Three questions on symmetric group algebras

Darij Grinberg (Drexel University)

2024-06-04, Harvard University, Cambridge, MA

slides: http://www.cip.ifi.lmu.de/~grinberg/algebra/ harvard2024.pdf

- Let $\mathcal{A} = \mathbf{k} [S_n]$ be the group algebra of the symmetric group S_n (aka \mathfrak{S}_n) over a commutative ring \mathbf{k} .
- Let *D* be a diagram with *n* cells. For instance, for *n* = 9, we can have

- Let S^D be its Specht module. This is a left A-module defined in any of the following equivalent ways:
 - as the span of polytabloids

- Let $\mathcal{A} = \mathbf{k} [S_n]$ be the group algebra of the symmetric group S_n (aka \mathfrak{S}_n) over a commutative ring \mathbf{k} .
- Let *D* be a diagram with *n* cells. For instance, for *n* = 9, we can have

- Let S^D be its Specht module. This is a left A-module defined in any of the following equivalent ways:
 - as the left ideal of A generated by N_TP_T, where T is any filling of D with the numbers 1, 2, ..., n, and where

$$\mathbf{P}_T = \sum_{\substack{w \in S_n \text{ preserves} \\ \text{the rows of } T}} w \quad \text{and} \quad \mathbf{N}_T = \sum_{\substack{w \in S_n \text{ preserves} \\ \text{the columns of } T}} (-1)^w w;$$

- Let $\mathcal{A} = \mathbf{k} [S_n]$ be the group algebra of the symmetric group S_n (aka \mathfrak{S}_n) over a commutative ring \mathbf{k} .
- Let *D* be a diagram with *n* cells. For instance, for n = 9, we can have

- Let S^D be its Specht module. This is a left A-module defined in any of the following equivalent ways:
 - as the span of certain determinants in a polynomial ring (many options here).

- Let $\mathcal{A} = \mathbf{k} [S_n]$ be the group algebra of the symmetric group S_n (aka \mathfrak{S}_n) over a commutative ring \mathbf{k} .
- Let *D* be a diagram with *n* cells. For instance, for *n* = 9, we can have

- Let \mathcal{S}^D be its Specht module.
- Question. Is S^D a direct addend of the Young module \mathcal{M}^D as a k-module?
- Note that proving this for $\mathbf{k} = \mathbb{Z}$ would suffice.
- Equivalent question. If k is a finite field, is dim_k S^D independent on k ?
- **Better hope:** Does S^D have a combinatorially meaningful basis?

- Let $\mathcal{A} = \mathbf{k} [S_n]$ be the group algebra of the symmetric group S_n (aka \mathfrak{S}_n) over a commutative ring \mathbf{k} .
- Let *D* be a diagram with *n* cells. For instance, for *n* = 9, we can have

- Let \mathcal{S}^D be its Specht module.
- Question. Is S^D a direct addend of the Young module \mathcal{M}^D as a k-module?
- Well-known positive answer when *D* is a skew Young diagram (Garnir's standard basis theorem).
- I think the answer is still positive when D is row-convex (Reiner/Shimozono 1993).
- Same questions exist for Schur and Weyl modules (over GL_n), but not sure if still equivalent.

- Let $\mathbf{m}_k := t_{1,k} + t_{2,k} + \cdots + t_{k-1,k}$ be the *k*-th Young-Jucys-Murphy element for each $k \in [n]$ (where $t_{i,j}$ means the transposition $i \leftrightarrow j$).
- The k-subalgebra of A = k [S_n] generated by m₁, m₂,..., m_n is commutative, and known as the *Gelfand–Tsetlin algebra*.
- Question. Is it free as a k-module? (dimension = # of involutions = # of straight-shaped standard tableaux.)
- Again, proving it for $\mathbf{k} = \mathbb{Z}$ is enough.
- True for $n \leq 6$.
- Well-known positive answer for k = Q (explicit basis: the diagonal vectors e_{T,T} of the seminormal basis of k [S_n]).
- Partial result: For all $i_1 < i_2 < \cdots < i_k$, we have

$$\mathbf{m}_{i_1}\mathbf{m}_{i_2}\cdots\mathbf{m}_{i_k} = \sum_{\substack{w \in S_n;\\ \mathsf{NoSt } w = \{i_1, i_2, \dots, i_k\}}} w.$$

The simplest-looking open question you'll see today

• For any permutation $w \in S_n$, define

$$exc w := (\# \text{ of } i \in [n] \text{ such that } w(i) > i) \qquad \text{ and}$$
$$anxc w := (\# \text{ of } i \in [n] \text{ such that } w(i) < i).$$

• For any $a, b \in \mathbb{N}$, define

$$\mathbf{X}_{a,b} := \sum_{\substack{w \in S_n; \\ exc \ w = a; \\ anxc \ w = b}} w \in \mathbf{k} \left[S_n \right].$$

- Conjecture. These elements X_{a,b} for all a, b ∈ N commute (for fixed n). In other words, X_{a,b}X_{c,d} = X_{c,d}X_{a,b} for all a, b, c, d ∈ N.
- Checked for all $n \leq 7$.
- This generalizes a limiting case of the Bethe subalgebra (Mukhin/Tarasov/Varchenko).