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Abstract. We introduce and study the somewhere-to-below shuffles, which are elements of
the group algebra of the symmetric group Sn defined as sums of cycles. We show that
these elements are simultaneously triangularizable (in an easily-defined basis of k [Sn]),
and compute their joint eigenvalues with multiplicities. We furthermore discuss some
identities between them, a card shuffling interpretation and its probabilistic properties,
and a possible generalization to the Hecke algebra.
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1 Introduction

The group algebra k [Sn] of the symmetric group Sn is one of the most elementary,
yet richest examples of an algebra in combinatorics. Over a characteristic-zero field, it is
known (by the representation theory of the symmetric group) to be isomorphic to a direct
product of matrix rings, a viewpoint that clarifies some of its features while obscuring
others. The structure of k [Sn] becomes more interesting when k is less well-behaved
(e.g., the ring Z), but also when combinatorics is invited back onto the stage.

The latter can be done by defining a simple-looking family of elements of k [Sn] com-
binatorially and asking algebraic questions: Do its elements commute? Do they have
integer eigenvalues (viewed as endomorphisms of k [Sn] by left multiplication)? What
subalgebra do they generate? Such families often come with a rich provenance. Ex-
amples are the Young–Jucys–Murphy elements (originating from representation theory),
the Eulerian idempotents (born in homological algebra) and the more recent Wronski–
Purbhoo elements (inspired by mathematical physics).

A wide class of recent examples has come from probability theory, the most elemen-
tary example being perhaps the top-to-random shuffle

t1 := cyc1 + cyc1,2 + cyc1,2,3 + · · ·+ cyc1,2,...,n ∈ k [Sn] ,
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where cyci1,i2,...,im denotes the m-cycle sending i1 7→ i2 7→ · · · 7→ im 7→ i1. After this
shuffle was fully analyzed in 1986 [6], several generalizations and extensions have come
up and are still undergoing active research.

The work outlined in this abstract, and detailed in our papers [4] and [3] (and forth-
coming work), concerns the perhaps simplest way to generalize the top-to-random shuf-
fle: namely, by embedding it in the n-tuple (t1, t2, . . . , tn) of the somewhere-to-below shuffles

ti := cyci + cyci,i+1 + cyci,i+1,i+2 + · · ·+ cyci,i+1,...,n ∈ k [Sn]

for all i ∈ {1, 2, . . . , n}. These n shuffles have a simple probabilistic meaning (shuffling
a deck of cards by picking the i-th card from the top and randomly moving it further
down the deck), and are also related to the insertion sort algorithm and to subgroups
(each ti is a sum of coset representatives for a certain Sn−i subgroup inside Sn−i+1).

The somewhere-to-below shuffles t1, t2, . . . , tn do not commute, but they “commute
up to nilpotent error terms”. In rigorous language, this means that there exists a ba-
sis (a1, a2, . . . , an!) of the k-module k [Sn] on which these elements act from the right as
upper-triangular matrices (i.e., we have aktℓ ∈ span (a1, a2, . . . , ak) for each k). This basis
can be constructed explicitly over any ring k, in contrast to the more classical diagonaliz-
ing bases that exist for various other known families but only over characteristic-0 fields.
(A common diagonalizing basis is impossible for the t1, t2, . . . , tn, since some of their lin-
ear combinations fail to act semisimply.) A more conceptual but less catchy formulation
of our main result is the existence of a filtration

0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ffn+1 = k [Sn]

of the k-module k [Sn] that is preserved by the somewhere-to-below shuffles t1, t2, . . . , tn
(acting from the right), and on whose quotients Fi/Fi−1 these shuffles act as scalars. The
length of this filtration is (rather unexpectedly) the (n + 1)-st Fibonacci number fn+1.

A consequence of all this is that each linear combination λ1t1 + λ2t2 + · · ·+ λntn of
the somewhere-to-below shuffles has explicitly computable eigenvalues, which are all
integers if the coefficients λ1, λ2, . . . , λn are, and of which at most fn+1 are distinct. Their
multiplicities (in the generic case) are certain divisors of n!, counting some kinds of per-
mutations. We give the constructions and say a few words on the proofs below; details
can be found in [4]. Some variants of these results (replacing right by left multiplication,
and replacing the t1, t2, . . . , tn by their “antipodes”) are briefly outlined in Section 8.

The filtration above explains much but not everything. In particular, it shows that
the commutators

[
ti, tj

]
are nilpotent, but gives fairly bad (exponential) bounds on their

nilpotency degrees. The actual nilpotency degrees, however, are much smaller (in fact,
no larger than n/2 + 1). This is elaborated upon in Section 9, but the detailed proofs are
too long to even hint at; they can be found in [3].

The motivation for studying the somewhere-to-below shuffles comes largely from
probability theory. Card shuffling can be thought of applying a permutation at random,
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according to some probability, to a deck of cards. For us, it means acting on the right by
an element of k [Sn] whose coefficients are nonnegative reals. A question of interest is
thus, given the choice of an element of k [Sn], how many applications of it would suffice
to shuffle the deck of cards properly. In Section 10, we give an optimal strong stationary
time for linear combinations of the somewhere-to-below shuffles.

Anything about k [Sn] is, of course, connected to integer partitions and Young dia-
grams, since the irreducible representations of k [Sn] are the Specht modules Sλ assigned
to the partitions λ of n. Thus, one can wonder how the somewhere-to-below shuffles
t1, t2, . . . , tn act on a given Specht module Sλ. We answer this in Section 11; the proof
will appear in forthcoming work.

In the last Section 12, we suggest a further potential generalization, replacing the
symmetric group algebra k [Sn] by the Hecke algebra Hn (q). We have only just began
the study of this setting, but it appears that many of our results extend to it. Research
on this, as well as on our Specht module conjecture, is underway.

2 Definitions

2.1 Combinatorics

Let us first introduce some basic notations (more will be defined as needed). We set
N := {0, 1, 2, . . .}. Furthermore, we set [a, b] := {x ∈ Z | a ≤ x ≤ b} for any a, b ∈ Z.
For any k ∈ Z, we set [k] := [1, k] = {1, 2, . . . , k}.

We fix a positive integer n. We let Sn denote the n-th symmetric group; it consists of
the n! permutations of [n], with multiplication given by composition: (αβ) (i) = α (β (i))
for each α, β ∈ Sn and i ∈ [n].

2.2 Algebra

We fix a commutative ring k. (The cases k = Z and k = Q are fully sufficient.)
We let k [Sn] denote the group algebra of Sn over k. This k-algebra consists of all for-

mal k-linear combinations ∑σ∈Sn λσσ of the permutations σ ∈ Sn, and its multiplication
is the k-linear extension of the multiplication on Sn. Its unity is 1 = id[n] ∈ Sn.

For each u ∈ k [Sn], we define the two k-linear maps L (u) : k [Sn] → k [Sn] and
R (u) : k [Sn] → k [Sn] by

(L (u)) (a) = ua and (R (u)) (a) = au for each a ∈ k [Sn] .

These are just the left multiplication and the right multiplication by u. Being endomor-
phisms of the k-module k [Sn], they can be represented as n! × n!-matrices over k (since
k [Sn] is a free k-module of rank n!, with basis (w)w∈Sn

), and thus have characteristic
polynomials, eigenvalues and eigenvectors (at least when k is a field).
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2.3 Cycles, somewhere-to-below and other random-to-below shuffles

For any distinct elements i1, i2, . . . , ik of [n], we let cyci1,i2,...,ik
be the permutation in Sn

that cyclically permutes i1 7→ i2 7→ i3 7→ · · · 7→ ik 7→ i1 and leaves all other elements of
[n] unchanged. In particular, cyci,j is a transposition, while cyci = id = 1.

We are now ready for our main definition: For each ℓ ∈ [n], we define the element

tℓ := cycℓ + cycℓ,ℓ+1 + cycℓ,ℓ+1,ℓ+2 + · · ·+ cycℓ,ℓ+1,...,n ∈ k [Sn] .

These n elements t1, t2, . . . , tn will be called the somewhere-to-below shuffles. The first of
these elements, t1, is also known as the top-to-random shuffle or the Tsetlin library, whereas
the last is just the identity (tn = cycn = 1).

Linear combinations of the somewhere-to-below shuffles are also interesting. Assum-
ing the coefficients λ1, λ2, . . . , λn are nonnegative reals, λ1t1 +λ2t2 + . . .+λntn represents
the action of choosing the i-th somewhere-to-below shuffle with some probability dic-
tated by λi. In particular, the random-to-below shuffle is the shuffle in which we pick i with
uniform probability (among [n]), and then apply the i-th somewhere-to-below shuffle.
In terms of card shuffling, this amounts to drawing a card (uniformly) at random and
moving it weakly below. See [4, §3] for other interesting shuffles of this sort.

3 The descent-destroying basis

The n somewhere-to-below shuffles do not commute (e.g., we have t1t2 ̸= t2t1 for n = 3).
Nevertheless, they behave far better than a “random” family of elements of k [Sn]. In
particular, there exists a basis of the k-module k [Sn] in which all of the endomorphisms
R (t1) , R (t2) , . . . , R (tn) are represented by upper-triangular matrices. We shall construct
this basis now. This requires some more definitions.

For each w ∈ Sn, we define the descent set of w to be the set

Des w := {i ∈ [n − 1] | w (i) > w (i + 1)} .

For each i ∈ [n − 1], we define the simple transposition si := cyci,i+1 ∈ Sn.
For each I ⊆ [n − 1], we define the Young subgroup G (I) to be the subgroup of Sn

generated by the si for i ∈ I. This can be viewed as a product Sn1 × Sn2 × · · · × Snk with
n1 + n2 + · · ·+ nk = n, embedded into Sn via the canonical homomorphism.

For each w ∈ Sn, we define

aw := ∑
σ∈G(Des w)

wσ ∈ k [Sn] .

The following is easy to see by triangularity:

Proposition 1. The family (aw)w∈Sn
is a basis of the k-module k [Sn].
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Example 1. For n = 3, we have

a[123] = [123] ; a[231] = [231] + [213] ;

a[132] = [132] + [123] ; a[312] = [312] + [132] ;

a[213] = [213] + [123] ; a[321] = [321] + [312] + [231] + [213] + [132] + [123]

(where we use one-line notation for permutations: [i1i2 · · · in] means the permutation of [n] that
sends 1, 2, . . . , n to i1, i2, . . . , in).

Now, we claim that the endomorphisms R (t1) , R (t2) , . . . , R (tn) are upper-triangular
with respect to this basis (appropriately ordered). More concretely:

Theorem 1. There is some partial order ≺ on Sn such that for any w ∈ Sn and ℓ ∈ [n], we have

awtℓ = µw,ℓaw + ∑
v∈Sn;
v≺w

λw,ℓ,vav for some µw,ℓ ∈ N and λw,ℓ,v ∈ Z.

Example 2. For n = 4, we have a[4312]t2 = a[4312] + a[4321] − a[4231] − a[3241] − a[2143]︸ ︷︷ ︸
subscripts are ≺[4312]

.

4 The invariant spaces F (I)

To prove Theorem 1 directly, we would need to understand how R (tℓ) acts on each
single aw. But this is not easy. Thus, we shall instead analyze the action of R (tℓ) on a
certain filtration 0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ffn+1 = k [Sn] of k [Sn] by left ideals (which
are preserved by the R (tℓ)). The basis (aw)w∈Sn

will then reveal itself to be compatible
with this filtration (i.e., each Fi is spanned by some subfamily of this basis), and thus we
will be able to draw conclusions about awtℓ from the action of R (tℓ) on the filtration.
Essentially, the filtration will act as a “middleman” between the tℓ and the aw.

In order to construct the filtration, we shall in turn need another middleman: some
left ideals F (I) defined for each I ⊆ [n]. These are easy to define:

For each subset I of [n], we define the number

sum I := ∑
i∈I

i,

and the sets

Î := {0} ∪ I ∪ {n + 1} and I′ := [n − 1] \ (I ∪ (I − 1))

(where I − 1 := {i − 1 | i ∈ I}), and finally the left ideal

F (I) :=
{

u ∈ k [Sn] | usi = u for all i ∈ I′
}
⊆ k [Sn]

(the “invariant space” corresponding to I).
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Example 3. Let n = 9 and I = {2, 3, 7}. Then, Î = {0, 2, 3, 7, 10} and I′ = [8] \ {1, 2, 3, 6, 7} =
{4, 5, 8} and F (I) = {u ∈ k [Sn] | us4 = us5 = us8 = u}.

The following is easy to see:

Proposition 2. For each I ⊆ [n], the family (aw)w∈Sn; I′⊆Des w is a basis of the k-module F (I).

The main workhorse of our study of the somewhere-to-below shuffles is a lemma
which, for each I ⊆ [n] and ℓ ∈ [n] and u ∈ F (I), expresses the product utℓ as a scalar
multiple of u plus a sum of “error terms” in “smaller” invariant spaces F (J) (to be
precise: invariant spaces F (J) for subsets J ⊆ [n] satisfying sum J < sum I). We can
actually be more specific and characterize the scalar in front of the u as follows:

For any ℓ ∈ [n], we let mI,ℓ be the distance from ℓ to the next-higher element of Î. In
other words,

mI,ℓ :=
(

smallest element of Î that is ≥ ℓ
)
− ℓ ∈ {0, 1, . . . , n} .

Example 4. If n = 9 and I = {2, 3, 7}, then Î = {0, 2, 3, 7, 10} and

(mI,1, mI,2, . . . , mI,9) = (1, 0, 0, 3, 2, 1, 0, 2, 1) .

Lemma 1 (Workhorse lemma). Let I ⊆ [n] and ℓ ∈ [n]. Then,

utℓ ∈ mI,ℓu + ∑
J⊆[n];

sum J<sum I

F (J) for each u ∈ F (I) .

Proof idea. Expand utℓ by the definition of tℓ, and break up the resulting sum into smaller
bunches using the interval decomposition

[ℓ, n] = [ℓ, ik − 1] ⊔ [ik, ik+1 − 1] ⊔ [ik+1, ik+2 − 1] ⊔ · · · ⊔
[
ip, n

]
(where ik < ik+1 < · · · < ip are the elements of I larger or equal to ℓ). The [ℓ, ik − 1]
bunch gives the mI,ℓu term; the others live in appropriate F (J)’s. See [4, Theorem 7.3]
for details.

5 The Fibonacci filtration

The filtration 0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ffn+1 = k [Sn] that we want to construct
will consist of sums of certain invariant spaces F (I). However, we do not need all
F (I), but only the ones that correspond to certain subsets I: namely, those that are
lacunar (i.e., contain no two consecutive integers) and do not contain n. Arranging these
lacunar subsets I in order of increasing sum, we will define Fi as the sum of the F (I)
corresponding to the first i many I’s.
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Let us elaborate on this. A set S of integers is called lacunar if it contains no two
consecutive integers (i.e., we have s + 1 /∈ S for all s ∈ S). The number of lacunar subsets
of [n − 1] is known to be the Fibonacci number fn+1. (Recall that the Fibonacci numbers
f0, f1, f2, . . . are defined by f0 = 0 and f1 = 1 and fk = fk−1 + fk−2 for each k ≥ 2.)

The following lemma (essentially [4, Proposition 8.7]) is easy to check:

Lemma 2. Let J ⊆ [n] be a subset that fails to be lacunar or contains n. Then, there exists some
subset K ⊆ [n] such that sum K < sum J and K′ ⊆ J′ (so that F (J) ⊆ F (K)).

Now, we let Q1, Q2, . . . , Q fn+1 be the fn+1 lacunar subsets of [n − 1], listed in such an
order that sum (Q1) ≤ sum (Q2) ≤ · · · ≤ sum

(
Q fn+1

)
. (We fix such an order once and

for all.) Then, for each i ∈ [0, fn+1], define a left ideal

Fi := F (Q1) + F (Q2) + · · ·+ F (Qi) of k [Sn]

(so that F0 = 0). The resulting filtration

0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Ffn+1 = k [Sn]

satisfies the following crucial property:

Theorem 2. For each i ∈ [ fn+1] and ℓ ∈ [n], we have Fi ·
(
tℓ − mQi,ℓ

)
⊆ Fi−1 (so that R (tℓ)

preserves Fi and Fi−1, and acts as multiplication by mQi,ℓ on Fi/Fi−1).

Proof idea. This follows from Lemmas 1 and 2. See [4, Theorem 8.1 (c)] for details.

Now we claim that our basis (aw)w∈Sn
of k [Sn] respects the filtration 0 = F0 ⊆ F1 ⊆

F2 ⊆ · · · ⊆ Ffn+1 = k [Sn]. To make this precise, we introduce some more notation:
The Q-index Qind w of a permutation w ∈ Sn is defined to be the smallest i ∈ [ fn+1]

such that Q′
i ⊆ Des w. (Note that this depends on our ordering of Q1, Q2, . . . , Q fn+1 .)

The following facts ([4, §10]) are not hard to see:

Proposition 3. Let w ∈ Sn and i ∈ [ fn+1]. Then, Qind w = i if and only if Q′
i ⊆ Des w ⊆

[n − 1] \ Qi.

Theorem 3. For each i ∈ [0, fn+1], the k-module Fi is free with basis (aw)w∈Sn; Qind w≤i.

Corollary 1. For each i ∈ [ fn+1], the k-module Fi/Fi−1 is free with basis (aw)w∈Sn; Qind w=i.

6 Triangularizability

Combining Theorem 3 with Theorem 2, we easily obtain the following concretization of
Theorem 1 ([4, Theorem 11.1]):
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Theorem 4. Let w ∈ Sn and ℓ ∈ [n]. Let i = Qind w. Then,

awtℓ = mQi,ℓaw + ∑
v∈Sn;

Qind v<Qind w

λw,ℓ,vav for some integers λw,ℓ,v.

Thus, the endomorphisms R (t1) , R (t2) , . . . , R (tn) are upper-triangular with respect
to the basis (aw)w∈Sn

, as long as the permutations w ∈ Sn are ordered by increasing
Q-index. Their diagonal entries are the numbers mQQind w,ℓ ∈ N.

Therefore, any k-linear combination R
(

n
∑
ℓ=1

λℓtℓ

)
=

n
∑
ℓ=1

λℓR (tℓ) of these endomor-

phisms R (t1) , R (t2) , . . . , R (tn) (with λ1, λ2, . . . , λn ∈ k) is upper-triangular with respect
to this basis as well, and its diagonal entries will be the appropriate k-linear combina-

tions
n
∑
ℓ=1

λℓmQQind w,ℓ. Hence, regarded as an n! × n!-matrix, R
(

n
∑
ℓ=1

λℓtℓ

)
is triangulariz-

able with eigenvalues
n
∑
ℓ=1

λℓmQQind w,ℓ for w ∈ Sn.

This matrix is not always diagonalizable. A sufficient (but far from necessary) crite-
rion can nevertheless be given:

Theorem 5. Let k be a field, and let λ1, λ2, . . . , λn ∈ k. Then, the eigenvalues of the operator
R (λ1t1 + λ2t2 + · · ·+ λntn) are the linear combinations

λ1mI,1 + λ2mI,2 + · · ·+ λnmI,n for I ⊆ [n − 1] lacunar

(with multiplicities discussed below). If all these fn+1 linear combinations are distinct, then
R (λ1t1 + λ2t2 + · · ·+ λntn) is diagonalizable.

Proof idea. The first claim follows from the discussion above; the second uses Theorem 2
and some linear algebra. See [4, Corollary 12.2 and Theorem 12.3] for details.

7 Multiplicities of the eigenvalues

We can also describe the multiplicities of the eigenvalues of R (λ1t1 + λ2t2 + · · ·+ λntn)
([4, Theorem 13.2]):

Theorem 6. Assume that k is a field. Let λ1, λ2, . . . , λn ∈ k. For each i ∈ [ fn+1], let δi be the
number of all permutations w ∈ Sn satisfying Qind w = i, and let

gi :=
n

∑
ℓ=1

λℓmQi,ℓ ∈ k.

Let κ ∈ k. Then, the algebraic multiplicity of κ as an eigenvalue of R (λ1t1 + λ2t2 + · · ·+ λntn)
equals the sum of the δi over all i ∈ [ fn+1] satisfying gi = κ.
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Furthermore, these δi can be expressed by an explicit formula (similar to but simpler
than the famous hook-length formula), and are divisors of n! (just like in the hook-length
formula); we refer to [4, Theorem 13.1] for details.

8 Variants

So far, we have directed our attention at the right multiplication maps R (t1) , R (t2) , . . . ,
R (tn), while neglecting their left counterparts L (t1) , L (t2) , . . . , L (tn). However, almost
all our claims about the former can be extended to the latter using general properties
of group algebras. In particular, there exists a basis of the k-module k [Sn] in which
all of the endomorphisms L (t1) , L (t2) , . . . , L (tn) are represented by upper-triangular
matrices. This basis is not the basis (aw)w∈Sn

, but rather its dual basis with respect to a
certain bilinear form (and its order is modified). Theorems 5 and 6 remain valid if “R” is
replaced by “L” throughout them. For the proofs of all these claims, we refer to [4, §14];
all we shall say here is that they are derived from the analogous properties of R purely
algebraically, with no further combinatorial input.

It is also natural to study the below-to-somewhere shuffles t′1, t′2, . . . , t′n, where

t′ℓ := cycℓ + cycℓ+1,ℓ + cycℓ+2,ℓ+1,ℓ + · · ·+ cycn,n−1,...,ℓ ∈ k [Sn]

for each ℓ ∈ [n]. Again, Theorems 5 and 6 remain valid if each tℓ is replaced by the
corresponding t′ℓ; but this is again not too surprising, since the t′ℓ are the images of tℓ
under a very simple k-algebra anti-automorphism of k [Sn] called the antipode (sending
each permutation w ∈ Sn to its inverse w−1). Thus, again, most properties can be
transferred between the tℓ and the t′ℓ by purely algebraic tools (see [4, §14] for details).

9 Nilpotent commutators

Since the endomorphisms R (t1) , R (t2) , . . . , R (tn) are simultaneously triangularizable,
their pairwise commutators are nilpotent. Hence, the pairwise commutators

[
ti, tj

]
in

k [Sn] are also nilpotent. A natural question is: How small is the required exponent?
As it turns out, it is much smaller than one might expect:

Theorem 7. Let 1 ≤ i ≤ j ≤ n. Then,[
ti, tj

]m
= 0 holds for m = min {j − i + 1, ⌈(n − j) /2⌉+ 1} .

We conjecture (and have verified for all n ≤ 12) that this choice of m is optimal (i.e.,
that

[
ti, tj

]m−1 ̸= 0, at least for k = Z).
Actually, Theorem 7 can be generalized, replacing the m-th power of a single

[
ti, tj

]
by a product of several

[
ti, tj

]
’s (with the same j but possibly different i’s). The reader
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can find this generalization in [3, Theorems 8.15 and 9.10], where it is proved by long
and tricky but completely elementary manipulations of permutations and sums.

Several other curious facts hold, such as the following ([3, Theorems 5.1 and 6.1,
Corollaries 7.6 and 8.20]):

Proposition 4. If i ∈ [n − 1], then ti+1ti = (ti − 1) ti.
If i ∈ [n − 2], then ti+2 (ti − 1) = (ti − 1) (ti+1 − 1).

Proposition 5. Let i, j ∈ [n]. Then, tn−1 [ti, tn−1] = 0 and [ti, tn−1]
[
tj, tn−1

]
= 0.

These facts suggest that the k-subalgebra k [t1, t2, . . . , tn] of k [Sn] has some interesting
structure (apart from the “split-semisimple-by-nilpotent” decomposition following from
Theorem 1). Yet it remains mysterious in many ways. For k = Q and n ∈ [8], here is its
dimension as a Q-vector space (the sequence is not in the OEIS as of 2023-11-07!):

n 1 2 3 4 5 6 7 8
dim (Q [t1, t2, . . . , tn]) 1 2 4 9 23 66 212 761

. (9.1)

10 Probability theory

We shall now make a few comments on the probabilistic side of the one-sided cycle shuf-
fles. Viewing them as shuffling operators, we are interested in the number of iterations
needed to get a well-mixed deck of cards. We describe a strong stationary time for all
one-sided cycle shuffles (see [4, §10]), imitating a similar result for the top-to-random
shuffle ([1]). Once the strong stationary time is reached, the deck is perfectly mixed.

Theorem 8. If λ1 ̸= 0, then the one-sided cycle shuffle λ1t1 + λ2t2 + · · · + λntn admits a
stopping time τ obtained as follows: Place a bookmark right above the bottommost card of the
deck. The bookmark itself does not move (but cards can move down past it). We let τ be the time
it takes for the bookmark to reach the top of the deck.

The distribution of the deck is uniform at time τ and any time afterwards; i.e., τ is a strong
stationary time. Furthermore, this stopping time is optimal.

If λ1 = 0, then the top card never moves, so the deck will never be uniformly mixed.
For the random-to-below shuffle, we can compute the waiting time explicitly:

Theorem 9. Let Hn be the n-th harmonic number. The expected number of steps to get to the
strong stationary time for the random-to-below shuffle is

E(τ) =
n

∑
i=2

n
i (Hn − Hi−1)

≤ n log n + n log (log n) + n log 2 + 1 if n ≥ 2.

We conjecture that the strong stationary time for the random-to-below shuffle satisfies
E(τ) = n (log n + log (log n) + O(1)), which makes the random-to-below shuffle slower
than top-to-random, for which the strong stationary time approaches n log n ([1]).
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11 Representation theory

Recall the maps L (u) and R (u) defined in Subsection 2.2 for any u ∈ k [Sn]. Any repre-
sentation theorist will recognize them as the actions of u on the left and the right regular
representation of Sn. Similar maps can be defined for any other representation of Sn. It
thus is natural to ask about analogues of Theorems 5 and 6 for arbitrary representations.
We shall briefly summarize the answer (yet unpublished).

In this section, we assume that k is a field of characteristic 0. We shall use some basic
notions from the representation theory of Sn and from symmetric functions; the reader
can find all prerequisites in [2, Chapters 6 and 7]. For any partition λ of n, a Specht
module Sλ is defined, which is an irreducible representation of Sn with a basis indexed
by standard tableaux of shape λ. Each u ∈ k [Sn] acts (on the left) on this Specht module
Sλ; we let Lλ (u) denote this action (viewed as a k-module endomorphism of Sλ).

We let R denote the representation ring of the symmetric groups (called R in [2,
§7.3]), and Λ denote the ring of symmetric functions over Z (defined in [2, §6.2]). An
isomorphism φ : Λ → R (often called the Frobenius characteristic map) is defined in
[2, §7.3], and the famous Schur function sλ ∈ Λ corresponding to a partition λ is the
preimage of the Specht module Sλ under this isomorphism φ.

For each m ∈ N, we let hm ∈ Λ denote the m-th complete homogeneous symmetric
polynomial. For each m > 0, we let zm ∈ Λ denote the Schur function s(m−1,1) =
hm−1h1 − hm ∈ Λ. (This is 0 for m = 1.)

For each subset I of [n], we define a symmetric function zI := hi1−1 ∏k
j=2 zij−ij−1 ∈ Λ,

where i1, i2, . . . , ik are the elements of I ∪ {n + 1} in increasing order (so that ik = n + 1
and I = {i1 < i2 < · · · < ik−1}). When this symmetric function zI is expanded in the
basis (sλ)λ is a partition of Λ, the coefficient of a given Schur function sλ shall be called
cI

λ. This coefficient cI
λ is actually a Littlewood–Richardson coefficient (since zI is a skew

Schur function), hence ∈ N.
We now claim the following:

Theorem 10. Let ν be a partition. Let λ1, λ2, . . . , λn ∈ k. Then, the eigenvalues of the operator
Lν (λ1t1 + λ2t2 + · · ·+ λntn) on the Specht module Sν are the linear combinations

λ1mI,1 + λ2mI,2 + · · ·+ λnmI,n for I ⊆ [n − 1] lacunar satisfying cI
ν ̸= 0,

and their respective multiplicities are the cI
ν in the generic case (i.e., if no two I’s produce the

same linear combination; otherwise the multiplicities of colliding eigenvalues should be added
together). If all these linear combinations are distinct, then Lν (λ1t1 + λ2t2 + · · ·+ λntn) is
diagonalizable.

Relatedly, (the isomorphism class of) the representation Fi/Fi−1 of Sn is φ
(
zQi

)
.
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12 Into the Hecke algebra

Like many objects originating in combinatorics, the symmetric group algebra k [Sn] has
a q-deformation. This deformation is the type-A Hecke algebra (or Iwahori-Hecke algebra),
defined in terms of a parameter q ∈ k. It is commonly denoted by H = Hq (Sn); it has a
basis (Tw)w∈Sn

indexed by the permutations w ∈ Sn, but a more intricate multiplication
than k [Sn]. We refer to [5] for the definition of this multiplication, and much more about
H. We can now define the q-deformed somewhere-to-below shuffles tH1 , tH2 , . . . , tHn by

tHℓ := Tcycℓ + Tcycℓ,ℓ+1
+ Tcycℓ,ℓ+1,ℓ+2

+ · · ·+ Tcycℓ,ℓ+1,...,n
∈ H.

Surprisingly, these q-deformed shuffles appear to share many properties of the original
t1, t2, . . . , tn. In particular, the analogues of Theorems 1 and 7 in H (where the tℓ are
replaced by the tHℓ ) seem to hold. Even more surprisingly perhaps, the dimensions of
Q [t1, t2, . . . , tn] tabulated in (9.1) (at least for n ≤ 6) appear to be the same for the H-
analogue, which suggests that all algebraic relations between the t1, t2, . . . , tn are “coming
from” the Hecke algebra. Attempts to prove these conjectures are underway.
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