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In 1934, Laszlo Redei observed a peculiar property of tournaments
(directed graphs that have an arc between every pair of distinct ver-
tices): Each tournament has an odd number of Hamiltonian paths.
In 1996, Chow introduced the “path-cycle symmetric function” of a
directed graph, a symmetric function in two sets of arguments, which
was later used in rook theory. We study Chow’s symmetric function
in the case when the y-variables are 0. In this case, we give new non-
trivial expansions of the function in terms of the power-sum basis; in
particular, we find that it is p-positive as long as the directed graph
has no 2-cycles. We use our expansions to reprove Redei’s theorem
and refine it to a mod-4 congruence.

This is joint work with Richard P. Stanley.
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***

Preprint:

• Darij Grinberg and Richard P. Stanley, The Redei–Berge symmetric
function of a directed graph, arXiv:2307.05569.

Slides of this talk:

• https://www.cip.ifi.lmu.de/~grinberg/algebra/ipac2023a.pdf

https://arxiv.org/abs/2307.05569
https://www.cip.ifi.lmu.de/~grinberg/algebra/ipac2023a.pdf
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1. Digraphs and tournaments

• Definition. A digraph (short for “directed graph”) means a pair
(V, A) of a finite set V and a subset A ⊆ V × V.

The elements (u, v) ∈ A are called arcs of this digraph, and are
drawn accordingly.

We allow loops ((u, u) ∈ A) and antiparallel arcs ((u, v) ∈ A
and (v, u) ∈ A) but not parallel arcs (A is not a multiset).

• Definition. Let D = (V, A) be a digraph. Then, D denotes the
complement of D; this is the digraph (V, (V × V) \ A). Its arcs
are the non-arcs of D.

• Example.

If D = ({1, 2, 3} , {(1, 2) , (2, 2) , (3, 3)}) ,
then D = ({1, 2, 3} , {(1, 1) , (1, 3) , (2, 1) , (2, 3) , (3, 1) , (3, 2)}) .
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D D

• Definition. A digraph D = (V, A) is loopless if it has no loops
(i.e., no arcs (u, u)).

• Definition. A loopless digraph D = (V, A) is a tournament if
it has the following property: For any distinct u, v ∈ V, exactly
one of the two pairs (u, v) and (v, u) is an arc of D.

In other words, a tournament is an orientation of the complete
undirected graph KV.
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• Examples.
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2. Hamiltonian paths and Rédei’s and
Berge’s theorems

• Definition. Let V be a finite set. A V-listing will mean a list of
elements of V that contains each element of V exactly once.

• Definition. Let D = (V, A) be a digraph. A Hamiltonian path
(short: hamp) of D means a V-listing (v1, v2, . . . , vn) such that

(vi, vi+1) ∈ A for each i ∈ {1, 2, . . . , n − 1} .

In other words (for V ̸= ∅), it means a path of D that contains
each vertex.

• Easy proposition (Rédei 1933): Any tournament has a hamp.

• This is an easy exercise in graph theory. But Rédei proved a lot
more:

• Theorem (Rédei 1933): Let D be a tournament. Then,

(# of hamps of D) is odd.

• Example. Here are some tournaments:
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5

has 1 hamp: has 3 hamps: has 5 hamps: has 9 hamps:
(1, 2, 3) e.g., (2, 3, 1) e.g., (1, 2, 3, 4) e.g., (1, 4, 2, 5, 3)

• Rédei’s proof is complicated and intransparent (see Moon, Top-
ics on Tournaments for an English version).

To give a more conceptual proof, Berge discovered the follow-
ing:

• Theorem (Berge 1976): Let D be a digraph. Then,(
# of hamps of D

)
≡ (# of hamps of D)mod 2.

https://www.gutenberg.org/ebooks/42833
https://www.gutenberg.org/ebooks/42833
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• Example.

1

2

3 1
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D D

has 3 hamps has 1 hamp

(loops don’t actually matter, but I draw them to be fully correct).

• Berge proves his theorem (in his Graphs textbook) using an ele-
gant inclusion-exclusion argument.

Then he uses his theorem to prove Rédei’s theorem via induc-
tion on the number of “inversions” (arcs directed the “wrong
way”).

This proof is much cleaner than Rédei’s, but still far from sim-
ple.

For a detailed exposition, see https://www.cip.ifi.lmu.de/~grinberg/
t/17s/5707lec7.pdf .

• Remark. Can we improve on Rédei’s theorem even further?

MathOverflow question #232751 asks for the possible values of
(# of hamps of D) for a tournament D.

Among the numbers between 1 and 80555, the answer is “all
odd numbers except for 7 and 21” (proved by bof and Gordon
Royle).

Question: Are these the only exceptions?

https://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec7.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec7.pdf
https://mathoverflow.net/questions/232751/the-number-of-hamiltonian-paths-in-a-tournament
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3. The Rédei–Berge symmetric function

• Independently, Chow (The Path-Cycle Symmetric Function of a Di-
graph, 1996) introduced a symmetric function assigned to each
digraph D.

(This was inspired by Chung/Graham’s cover polynomial in
rook theory.)

• We only discuss a coarsening of his construction (Chow has two
families of variables, and we set the second family to 0).

Question: Which of the results below can be generalized to the
full version?

• Definition. Let n ∈ N, and let I be a subset of {1, 2, . . . , n − 1}.
Then, we define the power series

LI,n := ∑
i1≤i2≤···≤in;

ip<ip+1 for each p∈I

xi1 xi2 · · · xin ∈ Z [[x1, x2, x3, . . .]]

(where the summation indices i1, i2, . . . , in range over {1, 2, 3, . . .}).

Remark: This is a (Gessel’s) fundamental quasisymmetric func-
tion.

• Definition. Let n ∈ N. Let D = (V, A) be a digraph with n
vertices. We define the Redei–Berge symmetric function

UD := ∑
w is a V-listing

LDes(w,D), n ∈ Z [[x1, x2, x3, . . .]] ,

where

Des (w, D) := {i ∈ {1, 2, . . . , n − 1} | (wi, wi+1) ∈ A}
for each V-listing w = (w1, w2, . . . , wn) .

• Example: Let

D =

1

2

3
.

http://timothychow.net/pathcycle.pdf
http://timothychow.net/pathcycle.pdf
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Then,

UD = ∑
w is a V-listing

LDes(w,D), 3

= LDes((1,2,3),D), 3 + LDes((1,3,2),D), 3 + LDes((2,1,3),D), 3

+ LDes((2,3,1),D), 3 + LDes((3,1,2),D), 3 + LDes((3,2,1),D), 3

= L{1}, 3 + L∅, 3 + L∅, 3 + L∅, 3 + L{2}, 3 + L∅, 3

= 4 · L∅, 3︸︷︷︸
= ∑

i1≤i2≤i3
xi1

xi2 xi3

+ L{1}, 3︸ ︷︷ ︸
= ∑

i1<i2≤i3
xi1

xi2 xi3

+ L{2}, 3︸ ︷︷ ︸
= ∑

i1≤i2<i3
xi1

xi2 xi3

= 4 · ∑
i1≤i2≤i3

xi1 xi2 xi3 + ∑
i1<i2≤i3

xi1 xi2 xi3 + ∑
i1≤i2<i3

xi1 xi2 xi3.

• We can restate the definition of UD directly as follows:

• Proposition. Let D = (V, A) be a digraph with n vertices. Then,

UD = ∑
f :V→{1,2,3,...}

aD, f ∏
v∈V

x f (v),

where aD, f is the # of all V-listings w = (w1, w2, . . . , wn) such
that

– we have f (w1) ≤ f (w2) ≤ · · · ≤ f (wn);

– we have f (wi) < f (wi+1) if (wi, wi+1) ∈ A.

• This is similar (though not directly related) to P-partition enu-
merators and chromatic symmetric functions.

• Remark. We can restate the definition of aD, f in nicer terms.
Namely, fix a digraph D = (V, A) and a map f : V → {1, 2, 3, . . .}.
For any j ∈ f (V), let Dj denote the induced subdigraph of the
complement D on the vertex set f −1 (j) = {v ∈ V | f (v) = j}.
Then,

aD, f = ∏
j∈ f (V)

(
# of hamps of Dj

)
.

(Think of f as assigning a “level” to each vertex of D; then
f −1 (j) are the level sets.)

• Note that UD is ΞD (x, 0) in the notations of Chow’s 1996 paper.

• What is UD good for? Counting hamps, for one:
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• Proposition. Let D be a digraph. Then,

UD (1, 0, 0, 0, . . .) =
(
# of hamps of D

)
.

• Thus, any results about UD might give us information about the
# of hamps!

• Formulas for UD in some specific cases (D acyclic, D poset, D
path) can be found in Additional Problem 120 to Chapter 7 of
Stanley’s EC2.

https://math.mit.edu/~rstan/ec/ch7supp.pdf
https://math.mit.edu/~rstan/ec/ch7supp.pdf
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4. p-expansions: the main theorems

• I called UD the “Rédei–Berge symmetric function”, but is it ac-
tually symmetric? Yes, and in fact something better holds:

• Definition. For each k ≥ 1, let

pk := xk
1 + xk

2 + xk
3 + · · ·

be the k-th power-sum symmetric function.

• Theorem. For any digraph D, we have

UD ∈ Z [p1, p2, p3, . . .] .

That is, UD can be written as a polynomial in p1, p2, p3, . . . over
Z.

• Which polynomial, though?

• Definition. Fix a digraph D = (V, A).

Let SV be the symmetric group on the set V.

For any σ ∈ SV, we let Cycs σ be the set of all cycles of σ, and
we let

ptype σ := ∏
γ∈Cycs σ

pℓ(γ),

where ℓ (γ) denotes the length of γ. In other words, if σ has
cycles of lengths a, b, . . . , k (including 1-cycles), then ptype σ =
pa pb · · · pk.

We say that a cycle γ of σ is a D-cycle if all the pairs (i, σ (i))
for i ∈ γ are arcs of D.

• Main Theorem I. Let D = (V, A) be a digraph. Set

φ (σ) := ∑
γ∈Cycs σ;

γ is a D-cycle

(ℓ (γ)− 1) for each σ ∈ SV.

Then,
UD = ∑

σ∈SV ;
each cycle of σ is

a D-cycle or a D-cycle

(−1)φ(σ) ptype σ.

• This yields the UD ∈ Z [p1, p2, p3, . . .] theorem, of course.
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• Example. Recall our favorite example:

1

2

3

1

2

3

D D

.

The cycles of D are (2)∼ and (3)∼, whereas the cycles of D are
(1)∼, (2, 3)∼, (3, 1)∼ and (1, 3, 2)∼ (the “∼” means “rotation-
equivalence class”).

Thus, the ∑
σ∈SV ;

each cycle of σ is
a D-cycle or a D-cycle

sum in Main Theorem I has four ad-

dends, corresponding to (σ written in one-line notation)

σ = [1, 2, 3] [3, 1, 2] [1, 3, 2] [3, 2, 1]

(−1)φ(σ) = 1 1 1 1

ptype σ = p3
1 p3 p2p1 p2p1

Hence, Main Theorem I yields

UD = p3
1 + p3 + p2p1 + p2p1 = p3

1 + 2p1p2 + p3.

• Example. Let

1

2

3

1

2

3

D D

.
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Thus, the ∑
σ∈SV ;

each cycle of σ is
a D-cycle or a D-cycle

sum in Main Theorem I has three ad-

dends, with

σ = [1, 2, 3] [3, 1, 2] [3, 2, 1]

(−1)φ(σ) = 1 1 −1

ptype σ = p3
1 p3 p2p1

Hence, Main Theorem I yields

UD = p3
1 + p3 − p2p1.

• Main Theorem I yields Berge’s theorem, since the sum for D
and the sum for D range over the same σ’s, and the addends
only differ in sign.

• Corollary. Let D = (V, A) be a digraph. Assume that every
D-cycle has odd length. Then,

UD = ∑
σ∈SV ;

each cycle of σ is
a D-cycle or a D-cycle

ptype σ ∈ N [p1, p2, p3, . . .] .

• Main Theorem II. Let D = (V, A) be a tournament. For each
σ ∈ SV, let ψ (σ) denote the number of nontrivial cycles of σ.
(A cycle is called nontrivial if it has length > 1.) Then,

UD = ∑
σ∈SV ;

each cycle of σ is a D-cycle;
all cycles of σ have odd length

2ψ(σ)ptype σ

∈ N [p1, 2p3, 2p5, 2p7, . . .] = N [p1, 2pi | i > 1 is odd] .

• Main Theorem II easily yields Rédei’s theorem, as the only ad-
dend with 2ψ(σ) odd is the σ = id addend.

• The above corollary yields that UD is p-positive when D has no
even-length cycles. But this holds even more generally:
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• Main Theorem III. Let D = (V, A) be a digraph that has no
cycles of length 2. Then,

UD = ∑
σ∈SV ;

each cycle of σ is
a D-cycle or a D-cycle;

no even-length cycle of σ is
a D-cycle or a reversed D-cycle

ptype σ.

• Remark. Even this does not cover all p-positive UD’s; there are
more.
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5. Proof ideas

• The proof of Main Theorem I is long and intricate. It might be
simplifiable. Here are the main ideas.

• Pólya-style lemma. Let V be a finite set. Let σ ∈ SV be a
permutation of V. Then,

∑
f :V→{1,2,3,...};

f ◦σ= f

∏
v∈V

x f (v) = ptype σ.

Proof. Easy exercise.

• Using this lemma (and the above formula for aD, f ), we can easily
reduce Main Theorem I to the following lemma:

• Main combinatorial lemma. Let D = (V, A) be a digraph with
n vertices. Let f : V → {1, 2, 3, . . .} be any map. Then,

∏
j∈ f (V)

(
# of hamps of Dj

)
= ∑

σ∈SV ;
each cycle of σ is

a D-cycle or a D-cycle;
f ◦σ= f

(−1)φ(σ) ,

where Dj is the induced subdigraph of D on the vertex set
f −1 (j).

• Work on each level:

Main combinatorial lemma (simplified). Let D = (V, A) be a
digraph with n vertices. Then,(

# of hamps of D
)
= ∑

σ∈SV ;
each cycle of σ is

a D-cycle or a D-cycle

(−1)φ(σ) .

• This can be proved using a nontrivial exclusion-inclusion.

• Main Theorems II and III follow from Main Theorem I by com-
bining σ’s into equivalence classes by reversing certain cycles.
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6. A surprise

• Theorem. Let D be a tournament. Then,

(# of hamps of D)

≡ 1 + 2 (# of nontrivial odd-length D-cycles)mod 4.

Here, “nontrivial” means “having length > 1”.

• We can prove this using Main Theorem II. We have not seen this
anywhere in the literature.
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