Gaussian elimination greedoids from ultrametric spaces

Darij Grinberg joint work with Fedor Petrov

2020-03-10, Institut Mittag-Leffler
slides: http://www.cip.ifi.lmu.de/~grinberg/algebra/ greedtalk-iml2020.pdf
extended abstract with further references: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/fps20gfv.pdf

1.

Bhargava's generalized factorials: an introduction

References:

- Manjul Bhargava, P-orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. reine. angew. Math. 490 (1997), 101-127.
- Manjul Bhargava, The Factorial Function and Generalizations, Amer. Math. Month. 107 (2000), 783-799. (Recommended!)
- Manjul Bhargava, On P-orderings, rings of integer-valued polynomials, and ultrametric analysis, Journal of the AMS 22 (2009), 963-993.

It begins with a Vandermonde

- Theorem (classical exercise):

Let $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Z}$. Then,

$$
0!\cdot 1!\cdot 2!\cdots \cdots \cdot n!\mid \prod_{i>j}\left(a_{i}-a_{j}\right) .
$$

It begins with a Vandermonde

- Theorem (classical exercise, slightly restated): Let $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Z}$. Then,

$$
\prod_{i>j}(i-j) \mid \prod_{i>j}\left(a_{i}-a_{j}\right) .
$$

- Theorem (classical exercise, slightly restated): Let $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Z}$. Then,

$$
\prod_{i>j}(i-j) \mid \prod_{i>j}\left(a_{i}-a_{j}\right) .
$$

- Hint to proof 1: Show that

$$
\frac{\mathrm{RHS}}{\mathrm{LHS}}=\operatorname{det}\left(\binom{a_{i}}{j}\right)_{i, j \in\{0,1, \ldots, n\}} .
$$

- Theorem (classical exercise, slightly restated):

Let $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Z}$. Then,

$$
\prod_{i>j}(i-j) \mid \prod_{i>j}\left(a_{i}-a_{j}\right) .
$$

- Hint to proof 2: WLOG assume that $0 \leq a_{0}<a_{1}<\cdots<a_{n}$. (Otherwise, move a_{i} preserving $a_{i} \bmod$ LHS.)
- Theorem (classical exercise, slightly restated):

Let $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Z}$. Then,

$$
\prod_{i>j}(i-j) \mid \prod_{i>j}\left(a_{i}-a_{j}\right) .
$$

- Hint to proof 2: WLOG assume that $0 \leq a_{0}<a_{1}<\cdots<a_{n}$. (Otherwise, move a_{i} preserving $a_{i} \bmod$ LHS.)
Then, the partition $\lambda:=\left(a_{n}-n, a_{n-1}-(n-1), \ldots, a_{0}-0\right)$ satisfies

$$
\begin{aligned}
& \frac{\mathrm{RHS}}{\mathrm{LHS}}=s_{\lambda}(\underbrace{1,1, \ldots, 1}_{n+1 \text { times }}) \quad \text { (Schur function) } \\
&=(\# \text { of semistandard tableaux of shape } \lambda \\
&\quad \text { with entries } \in\{1,2, \ldots, n+1\}) .
\end{aligned}
$$

(Weyl's character formula in type A.)

- Theorem (classical exercise, slightly restated):

Let $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Z}$. Then,

$$
\prod_{i>j}(i-j) \mid \prod_{i>j}\left(a_{i}-a_{j}\right) .
$$

- Hint to proof 3: To show that $u \mid v$, it suffices to prove that every prime p divides v at least as often as it does u. Now get your hands dirty.

What about squares?

- Theorem:

Let $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Z}$. Then,

$$
\left.\frac{0!\cdot 2!\cdots \cdots(2 n)!}{2^{n}} \right\rvert\, \prod_{i>j}\left(a_{i}^{2}-a_{j}^{2}\right)
$$

(Typo in Bhargava corrected.)

What about squares?

- Theorem (slightly restated):

Let $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Z}$. Then,

$$
\prod_{i>j}\left(i^{2}-j^{2}\right) \mid \prod_{i>j}\left(a_{i}^{2}-a_{j}^{2}\right) .
$$

What about squares?

- Theorem (slightly restated):

Let $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Z}$. Then,

$$
\prod_{i>j}\left(i^{2}-j^{2}\right) \mid \prod_{i>j}\left(a_{i}^{2}-a_{j}^{2}\right) .
$$

- Analogues of the 3 above proofs work (I believe). In RHS particular, $\frac{\mathrm{RHS}}{\mathrm{LHS}}$ is the dimension of an $\mathrm{Sp}(n)$-irrep.
- Question: Do we also have

$$
\prod_{i>j}\left(i^{3}-j^{3}\right) \mid \prod_{i>j}\left(a_{i}^{3}-a_{j}^{3}\right) ?
$$

- Question: Do we also have

$$
\prod_{i>j}\left(i^{3}-j^{3}\right) \mid \prod_{i>j}\left(a_{i}^{3}-a_{j}^{3}\right) ?
$$

- Answer: No. For example, $n=2$ and $\left(a_{0}, a_{1}, a_{2}\right)=(0,1,3)$.
- Question: Do we also have

$$
\prod_{i>j}\left(i^{3}-j^{3}\right) \mid \prod_{i>j}\left(a_{i}^{3}-a_{j}^{3}\right) ?
$$

- Answer: No. For example, $n=2$ and $\left(a_{0}, a_{1}, a_{2}\right)=(0,1,3)$.
- So what is

$$
\operatorname{gcd}\left\{\prod_{i>j}\left(a_{i}^{3}-a_{j}^{3}\right) \mid a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{Z}\right\} ?
$$

- General question (Bhargava, 1997): Let S be a set of integers. What is

$$
\operatorname{gcd}\left\{\prod_{i>j}\left(a_{i}-a_{j}\right) \mid a_{0}, a_{1}, \ldots, a_{n} \in S\right\} ?
$$

And when is it attained?

- General question (Bhargava, 1997): Let S be a set of integers. What is

$$
\operatorname{gcd}\left\{\prod_{i>j}\left(a_{i}-a_{j}\right) \mid a_{0}, a_{1}, \ldots, a_{n} \in S\right\} ?
$$

And when is it attained?

- Enough to work out each prime p separately, because:

p-valuation

- Let p be a prime.
- For each nonzero $n \in \mathbb{Z}$, let $v_{p}(n)$ (the p-valuation of n) be the highest $k \in \mathbb{N}$ such that $p^{k} \mid n$. (We use $\mathbb{N}:=\{0,1,2, \ldots\}$.
- Set $v_{p}(0)=+\infty$.

p-valuation

- Let p be a prime.
- For each nonzero $n \in \mathbb{Z}$, let $v_{p}(n)$ (the p-valuation of n) be the highest $k \in \mathbb{N}$ such that $p^{k} \mid n$. (We use

$$
\mathbb{N}:=\{0,1,2, \ldots\} .)
$$

- Set $v_{p}(0)=+\infty$.
- Rules for p-valuations:

$$
\begin{array}{c|c}
v_{p}(1)=0 ; & v_{p}(a b)=v_{p}(a)+v_{p}(b) ; \\
v_{p}\left(p^{k}\right)=k ; & v_{p}(a+b) \geq \min \left\{v_{p}(a), v_{p}(b)\right\} .
\end{array}
$$

p-valuation

- Let p be a prime.
- For each nonzero $n \in \mathbb{Z}$, let $v_{p}(n)$ (the p-valuation of n) be the highest $k \in \mathbb{N}$ such that $p^{k} \mid n$. (We use

$$
\mathbb{N}:=\{0,1,2, \ldots\} .)
$$

- Set $v_{p}(0)=+\infty$.
- Rules for p-valuations:

$$
\begin{array}{c|c}
v_{p}(1)=0 ; & v_{p}(a b)=v_{p}(a)+v_{p}(b) ; \\
v_{p}\left(p^{k}\right)=k ; & v_{p}(a+b) \geq \min \left\{v_{p}(a), v_{p}(b)\right\}
\end{array}
$$

- Define the p-distance $d_{p}(a, b)$ between two integers a and b by

$$
d_{p}(a, b)=-v_{p}(a-b)
$$

Then, the last rule rewrites as

$$
d_{p}(a, c) \leq \max \left\{d_{p}(a, b), d_{p}(b, c)\right\}
$$

- Let p be a prime.
- For each nonzero $n \in \mathbb{Z}$, let $v_{p}(n)$ (the p-valuation of n) be the highest $k \in \mathbb{N}$ such that $p^{k} \mid n$. (We use

$$
\mathbb{N}:=\{0,1,2, \ldots\} .)
$$

- Set $v_{p}(0)=+\infty$.
- Rules for p-valuations:

$$
\begin{array}{c|c}
v_{p}(1)=0 ; & v_{p}(a b)=v_{p}(a)+v_{p}(b) ; \\
v_{p}\left(p^{k}\right)=k ; & v_{p}(a+b) \geq \min \left\{v_{p}(a), v_{p}(b)\right\} .
\end{array}
$$

- Two integers u and v satisfy $u \mid v$ if and only if

$$
v_{p}(u) \leq v_{p}(v) \quad \text { for each prime } p
$$

Thus, checking divisibility is reduced to a "local" problem.

- Equivalent problem: Let S be a set of integers. Let p be a prime. What is

$$
\min \left\{v_{p}\left(\prod_{i>j}\left(a_{i}-a_{j}\right)\right) \mid a_{0}, a_{1}, \ldots, a_{n} \in S\right\} ?
$$

And when is it attained?

- Equivalent problem: Let S be a set of integers. Let p be a prime. What is

$$
\min \left\{\sum_{i>j} v_{p}\left(a_{i}-a_{j}\right) \mid a_{0}, a_{1}, \ldots, a_{n} \in S\right\} ?
$$

And when is it attained?

- Equivalent problem: Let S be a set of integers. Let p be a prime. What is

$$
\max \left\{\sum_{i>j} d_{p}\left(a_{i}, a_{j}\right) \mid a_{0}, a_{1}, \ldots, a_{n} \in S\right\} ?
$$

And when is it attained?

- Equivalent problem: Let S be a set of integers. Let p be a prime. What is

$$
\max \left\{\sum_{i>j} d_{p}\left(a_{i}, a_{j}\right) \mid a_{0}, a_{1}, \ldots, a_{n} \in S\right\} ?
$$

And when is it attained?

- We can WLOG assume that $a_{0}, a_{1}, \ldots, a_{n}$ are distinct.

Bhargava's greedy algorithm

- Bhargava solved this problem using the following greedy algorithm:

Bhargava's greedy algorithm

- Bhargava solved this problem using the following greedy algorithm:
- Pick $a_{0} \in S$ arbitrarily.

Bhargava's greedy algorithm

- Bhargava solved this problem using the following greedy algorithm:
- Pick $a_{0} \in S$ arbitrarily.
- Pick $a_{1} \in S$ to maximize $d_{p}\left(a_{0}, a_{1}\right)$.

Bhargava's greedy algorithm

- Bhargava solved this problem using the following greedy algorithm:
- Pick $a_{0} \in S$ arbitrarily.
- Pick $a_{1} \in S$ to maximize $d_{p}\left(a_{0}, a_{1}\right)$.
- Pick $a_{2} \in S$ to maximize $d_{p}\left(a_{0}, a_{2}\right)+d_{p}\left(a_{1}, a_{2}\right)$.

Bhargava's greedy algorithm

- Bhargava solved this problem using the following greedy algorithm:
- Pick $a_{0} \in S$ arbitrarily.
- Pick $a_{1} \in S$ to maximize $d_{p}\left(a_{0}, a_{1}\right)$.
- Pick $a_{2} \in S$ to maximize $d_{p}\left(a_{0}, a_{2}\right)+d_{p}\left(a_{1}, a_{2}\right)$.
- Pick $a_{3} \in S$ to maximize

$$
d_{p}\left(a_{0}, a_{3}\right)+d_{p}\left(a_{1}, a_{3}\right)+d_{p}\left(a_{2}, a_{3}\right)
$$

Bhargava's greedy algorithm

- Bhargava solved this problem using the following greedy algorithm:
- Pick $a_{0} \in S$ arbitrarily.
- Pick $a_{1} \in S$ to maximize $d_{p}\left(a_{0}, a_{1}\right)$.
- Pick $a_{2} \in S$ to maximize $d_{p}\left(a_{0}, a_{2}\right)+d_{p}\left(a_{1}, a_{2}\right)$.
- Pick $a_{3} \in S$ to maximize
$d_{p}\left(a_{0}, a_{3}\right)+d_{p}\left(a_{1}, a_{3}\right)+d_{p}\left(a_{2}, a_{3}\right)$.
- ... (Ad infinitum, or until S is exhausted.)

Bhargava's greedy algorithm

- Bhargava solved this problem using the following greedy algorithm:
- Pick $a_{0} \in S$ arbitrarily.
- Pick $a_{1} \in S$ to maximize $d_{p}\left(a_{0}, a_{1}\right)$.
- Pick $a_{2} \in S$ to maximize $d_{p}\left(a_{0}, a_{2}\right)+d_{p}\left(a_{1}, a_{2}\right)$.
- Pick $a_{3} \in S$ to maximize

$$
d_{p}\left(a_{0}, a_{3}\right)+d_{p}\left(a_{1}, a_{3}\right)+d_{p}\left(a_{2}, a_{3}\right) .
$$

- ... (Ad infinitum, or until S is exhausted.)
- Thus, the choice of a_{n} tactically maximizes $\sum_{n \geq i>j} d_{p}\left(a_{i}, a_{j}\right)$ for fixed $a_{0}, a_{1}, \ldots, a_{n-1}$. (Thus "greedy".) But is it strategically optimal?

Bhargava's greedy algorithm

- Bhargava solved this problem using the following greedy algorithm:
- Pick $a_{0} \in S$ arbitrarily.
- Pick $a_{1} \in S$ to maximize $d_{p}\left(a_{0}, a_{1}\right)$.
- Pick $a_{2} \in S$ to maximize $d_{p}\left(a_{0}, a_{2}\right)+d_{p}\left(a_{1}, a_{2}\right)$.
- Pick $a_{3} \in S$ to maximize

$$
d_{p}\left(a_{0}, a_{3}\right)+d_{p}\left(a_{1}, a_{3}\right)+d_{p}\left(a_{2}, a_{3}\right) .
$$

- ... (Ad infinitum, or until S is exhausted.)
- Thus, the choice of a_{n} tactically maximizes $\sum_{n \geq i>j} d_{p}\left(a_{i}, a_{j}\right)$ for fixed $a_{0}, a_{1}, \ldots, a_{n-1}$. (Thus "greedy".) But is it strategically optimal?
- Theorem (Bhargava): Yes. Any such sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ will always maximize $\sum_{n \geq i>j} d_{p}\left(a_{i}, a_{j}\right)$ for each n.

Bhargava's greedy algorithm

- Bhargava solved this problem using the following greedy algorithm:
- Pick $a_{0} \in S$ arbitrarily.
- Pick $a_{1} \in S$ to maximize $d_{p}\left(a_{0}, a_{1}\right)$.
- Pick $a_{2} \in S$ to maximize $d_{p}\left(a_{0}, a_{2}\right)+d_{p}\left(a_{1}, a_{2}\right)$.
- Pick $a_{3} \in S$ to maximize

$$
d_{p}\left(a_{0}, a_{3}\right)+d_{p}\left(a_{1}, a_{3}\right)+d_{p}\left(a_{2}, a_{3}\right) .
$$

- ... (Ad infinitum, or until S is exhausted.)
- Thus, the choice of a_{n} tactically maximizes $\sum_{n \geq i>j} d_{p}\left(a_{i}, a_{j}\right)$ for fixed $a_{0}, a_{1}, \ldots, a_{n-1}$. (Thus "greedy".) But is it strategically optimal?
- Theorem (Bhargava): Yes. Any such sequence $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ will always maximize $\sum_{n \geq i>j} d_{p}\left(a_{i}, a_{j}\right)$ for each n.
- Note: There is such a sequence for each prime p, but there might not be such a sequence that works for all p simultaneously.

A cryptic hint

- Bhargava, 1997:
"We note that the above results (i.e. Theorem 1, Lemmas 1 and 2) do not rely on any special properties of P or R; they depend only on the fact that R becomes an ultrametric space when given the P-adic metric. Hence these results could be viewed more generally as statements about certain special sequences in ultrametric spaces. For convenience, however, we have chosen to present these statements only in the relevant context. In particular, we note that our proof of Theorem 1 shall be a purely algebraic one, involving no inequalities."
(Theorem 1 is a slight generalization of the above Theorem.)

A cryptic hint

- Bhargava, 1997:
"We note that the above results (i.e. Theorem 1, Lemmas 1 and 2) do not rely on any special properties of P or R; they depend only on the fact that R becomes an ultrametric space when given the P-adic metric. Hence these results could be viewed more generally as statements about certain special sequences in ultrametric spaces. For convenience, however, we have chosen to present these statements only in the relevant context. In particular, we note that our proof of Theorem 1 shall be a purely algebraic one, involving no inequalities."
(Theorem 1 is a slight generalization of the above Theorem.)
- In other news, the properties of d_{p} are all that is needed.

2. Ultra triples

2.

Ultra triples

References:

- Darij Grinberg, Fedor Petrov, A greedoid and a matroid inspired by Bhargava's p-orderings, arXiv:1909.01965.
- Darij Grinberg, The Bhargava greedoid as a Gaussian elimination greedoid, arXiv:2001.05535.
- Alex J. Lemin, The category of ultrametric spaces is isomorphic to the category of complete, atomic, tree-like, and real graduated lattices LAT*, Algebra univers. 50 (2003), pp. 35-49.

Ultra triples

- If E is any set, then

$$
E \times E:=\{(e, f) \in E \times E \mid e \neq f\}
$$

Ultra triples

- If E is any set, then

$$
E \times E:=\{(e, f) \in E \times E \mid e \neq f\} .
$$

- Definition: An ultra triple is a triple (E, w, d) consisting of:
- a set E, called the ground set (its elements are called points);

Ultra triples

- If E is any set, then

$$
E \times E:=\{(e, f) \in E \times E \mid e \neq f\} .
$$

- Definition: An ultra triple is a triple (E, w, d) consisting of:
- a set E, called the ground set (its elements are called points);
- a map $w: E \rightarrow \mathbb{R}$ that assigns to each point e some number $w(e) \in \mathbb{R}$ that we call its weight;

Ultra triples

- If E is any set, then

$$
E \times E:=\{(e, f) \in E \times E \mid e \neq f\} .
$$

- Definition: An ultra triple is a triple (E, w, d) consisting of:
- a set E, called the ground set (its elements are called points);
- a map $w: E \rightarrow \mathbb{R}$ that assigns to each point e some number $w(e) \in \mathbb{R}$ that we call its weight;
- a map $d: E \times E \rightarrow \mathbb{R}$ that assigns to any two distinct points e and f a number $d(e, f) \in \mathbb{R}$ that we call their distance,

Ultra triples

- If E is any set, then

$$
E \times E:=\{(e, f) \in E \times E \mid e \neq f\} .
$$

- Definition: An ultra triple is a triple (E, w, d) consisting of:
- a set E, called the ground set (its elements are called points);
- a map $w: E \rightarrow \mathbb{R}$ that assigns to each point e some number $w(e) \in \mathbb{R}$ that we call its weight;
- a map $d: E \times E \rightarrow \mathbb{R}$ that assigns to any two distinct points e and f a number $d(e, f) \in \mathbb{R}$ that we call their distance,
satisfying the following axioms:
- Symmetry: $d(a, b)=d(b, a)$ for any distinct $a, b \in E$;

Ultra triples

- If E is any set, then

$$
E \times E:=\{(e, f) \in E \times E \mid e \neq f\} .
$$

- Definition: An ultra triple is a triple (E, w, d) consisting of:
- a set E, called the ground set (its elements are called points);
- a map $w: E \rightarrow \mathbb{R}$ that assigns to each point e some number $w(e) \in \mathbb{R}$ that we call its weight;
- a map $d: E \times E \rightarrow \mathbb{R}$ that assigns to any two distinct points e and f a number $d(e, f) \in \mathbb{R}$ that we call their distance,
satisfying the following axioms:
- Symmetry: $d(a, b)=d(b, a)$ for any distinct $a, b \in E$;
- Ultrametric triangle inequality: $d(a, b) \leq \max \{d(a, c), d(b, c)\}$ for any distinct $a, b, c \in E$.

Ultra triples

- If E is any set, then

$$
E \times E:=\{(e, f) \in E \times E \mid e \neq f\} .
$$

- Definition: An ultra triple is a triple (E, w, d) consisting of:
- a set E, called the ground set (its elements are called points);
- a map $w: E \rightarrow \mathbb{R}$ that assigns to each point e some number $w(e) \in \mathbb{R}$ that we call its weight;
- a map $d: E \times E \rightarrow \mathbb{R}$ that assigns to any two distinct points e and f a number $d(e, f) \in \mathbb{R}$ that we call their distance,
satisfying the following axioms:
- Symmetry: $d(a, b)=d(b, a)$ for any distinct $a, b \in E$;
- Ultrametric triangle inequality: $d(a, b) \leq \max \{d(a, c), d(b, c)\}$ for any distinct $a, b, c \in E$.
- More generally, we can replace \mathbb{R} by any totally ordered abelian group \mathbb{V}.

Ultra triples

- If E is any set, then

$$
E \times E:=\{(e, f) \in E \times E \mid e \neq f\} .
$$

- Definition: An ultra triple is a triple (E, w, d) consisting of:
- a set E, called the ground set (its elements are called points);
- a map $w: E \rightarrow \mathbb{R}$ that assigns to each point e some number $w(e) \in \mathbb{R}$ that we call its weight;
- a map $d: E \times E \rightarrow \mathbb{R}$ that assigns to any two distinct points e and f a number $d(e, f) \in \mathbb{R}$ that we call their distance,
satisfying the following axioms:
- Symmetry: $d(a, b)=d(b, a)$ for any distinct $a, b \in E$;
- Ultrametric triangle inequality: $d(a, b) \leq \max \{d(a, c), d(b, c)\}$ for any distinct $a, b, c \in E$.
- We will only consider ultra triples with finite ground set E.
(Bhargava's E is infinite, but results adapt easily.)

Ultra triples, examples: 1 (congruence)

- Example: Let $E \subseteq \mathbb{Z}$ and $n \in \mathbb{Z}$. Define a map $w: E \rightarrow \mathbb{R}$ arbitrarily. Define a map $d: E \times E \rightarrow \mathbb{R}$ by
$d(a, b)=\left\{\begin{array}{lll}0, & \text { if } a \equiv b & \bmod n ; \\ 1, & \text { if } a \not \equiv b & \bmod n\end{array} \quad\right.$ for all $(a, b) \in E \times E$.
Then, (E, w, d) is an ultra triple.

Ultra triples, examples: 1 (congruence)

- Example: Let $E \subseteq \mathbb{Z}$ and $n \in \mathbb{Z}$. Define a map $w: E \rightarrow \mathbb{R}$ arbitrarily. Define a map $d: E \times E \rightarrow \mathbb{R}$ by
$d(a, b)=\left\{\begin{array}{lll}\varepsilon, & \text { if } a \equiv b & \bmod n ; \\ \alpha, & \text { if } a \not \equiv b & \bmod n\end{array} \quad\right.$ for all $(a, b) \in E \times E$, where ε and α are fixed reals with $\varepsilon \leq \alpha$. Then, (E, w, d) is an ultra triple.
- Let p be a prime. Let $E \subseteq \mathbb{Z}$. Define the weights $w(e) \in \mathbb{R}$ arbitrarily. Then, $\left(E, w, d_{p}\right)$ is an ultra triple. Here, d_{p} is as before:

$$
d_{p}(a, b)=-v_{p}(a-b)
$$

- This is the case of relevance to Bhargava's problem! Thus, we call such a triple $\left(E, w, d_{p}\right)$ a Bhargava-type ultra triple.
- Let p be a prime. Let $E \subseteq \mathbb{Z}$. Define the weights $w(e) \in \mathbb{R}$ arbitrarily. Then, $\left(E, w, d_{p}\right)$ is an ultra triple. Here, d_{p} is as before:

$$
d_{p}(a, b)=-v_{p}(a-b)
$$

- This is the case of relevance to Bhargava's problem! Thus, we call such a triple (E, w, d_{p}) a Bhargava-type ultra triple.
- Lots of other distance functions also give ultra triples: Compose d_{p} with any weakly increasing function $\mathbb{R} \rightarrow \mathbb{R}$. For example,

$$
d_{p}^{\prime}(a, b)=p^{-v_{p}(a-b)}
$$

- Let p be a prime. Let $E \subseteq \mathbb{Z}$. Define the weights $w(e) \in \mathbb{R}$ arbitrarily. Then, $\left(E, w, d_{p}\right)$ is an ultra triple. Here, d_{p} is as before:

$$
d_{p}(a, b)=-v_{p}(a-b)
$$

- This is the case of relevance to Bhargava's problem! Thus, we call such a triple $\left(E, w, d_{p}\right)$ a Bhargava-type ultra triple.
- Lots of other distance functions also give ultra triples: Compose d_{p} with any weakly increasing function $\mathbb{R} \rightarrow \mathbb{R}$. For example,

$$
d_{p}^{\prime}(a, b)=p^{-v_{p}(a-b)}
$$

- More generally, we can replace $p^{0}, p^{1}, p^{2}, \ldots$ with any unbounded sequence $r_{0}\left|r_{1}\right| r_{2} \mid \cdots$ of integers.
- Let E be the set of all living organisms. Let

$$
d(e, f)= \begin{cases}0, & \text { if } e=f ; \\ 1, & \text { if } e \text { and } f \text { belong to the same species; } \\ 2, & \text { if } e \text { and } f \text { belong to the same genus; } \\ 3, & \text { if } e \text { and } f \text { belong to the same family; }\end{cases}
$$

Then, (E, w, d) is an ultra triple (for any $w: E \rightarrow \mathbb{R}$).

- Let E be the set of all living organisms. Let

$$
d(e, f)= \begin{cases}0, & \text { if } e=f ; \\ 1, & \text { if } e \text { and } f \text { belong to the same species; } \\ 2, & \text { if } e \text { and } f \text { belong to the same genus; } \\ 3, & \text { if } e \text { and } f \text { belong to the same family; } \\ \ldots & \end{cases}
$$

Then, (E, w, d) is an ultra triple (for any $w: E \rightarrow \mathbb{R}$).

- More generally, any "nested" family of equivalence relations on E gives a distance function for an ultra triple.
- Let T be a (finite, undirected) tree. For each edge e of T, let $\lambda(e) \geq 0$ be a real. We shall call this real the weight of e.
- Let T be a (finite, undirected) tree. For each edge e of T, let $\lambda(e) \geq 0$ be a real. We shall call this real the weight of e.
- For any vertices u and v of T, let $\lambda(u, v)$ denote the sum of the weights of all edges on the (unique) path from u to v.
- Let T be a (finite, undirected) tree. For each edge e of T, let $\lambda(e) \geq 0$ be a real. We shall call this real the weight of e.
- For any vertices u and v of T, let $\lambda(u, v)$ denote the sum of the weights of all edges on the (unique) path from u to v.
- Fix any vertex r of T. Let E be any subset of the vertex set of T. Set
$d(x, y)=\lambda(x, y)-\lambda(x, r)-\lambda(y, r) \quad$ for each $(x, y) \in E \times E$.
Then, (E, w, d) is an ultra triple for any $w: E \rightarrow \mathbb{R}$.
- Let T be a (finite, undirected) tree. For each edge e of T, let $\lambda(e) \geq 0$ be a real. We shall call this real the weight of e.
- For any vertices u and v of T, let $\lambda(u, v)$ denote the sum of the weights of all edges on the (unique) path from u to v.
- Fix any vertex r of T. Let E be any subset of the vertex set of T. Set
$d(x, y)=\lambda(x, y)-\lambda(x, r)-\lambda(y, r) \quad$ for each $(x, y) \in E \times E$.
Then, (E, w, d) is an ultra triple for any $w: E \rightarrow \mathbb{R}$.
- Hint to proof: Use the well-known fact ("four-point condition") saying that if x, y, z, w are four vertices of T, then the two largest of the three numbers
$\lambda(x, y)+\lambda(z, w), \quad \lambda(x, z)+\lambda(y, w), \quad \lambda(x, w)+\lambda(y, z)$ are equal.
- Let T be a (finite, undirected) tree. For each edge e of T, let $\lambda(e) \geq 0$ be a real. We shall call this real the weight of e.
- For any vertices u and v of T, let $\lambda(u, v)$ denote the sum of the weights of all edges on the (unique) path from u to v.
- Fix any vertex r of T. Let E be any subset of the vertex set of T. Set
$d(x, y)=\lambda(x, y)-\lambda(x, r)-\lambda(y, r) \quad$ for each $(x, y) \in E \times E$.
Then, (E, w, d) is an ultra triple for any $w: E \rightarrow \mathbb{R}$.
- This is particularly useful when T is a phylogenetic tree and E is a set of its leaves.
- Let T be a (finite, undirected) tree. For each edge e of T, let $\lambda(e) \geq 0$ be a real. We shall call this real the weight of e.
- For any vertices u and v of T, let $\lambda(u, v)$ denote the sum of the weights of all edges on the (unique) path from u to v.
- Fix any vertex r of T. Let E be any subset of the vertex set of T. Set
$d(x, y)=\lambda(x, y)-\lambda(x, r)-\lambda(y, r) \quad$ for each $(x, y) \in E \times E$.
Then, (E, w, d) is an ultra triple for any $w: E \rightarrow \mathbb{R}$.
- This is particularly useful when T is a phylogenetic tree and E is a set of its leaves.
Actually, this is the general case: Any (finite) ultra triple can be translated back into a phylogenetic tree. It is "essentially" an inverse operation.
(The idea is not new; see, e.g., Lemin 2003.)
- Let (E, w, d) be an ultra triple, and $S \subseteq E$ be any subset. Then, the perimeter of S is defined to be

$$
\operatorname{PER}(S):=\underbrace{\sum_{x \in S} w(x)}_{|S| \text { addends }}+\underbrace{\sum_{\binom{|S|}{2} \text { addends }} d(x, y)}_{\substack{\{x, y\} \subseteq S ; \\ x \neq y}} .
$$

- Let (E, w, d) be an ultra triple, and $S \subseteq E$ be any subset. Then, the perimeter of S is defined to be

$$
\operatorname{PER}(S):=\underbrace{\sum_{x \in S} w(x)}_{|S| \text { addends }}+\underbrace{\sum_{\binom{|S|}{2} \text { addends }} d(x, y)}_{\substack{\{x, y\} \subseteq S ; \\ x \neq y}} .
$$

- Thus,

$$
\begin{aligned}
\mathrm{PER} \varnothing & =0 \\
\mathrm{PER}\{x\} & =w(x) ; \\
\mathrm{PER}\{x, y\} & =w(x)+w(y)+d(x, y) \\
\mathrm{PER}\{x, y, z\} & =w(x)+w(y)+w(z) \\
& +d(x, y)+d(x, z)+d(y, z) .
\end{aligned}
$$

- Let (E, w, d) be an ultra triple, and $S \subseteq E$ be any subset. Then, the perimeter of S is defined to be

$$
\operatorname{PER}(S):=\underbrace{\sum_{x \in S} w(x)}_{|S| \text { addends }}+\underbrace{}_{\substack{\left\{\begin{array}{c}
|S| \\
2
\end{array}\right) \text { addends } \\
\sum_{\begin{subarray}{c}{\mid, y\} \subseteq S ; \\
x \neq y} }} d(x, y)}\end{subarray}} .
$$

- Bhargava's problem (generalized): Given an ultra triple (E, w, d) and an $n \in \mathbb{N}$, find the maximum perimeter of an n-element subset of E, and find the subsets that attain it. (The n here corresponds to the $n+1$ before.)
- Let (E, w, d) be an ultra triple, and $S \subseteq E$ be any subset. Then, the perimeter of S is defined to be
- Bhargava's problem (generalized): Given an ultra triple (E, w, d) and an $n \in \mathbb{N}$, find the maximum perimeter of an n-element subset of E, and find the subsets that attain it.
(The n here corresponds to the $n+1$ before.)
- For $E \subseteq \mathbb{Z}$ and $w(e)=0$ and $d_{p}(a, b)=-v_{p}(a-b)$, this is Bhargava's problem.
- Let (E, w, d) be an ultra triple, and $S \subseteq E$ be any subset. Then, the perimeter of S is defined to be

$$
\operatorname{PER}(S):=\underbrace{\sum_{x \in S} w(x)}_{|S| \text { addends }}+\underbrace{\sum_{\binom{|S|}{2} \text { addends }} d(x, y)}_{\substack{\{x, y\} \subseteq S ; \\ x \neq y}} .
$$

- Bhargava's problem (generalized): Given an ultra triple (E, w, d) and an $n \in \mathbb{N}$, find the maximum perimeter of an n-element subset of E, and find the subsets that attain it. (The n here corresponds to the $n+1$ before.)
- For Linnaeus or Darwin ultra triples, this is a "Noah's Ark" problem: What choices of n organisms maximize biodiversity? A similar problem has been studied in: Vincent Moulton, Charles Semple, Mike Steel, Optimizing phylogenetic diversity under constraints, J. Theor. Biol. 246 (2007), pp. 186-194.

3. Solving the problem

3.

Solving the problem

References:

- Darij Grinberg, Fedor Petrov, A greedoid and a matroid inspired by Bhargava's p-orderings, arXiv:1909.01965.
- Darij Grinberg, The Bhargava greedoid as a Gaussian elimination greedoid, arXiv:2001.05535.

Greedy permutations: definition

- Fix an ultra triple (E, w, d).

Greedy permutations: definition

- Fix an ultra triple (E, w, d).
- Let $m \in \mathbb{N}$. A greedy m-permutation of E is a list $\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ of m distinct elements of E such that for each $i \in\{1,2, \ldots, m\}$ and each $x \in E \backslash\left\{c_{1}, c_{2}, \ldots, c_{i-1}\right\}$, we have

$$
\operatorname{PER}\left\{c_{1}, c_{2}, \ldots, c_{i}\right\} \geq \operatorname{PER}\left\{c_{1}, c_{2}, \ldots, c_{i-1}, x\right\}
$$

- Fix an ultra triple (E, w, d).
- Let $m \in \mathbb{N}$. A greedy m-permutation of E is a list $\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ of m distinct elements of E such that for each $i \in\{1,2, \ldots, m\}$ and each $x \in E \backslash\left\{c_{1}, c_{2}, \ldots, c_{i-1}\right\}$, we have

$$
\operatorname{PER}\left\{c_{1}, c_{2}, \ldots, c_{i}\right\} \geq \operatorname{PER}\left\{c_{1}, c_{2}, \ldots, c_{i-1}, x\right\}
$$

- In other words, a greedy m-permutation of E is what you obtain if you try to greedily construct a maximum-perimeter m-element subset of E, by starting with \varnothing and adding new points one at a time.

Greedy permutations: examples

- Recall our four examples of ultra triples.

Greedy permutations: examples

- Recall our four examples of ultra triples.
- In Example 1 (congruence modulo n), a greedy m-permutation is one in which all congruence classes (that appear in S) are "represented as equitably as possible".
- Recall our four examples of ultra triples.
- In Example 1 (congruence modulo n), a greedy m-permutation is one in which all congruence classes (that appear in S) are "represented as equitably as possible".
- In Example 2 (p-adic valuation), the greedy m-permutations for $\left(E, w, d_{p}\right)$ are exactly the sequences $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ constructed by Bhargava (or, rather, their initial segments).
- Recall our four examples of ultra triples.
- In Example 1 (congruence modulo n), a greedy m-permutation is one in which all congruence classes (that appear in S) are "represented as equitably as possible".
- In Example 2 (p-adic valuation), the greedy m-permutations for $\left(E, w, d_{p}\right)$ are exactly the sequences $\left(a_{0}, a_{1}, a_{2}, \ldots\right)$ constructed by Bhargava (or, rather, their initial segments). Note: The greedy m-permutations for $\left(E, w, d_{p}^{\prime}\right)$ are different. The values of $d(e, f)$ matter, not just their relative order!

Greedy permutations: theorems

- Proposition: For any $m \in \mathbb{N}$ with $m \leq|E|$, there is a greedy m-permutation of E.

Greedy permutations: theorems

- Proposition: For any $m \in \mathbb{N}$ with $m \leq|E|$, there is a greedy m-permutation of E.
- Theorem (Petrov, G.): Let $\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ be any greedy m-permutation of E. Let $k \in\{0,1, \ldots, m\}$. Then, the set $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ has maximum perimeter among all k-element subsets of E.

Greedy permutations: theorems

- Proposition: For any $m \in \mathbb{N}$ with $m \leq|E|$, there is a greedy m-permutation of E.
- Theorem (Petrov, G.): Let $\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ be any greedy m-permutation of E. Let $k \in\{0,1, \ldots, m\}$. Then, the set $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ has maximum perimeter among all k-element subsets of E.
- In Example 2, this yields that Bhargava's greedy algorithm correctly finds $\max \sum_{n \geq i>j} d_{p}\left(a_{i}, a_{j}\right)$.

Greedy permutations: theorems

- Proposition: For any $m \in \mathbb{N}$ with $m \leq|E|$, there is a greedy m-permutation of E.
- Theorem (Petrov, G.): Let $\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ be any greedy m-permutation of E. Let $k \in\{0,1, \ldots, m\}$.
Then, the set $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ has maximum perimeter among all k-element subsets of E.
- In Example 2, this yields that Bhargava's greedy algorithm correctly finds $\max \sum_{n \geq i>j} d_{p}\left(a_{i}, a_{j}\right)$.
- Theorem (Petrov, G.): Let $m, k \in \mathbb{N}$ with $|E| \geq m \geq k$. Let A be a k-element subset of E that has maximum perimeter among all such.
Then, there exists a greedy m-permutation $\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ of E such that $A=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$.

Greedy permutations: theorems

- Proposition: For any $m \in \mathbb{N}$ with $m \leq|E|$, there is a greedy m-permutation of E.
- Theorem (Petrov, G.): Let $\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ be any greedy m-permutation of E. Let $k \in\{0,1, \ldots, m\}$.
Then, the set $\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$ has maximum perimeter among all k-element subsets of E.
- In Example 2, this yields that Bhargava's greedy algorithm correctly finds $\max \sum_{n \geq i>j} d_{p}\left(a_{i}, a_{j}\right)$.
- Theorem (Petrov, G.): Let $m, k \in \mathbb{N}$ with $|E| \geq m \geq k$. Let A be a k-element subset of E that has maximum perimeter among all such.
Then, there exists a greedy m-permutation $\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ of E such that $A=\left\{c_{1}, c_{2}, \ldots, c_{k}\right\}$.
- Exercise: Use this to prove

$$
\prod_{i>j}(i-j) \mid \prod_{i>j}\left(a_{i}-a_{j}\right) \quad \text { and } \quad \prod_{i>j}\left(i^{2}-j^{2}\right) \mid \prod_{i>j}\left(a_{i}^{2}-a_{j}^{2}\right) .
$$

4.

Greedoids

References:

- Bernhard Korte, László Lovász, Rainer Schrader, Greedoids, Algorithms and Combinatorics \#4, Springer 1991.
- Anders Björner, Günter M. Ziegler, Introd. to Greedoids, in: Neil White (ed.), Matroid applications, CUP 1992.
- Darij Grinberg, Fedor Petrov, A greedoid and a matroid inspired by Bhargava's p-orderings, arXiv:1909.01965.
- Darij Grinberg, The Bhargava greedoid as a Gaussian elimination greedoid, arXiv:2001.05535.
- Victor Bryant, Ian Sharpe, Gaussian, Strong and Transversal Greedoids, Europ. J. Comb. 20 (1999), pp. 259-262.
- So the maximum-perimeter k-element subsets in an ultra triple are not just a random bunch of sets: They are accessible by a greedy algorithm.
- So the maximum-perimeter k-element subsets in an ultra triple are not just a random bunch of sets: They are accessible by a greedy algorithm.
- This is characteristic of a greedoid - a "noncommutative analogue" of a matroid.
- So the maximum-perimeter k-element subsets in an ultra triple are not just a random bunch of sets: They are accessible by a greedy algorithm.
- This is characteristic of a greedoid - a "noncommutative analogue" of a matroid.
- Matroids have several "cryptomorphic" definitions.
- So the maximum-perimeter k-element subsets in an ultra triple are not just a random bunch of sets: They are accessible by a greedy algorithm.
- This is characteristic of a greedoid - a "noncommutative analogue" of a matroid.
- Matroids have several "cryptomorphic" definitions. ("Cryptomorphism" = isomorphism of species, to my understanding.)
- So the maximum-perimeter k-element subsets in an ultra triple are not just a random bunch of sets: They are accessible by a greedy algorithm.
- This is characteristic of a greedoid - a "noncommutative analogue" of a matroid.
- Matroids have several "cryptomorphic" definitions. ("Cryptomorphism" = isomorphism of species, to my understanding.)
- For greedoids, we will give two cryptomorphic definitions: one as languages, one as set systems. See Korte/Lovász/Schrader for details.

Greedoids as languages

- A language on a set E means a set \mathcal{L} of finite tuples of elements of E.
- A tuple $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \in E^{k}$ is simple if $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are distinct.
- A language \mathcal{L} on E is simple if it consists of simple tuples.

Greedoids as languages

- A language on a set E means a set \mathcal{L} of finite tuples of elements of E.
- A tuple $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \in E^{k}$ is simple if $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are distinct.
- A language \mathcal{L} on E is simple if it consists of simple tuples.
- A greedoid language on a set E means a simple language \mathcal{L} on E such that

1. The empty tuple ()$\in \mathcal{L}$.
2. If $\alpha \beta \in \mathcal{L}$, then $\alpha \in \mathcal{L}$.
3. (to be revealed...)

Here,

- The concatenation $\alpha \beta$ of two tuples $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ and $\beta=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{\ell}\right)$ is the tuple $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}, \beta_{1}, \beta_{2}, \ldots, \beta_{\ell}\right)$.

Greedoids as languages

- A language on a set E means a set \mathcal{L} of finite tuples of elements of E.
- A tuple $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \in E^{k}$ is simple if $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are distinct.
- A language \mathcal{L} on E is simple if it consists of simple tuples.
- A greedoid language on a set E means a simple language \mathcal{L} on E such that

1. The empty tuple ()$\in \mathcal{L}$.
2. If $\alpha \beta \in \mathcal{L}$, then $\alpha \in \mathcal{L}$.
3. If $\alpha, \beta \in \mathcal{L}$ with $|\alpha|>|\beta|$, then there exists an entry x of α such that $\beta x \in \mathcal{L}$.
Here,

- any $x \in E$ is identified with the 1-tuple (x).
- $|\alpha|$ denotes the length of a tuple α.

Greedoids as languages

- A language on a set E means a set \mathcal{L} of finite tuples of elements of E.
- A tuple $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \in E^{k}$ is simple if $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are distinct.
- A language \mathcal{L} on E is simple if it consists of simple tuples.
- A greedoid language on a set E means a simple language \mathcal{L} on E such that

1. The empty tuple ()$\in \mathcal{L}$.
2. If $\alpha \beta \in \mathcal{L}$, then $\alpha \in \mathcal{L}$.
3. If $\alpha, \beta \in \mathcal{L}$ with $|\alpha|>|\beta|$, then there exists an entry x of α such that $\beta x \in \mathcal{L}$.
Here,

- any $x \in E$ is identified with the 1-tuple (x).
- $|\alpha|$ denotes the length of a tuple α.
- This is analogous to the definition of a matroid (as a system of independent sets), but using "ordered sets" (i.e., simple tuples) instead of sets.

Greedoids as set systems

- A set system on a set E means a set of subsets of E.
- A greedoid on a set E means a set system \mathcal{F} on E such that 1. We have $\varnothing \in \mathcal{F}$.

2. If $B \in \mathcal{F}$ satisfies $|B|>0$, then there exists $b \in B$ such that $B \backslash\{b\} \in \mathcal{F}$.

Greedoids as set systems

- A set system on a set E means a set of subsets of E.
- A greedoid on a set E means a set system \mathcal{F} on E such that

1. We have $\varnothing \in \mathcal{F}$.
2. If $B \in \mathcal{F}$ satisfies $|B|>0$, then there exists $b \in B$ such that $B \backslash\{b\} \in \mathcal{F}$.
3. If $A, B \in \mathcal{F}$ satisfy $|B|=|A|+1$, then there exists $b \in B \backslash A$ such that $A \cup\{b\} \in \mathcal{F}$.

Greedoids as set systems

- A set system on a set E means a set of subsets of E.
- A greedoid on a set E means a set system \mathcal{F} on E such that

1. We have $\varnothing \in \mathcal{F}$.
2. If $B \in \mathcal{F}$ satisfies $|B|>0$, then there exists $b \in B$ such that $B \backslash\{b\} \in \mathcal{F}$.
3. If $A, B \in \mathcal{F}$ satisfy $|B|=|A|+1$, then there exists $b \in B \backslash A$ such that $A \cup\{b\} \in \mathcal{F}$.

- There is a canonical bijection

$$
\{\text { greedoid languages }\} \rightarrow \text { \{greedoids }\}
$$

$$
\mathcal{L} \mapsto\{\operatorname{set} \alpha \mid \alpha \in \mathcal{L}\},
$$

where set $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right):=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$.

- A set system on a set E means a set of subsets of E.
- A greedoid on a set E means a set system \mathcal{F} on E such that

1. We have $\varnothing \in \mathcal{F}$.
2. If $B \in \mathcal{F}$ satisfies $|B|>0$, then there exists $b \in B$ such that $B \backslash\{b\} \in \mathcal{F}$.
3. If $A, B \in \mathcal{F}$ satisfy $|B|=|A|+1$, then there exists $b \in B \backslash A$ such that $A \cup\{b\} \in \mathcal{F}$.

- There is a canonical bijection

$$
\begin{aligned}
\text { \{greedoid languages }\} & \rightarrow \text { \{greedoids }\} \\
\mathcal{L} & \mapsto\{\text { set } \alpha \mid \alpha \in \mathcal{L}\}
\end{aligned}
$$

where set $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right):=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\}$.

- In the reverse direction, send a greedoid \mathcal{F} to the set of all simple tuples $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ such that all $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ with $m \leq k$ belong to \mathcal{F}.
- Let M be a matroid on a ground set E. Then, \{independent sets of M \}
is a greedoid on E.
We shall call this a matroid greedoid.
- Let A be an $m \times n$-matrix over a field \mathbb{K}. Let $E=\{1,2, \ldots, n\}$. Then,

$$
\left\{F \subseteq E \mid \text { we have }|F| \leq n \text { and } \operatorname{det}\left(\operatorname{sub}_{\{1,2, \ldots,|F|\}}^{F} A\right) \neq 0\right\}
$$

is a greedoid on E, where $\operatorname{sub}_{F}^{G} A$ means the submatrix of A with rows indexed by F and columns indexed by G.

- Let A be an $m \times n$-matrix over a field \mathbb{K}. Let $E=\{1,2, \ldots, n\}$. Then,

$$
\left\{F \subseteq E \mid \text { we have }|F| \leq n \text { and } \operatorname{det}\left(\operatorname{sub}_{\{1,2, \ldots,|F|\}}^{F} A\right) \neq 0\right\}
$$

is a greedoid on E, where $\operatorname{sub}_{F}^{G} A$ means the submatrix of A with rows indexed by F and columns indexed by G.

- This is called a Gaussian elimination greedoid over \mathbb{K}.
- Let A be an $m \times n$-matrix over a field \mathbb{K}. Let $E=\{1,2, \ldots, n\}$. Then,

$$
\left\{F \subseteq E \mid \text { we have }|F| \leq n \text { and } \operatorname{det}\left(\operatorname{sub}_{\{1,2, \ldots,|F|\}}^{F} A\right) \neq 0\right\}
$$

is a greedoid on E, where $\operatorname{sub}_{F}^{G} A$ means the submatrix of A with rows indexed by F and columns indexed by G.

- This is called a Gaussian elimination greedoid over \mathbb{K}.
- For example, if $\mathbb{K}=\mathbb{Q}$ and $m=5$ and $n=5$ and
$A=\left(\begin{array}{lllll}0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$, then this Gaussian elimination
greedoid is

$$
\begin{gathered}
\{\varnothing,\{2\},\{3\},\{5\},\{1,2\},\{1,3\},\{1,5\},\{2,3\},\{2,5\}, \\
\{1,2,3\},\{1,2,5\},\{1,2,3,5\}\}
\end{gathered}
$$

- Let P be a finite poset. Let J be the set of all order ideals of P (that is, of all subsets I of P such that $(b \in I) \wedge(a \leq b) \Longrightarrow(a \in I))$.
- Then, J is a greedoid on P. We shall call this an order ideal greedoid.
- Let P be a finite poset. Let J be the set of all order ideals of P (that is, of all subsets I of P such that $(b \in I) \wedge(a \leq b) \Longrightarrow(a \in I))$.
- Then, J is a greedoid on P. We shall call this an order ideal greedoid.
- The corresponding greedoid language consists of all linear extensions of all order ideals of P.
- Back to our setting: For any ultra triple (E, w, d), define

$$
\begin{aligned}
\mathcal{B}(E, w, d)= & \{A \subseteq \\
& E \mid A \text { has maximum perimeter among } \\
& \text { all }|A| \text {-element subsets of } E\} \\
= & \{A \subseteq \\
& \text { all } \mid \operatorname{PER}(A) \geq E \text { satisfying }|B|=|A|\} .
\end{aligned}
$$

We call this the Bhargava greedoid of (E, w, d).

- Back to our setting: For any ultra triple (E, w, d), define

$$
\begin{aligned}
\mathcal{B}(E, w, d)= & \{A \subseteq \\
& E \mid A \text { has maximum perimeter among } \\
= & \text { all }|A| \text {-element subsets of } E\} \\
& \text { all } B \subseteq E \text { satisfying }|B|=|A|\} .
\end{aligned}
$$

We call this the Bhargava greedoid of (E, w, d).

- Theorem (G., Petrov): This Bhargava greedoid $\mathcal{B}(E, w, d)$ is a greedoid indeed.

Strong greedoids: definition

- Recall: A greedoid on a set E means a set system \mathcal{F} on E such that

1. We have $\varnothing \in \mathcal{F}$.
2. If $B \in \mathcal{F}$ satisfies $|B|>0$, then there exists $b \in B$ such that $B \backslash\{b\} \in \mathcal{F}$.
3. If $A, B \in \mathcal{F}$ satisfy $|B|=|A|+1$, then there exists $b \in B \backslash A$ such that $A \cup\{b\} \in \mathcal{F}$.

- Recall: A greedoid on a set E means a set system \mathcal{F} on E such that

1. We have $\varnothing \in \mathcal{F}$.
2. If $B \in \mathcal{F}$ satisfies $|B|>0$, then there exists $b \in B$ such that $B \backslash\{b\} \in \mathcal{F}$.
3. If $A, B \in \mathcal{F}$ satisfy $|B|=|A|+1$, then there exists $b \in B \backslash A$ such that $A \cup\{b\} \in \mathcal{F}$.

- A strong greedoid on E means a greedoid \mathcal{F} on E that also satisfies

4. If $A, B \in \mathcal{F}$ satisfy $|B|=|A|+1$, then there exists $b \in B \backslash A$ such that $A \cup\{b\} \in \mathcal{F}$ and $B \backslash\{b\} \in \mathcal{F}$.

- Recall: A greedoid on a set E means a set system \mathcal{F} on E such that

1. We have $\varnothing \in \mathcal{F}$.
2. If $B \in \mathcal{F}$ satisfies $|B|>0$, then there exists $b \in B$ such that $B \backslash\{b\} \in \mathcal{F}$.
3. If $A, B \in \mathcal{F}$ satisfy $|B|=|A|+1$, then there exists $b \in B \backslash A$ such that $A \cup\{b\} \in \mathcal{F}$.

- A strong greedoid on E means a greedoid \mathcal{F} on E that also satisfies

4. If $A, B \in \mathcal{F}$ satisfy $|B|=|A|+1$, then there exists $b \in B \backslash A$ such that $A \cup\{b\} \in \mathcal{F}$ and $B \backslash\{b\} \in \mathcal{F}$.

- Remark: Axiom 4. implies axiom 3.
- Recall: A greedoid on a set E means a set system \mathcal{F} on E such that

1. We have $\varnothing \in \mathcal{F}$.
2. If $B \in \mathcal{F}$ satisfies $|B|>0$, then there exists $b \in B$ such that $B \backslash\{b\} \in \mathcal{F}$.
3. If $A, B \in \mathcal{F}$ satisfy $|B|=|A|+1$, then there exists $b \in B \backslash A$ such that $A \cup\{b\} \in \mathcal{F}$.

- A strong greedoid on E means a greedoid \mathcal{F} on E that also satisfies

4. If $A, B \in \mathcal{F}$ satisfy $|B|=|A|+1$, then there exists $b \in B \backslash A$ such that $A \cup\{b\} \in \mathcal{F}$ and $B \backslash\{b\} \in \mathcal{F}$.

- Remark: In axiom 3., we can replace the condition " $|B|=|A|+1$ " by the weaker " $|B|>|A|$ "; the axiom stays equivalent.
- Recall: A greedoid on a set E means a set system \mathcal{F} on E such that

1. We have $\varnothing \in \mathcal{F}$.
2. If $B \in \mathcal{F}$ satisfies $|B|>0$, then there exists $b \in B$ such that $B \backslash\{b\} \in \mathcal{F}$.
3. If $A, B \in \mathcal{F}$ satisfy $|B|=|A|+1$, then there exists $b \in B \backslash A$ such that $A \cup\{b\} \in \mathcal{F}$.

- A strong greedoid on E means a greedoid \mathcal{F} on E that also satisfies

4. If $A, B \in \mathcal{F}$ satisfy $|B|=|A|+1$, then there exists $b \in B \backslash A$ such that $A \cup\{b\} \in \mathcal{F}$ and $B \backslash\{b\} \in \mathcal{F}$.

- Remark: In axiom 3., we can replace the condition " $|B|=|A|+1$ " by the weaker " $|B|>|A|$ "; the axiom stays equivalent.
But we cannot do the same in axiom 4. (it would become much stronger, forcing \mathcal{F} to be a matroid greedoid).
- Recall: A greedoid on a set E means a set system \mathcal{F} on E such that

1. We have $\varnothing \in \mathcal{F}$.
2. If $B \in \mathcal{F}$ satisfies $|B|>0$, then there exists $b \in B$ such that $B \backslash\{b\} \in \mathcal{F}$.
3. If $A, B \in \mathcal{F}$ satisfy $|B|=|A|+1$, then there exists $b \in B \backslash A$ such that $A \cup\{b\} \in \mathcal{F}$.

- A strong greedoid on E means a greedoid \mathcal{F} on E that also satisfies

4. If $A, B \in \mathcal{F}$ satisfy $|B|=|A|+1$, then there exists $b \in B \backslash A$ such that $A \cup\{b\} \in \mathcal{F}$ and $B \backslash\{b\} \in \mathcal{F}$.

- Strong greedoids are also known as "Gauss greedoids" (not to be confused with Gaussian elimination greedoids).

Strong greedoids: examples

- All matroid greedoids (Example 1 above) are strong greedoids.

Strong greedoids: examples

- All matroid greedoids (Example 1 above) are strong greedoids.
- All Gaussian elimination greedoids (Example 2 above) are strong greedoids.

Strong greedoids: examples

- All matroid greedoids (Example 1 above) are strong greedoids.
- All Gaussian elimination greedoids (Example 2 above) are strong greedoids.
(Proof idea: Plücker relations for determinants can be used.)
- All matroid greedoids (Example 1 above) are strong greedoids.
- All Gaussian elimination greedoids (Example 2 above) are strong greedoids.
(Proof idea: Plücker relations for determinants can be used.)
- Not all order ideal greedoids (Example 3 above) are strong greedoids.
- All matroid greedoids (Example 1 above) are strong greedoids.
- All Gaussian elimination greedoids (Example 2 above) are strong greedoids.
(Proof idea: Plücker relations for determinants can be used.)
- Not all order ideal greedoids (Example 3 above) are strong greedoids.
- Theorem (Bryant, Sharpe): Let \mathcal{F} be a strong greedoid, and $k \in \mathbb{N}$. Then, the k-element sets that belong to \mathcal{F} are the bases of a matroid (unless there are none of them).
- All matroid greedoids (Example 1 above) are strong greedoids.
- All Gaussian elimination greedoids (Example 2 above) are strong greedoids.
(Proof idea: Plücker relations for determinants can be used.)
- Not all order ideal greedoids (Example 3 above) are strong greedoids.
- Theorem (Bryant, Sharpe): Let \mathcal{F} be a strong greedoid, and $k \in \mathbb{N}$. Then, the k-element sets that belong to \mathcal{F} are the bases of a matroid (unless there are none of them). If \mathcal{F} is a Gaussian elimination greedoid, then the latter matroid is representable.

Gaussianity of the Bhargava greedoid

- Theorem (G., Petrov): The Bhargava greedoid $\mathcal{B}(E, w, d)$ of any ultra triple (E, w, d) is a strong greedoid.

Gaussianity of the Bhargava greedoid

- Theorem (G., Petrov): The Bhargava greedoid $\mathcal{B}(E, w, d)$ of any ultra triple (E, w, d) is a strong greedoid.
- Theorem (G.): Let (E, w, d) be an ultra triple. Let \mathbb{K} be any field of size $|\mathbb{K}| \geq|E|$.
Then, the Bhargava greedoid $\mathcal{B}(E, w, d)$ is (up to renaming the elements of E) a Gaussian elimination greedoid over \mathbb{K}.
- Theorem (G., Petrov): The Bhargava greedoid $\mathcal{B}(E, w, d)$ of any ultra triple (E, w, d) is a strong greedoid.
- Theorem (G.): Let (E, w, d) be an ultra triple. Let \mathbb{K} be any field of size $|\mathbb{K}| \geq|E|$.
Then, the Bhargava greedoid $\mathcal{B}(E, w, d)$ is (up to renaming the elements of E) a Gaussian elimination greedoid over \mathbb{K}.
- Note that this Theorem yields the previous one, which is thus proved twice.

Gaussianity of the Bhargava greedoid

- Theorem (G., Petrov): The Bhargava greedoid $\mathcal{B}(E, w, d)$ of any ultra triple (E, w, d) is a strong greedoid.
- Theorem (G.): Let (E, w, d) be an ultra triple. Let \mathbb{K} be any field of size $|\mathbb{K}| \geq|E|$.
Then, the Bhargava greedoid $\mathcal{B}(E, w, d)$ is (up to renaming the elements of E) a Gaussian elimination greedoid over \mathbb{K}.
- Note that this Theorem yields the previous one, which is thus proved twice.
- Stronger theorem (G.): Let (E, w, d) be an ultra triple. Let \mathbb{K} be any field of size $|\mathbb{K}| \geq \operatorname{mcs}(E, w, d)$, where $\operatorname{mcs}(E, w, d)$ is the maximum clique size of E (that is, the maximum size of a subset $C \subseteq E$ such that $\left.d\right|_{C \times C}$ is constant).
Then, the Bhargava greedoid $\mathcal{B}(E, w, d)$ is (up to renaming the elements of E) a Gaussian elimination greedoid over \mathbb{K}.

Gaussianity of the Bhargava greedoid

- Theorem (G., Petrov): The Bhargava greedoid $\mathcal{B}(E, w, d)$ of any ultra triple (E, w, d) is a strong greedoid.
- Theorem (G.): Let (E, w, d) be an ultra triple. Let \mathbb{K} be any field of size $|\mathbb{K}| \geq|E|$.
Then, the Bhargava greedoid $\mathcal{B}(E, w, d)$ is (up to renaming the elements of E) a Gaussian elimination greedoid over \mathbb{K}.
- Note that this Theorem yields the previous one, which is thus proved twice.
- Converse theorem (G.): Assume that the map w is constant. Let \mathbb{K} be a field. Then, the Bhargava greedoid $\mathcal{B}(E, w, d)$ is (up to renaming the elements of E) a Gaussian elimination greedoid over \mathbb{K} if and only if $|\mathbb{K}| \geq \operatorname{mcs}(E, w, d)$.

A few words about the proofs, 1

- We have a combinatorial proof that $\mathcal{B}(E, w, d)$ is a strong greedoid (using what we call "projections").

A few words about the proofs, 1

- We have a combinatorial proof that $\mathcal{B}(E, w, d)$ is a strong greedoid (using what we call "projections").
- But the theorem about $\mathcal{B}(E, w, d)$ being a Gaussian elimination greedoid requires a different approach. Here are its main ideas:
- We have a combinatorial proof that $\mathcal{B}(E, w, d)$ is a strong greedoid (using what we call "projections").
- But the theorem about $\mathcal{B}(E, w, d)$ being a Gaussian elimination greedoid requires a different approach. Here are its main ideas:
- 1st step: If (E, w, d) is a Bhargava-type ultra triple $\left(E, w, d_{p}\right)$ for some prime p and some $E \subseteq \mathbb{Z}$, then we can explicitly find a matrix A over \mathbb{F}_{p} that gives $\mathcal{B}(E, w, d)$ as its Gaussian elimination greedoid.
- We have a combinatorial proof that $\mathcal{B}(E, w, d)$ is a strong greedoid (using what we call "projections").
- But the theorem about $\mathcal{B}(E, w, d)$ being a Gaussian elimination greedoid requires a different approach. Here are its main ideas:
- 1st step: If (E, w, d) is a Bhargava-type ultra triple $\left(E, w, d_{p}\right)$ for some prime p and some $E \subseteq \mathbb{Z}$, then we can explicitly find a matrix A over \mathbb{F}_{p} that gives $\mathcal{B}(E, w, d)$ as its Gaussian elimination greedoid.
Even better, this matrix A is the projection of a matrix \widetilde{A} over \mathbb{Z} that satisfies
$v_{p}\left(\operatorname{det}\left(\operatorname{sub}_{\{1,2, \ldots,|F|\}}^{F} \widetilde{A}\right)\right)=($ max. possible perimeter $)-\operatorname{PER}(F)$
for each subset F of E.
(The matrix \widetilde{A} is a Vandermonde-like matrix, with entries
$\left.\frac{1}{p^{\text {something }}}\left(a_{i}-e_{1}\right)\left(a_{i}-e_{2}\right) \cdots\left(a_{i}-e_{j}\right).\right)$
- We have a combinatorial proof that $\mathcal{B}(E, w, d)$ is a strong greedoid (using what we call "projections").
- But the theorem about $\mathcal{B}(E, w, d)$ being a Gaussian elimination greedoid requires a different approach. Here are its main ideas:
- 1st step: If (E, w, d) is a Bhargava-type ultra triple $\left(E, w, d_{p}\right)$ for some prime p and some $E \subseteq \mathbb{Z}$, then we can explicitly find a matrix A over \mathbb{F}_{p} that gives $\mathcal{B}(E, w, d)$ as its Gaussian elimination greedoid.
- 2nd step: So we know how to deal with Bhargava-type ultra triples. It would be nice if any ultra triple was isomorphic to one of them!
I'm not sure this is true, but I can prove something close that suffices:

A few words about the proofs, 2

- 2nd step, continued: Replace \mathbb{Z} by an arbitrary valuation ring with value group \mathbb{R}, and replace v_{p} by its valuation.

A few words about the proofs, 2

- 2nd step, continued: Replace \mathbb{Z} by an arbitrary valuation ring with value group \mathbb{R}, and replace v_{p} by its valuation. Construct the natural analogue of the Bhargava-type (E, w, d_{p}) in this setting.

A few words about the proofs, 2

- 2nd step, continued: Replace \mathbb{Z} by an arbitrary valuation ring with value group \mathbb{R}, and replace v_{p} by its valuation. Construct the natural analogue of the Bhargava-type (E, w, d_{p}) in this setting.
A similar argument shows that its Bhargava greedoid is a Gaussian elimination greedoid.

A few words about the proofs, 2

- 2nd step, continued: Replace \mathbb{Z} by an arbitrary valuation ring with value group \mathbb{R}, and replace v_{p} by its valuation. Construct the natural analogue of the Bhargava-type (E, w, d_{p}) in this setting.
A similar argument shows that its Bhargava greedoid is a
Gaussian elimination greedoid.
Actually, let's not complicate our life: It suffices to find one valuation ring that works - e.g., the monoid ring of the additive monoid \mathbb{R}_{+}over \mathbb{K}. (Think of it as a polynomial ring that allows non-integer exponents.)

A few words about the proofs, 2

- 2nd step, continued: Replace \mathbb{Z} by an arbitrary valuation ring with value group \mathbb{R}, and replace v_{p} by its valuation.
Construct the natural analogue of the Bhargava-type $\left(E, w, d_{p}\right)$ in this setting.
A similar argument shows that its Bhargava greedoid is a
Gaussian elimination greedoid.
Actually, let's not complicate our life: It suffices to find one valuation ring that works - e.g., the monoid ring of the additive monoid \mathbb{R}_{+}over \mathbb{K}. (Think of it as a polynomial ring that allows non-integer exponents.)
- 3rd step: Prove that every ultra triple (E, w, d) with $|\mathbb{K}| \geq \operatorname{mcs}(E, w, d)$ is isomorphic to a generalized Bhargava-type ultra triple in this monoid ring over \mathbb{K}.
- 2nd step, continued: Replace \mathbb{Z} by an arbitrary valuation ring with value group \mathbb{R}, and replace v_{p} by its valuation.
Construct the natural analogue of the Bhargava-type $\left(E, w, d_{p}\right)$ in this setting.
A similar argument shows that its Bhargava greedoid is a Gaussian elimination greedoid.
Actually, let's not complicate our life: It suffices to find one valuation ring that works - e.g., the monoid ring of the additive monoid \mathbb{R}_{+}over \mathbb{K}. (Think of it as a polynomial ring that allows non-integer exponents.)
- 3rd step: Prove that every ultra triple (E, w, d) with $|\mathbb{K}| \geq \operatorname{mcs}(E, w, d)$ is isomorphic to a generalized Bhargava-type ultra triple in this monoid ring over \mathbb{K}. (The proof proceeds by strong induction, decomposing the ultra triple into smaller ones. Iterating this decomposition again reveals the connection to phylogenetic trees.)
- If w is constant, then we have a necessary and sufficient condition for $\mathcal{B}(E, w, d)$ to be a Gaussian elimination greedoid over \mathbb{K}.
What about the general case? $(|\mathbb{K}| \geq \operatorname{mcs}(E, w, d)$ is still sufficient, but no longer necessary.)
- If w is constant, then we have a necessary and sufficient condition for $\mathcal{B}(E, w, d)$ to be a Gaussian elimination greedoid over \mathbb{K}.
What about the general case? $(|\mathbb{K}| \geq \operatorname{mcs}(E, w, d)$ is still sufficient, but no longer necessary.)
- Moulton, Semple and Steel define phylogenetic diversity (for a set of leaves of a phylogenetic tree) somewhat similarly to our perimeter, yet differently. Still, they show that their maximum-diversity subsets form a strong greedoid (not the same as ours).
Is this greedoid a Gaussian elimination greedoid, too?
- If w is constant, then we have a necessary and sufficient condition for $\mathcal{B}(E, w, d)$ to be a Gaussian elimination greedoid over \mathbb{K}.
What about the general case? $(|\mathbb{K}| \geq \operatorname{mcs}(E, w, d)$ is still sufficient, but no longer necessary.)
- Moulton, Semple and Steel define phylogenetic diversity (for a set of leaves of a phylogenetic tree) somewhat similarly to our perimeter, yet differently. Still, they show that their maximum-diversity subsets form a strong greedoid (not the same as ours). Is this greedoid a Gaussian elimination greedoid, too?
- It is not too hard to define a multiset analogue of greedoids (e.g., by lifting the "simple" requirement on greedoid languages). How much of the theory adapts?

Bonus problem: stalagmic greedoids

References:

- to be written (contact me).
- Proposition (G., easy consequence of known facts):

Let E and $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be two disjoint finite sets (with $u_{1}, u_{2}, \ldots, u_{n}$ distinct).
Let \mathcal{B} be the set of bases of a matroid on ground set $E \cup U$. Assume that $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in \mathcal{B}$. Let

$$
\mathcal{F}=\left\{F \subseteq E| | F \mid \leq n \text { and } F \cup\left\{u_{|F|+1}, u_{|F|+2}, \ldots, u_{n}\right\} \in \mathcal{B}\right\} .
$$

Then, \mathcal{F} is a strong greedoid on ground set E.

- Proposition (G., easy consequence of known facts):

Let E and $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be two disjoint finite sets (with $u_{1}, u_{2}, \ldots, u_{n}$ distinct).
Let \mathcal{B} be the set of bases of a matroid on ground set $E \cup U$. Assume that $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in \mathcal{B}$. Let

$$
\mathcal{F}=\left\{F \subseteq E| | F \mid \leq n \text { and } F \cup\left\{u_{|F|+1}, u_{|F|+2}, \ldots, u_{n}\right\} \in \mathcal{B}\right\} .
$$

Then, \mathcal{F} is a strong greedoid on ground set E.

- We call such a greedoid \mathcal{F} stalagmic.
- Proposition (G., easy consequence of known facts):

Let E and $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be two disjoint finite sets (with $u_{1}, u_{2}, \ldots, u_{n}$ distinct).
Let \mathcal{B} be the set of bases of a matroid on ground set $E \cup U$. Assume that $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in \mathcal{B}$. Let

$$
\mathcal{F}=\left\{F \subseteq E| | F \mid \leq n \text { and } F \cup\left\{u_{|F|+1}, u_{|F|+2}, \ldots, u_{n}\right\} \in \mathcal{B}\right\} .
$$

Then, \mathcal{F} is a strong greedoid on ground set E.

- We call such a greedoid \mathcal{F} stalagmic.
- It is easy to see that matroid greedoids and Gaussian elimination greedoids are stalagmic.
- Proposition (G., easy consequence of known facts):

Let E and $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be two disjoint finite sets (with $u_{1}, u_{2}, \ldots, u_{n}$ distinct).
Let \mathcal{B} be the set of bases of a matroid on ground set $E \cup U$. Assume that $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in \mathcal{B}$. Let

$$
\mathcal{F}=\left\{F \subseteq E| | F \mid \leq n \text { and } F \cup\left\{u_{|F|+1}, u_{|F|+2}, \ldots, u_{n}\right\} \in \mathcal{B}\right\} .
$$

Then, \mathcal{F} is a strong greedoid on ground set E.

- We call such a greedoid \mathcal{F} stalagmic.
- It is easy to see that matroid greedoids and Gaussian elimination greedoids are stalagmic.
- Question: Is every strong greedoid stalagmic?
- Proposition (G., easy consequence of known facts):

Let E and $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be two disjoint finite sets (with $u_{1}, u_{2}, \ldots, u_{n}$ distinct).
Let \mathcal{B} be the set of bases of a matroid on ground set $E \cup U$. Assume that $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in \mathcal{B}$. Let
$\mathcal{F}=\left\{F \subseteq E| | F \mid \leq n\right.$ and $\left.F \cup\left\{u_{|F|+1}, u_{|F|+2}, \ldots, u_{n}\right\} \in \mathcal{B}\right\}$.
Then, \mathcal{F} is a strong greedoid on ground set E.

- We call such a greedoid \mathcal{F} stalagmic.
- It is easy to see that matroid greedoids and Gaussian elimination greedoids are stalagmic.
- Question: Is every strong greedoid stalagmic?
- If no, then we have a new class of greedoids at our hands, which we can try to axiomatically characterize.
- Proposition (G., easy consequence of known facts):

Let E and $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be two disjoint finite sets (with $u_{1}, u_{2}, \ldots, u_{n}$ distinct).
Let \mathcal{B} be the set of bases of a matroid on ground set $E \cup U$. Assume that $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} \in \mathcal{B}$. Let
$\mathcal{F}=\left\{F \subseteq E| | F \mid \leq n\right.$ and $\left.F \cup\left\{u_{|F|+1}, u_{|F|+2}, \ldots, u_{n}\right\} \in \mathcal{B}\right\}$.
Then, \mathcal{F} is a strong greedoid on ground set E.

- We call such a greedoid \mathcal{F} stalagmic.
- It is easy to see that matroid greedoids and Gaussian elimination greedoids are stalagmic.
- Question: Is every strong greedoid stalagmic?
- If no, then we have a new class of greedoids at our hands, which we can try to axiomatically characterize.
- If yes, then we have found a machine for deriving properties of strong greedoids from properties of matroids.
- Fedor Petrov for getting this started by answering my MathOverflow question \#314130.
- Alexander Postnikov for interesting conversations.
- you for your patience and typo hunting.

