The entry sum of the inverse Cauchy matrix

Darij Grinberg*

September 15, 2022

1. The Cauchy matrix

Let $x_{1}, x_{2}, \ldots, x_{n}$ be n numbers, and $y_{1}, y_{2}, \ldots, y_{n}$ be n further numbers chosen such that all n^{2} pairwise sums $x_{i}+y_{j}$ are nonzerd ${ }^{1}$. Consider the $n \times n$-matrix

$$
C:=\left(\frac{1}{x_{i}+y_{j}}\right)_{1 \leq i \leq n, 1 \leq j \leq n}=\left(\begin{array}{cccc}
\frac{1}{x_{1}+y_{1}} & \frac{1}{x_{1}+y_{2}} & \cdots & \frac{1}{x_{1}+y_{n}} \\
\frac{1}{x_{2}+y_{1}} & \frac{1}{x_{2}+y_{2}} & \cdots & \frac{1}{x_{2}+y_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1}{x_{n}+y_{1}} & \frac{1}{x_{n}+y_{2}} & \cdots & \frac{1}{x_{n}+y_{n}}
\end{array}\right) .
$$

This matrix C is known as the Cauchy matrix, and has been studied for 180 years ${ }^{2}$ The first significant result was the formula for its determinant:

$$
\begin{equation*}
\operatorname{det} C=\frac{\prod_{1 \leq i<j \leq n}\left(\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)\right)}{\prod_{(i, j)<1}\left(x_{i}+y_{j}\right)} \tag{1}
\end{equation*}
$$

$$
(i, j) \in\{1,2, \ldots, n\}^{2}
$$

[^0]found by Cauchy in 1841 [1] (see, e.g., [11, §1.3] or [2, Exercise 6.18 or Exercise 6.64] for modern proofs). Newer research focuses, e.g., on the LU decomposition [5], positivity properties [4], or generalizations [7]. See [6] for more on the history of the topic and for its connections to Lagrange interpolation (and for another proof of (17). Applications range from the theoretical (an equivalent version [3, Lemma 5.15.3] of (1) is used in the classical representation theory of symmetric groups) to the practical (computing the inverse C^{-1} is a notoriously ill-conditioned problem that is used as a canary for numerical instability [13]).

2. The sum of the entries of the inverse

The following curious result appears to be known since at least the 1940s:
Theorem 2.1. Assume that the matrix C is invertible. Then, the sum of all entries of its inverse C^{-1} is $\sum_{k=1}^{n} x_{k}+\sum_{k=1}^{n} y_{k}$.

A natural, yet laborious approach to proving this theorem is to compute the entries of C^{-1} using (1), and then to add them up. The resulting sum can be seen (by a tricky induction) to simplify to $\sum_{k=1}^{n} x_{k}+\sum_{k=1}^{n} y_{k}$. Some details of this proof can be found in [8, §1.2.3, Exercise 44]. The proof given in [12, (13)] is simpler, avoiding the use of (1) but relying on Lagrange interpolation theory instead.

We propose a new proof of Theorem 2.1, which reflects the simplicity of the theorem. We let $A_{i, j}$ denote the (i, j)-th entry of any matrix A. The following simple lemma gets us half the way:

Lemma 2.2. Let A be an $n \times m$-matrix, and let B be an $m \times n$-matrix. Then,

$$
\sum_{i=1}^{n} \sum_{j=1}^{m}\left(x_{i}+y_{j}\right) A_{i, j} B_{j, i}=\sum_{i=1}^{n} x_{i}(A B)_{i, i}+\sum_{j=1}^{m} y_{j}(B A)_{j, j} .
$$

Proof of Lemma 2.2 We have

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{m}\left(x_{i}+y_{j}\right) A_{i, j} B_{j, i}=\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} A_{i, j} B_{j, i}+\underbrace{\sum_{i=1}^{n} \sum_{j=1}^{m}} y_{j} \underbrace{A_{i, j} B_{j, i}}_{=B_{j, i} A_{i, j}} \\
& =\sum_{i=1}^{m} \sum_{i=1}^{n} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} A_{i, j} B_{j, i}+\sum_{j=1}^{m} \sum_{i=1}^{n} y_{j} B_{j, i} A_{i, j} \\
& =\sum_{i=1}^{n} x_{i} \underbrace{\sum_{j=1}^{m} A_{i, j} B_{j, i}}_{=(A B)_{i, i}}+\sum_{j=1}^{m} y_{j} \underbrace{\sum_{i=1}^{n} B_{j, i} A_{i, j}}_{=(B A)_{j, j}} \\
& \text { (by the definition of } \\
& \text { the matrix product) } \\
& \text { (by the definition of } \\
& \text { the matrix product) } \\
& =\sum_{i=1}^{n} x_{i}(A B)_{i, i}+\sum_{j=1}^{m} y_{j}(B A)_{j, j} \text {. }
\end{aligned}
$$

Proof of Theorem 2.1 Applying Lemma 2.2 to $m=n, A=C$ and $B=C^{-1}$, we obtain

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n}\left(x_{i}+y_{j}\right) C_{i, j}\left(C^{-1}\right)_{j, i} & =\sum_{i=1}^{n} x_{i} \underbrace{\left(C C^{-1}\right)_{i, i}}_{\begin{array}{c}
\text { (since } C^{-1} \text { is the } \\
\text { identity matrix) }
\end{array}}+\sum_{j=1}^{n} y_{j} \underbrace{\left(C^{-1} C\right)_{j, j}}_{\begin{array}{c}
\text { (since } C^{-1} C \text { is the } \\
\text { identity matrix) }
\end{array}} \\
& =\sum_{i=1}^{n} x_{i}+\sum_{j=1}^{n} y_{j}=\sum_{k=1}^{n} x_{k}+\sum_{k=1}^{n} y_{k} .
\end{aligned}
$$

However, the factor $\left(x_{i}+y_{j}\right) C_{i, j}$ on the left hand side of this equality simplifies to 1 (since the definition of C yields $C_{i, j}=\frac{1}{x_{i}+y_{j}}$). Thus, the left hand side of this equality is $\sum_{i=1}^{n} \sum_{j=1}^{n} \underbrace{\left(x_{i}+y_{j}\right) C_{i, j}}_{=1}\left(C^{-1}\right)_{j, i}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(C^{-1}\right)_{j, i}$, which is clearly the sum of all entries of C^{-1}. We have thus shown that the sum of all entries of C^{-1} is $\sum_{k=1}^{n} x_{k}+\sum_{k=1}^{n} y_{k}$. This proves Theorem 2.1

3. Variants

Theorem 2.1 was stated under the assumption that C be invertible. Using (1), it is easy to see that this assumption is equivalent to requiring that $x_{1}, x_{2}, \ldots, x_{n}$ be
distinct and that $y_{1}, y_{2}, \ldots, y_{n}$ be distinct ${ }^{3}$. It is not hard to relieve Theorem 2.1 of this assumption: Just replace the inverse C^{-1} (which no longer exists) by the adjugate ${ }^{4} \operatorname{adj} C$ of the matrix C. The resulting theorem is as follows:

Theorem 3.1. The sum of all entries of the adjugate matrix $\operatorname{adj} C$ is $\left(\sum_{k=1}^{n} x_{k}+\sum_{k=1}^{n} y_{k}\right) \operatorname{det} C$.

Proof. Similar to our above proof of Theorem 2.15 Use the classical result that $C \cdot \operatorname{adj} C=\operatorname{adj} C \cdot C=\operatorname{det} C \cdot I_{n}$ (where I_{n} denotes the $n \times n$ identity matrix).

Theorem 3.1 can be transformed even further:
Theorem 3.2. Let D be the $(n+1) \times(n+1)$-matrix obtained from C by inserting a row full of 1's at the very bottom and a column full of 1's at the very right, and putting 0 in the bottom-right corner:

$$
D=\left(\begin{array}{ccccc}
\frac{1}{x_{1}+y_{1}} & \frac{1}{x_{1}+y_{2}} & \cdots & \frac{1}{x_{1}+y_{n}} & 1 \\
\frac{1}{x_{2}+y_{1}} & \frac{1}{x_{2}+y_{2}} & \cdots & \frac{1}{x_{2}+y_{n}} & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\frac{1}{x_{n}+y_{1}} & \frac{1}{x_{n}+y_{2}} & \cdots & \frac{1}{x_{n}+y_{n}} & 1 \\
1 & 1 & \cdots & 1 & 0
\end{array}\right) .
$$

Then,

$$
\operatorname{det} D=-\left(\sum_{k=1}^{n} x_{k}+\sum_{k=1}^{n} y_{k}\right) \cdot \operatorname{det} C .
$$

Proof sketch. This follows from Theorem 3.1] using the following more general fact: If A is any $n \times n$-matrix, and if B is the $(n+1) \times(n+1)$-matrix obtained from A in the same way as D was obtained from C (that is, by inserting a row full of 1 's at the very bottom and a column full of 1 's at the very right, and putting 0 in the bottom-right corner), then

$$
\operatorname{det} B=-s,
$$

[^1]where s is the sum of all entries of adj A. This fact, in turn, can be proved by Laplace expansion of det B along the last row (followed by expanding each cofactor along the last column). We refer to [2, solution to Exercise 6.69 (c)] for all details.

Theorem 3.2 appears in [9, Chapter XI, Exercise 43]; we know nothing more about its origins.

4. Two little exercises

For all its aid in our proof, it appears that Lemma 2.2 is a one-trick pony: We are unaware of any other interesting results whose proofs it simplifies. The sum of all entries of a matrix is not generally a particularly well-behaved quantity (unlike the sum of its diagonal entries, which is known as the trace and has many good properties). However, some experimentation has led us to a surprising (if not very deep) twin to Theorem 2.1.

We assume that $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{n}$ are real numbers (and that $n \geq 1$). Consider the $n \times n$-matrix
$F:=\left(\min \left\{x_{i}, y_{j}\right\}\right)_{1 \leq i \leq n, 1 \leq j \leq n}=\left(\begin{array}{cccc}\min \left\{x_{1}, y_{1}\right\} & \min \left\{x_{1}, y_{2}\right\} & \cdots & \min \left\{x_{1}, y_{n}\right\} \\ \min \left\{x_{2}, y_{1}\right\} & \min \left\{x_{2}, y_{2}\right\} & \cdots & \min \left\{x_{2}, y_{n}\right\} \\ \vdots & \vdots & \ddots & \vdots \\ \min \left\{x_{n}, y_{1}\right\} & \min \left\{x_{n}, y_{2}\right\} & \cdots & \min \left\{x_{n}, y_{n}\right\}\end{array}\right)$.
Thus, F is obtained from C by replacing the "inverted sums" $\frac{1}{x_{i}+y_{j}}$ by the minima $\min \left\{x_{i}, y_{j}\right\} \quad{ }^{6}$. It would almost be too much to ask for F^{-1} to have properties comparable to those of C^{-1}. But in fact, it behaves even better:

Proposition 4.1. Assume that F is invertible. Then:
(a) The sum of all entries of F^{-1} is $\frac{1}{\min \left\{x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right\}}$.
(b) Assume that $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ and $y_{1} \leq y_{2} \leq \cdots \leq y_{n}$ and $x_{1} \leq y_{1}$. Then, for each $j \in\{1,2, \ldots, n\}$, the sum of all entries in the j-th column of F^{-1} is $\frac{1}{x_{1}}$ if $j=1$, and is 0 if $j>1$.

[^2]The proof of this proposition is another neat exercise in working with inverse matrices - one we do not want to spoil for the reader. As with C, computing the determinant is not necessary. However, it is computable, and the result is another nice exercise:

Proposition 4.2. Assume that $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ and $y_{1} \leq y_{2} \leq \cdots \leq y_{n}$. For any $i, j \in\{1,2, \ldots, n\}$, set $f_{i, j}:=\min \left\{x_{i}, y_{j}\right\}$. Then,

$$
\begin{equation*}
\operatorname{det} F=f_{1,1} \cdot \prod_{k=2}^{n}\left(f_{k, k}-f_{k, k-1}-f_{k-1, k}+f_{k-1, k+1}\right) \tag{2}
\end{equation*}
$$

Note that the product on the right hand side of (2) will often be 0 if the x_{i} and the y_{j} 's are ordered in an "insufficiently balanced" way (e.g., if there are more than two y_{j} 's between two consecutive $x_{i}{ }^{\prime}$ s). We leave it to the reader to establish more precise criteria for $\operatorname{det} F$ to be 0 .

References

[1] Augustin-Louis Cauchy, Memoire sur les fonctions alternées et sur les sommes alternées, Exercices d'analyse et de phys. math., ii (1841). pp. 151-159. Reprinted in: Euvres completes, 2 e ser., tome xii.
[2] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 15 September 2022, arXiv:2008.09862v3.
[3] Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, Elena Yudovina, Introduction to Representation Theory, with historical interludes by Slava Gerovitch, Student Mathematical Library 59, AMS 2011.
[4] Miroslav Fiedler, Notes on Hilbert and Cauchy matrices, Linear Algebra and its Applications 432 (2010), pp. 351-356.
[5] Israel Gohberg, Israel Koltracht, Triangular factors of Cauchy and Vandermonde matrices, Integral Eq. Operator Theory 26 (1996), pp. 46-59.
[6] R. Gow, Cauchy's matrix, the Vandermonde matrix and polynomial interpolation, IMS Bulletin 28 (1992), pp. 45-52.
[7] Masao Ishikawa, Soichi Okada, Hiroyuki Tagawa, Jiang Zeng, Generalizations of Cauchy's determinant and Schur's Pfaffian, Advances in Applied Mathematics 36 (2006), pp. 251-287.
[8] Donald Ervin Knuth, The Art of Computer Programming, volume 1: Fundamental Algorithms, 3rd edition, Addison-Wesley 1997.
See https://www-cs-faculty.stanford.edu/~knuth/taocp.html for errata.
[9] Thomas Muir, A Treatise on the Theory of Determinants, revised and enlarged by William H. Metzler, Dover 1960.
[10] Masatoshi Noumi, Yasuhiko Yamada, Tropical Robinson-Schensted-Knuth correspondence and birational Weyl group actions, arXiv:math-ph/0203030v2.
[11] Viktor V. Prasolov, Problems and Theorems in Linear Algebra, Translations of Mathematical Monographs, vol. \#134, AMS 1994.
See https://staff.math.su.se/mleites/books/prasolov-1994-problems. pdf for a preprint.
See also https://drive.google.com/open?id= 0B2UfTLwpN9okblBJbGxOZXc4Rm8 for a newer edition in Russian.
[12] Samuel Schechter, On the Inversion of Certain Matrices, Math. Comp. 13 (1959), pp. 73-77.
[13] John Todd, Computational Problems Concerning the Hilbert Matrix, Journal of Research of the National Bureau of Standards-B 65 (1961), no. 1, pp. 19-22.

[^0]: *Drexel University, Korman Center, 15 S 33rd Street, Philadelphia PA, 19104, USA
 ${ }^{1}$ Algebraists can replace the words "number" and "nonzero" by "element of a commutative ring" and "invertible", respectively. This generalization comes for free; we will not use anything specific to any kind of numbers in our proofs.
 ${ }^{2}$ Many authors define it to have entries $\frac{1}{x_{i}-y_{j}}$ instead of $\frac{1}{x_{i}+y_{j}}$. This boils down to replacing $y_{1}, y_{2}, \ldots, y_{n}$ by $-y_{1},-y_{2}, \ldots,-y_{n}$.

[^1]: ${ }^{3}$ Algebraists working over an arbitrary commutative ring should read "distinct" as "strongly distinct" (where two elements a, b of a ring are said to be strongly distinct if their difference $a-b$ is invertible).
 ${ }^{4}$ The adjugate $\operatorname{adj} A$ of an $n \times n$-matrix A is the $n \times n$-matrix whose (i, j)-th entry is $(-1)^{i+j} \operatorname{det}\left(A_{\sim j, \sim i}\right)$, where $A_{\sim j, \sim i}$ is the result of removing the j-th row and the i-th column from A. Older texts often refer to the adjugate as the "classical adjoint" (or just as the "adjoint", which however has another meaning as well).
 ${ }^{5}$ I wrote up this proof in much more detail in [2] solution to Exercise 6.69 (a)].

[^2]: ${ }^{6}$ This can be seen as an instance of tropicalization (see, e.g., [10]). More precisely, tropicalization (the sort that replaces + and \cdot by max and +) would replace $\frac{1}{x_{i}+y_{j}}$ by $-\max \left\{x_{i}, y_{j}\right\}$; but this turns into $\min \left\{x_{i}, y_{j}\right\}$ if we multiply all our numbers $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}$ by -1 .

