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Digraphs

o Definition. A digraph (= directed graph) means a pair
(V,A) of a finite set V and a subset AC V x V.
The elements (u, v) € A are called arcs of this digraph, and
are drawn accordingly.

o Example.

2/29



Digraphs

o Definition. A digraph (= directed graph) means a pair
(V,A) of a finite set V and a subset AC V x V.
The elements (u, v) € A are called arcs of this digraph, and
are drawn accordingly.

o Example.

@ Thus, we allow loops ((u, u) € A) and antiparallel arcs
((u,v) € A and (v,u) € A) but not parallel arcs (A is not a
multiset).
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The complement of a digraph

e Definition. Let D = (V, A) be a digraph. Then, D denotes
the complement of D; this is the digraph (V, (V x V) \ A).
Its arcs are the non-arcs of D.
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e Definition. Let D = (V, A) be a digraph. Then, D denotes
the complement of D; this is the digraph (V, (V x V) \ A).
Its arcs are the non-arcs of D.

o Example.

o
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Tournaments

e Definition. A digraph D = (V, A) is loopless if it has no
loops (i.e., no arcs (u, u)).
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Tournaments

e Definition. A digraph D = (V, A) is loopless if it has no
loops (i.e., no arcs (u, u)).

o Definition. A loopless digraph D = (V, A) is a tournament
if it has the following property: For any distinct u,v € V,
exactly one of the two pairs (u, v) and (v, u) is an arc of D.
In other words, a tournament is an orientation of the complete
undirected graph Ky, .
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Tournaments

e Definition. A digraph D = (V, A) is loopless if it has no
loops (i.e., no arcs (u, u)).

o Definition. A loopless digraph D = (V, A) is a tournament
if it has the following property: For any distinct u,v € V,
exactly one of the two pairs (u, v) and (v, u) is an arc of D.
In other words, a tournament is an orientation of the complete
undirected graph Ky, .

o Examples.

©, ®

tournament tournament not tournament | not tournament
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V-listings and Hamiltonian paths

o Definition. Let V be a finite set. A V-listing will mean a list
of elements of V that contains each element of V exactly
once.
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V-listings and Hamiltonian paths

o Definition. Let V be a finite set. A V-listing will mean a list
of elements of V that contains each element of V exactly

once.
o Definition. Let D = (V, A) be a digraph. A Hamiltonian
path (short: hamp) of D means a V-listing (v1,v2,..., vp)
such that
(vi,vip1) €A foreach i€ {1,2,...,n—1}.

In other words (for V # @), it means a path of D that
contains each vertex.
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Redei’s theorems

o Easy proposition (Rédei 1933): Any tournament has a
hamp.
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o Easy proposition (Rédei 1933): Any tournament has a
hamp.

@ This is an easy exercise in graph theory. But Rédei proved a
lot more:

@ Theorem (Rédei 1933): Let D be a tournament. Then,

(# of hamps of D) is odd.
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Redei’s theorems

o Easy proposition (Rédei 1933): Any tournament has a
hamp.
@ This is an easy exercise in graph theory. But Rédei proved a

lot more:
@ Theorem (Rédei 1933): Let D be a tournament. Then,

(# of hamps of D) is odd.

o Example. Here are some tournaments:

has 1 hamp: | has 3 hamps: | has 5 hamps: has 9 hamps:
(1,2,3) eg., (2,3,1) | eg, (1,2,3,4) | eg., (1,4,2,5,3)
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Berge’s theorem

@ Recall Redei's Theorem: Let D be a tournament. Then,
(# of hamps of D) is odd.

@ Rédei's proof is complicated and intransparent (see Moon,
Topics on Tournaments for an English version).
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Berge’s theorem

@ Recall Redei's Theorem: Let D be a tournament. Then,
(# of hamps of D) is odd.

@ Rédei's proof is complicated and intransparent (see Moon,
Topics on Tournaments for an English version).
To give a more conceptual proof, Berge discovered the
following:

@ Theorem (Berge 1976): Let D be a digraph. Then,

(# of hamps of D) = (# of hamps of D) mod 2.

e Example.

D D

has 3 hamps has 1 hamp 7/29
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Berge’s theorem: questions and further directions

@ Berge proves his theorem (in his Graphs textbook) using an
elegant inclusion-exclusion argument.
Then he uses his theorem to prove Rédei's theorem via
induction on the number of “inversions” (arcs directed the
“wrong way" ).
This proof is much cleaner than Rédei's, but still far from
simple.
For a detailed exposition, see https:
//www.cip.ifi.1lmu.de/~grinberg/t/17s/57071lecT.pdf
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Berge’s theorem: questions and further directions

@ Berge proves his theorem (in his Graphs textbook) using an
elegant inclusion-exclusion argument.

Then he uses his theorem to prove Rédei's theorem via
induction on the number of “inversions” (arcs directed the
“wrong way" ).

This proof is much cleaner than Rédei's, but still far from
simple.

For a detailed exposition, see https:
//www.cip.ifi.1lmu.de/~grinberg/t/17s/57071lecT.pdf

Remark. Can we improve on Rédei's theorem even further?
MathOverflow question #232751 asks for the possible values
of (# of hamps of D) for a tournament D.
Among the numbers between 1 and 80555, the answer is “all
odd numbers except for 7 and 21" (proved by bof and Gordon
Royle).
Question: Are these the only exceptions?
8/29


https://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec7.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec7.pdf
https://mathoverflow.net/questions/232751/the-number-of-hamiltonian-paths-in-a-tournament

The Rédei—Berge symmetric function: introduction

@ Independently, Chow ( The Path-Cycle Symmetric Function of
a Digraph, 1996) introduced a symmetric function assigned to
each digraph D.

(This was inspired by Chung/Graham's cover polynomial in
rook theory.)

@ We only discuss a coarsening of his construction (Chow has
two families of variables, and we set the second family to 0).
Question: Which of the results below can be generalized to
the full version?
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The Rédei—Berge symmetric function: definition

@ Definition. Let n € N, and let / be a subset of

{1,2,...,n—1}. Then, we define the power series
L[,,, = Z Xiy Xiy **+ X, € Z[[Xl,Xz,X:g,...]]
1 <ip<:+<ip;

ip<ipy1 for each pel

(where the indices i1, ia, . .., in range over {1,2,3,...}).
Remark: This is a formal power series (but becomes a
polynomial if you drop all but finitely many variables).

It is known as a (Gessel's) fundamental quasisymmetric
function.
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The Rédei—Berge symmetric function: definition

@ Definition. Let n € N, and let / be a subset of

{1,2,...,n—1}. Then, we define the power series
L[,,, = Z Xiy Xiy **+ X, € Z[[Xl,Xz,X:g,...]]
1 <ip<:+<ip;

ip<ipy1 for each pel
(where the indices i1, ia, . .., in range over {1,2,3,...}).
Remark: This is a formal power series (but becomes a
polynomial if you drop all but finitely many variables).
It is known as a (Gessel's) fundamental quasisymmetric
function.
@ For instance,

L{l},3: Z Xiy Xip X33

1<ih<i3
Lipa= D> XiXpXiXi.

i1 <i2<i3<ig
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The Rédei—Berge symmetric function: definition

@ Definition. Let n € N, and let / be a subset of

{1,2,...,n—1}. Then, we define the power series
L[,,, = Z Xiy Xiy **+ X, € Z[[Xl,Xz,X:g,...]]
1 <ip<:+<ip;

ip<ipy1 for each pel
(where the indices i1, ia, . .., in range over {1,2,3,...}).

o Definition. Let n € N. Let D = (V, A) be a digraph with n
vertices. We define the Redei—Berge symmetric function

Up := Z LDes(w,D), n€7Z [[Xl7 X2,X3,.. ]] ,
w is a V-listing
where
Des(w,D) :={ie{1,2,...,n—1} | (wj,wi11) € A}
for each V-listing w = (w1, wa, ..., wp).
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The Rédei—Berge symmetric function: example

o Example: Let

c
Y
. e(3)
Then,
Up = Z LDes(W,D), 3

wis a V-listing
= Lpes((1,2,3),0), 3 T Lbes((1,3,2),0), 3 + Lpes((2,1,3),0), 3
+ Lpes((2,:3,1),0), 3 T Lbes((3,1,2),0), 3 + LDes((3,2,1),0), 3
=Ly, 3+Lle 3+tLly 3+Lle 3+l 3+Lle s
=4 Ly 3+ Ly 3+ Ly 3
=4. Z Xiy Xy Xy ~+ Z Xiy Xjy Xiz + Z Xiy Xiy Xis -
W<i<is h<i<is h<i<is
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The Rédei—Berge symmetric function: restatement

@ We can restate the definition of Up directly as follows:
@ Proposition. Let D = (V, A) be a digraph. Then,

U= > aos ][ %),
fV—={123,.} vev

where ap ¢ is the # of all V-listings w = (wq, wo, ..., w,)
such that

o we have f (wy) < f(wp) <--- < f(wp);

o we have f (w;) < f(wjt1) if (Wi, wiy1) € A.
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The Rédei—Berge symmetric function: restatement

@ We can restate the definition of Up directly as follows:
e Proposition. Let D = (V, A) be a digraph. Then,

Up = Z ap,f H Xf(v)s

FV—={123,.} veV

where ap ¢ is the # of all V-listings w = (w1, wa, ..., wp)
such that
o we have f(wy) < f(wp) < -+ < f(wp);
o we have f (w;) < f (wjt1) if (Wi, wiy1) € A.
@ This is similar (though not directly related) to P-partition
enumerators and chromatic symmetric functions.

12/29



The Rédei—Berge symmetric function: restatement

@ We can restate the definition of Up directly as follows:
@ Proposition. Let D = (V, A) be a digraph. Then,

Up= > aps ][] x)

fV—={123,.} vev

where ap ¢ is the # of all V-listings w = (wq, wo, ..., w,)
such that
o we have f (wy) < f(wp) <--- < f(wp);
o we have f (w;) < f(wjt1) if (Wi, wiy1) € A.
@ Remark. We can restate the definition of ap ¢ in nicer terms.
Namely, fix a digraph D = (V, A) and a map
f:V—{1,2,3,...}. Foranyj € f(V), let D; denote the

induced subdigraph of the complement D on the vertex set
fL()={veV | f(v)=,j} Then,

ap,f = H (# of hamps of E) .
JEf(V)
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The Rédei—Berge symmetric function: context

@ Note that Up is =5(x,0) in the notations of Chow's 1996
paper.
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The Rédei—Berge symmetric function: context

@ Note that Up is =5(x,0) in the notations of Chow's 1996
paper.

@ What is Up good for? Counting hamps (= Hamiltonian
paths), for one:

@ Proposition. Let D be a digraph. Then,

Up(1,0,0,0,...) = (# of hamps of 5) .
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The Rédei—Berge symmetric function: context

@ Note that Up is =5(x,0) in the notations of Chow's 1996
paper.

@ What is Up good for? Counting hamps (= Hamiltonian
paths), for one:

@ Proposition. Let D be a digraph. Then,
Up(1,0,0,0,...) = (# of hamps of 5) .

@ Thus, any results about Up might give us information about
the # of hamps!
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Rédei—Berge symmetric function: context

Note that Up is =5 (x,0) in the notations of Chow's 1996
paper.

What is Up good for? Counting hamps (= Hamiltonian
paths), for one:

Proposition. Let D be a digraph. Then,
Up(1,0,0,0,...) = (# of hamps of 5) .

Thus, any results about Up might give us information about
the # of hamps!

Formulas for Up in some specific cases (D acyclic, D poset,
D path) can be found in Additional Problem 120 to Chapter 7
of Stanley’s EC2. Most prominently, if D is the “greater-than
digraph” of a poset P, then Ug is the chromatic symmetric
function of the incomparability graph of P.
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p-expansions: p-integrality

@ | called Up the "Rédei—Berge symmetric function”, but is it
actually symmetric? Yes, and in fact something better holds:

@ Definition. For each kK > 1, let
Pk Z:X{(—l-XQk—l-Xé(—{—---

be the k-th power-sum symmetric function.

@ Theorem. For any digraph D, we have

UDGZ[plaP27p37"']'

That is, Up can be written as a polynomial in p1, p2, p3, . ..
over Z.

14 /29



p-expansions: p-integrality

@ | called Up the "Rédei—Berge symmetric function”, but is it
actually symmetric? Yes, and in fact something better holds:

@ Definition. For each kK > 1, let
Pk Z:X{(—l-XQk—l-Xé(—{—---

be the k-th power-sum symmetric function.

@ Theorem. For any digraph D, we have

UDGZ[plaP27p37"']'

That is, Up can be written as a polynomial in p1, p2, p3, . ..
over Z.

@ Which polynomial, though?

14 /29



p-expansions: Main Theorem |

e Definition. Fix a digraph D = (V, A).
Let Gy be the symmetric group on the set V.
For any o € Gy, we let

Ptypeo = H Plength of ~-
7 is a cycle of o

In other words, if o has cycles of lengths a, b, ..., k (including
1-cycles), then pypes = Papb - -+ Pk-
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e Definition. Fix a digraph D = (V, A).
Let Gy be the symmetric group on the set V.
For any o € Gy, we let

Ptypeo = H Plength of ~-

7 is a cycle of o

We say that a cycle v of o is a D-cycle if all the pairs
(i,0(i)) for i € v are arcs of D.
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p-expansions: Main Theorem |

e Definition. Fix a digraph D = (V, A).
Let Gy be the symmetric group on the set V.
For any o € Gy, we let

Ptypeo ‘= H Plength of ~-
7 is a cycle of o
We say that a cycle v of o is a D-cycle if all the pairs
(i,0(i)) for i € v are arcs of D.
@ Main Theorem I. Let D = (V, A) be a digraph. Set

(o) = Z ((length of ~) — 1) for each 0 € Gy,.
7 is a cycle of o;
v is a D-cycle
Then,
U= Y (D pypen

o€By;
each cycle of o is

a D-cycle or a D-cycle
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p-expansions: Main Theorem |

e Definition. Fix a digraph D = (V, A).
Let Gy be the symmetric group on the set V.
For any o € Gy, we let

Ptypeo ‘= H Plength of ~-
7 is a cycle of o
We say that a cycle v of o is a D-cycle if all the pairs
(i,0(i)) for i € v are arcs of D.
@ Main Theorem I. Let D = (V, A) be a digraph. Set

(o) = Z ((length of ~) — 1) for each 0 € Gy,.
7 is a cycle of o;
v is a D-cycle
Then,
U= Y (D pypen

o€By;
each cycle of o is

a D-cycle or a D-cycle

@ This yields the Up € Z [p1, p2, p3, - - .| theorem, of course.
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p-expansions: Main Theorem |, example 1

@ Example. Recall our favorite example:

c

e

D D

The cycles of D are (2)_ and (3)_, whereas the cycles of D are
(1), (2,3)., (3,1)_ and (1,3,2) _.

Thus, the > sum in Main Theorem | has four

oc€BGy;
each cycle of o is

a D-cycle or a D-cycle
addends, corresponding to (o written in one-line notation)

o= (1,2,3] | [3,1,2] | [1,3,2] | [3,2,1]
(—1)7) = 1 1 1 1
— 3
Ptypeo = P1 P3 P2P1 P2pP1 16/29




p-expansions: Main Theorem |, example 1

@ Example. Recall our favorite example:

c

20

D D

The cycles of D are (2)_ and (3)_, whereas the cycles of D are
(1), (2,3)., (3,1)_ and (1,3,2) _.
Hence, Main Theorem | yields

Up = p} + p3 + p2p1 + p2p1 = P} + 2p1p2 + 3.
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p-expansions: Main Theorem |, example 2

@ Example. Another example: Let

=
d@

D
D D

Thus, the > sum in Main Theorem | has three

each ZyGCE ‘:)f o is

a D-cycle or a D-cycle
addends, with
o= [1,2,3] | [3,1,2] | [3,2,1]
(—1)?) = 1 1 -1
Ptypes = P% p3 P2p1

Hence, Main Theorem | yields Up = p} + p3s — pap1.
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p-expansions: Main Theorem I, corollaries

@ Recall Main Theorem I: Let D = (V, A) be a digraph. Set

p(o):= Z ((length of v) — 1) for each 0 € Gy,.
v is a cycle of o;
v is a D-cycle
Then,
Up = Z (_1)80(0) Ptypeo-
geGy;

each cycle of o is
a D-cycle or a D-cycle
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@ Recall Main Theorem I: Let D = (V, A) be a digraph. Set

p(o):= Z ((length of v) — 1) for each 0 € Gy,.
v is a cycle of o;
v is a D-cycle
Then,
Up = Z (_1)¢(U) Ptypeo-
geGy;

each cycle of o is
a D-cycle or a D-cycle

@ Main Theorem | yields Berge's theorem, since the sum for D
and the sum for D range over the same ¢'s, and the addends
only differ in sign.
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p-expansions: Main Theorem I, corollaries

@ Recall Main Theorem I: Let D = (V, A) be a digraph. Set

p(o):= Z ((length of v) — 1) for each 0 € Gy,.
v is a cycle of o;
v is a D-cycle
Then,
Up = Z (_1)¢(U) Ptypeo-
geGy;

each cycle of o is
a D-cycle or a D-cycle

@ Main Theorem | yields Berge's theorem, since the sum for D
and the sum for D range over the same ¢'s, and the addends
only differ in sign.

e Corollary. Let D = (V, A) be a digraph. Assume that every
D-cycle has odd length. Then,

UD: Z Ptypec GN[P17P2=P37---]-

geGy;
each cycle of o is

a D-cycle or a D-cycle
18/29



p-expansions: Main Theorem Il

e Main Theorem Il. Let D = (V, A) be a tournament. For
each 0 € Gy, let ¥ (o) denote the number of nontrivial cycles
of o. (A cycle is called nontrivial if it has length > 1.) Then,

Up = Z 27lj(g)ptypea

g€eGy;
each cycle of o is a D-cycle;
all cycles of o have odd length

€ N[p1,2p3,2ps,2p7,...] =N|p1, 2p; | i > 1is odd].
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p-expansions: Main Theorem Il

e Main Theorem Il. Let D = (V, A) be a tournament. For
each 0 € Gy, let ¥ (o) denote the number of nontrivial cycles
of o. (A cycle is called nontrivial if it has length > 1.) Then,

Up = Z 27lj(g)ptypea

g€eGy;
each cycle of o is a D-cycle;
all cycles of o have odd length

€ N[p1,2p3,2ps,2p7,...] =N|p1, 2p; | i > 1is odd].

@ Main Theorem Il easily yields Rédei's theorem, as the only
addend with 2¥(?) odd is the o = id addend.
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p-expansions: Main Theorem IlII

@ The above corollary from Main Theorem | yields that Up is
p-positive when D has no even-length cycles. But this holds
even more generally:

20/29



p-expansions: Main Theorem IlII

@ The above corollary from Main Theorem | yields that Up is
p-positive when D has no even-length cycles. But this holds
even more generally:

e Main Theorem Ill. Let D = (V, A) be a digraph that has no
cycles of length 2. Then,

Up = Z Ptype o -

cg€Gy;
each cycle of o is
a D-cycle or a D-cycle;
no even-length cycle of o is
a D-cycle or a reversed D-cycle
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p-expansions: Main Theorem IlII

@ The above corollary from Main Theorem | yields that Up is
p-positive when D has no even-length cycles. But this holds
even more generally:

e Main Theorem Ill. Let D = (V, A) be a digraph that has no
cycles of length 2. Then,

Up = Z Ptype o -

cg€Gy;
each cycle of o is
a D-cycle or a D-cycle;
no even-length cycle of o is
a D-cycle or a reversed D-cycle

@ Remark. Not all p-positive Up's are explained by this
theorem.
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p-expansions: Proof ideas, 1

@ The proof of Main Theorem | is long and intricate. It might
be simplifiable. Here are the main ideas.
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p-expansions: Proof ideas, 1

@ The proof of Main Theorem | is long and intricate. It might
be simplifiable. Here are the main ideas.

o Pdlya-style lemma. Let V be a finite set. Let 0 € Gy be a
permutation of V. Then,

Z HXf(v) = Ptypeo-

f:Vv—{123,.}; veV
foo=f

Proof. Easy exercise.

21/29



p-expansions: Proof ideas, 1

@ The proof of Main Theorem | is long and intricate. It might
be simplifiable. Here are the main ideas.

o Pdlya-style lemma. Let V be a finite set. Let 0 € Gy be a
permutation of V. Then,

Z HXf(v) = Ptypeo-

f:v—{123,..}; veV
foo=f

@ Using this lemma (and the above formula for ap ¢), we can
easily reduce Main Theorem | to the following lemma:

e Main combinatorial lemma. Let D = (V, A) be a digraph
with n vertices. Let f: V — {1,2,3,...} be any map. Then,

H (# of hamps of 51) = Z (_1)<p(a)7

jef( V) ogEGy;
each cycle of 5 is
a D-cycle or a D-cycle;
foo=f

where E is the induced subdigraph of D on the vertex set
f1 (J) 21/29



p-expansions: Proof ideas, 2

@ So we need to prove the Main combinatorial lemma: Let
D = (V,A) be a digraph with n vertices. Let
f:V —{1,2,3,...} be any map. Then,

H (# of hamps of D;) = Z (—1)@(‘7),

JEF(V) 0€Gy;
each cycle of o is

a D-cycle or a D-cycle;
foo=f

where D; is the induced subdigraph of D on the vertex set

().
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p-expansions: Proof ideas, 2

@ So we need to prove the Main combinatorial lemma: Let
D = (V,A) be a digraph with n vertices. Let
f:V —{1,2,3,...} be any map. Then,

H (# of hamps of D;) = Z (—1)‘9(‘7),

JEF(V) 0€By;
each cycle of o is
a D-cycle or a D-cycle;
foo=f

where D; is the induced subdigraph of D on the vertex set
1)
@ Work on each “level set” f~1(j) separately:

Main combinatorial lemma (simplified). Let D = (V, A)
be a digraph. Then,

(# of hamps of D) = Z (—1)%)

0'66\/;
each cycle of o is

a D-cycle or a D-cycle
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p-expansions: Proof ideas, 2

@ So we need to prove the Main combinatorial lemma: Let
D = (V,A) be a digraph with n vertices. Let
f:V —{1,2,3,...} be any map. Then,

H (# of hamps of D;) = Z (—1)‘9(‘7),

JEF(V) 0€Gy;
each cycle of o is

a D-cycle or a D-cycle;
foo=f

where D; is the induced subdigraph of D on the vertex set
F10).

@ Work on each “level set” f~1(j) separately:
Main combinatorial lemma (simplified). Let D = (V, A)
be a digraph. Then,

(# of hamps of D) = Z (—1)%)
0'66\/;
each cycle of o is
a D-cycle or a D-cycle

@ This can be proved using a nontrivial exclusion-inclusion.
22/29



p-expansions: Proof ideas, 3

@ To prove Main Theorems Il and Ill, start with the Main
Theorem | sum, and combine ¢'s into equivalence classes by
reversing certain cycles:

e For Main Theorem I, call two permutations in Gy
equivalent if one can be obtained from the other by
reversing (nontrivial) cycles. This turns D-cycles into
D-cycles and vice versa. The equivalence class of ¢ has
2%(9) elements if o has no 2-cycles. Their addends in the
sum cancel out if o has an even-length cycle; otherwise
they are all equal and sum up to 2¢(")ptypeo.
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p-expansions: Proof ideas, 3

@ To prove Main Theorems Il and Ill, start with the Main
Theorem | sum, and combine ¢'s into equivalence classes by
reversing certain cycles:

e For Main Theorem I, call two permutations in Gy
equivalent if one can be obtained from the other by
reversing (nontrivial) cycles. This turns D-cycles into
D-cycles and vice versa. The equivalence class of ¢ has
2%(9) elements if o has no 2-cycles. Their addends in the
sum cancel out if o has an even-length cycle; otherwise
they are all equal and sum up to 2¢(U)ptypeo.

o For Main Theorem Ill, call a necklace (vi,va,. .., vk).
risky if its length k is even and either it or its inverse is a
D-cycle. Call two permutations in Gy equivalent if one
can be obtained from the other by reversing risky cycles.
The equivalence class of o has 27(?) elements, where
r (o) is the number of risky cycles of o. Their addends in
the sum cancel out if o has a risky cycle; otherwise there
is only one of them. 2329



p-expansions: Proof ideas, 4

@ The proof of Main Theorem | is detailed in the preprint
(https://arxiv.org/abs/2307.05569); the proofs of Il
and Il are outlined.

These would make a good project for formalization
(Coq, Lean, etc.): only elementary combinatorics but some
tricky reasoning with cycles and sums.
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https://arxiv.org/abs/2307.05569

@ Rédei's theorem determines the # of hamps of a tournament
D modulo 2. What about mod 47
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@ Rédei's theorem determines the # of hamps of a tournament
D modulo 2. What about mod 47

@ Theorem. Let D be a tournament. Then,

(# of hamps of D)
= 1+ 2(# of nontrivial odd-length D-cycles) mod 4.

Here, “nontrivial’ means “having length > 1".

@ We can prove this using Main Theorem Il. We have not seen
this anywhere in the literature.
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Main Theorem | “generalized”

@ Main Theorem | can be rewritten without speaking about
digraphs:
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Main Theorem | “generalized”

@ Theorem. Let n € N, and let V be an n-element set. Let k
be a commutative ring.
For any a= (i,j) € V x V, we fix an element t, = t(; ;) € k
and set s; 1= t; + 1.
We define the deformed Redei-Berge symmetric function

Ut = E E H S(Wk,WkJrl) Xip Xip *** Xi,

W:(W17W27---7Wn) 1 <ih<--<iy ke[n—l];

is a V-listing ik=ikt1
€ k[[x1,x2,x3,...]] -
Then,
Ur = Z H H S(i,o(i)) — H tio(i)) Ptypeo-
c€By \7visacycleofo \iey i€y
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Main Theorem | “generalized”

@ Theorem. Let n € N, and let V be an n-element set. Let k

be a commutative ring.

For any a= (i,j) € V x V, we fix an element t, = t(; ;) € k
and set s, .= t, + 1.

We define the deformed Redei-Berge symmetric function

Ut = E E H S(Wk,WkJrl) Xip Xip *** Xi,

W:(W17W27---7Wn) 1 <ih<--<iy ke[n—l];

is a V-listing ik=ikt1
€ k[[x1,x2,x3,...]] -
Then,
Ur = Z H H S(i,o(i)) — H tio(i)) Ptypeo-
c€By \7visacycleofo \iey i€y

This generalizes Main Theorem | (set each t, to 0 or —1), but

also follows from it by multilinearity.
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Appendix: Chow’s path-cycle symmetric function

@ In his paper The Path-Cycle Symmetric Function of a Digraph
(1996), Timothy Y. Chow defined the path-cycle symmetric
function of a digraph:
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http://timothychow.net/pathcycle.pdf
http://timothychow.net/pathcycle.pdf

Appendix: Chow’s path-cycle symmetric function

o Definition. Let D = (V, A) be a digraph. The path-cycle
symmetric function =p = =p (x,y) in two infinite families of
indeterminates x = (x1, X2, x3,...) and y = (y1,¥2,¥3,...) is
the power series

Z Z H Xf(v) " H YE(v):

Sisa PC-cover f:V—{123,..} veEVison vE€V is on
is an S-friendly ~ an S-path an S-cycle
coloring
Here:

o A PC-cover means a set of paths and cycles of D
(possibly trivial ones) such that each vertex in V' belongs
to exactly one of these.

o If S is a PC-cover, then an S-friendly coloring means a
map f: V — {1,2,3,...} such that

e f(v) = f(w) whenever v and w lie on the same S-path;

o f(v)=f(w) whenever v and w lie on the same S-cycle;
o f(v) # f (w) whenever v and w lie on different S-paths;

(but different S-cycles are unconstrained!).
28/29



Appendix: Chow’s path-cycle symmetric function

o Definition. Let D = (V, A) be a digraph. The path-cycle
symmetric function =p = =p (x,y) in two infinite families of
indeterminates x = (x1, X2, x3,...) and y = (y1,¥2,¥3,...) is
the power series

Z Z H Xf(v) " H YE(v):

Sisa PC-cover f:V—{123,..} veEVison vE€V is on
is an S-friendly ~ an S-path an S-cycle
coloring

Setting y = 0 (that is, y; = 0 for all /) amounts to forbidding
cycles in PC-covers, thus turning them into P-covers. Thus,
=p (x,0) = Uy (exercise!).
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Appendix: Chow’s path-cycle symmetric function

o Definition. Let D = (V, A) be a digraph. The path-cycle
symmetric function =p = =p (x,y) in two infinite families of
indeterminates x = (x1, X2, x3,...) and y = (y1,¥2,¥3,...) is
the power series

Z Z H Xf(v) " H YE(v):

Sisa PC-cover f:V—{123,..} veEVison vE€V is on
is an S-friendly ~ an S-path an S-cycle
coloring

Setting y = 0 (that is, y; = 0 for all /) amounts to forbidding
cycles in PC-covers, thus turning them into P-covers. Thus,
=p (x,0) = Uy (exercise!).

@ Question. Do any of our results extend to =p ?
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Appendix: Schur positivity

@ Theorem (Gessel, Stanley, [EC2, Ch. 7, Additional
problem 122 (h)]). Let D = (V, A) be the path digraph
with n > 0 vertices. Then,

n
UD = Z f,'S(,'V]_nfi).
i=1

Here, s, denotes the Schur function, whereas f; means the #
of permutations o € S; in which no entry j is followed by j — 1
(OEIS sequence A000255).

@ Question. When else is Up Schur-positive?
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