)︸ ︷︷ ︸

=
n∑
j=0

(
n

j

)
aj⊗an−j


= (spr⊗ spr)

(
n∑
j=0

(
n

j

)
aj ⊗ an−j

)
=

n∑
j=0

(
n

j

)
(spr⊗ spr)

(
aj ⊗ an−j

)︸ ︷︷ ︸
=spr(aj)⊗spr(an−j)

(since the map spr⊗ spr is k-linear)

=
n∑
j=0

(
n

j

)
spr
(
aj
)︸ ︷︷ ︸

=wj
(by (553)

(applied to j instead of n))

⊗ spr
(
an−j

)︸ ︷︷ ︸
=wn−j

(by (553)
(applied to n−j instead of n))

=
n∑
j=0

(
n

j

)
wj ⊗ wn−j = ∆H

 wn︸︷︷︸
=spr(an)
(by (553))

 (by (554))

= ∆H (spr (an)) = (∆H ◦ spr) (an) .

In other words, (551) holds.
We have w ∈ V = PrimH. Thus, Remark 6.3 (applied to x = w) shows that

ε (w) = 0. Thus, εH︸︷︷︸
=ε

(w) = ε (w) = 0.

Recall that εSymV is a k-algebra homomorphism. Thus, εSymV (an) =

εSymV (a)︸ ︷︷ ︸
=0

n

=

0n.
On the other hand,

(εH ◦ spr) (an) = εH

spr (an)︸ ︷︷ ︸
=wn

(by (553))

 = εH (wn)

=

εH (w)︸ ︷︷ ︸
=0

n

(since εH is a k-algebra homomorphism)

= 0n.

Comparing this with εSymV (an) = 0, we find εSymV (an) = (εH ◦ spr) (an). In other
words, (552) holds.

We have now proven that (551) and (552) hold.
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Now, forget that we fixed n. We thus have proven that (551) and (552) hold for
each n ∈ N.

Now, forget that we fixed a. We thus have proven that (551) and (552) hold for
each a ∈ symincV (V ) and n ∈ N.

In particular, (551) holds for each a ∈ symincV (V ) and n ∈ N. In other words,
((spr⊗ spr) ◦∆SymV ) (an) = (∆H ◦ spr) (an) for each a ∈ symincV (V ) and n ∈ N.
Hence, Lemma 39.1 (applied to W = H⊗H, f = (spr⊗ spr)◦∆SymV and g = ∆H ◦spr)
shows that (spr⊗ spr) ◦∆SymV = ∆H ◦ spr. In other words, ∆H ◦ spr = (spr⊗ spr) ◦
∆SymV .

Also, (552) holds for each a ∈ symincV (V ) and n ∈ N. In other words, εSymV (an) =
(εH ◦ spr) (an) for each a ∈ symincV (V ) and n ∈ N. Hence, Lemma 39.1 (applied to
W = k, f = εSymV and g = εH ◦ spr) shows that εSymV = εH ◦ spr. In other words,
εH ◦ spr = εSymV .

The two equalities ∆H ◦ spr = (spr⊗ spr)◦∆SymV and εH ◦ spr = εSymV (combined)
show that spr is a k-coalgebra homomorphism (by the definition of a k-coalgebra ho-
momorphism). This proves Proposition 39.11.

Proposition 39.12. Let k be a field of characteristic 0. Let H be a con-
nected filtered cocommutative bialgebra over k. Let V denote the k-vector
subspace PrimH of H. Define the k-linear map spr : SymV → H as in
Proposition 39.11.

The map spr is surjective.

Proof of Proposition 39.12. Theorem 17.12 yields

H =
∑
i∈N

sympi

(
PrimH︸ ︷︷ ︸

=V

)
=
∑
i∈N

sympi V =
∑
n∈N

sympn V

(here, we have renamed the summation index i as n).
The set spr (SymV ) is a k-vector subspace of H (since spr is a k-linear map).
But every n ∈ N satisfies sympn V ⊆ spr (SymV ) 300. Thus,

∑
n∈N

sympn V︸ ︷︷ ︸
⊆spr(SymV )

⊆

∑
n∈N

spr (SymV ) ⊆ spr (SymV ) (since spr (SymV ) is a k-vector space). Thus, H =

300Proof. Let n ∈ N. Then, every (v1, v2, . . . , vn) ∈ V ×n satisfies

1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) = spr

symincV (v1) symincV (v2) · · · symincV (vn)︸ ︷︷ ︸
∈SymV

 (by (550))

∈ spr (SymV ) .

In other words,{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
}
⊆ spr (SymV ) .

Hence, (154) (applied to H,

{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
}

and spr (SymV )
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∑
n∈N

sympn V ⊆ spr (SymV ). In other words, the map spr is surjective. This proves

Proposition 39.12.

Let us now state some further properties of the k-bialgebra SymV :

Theorem 39.13. Let k be a field. Let V be a k-vector space.

(a) We have SymV =
∑
n∈N

(symincV (V ))n.

(b) The family

(
i∑

n=0

(symincV (V ))n
)
i∈N

is a filtration of the k-vector space

SymV .

(c) The k-bialgebra SymV endowed with the filtration

(
i∑

n=0

(symincV (V ))n
)
i∈N

is a connected filtered k-bialgebra.

(d) We have symincV (V ) ⊆ Prim (SymV ).

(e) The k-bialgebra SymV is cocommutative.

(f) The k-bialgebra SymV is a Hopf algebra.

Notice that Theorem 39.13 can also be viewed as a particular case of Theorem 34.9
(since the k-bialgebra SymV (where V is a k-vector space) is a particular case of the
k-bialgebra U (g) (where g is a Lie algebra)). However, we shall give a self-contained
proof of the parts of Theorem 39.13 that we will need:

Partial proof of Theorem 39.13. Recall that

∆SymV (v) = v ⊗ 1SymV + 1SymV ⊗ v for every v ∈ symincV (V ) (555)

(by the definition of the map ∆SymV ).
We have symincV (V ) ⊆ Prim (SymV ) 301. This proves Theorem 39.13 (d).

instead of M , S and Q) yields〈{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
}〉
⊆ spr (SymV ) .

Now, the definition of sympn V yields

sympn V =

〈
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
〉

=

〈{
1

n!

∑
σ∈Sn

vσ(1)vσ(2) · · · vσ(n) | (v1, v2, . . . , vn) ∈ V ×n
}〉

⊆ spr (SymV ) .

Qed.
301Proof. Let v ∈ symincV (V ). Then, ∆SymV (v) = v⊗ 1SymV + 1SymV ⊗ v (according to (555)). In

other words, the element v of SymV is primitive (by the definition of “primitive”). In other words,
v ∈ Prim (SymV ) (since Prim (SymV ) is the set of all primitive elements of SymV ).

Now, forget that we fixed v. We thus have shown that every v ∈ symincV (V ) satisfies v ∈
Prim (SymV ). In other words, symincV (V ) ⊆ Prim (SymV ), qed.
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Let π be the canonical projection ⊗V → SymV . Then, π is a surjective k-algebra
homomorphism. [Actually, π is a k-bialgebra homomorphism, but we don’t need to
know this.]

The canonical map symincV from V to SymV factors through the projection π :
⊗V → SymV . More precisely, symincV (x) = π (x) for every x ∈ V (this follows from
the definition of symincV ). Thus,

symincV (V ) =

symincV (x)︸ ︷︷ ︸
=π(x)

| x ∈ V

 = {π (x) | x ∈ V } = π (V ) . (556)

By the definition of the tensor algebra, we have ⊗V =
⊕
n∈N

V ⊗n. Thus, ⊗V =⊕
n∈N

V ⊗n =
∑
n∈N

V ⊗n (since direct sums are sums).

For every n ∈ N, we have V ⊗n = V n as k-vector subspaces of ⊗V (where V n means
V · V · · · · · V︸ ︷︷ ︸

n times

, as usual) 302. Hence,
∑
n∈N

V ⊗n =
∑
n∈N

V n.

Now, ⊗V =
∑
n∈N

V ⊗n =
∑
n∈N

V n. Applying the map π to this equality, we obtain

π (⊗V ) = π

(∑
n∈N

V n

)
=
∑
n∈N

 π (V )︸ ︷︷ ︸
=symincV (V )

(by (556))


n

(since π is a k-algebra homomorphism)

=
∑
n∈N

(symincV (V ))n .

Since π (⊗V ) = SymV (because π is surjective), this rewrites as SymV =
∑
n∈N

(symincV (V ))n.

Thus, Theorem 39.13 (a) is proven.
We have

∆SymV (symincV (V )) ⊆ symincV (V )⊗ (k · 1SymV ) + (k · 1SymV )⊗ symincV (V ) .

303 Combining this with the equality SymV =
∑
n∈N

(symincV (V ))n, we see that we can

302Proof. Let n ∈ N. The n-th tensor power V ⊗n is spanned by all pure tensors. In other words,

V ⊗n =

〈
v1 ⊗ v2 ⊗ · · · ⊗ vn︸ ︷︷ ︸

=v1v2···vn
(because the multiplication on ⊗V is the

tensor product, so we have
v1v2···vn=v1⊗v2⊗···⊗vn)

| (v1, v2, . . . , vn) ∈ V ×n
〉

=
〈
v1v2 · · · vn | (v1, v2, . . . , vn) ∈ V ×n

〉
.

Compared with
V n =

〈
v1v2 · · · vn | (v1, v2, . . . , vn) ∈ V ×n

〉
,

this yields V ⊗n = V n, qed.
303Proof. Every v ∈ symincV (V ) satisfies

∆SymV (v) = v︸︷︷︸
∈symincV (V )

⊗ 1SymV︸ ︷︷ ︸
∈k·1SymV

+ 1SymV︸ ︷︷ ︸
∈k·1SymV

⊗ v︸︷︷︸
∈symincV (V )

(according to (555))

∈ symincV (V )⊗ (k · 1SymV ) + (k · 1SymV )⊗ symincV (V ) .
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apply Proposition 34.10 to H = SymV and V = symincV (V ).
Proposition 34.10 (a) (applied to H = SymV and V = symincV (V )) yields that

the family

(
i∑

n=0

(symincV (V ))n
)
i∈N

is a filtration of the k-vector space SymV . This

proves Theorem 39.13 (b).
Proposition 34.10 (b) (applied to H = SymV and V = symincV (V )) yields that the

k-bialgebra SymV endowed with the filtration

(
i∑

n=0

(symincV (V ))n
)
i∈N

is a connected

filtered k-bialgebra. This proves Theorem 39.13 (c).
Finally, Proposition 34.10 (c) (applied to H = SymV and V = symincV (V )) yields

that the k-bialgebra SymV is cocommutative (since symincV (V ) ⊆ Prim (SymV )).
This proves Theorem 39.13 (e).

We are not going to prove Theorem 39.13 (f) (as we are not going to need it).

Next, let us show a slight extension of Theorem 33.1:

Corollary 39.14. Let k be a field of characteristic 0. Let H be a connected
filtered k-coalgebra and, at the same time, a k-bialgebra with the same
underlying k-coalgebra structure. Let v ∈ PrimH and n ∈ N. Then,

(Log id) (vn) = δn,1v.

Here, we are using the Kronecker delta notation (i.e., whenever u and v are

two objects, we set δu,v =

{
1, if u = v;

0, if u 6= v
).

Proof of Corollary 39.14. Recall that id ∈ G (H,H). Thus, Log id ∈ g (H,H) (because
LogF ∈ g (H,H) for every F ∈ G (H,H)). Hence,

Log id ∈ g (H,H) = {f ∈ L (H,H) | f (1H) = 0}

(by the definition of g (H,H)). In other words, Log id is an element f ∈ L (H,H)
satisfying f (1H) = 0. In other words, Log id is an element of L (H,H) and satisfies
(Log id) (1H) = 0.

We are in one of the following three cases:
Case 1: We have n = 0.
Case 2: We have n = 1.
Case 3: We have neither n = 0 nor n = 1.
Let us first consider Case 1. In this case, we have n = 0. Hence, vn = v0 = 1H .

Applying the map Log id to both sides of this equality, we obtain (Log id) (vn) =
(Log id) (1H) = 0. Comparing this with δn,1︸︷︷︸

=0
(since n=06=1)

v = 0, we obtain (Log id) (vn) =

δn,1v. Thus, Corollary 39.14 is proven in Case 1.
Let us now consider Case 2. In this case, we have n = 1. Hence, vn = v1 = v.

But Proposition 6.2 (c) (applied to A = H and F = id) shows that (Log id) |PrimH=
id |PrimH . But v ∈ PrimH. Thus,

(Log id) (v) = ((Log id) |PrimH)︸ ︷︷ ︸
=id|PrimH

(v) = (id |PrimH) (v) = id (v) = v.

In other words, ∆SymV (symincV (V )) ⊆ symincV (V )⊗ (k · 1SymV )+(k · 1SymV )⊗ symincV (V ), qed.
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Now, (Log id)

(
vn︸︷︷︸
=v

)
= (Log id) (v) = v. Comparing this with δn,1︸︷︷︸

=1
(since n=1)

v = v, we

obtain (Log id) (vn) = δn,1v. Thus, Corollary 39.14 is proven in Case 2.
Now, let us consider Case 3. In this case, we have neither n = 0 nor n = 1. Thus,

n /∈ {0, 1}. Combining n ∈ N with n ∈ {0, 1}, we find n ∈ N \ {0, 1} = {2, 3, 4, . . .},
so that n ≥ 2 > 1. Thus, Theorem 33.1 shows that (Log id) (vn) = 0. But n > 1 and
thus n 6= 1. Hence, δn,1 = 0. Comparing (Log id) (vn) = 0 with δn,1︸︷︷︸

=0

v = 0, we obtain

(Log id) (vn) = δn,1v. Thus, Corollary 39.14 is proven in Case 3.
We now have proven Corollary 39.14 in each of the three Cases 1, 2 and 3. Thus,

Corollary 39.14 is proven (since these three Cases cover all possibilities).

Next, we shall show a result that resembles Theorem 38.2 but concerns cocommu-
tative bialgebras rather than commutative bialgebras:

Lemma 39.15. Let k be a field of characteristic 0. Let H be a connected
filtered cocommutative bialgebra over k. Consider the convolution algebra
L (H,H). Let e denote the map Log id ∈ L (H,H).

Let j denote the inclusion map e (H) → H. Define a map e′ : H → e (H)
by

(e′ (h) = e (h) for every h ∈ H) .

304 This map e′ is clearly k-linear305. Define a k-linear map q : H →
Sym (e (H)) by q = symince(H) ◦e′.
Let V denote the k-vector subspace PrimH of H. Define the k-linear map
spr : SymV → H as in Proposition 39.11.

Recall that SymV is a connected filtered k-bialgebra (according to Theo-
rem 39.13 (c)). Hence, a k-linear map Log idSymV : SymV → SymV is
defined for this k-bialgebra SymV (in the same way as the k-linear map
Log id : H → H is defined for the k-bialgebra H).

(a) We have e (H) = V . Thus, q is a k-linear map H → SymV , and the
map q ◦ spr : SymV → SymV is well-defined.

(b) We have q ◦ spr = Log idSymV .

Proof of Lemma 39.15. Theorem 4.1 shows that the map Log id ∈ L (H,H) is a projec-
tion fromH to the subspace PrimH of all primitive elements ofH. Thus, (Log id) (H) =
PrimH. Now, e︸︷︷︸

=Log id

(H) = (Log id) (H) = PrimH = V .

Recall that q is a k-linear map H → Sym (e (H)). In other words, q is a k-linear
map H → SymV (since e (H) = V ). Hence, the map q ◦ spr : SymV → SymV is
well-defined (since spr is a k-linear map SymV → H). Altogether, we thus have proven
Lemma 39.15 (a).

(b) In the following, the symbol “id” (without subscript) shall always mean the
identity map idH : H → H (not the identity map idSymV : SymV → SymV ).

304This is well-defined, since e (h) ∈ e (H) for every h ∈ H.
305In fact, this map e′ is obtained from the k-linear map e by changing the target to e (H).
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We know that the map q ◦ spr : SymV → SymV is well-defined. Denote this map
by f . Thus, f = q ◦ spr is a map from SymV to SymV .

We have f = q ◦ spr. Hence, f is the composition of two k-linear maps (since the
two maps q and spr are k-linear). Thus, f itself is k-linear.

Define a k-linear map g : SymV → SymV by g = Log idSymV .
In the following, we shall use the Kronecker delta notation (i.e., whenever u and v

are two objects, we set δu,v =

{
1, if u = v;

0, if u 6= v
).

Let a ∈ symincV (V ) and n ∈ N. We shall show that f (an) = g (an).
We have a ∈ symincV (V ) ⊆ Prim (SymV ) (by Theorem 39.13 (d)). Hence, Corol-

lary 39.14 (applied to SymV and a instead of H and v) shows that (Log idSymV ) (an) =
δn,1a. Thus, g︸︷︷︸

=Log idSymV

(an) = (Log idSymV ) (an) = δn,1a.

We know that a ∈ symincV (V ). In other words, there exists some w ∈ V such that
a = symincV (w). Consider this w.

We have spr (an) = wn. (Indeed, this is the equality (553) from the proof of
Proposition 39.11, and has already been shown during the proof of Proposition 39.11.)

We have w ∈ V = PrimH. Hence, Corollary 39.14 (applied to v = w) shows that
(Log id) (wn) = δn,1w.

The definition of e′ yields e′ (wn) = e︸︷︷︸
=Log id

(wn) = (Log id) (wn) = δn,1w.

Now,

f︸︷︷︸
=q◦spr

(an) = (q ◦ spr) (an) = q︸︷︷︸
=symince(H) ◦e′

spr (an)︸ ︷︷ ︸
=wn

 =
(
symince(H) ◦e′

)
(wn)

= symince(H)︸ ︷︷ ︸
=symincV

(since e(H)=V )

e′ (wn)︸ ︷︷ ︸
=δn,1w

 = symincV (δn,1w)

= δn,1 symincV (w)︸ ︷︷ ︸
=a

(since the map symincV is k-linear)

= δn,1a.

Comparing this with g (an) = δn,1a, we obtain f (an) = g (an).
Now, forget that we fixed a. We thus have shown that f (an) = g (an) for each

a ∈ symincV (V ) and n ∈ N. Thus, Lemma 39.1 (applied to W = SymV ) shows that
f = g. Comparing this with f = q ◦ spr, we obtain q ◦ spr = f = g = Log idSymV . This
proves Lemma 39.15 (b).

Theorem 39.16. Let k be a field of characteristic 0. Let H be a connected
filtered cocommutative bialgebra over k. Consider the convolution algebra
L (H,H). Let e denote the map Log id ∈ L (H,H).

Let j denote the inclusion map e (H) → H. Define a map e′ : H → e (H)
by

(e′ (h) = e (h) for every h ∈ H) .
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306 This map e′ is clearly k-linear307. Define a k-linear map q : H →
Sym (e (H)) by q = symince(H) ◦e′.
Let V denote the k-vector subspace PrimH of H. Define the k-linear map
spr : SymV → H as in Proposition 39.11.

From Lemma 39.15 (a), we know that e (H) = V . Thus, q is a k-linear
map H → SymV .

Recall that SymV is a connected filtered k-bialgebra (according to Theo-
rem 39.13 (c)).

The maps e∗q : H → SymV and spr : SymV → H are mutually inverse
k-coalgebra isomorphisms.

Proof of Theorem 39.16. Recall that q is a k-linear map H → Sym (e (H)). In other
words, q is a k-linear map H → SymV (since e (H) = V ).

The map spr : SymV → H is a k-coalgebra homomorphism (by Proposition 39.11)
and is surjective (by Proposition 39.12).

We have q ∈ g (H, SymV ) 308. Hence, the map e∗q : H → SymV is well-defined.
Recall that spr : SymV → H is a k-coalgebra homomorphism. Also spr (1SymV ) =

1H
309.

Hence, Proposition 31.1 (e) (applied to H, SymV , SymV and spr instead of C, D,
A and ϕ) shows that every f ∈ g (H, SymV ) satisfies f ◦ spr ∈ g (SymV, SymV ) and
e∗(f◦spr) = e∗f ◦ spr. Applying this to f = q, we obtain q ◦ spr ∈ g (SymV, SymV ) and
e∗(q◦spr) = e∗q ◦ spr.

306This is well-defined, since e (h) ∈ e (H) for every h ∈ H.
307In fact, this map e′ is obtained from the k-linear map e by changing the target to e (H).
308Proof. We have (Log id) (1H) = 0. (This has already been proven in the proof of Corol-

lary 39.14). Now, the definition of e′ yields e′ (1H) = e︸︷︷︸
=Log id

(1H) = (Log id) (1H) = 0. Furthermore,

q︸︷︷︸
=symince(H) ◦e′

(1H) =
(

symince(H) ◦e′
)

(1H) = symince(H)

e′ (1H)︸ ︷︷ ︸
=0

 = symince(H) (0) = 0 (since the

map symince(H) is k-linear).
But q is a k-linear map H → SymV . In other words, q ∈ L (H,SymV ).
Thus, q is an f ∈ L (H,SymV ) satisfying f (1H) = 0 (since q (1H) = 0). In other words, q ∈

{f ∈ L (H,SymV ) | f (1H) = 0}.
But the definition of g (H,SymV ) yields g (H,SymV ) = {f ∈ L (H,SymV ) | f (1H) = 0}. Thus,

q ∈ {f ∈ L (H,SymV ) | f (1H) = 0} = g (H,SymV ).
309Proof. The equality (550) (applied to n = 0 and (v1, v2, . . . , vn) = ()) yields

spr ((empty product in SymV ))

=
1

0!︸︷︷︸
=

1

1
=1

∑
σ∈S0

(empty product in H)︸ ︷︷ ︸
=1H

=
∑
σ∈S0

1H = |S0|︸︷︷︸
=0!=1

·1H = 1H .

Comparing this with spr

(empty product in SymV )︸ ︷︷ ︸
=1SymV

 = spr (1SymV ), we obtain spr (1SymV ) = 1H .
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We have idSymV ∈ G (SymV, SymV ) (since idB ∈ G (B,B) for every k-bialgebra
B). Thus, Proposition 5.13 (b) (applied to SymV , SymV and idSymV instead of A,

H and F ) yields e∗(Log idSymV ) = idSymV .

Lemma 39.15 (b) yields q ◦ spr = Log idSymV . Thus, e∗(q◦spr) = e∗(Log idSymV ) =
idSymV . Comparing this with e∗(q◦spr) = e∗q ◦ spr, we obtain e∗q ◦ spr = idSymV .

Using the surjectivity of spr, it is now easy to conclude that spr ◦e∗q = idH
310.

Combining the equalities e∗q ◦ spr = idSymV and spr ◦e∗q = idH , we conclude that
the maps e∗q : H → SymV and spr : SymV → H are mutually inverse. Thus, these
maps are invertible. Furthermore, the inverse of spr is spr−1 = e∗q (since the maps
e∗q : H → SymV and spr : SymV → H are mutually inverse).

The map spr is a k-coalgebra isomorphism (since it is invertible and it is a k-
coalgebra homomorphism). Hence, its inverse spr−1 is a k-coalgebra isomorphism as
well. Since spr−1 = e∗q, this rewrites as follows: The map e∗q is a k-coalgebra iso-
morphism. Altogether, we thus have shown that the maps e∗q : H → SymV and
spr : SymV → H are mutually inverse k-coalgebra isomorphisms. This proves Theo-
rem 39.16.

Corollary 39.17. Let k be a field of characteristic 0. Let H be a con-
nected filtered cocommutative bialgebra over k. Let V denote the k-vector
subspace PrimH of H. Define the k-linear map spr : SymV → H as in
Proposition 39.11. Then, spr is a k-coalgebra isomorphism.

Proof of Corollary 39.17. We shall use the notations introduced in Theorem 39.16.
Theorem 39.16 shows that the maps e∗q : H → SymV and spr : SymV → H are

mutually inverse k-coalgebra isomorphisms. Thus, in particular, spr is a k-coalgebra
isomorphism. This proves Corollary 39.17.

We notice that Corollary 39.17 is closely related to [PatReu98, Corollary 4.4]. In-
deed, the “canonical map” in the corrected version of [PatReu98, Corollary 4.4]311

(applied to A = H) is more or less our map e∗q : H → SymV , at least if we iden-

tify the invariant space
⊕
n∈N

(
(PrimH)⊗n

)Sn ⊆ ⊗PrimH with the symmetric algebra

Sym (PrimH).

Remark 39.18. Again, it is possible to slightly improve Theorem 39.16
and Corollary 39.17: Namely, the symmetric algebra SymV canonically

310Proof. Let h ∈ H. Then, h ∈ H = spr (SymV ) (since the map spr is surjective). In other words,
there exists some a ∈ SymV such that h = spr a. Consider this a.

We have (e∗q ◦ spr)︸ ︷︷ ︸
=idSymV

(a) = idSymV (a) = a, so that a = (e∗q ◦ spr) (a) = e∗q

spr a︸︷︷︸
=h

 = e∗q (h). Now,

(spr ◦e∗q) (h) = spr

e∗q (h)︸ ︷︷ ︸
=a

 = spr a = h = idH (h) .

Now, forget that we fixed h. We thus have shown that (spr ◦e∗q) (h) = idH (h) for each h ∈ H. In
other words, spr ◦e∗q = idH .

311The definition of the “canonical map” in [PatReu98, Corollary 4.4] is slightly wrong: The

“
⊕
n∈N

ι⊗n ◦∆n” should be replaced by “
⊕
n∈N

1

n!
ι⊗n ◦∆n”.
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becomes a filtered k-algebra312. With respect to this filtration, the maps
e∗q : H → SymV and spr : SymV → H in Theorem 39.16 are actually
isomorphisms of filtered k-coalgebras. Proving this is not too difficult (it
is mostly an issue of bookkeeping).

§40. Graded versions of Leray’s theorem

The notion of “Leray’s theorem” does (to my knowledge) not refer to any particular
fact; rather, it stands for a group of results, each of which claims that a commutative
bialgebra satisfying certain conditions (e.g., connected filtered or connected graded)
must be isomorphic as an algebra to a symmetric algebra of a certain vector space.
Theorem 38.2 is one of these results; but there are others. To derive one other such
result, let us first prepare by analyzing properties of graded vector spaces.

Lemma 40.1. Let k be a field. Let V be a graded k-vector space. For
each m ∈ N, we define a k-vector subspace V>m of V by V>m =

∑
g∈N;
g>m

Vg.

Let f : V → V be a k-linear map.313 Assume that

f (Vn) ⊆ V>n for each n ∈ N. (557)

Then, the map idV −f is injective.

Proof of Lemma 40.1. We shall use the notations introduced in Remark 16.15 and in
Definition 16.16.

If n ∈ N and m ∈ N satisfy m ≤ n, then

pm,V (V>n) = 0 (558)

314.
312Indeed, V is a filtered k-vector space (by virtue of being a subspace of the filtered k-vector space
H), and thus its symmetric algebra SymV becomes a filtered k-algebra.

313We do not require f to be graded.
314Proof of (558): Let n ∈ N and m ∈ N be such that m ≤ n. The definition of V>n yields
V>n =

∑
g∈N;
g>n

Vg.

Let g ∈ N be such that g > n. Then, g > n ≥ m (since m ≤ n). Hence, g 6= m. Thus, (111)
(applied to m and g instead of n and m) yields pm,V |Vg= 0. Thus,

(
pm,V |Vg

)︸ ︷︷ ︸
=0

(Vg) = 0 (Vg) = 0.

Comparing this with
(
pm,V |Vg

)
(Vg) = pm,V (Vg), we obtain pm,V (Vg) = 0.

Now, forget that we fixed g. We thus have shown that pm,V (Vg) = 0 for each g ∈ N satisfying
g > n. Hence,

∑
g∈N;
g>n

pm,V (Vg)︸ ︷︷ ︸
=0

=
∑
g∈N;
g>n

0 = 0.

But recall that V>n =
∑
g∈N;
g>n

Vg. Applying the map pm,V to both sides of this equality, we find

pm,V (V>n) = pm,V

∑
g∈N;
g>n

Vg

 =
∑
g∈N;
g>n

pm,V (Vg) (since the map pm,V is k-linear)

= 0.

This proves (558).
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Each m ∈ N satisfies

pm,V

∑
g∈N;
g≥m

f (Vg)

 = 0 (559)

315.
Now, let x ∈ Ker (idV −f) be arbitrary. We shall prove that x = 0.
We have x ∈ Ker (idV −f). In other words, x is an element of V satisfying

(idV −f) (x) = 0. Comparing (idV −f) (x) = 0 with (idV −f) (x) = idV (x)︸ ︷︷ ︸
=x

−f (x) =

x− f (x), we obtain x− f (x) = 0. In other words, x = f (x).
But (114) (applied to v = x) yields

x =
∑
`∈N

p`,V (x) =
∑
g∈N

pg,V (x) (561)

(here, we have renamed the summation index ` as g).
Next, we claim that every g ∈ N satisfies

pg,V (x) = 0. (562)

[Proof of (562): We will prove (562) by strong induction over g:
Induction step: Let m ∈ N. Assume that (562) holds for every g < m. We must

then prove that (562) holds for g = m.
We have assumed that (562) holds for every g < m. In other words, for every g ∈ N

satisfying g < m, we have
pg,V (x) = 0. (563)

315Proof of (559): Let m ∈ N. Let g ∈ N be such that g ≥ m. Hence, m ≤ g. But (557) (applied to

n = g) yields f (Vg) ⊆ V>g. Hence, pm,V

f (Vg)︸ ︷︷ ︸
⊆V>g

 ⊆ pm,V (V>g) = 0 (by (558) (applied to n = g)).

Hence, pm,V (f (Vg)) = 0.
Now, forget that we fixed g. We thus have shown that

pm,V (f (Vg)) = 0 for each g ∈ N satisfying g ≥ m. (560)

Now, the map pm,V is k-linear. Hence,

pm,V

∑
g∈N;
g≥m

f (Vg)

 =
∑
g∈N;
g≥m

pm,V (f (Vg))︸ ︷︷ ︸
=0

(by (560))

=
∑
g∈N;
g≥m

0 = 0.

This proves (559).
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Now, (561) becomes

x =
∑
g∈N

pg,V (x) =
∑
g∈N;
g<m

pg,V (x)︸ ︷︷ ︸
=0

(by (563))

+
∑
g∈N;
g≥m

pg,V (x) =
∑
g∈N;
g<m

0

︸ ︷︷ ︸
=0

+
∑
g∈N;
g≥m

pg,V (x)

=
∑
g∈N;
g≥m

pg,V

(
x︸︷︷︸
∈V

)

∈
∑
g∈N;
g≥m

pg,V (V )︸ ︷︷ ︸
=Vg

(by (112) (applied to n=g))

=
∑
g∈N;
g≥m

Vg.

But recall that

x = f

 x︸︷︷︸
∈
∑
g∈N;
g≥m

Vg

 ∈ f
∑
g∈N;
g≥m

Vg

 =
∑
g∈N;
g≥m

f (Vg)

(since the map f is k-linear). Applying the map pm,V to both sides of this relation, we
obtain

pm,V (x) ∈ pm,V

∑
g∈N;
g≥m

f (Vg)

 = 0 (by (559)) .

In other words, pm,V (x) = 0. In other words, (562) holds for g = m. This completes
the induction step. Thus, the proof of (562) by induction is complete.]

Now, (561) becomes

x =
∑
g∈N

pg,V (x)︸ ︷︷ ︸
=0

(by (562))

=
∑
g∈N

0 = 0.

Now, forget that we fixed x. We thus have proven that x = 0 for each x ∈
Ker (idV −f). In other words, Ker (idV −f) ⊆ 0. Thus, Ker (idV −f) = 0. Hence,
the map idV −f is injective (since this map is k-linear (since the maps idV and f are
k-linear)). This proves Lemma 40.1.

Our next few lemmas will rely on the notations introduced in Convention 16.19.

Lemma 40.2. Let k be a field. Let V be a graded k-vector space. Let U
be a subset of V . Let n ∈ N.

Consider the map pn,V : V → V defined in Definition 16.16.

(a) If U ⊆ Vn, then pn,V (U) = U .

(b) Let m ∈ N be such that m 6= n. If U ⊆ Vm, then pn,V (U) = 0.

Proof of Lemma 40.2. (a) Assume that U ⊆ Vn. The equality (110) yields pn,V |Vn=
idV |Vn .
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But each x ∈ U satisfies

pn,V (x) = (pn,V |Vn)︸ ︷︷ ︸
=idV |Vn

(x) (since x ∈ U ⊆ Vn)

= (idV |Vn) (x) = idV (x) = x. (564)

Now,

pn,V (U) =

pn,V (x)︸ ︷︷ ︸
=x

(by (564))

| x ∈ U

 = {x | x ∈ U} = U.

This proves Lemma 40.2 (a).
(b) Assume that U ⊆ Vm. But recall that m 6= n. Thus, n 6= m. Hence, (111)

yields pn,V |Vm= 0. But

pn,V

 U︸︷︷︸
⊆Vm

 ⊆ pn,V (Vm) = (pn,V |Vm)︸ ︷︷ ︸
=0

(Vm) (since (pn,V |Vm) (Vm) = pn,V (Vm))

= 0 (Vm) = 0.

In other words, pn,V (U) = 0. This proves Lemma 40.2 (b).

Lemma 40.3. Let k be a field. Let A be a graded k-algebra.

(a) Each n ∈ N satisfies (A1)n ⊆ An.

(b) Assume that A = AlgGenk (A1). Then, each n ∈ N satisfies An =
(A1)n.

Proof of Lemma 40.3. (a) Since A is a graded k-algebra, we have

A`Am ⊆ A`+m for any ` ∈ N and m ∈ N. (565)

Each n ∈ N satisfies
(A1)n ⊆ An (566)

316. This proves Lemma 40.3 (a).

316Proof of (566): We shall prove (566) by induction over n:

Induction base: We have 1A ∈ A0 (since A is a graded k-algebra). Now, (A1)
0

= k· 1A︸︷︷︸
∈A0

⊆ k·A0 ⊆ A0

(since A0 is a k-vector subspace of A). In other words, (566) holds for n = 0. This completes the
induction base.

Induction step: Let N be a positive integer. Assume that (566) holds for n = N − 1. We must
prove that (566) holds for n = N .

We know that N − 1 ∈ N (since N is a positive integer). Hence, (565) (applied to ` = N − 1 and
m = 1) yields AN−1A1 ⊆ A(N−1)+1 = AN (since (N − 1) + 1 = N).

But we have assumed that (566) holds for n = N − 1. In other words, we have (A1)
N−1 ⊆ AN−1.

Now,
(A1)

N
= (A1)

N−1︸ ︷︷ ︸
⊆AN−1

A1 ⊆ AN−1A1 ⊆ AN .

In other words, (566) holds for n = N . This completes the induction step.
Thus, the induction proof of (566) is complete.
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(b) Recall the following basic fact (recorded in Convention 16.19): If S is a subset
of the k-algebra A, then the k-subalgebra of A generated by S is the k-vector subspace∑̀
∈N
〈S〉` of A. In other words, if S is a subset of the k-algebra A, then

(the k-subalgebra of A generated by S) =
∑
`∈N

〈S〉` .

Applying this to S = A1, we obtain

(the k-subalgebra of A generated by A1) =
∑
`∈N

〈A1〉` .

On the other hand, if W is a k-vector space, and if S is a k-vector subspace of W ,
then 〈S〉 = S. 317 Applying this to W = A and S = A1, we obtain 〈A1〉 = A1 (since
A1 is a k-vector subspace of A).

But AlgGenk (A1) is defined as the k-subalgebra of A generated by A1. Hence,

AlgGenk (A1) = (the k-subalgebra of A generated by A1) =
∑
`∈N

〈A1〉`︸ ︷︷ ︸
=(A1)`

(since 〈A1〉=A1)

=
∑
`∈N

(A1)` .

The assumptions of Lemma 40.3 now yield

A = AlgGenk (A1) =
∑
`∈N

(A1)` . (567)

We shall use the notations introduced in Remark 16.15 and in Definition 16.16.
Now, fix n ∈ N. For each ` ∈ N satisfying ` 6= n, we have

pn,A

(
(A1)`

)
= 0 (568)

318. On the other hand,
pn,A ((A1)n) = (A1)n (569)

319.

317This is an elementary fact from linear algebra.
318Proof of (568): Let ` ∈ N satisfy ` 6= n. But (566) (applied to ` instead of n) shows that

(A1)
` ⊆ A`. Hence, Lemma 40.2 (b) (applied to A, (A1)

`
and ` instead of V , U and m) yields

pn,A

(
(A1)

`
)

= 0. This proves (568).
319Proof of (569): The relation (566) yields (A1)

n ⊆ An. Hence, Lemma 40.2 (a) (applied to A and
(A1)

n
instead of V and U) yields pn,A ((A1)

n
) = (A1)

n
. This proves (569).
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Applying the map pn,A to both sides of the equality (567), we obtain

pn,A (A) = pn,A

(∑
`∈N

(A1)`
)

=
∑
`∈N

pn,A

(
(A1)`

)
(since the map pn,A is k-linear)

= pn,A ((A1)n)︸ ︷︷ ︸
=(A1)n

(by (569))

+
∑
`∈N;
` 6=n

pn,A

(
(A1)`

)
︸ ︷︷ ︸

=0
(by (568))

(here, we have split off the addend for ` = n from the sum)

= (A1)n +
∑
`∈N;
6̀=n

0

︸ ︷︷ ︸
=0

= (A1)n .

Thus, (A1)n = pn,A (A) = An (by (112) (applied to V = A)). In other words, An =
(A1)n. This proves Lemma 40.3 (b).

Lemma 40.4. Let k be a field. Let A and B be k-algebras. Let f : A→ B
and g : A → B be two k-algebra homomorphisms. Let U and V be two
k-vector subspaces of A. Then,

(g − f) (UV ) ⊆ ((g − f) (U)) · g (V ) + f (U) · ((g − f) (V )) .

Proof of Lemma 40.4. The map g−f is k-linear (since the maps g and f are k-linear).
Hence, (g − f) (U) and (g − f) (V ) are k-vector subspaces of B. Also, g (V ) is a k-
vector subspace of B (since the map g is k-linear), and f (U) is a k-vector subspace of
B (since the map f is k-linear). Hence,

((g − f) (U)) · g (V ) + f (U) · ((g − f) (V ))

is a k-vector subspace of B.
Each (u, v) ∈ U × V satisfies

(g − f) (uv) ∈ ((g − f) (U)) · g (V ) + f (U) · ((g − f) (V )) (570)

553



320. In other words,

{(g − f) (uv) | (u, v) ∈ U × V }
⊆ ((g − f) (U)) · g (V ) + f (U) · ((g − f) (V )) .

Thus, (154) (applied to B, {(g − f) (uv) | (u, v) ∈ U × V } and ((g − f) (U)) · g (V ) +
f (U) · ((g − f) (V )) instead of M , S and Q) shows that

〈{(g − f) (uv) | (u, v) ∈ U × V }〉
⊆ ((g − f) (U)) · g (V ) + f (U) · ((g − f) (V )) . (571)

The definition of UV yields

UV = 〈uv | (u, v) ∈ U × V 〉 = 〈{uv | (u, v) ∈ U × V }〉 . (572)

Thus, (165) (applied to A, B, g − f and {uv | (u, v) ∈ U × V } instead of M , R, φ
and S) yields

(g − f) (〈{uv | (u, v) ∈ U × V }〉) = 〈{(g − f) (uv) | (u, v) ∈ U × V }〉
⊆ ((g − f) (U)) · g (V ) + f (U) · ((g − f) (V ))

(573)

(by (571)).
Now, applying the map g − f to both sides of the equality (572), we obtain

(g − f) (UV ) = (g − f) (〈{uv | (u, v) ∈ U × V }〉)
⊆ ((g − f) (U)) · g (V ) + f (U) · ((g − f) (V ))

(by (573)). This proves Lemma 40.4.

As an application of the above lemmata, we can show a criterion for endomorphisms
of a graded algebra to be injective:

320Proof of (570): Let (u, v) ∈ U × V . Thus, u ∈ U and v ∈ V .
Now,

(g − f) (uv) = g (uv)︸ ︷︷ ︸
=g(u)g(v)

(since g is a k-algebra
homomorphism)

− f (uv)︸ ︷︷ ︸
=f(u)f(v)

(since f is a k-algebra
homomorphism)

= g (u) g (v)− f (u) f (v)

= (g (u) g (v)− f (u) g (v))︸ ︷︷ ︸
=(g(u)−f(u))·g(v)

+ (f (u) g (v)− f (u) f (v))︸ ︷︷ ︸
=f(u)·(g(v)−f(v))

= (g (u)− f (u))︸ ︷︷ ︸
=(g−f)(u)

·g (v) + f (u) · (g (v)− f (v))︸ ︷︷ ︸
=(g−f)(v)

= (g − f)

 u︸︷︷︸
∈U

 · g
 v︸︷︷︸
∈V

+ f

 u︸︷︷︸
∈U

 · (g − f)

 v︸︷︷︸
∈V


∈ ((g − f) (U)) · g (V ) + f (U) · ((g − f) (V )) .

This proves (570).
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Lemma 40.5. Let k be a field. Let A be a graded k-algebra. For each
m ∈ N, we define a k-vector subspace A>m of A by A>m =

∑
g∈N;
g>m

Ag.

Let f : A→ A be a k-algebra homomorphism.321 Assume that each x ∈ A1

satisfies
f (x)− x ∈ A>1. (574)

(a) We have (idA−f) ((A1)n) ⊆ A>n for each n ∈ N.

(b) Assume that A = AlgGenk (A1). Then, the map f is injective.

Proof of Lemma 40.5. The map idA−f is k-linear (since both maps idA and f are
k-linear). Notice that

(idA−f) (A1) ⊆ A>1 (575)

322.
Since A is a graded k-algebra, we have

A`Am ⊆ A`+m for any ` ∈ N and m ∈ N. (576)

Thus, each positive integer N satisfies

A>1 · AN−1 ⊆ A>N (577)

323.
Also,

f (A1) ⊆ A>0 (578)

321We do not require f to be graded.
322Proof of (575): Each x ∈ A1 satisfies

(idA−f) (x) = idA (x)︸ ︷︷ ︸
=x

−f (x) = x− f (x) = − (f (x)− x)︸ ︷︷ ︸
∈A>1

(by (574))

∈ −A>1 ⊆ A>1

(since A>1 is a k-vector subspace of A) .

In other words, {(idA−f) (x) | x ∈ A1} ⊆ A>1. But (idA−f) (A1) = {(idA−f) (x) | x ∈ A1} ⊆
A>1. This proves (575).

323Proof of (577): Let N be a positive integer. Thus, N − 1 ∈ N. The definition of A>N yields
A>N =

∑
g∈N;
g>N

Ag.
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324. Furthermore, every positive integer h satisfies

Ah · A>N−1 ⊆ A>N (579)

325. Thus,
A>0 · A>N−1 ⊆ A>N (580)

But the definition of A>1 yields A>1 =
∑
g∈N;
g>1

Ag. Hence,

A>1︸︷︷︸
=
∑
g∈N;
g>1

Ag

·AN−1 =

∑
g∈N;
g>1

Ag

 ·AN−1 =
∑
g∈N;
g>1

AgAN−1︸ ︷︷ ︸
⊆Ag+(N−1)

(by (576)
(applied to `=g and m=N−1))

⊆
∑
g∈N;
g>1

Ag+(N−1)

=
∑
g∈N;

g>1+(N−1)

Ag (here, we have substituted g + (N − 1) for g in the sum)

=
∑
g∈N;
g>N

Ag (since 1 + (N − 1) = N)

= A>N

since A>N =
∑
g∈N;
g>N

Ag

 .

This proves (577).
324Proof of (578): Let y ∈ f (A1). Thus, there exists some x ∈ A1 such that y = f (x). Consider

this y.
From (574), we obtain f (x)− x ∈ A>1, so that f (x) ∈ x+A>1.
But the definition of A>1 yields A>1 =

∑
g∈N;
g>1

Ag. Meanwhile, the definition of A>0 yields

A>0 =
∑
g∈N;
g>0

Ag = A1 +A2 +A3 + · · · = A1 + (A2 +A3 +A4 + · · · )︸ ︷︷ ︸
=
∑
g∈N;
g>1

Ag=A>1

= A1 +A>1.

But y = f (x) ∈ x︸︷︷︸
∈A1

+A>1 ∈ A1 +A>1 = A>0.

Now, forget that we fixed y. We thus have proven that y ∈ A>0 for each y ∈ f (A1). In other words,
f (A1) ⊆ A>0. This proves (578).

325Proof of (579): Let h be a positive integer. The definition of A>N−1 yields A>N−1 =
∑
g∈N;

g>N−1

Ag.

But the definition of A>N yields A>N =
∑
g∈N;
g>N

Ag.

But h ≥ 1 (since h is a positive integer) and thus (N − 1) + h︸︷︷︸
≥1

≥ (N − 1) + 1 = N . Hence, every

g ∈ N satisfying g > (N − 1) + h also satisfies g > N (since g > (N − 1) + h ≥ N). Thus, the sum∑
g∈N;

g>(N−1)+h

Ag is a subsum of the sum
∑
g∈N;
g>N

Ag. Hence,
∑
g∈N;

g>(N−1)+h

Ag ⊆
∑
g∈N;
g>N

Ag = A>N .
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326.
(a) We shall prove Lemma 40.5 (a) by induction over n:
Induction base: We have (idA−f)

(
(A1)0) = 0 327. Hence, (idA−f)

(
(A1)0) =

0 ⊆ A>0 (since A>0 is a k-vector space). In other words, Lemma 40.5 (a) holds for
n = 0. This completes the induction base.

Induction step: Let N be a positive integer. Assume that Lemma 40.5 (a) holds
for n = N − 1. We must show that Lemma 40.5 (a) holds for n = N .

We have N − 1 ∈ N (since N is a positive integer). Thus, Lemma 40.3 (a) (applied
to n = N − 1) yields (A1)N−1 ⊆ AN−1.

Also, recall that Lemma 40.5 (a) holds for n = N − 1. In other words, we have

Now,

Ah · A>N−1︸ ︷︷ ︸
=

∑
g∈N;

g>N−1

Ag

= Ah ·

 ∑
g∈N;

g>N−1

Ag

 =
∑
g∈N;

g>N−1

AhAg︸ ︷︷ ︸
⊆Ah+g

(by (576)
(applied to `=h and m=g))

⊆
∑
g∈N;

g>N−1

Ah+g︸ ︷︷ ︸
=Ag+h

=
∑
g∈N;

g>N−1

Ag+h

=
∑
g∈N;

g>(N−1)+h

Ag (here, we have substituted g + h for g in the sum)

⊆ A>N .

This proves (579).
326Proof of (580): The definition of A>0 yields

A>0 =
∑
g∈N;
g>0

Ag =
∑
h∈N;
h>0

Ah

(here, we have renamed the summation index g as h). Thus,

A>0︸︷︷︸
=
∑
h∈N;
h>0

Ah

·A>N−1 =

∑
h∈N;
h>0

Ah

 ·A>N−1 =
∑
h∈N;
h>0

Ah ·A>N−1︸ ︷︷ ︸
⊆A>N

(by (579))

⊆
∑
h∈N;
h>0

A>N ⊆ A>N

(since A>N is a k-vector subspace of A). This proves (580).
327Proof. Recall that f is a k-algebra homomorphism. Hence, f (1A) = 1A. Now,

(idA−f) (1A) = idA (1A)︸ ︷︷ ︸
=1A

− f (1A)︸ ︷︷ ︸
=1A

= 1A − 1A = 0.

Now,

(idA−f)

(A1)
0︸ ︷︷ ︸

=k·1A

 = (idA−f) (k · 1A) = k · (idA−f) (1A)︸ ︷︷ ︸
=0

(since the map idA−f is k-linear)

= k · 0 = 0,

qed.
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(idA−f)
(

(A1)N−1
)
⊆ A>N−1.

Now, both idA : A → A and f : A → A are k-algebra homomorphisms. Thus,
Lemma 40.4 (applied to B = A, U = A1 and V = (A1)N−1) shows that

(idA−f)
(
A1 (A1)N−1

)
⊆ ((idA−f) (A1))︸ ︷︷ ︸

⊆A>1

(by (575))

· idA
(

(A1)N−1
)

︸ ︷︷ ︸
=(A1)N−1⊆AN−1

+ f (A1)︸ ︷︷ ︸
⊆A>0

(by (578))

·
(

(idA−f)
(

(A1)N−1
))

︸ ︷︷ ︸
⊆A>N−1

⊆ A>1 · AN−1︸ ︷︷ ︸
⊆A>N

(by (577))

+A>0 · A>N−1︸ ︷︷ ︸
⊆A>N

(by (580))

⊆ A>N + A>N ⊆ A>N (since A>N is a k-vector space) .

Since A1 (A1)N−1 = (A1)N , this rewrites as (idA−f)
(

(A1)N
)
⊆ A>N . In other

words, Lemma 40.5 (a) holds for n = N . This completes the induction step. Thus,
Lemma 40.5 (a) is proven by induction.

(b) For each n ∈ N, we have

(idA−f)

 An︸︷︷︸
=(A1)n

(by Lemma 40.3 (b))

 = (idA−f) ((A1)n) ⊆ A>n

(by Lemma 40.5 (a)). Thus, Lemma 40.1 (applied to A and idA−f instead of V and f)
shows that the map idA− (idA−f) is injective. Since idA− (idA−f) = f , this rewrites
as follows: The map f is injective. This proves Lemma 40.5 (b).

We shall now prove a simple lemma about homogeneous subspaces:

Lemma 40.6. Let k be a field. Let V be a graded k-vector space. Let W
be a homogeneous subspace of V . Then, pn,V (W ) = W ∩Vn for any n ∈ N.
(Here, the map pn,V : V → V is defined as in Definition 16.16.)

Proof of Lemma 40.6. Recall that W is a homogeneous subspace of V if and only if
W =

⊕
n∈N

(W ∩ Vn) (by the definition of a “homogeneous subspace”). Hence, W =⊕
n∈N

(W ∩ Vn) (since W is a homogeneous subspace of V ). Thus,

W =
⊕
n∈N

(W ∩ Vn) =
∑
n∈N

(W ∩ Vn) (since direct sums are sums)

=
∑
m∈N

(W ∩ Vm) (581)

(here, we renamed the summation index n as m).
Let n ∈ N. For any m ∈ N satisfying m 6= n, we have

pn,V (W ∩ Vm) = 0 (582)
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328. But
pn,V (W ∩ Vn) = W ∩ Vn (583)

329.
Applying the map pn,V to both sides of the equality (581), we obtain

pn,V (W ) = pn,V

(∑
m∈N

(W ∩ Vm)

)
=
∑
m∈N

pn,V (W ∩ Vm) (since the map pn,V is k-linear)

= pn,V (W ∩ Vn)︸ ︷︷ ︸
=W∩Vn

(by (583))

+
∑
m∈N;
m 6=n

pn,V (W ∩ Vm)︸ ︷︷ ︸
=0

(by (582))

(here, we have split off the addend for m = n from the sum)

= (W ∩ Vn) +
∑
m∈N;
m 6=n

0

︸ ︷︷ ︸
=0

= W ∩ Vn.

This proves Lemma 40.6.

Next, we shall show a criterion for generating sets of graded algebras:

Lemma 40.7. Let k be a field. Let A be a graded k-algebra such that
A0 = k · 1A. For each m ∈ N, we define a k-vector subspace A>m of A by
A>m =

∑
g∈N;
g>m

Ag.

Let V be a homogeneous subspace of A such that A>0 = V +(A>0)2. Then:

(a) Every positive integer n satisfies An ⊆ (V ∩ An) +
n−1∑
g=1

AgAn−g.

(b) We have A = AlgGenk V .

Proof of Lemma 40.7. (a) We shall use the notations introduced in Remark 16.15 and
in Definition 16.16.

Since A is a graded k-algebra, we have

A`Am ⊆ A`+m for any ` ∈ N and m ∈ N. (584)

Let n be a positive integer. Define a k-vector subspace Q of A by Q =
n−1∑
g=1

AgAn−g.

Then, every two positive integers ` and m satisfy

pn,A (A`Am) ⊆ Q (585)

330. Hence,
pn,A

(
(A>0)2) ⊆ Q (586)

328Proof of (582): Let m ∈ N be such that m 6= n. Thus, Lemma 40.2 (b) (applied to W ∩ Vm
instead of U) yields pn,V (W ∩ Vm) = 0 (since W ∩ Vm ⊆ Vm). This proves (582).

329Proof of (583): Lemma 40.2 (a) (applied to U = W ∩ Vn) yields pn,V (W ∩ Vn) = W ∩ Vn (since
W ∩ Vn ⊆ Vn). This proves (583).

330Proof of (585): Let ` and m be two positive integers. We are in one of the following two cases:
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331.
Lemma 40.6 (applied to A and V instead of V and W ) yields pn,A (V ) = V ∩ An.

Case 1: We have `+m = n.
Case 2: We have `+m 6= n.
Let us first consider Case 1. In this case, we have ` + m = n. Thus, m = n − `. Also, ` > 0

(since ` is a positive integer) and m > 0 (since m is a positive integer). Also, n = ` + m︸︷︷︸
>0

> `, so

that ` < n. Combining this with ` > 0, we obtain ` ∈ {1, 2, . . . , n− 1} (since ` is a positive integer).

Hence, A`An−` is an addend of the sum
n−1∑
g=1

AgAn−g. Thus, A`An−` ⊆
n−1∑
g=1

AgAn−g = Q.

Now, (584) yields A`Am ⊆ A`+m = An (since ` + m = n). Hence, Lemma 40.2 (a) (applied to
A and A`Am instead of V and U) shows that pn,A (A`Am) = A`Am = A`An−` (since m = n − `).
Hence, pn,A (A`Am) = A`An−` ⊆ Q. Thus, (585) is proven in Case 1.

Let us now consider Case 2. In this case, we have ` + m 6= n. Now, (584) yields A`Am ⊆
A`+m. Hence, Lemma 40.2 (b) (applied to A, A`Am and ` + m instead of V , U and m) shows that
pn,A (A`Am) = 0 (since `+m 6= n). Thus, pn,A (A`Am) = 0 ⊆ Q (since Q is a k-vector space). Thus,
(585) is proven in Case 2.

We have now proven (585) in each of the two Cases 1 and 2. Since these two Cases cover all
possibilities, we thus conclude that (585) always holds.

331Proof of (586): The definition of A>0 yields A>0 =
∑
g∈N;
g>0

Ag =
∑
m∈N;
m>0

Am (here, we have renamed

the summation index g as m). Now,

(A>0)
2

= A>0︸︷︷︸
=
∑
g∈N;
g>0

Ag

A>0︸︷︷︸
=
∑

m∈N;
m>0

Am

=

∑
g∈N;
g>0

Ag


∑
m∈N;
m>0

Am



=
∑
g∈N;
g>0

∑
m∈N;
m>0

AgAm.

Applying the map pn,A to both sides of this relation, we obtain

pn,A

(
(A>0)

2
)

= pn,A

∑
g∈N;
g>0

∑
m∈N;
m>0

AgAm

 =
∑
g∈N;
g>0

pn,A

∑
m∈N;
m>0

AgAm


︸ ︷︷ ︸

=
∑

m∈N;
m>0

pn,A(AgAm)

(since the map pn,A is k-linear)

(since the map pn,A is k-linear)

=
∑
g∈N;
g>0

∑
m∈N;
m>0

pn,A (AgAm)︸ ︷︷ ︸
⊆Q

(by (585) (applied to `=g))

⊆
∑
g∈N;
g>0

∑
m∈N;
m>0

Q

︸ ︷︷ ︸
⊆Q

(since Q is a k-vector space)

⊆
∑
g∈N;
g>0

Q ⊆ Q (since Q is a k-vector space) .
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But An ⊆ pn,A (A>0) 332. Hence,

An ⊆ pn,A

 A>0︸︷︷︸
=V+(A>0)2

 = pn,A
(
V + (A>0)2) = pn,A (V )︸ ︷︷ ︸

=V ∩An

+ pn,A
(
(A>0)2)︸ ︷︷ ︸
⊆Q

(by (586))

(since the map pn,A is k-linear)

⊆ (V ∩ An) + Q︸︷︷︸
=
n−1∑
g=1

AgAn−g

= (V ∩ An) +
n−1∑
g=1

AgAn−g.

This proves Lemma 40.7 (a).
(b) Let R = AlgGenk V . Then, R is a k-subalgebra of A (since AlgGenk V is a

k-subalgebra of A), and thus a k-vector subspace of A.
Lemma 16.20 (applied to S = V ) yields V ⊆ AlgGenk V = R.
Now, we are going to prove that

An ⊆ R for each n ∈ N. (587)

[Proof of (587): We shall prove (587) by strong induction over n:
Induction step: Let N ∈ N. Assume that (587) holds for every n < N . We must

now show that (587) holds for n = N .
If N = 0, then this is obvious333. Hence, for the rest of this proof, we can WLOG

assume that we don’t have N = 0. Assume this.
We have N 6= 0 (since we don’t have N = 0). Combining this with N ∈ N, we

obtain N ∈ N \ {0} = {1, 2, 3, . . .}. In other words, N is a positive integer. Hence,
Lemma 40.7 (a) (applied to n = N) yields

AN ⊆ (V ∩ AN) +
N−1∑
g=1

AgAN−g. (588)

But we have assumed that (587) holds for every n < N . In other words, for each
n ∈ N satisfying n < N , we have

An ⊆ R. (589)

332Proof. The definition of A>0 yields A>0 =
∑
g∈N;
g>0

Ag. But n is a positive integer; thus, n ∈ N

and n > 0. Hence, An is an addend of the sum
∑
g∈N;
g>0

Ag (namely, the addend for g = n). Thus,

An ⊆
∑
g∈N;
g>0

Ag = A>0. Hence, pn,A

 An︸︷︷︸
⊆A>0

 ⊆ pn,A (A>0).

But Lemma 40.2 (a) (applied to A and An instead of V and U) shows that pn,A (An) = An (since
An ⊆ An). Thus, An = pn,A (An) ⊆ pn,A (A>0).

333Proof. Assume that N = 0. Thus, AN = A0 = k · 1A. But R is a k-subalgebra of A; thus,
1A ∈ R. Also, R is a k-vector subspace of A (since R is a k-subalgebra of A); thus, k · R ⊆ R. Now,
AN = k · 1A︸︷︷︸

∈R

⊆ k ·R ⊆ R. In other words, (587) holds for n = N . Qed.
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Now, each g ∈ {1, 2, . . . , N − 1} satisfies

AgAN−g ⊆ R (590)

334. Finally, (588) becomes

AN ⊆ (V ∩ AN)︸ ︷︷ ︸
⊆V⊆R

+
N−1∑
g=1

AgAN−g︸ ︷︷ ︸
⊆R

(by (590))

⊆ R +
N−1∑
g=1

R︸ ︷︷ ︸
⊆R

(since R is a k-vector subspace of A)

⊆ R +R ⊆ R (since R is a k-vector subspace of A) .

In other words, (587) holds for n = N . Thus, the induction step is complete. This
completes the induction proof of (587).]

Now recall that A is a graded k-algebra. Hence, A =
⊕
n∈N

An =
∑
n∈N

An (since direct

sums are sums). Hence,

A =
∑
n∈N

An︸︷︷︸
⊆R

(by (587))

⊆
∑
n∈N

R ⊆ R

(since R is a k-vector subspace of A). Combined with R ⊆ A, this yields A = R. Thus,
A = R = AlgGenk V . This proves Lemma 40.7 (b).

Lemma 40.8. Let k be a field. Let V be a k-vector space. The k-algebra
SymV is generated by its subset symincV (V ) 335.

Proof of Lemma 40.8. Let R be the k-subalgebra of SymV generated by symincV (V ).
Then, clearly, R is a k-subalgebra of SymV and contains symincV (V ) as a subset. But
Theorem 39.13 (a) yields

SymV =
∑
n∈N

 symincV (V )︸ ︷︷ ︸
⊆R

(since R contains symincV (V )
as a subset)


n

⊆
∑
n∈N

Rn︸︷︷︸
⊆R

(since R is a k-algebra)

⊆
∑
n∈N

R ⊆ R

(since R is a k-vector subspace of SymV (since R is a k-subalgebra of SymV )). Com-
bining this with the obvious relation R ⊆ SymV , we obtain SymV = R.

334Proof of (590): Let g ∈ {1, 2, . . . , N − 1}. Thus, g ≤ N −1 < N . Also, g ∈ {1, 2, . . . , N − 1} ⊆ N.
Hence, (589) (applied to n = g) yields Ag ⊆ R. But we also have g > 0 (since g ∈ {1, 2, . . . , N − 1})
and thus N − g︸︷︷︸

>0

< N . On the other hand, from g < N , we obtain N − g > 0, so that N − g ∈ N.

Thus, (589) (applied to n = N − g) yields AN−g ⊆ R. Now,

Ag︸︷︷︸
⊆R

AN−g︸ ︷︷ ︸
⊆R

⊆ RR ⊆ R (since R is a k-subalgebra of A) .

This proves (590).
335We are using the notations introduced in Definition 38.1.
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Now, recall that R is the k-subalgebra of SymV generated by symincV (V ). In other
words, SymV is the k-subalgebra of SymV generated by symincV (V ) (since SymV =
R). In other words, the k-algebra SymV is generated by its subset symincV (V ). This
proves Lemma 40.8.

After these basic facts, let us again return to coalgebras and exponentials:

Lemma 40.9. Let k be a field of characteristic 0. Let H be a connected
filtered k-coalgebra. Let A be a graded k-algebra. For each m ∈ N, we
define a k-vector subspace A>m of A by A>m =

∑
g∈N;
g>m

Ag.

Let a ∈ g (H,A) be such that a (H) ⊆ A1. Notice that the k-linear map
e∗a : H → A is well-defined (since a ∈ g (H,A)).

We have e∗a (x)− a (x) ∈ A>1 for each x ∈ Ker (εH).

Proof of Lemma 40.9. Remark 2.10 (applied to C = H) yields that H is a unital coal-

gebra with unity 1H =
(
εH |H≤0

)−1
(1). In other words, (H, 1H) is a unital coalgebra,

where 1H =
(
εH |H≤0

)−1
(1). In other words, H is a k-coalgebra and 1H is an element

of H satisfying ∆H (1H) = 1H ⊗ 1H and εH (1H) = 1 (by the definition of a “unital
coalgebra”).

Since A is a graded k-algebra, we have

A`Am ⊆ A`+m for any ` ∈ N and m ∈ N. (591)

Each i ∈ N satisfies
a∗i (H) ⊆ Ai (592)

336. Thus, every integer i > 1 satisfies

a∗i (H) ⊆ A>1 (593)

336Proof of (592): We shall prove (592) by induction over i:
Induction base: Recall the map eH,A defined in Definition 1.12. Its definition yields eH,A = ηA ◦εH .

Thus, each h ∈ H satisfies

eH,A︸︷︷︸
=ηA◦εH

(h) = (ηA ◦ εH) (h) = ηA (εH (h)) = εH (h) · 1A︸︷︷︸
∈A0

(since A
is a graded k-algebra)

(by the definition of the map ηA)

∈ εH (h) ·A0 ⊆ A0 (since A0 is a k-vector subspace of A) .

In other words, eH,A (H) ⊆ A0. Now, a∗0︸︷︷︸
=eH,A

(H) = eH,A (H) ⊆ A0. In other words, (592) holds for

i = 0. This completes the induction base.
Induction step: Let j ∈ N. Assume that (592) holds for i = j. We must prove that (592) holds for

i = j + 1.
We have assumed that (592) holds for i = j. In other words, we have a∗j (H) ⊆ Aj . But

a∗(j+1) = a ∗ a∗j = µA ◦
(
a⊗ a⊗j

)
◦∆H (by the definition of convolution) .
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337.
Now, let x ∈ Ker (εH). Thus,

x ∈ Ker (εH) ⊆ H =
⋃
n∈N

H≤n (since H is filtered) .

In other words, there exists some n ∈ N satisfying x ∈ H≤n. Consider this x. Each
integer i > n+ 1 satisfies

a∗i (x) = 0 (594)

338. Also,
a∗0 (x) = 0 (595)

339. Note that n︸︷︷︸
≥0

+1 ≥ 1.

Thus,

a∗(j+1)︸ ︷︷ ︸
=µA◦(a⊗a⊗j)◦∆H

(H)

=
(
µA ◦

(
a⊗ a⊗j

)
◦∆H

)
(H) = µA

(a⊗ a⊗j
)∆H (H)︸ ︷︷ ︸

⊆H⊗H




⊆ µA

(a⊗ a⊗j
)

(H ⊗H)︸ ︷︷ ︸
⊆a(H)⊗a⊗j(H)

 ⊆ µA (a (H)⊗ a⊗j (H)
)

= a (H)︸ ︷︷ ︸
⊆A1

· a⊗j (H)︸ ︷︷ ︸
⊆Aj

(
by Lemma 15.5 (applied to U = a (H) and V = a⊗j (H) )

)
⊆ A1Aj ⊆ A1+j (by (591) (applied to ` = 1 and m = j))

= Aj+1 (since 1 + j = j + 1) .

In other words, (592) holds for i = j + 1. This completes the induction step. Thus, the induction
proof of (592) is complete.

337Proof of (593): Let i > 1 be an integer. Thus, i ∈ N. Hence, (592) yields a∗i (H) ⊆ Ai.
But the definition of A>1 yields A>1 =

∑
g∈N;
g>1

Ag.

Now, i ∈ N satisfies i > 1. Hence, Ai is an addend of the sum
∑
g∈N;
g>1

Ag (namely, the addend for

g = i). Hence, Ai ⊆
∑
g∈N;
g>1

Ag = A>1. Now, a∗i (H) ⊆ Ai ⊆ A>1. This proves (593).

338Proof of (594): Let i be an integer such that i > n+ 1. Then, i > n+ 1 > n ≥ 0, so that i ∈ N.

Thus, Remark 3.5 (applied to f = a) yields a∗i (H≤n) = 0. Now, x ∈ H≤n, so that a∗i

 x︸︷︷︸
∈H≤n

 ∈
a∗i (H≤n) = 0. In other words, a∗i (x) = 0. This proves (594).

339Proof of (595): Recall the map eH,A defined in Definition 1.12. Its definition yields eH,A = ηA◦εH .
But

a∗0︸︷︷︸
=eH,A=ηA◦εH

(x) = (ηA ◦ εH) (x) = ηA

 εH (x)︸ ︷︷ ︸
=0

(since x∈Ker(εH))

 = ηA (0) = 0

(since ηA is a k-linear map).
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The definition of e∗a yields

e∗a (x) =
∑
i≥0

a∗i (x)

i!︸ ︷︷ ︸
=

1

i!
a∗i(x)

=
∑
i≥0

1

i!
a∗i (x) =

∑
i≥0;
i≤n+1︸ ︷︷ ︸
=
n+1∑
i=0

1

i!
a∗i (x) +

∑
i≥0;
i>n+1

1

i!
a∗i (x)︸ ︷︷ ︸

=0
(by (594))

(since each i ≥ 0 satisfies either i ≤ n+ 1 or i > n+ 1 (but not both))

=
n+1∑
i=0

1

i!
a∗i (x) +

∑
i≥0;
i>n+1

1

i!
0

︸ ︷︷ ︸
=0

=
n+1∑
i=0

1

i!
a∗i (x) =

1

0!
a∗0 (x)︸ ︷︷ ︸

=0
(by (595))

+
n+1∑
i=1

1

i!
a∗i (x)

(here, we have split off the addend for i = 0 from the sum)

=
1

0!
0︸︷︷︸

=0

+
n+1∑
i=1

1

i!
a∗i (x) =

n+1∑
i=1

1

i!
a∗i (x) =

1

1!︸︷︷︸
=

1

1
=1

a∗1︸︷︷︸
=a

(x) +
n+1∑
i=2

1

i!
a∗i (x)

(
here, we have split off the addend for i = 0 from the sum

(this is allowed since n+ 1 ≥ 1)

)
= a (x) +

n+1∑
i=2

1

i!
a∗i (x) .

Subtracting a (x) from both sides of this equality, we find

e∗a (x)− a (x) =
n+1∑
i=2

1

i!
a∗i

(
x︸︷︷︸
∈H

)
∈

n+1∑
i=2

1

i!
a∗i (H)︸ ︷︷ ︸
⊆A>1

(by (593))

⊆
n+1∑
i=2

1

i!
A>1 ⊆ A>1

(since A>1 is a k-vector subspace of A). This proves Lemma 40.9.

Lemma 40.10. Let k be a field of characteristic 0. Let H be a connected
filtered k-coalgebra and, at the same time, a k-bialgebra with the same
underlying k-coalgebra structure. Let A be a commutative graded k-algebra
satisfying A = AlgGenk (A1).

Let b : A→ H be a k-algebra homomorphism satisfying b (A1) ⊆ Ker (εH).
Let a ∈ g (H,A) be an (εH , εH)-derivation satisfying a (H) ⊆ A1. Notice
that the k-linear map e∗a : H → A is well-defined (since a ∈ g (H,A)).

Assume further that

(a ◦ b) (x) = x for each x ∈ A1. (596)

Then, both maps e∗a ◦ b : A→ A and b : A→ H are injective.

Proof of Lemma 40.10. Lemma 15.11 (applied to f = a) yields that e∗a is a k-algebra
homomorphism.
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The two maps e∗a and b are k-algebra homomorphisms. Hence, their composition
e∗a ◦ b : A → A is a k-algebra homomorphism as well (since the composition of two
k-algebra homomorphisms always is a k-algebra homomorphism).

For each m ∈ N, we define a k-vector subspace A>m of A by A>m =
∑
g∈N;
g>m

Ag.

Each x ∈ A1 satisfies (e∗a ◦ b) (x)− x ∈ A>1
340. Thus, Lemma 40.5 (b) (applied

to f = e∗a ◦ b) shows that the map e∗a ◦ b is injective.
Next, let us recall the following basic fact about maps: If X, Y and Z are three

sets, and if α : X → Y and β : Y → Z are two maps such that β ◦ α is injective, then
the map α is injective.341 Applying this to X = A, Y = H, Z = A, α = b and β = e∗a,
we conclude that the map b is injective (since the map e∗a ◦ b is injective).

We thus have shown that both maps e∗a ◦ b : A→ A and b : A→ H are injective.
This proves Lemma 40.10.

Lemma 40.11. Let k be a field. Let C be a graded k-coalgebra. For each
m ∈ N, we define a k-vector subspace C>m of C by C>m =

∑
g∈N;
g>m

Cg. Then:

(a) We have C>0 ⊆ Ker (εC).

(b) Assume that the graded k-coalgebra C is connected. Then, C>0 =
Ker (εC).

Proof of Lemma 40.11. The map εC is k-linear. Hence, its kernel Ker (εC) is a k-vector
subspace of C.

Each positive integer g satisfies

Cg ⊆ Ker (εC) (597)

342.

340Proof. Let x ∈ A1. Then, (596) yields (a ◦ b) (x) = x. Hence, x = (a ◦ b) (x) = a (b (x)).

But b

 x︸︷︷︸
∈A1

 ∈ b (A1) ⊆ Ker (εH). Thus, Lemma 40.9 (applied to b (x) instead of x) yields

e∗a (b (x))− a (b (x)) ∈ A>1. Thus,

(e∗a ◦ b) (x)︸ ︷︷ ︸
=e∗a(b(x))

− x︸︷︷︸
=a(b(x))

= e∗a (b (x))− a (b (x)) ∈ A>1.

Qed.
341Proof. Let X, Y and Z be three sets. Let α : X → Y and β : Y → Z be two maps such that β ◦α

is injective. We must show that the map α is injective.

Let u and v be two elements of X such that α (u) = α (v). Then, (β ◦ α) (u) = β

α (u)︸ ︷︷ ︸
=α(v)

 =

β (α (v)) = (β ◦ α) (v). Since the map β ◦ α is injective, we obtain u = v from this.
Now, forget that we fixed u and v. We thus have shown that if u and v are two elements of X such

that α (u) = α (v), then u = v. In other words, the map α is injective. Qed.
342Proof of (597): Let g be a positive integer. Hence, g ∈ N.
Let us give k the usual grading (the one where k0 = k and kn = 0 for all positive n ∈ N).
Recall that C is a graded k-coalgebra. Thus, its counity map εC : C → k is graded. In other words,

εC (Cn) ⊆ kn for every n ∈ N. Applying this to n = g, we obtain εC (Cg) ⊆ kg.
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Now, the definition of C>0 yields

C>0 =
∑
g∈N;
g>0

Cg︸︷︷︸
⊆Ker(εC)
(by (597))

(598)

⊆
∑
g∈N;
g>0

Ker (εC) ⊆ Ker (εC)

(since Ker (εC) is a k-vector subspace of C). This proves Lemma 40.11 (a).
(b) We know that C is a graded k-coalgebra. Thus, Proposition 16.6 shows that(

C, (C≤n)n≥0

)
is a filtered k-coalgebra. As usual, we shall refer to this filtered k-

coalgebra
(
C, (C≤n)n≥0

)
simply as “the filtered k-coalgebra C”.

Remark 16.11 shows that the graded k-coalgebra C is connected if and only if the
filtered k-coalgebra C is connected. Thus, the filtered k-coalgebra C is connected (since
the graded k-coalgebra C is connected).

Remark 2.10 yields that C is a unital coalgebra with unity 1C =
(
εC |C≤0

)−1
(1).

In other words, (C, 1C) is a unital coalgebra, where 1C =
(
εC |C≤0

)−1
(1). In other

words, C is a k-coalgebra and 1C is an element of C satisfying ∆C (1C) = 1C ⊗ 1C and
εC (1C) = 1 (by the definition of a “unital coalgebra”).

Remark 2.12 yields that C is connected if and only if C≤0 = k·1C . Thus, C≤0 = k·1C
(since C is connected). By the definition of C≤0, we have C≤0 =

0⊕̀
=0

C` = C0. Thus,

C0 = C≤0 = k · 1C .
Now, C is graded; thus,

C =
⊕
g∈N

Cg = C0 ⊕

⊕
g∈N;
g>0

Cg


︸ ︷︷ ︸

=
∑
g∈N;
g>0

Cg

(since direct sums are sums)

(
here, we have split off the addend

for g = 0 from the direct sum

)

= C0 ⊕

∑
g∈N;
g>0

Cg


︸ ︷︷ ︸

=C>0

(by (598))

= C0 ⊕ C>0.

Now, let x ∈ Ker (εC). Then, x ∈ Ker (εC) ⊆ C = C0 ⊕ C>0 = C0 + C>0 (since
direct sums are sums). In other words, there exist y ∈ C0 and z ∈ C>0 such that
x = y + z. Consider these y and z.

We have y ∈ C0 = k · 1C . Thus, there exists some λ ∈ k such that y = λ · 1C .
Consider this λ.

But recall that kn = 0 for all positive n ∈ N (by the definition of the grading on k). Applying this to
n = g, we conclude that kg = 0. Thus, εC (Cg) ⊆ kg = 0, so that εC (Cg) = 0 and thus Cg ⊆ Ker (εC).
This proves (597).
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We have z ∈ C>0 ⊆ Ker (εC) (by Lemma 40.11 (a)) and thus εC (z) = 0. Also,
εC (x) = 0 (since x ∈ Ker (εC)). Thus,

0 = εC

 x︸︷︷︸
=y+z

 = εC (y + z) = εC (y) + εC (z)︸ ︷︷ ︸
=0

(since the map εC is k-linear)

= εC

 y︸︷︷︸
=λ·1C

 = εC (λ · 1C) = λ · εC (1C)︸ ︷︷ ︸
=1

(since the map εC is k-linear)

= λ.

Thus, λ = 0, so that y = λ︸︷︷︸
=0

·1C = 0. Hence, x = y︸︷︷︸
=0

+z = z ∈ C>0.

Now, forget that we fixed x. We thus have proven that x ∈ C>0 for each x ∈
Ker (εC). In other words, Ker (εC) ⊆ C>0. But Lemma 40.11 (a) yields C>0 ⊆
Ker (εC). Combining this with Ker (εC) ⊆ C>0, we obtain C>0 = Ker (εC). This
proves Lemma 40.11 (b).

Lemma 40.12. Let k be a field. Let C be a unital coalgebra. Let V and
W be two k-vector subspaces of C such that Ker (εC) = V ⊕W . Then,
there exists a k-linear map α : C → V that satisfies α (W + k · 1C) = 0 and
α |V = idV .

Proof of Lemma 40.12. Recall that Ker (εC) = V ⊕ W . In particular, V ⊕ W is a
well-defined internal direct sum. Let p : V ⊕W → V be the canonical projection from
this direct sum to its first addend V . Thus, p |V = idV and p |W= 0.

The map p is a k-linear map V ⊕W → V (since it is a canonical projection from
a direct sum to one of its addends). In other words, the map p is a k-linear map
Ker (εC)→ V (since C>0 = V ⊕W ).

We know that (C, 1C) is a unital coalgebra. In other words, C is a k-coalgebra and
1C is an element of C satisfying ∆C (1C) = 1C ⊗ 1C and εC (1C) = 1 (by the definition
of a “unital coalgebra”).

Consider the k-linear map eC,C : C → C. (Here, we are using the notation intro-
duced in Definition 2.14.)

Define a k-linear map ξ : C → C by ξ = idC −eC,C . 343 Then, each c ∈ C satisfies
ξ (c) ∈ Ker (εC) 344. Hence, we can define a map ξ′ : C → Ker (εC) by

(ξ′ (c) = ξ (c) for every c ∈ C) .

Consider this map ξ′. This map ξ′ is obtained from ξ by restricting the codomain to
Ker (εC) (since ξ′ (c) = ξ (c) for every c ∈ C). Hence, this map ξ′ is k-linear (since the
map ξ is k-linear).

Thus, ξ′ is a k-linear map C → Ker (εC), whereas p is a k-linear map Ker (εC)→ V .
Hence, the composition p ◦ ξ′ of these two maps is a k-linear map C → V .

343This is indeed a k-linear map, since both maps idC and eC,C are k-linear.
344Proof. Let c ∈ C. Then, the definition of eC,C yields eC,C = ηC ◦ εC , so that

eC,C︸︷︷︸
=ηC◦εC

(c) = (ηC ◦ εC) (c) = ηC (εC (c)) = εC (c) · 1C (by the definition of ηC) .
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Furthermore,
ξ′ (x) = x for each x ∈ Ker (εC) (599)

345. Hence, (p ◦ ξ′) (W ) = 0 346 and (p ◦ ξ′) (k · 1C) = 0 347. Hence, (p ◦ ξ′) (W + k · 1C) =

Now,

εC

 ξ︸︷︷︸
=idC −eC,C

(c)

 = εC

(idC −eC,C) (c)︸ ︷︷ ︸
=idC(c)−eC,C(c)

 = εC

idC (c)︸ ︷︷ ︸
=c

− eC,C (c)︸ ︷︷ ︸
=εC(c)·1C


= εC (c)− εC (εC (c) · 1C)︸ ︷︷ ︸

=εC(c)·εC(1C)
(since the map εC is k-linear)

= εC (c)− εC (c) · εC (1C)︸ ︷︷ ︸
=1

= εC (c)− εC (c) = 0.

In other words, ξ (c) ∈ Ker (εC). Qed.
345Proof of (599): Let x ∈ Ker (εC). Thus, x ∈ C and εC (x) = 0.
But the definition of eC,C yields eC,C = ηC ◦ εC , so that

eC,C︸︷︷︸
=ηC◦εC

(x) = (ηC ◦ εC) (x) = ηC

εC (x)︸ ︷︷ ︸
=0

 = ηC (0) = 0

(since the map ηC is k-linear). Now, the definition of ξ′ yields

ξ′ (x) = ξ︸︷︷︸
=idC −eC,C

(x) = (idC −eC,C) (x) = idC (x)︸ ︷︷ ︸
=x

− eC,C (x)︸ ︷︷ ︸
=0

= x.

Qed.
346Proof. Let x ∈ W . Then, x ∈ W ⊆ V ⊕W = Ker (εC). Thus, (599) shows that ξ′ (x) = x. But
x ∈ W ; therefore, (p |W ) (x) is well-defined. We have (p |W )︸ ︷︷ ︸

=0

(x) = 0 (x) = 0. Comparing this with

(p |W ) (x) = p (x), we obtain p (x) = 0.

Now, (p ◦ ξ′) (x) = p

ξ′ (x)︸ ︷︷ ︸
=x

 = p (x) = 0. Hence, x ∈ Ker (p ◦ ξ′).

Let us now forget that we fixed x. We thus have proven that x ∈ Ker (p ◦ ξ′) for each x ∈ W . In
other words, W ⊆ Ker (p ◦ ξ′). In other words, (p ◦ ξ′) (W ) = 0.

347Proof. The definition of eC,C yields eC,C = ηC ◦ εC , so that

eC,C︸︷︷︸
=ηC◦εC

(1C) = (ηC ◦ εC) (1C) = ηC

εC (1C)︸ ︷︷ ︸
=1

 = ηC (1)

= 1 · 1C (by the definition of the map ηC)

= 1C .

Now, the definition of ξ′ yields

ξ′ (1C) = ξ︸︷︷︸
=idC −eC,C

(1C) = (idC −eC,C) (1C) = idC (1C)︸ ︷︷ ︸
=1C

− eC,C (1C)︸ ︷︷ ︸
=1C

= 1C − 1C = 0.

Since the map ξ′ is k-linear, we have ξ′ (k · 1C) = k · ξ′ (1C)︸ ︷︷ ︸
=0

= k · 0 = 0. Now, (p ◦ ξ′) (k · 1C) =
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0 348. Furthermore, (p ◦ ξ′) |V = idV
349. Hence, there exists a k-linear map

α : C → V that satisfies α (W + k · 1C) = 0 and α |V = idV (namely, α = p ◦ ξ′). This
proves Lemma 40.12.

We are now ready to prove another form of Leray’s theorem:

Theorem 40.13. Let k be a field of characteristic 0. Let H be a connected
graded commutative bialgebra over k. For each m ∈ N, we define a k-vector
subspace H>m of H by H>m =

∑
g∈N;
g>m

Hg. Let V be a homogeneous subspace

of H such that H>0 = V ⊕ (H>0)2.

Let i denote the inclusion map V → H. Let b denote the k-algebra homo-
morphism symlift i : SymV → H 350.

(a) This map b is a k-algebra isomorphism.

(b) Let α : H → V be a k-linear map that satisfies α
(
(Ker (εH))2 + k · 1H

)
=

0 and α |V = idV . Define a k-linear map a : H → SymV by a = symincV ◦α.
Then, a ∈ g (H, SymV ), and thus the k-linear map e∗a : H → SymV is
well-defined. This map e∗a : H → SymV is a k-algebra isomorphism.351

Proof of Theorem 40.13. Recall that H is a k-bialgebra. Thus, εH : H → k is a k-
algebra homomorphism (by the axioms of a k-bialgebra).

We know that H is a graded k-bialgebra. Thus, Proposition 16.8 shows that(
H, (H≤n)n≥0

)
is a filtered k-bialgebra. As usual, we shall refer to this filtered k-

bialgebra
(
H, (H≤n)n≥0

)
simply as “the filtered k-bialgebra H”.

Remark 16.11 (applied to C = H) shows that the graded k-coalgebra H is connected
if and only if the filtered k-coalgebra H is connected. Thus, the filtered k-coalgebra H
is connected (since the graded k-coalgebra H is connected).

p

ξ′ (k · 1C)︸ ︷︷ ︸
=0

 = p (0) = 0 (since the map p is k-linear).

348Proof. The map p ◦ ξ′ is k-linear. Thus,

(p ◦ ξ′) (W + k · 1C) = (p ◦ ξ′) (W )︸ ︷︷ ︸
=0

+ (p ◦ ξ′) (k · 1C)︸ ︷︷ ︸
=0

= 0 + 0 = 0.

349Proof. Let x ∈ V . Then, x ∈ V ⊆ V ⊕ W = Ker (εC). Thus, (599) shows that ξ′ (x) = x.
But x ∈ V ; thus, the element (p |V ) (x) is well-defined. Hence, (p |V )︸ ︷︷ ︸

=idV

(x) = idV (x) = x, so that

x = (p |V ) (x) = p (x). Hence, p (x) = x.
Now,

((p ◦ ξ′) |V ) (x) = (p ◦ ξ′) (x) = p

ξ′ (x)︸ ︷︷ ︸
=x

 = p (x) = x = idV (x) .

Now, forget that we fixed x. We thus have shown that ((p ◦ ξ′) |V ) (x) = idV (x) for each x ∈ V . In
other words, (p ◦ ξ′) |V = idV .

350We are using the notations introduced in Definition 38.1.
351The maps b and e∗a are not mutually inverse in general.
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Remark 2.10 (applied to C = H) yields that H is a unital coalgebra with unity

1H =
(
εH |H≤0

)−1
(1). In other words, (H, 1H) is a unital coalgebra, where 1H =(

εH |H≤0

)−1
(1).

(b) We have a
(
(Ker (εH))2 + k · 1H

)
= 0 352. But Theorem 15.9 (applied to A =

SymV ) shows that a is an (εH , εH)-derivation if and only if a
(
(Ker (εH))2 + k · 1H

)
=

0. Hence, a is an (εH , εH)-derivation (since a
(
(Ker (εH))2 + k · 1H

)
= 0). Hence,

Proposition 38.14 (applied to A = SymV and h = a) shows that a ∈ g (H, SymV ).
Thus, the k-linear map e∗a : H → SymV is well-defined.

We have a |V = symincV
353. Also, a (H) = symincV (V ) 354.

Lemma 40.8 yields that the k-algebra SymV is generated by its subset symincV (V ).
In other words, the k-algebra SymV is generated by its subset a (H) (since a (H) =
symincV (V )). In other words, the subset a (H) of SymV generates the k-algebra
SymV . Hence, Corollary 38.13 (applied to A = SymV and f = a) shows that the map
e∗a : H → SymV is a surjective k-algebra homomorphism.

It is well-known that SymV is a graded k-algebra, with grading given by

(SymV )n = Symn V for each n ∈ N.

355 In particular, (SymV )1 = Sym1 V = symincV (V ).
We have b ◦ symincV = i 356.

352Proof. We have

a︸︷︷︸
=symincV ◦α

(
(Ker (εH))

2
+ k · 1H

)
= (symincV ◦α)

(
(Ker (εH))

2
+ k · 1H

)

= symincV

α((Ker (εH))
2

+ k · 1H
)

︸ ︷︷ ︸
=0

 = symincV (0) = 0

(since the map symincV is k-linear).
353Proof. Let v ∈ V . Then, (a |V ) (v) = a︸︷︷︸

=symincV ◦α

(v) = (symincV ◦α) (v) = symincV (α (v)).

But from v ∈ V , we obtain (α |V ) (v) = α (v), so that α (v) = (α |V )︸ ︷︷ ︸
=idV

(v) = idV (v) = v. Thus,

(a |V ) (v) = symincV

α (v)︸ ︷︷ ︸
=v

 = symincV (v).

Now, forget that we fixed v. We thus have proven that (a |V ) (v) = symincV (v) for each v ∈ V . In
other words, a |V = symincV .

354Proof. Recall that α |V = idV ; that is, idV = α |V .

Now, each v ∈ V satisfies v = idV︸︷︷︸
=α|V

(v) = (α |V ) (v) = α

 v︸︷︷︸
∈V⊆H

 ∈ α (H). Thus, V ⊆ α (H).

Combining this with α (H) ⊆ V (which is obvious, since α is a map H → V ), we obtain V = α (H).
Thus, α (H) = V .

But a︸︷︷︸
=symincV ◦α

(H) = (symincV ◦α) (H) = symincV

α (H)︸ ︷︷ ︸
=V

 = symincV (V ).

355Notice that this grading has nothing to do with the grading on H.
356Proof. Recall that symlift i is the unique k-algebra homomorphism Φ : SymV → H satisfying Φ ◦
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Recall that the k-algebra SymV is generated by its subset symincV (V ). In other
words, the k-subalgebra of SymV generated by symincV (V ) is SymV . In other words,
AlgGenk (symincV (V )) is SymV 357. In other words, AlgGenk (symincV (V )) =
SymV . Thus,

SymV = AlgGenk

symincV (V )︸ ︷︷ ︸
=(SymV )1

 = AlgGenk ((SymV )1) .

Moreover, it is well-known that the k-algebra SymV is commutative.
The k-algebra homomorphism b : SymV → H satisfies b ((SymV )1) ⊆ Ker (εH)

358. The (εH , εH)-derivation a ∈ g (H, SymV ) satisfies a (H) ⊆ (SymV )1
359. Fur-

thermore, we have

(a ◦ b) (x) = x for each x ∈ (SymV )1

360. Hence, Lemma 40.10 (applied to A = SymV ) shows that both maps e∗a ◦ b :
SymV → SymV and b : A→ SymV are injective.

symincV = i (because this is how symlift i was defined). Thus, symlift i is a k-algebra homomorphism
SymV → H and satisfies (symlift i) ◦ symincV = i.

Now, b︸︷︷︸
=symlift i

◦ symincV = (symlift i) ◦ symincV = i.

357since AlgGenk (symincV (V )) is the k-subalgebra of SymV generated by symincV (V ) (by the
definition of AlgGenk (symincV (V )))

358Proof. We have

b

 (SymV )1︸ ︷︷ ︸
=symincV (V )

 = b (symincV (V )) = (b ◦ symincV )︸ ︷︷ ︸
=i

(V ) = i (V ) = V

(since i is an inclusion map).
Lemma 40.11 (a) (applied to C = H) shows that H>0 ⊆ Ker (εH).

But recall that H>0 = V ⊕ (H>0)
2 ⊇ V , so that V ⊆ H>0 ⊆ Ker (εH). Thus, b ((SymV )1) = V ⊆

Ker (εH).

359Proof. We have a︸︷︷︸
=symincV ◦α

(H) = (symincV ◦α) (H) = symincV

α (H)︸ ︷︷ ︸
⊆V

 ⊆ symincV (V ) =

(SymV )1.
360Proof. Let x ∈ (SymV )1. Then, x ∈ (SymV )1 = symincV (V ). In other words, there exists some
w ∈ V such that x = symincV (w). Consider this w.

From w ∈ V , we obtain α (w) = (α |V )︸ ︷︷ ︸
=idV

(w) = idV (w) = w.

Applying the map b to both sides of the equality x = symincV (w), we find

b (x) = b (symincV (w)) = (b ◦ symincV )︸ ︷︷ ︸
=i

(w) = i (w) = w

(since i is merely an inclusion map). Now,

(a ◦ b) (x) = a︸︷︷︸
=symincV ◦α

b (x)︸︷︷︸
=w

 = (symincV ◦α) (w) = symincV

α (w)︸ ︷︷ ︸
=w

 = symincV (w) = x.

Qed.
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On the other hand, H>0 = V ⊕ (H>0)2 = V + (H>0)2 (since direct sums are sums).
Furthermore, H0 = k · 1H (by Proposition 29.14). Thus, Lemma 40.7 (b) (applied to
A = H) yields H = AlgGenk V .

Now, V = i (V ) 361. Hence, H = AlgGenk V︸︷︷︸
=i(V )

= AlgGenk (i (V )).

Now, recall that AlgGenk (i (V )) is the k-subalgebra of H generated by i (V ) (by the
definition of AlgGenk (i (V ))). In other words, H is the k-subalgebra of H generated
by i (V ) (since H = AlgGenk (i (V ))). In other words, the image i (V ) generates the
k-algebra H. Hence, Lemma 38.8 (a) (applied to A = H and ϕ = i) shows that the
k-algebra homomorphism symlift i : SymV → H is surjective. In other words, the
k-algebra homomorphism b : SymV → H is surjective (since b = symlift i).

We now know that the map b is both injective and surjective. Hence, b is bijective.
Thus, b is invertible. Therefore,

b is a k-algebra isomorphism (600)

(since b is an invertible k-algebra homomorphism). Hence, the inverse b−1 of b is well-
defined, and also is a k-algebra isomorphism. This map b−1 is invertible (since it is a
k-algebra isomorphism), thus bijective, thus injective.

Recall that the map e∗a◦b is surjective. Thus, both maps e∗a◦b and b−1 are injective.
Therefore, their composition (e∗a ◦ b) ◦ b−1 is also injective (since the composition of
any two injective maps is injective). In other words, the map e∗a is injective (since
(e∗a ◦ b) ◦ b−1 = e∗a ◦ b ◦ b−1︸ ︷︷ ︸

=id

= e∗a).

We now know that the map e∗a is both injective and surjective. Thus, e∗a is bijective.
Hence, e∗a is invertible. Thus, e∗a is a k-algebra isomorphism (since e∗a is an invertible
k-algebra homomorphism). This proves Theorem 40.13 (b).

(a) We are going to apply the fact (600), which we have proven during our above
proof of Theorem 40.13 (b). However, in order to do this, we must ensure that we
are in the situation of Theorem 40.13 (b); that is, we must construct a k-linear map
α : H → V with the properties that α

(
(Ker (εH))2 + k · 1H

)
= 0 and α |V = idV .

However, this is easy: Lemma 40.11 (b) (applied to C = H) shows that H>0 =
Ker (εH). Hence, Ker (εH) = H>0 = V ⊕ (H>0)2. Thus, Lemma 40.12 (applied to
C = H and W = (H>0)2) shows that there exists a k-linear map α : H → V
that satisfies α

(
(H>0)2 + k · 1H

)
= 0 and α |V = idV . Consider this α. We have

α
(
(H>0)2 + k · 1H

)
= 0. SinceH>0 = Ker (εH), this rewrites as α

(
(Ker (εH))2 + k · 1H

)
=

0. Thus, we now know that α is a k-linear mapH → V satisfying α
(
(Ker (εH))2 + k · 1H

)
=

0 and α |V = idV . Therefore, the hypotheses of Theorem 40.13 (b) are satisfied. Thus,
the fact (600) shows that b is a k-algebra isomorphism. This proves Theorem 40.13
(a).

Remark 40.14. Consider the situation of Theorem 40.13. We can say
slightly more: Namely, the k-algebra isomorphism b : SymV → H is
graded, provided that the k-algebra SymV has been equipped with the
appropriate grading. (To equip SymV with the appropriate grading, we
have to regard V as a graded k-vector space362, and extend this grading to

361Proof. Recall that i is merely an inclusion map. Hence, i (V ) = V , so that V = i (V ).
362Indeed, V is canonically graded, since it is a homogeneous subspace of the graded k-vector space
H.
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SymV . Note that this is not the grading on SymV that was used in the
proof of Theorem 40.13.)

The proof of this fact is left to the reader; it is fairly straightforward.
Similarly, in the situation of Theorem 40.13 (b), the k-algebra isomorphism
e∗a : H → SymV is graded as well (where, again, SymV is equipped with
the appropriate grading).

We shall next transform Theorem 40.13 into a form more suited for applications.
But first, let us prove a simple property of graded maps, similar in spirit to Remark 18.2:

Remark 40.15. Let k be a field. Let U and V be two graded k-vector
spaces. Let f : U → V be a graded k-linear map. Then, f (U) is a
homogeneous subspace of V .

Proof of Remark 40.15. If W is any k-vector subspace of V , then the internal direct
sum

⊕
n∈N

(W ∩ Vn) is always well-defined363. Applying this to W = f (U), we conclude

that the internal direct sum
⊕
n∈N

(f (U) ∩ Vn) is well-defined.

But U is graded. Thus, U =
⊕
n∈N

Un =
∑
n∈N

Un (since direct sums are sums).

Also, the map f is graded. In other words, every n ∈ N satisfies

f (Un) ⊆ Vn (601)

(by the definition of a graded map). Hence, every n ∈ N satisfies

f (Un) ⊆ f (U) ∩ Vn (602)

364.
Applying the map f to both sides of the equality U =

∑
n∈N

Un, we obtain

f (U) = f

(∑
n∈N

Un

)
=
∑
n∈N

f (Un)︸ ︷︷ ︸
⊆f(U)∩Vn
(by (602))

(since the map f is k-linear)

⊆
∑
n∈N

(f (U) ∩ Vn) .

Combining this with∑
n∈N

(f (U) ∩ Vn)︸ ︷︷ ︸
⊆f(U)

⊆
∑
n∈N

f (U) ⊆ f (U) (since f (U) is a k-vector space) ,

we obtain
f (U) =

∑
n∈N

(f (U) ∩ Vn) . (603)

363This was proven during Definition 18.1.

364Proof of (602): Let n ∈ N. Then, (601) yields f (U) ⊆ Vn. Combining f

 Un︸︷︷︸
⊆U

 ⊆ f (U) with

f (U) ⊆ Vn, we obtain f (Un) ⊆ f (U) ∩ Vn. This proves (602).
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But recall that the internal direct sum
⊕
n∈N

(f (U) ∩ Vn) is well-defined. It satisfies

⊕
n∈N

(f (U) ∩ Vn) =
∑
n∈N

(f (U) ∩ Vn) (since direct sums are sums)

= f (U) (by (603)) .

Thus, f (U) =
⊕
n∈N

(f (U) ∩ Vn).

But f (U) is a k-vector subspace of V (since f : U → V is a k-linear map). Hence,
f (U) is a homogeneous subspace of V if and only if f (U) =

⊕
n∈N

(f (U) ∩ Vn) (by the

definition of a “homogeneous subspace”). Thus, f (U) is a homogeneous subspace of
V (since we know that f (U) =

⊕
n∈N

(f (U) ∩ Vn)). This proves Remark 40.15.

We can now re-package Theorem 40.13 into the following corollary:

Corollary 40.16. Let k be a field of characteristic 0. Let H be a connected
graded commutative bialgebra over k.

Let d : H → H be a graded k-linear map that is a projection (i.e., it satisfies
d ◦ d = d) and satisfies Ker d = H0 + (Ker (εH))2.

Let V = d (H). Let i denote the inclusion map V → H. Let b denote the
k-algebra homomorphism symlift i : SymV → H 365.

(a) This map b is a k-algebra isomorphism.

(b) Let α : H → V be the map defined by (α (x) = d (x) for each x ∈ H).
It is easy to see that this map α is well-defined and k-linear. Define a k-
linear map a : H → SymV by a = symincV ◦α. Then, a ∈ g (H, SymV ),
and thus the k-linear map e∗a : H → SymV is well-defined. This map
e∗a : H → SymV is a k-algebra isomorphism.366

Proof of Corollary 40.16. For each m ∈ N, we define a k-vector subspace H>m of H
by H>m =

∑
g∈N;
g>m

Hg. Notice that H = H0 +H>0
367.

Proposition 29.14 yields H0 = k · 1H .

365We are using the notations introduced in Definition 38.1.
366The maps b and e∗a are not mutually inverse in general.
367Proof. The k-vector space H is graded. Hence, H =

⊕
g∈N

Hg =
∑
g∈N

Hg (since direct sums are

sums).
The definition of H>0 yields H>0 =

∑
g∈N;
g>0

Hg. But

H =
∑
g∈N

Hg = H0 +
∑
g∈N;
g>0

Hg

︸ ︷︷ ︸
=H>0

(
here, we have split off the addend

for g = 0 from the sum

)

= H0 +H>0.
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Remark 40.15 (applied to H, H and d instead of U , V and f) shows that d (H)
is a homogeneous subspace of H. In other words, V is a homogeneous subspace of H
(since V = d (H)).

Lemma 40.11 (b) (applied to C = H) shows that H>0 = Ker (εH). Also, (H>0)2 ⊆
H>0

368.
Recall that the map d is graded. Hence,

d (H>0) ⊆ H>0 (604)

369.
Recall that d is a projection. In other words, d ◦ d = d.

368Proof. Recall that H is a k-bialgebra. Thus, the map εH is a k-algebra homomorphism (by the
axioms of a k-bialgebra). Hence, its kernel Ker (εH) is an ideal of H. In other words, H>0 is an ideal

of H (since H>0 = Ker (εH)). Hence, HH>0 ⊆ H>0 and H>0H ⊆ H>0. Now, (H>0)
2

= H>0H>0︸︷︷︸
⊆H

⊆

H>0H ⊆ H>0.
369Proof. The map d is graded. In other words, every n ∈ N satisfies

d (Hn) ⊆ Hn (605)

(by the definition of a graded map). Now, the definition of H>0 yields H>0 =
∑
g∈N;
g>0

Hg. Applying the

map d to both sides of this equality, we obtain

d (H>0) = d

∑
g∈N;
g>0

Hg

 =
∑
g∈N;
g>0

d (Hg)︸ ︷︷ ︸
⊆Hg

(by (605)
(applied to n=g))

(since the map d is k-linear)

⊆
∑
g∈N;
g>0

Hg = H>0.
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Now, it is easy to see that H>0 ⊆ V + (H>0)2 370 and V + (H>0)2 ⊆ H>0
371.

Combining these two relations, we obtain H>0 = V + (H>0)2.

370Proof. Let x ∈ H>0. The map d is k-linear; thus, we have

d (x− d (x)) = d (x)− d (d (x))︸ ︷︷ ︸
=(d◦d)(x)

= d (x)− (d ◦ d)︸ ︷︷ ︸
=d

(x) = d (x)− d (x) = 0.

In other words, x − d (x) ∈ Ker d. In light of Ker d = H0 +

Ker (εH)︸ ︷︷ ︸
=H>0


2

= H0 + (H>0)
2
, this

rewrites as x − d (x) ∈ H0 + (H>0)
2
. In other words, there exist y ∈ H0 and z ∈ (H>0)

2
such that

x− d (x) = y + z. Consider these y and z.
We shall show that y = 0. Indeed, we have y ∈ H0 = k · 1H ; thus, there exists some λ ∈ k such that

y = λ · 1H . Consider this λ.
We have z ∈ (H>0)

2 ⊆ H>0 = Ker (εH) and thus εH (z) = 0.
Recall that H is a k-bialgebra. Hence, εH (1H) = 1 (by the axioms of a k-bialgebra). Now,

εH

 y︸︷︷︸
=λ·1H

 = εH (λ · 1H) = λ · εH (1H)︸ ︷︷ ︸
=1

(since the map εH is k-linear)

= λ.

We have d

 x︸︷︷︸
∈H>0

 ⊆ d (H>0) ⊆ H>0 (by (604)). Thus, d (x) ∈ H>0 = Ker (εH), so that

εH (d (x)) = 0. Now, let us apply the map εH to both sides of the equality x − d (x) = y + z.
We thus obtain

εH (x− d (x)) = εH (y + z) = εH (y)︸ ︷︷ ︸
=λ

+ εH (z)︸ ︷︷ ︸
=0

(since the map ε is k-linear)

= λ.

Hence,
λ = εH (x− d (x)) = εH (x)︸ ︷︷ ︸

=0
(since x∈H>0=Ker(εH))

− εH (d (x))︸ ︷︷ ︸
=0

= 0.

Hence, y = λ︸︷︷︸
=0

·1H = 0. Thus, x − d (x) = y︸︷︷︸
=0

+z = z, so that x = d

 x︸︷︷︸
∈H

 + z︸︷︷︸
∈(H>0)2

∈

d (H)︸ ︷︷ ︸
=V

+ (H>0)
2

= V + (H>0)
2
.

Now, forget that we fixed x. We thus have shown that each x ∈ H>0 satisfies x ∈ V + (H>0)
2
. In

other words, H>0 ⊆ V + (H>0)
2
.

371Proof. We have H0 ⊆ H0 + (Ker (εH))
2

= Ker d and thus d (H0) = 0.
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But V ∩ (H>0)2 = 0 372. Hence, the internal direct sum V ⊕ (H>0)2 is well-
defined. This internal direct sum satisfies V ⊕ (H>0)2 = V + (H>0)2. Comparing this
with H>0 = V + (H>0)2, we obtain H>0 = V ⊕ (H>0)2. Theorem 40.13 (a) thus yields
that the map b is a k-algebra isomorphism. This proves Corollary 40.16 (a).

(b) Let us first prove that the map α is well-defined and k-linear.

Every x ∈ H satisfies d

(
x︸︷︷︸
∈H

)
∈ d (H) = V . Thus, the map α : H → V is well-

defined (since this map is defined by (α (x) = d (x) for each x ∈ H)). Furthermore,
the map α is k-linear373.

Now, it remains to show that a ∈ g (H, SymV ), and that the map e∗a : H → SymV
is a k-algebra isomorphism.

For every subset T of H, we have

α (T ) =

 α (x)︸ ︷︷ ︸
=d(x)

(by the definition of α)

| x ∈ T

 = {d (x) | x ∈ T} = d (T ) .

Applying this to T = (Ker (εH))2 + k · 1H , we obtain

α
(
(Ker (εH))2 + k · 1H

)
= d

(Ker (εH))2 + k · 1H︸ ︷︷ ︸
=H0

 = d

 (Ker (εH))2 +H0︸ ︷︷ ︸
=H0+(Ker(εH))2=Ker d


= d (Ker d) = 0.

But

V = d

 H︸︷︷︸
=H0+H>0

 = d (H0 +H>0) = d (H0)︸ ︷︷ ︸
=0

+d (H>0) (since the map d is k-linear)

= d (H>0) ⊆ H>0 (by (604)) .

Now,
V︸︷︷︸
⊆H>0

+ (H>0)
2︸ ︷︷ ︸

⊆H>0

⊆ H>0 +H>0 ⊆ H>0 (since H>0 is a k-vector space) .

372Proof. Let x ∈ V ∩ (H>0)
2
. Then, x ∈ V ∩ (H>0)

2 ⊆ V = d (H). Thus, there exists some y ∈ H
such that x = d (y). Consider this y.

Now, d

 x︸︷︷︸
=d(y)

 = d (d (y)) = (d ◦ d)︸ ︷︷ ︸
=d

(y) = d (y) = x.

But x ∈ V ∩ (H>0)
2 ⊆

 H>0︸︷︷︸
=Ker(εH)


2

= (Ker (εH))
2 ⊆ H0 + (Ker (εH))

2
= Ker d, so that d (x) = 0.

Comparing this with d (x) = x, we obtain x = 0.

Now, forget that we fixed x. We thus have shown that every x ∈ V ∩ (H>0)
2

satisfies x = 0. In

other words, V ∩ (H>0)
2

= 0.
373Proof. This map α is obtained from d by restricting the codomain to V (since α (x) = d (x) for

every x ∈ H). Hence, this map α is k-linear (since the map d is k-linear).
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Moreover, α |V = idV
374. Theorem 40.13 (b) thus shows that a ∈ g (H, SymV ), and

that the map e∗a : H → SymV is a k-algebra isomorphism. This proves Corollary 40.16
(b).

Corollary 40.16 can be applied to various choices of the map d. One obvious choice
is the Eulerian idempotent Log id; however, this results in nothing new, but just a
weaker version of Theorem 38.2 (d)375. However, we can also apply it to the Dynkin
idempotents, and then we obtain something new. Actually, let us first extend Theo-
rem 29.17:

Theorem 40.17. Let k be a field of characteristic 0. Let H be a commu-
tative graded k-bialgebra. Let EH be defined according to Definition 27.1.

Let P : H → H and Q : H → H be two graded k-algebra homomorphisms
satisfying εH ◦P = εH , εH ◦Q = εH and P ∗ idH ∗Q = eH,H . Here, the map
eH,H is defined to be the map ηH ◦ εH : H → H (this definition of the map
eH,H is identical with the definition of the map eH,A in Definition 1.12).

Let d be the map Einv
H ◦ (P ∗ EH ∗Q) : H → H.

(a) The map d is a projection (i.e., it satisfies d ◦ d = d) and satisfies
Ker d = H0 + (Ker (εH))2.

(b) The map d is graded.

Let V = d (H). Let i denote the inclusion map V → H. Let b denote the
k-algebra homomorphism symlift i : SymV → H 376.

(c) This map b is a k-algebra isomorphism.

(d) Let α : H → V be the map defined by (α (x) = d (x) for each x ∈ H).
It is easy to see that this map α is well-defined and k-linear. Define a k-
linear map a : H → SymV by a = symincV ◦α. Then, a ∈ g (H, SymV ),
and thus the k-linear map e∗a : H → SymV is well-defined. This map
e∗a : H → SymV is a k-algebra isomorphism.377

Proof of Theorem 40.17. Theorem 29.17 shows that the map Einv
H ◦ (P ∗ EH ∗Q) is

a projection such that Ker
(
Einv
H ◦ (P ∗ EH ∗Q)

)
= H0 + (Ker (εH))2. Since Einv

H ◦
(P ∗ EH ∗Q) = d (because d was defined to be Einv

H ◦ (P ∗ EH ∗Q)), this rewrites as
follows: The map d is a projection such that Ker d = H0 + (Ker (εH))2. This proves
Theorem 40.17 (a).

374Proof. Let x ∈ V . The definition of α yields α (x) = d (x).
But x ∈ V = d (H). Thus, there exists some y ∈ H such that x = d (y). Consider this y.

Now, d

 x︸︷︷︸
=d(y)

 = d (d (y)) = (d ◦ d)︸ ︷︷ ︸
=d

(y) = d (y) = x. Hence, α (x) = d (x) = x.

Finally, x ∈ V , so that (α |V ) (x) = α (x) = x = idV (x).
Now, forget that we fixed x. We thus have shown that (α |V ) (x) = idV (x) for each x ∈ V . In other

words, α |V = idV .
375It is a weaker version for two reasons: Firstly, it requires H to be graded (not just filtered);

secondly, it does not prove that the maps symlift j and e∗q are mutually inverse.
376We are using the notations introduced in Definition 38.1.
377The maps b and e∗a are not mutually inverse in general.
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In the proof of Theorem 29.12, we have shown that the map P ∗EH ∗Q is graded.
Furthermore, Corollary 27.12 (c) (applied to H instead of V ) shows that the map Einv

H

is graded.
Now, recall that d = Einv

H ◦ (P ∗ EH ∗Q). Hence, the map d is the composition of
the two graded maps Einv

H and P ∗ EH ∗ Q (since we know that both maps Einv
H and

P ∗EH ∗Q are graded), and therefore itself is a graded map (since any composition of
two graded maps must be a graded map). This proves Theorem 40.17 (b).

We thus conclude that the hypotheses of Corollary 40.16 are satisfied.
(c) Thus, Corollary 40.16 (a) shows that the map b is a k-algebra isomorphism.

This proves Theorem 40.17 (c).
(d) Furthermore, Corollary 40.16 (b) shows that the map α is well-defined and

k-linear, and that a ∈ g (H, SymV ), and that the map e∗a : H → SymV is a k-algebra
isomorphism. This proves Theorem 40.17 (d).

Let us now specialize Theorem 40.17 to the actual Dynkin idempotents:

Corollary 40.18. Let k be a field of characteristic 0. Let H be a commu-
tative graded k-Hopf algebra. Let S be the antipode of H. Define a map
EH : H → H according to Definition 27.1. Define a map Einv

H : H → H
according to Definition 27.9.

Let d : H → H be one of the two maps Einv
H ◦ (EH ∗ S) and Einv

H ◦ (S ∗ EH).

(a) The map d is a projection (i.e., it satisfies d ◦ d = d) and satisfies
Ker d = H0 + (Ker (εH))2.

(b) The map d is graded.

Let V = d (H). Let i denote the inclusion map V → H. Let b denote the
k-algebra homomorphism symlift i : SymV → H 378.

(c) This map b is a k-algebra isomorphism.

(d) Let α : H → V be the map defined by (α (x) = d (x) for each x ∈ H).
It is easy to see that this map α is well-defined and k-linear. Define a k-
linear map a : H → SymV by a = symincV ◦α. Then, a ∈ g (H, SymV ),
and thus the k-linear map e∗a : H → SymV is well-defined. This map
e∗a : H → SymV is a k-algebra isomorphism.379

Proof of Corollary 40.18. Just as in the proof of Corollary 29.8, we can prove the
following facts:

• The map S is a k-algebra homomorphism from H to H.

• The map eH,H is a k-algebra homomorphism (where eH,H is defined as according
to Definition 1.12).

• We have S = id
∗(−1)
H .

• We have S ∗ idH ∗eH,H = eH,H and eH,H ∗ idH ∗S = eH,H .

378We are using the notations introduced in Definition 38.1.
379The maps b and e∗a are not mutually inverse in general.
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Just as in the proof of Corollary 29.13, we can prove the following facts:

• We have εH ◦ eH,H = εH and εH ◦ S = εH .

• The maps eH,H and S are graded.

Now, there exist two graded k-algebra homomorphisms P : H → H
and Q : H → H satisfying εH ◦ P = εH , εH ◦Q = εH ,

P ∗ idH ∗Q = eH,H and d = Einv
H ◦ (P ∗ EH ∗Q)

 (606)

380. Consider these P and Q. Thus, the hypotheses of Theorem 40.17 are satisfied.
Hence, the four parts of Corollary 40.18 follow immediately from the corresponding
four parts of Theorem 40.17.

§41. A final remark on commutative rings

Let us make one final remark about generalizing the preceding results:
In §14, we noticed that most of the results in §1-§13, and most of the proofs, do

not require k to be a field; only minor modifications are required to make them work
when k is just a commutative ring with unity. Something similar can be said about the
results of §15-§40: All theorems stated in §15-§40 still hold if k is just a commutative
ring with unity, as long as the following replacements are made:

380Proof of (606): Recall that eH,H is the unity of the convolution algebra L (H,H). Thus, eH,H ∗
EH = EH and EH ∗ eH,H = EH .

We know that d is one of the two maps Einv
H ◦ (EH ∗ S) and Einv

H ◦ (S ∗ EH). Thus, we are in one
of the following two cases:

Case 1: We have d = Einv
H ◦ (EH ∗ S).

Case 2: We have d = Einv
H ◦ (S ∗ EH).

Let us first consider Case 1. In this case, we have d = Einv
H ◦ (EH ∗ S). Thus, d = Einv

H ◦ EH︸︷︷︸
=eH,H∗EH

∗S

 = Einv
H ◦ (eH,H ∗ EH ∗ S).

Altogether, we thus know that eH,H : H → H and S : H → H are two graded k-algebra homomor-
phisms satisfying εH ◦ eH,H = εH , εH ◦S = εH , eH,H ∗ idH ∗S = eH,H and d = Einv

H ◦ (eH,H ∗ EH ∗ S).
Hence, there exist two graded k-algebra homomorphisms P : H → H and Q : H → H satisfying
εH ◦ P = εH , εH ◦Q = εH , P ∗ idH ∗Q = eH,H and d = Einv

H ◦ (P ∗ EH ∗Q) (namely, P = eH,H and
Q = S). Thus, (606) is proven in Case 1.

Let us now consider Case 2. In this case, we have d = Einv
H ◦ (S ∗ EH). Thus, d = Einv

H ◦S ∗ EH︸︷︷︸
=EH∗eH,H

 = Einv
H ◦ (S ∗ EH ∗ eH,H).

Altogether, we thus know that S : H → H and eH,H : H → H are two graded k-algebra homomor-
phisms satisfying εH ◦S = εH , εH ◦ eH,H = εH , S ∗ idH ∗eH,H = eH,H and d = Einv

H ◦ (S ∗ EH ∗ eH,H).
Hence, there exist two graded k-algebra homomorphisms P : H → H and Q : H → H satisfying
εH ◦ P = εH , εH ◦ Q = εH , P ∗ idH ∗Q = eH,H and d = Einv

H ◦ (P ∗ EH ∗Q) (namely, P = S and
Q = eH,H). Thus, (606) is proven in Case 2.

We have thus proven (606) in each of the two Cases 1 and 2. Since these two Cases cover all
possibilities, we thus conclude that (606) always holds.
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• Any occurrence of “k-vector space” must be replaced by “k-module”.

• Any requirement that k be a field of characteristic 0 must be replaced by a
requirement that k be a commutative Q-algebra.

• The definition of the notion of a “filtered k-coalgebra” has to be replaced by the
Definition 14.1.

Moreover, all of the proofs in §15-§40 can be easily adjusted to the general case
when k is just a commutative ring with unity. The meaning of the word “adjust” here
(i. e., the exact changes that have to be made to the proofs) is the same as the one
explained in §14.

Note that, while the notion of a “filtered k-coalgebra” took a little bit of thinking
to be adjusted to the case when k is a ring, the notion of a “graded k-coalgebra”
generalizes in the most obvious way, since direct sums commute with tensor products
over arbitrary rings (not only over fields).
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