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In 1934, Laszlo Redei observed a peculiar property of tournaments
(directed graphs that have an arc between every pair of distinct ver-
tices): Each tournament has an odd number of Hamiltonian paths.
In 1996, Chow introduced the “path-cycle symmetric function” of a
directed graph, a symmetric function in two sets of arguments, which
was later used in rook theory. We study Chow’s symmetric function
in the case when the y-variables are 0. In this case, we give new non-
trivial expansions of the function in terms of the power-sum basis; in
particular, we find that it is p-positive as long as the directed graph
has no 2-cycles. We use our expansions to reprove Redei’s theorem
and refine it to a mod-4 congruence.

This is joint work with Richard P. Stanley.
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1. Digraphs and tournaments

* Definition. A digraph (short for “directed graph”) means a pair
(V,A) of a finite set V and a subset A C V x V.

The elements (1, v) € A are called arcs of this digraph, and are
drawn accordingly.

We allow loops ((u,u) € A) and antiparallel arcs ((u,v) € A
and (v,u) € A) but not parallel arcs (A is not a multiset).

* Definition. Let D = (V, A) be a digraph. Then, D denotes the
complement of D; this is the digraph (V, (V x V) \ A). Its arcs
are the non-arcs of D.

e Example.

If D = ({1,2,3}, {(1,2), (2,2), (3,3)}),
then D = ({1,2,3}, {(1,1), (1,3), (2,1), (2,3), (3,1), (3,2)}).

o3

D D

e Definition. A digraph D = (V, A) is loopless if it has no loops
(i.e., no arcs (u, u)).

e Definition. A loopless digraph D = (V, A) is a tournament if
it has the following property: For any distinct u,v € V, exactly
one of the two pairs (1, v) and (v, u) is an arc of D.

In other words, a tournament is an orientation of the complete
undirected graph Ky.
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¢ Examples.

tournament

tournament

not tournament

not tournament
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2. Hamiltonian paths and Rédei’'s and
Berge's theorems

* Definition. Let V be a finite set. A V-listing will mean a list of
elements of V that contains each element of V' exactly once.

e Definition. Let D = (V, A) be a digraph. A Hamiltonian path
(short: hamp) of D means a V-listing (v1,v,...,v,) such that

(vi,vi11) € A foreachi e {1,2,...,n —1}.

In other words (for V # @), it means a path of D that contains
each vertex.

* Easy proposition (Rédei 1933): Any tournament has a hamp.

* This is an easy exercise in graph theory. But Rédei proved a lot
more:

e Theorem (Rédei 1933): Let D be a tournament. Then,

(# of hamps of D) is odd.

e Example. Here are some tournaments:

D
odhG
o

has 1 hamp: | has 3 hamps: has 5 hamps: has 9 hamps:
(1,2,3) e.g., (2,3,1) e.g., (1,2,3,4) e.g., (1,4,2,5,3)

* Rédei’s proof is complicated and intransparent (see Moon, Top-
ics on Tournaments for an English version).

To give a more conceptual proof, Berge discovered the follow-
ing:
e Theorem (Berge 1976): Let D be a digraph. Then,

(# of hamps of D) = (# of hamps of D) mod 2.



https://www.gutenberg.org/ebooks/42833
https://www.gutenberg.org/ebooks/42833
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* Example.

D D
has 3 hamps has 1 hamp

(loops don’t actually matter, but I draw them to be fully correct).
* Berge proves his theorem (in his Graphs textbook) using an ele-
gant inclusion-exclusion argument.

Then he uses his theorem to prove Rédei’s theorem via induc-
tion on the number of “inversions” (arcs directed the “wrong
way”).

This proof is much cleaner than Rédei’s, but still far from sim-
ple.

For a detailed exposition, see https://www.cip.ifi.1lmu.de/ grinberg/
t/17s/57071ecT . pdf] .
* Remark. Can we improve on Rédei’s theorem even further?

MathOverflow question #232751 asks for the possible values of
(# of hamps of D) for a tournament D.

Among the numbers between 1 and 80555, the answer is “all
odd numbers except for 7 and 21” (proved by bof and Gordon
Royle).

Question: Are these the only exceptions?



https://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec7.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec7.pdf
https://mathoverflow.net/questions/232751/the-number-of-hamiltonian-paths-in-a-tournament
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3. The Rédei—Berge symmetric function

* Independently, Chow (The Path-Cycle Symmetric Function of a Di-
graph, 1996) introduced a symmetric function assigned to each
digraph D.

(This was inspired by Chung/Graham’s cover polynomial in
rook theory:.)

* We only discuss a coarsening of his construction (Chow has two
families of variables, and we set the second family to 0).
Question: Which of the results below can be generalized to the
full version?

e Definition. Let n € IN, and let I be a subset of {1,2,...,n —1}.
Then, we define the power series

Liy:= Xi Xi, - -+ Xi, € Z[[x1,%2,%3,..]]
140
i1 <ip<---<liy;
ip<ipy for each pel

(where the summation indices iy, iy, . . ., i, range over {1,2,3,...}).

Remark: This is a (Gessel’s) fundamental quasisymmetric func-
tion.

e Definition. Let n € N. Let D = (V, A) be a digraph with n
vertices. We define the Redei-Berge symmetric function

Up := E Lpes(w,p), n € Z [[x1,%2,x3,...]],

w is a V-listing
where
Des (w,D) :={ie€ {1,2,...,n—1} | (wj,wi;1) € A}

for each V-listing w = (wy, wo, ..., wy).

e Example: Let

&



http://timothychow.net/pathcycle.pdf
http://timothychow.net/pathcycle.pdf
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Then,

Up = Z LDes(w,D), 3

w is a V-listing
= Lpes((1,23),0), 3 T LDes((1,32),0), 3 + Lpes((2,1,3),D), 3
+ Lpes((2,31),0), 3 T Lbes((3,1,2),0), 3 + Lbes((32,1),0), 3
— L{l},3+L®,3+L®,3+L®,3+L{2},3+L®,3

=4. L@, 3 + L{l}, 3 + L{Z}, 3
S~~~ —— N
= )Y XXX = Y X xi X = Y XXX
i1§i2§i3 17y i1<i2§i3 11y tig il§i2<i3 i1*iptig
=4 ), XaXpXip+ ), XXX+ ), XXX
11<i2<i3 i1<ip<i3 i1 <ip<i3

* We can restate the definition of Up directly as follows:

e Proposition. Let D = (V, A) be a digraph with n vertices. Then,

Up= ), aps]]xs0)

fV—{1,23,..} veV

where ap r is the # of all V-listings w = (wy, wy,...,w,) such
that

— we have f (w1) < f(wp) < -+ < f(wy);
— we have f (w;) < f (wiy1) if (w;, wiz1) € A.

* This is similar (though not directly related) to P-partition enu-
merators and chromatic symmetric functions.

* Remark. We can restate the definition of ap s in nicer terms.
Namely, fix a digraph D = (V,A)andamap f : V — {1,2,3,...}.
For any j € f (V), let D; denote the induced subdigraph of the
complement D on the vertex set {1 (j) = {v eV | f(v)=j}.
Then,

ap,f = H (# of hamps of Dj).
jef(v)
(Think of f as assigning a “level” to each vertex of D; then
f71(j) are the level sets.)

e Note that Up is Z5 (x,0) in the notations of Chow’s 1996 paper.

* What is Up good for? Counting hamps, for one:
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* Proposition. Let D be a digraph. Then,

Up(1,0,0,0,...) = (# of hamps of 5) )

e Thus, any results about Up might give us information about the
# of hamps!

e Formulas for Up in some specific cases (D acyclic, D poset, D
path) can be found in Additional Problem 120 to Chapter 7 of
Stanley’s EC2.



https://math.mit.edu/~rstan/ec/ch7supp.pdf
https://math.mit.edu/~rstan/ec/ch7supp.pdf
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4. p-expansions: the main theorems

* I called Up the “Rédei-Berge symmetric function”, but is it ac-
tually symmetric? Yes, and in fact something better holds:

e Definition. For each k > 1, let
Pk = x’l‘+x’2‘+x’§+---
be the k-th power-sum symmetric function.

* Theorem. For any digraph D, we have

Up € Z [pl,pz,pg,...] .

That is, Up can be written as a polynomial in p1, py, p3, ... over
Z.

e Which polynomial, though?

e Definition. Fix a digraph D = (V, A).
Let Gy be the symmetric group on the set V.

For any ¢ € Gy, we let Cycs o be the set of all cycles of ¢, and
we let

Ptypeo = H Pe(y),

v€Cycs o
where /() denotes the length of . In other words, if ¢ has
cycles of lengths a,b,...,k (including 1-cycles), then pypes =
papb .. pk.

We say that a cycle v of ¢ is a D-cycle if all the pairs (7,0 (i))
for i € 7y are arcs of D.

e Main Theorem I. Let D = (V, A) be a digraph. Set

(o)== Y  (L(y)—-1) for each 0 € &y.
v€Cycso;
7 is a D-cycle
Then,
Up = Z (_1)4’(0) Piypeo-
ceCy;

each cycle of o is
a D-cycle or a D-cycle

e This yields the Up € Z [p1, p2, p3, - - .| theorem, of course.
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e Example. Recall our favorite example:

o3

D D

The cycles of D are (2)_ and (3)_, whereas the cycles of D are
()., (2,3)., (3,1)_ and (1,3,2)_ (the “~” means “rotation-
equivalence class”).

Thus, the Y sum in Main Theorem I has four ad-

0'66v;
each cycle of o is

a D-cycle or a D-cycle
dends, corresponding to (¢ written in one-line notation)

o= 1,2,3] 1 [3,1,2] | [1,3,2] | [3,2,1]
()7 =] 1 1 1 1
Pypec = | P} ps | pp1 | P2pr

Hence, Main Theorem I yields
Up = pi + p3 + pap1 + pap1 = p; +2p1p2 + p3.

* Example. Let
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Thus, the Y sum in Main Theorem I has three ad-
UGGV;
each cycle of 7 is

a D-cycle or a D-cycle
dends, with

o= 1,2,3] | [3,1,2] | [3,2,1]
(—1)?9 =] 1 1 ~1
Pypec = | P7 ps | pepi

Hence, Main Theorem I yields
Up = pi + ps — papr.

e Main Theorem I Xields Berge’s theorem, since the sum for D
and the sum for D range over the same ¢’s, and the addends
only differ in sign.

e Corollary. Let D = (V, A) be a digraph. Assume that every
D-cycle has odd length. Then,

Up = )3 Prypes € N [p1,p2, p3, .- .

ceBy;
each cycle of ¢ is

a D-cycle or a D-cycle

e Main Theorem II. Let D = (V, A) be a tournament. For each
o € Gy, let ¢ (o) denote the number of nontrivial cycles of ¢.
(A cycle is called nontrivial if it has length > 1.) Then,

uD — Z le(a) ptype 1o

oe GV ;
each cycle of o is a D-cycle;
all cycles of o have odd length

€ N [p1,2p3,2ps5,2p7,...] =N |[p1, 2p; | i > 1is odd].

* Main Theorem II easily yields Rédei’s theorem, as the only ad-
dend with 2¥(?) odd is the ¢ = id addend.

* The above corollary yields that Up is p-positive when D has no
even-length cycles. But this holds even more generally:
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e Main Theorem III. Let D = (V, A) be a digraph that has no
cycles of length 2. Then,

Up = Z Ptypec-

ceGy;
each cycle of ¢ is
a D-cycle or a D-cycle;
no even-length cycle of ¢ is
a D-cycle or a reversed D-cycle

* Remark. Even this does not cover all p-positive Up’s; there are
more.
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5. Proof ideas

The proof of Main Theorem I is long and intricate. It might be
simplifiable. Here are the main ideas.

Pélya-style lemma. Let V be a finite set. Let ¢ € Gy be a
permutation of V. Then,

Z H Xf(v) = Ptypec-

FiV={123,.}; v€V
foo=f

Proof. Easy exercise.

Using this lemma (and the above formula for ap ¢), we can easily
reduce Main Theorem I to the following lemma:

Main combinatorial lemma. Let D = (V, A) be a digraph with
n vertices. Let f : V — {1,2,3,...} be any map. Then,

H (# of hamps of Dj) = Z (—1)(’)(‘7) ,

jef(v) oESy;
each cycle of ¢ is

a D-cycle or a D-cycle;
for=f

where D; is the induced subdigraph of D on the vertex set
fF0).
Work on each level:

Main combinatorial lemma (simplified). Let D = (V, A) be a
digraph with n vertices. Then,

(# of hamps of D) = )y (=1)7).
ceBy;
each cycle of ¢ is

a D-cycle or a D-cycle

This can be proved using a nontrivial exclusion-inclusion.

Main Theorems II and III follow from Main Theorem I by com-
bining ¢’s into equivalence classes by reversing certain cycles.
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6. A surprise

e Theorem. Let D be a tournament. Then,

(# of hamps of D)
= 1+ 2 (# of nontrivial odd-length D-cycles) mod 4.

Here, “nontrivial” means “having length > 1”.

* We can prove this using Main Theorem II. We have not seen this
anywhere in the literature.
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