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Digraphs

Definition. A digraph (= directed graph) means a pair
(V ,A) of a finite set V and a subset A ⊆ V × V .
The elements (u, v) ∈ A are called arcs of this digraph, and
are drawn accordingly.

Example.

1

2

3

Thus, we allow loops ((u, u) ∈ A) and antiparallel arcs
((u, v) ∈ A and (v , u) ∈ A) but not parallel arcs (A is not a
multiset).
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The complement of a digraph

Definition. Let D = (V ,A) be a digraph. Then, D denotes
the complement of D; this is the digraph (V , (V × V ) \ A).
Its arcs are the non-arcs of D.

Example.
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D D
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Tournaments

Definition. A digraph D = (V ,A) is loopless if it has no
loops (i.e., no arcs (u, u)).

Definition. A loopless digraph D = (V ,A) is a tournament
if it has the following property: For any distinct u, v ∈ V ,
exactly one of the two pairs (u, v) and (v , u) is an arc of D.
In other words, a tournament is an orientation of the complete
undirected graph KV .

Examples.

1

2

3

1

2

3

1

2

3

1

2

3

tournament tournament not tournament not tournament

4 / 27



Tournaments

Definition. A digraph D = (V ,A) is loopless if it has no
loops (i.e., no arcs (u, u)).

Definition. A loopless digraph D = (V ,A) is a tournament
if it has the following property: For any distinct u, v ∈ V ,
exactly one of the two pairs (u, v) and (v , u) is an arc of D.
In other words, a tournament is an orientation of the complete
undirected graph KV .

Examples.

1

2

3

1

2

3

1

2

3

1

2

3

tournament tournament not tournament not tournament

4 / 27



Tournaments

Definition. A digraph D = (V ,A) is loopless if it has no
loops (i.e., no arcs (u, u)).

Definition. A loopless digraph D = (V ,A) is a tournament
if it has the following property: For any distinct u, v ∈ V ,
exactly one of the two pairs (u, v) and (v , u) is an arc of D.
In other words, a tournament is an orientation of the complete
undirected graph KV .

Examples.

1

2

3

1

2

3

1

2

3

1

2

3

tournament tournament not tournament not tournament

4 / 27



V -listings and Hamiltonian paths

Definition. Let V be a finite set. A V -listing will mean a list
of elements of V that contains each element of V exactly
once.

Definition. Let D = (V ,A) be a digraph. A Hamiltonian
path (short: hamp) of D means a V -listing (v1, v2, . . . , vn)
such that

(vi , vi+1) ∈ A for each i ∈ {1, 2, . . . , n − 1} .

In other words (for V ̸= ∅), it means a path of D that
contains each vertex.
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Redei’s theorems

Easy proposition (Rédei 1933): Any tournament has a
hamp.
This is an easy exercise in graph theory. But Rédei proved a
lot more:
Theorem (Rédei 1933): Let D be a tournament. Then,

(# of hamps of D) is odd.

Example. Here are some tournaments:

1

2

3

1

2

3

1

2

3

4

1

2
3

4
5

has 1 hamp: has 3 hamps: has 5 hamps: has 9 hamps:
(1, 2, 3) e.g., (2, 3, 1) e.g., (1, 2, 3, 4) e.g., (1, 4, 2, 5, 3)
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Theorem (Rédei 1933): Let D be a tournament. Then,

(# of hamps of D) is odd.

Example. Here are some tournaments:

1

2

3

1

2

3

1

2

3

4

1

2
3

4
5

has 1 hamp: has 3 hamps: has 5 hamps: has 9 hamps:
(1, 2, 3) e.g., (2, 3, 1) e.g., (1, 2, 3, 4) e.g., (1, 4, 2, 5, 3)

6 / 27



Redei’s theorems
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Berge’s theorem

Recall Redei’s Theorem: Let D be a tournament. Then,

(# of hamps of D) is odd.

Rédei’s proof is complicated and intransparent (see Moon,
Topics on Tournaments for an English version).
To give a more conceptual proof, Berge discovered the
following:
Theorem (Berge 1976): Let D be a digraph. Then,(

# of hamps of D
)
≡ (# of hamps of D)mod 2.

Example.

1

2

3 1

2

3

D D

has 3 hamps has 1 hamp 7 / 27
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Berge’s theorem: questions and further directions

Berge proves his theorem (in his Graphs textbook) using an
elegant inclusion-exclusion argument.
Then he uses his theorem to prove Rédei’s theorem via
induction on the number of “inversions” (arcs directed the
“wrong way”).
This proof is much cleaner than Rédei’s, but still far from
simple.
For a detailed exposition, see https:
//www.cip.ifi.lmu.de/~grinberg/t/17s/5707lec7.pdf

.

Remark. Can we improve on Rédei’s theorem even further?
MathOverflow question #232751 asks for the possible values
of (# of hamps of D) for a tournament D.
Among the numbers between 1 and 80555, the answer is “all
odd numbers except for 7 and 21” (proved by bof and Gordon
Royle).
Question: Are these the only exceptions?
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The Rédei–Berge symmetric function: introduction

Independently, Chow (The Path-Cycle Symmetric Function of
a Digraph, 1996) introduced a symmetric function assigned to
each digraph D.
(This was inspired by Chung/Graham’s cover polynomial in
rook theory.)

We only discuss a coarsening of his construction (Chow has
two families of variables, and we set the second family to 0).
Question: Which of the results below can be generalized to
the full version?
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The Rédei–Berge symmetric function: definition

Definition. Let n ∈ N, and let I be a subset of
{1, 2, . . . , n − 1}. Then, we define the power series

LI ,n :=
∑

i1≤i2≤···≤in;
ip<ip+1 for each p∈I

xi1xi2 · · · xin ∈ Z [[x1, x2, x3, . . .]]

(where the indices i1, i2, . . . , in range over {1, 2, 3, . . .}).
Remark: This is a formal power series (but becomes a
polynomial if you drop all but finitely many variables).
It is known as a (Gessel’s) fundamental quasisymmetric
function.

Definition. Let n ∈ N. Let D = (V ,A) be a digraph with n
vertices. We define the Redei–Berge symmetric function

UD :=
∑

w is a V -listing

LDes(w ,D), n ∈ Z [[x1, x2, x3, . . .]] ,

where

Des (w ,D) := {i ∈ {1, 2, . . . , n − 1} | (wi ,wi+1) ∈ A}
for each V -listing w = (w1,w2, . . . ,wn) .
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The Rédei–Berge symmetric function: example

Example: Let

D =

1

2

3
.

Then,

UD =
∑

w is a V -listing

LDes(w ,D), 3

= LDes((1,2,3),D), 3 + LDes((1,3,2),D), 3 + LDes((2,1,3),D), 3

+ LDes((2,3,1),D), 3 + LDes((3,1,2),D), 3 + LDes((3,2,1),D), 3

= L{1}, 3 + L∅, 3 + L∅, 3 + L∅, 3 + L{2}, 3 + L∅, 3

= 4 · L∅, 3 + L{1}, 3 + L{2}, 3

= 4 ·
∑

i1≤i2≤i3

xi1xi2xi3 +
∑

i1<i2≤i3

xi1xi2xi3 +
∑

i1≤i2<i3

xi1xi2xi3 .
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The Rédei–Berge symmetric function: restatement

We can restate the definition of UD directly as follows:

Proposition. Let D = (V ,A) be a digraph. Then,

UD =
∑

f :V→{1,2,3,...}

aD,f
∏
v∈V

xf (v),

where aD,f is the # of all V -listings w = (w1,w2, . . . ,wn)
such that

we have f (w1) ≤ f (w2) ≤ · · · ≤ f (wn);
we have f (wi ) < f (wi+1) if (wi ,wi+1) ∈ A.

Remark. We can restate the definition of aD,f in nicer terms.
Namely, fix a digraph D = (V ,A) and a map
f : V → {1, 2, 3, . . .}. For any j ∈ f (V ), let Dj denote the
induced subdigraph of the complement D on the vertex set
f −1 (j) = {v ∈ V | f (v) = j}. Then,

aD,f =
∏

j∈f (V )

(
# of hamps of Dj

)
.
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The Rédei–Berge symmetric function: context

Note that UD is ΞD (x , 0) in the notations of Chow’s 1996
paper.

What is UD good for? Counting hamps (= Hamiltonian
paths), for one:

Proposition. Let D be a digraph. Then,

UD (1, 0, 0, 0, . . .) =
(
# of hamps of D

)
.

Thus, any results about UD might give us information about
the # of hamps!

Formulas for UD in some specific cases (D acyclic, D poset,
D path) can be found in Additional Problem 120 to Chapter 7
of Stanley’s EC2. Most prominently, if D is the “greater-than
digraph” of a poset P, then UD is the chromatic symmetric
function of the incomparability graph of P.

13 / 27
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p-expansions: p-integrality

I called UD the “Rédei–Berge symmetric function”, but is it
actually symmetric? Yes, and in fact something better holds:

Definition. For each k ≥ 1, let

pk := xk1 + xk2 + xk3 + · · ·

be the k-th power-sum symmetric function.

Theorem. For any digraph D, we have

UD ∈ Z [p1, p2, p3, . . .] .

That is, UD can be written as a polynomial in p1, p2, p3, . . .
over Z.
Which polynomial, though?

14 / 27



p-expansions: p-integrality
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p-expansions: Main Theorem I

Definition. Fix a digraph D = (V ,A).
Let SV be the symmetric group on the set V .
For any σ ∈ SV , we let

ptypeσ :=
∏

γ is a cycle of σ

plength of γ .

In other words, if σ has cycles of lengths a, b, . . . , k (including
1-cycles), then ptypeσ = papb · · · pk .
We say that a cycle γ of σ is a D-cycle if all the pairs
(i , σ (i)) for i ∈ γ are arcs of D.

Main Theorem I. Let D = (V ,A) be a digraph. Set

φ (σ) :=
∑

γ is a cycle of σ;
γ is a D-cycle

((length of γ)− 1) for each σ ∈ SV .

Then,
UD =

∑
σ∈SV ;

each cycle of σ is
a D-cycle or a D-cycle

(−1)φ(σ) ptypeσ.

This yields the UD ∈ Z [p1, p2, p3, . . .] theorem, of course.
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p-expansions: Main Theorem I, example 1

Example. Recall our favorite example:

1

2

3

1

2

3

D D

.

The cycles of D are (2)∼ and (3)∼, whereas the cycles of D are
(1)∼, (2, 3)∼, (3, 1)∼ and (1, 3, 2)∼.
Thus, the

∑
σ∈SV ;

each cycle of σ is

a D-cycle or a D-cycle
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p-expansions: Main Theorem I, example 2

Example. Another example: Let

1

2

3

1

2

3

D D

.

Thus, the
∑

σ∈SV ;
each cycle of σ is

a D-cycle or a D-cycle

sum in Main Theorem I has three

addends, with

σ = [1, 2, 3] [3, 1, 2] [3, 2, 1]

(−1)φ(σ) = 1 1 −1

ptypeσ = p31 p3 p2p1

Hence, Main Theorem I yields UD = p31 + p3 − p2p1.
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p-expansions: Main Theorem I, corollaries

Recall Main Theorem I: Let D = (V ,A) be a digraph. Set

φ (σ) :=
∑

γ is a cycle of σ;
γ is a D-cycle

((length of γ)− 1) for each σ ∈ SV .

Then,
UD =

∑
σ∈SV ;

each cycle of σ is
a D-cycle or a D-cycle

(−1)φ(σ) ptypeσ.

Main Theorem I yields Berge’s theorem, since the sum for D
and the sum for D range over the same σ’s, and the addends
only differ in sign.

Corollary. Let D = (V ,A) be a digraph. Assume that every
D-cycle has odd length. Then,

UD =
∑
σ∈SV ;

each cycle of σ is
a D-cycle or a D-cycle

ptypeσ ∈ N [p1, p2, p3, . . .] .
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p-expansions: Main Theorem II

Main Theorem II. Let D = (V ,A) be a tournament. For
each σ ∈ SV , let ψ (σ) denote the number of nontrivial cycles
of σ. (A cycle is called nontrivial if it has length > 1.) Then,

UD =
∑
σ∈SV ;

each cycle of σ is a D-cycle;
all cycles of σ have odd length

2ψ(σ)ptypeσ

∈ N [p1, 2p3, 2p5, 2p7, . . .] = N [p1, 2pi | i > 1 is odd] .

Main Theorem II easily yields Rédei’s theorem, as the only
addend with 2ψ(σ) odd is the σ = id addend.
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p-expansions: Main Theorem III

The above corollary from Main Theorem I yields that UD is
p-positive when D has no even-length cycles. But this holds
even more generally:

Main Theorem III. Let D = (V ,A) be a digraph that has no
cycles of length 2. Then,

UD =
∑
σ∈SV ;

each cycle of σ is
a D-cycle or a D-cycle;

no even-length cycle of σ is
a D-cycle or a reversed D-cycle

ptypeσ.

Remark. Not all p-positive UD ’s are explained by this
theorem.
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p-expansions: Proof ideas, 1

The proof of Main Theorem I is long and intricate. It might
be simplifiable. Here are the main ideas.
Pólya-style lemma. Let V be a finite set. Let σ ∈ SV be a
permutation of V . Then,∑

f :V→{1,2,3,...};
f ◦σ=f

∏
v∈V

xf (v) = ptypeσ.

Using this lemma (and the above formula for aD,f ), we can
easily reduce Main Theorem I to the following lemma:
Main combinatorial lemma. Let D = (V ,A) be a digraph
with n vertices. Let f : V → {1, 2, 3, . . .} be any map. Then,∏

j∈f (V )

(
# of hamps of Dj

)
=

∑
σ∈SV ;

each cycle of σ is
a D-cycle or a D-cycle;

f ◦σ=f

(−1)φ(σ) ,

where Dj is the induced subdigraph of D on the vertex set
f −1 (j).
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p-expansions: Proof ideas, 2

So we need to prove the Main combinatorial lemma: Let
D = (V ,A) be a digraph with n vertices. Let
f : V → {1, 2, 3, . . .} be any map. Then,∏

j∈f (V )

(
# of hamps of Dj

)
=

∑
σ∈SV ;

each cycle of σ is
a D-cycle or a D-cycle;

f ◦σ=f

(−1)φ(σ) ,

where Dj is the induced subdigraph of D on the vertex set
f −1 (j).
Work on each “level set” f −1 (j) separately:
Main combinatorial lemma (simplified). Let D = (V ,A)
be a digraph. Then,(

# of hamps of D
)
=

∑
σ∈SV ;

each cycle of σ is
a D-cycle or a D-cycle

(−1)φ(σ) .

This can be proved using a nontrivial exclusion-inclusion.
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p-expansions: Proof ideas, 3

To prove Main Theorems II and III, start with the Main
Theorem I sum, and combine σ’s into equivalence classes by
reversing certain cycles:

For Main Theorem II, call two permutations in SV

equivalent if one can be obtained from the other by
reversing (nontrivial) cycles. This turns D-cycles into
D-cycles and vice versa. The equivalence class of σ has
2ψ(σ) elements if σ has no 2-cycles. Their addends in the
sum cancel out if σ has an even-length cycle; otherwise
they are all equal and sum up to 2ψ(σ)ptypeσ.
For Main Theorem III, call a necklace (v1, v2, . . . , vk)∼
risky if its length k is even and either it or its inverse is a
D-cycle. Call two permutations in SV equivalent if one
can be obtained from the other by reversing risky cycles.
The equivalence class of σ has 2r(σ) elements, where
r (σ) is the number of risky cycles of σ. Their addends in
the sum cancel out if σ has a risky cycle; otherwise there
is only one of them. 23 / 27
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p-expansions: Proof ideas, 4

The proof of Main Theorem I is detailed in the preprint
(https://arxiv.org/abs/2307.05569); the proofs of II
and III are outlined.
These would make a good project for formalization
(Coq, Lean, etc.): only elementary combinatorics but some
tricky reasoning with cycles and sums.
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A surprise

Rédei’s theorem determines the # of hamps of a tournament
D modulo 2. What about mod 4?

Theorem. Let D be a tournament. Then,

(# of hamps of D)

≡ 1 + 2 (# of nontrivial odd-length D-cycles)mod 4.

Here, “nontrivial” means “having length > 1”.

We can prove this using Main Theorem II. We have not seen
this anywhere in the literature.
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Main Theorem I “generalized”

Main Theorem I can be rewritten without speaking about
digraphs:
Theorem. Let n ∈ N, and let V be an n-element set. Let k
be a commutative ring.
For any a = (i , j) ∈ V × V , we fix an element ta = t(i ,j) ∈ k
and set sa := ta + 1.
We define the deformed Redei–Berge symmetric function

Ũt :=
∑

w=(w1,w2,...,wn)
is a V -listing

∑
i1≤i2≤···≤in

 ∏
k∈[n−1];
ik=ik+1

s(wk ,wk+1)

 xi1xi2 · · · xin

∈ k [[x1, x2, x3, . . .]] .

Then,

Ũt =
∑
σ∈SV

 ∏
γ is a cycle of σ

∏
i∈γ

s(i ,σ(i)) −
∏
i∈γ

t(i ,σ(i))

 ptypeσ.

This generalizes Main Theorem I (set each ta to 0 or −1), but
also follows from it by multilinearity.
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