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0.1. Version notes

Only Chapters 1 and 2 of these notes are currently anywhere near comple-
tion. Chapter 3 is done in parts, but some material is still sketchy and/or wrong. The
beginning of Chapter 4 is done, but the rest is still an unusable mess.

These notes are mostly based on what is being said and written on the blackboard
in the lectures, and less so on Pavel Etingof’s handwritten notes posted on
http://www-math.mit.edu/~etingof/ . They cover less material than Etingof’s
handwritten notes, but are more detailed in what they do cover.

Thanks to Pavel Etingof for his patience in explaining me things until I actually
understand them. Thanks to Dorin Boger for finding mistakes.

0.2. Remark on the level of detail

This is the “brief” version of the lecture notes, meaning that there is a more detailed
one, which can be obtained by replacing
\excludecomment{verlong}
\includecomment{vershort}
by
\includecomment{verlong}
\excludecomment{vershort}
in the preamble of the LaTeX sourcecode and then compiling to PDF. That detailed ver-
sion, however, is not recommended, since it differs from the brief one mostly in boring
computations and straightforward arguments being carried out rather than sketched.
The amount of detail in the brief version is usually enough for understanding (unless it
is a part of the lecture I didn’t understand myself and just copied from the blackboard;
but in that case the detailed version is of no help either). There is currently a large
number of proofs which are only sketched in either version.
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0.3. Introduction

These notes follow a one-semester graduate class by Pavel Etingof at MIT in the Spring
term of 2012. The class was also accompanied by the lecturer’s handwritten notes,
downloadable from http://www-math.mit.edu/~etingof/ .

The goal of these lectures is to discuss the structure and the representation theory
(mainly the latter) of some of the most important infinite-dimensional Lie algebras.1

Occasionally, we are also going to show some connections of this subject to other fields
of mathematics (such as conformal field theory and the theory of integrable systems).

The prerequisites for reading these notes vary from section to section. We are going
to liberally use linear algebra, the basics of algebra (rings, fields, formal power series,
categories, tensor products, tensor algebras, symmetric algebras, exterior algebras,
etc.) and fundamental notions of Lie algebra theory. At certain points we will also use
some results from the representation theory of finite-dimensional Lie algebras, as well
as some properties of symmetric polynomials (Schur polynomials in particular) and
representations of associative algebras. Analysis and geometry will appear very rarely,
and mostly to provide intuition or alternative proofs.

The biggest difference between the theory of finite-dimensional Lie algebras and that
of infinite-dimensional ones is that in the finite-dimensional case, we have a complete
picture (we can classify simple Lie algebras and their finite-dimensional representations,
etc.), whereas most existing results for the infinite-dimensional case are case studies.
For example, there are lots and lots of simple infinite-dimensional Lie algebras and we
have no real hope to classify them; what we can do is study some very specific classes
and families. As far as their representations are concerned, the amount of general
results is also rather scarce, and one mostly studies concrete families2.

The main classes of Lie algebras that we will study in this course are:
1. The Heisenberg algebra (aka oscillator algebra) A and its Lie subalgebra A0.
2. The Virasoro algebra Vir.
3. The Lie algebra gl∞ and some variations on it (a∞, a∞, u∞).
4. Kac-Moody algebras (this class contains semisimple Lie algebras and also affine

Lie algebras, which are central extensions of g [t, t−1] where g is simple finite-dimensional).

0.4. References

The standard text on infinite-dimensional Lie algebras (although we will not really
follow it) is:

• V. G. Kac, A. K. Raina, (Bombay Lectures on) Highest Weight Representations
of Infinite Dimensional Lie Algebras, World Scientific 1987.

Further recommended sources are:

1It should be noticed that most of the infinite-dimensional Lie algebras studied in these notes are
Z-graded and have both their positive and their negative parts infinite-dimensional. This is in
contrast to many Lie algebras appearing in algebraic combinatorics (such as free Lie algebras over
non-graded vector spaces, and the Lie algebras of primitive elements of many combinatorial Hopf
algebras), which tend to be concentrated in nonnegative degrees. So a better title for these notes
might have been “Two-sided infinite-dimensional Lie algebras”.

2Though, to be honest, we are mostly talking about infinite-dimensional representations here, and
these are not very easy to handle even for finite-dimensional Lie algebras.
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• Victor G. Kac, Infinite dimensional Lie algebras, Third Edition, CUP 1995.

• B. L. Feigin, A. Zelevinsky, Representations of contragredient Lie algebras and
the Kac-Macdonald identities, a paper in: Representations of Lie groups and Lie
algebras (Budapest, 1971), pp. 25-77, Akad. Kiadó, Budapest, 1985.

0.5. General conventions

We will almost always work over C in this course. All algebras are over C unless
specified otherwise. Characteristic p is too complicated for us, although very interest-
ing. Sometimes we will work over R, and occasionally even over rings (as auxiliary
constructions require this).

Some remarks on notation:

• In the following, N will always denote the set {0, 1, 2, ...} (and not {1, 2, 3, ...}).

• All rings are required to have a unity (but not necessarily be commutative). If
R is a ring, then all R-algebras are required to have a unity and satisfy (λa) b =
a (λb) = λ (ab) for all λ ∈ R and all a and b in the algebra. (Some people call
such R-algebras central R-algebras, but for us this is part of the notion of an
R-algebra.)

• When a Lie algebra g acts on a vector space M , we will denote the image of
an element m ∈ M under the action of an element a ∈ g by any of the three
notations am, a ·m and a ⇀ m. (One day, I will probably come to an agreement
with myself and decide which of these notations to use, but for now expect to see
all of them used synonymously in this text. Some authors also use the notation
a ◦m for the image of m under the action of a, but we won’t use this notation.)

• If V is a vector space, then the tensor algebra of V will be denoted by T (V ); the
symmetric algebra of V will be denoted by S (V ); the exterior algebra of V will
be denoted by ∧V .

• For every n ∈ N, we let Sn denote the n-th symmetric group (that is, the group
of all permutations of the set {1, 2, . . . , n}). On occasion, the notation Sn will
denote some other things as well; we hope that context will suffice to keep these
meanings apart.

1. The main examples

1.1. The Heisenberg algebra

We start with the definition of the Heisenberg algebra. Before we formulate it, let us
introduce polynomial differential forms on C× (in the algebraic sense):

Definition 1.1.1. Recall that C [t, t−1] denotes the C-algebra of Laurent polynomi-
als in the variable t over C.

Consider the free C [t, t−1]-module on the basis (dt) (where dt is just a symbol).
The elements of this module are called polynomial differential forms on C×. Thus,
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polynomial differential forms on C× are just formal expressions of the form fdt where
f ∈ C [t, t−1].

Whenever g ∈ C [t, t−1] is a Laurent polynomial, we define a polynomial differential
form dg by dg = g′dt. This notation dg does not conflict with the previously defined
notation dt (which was a symbol), because the polynomial t satisfies t′ = 1.

Definition 1.1.2. For every polynomial differential form fdt on C× (with f ∈
C [t, t−1]), we define a complex number Rest=0 (fdt) to be the coefficient of the
Laurent polynomial f before t−1. In other words, we define Rest=0 (fdt) to be a−1,
where f is written as

∑
i∈Z

ait
i (with ai ∈ C for all i ∈ Z).

This number Rest=0 (fdt) is called the residue of the form fdt at 0.

(The same definition could have been done for Laurent series instead of Laurent poly-
nomials, but this would require us to consider a slightly different notion of differential
forms, and we do not want to do this here.)

Remark 1.1.3. (a) Every Laurent polynomial f ∈ C [t, t−1] satisfies Rest=0 (df) =
0.

(b) Every Laurent polynomial f ∈ C [t, t−1] satisfies Rest=0 (fdf) = 0.

Proof of Remark 1.1.3. (a) Write f in the form
∑
i∈Z

bit
i (with bi ∈ C for all i ∈ Z).

Then, f ′ =
∑
i∈Z

ibit
i−1 =

∑
i∈Z

(i+ 1) bi+1t
i. Now, df = f ′dt, so that

Rest=0 (df) = Rest=0 (f ′dt) =
(
the coefficient of the Laurent polynomial f ′ before t−1

)
= (−1 + 1)︸ ︷︷ ︸

=0

b−1+1

(
since f ′ =

∑
i∈Z

(i+ 1) bi+1t
i

)
= 0,

proving Remark 1.1.3 (a).
(b) First proof of Remark 1.1.3 (b): By the Leibniz identity, (f 2)

′
= ff ′ + f ′f =

2ff ′, so that ff ′ =
1

2
(f 2)

′
and thus f df︸︷︷︸

=f ′dt

= ff ′︸︷︷︸
=

1

2
(f2)′

dt =
1

2

(
f 2
)′
dt︸ ︷︷ ︸

=d(f2)

=
1

2
d (f 2). Thus,

Rest=0 (fdf) = Rest=0

(
1

2
d
(
f 2
))

=
1

2
Rest=0

(
d
(
f 2
))︸ ︷︷ ︸

=0 (by Remark 1.1.3 (a),
applied to f2 instead of f)

= 0,

and Remark 1.1.3 (b) is proven.
Second proof of Remark 1.1.3 (b): Write f in the form

∑
i∈Z

bit
i (with bi ∈ C for all

i ∈ Z). Then, f ′ =
∑
i∈Z

ibit
i−1 =

∑
i∈Z

(i+ 1) bi+1t
i. Now,

ff ′ =

(∑
i∈Z

bit
i

)(∑
i∈Z

(i+ 1) bi+1t
i

)
=
∑
n∈Z

 ∑
(i,j)∈Z2;
i+j=n

bi · (j + 1) bj+1

 tn
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(by the definition of the product of Laurent polynomials). Also, df = f ′dt, so that

Rest=0 (fdf) = Rest=0 (ff ′dt) =
(
the coefficient of the Laurent polynomial ff ′ before t−1

)
=

∑
(i,j)∈Z2;
i+j=−1

bi · (j + 1) bj+1

since ff ′ =
∑
n∈Z

 ∑
(i,j)∈Z2;
i+j=n

bi · (j + 1) bj+1

 tn


=

∑
(i,j)∈Z2;
i+j=0

bi · jbj (here, we substituted (i, j) for (i, j + 1) in the sum)

=
∑
j∈Z

b−j · jbj =
∑
j∈Z;
j<0

b−j · jbj

︸ ︷︷ ︸
=
∑
j∈Z;
j>0

b−(−j)·(−j)b−j

(here, we substituted j for −j in the sum)

+ b−0 · 0b0︸ ︷︷ ︸
=0

+
∑
j∈Z;
j>0

b−j · jbj

=
∑
j∈Z;
j>0

b−(−j) · (−j) b−j︸ ︷︷ ︸
=bj(−j)b−j=−b−j ·jbj

+
∑
j∈Z;
j>0

b−j · jbj =
∑
j∈Z;
j>0

(−b−j · jbj) +
∑
j∈Z;
j>0

b−j · jbj = 0.

This proves Remark 1.1.3 (b).
Note that the first proof of Remark 1.1.3 (b) made use of the fact that 2 is invertible

in C, whereas the second proof works over any commutative ring instead of C.
Now, finally, we define the Heisenberg algebra:

Definition 1.1.4. The oscillator algebra A is the vector space C [t, t−1]⊕C endowed
with the Lie bracket

[(f, α) , (g, β)] = (0,Rest=0 (gdf)) .

Since this Lie bracket satisfies the Jacobi identity (because the definition quickly
yields that [[x, y] , z] = 0 for all x, y, z ∈ A) and is skew-symmetric (due to Remark
1.1.3 (b)), this A is a Lie algebra.

This oscillator algebra A is also known as the Heisenberg algebra.

Thus, A has a basis
{an | n ∈ Z} ∪ {K} ,

where an = (tn, 0) and K = (0, 1). The bracket is given by

[an, K] = 0 (thus, K is central) ;

[an, am] = nδn,−mK

(in fact, [an, a−n] = Rest=0 (t−ndtn)K = Rest=0 (nt−1dt)K = nK). Thus, A is a 1-
dimensional central extension of the abelian Lie algebra C [t, t−1]; this means that we
have a short exact sequence

0 // CK // A // C [t, t−1] // 0 ,

where CK is contained in the center of A and where C [t, t−1] is an abelian Lie algebra.
Note that A is a 2-nilpotent Lie algebra. Also note that the center of A is spanned

by a0 and K.
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1.2. The Witt algebra

The next introductory example will be the Lie algebra of vector fields:

Definition 1.2.1. Consider the free C [t, t−1]-module on the basis (∂) (where ∂ is
just a symbol). This module, regarded as a C-vector space, will be denoted by W .
Thus, the elements of W are formal expressions of the form f∂ where f ∈ C [t, t−1].
(Thus, W ∼= C [t, t−1].)

Define a Lie bracket on the C-vector space W by

[f∂, g∂] = (fg′ − gf ′) ∂ for all f ∈ C
[
t, t−1

]
and g ∈ C

[
t, t−1

]
.

This Lie bracket is easily seen to be skew-symmetric and satisfy the Jacobi identity.
Thus, it makes W into a Lie algebra. This Lie algebra is called the Witt algebra.

The elements of W are called polynomial vector fields on C×.

The symbol ∂ is often denoted by
d

dt
.

Remark 1.2.2. It is not by chance that ∂ is also known as
d

dt
. In fact, this notation

allows us to view the elements of W as actual polynomial vector fields on C× in the
sense of algebraic geometry over C. The Lie bracket of the Witt algebra W is
then exactly the usual Lie bracket of vector fields (because if f ∈ C [t, t−1] and
g ∈ C [t, t−1] are two Laurent polynomials, then a simple application of the Leibniz

rule shows that the commutator of the differential operators f
d

dt
and g

d

dt
is indeed

the differential operator (fg′ − gf ′) d
dt

).

A basis of the Witt algebra W is {Ln | n ∈ Z}, where Ln means −tn+1 d

dt
= −tn+1∂.

(Note that some other references like to define Ln as tn+1∂ instead, thus getting a
different sign in many formulas.) It is easy to see that the Lie bracket of the Witt
algebra is given on this basis by

[Ln, Lm] = (n−m)Ln+m for every n ∈ Z and m ∈ Z.

1.3. A digression: Lie groups (and the absence thereof)

Let us make some remarks about the relationship between Lie algebras and Lie groups.
In analysis and geometry, linearizations (tangent spaces etc.) usually only give a crude
approximation of non-linear things (manifolds etc.). This is what makes the theory
of Lie groups special: The linearization of a finite-dimensional Lie group (i. e., its
corresponding Lie algebra) carries very much information about the Lie group. The
relation between finite-dimensional Lie groups and finite-dimensional Lie algebras is
almost a one-to-one correspondence (at least if we restrict ourselves to simply connected
Lie groups). This correspondence breaks down in the infinite-dimensional case. There
are lots of important infinite-dimensional Lie groups, but their relation to Lie algebras
is not as close as in the finite-dimensional case anymore. One example for this is that
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there is no Lie group corresponding to the Witt algebra W . There are a few things
that come close to such a Lie group:

We can consider the real subalgebra WR of W , consisting of the vector fields in W
which are tangent to S1 (the unit circle in C). This is a real Lie algebra satisfying
WR ⊗R C ∼= W (thus, WR is what is called a real form of W ). And we can say that

ŴR = Lie (Diff S1) (where Diff S1 denotes the group of all diffeomorphisms S1 → S1)

for some kind of completion ŴR of WR (although WR itself is not the Lie algebra of
any Lie group).3 Now if we take two one-parameter families

gs ∈ Diff S1, gs |s=0= id, g′s |s=0= ϕ;

hu ∈ Diff S1, hu |u=0= id, h′u |u=0= ψ,

then

gs (θ) = θ + sϕ (θ) +O
(
s2
)

;

hu (θ) = θ + uψ (θ) +O
(
u2
)

;(
gs ◦ hu ◦ g−1

s ◦ h−1
u

)
(θ) = θ + su (ϕψ′ − ψϕ′) (θ) + (cubic terms in s and u and higher) .

So we get something resembling the standard Lie-group-Lie-algebra correspondence,
but only for the completion of the real part. For the complex one, some people have
done some work yielding something like Lie semigroups (the so-called “semigroup of
annuli” of G. Segal), but no Lie groups.

Anyway, this was a digression, just to show that we don’t have Lie groups corre-
sponding to our Lie algebras. Still, this should not keep us from heuristically thinking
of Lie algebras as linearizations of Lie groups. We can even formalize this heuristic, by
using the purely algebraic notion of formal groups.

1.4. The Witt algebra acts on the Heisenberg algebra by
derivations

Let’s return to topic. The following proposition is a variation on a well-known theme:

Proposition 1.4.1. Let n be a Lie algebra. Let f : n → n and g : n → n be two
derivations of n. Then, [f, g] is a derivation of n. (Here, the Lie bracket is to be
understood as the Lie bracket on End n, so that we have [f, g] = f ◦ g − g ◦ f .)

3Here is how this completion ŴR is defined exactly: Notice that

WR =

ϕ (θ)
d

dθ
|

ϕ is a trigonometric polynomial, i. e.,
ϕ (θ) = a0 +

∑
n>0

an cosnθ +
∑
n>0

bn sinnθ

where both sums are finite

 ,

where θ =
1

i
ln t and

d

dθ
= it

d

dt
. Now, define the completion ŴR by

ŴR =

ϕ (θ)
d

dθ
|

ϕ (θ) = a0 +
∑
n>0

an cosnθ +
∑
n>0

bn sinnθ

where both sums are infinite sums with rapidly
decreasing coefficients

 .
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Definition 1.4.2. For every Lie algebra g, we will denote by Der g the Lie subalgebra
{f ∈ End g | f is a derivation} of End g. (This is well-defined because Proposition
1.4.1 shows that {f ∈ End g | f is a derivation} is a Lie subalgebra of End g.) We
call Der g the Lie algebra of derivations of g.

Lemma 1.4.3. There is a natural homomorphism η : W → DerA of Lie algebras
given by

(η (f∂)) (g, α) = (fg′, 0) for all f ∈ C
[
t, t−1

]
, g ∈ C

[
t, t−1

]
and α ∈ C.

First proof of Lemma 1.4.3. Lemma 1.4.3 can be proven by direct calculation:
For every f∂ ∈ W , the map

A → A, (g, α) 7→ (fg′, 0)

is a derivation of A 4, thus lies in DerA. Hence, we can define a map η : W → DerA
by

η (f∂) = (A → A, (g, α) 7→ (fg′, 0)) for all f ∈ C
[
t, t−1

]
.

In other words, we can define a map η : W → DerA by

(η (f∂)) (g, α) = (fg′, 0) for all f ∈ C
[
t, t−1

]
, g ∈ C

[
t, t−1

]
and α ∈ C.

4Proof. Let f∂ be an element of W . (In other words, let f be an element of C
[
t, t−1

]
.) Let τ denote

the map
A → A, (g, α) 7→ (fg′, 0) .

Then, we must prove that τ is a derivation of A.
In fact, first it is clear that τ is C-linear. Moreover, any (u, β) ∈ A and (v, γ) ∈ A satisfy

τ

 [(u, β) , (v, γ)]︸ ︷︷ ︸
=(0,Rest=0(vdu))

 = τ (0,Rest=0 (vdu)) = (f0, 0) (by the definition of τ)

= (0, 0)

andτ (u, β)︸ ︷︷ ︸
=(fu′,0)

, (v, γ)

+

(u, β) , τ (v, γ)︸ ︷︷ ︸
=(fv′,0)


= [(fu′, 0) , (v, γ)]︸ ︷︷ ︸

=(0,Rest=0(vd(fu′)))

+ [(u, β) , (fv′, 0)]︸ ︷︷ ︸
=(0,Rest=0(fv′du))

= (0,Rest=0 (vd (fu′))) + (0,Rest=0 (fv′du))

= (0,Rest=0 (vd (fu′) + fv′du)) = (0,Rest=0 (d (vfu′)))
since v d (fu′)︸ ︷︷ ︸

=(fu′)′dt

+fv′ du︸︷︷︸
=u′dt

= v (fu′)
′
dt+ fv′u′dt

=
(
v (fu′)

′
+ fv′u′

)
dt =

(
v (fu′)

′
+ v′ (fu′)

)
︸ ︷︷ ︸

=(vfu′)′

dt = (vfu′)
′
dt = d (vfu′)


= (0, 0) (since Remark 1.1.3 (a) (applied to vfu′ instead of f) yields Rest=0 (d (vfu′)) = 0) ,

so that τ ([(u, β) , (v, γ)]) = [τ (u, β) , (v, γ)] + [(u, β) , τ (v, γ)]. Thus, τ is a derivation of A, qed.
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Now, it remains to show that this map η is a homomorphism of Lie algebras.
In fact, any f1 ∈ C [t, t−1] and f2 ∈ C [t, t−1] and any g ∈ C [t, t−1] and α ∈ C satisfyη

 [f1∂, f2∂]︸ ︷︷ ︸
=(f1f ′2−f2f ′1)∂


 (g, α) = (η ((f1f

′
2 − f2f

′
1) ∂)) (g, α) = ((f1f

′
2 − f2f

′
1) g′, 0)

and

[η (f1∂) , η (f2∂)] (g, α)

= (η (f1∂)) ((η (f2∂)) (g, α))︸ ︷︷ ︸
=(f2g′,0)

− (η (f2∂)) ((η (f1∂)) (g, α))︸ ︷︷ ︸
=(f1g′,0)

= (η (f1∂)) (f2g
′, 0)︸ ︷︷ ︸

=(f1(f2g′)
′,0)

− (η (f2∂)) (f1g
′, 0)︸ ︷︷ ︸

=(f2(f1g′)
′,0)

=
(
f1 (f2g

′)
′
, 0
)
−
(
f2 (f1g

′)
′
, 0
)

=
(
f1 (f2g

′)
′ − f2 (f1g

′)
′
, 0
)

= ((f1f
′
2 − f2f

′
1) g′, 0) since f1 (f2g

′)
′︸ ︷︷ ︸

=f ′2g
′+f2g′′

−f2 (f1g
′)
′︸ ︷︷ ︸

=f ′1g
′+f1g′′

= f1 (f ′2g
′ + f2g

′′)− f2 (f ′1g
′ + f1g

′′)

= f1f
′
2g
′ + f1f2g

′′ − f2f
′
1g
′ − f1f2g

′′ = f1f
′
2g
′ − f2f

′
1g
′ = (f1f

′
2 − f2f

′
1) g′

 ,

so that

(η ([f1∂, f2∂])) (g, α) = ((f1f
′
2 − f2f

′
1) g′, 0) = [η (f1∂) , η (f2∂)] (g, α) .

Thus, any f1 ∈ C [t, t−1] and f2 ∈ C [t, t−1] satisfy η ([f1∂, f2∂])) = [η (f1∂) , η (f2∂)].
This proves that η is a Lie algebra homomorphism, and thus Lemma 1.4.3 is proven.

Second proof of Lemma 1.4.3 (sketched). The following proof I don’t understand, so
don’t expect my version of it to make any sense. See Akhil Matthew’s blog post
http://amathew.wordpress.com/2012/03/01/the-heisenberg-and-witt-algebras/

for a much better writeup.
The following proof is a bit of an overkill; however, it is supposed to provide some

motivation for Lemma 1.4.3. We won’t be working completely formally, so the reader
should expect some imprecision.

Let us really interpret the elements of W as vector fields on C×. The bracket [·, ·] of
the Lie algebra A was defined in an invariant way:

[f, g] = Rest=0 (gdf) =
1

2πi

∮
|z|=1

gdf (by Cauchy’s residue theorem)

is an integral of a 1-form, thus invariant under diffeomorphisms, thus invariant under
“infinitesimal diffeomorphisms” such as the ones given by elements of W . Thus, Lemma
1.4.3 becomes obvious. [This proof needs revision.]

The first of these two proofs is obviously the more straightforward one (and gener-
alizes better to fields other than C), but it does not offer any explanation why Lemma
1.4.3 is more than a mere coincidence. Meanwhile, the second proof gives Lemma 1.4.3
a philosophical reason to be true.
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1.5. The Virasoro algebra

In representation theory, one often doesn’t encounter representations of W directly,
but instead one finds representations of a 1-dimensional central extension of W called
the Virasoro algebra. I will now construct this extension and show that it is the only
one (up to isomorphism of extensions).

Let us recollect the theory of central extensions of Lie algebras (more precisely, the
1-dimensional ones):

Definition 1.5.1. If L is a Lie algebra, then a 1-dimensional central extension of L
is a Lie algebra L̂ along with an exact sequence

0→ C→ L̂→ L→ 0, (1)

where C is central in L̂. Since all exact sequences of vector spaces split, we can pick
a splitting of this exact sequence on the level of vector spaces, and thus identify L̂
with L ⊕ C as a vector space (not as a Lie algebra). Upon this identification, the

Lie bracket of L̂ can be written as

[(a, α) , (b, β)] = ([a, b] , ω (a, b)) for a ∈ L, α ∈ C, b ∈ L, β ∈ C, (2)

for some skew-symmetric bilinear form ω : L × L → C. (We can also write this
skew-symmetric bilinear form ω : L × L → C as a linear form ∧2L → C.) But ω
cannot be a completely arbitrary skew-symmetric bilinear form. It needs to satisfy
the so-called 2-cocycle condition

ω ([a, b] , c) + ω ([b, c] , a) + ω ([c, a] , b) = 0 for all a, b, c ∈ L. (3)

This condition comes from the requirement that the bracket in L̂ have to satisfy the
Jacobi identity.

In the following, a 2-cocycle on L will mean a skew-symmetric bilinear form ω :
L× L → C (not necessarily obtained from a central extension!) which satisfies the
equation (3). (The name “2-cocycle” comes from Lie algebra cohomology, where
2-cocycles are indeed the cocycles in the 2-nd degree.) Thus, we have assigned a 2-
cocycle on L to every 1-dimensional central extension of L (although the assignment
depended on the splitting).

Conversely, if ω is any 2-cocycle on L, then we can define a 1-dimensional central
extension L̂ω of L such that the 2-cocycle corresponding to this extension is ω. In
fact, we can construct such a central extension L̂ω by setting L̂ω = L⊕C as a vector
space, and defining the Lie bracket on this vector space by (2). (The maps C→ L̂ω
and L̂ω → L are the canonical ones coming from the direct sum decomposition
L̂ω = L ⊕ C.) Thus, every 2-cocycle on L canonically determines a 1-dimensional
central extension of L.

However, our assignment of the 2-cocycle ω to the central extension L̂ was not
canonical, but depended on the splitting of the exact sequence (1). If we change
the splitting by some ξ ∈ L∗, then ω is changed by dξ (this means that ω is being
replaced by ω + dξ), where dξ is the 2-cocycle on L defined by

dξ (a, b) = ξ ([a, b]) for all a, b ∈ L.
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The 2-cocycle dξ is called a 2-coboundary. As a conclusion, 1-dimensional central
extensions of L are parametrized up to isomorphism by the vector space

(2-cocycles)� (2-coboundaries) = H2 (L) .

(Note that “up to isomorphism” means “up to isomorphism of extensions” here, not
“up to isomorphism of Lie algebras”.) The vector space H2 (L) is called the 2-nd
cohomology space (or just the 2-nd cohomology) of the Lie algebra L.

Theorem 1.5.2. The vector space H2 (W ) is 1-dimensional and is spanned by the
residue class of the 2-cocycle ω given by

ω (Ln, Lm) =
n3 − n

6
δn,−m for all n,m ∈ Z.

Note that in this theorem, we could have replaced the factor
n3 − n

6
by n3−n (since

the vector space spanned by a vector obviously doesn’t change if we rescale the vector
by a nonzero scalar factor), or even by n3 (since the 2-cocycle (Ln, Lm) 7→ nδn,−m is
a coboundary, and two 2-cocycles which differ by a coboundary give the same residue

class in H2 (W )). But we prefer
n3 − n

6
since this is closer to how this class appears in

representation theory (and, also, comes up in the proof below).
Proof of Theorem 1.5.2. First of all, it is easy to prove by computation that the

bilinear form ω : W ×W → C given by

ω (Ln, Lm) =
n3 − n

6
δn,−m for all n,m ∈ Z

is indeed a 2-cocycle. Now, let us prove that every 2-cocycle on W is congruent to a
multiple of ω modulo the 2-coboundaries.

Let β be a 2-cocycle on W . We must prove that β is congruent to a multiple of ω
modulo the 2-coboundaries.

Pick ξ ∈ W ∗ such that ξ (Ln) =
1

n
β (Ln, L0) for all n 6= 0 (such a ξ clearly exists,

but is not unique since we have complete freedom in choosing ξ (L0)). Let β̃ be the
2-cocycle β − dξ. Then,

β̃ (Ln, L0) = β (Ln, L0)︸ ︷︷ ︸
=nξ(Ln)

(since ξ(Ln)=
1

n
β(Ln,L0))

−ξ

[Ln, L0]︸ ︷︷ ︸
=nLn

 = nξ (Ln)− ξ (nLn) = 0

for every n 6= 0. Thus, by replacing β by β̃, we can WLOG assume that β (Ln, L0) = 0
for every n 6= 0. This clearly also holds for n = 0 since β is skew-symmetric. Hence,
β (X,L0) = 0 for every X ∈ W . Now, by the 2-cocycle condition, we have

β ([L0, Lm] , Ln) + β ([Ln, L0] , Lm) + β ([Lm, Ln] , L0) = 0
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for all n ∈ Z and m ∈ Z. Thus,

0 = β

[L0, Lm]︸ ︷︷ ︸
=−mLm

, Ln

+ β

[Ln, L0]︸ ︷︷ ︸
=nLn

, Lm

+ β ([Lm, Ln] , L0)︸ ︷︷ ︸
=0 (since β(X,L0)=0 for every X∈W )

= −m β (Lm, Ln)︸ ︷︷ ︸
=−β(Ln,Lm)

(since β is skew-symmetric)

+nβ (Ln, Lm) = mβ (Ln, Lm) + nβ (Ln, Lm)

= (n+m) β (Ln, Lm)

for all n ∈ Z and m ∈ Z. Hence, for all n ∈ Z and m ∈ Z with n + m 6= 0, we have
β (Ln, Lm) = 0. In other words, there exists some sequence (bn)n∈Z ∈ CZ such that

β (Ln, Lm) = bnδn,−m for all n ∈ Z and m ∈ Z. (4)

This sequence satisfies

b−n = −bn for every n ∈ Z (5)

(since β is skew-symmetric and thus β (Ln, L−n) = −β (L−n, Ln)) and thus, in partic-
ular, b0 = 0. We will now try to get a recursive equation for this sequence.

Let m, n and p be three integers satisfying m + n + p = 0. Then, the 2-cocycle
condition yields

β ([Lp, Ln] , Lm) + β ([Lm, Lp] , Ln) + β ([Ln, Lm] , Lp) = 0.

Due to

β

 [Lp, Ln]︸ ︷︷ ︸
=(p−n)Lp+n

, Lm

 = (p− n) β (Lp+n, Lm)︸ ︷︷ ︸
=−β(Lm,Lp+n)

(since β is skew-symmetric)

= − (p− n) β (Lm, Lp+n)︸ ︷︷ ︸
=bmδm,−(p+n)

(by (4))

= − (p− n) bm δm,−(p+n)︸ ︷︷ ︸
=1

(since m+n+p=0)

= − (p− n) bm

and the two cyclic permutations of this equality, this rewrites as

(− (p− n) bm) + (− (m− p) bn) + (− (n−m) bp) = 0.

In other words,
(n−m) bp + (m− p) bn + (p− n) bm = 0. (6)

Now define a form ξ0 ∈ W ∗ by ξ0 (L0) = 1 and ξ0 (Li) = 0 for all i 6= 0.

By replacing β with β − b1

2
dξ0, we can assume WLOG that b1 = 0.

Now let n ∈ Z be arbitrary. Setting m = 1 and p = − (n+ 1) in (6) (this is allowed
since 1 + n+ (− (n+ 1)) = 0), we get

(n− 1) b−(n+1) + (1− (− (n+ 1))) bn + (n− 1) b1 = 0.
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Thus,

0 = (n− 1) b−(n+1)︸ ︷︷ ︸
=−bn+1 (by (5))

+ (1− (− (n+ 1)))︸ ︷︷ ︸
=n+2

bn + (n− 1) b1︸︷︷︸
=0

= − (n− 1) bn+1 + (n+ 2) bn,

so that (n− 1) bn+1 = (n+ 2) bn. This recurrence equation rewrites as bn+1 =
n+ 2

n− 1
bn

for n ≥ 2. Thus, by induction we see that every n ≥ 2 satisfies

bn =
n+ 1

n− 2
· n

n− 3
·n− 1

n− 4
·...·4

1
b2 =

(n+ 1) · n · ... · 4
(n− 2) · (n− 3) · ... · 1

b2 =
(n+ 1) (n− 1)n

6
b2 =

n3 − n
6

b2.

But bn =
n3 − n

6
b2 also holds for n = 1 (since b1 = 0 and

13 − 1

6
= 0) and for n = 0

(since b0 = 0 and
03 − 0

6
= 0). Hence, bn =

n3 − n
6

b2 holds for every n ≥ 0. By (5),

we conclude that bn =
n3 − n

6
b2 holds also for every n ≤ 0. Thus, every n ∈ Z satisfies

bn =
n3 − n

6
b2. From (4), we thus see that β is a scalar multiple of ω.

We thus have proven that every 2-cocycle β on W is congruent to a multiple of ω
modulo the 2-coboundaries. This yields that the space H2 (W ) is at most 1-dimensional
and is spanned by the residue class of the 2-cocycle ω. In order to complete the proof
of Theorem 1.5.2, we have yet to prove that H2 (W ) is indeed 1-dimensional (and not
0-dimensional), i. e., that the 2-cocycle ω is not a 2-coboundary. But this is easy5.
The proof of Theorem 1.5.2 is thus complete.

The 2-cocycle
1

2
ω (where ω is the 2-cocycle introduced in Theorem 1.5.2) gives a

central extension of the Witt algebra W : the so-called Virasoro algebra. Let us recast
the definition of this algebra in elementary terms:

5Proof. Assume the contrary. Then, the 2-cocycle ω is a 2-coboundary. This means that there exists
a linear map η : W → C such that ω = dη. Pick such a η. Then,

ω (L2, L−2) = (dη) (L2, L−2) = η

[L2, L−2]︸ ︷︷ ︸
=4L0

 = 4η (L0)

and

ω (L1, L−1) = (dη) (L1, L−1) = η

[L1, L−1]︸ ︷︷ ︸
=2L0

 = 2η (L0) .

Hence,
2ω (L1, L−1)︸ ︷︷ ︸

=2η(L0)

= 4η (L0) = ω (L2, L−2) .

But this contradicts with the equalities ω (L1, L−1) = 0 and ω (L2, L−2) = 1 (which easily follow
from the definition of ω). This contradiction shows that our assumption was wrong, and thus the
2-cocycle ω is not a 2-coboundary, qed.
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Definition 1.5.3. The Virasoro algebra Vir is defined as the vector space W ⊕ C
with Lie bracket defined by

[Ln, Lm] = (n−m)Ln+m +
n3 − n

12
δn,−mC;

[Ln, C] = 0,

where Ln denotes (Ln, 0) for every n ∈ Z, and where C denotes (0, 1). Note that
{Ln | n ∈ Z} ∪ {C} is a basis of Vir.

If we change the denominator 12 to any other nonzero complex number, we get a
Lie algebra isomorphic to Vir (it is just a rescaling of C). It is easy to show that the
Virasoro algebra is not isomorphic to the Lie-algebraic direct sum W ⊕C. Thus, Vir is
the unique (up to Lie algebra isomorphism) nontrivial 1-dimensional central extension
of W .

1.6. Recollection on g-invariant forms

Before we show the next important family of infinite-dimensional Lie algebras, let us
define some standard notions. First, let us define the notion of a g-invariant form, in
full generality (that is, for any two g-modules):

Definition 1.6.1. Let g be a Lie algebra over a field k. Let M and N be two
g-modules. Let β : M × N → k be a k-bilinear form. Then, this form β is said to
be g-invariant if and only if every x ∈ g, a ∈M and b ∈ N satisfy

β (x ⇀ a, b) + β (a, x ⇀ b) = 0.

Instead of “g-invariant”, one often says “invariant”.

The following remark gives an alternative characterization of g-invariant bilinear
forms (which is occasionally used as an alternative definition thereof):

Remark 1.6.2. Let g be a Lie algebra over a field k. Let M and N be two g-
modules. Consider the tensor product M ⊗N of the two g-modules M and N ; this
is known to be a g-module again. Consider also k as a g-module (with the trivial
g-module structure).

Let β : M × N → k be a k-bilinear form. Let B be the linear map M ⊗ N → k
induced by the k-bilinear map β : M × N → k using the universal property of the
tensor product.

Then, β is g-invariant if and only if B is a g-module homomorphism.

We leave the proof of this remark as an instructive exercise for those who are not
already aware of it.

Very often, the notion of a “g-invariant” bilinear form (as defined in Definition 1.6.1)
is applied to forms on g itself. In this case, it has to be interpreted as follows:
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Convention 1.6.3. Let g be a Lie algebra over a field k. Let β : g × g → k be a
bilinear form. When we say that β is g-invariant without specifying the g-module
structure on g, we always tacitly understand that the g-module structure on g is the
adjoint one (i. e., the one defined by x ⇀ a = [x, a] for all x ∈ g and a ∈ g).

The following remark provides two equivalent criteria for a bilinear form on the Lie
algebra g itself to be g-invariant; they will often be used tacitly:

Remark 1.6.4. Let g be a Lie algebra over a field k. Let β : g × g → k be a
k-bilinear form.

(a) The form β is g-invariant if and only if every elements a, b and c of g satisfy
β ([a, b] , c) + β (b, [a, c]) = 0.

(b) The form β is g-invariant if and only if every elements a, b and c of g satisfy
β ([a, b] , c) = β (a, [b, c]).

The proof of this remark is, again, completely straightforward.
An example of a g-invariant bilinear form on g itself for g finite-dimensional is given

by the so-called Killing form:

Proposition 1.6.5. Let g be a finite-dimensional Lie algebra over a field k. Then,
the form

g× g→ k,

(x, y) 7→ Trg ((adx) ◦ (ad y))

is a symmetric g-invariant bilinear form. This form is called the Killing form of the
Lie algebra g.

Proposition 1.6.6. Let g be a finite-dimensional semisimple Lie algebra over C.
(a) The Killing form of g is nondegenerate.
(b) Any g-invariant bilinear form on g is a scalar multiple of the Killing form

of g. (Hence, if g 6= 0, then the vector space of g-invariant bilinear forms on g is
1-dimensional and spanned by the Killing form.)

1.7. Affine Lie algebras

Now let us introduce the so-called affine Lie algebras; this is a very general construction
from which a lot of infinite-dimensional Lie algebras emerge (including the Heisenberg
algebra defined above).

Definition 1.7.1. Let g be a Lie algebra.
(a) The C-Lie algebra g induces (by extension of scalars) a C [t, t−1]-Lie algebra

C
[
t, t−1

]
⊗ g =

{∑
i∈Z

ait
i | ai ∈ g; all but finitely many i ∈ Z satisfy ai = 0

}
.

This Lie algebra C [t, t−1]⊗ g, considered as a C-Lie algebra, will be called the loop
algebra of g, and denoted by g [t, t−1].
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(b) Let (·, ·) be a symmetric bilinear form on g (that is, a symmetric bilinear map
g × g → C) which is g-invariant (this means that ([a, b] , c) + (b, [a, c]) = 0 for all
a, b, c ∈ g).

Then, we can define a 2-cocycle ω on the loop algebra g [t, t−1] by

ω (f, g) =
∑
i∈Z

i (fi, g−i) for every f ∈ g
[
t, t−1

]
and g ∈ g

[
t, t−1

]
(7)

(where we write f in the form f =
∑
i∈Z

fit
i with fi ∈ g, and where we write g in the

form g =
∑
i∈Z

git
i with gi ∈ g).

Proving that ω is a 2-cocycle is an exercise. So we can define a 1-dimensional
central extension g [t, t−1]ω = g [t, t−1]⊕ C with bracket defined by ω.

We are going to abbreviate g [t, t−1]ω by ĝω, or, more radically, by ĝ.

Remark 1.7.2. The equation (7) can be rewritten in the (laconical but suggestive)
form ω (f, g) = Rest=0 (df, g). Here, (df, g) is to be understood as follows: Extend the
bilinear form (·, ·) : g×g→ C to a bilinear form (·, ·) : g [t, t−1]×g [t, t−1]→ C [t, t−1]
by setting(

ati, btj
)

= (a, b) ti+j for all a ∈ g, b ∈ g, i ∈ Z and j ∈ Z.

Also, for every f ∈ g [t, t−1], define the “derivative” f ′ of f to be the element∑
i∈Z

ifit
i−1 of g [t, t−1] (where we write f in the form f =

∑
i∈Z

fit
i with fi ∈ g). In

analogy to the notation dg = g′dt which we introduced in Definition 1.1.1, set
(df, g) to mean the polynomial differential form (f ′, g) dt for any f ∈ g [t, t−1] and
g ∈ g [t, t−1]. Then, it is very easy to see that Rest=0 (df, g) =

∑
i∈Z

i (fi, g−i) (where

we write f in the form f =
∑
i∈Z

fit
i with fi ∈ g, and where we write g in the form

g =
∑
i∈Z

git
i with gi ∈ g), so that we can rewrite (7) as ω (f, g) = Rest=0 (df, g).

We already know one example of the construction in Definition 1.7.1:

Remark 1.7.3. If g is the abelian Lie algebra C, and (·, ·) is the bilinear form
C×C→ C, (x, y) 7→ xy, then the 2-cocycle ω on the loop algebra C [t, t−1] is given
by

ω (f, g) = Rest=0 (gdf) =
∑
i∈Z

ifig−i for every f, g ∈ C
[
t, t−1

]
(where we write f in the form f =

∑
i∈Z

fit
i with fi ∈ C, and where we write g

in the form g =
∑
i∈Z

git
i with gi ∈ C). Hence, in this case, the central extension

g [t, t−1]ω = ĝω is precisely the Heisenberg algebra A as introduced in Definition
1.1.4.

The main example that we will care about is when g is a simple finite-dimensional
Lie algebra and (·, ·) is the unique (up to scalar) invariant symmetric bilinear form (i.
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e., a multiple of the Killing form). In this case, the Lie algebra ĝ = ĝω is called an
affine Lie algebra.

Theorem 1.7.4. If g is a simple finite-dimensional Lie algebra, then H2 (g [t, t−1])
is 1-dimensional and spanned by the cocycle ω corresponding to (·, ·).

Corollary 1.7.5. If g is a simple finite-dimensional Lie algebra, then the Lie algebra
g [t, t−1] has a unique (up to isomorphism of Lie algebras, not up to isomorphism of
extensions) nontrivial 1-dimensional central extension ĝω.

Definition 1.7.6. The Lie algebra ĝω defined in Corollary 1.7.5 (for (·, ·) being the
Killing form of g) is called the affine Kac-Moody algebra corresponding to g. (Or,
more precisely, the untwisted affine Kac-Moody algebra corresponding to g.)

In order to prepare for the proof of Theorem 1.7.4, we recollect some facts from the
cohomology of Lie algebras:

Definition 1.7.7. Let g be a Lie algebra. Let M be a g-module. We define the
semidirect product gnM to be the Lie algebra which, as a vector space, is g⊕M ,
but whose Lie bracket is defined by

[(a, α) , (b, β)] = ([a, b] , a ⇀ β − b ⇀ α)

for all a ∈ g, α ∈M , b ∈ g and β ∈M .

(The symbol ⇀ means action here; i. e., a term like c ⇀ m (with c ∈ g and m ∈M)
means the action of c on m.) Thus, the canonical injection g → g nM, a 7→ (a, 0)
is a Lie algebra homomorphism, and so is the canonical projection g n M → g,
(a, α) 7→ a. Also, M is embedded into g n M by the injection M → g n M,
α 7→ (0, α); this makes M an abelian Lie subalgebra of gnM .

All statements made in Definition 1.7.7 (including the tacit statement that the Lie
bracket on g n M defined in Definition 1.7.7 satisfies antisymmetry and the Jacobi
identity) are easy to verify by computation. The semidirect product that we have just
defined is not the most general notion of a semidirect product. We will later (Definition
3.2.1) define a more general one, where M itself may have a Lie algebra structure and
this structure has an effect on that of gnM . But for now, Definition 1.7.7 suffices for
us.

Definition 1.7.8. Let g be a Lie algebra. Let M be a g-module.
(a) A 1-cocycle of g with coefficients in M is a linear map η : g→M such that

η ([a, b]) = a ⇀ η (b)− b ⇀ η (a) for all a ∈ g and b ∈ g.

(The symbol ⇀ means action here; i. e., a term like c ⇀ m (with c ∈ g and m ∈M)
means the action of c on m.)

It is easy to see (and known) that 1-cocycles of g with coefficients in M are in
bijection with Lie algebra homomorphisms g → g nM . This bijection sends every
1-cocycle η to the map g→ gnM, a 7→ (a, η (a)).
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Notice that 1-cocycles of g with coefficients in the g-module g are exactly the same
as derivations of g.

(b) A 1-coboundary of g with coefficients in M means a linear map η : g → M
which has the form a 7→ a ⇀ m for some m ∈ M . Every 1-coboundary of g with
coefficients in M is a 1-cocycle.

(c) The space of 1-cocycles of g with coefficients in M is denoted by Z1 (g,M).
The space of 1-coboundaries of g with coefficients in M is denoted by B1 (g,M). We
have B1 (g,M) ⊆ Z1 (g,M). The quotient space Z1 (g,M)�B1 (g,M) is denoted
by H1 (g,M) is called the 1-st cohomology space of g with coefficients in M .

Of course, these spaces Z1 (g,M), B1 (g,M) and H1 (g,M) are but par-
ticular cases of more general constructions Zi (g,M), Bi (g,M) and H i (g,M)
which are defined for every i ∈ N. (In particular, H0 (g,M) is the subspace
{m ∈M | a ⇀ m = 0 for all a ∈ g} of M , and often denoted by M g.) The spaces
H i (g,M) (or, more precisely, the functors assigning these spaces to every g-module
M) can be understood as the so-called derived functors of the functor M 7→ M g.
However, we won’t use H i (g,M) for any i other than 1 here.

We record a relation between H1 (g,M) and the Ext bifunctor:

H1 (g,M) = Ext1
g (C,M) .

More generally, Ext1
g (N,M) = H1 (g,HomC (N,M)) for any two g-modules N and

M .

Theorem 1.7.9 (Whitehead). If g is a simple finite-dimensional Lie algebra, and
M is a finite-dimensional g-module, then H1 (g,M) = 0.

Proof of Theorem 1.7.9. Since g is a simple Lie algebra, Weyl’s theorem says that
finite-dimensional g-modules are completely reducible. Hence, if N and M are finite-
dimensional g-modules, we have Ext1

g (N,M) = 0. In particular, Ext1
g (C,M) = 0.

Since H1 (g,M) = Ext1
g (C,M), this yields H1 (g,M) = 0. Theorem 1.7.9 is thus

proven.

Lemma 1.7.10. Let ω be a 2-cocycle on a Lie algebra g. Let g0 ⊆ g be a Lie
subalgebra, and M ⊆ g be a g0-submodule. Then, ω |g0×M , when considered as a
map g0 →M∗, belongs to Z1 (g0,M

∗).

The proof of Lemma 1.7.10 is a straightforward manipulation of formulas:
Proof of Lemma 1.7.10. Let η denote the 2-cocycle ω |g0×M , considered as a map

g0 →M∗. Thus, η is defined by

η (x) = (M → C, y 7→ ω (x, y)) for all x ∈ g0.

Hence,
(η (x)) (y) = ω (x, y) for all x ∈ g0 and y ∈M. (8)
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Thus, any a ∈ g0, b ∈ g0 and c ∈M satisfy (η ([a, b])) (c) = ω ([a, b] , c) and

(a ⇀ η (b)− b ⇀ η (a)) (c)

= (a ⇀ η (b)) (c)︸ ︷︷ ︸
=−(η(b))([a,c])

(by the definition of the dual of a g0-module)

− (b ⇀ η (a)) (c)︸ ︷︷ ︸
=−(η(a))([b,c])

(by the definition of the dual of a g0-module)

=

− (η (b)) ([a, c])︸ ︷︷ ︸
=ω(b,[a,c])

(by (8))

−
− (η (a)) ([b, c])︸ ︷︷ ︸

=ω(a,[b,c])
(by (8))

 = (−ω (b, [a, c]))− (−ω (a, [b, c]))

= −ω

b, [a, c]︸︷︷︸
=−[c,a]

+ ω (a, [b, c]) = ω (b, [c, a])︸ ︷︷ ︸
=−ω([c,a],b)

(since ω is antisymmetric)

+ ω (a, [b, c])︸ ︷︷ ︸
=−ω([b,c],a)

(since ω is antisymmetric)

= −ω ([c, a] , b)− ω ([b, c] , a) = ω ([a, b] , c) (by (3)) ,

so that (η ([a, b])) (c) = (a ⇀ η (b)− b ⇀ η (a)) (c). Thus, any a ∈ g0 and b ∈ g0 satisfy
η ([a, b]) = a ⇀ η (b) − b ⇀ η (a). This shows that η is a 1-cocycle, i. e., belongs to
Z1 (g0,M

∗). Lemma 1.7.10 is proven.
Proof of Theorem 1.7.4. First notice that any a, b, c ∈ g satisfy

([a, b] , c) = ([b, c] , a) = ([c, a] , b) (9)

6. Moreover,

there exist a, b, c ∈ g such that ([a, b] , c) = ([b, c] , a) = ([c, a] , b) 6= 0. (10)

7 This will be used later in our proof; but as for now, forget about these a, b, c.
It is easy to see that the 2-cocycle ω on g [t, t−1] defined by (7) is not a 2-coboundary.8

6Proof. First of all, any a, b, c ∈ g satisfy

([a, b] , c) = (a, [b, c]) (since the form (·, ·) is invariant)

= ([b, c] , a) (since the form (·, ·) is symmetric) .

Applying this to b, c, a instead of a, b, c, we obtain ([b, c] , a) = ([c, a] , b). Hence, ([a, b] , c) =
([b, c] , a) = ([c, a] , b), so that (9) is proven.

7Proof. Since g is simple, we have [g, g] = g and thus ([g, g] , g) = (g, g) 6= 0 (since the form (·, ·) is
nondegenerate). Hence, there exist a, b, c ∈ g such that ([a, b] , c) 6= 0. The rest is handled by (9).

8Proof. Assume the contrary. Then, this 2-cocycle ω is a coboundary, i. e., there exists a linear map
ξ : g

[
t, t−1

]
→ C such that ω = dξ.

Now, pick some a ∈ g and b ∈ g such that (a, b) 6= 0 (this is possible since the form (·, ·) is
nondegenerate). Then,

ω︸︷︷︸
=dξ

(
at, bt−1

)
= (dξ)

(
at, bt−1

)
= ξ

[at, bt−1
]︸ ︷︷ ︸

=[a,b]

 = ξ ([a, b])

and
ω︸︷︷︸

=dξ

(a, b) = (dξ) (a, b) = ξ ([a, b]) ,
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Now let us consider the structure of g [t, t−1]. We have g [t, t−1] =
⊕
n∈Z

gtn ⊇ gt0 = g.

This is, actually, an inclusion of Lie algebras. So g is a Lie subalgebra of g [t, t−1], and
gtn is a g-submodule of g [t, t−1] isomorphic to g for every n ∈ Z.

Let ω be an arbitrary 2-cocycle on g [t, t−1] (not necessarily the one defined by (7)).
Let n ∈ Z. Then, ω |g×gtn , when considered as a map g → (gtn)∗, belongs to

Z1 (g, (gtn)∗) (by Lemma 1.7.10, applied to g, gtn and g [t, t−1] instead of g0, M and
g), i. e., is a 1-cocycle. But by Theorem 1.7.9, we have H1 (g, (gtn)∗) = 0, so this
rewrites as ω |g×gtn∈ B1 (g, (gtn)∗). In other words, there exists some ξn ∈ (gtn)∗ such
that ω |g×gtn= dξn. Pick such a ξn. Thus,

ω (a, btn) = (ω |g×gtn)︸ ︷︷ ︸
=dξn

(a, btn) = (dξn) (a, btn) = ξn ([a, btn]) for all a, b ∈ g.

Define a map ξ : g [t, t−1]→ C by requiring that ξ |gtn= ξn for every n ∈ Z.
Now, let ω̃ = ω − dξ. Then,

ω̃ (x, y) = ω (x, y)− ξ ([x, y]) for all x, y ∈ g
[
t, t−1

]
.

Replace ω by ω̃ (this doesn’t change the residue class of ω in H2 (g [t, t−1]), since ω̃
differs from ω by a 2-coboundary). By doing this, we have reduced to a situation when

ω (a, btn) = 0 for all a, b ∈ g and n ∈ Z.

9 Since ω is antisymmetric, this yields

ω (btn, a) = 0 for all a, b ∈ g and n ∈ Z. (11)

Now, fix some n ∈ Z and m ∈ Z. Since ω is a 2-cocycle, the 2-cocycle condition
yields

0 = ω

[a, btn]︸ ︷︷ ︸
=[a,b]tn

, ctm

+ ω

 [ctm, a]︸ ︷︷ ︸
=[c,a]tm

=−[a,c]tm

, btn

+ ω

[btn, ctm]︸ ︷︷ ︸
=[b,c]tn+m

, a


= ω ([a, b] tn, ctm) + ω (− [a, c] tm, btn)︸ ︷︷ ︸

=ω(btn,[a,c]tm)

+ω
(
[b, c] tn+m, a

)︸ ︷︷ ︸
=0

(by (11))

= ω ([a, b] tn, ctm) + ω (btn, [a, c] tm) for all a, b, c ∈ g.

In other words, the bilinear form on g given by (b, c) 7→ ω (btn, ctm) is g-invariant. But
every g-invariant bilinear form on g must be a multiple of our bilinear form (·, ·) (since

so that ω
(
at, bt−1

)
= ω (a, b). But by the definition of ω, we easily see that ω

(
at, bt−1

)
= 1 (a, b)︸ ︷︷ ︸

6=0

6=

0 and ω (a, b) = 0 (a, b) = 0, which yields a contradiction.
9But all the ξ-freedom has been used up in this reduction - i. e., if the new ω is nonzero, then the

original ω was not a 2-coboundary. This gives us an alternative way of proving that the 2-cocycle
ω on g

[
t, t−1

]
defined by (7) is not a 2-coboundary.
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g is simple, and thus the space of all g-invariant bilinear forms on g is 1-dimensional10).
Hence, there exists some constant γn,m ∈ C (depending on n and m) such that

ω (btn, ctm) = γn,m · (b, c) for all b, c ∈ g. (12)

It is easy to see that

γn,m = −γm,n for all n,m ∈ Z, (13)

since the bilinear form ω is skew-symmetric whereas the bilinear form (·, ·) is symmetric.
Now, for any m ∈ Z, n ∈ Z and p ∈ Z, the 2-cocycle condition yields

ω ([atn, btm] , ctp) + ω ([btm, ctp] , atn) + ω ([ctp, atn] , btm) = 0 for all a, b, c ∈ g.

Due to

ω

[atn, btm]︸ ︷︷ ︸
=[a,b]tn+m

, ctp

 = ω
(
[a, b] tn+m, ctp

)
= γn+m,p · ([a, b] , c) (by (12))

and the two cyclic permutations of this identity, this rewrites as

γn+m,p · ([a, b] , c) + γm+p,n · ([b, c] , a) + γp+n,m · ([c, a] , b) = 0.

Since this holds for all a, b, c ∈ g, we can use (10) to transform this into

γn+m,p + γm+p,n + γp+n,m = 0.

Due to (13), this rewrites as

γn,m+p + γm,p+n + γp,m+n = 0.

Denoting by s the sum m+ n+ p, we can rewrite this as

γn,s−n + γm,s−m − γm+n,s−m−n = 0.

In other words, for fixed s ∈ Z, the function Z → C, n 7→ γn,s−n is additive. Hence,
γn,s−n = nγ1,s−1 and γs−n,n = (s− n) γ1,s−1 for every n ∈ Z. Thus,

(s− n) γ1,s−1 = γs−n,n = −γn,s−n (by (13))

= −nγ1,s−1 for every n ∈ Z
Hence, sγ1,s−1 = 0. Thus, for every s 6= 0, we conclude that γ1,s−1 = 0 and hence
γn,s−n = n γ1,s−1︸ ︷︷ ︸

=0

= 0 for every n ∈ Z. In other words, γn,m = 0 for every n ∈ Z and

m ∈ Z satisfying n+m 6= 0.
What happens for s = 0 ? For s = 0, the equation γn,s−n = nγ1,s−1 becomes

γn,−n = nγ1,−1.
Thus we have proven that γn,m = 0 for every n ∈ Z and m ∈ Z satisfying n+m 6= 0,

and that every n ∈ Z satisfies γn,−n = nγ1,−1.
Hence, the form ω must be a scalar multiple of the form which sends every (f, g) to

Rest=0 (df, g)︸ ︷︷ ︸
scalar-valued 1-form

=
∑
i∈Z

i (fi, g−i). We have thus proven that every 2-cocycle ω is

a scalar multiple of the 2-cocycle ω defined by (7) modulo the 2-coboundaries. Since
we also know that the 2-cocycle ω defined by (7) is not a 2-coboundary, this yields
that the space H2 (g [t, t−1]) is 1-dimensional and spanned by the residue class of the
2-cocycle ω defined by (7). This proves Theorem 1.7.4.

10and spanned by the Killing form
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2. Representation theory: generalities

2.1. Representation theory: general facts

The first step in the representation theory of any objects (groups, algebras, etc.) is
usually proving some kind of Schur’s lemma. There is one form of Schur’s lemma that
holds almost tautologically: This is the form that claims that every morphism between
irreducible representations is either 0 or an isomorphism.11 However, the more often
used form of Schur’s lemma is a bit different: It claims that, over an algebraically
closed field, every endomorphism of a finite-dimensional irreducible representation is
a scalar multiple of the identity map. This is usually proven using eigenvalues, and
this proof depends on the fact that eigenvalues exist; this (in general) requires the
irreducible representation to be finite-dimensional. Hence, it should not come as a
surprise that this latter form of Schur’s lemma does not generally hold for infinite-
dimensional representations. This makes this lemma not particularly useful in the case
of infinite-dimensional Lie algebras. But we still can show the following version of
Schur’s lemma over C:

Lemma 2.1.1 (Dixmier’s Lemma). Let A be an algebra over C, and let V be an
irreducible A-module of countable dimension. Then, any A-module homomorphism
φ : V → V is a scalar multiple of the identity.

This lemma is called Dixmier’s lemma, and its proof is similar to the famous proof
of the Nullstellensatz over C using the uncountability of C.

Proof of Lemma 2.1.1. Let D = EndA V . Then, D is a division algebra (in fact, the
endomorphism ring of an irreducible representation always is a division algebra).

For any nonzero v ∈ V , we have Av = V (otherwise, Av would be a nonzero proper
A-submodule of V , contradicting the fact that V is irreducible and thus does not have
any such submodules). In other words, for any nonzero v ∈ V , every element of V
can be written as av for some a ∈ A. Thus, for any nonzero v ∈ V , any element
φ ∈ D is completely determined by φ (v) (because φ (av) = aφ (v) for every a ∈ A,
so that the value φ (v) uniquely determines the value of φ (av) for every a ∈ A, and
thus (since we know that every element of V can be written as av for some a ∈ A)
every value of φ is uniquely determined). Thus, we have an embedding of D into
V . Hence, D is countably-dimensional (since V is countably-dimensional). But a
countably-dimensional division algebra D over C must be C itself12, so that D = C,
and this is exactly what we wanted to show. Lemma 2.1.1 is proven.

Note that Lemma 2.1.1 is a general fact, not particular to Lie algebras; however, it
is not as general as it seems: It really makes use of the uncountability of C, not just

11There are also variations on this assertion:
1) Every morphism from an irreducible representation to a representation is either 0 or injective.
2) Every morphism from a representation to an irreducible representation is either 0 or surjective.
Both of these variations follow very easily from the definition of “irreducible”.

12Proof. Indeed, assume the contrary. So there exists some φ ∈ D not belonging to C. Then, φ is
transcendental over C, so that C (φ) ⊆ D is the field of rational functions in one variable φ over

C. Now, C (φ) contains the rational function
1

φ− λ
for every λ ∈ C, and these rational functions

for varying λ are linearly independent. Since C is uncountable, we thus have an uncountable
linearly independent set of elements of C (φ), contradicting the fact that C (φ) is a subspace of the
countably-dimensional space D, qed.

25



of the fact that C is an algebraically closed field of characteristic 0. It would be wrong
if we would replace C by (for instance) the algebraic closure of Q.

Remark 2.1.2. Let A be a countably-dimensional algebra over C, and let V be an
irreducible A-module. Then, V itself is countably dimensional.

Proof of Remark 2.1.2. For any nonzero v ∈ V , we have Av = V (by the same argu-
ment as in the proof of Lemma 2.1.1), and thus dim (Av) = dimV . Since dim (Av) ≤
dimA, we thus have dimV = dim (Av) ≤ dimA, so that V has countable dimension
(since A has countable dimension). This proves Remark 2.1.2.

Corollary 2.1.3. Let A be an algebra over C, and let V be an irreducible A-module
of countable dimension. Let C be a central element of A. Then, C |V is a scalar (i.
e., a scalar multiple of the identity map).

Proof of Corollary 2.1.3. Since C is central, the element C commutes with any
element of A. Thus, C |V is an A-module homomorphism, and hence (by Lemma 2.1.1,
applied to φ = C |V ) a scalar multiple of the identity. This proves Corollary 2.1.3.

2.2. Representations of the Heisenberg algebra A
2.2.1. General remarks

Consider the oscillator algebra (aka Heisenberg algebra)A = 〈ai | i ∈ Z〉+〈K〉. Recall
that

[ai, aj] = iδi,−jK for any i, j ∈ Z;

[K, ai] = 0 for any i ∈ Z.

Let us try to classify the irreducible A-modules.
Let V be an irreducible A-module. Then, V is countably-dimensional (by Remark

2.1.2, since U (A) is countably-dimensional), so that by Corollary 2.1.3, the endomor-
phism K |V is a scalar (because K is a central element of A and thus also a central
element of U (A)).

If K |V = 0, then V is a module over the Lie algebra A�CK = 〈ai | i ∈ Z〉. But
since 〈ai | i ∈ Z〉 is an abelian Lie algebra, irreducible modules over 〈ai | i ∈ Z〉 are
1-dimensional (again by Corollary 2.1.3), so that V must be 1-dimensional in this case.
Thus, the case when K |V = 0 is not an interesting case.

Now consider the case when K |V = k 6= 0. Then, we can WLOG assume that k = 1,
because the Lie algebra A has an automorphism sending K to λK for any arbitrary
λ 6= 0 (this automorphism is given by ai 7→ λai for i > 0, and ai 7→ ai for i ≤ 0).

We are thus interested in irreducible representations V of A satisfying K |V = 1.
These are in an obvious 1-to-1 correspondence with irreducible representations of
U (A)� (K − 1).

Proposition 2.2.1. We have an algebra isomorphism

ξ : U (A)� (K − 1)→ D (x1, x2, x3, ...)⊗ C [x0] ,
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where D (x1, x2, x3, ...) is the algebra of differential operators in the variables x1, x2,
x3, ... with polynomial coefficients. This isomorphism is given by

ξ (a−i) = xi for i ≥ 1;

ξ (ai) = i
∂

∂xi
for i ≥ 1;

ξ (a0) = x0.

Note that we are sloppy with notation here: Since ξ is a homomorphism from
U (A)� (K − 1) (rather than U (A)), we should write ξ (a−i) instead of ξ (a−i), etc..
We are using the same letters to denote elements of U (A) and their residue classes in
U (A)� (K − 1), and are relying on context to keep them apart. We hope that the
reader will forgive us this abuse of notation.

Proof of Proposition 2.2.1. It is clear13 that there exists a unique algebra homomor-
phism ξ : U (A)� (K − 1)→ D (x1, x2, x3, ...) satisfying

ξ (a−i) = xi for i ≥ 1;

ξ (ai) = i
∂

∂xi
for i ≥ 1;

ξ (a0) = x0.

It is also clear that this ξ is surjective (since all the generators xi,
∂

∂xi
and x0 of the

algebra D (x1, x2, x3, ...)⊗ C [x0] are in its image).
In the following, a map ϕ : A → N (where A is some set) is said to be finitely

supported if all but finitely many a ∈ A satisfy ϕ (a) = 0. Sequences (finite, infinite,
or two-sided infinite) are considered as maps (from finite sets, N or Z, or occasionally
other sets). Thus, a sequence is finitely supported if and only if all but finitely many
of its elements are zero.

If A is a set, then NAfin will denote the set of all finitely supported maps A→ N.
By the easy part of the Poincaré-Birkhoff-Witt theorem (this is the part which states

that the increasing monomials span the universal enveloping algebra14), the family15(
→∏
i∈Z

anii ·Km

)
(...,n−2,n−1,n0,n1,n2,...)∈NZfin, m∈N

is a spanning set of the vector space U (A). Hence, the family(
→∏
i∈Z

anii

)
(...,n−2,n−1,n0,n1,n2,...)∈NZfin

13from the universal property of the universal enveloping algebra, and the universal property of the
quotient algebra

14The hard part says that these increasing monomials are linearly independent.

15Here,
→∏
i∈Z
anii denotes the product ...a

n−2

−2 a
n−1

−1 a
n0
0 an1

1 an2
2 .... (This product is infinite, but still has a

value since only finitely many ni are nonzero.)
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is a spanning set of U (A)� (K − 1), and since this family maps to a linearly indepen-
dent set under ξ (this is very easy to see), it follows that ξ is injective. Thus, ξ is an
isomorphism, so that Proposition 2.2.1 is proven.

Definition 2.2.2. Define a vector subspace A0 of A by A0 = 〈ai | i ∈ Z� {0}〉+
〈K〉.

Proposition 2.2.3. This subspace A0 is a Lie subalgebra of A, and Ca0 is also a
Lie subalgebra of A. We have A = A0 ⊕ Ca0 as Lie algebras. Hence,

U (A)� (K − 1) = U (A0 ⊕ Ca0)� (K − 1) ∼= (U (A0)� (K − 1))︸ ︷︷ ︸
∼=D(x1,x2,x3,...)

⊗C [a0]︸ ︷︷ ︸
∼=C[x0]

(since K ∈ A0). Here, the isomorphism U (A0)� (K − 1) ∼= D (x1, x2, x3, ...) is
defined as follows: In analogy to Proposition 2.2.1, we have an algebra isomorphism

ξ̃ : U (A0)� (K − 1)→ D (x1, x2, x3, ...)

given by

ξ̃ (a−i) = xi for i ≥ 1;

ξ̃ (ai) = i
∂

∂xi
for i ≥ 1.

The proof of Proposition 2.2.3 is analogous to that of Proposition 2.2.1 (where it is
not completely straightforward).

2.2.2. The Fock space

From Proposition 2.2.3, we know that

U (A0)� (K − 1) ∼= D (x1, x2, x3, ...) ⊆ End (C [x1, x2, x3, ...]) .

Hence, we have a C-algebra homomorphism U (A0) → End (C [x1, x2, x3, ...]). This
makes C [x1, x2, x3, ...] into a representation of the Lie algebra A0. Let us state this as
a corollary:

Corollary 2.2.4. The Lie algebra A0 has a representation F = C [x1, x2, x3, ...]
which is given by

a−i 7→ xi for every i ≥ 1;

ai 7→ i
∂

∂xi
for every i ≥ 1,

K 7→ 1

(where “a−i 7→ xi” is just shorthand for “a−i 7→ (multiplication by xi)”). For every
µ ∈ C, we can upgrade F to a representation Fµ of A by adding the condition that
a0 |Fµ= µ · id.
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Definition 2.2.5. The representation F of A0 introduced in Corollary 2.2.4 is called
the Fock module or the Fock representation. For every µ ∈ C, the representation
Fµ of A introduced in Corollary 2.2.4 will be called the µ-Fock representation of A.
The vector space F itself is called the Fock space.

Let us now define some gradings to make these infinite-dimensional spaces more
manageable:

Definition 2.2.6. Let us grade the vector space A by A =
⊕
n∈Z
A [n], where

A [n] = 〈an〉 for n 6= 0, and where A [0] = 〈a0, K〉. With this grading, we have
[A [n] ,A [m]] ⊆ A [n+m] for all n ∈ Z and m ∈ Z. (In other words, the Lie algebra
A with the decomposition A =

⊕
n∈Z
A [n] is a Z-graded Lie algebra. The notion of a

“Z-graded Lie algebra” that we have just used is defined in Definition 2.5.1.)

Note that we are denoting the n-th homogeneous component of A by A [n] rather
than An, since otherwise the notation A0 would have two different meanings.

Definition 2.2.7. We grade the polynomial algebra F by setting deg (xi) = −i for
each i. Thus, F =

⊕
n≥0

F [−n], where F [−n] is the space of polynomials of degree

−n, where the degree is our degree defined by deg (xi) = −i (so that, for instance,
x2

1+x2 is homogeneous of degree −2). With this grading, dim (F [−n]) is the number
p (n) of all partitions of n. Hence,∑

n≥0

dim (F [−n]) qn =
∑
n≥0

p (n) qn =
1

(1− q) (1− q2) (1− q3) · · ·
=

1∏
i≥1

(1− qi)

in the ring of power series Z [[q]].
We use the same grading for Fµ for every µ ∈ C. That is, we define the grading

on Fµ by Fµ [n] = F [n] for every n ∈ Z.

Remark 2.2.8. Some people prefer to grade Fµ somewhat differently from F :

namely, they shift the grading for Fµ by
µ2

2
, so that deg 1 = −µ

2

2
in Fµ, and gen-

erally Fµ [z] = F

[
µ2

2
+ z

]
(as vector spaces) for every z ∈ C. This is a grading by

complex numbers rather than integers (in general). (The advantage of this grading
is that we will eventually find an operator whose eigenspace to the eigenvalue n is

Fµ [n] = F

[
µ2

2
+ n

]
for every n ∈ C.)

With this grading, the equality
∑
n≥0

dim (F [−n]) qn =
1∏

i≥1

(1− qi)
rewrites as

∑
n∈C

dim (Fµ [−n]) q
n+
µ2

2 =
qµ

2∏
i≥1

(1− qi)
, if we allow power series with complex ex-
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ponents. We define a “power series” ch (Fµ) by

ch (Fµ) =
∑
n∈C

dim (Fµ [−n]) q
n+
µ2

2 =
qµ

2∏
i≥1

(1− qi)
.

But we will not use this grading; instead we will use the grading defined in Definition
2.2.7.

Proposition 2.2.9. The representation F is an irreducible representation of A0.

Lemma 2.2.10. For every P ∈ F , we have

P (a−1, a−2, a−3, ...) · 1 = P in F.

(Here, the term P (a−1, a−2, a−3, ...) denotes the evaluation of the polynomial P
at (x1, x2, x3, ...) = (a−1, a−2, a−3, ...). This evaluation is a well-defined element of
U (A0), since the elements a−1, a−2, a−3, ... of U (A0) commute.)

Proof of Lemma 2.2.10. For every Q ∈ F , let multQ denote the map F → F,
R 7→ QR. (In Proposition 2.2.1, we abused notations and denoted this map simply
by Q; but we will not do this in this proof.) Then, by the definition of ξ, we have
ξ (a−i) = mult (xi) for every i ≥ 1.

Since we have defined an endomorphism multQ ∈ EndF for every Q ∈ F , we thus
obtain a map mult : F → EndF . This map mult is an algebra homomorphism (since
it describes the action of F on the F -module F ).

Let P ∈ F . Since ξ is an algebra homomorphism, and thus commutes with polyno-
mials, we have

ξ (P (a−1, a−2, a−3, ...))

= P (ξ (a−1) , ξ (a−2) , ξ (a−3) , ...) = P (mult (x1) ,mult (x2) ,mult (x3) , ...)

(since ξ (a−i) = mult (xi) for every i ≥ 1)

= mult

P (x1, x2, x3, ...)︸ ︷︷ ︸
=P

 (
since mult is an algebra homomorphism,

and thus commutes with polynomials

)
= multP.

Thus,
P (a−1, a−2, a−3, ...) · 1 = (multP ) (1) = P · 1 = P.

This proves Lemma 2.2.10.
Proof of Proposition 2.2.9. 1) The representation F is generated by 1 as a U (A0)-

module (due to Lemma 2.2.10). In other words, F = U (A0) · 1.
2) Let us forget about the grading on F which we defined in Definition 2.2.7, and

instead, once again, define a grading on F by deg (xi) = 1 for every i ∈ {1, 2, 3, ...}.
Thus, the degree of a polynomial P ∈ F with respect to this grading is what is usually
referred to as the degree of the polynomial P .
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If P ∈ F and if α · xm1
1 xm2

2 xm3
3 ... is a monomial in P of degree degP , with α 6= 0,

then
∂m1
x1

m1!

∂m2
x2

m2!

∂m3
x3

m3!
...P = α 16.

Thus, for every nonzero P ∈ F , we have 1 ∈ U (A0) · P 17. Combined with 1),
this yields that for every nonzero P ∈ F , the representation F is generated by P as
a U (A0)-module (since F = U (A0) · 1︸︷︷︸

∈U(A0)·P

⊆ U (A0) · U (A0) · P = U (A0) · P ).

Consequently, F is irreducible. Proposition 2.2.9 is proven.

Proposition 2.2.11. Let V be an irreducible A0-module on which K acts as 1.
Assume that for any v ∈ V , the space C [a1, a2, a3, ...] · v is finite-dimensional, and
the ai with i > 0 act on it by nilpotent operators. Then, V ∼= F as A0-modules.

Before we prove this, a simple lemma:

16Proof. Let P ∈ F . Let α · xm1
1 xm2

2 xm3
3 ... be a monomial in P of degree degP , with α 6= 0.

WLOG, no variable other than x1, x2, ..., xk appears in P , for some k ∈ N. Thus,

xm1
1 xm2

2 xm3
3 ... = xm1

1 xm2
2 ...xmkk and

∂m1
x1

m1!

∂m2
x2

m2!

∂m3
x3

m3!
... =

∂m1
x1

m1!

∂m2
x2

m2!
...
∂mkxk
mk!

.

Thus, α · xm1
1 xm2

2 ...xmkk = α · xm1
1 xm2

2 xm3
3 ... is a monomial in P of degree degP .

When we apply the differential operator
∂m1
x1

m1!

∂m2
x2

m2!
...
∂mkxk
mk!

to P , all monomials β · xn1
1 xn2

2 ...xnkk

with (n` < m` for at least one ` ∈ {1, 2, ..., k}) are annihilated (because if n` < m` for some `, then
∂m1
x1

m1!

∂m2
x2

m2!
...
∂mkxk
mk!

(β · xn1
1 xn2

2 ...xnkk ) = 0). Hence, the only monomials in P which survive under this

operator are monomials of the form β ·xn1
1 xn2

2 ...xnkk with each n` being ≥ to the corresponding m`.
But since m1 +m2 + ...+mk = degP (because α · xm1

1 xm2
2 ...xmkk is a monomial of degree degP ),

the only such monomial in P is α · xm1
1 xm2

2 ...xmkk (because for every other monomial of the form
β · xn1

1 xn2
2 ...xnkk with each n` being ≥ to the corresponding m`, the sum n1 +n2 + ...+nk must be

greater than m1 +m2 + ...+mk = degP , and thus such a monomial cannot occur in P ). Hence,
the only monomial in P which survives is the monomial α · xm1

1 xm2
2 ...xmkk . This monomial clearly

gets mapped to α by the differential operator
∂m1
x1

m1!

∂m2
x2

m2!
...
∂mkxk
mk!

. Thus,
∂m1
x1

m1!

∂m2
x2

m2!
...
∂mkxk
mk!

P = α. Since

∂m1
x1

m1!

∂m2
x2

m2!
...
∂mkxk
mk!

=
∂m1
x1

m1!

∂m2
x2

m2!

∂m3
x3

m3!
..., this rewrites as

∂m1
x1

m1!

∂m2
x2

m2!

∂m3
x3

m3!
...P = α, qed.

17Proof. Let P ∈ F be nonzero. Then, there exist a monomial α · xm1
1 xm2

2 xm3
3 ... in P of degree P

with α 6= 0. Consider such a monomial. As shown above, we have
∂m1
x1

m1!

∂m2
x2

m2!

∂m3
x3

m3!
...P = α. But we

know that ai ∈ A0 acts as i
∂

∂xi
on F for every i ≥ 1. Thus,

1

i
ai ∈ A0 acts as

∂

∂xi
= ∂xi on F for

every i ≥ 1. Hence,(
1

1
a1

)m1

m1!

(
1

2
a2

)m2

m2!

(
1

3
a3

)m3

m3!
...P =

∂m1
x1

m1!

∂m2
x2

m2!

∂m3
x3

m3!
...P = α.

Consequently,

α =

(
1

1
a1

)m1

m1!

(
1

2
a2

)m2

m2!

(
1

3
a3

)m3

m3!
...P ∈ U (A0) · P.

Since α 6= 0, we can divide this relation by α, and obtain 1 ∈ 1

α
· U (A0) · P ⊆ U (A0) · P , qed.
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Lemma 2.2.12. Let V be an A0-module. Let u ∈ V be such that aiu = 0 for all
i > 0, and such that Ku = u. Then, there exists a homomorphism η : F → V
of A0-modules such that η (1) = u. (This homomorphism η is unique, although we
won’t need this.)

We give two proofs of this lemma. The first one is conceptual and gives us a glimpse
into the more general theory (it proceeds by constructing an A0-module IndA0

CK⊕A+
0

C,

which is an example of what we will later call a Verma highest-weight module in
Definition 2.5.14). The second one is down-to-earth and proceeds by direct construction
and computation.

First proof of Lemma 2.2.12. Define a vector subspaceA+
0 ofA0 byA+

0 = 〈ai | i positive integer〉.
It is clear that the internal direct sum CK ⊕ A+

0 is well-defined and an abelian Lie
subalgebra of A0. We can make C into an

(
CK ⊕A+

0

)
-module by setting

Kλ = λ for every λ ∈ C;

aiλ = 0 for every λ ∈ C and every positive integer i.

Now, consider the A0-module IndA0

CK⊕A+
0

C = U (A0)⊗U(CK⊕A+
0 )C. Denote the element

1⊗U(CK⊕A+
0 ) 1 ∈ U (A0)⊗U(CK⊕A+

0 ) C of this module by 1.

We will now show the following important property of this module:(
For any A0-module T , and any t ∈ T satisfying (ait = 0 for all i > 0) and Kt = t,

there exists a homomorphism ηT,t : IndA0

CK⊕A+
0

C→ T of A0-modules such that ηT,t (1) = t

)
.

(14)
Once this is proven, we will (by considering ηF,1) show that IndACK⊕A+

0
C ∼= F , so this

property will translate into the assertion of Lemma 2.2.12.
Proof of (14). Let τ : C→ T be the map which sends every λ ∈ C to λt ∈ T . Then,

τ is C-linear and satisfies

τ (Kλ)︸ ︷︷ ︸
=λ

= τ (λ) = λ t︸︷︷︸
=Kt

= λ ·Kt = K · λt︸︷︷︸
=τ(λ)

= K · τ (λ) for every λ ∈ C

and

τ (aiλ)︸ ︷︷ ︸
=0

= τ (0) = 0 = λ · 0︸︷︷︸
=ait

= λ · ait = ai · λt︸︷︷︸
=τ(λ)

= aiτ (λ)

for every λ ∈ C and every positive integer i.

Thus, τ is a
(
CK ⊕A+

0

)
-module map. In other words, τ ∈ HomCK⊕A+

0

(
C,ResA0

CK⊕A+
0

T
)

.

By Frobenius reciprocity, we have

HomA0

(
IndA0

CK⊕A+
0

C, T
)
∼= HomCK⊕A+

0

(
C,ResA0

CK⊕A+
0

T
)
.

The preimage of τ ∈ HomCK⊕A+
0

(
C,ResA0

CK⊕A+
0

T
)

under this isomorphism is an A0-

module map ηT,t : IndA0

CK⊕A+
0

C→ T such that

ηT,t (1)︸︷︷︸
=1⊗

U(CK⊕A+
0 )

1

= ηT,t

(
1⊗U(CK⊕A+

0 ) 1
)

= 1 τ (1)︸︷︷︸
=1t=t

(by the proof of Frobenius reciprocity)

= 1t = t.
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Hence, there exists a homomorphism ηT,t : IndA0

CK⊕A+
0

C→ T of A0-modules such that

ηT,t (1) = t. This proves (14).
It is easy to see that the element 1 ∈ F satisfies (ai1 = 0 for all i > 0) and K1 = 1.

Thus, (14) (applied to T = F and t = 1) yields that there exists a homomorphism
ηF,1 : IndA0

CK⊕A+
0

C → F of A0-modules such that ηF,1 (1) = 1. This homomorphism

ηF,1 is surjective, since

F = U (A0) · 1︸︷︷︸
=ηF,1(1)

(as proven in the proof of Proposition 2.2.9)

= U (A0) · ηF,1 (1) = ηF,1 (U (A0) · 1)
(
since ηF,1 is an A0-module map

)
⊆ Im ηF,1.

Now we will prove that this homomorphism ηF,1 is injective.
In the following, a map ϕ : A→ N (where A is any set) is said to be finitely supported

if all but finitely many a ∈ A satisfy ϕ (a) = 0. Sequences (finite, infinite, or two-sided
infinite) are considered as maps (from finite sets, N or Z, or occasionally other sets).
Thus, a sequence is finitely supported if and only if all but finitely many of its elements
are zero.

If A is a set, then NAfin will denote the set of all finitely supported maps A→ N.
By the easy part of the Poincaré-Birkhoff-Witt theorem (this is the part which states

that the increasing monomials span the universal enveloping algebra), the family18 →∏
i∈Z�{0}

anii ·Km


(...,n−2,n−1,n1,n2,...)∈NZ�{0}fin , m∈N

is a spanning set of the vector space U (A0).
Hence, the family →∏

i∈Z�{0}

anii ·Km

⊗U(CK⊕A+
0 ) 1


(...,n−2,n−1,n1,n2,...)∈NZ�{0}fin , m∈N

is a spanning set of the vector space U (A0)⊗U(CK⊕A+
0 ) C = IndA0

CK⊕A+
0

C.

Let us first notice that this family is redundant: Each of its elements is contained in
the smaller family →∏

i∈Z�{0}

anii

⊗U(CK⊕A+
0 ) 1


(...,n−2,n−1,n1,n2,...)∈NZ�{0}fin

.

18Here,
→∏

i∈Z�{0}
anii denotes the product ...a

n−2

−2 a
n−1

−1 a
n1
1 an2

2 .... (This product is infinite, but still has a

value since only finitely many ni are nonzero.)
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19 Hence, this smaller family is also a spanning set of the vector space IndA0

CK⊕A+
0

C.

This smaller family is still redundant: Every of its elements corresponding to a
sequence (..., n−2, n−1, n1, n2, ...) ∈ NZ�{0}fin satisfying n1 +n2 +n3 + ... > 0 is zero20, and
zero elements in a spanning set are automatically redundant. Hence, we can replace

19This is because any sequence (..., n−2, n−1, n1, n2, ...) ∈ NZ�{0}fin and any m ∈ N satisfy →∏
i∈Z�{0}

anii ·K
m

⊗U(CK⊕A+
0 ) 1

=

 →∏
i∈Z�{0}

anii

⊗U(CK⊕A+
0 ) (Km1)︸ ︷︷ ︸

=1
(by repeated application of K1=1)

(
since Km ∈ U

(
CK ⊕A+

0

))

=

 →∏
i∈Z�{0}

anii

⊗U(CK⊕A+
0 ) 1.

20Proof. Let (..., n−2, n−1, n1, n2, ...) ∈ NZ�{0}fin be a sequence satisfying n1 + n2 + n3 + ... > 0. Then,

the sequence (..., n−2, n−1, n1, n2, ...) is finitely supported (as it is an element of ∈ NZ�{0}fin ), so that
only finitely many ni are nonzero.

There exists some positive integer ` satisfying n` > 0 (since n1 +n2 +n3 + ... > 0). Let j be the
greatest such ` (this is well-defined, since only finitely many ni are nonzero).

Since j is the greatest positive integer ` satisfying n` > 0, it is clear that j is the greatest integer

` satisfying n` > 0. In other words, a
nj
j is the rightmost factor in the product

→∏
i∈Z
anii which is not

equal to 1. Thus,

→∏
i∈Z�{0}

anii =

→∏
i∈Z�{0}�{j}

anii · a
nj
j︸︷︷︸

=a
nj−1

j aj
(since nj>0)

=

→∏
i∈Z�{0}�{j}

anii · a
nj−1
j aj ,

so that →∏
i∈Z�{0}

anii

⊗U(CK⊕A+
0 ) 1 =

 →∏
i∈Z�{0}�{j}

anii · a
nj−1
j aj

⊗U(CK⊕A+
0 ) 1

=

→∏
i∈Z�{0}�{j}

anii · a
nj−1
j ⊗U(CK⊕A+

0 ) aj1︸︷︷︸
=0

(since j>0, so that

aj1=j
∂

∂xj
1=0)(

since aj ∈ U
(
CK ⊕A+

0

))
= 0.

We have thus proven that every sequence (..., n−2, n−1, n1, n2, ...) ∈ NZ�{0}fin satisfying n1 + n2 +

n3 + ... > 0 satisfies

(
→∏

i∈Z�{0}
anii

)
⊗U(CK⊕A+

0 ) 1 = 0, qed.
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this smaller family by the even smaller family →∏
i∈Z�{0}

anii

⊗U(CK⊕A+
0 ) 1


(...,n−2,n−1,n1,n2,...)∈NZ�{0}fin ; we do not have n1+n2+n3+...>0

=

 →∏
i∈Z�{0}

anii

⊗U(CK⊕A+
0 ) 1


(...,n−2,n−1,n1,n2,...)∈NZ�{0}fin ; n1=n2=n3=...=0 since the condition (we do not have n1 + n2 + n3 + ... > 0)

is equivalent to the condition (n1 = n2 = n3 = ... = 0)
(because ni ∈ N for all i ∈ Z� {0} )

 ,

and we still have a spanning set of the vector space IndA0

CK⊕A+
0

C.

Clearly, sequences (..., n−2, n−1, n1, n2, ...) ∈ NZ�{0}fin satisfying n1 = n2 = n3 = ... = 0

are in 1-to-1 correspondence with sequences (..., n−2, n−1) ∈ N{...,−3,−2,−1}
fin . Hence, we

can reindex the above family as follows: →∏
i∈{...,−3,−2,−1}

anii

⊗U(CK⊕A+
0 ) 1


(...,n−2,n−1)∈N{...,−3,−2,−1}

fin

.

So we have proven that the family →∏
i∈{...,−3,−2,−1}

anii

⊗U(CK⊕A+
0 ) 1


(...,n−2,n−1)∈N{...,−3,−2,−1}

fin

is a spanning set of the vector space IndA0

CK⊕A+
0

C. But the map ηF,1 sends this family

to ηF,1
 →∏

i∈{...,−3,−2,−1}

anii

⊗U(CK⊕A+
0 ) 1


(...,n−2,n−1)∈N{...,−3,−2,−1}

fin

=

 →∏
i∈{...,−3,−2,−1}

xni−i


(...,n−2,n−1)∈N{...,−3,−2,−1}

fin

35



21. Since the family

(
→∏

i∈{...,−3,−2,−1}
xni−i

)
(...,n−2,n−1)∈N{...,−3,−2,−1}

fin

is a basis of the vec-

tor space F (in fact, this family consists of all monomials of the polynomial ring
C [x1, x2, x3, ...] = F ), we thus conclude that ηF,1 sends a spanning family of the vector

space IndA0

CK⊕A+
0

C to a basis of the vector space F . Thus, ηF,1 must be injective22.

Altogether, we now know that ηF,1 is a surjective and injective A0-module map.
Thus, ηF,1 is an isomorphism of A0-modules.

Now, apply (14) to T = V and t = u. This yields that there exists a homomorphism
ηV,u : IndA0

CK⊕A+
0

C→ V of A0-modules such that ηV,u (1) = u.

21Proof. Let (..., n−2, n−1) ∈ N{...,−3,−2,−1}
fin be arbitrary. Then,

ηF,1



 →∏
i∈{...,−3,−2,−1}

anii

⊗U(CK⊕A+
0 ) 1

︸ ︷︷ ︸
=

(
→∏

i∈{...,−3,−2,−1}
a
ni
i

)(
1⊗

U(CK⊕A+
0 )

1

)


= ηF,1

 →∏
i∈{...,−3,−2,−1}

anii

(1⊗U(CK⊕A+
0 ) 1

)
=

 →∏
i∈{...,−3,−2,−1}

anii

 ηF,1

(
1⊗U(CK⊕A+

0 ) 1
)

︸ ︷︷ ︸
=1

(
since ηF,1 is an A0-module map

)

=

 →∏
i∈{...,−3,−2,−1}

anii

 ηF,1 (1)︸ ︷︷ ︸
=1

=

 →∏
i∈{...,−3,−2,−1}

anii

 1 =

 →∏
i∈{...,−3,−2,−1}

xni−i

 1

(because each ai with negative i acts on F by multiplication with x−i)

=

→∏
i∈{...,−3,−2,−1}

xni−i =
∏

i∈{...,−3,−2,−1}

xni−i (since F is commutative) .

Now forget that we fixed (..., n−2, n−1) ∈ N{...,−3,−2,−1}
fin . We thus have shown that

every (..., n−2, n−1) ∈ N{...,−3,−2,−1}
fin satisfies ηF,1

((
→∏

i∈{...,−3,−2,−1}
anii

)
⊗U(CK⊕A+

0 ) 1

)
=∏

i∈{...,−3,−2,−1}
xni−i. Thus,

ηF,1
 →∏

i∈{...,−3,−2,−1}

anii

⊗U(CK⊕A+
0 ) 1


(...,n−2,n−1)∈N{...,−3,−2,−1}

fin

=

 →∏
i∈{...,−3,−2,−1}

xni−i


(...,n−2,n−1)∈N{...,−3,−2,−1}

fin

,

qed.
22Here we are using the following trivial fact from linear algebra: If a linear map ϕ : V → W sends

a spanning family of the vector space V to a basis of the vector space W (as families, not just as
sets), then this map ϕ must be injective.
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Now, the composition ηV,u ◦ η−1
F,1 is a homomorphism F → V of A0-modules such

that (
ηV,u ◦ η−1

F,1

)
(1) = ηV,u

(
η−1
F,1 (1)

)︸ ︷︷ ︸
=1

(since ηF,1(1)=1)

= ηV,u (1) = u.

Thus, there exists a homomorphism η : F → V of A0-modules such that η (1) = u
(namely, η = ηV,u ◦ η−1

F,1). This proves Lemma 2.2.12.
Second proof of Lemma 2.2.12. Let η be the map F → V which sends every polyno-

mial P ∈ F = C [x1, x2, x3, ...] to P (a−1, a−2, a−3, ...) ·u ∈ V . 23 This map η is clearly
C-linear, and satisfies η (F ) ⊆ U (A0) · u. In order to prove that η is an A0-module
homomorphism, we must prove that

η (aiP ) = aiη (P ) for every i ∈ Z� {0} and P ∈ F (15)

and that
η (KP ) = Kη (P ) for every P ∈ F. (16)

First we show that

Kv = v for every v ∈ U (A0) · u. (17)

Proof of (17). Since K lies in the center of the Lie algebra A0, it is clear that K lies
in the center of the universal enveloping algebra U (A0). Thus, Kx = xK for every
x ∈ U (A0).

Now let v ∈ U (A0) ·u. Then, there exists some x ∈ U (A0) such that v = xu. Thus,
Kv = Kxu = x Ku︸︷︷︸

=u

= xu = v. This proves (17).

Proof of (16). Since K acts as the identity on F , we have KP = P for every P ∈ F .
Thus, for every P ∈ F , we have

η (KP ) = η (P ) = Kη (P )

(
since (17) (applied to v = η (P ) ) yields Kη (P ) = η (P )

(because η (P ) ∈ η (F ) ⊆ U (A0) · u)

)
.

This proves (16).
Proof of (15). Let i ∈ Z� {0}. If i < 0, then (15) is pretty much obvious (because

in this case, ai acts as x−i on F , so that aiP = x−iP and thus

η (aiP ) = η (x−iP ) = (x−iP ) (a−1, a−2, a−3, ...) ·u = ai P (a−1, a−2, a−3, ...) · u︸ ︷︷ ︸
=η(P )

= aiη (P )

for every P ∈ F ). Hence, from now on, we can WLOG assume that i is not < 0.
Assume this. Then, i ≥ 0, so that i > 0 (since i ∈ Z� {0}).

In order to prove the equality (15) for all P ∈ F , it is enough to prove it for
the case when P is a monomial of the form x`1x`2 ...x`m for some m ∈ N and some

23Note that the term P (a−1, a−2, a−3, ...) denotes the evaluation of the polynomial P at
(x1, x2, x3, ...) = (a−1, a−2, a−3, ...). This evaluation is a well-defined element of U (A0), since
the elements a−1, a−2, a−3, ... of U (A0) commute.
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(`1, `2, ..., `m) ∈ {1, 2, 3, ...}m. 24 In other words, in order to prove the equality (15),
it is enough to prove that

η (ai (x`1x`2 ...x`m)) = aiη (x`1x`2 ...x`m) for every m ∈ N and every (`1, `2, ..., `m) ∈ {1, 2, 3, ...}m .
(18)

Thus, let us now prove (18). In fact, we are going to prove (18) by induction over

m. The induction base is very easy (using ai1 = i
∂

∂xi
1 = 0 and aiu = 0) and thus left

to the reader. For the induction step, fix some positive M ∈ N, and assume that (18)
is already proven for m = M − 1. Our task is now to prove (18) for m = M .

So let (`1, `2, ..., `M) ∈ {1, 2, 3, ...}M be arbitrary. Denote by Q the polynomial
x`2x`3 ...x`M . Then, x`1Q = x`1x`2x`3 ...x`M = x`1x`2 ...x`M .

Since (18) is already proven for m = M − 1, we can apply (18) to M − 1 and
(`2, `3, ..., `M) instead of m and (`1, `2, ..., `m). We obtain η (ai (x`2x`3 ...x`M )) = aiη
(x`2x`3 ...x`M ). Since x`2x`3 ...x`M = Q, this rewrites as η (aiQ) = aiη (Q).

Since any x ∈ A0 and y ∈ A0 satisfy xy = yx + [x, y] (by the definition of U (A0)),
we have

aia−`1 = a−`1ai + [ai, a−`1 ]︸ ︷︷ ︸
=iδi,−(−`1)K

= a−`1ai + i δi,−(−`1)︸ ︷︷ ︸
=δi,`1

K = a−`1ai + iδi,`1K.

On the other hand, by the definition of η, every P ∈ F satisfies the two equalities
η (P ) = P (a−1, a−2, a−3, ...) · u and

η (x`1P ) = (x`1P ) (a−1, a−2, a−3, ...)︸ ︷︷ ︸
=a−`1 ·P (a−1,a−2,a−3,...)

·u = a−`1 · P (a−1, a−2, a−3, ...) · u︸ ︷︷ ︸
=η(P )

= a−`1 · η (P ) . (19)

Since ai acts on F as i
∂

∂xi
, we have ai (x`1Q) = i

∂

∂xi
(x`1Q) and aiQ = i

∂

∂xi
Q. Now,

ai

x`1x`2 ...x`M︸ ︷︷ ︸
=x`1Q

 = ai (x`1Q) = i
∂

∂xi
(x`1Q) = i

((
∂

∂xi
x`1

)
Q+ x`1

(
∂

∂xi
Q

))
(by the Leibniz rule)

= i

(
∂

∂xi
x`1

)
︸ ︷︷ ︸

=δi,`1

Q+ x`1 · i
∂

∂xi
Q︸ ︷︷ ︸

=aiQ

= iδi,`1Q+ x`1 · aiQ = x`1 · aiQ+ iδi,`1Q,

so that

η (ai (x`1x`2 ...x`M )) = η (x`1 · aiQ+ iδi,`1Q) = η (x`1 · aiQ)︸ ︷︷ ︸
=a−`1 ·η(aiQ)

(by (19), applied to P=aiQ)

+iδi,`1η (Q)

= a−`1 · η (aiQ)︸ ︷︷ ︸
=aiη(Q)

+iδi,`1η (Q) = a−`1 · aiη (Q) + iδi,`1η (Q) .

24This is because such monomials generate F as a C-vector space, and because the equality (15) is
linear in P .
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Compared to

aiη

x`1x`2 ...x`M︸ ︷︷ ︸
=x`1Q

 = ai η (x`1Q)︸ ︷︷ ︸
=a−`1 ·η(Q)

(by (19), applied to P=Q)

= aia−`1︸ ︷︷ ︸
=a−`1ai+iδi,`1K

·η (Q)

= (a−`1ai + iδi,`1K) · η (Q) = a−`1 · aiη (Q) + iδi,`1 Kη (Q)︸ ︷︷ ︸
=η(Q)

(by (17), applied to v=η(Q)
(since η(Q)∈η(F )⊆U(A0)·u))

= a−`1 · aiη (Q) + iδi,`1η (Q) ,

this yields η (ai (x`1x`2 ...x`M )) = aiη (x`1x`2 ...x`M ). Since we have proven this for every
(`1, `2, ..., `M) ∈ {1, 2, 3, ...}M , we have thus proven (18) for m = M . This completes
the induction step, and thus the induction proof of (18) is complete. As we have seen
above, this proves (15).

From (15) and (16), it is clear that η is A0-linear (since A0 is spanned by the ai for
i ∈ Z� {0} and K). Since η (1) = u is obvious, this proves Lemma 2.2.12.

Proof of Proposition 2.2.11. Pick some nonzero vector v ∈ V . LetW = C [a1, a2, a3, ...]·
v. Then, by the condition, we have dimW < ∞, and ai : W → W are commuting
nilpotent operators25. Hence,

⋂
i≥1

Ker ai 6= 0 26. Hence, there exists some nonzero

u ∈
⋂
i≥1

Ker ai. Pick such a u. Then, aiu = 0 for all i > 0, and Ku = u (since K acts

as 1 on V ). Thus, there exists a homomorphism η : F → V of A0-modules such that
η (1) = u (by Lemma 2.2.12). Since both F and V are irreducible and η 6= 0, this
yields that η is an isomorphism. This proves Proposition 2.2.11.

2.2.3. Classification of A0-modules with locally nilpotent action of C [a1, a2, a3, ...]

Proposition 2.2.13. Let V be any A0-module having a locally nilpotent action of
C [a1, a2, a3, ...]. (Here, we say that the A0-module V has a locally nilpotent action
of C [a1, a2, a3, ...] if for any v ∈ V , the space C [a1, a2, a3, ...] · v is finite-dimensional,
and the ai with i > 0 act on it by nilpotent operators.) Assume that K acts as 1
on V . Assume that for every v ∈ V , there exists some N ∈ N such that for every
n ≥ N , we have anv = 0. Then, V ∼= F ⊗ U as A0-modules for some vector space
U . (The vector space U is not supposed to carry any A0-module structure.)

Remark 2.2.14. From Proposition 2.2.13, we cannot remove the condition that for
every v ∈ V , there exists some N ∈ N such that for every n ≥ N , we have anv = 0.
In fact, here is a counterexample of how Proposition 2.2.13 can fail without this
condition:

25Of course, when we write ai : W →W , we don’t mean the elements ai of A0 themselves, but their
actions on W .

26Here, we are using the following linear-algebraic fact:
If T is a nonzero finite-dimensional vector space over an algebraically closed field, and if b1,

b2, b3, ... are commuting linear maps T → T , then there exists a nonzero common eigenvector of
b1, b2, b3, .... If b1, b2, b3, ... are nilpotent, this yields

⋂
i≥1

Ker bi 6= 0 (since any eigenvector of a

nilpotent map must lie in its kernel).
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Let V be the representation C [x1, x2, x3, ...] [y]� (y2) of A0 given by

a−i 7→ xi for every i ≥ 1;

ai 7→ i
∂

∂xi
+ y for every i ≥ 1,

K 7→ 1

(where we are being sloppy and abbreviating the residue class y ∈
C [x1, x2, x3, ...] [y]� (y2) by y, and similarly all other residue classes). We have
an exact sequence

0 // F i // V π // F // 0

of A0-modules, where the map i : F → V is given by

i (P ) = yP for every p ∈ F = C [x1, x2, x3, ...] ,

and the map π : V → F is the canonical projection V → V� (y) ∼= F . Thus, V
is an extension of F by F . It is easily seen that V has a locally nilpotent action
of C [a1, a2, a3, ...]. But V is not isomorphic to F ⊗ U as A0-modules for any vector
space U , since there is a vector v ∈ V satisfying V = U (A0) ·v (for example, v = 1),
whereas there is no vector v ∈ F ⊗ U satisfying F ⊗ U = U (A0) · v if dimU > 1,
and the case dimU ≤ 1 is easily ruled out (in this case, dimU would have to be 1,
so that V would be ∼= F and thus irreducible, and thus the homomorphisms i and
π would have to be isomorphisms, which is absurd).

Before we prove Proposition 2.2.13, we need to define the notion of complete coflags:

Definition 2.2.15. Let k be a field. Let V be a k-vector space. Let W be a vector
subspace of V . Assume that dim (V�W ) <∞. Then, a complete coflag from V
to W will mean a sequence (V0, V1, ..., VN) of vector subspaces of V (with N being
an integer) satisfying the following conditions:

- We have V0 ⊇ V1 ⊇ ... ⊇ VN .
- Every i ∈ {0, 1, ..., N} satisfies dim (V�Vi) = i.
- We have V0 = V and VN = W .
(Note that the condition V0 = V is superfluous (since it follows from the condition

that every i ∈ {0, 1, ..., N} satisfies dim (V�Vi) = i), but has been given for the
sake of intuition.)

We will also denote the complete coflag (V0, V1, ..., VN) by V = V0 ⊇ V1 ⊇ ... ⊇
VN = W .

It is clear that if k is a field, V is a k-vector space, and W is a vector subspace of V
satisfying dim (V�W ) <∞, then a complete coflag from V to W exists.27

27In fact, it is known that the finite-dimensional vector space V�W has a complete
flag (F0, F1, ..., FN ); now, if we let p be the canonical projection V → V�W , then(
p−1 (FN ) , p−1 (FN−1) , ..., p−1 (F0)

)
is easily seen to be a complete coflag from V to W .
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Definition 2.2.16. Let k be a field. Let V be a k-algebra. Let W be a vector
subspace of V . Let i be an ideal of V . Then, an i-coflag from V to W means a
complete coflag (V0, V1, ..., VN) from V to W such that

every i ∈ {0, 1, ..., N − 1} satisfies i · Vi ⊆ Vi+1.

Lemma 2.2.17. Let k be a field. Let B be a commutative k-algebra. Let I be an
ideal of B such that the k-vector space B�I is finite-dimensional. Let i be an ideal
of B. Let M ∈ N. Then, there exists an i-coflag from B to iM + I.

Proof of Lemma 2.2.17. We will prove Lemma 2.2.17 by induction over M :
Induction base: Lemma 2.2.17 is trivial in the case when M = 0, because i0︸︷︷︸

=B

+I =

B + I = B. This completes the induction base.
Induction base: Let m ∈ N. Assume that Lemma 2.2.17 is proven in the case when

M = m. We now must prove Lemma 2.2.17 in the case when M = m+ 1.
Since Lemma 2.2.17 is proven in the case when M = m, there exists an i-coflag

(J0, J1, ..., JK) from B to im + I. This i-coflag clearly is a complete coflag from B to
im + I.

Since

dim
(
(im + I)�

(
im+1 + I

))
≤ dim

(
B�

(
im+1 + I

))(
because (im + I)�

(
im+1 + I

)
injects into B�

(
im+1 + I

))
≤ dim (B�I)

(
since B�

(
im+1 + I

)
is a quotient of B�I

)
<∞ (since B�I is finite-dimensional) ,

there exists a complete coflag (U0, U1, ..., UP ) from im + I to im+1 + I.
Since (U0, U1, ..., UP ) is a complete coflag from im+I to im+1+I, we have U0 = im+I,

and each of the vector spaces U0, U1, ..., UP contains im+1 + I as a subspace.
Also, every i ∈ {0, 1, ..., P} satisfies Ui ⊆ im + I (again since (U0, U1, ..., UP ) is a

complete coflag from im + I to im+1 + I).
Since (J0, J1, ..., JK) is a complete coflag from B to im + I, while (U0, U1, ..., UP ) is a

complete coflag from im + I to im+1 + I, it is clear that

(J0, J1, ..., JK , U1, U2, ..., UP ) = (J0, J1, ..., JK−1, U0, U1, ..., UP )

is a complete coflag from B to im+1 + I. We now will prove that this complete coflag

(J0, J1, ..., JK , U1, U2, ..., UP ) = (J0, J1, ..., JK−1, U0, U1, ..., UP )

actually is an i-coflag.
In order to prove this, we must show the following two assertions:
Assertion 1: Every i ∈ {0, 1, ..., K − 1} satisfies i · Ji ⊆ Ji+1.
Assertion 2: Every i ∈ {0, 1, ..., P − 1} satisfies i · Ui ⊆ Ui+1.
Assertion 1 follows directly from the fact that (J0, J1, ..., JK) is an i-coflag.
Assertion 2 follows from the fact that i· Ui︸︷︷︸

⊆im+I

⊆ i·(im + I) ⊆ i · im︸︷︷︸
=im+1

+ i · I︸︷︷︸
⊆I

(since I is an ideal)

⊆

im+1 +I ⊆ Ui+1 (because we know that each of the vector spaces U0, U1, ..., UP contains
im+1 + I as a subspace, so that (in particular) im+1 + I ⊆ Ui+1).
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Hence, both Assertions 1 and 2 are proven, and we conclude that

(J0, J1, ..., JK , U1, U2, ..., UP ) = (J0, J1, ..., JK−1, U0, U1, ..., UP )

is an i-coflag. This is clearly an i-coflag from B to im+1 + I. Thus, there exists an
i-coflag from B to im+1 + I. This proves Lemma 2.2.17 in the case when M = m + 1.
The induction step is complete, and with it the proof of Lemma 2.2.17.

Proof of Proposition 2.2.13. Let v ∈ V be arbitrary. Let Iv ⊆ C [a1, a2, a3, ...] be the
annihilator of v. Then, the canonical C-algebra map C [a1, a2, a3, ...]→ End (C [a1, a2, a3, ...] · v)
(this map comes from the action of the C-algebra C [a1, a2, a3, ...] on C [a1, a2, a3, ...] ·v)
gives rise to an injective map C [a1, a2, a3, ...]�Iv → End (C [a1, a2, a3, ...] · v). Since
this map is injective, we have dim (C [a1, a2, a3, ...]�Iv) ≤ dim (End (C [a1, a2, a3, ...] · v)) <
∞ (since C [a1, a2, a3, ...] · v is finite-dimensional). In other words, the vector space
C [a1, a2, a3, ...]�Iv is finite-dimensional.

Let W be the A0-submodule of V generated by v. In other words, let W = U (A0) ·v.
Then, W is a quotient of U (A0) (as an A0-module). Since K acts as 1 on W , it follows
that W is a quotient of U (A0)� (K − 1) ∼= D (x1, x2, x3, ...). Since Iv annihilates v,
it follows that W is a quotient of D (x1, x2, ...)� (D (x1, x2, ...) Iv). Let us denote the

A0-module D (x1, x2, ...)� (D (x1, x2, ...) Iv) by W̃ .

We now will prove that W̃ is a finite-length A0-module with all composition factors
isomorphic to F . 28

Let i be the ideal (a1, a2, a3, ...) of the commutative algebra C [a1, a2, a3, ...].
Since Iv is an ideal of the commutative algebra C [a1, a2, a3, ...], the quotient C [a1, a2, a3, ...]�Iv

is an algebra. For every q ∈ C [a1, a2, a3, ...], let q be the projection of q onto the quo-
tient algebra C [a1, a2, a3, ...]�Iv. Let also i be the projection of the ideal i onto the
quotient algebra C [a1, a2, a3, ...]�Iv. Clearly, i = (a1, a2, a3, ...).

For every j > 0, there exists some i ∈ N such that aijv = 0 (since V has a lo-
cally nilpotent action of C [a1, a2, a3, ...]). Hence, for every j > 0, the element aj of
C [a1, a2, a3, ...]�Iv is nilpotent (because there exists some i ∈ N such that aijv = 0,

and thus this i satisfies aij ∈ Iv, so that aj
i = 0). Hence, the ideal i is generated by

nilpotent generators (since i = (a1, a2, a3, ...)). Since we also know that i is finitely
generated (since i is an ideal of the finite-dimensional algebra C [a1, a2, a3, ...]�Iv), it
follows that i is generated by finitely many nilpotent generators. But if an ideal of a
commutative ring is generated by finitely many nilpotent generators, it must be nilpo-

tent. Thus, i is nilpotent. In other words, there exists some M ∈ N such that i
M

= 0.

Consider this M . Since i
M

= 0, we have iM ⊆ Iv and thus iM + Iv = Iv.
Now, Lemma 2.2.17 (applied to k = C, B = C [a1, a2, a3, ...] and I = Iv) yields

that there exists an i-coflag from C [a1, a2, a3, ...] to iM + Iv. Denote this i-coflag by
(J0, J1, ..., JN). Since iM + Iv = Iv, this i-coflag (J0, J1, ..., JN) thus is an i-coflag from
C [a1, a2, a3, ...] to Iv. Thus, (J0, J1, ..., JN) is a complete coflag from C [a1, a2, a3, ...] to
Iv. In other words:

• We have J0 ⊇ J1 ⊇ ... ⊇ JN .

• Every i ∈ {0, 1, ..., N} satisfies dim (C [a1, a2, a3, ...]�Ji) = i.

28We can even prove that there are exactly dim (C [a1, a2, a3, ...]�Iv) composition factors.
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• We have J0 = C [a1, a2, a3, ...] and JN = Iv.

Besides, since (J0, J1, ..., JN) is an i-coflag, we have

i · Ji ⊆ Ji+1 for every i ∈ {0, 1, ..., N − 1} . (20)

For every i ∈ {0, 1, ..., N}, let Di = D (x1, x2, ...) · Ji. Then,

D0 = D (x1, x2, ...) · J0︸︷︷︸
=C[a1,a2,a3,...]

= D (x1, x2, ...)

and
DN = D (x1, x2, ...) · JN︸︷︷︸

=Iv

= D (x1, x2, ...) · Iv.

Hence, D0�DN = D (x1, x2, ...)� (D (x1, x2, ...) Iv) = W̃ .
Now, we are going to prove that

Di�Di+1
∼= F or Di�Di+1 = 0 for every i ∈ {0, 1, ..., N − 1} (21)

(where ∼= means isomorphism of A0-modules).
Proof of (21). Let i ∈ {0, 1, ..., N − 1}. Since dim (C [a1, a2, a3, ...]�Ji) = i and

dim (C [a1, a2, a3, ...]�Ji+1) = i + 1, there exists some u ∈ Ji such that Ji = u + Ji+1.
Consider this u. By abuse of notation, we also use the letter u to denote the element
1 · u ∈ D (x1, x2, ...) · Ji = Di. Then,

Di = D (x1, x2, ...) · Ji︸︷︷︸
=u+Ji+1

= D (x1, x2, ...) · (u+ Ji+1)

= D (x1, x2, ...) · u+D (x1, x2, ...) · Ji+1︸ ︷︷ ︸
=Di+1

= D (x1, x2, ...) · u+Di+1.

Thus,
Di�Di+1 = D (x1, x2, ...) · u′,

where u′ denotes the residue class of u ∈ Di modulo Di+1. For every j > 0, we have
aj︸︷︷︸
∈i

u︸︷︷︸
∈Ji

∈ i · Ji ⊆ Ji+1 (by (20)) and thus aju ∈ D (x1, x2, ...) · Ji+1 = Di+1. In other

words, for every j > 0, we have aju
′ = 0. Also, it is pretty clear that Ku′ = u′.

Thus, Lemma 2.2.12 (applied to Di�Di+1 and u′ instead of V and u) yields that there
exists a homomorphism η : F → Di�Di+1 of A0-modules such that η (1) = u′. This
homomorphism η must be surjective29, and thus Di�Di+1 is a factor module of F .
Since F is irreducible, this yields that Di�Di+1

∼= F or Di�Di+1 = 0. This proves
(21).

Now, clearly, the A0-module W̃ = D0�DN is filtered by the A0-modules Di�DN

for i ∈ {0, 1, ..., N}. Due to (21), the subquotients of this filtration are all ∼= F or = 0,

29since its image is η

 F︸︷︷︸
=D(x1,x2,...)·1

 = D (x1, x2, ...) · η (1)︸︷︷︸
=u′

= D (x1, x2, ...) · u′ = Di�Di+1
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so that W̃ is a finite-length A0-module with all composition factors isomorphic to F
(since F is irreducible).

Since W is a quotient module of W̃ , this yields that W must also be a finite-length
A0-module with all composition factors isomorphic to F .

Now forget that we fixed v. We have thus shown that for every v ∈ V , the A0-
submodule U (A0) · v of V (this submodule is what we called W ) is a finite-length
module with composition factors isomorphic to F .

By the assumption (that for every v ∈ V , there exists some N ∈ N such that for

every n ≥ N , we have anv = 0), we can define an action of E =
∑
i>0

a−iai ∈ Â (the

so-called Euler field) on V . Note that E acts on V in a locally finite way (this means
that for any v ∈ V , the space C [E] · v is finite-dimensional)30. Now, let us notice that
the eigenvalues of the map E |V : V → V (this is the action of E on V ) are nonnegative
integers.31 Hence, we can write V as V =

⊕
j≥0

V [j], where V [j] is the generalized

eigenspace of E |V with eigenvalue j for every j ∈ N.
If some v ∈ V satisfies aiv = 0 for all i > 0, then Ev = 0 and thus v ∈ V [0].

30Proof. Notice that E acts on F as
∑
i>0

ixi
∂

∂xi
, and thus E acts on F in a locally finite way (since the

differential operator
∑
i>0

ixi
∂

∂xi
preserves the degrees of polynomials), and thus also on V (because

for every v ∈ V , the A0-submodule U (A0) · v of V is a finite-length module with composition
factors isomorphic to F ).

31Proof. Let ρ be an eigenvalue of E |V . Then, there exists some nonzero eigenvector v ∈ V to the
eigenvalue ρ. Consider this v. Clearly, ρ must thus also be an eigenvalue of E |U(A0)·v (because
v is a nonzero eigenvector of E |V to the eigenvalue ρ and lies in U (A0) · v). But the eigenvalues
of E |U(A0)·v are nonnegative integers (since we know that the A0-submodule U (A0) · v of V is a
finite-length module with composition factors isomorphic to F , and we can easily check that the
eigenvalues of E |F are nonnegative integers). Hence, ρ is a nonnegative integer. We have thus
shown that every eigenvalue of E |V is a nonnegative integer, qed.
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Conversely, if v ∈ V [0], then aiv = 0 for all i > 0. 32

So we conclude that V [0] = KerE =
⋂
i≥1

Ker ai.

Now, F ⊗ V [0] is an A0-module (where A0 acts only on the F tensorand, where
V [0] is considered just as a vector space). We will now construct an isomorphism
F ⊗ V [0]→ V of A0-modules. This will prove Proposition 2.2.13.

For every v ∈ V [0], there exists a homomorphism ηv : F → V of A0-modules such
that ηv (1) = v (according to Lemma 2.2.12, applied to v instead of u (since aiv = 0
for all i > 0 and Kv = v)). Consider these homomorphisms ηv for various v. Clearly,
every v ∈ V [0] and P ∈ F satisfy

ηv (P ) = ηv (P (a−1, a−2, a−3, ...) · 1) (since P = P (a−1, a−2, a−3, ...) · 1)

= P (a−1, a−2, a−3, ...) ηv (1)︸ ︷︷ ︸
=v

(since ηv is an A0-module map)

= P (a−1, a−2, a−3, ...) v.

Hence, we can define a C-linear map ρ : F ⊗ V [0]→ V by

ρ (P ⊗ v) = ηv (P ) = P (a−1, a−2, a−3, ...) v for any P ∈ F and v ∈ V [0] .

This map ρ is an A0-module map (because ηv is an A0-module map for every v ∈ V [0]).
The restriction of the map ρ to the subspace C·1⊗V [0] of F⊗V [0] is injective (since it

maps every 1⊗ v to v). Hence, the map ρ is injective33. Also, considering the quotient
A0-module V�ρ (F ⊗ V [0]), we notice that E |V�ρ(F⊗V [0]) has only strictly positive

32Proof. Let v ∈ V [0]. Let j be positive.
It is easy to check that a−iaiaj = aja−iai − iδi,jai for any positive i (here, we use that j > 0).

Since E =
∑
i>0

a−iai, we have

Eaj =
∑
i>0

a−iaiaj︸ ︷︷ ︸
=aja−iai−iδi,jai

=
∑
i>0

(aja−iai − iδi,jai)

= aj
∑
i>0

a−iai︸ ︷︷ ︸
=E

−
∑
i>0

iδi,jai︸ ︷︷ ︸
=jaj

= ajE − jaj ,

so that (E + j) aj = ajE. This yields (by induction over m) that (E + j)
m
aj = ajE

m for every
m ∈ N.

Now, since v ∈ V [0] = (generalized eigenspace of E |V with eigenvalue 0), there exists an
m ∈ N such that Emv = 0. Consider this m. Then, from (E + j)

m
aj = ajE

m, we obtain
(E + j)

m
ajv = ajE

mv = 0, so that

ajv ∈ (generalized eigenspace of E |V with eigenvalue − j) = 0

(because the eigenvalues of the map E |V : V → V are nonnegative integers, whereas −j is not).
In other words, ajv = 0.

We have thus proven that ajv = 0 for every positive j. In other words, aiv = 0 for all i > 0,
qed.

33This follows from the following general representation-theoretical fact (applied to A = U (A0),
I = F , R = V [0], S = V , i = 1 and φ = ρ):

Let A be a C-algebra. Let I be an irreducible A-module, and let S be an A-module. Let R be a
vector space. Let i ∈ I be nonzero. Let φ : I ⊗R→ S be an A-module homomorphism such that
the restriction of φ to Ci⊗R is injective. Then, φ is injective.
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eigenvalues (since ρ (F ⊗ V [0]) ⊇ V [0], so that all eigenvectors of E |V to eigenvalue 0
have been killed when factoring modulo ρ (F ⊗ V [0])), and thus V�ρ (F ⊗ V [0]) = 0
34. In other words, V = ρ (F ⊗ V [0]), so that ρ is surjective. Since ρ is an injective and
surjective A0-module map, we conclude that ρ is an A0-module isomorphism. Thus,
V ∼= F ⊗ V [0] as A0-modules. This proves Proposition 2.2.13.

2.2.4. Remark on A-modules

We will not use this until much later, but here is an analogue of Lemma 2.2.12 for A
instead of A0:

Lemma 2.2.18. Let V be an A-module. Let µ ∈ C. Let u ∈ V be such that
aiu = 0 for all i > 0, such that a0u = µu, and such that Ku = u. Then, there
exists a homomorphism η : Fµ → V of A-modules such that η (1) = u. (This
homomorphism η is unique, although we won’t need this.)

Proof of Lemma 2.2.18. Let η be the map F → V which sends every polynomial
P ∈ F = C [x1, x2, x3, ...] to P (a−1, a−2, a−3, ...) · u ∈ V . 35 Just as in the Second
proof of Lemma 2.2.12, we can show that η is an A0-module homomorphism F → V
such that η (1) = u. We are now going to prove that this η is also a homomorphism
Fµ → V of A-modules. Clearly, in order to prove this, it is enough to show that
η (a0P ) = a0η (P ) for all P ∈ Fµ.

Let P ∈ Fµ. Since a0 acts as multiplication by µ on Fµ, we have a0P = µP .
On the other hand, by the definition of η, we have η (P ) = P (a−1, a−2, a−3, ...) · u,

so that

a0η (P ) = a0P (a−1, a−2, a−3, ...) · u = P (a−1, a−2, a−3, ...) a0 · u(
since a0 lies in the center of A, and thus in the center of U (A) ,

and thus a0P (a−1, a−2, a−3, ...) = P (a−1, a−2, a−3, ...) a0

)
= P (a−1, a−2, a−3, ...) a0u︸︷︷︸

=µu

= µP (a−1, a−2, a−3, ...) · u︸ ︷︷ ︸
=η(P )

= µη (P )

= η

 µP︸︷︷︸
=a0P

 = η (a0P ) .

Thus, we have shown that η (a0P ) = a0η (P ) for all P ∈ Fµ. This completes the proof
of Lemma 2.2.18.
34Proof. Assume the contrary. Then, V�ρ (F ⊗ V [0]) 6= 0. Thus, there exists some nonzero w ∈

V�ρ (F ⊗ V [0]). Write w as v, where v is an element of V and v denotes the residue class of v
modulo ρ (F ⊗ V [0]). As we know, the A0-submodule U (A0) ·v of V is a finite-length module with
composition factors isomorphic to F . Thus, the A0-module U (A0) ·w (being a quotient module of
U (A0) · v) must also be a finite-length module with composition factors isomorphic to F . Hence,
there exists a submodule of U (A0) · w isomorphic to F (since w 6= 0 and thus U (A0) · w 6= 0).
This submodule contains a nonzero eigenvector of E to eigenvalue 0 (because F contains a nonzero
eigenvector of E to eigenvalue 0, namely 1). This is a contradiction to the fact that E |V�ρ(F⊗V [0])

has only strictly positive eigenvalues. This contradiction shows that our assumption was wrong,
so we do have V�ρ (F ⊗ V [0]) = 0, qed.

35Note that the term P (a−1, a−2, a−3, ...) denotes the evaluation of the polynomial P at
(x1, x2, x3, ...) = (a−1, a−2, a−3, ...). This evaluation is a well-defined element of U (A0), since
the elements a−1, a−2, a−3, ... of U (A0) commute.
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2.2.5. A rescaled version of the Fock space

Here is a statement very similar to Corollary 2.2.4:

Corollary 2.2.19. The Lie algebra A0 has a representation F̃ = C [x1, x2, x3, ...]
which is given by

a−i 7→ ixi for every i ≥ 1;

ai 7→
∂

∂xi
for every i ≥ 1,

K 7→ 1

(where “a−i 7→ ixi” is just shorthand for “a−i 7→ (multiplication by ixi)”). For every

µ ∈ C, we can upgrade F̃ to a representation F̃µ of A by adding the condition that
a0 |F̃µ= µ · id.

Note that the A0-module structure on F̃ differs from that on F by a different choice
of “where to put the i factor”: in F it is in the action of ai, while in F̃ it is in the
action of a−i (where i ≥ 1).

Definition 2.2.20. The representation F̃ of A0 introduced in Corollary 2.2.19 will
be called the rescaled Fock module or the rescaled Fock representation. For every
µ ∈ C, the representation F̃µ of A introduced in Corollary 2.2.19 will be called the

rescaled µ-Fock representation of A. The vector space F̃ itself, of course, is the same
as the vector space F of Corollary 2.2.4, and thus we simply call it the Fock space.

Proposition 2.2.21. Let resc : C [x1, x2, x3, ...]→ C [x1, x2, x3, ...] be the C-algebra
homomorphism which sends xi to ixi for every i ∈ {1, 2, 3, ...}. (This homomorphism
exists and is unique by the universal property of the polynomial algebra. It is clear
that resc multiplies every monomial by some scalar.)

(a) Then, resc is an A0-module isomorphism F → F̃ . Thus, F ∼= F̃ as A0-
modules.

(b) Let µ ∈ C. Then, resc is an A-module isomorphism Fµ → F̃µ. Thus, Fµ ∼= F̃µ
as A-modules.

Corollary 2.2.19 and Proposition 2.2.21 are both very easy to prove: It is best to
prove Proposition 2.2.21 first (without yet knowing that F̃ and F̃µ are really an A0-
module and an A-module, respectively), and then use it to derive Corollary 2.2.19 from
Corollary 2.2.4 by means of resc. We leave all details to the reader.

The modules F̃ and F aren’t that much different: They are isomorphic by an isomor-
phism which has diagonal form with respect to the monomial bases (due to Proposition
2.2.21). Nevertheless, it pays off to use different notations for them so as not to let

confusion arise. We are going to work with F most of the time, except when F̃ is easier
to handle.

2.2.6. An involution on A and a bilinear form on the Fock space

The following fact is extremely easy to prove:

47



Proposition 2.2.22. Define a C-linear map ω : A → A by setting

ω (K) = −K and

ω (ai) = −a−i for every i ∈ Z.

Then, ω is an automorphism of the Lie algebra A. Also, ω is an involution (this
means that ω2 = id). Moreover, ω (A [i]) = A [−i] for all i ∈ Z. Finally, ω |A[0]=
− id.

Now, let us make a few conventions:

Convention 2.2.23. In the following, a map ϕ : A → N (where A is some set)
is said to be finitely supported if all but finitely many a ∈ A satisfy ϕ (a) = 0.
Sequences (finite, infinite, or two-sided infinite) are considered as maps (from finite
sets, N or Z, or occasionally other sets). Thus, a sequence is finitely supported if
and only if all but finitely many of its elements are zero.

If A is a set, then NAfin will denote the set of all finitely supported maps A→ N.

Proposition 2.2.24. Define a C-bilinear form (·, ·) : F × F → C by setting

(xn1
1 x

n2
2 x

n3
3 ..., x

m1
1 xm2

2 xm3
3 ...) =

∞∏
i=1

δni,mi ·
∞∏
i=1

ini ·
∞∏
i=1

ni!

for all sequences (n1, n2, n3, ...) ∈ N{1,2,3,...}fin

and (m1,m2,m3, ...) ∈ N{1,2,3,...}fin

.

(This is well-defined, because each of the infinite products
∞∏
i=1

δni,mi ,
∞∏
i=1

ini and
∞∏
i=1

ni!

has only finitely many terms distinct from 1, and thus is well-defined.)
(a) This form (·, ·) is symmetric and nondegenerate.
(b) Every polynomial P ∈ F = C [x1, x2, x3, ...] satisfies (1, P ) = P (0, 0, 0, ...).
(c) Let µ ∈ C. Any x ∈ A, P ∈ Fµ and Q ∈ Fµ satisfy (xP,Q) = − (P, ω (x)Q),

where xP and ω (x)Q are evaluated in the A-module Fµ.
(d) Let µ ∈ C. Any x ∈ A, P ∈ Fµ and Q ∈ Fµ satisfy (P, xQ) = − (ω (x)P,Q),

where xQ and ω (x)P are evaluated in the A-module Fµ.

(e) Let µ ∈ C. Any x ∈ A, P ∈ F̃µ and Q ∈ F̃µ satisfy (xP,Q) = − (P, ω (x)Q),

where xP and ω (x)Q are evaluated in the A-module F̃µ.

(f) Let µ ∈ C. Any x ∈ A, P ∈ F̃µ and Q ∈ F̃µ satisfy (P, xQ) = − (ω (x)P,Q),

where xQ and ω (x)P are evaluated in the A-module F̃µ.

We are going to put the form (·, ·) from this proposition into a broader context in
Proposition 2.9.12; indeed, we will see that it is an example of a contravariant form
on a Verma module of a Lie algebra with involution. (“Contravariant” means that
(av, w) = − (v, ω (a)w) and (v, aw) = − (ω (a) v, w) for all a in the Lie algebra and v
and w in the module. In the case of our form (·, ·), the contravariantness of the form
follows from Proposition 2.2.24 (c) and (d).)

Proof of Proposition 2.2.24. (a) For any sequences (n1, n2, n3, ...) ∈ N{1,2,3,...}fin and
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(m1,m2,m3, ...) ∈ N{1,2,3,...}fin , we have

(xn1
1 x

n2
2 x

n3
3 ..., x

m1
1 xm2

2 xm3
3 ...) =

∞∏
i=1

δni,mi ·
∞∏
i=1

ini ·
∞∏
i=1

ni!

and

(xm1
1 xm2

2 xm3
3 ..., xn1

1 x
n2
2 x

n3
3 ...) =

∞∏
i=1

δmi,ni ·
∞∏
i=1

imi ·
∞∏
i=1

mi!.

These two terms are equal in the case when (n1, n2, n3, ...) 6= (m1,m2,m3, ...) (because

in this case, they are both 0 due to the presence of the
∞∏
i=1

δni,mi and
∞∏
i=1

δmi,ni factors),

and are clearly equal in the case when (n1, n2, n3, ...) = (m1,m2,m3, ...) as well. Hence,
these two terms are always equal. In other words, any sequences (n1, n2, n3, ...) ∈
N{1,2,3,...}fin and (m1,m2,m3, ...) ∈ N{1,2,3,...}fin satisfy

(xn1
1 x

n2
2 x

n3
3 ..., x

m1
1 xm2

2 xm3
3 ...) = (xm1

1 xm2
2 xm3

3 ..., xn1
1 x

n2
2 x

n3
3 ...) .

This proves that the form (·, ·) is symmetric.
The space F = C [x1, x2, x3, ...] has a basis consisting of monomials. With respect

to this basis, the form (·, ·) is represented by a diagonal matrix (because whenever

(n1, n2, n3, ...) ∈ N{1,2,3,...}fin and (m1,m2,m3, ...) ∈ N{1,2,3,...}fin are distinct, we have

(xn1
1 x

n2
2 x

n3
3 ..., x

m1
1 xm2

2 xm3
3 ...) =

∞∏
i=1

δni,mi︸ ︷︷ ︸
=0

(since (n1,n2,n3,...)6=(m1,m2,m3,...))

·
∞∏
i=1

ini ·
∞∏
i=1

ni! = 0

), whose diagonal entries are all nonzero (since every (n1, n2, n3, ...) ∈ N{1,2,3,...}fin satisfies

(xn1
1 x

n2
2 x

n3
3 ..., x

n1
1 x

n2
2 x

n3
3 ...) =

∞∏
i=1

δni,ni︸︷︷︸
=1

·
∞∏
i=1

ini︸︷︷︸
6=0

·
∞∏
i=1

ni!︸︷︷︸
6=0

6= 0

). Hence, this form is nondegenerate. Proposition 2.2.24 (a) is proven.
(b) We must prove that every polynomial P ∈ F = C [x1, x2, x3, ...] satisfies (1, P ) =

P (0, 0, 0, ...). In order to show this, it is enough to check that every monomial
P ∈ F = C [x1, x2, x3, ...] satisfies (1, P ) = P (0, 0, 0, ...) (because the equation (1, P ) =
P (0, 0, 0, ...) is linear in P , and because the monomials span F ). In other words,

we must check that every (m1,m2,m3, ...) ∈ N{1,2,3,...}fin satisfies (1, xm1
1 xm2

2 xm3
3 ...) =

(xm1
1 xm2

2 xm3
3 ...) (0, 0, 0, ...). But this is easy: 1︸︷︷︸

=x0
1x

0
2x

0
3...

, xm1
1 xm2

2 xm3
3 ...

 =
(
x0

1x
0
2x

0
3..., x

m1
1 xm2

2 xm3
3 ...

)
=
∞∏
i=1

δ0,mi︸︷︷︸
=0mi

·
∞∏
i=1

i0︸︷︷︸
=1

·
∞∏
i=1

0!︸︷︷︸
=1

(by the definition of (·, ·))

=
∞∏
i=1

0mi = 0m10m20m3 ... = (xm1
1 xm2

2 xm3
3 ...) (0, 0, 0, ...) ,
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qed. Proposition 2.2.24 (b) is proven.
(c) We must prove that any x ∈ A, P ∈ Fµ and Q ∈ Fµ satisfy (xP,Q) =
− (P, ω (x)Q). Since this equation is linear in each of x, P and Q, we can WLOG
assume that x is an element of the basis {an | n ∈ Z} ∪ {K} of A and that P and Q
are monomials (since monomials span F ). So let us assume this.

Since x is an element of the basis {an | n ∈ Z} ∪ {K} of A, we have either x = aj
for some j ∈ Z, or x = K. Since the latter case is trivial (in fact, when x = K, then

(xP,Q) = (KP,Q) = (P,Q) (since K acts as 1 on Fµ, so that KP = P )

and

−

(
P, ω

(
x︸︷︷︸

=K

)
Q

)
= −

P, ω (K)︸ ︷︷ ︸
=−K

Q

 = − (P,−KQ) = (P,KQ) = (P,Q)

(since K acts as 1 on Fµ, so that KQ = Q) ,

so that (xP,Q) = − (P, ω (x)Q) is proven), we can WLOG assume that we are in the
former case, i. e., that x = aj for some j ∈ Z. Assume this, and consider this j.

Since P is a monomial, there exists a (n1, n2, n3, ...) ∈ N{1,2,3,...}fin such that P =
xn1

1 x
n2
2 x

n3
3 .... Consider this (n1, n2, n3, ...).

Since Q is a monomial, there exists a (m1,m2,m3, ...) ∈ N{1,2,3,...}fin such that Q =
xm1

1 xm2
2 xm3

3 .... Consider this (m1,m2,m3, ...).
We must prove that (xP,Q) = − (P, ω (x)Q). Since (xP,Q) = (ajP,Q) (because x =

aj) and− (P, ω (x)Q) = (P, a−jQ) (because−

P, ω
 x︸︷︷︸

=aj

Q

 = −

P, ω (aj)︸ ︷︷ ︸
=−a−j

Q

 =

− (P,−a−jQ) = (P, a−jQ)), this rewrites as (ajP,Q) = (P, a−jQ). Hence, we must only
prove that (ajP,Q) = (P, a−jQ).

We will distinguish between three cases:
Case 1: We have j ≥ 1.
Case 2: We have j = 0.
Case 3: We have j ≤ −1.
First, let us consider Case 1. In this case, by the definition of Fµ, we know that aj acts

on Fµ as j
∂

∂xj
, whereas a−j acts on Fµ as multiplication by xj. Hence, ajP = j

∂

∂xj
P

and a−jQ = xjQ.

SinceQ = xm1
1 xm2

2 xm3
3 ..., we have xjQ = x

m′1
1 x

m′2
2 x

m′3
3 ..., where the sequence (m′1,m

′
2,m

′
3, ...) ∈

N{1,2,3,...}fin is defined by

m′i =

{
mi, if i 6= j;

mi + 1, if i = j
for every i ∈ {1, 2, 3, ...} .

Note that this definition immediately yields m′j = mj + 1 ≥ 1, so that δ0,m′j
= 0.

As a consequence of the definition of (m′1,m
′
2,m

′
3, ...), we havem′i−mi =

{
0, if i 6= j;
1, if i = j

for every i ∈ {1, 2, 3, ...}.
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Now, (ajP,Q) = (P, a−jQ) is easily proven when nj = 0 36. Hence, for the
remaining part of Case 1, we can WLOG assume that nj 6= 0. Let us assume this.

Then, nj ≥ 1. Hence, since P = xn1
1 x

n2
2 x

n3
3 ..., we have

∂

∂xj
P = njx

n′1
1 x

n′2
2 x

n′3
3 ..., where

the sequence (n′1, n
′
2, n

′
3, ...) ∈ N

{1,2,3,...}
fin is defined by

n′i =

{
ni, if i 6= j;

ni − 1, if i = j
for every i ∈ {1, 2, 3, ...} .

From this definition, it is clear that the sequence (n′1, n
′
2, n

′
3, ...) differs from the sequence

(n1, n2, n3, ...) only in the j-th term. Hence, the product
∞∏
i=1

in
′
i differs from the product

∞∏
i=1

ini only in the j-th factor. Thus,

∞∏
i=1

ini

∞∏
i=1

in
′
i

=
jnj

jn
′
j

=
jnj

jnj−1

(
since n′j = nj − 1 by the definition of (n′1, n

′
2, n

′
3, ...)

)
= j,

so that
∞∏
i=1

ini = j
∞∏
i=1

in
′
i . A similar argument (using the products

∞∏
i=1

n′i and
∞∏
i=1

ni

instead of the products
∞∏
i=1

in
′
i and

∞∏
i=1

ini) shows that
∞∏
i=1

ni! = nj
∞∏
i=1

n′i!.

As a consequence of the definition of (n′1, n
′
2, n

′
3, ...), we have ni−n′i =

{
0, if i 6= j;
1, if i = j

for every i ∈ {1, 2, 3, ...}. Thus, every i ∈ {1, 2, 3, ...} satisfies

ni − n′i =

{
0, if i 6= j;
1, if i = j

= m′i −mi,

36Proof. Assume that nj = 0. Then, P = xn1
1 xn2

2 xn3
3 ... is a monomial that does not involve the

indeterminate xj ; hence,
∂

∂xj
P = 0, so that ajP = j

∂

∂xj
P︸ ︷︷ ︸

=0

= 0, and thus (ajP,Q) = (0, Q) = 0.

On the other hand, since nj = 0, we have δnj ,m′j = δ0,m′j = 0 and thus
∞∏
i=1

δni,m′i = 0 (since the

product
∞∏
i=1

δni,m′i contains the factor δnj ,m′j ). Now, since P = xn1
1 xn2

2 xn3
3 ... and a−jQ = xjQ =

x
m′1
1 x

m′2
2 x

m′3
3 ..., we have

(P, a−jQ) =
(
xn1

1 xn2
2 xn3

3 ..., x
m′1
1 x

m′2
2 x

m′3
3 ...

)
=

∞∏
i=1

δni,m′i︸ ︷︷ ︸
=0

·
∞∏
i=1

ini ·
∞∏
i=1

ni! (by the definition of (·, ·))

= 0 = (ajP,Q) .

Hence, (ajP,Q) = (P, a−jQ) is proven when nj = 0.
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so that ni −m′i = n′i −mi, so that δni−m′i,0 = δn′i−mi,0.

Now, since P = xn1
1 x

n2
2 x

n3
3 ... and a−jQ = xjQ = x

m′1
1 x

m′2
2 x

m′3
3 ..., we have

(P, a−jQ) =
(
xn1

1 x
n2
2 x

n3
3 ..., x

m′1
1 x

m′2
2 x

m′3
3 ...

)
=
∞∏
i=1

δni,m′i︸ ︷︷ ︸
=δni−m′i,0

=δn′
i
−mi,0

=δn′
i
,mi

·
∞∏
i=1

ini ·
∞∏
i=1

ni! (by the definition of (·, ·))

=
∞∏
i=1

δn′i,mi ·
∞∏
i=1

ini︸ ︷︷ ︸
=j
∞∏
i=1

in
′
i

·
∞∏
i=1

ni!︸ ︷︷ ︸
=nj

∞∏
i=1

n′i!

= jnj ·
∞∏
i=1

δn′i,mi ·
∞∏
i=1

in
′
i ·
∞∏
i=1

n′i!.

Compared with

(ajP,Q) =
(
jnjx

n′1
1 x

n′2
2 x

n′3
3 ..., x

m1
1 xm2

2 xm3
3 ...

)
since ajP = j

∂

∂xj
P︸ ︷︷ ︸

=njx
n′1
1 x

n′2
2 x

n′3
3 ...

= jnjx
n′1
1 x

n′2
2 x

n′3
3 ... and Q = xm1

1 xm2
2 xm3

3 ...


= jnj

(
x
n′1
1 x

n′2
2 x

n′3
3 ..., x

m1
1 xm2

2 xm3
3 ...

)
︸ ︷︷ ︸

=
∞∏
i=1

δn′
i
,mi
·
∞∏
i=1

in
′
i ·
∞∏
i=1

n′i!

(by the definition of (·,·))

= jnj ·
∞∏
i=1

δn′i,mi ·
∞∏
i=1

in
′
i ·
∞∏
i=1

n′i!,

this yields (ajP,Q) = (P, a−jQ). Thus, (ajP,Q) = (P, a−jQ) is proven in Case 1. In
other words, we have shown that

(ajP,Q) = (P, a−jQ) for every integer j ≥ 1 and any monomials P and Q.
(22)

In Case 2, proving (ajP,Q) = (P, a−jQ) is trivial (since a0 acts on Fµ as µ · id).
Now, let us consider Case 3. In this case, j ≤ −1, so that −j ≥ 1. Thus, (22)

(applied to −j, Q and P instead of j, P and Q) yields (a−jQ,P ) =
(
Q, a−(−j)P

)
.

Now, since (·, ·) is symmetric, we have (ajP,Q) =

Q, aj︸︷︷︸
=a−(−j)

P

 =
(
Q, a−(−j)P

)
=

(a−jQ,P ) = (P, a−jQ) (again since (·, ·) is symmetric). Thus, (ajP,Q) = (P, a−jQ) is
proven in Case 3.

We have now proven (ajP,Q) = (P, a−jQ) is each of the cases 1, 2 and 3. Since no
other cases can occur, this completes the proof of (ajP,Q) = (P, a−jQ). As we have
explained above, this proves Proposition 2.2.24 (c).

(d) Let x ∈ A, P ∈ Fµ and Q ∈ Fµ. Since the form (·, ·) is symmetric, we have
(P, xQ) = (xQ, P ) and (ω (x)P,Q) = (Q,ω (x)P ). Proposition 2.2.24 (c) (applied
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to P and Q instead of Q and P ) yields (xQ, P ) = − (Q,ω (x)P ). Thus, (P, xQ) =
(xQ, P ) = − (Q,ω (x)P )︸ ︷︷ ︸

=(ω(x)P,Q)

= − (ω (x)P,Q). This proves Proposition 2.2.24 (d).

(e) and (f) The proofs of Proposition 2.2.24 (e) and (f) are analogous to those of
Proposition 2.2.24 (c) and (d), respectively, and thus will be omitted.

2.3. Representations of the Virasoro algebra Vir

We now come to the Virasoro algebra Vir. First, some notations:

Definition 2.3.1. (a) The notion “Virasoro module” will be a synonym for “Vir-
module”. Similarly, “Virasoro action” means “Vir-action”.

(b) Let c ∈ C. A Vir-module M is said to have central charge c if and only if the
element C of Vir acts as c · id on M .

Note that not every Vir-module has a central charge (and the zero module has
infinitely many central charges), but Corollary 2.1.3 yields that every irreducible Vir-
module of countable dimension has a (unique) central charge.

There are lots and lots of Virasoro modules in mathematics, and we will encounter
them as this course progresses; the more complicated among them will require us to
introduce a lot of machinery like Verma modules, semiinfinite wedges and affine Lie
algebras. For now, we define one of the simplest families of representations of Vir: the
“chargeless” Vir-modules Vα,β parametrized by pairs of complex numbers (α, β).

Proposition 2.3.2. Let α ∈ C and β ∈ C. Let Vα,β be the vector space of formal

expressions of the form gtα (dt)β with g ∈ C [t, t−1] (where C [t, t−1] is the ring of
Laurent polynomials in the variable t). (Formally, this vector space Vα,β is defined
to be a copy of the C-vector space C [t, t−1], but in which the element corresponding
to any g ∈ C [t, t−1] is denoted by gtα (dt)β. For a geometric intuition, the elements
of Vα,β can be seen as “tensor fields” of rank β and branching α on the punctured
complex plane C×.)

(a) The formula

f∂ ⇀
(
gtα (dt)β

)
=
(
fg′ + αt−1fg + βf ′g

)
tα (dt)β (23)

defines an action of W on Vα,β. Thus, Vα,β becomes a Vir-module with C acting as
0. (In other words, Vα,β becomes a Vir-module with central charge 0.)

(b) For every k ∈ Z, let vk = t−k+α (dt)β ∈ Vα,β. Here, for any ` ∈ Z, the term

t`+α (dt)β denotes t`tα (dt)β. Then,

Lmvk = (k − α− β (m+ 1)) vk−m for every m ∈ Z and k ∈ Z. (24)

Note that Proposition 2.3.2 was Homework Set 1 exercise 1, but the notation vk had
a slightly different meaning in Homework Set 1 exercise 1 than it has here.

The proof of this proposition consists of straightforward computations. We give it for
the sake of completeness, slightly simplifying the calculation by introducing auxiliary
functions.

53



Proof of Proposition 2.3.2. (a) In order to prove Proposition 2.3.2 (a), we must
show that the formula (23) defines an action of W on Vα,β.

It is clear that (fg′ + αt−1fg + βf ′g) tα (dt)β depends linearly on each of f and g.
Hence, we must only prove that, with the definition (23), we have

[f∂, g∂] ⇀
(
htα (dt)β

)
= f∂ ⇀

(
g∂ ⇀

(
htα (dt)β

))
− g∂ ⇀

(
f∂ ⇀

(
htα (dt)β

))
(25)

for any Laurent polynomials f , g and h in C [t, t−1].
So let f , g and h be any three Laurent polynomials in C [t, t−1]. Denote by p the

Laurent polynomial h′+αt−1h. Denote by q the Laurent polynomial fg′−gf ′. Then,37

f (g′h)
′ − g (f ′h)

′
= q′h+ qh′ (26)

38 and

f (gp)′︸︷︷︸
=g′p+gp′

(by the Leibniz rule)

−g (fp)′︸ ︷︷ ︸
=f ′p+fp′

(by the Leibniz rule)

= f (g′p+ gp′)︸ ︷︷ ︸
=fg′p+fgp′

− g (f ′p+ fp′)︸ ︷︷ ︸
=gf ′p+gfp′=gf ′p+fgp′

= fg′p+ fgp′ − gf ′p− fgp′ = fg′p− gf ′p = (fg′ − gf ′)︸ ︷︷ ︸
=q

p = qp. (27)

Also,

[f∂, g∂]︸ ︷︷ ︸
=(fg′−gf ′)∂

⇀
(
htα (dt)β

)
= (fg′ − gf ′)︸ ︷︷ ︸

=q

∂ ⇀
(
htα (dt)β

)
= q∂ ⇀

(
htα (dt)β

)

=

 qh′ + αt−1qh︸ ︷︷ ︸
=q(h′+αt−1h)=qp

(since h′+αt−1h=p)

+βq′h

 tα (dt)β = (qp+ βq′h) tα (dt)β .

37In the following computations, terms like f (u) (where u is a subterm, usually a complicated one)
have to be understood as f ·u (the product of f with u) and not as f (u) (the Laurent polynomial
f applied to u).

38Proof of (26): Since q = fg′ − gf ′, we have qh = (fg′ − gf ′)h = fg′h − gf ′h = f (g′h) − g (f ′h),
so that

(qh)
′

= (f (g′h)− g (f ′h))
′

= (f (g′h))
′︸ ︷︷ ︸

=f ′(g′h)+f(g′h)
′

(by the Leibniz rule)

− (g (f ′h))
′︸ ︷︷ ︸

=g′(f ′h)+g(f ′h)
′

(by the Leibniz rule)

= f ′ (g′h)︸ ︷︷ ︸
=f ′g′h

+f (g′h)
′ − g′ (f ′h)︸ ︷︷ ︸

=f ′g′h

−g (f ′h)
′

= f ′g′h+ f (g′h)
′ − f ′g′h− g (f ′h)

′
= f (g′h)

′ − g (f ′h)
′
.

Since (qh)
′

= q′h+ qh′ (by the Leibniz rule), this rewrites as q′h+ qh′ = f (g′h)
′ − g (f ′h)

′
. This

proves (26).
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Moreover, gh′ + αt−1gh = g
(
h′ + αt−1h

)︸ ︷︷ ︸
=p

= gp, and

g∂ ⇀
(
htα (dt)β

)
=

gh′ + αt−1gh︸ ︷︷ ︸
=gp

+βg′h

 tα (dt)β = (gp+ βg′h) tα (dt)β ,

so that

f∂ ⇀
(
g∂ ⇀

(
htα (dt)β

))
︸ ︷︷ ︸

=(gp+βg′h)tα(dt)β

= f∂ ⇀
(

(gp+ βg′h) tα (dt)β
)

=

f (gp+ βg′h)
′︸ ︷︷ ︸

=(gp)′+β(g′h)′

+αt−1f (gp+ βg′h)︸ ︷︷ ︸
=αt−1fgp+αβt−1fg′h

+ βf ′ (gp+ βg′h)︸ ︷︷ ︸
=βf ′gp+β2f ′g′h

 tα (dt)β

=

f ((gp)′ + β (g′h)
′)︸ ︷︷ ︸

=f(gp)′+βf(g′h)′

+αt−1fgp+ αβt−1fg′h+ βf ′gp+ β2f ′g′h

 tα (dt)β

=
(
f (gp)′ + βf (g′h)

′
+ αt−1fgp+ αβt−1fg′h+ βf ′gp+ β2f ′g′h

)
tα (dt)β . (28)

Since the roles of f and g in our situation are symmetric, we can interchange f and
g in (28), and obtain

g∂ ⇀
(
f∂ ⇀

(
htα (dt)β

))
=
(
g (fp)′ + βg (f ′h)

′
+ αt−1gfp+ αβt−1gf ′h+ βg′fp+ β2g′f ′h

)
tα (dt)β

=
(
g (fp)′ + βg (f ′h)

′
+ αt−1fgp+ αβt−1gf ′h+ βg′fp+ β2f ′g′h

)
tα (dt)β . (29)
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Thus,

f∂ ⇀
(
g∂ ⇀

(
htα (dt)β

))
︸ ︷︷ ︸

=(f(gp)′+βf(g′h)′+αt−1fgp+αβt−1fg′h+βf ′gp+β2f ′g′h)tα(dt)β

(by (28))

− g∂ ⇀
(
f∂ ⇀

(
htα (dt)β

))
︸ ︷︷ ︸

=(g(fp)′+βg(f ′h)′+αt−1fgp+αβt−1gf ′h+βg′fp+β2f ′g′h)tα(dt)β

(by (29))

=
(
f (gp)′ + βf (g′h)

′
+ αt−1fgp+ αβt−1fg′h+ βf ′gp+ β2f ′g′h

)
tα (dt)β

−
(
g (fp)′ + βg (f ′h)

′
+ αt−1fgp+ αβt−1gf ′h+ βg′fp+ β2f ′g′h

)
tα (dt)β

=
((
f (gp)′ + βf (g′h)

′
+ αt−1fgp+ αβt−1fg′h+ βf ′gp+ β2f ′g′h

)
−
(
g (fp)′ + βg (f ′h)

′
+ αt−1fgp+ αβt−1gf ′h+ βg′fp+ β2f ′g′h

))
tα (dt)β

=

f (gp)′ − g (fp)′︸ ︷︷ ︸
=qp

(by (27))

+ βf (g′h)
′ − βg (f ′h)

′︸ ︷︷ ︸
=β(f(g′h)′−g(f ′h)′)

+αβt−1fg′h− αβt−1gf ′h︸ ︷︷ ︸
=αβt−1(fg′−gf ′)h

+ βf ′gp− βg′fp︸ ︷︷ ︸
=β(f ′g−g′f)p


tα (dt)β

=

qp+ β
(
f (g′h)

′ − g (f ′h)
′)︸ ︷︷ ︸

=q′h+qh′

(by (26))

+αβt−1 (fg′ − gf ′)︸ ︷︷ ︸
=q

h+ β (f ′g − g′f)︸ ︷︷ ︸
=−q

(since q=fg′−gf ′=g′f−f ′g)

p

 tα (dt)β

=

qp+ β (q′h+ qh′)︸ ︷︷ ︸
=βq′h+βqh′

+αβt−1qh+ β (−q) p︸ ︷︷ ︸
=−βqp

 tα (dt)β

=

qp+ βq′h+ βqh′ + αβt−1qh︸ ︷︷ ︸
=βq(h′+αt−1h)

−βqp

 tα (dt)β

=

qp+ βq′h+ βq
(
h′ + αt−1h

)︸ ︷︷ ︸
=p

−βqp

 tα (dt)β

=

qp+ βq′h+ βqp− βqp︸ ︷︷ ︸
=0

 tα (dt)β = (qp+ βq′h) tα (dt)β = [f∂, g∂] ⇀
(
htα (dt)β

)
.

Thus, (25) is proven for any Laurent polynomials f , g and h. This proves that the
formula (23) defines an action of W on Vα,β. Hence, Vα,β becomes a W -module, i. e.,
a Vir-module with C acting as 0. (In other words, Vα,β becomes a Vir-module with
central charge 0.) This proves Proposition 2.3.2 (a).

(b) We only need to prove (24).
Letm ∈ Z and k ∈ Z. Then, vk = t−k+α (dt)β = t−ktα (dt)β and vk−m = t−(k−m)+α (dt)β =
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tm−ktα (dt)β. Thus,

Lm︸︷︷︸
=−tm+1∂

⇀ vk︸︷︷︸
=t−ktα(dt)β

=
(
−tm+1∂

)
⇀
(
t−ktα (dt)β

)
=

−tm+1
(
t−k
)′︸ ︷︷ ︸

=−kt−k−1

+αt−1
(
−tm+1

)
t−k︸ ︷︷ ︸

=−αt−1tm+1t−k

+β
(
−tm+1

)′︸ ︷︷ ︸
=−(m+1)tm

t−k

 tα (dt)β

(
by (23), applied to f = −tm+1 and g = t−k

)
=

− (−k) tm+1t−k−1︸ ︷︷ ︸
=tm−k

−α t−1tm+1t−k︸ ︷︷ ︸
=t(−1)+(m+1)+(−k)=tm−k

+β (− (m+ 1)) tmt−k︸ ︷︷ ︸
=tm−k

 tα (dt)β

=
(
ktm−k − αtm−k + β (− (m+ 1)) tm−k

)
tα (dt)β

= (k − α + β (− (m+ 1)))︸ ︷︷ ︸
=k−α−(m+1)β

tm−ktα (dt)β︸ ︷︷ ︸
=vk−m

= (k − α− (m+ 1) β) vk−m.

This proves (24). Proposition 2.3.2 (b) is proven.
The representations Vα,β are not all pairwise non-isomorphic, but there are still

uncountably many non-isomorphic ones among them. More precisely:

Proposition 2.3.3. (a) For every ` ∈ Z, α ∈ C and β ∈ C, the C-linear map

Vα,β → Vα+`,β,

gtα (dt)β 7→
(
gt−`

)
tα+` (dt)β

is an isomorphism of Vir-modules. (This map sends vk to vk+` for every k ∈ Z.)
(b) For every α ∈ C, the C-linear map

Vα,0 → Vα−1,1,

gtα (dt)0 7→ (−g′t− αg) tα−1 (dt)1

is a homomorphism of Vir-modules. (This map sends vk to (k − α) vk for every
k ∈ Z.) If α /∈ Z, then this map is an isomorphism.

(c) Let (α, β, α′, β′) ∈ C4. Then, Vα,β ∼= Vα′,β′ as Vir-modules if and
only if either (β = β′ and α− α′ ∈ Z) or (β = 0, β′ = 1, α− α′ ∈ Z and α /∈ Z) or
(β = 1, β′ = 0, α− α′ ∈ Z and α /∈ Z).

Proof of Proposition 2.3.3 (sketched). (a) and (b) Very easy and left to the reader.
(c) The ⇐= direction is handled by parts (a) and (b).
=⇒: Assume that Vα,β ∼= Vα′,β′ as Vir-modules. We must prove that either (β = β′ and α− α′ ∈ Z)

or (β = 0, β′ = 1, α− α′ ∈ Z and α /∈ Z) or (β = 1, β′ = 0, α− α′ ∈ Z and α /∈ Z).
Let Φ be the Vir-module isomorphism Vα,β → Vα′,β′ .
Applying (24) to m = 0, we obtain

L0vk = (k − α− β) vk in Vα,β for every k ∈ Z. (30)
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Hence, L0 acts on Vα,β as a diagonal matrix with eigenvalues k−α−β for all k ∈ Z, each
eigenvalue appearing exactly once. Similarly, applying (24) to 0 and (α′, β′) instead of
m and (α, β), we obtain

L0vk = (k − α′ − β′) vk in Vα′,β′ for every k ∈ Z. (31)

Thus, L0 acts on Vα′,β′ as a diagonal matrix with eigenvalues k − α′ − β′ for all k ∈ Z,
each eigenvalue appearing exactly once.

But since Vα,β ∼= Vα′,β′ as Vir-modules, the eigenvalues of L0 acting on Vα,β must be
the same as the eigenvalues of L0 acting on Vα′,β′ . In other words,

{k − α− β | k ∈ Z} = {k − α′ − β′ | k ∈ Z}

(because we know that the eigenvalues of L0 acting on Vα,β are k−α−β for all k ∈ Z,
while the eigenvalues of L0 acting on Vα′,β′ are k − α′ − β′ for all k ∈ Z). Hence,
(α + β)− (α′ + β′) ∈ Z. Since we can shift α by an arbitrary integer without changing
the isomorphism class of Vα,β (due to part (a)), we can thus WLOG assume that
α + β = α′ + β′.

Let us once again look at the equality (30). This equality tells us that, for each
k ∈ Z, the vector vk is the unique (up to scaling) eigenvector of the operator L0 with
eigenvalue k − α − β in Vα,β. The isomorphism Φ (being Vir-linear) must map this
vector vk to an eigenvector of the operator L0 with eigenvalue k−α−β in Vα′,β′ . Since
α + β = α′ + β′, this eigenvalue equals k − α′ − β′. But (due to (31)) the unique (up
to scaling) eigenvector of the operator L0 with eigenvalue k − α′ − β′ in Vα′,β′ is vk.
Hence, Φ (vk) must equal vk up to scaling, i. e., there exists a nonzero complex number
λk such that Φ (vk) = λkvk.

Now, let m ∈ Z and k ∈ Z. Then, in Vα,β, we have

Lmvk = (k − α− β (m+ 1)) vk−m,

so that

Φ (Lmvk) = Φ ((k − α− β (m+ 1)) vk−m) = (k − α− β (m+ 1)) Φ (vk−m)︸ ︷︷ ︸
=λk−mvk−m

= λk−m (k − α− β (m+ 1)) vk−m

in Vα′,β′ . Compared with

Φ (Lmvk) = Lm Φ (vk)︸ ︷︷ ︸
=λkvk

(since Φ is Vir -linear)

= λk Lmvk︸ ︷︷ ︸
=(k−α′−β′(m+1))vk−m

= λk (k − α′ − β′ (m+ 1)) vk−m

in Vα′,β′ , this yields

λk−m (k − α− β (m+ 1)) vk−m = λk (k − α′ − β′ (m+ 1)) vk−m.

Since vk−m 6= 0, this yields

λk−m (k − α− β (m+ 1)) = λk (k − α′ − β′ (m+ 1)) . (32)
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Now, any m ∈ Z, k ∈ Z and n ∈ Z satisfy

λk−(n+m) (k − α− β (m+ 1)) = λk (k − α′ − β′ (n+m+ 1)) (33)

(by (32), applied to n+m instead of m) and

λk−m−n (k −m− α− β (n+ 1)) = λk−m (k −m− α′ − β′ (n+ 1)) (34)

(by (32), applied to k −m and n instead of k and m). Hence, any m ∈ Z, k ∈ Z and
n ∈ Z satisfy

λkλk−mλk−m−n · (k − α′ − β′ (n+m+ 1)) · (k − α− β (m+ 1)) · (k −m− α− β (n+ 1))

= λk (k − α′ − β′ (n+m+ 1))︸ ︷︷ ︸
=λk−(n+m)(k−α−β(m+1))

(by (33))

·λk−m (k − α− β (m+ 1))︸ ︷︷ ︸
=λk(k−α′−β′(m+1))

(by (32))

·λk−m−n (k −m− α− β (n+ 1))︸ ︷︷ ︸
=λk−m(k−m−α′−β′(n+1))

(by (34))

= λk−(n+m) (k − α− β (m+ 1)) · λk (k − α′ − β′ (m+ 1)) · λk−m (k −m− α′ − β′ (n+ 1))

= λkλk−m λk−(n+m)︸ ︷︷ ︸
=λk−m−n

· (k − α− β (n+m+ 1)) · (k − α′ − β′ (m+ 1)) · (k −m− α′ − β′ (n+ 1))

= λkλk−mλk−m−n · (k − α− β (n+m+ 1)) · (k − α′ − β′ (m+ 1)) · (k −m− α′ − β′ (n+ 1)) .

We can divide this equality by λkλk−mλk−m−n (since λi 6= 0 for every i ∈ Z, and
therefore we have λkλk−mλk−m−n 6= 0), and thus obtain that any m ∈ Z, k ∈ Z and
n ∈ Z satisfy

(k − α′ − β′ (n+m+ 1)) · (k − α− β (m+ 1)) · (k −m− α− β (n+ 1))

= (k − α− β (n+m+ 1)) · (k − α′ − β′ (m+ 1)) · (k −m− α′ − β′ (n+ 1)) .

Since Z3 is Zariski-dense in C3, this yields that

(X − α′ − β′ (Y + Z + 1)) · (X − α− β (Z + 1)) · (X − Z − α− β (Y + 1))

= (X − α− β (Y + Z + 1)) · (X − α′ − β′ (Z + 1)) · (X − Z − α′ − β′ (Y + 1)) .

holds as a polynomial identity in the polynomial ring C [X, Y, Z].
If we compare coefficients before XY Z in this polynomial identity, we get an equation

which easily simplifies to (β − β′) (β + β′ − 1) = 0. If we compare coefficients before
Y Z2 in the same identity, we similarly obtain ββ′ (β − β′) = 0.

If β = β′, then α = α′ (since α + β = α′ + β′), and thus we are done. Hence,
let us assume that β 6= β′ for the rest of this proof. Then, (β − β′) (β + β′ − 1) = 0
simplifies to β+β′−1 = 0, and ββ′ (β − β′) = 0 simplifies to ββ′ = 0. Combining these
two equations, we see that either (β = 0 and β′ = 1) or (β = 1 and β′ = 0). Assume
WLOG that (β = 0 and β′ = 1) (otherwise, just switch (α, β) with (α′, β′)). From
α + β = α′ + β′, we obtain α− α′ = β′︸︷︷︸

=1

− β︸︷︷︸
=0

= 1 ∈ Z. If we are able to prove that

α /∈ Z, then we can conclude that (β = 0, β′ = 1, α− α′ ∈ Z and α /∈ Z), and thus we
are done. So let us show that α /∈ Z.

In fact, assume the opposite. Then, α ∈ Z, so that vα is well-defined in Vα,β and in
Vα′,β′ . Then, (24) yields that every m ∈ Z satisfies

Lmvα =

α− α︸ ︷︷ ︸
=0

− β︸︷︷︸
=0

(m+ 1)

 vα−m = 0 in Vα,β.
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Thus, every m ∈ Z satisfies Φ (Lmvα) = Φ (0) = 0, so that 0 = Φ (Lmvα) = Lm Φ (vα)︸ ︷︷ ︸
=λαvα

=

λαLmvα in Vα′,β′ , and thus 0 = Lmvα in Vα′,β′ (since λα 6= 0). But since (24) yields

Lmvα =

α− α′ − β′︸︷︷︸
=1

(m+ 1)

 vα−α︸︷︷︸
=v0

= (α− α′ − (m+ 1)) v0 in Vα′,β′ ,

this rewrites as 0 = (α− α′ − (m+ 1)) v0, so that 0 = α − α′ − (m+ 1). But this
cannot hold for every m ∈ Z. This contradiction shows that our assumption (that
α ∈ Z) was wrong. Thus, α /∈ Z, and our proof of the =⇒ direction is finally done.
Proposition 2.3.3 (c) is finally proven.

Proving Proposition 2.3.3 was one part of Homework Set 1 exercise 2; the other was
the following:

Proposition 2.3.4. Let α ∈ C and β ∈ C. Then, the Vir-module Vα,β is not
irreducible if and only if (α ∈ Z and β ∈ {0, 1}).

We will not prove this; the interested reader is referred to Proposition 1.1 in §1.2 of
Kac-Raina.

Remark 2.3.5. Consider the Vir-module Vir (with the adjoint action). Since 〈C〉
is a Vir-submodule of Vir, we obtain a Vir-module Vir� 〈C〉. This Vir-module is
isomorphic to V1,−1. More precisely, the C-linear map

Vir� 〈C〉 → V1,−1,

Ln 7→ v−n

is a Vir-module isomorphism. Thus, Vir� 〈C〉 ∼= V1,−1
∼= Vα,−1 as Vir-modules for

every α ∈ Z (because of Proposition 2.3.3 (a)).

2.4. Some consequences of Poincaré-Birkhoff-Witt

We will now spend some time with generalities on Lie algebras and their universal en-
veloping algebras. These generalities will be applied later, and while these applications
could be substituted by concrete computations, it appears to me that it is better for
the sake of clarity to do them generally in here.

Proposition 2.4.1. Let k be a field. Let c be a k-Lie algebra. Let a and b be two
Lie subalgebras of c such that a + b = c. Notice that a ∩ b is also a Lie subalgebra
of c.

Let ρ : U (a) ⊗U(a∩b) U (b) → U (c) be the k-vector space homomorphism defined
by

ρ
(
α⊗U(a∩b) β

)
= αβ for all α ∈ U (a) and β ∈ U (b)

(this is clearly well-defined). Then, ρ is an isomorphism of filtered vector spaces, of
left U (a)-modules and of right U (b)-modules.
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Corollary 2.4.2. Let k be a field. Let c be a k-Lie algebra. Let a and b be two
Lie subalgebras of c such that a ⊕ b = c (as vector spaces, not necessarily as Lie
algebras). Let ρ : U (a) ⊗k U (b) → U (c) be the k-vector space homomorphism
defined by

ρ (α⊗ β) = αβ for all α ∈ U (a) and β ∈ U (b)

(this is clearly well-defined). Then, ρ is an isomorphism of filtered vector spaces, of
left U (a)-modules and of right U (b)-modules.

We give two proofs of Proposition 2.4.1. They are very similar (both use the Poincaré-
Birkhoff-Witt theorem, albeit different versions thereof). The first is more conceptual
(and more general), while the second is more down-to-earth.

First proof of Proposition 2.4.1. For any Lie algebra u, we have a k-algebra homo-
morphism PBWu : S (u)→ gr (U (u)) which sends u1u2...u` to u1u2...u` ∈ gr` (U (u)) for
every ` ∈ N and every u1, u2, ..., u` ∈ u. This homomorphism PBWu is an isomorphism
due to the Poincaré-Birkhoff-Witt theorem.

We can define a k-algebra homomorphism f : gr (U (a)) ⊗gr(U(a∩b)) gr (U (b)) →
gr
(
U (a)⊗U(a∩b) U (b)

)
by

f
(
u⊗gr(U(a∩b)) v

)
= u⊗U(a∩b) v ∈ grk+`

(
U (a)⊗U(a∩b) U (b)

)
for any k ∈ N, any ` ∈ N, any u ∈ U≤k (a) and v ∈ U≤` (b). This f is easily seen to be
well-defined. Moreover, f is surjective39.

It is easy to see that the isomorphisms PBWa : S (a)→ gr (U (a)), PBWb : S (b)→
gr (U (b)) and PBWa∩b : S (a ∩ b) → gr (U (a ∩ b)) are “compatible” with each other
in the sense that the diagrams

S (a)⊗ S (a ∩ b)
action of S(a∩b) on S(a)

//

PBWa⊗PBWa∩b ∼=
��

S (a)

PBWa ∼=
��

gr (U (a))⊗ gr (U (a ∩ b))
action of gr(U(a∩b)) on gr(U(a))

// gr (U (a))

39To show this, either notice that the image of f contains a generating set of gr
(
U (a)⊗U(a∩b) U (b)

)
(because the definition of f easily rewrites as

f
(
α1α2...αk ⊗gr(U(a∩b)) β1β2...β`

)
= α1α2...αk ⊗U(a∩b) β1β2...β` ∈ grk+`

(
U (a)⊗U(a∩b) U (b)

)
for any k ∈ N, any ` ∈ N, any α1, α2, ..., αk ∈ a and β1, β2, ..., β` ∈ b), or prove the more general fact
that for any Z+-filtered algebra A, any filtered right A-module M and any filtered left A-module
N , the canonical map

gr (M)⊗gr(A) gr (N)→ gr (M ⊗A N) ,

µ⊗gr(A) ν 7→ µ⊗A ν ∈ grm+n (M ⊗A N) (for all µ ∈Mm and ν ∈ Nn, for all m,n ∈ N)

is well-defined and surjective (this is easy to prove).
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and

S (a ∩ b)⊗ S (b)
action of S(a∩b) on S(b)

//

PBWa∩b⊗PBWb
∼=
��

S (b)

PBWb
∼=
��

gr (U (a ∩ b))⊗ gr (U (b))
action of gr(U(a∩b)) on gr(U(b))

// gr (U (b))

commute40. Hence, they give rise to an isomorphism

S (a)⊗S(a∩b) S (b)→ gr (U (a))⊗gr(U(a∩b)) gr (U (b)) ,

α⊗S(a∩b) β 7→ (PBWa α)⊗gr(U(a∩b)) (PBWb β) .

Denote this isomorphism by (PBWa)⊗PBWa∩b (PBWb).
Finally, let σ : S (a)⊗S(a∩b)S (b)→ S (c) be the vector space homomorphism defined

by
σ
(
α⊗S(a∩b) β

)
= αβ for all α ∈ S (a) and β ∈ S (b) .

This σ is rather obviously an algebra homomorphism. Now, it is easy to see that σ is
an algebra isomorphism41.

40This is pretty easy to see from the definition of PBWu.
41First proof that σ is an algebra isomorphism: Since every subspace of a vector space has a comple-

mentary subspace, we can find a k-vector subspace d of a such that a = d⊕ (a ∩ b). Consider such
a d.

Since a = d⊕(a ∩ b) = d+(a ∩ b), the fact that c = a+b rewrites as c = d+ (a ∩ b) + b︸ ︷︷ ︸
=b

(since a∩b⊆b)

= d+b.

Combined with d︸︷︷︸
=d∩a

(since d⊆a)

∩b ⊆ d∩a∩b = 0 (since d⊕ (a ∩ b) is a well-defined internal direct sum),

this yields c = d⊕ b.
Recall a known fact from multilinear algebra: Any two k-vector spaces U and V satisfy

S (U ⊕ V ) ∼= S (U) ⊗k S (V ) by the canonical algebra isomorphism. Hence, S (d⊕ b) ∼= S (d) ⊗k
S (b).

But a = d⊕ (a ∩ b) yields S (a) = S (d⊕ (a ∩ b)) ∼= S (d)⊗k S (a ∩ b) (by the above-quoted fact
that any two k-vector spaces U and V satisfy S (U ⊕ V ) ∼= S (U)⊗kS (V ) by the canonical algebra
isomorphism). Hence,

S (a)⊗S(a∩b) S (b) ∼= (S (d)⊗k S (a ∩ b))⊗S(a∩b) S (b)

∼= S (d)⊗k
(
S (a ∩ b)⊗S(a∩b) S (b)

)︸ ︷︷ ︸
∼=S(b)

∼= S (d)⊗k S (b) ∼= S

d⊕ b︸ ︷︷ ︸
=c

 = S (c) .

Thus we have constructed an algebra isomorphism S (a) ⊗S(a∩b) S (b) → S (c). If we track down
what happens to elements of d, a∩b and b under this isomorphism, we notice that they just get sent
to themselves, so this isomorphism must coincide with σ (because if two algebra homomorphisms
from the same algebra coincide on a set of generators of said algebra, then these two algebra
homomorphisms must be identical). Thus, σ is an algebra isomorphism, qed.

Second proof that σ is an algebra isomorphism: Define a map τ : c → S (a) ⊗S(a∩b) S (b) as
follows: For every c ∈ c, let τ (c) be a⊗S(a∩b) 1 + 1⊗S(a∩b) b, where we have written c in the form
c = a+ b with a ∈ a and b ∈ b (in fact, we can write c this way, because c = a+ b). This map τ is
well-defined, because the value of a⊗S(a∩b) 1 + 1⊗S(a∩b) b depends only on c and not on the exact
values of a and b in the decomposition c = a+b. (In fact, if c = a+b and c = a′+b′ are two different
ways to decompose c into a sum of an element of a with an element of b, then a+ b = c = a′ + b′,
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Now, it is easy to see (by elementwise checking) that the diagram

gr (U (a))⊗gr(U(a∩b)) gr (U (b))

f
��

S (a)⊗S(a∩b) S (b)
(PBWa)⊗PBWa∩b (PBWb)

∼=
oo

∼= σ

��

gr
(
U (a)⊗U(a∩b) U (b)

)
gr ρ

,,

S (c)

PBWc∼=
��

gr (U (c))

so that a− a′ = b′ − b, thus a− a′ ∈ a ∩ b (because a− a′ ∈ a and a− a′ = b′ − b ∈ b), so that

a︸︷︷︸
=a′+(a−a′)

⊗S(a∩b)1 + 1⊗S(a∩b) b

= (a′ + (a− a′))⊗S(a∩b) 1 + 1⊗S(a∩b) b

= a′ ⊗S(a∩b) 1 + (a− a′)⊗S(a∩b) 1︸ ︷︷ ︸
=1⊗S(a∩b)(a−a′)

(since a−a′∈a∩b⊆S(a∩b))

+1⊗S(a∩b) b

= a′ ⊗S(a∩b) 1 + 1⊗S(a∩b) (a− a′)︸ ︷︷ ︸
=b′−b

+1⊗S(a∩b) b

= a′ ⊗S(a∩b) 1 + 1⊗S(a∩b) (b′ − b) + 1⊗S(a∩b) b︸ ︷︷ ︸
=1⊗S(a∩b)((b′−b)+b)

= a′ ⊗S(a∩b) 1 + 1⊗S(a∩b) ((b′ − b) + b)︸ ︷︷ ︸
=b′

= a′ ⊗S(a∩b) 1 + 1⊗S(a∩b) b
′.

)
It is also easy to see that τ is a linear map. Thus, by the universal property of the symmetric

algebra, the map τ : c → S (a) ⊗S(a∩b) S (b) gives rise to a k-algebra homomorphism τ̂ : S (c) →
S (a)⊗S(a∩b) S (b) that lifts τ .

Any α ∈ a satisfies

(τ̂ ◦ σ)
(
α⊗S(a∩b) 1

)
= τ̂

 σ
(
α⊗S(a∩b) 1

)︸ ︷︷ ︸
=α1

(by the definition of σ)

 = τ̂ (α1) = τ̂ (α) = τ (α) (since τ̂ lifts τ)

= α⊗S(a∩b) 1 + 1⊗S(a∩b) 0(
by the definition of τ , since α = α+ 0 is a decomposition of

α into a sum of an element of a with an element of b

)
= α⊗S(a∩b) 1.

In other words, the map τ̂ ◦ σ fixes all tensors of the form α ⊗S(a∩b) 1 with α ∈ a. Similarly,
the map τ̂ ◦ σ fixes all tensors of the form 1 ⊗S(a∩b) β with β ∈ b. Combining the previous two

sentences, we conclude that the map map τ̂ ◦σ fixes all elements of the set
{
α⊗S(a∩b) 1 | α ∈ a

}
∪{

1⊗S(a∩b) β | β ∈ b
}

. Thus, there is a generating set of the k-algebra S (a)⊗S(a∩b)S (b) such that

the map τ̂ ◦σ fixes all elements of this set (because
{
α⊗S(a∩b) 1 | α ∈ a

}
∪
{

1⊗S(a∩b) β | β ∈ b
}

is a generating set of the k-algebra S (a) ⊗S(a∩b) S (b)). Since this map τ̂ ◦ σ is a k-algebra
homomorphism (because τ̂ and σ are k-algebra homomorphisms), this yields that the map τ̂ ◦ σ
is the identity (since a k-algebra homomorphism which fixes a generating set of its domain must
be the identity). In other words, we have shown that τ̂ ◦ σ = id. A slightly different but similarly
simple argument shows that σ ◦ τ̂ = id. Combining σ ◦ τ̂ = id with τ̂ ◦ σ = id, we conclude that τ̂
is an inverse to σ, so that σ is an algebra isomorphism, qed.
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is commutative.42 Hence, (gr ρ) ◦ f is an isomorphism, so that f is injective. Since f
is also surjective, this yields that f is an isomorphism. Thus, gr ρ is an isomorphism
(since (gr ρ)◦f is an isomorphism). Since ρ is a filtered map and gr ρ is an isomorphism,
it follows that ρ is an isomorphism of filtered vector spaces. Hence, ρ is an isomorphism
of filtered vector spaces, of left U (a)-modules and of right U (b)-modules (since it is
clear that ρ is a homomorphism of U (a)-left modules and of U (b)-right modules). This
proves Proposition 2.4.1.

Second proof of Proposition 2.4.1. Let (zi)i∈I be a basis of the k-vector space a ∩ b.
We extend this basis to a basis (zi)i∈I ∪ (xj)j∈J of the k-vector space a and to a basis
(zi)i∈I ∪ (y`)`∈L of the k-vector space b. Then, (zi)i∈I ∪ (xj)j∈J ∪ (y`)`∈L is a basis
of the k-vector space c. We endow this basis with a total ordering in such a way
that every xj is smaller than every zi, and that every zi is smaller than every y`. By
the Poincaré-Birkhoff-Witt theorem, we have a basis of U (c) consisting of increasing
products of elements of the basis (zi)i∈I∪(xj)j∈J∪(y`)`∈L. On the other hand, again by
the Poincaré-Birkhoff-Witt theorem, we have a basis of U (a) consisting of increasing
products of elements of the basis (zi)i∈I ∪ (xj)j∈J . Note that the zi accumulate at
the right end of these products, while the xj accumulate at the left end (because
we defined the total ordering in such a way that every xj is smaller than every zi).
Hence, U (a) is a free right U (a ∩ b)-module, with a basis (over U (a ∩ b), not over k)
consisting of increasing products of elements of the basis (xj)j∈J . Combined with the
fact that U (b) is a free k-vector space with a basis consisting of increasing products
of elements of the basis (zi)i∈I ∪ (y`)`∈L (again by Poincaré-Birkhoff-Witt), this yields
that U (a)⊗U(a∩b)U (b) is a free k-vector space with a basis consisting of tensors of the
form(

some increasing product of elements of the basis (xj)j∈J

)
⊗U(a∩b)

(
some increasing product of elements of the basis (zi)i∈I ∪ (y`)`∈L

)
.

The map ρ clearly maps such terms bijectively into increasing products of elements
of the basis (zi)i∈I ∪ (xj)j∈J ∪ (y`)`∈L. Hence, ρ maps a basis of U (a) ⊗U(a∩b) U (b)
bijectively to a basis of U (c). Thus, ρ is an isomorphism of vector spaces. Moreover,
since both of our bases were filtered43, and ρ respects this filtration on the bases, we
can even conclude that ρ is an isomorphism of filtered vector spaces. Since it is clear
that ρ is a homomorphism of U (a)-left modules and of U (b)-right modules, it follows
that ρ is an isomorphism of filtered vector spaces, of left U (a)-modules and of right
U (b)-modules. This proves Proposition 2.4.1.

Proof of Corollary 2.4.2. Corollary 2.4.2 immediately follows from Proposition 2.4.1
(since a⊕ b = c yields a ∩ b = 0, thus U (a ∩ b) = U (0) = k).

Remark 2.4.3. While we have required k to be a field in Proposition 2.4.1 and
Corollary 2.4.2, these two results hold in more general situations as well. For in-
stance, Proposition 2.4.1 holds whenever k is a commutative ring, as long as a, b

42In fact, if we follow the pure tensor α1α2...αk⊗S(a∩b) β1β2...β` (with k ∈ N, ` ∈ N, α1, α2, ..., αk ∈ a

and β1, β2, ..., β` ∈ b) through this diagram, we get α1α2...αkβ1β2...β` ∈ grk+` (U (c)) both ways.
43A basis B of a filtered vector space V is said to be filtered if for every n ∈ N, the subfamily of B

consisting of those elements of B lying in the n-th filtration of V is a basis of the n-th filtration of
V .
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and a ∩ b are free k-modules, and a ∩ b is a direct summand of a as a k-module.
In fact, the first proof of Proposition 2.4.1 works in this situation (because the
Poincaré-Birkhoff-Witt theorem holds for free modules). In a more restrictive situa-
tion (namely, when a∩ b is a free k-module, and a direct summand of each of a and
b, with the other two summands also being free), the second proof of Proposition
2.4.1 works as well. As for Corollary 2.4.2, it holds whenever k is a commutative
ring, as long as a and b are free k-modules.

This generality is more than enough for most applications of Proposition 2.4.1 and
Corollary 2.4.2. Yet we can go even further using the appropriate generalizations
of the Poincaré-Birkhoff-Witt theorem (for these, see, e. g., P. J. Higgins, Baer
Invariants and the Birkhoff-Witt theorem, J. of Alg. 11, pp. 469-482, (1969),
http://www.sciencedirect.com/science/article/pii/0021869369900866 ).

2.5. Z-graded Lie algebras and Verma modules

2.5.1. Z-graded Lie algebras

Let us show some general results about representations of Z-graded Lie algebras –
particularly of nondegenerate Z-graded Lie algebras. This is a notion that encompasses
many of the concrete Lie algebras that we want to study (among others, A, A0, W
and Vir), and thus by proving the properties of nondegenerate Z-graded Lie algebras
now we can avoid proving them separately in many different cases.

Definition 2.5.1. A Z-graded Lie algebra is a Lie algebra g with a decomposition
g =

⊕
n∈Z

gn (as a vector space) such that [gn, gm] ⊆ gn+m for all n,m ∈ Z. The family

(gn)n∈Z is called the grading of this Z-graded Lie algebra.44

Of course, every Z-graded Lie algebra automatically is a Z-graded vector space (by
way of forgetting the Lie bracket and only keeping the grading). Note that if g =

⊕
n∈Z

gn

is a Z-graded Lie algebra, then
⊕
n<0

gn, g0 and
⊕
n>0

gn are Lie subalgebras of g.

Example 2.5.2. We defined a grading on the Heisenberg algebra A in Definition 2.2.6.
This makes A into a Z-graded Lie algebra. Also, A0 is a Z-graded Lie subalgebra of
A.

Example 2.5.3. We make the Witt algebra W into a Z-graded Lie algebra by using
the grading (W [n])n∈Z, where W [n] = 〈Ln〉 for every n ∈ Z.

We make the Virasoro algebra Vir into a Z-graded Lie algebra by using the grading

(Vir [n])n∈Z, where Vir [n] =

{
〈Ln〉 , if n 6= 0;
〈L0, C〉 , if n = 0

for every n ∈ Z.

44Warning: Some algebraists use the words “Z-graded Lie algebra” to denote a Z-graded Lie su-
peralgebra, where the even homogeneous components constitute the even part and the odd ho-
mogeneous components constitute the odd part. This is not how we understand the notion of a
“Z-graded Lie algebra” here. In particular, for us, a Z-graded Lie algebra g should satisfy [x, x] = 0
for all x ∈ g (not just for x lying in even homogeneous components).
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Definition 2.5.4. A Z-graded Lie algebra g =
⊕
n∈Z

gn is said to be nondegenerate if

(1) the vector space gn is finite-dimensional for every n ∈ Z;
(2) the Lie algebra g0 is abelian;
(3) for every positive integer n, for generic λ ∈ g∗0, the bilinear form gn × g−n →

C, (a, b) 7→ λ ([a, b]) is nondegenerate. (“Generic λ” means “λ lying in some dense
open subset of g∗0 with respect to the Zariski topology”. This subset can depend on
n.)

Note that condition (3) in Definition 2.5.4 implies that dim (gn) = dim (g−n) for all
n ∈ Z.

Here are some examples:

Proposition 2.5.5. The Z-graded Lie algebrasA, A0, W and Vir are nondegenerate
(with the gradings defined above).

Proposition 2.5.6. Let g be a finite-dimensional simple Lie algebra. The following
is a reasonable (although non-canonical) way to define a grading on g:

Using a Cartan subalgebra and the roots of g, we can present the Lie algebra g as
a Lie algebra with generators e1, e2, ..., em, f1, f2, ..., fm, h1, h2, ..., hm (the so-called
Chevalley generators) and some relations (among them the Serre relations). Then,
we can define a grading on g by setting

deg (ei) = 1, deg (fi) = −1 and deg (hi) = 0 for all i ∈ {1, 2, ...,m} ,

and extending this grading in such a way that g becomes a graded Lie algebra. This
grading is non-canonical, but it makes g into a nondegenerate graded Lie algebra.

Proposition 2.5.7. If g is a finite-dimensional simple Lie algebra, then the loop
algebra g [t, t−1] and the affine Kac-Moody algebra ĝ = g [t, t−1]⊕CK can be graded
as follows:

Fix Chevalley generators for g and grade g as in Proposition 2.5.6. Now let θ
be the maximal root of g, i. e., the highest weight of the adjoint representation
of g. Let eθ and fθ be the root elements corresponding to θ. The Coxeter number
of g is defined as deg (eθ) + 1, and denoted by h. Now let us grade ĝ by setting
degK = 0 and deg (atm) = deg a + mh for every homogeneous a ∈ g and every
m ∈ Z. This grading satisfies deg (fθt) = 1 and deg (eθt

−1) = −1. Moreover, the
map g [t, t−1]→ g [t, t−1] , x 7→ xt is homogeneous of degree h; this is often informally
stated as “deg t = h” (although t itself is not an element of ĝ). It is easy to see that
the elements of ĝ of positive degree span n+ ⊕ tg [t].

The graded Lie algebra ĝ is nondegenerate. The loop algebra g [t, t−1], however,
is not (with the grading defined in the same way).

If g is a Z-graded Lie algebra, we can write

g =
⊕
n∈Z

gn =
⊕
n<0

gn ⊕ g0 ⊕
⊕
n>0

gn.

We denote
⊕
n<0

gn by n− and we denote
⊕
n>0

gn by n+. We also denote g0 by h. Then,

n−, n+ and h are Lie subalgebras of g, and the above decomposition rewrites as g =
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n−⊕ h⊕ n+ (but this is, of course, not a direct sum of Lie algebras). This is called the
triangular decomposition of g.

It is easy to see that when g is a Z-graded Lie algebra, the universal enveloping
algebra U (g) canonically becomes a Z-graded algebra.45

2.5.2. Z-graded modules

Definition 2.5.8. Let g be a Lie algebra over a field k. Let M be a g-module. Let
U be a vector subspace of g. Let N be a vector subspace of M . Then, U ⇀ N will
denote the k-linear span of all elements of the form u ⇀ n with u ∈ U and n ∈ N .
(Notice that this notation is analogous to the notation [U,N ] which is defined if U
and N are both subspaces of g.)

Definition 2.5.9. Let g be a Z-graded Lie algebra with grading (gn)n∈Z. A Z-graded
g-module means a Z-graded vector space M equipped with a g-module structure
such that any i ∈ Z and j ∈ Z satisfy gi ⇀Mj ⊆Mi+j, where (Mn)n∈Z denotes the
grading of M .

The reader can easily check that when g is a Z-graded Lie algebra, and M is a Z-
graded g-module, then M canonically becomes a Z-graded U (g)-module (by taking
the canonical U (g)-module structure on M and the given Z-grading on M).

Examples of Z-graded g-modules for various Lie algebras g are easy to get by. For
example, when g is a Z-graded Lie algebra, then the adjoint representation g itself is
a Z-graded g-module. For two more interesting examples:

Example 2.5.10. The action of the Heisenberg algebraA on the µ-Fock representation
Fµ makes Fµ into a Z-graded A-module (i. e., it maps A [i] ⊗ Fµ [j] to Fµ [i+ j] for
all i ∈ Z and j ∈ Z). Here, we are using the Z-grading on Fµ defined in Definition
2.2.7. (If we would use the alternative Z-grading on Fµ defined in Remark 2.2.8, then
the action of A on Fµ would still make Fµ into a Z-graded A-module.)

The action of A0 on the Fock module F makes F into a Z-graded A0-module.

Example 2.5.11. Let α ∈ C and β ∈ C. The Vir-module Vα,β defined in Proposition
2.3.2 becomes a Z-graded Vir-module by means of the grading (Vα,β [n])n∈Z, where
Vα,β [n] = 〈v−n〉 for every n ∈ Z.

Let us formulate a graded analogue of Lemma 2.2.12:

Lemma 2.5.12. Let V be a Z-graded A0-module with grading (V [n])n∈Z. Let
u ∈ V [0] be such that aiu = 0 for all i > 0, and such that Ku = u. Then, there
exists a Z-graded homomorphism η : F → V of A0-modules such that η (1) = u.
(This homomorphism η is unique, although we won’t need this.)

Proof of Lemma 2.5.12. Let η be the map F → V which sends every polynomial
P ∈ F = C [x1, x2, x3, ...] to P (a−1, a−2, a−3, ...) · u ∈ V . 46 Just as in the Second

45In fact, U (g) is defined as the quotient of the tensor algebra T (g) by a certain ideal. When g is a
Z-graded Lie algebra, this ideal is generated by homogeneous elements, and thus is a graded ideal.

46Note that the term P (a−1, a−2, a−3, ...) denotes the evaluation of the polynomial P at
(x1, x2, x3, ...) = (a−1, a−2, a−3, ...). This evaluation is a well-defined element of U (A0), since
the elements a−1, a−2, a−3, ... of U (A0) commute.
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proof of Lemma 2.2.12, we can show that η is an A0-module homomorphism F → V
such that η (1) = u. Hence, in order to finish the proof of Lemma 2.5.12, we only need
to check that η is a Z-graded map.

If A is a set, then NAfin will denote the set of all finitely supported maps A→ N.
Let n ∈ Z and P ∈ F [n]. Then, we can write the polynomial P in the form

P =
∑

(i1,i2,i3,...)∈N{1,2,3,...}fin ;
1i1+2i2+3i3+...=−n

λ(i1,i2,i3,...)x
i1
1 x

i2
2 x

i3
3 ... (35)

for some scalars λ(i1,i2,i3,...) ∈ C. Consider these λ(i1,i2,i3,...). From (35), it follows that

P (a−1, a−2, a−3, ...) =
∑

(i1,i2,i3,...)∈N{1,2,3,...}fin ;
1i1+2i2+3i3+...=−n

λ(i1,i2,i3,...) ai1−1a
i2
−2a

i3
−3...︸ ︷︷ ︸

∈U(A0)[i1(−1)+i2(−2)+i3(−3)+...]
(since every positive integer k satisfies

a−k∈A0[−k]⊆U(A0)[−k] and thus a
ik
−k∈U(A0)[ik(−k)])

∈
∑

(i1,i2,i3,...)∈N{1,2,3,...}fin ;
1i1+2i2+3i3+...=−n

λ(i1,i2,i3,...)U (A0)

i1 (−1) + i2 (−2) + i3 (−3) + ...︸ ︷︷ ︸
=−(1i1+2i2+3i3+...)=n

(since 1i1+2i2+3i3+...=−n)


=

∑
(i1,i2,i3,...)∈N{1,2,3,...}fin ;
1i1+2i2+3i3+...=−n

λ(i1,i2,i3,...)U (A0) [n] ⊆ U (A0) [n]

(since U (A0) [n] is a vector space). By the definition of η, we have

η (P ) = P (a−1, a−2, a−3, ...)︸ ︷︷ ︸
∈U(A0)[n]

· u︸︷︷︸
∈V [0]

∈ U (A0) [n] · V [0] ⊆ V [n]

(since V is a Z-graded A0-module and thus a Z-graded U (A0)-module). Now forget
that we fixed n and P . We have thus shown that every n ∈ Z and P ∈ F [n] satisfy
η (P ) ⊆ V [n]. In other words, every n ∈ Z satisfies η (F [n]) ⊆ V [n]. In other words,
η is Z-graded. This proves Lemma 2.5.12.

And here is a graded analogue of Lemma 2.2.18:

Lemma 2.5.13. Let V be a graded A-module with grading (V [n])n∈Z. Let µ ∈ C.
Let u ∈ V [0] be such that aiu = 0 for all i > 0, such that a0u = µu, and such that
Ku = u. Then, there exists a Z-graded homomorphism η : Fµ → V of A-modules
such that η (1) = u. (This homomorphism η is unique, although we won’t need this.)

The proof of Lemma 2.5.13 is completely analogous to that of Lemma 2.5.12, but
this time using Lemma 2.2.18 instead of Lemma 2.2.12.

2.5.3. Verma modules

Definition 2.5.14. Let g be a Z-graded Lie algebra (not necessarily nondegenerate).
Let us work with the notations introduced above. Let λ ∈ h∗.
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Let Cλ denote the (h⊕ n+)-module which, as a C-vector space, is the free vector
space with basis

(
v+
λ

)
(thus, a 1-dimensional vector space), and whose (h⊕ n+)-

action is given by

hv+
λ = λ (h) v+

λ for every h ∈ h;

n+v
+
λ = 0.

The Verma highest-weight module M+
λ of (g, λ) is defined by

M+
λ = U (g)⊗U(h⊕n+) Cλ.

The element 1⊗U(h⊕n+)v
+
λ of M+

λ will still be denoted by v+
λ by abuse of notation, and

will be called the defining vector of M+
λ . Since U (g) and Cλ are graded U (h⊕ n+)-

modules, their tensor product U (g)⊗U(h⊕n+) Cλ = M+
λ becomes graded as well.

Let Cλ denote the (h⊕ n−)-module which, as a C-vector space, is the free vector
space with basis

(
v−λ
)

(thus, a 1-dimensional vector space), and whose (h⊕ n−)-
action is given by

hv−λ = λ (h) v−λ for every h ∈ h;

n−v
−
λ = 0.

(Note that we denote this (h⊕ n−)-module by Cλ, although we already have de-
noted an (h⊕ n+)-module by Cλ. This is ambiguous, but misunderstandings are
unlikely to occur since these modules are modules over different Lie algebras, and
their restrictions to h are identical.)

The Verma lowest-weight module M−
λ of (g, λ) is defined by

M−
λ = U (g)⊗U(h⊕n−) Cλ.

The element 1⊗U(h⊕n−)v
−
λ of M−

λ will still be denoted by v−λ by abuse of notation, and
will be called the defining vector of M−

λ . Since U (g) and Cλ are graded U (h⊕ n−)-
modules, their tensor product U (g)⊗U(h⊕n−) Cλ = M−

λ becomes graded as well.

We notice some easy facts about these modules:

Proposition 2.5.15. Let g be a Z-graded Lie algebra (not necessarily nondegener-
ate). Let us work with the notations introduced above. Let λ ∈ h∗.

(a) As a graded n−-module, M+
λ = U (n−) v+

λ ; more precisely, there exists a graded
n−-module isomorphism U (n−)⊗Cλ →M+

λ which sends every x⊗ t ∈ U (n−)⊗Cλ
to xtv+

λ . The Verma module M+
λ is concentrated in nonpositive degrees:

M+
λ =

⊕
n≥0

M+
λ [−n] ; M+

λ [−n] = U (n−) [−n] v+
λ for every n ≥ 0.

Also, if dim gj <∞ for all j ≤ −1, we have∑
n≥0

dim
(
M+

λ [−n]
)
qn =

1∏
j≤−1

(1− q−j)dim gj
.
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(b) As a graded n+-module, M−
λ = U (n+) v−λ ; more precisely, there exists a graded

n+-module isomorphism U (n+)⊗Cλ →M−
λ which sends every x⊗ t ∈ U (n+)⊗Cλ

to xtv−λ . The Verma module M−
λ is concentrated in nonnegative degrees:

M−
λ =

⊕
n≥0

M−
λ [n] ; M−

λ [n] = U (n+) [n] v−λ for every n ≥ 0.

Also, if dim gj <∞ for all j ≥ 1, we have∑
n≥0

dim
(
M−

λ [n]
)
qn =

1∏
j≥1

(1− qj)dim gj
.

Proof of Proposition 2.5.15. (a) Let ρ : U (n−) ⊗C U (h⊕ n+) → U (g) be the C-
vector space homomorphism defined by

ρ (α⊗ β) = αβ for all α ∈ U (n−) and β ∈ U (h⊕ n+)

(this is clearly well-defined). By Corollary 2.4.2 (applied to a = n−, b = h ⊕ n+ and
c = g), this ρ is an isomorphism of filtered47 vector spaces, of left U (n−)-modules
and of right U (h⊕ n+)-modules. Also, it is a graded linear map48 (this is clear from
its definition), and thus an isomorphism of graded vector spaces (because if a vector
space isomorphism of graded vector spaces is a graded linear map, then it must be an
isomorphism of graded vector spaces49). Altogether, ρ is an isomorphism of graded
filtered vector spaces, of left U (n−)-modules and of right U (h⊕ n+)-modules. Hence,

M+
λ = U (g)︸ ︷︷ ︸

∼=U(n−)⊗CU(h⊕n+)
(by the isomorphism ρ)

⊗U(h⊕n+)Cλ ∼= (U (n−)⊗C U (h⊕ n+))⊗U(h⊕n+) Cλ

∼= U (n−)⊗C
(
U (h⊕ n+)⊗U(h⊕n+) Cλ

)︸ ︷︷ ︸
∼=Cλ

∼= U (n−)⊗ Cλ as graded U (n−) -modules.

This gives us a graded n−-module isomorphism U (n−) ⊗ Cλ → M+
λ which is easily

seen to send every x⊗ t ∈ U (n−)⊗ Cλ to xtv+
λ . Hence, M+

λ = U (n−) v+
λ . Since n− is

concentrated in negative degrees, it is clear that U (n−) is concentrated in nonpositive
degrees. Hence, U (n−)⊗Cλ is concentrated in nonpositive degrees, and thus the same

47Filtered by the usual filtration on the universal enveloping algebra of a Lie algebra. This filtration
does not take into account the grading on n−, h⊕ n+ and g.

48Here we do take into account the grading on n−, h⊕ n+ and g.
49If you are wondering why this statement is more than a blatantly obvious tautology, let me add

some clarifications:
A graded linear map is a morphism in the category of graded vector spaces. What I am stating

here is that if a vector space isomorphism between graded vector spaces is at the same time a
morphism in the category of graded vector spaces, then it must be an isomorphism in the category
of graded vector spaces. This is very easy to show, but not a self-evident tautology. In fact,
the analogous assertion about filtered vector spaces (i. e., the assertion that if a vector space
isomorphism between filtered vector spaces is at the same time a morphism in the category of
filtered vector spaces, then it must be an isomorphism in the category of filtered vector spaces) is
wrong.
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holds for M+
λ (since M+

λ
∼= U (n−) ⊗ Cλ as graded U (n−)-modules). In other words,

M+
λ =

⊕
n≥0

M+
λ [−n].

Since the isomorphism U (n−)⊗Cλ →M+
λ which sends every x⊗ t ∈ U (n−)⊗Cλ to

xtv+
λ is graded, it sends U (n−) [−n] ⊗ Cλ = (U (n−)⊗ Cλ) [−n] to M+

λ [−n] for every
n ≥ 0. Thus, M+

λ [−n] = U (n−) [−n] v+
λ for every n ≥ 0. Hence,

dim
(
M+

λ [−n]
)

= dim
(
U (n−) [−n] v+

λ

)
= dim (U (n−) [−n]) = dim (S (n−) [−n])(

because U (n−) ∼= S (n−) as graded vector spaces
(by the Poincaré-Birkhoff-Witt theorem)

)
for every n ≥ 0. Hence, if dim gj <∞ for all j ≤ −1, then∑
n≥0

dim
(
M+

λ [−n]
)
qn =

∑
n≥0

dim (S (n−) [−n]) qn =
1∏

j≤−1

(1− q−j)dim((n−)j)
=

1∏
j≤−1

(1− q−j)dim gj
.

This proves Proposition 2.5.15 (a).
(b) The proof of part (b) is analogous to that of (a).
This proves Proposition 2.5.15.
We have already encountered an example of a Verma highest-weight module:

Proposition 2.5.16. Let g be the Lie algebra A0. Consider the Fock module F over
the Lie algebra A0. Then, there is a canonical isomorphism M+

1 → F of A0-modules
(where 1 is the element of h∗ which sends K to 1) which sends v+

1 ∈M+
1 to 1 ∈ F .

First proof of Proposition 2.5.16. As we showed in the First proof of Lemma
2.2.12, there exists a homomorphism ηF,1 : IndA0

CK⊕A+
0

C → F of A0-modules such

that ηF,1 (1) = 1. In the same proof, we also showed that this ηF,1 is an isomor-

phism. We thus have an isomorphism ηF,1 : IndA0

CK⊕A+
0

C→ F of A0-modules such that

ηF,1 (1) = 1. Since

IndA0

CK⊕A+
0

C = U (A0)⊗U(CK⊕A+
0 ) C = U (g)⊗U(h⊕n+) C1(

since A0 = g, CK = h, A+
0 = n+ and C = C1

)
= M+

1 ,

and since the element 1 of IndA0

CK⊕A+
0

C is exactly the element v+
1 of M+

1 , this rewrites as

follows: We have an isomorphism ηF,1 : M+
1 → F of A0-modules such that ηF,1

(
v+

1

)
=

1. This proves Proposition 2.5.16.
Second proof of Proposition 2.5.16. It is clear from the definition of v+

1 that aiv
+
1 = 0

for all i > 0, and that Kv+
1 = v+

1 . Applying Lemma 2.2.12 to u = v+
1 and V = M+

1 ,
we thus conclude that there exists a homomorphism η : F → M+

1 of A0-modules such
that η (1) = v+

1 .
On the other hand, since M+

1 = U (g)⊗U(h⊕n+)C1 (by the definition of M+
1 ), we can

define an U (g)-module homomorphism

M+
1 → F, α⊗U(h⊕n+) z 7→ αz.
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Since g = A0, this is an U (A0)-module homomorphism, i. e., an A0-module homo-
morphism. Denote this homomorphism by ξ. We are going to prove that η and ξ are
mutually inverse.

Since v+
1 = 1⊗U(h⊕n+) 1, we have

ξ
(
v+

1

)
= ξ

(
1⊗U(h⊕n+) 1

)
= 1 · 1 (by the definition of ξ)

= 1.

Since v+
1 = η (1), this rewrites as ξ (η (1)) = 1. In other words, (ξ ◦ η) (1) = 1.

Since the vector 1 generates the A0-module F (because Lemma 2.2.10 yields P =
P (a−1, a−2, a−3, ...)︸ ︷︷ ︸

∈U(A0)

·1 ∈ U (A0) · 1 for every P ∈ F ), this yields that the A0-module

homomorphisms ξ ◦ η : F → F and id : F → F are equal on a generating set of the
A0-module F . Thus, ξ ◦ η = id.

Also, (η ◦ ξ)
(
v+

1

)
= η

ξ (v+
1

)︸ ︷︷ ︸
=1

 = η (1) = v+
1 . Since the vector v+

1 generates M+
1

as an A0-module (because M+
1 = U (g)⊗U(h⊕n+) C1 = U (A0)⊗U(h⊕n+) C1), this yields

that the A0-module homomorphisms η ◦ ξ : M+
1 → M+

1 and id : M+
1 → M+

1 are equal
on a generating set of the A0-module M+

1 . Thus, η ◦ ξ = id.
Since η ◦ ξ = id and ξ ◦η = id, the maps ξ and η are mutually inverse, so that ξ is an

isomorphism M+
1 → F of A0-modules. We know that ξ sends v+

1 to ξ
(
v+

1

)
= 1. Thus,

there is a canonical isomorphism M+
1 → F of A0-modules which sends v+

1 ∈ M+
1 to

1 ∈ F . Proposition 2.5.16 is proven.
In analogy to the Second proof of Proposition 2.5.16, we can show:

Proposition 2.5.17. Let g be the Lie algebra A. Let µ ∈ C. Consider the µ-
Fock module Fµ over the Lie algebra A. Then, there is a canonical isomorphism
M+

1,µ → Fµ of A-modules (where (1, µ) is the element of h∗ which sends K to 1 and
a0 to µ) which sends v+

1,µ ∈M+
1,µ to 1 ∈ Fµ.

2.5.4. Degree-0 forms

We introduce another simple notion:

Definition 2.5.18. Let V and W be two Z-graded vector spaces over a field k. Let
β : V ×W → k be a k-bilinear form. We say that the k-bilinear form β has degree
0 (or, equivalently, is a degree-0 bilinear form) if and only if it satisfies(

β (Vn ×Wm) = 0 for all (n,m) ∈ Z2 satisfying n+m 6= 0
)
.

(Here, Vn denotes the n-th homogeneous component of V , and Wm denotes the m-th
homogeneous component of W .)

It is straightforward to see the following characterization of degree-0 bilinear forms:
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Remark 2.5.19. Let V and W be two Z-graded vector spaces over a field k. Let
β : V ×W → k be a k-bilinear form. Let B be the linear map V ⊗W → k induced by
the k-bilinear map V ×W → k using the universal property of the tensor product.
Consider V ⊗W as a Z-graded vector space (in the usual way in which one defines
a grading on the tensor product of two Z-graded vector spaces), and consider k as a
Z-graded vector space (by letting the whole field k live in degree 0).

Then, β has degree 0 if and only if B is a graded map.

2.6. The invariant bilinear form on Verma modules

2.6.1. The invariant bilinear form

The study of the Verma modules rests on a g-bilinear form which connects a highest-
weight Verma module with a lowest-weight Verma module for the opposite weight.
First, let us prove its existence and basic properties:

Proposition 2.6.1. Let g be a Z-graded Lie algebra, and λ ∈ h∗.
(a) There exists a unique g-invariant bilinear form M+

λ ×M−
−λ → C satisfying(

v+
λ , v

−
−λ
)

= 1 (where we denote this bilinear form by (·, ·)).
(b) This form has degree 0. (This means that if we consider this bilinear form

M+
λ × M−

−λ → C as a linear map M+
λ ⊗ M−

−λ → C, then it is a graded map,
where M+

λ ⊗M
−
−λ is graded as a tensor product of graded vector spaces, and C is

concentrated in degree 0.)
(c) Every g-invariant bilinear form M+

λ ×M
−
−λ → C is a scalar multiple of this

form (·, ·).

Remark 2.6.2. Proposition 2.6.1 still holds when the ground field C is replaced by
a commutative ring k, as long as some rather weak conditions hold (for instance, it
is enough that n−, n+ and h are free k-modules).

Definition 2.6.3. Let g be a Z-graded Lie algebra, and λ ∈ h∗. According to
Proposition 2.6.1 (a), there exists a unique g-invariant bilinear form M+

λ ×M
−
−λ → C

satisfying
(
v+
λ , v

−
−λ
)

= 1 (where we denote this bilinear form by (·, ·)). This form is
going to be denoted by (·, ·)λ (to stress its dependency on λ). (Later we will also
denote this form by (·, ·)gλ to point out its dependency on both λ and g.)

To prove Proposition 2.6.1, we recall two facts about modules over Lie algebras:

Lemma 2.6.4. Let a be a Lie algebra, and let b be a Lie subalgebra of a. Let V be a
b-module, andW be an a-module. Then, (Inda

b V )⊗W ∼= Inda
b (V ⊗W ) as a-modules

(where the W on the right hand side is to be understood as ResabW ). More precisely,
there exists a canonical a-module isomorphism (Inda

b V )⊗W → Inda
b (V ⊗W ) which

maps
(
1⊗U(b) v

)
⊗ w to 1⊗U(b) (v ⊗ w) for all v ∈ V and w ∈ W .

Lemma 2.6.5. Let c be a Lie algebra. Let a and b be two Lie subalgebras of c such
that a+ b = c. Notice that a∩ b is also a Lie subalgebra of c. Let N be a b-module.
Then, Inda

a∩b
(
Resba∩bN

) ∼= Resca (Indc
bN) as a-modules.
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We will give two proofs of Lemma 2.6.4: one which is direct and uses Hopf algebras;
the other which is more elementary but less direct.

First proof of Lemma 2.6.4. Remember that U (a) is a Hopf algebra (a cocommu-
tative one, actually; but we won’t use this). Let us denote its antipode by S and use
sumfree Sweedler notation.

Recalling that Inda
b V = U (a) ⊗U(b) V and Inda

b (V ⊗W ) = U (a) ⊗U(b) (V ⊗W ),
we define a C-linear map φ : (Inda

b V ) ⊗W → Inda
b (V ⊗W ) by

(
α⊗U(b) v

)
⊗ w 7→

α(1) ⊗U(b)

(
v ⊗ S

(
α(2)

)
w
)
. This map is easily checked to be well-defined and a-linear.

Also, we define a C-linear map ψ : Inda
b (V ⊗W )→ (Inda

b V )⊗W by α⊗U(b) (v ⊗ w) 7→(
α(1) ⊗U(b) v

)
⊗ α(2)w. This map is easily checked to be well-defined. It is also easy to

see that φ ◦ψ = id and ψ ◦ φ = id. Hence, φ and ψ are mutually inverse isomorphisms
between the a-modules (Inda

b V )⊗W and Inda
b (V ⊗W ). This proves that (Inda

b V )⊗
W ∼= Inda

b (V ⊗W ) as a-modules. Moreover, the isomorphism φ : (Inda
b V ) ⊗ W →

Inda
b (V ⊗W ) is canonical and maps

(
1⊗U(b) v

)
⊗ w to 1 ⊗U(b) (v ⊗ w) for all v ∈ V

and w ∈ W . In other words, Lemma 2.6.4 is proven.
Second proof of Lemma 2.6.4. For every a-module Y , we have

Homa ((Inda
b V )⊗W,Y )

=

HomC ((Inda
b V )⊗W,Y )︸ ︷︷ ︸

∼=HomC(Inda
b V,HomC(W,Y ))


a

∼= (HomC (Inda
b V,HomC (W,Y )))a = Homa (Inda

b V,HomC (W,Y ))
∼= Homb (V,HomC (W,Y )) (by Frobenius reciprocity)

=

HomC (V,HomC (W,Y ))︸ ︷︷ ︸
∼=HomC(V⊗W,Y )


b

∼= (HomC (V ⊗W,Y ))b

= Homb (V ⊗W,Y ) ∼= Homa (Inda
b (V ⊗W ) , Y ) (by Frobenius reciprocity) .

Since this isomorphism is canonical, it gives us a natural isomorphism between the
functors Homa ((Inda

b V )⊗W,−) and Homa (Inda
b (V ⊗W ) ,−). By Yoneda’s lemma,

this yields that (Inda
b V ) ⊗ W ∼= Inda

b (V ⊗W ) as a-modules. It is also rather clear
that the a-module isomorphism (Inda

b V )⊗W → Inda
b (V ⊗W ) we have just obtained

is canonical.
In order to check that this isomorphism maps

(
1⊗U(b) v

)
⊗ w to 1 ⊗U(b) (v ⊗ w)

for all v ∈ V and w ∈ W , we must retrace the proof of Yoneda’s lemma. This
proof proceeds by evaluating the natural isomorphism Homa ((Inda

b V )⊗W,−) →
Homa (Inda

b (V ⊗W ) ,−) at the object Inda
b (V ⊗W ), thus obtaining an isomorphism

Homa ((Inda
b V )⊗W, Inda

b (V ⊗W ))→ Homa (Inda
b (V ⊗W ) , Inda

b (V ⊗W )) ,

and taking the preimage of id ∈ Homa (Inda
b (V ⊗W ) , Inda

b (V ⊗W )) under this iso-
morphism. This preimage is our isomorphism (Inda

b V )⊗W → Inda
b (V ⊗W ). Checking

that this maps
(
1⊗U(b) v

)
⊗w to 1⊗U(b) (v ⊗ w) for all v ∈ V and w ∈ W is a matter

of routine now, and left to the reader. Lemma 2.6.4 is thus proven.

74



Proof of Lemma 2.6.5. Let ρ : U (a) ⊗U(a∩b) U (b) → U (c) be the C-vector space
homomorphism defined by

ρ
(
α⊗U(a∩b) β

)
= αβ for all α ∈ U (a) and β ∈ U (b)

(this is clearly well-defined). By Proposition 2.4.1, this map ρ is an isomorphism of
left U (a)-modules and of right U (b)-modules. Hence, U (a) ⊗U(a∩b) U (b) ∼= U (c) as
left U (a)-modules and simultaneously right U (b)-modules. Now,

Inda
a∩b

Resba∩b N︸︷︷︸
∼=U(b)⊗U(b)N

 ∼= Inda
a∩b

Resba∩b
(
U (b)⊗U(b) N

)︸ ︷︷ ︸
=U(b)⊗U(b)N

(as a U(a∩b)-module)


= Inda

a∩b
(
U (b)⊗U(b) N

)
= U (a)⊗U(a∩b)

(
U (b)⊗U(b) N

)
∼=
(
U (a)⊗U(a∩b) U (b)

)︸ ︷︷ ︸
∼=U(c)

⊗U(b)N ∼= U (c)⊗U(b) N

= Indc
bN = Resca (Indc

bN) as a-modules.

This proves Lemma 2.6.5.
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Proof of Proposition 2.6.1. We have M+
λ = U (g)⊗U(h⊕n+) Cλ = Indg

h⊕n+
Cλ. Thus,

Homg

(
M+

λ ⊗M
−
−λ,C

)

= Homg


(

Indg
h⊕n+

Cλ
)
⊗M−

−λ︸ ︷︷ ︸
∼=Indg

h⊕n+
(Cλ⊗M−−λ)

(by Lemma 2.6.4)

,C


∼= Homg

(
Indg

h⊕n+

(
Cλ ⊗M−

−λ
)
,C
)

∼= Homh⊕n+

Cλ ⊗ M−
−λ︸︷︷︸

=U(g)⊗U(h⊕n−)C−λ
=Indg

h⊕n−
C−λ

,C

 (by Frobenius reciprocity)

= Homh⊕n+

Cλ ⊗
(

Indg
h⊕n− C−λ

)
︸ ︷︷ ︸
∼=Indg

h⊕n−
(Cλ⊗C−λ)

(by Lemma 2.6.4)

,C


∼= Homh⊕n+

(
Indg

h⊕n− (Cλ ⊗ C−λ) ,C
)

∼= Homh⊕n+

(
Ind

h⊕n+

h (Cλ ⊗ C−λ) ,C
)


since Lemma 2.6.5 (applied to c = g, a = h⊕ n+, b = h⊕ n− and N = Cλ ⊗ C−λ)

yields Ind
h⊕n+

h

(
Res

h⊕n−
h (Cλ ⊗ C−λ)

)
∼= Resgh⊕n+

(
Indg

h⊕n− (Cλ ⊗ C−λ)
)

,

which rewrites as Ind
h⊕n+

h (Cλ ⊗ C−λ) ∼= Indg
h⊕n− (Cλ ⊗ C−λ)

(since we are suppressing the Res functors),

so that Indg
h⊕n− (Cλ ⊗ C−λ) ∼= Ind

h⊕n+

h (Cλ ⊗ C−λ) (as (h⊕ n+) -modules)


∼= Homh (Cλ ⊗ C−λ,C) (by Frobenius reciprocity)
∼= C (since Cλ ⊗ C−λ ∼= C as h-modules (this is easy to see)) .

This isomorphism Homg

(
M+

λ ⊗M
−
−λ,C

)
→ C is easily seen to map every g-invariant

bilinear form (·, ·) : M+
λ ×M

−
−λ → C (seen as a linear map M+

λ ⊗M
−
−λ → C) to the

value
(
v+
λ , v

−
−λ
)
. Hence, there exists a unique g-invariant bilinear form M+

λ ×M
−
−λ → C

satisfying
(
v+
λ , v

−
−λ
)

= 1 (where we denote this bilinear form by (·, ·)), and every other
g-invariant bilinear form M+

λ ×M
−
−λ → C must be a scalar multiple of this one. This

proves Proposition 2.6.1 (a) and (c).
Now, for the proof of (b): Denote by (·, ·) the unique g-invariant bilinear form

M+
λ ×M

−
−λ → C satisfying

(
v+
λ , v

−
−λ
)

= 1. Let us now prove that this bilinear form is
of degree 0:

Consider the antipode S : U (g) → U (g) of the Hopf algebra U (g). This S is a
graded algebra antiautomorphism satisfying S (x) = −x for every x ∈ g. It can be
explicitly described by

S (x1x2...xm) = (−1)m xmxm−1...x1 for all m ∈ N and x1, x2, ..., xm ∈ g.
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We can easily see by induction (using the g-invariance of the bilinear form (·, ·)) that
(v, aw) = (S (a) v, w) for all v ∈M+

λ and w ∈M−
−λ and a ∈ U (g). In particular,(

av+
λ , bv

−
−λ
)

=
(
S (b) av+

λ , v
−
−λ
)

for all a ∈ U (g) and b ∈ U (g) .

Thus,
(
av+

λ , bv
−
−λ
)

=
(
S (b) av+

λ , v
−
−λ
)

= 0 whenever a and b are homogeneous elements
of U (g) satisfying deg b > − deg a (this is because any two homogeneous elements a
and b of U (g) satisfying deg b > − deg a satisfy S (b) av+

λ = 0 50). In other words,
whenever n ∈ Z and m ∈ Z are integers satisfying m > −n, we have

(
av+

λ , bv
−
−λ
)

= 0
for every a ∈ U (g) [n] and b ∈ U (g) [m]. Since M+

λ [n] =
{
av+

λ | a ∈ U (g) [n]
}

and
M−
−λ [m] =

{
bv−−λ | b ∈ U (g) [m]

}
, this rewrites as follows: Whenever n ∈ Z and

m ∈ Z are integers satisfying m > −n, we have
(
M+

λ [n] ,M−
−λ [m]

)
= 0.

Similarly, using the formula (av, w) = (v, S (a)w) (which holds for all v ∈ M+
λ and

w ∈ M−
−λ and a ∈ U (g)), we can show that whenever n ∈ Z and m ∈ Z are integers

satisfying m < −n, we have
(
M+

λ [n] ,M−
−λ [m]

)
= 0.

Thus we have
(
M+

λ [n] ,M−
−λ [m]

)
= 0 whenever m > −n and whenever m < −n.

Hence,
(
M+

λ [n] ,M−
−λ [m]

)
can only be nonzero when m = −n. In other words, the

form (·, ·) has degree 0. This proves Proposition 2.6.1. In this proof, we have not used
any properties of C other than being a commutative ring over which n−, n+ and h are
free modules (the latter was only used for applying consequences of Poincaré-Birkhoff-
Witt); we thus have also verified Remark 2.6.2.

2.6.2. Generic nondegeneracy: Statement of the fact

We will later (Theorem 2.7.3) see that the bilinear form (·, ·)λ : M+
λ ×M−

−λ → C is
nondegenerate if and only if the g-module M+

λ is irreducible. This makes the question
of when the form (·, ·)λ is nondegenerate an important question to study. It can, in
many concrete cases, be answered by combinatorial computations. But let us first give
a general result about how it is nondegenerate “if λ is in sufficiently general position”:

Theorem 2.6.6. Assume that g is a nondegenerate Z-graded Lie algebra.
Let (·, ·) be the form (·, ·)λ : M+

λ ×M
−
−λ → C. (In other words, let (·, ·) be the

unique g-invariant bilinear form M+
λ ×M

−
−λ → C satisfying

(
v+
λ , v

−
−λ
)

= 1. Such a
form exists and is unique by Proposition 2.6.1 (a).)

In every degree, the form (·, ·) is nondegenerate for generic λ. More precisely: For
every n ∈ N, the restriction of the form (·, ·) : M+

λ ×M
−
−λ → C to M+

λ [−n]×M−
−λ [n]

is nondegenerate for generic λ.
(What “generic λ” means here may depend on the degree. Thus, we cannot claim

that “for generic λ, the form (·, ·) is nondegenerate in every degree”!)

The proof of this theorem will occupy the rest of Section 2.6. While the statement
of Theorem 2.6.6 itself will never be used in this text, the proof involves several useful
ideas and provides good examples of how to work with Verma modules computationally;
moreover, the main auxiliary result (Proposition 2.6.17) will be used later in the text.

50Proof. Let a and b be homogeneous elements of U (g) satisfying deg b > −deg a. Then, deg b +
deg a > 0, and thus the element S (b) av+

λ of M+
λ is a homogeneous element of positive degree

(since deg v+
λ = 0), but the only homogeneous element of M+

λ of positive degree is 0 (since M+
λ is

concentrated in nonpositive degrees), so that S (b) av+
λ = 0.
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[Note: The below proof has been written at nighttime and not been
checked for mistakes. It also has not been checked for redundancies and
readability.]

2.6.3. Proof of Theorem 2.6.6: Casting bilinear forms on coinvariant spaces

Before we start with the proof, a general fact from representation theory:

Lemma 2.6.7. Let k be a field, and let G be a finite group. Let Λ ∈ k [G] be the
element

∑
g∈G

g.

Let V and W be representations of G over k. Let B : V ×W → k be a G-invariant
bilinear form.

(a) Then, there exists one and only one bilinear form B′ : VG×WG → k satisfying

B′ (v, w) = B (Λv, w) = B (v,Λw) for all v ∈ V and w ∈ W .

(Here, v denotes the projection of v onto VG, and w denotes the projection of w onto
WG.)

(b) Assume that |G| is invertible in k (in other words, assume that char k is either
0 or coprime to |G|). If the form B is nondegenerate, then the form B′ constructed
in Lemma 2.6.7 (a) is nondegenerate, too.

Proof of Lemma 2.6.7. Every h ∈ G satisfies

hΛ = h
∑
g∈G

g

(
since Λ =

∑
g∈G

g

)

=
∑
g∈G

hg =
∑
i∈G

i

(
here, we substituted i for hg in the sum, since the map

G→ G, g 7→ hg is a bijection

)
=
∑
g∈G

g = Λ

and similarly Λh = Λ.
Also,∑

g∈G

g−1 =
∑
g∈G

g

(
here, we substituted g for g−1 in the sum, since the map

G→ G, g 7→ g−1 is a bijection

)
= Λ.

We further notice that the group G acts trivially on the G-modules k and WG (this
follows from the definitions of these modules), and thus G acts trivially on Hom (WG, k)
as well.

For every v ∈ V , the map

W → k, w 7→ B (Λv, w)
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is clearly G-equivariant (since it maps hw to

B

(
Λ︸︷︷︸

=hΛ

v, hw

)
= B (hΛv, hw) = B (Λv, w) (since B is G-invariant)

= hB (Λv, w) (since G acts trivially on k)

for every h ∈ G and w ∈ W ), and thus descends to a map

WG → kG, w 7→ B (Λv, w).

Hence, we have obtained a map

V → Hom (WG, kG) , v 7→
(
w 7→ B (Λv, w)

)
.

Since kG = k (because G acts trivially on k), this rewrites as a map

V → Hom (WG, k) , v 7→ (w 7→ B (Λv, w)) .

This map, too, is G-equivariant (since it maps hv to the map(
WG → k, w 7→ B

(
Λh︸︷︷︸
=Λ

v, w

))
= (WG → k, w 7→ B (Λv, w)) = h (WG → k, w 7→ B (Λv, w))

(since G acts trivially on Hom (WG, k))

for every h ∈ G and v ∈ V ). Thus, it descends to a map

VG → (Hom (WG, k))G , v 7→ (w 7→ B (Λv, w)).

Since (Hom (WG, k))G = Hom (WG, k) (because G acts trivially on Hom (WG, k)), this
rewrites as a map

VG → Hom (WG, k) , v 7→ (w 7→ B (Λv, w)) .

This map can be rewritten as a bilinear form VG ×WG → k which maps (v, w) to
B (Λv, w) for all v ∈ V and w ∈ W . Since

B (Λv, w) = B

(∑
g∈G

gv, w

) (
since Λ =

∑
g∈G

g

)

=
∑
g∈G

B

gv, w︸︷︷︸
=gg−1w

 =
∑
g∈G

B
(
gv, gg−1w

)︸ ︷︷ ︸
=B(v,g−1w)

(since B is G-invariant)

=
∑
g∈G

B
(
v, g−1w

)

= B

v,
∑
g∈G

g−1

︸ ︷︷ ︸
=Λ

w

 = B (v,Λw)
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for all v ∈ V and w ∈ W , we have thus proven that there exists a bilinear form
B′ : VG ×WG → k satisfying

B′ (v, w) = B (Λv, w) = B (v,Λw) for all v ∈ V and w ∈ W .

The uniqueness of such a form is self-evident. This proves Lemma 2.6.7 (a).
(b) Assume that |G| is invertible in k. Assume that the form B is nondegenerate.

Consider the form B′ constructed in Lemma 2.6.7 (a).
Let p ∈ VG be such that B′ (p,WG) = 0. Since p ∈ VG, there exists some v ∈ V

such that p = v. Consider this v. Then, every w ∈ W satisfies B (Λv, w) = 0

(since B (Λv, w) = B′

 v︸︷︷︸
=p

, w︸︷︷︸
∈WG

 ∈ B′ (p,WG) = 0). Hence, Λv = 0 (since B is

nondegenerate).
But since the projection of V to VG is a G-module map, we have

Λv = Λv =
∑
g∈G

gv︸︷︷︸
=v

(since G acts
trivially on VG)

(
since Λ =

∑
g∈G

g

)

=
∑
g∈G

v = |G| v.

Since |G| is invertible in k, this yields v =
1

|G|
Λv = 0 (since Λv = 0), so that p = v = 0.

We have thus shown that every p ∈ VG such that B′ (p,WG) = 0 must satisfy p = 0.
In other words, the form B′ is nondegenerate. Lemma 2.6.7 (b) is proven.

2.6.4. Proof of Theorem 2.6.6: The form (·, ·)◦λ
Let us formulate some standing assumptions:

Convention 2.6.8. From now on until the end of Section 2.6, we let g be a Z-graded
Lie algebra, and let λ ∈ h∗. We also require that g0 is abelian (this is condition (2) of
Definition 2.5.4), but we do not require g to be nondegenerate (unless we explicitly
state this).

As vector spaces, M+
λ = U (n−) v+

λ
∼= U (n−) (where the isomorphism maps v+

λ to
1) and M−

−λ = U (n+) v−−λ
∼= U (n+) (where the isomorphism maps v−−λ to 1). Thus,

the bilinear form (·, ·) = (·, ·)λ : M+
λ × M−

−λ → C corresponds to a bilinear form
U (n−)× U (n+)→ C.

For every n ∈ N, let (·, ·)λ,n denote the restriction of our form (·, ·) = (·, ·)λ :

M+
λ ×M

−
−λ → C to M+

λ [−n]×M−
−λ [n]. In order to prove Theorem 2.6.6, it is enough to

prove that for every n ∈ N, when g is nondegenerate, this form (·, ·)λ,n is nondegenerate
for generic λ.

We now introduce a C-bilinear form, which will turn out to be, in some sense, the
“highest term” of the form (·, ·) with respect to λ (what this exactly means will be
explained in Proposition 2.6.17).
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Proposition 2.6.9. For every k ∈ N, there exists one and only one C-bilinear form
λk : Sk (n−)× Sk (n+)→ C by

λk (α1α2...αk, β1β2...βk) =
∑
σ∈Sk

λ
([
α1, βσ(1)

])
λ
([
α2, βσ(2)

])
...λ
([
αk, βσ(k)

])
for all α1, α2, ..., αk ∈ n− and β1, β2, ..., βk ∈ n+.

(36)

Here, we are using the following convention:

Convention 2.6.10. From now on until the end of Section 2.6, the map λ : g0 → C
is extended to a linear map λ : g→ C by composing it with the canonical projection
g→ g0.

First proof of Proposition 2.6.9 (sketched). Let k ∈ N. The value of∑
σ∈Sk

λ
([
α1, βσ(1)

])
λ
([
α2, βσ(2)

])
...λ
([
αk, βσ(k)

])
depends linearly on each of the α1, α2, ..., αk and β1, β2, ..., βk, and is invariant under
any permutation of the α1, α2, ..., αk and under any permutation of the β1, β2, ..., βk
(as is easily checked). This readily shows that we can indeed define a C-bilinear form
λk : Sk (n−)× Sk (n+)→ C by (36). This proves Proposition 2.6.9.

Second proof of Proposition 2.6.9. Let G = Sk. Let Λ ∈ C [G] be the element∑
g∈Sk

g =
∑
σ∈Sk

σ =
∑
σ∈Sk

σ−1. Let V and W be the canonical representations n⊗k− and

n⊗k+ of Sk (where Sk acts by permuting the tensorands). Let B : V ×W → C be the
C-bilinear form defined as the k-th tensor power of the C-bilinear form n− × n+ → C,
(α, β) 7→ λ ([α, β]). It is easy to see that this form is Sk-invariant (in fact, more
generally, the k-th tensor power of any bilinear form is Sk-invariant). Thus, Lemma
2.6.7 (a) (applied to C instead of k) yields that there exists one and only one bilinear
form B′ : VG ×WG → C satisfying

B′ (v, w) = B (Λv, w) = B (v,Λw) for all v ∈ V and w ∈ W (37)

(where v denotes the projection of v onto VG = VSk = Sk (n−), and w denotes the
projection of w onto WG = WSk = Sk (n+)). Consider this form B′. All α1, α2, ..., αk ∈
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n− and β1, β2, ..., βk ∈ n+ satisfy

B′ (α1α2...αk, β1β2...βk)

= B′
(
α1 ⊗ α2 ⊗ ...⊗ αk, β1 ⊗ β2 ⊗ ...⊗ βk

)(
since α1α2...αk = α1 ⊗ α2 ⊗ ...⊗ αk and β1β2...βk = β1 ⊗ β2 ⊗ ...⊗ βk

)
= B (α1 ⊗ α2 ⊗ ...⊗ αk,Λ (β1 ⊗ β2 ⊗ ...⊗ βk))

(by (37), applied to v = α1 ⊗ α2 ⊗ ...⊗ αk and w = β1 ⊗ β2 ⊗ ...⊗ βk)

= B

(
α1 ⊗ α2 ⊗ ...⊗ αk,

∑
σ∈Sk

βσ(1) ⊗ βσ(2) ⊗ ...⊗ βσ(k)

)


since Λ =
∑
σ∈Sk

σ−1 yields Λ (β1 ⊗ β2 ⊗ ...⊗ βk) =
∑
σ∈Sk

σ−1 (β1 ⊗ β2 ⊗ ...⊗ βk)︸ ︷︷ ︸
=βσ(1)⊗βσ(2)⊗...⊗βσ(k)

=
∑
σ∈Sk

βσ(1) ⊗ βσ(2) ⊗ ...⊗ βσ(k)


=
∑
σ∈Sk

B
(
α1 ⊗ α2 ⊗ ...⊗ αk, βσ(1) ⊗ βσ(2) ⊗ ...⊗ βσ(k)

)︸ ︷︷ ︸
=λ([α1,βσ(1)])λ([α2,βσ(2)])...λ([αk,βσ(k)])

(since B is the k-th tensor power of the C-bilinear form n−×n+→C, (α,β)7→λ([α,β]))

=
∑
σ∈Sk

λ
([
α1, βσ(1)

])
λ
([
α2, βσ(2)

])
...λ
([
αk, βσ(k)

])
.

Thus, there exists a C-bilinear form λk : Sk (n−)×Sk (n+)→ C satisfying (36) (namely,
B′). On the other hand, there exists at most one C-bilinear form λk : Sk (n−) ×
Sk (n+) → C satisfying (36) 51. Hence, we can indeed define a C-bilinear form
λk : Sk (n−)× Sk (n+)→ C by (36). And, moreover,

this form λk is the form B′ satisfying (37). (38)

Proposition 2.6.9 is thus proven.

Definition 2.6.11. For every k ∈ N, let λk : Sk (n−)×Sk (n+)→ C be the C-bilinear
form whose existence and uniqueness is guaranteed by Proposition 2.6.9. These forms
can be added together, resulting in a bilinear form

⊕
k≥0

λk : S (n−)× S (n+)→ C. It

is very easy to see that this form is of degree 0 (where the grading on S (n−) and
S (n+) is not the one that gives the k-th symmetric power the degree k for every
k ∈ N, but is the one induced by the grading on n− and n+). Denote this form by
(·, ·)◦λ.

2.6.5. Proof of Theorem 2.6.6: Generic nondegeneracy of (·, ·)◦λ

51Proof. The vector space Sk (n−) is spanned by products of the form α1α2...αk with α1, α2, ..., αk ∈
n−, whereas the vector space Sk (n+) is spanned by products of the form β1β2...βk with
β1, β2, ..., βk ∈ n+. Hence, the equation (36) makes it possible to compute the value of λk (A,B)
for any A ∈ Sk (n−) and B ∈ Sk (n+). Thus, the equation (36) uniquely determines λk. In other
words, there exists at most one C-bilinear form λk : Sk (n−)× Sk (n+)→ C satisfying (36).
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Lemma 2.6.12. Let λ ∈ h∗ be such that the C-bilinear form n−×n+ → C, (α, β) 7→
λ ([α, β]) is nondegenerate. Then, the form (·, ·)◦λ is nondegenerate.

Proof of Lemma 2.6.12. Let k ∈ N. Introduce the same notations as in the Second
proof of Proposition 2.6.9.

The C-bilinear form n− × n+ → C, (α, β) 7→ λ ([α, β]) is nondegenerate. Thus,
the k-th tensor power of this form is also nondegenerate (since all tensor powers of a
nondegenerate form are always nondegenerate). But the k-th tensor power of this form
is B. Thus, B is nondegenerate. Hence, Lemma 2.6.7 (b) yields that the form B′ is
nondegenerate. Due to (38), this yields that the form λk is nondegenerate.

Forget that we fixed k. We thus have shown that for every k ∈ N, the form λk is
nondegenerate. Thus, the direct sum

⊕
k≥0

λk of these forms is also nondegenerate. Since⊕
k≥0

λk = (·, ·)◦λ, this yields that (·, ·)◦λ is nondegenerate. This proves Lemma 2.6.12.

For every n ∈ N, define (·, ·)◦λ,n : S (n−) [−n] × S (n+) [n] → C to be the restriction

of this form (·, ·)◦λ =
⊕
k≥0

λk : S (n−)× S (n+)→ C to S (n−) [−n]× S (n+) [n]. We now

need the following strengthening of Lemma 2.6.12:

Lemma 2.6.13. Let n ∈ N and λ ∈ h∗ be such that the bilinear form

g−k × gk → C, (a, b) 7→ λ ([a, b])

is nondegenerate for every k ∈ {1, 2, ..., n}. Then, the form (·, ·)◦λ,n must also be
nondegenerate.

Proof of Lemma 2.6.13. For Lemma 2.6.12 to hold, we did not need g to be a graded
Lie algebra; we only needed that g is a graded vector space with a well-defined bilinear
map [·, ·] : g−k × gk → g0 for every positive integer k. This is a rather weak condition,
and holds not only for g, but also for the graded subspace g−n ⊕ g−n+1 ⊕ ...⊕ gn of g.
Denote this graded subspace g−n ⊕ g−n+1 ⊕ ...⊕ gn by g′, and let n′− ⊕ h′ ⊕ n′+ be its
triangular decomposition (thus, n′− = g−n ⊕ g−n+1 ⊕ ... ⊕ g−1, h′ = g0 = h and n′+ =
g1⊕g2⊕...⊕gn). The C-bilinear form n′−×n′+ → C, (α, β) 7→ λ ([α, β]) is nondegenerate
(because the bilinear form g−k × gk → C, (a, b) 7→ λ ([a, b]) is nondegenerate for every
k ∈ {1, 2, ..., n}). Hence, by Lemma 2.6.12, the form (·, ·)◦λ defined for g′ instead
of g is nondegenerate. Since this form is of degree 0, the restriction (·, ·)◦λ,n of this

form to S
(
n′−
)

[−n]×S
(
n′+
)

[n] must also be nondegenerate52. But since S
(
n′+
)

[n] =

52This is because if V and W are two graded vector spaces, and φ : V ×W → C is a nondegenerate
bilinear form of degree 0, then for every n ∈ Z, the restriction of φ to V [−n]×W [n] must also be
nondegenerate.
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S (n+) [n] 53 and S
(
n′−
)

[−n] = S (n−) [−n] 54, this restriction is exactly our form
(·, ·)◦λ,n : S (n−) [−n] × S (n+) [n] → C (in fact, the form is clearly given by the same

formula). Thus we have shown that our form (·, ·)◦λ,n : S (n−) [−n]× S (n+) [n]→ C is
nondegenerate. Lemma 2.6.13 is proven.

2.6.6. Proof of Theorem 2.6.6: (·, ·)◦λ is the “highest term” of (·, ·)λ
Before we go on, let us sketch the direction in which we want to go. We want to
study how, for a fixed n ∈ N, the form (·, ·)λ,n changes with λ. If V and W are
two finite-dimensional vector spaces of the same dimension, and if we have chosen
bases for these two vector spaces V and W , then we can represent every bilinear form
V ×W → C as a square matrix with respect to these two bases, and the bilinear form
is nondegenerate if and only if this matrix has nonzero determinant. This suggests

that we study how the determinant det
(

(·, ·)λ,n
)

of the form (·, ·)λ,n with respect to

some bases of M+
λ [−n] and M−

−λ [n] changes with λ (and, in particular, show that this
determinant is nonzero for generic λ when g is nondegenerate). Of course, speaking

of this determinant det
(

(·, ·)λ,n
)

only makes sense when the bases of M+
λ [−n] and

M−
−λ [n] have the same size (since only square matrices have determinants), but this is

automatically satisfied if we have dim (gn) = dim (g−n) for every integer n > 0 (this
condition is automatically satisfied when g is a nondegenerate Z-graded Lie algebra,
but of course not only then).

Unfortunately, the spaces M+
λ [−n] and M−

−λ [n] themselves change with λ. Thus,

53Proof. Since n+ =
∑
i≥1

gi, we have S (n+) =
∑
k∈N

∑
(i1,i2,...,ik)∈Nk;

each ij≥1

gi1gi2 ...gik and thus

S (n+) [n] =
∑
k∈N

∑
(i1,i2,...,ik)∈Nk;

each ij≥1;
i1+i2+...+ik=n

gi1gi2 ...gik

(since gi1gi2 ...gik ⊆ S (n+) [i1 + i2 + ...+ ik] for all (i1, i2, ..., ik) ∈ Nk). Similarly,

S
(
n′+
)

[n] =
∑
k∈N

∑
(i1,i2,...,ik)∈Nk;

each ij≥1;
each |ij |≤n;

i1+i2+...+ik=n

gi1gi2 ...gik

(because g′ is obtained from g by removing all gi with |i| > n). Thus,

S
(
n′+
)

[n] =
∑
k∈N

∑
(i1,i2,...,ik)∈Nk;

each ij≥1;
each |ij |≤n;

i1+i2+...+ik=n

gi1gi2 ...gik =
∑
k∈N

∑
(i1,i2,...,ik)∈Nk;

each ij≥1;
i1+i2+...+ik=n

gi1gi2 ...gik

 here, we removed the condition (each |ij | ≤ n) , because it was redundant
(since every (i1, i2, ..., ik) ∈ Nk satisfying i1 + i2 + ...+ ik = n automatically

satisfies (each |ij | ≤ n) )


= S (n+) [n] ,

qed.
54for analogous reasons
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if we want to pick some bases of M+
λ [−n] and M−

−λ [n] for all λ ∈ h∗, we have to
pick new bases for every λ. If we just pick these bases randomly, then the determi-

nant det
(

(·, ·)λ,n
)

can change very unpredictably (because the determinant depends

on the choice of bases). Thus, if we want to say something interesting about how

det
(

(·, ·)λ,n
)

changes with λ, then we should specify a reasonable choice of bases for

all λ. Fortunately, this is not difficult: It is enough to choose Poincaré-Birkhoff-Witt
bases for U (n−) [−n] and U (n+) [n], and thus obtain bases M+

λ [−n] and M−
−λ [n] due

to the isomorphisms M+
λ [−n] ∼= U (n−) [−n] and M−

−λ [n] ∼= U (n+) [n]. (See Conven-

tion 2.6.21 for details.) With bases chosen this way, the determinant det
(

(·, ·)λ,n
)

will

depend on λ polynomially, and we will be able to conclude some useful properties of
this polynomial.

So much for our roadmap. Let us first make a convention:

Convention 2.6.14. If V and W are two finite-dimensional vector spaces of the
same dimension, and if we have chosen bases for these two vector spaces V and
W , then we can represent every bilinear form B : V ×W → C as a square matrix
with respect to these two bases. The determinant of this matrix will be denoted by
detB and called the determinant of the form B. Of course, this determinant detB
depends on the bases chosen. A change of either basis induces a scaling of detB by
a nonzero scalar. Thus, while the determinant detB itself depends on the choice
of bases, the property of detB to be zero or nonzero does not depend on the choice
of bases.

Let us now look at how the form (·, ·)λ,n and its determinant det
(

(·, ·)λ,n
)

depend

on λ. We want to show that this dependence is polynomial. In order to make sense of
this, let us define what we mean by “polynomial” here:

Definition 2.6.15. Let V be a finite-dimensional vector space. A function φ : V →
C is said to be a polynomial function (or just to be polynomial – but this is not the
same as being a polynomial) if one of the following equivalent conditions holds:

(1) There exist a basis (β1, β2, ..., βm) of the dual space V ∗ and a polynomial
P ∈ C [X1, X2, ..., Xm] such that

every v ∈ V satisfies φ (v) = P (β1 (v) , β2 (v) , ..., βm (v)) .

(2) For every basis (β1, β2, ..., βm) of the dual space V ∗, there exists a polynomial
P ∈ C [X1, X2, ..., Xm] such that

every v ∈ V satisfies φ (v) = P (β1 (v) , β2 (v) , ..., βm (v)) .

(3) There exist finitely many elements β1, β2, ..., βm of the dual space V ∗ and a
polynomial P ∈ C [X1, X2, ..., Xm] such that

every v ∈ V satisfies φ (v) = P (β1 (v) , β2 (v) , ..., βm (v)) .

Note that this is exactly the meaning of the word “polynomial function” that is used
in Classical Invariant Theory. In our case (where the field is C), polynomial functions
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V → C can be identified with elements of the symmetric algebra S (V ∗), and in some
sense are an “obsoleted version” of the latter.55 For our goals, however, polynomial
functions are enough. Let us define the notion of homogeneous polynomial functions :

Definition 2.6.16. Let V be a finite-dimensional vector space.
(a) Let n ∈ N. A polynomial function φ : V → C is said to be homogeneous of

degree n if and only if

every v ∈ V and every λ ∈ C satisfy φ (λv) = λnφ (v) .

(b) A polynomial function φ : V → C is said to be homogeneous if and only if
there exists some n ∈ N such that φ is homogeneous of degree n.

(c) It is easy to see that for every polynomial function φ : V → C, there exists
a unique sequence (φn)n∈N of polynomial functions φn : V → C such that all but
finitely many n ∈ N satisfy φn = 0, such that φn is homogeneous of degree n for
every n ∈ N, and such that φ =

∑
n∈N

φn. This sequence is said to be the graded

decomposition of φ. For every n ∈ N, its member φn is called the n-th homogeneous
component of φ. If N is the highest n ∈ N such that φn 6= 0, then φN is said to be
the leading term of φ.

Note that Definition 2.6.16 (c) defines the “leading term” of a polynomial as its
highest-degree nonzero homogeneous component. This “leading term” may (and usu-
ally will) contain more than one monomial, so this notion of a “leading term” is not
the same as the notion of a “leading term” commonly used, e. g., in Gröbner basis
theory.

We now state the following crucial fact:

Proposition 2.6.17. Let n ∈ N. Assume that g is a nondegenerate Z-graded Lie
algebra. As a consequence, dim h = dim (g0) 6= ∞, so that dim (h∗) 6= ∞, and thus
the notion of a polynomial function h∗ → C is well-defined.

There is an appropriate way of choosing bases of the vector spaces S (n−) [−n]
and S (n+) [n] and bases of the vector spaces M+

λ [−n] and M−
−λ [n] for all λ ∈ h∗

such that the following holds:

(a) The determinants det
(

(·, ·)λ,n
)

and det
(

(·, ·)◦λ,n
)

(these determinants are

defined with respect to the chosen bases of S (n−) [−n], S (n+) [n], M+
λ [−n] and

M−
−λ [n]) depend polynomially on λ. By this, we mean that the functions

h∗ → C, λ 7→ det
(

(·, ·)λ,n
)

and
h∗ → C, λ 7→ det

(
(·, ·)◦λ,n

)
are polynomial functions.

55The identification of polynomial functions V → C with elements of the symmetric algebra S (V ∗)
works similarly over any infinite field instead of C. It breaks down over finite fields, however
(because different elements of S (V ∗) may correspond to the same polynomial function over a finite
field).
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(b) The leading term of the polynomial function

h∗ → C, λ 7→ det
(

(·, ·)λ,n
)

is
h∗ → C, λ 7→ det

(
(·, ·)◦λ,n

)
.

Remark 2.6.18. We can extend Proposition 2.6.17 to the case when g is no longer
nondegenerate. However, this requires the following changes to Proposition 2.6.17:

Replace the requirement that g be nondegenerate by the requirement that g sat-
isfy the conditions (1) and (2) in Definition 2.5.4 as well as the condition that
dim (gn) = dim (g−n) for every integer n > 0 (this condition is a weakening of
condition (3) in Definition 2.5.4). Replace the claim that “The leading term of

the polynomial function det
(

(·, ·)λ,n
)

is det
(

(·, ·)◦λ,n
)

, up to multiplication by a

nonzero scalar” by the claim that “There exists some k ∈ N such that the polyno-

mial function det
(

(·, ·)◦λ,n
)

is the k-th homogeneous component of the polynomial

function det
(

(·, ·)λ,n
)

, and such that the `-th homogeneous component of the poly-

nomial function det
(

(·, ·)λ,n
)

is 0 for all ` > k”. Note that this does not imply

that det
(

(·, ·)◦λ,n
)

is not identically zero, and indeed det
(

(·, ·)◦λ,n
)

can be identically
zero.

Before we prove Proposition 2.6.17, let us show how it completes the proof of Theo-
rem 2.6.6:

Proof of Theorem 2.6.6. Fix a positive n ∈ N. For generic λ, the bilinear form

g−k × gk → C, (a, b) 7→ λ ([a, b])

is nondegenerate for every k ∈ {1, 2, ..., n} (because g is nondegenerate). Thus, for
generic λ, the form (·, ·)◦λ,n must also be nondegenerate (by Lemma 2.6.13), so that

det
(

(·, ·)◦λ,n
)
6= 0. Since the leading term of the polynomial function

h∗ → C, λ 7→ det
(

(·, ·)λ,n
)

is
h∗ → C, λ 7→ det

(
(·, ·)◦λ,n

)
(by Proposition 2.6.17), this yields that det

(
(·, ·)λ,n

)
6= 0 for generic λ. In other words,

the form (·, ·)λ,n is nondegenerate for generic λ. But this form (·, ·)λ,n is exactly the

restriction of the form (·, ·) : M+
λ × M−

−λ → C to M+
λ [−n] × M−

−λ [n]. Hence, the
restriction of the form (·, ·) : M+

λ ×M
−
−λ → C to M+

λ [−n]×M−
−λ [n] is nondegenerate

for generic λ. This proves Theorem 2.6.6.
So all that remains to finish the proof of Theorem 2.6.6 is verifying Proposition

2.6.17.
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2.6.7. Proof of Theorem 2.6.6: Polynomial maps

We already defined the notion of a polynomial function in Definition 2.6.15. Let us
give a definition of a notion of a “polynomial map” which is tailored for our proof
of Theorem 2.6.6. I cannot guarantee that it is the same as what other people call
“polynomial map”, but it should be very close.

Definition 2.6.19. Let V be a finite-dimensional vector space. Let W be a vector
space. A map φ : V → W is said to be a polynomial map if and only if there exist:

- some n ∈ N;
- n vectors w1, w2, ..., wn in W ;
- n polynomial functions P1, P2, ..., Pn from V to C
such that

every v ∈ V satisfies φ (v) =
n∑
i=1

Pi (v)wi.

Note that it is clear that:

• If V is a finite-dimensional vector space andW is a vector space, then any C-linear
combination of polynomial maps V → W is a polynomial map.

• If V is a finite-dimensional vector space and W is a C-algebra, then any product
of polynomial maps V → W is a polynomial map.

• If V is a finite-dimensional vector space, then polynomial maps V → C are
exactly the same as polynomial functions V → C (since C-linear combinations of
polynomial functions are polynomial functions).

2.6.8. Proof of Theorem 2.6.6: The deformed Lie algebra gε

Before we go on, here is a rough plan of how we will attack Proposition 2.6.17:

In order to gain a foothold on det
(

(·, ·)λ,n
)

, we are going to consider not just one Lie

algebra g but a whole family (gε)ε∈C of its “deformations” at the same time. Despite
all of these deformations being isomorphic as Lie algebras with one exception, they will
give us useful information: we will show that the bilinear forms (·, ·)g

ε

λ,n they induce,
in some sense, depend “polynomially” on λ and ε. We will have to restrain from
speaking directly of the bilinear form (·, ·)g

ε

λ,n as depending polynomially on λ, since

this makes no sense (the domain of the bilinear form (·, ·)g
ε

λ,n changes with λ), but
instead we will sample this form on particular elements of the Verma modules coming
from appropriately chosen Poincaré-Birkhoff-Witt bases of U

(
nε−
)

and U
(
nε+
)
. These

sampled values of the form will turn out to depend polynomially on λ and ε, and

thus the determinant det
(

(·, ·)ελ,n
)

will be a polynomial function in λ and ε. This

polynomial function will turn out to have some kind of “homogeneity with respect to
λ and ε2” (this is not a standard notion, but see Corollary 2.6.27 for what exactly this
means in our context), so that the leading term of λ will be the term with smallest
power of ε (and, as it will turn out, this will be the power ε0, so this term will be
obtainable by setting ε to 0). Once this all is formalized and proven, we will explicitly
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show that (more or less) (·, ·)g
0

λ,n = (·, ·)◦λ,n (again this does not literally hold but must be

correctly interpreted), and we know the form (·, ·)◦λ,n to be nondegenerate (by Lemma

2.6.13), so that the form (·, ·)g
0

λ,n will be nondegenerate, and this will quickly yield the

nondegeneracy of det
(

(·, ·)ελ,n
)

for generic λ and ε, and thus the nondegeneracy of

det
(

(·, ·)λ,n
)

for generic λ.

Now, to the details. Consider the situation of Proposition 2.6.17. In particular, this
means that (from now on until the end of Section 2.6) the Lie algebra g will be assumed
nondegenerate.

First, let us define (gε)ε∈C.
For every ε ∈ C, let us define a new Lie bracket [·, ·]ε on the vector space g by the

formula

[x, y]ε = ε [x, y] + (1− ε) π ([x, y])− ε (1− ε) [x, π (y)]− ε (1− ε) [π (x) , y] (39)

for all x ∈ g and y ∈ g,

where π is the canonical projection g → g0. In other words, let us define a new Lie
bracket [·, ·]ε on the vector space g by

[x, y]ε = εδn,0+δm,0+1−δn+m,0 [x, y] (40)

for all n ∈ Z, m ∈ Z, x ∈ gn and y ∈ gm

(note that the right hand side of this equation makes sense since 1− δn+m,0 ≥ 0 for all
n ∈ Z and m ∈ Z) 56. It is easy to prove that this Lie bracket [·, ·]ε is antisymmetric
and satisfies the Jacobi identity57 and is graded. Thus, this Lie bracket [·, ·]ε defines a
graded Lie algebra structure on g. Let us denote this Lie algebra by gε. Thus, gε is
identical with g as a vector space, but the Lie bracket on gε is [·, ·]ε rather than [·, ·].
56Proving that these two definitions of [·, ·]ε are equivalent is completely straightforward: just assume

WLOG that x and y are homogeneous, so that x ∈ gn and y ∈ gm for n ∈ Z and m ∈ Z, and
distinguish between the following four cases:

Case 1: We have n = 0 and m = 0.
Case 2: We have n 6= 0 and m 6= 0 but n+m = 0.
Case 3: We have n 6= 0, m 6= 0 and n+m 6= 0.
Case 4: Exactly one of n and m is 0.
In Case 1, the assumption that g0 is abelian must be used.

57Proof. Antisymmetry is obvious. As for the Jacobi identity, it can be proven in a straightforward
way:

We must show the equality [x, [y, z]
ε
]
ε

+ [y, [z, x]
ε
]
ε

+ [z, [x, y]
ε
]
ε

= 0 for all x, y, z ∈ g. Since this
equality is linear in each of x, y and z, it is enough to prove it for homogeneous x, y, z ∈ g. So let
x, y, z ∈ g be homogeneous. Then, there exist n,m, p ∈ Z such that x ∈ gn, y ∈ gm and z ∈ gp.
Consider these n, m and p. Then, by (40) (applied to y, z, m and p instead of x, y, n and m), we
have [y, z]

ε
= εδm,0+δp,0+1−δm+p,0 [y, z]. Thus,

[x, [y, z]
ε
]
ε

=
[
x, εδm,0+δp,0+1−δm+p,0 [y, z]

]ε
= εδm,0+δp,0+1−δm+p,0 [x, [y, z]]

ε

= εδm,0+δp,0+1−δm+p,0εδn,0+δm+p,0+1−δn+m+p,0 [x, [y, z]](
because (40) (applied to [y, z] and m+ p instead of y and m) yields

[x, [y, z]]
ε

= εδn,0+δm+p,0+1−δn+m+p,0 [x, [y, z]] (since [y, z] ∈ gm+p (since y ∈ gm and z ∈ gp))

)
= εδm,0+δp,0+1−δm+p,0+δn,0+δm+p,0+1−δn+m+p,0 [x, [y, z]] = εδn,0+δm,0+δp,0+2−δn+m+p,0 [x, [y, z]] .
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Trivially, g1 = g (this is an actual equality, not only an isomorphism) and [·, ·]1 = [·, ·].
For every ε ∈ C, define a C-linear map Jε : gε → g by

Jε (x) = ε1+δn,0x for every n ∈ Z and x ∈ gn.

Then, Jε is a Lie algebra homomorphism58. Also, Jε is a vector space isomorphism
when ε 6= 0. Hence, Jε is a Lie algebra isomorphism when ε 6= 0. Moreover, J1 = id.

For every ε ∈ C, we are going to denote by nε−, nε+ and hε the vector spaces n−,
n+ and h as Lie subalgebras of gε. Note that hε = h as Lie algebras (because h
and hε are abelian Lie algebras), but the equalities nε− = n− and nε+ = n+ hold only
as equalities of vector spaces (unless we are in some rather special situation). Since
the grading of gε is the same as the grading of g, the triangular decomposition of gε is
nε− ⊕ hε ⊕ nε+ for every ε ∈ C.

Now, we are dealing with several Lie algebras on the same vector space, and we are
going to be dealing with their Verma modules. In order not to confuse them, let us
introduce a notation:

Convention 2.6.20. In the following, whenever e is a Z-graded Lie algebra, and
λ ∈ e∗0, we are going to denote by M+e

λ the Verma highest-weight module of (e, λ),
and we are going to denote by M−e

λ the Verma lowest-weight module of (e, λ). We

Similarly,

[y, [z, x]
ε
]
ε

= εδn,0+δm,0+δp,0+2−δn+m+p,0 [y, [z, x]] and

[z, [x, y]
ε
]
ε

= εδn,0+δm,0+δp,0+2−δn+m+p,0 [z, [x, y]] .

Adding up these three equations yields

[x, [y, z]
ε
]
ε

+ [y, [z, x]
ε
]
ε

+ [z, [x, y]
ε
]
ε

= εδn,0+δm,0+δp,0+2−δn+m+p,0 [x, [y, z]] + εδn,0+δm,0+δp,0+2−δn+m+p,0 [y, [z, x]] + εδn,0+δm,0+δp,0+2−δn+m+p,0 [z, [x, y]]

= εδn,0+δm,0+δp,0+2−δn+m+p,0 ([x, [y, z]] + [y, [z, x]] + [z, [x, y]])︸ ︷︷ ︸
=0 (since g is a Lie algebra)

= 0.

This proves the Jacobi identity for the Lie bracket [·, ·]ε, qed.
58Proof. We must show that Jε ([x, y]

ε
) = [Jε (x) , Jε (y)] for all x, y ∈ g. In order to show this,

it is enough to prove that Jε ([x, y]
ε
) = [Jε (x) , Jε (y)] for all homogeneous x, y ∈ g (because

of linearity). So let x, y ∈ g be homogeneous. Thus, there exist n ∈ Z and m ∈ Z such that
x ∈ gn and y ∈ gm. Consider these n and m. Then, [x, y] ∈ gn+m. Now, Jε (x) = ε1+δn,0x and
Jε (y) = ε1+δm,0y by the definition of Jε. Thus,

[Jε (x) , Jε (y)] =
[
ε1+δn,0x, ε1+δm,0y

]
= ε1+δn,0ε1+δm,0 [x, y] = ε2+δn,0+δm,0 [x, y] .

Compared with

Jε ([x, y]
ε
) = Jε

(
εδn,0+δm,0+1−δn+m,0 [x, y]

)
(by (40))

= εδn,0+δm,0+1−δn+m,0 Jε ([x, y])︸ ︷︷ ︸
=ε1+δn+m,0 [x,y]

(by the definition of Jε,
since [x,y]∈gn+m)

= εδn,0+δm,0+1−δn+m,0ε1+δn+m,0 [x, y]

= ε2+δn,0+δm,0 [x, y] ,

this yields Jε ([x, y]
ε
) = [Jε (x) , Jε (y)], qed.
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will furthermore denote by v+e
λ the defining vector of M+e

λ , and we will denote by
v−eλ the defining vector of M−e

λ .
Further, we denote by (·, ·)eλ and (·, ·)eλ,n the forms (·, ·)λ and (·, ·)λ,n defined for

the Lie algebra e instead of g.

Thus, for instance, the Verma highest-weight module of (g, λ) (which we have always
denoted by M+

λ ) can now be called M+g
λ , and thus can be discerned from the Verma

highest-weight module M+gε

λ of (gε, λ).

Convention 2.6.21. For every n ∈ Z, let (en,i)i∈{1,2,...,mn} be a basis of the vector

space gn (such a basis exists since dim (gn) < ∞). Then, (en,i)(n,i)∈E is a basis of

the vector space g, where E = {(n, i) | n ∈ Z; i ∈ {1, 2, ...,mn}}.
For every integer n > 0, we have dim (gn) = mn (since (en,i)i∈{1,2,...,mn} is a basis

of the vector space gn) and dim (g−n) = m−n (similarly), so that mn = dim (gn) =
dim (g−n) = m−n. Of course, this yields that mn = m−n for every integer n (whether
positive or not).

We totally order the set E lexicographically. Let SeqE be the set of all finite
sequences of elements of E. For every i ∈ SeqE and every ε ∈ C, we define an
element eεi of U (gε) by

eεi = en1,i1en2,i2 ...en`,i` , where we write i in the form ((n1, i1) , (n2, i2) , ..., (n`, i`)) .

For every i ∈ SeqE, we define the length len i of i to be the number of mem-
bers of i (in other words, we set len i = `, where we write i in the form
((n1, i1) , (n2, i2) , ..., (n`, i`))), and we define the degree deg i of i to be the sum
n1 + n2 + ... + n`, where we write i in the form ((n1, i1) , (n2, i2) , ..., (n`, i`)). It
is clear that eεi ∈ U (gε) [deg i].

Let Seq+ E be the set of all nondecreasing sequences
((n1, i1) , (n2, i2) , ..., (n`, i`)) ∈ SeqE such that all of n1, n2, ..., n` are posi-
tive. By the Poincaré-Birkhoff-Witt theorem (applied to the Lie algebra nε+), the
family

(
eεj
)
j∈Seq+ E

is a basis of the vector space U
(
nε+
)
. Moreover, it is a graded

basis, i. e., the family
(
eεj
)
j∈Seq+ E; deg j=n

is a basis of the vector space U
(
nε+
)

[n] for

every n ∈ Z. Hence,
(
eεjv
−gε
−λ

)
j∈Seq+ E; deg j=n

is a basis of the vector space M−gε
−λ [n]

for every n ∈ Z and λ ∈ h∗.
Let Seq−E be the set of all nonincreasing sequences

((n1, i1) , (n2, i2) , ..., (n`, i`)) ∈ SeqE such that all of n1, n2, ..., n` are nega-
tive. By the Poincaré-Birkhoff-Witt theorem (applied to the Lie algebra nε−), the
family (eεi )i∈Seq− E

is a basis of the vector space U
(
nε−
)
. Moreover, it is a graded

basis, i. e., the family (eεi )i∈Seq− E; deg i=−n is a basis of the vector space U
(
nε−
)

[−n]

for every n ∈ Z. Hence,
(
eεiv

+gε

λ

)
i∈Seq− E; deg i=−n

is a basis of the vector space

M+gε

λ [−n] for every n ∈ Z and λ ∈ h∗.
We can define a bijection

E → E,

(n, i) 7→ (−n,mn + 1− i)
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(because mn = m−n for every n ∈ Z). This bijection reverses the order on E.
Hence, this bijection canonically induces a bijection SeqE → SeqE, which maps
Seq+E to Seq−E and vice versa, and reverses the degree of every sequence while
keeping the length of every sequence invariant. One consequence of this bijection
is that for every n ∈ Z, the number of all j ∈ Seq+E satisfying deg j = n equals
the number of all i ∈ Seq−E satisfying deg i = −n. Another consequence is that∑
i∈Seq− E;
deg i=−n

len i =
∑

j∈Seq+ E;
deg j=n

len j.

For every positive integer n, we represent the bilinear form (·, ·)g
ε

λ,n : M+gε

λ [−n]×
M−gε
−λ [n] → C by its matrix with respect to the bases

(
eεiv

+gε

λ

)
i∈Seq− E; deg i=−n

and(
eεjv
−gε
−λ

)
j∈Seq+ E; deg j=n

of M+gε

λ [−n] and M−gε
−λ [n], respectively. This is the matrix

((
eεiv

+gε

λ , eεjv
−gε
−λ

)gε
λ,n

)
i∈Seq− E; j∈Seq+ E;

deg i=−n; deg j=n

.

This matrix is a square matrix (since the number of all j ∈ Seq+E satisfying deg j =
n equals the number of all i ∈ Seq−E satisfying deg i = −n), and its determinant is

what we are going to denote by det
(

(·, ·)g
ε

λ,n

)
.

A few words about tensor algebras:

Convention 2.6.22. In the following, we let T denote the tensor algebra functor.
Hence, for every vector space V , we denote by T (V ) the tensor algebra of V .

We notice that T (V ) is canonically graded even if V is not. In fact, T (V ) =⊕
i∈N

V ⊗i, so that we get a grading on T (V ) if we set V ⊗i to be the i-th homogeneous

component of T (V ). This grading is called the tensor length grading on T (V ). It
makes T (V ) concentrated in nonnegative degrees.

If V itself is a graded vector space, then we can also grade T (V ) by canonically
extending the grading on V to T (V ) (this means that whenever v1, v2, ..., vn are
homogeneous elements of V of degrees d1, d2, ..., dn, then the pure tensor v1 ⊗ v2 ⊗
... ⊗ vn has degree d1 + d2 + ... + dn). This grading is called the internal grading
on T (V ). It is different from the tensor length grading (unless V is concentrated in
degree 1).

Hence, if V is a graded vector space, then T (V ) becomes a bigraded vector space
(i. e., a vector space with two gradings). Let us agree to denote by T (V ) [n,m] the
intersection of the n-th homogeneous component in the internal grading with the
m-th homogeneous component in the tensor length grading (i. e., with V ⊗m).

Let us notice that as vector spaces, we have g = gε, n− = nε−, n+ = nε+ and
h = hε for every ε ∈ C. Hence, T (g) = T (gε), T (n−) = T

(
nε−
)
, T (n+) = T

(
nε+
)

and
T (h) = T (hε).
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Definition 2.6.23. In the following, for every Lie algebra a and every element
x ∈ T (a), we denote by enva x the projection of x onto the factor algebra U (a) of
T (a).

Let us again stress that T (g) = T (gε), so that T (gε) does not depend on ε, whereas
U (gε) does. Hence, if we want to study the form (·, ·)g

ε

λ,n as it changes with ε, the

easiest thing to do is to study the values of
(

(envgε a) v+gε

λ , (envgε b) v
−gε
−λ

)gε
λ,n

for fixed

a ∈ T (g) = T (gε) and b ∈ T (g) = T (gε). Here is the polynomiality lemma that we
want to have:

Lemma 2.6.24. Let i ∈ SeqE and j ∈ SeqE. Then, there exists a polynomial
function Qi,j : h∗ × C→ C such that every λ ∈ h∗ and every ε ∈ C satisfy(

eεiv
+gε

λ , eεjv
−gε
−λ

)gε
λ

= Qi,j (λ, ε) .

To prove this lemma, we show something more general:

Lemma 2.6.25. For every n ∈ Z and c ∈ T (g) [n], there exists a polynomial map
d : h∗ × C→ T (n−) [n] such that every λ ∈ h∗ and every ε ∈ C satisfy

(envgε c) v
+gε

λ = (envgε (d (λ, ε))) v+gε

λ .

To get some intuition about Lemma 2.6.25, recall that the Verma highest-weight
module M+gε

λ was defined as U (gε)⊗U(hε⊕nε+)Cλ, but turned out to be U
(
nε−
)
v+gε

λ (as

a vector space), so that every term of the form xv+gε

λ with x ∈ U (gε) can be reduced
to the form yv+gε

λ with y ∈ U
(
nε−
)
. Lemma 2.6.25 says that, if x is given as the

projection envgε c of some tensor c ∈ T (g) [n] onto U (gε), then y can be found as the
projection of some tensor d (λ, ε) ∈ T (n−) [n] onto U

(
nε−
)

which depends polynomially
on λ and ε. This is not particularly surprising, since y is found from x by picking a
tensorial representation59 of x and “gradually” stratifying it60, and the λ’s and ε’s
which appear during this stratification process don’t appear “randomly”, but rather
appear at foreseeable places. The following proof of Lemma 2.6.25 will formalize this
idea.

Proof of Lemma 2.6.25. First some notations:
If n ∈ Z, then a tensor c ∈ T (g) [n] is said to be n-stratifiable if there exists a

polynomial map d : h∗×C→ T (n−) [n] such that every λ ∈ h∗ and every ε ∈ C satisfy

(envgε c) v
+gε

λ = (envgε (d (λ, ε))) v+gε

λ .

59By a “tensorial representation” of x, I mean a tensor c ∈ T (g) such that envgε c = x.
60By “stratifying” a tensorial representation of x, I mean writing it as a linear combination of pure

tensors, and whenever such a pure tensor has a negative tensorand (i. e., a tensorand in n−) stand-
ing directly before a positive tensorand (i. e., a tensorand in n+), applying the xy − yx = [x, y]

ε

relations in U (gε) to move the negative tensorand past the positive one. As soon as a positive

tensorand hits the right end of the tensor, the tensor can be thrown away since n+v
+gε

λ = 0. For
instance, in Example 2.9.8 further below, we compute L1L−1v

+
λ by stratifying the tensorial repre-

sentation L1⊗L−1 of L1L−1, and we compute L2
1L

2
−1v

+
λ by stratifying the tensorial representation

L1 ⊗ L1 ⊗ L−1 ⊗ L−1 of L2
1L

2
−1.
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Lemma 2.6.25 states that for every n ∈ Z, every tensor c ∈ T (g) [n] is n-stratifiable.
We will now prove that

for every n ∈ Z and every m ∈ N, every tensor c ∈ T (g) [n,m] is n-stratifiable. (41)

Before we start proving this, let us formulate two easy observations about stratifiable
tensors:

Observation 1: For any fixed n, any C-linear combination of n-stratifiable tensors is
n-stratifiable. (In fact, we can just take the corresponding C-linear combination of the
corresponding polynomial maps d.)

Observation 2: If an integer n, a negative integer ν, a vector x ∈ gν and a tensor
y ∈ T (g) [n− ν] are such that y is (n− ν)-stratifiable, then x ⊗ y ∈ T (g) [n] is n-
stratifiable.61

We are now going to prove (41) by induction on m:
Induction base: We have T (g) [n, 0] = C [n]. Hence, every tensor c ∈ T (g) [n, 0] is

n-stratifiable (because we can define the polynomial map d : h∗ × C→ T (n−) [n] by

d (λ, ε) = c for all (λ, ε) ∈ h∗ × C

). In other words, (41) is proven for m = 0. In other words, the induction base is
complete.

Induction step: Let m ∈ N be positive. We must show that (41) holds for this m,
using the assumption that (41) holds for m− 1 instead of m.

Let n ∈ Z. Let πn : T (g)→ T (g) [n] denote the canonical projection of T (g) to the
n-th homogeneous component with respect to the internal grading.

Let c ∈ T (g) [n,m]. We must prove that c is n-stratifiable.
We have c ∈ T (g) [n,m] ⊆ g⊗m, and since the m-th tensor power is generated by

pure tensors, this yields that c is a C-linear combination of pure tensors. In other words,
c is a C-linear combination of finitely many pure tensors of the form x1⊗ x2⊗ ...⊗ xm
61Proof of Observation 2. Let an integer n, a negative integer ν, a vector x ∈ gν and a tensor

y ∈ T (g) [n− ν] be such that y is (n− ν)-stratifiable. Then, there exists a polynomial map

d̃ : h∗ × C→ T (n−) [n− ν] such that every λ ∈ h∗ and every ε ∈ C satisfy

(envgε y) v+gε

λ =
(

envgε

(
d̃ (λ, ε)

))
v+gε

λ

(by the definition of “(n− ν)-stratifiable”). Now, define a map d : h∗ × C→ T (n−) [n] by

d (λ, ε) = x⊗ d̃ (λ, ε) for every (λ, ε) ∈ h∗ × C.

(This is well-defined, since x ∈ gν ⊆ n− (since ν is negative).) This map d is clearly polynomial

(since d̃ is a polynomial map), and every λ ∈ h∗ and every ε ∈ C satisfy

(envgε (x⊗ y))︸ ︷︷ ︸
=x·envgε y

v+gε

λ = x · (envgε y) v+gε

λ︸ ︷︷ ︸
=(envgε(d̃(λ,ε)))v+gε

λ

= x ·
(

envgε

(
d̃ (λ, ε)

))
︸ ︷︷ ︸

=envgε(x⊗d̃(λ,ε))

v+gε

λ

=

envgε

(
x⊗ d̃ (λ, ε)

)
︸ ︷︷ ︸

=d(λ,ε)

 v+gε

λ = (envgε (d (λ, ε))) v+gε

λ .

Hence, x⊗ y is n-stratifiable (by the definition of “n-stratifiable”). This proves Observation 2.
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with x1, x2, ..., xm ∈ g. We can WLOG assume that, in each of these pure tensors,
the elements x1, x2, ..., xm are homogeneous (since otherwise we can break each of
x1, x2, ..., xm into homogeneous components, and thus the pure tensors x1⊗x2⊗ ...⊗xm
break into smaller pieces which are still pure tensors). So we can write c as a C-
linear combination of finitely many pure tensors of the form x1 ⊗ x2 ⊗ ... ⊗ xm with
homogeneous x1, x2, ..., xm ∈ g. If we apply the projection πn to this, then c remains
invariant (since c ∈ T (g) [n,m] ⊆ T (g) [n]), and the terms of the form x1⊗x2⊗ ...⊗xm
with homogeneous x1, x2, ..., xm ∈ g satisfying deg (x1)+deg (x2)+ ...+deg (xm) = n
remain invariant as well (since they also lie in T (g) [n]), whereas the terms of the form
x1⊗x2⊗ ...⊗xm with homogeneous x1, x2, ..., xm ∈ g satisfying deg (x1) + deg (x2) +
...+ deg (xm) 6= n are mapped to 0 (since they lie in homogeneous components of T (g)
other than T (g) [n]). Hence, we write c as a C-linear combination of finitely many pure
tensors of the form x1⊗x2⊗ ...⊗xm with homogeneous x1, x2, ..., xm ∈ g satisfying
deg (x1) + deg (x2) + ...+ deg (xm) = n.

Therefore, in proving (41), we can WLOG assume that c is a pure tensor of the form
x1 ⊗ x2 ⊗ ...⊗ xm with homogeneous x1, x2, ..., xm ∈ g satisfying deg (x1) + deg (x2) +
...+ deg (xm) = n (because, clearly, once Lemma 2.6.25 is proven for certain values of
c ∈ T (g) [n,m], it must clearly also hold for all their C-linear combinations62). Let us
now assume this.

So we have c = x1 ⊗ x2 ⊗ ... ⊗ xm with homogeneous x1, x2, ..., xm ∈ g satisfying
deg (x1) + deg (x2) + ...+ deg (xm) = n. We must now prove that c is n-stratifiable.

For every i ∈ {1, 2, ...,m}, let ni be the degree of xi (this is well-defined since xi is
homogeneous). Thus, xi ∈ gni .

We have

deg (x2)+deg (x3)+...+deg (xm) = (deg (x1) + deg (x2) + ...+ deg (xm))︸ ︷︷ ︸
=n

− deg (x1)︸ ︷︷ ︸
=n1

= n−n1,

so that x2⊗x3⊗...⊗xm ∈ T (g) [n− n1] and thus x2⊗x3⊗...⊗xm ∈ T (g) [n− n1,m− 1].
Since we have assumed that (41) holds for m− 1 instead of m, we can thus apply (41)
to n − n1, m − 1 and x2 ⊗ x3 ⊗ ... ⊗ xm instead of n, m and c. We conclude that
x2 ⊗ x3 ⊗ ... ⊗ xm is (n− n1)-stratifiable. In other words, there exists a polynomial

map d̃ : h∗ × C→ T (n−) [n− n1] such that every λ ∈ h∗ and every ε ∈ C satisfy

(envgε (x2 ⊗ x3 ⊗ ...⊗ xm)) v+gε

λ =
(

envgε

(
d̃ (λ, ε)

))
v+gε

λ .

62due to Observation 1
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We notice that c = x1 ⊗ x2 ⊗ ...⊗ xm, so that

envgε c

= x1x2...xm

=
m−1∑
i=1

(x2x3...xi−1xi · x1 · xi+1xi+2...xm − x2x3...xixi+1 · x1 · xi+2xi+3...xm)︸ ︷︷ ︸
=x2x3...xi−1xi(x1xi+1−xi+1x1)xi+2xi+3...xm

+x2x3...xm · x1

 since the sum
m−1∑
i=1

(x2x3...xi−1xi · x1 · xi+1xi+2...xm − x2x3...xixi+1 · x1 · xi+2xi+3...xm)

telescopes to x1x2...xm − x2x3...xm · x1


=

m−1∑
i=1

x2x3...xi−1xi (x1xi+1 − xi+1x1)︸ ︷︷ ︸
=[x1,xi+1]ε

(since we are in U(gε))

xi+2xi+3...xm + x2x3...xm · x1

=
m−1∑
i=1

x2x3...xi−1xi [x1, xi+1]ε︸ ︷︷ ︸
=ε

δn1,0
+δni+1,0

+1−δn1+ni+1,0 [x1,xi+1]
(by (40) (applied to x1 and xi+1 instead of x and y),

since x1∈gn1 and xi+1∈gni+1 )

xi+2xi+3...xm + x2x3...xm · x1

=
m−1∑
i=1

εδn1,0+δni+1,0
+1−δn1+ni+1,0 x2x3...xi−1xi [x1, xi+1]xi+2xi+3...xm︸ ︷︷ ︸

=envgε (x2⊗x3⊗...⊗xi−1⊗xi⊗[x1,xi+1]⊗xi+2⊗xi+3⊗...⊗xm)

+ x2x3...xm︸ ︷︷ ︸
=envgε (x2⊗x3⊗...⊗xm)

·x1

=
m−1∑
i=1

εδn1,0+δni+1,0
+1−δn1+ni+1,0 envgε (x2 ⊗ x3 ⊗ ...⊗ xi−1 ⊗ xi ⊗ [x1, xi+1]⊗ xi+2 ⊗ xi+3 ⊗ ...⊗ xm)

+ envgε (x2 ⊗ x3 ⊗ ...⊗ xm) · x1. (42)

Now, for every i ∈ {1, 2, ...,m− 1}, denote the element x2 ⊗ x3 ⊗ ... ⊗ xi−1 ⊗ xi ⊗
[x1, xi+1]⊗xi+2⊗xi+3⊗ ...⊗xm by ci. It is easily seen that ci ∈ T (g) [n,m− 1]. Since
ci = x2 ⊗ x3 ⊗ ... ⊗ xi−1 ⊗ xi ⊗ [x1, xi+1] ⊗ xi+2 ⊗ xi+3 ⊗ ... ⊗ xm, the equality (42)
rewrites as

envgε c

=
m−1∑
i=1

εδn1,0+δni+1,0
+1−δn1+ni+1,0 envgε (ci) + envgε (x2 ⊗ x3 ⊗ ...⊗ xm) · x1. (43)

For every i ∈ {1, 2, ...,m− 1}, we can apply (41) to m − 1 and ci instead of m and
c (since ci ∈ T (g) [n,m− 1], and since we have assumed that (41) holds for m − 1
instead of m). We conclude that ci is n-stratifiable for every i ∈ {1, 2, ...,m− 1}. In

other words, for every i ∈ {1, 2, ...,m− 1}, there exists a polynomial map d̃i : h∗×C→
T (n−) [n] such that every λ ∈ h∗ and every ε ∈ C satisfy

(envgε (ci)) v
+gε

λ =
(

envgε

(
d̃i (λ, ε)

))
v+gε

λ .

We now distinguish between three cases:
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Case 1: We have n1 > 0.
Case 2: We have n1 = 0.
Case 3: We have n1 < 0.
First, let us consider Case 1. In this case, n1 > 0. Thus, x1 ∈ n+ (since x1 ∈ gn1),

so that x1v
+gε

λ ∈ nε+v
+gε

λ = 0 and thus x1v
+gε

λ = 0. Now, (43) yields

(envgε c) v
+gε

λ

=

(
m−1∑
i=1

εδn1,0+δni+1,0
+1−δn1+ni+1,0 envgε (ci) + envgε (x2 ⊗ x3 ⊗ ...⊗ xm) · x1

)
v+gε

λ

=
m−1∑
i=1

εδn1,0+δni+1,0
+1−δn1+ni+1,0 (envgε (ci)) v

+gε

λ︸ ︷︷ ︸
=(envgε(d̃i(λ,ε)))v+gε

λ

+ envgε (x2 ⊗ x3 ⊗ ...⊗ xm) · x1v
+gε

λ︸ ︷︷ ︸
=0

=
m−1∑
i=1

εδn1,0+δni+1,0
+1−δn1+ni+1,0

(
envgε

(
d̃i (λ, ε)

))
v+gε

λ

=

(
envgε

(
m−1∑
i=1

εδn1,0+δni+1,0
+1−δn1+ni+1,0 d̃i (λ, ε)

))
v+gε

λ . (44)

If we define a map d : h∗ × C→ T (n−) [n] by

d (λ, ε) =
m−1∑
i=1

εδn1,0+δni+1,0
+1−δn1+ni+1,0 d̃i (λ, ε) for every (λ, ε) ∈ h∗ × C,

then this map d is polynomial (since d̃i are polynomial maps for all i), and (44) becomes

(envgε c) v
+gε

λ

=

envgε

(
m−1∑
i=1

εδn1,0+δni+1,0
+1−δn1+ni+1,0 d̃i (λ, ε)

)
︸ ︷︷ ︸

=d(λ,ε)

 v+gε

λ = (envgε (d (λ, ε))) v+gε

λ .

Hence, c is n-stratifiable (by the definition of “n-stratifiable”).
Next, let us consider Case 2. In this case, n1 = 0. Thus, x1 ∈ h (since x1 ∈ gn1), so
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that x1v
+gε

λ = λ (x1) v+gε

λ . Now, (43) yields

(envgε c) v
+gε

λ

=

(
m−1∑
i=1

εδn1,0+δni+1,0
+1−δn1+ni+1,0 envgε (ci) + envgε (x2 ⊗ x3 ⊗ ...⊗ xm) · x1

)
v+gε

λ

=
m−1∑
i=1

εδn1,0+δni+1,0
+1−δn1+ni+1,0 (envgε (ci)) v

+gε

λ︸ ︷︷ ︸
=(envgε(d̃i(λ,ε)))v+gε

λ

+ envgε (x2 ⊗ x3 ⊗ ...⊗ xm) · x1v
+gε

λ︸ ︷︷ ︸
=λ(x1)v+gε

λ

=
m−1∑
i=1

εδn1,0+δni+1,0
+1−δn1+ni+1,0

(
envgε

(
d̃i (λ, ε)

))
v+gε

λ

+ λ (x1) (envgε (x2 ⊗ x3 ⊗ ...⊗ xm)) v+gε

λ︸ ︷︷ ︸
=(envgε(d̃(λ,ε)))v+gε

λ

=
m−1∑
i=1

εδn1,0+δni+1,0
+1−δn1+ni+1,0

(
envgε

(
d̃i (λ, ε)

))
v+gε

λ + λ (x1)
(

envgε

(
d̃ (λ, ε)

))
v+gε

λ

=

(
envgε

(
m−1∑
i=1

εδn1,0+δni+1,0
+1−δn1+ni+1,0 d̃i (λ, ε) + λ (x1) d̃ (λ, ε)

))
v+gε

λ . (45)

If we define a map d : h∗ × C→ T (n−) [n] by

d (λ, ε) =
m−1∑
i=1

εδn1,0+δni+1,0
+1−δn1+ni+1,0 d̃i (λ, ε)+λ (x1) d̃ (λ, ε) for every (λ, ε) ∈ h∗×C

(this map is well-defined, since d̃ (λ, ε) ∈ T (n−) [n− n1] = T (n−) [n] (due to n1 = 0)),

then this map d is polynomial (since d̃i are polynomial maps for all i, and since d̃ is
polynomial), and (45) becomes

(envgε c) v
+gε

λ

=

envgε

(
m−1∑
i=1

εδn1,0+δni+1,0
+1−δn1+ni+1,0 d̃i (λ, ε) + λ (x1) d̃ (λ, ε)

)
︸ ︷︷ ︸

=d(λ,ε)

 v+gε

λ = (envgε (d (λ, ε))) v+gε

λ .

Hence, c is n-stratifiable (by the definition of “n-stratifiable”).
Now, let us consider Case 3. In this case, n1 < 0. Thus, we can apply Observation

2 to x1, x2 ⊗ x3 ⊗ ... ⊗ xm and n1 instead of x, y and ν, and conclude that x1 ⊗
(x2 ⊗ x3 ⊗ ...⊗ xm) is n-stratifiable (since x2 ⊗ x3 ⊗ ... ⊗ xm is (n− n1)-stratifiable).
Since x1⊗(x2 ⊗ x3 ⊗ ...⊗ xm) = x1⊗x2⊗...⊗xm = c, this shows that c is n-stratifiable.

Hence, in each of the cases 1, 2 and 3, we have shown that c is n-stratifiable. Thus,
c is always n-stratifiable.

Forget that we fixed c. We thus have shown that c is n-stratifiable for every tensor
c ∈ T (g) [n,m]. In other words, we have proven (41) for our m. This completes the
induction step.
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Thus, (41) is proven by induction.
Now, let n ∈ Z. Then, every c ∈ T (g) [n] is a C-linear combination of elements

of T (g) [n,m] for varying m ∈ N (since T (g) [n] =
⊕
m∈N

T (g) [n,m]), and thus every

c ∈ T (g) [n] is n-stratifiable (since (41) shows that every element of T (g) [n,m] is
n-stratifiable, and due to Observation 1).

Now forget that we fixed n. We have thus proven that for every n ∈ Z, every
c ∈ T (g) [n] is n-stratifiable. In other words, we have proved Lemma 2.6.25.

Proof of Lemma 2.6.24. We have eεi ∈ U (gε) [deg i] and thus eεiv
+gε

λ ∈ M+gε

λ [deg i].

Similarly, eεjv
−gε
−λ ∈ M

−gε
−λ [deg j]. Hence, if deg i + deg j 6= 0, then

(
eεiv

+gε

λ , eεjv
−gε
−λ

)gε
λ
∈(

M+gε

λ [deg i] ,M−gε
−λ [deg j]

)gε
λ

= 0 (because the form (·, ·)g
ε

λ is of degree 0, while deg i +

deg j 6= 0) and thus
(
eεiv

+gε

λ , eεjv
−gε
−λ

)gε
λ

= 0. Thus, if deg i + deg j 6= 0, then Lemma

2.6.24 trivially holds (because we can then just take Qi,j = 0). Thus, for the rest of the
proof of Lemma 2.6.24, we can WLOG assume that we don’t have deg i + deg j 6= 0.
Hence, we have deg i + deg j = 0.

Write the sequence j in the form ((m1, j1) , (m2, j2) , ..., (mk, jk)). Then, eεj = em1,j1em2,j2 ...emk,jk
and deg j = m1 +m2 + ...+mk = mk +mk−1 + ...+m1.

Since eεj = em1,j1em2,j2 ...emk,jk , we have(
eεiv

+gε

λ , eεjv
−gε
−λ

)gε
λ

=
(
eεiv

+gε

λ , em1,j1em2,j2 ...emk,jkv
−gε
−λ

)gε
λ

= (−1)k
(
emk,jkemk−1,jk−1

...em1,j1 · eεiv
+gε

λ , v−g
ε

−λ

)gε
λ(

here, we applied the gε-invariance of the form (·, ·)g
ε

λ for a total of k times
)

=
(

(−1)k emk,jkemk−1,jk−1
...em1,j1 · eεiv

+gε

λ , v−g
ε

−λ

)gε
λ
. (46)

Write the sequence i in the form ((n1, i1) , (n2, i2) , ..., (n`, i`)). Then, eεi = en1,i1en2,i2 ...en`,i`
and deg i = n1 + n2 + ...+ n`. Now,

(−1)k emk,jkemk−1,jk−1
...em1,j1 · eεi︸︷︷︸

=en1,i1
en2,i2

...en`,i`

= (−1)k emk,jkemk−1,jk−1
...em1,j1 · en1,i1en2,i2 ...en`,i`

= envgε

(
(−1)k emk,jk ⊗ emk−1,jk−1

⊗ ...⊗ em1,j1 ⊗ en1,i1 ⊗ en2,i2 ⊗ ...⊗ en`,i`
)
. (47)

Denote the tensor (−1)k emk,jk ⊗ emk−1,jk−1
⊗ ...⊗ em1,j1 ⊗ en1,i1 ⊗ en2,i2 ⊗ ...⊗ en`,i` by

c. Then, (47) rewrites as

(−1)k emk,jkemk−1,jk−1
...em1,j1 · eεi = envgε c. (48)
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Since

c = (−1)k emk,jk ⊗ emk−1,jk−1
⊗ ...⊗ em1,j1 ⊗ en1,i1 ⊗ en2,i2 ⊗ ...⊗ en`,i`

∈ T (g) [mk +mk−1 + ...+m1 + n1 + n2 + ...+ n`](
since emk,jk ∈ gmk , emk−1,jk−1

∈ gmk−1
, ..., em1,j1 ∈ gm1

and en1,i1 ∈ gn1 , en2,i2 ∈ gn2 , ..., en`,i` ∈ gn`

)
= T (g) [0]since mk +mk−1 + ...+m1︸ ︷︷ ︸

=deg j

+n1 + n2 + ...+ n`︸ ︷︷ ︸
=deg i

= deg j + deg i = deg i + deg j = 0

 ,

we can apply Lemma 2.6.25 to n = 0. We conclude that there exists a polynomial map
d : h∗ × C→ T (n−) [0] such that every λ ∈ h∗ and every ε ∈ C satisfy

(envgε c) v
+gε

λ = (envgε (d (λ, ε))) v+gε

λ . (49)

Since T (n−) [0] = C (because n− is concentrated in negative degrees), this polynomial
map d : h∗ × C → T (n−) [0] is a polynomial function d : h∗ × C → C. Denote this
function d by Qi,j. Then, every λ ∈ h∗ and every ε ∈ C satisfy d (λ, ε) = Qi,j (λ, ε) and
thus envgε (d (λ, ε)) = envgε (Qi,j (λ, ε)) = Qi,j (λ, ε) (since Qi,j (λ, ε) ∈ C). Thus, every
λ ∈ h∗ and every ε ∈ C satisfy

(envgε c) v
+gε

λ = (envgε (d (λ, ε)))︸ ︷︷ ︸
=Qi,j(λ,ε)

v+gε

λ (by (49))

= Qi,j (λ, ε) · v+gε

λ . (50)

Now, every λ ∈ h∗ and every ε ∈ C satisfy

(
eεiv

+gε

λ , eεjv
−gε
−λ

)gε
λ

=

(−1)k emk,jkemk−1,jk−1
...em1,j1 · eεi︸ ︷︷ ︸

=envgε c
(by (48))

v+gε

λ , v−g
ε

−λ


gε

λ

(by (46))

=

(envgε c) v
+gε

λ︸ ︷︷ ︸
=Qi,j(λ,ε)·v+gε

λ
(by (50))

, v−g
ε

−λ


gε

λ

=
(
Qi,j (λ, ε) · v+gε

λ , v−g
ε

−λ

)gε
λ

= Qi,j (λ, ε) ·
(
v+gε

λ , v−g
ε

−λ

)gε
λ︸ ︷︷ ︸

=1

= Qi,j (λ, ε) .

This proves Lemma 2.6.24.
We shall now take a closer look at the polynomial function Qi,j of Lemma 2.6.24:
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Lemma 2.6.26. Let i ∈ Seq−E and j ∈ Seq+ E. Consider the polynomial function
Qi,j : h∗ × C → C of Lemma 2.6.24. Then, every λ ∈ h∗ and every nonzero ε ∈ C
satisfy

Qi,j (λ, ε) = εlen i+len jQi,j

(
λ/ε2, 1

)
.

Note that Lemma 2.6.26 does not really need the conditions i ∈ Seq−E and j ∈
Seq+E. It is sufficient that i ∈ SeqE is such that no element (n, i) of the sequence
i satisfies n = 0, and that a similar condition holds for j. But since we will only use
Lemma 2.6.26 in the case when i ∈ Seq−E and j ∈ Seq+E, we would not gain much
from thus generalizing it.

Proof of Lemma 2.6.26. We recall that the definition of Qi,j said that(
eεiv

+gε

λ , eεjv
−gε
−λ

)gε
λ

= Qi,j (λ, ε) for all λ ∈ h∗ and ε ∈ C. (51)

Let λ ∈ h∗ be arbitrary, and let ε ∈ C be nonzero. Since ε 6= 0, the Lie algebra
isomorphism Jε : gε → g exists and satisfies (λ/ε2) ◦ Jε = λ. Hence, we have an
isomorphism Jε : (gε, λ)→ (g, λ/ε2) in the category of pairs of a Z-graded Lie algebra
and a linear form on its 0-th homogeneous component (where the morphisms in this
category are defined in the obvious way). This isomorphism induces a corresponding
isomorphism M+gε

λ → M+g
λ/ε2 of Verma modules which sends xv+gε

λ to (U (Jε)) (x) v+g
λ/ε2

for every x ∈ U (gε) (where U (Jε) is the isomorphism U (gε) → U (g) canonically
induced by the Lie algebra isomorphism Jε : gε → g). Similarly, we get an isomorphism
M−gε
−λ → M−g

−λ/ε2 of Verma modules which sends yv−g
ε

−λ to (U (Jε)) (y) v−g−λ/ε2 for every

y ∈ U (gε). Since the bilinear form (·, ·)eµ depends functorially on a Z-graded Lie algebra
e and a linear form µ : e0 → C, these isomorphisms leave the bilinear form unchanged,
i. e., we have(

(U (Jε)) (x) v+g
λ/ε2 , (U (Jε)) (y) v−g−λ/ε2

)g
λ/ε2

=
(
xv+gε

λ , yv−g
ε

−λ

)gε
λ

for every x ∈ U (gε) and y ∈ U (gε). Applied to x = eεi and y = eεj , this yields(
(U (Jε)) (eεi ) v

+g
λ/ε2 , (U (Jε))

(
eεj
)
v−g−λ/ε2

)g
λ/ε2

=
(
eεiv

+gε

λ , eεjv
−gε
−λ

)gε
λ

= Qi,j (λ, ε) (52)

(by the definition of Qi,j).
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But we have (U (Jε)) (eεi ) = εlen ie1
i

63 and similarly (U (Jε))
(
eεj
)

= εlen je1
j . Hence,(

(U (Jε)) (eεi ) v
+g
λ/ε2 , (U (Jε))

(
eεj
)
v−g−λ/ε2

)g
λ/ε2

=
(
εlen ie1

i v
+g
λ/ε2 , ε

len je1
j v
−g
−λ/ε2

)g
λ/ε2

= εlen i+len j
(
e1
i v

+g
λ/ε2 , e

1
j v
−g
−λ/ε2

)g
λ/ε2

= εlen i+len j
(
e1
i v

+g1

λ/ε2 , e
1
j v
−g1

−λ/ε2

)g1

λ/ε2︸ ︷︷ ︸
=Qi,j(λ/ε2,1)

(by (51), applied to λ/ε1 and 1 instead of λ and ε)

(
since g = g1

)

= εlen i+len jQi,j

(
λ/ε2, 1

)
.

Compared to (52), this yields Qi,j (λ, ε) = εlen i+len jQi,j (λ/ε2, 1). This proves Lemma
2.6.26.

Here is the consequence of Lemmas 2.6.24 and 2.6.26 that we will actually use:

Corollary 2.6.27. Let n ∈ N. Let LENn =
∑

i∈Seq− E;
deg i=−n

len i =
∑

j∈Seq+ E;
deg j=n

len j (we are

using the fact that
∑

i∈Seq− E;
deg i=−n

len i =
∑

j∈Seq+ E;
deg j=n

len j, which we proved above).

Then, there exists a polynomial function Qn : h∗×C→ C such that every λ ∈ h∗

and every ε ∈ C satisfy

det
(

(·, ·)g
ε

λ,n

)
= Qn (λ, ε) . (53)

This function Qn satisfies

Qn (λ, ε) = ε2 LENnQn

(
λ/ε2, 1

)
for every λ ∈ h∗ and every nonzero ε ∈ C.

63Proof. Write the sequence i in the form ((n1, i1) , (n2, i2) , ..., (n`, i`)). Since i ∈ Seq−E, all of the
numbers n1, n2, ..., n` are negative, so that none of them is 0. As a consequence, δnu,0 = 0 for
every u ∈ {1, 2, ..., `}. By the definition of Jε, we have

Jε (enu,iu) = ε1+δnu,0︸ ︷︷ ︸
=ε

(since δnu,0=0)

enu,iu (since enu,iu ∈ gnu)

= εenu,iu

for every u ∈ {1, 2, ..., `}.
Now, eεi is defined as the product en1,i1en2,i2 ...en`,i` in U (gε), and e1

i is defined as the product
en1,i1en2,i2 ...en`,i` in U

(
g1
)
. Hence,

(U (Jε)) (eεi ) = (U (Jε)) (en1,i1en2,i2 ...en`,i`) (since eεi = en1,i1en2,i2 ...en`,i`)

= Jε (en1,i1) Jε (en2,i2) ...Jε (en`,i`)

= εen1,i1 · εen2,i2 · ... · εen`,i` (since Jε (enu,iu) = εenu,iu for every u ∈ {1, 2, ..., `})
= ε` en1,i1en2,i2 ...en`,i`︸ ︷︷ ︸

=e1i

= ε`e1
i = εlen ie1

i

(since ` = len i by the definition of len i) ,

qed.
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Proof of Corollary 2.6.27. For any i ∈ Seq−E satisfying deg i = −n, and any
j ∈ Seq+ E satisfying deg j = n, consider the polynomial function Qi,j : h∗ × C→ C of
Lemma 2.6.24. Define a polynomial function Qn : h∗ × C→ C by

Qn = det

(
(Qi,j)i∈Seq− E; j∈Seq+ E;

deg i=−n; deg j=n

)
.

Then, every λ ∈ h∗ and every ε ∈ C satisfy

Qn (λ, ε) = det

(
(Qi,j (λ, ε))i∈Seq− E; j∈Seq+ E;

deg i=−n; deg j=n

)
= det

((eεiv+gε

λ , eεjv
−gε
−λ

)gε
λ,n

)
i∈Seq− E; j∈Seq+ E;

deg i=−n; deg j=n




since Lemma 2.6.24 yields

Qi,j (λ, ε) =
(
eεiv

+gε

λ , eεjv
−gε
−λ

)gε
λ

=
(
eεiv

+gε

λ , eεjv
−gε
−λ

)gε
λ,n

(since deg i = −n yields eεi ∈ U (gε) [−n] and thus eεiv
+gε

λ ∈M+gε

λ [−n]

and similarly eεjv
−gε
−λ ∈M

−gε
−λ [n] )


= det

(
(·, ·)g

ε

λ,n

)
.

We have thus proven that every λ ∈ h∗ and every ε ∈ C satisfy det
(

(·, ·)g
ε

λ,n

)
=

Qn (λ, ε).
Now, it remains to show that this functionQn satisfiesQn (λ, ε) = ε2 LENnQn (λ/ε2, 1)

for every λ ∈ h∗ and every nonzero ε ∈ C. In order to do this, we let λ ∈ h∗ be arbitrary
and ε ∈ C be nonzero. Then,

Qn (λ, ε) = det

(
(Qi,j (λ, ε))i∈Seq− E; j∈Seq+ E;

deg i=−n; deg j=n

)
= det

((
εlen iεlen jQi,j

(
λ/ε2, 1

))
i∈Seq− E; j∈Seq+ E;

deg i=−n; deg j=n

)
(54)

(since Lemma 2.6.26 yields Qi,j (λ, ε) = εlen i+len jQi,j (λ/ε2, 1) = εlen iεlen jQi,j (λ/ε2, 1)
for all i ∈ Seq−E and j ∈ Seq+E).

Now, recall that if we multiply a row of a square matrix by some scalar, then the
determinant of the matrix is also multiplied by the same scalar. A similar fact holds
for the columns. Thus,

det

((
εlen iεlen jQi,j

(
λ/ε2, 1

))
i∈Seq− E; j∈Seq+ E;

deg i=−n; deg j=n

)

=

 ∏
i∈Seq− E;
deg i=−n

εlen i

 ·
 ∏

j∈Seq+ E;
deg j=n

εlen j

 · det

((
Qi,j

(
λ/ε2, 1

))
i∈Seq− E; j∈Seq+ E;

deg i=−n; deg j=n

)

(because the matrix
(
εlen iεlen jQi,j (λ/ε2, 1)

)
i∈Seq− E; j∈Seq+ E;

deg i=−n; deg j=n

is obtained from the ma-

trix (Qi,j (λ/ε2, 1))i∈Seq− E; j∈Seq+ E;
deg i=−n; deg j=n

by multiplying every row i by the scalar εlen i and
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multiplying every column j by the scalar εlen j). Hence, (54) becomes

Qn (λ, ε) =

 ∏
i∈Seq− E;
deg i=−n

εlen i

 ·
 ∏

j∈Seq+ E;
deg j=n

εlen j

 · det

((
Qi,j

(
λ/ε2, 1

))
i∈Seq− E; j∈Seq+ E;

deg i=−n; deg j=n

)
.

(55)
Now, since LENn =

∑
i∈Seq− E;
deg i=−n

len i, we have εLENn =
∏

i∈Seq− E;
deg i=−n

εlen i. Also, since

LENn =
∑

j∈Seq+ E;
deg j=n

len j, we have εLENn =
∏

j∈Seq+ E;
deg j=n

εlen j. Thus,

 ∏
i∈Seq− E;
deg i=−n

εlen i


︸ ︷︷ ︸

=εLENn

·

 ∏
j∈Seq+ E;
deg j=n

εlen j


︸ ︷︷ ︸

=εLENn

= εLENnεLENn = ε2 LENn. (56)

On the other hand, since Qn = det

(
(Qi,j)i∈Seq− E; j∈Seq+ E;

deg i=−n; deg j=n

)
, we have

Qn

(
λ/ε2, 1

)
= det

((
Qi,j

(
λ/ε2, 1

))
i∈Seq− E; j∈Seq+ E;

deg i=−n; deg j=n

)
. (57)

Hence, (55) becomes

Qn (λ, ε)

=

 ∏
i∈Seq− E;
deg i=−n

εlen i

 ·
 ∏

j∈Seq+ E;
deg j=n

εlen j


︸ ︷︷ ︸

=ε2 LENn

(by (56))

· det

((
Qi,j

(
λ/ε2, 1

))
i∈Seq− E; j∈Seq+ E;

deg i=−n; deg j=n

)
︸ ︷︷ ︸

=Qn(λ/ε2,1)
(by (57))

= ε2 LENn ·Qn

(
λ/ε2, 1

)
.

We have thus proven that Qn (λ, ε) = ε2 LENnQn (λ/ε2, 1) for every λ ∈ h∗ and every
nonzero ε ∈ C. This concludes the proof of Corollary 2.6.27.

2.6.9. Proof of Theorem 2.6.6: On leading terms of pseudo-homogeneous
polynomial maps

The following lemma about polynomial maps could be an easy exercise in any algebra
text. Unfortunately I do not see a quick way to prove it, so the proof is going to take
a few pages. Reading it will probably waste more of the reader’s time than proving it
on her own.
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Lemma 2.6.28. Let V be a finite-dimensional C-vector space. Let k ∈ N. Let
φ : V × C→ C be a polynomial function such that every λ ∈ V and every nonzero
ε ∈ C satisfy

φ (λ, ε) = ε2kφ
(
λ/ε2, 1

)
.

Then:
(a) The polynomial function

V → C, λ 7→ φ (λ, 0)

is homogeneous of degree k.
(b) For every integer N > k, the N -th homogeneous component of the polynomial

function
V → C, λ 7→ φ (λ, 1)

is zero.
(c) The k-th homogeneous component of the polynomial function

V → C, λ 7→ φ (λ, 1)

is the polynomial function

V → C, λ 7→ φ (λ, 0) .

Proof of Lemma 2.6.28. (a) Let (v1, v2, ..., vn) be a basis of the vector space V ∗.
Let πV : V × C → V and πC : V × C → C be the canonical projections. Then,
(v1 ◦ πV , v2 ◦ πV , ..., vn ◦ πV , πC) is a basis of the vector space (V × C)∗.

Therefore, since φ is a polynomial function, there exists a polynomial P ∈ C [X1, X2, ..., Xn, Xn+1]
such that every w ∈ V × C satisfies

φ (w) = P ((v1 ◦ πV ) (w) , (v2 ◦ πV ) (w) , ..., (vn ◦ πV ) (w) , πC (w)) .

In other words, every (λ, ε) ∈ V × C satisfies

φ (λ, ε) = P (v1 (λ) , v2 (λ) , ..., vn (λ) , ε) . (58)

Now, it is easy to see that for every (x1, x2, ..., xn) ∈ Cn and nonzero ε ∈ C, we have

P (x1, x2, ..., xn, ε) = ε2kP
(
x1/ε

2, x2/ε
2, ..., xn/ε

2, 1
)
. (59)

64

Now, since P ∈ C [X1, X2, ..., Xn, Xn+1] ∼= (C [X1, X2, ..., Xn]) [Xn+1], we can write
the polynomial P as a polynomial in the variable Xn+1 over the ring C [X1, X2, ..., Xn].
In other words, we can write the polynomial P in the form P =

∑
i∈N

Pi ·X i
n+1 for some

polynomials P0, P1, P2, ... in C [X1, X2, ..., Xn] such that all but finitely many i ∈ N
satisfy Pi = 0. Consider these P0, P1, P2, ....

64Proof of (59). Let (x1, x2, ..., xn) ∈ Cn be arbitrary, and let ε ∈ C be nonzero.
Let λ ∈ V be a vector satisfying

vi (λ) = xi for every i ∈ {1, 2, ..., n}
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Since all but finitely many i ∈ N satisfy Pi = 0, there exists a d ∈ N such that every

integer i > d satisfies Pi = 0. Consider this d. Then, P =
∑
i∈N

Pi ·X i
n+1 =

d∑
i=0

Pi ·X i
n+1

(here, we have removed all the terms with i > d from the sum, because every integer
i > d satisfies Pi = 0 and thus Pi ·X i

n+1 = 0).
For every i ∈ N and every j ∈ N, let Qi,j be the j-th homogeneous component of

the polynomial Pi. Then, Pi =
∑
j∈N

Qi,j for every i ∈ N, and each Qi,j is homogeneous

of degree j.
Hence,

P =
∑
i∈N

Pi︸︷︷︸
=
∑
j∈N

Qi,j

·X i
n+1 =

∑
i∈N

∑
j∈N

Qi,jX
i
n+1. (60)

Now, we are going to show the following fact: We have

Qu,v = 0 for all (u, v) ∈ N× N which don’t satisfy u+ 2v = 2k. (61)

Proof of (61). Let (u, v) ∈ N × N be such that u + 2v 6= 2k. We must prove that
Qu,v = 0.

If u > d, then Qu,v = 0 is clear (because Qu,v is the v-th homogeneous component of
Pu, but we have Pu = 0 since u > d). Hence, for the rest of the proof of Qu,v = 0, we
can WLOG assume that u ≤ d.

We have

P =
d∑
i=0

Pi︸︷︷︸
=
∑
j∈N

Qi,j

·X i
n+1 =

d∑
i=0

∑
j∈N

Qi,jX
i
n+1.

Let (x1, x2, ..., xn) ∈ Cn and ε ∈ C� {0}. Then, ε is nonzero, and we have

P (x1, x2, ..., xn, 1/ε) =
d∑
i=0

∑
j∈N

Qi,j (x1, x2, ..., xn) (1/ε)i︸ ︷︷ ︸
=εd−i/εd

(
since P =

d∑
i=0

∑
j∈N

Qi,jX
i
n+1

)

=
d∑
i=0

∑
j∈N

Qi,j (x1, x2, ..., xn) εd−i/εd =
1

εd

d∑
i=0

∑
j∈N

Qi,j (x1, x2, ..., xn) εd−i

(such a vector λ exists since (v1, v2, ..., vn) is a basis of V ∗). Then,

P (x1, x2, ..., xn, ε) = P (v1 (λ) , v2 (λ) , ..., vn (λ) , ε) (since xi = vi (λ) for every i ∈ {1, 2, ..., n})
= φ (λ, ε) (by (58))

= ε2k φ
(
λ/ε2, 1

)︸ ︷︷ ︸
=P(v1(λ/ε2),v2(λ/ε2),...,vn(λ/ε2),1)

(by (58), applied to (λ/ε2,1) instead of (λ,ε))

= ε2kP
(
v1

(
λ/ε2

)
, v2

(
λ/ε2

)
, ..., vn

(
λ/ε2

)
, 1
)

= ε2kP
(
x1/ε

2, x2/ε
2, ..., xn/ε

2, 1
)since vi

(
λ/ε2

)
= vi (λ)︸ ︷︷ ︸

=xi

/ε2 = xi/ε
2 for every i ∈ {1, 2, ..., n}

 .

This proves (59).
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and

P
(
ε2x1, ε

2x2, ..., ε
2xn, 1

)
=

d∑
i=0

∑
j∈N

Qi,j

(
ε2x1, ε

2x2, ..., ε
2xn
)︸ ︷︷ ︸

=(ε2)
j
Qi,j(x1,x2,...,xn)

(since Qi,j is homogeneous of degree j)

1i︸︷︷︸
=1

(
since P =

d∑
i=0

∑
j∈N

Qi,jX
i
n+1

)

=
d∑
i=0

∑
j∈N

(
ε2
)j︸ ︷︷ ︸

=ε2j

Qi,j (x1, x2, ..., xn) =
d∑
i=0

∑
j∈N

ε2jQi,j (x1, x2, ..., xn) .

Now,

1

εd

d∑
i=0

∑
j∈N

Qi,j (x1, x2, ..., xn) εd−i

= P (x1, x2, ..., xn, 1/ε) = (1/ε)2k P

(
x1/

(
1

ε

)2

, x2/

(
1

ε

)2

, ..., xn/

(
1

ε

)2

, 1

)
︸ ︷︷ ︸

=P (ε2x1,ε2x2,...,ε2xn,1)=
d∑
i=0

∑
j∈N

ε2jQi,j(x1,x2,...,xn)

(by (59), applied to 1/ε instead of ε)

= (1/ε)2k
d∑
i=0

∑
j∈N

ε2jQi,j (x1, x2, ..., xn) ,

so that

ε2k

d∑
i=0

∑
j∈N

Qi,j (x1, x2, ..., xn) εd−i = εd
d∑
i=0

∑
j∈N

ε2jQi,j (x1, x2, ..., xn) .

For fixed ε, this is a polynomial identity in (x1, x2, ..., xn) ∈ Cn. Since it holds for all
(x1, x2, ..., xn) ∈ Cn (as we just have shown), it thus must hold as a formal identity, i.
e., we must have

ε2k

d∑
i=0

∑
j∈N

Qi,jε
d−i = εd

d∑
i=0

∑
j∈N

ε2jQi,j in C [X1, X2, ..., Xn] .

Let us take the v-th homogeneous components of both sides of this equation. Since
each Qi,j is homogeneous of degree j, this amounts to removing all Qi,j with j 6= v,
and leaving the Qi,j with j = v unchanged. Thus, we obtain

ε2k

d∑
i=0

Qi,vε
d−i = εd

d∑
i=0

ε2vQi,v in C [X1, X2, ..., Xn] . (62)

Now, let (x1, x2, ..., xn) ∈ Cn be arbitrary again. Then, evaluating the identity (62)
at (X1, X2, ..., Xn) = (x1, x2, ..., xn), we obtain

ε2k

d∑
i=0

Qi,v (x1, x2, ..., xn) εd−i = εd
d∑
i=0

ε2vQi,v (x1, x2, ..., xn) .
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For fixed (x1, x2, ..., xn), this is a polynomial identity in ε (since d − i ≥ 0 for all
i ∈ {0, 1, ..., d}). Since it holds for all nonzero ε ∈ C (as we just have shown), it thus
must hold as a formal identity (since any polynomial in one variable which evaluates
to zero at all nonzero complex numbers must be the zero polynomial). In other words,
we must have

E2k

d∑
i=0

Qi,v (x1, x2, ..., xn)Ed−i = Ed

d∑
i=0

E2vQi,v (x1, x2, ..., xn) in C [E]

(where C [E] denotes the polynomial ring over C in one variable E). Let us compare
the coefficients of E2k+d−u on both sides of this equation: The coefficient of E2k+d−u

on the left hand side of this equation is clearly Qu,v (x1, x2, ..., xn), while the coefficient
of E2k+d−u on the right hand side is 0 (in fact, the only coefficient on the right hand
side of the equation which is not trivially zero is the coefficient of Ed+2v, but d+ 2v 6=
2k + d − u (since u + 2v 6= 2k and thus 2v 6= 2k − u)). Hence, comparison yields
Qu,v (x1, x2, ..., xn) = 0. Since this holds for all (x1, x2, ..., xn) ∈ Cn, we thus obtain
Qu,v = 0 (because any polynomial which vanishes on the whole Cn must be the zero
polynomial). This proves (61).

Now, (60) rewrites as

P =
∑
i∈N

∑
j∈N

Qi,jX
i
n+1 =

∑
u∈N

∑
v∈N

Qu,vX
u
n+1 (here, we renamed the indices i and j as u and v)

=
∑

(u,v)∈N×N

Qu,vX
u
n+1 =

∑
(u,v)∈N×N;
u+2v=2k

Qu,vX
u
n+1

 here, we removed from our sum all terms for (u, v) ∈ N× N which
don’t satisfy u+ 2v = 2k (because (61) shows that these terms

don’t contribute anything to the sum)


=

k∑
v=0

Q2k−2v,vX
2k−2v
n+1 (here, we substituted (2k − 2v, v) for (u, v) in the sum) .

Now, for every v ∈ {0, 1, ..., k}, let ψv : V → C be the polynomial map defined by

ψv (λ) = Q2k−2v,v (v1 (λ) , v2 (λ) , ..., vn (λ)) for every λ ∈ V.

Then, ψv is homogeneous of degree v (since Q2k−2v,v is homogeneous of degree v). In
particular, this yields that ψk is homogeneous of degree k.

Every (λ, ε) ∈ V × C satisfies

φ (λ, ε) = P (v1 (λ) , v2 (λ) , ..., vn (λ) , ε)

=
k∑
v=0

Q2k−2v,v (v1 (λ) , v2 (λ) , ..., vn (λ))︸ ︷︷ ︸
=ψv(λ)

ε2k−2v

(
since P =

k∑
v=0

Q2k−2v,vX
2k−2v
n+1

)

=
k∑
v=0

ψv (λ) ε2k−2v. (63)
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Applied to ε = 0, this yields

φ (λ, 0) =
k∑
v=0

ψv (λ) 02k−2v = ψk (λ)
(
since 02k−2v = 0 for all v < k

)
for every λ ∈ V . Hence, the polynomial function V → C, λ 7→ φ (λ, 0) equals the
polynomial function ψk, and thus is homogeneous of degree k (since ψk is homogeneous
of degree k). This proves Lemma 2.6.28 (a).

Applying (63) to ε = 1, we obtain

φ (λ, 1) =
k∑
v=0

ψv (λ) 12k−2v︸ ︷︷ ︸
=1

=
k∑
v=0

ψv (λ) .

Hence, the polynomial function V → C, λ 7→ φ (λ, 1) equals the sum
k∑
v=0

ψv. Since

we know that the polynomial function ψv is homogeneous of degree v for every v ∈
{0, 1, ..., k}, this yields that, for every integerN > k, theN -th homogeneous component
of the polynomial function V → C, λ 7→ φ (λ, 1) is zero. This proves Lemma 2.6.28
(b).

Finally, recall that the polynomial function V → C, λ 7→ φ (λ, 1) equals the sum
k∑
v=0

ψv, and the polynomial function ψv is homogeneous of degree v for every v ∈

{0, 1, ..., k}. Hence, for every v ∈ {0, 1, ..., k}, the v-th homogeneous component of the
polynomial function V → C, λ 7→ φ (λ, 1) is ψv. In particular, the k-th homogeneous
component of the polynomial function V → C, λ 7→ φ (λ, 1) is ψk. Since ψk equals
the function V → C, λ 7→ φ (λ, 0), this rewrites as follows: The k-th homogeneous
component of the polynomial function V → C, λ 7→ φ (λ, 1) is the function V →
C, λ 7→ φ (λ, 0). This proves Lemma 2.6.28 (c).

2.6.10. Proof of Theorem 2.6.6: The Lie algebra g0

Consider the polynomial function Qn of Corollary 2.6.27. Due to Corollary 2.6.27, it
satisfies the condition of Lemma 2.6.28 for k = LENn. Hence, Lemma 2.6.28 suggests
that we study the Lie algebra g0, since this will show us what the function h∗ → C,
λ 7→ Qn (λ, 0) looks like.

First, let us reformulate the definition of g0 as follows: As a vector space, g0 = g,
but the bracket on g0 is given by

[·, ·]0 : gi ⊗ gj → gi+j is

{
zero if i+ j 6= 0;

the Lie bracket [·, ·] of g if i+ j = 0
. (64)

It is very easy to see (from this) that [n−, n−]0 = 0, [n+, n+]0 = 0, [n−, n+]0 =
[n+, n−]0 ⊆ h and that h ⊆ Z (g0).

We notice that n0
− = n−, n0

+ = n+ and h0 = h as vector spaces.

Since
[
n0
−, n

0
−
]0

= [n−, n−]0 = 0, the Lie algebra n0
− is abelian, so that U

(
n0
−
)

=
S
(
n0
−
)

= S (n−). Similarly, U
(
n0

+

)
= S

(
n0

+

)
= S (n+).

We notice that

λ
(
[x, y]0

)
= λ ([x, y]) for any x ∈ g and y ∈ g. (65)
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65

In the following, we will use the form (·, ·)◦λ defined in Definition 2.6.11. We will only
consider this form for the Lie algebra g, not for the Lie algebras gε and g0; thus we
don’t have any reason to rename it as (·, ·)◦gλ .

Lemma 2.6.29. We have(
av+g0

λ , bv−g
0

−λ

)g0

λ
= (a, b)◦λ for all a ∈ S (n−) and b ∈ S (n+) . (66)

Here, av+g0

λ and bv−g
0

−λ are elements of M+g0

λ and M−g0

−λ , respectively (because a ∈
S (n−) = U

(
n0
−
)

and b ∈ S (n+) = U
(
n0

+

)
).

Proof of Lemma 2.6.29. Let a ∈ S (n−) and b ∈ S (n+) be arbitrary. Since the claim

that
(
av+g0

λ , bv−g
0

−λ

)g0

λ
= (a, b)◦λ is linear in each of a and b, we can WLOG assume

that a = a1a2...au for some homogeneous a1, a2, ..., au ∈ n− and that b = b1b2...bv for
some homogeneous b1, b2, ..., bv ∈ n+ (because every element of S (n−) is a C-linear
combination of products of the form a1a2...au with homogeneous a1, a2, ..., au ∈ n−,
and because every element of S (n+) is a C-linear combination of products of the form
b1b2...bv with homogeneous b1, b2, ..., bv ∈ n+).

WLOG assume that v ≥ u. (Else, the proof is analogous.)
Recall the equality

(
av+

λ , bv
−
−λ
)

=
(
S (b) av+

λ , v
−
−λ
)

shown during the proof of Proposi-

tion 2.6.1. Applied to g0 instead of g, this yields
(
av+g0

λ , bv−g
0

−λ

)g0

λ
=
(
S (b) av+g0

λ , v−g
0

−λ

)g0

λ
.

Since h ⊆ Z (g0), we have h ⊆ Z (U (g0)) (because the center of a Lie algebra always
lies in the center of its universal enveloping algebra).

Since b = b1b2...bv, we have S (b) = (−1)v bvbv−1...b1. Combined with a = a1a2...au,
this yields

S (b) a = (−1)v bvbv−1...b1a1a2...au,

so that

(
av+g0

λ , bv−g
0

−λ

)g0

λ
=

 S (b) a︸ ︷︷ ︸
=(−1)vbvbv−1...b1a1a2...au

v+g0

λ , v−g
0

−λ


g0

λ

= (−1)v
(
bvbv−1...b1a1a2...auv

+g0

λ , v−g
0

−λ

)g0

λ
.

(67)

We will now prove some identities in order to simplify the bvbv−1...b1a1a2...auv
+g0

λ

term here.

65Proof of (65). Let x ∈ g and y ∈ g. Since the equation (65) is linear in each of x and y, we can
WLOG assume that x and y are homogeneous (since every element of g is a sum of homogeneous
elements). So we can assume that x ∈ gi and y ∈ gj for some i ∈ N and j ∈ N. Consider these

i and j. If i + j 6= 0, then [x, y]
0

= 0 (by (64)) and λ ([x, y]) = 0 (since x ∈ gi and y ∈ gj yield
[x, y] ∈ gi+j , and due to i+ j 6= 0 the form λ annihilates gi+j), so that (65) trivially holds in this

case. If i+ j = 0, then [x, y]
0

= [x, y] (again by (64)), and thus (65) holds in this case as well. We
have thus proven (65) both in the case i + j 6= 0 and in the case i + j = 0. These cases cover all
possibilities, and thus (65) is proven.
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First: In the Verma highest-weight module M+g0

λ of (g0, λ), we have

βα1α2...α`v
+g0

λ =
∑̀
p=1

λ ([β, αp])α1α2...αp−1αp+1αp+2...α`v
+g0

λ (68)

for every ` ∈ N, α1, α2, ..., α` ∈ n− and β ∈ n+.

66

66Proof of (68). We will prove (68) by induction over `:

Induction base: For ` = 0, the left hand side of (68) is βv+g0

λ = 0 (since β ∈ n+ = n0
+), and

the right hand side of (68) is (empty sum) = 0. Thus, for ` = 0, the equality (68) holds. This
completes the induction base.

Induction step: Let m ∈ N be positive. Assume that (68) holds for ` = m − 1. We now must
show that (68) holds for ` = m.

Let α1, α2, ..., αm ∈ n− and β ∈ n+.
Since (68) holds for ` = m− 1, we can apply (68) to m− 1 and (α2, α3, ..., αm) instead of ` and

(α1, α2, ..., α`), and thus obtain

βα2α3...αmv
+g0

λ =

m−1∑
p=1

λ ([β, αp+1])α2α3...αp−1+1αp+1+1αp+2+1...αmv
+g0

λ

=

m∑
p=2

λ ([β, αp])α2α3...αp−1αp+1αp+2...αmv
+g0

λ

(here, we substituted p for p+ 1 in the sum) .

Now, we notice that β ∈ n+ and α1 ∈ n−, so that [β, α1]
0 ∈ [n+, n−]

0 ⊆ h ⊆ Z
(
U
(
g0
))

. Thus,

[β, α1]
0
α2α3...αm = α2α3...αm [β, α1]

0
. But since [β, α1]

0 ∈ h = h0, we also have [β, α1]
0
v+g0

λ =

λ
(

[β, α1]
0
)
v+g0

λ = λ ([β, α1]) v+g0

λ (since λ
(

[β, α1]
0
)

= λ ([β, α1]) by (65)).

We now compute:

βα1α2...αmv
+g0

λ = βα1︸︷︷︸
=α1β+[β,α1]0

(since we are in U(g0))

α2α3...αmv
+g0

λ =
(
α1β + [β, α1]

0
)
α2α3...αmv

+g0

λ

= α1 βα2α3...αmv
+g0

λ︸ ︷︷ ︸
=
m∑
p=2

λ([β,αp])α2α3...αp−1αp+1αp+2...αmv
+g0

λ

+ [β, α1]
0
α2α3...αm︸ ︷︷ ︸

=α2α3...αm[β,α1]0

v+g0

λ

= α1

m∑
p=2

λ ([β, αp])α2α3...αp−1αp+1αp+2...αmv
+g0

λ︸ ︷︷ ︸
=
m∑
p=2

λ([β,αp])α1α2α3...αp−1αp+1αp+2...αmv
+g0

λ

+α2α3...αm [β, α1]
0
v+g0

λ︸ ︷︷ ︸
=λ([β,α1])v+g0

λ

=

m∑
p=2

λ ([β, αp])α1α2α3...αp−1αp+1αp+2...αmv
+g0

λ + λ ([β, α1])α2α3...αmv
+g0

λ

=

m∑
p=1

λ ([β, αp])α1α2α3...αp−1αp+1αp+2...αmv
+g0

λ

=

m∑
p=1

λ ([β, αp])α1α2...αp−1αp+1αp+2...αmv
+g0

λ .

Thus, (68) holds for ` = m. This completes the induction step. Thus, (68) is proven.
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Next we will show that in the Verma highest-weight module M+g0

λ of (g0, λ), we have

β`β`−1...β1α1α2...α`v
+g0

λ = (−1)`
∑
σ∈S`

λ
([
α1, βσ(1)

])
λ
([
α2, βσ(2)

])
...λ
([
α`, βσ(`)

])
v+g0

λ

(69)

for every ` ∈ N, α1, α2, ..., α` ∈ n− and β1, β2, ..., β` ∈ n+.

Proof of (69). We will prove (69) by induction over `:

Induction base: For ` = 0, we have β`β`−1...β1︸ ︷︷ ︸
empty product

α1α2...α`︸ ︷︷ ︸
empty product

v+g0

λ = v+g0

λ and

(−1)`︸ ︷︷ ︸
=1

∑
σ∈S`︸︷︷︸

sum over 1 element

λ
([
α1, βσ(1)

])
λ
([
α2, βσ(2)

])
...λ
([
α`, βσ(`)

])︸ ︷︷ ︸
empty product

v+g0

λ = v+g0

λ . Thus,

for ` = 0, the equality (69) holds. This completes the induction base.
Induction step: Let m ∈ N be positive. Assume that (69) holds for ` = m − 1. We

now must show that (69) holds for ` = m.
Let α1, α2, ..., αm ∈ n− and β1, β2, ..., βm ∈ n+.
For every p ∈ {1, 2, ...,m}, let cp denote the permutation in Sm which is written in

row form as (1, 2, ..., p− 1, p+ 1, p+ 2, ...,m, p). (This is the permutation with cycle
decomposition (1) (2) ... (p− 1) (p, p+ 1, ...,m).) Since (69) holds for ` = m − 1, we
can apply (69) to m− 1 and

(
αcp(1), αcp(2), ..., αcp(m−1)

)
instead of ` and (α1, α2, ..., α`).

This results in

βm−1βm−2...β1αcp(1)αcp(2)...αcp(m−1)v
+g0

λ

= (−1)m−1
∑

σ∈Sm−1

λ
([
αcp(1), βσ(1)

])
λ
([
αcp(2), βσ(2)

])
...λ
([
αcp(m−1), βσ(m−1)

])︸ ︷︷ ︸
=

∏
i∈{1,2,...,m−1}

λ([αcp(i),βσ(i)])=
∏

i∈{1,2,...,m}�{p}
λ

([
αi,β

σ(c−1
p (i))

])
(here, we substituted i for cp(i) in the product)

v+g0

λ

= (−1)m−1
∑

σ∈Sm−1

∏
i∈{1,2,...,m}�{p}

λ


αi, βσ(c−1

p (i))︸ ︷︷ ︸
=β

(σ◦c−1
p )(i)


 v+g0

λ

= (−1)m−1
∑

σ∈Sm−1

∏
i∈{1,2,...,m}�{p}

λ
([
αi, β(σ◦c−1

p )(i)

])
v+g0

λ

= (−1)m−1
∑

σ∈Sm; σ(m)=m

∏
i∈{1,2,...,m}�{p}

λ
([
αi, β(σ◦c−1

p )(i)

])
v+g0

λ(
here, we identified the permutations in Sm−1 with the permutations

σ ∈ Sm satisfying σ (m) = m

)
= (−1)m−1

∑
σ∈Sm; σ(p)=m

∏
i∈{1,2,...,m}�{p}

λ
([
αi, βσ(i)

])
v+g0

λ(
here, we substituted σ for σ ◦ c−1

p in the sum
)
.

The elements βm, βm−1, ..., β1 all lie in n+ and thus commute in U (g0) (since
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[n+, n+]0 = 0). Thus, βmβm−1...β1 = βm−1βm−2...β1βm in U (g0), so that

βmβm−1...β1α1α2...αmv
+g0

λ

= βm−1βm−2...β1 βmα1α2...αmv
+g0

λ︸ ︷︷ ︸
=

m∑
p=1

λ([βm,αp])α1α2...αp−1αp+1αp+2...αmv
+g0

λ

(by (68), applied to β=βm and `=m)

= βm−1βm−2...β1

m∑
p=1

λ ([βm, αp])α1α2...αp−1αp+1αp+2...αmv
+g0

λ

=
m∑
p=1

λ ([βm, αp])︸ ︷︷ ︸
=λ(−[αp,βm])=−λ([αp,βm])

βm−1βm−2...β1 α1α2...αp−1αp+1αp+2...αm︸ ︷︷ ︸
=αcp(1)αcp(2)...αcp(m−1)

(by the definition of cp)

v+g0

λ

= −
m∑
p=1

λ ([αp, βm]) βm−1βm−2...β1αcp(1)αcp(2)...αcp(m−1)v
+g0

λ︸ ︷︷ ︸
=(−1)m−1 ∑

σ∈Sm; σ(p)=m

∏
i∈{1,2,...,m}�{p}

λ([αi,βσ(i)])v+g0

λ

= − (−1)m−1︸ ︷︷ ︸
=(−1)m

m∑
p=1

∑
σ∈Sm; σ(p)=m

λ


αp, βm︸︷︷︸

=βσ(p)

(since σ(p)=m)


 ∏

i∈{1,2,...,m}�{p}

λ
([
αi, βσ(i)

])
v+g0

λ

= (−1)m
m∑
p=1

∑
σ∈Sm; σ(p)=m

λ
([
αp, βσ(p)

]) ∏
i∈{1,2,...,m}�{p}

λ
([
αi, βσ(i)

])
︸ ︷︷ ︸

=
∏

i∈{1,2,...,m}
λ([αi,βσ(i)])

=λ([α1,βσ(1)])λ([α2,βσ(2)])...λ([αm,βσ(m)])

v+g0

λ

= (−1)m
m∑
p=1

∑
σ∈Sm; σ(p)=m︸ ︷︷ ︸

=
∑

σ∈Sm

λ
([
α1, βσ(1)

])
λ
([
α2, βσ(2)

])
...λ
([
αm, βσ(m)

])
v+g0

λ

= (−1)m
∑
σ∈Sm

λ
([
α1, βσ(1)

])
λ
([
α2, βσ(2)

])
...λ
([
αm, βσ(m)

])
v+g0

λ .

In other words, (69) is proven for ` = m. This completes the induction step. Thus,
the induction proof of (69) is done.

Now, back to proving
(
av+g0

λ , bv−g
0

−λ

)g0

λ
= (a, b)◦λ. Applying (69) to ` = u, αi = ai

and βi = bi, we obtain

bubu−1...b1a1a2...auv
+g0

λ = (−1)u
∑
σ∈Su

λ
([
a1, bσ(1)

])
λ
([
a2, bσ(2)

])
...λ
([
au, bσ(u)

])
v+g0

λ .
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Hence, if v > u, then

bvbv−1...b1a1a2...auv
+g0

λ

= bvbv−1...bu+2bu+1 bubu−1...b1a1a2...auv
+g0

λ︸ ︷︷ ︸
=(−1)u

∑
σ∈Su

λ([a1,bσ(1)])λ([a2,bσ(2)])...λ([au,bσ(u)])v+g0

λ

= bvbv−1...bu+2bu+1 (−1)u
∑
σ∈Su

λ
([
a1, bσ(1)

])
λ
([
a2, bσ(2)

])
...λ
([
au, bσ(u)

])
v+g0

λ

= (−1)u
∑
σ∈Su

λ
([
a1, bσ(1)

])
λ
([
a2, bσ(2)

])
...λ
([
au, bσ(u)

])
bvbv−1...bu+2 bu+1v

+g0

λ︸ ︷︷ ︸
=0

(since bu+1∈n+=n0
+)

= 0,

and thus(
av+g0

λ , bv−g
0

−λ

)g0

λ

= (−1)v

bvbv−1...b1a1a2...auv
+g0

λ︸ ︷︷ ︸
=0

, v−g
0

−λ

g0

λ

(by (67))

= 0 = (a, b)◦λ
because the form (·, ·)◦λ was defined as a restriction of a sum⊕

k≥0

λk : S (n−)× S (n+)→ C of bilinear forms λk : Sk (n−)× Sk (n+)→ C,

and thus (Su (n−) , Sv (n+))◦λ = 0 for u 6= v, so that (a, b)◦λ = 0
(since a ∈ Su (n−) and b ∈ Sv (n+) and u 6= v)

 .

We thus have proven
(
av+g0

λ , bv−g
0

−λ

)g0

λ
= (a, b)◦λ in the case when v > u. It remains to

prove that
(
av+g0

λ , bv−g
0

−λ

)g0

λ
= (a, b)◦λ in the case when v = u. So let us assume that

v = u. In this case,

bvbv−1...b1a1a2...auv
+g0

λ = bubu−1...b1a1a2...auv
+g0

λ

= (−1)u
∑
σ∈Su

λ
([
a1, bσ(1)

])
λ
([
a2, bσ(2)

])
...λ
([
au, bσ(u)

])
v+g0

λ ,
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so that(
av+g0

λ , bv−g
0

−λ

)g0

λ

= (−1)v︸ ︷︷ ︸
=(−1)u

(since v=u)

 bvbv−1...b1a1a2...auv
+g0

λ︸ ︷︷ ︸
=(−1)u

∑
σ∈Su

λ([a1,bσ(1)])λ([a2,bσ(2)])...λ([au,bσ(u)])v+g0

λ

, v−g
0

−λ


g0

λ

= (−1)u
(

(−1)u
∑
σ∈Su

λ
([
a1, bσ(1)

])
λ
([
a2, bσ(2)

])
...λ
([
au, bσ(u)

])
v+g0

λ , v−g
0

−λ

)g0

λ

= (−1)u (−1)u︸ ︷︷ ︸
=(−1)u+u=(−1)2u=1

(since 2u is even)

∑
σ∈Su

λ
([
a1, bσ(1)

])
λ
([
a2, bσ(2)

])
...λ
([
au, bσ(u)

]) (
v+g0

λ , v−g
0

−λ

)g0

λ︸ ︷︷ ︸
=1

=
∑
σ∈Su

λ
([
a1, bσ(1)

])
λ
([
a2, bσ(2)

])
...λ
([
au, bσ(u)

])
.

Compared to a︸︷︷︸
=a1a2...au

, b︸︷︷︸
=b1b2...bv=b1b2...bu

(since v=u)


◦

λ

= (a1a2...au, b1b2...bu)
◦
λ = λu (a1a2...au, b1b2...bu)

=
∑
σ∈Su

λ
([
a1, bσ(1)

])
λ
([
a2, bσ(2)

])
...λ
([
au, bσ(u)

])
,

this yields
(
av+g0

λ , bv−g
0

−λ

)g0

λ
= (a, b)◦λ. Now that

(
av+g0

λ , bv−g
0

−λ

)g0

λ
= (a, b)◦λ is proven in

each of the cases v > u and v = u (and the case v < u is analogous), we are done with
proving (66).

This proves Proposition 2.6.29.

Corollary 2.6.30. Let n ∈ N. Recall that the family (e0
i )i∈Seq− E; deg i=−n is a basis of

the vector space U
(
n0
−
)

[−n] = S (n−) [−n], and that the family
(
e0
j

)
j∈Seq+ E; deg j=n

is a basis of the vector space U
(
n0

+

)
[n] = S (n+) [n]. Thus, let us represent the

bilinear form (·, ·)◦λ,n : S (n−) [−n]×S (n+) [n] by its matrix with respect to the bases

(e0
i )i∈Seq− E; deg i=−n and

(
e0
j

)
j∈Seq+ E; deg j=n

of S (n−) [−n] and S (n+) [n], respectively.

This is the matrix ((
e0
i , e

0
j

)◦
λ,n

)
i∈Seq− E; j∈Seq+ E;

deg i=−n; deg j=n

.

This matrix is a square matrix (since the number of all j ∈ Seq+E satisfying deg j =
n equals the number of all i ∈ Seq−E satisfying deg i = −n), and its determinant is

what we are going to denote by det
(

(·, ·)◦λ,n
)

.

Then,

det
(

(·, ·)g
0

λ,n

)
= det

(
(·, ·)◦λ,n

)
.
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Proof of Corollary 2.6.30. For every i ∈ Seq−E satisfying deg i = −n, and every
j ∈ Seq+E satisfying deg j = n, we have(

e0
i v

+g0

λ , e0
j v
−g0

−λ

)g0

λ,n
=
(
e0
i v

+g0

λ , e0
j v
−g0

−λ

)g0

λ
=
(
e0
i , e

0
j

)◦
λ(

by Lemma 2.6.29, applied to a = e0
i and b = e0

j

)
=
(
e0
i , e

0
j

)◦
λ,n
.

Thus,

det

((e0
i v

+g0

λ , e0
j v
−g0

−λ

)g0

λ,n

)
i∈Seq− E; j∈Seq+ E;

deg i=−n; deg j=n

 = det

(((
e0
i , e

0
j

)◦
λ,n

)
i∈Seq− E; j∈Seq+ E;

deg i=−n; deg j=n

)
.

Now,

det
(

(·, ·)◦λ,n
)

= det

(((
e0
i , e

0
j

)◦
λ,n

)
i∈Seq− E; j∈Seq+ E;

deg i=−n; deg j=n

)

= det

((e0
i v

+g0

λ , e0
j v
−g0

−λ

)g0

λ,n

)
i∈Seq− E; j∈Seq+ E;

deg i=−n; deg j=n

 = det
(

(·, ·)g
0

λ,n

)
.

This proves Corollary 2.6.30.

2.6.11. Proof of Theorem 2.6.6: Joining the threads

Proof of Proposition 2.6.17. Consider the polynomial function Qn : h∗ × C → C
introduced in Corollary 2.6.27. Due to Corollary 2.6.27, every λ ∈ V and every nonzero
ε ∈ C satisfy

Qn (λ, ε) = ε2 LENnQn

(
λ/ε2, 1

)
.

Hence, we can apply Lemma 2.6.28 to V = h∗, φ = Qn and k = LENn. Thus, we
obtain the following three observations:

Observation 1: The polynomial function

h∗ → C, λ 7→ Qn (λ, 0)

is homogeneous of degree k. (This follows from Lemma 2.6.28 (a).)
Observation 2: For every integer N > k, the N -th homogeneous component of the

polynomial function
h∗ → C, λ 7→ Qn (λ, 1)

is zero. (This follows from Lemma 2.6.28 (b).)
Observation 3: The k-th homogeneous component of the polynomial function

h∗ → C, λ 7→ Qn (λ, 1)

is the polynomial function

h∗ → C, λ 7→ Qn (λ, 0) .

116



(This follows from Lemma 2.6.28 (c).)
Since every λ ∈ h∗ satisfies

Qn (λ, 1) = det
(

(·, ·)g
1

λ,n

) (
since (53) (applied to ε = 1)

yields det
(

(·, ·)g
1

λ,n

)
= Qn (λ, 1)

)
= det

(
(·, ·)λ,n

) (
since g1 = g and thus (·, ·)g

1

λ,n = (·, ·)gλ,n = (·, ·)λ,n
)
,

the polynomial function

h∗ → C, λ 7→ Qn (λ, 1)

is the polynomial function

h∗ → C, λ 7→ det
(

(·, ·)λ,n
)
.

This yields that

h∗ → C, λ 7→ det
(

(·, ·)λ,n
)

is a polynomial function.
Since every λ ∈ h∗ satisfies

Qn (λ, 0) = det
(

(·, ·)g
0

λ,n

) (
since (53) (applied to ε = 0)

yields det
(

(·, ·)g
0

λ,n

)
= Qn (λ, 0)

)
= det

(
(·, ·)◦λ,n

)
(by Corollary 2.6.30) ,

the polynomial function

h∗ → C, λ 7→ Qn (λ, 0)

is the polynomial function

h∗ → C, λ 7→ det
(

(·, ·)◦λ,n
)
.

This yields that

h∗ → C, λ 7→ det
(

(·, ·)◦λ,n
)

is a polynomial function. This polynomial function is not identically zero67.

67Proof. Since g is nondegenerate, there exists λ ∈ h∗ such that the bilinear form

g−k × gk → C, (a, b) 7→ λ ([a, b])

is nondegenerate for every k ∈ {1, 2, ..., n}. For such λ, the form (·, ·)◦λ,n must be nondegenerate (by

Lemma 2.6.13), so that det
(

(·, ·)◦λ,n
)
6= 0. Hence, there exists λ ∈ h∗ such that det

(
(·, ·)◦λ,n

)
6= 0.

In other words, the polynomial function

h∗ → C, λ 7→ det
(

(·, ·)◦λ,n
)

is not identically zero, qed.
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Since Qn (λ, 1) = det
(

(·, ·)λ,n
)

for every λ ∈ h∗, Observation 2 rewrites as follows:

Observation 2’: For every integer n > k, the n-th homogeneous component of the
polynomial function

h∗ → C, λ 7→ det
(

(·, ·)λ,n
)

is zero.
Since Qn (λ, 1) = det

(
(·, ·)λ,n

)
and Qn (λ, 0) = det

(
(·, ·)◦λ,n

)
for every λ ∈ h∗,

Observation 3 rewrites as follows:
Observation 3’: The k-th homogeneous component of the polynomial function

h∗ → C, λ 7→ det
(

(·, ·)λ,n
)

is the polynomial function

h∗ → C, λ 7→ det
(

(·, ·)◦λ,n
)
.

Combining Observations 2’ and 3’ and the fact that the polynomial function

h∗ → C, λ 7→ det
(

(·, ·)◦λ,n
)

is not identically zero, we conclude that the polynomial function

h∗ → C, λ 7→ det
(

(·, ·)◦λ,n
)

is the leading term of the polynomial function

h∗ → C, λ 7→ det
(

(·, ·)λ,n
)
.

This proves Proposition 2.6.17.
Now that Proposition 2.6.17 is proven, the proof of Theorem 2.6.6 is also complete

(because we have already proven Theorem 2.6.6 using Proposition 2.6.17).

2.7. The irreducible quotients of the Verma modules

We will now use the form (·, ·)λ to develop the representation theory of g. In the
following, we assume that g is nondegenerate.

Definition 2.7.1. Let (·, ·) denote the form (·, ·)λ. Let J±λ be the kernel of (·, ·)
on M±

λ . This is a graded g-submodule of M±
λ (since the form (·, ·) is g-invariant).

Let L±λ be the quotient module M±
λ �J

±
λ . Then, (·, ·) descends to a nondegenerate

pairing L+
λ × L

−
−λ → C.

Remark 2.7.2. For Weil-generic λ (away from a countable union of hypersurfaces),
we have J±λ = 0 (by Theorem 2.6.6) and thus L±λ = M±

λ .
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Theorem 2.7.3. (i) The g-module L±λ is irreducible.
(ii) The g-module J±λ is the maximal proper graded submodule of M±

λ . (This
means that J±λ contains all proper graded submodules in M±

λ .)
(iii) Assume that there exists some L ∈ g0 such that every n ∈ Z satisfies

(adL) |gn= n · id |gn .

(In this case it is said that the grading on g is internal, i. e., comes from bracketing
with some L ∈ g0.) Then J±λ is the maximal proper submodule of M±

λ .

Remark 2.7.4. Here are two examples of cases when the grading on g is internal:
(a) If g is a simple finite-dimensional Lie algebra, then we know (from Proposition

2.5.6) that choosing a Cartan subalgebra h and corresponding Chevalley generators
e1, e2, ..., em, f1, f2, ..., fm, h1, h2, ..., hm of g endows g with a grading. This
grading is internal. In fact, in this case, we can take L = ρ∨, where ρ∨ is defined as
the element of h satisfying αi (ρ

∨) = 1 for all i (where αi are the simple roots of g).
Since the actions of the αi on h are a basis of h∗, this ρ∨ is well-defined and unique.
(But it depends on the choice of h and the Chevalley generators, of course.)

(b) If g = Vir, then the grading on g is internal. In fact, in this case, we can take
L = −L0.

On the other hand, if g is the affine Kac-Moody algebra ĝω of Definition 1.7.6,
then the grading on g is not internal.

Proof of Theorem 2.7.3. (i) Let us show that L−λ is irreducible (the proof for L+
λ will

be similar).
In fact, assume the contrary. Then, there exists a nonzero w ∈ L−λ such that U (g) ·

w 6= L−λ . Since L−λ is graded by nonnegative integers, we can choose w to have the
smallest possible degree m (without necessarily being homogeneous). Clearly, m > 0.
Thus we can write w = w0 + w1 + ... + wm, where each wi is homogeneous of degree
degwi = i and wm 6= 0.

Let a ∈ gj for some j < 0. Then aw = 0 (since deg (aw) < degw, but still
U (g) · aw 6= L−λ (since U (g) · aw ⊆ U (g) · w and U (g) · w 6= L−λ ), and we have chosen
w to have the smallest possible degree). By homogeneity, this yields awm = 0 (since
awm is the (m+ j)-th homogeneous component of aw).

For every u ∈ L+
−λ [−m− j], the term (au, wm) is well-defined (since au ∈ L+

−λ and

wm ∈ L−λ ). Since the form (·, ·) is g-invariant, it satisfies (au, wm) = −

u, awm︸︷︷︸
=0

 = 0.

But since m > 0, we have L+
−λ [−m] =

∑
j<0

gj ·L+
−λ [−m− j] (because Proposition 2.5.15

(a) yields M+
−λ = U (n−) v+

λ , so that L+
−λ = U (n−) v+

λ , thus

L+
−λ [−m] = U (n−) [−m]︸ ︷︷ ︸

=
∑
j<0

(n−)[j]·U(n−)[−m−j]

v+
λ =

∑
j<0

(n−) [j]︸ ︷︷ ︸
=g[j]=gj

·U (n−) [−m− j] v+
λ︸ ︷︷ ︸

=L+
−λ[−m−j]

(since U(n−)v+
λ =L+

−λ)

=
∑
j<0

gj·L+
−λ [−m− j]

). Hence, any element of L+
−λ [−m] is a linear combination of elements of the form au

with a ∈ gj (for j < 0) and u ∈ L+
−λ [−m− j]. Thus, since we know that (au, wm) = 0
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for every a ∈ gj and u ∈ L+
−λ [−m− j], we conclude that

(
L+
−λ [−m] , wm

)
= 0. As a

consequence,
(
L+
−λ, wm

)
= 0 (because the form (·, ·) : L+

−λ × L
−
λ → C is of degree 0,

and thus
(
L+
−λ [j] , wm

)
= 0 for all j 6= −m). Since the form (·, ·) : L+

−λ × L−λ → C
is nondegenerate, this yields wm = 0. This is a contradiction to wm 6= 0. This
contradiction shows that our assumption was wrong. Thus, L−λ is irreducible. Similarly,
L+
λ is irreducible.
(ii) First let us prove that the g-module J+

λ is the maximal proper graded submodule
of M+

λ .
Let K ⊆M+

λ be a proper graded submodule, and let K be its image in L+
λ . Then, K

lives in strictly negative degrees (because it is graded, so if it would have a component
in degrees ≥ 0, it would contain v+

λ and thus contain everything, and thus not be
proper). Hence, K also lives in strictly negative degrees, and thus is proper. Hence,
by (i), we have K = 0, thus K ⊆ J+

λ . This shows that J+
λ is the maximal proper

graded submodule of M+
λ . The proof of the corresponding statement for J−λ and M−

λ

is similar.
(iii) Assume that there exists some L ∈ g0 such that every n ∈ Z satisfies

(adL) |gn= n · id |gn .

Consider this L. It is easy to prove (by induction) that [L, a] = na for every a ∈
U (g) [n].

We are now going to show that all g-submodules of M+
λ are automatically graded.

In fact, it is easy to see that M+
λ [n] ⊆ Ker

(
L |M+

λ
− (λ (L) + n) id

)
for every n ∈ Z.

68 In other words, for every n ∈ Z, the n-th homogeneous component M+
λ [n] of M+

λ is
contained in the eigenspace of the operator L |M+

λ
for the eigenvalue λ (L) + n. Now,

M+
λ =

⊕
n∈Z

M+
λ [n] =

∑
n∈Z

M+
λ [n]︸ ︷︷ ︸

⊆Ker

(
L|
M+
λ
−(λ(L)+n) id

)
=

(
eigenspace of the operator L|

M+
λ

for the eigenvalue λ(L)+n

)

⊆
∑
n∈Z

(
eigenspace of the operator L |M+

λ
for the eigenvalue λ (L) + n

)
.

68Proof. Let n ∈ Z. Let a ∈ U (n−) [n]. Then, a ∈ U (g) [n], so that [L, a] = na and thus La =
aL+ [L, a]︸ ︷︷ ︸

=na

= aL+ na. Thus,

(
L |M+

λ

) (
av+
λ

)
= La︸︷︷︸

=aL+na

v+
λ = (aL+ na) v+

λ = a Lv+
λ︸︷︷︸

=λ(L)v+λ

+nav+
λ = λ (L) av+

λ + nav+
λ

= (λ (L) + n) av+
λ ,

so that av+
λ ∈ Ker

(
L |M+

λ
− (λ (L) + n) id

)
. Forget that we fixed a ∈ U (n−) [n]. Thus we

have showed that every a ∈ U (n−) [n] satisfies av+
λ ∈ Ker

(
L |M+

λ
− (λ (L) + n) id

)
. In other

words,
{
av+
λ | a ∈ U (n−) [n]

}
⊆ Ker

(
L |M+

λ
− (λ (L) + n) id

)
. Since

{
av+
λ | a ∈ U (n−) [n]

}
=

U (n−) [n] · v+
λ = M+

λ [n], this becomes M+
λ [n] ⊆ Ker

(
L |M+

λ
− (λ (L) + n) id

)
, qed.
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Since all eigenspaces of L |M+
λ

are clearly contained in M+
λ , this rewrites as

M+
λ =

∑
n∈Z

(
eigenspace of the operator L |M+

λ
for the eigenvalue λ (L) + n

)
.

Since eigenspaces of an operator corresponding to distinct eigenvalues are linearly

disjoint, the sum
∑
n∈Z

(
eigenspace of the operator L |M+

λ
for the eigenvalue λ (L) + n

)
must be a direct sum, so this becomes

M+
λ =

⊕
n∈Z

(
eigenspace of the operator L |M+

λ
for the eigenvalue λ (L) + n

)
. (70)

As a consequence of this, the map L |M+
λ

is diagonalizable, and all of its eigenvalues

belong to the set {λ (L) + n | n ∈ Z}.
So for every n ∈ Z, we have the inclusion

M+
λ [n] ⊆ Ker

(
L |M+

λ
− (λ (L) + n) id

)
=
(

eigenspace of the operator L |M+
λ

for the eigenvalue λ (L) + n
)
,

but the direct sum of these inclusions over all n ∈ Z is an equality (since⊕
n∈Z

M+
λ [n] = M+

λ =
⊕
n∈Z

(
eigenspace of the operator L |M+

λ
for the eigenvalue λ (L) + n

)
by (70)). Hence, each of these inclusions must be an equality. In other words,

M+
λ [n] =

(
eigenspace of the operator L |M+

λ
for the eigenvalue λ (L) + n

)
for every n ∈ Z.

(71)
Now, let K be a g-submodule of M+

λ . Then, L |K is a restriction of L |M+
λ

to

K. Hence, map L |K is diagonalizable, and all of its eigenvalues belong to the set
{λ (L) + n | n ∈ Z} (because we know that the map L |M+

λ
is diagonalizable, and all

of its eigenvalues belong to the set {λ (L) + n | n ∈ Z}). In other words,

K =
⊕
n∈Z

(eigenspace of the operator L |K for the eigenvalue λ (L) + n)︸ ︷︷ ︸
=K∩

(
eigenspace of the operator L|

M+
λ

for the eigenvalue λ(L)+n

)

=
⊕
n∈Z

K ∩ (eigenspace of the operator L |M+
λ

for the eigenvalue λ (L) + n
)

︸ ︷︷ ︸
=M+

λ [n]


=
⊕
n∈Z

(
K ∩M+

λ [n]
)
.

Hence, K is graded. We thus have shown that every g-submodule of M+
λ is graded.

Similarly, every g-submodule of M−
λ is graded. Thus, Theorem 2.7.3 (iii) follows from

Theorem 2.7.3 (ii).
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Remark 2.7.5. Theorem 2.7.3 (ii) does not hold if the word “graded” is removed.
In fact, here is a counterexample: Let g be the 3-dimensional Heisenberg algebra.
(This is the Lie algebra with vector-space basis (x,K, y) and with Lie bracket given
by [y, x] = K, [x,K] = 0 and [y,K] = 0. It can be considered as a Lie subalgebra of
the oscillator algebra A defined in Definition 1.1.4.) It is easy to see that g becomes
a nondegenerate Z-graded Lie algebra by setting g−1 = 〈x〉, g0 = 〈K〉, g1 = 〈y〉
and gi = 0 for every i ∈ Z� {−1, 0, 1}. Then, on the Verma highest-weight module
M+

0 = C [x] v+
0 , both K and y act as 0 (and x acts as multiplication with x), so that

Iv+
0 is a g-submodule of M+

0 for every ideal I ⊆ C [x], but not all of these ideals are
graded, and not all of them are contained in J+

0 (as can be easily checked).

Corollary 2.7.6. For Weil-generic λ (this means a λ outside of countably many
hypersurfaces in h∗), the g-modules M+

λ and M−
λ are irreducible.

Definition 2.7.7. Let Y be a g-module. A vector w ∈ Y is called a singular vector
of weight µ ∈ h∗ (here, recall that h = g0) if it satisfies

hw = µ (h)w for every h ∈ h

and
aw = 0 for every a ∈ gi for every i > 0.

We denote by Singµ (Y ) the space of singular vectors of Y of weight µ.

When people talk about “singular vectors”, they usually mean nonzero singular
vectors in negative degrees. We are not going to adhere to this convention, though.

Lemma 2.7.8. Let Y be a g-module. Then there is a canonical isomorphism

Homg

(
M+

λ , Y
)
→ Singλ Y,

φ 7→ φ
(
v+
λ

)
.

Proof of Lemma 2.7.8. We have M+
λ = U (g)⊗U(h⊕n+) Cλ = Indg

h⊕n+
Cλ, so that

Homg

(
M+

λ , Y
)

= Homg

(
Indg

h⊕n+
Cλ, Y

)
∼= Homh⊕n+ (Cλ, Y ) (by Frobenius reciprocity) .

But Homh⊕n+ (Cλ, Y ) ∼= Singλ Y (because every C-linear map Cλ → Y is uniquely de-
termined by the image of v+

λ , and this map is a (h⊕ n+)-module map if and only if this
image is a singular vector of Y of weight λ). Thus, Homg

(
M+

λ , Y
) ∼= Homh⊕n+ (Cλ, Y ) ∼=

Singλ Y . If we make this isomorphism explicit, we notice that it sends every φ to φ
(
v+
λ

)
,

so that Lemma 2.7.8 is proven.

Corollary 2.7.9. The representation M+
λ is irreducible if and only if it does not

have nonzero singular vectors in negative degrees. Here, a vector in M+
λ is said to be

“in negative degrees” if its projection on the 0-th homogeneous component M+
λ [0]

is zero.
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Proof of Corollary 2.7.9. ⇐=: Assume that M+
λ does not have nonzero singular

vectors in negative degrees.
We must then show that M+

λ is irreducible.
In fact, assume the contrary. Then, M+

λ is not irreducible. Hence, there exists a
nonzero homogeneous v ∈ M+

λ such that U (g) · v 6= M+
λ . 69 Consider this v. Then,

U (g) · v is a proper graded submodule of M+
λ , and thus is contained in J+

λ . Hence,
J+
λ 6= 0.
There exist some d ∈ Z such that J+

λ [d] 6= 0 (since J+
λ 6= 0 and since J+

λ is graded).
All such d are nonpositive (since J+

λ is nonpositively graded). Thus, there exists a
highest integer d such that J+

λ [d] 6= 0. Consider this d. Clearly, d < 0 (since the
bilinear form (·, ·) : M+

λ ×M
−
−λ is obviously nondegenerate on M+

λ [0]×M−
−λ [0], so that

J+
λ [0] = 0).
Every i > 0 satisfies

gi ·
(
J+
λ [d]

)
⊆ J+

λ [i+ d]
(
since J+

λ is a graded g-module
)

= 0
(
since i+ d > d, but d was the highest integer such that J+

λ [d] 6= 0
)
.

By Conditions (1) and (2) of Definition 2.5.4, the Lie algebra g0 is abelian and finite-
dimensional. Hence, every nonzero g0-module has a one-dimensional submodule70.

69Proof. Notice that M+
λ is a graded U (g)-module (since M+

λ is a graded g-module).
Since M+

λ is not irreducible, there exists a nonzero w ∈ M+
λ such that U (g) · w 6= M+

λ . Since

M+
λ is graded by nonpositive integers, we can write w in the form w =

m∑
j=0

wj , where each wi is

homogeneous of degree degwi = −i and m ∈ Z. Now,

U (g)︸ ︷︷ ︸
=
∑
i∈Z

U(g)[i]

· w︸︷︷︸
=
m∑
j=0

wj

=

(∑
i∈Z

U (g) [i]

)
·

 m∑
j=0

wj



=
∑
i∈Z

m∑
j=0

U (g) [i] · wj .

Hence, for every n ∈ Z, we have

(U (g) · w) [n] =

∑
i∈Z

m∑
j=0

U (g) [i] · wj

 [n] =

m∑
j=0

(∑
i∈Z

U (g) [i] · wj

)
︸ ︷︷ ︸

⊆U(g)[i−j]
(since degwj=−j and since

M+
λ is a graded U(g)-module)

[n]

=

m∑
j=0

U (g) [n+ j] · wj .

Now, since U (g) · w 6= M+
λ , there exists at least one n ∈ Z such that (U (g) · w) [n] 6= M+

λ [n].

Consider such an n. Then, M+
λ [n] 6= (U (g) · w) [n] =

m∑
j=0

U (g) [n+ j]·wj . Thus, U (g) [n+ j]·wj 6=

M+
λ [n] for all j ∈ {0, 1, ...,m}. But some j ∈ {0, 1, ...,m} satisfies wj 6= 0 (since

m∑
j=0

wj = w 6= 0).

Consider this j. Then, wj is a nonzero homogeneous element of M+
λ satisfying U (g) · wj 6= M+

λ

(because (U (g) · wj) [n] = U (g) [n+ j] · wj 6= M+
λ [n]). This proves that there exists a nonzero

homogeneous v ∈M+
λ such that U (g) · v 6= M+

λ . Qed.
70Proof. This is because of the following fact:
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Thus, the nonzero g0-module J+
λ [d] has a one-dimensional submodule. Let w be the

generator of this submodule. Then, this submodule is 〈w〉.
For every h ∈ h, the vector hw is a scalar multiple of w (since h ∈ h = g0, so that hw

lies in the g0-submodule of J+
λ [d] generated by w, but this submodule is 〈w〉). Thus,

we can write hw = λhw for some λh ∈ C. This λh is uniquely determined (since w 6= 0),
so we can define a map µ : h→ C such that µ (h) = λh for every h ∈ h. This map µ is
easily seen to be C-linear, so that we have found a µ ∈ h∗ such that

hw = µ (h)w for every h ∈ h.

Also,
aw = 0 for every a ∈ gi for every i > 0

(since a︸︷︷︸
∈gi

w︸︷︷︸
∈J+

λ [d]

∈ gi ·
(
J+
λ [d]

)
⊆ 0). Thus, w is a nonzero singular vector. Since

w ∈ J+
λ [d] and d < 0, this vector w is in negative degrees. This contradicts to the

assumption that M+
λ does not have nonzero singular vectors in negative degrees. This

contradiction shows that our assumption was wrong, so that M+
λ is irreducible. This

proves the ⇐= direction of Corollary 2.7.9.
=⇒: Assume that M+

λ is irreducible.
We must then show that M+

λ does not have nonzero singular vectors in negative
degrees.

Let v be a singular vector of M+
λ in negative degrees. Let it be a singular vector of

weight µ for some µ ∈ h∗.
By Lemma 2.7.8 (applied to µ and M+

λ instead of λ and Y ), we have an isomorphism

Homg

(
M+

µ ,M
+
λ

)
→ Singµ

(
M+

λ

)
,

φ 7→ φ
(
v+
µ

)
.

Let φ be the preimage of v under this isomorphism. Then, v = φ
(
v+
µ

)
.

Since v is in negative degrees, we have v ∈
∑
n<0

M+
λ [n]. Now, M+

µ = U (n−) v+
µ =∑

m≤0

U (n−) [m] v+
µ (since M+

µ is nonpositively graded), so that

φ
(
M+

µ

)
= φ

(∑
m≤0

U (n−) [m] v+
µ

)
=
∑
m≤0

U (n−) [m] φ
(
v+
µ

)︸ ︷︷ ︸
=v∈

∑
n<0

M+
λ [n]

(
since φ ∈ Homg

(
M+

µ ,M
+
λ

))

∈
∑
m≤0

U (n−) [m]
∑
n<0

M+
λ [n] =

∑
m≤0

∑
n<0

U (n−) [m] ·M+
λ [n]︸ ︷︷ ︸

⊆M+
λ [m+n]

(since M+
λ is a graded g-module)

⊆
∑
m≤0

∑
n<0

M+
λ [m+ n] ⊆

∑
r<0

M+
λ [r] .

Every nonzero finite-dimensional module over an abelian finite-dimensional Lie algebra has a
one-dimensional submodule. (This is just a restatement of the fact that a finite set of pairwise
commuting matrices on a finite-dimensional nonzero C-vector space has a common nonzero eigen-
vector.)
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Thus, the projection of φ
(
M+

µ

)
onto the 0-th degree of M+

λ is 0. Hence, φ
(
M+

µ

)
is a

proper g-submodule of M+
λ . Therefore, φ

(
M+

µ

)
= 0 (since M+

λ is irreducible). Thus,

v = φ
(
v+
µ

)
∈ φ

(
M+

µ

)
= 0, so that v = 0.

We have thus proven: Whenever v is a singular vector of M+
λ in negative degrees,

we have v = 0. In other words, M+
λ does not have nonzero singular vectors in negative

degrees. This proves the =⇒ direction of Corollary 2.7.9.
Here is a variation on Corollary 2.7.9:

Corollary 2.7.10. The representation M+
λ is irreducible if and only if it does not

have nonzero homogeneous singular vectors in negative degrees.

Proof of Corollary 2.7.10. =⇒: This follows from the =⇒ direction of Corollary
2.7.9.
⇐=: Repeat the proof of the ⇐= direction of Corollary 2.7.9, noticing that w is

homogeneous (since w ∈ J+
λ [d]).

Corollary 2.7.10 is thus proven.

2.8. Highest/lowest-weight modules

Definition 2.8.1. A highest-weight module with highest weight λ ∈ h∗ means a quo-
tient V of the graded g-module M+

λ by a proper graded submodule. The projection
of v+

λ ∈ M+
λ onto this quotient will be called a highest-weight vector of V . (Note

that a highest-weight module may have several highest-weight vectors: in fact, every
nonzero vector in its 0-th homogeneous component is a highest-weight vector.) The
notion “highest-weight representation” is also used as a synonym for “highest-weight
module”.

A lowest-weight module with lowest weight λ ∈ h∗ means a quotient V of the
graded g-module M−

λ by a proper graded submodule. The projection of v−λ ∈ M
−
λ

onto this quotient will be called a lowest-weight vector of V . (Note that a lowest-
weight module may have several lowest-weight vectors: in fact, every nonzero vector
in its 0-th homogeneous component is a lowest-weight vector.) The notion “lowest-
weight representation” is also used as a synonym for “lowest-weight module”.

If Y is a highest-weight module with highest weight λ, then we have an exact

sequence M+
λ

// // Y // // L+
λ (by Theorem 2.7.3 (ii)).

If Y is a lowest-weight module with lowest weight λ, then we have an exact

sequence M−
λ

// // Y // // L−λ (by Theorem 2.7.3 (ii)).

2.9. Categories O+ and O−

The category of all g-modules for a graded Lie algebra is normally not particularly
well-behaved: modules can be too big. One could restrict one’s attention to finite-
dimensional modules, but this is often too much of a sacrifice (e. g., the Heisenberg
algebraA has no finite-dimensional modules which are not direct sums of 1-dimensional
ones). A balance between nontriviality and tamability is achieved by considering the
so-called Category O. Actually, there are two of these categories, O+ and O−, which
are antiequivalent to each other (in general) and equivalent to each other (in some more
restrictive cases). There are several definitions for each of these categories, and some
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of them are not even equivalent to each other, although they mostly differ in minor
technicalities. Here are the definitions that we are going to use:

Definition 2.9.1. The objects of category O+ will be C-graded g-modules M such
that:

(1) all degrees lie in a halfplane Re z < a and fall into finitely many arithmetic
progressions with step 1;

(2) for every d ∈ C, the space M [d] is finite-dimensional.
The morphisms of category O+ will be graded g-module homomorphisms.

Definition 2.9.2. The objects of category O− will be C-graded g-modules M such
that:

(1) all degrees lie in a halfplane Re z > a and fall into finitely many arithmetic
progressions with step 1;

(2) for every d ∈ C, the space M [d] is finite-dimensional.
The morphisms of category O− will be graded g-module homomorphisms.

It is rather clear that for a nondegenerate Z-graded Lie algebra (or, more generally,
for a Z-graded Lie algebra satisfying conditions (1) and (2) of Definition 2.5.4), the
Verma highest-weight module M+

λ lies in category O+ for every λ ∈ h∗, and the Verma
lowest-weight module M−

λ lies in category O− for every λ ∈ h∗.

Definition 2.9.3. Let V and W be two C-graded vector spaces, and x ∈ C. A
map f : V → W is said to be homogeneous of degree x if and only if every z ∈ C
satisfies f (V [z]) ⊆ W [z + x]. (For example, this yields that a map is homogeneous
of degree 0 if and only if it is graded.)

Proposition 2.9.4. The irreducible modules in category O± (up to homogeneous
isomorphism) are L±λ for varying λ ∈ C.

Proof of Proposition 2.9.4. First of all, for every λ ∈ h∗, the g-module L+
λ has a

unique singular vector (up to scaling), and this vector is a singular vector of weight λ.
71 Thus, the g-modules L+

λ are pairwise nonisomorphic for varying λ. Similarly, the
g-modules L−λ are pairwise nonisomorphic for varying λ.

Let Y be any irreducible module in category O+. We are now going to prove that
Y ∼= L+

λ for some λ ∈ h∗.

71Proof. It is clear that v+
λ ∈ L

+
λ is a singular vector of weight λ. Now we must prove that it is the

only singular vector (up to scaling).
In fact, assume the opposite. Then, there exists a singular vector in L+

λ which is not a scalar

multiple of v+
λ . This singular vector must have a nonzero d-th homogeneous component for some

d < 0 (because it is not a scalar multiple of v+
λ ), and this component itself must be a singular

vector (since any homogeneous component of a singular vector must itself be a singular vector).
So the module L+

λ has a nonzero homogeneous singular vector w of degree d.
Now, repeat the proof of the =⇒ part of Corollary 2.7.9, with M+

λ replaced by L+
λ (using the fact

that L+
λ is irreducible). As a consequence, it follows that L+

λ does not have nonzero singular vectors
in negative degrees. This contradicts the fact that the module L+

λ has a nonzero homogeneous
singular vector w of degree d < 0. This contradiction shows that our assumption was wrong, so

that indeed, v+
λ is the only singular vector of L+

λ (up to scaling), qed.
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Let d be a complex number such that Y [d] 6= 0 and Y [d+ j] = 0 for all j ≥ 1. (Such
a complex number exists due to condition (1) in Definition 2.9.1.) For every v ∈ Y [d],
we have av = 0 for every a ∈ gi for every i > 0 72.

By Conditions (1) and (2) of Definition 2.5.4, the Lie algebra g0 is abelian and finite-
dimensional. Hence, every nonzero g0-module has a one-dimensional submodule73.
Thus, the nonzero g0-module Y [d] has a one-dimensional submodule. Let w be the
generator of this submodule. Then, this submodule is 〈w〉.

For every h ∈ h, the vector hw is a scalar multiple of w (since h ∈ h = g0, so that
hw lies in the g0-submodule of Y [d] generated by w, but this submodule is 〈w〉). Thus,
we can write hw = λhw for some λh ∈ C. This λh is uniquely determined by h (since
w 6= 0), so we can define a map λ : h→ C such that λ (h) = λh for every h ∈ h. This
map λ is easily seen to be C-linear, so that we have found a λ ∈ h∗ such that

hw = λ (h)w for every h ∈ h.

Also,
aw = 0 for every a ∈ gi for every i > 0

(since av = 0 for every v ∈ Y [d] and every a ∈ gi for every i > 0). Thus, w is a
nonzero singular vector of weight λ.

By Lemma 2.7.8, we have an isomorphism

Homg

(
M+

λ , Y
)
→ Singλ Y,

φ 7→ φ
(
v+
λ

)
.

Let φ be the preimage of w under this isomorphism. Then, w = φ
(
v+
λ

)
. Since w ∈ Y [d],

it is easy to see that φ is a homogeneous homomorphism of degree d (in fact, every
n ∈ Z satisfies M+

λ [n] = U (n−) [n] · v+
λ , so that

φ
(
M+

λ [n]
)

= φ
(
U (n−) [n] · v+

λ

)
= U (n−) [n] · φ

(
v+
λ

)︸ ︷︷ ︸
=w∈Y [d]

(since φ is g-linear)

⊆ U (n−) [n] · Y [d] ⊆ Y [n+ d]

). This homomorphism φ must be surjective, since Y is irreducible. Thus, we have
a homogeneous isomorphism M+

λ � (Kerφ) ∼= Y . Also, Kerφ is a proper graded sub-
module of M+

λ , thus a submodule of J+
λ (by Theorem 2.7.3 (ii)). Hence, we have a

projection M+
λ � (Kerφ) → M+

λ �J
+
λ . Since M+

λ � (Kerφ) ∼= Y is irreducible, this
projection must either be an isomorphism or the zero map. It cannot be the zero map
(since it is a projection onto the nonzero module M+

λ �J
+
λ ), so it therefore is an isomor-

phism. Thus, M+
λ �J

+
λ
∼= M+

λ � (Kerφ) ∼= Y , so we have a homogeneous isomorphism
Y ∼= M+

λ �J
+
λ = L+

λ .
We thus have showed that any irreducible module in category O+ is isomorphic to

L+
λ for some λ ∈ h∗. Similarly, the analogous assertion holds for O−. Proposition 2.9.4

is thus proven.

72Proof. Let i > 0 and a ∈ gi. Then, i ≥ 1. Now, a ∈ gi and v ∈ Y [d] yield av ∈ gi · Y [d] ⊆
Y [d+ i] = 0 (since Y [d+ j] = 0 for all j ≥ 1), so that av = 0, qed.

73Proof. This is because of the following fact:
Every nonzero finite-dimensional module over an abelian finite-dimensional Lie algebra has a

one-dimensional submodule. (This is just a restatement of the fact that a finite set of pairwise
commuting matrices on a finite-dimensional nonzero C-vector space has a common nonzero eigen-
vector.)
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Definition 2.9.5. Let M be a module in category O+. We define the character
chM of M as follows:

Write M =
⊕
d

M [d]. Then, define chM by

chM =
∑
d

q−d trM [d] (ex) as a power series in q

for every x ∈ h. We also write (chM) (q, x) for this, so it becomes a formal power
series in both q and x. (Note that this power series can contain noninteger powers
of q, but due to M ∈ O+, the exponents in these powers are bounded from above in
their real part, and fall into infinitely many arithmetic progressions with step 1.)

Proposition 2.9.6. Here is an example:(
chM+

λ

)
(x) =

1∏
j>0

detg[−j] (1− qjead(x))
.

(To prove this, use Molien’s identity which states that, for every linear map A : V →
V , we have ∑

n∈N

qn TrSnV (SnA) =
1

det (1− qA)
,

where SnA denotes the n-th symmetric power of the operator A.)

Let us consider some examples:

Example 2.9.7. Let g = sl2. We can write this Lie algebra in terms of Chevalley
generators and their relations (this is a particular case of what we did in Proposition

2.5.6). The most traditional way to do this is by setting e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
and h =

(
1 0
0 −1

)
; then, g is generated by e, f and h as a Lie algebra, and these

generators satisfy [h, e] = 2e, [h, f ] = −2f and [e, f ] = h. Also, (e, f, h) is a basis of the
vector space g. In accordance with Proposition 2.5.6, we grade g by setting deg e = 1,
deg f = −1 and deg h = 0. Then, n+ = 〈e〉, n− = 〈f〉 and h = 〈h〉. Hence, linear maps
λ : h → C are in 1-to-1 correspondence with complex numbers (namely, the images
λ (h) of h under these maps). Thus, we can identify any linear map λ : h → C with
the image λ (h) ∈ C.

Consider any λ ∈ h∗. Since n− = 〈f〉, the universal enveloping algebra U (n−) is the
polynomial algebra C [f ], and Proposition 2.5.15 (a) yieldsM+

λ = U (n−)︸ ︷︷ ︸
=C[f ]

v+
λ = C [f ] v+

λ .

Similarly, M−
−λ = C [e] v−−λ. In order to compute the bilinear form (·, ·) on M+

λ ×M
−
−λ,

it is thus enough to compute
(
fnv+

λ , e
nv−−λ

)
for all n ∈ N. (The values

(
fnv+

λ , e
mv−−λ

)
for n 6= m are zero since the form has degree 0.) In order to do this, we notice that
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enfnv+
λ = n!λ (λ− 1) ... (λ− n+ 1) v+

λ
74 and thus

(
fnv+

λ , e
nv−−λ

)
=

 S (en)︸ ︷︷ ︸
=(−1)nen

fnv+
λ , v

−
−λ

 =

(−1)n enfnv+
λ︸ ︷︷ ︸

=n!λ(λ−1)...(λ−n+1)v+
λ

, v−−λ


=
(
(−1)n n!λ (λ− 1) ... (λ− n+ 1) v+

λ , v
−
−λ
)

= (−1)n n!λ (λ− 1) ... (λ− n+ 1)
(
v+
λ , v

−
−λ
)︸ ︷︷ ︸

=1

(72)

= (−1)n n!λ (λ− 1) ... (λ− n+ 1) .

So M+
λ is irreducible if λ /∈ Z+. If λ ∈ Z+, then J+

λ =
〈
fnv+

λ | n ≥ λ+ 1
〉

=

C [f ] ·
(
fλ+1v+

λ

)
, and the irreducible g-module L+

λ =
〈
v+
λ , fv

+
λ , ..., f

λv+
λ

〉
has dimension

dimλ+ 1. 75

Example 2.9.8. Let g = Vir. With the grading that we have defined on Vir, we have
h = g0 = 〈L0, C〉. Thus, linear maps λ : h → C can be uniquely described by the
images of L0 and C under these maps. We thus identify every linear map λ : h → C
with the pair (λ (L0) , λ (C)).

For every λ = (λ (L0) , λ (C)), the number λ (L0) is denoted by h and called the
conformal weight of λ, and the number λ (C) is denoted by c and called the central
charge of λ. Thus, λ is identified with the pair (h, c). As a consequence, the Verma
modulesM+

λ andM−
λ are often denoted byM+

h,c andM−
h,c, respectively, and the modules

L+
λ and L−λ are often denoted by L+

h,c and L−h,c, respectively.
(Note, of course, that the central charge of λ is the central charge of each of the

Vir-modules M+
λ , M−

λ , L+
λ and L−λ .)

Consider any λ ∈ h∗. Let us compute the bilinear form (·, ·) on M+
λ ×M

−
−λ. Note

first that L0v
+
λ = λ (L0)︸ ︷︷ ︸

=h

v+
λ = hv+

λ and Cv+
λ = λ (C)︸ ︷︷ ︸

=c

v+
λ = cv+

λ .

In order to compute
(
L−1v

+
λ , L1v

−
−λ
)
, we notice that

L1L−1︸ ︷︷ ︸
=L−1L1+[L1,L−1]

v+
λ = L−1 L1v

+
λ︸ ︷︷ ︸

=0

+ [L1, L−1]︸ ︷︷ ︸
=2L0

v+
λ = 2L0v

+
λ︸ ︷︷ ︸

=hv+
λ

= 2hv+
λ ,

74Proof. Here is a sketch of the proof. (If you want to see it in details, read the proof of Lemma 4.6.1
(a) below; this lemma yields the equality enfnv+

λ = n!λ (λ− 1) ... (λ− n+ 1) v+
λ by substituting

x = v+
λ .)

First show that hfmv+
λ = (λ− 2m) fmv+

λ for every m ∈ N. (This follows easily by induction
over m, using hf − fh = [h, f ] = −2f .)

Next show that efnv+
λ = n (λ− n+ 1) fn−1v+

λ for every positive n ∈ N. (This is again an easy
induction proof using the equalities ef − fe = [e, f ] = h, hv+

λ = λ (h)︸ ︷︷ ︸
=λ

v+
λ = λv+

λ and ev+
λ = 0, and

using the equality hfmv+
λ = (λ− 2m) fmv+

λ applied to m = n− 1.)
Now show that enfnv+

λ = n!λ (λ− 1) ... (λ− n+ 1) v+
λ for every n ∈ N. (For this, again use

induction.)
75If you know the representation theory of sl2, you probably recognize this module L+

λ as the (dimλ)-
th symmetric power of the vector module C2 (as there is only one irreducible sl2-module of every
dimension).
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so that

(
L−1v

+
λ , L1v

−
−λ
)

=

−L1L−1v
+
λ︸ ︷︷ ︸

=2hv+
λ

, v−−λ

 =
(
−2hv+

λ , v
−
−λ
)

= −2h
(
v+
λ , v

−
−λ
)︸ ︷︷ ︸

=1

= −2h.

Since
(
L−1v

+
λ

)
is a basis of M+

λ [−1] and
(
L1v

−
−λ
)

is a basis of M−
−λ [1], this yields

det ((·, ·)1) = 2h (where (·, ·)1 denotes the restriction of the form (·, ·) to M+
λ [−1] ×

M−
−λ [1]). This vanishes for h = 0.
In degree 2, the form is somewhat more complicated: With respect to the basis(
L2
−1v

+
λ , L−2v

+
λ

)
of M+

λ [−2], and the basis
(
L2

1v
−
−λ, L2v

−
−λ
)

of M−
−λ [2], the restriction

(·, ·)2 of the form (·, ·) to M+
λ [−2]×M−

−λ [2] is given by the matrix( (
L2
−1v

+
λ , L

2
1v
−
−λ
) (

L2
−1v

+
λ , L2v

−
−λ
)(

L−2v
+
λ , L

2
1v
−
−λ
) (

L−2v
+
λ , L2v

−
−λ
) ) .

Let us compute, as an example, the lower right entry of this matrix, that is, the
entry

(
L−2v

+
λ , L2v

−
−λ
)
. We have

L2L−2︸ ︷︷ ︸
=L−2L2+[L2,L−2]

v+
λ = L−2 L2v

+
λ︸ ︷︷ ︸

=0

+ [L2, L−2]︸ ︷︷ ︸
=4L0+

1

2
C

v+
λ =

(
4L0 +

1

2
C

)
v+
λ = 4L0v

+
λ︸ ︷︷ ︸

=hv+
λ

+
1

2
Cv+

λ︸︷︷︸
=cv+

λ

= 4hv+
λ +

1

2
cv+
λ =

(
4h+

1

2
c

)
v+
λ ,

so that

(
L−2v

+
λ , L2v

−
−λ
)

=


− L2L−2v

+
λ︸ ︷︷ ︸

=

4h+
1

2
c

v+
λ

, v−−λ


=

(
−
(

4h+
1

2
c

)
v+
λ , v

−
−λ

)

= −
(

4h+
1

2
c

)(
v+
λ , v

−
−λ
)︸ ︷︷ ︸

=1

= −
(

4h+
1

2
c

)
.

As a further (more complicated) example, let us compute the upper left entry of the
matrix, namely

(
L2
−1v

+
λ , L

2
1v
−
−λ
)
. We have

L2
1L

2
−1v

+
λ = L1 L1L−1︸ ︷︷ ︸

=L−1L1+[L1,L−1]

L−1v
+
λ = L1L−1 L1L−1v

+
λ︸ ︷︷ ︸

=2hv+
λ

+L1 [L1, L−1]︸ ︷︷ ︸
=2L0

L−1v
+
λ

= 2hL1L−1v
+
λ︸ ︷︷ ︸

=2hv+
λ

+2L1 L0L−1︸ ︷︷ ︸
=L−1L0+[L0,L−1]

=L−1L0+L−1

(since [L0,L−1]=L−1)

v+
λ = 4h2v+

λ + 2L1L−1 L0v
+
λ︸ ︷︷ ︸

=hv+
λ

+2L1L−1v
+
λ︸ ︷︷ ︸

=2hv+
λ

= 4h2v+
λ + 2hL1L−1v

+
λ︸ ︷︷ ︸

=2hv+
λ

+4hv+
λ = 4h2v+

λ + 4h2v+
λ + 4hv+

λ =
(
8h2 + 4h

)
v+
λ
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and thus

(
L2
−1v

+
λ , L

2
1v
−
−λ
)

=
(
−L1L

2
−1v

+
λ , L1v

−
−λ
)

=

 L2
1L

2
−1v

+
λ︸ ︷︷ ︸

=(8h2+4h)v+
λ

, v−−λ

 =
((

8h2 + 4h
)
v+
λ , v

−
−λ
)

=
(
8h2 + 4h

) (
v+
λ , v

−
−λ
)︸ ︷︷ ︸

=1

= 8h2 + 4h.

Similarly, we compute the other two entries of the matrix. The matrix thus becomes 8h2 + 4h 6h

−6h −
(

4h+
1

2
c

)  .

The determinant of this matrix is

det ((·, ·)2) =
(
8h2 + 4h

)(
−
(

4h+
1

2
c

))
−6h (−6h) = −4h

(
(2h+ 1)

(
4h+

1

2
c

)
− 9h

)
.

Notice the term (2h+ 1)

(
4h+

1

2
c

)
− 9h: The set of zeroes of this term is a hyper-

bola76. The determinant of (·, ·)2 thus vanishes on the union of a line and a hyperbola.
For every point (h, c) lying on this hyperbola, the highest-weight module M+

h,c has a
nonzero singular vector in degree −2 (this means a nonzero singular vector of the form
αL−2v

+
λ + βL2

−1v
+
λ for some α, β ∈ C).

We will later discuss det ((·, ·)n) for generic n. In fact, there is an explicit formula
for this determinant, namely the so-called Kac determinant formula.

2.9.1. Restricted dual modules

Definition 2.9.9. Let V =
⊕
i∈I
V [i] be an I-graded vector space, where I is some

set (for example, I can be Z, N or C). The restricted dual V ∨ of V is defined to
be the direct sum

⊕
i∈I
V [i]∗. This is a vector subspace of the dual V ∗ of V , but (in

general) not the same as V ∗ unless the direct sum is finite.
One can make the restricted dual V ∨ into an I-graded vector space by defining

V ∨ [i] = V [i]∗ for every i ∈ I. But when I is an abelian group, one can also make
the restricted dual V ∨ into an I-graded vector space by defining V ∨ [i] = V [−i]∗ for
every i ∈ I. These two constructions result in two (generally) different gradings on
V ∨; both of these gradings are used in algebra.

Using either of these two gradings on V ∨, we can make sense of the restricted
dual V ∨∨ of V ∨. This restricted dual V ∨∨ does not depend on which of the two
gradings on V ∨ has been chosen. There is a canonical injection V → V ∨∨. If V [i]
is finite-dimensional for every i ∈ I, then this injection V → V ∨∨ is an isomorphism
(so that V ∨∨ ∼= V canonically).

76Here, a hyperbola means an affine conic over C which is defined over R and whose restriction to R
is a hyperbola.
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If g is a Z-graded Lie algebra, and V is a C-graded g-module, then V ∨ canonically
becomes a C-graded g-module if the grading on V ∨ is defined by V ∨ [i] = V [−i]∗ for
every i ∈ C. (Note that the grading defined by V ∨ [i] = V [i]∗ for every i ∈ C would
not (in general) make V ∨ into a C-graded g-module.)

It is clear that:

Proposition 2.9.10. We have two mutually inverse antiequivalences of categories

O+ ∨→ O− and O− ∨→ O+, each defined by mapping every g-module in one category
to its restricted dual.

We can view the form (·, ·) : M+
λ × M−

−λ → C as a linear map M+
λ →

(
M−
−λ
)∨

.
The kernel of this map is J+

λ , and therefore, when g is nondegenerate, this map is an
isomorphism for Weil-generic λ (by Theorem 2.6.6). In general, this map factors as

M+
λ

// // L+
λ

∼= //
(
L−−λ

)∨
�� //

(
M−
−λ
)∨

.

2.9.2. Involutions

In many applications, we are not just working with a graded Lie algebra g. Very often
we additionally have a degree-reversing involution:

Definition 2.9.11. Let g be a graded Lie algebra. Let ω : g → g be an involutive
automorphism of the Lie algebra g (“involutive” means ω2 = id) such that ω (gi) =
g−i for all i ∈ Z and such that ω |g0= − id. Then, for every graded g-module M , we
can define a graded g-module M c as being the g-module Mω with opposite grading
(i. e., the grading on M c is defined by M c [i] = Mω [−i] for every i). Then, we have
an equivalence of categories O+ ω→ O− which sends every g-module M ∈ O+ to the
g-module M c ∈ O−, and the quasiinverse equivalence of categories O− ω→ O+ which
does the same thing.

So the functor O+ ∨→ O− ω→ O+ is an antiequivalence, called the functor of
contragredient module. This functor allows us to identify

(
M−
−λ
)ω

with M+
λ (via the

isomorphism M+
λ →

(
M−
−λ
)ω

which sends x⊗U(h⊕n+)v
+
λ to (U (ω)) (x)⊗U(h⊕n−)v

−
−λ for

every x ∈ U (g)), and thus to view the form (·, ·) as a form (·, ·) : M+
λ ×M

+
λ → C.

But this form is not g-invariant; it is contravariant; this means that any a ∈ g,
v ∈M+

λ and w ∈M+
λ satisfy (av, w) = − (v, ω (a)w) and (v, aw) = − (ω (a) v, w).

This form can be viewed as a linear map M+
λ →

(
M+

λ

)c
, which factors into

M+
λ

// // L+
λ

∼= //
(
L+
λ

)c
�� //

(
M+

λ

)c
.

Notice that this form (·, ·) is a contravariant form M+
λ × M+

λ → C satisfying(
v+
λ , v

+
λ

)
= 1. Of course, this yields that the transpose of (·, ·) is also such a form.

Since there exists a unique contravariant form M+
λ ×M

+
λ → C satisfying

(
v+
λ , v

+
λ

)
=

1 (because contravariant forms M+
λ ×M

+
λ → C are in 1-to-1 correspondence with

g-invariant bilinear forms M+
λ ×M

−
−λ → C, and for the latter we have Proposition

2.6.1 (a)), this yields that the form (·, ·) and its transpose must be identical. In
other words, the form (·, ·) is symmetric.

Involutive automorphisms of g satisfying the conditions of Definition 2.9.11 are not
uncommon; here are four examples:
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Proposition 2.9.12. The C-linear map ω : A → A defined by ω (K) = −K and
ω (ai) = −a−i for every i ∈ Z is an involutive automorphism of the Lie algebra
A. This automorphism ω satisfies the conditions of Definition 2.9.11 (for g = A).
We already know this from Proposition 2.2.22. Moreover, if we let λ = (1, µ) for a
complex number µ, then M+

λ
∼= Fµ (by Proposition 2.5.17), and thus we can regard

the contravariant form M+
λ ×M+

λ → C from Definition 2.9.11 as a contravariant
form Fµ × Fµ → C. This contravariant form Fµ × Fµ → C is exactly the form
(·, ·) of Proposition 2.2.24. (This is because the form (·, ·) of Proposition 2.2.24 is
contravariant (due to Proposition 2.2.24 (c) and (d)) and satisfies (1, 1) = 1.)

Proposition 2.9.13. The C-linear map ω : Vir→ Vir defined by ω (C) = −C and
ω (Li) = −L−i for every i ∈ Z is an involutive automorphism of the Lie algebra Vir.
This automorphism ω satisfies the conditions of Definition 2.9.11 (for g = Vir).

Proposition 2.9.14. Let g be a simple Lie algebra, graded and presented as in
Proposition 2.5.6. Then, there exists a unique Lie algebra homomorphism ω : g→ g
satisfying ω (ei) = −fi, ω (hi) = −hi and ω (fi) = −ei for every i ∈ {1, 2, ...,m}.
This automorphism ω satisfies the conditions of Definition 2.9.11.

Proposition 2.9.15. Let g be a simple finite-dimensional Lie algebra, graded and
presented as in Proposition 2.5.6. Let ĝ be the Kac-Moody Lie algebra defined in
Definition 1.7.6. Let K denote the element (0, 1) of g [t, t−1]⊕ C = ĝ. Consider the
Z-grading on ĝ defined in Proposition 2.5.7.

Let ω : g → g be defined as in Proposition 2.9.14. Then, the C-linear map ω̂ :
ĝ→ ĝ defined by ω̂ (a · tj) = ω (a) t−j for every a ∈ g and j ∈ Z, and ω̂ (K) = −K,
is an involutive automorphism of the Lie algebra ĝ. This automorphism ω̂ satisfies
the conditions of Definition 2.9.11 (for ĝ and ω̂ instead of g and ω).

More generally:

Proposition 2.9.16. Let g be a Lie algebra equipped with a g-invariant symmetric
bilinear form (·, ·) of degree 0. Let ĝ be the Lie algebra defined in Definition 1.7.1.
Let K denote the element (0, 1) of g [t, t−1]⊕ C = ĝ.

Let ω : g → g be an involutive automorphism of the Lie algebra g (not to be
confused with the 2-cocycle ω of Definition 1.7.1). Then, the C-linear map ω̂ : ĝ→ ĝ
defined by ω̂ (a · tj) = ω (a) t−j for every a ∈ g and j ∈ Z, and ω̂ (K) = −K, is an
involutive automorphism of the Lie algebra ĝ.

Assume now that the Lie algebra g is graded and that the automorphism ω satisfies
the conditions of Definition 2.9.11. Assume further that we extend the grading of
g to a grading on ĝ in such a way that K is homogeneous of degree 0, and that
the multiplications by t and t−1 are homogeneous linear maps (that is, linear maps
which shift the degree by a fixed integer). Then, the automorphism ω̂ of ĝ satisfies
ω̂ (ĝi) = ĝ−i for all i ∈ Z. (But in general, ω̂ does not necessarily satisfy ω̂ |ĝ0

= − id.)

2.9.3. [unfinished] Unitary structures
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Important Notice 2.9.17. The parts of these notes concerned with uni-
tary/Hermitian/real structures are in an unfinished state and contain
mistakes which I don’t know how to fix.

For instance, if we define gR by gR =
{
a ∈ g | a† = −a

}
, and define g∗0R by g∗0R =

{f ∈ g∗0 | f (g0R) ⊆ R} (as I do below), and define the antilinear R-antiinvolution
† : Vir→ Vir on Vir by L†i = L−i for all i ∈ Z, and C† = C, then Vir∗0R is not the set
of all weights (h, c) satisfying h, c ∈ R, but it is the set of all weights (h, c) satisfying
ih, ic ∈ R (because the definition of † that we gave leads to Vir0R = 〈iC, iL0〉R). This
is not what we want later. Probably it is possible to fix these issues by correcting
some signs, but I do not know how. If you know a consistent way to correct these
definitions and results, please drop me a mail (AB@gmail.com where A=darij and
B=grinberg).

Over C, it makes sense to study not only linear but also antilinear maps. Sometimes,
the latter actually enjoy even better properties of the former (e. g., Hermitian forms
are better behaved than complex-symmetric forms).

Definition 2.9.18. If g and h are two Lie algebras over a field k, then a k-
antihomomorphism from g to h means a k-linear map f : g → h such that
f ([x, y]) = − [f (x) , f (y)] for all x, y ∈ g.

Definition 2.9.19. In the following, an k-antiinvolution of a Lie algebra g over
a field k means a k-antihomomorphism from g to g which is simultaneously an
involution.

Definition 2.9.20. Let g be a complex Lie algebra. Let † : g→ g be an antilinear
R-antiinvolution. This means that † is an R-linear map and satisfies the relations

†2 = id;

(za)† = za† for all z ∈ C and a ∈ g;

[a, b]† = −
[
a†, b†

]
for all a, b ∈ g.

(Here and in the following, we write c† for the image of an element c ∈ g under †.)
Such a map † is called a real structure, for the following reason: If † is such a map,
then we can define an R-vector subspace gR =

{
a ∈ g | a† = −a

}
of g, and this gR

is a real Lie algebra such that g ∼= gR ⊗R C as complex Lie algebras. (It is said that
gR is a real form of g.)

Definition 2.9.21. Let g be a complex Lie algebra with a real structure †. If V
is a g-module, we say that V is Hermitian if V is equipped with a nondegenerate
Hermitian form (·, ·) satisfying

(av, w) =
(
v, a†w

)
for all a ∈ g, v ∈ V and w ∈ V.

The g-module V is said to be unitary if this form is positive definite.

The real Lie algebra gR acts on a Hermitian module by skew-Hermitian operators.
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Remark 2.9.22. While we will not be studying Lie groups in this course, here are
some facts about them that explain why unitary g-modules are called “unitary”:

If g is a finite-dimensional Lie algebra, and V is a unitary g-module, then the
Hilbert space completion of V is a unitary representation of the Lie group GR =
exp (gR) corresponding to gR by Lie’s Third Theorem. (Note that this Hilbert space
completion of V is V itself if dimV < ∞.) This even holds for some infinite-
dimensional g under sufficiently restrictive conditions.

So let us consider this situation. Two definitions:

Definition 2.9.23. Let g be a complex Lie algebra with a real structure †. Let V
be a g-module. A Hermitian form (·, ·) on V is said to be †-invariant if and only if

(av, w) =
(
v, a†w

)
for all a ∈ g, v ∈ V and w ∈ V.

Definition 2.9.24. Let g be a complex Lie algebra with a real structure †. For
every f ∈ g∗, we denote by f † the map g0 → C, x 7→ f (x†) (this map f † is easily
seen to be C-linear). Let g?R be the subset

{
f ∈ g∗ | f † = −f

}
of g?. Then, it is

easily seen that
g?R = {f ∈ g∗ | f (gR) ⊆ R} .

Hence, we get an R-bilinear form g?R × gR → R, (f, a) 7→ f (a). This form is
nondegenerate and thus enables us to identify g?R with the dual space of the R-
vector space gR. (More precisely, we have an isomorphism from g?R to the dual space
of the R-vector space gR. This isomorphism sends every f ∈ g?R to the map f |gR
(with target restricted to R), and conversely, the preimage of any R-linear map
F : gR → R is the C-linear map f ∈ g?R given by

f (a) = F

(
a− a†

2

)
+ iF

(
a+ a†

2i

)
for all a ∈ g.

) We can thus write g∗R for g?R.
The elements of g∗R are said to be the real elements of g∗.

Proposition 2.9.25. Let g be a Z-graded Lie algebra with real structure †. Assume
that the map † reverses the degree (i. e., every j ∈ Z satisfies † (gj) ⊆ g−j). In
particular, † (g0) ⊆ g0. Also, assume that g0 is an abelian Lie algebra (but let us
not require g to be nondegenerate). Note that g0 itself is a Lie algebra, and thus
Definition 2.9.24 can be applied to g0 in lieu of g.

If λ ∈ g∗0R, then the g-module M+
λ carries a †-invariant Hermitian form (·, ·)

satisfying
(
v+
λ , v

+
λ

)
= 1.

Proof of Proposition 2.9.25. In the following, whenever U is a C-vector space, we
will denote by U the C-vector space which is identical to U as a set, but with the
C-vector space structure twisted by complex conjugation.

The antilinear R-Lie algebra homomorphism −† : g → g can be viewed as a C-Lie
algebra homomorphism −† : g → g, and thus induces a C-algebra homomorphism
U (−†) : U (g)→ U (g). Since U (g) ∼= U (g) canonically as C-algebras (because taking
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the universal enveloping algebra commutes with base change)77, we can thus consider
this U (−†) as a C-algebra homomorphism U (g)→ U (g). This, in turn, can be viewed
as an antilinear R-algebra homomorphism U (−†) : U (g)→ U (g).

Let λ ∈ g∗0R. Let
(
M−
−λ
)−†

be the g-module M−
−λ twisted by the isomorphism −† :

g→ g of R-Lie algebras. Then,
(
M−
−λ
)−†

is a module over the R-Lie algebra g, but not
a module over the C-Lie algebra g, since it satisfies (za) ⇀ v = z (a ⇀ v) (rather than
(za) ⇀ v = z (a ⇀ v)) for all z ∈ C, a ∈ g and v ∈ M−

−λ (where ⇀ denotes the action
of g). However, this can be easily transformed into a C-Lie algebra action: Namely,(
M−
−λ
)−†

is a module over the C-Lie algebra g.
We have an isomorphism (

M−
−λ
)−† →M+

λ ,

x⊗U(h⊕n+) zv
−
−λ 7→ U (−†) (x)⊗U(h⊕n−) zv

+
λ

of modules over the C-Lie algebra g. 78 Hence, M−
−λ
∼=
(
M+

λ

)−†
.

Hence, our bilinear form M+
λ ×M

−
−λ → C can be viewed as a bilinear form M+

λ ×
M+

λ → C, id est, as a sesquilinear form M+
λ ×M

+
λ → C. This sesquilinear form is the

unique sesquilinear Hermitian form M+
λ ×M

+
λ → C satisfying

(
v+
λ , v

+
λ

)
= 1 79. As

a consequence, this sesquilinear form can be easily seen to be Hermitian symmetric, i.
e., to satisfy

(v, w) = (w, v) for all v ∈M+
λ and w ∈M+

λ .

80

However, this form can be degenerate. Its kernel is J+
λ , so it descends to a nonde-

generate Hermitian form on L+
λ . Thus, we get:

Proposition 2.9.26. If λ is real (this means that λ ∈ g∗0R), then L+
λ carries a

†-invariant nondegenerate Hermitian form. Different degrees in L+
λ are orthogonal

with respect to this form.

77Warning: This isomorphism U (g)→ U (g) sends i · 1U(g) to −i · 1U(g).
78Here are some details on the definition of this isomorphism:

As R-vector spaces,
(
M−−λ

)−†
= M−−λ = U (g) ⊗U(h⊕n+) C−λ and M+

λ = U (g) ⊗U(h⊕n−) Cλ.

Hence, we can define an R-linear map
(
M−−λ

)−† → M+
λ that sends x ⊗U(h⊕n+) zv

−
−λ to

U (−†) (x)⊗U(h⊕n−) zv
+
λ for every x ∈ U (g) and z ∈ C if we are able to show that

U (−†) (xw)⊗U(h⊕n−)zv
+
λ = U (−†) (x)⊗U(h⊕n−)wzv

+
λ for all x ∈ U (g) , w ∈ U (h⊕ n+) and z ∈ C.

But showing this is rather easy (left to the reader), and thus we get an R-linear map
(
M−−λ

)−† →
M+
λ that sends x⊗U(h⊕n+) zv

−
−λ to U (−†) (x)⊗U(h⊕n−) zv

+
λ for every x ∈ U (g) and z ∈ C. This

map is easily seen to be g-linear and C-linear, so it is a homomorphism of modules over C-Lie
algebra g. Showing that it is an isomorphism is easy as well (one just has to construct its inverse).

79This can be easily derived from Proposition 2.6.1 (a), which claims that our form (·, ·) : M+
λ ×

M−−λ → C is the unique g-invariant bilinear form M+
λ ×M

−
−λ → C satisfying

(
v+
λ , v

−
−λ
)

= 1.
80In fact, the form which sends v ×w to (w, v) is also a sesquilinear Hermitian form M+

λ ×M
+
λ → C

satisfying
(
v+
λ , v

+
λ

)
= 1, so that by uniqueness, it must be identical with the form which sends

v × w to (v, w).
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A reasonable (and, in most cases, difficult and interesting) question to ask is the
following: For which λ is L+

λ unitary?
We are going to address this question in some cases and give hints in some others,

leaving many more unanswered.
First, let us give several examples of complex Lie algebras g with antilinear R-

antiinvolutions † : g→ g:

Proposition 2.9.27. We can define an antilinear map † : A → A by K† = K and
a†i = a−i for all i ∈ Z. This map is an antilinear R-antiinvolution of the Heisenberg
algebra A.

Proposition 2.9.28. One can define an antilinear map † : sl2 → sl2 by e† = f, f † =
e, h† = h. This map is an antilinear R-antiinvolution of the Lie algebra sl2.

More generally:

Proposition 2.9.29. Let g be a simple finite-dimensional Lie algebra. Using the
Chevalley generators e1, e2, ..., em, f1, f2, ..., fm, h1, h2, ..., hm of Proposition 2.5.6,
we can define an antilinear map † : g → g by e†i = fi, f

†
i = ei, h

†
i = hi for all

i ∈ {1, 2, ...,m}. This map is an antilinear R-antiinvolution of the Lie algebra g.

Proposition 2.9.30. We can define an antilinear map † : Vir → Vir by L†i = L−i
for all i ∈ Z, and C† = C. This map is an antilinear R-antiinvolution of the Virasoro
algebra Vir.

Proposition 2.9.31. If g is a Lie algebra with an antilinear R-antiinvolution † :
g→ g and with a symmetric g-invariant bilinear form (·, ·) of degree 0, then we can
define an antilinear map † : ĝ→ ĝ (where ĝ is the Lie algebra defined in Definition
1.7.1) by (atn)† = a† · t−n for every a ∈ g and n ∈ Z, and by K† = K (where K
denotes the element (0, 1) of g [t, t−1]⊕C = ĝ). This map † is an antilinear involution
of the Lie algebra ĝ.

As for examples of Hermitian modules: The Vir-module L+
h,c (see Example 2.9.8

for the definition of this module) for h, c ∈ R has a †-invariant nondegenerate Hermi-
tian form. (This is because the requirement h, c ∈ R forces the form λ ∈ g∗0 which
corresponds to the pair (h, c) to lie in g∗0R, and thus we can apply Proposition 2.9.26.)

But now, back to the general case:

Proposition 2.9.32. Let V be a unitary representation in Category O+. Then,
V is completely reducible (i. e., the representation V is a direct sum of irreducible
representations).

To prove this, we will use a lemma:

Lemma 2.9.33. If V is a highest-weight representation, and V has a nondegenerate
†-invariant Hermitian form, then V is irreducible. (We recall that a “highest-weight
representation” means a quotient of M+

λ by a proper graded submodule for some λ.)
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Proof of Lemma 2.9.33. Let V be a highest-weight representation having a nonde-
generate †-invariant Hermitian form. Since V is a highest-weight representation, V is
a quotient of M+

λ by a proper graded submodule P for some λ. The nondegenerate
†-invariant Hermitian form on V thus induces a †-invariant Hermitian form on M+

λ

whose kernel is P . It is easy to see that λ is real. Thus, this †-invariant Hermitian
form on M+

λ can be rewritten as a g-invariant bilinear form M+
λ ×M

−
−λ → C, which

still has kernel P . Such a form is unique up to scaling (by Proposition 2.6.1 (c)), and
thus must be the form defined in Proposition 2.6.1 (a). But the kernel of this form is
J+
λ . Thus, the kernel of this form is, at the same time, P and J+

λ . Hence, P = J+
λ , so

that V = L+
λ (since V is the quotient of M+

λ by P ), and thus V is irreducible. Lemma
2.9.33 is proven.

Proof of Proposition 2.9.32. Take a nonzero homogeneous vector v ∈ V of maximal
degree. (“Maximal” means “maximal in real part”. Such a maximal degree exists
by the definition of Category O+.) Let v be an eigenvector of g0 with eigenvalue
λ. Consider the submodule of V generated by v. This submodule is highest-weight
(since gjv = 0 for j > 0). Hence, by Lemma 2.9.33, this submodule is irreducible and
therefore ∼= L+

λ1
for some λ1 ∈ h∗. Let V1 be the orthogonal complement of L+

λ1
. Then,

V = L+
λ1
⊕V1. Now take a vector in V1, and so on. Since the degrees of V lie in finitely

many arithmetic progressions, and homogeneous subspaces have finite dimension, this
process is exhaustive, so we obtain V = L+

λ1
⊕ L+

λ2
⊕ ....

Remark 2.9.34. In this decomposition, every irreducible object of Category O+

occurs finitely many times.

3. Representation theory: concrete examples

3.1. Some lemmata about exponentials and commutators

This section is devoted to some elementary lemmata about power series and iterated
commutators over noncommutative rings. These lemmata are well-known in geometri-
cal contexts (in these contexts they tend to appear in Lie groups textbooks), but here
we will formulate and prove them purely algebraically. We will not use these lemmata
until Theorem 3.11.2, but I prefer to put them here in order not to interrupt the flow
of representation-theoretical arguments later.

We start with easy things:

Lemma 3.1.1. Let K be a commutative ring. If α and β are two elements of
a topological K-algebra R such that [α, β] commutes with β, then [α, P (β)] =
[α, β] ·P ′ (β) for every power series P ∈ K [[X]] for which the series P (β) and P ′ (β)
converge.

Proof of Lemma 3.1.1. Let γ = [α, β]. Then, γ commutes with β (since we know
that [α, β] commutes with β), so that γβ = βγ.

Write P in the form P =
∞∑
i=0

uiX
i for some (u0, u1, u2, ...) ∈ KN. Then, P ′ =

∞∑
i=1

iuiX
i−1, so that P ′ (β) =

∞∑
i=1

iuiβ
i−1. On the other hand, P =

∞∑
i=0

uiX
i shows that
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P (β) =
∞∑
i=0

uiβ
i and thus

[α, P (β)] =

[
α,

∞∑
i=0

uiβ
i

]
=
∞∑
i=0

ui
[
α, βi

]
= u0

[
α, β0

]︸ ︷︷ ︸
=0

(since β0=1∈Z(R))

+
∞∑
i=1

ui
[
α, βi

]
=
∞∑
i=1

ui
[
α, βi

]
.

Now, it is easy to prove that every positive i ∈ N satisfies [α, βi] = iγβi−1 81.
Hence,

[α, P (β)] =
∞∑
i=1

ui
[
α, βi

]︸ ︷︷ ︸
=iγβi−1

=
∞∑
i=1

uiiγβ
i−1 = γ︸︷︷︸

=[α,β]

∞∑
i=1

iuiβ
i−1

︸ ︷︷ ︸
=P ′(β)

= [α, β] · P ′ (β) .

Lemma 3.1.1 is proven.

Corollary 3.1.2. If α and β are two elements of a topological Q-algebra R such
that [α, β] commutes with β, then [α, exp β] = [α, β] · exp β whenever the power
series exp β converges.

Proof of Corollary 3.1.2. Applying Lemma 3.1.1 to P = expX and K = Q, and
recalling that exp′ = exp, we obtain [α, exp β] = [α, β] · exp β. This proves Corollary
3.1.2.

In Lemma 3.1.1 and Corollary 3.1.2, we had to require convergence of certain power
series in order for the results to make sense. In the following, we will prove some
results for which such requirements are not sufficient anymore82; instead we need more
global conditions. A standard condition to require in such cases is that all the elements

81Proof. We will prove this by induction over i:
Induction base: For i = 1, we have

[
α, βi

]
=
[
α, β1

]
= [α, β] = γ and i︸︷︷︸

=1

γ βi−1︸︷︷︸
=β1−1=1

= γ, so

that
[
α, βi

]
= γ = iγβi−1. This proves

[
α, βi

]
= iγβi−1 for i = 1, and thus the induction base is

complete.
Induction step: Let j ∈ N be positive. Assume that

[
α, βi

]
= iγβi−1 is proven for i = j. We

must then prove
[
α, βi

]
= iγβi−1 for i = j + 1.

Since
[
α, βi

]
= iγβi−1 is proven for i = j, we have

[
α, βj

]
= jγβj−1.

Now,α, βj+1︸︷︷︸
=ββj

 =
[
α, ββj

]
= αββj − ββjα =

(
αββj − βαβj

)︸ ︷︷ ︸
=(αβ−βα)βj

+
(
βαβj − ββjα

)︸ ︷︷ ︸
=β(αβj−βjα)

= (αβ − βα)︸ ︷︷ ︸
=[α,β]=γ

βj + β
(
αβj − βjα

)︸ ︷︷ ︸
=[α,βj ]=jγβj−1

= γβj + βjγβj−1 = γβj + j βγ︸︷︷︸
=γβ

βj−1

= γβj + jγ ββj−1︸ ︷︷ ︸
=βj

= γβj + jγβj = (j + 1) γβj = (j + 1) γβ(j+1)−1.

In other words,
[
α, βi

]
= iγβi−1 holds for i = j + 1. This completes the induction step, and thus

by induction we have proven that
[
α, βi

]
= iγβi−1 for every positive i ∈ N.

82At least they are not sufficient for my proofs...
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to which we apply power series lie in some ideal I of R such that R is complete and
Hausdorff with respect to the I-adic topology. Under this condition, things work nicely,
due to the following fact (which is one part of the universal property of the power series
ring K [[X]]):

Proposition 3.1.3. Let K be a commutative ring. Let R be a K-algebra, and I
be an ideal of R such that R is complete and Hausdorff with respect to the I-adic
topology. Then, for every power series P ∈ K [[X]] and every α ∈ I, there is a well-

defined element P (α) ∈ R (which is defined as the limit lim
n→∞

n∑
i=0

uiα
i (with respect

to the I-adic topology), where the power series P is written in the form P =
∞∑
i=0

uiX
i

for some (u0, u1, u2, ...) ∈ KN). For every α ∈ I, the map K [[X]]→ R which sends
every P ∈ K [[X]] to P (α) is a continuous K-algebra homomorphism (where the
topology on K [[X]] is the standard one, and the topology on R is the I-adic one).

Theorem 3.1.4. Let R be a Q-algebra, and let I be an ideal of R such that R is
complete and Hausdorff with respect to the I-adic topology. Let α ∈ I and β ∈ I
be such that αβ = βα. Then, expα, exp β and exp (α + β) are well-defined (by
Proposition 3.1.3) and satisfy exp (α + β) = (expα) · (exp β).

Proof of Theorem 3.1.4. We know that αβ = βα. That is, α and β commute, so
that we can apply the binomial formula to α and β.

Comparing

exp (α + β) =
∞∑
n=0

(α + β)n

n!
=
∞∑
n=0

1

n!
(α + β)n︸ ︷︷ ︸

=
n∑
i=0

(
n

i

)
αiβn−i

(by the binomial formula,
since α and β commute)

=
∞∑
n=0

1

n!

n∑
i=0

(
n

i

)
αiβn−i

with

(expα)︸ ︷︷ ︸
=
∞∑
i=0

αi

i!

· (exp β)︸ ︷︷ ︸
=
∞∑
j=0

βj

j!

=

(
∞∑
i=0

αi

i!

)
·

(
∞∑
j=0

βj

j!

)
=
∞∑
i=0

∞∑
j=0

αiβj

i!j!
=
∞∑
i=0

∞∑
j=0

1

i!j!
αiβj

=
∞∑
i=0

∞∑
n=i︸ ︷︷ ︸

=
∞∑
n=0

n∑
i=0

1

i! (n− i)!︸ ︷︷ ︸
=

1

n!

(
n

i

)
(since

(
n

i

)
=

n!

i! (n− i)!
)

αiβn−i

(here, we substituted n for i+ j in the second sum)

=
∞∑
n=0

n∑
i=0

1

n!

(
n

i

)
αiβn−i =

∞∑
n=0

1

n!

n∑
i=0

(
n

i

)
αiβn−i,

we obtain exp (α + β) = (expα) · (exp β). This proves Theorem 3.1.4.
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Corollary 3.1.5. Let R be a Q-algebra, and let I be an ideal of R such that R is
complete and Hausdorff with respect to the I-adic topology. Let γ ∈ I. Then, exp γ
and exp (−γ) are well-defined (by Proposition 3.1.3) and satisfy (exp γ)·(exp (−γ)) =
1.

Proof of Corollary 3.1.5. By Theorem 3.1.4 (applied to α = γ and β = −γ), we have
exp (γ + (−γ)) = (exp γ) · (exp (−γ)), thus

(exp γ) · (exp (−γ)) = exp (γ + (−γ))︸ ︷︷ ︸
=0

= exp 0 = 1.

This proves Corollary 3.1.5.

Theorem 3.1.6. Let R be a Q-algebra, and let I be an ideal of R such that R is
complete and Hausdorff with respect to the I-adic topology. Let α ∈ I. Denote by
adα the map R→ R, x 7→ [α, x] (where [α, x] denotes the commutator αx− xα).

(a) Then, the infinite series
∞∑
n=0

(adα)n

n!
converges pointwise (i. e., for every x ∈ R,

the infinite series
∞∑
n=0

(adα)n

n!
(x) converges). Denote the value of this series by

exp (adα).
(b) We have (expα) · β · (exp (−α)) = (exp (adα)) (β) for every β ∈ R.

To prove this, we will use a lemma:

Lemma 3.1.7. Let R be a ring. Let α and β be elements of R. Denote by adα
the map R → R, x 7→ [α, x] (where [α, x] denotes the commutator αx − xα). Let
n ∈ N. Then,

(adα)n (β) =
n∑
i=0

(
n

i

)
αiβ (−α)n−i .

Proof of Lemma 3.1.7. Let Lα denote the map R→ R, x 7→ αx. Let Rα denote the
map R→ R, x 7→ xα. Then, every x ∈ R satisfies

(Lα −Rα) (x) = Lα (x)︸ ︷︷ ︸
=αx

(by the definition of Lα)

− Rα (x)︸ ︷︷ ︸
=xα

(by the definition of Rα)

= αx−xα = [α, x] = (adα) (x) .

Hence, Lα −Rα = adα.
Also, every x ∈ R satisfies

(Lα ◦Rα) (x) = Lα (Rα (x))︸ ︷︷ ︸
=xα

(by the definition of Rα)

= Lα (xα) = αxα

(by the definition of Lα) and

(Rα ◦ Lα) (x) = Rα (Lα (x))︸ ︷︷ ︸
=αx

(by the definition of Lα)

= Rα (αx) = αxα
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(by the definition of Rα), so that (Lα ◦Rα) (x) = (Rα ◦ Lα) (x). Hence, Lα ◦Rα = Rα ◦
Lα. In other words, the maps Lα and Rα commute. Thus, we can apply the binomial

formula to Lα and Rα, and conclude that (Lα −Rα)n =
n∑
i=0

(−1)n−i
(
n

i

)
Liα ◦ Rn−i

α .

Since Lα −Rα = adα, this rewrites as (adα)n =
n∑
i=0

(−1)n−i
(
n

i

)
Liα ◦Rn−i

α .

Now, it is easy to see (by induction over j) that

Ljαy = αjy for every j ∈ N and y ∈ R. (73)

Also, it is easy to see (by induction over j) that

Rj
αy = yαj for every j ∈ N and y ∈ R. (74)

Now, since (adα)n =
n∑
i=0

(−1)n−i
(
n

i

)
Liα ◦Rn−i

α , we have

(adα)n (β) =
n∑
i=0

(−1)n−i
(
n

i

) (
Liα ◦Rn−i

α

)
(β)︸ ︷︷ ︸

=Liα(Rn−iα β)=αiRn−iα β

(by (73), applied to j=i and y=Rn−iα β)

=
n∑
i=0

(−1)n−i
(
n

i

)
αi Rn−i

α β︸ ︷︷ ︸
=βαn−i

(by (74), applied to j=n−i and y=β)

=
n∑
i=0

(−1)n−i
(
n

i

)
αiβαn−i =

n∑
i=0

(
n

i

)
αiβ (−α)n−i .

This proves Lemma 3.1.7.
Proof of Theorem 3.1.6. (a) For every x ∈ R and every n ∈ N, we have (adα)n (x) ∈

In (this can be easily proven by induction over n, using the fact that I is an ideal)

and thus
(adα)n

n!
(x) =

1

n!
(adα)n (x)︸ ︷︷ ︸

∈In

∈ In. Hence, for every x ∈ R, the infinite series

∞∑
n=0

(adα)n

n!
(x) converges (because R is complete and Hausdorff with respect to the

I-adic topology). In other words, the infinite series
∞∑
n=0

(adα)n

n!
converges pointwise.

Theorem 3.1.6 (a) is proven.
(b) Let β ∈ R. By the definition of of exp (adα), we have

(exp (adα)) (β) =
∞∑
n=0

(adα)n

n!
(β) =

∞∑
n=0

1

n!
(adα)n (β)︸ ︷︷ ︸

=
n∑
i=0

(
n

i

)
αiβ(−α)n−i

(by Lemma 3.1.7)

=
∞∑
n=0

1

n!

n∑
i=0

(
n

i

)
αiβ (−α)n−i .
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Compared with

(expα)︸ ︷︷ ︸
=
∞∑
i=0

αi

i!

·β · (exp (−α))︸ ︷︷ ︸
=
∞∑
j=0

(−α)j

j!

=

(
∞∑
i=0

αi

i!

)
· β ·

(
∞∑
j=0

(−α)j

j!

)

=
∞∑
i=0

∞∑
j=0

αiβ (−α)j

i!j!
=
∞∑
i=0

∞∑
j=0

1

i!j!
αiβ (−α)j

=
∞∑
i=0

∞∑
n=i︸ ︷︷ ︸

=
∞∑
n=0

n∑
i=0

1

i! (n− i)!︸ ︷︷ ︸
=

1

n!

(
n

i

)
(since

(
n

i

)
=

n!

i! (n− i)!
)

αiβ (−α)n−i

(here, we substituted n for i+ j in the second sum)

=
∞∑
n=0

n∑
i=0

1

n!

(
n

i

)
αiβ (−α)n−i =

∞∑
n=0

1

n!

n∑
i=0

(
n

i

)
αiβ (−α)n−i ,

this yields (expα) · β · (exp (−α)) = (exp (adα)) (β). This proves Theorem 3.1.6 (b).

Corollary 3.1.8. Let R be a Q-algebra, and let I be an ideal of R such that R is
complete and Hausdorff with respect to the I-adic topology. Let α ∈ I. Denote by
adα the map R→ R, x 7→ [α, x] (where [α, x] denotes the commutator αx− xα).

As we know from Theorem 3.1.6 (a), the infinite series
∞∑
n=0

(adα)n

n!
converges

pointwise. Denote the value of this series by exp (adα).
We have (expα) · (exp β) · (exp (−α)) = exp ((exp (adα)) (β)) for every β ∈ I.

Proof of Corollary 3.1.8. Corollary 3.1.5 (applied to γ = −α) yields (exp (−α)) ·
(exp (− (−α))) = 1. Since − (−α) = α, this rewrites as (exp (−α)) · (expα) = 1.

Let β ∈ I. Let T denote the map R→ R, x 7→ (expα) · x · (exp (−α)). Clearly, this
map T is Q-linear. It also satisfies

T (1) = (expα) · 1 · (exp (−α)) (by the definition of T )

= (expα) · (exp (−α)) = 1,

and any x ∈ R and y ∈ R satisfy

T (x)︸ ︷︷ ︸
=(expα)·x·(exp(−α))

(by the definition of T )

· T (y)︸ ︷︷ ︸
=(expα)·y·(exp(−α))

(by the definition of T )

= (expα) · x · (exp (−α)) · (expα)︸ ︷︷ ︸
=1

·y · (exp (−α))

= (expα) · xy · (exp (−α)) = T (xy)

(since T (xy) = (expα) · xy · (exp (−α)) by the definition of T ). Hence, T is a Q-
algebra homomorphism. Also, T is continuous (with respect to the I-adic topology).
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Thus, T is a continuous Q-algebra homomorphism, and hence commutes with the
application of power series. Thus, T (exp β) = exp (T (β)). But since T (exp β) =
(expα) · (exp β) · (exp (−α)) (by the definition of T ) and

T (β) = (expα) · β · (exp (−α)) (by the definition of T )

= (exp (adα)) (β) (by Theorem 3.1.6 (b)) ,

this rewrites as (expα) · (exp β) · (exp (−α)) = exp ((exp (adα)) (β)). This proves
Corollary 3.1.8.

Lemma 3.1.9. Let R be a Q-algebra, and let I be an ideal of R such that R is
complete and Hausdorff with respect to the I-adic topology. Let α ∈ I and β ∈ I.
Assume that [α, β] commutes with each of α and β. Then, (expα) · (exp β) =
(exp β) · (expα) · (exp [α, β]).

First we give two short proofs of this lemma.
First proof of Lemma 3.1.9. Define the map adα as in Corollary 3.1.8. Then,

(adα)2 (β) = [α, [α, β]] = 0 (since [α, β] commutes with α). Hence, (adα)n (β) = 0 for
every integer n ≥ 2. Now, by the definition of exp (adα), we have

(exp (adα)) (β) =
∞∑
n=0

(adα)n

n!
(β) =

∞∑
n=0

1

n!
(adα)n (β)

=
1

0!︸︷︷︸
=1

(adα)0︸ ︷︷ ︸
=id

(β) +
1

1!︸︷︷︸
=1

(adα)1︸ ︷︷ ︸
=adα

(β) +
∞∑
n=2

1

n!
(adα)n (β)︸ ︷︷ ︸

=0
(since n≥2)

= id (β)︸ ︷︷ ︸
=β

+ (adα) (β)︸ ︷︷ ︸
=[α,β]

+
∞∑
n=2

1

n!
0︸ ︷︷ ︸

=0

= β + [α, β] .

By Corollary 3.1.8, we now have

(expα) · (exp β) · (exp (−α)) = exp ((exp (adα)) (β))︸ ︷︷ ︸
=β+[α,β]

= exp (β + [α, β]) .

But β and [α, β] commute, so that β [α, β] = [α, β] β. Hence, Theorem 3.1.4 (applied
to β and [α, β] instead of α and β) yields exp (β + [α, β]) = (exp β) · (exp [α, β]).

On the other hand,

(expα) · (exp β) · (exp (−α)) ·

exp α︸︷︷︸
=−(−α)

 = (expα) · (exp β) · (exp (−α)) · (exp (− (−α)))︸ ︷︷ ︸
=1

(by Corollary 3.1.5, applied to γ=−α)

= (expα) · (exp β) .

Compared with

(expα) · (exp β) · (exp (−α))︸ ︷︷ ︸
=exp(β+[α,β])=(expβ)·(exp[α,β])

· (expα) = (exp β) · (exp [α, β]) · (expα) ,
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this yields
(expα) · (exp β) = (exp β) · (exp [α, β]) · (expα) . (75)

Besides, α and [α, β] commute, so that α [α, β] = [α, β]α. Hence, Theorem 3.1.4
(applied to [α, β] instead of β) yields exp (α + [α, β]) = (expα) · (exp [α, β]).

On the other hand, α and [α, β] commute, so that [α, β]α = α [α, β]. Hence, Theorem
3.1.4 (applied to [α, β] and α instead of α and β) yields exp ([α, β] + α) = (exp [α, β]) ·
(expα).

Thus, (exp [α, β])·(expα) = exp ([α, β] + α)︸ ︷︷ ︸
=α+[α,β]

= exp (α + [α, β]) = (expα)·(exp [α, β]).

Now, (75) becomes

(expα) · (exp β) = (exp β) · (exp [α, β]) · (expα)︸ ︷︷ ︸
=(expα)·(exp[α,β])

= (exp β) · (expα) · (exp [α, β]) .

This proves Lemma 3.1.9.
Second proof of Lemma 3.1.9. Clearly, [β, α] = − [α, β] commutes with each of α

and β (since [α, β] commutes with each of α and β).
The Baker-Campbell-Hausdorff formula has the form

(expα) · (exp β) = exp

(
α + β +

1

2
[α, β] + (higher terms)

)
,

where the “higher terms” on the right hand side mean Q-linear combinations of nested
Lie brackets of three or more α’s and β’s. Since [α, β] commutes with each of α and
β, all of these higher terms are zero, and thus the Baker-Campbell-Hausdorff formula
simplifies to

(expα) · (exp β) = exp

(
α + β +

1

2
[α, β]

)
. (76)

Applying this to β and α instead of α and β, we obtain

(exp β) · (expα) = exp

(
β + α +

1

2
[β, α]

)
.

Since [β, α] = − [α, β], this becomes

(exp β) · (expα) = exp

β + α +
1

2
[β, α]︸ ︷︷ ︸
=−[α,β]

 = exp

(
β + α− 1

2
[α, β]

)
. (77)

Now, [α, β] commutes with each of α and β (by the assumptions of the lemma) and

also with [α, β] itself (clearly). Hence, [α, β] commutes with β + α− 1

2
[α, β]. In other

words,

(
β + α− 1

2
[α, β]

)
[α, β] = [α, β]

(
β + α− 1

2
[α, β]

)
. Hence, Theorem 3.1.4

(applied to β+α−1

2
[α, β] and [α, β] instead of α and β) yields exp

(
β + α− 1

2
[α, β] + [α, β]

)
=
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(
exp

(
β + α− 1

2
[α, β]

))
· (exp [α, β]). Now,

(exp β) · (expα)︸ ︷︷ ︸
=exp

β+α−
1

2
[α,β]


(by (77))

· (exp [α, β]) =

(
exp

(
β + α− 1

2
[α, β]

))
· (exp [α, β])

= exp

(
β + α− 1

2
[α, β] + [α, β]

)
︸ ︷︷ ︸

=α+β+
1

2
[α,β]

= exp

(
α + β +

1

2
[α, β]

)
= (expα) · (exp β)

(by (76)). Lemma 3.1.9 is proven.
We are going to also present a third, very elementary (term-by-term) proof of Lemma

3.1.9. It relies on the following proposition, which can also be applied in some other
contexts (e. g., computing in universal enveloping algebras):

Proposition 3.1.10. Let R be a ring. Let α ∈ R and β ∈ R. Assume that [α, β]
commutes with each of α and β. Then, for every i ∈ N and j ∈ N, we have

αjβi =
∑
k∈N;

k≤i; k≤j

k!

(
i

k

)(
j

k

)
βi−kαj−k [α, β]k .

Proof of Proposition 3.1.10. Let γ denote [α, β]. Then, γ commutes with each of α
and β (since [α, β] commutes with each of α and β). In other words, γα = αγ and
γβ = βγ.

As we showed in the proof of Lemma 3.1.1, every positive i ∈ N satisfies [α, βi] =
iγβi−1. Since γ = [α, β], this rewrites as follows:

every positive i ∈ N satisfies
[
α, βi

]
= i [α, β] βi−1. (78)

Since [β, α] = − [α, β]︸ ︷︷ ︸
=γ

= −γ, we see that [β, α]︸ ︷︷ ︸
=−γ

α = − γα︸︷︷︸
=αγ

= −αγ = α (−γ)︸ ︷︷ ︸
=[β,α]

=

α [β, α] and [β, α]︸ ︷︷ ︸
=−γ

β = − γβ︸︷︷︸
=βγ

= −βγ = β (−γ)︸ ︷︷ ︸
=[β,α]

= β [β, α]. In other words, [β, α]

commutes with each of α and β. Therefore, the roles of α and β are symmetric, and
thus we can apply (78) to β and α instead of α and β, and conclude that

every positive i ∈ N satisfies
[
β, αi

]
= i [β, α]αi−1. (79)

Thus, every positive i ∈ N satisfies βαi − αiβ = [β, αi] = i [β, α]︸ ︷︷ ︸
=−γ

αi−1 = −iγαi−1, so

that βαi = αiβ − iγαi−1 and thus αiβ = βαi + iγαi−1. We have thus proven that

every positive i ∈ N satisfies αiβ = βαi + iγαi−1. (80)
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Now, we are going to prove that every i ∈ N and j ∈ N satisfy

αjβi =
∑
k∈N;

k≤i; k≤j

k!

(
i

k

)(
j

k

)
βi−kαj−kγk. (81)

Proof of (81): We will prove (81) by induction over i:
Induction base: Let j ∈ N be arbitrary. For i = 0, we have αjβi = αj β0︸︷︷︸

=1

= αj and

∑
k∈N;

k≤i; k≤j

k!

(
i

k

)(
j

k

)
βi−kαj−kγk =

∑
k∈N;

k≤0; k≤j︸ ︷︷ ︸
=
∑

k∈{0}

k!

(
0

k

)(
j

k

)
β0−kαj−kγk =

∑
k∈{0}

k!

(
0

k

)(
j

k

)
β0−kαj−kγk

= 0!︸︷︷︸
=1

(
0

0

)
︸︷︷︸

=1

(
j

0

)
︸︷︷︸

=1

β0−0︸︷︷︸
=1

αj−0︸︷︷︸
=αj

γ0︸︷︷︸
=1

= αj.

Hence, for i = 0, we have αjβi = αj =
∑
k∈N;

k≤i; k≤j

k!

(
i

k

)(
j

k

)
βi−kαj−kγk. Thus, (81) holds

for i = 0, so that the induction base is complete.
Induction step: Let u ∈ N. Assume that (81) holds for i = u. We must now prove

that (81) holds for i = u+ 1.
Since (81) holds for i = u, we have

αjβu =
∑
k∈N;

k≤u; k≤j

k!

(
u

k

)(
j

k

)
βu−kαj−kγk for every j ∈ N. (82)
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Now, let j ∈ N be positive. Then, j − 1 ∈ N. Now,

αj βu+1︸︷︷︸
=ββu

= αjβ︸︷︷︸
=βαj+jγαj−1

(by (80),
applied to j instead of i)

βu =
(
βαj + jγαj−1

)
βu = βαjβu + j γαj−1βu︸ ︷︷ ︸

=αj−1βuγ
(since γ commutes with

each of β and α)

= β αjβu︸︷︷︸
=

∑
k∈N;

k≤u; k≤j

k!

(
u

k

)(
j

k

)
βu−kαj−kγk

(by (82))

+j αj−1βu︸ ︷︷ ︸
=

∑
k∈N;

k≤u; k≤j−1

k!

(
u

k

)(
j − 1

k

)
βu−kαj−1−kγk

(by (82), applied to j−1
instead of j (since j−1∈N))

γ

= β
∑
k∈N;

k≤u; k≤j

k!

(
u

k

)(
j

k

)
βu−kαj−kγk + j

 ∑
k∈N;

k≤u; k≤j−1

k!

(
u

k

)(
j − 1

k

)
βu−kαj−1−kγk

 γ

=
∑
k∈N;

k≤u; k≤j

k!

(
u

k

)(
j

k

)
ββu−k︸ ︷︷ ︸
=βu+1−k

αj−kγk + j
∑
k∈N;

k≤u; k≤j−1

k!

(
u

k

)(
j − 1

k

)
βu−kαj−1−k γkγ︸︷︷︸

=γk+1

=
∑
k∈N;

k≤u; k≤j

k!

(
u

k

)(
j

k

)
βu+1−kαj−kγj + j

∑
k∈N;

k≤u; k≤j−1

k!

(
u

k

)(
j − 1

k

)
βu−kαj−1−kγk+1.

(83)

Let us separately simplify the two addends on the right hand side of this equation.
First of all, every k ∈ N which satisfies k ≤ u + 1 and k ≤ j but does not satisfy

k ≤ u must satisfy

k!

(
u

k

)(
j

k

)
βu+1−kαj−kγj = 0 (because this k does not satisfy k ≤ u, so that we have

k > u, and thus

(
u

k

)
= 0). Thus,

∑
k∈N;

k≤u+1; (not k≤u); k≤j

k!

(
u

k

)(
j

k

)
βu+1−kαj−kγj =

∑
k∈N;

k≤u+1; (not k≤u); k≤j

0 = 0. Hence,

∑
k∈N;

k≤u+1; k≤j

k!

(
u

k

)(
j

k

)
βu+1−kαj−kγj

=
∑
k∈N;

k≤u+1; k≤u; k≤j︸ ︷︷ ︸
=

∑
k∈N;

k≤u; k≤j

k!

(
u

k

)(
j

k

)
βu+1−kαj−kγj +

∑
k∈N;

k≤u+1; (not k≤u); k≤j

k!

(
u

k

)(
j

k

)
βu+1−kαj−kγj

︸ ︷︷ ︸
=0

=
∑
k∈N;

k≤u; k≤j

k!

(
u

k

)(
j

k

)
βu+1−kαj−kγj. (84)
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On the other hand,∑
k∈N;

k≤u; k≤j−1

k!

(
u

k

)(
j − 1

k

)
βu−kαj−1−kγk+1

=
∑

k∈N; k≥1;
k≤u+1; k≤j

(k − 1)!

(
u

k − 1

)(
j − 1

k − 1

)
βu−(k−1)︸ ︷︷ ︸
=βu+1−k

αj−1−(k−1)︸ ︷︷ ︸
=αj−k

γ(k−1)+1︸ ︷︷ ︸
=γk

(here, we substituted k − 1 for k in the sum)

=
∑

k∈N; k≥1;
k≤u+1; k≤j

(k − 1)!

(
u

k − 1

)(
j − 1

k − 1

)
βu+1−kαj−kγj. (85)

But every k ∈ N satisfying k ≥ 1 and k ≤ j satisfies(
j − 1

k − 1

)
=

(j − 1)!

(k − 1)! ((j − 1)− (k − 1))!
=

(j − 1)!

(k − 1)! (j − k)!
.

Hence, every k ∈ N satisfying k ≥ 1 and k ≤ j satisfies

(k − 1)!

(
u

k − 1

) (
j − 1

k − 1

)
︸ ︷︷ ︸

=
(j − 1)!

(k − 1)! (j − k)!

= (k − 1)!

(
u

k − 1

)
(j − 1)!

(k − 1)! (j − k)!

=

(
u

k − 1

)
(j − 1)!

(j − k)!
. (86)

But multiplying both sides of (85) with j, we obtain

j
∑
k∈N;

k≤u; k≤j−1

k!

(
u

k

)(
j − 1

k

)
βu−kαj−1−kγk+1

= j
∑

k∈N; k≥1;
k≤u+1; k≤j

(k − 1)!

(
u

k − 1

)(
j − 1

k − 1

)
︸ ︷︷ ︸

=

(
u

k − 1

)
(j − 1)!

(j − k)!
(by (86))

βu+1−kαj−kγj

= j
∑

k∈N; k≥1;
k≤u+1; k≤j

(
u

k − 1

)
(j − 1)!

(j − k)!
βu+1−kαj−kγj =

∑
k∈N; k≥1;
k≤u+1; k≤j

(
u

k − 1

)
j

(j − 1)!

(j − k)!
βu+1−kαj−kγj.

(87)

But every k ∈ N satisfying k ≥ 1 and k ≤ j satisfies(
j

k

)
=

j!

k! (j − k)!
=

j (j − 1)!

k! (j − k)!
(since j! = j (j − 1)!)

=
1

k!
· j (j − 1)!

(j − k)!
.
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Hence, every k ∈ N satisfying k ≥ 1 and k ≤ j satisfies

k!

(
j

k

)
= j

(j − 1)!

(j − k)!
. (88)

Thus, (87) becomes

j
∑
k∈N;

k≤u; k≤j−1

k!

(
u

k

)(
j − 1

k

)
βu−kαj−1−kγk+1

=
∑

k∈N; k≥1;
k≤u+1; k≤j

(
u

k − 1

)
j

(j − 1)!

(j − k)!︸ ︷︷ ︸
=k!

(
j

k

)
(by (88))

βu+1−kαj−kγj

=
∑

k∈N; k≥1;
k≤u+1; k≤j

(
u

k − 1

)
k!

(
j

k

)
βu+1−kαj−kγj =

∑
k∈N; k≥1;
k≤u+1; k≤j

k!

(
u

k − 1

)(
j

k

)
βu+1−kαj−kγj.

(89)

But every k ∈ N which satisfies k ≤ u + 1 and k ≤ j but does not satisfy k ≥ 1
must satisfy

k!

(
u

k − 1

)(
j

k

)
βu+1−kαj−kγj = 0 (because this k does not satisfy k ≥ 1, so that we

have k < 1, and thus

(
u

k − 1

)
= 0). Thus,∑

k∈N; (not k≥1);
k≤u+1; k≤j

k!

(
u

k − 1

)(
j

k

)
βu+1−kαj−kγj =

∑
k∈N; (not k≥1);
k≤u+1; k≤j

0 = 0. Hence,

∑
k∈N

k≤u+1; k≤j

k!

(
u

k − 1

)(
j

k

)
βu+1−kαj−kγj

=
∑

k∈N; k≥1;
k≤u+1; k≤j

k!

(
u

k − 1

)(
j

k

)
βu+1−kαj−kγj +

∑
k∈N; (not k≥1);
k≤u+1; k≤j

k!

(
u

k − 1

)(
j

k

)
βu+1−kαj−kγj

︸ ︷︷ ︸
=0

=
∑

k∈N; k≥1;
k≤u+1; k≤j

k!

(
u

k − 1

)(
j

k

)
βu+1−kαj−kγj. (90)

Thus, (89) becomes

j
∑
k∈N;

k≤u; k≤j−1

k!

(
u

k

)(
j − 1

k

)
βu−kαj−1−kγk+1

=
∑

k∈N; k≥1;
k≤u+1; k≤j

k!

(
u

k − 1

)(
j

k

)
βu+1−kαj−kγj =

∑
k∈N;

k≤u+1; k≤j

k!

(
u

k − 1

)(
j

k

)
βu+1−kαj−kγj

(91)
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(by (90)).
Also, notice that every k ∈ N satisfies

k!

(
u

k

)
+ k!

(
u

k − 1

)
= k!

((
u

k

)
+

(
u

k − 1

))
︸ ︷︷ ︸

=

(
u+ 1

k

)
(by the recurrence equation
of the binomial coefficients)

= k!

(
u+ 1

k

)
. (92)

Now, (83) becomes

αjβu+1 =
∑
k∈N;

k≤u; k≤j

k!

(
u

k

)(
j

k

)
βu+1−kαj−kγj

︸ ︷︷ ︸
=

∑
k∈N;

k≤u+1; k≤j

k!

(
u

k

)(
j

k

)
βu+1−kαj−kγj

(by (84))

+ j
∑
k∈N;

k≤u; k≤j−1

k!

(
u

k

)(
j − 1

k

)
βu−kαj−1−kγk+1

︸ ︷︷ ︸
=

∑
k∈N;

k≤u+1; k≤j

k!

(
u

k − 1

)(
j

k

)
βu+1−kαj−kγj

(by (91))

=
∑
k∈N;

k≤u+1; k≤j

k!

(
u

k

)(
j

k

)
βu+1−kαj−kγj +

∑
k∈N;

k≤u+1; k≤j

k!

(
u

k − 1

)(
j

k

)
βu+1−kαj−kγj

=
∑
k∈N;

k≤u+1; k≤j

(
k!

(
u

k

)
+ k!

(
u

k − 1

))
︸ ︷︷ ︸

=k!

(
u+ 1

k

)
(by (92))

(
j

k

)
βu+1−kαj−kγj

=
∑
k∈N;

k≤u+1; k≤j

k!

(
u+ 1

k

)(
j

k

)
βu+1−kαj−kγj.

Now, forget that we fixed j. We thus have shown that

αjβu+1 =
∑
k∈N;

k≤u+1; k≤j

k!

(
u+ 1

k

)(
j

k

)
βu+1−kαj−kγj (93)

holds for every positive j ∈ N. Since it is easy to see that (93) also holds for j = 0
(the proof is similar to our induction base above), this yields that (93) holds for every
j ∈ N. In other words, (81) holds for i = u+ 1. Thus, the induction step is complete.
Hence, we have proven (81) by induction over i.

Since γ = [α, β], the (now proven) identity (81) rewrites as

αjβi =
∑
k∈N;

k≤i; k≤j

k!

(
i

k

)(
j

k

)
βi−kαj−k γ︸︷︷︸

=[α,β]

k =
∑
k∈N;

k≤i; k≤j

k!

(
i

k

)(
j

k

)
βi−kαj−k [α, β]k .

Proposition 3.1.10 is thus proven.
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Third proof of Lemma 3.1.9. By the definition of the exponential, we have exp [α, β] =∑
k∈N

[α, β]k

k!
, expα =

∑
j∈N

αj

j!
and exp β =

∑
i∈N

βi

i!
. Multiplying the last two of these three

equalities, we obtain

(expα) · (exp β)

=

(∑
j∈N

αj

j!

)
·

(∑
i∈N

βi

i!

)
=
∑
i∈N

∑
j∈N

αj

j!
· β

i

i!
=
∑
i∈N

∑
j∈N

1

i!j!
αjβi︸︷︷︸

=
∑
k∈N;

k≤i; k≤j

k!

(
i

k

)(
j

k

)
βi−kαj−k[α,β]k

(by Proposition 3.1.10)

=
∑
i∈N

∑
j∈N

1

i!j!

∑
k∈N;

k≤i; k≤j

k!

(
i

k

)(
j

k

)
βi−kαj−k [α, β]k

=
∑
i∈N

∑
j∈N

∑
k∈N;

k≤i; k≤j︸ ︷︷ ︸
=
∑
k∈N

∑
i∈N;
k≤i

∑
j∈N;
k≤j

1

i!j!
k!

(
i

k

)(
j

k

)
︸ ︷︷ ︸

=
1

(i− k)! (j − k)!k!
(by easy computations)

βi−kαj−k [α, β]k

=
∑
k∈N

∑
i∈N;
k≤i

∑
j∈N;
k≤j

1

(i− k)! (j − k)!k!
βi−kαj−k [α, β]k =

∑
k∈N

∑
i∈N

∑
j∈N

1

i!j!k!
βiαj [α, β]k

(
here, we substituted i for i− k in the second sum,

and we substituted j for j − k in the third sum

)
=
∑
i∈N

∑
j∈N

∑
k∈N

βi

i!
· α

j

j!
· [α, β]k

k!
=

(∑
i∈N

βi

i!

)
︸ ︷︷ ︸

=expβ

·

(∑
j∈N

αj

j!

)
︸ ︷︷ ︸

=expα

·

(∑
k∈N

[α, β]k

k!

)
︸ ︷︷ ︸

=exp[α,β]

= (exp β) · (expα) · (exp [α, β]) .

This proves Lemma 3.1.9 once again.

3.2. Representations of Vir on Fµ

3.2.1. The Lie-algebraic semidirect product: the general case

Let us define the “full-fledged” version of the Lie-algebraic semidirect product, although
it will not be central to what we will later do:

Definition 3.2.1. Let g be a Lie algebra. Let h be a vector space equipped with
both a Lie algebra structure and a g-module structure.

(a) Let ρ : g→ End h be the map representing the action of g on h. We say that
g acts on h by derivations if ρ (g) ⊆ Der h, or, equivalently, if the map

h→ h, x 7→ a ⇀ x
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is a derivation for every a ∈ g. (Here and in the following, the symbol ⇀ means
action; i. e., a term like c ⇀ h (with c ∈ g and h ∈ h) means the action of c on h.)

(b) Assume that g acts on h by derivations. Then, we define the semidirect product
gn h to be the Lie algebra which, as a vector space, is g⊕ h, but whose Lie bracket
is defined by

[(a, α) , (b, β)] = ([a, b] , [α, β] + a ⇀ β − b ⇀ α)

for all a ∈ g, α ∈ h, b ∈ g and β ∈ h .

Thus, the canonical injection g→ gnh, a 7→ (a, 0) is a Lie algebra homomorphism,
and so is the canonical projection gnh→ g, (a, α) 7→ a. Also, the canonical injection
h→ gn h, α 7→ (0, α) is a Lie algebra homomorphism.

All statements made in Definition 3.2.1 (including the tacit statement that the Lie
bracket on g n h defined in Definition 3.2.1 satisfies antisymmetry and the Jacobi
identity) are easy to verify by computation.

Remark 3.2.2. If g is a Lie algebra, and h is an abelian Lie algebra with any
g-module structure, then g automatically acts on h by derivations (because any
endomorphism of the vector space h is a derivation), and thus Definition 3.2.1 (b)
defines a semidirect product g n h. In this case, this semidirect product g n h
coincides with the semidirect product g n h defined in Definition 1.7.7 (applied to
M = h). However, when h is not abelian, the semidirect product g n h defined in
Definition 3.2.1 (in general) differs from that defined in Definition 1.7.7 (since the
former depends on the Lie algebra structure on h, while the latter does not). Care
must therefore be taken when speaking of semidirect products.

An example for the semidirect product construction given in Definition 3.2.1 (b) is
given by the following proposition:

Proposition 3.2.3. Consider the Witt algebra W , the Virasoro algebra Vir and
the Heisenberg algebra A.

(a) In Lemma 1.4.3, we constructed a homomorphism η : W → DerA of Lie
algebras. This homomorphism η makes A into a W -module, and W acts on A by
derivations. Therefore, a Lie algebra W nA is defined (according to Definition 3.2.1
(b)).

(b) There is a natural homomorphism η̃ : Vir→ DerA of Lie algebras given by

(η̃ (f∂ + λK)) (g, α) = (fg′, 0) for all f ∈ C
[
t, t−1

]
, g ∈ C

[
t, t−1

]
, λ ∈ C and α ∈ C.

This homomorphism η̃ is simply the extension of the homomorphism η : W → DerA
(defined in Lemma 1.4.3) to Vir by means of requiring that η̃ (K) = 0.

This homomorphism η̃ makes A a Vir-module, and Vir acts on A by derivations.
Therefore, a Lie algebra VirnA is defined (according to Definition 3.2.1 (b)).

The proof of Proposition 3.2.3 is straightforward and left to the reader.
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3.2.2. The action of Vir on Fµ

Let us now return to considering the Witt and Heisenberg algebras.
According to Proposition 3.2.3 (a), we have a Lie algebra W n A, of which A is a

Lie subalgebra. Now, recall (from Definition 2.2.5) that, for every µ ∈ C, we have a
representation Fµ of the Lie algebra A on the Fock space F .

Can we extend this representation Fµ of A to a representation of the semidirect
product W nA ?

This question splits into two questions:
Question 1: Can we find linear operators Ln : Fµ → Fµ for all n ∈ Z such

that [Ln, am] = −man+m ? (Note that there are several abuses of notation in this
question. First, we denote the sought operators Ln : Fµ → Fµ by the same letters
as the elements Ln of W because our intuition for the Ln is as if they would form a
representation of W , although we do not actually require them to form a representation
of W in Question 1. Second, in the equation [Ln, am] = −man+m, we use am and an+m

as abbreviations for am |Fµ and an+m |Fµ , respectively (so that this equation actually
means

[
Ln, am |Fµ

]
= −man+m |Fµ).)

Question 2: Do the operators Ln : Fµ → Fµ that answer Question 1 also satisfy
[Ln, Lm] = (n−m)Ln+m? (In other words, do they really form a representation of W
?)

The answers to these questions are the following:
Answer to Question 1: Yes, and moreover, these operators are unique up to

adding a constant (a new constant for each operator). (The uniqueness is rather easy
to prove: If we have two families (L′n)n∈Z and (L′′n)n∈Z of linear maps Fµ → Fµ satisfying
[L′n, am] = −man+m and [L′′n, am] = −man+m, then every L′n − L′′n commutes with all
am, and thus is constant by Dixmier’s lemma.)

Answer to Question 2: No, but almost. Our operators Ln satisfy [Ln, Lm] =
(n−m)Ln+m whenever n + m 6= 0, but the n + m = 0 case requires a correction
term. This correction term (as a function of (Ln, Lm)) happens to be the 2-cocycle
ω of Theorem 1.5.2. So the A-module Fµ does not extend to a W n A-module, but
extends to a VirnA-module, where VirnA is defined as in Proposition 3.2.3 (b).

Now we are going to prove the answers to Questions 1 and 2 formulated above.
First, we must define our operators Ln. “Formally” (in the sense of “not caring about
divergence of sums”), one could try to define Ln by

Ln =
1

2

∑
m∈Z

a−man+m for all n ∈ Z (94)

(where a` is shorthand notation for a` |Fµ for every ` ∈ Z), and this would “for-
mally” make Fµ into a W n A-module (in the sense that if the sums were not diver-
gent, one could manipulate them to “prove” that [Ln, am] = −man+m and [Ln, Lm] =
(n−m)Ln+m for all n and m). But the problem with this “formal” approach is that
the sum

∑
m∈Z

a−man+m does not make sense for n = 0: it is an infinite sum, and in-

finitely many of its terms yield nonzero values when applied to a given vector.83 So we

83In fact, assume that this sum would make sense for n = 0. Thus we would have L0 =
1

2

∑
m∈Z

a−mam.
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are not allowed to make the definition (94), and we cannot rescue it just by defining a
more liberal notion of convergence. Instead, we must modify this “definition”.

In order to modify it, we define the so-called normal ordering :

Definition 3.2.4. For any two integers m and n, define the normal ordered product
: aman : in the universal enveloping algebra U (A) by

: aman : =

{
aman, if m ≤ n;
anam, if m > n

.

More generally, for any integers n1, n2, ..., nk, define the normal ordered product
: an1an2 ...ank : in the universal enveloping algebra U (A) by

: an1an2 ...ank : =

(
the product of the elements an1 , an2 , ..., ank of U (A) ,

rearranged in such a way that the subscripts are in increasing order

)
.

(More formally, this normal ordered product : an1an2 ...ank : is defined as the product
am1am2 ...amk , where (m1,m2, ...,mk) is the permutation of the list (n1, n2, ..., nk)
satisfying m1 ≤ m2 ≤ ... ≤ mk.)

Note that we have thus defined only normal ordered products of elements of the form
an for n ∈ Z. Normal ordered products of basis elements of other Lie algebras are not
always defined by the same formulas (although sometimes they are).

Remark 3.2.5. If m and n are integers such that m 6= −n, then : aman : = aman.
(This is because [am, an] = 0 in A when m 6= −n.)

Normal ordered products have the property of being commutative:

Remark 3.2.6. (a) Any m ∈ Z and n ∈ Z satisfy : aman : = : anam : .
(b) Any integers n1, n2, ..., nk and any permutation π ∈ Sk satisfy

: an1an2 ...ank : = : anπ(1)
anπ(2)

...anπ(k)
: .

The proof of this is trivial.
By Remark 3.2.5 (and by the rather straightforward generalization of this fact to

many integers), normal ordered products are rarely different from the usual products.
But even when they are different, they don’t differ much:

Applied to the vector 1 ∈ F0, this would give L01 =
1

2

∑
m∈Z

a−mam1. The terms for m > 0 will get

killed (since am1 = 0 for m > 0), but the terms for m ≤ 0 will survive. The sum would become

L01 =
1

2
(a0a−01 + a1a−11 + a2a−21 + a3a−31 + ...)

=
1

2

(
µ21 + 1

∂

∂x1
x1 + 2

∂

∂x2
x2 + 3

∂

∂x3
x3 + ...

)
=

1

2

(
µ2 + 1 + 2 + 3 + ...

)
.

Unless we interpret 1 + 2 + 3 + ... as − 1

12
(which we are going to do in some sense: the modified

formulae further below include − 1

12
factors), this makes no sense.
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Remark 3.2.7. Let m and n be integers.
(a) Then, : aman : = aman + n [m > 0] δm,−nK. Here, when A is an assertion, we

denote by [A] the truth value of A (that is, the number

{
1, if A is true;
0, if A is false

).

(b) For any x ∈ U (A), we have [x, : aman : ] = [x, aman] (where [·, ·] denotes the
commutator in U (A)).

Note that when we denote by [·, ·] the commutator in U (A), we are seemingly risking
a confusion with the notation [·, ·] for the Lie bracket of A (because we embed A in
U (A)). However, this confusion is harmless, because the very definition of U (A)
ensures that the commutator of two elements of A, taken in U (A), equals to their Lie
bracket in A.

Proof of Remark 3.2.7. (a) We distinguish between three cases:
Case 1: We have m 6= −n.
Case 2: We have m = −n and m > 0.
Case 3: We have m = −n and m ≤ 0.
In Case 1, we have m 6= −n, so that δm,−n = 0 and thus

aman + n [m > 0] δm,−n︸ ︷︷ ︸
=0

K = aman = : aman : (by Remark 3.2.5) .

Hence, Remark 3.2.7 (a) is proven in Case 1.
In Case 2, we have m = −n and m > 0, so that m > n, and thus

: aman : =

{
aman, if m ≤ n;
anam, if m > n

= anam (since m > n)

= aman + [an, am]︸ ︷︷ ︸
=nδn,−mK=n1δm,−nK

= aman + n 1︸︷︷︸
=[m>0]

(since m>0)

δm,−nK = aman + n [m > 0] δm,−nK.

Hence, Remark 3.2.7 (a) is proven in Case 2.
In Case 3, we have m = −n and m ≤ 0, so that m ≤ n, and thus

: aman : =

{
aman, if m ≤ n;
anam, if m > n

= aman (since m ≤ n)

= aman + 0︸︷︷︸
=n[m>0]δm,−nK

(since m≤0, so that (not m>0), thus
[m>0]=0 and hence n[m>0]δm,−nK=0)

= aman + n [m > 0] δm,−nK.

Hence, Remark 3.2.7 (a) is proven in Case 3.
Thus, we have proven Remark 3.2.7 (a) in all three possible cases. This completes

the proof of Remark 3.2.7 (a).
(b) We have K ∈ Z (A) ⊆ Z (U (A)) (since the center of a Lie algebra is contained

in the center of its universal enveloping algebra). Hence, [x,K] = 0 for any x ∈ U (A).
Since : aman : = aman + n [m > 0] δm,−nK, we have

[x, : aman : ] = [x, aman + n [m > 0] δm,−nK]

= [x, aman] + n [m > 0] δm,−n [x,K]︸ ︷︷ ︸
=0

= [x, aman]
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for every x ∈ U (A). This proves Remark 3.2.7 (b).
Now, the true definition of our maps Ln : Fµ → Fµ will be the following:

Definition 3.2.8. For every n ∈ Z and µ ∈ C, define a linear map Ln : Fµ → Fµ by

Ln =
1

2

∑
m∈Z

: a−man+m : (95)

(where a` is shorthand notation for a` |Fµ for every ` ∈ Z). This sum
∑
m∈Z

: a−man+m :

is an infinite sum, but it is well-defined in the following sense: For any vector v ∈ Fµ,
applying

∑
m∈Z

: a−man+m : to the vector v gives the sum
∑
m∈Z

: a−man+m : v, which has

only finitely many nonzero addends (because of Lemma 3.2.10 (c) below) and thus
has a well-defined value.

Note that we have not defined the meaning of the sum
∑
m∈Z

: a−man+m : in the uni-

versal enveloping algebra U (A) itself, but only its meaning as an endomorphism of Fµ.
However, if we wanted, we could also define the sum

∑
m∈Z

: a−man+m : as an element of

a suitable completion of the universal enveloping algebra U (A) (although not in U (A)
itself). We don’t really have a reason to do so here, however.

Convention 3.2.9. During the rest of Section 3.2, we are going to use the labels
Ln for the maps Ln : Fµ → Fµ introduced in Definition 3.2.8, and not for the
eponymous elements of the Virasoro algebra Vir or of the Witt algebra W , unless
we explicitly refer to “the element Ln of Vir” or “the element Ln of W” or something
similarly unambiguous.

(While it is correct that the maps Ln : Fµ → Fµ satisfy the same relations as the
eponymous elements Ln of Vir (but not the eponymous elements Ln of W ), this is
a nontrivial fact that needs to be proven, and until it is proven we must avoid any
confusion between these different meanings of Ln.)

Let us first show that Definition 3.2.8 makes sense:

Lemma 3.2.10. Let n ∈ Z and µ ∈ C. Let v ∈ Fµ. Then:
(a) If m ∈ Z is sufficiently high, then : a−man+m : v = 0.
(b) If m ∈ Z is sufficiently low, then : a−man+m : v = 0.
(c) All but finitely many m ∈ Z satisfy : a−man+m : v = 0.

Proof of Lemma 3.2.10. (a) Since v ∈ Fµ ∈ C [x1, x2, x3, ...], the vector v is a
polynomial in infinitely many variables. Since every polynomial contains only finitely
many variables, there exists an integer N ∈ N such that no variable xr with r > N
occurs in v. Consider this N . Then,

∂

∂xr
v = 0 for every integer r > N. (96)

Now, let m ≥ max

{
−n+N + 1,−1

2
n

}
. Then, m ≥ −n+N + 1 and m ≥ −1

2
n.
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Since m ≥ −1

2
n, we have 2m ≥ −n, so that −m ≤ n+m.

From m ≥ −n + N + 1, we get n + m ≥ N + 1, so that n + m > 0. Hence,

an+m |Fµ= (n+m)
∂

∂xn+m

, so that an+mv = (n+m)
∂

∂xn+m

v. Since
∂

∂xn+m

v = 0 (by

(96), applied to r = n+m (since n+m ≥ N + 1 > N)), we thus have an+mv = 0.
By Definition 3.2.4, we have

: a−man+m : =

{
a−man+m, if −m ≤ n+m;
an+ma−m, if −m > n+m

.

Since −m ≤ n + m, this rewrites as : a−man+m : = a−man+m. Thus, : a−man+m : v =
a−m an+mv︸ ︷︷ ︸

=0

= 0, and Lemma 3.2.10 (a) is proven.

(b) Applying Lemma 3.2.10 (a) to −n −m instead of m, we see that, if m ∈ Z is
sufficiently low, then : a−(−n−m)an+(−n−m) : v = 0. Since

: a−(−n−m)an+(−n−m) : = : an+ma−m : = : a−man+m : (by Remark 3.2.6 (a)) ,

this rewrites as follows: If m ∈ Z is sufficiently low, then : a−man+m : v = 0. This
proves Lemma 3.2.10 (b).

(c) Lemma 3.2.10 (c) follows immediately by combining Lemma 3.2.10 (a) and
Lemma 3.2.10 (b).

Remark 3.2.11. (a) If n 6= 0, then the operator Ln defined in Definition 3.2.8 can
be rewritten as

Ln =
1

2

∑
m∈Z

a−man+m.

In other words, for n 6= 0, our old definition (94) of Ln makes sense and is equivalent
to the new definition (Definition 3.2.8).

(b) But when n = 0, the formula (94) is devoid of sense, whereas Definition 3.2.8
is legit. However, we can rewrite the definition of L0 without using normal ordered
products: Namely, we have

L0 =
∑
m>0

a−mam +
a2

0

2
=
∑
m>0

a−mam +
µ2

2
.

(c) Let us grade the space Fµ as in Definition 2.2.7. (Recall that this is the grading
which gives every variable xi the degree −i and makes Fµ = C [x1, x2, x3, ...] into a
graded C-algebra. This is not the modified grading that we gave to the space Fµ in
Remark 2.2.8.) Let d ∈ N. Then, every homogeneous polynomial f ∈ Fµ of degree

d (with respect to this grading) satisfies L0f =

(
µ2

2
− d
)
f .

(d) Consider the grading on Fµ defined in part (c). For every n ∈ Z, the map
Ln : Fµ → Fµ is homogeneous of degree n. (The notion “homogeneous of degree
n” we are using here is that defined in Definition 3.3.8 (a), not the one defined in
Definition 2.6.16 (a).)

Proof of Remark 3.2.11. (a) Let n 6= 0. Then, everym ∈ Z satisfies−m 6= − (n+m)
and thus : a−man+m : = a−man+m (by Remark 3.2.5, applied to −m and n+m instead
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of m and n). Hence, the formula Ln =
1

2

∑
m∈Z

: a−man+m : (which is how we defined

Ln) rewrites as Ln =
1

2

∑
m∈Z

a−man+m. This proves Remark 3.2.11 (a).

(b) By the definition of L0 (in Definition 3.2.8), we have

L0 =
1

2

∑
m∈Z

: a−ma0+m : =
1

2

∑
m∈Z

: a−mam :

=
1

2


∑
m<0

: a−mam :︸ ︷︷ ︸
=ama−m

(by the definition of :a−mam:
(since m<0 and thus −m>m))

+ : a−0a0 :︸ ︷︷ ︸
= :a0a0: =a0a0

(by the definition of :a0a0:
(since 0≤0))

+
∑
m>0

: a−mam :︸ ︷︷ ︸
=a−mam

(by the definition of :a−mam:
(since m>0 and thus −m≤m))



=
1

2


∑
m<0

ama−m︸ ︷︷ ︸
=
∑
m>0

a−mam

(here, we substituted m for −m in the sum)

+ a0a0︸︷︷︸
=a2

0

+
∑
m>0

a−mam


=

1

2

(∑
m>0

a−mam + a2
0 +

∑
m>0

a−mam

)
=

1

2

(
2
∑
m>0

a−mam + a2
0

)
=
∑
m>0

a−mam +
a2

0

2

=
∑
m>0

a−mam +
µ2

2
(since a0 acts as multiplication with µ on Fµ)

on Fµ. This proves Remark 3.2.11 (b).

(c) We must prove the equation L0f =

(
µ2

2
− d
)
f for every homogeneous polyno-

mial f ∈ Fµ of degree d. Since this equation is linear in f , it is clearly enough to prove
this for the case of f being a monomial84 of degree d. So let f be a monomial of degree
d. Then, f can be written in the form f = xα1

1 x
α2
2 x

α3
3 ... for a sequence (α1, α2, α3, ...)

of nonnegative integers such that
∑
m>0

(−m)αm = d (the −m coefficient comes from

deg (xm) = −m) and such that all but finitely many i ∈ {1, 2, 3, ...} satisfy αi = 0.
Consider this sequence. Clearly,

∑
m>0

(−m)αm = d yields
∑
m>0

mαm = −d.

By Remark 3.2.11 (b), we have L0 =
∑
m>0

a−mam +
µ2

2
. Since am = m

∂

∂xm
and

a−m = xm for every integer m > 0 (by the definition of the action of am on Fµ), this

84Here, “monomial” means “monomial without coefficient”.
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rewrites as L0 =
∑
m>0

xmm
∂

∂xm
+
µ2

2
. Now, since f = xα1

1 x
α2
2 x

α3
3 ..., every m > 0 satisfies

xmm
∂

∂xm
f = xmm

∂

∂xm
(xα1

1 x
α2
2 x

α3
3 ...)︸ ︷︷ ︸

=αmx
α1
1 x

α2
2 ...x

αm−1
m−1 xαm−1

m x
αm+1
m+1 x

αm+2
m+2 ...

(this term should be understood as 0 if αm=0)

= xmmαmx
α1
1 x

α2
2 ...x

αm−1

m−1 x
αm−1
m x

αm+1

m+1 x
αm+2

m+2 ...

= mαm · xm · xα1
1 x

α2
2 ...x

αm−1

m−1 x
αm−1
m x

αm+1

m+1 x
αm+2

m+2 ...︸ ︷︷ ︸
=x

α1
1 x

α2
2 ...x

αm−1
m−1 xαmm x

αm+1
m+1 x

αm+2
m+2 ...=x

α1
1 x

α2
2 x

α3
3 ...=f

= mαmf.

Hence,

L0f =
∑
m>0

xmm
∂

∂xm
f︸ ︷︷ ︸

=mαmf

+
µ2

2
f

(
since L0 =

∑
m>0

xmm
∂

∂xm
+
µ2

2

)

=
∑
m>0

mαm︸ ︷︷ ︸
=−d

f +
µ2

2
f = −df +

µ2

2
f =

(
µ2

2
− d
)
f.

We thus have proven the equation L0f =

(
µ2

2
− d
)
f for every monomial f of degree

d. As we said above, this completes the proof of Remark 3.2.11 (c).
(d) For every m ∈ Z,

the map am : Fµ → Fµ is homogeneous of degree m. (97)

(In fact, this is easily seen from the definition of how am acts on Fµ.)
Thus, for every u ∈ Z and v ∈ Z, the map : auav : is homogeneous of degree u + v

85. Applied to u = −m and v = n + m, this yields: For every n ∈ Z and m ∈ Z, the
map : a−man+m : is homogeneous of degree (−m) + (n+m) = n. Now, the map

Ln =
1

2

∑
m∈Z

: a−man+m :︸ ︷︷ ︸
this map is homogeneous of degree n

must be homogeneous of degree n. This proves Remark 3.2.11 (d).
Now it turns out that the operators Ln that we have defined give a positive answer

to question 1):

85Proof. Let u ∈ Z and v ∈ Z. By (97) (applied to m = u), the map au is homogeneous of degree u.
Similarly, the map av is homogeneous of degree v. Thus, the map auav is homogeneous of degree
u+ v. Similarly, the map avau is homogeneous of degree v + u = u+ v.

Since : auav : =

{
auav, if u ≤ v;
avau, if u > v

(by the definition of normal ordered products), the

map : auav : equals one of the maps auav and avau. Since both of these maps auav and avau are
homogeneous of degree u+ v, this yields that : auav : is homogeneous of degree u+ v, qed.
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Proposition 3.2.12. Let n ∈ Z, m ∈ Z and µ ∈ C. Then, [Ln, am] = −man+m

(where Ln is defined as in Definition 3.2.8, and a` is shorthand notation for a` |Fµ).

Proof of Proposition 3.2.12. Since

Ln =
1

2

∑
m∈Z

: a−man+m : =
1

2

∑
j∈Z

: a−jan+j : ,

we have

[Ln, am] =

[
1

2

∑
j∈Z

: a−jan+j : , am

]
=

1

2

∑
j∈Z

[ : a−jan+j : , am]︸ ︷︷ ︸
=−[am, :a−jan+j : ]

= −1

2

∑
j∈Z

[am, : a−jan+j : ]︸ ︷︷ ︸
=[am,a−jan+j ]

(by Remark 3.2.7 (b), applied
to am, −j and n+j instead of x, m and n)

= −1

2

∑
j∈Z

[am, a−jan+j]︸ ︷︷ ︸
=[am,a−j ]an+j+a−j [am,an+j ]

= −1

2

∑
j∈Z

 [am, a−j]︸ ︷︷ ︸
=mδm,−(−j)K

an+j + a−j [am, an+j]︸ ︷︷ ︸
=mδm,−(n+j)K


= −1

2

∑
j∈Z

mδm,−(−j)︸ ︷︷ ︸
=δm,j

Kan+j + a−jm δm,−(n+j)︸ ︷︷ ︸
=δ−m,n+j=δ−m−n,j

K


= −1

2

∑
j∈Z

(mδm,jKan+j + a−jmδ−m−n,jK) . (98)

But each of the two sums
∑
j∈Z

mδm,jKan+j and
∑
j∈Z

a−jmδ−m−n,jK is convergent86.

Hence, we can split the sum
∑
j∈Z

(mδm,jKan+j + a−jmδ−m−n,jK) into
∑
j∈Z

mδm,jKan+j +

86In fact, due to the factors δm,j and δ−m−n,j in the addends, it is clear that in each of these two
sums, only at most one addend can be nonzero. Concretely:∑

j∈Z
mδm,jKan+j = mKan+m and

∑
j∈Z

a−jmδ−m−n,jK = a−(−m−n)mK.
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∑
j∈Z

a−jmδ−m−n,jK. Thus, (98) becomes

[Ln, am] = −1

2


∑
j∈Z

mδm,jKan+j︸ ︷︷ ︸
=mKan+m

+
∑
j∈Z

a−jmδ−m−n,jK︸ ︷︷ ︸
=a−(−m−n)mK

 = −1

2

(
mKan+m + a−(−m−n)mK

)

= −1

2

(
man+m + a−(−m−n)m

)
(since K acts as id on Fµ)

= −1

2
m

an+m + a−(−m−n)︸ ︷︷ ︸
=am+n=an+m

 = −1

2
m (an+m + an+m) = −man+m.

This proves Proposition 3.2.12.
Now let us check whether our operators Ln answer Question 2), or at least try to do

so. We are going to make some “dirty” arguments; cleaner ones can be found in the
proof of Proposition 3.2.13 that we give below.

First, it is easy to see that any n ∈ Z and m ∈ Z satisfy

[[Ln, Lm]− (n−m)Ln+m, ak] = 0 for any k ∈ Z
87. Hence, for any n ∈ Z and m ∈ Z, the endomorphism [Ln, Lm] − (n−m)Ln+m of
Fµ is an A-module homomorphism (since [[Ln, Lm]− (n−m)Ln+m, K] = 0 also holds,

87Proof. Let n ∈ Z, m ∈ Z and k ∈ Z. Then,

[[Ln, Lm]− (n−m)Ln+m, ak]

= [[Ln, Lm] , ak]︸ ︷︷ ︸
=[[Ln,ak],Lm]+[Ln,[Lm,ak]]

(by the Leibniz identity for commutators)

− (n−m) [Ln+m, ak]

=

 [Ln, ak]︸ ︷︷ ︸
=−kan+k

(by Proposition 3.2.12,
applied to k instead of m)

, Lm

+


Ln, [Lm, ak]︸ ︷︷ ︸

=−kam+k

(by Proposition 3.2.12,
applied to m and k
instead of n and m)


− (n−m) [Ln+m, ak]︸ ︷︷ ︸

=−kan+m+k

(by Proposition 3.2.12,
applied to n+m and k
instead of n and m)

= −k [an+k, Lm]︸ ︷︷ ︸
=−[Lm,an+k]

−k [Ln, am+k] + (n−m) kan+m+k

= k [Lm, an+k]︸ ︷︷ ︸
=−(n+k)am+n+k

(by Proposition 3.2.12,
applied to m and n+k instead of n and m)

−k [Ln, am+k]︸ ︷︷ ︸
=−(m+k)an+m+k

(by Proposition 3.2.12,
applied to m+k instead of m)

+ (n−m) kan+m+k

= −k (n+ k) am+n+k︸ ︷︷ ︸
=an+m+k

+k (m+ k) an+m+k + (n−m) kan+m+k

= −k (n+ k) an+m+k + k (m+ k) an+m+k + (n−m) kan+m+k

= (−k (n+ k) + k (m+ k) + (n−m) k)︸ ︷︷ ︸
=0

an+m+k = 0.

Qed.
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for obvious reasons). Since Fµ is an irreducible A-module of countable dimension,
this yields (by Lemma 2.1.1) that, for any n ∈ Z and m ∈ Z, the map [Ln, Lm] −
(n−m)Ln+m : Fµ → Fµ is a scalar multiple of the identity. But since this map
[Ln, Lm]− (n−m)Ln+m must also be homogeneous of degree n+m (by an application
of Remark 3.2.11 (d)), this yields that [Ln, Lm]−(n−m)Ln+m = 0 whenever n+m 6= 0
(because any homogeneous map of degree 6= 0 which is, at the same time, a scalar
multiple of the identity, must be the 0 map). Thus, for every n ∈ Z and m ∈ Z, we
can write

[Ln, Lm]− (n−m)Ln+m = γnδn,−m id for some γn ∈ C depending on n. (99)

We can get some more information about these γn if we consider the Lie algebra with
basis (Ln)n∈Z ∪ (id) 88. (Note that, according to Convention 3.2.9, these Ln still
denote maps from Fµ to Fµ, rather than elements of Vir or W . Of course, this Lie
algebra with basis (Ln)n∈Z ∪ (id) will turn out to be isomorphic to Vir, but we have
not yet proven this.) This Lie algebra, due to the formula (99) and to the fact that
id commutes with everything, must be a 1-dimensional central extension of the Witt
algebra. Hence, the map

W ×W → C, (Ln, Lm) 7→ γnδn,−m

(where Ln and Lm really mean the elements Ln and Lm of W this time) must be a 2-
cocycle on W . But since we know (from Theorem 1.5.2) that every 2-cocycle on W is a
scalar multiple of the 2-cocycle ω defined in Theorem 1.5.2 modulo the 2-coboundaries,
this yields that this 2-cocycle is a scalar multiple of ω modulo the 2-coboundaries. In
other words, there exist c ∈ C and ξ ∈ W ∗ such that

γnδn,−m = cω (Ln, Lm) + ξ ([Ln, Lm]) for all n ∈ Z and m ∈ Z.

Since ω (Ln, Lm) =
n3 − n

6
δn,−m, this rewrites as

γnδn,−m = c
n3 − n

6
δn,−m + ξ ([Ln, Lm]) for all n ∈ Z and m ∈ Z.

Applied to m = −n, this yields

γn = c
n3 − n

6
+ ξ

[Ln, L−n]︸ ︷︷ ︸
=2nL0

 = c
n3 − n

6
+ 2nξ (L0) . (100)

All that remains now, in order to get the values of [Ln, Lm] − (n−m)Ln+m, is to
compute the scalars c and ξ (L0). For this, we only need to compute γ1 and γ2 (because
this will give 2 linear equations for c and L0). In order to do this, we will evaluate the
endomorphisms [L1, L−1]− 2L0 and [L2, L−2]− 4L0 at the element 1 of Fµ.

By Remark 3.2.11 (c) (applied to d = 0 and f = 1), we get L01 =

(
µ2

2
− 0

)
1 =

µ2

2
.

88This is well-defined because (as the reader can easily check) the family (Ln)n∈Z ∪ (id) of operators
on Fµ is linearly independent.

163



Since L1 =
1

2

∑
m∈Z

: a−ma1+m : , we have L11 =
1

2

∑
m∈Z

: a−ma1+m : 1 = 0 (because, as

it is easily seen, : a−ma1+m : 1 = 0 for every m ∈ Z). Similarly, L21 = 0.

Since L−1 =
1

2

∑
m∈Z

: a−ma−1+m : , we have L−11 =
1

2

∑
m∈Z

: a−ma−1+m : 1. It is easy

to see that the only m ∈ Z for which : a−ma−1+m : 1 is nonzero are m = 0 and m = 1.
Hence,∑
m∈Z

: a−ma−1+m : 1 = : a−0a−1+0 : 1︸ ︷︷ ︸
= :a0a−1: 1=a−1a01=x1·µ1=µx1

+ : a−1a−1+1 : 1︸ ︷︷ ︸
= :a−1a0: 1=a−1a01=x1·µ1=µx1

= µx1+µx1 = 2µx1,

so that L−11 =
1

2

∑
m∈Z

: a−ma−1+m : 1︸ ︷︷ ︸
=2µx1

= µx1. Thus,

L1L−11 = L1µx1 = µ L1︸︷︷︸
=

1

2
∑
m∈Z

:a−ma1+m:

x1 = µ · 1

2

∑
m∈Z

: a−ma1+m : x1︸ ︷︷ ︸
= :a−(−1)a1+(−1):x1+ :a−0a1+0:x1

(in fact, it is easy to see that the only
m∈Z for which :a−ma1+m:x1 6=0 are m=−1 and m=0)

= µ · 1

2

 : a−(−1)a1+(−1) : x1︸ ︷︷ ︸
= :a1a0:x1=a0a1x1=µ·1

∂

∂x1

x1=µ

+ : a−0a1+0 : x1︸ ︷︷ ︸
= :a0a1:x1=µ·1

∂

∂x1

x1=µ


= µ · 1

2
(µ+ µ) = µ2.

A similar (but messier) computation works for L2L−21: Since L−2 =
1

2

∑
m∈Z

: a−ma−2+m : ,

we have L−21 =
1

2

∑
m∈Z

: a−ma−2+m : 1. It is easy to see that the only m ∈ Z for which

: a−ma−2+m : 1 is nonzero are m = 0, m = 1 and m = 2. This allows us to simplify

L−21 =
1

2

∑
m∈Z

: a−ma−2+m : 1 to L−21 = µx2 +
1

2
x2

1 (the details are left to the reader).

Thus,

L2L−21 = L2

(
µx2 +

1

2
x2

1

)
= µL2x2 +

1

2
L2x

2
1.

Straightforward computations, which I omit, show that L2x2 = 2µ and L2x
2
1 = 1.

Hence,

L2L−21 = µL2x2︸︷︷︸
=2µ

+
1

2
L2x

2
1︸︷︷︸

=1

= 2µ2 +
1

2
.

Now,

([L1, L−1]− 2L0) 1 = L1L−11︸ ︷︷ ︸
=µ2

−L−1 L11︸︷︷︸
=0

−2 L01︸︷︷︸
=
µ2

2

= µ2 − 0− 2 · µ
2

2
= 0.
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Since

[L1, L−1]− 2L0 = γ1 δ1,−(−1)︸ ︷︷ ︸
=1

(by (99), applied to n = 1 and m = −1)

= γ1 = c
13 − 1

6︸ ︷︷ ︸
=0

+2 · 1 · ξ (L0) (by (100), applied to n = 1)

= 0 + 2 · 1 · ξ (L0) = 2ξ (L0) ,

this rewrites as 2ξ (L0) · 1 = 0, so that ξ (L0) = 0.
On the other hand,

([L2, L−2]− 4L0) 1 = L2L−21︸ ︷︷ ︸
=2µ2+

1

2

−L−2 L21︸︷︷︸
=0

−4 L01︸︷︷︸
=
µ2

2

=

(
2µ2 +

1

2

)
− 0− 4 · µ

2

2
=

1

2
.

Since

([L2, L−2]− 4L0) 1 = γ2 δ2,−(−2)︸ ︷︷ ︸
=1

(by (99), applied to n = 2 and m = −2)

= γ2 = c
23 − 2

6︸ ︷︷ ︸
=1

+2 · 2 · ξ (L0)︸ ︷︷ ︸
=0

(by (100), applied to n = 2)

= c+ 0 = c,

this rewrites as c =
1

2
.

Due to ξ (L0) = 0 and c =
1

2
, we can rewrite (100) as

γn =
1

2
· n

3 − n
6

+ 2n0 =
n3 − n

12
.

Hence, (99) becomes

[Ln, Lm]− (n−m)Ln+m =
n3 − n

12
δn,−m id .

We have thus proven:

Proposition 3.2.13. For any n ∈ Z and m ∈ Z, we have

[Ln, Lm] = (n−m)Ln+m +
n3 − n

12
δn,−m id (101)

(where Ln and Lm are maps Fµ → Fµ as explained in Convention 3.2.9). Thus, we
can make Fµ a representation of Vir by letting the element Ln of Vir act as the map
Ln : Fµ → Fµ for every n ∈ Z, and letting the element C of Vir act as id.

Due to Proposition 3.2.12, this Vir-action harmonizes with the A-action on Fµ:
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Proposition 3.2.14. TheA-action on Fµ extends (essentially uniquely) to an action
of VirnA on Fµ with C acting as 1.

This is the reason why the construction of the Virasoro algebra involved the 2-

cocycle
1

2
ω rather than ω (or, actually, rather than simpler-looking 2-cocycles like

(Ln, Lm) 7→ n3δn,−m).
Our proof of Proposition 3.2.13 above was rather insidious and nonconstructive: We

used the Dixmier theorem to prove (what boils down to) an algebraic identity, and later
we used Theorem 1.5.2 (which is constructive but was applied in a rather unexpected
way) to reduce our computations to two concrete cases. We will now show a different,
more direct proof of Proposition 3.2.13:89

Second proof of Proposition 3.2.13. Let n ∈ Z and m ∈ Z. By (95) (with the index

m renamed as `), we have Ln =
1

2

∑̀
∈Z

: a−`an+` : . Hence,

[Ln, Lm] =

[
1

2

∑
`∈Z

: a−`an+` : , Lm

]
=

1

2

∑
`∈Z

[ : a−`an+` : , Lm]︸ ︷︷ ︸
=−[Lm, :a−`an+`: ]

= −1

2

∑
`∈Z

[Lm, : a−`an+` : ] . (102)

Now, let ` ∈ Z. Then, we obtain [Lm, : a−`an+` : ] = [Lm, a−`an+`] (more or less by
applying Remark 3.2.7 (b) to Lm, −` and n+ ` instead of x, m and n 90), so that

[Lm, : a−`an+` : ] = [Lm, a−`an+`]

= [Lm, a−`]︸ ︷︷ ︸
=−(−`)am+(−`)

(by Proposition 3.2.12
(applied to m and −` instead of n and m))

an+` + a−` [Lm, an+`]︸ ︷︷ ︸
=−(n+`)am+(n+`)

(by Proposition 3.2.12
(applied to m and n+` instead of n and m))

= − (−`)︸ ︷︷ ︸
=`

am+(−`)︸ ︷︷ ︸
=am−`

an+` + a−`
(
− (n+ `) am+(n+`)

)︸ ︷︷ ︸
=−(n+`)a−`am+n+`

= `am−`an+` − (n+ `) a−`am+n+`.

89The following proof is a slight variation of the proof given in the Kac-Raina book (where our
Proposition 3.2.13 is Proposition 2.3).

90I am saying “more or less” because this is not completely correct: We cannot apply Remark 3.2.7
(b) to Lm, −` and n+ ` instead of x, m and n (since Lm does not lie in U (A)). However, there
are two ways to get around this obstruction:

One way is to generalize Remark 3.2.7 (b) to a suitable completion of U (A). We will not do
this here.

Another way is to notice that we can replace U (A) by End (Fµ) throughout Remark 3.2.7. (This,
of course, means that an and am have to be reinterpreted as endomorphisms of Fµ rather than
elements ofA; but since the action ofA on Fµ is a Lie algebra representation, all equalities that hold
in U (A) remain valid in End (Fµ).) The proof of Remark 3.2.7 still works after this replacement
(except that [x,K] = 0 should no longer be proven using the argument K ∈ Z (A) ⊆ Z (U (A)),
but simply follows from the fact that K acts as the identity on Fµ). Now, after this replacement,
we can apply Remark 3.2.7 (b) to Lm, −` and n + ` instead of x, m and n, and we obtain
[Lm, : a−`an+` : ] = [Lm, a−`an+`].
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Since am−`an+` = : am−`an+` :−(n+ `) [` < m] δm,−n id 91 and a−`am+n+` = : a−`am+n+` :−
` [` < 0] δm,−n id 92, this equation rewrites as

[Lm, : a−`an+` : ]

= ` am−`an+`︸ ︷︷ ︸
= :am−`an+`:−(n+`)[`<m]δm,−n id

− (n+ `) a−`am+n+`︸ ︷︷ ︸
= :a−`am+n+`:−`[`<0]δm,−n id

= ` ( : am−`an+` : − (n+ `) [` < m] δm,−n id)− (n+ `) ( : a−`am+n+` : − ` [` < 0] δm,−n id)

= ` : am−`an+` : − ` (n+ `) [` < m] δm,−n id− (n+ `) : a−`am+n+` : + (n+ `) ` [` < 0] δm,−n id

= ` : am−`an+` : − (n+ `)︸ ︷︷ ︸
=(n−m)+(m+`)

: a−`am+n+` :

+ (n+ `) ` [` < 0] δm,−n id−` (n+ `) [` < m] δm,−n id︸ ︷︷ ︸
=`(n+`)([`<0]−[`<m])δm,−n id

= ` : am−`an+` : − ((n−m) + (m+ `)) : a−`am+n+` :︸ ︷︷ ︸
=(n−m) :a−`am+n+`: +(m+`) :a−`am+n+`:

+ ` (n+ `) ([` < 0]− [` < m]) δm,−n id

= ` : am−`an+` : − (n−m) : a−`am+n+` : − (m+ `) : a−`am+n+` :

+ ` (n+ `) ([` < 0]− [` < m]) δm,−n id (103)

Now forget that we fixed `. We want to use the equality (103) in order to split the
infinite sum

∑̀
∈Z

[Lm, : a−`an+` : ] on the right hand side of (102) into

∑
`∈Z

` : am−`an+` : − (n−m)
∑
`∈Z

: a−`am+n+` : −
∑
`∈Z

(m+ `) : a−`am+n+` :

+
∑
`∈Z

` (n+ `) ([` < 0]− [` < m]) δm,−n id .

91because Remark 3.2.7 (a) (applied to m− ` and n+ ` instead of m and n) yields

: am−`an+` : = am−`an+` + (n+ `) [m− ` > 0]︸ ︷︷ ︸
=[`<m]

δm−`,−(n+`)︸ ︷︷ ︸
=δm−`,−n−`=δm,−n

K︸︷︷︸
=id

(since K acts as id on Fµ)

= am−`an+` + (n+ `) [` < m] δm,−n id

92because Remark 3.2.7 (a) (applied to ` and n+m+ ` instead of m and n) yields

: a−`am+n+` : = a−`am+n+` + (m+ n+ `) [−` > 0]︸ ︷︷ ︸
=[`<0]

δ−`,−(m+n+`)︸ ︷︷ ︸
=δ−`,−m−n−`=δm,−n

K︸︷︷︸
=id

(since K acts as id on Fµ)

= a−`am+n+` + (m+ n+ `) [` < 0]︸ ︷︷ ︸
=[`<0](m+n+`)

δm,−n id

= a−`am+n+` + [` < 0] (m+ n+ `) δm,−n︸ ︷︷ ︸
=`δm,−n

(this can be easily proven by treating
the cases of m=−n and of m6=−n separately)

id

= a−`am+n+` + [` < 0] `︸ ︷︷ ︸
=`[`<0]

δm,−n id = a−`am+n+` + ` [` < 0] δm,−n id
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But before we can do this, we must check that this splitting is allowed (since infinite
sums cannot always be split: e. g., the sum

∑̀
∈Z

(1− 1) is well-defined (and has value

0), but splitting it into
∑̀
∈Z

1 −
∑̀
∈Z

1 is not allowed). Clearly, in order to check this,

it is enough to check that the four infinite sums
∑̀
∈Z
` : am−`an+` : ,

∑̀
∈Z

: a−`am+n+` : ,∑̀
∈Z

(m+ `) : a−`am+n+` : and
∑̀
∈Z
` (n+ `) ([` < 0]− [` < m]) δm,−n id converge.

Before we do this, let us formalize what we mean by “converge”: We consider the
product topology on the set (Fµ)Fµ (the set of all maps Fµ → Fµ) by viewing this set
as

∏
v∈Fµ

Fµ, where each Fµ is endowed with the discrete topology. With respect to this

topology, a net (fi)i∈I of maps fi : Fµ → Fµ converges to a map f : Fµ → Fµ if and
only if(

for every v ∈ Fµ, the net of values (fi (v))i∈I converges to f (v) ∈ Fµ
with respect to the discrete topology on Fµ

)
.

Hence, with respect to this topology, an infinite sum
∑̀
∈Z
f` of maps f` : Fµ → Fµ

converges if and only if

(for every v ∈ Fµ, all but finitely many ` ∈ Z satisfy f` (v) = 0) .

Hence, this is exactly the notion of convergence which we used in Definition 3.2.8 to
make sense of the infinite sum

∑
m∈Z

: a−man+m : .

Now, we are going to show that the infinite sums
∑̀
∈Z
` : am−`an+` : ,

∑̀
∈Z

: a−`am+n+` : ,∑̀
∈Z

(m+ `) : a−`am+n+` : and
∑̀
∈Z
` (n+ `) ([` < 0]− [` < m]) δm,−n id converge with re-

spect to this topology.
Proof of the convergence of

∑̀
∈Z

: a−`am+n+` : : For every v ∈ Fµ, all but finitely many

` ∈ Z satisfy : a−`am+n+` : v = 0 (by Lemma 3.2.10 (c), applied to m+n and ` instead
of n and m). Hence, the sum

∑̀
∈Z

: a−`am+n+` : converges.

Proof of the convergence of
∑̀
∈Z

(m+ `) : a−`am+n+` : : For every v ∈ Fµ, all but

finitely many ` ∈ Z satisfy : a−`am+n+` : v = 0 (by Lemma 3.2.10 (c), applied to m+n
and ` instead of n and m). Hence, for every v ∈ Fµ, all but finitely many ` ∈ Z satisfy
(m+ `) : a−`am+n+` : = 0. Thus, the sum

∑̀
∈Z

(m+ `) : a−`am+n+` : converges.

Proof of the convergence of
∑̀
∈Z
` : am−`an+` : : We know that the sum

∑̀
∈Z

(m+ `) : a−`am+n+` :

converges. Thus, we have∑
`∈Z

(m+ `) : a−`am+n+` : =
∑
`∈Z

(m+ (`−m))︸ ︷︷ ︸
=`

: a−(`−m)︸ ︷︷ ︸
=am−`

am+n+(`−m)︸ ︷︷ ︸
=an+`

:

(here, we substituted `−m for ` in the sum)

=
∑
`∈Z

` : am−`an+` : . (104)

Hence, the sum
∑̀
∈Z
` : am−`an+` : converges.
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Proof of the convergence of
∑̀
∈Z
` (n+ `) ([` < 0]− [` < m]) δm,−n id: It is easy to see

that:

• Every sufficiently small ` ∈ Z satisfies ` (n+ `) ([` < 0]− [` < m]) δm,−n id = 0.
93

• Every sufficiently high ` ∈ Z satisfies ` (n+ `) ([` < 0]− [` < m]) δm,−n id = 0.
94

Combining these two results, we conclude that all but finitely many ` ∈ Z satisfy
` (n+ `) ([` < 0]− [` < m]) δm,−n id = 0. The sum

∑̀
∈Z
` (n+ `) ([` < 0]− [` < m]) δm,−n id

therefore converges.
We now know that all four sums that we care about converge, and that two of them

have the same value (by (104)). Let us compute the other two of the sums:

First of all, by (95) (with the index m renamed as `), we have Ln =
1

2

∑̀
∈Z

: a−`an+` : .

Applying this to m+ n instead of n, we get

Lm+n =
1

2

∑
`∈Z

: a−`am+n+` : . (105)

This gives us the value of one of the sums we need.
Finally, let us notice that∑

`∈Z

` (n+ `) ([` < 0]− [` < m]) δm,−n id = −n
3 − n

6
δm,−n id . (106)

In fact, proving this is a completely elementary computation exercise95.

93Proof. Every sufficiently small ` ∈ Z satisfies ` < 0 and ` < m and thus

` (n+ `)

 [` < 0]︸ ︷︷ ︸
=1 (since `<0)

− [` < m]︸ ︷︷ ︸
=1 (since `<m)

 δm,−n id = ` (n+ `) (1− 1)︸ ︷︷ ︸
=0

δm,−n id = 0.

94Proof. Every sufficiently high ` ∈ Z satisfies ` ≥ 0 and ` ≥ m and thus

` (n+ `)

 [` < 0]︸ ︷︷ ︸
=0 (since `≥0)

− [` < m]︸ ︷︷ ︸
=0 (since `≥m)

 δm,−n id = ` (n+ `) (0− 0)︸ ︷︷ ︸
=0

δm,−n id = 0.

95Indeed, both sides of this equation are 0 when m 6= −n, so the only nontrivial case is the case when
m = −n. This case splits further into two subcases: m ≥ 0 and m < 0. In the first of these two

subcases, the left hand side of (106) simplifies as −
m−1∑̀

=0

` (n+ `) id; in the second, it simplifies as

−1∑
`=m

` (n+ `) id. The rest is straightforward computation.
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Now, since (103) holds for every ` ∈ Z, we have∑
`∈Z

[Lm, : a−`an+` : ]

=
∑
`∈Z

(` : am−`an+` : − (n−m) : a−`am+n+` : − (m+ `) : a−`am+n+` :

+` (n+ `) ([` < 0]− [` < m]) δm,−n id)

=
∑
`∈Z

` : am−`an+` : − (n−m)
∑
`∈Z

: a−`am+n+` :︸ ︷︷ ︸
=2Lm+n

(by (105))

−
∑
`∈Z

(m+ `) : a−`am+n+` :︸ ︷︷ ︸
=
∑̀
∈Z
` :am−`an+`:

(by (104))

+
∑
`∈Z

` (n+ `) ([` < 0]− [` < m]) δm,−n id︸ ︷︷ ︸
=−
n3 − n

6
δm,−n id

(by (106))
here, we have split the sum; this was allowed, since the infinite sums∑̀

∈Z
` : am−`an+` : ,

∑̀
∈Z

: a−`am+n+` : ,
∑̀
∈Z

(m+ `) : a−`am+n+` :

and
∑̀
∈Z
` (n+ `) ([` < 0]− [` < m]) δm,−n id converge


=
∑
`∈Z

` : am−`an+` : − (n−m) · 2Lm+n −
∑
`∈Z

` : am−`an+` : − n3 − n
6

δm,−n id

= − (n−m) · 2Lm+n −
n3 − n

6
δm,−n id .

Hence, (102) becomes

[Ln, Lm] = −1

2

∑
`∈Z

[Lm, : a−`an+` : ]︸ ︷︷ ︸
=−(n−m)·2Lm+n−

n3 − n
6

δm,−n id

= −1

2

(
− (n−m) · 2Lm+n −

n3 − n
6

δm,−n id

)
= (n−m) Lm+n︸ ︷︷ ︸

=Ln+m

−n
3 − n
12

δm,−n︸ ︷︷ ︸
=δn,−m

id = (n−m)Ln+m −
n3 − n

12
δn,−m id .

This proves Proposition 3.2.13.
We can generalize our family (Ln)n∈Z of operators on Fµ as follows (the so-called

Fairlie construction):

Theorem 3.2.15. Let µ ∈ C and λ ∈ C. We can define a linear map L̃n : Fµ → Fµ
for every n ∈ Z as follows: For n 6= 0, define the map L̃n by

L̃n =
1

2

∑
m∈Z

: a−mam+n : + iλnan
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(where i stands for the complex number
√
−1). Define the map L̃0 by

L̃0 =
µ2

2
+
λ2

2
+
∑
j>0

a−jaj.

Then, this defines an action of Vir on Fµ with c = 1 + 12λ2 (by letting Ln ∈ Vir

act as the operator L̃n, and by letting C ∈ Vir acting as (1 + 12λ2) id). Moreover,

it satisfies
[
L̃n, am

]
= −man+m + iλn2δn,−m id for all n ∈ Z and m ∈ Z.

Proving this proposition was exercise 1 in homework problem set 2. It is rather easy
now that we have proven Propositions 3.2.12 and 3.2.13 and thus left to the reader.

3.2.3. [unfinished] Unitarity properties of the Fock module

Proposition 3.2.16. Let µ ∈ R. Consider the representation Fµ of A. Let 〈·, ·〉 :
Fµ × Fµ → C be the unique Hermitian form satisfying 〈1, 1〉 = 1 and

〈av, w〉 =
〈
v, a†w

〉
for all a ∈ A, v ∈ Fµ and w ∈ Fµ (107)

(this is the usual Hermitian form on Fµ). Then, equipped with this form, Fµ is a
unitary representation of A.

Proof. We must prove that the form 〈·, ·〉 is positive definite.
Let −→n = (n1, n2, n3, ...) and −→m = (m1,m2,m3, ...) be two sequences of nonnegative

integers, each of them containing only finitely many nonzero entries. We are going
to compute the value 〈xn1

1 x
n2
2 x

n3
3 ..., x

m1
1 xm2

2 xm3
3 ...〉. This will give us the matrix that

represents the Hermitian form 〈·, ·〉 with respect to the monomial basis of Fµ.
If n1 + n2 + n3 + ... 6= m1 + m2 + m3 + ..., then this value is clearly zero, because

the Hermitian form 〈·, ·〉 is of degree 0 (as can be easily seen). Thus, we can WLOG
assume that n1 + n2 + n3 + ... = m1 +m2 +m3 + ....

Let k be a positive integer such that every i > k satisfies ni = 0 and mi = 0. (Such
a k clearly exists.) Then, n1 +n2 + ...+nk = n1 +n2 +n3 + ... and m1 +m2 + ...+mk =
m1 +m2 +m3 + .... Hence, the equality n1 + n2 + n3 + ... = m1 +m2 +m3 + ... (which
we know to hold) rewrites as n1 + n2 + ...+ nk = m1 +m2 + ...+mk. Now, since every
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i > k satisfies ni = 0 and mi = 0, we have

〈xn1
1 x

n2
2 x

n3
3 ..., x

m1
1 xm2

2 xm3
3 ...〉

=

〈
xn1

1 x
n2
2 ...x

nk
k , xm1

1 xm2
2 ...xmkk︸ ︷︷ ︸

=a
m1
−1 a

m2
−2 ...a

mk
−k 1

=(a†1)
m1(a†2)

m2 ...(a†k)
mk1

〉
=
〈
xn1

1 x
n2
2 ...x

nk
k ,
(
a†1

)m1
(
a†2

)m2

...
(
a†k

)mk
1
〉

=
〈
amkk a

mk−1

k−1 ...am1
1 xn1

1 x
n2
2 ...x

nk
k , 1

〉
(due to (107), applied several times)

=

〈(
k
∂

∂xk

)mk (
(k − 1)

∂

∂xk−1

)mk−1

...

(
1
∂

∂x1

)m1

xn1
1 x

n2
2 ...x

nk
k︸ ︷︷ ︸

this is a constant polynomial,
since n1+n2+...+nk=m1+m2+...+mk

, 1

〉

=

(
k
∂

∂xk

)mk (
(k − 1)

∂

∂xk−1

)mk−1

...

(
1
∂

∂x1

)m1

xn1
1 x

n2
2 ...x

nk
k

=
k∏
j=1

jmj ·
(

∂

∂xk

)mk ( ∂

∂xk−1

)mk−1

...

(
∂

∂x1

)m1

xn1
1 x

n2
2 ...x

nk
k︸ ︷︷ ︸

=δ−→n ,−→m ·
k∏
j=1

mj !

(since n1+n2+...+nk=m1+m2+...+mk)

= δ−→n ,−→m ·
k∏
j=1

jmj
k∏
j=1

mj!.

This term is 0 when −→n 6= −→m, and a positive integer when −→n = −→m. Thus, the matrix
which represents the form 〈·, ·〉 with respect to the monomial basis of Fµ is diagonal
with positive diagonal entries. This form is therefore positive definite. Proposition
3.2.16 is proven.

Corollary 3.2.17. If µ, λ ∈ R, then the Vir-representation on Fµ given by L̃n is
unitary.

Proof. For n 6= 0, we have

L̃†n =
1

2

∑
m∈Z

: a−man+m : † + (iλnan)†

=
1

2

∑
m∈Z

: ama−n−m : − iλna−n = L̃−n.

Corollary 3.2.18. The Vir-representation Fµ is completely reducible for µ ∈ R.

Now, L01 =
µ2 + λ2

2
1 and C1 = (1 + 12λ2) 1. Thus, the Verma module Mh,c := M+

h,c

of the Virasoro algebra Vir for h =
µ2 + λ2

2
and c = 1+12λ2 maps to Fµ with vh,c 7→ 1.

Proposition 3.2.19. For Weil generic µ and λ, this is an isomorphism.

Proof. The dimension of the degree-n part of both modules is p (n). The map has
degree 0. Hence, if it is injective, it is surjective. But for Weil generic µ and λ, the
Vir-module Mh,c is irreducible, so the map is injective.
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Corollary 3.2.20. For Weil generic µ and λ in R, the representation
Mµ2 + λ2

2
,1+12λ2

is unitary.

For any µ and λ in R, the representation Lµ2 + λ2

2
,1+12λ2

is unitary.

In other words, Lh,c is unitary if c ≥ 1 and h ≥ c− 1

24
.

3.3. Power series and quantum fields

In this section, we are going to study different kinds of power series: polynomials, formal
power series, Laurent polynomials, Laurent series and, finally, a notion of “formal
power series” which can be infinite “in both directions”. Each of these kinds of power
series will later be used in our work; it is important to know the properties and the
shortcomings of each of them.

3.3.1. Definitions

Parts of the following definition should sound familiar to the reader (indeed, we have
already been working with polynomials, formal power series and Laurent polynomials),
although maybe not in this generality.

Definition 3.3.1. For every vector space B and symbol z, we make the following
definitions:

(a) We denote by B [z] the vector space of all sequences (bn)n∈N ∈ BN such that
only finitely many n ∈ N satisfy bn 6= 0. Such a sequence (bn)n∈N is denoted by∑
n∈N

bnz
n. The elements of B [z] are called polynomials in the indeterminate z over

B (even when B is not a ring).
(b) We denote by B [[z]] the vector space of all sequences (bn)n∈N ∈ BN. Such a

sequence (bn)n∈N is denoted by
∑
n∈N

bnz
n. The elements of B [[z]] are called formal

power series in the indeterminate z over B (even when B is not a ring).
(c) We denote by B [z, z−1] the vector space of all two-sided sequences (bn)n∈Z ∈

BZ such that only finitely many n ∈ Z satisfy bn 6= 0. (A two-sided sequence means a
sequence indexed by integers, not just nonnegative integers.) Such a sequence (bn)n∈Z
is denoted by

∑
n∈Z

bnz
n. The elements of B [z, z−1] are called Laurent polynomials in

the indeterminate z over B (even when B is not a ring).
(d) We denote by B ((z)) the vector space of all two-sided sequences (bn)n∈Z ∈ BZ

such that only finitely many among the negative n ∈ Z satisfy bn 6= 0. (A two-sided
sequence means a sequence indexed by integers, not just nonnegative integers.) Such
a sequence (bn)n∈Z is denoted by

∑
n∈Z

bnz
n. Sometimes, B ((z)) is also denoted by

B [[z, z−1 ]. The elements of B ((z)) are called formal Laurent series in the indeter-
minate z over B (even when B is not a ring).

(e) We denote by B [[z, z−1]] the vector space of all two-sided sequences (bn)n∈Z ∈
BZ. Such a sequence (bn)n∈Z is denoted by

∑
n∈Z

bnz
n.
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All five of these spaces B [z], B [[z]], B [z, z−1], B ((z)) and B [[z, z−1]] are C [z]-
modules. (Here, the C [z]-module structure on B [[z, z−1]] is given by(∑

n∈N

cnz
n

)
·

(∑
n∈Z

bnz
n

)
=
∑
n∈Z

(∑
m∈N

cm · bn−m

)
zn (108)

for all
∑
n∈Z

bnz
n ∈ B [[z, z−1]] and

∑
n∈N

cnz
n ∈ C [z], and the C [z]-module structures on

the other four spaces are defined similarly.) Besides, B [[z]] and B ((z)) are C [[z]]-
modules (defined in a similar way to (108)). Also, B ((z)) is a C ((z))-module (in
a similar way). Besides, B [z, z−1], B ((z)) and B [[z, z−1]] are C [z, z−1]-modules
(defined analogously to (108)).

Of course, if B is a C-algebra, then the above-defined spaces B [z], B [z, z−1], B [[z]]
and B ((z)) are C-algebras themselves (with the multiplication defined similarly to
(108)), and in fact B [z] is the algebra of polynomials in the variable z over B, and
B [z, z−1] is the algebra of Laurent polynomials in the variable z over B, and B [[z]]
is the algebra of formal power series in the variable z over B.

It should be noticed that B [z] ∼= B ⊗C [z] and B [z, z−1] ∼= B ⊗C [z, z−1] canon-
ically, but such isomorphisms do not hold for B [[z]], B ((z)) and B [[z, z−1]] unless
B is finite-dimensional.

We regard the obvious injections B [z] → B [z, z−1], B [z−1] → B [z, z−1] (this
is the map sending z−1 ∈ B [z−1] to z−1 ∈ B [z, z−1]), B [z] → B [[z]], B [z−1] →
B [[z−1]], B [[z]]→ B ((z)), B [[z−1]]→ B ((z−1)), B [z, z−1]→ B ((z)), B [z, z−1]→
B ((z−1)), B ((z))→ B [[z, z−1]] and B ((z−1))→ B [[z, z−1]] as inclusions.

Clearly, all five spaces B [z], B [[z]], B [z, z−1], B ((z)) and B [[z, z−1]] depend
functorially on B.

Before we do anything further with these notions, let us give three warnings:
1) Given Definition 3.3.1, one might expect B [[z, z−1]] to canonically become a

C [[z, z−1]]-algebra. But this is not true even for B = C (because there is no reasonable
way to define a product of two elements of C [[z, z−1]] 96). This also answers why
B [[z, z−1]] does not become a ring when B is a C-algebra. Nor is B [[z, z−1]], in general,
a B [[z]]-module.

2) The C [z, z−1]-module B [[z, z−1]] usually has torsion. For example, (1− z) ·∑
n∈Z

zn = 0 in C [[z, z−1]] despite
∑
n∈Z

zn 6= 0. As a consequence, working in B [[z, z−1]]

requires extra care.
3) Despite the suggestive notation B ((z)), it is of course not true that B ((z)) is a

field whenever B is a commutative ring. However, B ((z)) is a field whenever B is a
field.

Convention 3.3.2. Let B be a vector space, and z a symbol. By analogy with the
notations B [z], B [[z]] and B ((z)) introduced in Definition 3.3.1, we will occasionally

96If we would try the natural way, we would get nonsense results. For instance, if we tried to compute

the coefficient of

(∑
n∈Z

1zn
)
·
(∑
n∈Z

1zn
)

before z0, we would get
∑

(n,m)∈Z2;
n+m=0

1 · 1, which is not a

convergent series.
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also use the notations B [z−1], B [[z−1]] and B ((z−1)). For example, B [z−1] will
mean the vector space of all “reverse sequences” (bn)n∈−N such that only finitely
many n ∈ −N satisfy bn 6= 0 97. Of course, B [z] ∼= B [z−1] as vector spaces, but
B [z] and B [z−1] are two different subspaces of B [z, z−1], so it is useful to distinguish
between B [z] and B [z−1].

Now, let us extend Definition 3.3.1 to several variables. The reader is advised to
only skim through the following definition, as there is nothing unexpected in it:

Definition 3.3.3. Let m ∈ N. Let z1, z2, ..., zm be m symbols. For every vector
space B, we make the following definitions:

(a) We denote by B [z1, z2, ..., zm] the vector space of all families(
b(n1,n2,...,nm)

)
(n1,n2,...,nm)∈Nm ∈ B

Nm such that only finitely many (n1, n2, ..., nm) ∈ Nm

satisfy b(n1,n2,...,nm) 6= 0. Such a family
(
b(n1,n2,...,nm)

)
(n1,n2,...,nm)∈Nm is denoted by∑

(n1,n2,...,nm)∈Nm
b(n1,n2,...,nm)z

n1
1 zn2

2 ...znmm . The elements of B [z1, z2, ..., zm] are called

polynomials in the indeterminates z1, z2, ..., zm over B (even when B is not a ring).
(b) We denote by B [[z1, z2, ..., zm]] the vector space of all families(
b(n1,n2,...,nm)

)
(n1,n2,...,nm)∈Nm ∈ BN

m
. Such a family

(
b(n1,n2,...,nm)

)
(n1,n2,...,nm)∈Nm is

denoted by
∑

(n1,n2,...,nm)∈Nm
b(n1,n2,...,nm)z

n1
1 zn2

2 ...znmm . The elements of B [[z1, z2, ..., zm]]

are called formal power series in the indeterminates z1, z2, ..., zm over B (even when
B is not a ring).

(c) We denote by B
[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]
the vector space of all families(

b(n1,n2,...,nm)

)
(n1,n2,...,nm)∈Zm ∈ B

Zm such that only finitely many (n1, n2, ..., nm) ∈ Zm

satisfy b(n1,n2,...,nm) 6= 0. Such a family
(
b(n1,n2,...,nm)

)
(n1,n2,...,nm)∈Zm is denoted by∑

(n1,n2,...,nm)∈Zm
b(n1,n2,...,nm)z

n1
1 zn2

2 ...znmm . The elements of B
[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]
are called Laurent polynomials in the indeterminates z1, z2, ..., zm over B (even when
B is not a ring).

(d) We denote by B ((z1, z2, ..., zm)) the vector space of all families(
b(n1,n2,...,nm)

)
(n1,n2,...,nm)∈Zm ∈ B

Zm for which there exists an N ∈ Z such that every

(n1, n2, ..., nm) ∈ Zm \{N,N + 1, N + 2, . . .}m satisfies b(n1,n2,...,nm) = 0. Such a fam-
ily
(
b(n1,n2,...,nm)

)
(n1,n2,...,nm)∈Zm is denoted by

∑
(n1,n2,...,nm)∈Zm

b(n1,n2,...,nm)z
n1
1 zn2

2 ...znmm .

The elements of B ((z1, z2, ..., zm)) are called formal Laurent series in the indetermi-
nates z1, z2, ..., zm over B (even when B is not a ring).

(e) We denote by B
[[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]]
the vector space of all families(

b(n1,n2,...,nm)

)
(n1,n2,...,nm)∈Zm ∈ BZ

m
. Such a family

(
b(n1,n2,...,nm)

)
(n1,n2,...,nm)∈Zm is

denoted by
∑

(n1,n2,...,nm)∈Zm
b(n1,n2,...,nm)z

n1
1 zn2

2 ...znmm .

All five of these spaces B [z1, z2, ..., zm], B [[z1, z2, ..., zm]],
B
[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]
, B ((z1, z2, ..., zm)) and B

[[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]]
are C [z1, z2, ..., zm]-modules. (Here, the C [z1, z2, ..., zm]-module structure on

97Here, −N denotes the set {0,−1,−2,−3, ...}, and a “reverse sequence” is a family indexed by
elements of −N.
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B
[[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]]
is given by ∑

(n1,n2,...,nm)∈Nm
c(n1,n2,...,nm)z

n1
1 zn2

2 ...znmm

 ·
 ∑

(n1,n2,...,nm)∈Zm
b(n1,n2,...,nm)z

n1
1 zn2

2 ...znmm


=

∑
(n1,n2,...,nm)∈Zm

 ∑
(m1,m2,...,mm)∈Nm

c(m1,m2,...,mm) · b(n1−m1,n2−m2,...,nm−mm)

 zn1
1 zn2

2 ...znmm

(109)

for all
∑

(n1,n2,...,nm)∈Zm
b(n1,n2,...,nm)z

n1
1 zn2

2 ...znmm ∈ B
[[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]]
and∑

(n1,n2,...,nm)∈Nm
c(n1,n2,...,nm)z

n1
1 zn2

2 ...znmm ∈ C [z1, z2, ..., zm], and the C [z1, z2, ..., zm]-

module structures on the other four spaces are defined similarly.) Besides,
B [[z1, z2, ..., zm]] and B ((z1, z2, ..., zm)) are C [[z1, z2, ..., zm]]-modules (defined in a
similar fashion to (109)). Also, B ((z1, z2, ..., zm)) is a C ((z1, z2, ..., zm))-module (de-
fined in analogy to (109)). Besides, B

[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]
, B ((z1, z2, ..., zm))

and B
[[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]]
are C

[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]
-modules (in a

similar way).
Of course, if B is a C-algebra, then the above-defined spaces B [z1, z2, ..., zm],

B
[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]
, B [[z1, z2, ..., zm]] andB ((z1, z2, ..., zm)) are C-algebras

themselves (with multiplication defined by a formula analogous to (109) again), and
in fact B [z1, z2, ..., zm] is the algebra of polynomials in the variables z1, z2, ..., zm over
B, and B

[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]
is the algebra of Laurent polynomials in the

variables z1, z2, ..., zm over B, and B [[z1, z2, ..., zm]] is the algebra of formal power
series in the variables z1, z2, ..., zm over B.

It should be noticed that B [z1, z2, ..., zm] ∼= B ⊗ C [z1, z2, ..., zm] and
B
[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

] ∼= B ⊗ C
[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]
canonically,

but such isomorphisms do not hold for B [[z1, z2, ..., zm]], B ((z1, z2, ..., zm)) and
B
[[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]]
unless B is finite-dimensional or m = 0.

There are several obvious injections (analogous to the ones listed in Definition
3.3.1) which we regard as inclusions. For example, one of these is the injection
B [z1, z2, ..., zm]→ B [[z1, z2, ..., zm]]; we won’t list the others here.

Clearly, all five spaces B [z1, z2, ..., zm], B [[z1, z2, ..., zm]],
B
[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]
, B ((z1, z2, ..., zm)) and B

[[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]]
depend functorially on B.

Clearly, when m = 1, Definition 3.3.3 is equivalent to Definition 3.3.1.
Definition 3.3.3 can be extended to infinitely many indeterminates; this is left to the

reader.
Our definition of B ((z1, z2, ..., zm)) is rather intricate. The reader might gain a better

understanding from the following equivalent definition: The set B ((z1, z2, ..., zm)) is the
subset ofB

[[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]]
consisting of those p ∈ B

[[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]]
for which there exists an (a1, a2, . . . , am) ∈ Zm such that za1

1 z
a2
2 ...z

am
m ·p ∈ B [[z1, z2, ..., zm]].

It is easy to show that B ((z1, z2, ..., zm)) is isomorphic to the localization of the ring
B [[z1, z2, ..., zm]] at the multiplicatively closed subset consisting of all monomials.

The reader should be warned that if B is a field, m is an integer > 1, and z1, z2,
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..., zm are m symbols, then the ring B ((z1, z2, ..., zm)) is not a field (unlike in the case
m = 1); for example, it does not contain an inverse to z1 − z2. This is potentially
confusing and I would not be surprised if some texts define B ((z1, z2, ..., zm)) to mean
a different ring which actually is a field.

When B is a vector space and z is a symbol, there is an operator we can define on
each of the five spaces B [z], B [[z]], B [z, z−1], B ((z)) and B [[z, z−1]]: derivation with
respect to z:

Definition 3.3.4. For every vector space B and symbol z, we make the following
definitions:

Define a linear map
d

dz
: B [z]→ B [z] by the formula

d

dz

(∑
n∈N

bnz
n

)
=
∑
n∈N

(n+ 1) bn+1z
n (110)

for every
∑
n∈N

bnz
n ∈ B [z] .

Define a linear map
d

dz
: B [[z]]→ B [[z]] by the very same formula, and define linear

maps
d

dz
: B [z, z−1] → B [z, z−1],

d

dz
: B ((z)) → B ((z)) and

d

dz
: B [[z, z−1]] →

B [[z, z−1]] by analogous formulas (more precisely, by formulas which differ from
(110) only in that the sums range over Z instead of over N).

For every f ∈ B [[z, z−1]], the image
d

dz
f of f under the linear map

d

dz
will be

denoted by
df

dz
or by f ′ and called the z-derivative of f (or, briefly, the derivative of

f). The operator
d

dz
itself (on any of the five vector spaces B [z], B [[z]], B [z, z−1],

B ((z)) and B [[z, z−1]]) will be called the differentiation with respect to z.

An analogous definition can be made for several variables:

Definition 3.3.5. Let m ∈ N. Let z1, z2, ..., zm be m symbols. Let i ∈ {1, 2, ...,m}.
For every vector space B, we make the following definitions:

Define a linear map
∂

∂zi
: B [z1, z2, ..., zm]→ B [z1, z2, ..., zm] by the formula

∂

∂zi

 ∑
(n1,n2,...,nm)∈Nm

b(n1,n2,...,nm)z
n1
1 zn2

2 ...znmm


=

∑
(n1,n2,...,nm)∈Nm

(ni + 1) b(n1,n2,...,ni−1,ni+1,ni+1,ni+2,...,nm)z
n1
1 zn2

2 ...znmm (111)

for every
∑

(n1,n2,...,nm)∈Nm
b(n1,n2,...,nm)z

n1
1 zn2

2 ...znmm ∈ B [z1, z2, ..., zm] .

Define a linear map
∂

∂zi
: B [[z1, z2, ..., zm]] → B [[z1, z2, ..., zm]] by the very

same formula, and define linear maps
∂

∂zi
: B

[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]
→
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B
[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]
,

∂

∂zi
: B ((z1, z2, ..., zm)) → B ((z1, z2, ..., zm)) and

∂

∂zi
: B

[[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]]
→ B

[[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]]
by analo-

gous formulas (more precisely, by formulas which differ from (111) only in that the
sums range over Zm instead of over Nm).

For every f ∈ B
[[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]]
, the image

∂

∂zi
f of f under the

linear map
∂

∂zi
will be denoted by

∂f

∂zi
and called the zi-derivative of f (or the

partial derivative of f with respect to zi). The operator
∂

∂zi
itself (on any of the

five vector spaces B [z1, z2, ..., zm], B [[z1, z2, ..., zm]], B
[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]
,

B ((z1, z2, ..., zm)) and B
[[
z1, z

−1
1 , z2, z

−1
2 , ..., zm, z

−1
m

]]
) will be called the differenti-

ation with respect to zi.

Again, it is straightforward (and left to the reader) to extend this definition to
infinitely many indeterminates.

3.3.2. Quantum fields

Formal power series which are infinite “in both directions” might seem like a perverse
and artificial notion; their failure to form a ring certainly does not suggest them to be
useful. Nevertheless, they prove very suitable when studying infinite-dimensional Lie
algebras. Let us explain how.

For us, when we study Lie algebras, we are mainly concerned with their elements,
usually basis elements (e. g., the an in A). For physicists, instead, certain generating
functions built of these objects are objects of primary concern, since they are closer to
what they observe. They are called quantum fields.

Now, what are quantum fields?
For example, in A, let us set a (z) =

∑
n∈Z

anz
−n−1, where z is a formal variable.

This sum
∑
n∈Z

anz
−n−1 is a formal sum which is infinite in both directions, so it is

not an element of any of the rings U (A) [[z]] or U (A) ((z)), but only an element of
U (A) [[z, z−1]].

As we said, the vector space U (A) [[z, z−1]] is not a ring (even though U (A) is a
C-algebra), so we cannot multiply two “sums” like a (z) in general. However, in the
following, we are going to learn about several things that we can do with such “sums”.
One first thing that we notice about our concrete “sum” a (z) =

∑
n∈Z

anz
−n−1 is that if we

apply a (z) to some vector v in Fµ (by evaluating the term (a (z)) v componentwise98),
then we get a sum

∑
n∈Z

z−n−1anv which evaluates to an element of Fµ ((z)) (because

every sufficiently large n ∈ Z satisfies z−n−1 anv︸︷︷︸
=0

= 0). As a consequence, a (z) “acts”

98By “evaluating” a term like (a (z)) v at a vector v “componentwise”, we mean evaluating∑
n∈Z

(
anz
−n−1

)
(v). Here, the variable z is decreed to commute with everything else, so that(

anz
−n−1

)
(v) means z−n−1anv.
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on Fµ. I am saying “acts” in quotation marks, since this “action” is not a map Fµ → Fµ
but a map Fµ → Fµ ((z)), and since a (z) does not lie in a ring (as I said, U (A) [[z, z−1]]
is not a ring).

Physicists call a (z) a quantum field (more precisely, a free bosonic field).
While we cannot take the square (a (z))2 of our “sum” a (z) (since U (A) [[z, z−1]] is

not a ring), we can multiply two sums “with different variables”; e. g., we can multiply
a (z) and a (w), where z and w are two distinct formal variables. The product a (z) a (w)
is defined as the formal sum

∑
(n,m)∈Z2

anamz
−n−1w−m−1 ∈ U (A) [[z, z−1]] [[w,w−1]]. Note

that elements of U (A) [[z, z−1]] [[w,w−1]] are two-sided sequences of two-sided sequences
of elements of U (A); of course, we can interpret them as maps Z2 → U (A).

It is easy to see that [a (z) , a (w)] =
∑
n∈Z

nz−n−1wn−1. This identity, in the first place,

holds on the level of formal sums (where
∑
n∈Z

nz−n−1wn−1 is a shorthand notation for a

particular sequence of sequences: namely, the one whose j-th element is the sequence
whose i-th element is δi+j+2,0 (j + 1)), but if we evaluate it on an element v of Fµ,
then we get an identity [a (z) , a (w)] v =

∑
n∈Z

nz−n−1wn−1v which holds in the space

Fµ ((z)) ((w)).
We can obtain the “series” [a (z) , a (w)] =

∑
n∈Z

nz−n−1wn−1 by differentiating a more

basic “series”:
δ (w − z) :=

∑
n∈Z

z−n−1wn.

This, again, is a formal series infinite in both directions. Why do we call it δ (w − z) ?
Because in analysis, the delta-“function” (actually a distribution) satisfies the formula∫
δ (x− y) f (y) dy = f (x) for every function f , whereas our series δ (w − z) satisfies

a remarkably similar property99. And now, [a (z) , a (w)] =
∑
n∈Z

nz−n−1wn−1 becomes

[a (z) , a (w)] = ∂wδ (w − z) =: δ′ (w − z).
Something more interesting comes out for the Witt algebra: Set T (z) =

∑
n∈Z

Lnz
−n−2

99Namely, if we define the “formal residue”
1

2πi

∮
|z|=1

q (z) dz of an element q (z) ∈ B ((z)) (for B being

some vector space) to be the coefficient of q (z) before z−1, then every f =
∑
n∈Z

fnz
n (with fn ∈ B)

satisfies
1

2πi

∮
|z|=1

z−n−1f (z) dz = fn, and thus
1

2πi

∮
|z|=1

δ (w − z) f (z) dz = f (w).

179



in the Witt algebra. Then, we have

[T (z) , T (w)]

=
∑

(n,m)∈Z2

(n−m)Ln+mz
−n−2w−m−2 =

∑
(k,m)∈Z2

Lk (k − 2m)︸ ︷︷ ︸
=(k+2)+2(−m−1)

zm−k−2w−m−2

=

(∑
k∈Z

Lk (k + 2) z−k−3

)
︸ ︷︷ ︸

=−T ′(z)

(∑
m∈Z

zm+1w−m−2

)
︸ ︷︷ ︸

=δ(w−z)

+ 2

(∑
k∈Z

Lkz
−k−2

)
︸ ︷︷ ︸

=T (z)

(∑
m∈Z

(−m− 1) zmw−m−2

)
︸ ︷︷ ︸

=δ′(w−z)

= −T ′ (z) δ (w − z) + 2T (z) δ′ (w − z) .

Note that this formula uniquely determines the Lie bracket of the Witt algebra. This
is how physicists would define the Witt algebra.

Now, let us set T (z) =
∑
n∈Z

Lnz
−n−2 in the Virasoro algebra. (This power se-

ries T looks exactly like the one before, but note that the Ln now mean elements
of the Virasoro algebra rather than the Witt algebra.) Then, our previous computa-

tion of [T (z) , T (w)] must be modified by adding a term of
∑
n∈Z

n3 − n
12

Cz−n−2wn−2 =

C

12
δ′′′ (w − z). So we get

[T (z) , T (w)] = −T ′ (z) δ (w − z) + 2T (z) δ′ (w − z) +
C

12
δ′′′ (w − z) .

Exercise: Check that, if we interpret Ln and am as the actions of Ln ∈ Vir and
am ∈ A on the VirnA-module Fµ, then the following identity between maps Fµ →
Fµ ((z)) ((w)) holds:

[T (z) , a (w)] = a (z) δ′ (w − z) .

Recall

: aman : =

{
aman, if m ≤ n;
anam, if m > n

.

So we can reasonably define the “normal ordered” product : a (z) a (w) : to be∑
(n,m)∈Z2

: anam : z−n−1w−m−1 ∈ U (A)
[[
z, z−1

]] [[
w,w−1

]]
.

This definition of : a (z) a (w) : is equivalent to the definition given in Problem 2 of
Problem Set 3.

That : a (z) a (w) : is well-defined is not a surprise: the variables z and w are distinct,
so there are no terms to collect in the sum

∑
(n,m)∈Z2

: anam : z−n−1w−m−1, and thus there

is no danger of obtaining an infinite sum which makes no sense (like what we would
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get if we would try to define a (z)2). 100 But it is more interesting that (although
we cannot define a (z)2) we can define a “normal ordered” square : a (z)2 : (or, what
is the same, : a (z) a (z) :), although it will not be an element of U (A) [[z, z−1]] but
rather of a suitable completion. We are not going to do elaborate on how to choose this
completion here; but for us it will be enough to notice that, if we reinterpret the an as
endomorphisms of Fµ (using the action of A on Fµ) rather than elements of U (A), then
the “normal ordered” square : a (z)2 : is a well-defined element of (EndFµ) [[z, z−1]].
Namely:

: a (z)2 :

=
∑

(n,m)∈Z2

: anam : z−n−1z−m−1 =
∑
k∈Z

 ∑
(n,m)∈Z2;
n+m=k

: anam :

 z−k−2


this is how power series are always multiplied; but we don’t yet

know that the sum
∑

(n,m)∈Z2;
n+m=k

: anam : makes sense for all k

(although we will see in a few lines that it does)


=
∑
k∈Z

(∑
m∈Z

: amak−m :

)
z−k−2 (here, we substituted (m, k −m) for (n,m))

=
∑
n∈Z

(∑
m∈Z

: a−man+m :

)
z−n−2

(
here, we substituted k by n in the first sum,

and we substituted m by −m in the second sum

)
,

and the sums
∑
m∈Z

: a−man+m : are well-defined for all n ∈ Z (by Lemma 3.2.10 (c)).

We can simplify this result if we also reinterpret the Ln ∈ Vir as endomorphisms of Fµ
(using the action of Vir on Fµ that was introduced in Proposition 3.2.13) rather than
elements of U (Vir). In fact, the “series” T (z) =

∑
n∈Z

Lnz
−n−2 then becomes

T (z) =
∑
n∈Z

Lnz
−n−2 =

∑
n∈Z

1

2

(∑
m∈Z

: a−man+m :

)
z−n−2 (by (95))

=
1

2

∑
n∈Z

(∑
m∈Z

: a−man+m :

)
z−n−2

︸ ︷︷ ︸
= :a(z)2:

=
1

2
: a (z)2 : .

Remark 3.3.6. In Definition 3.2.4, we have defined the normal ordered product
: aman : in the universal enveloping algebra of the Heisenberg algebra. This is not
the only situation in which we can define a normal ordered product, but in other
situations the definition can happen to be different. For example, in Proposition
3.4.4, we will define a normal ordered product (on a different algebra) which will
not be commutative, and not even “super-commutative”. There is no general rule
to define normal ordered products; it is done on a case-by-case basis.

100For the same reason, the product a (z) a (w) (without normal ordering) is well-defined.
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However, the definition of the normal ordered product of two quantum fields
given in Problem 2 of Problem Set 3 is general, i. e., it is defined not only for
quantum fields over U (A).

Exercise 1. For any β ∈ C, the formula T (z) =
1

2
: a (z)2 : + βa′ (z) defines a

representation of Vir on Fµ with c = 1− 12β2.
Exercise 2. For any β ∈ C, there is a homomorphism ϕβ : Vir → VirnA (a

splitting of the projection VirnA → Vir) given by

ϕβ (Ln) = Ln + βan, n 6= 0;

ϕβ (L0) = L0 + βa0 +
β2

2
K,

ϕβ (C) = C.

Exercise 3. If we twist the action of Exercise 1 by this map, we recover the action
of problem 1 of Homework 2 for β = iλ.

3.3.3. Recognizing exponential series

Here is a simple property of power series (actually, an algebraic analogue of the well-
known fact from analysis that the solutions of the differential equation f ′ = αf are
scalar multiples of the function x 7→ exp (αx)):

Proposition 3.3.7. Let R be a commutative Q-algebra. Let U be an R-module.
Let (α1, α2, α3, ...) be a sequence of elements of R. Let P ∈ U [[x1, x2, x3, ...]] is
a formal power series with coefficients in U (where x1, x2, x3, ... are symbols) such

that every i > 0 satisfies
∂P

∂xi
= αiP . Then, there exists some f ∈ U such that

P = f · exp

(∑
j>0

xjαj

)
.

The proof of Proposition 3.3.7 is easy (just let f be the constant term of the power
series P , and prove by induction that every monomial of P equals the corresponding

monomial of f · exp

(∑
j>0

xjαj

)
).

3.3.4. Homogeneous maps and equigraded series

The discussion we will be doing now is only vaguely related to power series (let alone
quantum fields); it is meant as a preparation for a later proof (namely, that of Theorem
3.11.2), where it will provide “convergence” assertions (in a certain sense).

A well-known nuisance in the theory of Z-graded vector spaces is the fact that the
endomorphism ring of a Z-graded vector space is not (in general) Z-graded. It does,
however, contain a Z-graded subring, which we will introduce now:
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Definition 3.3.8. (a) Let V and W be two Z-graded vector spaces, with gradings
(V [n])n∈Z and (W [n])n∈Z, respectively. Let f : V → W be a linear map. Let m ∈ Z.
Then, f is said to be a homogeneous linear map of degree m if every n ∈ Z satisfies
f (V [n]) ⊆ W [n+m].

(It is important not to confuse this notion of “homogeneous linear maps of de-
gree m” with the notion of “homogeneous polynomial maps of degree n” defined
in Definition 2.6.16 (a); the former of these notions is not a particular case of the
latter.)

Note that the homogeneous linear maps of degree 0 are exactly the graded linear
maps.

(b) Let V and W be two Z-graded vector spaces. For every m ∈ Z, let
Homhg=m (V,W ) denote the vector space of all homogeneous linear maps V → W of
degree m. This Homhg=m (V,W ) is a vector subspace of Hom (V,W ) for every m ∈ Z.
Moreover,

⊕
m∈Z

Homhg=m (V,W ) is a well-defined internal direct sum, and will be de-

noted by Homhg (V,W ). This Homhg (V,W ) is a vector subspace of Hom (V,W ),
and is canonically a Z-graded vector space, with its m-th graded component being
Homhg=m (V,W ).

(c) Let V be a Z-graded vector space. Then, let Endhg V denote the Z-graded
vector subspace Homhg (V, V ) of Hom (V, V ) = EndV . Then, Endhg V is a subalge-
bra of EndV , and a Z-graded algebra. Moreover, the canonical action of Endhg V
on V (obtained by restricting the action of EndV on V to Endhg V ) makes V into
a Z-graded Endhg V -module.

We next need a relatively simple notion for a special kind of power series. I (Darij)
call them “equigraded power series”, though noone else seems to use this nomenclature.

Definition 3.3.9. Let B be a Z-graded vector space, and z a symbol. An element∑
n∈Z

bnz
n of B [[z, z−1]] (with bn ∈ B for every n ∈ Z) is said to be equigraded if every

n ∈ Z satisfies bn ∈ B [n] (where (B [m])m∈Z denotes the grading on B). Since B [[z]]
and B ((z)) are vector subspaces of B [[z, z−1]], it clearly makes sense to speak of
equigraded elements of B [[z]] or of B ((z)). We will denote by B [[z, z−1]]equi the set

of all equigraded elements of B [[z, z−1]]. It is easy to see that B [[z, z−1]]equi is a

vector subspace of B [[z, z−1]].

Elementary properties of equigraded elements are:

Proposition 3.3.10. (a) Let B be a Z-graded vector space, and z a symbol. Then,

{f ∈ B [z] | f is equigraded} ,
{
f ∈ B

[
z, z−1

]
| f is equigraded

}
,

{f ∈ B [[z]] | f is equigraded} , {f ∈ B ((z)) | f is equigraded} ,{
f ∈ B

[[
z, z−1

]]
| f is equigraded

}
= B

[[
z, z−1

]]
equi

are vector spaces.
(b) Let B be a Z-graded algebra. Then, {f ∈ B [[z]] | f is equigraded} is a

subalgebra of B [[z]] and closed with respect to the usual topology on B [[z]].
(c) Let B be a Z-graded algebra. If f ∈ B [[z]] is an equigraded power series and

invertible in the ring B [[z]], then f−1 also is an equigraded power series.
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We will only use parts (a) and (b) of this proposition, and these are completely
straightforward to prove. (Part (c) is less straightforward but still an easy exercise.)

Equigradedness of power series sometimes makes their actions on modules more
manageable. Here is an example:

Proposition 3.3.11. Let A be a Z-graded algebra, and let M be a Z-graded A-
module. Assume that M is concentrated in nonnegative degrees. Let u be a symbol.

(a) It is clear that for any f ∈ A [[u, u−1]] and any x ∈M [u, u−1], the product fx
is a well-defined element of M [[u, u−1]].

(b) For any equigraded f ∈ A [[u, u−1]] and any x ∈M [u, u−1], the product fx
is a well-defined element of M ((u)) (and not only of M [[u, u−1]]).

(c) For any equigraded f ∈ A [[u−1]] and any x ∈ M [u−1], the product fx is a
well-defined element of M [u−1] (and not only of M [[u−1]]).

The proof of this proposition is quick and straightforward. (The only idea is that
for any fixed x ∈ M [u, u−1], any sufficiently low-degree element of A annihilates x
due to the “concentrated in nonnegative degrees” assumption, but sufficiently low-
degree monomials in f come with sufficiently low-degree coefficients due to f being
equigraded.)

3.4. [unfinished] More on unitary representations

Let us consider the Verma modules of the Virasoro algebra.
Last time: Lµ2 + λ2

2
,1+12λ2

is unitary (for λ, µ ∈ R), so the Vir-module Lh,c is

unitary if c ≥ 1 and h ≥ c− 1

24
.

We can extend this as follows: L⊗m−1
0,1 ⊗Lh,c is unitary and has a highest-weight vector

v⊗m−1
0,1 ⊗ vh,c which has weight (h, c+m− 1). Hence, the representation Lh,c+m−1 is

unitary [why? use irreducibility of unitary modules and stuff].

Hence, Lh,c is unitary if c ≥ m and h ≥ c−m
24

.

Theorem 3.4.1. In fact, Lh,c is unitary if c ≥ 1 and h ≥ 0.

But this is harder to show.
This is still not an only-if. For example, L0,0 is unitary (and 1-dimensional).

Proposition 3.4.2. If Lh,c is unitary, then h ≥ 0 and c ≥ 0.

Proof of Proposition 3.4.2. Assume that Lh,c is unitary. Then, (L−nvh,c, L−nvh,c) ≥ 0
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for every n ∈ Z. But every positive n ∈ Z satisfies

(L−nvh,c, L−nvh,c) =

 LnL−n︸ ︷︷ ︸
=[Ln,L−n]+L−nLn

vh,c, vh,c

 =

([Ln, L−n] + L−nLn) vh,c︸ ︷︷ ︸
=[Ln,L−n]vh,c

(since L−nLnvh,c=0)

, vh,c



=

 [Ln, L−n]︸ ︷︷ ︸
=2nL0+

n3 − n
12

C

vh,c, vh,c

 = 2nh+
n3 − n

12
c.

Thus, 2nh +
n3 − n

12
c ≥ 0 for every positive n ∈ Z. From this, by taking n → ∞, we

obtain c ≥ 0. By taking n = 1, we get h ≥ 0. This proves Proposition 3.4.2.

Definition 3.4.3. Let δ ∈
{

0,
1

2

}
. Let Cδ be the C-algebra with generators

{ψj | j ∈ δ + Z} and relations

ψjψk + ψkψj = δk,−j for all j, k ∈ δ + Z.

This C-algebra Cδ is an infinite-dimensional Clifford algebra (namely, the Clifford
algebra of the free vector space with basis {ψj | j ∈ δ + Z} and bilinear form

(ψj, ψk) 7→
1

2
δk,−j). The algebra Cδ is called an algebra of free fermions. For δ = 0,

it is called the Ramond sector ; for δ =
1

2
it is called Neveu-Schwarz sector.

Let us now construct a representation Vδ of Cδ: Let Vδ be the C-algebra

∧
(
ξn | n ∈ (δ + Z)≥0

)
. For any i ∈ δ + Z, define an operator

∂

∂ξi
: Vδ → Vδ

by

∂

∂ξi
(ξj1 ∧ ξj2 ∧ ... ∧ ξjk)

=

{
0, if i /∈ {j1, j2, ..., jk} ;

(−1)`−1 ξj1 ∧ ξj2 ∧ ... ∧ ξj`−1
∧ ξj`+1

∧ ξj`+2
∧ ... ∧ ξjk , if i ∈ {j1, j2, ..., jk}

for all j1 < j2 < ... < jk in δ + Z ,

where, in the case when i ∈ {j1, j2, ..., jk}, we denote by ` the element u of {1, 2, ..., k}
satisfying j` = u. (Note the (−1)`−1 sign, which distinguishes this “differentiation”
from differentiation in the commutative case. This is a particular case of the Koszul
sign rule.)
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Define an action of Cδ on Vδ by

ψ−n 7→ ξn for n < 0;

ψn 7→
∂

∂ξn
for n > 0;

ψ0 7→
1√
2

(
∂

∂ξ0

+ ξ0

)
(this is only relevant if δ = 0) .

This indeed defines a representation of Cδ (exercise!). This is an infinite-
dimensional analogue of the well-known spinor representation of Clifford algebras.

From Homework Set 2 problem 2, we know:

Proposition 3.4.4. Let δ ∈
{

0,
1

2

}
. For every k ∈ Z, define an endomorphism Lk

of Vδ by

Lk = δk,0
1− 2δ

16
+

1

2

∑
j∈δ+Z

j : ψ−jψj+k : ,

where the normal ordered product is defined as follows:

: ψnψm : =

{
−ψmψn, if m ≤ n;
ψnψm, if m > n

.

Then:

(a) Every m ∈ δ + Z and k ∈ Z satisfy [ψm, Lk] =

(
m+

k

2

)
ψm+k.

(b) Every n ∈ Z and m ∈ Z satisfy [Ln, Lm] = (n−m)Ln+m + δn,−m
m3 −m

24
.

(Hence, Vδ is a representation of Vir with central charge c =
1

2
).

Now this representation Vδ of Vir is unitary. In fact, consider the Hermitian form
under which all monomials in ψi are orthonormal (positive definite). Then it is easy
to see that ψ†j = ψ−j. Thus, L†n = L−n.

But these representations Vδ are reducible. In fact, we can define a (Z�2Z)-grading
on Vδ by giving each ξn the degree 1, and then the operators Ln preserve parity (i.
e., degree under this grading), so that the representation Vδ can be decomposed as a
direct sum Vδ = V +

δ ⊕ V
−
δ , where V +

δ is the set of the even elements of Vδ, and V −δ is
the set of the odd elements of Vδ.

Theorem 3.4.5. These subrepresentations V +
δ and V −δ are irreducible Virasoro

modules.

We will not prove this.
What are the highest weights of V +

δ and V −δ ?
First consider the case δ = 0. The highest-weight vector of V +

δ is 1, with weight(
1

16
,
1

2

)
. That of V −δ is ξ0, with weight

(
1

16
,
1

2

)
. Thus, V +

δ
∼= V −δ by action of ψ0

(since ψ2
0 =

1

2
).
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Now consider the case δ =
1

2
. The highest-weight vector of V +

δ is 1, with weight(
0,

1

2

)
. That of V −δ is ξ1/2, with weight

(
1

2
,
1

2

)
.

Corollary 3.4.6. The representation L
h,

1

2

is unitary if h = 0, h =
1

16
or h =

1

2
.

(In physics: Ising model.)

We will not prove:

Proposition 3.4.7. This is an only-if as well.

General answer for c < 1: for c = 1− 6

(m+ 2) (m+ 3)
for m ∈ N, there are finitely

many h where Lh,c is unitary. For other values of c, there are no such values.

Definition 3.4.8. The character chV (q) of a Vir-module V from category O+ is
TrV

(
qL0
)

=
∑

(dimVλ) q
λ for Vλ =generalized eigenspace of L0 with eigenvalue λ.

This is related to the old definition of character [how?]
What are the characters of the above modules? Since V +

δ = ∧ (ξ1, ξ2, ξ3, ...)
+, we

have
chL 1

16
,

1

2

(q) = q1/16 (1 + q)
(
1 + q2

) (
1 + q3

)
... = q1/16

∏
n≥1

(1 + qn)

(because

2 chL 1

16
,

1

2

(q) = chV0 (q) = q1/16 (1 + 1) (1 + q)
(
1 + q2

) (
1 + q3

)
...

= 2q1/16 (1 + q)
(
1 + q2

) (
1 + q3

)
...

).
Now

chL
0,

1

2

(q) + chL1

2
,

1

2

(q) = chV1

2

(q) =
(
1 + q1/2

) (
1 + q3/2

) (
1 + q5/2

)
...

=
∏

n∈
1

2
+N

(1 + qn) .

Thus, chL
0,

1

2

(q) is the integer part of the product
∏

n∈
1

2
+N

(1 + qn), and chL1

2
,

1

2

(q) is

the half-integer part of the product
∏

n∈
1

2
+N

(1 + qn).

With this, we conclude our study of Vδ.
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Convention 3.4.9. The notation ψj for the generators of Cδ introduced in Definition
3.4.3 will not be used in the following. (Instead, we will use the notation ψj for some
completely different objects.)

3.5. The Lie algebra gl∞ and its representations

For every n ∈ N, we can define a Lie algebra gln of n × n-matrices over C. One can
wonder how this can be generalized to the “n = ∞ case”, i. e., to infinite matrices.
Obviously, not every pair of infinite matrices has a reasonable commutator (because not
any such pair can be multiplied), but there are certain restrictions on infinite matrices
which allow us to multiply them and form their commutators. These restrictions can be
used to define various Lie algebras consisting of infinite matrices. We will be concerned
with some such Lie algebras; the first of them is gl∞:

Definition 3.5.1. We define gl∞ to be the vector space of infinite matrices whose
rows and columns are labeled by integers (not only positive integers!) such that
only finitely many entries of the matrix are nonzero. This vector space gl∞ is an
associative algebra without unit (by matrix multiplication); we can thus make gl∞
into a Lie algebra by the commutator in this associative algebra.

We will study the representations of this gl∞. The theory of these representations
will extend the well-known (Schur-Weyl) theory of representations of gln.

Definition 3.5.2. The vector representation V of gl∞ is defined as the vector space
C(Z) =

{
(xi)i∈Z | xi ∈ C; only finitely many xi are nonzero

}
. The Lie algebra gl∞

acts on the vector representation V in the obvious way: namely, for any a ∈ gl∞
and v ∈ V , we let a ⇀ v be the product of the matrix a with the column vector v.

Here, every element (xi)i∈Z of V is identified with the column vector



...
x−2

x−1

x0

x1

x2

...


.

For every j ∈ Z, let vj be the vector (δi,j)i∈Z ∈ V . Then, (vj)j∈Z is a basis of the
vector space V .

Convention 3.5.3. When we draw infinite matrices whose rows and columns are
labeled by integers, the index of the rows is supposed to increase as we go from left
to right, and the index of the columns is supposed to increase as we go from top to
bottom.

Remark 3.5.4. In Definition 3.5.2, we used the following (very simple) fact: For
every a ∈ gl∞ and every v ∈ V , the product av of the matrix a with the column
vector v is a well-defined element of V . This fact can be generalized: If a is an infinite
matrix (whose rows and columns are labeled by integers) such that every column of
a has only finitely many nonzero entries, and v is an element of V , then the product
av is a well-defined element of V . However, this does no longer hold if we drop
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the condition that every column of a have only finitely many nonzero entries. (For
example, if a would be the matrix whose all entries equal 1, then the product av0

would not be an element of V , but rather the element



...
1
1
1
1
1
...


of the larger vector

space CZ =
{

(xi)i∈Z | xi ∈ C
}

. Besides, the product a



...
1
1
1
1
1
...


would not make

any sense at all, not even in CZ.)

We can consider the representation ∧iV of gl∞ for every i ∈ N. More generally, we
have the so-called Schur modules :

Definition 3.5.5. If π ∈ IrrSn, then we can define a representation Sπ (V ) of gl∞
by Sπ (V ) = HomSn (π, V ⊗n) (where Sn acts on V ⊗n by permuting the tensorands).
This Sπ (V ) is called the π-th Schur module of V .

This definition mimics the well-known definition (or, more precisely, one of the defi-
nitions) of the Schur modules of a finite-dimensional vector space.

Proposition 3.5.6. For every π ∈ IrrSn, the representation Sπ (V ) of gl∞ is irre-
ducible.

Proof of Proposition 3.5.6. The following is not a self-contained proof; it is just
a way to reduce Proposition 3.5.6 to the similar fact about finite-dimensional vector
spaces (which is a well-known fact in the representation theory of glm).

For every vector subspace W ⊆ V , we can canonically identify Sπ (W ) with a vector
subspace of Sπ (V ).

For every subset I of Z, let WI be the subset of V generated by all vi with i ∈ I.
Clearly, whenever two subsets I and J of Z satisfy I ⊆ J , we have WI ⊆ WJ . Also,
whenever I is a finite subset of Z, the vector space WI is finite-dimensional.

For every tensor u ∈ V ⊗n, there exists a finite subset I of Z such that u ∈ (WI)
⊗n.

101 Denote this subset I by I (u). Thus, u ∈
(
WI(u)

)⊗n
for every u ∈ V ⊗n.

101Proof. The family (vi1 ⊗ vi2 ⊗ ...⊗ vin)(i1,i2,...,in)∈Zn is a basis of V ⊗n (since (vi)i∈Z is a basis of

V ). Thus, we can write the tensor u ∈ V ⊗n as a C-linear combination of finitely many tensors of
the form vi1 ⊗ vi2 ⊗ ...⊗ vin with (i1, i2, ..., in) ∈ Zn. Let I be the union of the sets {i1, i2, ..., in}
over all the tensors which appear in this linear combination. Since only finitely many tensors
appear in this linear combination, the set I is finite. Every tensor vi1 ⊗ vi2 ⊗ ... ⊗ vin which
appears in this linear combination satisfies {i1, i2, ..., in} ⊆ I (by the construction of I) and thus
vi1⊗vi2⊗ ...⊗vin ∈ (WI)

⊗n
. Thus, u must lie in (WI)

⊗n
, too (because u is the value of this linear

combination). Hence, we have found a finite subset I of Z such that u ∈ (WI)
⊗n

. Qed.
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For every w ∈ Sπ (V ), there exists some finite subset I of Z such that w ∈ Sπ (WI).
102 Denote this subset I by I (w). Thus, w ∈ Sπ

(
WI(w)

)
for every w ∈ Sπ (V ).

Let w and w′ be two vectors in Sπ (V ) such that w 6= 0. We are going to prove that
w′ ∈ U (gl∞)w. Once this is proven, it will be obvious that Sπ (V ) is irreducible, and
we will be done.

There exists a finite subset I of Z such that w ∈ Sπ (WI) and w′ ∈ Sπ (WI).
103

Consider this I.
Since I is finite, the vector space WI is finite-dimensional. Thus, by the analogue

of Proposition 3.5.6 for representations of glm, the representation Sπ (WI) of the Lie
algebra gl (WI) is irreducible. Hence, w′ ∈ U (gl (WI))w.

Now, we have a canonical injective Lie algebra homomorphism gl (WI)→ gl∞
104.

Thus, we can view gl (WI) as a Lie subalgebra of gl∞ in a canonical way. Moreover,
the classical action gl (WI) × Sπ (WI) → Sπ (WI) of the Lie algebra gl (WI) on the
Schur module Sπ (WI) can be viewed as the restriction of the action gl∞ × Sπ (V ) →
Sπ (V ) to gl (WI) × Sπ (WI). Hence, U (gl (WI))w ⊆ U (gl∞)w. Since we know that
w′ ∈ U (gl (WI))w, we thus conclude w′ ∈ U (gl∞)w. This completes the proof of
Proposition 3.5.6.

On the other hand, we can define so-called highest-weight representations. Before we
do so, let us make gl∞ into a graded Lie algebra:

Definition 3.5.7. For every i ∈ Z, let gli∞ be the subspace of gl∞ which consists of
matrices which have nonzero entries only on the i-th diagonal. (The i-th diagonal
consists of the entries in the (α, β)-th places with β − α = i.)

Then, gl∞ =
⊕
i∈Z

gli∞, and this makes gl∞ into a Z-graded Lie algebra. Note that

gl0∞ is abelian. Let gl∞ = n− ⊕ h ⊕ n+ be the triangular decomposition of gl∞, so

102Proof. Let w ∈ Sπ (V ). Then, w ∈ Sπ (V ) = HomSn (π, V ⊗n). But since π is a finite-dimensional
vector space, the image w (π) must be finite-dimensional. Hence, w (π) is a finite-dimensional
vector subspace of V ⊗n. Thus, w (π) is generated by some elements u1, u2, ..., uk ∈ V ⊗n. Let I

be the union
k⋃
j=1

I (uj). Then, I is finite (because for every j ∈ {1, 2, ..., k}, the set I (uj) is finite)

and satisfies I (uj) ⊆ I for every j ∈ {1, 2, ..., k}.
Recall that every u ∈ V ⊗n satisfies u ∈

(
WI(u)

)⊗n
. Thus, every j ∈ {1, 2, ..., k} satisfies

uj ∈
(
WI(uj)

)⊗n ⊆ (WI)
⊗n

(since I (uj) ⊆ I and thus WI(uj) ⊆WI). In other words, all k elements

u1, u2, ..., uk lie in the vector space (WI)
⊗n

. Since the elements u1, u2, ..., uk generate the subspace
w (π), this yields that w (π) ⊆ (WI)

⊗n
. Hence, the map w : π → V ⊗n factors through a map

π → (WI)
⊗n

. In other words, w ∈ HomSn (π, V ⊗n) is contained in HomSn

(
π, (WI)

⊗n
)

= Sπ (WI),

qed.
103Proof. Let I = I (w)∪I (w′). Then, I is a finite subset of Z (since I (w) and I (w′) are finite subsets

of Z), and I (w) ⊆ I and I (w′) ⊆ I. We have w ∈ Sπ
(
WI(w)

)
⊆ Sπ (WI) (since I (w) ⊆ I and

thus WI(w) ⊆ WI) and similarly w′ ∈ Sπ (WI). Thus, there exists a finite subset I of Z such that
w ∈ Sπ (WI) and w′ ∈ Sπ (WI), qed.

104Here is how it is defined: For every linear map A ∈ gl (WI), we define a linear map A′ ∈ gl (V ) by
setting

A′vi =

{
Avi, if i ∈ I;

0, if i /∈ I for all i ∈ Z.

This linear map A′ is represented (with respect to the basis (vi)i∈Z of V ) by an infinite matrix
whose rows and columns are labeled by integers. This matrix lies in gl∞.

Thus, we have assigned to every A ∈ gl (WI) a matrix in gl∞. This defines an injective Lie
algebra homomorphism gl (WI)→ gl∞.
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that the subspace n− =
⊕
i<0

gli∞ is the space of all strictly lower-triangular matrices

in gl∞, the subspace h = gl0∞ is the space of all diagonal matrices in gl∞, and the
subspace n+ =

⊕
i>0

gli∞ is the space of all strictly upper-triangular matrices in gl∞.

Definition 3.5.8. For every i, j ∈ Z, let Ei,j be the matrix (with rows and columns
labeled by integers) whose (i, j)-th entry is 1 and whose all other entries are 0. Then,
(Ei,j)(i,j)∈Z2 is a basis of the vector space gl∞.

Definition 3.5.9. For every λ ∈ h∗, let Mλ be the highest-weight Verma module M+
λ

(as defined in Definition 2.5.14). Let Jλ = Ker (·, ·) ⊆ Mλ be the maximal proper
graded submodule. Let Lλ be the quotient module Mλ�Jλ = M+

λ �J
+
λ = L+

λ ; then,
Lλ is irreducible (as we know).

Definition 3.5.10. We can define an antilinear R-antiinvolution † : gl∞ → gl∞ on
gl∞ by setting

E†i,j = Ej,i for all (i, j) ∈ Z2.

(Thus, † : gl∞ → gl∞ is the operator which transposes a matrix and then applies
complex conjugation to each of its entries.) Thus we can speak of Hermitian and
unitary gl∞-modules.

A very important remark:
For the Lie algebra gln, the highest-weight modules are the Schur modules up to

tensoring with a power of the determinant module. (More precisely: For gln, every
finite-dimensional irreducible representation and any unitary irreducible representation
is of the form Sπ (Vn)⊗ (∧n (V ∗n ))⊗j for some partition π and some j ∈ N, where Vn is
the gln-module Cn.)

Nothing like this is true for gl∞. Instead, exterior powers of V and highest-weight
representations live “in different worlds”. This is because V is composed of infinite-
dimensional vectors which have “no top or bottom”; V has no highest or lowest weight
and does not lie in category O+ or O−.

This is important, because many beautiful properties of representations of gln come
from the equality of the highest-weight and Schur module representations.

A way to marry these two worlds is by considering so-called semiinfinite wedges.

3.5.1. Semiinfinite wedges

Let us first give an informal definition of semiinfinite wedges and the semiinfinite wedge

space ∧
∞
2 V (we will later define these things formally):

An elementary semiinfinite wedge will mean a formal infinite “wedge product” vi0 ∧
vi1 ∧ vi2 ∧ ... with (i0, i1, i2, ...) being a sequence of integers satisfying i0 > i1 > i2 > ...
and ik+1 = ik − 1 for all sufficiently large k. (At the moment, we consider this wedge
product vi0 ∧ vi1 ∧ vi2 ∧ ... just as a fancy symbol for the sequence (i0, i1, i2, ...).)

The semiinfinite wedge space ∧
∞
2 V is defined as the free vector space with basis

given by elementary semiinfinite wedges.
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Note that, despite the notation ∧
∞
2 V , the semiinfinite wedge space is not a functor

in the vector space V . We could replace our definition of ∧
∞
2 V by a somewhat more

functorial one, which doesn’t use the basis (vi)i∈Z of V anymore. But it would still need
a topology on V (which makes V locally linearly compact), and some working with
formal Laurent series. It proceeds through the semiinfinite Grassmannian, and will not
be done in these lectures.105 For us, the definition using the basis will be enough.

The space ∧
∞
2 V is countably dimensional. More precisely, we can write ∧

∞
2 V as

∧
∞
2 V =

⊕
m∈Z

∧
∞
2
,m
V, where

∧
∞
2
,m
V = span {vi0 ∧ vi1 ∧ vi2 ∧ ... | ik + k = m for sufficiently large k} .

The space ∧
∞
2
,m
V has basis {vi0 ∧ vi1 ∧ vi2 ∧ ... | ik + k = m for sufficiently large k},

which is easily seen to be countable. We will see later that this basis can be naturally
labeled by partitions (of all integers, not just of m).

3.5.2. The action of gl∞ on ∧
∞
2 V

For every m ∈ Z, we want to define an action of the Lie algebra gl∞ on the space

∧
∞
2
,m
V which is given “by the usual Leibniz rule”, i. e., satisfies the equation

a ⇀ (vi0 ∧ vi1 ∧ vi2 ∧ ...) =
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ (a ⇀ vik) ∧ vik+1

∧ vik+2
∧ ...

for all a ∈ gl∞ and all elementary semiinfinite wedges vi0 ∧ vi1 ∧ vi2 ∧ ... (where, of
course, a ⇀ vik is the same as avik due to our definition of the action of gl∞ on V ).
Of course, it is not immediately clear how to interpret the infinite wedge products
vi0 ∧vi1 ∧ ...∧vik−1

∧ (a ⇀ vik)∧vik+1
∧vik+2

∧ ... on the right hand side of this equation,
since they are (in general) not elementary semiinfinite wedges anymore. We must find a
reasonable definition for such wedge products. What properties should a wedge product

105Some pointers to the more functorial definition:
Consider the field C ((t)) of formal Laurent series over C as a C-vector space.

Let Gr =

{
U vector subspace of C ((t)) |

(
U ⊇ tnC [[t]] and

dim (U� (tnC [[t]])) <∞

)
for some sufficiently high n

}
.

For every U ∈ Gr, define an integer sdimU by sdimU = dim (U� (tnC [[t]]))− n for any n ∈ Z
satisfying U ⊇ tnC [[t]]. Note that this integer does not depend on n as long as n is sufficiently
high to satisfy U ⊇ tnC [[t]].

This Grassmannian Gr is the disjoint union
∐

Grn.
There is something called a determinant line bundle on Gr. The space of semiinfinite wedges is

then defined as the space of regular sections of this line bundle (in the sense of algebraic geometry).
See the book by Pressley and Segal about loop groups for explanations of these matters.
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(infinite as it is) satisfy? It should be multilinear106 and antisymmetric107. These
properties make it possible to compute any wedge product of the form b0 ∧ b1 ∧ b2 ∧ ...
with b0, b1, b2, ... being vectors in V which satisfy

bi = vm−i for sufficiently large i.

In fact, whenever we are given such vectors b0, b1, b2, ..., we can compute the wedge
product b0 ∧ b1 ∧ b2 ∧ ... by the following procedure:

• Find an integer M ∈ N such that every i ≥M satisfies bi = vm−i. (This M exists
by the condition that bi = vm−i for sufficiently large i.)

• Expand each of the vectors b0, b1, ..., bM−1 as a C-linear combination of the basis
vectors v`.

• Using these expansions and the multilinearity of the wedge product, reduce the
computation of b0∧b1∧b2∧... to the computation of finitely many wedge products
of basis vectors.

• Each wedge product of basis vectors can now be computed as follows: If two
of the basis vectors are equal, then it must be 0 (by antisymmetry of the wedge
product). If not, reorder the basis vectors in such a way that their indices decrease
(this is possible, because “most” of these basis vectors are already in order, and
only the first few must be reordered). Due to the antisymmetry of the wedge
product, the wedge product of the basis vectors before reordering must be (−1)π

times the wedge product of the basis vectors after reordering, where π is the
permutation which corresponds to our reordering. But the wedge product of the
basis vectors after reordering is an elementary semiinfinite wedge, and thus we
know how to compute it.

This procedure is not exactly a formal definition, and it is not immediately clear
that the value of b0 ∧ b1 ∧ b2 ∧ ... that it computes is independent of, e. g., the choice
of M . In the following subsection (Subsection 3.5.3), we will give a formal version of
this definition.

3.5.3. The gl∞-module ∧
∞
2 V : a formal definition

Before we formally define the value of b0 ∧ b1 ∧ b2 ∧ ..., let us start from scratch and

repeat the definitions of ∧
∞
2 V and ∧

∞
2
,m
V in a cleaner fashion than how we defined

them above.

106i. e., it should satisfy

b0 ∧ b1 ∧ ... ∧ bk−1 ∧ (λb+ λ′b′) ∧ bk+1 ∧ bk+2 ∧ ...
= λb0 ∧ b1 ∧ ... ∧ bk−1 ∧ b ∧ bk+1 ∧ bk+2 ∧ ...+ λ′b0 ∧ b1 ∧ ... ∧ bk−1 ∧ b′ ∧ bk+1 ∧ bk+2 ∧ ...

for all k ∈ N, b0, b1, b2, ... ∈ V , b, b′ ∈ V and λ, λ′ ∈ C for which the right hand side is well-defined
107i. e., a well-defined wedge product b0 ∧ b1 ∧ b2 ∧ ... should be 0 whenever two of the bk are equal
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Warning 3.5.11. Some of the nomenclature defined in the following (particularly,
the notions of “m-degression” and “straying m-degression”) is mine (=Darij’s). I
don’t know whether there are established names for these things.

First, we introduce the notion ofm-degressions and formalize the definitions of ∧
∞
2 V

and ∧
∞
2
,m
V .

Definition 3.5.12. Let m ∈ Z. An m-degression will mean a strictly decreasing
sequence (i0, i1, i2, ...) of integers such that every sufficiently high k ∈ N satisfies
ik + k = m. It is clear that any m-degression (i0, i1, i2, ...) automatically satisfies
ik − ik+1 = 1 for all sufficiently high k.

For any m-degression (i0, i1, i2, ...), we introduce a new symbol vi0 ∧ vi1 ∧ vi2 ∧ ....
This symbol is, for the time being, devoid of any meaning. The symbol vi0 ∧ vi1 ∧
vi2 ∧ ... will be called an elementary semiinfinite wedge.

Definition 3.5.13. (a) Let ∧
∞
2 V denote the free C-vector space with basis

(vi0 ∧ vi1 ∧ vi2 ∧ ...)m∈Z; (i0,i1,i2,...) is an m-degression. We will refer to ∧
∞
2 V as the semi-

infinite wedge space.

(b) For every m ∈ Z, define a C-vector subspace ∧
∞
2
,m
V of ∧

∞
2 V by

∧
∞
2
,m
V = span {vi0 ∧ vi1 ∧ vi2 ∧ ... | (i0, i1, i2, ...) is an m-degression} .

Clearly, ∧
∞
2
,m
V has basis (vi0 ∧ vi1 ∧ vi2 ∧ ...)(i0,i1,i2,...) is an m-degression.

Obviously, ∧
∞
2 V =

⊕
m∈Z
∧
∞
2
,m
V .

Now, let us introduce the (more flexible) notion of straying m-degressions. This no-
tion is obtained from the notion of m-degressions by dropping the “strictly decreasing”
condition:

Definition 3.5.14. Let m ∈ Z. A straying m-degression will mean a sequence
(i0, i1, i2, ...) of integers such that every sufficiently high k ∈ N satisfies ik + k = m.

As a consequence, a straying m-degression is strictly decreasing from some point on-
wards, but needs not be strictly decreasing from the beginning (it can “stray”, whence
the name). A strictly decreasing straying m-degression is exactly the same as an m-
degression. Thus, every m-degression is a straying m-degression.

Definition 3.5.15. Let S be a (possibly infinite) set. Recall that a permutation of
S means a bijection from S to S.

A finitary permutation of S means a bijection from S to S which fixes all but
finitely many elements of S. (Thus, all permutations of S are finitary permutations
if S is finite.)
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Notice that the finitary permutations of a given set S form a group (under compo-
sition).

Definition 3.5.16. Let m ∈ Z. Let (i0, i1, i2, ...) be a straying m-degression. If
no two elements of this sequence (i0, i1, i2, ...) are equal, then there exists a unique
finitary permutation π of N such that

(
iπ−1(0), iπ−1(1), iπ−1(2), ...

)
is an m-degression.

This finitary permutation π is called the straightening permutation of (i0, i1, i2, ...).

Definition 3.5.17. Let m ∈ Z. Let (i0, i1, i2, ...) be a straying m-degression. We
define the meaning of the term vi0 ∧ vi1 ∧ vi2 ∧ ... as follows:

- If some two elements of the sequence (i0, i1, i2, ...) are equal, then vi0∧vi1∧vi2∧...

is defined to mean the element 0 of ∧
∞
2
,m
V .

- If no two elements of the sequence (i0, i1, i2, ...) are equal, then vi0 ∧ vi1 ∧ vi2 ∧ ...

is defined to mean the element (−1)π viπ−1(0)
∧viπ−1(1)

∧viπ−1(2)
∧ ... of ∧

∞
2
,m
V , where

π is the straightening permutation of (i0, i1, i2, ...).

Note that whenever (i0, i1, i2, ...) is an m-degression (not just a straying one), then
the value of vi0 ∧ vi1 ∧ vi2 ∧ ... defined according to Definition 3.5.17 is exactly the
symbol vi0 ∧ vi1 ∧ vi2 ∧ ... of Definition 3.5.12 (because no two elements of the sequence
(i0, i1, i2, ...) are equal, and the straightening permutation of (i0, i1, i2, ...) is id). Hence,
Definition 3.5.17 does not conflict with Definition 3.5.12.

Definition 3.5.18. Let m ∈ Z. Let b0, b1, b2, ... be vectors in V which satisfy

bi = vm−i for sufficiently large i.

Then, let us define the wedge product b0 ∧ b1 ∧ b2 ∧ ... ∈ ∧
∞
2
,m
V as follows:

Find an integer M ∈ N such that every i ≥M satisfies bi = vm−i. (This M exists
by the condition that bi = vm−i for sufficiently large i.)

For every i ∈ {0, 1, ...,M − 1}, write the vector bi as a C-linear combination∑
j∈Z

λi,jvj (with λi,j ∈ C for all j).

Now, define b0 ∧ b1 ∧ b2 ∧ ... to be the element∑
(j0,j1,...,jM−1)∈ZM

λ0,j0λ1,j1 ...λM−1,jM−1
vj0∧vj1∧...∧vjM−1

∧vm−M∧vm−M−1∧vm−M−2∧...

of ∧
∞
2
,m
V . Here, vj0∧vj1∧ ...∧vjM−1

∧vm−M ∧vm−M−1∧vm−M−2∧ ... is well-defined,
since (j0, j1, ..., jM−1,m−M,m−M − 1,m−M − 2, ...) is a straying m-degression.

Note that this element b0 ∧ b1 ∧ b2 ∧ ... is well-defined (according to Proposition
3.5.19 (a) below).

We refer to b0 ∧ b1 ∧ b2 ∧ ... as the (infinite) wedge product of the vectors b0, b1,
b2, ....

Note that, for any straying m-degression (i0, i1, i2, ...), the value of vi0 ∧ vi1 ∧ vi2 ∧ ...
defined according to Definition 3.5.18 equals the value of vi0 ∧ vi1 ∧ vi2 ∧ ... defined
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according to Definition 3.5.17. Hence, Definition 3.5.18 does not conflict with Definition
3.5.17.

We have the following easily verified properties of the infinite wedge product:

Proposition 3.5.19. Let m ∈ Z. Let b0, b1, b2, ... be vectors in V which satisfy

bi = vm−i for sufficiently large i.

(a) The wedge product b0∧b1∧b2∧... as defined in Definition 3.5.18 is well-defined
(i. e., does not depend on the choice of M).

(b) For any straying m-degression (i0, i1, i2, ...), the value of vi0 ∧ vi1 ∧ vi2 ∧ ...
defined according to Definition 3.5.18 equals the value of vi0 ∧ vi1 ∧ vi2 ∧ ... defined
according to Definition 3.5.17.

(c) The infinite wedge product is multilinear. That is, we have

b0 ∧ b1 ∧ ... ∧ bk−1 ∧ (λb+ λ′b′) ∧ bk+1 ∧ bk+2 ∧ ...
= λb0 ∧ b1 ∧ ... ∧ bk−1 ∧ b ∧ bk+1 ∧ bk+2 ∧ ...

+ λ′b0 ∧ b1 ∧ ... ∧ bk−1 ∧ b′ ∧ bk+1 ∧ bk+2 ∧ ... (112)

for all k ∈ N, b0, b1, b2, ... ∈ V , b, b′ ∈ V and λ, λ′ ∈ C which satisfy
(bi = vm−i for sufficiently large i).

(d) The infinite wedge product is antisymmetric. This means that
if b0, b1, b2, ... ∈ V are such that (bi = vm−i for sufficiently large i) and
(two of the vectors b0, b1, b2, ... are equal), then

b0 ∧ b1 ∧ b2 ∧ ... = 0. (113)

In other words, when (at least) two of the vectors forming a well-defined infinite
wedge product are equal, then this wedge product is 0.

(e) As a consequence, the wedge product b0 ∧ b1 ∧ b2 ∧ ... gets multiplied by −1
when we switch bi with bj for any two distinct i ∈ N and j ∈ N.

(f) If π is a finitary permutation of N and b0, b1, b2, ... ∈ V are vectors such that
(bi = vm−i for sufficiently large i), then the infinite wedge product bπ(0)∧bπ(1)∧bπ(2)∧
... is well-defined and satisfies

bπ(0) ∧ bπ(1) ∧ bπ(2) ∧ ... = (−1)π · b0 ∧ b1 ∧ b2 ∧ .... (114)

Now, we can define the action of gl∞ on ∧
∞
2
,m
V just as we wanted to:

Definition 3.5.20. Let m ∈ Z. Define an action of the Lie algebra gl∞ on the

vector space ∧
∞
2
,m
V by the equation

a ⇀ (vi0 ∧ vi1 ∧ vi2 ∧ ...) =
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ (a ⇀ vik) ∧ vik+1

∧ vik+2
∧ ...

for all a ∈ gl∞ and all m-degressions (i0, i1, i2, ...) (and by linear extension). (Recall
that a ⇀ v = av for every a ∈ gl∞ and v ∈ V , due to how we defined the gl∞-module
V .)
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Of course, this definition is only justified after showing that this indeed is an action.
But this is rather easy. Let us state this as a proposition:

Proposition 3.5.21. Let m ∈ Z. Then, Definition 3.5.20 really defines a represen-

tation of the Lie algebra gl∞ on the vector space ∧
∞
2
,m
V . In other words, there

exists one and only one action of the Lie algebra gl∞ on the vector space ∧
∞
2
,m
V

such that all a ∈ gl∞ and all m-degressions (i0, i1, i2, ...) satisfy

a ⇀ (vi0 ∧ vi1 ∧ vi2 ∧ ...) =
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ (a ⇀ vik) ∧ vik+1

∧ vik+2
∧ ....

The proof of this proposition (using the multilinearity and the antisymmetry of
our wedge product) is rather straightforward and devoid of surprises. I will show it
nevertheless, if only because I assume every other text leaves it to the reader. Due to
its length, it is postponed until Subsection 3.5.4.

Proposition 3.5.21 shows that the action of the Lie algebra gl∞ on the vector space

∧
∞
2
,m
V in Definition 3.5.20 is well-defined. This makes ∧

∞
2
,m
V into a gl∞-module.

Computations in this module can be somewhat simplified by the following “comparably
basis-free” formula108:

Proposition 3.5.22. Let m ∈ Z. Let b0, b1, b2, ... be vectors in V which satisfy

bi = vm−i for all sufficiently large i.

Then, every a ∈ gl∞ satisfies

a ⇀ (b0 ∧ b1 ∧ b2 ∧ ...) =
∑
k≥0

b0 ∧ b1 ∧ ... ∧ bk−1 ∧ (a ⇀ bk) ∧ bk+1 ∧ bk+2 ∧ ....

We can also explicitly describe this action on elementary matrices and semiinfinite
wedges:

Proposition 3.5.23. Let i ∈ Z and j ∈ Z. Let m ∈ Z. Let (i0, i1, i2, ...) be a

straying m-degression (so that vi0 ∧ vi1 ∧ vi2 ∧ ... ∈ ∧
∞
2
,m
V ).

(a) If j /∈ {i0, i1, i2, ...}, then Ei,j ⇀ (vi0 ∧ vi1 ∧ vi2 ∧ ...) = 0.
(b) If there exists a unique ` ∈ N such that j = i`, then for this ` we have

Ei,j ⇀ (vi0 ∧ vi1 ∧ vi2 ∧ ...) = vi0 ∧ vi1 ∧ ... ∧ vi`−1
∧ vi ∧ vi`+1

∧ vi`+2
∧ ...

(In words: If vj appears exactly once as a factor in the wedge product vi0 ∧ vi1 ∧
vi2∧ ..., then Ei,j ⇀ (vi0 ∧ vi1 ∧ vi2 ∧ ...) is the wedge product which is obtained from
vi0 ∧ vi1 ∧ vi2 ∧ ... by replacing this factor by vi.)

108I’m saying “comparably” because the condition that bi = vm−i for all sufficiently large i is not basis-

free. But this should not come as a surprise, as the definition of ∧
∞
2
,m
V itself is not basis-free to

begin with.
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Since we have given ∧
∞
2
,m
V a gl∞-module structure for every m ∈ Z, it is clear that

∧
∞
2 V =

⊕
m∈Z
∧
∞
2
,m
V also becomes a gl∞-module.

3.5.4. Proofs

Here are proofs of some of the unproven statements made in Subsection 3.5.3:
Proof of Proposition 3.5.21. The first thing we need to check is the following:

Assertion 3.5.21.0: Let a ∈ gl∞. Let b0, b1, b2, ... be vectors in V which
satisfy

bi = vm−i for all sufficiently large i.

(a) For every k ∈ N, the infinite wedge product b0∧b1∧...∧bk−1∧(a ⇀ bk)∧
bk+1 ∧ bk+2 ∧ ... is well-defined.

(b) All but finitely many k ∈ N satisfy b0∧ b1∧ ...∧ bk−1∧ (a ⇀ bk)∧ bk+1∧
bk+2 ∧ ... = 0. (In other words, the sum∑

k≥0

b0 ∧ b1 ∧ ... ∧ bk−1 ∧ (a ⇀ bk) ∧ bk+1 ∧ bk+2 ∧ ...

converges in the discrete topology.)

The proof of Assertion 3.5.21.0 can easily be supplied by the reader. (Part (a) is
clear, since the property of the sequence (b0, b1, b2, ...) to satisfy (bi = vm−i for all sufficiently large i)
does not change if we modify one entry of the sequence. Part (b) requires showing
that b0 ∧ b1 ∧ ... ∧ bk−1 ∧ (a ⇀ bk) ∧ bk+1 ∧ bk+2 ∧ ... = 0 for all sufficiently large k; but
this follows from a ∈ gl∞ being a matrix with only finitely many nonzero entries, and
from the condition that bi = vm−i for all sufficiently large i.)

Now that Assertion 3.5.21.0 is proven, we can make the following definition:

For every a ∈ gl∞, let us define a C-linear map Fa : ∧
∞
2
,m
V → ∧

∞
2
,m
V as follows:

For every m-degression (i0, i1, i2, ...), set

Fa (vi0 ∧ vi1 ∧ vi2 ∧ ...) =
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ (a ⇀ vik) ∧ vik+1

∧ vik+2
∧ ... (115)

109. Thus, we have specified the values of the map Fa on the basis

(vi0 ∧ vi1 ∧ vi2 ∧ ...)(i0,i1,i2,...) is an m-degression of ∧
∞
2
,m
V . Therefore, the map Fa is uniquely

determined (and exists) by linearity.
We are going to prove various properties of this map now. First, we will prove that

the formula (115) which we used to define Fa (vi0 ∧ vi1 ∧ vi2 ∧ ...) for m-degressions
(i0, i1, i2, ...) can also be applied when (i0, i1, i2, ...) is just a straying m-degression:

109The right hand side of (115) is indeed well-defined. This follows from applying Assertion 3.5.21.0
(b) to vii instead of bi.
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Assertion 3.5.21.1: Let a ∈ gl∞. Then, every straying m-degression
(j0, j1, j2, ...) satisfies

Fa (vj0 ∧ vj1 ∧ vj2 ∧ ...) =
∑
k≥0

vj0∧vj1∧...∧vjk−1
∧(a ⇀ vjk)∧vjk+1

∧vjk+2
∧....

(116)

Proof of Assertion 3.5.21.1 (sketched): Let (j0, j1, j2, ...) be a straying m-degression.
Thus, every sufficiently large i ∈ N satisfies ji + i = m. We must prove that (116)
holds.

Now, we distinguish between two cases:
Case 1: Some two elements of the sequence (j0, j1, j2, ...) are equal.
Case 2: No two elements of the sequence (j0, j1, j2, ...) are equal.
Let us first consider Case 1. In this case, some two elements of the sequence

(j0, j1, j2, ...) are equal. Hence, vj0∧vj1∧vj2∧... = 0 (by the definition of vj0∧vj1∧vj2∧...),
and thus the left hand side of (116) vanishes. We now need to show that so does the
right hand side.

We know that some two elements of the sequence (j0, j1, j2, ...) are equal. Let jp and
jq be two such elements, with p 6= q. So we have p 6= q and jp = jq.

The right hand side of (116) is a sum over all k ≥ 0. Each of its addends with
k /∈ {p, q} is 0 (because it is an infinite wedge product with two equal factors vjp and
vjq). So we need to check that the addend with k = p and the addend with k = q
cancel each other. In other words, we need to prove that

vj0 ∧ vj1 ∧ ... ∧ vjp−1 ∧
(
a ⇀ vjp

)
∧ vjp+1 ∧ vjp+2 ∧ ...

= −vj0 ∧ vj1 ∧ ... ∧ vjq−1 ∧
(
a ⇀ vjq

)
∧ vjq+1 ∧ vjq+1 ∧ .... (117)

We recall that an infinite wedge product of the form b0 ∧ b1 ∧ b2 ∧ ... (where b0, b1, b2, ...
are vectors in V such that (bi = vm−i for all sufficiently large i)) gets multiplied by −1
when we switch bi with bj for any two distinct i ∈ N and j ∈ N 110. Thus, the infinite
wedge product

vj0 ∧ vj1 ∧ ... ∧ vjp−1 ∧
(
a ⇀ vjp

)
∧ vjp+1 ∧ vjp+2 ∧ ... ∧ vjq−1 ∧ vjq ∧ vjq+1 ∧ vjq+2 ∧ ...

gets multiplied by −1 when we switch a ⇀ vjp with vjq (since p ∈ N and q ∈ N are
distinct). In other words,

vj0 ∧ vj1 ∧ ... ∧ vjp−1 ∧ vjq ∧ vjp+1 ∧ vjp+2 ∧ ... ∧ vjq−1 ∧
(
a ⇀ vjp

)
∧ vjq+1 ∧ vjq+1 ∧ ...

= −vj0 ∧ vj1 ∧ ... ∧ vjp−1 ∧
(
a ⇀ vjp

)
∧ vjp+1 ∧ vjp+2 ∧ ... ∧ vjq−1 ∧ vjq ∧ vjq+1 ∧ vjq+2 ∧ ....

Thus,

vj0 ∧ vj1 ∧ ... ∧ vjp−1 ∧
(
a ⇀ vjp

)
∧ vjp+1 ∧ vjp+2 ∧ ... ∧ vjq−1 ∧ vjq ∧ vjq+1 ∧ vjq+2 ∧ ...

= −vj0 ∧ vj1 ∧ ... ∧ vjp−1 ∧ vjq ∧ vjp+1 ∧ vjp+2 ∧ ... ∧ vjq−1 ∧
(
a ⇀ vjp

)
∧ vjq+1 ∧ vjq+2 ∧ ....

(118)

110This is a particular case of Proposition 3.5.19 (f) (namely, the case when π is the transposition
(i, j)).
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Now,

vj0 ∧ vj1 ∧ ... ∧ vjp−1 ∧
(
a ⇀ vjp

)
∧ vjp+1 ∧ vjp+2 ∧ ...

= vj0 ∧ vj1 ∧ ... ∧ vjp−1 ∧
(
a ⇀ vjp

)
∧ vjp+1 ∧ vjp+2 ∧ ... ∧ vjq−1 ∧ vjq ∧ vjq+1 ∧ vjq+2 ∧ ...

= −vj0 ∧ vj1 ∧ ... ∧ vjp−1 ∧ vjq ∧ vjp+1 ∧ vjp+2 ∧ ... ∧ vjq−1 ∧
(
a ⇀ vjp

)
∧ vjq+1 ∧ vjq+2 ∧ ...

(by (118))

= −vj0 ∧ vj1 ∧ ... ∧ vjp−1 ∧ vjp ∧ vjp+1 ∧ vjp+2 ∧ ... ∧ vjq−1 ∧
(
a ⇀ vjq

)
∧ vjq+1 ∧ vjq+2 ∧ ...

(since jq = jp and jp = jq)

= −vj0 ∧ vj1 ∧ ... ∧ vjq−1 ∧
(
a ⇀ vjq

)
∧ vjq+1 ∧ vjq+2 ∧ ....

This proves (117). The proof of (116) in Case 1 is thus complete.
Now, let us consider Case 2. In this case, no two elements of the sequence (j0, j1, j2, ...)

are equal. Thus, the straightening permutation of the strayingm-degression (j0, j1, j2, ...)
is well-defined. Let π be this straightening permutation. Then,

(
jπ−1(0), jπ−1(1), jπ−1(2), ...

)
is an m-degression.

Let σ = π−1. Then, σ is a finitary permutation of N, thus a bijective map N → N.
From σ = π−1, we obtain σπ = id, thus (−1)σπ = 1.

We know that
(
jπ−1(0), jπ−1(1), jπ−1(2), ...

)
is an m-degression. Since π−1 = σ, this

rewrites as follows: The sequence
(
jσ(0), jσ(1), jσ(2), ...

)
is an m-degression.

By the definition of vj0 ∧ vj1 ∧ vj2 ∧ ... (in Definition 3.5.17), we have

vj0 ∧vj1 ∧vj2 ∧ ... = (−1)π vjπ−1(0)
∧vjπ−1(1)

∧vjπ−1(2)
∧ ... = (−1)π vjσ(0)

∧vjσ(1)
∧vjσ(2)

∧ ...

(since π−1 = σ). Thus,

Fa (vj0 ∧ vj1 ∧ vj2 ∧ ...)

= Fa

(
(−1)π vjσ(0)

∧ vjσ(1)
∧ vjσ(2)

∧ ...
)

= (−1)π · Fa
(
vjσ(0)

∧ vjσ(1)
∧ vjσ(2)

∧ ...
)

(since Fa is linear). Multiplying this equality with (−1)σ, we obtain

(−1)σ · Fa (vj0 ∧ vj1 ∧ vj2 ∧ ...)

= (−1)σ · (−1)π︸ ︷︷ ︸
=(−1)σπ=1

·Fa
(
vjσ(0)

∧ vjσ(1)
∧ vjσ(2)

∧ ...
)

= Fa

(
vjσ(0)

∧ vjσ(1)
∧ vjσ(2)

∧ ...
)

=
∑
k≥0

vjσ(0)
∧ vjσ(1)

∧ ... ∧ vjσ(k−1)
∧
(
a ⇀ vjσ(k)

)
∧ vjσ(k+1)

∧ vjσ(k+2)
∧ ... (119)(

by the definition of Fa

(
vjσ(0)

∧ vjσ(1)
∧ vjσ(2)

∧ ...
)

,

since
(
jσ(0), jσ(1), jσ(2), ...

)
is an m-degression

)
.

On the other hand, for every k ∈ N, we have

vjσ(0)
∧ vjσ(1)

∧ ... ∧ vjσ(k−1)
∧
(
a ⇀ vjσ(k)

)
∧ vjσ(k+1)

∧ vjσ(k+2)
∧ ...

= (−1)σ · vj0 ∧ vj1 ∧ ... ∧ vjσ(k)−1
∧
(
a ⇀ vjσ(k)

)
∧ vjσ(k)+1

∧ vjσ(k)+2
∧ .... (120)
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111 Hence, (119) becomes

(−1)σ · Fa (vj0 ∧ vj1 ∧ vj2 ∧ ...)

=
∑
k≥0

vjσ(0)
∧ vjσ(1)

∧ ... ∧ vjσ(k−1)
∧
(
a ⇀ vjσ(k)

)
∧ vjσ(k+1)

∧ vjσ(k+2)
∧ ...︸ ︷︷ ︸

=(−1)σ ·vj0∧vj1∧...∧vjσ(k)−1
∧
(
a⇀vjσ(k)

)
∧vjσ(k)+1

∧vjσ(k)+2
∧...

(by (120))

=
∑
k≥0

(−1)σ · vj0 ∧ vj1 ∧ ... ∧ vjσ(k)−1
∧
(
a ⇀ vjσ(k)

)
∧ vjσ(k)+1

∧ vjσ(k)+2
∧ ....

Dividing this equality by (−1)σ, we obtain

Fa (vj0 ∧ vj1 ∧ vj2 ∧ ...)

=
∑
k≥0

vj0 ∧ vj1 ∧ ... ∧ vjσ(k)−1
∧
(
a ⇀ vjσ(k)

)
∧ vjσ(k)+1

∧ vjσ(k)+2
∧ ...

=
∑
k≥0

vj0 ∧ vj1 ∧ ... ∧ vjk−1
∧ (a ⇀ vjk) ∧ vjk+1

∧ vjk+2
∧ ...

(here, we substituted k for σ (k) in the sum (since σ is bijective)) .

Thus, (116) is proven in Case 2.
We have now proven (116) in each of the two Cases 1 and 2, hence in all situations.

In other words, Assertion 3.5.21.1 is proven.
Our next goal is the following assertion:

111Proof of (120): Let k ∈ N. Define a sequence (c0, c1, c2, ...) of elements of V by

(c0, c1, c2, ...) =
(
vj0 , vj1 , ..., vjσ(k)−1

, a ⇀ vjσ(k) , vjσ(k)+1
, vjσ(k)+2

, ...
)
.

Then,

c0 ∧ c1 ∧ c2 ∧ ... = vj0 ∧ vj1 ∧ ... ∧ vjσ(k)−1
∧
(
a ⇀ vjσ(k)

)
∧ vjσ(k)+1

∧ vjσ(k)+2
∧ ....

But according to Proposition 3.5.19 (f) (applied to (c0, c1, c2, ...) instead of (b0, b1, b2, ...)), the
infinite wedge product cσ(0) ∧ cσ(1) ∧ cσ(2) ∧ ... is well-defined and satisfies

cσ(0) ∧ cσ(1) ∧ cσ(2) ∧ ... = (−1)
σ · c0 ∧ c1 ∧ c2 ∧ ....

But it is easy to see that(
cσ(0), cσ(1), cσ(2), ...

)
=
(
vjσ(0) , vjσ(1) , ..., vjσ(k−1)

, a ⇀ vjσ(k) , vjσ(k+1)
, vjσ(k+2)

, ...
)
,

so that

cσ(0) ∧ cσ(1) ∧ cσ(2) ∧ ... = vjσ(0) ∧ vjσ(1) ∧ ... ∧ vjσ(k−1)
∧
(
a ⇀ vjσ(k)

)
∧ vjσ(k+1)

∧ vjσ(k+2)
∧ ....

Hence,

vjσ(0) ∧ vjσ(1) ∧ ... ∧ vjσ(k−1)
∧
(
a ⇀ vjσ(k)

)
∧ vjσ(k+1)

∧ vjσ(k+2)
∧ ...

= cσ(0) ∧ cσ(1) ∧ cσ(2) ∧ ... = (−1)
σ · c0 ∧ c1 ∧ c2 ∧ ...︸ ︷︷ ︸

=vj0∧vj1∧...∧vjσ(k)−1
∧
(
a⇀vjσ(k)

)
∧vjσ(k)+1

∧vjσ(k)+2
∧...

= (−1)
σ · vj0 ∧ vj1 ∧ ... ∧ vjσ(k)−1

∧
(
a ⇀ vjσ(k)

)
∧ vjσ(k)+1

∧ vjσ(k)+2
∧ ....

This proves (120).
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Assertion 3.5.21.2: Let a ∈ gl∞. Let b0, b1, b2, ... be vectors in V which
satisfy

bi = vm−i for all sufficiently large i.

Then,

Fa (b0 ∧ b1 ∧ b2 ∧ ...) =
∑
k≥0

b0 ∧ b1 ∧ ... ∧ bk−1 ∧ (a ⇀ bk) ∧ bk+1 ∧ bk+2 ∧ ....

Proof of Assertion 3.5.21.2 (sketched): We have bi = vm−i for all sufficiently large i.
In other words, there exists a K ∈ N such that every i ≥ K satisfies bi = vm−i. Fix
such a K.

We have to prove the equality

Fa (b0 ∧ b1 ∧ b2 ∧ ...) =
∑
k≥0

b0 ∧ b1 ∧ ... ∧ bk−1 ∧ (a ⇀ bk) ∧ bk+1 ∧ bk+2 ∧ .... (121)

This equality is clearly linear in each of the variables b0, b1, ..., bK−1 (and also in each
of the variables bK , bK+1, bK+2, ..., but we don’t care about them). Hence, in proving
it, we can WLOG assume that each of the vectors b0, b1, ..., bK−1 belongs to the basis
(vj)j∈Z of V . 112 Assume this. Of course, the remaining vectors bK , bK+1, bK+2, ... also
belong to the basis (vj)j∈Z of V (because every i ≥ K satisfies bi = vm−i). Hence, all
the vectors b0, b1, b2, ... belong to the basis (vj)j∈Z of V . Hence, there exists a sequence

(j0, j1, j2, ...) ∈ ZN such that every i ∈ N satisfies bi = vji . Therefore, the equality
that we need to prove, (121), will immediately follow from Assertion 3.5.21.1 once we
can show that (j0, j1, j2, ...) is a straying m-degression. But the latter is obvious (since
every i ≥ K satisfies vji = bi = vm−i and thus ji = m− i, so that ji + i = m). Hence,
(121) is proven. That is, Assertion 3.5.21.2 is proven.

Next, here’s something obvious that we are going to use a few times in the proof:

Assertion 3.5.21.4: Let f and g be two endomorphisms of the C-vector

space ∧
∞
2
,m
V . If everym-degression (i0, i1, i2, ...) satisfies f (vi0 ∧ vi1 ∧ vi2 ∧ ...) =

g (vi0 ∧ vi1 ∧ vi2 ∧ ...), then f = g.

This follows from the fact that (vi0 ∧ vi1 ∧ vi2 ∧ ...)(i0,i1,i2,...) is an m-degression is a basis

of the C-vector space ∧
∞
2
,m
V .

Next, we notice the following easy fact:

Assertion 3.5.21.5: Let a ∈ gl∞ and b ∈ gl∞. Let λ ∈ C and µ ∈ C. Then,

λFa + µFb = Fλa+µb in the Lie algebra gl

(
∧
∞
2
,m
V

)
.

This follows very quickly from the linearity of the definition of Fa with respect to a
(the details are left to the reader).

Here is something rather simple:

112Note that this assumption is allowed because b0, b1, ..., bK−1 are finitely many vectors. In contrast,
if we wanted to WLOG assume that each of the (infinitely many) vectors b0, b1, b2, ... belongs to
the basis (vj)j∈Z of V , then we would have to need more justification for such an assumption.
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Assertion 3.5.21.6: Let i ∈ Z and j ∈ Z. Let m ∈ Z. Let (i0, i1, i2, ...) be
a straying m-degression.

(a) For every ` ∈ N, the sequence (i0, i1, ..., i`−1, i, i`+1, i`+2, ...) is a straying
m-degression.

(b) If j /∈ {i0, i1, i2, ...}, then FEi,j (vi0 ∧ vi1 ∧ vi2 ∧ ...) = 0.

(c) If there exists a unique ` ∈ N such that j = i`, then we have

FEi,j (vi0 ∧ vi1 ∧ vi2 ∧ ...) = vi0 ∧ vi1 ∧ ... ∧ viL−1
∧ vi ∧ viL+1

∧ viL+2
∧ ...,

where L is the unique ` ∈ N such that j = i`.

The proof of Assertion 3.5.21.6 is as straightforward as one would expect: it is a
matter of substituting a = Ei,j and bk = vik into Assertion 3.5.21.2 and taking care of
the few addends which are not 0.

Now here is something less obvious:

Assertion 3.5.21.7: Every a ∈ gl∞ and b ∈ gl∞ satisfy [Fa, Fb] = F[a,b] in

the Lie algebra gl

(
∧
∞
2
,m
V

)
.

There are two possible approaches to proving Assertion 3.5.21.7.
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First proof of Assertion 3.5.21.7 (sketched): In order to prove Assertion 3.5.21.7, it is enough to show that

[Fa, Fb] (vi0 ∧ vi1 ∧ vi2 ∧ ...) = F[a,b] (vi0 ∧ vi1 ∧ vi2 ∧ ...) (122)

for every m-degression (i0, i1, i2, ...). (Indeed, once this is done, [Fa, Fb] = F[a,b] will follow from Assertion 3.5.21.4.) So let (i0, i1, i2, ...)
be any m-degression. Then,

Fa (Fb (vi0 ∧ vi1 ∧ vi2 ∧ ...))

= Fa

(∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ (b ⇀ vik) ∧ vik+1

∧ vik+2
∧ ...

)
(

since Fb (vi0 ∧ vi1 ∧ vi2 ∧ ...) is defined as
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ (b ⇀ vik) ∧ vik+1

∧ vik+2
∧ ...

)
=
∑
k≥0

Fa
(
vi0 ∧ vi1 ∧ ... ∧ vik−1

∧ (b ⇀ vik) ∧ vik+1
∧ vik+2

∧ ...
)

=
∑
q≥0

Fa
(
vi0 ∧ vi1 ∧ ... ∧ viq−1 ∧

(
b ⇀ viq

)
∧ viq+1 ∧ viq+2 ∧ ...

)︸ ︷︷ ︸
=
∑
k≥0


vi0 ∧ vi1 ∧ ... ∧ vik−1

∧ (b ⇀ vik) ∧ vik+1
∧ vik+2

∧ ... ∧ viq−1 ∧
(
a ⇀ viq

)
∧ viq+1 ∧ viq+2 , if k < q;

vi0 ∧ vi1 ∧ ... ∧ viq−1 ∧
(
(ab) ⇀ viq

)
∧ viq+1 ∧ viq+2 ∧ ..., if k = q;

vi0 ∧ vi1 ∧ ... ∧ viq−1 ∧
(
a ⇀ viq

)
∧ viq+1 ∧ viq+2 ∧ ... ∧ vik−1

∧ (b ⇀ vik) ∧ vik+1
∧ vik+2

, if k > q
(by an application of Assertion 3.5.21.2)

(here, we renamed the summation index k as q)

=
∑
q≥0

∑
k≥0


vi0 ∧ vi1 ∧ ... ∧ vik−1

∧ (b ⇀ vik) ∧ vik+1
∧ vik+2

∧ ... ∧ viq−1 ∧
(
a ⇀ viq

)
∧ viq+1 ∧ viq+2 ∧ ..., if k < q;

vi0 ∧ vi1 ∧ ... ∧ viq−1 ∧
(
(ab) ⇀ viq

)
∧ viq+1 ∧ viq+2 ∧ ..., if k = q;

vi0 ∧ vi1 ∧ ... ∧ viq−1 ∧
(
a ⇀ viq

)
∧ viq+1 ∧ viq+2 ∧ ... ∧ vik−1

∧ (b ⇀ vik) ∧ vik+1
∧ vik+2

∧ ..., if k > q
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=
∑
q≥0

∑
k≥0;
k<q

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ (b ⇀ vik) ∧ vik+1

∧ vik+2
∧ ... ∧ viq−1 ∧

(
a ⇀ viq

)
∧ viq+1 ∧ viq+2 ∧ ...

+
∑
q≥0

vi0 ∧ vi1 ∧ ... ∧ viq−1 ∧
(
(ab) ⇀ viq

)
∧ viq+1 ∧ viq+2 ∧ ...

+
∑
q≥0

∑
k≥0;
k>q

vi0 ∧ vi1 ∧ ... ∧ viq−1 ∧
(
a ⇀ viq

)
∧ viq+1 ∧ viq+2 ∧ ... ∧ vik−1

∧ (b ⇀ vik) ∧ vik+1
∧ vik+2

∧ ...

=
∑
q≥0

∑
p≥0;
p<q

vi0 ∧ vi1 ∧ ... ∧ vip−1 ∧
(
b ⇀ vip

)
∧ vip+1 ∧ vip+2 ∧ ... ∧ viq−1 ∧

(
a ⇀ viq

)
∧ viq+1 ∧ viq+2 ∧ ...

+
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ ((ab) ⇀ vik) ∧ vik+1

∧ vik+2
∧ ...

+
∑
p≥0

∑
q≥0;
q>p

vi0 ∧ vi1 ∧ ... ∧ vip−1 ∧
(
a ⇀ vip

)
∧ vip+1 ∧ vip+2 ∧ ... ∧ viq−1 ∧

(
b ⇀ viq

)
∧ viq+1 ∧ viq+2 ∧ ... (123)

113. Similarly,

Fb (Fa (vi0 ∧ vi1 ∧ vi2 ∧ ...))

=
∑
q≥0

∑
p≥0;
p<q

vi0 ∧ vi1 ∧ ... ∧ vip−1 ∧
(
a ⇀ vip

)
∧ vip+1 ∧ vip+2 ∧ ... ∧ viq−1 ∧

(
b ⇀ viq

)
∧ viq+1 ∧ viq+2 ∧ ...

+
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ ((ba) ⇀ vik) ∧ vik+1

∧ vik+2
∧ ...

+
∑
p≥0

∑
q≥0;
q>p

vi0 ∧ vi1 ∧ ... ∧ vip−1 ∧
(
b ⇀ vip

)
∧ vip+1 ∧ vip+2 ∧ ... ∧ viq−1 ∧

(
a ⇀ viq

)
∧ viq+1 ∧ viq+2 ∧ .... (124)

113In the last step of this computation, we did the following substitutions:
– We renamed the index k as p in the second sum.
– We renamed the index q as k in the third sum.
– We switched the meanings of the indices p and q in the fourth and fifth sums.
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Now, let us subtract (124) from (123). I am claiming that the first term on the
right hand side of (124) cancels against the third term on the right hand side of (123).
Indeed, in order to see this, one needs to check that one can interchange the order of
summation in the sum∑
q≥0

∑
p≥0;
p<q

vi0∧vi1∧...∧vip−1∧
(
b ⇀ vip

)
∧vip+1∧vip+2∧...∧viq−1∧

(
a ⇀ viq

)
∧viq+1∧viq+2∧...,

i. e., replace
∑
q≥0

∑
p≥0;
p<q

by
∑
p≥0

∑
q≥0;
q>p

. This is easy to see (indeed, one must show that

vi0 ∧vi1 ∧ ...∧vip−1 ∧
(
b ⇀ vip

)
∧vip+1 ∧vip+2 ∧ ...∧viq−1 ∧

(
a ⇀ viq

)
∧viq+1 ∧viq+2 ∧ ... = 0

for all but finitely many pairs (i, j) ∈ N2), but not trivial a priori114. So we know that
the first term on the right hand side of (124) cancels against the third term on the right
hand side of (123). Similarly, the third term on the right hand side of (124) cancels
against the first term on the right hand side of (123). Thus, when we subtract (124)
from (123), on the right hand side only the second terms of both equations remain,
and we obtain

Fa (Fb (vi0 ∧ vi1 ∧ vi2 ∧ ...))− Fb (Fa (vi0 ∧ vi1 ∧ vi2 ∧ ...))

=
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ ((ab) ⇀ vik) ∧ vik+1

∧ vik+2
∧ ...

−
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ ((ba) ⇀ vik) ∧ vik+1

∧ vik+2
∧ ...

=
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ ((ab− ba) ⇀ vik) ∧ vik+1

∧ vik+2
∧ ...

(by the multilinearity of the infinite wedge product)

= Fab−ba (vi0 ∧ vi1 ∧ vi2 ∧ ...) = F[a,b] (vi0 ∧ vi1 ∧ vi2 ∧ ...) .

This proves (122), and thus Assertion 3.5.21.7. Filling the details of this proof is left
to the reader.

Second proof of Assertion 3.5.21.7 (sketched): Due to Assertion 3.5.21.5, the value
of Fc for c ∈ gl∞ depends C-linearly on c.

But we must prove the equality [Fa, Fb] = F[a,b] for all a ∈ gl∞ and b ∈ gl∞. This
equality is C-linear in a and b (since the value of Fc for c ∈ gl∞ depends C-linearly

114Here is a cautionary tale on why one cannot always interchange summation in infinite sums. Define

a family (αp,q)(p,q)∈N2 of integers by αp,q =

{
1, if p = q;

−1, if p = q + 1
. Then, every q ∈ N satisfies∑

p≥0

αp,q = 0. Hence,
∑
q≥0

∑
p≥0

αp,q = 0. On the other hand, every p ∈ N satisfies
∑
q≥0

αp,q = δp,0.

Hence,
∑
p≥0

∑
q≥0

αp,q = 1 6= 0 =
∑
q≥0

∑
p≥0

αp,q. So the two summation signs in this situation cannot

be interchanged, even though all sums (both inner and outer) converge in the discrete topology.
Generally, for a family (λp,q)(p,q)∈N2 of elements of an additive group, we are guaranteed to have∑
p≥0

∑
q≥0

λp,q =
∑
q≥0

∑
p≥0

λp,q if the double sum
∑

(p,q)∈N2

λp,q still converges in the discrete topology

(this is analogous to Fubini’s theorem). But the double sum
∑

(p,q)∈N2

αp,q does not converge in the

discrete topology, so
∑
p≥0

∑
q≥0

αp,q 6=
∑
q≥0

∑
p≥0

αp,q should not come as a surprise.
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on c), so it is enough to show it only when a and b belong to the basis (Ei,j)(i,j)∈Z2 of
gl∞. But in this case, one can check this equality by verifying that every m-degression
(i0, i1, i2, ...) satisfies

[Fa, Fb] (vi0 ∧ vi1 ∧ vi2 ∧ ...) = F[a,b] (vi0 ∧ vi1 ∧ vi2 ∧ ...) .

This can be done (using Assertion 3.5.21.6) by a straightforward distinction of cases
(the cases depend on whether some indices belong to {i0, i1, i2, ...} or not, and whether
some indices are equal or not). The reader should not have much of a trouble supplying
these arguments, but they are as unenlightening as one would expect. There is a
somewhat better way to do this verification (better in the sense that less cases have
to be considered) by means of exploiting some symmetry; this relies on checking the
following assertion:

Assertion 3.5.21.8: Let r, s, u and v be integers. Let m ∈ Z. Let
(i0, i1, i2, ...) be an m-degression. Let I denote the set {i0, i1, i2, ...}.
(a) If v /∈ I, then(

FEr,sFEu,v − δs,uFEr,v
)

(vi0 ∧ vi1 ∧ vi2 ∧ ...) = 0.

(b) If s = v, then(
FEr,sFEu,v − δs,uFEr,v

)
(vi0 ∧ vi1 ∧ vi2 ∧ ...) = 0.

(c) Assume that s 6= v. Let w : Z→ Z be the function defined byw (k) =


r, if k = s;
u, if k = v;
k, otherwise

for all k ∈ Z

 .

115 Then, (w (i0) ,w (i1) ,w (i2) , ...) is a straying m-degression, and satisfies(
FEr,sFEu,v − δs,uFEr,v

)
(vi0 ∧ vi1 ∧ vi2 ∧ ...)

= [s ∈ I] · [v ∈ I] · vw(i0) ∧ vw(i1) ∧ vw(i2) ∧ ....

Here, wheneverA is an assertion, we denote by [A] the integer

{
1, if A is true;
0, if A is wrong

.

The proof of this assertion, as well as the derivation of Assertion 3.5.21.7 from it
(Assertion 3.5.21.8 must be applied twice), is left to the reader.

We are now ready for the endgame:

115Here, the term

 r, if k = s;
u, if k = v;
k, otherwise

makes sense, since s 6= v.
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Assertion 3.5.21.9: There exists at least one action of the Lie algebra gl∞

on the vector space ∧
∞
2
,m
V such that all a ∈ gl∞ and all m-degressions

(i0, i1, i2, ...) satisfy

a ⇀ (vi0 ∧ vi1 ∧ vi2 ∧ ...) =
∑
k≥0

vi0∧vi1∧...∧vik−1
∧(a ⇀ vik)∧vik+1

∧vik+2
∧....

(125)

Assertion 3.5.21.10: There exists at most one action of the Lie algebra

gl∞ on the vector space ∧
∞
2
,m
V such that all a ∈ gl∞ and all m-degressions

(i0, i1, i2, ...) satisfy

a ⇀ (vi0 ∧ vi1 ∧ vi2 ∧ ...) =
∑
k≥0

vi0∧vi1∧...∧vik−1
∧(a ⇀ vik)∧vik+1

∧vik+2
∧....

(126)

Proof of Assertion 3.5.21.9: Let ρ be the map

gl∞ → gl

(
∧
∞
2
,m
V

)
,

c 7→ Fc.

This map ρ is C-linear (by Assertion 3.5.21.5) and hence a Lie algebra homomorphism
(by Assertion 3.5.21.7). Hence, ρ is an action of the Lie algebra gl∞ on the vector

space ∧
∞
2
,m
V . Let us write this action in infix notation (i. e., let us write c ⇀ w for

(ρ (c))w whenever c ∈ gl∞ and w ∈ ∧
∞
2
,m
V ). Then, all c ∈ gl∞ and w ∈ ∧

∞
2
,m
V

satisfy
c ⇀ w = (ρ (c))︸ ︷︷ ︸

=Fc
(by the definition of ρ(c))

w = Fc (w) .

Hence, all a ∈ gl∞ and all m-degressions (i0, i1, i2, ...) satisfy

a ⇀ (vi0 ∧ vi1 ∧ vi2 ∧ ...) = Fa (vi0 ∧ vi1 ∧ vi2 ∧ ...)

=
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ (a ⇀ vik) ∧ vik+1

∧ vik+2
∧ ...

(by the definition of Fa (vi0 ∧ vi1 ∧ vi2 ∧ ...)). In other words, all a ∈ gl∞ and all m-
degressions (i0, i1, i2, ...) satisfy (125).

We have thus constructed an action of the Lie algebra gl∞ on the vector space

∧
∞
2
,m
V such that all a ∈ gl∞ and all m-degressions (i0, i1, i2, ...) satisfy (125). There-

fore, there exists at least one such action. This proves Assertion 3.5.21.9.
Proof of Assertion 3.5.21.10: Given an action of the Lie algebra gl∞ on the vector

space ∧
∞
2
,m
V such that all a ∈ gl∞ and all m-degressions (i0, i1, i2, ...) satisfy (126),
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it is clear that the value of a ⇀ w is uniquely determined for every a ∈ gl∞ and

w ∈ ∧
∞
2
,m
V (by the bilinearity of the action, because w can be written as a C-linear

combination of elementary semiinfinite wedges vi0 ∧ vi1 ∧ vi2 ∧ ...). Hence, there exists
at most one such action. This proves Assertion 3.5.21.10.

Combining Assertion 3.5.21.9 with Assertion 3.5.21.10, we see that there exists one

and only one action of the Lie algebra gl∞ on the vector space ∧
∞
2
,m
V such that all

a ∈ gl∞ and all m-degressions (i0, i1, i2, ...) satisfy

a ⇀ (vi0 ∧ vi1 ∧ vi2 ∧ ...) =
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ (a ⇀ vik) ∧ vik+1

∧ vik+2
∧ ...

In other words, Proposition 3.5.21 is proven.
Proof of Proposition 3.5.22 and Proposition 3.5.23. Both Proposition 3.5.22 and

Proposition 3.5.23 boil down to facts that have been proven during our proof of Propo-
sition 3.5.21 (indeed, Proposition 3.5.22 boils down to Assertion 3.5.21.2, and Propo-
sition 3.5.23 to parts (b) and (c) of Assertion 3.5.21.6).

3.5.5. Properties of ∧
∞
2
,m
V

There is an easy way to define a grading on ∧
∞
2
,m
V . To do it, we notice that:

Proposition 3.5.24. For every m-degression (i0, i1, i2, ...), the sequence
(ik + k −m)k≥0 is a partition (i. e., a nonincreasing sequence of nonnegative in-
tegers such that all but finitely many of its elements are 0). In particular, every
integer k ≥ 0 satisfies ik + k − m ≥ 0, and only finitely many integers k ≥ 0 sat-
isfy ik + k − m 6= 0. Hence, the sum

∑
k≥0

(ik + k −m) is well-defined and equals a

nonnegative integer.

The proof of this is very easy and left to the reader. As a consequence of this
proposition, we have:

Definition 3.5.25. Let m ∈ Z. We define a grading on the C-vector space ∧
∞
2
,m
V

by setting(
∧
∞
2
,m
V

)
[d] =

〈
vi0 ∧ vi1 ∧ vi2 ∧ ... | (i0, i1, i2, ...) is an m-degression

satisfying
∑
k≥0

(ik + k −m) = −d

〉
for every d ∈ Z .

In other words, we define a grading on the C-vector space ∧
∞
2
,m
V by setting

deg (vi0 ∧ vi1 ∧ vi2 ∧ ...) = −
∑
k

(ik + k −m)
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for every m-degression (i0, i1, i2, ...).

This grading satisfies ∧
∞
2
,m
V =

⊕
d≤0

(
∧
∞
2
,m
V

)
[d] (since Proposition 3.5.24

yields that
∑
k≥0

(ik + k −m) is nonnegative for every m-degression (i0, i1, i2, ...)). In

other words, ∧
∞
2
,m
V is nonpositively graded.

Note that, for every given m ∈ Z, the m-degressions are in a 1-to-1 correspondence
with the partitions. This correspondence maps any m-degression (i0, i1, i2, ...) to the
sequence (ik + k −m)k≥0 (this sequence is a partition due to Proposition 3.5.24). The
degree deg (vi0 ∧ vi1 ∧ vi2 ∧ ...) of the semiinfinite wedge vi0 ∧ vi1 ∧ vi2 ∧ ... equals minus
the sum of the parts of this partition.

It is easy to check that:

Proposition 3.5.26. Let m ∈ Z. With the grading defined in Definition 3.5.25, the

gl∞-module ∧
∞
2
,m
V is graded (where the grading on gl∞ is the one from Definition

3.5.7).

Let us say more about this module:

Proposition 3.5.27. Let m ∈ Z. The graded gl∞-module ∧
∞
2
,m
V is the irreducible

highest-weight representation Lωm of gl∞ with highest weight ωm = (..., 1, 1, 0, 0, ...),
where the last 1 is on place m and the first 0 is on place m + 1. Moreover, Lωm is
unitary.

Before we prove this, let us define the vectors that will turn out to be the highest-
weight vectors:

Definition 3.5.28. For every m ∈ Z, we denote by ψm the vector vm∧vm−1∧vm−2∧

... ∈ ∧
∞
2
,m
V . (This is well-defined since the infinite sequence (m,m− 1,m− 2, ...)

is an m-degression.)
(Let us repeat that we are no longer using the notations of Definition 3.4.3, so

that this ψm has nothing to do with the ψj from Definition 3.4.3.)

Note that ψm ∈

(
∧
∞
2
,m
V

)
[0] by the definition of the grading on ∧

∞
2
,m
V .

Proof of Proposition 3.5.27. It is easy to see that n+ · ψm = 0. (In fact, if Ei,j ∈ n+

then i < j and thus indices are replaced by smaller indices when computing Ei,j ⇀ ψm...

For an alternative proof, just use the fact that ψm ∈

(
∧
∞
2
,m
V

)
[0] and that ∧

∞
2
,m
V is

concentrated in nonpositive degrees.) Moreover, every h ∈ h satisfies hψm = ωm (h)ψm

(in fact, test at h = Ei,i). Also, ψm generates the gl∞-module ∧
∞
2
,m
V . Thus, ∧

∞
2
,m
V
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is a highest-weight representation with highest weight ωm (and highest-weight vector
ψm).

Next let us prove that it is unitary. This will yield that it is irreducible.116

The unitarity is because the form in which the wedges are orthonormal is †-invariant.
Thus, irreducible. (We used Lemma 2.9.33.) Proposition 3.5.27 is proven.

Corollary 3.5.29. For every finite sum
∑
i∈Z

kiωi with ki ∈ N, the representation

L∑
i∈Z

kiωi is unitary.

Proof. Take the module
⊗
i

L⊗kiωi
, and let v be the tensor product of their respective

highest-weight vectors. Let L be the submodule generated by v. Then, L is a highest-
weight module, and is unitary since it is a submodule of a unitary module. Hence it is
irreducible, and thus L ∼= L∑

i
kiωi , qed.

3.6. a∞

The Lie algebra gl∞ is fairly small (it doesn’t even contain the identity matrix) -
too small for several applications. Here is a larger Lie algebra with roughly similar
properties:

Definition 3.6.1. We define a∞ to be the vector space of infinite matrices with rows
and columns labeled by integers (not only positive integers) such that only finitely
many diagonals are nonzero. This is an associative algebra with 1 (due to Remark
3.6.4 (a) below), and thus, by the commutator, a Lie algebra.

We can think of the elements of a∞ as difference operators:
Consider V as the space of sequences117 with finitely many nonzero entries. One

very important endomorphism of V is defined as follows:

Definition 3.6.2. Let T : V → V be the linear map given by

(Tx)n = xn+1 for all x ∈ V and n ∈ Z.

This map T is called the shift operator. It satisfies Tvi+1 = vi for every i ∈ Z.
We can also write T in the form T =

∑
i∈Z

Ei,i+1, where the sum is infinite but makes

sense entrywise (i. e., for every (a, b) ∈ Z2, there are only finitely many i ∈ Z for
which the matrix Ei,i+1 has nonzero (a, b)-th entry).

Note that:

Proposition 3.6.3. The shift operator T is invertible. Every j ∈ Z satisfies T j =∑
i∈Z

Ei,i+j.

116We could also show the irreducibility more directly, by showing that every sum of wedges can be
used to get back ψm.

117In the following, “sequences” means “sequences labeled by integers”.
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A difference operator is an operator of the form A =
q∑
i=p

γi (n)T i, where p and q are

some integers, and γi : Z → C are some functions.118 Then, a∞ is the algebra of all
such operators. (These operators also act on the space of all sequences, not only on
the space of sequences with finitely many nonzero entries.) In particular, T ∈ a∞, and
T i ∈ a∞ for every i ∈ Z.

Note that a∞ is no longer countably dimensional. The family (Ei,j)(i,j)∈Z2 is no longer
a vector space basis, but it is a topological basis in an appropriately defined topology.

Let us make a remark on multiplication of infinite matrices:

Remark 3.6.4. (a) For every A ∈ a∞ and B ∈ a∞, the matrix AB is well-defined
and lies in a∞.

(b) For every A ∈ a∞ and B ∈ gl∞, the matrix AB is well-defined and lies in gl∞.

Proof of Remark 3.6.4. (a) Let A ∈ a∞ and B ∈ a∞. Write the matrix A in the
form (ai,j)(i,j)∈Z2 , and write the matrix B in the form (bi,j)(i,j)∈Z2 .

Since A ∈ a∞, only finitely many diagonals of A are nonzero. Hence, there exists a
finite subset A of Z such that

for every u ∈ Z�A, the u-th diagonal of A is zero. (127)

Consider this A.
Since B ∈ a∞, only finitely many diagonals of B are nonzero. Hence, there exists a

finite subset B of Z such that

for every v ∈ Z�B, the v-th diagonal of B is zero. (128)

Consider this B.
For every i ∈ Z and j ∈ Z, the infinite sum

∑
k∈Z

ai,kbk,j has a well-defined value,

because all but finitely many addends of this sum are zero119. Hence, the matrix AB
is well-defined (because the matrix AB is defined as the matrix whose (i, j)-th entry is∑
k∈Z

ai,kbk,j for all (i, j) ∈ Z2), and satisfies

((i, j) -th entry of the matrix AB) =
∑
k∈Z

ai,kbk,j

118The sum
q∑
i=p

γi (n)T i has to be understood as the linear map X : V → V given by

(Xx)n =

q∑
i=p

γi (n)xn+i for all x ∈ V and n ∈ Z.

119Proof. Every k ∈ Z such that k − i /∈ A satisfies ai,k = 0 (because k − i /∈ A, so that k − i ∈ Z�A,
and thus (127) (applied to u = k− i) yields that the (k − i)-th diagonal of A is zero, and thus ai,k
(being an entry in this diagonal) must be = 0). Hence, every k ∈ Z such that k − i /∈ A satisfies
ai,kbk,j = 0bk,j = 0. Since A is a finite set, all but finitely many k ∈ Z satisfy k − i /∈ A, and thus
all but finitely many k ∈ Z satisfy ai,kbk,j = 0 (because every k ∈ Z such that k − i /∈ A satisfies
ai,kbk,j = 0). In other words, all but finitely many addends of the sum

∑
k∈Z

ai,kbk,j are zero, qed.
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for any i ∈ Z and j ∈ Z.
Now we must show that AB ∈ a∞.
Let A + B denote the set {a+ b | (a, b) ∈ A×B}. Clearly, A + B is a finite set

(since A and B are finite). Now, for any i ∈ Z and j ∈ Z satisfying j − i /∈ A + B,
every k ∈ Z satisfies ai,kbk,j = 0 120. Thus, for any i ∈ Z and j ∈ Z satisfying
j − i /∈ A + B, we have

((i, j) -th entry of the matrix AB) =
∑
k∈Z

ai,kbk,j︸ ︷︷ ︸
=0

(since j−i/∈A+B)

=
∑
k∈Z

0 = 0.

Thus, for every integer w /∈ A + B, and any i ∈ Z and j ∈ Z satisfying j − i = w,
we have ((i, j) -th entry of the matrix AB) = 0 (since j − i = w /∈ A + B). In other
words, for every integer w /∈ A + B, the w-th diagonal of AB is zero. Since A + B is
a finite set, this yields that all but finitely many diagonals of AB are zero. In other
words, only finitely many diagonals of AB are nonzero. In other words, AB ∈ a∞.
This proves Remark 3.6.4 (a).

(b) We know from Remark 3.6.4 (a) that the matrix AB is well-defined (since
B ∈ gl∞ ⊆ a∞).

The matrix B lies in gl∞ and thus has only finitely many nonzero entries. Hence, B
has only finitely many nonzero rows. In other words, there exists a finite subset R of
Z such that

for every x ∈ Z�R, the x-th row of B is zero. (129)

Also, B has only finitely many nonzero entries, and thus only finitely many nonzero
columns. In other words, there exists a finite subset C of Z such that

for every y ∈ Z�C, the y-th column of B is zero. (130)

Define A as in the proof of Remark 3.6.4 (a). Let R−A denote the set {r − a | (r, a) ∈ R× A}.
Clearly, R−A is a finite set (since A and R are finite), and thus (R− A)×C is a finite set
(since C, too, is finite). Now, for any i ∈ Z and j ∈ Z satisfying (i, j) /∈ (R− A)×C, we
have

∑
k∈Z

ai,kbk,j = 0 121. Hence, for any i ∈ Z and j ∈ Z satisfying (i, j) /∈ (R− A)×C,

120Proof. Let i ∈ Z and j ∈ Z satisfy j − i /∈ A + B, and let k ∈ Z. Assume that ai,kbk,j 6= 0. Then,
ai,k 6= 0 and bk,j 6= 0.

Since ai,k is an entry of the (k − i)-th diagonal of A, we see that some entry of the (k − i)-th
diagonal of A is nonzero (since ai,k 6= 0). Hence, the (k − i)-th diagonal of A is nonzero. Thus,
k− i /∈ Z�A (because otherwise, we would have k− i ∈ Z�A, so that (127) (applied to u = k− i)
would yield that the (k − i)-th diagonal of A is zero, contradicting the fact that it is nonzero), so
that k − i ∈ A.

Since bk,j is an entry of the (j − k)-th diagonal of B, we see that some entry of the (j − k)-th
diagonal of B is nonzero (since bk,j 6= 0). Hence, the (j − k)-th diagonal of B is nonzero. Thus,
j−k /∈ Z�B (because otherwise, we would have j−k ∈ Z�B, so that (128) (applied to v = j−k)
would yield that the (j − k)-th diagonal of B is zero, contradicting the fact that it is nonzero), so
that j − k ∈ B.

Now, j − i = (k − i)︸ ︷︷ ︸
∈A

+ (j − k)︸ ︷︷ ︸
∈B

∈ A + B. This contradicts j − i /∈ A + B. Thus, our assumption

that ai,kbk,j 6= 0 must have been wrong. Hence, ai,kbk,j = 0, qed.
121Proof. Let i ∈ Z and j ∈ Z be such that (i, j) /∈ (R− A)× C. Assume that

∑
k∈Z

ai,kbk,j 6= 0. Then,
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we have
((i, j) -th entry of the matrix AB) =

∑
k∈Z

ai,kbk,j = 0.

Since (R− A) × C is a finite set, this yields that all but finitely many entries of the
matrix AB are zero. In other words, AB has only finitely many nonzero entries. Thus,
AB ∈ gl∞. Remark 3.6.4 (b) is proven.

Let us make a∞ into a graded Lie algebra:

Definition 3.6.5. For every i ∈ Z, let ai∞ be the subspace of a∞ which consists of
matrices which have nonzero entries only on the i-th diagonal. (The i-th diagonal
consists of the entries in the (α, β)-th places with β − α = i.)

Then, a∞ =
⊕
i∈Z

ai∞, and this makes a∞ into a Z-graded Lie algebra. Note that a0
∞

is abelian. Let a∞ = n− ⊕ h ⊕ n+ be the triangular decomposition of a∞, so that
the subspace n− =

⊕
i<0

ai∞ is the space of all strictly lower-triangular matrices in a∞,

the subspace h = a0
∞ is the space of all diagonal matrices in a∞, and the subspace

n+ =
⊕
i>0

ai∞ is the space of all strictly upper-triangular matrices in a∞.

Note that this was completely analogous to Definition 3.5.7.

3.7. a∞ and its action on ∧
∞
2
,m
V

Definition 3.7.1. Let m ∈ Z. Let ρ : gl∞ → End

(
∧
∞
2
,m
V

)
be the representation

of gl∞ on ∧
∞
2
,m
V defined in Definition 3.5.20.

there exists some k ∈ Z such that ai,kbk,j 6= 0. Consider this k.
Since ai,kbk,j 6= 0, we have ai,k 6= 0 and bk,j 6= 0.
Since ai,k is an entry of the (k − i)-th diagonal of A, we see that some entry of the (k − i)-th

diagonal of A is nonzero (since ai,k 6= 0). Hence, the (k − i)-th diagonal of A is nonzero. Thus,
k− i /∈ Z�A (because otherwise, we would have k− i ∈ Z�A, so that (127) (applied to u = k− i)
would yield that the (k − i)-th diagonal of A is zero, contradicting the fact that it is nonzero), so
that k − i ∈ A.

Since bk,j is an entry of the k-th row of B, we see that some entry of the k-th row of B is nonzero
(since bk,j 6= 0). Hence, the k-th row of B is nonzero. Thus, k /∈ Z�R (because otherwise, we
would have k ∈ Z�R, so that (129) (applied to x = k) would yield that the k-th row of B is zero,
contradicting the fact that it is nonzero), so that k ∈ R.

Thus, i = k︸︷︷︸
∈R

− (k − i)︸ ︷︷ ︸
∈A

∈ R− A.

Since bk,j is an entry of the j-th column of B, we see that some entry of the j-th column of B
is nonzero (since bk,j 6= 0). Hence, the j-th column of B is nonzero. Thus, j /∈ Z�C (because
otherwise, we would have j ∈ Z�C, so that (130) (applied to y = j) would yield that the j-th
column of B is zero, contradicting the fact that it is nonzero), so that j ∈ C. Combined with
i ∈ R − A, this yields (i, j) ∈ (R− A) × C, contradicting (i, j) /∈ (R− A) × C. Hence, the
assumption that

∑
k∈Z

ai,kbk,j 6= 0 must have been wrong. In other words,
∑
k∈Z

ai,kbk,j = 0, qed.
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The following question poses itself naturally now: Can we extend this representation
ρ to a representation of a∞ in a reasonable way?

This question depends on what we mean by “reasonable”. One way to concretize
this is by noticing that a∞ =

⊕
i∈Z

ai∞, where ai∞ is the space of all matrices with nonzero

entries only on the i-th diagonal. For each i ∈ Z, the vector space ai∞ can be given
the product topology (i. e., the topology in which a net (sz)z∈Z of matrices converges
to a matrix s if and only if for any (m,n) ∈ Z2 satisfying n −m = i, the net of the
(m,n)-th entries of the matrices sz converge to the (m,n)-th entry of s in the discrete

topology). Then, gli∞ in dense in ai∞ for every i ∈ Z. We can also make ∧
∞
2
,m
V into

a topological space by using the discrete topology. Our question can now be stated as
follows: Can we extend ρ by continuity to a representation of a∞ (where “continuous”
means “continuous on each ai∞”, since we have not defined a topology on the whole
space a∞) ?

Answer: Almost, but not precisely. We cannot make a∞ act on ∧
∞
2
,m
V in such a

way that its action extends ρ continuously, but we can make a central extension of a∞

act on ∧
∞
2
,m
V in a way that only slightly differs from ρ.

Let us first see what goes wrong if we try to find an extension of ρ to a∞ by continuity:
For i 6= 0, a typical element X ∈ ai∞ is of the form X =

∑
j∈Z

zjEj,j+i with zj ∈ C.

Now we can define ρ (X) v =
∑
j∈Z

zjρ (Ej,j+i) v for every v ∈ ∧
∞
2
,m
V ; this sum has only

finitely many nonzero addends122 and thus makes sense.

But when i = 0, we run into a problem with this approach: ρ

(∑
j∈Z

zjEj,j

)
v =∑

j∈Z
zjρ (Ej,j) v is an infinite sum which may very well have infinitely many nonzero

122Proof. We must prove that, for every v ∈ ∧
∞
2
,m
V , the sum

∑
j∈Z

zjρ (Ej,j+i) v has only finitely many

nonzero addends. It is clearly enough to prove this in the case when v is an elementary semiinfinite
wedge. So let us WLOG assume that v is an elementary semiinfinite wedge. In other words, WLOG
assume that v = vi0 ∧vi1 ∧vi2 ∧ ... for some m-degression (i0, i1, i2, ...). Consider this m-degression.
By the definition of an m-degression, every sufficiently high k ∈ N satisfies ik + k = m. In other
words, there exists a K ∈ N such that every integer k ≥ K satisfies ik + k = m. Consider this K.
Then, every integer j ≤ iK appears in the m-degression (i0, i1, i2, ...).

Now, we have the following two observations:

• Every integer j > i0 − i satisfies ρ (Ej,j+i) v = 0 (because for every integer j > i0 − i, we have
j + i > i0, so that the integer j + i does not appear in the m-degression (i0, i1, i2, ...)).

• Every integer j ≤ iK satisfies ρ (Ej,j+i) v = 0 (because every integer j ≤ iK appears in the
m-degression (i0, i1, i2, ...), and because i 6= 0).

Combining these two observations, we conclude that every sufficiently large integer j satisfies
ρ (Ej,j+i) v = 0 and that every sufficiently small integer j satisfies ρ (Ej,j+i) v = 0. Hence, only
finitely many integers j satisfy ρ (Ej,j+i) v 6= 0. Thus, the sum

∑
j∈Z

zjρ (Ej,j+i) v has only finitely

many nonzero addends, qed.
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addends, and thus makes no sense.
To fix this problem, we define a map ρ̂ which will be a “small” modification of ρ:

Definition 3.7.2. Define a linear map ρ̂ : a∞ → End

(
∧
∞
2
,m
V

)
by

ρ̂
(

(ai,j)(i,j)∈Z2

)
=

∑
(i,j)∈Z2

ai,j

{
ρ (Ei,j) , unless i = j and i ≤ 0;
ρ (Ei,j)− 1, if i = j and i ≤ 0

(131)

for every (ai,j)(i,j)∈Z2 ∈ a∞

(where 1 means the endomorphism id of ∧
∞
2
,m
V ). Here, the infi-

nite sum
∑

(i,j)∈Z2

ai,j

{
ρ (Ei,j) , unless i = j and i ≤ 0;
ρ (Ei,j)− 1, if i = j and i ≤ 0

is well-defined as

an endomorphism of ∧
∞
2
,m
V , because for every v ∈ ∧

∞
2
,m
V , the

sum
∑

(i,j)∈Z2

ai,j

{
ρ (Ei,j) , unless i = j and i ≤ 0;
ρ (Ei,j)− 1, if i = j and i ≤ 0

v has only finitely many

nonzero addends (as Proposition 3.7.4 shows).

The map ρ̂ just defined does not extend the map ρ, but is the unique continuous (in
the sense explained above) extension of the map ρ̂ |gl∞ to a∞ as a linear map. The map
ρ̂ |gl∞ is, in a certain sense, a “very close approximation to ρ”, as can be seen from the
following remark:

Remark 3.7.3. From Definition 3.7.2, it follows that

ρ̂ (Ei,j) =

{
ρ (Ei,j) , unless i = j and i ≤ 0;
ρ (Ei,j)− 1, if i = j and i ≤ 0

for every (i, j) ∈ Z2.

(132)

We are not done yet: This map ρ̂ is not a representation of a∞. We will circumvent
this by defining a central extension a∞ of a∞ for which the map ρ̂ (once suitably
extended) will be a representation. But first, let us show a lemma that we owe for the
definition of ρ̂:

Proposition 3.7.4. Let (ai,j)(i,j)∈Z2 ∈ a∞ and v ∈ ∧
∞
2
,m
V . Then, the sum

∑
(i,j)∈Z2

ai,j

{
ρ (Ei,j) , unless i = j and i ≤ 0;
ρ (Ei,j)− 1, if i = j and i ≤ 0

v

has only finitely many nonzero addends.

Proof of Proposition 3.7.4. We know that v is an element of ∧
∞
2
,m
V . Hence, v is a

C-linear combination of elements of the form vi0∧vi1∧vi2∧... with (i0, i1, i2, ...) being an
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m-degression (since (vi0 ∧ vi1 ∧ vi2 ∧ ...)(i0,i1,i2,...) is an m-degression is a basis of ∧
∞
2
,m
V ).

Hence, we can WLOG assume that v is an element of the form vi0 ∧ vi1 ∧ vi2 ∧ ... with
(i0, i1, i2, ...) being an m-degression (because the claim of Proposition 3.7.4 is clearly
linear in v). Assume this. Then, v = vi0∧vi1∧vi2∧... for somem-degression (i0, i1, i2, ...).
Consider this m-degression (i0, i1, i2, ...). By the definition of an m-degression, every
sufficiently high k ∈ N satisfies ik + k = m. In other words, there exists a K ∈ N such
that every integer k ≥ K satisfies ik + k = m. Consider this K. Then, every integer
which is less or equal to iK appears in the m-degression (i0, i1, i2, ...).

For every (i, j) ∈ Z2, let ri,j be the map

{
ρ (Ei,j) , unless i = j and i ≤ 0;
ρ (Ei,j)− 1, if i = j and i ≤ 0

∈

End

(
∧
∞
2
,m
V

)
. Then, the sum

∑
(i,j)∈Z2

ai,j

{
ρ (Ei,j) , unless i = j and i ≤ 0;
ρ (Ei,j)− 1, if i = j and i ≤ 0

v

clearly rewrites as
∑

(i,j)∈Z2

ai,jri,jv. Hence, in order to prove Proposition 3.7.4, we only

need to prove that the sum
∑

(i,j)∈Z2

ai,jri,jv has only finitely many nonzero addends.

Since (ai,j)(i,j)∈Z2 ∈ a∞, only finitely many diagonals of the matrix (ai,j)(i,j)∈Z2 are
nonzero. In other words, there exists an M ∈ N such that(

the m-th diagonal of the matrix (ai,j)(i,j)∈Z2 is zero for every m ∈ Z such that |m| ≥M
)
.

(133)
Consider this M .

Now, we have the following three observations:

• Every (i, j) ∈ Z2 such that j > max {i0, 0} satisfies ri,jv = 0 123 and thus
ai,j ri,jv︸︷︷︸

=0

= 0.

• Every (i, j) ∈ Z2 such that i ≤ min {iK , 0} satisfies ri,jv = 0 124 and thus
ai,j ri,jv︸︷︷︸

=0

= 0.

123Proof. Let (i, j) ∈ Z2 be such that j > max {i0, 0}. Then, j > i0 and j > 0.
Since j > i0, the integer j does not appear in the m-degression (i0, i1, i2, ...). Hence,

ρ (Ei,j) (vi0 ∧ vi1 ∧ vi2 ∧ ...) = 0. Since vi0 ∧ vi1 ∧ vi2 ∧ ... = v, this rewrites as ρ (Ei,j) v = 0.
Since j > 0, we cannot have i = j and i ≤ 0. Now, ri,j ={
ρ (Ei,j) , unless i = j and i ≤ 0;
ρ (Ei,j)− 1, if i = j and i ≤ 0

= ρ (Ei,j) (since we cannot have i = j and i ≤ 0),

so that ri,jv = ρ (Ei,j) v = 0, qed.
124Proof. Let (i, j) ∈ Z2 be such that i ≤ min {iK , 0}. Then, i ≤ iK and i ≤ 0.

Since i ≤ iK , the integer i appears in the m-degression (i0, i1, i2, ...) (because every integer which
is less or equal to iK appears in the m-degression (i0, i1, i2, ...)). We now must be in one of the
following two cases:

Case 1: We have i 6= j.
Case 2: We have i = j.
Let us first consider Case 1. In this case, i 6= j. Thus, ρ (Ei,j) v = 0 (because the integer i

appears in the m-degression (i0, i1, i2, ...), so that after applying ρ (Ei,j) to v = vi0 ∧ vi1 ∧ vi2 ∧ ...,
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• Every (i, j) ∈ Z2 such that |i− j| ≥M satisfies ai,j = 0 125 and thus ai,j︸︷︷︸
=0

ri,jv =

0.

Now, for any α ∈ Z and β ∈ Z, let [α, β]Z denote the set {x ∈ Z | α ≤ x ≤ β} (this
set is finite). It is easy to see that(

every (i, j) ∈ Z2 such that ai,jri,jv 6= 0 satisfies
(i, j) ∈ [min {iK , 0}+ 1,max {i0, 0}+M − 1]Z × [min {iK , 0} −M + 2,max {i0, 0}]Z

)
(134)

126. Since [min {iK , 0}+ 1,max {i0, 0}+M − 1]Z× [min {iK , 0} −M + 2,max {i0, 0}]Z
is a finite set, this shows that only finitely many (i, j) ∈ Z2 satisfy ai,jri,jv 6= 0. In
other words, the sum

∑
(i,j)∈Z2

ai,jri,jv has only finitely many nonzero addends. This

proves Proposition 3.7.4.
Our definition of ρ̂ is somewhat unwieldy, since computing ρ̂ (a) v for a matrix a ∈ a∞

and a v ∈ ∧
∞
2
,m
V using it requires writing v as a linear combination of elementary

we obtain a wedge in which vi appears twice). On the other hand, i 6= j, so that we cannot have

i = j and i ≤ 0. Now, ri,j =

{
ρ (Ei,j) , unless i = j and i ≤ 0;
ρ (Ei,j)− 1, if i = j and i ≤ 0

= ρ (Ei,j) (since we

cannot have i = j and i ≤ 0), and thus ri,jv = ρ (Ei,j) v = 0.
Now, let us consider Case 2. In this case, i = j. Thus, ri,j ={
ρ (Ei,j) , unless i = j and i ≤ 0;
ρ (Ei,j)− 1, if i = j and i ≤ 0

= ρ (Ei,j) − 1 (since i = j and i ≤ 0). Since

Ei,j = Ei,i (because j = i), this rewrites as ri,j = ρ (Ei,i) − 1. On the other hand, the integer i
appears in the m-degression (i0, i1, i2, ...), so that ρ (Ei,i) v = v. Hence, from ri,j = ρ (Ei,i) − 1,
we get ri,jv = (ρ (Ei,i)− 1) v = ρ (Ei,i) v︸ ︷︷ ︸

=v

−v = v − v = 0.

Thus, in each of the cases 1 and 2, we have proven that ri,jv = 0. Hence, ri,jv = 0 always holds,
qed.

125Proof. Let (u, v) ∈ Z2 be such that |u− v| ≥M . Then, since |v − u| = |u− v| ≥M , the (v − u)-th
diagonal of the matrix (ai,j)(i,j)∈Z2 is zero (by (133), applied to m = v − u), and thus au,v = 0

(since au,v is an entry on the (v − u)-th diagonal of the matrix (ai,j)(i,j)∈Z2). We thus have shown

that every (u, v) ∈ Z2 such that |u− v| ≥ M satisfies au,v = 0. Renaming (u, v) as (i, j) in this
fact, we obtain: Every (i, j) ∈ Z2 such that |i− j| ≥M satisfies ai,j = 0, qed.

126Proof of (134): Let (i, j) ∈ Z2 be such that ai,jri,jv 6= 0. Then, we cannot have j > max {i0, 0}
(since every (i, j) ∈ Z2 such that j > max {i0, 0} satisfies ai,jri,jv = 0, whereas we have
ai,jri,jv 6= 0). In other words, j ≤ max {i0, 0}. Also, we cannot have i ≤ min {iK , 0} (since every
(i, j) ∈ Z2 such that i ≤ min {iK , 0} satisfies ai,jri,jv = 0, whereas we have ai,jri,jv 6= 0). Thus,
we have i > min {iK , 0}, so that i ≥ min {iK , 0}+ 1 (since i and min {iK , 0} are integers). Finally,
we cannot have |i− j| ≥ M (since every (i, j) ∈ Z2 such that |i− j| ≥ M satisfies ai,jri,jv = 0,
whereas we have ai,jri,jv 6= 0). Thus, we have |i− j| < M , so that |i− j| ≤M−1 (since |i− j| and
M are integers). Thus, i−j ≤ |i− j| ≤M−1. Hence, i ≤ j︸︷︷︸

≤max{i0,0}

+M−1 ≤ max {i0, 0}+M−1.

Combined with i ≥ min {iK , 0} + 1, this yields i ∈ [min {iK , 0}+ 1,max {i0, 0}+M − 1]Z.
From i − j ≤ M − 1, we also obtain j ≥ i︸︷︷︸

≥min{iK ,0}+1

− (M − 1) ≥ min {iK , 0} + 1 −

(M − 1) = min {iK , 0} − M + 2. Combined with j ≤ max {i0, 0}, this yields j ∈
[min {iK , 0} −M + 2,max {i0, 0}]Z. Combined with i ∈ [min {iK , 0}+ 1,max {i0, 0}+M − 1]Z,
this yields (i, j) ∈ [min {iK , 0}+ 1,max {i0, 0}+M − 1]Z × [min {iK , 0} −M + 2,max {i0, 0}]Z.
This proves (134).
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semiinfinite wedges. However, since our ρ̂ only slightly differs from ρ, there are many
matrices a for which ρ̂ (a) behaves exactly as ρ (a) would if we could extend ρ to a∞:

Proposition 3.7.5. Let m ∈ Z. Let b0, b1, b2, ... be vectors in V which satisfy

bi = vm−i for sufficiently large i.

Let a ∈ a∞. Assume that, for every integer i ≤ 0, the (i, i)-th entry of a is 0. Then,

(ρ̂ (a)) (b0 ∧ b1 ∧ b2 ∧ ...) =
∑
k≥0

b0 ∧ b1 ∧ ... ∧ bk−1 ∧ (a ⇀ bk) ∧ bk+1 ∧ bk+2 ∧ ....

In particular, the infinite sum
∑
k≥0

b0 ∧ b1 ∧ ... ∧ bk−1 ∧ (a ⇀ bk) ∧ bk+1 ∧ bk+2 ∧ ... is

well-defined (i. e., all but finitely many integers k ≥ 0 satisfy b0 ∧ b1 ∧ ... ∧ bk−1 ∧
(a ⇀ bk) ∧ bk+1 ∧ bk+2 ∧ ... = 0).

Proof of Proposition 3.7.5. For every (i, j) ∈ Z2, let ai,j be the (i, j)-th entry of the
matrix a. Then, a = (ai,j)(i,j)∈Z2 =

∑
(i,j)∈Z2

ai,jEi,j. But every (i, j) ∈ Z2 such that i = j

and i ≤ 0 satisfies ai,j = ai,i = 0 (because we assumed that, for every integer i ≤ 0,
the (i, i)-th entry of a is 0). Thus,

∑
(i,j)∈Z2;

i=j and i≤0

ai,j︸︷︷︸
=0

Ei,j =
∑

(i,j)∈Z2;
i=j and i≤0

0Ei,j = 0, so that

a =
∑

(i,j)∈Z2

ai,jEi,j =
∑

(i,j)∈Z2;
i=j and i≤0

0Ei,j

︸ ︷︷ ︸
=0

+
∑

(i,j)∈Z2;
not (i=j and i≤0)

ai,jEi,j =
∑

(i,j)∈Z2;
not (i=j and i≤0)

ai,jEi,j.

But from a = (ai,j)(i,j)∈Z2 , we have

ρ̂ (a) = ρ̂
(

(ai,j)(i,j)∈Z2

)
=

∑
(i,j)∈Z2

ai,j

{
ρ (Ei,j) , unless i = j and i ≤ 0;
ρ (Ei,j)− 1, if i = j and i ≤ 0

(by (131))

=
∑

(i,j)∈Z2;
i=j and i≤0

ai,j︸︷︷︸
=0

{
ρ (Ei,j) , unless i = j and i ≤ 0;
ρ (Ei,j)− 1, if i = j and i ≤ 0

+
∑

(i,j)∈Z2;
not (i=j and i≤0)

ai,j

{
ρ (Ei,j) , unless i = j and i ≤ 0;
ρ (Ei,j)− 1, if i = j and i ≤ 0︸ ︷︷ ︸

=ρ(Ei,j)
(since we do not have (i=j and i≤0))

=
∑

(i,j)∈Z2;
i=j and i≤0

0

{
ρ (Ei,j) , unless i = j and i ≤ 0;
ρ (Ei,j)− 1, if i = j and i ≤ 0

︸ ︷︷ ︸
=0

+
∑

(i,j)∈Z2;
not (i=j and i≤0)

ai,jρ (Ei,j)

=
∑

(i,j)∈Z2;
not (i=j and i≤0)

ai,jρ (Ei,j) ,
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so that

(ρ̂ (a)) (b0 ∧ b1 ∧ b2 ∧ ...)

=
∑

(i,j)∈Z2;
not (i=j and i≤0)

ai,j ρ (Ei,j) (b0 ∧ b1 ∧ b2 ∧ ...)︸ ︷︷ ︸
=Ei,j⇀(b0∧b1∧b2∧...)

=
∑
k≥0

b0∧b1∧...∧bk−1∧(Ei,j⇀bk)∧bk+1∧bk+2∧...

(by Proposition 3.5.22, applied to Ei,j instead of a)

=
∑

(i,j)∈Z2;
not (i=j and i≤0)

ai,j
∑
k≥0

b0 ∧ b1 ∧ ... ∧ bk−1 ∧ (Ei,j ⇀ bk) ∧ bk+1 ∧ bk+2 ∧ ...

=
∑
k≥0

b0 ∧ b1 ∧ ... ∧ bk−1 ∧

 ∑
(i,j)∈Z2;

not (i=j and i≤0)

ai,j (Ei,j ⇀ bk)


︸ ︷︷ ︸
=

 ∑
(i,j)∈Z2;

not (i=j and i≤0)

ai,jEi,j

⇀bk=a⇀bk

(since
∑

(i,j)∈Z2;
not (i=j and i≤0)

ai,jEi,j=a)

∧bk+1 ∧ bk+2 ∧ ...

 here, we interchanged the summation signs; this is allowed because (as the reader
can check) all but finitely many ((i, j) , k) ∈ Z2 × Z satisfying k ≥ 0 and not

(i = j and i ≤ 0) satisfy ai,j · b0 ∧ b1 ∧ ... ∧ bk−1 ∧ (Ei,j ⇀ bk) ∧ bk+1 ∧ bk+2 ∧ ... = 0


=
∑
k≥0

b0 ∧ b1 ∧ ... ∧ bk−1 ∧ (a ⇀ bk) ∧ bk+1 ∧ bk+2 ∧ ...

(and en passant, this argument has shown that the infinite sum
∑
k≥0

b0 ∧ b1 ∧ ...∧ bk−1 ∧

(a ⇀ bk) ∧ bk+1 ∧ bk+2 ∧ ... is well-defined). This proves Proposition 3.7.5.
The issue that remains is that ρ̂ is not a representation of a∞. To mitigate this, we

will define a central extension of a∞ by the so-called Japanese cocycle. Let us define
this cocycle first:

Theorem 3.7.6. For any A ∈ a∞ and B ∈ a∞, we have ρ̂ ([A,B])− [ρ̂ (A) , ρ̂ (B)] =
α (A,B) where α (A,B) is a scalar depending on A and B (and where we identify any
scalar λ ∈ C with the matrix λ · id ∈ a∞). This α (A,B) can be computed as follows:

Write A and B as block matrices A =

(
A11 A12

A21 A22

)
and B =

(
B11 B12

B21 B22

)
, where

the blocks are separated as follows:
- The left blocks contain the j-th columns for all j ≤ 0; the right blocks contain

the j-th columns for all j > 0.
- The upper blocks contain the i-th rows for all i ≤ 0; the lower blocks contain

the i-th rows for all i > 0.
Then, α (A,B) = Tr (−B12A21 + A12B21). (This trace makes sense because the

matrices A12, B21, A21, B12 have only finitely many nonzero entries.)
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Corollary 3.7.7. The bilinear map α : a∞ × a∞ → C defined in Theorem 3.7.6 is
a 2-cocycle on a∞.

We define a∞ as the 1-dimensional central extension â∞α of a∞ by C using this
cocycle α (see Definition 1.5.1 for what this means).

Definition 3.7.8. The 2-cocycle α : a∞ × a∞ → C introduced in Corollary 3.7.7 is
called the Japanese cocycle.

The proofs of Theorem 3.7.6 and Corollary 3.7.7 are a homework problem. A few
remarks on the Japanese cocycle are in order. It can be explicitly computed by the
formula

α
(

(ai,j)(i,j)∈Z2 , (bi,j)(i,j)∈Z2

)
= −

∑
i≤0;
j>0

bi,jaj,i +
∑
i≤0;
j>0

ai,jbj,i = −
∑
i>0;
j≤0

ai,jbj,i +
∑
i≤0;
j>0

ai,jbj,i

=
∑

(i,j)∈Z2

ai,jbj,i ([j > 0]− [i > 0]) for every (ai,j)(i,j)∈Z2 , (bi,j)(i,j)∈Z2 ∈ a∞

where we are using the Iverson bracket notation127. The cocycle α owes its name
“Japanese cocycle” to the fact that it (first?) appeared in the work of the Tokyo
mathematical physicists Date, Jimbo, Kashiwara and Miwa128.

We are going to prove soon (Proposition 3.7.13 and Corollary 3.7.12) that α is a
nontrivial 2-cocycle, but its restriction to gl∞ is trivial. This is a strange situation
(given that gl∞ is a dense Lie subalgebra of a∞ with respect to a reasonably defined
topology), but we will later see the reason for this behavior.

Theorem 3.7.9. Let us extend the linear map ρ̂ : a∞ → End

(
∧
∞
2
,m
V

)
(intro-

duced in Definition 3.7.2) to a linear map ρ̂ : a∞ → End

(
∧
∞
2
,m
V

)
by setting

ρ̂ (K) = id. (This makes sense since a∞ = a∞ ⊕ CK as vector spaces.) Then, this

map ρ̂ : a∞ → End

(
∧
∞
2
,m
V

)
is a representation of a∞.

Thus, ∧
∞
2
,m
V becomes an a∞-module.

127This is the notation [S] for the truth value of any logical statement S (that is, [S] denotes the

integer

{
1, if S is true;

0, if S is false
).

128More precisely, it is the skew-symmetric bilinear form c in the following paper:

• Etsuro Date, Michio Jimbo, Masaki Kashiwara, Tetuji Miwa, Transformation Groups for Soli-
ton Equations – Euclidean Lie Algebras and Reduction of the KP Hierarchy, Publ. RIMS,
Kyoto Univ. 18 (1982), pp. 1077–1110.

In this paper, the Lie algebras that we are denoting by a∞ and a∞ are called pgl (∞) and gl (∞),
respectively.
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Definition 3.7.10. Since a∞ = a∞ ⊕ CK as vector space, we can define a grading
on a∞ as the direct sum of the grading on a∞ (which was defined in Definition 3.6.5)
and the trivial grading on CK (that is the grading which puts K in degree 0). This is
easily seen to make a∞ a Z-graded Lie algebra. We will consider a∞ to be Z-graded
in this way.

Proposition 3.7.11. Let m ∈ Z. With the grading defined in Definition 3.7.10, the

a∞-module ∧
∞
2
,m
V is graded.

Corollary 3.7.12. The restriction of α to gl∞ × gl∞ is a 2-coboundary.

Proof of Corollary 3.7.12. Let J be the block matrix

(
0 0
0 −I∞

)
∈ a∞, where

the blocks are separated in the same way as in Theorem 3.7.6. Define a linear map
f : gl∞ → C by

(f (A) = Tr (JA) for any A ∈ gl∞)
129. Then, any A ∈ gl∞ and B ∈ gl∞ satisfy α (A,B) = f ([A,B]). This is because
(for any A ∈ gl∞ and B ∈ gl∞) we can write the matrix [A,B] in the form [A,B] =(
∗ ∗
∗ [A22, B22] + A21B12 −B21A12

)
(where asterisks mean blocks which we don’t care

about), so that J [A,B] =

(
0 0
∗ − ([A22, B22] + A21B12 −B21A12)

)
and thus

Tr (J [A,B])

= −Tr ([A22, B22] + A21B12 −B21A12) = −Tr [A22, B22]︸ ︷︷ ︸
=0

−Tr (A21B12)︸ ︷︷ ︸
=Tr(B12A21)

+ Tr (B21A12)︸ ︷︷ ︸
=Tr(A12B21)

= −Tr (B12A21) + Tr (A12B21) = Tr (−B12A21 + A12B21) = α (A,B) .

The proof of Corollary 3.7.12 is thus finished.
But note that this proof does not extend to a∞, because f does not continuously

extend to a∞ (for any reasonable notion of continuity).

Proposition 3.7.13. The 2-cocycle α itself is not a 2-coboundary.

Proof of Proposition 3.7.13. Let T be the shift operator defined above. The span
〈T j | j ∈ Z〉 is an abelian Lie subalgebra of a∞ (isomorphic to the abelian Lie algebra
C [t, t−1], and to the quotient A of the Heisenberg algebra A by its central subalgebra
〈K〉). Any 2-coboundary must become zero when restricted onto an abelian Lie sub-
algebra. But the 2-cocycle α, restricted onto the span 〈T j | j ∈ Z〉, does not become
0, since

α
(
T i, T j

)
=

{
0, if i 6= −j;
i, if i = −j for all i, j ∈ Z.

Proposition 3.7.13 is thus proven.
In this proof, we have constructed an embedding A → a∞ which sends aj to T j for

every j ∈ Z. This embedding is crucial to what we are going to do, so let us give it a
formal definition:

129Note that Tr (JA) is well-defined for every A ∈ gl∞, since Remark 3.6.4 (b) (applied to J and A
instead of A and B) yields that JA ∈ gl∞.
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Definition 3.7.14. The map

A → a∞, aj 7→ T j

(where A is the quotient of the Heisenberg algebra A by its central subalgebra 〈K〉)
is an embedding of Lie algebras. We will regard this embedding as an inclusion, and
thus we will regard A as a Lie subalgebra of a∞.

This embedding is easily seen to give rise to an embedding A → a∞ of Lie algebras
which sends K to K and sends aj to T j for every j ∈ Z. This embedding will also
be regarded as an inclusion, so that A will be considered as a Lie subalgebra of a∞.

It is now easy to see:

Proposition 3.7.15. Extend our map ρ̂ : a∞ → End

(
∧
∞
2
,m
V

)
to a map a∞ →

End

(
∧
∞
2
,m
V

)
, also denoted by ρ̂, by setting ρ̂ (K) = id. Then, this map ρ̂ : a∞ →

End

(
∧
∞
2
,m
V

)
is a Lie algebra homomorphism, i. e., it makes ∧

∞
2
,m
V into an

a∞-module. The element K of a∞ acts as id on this module.
By means of the embedding A → a∞, this a∞-module gives rise to an A-module

∧
∞
2
,m
V , on which K acts as id.

In Proposition 3.5.27, we identified ∧
∞
2
,m
V as an irreducible highest-weight gl∞-

module; similarly, we can identify it as an irreducible highest-weight a∞-module:

Proposition 3.7.16. Let m ∈ Z. Let ωm be the C-linear map a∞ [0] → C
which sends every infinite diagonal matrix diag (..., d−2, d−1, d0, d1, d2, ...) ∈ a∞ to

m∑
j=1

dj, if m ≥ 0;

−
0∑

j=m+1

dj, if m < 0
, and sends K to 1. Then, the graded a∞-module

∧
∞
2
,m
V is the irreducible highest-weight representation Lωm of a∞ with highest

weight Lωm . Moreover, Lωm is unitary.

Remark 3.7.17. Note the analogy between the weight ωm in Proposition 3.7.16 and
the weight ωm in Proposition 3.5.27: The weight ωm in Proposition 3.5.27 sends every

diagonal matrix diag (..., d−2, d−1, d0, d1, d2, ...) ∈ gl∞ to
m∑

j=−∞
dj. Note that this sum

m∑
j=−∞

dj is well-defined (because for a diagonal matrix diag (..., d−2, d−1, d0, d1, d2, ...)

to lie in gl∞, it has to satisfy dj = 0 for all but finitely many j ∈ Z).

In analogy to Corollary 3.5.29, we can also show:
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Corollary 3.7.18. For every finite sum
∑
i∈Z

kiωi with ki ∈ N, the representation

L∑
i∈Z

kiωi of a∞ is unitary.

3.8. Virasoro actions on ∧
∞
2
,m
V

We can also embed the Virasoro algebra Vir into a∞, and not just in one way, but in
infinitely many ways depending on two parameters:

Proposition 3.8.1. Let α ∈ C and β ∈ C. Let the Vir-module Vα,β be defined as
in Proposition 2.3.2.

For every k ∈ Z, let vk = t−k+α (dt)β ∈ Vα,β. Here, for any ` ∈ Z, the term

t`+α (dt)β denotes t`tα (dt)β.
According to Proposition 2.3.2 (b), every m ∈ Z satisfies

Lmvk = (k − α− β (m+ 1)) vk−m for every k ∈ Z.

Thus, if we write Lm as a matrix with respect to the basis (vk)k∈Z of Vα,β, then this
matrix lies in a∞ (in fact, its only nonzero diagonal is the m-th one).

This defines an injective map ϕα,β : W → a∞, which sends every Lm ∈ W to
the matrix representing the action of Lm on Vα,β. This map ϕα,β is a Lie algebra
homomorphism (since the Vir-module Vα,β has central charge 0, i. e., is an W -

module). Hence, this map ϕα,β lifts to an injective map Ŵ → a∞, where Ŵ is
defined as follows: Let α̃ : a∞ × a∞ → C be the Japanese cocycle (this cocycle
has been called α in Definition 3.7.8, but here we use the letter α for something
different), and let α̃′ : W × W → C be the restriction of this Japanese cocycle
α̃ : a∞ × a∞ → C to W ×W via the map ϕα,β × ϕα,β : W ×W → a∞ × a∞. Then,

Ŵ denotes the central extension of W defined by the 2-cocycle α̃′.
But let us now compute α̃′ and Ŵ . In fact, from a straightforward calculation

(Homework Set 4 exercise 3) it follows that

α̃′ (Lm, Ln) = δn,−m

(
n3 − n

12
cβ + 2nhα,β

)
for all n,m ∈ Z,

where

cβ = −12β2 + 12β − 2 and hα,β =
1

2
α (α + 2β − 1) .

Thus, the 2-cocycle α̃′ differs from the 2-cocycle ω (defined in Theorem 1.5.2) merely

by a multiplicative factor (
cβ
2

) and a 2-coboundary (which sends every (Lm, Ln) to

δn,−m · 2nhα,β). Thus, the central extension Ŵ of W defined by the 2-cocycle α̃′ is
isomorphic (as a Lie algebra) to the central extension of W defined by the 2-cocycle
ω, that is, to the Virasoro algebra Vir. This turns the Lie algebra homomorphism
Ŵ → a∞ into a homomorphism Vir → a∞. Let us describe this homomorphism
explicitly:
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Let L̂0 be the element ϕα,β (L0) + hα,βK ∈ a∞. Then, the linear map

Vir→ a∞,

Ln 7→ ϕα,β (Ln) for n 6= 0,

L0 7→ L̂0,

C 7→ cβK

is a Lie algebra homomorphism. Denote this map by ϕα,β. By means of this ho-

momorphism, we can restrict the a∞-module ∧
∞
2
,m
V to a Vir-module. Denote this

Vir-module by ∧
∞
2
,m
Vα,β. Note that ∧

∞
2
,m
Vα,β is a Virasoro module with central

charge c = cβ. This ∧
∞
2
,m
Vα,β is called the module of semiinfinite forms. The vector

ψm = vm∧vm−1∧vm−2∧ ... (defined in Definition 3.5.28) has highest degree (namely,
0).

We have Liψm = 0 for i > 0, and we have L0ψm =
1

2
(α−m) (α + 2β − 1−m)ψm. (Proof: Homework exercise.)

Corollary 3.8.2. Let α, β ∈ C. We have a homomorphism

Mλ → ∧
∞
2
,m
Vα,β,

vλ 7→ ψm

of Virasoro modules, where

λ =

(
1

2
(α−m) (α + 2β − 1−m) ,−12β2 + 12β − 2

)
.

We will see that this is an isomorphism for generic λ. For concrete λ it is not always
one, and can have a rather complicated kernel.

3.9. The dimensions of the homogeneous components of ∧
∞
2
,m
V

Fix m ∈ Z. We already know from Definition 3.5.25 that ∧
∞
2
,m
V is a graded C-vector

space. More concretely,

∧
∞
2
,m
V =

⊕
d≥0

(
∧
∞
2
,m
V

)
[−d] ,

where every d ≥ 0 satisfies(
∧
∞
2
,m
V

)
[−d] =

〈
vi0 ∧ vi1 ∧ vi2 ∧ ... |

∑
k≥0

(ik + k −m) = d

〉
.
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We also know that the m-degressions are in a 1-to-1 correspondence with the par-
titions. This correspondence maps any m-degression (i0, i1, i2, ...) to the partition
(ik + k −m)k≥0; this is a partition of the integer

∑
k≥0

(ik + k −m). As a consequence,

for every integer d ≥ 0, the m-degressions (i0, i1, i2, ...) satisfying
∑
k≥0

(ik + k −m) = d

are in 1-to-1 correspondence with the partitions of d. Hence, for every integer d ≥ 0,
the number of all m-degressions (i0, i1, i2, ...) satisfying

∑
k≥0

(ik + k −m) = d equals the

number of the partitions of d. Thus, for every integer d ≥ 0, we have

dim

((
∧
∞
2
,m
V

)
[−d]

)

=

(
the number of m-degressions (i0, i1, i2, ...) satisfying

∑
k≥0

(ik + k −m) = d

)


since (vi0 ∧ vi1 ∧ vi2 ∧ ...)(i0,i1,i2,...) is an m-degression satisfying
∑
k≥0

(ik+k−m)=d

is a basis of

(
∧
∞
2
,m
V

)
[−d]


= (the number of partitions of d) = p (d) ,

where p is the partition function. Hence:

Proposition 3.9.1. Let m ∈ Z. Every integer d ≥ 0 satisfies

dim

((
∧
∞
2
,m
V

)
[−d]

)
= p (d), where p is the partition function. As a conse-

quence, in the ring of formal power series C [[q]], we have

∑
d≥0

dim

((
∧
∞
2
,m
V

)
[−d]

)
qd =

∑
d≥0

p (d) qd =
1

(1− q) (1− q2) (1− q3) · · ·
.

3.10. The Boson-Fermion correspondence

Proposition 3.10.1. Let m ∈ Z. Recall the vector ψm defined in Definition 3.5.28.

(a) As an A-module, ∧
∞
2
,m
V is isomorphic to the Fock module Fm. More pre-

cisely, there exists a graded A-module isomorphism σ̃m : Fm → ∧
∞
2
,m
V of A-

modules such that σ̃m (1) = ψm.

(b) As an A-module, ∧
∞
2
,m
V is isomorphic to the Fock module F̃m. More pre-

cisely, there exists a graded A-module isomorphism σm : F̃m → ∧
∞
2
,m
V of A-

modules such that σm (1) = ψm.
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Proof of Proposition 3.10.1. (a) Let us first notice that in the ring C [[q]], we have

∑
d≥0

dim

((
∧
∞
2
,m
V

)
[−d]

)
qd =

1

(1− q) (1− q2) (1− q3) · · ·
(by Proposition 3.9.1)

=
∑
n≥0

dim

 F︸︷︷︸
=Fm

(as vector spaces)

[−n]

 qn (by Definition 2.2.7)

=
∑
n≥0

dim (Fm [−n]) qn =
∑
d≥0

dim (Fm [−d]) qd.

By comparing coefficients, this yields that every integer d ≥ 0 satisfies

dim

((
∧
∞
2
,m
V

)
[−d]

)
= dim (Fm [−d]) . (135)

We have aiψm = 0 for all i > 0 (by degree considerations), and we also have Kψm =
ψm. Besides, it is easy to see that a0ψm = mψm

130.

Hence, Lemma 2.5.13 (applied to m and ∧
∞
2
,m
V instead of µ and V ) yields that

130Proof. The embedding A → a∞ sends a0 to T 0 = 1, where 1 denotes the identity matrix in a∞.
Thus, a0ψm = 1ψm. (Note that 1ψm needs not equal ψm in general, since the action of a∞ on

∧
∞
2
,m
V is not an associative algebra action, but just a Lie algebra action.) Recall that ∧

∞
2
,m
V

became an a∞-module via the map ρ̂, so that Uψm = ρ̂ (U)ψm for every U ∈ a∞. Now,

a0ψm = 1ψm =
∑
i∈Z

Ei,iψm

(
since 1 =

∑
i∈Z

Ei,i

)
=
∑
i∈Z

ρ̂ (Ei,i)︸ ︷︷ ︸
=

 ρ (Ei,i) , unless i = i and i ≤ 0;
ρ (Ei,i)− 1, if i = i and i ≤ 0

(by the definition of ρ̂)

ψm︸︷︷︸
=vm∧vm−1∧vm−2∧...

(since Uψm = ρ̂ (U)ψm for every U ∈ a∞)

=
∑
i∈Z

{
ρ (Ei,i) , unless i = i and i ≤ 0;
ρ (Ei,i)− 1, if i = i and i ≤ 0

· vm ∧ vm−1 ∧ vm−2 ∧ ...

=
∑
i∈Z;
i>0

{
ρ (Ei,i) , unless i = i and i ≤ 0;
ρ (Ei,i)− 1, if i = i and i ≤ 0︸ ︷︷ ︸

=ρ(Ei,i)

·vm ∧ vm−1 ∧ vm−2 ∧ ...

+
∑
i∈Z;
i≤0

{
ρ (Ei,i) , unless i = i and i ≤ 0;
ρ (Ei,i)− 1, if i = i and i ≤ 0︸ ︷︷ ︸

=ρ(Ei,i)−1

·vm ∧ vm−1 ∧ vm−2 ∧ ...

=
∑
i∈Z;
i>0

ρ (Ei,i) · vm ∧ vm−1 ∧ vm−2 ∧ ...+
∑
i∈Z;
i≤0

(ρ (Ei,i)− 1) · vm ∧ vm−1 ∧ vm−2 ∧ ....

Now, we distinguish between two cases:
Case 1: We have m ≥ 0.
Case 2: We have m < 0.
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there exists a Z-graded homomorphism σ̃m : Fm → ∧
∞
2
,m
V of A-modules such that

σ̃m (1) = ψm. (An alternative way to prove the existence of this σ̃m would be to apply
Lemma 2.7.8, making use of the fact (Proposition 2.5.17) that Fm is a Verma module
for A.)

This σ̃m is injective (since Fm is irreducible) and Z-graded. Hence, for every integer

d ≥ 0, it induces a homomorphism from Fm [−d] to

(
∧
∞
2
,m
V

)
[−d]. This induced

homomorphism must be injective (since σ̃m was injective), and thus is an isomorphism

(since the vector spaces Fm [−d] and

(
∧
∞
2
,m
V

)
[−d] have the same dimension (by

(135)) and are both finite-dimensional). Since this holds for every integer d ≥ 0, this
yields that σ̃m itself must be an isomorphism. This proves Proposition 3.10.1 (a).

Proposition 3.10.1 (b) follows from Proposition 3.10.1 (a) due to Proposition 2.2.21
(b).

Note that Proposition 3.10.1 is surprising: It gives an isomorphism between a space
of polynomials (the Fock space Fm, also called a bosonic space) and a space of wedge

products (the space ∧
∞
2
,m
V , also called a fermionic space); isomorphisms like this are

unheard of in finite-dimensional contexts.

In Case 1, we have

a0ψm =
∑
i∈Z;
i>0

ρ (Ei,i) · vm ∧ vm−1 ∧ vm−2 ∧ ...+
∑
i∈Z;
i≤0

(ρ (Ei,i)− 1) · vm ∧ vm−1 ∧ vm−2 ∧ ...

=
∑
i∈Z;

i>0; i>m

ρ (Ei,i) · vm ∧ vm−1 ∧ vm−2 ∧ ...︸ ︷︷ ︸
=0

(since i does not appear in the m-degression (m,m−1,m−2,...))

+
∑
i∈Z;

i>0; i≤m

ρ (Ei,i) · vm ∧ vm−1 ∧ vm−2 ∧ ...︸ ︷︷ ︸
=vm∧vm−1∧vm−2∧...

(since i appears in the m-degression (m,m−1,m−2,...))

+
∑
i∈Z;
i≤0

(ρ (Ei,i)− 1) · vm ∧ vm−1 ∧ vm−2 ∧ ...︸ ︷︷ ︸
=0

(since i appears in the m-degression (m,m−1,m−2,...)
and thus we have ρ(Ei,i)·vm∧vm−1∧vm−2∧...=vm∧vm−1∧vm−2∧...)

(since we are in Case 1, so that m ≥ 0)

=
∑
i∈Z;

i>0; i>m

0

︸ ︷︷ ︸
=0

+
∑
i∈Z;

i>0; i≤m

vm ∧ vm−1 ∧ vm−2 ∧ ...︸ ︷︷ ︸
=ψm

+
∑
i∈Z;
i≤0

0

︸ ︷︷ ︸
=0

=
∑
i∈Z;

i>0; i≤m

ψm = mψm.

Hence, a0ψm = mψm is proven in Case 1. In Case 2, the proof of a0ψm = mψm is similar (but
instead of splitting the

∑
i∈Z;
i>0

sum into a
∑
i∈Z;

i>0; i>m

and a
∑
i∈Z;

i>0; i≤m

sum, we must now split the
∑
i∈Z;
i≤0

sum

into a
∑
i∈Z;

i≤0; i>m

and a
∑
i∈Z;

i≤0; i≤m

sum). Thus, a0ψm = mψm holds in both cases 1 and 2. In other

words, the proof of a0ψm = mψm is complete.
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Definition 3.10.2. We write B(m) for the A-module F̃m. We write B for the A-

module
⊕
m

B(m) =
⊕
m

F̃m. We write F (m) for the A-module ∧
∞
2
,m
V . We write F

for the A-module
⊕
m

F (m).

The isomorphism σm (constructed in Proposition 3.10.1 (b)) is thus an isomor-
phism B(m) → F (m). We write σ for the A-module isomorphism

⊕
m

σm : B → F .

This σ is called the Boson-Fermion Correspondence.

Note that we can do the same for the Virasoro algebra: If Mλ is irreducible, then

the homomorphism Mλ → ∧
∞
2
,m
Vα,β is an isomorphism. And we know that Vir is

nondegenerate, so Mλ is irreducible for Weil-generic λ.

Corollary 3.10.3. For generic α and β, the Vir-module ∧
∞
2
,m
Vα,β is irreducible.

But now, back to the Boson-Fermion Correspondence:
Both B and F are A-modules, and Proposition 3.10.1 (b) showed us that they are

isomorphic as such through the isomorphism σ : B → F . However, F is also an a∞-
module, whereas B is not. But of course, with the isomorphism σ being given, we
can transfer the a∞-module structure from F to B. The same can be done with the
gl∞-module structure. Let us explicitly define these:

Definition 3.10.4. (a) We make B into an a∞-module by transferring the a∞-
module structure on F (given by the map ρ̂ : a∞ → EndF) to B via the isomorphism
σ : B → F . Note that the A-module B is a restriction of the a∞-module B (since
the A-module F is the restriction of the a∞-module F). We denote the a∞-module
structure on B by ρ̂ : a∞ → EndB.

(b) We make B into a gl∞-module by transferring the gl∞-module structure on
F (given by the map ρ : gl∞ → EndF) to B via the isomorphism σ : B → F . We
denote the gl∞-module structure on B by ρ : gl∞ → EndB.

How do we describe these module structures on B explicitly (i. e., in formulas?)
This question is answered using the so-called vertex operator construction.

But first, some easier things:

Definition 3.10.5. Let m ∈ Z. Let i ∈ Z.
(a) We define the so-called i-th wedging operator v̂i : F (m) → F (m+1) by

v̂i · ψ = vi ∧ ψ for all ψ ∈ F (m).

Here, vi ∧ ψ is formally defined as follows: Write ψ as a C-linear combination of
(well-defined) semiinfinite wedge products b0 ∧ b1 ∧ b2 ∧ ... (for instance, elementary
semiinfinite wedges); then, vi ∧ ψ is obtained by replacing each such product b0 ∧
b1 ∧ b2 ∧ ... by vi ∧ b0 ∧ b1 ∧ b2 ∧ ....

(b) We define the so-called i-th contraction operator
∨
vi : F (m) → F (m−1) as follows:
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For every m-degression (i0, i1, i2, ...), we let
∨
vi (vi0 ∧ vi1 ∧ vi2 ∧ ...) be{

0, if i /∈ {i0, i1, i2, ...} ;

(−1)j vi0 ∧ vi1 ∧ vi2 ∧ ... ∧ vij−1
∧ vij+1

∧ vij+2
∧ ..., if i ∈ {i0, i1, i2, ...}

,

where, in the case i ∈ {i0, i1, i2, ...}, we denote by j the integer k satisfying ik = i.

Thus, the map
∨
vi is defined on all elementary semiinfinite wedges; we extend this to

a map F (m) → F (m−1) by linearity.

Note that the somewhat unwieldy definition of
∨
vi can be slightly improved: While

it only gave a formula for m-degressions, it is easy to see that the same formula holds
for straying m-degressions:

Proposition 3.10.6. Let m ∈ Z and i ∈ Z. Let (i0, i1, i2, ...) be a straying m-
degression which has no two equal elements. Then,

∨
vi (vi0 ∧ vi1 ∧ vi2 ∧ ...)

=

{
0, if i /∈ {i0, i1, i2, ...} ;

(−1)j vi0 ∧ vi1 ∧ vi2 ∧ ... ∧ vij−1
∧ vij+1

∧ vij+2
∧ ..., if i ∈ {i0, i1, i2, ...}

,

where, in the case i ∈ {i0, i1, i2, ...}, we denote by j the integer k satisfying ik = i.

These operators satisfy the relations

v̂iv̂j + v̂j v̂i = 0,
∨
vi
∨
vj +

∨
vj
∨
vi = 0,

∨
viv̂j + v̂j

∨
vi = δi,j

for all i ∈ Z and j ∈ Z.

Definition 3.10.7. For every i ∈ Z, define ξi = v̂i and ξ∗i =
∨
vi.

Then, all i ∈ Z and j ∈ Z satisfy ρ (Ei,j) = ξiξ
∗
j and

ρ̂ (Ei,j) =

{
ξiξ
∗
j − 1, if i = j and i ≤ 0,

ξiξ
∗
j , unless i = j and i ≤ 0

.

The ξi and ξ∗i are called fermionic operators.
So what are the ξi in terms of aj ?

3.11. The vertex operator construction

We identify the space C [z, z−1, x1, x2, ...] =
⊕
m

zmC [x1, x2, ...] with B =
⊕
m

B(m) by

means of identifying zmC [x1, x2, ...] with B(m) for every m ∈ Z (the identification
being made through the map

B(m) → zmC [x1, x2, ...] ,

p 7→ zm · p
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).
Note also that z (that is, multiplication by z) is an isomorphism of A0-modules, but

not of A-modules.
The Boson-Fermion correspondence goes like this:

F =
⊕
m

F (m)
σ=
⊕
m
σm

← B =
⊕
m

B(m).

On F there are operators v̂i = ξi,
∨
vi = ξ∗i , ρ (Ei,j) = ξiξ

∗
j ,

ρ̂ (Ei,j) =

{
ξiξ
∗
j − 1, if i = j and i ≤ 0,

ξiξ
∗
j , unless i = j and i ≤ 0

. By conjugating with the Boson-

Fermion correspondence σ, these operators give rise to operators on B. How do the
latter operators look like?

Definition 3.11.1. Introduce the quantum fields

X (u) =
∑
n∈Z

ξnu
n ∈ (EndF)

[[
u, u−1

]]
,

X∗ (u) =
∑
n∈Z

ξ∗nu
−n ∈ (EndF)

[[
u, u−1

]]
,

Γ (u) = σ−1 ◦X (u) ◦ σ ∈ (EndB)
[[
u, u−1

]]
,

Γ∗ (u) = σ−1 ◦X∗ (u) ◦ σ ∈ (EndB)
[[
u, u−1

]]
.

Note that σ−1 ◦X (u) ◦ σ is to be read as “conjugate every term of the power series
X (u) by σ”; in other words, σ−1 ◦X (u) ◦ σ means

∑
n∈Z

(σ−1 ◦ ξn ◦ σ)un.

Recall that ξn = v̂n sends F (m) to F (m+1) for any m ∈ Z and n ∈ Z. Thus, every term
of the power series X (u) =

∑
n∈Z

ξnu
n sends F (m) to F (m+1) for any m ∈ Z. Abusing

notation, we will abbreviate this fact by saying that X (u) : F (m) → F (m+1) for any

m ∈ Z. Similarly, X∗ (u) : F (m) → F (m−1) for any m ∈ Z (since ξ∗n =
∨
vn sends F (m)

to F (m−1) for any m ∈ Z and n ∈ Z). As a consequence, Γ (u) : B(m) → B(m+1) and
Γ∗ (u) : B(m) → B(m−1) for any m ∈ Z.

Now, here is how we can describe Γ (u) and Γ∗ (u) (and therefore the operators
σ−1 ◦ ξn ◦ σ and σ−1 ◦ ξ∗n ◦ σ) in terms of B:

Theorem 3.11.2. Let m ∈ Z. On B(m), we have

Γ (u) = um+1z exp

(∑
j>0

a−j
j
uj

)
· exp

(
−
∑
j>0

aj
j
u−j

)
;

Γ∗ (u) = u−mz−1 exp

(
−
∑
j>0

a−j
j
uj

)
· exp

(∑
j>0

aj
j
u−j

)
.

Here, expA means 1 +A+
A2

2!
+
A3

3!
+ ... for any A for which this series makes any

sense.
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Let us explain what we mean by the products exp

(∑
j>0

a−j
j
uj

)
· exp

(
−
∑
j>0

aj
j
u−j

)

and exp

(
−
∑
j>0

a−j
j
uj

)
· exp

(∑
j>0

aj
j
u−j

)
in Theorem 3.11.2. Why do these products

(which are products of exponentials of infinite sums) make any sense? This is easily
answered:

• For any v ∈ B(m), the term exp

(
−
∑
j>0

aj
j
u−j

)
(v) is well-defined and is valued

in B(m) [u−1]. (In fact, if we blindly expand

exp

(
−
∑
j>0

aj
j
u−j

)
=
∞∑
`=0

1

`!

(
−
∑
j>0

aj
j
u−j

)`

=
∞∑
`=0

1

`!
(−1)`

∑
j1,j2,...,j` positive integers

aj1aj2 ...aj`
j1j2...j`

u−(j1+j2+...+j`),

and apply every term of the resulting power series to v, then (for fixed v) only
finitely many of these terms yield a nonzero result, since v is a polynomial and
thus has finite degree, whereas each aj lowers degree by j.)

• For any v ∈ B(m), the term exp

(∑
j>0

a−j
j
uj

)
·exp

(
−
∑
j>0

aj
j
u−j

)
v is well-defined

and is valued in B(m) ((u)). (In fact, we have just shown that exp

(
−
∑
j>0

aj
j
u−j

)
(v) ∈

B(m) [u−1]; therefore, applying exp

(∑
j>0

a−j
j
uj

)
∈
(
End

(
B(m)

))
[[u]] to this gives

a well-defined power series in B(m) ((u)) (because if A is an algebra and M is
an A-module, then the application of a power series in A [[u]] to an element of
M [u−1] gives a well-defined element of M ((u))).)

• For any v ∈ B(m), the term exp

(
−
∑
j>0

a−j
j
uj

)
·exp

(∑
j>0

aj
j
u−j

)
v is well-defined

and is valued in B(m) ((u)). (This is proven similarly.)

Thus, the formulas of Theorem 3.11.2 make sense.

Remark 3.11.3. Here is some of physicists’ intuition for the right hand sides of the
equations in Theorem 3.11.2. [Note: I (=Darij) don’t fully understand it, so don’t
expect me to explain it well.]

Consider the quantum field a (u) =
∑
j∈Z

aju
−j−1 ∈ U (A) [[u, u−1]] defined in Sec-

tion 3.3. Let us work on an informal level, and pretend that integration of series in
U (A) [[u, u−1]] is well-defined and behaves similar to that of functions on R. Then,
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∫
a (u) du = −

∑
j 6=0

aj
j
u−j + a0 log u. Exponentiating this “in the normal order-

ing” (this means we expand the series exp

(
−
∑
j 6=0

aj
j
u−j + a0 log u

)
and replace all

products by their normal ordered versions, i. e., shovel all am with m < 0 to the left
and all am with m > 0 to the right), we obtain

: exp

(∫
a (u) du

)
: = : exp

(
−
∑
j 6=0

aj
j
u−j + a0 log u

)
:

= exp


−
∑
j<0

aj
j
u−j︸ ︷︷ ︸

=
∑
j>0

a−j
j

uj


· exp (a0 log u) · exp

(
−
∑
j>0

aj
j
u−j

)

= exp

(∑
j>0

a−j
j
uj

)
· exp (a0 log u) · exp

(
−
∑
j>0

aj
j
u−j

)
.

But for every m ∈ Z, we have

Γ (u)

= um+1z exp

(∑
j>0

a−j
j
uj

)
· exp

(
−
∑
j>0

aj
j
u−j

)
(by Theorem 3.11.2)

= uz · exp

(∑
j>0

a−j
j
uj

)
· um︸︷︷︸

=exp(m log u)=exp(a0 log u)

(since a0 acts by m on B(m),

and thus exp(a0 log u)=exp(m log u) on B(m))

· exp

(
−
∑
j>0

aj
j
u−j

)

= uz · exp

(∑
j>0

a−j
j
uj

)
· exp (a0 log u) · exp

(
−
∑
j>0

aj
j
u−j

)
︸ ︷︷ ︸

= :exp(
∫
a(u)du):

= uz · : exp

(∫
a (u) du

)
: .

Since the right hand side of this equality does not depend on m, we thus have
Γ (u) = uz : exp

(∫
a (u) du

)
: .

Hence, we have rewritten half of the statement of Theorem 3.11.2 as the identity
Γ (u) = uz : exp

(∫
a (u) du

)
: (which holds on all of B). Similarly, the other half of

Theorem 3.11.2 rewrites as the identity Γ∗ (u) = z−1 : exp
(
−
∫
a (u) du

)
: .

This is reminiscent of Euler’s formula y = c exp
(∫

a (u) du
)

for the solution y of
the differential equation y′ = ay.
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Before we can show Theorem 3.11.2, we state a lemma about the action of A on B:

Lemma 3.11.4. For every j ∈ Z, we have [aj,Γ (u)] = ujΓ (u) and [aj,Γ
∗ (u)] =

−ujΓ∗ (u).

Proof of Lemma 3.11.4. Let us prove the first formula. Let j ∈ Z.
On the fermionic space F , the element aj ∈ A acts as

ρ̂
(
T j
)

=
∑
i

ρ̂ (Ei,i+j)

(
since T j =

∑
i∈Z

Ei,i+j

)

=
∑
i

{
ξiξ
∗
i+j − 1, if i = i+ j and i ≤ 0,

ξiξ
∗
i+j, unless i = i+ j and i ≤ 0

(since ρ̂ (Ei,i+j) =

{
ξiξ
∗
i+j − 1, if i = i+ j and i ≤ 0,

ξiξ
∗
i+j, unless i = i+ j and i ≤ 0

for every i ∈ Z). Hence,

on F , we have

[aj, X (u)] =

[∑
i

{
ξiξ
∗
i+j − 1, if i = i+ j and i ≤ 0,

ξiξ
∗
i+j, unless i = i+ j and i ≤ 0

, X (u)

]

=
∑
i

{ [
ξiξ
∗
i+j − 1, X (u)

]
, if i = i+ j and i ≤ 0,[

ξiξ
∗
i+j, X (u)

]
, unless i = i+ j and i ≤ 0

=
∑
i

{ [
ξiξ
∗
i+j, X (u)

]
, if i = i+ j and i ≤ 0,[

ξiξ
∗
i+j, X (u)

]
, unless i = i+ j and i ≤ 0(

since
[
ξiξ
∗
i+j − 1, X (u)

]
=
[
ξiξ
∗
i+j, X (u)

])
=
∑
i

[
ξiξ
∗
i+j, X (u)

]
=
∑
i

[
ξiξ
∗
i+j,

∑
m

ξmu
m

] (
since X (u) =

∑
m

ξmu
m

)
=
∑
i

∑
m

[
ξiξ
∗
i+j, ξm

]︸ ︷︷ ︸
=δm,i+jξi

(this is easy to check)

um =
∑
i

∑
m

δm,i+jξiu
m

=
∑
m

ξm−ju
m = uj

∑
m

ξm−ju
m−j

︸ ︷︷ ︸
=X(u)

= ujX (u) .

Conjugating this equation by σ, we obtain [aj,Γ (u)] = ujΓ (u). Similarly, we can prove
[aj,Γ

∗ (u)] = −ujΓ∗ (u). Lemma 3.11.4 is proven.
Proof of Theorem 3.11.2. Define an element Γ+ (u) of the C-algebra (EndB) [[u−1]]

by Γ+ (u) = exp

(
−
∑
j>0

aj
j
u−j

)
. Then,

[ai,Γ+ (u)] = 0 if i ≥ 0; (136)

[ai,Γ+ (u)] = uiΓ+ (u) if i < 0. (137)

In fact, (136) is trivial (because when i ≥ 0, the element ai commutes with aj for every

j > 0, and thus also commutes with exp

(
−
∑
j>0

aj
j
u−j

)
). To prove (137), it is enough
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to show that

[
ai, exp

(
−a−i
−i

ui
)]

= ui exp

(
−a−i
−i

ui
)

(since we can write Γ+ (u) in the

form

Γ+ (u) = exp

(
−
∑
j>0

aj
j
u−j

)
=
∏
j>0

exp

(
−aj
j
u−j
)
,

and it is clear that ai commutes with all terms −aj
j
u−j for j 6= −i). But this is

easily checked using the fact that [ai, a−i] = i and Lemma 3.1.1 (applied to K = Q,

R = (EndB) [[u−1]], α = ai, β = a−i and P = exp

(
−X
−i
ui
)

). This completes the

proof of (137).
Since Γ+ (u) is an invertible power series in (EndB) [[u−1]] (because the constant term

of Γ+ (u) is 1), it makes sense to speak of the power series Γ+ (u)−1 ∈ (EndB) [[u−1]].
From (136) and (137), we can derive the formulas[

ai,Γ+ (u)−1] = 0 if i ≥ 0; (138)[
ai,Γ+ (u)−1] = −uiΓ+ (u)−1 if i < 0 (139)

(using the standard fact that [α, β−1] = −β−1 [α, β] β−1 for any two elements α and β
of a ring such that β is invertible).

Now define a map ∆ (u) : B(m) → B(m) ((u)) by ∆ (u) = Γ (u) Γ+ (u)−1 z−1. Let us
check why this definition makes sense:

• For any v ∈ B(m), we have z−1v ∈ B(m−1), and the term Γ+ (u)−1 z−1v is well-
defined and is valued in B(m−1) [u−1]. 131

131Proof. Recall that A is a Z-graded Lie algebra, and that B is a Z-graded A-module concentrated
in nonpositive degrees. Let us (for this single proof!) change the Z-gradings on both A and B to
their inverses (i. e., switch A [N ] with A [−N ] for every N ∈ Z, and switch B [N ] with B [−N ]
for every N ∈ Z); then, A remains still a Z-graded Lie algebra, but B is now a Z-graded A-
module concentrated in nonnegative degrees. Moreover, B is actually a Z-graded Endhg B-module
concentrated in nonnegative degrees.

The power series
∑
j>0

aj
j
u−j ∈ (Endhg B)

[[
u−1

]]
is now equigraded (since our modified grad-

ing on A has the property that deg (aj) = −j), so that the power series exp

(∑
j>0

aj
j
u−j

)
∈

(Endhg B)
[[
u−1

]]
is equigraded as well (because a consequence of Proposition 3.3.10 (b) is that

whenever the exponential of an equigraded power series is well-defined, this exponential is also
equigraded). Since

Γ+ (u)
−1

=

exp

−∑
j>0

aj
j
u−j

−1

= exp

∑
j>0

aj
j
u−j


(since Corollary 3.1.5 (applied to R = (EndB)

[[
u−1

]]
, I =

(the ideal of R consisting of all power series with constant term 1), and γ = −
∑
j>0

aj
j
u−j)

yields

(
exp

(∑
j>0

aj
j
u−j

))
·

(
exp

(
−
∑
j>0

aj
j
u−j

))
= 1), this rewrites as follows: The power

series Γ+ (u)
−1 ∈ (Endhg B)

[[
u−1

]]
is equigraded.

Therefore, Proposition 3.3.11 (c) (applied to Endhg B, B, Γ+ (u)
−1

and z−1v instead of A, M ,

f and x) yields that Γ+ (u)
−1
z−1v is a well-defined element of B(m−1)

[
u−1

]
, qed.
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• For any v ∈ B(m), the term Γ (u) Γ+ (u)−1 z−1 is well-defined and is valued in
B(m) ((u)). 132

Since [a0, z] = z and [ai, z] = 0 for all i 6= 0, we have

[ai,∆ (u)] =

{
0, if i ≤ 0;

ui∆ (u) , if i > 0
(140)

(due to (138), (139) and Lemma 3.11.4). In particular, [ai,∆ (u)] = 0 if i ≤ 0.
Thus, ∆ (u) is a homomorphism of A−-modules, where A− is the Lie subalgebra
〈a−1, a−2, a−3, ...〉 of A. (Of course, this formulation means that every term of the
formal power series ∆ (u) is a homomorphism of A−-modules.)

Consider now the element zm of zmC [x1, x2, ...] = B(m) = F̃m. Also, consider the

element ψm = vm ∧ vm−1 ∧ vm−2 ∧ ... of ∧
∞
2
,m
V = F (m) defined in Definition 3.5.28.

By the definition of σm, we have σm (zm) = ψm. (In fact, zm is what was denoted by 1
in Proposition 3.10.1.)

From Lemma 2.2.10, it is clear that the Fock module F is generated by 1 as an A−-
module (since A− = 〈a−1, a−2, a−3, ...〉). Since there exists an A−-module isomorphism

F → F̃ which sends 1 to 1 (in fact, the map resc of Proposition 2.2.21 is such an

isomorphism), this yields that F̃ is generated by 1 as an A−-module. Since there exists

an A−-module isomorphism F̃ → F̃m which sends 1 to zm (in fact, multiplication by

zm is such an isomorphism), this yields that F̃m is generated by zm as an A−-module.
Consequently, the m-th term of the power series ∆ (u) is completely determined by
(∆ (u)) (zm) (because we know that ∆ (u) is a homomorphism of A−-modules). So let
us compute (∆ (u)) (zm). Since ∆ (u) : B(m) → B(m) ((u)), we know that (∆ (u)) (zm)

is an element of B(m)︸︷︷︸
=zmF̃

((u)) = zmF̃ ((u)). In other words, (∆ (u)) (zm) is zm times

a Laurent series in u whose coefficients are polynomials in x1, x2, x3, .... Denote this
Laurent series by Q. Thus, (∆ (u)) (zm) = zmQ.

For every i > 0, we have

ai∆ (u) = ∆ (u) ai + [ai,∆ (u)]︸ ︷︷ ︸
=ui∆(u)
(by (140))

= ∆ (u) ai + ui∆ (u) ,

132Proof. We have just shown that Γ+ (u)
−1
z−1v ∈ B(m−1)

[
u−1

]
. Thus, Γ+ (u)

−1
z−1v ∈

B(m−1)
[
u−1

]
⊆ B

[
u−1

]
⊆ B

[
u, u−1

]
.

Recall that A is a Z-graded Lie algebra, and that B and F are Z-graded A-modules concentrated
in nonpositive degrees. Let us (for this single proof!) change the Z-gradings on all of A, B and
F to their inverses (i. e., switch A [N ] with A [−N ] for every N ∈ Z, and switch B [N ] with
B [−N ] for every N ∈ Z, and switch F [N ] with F [−N ] for every N ∈ Z); then, A remains still
a Z-graded Lie algebra, but B and F now are Z-graded A-modules concentrated in nonnegative
degrees. Moreover, B is actually a Z-graded Endhg B-module concentrated in nonnegative degrees,
and F is a Z-graded Endhg F-module concentrated in nonnegative degrees.

It is easy to see (from the definition of X (u)) that X (u) ∈ (Endhg F)
[[
u, u−1

]]
is equigraded.

As a consequence, Γ (u) ∈ (Endhg B)
[[
u, u−1

]]
is equigraded (since Γ (u) = σ−1 ◦ X (u) ◦ σ).

Therefore, Proposition 3.3.11 (b) (applied to Endhg B, B, Γ (u) and Γ+ (u)
−1
z−1v instead of A,

M , f and x) yields that Γ (u) Γ+ (u)
−1
z−1 is a well-defined element of B ((u)). This element

actually lies in B(m) ((u)) (since Γ (u) : B(m−1) → B(m)), qed.
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so that

(ai∆ (u)) (zm) =
(
∆ (u) ai + ui∆ (u)

)
(zm) = ∆ (u) aiz

m︸︷︷︸
=0

(since ai=
∂

∂xi
)

+ui (∆ (u)) (zm)︸ ︷︷ ︸
=zmQ

= uizmQ = zmuiQ.

Since (ai∆ (u)) (zm) = ai ((∆ (u)) (zm))︸ ︷︷ ︸
=zmQ

= zm ai︸︷︷︸
=
∂

∂xi

Q = zm
∂Q

∂xi
, this rewrites as zm

∂Q

∂xi
=

zmuiQ. Hence, for every i > 0, we have
∂Q

∂xi
= uiQ. Thus, we can write the for-

mal Laurent series Q in the form Q = f (u) exp

(∑
j>0

xju
j

)
for some Laurent series

f (u) ∈ C ((u)) .133 Thus,

(∆ (u)) (zm)

= zmQ = zmf (u) exp

(∑
j>0

xju
j

) (
since Q = f (u) exp

(∑
j>0

xju
j

))

= f (u) exp

(∑
j>0

a−j
j
uj

)
(zm)

(
since each

a−j
j

acts as multiplication by xj on F̃

)
.

In other words, the two maps ∆ (u) and f (u) exp

(∑
j>0

a−j
j
uj

)
are equal on zm. Since

each of these two maps is an A−-module homomorphism134, this yields that these two
maps must be identical (because F̃m is generated by zm as an A−-module). In other

words, ∆ (u) = f (u) exp

(∑
j>0

a−j
j
uj

)
. Since ∆ (u) = Γ (u) Γ+ (u)−1 z−1, this becomes

Γ (u) Γ+ (u)−1 z−1 = f (u) exp

(∑
j>0

a−j
j
uj

)
, so that

Γ (u) = f (u) exp

(∑
j>0

a−j
j
uj

)
· z · Γ+ (u) = f (u) exp

(∑
j>0

a−j
j
uj

)
· z · exp

(
−
∑
j>0

aj
j
u−j

)
(

since Γ+ (u) = exp

(
−
∑
j>0

aj
j
u−j

))

= f (u) z exp

(∑
j>0

a−j
j
uj

)
· exp

(
−
∑
j>0

aj
j
u−j

)
(141)

133This follows from Proposition 3.3.7, applied to R = C [u], U = C ((u)), (α1, α2, α3, ...) =(
u1, u2, u3, ...

)
and P = Q.

134In fact, we know that ∆ (u) is an A−-module homomorphism, and it is clear that

f (u) exp

(∑
j>0

a−j
j
uj

)
is an A−-module homomorphism because A− is an abelian Lie algebra.
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on B(m). It remains to show that f (u) = um+1.
In order to do this, we recall that

(Γ (u)) (zm) = f (u) z exp

(∑
j>0

a−j
j
uj

)
· exp

(
−
∑
j>0

aj
j
u−j

)
(zm)︸ ︷︷ ︸

=zm
(because aj(z

m)=0 for every j>0)

(by (141))

= f (u) z exp

(∑
j>0

a−j
j
uj

)
(zm) = f (u) z exp

(∑
j>0

xju
j

)
zm(

since each
a−j
j

acts as multiplication by xj on F̃

)
= f (u) exp

(∑
j>0

xju
j

)
zm+1.

On the other hand, back on the fermionic side, for the vector ψm = vm∧vm−1∧vm−2∧...,
we have

(X (u))ψm =
∑
n∈Z

v̂n (ψm)un

since X (u) =
∑
n∈Z

ξn︸︷︷︸
=v̂n

un =
∑
n∈Z

v̂nu
n


=
∑
n∈Z;
n≤m

v̂n (ψm)︸ ︷︷ ︸
=0

(since n≤m, so that vn
appears in vm∧vm−1∧vm−2∧...=ψm)

un +
∑
n∈Z;

n≥m+1

v̂n (ψm)un =
∑
n∈Z;

n≥m+1

v̂n (ψm)un.

Thus, σ−1 ((X (u))ψm) = σ−1

 ∑
n∈Z;

n≥m+1

v̂n (ψm)un

. Compared with

σ−1

(X (u)) ψm︸︷︷︸
=σ(zm)

 = σ−1 ((X (u)) (σ (zm))) =
(
σ−1 ◦X (u) ◦ σ

)︸ ︷︷ ︸
=Γ(u)

(zm) = (Γ (u)) (zm)

= f (u) exp

(∑
j>0

xju
j

)
zm+1,

this yields σ−1

 ∑
n∈Z;

n≥m+1

v̂n (ψm)un

 = f (u) exp

(∑
j>0

xju
j

)
zm+1, so that

σ

(
f (u) exp

(∑
j>0

xju
j

)
zm+1

)
=
∑
n∈Z;

n≥m+1

v̂n (ψm)un. (142)

We want to find f (u) by comparing the sides of this equation. In order to do this, we
recall that each space B(i) is graded; hence, B (being the direct sum of the B(i)) is also
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graded (by taking the direct sum of all the gradings). Also, each space F (i) is graded;
hence, F (being the direct sum of the F (i)) is also graded (by taking the direct sum of
all the gradings). Since each σm is a graded map, the direct sum σ =

⊕
m∈Z

σm is also

graded. Therefore,

σ

(
0-th homogeneous component of f (u) exp

(∑
j>0

xju
j

)
zm+1

)

=

(
0-th homogeneous component of σ

(
f (u) exp

(∑
j>0

xju
j

)
zm+1

))

=

0-th homogeneous component of
∑
n∈Z;

n≥m+1

v̂n (ψm)un

 (143)

(by (142)). Now, for every n ∈ Z satisfying n ≥ m + 1, the element v̂n (ψm) equals
vn ∧ vm ∧ vm−1 ∧ vm−2 ∧ ..., and thus has degree − (n−m− 1). Hence, for every non-
positive i ∈ Z, the i-th homogeneous component of the sum

∑
n∈Z;

n≥m+1

v̂n (ψm)un ∈ F is

v̂m+1−i (ψm)um+1−i. In particular, the 0-th homogeneous component of
∑
n∈Z;

n≥m+1

v̂n (ψm)un

is v̂m+1 (ψm)um+1 = ψm+1u
m+1 (since v̂m+1 (ψm) = vm+1∧vm∧vm−1∧vm−2∧... = ψm+1).

Therefore, (143) becomes

σ

(
0-th homogeneous component of f (u) exp

(∑
j>0

xju
j

)
zm+1

)
= ψm+1u

m+1.

(144)

On the other hand, the 0-th homogeneous component of the element f (u) exp

(∑
j>0

xju
j

)
zm+1 ∈

B is clearly f (u) zm+1 (because exp

(∑
j>0

xju
j

)
= 1+(terms involving at least one xj),

and every xj lowers the degree). Thus, (144) becomes σ (f (u) zm+1) = ψm+1u
m+1.

Since σ (f (u) zm+1) = f (u)σ
(
zm+1

)︸ ︷︷ ︸
=ψm+1

= f (u)ψm+1, this rewrites as f (u)ψm+1 =

ψm+1u
m+1, so that f (u) = um+1. Hence, (141) becomes

Γ (u) = f (u)︸ ︷︷ ︸
=um+1

z exp

(∑
j>0

a−j
j
uj

)
· exp

(
−
∑
j>0

aj
j
u−j

)

= um+1z exp

(∑
j>0

a−j
j
uj

)
· exp

(
−
∑
j>0

aj
j
u−j

)
on B(m).

This proves one of the equalities of Theorem 3.11.2. The other is proven similarly.
Theorem 3.11.2 is proven.
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Corollary 3.11.5. Let m ∈ Z. On B(m), we have

ρ

 ∑
(i,j)∈Z2

uiv−jEi,j

 =
∑

(i,j)∈Z2

uiv−jξiξ
∗
j = X (u)X∗ (v) ,

thus

σ−1 ◦ ρ

 ∑
(i,j)∈Z2

uiv−jEi,j

 ◦ σ
= σ−1 ◦X (u)X∗ (v) ◦ σ = Γ (u) Γ∗ (v)

=
1

1− v

u

·
(u
v

)m
exp

(∑
j>0

uj − vj

j
a−j

)
exp

(
−
∑
j>0

u−j − v−j

j
aj

)

as linear maps from B(m) to B(m) ((u, v)).

Remark 3.11.6. It must be pointed out that the term

1

1− v

u

·
(u
v

)m
exp

(∑
j>0

uj − vj

j
a−j

)
exp

(
−
∑
j>0

u−j − v−j

j
aj

)

only makes sense as a map from B(m) to B(m) ((u, v)), but not (for example) as a map
from B(m) to B(m) [[u, u−1, v, v−1]] or as an element of

(
End

(
B(m)

))
[[u, u−1, v, v−1]].

Indeed, 1 − v

u
is a zero-divisor in C [[u, u−1, v, v−1]] (since

(
1− v

u

) ∑
k∈Z

(v
u

)k
=

0), so it does not make sense, for example, to multiply a generic element of

B(m) [[u, u−1, v, v−1]] by
1

1− v

u

. An element of B(m) ((u, v)) needs not always be

a multiple of 1− v

u
, but at least when it is, the quotient is unique.

The importance of Corollary 3.11.5 lies in the fact that it gives an easy way to
compute the ρ-action of gl∞ on B(m): In fact, for any p ∈ Z and q ∈ Z, the coefficient

of σ−1 ◦ ρ

(∑
i,j

uiv−jEi,j

)
◦ σ ∈

(
End

(
B(m)

))
[[u, u−1, v, v−1]] before upv−q is σ−1 ◦

ρ (Ep,q) ◦ σ, and this is exactly the action of Ep,q on B(m) obtained by transferring the
action ρ of gl∞ on F (m) to B(m).
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Proof of Corollary 3.11.5. First of all, we clearly have

ρ

 ∑
(i,j)∈Z2

uiv−jEi,j

 =
∑

(i,j)∈Z2

uiv−j ρ (Ei,j)︸ ︷︷ ︸
=ξiξ∗j

=
∑

(i,j)∈Z2

uiv−jξiξ
∗
j

=

(∑
i∈Z

ξiu
i

)
︸ ︷︷ ︸

=
∑
n∈Z

ξnun=X(u)

∑
j∈Z

ξ∗j v
−j

︸ ︷︷ ︸
=
∑
n∈Z

ξ∗nv
−n=X∗(v)

= X (u)X∗ (v) ,

so that

σ−1 ◦ ρ

 ∑
(i,j)∈Z2

uiv−jEi,j

 ◦ σ
= σ−1 ◦X (u)X∗ (v) ◦ σ = Γ (u) Γ∗ (v) .

It thus only remains to prove that

Γ (u) Γ∗ (v) =
1

1− v

u

·
(u
v

)m
exp

(∑
j>0

uj − vj

j
a−j

)
exp

(
−
∑
j>0

u−j − v−j

j
aj

)
.

By Theorem 3.11.2 (applied to m− 1 instead of m), we have

Γ (u) = umz exp

(∑
j>0

a−j
j
uj

)
· exp

(
−
∑
j>0

aj
j
u−j

)
on B(m−1).

By Theorem 3.11.2, we have

Γ∗ (v) = v−mz−1 exp

(
−
∑
j>0

a−j
j
vj

)
· exp

(∑
j>0

aj
j
v−j

)
on B(m).

Multiplying these two equalities, we obtain

Γ (u) Γ∗ (v) = umv−m · exp

(∑
j>0

uj

j
a−j

)
exp

(
−
∑
j>0

u−j

j
aj

)

· exp

(
−
∑
j>0

vj

j
a−j

)
exp

(∑
j>0

v−j

j
aj

)
on B(m)

(since multiplication by z commutes with each of exp

(∑
j>0

a−j
j
uj

)
and exp

(
−
∑
j>0

aj
j
u−j

)
).

We wish to “switch” the second and the third exponential on the right hand side of this

equation (although they don’t commute). To do so, we notice that each of −
∑
j>0

u−j

j
aj
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and −
∑
j>0

vj

j
a−j lies in the ring

(
End

(
B(m)

))
[[u−1, v]] 135. Let I be the ideal of the

ring
(
End

(
B(m)

))
[[u−1, v]] consisting of all power series with constant term 0. This

ring
(
End

(
B(m)

))
[[u−1, v]] is a Q-algebra and is complete and Hausdorff with respect

to the I-adic topology. Let α = −
∑
j>0

u−j

j
aj and β = −

∑
j>0

vj

j
a−j. Clearly, both α and

β lie in I. Also,

[α, β] =

[
−
∑
j>0

u−j

j
aj,−

∑
j>0

vj

j
a−j

]
=
∑
j>0

∑
k>0

u−jvk

jk
[aj, a−k]︸ ︷︷ ︸

=δj,kj

=
∑
j>0

∑
k>0

u−jvk

jk
δj,kj =

∑
j>0

u−jvj

jj
j =

∑
j>0

1

j

(v
u

)j
= − log

(
1− v

u

)
is a power series with coefficients inQ, and thus lies in the center of

(
End

(
B(m)

))
[[u−1, v]],

and hence commutes with each of α and β. Thus, we can apply Lemma 3.1.9 to
K = Q and R =

(
End

(
B(m)

))
[[u−1, v]], and obtain (expα) ·(exp β) = (exp β) ·(expα) ·

135This is the ring of formal power series in the indeterminates u−1 and v over the ring End
(
B(m)

)
.

Note that End
(
B(m)

)
is non-commutative, but the ring of formal power series is still defined in

the same way as over commutative rings. The indeterminates u−1 and v themselves commute with
each other and with each element of End

(
B(m)

)
.
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(exp [α, β]). Hence,

Γ (u) Γ∗ (v)

= umv−m · exp

(∑
j>0

uj

j
a−j

)
exp

(
−
∑
j>0

u−j

j
aj

)
︸ ︷︷ ︸

=α

· exp

(
−
∑
j>0

vj

j
a−j

)
︸ ︷︷ ︸

=β

exp

(∑
j>0

v−j

j
aj

)

= umv−m · exp

(∑
j>0

uj

j
a−j

)
· (expα) · (exp β)︸ ︷︷ ︸

=(expβ)·(expα)·(exp[α,β])

· exp

(∑
j>0

v−j

j
aj

)

= umv−m︸ ︷︷ ︸
=

(u
v

)m · exp

(∑
j>0

uj

j
a−j

)
· exp β︸︷︷︸

=−
∑
j>0

vj

j
a−j

· exp α︸︷︷︸
=−

∑
j>0

u−j

j
aj

· exp [α, β]︸ ︷︷ ︸
=

1

1− v

u

(since [α,β]=− log

(
1−
v

u

)
)

· exp

(∑
j>0

v−j

j
aj

)

=
(u
v

)m
· exp

(∑
j>0

uj

j
a−j

)
· exp

(
−
∑
j>0

vj

j
a−j

)

· exp

(
−
∑
j>0

u−j

j
aj

)
· 1

1− v

u

· exp

(∑
j>0

v−j

j
aj

)
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=
1

1− v

u

·
(u
v

)m
· exp

(∑
j>0

uj

j
a−j

)
· exp

(
−
∑
j>0

vj

j
a−j

)
︸ ︷︷ ︸

=exp

∑
j>0

uj − vj

j
a−j


(by Theorem 3.1.4, applied to R=End(B(m))[[u,v]],

I=(the ideal of R consisting of all power series with constant term 0),

α=
∑
j>0

uj

j
a−j and β=−

∑
j>0

vj

j
a−j)

· exp

(
−
∑
j>0

u−j

j
aj

)
· exp

(∑
j>0

v−j

j
aj

)
︸ ︷︷ ︸

=exp

− ∑
j>0

u−j − v−j

j
aj


(by Theorem 3.1.4, applied to R=End(B(m))[[u−1,v−1]],

I=(the ideal of R consisting of all power series with constant term 0),

α=−
∑
j>0

u−j

j
aj and β=

∑
j>0

v−j

j
aj)

=
1

1− v

u

·
(u
v

)m
exp

(∑
j>0

uj − vj

j
a−j

)
exp

(
−
∑
j>0

u−j − v−j

j
aj

)
.

This proves Corollary 3.11.5.

3.12. Expliciting σ−1 using Schur polynomials

Next we are going to give an explicit (in as far as one can do) formula for σ−1 (vi0 ∧ vi1 ∧ vi2 ∧ ...)
for an elementary semiinfinite wedge vi0 ∧ vi1 ∧ vi2 ∧ .... Before we do so, we need to
introduce the notion of Schur polynomials. We first define elementary Schur polyno-
mials :

3.12.1. Schur polynomials

Convention 3.12.1. In the following, we let x denote the countable family of inde-
terminates (x1, x2, x3, ...). Thus, for any polynomial P in countably many indeter-
minates, we write P (x) for P (x1, x2, x3, ...).

Definition 3.12.2. For every k ∈ N, let Sk ∈ Q [x1, x2, x3, ...] be the coefficient of

the power series exp

(∑
i≥1

xiz
i

)
∈ Q [x1, x2, x3, ...] [[z]] before zk. Then, obviously,

∑
k≥0

Sk (x) zk = exp

(∑
i≥1

xiz
i

)
. (145)

For example, S0 (x) = 1, S1 (x) = x1, S2 (x) =
x2

1

2
+ x2, S3 (x) =

x3
1

6
+ x1x2 + x3.
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Note that the polynomials Sk that we just defined are not symmetric polynomials.

Instead, they “represent” the complete symmetric functions in terms of the
pi
i

(where

pi are the power sums). Here is what exactly we mean by this:

Definition 3.12.3. Let N ∈ N, and let y denote a family of N indeterminates
(y1, y2, ..., yN). Thus, for any polynomial P in N indeterminates, we write P (y) for
P (y1, y2, ..., yN).

Definition 3.12.4. For every k ∈ N, define the k-th complete symmetric function
hk in the variables y1, y2, ..., yN by hk (y1, y2, ..., yN) =

∑
p1,p2,...,pN∈N;
p1+p2+...+pN=k

yp1

1 y
p2

2 ...y
pN
N .

Proposition 3.12.5. In the ring Q [y1, y2, ..., yN ] [[z]], we have

∑
k≥0

zkhk (y) =
N∏
j=1

1

1− zyj
.

Proof of Proposition 3.12.5. For every j ∈ {1, 2, ..., N}, the sum formula for the

geometric series yields
1

1− zyj
=
∑
p∈N

(zyj)
p =

∑
p∈N

ypj z
p. Hence,

N∏
j=1

1

1− zyj
=

N∏
j=1

(∑
p∈N

ypj z
p

)
=

∑
p1,p2,...,pN∈N

(yp1

1 z
p1) (yp2

2 z
p2) ... (ypNN zpN )︸ ︷︷ ︸

=y
p1
1 y

p2
2 ...y

pN
N zp1+p2+...+pN

=
∑

p1,p2,...,pN∈N

yp1

1 y
p2

2 ...y
pN
N zp1+p2+...+pN =

∑
k≥0

∑
p1,p2,...,pN∈N;
p1+p2+...+pN=k

yp1

1 y
p2

2 ...y
pN
N

︸ ︷︷ ︸
=hk(y1,y2,...,yN )=hk(y)

zk

=
∑
k≥0

hk (y) zk =
∑
k≥0

zkhk (y) .

This proves Proposition 3.12.5.

Definition 3.12.6. Let N ∈ N. We define a map PSEN : C [x1, x2, x3, ...] →
C [y1, y2, ..., yN ] as follows: For every polynomial P ∈ [x1, x2, x3, ...], let PSEN (P )

be the result of substituting xj =
yj1 + yj2 + ...+ yjN

j
for all positive integers j into

the polynomial P .
Clearly, this map PSEN is a C-algebra homomorphism.

(The notation PSEN is mine and has been chosen as an abbreviation for “Power
Sum Evaluation in N variables”.)

Proposition 3.12.7. For every N ∈ N, we have hk (y) = PSEN (Sk (x)) for each
k ∈ N.
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Proof of Proposition 3.12.7. FixN ∈ N. We know that
∑
k≥0

Sk (x) zk = exp

(∑
i≥1

xiz
i

)
.

Since PSEN is a C-algebra homomorphism, this yields

∑
k≥0

PSEN (Sk (x)) zk = exp

(∑
i≥1

PSEN (xi) z
i

)
= exp

(∑
i≥1

N∑
j=1

yij
i
zi

)
(

since PSEN (xi) =
yi1 + yi2 + ...+ yiN

i
=

N∑
j=1

yij
i

)

= exp

(
N∑
j=1

∑
i≥1

yij
i
zi

)
=

N∏
j=1

exp

(∑
i≥1

yij
i
zi

)

=
N∏
j=1

exp

(∑
i≥1

yijz
i

i

)
︸ ︷︷ ︸
=− log(1−yjz)

=
N∏
j=1

exp (− log (1− yjz))︸ ︷︷ ︸
=

1

1− yjz
=

1

1− zyj

=
N∏
j=1

1

1− zyj
=
∑
k≥0

zkhk (y) (by Proposition 3.12.5) .

By comparing coefficients in this equality, we conclude that PSEN (Sk (x)) = hk (y) for
each k ∈ N. Proposition 3.12.7 is proven.

Definition 3.12.8. Let λ = (λ1, λ2, ..., λm) be a partition, so that λ1 ≥ λ2 ≥ ... ≥
λm ≥ 0 are integers.

We define Sλ (x) ∈ Q [x1, x2, x3, ...] to be the polynomial

det


Sλ1 (x) Sλ1+1 (x) Sλ1+2 (x) ... Sλ1+m−1 (x)
Sλ2−1 (x) Sλ2 (x) Sλ2+1 (x) ... Sλ2+m−2 (x)
Sλ3−2 (x) Sλ3−1 (x) Sλ3 (x) ... Sλ3+m−3 (x)

... ... ... ... ...
Sλm−m+1 (x) Sλm−m+2 (x) Sλm−m+3 (x) ... Sλm (x)


= det

(
(Sλi+j−i (x))1≤i≤m, 1≤j≤m

)
,

where Sj denotes 0 if j < 0. (Note that this does not depend on trailing zeroes
in the partition; in other words, S(λ1,λ2,...,λm) (x) = S(λ1,λ2,...,λm,0,0,...,0) (x) for any
number of zeroes. This is because any nonnegative integers m and `, any m ×m-
matrix A, any m × `-matrix B and any upper unitriangular ` × `-matrix C satisfy

det

(
A B
0 C

)
= detA.)

We refer to Sλ (x) as the bosonic Schur polynomial corresponding to the partition
λ.

To a reader acquainted with the Schur polynomials of combinatorics (and represen-
tation theory of symmetric groups), this definition may look familiar, but it should be
reminded that our polynomial Sλ (x) is not a symmetric function per se (this is
why we call it “bosonic Schur polynomial” and not just simply “Schur polynomial”);
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instead, it can be made into a symmetric function – and this will, indeed, be the λ-
Schur polynomial known from combinatorics – by substituting for each xj the term
(j-th power sum symmetric function)

j
. We will prove this in Proposition 3.12.10 (al-

beit only for finitely many variables). Let us first formulate one of the many definitions
of Schur polynomials from combinatorics:

Definition 3.12.9. Let λ = (λ1, λ2, ..., λm) be a partition, so that λ1 ≥ λ2 ≥ ... ≥
λm ≥ 0 are integers. We define λ` to mean 0 for all integers ` > m; thus, we obtain
a nonincreasing sequence (λ1, λ2, λ3, ...) of nonnegative integers.

Let N ∈ N.
The so-called λ-Schur module Vλ over GL (N) is defined to be the GL (N)-module

HomSn

(
Sλ,
(
CN
)⊗n)

, where n denotes the number λ1 +λ2 + ...+λm and Sλ denotes

the Specht module over the symmetric group Sn corresponding to the partition

λ. (The GL (N)-module structure on HomSn

(
Sλ,
(
CN
)⊗n)

is obtained from the

GL (N)-module structure on CN .) This λ-Schur module Vλ is not only a GL (N)-
module, but also a gl (N)-module. If λN+1 = 0, then Vλ is irreducible both as
a representation of GL (N) and as a representation of gl (N). If λN+1 6= 0, then
Vλ = 0.

It is known that there exists a unique polynomial χλ ∈ Q [y1, y2, ..., yN ] (depending
both on λ and on N) such that every diagonal matrix A = diag (a1, a2, ..., aN) ∈
GL (N) satisfies χλ (a1, a2, ..., aN) = (Tr |Vλ) (A) (where (Tr |Vλ) (A) means the trace
of the action of A ∈ GL (N) on Vλ by means of the GL (N)-module structure on Vλ).
In the language of representation theory, χλ is thus the character of the GL (N)-
module Vλ. This polynomial χλ is called the λ-th Schur polynomial in N variables.

Now, the relation between the Sλ and the Schur polynomials looks like this:

Proposition 3.12.10. Let λ = (λ1, λ2, ..., λm) be a partition. Then,
χλ (y1, y2, ..., yN) = PSEN (Sλ (x)).

This generalizes Proposition 3.12.7 (in fact, set λ = (k) and notice that Vλ = SkCN).
Proof of Proposition 3.12.10. Define hk to mean 0 for every k < 0.
Proposition 3.12.7 yields hk (y) = PSEN (Sk (x)) for each k ∈ N. Since hk (y) =

PSEN (Sk (x)) also holds for every negative integer k (since every negative integer k
satisfies hk = 0 and Sk = 0), we thus conclude that

hk (y) = PSEN (Sk (x)) for every k ∈ Z. (146)

We know that χλ is the λ-th Schur polynomial in N variables. By the first Giambelli
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formula, this yields that

χλ (y1, y2, ..., yN)

= det


hλ1 (y) hλ1+1 (y) hλ1+2 (y) ... hλ1+m−1 (y)
hλ2−1 (y) hλ2 (y) hλ2+1 (y) ... hλ2+m−2 (y)
hλ3−2 (y) hλ3−1 (y) hλ3 (y) ... hλ3+m−3 (y)

... ... ... ... ...
hλm−m+1 (y) hλm−m+2 (y) hλm−m+3 (y) ... hλm (y)


︸ ︷︷ ︸

=(hλi+j−i(y))
1≤i≤m, 1≤j≤m

= det
(

(hλi+j−i (y))1≤i≤m, 1≤j≤m

)
= det

(
(PSEN (Sλi+j−i (x)))1≤i≤m, 1≤j≤m

)
(by (146))

= PSEN

(
det
(

(Sλi+j−i (x))1≤i≤m, 1≤j≤m

))
︸ ︷︷ ︸

=Sλ(x)(
since PSEN is a C-algebra homomorphism, whereas det is a polynomial

(and any C-algebra homomorphism commutes with any polynomial)

)
= PSEN (Sλ (x)) .

Proposition 3.12.10 is proven.

3.12.2. The statement of the fact

Theorem 3.12.11. Whenever (i0, i1, i2, ...) is a 0-degression (see Definition 3.5.12
for what this means), we have σ−1 (vi0 ∧ vi1 ∧ vi2 ∧ ...) = Sλ (x) where λ =
(i0 + 0, i1 + 1, i2 + 2, ...). (Note that this λ is indeed a partition since (i0, i1, i2, ...) is
a 0-degression.)

We are going to give two proofs of this theorem. The first proof will be covered in
Section 3.13, whereas the second proof will encompass Section 3.14.

3.13. Expliciting σ−1 using Schur polynomials: first proof

3.13.1. The power sums are algebraically independent

Our first proof of Theorem 3.12.11 will require some lemmata from algebraic combina-
torics. First of all:

Lemma 3.13.1. Let N ∈ N. For every positive integer j, let pj denote the polyno-
mial yj1 + yj2 + ... + yjN ∈ C [y1, y2, ..., yN ]. Then, the polynomials p1, p2, ..., pN are
algebraically independent.

In order to prove this fact, we need the following known facts (which we won’t prove):

Lemma 3.13.2. Let N ∈ N. For every j ∈ N, let ej denote the j-th elementary sym-
metric polynomial

∑
1≤i1<i2<...<ij≤N

yi1yi2 ...yij in C [y1, y2, ..., yN ]. Then, the elements

e1, e2, ..., eN are algebraically independent.
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Lemma 3.13.2 is one half of a known theorem. The other half says that the elements
e1, e2, ..., eN generate the C-algebra of symmetric polynomials in C [y1, y2, ..., yN ]. We
will prove neither of these halves; they are both classical and well-known (under the
name “fundamental theorem of symmetric polynomials”, which is usually formulated
in a more general setting when C is replaced by any commutative ring).

Lemma 3.13.3. Let N ∈ N. For every positive integer j, define pj as in Lemma
3.13.1. For every j ∈ N, define ej as in Lemma 3.13.2. Then, every k ∈ N satisfies

kek =
k∑
i=1

(−1)i−1 ek−ipi.

This lemma is known as the Newton identity (or identities), and won’t be proven
due to being well-known. But we will use it to derive the following corollary:

Corollary 3.13.4. Let N ∈ N. For every positive integer j, define pj as in Lemma
3.13.1. For every j ∈ N, define ej as in Lemma 3.13.2. Then, for every positive k ∈ N,
there exists a polynomial Pk ∈ Q [T1, T2, ..., Tk] such that pk = Pk (e1, e2, ..., ek)
and Pk − (−1)k−1 kTk ∈ Q [T1, T2, ..., Tk−1]. (Here, of course, Q [T1, T2, ..., Tk−1] is
identified with a subalgebra of Q [T1, T2, ..., Tk].)

Proof of Corollary 3.13.4. We will prove Corollary 3.13.4 by strong induction over
k:

Induction step: Let ` be a positive integer. Assume that Corollary 3.13.4 holds for
every positive integer k < `. We must then prove that Corollary 3.13.4 holds for k = `.

Corollary 3.13.4 holds for every positive integer k < ` (by the induction hypothesis).
In other words, for every k < `, there exists a polynomial Pk ∈ Q [T1, T2, ..., Tk] such
that pk = Pk (e1, e2, ..., ek) and Pk − (−1)k−1 kTk ∈ Q [T1, T2, ..., Tk−1]. Consider these
polynomials P1, P2, ..., P`−1.

Applying Lemma 3.13.3 to k = `, we obtain

`e` =
∑̀
i=1

(−1)i−1 e`−ipi =
∑̀
k=1

(−1)k−1 e`−kpk (here, we renamed i as k in the sum)

=
`−1∑
k=1

(−1)k−1 e`−kpk + (−1)`−1 e`−`︸︷︷︸
=e0=1

p` =
`−1∑
k=1

(−1)k−1 e`−kpk + (−1)`−1 p`,

so that (−1)`−1 p` = `e` −
`−1∑
k=1

(−1)k−1 e`−kpk and thus

p` = (−1)`−1

(
`e` −

`−1∑
k=1

(−1)k−1 e`−kpk

)
= (−1)`−1 `e` − (−1)`−1

`−1∑
k=1

(−1)k−1 e`−kpk.

Now, define a polynomial P` ∈ Q [T1, T2, ..., T`] by

P` = (−1)`−1 `T` − (−1)`−1
`−1∑
k=1

(−1)k−1 T`−kPk (T1, T2, ..., Tk) .
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Then,

P`−(−1)`−1 `T` = − (−1)`−1
`−1∑
k=1

(−1)k−1 T`−k︸︷︷︸
∈Q[T1,T2,...,T`−1]
(since `−k≤`−1)

Pk (T1, T2, ..., Tk)︸ ︷︷ ︸
∈Q[T1,T2,...,T`−1]

(since k≤`−1)

∈ Q [T1, T2, ..., T`−1] .

Moreover, P` = (−1)`−1 `T` − (−1)`−1
`−1∑
k=1

(−1)k−1 T`−kPk (T1, T2, ..., Tk) yields

P` (e1, e2, ..., e`) = (−1)`−1 `e` − (−1)`−1
`−1∑
k=1

(−1)k−1 e`−k Pk (e1, e2, ..., ek)︸ ︷︷ ︸
=pk

(by the definition of Pk)

= (−1)`−1 `e` − (−1)`−1
`−1∑
k=1

(−1)k−1 e`−kpk = p`.

We thus have shown that p` = P` (e1, e2, ..., e`) and P`−(−1)`−1 `T` ∈ Q [T1, T2, ..., T`−1].
Thus, there exists a polynomial P` ∈ Q [T1, T2, ..., T`] such that p` = P` (e1, e2, ..., e`)
and P` − (−1)`−1 `T` ∈ Q [T1, T2, ..., T`−1]. In other words, Corollary 3.13.4 holds for
k = `. This completes the induction step. The induction proof of Corollary 3.13.4 is
thus complete.

Proof of Lemma 3.13.1. Assume the contrary. Thus, the polynomials p1, p2,
..., pN are algebraically dependent. Hence, there exists a nonzero polynomial Q ∈
C [U1, U2, ..., UN ] such that Q (p1, p2, ..., pN) = 0. Consider this Q.

Consider the lexicographic order on the monomials in C [T1, T2, ..., TN ] given by T1 <
T2 < ... < TN .

For every j ∈ N, define ej as in Lemma 3.13.2. For every positive k ∈ N, Corollary
3.13.4 guarantees the existence of a polynomial Pk ∈ Q [T1, T2, ..., Tk] such that pk =
Pk (e1, e2, ..., ek) and Pk−(−1)k−1 kTk ∈ Q [T1, T2, ..., Tk−1]. Consider such a polynomial
Pk.

For every k ∈ {1, 2, ..., N}, there exists a polynomial Qk ∈ Q [T1, T2, ..., Tk−1] such
that Pk−(−1)k−1 kTk = Qk (T1, T2, ..., Tk−1) (since Pk−(−1)k−1 kTk ∈ Q [T1, T2, ..., Tk−1]).
Consider such a polynomial Qk.

For every k ∈ {1, 2, ..., N}, let P̃k be the polynomial Pk (T1, T2, ..., Tk) ∈ C [T1, T2, ..., TN ].
(This is the same polynomial as Pk, but now considered as a polynomial in N variables
over C rather than in k variables over Q.)

Then, for every k ∈ {1, 2, ..., N}, we have

P̃k (e1, e2, ..., eN) = Pk (e1, e2, ..., ek)
(

since P̃k = Pk (T1, T2, ..., Tk)
)

= pk.

Also, for every k ∈ {1, 2, ..., N}, the leading monomial136 of P̃k (with respect to the

136Here, “monomial” means “monomial without coefficient”, and the “leading monomial” of a poly-
nomial means the highest monomial (with nonzero coefficient) of the polynomial.
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lexicographic order defined above) is Tk
137. Since the leading monomial of a product

of polynomials equals the product of their leading monomials, this yields that for every
(α1, α2, ..., αN) ∈ NN ,

the leading monomial of P̃α1
1 P̃α2

2 ...P̃αN
N is Tα1

1 Tα2
2 ...TαNN . (147)

Since every k ∈ {1, 2, ..., N} satisfies pk = P̃k (e1, e2, ..., eN), we have

Q (p1, p2, ..., pN) = Q
(
P̃1 (e1, e2, ..., eN) , P̃2 (e1, e2, ..., eN) , ..., P̃N (e1, e2, ..., eN)

)
=
(
Q
(
P̃1, P̃2, ..., P̃N

))
(e1, e2, ..., eN) .

Hence, Q (p1, p2, ..., pN) = 0 rewrites as
(
Q
(
P̃1, P̃2, ..., P̃N

))
(e1, e2, ..., eN) = 0. Since

e1, e2, ..., eN are algebraically independent (by Lemma 3.13.2), this yieldsQ
(
P̃1, P̃2, ..., P̃N

)
=

0. Since Q 6= 0, this shows that the elements P̃1, P̃2, ..., P̃N are algebraically dependent.

In other words, the family
(
P̃α1

1 P̃α2
2 ...P̃αN

N

)
(α1,α2,...,αN )∈NN

is linearly dependent. Thus,

there exists a family (λα1,α2,...,αN )(α1,α2,...,αN )∈NN of elements of C such that:

• all but finitely many (α1, α2, ..., αN) ∈ NN satisfy λα1,α2,...,αN = 0;

• not all (α1, α2, ..., αN) ∈ NN satisfy λα1,α2,...,αN = 0;

• we have
∑

(α1,α2,...,αN )∈NN
λα1,α2,...,αN P̃

α1
1 P̃α2

2 ...P̃αN
N = 0.

Consider this family. By identifying every N -tuple (α1, α2, ..., αN) ∈ NN with the
monomial Tα1

1 Tα2
2 ...TαNN ∈ C [T1, T2, ..., TN ], we obtain a lexicographic order on the N -

tuples (α1, α2, ..., αN) (from the lexicographic order on the monomials in C [T1, T2, ..., TN ]).
Since all but finitely many (α1, α2, ..., αN) ∈ NN satisfy λα1,α2,...,αN = 0, but not

all (α1, α2, ..., αN) ∈ NN satisfy λα1,α2,...,αN = 0, there exists a highest (with re-
spect to the above-defined order) (α1, α2, ..., αN) ∈ NN satisfying λα1,α2,...,αN 6= 0.

137Proof. Let k ∈ {1, 2, ..., N}. Then,

P̃k︸︷︷︸
=Pk(T1,T2,...,Tk)

− (−1)
k−1

kTk = Pk (T1, T2, ..., Tk)− (−1)
k−1

kTk

=
(
Pk − (−1)

k−1
kTk

)
︸ ︷︷ ︸

=Qk(T1,T2,...,Tk−1)

(T1, T2, ..., Tk)

= (Qk (T1, T2, ..., Tk−1)) (T1, T2, ..., Tk) = Qk (T1, T2, ..., Tk−1) ,

so that P̃k = (−1)
k−1

kTk + Qk (T1, T2, ..., Tk−1). Hence, the only monomials which occur with

nonzero coefficient in the polynomial P̃k are the monomial Tk (occurring with coefficient (−1)
k−1

k)
and the monomials of the polynomial Qk (T1, T2, ..., Tk−1). But the latter monomials don’t con-
tain any variable other than T1, T2, ..., Tk−1 (because they are monomials of the polynomial
Qk (T1, T2, ..., Tk−1)), and thus are smaller than the monomial Tk (because any monomial which
doesn’t contain any variable other than T1, T2, ..., Tk−1 is smaller than any monomial which con-
tains Tk (since we have a lexicographic order given by T1 < T2 < ... < TN )). Hence, the leading

monomial of P̃k must be Tk, qed.
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Let this (α1, α2, ..., αN) be called (β1, β2, ..., βN). Then, (β1, β2, ..., βN) is the highest
(α1, α2, ..., αN) ∈ NN satisfying λα1,α2,...,αN 6= 0. Thus, λβ1,β2,...,βN 6= 0, but

every (α1, α2, ..., αN) ∈ NN higher than (β1, β2, ..., βN) satisfies λα1,α2,...,αN = 0.
(148)

Now it is easy to see that for every (α1, α2, ..., αN) ∈ NN satisfying (α1, α2, ..., αN) 6=
(β1, β2, ..., βN), the term

λα1,α2,...,αN P̃
α1
1 P̃α2

2 ...P̃αN
N is a C-linear combination of monomials smaller than T β1

1 T β2

2 ...T βNN .
(149)

138 As a consequence, ∑
(α1,α2,...,αN )∈NN ;

(α1,α2,...,αN )6=(β1,β2,...,βN )

λα1,α2,...,αN P̃
α1
1 P̃α2

2 ...P̃αN
N

is a sum of C-linear combinations of monomials smaller than T β1

1 T β2

2 ...T βNN , and thus
itself a C-linear combination of monomials smaller than T β1

1 T β2

2 ...T βNN .
Now,

0 =
∑

(α1,α2,...,αN )∈NN
λα1,α2,...,αN P̃

α1
1 P̃α2

2 ...P̃αN
N

= λβ1,β2,...,βN P̃
β1

1 P̃ β2

2 ...P̃ βN
N +

∑
(α1,α2,...,αN )∈NN ;

(α1,α2,...,αN )6=(β1,β2,...,βN )

λα1,α2,...,αN P̃
α1
1 P̃α2

2 ...P̃αN
N ,

so that ∑
(α1,α2,...,αN )∈NN ;

(α1,α2,...,αN )6=(β1,β2,...,βN )

λα1,α2,...,αN P̃
α1
1 P̃α2

2 ...P̃αN
N = −λβ1,β2,...,βN P̃

β1

1 P̃ β2

2 ...P̃ βN
N .

138Proof of (149). Let (α1, α2, ..., αN ) ∈ NN satisfy (α1, α2, ..., αN ) 6= (β1, β2, ..., βN ). Since the
lexicographic order is a total order, we must be in one of the following two cases:

Case 1: We have (α1, α2, ..., αN ) ≥ (β1, β2, ..., βN ).
Case 2: We have (α1, α2, ..., αN ) < (β1, β2, ..., βN ).
First, consider Case 1. In this case, (α1, α2, ..., αN ) ≥ (β1, β2, ..., βN ), so that (α1, α2, ..., αN ) >

(β1, β2, ..., βN ) (since (α1, α2, ..., αN ) 6= (β1, β2, ..., βN )). Thus, (α1, α2, ..., αN ) ∈ NN is higher

than (β1, β2, ..., βN ). Hence, λα1,α2,...,αN = 0 (by (148)), so that λα1,α2,...,αN P̃
α1
1 P̃α2

2 ...P̃αNN = 0
is clearly a C-linear combination of monomials smaller than Tα1

1 Tα2
2 ...TαNN . Thus, (149) holds in

Case 1.
Now, let us consider Case 2. In this case, (α1, α2, ..., αN ) < (β1, β2, ..., βN ), so that

Tα1
1 Tα2

2 ...TαNN < T β1

1 T β2

2 ...T βNN (because the order on N -tuples is obtained from the order on
monomials by identifying every N -tuple (α1, α2, ..., αN ) ∈ NN with the monomial Tα1

1 Tα2
2 ...TαNN ∈

C [T1, T2, ..., TN ]).

Due to (147), every monomial which occurs with nonzero coefficient in P̃α1
1 P̃α2

2 ...P̃αNN is smaller

or equal to Tα1
1 Tα2

2 ...TαNN . Combined with Tα1
1 Tα2

2 ...TαNN < T β1

1 T β2

2 ...T βNN , this yields that every

monomial which occurs with nonzero coefficient in P̃α1
1 P̃α2

2 ...P̃αNN is smaller than T β1

1 T β2

2 ...T βNN .

Hence, P̃α1
1 P̃α2

2 ...P̃αNN is a C-linear combination of monomials smaller than T β1

1 T β2

2 ...T βNN . Thus,

λα1,α2,...,αN P̃
α1
1 P̃α2

2 ...P̃αNN is a C-linear combination of monomials smaller than T β1

1 T β2

2 ...T βNN . We
have thus proven that (149) holds in Case 2.

Hence, (149) holds in each of cases 1 and 2. Since no other cases are possible, this yields that
(149) always holds.
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Since we know that
∑

(α1,α2,...,αN )∈NN ;
(α1,α2,...,αN )6=(β1,β2,...,βN )

λα1,α2,...,αN P̃
α1
1 P̃α2

2 ...P̃αN
N is a C-linear combi-

nation of monomials smaller than T β1

1 T β2

2 ...T βNN , we thus conclude that−λβ1,β2,...,βN P̃
β1

1 P̃ β2

2 ...P̃ βN
N

is a C-linear combination of monomials smaller than T β1

1 T β2

2 ...T βNN . Since −λβ1,β2,...,βN

is invertible (because λβ1,β2,...,βN 6= 0), this yields that P̃ β1

1 P̃ β2

2 ...P̃ βN
N is a C-linear com-

bination of monomials smaller than T β1

1 T β2

2 ...T βNN . In other words, every monomial

which occurs with nonzero coefficient in P̃ β1

1 P̃ β2

2 ...P̃ βN
N is less than T β1

1 T β2

2 ...T βNN . In

particular, the leading monomial of P̃ β1

1 P̃ β2

2 ...P̃ βN
N is less than T β1

1 T β2

2 ...T βNN . But this
contradicts the fact that (due to (147), applied to (α1, α2, ..., αN) = (β1, β2, ..., βN)) the

leading monomial of P̃ β1

1 P̃ β2

2 ...P̃ βN
N is T β1

1 T β2

2 ...T βNN .
This contradiction shows that our assumption was wrong. Hence, Lemma 3.13.1 is

proven.
(I have learned the above proof from:
Julia Pevtsova and Nate Bottman, 504A Fall 2009 Homework Set 3,

http://www.math.washington.edu/~julia/teaching/504_Fall2009/HW7_sol.pdf .)
We will apply Lemma 3.13.1 not directly, but through the following corollary:

Corollary 3.13.5. Let P and Q be polynomials in C [x1, x2, x3, ...]. Assume that
PSEN (P ) = PSEN (Q) for every sufficiently high N ∈ N. Then, P = Q.

Proof of Corollary 3.13.5. Any polynomial (even if it is a polynomial in infinitely
many indeterminates) has only finitely many indeterminates actually appear in it.
Hence, only finitely many indeterminates appear in P − Q. Thus, there exists an
M ∈ N such that no indeterminates other than x1, x2, ..., xM appear in P − Q.
Consider this M .

Recall that PSEN (P ) = PSEN (Q) for every sufficiently high N ∈ N. Thus, there
exists an N ∈ N such that N ≥M and PSEN (P ) = PSEN (Q). Pick such an N .

No indeterminates other than x1, x2, ..., xM appear in P − Q. Since N ≥ M , this
clearly yields that no indeterminates other than x1, x2, ..., xN appear in P −Q. Hence,
there exists a polynomial R ∈ C [x1, x2, ..., xN ] such that P − Q = R (x1, x2, ..., xN).
Consider this R.

Now, let us use the notations of Lemma 3.13.1.

We defined PSEN (P −Q) as the result of substituting xj =
yj1 + yj2 + ...+ yjN

j
for

all positive integers j into the polynomial P −Q. Since yj1 + yj2 + ... + yjN = pj for all
positive integers j, this rewrites as follows: PSEN (P −Q) is the result of substituting

xj =
pj
j

for all positive integers j into the polynomial P −Q. In other words,

PSEN (P −Q) = (P −Q)︸ ︷︷ ︸
=R(x1,x2,...,xN )

(p1

1
,
p2

2
,
p3

3
, ...
)

= (R (x1, x2, ..., xN))
(p1

1
,
p2

2
,
p3

3
, ...
)

= R
(p1

1
,
p2

2
, ...,

pN
N

)
.

But since PSEN is a C-algebra homomorphism, we have PSEN (P −Q) = PSEN (P )−
PSEN (Q) = 0 (since PSEN (P ) = PSEN (Q)). Thus,

R
(p1

1
,
p2

2
, ...,

pN
N

)
= PSEN (P −Q) = 0.
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Since
p1

1
,
p2

2
, ...,

pN
N

are algebraically independent (because Lemma 3.13.1 yields that

p1, p2, ..., pN are algebraically independent), this yields R = 0, so that P − Q =
R︸︷︷︸
=0

(x1, x2, ..., xN) = 0, thus P = Q. Corollary 3.13.5 is proven.

Corollary 3.13.5 allows us to prove equality of polynomials in C [x1, x2, x3, ...] by
means of evaluating them at power sums. Now, let us show what such evaluations look
like for the Schur functions:

3.13.2. First proof of Theorem 3.12.11

Theorem 3.13.6. Let λ = (λ1, λ2, λ3, ...) be a partition, so that λ1 ≥ λ2 ≥ ... are
nonnegative integers.

Let N be a nonnegative integer such that λN+1 = 0. Then,

PSEN (Sλ (x)) =

det

((
y
λj+N−j
i

)
1≤i≤N, 1≤j≤N

)
det
((
yj−1
i

)
1≤i≤N, 1≤j≤N

) .

Proof of Theorem 3.13.6. We will not really prove this theorem; we will just reduce it
to a known fact about Schur functions.

In fact, let m be an integer such that λm+1 = 0 (such an integer clearly exists).
Then, the partition λ can also be written in the form (λ1, λ2, ..., λm). Hence, by the
first Giambelli formula, the λ-th Schur polynomial evaluated at (y1, y2, ..., yN) equals

det


hλ1 (y) hλ1+1 (y) hλ1+2 (y) ... hλ1+m−1 (y)
hλ2−1 (y) hλ2 (y) hλ2+1 (y) ... hλ2+m−2 (y)
hλ3−2 (y) hλ3−1 (y) hλ3 (y) ... hλ3+m−3 (y)

... ... ... ... ...
hλm−m+1 (y) hλm−m+2 (y) hλm−m+3 (y) ... hλm (y)


= det

(
(hλi+j−i (y))1≤i≤m, 1≤j≤m

)
.

But since the λ-th Schur polynomial evaluated at (y1, y2, ..., yN) also equals

det

((
y
λj+N−j
i

)
1≤i≤N, 1≤j≤N

)
det
((
yj−1
i

)
1≤i≤N, 1≤j≤N

) (by the “Vandermonde-determinant” definition of Schur

polynomials), this yields that

det
(

(hλi+j−i (y))1≤i≤m, 1≤j≤m

)
=

det

((
y
λj+N−j
i

)
1≤i≤N, 1≤j≤N

)
det
((
yj−1
i

)
1≤i≤N, 1≤j≤N

) .

Comparing this with the equality det
(

(hλi+j−i (y))1≤i≤m, 1≤j≤m

)
= PSEN (Sλ (x))
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(which was verified during the proof of Proposition 3.12.10), we obtain

det

((
y
λj−1+N−j
i

)
1≤i≤N, 1≤j≤N

)
det
((
yj−1
i

)
1≤i≤N, 1≤j≤N

) = PSEN (Sλ (x)) .

Theorem 3.13.6 is thus proven.
We will now use a harmless-looking result about determinants:

Proposition 3.13.7. Let N ∈ N. Let (ai,j)1≤i≤N, 1≤j≤N be an N × N -matrix of
elements of a commutative ring R. Let b1, b2, ..., bN be N elements of R. Then,

N∑
k=1

det

((
ai,jb

δj,k
i

)
1≤i≤N, 1≤j≤N

)
= (b1 + b2 + ...+ bN) det

(
(ai,j)1≤i≤N, 1≤j≤N

)
.

(150)
Equivalently (in more reader-friendly terms):

det


b1a1,1 a1,2 ... a1,N

b2a2,1 a2,2 ... a2,N

... ... ... ...
bNaN,1 aN,2 ... aN,N

+ det


a1,1 b1a1,2 ... a1,N

a2,1 b2a2,2 ... a2,N

... ... ... ...
aN,1 bNaN,2 ... aN,N



+ ...+ det


a1,1 a1,2 ... b1a1,N

a2,1 a2,2 ... b2a2,N

... ... ... ...
aN,1 aN,2 ... bNaN,N



= (b1 + b2 + ...+ bN) det


a1,1 a1,2 ... a1,N

a2,1 a2,2 ... a2,N

... ... ... ...
aN,1 aN,2 ... aN,N

 . (151)

Proof of Proposition 3.13.7. Recall the explicit formula for a determinant of a matrix
as a sum over permutations: For every N ×N -matrix (ci,j)1≤i≤N, 1≤j≤N , we have

det
(

(ci,j)1≤i≤N, 1≤j≤N

)
=
∑
σ∈SN

(−1)σ
N∏
j=1

cσ(j),j. (152)

Applied to (ci,j)1≤i≤N, 1≤j≤N = (ai,j)1≤i≤N, 1≤j≤N , this yields

det
(

(ai,j)1≤i≤N, 1≤j≤N

)
=
∑
σ∈SN

(−1)σ
N∏
j=1

aσ(j),j. (153)

For every k ∈ {1, 2, ..., N}, we can apply (152) to (ci,j)1≤i≤N, 1≤j≤N =
(
ai,jb

δj,k
i

)
1≤i≤N, 1≤j≤N

,
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and obtain

det

((
ai,jb

δj,k
i

)
1≤i≤N, 1≤j≤N

)
=
∑
σ∈SN

(−1)σ
N∏
j=1

(
aσ(j),jb

δj,k
σ(j)

)
︸ ︷︷ ︸
=
N∏
j=1

aσ(j),j

N∏
j=1

b
δj,k
σ(j)

=
∑
σ∈SN

(−1)σ
N∏
j=1

aσ(j),j

N∏
j=1

b
δj,k
σ(j)︸ ︷︷ ︸

=b
δk,k
σ(k)

∏
j∈{1,2,...,N};

j 6=k

b
δj,k
σ(j)

=
∑
σ∈SN

(−1)σ
N∏
j=1

aσ(j),j b
δk,k
σ(k)︸︷︷︸

=bσ(k)

(since δk,k=1)

∏
j∈{1,2,...,N};

j 6=k

b
δj,k
σ(j)︸︷︷︸
=1

(since j 6=k and thus δj,k=0)

=
∑
σ∈SN

(−1)σ
N∏
j=1

aσ(j),jbσ(k)

∏
j∈{1,2,...,N};

j 6=k

1

︸ ︷︷ ︸
=1

=
∑
σ∈SN

(−1)σ
N∏
j=1

aσ(j),jbσ(k).

Hence,

N∑
k=1

det

((
ai,jb

δj,k
i

)
1≤i≤N, 1≤j≤N

)

=
N∑
k=1

∑
σ∈SN

(−1)σ
N∏
j=1

aσ(j),jbσ(k) =
∑
σ∈SN

(−1)σ
N∏
j=1

aσ(j),j

N∑
k=1

bσ(k)︸ ︷︷ ︸
=

N∑
k=1

bk

(since σ is a permutation)

=
∑
σ∈SN

(−1)σ
N∏
j=1

aσ(j),j

N∑
k=1

bk =

(
N∑
k=1

bk

)
︸ ︷︷ ︸

=b1+b2+...+bN

∑
σ∈SN

(−1)σ
N∏
j=1

aσ(j),j︸ ︷︷ ︸
=det((ai,j)1≤i≤N, 1≤j≤N)

(by (153))

= (b1 + b2 + ...+ bN) det
(

(ai,j)1≤i≤N, 1≤j≤N

)
.

This proves Proposition 3.13.7.

Corollary 3.13.8. Let N ∈ N. Let (i0, i1, ..., iN−1) ∈ ZN be such that ij−1 +N > 0
for every j ∈ {1, 2, ..., N}. Let m ∈ N. Then,

N∑
k=1

det

((
y
ij−1+δj,km+N−1
i

)
1≤i≤N, 1≤j≤N

)
= (ym1 + ym2 + ...+ ymN ) det

((
y
ij−1+N−1
i

)
1≤i≤N, 1≤j≤N

)
.
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Proof of Corollary 3.13.8. Applying Proposition 3.13.7 to R = C [y1, y2, ..., yN ],

(ai,j)1≤i≤N, 1≤j≤N =
(
y
ij−1+N
i

)
1≤i≤N, 1≤j≤N

and bi = ymi , we obtain

N∑
k=1

det

((
y
ij−1+N−1
i (ymi )δj,k

)
1≤i≤N, 1≤j≤N

)
= (ym1 + ym2 + ...+ ymN ) det

((
y
ij−1+N−1
i

)
1≤i≤N, 1≤j≤N

)
.

Since any i ∈ {1, 2, ..., N}, j ∈ {1, 2, ..., N} and k ∈ {1, 2, ..., N} satisfy y
ij−1+N−1
i (ymi )δj,k =

y
ij−1+N+δj,km
i = y

ij−1+δj,km+N−1
i , this rewrites as

N∑
k=1

det

((
y
ij−1+δj,km+N−1
i

)
1≤i≤N, 1≤j≤N

)
= (ym1 + ym2 + ...+ ymN ) det

((
y
ij−1+N−1
i

)
1≤i≤N, 1≤j≤N

)
.

Corollary 3.13.8 is proven.
Now, to the main proof.
Proof of Theorem 3.12.11. Define a C-linear map τ : F (0) → C [x1, x2, x3, ...] by

τ (vi0 ∧ vi1 ∧ vi2 ∧ ...) = S(i0+0,i1+1,i2+2,...) (x) for every 0-degression (i0, i1, i2, ...) .

(This definition makes sense, because we know that (vi0 ∧ vi1 ∧ vi2 ∧ ...)(i0,i1,i2,...) is a 0-degression

is a basis of ∧
∞
2
,0
V = F (0).)

Our aim is to prove that τ = σ−1.
1st step: First of all, the definition of τ (applied to the 0-degression (0,−1,−2, ...))

yields
τ (v0 ∧ v−1 ∧ v−2 ∧ ...) = S(0+0,−1+1,−2+2,...) (x) = S(0,0,0,...) (x) = 1.

2nd step: If N ∈ N, and (i0, i1, i2, ...) is a straying 0-degression, then we say that
(i0, i1, i2, ...) is N-finished if the following two conditions (154) and (155) hold:

(every integer k ≥ N satisfies ik + k = 0) ; (154)

(each of the integers i0, i1, ..., iN−1 is > −N) . (155)

Now, we claim the following:
For any N ∈ N, and any N -finished straying 0-degression (i0, i1, i2, ...), we have

PSEN (τ (vi0 ∧ vi1 ∧ vi2 ∧ ...)) =

det

((
y
ij−1+N−1
i

)
1≤i≤N, 1≤j≤N

)
det
((
yj−1
i

)
1≤i≤N, 1≤j≤N

) . (156)

Proof of (156): Let N ∈ N, and let (i0, i1, i2, ...) be an N -finished straying 0-
degression.
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Since (i0, i1, i2, ...) is N -finished, we conclude (by the definition of “N -finished”) that
it satisfies the conditions (154) and (155).

If some two of the integers i0, i1, ..., iN−1 are equal, then (156) is true.139 Hence, for
the rest of this proof, we assume that no two of the integers i0, i1, ..., iN−1 are equal.
Then, there exists a permutation φ of the set {0, 1, ..., N − 1} such that iφ−1(0) >
iφ−1(1) > ... > iφ−1(N−1). Consider this φ.

It is easy to see that iφ−1(0) > iφ−1(1) > ... > iφ−1(N−1) > −N . 140

Let π be the finitary permutation of N which sends every k ∈ N to{
φ (k) , if k ∈ {0, 1, ..., N − 1} ;
k, if k /∈ {0, 1, ..., N − 1} . Then, (−1)π = (−1)φ; moreover, every k ∈

N satisfies

π−1 (k) =

{
φ−1 (k) , if k ∈ {0, 1, ..., N − 1} ;
k, if k /∈ {0, 1, ..., N − 1} . (157)

In particular, every integer k ≥ N satisfies π−1 (k) = k.
From (157), it is clear that

every k ∈ {0, 1, ..., N − 1} satisfies π−1 (k) = φ−1 (k) . (158)

Hence, iπ−1(0) > iπ−1(1) > ... > iπ−1(N−1) > −N (since iφ−1(0) > iφ−1(1) > ... >
iφ−1(N−1) > −N).

Now, every integer k ≥ N satisfies π−1 (k) = k, thus iπ−1(k) = ik = −k (since (154)
yields ik + k = 0). Hence, −N = iπ−1(N) > iπ−1(N+1) > iπ−1(N+2) > ... (because
−N = −N > − (N + 1) > − (N + 2) > ...). Combined with iπ−1(0) > iπ−1(1) > ... >
iπ−1(N−1) > −N , this becomes

iπ−1(0) > iπ−1(1) > ... > iπ−1(N−1) > −N = iπ−1(N) > iπ−1(N+1) > iπ−1(N+2) > ....

Thus,

iπ−1(0) > iπ−1(1) > ... > iπ−1(N−1) > iπ−1(N) > iπ−1(N+1) > iπ−1(N+2) > ....

In other words, the sequence
(
iπ−1(0), iπ−1(1), iπ−1(2), ...

)
is strictly decreasing. Since

every sufficiently high k ∈ N satisfies iπ−1(k) + k = 0 (in fact, every k ≥ N satisfies
iπ−1(k) = −k and thus iπ−1(k) + k = 0), this sequence

(
iπ−1(0), iπ−1(1), iπ−1(2), ...

)
must

thus be a 0-degression. Hence, by the definition of τ , we have

τ
(
viπ−1(0)

∧ viπ−1(1)
∧ viπ−1(2)

∧ ...
)

= S(iπ−1(0)+0,iπ−1(1)+1,iπ−1(2)+2,...) (x) .

139Proof. Assume that some two of the integers i0, i1, ..., iN−1 are equal. Then, some two elements
of the sequence (i0, i1, i2, ...) are equal, so that vi0 ∧ vi1 ∧ vi2 ∧ ... = 0 (by the definition of
vi0 ∧ vi1 ∧ vi2 ∧ ...) and thus PSEN (τ (vi0 ∧ vi1 ∧ vi2 ∧ ...)) = PSEN (0) = 0. Thus, the left hand

side of (156) is 0. On the other hand, the matrix
(
y
ij−1+N−1
i

)
1≤i≤N, 1≤j≤N

has two equal columns

(since two of the integers i0, i1, ..., iN−1 are equal) and thus its determinant vanishes, i. e., we

have det

((
y
ij−1+N−1
i

)
1≤i≤N, 1≤j≤N

)
= 0, so that the right hand side of (156) is 0.

Thus, both the left hand side and the right hand side of (156) are 0. Hence, (156) is true, qed.
140Proof. Every j ∈ {0, 1, ..., N − 1} satisfies φ−1 (j) ∈ φ−1 ({0, 1, ..., N − 1}) = {0, 1, ..., N − 1}.

Hence, for every j ∈ {0, 1, ..., N − 1}, the integer iφ−1(j) is one of the integers i0, i1, ..., iN−1, and
therefore > −N (due to (155)). That is, iφ−1(j) > −N for every j ∈ {0, 1, ..., N − 1}. Combining
this with iφ−1(0) > iφ−1(1) > ... > iφ−1(N−1), we get iφ−1(0) > iφ−1(1) > ... > iφ−1(N−1) > −N .
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Since π is a finitary permutation of N such that
(
iπ−1(0), iπ−1(1), iπ−1(2), ...

)
is a 0-

degression, it is clear that π is the straightening permutation of (i0, i1, i2, ...). Thus, by
the definition of vi0 ∧ vi1 ∧ vi2 ∧ ..., we have

vi0 ∧ vi1 ∧ vi2 ∧ ... = (−1)π︸ ︷︷ ︸
=(−1)φ

viπ−1(0)
∧ viπ−1(1)

∧ viπ−1(2)
∧ ...

= (−1)φ viπ−1(0)
∧ viπ−1(1)

∧ viπ−1(2)
∧ ...,

so that

PSEN (τ (vi0 ∧ vi1 ∧ vi2 ∧ ...))

= PSEN

(
τ
(

(−1)φ viπ−1(0)
∧ viπ−1(1)

∧ viπ−1(2)
∧ ...

))
= (−1)φ PSEN

(
τ
(
viπ−1(0)

∧ viπ−1(1)
∧ viπ−1(2)

∧ ...
))

︸ ︷︷ ︸
=S

(iπ−1(0)
+0,i

π−1(1)
+1,i

π−1(2)
+2,...)

(x)

(by the definition of τ , since (iπ−1(0),iπ−1(1),iπ−1(2),...) is a 0-degression)

= (−1)φ PSEN

(
S(iπ−1(0)+0,iπ−1(1)+1,iπ−1(2)+2,...) (x)

)
. (159)

Let µ be the partition
(
iπ−1(0) + 0, iπ−1(1) + 1, iπ−1(2) + 2, ...

)
. For every positive inte-

ger α, let µα denote the α-th part of the partition µ, so that µ = (µ1, µ2, µ3, ...). Then,
every j ∈ {1, 2, ..., N} satisfies

µj = iπ−1(j−1) + (j − 1) (by the definition of µ)

= iφ−1(j−1) + (j − 1)
(
since (158) (applied to k = j − 1) yields π−1 (j − 1) = φ−1 (j − 1)

)
,

so that µj +N − j = iφ−1(j−1) + (j − 1) +N − j = iφ−1(j−1) +N − 1. Hence,

det

((
y
µj+N−j
i

)
1≤i≤N, 1≤j≤N

)
= det

((
y
iφ−1(j−1)+N−1

i

)
1≤i≤N, 1≤j≤N

)
. (160)

But the matrix
(
y
iφ−1(j−1)+N−1

i

)
1≤i≤N, 1≤j≤N

is obtained from the matrix
(
y
ij−1+N−1
i

)
1≤i≤N, 1≤j≤N

by permuting the columns using the permutation φ. Hence,

det

((
y
iφ−1(j−1)+N−1

i

)
1≤i≤N, 1≤j≤N

)
= (−1)φ det

((
y
ij−1+N−1
i

)
1≤i≤N, 1≤j≤N

)
(since permuting the columns of a matrix changes the determinant by the sign of the
permutation). Combining this with (160), we obtain

det

((
y
µj+N−j
i

)
1≤i≤N, 1≤j≤N

)
= (−1)φ det

((
y
ij−1+N−1
i

)
1≤i≤N, 1≤j≤N

)
. (161)

Also, by the definition of µ, we have µN+1 = iπ−1(N)+N = 0 (because −N = iπ−1(N)),
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and thus we can apply Theorem 3.13.6 to µ instead of λ. This results in

PSEN (Sµ (x)) =

det

((
y
µj+N−j
i

)
1≤i≤N, 1≤j≤N

)
det
((
yj−1
i

)
1≤i≤N, 1≤j≤N

)

=

(−1)φ det

((
y
ij−1+N−1
i

)
1≤i≤N, 1≤j≤N

)
det
((
yj−1
i

)
1≤i≤N, 1≤j≤N

) (162)

(by (161)). But (159) becomes

PSEN (τ (vi0 ∧ vi1 ∧ vi2 ∧ ...))

= (−1)φ PSEN

(
S(iπ−1(0)+0,iπ−1(1)+1,iπ−1(2)+2,...) (x)

)
= (−1)φ PSEN (Sµ (x))

(
since

(
iπ−1(0) + 0, iπ−1(1) + 1, iπ−1(2) + 2, ...

)
= µ

)
= (−1)φ

(−1)φ det

((
y
ij−1+N−1
i

)
1≤i≤N, 1≤j≤N

)
det
((
yj−1
i

)
1≤i≤N, 1≤j≤N

) (by (162))

=

det

((
y
ij−1+N−1
i

)
1≤i≤N, 1≤j≤N

)
det
((
yj−1
i

)
1≤i≤N, 1≤j≤N

) .

This proves (156). The proof of the 2nd step is thus complete.

3rd step: Consider the action of the Heisenberg algebra A on F̃ = B(0) and ∧
∞
2
,0
V =

F (0). We will now prove that the map τ : ∧
∞
2
,0
V → F̃ satisfies

τ ◦ a−m = a−m ◦ τ for every positive integer m. (163)

Proof of (163): Let m be a positive integer.
Let (i0, i1, i2, ...) be a 0-degression. By the definition of a 0-degression, (i0, i1, i2, ...)

is a strictly decreasing sequence of integers such that every sufficiently high k ∈ N
satisfies ik + k = 0. In other words, there exists an ` ∈ N such that every integer k ≥ `
satisfies ik + k = 0. Consider this `.

Let N be any integer satisfying N ≥ ` + m. Then, it is easy to see that, for every
integer k ≥ N , we have ik +m = ik−m.

By the definition of the A-module structure on ∧
∞
2
,0
V , the action of a−m on ∧

∞
2
,0
V

is ρ̂ (T−m), where T is the shift operator. Thus,

a−m (vi0 ∧ vi1 ∧ vi2 ∧ ...) =
(
ρ̂
(
T−m

))
(vi0 ∧ vi1 ∧ vi2 ∧ ...) . (164)

Since m 6= 0, the matrix T−m has the property that, for every integer i, the (i, i)-th
entry of T−m is 0. Hence, Proposition 3.7.5 (applied to 0, T−m and vik instead of m,
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a and bk) yields(
ρ̂
(
T−m

))
(vi0 ∧ vi1 ∧ vi2 ∧ ...)

=
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧
(
T−m ⇀ vik

)︸ ︷︷ ︸
=vik+m

∧vik+1
∧ vik+2

∧ ...

=
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ vik+m ∧ vik+1

∧ vik+2
∧ ...

=
∑
k≥0;
k<N︸︷︷︸
=
N−1∑
k=0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ vik+m ∧ vik+1

∧ vik+2
∧ ...︸ ︷︷ ︸

=vi0+δ0,km
∧vi1+δ1,km

∧...∧vik−1+δk−1,km
∧vik+δk,km

∧vik+1+δk+1,km
∧vik+2+δk+2,km

∧...
(here we are simply making use of the fact that every j∈N such that j 6=k satisfies

ij=ij+δj,km (since δj,k=0), whereas ik+m=ik+δk,km (since δk,k=1))

+
∑
k≥N

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ vik+m ∧ vik+1

∧ vik+2
∧ ...︸ ︷︷ ︸

=0 (because the sequence (i0,i1,...,ik−1,ik+m,ik+1,ik+2,...)
has two equal elements (since ik+m=ik−m))

=
N−1∑
k=0

vi0+δ0,km ∧ vi1+δ1,km ∧ ... ∧ vik−1+δk−1,km ∧ vik+δk,km ∧ vik+1+δk+1,km ∧ vik+2+δk+2,km ∧ ...

=
N−1∑
k=0

vi0+δ0,km ∧ vi1+δ1,km ∧ vi2+δ2,km ∧ ....

Combined with (164), this yields

a−m (vi0 ∧ vi1 ∧ vi2 ∧ ...) =
N−1∑
k=0

vi0+δ0,km ∧ vi1+δ1,km ∧ vi2+δ2,km ∧ ...,
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so that

PSEN (τ (a−m (vi0 ∧ vi1 ∧ vi2 ∧ ...)))

= PSEN

(
τ

(
N−1∑
k=0

vi0+δ0,km ∧ vi1+δ1,km ∧ vi2+δ2,km ∧ ...

))

=
N−1∑
k=0

PSEN

(
τ
(
vi0+δ0,km ∧ vi1+δ1,km ∧ vi2+δ2,km ∧ ...

))︸ ︷︷ ︸
=

det

((
y
ij−1+δj−1,km+N−1
i

)
1≤i≤N, 1≤j≤N

)
det
((
yj−1
i

)
1≤i≤N, 1≤j≤N

)
(by (156), applied to (i0+δ0,km,i1+δ1,km,i2+δ2,km,...)

instead of (i0,i1,i2,...) (since (i0+δ0,km,i1+δ1,km,i2+δ2,km,...)
is easily seen to be an N -finished straying 0-degression))

(since PSEN and τ are both linear)

=
N−1∑
k=0

det

((
y
ij−1+δj−1,km+N−1
i

)
1≤i≤N, 1≤j≤N

)
det
((
yj−1
i

)
1≤i≤N, 1≤j≤N

)

=
N∑
k=1

det

((
y
ij−1+δj−1,k−1m+N−1
i

)
1≤i≤N, 1≤j≤N

)
det
((
yj−1
i

)
1≤i≤N, 1≤j≤N

)
(here, we substituted k − 1 for k in the sum)

=
N∑
k=1

det

((
y
ij−1+δj,km+N−1
i

)
1≤i≤N, 1≤j≤N

)
det
((
yj−1
i

)
1≤i≤N, 1≤j≤N

) (since δj−1,k−1 = δj,k for all j and k)

=
1

det
((
yj−1
i

)
1≤i≤N, 1≤j≤N

) N∑
k=1

det

((
y
ij−1+δj,km+N−1
i

)
1≤i≤N, 1≤j≤N

)
︸ ︷︷ ︸
=(ym1 +ym2 +...+ymN ) det

((
y
ij−1+N−1

i

)
1≤i≤N, 1≤j≤N

)
(by Corollary 3.13.8)

=
1

det
((
yj−1
i

)
1≤i≤N, 1≤j≤N

) (ym1 + ym2 + ...+ ymN ) det

((
y
ij−1+N−1
i

)
1≤i≤N, 1≤j≤N

)

= (ym1 + ym2 + ...+ ymN ) ·
det

((
y
ij−1+N−1
i

)
1≤i≤N, 1≤j≤N

)
det
((
yj−1
i

)
1≤i≤N, 1≤j≤N

) . (165)

On the other hand, since (i0, i1, i2, ...) is strictly decreasing, (i0, i1, i2, ...) is N -finished.
Thus, (156) yields

PSEN (τ (vi0 ∧ vi1 ∧ vi2 ∧ ...)) =

det

((
y
ij−1+N−1
i

)
1≤i≤N, 1≤j≤N

)
det
((
yj−1
i

)
1≤i≤N, 1≤j≤N

) . (166)
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Now, (165) becomes

PSEN (τ (a−m (vi0 ∧ vi1 ∧ vi2 ∧ ...)))

= (ym1 + ym2 + ...+ ymN )︸ ︷︷ ︸
=mPSEN (xm)

(since the definition of PSEN yields

PSEN (xm)=
ym1 + ym2 + ...+ ymN

m
)

·
det

((
y
ij−1+N−1
i

)
1≤i≤N, 1≤j≤N

)
det
((
yj−1
i

)
1≤i≤N, 1≤j≤N

)
︸ ︷︷ ︸

=PSEN(τ(vi0∧vi1∧vi2∧...))
(by (166))

= mPSEN (xm) · PSEN (τ (vi0 ∧ vi1 ∧ vi2 ∧ ...))
= PSEN (mxm · τ (vi0 ∧ vi1 ∧ vi2 ∧ ...))︸ ︷︷ ︸

=a−m(τ(vi0∧vi1∧vi2∧...))
(since a−m acts on F̃ as multiplication by mxm)

(since PSEN is a C-algebra homomorphism)

= PSEN (a−m (τ (vi0 ∧ vi1 ∧ vi2 ∧ ...))) .

Now forget that we fixed N . We thus have shown that every integer N ≥ `+m satisfies

PSEN (τ (a−m (vi0 ∧ vi1 ∧ vi2 ∧ ...))) = PSEN (a−m (τ (vi0 ∧ vi1 ∧ vi2 ∧ ...))) .

Hence,

PSEN (τ (a−m (vi0 ∧ vi1 ∧ vi2 ∧ ...))) = PSEN (a−m (τ (vi0 ∧ vi1 ∧ vi2 ∧ ...)))

for every sufficiently highN ∈ N. Thus, Corollary 3.13.5 (applied to P = τ (a−m (vi0 ∧ vi1 ∧ vi2 ∧ ...))
and Q = a−m (τ (vi0 ∧ vi1 ∧ vi2 ∧ ...))) yields that

τ (a−m (vi0 ∧ vi1 ∧ vi2 ∧ ...)) = a−m (τ (vi0 ∧ vi1 ∧ vi2 ∧ ...)) .

In other words,

(τ ◦ a−m) (vi0 ∧ vi1 ∧ vi2 ∧ ...) = (a−m ◦ τ) (vi0 ∧ vi1 ∧ vi2 ∧ ...) .

Now forget that we fixed (i0, i1, i2, ...). We have thus shown that (τ ◦ a−m) (vi0 ∧ vi1 ∧ vi2 ∧ ...) =
(a−m ◦ τ) (vi0 ∧ vi1 ∧ vi2 ∧ ...) for every 0-degression (i0, i1, i2, ...). Hence, the maps

τ ◦ a−m and a−m ◦ τ are equal to each other on a basis of ∧
∞
2
,0
V (namely, on the

basis (vi0 ∧ vi1 ∧ vi2 ∧ ...)(i0,i1,i2,...) is a 0-degression). Since these two maps are linear, this
yields that these two maps must be identical, i. e., we have τ ◦ a−m = a−m ◦ τ . This
proves (163). The proof of the 3rd step is thus complete.

4th step: We can now easily conclude Theorem 3.12.11.
Let A− be the Lie subalgebra 〈a−1, a−2, a−3, ...〉 of A. Then, τ is an A−-module

homomorphism ∧
∞
2
,0
V → F̃ (according to (163)).

Consider the element ψ0 = v0 ∧ v−1 ∧ v−2 ∧ ... of ∧
∞
2
,0
V = F (0). By the definition

of σ0, we have σ0 (1) = ψ0, so that σ−1
0 (ψ0) = 1. Compared with

τ (ψ0) = τ (v0 ∧ v−1 ∧ v−2 ∧ ...) (since ψ0 = v0 ∧ v−1 ∧ v−2 ∧ ...)
= 1,
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this yields τ (ψ0) = σ−1
0 (ψ0).

From Lemma 2.2.10, it is clear that the Fock module F is generated by 1 as an A−-
module (since A− = 〈a−1, a−2, a−3, ...〉). Since there exists an A−-module isomorphism

F → F̃ which sends 1 to 1 (in fact, the map resc of Proposition 2.2.21 is such an

isomorphism), this yields that F̃ is generated by 1 as an A−-module. Since there

exists an A−-module isomorphism F̃ → ∧
∞
2
,0
V which sends 1 to ψ0 (in fact, the map

σ0 is such an isomorphism, since σ0 (1) = ψ0), this yields that ∧
∞
2
,0
V is generated

by ψ0 as an A−-module. Hence, if two A−-module homomorphisms from ∧
∞
2
,0
V to

another A−-module are equal to each other on ψ0, then they must be identical. We

can apply this observation to the two A−-module homomorphisms τ : ∧
∞
2
,0
V → F̃

and σ−1
0 : ∧

∞
2
,0
V → F̃ (which are equal to each other on ψ0, since τ (ψ0) = σ−1

0 (ψ0)),
and conclude that these homomorphisms are identical, i. e., we have τ = σ−1

0 . Now,
every 0-degression (i0, i1, i2, ...) satisfies

σ−1 (vi0 ∧ vi1 ∧ vi2 ∧ ...) = σ−1
0︸︷︷︸

=τ

(vi0 ∧ vi1 ∧ vi2 ∧ ...) = τ (vi0 ∧ vi1 ∧ vi2 ∧ ...)

= S(i0+0,i1+1,i2+2,...) (x) (by the definition of τ)

= Sλ (x) ,

where λ = (i0 + 0, i1 + 1, i2 + 2, ...). This proves Theorem 3.12.11.

3.14. Expliciting σ−1 using Schur polynomials: second proof

We are next going to give a second proof of Theorem 3.12.11. We will give this proof
in two versions: The first version (Subsection 3.14.7) will proceed by manipulations

with infinite matrices, using various properties of infinite matrices acting on ∧
∞
2
,m
V .

Since we are not going to prove all these properties, this first version is not completely
self-contained (although the missing proofs are easy to fill in). The second version
(Subsection 3.14.8) will be a rewriting of the first version without the use of all these
properties of infinite matrices; it is self-contained. Both versions of the proof require
lengthy preparations, some of which (like the definition of GL (∞)) will also turn out
useful to us later.

3.14.1. The multivariate Taylor formula

Before we step to the second proof of Theorem 3.12.11, we show a lemma about poly-
nomials over Q-algebras:

Lemma 3.14.1. Let K be a commutative Q-algebra, let (y1, y2, y3, ...) be a sequence
of elements of K, and let (z1, z2, z3, ...) be a sequence of new symbols. Denote the
sequence (y1, y2, y3, ...) by y. Denote the sequence (z1, z2, z3, ...) by z. Then, every
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P ∈ K [z1, z2, z3, ...] satisfies

exp

(∑
s>0

ys
∂

∂zs

)
P (z) = P (y + z) .

Here, y+ z means the componentwise sum of the sequences y and z (so that y+ z =
(y1 + z1, y2 + z2, y3 + z3, ...)).

Lemma 3.14.1 is actually a multivariate generalization of the famous Taylor formula

exp

(
α
∂

∂ξ

)
P (ξ) = P (α + ξ)

which holds for any polynomial P ∈ K [ξ] and any α ∈ K.
Proof of Lemma 3.14.1. Let A be the map

exp

(∑
s>0

ys
∂

∂zs

)
: K [z1, z2, z3, ...]→ K [z1, z2, z3, ...]

(this is easily seen to be well-defined). Let B be the map

K [z1, z2, z3, ...]→ K [z1, z2, z3, ...] , P 7→ P (y + z) .

We have A = exp

(∑
s>0

ys
∂

∂zs

)
, so that A is the exponential of a derivation (since∑

s>0

ys
∂

∂zs
is a derivation). Thus, A is a K-algebra homomorphism (since there is a

known fact that the exponential of a derivation is a K-algebra homomorphism). Com-
bined with the fact that B is a K-algebra homomorphism (in fact, B is an evaluation
homomorphism), this yields that both A and B are K-algebra homomorphisms.

Now, let k be a positive integer. We will prove that Azk = Bzk.
We have(∑

s>0

ys
∂

∂zs

)
zk =

∑
s>0

ys
∂

∂zs
zk = yk

∂

∂zk
zk︸ ︷︷ ︸

=1

+
∑
s>0;
s 6=k

ys
∂

∂zs
zk︸ ︷︷ ︸

=0
(since s 6=k)

= yk +
∑
s>0;
s 6=k

ys0

︸ ︷︷ ︸
=0

= yk,

so that(∑
s>0

ys
∂

∂zs

)2

zk =

(∑
s>0

ys
∂

∂zs

)(∑
s>0

ys
∂

∂zs

)
zk︸ ︷︷ ︸

=yk

=

(∑
s>0

ys
∂

∂zs

)
yk =

∑
s>0

ys
∂

∂zs
yk︸ ︷︷ ︸

=0

= 0.

As a consequence,

every integer i ≥ 2 satisfies

(∑
s>0

ys
∂

∂zs

)i

zk = 0. (167)
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Now, since A = exp

(∑
s>0

ys
∂

∂zs

)
=
∑
i∈N

1

i!

(∑
s>0

ys
∂

∂zs

)i
, we have

Azk =
∑
i∈N

1

i!

(∑
s>0

ys
∂

∂zs

)i

zk

=
1

0!︸︷︷︸
=1

(∑
s>0

ys
∂

∂zs

)0

︸ ︷︷ ︸
=id

zk +
1

1!︸︷︷︸
=1

(∑
s>0

ys
∂

∂zs

)1

︸ ︷︷ ︸
=
∑
s>0

ys
∂

∂zs

zk +
∑
i≥2

1

i!

(∑
s>0

ys
∂

∂zs

)i

zk︸ ︷︷ ︸
=0

(by (167))

= id zk︸︷︷︸
=zk

+

(∑
s>0

ys
∂

∂zs

)
zk︸ ︷︷ ︸

=yk

+
∑
i≥2

1

i!
0︸ ︷︷ ︸

=0

= zk + yk = yk + zk.

Compared to

Bzk = zk (y + z) (by the definition of B)

= yk + zk,

this yields Azk = Bzk.
Now, forget that we fixed k. We thus have shown that Azk = Bzk for every positive

integer k. In other words, the maps A and B coincide on the set {z1, z2, z3, ...}. Since
the set {z1, z2, z3, ...} generates K [z1, z2, z3, ...] as a K-algebra, this yields that the maps
A and B coincide on a generating set of the K-algebra K [z1, z2, z3, ...]. Since A and
B are K-algebra homomorphisms, this yields that A = B (because if two K-algebra
homomorphisms coincide on a K-algebra generating set of their domain, then they
must be equal). Hence, every P ∈ K [z1, z2, z3, ...] satisfies

exp

(∑
s>0

ys
∂

∂zs

)
︸ ︷︷ ︸

=A=B

P (z)︸ ︷︷ ︸
=P

= BP = P (y + z)

(by the definition of B). This proves Lemma 3.14.1.

3.14.2. GL (∞) and M (∞)

We now introduce the groups GL (∞) and M (∞) and their actions on ∧
∞
2
,m
V . On

the one hand, this will prepare us to the second proof of Theorem 3.12.11; on the other
hand, these group actions are of autonomous interest, and we will meet them again in
Subsection 3.15.2.

Definition 3.14.2. We let M (∞) denote the set id +gl∞. In other words, we let
M (∞) denote the set of all infinite matrices (infinite in both directions) which are
equal to the infinite identity matrix id in all but finitely many entries.

Clearly, M (∞) ⊆ a∞ as sets. We notice that:
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Proposition 3.14.3. (a) For every A ∈ M (∞) and B ∈ M (∞), the matrix AB is
well-defined and lies in M (∞).

(b) We have id ∈ M (∞) (where id denotes the infinite identity matrix).
(c) The set M (∞) becomes a monoid under multiplication of matrices.
(d) If a matrix A ∈ M (∞) is invertible, then its inverse also lies in M (∞).
(e) Denote by GL (∞) the subset {A ∈ M (∞) | A is invertible} of M (∞). Then,

GL (∞) becomes a group under multiplication of matrices.

Remark 3.14.4. In Proposition 3.14.3, a matrix A ∈ M (∞) is said to be invertible
if there exists an infinite matrix B (with rows and columns indexed by integers)
satisfying AB = BA = id. The matrix B is then called the inverse of A. Note that
we don’t a-priori require that B lie in M (∞), or any other “finiteness conditions” for
B; Proposition 3.14.3 (d) shows that these conditions are automatically satisfied.

Definition 3.14.5. Let GL (∞) denote the group GL (∞) defined in Proposition
3.14.3 (e).

Proof of Proposition 3.14.3. (a) Let A ∈ M (∞) and B ∈ M (∞). Since A ∈
M (∞) = id +gl∞, there exists an a ∈ gl∞ such that A = id +a. Consider this a.

Since B ∈ M (∞) = id +gl∞, there exists a b ∈ gl∞ such that B = id +b. Consider
this b.

Since A = id +a and B = id +b, we have AB = (id +a) (id +b) = id +a+b+ab, which
is clearly well-defined (because a ∈ gl∞ and b ∈ gl∞ lead to ab being well-defined) and
lies in M (∞) (since a︸︷︷︸

∈gl∞

+ b︸︷︷︸
∈gl∞

+ ab︸︷︷︸
∈gl∞

(since a∈gl∞ and b∈gl∞)

∈ gl∞+gl∞+gl∞ ⊆ gl∞ and thus

id +a+ b+ ab ∈ id +gl∞ = M (∞)). This proves Proposition 3.14.3 (a).
(b) Trivial.
(c) Follows from (a) and (b).
(d) Let A ∈ M (∞) be invertible.
Since A ∈ M (∞) = id +gl∞, there exists an a ∈ gl∞ such that A = id +a. Consider

this a.
SinceA is invertible, there exists an infinite matrixB (with rows and columns indexed

by integers) satisfying AB = BA = id (according to how we defined “invertible” in
Remark 3.14.4). Consider this B. This B is the inverse of A. Let b = B−id. Then, B =
id +b. Since A = id +a and B = id +b, we have AB = (id +a) (id +b) = id +a+ b+ ab,
which is clearly well-defined (because a ∈ gl∞ leads to ab being well-defined). Since
id = AB = id +ab+ a+ b, we have 0 = ab+ a+ b.

Let us introduce two notations that we will use during this proof:

• For any infinite matrix M and any pair (i, j) of integers, let us denote by Mi,j

the (i, j)-th entry of the matrix M . (In particular, for any pair (i, j) of integers,
we denote by ai,j the (i, j)-th entry of the matrix a (not of the matrix A !), and
we denote by bi,j the (i, j)-th entry of the matrix b (not of the matrix B !).)

• For any assertion A, let [A] denote the integer

{
1, if A is true;
0, if A is wrong

.
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Since a ∈ gl∞, only finitely many entries of the matrix a are nonzero. In particular,
this yields that only finitely many columns of the matrix a are nonzero. Hence, there
exists a nonnegative integer N such that

(for every integer j with |j| > N , the j-th column of a is zero) . (168)

Consider this N . Clearly,(
for every (i, j) ∈ Z2 such that |j| > N , we have ai,j = 0

)
(169)

(because for every (i, j) ∈ Z2 such that |j| > N , the j-th column of a is zero (by (168)),
so that every entry on the j-th column of a is zero, so that ai,j is zero (because the
element ai,j is the (i, j)-th entry of a, hence an entry on the j-th column of a)).

Recall that only finitely many entries of the matrix a are nonzero. In particular, this
yields that only finitely many rows of the matrix a are nonzero. Hence, there exists a
nonnegative integer M such that

(for every integer i with |i| > M , the i-th row of a is zero) . (170)

Consider this M . Clearly,(
for every (i, j) ∈ Z2 such that |i| > M , we have ai,j = 0

)
(171)

(because for every (i, j) ∈ Z2 such that |i| > M , the i-th row of a is zero (by (170)), so
that every entry on the i-th row of a is zero, so that ai,j is zero (because the element
ai,j is the (i, j)-th entry of a, hence an entry on the i-th row of a)).

Let P = max {M,N}. Clearly, P ≥M and P ≥ N . It is now easy to see that

any (i, j) ∈ Z2 satisfies ai,j = [|i| ≤ P ] · ai,j. (172)

141 Similarly,
any (i, j) ∈ Z2 satisfies ai,j = [|j| ≤ P ] · ai,j. (173)

Let b′ be the infinite matrix (with rows and columns indexed by integers) defined by(
b′i,j = [|i| ≤ P ] · [|j| ≤ P ] · bi,j for all (i, j) ∈ Z2

)
. (174)

141Proof of (172): Let (i, j) ∈ Z2. Then, we must be in one of the following three cases:
Case 1: We don’t have |i| ≤ P .
Case 2: We have |i| ≤ P .
Let us consider Case 1 first. In this case, we don’t have |i| ≤ P . Thus, [|i| ≤ P ] = 0 and |i| > P .

From |i| > P ≥ M , we conclude that ai,j = 0 (by (171)). Compared with [|i| ≤ P ]︸ ︷︷ ︸
=0

·ai,j = 0, this

yields ai,j = [|i| ≤ P ] · ai,j . Hence, (172) is proven in Case 1.
Finally, let us consider Case 2. In this case, we have |i| ≤ P . Hence, [|i| ≤ P ] = 1. Thus,

[|i| ≤ P ]︸ ︷︷ ︸
=1

·ai,j = ai,j . Hence, (172) is proven in Case 2.

Altogether, we have thus proven (172) in each of the two cases 1 and 2. Since these two cases
cover all possibilities, this shows that (172) always holds. Thus, (172) is proven.
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It is clear that only finitely many entries of b′ are nonzero142. In other words, b′ ∈ gl∞,
so that id +b′ ∈ id +gl∞ = M (∞).

We will now prove that A (id +b′) = id.
For every (i, j) ∈ Z2, we have

(ab′ + a+ b′)i,j

= (ab′)i,j︸ ︷︷ ︸
=
∑
k∈Z

ai,kb
′
k,j

(by the definition of the
product of two matrices)

+ai,j + b′i,j︸︷︷︸
=[|i|≤P ]·[|j|≤P ]·bi,j

(by (174))

=
∑
k∈Z

ai,k b′k,j︸︷︷︸
=[|k|≤P ]·[|j|≤P ]·bk,j
(by (174), applied to

k instead of i)

+ai,j + [|i| ≤ P ] · [|j| ≤ P ] · bi,j

=
∑
k∈Z

ai,k [|k| ≤ P ]︸ ︷︷ ︸
=[|k|≤P ]·ai,k=ai,k

(since (173) (applied to
k instead of j) yields ai,k=[|k|≤P ]·ai,k)

· [|j| ≤ P ] · bk,j + ai,j︸︷︷︸
=[|i|≤P ]·ai,j

(by (172))

+ [|i| ≤ P ] · [|j| ≤ P ] · bi,j

=
∑
k∈Z

ai,k︸︷︷︸
=[|i|≤P ]·ai,k

(by (172), applied to
k instead of j)

· [|j| ≤ P ] · bk,j + [|i| ≤ P ] · ai,j︸︷︷︸
=[|j|≤P ]·ai,j

(by (173))

+ [|i| ≤ P ] · [|j| ≤ P ] · bi,j

=
∑
k∈Z

[|i| ≤ P ] · ai,k · [|j| ≤ P ] · bk,j + [|i| ≤ P ] · [|j| ≤ P ] · ai,j + [|i| ≤ P ] · [|j| ≤ P ] · bi,j

= [|i| ≤ P ] · [|j| ≤ P ] ·

(∑
k∈Z

ai,kbk,j + ai,j + bi,j

)
= [|i| ≤ P ] · [|j| ≤ P ] ·

(
(ab)i,j + ai,j + bi,j

)
︸ ︷︷ ︸

=(ab+a+b)i,j=0

(since ab+a+b=0) since (ab)i,j =
∑
k∈Z

ai,kbk,j (by the definition of the product of two matrices),

so that
∑
k∈Z

ai,kbk,j = (ab)i,j


= 0.

Thus, ab′ + a + b′ = 0. Since A = id +a, we have A (id +b′) = (id +a) (id +b′) =
id + ab′ + a+ b′︸ ︷︷ ︸

=0

= id.

We thus have shown that A (id +b′) = id.

142Proof. Let (i, j) ∈ Z2 such that b′i,j 6= 0. Then, |i| ≤ P (because otherwise, we would have
[|i| ≤ P ] = 0, so that b′i,j = [|i| ≤ P ]︸ ︷︷ ︸

=0

· [|j| ≤ P ] · bi,j = 0, contradicting to b′i,j 6= 0), so that i ∈

{−P,−P + 1, ..., P}, and similarly j ∈ {−P,−P + 1, ..., P}. Hence, (i, j) ∈ {−P,−P + 1, ..., P}2
(since i ∈ {−P,−P + 1, ..., P} and j ∈ {−P,−P + 1, ..., P}).

Now forget that we fixed (i, j). We thus have showed that every (i, j) ∈ Z2 such that b′i,j 6= 0 sat-

isfies (i, j) ∈ {−P,−P + 1, ..., P}2. Since there are only finitely many (i, j) ∈ {−P,−P + 1, ..., P}2,
this yields that there are only finitely many (i, j) ∈ Z2 such that b′i,j 6= 0. In other words, there

are only finitely many (i, j) ∈ Z2 such that the (i, j)-th entry of b′ is nonzero. In other words, only
finitely many entries of b′ are nonzero, qed.
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Now, it is easy to see that the products B (A (id +b′)) and (BA) (id +b′) are well-
defined and satisfy associativity, i. e., we have B (A (id +b′)) = (BA) (id +b′). Now,

B = B · id︸︷︷︸
=A(id +b′)

= B (A (id +b′)) = (BA)︸ ︷︷ ︸
=id

(id +b′) = id +b′ ∈ M (∞) .

Since B is the inverse of A, this yields that the inverse of A lies in M (∞). This proves
Proposition 3.14.3 (d).

(e) Follows from (c) and (d).
The proof of Proposition 3.14.3 is complete.
We now construct a group action of GL (∞) on F (m) that is related to the Lie algebra

action ρ of gl∞ on F (m) in the same way as the action of a Lie group on a representation
is usually related to its “derivative” action of the corresponding Lie algebra:

Definition 3.14.6. Let m ∈ Z. We define an action % : M (∞)→ End
(
F (m)

)
of the

monoid M (∞) on the vector space F (m) = ∧
∞
2
,m
V as follows: For every A ∈ M (∞)

and every m-degression (i0, i1, i2, ...), we set

(% (A)) (vi0 ∧ vi1 ∧ vi2 ∧ ...) = Avi0 ∧ Avi1 ∧ Avi2 ∧ ....

(This is then extended to the whole F (m) by linearity.) It is very easy to see that
this is well-defined (because Avk = vk for all sufficiently small k) and indeed gives a
monoid action.

The restriction % |GL(∞): GL (∞)→ End
(
F (m)

)
to GL (∞) is thus a group action

of GL (∞) on F (m).
Since we have defined an action of M (∞) on F (m) for every m ∈ Z, we thus

obtain an action of M (∞) on F =
⊕
m∈Z
F (m) (namely, the direct sum of the previous

actions). This latter action will also be denoted by %.

Note that the letter % is a capital rho, as opposed to ρ which is the lowercase rho.
When A is a matrix in M (∞), the endomorphism % (A) of F (m) can be seen as an

infinite analogue of the endomorphisms ∧`A of ∧`V defined for all ` ∈ N.
We are next going to give an explicit formula for the action of % (A) on F (m) in terms

of (infinite) minors of A. The formula will be an infinite analogue of the following well-
known formula:

Proposition 3.14.7. Let P be a finite-dimensional C-vector space with ba-
sis (e1, e2, ..., en), and let Q be a finite-dimensional C-vector space with basis
(f1, f2, ..., fm). Let ` ∈ N.

Let f : P → Q be a linear map, and let A be the m× n-matrix which represents
this map f with respect to the bases (e1, e2, ..., en) and (f1, f2, ..., fm) of P and Q.

Let i1, i2, ..., i` be integers such that 1 ≤ i1 < i2 < ... < i` ≤ n. For any ` integers
j1, j2, ..., j` satisfying 1 ≤ j1 < j2 < ... < j` ≤ m, let Ai1,i2,...,i`j1,j2,...,j`

denote the matrix
which is obtained from A by removing all columns except for the i1-th, the i2-th,
..., the i`-th ones and removing all rows except for the j1-th, the j2-th, ..., the j`-th
ones. Then,(
∧`f

)
(ei1 ∧ ei2 ∧ ... ∧ ei`) =

∑
j1, j2, ..., j` are ` integers;

1≤j1<j2<...<j`≤m

det
(
Ai1,i2,...,i`j1,j2,...,j`

)
ej1 ∧ ej2 ∧ ... ∧ ej` .
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Note that Proposition 3.14.7 is the main link between exterior powers and minors of
matrices. It is commonly used both to prove results involving exterior powers and to
give slick proofs of identities involving minors.

In order to obtain an infinite analogue of this result, we need to first define deter-
minants of infinite matrices. This cannot be done for arbitrary infinite matrices, but
there exist classes of infinite matrices for which a notion of determinant can be made
sense of. Let us define it for so-called “upper almost-unitriangular” matrices:

Definition 3.14.8. (a) In the following, when S and T are two sets of integers (not
necessarily finite), an S × T -matrix will mean a matrix whose rows are indexed by
the elements of S and whose columns are indexed by the elements of T . (Hence, the
elements of gl∞, as well as those of a∞ and those of M (∞), are Z× Z-matrices.)

(b) If S is a set of integer, then an S × S-matrix B over C is said to be upper
unitriangular if it satisfies the following two assertions:

– All entries on the main diagonal of B are = 1.
– All entries of B below the main diagonal are = 0.
(c) An N×N-matrix B over C is said to be upper almost-unitriangular if it satisfies

the following two assertions:
– All but finitely many of the entries on the main diagonal of B are = 1.
– All but finitely many of the entries of B below the main diagonal are = 0.
(d) Let B be an upper almost-unitriangular N× N-matrix over C. Then, we can

write the matrix B in the form

(
C D
0 E

)
for some n ∈ N, some {0, 1, ..., n− 1} ×

{0, 1, ..., n− 1}-matrix C, some {0, 1, ..., n− 1}×{n, n+ 1, n+ 2, ...}-matrix D, and
some upper unitriangular {n, n+ 1, n+ 2, ...} × {n, n+ 1, n+ 2, ...}-matrix E. The
matrix C in such a representation of B will be called a faithful block-triangular
truncation of B.

(e) Let B be an upper almost-unitriangular N×N-matrix over C. We define the
determinant detB of the matrix B to be detC, where C is a faithful block-triangular
truncation of B. This is well-defined, because a faithful block-triangular truncation
of B exists and because the determinant detC does not depend on the choice of the
faithful block-triangular truncation C. (The latter assertion follows from the fact

that det

(
F G
0 H

)
= detF for any n ∈ N, any k ∈ N, any n × n-matrix F , any

n× k-matrix G, and any upper unitriangular k × k-matrix H.)

Now, the following fact (an analogue of Proposition 3.14.7) gives an explicit formula
for the action of % (A):

Remark 3.14.9. Let (i0, i1, i2, ...) be an m-degression. Let A ∈ M (∞). For any
m-degression (j0, j1, j2, ...), let Ai0,i1,i2,...j0,j1,j2,...

denote the N× N-matrix defined by((
the (u, v) -th entry of Ai0,i1,i2,...j0,j1,j2,...

)
= (the (ju, iv) -th entry of A) for every (u, v) ∈ N2

)
.

(In other words, let Ai0,i1,i2,...j0,j1,j2,...
denote the matrix which is obtained from A by remov-

ing all columns except for the i0-th, the i1-th, the i2-th, etc. ones and removing all
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rows except for the j0-th, the j1-th, the j2-th, etc. ones, and then inverting the order
of the rows, and inverting the order of the columns.) Then, for any m-degression
(j0, j1, j2, ...), the matrix Ai0,i1,i2,...j0,j1,j2,...

is upper almost-unitriangular (in fact, one can

easily check that more is true: all but finitely many entries of Ai0,i1,i2,...j0,j1,j2,...
are equal to

the corresponding entries of the identity N × N matrix), and thus the determinant
det
(
Ai0,i1,i2,...j0,j1,j2,...

)
makes sense (according to Definition 3.14.8 (e)). We have

(% (A)) (vi0 ∧ vi1 ∧ vi2 ∧ ...) =
∑

(j0,j1,j2,...) is an m-degression

det
(
Ai0,i1,i2,...j0,j1,j2,...

)
vj0∧vj1∧vj2∧....

The analogy between Remark 3.14.9 and Proposition 3.14.7 is slightly obscured by
technicalities (such as the fact that Remark 3.14.9 only concerns itself with certain
endomorphisms of V and not with homomorphisms between different vector spaces,
and the fact that the m-degressions in Remark 3.14.9 are decreasing, while the `-tuples
(i1, i2, ..., i`) and (j1, j2, ..., j`) in Proposition 3.14.7 are increasing). Still, it should be
rather evident why Remark 3.14.9 is (informally speaking) a consequence of “the ` =∞
case” of Proposition 3.14.7.

3.14.3. Semiinfinite vectors and actions of u∞ and U (∞) on ∧
∞
2
,m
V

The actions of gl∞, a∞, M (∞) and GL (∞) on ∧
∞
2
,m
V have many good properties,

but for what we want to do with them, they are in some sense “too small” (even a∞).

Of course, we cannot let the space of all infinite matrices act on ∧
∞
2
,m
V (this space is

not even a Lie algebra), but it turns out that we can get away with restricting ourselves
to strictly upper-triangular infinite matrices. First, let us define a kind of completion
of V :

Definition 3.14.10. (a) A family (xi)i∈Z of elements of some additive group indexed
by integers is said to be semiinfinite if every sufficiently high i ∈ Z satisfies xi = 0.

(b) Let V̂ be the vector subspace
{
v ∈ CZ | v is semiinfinite

}
of CZ. Let u∞

denote the Lie algebra of all strictly upper-triangular infinite matrices (with rows
and columns indexed by integers). It is easy to see that the Lie algebra u∞ acts on

the vector space V̂ in the obvious way: namely, for any a ∈ u∞ and v ∈ V̂ , we let
a ⇀ v be the product of the matrix a with the column vector v. Here, every element

(xi)i∈Z of V̂ is identified with the column vector



...
x−2

x−1

x0

x1

x2

...


.

The vector space V defined in Definition 3.5.2 clearly is a subspace of V̂ . Restrict-
ing the u∞-action on V̂ to an (u∞ ∩ gl∞)-action on V yields the same (u∞ ∩ gl∞)-
module as restricting the gl∞-action on V to an (u∞ ∩ gl∞)-action on V .
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We thus have obtained an u∞-module V̂ , which is a kind of completion of V . One
could now hope that this allows us to construct an u∞-module structure on some kind

of completion of ∧
∞
2
,m
V . A quick observation shows that this works better than one

would expect, because we don’t have to take any completion of ∧
∞
2
,m
V (although we

can if we want to). We can make ∧
∞
2
,m
V itself an u∞-module:

Definition 3.14.11. Let ` ∈ Z. Let π` : V̂ → V be the linear map which sends

every (xi)i∈Z ∈ V̂ to

({
xi, if i ≥ `;
0, if i < `

)
i∈Z
∈ V . (It is very easy to see that this map

π` is well-defined.)

Definition 3.14.12. Let m ∈ Z. Let b0, b1, b2, ... be vectors in V̂ which satisfy

πm−i (bi) = vm−i for all sufficiently large i.

Define an element b0 ∧ b1 ∧ b2 ∧ ... of ∧
∞
2
,m
V as follows: Pick some N ∈ N such

that every i > N satisfies πm−i (bi) = vm−i. (Such an N exists, since we know that
πm−i (bi) = vm−i for all sufficiently large i.) Then, we define b0 ∧ b1 ∧ b2 ∧ ... to be
the element

πm−N (b0)∧πm−N (b1)∧ ...∧πm−N (bN)∧ vm−N−1∧ vm−N−2∧ vm−N−3∧ ... ∈ ∧
∞
2
,m
V.

This element does not depend on the choice of N (according to Proposition 3.14.13
below). Hence, b0 ∧ b1 ∧ b2 ∧ ... is well-defined.

The next few propositions state some properties of wedge products of elements of V̂
similar to some properties of wedge products of elements of V stated above. We will
not prove them; neither of them is actually difficult to verify.

Proposition 3.14.13. Let m ∈ Z. Let b0, b1, b2, ... be vectors in V̂ which satisfy

πm−i (bi) = vm−i for all sufficiently large i.

If we pick some N ∈ N such that every i > N satisfies πm−i (bi) = vm−i, then the
element

πm−N (b0)∧πm−N (b1)∧ ...∧πm−N (bN)∧ vm−N−1∧ vm−N−2∧ vm−N−3∧ ... ∈ ∧
∞
2
,m
V

does not depend on the choice of N .

Proposition 3.14.14. The wedge product defined in Definition 3.14.12 is antisym-
metric and multilinear (in the appropriate sense).
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Definition 3.14.15. Let m ∈ Z. Define an action of the Lie algebra u∞ on the

vector space ∧
∞
2
,m
V by the equation

a ⇀ (vi0 ∧ vi1 ∧ vi2 ∧ ...) =
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ (a ⇀ vik) ∧ vik+1

∧ vik+2
∧ ...

for all a ∈ u∞ and all elementary semiinfinite wedges vi0 ∧vi1 ∧vi2 ∧ ... (and by linear
extension).

Proposition 3.14.16. Let m ∈ Z. Then, Definition 3.14.15 really defines a repre-

sentation of the Lie algebra u∞ on the vector space ∧
∞
2
,m
V .

Proposition 3.14.17. Let m ∈ Z. Let b0, b1, b2, ... be vectors in V̂ which satisfy

πm−i (bi) = vm−i for all sufficiently large i.

Let a ∈ u∞. Then,

a ⇀ (b0 ∧ b1 ∧ b2 ∧ ...) =
∑
k≥0

b0 ∧ b1 ∧ ... ∧ bk−1 ∧ (a ⇀ bk) ∧ bk+1 ∧ bk+2 ∧ ....

Definition 3.14.18. Let m ∈ Z. Let ρ : u∞ → End

(
∧
∞
2
,m
V

)
be the representa-

tion of u∞ on ∧
∞
2
,m
V defined in Definition 3.14.15. (We denote this representation

by the same letter ρ as the representation gl∞ → End

(
∧
∞
2
,m
V

)
from Definition

3.7.1. This is intentional and unproblematic, because both of these representations
have the same restriction onto u∞ ∩ gl∞.)

Remark 3.14.19. Let m ∈ Z. Let a ∈ u∞ ∩ a∞. Then, ρ (a) = ρ̂ (a) (where ρ (a) is
defined according to Definition 3.14.18, and ρ̂ (a) is defined according to Definition
3.7.2).

Definition 3.14.20. We let U (∞) denote the set id +u∞. In other words, U (∞)
is the set of all upper-triangular infinite matrices (with rows and columns indexed
by integers) whose all diagonal entries are = 1. This set U (∞) is easily seen to
be a group (with respect to matrix multiplication). Inverses in this group can be

computed by means of the formula (I∞ + a)−1 =
∞∑
k=0

ak for all a ∈ u∞
143

143Here, we are using the fact that, for every a ∈ u∞, the sum
∞∑
k=0

ak converges entrywise (i. e., for
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Definition 3.14.21. Let m ∈ Z. We define an action % : U (∞) → End
(
F (m)

)
of the group U (∞) on the vector space F (m) = ∧

∞
2
,m
V as follows: For every

A ∈ U (∞) and every m-degression (i0, i1, i2, ...), we set

(% (A)) (vi0 ∧ vi1 ∧ vi2 ∧ ...) = Avi0 ∧ Avi1 ∧ Avi2 ∧ ....

(This is then extended to the whole F (m) by linearity.) It is very easy to see that
this is well-defined (because πvk (Avk) = vk for all sufficiently small k) and indeed
gives a group action. (We denote this action by the same letter % as the action
M (∞)→ End

(
F (m)

)
from Definition 3.14.6. This is intentional and unproblematic,

because both of these actions have the same restriction onto U (∞) ∩M (∞).)

In analogy to Remark 3.14.9, we have:

Remark 3.14.22. Let (i0, i1, i2, ...) be an m-degression. Let A ∈ U (∞). For any
m-degression (j0, j1, j2, ...), let Ai0,i1,i2,...j0,j1,j2,...

denote the N× N-matrix defined by((
the (u, v) -th entry of Ai0,i1,i2,...j0,j1,j2,...

)
= (the (ju, iv) -th entry of A) for every (u, v) ∈ N2

)
.

(In other words, let Ai0,i1,i2,...j0,j1,j2,...
denote the matrix which is obtained from A by remov-

ing all columns except for the i0-th, the i1-th, the i2-th, etc. ones and removing all
rows except for the j0-th, the j1-th, the j2-th, etc. ones, and then inverting the order
of the rows, and inverting the order of the columns.) Then, for any m-degression

(j0, j1, j2, ...), the matrix
(
Ai0,i1,i2,...j0,j1,j2,...

)T
is upper almost-unitriangular, and thus the

determinant det
((
Ai0,i1,i2,...j0,j1,j2,...

)T)
makes sense (according to Definition 3.14.8 (e)).

We have

(% (A)) (vi0 ∧ vi1 ∧ vi2 ∧ ...) =
∑

(j0,j1,j2,...) is an m-degression

det
((
Ai0,i1,i2,...j0,j1,j2,...

)T)
vj0∧vj1∧vj2∧....

The analogy between Remark 3.14.9 and Remark 3.14.22 is somewhat marred by the

fact that the transposed matrix
(
Ai0,i1,i2,...j0,j1,j2,...

)T
is used in Remark 3.14.22 instead of the

every (i, j) ∈ Z2, the sum
∞∑
k=0

(
the (i, j) -th entry of ak

)
converges in the discrete topology). Here

is why this holds:
Since a ∈ u∞, we know that the (i, j)-th entry of a is 0 for all (i, j) ∈ Z2 satisfying i > j − 1.

From this, it is easy to conclude (by induction over k) that for every k ∈ N, the (i, j)-th entry of
ak is 0 for all (i, j) ∈ Z2 satisfying i > j − k. Hence, for every (i, j) ∈ Z2, the (i, j)-th entry of ak

is 0 for all nonnegative integers k satisfying k > j − i. As a consequence, for every (i, j) ∈ Z2, all
but finitely many addends of the sum

∞∑
k=0

(
the (i, j) -th entry of ak

)
are 0. In other words, for every (i, j) ∈ Z2, the sum

∞∑
k=0

(
the (i, j) -th entry of ak

)
converges in

the discrete topology. Hence, the sum
∞∑
k=0

ak converges entrywise, qed.
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matrix Ai0,i1,i2,...j0,j1,j2,...
. This is merely a technical difference, and if we would have defined

the determinant of a lower almost-unitriangular matrix, we could have avoided using
the transpose in Remark 3.14.22.

Remark 3.14.23. There is a way to “merge” GL (∞) and U (∞) into a bigger
group of infinite matrices. Indeed, let MU (∞) the set of all matrices A ∈ U (∞)
such that all but finitely many among the (i, j) ∈ Z2 satisfying i ≥ j satisfy
(the (i, j) -th entry of A) = δi,j. (Note that this condition does not restrict the
(i, j)-th entry of A for any (i, j) ∈ Z2 satisfying i < j. That is, the entries of A
above the main diagonal can be arbitrary, but the entries of A below and on the
main diagonal have to coincide with the respective entries of the identity matrix save
for finitely many exceptions, if A is to lie in MU (∞).) Then, it is easy to see that
MU (∞) is a monoid. The group of all invertible elements of this monoid (where
“invertible” means “having an inverse in the monoid MU (∞)”) is a group which has
both GL (∞) and U (∞) as subgroups. Actually, this group is GL (∞) · U (∞), as
the reader can easily check.

We will need neither the monoid MU (∞) nor this group in the following.

3.14.4. The exponential relation between ρ and %

We now come to a relation which connects the actions ρ and %. It comes in a GL (∞)
version, a U (∞) version, and a finitary version; we will formulate all three, but only
prove the latter. First, the GL (∞) version:

Theorem 3.14.24. Let a ∈ gl∞. Let m ∈ Z. Then, the exponential exp a is a
well-defined element of GL (∞) and satisfies % (exp a) = exp (ρ (a)) in End

(
F (m)

)
.

It should be noticed that Theorem 3.14.24, unlike most of the other results we have
been stating, does rely on the ground field being C; otherwise, there would be no
guarantee that exp a is well-defined. However, if we assume, for example, that a is
strictly upper-triangular, or that the entries of a belong to some ideal I of the ground
ring such that the ground ring is complete and Hausdorff in the I-adic topology, then
the statement of Theorem 3.14.24 would be guaranteed over any ground ring which is
a commutative Q-algebra.

The U (∞) version does not depend on the ground ring at all (as long as the ground
ring is a Q-algebra):

Theorem 3.14.25. Let a ∈ u∞. Let m ∈ Z. Then, the exponential exp a is a
well-defined element of U (∞) and satisfies % (exp a) = exp (ρ (a)) in End

(
F (m)

)
.

We have now stated the GL (∞) and the U (∞) versions of the relation between ρ
and %. Before we state the finitary version, we define a finite analogue of the map ρ:

Definition 3.14.26. Let P be a vector space, and let ` ∈ N. Let ρP,` : gl (P ) →
End

(
∧`P

)
denote the representation of the Lie algebra gl (P ) on the `-th exterior

power of the defining representation P of gl (P ). By the definition of the `-th exterior
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power of a representation of a Lie algebra, this representation ρP,` satisfies

(ρP,` (a)) (p1 ∧ p2 ∧ ... ∧ p`) =
∑̀
k=1

p1∧ p2∧ ...∧ pk−1∧ (a ⇀ pk)∧ pk+1∧ pk+2∧ ...∧ p`

(175)
for every a ∈ gl (P ) and any p1, p2, ..., p` ∈ P . (Recall that a ⇀ p = ap for every
a ∈ gl (P ) and p ∈ P .)

Finally, let us state the finitary version of Theorem 3.14.24 and Theorem 3.14.25. To
see why it is analogous to the two aforementioned theorems, one should keep in mind
that ρP,` is an analogue of ρ in the finite case, while ∧`A is an analogue of % (A).

Theorem 3.14.27. Let P be a vector space. Let a ∈ gl (P ) be a nilpotent linear
map. Then, the exponential exp a is a well-defined element of GL (P ) and satisfies
∧` (exp a) = exp (ρP,` (a)) in End

(
∧`P

)
for every ` ∈ N.

Note that we have formulated Theorem 3.14.27 only for nilpotent a ∈ gl (P ). We
could have also formulated it for arbitrary a ∈ gl (P ) under some mild conditions on
P (such as P being finite-dimensional), but then it would depend on the ground field
being C, which is something we would like to avoid (as we are going to apply this
theorem to a different ground field).

First proof of Theorem 3.14.27 (sketched). Since a is nilpotent, it is known that the
exponential exp a is a well-defined element of GL (P ).

Let ` ∈ N. Now define an endomorphism ρ′P,` (a) : P⊗` → P⊗` by

ρ′P,` (a) =
∑̀
k=1

id
⊗(k−1)
P ⊗a⊗ id

⊗(`−k)
P .

Let also π : P⊗` → ∧`P be the canonical projection (since ∧`P is defined as a
quotient vector space of P⊗`). Clearly, π is surjective.

It is easy to see that π ◦
(
ρ′P,` (a)

)
= (ρP,` (a)) ◦ π. From this, one can conclude that

π ◦
(
ρ′P,` (a)

)m
= (ρP,` (a))m ◦ π for every m ∈ N. (176)

On the other hand, a routine induction proves that every m ∈ N satisfies(
ρ′P,` (a)

)m
=

∑
(i1,i2,...,i`)∈N`;
i1+i2+...+i`=m

m!

i1!i2!...i`!
ai1 ⊗ ai2 ⊗ ...⊗ ai` . (177)
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Now, exp a =
∑
i∈N

1

i!
ai, whence

(exp a)⊗` =

(∑
i∈N

1

i!
ai

)⊗`
=

∑
(i1,i2,...,i`)∈N`

(
1

i1!
ai1
)
⊗
(

1

i2!
ai2
)
⊗ ...⊗

(
1

i`!
ai`
)

(by the product rule)

=
∑

(i1,i2,...,i`)∈N`

1

i1!i2!...i`!
ai1 ⊗ ai2 ⊗ ...⊗ ai`

=
∑
m∈N

∑
(i1,i2,...,i`)∈N`;
i1+i2+...+i`=m

1

i1!i2!...i`!
ai1 ⊗ ai2 ⊗ ...⊗ ai`

=
∑
m∈N

1

m!

∑
(i1,i2,...,i`)∈N`;
i1+i2+...+i`=m

m!

i1!i2!...i`!
ai1 ⊗ ai2 ⊗ ...⊗ ai`

︸ ︷︷ ︸
=(ρ′P,`(a))

m

(by (177))

=
∑
m∈N

1

m!

(
ρ′P,` (a)

)m

= exp
(
ρ′P,` (a)

)
.

Note that this shows that exp
(
ρ′P,` (a)

)
is well-defined. But since exp

(
ρ′P,` (a)

)
=∑

m∈N

1

m!

(
ρ′P,` (a)

)m
, we have

π ◦
(
exp

(
ρ′P,` (a)

))
= π ◦

(∑
m∈N

1

m!

(
ρ′P,` (a)

)m)
=
∑
m∈N

1

m!
π ◦
(
ρ′P,` (a)

)m︸ ︷︷ ︸
=(ρP,`(a))

m
◦π

(by (176))

(since composition of linear maps is bilinear)

=
∑
m∈N

1

m!
(ρP,` (a))m ◦ π =

(∑
m∈N

1

m!
(ρP,` (a))m

)
︸ ︷︷ ︸

=exp(ρP,`(a))

◦π = (exp (ρP,` (a))) ◦ π,

and this also shows that exp (ρP,` (a)) is well-defined (since π is surjective).

Since we have proven earlier that (exp a)⊗` = exp
(
ρ′P,` (a)

)
, the equality π◦

(
exp

(
ρ′P,` (a)

))
=

(exp (ρP,` (a))) ◦ π rewrites as π ◦ (exp a)⊗` = (exp (ρP,` (a))) ◦ π.
On the other hand, since the projection π : P⊗` → ∧`P is functorial in P , we have

π ◦ (exp a)⊗` =
(
∧` (exp a)

)
◦ π. Thus,(

∧` (exp a)
)
◦ π = π ◦ (exp a)⊗` = (exp (ρP,` (a))) ◦ π.

Since the morphism π is right-cancellable (since it is surjective), this yields ∧` (exp a) =
exp (ρP,` (a)). This proves Theorem 3.14.27.

Second proof of Theorem 3.14.27 (sketched). Since a is nilpotent, it is known that the
exponential exp a is a well-defined unipotent element of GL (P ). But for every ` ∈ N,
the `-th exterior power of any unipotent element of GL (P ) is a unipotent element of
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GL
(
∧`P

)
. Since exp a is a unipotent element of GL (P ), this yields that ∧` (exp a) is a

unipotent element of GL
(
∧`P

)
for every ` ∈ N. Hence, the logarithm log

(
∧` (exp a)

)
is well-defined for every ` ∈ N.

On the other hand, consider the map ∧ (exp a) : ∧P → ∧P . This map is an algebra
homomorphism (because generally, if Q and R are two vector spaces, and f : Q → R
is a linear map, then ∧f : ∧Q→ ∧R is an algebra homomorphism) and identical with
the direct sum

⊕̀
∈N
∧` (exp a) :

⊕̀
∈N
∧`P →

⊕̀
∈N
∧`P of the linear maps ∧` (exp a) : ∧`P →

∧`P .

Since ∧ (exp a) =
⊕̀
∈N
∧` (exp a), we have log (∧ (exp a)) = log

(⊕̀
∈N
∧` (exp a)

)
=⊕̀

∈N
log
(
∧` (exp a)

)
(because logarithms on direct sums are componentwise).144 As a

consequence, every ` ∈ N and every p1, p2, ..., p` ∈ P satisfy p1 ∧ p2 ∧ ...∧ p` ∈ ∧`P and
thus (log (∧ (exp a))) (p1 ∧ p2 ∧ ... ∧ p`) =

(
log
(
∧` (exp a)

))
(p1 ∧ p2 ∧ ... ∧ p`).

But it is well-known that if A is an algebra and f : A → A is an algebra endomor-
phism such that log f is well-defined, then log f : A → A is a derivation. Applied to
A = ∧P and f = ∧ (exp a), this yields that log (∧ (exp a)) : ∧P → ∧P is a derivation.

But every p ∈ P satisfies

(log (∧ (exp a))) (p) = a ⇀ p, (178)

where p is viewed as an element of ∧1P ⊆ ∧P . 145

Now recall the Leibniz identity for derivations. In its general form, it says that if A
is an algebra, M is an A-bimodule, and d : A → M is a derivation, then every ` ∈ N
and every p1, p2, ..., p` ∈ A satisfy

d (p1p2...p`) =
∑̀
k=1

p1p2...pk−1d (pk) pk+1pk+2...p`.

Applying this to A = ∧P , M = ∧P and d = log (∧ (exp a)), we conclude that every
` ∈ N and every p1, p2, ..., p` ∈ ∧P satisfy

(log (∧ (exp a))) (p1p2...p`) =
∑̀
k=1

p1p2...pk−1 (log (∧ (exp a))) (pk) pk+1pk+2...p`

(since log (∧ (exp a)) : ∧P → ∧P is a derivation). Thus, every ` ∈ N and every

144Note that the map ∧ (exp a) needs not be unipotent, but the logarithm log (∧ (exp a)) nevertheless
makes sense because the map ∧ (exp a) is a direct sum of unipotent maps (and thus is locally
unipotent).

145Proof of (178): Let p ∈ P . Since log (∧ (exp a)) =
⊕̀
∈N

log
(
∧` (exp a)

)
and p ∈ P = ∧1P , we have

(log (∧ (exp a))) (p) =

log
(
∧1 (exp a)

)︸ ︷︷ ︸
=exp a

 (p) = (log (exp a))︸ ︷︷ ︸
=a

(p) = ap = a ⇀ p.

This proves (178).
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p1, p2, ..., p` ∈ P satisfy

(log (∧ (exp a))) (p1p2...p`) =
∑̀
k=1

p1p2...pk−1 (log (∧ (exp a))) (pk)︸ ︷︷ ︸
=a⇀pk

(by (178), applied to p=pk)

pk+1pk+2...p`

=
∑̀
k=1

p1p2...pk−1 (a ⇀ pk) pk+1pk+2...p`︸ ︷︷ ︸
=p1∧p2∧...∧pk−1∧(a⇀pk)∧pk+1∧pk+2∧...∧p`

(since the multiplication in ∧P is given by the wedge product)

=
∑̀
k=1

p1 ∧ p2 ∧ ... ∧ pk−1 ∧ (a ⇀ pk) ∧ pk+1 ∧ pk+2 ∧ ... ∧ p`

= (ρP,` (a)) (p1 ∧ p2 ∧ ... ∧ p`) (by (175)) . (179)

On the other hand, every ` ∈ N and every p1, p2, ..., p` ∈ P satisfy

(log (∧ (exp a))) (p1p2...p`)︸ ︷︷ ︸
=p1∧p2∧...∧p`

(since the multiplication in ∧P is given by the wedge product)

= (log (∧ (exp a))) (p1 ∧ p2 ∧ ... ∧ p`) =
(
log
(
∧` (exp a)

))
(p1 ∧ p2 ∧ ... ∧ p`) .

Compared with (179), this yields

(ρP,` (a)) (p1 ∧ p2 ∧ ... ∧ p`) =
(
log
(
∧` (exp a)

))
(p1 ∧ p2 ∧ ... ∧ p`)

for every ` ∈ N and every p1, p2, ..., p` ∈ P .
Now fix ` ∈ N. We know that

(ρP,` (a)) (p1 ∧ p2 ∧ ... ∧ p`) =
(
log
(
∧` (exp a)

))
(p1 ∧ p2 ∧ ... ∧ p`)

for every p1, p2, ..., p` ∈ P . Since the vector space ∧`P is spanned by elements of the
form p1∧ p2∧ ...∧ p` with p1, p2, ..., p` ∈ P , this yields that the two linear maps ρP,` (a)
and log

(
∧` (exp a)

)
are equal to each other on a spanning set of the vector space ∧`P .

Therefore, these two maps must be identical (because if two linear maps are equal to
each other on a spanning set of their domain, then they must always be identical).
In other words, ρP,` (a) = log

(
∧` (exp a)

)
. Exponentiating this equality, we obtain

exp (ρP,` (a)) = ∧` (exp a). This proves Theorem 3.14.27.

3.14.5. Reduction to fermions

We are now going to reduce Theorem 3.12.11 to a “purely fermionic” statement – a
statement (Theorem 3.14.32) not involving the bosonic space B or the Boson-Fermion
correspondence σ in any way. We will later (Subsection 3.14.6) generalize this state-
ment, and yet later prove the generalization.

First, a definition:

Definition 3.14.28. Let R (not to be confused with the field R) be a commutative
Q-algebra. We denote by AR the Heisenberg algebra defined over the ground ring
R in lieu of C. We denote by B(0)

R the AR-module B(0) defined over the ground ring
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R in lieu of C. We denote by F (0)
R the AR-module F (0) defined over the ground ring

R in lieu of C. We denote by σR the map σ defined over the ground ring R in lieu
of C. (This σR is thus a graded AR-module homomorphism BR → FR, where BR
and FR are the AR-modules B and F defined over the ground ring R in lieu of C.)

Next, some preparations:

Proposition 3.14.29. Let R be a commutative Q-algebra. Let y1, y2, y3, ... be some
elements of R.

(a) Let M be a Z-graded AR-module concentrated in nonpositive de-
grees (i. e., satisfying M [n] = 0 for all positive integers n). The map
exp (y1a1 + y2a2 + y3a3 + ...) : M → M is well-defined, in the following sense: For
every m ∈ M , expanding the expression exp (y1a1 + y2a2 + y3a3 + ...)m yields an
infinite sum with only finitely many nonzero addends.

(b) Let M and N be two Z-graded AR-modules concentrated in nonpositive
degrees. Let η : M → N be an AR-module homomorphism. Then,

(exp (y1a1 + y2a2 + y3a3 + ...)) ◦ η = η ◦ (exp (y1a1 + y2a2 + y3a3 + ...))

as maps from M to N .
(c) Consider the Z-graded AR-module F (0)

R . This Z-graded AR-module

F (0)
R is concentrated in nonpositive degrees. Hence, by Theorem 3.14.32,

the map exp (y1a1 + y2a2 + y3a3 + ...) : F (0)
R → F (0)

R is well-defined. Thus,
exp (y1a1 + y2a2 + y3a3 + ...) · (vi0 ∧ vi1 ∧ vi2 ∧ ...) is well-defined for every 0-
degression (i0, i1, i2, ...).

Proof of Proposition 3.14.29. (a) Let m ∈ M . We will prove that expanding
the expression exp (y1a1 + y2a2 + y3a3 + ...)m yields an infinite sum with only finitely
many nonzero terms.

Since M is Z-graded, we can write m in the form m =
∑
n∈Z

mn for a family (mn)n∈Z of

elements ofM which satisfy (mn ∈M [n] for every n ∈ Z) and (mn = 0 for all but finitely many n ∈ Z).
Consider this family (mn)n∈Z. We know that mn = 0 for all but finitely many n ∈ Z.
In other words, there exists a finite subset I of Z such that every n ∈ Z \ I satisfies
mn = 0. Consider this I. Let s be an integer which is smaller than every element of I.
(Such an s exists since I is finite.) Then,

fm = 0 for every integer q ≥ −s and every f ∈ UR (AR) [q] (180)

(where UR means “enveloping algebra over the ground ring R ”). 146

146Proof of (180): Let q ≥ −s be an integer, and let f ∈ UR (AR) [q]. Since s is smaller than every
element of I, we have s < n for every n ∈ I. Thus, q ≥ − s︸︷︷︸

<n

> −n for every n ∈ I, so that

q + n > 0 for every n ∈ I and thus M [q + n] = 0 for every n ∈ I (since M is concentrated in
nonpositive degrees).
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Expanding the expression exp (y1a1 + y2a2 + y3a3 + ...)m, we obtain

exp (y1a1 + y2a2 + y3a3 + ...)m

=
∞∑
i=0

1

i!

y1a1 + y2a2 + y3a3 + ...︸ ︷︷ ︸
=

∑
j∈{1,2,3,...}

yjaj


i

m =
∞∑
i=0

1

i!

 ∑
j∈{1,2,3,...}

yjaj

i

︸ ︷︷ ︸
=

∑
(j1,j2,...,ji)∈{1,2,3,...}i

yj1yj2 ...yjiaj1aj2 ...aji

m

=
∞∑
i=0

1

i!

∑
(j1,j2,...,ji)∈{1,2,3,...}i

yj1yj2 ...yjiaj1aj2 ...ajim

=
∑
i∈N;

(j1,j2,...,ji)∈{1,2,3,...}i

1

i!
yj1yj2 ...yjiaj1aj2 ...ajim.

But this infinite sum has only finitely many nonzero addends147. Thus, we have shown
that for every m ∈M , expanding the expression exp (y1a1 + y2a2 + y3a3 + ...)m yields

Notice that M is a graded AR-module, thus a graded UR (AR)-module. But

m =
∑
n∈Z

mn =
∑
n∈I

mn +
∑
n∈Z\I

mn︸︷︷︸
=0

(since n∈Z\I)

=
∑
n∈I

mn +
∑
n∈Z\I

0

︸ ︷︷ ︸
=0

=
∑
n∈I

mn,

so that

fm = f
∑
n∈I

mn =
∑
n∈I

fmn︸︷︷︸
∈M [q+n]

(since f∈UR(AR)[q] and mn∈M [n],
and since M is a graded UR(AR)-module)

∈
∑
n∈I

M [q + n]︸ ︷︷ ︸
=0

(since n∈I)

=
∑
n∈I

0 = 0,

so that fm = 0, qed.

147Proof. Let i ∈ N and (j1, j2, ..., ji) ∈ {1, 2, 3, ...}i be such that
1

i!
yj1yj2 ...yjiaj1aj2 ...ajim 6= 0. Since

ajk ∈ UR (AR) [jk] for every k ∈ {1, 2, ..., i}, we have

aj1aj2 ...aji ∈ (UR (AR) [j1]) (UR (AR) [j2]) ... (UR (AR) [ji])

⊆ UR (AR) [j1 + j2 + ...+ ji] ,

so that

1

i!
yj1yj2 ...yjiaj1aj2 ...aji ∈

1

i!
yj1yj2 ...yjiUR (AR) [j1 + j2 + ...+ ji] ⊆ UR (AR) [j1 + j2 + ...+ ji] .

Hence, if j1 + j2 + ... + ji ≥ −s, then
1

i!
yj1yj2 ...yjiaj1aj2 ...ajim = 0 (by (180), applied to f =

1

i!
yj1yj2 ...yjiaj1aj2 ...aji and q = j1 + j2 + ...+ ji), contradicting

1

i!
yj1yj2 ...yjiaj1aj2 ...ajim 6= 0. As

a consequence, we cannot have j1 + j2 + ...+ ji ≥ −s. We must thus have j1 + j2 + ...+ ji < −s.
Now forget that we fixed i and (j1, j2, ..., ji). We thus have shown that every i ∈ N and

(j1, j2, ..., ji) ∈ {1, 2, 3, ...}i such that
1

i!
yj1yj2 ...yjiaj1aj2 ...ajim 6= 0 must satisfy j1 + j2 + ... +

ji < −s. Since there are only finitely many pairs (i, (j1, j2, ..., ji)) of i ∈ N and (j1, j2, ..., ji) ∈
{1, 2, 3, ...}i satisfying j1 + j2 + ... + ji < −s, this yields that there are only finitely many pairs

(i, (j1, j2, ..., ji)) of i ∈ N and (j1, j2, ..., ji) ∈ {1, 2, 3, ...}i satisfying
1

i!
yj1yj2 ...yjiaj1aj2 ...ajim 6= 0.
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an infinite sum with only finitely many nonzero addends. This proves Proposition
3.14.29 (a).

(b) In order to prove Proposition 3.14.29 (b), we must clearly show that

η (exp (y1a1 + y2a2 + y3a3 + ...)m) = exp (y1a1 + y2a2 + y3a3 + ...) · η (m) (181)

for every m ∈M .
Fix m ∈M . Since η is an AR-module homomorphism, η must also be an UR (AR)-

module homomorphism (since every AR-module homomorphism is an UR (AR)-module
homomorphism). Thus,

η (gm) = g · η (m) for every g ∈ UR (AR) .

If exp (y1a1 + y2a2 + y3a3 + ...) was an element of UR (AR), then we could apply this
to g = exp (y1a1 + y2a2 + y3a3 + ...) and conclude (181) immediately. Unfortunately,
exp (y1a1 + y2a2 + y3a3 + ...) is not an element of UR (AR), but this problem is easy to
amend: By Proposition 3.14.29 (a), we can find a finite partial sum g of the expanded
power series exp (y1a1 + y2a2 + y3a3 + ...) satisfying

exp (y1a1 + y2a2 + y3a3 + ...)m = gm and

exp (y1a1 + y2a2 + y3a3 + ...) · η (m) = g · η (m) .

Consider such a g. Since g is only a finite partial sum, we have g ∈ UR (AR), and thus
η (gm) = g · η (m). Hence,

η

exp (y1a1 + y2a2 + y3a3 + ...)m︸ ︷︷ ︸
=gm

 = η (gm) = g · η (m)

= exp (y1a1 + y2a2 + y3a3 + ...) · η (m) ,

so that (181) is proven. Thus, Proposition 3.14.29 (b) is proven.
(c) This is obvious.
Let us make a remark which we will only use in the “finitary” version of our proof

of Theorem 3.14.32. First, a definition:

Definition 3.14.30. For every commutative ring R, let A+R be the Lie algebra A+

defined for the ground ring R instead of C.

Now, it is easy to see that Proposition 3.14.29 holds with AR replaced by A+R. We
will only use the analogues of parts (a) and (b):

Proposition 3.14.31. Let R be a commutative Q-algebra. Let y1, y2, y3, ... be some
elements of R.

(a) Let M be a Z-graded A+R-module concentrated in nonpositive de-
grees (i. e., satisfying M [n] = 0 for all positive integers n). The map

In other words, the infinite sum
∑
i∈N;

(j1,j2,...,ji)∈{1,2,3,...}i

1

i!
yj1yj2 ...yjiaj1aj2 ...ajim has only finitely

many nonzero addends, qed.
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exp (y1a1 + y2a2 + y3a3 + ...) : M → M is well-defined, in the following sense: For
every m ∈ M , expanding the expression exp (y1a1 + y2a2 + y3a3 + ...)m yields an
infinite sum with only finitely many nonzero addends.

(b) Let M and N be two Z-graded A+R-modules concentrated in nonpositive
degrees. Let η : M → N be an A+R-module homomorphism. Then,

(exp (y1a1 + y2a2 + y3a3 + ...)) ◦ η = η ◦ (exp (y1a1 + y2a2 + y3a3 + ...))

as maps from M to N .

Proof of Proposition 3.14.31. In order to obtain proofs of Proposition 3.14.31, it is
enough to simply replace AR by A+R throughout the proof of parts (a) and (b) of
Proposition 3.14.29.

Now, let us state the “fermionic” version of Theorem 3.12.11:

Theorem 3.14.32. Let R be a commutative Q-algebra. Let y1, y2, y3, ... be some
elements of R. Denote by y the family (y1, y2, y3, ...). Let (i0, i1, i2, ...) be a 0-
degression.

The (v0 ∧ v−1 ∧ v−2 ∧ ...)-coordinate of exp (y1a1 + y2a2 + y3a3 + ...) ·
(vi0 ∧ vi1 ∧ vi2 ∧ ...) (this is a well-defined element of F (0)

R due to Proposition
3.14.29 (c)) with respect to the basis148 (vj0 ∧ vj1 ∧ vj2 ∧ ...)(j0,j1,j2,...) a 0-degression of

F (0)
R equals S(ik+k)k≥0

(y). (Here, we are using the fact that (ik + k)k≥0 is a partition

for every 0-degression (i0, i1, i2, ...). This follows from Proposition 3.5.24, applied to
m = 0.)

Let us see how this yields Theorem 3.12.11:
Proof of Theorem 3.12.11 using Theorem 3.14.32. Fix a 0-degression (i0, i1, i2, ...);

then, i0 > i1 > i2 > ... and vi0 ∧ vi1 ∧ vi2 ∧ ... ∈ F (0). Let λ be the partition
(i0 + 0, i1 + 1, i2 + 2, ...).

Denote the element σ−1 (vi0 ∧ vi1 ∧ vi2 ∧ ...) ∈ B(0) by P (x). We need to show that
P (x) = Sλ (x).

From now on, we let y denote another countable family of indeterminates (y1, y2, y3, ...)
(rather than a finite family like the (y1, y2, ..., yN) of Definition 3.12.3). Thus, whenever
Q is a polynomial in countably many indeterminates, Q (y) will mean Q (y1, y2, y3, ...).

Let R be the polynomial ring C [y1, y2, y3, ...]. Then, y is a family of elements of R.

By the definition of B(0)
R , we have B(0)

R = R [x1, x2, x3, ...] as a vector space, so that

B(0)
R = (C [y1, y2, y3, ...]) [x1, x2, x3, ...] as a vector space. Let us denote by 1 ∈ B(0) the

unity of the algebra C [x1, x2, x3, ...]. Clearly, B(0) ⊆ B(0)
R , and thus 1 ∈ B(0) ⊆ B(0)

R .
We still let x denote the whole collection of variables (x1, x2, x3, ...). Also, let x+ y

denote the family (x1 + y1, x2 + y2, x3 + y3, ...) of elements of B(0)
R .

Recall the C-bilinear form (·, ·) : F × F → C defined in Proposition 2.2.24. Since

F = F̃ = B(0) (as vector spaces), this form (·, ·) is a C-bilinear form B(0) × B(0) → C.
Since the definition of the form did not depend of the ground ring, we can analogously
define an R-bilinear form (·, ·) : B(0)

R × B
(0)
R → R. The restriction of this latter R-

bilinear form (·, ·) : B(0)
R ×B

(0)
R → R to B(0)×B(0) is clearly the former C-bilinear form

(·, ·) : B(0) × B(0) → C; therefore we will use the same notation for these two forms.

148Here, “basis” means “R-module basis”, not “C-vector space basis”.
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In the following, elements of B(0)
R = R [x1, x2, x3, ...] will be considered as polyno-

mials in the variables x1, x2, x3, ... over the ring R, and not as polynomials in the
variables x1, x2, x3, ..., y1, y2, y3, ... over the field C. Hence, for an R ∈ B(0)

R , the nota-
tion R (0, 0, 0, ...) will mean the result of substituting 0 for the variables x1, x2, x3, ... in
R (but the variables y1, y2, y3, ... will stay unchanged!). We will abbreviate R (0, 0, 0, ...)
by R (0).

Every polynomial R ∈ B(0) satisfies:

R (0) =

(
the (v0 ∧ v−1 ∧ v−2 ∧ ...) -coordinate of σ (R)

with respect to the basis (vj0 ∧ vj1 ∧ vj2 ∧ ...)(j0,j1,j2,...) a 0-degression of F (0)

)
(182)

149. Since the proof of (182) clearly does not depend on the ground ring, an analogous

result holds over the ring R: Every polynomial R ∈ B(0)
R satisfies

R (0) =

(
the (v0 ∧ v−1 ∧ v−2 ∧ ...) -coordinate of σR (R)

with respect to the basis (vj0 ∧ vj1 ∧ vj2 ∧ ...)(j0,j1,j2,...) a 0-degression of F (0)
R

)
(183)

150.

149Proof of (182). Let R ∈ B(0). Thus, R ∈ B(0) = F̃ .
Let p0,B be the canonical projection of the graded space B(0) onto its 0-th homogeneous com-

ponent B(0) [0] = C · 1, and let p0,F be the canonical projection of the graded space F (0) onto
its 0-th homogeneous component F (0) [0] = Cψ0. Since σ0 : B(0) → F (0) is a graded homo-
morphism, σ0 commutes with the projections on the 0-th graded components; in other words,
σ0 ◦ p0,B = p0,F ◦σ0. Now, we know that p0,B (R) = R (0) · 1 (since B = F̃ = C [x1, x2, x3, ...]), and

thus (σ0 ◦ p0,B) (R) = σ0

p0,B (R)︸ ︷︷ ︸
=R(1)·1

 = σ0 (R (0) · 1) = R (0) · σ0 (1)︸ ︷︷ ︸
=ψ0

= R (0)ψ0.

On the other hand, let κ denote the (v0 ∧ v−1 ∧ v−2 ∧ ...)-coordinate of σ (R) with respect
to the basis (vj0 ∧ vj1 ∧ vj2 ∧ ...)(j0,j1,j2,...) a 0-degression of F (0). Then, the projection of σ (R)

onto the 0-th graded component F (0) [0] of F (0) is κ · v0 ∧ v−1 ∧ v−2 ∧ ... (because the basis
(vj0 ∧ vj1 ∧ vj2 ∧ ...)(j0,j1,j2,...) a 0-degression of F (0) is a graded basis, and the 0-th graded com-

ponent F (0) [0] of F (0) is spanned by (v0 ∧ v−1 ∧ v−2 ∧ ...)). In other words, p0,F (σ (R)) =
κ · v0 ∧ v−1 ∧ v−2 ∧ ...︸ ︷︷ ︸

=ψ0

= κψ0. Hence,

R (0)ψ0 = (σ0 ◦ p0,B)︸ ︷︷ ︸
=p0,F◦σ0

(R) = (p0,F ◦ σ0) (R) = p0,F (σ (R)) = κψ0.

Thus, (R (0)− κ)ψ0 = R (0)ψ0︸ ︷︷ ︸
=κψ0

−κψ0 = κψ0 − κψ0 = 0.

But ψ0 is an element of a basis of F (0) (namely, of the basis
(vj0 ∧ vj1 ∧ vj2 ∧ ...)(j0,j1,j2,...) a 0-degression). Thus, every scalar µ ∈ C satisfying µψ0 = 0

must satisfy µ = 0. Applying this to µ = R (0) − κ, we obtain R (0) − κ = 0 (since
(R (0)− κ)ψ0 = 0). Thus,

R (0) = κ =

(
the (v0 ∧ v−1 ∧ v−2 ∧ ...) -coordinate of σ (R)

with respect to the basis (vj0 ∧ vj1 ∧ vj2 ∧ ...)(j0,j1,j2,...) a 0-degression of F (0)

)
.

This proves (182).
150Of course, “basis” means “R-module basis” and no longer “C-vector space basis” in this statement.

285



On the other hand, for every polynomial R ∈ B(0), we can view R = R (x) as an

element of B(0)
R (since B(0) ⊆ B(0)

R ), and this way we obtain1, exp

y1a1 + y2a2 + y3a3 + ...︸ ︷︷ ︸
=
∑
s>0

ysas

R (x)

 =

(
1, exp

(∑
s>0

ysas

)
R (x)

)

=

(
1, exp

(∑
s>0

ys
∂

∂xs

)
R (x)

) (
since as acts as

∂

∂xs
on B(0) for every s ≥ 1

)
= (1, R (x+ y)) since exp

(∑
s>0

ys
∂

∂xs

)
R (x) = R (x+ y)

by Lemma 3.14.1 (applied to R, (x1, x2, x3, ...) and R
instead of P , (z1, z2, z3, ...) and K)


= (R (x+ y)) (0)(

because the analogue of Proposition 2.2.24 (b) for

the ground ring R yields (1, Q) = Q (0) for every Q ∈ B(0)
R

)
= R (y) (184)

in R.
Recall that the map σR is defined analogously to σ but for the ground ring R instead

of C. Thus, σR (Q) = σ (Q) for every Q ∈ B(0). Applied to Q = P (x), this yields
σR (P (x)) = σ (P (x)) = vi0 ∧ vi1 ∧ vi2 ∧ ... (since P (x) = σ−1 (vi0 ∧ vi1 ∧ vi2 ∧ ...)).

On the other hand, since σR : B(0)
R → F (0)

R is an AR-module homomorphism, and

since B(0)
R and F (0)

R are two AR-modules concentrated in nonpositive degrees, we can

apply Proposition 3.14.29 (b) to σR, B(0)
R and F (0)

R instead of η, M and N . As a result,
we obtain

σR ◦ (exp (y1a1 + y2a2 + y3a3 + ...)) = (exp (y1a1 + y2a2 + y3a3 + ...)) ◦ σR

as maps from B(0)
R to F (0)

R . This easily yields

σR (exp (y1a1 + y2a2 + y3a3 + ...)P (x)) = (σR ◦ (exp (y1a1 + y2a2 + y3a3 + ...)))︸ ︷︷ ︸
=(exp(y1a1+y2a2+y3a3+...))◦σR

(P (x))

= ((exp (y1a1 + y2a2 + y3a3 + ...)) ◦ σR) (P (x))

= exp (y1a1 + y2a2 + y3a3 + ...) · σR (P (x))︸ ︷︷ ︸
=vi0∧vi1∧vi2∧...

= exp (y1a1 + y2a2 + y3a3 + ...) · (vi0 ∧ vi1 ∧ vi2 ∧ ...) .
(185)

But (184) (applied to R = P ) yields

(1, exp (y1a1 + y2a2 + y3a3 + ...)P (x)) = P (y) ,
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so that

P (y)

= (1, exp (y1a1 + y2a2 + y3a3 + ...)P (x))

= (exp (y1a1 + y2a2 + y3a3 + ...)P (x)) (0)(
because the analogue of Proposition 2.2.24 (b) for

the ground ring R yields (1, Q) = Q (0) for every Q ∈ B(0)
R

)
=

(
the (v0 ∧ v−1 ∧ v−2 ∧ ...) -coordinate of σR (exp (y1a1 + y2a2 + y3a3 + ...)P (x))

with respect to the basis (vj0 ∧ vj1 ∧ vj2 ∧ ...)(j0,j1,j2,...) a 0-degression of F (0)
R

)
(by (183), applied to R = exp (y1a1 + y2a2 + y3a3 + ...)P (x))

=

 the (v0 ∧ v−1 ∧ v−2 ∧ ...) -coordinate of
exp (y1a1 + y2a2 + y3a3 + ...) · (vi0 ∧ vi1 ∧ vi2 ∧ ...)

with respect to the basis (vj0 ∧ vj1 ∧ vj2 ∧ ...)(j0,j1,j2,...) a 0-degression of F (0)
R


(by (185))

= S(ik+k)k≥0
(y) (by Theorem 3.14.32)

= Sλ (y)
(
since (ik + k)k≥0 = (i0 + 0, i1 + 1, i2 + 2, ...) = λ

)
.

Substituting xi for yi in this equation, we obtain P (x) = Sλ (x) (since both P and Sλ
are polynomials in C [x1, x2, x3, ...]). Thus,

Sλ (x) = P (x) = σ−1 (vi0 ∧ vi1 ∧ vi2 ∧ ...) .

This proves Theorem 3.12.11.

3.14.6. Skew Schur polynomials

Rather than prove Theorem 3.14.32 directly, let us formulate and verify a stronger
statement which will be in no way harder to prove. First, we need a definition:

Definition 3.14.33. Let λ and µ be two partitions.
(a) We write µ ⊆ λ if every i ∈ {1, 2, 3, ...} satisfies λi ≥ µi, where the partitions

λ and µ have been written in the forms λ = (λ1, λ2, λ3, ...) and µ = (µ1, µ2, µ3, ...).
(b) We define a polynomial Sλ�µ (x) ∈ Q [x1, x2, x3, ...] as follows: Write λ and µ

in the forms λ = (λ1, λ2, ..., λm) and µ = (µ1, µ2, ..., µm) for some m ∈ N. Then, let
Sλ�µ (x) be the polynomial

det


Sλ1−µ1 (x) Sλ1−µ2+1 (x) Sλ1−µ3+2 (x) ... Sλ1−µm+m−1 (x)
Sλ2−µ1−1 (x) Sλ2−µ2 (x) Sλ2−µ3+1 (x) ... Sλ2−µm+m−2 (x)
Sλ3−µ1−2 (x) Sλ3−µ2−1 (x) Sλ3−µ3 (x) ... Sλ3−µm+m−3 (x)

... ... ... ... ...
Sλm−µ1−m+1 (x) Sλm−µ2−m+2 (x) Sλm−µ3−m+3 (x) ... Sλm−µm (x)


= det

((
Sλi−µj+j−i (x)

)
1≤i≤m, 1≤j≤m

)
,

where Sj denotes 0 if j < 0. (Note that this does not depend on the choice of m (that
is, increasing m at the cost of padding the partitions λ and µ with trailing zeroes

287



does not change the value of det
((
Sλi−µj+j−i (x)

)
1≤i≤m, 1≤j≤m

)
). This is because

any nonnegative integers m and `, any m ×m-matrix A, any m × `-matrix B and

any upper unitriangular `× `-matrix C satisfy det

(
A B
0 C

)
= detA.)

We refer to Sλ�µ (x) as the bosonic Schur polynomial corresponding to the skew
partition λ�µ.

Before we formulate the strengthening of Theorem 3.14.32, three remarks:

Remark 3.14.34. Let ∅ denote the partition (0, 0, 0, ...). For every partition λ, we
have ∅ ⊆ λ and Sλ�∅ (x) = Sλ (x).

Remark 3.14.35. Let λ and µ be two partitions. Then, Sλ�µ (x) = 0 unless µ ⊆ λ.

Remark 3.14.36. Recall that in Definition 3.14.8 (c), we defined the notion of an
“upper almost-unitriangular” N × N-matrix. In the same way, we can define the
notion of an “upper almost-unitriangular” {1, 2, 3, ...} × {1, 2, 3, ...}-matrix.

In Definition 3.14.8 (e), we defined the determinant of an upper almost-
unitriangular N×N-matrix. Analogously, we can define the determinant of an upper
almost-unitriangular {1, 2, 3, ...} × {1, 2, 3, ...}-matrix.

Let λ = (λ1, λ2, λ3, ...) and µ = (µ1, µ2, µ3, ...) be two partitions. Then,
the {1, 2, 3, ...} × {1, 2, 3, ...}-matrix

(
Sλi−µj+j−i (x)

)
(i,j)∈{1,2,3,...}2 is upper almost-

unitriangular, and we have

Sλ�µ (x) = det
((
Sλi−µj+j−i (x)

)
(i,j)∈{1,2,3,...}2

)
(186)

= det


Sλ1−µ1 (x) Sλ1−µ2+1 (x) Sλ1−µ3+2 (x) ...
Sλ2−µ1−1 (x) Sλ2−µ2 (x) Sλ2−µ3+1 (x) ...
Sλ3−µ1−2 (x) Sλ3−µ2−1 (x) Sλ3−µ3 (x) ...

... ... ... ...

 .

All of the above three remarks follow easily from Definition 3.14.33.
Now, let us finally give the promised strengthening of Theorem 3.14.32:

Theorem 3.14.37. Let R be a commutativeQ-algebra. Let y1, y2, y3, ... be some ele-
ments of R. Denote by y the family (y1, y2, y3, ...). Let (i0, i1, i2, ...) be a 0-degression.
Recall that exp (y1a1 + y2a2 + y3a3 + ...) · (vi0 ∧ vi1 ∧ vi2 ∧ ...) is a well-defined ele-

ment of F (0)
R due to Proposition 3.14.29 (c). Recall also that (jk + k)k≥0 is a partition

for every 0-degression (j0, j1, j2, ...) (this follows from Proposition 3.5.24, applied to
0 and (j0, j1, j2, ...) instead of m and (i0, i1, i2, ...)). In particular, (ik + k)k≥0 is a
partition.

We have

exp (y1a1 + y2a2 + y3a3 + ...) · (vi0 ∧ vi1 ∧ vi2 ∧ ...)

=
∑

(j0,j1,j2,...) a 0-degression;
(jk+k)k≥0⊆(ik+k)k≥0

S(ik+k)k≥0�(jk+k)k≥0
(y) · vj0 ∧ vj1 ∧ vj2 ∧ .... (187)
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(Note that the sum on the right hand side of (187) is a finite sum, since only finitely
many 0-degressions (j0, j1, j2, ...) satisfy (jk + k)k≥0 ⊆ (ik + k)k≥0.)

Before we prove this, let us see how this yields Theorem 3.14.32:
Proof of Theorem 3.14.32 using Theorem 3.14.37. Remark 3.14.34 (applied to

λ = (ik + k)k≥0) yields ∅ ⊆ (ik + k)k≥0 and S(ik+k)k≥0�∅ (x) = S(ik+k)k≥0
(x). By

substituting y for x in the equality S(ik+k)k≥0�∅ (x) = S(ik+k)k≥0
(x), we conclude

S(ik+k)k≥0�∅ (y) = S(ik+k)k≥0
(y).

Theorem 3.14.37 yields that (187) holds.
On the other hand, every 0-degression (j0, j1, j2, ...) satisfying (jk + k)k≥0 6⊆ (ik + k)k≥0

must satisfy
S(ik+k)k≥0�(jk+k)k≥0

(y) · vj0 ∧ vj1 ∧ vj2 ∧ ... = 0 (188)

151. Hence, each of the addends of the infinite sum
∑

(j0,j1,j2,...) a 0-degression;
(jk+k)k≥0 6⊆(ik+k)k≥0

S(ik+k)k≥0�(jk+k)k≥0
(y)·

vj0∧vj1∧vj2∧... equals 0. Thus, the infinite sum
∑

(j0,j1,j2,...) a 0-degression;
(jk+k)k≥0 6⊆(ik+k)k≥0

S(ik+k)k≥0�(jk+k)k≥0
(y)·

vj0 ∧ vj1 ∧ vj2 ∧ ... is well-defined and equals 0. We thus have

0 =
∑

(j0,j1,j2,...) a 0-degression;
(jk+k)k≥0 6⊆(ik+k)k≥0

S(ik+k)k≥0�(jk+k)k≥0
(y) · vj0 ∧ vj1 ∧ vj2 ∧ .... (189)

Adding this equality to (187), we obtain

exp (y1a1 + y2a2 + y3a3 + ...) · (vi0 ∧ vi1 ∧ vi2 ∧ ...)

=
∑

(j0,j1,j2,...) a 0-degression;
(jk+k)k≥0⊆(ik+k)k≥0

S(ik+k)k≥0�(jk+k)k≥0
(y) · vj0 ∧ vj1 ∧ vj2 ∧ ...

+
∑

(j0,j1,j2,...) a 0-degression;
(jk+k)k≥0 6⊆(ik+k)k≥0

S(ik+k)k≥0�(jk+k)k≥0
(y) · vj0 ∧ vj1 ∧ vj2 ∧ ...

=
∑

(j0,j1,j2,...) a 0-degression

S(ik+k)k≥0�(jk+k)k≥0
(y) · vj0 ∧ vj1 ∧ vj2 ∧ ....

Hence, the (v0 ∧ v−1 ∧ v−2 ∧ ...)-coordinate of exp (y1a1 + y2a2 + y3a3 + ...)·(vi0 ∧ vi1 ∧ vi2 ∧ ...)
with respect to the basis (vj0 ∧ vj1 ∧ vj2 ∧ ...)(j0,j1,j2,...) a 0-degression of F (0)

R equals

S(ik+k)k≥0�(−k+k)k≥0
(y) = S(ik+k)k≥0�∅ (y)

(
since (−k + k)k≥0 = (0)k≥0 = (0, 0, 0, ...) = ∅

)
= S(ik+k)k≥0

(y) .

This proves Theorem 3.14.32 using Theorem 3.14.37.

151Proof. Let (j0, j1, j2, ...) be a 0-degression satisfying (jk + k)k≥0 6⊆ (ik + k)k≥0. We know that
(ik + k)k≥0 and (jk + k)k≥0 are partitions. Thus, Remark 3.14.35 (applied to λ = (ik + k)k≥0

and µ = (jk + k)k≥0) yields that S(ik+k)k≥0�(jk+k)k≥0
(x) = 0 unless (jk + k)k≥0 ⊆ (ik + k)k≥0.

Since we don’t have (jk + k)k≥0 ⊆ (ik + k)k≥0 (because by assumption, we have (jk + k)k≥0 6⊆
(ik + k)k≥0), we thus know that S(ik+k)k≥0�(jk+k)k≥0

(x) = 0. Substituting y for x in this equation,

we obtain S(ik+k)k≥0�(jk+k)k≥0
(y) = 0, so that S(ik+k)k≥0�(jk+k)k≥0

(y) · vj0 ∧ vj1 ∧ vj2 ∧ ... = 0,

qed.
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3.14.7. Proof of Theorem 3.14.37 using U (∞)

One final easy lemma:

Lemma 3.14.38. For every n ∈ Z, let cn be an element of C. Assume that cn = 0
for every negative n ∈ Z. Consider the shift operator T : V → V of Definition 3.6.2.
Then,

∑
k≥0

ckT
k = (cj−i)(i,j)∈Z2 .

The proof of this lemma is immediate from the definition of T .

We now give a proof of Theorem 3.14.37 using the actions ρ : u∞ → End

(
∧
∞
2
,m
V

)

and % : U (∞)→ GL

(
∧
∞
2
,m
V

)
introduced in Subsection 3.14.3 and their properties.

First proof of Theorem 3.14.37. In order to simplify notation, we assume that R = C.
(All the arguments that we will make in the following are independent of the ground
ring, as long as the ground ring is a commutative Q-algebra. Therefore, we are actually
allowed to assume that R = C.) Since we assumed that R = C, we have AR = A and

F (0)
R = F (0).
Now consider the shift operator T : V → V of Definition 3.6.2. As a matrix in a∞,

this T is the matrix which has 1’s on the diagonal right above the main one, and 0’s
everywhere else. The embedding A → a∞ that we are using to define the action of A
on F (0) sends aj to T j for every j ∈ Z. Thus, every positive integer j satisfies

aj |F(0) = T j |F(0)= ρ̂
(
T j
)

= ρ
(
T j
)(

by Remark 3.14.19, applied to m = 0 and a = T j (since T j ∈ u∞ ∩ a∞)
)
.

Since y1a1 + y2a2 + y3a3 + ... =
∑
j≥1

yjaj, we have

(y1a1 + y2a2 + y3a3 + ...) |F(0) =

(∑
j≥1

yjaj

)
|F(0)=

∑
j≥1

yj (aj |F(0))︸ ︷︷ ︸
=ρ(T j)

=
∑
j≥1

yjρ
(
T j
)

= ρ

(∑
j≥1

yjT
j

)
.

Here, we have used the fact that
∑
j≥1

yjT
j ∈ u∞ (this ensures that ρ

(∑
j≥1

yjT
j

)
is

well-defined).
On the other hand, substituting y for x in (145), we obtain∑

k≥0

Sk (y) zk = exp

(∑
i≥1

yiz
i

)
in C [[z]] .

Substituting T for z in this equality, we obtain
∑
k≥0

Sk (y)T k = exp

(∑
i≥1

yiT
i

)
. Thus,

exp

(∑
j≥1

yjT
j

)
= exp

(∑
i≥1

yiT
i

)
=
∑
k≥0

Sk (y)T k = (Sj−i (y))(i,j)∈Z2 (190)
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(by Lemma 3.14.38, applied to cn = Sn (y) (since Sn (y) = 0 for every negative n ∈ Z)).
Now,

(exp (y1a1 + y2a2 + y3a3 + ...)) |F(0)

= exp ((y1a1 + y2a2 + y3a3 + ...) |F(0))︸ ︷︷ ︸
=ρ

(∑
j≥1

yjT j

)

= exp

(
ρ

(∑
j≥1

yjT
j

))
= %

(
exp

(∑
j≥1

yjT
j

))


since Theorem 3.14.25 (applied to a =
∑
j≥1

yjT
j) yields

%

(
exp

(∑
j≥1

yjT
j

))
= exp

(
ρ

(∑
j≥1

yjT
j

))


= %
(

(Sj−i (y))(i,j)∈Z2

)
(by (190)) .

Denote the matrix (Sj−i (y))(i,j)∈Z2 ∈ U (∞) by A. Thus, we have

(exp (y1a1 + y2a2 + y3a3 + ...)) |F(0)= %

(Sj−i (y))(i,j)∈Z2︸ ︷︷ ︸
=A

 = % (A) .

Hence,

exp (y1a1 + y2a2 + y3a3 + ...) · (vi0 ∧ vi1 ∧ vi2 ∧ ...)

= (% (A)) (vi0 ∧ vi1 ∧ vi2 ∧ ...) =
∑

(j0,j1,j2,...) is a 0-degression

det
((
Ai0,i1,i2,...j0,j1,j2,...

)T)
vj0 ∧ vj1 ∧ vj2 ∧ ...

(191)

(by Remark 3.14.22, applied to m = 0) .

But a close look at the matrix
(
Ai0,i1,i2,...j0,j1,j2,...

)T
proves that

det
((
Ai0,i1,i2,...j0,j1,j2,...

)T)
= S(ik+k)k≥0�(jk+k)k≥0

(y) for every 0-degression (j0, j1, j2, ...)

(192)
152.

152Proof of (192): Let (j0, j1, j2, ...) be a 0-degression. Since A = (Sj−i (y))(i,j)∈Z2 , we have

Ai0,i1,i2,...j0,j1,j2,...
= (Siv−ju (y))(u,v)∈N2 , so that

(
Ai0,i1,i2,...j0,j1,j2,...

)T
= (Siv−ju (y))(v,u)∈N2 . But define two par-

titions λ and µ by λ = (ik + k)k≥0 and µ = (jk + k)k≥0. Write the partitions λ and µ in the forms
λ = (λ1, λ2, λ3, ...) and µ = (µ1, µ2, µ3, ...). Then, λv = iv−1 + (v − 1) for every v ∈ {1, 2, 3, ...},
and µu = ju−1 + (u− 1) for every u ∈ {1, 2, 3, ...}. Thus, for every (u, v) ∈ {1, 2, 3, ...}2, we have

λv︸︷︷︸
=iv−1+(v−1)

− µu︸︷︷︸
=ju−1+(u−1)

+u−v = (iv−1 + (v − 1))−(ju−1 + (u− 1))+u−v = iv−1−ju−1. (193)

But (186) yields Sλ�µ (x) = det
((
Sλi−µj+j−i (x)

)
(i,j)∈{1,2,3,...}2

)
. Substituting y for x in this
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Now, (191) becomes

exp (y1a1 + y2a2 + y3a3 + ...) · (vi0 ∧ vi1 ∧ vi2 ∧ ...)

=
∑

(j0,j1,j2,...) is a 0-degression

det
((
Ai0,i1,i2,...j0,j1,j2,...

)T)︸ ︷︷ ︸
=S(ik+k)k≥0

�(jk+k)k≥0
(y)

(by (192))

vj0 ∧ vj1 ∧ vj2 ∧ ...

=
∑

(j0,j1,j2,...) is a 0-degression

S(ik+k)k≥0�(jk+k)k≥0
(y) · vj0 ∧ vj1 ∧ vj2 ∧ ...

=
∑

(j0,j1,j2,...) a 0-degression;
(jk+k)k≥0⊆(ik+k)k≥0

S(ik+k)k≥0�(jk+k)k≥0
(y) · vj0 ∧ vj1 ∧ vj2 ∧ ...

+
∑

(j0,j1,j2,...) a 0-degression;
(jk+k)k≥0 6⊆(ik+k)k≥0

S(ik+k)k≥0�(jk+k)k≥0
(y) · vj0 ∧ vj1 ∧ vj2 ∧ ...

︸ ︷︷ ︸
=0

(by (189))

=
∑

(j0,j1,j2,...) a 0-degression;
(jk+k)k≥0⊆(ik+k)k≥0

S(ik+k)k≥0�(jk+k)k≥0
(y) · vj0 ∧ vj1 ∧ vj2 ∧ ....

This proves Theorem 3.14.37.
We can now combine the above to obtain a proof of Theorem 3.12.11:
Second proof of Theorem 3.12.11. We have proven Theorem 3.14.32 using Theorem

3.14.37. Since we know that Theorem 3.14.37 holds, this yields that Theorem 3.14.32
holds. This, in turn, entails that Theorem 3.12.11 holds (since we have proven Theorem
3.12.11 using Theorem 3.14.32).

3.14.8. “Finitary” proof of Theorem 3.14.37

The above second proof of Theorem 3.12.11 had the drawback of requiring a slew of
new notions (those of u∞, of U (∞), of the determinant of an almost upper-triangular

equality, we obtain

Sλ�µ (y) = det
((
Sλi−µj+j−i (y)

)
(i,j)∈{1,2,3,...}2

)
= det

(
(Sλv−µu+u−v (y))(v,u)∈{1,2,3,...}2

)
(here, we substituted (v, u) for (i, j))

= det
((
Siv−1−ju−1 (y)

)
(v,u)∈{1,2,3,...}2

)
(by (193))

= det

(Siv−ju (y))(v,u)∈N2︸ ︷︷ ︸
=(Ai0,i1,i2,...j0,j1,j2,...

)
T

 (here, we substituted (v, u) for (v − 1, u− 1))

= det

((
Ai0,i1,i2,...j0,j1,j2,...

)T)
.

Since λ = (ik + k)k≥0 and µ = (jk + k)k≥0, this rewrites as S(ik+k)k≥0�(jk+k)k≥0
(y) =

det

((
Ai0,i1,i2,...j0,j1,j2,...

)T)
. This proves (192).
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matrix etc.) and of their properties (Proposition 3.14.13, Remark 3.14.22, Theorem
3.14.25 and others). We will now give a proof of Theorem 3.12.11 which is more or less
equivalent to the second proof of Theorem 3.12.11 shown above, but avoiding these
new notions. It will eschew using infinite matrices other than those in a∞, and instead
work with finite objects most of the time.

Since we already know how to derive Theorem 3.12.11 from Theorem 3.14.37, we
only need to verify Theorem 3.14.37.

Let us first introduce some finite-dimensional subspaces of the vector space V :

Definition 3.14.39. Let α and β be integers such that α− 1 ≤ β.
(a) Then, V]α,β] will denote the vector subspace of V spanned by the vectors vα+1,

vα+2, ..., vβ. It is clear that (vα+1, vα+2, ..., vβ) is a basis of this vector space V]α,β],
so that dim

(
V]α,β]

)
= β − α.

(b) Let T]α,β] be the endomorphism of the vector space V]α,β] defined by(
T]α,β] (vi) =

{
vi−1, if i > α + 1;
0, if i = α + 1

for all i ∈ {α + 1, α + 2, ..., β}
)
.

(c) We let A+ be the Lie subalgebra 〈a1, a2, a3, ...〉 of A. This Lie subalgebra A+

is abelian. We define an A+-module structure on the vector space V]α,β] by letting
ai act as T i]α,β] for every positive integer i. (This is well-defined, since the powers of

T]α,β] commute, just as the elements of A+.) Thus, for every ` ∈ N, the `-th exterior
power ∧`

(
V]α,β]

)
is canonically equipped with an A+-module structure.

(d) For every ` ∈ N, let R`,]α,β] : ∧`
(
V]α,β]

)
→ ∧

∞
2
,α+`

V be the linear map defined
by (

R`,]α,β] (b1 ∧ b2 ∧ ... ∧ b`) = b1 ∧ b2 ∧ ... ∧ b` ∧ vα ∧ vα−1 ∧ vα−2 ∧ ...
for any b1, b2, ..., b` ∈ V]α,β]

)
.

Remark 3.14.40. Let α and β be integers such that α− 1 ≤ β.
(a) The (β − α)-tuple (vβ, vβ−1, ..., vα+1) is a basis of this vector space V]α,β]. With

respect to this basis, the endomorphism T]α,β] of V]α,β] is represented by the (β − α)×

(β − α) matrix



0 0 0 ... 0 0
1 0 0 ... 0 0
0 1 0 ... 0 0
0 0 1 ... 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0


.

(b) We have T β−α]α,β] = 0.

(c) For every sequence (y1, y2, y3, ...) of elements of C, the endomorphism
∞∑
i=1

yiT
i
]α,β] of V]α,β] is well-defined and nilpotent.

(d) For every sequence (y1, y2, y3, ...) of elements of C, the endomorphism

exp

(
∞∑
i=1

yiT
i
]α,β]

)
of V]α,β] is well-defined.
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(e) For every sequence (y1, y2, y3, ...) of elements of C, the endomorphism
exp (y1a1 + y2a2 + y3a3 + ...) of V]α,β] is well-defined.

(f) Every j ∈ N satisfies

T j]α,β]vu =

{
vu−j, if u− j > α;
0, if u− j ≤ α

for every u ∈ {α + 1, α + 2, ..., β} .

(194)
(g) For every n ∈ Z, let cn be an element of C. Assume that cn = 0 for ev-

ery negative n ∈ Z. Then, the sum
∑
k≥0

ckT
k
]α,β] is a well-defined endomorphism

of V]α,β], and the matrix representing this endomorphism with respect to the basis
(vβ, vβ−1, ..., vα+1) of V]α,β] is (ci−j)(i,j)∈{1,2,...,β−α}2 .

Proof of Remark 3.14.40. Parts (a) through (f) of Remark 3.14.40 are trivial, and
part (g) is just the finitary analogue of Lemma 3.14.38 and proven in the same way.

This completes the proof of Remark 3.14.40.
A less trivial observation is the following:

Proposition 3.14.41. Let α and β be integers such that α − 1 ≤ β. Let ` ∈ N.
Then, R`,]α,β] : ∧`

(
V]α,β]

)
→ F (α+`) is an A+-module homomorphism (where the

A+-module structure on F (α+`) is obtained by restricting the A-module structure
on F (α+`)).

Proof of Proposition 3.14.41. Let T be the shift operator defined in Definition 3.6.2.
Let j be a positive integer. Then, for every integer i ≤ 0, the (i, i)-th entry of the

matrix T j is 0 (in fact, the matrix T j has only zeroes on its main diagonal). Moreover,
from the definition of T , it follows quickly that

T jvu = vu−j for every u ∈ Z. (195)

Let (i0, i1, ..., i`−1) be an `-tuple of elements of {α + 1, α + 2, ..., β} such that i0 >
i1 > ... > i`−1. We will prove that

aj ⇀
(
R`,]α,β]

(
vi0 ∧ vi1 ∧ ... ∧ vi`−1

))
= R`,]α,β]

(
aj ⇀

(
vi0 ∧ vi1 ∧ ... ∧ vi`−1

))
. (196)

Indeed, let us extend the `-tuple (i0, i1, ..., i`−1) to a sequence (i0, i1, i2, ...) of inte-
gers by setting (ik = `+ α− k for every k ∈ {`, `+ 1, `+ 2, ...}). Then, (i0, i1, i2, ...) =
(i0, i1, ..., i`−1, α, α− 1, α− 2, ...). As a consequence, the sequence (i0, i1, i2, ...) is strictly
decreasing (since i0 > i1 > ... > i`−1 > α > α− 1 > α− 2 > ...) and hence an (α + `)-
degression. Note that

vi0 ∧ vi1 ∧ ...∧ vik−1
∧ vik−j ∧ vik+1

∧ vik+2
∧ ... = 0 for every k ∈ N satisfying k ≥ `

(197)
153. Also,

vi0∧vi1∧...∧vik−1
∧vik−j∧vik+1

∧vik+2
∧... = 0 for every k ∈ N satisfying k < ` and ik−j ≤ α.

(198)

153Proof of (197): Let k ∈ N satisfy k ≥ `. Then, k+ j ≥ ` as well (since j is positive), so that ik+j =
`+ α− (k + j) = (`+ α− k)︸ ︷︷ ︸

=ik
(since k≥`)

−j = ik − j. Thus, the sequence (i0, i1, ..., ik−1, ik − j, ik+1, ik+2, ...)

has two equal terms (since k+ j 6= k (due to j being positive)). Thus, vi0 ∧vi1 ∧ ...∧vik−1
∧vik−j ∧

vik+1
∧ vik+2

∧ ... = 0. This proves (197).
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154

The definition of R`,]α,β] yields

R`,]α,β]

(
vi0 ∧ vi1 ∧ ... ∧ vi`−1

)
= vi0 ∧ vi1 ∧ ... ∧ vi`−1

∧ vα ∧ vα−1 ∧ vα−2 ∧ ...
= vi0 ∧ vi1 ∧ vi2 ∧ ... (since (i0, i1, ..., i`−1, α, α− 1, α− 2, ...) = (i0, i1, i2, ...)) ,

so that

aj ⇀
(
R`,]α,β]

(
vi0 ∧ vi1 ∧ ... ∧ vi`−1

))
= aj ⇀ (vi0 ∧ vi1 ∧ vi2 ∧ ...) =

(
ρ̂
(
T j
))

(vi0 ∧ vi1 ∧ vi2 ∧ ...)(
since aj |F(α+`)= T j |F(α+`)= ρ̂

(
T j
))

=
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧

(
T j ⇀ vik

)︸ ︷︷ ︸
=T jvik=vik−j

(by (195), applied to u=ik)

∧vik+1
∧ vik+2

∧ ...

(
by Proposition 3.7.5, applied to (b0, b1, b2, ...) = (vi0 , vi1 , vi2 , ...) and a = T j

(since for every integer i ≤ 0, the (i, i) -th entry of T j is 0).

)
=
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ vik−j ∧ vik+1

∧ vik+2
∧ ....

The sum on the right hand side of this equation is infinite, but lots of its terms vanish:
Namely, all its terms with k ≥ ` vanish (because of (197)), and all its terms with k < `
and ik − j ≤ α vanish (because of (198)). We can thus replace the

∑
k≥0

sign by a
∑
k≥0;
k<`;

ik−j>α
sign, and obtain

aj ⇀
(
R`,]α,β]

(
vi0 ∧ vi1 ∧ ... ∧ vi`−1

))
=
∑
k≥0;
k<`;

ik−j>α

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ vik−j ∧ vik+1

∧ vik+2
∧ .... (199)

154Proof of (198): Let k ∈ N satisfy k < ` and ik − j ≤ α. Every integer ≤ α is contained in the
sequence (i0, i1, i2, ...) (since (i0, i1, i2, ...) = (i0, i1, ..., i`−1, α, α− 1, α− 2, ...)). Since ik − j ≤ α,
this yields that the integer ik − j is contained in the sequence (i0, i1, i2, ...). Hence, there exists a
p ∈ N such that ip = ik − j. Consider this p.

Since k < `, we have ik ∈ {α+ 1, α+ 2, ..., β}, so that ik > α ≥ ik − j = ip, and hence ik 6= ip.
Thus, k 6= p. Since ik − j = ip and k 6= p, the sequence (i0, i1, ..., ik−1, ik − j, ik+1, ik+2, ...) has
two equal terms. Thus, vi0 ∧ vi1 ∧ ... ∧ vik−1

∧ vik−j ∧ vik+1
∧ vik+2

∧ ... = 0, and this proves (198).
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On the other hand, by the definition of the A+-module ∧`
(
V]α,β]

)
, we have

aj ⇀
(
vi0 ∧ vi1 ∧ ... ∧ vi`−1

)
=

`−1∑
k=0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ (aj ⇀ vik)︸ ︷︷ ︸

=T j
]α,β]

vik

(since aj acts as T j
]α,β]

on V]α,β])

∧vik+1
∧ vik+2

∧ ... ∧ vi`−1

=
`−1∑
k=0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧
(
T j]α,β]vik

)
∧ vik+1

∧ vik+2
∧ ... ∧ vi`−1

.

Applying the linear map R`,]α,β] to this equation, we obtain

R`,]α,β]

(
aj ⇀

(
vi0 ∧ vi1 ∧ ... ∧ vi`−1

))
=

`−1∑
k=0

R`,]α,β]

(
vi0 ∧ vi1 ∧ ... ∧ vik−1

∧
(
T j]α,β]vik

)
∧ vik+1

∧ vik+2
∧ ... ∧ vi`−1

)
︸ ︷︷ ︸

=vi0∧vi1∧...∧vik−1
∧
(
T j

]α,β]
vik

)
∧vik+1

∧vik+2
∧...∧vi`−1

∧vα∧vα−1∧vα−2∧...
(by the definition of R`,]α,β])

=
`−1∑
k=0︸︷︷︸

=
∑
k≥0;
k<`

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧
(
T j]α,β]vik

)
∧ vik+1

∧ vik+2
∧ ... ∧ vi`−1

∧ vα ∧ vα−1 ∧ vα−2 ∧ ...︸ ︷︷ ︸
=vi0∧vi1∧...∧vik−1

∧
(
T j

]α,β]
vik

)
∧vik+1

∧vik+2
∧...

(since (i0,i1,...,i`−1,α,α−1,α−2,...)=(i0,i1,i2,...))

=
∑
k≥0;
k<`

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧

(
T j]α,β]vik

)
︸ ︷︷ ︸

=

 vik−j, if ik − j > α;
0, if ik − j ≤ α

(by (194), applied to u=ik)

∧vik+1
∧ vik+2

∧ ...

=
∑
k≥0;
k<`

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧
{
vik−j, if ik − j > α;
0, if ik − j ≤ α

∧ vik+1
∧ vik+2

∧ ...

=
∑
k≥0;
k<`;

ik−j>α

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ vik−j ∧ vik+1

∧ vik+2
∧ ....

Compared with (199), this yields

aj ⇀
(
R`,]α,β]

(
vi0 ∧ vi1 ∧ ... ∧ vi`−1

))
= R`,]α,β]

(
aj ⇀

(
vi0 ∧ vi1 ∧ ... ∧ vi`−1

))
.

We have thus proven (196).
Now, forget that we fixed j and (i0, i1, ..., i`−1). We have thus proven the equal-

ity (196) for every positive integer j and every `-tuple (i0, i1, ..., i`−1) of elements of
{α + 1, α + 2, ..., β} such that i0 > i1 > ... > i`−1.

Since A+ = 〈a1, a2, a3, ...〉 and since
(
vi0 ∧ vi1 ∧ ... ∧ vi`−1

)
β≥i0>i1>...>i`−1≥α+1

is a ba-

sis of the vector space ∧`
(
V]α,β]

)
, this yields (by linearity) that x ⇀

(
R`,]α,β] (w)

)
=
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R`,]α,β] (x ⇀ w) holds for every x ∈ A+ and w ∈ ∧`
(
V]α,β]

)
. Thus, R`,]α,β] is an A+-

module homomorphism. This proves Proposition 3.14.41.
Now, we can turn to the promised proof:
Second proof of Theorem 3.14.37. In order to simplify notation, we assume that

R = C. (All the arguments that we will make in the following are independent of the
ground ring, as long as the ground ring is a commutative Q-algebra. Therefore, we
are actually allowed to assume that R = C.) Since we assumed that R = C, we have

AR = A and F (0)
R = F (0).

Since (i0, i1, i2, ...) is a 0-degression, every sufficiently high k ∈ N satisfies ik + k = 0.
In other words, there exists some K ∈ N such that every k ∈ N satisfying k ≥ K
satisfies ik + k = 0. Consider this K. WLOG assume that K > 0 (else, replace
K by K + 1). Since every k ∈ N satisfying k ≥ K satisfies ik + k = 0 and thus
ik = −k, we have (i0, i1, i2, ...) = (i0, i1, i2, ..., iK−1,−K,− (K + 1) ,− (K + 2) , ...) =
(i0, i1, i2, ..., iK−1,−K,−K − 1,−K − 2, ...). In particular, iK = −K.

Let α = iK and β = i0. Since (i0, i1, i2, ...) is a 0-degression, we have i0 > i1 > i2 > ....
Thus, i0 > i1 > i2 > ... > iK−1 > iK . In other words, i0 ≥ i0 > i1 > i2 > ... > iK−1 >
iK . Since i0 = β and iK = α, this rewrites as β ≥ i0 > i1 > i2 > ... > iK−1 > α. Thus,
the integers i0, i1, i2, ..., iK−1 lie in the set {α + 1, α + 2, ..., β}. Hence, the vectors
vi0 , vi1 , ..., viK−1

lie in the vector space V]α,β]. Thus, the definition of the map RK,]α,β]

(defined according to Definition 3.14.39 (d)) yields

RK,]α,β]

(
vi0 ∧ vi1 ∧ ... ∧ viK−1

)
= vi0 ∧ vi1 ∧ ... ∧ viK−1

∧ vα ∧ vα−1 ∧ vα−2 ∧ ...
= vi0 ∧ vi1 ∧ ... ∧ viK−1

∧ v−K ∧ v−K−1 ∧ v−K−2 ∧ ...
(since α = iK = −K)

= vi0 ∧ vi1 ∧ vi2 ∧ ... (200)

(since (i0, i1, i2, ..., iK−1,−K,−K − 1,−K − 2, ...) = (i0, i1, i2, ...)).
For every p ∈ {1, 2, ..., K}, define an integer ĩp by ĩp = β + 1− ip−1.
Subtracting the chain of inequalities β ≥ i0 > i1 > i2 > ... > iK−1 > α from β + 1,

we obtain β+1−β ≤ β+1−i0 < β+1−i1 < β+1−i2 < ... < β+1−iK−1 < β+1−α.
Since β + 1 − ip−1 = ĩp for every p ∈ {1, 2, ..., K}, this rewrites as β + 1 − β ≤ ĩ1 <

ĩ2 < ĩ3 < ... < ĩK < β + 1− α.
This simplifies to 1 ≤ ĩ1 < ĩ2 < ĩ3 < ... < ĩK < β + 1 − α. Since ĩK and β + 1 − α

are integers, we obtain ĩK ≤ β−α from ĩK < β+ 1−α. Thus, 1 ≤ ĩ1 < ĩ2 < ĩ3 < ... <
ĩK ≤ β − α.

On the other hand, substituting y for x in (145), we obtain∑
k≥0

Sk (y) zk = exp

(∑
i≥1

yiz
i

)
in C [[z]] .

Substituting T]α,β] for z in this equality, we obtain∑
k≥0

Sk (y)T k]α,β] = exp

(∑
i≥1

yiT
i
]α,β]

)
. (201)

From Remark 3.14.40, we know that the endomorphisms exp

(
∞∑
i=1

yiT
i
]α,β]

)
and

exp (y1a1 + y2a2 + y3a3 + ...) of V]α,β] are well-defined. Denote the endomorphism
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exp (y1a1 + y2a2 + y3a3 + ...) of V]α,β] by f . Then,

f = exp

y1a1 + y2a2 + y3a3 + ...︸ ︷︷ ︸
=
∞∑
i=1

yiai

 = exp


∞∑
i=1

yi ai︸︷︷︸
=T i

]α,β]

(since the action of ai on V]α,β]

was defined to be T i
]α,β]

)


= exp

(
∞∑
i=1

yiT
i
]α,β]

)

= exp

(∑
i≥1

yiT
i
]α,β]

)
=
∑
k≥0

Sk (y)T k]α,β] (by (201)) .

Note that Sn (y) ∈ C for every n ∈ Z (since we assumed that R = C). Also note
that Sn (y) = 0 for every negative n ∈ Z (since Sn = 0 for every negative n). Hence,
according to Remark 3.14.40 (g) (applied to cn = Sn (y)), the sum

∑
k≥0

Sk (y)T k]α,β] is a

well-defined endomorphism of V]α,β], and the matrix representing this endomorphism
with respect to the basis (vβ, vβ−1, ..., vα+1) of V]α,β] is (Si−j (y))(i,j)∈{1,2,...,β−α}2 . De-

note this matrix (Si−j (y))(i,j)∈{1,2,...,β−α}2 by A. Let n = β − α, and denote the basis

(vβ, vβ−1, ..., vα+1) of V]α,β] by (e1, e2, ..., en). Then,

ek = vβ+1−k for every k ∈ {1, 2, ..., n} . (202)

As a consequence,

eβ+1−k = vk for every k ∈ {α + 1, α + 2, ..., β} (203)

(because for every k ∈ {α + 1, α + 2, ..., β}, we can apply (202) to β + 1− k instead of
k, and thus obtain eβ+1−k = vβ+1−(β+1−k) = vk).

We have shown that the matrix representing the endomorphism
∑
k≥0

Sk (y)T k]α,β] of

V]α,β] with respect to the basis (vβ, vβ−1, ..., vα+1) of V]α,β] is (Si−j (y))(i,j)∈{1,2,...,β−α}2 .

Since
∑
k≥0

Sk (y)T k]α,β] = f , (vβ, vβ−1, ..., vα+1) = (e1, e2, ..., en), and (Si−j (y))(i,j)∈{1,2,...,β−α}2 =

A, this rewrites as follows: The matrix representing the endomorphism f of V]α,β]

with respect to the basis (e1, e2, ..., en) of V]α,β] is A. In other words, A is the n ×
n-matrix which represents the map f with respect to the bases (e1, e2, ..., en) and
(e1, e2, ..., en) of V]α,β] and V]α,β]. Therefore, we can apply Proposition 3.14.7 to n,

V]α,β], V]α,β], (e1, e2, ..., en), (e1, e2, ..., en), K, f , A and
(̃
i1, ĩ2, ĩ3, ..., ĩK

)
instead of m,

P , Q, (e1, e2, ..., en), (f1, f2, ..., fm), `, f , A and (i1, i2, ..., i`). As a result, we obtain(
∧K (f)

) (
ẽi1 ∧ ẽi2 ∧ ... ∧ ẽiK

)
=

∑
j1, j2, ..., jK are K integers;

1≤j1<j2<...<jK≤β−α

det
(
Aĩ1 ,̃i2,...,̃iKj1,j2,...,jK

)
ej1∧ej2∧...∧ejK .

(204)
But every p ∈ {1, 2, ..., K} satisfies ẽip = vip−1

155. Hence,
(
ẽi1 , ẽi2 , ..., ẽiK

)
=

155This is because ĩp = β + 1− ip−1, so that β + 1− ĩp = ip−1 and now

ẽip = vβ+1−ĩp

(
by (202), applied to ĩp instead of k

)
= vip−1

(
since β + 1− ĩp = ip−1

)
.
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(
vi0 , vi1 , ..., viK−1

)
. Consequently, ẽi1 ∧ ẽi2 ∧ ...∧ ẽiK = vi0 ∧ vi1 ∧ ...∧ viK−1

. Thus, (204)
rewrites as(
∧K (f)

) (
vi0 ∧ vi1 ∧ ... ∧ viK−1

)
=

∑
j1, j2, ..., jK are K integers;

1≤j1<j2<...<jK≤β−α

det
(
Aĩ1 ,̃i2,...,̃iKj1,j2,...,jK

)
ej1∧ej2∧...∧ejK .

(205)
But

∑
i≥1

yiT
i
]α,β] ∈ gl

(
V]α,β]

)
is a nilpotent linear map (by Remark 3.14.40 (c)). Hence,

Theorem 3.14.27 (applied to P = V]α,β], a =
∑
i≥1

yiT
i
]α,β] and ` = K) yields that

the exponential exp

(∑
i≥1

yiT
i
]α,β]

)
is a well-defined element of U

(
V]α,β]

)
and satisfies

∧K
(

exp

(∑
i≥1

yiT
i
]α,β]

))
= exp

(
ρV]α,β],K

(∑
i≥1

yiT
i
]α,β]

))
. Since exp

(∑
i≥1

yiT
i
]α,β]

)
= f ,

this rewrites as

∧K (f) = exp

(
ρV]α,β],K

(∑
i≥1

yiT
i
]α,β]

))
. (206)

But it is easy to see that

ρV]α,β],K

(∑
i≥1

yiT
i
]α,β]

)
= y1a1 + y2a2 + y3a3 + ... (207)

as endomorphisms of ∧K
(
V]α,β]

)
156. Hence, (206) rewrites as

∧K (f) = exp (y1a1 + y2a2 + y3a3 + ...) .

156Proof of (207). By the definition of ρV]α,β],K , we know that ρV]α,β],K : gl
(
V]α,β]

)
→ End

(
∧K

(
V]α,β]

))
denotes the representation of the Lie algebra gl

(
V]α,β]

)
on the K-th exterior power of the defining

representation V]α,β] of gl
(
V]α,β]

)
. Hence,

ρV]α,β],K

∑
i≥1

yiT
i
]α,β]

 =

∑
i≥1

yiT
i
]α,β]

 |∧K(V]α,β]) .
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Hence, every ξ1, ξ2, ..., ξK ∈ V]α,β] satisfyρV]α,β],K

∑
i≥1

yiT
i
]α,β]

 (ξ1 ∧ ξ2 ∧ ... ∧ ξK)

=

∑
i≥1

yiT
i
]α,β]

⇀ (ξ1 ∧ ξ2 ∧ ... ∧ ξK)

=
∑
i≥1

yi T i]α,β] ⇀ (ξ1 ∧ ξ2 ∧ ... ∧ ξK)︸ ︷︷ ︸
=

K∑
k=1

ξ1∧ξ2∧...∧ξk−1∧(T i]α,β]⇀ξk)∧ξk+1∧ξk+2∧...∧ξK

(by the definition of the gl(V]α,β])-module ∧K(V]α,β]))

=
∑
i≥1

yi

K∑
k=1

ξ1 ∧ ξ2 ∧ ... ∧ ξk−1 ∧
(
T i]α,β] ⇀ ξk

)
︸ ︷︷ ︸

=T i
]α,β]

ξk

∧ξk+1 ∧ ξk+2 ∧ ... ∧ ξK

=
∑
i≥1

yi

K∑
k=1

ξ1 ∧ ξ2 ∧ ... ∧ ξk−1 ∧ T i]α,β]ξk ∧ ξk+1 ∧ ξk+2 ∧ ... ∧ ξK .

On the other hand, every ξ1, ξ2, ..., ξK ∈ V]α,β] satisfy

(y1a1 + y2a2 + y3a3 + ...)︸ ︷︷ ︸
=
∑
i≥1

yiai

(ξ1 ∧ ξ2 ∧ ... ∧ ξK)

=
∑
i≥1

yi ai (ξ1 ∧ ξ2 ∧ ... ∧ ξK)︸ ︷︷ ︸
=

K∑
k=1

ξ1∧ξ2∧...∧ξk−1∧aiξk∧ξk+1∧ξk+2∧...∧ξK

(by the definition of the A+-module ∧K(V]α,β]))

=
∑
i≥1

yi

K∑
k=1

ξ1 ∧ ξ2 ∧ ... ∧ ξk−1 ∧ aiξk︸︷︷︸
=T i]α,β]ξk

(since the element ai of A+ acts

on V]α,β] by T i]α,β])

∧ξk+1 ∧ ξk+2 ∧ ... ∧ ξK

=
∑
i≥1

yi

K∑
k=1

ξ1 ∧ ξ2 ∧ ... ∧ ξk−1 ∧ T i]α,β]ξk ∧ ξk+1 ∧ ξk+2 ∧ ... ∧ ξK

=

ρV]α,β],K

∑
i≥1

yiT
i
]α,β]

 (ξ1 ∧ ξ2 ∧ ... ∧ ξK) .

In other words, the two endomorphisms y1a1 + y2a2 + y3a3 + ... and ρV]α,β],K

(∑
i≥1

yiT
i
]α,β]

)
of

∧K
(
V]α,β]

)
are equal to each other on the set

{
ξ1 ∧ ξ2 ∧ ... ∧ ξK | ξ1, ξ2, ..., ξK ∈ V]α,β]

}
. Since

the set
{
ξ1 ∧ ξ2 ∧ ... ∧ ξK | ξ1, ξ2, ..., ξK ∈ V]α,β]

}
is a spanning set of the vector space ∧K

(
V]α,β]

)
,
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Hence,

(exp (y1a1 + y2a2 + y3a3 + ...))︸ ︷︷ ︸
=∧K(f)

(
vi0 ∧ vi1 ∧ ... ∧ viK−1

)
=
(
∧K (f)

) (
vi0 ∧ vi1 ∧ ... ∧ viK−1

)
=

∑
j1, j2, ..., jK are K integers;

1≤j1<j2<...<jK≤β−α

det
(
Aĩ1 ,̃i2,...,̃iKj1,j2,...,jK

)
ej1 ∧ ej2 ∧ ... ∧ ejK (by (205))

=
∑

j0, j1, ..., jK−1 are K integers;
1≤β+1−j0<β+1−j1<...<β+1−jK−1≤β−α

det
(
Aĩ1 ,̃i2,...,̃iKβ+1−j0,β+1−j1,...,β+1−jK−1

)
eβ+1−j0 ∧ eβ+1−j1 ∧ ... ∧ eβ+1−jK−1︸ ︷︷ ︸

=vj0∧vj1∧...∧vjK−1

(due to (203))

(here, we substituted (β + 1− j0, β + 1− j1, ..., β + 1− jK−1) for (j1, j2, ..., jK))

=
∑

j0, j1, ..., jK−1 are K integers;
1≤β+1−j0<β+1−j1<...<β+1−jK−1≤β−α

det
(
Aĩ1 ,̃i2,...,̃iKβ+1−j0,β+1−j1,...,β+1−jK−1

)
vj0 ∧ vj1 ∧ ... ∧ vjK−1

.

(208)

But every K-tuple (j0, j1, ..., jK−1) of integers such that 1 ≤ β + 1− j0 < β + 1− j1 <
... < β + 1− jK−1 ≤ β − α satisfies∑
jK , jK+1, jK+2, ... are integers;

jk=−k for every k≥K

det
(
Aĩ1 ,̃i2,...,̃iKβ+1−j0,β+1−j1,...,β+1−jK−1

)
= det

(
Aĩ1 ,̃i2,...,̃iKβ+1−j0,β+1−j1,...,β+1−jK−1

)

(since the sum
∑

jK , jK+1, jK+2, ... are integers;
jk=−k for every k≥K

det
(
Aĩ1 ,̃i2,...,̃iKβ+1−j0,β+1−j1,...,β+1−jK−1

)
has only one ad-

this entails that the two endomorphisms y1a1 + y2a2 + y3a3 + ... and ρV]α,β],K

(∑
i≥1

yiT
i
]α,β]

)
of

∧K
(
V]α,β]

)
are identical. This proves (207).
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dend). Thus, (208) becomes

(exp (y1a1 + y2a2 + y3a3 + ...))
(
vi0 ∧ vi1 ∧ ... ∧ viK−1

)
=

∑
j0, j1, ..., jK−1 are K integers;

1≤β+1−j0<β+1−j1<...<β+1−jK−1≤β−α

det
(
Aĩ1 ,̃i2,...,̃iKβ+1−j0,β+1−j1,...,β+1−jK−1

)
︸ ︷︷ ︸

=
∑

jK , jK+1, jK+2, ... are integers;
jk=−k for every k≥K

det

(
A
ĩ1 ,̃i2,...,̃iK
β+1−j0,β+1−j1,...,β+1−jK−1

)

vj0 ∧ vj1 ∧ ... ∧ vjK−1

=
∑

j0, j1, ..., jK−1 are K integers;
1≤β+1−j0<β+1−j1<...<β+1−jK−1≤β−α

∑
jK , jK+1, jK+2, ... are integers;

jk=−k for every k≥K︸ ︷︷ ︸
=

∑
(j0,j1,j2,...)∈ZN;

jk=−k for every k≥K;
1≤β+1−j0<β+1−j1<...<β+1−jK−1≤β−α

det
(
Aĩ1 ,̃i2,...,̃iKβ+1−j0,β+1−j1,...,β+1−jK−1

)
vj0 ∧ vj1 ∧ ... ∧ vjK−1

=
∑

(j0,j1,j2,...)∈ZN;
jk=−k for every k≥K;

1≤β+1−j0<β+1−j1<...<β+1−jK−1≤β−α

det
(
Aĩ1 ,̃i2,...,̃iKβ+1−j0,β+1−j1,...,β+1−jK−1

)
vj0 ∧ vj1 ∧ ... ∧ vjK−1

.
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Applying the linear map RK,]α,β] to this equality, we obtain

RK,]α,β]

(
(exp (y1a1 + y2a2 + y3a3 + ...))

(
vi0 ∧ vi1 ∧ ... ∧ viK−1

))
=

∑
(j0,j1,j2,...)∈ZN;

jk=−k for every k≥K;
1≤β+1−j0<β+1−j1<...<β+1−jK−1≤β−α

det
(
Aĩ1 ,̃i2,...,̃iKβ+1−j0,β+1−j1,...,β+1−jK−1

)

RK,]α,β]

(
vj0 ∧ vj1 ∧ ... ∧ vjK−1

)︸ ︷︷ ︸
=vj0∧vj1∧...∧vjK−1

∧vα∧vα−1∧vα−2∧...
(by the definition of RK,]α,β])

=
∑

(j0,j1,j2,...)∈ZN;
jk=−k for every k≥K;

1≤β+1−j0<β+1−j1<...<β+1−jK−1≤β−α

det
(
Aĩ1 ,̃i2,...,̃iKβ+1−j0,β+1−j1,...,β+1−jK−1

)

vj0 ∧ vj1 ∧ ... ∧ vjK−1
∧ vα ∧ vα−1 ∧ vα−2 ∧ ...

=
∑

(j0,j1,j2,...)∈ZN;
jk=−k for every k≥K;

1≤β+1−j0<β+1−j1<...<β+1−jK−1≤β−α

det
(
Aĩ1 ,̃i2,...,̃iKβ+1−j0,β+1−j1,...,β+1−jK−1

)

vj0 ∧ vj1 ∧ ... ∧ vjK−1
∧ v−K ∧ v−K−1 ∧ v−K−2 ∧ ...︸ ︷︷ ︸

=vj0∧vj1∧vj2∧...
(since every k≥K satisfies −k=jk, and therefore

(j0,j1,...,jK−1,−K,−K−1,−K−2,...)=(j0,j1,...,jK−1,jK ,jK+1,jK+2,...)=(j0,j1,j2,...))

(since α = iK = −K)

=
∑

(j0,j1,j2,...)∈ZN;
jk=−k for every k≥K;

1≤β+1−j0<β+1−j1<...<β+1−jK−1≤β−α

det
(
Aĩ1 ,̃i2,...,̃iKβ+1−j0,β+1−j1,...,β+1−jK−1

)
vj0 ∧ vj1 ∧ vj2 ∧ ....

(209)

Let us now notice that when (j0, j1, j2, ...) ∈ ZN is a sequence of integers satisfying
(jk = −k for every k ≥ K), then a very straightforward argument shows that 1 ≤
β + 1 − j0 < β + 1 − j1 < ... < β + 1 − jK−1 ≤ β − α holds if and only if
(j0, j1, j2, ...) is a 0-degression satisfying j0 ≤ β. Hence, we can replace the sum sign∑

(j0,j1,j2,...)∈ZN;
jk=−k for every k≥K;

1≤β+1−j0<β+1−j1<...<β+1−jK−1≤β−α

by
∑

(j0,j1,j2,...) is a 0-degression;
jk=−k for every k≥K;

j0≤β

in (209). Hence, (209) be-

comes

RK,]α,β]

(
(exp (y1a1 + y2a2 + y3a3 + ...))

(
vi0 ∧ vi1 ∧ ... ∧ viK−1

))
=

∑
(j0,j1,j2,...) is a 0-degression;

jk=−k for every k≥K;
j0≤β

det
(
Aĩ1 ,̃i2,...,̃iKβ+1−j0,β+1−j1,...,β+1−jK−1

)
vj0 ∧ vj1 ∧ vj2 ∧ .... (210)

But it is easily revealed that

det
(
Aĩ1 ,̃i2,...,̃iKβ+1−j0,β+1−j1,...,β+1−jK−1

)
= S(ik+k)k≥0�(jk+k)k≥0

(y) (211)

303



for any 0-degression (j0, j1, j2, ...) satisfying (jk = −k for every k ≥ K) and j0 ≤ β
157. Therefore, (210) simplifies to

RK,]α,β]

(
(exp (y1a1 + y2a2 + y3a3 + ...))

(
vi0 ∧ vi1 ∧ ... ∧ viK−1

))
=

∑
(j0,j1,j2,...) is a 0-degression;

jk=−k for every k≥K;
j0≤β

S(ik+k)k≥0�(jk+k)k≥0
(y) · vj0 ∧ vj1 ∧ vj2 ∧ .... (212)

But Proposition 3.14.41 (applied toK instead of `) yields thatRK,]α,β] : ∧K
(
V]α,β]

)
→

F (α+K) is an A+-module homomorphism. Since α︸︷︷︸
=iK=−K

+K = −K + K = 0, this

rewrites as follows: RK,]α,β] : ∧K
(
V]α,β]

)
→ F (0) is an A+-module homomorphism.

Now, A+ is a graded Lie subalgebra of A, and it is easy to define a grading on the
A+-module ∧K

(
V]α,β]

)
such that ∧K

(
V]α,β]

)
is concentrated in nonpositive degrees.158

Thus, applying Proposition 3.14.31 (b) to C, ∧K
(
V]α,β]

)
, F (0) and RK,]α,β] instead of

R, M , N and η, we obtain

(exp (y1a1 + y2a2 + y3a3 + ...)) ◦RK,]α,β] = RK,]α,β] ◦ (exp (y1a1 + y2a2 + y3a3 + ...))

as maps from ∧K
(
V]α,β]

)
to F (0). Hence,(

(exp (y1a1 + y2a2 + y3a3 + ...)) ◦RK,]α,β]

) (
vi0 ∧ vi1 ∧ ... ∧ viK−1

)
=
(
RK,]α,β] ◦ (exp (y1a1 + y2a2 + y3a3 + ...))

) (
vi0 ∧ vi1 ∧ ... ∧ viK−1

)
= RK,]α,β]

(
(exp (y1a1 + y2a2 + y3a3 + ...))

(
vi0 ∧ vi1 ∧ ... ∧ viK−1

))
=

∑
(j0,j1,j2,...) is a 0-degression;

jk=−k for every k≥K;
j0≤β

S(ik+k)k≥0�(jk+k)k≥0
(y) · vj0 ∧ vj1 ∧ vj2 ∧ ... (by (212)) .

Compared with(
(exp (y1a1 + y2a2 + y3a3 + ...)) ◦RK,]α,β]

) (
vi0 ∧ vi1 ∧ ... ∧ viK−1

)
= (exp (y1a1 + y2a2 + y3a3 + ...))

(
RK,]α,β]

(
vi0 ∧ vi1 ∧ ... ∧ viK−1

))︸ ︷︷ ︸
=vi0∧vi1∧vi2∧...

(by (200))

= (exp (y1a1 + y2a2 + y3a3 + ...)) (vi0 ∧ vi1 ∧ vi2 ∧ ...) ,

157The proof of (211) is completely straightforward and left to the reader. The ingredients of the proof

are the equality A = (Si−j (y))(i,j)∈{1,2,...,β−α}2 (which we used to define A), the definition of ĩv

(namely, ĩv = β+1− iv−1 for every v ∈ {1, 2, ...,K}), and the definition of the skew Schur function
Sλ�µ (x) as a determinant of a (finite!) matrix.

158Indeed, let us define a grading on the vector space V]α,β] by setting the degree of vi to be α+ 1− i
for every i ∈ {α+ 1, α+ 2, ..., β}. Then, the vector space V]α,β] is concentrated in nonpositive

degrees, so that its K-th exterior power ∧K
(
V]α,β]

)
is also concentrated in nonpositive degrees.

On the other hand, V]α,β] is a graded A+-module (this is very easy to check), so that its K-th

exterior power ∧K
(
V]α,β]

)
is also a graded A+-module.
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this becomes

(exp (y1a1 + y2a2 + y3a3 + ...)) (vi0 ∧ vi1 ∧ vi2 ∧ ...)

=
∑

(j0,j1,j2,...) is a 0-degression;
jk=−k for every k≥K;

j0≤β

S(ik+k)k≥0�(jk+k)k≥0
(y) · vj0 ∧ vj1 ∧ vj2 ∧ ...

=
∑

(j0,j1,j2,...) is a 0-degression;
(jk+k)k≥0⊆(ik+k)k≥0

jk=−k for every k≥K;
j0≤β

S(ik+k)k≥0�(jk+k)k≥0
(y) · vj0 ∧ vj1 ∧ vj2 ∧ ... (213)

(here, we deprived the sum of all addends for which (jk + k)k≥0 6⊆ (ik + k)k≥0, because
(188) shows that all such addends are 0).

But for any 0-degression (j0, j1, j2, ...) satisfying (jk + k)k≥0 ⊆ (ik + k)k≥0, we auto-
matically have (jk = −k for every k ≥ K) and j0 ≤ β (this is very easy to see). Hence,
we can replace the summation sign

∑
(j0,j1,j2,...) is a 0-degression;

(jk+k)k≥0⊆(ik+k)k≥0

jk=−k for every k≥K;
j0≤β

on the right hand side of

(213) by a
∑

(j0,j1,j2,...) is a 0-degression;
(jk+k)k≥0⊆(ik+k)k≥0

sign. Thus, (213) simplifies to

(exp (y1a1 + y2a2 + y3a3 + ...)) (vi0 ∧ vi1 ∧ vi2 ∧ ...)

=
∑

(j0,j1,j2,...) is a 0-degression;
(jk+k)k≥0⊆(ik+k)k≥0

S(ik+k)k≥0�(jk+k)k≥0
(y) · vj0 ∧ vj1 ∧ vj2 ∧ ....

This proves Theorem 3.14.37.

3.15. Applications to integrable systems

Let us show how these things can be applied to partial differential equations.

Convention 3.15.1. If v is a function in several variables x1, x2, ..., xk, then, for
every i ∈ {1, 2, ..., k}, the derivative of v by the variable xi will be denoted by ∂xiv

and by vxi . In other words, ∂xiv = vxi =
∂

∂xi
v. (For example, if v is a function in

two variables x and t, then vt will mean the derivative of v by t.)

The PDE (partial differential equation) we will be concerned with is the Korteweg-
de Vries equation (abbreviated as KdV equation): This is the equation ut =
3

2
uux +

1

4
uxxx for a function u (t, x). 159

159There seems to be no consistent definition of the KdV equation across literature. We defined the

KdV equation as ut =
3

2
uux +

1

4
uxxx because this is the form most suited to our approach. Some

other authors, instead, define the KdV equation as vt = vxxx + 6vvx for a function v (t, x). Others
define it as wt+wwx+wxxx = 0 for a function w (t, x). Yet others define it as qt+ qxxx+ 6qqx = 0
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We will discuss several interesting solutions of this equation. Here is the most basic
family of solutions:

u (t) =
2a2

cosh2 (a (x+ a2t))
(for a being arbitrary but fixed) .

These are so-called “traveling wave solutions”. It is a peculiar kind of wave: it has only
one bump; it is therefore called a soliton (or solitary wave). Such waves never occur in
linear systems. Note that when we speak of “wave”, we are imagining a time-dependent
2-dimensional graph with the x-axis showing t, the y-axis showing u (t), and the time
parameter being x. So when we speak of “traveling wave”, we mean that it is a wave
for any fixed time x and “travels” when x moves.

The first to study this kind of waves was J. S. Russell in 1834, describing the motion
of water in a shallow canal (tsunami waves are similar). The first models for these
waves were found by Korteweg-de Vries in 1895.

The term
1

4
uxxx in the Korteweg-de Vries equation ut =

3

2
uux +

1

4
uxxx is called the

dispersion term.

Exercise: Solve the equation ut =
3

2
uux. (Note that the waves solving this equation

develop shocks, in contrast to those solving the Korteweg-de Vries equation.)
The Korteweg-de Vries equation is famous for having lots of explicit solutions (un-

expectedly for a nonlinear partial differential equation). We will construct some of
them using infinite-dimensional Lie algebras. (There are many other ways to construct
solutions. In some sense, every field of mathematics is related to some of its solutions.)

We will also study the Kadomtsev-Petviashvili equation (abbreviated as KP
equation)

uyy =

(
ut −

3

2
uux −

1

4
uxxx

)
x

(or, after some rescaling,
3

4
∂2
yu = ∂x

(
∂tu−

3

2
u∂xu−

1

4
∂3
xu

)
) on a function u (t, x, y).

We will obtain functions which solve this equation (among others).
We are going to use the infinite Grassmannian for this. First, recall what the finite

Grassmannian is:

3.15.1. The finite Grassmannian

for a function q (t, x). These equations are not literally equivalent, but can be transformed into
each other by very simple substitutions. In fact, for a function u (t, x), we have the following
equivalence of assertions:(

the function u (t, x) satisfies the equation ut =
3

2
uux +

1

4
uxxx

)
⇐⇒ (the function v (t, x) := u (4t, x) satisfies the equation vt = vxxx + 6vvx)

⇐⇒ (the function w (t, x) := 6u (−4t, x) satisfies the equation wt + wwx + wxxx = 0)

⇐⇒ (the function q (t, x) := u (−4t, x) satisfies the equation qt + qxxx + 6qqx = 0) .

306



Definition 3.15.2. Let k and n be integers satisfying 0 ≤ k ≤ n. Let V be the
C-vector space Cn. Let (v1, v2, ..., vn) be the standard basis of Cn. Recall that ∧kV
is a representation of GL (V ) with a highest-weight vector v1 ∧ v2 ∧ ... ∧ vk. Denote
by Ω the orbit of v1 ∧ v2 ∧ ... ∧ vk under GL (V ).

Proposition 3.15.3. Let k and n be integers satisfying 0 ≤ k ≤ n. We have
Ω =

{
x ∈ ∧kV nonzero | x = x1 ∧ x2 ∧ ... ∧ xk for some xi ∈ V

}
. Also, x1 ∧ x2 ∧

... ∧ xk 6= 0 if and only if x1, x2, ..., xk are linearly independent.

Proof. Very easy.

Definition 3.15.4. Let V be a C-vector space. Let k be a nonnegative integer. The
k-Grassmannian of V is defined to be the set of all k-dimensional vector subspaces
of V . This set is denoted by Gr (k, V ).

When V is a finite-dimensional C-vector space, there is a way to define the structure
of a projective variety on the Grassmannian Gr (k, V ). While we won’t ever need the
existence of this structure, we will need the so-called Plücker embedding which is the
main ingredient in defining this structure:160

Definition 3.15.5. Let k and n be integers satisfying 0 ≤ k ≤ n. Let V be the
C-vector space Cn. The Plücker embedding (corresponding to n and k) is defined as
the map

Pl : Gr (k, V )→ P
(
∧kV

)
,(

k-dimensional subspace of V
with basis x1, x2, ..., xk

)
7→

 projection of
x1 ∧ x2 ∧ ... ∧ xk ∈ ∧kV� {0}

on P
(
∧kV

)
 .

It is easy to see that this is well-defined (i. e., that the projection of x1∧x2∧...∧xk ∈
∧kV� {0} on P

(
∧kV

)
does not depend on the choice of basis x1, x2, ..., xk). The

image of this map is Im Pl = Ω� (scalars).

Proposition 3.15.6. This map Pl is injective.

Proof of Proposition 3.15.6. Proving Proposition 3.15.6 boils down to showing that
if λ is a complex number and v1, v2, ..., vk, w1, w2, ..., wk are any vectors in a vector
space U satisfying v1∧ v2∧ ...∧ vk = λ ·w1∧w2∧ ...∧wk 6= 0, then the vector subspace
of U spanned by the vectors v1, v2, ..., vk is identical with the vector subspace of U
spanned by the vectors w1, w2, ..., wk. This is a well-known fact. The details are left
to the reader.

Thus, Gr (k, V ) ∼= Ω� (scalars). (For algebraic geometers: Ω is the total space of
the determinant bundle on Gr (k, V ) (but only the nonzero elements).)

160In the following definition (and further below), we use the notation P (W ) for the projective space
of a C-vector space W . This projective space is defined to be the quotient set (W \ {0}) / ∼, where
∼ is the proportionality relation (i.e., two vectors w1 and w2 in W \ {0} satisfy w1 ∼ w2 if and
only if they are linearly dependent).

307



We are now going to describe the image Im Pl by algebraic equations. These equa-
tions go under the name Plücker relations.

First, we define (in analogy to Definition 3.10.5) “wedging” and “contraction” oper-
ators on the exterior algebra of V :

Definition 3.15.7. Let n ∈ N. Let k ∈ Z. Let V be the vector space Cn. Let
(v1, v2, ..., vn) be the standard basis of V . Let i ∈ {1, 2, ..., n}.

(a) We define the so-called i-th wedging operator v̂i : ∧kV → ∧k+1V by

v̂i · ψ = vi ∧ ψ for all ψ ∈ ∧kV.

(b) We define the so-called i-th contraction operator
∨
vi : ∧kV → ∧k−1V as follows:

For every k-tuple (i1, i2, ..., ik) of integers satisfying 1 ≤ i1 < i2 < ... < ik ≤ n, we

let
∨
vi (vi1 ∧ vi2 ∧ ... ∧ vik) be{
0, if i /∈ {i1, i2, ..., ik} ;

(−1)j−1 vi1 ∧ vi2 ∧ ... ∧ vij−1
∧ vij+1

∧ vij+2
∧ ... ∧ vik , if i ∈ {i1, i2, ..., ik}

,

where, in the case i ∈ {i1, i2, ..., ik}, we denote by j the integer ` satisfying i` = i.

Thus, the map
∨
vi is defined on a basis of the vector space ∧kV ; we extend this to a

map ∧kV → ∧k−1V by linearity.
Note that, for every negative ` ∈ Z, we understand ∧`V to mean the zero space.

Now we can formulate the Plücker relations as follows:

Theorem 3.15.8. Let n ∈ N. Let k ∈ Z. We consider the vector space V = Cn with

its standard basis (v1, v2, ..., vn). Let S =
n∑
i=1

v̂i⊗
∨
vi : ∧kV ⊗∧kV → ∧k+1V ⊗∧k−1V .

(a) This map S does not depend on the choice of the basis and is GL (V )-
invariant161. In other words, for any basis (w1, w2, ..., wn) of V , we have S =
n∑
i=1

ŵi⊗
∨
wi (where the maps ŵi and

∨
wi are defined just as v̂i and

∨
vi, but with respect

to the basis (w1, w2, ..., wn)).
(b) Let k ∈ {1, 2, ..., n}. A nonzero element τ ∈ ∧kV belongs to Ω if and only if

S (τ ⊗ τ) = 0.
(c) The map S is M (V )-invariant. (Here, M (V ) denotes the multiplicative monoid

of all endomorphisms of V .)

Part (b) of this theorem is what is actually called the Plücker relations, although
it is not how these relations are usually formulated in literature. For a more classical
formulation, see Theorem 3.15.9. Of course, Theorem 3.15.8 (b) not only shows when
an element of ∧kV belongs to Ω, but also shows when an element of P

(
∧kV

)
lies in

Im Pl (because an element of P
(
∧kV

)
is an equivalence class of elements of ∧kV� {0},

and lies in Im Pl if and only if its representatives lie in Ω).
Proof of Theorem 3.15.8. Before we start proving the theorem, let us introduce some

notations.
161The word “GL (V )-invariant” here means “invariant under the action of GL (V ) on the space of

all linear operators ∧kV ⊗ ∧kV → ∧k+1V ⊗ ∧k−1V ”. So, for an operator from ∧kV ⊗ ∧kV to
∧k+1V ⊗ ∧k−1V to be GL (V )-invariant means the same as for it to be GL (V )-equivariant.
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First of all, for every basis (e1, e2, ..., en) of V , let (e∗1, e
∗
2, ..., e

∗
n) denote its dual basis

(this is a basis of V ∗).
Next, for any element v ∈ V we define the so called v-wedging operator v̂ : ∧kV →
∧k+1V by

v̂ · ψ = v ∧ ψ for all ψ ∈ ∧kV.

Of course, this definition does not conflict with Definition 3.15.7 (a). (In fact, for every
i ∈ {1, 2, ..., n}, the vi-wedging operator that we just defined is exactly identical with
the i-th wedging operator defined in Definition 3.15.7 (a), and hence there is no harm
from denoting both of them by v̂i.)

Further, for any f ∈ V ∗, we define the so called f -contraction operator
∨
f : ∧kV →

∧k−1V by

∨
f · (u1 ∧ u2 ∧ ... ∧ uk) =

k∑
i=1

(−1)i−1 f (ui) · u1 ∧ u2 ∧ ... ∧ ui−1 ∧ ui+1 ∧ ui+2 ∧ ... ∧ uk

for all u1, u2, ..., uk ∈ V.

162 These contraction operators are connected to the contraction operators defined in

Definition 3.15.7 (b): Namely,
∨
vi =

∨
v∗i for every i ∈ {1, 2, ..., n}. More generally,

∨
ei =

∨
e∗i for every basis (e1, e2, ..., en) of V (where the maps êi and

∨
ei are defined just as

v̂i and
∨
vi, but with respect to the basis (e1, e2, ..., en)).

The f -contraction operators, however, have a major advantage against the contrac-
tion operators defined in Definition 3.15.7 (b): In fact, the former are canonical (i. e.,
they can be defined in the same way for every vector space instead of V , and then they
are canonical maps that don’t depend on any choice of basis), while the latter have the
basis (v1, v2, ..., vn) “hard-coded” into them.

Note that many sources denote the f -contraction operator by if and call it the
interior product operator with f .

It is easy to see that

∨
fv̂ + v̂

∨
f = f (v) · id for all f ∈ V ∗ and v ∈ V (214)

(where, in the case k = 0, we interpret v̂
∨
f as 0).

(a) We will give a basis-free definition of S. This will prove the basis independence.
There is a unique vector space isomorphism Φ : V ∗ ⊗ V → EndV which satisfies

Φ (f ⊗ v) = (the map V → V sending each w to f (w) v) for all f ∈ V ∗ and v ∈ V.

This Φ and its inverse isomorphism Φ−1 are actually basis-independent.
Now, define a map

T : V ∗ ⊗ V ⊗ ∧kV ⊗ ∧kV → ∧k+1V ⊗ ∧k−1V

162In order to prove that this is well-defined, we need to check that the term
k∑
i=1

(−1)
i−1

f (ui) · u1 ∧

u2 ∧ ...∧ ui−1 ∧ ui+1 ∧ ui+2 ∧ ...∧ uk depends multilinearly and antisymmetrically on u1, u2, ..., uk.
This is easy and left to the reader.

309



by

T (f ⊗ v ⊗ ψ ⊗ φ) = (v̂ · ψ)⊗
(
∨
f · φ

)
for all f ∈ V ∗, v ∈ V , ψ ∈ ∧kV and φ ∈ ∧kV.

This map T is clearly well-defined (because v̂ · ψ depends bilinearly on v and ψ, and

because
∨
f · φ depends bilinearly on f and φ).

It is now easy to show that S is the map ∧kV ⊗ ∧kV → ∧k+1V ⊗ ∧k−1V which
sends ψ ⊗ φ to T (Φ−1 (idV )⊗ ψ ⊗ φ) for all ψ ∈ ∧kV and φ ∈ ∧kV . 163 This shows
immediately that S is basis-independent (since T and Φ−1 are basis-independent).

Since S is basis-independent, it is clear that S is GL (V )-invariant (because the action
of GL (V ) transforms S into the same operator S but constructed for a different basis;
but since S is basis-independent, this other S must be the S that we started with).
This proves Theorem 3.15.8 (a).

(b) Let τ ∈ Ω be nonzero.
1) First let us show that if τ ∈ Ω, then S (τ ⊗ τ) = 0.
In order to show this, it is enough to prove that S (τ ⊗ τ) = 0 holds in the case τ =

v1∧v2∧...∧vk (since S is GL (V )-invariant, and Ω is the GL (V )-orbit of v1∧v2∧...∧vk).
But this is obvious, because for every i ∈ {1, 2, ..., n}, either v̂i or

∨
vi annihilates

v1 ∧ v2 ∧ ... ∧ vk.
2) Let us now (conversely) prove that if S (τ ⊗ τ) = 0, then τ ∈ Ω.

163Proof. Consider the map ∧kV ⊗∧kV → ∧k+1V ⊗∧k−1V which sends ψ⊗φ to T
(
Φ−1 (idV )⊗ ψ ⊗ φ

)
for all ψ ∈ ∧kV and φ ∈ ∧kV . This map is clearly well-defined. Now, since Φ−1 (idV ) =

n∑
i=1

v∗i ⊗vi
(because every w ∈ V satisfies(

Φ

(
n∑
i=1

v∗i ⊗ vi

))
(w) =

n∑
i=1

(Φ (v∗i ⊗ vi)) (w)︸ ︷︷ ︸
=v∗i (w)vi

(by the definition of Φ)

=

n∑
i=1

v∗i (w) vi = w

(since (v∗1 , v
∗
2 , ..., v

∗
n) is the dual basis of (v1, v2, ..., vn))

= idV (w) ,

so that Φ

(
n∑
i=1

v∗i ⊗ vi
)

= idV ), this map sends ψ ⊗ φ to

T

Φ−1 (idV )︸ ︷︷ ︸
=

n∑
i=1

v∗i⊗vi

⊗ψ ⊗ φ

 = T

(
n∑
i=1

v∗i ⊗ vi ⊗ ψ ⊗ φ

)
=

n∑
i=1

T (v∗i ⊗ vi ⊗ ψ ⊗ φ)︸ ︷︷ ︸
=(v̂i·ψ)⊗

( ∨
v∗i ·φ

)
(by the definition of T )

=

n∑
i=1

(v̂i · ψ)⊗

 ∨
v∗i︸︷︷︸
=
∨
vi

·φ

 =

n∑
i=1

(v̂i · ψ)⊗
(
∨
vi · φ

)

for all ψ ∈ ∧kV and φ ∈ ∧kV . In other words, this map is the map
n∑
i=1

v̂i ⊗
∨
vi = S. So we have

shown that S is the map ∧kV ⊗∧kV → ∧k+1V ⊗∧k−1V which sends ψ⊗φ to T
(
Φ−1 (idV )⊗ ψ ⊗ φ

)
for all ψ ∈ ∧kV and φ ∈ ∧kV , qed.
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(There is a combinatorial proof of this in the infinite setting in the Kac-Raina book,
but we will make a different proof here.)

Define E ⊆ V to be the set {v ∈ V | v̂τ = 0}. Define E ′ ⊆ V ∗ to be the set{
f ∈ V ∗ |

∨
fτ = 0

}
. Clearly, E is a subspace of V , and E ′ is a subspace of V ∗.

We know that all v ∈ E and f ∈ E ′ satisfy

(
∨
fv̂ + v̂

∨
f

)
τ = 0 (since the definition of

E yields v̂τ = 0, and the definition of E ′ yields
∨
fτ = 0). But

(
∨
fv̂ + v̂

∨
f

)
︸ ︷︷ ︸

=f(v) id
(by (214))

τ = f (v) τ ,

so this yields f (v) τ = 0, and thus f (v) = 0 (since τ 6= 0). Thus, E ⊆ E ′⊥.
Let m = dimE and r = dim

(
E ′⊥
)
. Pick a basis (e1, e2, ..., en) of V such that

(e1, e2, ..., em) is a basis of E and such that (e1, e2, ..., er) is a basis of E ′⊥. (Such a
basis clearly exists.)

Clearly, for every i ∈ {1, 2, ...,m}, we have ei ∈ E and thus êiτ = 0 (by the definition
of E).

Also, for every i ∈ {r + 1, r + 2, ..., n}, we have
∨
e∗i τ = 0 (because i > r, so that

e∗i (ej) = 0 for all j ∈ {1, 2, ..., r}, so that e∗i (E ′) = 0 (since (e1, e2, ..., er) is a basis of

E ′⊥), so that e∗i ∈
(
E ′⊥
)⊥

= E ′).
The vectors êiτ for i ∈ {m+ 1,m+ 2, ..., n} are linearly independent (because if some

linear combination of them was zero, then some linear combination of the ei with i ∈
{m+ 1,m+ 2, ..., n} would lie in {v ∈ V | v̂τ = 0} = E, but this contradicts the fact
that (e1, e2, ..., em) is a basis of E). Hence, the vectors êiτ for i ∈ {m+ 1,m+ 2, ..., r}
are linearly independent.

We defined S using the basis (v1, v2, ..., vn) of V by the formula S =
n∑
i=1

v̂i ⊗
∨
vi.

Since S did not depend on the basis, we get the same S if we define it using the basis

(e1, e2, ..., en). Thus, we have S =
n∑
i=1

êi ⊗
∨
ei. Hence,

S (τ ⊗ τ) =
m∑
i=1

êiτ︸︷︷︸
=0

(since i∈{1,2,...,m})

⊗
∨
e∗i τ +

r∑
i=m+1

êiτ ⊗
∨
e∗i τ +

n∑
i=r+1

êiτ ⊗
∨
e∗i τ︸︷︷︸
=0

(since i∈{r+1,r+2,...,n})

=
r∑

i=m+1

êiτ ⊗
∨
e∗i τ.

Thus, S (τ ⊗ τ) = 0 rewrites as
r∑

i=m+1

êiτ ⊗
∨
e∗i τ = 0. But since the vectors êiτ for

i ∈ {m+ 1,m+ 2, ..., r} are linearly independent, this yields that
∨
e∗i τ = 0 for any

i ∈ {m+ 1,m+ 2, ..., r}. Thus, for every i ∈ {m+ 1,m+ 2, ..., r}, we have e∗i ∈{
f ∈ V ∗ |

∨
fτ = 0

}
= E ′, so that e∗i

(
E ′⊥
)

= 0. But on the other hand, for every

i ∈ {m+ 1,m+ 2, ..., r}, we have ei ∈ E ′⊥ (since (e1, e2, ..., er) is a basis of E ′⊥, and
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since i ≤ r). Thus, for every i ∈ {m+ 1,m+ 2, ..., r}, we have 1 = e∗i

 ei︸︷︷︸
∈E′⊥

 ∈
e∗i
(
E ′⊥
)

= 0. This is a contradiction unless there are no i ∈ {m+ 1,m+ 2, ..., r} at
all.

So we conclude that there are no i ∈ {m+ 1,m+ 2, ..., r} at all. In other words,
m = r. Thus, dimE = m = r = dim

(
E ′⊥
)
. Combined with E ⊆ E ′⊥, this yields

E = E ′⊥.
Now, recall that (ei1 ∧ ei2 ∧ ... ∧ eik)1≤i1<i2<...<ik≤n is a basis of ∧kV . Hence, we can

write τ in the form τ =
∑

1≤i1<i2<...<ik≤n
λi1,i2,...,ikei1 ∧ ei2 ∧ ... ∧ eik for some scalars

λi1,i2,...,ik ∈ C.
Now, we will prove:
Observation 1: For every k-tuple (j1, j2, ..., jk) of integers satisfying 1 ≤ j1 < j2 <

... < jk ≤ n and {1, 2, ...,m} 6⊆ {j1, j2, ..., jk}, we have λj1,j2,...,jk = 0.
Proof of Observation 1: Let (j1, j2, ..., jk) be a k-tuple of integers satisfying 1 ≤

j1 < j2 < ... < jk ≤ n and {1, 2, ...,m} 6⊆ {j1, j2, ..., jk}. Then, there exists an
i ∈ {1, 2, ...,m} such that i /∈ {j1, j2, ..., jk}. Consider this i. As we saw above, this
yields êiτ = 0. Thus,

0 = êiτ = ei ∧ τ =
∑

1≤i1<i2<...<ik≤n

λi1,i2,...,ikei ∧ ei1 ∧ ei2 ∧ ... ∧ eik(
since τ =

∑
1≤i1<i2<...<ik≤n

λi1,i2,...,ikei1 ∧ ei2 ∧ ... ∧ eik

)
=

∑
1≤i1<i2<...<ik≤n;
i/∈{i1,i2,...,ik}

λi1,i2,...,ikei ∧ ei1 ∧ ei2 ∧ ... ∧ eik

(since all terms of the sum with i ∈ {i1, i2, ..., ik} are 0) .

Thus, for every k-tuple (i1, i2, ..., ik) of integers satisfying 1 ≤ i1 < i2 < ... < ik ≤
n and i /∈ {i1, i2, ..., ik}, we must have λi1,i2,...,ik = 0 (because the wedge products
ei∧ ei1 ∧ ei2 ∧ ...∧ eik for all such k-tuples are linearly independent elements of ∧k+1V ).
Applied to (i1, i2, ..., ik) = (j1, j2, ..., jk), this yields that λj1,j2,...,jk = 0. Observation 1
is proven.

Observation 2: For every k-tuple (j1, j2, ..., jk) of integers satisfying 1 ≤ j1 < j2 <
... < jk ≤ n and {j1, j2, ..., jk} 6⊆ {1, 2, ...,m}, we have λj1,j2,...,jk = 0.

Proof of Observation 2: Let (j1, j2, ..., jk) be a k-tuple of integers satisfying 1 ≤
j1 < j2 < ... < jk ≤ n and {j1, j2, ..., jk} 6⊆ {1, 2, ...,m}. Then, there exists an
i ∈ {j1, j2, ..., jk} such that i /∈ {1, 2, ...,m}. Consider this i. Then, i /∈ {1, 2, ...,m}, so

that i > m = r, so that i ∈ {r + 1, r + 2, ..., n}. As we saw above, this yields
∨
e∗i τ = 0.
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Thus,

0 =
∨
e∗i︸︷︷︸
=
∨
ei

τ =
∨
eiτ =

∑
1≤i1<i2<...<ik≤n

λi1,i2,...,ik
∨
ei · (ei1 ∧ ei2 ∧ ... ∧ eik)

(
since τ =

∑
1≤i1<i2<...<ik≤n

λi1,i2,...,ikei1 ∧ ei2 ∧ ... ∧ eik

)
=

∑
1≤i1<i2<...<ik≤n;
i∈{i1,i2,...,ik}

λi1,i2,...,ik
∨
ei · (ei1 ∧ ei2 ∧ ... ∧ eik)

(since all terms of the sum with i /∈ {i1, i2, ..., ik} are 0) .

Thus, for every k-tuple (i1, i2, ..., ik) of integers satisfying 1 ≤ i1 < i2 < ... < ik ≤ n
and i ∈ {i1, i2, ..., ik}, we must have λi1,i2,...,ik = 0 (because the wedge products
∨
ei · (ei1 ∧ ei2 ∧ ... ∧ eik) for all such k-tuples are linearly independent elements of ∧k−1V
164). Applied to (i1, i2, ..., ik) = (j1, j2, ..., jk), this yields that λj1,j2,...,jk = 0. Observa-
tion 2 is proven.

Now, every k-tuple (j1, j2, ..., jk) of integers satisfying 1 ≤ j1 < j2 < ... < jk ≤ n
must satisfy either {1, 2, ...,m} 6⊆ {j1, j2, ..., jk}, or {j1, j2, ..., jk} 6⊆ {1, 2, ...,m}, or
(1, 2, ...,m) = (j1, j2, ..., jk). In the first of these three cases, we have λj1,j2,...,jk =
0 by Observation 1; in the second case, we have λj1,j2,...,jk = 0 by Observation 2.
Hence, the only case where λj1,j2,...,jk can be nonzero is the third case, i. e., the
case when (1, 2, ...,m) = (j1, j2, ..., jk). Hence, the only nonzero addend that the sum∑
1≤i1<i2<...<ik≤n

λi1,i2,...,ikei1 ∧ ei2 ∧ ... ∧ eik can have is the addend for (i1, i2, ..., ik) =

(1, 2, ...,m). Thus, all other addends of this sum can be removed, and therefore τ =∑
1≤i1<i2<...<ik≤n

λi1,i2,...,ikei1 ∧ ei2 ∧ ...∧ eik rewrites as τ = λ1,2,...,me1 ∧ e2 ∧ ...∧ em. Since

τ 6= 0, we thus have λ1,2,...,m 6= 0. Hence, m = k (because λ1,2,...,me1 ∧ e2 ∧ ... ∧ em =
τ ∈ ∧kV ). Hence,

τ = λ1,2,...,me1 ∧ e2 ∧ ...∧ em = λ1,2,...,me1 ∧ e2 ∧ ...∧ ek = (λ1,2,...,me1)∧ e2 ∧ e3 ∧ ...∧ ek.

Now, since λ1,2,...,m 6= 0, the n-tuple (λ1,2,...,me1, e2, e3, ..., en) is a basis of V . Thus,
there exists an element of GL (V ) which sends (v1, v2, ..., vn) to (λ1,2,...,me1, e2, e3, ..., en).
This element therefore sends v1 ∧ v2 ∧ ... ∧ vk to (λ1,2,...,me1) ∧ e2 ∧ e3 ∧ ... ∧ ek = τ .
Hence, τ lies in the GL (V )-orbit of v1 ∧ v2 ∧ ...∧ vk. Since this orbit was called Ω, this
becomes τ ∈ Ω.

We thus have shown that if S (τ ⊗ τ) = 0, then τ ∈ Ω. This completes the proof of
Theorem 3.15.8 (b).

(c) We know from Theorem 3.15.8 (a) that S is GL (V )-invariant. Since GL (V )
is Zariski-dense in M (V ), this yields that S is M (V )-invariant (because the M (V )-
invariance of S can be written as a collection of polynomial identities). This proves
Theorem 3.15.8 (c).

We can rewrite Theorem 3.15.8 (b) in coordinates:

164To check this, it is enough to recall how
∨
ei · (ei1 ∧ ei2 ∧ ... ∧ eik) was defined: It was defined to be

(−1)
j−1

ei1 ∧ ei2 ∧ ... ∧ eij−1 ∧ eij+1 ∧ eij+2 ∧ ... ∧ eik , where j is the integer ` satisfying i` = i.
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Theorem 3.15.9. Let n ∈ N. Let k ∈ {1, 2, ..., n}. We consider the vector space
V = Cn with its standard basis (v1, v2, ..., vn).

Let τ ∈ ∧kV be nonzero.
For every subset K of {1, 2, ..., n}, let vK denote the element of ∧|K|V defined by

vK = vk1 ∧ vk2 ∧ ... ∧ vk` where k1, k2, ..., k` are the elements of K in increasing
order. We know that (vK)K⊆{1,2,...,n}, |K|=k is a basis of the vector space ∧kV . For
every subset K of {1, 2, ..., n} satisfying |K| = k, let PK be the K-coordinate of τ
with respect to this basis.

Then, τ ∈ Ω if and only if for all I ⊆ {1, 2, ..., n} with |I| = k − 1 and all J ⊆ {1, 2, ..., n}
with |J | = k + 1, we have

∑
j∈J ; j /∈I

(−1)µ(j) (−1)ν(j)−1 PI∪{j}PJ�{j} = 0

 ,

(215)
where ν (j) is the integer ` for which j is the `-th smallest element of the set J , and
where µ (j) is the number of elements of the set I which are smaller than j.

Proof of Theorem 3.15.9 (sketched). We know that (vK)K⊆{1,2,...,n}, |K|=k+1 is a basis

of ∧k+1V , and (vK)K⊆{1,2,...,n}, |K|=k−1 is a basis of ∧k−1V . Hence, (vK ⊗ vL)K⊆{1,2,...,n}, |K|=k+1,
L⊆{1,2,...,n}, |L|=k−1

is a basis of ∧k+1V ⊗∧k−1V . It is not hard to check that the vJ ⊗ vI-coordinate (with

respect to this basis) of S (τ ⊗ τ) is precisely
∑

j∈J ; j /∈I
(−1)µ(j) (−1)ν(j)−1 PI∪{j}PJ�{j} for

all I ⊆ {1, 2, ..., n} with |I| = k − 1 and all J ⊆ {1, 2, ..., n} with |J | = k + 1. Hence,
(215) holds if and only if every coordinate of S (τ ⊗ τ) is zero, i. e., if S (τ ⊗ τ) = 0,
but the latter condition is equivalent to τ ∈ Ω (because of Theorem 3.15.8 (b)). This
proves Theorem 3.15.9.

Note that the =⇒ direction of Theorem 3.15.9 can be formulated as a determinantal
identity:

Corollary 3.15.10. Let n ∈ N. Let k ∈ {1, 2, ..., n}. Let


x11 x12 ... x1k

x21 x22 ... x2k
...

...
. . .

...
xn1 xn2 ... xnk


be any matrix with n rows and k columns.

For every I ⊆ {1, 2, ..., n} with |I| = k, let PI be the minor of this matrix obtained
by only keeping the rows whose indices lie in I (and throwing all other rows away).

Then, for all I ⊆ {1, 2, ..., n} with |I| = k − 1 and all J ⊆ {1, 2, ..., n} with

|J | = k + 1, we have
∑

j∈J ; j /∈I
(−1)µ(j) (−1)ν(j)−1 PI∪{j}PJ�{j} = 0 (where µ (j) and

ν (j) are defined as in Theorem 3.15.9).

Example: If n = 4 and k = 2, then the claim of Corollary 3.15.10 is easily simplified
to the single equation P12P34 +P14P23−P13P24 = 0 (where we abbreviate two-element
sets {i, j} by ij).

Proof of Corollary 3.15.10 (sketched). WLOG assume k ≤ n (else, everything is
vacuously true).
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For every i ∈ {1, 2, ..., k}, let xi ∈ V be the vector


x1i

x2i
...
xni

, where V is as in

Theorem 3.15.9. Since Corollary 3.15.10 is a collection of polynomial identities, we can
WLOG assume that the vectors x1, x2, ..., xk are linearly independent (since the set
of linearly independent k-tuples (x1, x2, ..., xk) of vectors in V is Zariski-dense in V k).
Then, there exists an element of GL (V ) which maps v1, v2, ..., vk to x1, x2, ..., xk.
Thus, x1 ∧ x2 ∧ ... ∧ xk ∈ Ω (since Ω is the orbit of v1 ∧ v2 ∧ ... ∧ vk under GL (V )).
Now, apply Theorem 3.15.9 to τ = x1 ∧ x2 ∧ ... ∧ xk, and Corollary 3.15.10 follows.

Of course, this was not the easiest way to prove Corollary 3.15.10. We could just as
well have derived Corollary 3.15.10 from the Cauchy-Binet identity, and thus given a
new proof for the =⇒ direction of Theorem 3.15.9; but the ⇐= direction is not that
easy.

3.15.2. The semiinfinite Grassmannian: preliminary work

Now we prepare for the semiinfinite Grassmannian:
Let ψ0 denote the elementary semiinfinite wedge v0∧v−1∧v−2∧ ... ∈ F (0). We recall

the action % : M (∞) → End
(
F (m)

)
of the monoid M (∞) on F (m) for every m ∈ Z.

This action was defined in Definition 3.14.6.

Definition 3.15.11. From now on, Ω denotes the subset GL (∞) ·ψ0 of F (0). (Here
and in the following, we abbreviate (% (A)) v by Av for every A ∈ M (∞) and v ∈
F (m) and every m ∈ Z. In particular, GL (∞)ψ0 means (% (GL (∞)))ψ0.)

Proposition 3.15.12. For all 0-degressions (i0, i1, i2, ...), we have vi0∧vi1∧vi2∧ ... ∈
Ω.

Proof of Proposition 3.15.12. Let (i0, i1, i2, ...) be a 0-degression. Then, there exists
a permutation σ : Z → Z which fixes all but finitely many integers (i. e., is a finitary
permutation of Z), and satisfies ik = σ (−k) for every k ∈ N. Since σ fixes all but
finitely many integers, we can represent σ by a matrix in GL (∞). Let us (by abuse
of notation) denote this matrix by σ again. Then, every k ∈ N satisfies vik = vσ(−k) =
σv−k. Thus,

vi0∧vi1∧vi2∧... = σv0∧σv−1∧σv−2∧... = σ (v0 ∧ v−1 ∧ v−2 ∧ ...)︸ ︷︷ ︸
=ψ0

= σψ0 ∈ GL (∞)ψ0 = Ω.

This proves Proposition 3.15.12.
Next, an “infinite” analogue of Theorem 3.15.8:

Theorem 3.15.13. For every m ∈ Z, define a map S : F (m) ⊗ F (m) → F (m+1) ⊗
F (m−1) by S =

∑
i∈Z

v̂i ⊗
∨
vi. (Note that the map S is well-defined because, for every

T ∈ F (m) ⊗ F (m), only finitely many terms of the infinite sum
∑
i∈Z

(
v̂i ⊗

∨
vi

)
(T ) are

nonzero.)
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(a) For every m ∈ Z, this map S is GL (∞)-invariant.
(b) Let τ ∈ F (0) be nonzero. Then, τ ∈ Ω if and only if S (τ ⊗ τ) = 0.
(c) For every m ∈ Z, the map S is M (∞)-invariant.

We are going to prove this theorem by reducing it to its “finite-dimensional version”
(i. e., Theorem 3.15.8). This reduction requires us to link the set Ω with its finite-
dimensional analoga. To do this, we set up some definitions:

3.15.3. Proof of Theorem 3.15.13

While the following definitions and results are, superficially seen, auxiliary to the proof
of Theorem 3.15.13, their use is not confined to this proof. They can be used to derive
various results about semiinfinite wedges (elements of F (m) for integer m) from similar
statements about finite wedges (elements of ∧kW for integer k and finite-dimensional
W ). Our proof of Theorem 3.15.13 below will be just one example of such a derivation.

Note that most of the proofs in this subsection are straightforward and boring and
are easier to do by the reader than to understand from these notes.

Definition 3.15.14. Let V be the vector space C(Z) ={
(xi)i∈Z | xi ∈ C; only finitely many xi are nonzero

}
as defined in Definition

3.5.2. Let (vj)j∈Z be the basis of V introduced in Definition 3.5.2.
For every N ∈ N, let VN denote the (2N + 1)-dimensional vector subspace
〈v−N , v−N+1, ..., vN〉 of V . It is clear that V0 ⊆ V1 ⊆ V2 ⊆ ... and V =

⋃
N∈N

VN .

It should be noticed that this vector subspace VN is what has been called V]−N−1,N ]

in Definition 3.14.39.

Definition 3.15.15. Let N ∈ N. Let M (VN) denote the set of all
(2N + 1) × (2N + 1)-matrices over C whose rows are indexed by elements
of {−N,−N + 1, ..., N} and whose columns are also indexed by elements of
{−N,−N + 1, ..., N}. Define a map iN : M (VN) → M (∞) as follows: For ev-
ery matrix A ∈ M (VN), let iN (A) be the infinite matrix (with rows and columns
indexed by integers) such that

(the (i, j) -th entry of iN (A))

=

{
(the (i, j) -th entry of A) , if (i, j) ∈ {−N,−N + 1, ..., N}2 ;

δi,j, if (i, j) ∈ Z2� {−N,−N + 1, ..., N}2

for every (i, j) ∈ Z2

 .

It is easy to see that this map iN is well-defined (i. e., for every A ∈ M (VN), the
matrix iN (A) that we just defined really lies in M (∞)), injective and a monoid
homomorphism.

The vector space VN has a basis (v−N , v−N+1, ..., vN) which is indexed by the
set {−N,−N + 1, ..., N}. Thus, we can identify matrices in M (VN) with endomor-
phisms of the vector space VN in the obvious way. Hence, the invertible elements of
M (VN) are identified with the invertible endomorphisms of the vector space VN , i.
e., with the elements of GL (VN). The injective map iN : M (VN)→ M (∞) restricts
to an injective map iN |GL(VN ): GL (VN)→ GL (∞).
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Remark 3.15.16. Here is a more lucid way to describe the map iN we just defined:
Let I−∞ be the infinite identity matrix whose rows are indexed by all negative

integers, and whose columns are indexed by all negative integers.
Let I∞ be the infinite identity matrix whose rows are indexed by all positive

integers, and whose columns are indexed by all positive integers.
For any matrix A ∈ M (VN), we define iN (A) to be the block-diagonal ma-

trix

 I−∞ 0 0
0 A 0
0 0 I∞

 whose diagonal blocks are I−∞, A and I∞, where the

first block covers the rows with indices smaller than −N (and therefore also the
columns with indices smaller than −N), the second block covers the rows with
indices in {−N,−N + 1, ..., N} (and therefore also the columns with indices in
{−N,−N + 1, ..., N}), and the third block covers the rows with indices larger
than N (and therefore also the columns with indices larger than N). From this
definition, it becomes clear why iN is a monoid homomorphism. (In fact, it is

clear that the block-diagonal matrix

 I−∞ 0 0
0 I2N+1 0
0 0 I∞

 is the identity matrix,

and using the rules for computing with block matrices it is also easy to see that I−∞ 0 0
0 A 0
0 0 I∞

 I−∞ 0 0
0 B 0
0 0 I∞

 =

 I−∞ 0 0
0 AB 0
0 0 I∞

 for all A ∈ M (VN)

and B ∈ M (VN).)

Remark 3.15.17. (a) Every N ∈ N satisfies

iN (M (VN)) =

{
A ∈ M (∞) |

(
(the (i, j) -th entry of A) = δi,j for every

(i, j) ∈ Z2� {−N,−N + 1, ..., N}2

)}
.

(b) We have i0 (M (V0)) ⊆ i1 (M (V1)) ⊆ i2 (M (V2)) ⊆ ....
(c) We have M (∞) =

⋃
N∈N

iN (M (VN)).

Proof of Remark 3.15.17. (a) Let N ∈ N. Then,{
A ∈ M (∞) |

(
(the (i, j) -th entry of A) = δi,j for every

(i, j) ∈ Z2� {−N,−N + 1, ..., N}2

)}
⊆ iN (M (VN))
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165 and

iN (M (VN)) ⊆
{
A ∈ M (∞) |

(
(the (i, j) -th entry of A) = δi,j for every

(i, j) ∈ Z2� {−N,−N + 1, ..., N}2

)}
(by the definition of iN). Combining these two relations, we obtain

iN (M (VN)) =

{
A ∈ M (∞) |

(
(the (i, j) -th entry of A) = δi,j for every

(i, j) ∈ Z2� {−N,−N + 1, ..., N}2

)}
.

This proves Remark 3.15.17 (a).
(b) By Remark 3.15.17 (a), for any N ∈ N, the set iN (M (VN)) is the set of all

matrices A ∈ M (∞) satisfying the condition(
(the (i, j) -th entry of A) = δi,j for every (i, j) ∈ Z2� {−N,−N + 1, ..., N}2) .

If this condition is satisfied for some N , then it is (all the more) satisfied for N + 1 in-
stead of N . Hence, iN (M (VN)) ⊆ iN+1 (M (VN+1)) for any N ∈ N. Thus, i0 (M (V0)) ⊆
i1 (M (V1)) ⊆ i2 (M (V2)) ⊆ .... This proves Remark 3.15.17 (b).

(c) Let B ∈ M (∞) be arbitrary. We will now construct an N ∈ N such that
B ∈ iN (M (VN)).

Since B ∈ M (∞) = id +gl∞, there exists a b ∈ gl∞ such that B = id +b. Consider
this b.

For any (i, j) ∈ Z2, let bi,j denote the (i, j)-th entry of the matrix b.

165Proof. To prove this, it is clearly enough to show that every matrix A ∈ M (∞) which satisfies(
(the (i, j) -th entry of A) = δi,j for every (i, j) ∈ Z2� {−N,−N + 1, ..., N}2

)
(216)

lies in iN (M (VN )). So let A ∈ M (∞) be a matrix which satisfies (216). We must prove that
A ∈ iN (M (VN )).

Indeed, let B ∈ M (VN ) be the matrix defined by(
(the (i, j) -th entry of B) = (the (i, j) -th entry of A) for every (i, j) ∈ {−N,−N + 1, ..., N}2

)
.

(217)
Then, iN (B) = A (because for every (i, j) ∈ Z2, we have

(the (i, j) -th entry of iN (B))

=

{
(the (i, j) -th entry of B) , if (i, j) ∈ {−N,−N + 1, ..., N}2 ;

δi,j , if (i, j) ∈ Z2� {−N,−N + 1, ..., N}2

(by the definition of iN (B))

=

{
(the (i, j) -th entry of A) , if (i, j) ∈ {−N,−N + 1, ..., N}2 ;

δi,j , if (i, j) ∈ Z2� {−N,−N + 1, ..., N}2

(by (217))

=

{
(the (i, j) -th entry of A) , if (i, j) ∈ {−N,−N + 1, ..., N}2 ;

(the (i, j) -th entry of A) , if (i, j) ∈ Z2� {−N,−N + 1, ..., N}2(
since δi,j = (the (i, j) -th entry of A) for every (i, j) ∈ Z2� {−N,−N + 1, ..., N}2 (by (216))

)
= (the (i, j) -th entry of A)

). Thus, A = iN (B) ∈ iN (M (VN )) (since B ∈ M (VN )), qed.

318



Since b ∈ gl∞, only finitely many entries of the matrix b are nonzero. In other words,
only finitely many (u, v) ∈ Z2 satisfy ((u, v) -th entry of b) 6= 0. In other words, only
finitely many (u, v) ∈ Z2 satisfy bu,v 6= 0 (since ((u, v) -th entry of b) = bu,v). In other
words, the set {max {|u| , |v|} | (u, v) ∈ Z2; bu,v 6= 0} is finite.

Let
N = max

{
max {|u| , |v|} | (u, v) ∈ Z2; bu,v 6= 0

}
.

166 ThisN is a well-defined nonnegative integer (since the set {max {|u| , |v|} | (u, v) ∈ Z2; bu,v 6= 0}
is finite).

Let (i, j) ∈ Z2� {−N,−N + 1, ..., N}2. Then, (i, j) /∈ {−N,−N + 1, ..., N}2. We
are now going to show that bi,j = 0.

In fact, assume (for the sake of contradiction) that bi,j 6= 0. Thus, (i, j) ∈ {(u, v) ∈ Z2 | bu,v 6= 0}.
Hence,

max {|i| , |j|} ∈
{

max {|u| , |v|} | (u, v) ∈ Z2; bu,v 6= 0
}
.

Since any element of a finite set is less or equal to the maximum of the set, this yields

max {|i| , |j|} ≤ max
{

max {|u| , |v|} | (u, v) ∈ Z2; bu,v 6= 0
}

= N.

Thus, |i| ≤ max {|i| , |j|} ≤ N , so that i ∈ {−N,−N + 1, ..., N} and similarly j ∈
{−N,−N + 1, ..., N}. Hence, (i, j) ∈ {−N,−N + 1, ..., N}2 (because i ∈ {−N,−N + 1, ..., N}
and j ∈ {−N,−N + 1, ..., N}), which contradicts (i, j) /∈ {−N,−N + 1, ..., N}2. This
contradiction shows that our assumption (that bi,j 6= 0) was wrong. We thus have
bi,j = 0.

Since B = id +b, we have:

(the (i, j) -th entry of B) = (the (i, j) -th entry of id)︸ ︷︷ ︸
=δi,j

+ (the (i, j) -th entry of b)︸ ︷︷ ︸
=bi,j=0

= δi,j.

Now, forget that we fixed (i, j). We thus have shown that (the (i, j) -th entry of B) =
δi,j for every (i, j) ∈ Z2� {−N,−N + 1, ..., N}2. In other words,

B ∈
{
A ∈ M (∞) |

(
(the (i, j) -th entry of A) = δi,j for every

(i, j) ∈ Z2� {−N,−N + 1, ..., N}2

)}
= iN (M (VN))

(by Remark 3.15.17 (a))

⊆
⋃
P∈N

iP (M (VP )) .

Now forget that we fixed B. We thus have proven that every B ∈ M (∞) satisfies B ∈⋃
P∈N

iP (M (VP )). In other words, M (∞) ⊆
⋃
P∈N

iP (M (VP )) =
⋃
N∈N

iN (M (VN)) (here, we

renamed the index P as N). Combined with the obvious inclusion
⋃
N∈N

iN (M (VN)) ⊆

M (∞), this yields M (∞) =
⋃
N∈N

iN (M (VN)). Remark 3.15.17 (c) is therefore proven.

166Here, we set max
{

max {|u| , |v|} | (u, v) ∈ Z2; bu,v 6= 0
}

to be 0 if the set{
max {|u| , |v|} | (u, v) ∈ Z2; bu,v 6= 0

}
is empty.
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Definition 3.15.18. Let N ∈ N and m ∈ Z. We define a linear map j
(m)
N :

∧N+m+1 (VN)→ F (m) by setting(
j

(m)
N (b0 ∧ b1 ∧ ... ∧ bN+m) = b0 ∧ b1 ∧ ... ∧ bN+m ∧ v−N−1 ∧ v−N−2 ∧ v−N−3 ∧ ...

for any b0, b1, ..., bN+m ∈ VN

)
.

This map j
(m)
N is well-defined (because b0 ∧ b1 ∧ ... ∧ bN+m ∧ v−N−1 ∧ v−N−2 ∧

v−N−3 ∧ ... is easily seen to lie in F (m) and depend multilinearly and anti-
symmetrically on b0, b1, ..., bN+m) and injective (because the elements of the ba-

sis
(
vi0 ∧ vi1 ∧ ... ∧ viN+m

)
N≥i0>i1>...>iN+m≥−N

of ∧N+m+1 (VN) are sent by j
(m)
N to

pairwise distinct elements of the basis (vi0 ∧ vi1 ∧ vi2 ∧ ...)(i0,i1,i2,...) is an m-degression of

F (m)).

In the terminology of Definition 3.14.39, the map j
(m)
N that we have just defined is

the map RN+m+1,]−N−1,N ].

Our definitions of j
(m)
N and of iN satisfy reasonable compatibilities:

Proposition 3.15.19. Let N ∈ N and m ∈ Z. For any u ∈ ∧N+m+1 (VN) and
A ∈ M (VN), we have

iN (A) · j(m)
N (u) = j

(m)
N (Au) .

(Here, of course, iN (A) · j(m)
N (u) stands for (% (iN (A)))

(
j

(m)
N (u)

)
.)

Proof of Proposition 3.15.19. Let A ∈ M (VN) and u ∈ ∧N+m+1 (VN). We must

prove the equality iN (A) ·j(m)
N (u) = j

(m)
N (Au). Since this equality is linear in u, we can

WLOG assume that u is an element of the basis
(
vi0 ∧ vi1 ∧ ... ∧ viN+m

)
N≥i0>i1>...>iN+m≥−N

of ∧N+m+1 (VN). Assume this. Then, there exists an N +m+ 1-tuple (i0, i1, ..., iN+m)
of integers such that N ≥ i0 > i1 > ... > iN+m ≥ −N and u = vi0 ∧ vi1 ∧ ... ∧ viN+m

.
Consider this N +m+ 1-tuple.

By the definition of iN (A), we have

(iN (A) · vk = Avk for every k ∈ {−N,−N + 1, ..., N}) (218)

and
(iN (A) · vk = vk for every k ∈ Z� {−N,−N + 1, ..., N}) . (219)

Note that every ` ∈ {0, 1, ..., N +m} satisfies i` ∈ {−N,−N + 1, ..., N} (since N ≥
i0 > i1 > ... > iN+m ≥ −N and thus N ≥ i` ≥ −N) and thus

iN (A) · vi` = Avi` (220)

(by (218), applied to k = i`). Also, every positive integer r satisfies −N − r ∈
Z� {−N,−N + 1, ..., N} and thus

iN (A) · v−N−r = v−N−r (221)

(by (219), applied to k = −N − r).
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Now, since u = vi0 ∧ vi1 ∧ ... ∧ viN+m
, we have

j
(m)
N (u) = j

(m)
N

(
vi0 ∧ vi1 ∧ ... ∧ viN+m

)
= vi0 ∧ vi1 ∧ ... ∧ viN+m

∧ v−N−1 ∧ v−N−2 ∧ v−N−3 ∧ ...

(by the definition of j
(m)
N ), so that

iN (A) · j(m)
N (u)

= iN (A) ·
(
vi0 ∧ vi1 ∧ ... ∧ viN+m

∧ v−N−1 ∧ v−N−2 ∧ v−N−3 ∧ ...
)

= iN (A) · vi0 ∧ iN (A) · vi1 ∧ ... ∧ iN (A) · viN+m︸ ︷︷ ︸
=Avi0∧Avi1∧...∧AviN+m

(because every `∈{0,1,...,N+m} satisfies iN (A)·vi`=Avi` (by (220)))

∧ iN (A) · v−N−1 ∧ iN (A) · v−N−2 ∧ iN (A) · v−N−3 ∧ ...︸ ︷︷ ︸
=v−N−1∧v−N−2∧v−N−3∧...

(because every positive integer r satisfies iN (A)·v−N−r=v−N−r (by (221)))(
by the definition of the action % : M (∞)→ End

(
F (m)

))
= Avi0 ∧ Avi1 ∧ ... ∧ AviN+m

∧ v−N−1 ∧ v−N−2 ∧ v−N−3 ∧ .... (222)

On the other hand, since u = vi0∧vi1∧...∧viN+m
, we have Au = Avi0∧Avi1∧...∧AviN+m

,
so that

j
(m)
N (Au) = j

(m)
N

(
Avi0 ∧ Avi1 ∧ ... ∧ AviN+m

)
= Avi0 ∧ Avi1 ∧ ... ∧ AviN+m

∧ v−N−1 ∧ v−N−2 ∧ v−N−3 ∧ ...

(by the definition of j
(m)
N ). Compared with (222), this yields iN (A)·j(m)

N (u) = j
(m)
N (Au).

This proves Proposition 3.15.19.
An important property of the maps j

(m)
N is that their images (for fixed m and varying

N) cover (not just span, but actually cover) all of F (m):

Proposition 3.15.20. Let m ∈ Z.
(a) We have

j
(m)
0

(
∧0+m+1 (V0)

)
⊆ j

(m)
1

(
∧1+m+1 (V1)

)
⊆ j

(m)
2

(
∧2+m+1 (V2)

)
⊆ ....

(b) For every Q ∈ N, we have F (m) =
⋃

N∈N;
N≥Q

j
(m)
N

(
∧N+m+1 (VN)

)
.

Actually, the “N ≥ Q” in Proposition 3.15.20 (b) doesn’t have much effect since

Proposition 3.15.20 (a) yields
⋃

N∈N;
N≥Q

j
(m)
N

(
∧N+m+1 (VN)

)
=
⋃
N∈N

j
(m)
N

(
∧N+m+1 (VN)

)
; but

we prefer to put it in because it is needed in our application.
Proof of Proposition 3.15.20. (a) Let N ∈ N. From the definitions of jN and jN+1,

it is easy to see that

j
(m)
N (b0 ∧ b1 ∧ ... ∧ bN+m) = j

(m)
N+1 (b0 ∧ b1 ∧ ... ∧ bN+m ∧ v−N−1)
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for any b0, b1, ..., bN+m ∈ VN . Due to linearity, this yields that j
(m)
N (a) = j

(m)
N+1 (a ∧ v−N−1)

for any a ∈ ∧N+m+1 (VN). Hence, j
(m)
N (a) = j

(m)
N+1 (a ∧ v−N−1) ∈ j(m)

N+1

(
∧(N+1)+m+1 (VN+1)

)
for any a ∈ ∧N+m+1 (VN). In other words, j

(m)
N

(
∧N+m+1 (VN)

)
⊆ j

(m)
N+1

(
∧(N+1)+m+1 (VN+1)

)
.

We thus have proven that every N ∈ N satisfies

j
(m)
N

(
∧N+m+1 (VN)

)
⊆ j

(m)
N+1

(
∧(N+1)+m+1 (VN+1)

)
.

In other words,

j
(m)
0

(
∧0+m+1 (V0)

)
⊆ j

(m)
1

(
∧1+m+1 (V1)

)
⊆ j

(m)
2

(
∧2+m+1 (V2)

)
⊆ ....

Proposition 3.15.20 (a) is proven.
(b) We need three notations:

• For any m-degression i, define a nonnegative integer exting (i) as the largest
k ∈ N satisfying ik + k 6= m 167, where i is written in the form (i0, i1, i2, ...).
(Such a largest k indeed exists, because (by the definition of an m-degression)
every sufficiently high k ∈ N satisfies ik + k = m.)

• For any m-degression i, define an integer head (i) by head (i) = i0, where i is
written in the form (i0, i1, i2, ...).

• For any m-degression i, define an element vi of F (m) by vi = vi0 ∧ vi1 ∧ vi2 ∧ ...,
where i is written in the form (i0, i1, i2, ...).

Thus, (vi)i is an m-degression = (vi0 ∧ vi1 ∧ vi2 ∧ ...)(i0,i1,i2,...) is an m-degression. Since

(vi0 ∧ vi1 ∧ vi2 ∧ ...)(i0,i1,i2,...) is an m-degression is a basis of the vector space F (m), we thus

conclude that (vi)i is an m-degression is a basis of the vector space F (m).
Now we prove a simple fact:(

If i is an m-degression, and P is an integer such that

P ≥ max {0, exting (i)−m, head (i)} , then vi ∈ j(m)
P

(
∧P+m+1 (VP )

) ) . (223)

Proof of (223): Let i be an m-degression, and P be an integer such that P ≥
max {0, exting (i)−m, head (i)}. Write i in the form (i0, i1, i2, ...). Then, exting (i) is
the largest k ∈ N satisfying ik + k 6= m (by the definition of exting (i)). Hence,

every k ∈ N such that k > exting (i) satisfies ik + k = m. (224)

Since P ≥ max {0, exting (i)−m, head (i)} ≥ 0, the map j
(m)
P and the space VP are

well-defined.
Since P ≥ max {0, exting (i)−m, head (i)} ≥ exting (i) − m, we have P + m ≥

exting (i) ≥ 0. Now,

every positive integer ` satisfies iP+m+` = −P − ` (225)

168. Applied to ` = 1, this yields iP+m+1 = −P − 1.

167If no such k exists, then we set exting (i) to be 0.
168Proof of (225): Let ` ∈ N be a positive integer. Then, P +m+ `︸︷︷︸

>0

> P +m ≥ exting (i). Hence,

(224) (applied to k = P+m+`) yields iP+m+`+P+m+` = m. In other words, iP+m+` = −P−`.
This proves (225).
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Notice also that P ≥ max {0, exting (i)−m, head (i)} ≥ head (i) = i0 (by the defini-
tion of head (i)). Now it is easy to see that

every k ∈ N such that k ≤ P +m satisfies vik ∈ VP . (226)

169 Hence, vi0 ∧ vi1 ∧ ...∧ viP+m
∈ ∧P+m+1 (VP ). Now, by the definition of j

(m)
P , we have

j
(m)
P

(
vi0 ∧ vi1 ∧ ... ∧ viP+m

)
= vi0 ∧ vi1 ∧ ... ∧ viP+m

∧ v−P−1 ∧ v−P−2 ∧ v−P−3 ∧ ...︸ ︷︷ ︸
=viP+m+1

∧viP+m+2
∧viP+m+3

∧...
(because every positive integer `

satisfies −P−`=iP+m+` (by (225)))

= vi0 ∧ vi1 ∧ ... ∧ viP+m
∧ viP+m+1

∧ viP+m+2
∧ viP+m+3

∧ ... = vi0 ∧ vi1 ∧ vi2 ∧ ... = vi

(since vi was defined as vi0 ∧ vi1 ∧ vi2 ∧ ...). Thus, vi = j
(m)
P

vi0 ∧ vi1 ∧ ... ∧ viP+m︸ ︷︷ ︸
∈∧P+m+1(VP )

 ∈
j

(m)
P

(
∧P+m+1 (VP )

)
. This proves (223).

Now, fix an arbitrary Q ∈ N.
Let w be any element of F (m). Since (vi)i is an m-degression is a basis of F (m), we can

write w as a linear combination of elements of the family (vi)i is an m-degression. Since every
linear combination contains only finitely many vectors, this yields that we can write w
as a linear combination of finitely many elements of the family (vi)i is an m-degression.
In other words, there exists a finite set S of m-degressions such that w is a linear
combination of the family (vi)i∈S. Consider this S. Since w is a linear combination of
the family (vi)i∈S, we can find a scalar λi ∈ C for every i ∈ S such that w =

∑
i∈S

λivi.

Consider these scalars λi. Let

P = max {Q,max {max {0, exting (j)−m, head (j)} | j ∈ S}}

(where the maximum of the empty set is to be understood as 0). Then, first of all,
P ≥ Q. Second, every i ∈ S satisfies

P = max {Q,max {max {0, exting (j)−m, head (j)} | j ∈ S}}
≥ max {max {0, exting (j)−m, head (j)} | j ∈ S}
≥ max {0, exting (i)−m, head (i)} since max {0, exting (i)−m, head (i)} is an element of the set

{max {0, exting (j)−m, head (j)} | j ∈ S} (because i ∈ S),
and the maximum of a set is ≥ to any element of this set


169Proof of (226): Let k ∈ N be such that k ≤ P +m. Thus, k < P +m+ 1.

Since (i0, i1, i2, ...) = i is an m-degression, the sequence (i0, i1, i2, ...) is strictly decreasing, i.
e., we have i0 > i1 > i2 > .... As a consequence, i0 ≥ ik (since 0 ≤ k) and ik > iP+m+1

(since k < P + m + 1). Since ik > iP+m+1 = −P − 1, we have ik ≥ −P (since both ik and
−P are integers). Combining P ≥ i0 ≥ ik with ik ≥ −P , we obtain P ≥ ik ≥ −P . Hence,
vik ∈ 〈v−P , v−P+1, ..., vP 〉 = VP (because VP is defined as 〈v−P , v−P+1, ..., vP 〉). This proves
(226).
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and thus vi ∈ j(m)
P

(
∧P+m+1 (VP )

)
(by (223)). Hence,

w =
∑
i∈S

λi vi︸︷︷︸
∈j(m)
P (∧P+m+1(VP ))

∈
∑
i∈S

λij
(m)
P

(
∧P+m+1 (VP )

)
⊆ j

(m)
P

(
∧P+m+1 (VP )

)
(

since j
(m)
P

(
∧P+m+1 (VP )

)
is a vector space

)
⊆
⋃
N∈N;
N≥Q

j
(m)
N

(
∧N+m+1 (VN)

)
(since P ≥ Q) .

Now, forget that we fixed w. We thus have proven that every w ∈ F (m) sat-
isfies w ∈

⋃
N∈N;
N≥Q

j
(m)
N

(
∧N+m+1 (VN)

)
. Thus, F (m) ⊆

⋃
N∈N;
N≥Q

j
(m)
N

(
∧N+m+1 (VN)

)
. Com-

bined with the obvious inclusion
⋃

N∈N;
N≥Q

j
(m)
N

(
∧N+m+1 (VN)

)
⊆ F (m), this yields F (m) =

⋃
N∈N;
N≥Q

j
(m)
N

(
∧N+m+1 (VN)

)
. Proposition 3.15.20 (b) is thus proven.

What comes next is almost a carbon copy of Definition 3.15.7:

Definition 3.15.21. Let N ∈ N. Let k ∈ Z. Let i ∈ {−N,−N + 1, ..., N}.
(a) We define the so-called i-th wedging operator v̂

(N)
i : ∧k (VN)→ ∧k+1 (VN) by

v̂
(N)
i · ψ = vi ∧ ψ for all ψ ∈ ∧k (VN) .

(b) We define the so-called i-th contraction operator
∨

v
(N)
i : ∧k (VN) → ∧k−1 (VN)

as follows:
For every k-tuple (i1, i2, ..., ik) of integers satisfying N ≥ i1 > i2 > ... > ik ≥ −N ,

we let
∨

v
(N)
i (vi1 ∧ vi2 ∧ ... ∧ vik) be{

0, if i /∈ {i1, i2, ..., ik} ;

(−1)j−1 vi1 ∧ vi2 ∧ ... ∧ vij−1
∧ vij+1

∧ vij+2
∧ ... ∧ vik , if i ∈ {i1, i2, ..., ik}

,

where, in the case i ∈ {i1, i2, ..., ik}, we denote by j the integer ` satisfying i` = i.

Thus, the map
∨

v
(N)
i is defined on a basis of the vector space ∧k (VN); we extend this

to a map ∧k (VN)→ ∧k−1 (VN) by linearity.
Note that, for every negative ` ∈ Z, we understand ∧` (VN) to mean the zero

space.

Also:

Definition 3.15.22. For every N ∈ N and k ∈ {1, 2, ..., 2N + 1}, let Ω
(k)
N denote

the orbit of vN ∧ vN−1 ∧ ... ∧ vN−k+1 under the action of GL (VN).

The following lemma, then, is an easy corollary of Theorem 3.15.8:
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Lemma 3.15.23. Let N ∈ N and k ∈ Z. Let S
(k)
N =

N∑
i=−N

v̂
(N)
i ⊗

∨

v
(N)
i : ∧k (VN) ⊗

∧k (VN)→ ∧k+1 (VN)⊗ ∧k−1 (VN).

(a) This map S
(k)
N does not depend on the choice of the basis of VN , and is

GL (VN)-invariant. In other words, for any basis (wN , wN−1, ..., w−N) of VN , we

have S
(k)
N =

N∑
i=−N

ŵ
(N)
i ⊗

∨

w
(N)
i (where the maps ŵ

(N)
i and

∨

w
(N)
i are defined just as

v̂
(N)
i and

∨

v
(N)
i , but with respect to the basis (wN , wN−1, ..., w−N)).

(b) Let k ∈ {1, 2, ..., 2N + 1}. A nonzero element τ ∈ ∧k (VN) belongs to Ω
(k)
N if

and only if S
(k)
N (τ ⊗ τ) = 0.

(c) The map S
(k)
N is M (VN)-invariant.

Proof of Lemma 3.15.23. If we set n = 2N + 1 in Theorem 3.15.8, and do the
following renaming operations:

• rename the standard basis (v1, v2, ..., vn) as (vN , vN−1, ..., v−N);

• rename the vector space V as VN ;

• rename the map S as S
(k)
N ;

• rename the basis (w1, w2, ..., wn) as (wN , wN−1, ..., w−N);

• rename the maps v̂i as v̂
(N)
i ;

• rename the maps
∨
vi as

∨

v
(N)
i ;

• rename the maps ŵi as ŵ
(N)
i ;

• rename the maps
∨
wi as

∨

w
(N)
i ;

• rename the set Ω as Ω
(k)
N ;

then what we obtain is exactly the statement of Lemma 3.15.23. Thus, Lemma
3.15.23 is proven.

The maps S
(k)
N have their own compatibility relation with the j

(m)
N :

Lemma 3.15.24. Let N ∈ N and m ∈ Z. Define the notation S
(N+m+1)
N as in

Lemma 3.15.23. Then,(
j

(m+1)
N ⊗ j(m−1)

N

)
◦ S(N+m+1)

N = S ◦
(
j

(m)
N ⊗ j(m)

N

)
.
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Proof of Lemma 3.15.24. Define the maps v̂
(N)
i and

∨

v
(N)
i (for all i ∈ {−N,−N + 1, ..., N})

as in Definition 3.15.21. Define the maps v̂i and
∨
vi (for all i ∈ Z) as in Definition 3.10.5.

a) Let us first show that

j
(m+1)
N ◦ v̂(N)

i = v̂i ◦ j(m)
N for every i ∈ {N,N − 1, ...,−N} . (227)

Proof of (227): Let i ∈ {N,N − 1, ...,−N}. In order to prove (227), it is clearly

enough to show that

(
j

(m+1)
N ◦ v̂(N)

i

)
(u) =

(
v̂i ◦ j(m)

N

)
(u) for every u ∈ ∧N+m+1 (VN).

So let u be any element of ∧N+m+1 (VN). We must prove the equality

(
j

(m+1)
N ◦ v̂(N)

i

)
(u) =(

v̂i ◦ j(m)
N

)
(u). Since this equality is linear in u, we can WLOG assume that u is an

element of the basis
(
vi0 ∧ vi1 ∧ ... ∧ viN+m

)
N≥i0>i1>...>iN+m≥−N

of ∧N+m+1 (VN). As-

sume this. Then, there exists an N + m + 1-tuple (i0, i1, ..., iN+m) of integers such
that N ≥ i0 > i1 > ... > iN+m ≥ −N and u = vi0 ∧ vi1 ∧ ... ∧ viN+m

. Consider this
N +m+ 1-tuple.

Comparing

(
j

(m+1)
N ◦ v̂(N)

i

)
(u) = j

(m+1)
N

(
v̂

(N)
i (u)

)
︸ ︷︷ ︸

=vi∧u
(by the definition of v̂

(N)
i )

= j
(m+1)
N

vi ∧ u︸︷︷︸
=vi0∧vi1∧...∧viN+m



= j
(m+1)
N

(
vi ∧ vi0 ∧ vi1 ∧ ... ∧ viN+m

)
= vi ∧ vi0 ∧ vi1 ∧ ... ∧ viN+m

∧ v−N−1 ∧ v−N−2 ∧ v−N−3 ∧ ...(
by the definition of j

(m+1)
N

)
with

(
v̂i ◦ j(m)

N

)
(u) = v̂i

(
j

(m)
N (u)

)
= vi ∧ j(m)

N

 u︸︷︷︸
=vi0∧vi1∧...∧viN+m

 (by the definition of v̂i)

= vi ∧ j
(m)
N

(
vi0 ∧ vi1 ∧ ... ∧ viN+m

)︸ ︷︷ ︸
=vi0∧vi1∧...∧viN+m

∧v−N−1∧v−N−2∧v−N−3∧...

(by the definition of j
(m)
N )

= vi ∧ vi0 ∧ vi1 ∧ ... ∧ viN+m
∧ v−N−1 ∧ v−N−2 ∧ v−N−3 ∧ ...,

we obtain

(
j

(m+1)
N ◦ v̂(N)

i

)
(u) =

(
v̂i ◦ j(m)

N

)
(u). This is exactly what we needed to

prove in order to complete the proof of (227). The proof of (227) is thus finished.
b) Let us next show that

j
(m+1)
N ◦

∨

v
(N)
i =

∨
vi ◦ j(m)

N for every i ∈ {N,N − 1, ...,−N} . (228)
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Proof of (228): Let i ∈ {N,N − 1, ...,−N}. In order to prove (228), it is clearly

enough to show that

(
j

(m+1)
N ◦

∨

v
(N)
i

)
(u) =

(
∨
vi ◦ j(m)

N

)
(u) for every u ∈ ∧N+m+1 (VN).

So let u be any element of ∧N+m+1 (VN). We must prove the equality

(
j

(m+1)
N ◦

∨

v
(N)
i

)
(u) =(

∨
vi ◦ j(m)

N

)
(u). Since this equality is linear in u, we can WLOG assume that u is an

element of the basis
(
vi0 ∧ vi1 ∧ ... ∧ viN+m

)
N≥i0>i1>...>iN+m≥−N

of ∧N+m+1 (VN). As-

sume this. Then, there exists an N + m + 1-tuple (i0, i1, ..., iN+m) of integers such
that N ≥ i0 > i1 > ... > iN+m ≥ −N and u = vi0 ∧ vi1 ∧ ... ∧ viN+m

. Consider this
N +m+ 1-tuple.

Let (j0, j1, j2, ...) be the sequence (i0, i1, ..., iN+m,−N − 1,−N − 2,−N − 3, ...). From
u = vi0 ∧ vi1 ∧ ... ∧ viN+m

, we obtain

j
(m)
N (u) = j

(m)
N

(
vi0 ∧ vi1 ∧ ... ∧ viN+m

)
= vi0 ∧ vi1 ∧ ... ∧ viN+m

∧ v−N−1 ∧ v−N−2 ∧ v−N−3 ∧ ...(
by the definition of j

(m)
N

)
= vj0 ∧ vj1 ∧ vj2 ∧ ...

(since (i0, i1, ..., iN+m,−N − 1,−N − 2,−N − 3, ...) = (j0, j1, j2, ...)) .
(229)

We distinguish between two cases:
Case 1: We have i /∈ {i0, i1, ..., iN+m}.
Case 2: We have i ∈ {i0, i1, ..., iN+m}.
Let us first consider Case 1. In this case, from u = vi0 ∧ vi1 ∧ ... ∧ viN+m

, we obtain

∨

v
(N)
i (u)

=
∨

v
(N)
i

(
vi0 ∧ vi1 ∧ ... ∧ viN+m

)
=

{
0, if i /∈ {i0, i1, ..., iN+m} ;

(−1)j−1 vi0 ∧ vi1 ∧ ... ∧ vi(j−1)−1
∧ vi(j−1)+1

∧ vi(j−1)+2
∧ ... ∧ viN+m

, if i ∈ {i0, i1, ..., iN+m}(
by the definition of

∨

v
(N)
i

)
,

where, in the case i ∈ {i0, i1, ..., iN+m}, we denote by j the integer ` satisfying i`−1 = i.
170 Since i /∈ {i0, i1, ..., iN+m} (because we are in Case 1), this simplifies to

∨

v
(N)
i (u) = 0.

On the other hand, combining i /∈ {−N − 1,−N − 2,−N − 3, ...} (which is because
i ∈ {N,N − 1, ...,−N}) with i /∈ {i0, i1, ..., iN+m} (which is because we are in Case 1),

170If you are wondering where the −1 (for example, in i`−1 and in i(j−1)−1) comes from: It comes from

the fact that the indexing of our N +m+ 1-tuple
(
vi0 , vi1 , ..., viN+m

)
begins with 0, and not with

1 as in Definition 3.15.7.
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we obtain

i /∈ {i0, i1, ..., iN+m} ∪ {−N − 1,−N − 2,−N − 3, ...}
= {i0, i1, ..., iN+m,−N − 1,−N − 2,−N − 3, ...} = {j0, j1, j2, ...}

(since (i0, i1, ..., iN+m,−N − 1,−N − 2,−N − 3, ...) = (j0, j1, j2, ...)) .

Now,(
∨
vi ◦ j(m)

N

)
(u) =

∨
vi

(
j

(m)
N (u)

)
=
∨
vi (vj0 ∧ vj1 ∧ vj2 ∧ ...)(

since j
(m)
N (u) = vj0 ∧ vj1 ∧ vj2 ∧ ... by (229)

)
=

{
0, if i /∈ {j0, j1, j2, ...} ;

(−1)j vj0 ∧ vj1 ∧ vj2 ∧ ... ∧ vjj−1
∧ vjj+1

∧ vjj+2
∧ ..., if i ∈ {j0, j1, j2, ...}(

by the definition of
∨
vi

)
,

where, in the case i ∈ {j0, j1, j2, ...}, we denote by j the integer k satisfying jk = i.
Since i /∈ {j0, j1, j2, ...}, this simplifies to(

∨
vi ◦ j(m)

N

)
(u) = 0.

Compared with (
j

(m+1)
N ◦

∨

v
(N)
i

)
(u) = j

(m+1)
N

(
∨

v
(N)
i (u)

)
︸ ︷︷ ︸

=0

= 0,

this yields

(
j

(m+1)
N ◦

∨

v
(N)
i

)
(u) =

(
∨
vi ◦ j(m)

N

)
(u). We have thus proven

(
j

(m+1)
N ◦

∨

v
(N)
i

)
(u) =(

∨
vi ◦ j(m)

N

)
(u) in Case 1.

Next, let us consider Case 2. In this case, i ∈ {i0, i1, ..., iN+m}, so there exists an
` ∈ {0, 1, ..., N +m} such that i` = i. Denote this ` by κ. Then, iκ = i. Clearly,

(i0, i1, ..., iκ−1, iκ+1, iκ+2, ..., iN+m,−N − 1,−N − 2,−N − 3, ...)

=

result of removing the κ+ 1-th term from the sequence

(i0, i1, ..., iN+m,−N − 1,−N − 2,−N − 3, ...)︸ ︷︷ ︸
=(j0,j1,j2,...)


= (result of removing the κ+ 1-th term from the sequence (j0, j1, j2, ...))

= (j0, j1, ..., jκ−1, jκ+1, jκ+2, ...) . (230)
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From u = vi0 ∧ vi1 ∧ ... ∧ viN+m
, we obtain

∨

v
(N)
i (u)

=
∨

v
(N)
i

(
vi0 ∧ vi1 ∧ ... ∧ viN+m

)
=

{
0, if i /∈ {i0, i1, ..., iN+m} ;

(−1)j−1 vi0 ∧ vi1 ∧ ... ∧ vi(j−1)−1
∧ vi(j−1)+1

∧ vi(j−1)+2
∧ ... ∧ viN+m

, if i ∈ {i0, i1, ..., iN+m}(
by the definition of

∨

v
(N)
i

)
,

where, in the case i ∈ {i0, i1, ..., iN+m}, we denote by j the integer ` satisfying i`−1 = i.
171 Since i ∈ {i0, i1, ..., iN+m}, this simplifies to

∨

v
(N)
i (u) = (−1)j−1 vi0 ∧ vi1 ∧ ... ∧ vi(j−1)−1

∧ vi(j−1)+1
∧ vi(j−1)+2

∧ ... ∧ viN+m
,

where we denote by j the integer ` satisfying i`−1 = i. Since the integer ` satisfying
i`−1 = i is κ+ 1 (because i(κ+1)−1 = iκ = i), this rewrites as

∨

v
(N)
i (u) = (−1)(κ+1)−1 vi0 ∧ vi1 ∧ ... ∧ vi((κ+1)−1)−1

∧ vi((κ+1)−1)+1
∧ vi((κ+1)−1)+2

∧ ... ∧ viN+m

= (−1)κ vi0 ∧ vi1 ∧ ... ∧ viκ−1 ∧ viκ+1 ∧ viκ+2 ∧ ... ∧ viN+m

(since (κ+ 1)− 1 = κ). Thus,(
j

(m+1)
N ◦

∨

v
(N)
i

)
(u)

= j
(m+1)
N

 ∨

v
(N)
i (u)︸ ︷︷ ︸

=(−1)κvi0∧vi1∧...∧viκ−1
∧viκ+1

∧viκ+2
∧...∧viN+m


= j

(m+1)
N

(
(−1)κ vi0 ∧ vi1 ∧ ... ∧ viκ−1 ∧ viκ+1 ∧ viκ+2 ∧ ... ∧ viN+m

)
= (−1)κ vi0 ∧ vi1 ∧ ... ∧ viκ−1 ∧ viκ+1 ∧ viκ+2 ∧ ... ∧ viN+m

∧ v−N−1 ∧ v−N−2 ∧ v−N−3 ∧ ...(
by the definition of j

(m+1)
N

)
= (−1)κ vj0 ∧ vj1 ∧ vj2 ∧ ... ∧ vjκ−1 ∧ vjκ+1 ∧ vjκ+2 ∧ ... (231) since (230) yields

(i0, i1, ..., iκ−1, iκ+1, iκ+2, ..., iN+m,−N − 1,−N − 2,−N − 3, ...)
= (j0, j1, ..., jκ−1, jκ+1, jκ+2, ...)

 .

On the other hand,

i ∈ {i0, i1, ..., iN+m} ⊆ {i0, i1, ..., iN+m,−N − 1,−N − 2,−N − 3, ...} = {j0, j1, j2, ...}
(since (i0, i1, ..., iN+m,−N − 1,−N − 2,−N − 3, ...) = (j0, j1, j2, ...)) .

171If you are wondering where the −1 (for example, in i`−1 and in i(j−1)−1) comes from: It comes from

the fact that the indexing of our N +m+ 1-tuple
(
vi0 , vi1 , ..., viN+m

)
begins with 0, and not with

1 as in Definition 3.15.7.
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Moreover, the integer k satisfying jk = i is κ 172. Now,(
∨
vi ◦ j(m)

N

)
(u) =

∨
vi

(
j

(m)
N (u)

)
=
∨
vi (vj0 ∧ vj1 ∧ vj2 ∧ ...)(

since j
(m)
N (u) = vj0 ∧ vj1 ∧ vj2 ∧ ... by (229)

)
=

{
0, if i /∈ {j0, j1, j2, ...} ;

(−1)j vj0 ∧ vj1 ∧ vj2 ∧ ... ∧ vjj−1
∧ vjj+1

∧ vjj+2
∧ ..., if i ∈ {j0, j1, j2, ...}(

by the definition of
∨
vi

)
,

where, in the case i ∈ {j0, j1, j2, ...}, we denote by j the integer k satisfying jk = i.
Since i ∈ {j0, j1, j2, ...}, this simplifies to(

∨
vi ◦ j(m)

N

)
(u) = (−1)j vj0 ∧ vj1 ∧ vj2 ∧ ... ∧ vjj−1

∧ vjj+1
∧ vjj+2

∧ ...,

where we denote by j the integer k satisfying jk = i. Since the integer k satisfying
jk = i is κ, this rewrites as(

∨
vi ◦ j(m)

N

)
(u) = (−1)κ vj0 ∧ vj1 ∧ vj2 ∧ ... ∧ vjκ−1 ∧ vjκ+1 ∧ vjκ+2 ∧ ....

Compared with (231), this yields

(
j

(m+1)
N ◦ v̂(N)

i

)
(u) =

(
v̂i ◦ j(m)

N

)
(u). This is exactly

what we needed to prove in order to complete the proof of (228). The proof of (228)
is thus finished.

c) Let us next show that

v̂i ◦ j(m)
N = 0 for every i ∈ {−N − 1,−N − 2,−N − 3, ...} . (232)

Proof of (232): Let i ∈ {−N − 1,−N − 2,−N − 3, ...}. In order to prove (232), it

is clearly enough to show that
(
v̂i ◦ j(m)

N

)
(u) = 0 for every u ∈ ∧N+m+1 (VN).

So let u be any element of ∧N+m+1 (VN). We must prove the equality
(
v̂i ◦ j(m)

N

)
(u) =

0. Since this equality is linear in u, we can WLOG assume that u is an element of the
basis

(
vi0 ∧ vi1 ∧ ... ∧ viN+m

)
N≥i0>i1>...>iN+m≥−N

of ∧N+m+1 (VN). Assume this. Then,

there exists an N + m + 1-tuple (i0, i1, ..., iN+m) of integers such that N ≥ i0 > i1 >
... > iN+m ≥ −N and u = vi0 ∧ vi1 ∧ ... ∧ viN+m

. Consider this N +m+ 1-tuple.
The vector vi occurs twice in the semiinfinite wedge vi ∧ vi0 ∧ vi1 ∧ ... ∧ viN+m

∧
v−N−1 ∧ v−N−2 ∧ v−N−3 ∧ ... (namely, it occurs once in the very beginning of this
wedge, and then it occurs again in the v−N−1 ∧ v−N−2 ∧ v−N−3 ∧ ... part (because
i ∈ {−N − 1,−N − 2,−N − 3, ...})). Hence, the semiinfinite wedge vi ∧ vi0 ∧ vi1 ∧ ...∧
viN+m

∧ v−N−1 ∧ v−N−2 ∧ v−N−3 ∧ ... equals 0 (since a semiinfinite wedge in which a
vector occurs more than once must always be equal to 0).

172because

jκ = iκ (since (i0, i1, ..., iN+m,−N − 1,−N − 2,−N − 3, ...) = (j0, j1, j2, ...) and κ ∈ {0, 1, ..., N +m})
= i
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Now,

(
v̂i ◦ j(m)

N

)
(u) = v̂i

(
j

(m)
N (u)

)
= vi ∧ j(m)

N

 u︸︷︷︸
=vi0∧vi1∧...∧viN+m

 (by the definition of v̂i)

= vi ∧ j
(m)
N

(
vi0 ∧ vi1 ∧ ... ∧ viN+m

)︸ ︷︷ ︸
=vi0∧vi1∧...∧viN+m

∧v−N−1∧v−N−2∧v−N−3∧...

(by the definition of j
(m)
N )

= vi ∧ vi0 ∧ vi1 ∧ ... ∧ viN+m
∧ v−N−1 ∧ v−N−2 ∧ v−N−3 ∧ ...

= 0 (as we proved above) .

This is exactly what we needed to prove in order to complete the proof of (232). The
proof of (232) is thus finished.

d) Let us now show that

∨
vi ◦ j(m)

N = 0 for every i ∈ {N + 1, N + 2, N + 3, ...} . (233)

Proof of (233): Let i ∈ {N + 1, N + 2, N + 3, ...}. In order to prove (228), it is

clearly enough to show that
(
∨
vi ◦ j(m)

N

)
(u) = 0 for every u ∈ ∧N+m+1 (VN).

So let u be any element of ∧N+m+1 (VN). We must prove the equality
(
∨
vi ◦ j(m)

N

)
(u) =

0. Since this equality is linear in u, we can WLOG assume that u is an element of the
basis

(
vi0 ∧ vi1 ∧ ... ∧ viN+m

)
N≥i0>i1>...>iN+m≥−N

of ∧N+m+1 (VN). Assume this. Then,

there exists an N + m + 1-tuple (i0, i1, ..., iN+m) of integers such that N ≥ i0 > i1 >
... > iN+m ≥ −N and u = vi0 ∧ vi1 ∧ ... ∧ viN+m

. Consider this N +m+ 1-tuple.
Notice that i ∈ {N + 1, N + 2, N + 3, ...}, so that i /∈ {N,N − 1, ...,−N} and i /∈
{N,N − 1, N − 2, ...}.

SinceN ≥ i0 > i1 > ... > iN+m ≥ −N , we have {i0, i1, ..., iN+m} ⊆ {N,N − 1, ...,−N}
and thus i /∈ {i0, i1, ..., iN+m} (because i /∈ {N,N − 1, ...,−N}).

Let (j0, j1, j2, ...) be the sequence (i0, i1, ..., iN+m,−N − 1,−N − 2,−N − 3, ...). Then,

{j0, j1, j2, ...} = {i0, i1, ..., iN+m,−N − 1,−N − 2,−N − 3, ...}
= {i0, i1, ..., iN+m}︸ ︷︷ ︸

⊆{N,N−1,...,−N}

∪{−N − 1,−N − 2,−N − 3, ...}

⊆ {N,N − 1, ...,−N} ∪ {−N − 1,−N − 2,−N − 3, ...} = {N,N − 1, N − 2, ...} .

Thus, i /∈ {j0, j1, j2, ...} (since i /∈ {N,N − 1, N − 2, ...}).
From u = vi0 ∧ vi1 ∧ ... ∧ viN+m

, we obtain

j
(m)
N (u) = j

(m)
N

(
vi0 ∧ vi1 ∧ ... ∧ viN+m

)
= vi0 ∧ vi1 ∧ ... ∧ viN+m

∧ v−N−1 ∧ v−N−2 ∧ v−N−3 ∧ ...(
by the definition of j

(m)
N

)
= vj0 ∧ vj1 ∧ vj2 ∧ ...

(since (i0, i1, ..., iN+m,−N − 1,−N − 2,−N − 3, ...) = (j0, j1, j2, ...)) ,
(234)

331



so that(
∨
vi ◦ j(m)

N

)
(u) =

∨
vi

(
j

(m)
N (u)

)
=
∨
vi (vj0 ∧ vj1 ∧ vj2 ∧ ...)(

since j
(m)
N (u) = vj0 ∧ vj1 ∧ vj2 ∧ ... by (234)

)
=

{
0, if i /∈ {j0, j1, j2, ...} ;

(−1)j vj0 ∧ vj1 ∧ vj2 ∧ ... ∧ vjj−1
∧ vjj+1

∧ vjj+2
∧ ..., if i ∈ {j0, j1, j2, ...}(

by the definition of
∨
vi

)
,

where, in the case i ∈ {j0, j1, j2, ...}, we denote by j the integer k satisfying jk = i.

Since i /∈ {j0, j1, j2, ...}, this simplifies to
(
∨
vi ◦ j(m)

N

)
(u) = 0.

This is exactly what we needed to prove in order to complete the proof of (233). The
proof of (233) is thus finished.

e) Now it is the time to draw conclusions.

We have S =
∑
i∈Z

v̂i ⊗
∨
vi (by the definition of S). Thus,

S ◦
(
j

(m)
N ⊗ j(m)

N

)
=

(∑
i∈Z

v̂i ⊗
∨
vi

)
◦
(
j

(m)
N ⊗ j(m)

N

)
=
∑
i∈Z

(
v̂i ⊗

∨
vi

)
◦
(
j

(m)
N ⊗ j(m)

N

)
︸ ︷︷ ︸

=
(
v̂i◦j

(m)
N

)
⊗
(∨
vi◦j

(m)
N

)
=
∑
i∈Z

(
v̂i ◦ j(m)

N

)
⊗
(
∨
vi ◦ j(m)

N

)
=
−N−1∑
i=−∞

(
v̂i ◦ j(m)

N

)
︸ ︷︷ ︸

=0
(by (232))

⊗
(
∨
vi ◦ j(m)

N

)
+

N∑
i=−N

(
v̂i ◦ j(m)

N

)
︸ ︷︷ ︸
=j

(m+1)
N ◦v̂(N)

i
(by (227))

⊗
(
∨
vi ◦ j(m)

N

)
︸ ︷︷ ︸
=j

(m+1)
N ◦

∨

v
(N)
i

(by (228))

+
∞∑

i=N+1

(
v̂i ◦ j(m)

N

)
⊗
(
∨
vi ◦ j(m)

N

)
︸ ︷︷ ︸

=0
(by (233))

=
−N−1∑
i=−∞

0⊗
(
∨
vi ◦ j(m)

N

)
︸ ︷︷ ︸

=0

+
N∑

i=−N

(
j

(m+1)
N ◦ v̂(N)

i

)
⊗

(
j

(m+1)
N ◦

∨

v
(N)
i

)
︸ ︷︷ ︸

=
(
j
(m+1)
N ⊗j(m−1)

N

)
◦
(
v̂

(N)
i ⊗

∨

v
(N)
i

)
+

∞∑
i=N+1

(
v̂i ◦ j(m)

N

)
⊗ 0︸ ︷︷ ︸

=0

=
N∑

i=−N

(
j

(m+1)
N ⊗ j(m−1)

N

)
◦

(
v̂

(N)
i ⊗

∨

v
(N)
i

)
=
(
j

(m+1)
N ⊗ j(m−1)

N

)
◦

(
N∑

i=−N

v̂
(N)
i ⊗

∨

v
(N)
i

)
.

But since S
(N+m+1)
N =

N∑
i=−N

v̂
(N)
i ⊗

∨

v
(N)
i (by the definition of S

(N+m+1)
N ), this rewrites as

S◦
(
j

(m)
N ⊗ j(m)

N

)
=
(
j

(m+1)
N ⊗ j(m−1)

N

)
◦

(
N∑

i=−N

v̂
(N)
i ⊗

∨

v
(N)
i

)
︸ ︷︷ ︸

=S
(N+m+1)
N

=
(
j

(m+1)
N ⊗ j(m−1)

N

)
◦S(N+m+1)

N .

This proves Lemma 3.15.24.
Now we can finally come to proving Theorem 3.15.13:
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Proof of Theorem 3.15.13. Let %′ : M (∞) → End (F ⊗ F) be the action of the
monoid M (∞) on the tensor product of the M (∞)-module F with itself. Clearly,

%′ (M) = % (M)⊗ % (M) for every M ∈ M (∞)

(because this is how one defines the tensor product of two modules over a monoid).
(c) Let m ∈ Z. Let M ∈ M (∞). Let v ∈ F (m) and w ∈ F (m). We are going to

prove that (S ◦ %′ (M)) (v ⊗ w) = (%′ (M) ◦ S) (v ⊗ w).
Since M ∈ M (∞) =

⋃
N∈N

iN (M (VN)) (by Remark 3.15.17 (c)), there exists an R ∈ N

such that M ∈ iR (M (VR)). Consider this R.

Since v ∈ F (m) =
⋃

N∈N;
N≥R

j
(m)
N

(
∧N+m+1 (VN)

)
(by Proposition 3.15.20 (b), applied to

Q = R), there exists some T ∈ N such that T ≥ R and v ∈ j
(m)
T

(
∧T+m+1 (VT )

)
.

Consider this T .
Since w ∈ F (m) =

⋃
N∈N;
N≥T

j
(m)
N

(
∧N+m+1 (VN)

)
(by Proposition 3.15.20 (b), applied to

Q = T ), there exists some P ∈ N such that P ≥ T and w ∈ j
(m)
P

(
∧P+m+1 (VP )

)
.

Consider this P . There exists a w′ ∈ ∧P+m+1 (VP ) such that w = j
(m)
P (w′) (because

w ∈ j(m)
P

(
∧P+m+1 (VP )

)
). Consider this w′.

Applying Proposition 3.15.20 (a), we get j
(m)
0 (∧0+m+1 (V0)) ⊆ j

(m)
1 (∧1+m+1 (V1)) ⊆

j
(m)
2 (∧2+m+1 (V2)) ⊆ .... Thus, j

(m)
T

(
∧T+m+1 (VT )

)
⊆ j

(m)
P

(
∧P+m+1 (VP )

)
(since T ≤

P ), so that v ∈ j(m)
T

(
∧T+m+1 (VT )

)
⊆ j

(m)
P

(
∧P+m+1 (VP )

)
. Hence, there exists a v′ ∈

∧P+m+1 (VP ) such that v = j
(m)
P (v′). Consider this v′. Since v = j

(m)
P (v′) and w =

j
(m)
P (w′), we have

v ⊗ w = j
(m)
P (v′)⊗ j(m)

P (w′) =
(
j

(m)
P ⊗ j(m)

P

)
(v′ ⊗ w′) . (235)

Since R ≤ T ≤ P , we have iR (M (VR)) ⊆ iP (M (VP )) (since Remark 3.15.17
(b) yields i0 (M (V0)) ⊆ i1 (M (V1)) ⊆ i2 (M (V2)) ⊆ ...). Thus, M ∈ iR (M (VR)) ⊆
iP (M (VP )). In other words, there exists an A ∈ M (VP ) such that M = iP (A). Con-
sider this A.

In the following, we will write the action of M (∞) on F as a left action. In other
words, we will abbreviate (% (N))u by Nu, wherever N ∈ M (∞) and u ∈ F . Similarly,
we will write the action of M (∞) on F ⊗ F (this action is obtained by tensoring the
M (∞)-module F with itself); this action satisfies %′ (A) = % (A)⊗ % (A).

Let us also denote by % the action of the monoid M (VN) on ∧ (VN). Moreover, let
us denote by %′ the action of the monoid M (VN) on ∧ (VN) ⊗ ∧ (VN) (this action is
obtained by tensoring the M (VN)-module ∧ (VN) with itself).

We notice that every ` ∈ Z satisfies

(% (M)) ◦ j(`)
P = j

(`)
P ◦ (% (A)) . (236)
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173

Applying Lemma 3.15.24 to N = P , we obtain(
j

(m+1)
P ⊗ j(m−1)

P

)
◦ S(P+m+1)

P = S ◦
(
j

(m)
P ⊗ j(m)

P

)
. (237)

On the other hand, the map S
(P+m+1)
P is M (∞)-invariant (by Lemma 3.15.23 (c),

applied to N = P and k = P +m+ 1), so that

S
(P+m+1)
P ◦ (%′ (A)) = (%′ (A)) ◦ S(P+m+1)

P .

Since %′ (A) = % (A)⊗ % (A), this rewrites as

S
(P+m+1)
P ◦ (% (A)⊗ % (A)) = (% (A)⊗ % (A)) ◦ S(P+m+1)

P . (238)

Comparing

S ◦ (%′ (M))︸ ︷︷ ︸
=%(M)⊗%(M)

◦
(
j

(m)
P ⊗ j(m)

P

)
= S ◦ (% (M)⊗ % (M)) ◦

(
j

(m)
P ⊗ j(m)

P

)
︸ ︷︷ ︸

=
(

(%(M))◦j(m)
P

)
⊗
(

(%(M))◦j(m)
P

)

= S ◦


(

(% (M)) ◦ j(m)
P

)
︸ ︷︷ ︸

=j
(m)
P ◦(%(A))

(by (236), applied to `=m)

⊗
(

(% (M)) ◦ j(m)
P

)
︸ ︷︷ ︸

=j
(m)
P ◦(%(A))

(by (236), applied to `=m)


= S ◦

((
j

(m)
P ◦ (% (A))

)
⊗
(
j

(m)
P ◦ (% (A))

))
︸ ︷︷ ︸

=
(
j
(m)
P ⊗j(m)

P

)
◦(%(A)⊗%(A))

= S ◦
(
j

(m)
P ⊗ j(m)

P

)
︸ ︷︷ ︸

=
(
j
(m+1)
P ⊗j(m−1)

P

)
◦S(P+m+1)
P

(by (237))

◦ (% (A)⊗ % (A))

=
(
j

(m+1)
P ⊗ j(m−1)

P

)
◦ S(P+m+1)

P ◦ (% (A)⊗ % (A))︸ ︷︷ ︸
=(%(A)⊗%(A))◦S(P+m+1)

P
(by (238))

=
(
j

(m+1)
P ⊗ j(m−1)

P

)
◦ (% (A)⊗ % (A)) ◦ S(P+m+1)

P

173Proof of (236): Let ` ∈ Z. Every u ∈ F (`) satisfies(
(% (M)) ◦ j(`)

P

)
(u) = (% (M))

(
j

(`)
P (u)

)
= M︸︷︷︸

=iP (A)

·j(`)
P (u) = iP (A) · j(`)

P u = j
(`)
P (Au)︸ ︷︷ ︸

=(%(A))u

(by Proposition 3.15.19, applied to P and ` instead of N and m)

= j
(`)
P ((% (A))u) =

(
j

(`)
P ◦ (% (A))

)
(u) .

Thus, (% (M)) ◦ j(`)
P = j

(`)
P ◦ (% (A)), so that (236) is proven.
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with

(%′ (M))︸ ︷︷ ︸
=%(M)⊗%(M)

◦ S ◦
(
j

(m)
P ⊗ j(m)

P

)
︸ ︷︷ ︸

=
(
j
(m+1)
P ⊗j(m−1)

P

)
◦S(P+m+1)
P

(by (237))

= (% (M)⊗ % (M)) ◦
(
j

(m+1)
P ⊗ j(m−1)

P

)
︸ ︷︷ ︸

=
(

(%(M))◦j(m+1)
P

)
⊗
(

(%(M))◦j(m−1)
P

)
◦S(P+m+1)

P

=


(

(% (M)) ◦ j(m+1)
P

)
︸ ︷︷ ︸

=j
(m+1)
P ◦(%(A))

(by (236), applied to `=m+1)

⊗
(

(% (M)) ◦ j(m−1)
P

)
︸ ︷︷ ︸

=j
(m−1)
P ◦(%(A))

(by (236), applied to `=m−1)

 ◦ S(P+m+1)
P

=
((
j

(m+1)
P ◦ (% (A))

)
⊗
(
j

(m−1)
P ◦ (% (A))

))
︸ ︷︷ ︸

=
(
j
(m+1)
P ⊗j(m−1)

P

)
◦(%(A)⊗%(A))

◦S(P+m+1)
P

=
(
j

(m+1)
P ⊗ j(m−1)

P

)
◦ (% (A)⊗ % (A)) ◦ S(P+m+1)

P ,

we obtain

S ◦ (%′ (M)) ◦
(
j

(m)
P ⊗ j(m)

P

)
= (%′ (M)) ◦ S ◦

(
j

(m)
P ⊗ j(m)

P

)
. (239)

Now,

(S ◦ (%′ (M))) (v ⊗ w)︸ ︷︷ ︸
=
(
j
(m)
P ⊗j(m)

P

)
(v′⊗w′)

(by (235))

= (S ◦ (%′ (M)))
((
j

(m)
P ⊗ j(m)

P

)
(v′ ⊗ w′)

)
=
(
S ◦ (%′ (M)) ◦

(
j

(m)
P ⊗ j(m)

P

))
︸ ︷︷ ︸

=(%′(M))◦S◦
(
j
(m)
P ⊗j(m)

P

)
(by (239))

(v′ ⊗ w′)

=
(

(%′ (M)) ◦ S ◦
(
j

(m)
P ⊗ j(m)

P

))
(v′ ⊗ w′) = ((%′ (M)) ◦ S)

((
j

(m)
P ⊗ j(m)

P

)
(v′ ⊗ w′)

)
︸ ︷︷ ︸

=v⊗w
(by (235))

= ((%′ (M)) ◦ S) (v ⊗ w) .

Now forget that we fixed v and w. We thus have proven that (S ◦ %′ (M)) (v ⊗ w) =
(%′ (M) ◦ S) (v ⊗ w) for every v ∈ F (m) and w ∈ F (m). In other words, the two maps
S ◦ %′ (M) and %′ (M) ◦ S are equal to each other on every pure tensor in F (m)⊗F (m).
Thus, these two maps must be identical (on F (m)⊗F (m)). In other words, S ◦%′ (M) =
%′ (M) ◦ S.

Now forget that we fixed M . We have proven that S ◦ %′ (M) = %′ (M) ◦ S for every
M ∈ M (∞). In other words, S is M (∞)-invariant. This proves Theorem 3.15.13 (c).

(a) Theorem 3.15.13 (a) follows from Theorem 3.15.13 (c) since GL (∞) ⊆ M (∞).
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(b) =⇒: Assume that τ ∈ Ω. We want to prove that S (τ ⊗ τ) = 0.
Since Ω = GL (∞) · ψ0, we have τ ∈ Ω = GL (∞) · ψ0. In other words, there exists

A ∈ GL (∞) such that τ = Aψ0. Consider this A.
It is easy to see that

∨
vi (ψ0) = 0 for every integer i > 0. (240)

174 Also,
v̂i (ψ0) = 0 for every integer i ≤ 0. (241)

175

Since S =
∑
i∈Z

v̂i ⊗
∨
vi, we have

S (ψ0 ⊗ ψ0) =
∑
i∈Z

(
v̂i ⊗

∨
vi

)
(ψ0 ⊗ ψ0)︸ ︷︷ ︸

=v̂i(ψ0)⊗∨vi(ψ0)

=
∑
i∈Z

v̂i (ψ0)⊗ ∨
vi (ψ0)

=
∑
i∈Z;
i≤0

v̂i (ψ0)︸ ︷︷ ︸
=0

(by (241))

⊗ ∨vi (ψ0) +
∑
i∈Z;
i>0

v̂i (ψ0)⊗ ∨
vi (ψ0)︸ ︷︷ ︸

=0
(by (240))

=
∑
i∈Z;
i≤0

0⊗ ∨
vi (ψ0)

︸ ︷︷ ︸
=0

+
∑
i∈Z;
i>0

v̂i (ψ0)⊗ 0

︸ ︷︷ ︸
=0

= 0.

Now, since τ = Aψ0, we have τ ⊗ τ = Aψ0 ⊗ Aψ0 = A (ψ0 ⊗ ψ0), so that

S (τ ⊗ τ) = S (A (ψ0 ⊗ ψ0))

= A · S (ψ0 ⊗ ψ0)︸ ︷︷ ︸
=0

(since S is M (∞) -linear (by Theorem 3.15.13 (c)))

= A · 0 = 0.

174Proof of (240): Let i > 0 be an integer. Then,

∨
vi (ψ0) =

∨
vi (v0 ∧ v−1 ∧ v−2 ∧ ...) (since ψ0 = v0 ∧ v−1 ∧ v−2 ∧ ...)

=

{
0, if i /∈ {0,−1,−2, ...} ;

(−1)
j
v0 ∧ v−1 ∧ v−2 ∧ ... ∧ v−(j−1) ∧ v−(j+1) ∧ v−(j+2) ∧ ..., if i ∈ {0,−1,−2, ...}(

by the definition of
∨
vi

)
,

where, in the case i ∈ {0,−1,−2, ...}, we denote by j the integer k satisfying −k = i. Since

i /∈ {0,−1,−2, ...} (because i > 0), this simplifies to
∨
vi (ψ0) = 0. This proves (240).

175Proof of (241): Let i ≤ 0 be an integer. Since ψ0 = v0 ∧ v−1 ∧ v−2 ∧ ..., we have

v̂i (ψ0) = v̂i (v0 ∧ v−1 ∧ v−2 ∧ ...) = vi ∧ v0 ∧ v−1 ∧ v−2 ∧ ...

(by the definition of v̂i). But the semiinfinite wedge vi∧v0∧v−1∧v−2∧... contains the vector vi twice
(in fact, it contains the vector vi once in its very beginning, and once again in its v0∧v−1∧v−2∧ ...
part (since i ≤ 0)), and thus must equal 0 (since any semiinfinite wedge which contains a vector
more than once must equal 0). We thus have

v̂i (ψ0) = vi ∧ v0 ∧ v−1 ∧ v−2 ∧ ... = 0.

This proves (241).
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This proves the =⇒ direction of Theorem 3.15.13 (b).
⇐=: Let τ ∈ F (0) be such that S (τ ⊗ τ) = 0. We want to prove that τ ∈ Ω.

Since τ ∈ F (0) =
⋃

N∈N;
N≥0

j
(0)
N

(
∧N+0+1 (VN)

)
(by Proposition 3.15.20 (b), applied to m =

0 and Q = 0), there exists some N ∈ N such that N ≥ 0 and τ ∈ j(0)
N

(
∧N+0+1 (VN)

)
.

Consider this N .
Lemma 3.15.24 (applied to m = 0) yields(

j
(1)
N ⊗ j

(−1)
N

)
◦ S(N+1)

N = S ◦
(
j

(0)
N ⊗ j

(0)
N

)
. (242)

Recall that the map j
(m)
N is injective for every m ∈ Z. In particular, the maps j

(1)
N

and j
(−1)
N are injective, so that the map j

(1)
N ⊗ j

(−1)
N is also injective.

But τ ∈ j
(0)
N

(
∧N+0+1 (VN)

)
= j

(0)
N

(
∧N+1 (VN)

)
. In other words, there exists some

τ ′ ∈ ∧N+1 (VN) such that τ = j
(0)
N (τ ′). Consider this τ ′.

Since τ = j
(0)
N (τ ′), we have τ ⊗ τ = j

(0)
N (τ ′) ⊗ j(0)

N (τ ′) =
(
j

(0)
N ⊗ j

(0)
N

)
(τ ′ ⊗ τ ′), so

that

S (τ ⊗ τ) = S
((
j

(0)
N ⊗ j

(0)
N

)
(τ ′ ⊗ τ ′)

)
=
(
S ◦

(
j

(0)
N ⊗ j

(0)
N

))
︸ ︷︷ ︸
=
(
j
(1)
N ⊗j

(−1)
N

)
◦S(N+1)
N

(by (242))

(τ ′ ⊗ τ ′)

=
((
j

(1)
N ⊗ j

(−1)
N

)
◦ S(N+1)

N

)
(τ ′ ⊗ τ ′) =

(
j

(1)
N ⊗ j

(−1)
N

)(
S

(N+1)
N (τ ′ ⊗ τ ′)

)
.

Compared with S (τ ⊗ τ) = 0, this yields
(
j

(1)
N ⊗ j

(−1)
N

)(
S

(N+1)
N (τ ′ ⊗ τ ′)

)
= 0. Since

j
(1)
N ⊗j

(−1)
N is injective, this yields S

(N+1)
N (τ ′ ⊗ τ ′) = 0. But Lemma 3.15.23 (b) (applied

to N + 1 and τ ′ instead of k and τ) yields that τ ′ belongs to Ω
(N+1)
N if and only if

S
(N+1)
N (τ ′ ⊗ τ ′) = 0. Since we know that S

(N+1)
N (τ ′ ⊗ τ ′) = 0, we can thus conclude

that τ ′ belongs to Ω
(N+1)
N . Since Ω

(N+1)
N is the orbit of vN ∧vN−1∧ ...∧vN−(N+1)+1 under

the action of GL (VN) (this is how Ω
(N+1)
N was defined), this yields that τ ′ belongs to the

orbit of vN ∧vN−1∧ ...∧vN−(N+1)+1 under the action of GL (VN). In other words, there
exists some A ∈ GL (VN) such that τ ′ = A ·

(
vN ∧ vN−1 ∧ ... ∧ vN−(N+1)+1

)
. Consider

this A.

We have τ ′ = A ·

vN ∧ vN−1 ∧ ... ∧ vN−(N+1)+1︸ ︷︷ ︸
=v0

 = A · (vN ∧ vN−1 ∧ ... ∧ v0).

There clearly exists an invertible linear map B ∈ GL (VN) which sends vN , vN−1, ...,
v0 to v0, v−1, ..., v−N , respectively176. Pick such a B. Then, B ·(vN ∧ vN−1 ∧ ... ∧ v0) =
v0 ∧ v−1 ∧ ...∧ v−N (since B sends vN , vN−1, ..., v0 to v0, v−1, ..., v−N , respectively), so
that B−1 · (v0 ∧ v−1 ∧ ... ∧ v−N) = vN ∧ vN−1 ∧ ... ∧ v0 and thus

AB−1 · (v0 ∧ v−1 ∧ ... ∧ v−N)︸ ︷︷ ︸
=vN∧vN−1∧...∧v0

= A · (vN ∧ vN−1 ∧ ... ∧ v0) = τ ′.

176Proof. Since (vN , vN−1, ..., v−N ) is a basis of VN , there exists a linear map B ∈ End (VN ) which

sends vi to

{
vi−N , if i ≥ 0;
v−i, if i < 0

for every i ∈ {N,N − 1, ...,−N}. This linear map B is

invertible (since it permutes the elements of the basis (vN , vN−1, ..., v−N ) of VN ), and thus lies in
GL (VN ), and it clearly sends vN , vN−1, ..., v0 to v0, v−1, ..., v−N , respectively. Qed.
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Let M = iN (AB−1). Then, M = iN
(
AB−1

)︸ ︷︷ ︸
∈GL(VN )

∈ iN (GL (VN)) ⊆ GL (∞). Also,

j
(0)
N (v0 ∧ v−1 ∧ ... ∧ v−N) = v0 ∧ v−1 ∧ ... ∧ v−N ∧ v−N−1 ∧ v−N−2 ∧ v−N−3 ∧ ...(

by the definition of j
(0)
N

)
= v0 ∧ v−1 ∧ v−2 ∧ ... = ψ0.

Now,

M︸︷︷︸
=iN (AB−1)

· ψ0︸︷︷︸
=j

(0)
N (v0∧v−1∧...∧v−N )

= iN
(
AB−1

)
· j(0)
N (v0 ∧ v−1 ∧ ... ∧ v−N) = j

(0)
N

AB−1 · (v0 ∧ v−1 ∧ ... ∧ v−N)︸ ︷︷ ︸
=τ ′


(
by Proposition 3.15.19, applied to 0, AB−1 and v0 ∧ v−1 ∧ ... ∧ v−N instead of m, A and u

)
= j

(0)
N (τ ′) = τ.

Thus, τ = M︸︷︷︸
∈GL(∞)

·ψ0 ∈ GL (∞) · ψ0 = Ω. This proves the ⇐= direction of Theorem

3.15.13 (b).

3.15.4. The semiinfinite Grassmannian

Denote Ω�C× by Gr; this is called the semiinfinite Grassmannian.
Think of the space V as C [t, t−1] (by identifying vi with t−i). Then, 〈v0, v−1, v−2, ...〉 =

C [t].
Exercise: Then, Gr is the set{

E ⊆ V subspace |
(

E ⊇ tNC [t] for sufficiently large N , and
dim

(
E�tNC [t]

)
= N for sufficiently large N

)}
.

177 (Note that when the relations E ⊇ tNC [t] and dim
(
E�tNC [t]

)
= N hold for some

N , it is easy to see that they also hold for all greater N .)
We can also replace C [t, t−1] with C ((t)) (the formal Laurent series), and then

Gr =

{
E ⊆ V subspace |

(
E ⊇ tNC [[t]] for sufficiently large N , and

dim
(
E�tNC [[t]]

)
= N for sufficiently large N

)}
.

For any E ∈ Gr, there exists some N ∈ N such that tNC [t] ⊆ E ⊆ t−NC [t], so that
the quotient E�tNC [t] ⊆ t−NC [t]�tNC [t] ∼= C2N .

Thus, Gr =
⋃
N≥1

Gr (N, 2N) (a nested union). (By a variation of this construction,

Gr =
⋃
N≥1

⋃
M≥1

Gr (N,N +M).)

177Here, “subspace” means “C-vector subspace”.
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3.15.5. The preimage of the Grassmannian under the Boson-Fermion
correspondence: the Hirota bilinear relations

Now, how do we actually use these things to find solutions to the Kadomtsev-Petviashvili
equations and other integrable systems?

By Theorem 3.15.13 (b), the elements of Ω are exactly the nonzero elements τ of F (0)

satisfying S (τ ⊗ τ) = 0. We might wonder what happens to these elements under the
Boson-Fermion correspondence σ: how can their preimages under σ be described? In
other words, can we find a necessary and sufficient condition for a polynomial τ ∈ B(0)

to satisfy σ (τ) ∈ Ω (without using σ in this very condition)?
Recall the power series X (u) =

∑
i∈Z

ξiu
i and X∗ (u) =

∑
i∈Z

ξ∗i u
−i defined in Definition

3.11.1. These power series “act” on the fermionic space F . The word “act” has been
put in inverted commas here because it is not the power series but their coefficients
which really act on F , whereas the power series themselves only map elements of F to
elements of F ((u)). This, actually, is an important observation:

every ω ∈ F satisfies X (u)ω ∈ F ((u)) and X∗ (u)ω ∈ F ((u)) . (243)

178

Let τ ∈ B(0) be arbitrary. We want to find an equivalent form for the equation
S (σ (τ)⊗ σ (τ)) = 0 which does not refer to σ.

Let us give two definitions first:

Definition 3.15.25. Let A and B be two C-vector spaces, and let u be a symbol.
Then, the map

A ((u))×B ((u))→ (A⊗B) ((u)) ,(∑
i∈Z

aiu
i,
∑
i∈Z

biu
i

)
7→
∑
i∈Z

(∑
j∈Z

aj ⊗ bi−j

)
ui

(where all ai lie in A and all bi lie in B)

is well-defined (in fact, it is easy to see that for any Laurent series
∑
i∈Z

aiu
i ∈ A ((u))

with all ai lying in A, any Laurent series
∑
i∈Z

biu
i ∈ B ((u)) with all bi lying in B, and

any integer i ∈ Z, the sum
∑
j∈Z

aj ⊗ bi−j has only finitely many addends and vanishes

if i is small enough) and C-bilinear. Hence, it induces a C-linear map

A ((u))⊗B ((u))→ (A⊗B) ((u)) ,(∑
i∈Z

aiu
i

)
⊗

(∑
i∈Z

biu
i

)
7→
∑
i∈Z

(∑
j∈Z

aj ⊗ bi−j

)
ui

(where all ai lie in A and all bi lie in B) .

This map will be denoted by ΩA,B,u.

178Proof of (243): Let ω ∈ F . Since X (u) =
∑
i∈Z

ξiu
i, we have X (u)ω =

∑
i∈Z

ξi (ω)ui ∈ F ((u)),

because every sufficiently small i ∈ Z satisfies ξi (ω) = 0 (this is easy to see). On the other hand,
since X∗ (u) =

∑
i∈Z

ξ∗i u
−i, we have X∗ (u) =

∑
i∈Z

ξ∗i (ω)u−i ∈ F ((u)), since every sufficiently high

i ∈ Z satisfies ξ∗i (ω) = 0 (this, again, is easy to see). This proves (243).
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More can be said about the map ΩA,B,u: It factors as a composition of the canon-
ical projection A ((u)) ⊗ B ((u)) → A ((u)) ⊗C((u)) B ((u)) with a C ((u))-linear map
A ((u))⊗C((u))B ((u))→ (A⊗B) ((u)). We won’t need this in the following. What we
will need is the following observation:

Remark 3.15.26. Let A and B be two C-algebras, and let u be a symbol. Then,
the map ΩA,B,u is A⊗B-linear.

Definition 3.15.27. Let A be a C-vector space, and let u be a symbol. Then, CTu :
A ((u))→ A will denote the map which sends every Laurent series

∑
i∈Z

aiu
i ∈ A ((u))

(where all ai lie in A) to a0 ∈ A. The image of a Laurent series α under CTu will
be called the constant term of α. The map CTu is clearly A-linear.

This notion of “constant term” we have thus defined for Laurent series is, of course,
completely analogous to the one used for polynomials and formal power series. The
label CTu is an abbreviation for “constant term with respect to the variable u”.

Now, for every ω ∈ F (0) and ρ ∈ F (0), we have

S (ω ⊗ ρ) = CTu (ΩF ,F ,u (X (u)ω ⊗X∗ (u) ρ)) . (244)

179

Now, let τ ∈ B(0). Due to (243) (applied to ω = σ (τ)), we have X (u)σ (τ) ∈ F ((u))
and X∗ (u)σ (τ) ∈ F ((u)).

179Proof of (244): Let ω ∈ F (0) and ρ ∈ F (0). Since X (u) =
∑
i∈Z

ξiu
i and X∗ (u) =

∑
i∈Z

ξ∗i u
−i =∑

i∈Z
ξ∗−iu

i (here, we substituted −i for i in the sum), we have

X (u)ω ⊗X∗ (u) ρ =

(∑
i∈Z

ξiu
i

)
ω ⊗

(∑
i∈Z

ξ∗−iu
i

)
ρ =

(∑
i∈Z

ξi (ω)ui

)
⊗

(∑
i∈Z

ξ∗−i (ρ)ui

)
,

so that

ΩF,F,u (X (u)ω ⊗X∗ (u) ρ)

= ΩF,F,u

((∑
i∈Z

ξi (ω)ui

)
⊗

(∑
i∈Z

ξ∗−i (ρ)ui

))
=
∑
i∈Z

∑
j∈Z

ξj (ω)⊗ ξ∗−(i−j) (ρ)

ui

(by the definition of ΩF,F,u). Thus (by the definition of CTu) we have

CTu (ΩF,F,u (X (u)ω ⊗X∗ (u) ρ))

=
∑
j∈Z

ξj (ω)⊗ ξ∗−(0−j) (ρ) =
∑
j∈Z

ξj (ω)⊗ ξ∗j (ρ) =
∑
i∈Z

ξi︸︷︷︸
=v̂i

(ω)⊗ ξ∗i︸︷︷︸
=
∨
vi

(ρ)

(here, we substituted i for j in the sum)

=
∑
i∈Z

v̂i (ω)⊗ ∨vi (ρ) =

(∑
i∈Z

v̂i ⊗
∨
vi

)
︸ ︷︷ ︸

=S
(because this is how S was defined)

(ω ⊗ ρ) = S (ω ⊗ ρ) ,

so that (244) is proven.
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Now, let us abuse notation and denote by σ the map from B ((u)) to F ((u)) which
is canonically induced by the Boson-Fermion correspondence σ : B → F . Then, of
course, this new map σ : B ((u))→ F ((u)) is also an isomorphism. Then, the equalities
Γ (u) = σ−1◦X (u)◦σ and Γ∗ (u) = σ−1◦X∗ (u)◦σ (from Definition 3.11.1) are not just
abbreviations for termwise equalities (as we explained them back in Definition 3.11.1),
but also hold literally (if we interpret σ to mean our isomorphism σ : B ((u))→ F ((u))
rather than the original Boson-Fermion correspondence σ : B → F). As a consequence,
σ ◦ Γ (u) = X (u) ◦ σ and σ ◦ Γ∗ (u) = X∗ (u) ◦ σ. Thus,

σ (Γ (u) τ) = (σ ◦ Γ (u))︸ ︷︷ ︸
=X(u)◦σ

τ = (X (u) ◦ σ) τ = X (u)σ (τ)

and
σ (Γ∗ (u) τ) = (σ ◦ Γ∗ (u))︸ ︷︷ ︸

=X∗(u)◦σ

τ = (X∗ (u) ◦ σ) τ = X∗ (u)σ (τ) ,

so that

X (u)σ (τ)︸ ︷︷ ︸
=σ(Γ(u)τ)

⊗X∗ (u)σ (τ)︸ ︷︷ ︸
=σ(Γ∗(u)τ)

= σ (Γ (u) τ)⊗ σ (Γ∗ (u) τ) = (σ ⊗ σ) (Γ (u) τ ⊗ Γ∗ (u) τ) .

Now,

S (σ (τ)⊗ σ (τ)) = CTu

ΩF ,F ,u (X (u)σ (τ)⊗X∗ (u)σ (τ))︸ ︷︷ ︸
=(σ⊗σ)(Γ(u)τ⊗Γ∗(u)τ)


(by (244), applied to ω = σ (τ) and ρ = σ (τ))

= CTu (ΩF ,F ,u ((σ ⊗ σ) (Γ (u) τ ⊗ Γ∗ (u) τ)))

= (CTu ◦ΩF ,F ,u ◦ (σ ⊗ σ))︸ ︷︷ ︸
=(σ⊗σ)◦CTu ◦ΩB,B,u

(since CTu and ΩA,B,u are functorial)

(Γ (u) τ ⊗ Γ∗ (u) τ)

= ((σ ⊗ σ) ◦ CTu ◦ΩB,B,u) (Γ (u) τ ⊗ Γ∗ (u) τ)

= (σ ⊗ σ) (CTu (ΩB,B,u (Γ (u) τ ⊗ Γ∗ (u) τ))) .

Therefore, the equation S (σ (τ)⊗ σ (τ)) = 0 is equivalent to
(σ ⊗ σ) (CTu (ΩB,B,u (Γ (u) τ ⊗ Γ∗ (u) τ))) = 0. This latter equation, in turn, is equiva-
lent to CTu (ΩB,B,u (Γ (u) τ ⊗ Γ∗ (u) τ)) = 0 (since σ⊗σ is an isomorphism180). This, in
turn, is equivalent to (z−1 ⊗ z) · CTu (ΩB,B,u (Γ (u) τ ⊗ Γ∗ (u) τ)) = 0 (because z−1 ⊗ z

180because σ is an isomorphism
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is an invertible element of B ⊗ B). Since(
z−1 ⊗ z

)
· CTu (ΩB,B,u (Γ (u) τ ⊗ Γ∗ (u) τ))

= CTu


(
z−1 ⊗ z

)
· ΩB,B,u (Γ (u) τ ⊗ Γ∗ (u) τ)︸ ︷︷ ︸

=ΩB,B,u((z−1⊗z)(Γ(u)τ⊗Γ∗(u)τ))
(since ΩB,B,u is B⊗B-linear)


(since CTu is B ⊗ B-linear (by Remark 3.15.26))

= CTu

ΩB,B,u
((
z−1 ⊗ z

)
(Γ (u) τ ⊗ Γ∗ (u) τ)

)︸ ︷︷ ︸
=z−1Γ(u)τ⊗zΓ∗(u)τ


= CTu

(
ΩB,B,u

(
z−1Γ (u) τ ⊗ zΓ∗ (u) τ

))
,

this is equivalent to CTu (ΩB,B,u (z−1Γ (u) τ ⊗ zΓ∗ (u) τ)) = 0. Let us combine what we
have proven: We have proven the equivalence of assertions

(S (σ (τ)⊗ σ (τ)) = 0) ⇐⇒
(
CTu

(
ΩB,B,u

(
z−1Γ (u) τ ⊗ zΓ∗ (u) τ

))
= 0
)
. (245)

Now, let us simplify CTu (ΩB,B,u (z−1Γ (u) τ ⊗ zΓ∗ (u) τ)).

For this, we recall that B(0) = F̃ = C [x1, x2, x3, ...]. Thus, the elements of B(0) are
polynomials in the countably many indeterminates x1, x2, x3, .... We are going to
interpret the elements of B(0)⊗B(0) as polynomials in “twice as many” indeterminates;
by this we mean the following:

Convention 3.15.28. Let (x′1, x
′
2, x
′
3, ...) and (x′′1, x

′′
2, x

′′
3, ...) be two countable fam-

ilies of new symbols. We denote the family (x′1, x
′
2, x
′
3, ...) by x′, and we denote

the family (x′′1, x
′′
2, x

′′
3, ...) by x′′. Thus, if P ∈ C [x1, x2, x3, ...], we will denote by

P (x′) the polynomial P (x′1, x
′
2, x
′
3, ...), and we will denote by P (x′′) the polynomial

P (x′′1, x
′′
2, x

′′
3, ...).

The C-linear map

B(0) ⊗ B(0) → C [x′1, x
′′
1, x

′
2, x
′′
2, x

′
3, x
′′
3, ...] ,

P ⊗Q 7→ P (x′)Q (x′′)

is a C-algebra isomorphism. By means of this isomorphism, we are going to identify
B(0) ⊗ B(0) with C [x′1, x

′′
1, x

′
2, x
′′
2, x

′
3, x
′′
3, ...].

Another convention:

Convention 3.15.29. For any P ∈ B(0) ((u)) and any family (y1, y2, y3, ...) of pair-
wise commuting elements of a C-algebra A, we define an element P (y1, y2, y3, ...) of
A ((u)) as follows: Write P in the form P =

∑
i∈Z

Pi · ui for some Pi ∈ B(0), and set

P (y1, y2, y3, ...) =
∑
i∈Z

Pi (y1, y2, y3, ...) · ui. (In words, P (y1, y2, y3, ...) is defined by

substituting y1, y2, y3, ... for the variables x1, x2, x3, ... in P while keeping the variable
u unchanged).
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Now, let us notice that:

Lemma 3.15.30. For any P ∈ B(0) ((u)) and Q ∈ B(0) ((u)), we have

ΩB,B,u (P ⊗Q) = P (x′) ·Q (x′′)

(where P (x′) and Q (x′′) are to be understood according to Convention 3.15.29 and
Convention 3.15.28, and where B(0)⊗B(0) is identified with C [x′1, x

′′
1, x

′
2, x
′′
2, x

′
3, x
′′
3, ...]

according to Convention 3.15.28).

Proof of Lemma 3.15.30. Let P ∈ B(0) ((u)) and Q ∈ B(0) ((u)). Write P in the
form P =

∑
i∈Z

Pi · ui for some Pi ∈ B(0). Write Q in the form Q =
∑
i∈Z

Qi · ui for some

Qi ∈ B(0). Since P =
∑
i∈Z

Pi · ui and Q =
∑
i∈Z

Qi · ui, we have

ΩB,B,u (P ⊗Q) = ΩB,B,u

((∑
i∈Z

Pi · ui
)
⊗

(∑
i∈Z

Qi · ui
))

=
∑
i∈Z


∑
j∈Z

Pj ⊗Qi−j︸ ︷︷ ︸
=Pj(x

′)·Qi−j(x′′)
(due to our identification of

B(0)⊗B(0) with
C[x′1,x′′1 ,x′2,x′′2 ,x′3,x′′3 ,...])


ui (by the definition of ΩB,B,u)

=
∑
i∈Z

(∑
j∈Z

Pj (x′) ·Qi−j (x′′)

)
ui

and

P (x′) ·Q (x′′) =

(∑
i∈Z

Pi · ui
)

(x′)︸ ︷︷ ︸
=
∑
i∈Z

Pi(x
′)·ui=

∑
j∈Z

Pj(x
′)·uj

(here, we renamed i as j)

·

(∑
i∈Z

Qi · ui
)

(x′′)︸ ︷︷ ︸
=
∑
i∈Z

Qi(x′′)·ui

=

(∑
j∈Z

Pj (x′) · uj
)
·

(∑
i∈Z

Qi (x
′′) · ui

)
=
∑
j∈Z

∑
i∈Z

Pj (x′) · uj ·Qi (x
′′) · ui

=
∑
j∈Z

∑
i∈Z

Pj (x′) · uj ·Qi−j (x′′) · ui−j︸ ︷︷ ︸
=Qi−j(x′′)·ui

(here, we substituted i− j for i in the second sum)

=
∑
j∈Z

∑
i∈Z

Pj (x′) ·Qi−j (x′′) · ui =
∑
i∈Z

(∑
j∈Z

Pj (x′) ·Qi−j (x′′)

)
ui = ΩB,B,u (P ⊗Q) .

This proves Lemma 3.15.30.
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Now, Theorem 3.11.2 (applied to m = 0) yields

Γ (u) = uz exp

(∑
j>0

a−j
j
uj

)
· exp

(
−
∑
j>0

aj
j
u−j

)
and (246)

Γ∗ (u) = z−1 exp

(
−
∑
j>0

a−j
j
uj

)
· exp

(∑
j>0

aj
j
u−j

)
(247)

on B(0). Thus,

z−1Γ (u) τ = z−1uz exp

(∑
j>0

a−j
j
uj

)
· exp

(
−
∑
j>0

aj
j
u−j

)
τ (by (246))

= u exp

(∑
j>0

a−j
j
uj

)
· exp

(
−
∑
j>0

aj
j
u−j

)
τ

= u exp

(∑
j>0

jxj
j
uj

)
· exp

−∑
j>0

(
∂

∂xj

)
j

u−j

 τ

 since aj acts as
∂

∂xj
on F̃ for every j > 0,

and since a−j acts as jxj on F̃ for every j > 0


= u exp

(∑
j>0

xju
j

)
· exp

(
−
∑
j>0

1

j

∂

∂xj
u−j

)
τ,

so that

(
z−1Γ (u) τ

)
(x′) =

(
u exp

(∑
j>0

xju
j

)
· exp

(
−
∑
j>0

1

j

∂

∂xj
u−j

)
τ

)
(x′)

= u exp

(∑
j>0

x′ju
j

)
· exp

(
−
∑
j>0

1

j

∂

∂x′j
u−j

)
(τ (x′)) . (248)
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Also,

zΓ∗ (u) τ = zz−1 exp

(
−
∑
j>0

a−j
j
uj

)
· exp

(∑
j>0

aj
j
u−j

)
τ (by (247))

= exp

(
−
∑
j>0

a−j
j
uj

)
· exp

(∑
j>0

aj
j
u−j

)
τ

= exp

(
−
∑
j>0

jxj
j
uj

)
· exp

∑
j>0

(
∂

∂xj

)
j

u−j

 τ

 since aj acts as
∂

∂xj
on F̃ for every j > 0, and

since a−j acts as jxj on F̃ for every j > 0


= exp

(
−
∑
j>0

xju
j

)
· exp

(∑
j>0

1

j

∂

∂xj
u−j

)
τ,

so that

(zΓ∗ (u) τ) (x′′) =

(
exp

(
−
∑
j>0

xju
j

)
· exp

(∑
j>0

1

j

∂

∂xj
u−j

)
τ

)
(x′′)

= exp

(
−
∑
j>0

x′′ju
j

)
· exp

(∑
j>0

1

j

∂

∂x′′j
u−j

)
(τ (x′′)) . (249)

Now,

ΩB,B,u
(
z−1Γ (u) τ ⊗ zΓ∗ (u) τ

)
=
(
z−1Γ (u) τ

)
(x′) · (zΓ∗ (u) τ) (x′′)(

by Lemma 3.15.30, applied to P = z−1Γ (u) τ and Q = zΓ∗ (u) τ
)

= u exp

(∑
j>0

x′ju
j

)
· exp

(
−
∑
j>0

1

j

∂

∂x′j
u−j

)
(τ (x′))

· exp

(
−
∑
j>0

x′′ju
j

)
· exp

(∑
j>0

1

j

∂

∂x′′j
u−j

)
(τ (x′′))

(by (248) and (249))

= u exp

(∑
j>0

x′ju
j

)
· exp

(
−
∑
j>0

x′′ju
j

)

· exp

(
−
∑
j>0

1

j

∂

∂x′j
u−j

)
(τ (x′)) · exp

(∑
j>0

1

j

∂

∂x′′j
u−j

)
(τ (x′′)) . (250)

We are going to rewrite the right hand side of this equality. First of all, notice that
Theorem 3.1.4 (applied to R =

(
B(0) ⊗ B(0)

)
((u)),
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I =
(
closure of the ideal of R generated by x′j and x′′j with j ranging over all positive integers

)
,

α =
∑
j>0

x′ju
j and β = −

∑
j>0

x′′ju
j) yields

exp

(∑
j>0

x′ju
j +

(
−
∑
j>0

x′′ju
j

))
= exp

(∑
j>0

x′ju
j

)
· exp

(
−
∑
j>0

x′′ju
j

)
.

Thus,

exp

(∑
j>0

x′ju
j

)
· exp

(
−
∑
j>0

x′′ju
j

)
= exp

(∑
j>0

x′ju
j +

(
−
∑
j>0

x′′ju
j

))
︸ ︷︷ ︸

=
∑
j>0

uj(x′j−x′′j )

= exp

(∑
j>0

uj
(
x′j − x′′j

))
. (251)

Now, let us recall a very easy fact: If φ is an endomorphism of a vector space
V , and v is a vector in V such that φv = 0, then (expφ) v is well-defined (in the

sense that the power series
∑
n≥0

1

n!
φnv converges) and satisfies (expφ) v = v. Applying

this fact to V =
(
B(0) ⊗ B(0)

)
[u, u−1], φ =

∑
j>0

1

j

∂

∂x′′j
u−j and v = τ (x′), we see that

exp

(∑
j>0

1

j

∂

∂x′′j
u−j

)
(τ (x′)) is well-defined and satisfies

exp

(∑
j>0

1

j

∂

∂x′′j
u−j

)
(τ (x′)) = τ (x′) (252)

(since

(∑
j>0

1

j

∂

∂x′′j
u−j

)
(τ (x′)) =

∑
j>0

1

j

∂

∂x′′j
(τ (x′))︸ ︷︷ ︸
=0

u−j = 0). The same argument (with

x′j and x′′j switching places) shows that exp

(∑
j>0

1

j

∂

∂x′j
u−j

)
(τ (x′′)) is well-defined and

satisfies

exp

(∑
j>0

1

j

∂

∂x′j
u−j

)
(τ (x′′)) = τ (x′′) . (253)

Now,

exp

(
−
∑
j>0

u−j

j

(
∂

∂x′j
− ∂

∂x′′j

))
= exp

((
−
∑
j>0

1

j

∂

∂x′j
u−j

)
+
∑
j>0

1

j

∂

∂x′′j
u−j

)

= exp

(
−
∑
j>0

1

j

∂

∂x′j
u−j

)
◦ exp

(∑
j>0

1

j

∂

∂x′′j
u−j

)
(254)
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181 and similarly

exp

(
−
∑
j>0

u−j

j

(
∂

∂x′j
− ∂

∂x′′j

))
= exp

(∑
j>0

1

j

∂

∂x′′j
u−j

)
◦ exp

(
−
∑
j>0

1

j

∂

∂x′j
u−j

)
.

(255)

But since −
∑
j>0

u−j

j

(
∂

∂x′j
− ∂

∂x′′j

)
is a derivation (from

(
B(0) ⊗ B(0)

)
[u, u−1] to

(
B(0) ⊗ B(0)

)
[u, u−1]), its exponential exp

(
−
∑
j>0

u−j

j

(
∂

∂x′j
− ∂

∂x′′j

))
is a C-algebra

homomorphism (since exponentials of derivations are C-algebra homomorphisms), so

181Here, the last equality sign follows from Theorem 3.1.4, applied to

R =

 closure of the C
[
u, u−1

]
-subalgebra of EndC[u,u−1]

((
B(0) ⊗ B(0)

) [
u, u−1

])
generated by

∂

∂x′j
and

∂

∂x′′j
with j ranging over all positive integers

 ,

I =

 closure of the ideal of R generated by
∂

∂x′j
and

∂

∂x′′j
with

j ranging over all positive integers

 ,

α = −
∑
j>0

1

j

∂

∂x′j
u−j , and β =

∑
j>0

1

j

∂

∂x′′j
u−j .
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that

exp

(
−
∑
j>0

u−j

j

(
∂

∂x′j
− ∂

∂x′′j

))
(τ (x′) τ (x′′))

= exp

(
−
∑
j>0

u−j

j

(
∂

∂x′j
− ∂

∂x′′j

))
︸ ︷︷ ︸

=exp

− ∑
j>0

1

j

∂

∂x′j
u−j

◦exp

∑
j>0

1

j

∂

∂x′′j
u−j


(by (254))

(τ (x′))

· exp

(
−
∑
j>0

u−j

j

(
∂

∂x′j
− ∂

∂x′′j

))
︸ ︷︷ ︸

=exp

∑
j>0

1

j

∂

∂x′′j
u−j

◦exp

− ∑
j>0

1

j

∂

∂x′j
u−j


(by (255))

(τ (x′′))

=

(
exp

(
−
∑
j>0

1

j

∂

∂x′j
u−j

)
◦ exp

(∑
j>0

1

j

∂

∂x′′j
u−j

))
(τ (x′))

·

(
exp

(∑
j>0

1

j

∂

∂x′′j
u−j

)
◦ exp

(
−
∑
j>0

1

j

∂

∂x′j
u−j

))
(τ (x′′))

= exp

(
−
∑
j>0

1

j

∂

∂x′j
u−j

)(
exp

(∑
j>0

1

j

∂

∂x′′j
u−j

)
(τ (x′))

)
︸ ︷︷ ︸

=τ(x′)
(by (252))

· exp

(∑
j>0

1

j

∂

∂x′′j
u−j

)(
exp

(
−
∑
j>0

1

j

∂

∂x′j
u−j

)
(τ (x′′))

)
︸ ︷︷ ︸

=τ(x′′)
(by (253))

= exp

(
−
∑
j>0

1

j

∂

∂x′j
u−j

)
(τ (x′)) · exp

(∑
j>0

1

j

∂

∂x′′j
u−j

)
(τ (x′′)) .
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Hence, (250) becomes

ΩB,B,u
(
z−1Γ (u) τ ⊗ zΓ∗ (u) τ

)
= u exp

(∑
j>0

x′ju
j

)
· exp

(
−
∑
j>0

x′′ju
j

)
︸ ︷︷ ︸

=exp

(∑
j>0

uj(x′j−x′′j )
)

(by (251))

· exp

(
−
∑
j>0

1

j

∂

∂x′j
u−j

)
(τ (x′)) · exp

(∑
j>0

1

j

∂

∂x′′j
u−j

)
(τ (x′′))︸ ︷︷ ︸

=exp

− ∑
j>0

u−j

j

 ∂

∂x′j
−
∂

∂x′′j

(τ(x′)τ(x′′))

= u exp

(∑
j>0

uj
(
x′j − x′′j

))
· exp

(
−
∑
j>0

u−j

j

(
∂

∂x′j
− ∂

∂x′′j

))
(τ (x′) τ (x′′)) . (256)

Thus, (245) rewrites as

(S (σ (τ)⊗ σ (τ)) = 0)

⇐⇒

(
CTu

(
u exp

(∑
j>0

uj
(
x′j − x′′j

))
· exp

(
−
∑
j>0

u−j

j

(
∂

∂x′j
− ∂

∂x′′j

))
(τ (x′) τ (x′′))

)
= 0

)
.

(257)

This already gives a criterion for a τ ∈ B(0) to satisfy σ (τ) ∈ Ω, but it is yet a rather
messy one. We are going to simplify it in the following. First, we do a substitution of
variables:

Convention 3.15.31. Let (y1, y2, y3, ...) be a sequence of new symbols.
We identify the C-algebra C [x1, y1, x2, y2, x3, y3, ...] with the C-algebra
C [x′1, x

′′
1, x

′
2, x
′′
2, x

′
3, x
′′
3, ...] = B(0) ⊗ B(0) by the following substitution:

x′j = xj − yj for every j > 0;

x′′j = xj + yj for every j > 0.

If we define the sum and the difference of two sequences by componentwise addition
resp. subtraction, then this rewrites as follows:

x′ = x− y;

x′′ = x+ y.

It is now easy to see that

x′j − x′′j = −2yj for every j > 0,
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and
∂

∂x′j
− ∂

∂x′′j
= − ∂

∂yj
for every j > 0

(where
∂

∂x′j
and

∂

∂x′′j
mean differentiation over the variables x′j and x′′j in the polynomial

ring C [x′1, x
′′
1, x

′
2, x
′′
2, x

′
3, x
′′
3, ...], whereas

∂

∂yj
means differentiation over the variable yj

in the polynomial ring C [x1, y1, x2, y2, x3, y3, ...]). As a consequence,

u exp

∑
j>0

uj
(
x′j − x′′j

)︸ ︷︷ ︸
=−2yj

 · exp


−
∑
j>0

u−j

j

(
∂

∂x′j
− ∂

∂x′′j

)
︸ ︷︷ ︸

=−
∂

∂yj


τ
 x′︸︷︷︸

=x−y

 τ

 x′′︸︷︷︸
=x+y



= u exp

(
−2
∑
j>0

ujyj

)
· exp

(∑
j>0

u−j

j

∂

∂yj

)
(τ (x− y) τ (x+ y)) .

Hence, (257) rewrites as

(S (σ (τ)⊗ σ (τ)) = 0)

⇐⇒

(
CTu

(
u exp

(
−2
∑
j>0

ujyj

)
· exp

(∑
j>0

u−j

j

∂

∂yj

)
(τ (x− y) τ (x+ y))

)
= 0

)
.

(258)

To simplify this even further, a new notation is needed:

Definition 3.15.32. LetK be a commutative ring. Let (x1, x2, x3, ...), (z1, z2, z3, ...),
and (w1, w2, w3, ...) be three disjoint families of indeterminates. Denote by x the
family (x1, x2, x3, ...), and denote by z the family (z1, z2, z3, ...).

(a) For any polynomial r ∈ K [x1, x2, x3, ..., z1, z2, z3, ...], let r |z=0 denote the
polynomial in K [x1, x2, x3, ...] obtained by substituting (0, 0, 0, ...) for (z1, z2, z3, ...)
in P .

(b) Consider the differential operators
∂

∂z1

,
∂

∂z2

,
∂

∂z3

, ... on

K [x1, x2, x3, ..., z1, z2, z3, ...]. For any power series P ∈ K [[w1, w2, w3, ...]], let

P (∂z) mean the value of P when applied to the family

(
∂

∂z1

,
∂

∂z2

,
∂

∂z3

, ...

)
(that

is, the result of substituting
∂

∂zj
for each wj in P ). This value is a well-defined

differential operator on K [x1, x2, x3, ..., z1, z2, z3, ...] (due to Remark 3.15.33 below).
(c) For any power series P ∈ K [[w1, w2, w3, ...]] and any two polynomials

f ∈ K [x1, x2, x3, ...] and g ∈ K [x1, x2, x3, ...], define a polynomial A (P, f, g) ∈
K [x1, x2, x3, ...] by

A (P, f, g) = (P (∂z) (f (x− z) g (x+ z))) |z=0 .
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Remark 3.15.33. Let K be a commutative ring. Let (x1, x2, x3, ...), (z1, z2, z3, ...),
and (w1, w2, w3, ...) be three disjoint families of indeterminates. Let P ∈
K [[w1, w2, w3, ...]] be a power series. Then, if we apply the power series P

to the family

(
∂

∂z1

,
∂

∂z2

,
∂

∂z3

, ...

)
, we obtain a well-defined endomorphism of

K [x1, x2, x3, ..., z1, z2, z3, ...].

Proof of Remark 3.15.33. Let N{1,2,3,...}fin be defined as in Convention 2.2.23. Write
the power series P in the form

P =
∑

(i1,i2,i3,...)∈N{1,2,3,...}fin

λ(i1,i2,i3,...)w
i1
1 w

i2
2 w

i3
3 ...

for λ(i1,i2,i3,...) ∈ K. Then, if we apply the power series P to the family

(
∂

∂z1

,
∂

∂z2

,
∂

∂z3

, ...

)
,

we obtain ∑
(i1,i2,i3,...)∈N{1,2,3,...}fin

λ(i1,i2,i3,...)

(
∂

∂z1

)i1 ( ∂

∂z2

)i2 ( ∂

∂z3

)i3
....

In order to prove that this is a well-defined endomorphism ofK [x1, x2, x3, ..., z1, z2, z3, ...],
we must prove that for every r ∈ K [x1, x2, x3, ..., z1, z2, z3, ...], the sum

∑
(i1,i2,i3,...)∈N{1,2,3,...}fin

λ(i1,i2,i3,...)

((
∂

∂z1

)i1 ( ∂

∂z2

)i2 ( ∂

∂z3

)i3
...

)
r

is well-defined, i. e., has only finitely many nonzero addends. But this is clear, because

only finitely many (i1, i2, i3, ...) ∈ N{1,2,3,...}fin satisfy

((
∂

∂z1

)i1 ( ∂

∂z2

)i2 ( ∂

∂z3

)i3
...

)
r 6=

0 182. Hence, we have proven that the sum
∑

(i1,i2,i3,...)∈N{1,2,3,...}fin

λ(i1,i2,i3,...)

(
∂

∂z1

)i1 ( ∂

∂z2

)i2 ( ∂

∂z3

)i3
...

is a well-defined endomorphism of K [x1, x2, x3, ..., z1, z2, z3, ...]. Since this sum is the re-

sult of applying the power series P to the family

(
∂

∂z1

,
∂

∂z2

,
∂

∂z3

, ...

)
, we thus conclude

that applying the power series P to the family

(
∂

∂z1

,
∂

∂z2

,
∂

∂z3

, ...

)
yields a well-defined

endomorphism of K [x1, x2, x3, ..., z1, z2, z3, ...]. Remark 3.15.33 is proven.
Example: If P (w) = w1 (the first variable), then

A (P, f, g) =

(
∂

∂z1

(f (x− z) g (x+ z))

)
|z=0= − ∂f

∂x1

g +
∂g

∂x1

f.

Lemma 3.15.34. For any three polynomials P, f, g, we have A (P, f, g) =
A (P−, g, f), where P− (w) = P (−w).

182This is because r is a polynomial, so that only finitely many variables occur in r, and the degrees
of the monomials of r are bounded from above.
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Corollary 3.15.35. For any two polynomials P and f , we have A (P, f, f) = 0 if
P is odd.

This is clear from the definition.
We now state the so-called Hirota bilinear relations, which are a simplified version

of (258):

Theorem 3.15.36 (Hirota bilinear relations). Let τ ∈ B(0) be a nonzero vector.
Let (y1, y2, y3, ...) and (w1, w2, w3, ...) be two families of new symbols. Let w̃ denote

the sequence
(w1

1
,
w2

2
,
w3

3
, ...
)

. Define the elementary Schur polynomials Sk as in

Definition 3.12.2.
Then, σ (τ) ∈ Ω if and only if

A

(
∞∑
j=0

Sj (−2y)Sj+1 (w̃) exp

(∑
s>0

ysws

)
, τ, τ

)
= 0, (259)

where the term A

(
∞∑
j=0

Sj (−2y)Sj+1 (w̃) exp

(∑
s>0

ysws

)
, τ, τ

)
is to be inter-

preted by applying Definition 3.15.32 (c) to K = C [[y1, y2, y3, ...]] (since
∞∑
j=0

Sj (−2y)Sj+1 (w̃) exp

(∑
s>0

ysws

)
∈ (C [[y1, y2, y3, ...]]) [[w1, w2, w3, ...]] and τ ∈

B(0) = C [x1, x2, x3, ...] ⊆ (C [[y1, y2, y3, ...]]) [x1, x2, x3, ...]).

Before we prove this, we need a simple lemma about polynomials:

Lemma 3.15.37. Let K be a commutative Q-algebra. Let (y1, y2, y3, ...) and
(z1, z2, z3, ...) be two sequences of new symbols. Denote the sequence (y1, y2, y3, ...)

by y. Denote the sequence (z1, z2, z3, ...) by z. Denote by ∂̃y the sequence(
1

1

∂

∂y1

,
1

2

∂

∂y2

,
1

3

∂

∂y3

, ...

)
of endomorphisms of (K [[y1, y2, y3, ...]]) [z1, z2, z3, ...].

Denote by ∂̃z the sequence

(
1

1

∂

∂z1

,
1

2

∂

∂z2

,
1

3

∂

∂z3

, ...

)
of endomorphisms of

(K [[y1, y2, y3, ...]]) [z1, z2, z3, ...]. Let P and Q be two elements of K [w1, w2, w3, ...]
(where (w1, w2, w3, ...) is a further sequence of new symbols). Then,

Q
(
∂̃y

)
(P (y + z)) = Q

(
∂̃z

)
(P (y + z)) .

Proof of Lemma 3.15.37. LetD be theK-subalgebra of End ((K [[y1, y2, y3, ...]]) [z1, z2, z3, ...])

generated by
∂

∂y1

,
∂

∂y2

,
∂

∂y3

, ...,
∂

∂z1

,
∂

∂z2

,
∂

∂z3

, .... Then, clearly, D is a commutative K-

algebra (since its generators commute), and all elements of the sequences ∂̃y and ∂̃z lie

in D (since ∂̃y =

(
1

1

∂

∂y1

,
1

2

∂

∂y2

,
1

3

∂

∂y3

, ...

)
and ∂̃z =

(
1

1

∂

∂z1

,
1

2

∂

∂z2

,
1

3

∂

∂z3

, ...

)
).

Let I be the ideal of D generated by
∂

∂yi
− ∂

∂zi
with i ranging over the positive

integers. Then,
∂

∂yi
− ∂

∂zi
∈ I for every positive integer i. Hence, every positive integer
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i satisfies
1

i

∂

∂yi
≡ 1

i

∂

∂zi
mod I (since

1

i

∂

∂yi
− 1

i

∂

∂zi
=

1

i

(
∂

∂yi
− ∂

∂zi

)
︸ ︷︷ ︸

∈I

∈ I). In other

words, for every positive integer i, the i-th element of the sequence ∂̃y is congruent to

the i-th element of the sequence ∂̃z modulo I (since the i-th element of the sequence

∂̃y is
1

i

∂

∂yi
, while the i-th element of the sequence ∂̃z is

1

i

∂

∂zi
). Thus, each element of

the sequence ∂̃y is congruent to the corresponding element of the sequence ∂̃z modulo

I. Hence, Q
(
∂̃y

)
≡ Q

(
∂̃z

)
mod I (since Q is a polynomial, and I is an ideal). Hence,

Q
(
∂̃y

)
−Q

(
∂̃z

)
∈ I

=

(
ideal of D generated by

∂

∂yi
− ∂

∂zi
with i ranging over the positive integers

)
.

In other words, Q
(
∂̃y

)
− Q

(
∂̃z

)
is a D-linear combinations of terms of the form

∂

∂yi
− ∂

∂zi
with i ranging over the positive integers. Thus, we can write Q

(
∂̃y

)
−Q

(
∂̃z

)
in the form Q

(
∂̃y

)
− Q

(
∂̃z

)
=
∑
i>0

di ◦
(
∂

∂yi
− ∂

∂zi

)
, where each di is an element of

D, and all but finitely many i > 0 satisfy di = 0. Consider these di.
But it is easy to see that

every positive integer i satisfies

(
∂

∂yi
− ∂

∂zi

)
(P (y + z)) = 0. (260)
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183 Thus,

Q
(
∂̃y

)
(P (y + z))−Q

(
∂̃z

)
(P (y + z))

=
(
Q
(
∂̃y

)
−Q

(
∂̃z

))
︸ ︷︷ ︸

=
∑
i>0

di◦

 ∂

∂yi
−
∂

∂zi


(P (y + z)) =

∑
i>0

(
di ◦

(
∂

∂yi
− ∂

∂zi

))
(P (y + z))

=
∑
i>0

di

((
∂

∂yi
− ∂

∂zi

)
(P (y + z))

)
︸ ︷︷ ︸

=0
(by (260))

=
∑
i>0

di (0)︸ ︷︷ ︸
=0

= 0.

In other words, Q
(
∂̃y

)
(P (y + z)) = Q

(
∂̃z

)
(P (y + z)). This proves Lemma 3.15.37.

Proof of Theorem 3.15.36. We introduce a new family of indeterminates (z1, z2, z3, ...).

183Proof of (260): Let i be a positive integer. Let us identify C [w1, w2, w3, ...]
with (C [w1, w2, ..., wi−1, wi+1, wi+2, ...]) [wi]. Then, P ∈ C [w1, w2, w3, ...] =
(C [w1, w2, ..., wi−1, wi+1, wi+2, ...]) [wi], so that we can write P as a polynomial in the vari-
able wi over the ring C [w1, w2, ..., wi−1, wi+1, wi+2, ...]. In other words, we can write P in the
form P =

∑
n∈N

pnw
n
i , where every n ∈ N satisfies pn ∈ C [w1, w2, ..., wi−1, wi+1, wi+2, ...] and all

but finitely many n ∈ N satisfy pn = 0. Consider these pn.
Let n ∈ N be arbitrary. Consider pn ∈ C [w1, w2, ..., wi−1, wi+1, wi+2, ...] as an element

of C [w1, w2, w3, ...] (by means of the canonical embedding C [w1, w2, ..., wi−1, wi+1, wi+2, ...] ⊆
C [w1, w2, w3, ...]). Then, pn is a polynomial in which the variable wi does not occur. Hence,

pn (y + z) is a polynomial in which neither of the variables yi and zi occur. Thus,
∂

∂yi
(pn (y + z)) =

0 and
∂

∂zi
(pn (y + z)) = 0.

On the other hand, it is very easy to check that
∂

∂yi
(yi + zi)

n
=

∂

∂zi
(yi + zi)

n
(in fact, this is

obvious in the case when n = 0, and in every other case follows from
∂

∂yi
(yi + zi)

n
= n (yi + zi)

n−1

and
∂

∂zi
(yi + zi)

n
= n (yi + zi)

n−1
). Now, by the Leibniz rule,

∂

∂yi
(pn (y + z) · (yi + zi)

n
) =

(
∂

∂yi
(pn (y + z))

)
︸ ︷︷ ︸

=0=
∂

∂zi
(pn(y+z))

· (yi + zi)
n

+ pn (y + z) · ∂
∂yi

(yi + zi)
n︸ ︷︷ ︸

=
∂

∂zi
(yi+zi)

n

=

(
∂

∂zi
(pn (y + z))

)
· (yi + zi)

n
+ pn (y + z) · ∂

∂zi
(yi + zi)

n
.

Compared with

∂

∂zi
(pn (y + z) · (yi + zi)

n
) =

(
∂

∂zi
(pn (y + z))

)
· (yi + zi)

n
+ pn (y + z) · ∂

∂zi
(yi + zi)

n

(this follows from the Leibniz rule), this yields

∂

∂yi
(pn (y + z) · (yi + zi)

n
) =

∂

∂zi
(pn (y + z) · (yi + zi)

n
) . (261)

Now, forget that we fixed n ∈ N. We have shown that every n ∈ N satisfies (261). Now, since
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Denote this family by z. (This z has nothing to do with the element z of B. It is best

to forget about B here, and only think about B(0) = C [x1, x2, x3, ...].) Denote by ∂̃z

the sequence

(
1

1

∂

∂z1

,
1

2

∂

∂z2

,
1

3

∂

∂z3

, ...

)
.

Denote by ∂̃y the sequence

(
1

1

∂

∂y1

,
1

2

∂

∂y2

,
1

3

∂

∂y3

, ...

)
. Also, let −2y be the sequence

(−2y1,−2y2,−2y3, ...). Then,

∞∑
k=0

Sk (−2y)uk =
∑
k≥0

Sk (−2y)uk = exp

(∑
i≥1

−2yiu
i

)
(by (145), with − 2y substituted for x and u substituted for z)

= exp

(∑
j≥1

−2yju
j

)
= exp

(
−2
∑
j>0

ujyj

)
(262)

and

∞∑
k=0

Sk

(
∂̃y

)
u−k =

∑
k≥0

Sk

(
∂̃y

)
u−k = exp

(∑
i≥1

1

i

∂

∂yi
u−i

)
(

by (145), with ∂̃y substituted for x and u−1 substituted for z
)

= exp

(∑
j≥1

1

j

∂

∂yj
u−j

)
= exp

(∑
j>0

u−j

j

∂

∂yj

)
. (263)

Applying Lemma 3.14.1 toK = (C [[y1, y2, y3, ...]]) [x1, x2, x3, ...] and P = τ (x+ z) τ (x− z),
we obtain

exp

(∑
s>0

ys
∂

∂zs

)
(τ (x+ z) τ (x− z)) = τ (x+ y + z) τ (x− y − z) . (264)

P =
∑
n∈N

pnw
n
i , we have P (y + z) =

∑
n∈N

pn (y + z) · (yi + zi)
n
, so that

(
∂

∂yi
− ∂

∂zi

)
(P (y + z))

=

(
∂

∂yi
− ∂

∂zi

)(∑
n∈N

pn (y + z) · (yi + zi)
n

)

=
∑
n∈N

∂

∂yi
(pn (y + z) · (yi + zi)

n
)︸ ︷︷ ︸

=
∂

∂zi
(pn(y+z)·(yi+zi)n)

(by (261))

−
∑
n∈N

∂

∂zi
(pn (y + z) · (yi + zi)

n
)

=
∑
n∈N

∂

∂zi
(pn (y + z) · (yi + zi)

n
)−

∑
n∈N

∂

∂zi
(pn (y + z) · (yi + zi)

n
) = 0.

This proves (260).
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Now,

CTu

(
u exp

(
−2
∑
j>0

ujyj

)
exp

(∑
j>0

u−j

j

∂

∂yj

)
(τ (x− y) τ (x+ y))

)

= CTu


u exp

(
−2
∑
j>0

ujyj

)
︸ ︷︷ ︸

=
∞∑
k=0

Sk(−2y)uk

(by (262))

exp

(∑
j>0

u−j

j

∂

∂yj

)
︸ ︷︷ ︸

=
∞∑
k=0

Sk(∂̃y)u−k

(by (263))

(τ (x+ y + z) τ (x− y − z))


|z=0

= CTu

(
u

(
∞∑
k=0

Sk (−2y)uk

)(
∞∑
k=0

Sk

(
∂̃y

)
u−k

)
(τ (x+ y + z) τ (x− y − z))

)
|z=0

=
∞∑
j=0

Sj (−2y) Sj+1

(
∂̃y

)
(τ (x+ y + z) τ (x− y − z))︸ ︷︷ ︸

=Sj+1(∂̃z)(τ(x+y+z)τ(x−y−z))
(by Lemma 3.15.37, applied to

K=C[x1,x2,x3,...], P=τ(x+w)τ(x−w) and Q=Sj+1(w))

|z=0

=
∞∑
j=0

Sj (−2y)Sj+1

(
∂̃z

)
(τ (x+ y + z) τ (x− y − z))︸ ︷︷ ︸
=exp

∑
s>0

ys
∂

∂zs

(τ(x+z)τ(x−z))

(by (264))

|z=0

=
∞∑
j=0

Sj (−2y)Sj+1

(
∂̃z

)
exp

(∑
s>0

ys
∂

∂zs

)
(τ (x+ z) τ (x− z)) |z=0 .

Compared with the fact that (by the definition ofA

(
∞∑
j=0

Sj (−2y)Sj+1 (w̃) exp

(∑
s>0

ysws

)
, τ, τ

)
)

we have

A

(
∞∑
j=0

Sj (−2y)Sj+1 (w̃) exp

(∑
s>0

ysws

)
, τ, τ

)

=

(
∞∑
j=0

Sj (−2y)Sj+1 (w̃) exp

(∑
s>0

ysws

))
(∂z)︸ ︷︷ ︸

=
∞∑
j=0

Sj(−2y)Sj+1(∂̃z) exp

∑
s>0

ys
∂

∂zs



(τ (x+ z) τ (x− z)) |z=0

=
∞∑
j=0

Sj (−2y)Sj+1

(
∂̃z

)
exp

(∑
s>0

ys
∂

∂zs

)
(τ (x+ z) τ (x− z)) |z=0,
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this yields

CTu

(
u exp

(
−2
∑
j>0

ujyj

)
exp

(∑
j>0

u−j

j

∂

∂yj

)
(τ (x− y) τ (x+ y))

)

= A

(
∞∑
j=0

Sj (−2y)Sj+1 (w̃) exp

(∑
s>0

ysws

)
, τ, τ

)
.

Hence, (258) rewrites as follows:

(S (σ (τ)⊗ σ (τ)) = 0) ⇐⇒

(
A

(
∞∑
j=0

Sj (−2y)Sj+1 (w̃) exp

(∑
s>0

ysws

)
, τ, τ

)
= 0

)
.

Since S (σ (τ)⊗ σ (τ)) = 0 is equivalent to σ (τ) ∈ Ω (by Theorem 3.15.13 (b), applied
to σ (τ) instead of τ), this rewrites as follows:

(σ (τ) ∈ Ω) ⇐⇒

(
A

(
∞∑
j=0

Sj (−2y)Sj+1 (w̃) exp

(∑
s>0

ysws

)
, τ, τ

)
= 0

)
.

This proves Theorem 3.15.36.
Theorem 3.15.36 tells us that a nonzero τ ∈ B(0) satisfies σ (τ) ∈ Ω if and only if

it satisfies the equation (259). The left hand side of this equation is a power series
with respect to the variables y1, y2, y3, .... A power series is 0 if and only if each of its
coefficients is 0. Hence, the equation (259) holds if and only if for each monomial in
y1, y2, y3, ..., the coefficient of the left hand side of (259) in front of this monomial is 0.
Thus, the equation (259) is equivalent to a system of infinitely many equations,
one for each monomial in y1, y2, y3, .... We don’t know of a good way to describe these
equations (without using the variables y1, y2, y3, ...), but we can describe the equations
corresponding to the simplest among our monomials: the monomials of degree 0 and
those of degree 1.

In the following, we consider (C [[y1, y2, y3, ...]]) [x1, x2, x3, ...] as a subring of
(C [x1, x2, x3, ...]) [[y1, y2, y3, ...]]. For every commutative ring K, every element T of
K [[y1, y2, y3, ...]] and any monomial184 m in the variables y1, y2, y3, ..., we denote by
T [m] the coefficient of the monomial m in the power series T . (For example, (exp (x2y2)) [y3

2] =
x3

2

6
; note that K = C [x1, x2, x3, ...] in this example, so that x2 counts as a constant!)

For every P ∈ (C [[y1, y2, y3, ...]]) [[w1, w2, w3, ...]] and every monomial m in the vari-
ables y1, y2, y3, ..., we have

(A (P, τ, τ)) [m] = A (P [m] , τ, τ) . (265)

185

184When we say “monomial”, we mean a monomial without coefficient.
185Proof. We have P =

∑
n is a monomial
in y1,y2,y3,...

P [n] · n. Since the map

(C [[y1, y2, y3, ...]]) [[w1, w2, w3, ...]]→ (C [[y1, y2, y3, ...]]) [x1, x2, x3, ...] ,

Q 7→ A (Q, τ, τ)
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Now, let us describe the equations that are obtained from (259) by taking coefficients
before monomials of degree 0 and 1:

Monomials of degree 0: The only monomial of degree 0 in y1, y2, y3, ... is 1. We
have(
A

(
∞∑
j=0

Sj (−2y)Sj+1 (w̃) exp

(∑
s>0

ysws

)
, τ, τ

))
[1]

= A


(
∞∑
j=0

Sj (−2y)Sj+1 (w̃) exp

(∑
s>0

ysws

))
[1]︸ ︷︷ ︸

=S1(w̃)=w1

, τ, τ


(

by (265), applied to P =
∞∑
j=0

Sj (−2y)Sj+1 (w̃) exp

(∑
s>0

ysws

)
and m = 1

)
= A (w1, τ, τ) = 0 (by Corollary 3.15.35, since w1 is odd) .

Therefore, if we take coefficients with respect to the monomial 1 in the equation (265),
we obtain a tautology.

Monomials of degree 1: This will be more interesting. The monomials of degree

is C [[y1, y2, y3, ...]]-linear, we have

A

 ∑
n is a monomial
in y1,y2,y3,...

P [n] · n, τ, τ

 =
∑

n is a monomial
in y1,y2,y3,...

A (P [n] , τ, τ) · n.

But P =
∑

n is a monomial
in y1,y2,y3,...

P [n] · n shows that

A (P, τ, τ) = A

 ∑
n is a monomial
in y1,y2,y3,...

P [n] · n, τ, τ

 =
∑

n is a monomial
in y1,y2,y3,...

A (P [n] , τ, τ) · n,

so that the coefficient of A (P, τ, τ) before m equals A (P [m] , τ, τ). Since we denoted the coefficient
of A (P, τ, τ) before m by (A (P, τ, τ)) [m], this rewrites as (A (P, τ, τ)) [m] = A (P [m] , τ, τ), qed.
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1 in y1, y2, y3, ... are y1, y2, y3, .... Let r be a positive integer. We have(
A

(
∞∑
j=0

Sj (−2y)Sj+1 (w̃) exp

(∑
s>0

ysws

)
, τ, τ

))
[yr]

= A


(
∞∑
j=0

Sj (−2y)Sj+1 (w̃) exp

(∑
s>0

ysws

))
[yr]︸ ︷︷ ︸

=−2Sr+1(w̃)+w1wr
(by easy computations)

, τ, τ


(

by (265), applied to P =
∞∑
j=0

Sj (−2y)Sj+1 (w̃) exp

(∑
s>0

ysws

)
and m = yr

)
= A (−2Sr+1 (w̃) + w1wr, τ, τ) . (266)

Denote the polynomial −2Sr+1 (w̃) + w1wr by Tr (w). Then, (266) rewrites as(
A

(
∞∑
j=0

Sj (−2y)Sj+1 (w̃) exp

(∑
s>0

ysws

)
, τ, τ

))
[yr] = A (Tr (w) , τ, τ) . (267)

We have T1 (w) = w2, T2 (w) = −w
3
1

3
− 2w3

3
and T3 (w) =

w1w3

3
−w4

2
−w

2
2

4
−w

4
1

12
−w

2
1w2

2
.

Since T1 (w) and T2 (w) are odd, we have A (T1 (w) , τ, τ) = 0 and A (T2 (w) , τ, τ) = 0
(by Corollary 3.15.35). Therefore, taking coefficients with respect to the monomials y1

and y2 in the equation (265) yields tautologies. However, T3 (w) is not odd. Applying
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(267) to r = 3, we obtain(
A

(
∞∑
j=0

Sj (−2y)Sj+1 (w̃) exp

(∑
s>0

ysws

)
, τ, τ

))
[y3]

= A (T3 (w) , τ, τ) = A

(
w1w3

3
− w4

2
− w2

2

4
− w4

1

12
− w2

1w2

2
, τ, τ

)
= A

(
w1w3

3
− w2

2

4
− w4

1

12
, τ, τ

)
+ A

(
−w4

2
− w2

1w2

2
, τ, τ

)
︸ ︷︷ ︸

=0
(by Corollary 3.15.35, since

−
w4

2
−
w2

1w2

2
is odd)

= A

(
w1w3

3
− w2

2

4
− w4

1

12
, τ, τ

)
=




∂

∂z1

∂

∂z3

3
−

(
∂

∂z2

)2

4
−

(
∂

∂z1

)4

12

 (τ (x− z) τ (x+ z))

 |z=0

(
by the definition of A

(
w1w3

3
− w2

2

4
− w4

1

12
, τ, τ

))
=

1

12

((
4
∂

∂z1

∂

∂z3

− 3

(
∂

∂z2

)2

−
(
∂

∂z1

)4
)

(τ (x− z) τ (x+ z))

)
|z=0

=
1

12

((
4
∂

∂w1

∂

∂w3

− 3

(
∂

∂w2

)2

−
(

∂

∂w1

)4
)

(τ (x− w) τ (x+ w))

)
|w=0 .

Since
∂

∂wj
= ∂wj for every j, we rewrite this as

(
A

(
∞∑
j=0

Sj (−2y)Sj+1 (w̃) exp

(∑
s>0

ysws

)
, τ, τ

))
[y3]

=
1

12

((
4∂w1∂w3 − 3∂2

w2
− ∂4

w1

)
(τ (x− w) τ (x+ w))

)
|w=0 .

Hence, taking coefficients with respect to the monomial y3 in the equation (259), we
obtain

1

12

((
4∂w1∂w3 − 3∂2

w2
− ∂4

w1

)
(τ (x− w) τ (x+ w))

)
|w=0= 0.

In other words, (
∂4
w1

+ 3∂2
w2
− 4∂w1∂w3

)
(τ (x− w) τ (x+ w)) |w=0= 0. (268)

This does not yet look like a PDE in any usual form. We will now transform it into
one.

We make the substitution x1 = x, x2 = y, x3 = t, xm = cm for m ≥ 4. Here, x, y,
t and cm (for m ≥ 4) are new symbols (in particularly, x and y no longer denote the
sequences (x1, x2, x3, ...) and (y1, y2, y3, ...)). Let u = 2∂2

x log τ .
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Proposition 3.15.38. The polynomial τ (x, y, t, c4, c5, ...) satisfies (268) if and only
if the function u satisfies the KP equation

3

4
∂2
yu = ∂x

(
∂tu−

3

2
u∂xu−

1

4
∂3
xu

)
(where c4, c5, c6, ... are considered as constants).

Proof of Proposition 3.15.38. Optional homework exercise.
Thus, we know that any element τ of Ω gives rise to a solution of the KP equation

(namely, the solution is 2∂2
x log (σ−1 (τ))). Two elements of Ω differing from each other

by a scalar factor yield one and the same solution of the KP equation. Hence, any
element of Gr gives rise to a solution of the KP equation. Since we know how to
produce elements of Gr, we thus know how to produce solutions of the KP equation!

This does not give all solutions, and in fact we cannot even hope to find all solutions
explicitly (since they depend on boundary conditions, and these can be arbitrarily
nonexplicit), but we will use this to find a dense subset of them (in an appropriate
sense).

The KP equation is not the KdV (Korteweg-de Vries) equation; but if we have a
solution of the KP equation which does not depend on y, then this solution satisfies

∂tu−
3

2
u∂xu−

1

4
∂3
xu = const, and with some work it gives rise to a solution of the KdV

equation (under appropriate decay-at-infinity conditions).
The equations corresponding to the coefficients of the monomials y4, y5, ... in (265)

correspond to the KP hierarchy of higher-order PDEs. There is no point in writing
them up explicitly; they become more and more complicated.

Corollary 3.15.39. Let λ be a partition. Then, 2∂2
x log (Sλ (x, y, t, c4, c5, ...)) is a

solution of the KP equation (and of the whole KP hierarchy), where c4, c5, c6, ...
are considered as constants.

Proof of Corollary 3.15.39. Write λ in the form λ = (λ0, λ1, λ2, ...). Let (i0, i1, i2, ...)
be the sequence defined by ik = λk − k for every k ∈ N. Then, (i0, i1, i2, ...) is a
0-degression, and we know that the elementary semiinfinite wedge vi0 ∧ vi1 ∧ vi2 ∧ ...
is in Ω. But Theorem 3.12.11 yields σ−1 (vi0 ∧ vi1 ∧ vi2 ∧ ...) = Sλ (x) (since λ =
(i0 + 0, i1 + 1, i2 + 2, ...)), so that σ (Sλ (x)) = vi0∧vi1∧vi2∧... ∈ Ω. Hence, the function
2∂2

x log (Sλ (x, y, t, c4, c5, ...)) satisfies the KP equation (and the whole KP hierarchy).
This proves Corollary 3.15.39.

3.15.6. [unfinished] n-soliton solutions of KdV

Now we will construct other solutions of the KdV equations (which are called multi-
soliton solutions).

We will identify the A-modules B(0) and F (0) along the Boson-Fermion correspon-
dence σ.

Definition 3.15.40. Define a quantum field Γ (u, v) ∈
(
End

(
B(0)

))
[[u, u−1, v, v−1]]

by

Γ (u, v) = exp

(∑
j≥1

uj − vj

j
a−j

)
exp

(
−
∑
j≥1

u−j − v−j

j
aj

)
. (269)
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It is possible to rewrite the equality (269) in the following form:

Γ (u, v) = u : Γ (u) Γ∗ (v) : . (270)

However, before we can make sense of this equality (270), we need to explain what we
mean by : Γ (u) Γ∗ (v) : . Theorem 3.11.2 (applied to m = −1 and to m = 0) yields
that

Γ (u) = z exp

(∑
j>0

a−j
j
uj

)
· exp

(
−
∑
j>0

aj
j
u−j

)
on B(−1) (271)

and

Γ∗ (u) = z−1 exp

(
−
∑
j>0

a−j
j
uj

)
· exp

(∑
j>0

aj
j
u−j

)
on B(0). (272)

Renaming u as v in (272), we obtain

Γ∗ (v) = z−1 exp

(
−
∑
j>0

a−j
j
vj

)
· exp

(∑
j>0

aj
j
v−j

)
on B(0). (273)

If we now extend the “normal ordered product” which we have defined on U (A)
to a “normal ordered multiplication map” U (A) [z] [[u, u−1]] × U (A) [z] [[v, v−1]] →
U (A) [z] [[u, u−1, v, v−1]]

[...] [This isn’t really that easy to formalize, and this formalization is wrong.]
[According to Etingof, one can put these power series on a firm footing by defining

a series γ ∈ (Hom (A,B)) [[u, u−1]] (where A and B are two graded vector spaces)
to be “sampled-rational” if every homogeneous w ∈ A and every homogeneous f ∈
B∗ satisfy 〈f, γw〉 ∈ C (u). Sampled-rational power series form a torsion-free C (u)-
module186. And limits are defined sample-wise (see below). But it probably needs some
explanations how C (u) is embedded in C [[u, u−1]] (or what it means for an element of
C [[u, u−1]] to be a rational function).]

We will use the following notation, generalizing Definition 3.15.25:

Definition 3.15.41. Let A and B be two C-vector spaces, and let (u1, u2, ..., u`)
be a sequence of distinct symbols. For every `-tuple i ∈ Z`, define a monomial
ui ∈ C ((u1, u2, ..., u`)) by ui = ui11 u

i2
2 ...u

i`
` , where the `-tuple i is written in the form

i = (i1, i2, ..., i`). Then, the map

A ((u1, u2, ..., u`))×B ((u1, u2, ..., u`))→ (A⊗B) ((u1, u2, ..., u`)) ,(∑
i∈Z`

aiu
i,
∑
i∈Z`

biu
i

)
7→
∑
i∈Z`

∑
j∈Z`

aj ⊗ bi−j

ui

(where all ai lie in A and all bi lie in B)

186But I don’t think the composition of any two sampled-rational power series is sampled-rational.
Ideas?
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is well-defined (in fact, it is easy to see that for any Laurent series
∑
i∈Z`

aiu
i ∈

A ((u1, u2, ..., u`)) with all ai lying in A, any Laurent series
∑
i∈Z`

biu
i ∈

B ((u1, u2, ..., u`)) with all bi lying in B, and any `-tuple i ∈ Z`, the sum
∑
j∈Z`

aj⊗ bi−j

has only finitely many addends and vanishes if any coordinate of i is small enough)
and C-bilinear. Hence, it induces a C-linear map

A ((u1, u2, ..., u`))⊗B ((u1, u2, ..., u`))→ (A⊗B) ((u1, u2, ..., u`)) ,(∑
i∈Z`

aiu
i

)
⊗

(∑
i∈Z`

biu
i

)
7→
∑
i∈Z`

∑
j∈Z`

aj ⊗ bi−j

ui

(where all ai lie in A and all bi lie in B) .

This map will be denoted by ΩA,B,(u1,u2,...,u`). Clearly, when ` = 1, this map ΩA,B,(u1)

is identical with the map ΩA,B,u1 defined in Definition 3.15.25.

Proposition 3.15.42. If τ ∈ Ω and a ∈ C, then

(1 + aΓ (u, v)) τ ∈ Ωu,v,

where
Ωu,v =

{
τ ∈ B(0) ((u, v)) | S (τ ⊗ τ) = 0

}
.

(Here, the S really means not the map S : B(0)⊗B(0) → B(1)⊗B(−1) itself, but rather
the map

(
B(0) ⊗ B(0)

)
((u, v))→

(
B(1) ⊗ B(−1)

)
((u, v)) it induces. And τ ⊗ τ means

not τ ⊗ τ ∈ B(0) ⊗ B(0) but rather ΩB(0),B(0),(u,v) (τ ⊗ τ) ∈
(
B(0) ⊗ B(0)

)
((u, v)).)

Corollary 3.15.43. For any a(1), a(2), ..., a(n) ∈ C, we have(
1 + a(1)Γ (u1, v1)

) (
1 + a(2)Γ (u2, v2)

)
...
(
1 + a(n)Γ (un, vn)

)
1

∈ Ω

(in fact, in an appropriate Ωu1,v1,u2,v2,... rather than in Ω itself).

Idea of proof of Proposition. We will prove Γ (u, v)2 = 0, but we will have to make
sense of a term like Γ (u, v)2 in order to define this. Thus, 1 + aΓ (u, v) will become
exp (aΓ (u, v)).

We will formalize this proof later.
But first, here is the punchline of this:

Proposition 3.15.44. Let a(1), a(2), ..., a(n) ∈ C. If τ =(
1 + a(1)Γ (u1, v1)

) (
1 + a(2)Γ (u2, v2)

)
...
(
1 + a(n)Γ (un, vn)

)
1, then 2∂2

x log τ is
given by a convergent series and defines a solution of KP depending on the
parameters a(i), ui and vi.

This solution is called an n-soliton solution.
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For n = 1, we have

τ = (1 + aΓ (u, v)) 1 = 1+a exp
(
(u− v)x+

(
u2 − v2

)
y +

(
u3 − v3

)
t+
(
u4 − v4

)
c4 + ...

)
.

Absorb the ci parameters into a single constant c, which can be absorbed into a. So
we get

τ = 1 + a exp
(
(u− v)x+

(
u2 − v2

)
y +

(
u3 − v3

)
t
)
.

This τ satisfies

2∂2
x log τ =

(u− v)2

2

1

cosh2

(
1

2
((u− v)x+ (u2 − v2) y + (u3 − v3) τ)

) .
Call this function U . To make it independent of y (so we get a solution of KdV
equation), we set v = −u, and this becomes

U =
2u2

cosh2 (ux+ u3t)
.

This is exactly the soliton solution of KdV.
But let us now give the promised proof of Proposition 3.15.42.
Proof of Proposition 3.15.42. Recall that Γ (u, v) = u : Γ (u) Γ∗ (v) : . We can show:

Lemma 3.15.45. We have

Γ (u) Γ (v) = (u− v) · : Γ (u) Γ (v) :

and

Γ (u) Γ∗ (v) =
1

u− v
: Γ (u) Γ∗ (v) :

and

Γ∗ (u) Γ (v) =
1

u− v
: Γ∗ (u) Γ (v) :

and
Γ∗ (u) Γ∗ (v) = (u− v) · : Γ∗ (u) Γ∗ (v) : .

Proof of Lemma 3.15.45. We have

... exp

(∑
j>0

aj
j
u−j

)
exp

(∑
k>0

a−k
k
vk

)
...

and we have to switch these two terms. We get something like

exp
(
− log

(
1− v

u

))
=

1

1− v

u

=
u

u− v
.

Etc.
We can generalize this: If ε = 1 or ε = −1, we can define Γε by Γ+1 = Γ and

Γ−1 = Γ∗. Then,
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Proposition 3.15.46. We have

Γε1 (u1) Γε2 (u2) ...Γεn (un) =
∏
i<j

(ui − uj)εiεj : Γε1 (u1) Γε2 (u2) ...Γεn (un) : .

Here, series are being expanded in the region where |u1| > |u2| > ... > |un|.

Corollary 3.15.47. The matrix elements of Γε1 (u1) Γε2 (u2) ...Γεn (un) (this means
expressions of the form (w∗,Γε1 (u1) Γε2 (u2) ...Γεn (un)w) with w ∈ B(0) and w∗ ∈
B(0)∗ (where ∗ means restricted dual); a priori, these are only series) are series which
converge to rational functions of the form

P (u) ·
∏
i<j

(ui − uj)εiεj , where P ∈ C
[
u±1

1 , u±1
2 , ..., u±1

n

]
.

This follows from the Proposition since matrix elements of normal ordered products
are Laurent polynomials.

Corollary 3.15.48. We have Γ (u′, v′) Γ (u, v) =
(u′ − u) (v′ − v)

(v′ − u) (u′ − v)
: Γ (u′, v′) Γ (u, v) : .

Here, we cancelled u− v and u′ − v′ which is okay because our rational functions lie
in an integral domain.

As a corollary of this corollary, we have:

Corollary 3.15.49. If u 6= v, then lim
u′→u;
v′→v

Γ (u′, v′) Γ (u, v) = 0. By which we mean

that for any w ∈ B(0) and w∗ ∈ B(0)∗, we have lim
u′→u;
v′→v

(w∗,Γ (u′, v′) Γ (u, v)w) = 0 as a

rational function.

Informally, this can be written (Γ (u, v))2 = 0. But this does not really make sense
in a formal sense since we are not supposed to take squares of such power series.

Proof of Proposition 3.15.42. Recall that our idea was to use 1+aΓ = exp (aΓ) since
Γ2 = 0. But this is not rigorous since we cannot speak of Γ2. So here is the actual
proof:

We have (abbreviating Γ (u, v) by Γ occasionally)

S ((1 + aΓ (u, v)) τ ⊗ (1 + aΓ (u, v)) τ)

= S (τ ⊗ τ)︸ ︷︷ ︸
=0

(since τ∈Ω)

+aS (Γ⊗ 1 + 1⊗ Γ) (τ ⊗ τ)︸ ︷︷ ︸
=0

(since S commutes with gl∞,
and coefficients of Γ are in gl∞,

and S(τ⊗τ)=0)

+a2S (Γ⊗ Γ) (τ ⊗ τ)

= a2S (Γ⊗ Γ) (τ ⊗ τ) .

Remains to prove that S (Γ⊗ Γ) (τ ⊗ τ) = 0.
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We have

S (Γ⊗ Γ) (τ ⊗ τ)

= lim
u′→u;
v′→v

1

2
S (Γ (u, v) τ ⊗ Γ (u′, v′) τ + Γ (u′, v′) τ ⊗ Γ (u, v) τ)

=
1

2
lim
u′→u;
v′→v

S (Γ (u′, v′)⊗ 1 + 1⊗ Γ (u′, v′)) (Γ (u, v)⊗ 1 + 1⊗ Γ (u, v)) (τ ⊗ τ)︸ ︷︷ ︸
=0

(since S commutes with these things)

− 1

2
lim
u′→u;
v′→v

S

Γ (u′, v′) Γ (u, v)︸ ︷︷ ︸
→0

⊗1 + 1⊗ Γ (u′, v′) Γ (u, v)︸ ︷︷ ︸
→0

 (τ ⊗ τ)

= 0.

This proves Proposition 3.15.42.

3.16. [unfinished] Representations of Vir revisited

We now come back to the representation theory of the Virasoro algebra Vir.
Recall that to every pair λ = (c, h), we can attach a Verma module M+

λ = M+
c,h over

Vir. We will denote this module by Mλ = Mc,h, and its v+
λ by vλ.

This module Mλ has a symmetric bilinear form (·, ·) : M+
λ ×M+

λ → C such that
(vλ, vλ) = 1 and (Lnv, w) = (v, L−nw) for all n ∈ Z, v ∈ Mλ and w ∈ Mλ. This
form is called the Shapovalov form, and is obtained from the invariant bilinear form
M+

λ ×M
−
−λ → C by means of the involution on Vir.

Also, if λ ∈ R2, the module M+
λ has a Hermitian form 〈·, ·〉 satisfying the same

conditions.
We recall that Mλ has a unique irreducible quotient Lλ. We have asked questions

about when it is unitary, etc.. We will try to answer some of these questions today.

Convention 3.16.1. Let us change the grading of the Virasoro algebra Vir to
degLi = −i. Correspondingly, Mλ becomes Mλ =

⊕
n≥0

Mλ [n].

For any n ≥ 0, we have the polynomial detn (c, h) which is the determinant of the
contravariant form (·, ·) in degree n. This polynomial is defined up to a constant scalar.
Let us recall how it is defined:

Let (wj) be a basis of U (Vir−) [n] (where Vir− is 〈L−1, L−2, L−3, ...〉; this is now the

positive part of Vir). Then, detn (c, h) = det
(

(wIvλ, wJvλ)I,J

)
. If we change the

basis by a matrix S, the determinant multiplies by (detS)2.
For a Hermitian form, we can do the same when (c, h) is real, but then detn (c, h) is

defined up to a positive scalar, because now the determinant multiplies by |detS|2.
Hence it makes sense to say that detn (c, h) > 0.

Proposition 3.16.2. We have detn (c, h) = 0 if and only if there exists a singular
vector w 6= 0 in Mc,h of degree ≤ n and > 0.

In particular, if detn (c, h) = 0, then detn+1 (c, h) = 0.
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In fact, we will see that detn+1 is divisible by detn.
Proof of Proposition. Apparently this is supposed to follow from something we did.
We recall examples:

det1 = 2h,

det2 = 2h
(
16h2 + 2hc− 10h+ c

)
.

Also recall that Mc,h is irreducible if and only if every positive n satisfies detn (c, h) 6= 0.

Proposition 3.16.3. Let (c, h) ∈ R2. If Mc,h is unitary, then detn (c, h) > 0 for all
positive n.

More generally, if Lc,h [n] ∼= Mc,h [n] for some positive n, and Lc,h is unitary, then
detn (c, h) > 0.

Proof of Proposition. A positive-definite Hermitian matrix has positive determinant.

Theorem 3.16.4. Fix c. Regard detm (c, h) as a polynomial in h. Then,

detm (c, h) = K · h

∑
r,s≥1;
rs≤m

p(m−rs)

+ (lower terms)

for some nonzero constant K (which depends on the choice of the basis).

Proof. We computed before the leading term of detm for any graded Lie algebra.(
Lmk−k ...L

m1
−1vλ, L

nk
−k...L

n1
−1vλ

)
: the main contribution to the leading term comes from

diagonal.
What degree in h do we get?
If µ is a partition of m, we can write m = 1k1 (µ) + 2k2 (µ) + ..., where ki (µ) is the

number of times i occurs in µ.(
Lk`−`...L

k1
−1v, L

k`
−`...L

k1
−1v
)

=
(
v, Lk1

1 ...L
k`
` L

k`
−`...L

k1
−1v
)

.

So µ contributes k1 + ...+ k` to the exponent of h.
So we conclude that the total exponent of h is

∑
µ`m

∑
i

ki (µ).

The rest is easy combinatorics:
Let m (r, s) denote the number of partitions of m in which r occurs exactly s times.

Then, m (r, s) = p (m− rs)− p (m− r (s+ 1)). Thus, with m and r fixed,∑
s

sm (r, s) =
∑
s

s (p (m− rs)− p (m− r (s+ 1)))

=
∑
s

sp (m− rs)−
∑
s

sp (m− r (s+ 1))

=
∑
s

sp (m− rs)−
∑
s

(s− 1) p (m− rs)

(here, we substituted s− 1 for s in the second sum)

=
∑
s

(s− (s− 1))︸ ︷︷ ︸
=1

p (m− rs) =
∑
s

p (m− rs) .

367



So our job is to show that
∑
µ`m

∑
i

ki (µ) =
∑
r,s≥1;
rs≤m

sm (r, s). But
∑
s≥1;
s≤m

sm (r, s) is the

total number of occurrences of r in all partitions of m. Summed over r, it yields the
total number of parts of all partitions of m. But this is also

∑
µ`m

∑
i

ki (µ), qed.

We now quote a theorem which was proved independently by Kac and Feigin-Fuchs:

Theorem 3.16.5. Suppose rs ≤ m. Then, if

h = hr,s (c) :=
1

48

(
(13− c)

(
r2 + s2

)
+
√

(c− 1) (c− 25)
(
r2 − s2

)
− 24rs− 2 + 2c

)
,

then detm (c, h) = 0. (This is true for any of the branches of the square root.)

Theorem 3.16.6. If h = hr,s (c), then Mc,h has a nonzero singular vector in degree
1 ≤ d ≤ rs.

Theorem 3.16.7 (Kac, also proved by Feigin-Fuchs). We have

detm (c, h) = Km ·
∏
r,s≥1;
rs≤m

(h− hr,s (c))p(m−rs) ,

where Km is some constant. Note that we should choose the same branch of the
square root in

√
(c− 1) (c− 25) for hr,s and hs,r. The square roots “cancel out” and

give way to a polynomial in h and c.

To prove these, we will use the following lemma:

Lemma 3.16.8. Let A (t) be a polynomial in one variable t with values in EndV ,
where V is a finite-dimensional vector space. Suppose that dim Ker (A (0)) ≥ n.
Then, det (A (t)) is divisible by tn.

Proof of Lemma 3.16.8. Pick a basis e1, e2, ..., em of V such that the first n vectors
e1, e2, ..., en are in Ker (A (0)). Then, the matrix of A (t) in this basis has first n columns
divisible by t, so that its determinant det (A (t)) is divisible by tn.

Proof of Theorem 3.16.7. Let A = A (h) be the matrix of the contravariant form in
degree m, considered as a polynomial in h. If h = hr,s (c), we have a singular vector
w in degree 1 ≤ d ≤ rs (by Theorem 3.16.6), which generates a Verma submodule
Mc,h′ ⊆Mc,h (by Homework Set 3 problem 1) (the c is the same since c is central and
thus acts by the same number on all vectors).

SoMc,h [m] ⊇Mc,h′ [m− d]. We also have dim (Mc,h′ [m− d]) = p (m− d) ≥ p (m− rs)
(since d ≤ rs) and Mc,h′ [m− d] ⊆ Ker (·, ·) (when h = hr,s). Hence, dim (Ker (·, ·)) ≥
p (m− rs). By Lemma 3.16.8, this yields that detm (c, h) is divisible by (h− hr,s (c))p(m−rs).

But it is easy to see that for Weil-generic c, the h − hr,s (c) are different, so that

detm (c, h) is divisible by
∏

r,s≥1;
rs≤m

(h− hr,s (c))p(m−rs). But by Theorem 3.16.4, the leading

term of detm (c, h) is K ·h

∑
r,s≥1;
rs≤m

p(m−rs)

, which has exactly the same degree. So detm (c, h)

is a constant multiple of
∏

r,s≥1;
rs≤m

(h− hr,s (c))p(m−rs). Theorem 3.16.7 is proven.
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We will not prove Theorem 3.16.6, since we do not have the tools for that.

Corollary 3.16.9. The module Mc,h is irreducible if and only if (c, h) does not lie
on the lines

h− hr,r (c) = 0 ⇐⇒ h+
(
r2 − 1

)
(c− 1) /24 = 0

and quadrics (in fact, hyperbolas if we are over R)

(h− hr,s (c)) (h− hs,r (c)) = 0

⇐⇒

(
h− (r − s)2

4

)2

+
h

24
(c− 1)

(
r2 + s2 − 2

)
+

1

576

(
r2 − 1

) (
s2 − 1

)
(c− 1)2

+
1

48
(c− 1) (r − s)2 (rs+ 1) = 0.

Corollary 3.16.10. (1) Let h ≥ 0 and c ≥ 1. Then, Lc,h is unitary.
(2) Let h > 0 and c > 1. Then, Mc,h

∼= Lc,h, so that Mc,h is irreducible.

Proof of Corollary 3.16.10. (2) Lines and hyperbolas do not pass through the region.
For part (1) we need a lemma:

Lemma 3.16.11. Let g be a graded Lie algebra (with dim gi 6= ∞) with a real
structure †. Let U ⊆ g∗0R be the set of all λ such that Lλ is unitary. Then, U is
closed in the usual metric.

[Note: This lemma possibly needs additional assumptions, like the assumption
that the map † reverses the degree (i. e., every j ∈ Z satisfies † (gj) ⊆ g−j) and that
g0 is an abelian Lie algebra.]

Proof of Lemma. It follows from the fact that if (An) is a sequence of positive definite
Hermitian matrices, and lim

n→∞
An = A∞, then A∞ is nonnegative definite.

Okay, sorry, we are not going to use this lemma; we will derive the special case we
need.

Now I claim that if h > 0 and c > 1, then Lc,h = Mc,h is unitary. We know this is
true for some points of this region (namely, the ones “above the zigzag line”). Then
everything follows from the fact that if A (t) is a continuous family of nondegenerate
Hermitian matrices parametrized by t ∈ [0, 1] such that A (0) > 0, then A (t) > 0 for
every t. (This fact is because the signature of a nondegenerate Hermitian matrix is a
continuous map to a discrete set, and thus constant on connected components.)

e. g., consider M1,h as a limit of M
1+

1

n
,h

(this is irreducible for large n).

So the matrix of the form in M1,h [m] is a limit of the matrices for M
1+

1

n
,h

[m]. So

the matrix for M1,h [m] is ≥ 0. But kernel lies in J1,h [m], so the form on L1,h [m] =
(M1,h�J1,h) [m] is strictly positive.

By analyzing the Kac curves, we can show (although we will not show) that in the
region 0 ≤ c < 1, there are only countably many points where we possibly can have
unitarity:
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c (m) = 1− 6

(m+ 2) (m+ 3)
;

hr,s (m) =
((m+ 3) r − (m+ 2) s)2 − 1

4 (m+ 2) (m+ 3)
with 1 ≤ r ≤ s ≤ m+ 1.

for m ≥ 0.
In fact we will show that at these points we indeed have unitary representations.

Proposition 3.16.12. (1) If c ≥ 0 and Lc,h is unitary, then h = 0.

(2) We have L0,h = M0,h if and only if h 6= m2 − 1

24
for all m ≥ 0.

(3) We have L1,h = M1,h if and only if h 6= m2

24
for all m ≥ 0.

Proof. (2) and (3) follow immediately from the Kac determinant formula. For

(1), just compute det

( (
L2
−Nv, L

2
−Nv

) (
L2
−Nv, L−2Nv

)(
L−2Nv, L

2
−Nv

)
(L−2Nv, L−2Nv)

)
= 4N3h2 (8h− 5N) (this

is < 0 for high enough N as long as h 6= 0), so that the only possibility for unitarity is
h = 0.

4. Affine Lie algebras

4.1. Introducing ĝln

Definition 4.1.1. Let V denote the vector representation of gl∞ defined in Defini-
tion 3.5.2.

Let n be a positive integer. Consider Lgln = gln [t, t−1]; this is the loop algebra
of the Lie algebra gln. This loop algebra clearly acts on Cn [t, t−1] (by (Ati) ⇀
(wtj) = Awti+j for all A ∈ gln, w ∈ Cn, i ∈ Z and j ∈ Z). But we can identify the
vector space Cn [t, t−1] with V as follows: Let (e1, e2, ..., en) be the standard basis
of Cn. Then we identify eit

k ∈ Cn [t, t−1] with vi−kn ∈ V for every i ∈ {1, 2, ..., n}
and k ∈ Z. The action of Lgln on Cn [t, t−1] now becomes an action of Lgln on V .
Hence, Lgln maps into EndV . More precisely, Lgln maps into a∞ ⊆ EndV . Here is
a direct way to construct this mapping:

Let a (t) ∈ Lgln be a Laurent polynomial with coefficients in gln. Write a (t) in the
form a (t) =

∑
k∈Z

akt
k with all ak lying in gln. Then, let Toepn (a (t)) be the matrix


... ... ... ... ...
... a0 a1 a2 ...
... a−1 a0 a1 ...
... a−2 a−1 a0 ...
... ... ... ... ...

 ∈ a∞.

Formally speaking, this matrix is defined as the matrix whose (ni+ α, nj + β)-th
entry equals the (α, β)-th entry of the n × n matrix aj−i for all i ∈ Z, j ∈ Z,
α ∈ {1, 2, ..., n} and β ∈ {1, 2, ..., n}. In other words, this is the block matrix
consisting of infinitely many n × n-blocks such that the “i-th block diagonal” is
filled with ai’s for every i ∈ Z.
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We thus have defined a map Toepn : Lgln → a∞. This map Toepn is injective,
and is exactly the map Lgln → a∞ we obtain from the above action of Lgln on V .
In particular, this map Toepn is a Lie algebra homomorphism.

In the following, we will often regard the injective map Toepn as an inclusion, i.
e., we will identify any a (t) ∈ Lgln with its image Toepn (a (t)) ∈ a∞.

Note that I chose the notation Toepn because of the notion of Toeplitz matrices. For
any a (t) ∈ Lgln, the matrix Toepn (a (t)) can be called an infinite “block-Toeplitz”
matrix. If n = 1, then Toep1 (a (t)) is an actual infinite Toeplitz matrix.

Example 4.1.2. Since gl1 is a 1-dimensional abelian Lie algebra, we can identify
Lgl1 with the Lie algebra A. The image Toep1 (Lgl1) is the abelian Lie subalgebra
〈T j | j ∈ Z〉 of a∞ (where T is the shift operator) and is isomorphic to A.

It is easy to see that:

Proposition 4.1.3. Let n be a positive integer. Define an associative algebra struc-
ture on Lgln = gln [t, t−1] by(

ati
)
·
(
btj
)

= abti+j for all a ∈ gln, b ∈ gln, i ∈ Z and j ∈ Z.

Then, Toepn is not only a Lie algebra homomorphism, but also a homomorphism of
associative algebras.

Proof of Proposition 4.1.3. Let a (t) ∈ Lgln and b (t) ∈ Lgln. Write a (t) in the form
a (t) =

∑
k∈Z

akt
k with all ak lying in gln. Write b (t) in the form b (t) =

∑
k∈Z

bkt
k with all

bk lying in gln. By the definition of Toepn, we have

Toepn (a (t)) =


... ... ... ... ...
... a0 a1 a2 ...
... a−1 a0 a1 ...
... a−2 a−1 a0 ...
... ... ... ... ...



and Toepn (b (t)) =


... ... ... ... ...
... b0 b1 b2 ...
... b−1 b0 b1 ...
... b−2 b−1 b0 ...
... ... ... ... ...

 .
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Hence,

Toepn (a (t)) · Toepn (b (t))

=


... ... ... ... ...
... a0 a1 a2 ...
... a−1 a0 a1 ...
... a−2 a−1 a0 ...
... ... ... ... ...

 ·


... ... ... ... ...

... b0 b1 b2 ...

... b−1 b0 b1 ...

... b−2 b−1 b0 ...

... ... ... ... ...



=



... ... ... ... ...

...
∑
k∈Z

ak−(−1)b−1−k
∑
k∈Z

ak−(−1)b0−k
∑
k∈Z

ak−(−1)b1−k ...

...
∑
k∈Z

ak−0b−1−k
∑
k∈Z

ak−0b0−k
∑
k∈Z

ak−0b1−k ...

...
∑
k∈Z

ak−1b−1−k
∑
k∈Z

ak−1b0−k
∑
k∈Z

ak−1b1−k ...

... ... ... ... ...


(by the rule for multiplying block matrices)

=



... ... ... ... ...

...
∑
k∈Z

akb(−1)+(−1)−k
∑
k∈Z

akb(−1)+0−k
∑
k∈Z

akb(−1)+1−k ...

...
∑
k∈Z

akb0+(−1)−k
∑
k∈Z

akb0+0−k
∑
k∈Z

akb0+1−k ...

...
∑
k∈Z

akb1+(−1)−k
∑
k∈Z

akb1+0−k
∑
k∈Z

akb1+1−k ...

... ... ... ... ...


(274)

(
since any (i, j) ∈ Z2 satisfies

∑
k∈Z

ak−ibj−k =
∑
k∈Z

akbi+j−k

)
.

On the other hand, multiplying a (t) =
∑
k∈Z

akt
k and b (t) =

∑
k∈Z

bkt
k, we obtain

a (t) · b (t) =

(∑
k∈Z

akt
k

)
·

(∑
k∈Z

bkt
k

)
=
∑
i∈Z

(∑
k∈Z

akbi−k

)
ti

(by the definition of the product of two Laurent polynomials), so that

Toepn (a (t) · b (t)) =



... ... ... ... ...

...
∑
k∈Z

akb(−1)+(−1)−k
∑
k∈Z

akb(−1)+0−k
∑
k∈Z

akb(−1)+1−k ...

...
∑
k∈Z

akb0+(−1)−k
∑
k∈Z

akb0+0−k
∑
k∈Z

akb0+1−k ...

...
∑
k∈Z

akb1+(−1)−k
∑
k∈Z

akb1+0−k
∑
k∈Z

akb1+1−k ...

... ... ... ... ...


(by the definition of Toepn). Compared with (274), this yields Toepn (a (t))·Toepn (b (t)) =
Toepn (a (t) · b (t)).

Now forget that we fixed a (t) and b (t). We thus have proven that every a (t) ∈ Lgln
and b (t) ∈ Lgln satisfy Toepn (a (t)) · Toepn (b (t)) = Toepn (a (t) · b (t)). Combined
with the fact that Toepn (1) = id (this is very easy to prove), this yields that Toepn is
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a homomorphism of associative algebras. Hence, Toepn is also a homomorphism of Lie
algebras. Proposition 4.1.3 is proven.

Recall that the Lie algebra a∞ has a central extension a∞, which equals a∞ ⊕ CK
as a vector space but has its Lie bracket defined using the cocycle α.

Proposition 4.1.4. Let α : a∞ × a∞ → C be the Japanese cocycle.
Let n ∈ N. Let ω : Lgln ×Lgln → C be the 2-cocycle on Lgln which is defined by

ω (a (t) , b (t)) =
∑
k∈Z

kTr (akb−k) for all a (t) ∈ Lgln and b (t) ∈ Lgln (275)

(where we write a (t) in the form a (t) =
∑
i∈Z

ait
i with ai ∈ gln, and where we write

b (t) in the form b (t) =
∑
i∈Z

bit
i with bi ∈ gln).

Then, the restriction of the Japanese cocycle α : a∞ × a∞ → C to Lgln × Lgln is
the 2-cocycle ω.

Remark 4.1.5. The 2-cocycle ω in Proposition 4.1.4 coincides with the cocycle ω
defined in Definition 1.7.1 in the case when g = gln and (·, ·) is the form gln× gln →
C, (a, b) 7→ Tr (ab). The 1-dimensional central extension ĝlnω induced by this 2-

cocycle ω (by the procedure shown in Definition 1.7.1) will be denoted by ĝln in the

following. Note that ĝln = Lgln ⊕ CK as a vector space.
Note that the equality (275) can be rewritten in the suggestive form

ω (a (t) , b (t)) = Rest=0 Tr (da (t) b (t)) for all a (t) ∈ Lgln and b (t) ∈ Lgln

(as long as the “matrix-valued differential form” da (t) b (t) is understood correctly).

Proof of Proposition 4.1.4. We need to prove that α (a (t) , b (t)) = ω (a (t) , b (t))
for any a (t) ∈ Lgln and b (t) ∈ Lgln (where, of course, we consider a (t) and b (t) as
elements of a∞ in the term α (a (t) , b (t))).

Write a (t) in the form a (t) =
∑
k∈Z

akt
k with all ak lying in gln. Write b (t) in the form

b (t) =
∑
k∈Z

bkt
k with all bk lying in gln.

In the following, for any integers u and v, the (u, v)-th block of a matrix will mean
the submatrix obtained by leaving only the rows numbered un+1, un+2, ..., (u+ 1)n
and the columns numbered vn+ 1, vn+ 2, ..., (v + 1)n. (This, of course, makes sense
only when the matrix has such rows and such columns.)
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By the definition of our embedding Toepn (a (t)) : Lgln → a∞, we have

a (t) = Toepn (a (t)) =


... ... ... ... ...
... a0 a1 a2 ...
... a−1 a0 a1 ...
... a−2 a−1 a0 ...
... ... ... ... ...

 and

b (t) = Toepn (b (t)) =


... ... ... ... ...
... b0 b1 b2 ...
... b−1 b0 b1 ...
... b−2 b−1 b0 ...
... ... ... ... ...

 ,

where the matrices


... ... ... ... ...
... a0 a1 a2 ...
... a−1 a0 a1 ...
... a−2 a−1 a0 ...
... ... ... ... ...

 and


... ... ... ... ...
... b0 b1 b2 ...
... b−1 b0 b1 ...
... b−2 b−1 b0 ...
... ... ... ... ...

 are un-

derstood as block matrices made of n× n blocks.
In order to compute α (a (t) , b (t)), let us write these two infinite matrices a (t) and

b (t) as 2 × 2 block matrices made of infinite blocks each, where the blocks are
separated as follows:

- The left blocks contain the j-th columns for all j ≤ 0; the right blocks contain the
j-th columns for all j > 0.

- The upper blocks contain the i-th rows for all i ≤ 0; the lower blocks contain the
i-th rows for all i > 0.

Written like this, the matrix a (t) takes the form

(
A11 A12

A21 A22

)
with

A11 =


... ... ... ...
... a0 a1 a2

... a−1 a0 a1

... a−2 a−1 a0

 , A12 =


... ... ... ...
a3 a4 a5 ...
a2 a3 a4 ...
a1 a2 a3 ...

 ,

A21 =


... a−3 a−2 a−1

... a−4 a−3 a−2

... a−5 a−4 a−3

... ... ... ...

 , A22 =


a0 a1 a2 ...
a−1 a0 a1 ...
a−2 a−1 a0 ...
... ... ... ...

 ,

and the matrix b (t) takes the form

(
B11 B12

B21 B22

)
with similarly-defined blocks B11,

B12, B21 and B22.
By the definition of α given in Theorem 3.7.6, we now have α (a (t) , b (t)) = Tr (−B12A21 + A12B21).

We now need to compute B12A21 and A12B21 in order to simplify this.

Now, since B12 =


... ... ... ...
b3 b4 b5 ...
b2 b3 b4 ...
b1 b2 b3 ...

 and A21 =


... a−3 a−2 a−1

... a−4 a−3 a−2

... a−5 a−4 a−3

... ... ... ...

, the ma-

trix B12A21 is a matrix whose rows and columns are indexed by nonpositive integers,
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and whose (i, j)-th block equals
∑

k∈Z; k>0

bk−(i+1)a−k+(j+1) for any pair of negative inte-

gers i and j. Similarly, the matrix A12B21 is a matrix whose rows and columns are in-
dexed by nonpositive integers, and whose (i, j)-th block equals

∑
k∈Z; k>0

ak−(i+1)b−k+(j+1)

for any pair of negative integers i and j. Thus, the matrix −B12A21 +A12B21 is a ma-
trix whose rows and columns are indexed by nonpositive integers, and whose (i, j)-th
block equals −

∑
k∈Z; k>0

bk−(i+1)a−k+(j+1) +
∑

k∈Z; k>0

ak−(i+1)b−k+(j+1) for any pair of nega-

tive integers i and j. But since Tr (−B12A21 + A12B21) is clearly the sum of the traces
of the (i, i)-th blocks of the matrix −B12A21 + A12B21 over all negative integers i, we
thus have

Tr (−B12A21 + A12B21) =
∑

i∈Z; i<0

Tr

(
−

∑
k∈Z; k>0

bk−(i+1)a−k+(i+1) +
∑

k∈Z; k>0

ak−(i+1)b−k+(i+1)

)

=
∑

i∈Z; i≤0

Tr

(
−

∑
k∈Z; k>0

bk−ia−k+i +
∑

k∈Z; k>0

ak−ib−k+i

)
(here, we substituted i for i+ 1)

=
∑

i∈Z; i≥0

Tr

(
−

∑
k∈Z; k>0

bk+ia−k−i +
∑

k∈Z; k>0

ak+ib−k−i

)
(here, we substituted i for − i in the first sum) .

We are now going to split the first sum on the right hand side and get the Tr out of
it. To see that this is allowed, we notice that each of the infinite sums

∑
(i,k)∈Z2;
i≥0; k>0

bk+ia−k−i

and
∑

(i,k)∈Z2;
i≥0; k>0

ak+ib−k−i converges with respect to the discrete topology187. Hence, we can

187Proof. Since
∑
k∈Z

akt
k = a (t) ∈ Lgln, only finitely many k ∈ Z satisfy ak 6= 0. Hence, there exists

some N ∈ Z such that every ν ∈ Z satisfying ν < N satisfies aν = 0. Consider this N . Any pair
(i, k) ∈ Z2 such that k + i > −N satisfies −k − i = − (k + i)︸ ︷︷ ︸

>−N

< N and thus a−k−i = 0 (because

we know that every ν ∈ Z satisfying ν < N satisfies aν = 0) and thus bk+ia−k−i = 0. Thus, all
but finitely many pairs (i, k) ∈ Z2 such that i ≥ 0 and k > 0 satisfy bk+ia−k−i = 0 (because it is
clear that all but finitely many pairs (i, k) ∈ Z2 such that i ≥ 0 and k > 0 satisfy k+ i > −N). In
other words, the sum

∑
(i,k)∈Z2;
i≥0; k>0

bk+ia−k−i converges with respect to the discrete topology. A similar

argument shows that the sum
∑

(i,k)∈Z2;
i≥0; k>0

ak+ib−k−i converges with respect to the discrete topology.
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transform these sums as we please: For example,∑
(i,k)∈Z2;
i≥0; k>0

bk+ia−k−i

=
∑
`∈Z;
`>0

∑
(i,k)∈Z2;
i≥0; k>0;
k+i=`

bk+i︸︷︷︸
=b`

(since k+i=`)

a−k−i︸ ︷︷ ︸
=a−(k+i)=a−`
(since k+i=`)

(since k + i > 0 for all i ≥ 0 and k > 0)

=
∑
`∈Z;
`>0

∑
(i,k)∈Z2;
i≥0; k>0;
k+i=`

b`a−`

︸ ︷︷ ︸
=`b`a−`

(since there exist exactly ` pairs (i,k)∈Z2

satisfying i≥0, k>0 and k+i=`)

=
∑
`∈Z;
`>0

`b`a−` =
∑
k∈Z;
k>0

kbka−k (276)

(here, we renamed the summation index ` as k) and similarly∑
(i,k)∈Z2;
i≥0; k>0

ak+ib−k−i =
∑
k∈Z;
k>0

kakb−k. (277)

The equality (276) becomes∑
(i,k)∈Z2;
i≥0; k>0

bk+ia−k−i =
∑
k∈Z;
k>0

kbka−k =
∑
k∈Z;
k<0

(−k) b−kak

(here, we substituted k for − k in the first sum)

= −
∑
k∈Z;
k<0

kb−kak,

so that ∑
k∈Z;
k<0

kb−kak = −
∑

(i,k)∈Z2;
i≥0; k>0

bk+ia−k−i. (278)
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But

ω (a (t) , b (t))

=
∑
k∈Z

kTr (akb−k) =
∑
k∈Z;
k<0

kTr (akb−k)︸ ︷︷ ︸
=Tr(b−kak)

+ 0 Tr (a0b−0)︸ ︷︷ ︸
=0

+
∑
k∈Z;
k>0

kTr (akb−k)

=
∑
k∈Z;
k<0

kTr (b−kak)

︸ ︷︷ ︸
=Tr

 ∑
k∈Z;
k<0

kb−kak



+
∑
k∈Z;
k>0

kTr (akb−k)

︸ ︷︷ ︸
=Tr

 ∑
k∈Z;
k>0

kakb−k



= Tr



∑
k∈Z;
k<0

kb−kak

︸ ︷︷ ︸
=−

∑
(i,k)∈Z2;
i≥0; k>0

bk+ia−k−i

(by (278))


+ Tr



∑
k∈Z;
k>0

kakb−k

︸ ︷︷ ︸
=

∑
(i,k)∈Z2;
i≥0; k>0

ak+ib−k−i

(by (277))



= Tr

− ∑
(i,k)∈Z2;
i≥0; k>0

bk+ia−k−i

+ Tr

 ∑
(i,k)∈Z2;
i≥0; k>0

ak+ib−k−i


= Tr

(
−

∑
i∈Z; i≥0

∑
k∈Z; k>0

bk+ia−k−i

)
+ Tr

( ∑
i∈Z; i≥0

∑
k∈Z; k>0

ak+ib−k−i

)
(here, we have unfolded our single sums into double sums)

=
∑

i∈Z; i≥0

Tr

(
−

∑
k∈Z; k>0

bk+ia−k−i

)
+

∑
i∈Z; i≥0

Tr

( ∑
k∈Z; k>0

ak+ib−k−i

)

=
∑

i∈Z; i≥0

Tr

(
−

∑
k∈Z; k>0

bk+ia−k−i +
∑

k∈Z; k>0

ak+ib−k−i

)
= Tr (−B12A21 + A12B21)

= α (a (t) , b (t)) .

Thus, α (a (t) , b (t)) = ω (a (t) , b (t)) is proven, so we have verified Proposition 4.1.4.
Note that Proposition 4.1.4 gives a new proof of Proposition 3.7.13. This proof

(whose details are left to the reader) uses two easy facts:

• If σ : g× g→ C is a 2-coboundary on a Lie algebra g, and h is a Lie subalgebra
of g, then σ |h×h must be a 2-coboundary on h.

• For any positive integer n, the 2-cocycle ω of Proposition 4.1.4 is not a 2-
coboundary.
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But if we look closely at this argument, we see that it is not a completely new proof;
it is a direct generalization of the proof of Proposition 3.7.13 that we gave above. In
fact, in the particular case when n = 1, our embedding of Lgln into a∞ becomes the
canonical injection of the abelian Lie subalgebra 〈T j | j ∈ Z〉 into a∞ (where T is as
in the proof of Proposition 3.7.13), and we see that what we just did was generalizing
that abelian Lie subalgebra.

Definition 4.1.6. Due to Proposition 4.1.4, the restriction of the 2-cocycle α to
Lgln × Lgln is the 2-cocycle ω. Thus, the 1-dimensional central extension of Lgln
determined by the 2-cocycle ω canonically injects into the 1-dimensional central
extension of a∞ determined by the 2-cocycle α. If we recall that the 1-dimensional
central extension of Lgln by the 2-cocycle ω is ĝln whereas the 1-dimensional central
extension of a∞ determined by the 2-cocycle α is a∞, we can rewrite this as follows:
We have an injection ĝln → a∞ which lifts the inclusion Lgln ⊆ a∞ and sends K to

K. We denote this inclusion map ĝln → a∞ by T̂oepn, but we will often consider it
as an inclusion.

Similarly, we can get an inclusion ŝln ⊆ a∞ which lifts the inclusion Lsln ⊆ a∞.
So B(m) ∼= F (m) is a module over ĝln and ŝln at level 1 (this means that K acts as

1).

Corollary 4.1.7. There is a Lie algebra isomorphism φ̂ : A → ĝl1 which sends K

to K and sends am to Tm ∈ ĝl1 for every m ∈ Z. (Here, we are considering the

injection ĝl1 → a∞ as an inclusion, so that ĝl1 is identified with the image of this
inclusion.)

Proof of Corollary 4.1.7. There is an obvious Lie algebra isomorphism φ : A → Lgl1
which sends am to tm ∈ Lgl1 for every m ∈ Z. This isomorphism φ is easily seen to
satisfy

ω (φ (x) , φ (y)) = ω′ (x, y) for all x ∈ A and y ∈ A, (279)

where ω : Lgl1 × Lgl1 → C is the 2-cocycle on Lgl1 defined in Proposition 4.1.4, and
ω′ : A×A → C is the 2-cocycle on A defined by

ω′ (ak, a`) = kδk,−` for all k ∈ Z and ` ∈ Z.

Thus, the Lie algebra isomorphism φ : A → Lgl1 gives rise to an isomorphism φ̂ from
the extension of A defined by the 2-cocycle ω′ to the extension of Lgl1 defined by
the 2-cocycle ω. Since the extension of A defined by the 2-cocycle ω′ is A, while the
extension of Lgl1 defined by the 2-cocycle ω is ĝl1, this rewrites as follows: The Lie

algebra isomorphism φ : A → Lgl1 gives rise to an isomorphism φ̂ : A → ĝl1. This

isomorphism φ̂ sends K to K, and sends am to tm ∈ ĝl1 for every m ∈ Z. Since tm

corresponds to Tm under our inclusion ĝl1 → a∞ (in fact, Toep1 (tm) = Tm), this shows

that φ̂ sends am to Tm ∈ ĝl1 for every m ∈ Z. Corollary 4.1.7 is thus proven.

Proposition 4.1.8. Let n be a positive integer. Consider the shift operator T . Let
us regard the injections a∞ → a∞, Lgln → a∞ and ĝln → a∞ as inclusions, so that

Lgln, ĝln and a∞ all become subspaces of a∞.
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(a) For every m ∈ Z, we have Tm ∈ Lgln ⊆ ĝln.

(b) We have ĝl1 ⊆ ĝln. Hence, the Lie algebra isomorphism φ̂ : A → ĝl1 con-

structed in Corollary 4.1.7 induces a Lie algebra injection A → ĝln (which sends

every a ∈ A to φ̂ (a) ∈ ĝln). The restriction of the ĝln-module F (m) by means of this
injection is the A-module F (m) that we know.

First proof of Proposition 4.1.8. (a) We recall that T =


... ... ... ... ... ...
... 0 1 0 0 ...
... 0 0 1 0 ...
... 0 0 0 1 ...
... 0 0 0 0 ...
... ... ... ... ... ...


(this is the matrix which has 1’s on the 1-st diagonal and 0’s everywhere else). Clearly,
T ∈ a∞. We want to prove that T lies in Lgln ⊆ a∞.

Let a0 =


0 1 0 ... 0
0 0 1 ... 0
0 0 0 ... 0
... ... ... ... ...
0 0 0 ... 0

 (this is the n× n matrix which has 1’s on the 1-st

diagonal and 0’s everywhere else).

Let a1 =


0 0 0 ... 0
0 0 0 ... 0
0 0 0 ... 0
... ... ... ... ...
0 0 0 ... 0
1 0 0 ... 0

 (this is the n × n matrix which has a 1 in its

lowermost leftmost corner, and 0’s everywhere else).
Then, T = Toepn (a0 + ta1). Thus, for every m ∈ N, we have

Tm = (Toepn (a0 + ta1))m = Toepn ((a0 + ta1)m) (because of Proposition 4.1.3)

∈ Toepn (Lgln) = Lgln (since we regard Toepn as an inclusion) .

Since it is easy to see that T−1 ∈ Lgln as well188, a similar argument yields that
(T−1)

m ∈ Lgln for all m ∈ N. In other words, T−m ∈ Lgln for all m ∈ N. In other
words, Tm ∈ gln for all nonpositive integers m. Combined with the fact that Tm ∈ Lgln
for all m ∈ N, this yields that Tm ∈ Lgln for all m ∈ Z. Since Lgln ⊆ ĝln, we thus

have Tm ∈ Lgln ⊆ ĝln for all m ∈ Z. This proves Proposition 4.1.8 (a).
(b) For every a (t) ∈ Lgl1, we have Toep1 (a (t)) ∈ 〈T j | j ∈ Z〉 189. Thus,

Toep1 (Lgl1) ⊆ 〈T j | j ∈ Z〉. Since we are considering Toep1 as an inclusion, this
becomes Lgl1 ⊆ 〈T j | j ∈ Z〉. Combined with 〈T j | j ∈ Z〉 ⊆ Lgln (because every
m ∈ Z satisfies Tm ∈ Lgln (according to Proposition 4.1.8 (a))), this yields Lgl1 ⊆
Lgln. Thus, ĝl1 ⊆ ĝln.

Hence, the Lie algebra isomorphism φ̂ : A → ĝl1 constructed in Corollary 4.1.7

induces a Lie algebra injection A → ĝln (which sends every a ∈ A to φ̂ (a) ∈ ĝln). This

188This is analogous to T ∈ Lgln (because T−1 is the matrix which has 1’s on the (−1)-st diagonal
and 0’s everywhere else).

189Proof. Let a (t) ∈ Lgl1. Write a (t) in the form
∑
i∈Z

ait
i with ai ∈ gl1. Then, of course, the ai are
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injection is exactly the embedding A → a∞ constructed in Definition 3.7.14 (apart

from the fact that its target is ĝln rather than a∞). Hence, the restriction of the ĝln-
module F (m) by means of this injection is the A-module F (m) that we know190. This
proves Proposition 4.1.8 (b).

Our inclusions Lgln ⊆ a∞ and ĝln ⊆ a∞ can be somewhat refined: For any positive

integers n and N satisfying n | N , we have Lgln ⊆ LglN and ĝln ⊆ ĝlN . Let us
formulate this more carefully without abuse of notation:

Proposition 4.1.9. Let n and N be positive integers such that n | N . Then, the
inclusion Toepn : Lgln → a∞ factors through the inclusion ToepN : LglN → a∞.
More precisely:

Let d =
N

n
. Let Toepn,N : Lgln → LglN be the map which sends every a (t) ∈ Lgln

to

∑
`∈Z


a(j−i)d a(j−i)d+1 a(j−i)d+2 ... a(j−i)d+(d−1)

a(j−i)d−1 a(j−i)d a(j−i)d+1 ... a(j−i)d+(d−2)

a(j−i)d−2 a(j−i)d−1 a(j−i)d ... a(j−i)d+(d−3)

... ... ... ... ...
a(j−i)d−(d−1) a(j−i)d−(d−2) a(j−i)d−(d−3) ... a(j−i)d


︸ ︷︷ ︸

this is an N×N -matrix constructed as a d×d-block matrix
consisting of n×n-blocks; one can formally define this matrix

as the N×N -matrix whose (nI+α,nJ+β)-th entry equals
the (α,β)-th entry of a(j−i)d+J−I for all I∈{0,1,...,d−1},

J∈{0,1,...,d−1}, α∈{1,2,...,n} and β∈{1,2,...,n}

t` ∈ LglN

(where we write a (t) in the form a (t) =
∑
i∈Z

ait
i with ai ∈ gln).

(a) We have ToepN ◦Toepn,N = Toepn. In other words, we can regard Toepn,N
as an inclusion map Lgln → LglN which forms a commutative triangle with the
inclusion maps Toepn : Lgln → a∞ and ToepN : LglN → a∞. In other words, if
we consider Lgln and LglN as Lie subalgebras of a∞ (by means of the injections
Toepn : Lgln → a∞ and ToepN : LglN → a∞), then Lgln ⊆ LglN .

(b) If we consider Toepn,N as an inclusion map Lgln → LglN , then the 2-cocycle
ω : Lgln × Lgln → C defined in Proposition 4.1.4 is the restriction of the similarly-
defined 2-cocycle ω : LglN × LglN → C (we also call it ω because it is constructed
similarly) to Lgln × Lgln. As a consequence, the inclusion map Toepn,N : Lgln →
LglN induces a Lie algebra injection T̂oepn,N : ĝln → ĝlN which satisfies T̂oepN ◦
T̂oepn,N = T̂oepn. Thus, this injection T̂oepn,N forms a commutative triangle with

the inclusion maps T̂oepn : ĝln → a∞ and T̂oepN : ĝlN → a∞. In other words,

scalars (since gl1 = C). By the definition of Toep1, we have

Toep1 (a (t)) =


... ... ... ... ...
... a0 a1 a2 ...
... a−1 a0 a1 ...
... a−2 a−1 a0 ...
... ... ... ... ...

 =
∑
i∈Z

aiT
i ∈
〈
T j | j ∈ Z

〉
,

qed.
190because both the ĝln-module F (m) and the A-module F (m) were defined as restrictions of the

a∞-module F (m)
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if we consider ĝln and ĝlN as Lie subalgebras of a∞ (by means of the injections

T̂oepn : ĝln → a∞ and T̂oepN : ĝlN → a∞), then ĝln ⊆ ĝlN .

Proof of Proposition 4.1.9. (a) The proof of Proposition 4.1.9 (a) is completely
straightforward. (One has to show that the (Ni+ nI + α,Nj + nJ + β)-th entry of(
ToepN ◦Toepn,N

)
(a (t)) equals the (Ni+ nI + α,Nj + nJ + β)-th entry of Toepn (a (t))

for every a (t) ∈ Lgln, every i ∈ Z, every j ∈ Z, every I ∈ {0, 1, ..., d− 1}, J ∈
{0, 1, ..., d− 1}, α ∈ {1, 2, ..., n} and β ∈ {1, 2, ..., n}.)

(b) The 2-cocycle ω : Lgln×Lgln → C defined in Proposition 4.1.4 is the restriction
of the similarly-defined 2-cocycle ω : LglN×LglN → C to Lgln×Lgln. (This is because
both of these 2-cocycles are restrictions of the Japanese cocycle α : a∞ × a∞ → C, as
shown in Proposition 4.1.4.) This proves Proposition 4.1.9.

Note that Proposition 4.1.9 can be used to derive Proposition 4.1.8:
Second proof of Proposition 4.1.8. (a) For every m ∈ Z, we have Tm ∈ ĝl1 (because

the Lie algebra isomorphism φ̂ constructed in Corollary 4.1.7 satisfies φ (am) = Tm, so

that Tm ∈ φ (am) ∈ ĝl1). Thus, for every m ∈ Z, we have Tm ∈ ĝl1 ∩ a∞ = Lgl1.
Due to Proposition 4.1.9 (a), we have Lgl1 ⊆ Lgln (since 1 | n). Thus, for every

m ∈ Z, we have Tm ∈ Lgl1 ⊆ Lgln ⊆ ĝln. This proves Proposition 4.1.8 (a).

(b) Due to Proposition 4.1.9 (b), we have ĝl1 ⊆ ĝln (since 1 | n). Hence, the Lie

algebra isomorphism φ̂ : A → ĝl1 constructed in Corollary 4.1.7 induces a Lie algebra

injection A → ĝln (which sends every a ∈ A to φ̂ (a) ∈ ĝln). Formally speaking, this

injection is the map T̂oep1,n ◦ φ̂ : A → ĝln (because the injection ĝl1 → ĝln is T̂oep1,n).

Therefore, the restriction of the ĝln-module F (m) by means of this injection is(
the restriction of the ĝln-module F (m) by means of the injection T̂oep1,n ◦ φ̂ : A → ĝln

)
=
(

the restriction of the a∞-module F (m) by means of the injection T̂oepn ◦ T̂oep1,n ◦ φ̂ : A → a∞

)
(

because the ĝln-module F (m) itself was the restriction of the a∞-module F (m)

by means of the injection T̂oepn : ĝln → a∞

)
=
(

the restriction of the a∞-module F (m) by means of the injection T̂oep1 ◦ φ̂ : A → a∞

)
(

since T̂oepn ◦ T̂oep1,n = T̂oep1

(by Proposition 4.1.9 (b), applied to n and 1 instead of N and n)

)
=

(
the restriction of the a∞-module F (m) by means of the
embedding A → a∞ constructed in Definition 3.7.14

)
(

because T̂oep1 ◦ φ̂ : A → a∞ is exactly the
embedding A → a∞ constructed in Definition 3.7.14

)
=
(
the A-module F (m) that we know

)
.

This proves Proposition 4.1.8 (b).
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4.2. The semidirect product g̃ln and its representation theory

4.2.1. Extending affine Lie algebras by derivations

Now we give a definition pertaining to general affine Lie algebras:

Definition 4.2.1. If ĝ = Lg ⊕ CK is an affine Lie algebra (the ⊕ sign here only
means a direct sum of vector spaces, not a direct sum of Lie algebras), then there
exists a unique linear map d : ĝ→ ĝ such that d (a (t)) = ta′ (t) for every a (t) ∈ Lg
(so that d

(
at`
)

= `at` for every a ∈ g and ` ∈ N) and d (K) = 0. This linear map
d is a derivation (as can be easily checked). Thus, the abelian Lie algebra Cd (a
one-dimensional Lie algebra) acts on the Lie algebra ĝ by derivations (in the obvious
way, with d acting as d). Thus, a semidirect product Cdnĝ is well-defined (according
to Definition 3.2.1).

Set g̃ = Cdn ĝ. Clearly, g̃ = Cd⊕ ĝ as vector space. The Lie algebra g̃ is graded
by taking the grading of ĝ and additionally giving d the degree 0.

One can wonder which ĝ-modules can be extended to g̃-modules. This can’t be
generally answered, but here is a partial uniqueness result:

Lemma 4.2.2. Let g be a Lie algebra, and d be the unique derivation ĝ → ĝ
constructed in Definition 4.2.1. Let M be a ĝ-module, and v an element of M such
that M is generated by v as a ĝ-module. Then, there exists at most one extension
of the ĝ-representation on M to g̃ such that dv = 0.

Proof of Lemma 4.2.2. Let ρ1 : g̃→ EndM and ρ2 : g̃→ EndM be two extensions
of the ĝ-representation on M to g̃ such that ρ1 (d) v = 0 and ρ2 (d) v = 0. If we succeed
in showing that ρ1 = ρ2, then Lemma 4.2.2 will be proven.

Let U be the subset {u ∈M | ρ1 (d)u = ρ2 (d)u} of M . Clearly, U is a vector
subspace of M . Also, v ∈ U (since ρ1 (d) v = 0 = ρ2 (d) v). We will now show that U
is a ĝ-submodule of M .

In fact, since ρ1 is an action of g̃ on M , every m ∈M and every α ∈ ĝ satisfy

(ρ1 (d)) (ρ1 (α)m)− (ρ1 (α)) (ρ1 (d)m) = ρ1 ([d, α])m.

Since ρ1 (α)m = α ⇀ m (because the action ρ1 extends the ĝ-representation on M)
and [d, α] = d (α) (by the definition of the Lie bracket on the semidirect product
g̃ = Cdn ĝ), this rewrites as follows: Every m ∈M and every α ∈ ĝ satisfy

(ρ1 (d)) (α ⇀ m)− (ρ1 (α)) (ρ1 (d)m) = ρ1 (d (α))m.

Since (ρ1 (α)) (ρ1 (d)m) = α ⇀ (ρ1 (d)m) (again because the action ρ1 extends the
ĝ-representation on M) and ρ1 (d (α))m = (d (α)) ⇀ m (for the same reason), this
further rewrites as follows: Every m ∈M and every α ∈ ĝ satisfy

(ρ1 (d)) (α ⇀ m)− α ⇀ (ρ1 (d)m) = (d (α)) ⇀ m. (280)

Now, let m ∈ U and α ∈ ĝ be arbitrary. Then, ρ1 (d)m = ρ2 (d)m (by the definition
of U , since m ∈ U), but we have

(ρ1 (d)) (α ⇀ m) = α ⇀ (ρ1 (d)m) + (d (α)) ⇀ m
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(by (280)) and

(ρ2 (d)) (α ⇀ m) = α ⇀ (ρ2 (d)m) + (d (α)) ⇀ m

(similarly). Hence,

(ρ1 (d)) (α ⇀ m) = α ⇀ (ρ1 (d)m)︸ ︷︷ ︸
=ρ2(d)m

+ (d (α)) ⇀ m

= α ⇀ (ρ2 (d)m) + (d (α)) ⇀ m = (ρ2 (d)) (α ⇀ m) ,

so that α ⇀ m ∈ U (by the definition of U).
Now forget that we fixed m ∈ U and α ∈ ĝ. We thus have showed that α ⇀ m ∈ U

for every m ∈ U and α ∈ ĝ. In other words, U is a ĝ-submodule of M . Since v ∈ U , this
yields that U is a ĝ-submodule of M containing v, and thus must be the whole M (since
M is generated by v as a ĝ-module). Thus, M = U = {u ∈M | ρ1 (d)u = ρ2 (d)u}.
Hence, every u ∈M satisfies ρ1 (d)u = ρ2 (d)u. Thus, ρ1 (d) = ρ2 (d).

Combining ρ1 |ĝ= ρ2 |ĝ (because both ρ1 and ρ2 are extensions of the ĝ-representation
on M , and thus coincide on ĝ) and ρ1 |Cd= ρ2 |Cd (because ρ1 (d) = ρ2 (d)), we obtain
ρ1 = ρ2 (because the vector space g̃ = Cdn ĝ is generated by Cd and ĝ, and thus two
linear maps which coincide on Cd and on ĝ must be identical). Thus, as we said above,
Lemma 4.2.2 is proven.

4.2.2. g̃ln

Applying Definition 4.2.1 to g = gln, we obtain a Lie algebra g̃ln. We want to study
its highest weight theory.

Convention 4.2.3. For the sake of disambiguation, let us, in the following, use E
gln
i,j

to denote the elementary matrices of gln (these are defined for (i, j) ∈ {1, 2, ..., n}2),

and use E
gl∞
i,j to denote the elementary matrices of gl∞ (these are defined for (i, j) ∈

Z2).

Definition 4.2.4. We can make Lgln into a graded Lie algebra by setting degE
gln
i,j =

j − i (this, so far, is the standard grading on gln) and deg t = n. Consequently,

ĝln = CK ⊕ gln (this is just a direct sum of vector spaces) becomes a graded Lie

algebra with degK = 0, and g̃ln = Cd ⊕ ĝln (again, this is only a direct sum of
vector spaces) becomes a graded Lie algebra with deg d = 0.

The triangular decomposition of g̃ln is g̃ln = ñ− ⊕ h̃ ⊕ ñ+. Here, h̃ = CK ⊕
Cd ⊕ h where h is the Lie algebra of diagonal n × n matrices (in other words, h =〈
E

gln
1,1 , E

gln
2,2 , ..., E

gln
n,n

〉
). Further, ñ+ = n+ ⊕ tgln [t] (where n+ is the Lie algebra of

strictly upper-triangular matrices) and ñ− = n− ⊕ t−1gln [t−1] (where n− is the Lie
algebra of strictly lower-triangular matrices).
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Definition 4.2.5. For every m ∈ Z, define the weight ω̃m ∈ h̃∗ by

ω̃m

(
E

gln
i,i

)
=

{
1, if i ≤ m;
0, if i > m

+
m−m
n

for all i ∈ {1, 2, ..., n} ;

ω̃m (K) = 1;

ω̃m (d) = 0,

where m is the remainder of m modulo n (that is, the element of {0, 1, ..., n− 1}
satisfying m ≡ mmodn).

Note that we can rewrite the definition of ω̃m

(
E

gln
i,i

)
as

ω̃m

(
E

gln
i,i

)
=

{
(the number of all j ∈ Z such that j ≡ imodn and 1 ≤ j ≤ m) , if m ≥ 0;
− (the number of all j ∈ Z such that j ≡ imodn and m < j ≤ 0) , if m ≤ 0

.

4.2.3. The g̃ln-module F (m)

A natural question to ask about representations of ĝ is when and how they can be
extended to representations of g̃. Here is an answer for g = ĝln and the representation
F (m):

Proposition 4.2.6. Let m ∈ Z. Let ψm be the element vm∧vm−1∧vm−2∧... ∈ F (m).

There exists a unique extension of the ĝln-representation on F (m) to g̃ln such that
dψm = 0. The action of d in this extension is given by

d (vi0 ∧ vi1 ∧ vi2 ∧ ...) =

(∑
k≥0

(⌈
m− k
n

⌉
−
⌈
ik
n

⌉))
· vi0 ∧ vi1 ∧ vi2 ∧ ...

for every m-degression (i0, i1, i2, ...).

Note that the infinite sum
∑
k≥0

(⌈
m− k
n

⌉
−
⌈
ik
n

⌉)
in Proposition 4.2.6 is well-

defined191.
Proof of Proposition 4.2.6. Uniqueness: Let us prove that there exists at most one

extension of the ĝln-representation on F (m) to g̃ln such that dψm = 0.

By Proposition 4.1.8 (b), the A-module F (m) is a restriction of the ĝln-module F (m).

As a consequence, F (m) is generated by ψm as a ĝln-module (since F (m) is generated
by ψm as an A-module). Hence, by Lemma 4.2.2 (applied to g = gln, M = F (m) and

v = ψm), there exists at most one extension of the ĝln-representation on F (m) to g̃ln
such that dψm = 0.

191In fact, (i0, i1, i2, ...) is an m-degression. Hence, every sufficiently high k ≥ 0 satisfies ik + k = m

and thus m − k = ik and thus

⌈
m− k
n

⌉
−
⌈
ik
n

⌉
= 0. Thus, all but finitely many addends of the

infinite sum
∑
k≥0

(⌈
m− k
n

⌉
−
⌈
ik
n

⌉)
are zero, so that this sum is well-defined, qed.
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Existence: Let us now show that there exists an extension of the ĝln-representation

on F (m) to g̃ln such that dψm = 0.
In fact, let us construct this extension. In order to do so, it is clearly enough to

define the action of d on F (m) (because an action of ĝln on F (m) is already defined),

and then show that every A ∈ ĝln satisfies

[d |F(m) , A |F(m) ] = [d,A]g̃ln |F(m) . (281)

192

Let us define the action of d on F (m) by stipulating that

d (vi0 ∧ vi1 ∧ vi2 ∧ ...) =

(∑
k≥0

(⌈
m− k
n

⌉
−
⌈
ik
n

⌉))
· vi0 ∧ vi1 ∧ vi2 ∧ ... (282)

for every m-degression (i0, i1, i2, ...). (This is extended by linearity to the whole of
F (m), since (vi0 ∧ vi1 ∧ vi2 ∧ ...)(i0,i1,i2,...) is an m-degression is a basis of F (m).)

It is rather clear that (282) holds not only for every m-degression (i0, i1, i2, ...), but
also for every straying m-degression (i0, i1, i2, ...).

193 Renaming (i0, i1, i2, ...) as
(j0, j1, j2, ...) and renaming the summation index k as p, we can rewrite this as follows:
We have

d (vj0 ∧ vj1 ∧ vj2 ∧ ...) =

(∑
p≥0

(⌈
m− p
n

⌉
−
⌈
jp
n

⌉))
· vj0 ∧ vj1 ∧ vj2 ∧ ... (283)

for every straying m-degression (j0, j1, j2, ...).

We now need to prove that every A ∈ ĝln satisfies (281). Since this equation (281)
is linear in A, we need to check it only in the case when A = K and in the case when
A = at` for some a ∈ gln and some ` ∈ Z (because the vector space ĝln is generated by
K and all elements of the form at` for some a ∈ gln and some ` ∈ Z). But checking the
equation (281) in the case when A = K is trivial194. Hence, it only remains to check
the equation (281) in the case when A = at` for some a ∈ gln and some ` ∈ Z.

So let a ∈ gln and ` ∈ Z be arbitrary. We can WLOG assume that if ` = 0, then the
diagonal entries of the matrix a are zero195. Let us assume this. (The purpose of this
assumption is to ensure that we can apply Proposition 3.7.5 to at` in lieu of a.)

192Here, for every ξ ∈ g̃ln, we denote by ξ |F(m) the action of ξ on F (m). Besides, [d,A]
g̃ln

means the

Lie bracket of d and A in the Lie algebra g̃ln.
193In fact, if (i0, i1, i2, ...) is a straying m-degression with no two equal elements, and π is its straighten-

ing permutation, then
∑
k≥0

(⌈
m− k
n

⌉
−
⌈
ik
n

⌉)
=
∑
k≥0

(⌈
m− k
n

⌉
−
⌈
iπ−1(k)

n

⌉)
, and this readily

yields (282). If (i0, i1, i2, ...) is a straying m-degression with two equal elements, then (282) is even
more obvious (since both sides of (282) are zero in this case).

194In fact, K |F(m)= id, so that [d |F(m) ,K |F(m) ] = [d |F(m) , id] = 0, and by the definition of a
semidirect product of Lie algebras we have [d,K]

g̃ln
= d (K) = 0, so that both sides of (281) are

zero in the case A = K, so that (281) trivially holds in the case when A = K.
195Here is why this assumption is allowed:

We must prove that every a ∈ gln and ` ∈ Z satisfy the equation (281) for A = at`. In
other words, we must prove that every a ∈ gln and ` ∈ Z satisfy

[
d |F(m) ,

(
at`
)
|F(m)

]
=[

d,
(
at`
)]

g̃ln
|F(m) . If ` 6= 0, then our assumption (that if ` = 0, then the diagonal entries of the
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Let (i0, i1, i2, ...) be an m-degression.
We recall that, when we embedded Lgln into a∞, we identified the element at` ∈ Lgln

with the matrix Toepn
(
at`
)

whose (ni+ α, nj + β)-th entry equals{
the (α, β) -th entry of a, if j − i = `;
0, if j − i 6= `

for all i ∈ Z, j ∈ Z, α ∈ {1, 2, ..., n} and β ∈ {1, 2, ..., n}. Hence, for every j ∈ Z and
β ∈ {1, 2, ..., n}, we have(

Toepn
(
at`
))
⇀ vnj+β

=
∑
i∈Z

∑
α∈{1,2,...,n}

{
the (α, β) -th entry of a, if j − i = `;
0, if j − i 6= `

vni+α

=
∑

α∈{1,2,...,n}

∑
i∈Z

{
the (α, β) -th entry of a, if j − i = `;
0, if j − i 6= `

vni+α︸ ︷︷ ︸
=(the (α,β)-th entry of a)vn(j−`)+α

(since there is precisely one i∈Z satisfying j−i=`, namely i=j−`)

=
∑

α∈{1,2,...,n}

(the (α, β) -th entry of a) vn(j−`)+α. (284)

Note that the matrix Toepn
(
at`
)

has the property that, for every integer i ≤ 0, the
(i, i)-th entry of Toepn

(
at`
)

is 0. (This is due to our assumption that if ` = 0, then the
diagonal entries of the matrix a are zero.) As a consequence, we can apply Proposition
3.7.5 to Toepn

(
at`
)

and vik instead of a and bk, and obtain(
ρ̂
(
Toepn

(
at`
)))

(vi0 ∧ vi1 ∧ vi2 ∧ ...)

=
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧
((

Toepn
(
at`
))
⇀ vik

)
∧ vik+1

∧ vik+2
∧ .... (285)

Now, we can check that, for every k ≥ 0, we have

d
(
vi0 ∧ vi1 ∧ ... ∧ vik−1

∧
((

Toepn
(
at`
))
⇀ vik

)
∧ vik+1

∧ vik+2
∧ ...

)
=

(∑
p≥0

(⌈
m− p
n

⌉
−
⌈
ip
n

⌉)
+ `

)
· vi0 ∧ vi1 ∧ ... ∧ vik−1

∧
((

Toepn
(
at`
))
⇀ vik

)
∧ vik+1

∧ vik+2
∧ .... (286)

matrix a are zero) is clearly allowed (because it only makes a statement about the case ` = 0). So
we only need to consider the case ` = 0. In this case, the equation which we must prove (this is the
equation

[
d |F(m) ,

(
at`
)
|F(m)

]
=
[
d,
(
at`
)]

g̃ln
|F(m)) simplifies to [d |F(m) , a |F(m) ] = [d, a]

g̃ln
|F(m) .

This equation is clearly linear in a. Hence, we can WLOG assume that either the matrix a is
diagonal, or all diagonal entries of the matrix a are zero (because every n × n matrix can be
decomposed as a sum of a diagonal matrix with a matrix all of whose diagonal entries are zero).
But in the case when the matrix a is diagonal, the equation [d |F(m) , a |F(m) ] = [d, a]

g̃ln
|F(m) is

very easy to check (the details of this are left to the reader). Hence, it is enough to only consider
the case when the diagonal entries of the matrix a are 0. Of course, our assumption is justified in
this case.

Thus, we are allowed to make the assumption that if ` = 0, then the diagonal entries of the
matrix a are zero.
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196

Since A = at`, we have A |F(m)=
(
at`
)
|F(m)= ρ̂

(
Toepn

(
at`
))

(because the element

at` ∈ Lgln was identified with the matrix Toepn
(
at`
)

and this matrix acts on F (m) via
ρ̂). Thus, we can rewrite (285) as

(A |F(m)) (vi0 ∧ vi1 ∧ vi2 ∧ ...)

=
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧
((

Toepn
(
at`
))
⇀ vik

)
∧ vik+1

∧ vik+2
∧ .... (289)

196Proof of (286): Let k ≥ 0. Write the integer ik in the form nj+β for some j ∈ Z and β ∈ {1, 2, ..., n}.
Then,(

Toepn
(
at`
))
⇀ vik =

(
Toepn

(
at`
))
⇀ vnj+β =

∑
α∈{1,2,...,n}

(the (α, β) -th entry of a) vn(j−`)+α

due to (284). Hence,

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧

((
Toepn

(
at`
))
⇀ vik

)︸ ︷︷ ︸
=

∑
α∈{1,2,...,n}

(the (α,β)-th entry of a)vn(j−`)+α

∧vik+1
∧ vik+2

∧ ...

=
∑

α∈{1,2,...,n}

(the (α, β) -th entry of a) · vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ vn(j−`)+α ∧ vik+1

∧ vik+2
∧ ....

(287)

Now, fix α ∈ {1, 2, ..., n}. Let (j0, j1, j2, ...) be the straying m-degression
(i0, i1, i2, ..., ik−1, n (j − `) + α, ik+1, ik+2, ...). Then, jp = ip for every p ≥ 0 satisfying
p 6= k.

Comparing

⌈
ik
n

⌉
= j + 1 (since ik = nj + β with β ∈ {1, 2, ..., n}) with

⌈
jk
n

⌉
= j − `+ 1 (since

jk = n (j − `) + α with α ∈ {1, 2, ..., n}), we get

⌈
jk
n

⌉
=

⌈
ik
n

⌉
− `.

Since

⌈
jp
n

⌉
=

⌈
ip
n

⌉
for every p ≥ 0 satisfying p 6= k (because every p ≥ 0 satisfying p 6= k

satisfies jp = ip), the two sums
∑
p≥0

(⌈
m− p
n

⌉
−
⌈
jp
n

⌉)
and

∑
p≥0

(⌈
m− p
n

⌉
−
⌈
ip
n

⌉)
differ only

in their k-th addends. Since the k-th addends differ in ` (because

⌈
jk
n

⌉
=

⌈
ik
n

⌉
− `), this yields∑

p≥0

(⌈
m− p
n

⌉
−
⌈
jp
n

⌉)
=
∑
p≥0

(⌈
m− p
n

⌉
−
⌈
ip
n

⌉)
+ `.

But since (i0, i1, i2, ..., ik−1, n (j − `) + α, ik+1, ik+2, ...) = (j0, j1, j2, ...), we have

d
(
vi0 ∧ vi1 ∧ ... ∧ vik−1

∧ vn(j−`)+α ∧ vik+1
∧ vik+2

∧ ...
)

= d (vj0 ∧ vj1 ∧ vj2 ∧ ...) =

∑
p≥0

(⌈
m− p
n

⌉
−
⌈
jp
n

⌉)
︸ ︷︷ ︸

=
∑
p≥0

(⌈
m− p
n

⌉
−
⌈
ip
n

⌉)
+`

· vj0 ∧ vj1 ∧ vj2 ∧ ...︸ ︷︷ ︸
=vi0∧vi1∧...∧vik−1

∧vn(j−`)+α∧vik+1
∧vik+2

∧...
(since (j0,j1,j2,...)=(i0,i1,i2,...,ik−1,n(j−`)+α,ik+1,ik+2,...))

=

∑
p≥0

(⌈
m− p
n

⌉
−
⌈
ip
n

⌉)
+ `

 · vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ vn(j−`)+α ∧ vik+1

∧ vik+2
∧ .... (288)
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Applying d to this equality, we get

d ((A |F(m)) (vi0 ∧ vi1 ∧ vi2 ∧ ...))

=
∑
k≥0

d
(
vi0 ∧ vi1 ∧ ... ∧ vik−1

∧
((

Toepn
(
at`
))
⇀ vik

)
∧ vik+1

∧ vik+2
∧ ...

)︸ ︷︷ ︸
=

∑
p≥0

⌈m− p
n

⌉
−


ip
n


+`

·vi0∧vi1∧...∧vik−1
∧((Toepn(at`))⇀vik)∧vik+1

∧vik+2
∧...

(by (286))

=

(∑
p≥0

(⌈
m− p
n

⌉
−
⌈
ip
n

⌉)
+ `

)
·
∑
k≥0

vi0 ∧ vi1 ∧ ... ∧ vik−1
∧
((

Toepn
(
at`
))
⇀ vik

)
∧ vik+1

∧ vik+2
∧ ...︸ ︷︷ ︸

=(A|F(m))(vi0∧vi1∧vi2∧...)
(by (289))

=

(∑
p≥0

(⌈
m− p
n

⌉
−
⌈
ip
n

⌉)
+ `

)
(A |F(m)) (vi0 ∧ vi1 ∧ vi2 ∧ ...)

=

(∑
p≥0

(⌈
m− p
n

⌉
−
⌈
ip
n

⌉))
(A |F(m)) (vi0 ∧ vi1 ∧ vi2 ∧ ...)

+ ` (A |F(m)) (vi0 ∧ vi1 ∧ vi2 ∧ ...) . (290)

Now forget that we fixed α. Now, applying d to the equality (287), we get

d
(
vi0 ∧ vi1 ∧ ... ∧ vik−1

∧
((

Toepn
(
at`
))
⇀ vik

)
∧ vik+1

∧ vik+2
∧ ...

)
=

∑
α∈{1,2,...,n}

(the (α, β) -th entry of a)

· d
(
vi0 ∧ vi1 ∧ ... ∧ vik−1

∧ vn(j−`)+α ∧ vik+1
∧ vik+2

∧ ...
)︸ ︷︷ ︸

=

(∑
p≥0

(⌈
m− p
n

⌉
−
⌈
ip
n

⌉)
+`

)
·vi0∧vi1∧...∧vik−1

∧vn(j−`)+α∧vik+1
∧vik+2

∧...

(by (288))

=
∑

α∈{1,2,...,n}

(the (α, β) -th entry of a)

·

∑
p≥0

(⌈
m− p
n

⌉
−
⌈
ip
n

⌉)
+ `

 · vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ vn(j−`)+α ∧ vik+1

∧ vik+2
∧ ...

=

∑
p≥0

(⌈
m− p
n

⌉
−
⌈
ip
n

⌉)
+ `


·

∑
α∈{1,2,...,n}

(the (α, β) -th entry of a) · vi0 ∧ vi1 ∧ ... ∧ vik−1
∧ vn(j−`)+α ∧ vik+1

∧ vik+2
∧ ...

︸ ︷︷ ︸
=vi0∧vi1∧...∧vik−1

∧((Toepn(at`))⇀vik)∧vik+1
∧vik+2

∧...
(by (287))

=

∑
p≥0

(⌈
m− p
n

⌉
−
⌈
ip
n

⌉)
+ `

 · vi0 ∧ vi1 ∧ ... ∧ vik−1
∧
((

Toepn
(
at`
))
⇀ vik

)
∧ vik+1

∧ vik+2
∧ ...,

so that (286) is proven.
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Since

(A |F(m)) (d (vi0 ∧ vi1 ∧ vi2 ∧ ...))︸ ︷︷ ︸
=

∑
p≥0

⌈m− p
n

⌉
−


jp
n


·vi0∧vi1∧vi2∧...

(by (283), applied to (j0,j1,j2,...)=(i0,i1,i2,...))

= (A |F(m))

((∑
p≥0

(⌈
m− p
n

⌉
−
⌈
jp
n

⌉))
· vi0 ∧ vi1 ∧ vi2 ∧ ...

)

=

(∑
p≥0

(⌈
m− p
n

⌉
−
⌈
ip
n

⌉))
(A |F(m)) (vi0 ∧ vi1 ∧ vi2 ∧ ...)

and(
[d,A]g̃ln |F(m)

)
(vi0 ∧ vi1 ∧ vi2 ∧ ...)

= (`A |F(m)) (vi0 ∧ vi1 ∧ vi2 ∧ ...) since, by the definition of the Lie bracket on the semidirect product

g̃ln = Cdn ĝln, we have [d,A]g̃ln = d (A)︸︷︷︸
=at`

= d
(
at`
)

= ` at`︸︷︷︸
=A

= `A


= ` (A |F(m)) (vi0 ∧ vi1 ∧ vi2 ∧ ...) ,

we can rewrite (290) as

d ((A |F(m)) (vi0 ∧ vi1 ∧ vi2 ∧ ...))

=

(∑
p≥0

(⌈
m− p
n

⌉
−
⌈
ip
n

⌉))
(A |F(m)) (vi0 ∧ vi1 ∧ vi2 ∧ ...)︸ ︷︷ ︸

=(A|F(m))(d(vi0∧vi1∧vi2∧...))

+ ` (A |F(m)) (vi0 ∧ vi1 ∧ vi2 ∧ ...)︸ ︷︷ ︸
=
(

[d,A]
g̃ln
|F(m)

)
(vi0∧vi1∧vi2∧...)

= (A |F(m)) (d (vi0 ∧ vi1 ∧ vi2 ∧ ...)) +
(

[d,A]g̃ln |F(m)

)
(vi0 ∧ vi1 ∧ vi2 ∧ ...) .

In other words,

((d |F(m)) ◦ (A |F(m))) (vi0 ∧ vi1 ∧ vi2 ∧ ...)

= ((A |F(m)) ◦ (d |F(m))) (vi0 ∧ vi1 ∧ vi2 ∧ ...) +
(

[d,A]g̃ln |F(m)

)
(vi0 ∧ vi1 ∧ vi2 ∧ ...)

=
(

(A |F(m)) ◦ (d |F(m)) + [d,A]g̃ln |F(m)

)
(vi0 ∧ vi1 ∧ vi2 ∧ ...) .

Since this holds for everym-degression (i0, i1, i2, ...), this yields that (d |F(m))◦(A |F(m)) =
(A |F(m)) ◦ (d |F(m)) + [d,A]g̃ln |F(m) (because (vi0 ∧ vi1 ∧ vi2 ∧ ...)(i0,i1,i2,...) is an m-degression

is a basis of F (m)). In other words,

[d,A]g̃ln |F(m)= (d |F(m)) ◦ (A |F(m))− (A |F(m)) ◦ (d |F(m)) = [d |F(m) , A |F(m) ] .
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In other words, (281) holds.
We have thus checked the equation (281) in the case when A = at` for some a ∈ gln

and some ` ∈ Z. As explained above, this completes the proof of the equation (281)

for every A ∈ ĝln. Hence, we have constructed an action of d on F (m). This action
clearly satisfies dψm = 0 (because ψm = vm ∧ vm−1 ∧ vm−2 ∧ ..., so that

dψm = d (vm ∧ vm−1 ∧ vm−2 ∧ ...)

=

∑
k≥0

(⌈
m− k
n

⌉
−
⌈
m− k
n

⌉)
︸ ︷︷ ︸

=0

 · vm ∧ vm−1 ∧ vm−2 ∧ ...

(by (282), applied to ik = m− k)

= 0

). Hence, we have proven the existence of an extension of the ĝln-representation on

F (m) to g̃ln such that dψm = 0.
Altogether, we have now proven both the uniqueness and the existence of an exten-

sion of the ĝln-representation on F (m) to g̃ln such that dψm = 0. Moreover, in the proof
of the existence, we have showed that the action of d in this extension is given by

d (vi0 ∧ vi1 ∧ vi2 ∧ ...) =

(∑
k≥0

(⌈
m− k
n

⌉
−
⌈
ik
n

⌉))
· vi0 ∧ vi1 ∧ vi2 ∧ ...

for every m-degression (i0, i1, i2, ...) (because we defined this extension using (282)).
This completes the proof of Proposition 4.2.6.

Next, an irreducibility result:

Proposition 4.2.7. Let m ∈ Z. Let ψm be the element vm∧vm−1∧vm−2∧... ∈ F (m).

(a) The ĝln-module F (m) is irreducible.

(b) Let ρ̂ |g̃ln : g̃ln → End
(
F (m)

)
denote the unique extension of the ĝln-

representation on F (m) to g̃ln such that dψm = 0. (This is well-defined due to
Proposition 4.2.6.)

The g̃ln-module
(
F (m), ρ̂ |g̃ln

)
is irreducible with highest weight ω̃m.

Proof of Proposition 4.2.7. (a) By Proposition 2.2.9, we know that F is an irreducible
A0-module. In other words, B(m) is an irreducible A0-module (since B(m) = Fm = F as
A0-modules). Hence, B(m) is also an irreducible A-module (since the A0-module B(m)

is a restriction of the A-module B(m)).
Since the Boson-Fermion correspondence σm : B(m) → F (m) is an A-module isomor-

phism, we have B(m) ∼= F (m) as A-modules. Since B(m) is an irreducible A-module,
this yields that F (m) is an irreducible A-module.

By Proposition 4.1.8 (b), the A-module F (m) is a restriction of the ĝln-module

F (m). Since the A-module F (m) is irreducible, this yields that the ĝln-module F (m) is
irreducible. Proposition 4.2.7 (a) is proven.

(b) It is easy to check that ñ+ψm = 0 and xψm = ω̃m (x)ψm for every x ∈ h̃.

390



Proof. Proving that ñ+ψm = 0 is easy, since ñ+ embeds into a∞ as strictly upper-
triangular matrices (and F (m) is a graded a∞-module).

In order to prove that xψm = ω̃m (x)ψm for every x ∈ h̃, we must show that E
gln
i,i ψm =

ω̃m

(
E

gln
i,i

)
ψm for every i ∈ {1, 2, ..., n}. (In fact, this is enough, because the relations

Kψm = ω̃m (K)ψm and dψm = ω̃m (d)ψm follow directly from ρ̂ (K) = id and dψm =
0.)

Let i ∈ {1, 2, ..., n}. Use Toepn

(
E

gln
i,i

)
=

∑
j≡imodn

E
gl∞
j,j to conclude that

ρ̂
(
E

gln
i,i

)
ψm =

({
1, if i ≤ m;
0, if i > m

+
m−m
n

)
︸ ︷︷ ︸

=ω̃m(Egln
i,i )

ψm = ω̃m

(
E

gln
i,i

)
ψm,

where m is the element of {0, 1, ..., n− 1} satisfying m ≡ mmodn.

Thus, we have checked that ñ+ψm = 0 and xψm = ω̃m (x)ψm for every x ∈ h̃. Thus,
ψm is a singular vector of weight ω̃m. In other words, ψm ∈ Singω̃m

(
F (m)

)
. By Lemma

2.7.8, we thus have a canonical isomorphism

Homg̃ln

(
M+

ω̃m
,F (m)

)
→ Singω̃m

(
F (m)

)
,

φ 7→ φ
(
v+
ω̃m

)
.

Thus, since ψm ∈ Singω̃m
(
F (m)

)
, there exists a g̃ln-module homomorphism φ : M+

ω̃m
→

F (m) such that φ
(
v+
ω̃m

)
= ψm. Consider this φ.

Since F (m) is generated by ψm as a ĝln-module (this was proven in the proof of

Proposition 4.2.6), it is clear that F (m) is generated by ψm as a g̃ln-module as well.
Thus, φ must be surjective (because ψm = φ

(
v+
ω̃m

)
∈ φ

(
M+

ω̃m

)
). Hence, F (m) is

(isomorphic to) a quotient of the g̃ln-module M+
ω̃m

. In other words, F (m) is a highest-

weight module with highest weight ω̃m. Combined with the irreducibility of F (m), this
proves Proposition 4.2.7.

4.2.4. The g̃ln-module B(m)

By applying the Boson-Fermion correspondence σ to Proposition 4.2.6, we obtain:

Proposition 4.2.8. Let m ∈ Z. Let ψ′m be the element
σ−1 (vm ∧ vm−1 ∧ vm−2 ∧ ...) ∈ B(m) (the highest-weight vector of B(m)).

There exists a unique extension of the ĝln-representation on B(m) to g̃ln such that
dψ′m = 0. The action of d in this extension is given by

d
(
σ−1 (vi0 ∧ vi1 ∧ vi2 ∧ ...)

)
=

(∑
k≥0

(⌈
m− k
n

⌉
−
⌈
ik
n

⌉))
· σ−1 (vi0 ∧ vi1 ∧ vi2 ∧ ...)

for every m-degression (i0, i1, i2, ...).

By applying the Boson-Fermion correspondence σ to Proposition 4.2.7, we obtain:
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Proposition 4.2.9. Let m ∈ Z. Let ψ′m be the element
σ−1 (vm ∧ vm−1 ∧ vm−2 ∧ ...) ∈ B(m) (the highest-weight vector of B(m)).

(a) The ĝln-module B(m) is irreducible.

(b) Let ρ̂ |g̃ln : g̃ln → End
(
B(m)

)
denote the unique extension of the ĝln-

representation on B(m) to g̃ln such that dψ′m = 0. (This is well-defined due to
Proposition 4.2.8.)

The g̃ln-module
(
B(m), ρ̂ |g̃ln

)
is irreducible with highest weight ω̃m.

4.2.5. s̃ln and its action on B(m)

We have
[
Int, ŝln

]
= 0 in the Lie algebra ĝln (this is because [Int, Lsln] = 0 in the Lie

algebra Lgln, and because ω (Int, Lsln) = 0 where the 2-cocycle ω is the one defined in

Proposition 4.1.4). Since Int ∈ ĝln acts on F by the operator T̂oepn (Int) = T n (more
precisely, by the action of T n on F , but let us abbreviate this by T n here), this yields

that the action of T n on F is an ŝln-module homomorphism. Thus, the action of T n

on B also is an ŝln-module homomorphism. As a consequence, the restriction to ŝln of
the representation B(m) is not irreducible.

But ψ′m is still a highest-weight vector with highest weight ω̃m. Let us look at how
this representation B(m) decomposes.

Definition 4.2.10. Let hi = E
gln
i,i − E

gln
i+1,i+1 for i ∈ {1, 2, ..., n− 1}, and let h0 =

K − h1 − h2 − ...− hn−1. Then, (h0, h1, ..., hn−1, d) is a basis of h̃∩ s̃ln (which is the

0-th homogeneous component of s̃ln).

Definition 4.2.11. For every m ∈ Z, define the weight ωm ∈
(
h̃ ∩ s̃ln

)∗
to be the

restriction ω̃m |h̃∩s̃ln of ω̃m to the 0-th homogeneous component of s̃ln.

This weight ωm does not depend on m but only depends on the residue class of m
modulo n. In fact, it satisfies

ωm (hi) = ω̃m (hi) =

{
1, if i ≡ mmodn;
0, if i 6≡ mmodn

for all i ∈ {0, 1, ..., n− 1} ;

ωm (d) = ω̃m (d) = 0.

Definition 4.2.12. Let A(n) be the Lie subalgebra 〈K〉+ 〈ani | i ∈ Z〉 of A.

Note that the map

A → A(n),

ai 7→ ani for every i ∈ Z,
K 7→ nK

is a Lie algebra isomorphism. But we still consider A(n) as a Lie subalgebra of A, and
we won’t identify it with A via this isomorphism.
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Since A(n) is a Lie subalgebra of A, both A-modules F and B become A(n)-modules.
Let us consider the direct sum ŝln ⊕ A(n) of Lie algebras. Let us denote by K1 the

element (K, 0) of ŝln⊕A(n) (where the K means the element K of ŝln), and let us denote

by K2 the element (0, K) of ŝln ⊕ A(n) (where the K means the element K of A(n)).

Note that both elements K1 = (K, 0) and K2 = (0, K) lie in the center of ŝln ⊕ A(n);
hence, so does their difference K1 − K2 = (K,−K). Thus, 〈K1 −K2〉 (the C-linear

span of the set {K1 −K2}) is an ideal of ŝln ⊕A(n). Thus,
(
ŝln ⊕A(n)

)
� (K1 −K2)

is a Lie algebra.

Proposition 4.2.13. The Lie algebras ĝln and
(
ŝln ⊕A(n)

)
� (K1 −K2) are iso-

morphic. More precisely, the maps(
ŝln ⊕A(n)

)
� (K1 −K2)→ ĝln,

(At`, 0) 7→ At` for every A ∈ sln and ` ∈ Z,
(0, an`) 7→ idn t

` for every ` ∈ Z,
K1 = K2 7→ K

and

ĝln →
(
ŝln ⊕A(n)

)
� (K1 −K2) ,

At` 7→
((

A− 1

n
(TrA) · idn

)
t`,

(
1

n
TrA

)
an`

)
for every A ∈ gln and ` ∈ Z,

K 7→ K1 = K2.

are mutually inverse isomorphisms of Lie algebras.

The proof of this proposition is left to the reader (it is completely straightforward).

This isomorphism ĝln
∼=
(
ŝln ⊕A(n)

)
� (K1 −K2) allows us to consider any ĝln-

module as an
(
ŝln ⊕A(n)

)
� (K1 −K2)-module, i. e., as an ŝln⊕A(n)-module on which

K1 and K2 act the same way. In particular, F and B become ŝln ⊕A(n)-modules. Of
course, the actions of the two addends ŝln and A(n) on F and B are exactly the actions
of ŝln and A(n) on F and B that result from the canonical inclusions ŝln ⊆ ĝln ⊆ a∞
and A(n) ⊆ A ∼= ĝl1 ⊆ a∞. (This is clear for the action of ŝln, and is very easy to see
for the action of A(n).)

We checked above that the action of T n on B is an ŝln-module homomorphism.
This easily generalizes: For every integer i, the action of T ni on B is an ŝln-module
homomorphism.197 Thus, the subspace B(m)

0 =
{
v ∈ B(m) | T niv = 0 for all i > 0

}
of

197Proof. Let i be an integer. We have
[
Int

i, ŝln

]
= 0 in the Lie algebra ĝln (this is because[

Int
i, Lsln

]
= 0 in the Lie algebra Lgln, and because ω

(
Int

i, Lsln
)

= 0 where the 2-cocycle ω is the

one defined in Proposition 4.1.4). Since Int
i ∈ ĝln acts on F by the operator T̂oepn

(
Int

i
)

= Tni

(more precisely, by the action of Tni on F , but let us abbreviate this by Tni here), this yields that

the action of Tni on F is an ŝln-module homomorphism. Thus, the action of Tni on B also is an

ŝln-module homomorphism.
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B(m) is an ŝln-submodule. Recalling that B(m) = C [x1, x2, x3, ...], with T ni acting as

ni
∂

∂xni
, we have B(m)

0
∼= C [xj | n - j].

Theorem 4.2.14. This B(m)
0 is an irreducible ŝln-module (or s̃ln-module; this doesn’t

matter) with highest weight ωm (this means that B(m)
0
∼= Lωm) and depends only on

m (the remainder of m modulo n) rather than on m. Moreover, B(m) ∼= B(m)
0 ⊗ F̃m,

where F̃m is the appropriate Fock module over A(n).

Proof of Theorem 4.2.14. We clearly have such a decomposition as vector spaces,
F̃m = C [xn, x2n, x3n, ...]. Each of the two Lie algebras acts in its own factor: A(n) acts

in F̃m, and ĝln commutes with A(n). Since the tensor product is irreducible, each factor

is irreducible, so that B(m)
0 is irreducible.

4.2.6. [unfinished] Classification of unitary highest-weight ŝln-modules

We can now classify unitary highest-weight representations of ŝln:

Proposition 4.2.15. The highest-weight representation Lωm is unitary for each
m ∈ {0, 1, ..., n− 1}.

Proof. The contravariant Hermitian form on Lωm is the restriction of the form on
B(m).

Corollary 4.2.16. If k0, k1, ..., kn−1 are nonnegative integers, then
Lk0ω0+k1ω1+...+kn−1ωn−1 is unitary (of level k0 + k1 + ...+ kn−1).

Proof. The tensor product L⊗k0
ω0
⊗L⊗k1

ω1
⊗...⊗L⊗kn−1

ωn−1
is unitary (being a tensor product

of unitary representations), and thus is a direct sum of irreducible representations.
Clearly, Lk0ω0+k1ω1+...+kn−1ωn−1 is a summand of this module, and thus also unitary,
qed.

Theorem 4.2.17. These Lk0ω0+k1ω1+...+kn−1ωn−1 (with k0, k1, ..., kn−1 being nonneg-

ative integers) are the only unitary highest-weight representations of ŝln.

To prove this, first a lemma:

Lemma 4.2.18. Consider the antilinear R-antiinvolution † : sl2 → sl2 defined by
e† = f , f † = e and h† = h. Let λ ∈ h∗. We identify the function λ ∈ h∗ with the
value λ (h) ∈ C. Then, Lλ is a unitary representation of sl2 if and only if λ ∈ Z+.

Proof of Lemma 4.2.18. Assume that Lλ is a unitary representation of sl2. Let
vλ = v+

λ . Since Lλ is unitary, the form (·, ·) is positive definite, so that (vλ, vλ) > 0.
Every n ∈ N satisfies

(fnvλ, f
nvλ) = n!λ

(
λ− 1

)
...
(
λ− n+ 1

)
(vλ, vλ)

(the proof of this is analogous to the proof of (72), but uses e† = f). Since (·, ·)
is positive definite, we must have (fnvλ, f

nvλ) ≥ 0 for every n ∈ N. Thus, ev-
ery n ∈ N satisfies n!λ

(
λ− 1

)
...
(
λ− n+ 1

)
(vλ, vλ) = (fnvλ, f

nvλ) ≥ 0, so that
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λ
(
λ− 1

)
...
(
λ− n+ 1

)
≥ 0 (since (vλ, vλ) > 0). Applied to n = 1, this yields λ ≥ 0,

so that λ ∈ R and thus λ ∈ R. Hence, λ ≥ 0 becomes λ ≥ 0.
Every n ∈ N satisfies λ (λ− 1) ... (λ− n+ 1) = λ

(
λ− 1

)
...
(
λ− n+ 1

)
≥ 0. Thus,

λ ∈ Z+ (otherwise, λ (λ− 1) ... (λ− n+ 1) would alternate in sign for each sufficiently
large n).

This proves one direction of Lemma 4.2.18. The converse direction is classical and
easy. Lemma 4.2.18 is proven.

Corollary 4.2.19. Let λ ∈ C. If g is a Lie algebra with antilinear R-antiinvolution
† and sl2 is a Lie subalgebra of g, and if † |sl2 sends e, f, h to f, e, h, and if V is a
unitary representation of g, and if some v ∈ V satisfies ev = 0 and hv = λv, then
λ ∈ Z+.

Proof of Theorem 4.2.17. For every i ∈ {0, 1, ..., n− 1}, we have an sl2-subalgebra:

hi =

{
Ei,i − Ei+1,i+1, if i 6= 0;
K + En,n − E1,1, if i = 0

,

ei =

{
Ei,i+1, if i 6= 0;
En,1t, if i = 0

;

fi =

{
Ei+1,i, if i 6= 0;
E1,nt

−1, if i = 0

198 (these form an sl2-triple, as can be easily checked). These satisfy e†i = fi, f
†
i = ei

and h†i = hi. Thus, if Lλ is a unitary representation of ŝln, then λ (hi) ∈ Z+. But ωi
are a basis for the weights, and namely the dual basis to the basis of the hi. Thus,

λ =
n−1∑
i=0

λ (hi)ωi. Hence, λ =
n−1∑
i=0

kiωi with ki ∈ Z+. Qed.

Remark 4.2.20. Relation between ŝln-modules and sln-modules:
Let Lλ be a unitary ŝln-module, with λ = k0ω0 + k1ω1 + ...+ kn−1ωn−1.
Then, U (sln) vλ = Lλ where λ = k1ω1 + k2ω2 + ...+ kn−1ωn−1 is a weight for sln.

And if the level of Lλ was k, then we must have k1 + k2 + ...+ kn−1 ≤ k.

4.3. The Sugawara construction

We will now study the Sugawara construction. It constructs a Vir action on a ĝ-
module (under some conditions), and it generalizes the action of Vir on the µ-Fock
representation Fµ (that was constructed in Proposition 3.2.13).

Definition 4.3.1. Let g be a finite-dimensional C-Lie algebra equipped with a g-
invariant symmetric bilinear form (·, ·). (This form needs not be nondegenerate; it
is even allowed to be 0.)

Consider the 2-cocycle ω : g [t, t−1]× g [t, t−1]→ C defined by

ω (a, b) = Rest=0 (a′, b) dt for all a ∈ g
[
t, t−1

]
and b ∈ g

[
t, t−1

]
.

198Here, Ei,j means E
gln
i,j .
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(This is the 2-cocycle ω in Definition 1.7.1. We just slightly rewrote the definition.)
Also consider the affine Lie algebra ĝ = g [t, t−1]⊕CK defined through this cocycle
ω.

Let Kil denote the Killing form on g, defined by

Kil (a, b) = Tr (ad (a) · ad (b)) for all a, b ∈ g.

An element k ∈ C is said to be non-critical for (g, (·, ·)) if and only if the form

k · (·, ·) +
1

2
Kil is nondegenerate.

Definition 4.3.2. Let M be a ĝ-module.
We say that M is admissible if for every v ∈ M , there exists some N ∈ N such

that every integer n ≥ N and every a ∈ g satisfy atn · v = 0.
If k ∈ C, then we say that M is of level k if K |M= k · id.

Proposition 4.3.3. Let g be a finite-dimensional C-Lie algebra equipped with a
g-invariant symmetric bilinear form (·, ·). Consider the affine Lie algebra ĝ defined
as in Definition 4.3.1.

(a) Then, there is a natural homomorphism ηĝ : W → Der ĝ of Lie algebras given
by

(ηĝ (f∂)) (g, α) = (fg′, 0) for all f ∈ C
[
t, t−1

]
, g ∈ g

[
t, t−1

]
and α ∈ C.

(b) There also is a natural homomorphism η̃ĝ : Vir→ Der ĝ of Lie algebras given
by

(η̃ĝ (f∂ + λK)) (g, α) = (fg′, 0) for all f ∈ C
[
t, t−1

]
, g ∈ g

[
t, t−1

]
, λ ∈ C and α ∈ C.

This homomorphism η̃ĝ is simply the extension of the homomorphism ηĝ : W → Der ĝ
to Vir by means of requiring that η̃ĝ (K) = 0.

This homomorphism η̃ĝ makes ĝ a Vir-module on which Vir acts by derivations.
Therefore, a Lie algebra Virnĝ is defined (according to Definition 3.2.1).

The proof of Proposition 4.3.3 is left to the reader. (A proof of Proposition 4.3.3
(a) can be obtained by carefully generalizing the proof of Lemma 1.4.3. Actually,
Proposition 4.3.3 (a) generalizes Lemma 1.4.3, since (as we will see in Remark 4.3.5)
the Lie algebra ĝ generalizes A.)

The following theorem is one of the most important facts about affine Lie algebras:

Theorem 4.3.4 (Sugawara construction). Let us work in the situation of Definition
4.3.1.

Let k ∈ C be non-critical for (g, (·, ·)). Let M be an admissible ĝ-module of level

k. Let B ⊆ g be a basis orthonormal with respect to the form k (·, ·) +
1

2
Kil.

For every x ∈ g and n ∈ Z, let us denote by xn the element xtn ∈ ĝ.
For every x ∈ g, every m ∈ Z and ` ∈ Z, define the “normal ordered product”

: xmx` : in U (ĝ) by

: xmx` : =

{
xmx`, if m ≤ `;
x`xm, if m > `

.
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For every n ∈ Z, define an endomorphism Ln of M by

Ln =
1

2

∑
a∈B

∑
m∈Z

: aman−m : .

(a) This endomorphism Ln is indeed well-defined. In other words, for every n ∈ Z,
every a ∈ B and every v ∈ M , the sum

∑
m∈Z

: aman−m : v converges in the discrete

topology (i. e., has only finitely many nonzero addends).
(b) For every n ∈ Z, the endomorphism Ln does not depend on the choice of the

orthonormal basis B.
(c) The endomorphisms Ln for n ∈ Z give rise to a Vir-representation on M with

central charge

c = k ·
∑
a∈B

(a, a) .

(d) These formulas (for Ln and c) extend the action of ĝ on M to an action of
Virnĝ, so they satisfy [Ln, am] = −man+m and [Ln, K] = 0.

(e) We have [Ln, am] = −man+m for any a ∈ g and any integers n and m.

Remark 4.3.5. We have already encountered an example of this construction:
namely, the example where g is the trivial Lie algebra C, where (·, ·) : g × g → C
is the bilinear form (x, y) 7→ xy, where k = 1, and where M is the ĝ-module Fµ.
(To make sense of this, notice that when g is the trivial Lie algebra C, the affine Lie
algebra ĝ is canonically isomorphic to the Heisenberg algebra A, through an isomor-
phism ĝ→ A which takes tn to an and K to K.) In this example, the operators Ln
defined in Theorem 4.3.4 are exactly the operators Ln defined in Definition 3.2.8.

Before we prove Theorem 4.3.4, we formulate a number of lemmas. First, an ele-
mentary lemma on Killing forms of finite-dimensional Lie algebras:

Lemma 4.3.6. Let g be a finite-dimensional Lie algebra. Denote by Kil the Killing
form of g. Let n ∈ N and p1, p2, ..., pn ∈ g and q1, q2, ..., qn ∈ g be such that the

tensor
n∑
i=1

pi ⊗ qi ∈ g ⊗ g is g-invariant. Then,
n∑
i=1

[[b, pi] , qi] =
n∑
i=1

Kil (b, pi) qi for

every b ∈ g.

Here, we are using the following notation:

Remark 4.3.7. Let g be a Lie algebra. An element m of a g-module M is said to
be g-invariant if and only if it satisfies (x ⇀ m = 0 for every x ∈ g). We regard g
as a g-module by means of the adjoint action of g (that is, we set x ⇀ m = [x,m]
for every x ∈ g and m ∈ g); thus, g⊗ g becomes a g-module as well. Explicitly, the
action of g on g⊗ g is given by

x ⇀

(
n∑
i=1

pi ⊗ qi

)
=

n∑
i=1

[x, pi]⊗ qi +
n∑
i=1

pi ⊗ [x, qi]

for every tensor
n∑
i=1

pi ⊗ qi ∈ g⊗ g. Hence, a tensor
n∑
i=1

pi ⊗ qi ∈ g⊗ g is g-invariant

if and only if every x ∈ g satisfies
n∑
i=1

[x, pi] ⊗ qi +
n∑
i=1

pi ⊗ [x, qi] = 0. In other
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words, a tensor
n∑
i=1

pi ⊗ qi ∈ g ⊗ g is g-invariant if and only if every x ∈ g satisfies

n∑
i=1

[pi, x]⊗ qi = −
n∑
i=1

pi ⊗ [qi, x].

Proof of Lemma 4.3.6. Let (c1, c2, ..., cm) be a basis of the vector space g, and let
(c∗1, c

∗
2, ..., c

∗
m) be the dual basis of g∗. Then, every i ∈ {1, 2, ..., n} satisfies

Kil (b, pi) = Tr ((ad b) ◦ (ad pi)) =
m∑
j=1

c∗j (((ad b) ◦ (ad pi)) (cj)) =
m∑
j=1

c∗j ([b, [pi, cj]]) .

Hence,

n∑
i=1

Kil (b, pi) qi =
n∑
i=1

m∑
j=1

c∗j ([b, [pi, cj]]) qi =
m∑
j=1

n∑
i=1

c∗j ([b, [pi, cj]]) qi

= −
m∑
j=1

n∑
i=1

c∗j ([b, pi]) [qi, cj]
since

n∑
i=1

pi ⊗ qi is g-invariant, so that

n∑
i=1

[pi, cj]⊗ qi = −
n∑
i=1

pi ⊗ [qi, cj] for every j ∈ {1, 2, ...,m} , and thus

n∑
i=1

c∗j ([b, [pi, cj]]) qi = −
n∑
i=1

c∗j ([b, pi]) [qi, cj] for every j ∈ {1, 2, ...,m}



= −
m∑
j=1

n∑
i=1

[
qi, c

∗
j ([b, pi]) cj

]
= −

n∑
i=1


qi,

m∑
j=1

c∗j ([b, pi]) cj︸ ︷︷ ︸
=[b,pi]

(since (c∗1,c∗2,...,c∗m) is the dual basis

to the basis (c1,c2,...,cm))


= −

n∑
i=1

[qi, [b, pi]] =
n∑
i=1

[[b, pi] , qi] ,

which proves Lemma 4.3.6.
Here comes another lemma on g-invariant bilinear forms:

Lemma 4.3.8. Let g be a finite-dimensional C-Lie algebra equipped with a g-
invariant symmetric bilinear form 〈·, ·〉. Let B ⊆ g be a basis orthonormal with
respect to the form 〈·, ·〉.

(a) Then, the tensor
∑
a∈B

a⊗ a is g-invariant in g⊗ g.

(b) Let B′ also be a basis of g orthonormal with respect to the form 〈·, ·〉. Then,∑
a∈B

a⊗ a =
∑
a∈B′

a⊗ a.
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Proof of Lemma 4.3.8. The bilinear form 〈·, ·〉 is nondegenerate (since it has an
orthonormal basis).

(a) For every v ∈ g, let v∗ : g→ C be the C-linear map which sends every w ∈ g to
〈v, w〉. Then, g∗ = {v∗ | v ∈ g} (since the form 〈·, ·〉 is nondegenerate).

Let b ∈ g. We will now prove that h

(∑
a∈B

([b, a]⊗ a+ a⊗ [b, a])

)
= 0 for every

h ∈ (g⊗ g)∗.
In fact, let h ∈ (g⊗ g)∗. Since g is finite-dimensional, we have (g⊗ g)∗ = g∗⊗ g∗, so

that h ∈ g∗⊗g∗. We can WLOG assume that h = f1⊗ f2 for some f1 ∈ g∗ and f2 ∈ g∗

(because every tensor in g∗⊗g∗ is a C-linear combination of pure tensors, and the asser-

tion which we want to prove (namely, the equality h

(∑
a∈B

([b, a]⊗ a+ a⊗ [b, a])

)
= 0)

is C-linear in h). Assume this.
Since f1 ∈ g∗ = {v∗ | v ∈ g}, there exists some v1 ∈ g such that f1 = v∗1. Consider

this v1.
Since f2 ∈ g∗ = {v∗ | v ∈ g}, there exists some v2 ∈ g such that f2 = v∗2. Consider

this v2.
Since B is an orthonormal basis with respect to 〈·, ·〉, we have

∑
a∈B

a 〈[b, v2] , a〉 = [b, v2]

and
∑
a∈B
〈[b, v1] , a〉 a = [b, v1].
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Now, h = f1︸︷︷︸
=v∗1

⊗ f2︸︷︷︸
=v∗2

= v∗1 ⊗ v∗2, so that

h

(∑
a∈B

([b, a]⊗ a+ a⊗ [b, a])

)

= (v∗1 ⊗ v∗2)

(∑
a∈B

([b, a]⊗ a+ a⊗ [b, a])

)

=
∑
a∈B

 v∗1 ([b, a])︸ ︷︷ ︸
=〈v1,[b,a]〉

(by the definition of v∗1)

· v∗2 (a)︸ ︷︷ ︸
=〈v2,a〉

(by the definition of v∗2)

+ v∗1 (a)︸ ︷︷ ︸
=〈v1,a〉

(by the definition of v∗1)

· v∗2 ([b, a])︸ ︷︷ ︸
=〈v2,[b,a]〉

(by the definition of v∗2)



=
∑
a∈B

 〈v1, [b, a]〉︸ ︷︷ ︸
=−〈[b,v1],a〉

(since 〈·,·〉 is invariant)

· 〈v2, a〉+ 〈v1, a〉 · 〈v2, [b, a]〉︸ ︷︷ ︸
=−〈[b,v2],a〉

(since 〈·,·〉 is invariant)


=
∑
a∈B

(−〈[b, v1] , a〉 · 〈v2, a〉 − 〈v1, a〉 · 〈[b, v2] , a〉)

= −
∑
a∈B

〈[b, v1] , a〉 · 〈v2, a〉︸ ︷︷ ︸
=

〈
v2,

∑
a∈B
〈[b,v1],a〉a

〉
−
∑
a∈B

〈v1, a〉 · 〈[b, v2] , a〉︸ ︷︷ ︸
=

〈
v1,

∑
a∈B

a〈[b,v2],a〉
〉

= −

〈
v2,
∑
a∈B

〈[b, v1] , a〉 a︸ ︷︷ ︸
=[b,v1]

〉
−

〈
v1,
∑
a∈B

a 〈[b, v2] , a〉︸ ︷︷ ︸
=[b,v2]

〉

= − 〈v2, [b, v1]〉︸ ︷︷ ︸
=〈[b,v1],v2〉

(since 〈·,·〉 is symmetric)

− 〈v1, [b, v2]〉︸ ︷︷ ︸
=−〈[b,v1],v2〉

(since 〈·,·〉 is invariant)

= −〈[b, v1] , v2〉 − (−〈[b, v1] , v2〉) = 0.

We thus have proven that h

(∑
a∈B

([b, a]⊗ a+ a⊗ [b, a])

)
= 0 for every h ∈ (g⊗ g)∗.

Consequently,
∑
a∈B

([b, a]⊗ a+ a⊗ [b, a]) = 0.

Hence, we have shown that
∑
a∈B

([b, a]⊗ a+ a⊗ [b, a]) = 0 for every b ∈ g. In other

words, the tensor
∑
a∈B

a⊗ a is g-invariant. Lemma 4.3.8 (a) is proven.

(b) For every a ∈ B and b ∈ B′, let ξa,b be the b-coordinate of a with respect to
the basis B′. Then, every a ∈ B satisfies a =

∑
b∈B′

ξa,bb. Thus, (ξa,b)(a,b)∈B×B′ (this is

a matrix whose rows and columns are indexed by elements of B and B′, respectively)
is the matrix which represents the change of bases from B′ to B (or from B to B′,
depending on how you define the matrix representing a change of basis). Since both
B and B′ are two orthonormal bases with respect to the same bilinear form 〈·, ·〉, this
matrix must thus be orthogonal. Hence, every b ∈ B′ and b′ ∈ B′ satisfy

∑
a∈B

ξa,bξa,b′ =
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δb,b′ (where δb,b′ is the Kronecker delta of b and b′). Now, since every a ∈ B satisfies
a =

∑
b∈B′

ξa,bb and a =
∑
b∈B′

ξa,bb =
∑
b′∈B′

ξa,b′b
′ (here, we renamed b as b′ in the sum), we

have ∑
a∈B

a︸︷︷︸
=
∑
b∈B′

ξa,bb

⊗ a︸︷︷︸
=
∑

b′∈B′
ξa,b′b

′

=
∑
a∈B

(∑
b∈B′

ξa,bb

)
⊗

(∑
b′∈B′

ξa,b′b
′

)
=
∑
a∈B

∑
b∈B′

∑
b′∈B′

ξa,bξa,b′b⊗ b′

=
∑
b∈B′

∑
b′∈B′

∑
a∈B

ξa,bξa,b′︸ ︷︷ ︸
=δb,b′

b⊗ b′ =
∑
b∈B′

∑
b′∈B′

δb,b′b⊗ b′︸ ︷︷ ︸
=b⊗b

=
∑
b∈B′

b⊗ b

=
∑
a∈B′

a⊗ a (here, we renamed b as a in the sum) .

This proves Lemma 4.3.8 (b).
As a consequence of this lemma, we get:

Lemma 4.3.9. Let g be a finite-dimensional C-Lie algebra equipped with a g-
invariant symmetric bilinear form (·, ·). Denote by Kil the Killing form of g. Let

B ⊆ g be a basis orthonormal with respect to the form k (·, ·) +
1

2
Kil. Let b ∈ g.

(a) We have
∑
a∈B

([b, a]⊗ a+ a⊗ [b, a]) = 0.

(b) We have
1

2

∑
a∈B

[[b, a] , a] + k
∑
a∈B

(b, a) a = b.

(c) We have ([b, a] , a) = 0 for every a ∈ g.

Proof of Lemma 4.3.9. The basis B is orthonormal with respect to a symmetric g-

invariant bilinear form (namely, the form k (·, ·) +
1

2
Kil). As a consequence, the tensor∑

a∈B
a⊗a is g-invariant in g⊗g (by Lemma 4.3.8 (a), applied to 〈·, ·〉 = k (·, ·) +

1

2
Kil).

In other words,
∑
a∈B

([b, a]⊗ a+ a⊗ [b, a]) = 0. This proves Lemma 4.3.9 (a).

(b) If 〈·, ·〉 is any nondegenerate inner product199 on a finite-dimensional vector space
V and B is an orthonormal basis with respect to that product, then any vector b ∈ V
is equal to

∑
a∈B
〈b, a〉 a. Applying this fact to the inner product 〈·, ·〉 = k (·, ·) +

1

2
Kil

on the vector space V = g, we conclude that b = k
∑
a∈B

(b, a) a+
1

2

∑
a∈B

Kil (b, a) a.

Now, applying Lemma 4.3.6 to the g-invariant tensor
∑
a∈B

a⊗ a in lieu of
n∑
i=1

pi ⊗ qi,

199By “inner product”, we mean a symmetric bilinear form.
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we see that
∑
a∈B

[[b, a] , a] =
∑
a∈B

Kil (b, a) a. Hence,

b = k
∑
a∈B

(b, a) a+
1

2

∑
a∈B

Kil (b, a) a︸ ︷︷ ︸
=
∑
a∈B

[[b,a],a]

=
1

2

∑
a∈B

[[b, a] , a] + k
∑
a∈B

(b, a) a.

This proves Lemma 4.3.9 (b).
(c) Every c ∈ g satisfies ([a, b] , c) + (b, [a, c]) = 0 (due to the g-invariance of (·, ·)).

Applying this to c = a, we obtain ([a, b] , a)+(b, [a, a]) = 0. Since [a, a] = 0 and [a, b] =
− [b, a], this rewrites as (− [b, a] , a) + (b, 0) = 0. This simplifies to − ([b, a] , a) = 0.
Thus, ([b, a] , a) = 0. This proves Lemma 4.3.9 (c).

Next, we formulate the analogue of Remark 3.2.5:

Remark 4.3.10. Let x ∈ g. If m and n are integers such that m 6= −n, then
: xmxn : = xmxn. (This is because [xm, xn] = 0 in ĝ when m 6= −n.)

In analogy to Remark 3.2.6 (a), we have commutativity of normal ordered products:

Remark 4.3.11. Let x ∈ g. Any m ∈ Z and n ∈ Z satisfy : xmxn : = : xnxm : .

Also, here is a simple way to rewrite the definition of : xmxn : :

Remark 4.3.12. Let x ∈ g. Any m ∈ Z and n ∈ Z satisfy : xmxn : =
xmin{m,n}xmax{m,n}.

Generalizing Remark 3.2.7, we have:

Remark 4.3.13. Let x ∈ g. Let m and n be integers.
(a) Then, : xmxn : = xmxn + n [m > 0] δm,−n (x, x)K. Here, when A is an asser-

tion, we denote by [A] the truth value of A (that is, the number

{
1, if A is true;
0, if A is false

).

(b) For any y ∈ U (ĝ), we have [y, : xmxn : ] = [y, xmxn] in U (ĝ) (where [·, ·]
denotes the commutator in U (ĝ)).

The proof of this is left to the reader (it follows very quickly from the definitions).
Next, here is a completely elementary lemma:

Lemma 4.3.14. Let G be an abelian group (written additively). Whenever
(um)m∈Z ∈ GZ is a family of elements of G, and A (m) is an assertion for every
m ∈ Z, let us abbreviate the sum

∑
m∈Z;
A(m)

um (if this sum is well-defined) by
∑
A(m)

um.

(For instance, we will abbreviate the sum
∑
m∈Z;

3≤m≤7

um by
∑

3≤m≤7

um.)

For any integers α and β such that α ≤ β, for any nonnegative integer N , and for
any family (um)m∈Z ∈ GZ of elements of G, we have∑

|m−β|≤N

um −
∑

|m−α|≤N

um = −
∑

α−N≤m<β−N

um +
∑

α+N<m≤β+N

um.
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The proof of Lemma 4.3.14 (which is merely an easy generalization of the telescope
principle) is left to the reader.

Proof of Theorem 4.3.4. Let us use the notation
∑
A(m)

um defined in Lemma 4.3.14.

In the following, we will consider the topology on EndM defined as follows: Endow
M with the discrete topology, endow MM with the product topology, and endow EndM
with a topology by viewing EndM as a subset of the set MM . Clearly, in this topology,
a net (as)s∈S of elements of EndM converges if and only if for every v ∈ M , the net
(asv)s∈S of elements of M converges (in the discrete topology). As a consequence,
whenever (um)m∈Z is a family of elements of EndM indexed by integers, the sum∑
m∈Z

um converges with respect to the topology which we defined on EndM if and only

if for every v ∈M , the sum
∑
m∈Z

umv converges in the discrete topology (i. e., has only

finitely many nonzero addends). Consequently, the convergence of an infinite sum with
respect to the topology which we defined on EndM is equivalent to the convergence of
this sum in the meaning in which we used the word “convergence” in Theorem 4.3.4.

Note that addition, composition, and scalar multiplication (in the sense of: mul-
tiplication by scalars) of maps in EndM are continuous maps with respect to this
topology.

We will use the notation lim
N→∞

for limits with respect to the topology on EndM .

Note that, if (um)m∈Z is a family of elements of EndM indexed by integers, and if the
sum

∑
m∈Z

um converges with respect to the topology which we defined on EndM , then∑
m∈Z

um = lim
N→∞

∑
|m−α|≤N

um for every α ∈ R.

In the following, [·, ·]Lg will mean the Lie bracket of Lg, whereas the notation [·, ·]
without a subscript will mean either the Lie bracket of ĝ or the Lie bracket of g. Note
that the use of the same notation for the Lie bracket of ĝ and for the Lie bracket of g
will not lead to conflicts, since the Lie bracket of g is the restriction of the Lie bracket
of ĝ to g× g (this follows quickly from ω (g, g) = 0).

Note that any x ∈ g, y ∈ g, n ∈ Z and m ∈ Z satisfy

[xn, ym] = [x, y]n+m +Kω (xn, ym) (291)

200.

200This is because

 xn︸︷︷︸
=xtn

, ym︸︷︷︸
=ytm

 = [xtn, ytm] =


[xtn, ytm]Lg︸ ︷︷ ︸

=[x,y]tn+m

(by the definition of the Lie
algebra structure on Lg)

, ω

xtn︸︷︷︸
=xn

, ytm︸︷︷︸
=ym




(by the definition of the Lie bracket on ĝ)

=

[x, y] tn+m︸ ︷︷ ︸
=[x,y]n+m

, ω (xn, ym)

 =
(
[x, y]n+m , ω (xn, ym)

)
= [x, y]n+m +Kω (xn, ym) .
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(a) Let n ∈ Z and v ∈ M . We must prove that for every a ∈ B, the sum∑
m∈Z

: aman−m : v converges in the discrete topology. We will prove a slightly more

general statement: We will prove that for every x ∈ g, the sum
∑
m∈Z

: xmxn−m : v

converges in the discrete topology.
In fact, let x ∈ g. We must prove that the sum

∑
m∈Z

: xmxn−m : v converges in the

discrete topology.
Recall the definition of an admissible module. With slightly modified notations, it

looks as follows: A ĝ-module P is said to be admissible if for every w ∈ P , there exists
some M ∈ N such that every integer m ≥ M and every a ∈ g satisfy atm · w = 0.
Hence, for every w ∈M , there exists some M ∈ N such that every integer m ≥M and
every a ∈ g satisfy atm · w = 0 (because M is admissible). Applying this to w = v,
we see that there exists some M ∈ N such that every integer m ≥M and every a ∈ g
satisfy atm · v = 0. Fix this M. Every integer m ≥M satisfies

xm︸︷︷︸
=xtm

v = xtm · v = 0 (292)

(by the equality atm · v = 0, applied to a = x and m = m). Now, every integer m such
that max {m,n−m} ≥M satisfies

: xmxn−m :︸ ︷︷ ︸
=xmin{m,n−m}xmax{m,n−m}
(by Remark 4.3.12, applied

to `=n−m)

v = xmin{m,n−m} xmax{m,n−m}v︸ ︷︷ ︸
=0

(by (292), applied to max{m,n−m}
instead of m (since max{m,n−m}≥M))

= xmin{m,n−m}0 = 0.

Since all but finitely many integers m satisfy max {m,n−m} ≥ M (this is obvious),
this shows that all but finitely many integers m satisfy : xmxn−m : v = 0. In other
words, all but finitely many addends of the sum

∑
m∈Z

: xmxn−m : v are zero. Hence, the

sum
∑
m∈Z

: xmxn−m : v converges in the discrete topology. This proves Theorem 4.3.4

(a).
Note that, during the proof of Theorem 4.3.4 (a), we have shown that for every

n ∈ Z, x ∈ g and v ∈M , the sum
∑
m∈Z

: xmxn−m : v converges in the discrete topology.

In other words, for every n ∈ Z and x ∈ g, the sum
∑
m∈Z

: xmxn−m : converges in the

topology which we defined on EndM .
(b) Let n ∈ Z. Let B′ be an orthonormal basis of g with respect to the form

k (·, ·) +
1

2
Kil. We are going to prove that

Ln =
1

2

∑
a∈B′

∑
m∈Z

: aman−m : (293)

(where Ln still denotes the operator
1

2

∑
a∈B

∑
m∈Z

: aman−m : defined in Theorem 4.3.4

using the orthonormal basis B, not the orthonormal basis B′). Once (293) is proven, it
will follow that Ln does not depend on B, and thus Theorem 4.3.4 (b) will be proven.
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Applying Lemma 4.3.8 (b) to 〈·, ·〉 = k (·, ·) +
1

2
Kil, we obtain

∑
a∈B

a⊗a =
∑
a∈B′

a⊗a.

Thus, ∑
a∈B

auav =
∑
a∈B′

auav for any u ∈ Z and v ∈ Z (294)

201.
Thus, every m ∈ Z satisfies

∑
a∈B

: aman−m : =
∑
a∈B′

: aman−m : 202. Hence,

Ln =
1

2

∑
a∈B

∑
m∈Z

: aman−m : =
1

2

∑
m∈Z

∑
a∈B

: aman−m :︸ ︷︷ ︸
=
∑
a∈B′

:aman−m:

=
1

2

∑
m∈Z

∑
a∈B′

: aman−m :

=
1

2

∑
a∈B′

∑
m∈Z

: aman−m : .

Thus, (293) is proven. As we said, this completes the proof of Theorem 4.3.4 (b).
(c) 1st step: Let us first show that

[br, Ln] = rbn+r for every b ∈ g and any integers r and n. (295)

201This follows from applying the linear map

g⊗ g→ EndM,

x⊗ y 7→ xuyv

to the equality
∑
a∈B

a⊗ a =
∑
a∈B′

a⊗ a.

202Proof. We distinguish between two cases:
Case 1: We have m ≤ n−m.
Case 2: We have m > n−m.
Let us first consider Case 1. In this case, m ≤ n−m. Hence, every a ∈ g satisfies : aman−m : =

aman−m. Thus,∑
a∈B

: aman−m : =
∑
a∈B

aman−m =
∑
a∈B′

aman−m︸ ︷︷ ︸
= :aman−m:

(by (294), applied to u = m and v = n−m)

=
∑
a∈B′

: aman−m : .

This proves
∑
a∈B

: aman−m : =
∑
a∈B′

: aman−m : in Case 1.

Let us now consider Case 2. In this case, m > n−m. Hence, every a ∈ g satisfies : aman−m : =
an−mam. Thus,∑
a∈B

: aman−m : =
∑
a∈B

an−mam =
∑
a∈B′

an−mam︸ ︷︷ ︸
= :aman−m:

(by (294), applied to u = n−m and v = m)

=
∑
a∈B′

: aman−m : .

This proves
∑
a∈B

: aman−m : =
∑
a∈B′

: aman−m : in Case 2.

Hence,
∑
a∈B

: aman−m : =
∑
a∈B′

: aman−m : is proven in each of the cases 1 and 2. Thus,∑
a∈B

: aman−m : =
∑
a∈B′

: aman−m : always holds (since cases 1 and 2 cover all possibilities), qed.
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Proof of (295): Let b ∈ g, r ∈ Z and n ∈ Z.
We must be careful here with infinite sums, since not even formal algebra allows us to

manipulate infinite sums like
∑
m∈Z

[b, a]r+m an−m (for good reasons: these are divergent

in every meaning of this word). While we were working in the Heisenberg algebra A
(which can be written as ĝ for g being the trivial Lie algebra C), these infinite sums
made sense due to all of their addends being 0 (since [b, a] = 0 for all a and b lying in
the trivial Lie algebra C). But this was an exception rather than the rule, and now we
need to take care.

Let us first assume that r ≥ 0.
Since

Ln =
1

2

∑
a∈B

∑
m∈Z

: aman−m :︸ ︷︷ ︸
= lim
N→∞

∑∣∣∣∣∣∣m−
n

2

∣∣∣∣∣∣≤N
:aman−m:

=
1

2

∑
a∈B

lim
N→∞

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N
: aman−m :

=
1

2
lim
N→∞

∑
a∈B

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N
: aman−m : ,
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we have

[br, Ln]

=

br, 1

2
lim
N→∞

∑
a∈B

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N
: aman−m :


=

1

2
lim
N→∞

∑
a∈B

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N
[br, : aman−m : ]︸ ︷︷ ︸

=[br,aman−m]
(by Remark 4.3.13 (b), applied to

a, br and n−m instead of x, y and n)

=
1

2
lim
N→∞

∑
a∈B

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N
[br, aman−m]︸ ︷︷ ︸

=[br,am]an−m+am[br,an−m]

=
1

2
lim
N→∞

∑
a∈B

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N

 [br, am]︸ ︷︷ ︸
=[b,a]r+m+Kω(br,am)

(by (291))

an−m + am [br, an−m]︸ ︷︷ ︸
=[b,a]n+r−m+Kω(br,an−m)

(by (291))


=

1

2
lim
N→∞

∑
a∈B

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N
(
[b, a]r+m an−m +Kω (br, am) an−m + am [b, a]n+r−m + amKω (br, an−m)

)

=
1

2
lim
N→∞

∑
a∈B

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N
(
[b, a]r+m an−m + am [b, a]n+r−m +Kω (br, am) an−m + amKω (br, an−m)

)
.

(296)

Now fix a ∈ B. We now notice that for anyN ∈ N, the sum
∑∣∣∣∣∣m−n2
∣∣∣∣∣≤N

Kω (br, am) an−m

(in EndM) has at most one nonzero addend (because ω (br, am) can be nonzero for at
most one integer m (namely, for m = −r)). Hence, this sum

∑∣∣∣∣∣m−n2
∣∣∣∣∣≤N

Kω (br, am) an−m

converges for any N ∈ N. For sufficiently high N , this sum does have an addend
for m = −r, and all other addends of this sum are 0 (since ω (br, am) = 0 when-
ever m 6= −r), so that the value of this sum is K︸︷︷︸

=k
(since K acts as
k·id on M)

ω (br, a−r)︸ ︷︷ ︸
=r(b,a)

(by the definition of ω)

an−(−r)︸ ︷︷ ︸
=an+r

=

kr (b, a) an+r. We thus have shown that the sum
∑∣∣∣∣∣m−n2
∣∣∣∣∣≤N

Kω (br, am) an−m converges
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for all N ∈ N, and satisfies∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N
Kω (br, am) an−m = kr (b, a) an+r for sufficiently high N . (297)

Similarly, we see that the sum
∑∣∣∣∣∣m−n2
∣∣∣∣∣≤N

amKω (br, an−m) converges for all N ∈ N, and

satisfies∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N
amKω (br, an−m) = an+rkr (b, a) for sufficiently high N . (298)

Finally, for all N ∈ N, the sum
∑∣∣∣∣∣m−n2
∣∣∣∣∣≤N

(
[b, a]r+m an−m + am [b, a]n+r−m

)
converges203.

Since the sums
∑∣∣∣∣∣m−n2
∣∣∣∣∣≤N

Kω (br, am) an−m,
∑∣∣∣∣∣m−n2
∣∣∣∣∣≤N

amKω (br, an−m) and

203Proof. LetN ∈ N. The sum
∑∣∣∣∣m−n2
∣∣∣∣≤N

(
[b, a]r+m an−m + am [b, a]n+r−m +Kω (br, am) an−m + amKω (br, an−m)

)
converges (because it appears on the right hand side of (296)), and the sums∑∣∣∣∣m−n2

∣∣∣∣≤N
Kω (br, am) an−m and

∑∣∣∣∣m−n2
∣∣∣∣≤N

amKω (br, an−m) converge (as we have just seen).

Hence, the sum∑
∣∣∣∣m−n2

∣∣∣∣≤N
((

[b, a]r+m an−m + am [b, a]n+r−m +Kω (br, am) an−m + amKω (br, an−m)
)

−Kω (br, am) an−m − amKω (br, an−m))

converges as well (since it is obtained by subtracting the latter two sums from the former sum
componentwise). But this sum clearly simplifies to

∑∣∣∣∣m−n2
∣∣∣∣≤N

(
[b, a]r+m an−m + am [b, a]n+r−m

)
.

Hence, the sum
∑∣∣∣∣m−n2
∣∣∣∣≤N

(
[b, a]r+m an−m + am [b, a]n+r−m

)
converges, qed.
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∑∣∣∣∣∣m−n2
∣∣∣∣∣≤N

(
[b, a]r+m an−m + am [b, a]n+r−m

)
converge for every N ∈ N, we have

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N
(
[b, a]r+m an−m + am [b, a]n+r−m +Kω (br, am) an−m + amKω (br, an−m)

)

=
∑

∣∣∣∣∣m−n2
∣∣∣∣∣≤N

(
[b, a]r+m an−m + am [b, a]n+r−m

)
+

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N
Kω (br, am) an−m

+
∑

∣∣∣∣∣m−n2
∣∣∣∣∣≤N

amKω (br, an−m)

for every N ∈ N. Hence, for every sufficiently high N ∈ N, we have∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N
(
[b, a]r+m an−m + am [b, a]n+r−m +Kω (br, am) an−m + amKω (br, an−m)

)

=
∑

∣∣∣∣∣m−n2
∣∣∣∣∣≤N

(
[b, a]r+m an−m + am [b, a]n+r−m

)
+

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N
Kω (br, am) an−m

︸ ︷︷ ︸
=kr(b,a)an+r for sufficiently high N

(by (297))

+
∑

∣∣∣∣∣m−n2
∣∣∣∣∣≤N

amKω (br, an−m)

︸ ︷︷ ︸
=an+rkr(b,a) for sufficiently high N

(by (297))

=
∑

∣∣∣∣∣m−n2
∣∣∣∣∣≤N

(
[b, a]r+m an−m + am [b, a]n+r−m

)
+ kr (b, a) an+r + an+rkr (b, a)︸ ︷︷ ︸

=2rk·(b,a)an+r

=
∑

∣∣∣∣∣m−n2
∣∣∣∣∣≤N

(
[b, a]r+m an−m + am [b, a]n+r−m

)
+ 2rk · (b, a) an+r. (299)
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Now, forget that we fixed a. The equality (296) becomes

[br, Ln]

=
1

2
lim
N→∞

∑
a∈B

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N
(
[b, a]r+m an−m + am [b, a]n+r−m +Kω (br, am) an−m + amKω (br, an−m)

)
︸ ︷︷ ︸

=
∑∣∣∣∣∣∣m−
n

2

∣∣∣∣∣∣≤N
([b,a]r+man−m+am[b,a]n+r−m)+2rk·(b,a)an+r

for sufficiently high N (by (299))

=
1

2
lim
N→∞

∑
a∈B


∑

∣∣∣∣∣m−n2
∣∣∣∣∣≤N

(
[b, a]r+m an−m + am [b, a]n+r−m

)
+ 2rk · (b, a) an+r


=

1

2
lim
N→∞

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N

(∑
a∈B

[b, a]r+m an−m +
∑
a∈B

am [b, a]n+r−m

)
+ rk

∑
a∈B

(b, a) an+r.

(300)

But since
∑
a∈B

([b, a]⊗ a+ a⊗ [b, a]) = 0 (by Lemma 4.3.9 (a)), we have∑
a∈B

([b, a]` ⊗ as + a` ⊗ [b, a]s) = 0 for any two integers ` and s. In particular, every m ∈

Z satisfies
∑
a∈B

(
[b, a]m ⊗ an+r−m + am ⊗ [b, a]n+r−m

)
= 0. Hence, every m ∈ Z satisfies∑

a∈B

(
[b, a]m an+r−m + am [b, a]n+r−m

)
= 0, so that

∑
a∈B

[b, a]m an+r−m+
∑
a∈B

am [b, a]n+r−m =

0 and thus
∑
a∈B

am [b, a]n+r−m = −
∑
a∈B

[b, a]m an+r−m. Hence, (300) becomes

[br, Ln]

=
1

2
lim
N→∞

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N


∑
a∈B

[b, a]r+m an−m +
∑
a∈B

am [b, a]n+r−m︸ ︷︷ ︸
=−

∑
a∈B

[b,a]man+r−m

+ rk
∑
a∈B

(b, a) an+r

=
1

2
lim
N→∞

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N

(∑
a∈B

[b, a]r+m an−m −
∑
a∈B

[b, a]m an+r−m

)
+ rk

∑
a∈B

(b, a) an+r.

(301)
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We will now transform the limit in this equation: In fact,

lim
N→∞

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N

(∑
a∈B

[b, a]r+m an−m −
∑
a∈B

[b, a]m an+r−m

)

︸ ︷︷ ︸
=
∑
a∈B


∑∣∣∣∣∣∣m−
n

2

∣∣∣∣∣∣≤N
[b,a]r+man−m−

∑∣∣∣∣∣∣m−
n

2

∣∣∣∣∣∣≤N
[b,a]man+r−m



= lim
N→∞

∑
a∈B



∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N
[b, a]r+m an−m

︸ ︷︷ ︸
=

∑∣∣∣∣∣∣m−r−
n

2

∣∣∣∣∣∣≤N
[b,a]man+r−m

(here, we substituted m−r for m in the sum)

−
∑

∣∣∣∣∣m−n2
∣∣∣∣∣≤N

[b, a]m an+r−m



= lim
N→∞

∑
a∈B


∑

∣∣∣∣∣m−r−n2
∣∣∣∣∣≤N

[b, a]m an+r−m −
∑

∣∣∣∣∣m−n2
∣∣∣∣∣≤N

[b, a]m an+r−m


︸ ︷︷ ︸
=−

∑
n

2
−N≤m<

n

2
+r−N

[b,a]man+r−m+
∑

n

2
+N<m≤

n

2
+r+N

[b,a]man+r−m

(by Lemma 4.3.14, applied to um=[b,a]man+r−m,

α=
n

2
and β=

n

2
+r)

= lim
N→∞

∑
a∈B

− ∑
n

2
−N≤m<

n

2
+r−N

[b, a]m an+r−m +
∑

n

2
+N<m≤

n

2
+r+N

[b, a]m an+r−m

 .

Since every a ∈ B satisfies
∑

n

2
−N≤m<

n

2
+r−N

[b, a]m an+r−m → 0 for N → ∞ 204, this

204Proof. Let a ∈ B.
Let w ∈ M . From the proof of Theorem 4.3.4 (a), recall the fact that for every w ∈ M , there

exists some M ∈ N such that every integer m ≥M and every a ∈ g satisfy atm · w = 0. Applied
to w = a, this yields that there exists some M ∈ N such that

every integer m ≥M satisfies atm · w = 0. (302)
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becomes

lim
N→∞

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N

(∑
a∈B

[b, a]r+m an−m −
∑
a∈B

[b, a]m an+r−m

)

= lim
N→∞

∑
a∈B


−

∑
n

2
−N≤m<

n

2
+r−N

[b, a]m an+r−m

︸ ︷︷ ︸
→0 for N→∞

+
∑

n

2
+N<m≤

n

2
+r+N

[b, a]m an+r−m


= lim

N→∞

∑
a∈B

∑
n

2
+N<m≤

n

2
+r+N

[b, a]m an+r−m︸ ︷︷ ︸
=an+r−m[b,a]m+[[b,a]m,an+r−m]

= lim
N→∞

∑
a∈B

∑
n

2
+N<m≤

n

2
+r+N

(an+r−m [b, a]m + [[b, a]m , an+r−m])

= lim
N→∞

∑
a∈B

 ∑
n

2
+N<m≤

n

2
+r+N

an+r−m [b, a]m +
∑

n

2
+N<m≤

n

2
+r+N

[[b, a]m , an+r−m]

 .

Since every a ∈ B satisfies
∑

n

2
+N<m≤

n

2
+r+N

an+r−m [b, a]m → 0 for N → ∞ 205, this

Consider this M.
Let N be an integer such that N ≥M− n

2
−r. Then,

n

2
+r+N ≥M. Now, every integer m such

that
n

2
−N ≤ m <

n

2
+ r−N must satisfy n+ r− m︸︷︷︸

≥
n

2
−N

≤ n+ r−
(n

2
−N

)
=
n

2
+ r+N ≥M

and thus atn+r−m · w = 0 (by (302), applied to m = n + r − m), thus [b, a]m an+r−m︸ ︷︷ ︸
=atn+r−m

w =

[b, a]m · at
n+r−m · w︸ ︷︷ ︸

=0

= 0. Hence,
∑

n

2
−N≤m<

n

2
+r−N

[b, a]m an+r−mw︸ ︷︷ ︸
=0

=
∑

n

2
−N≤m<

n

2
+r−N

0 = 0.

Now forget that we fixed N . We thus have showed that
∑

n

2
−N≤m<

n

2
+r−N

[b, a]m an+r−mw = 0

for every integer N such that N ≥M − n

2
− r. Hence,

∑
n

2
−N≤m<

n

2
+r−N

[b, a]m an+r−mw = 0 for

every sufficiently large N . Thus,
∑

n

2
−N≤m<

n

2
+r−N

[b, a]m an+r−mw → 0 for N → ∞. Since this

holds for every w ∈M , we thus obtain
∑

n

2
−N≤m<

n

2
+r−N

[b, a]m an+r−m → 0 for N →∞, qed.

205Proof. Let w ∈ M . From the proof of Theorem 4.3.4 (a), recall the fact that for every w ∈ M ,
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becomes

lim
N→∞

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N

(∑
a∈B

[b, a]r+m an−m −
∑
a∈B

[b, a]m an+r−m

)

= lim
N→∞

∑
a∈B


∑

n

2
+N<m≤

n

2
+r+N

an+r−m [b, a]m

︸ ︷︷ ︸
→0 for N→∞

+
∑

n

2
+N<m≤

n

2
+r+N

[[b, a]m , an+r−m]


= lim

N→∞

∑
a∈B

∑
n

2
+N<m≤

n

2
+r+N

[[b, a]m , an+r−m]︸ ︷︷ ︸
=[[b,a],a]n+r+Kω([b,a]m,an+r−m)

(by (291), applied to [b,a], a, m and n+r−m
instead of x, y, n, m)

there exists some M ∈ N such that every integer m ≥ M and every a ∈ g satisfy atm · w = 0.
Consider this M. Thus,

every integer m ≥M and every a ∈ g satisfy atm · w = 0. (303)

Let a ∈ B.
Let N be an integer such that N ≥ M − n

2
. Then,

n

2
+ N ≥ M. Now, every integer m such

that
n

2
+N < m ≤ n

2
+ r +N must satisfy m >

n

2
+N ≥M and thus [b, a] tm · w = 0 (by (303),

applied to m and [b, a] instead of m and a), thus an+r−m [b, a]m︸ ︷︷ ︸
=[b,a]tm

w = an+r−m [b, a] tm · w︸ ︷︷ ︸
=0

= 0.

Hence,
∑

n

2
+N<m≤

n

2
+r+N

an+r−m [b, a]m w︸ ︷︷ ︸
=0

=
∑

n

2
+N<m≤

n

2
+r+N

0 = 0.

Now forget that we fixed N . We thus have showed that
∑

n

2
+N<m≤

n

2
+r+N

an+r−m [b, a]m w = 0

for every integer N such that N ≥M− n
2

. Hence,
∑

n

2
+N<m≤

n

2
+r+N

an+r−m [b, a]m w = 0 for every

sufficiently large N . Thus,
∑

n

2
+N<m≤

n

2
+r+N

an+r−m [b, a]m w → 0 for N → ∞. Since this holds

for every w ∈M , we thus obtain
∑

n

2
+N<m≤

n

2
+r+N

an+r−m [b, a]m → 0 for N →∞, qed.
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= lim
N→∞

∑
a∈B

∑
n

2
+N<m≤

n

2
+r+N

[[b, a] , a]n+r + K︸︷︷︸
=k

(since K acts on M as k·id )

ω ([b, a]m , an+r−m)


= lim

N→∞

∑
a∈B

∑
n

2
+N<m≤

n

2
+r+N

(
[[b, a] , a]n+r + kω ([b, a]m , an+r−m)

)
︸ ︷︷ ︸

=
∑

n

2
+N<m≤

n

2
+r+N

∑
a∈B

[[b,a],a]n+r+k
∑

n

2
+N<m≤

n

2
+r+N

∑
a∈B

ω([b,a]m,an+r−m)

= lim
N→∞


∑

n

2
+N<m≤

n

2
+r+N

∑
a∈B

[[b, a] , a]n+r

︸ ︷︷ ︸
=r

∑
a∈B

[[b,a],a]n+r

+k
∑

n

2
+N<m≤

n

2
+r+N

∑
a∈B

ω ([b, a]m , an+r−m)



= lim
N→∞

r∑
a∈B

[[b, a] , a]n+r + k
∑

n

2
+N<m≤

n

2
+r+N

∑
a∈B

ω ([b, a]m , an+r−m)

 .

Since every integer m and every a ∈ B satisfy ω ([b, a]m , an+r−m) = 0 206, this
simplifies to

lim
N→∞

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N

(∑
a∈B

[b, a]r+m an−m −
∑
a∈B

[b, a]m an+r−m

)

= lim
N→∞

r∑
a∈B

[[b, a] , a]n+r + k
∑

n

2
+N<m≤

n

2
+r+N

∑
a∈B

ω ([b, a]m , an+r−m)︸ ︷︷ ︸
=0


= lim

N→∞
r
∑
a∈B

[[b, a] , a]n+r = r
∑
a∈B

[[b, a] , a]n+r .

206Proof. Let m be an integer, and let a ∈ B. From Lemma 4.3.9 (c), we have ([b, a] , a) = 0, so that
m ([b, a] , a) = 0. But by the definition of ω, we have

ω ([b, a]m , an+r−m) =

{
m ([b, a] , a) , if m = − (n+ r −m) ;

0, if m 6= − (n+ r −m)
=

{
0, if m = − (n+ r −m) ;
0, if m 6= − (n+ r −m)

(since m ([b, a] , a) = 0)

= 0,

qed.
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Thus, (301) becomes

[br, Ln]

=
1

2
lim
N→∞

∑
∣∣∣∣∣m−n2

∣∣∣∣∣≤N

(∑
a∈B

[b, a]r+m an−m −
∑
a∈B

[b, a]m an+r−m

)

︸ ︷︷ ︸
=r

∑
a∈B

[[b,a],a]n+r

+rk
∑
a∈B

(b, a) an+r

=
1

2
r
∑
a∈B

[[b, a] , a]n+r︸ ︷︷ ︸
=[[b,a],a]tn+r

+rk
∑
a∈B

(b, a) an+r︸︷︷︸
=atn+r

= rtn+r

(
1

2

∑
a∈B

[[b, a] , a] + k
∑
a∈B

(b, a) a

)
︸ ︷︷ ︸

=b
(by Lemma 4.3.9 (b))

= r tn+rb︸ ︷︷ ︸
=bn+r

= rbn+r.

This proves (295) in the case when r ≥ 0. The case when r ≤ 0 is handled analogously

(except that this time we have to apply Lemma 4.3.14 to um = [b, a]m an+r−m, α =
n

2
+r

and β =
n

2
instead of applying it to um = [b, a]m an+r−m, α =

n

2
and β =

n

2
+ r).

Altogether, the proof of (295) is thus complete.
2nd step: It is clear that

[Ln, am] = −man+m for any a ∈ g and any integers n and m (304)

(since (295) (applied to r = m and a = b) yields [am, Ln] = man+m, so that [Ln, am] =
− [am, Ln]︸ ︷︷ ︸

=man+m

= −man+m). Also, it is clear that

[Ln, K] = 0 for any integer n (305)

(since K acts as a scalar on M).
3rd step: Now, we will prove that

[Ln, Lm] = (n−m)Ln+m +
n3 − n

12
δn,−mk ·

∑
a∈B

(a, a) for any integers n and m

(306)
(as an identity in EndM).

Proof of (306): We know that every n ∈ Z satisfies

Ln =
1

2

∑
a∈B

∑
m∈Z

: aman−m : =
1

2

∑
a∈B

∑
m∈Z

: a−man+m : (307)

(here, we substituted −m for m in the second sum).
Repeat the Second Proof of Proposition 3.2.13, with the following changes:

• Reprove Lemma 3.2.10 with Fµ replaced by M and with an additional “Let a ∈ g
be arbitrary.” condition. (The proof will be slightly different from the proof of
the original Lemma 3.2.10 because M is no longer a polynomial ring, but this
time we can use the admissibility of M instead.)
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• Replace every Fµ by M .

• Instead of the equality (95), use the equality (307) (which differs from the equal-
ity (95) only in the presence of a

∑
a∈B

sign). As a consequence,
∑
a∈B

signs need

to be dragged along through the computations (but they don’t complicate the
calculation).

• Instead of using Remark 3.2.5, use Remark 4.3.10.

• Instead of using Remark 3.2.6 (a), use Remark 4.3.11.

• Instead of using Remark 3.2.7, use Remark 4.3.13.

• Instead of using Proposition 3.2.12, use (304).

• Instead of the equality am−`an+` = : am−`an+` : − (n+ `) [` < m] δm,−n id, check
the equality am−`an+` = : am−`an+` : − (n+ `) [` < m] δm,−n (a, a) k for every a ∈
B.

• Instead of the equality a−`am+n+` = : a−`am+n+` : − ` [` < 0] δm,−n id, check the
equality a−`am+n+` = : a−`am+n+` : − ` [` < 0] δm,−n (a, a) k for every a ∈ B.

Once these changes (most of which are automatic) are made, we have obtained a
proof of (306).

4th step: From (306), it is clear that the endomorphisms Ln for n ∈ Z give rise to a
Vir-representation on M with central charge

c = k ·
∑
a∈B

(a, a) .

This proves Theorem 4.3.4 (c).
(d) From (304) and (305), it follows that the formulas for Ln and c we have given

in Theorem 4.3.4 extend the action of ĝ on M to an action of Virnĝ. Theorem 4.3.4
(d) thus is proven.

(e) Theorem 4.3.4 (e) follows immediately from (304).
Thus, the proof of Theorem 4.3.4 is complete.
We are now going to specialize these results to the case of g being simple. In this

case, the so-called dual Coxeter number of the simple Lie algebra g comes into play.
Let us explain what this is:

Definition 4.3.15. Let g be a simple finite-dimensional Lie algebra. Let θ be the
maximal root of g. (In other words, let θ be the highest weight of the adjoint

representation of g.) Let ρ =
1

2

∑
α root of g;

α>0

α be the half-sum of all positive roots. The

dual Coxeter number h∨ of g is defined by h∨ = 1 + (θ, ρ). It is easy to show that
h∨ is a positive integer.
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Definition 4.3.16. Let g be a simple finite-dimensional Lie algebra. The standard
form on g will mean the scalar multiple of the Killing form under which (α, α) (under
the inverse form on g∗) equals 2 for long roots α. (We do not care to define what a
long root is, but it is enough to say that the maximal root θ is a long root, and this
is clearly enough to define the standard form.)

(The inverse form of a nondegenerate bilinear form (·, ·) on g means the bilinear
form on g∗ = h∗ ⊕ n∗+ ⊕ n∗− obtained by dualizing the bilinear form (·, ·) on g =
h⊕ n+ ⊕ n− using itself.)

We are going to denote the standard form by (·, ·).

Lemma 4.3.17. Let B be an orthonormal basis of g with respect to the standard
form. Let C =

∑
a∈B

a2 ∈ U (g). This element C is known to be central in U (g) (this

is easily checked), and is called the quadratic Casimir.
Then:
(1) For every λ ∈ h∗, the element C ∈ U (g) acts on Lλ by (λ, λ+ 2ρ) · id. (Here,

Lλ means L+
λ , but actually can be replaced by any highest-weight module with

highest weight λ.)
(2) The element C ∈ U (g) acts on the adjoint representation g by 2h∨ · id.

Proof of Lemma 4.3.17. If (bi)i∈I is any basis of g, and (b∗i )i∈I is the dual basis of g
with respect to the standard form (·, ·), then

C =
∑
i∈I

bib
∗
i . (308)

207

(1) Let λ ∈ h∗.
Let us refine the triangular decomposition g = h ⊕ n+ ⊕ n− to the weight space

decomposition g = h ⊕
(⊕
α>0

gα

)
⊕
(⊕
α<0

gα

)
, where gα = Ceα for roots α > 0, and

g−α = Cfα for roots α > 0. (This is standard theory of simple Lie algebras.) Normalize
the fα in such a way that (eα, fα) = 1. As usual, denote hα = [eα, fα] for every root
α > 0.

Fix an orthonormal basis (xi)i∈{1,2,...,r} of h. Clearly, (xi)i∈{1,2,...,r}∪ (eα)α>0∪ (fα)α>0

(where the index α runs over positive roots only) is a basis of g. Since

(eα, xi) = (fα, xi) = 0 for all i ∈ {1, 2, ..., r} and roots α > 0;

(eα, fβ) = 0 for any two distinct roots α > 0 and β > 0;

(eα, eγ) = (fα, fγ) = 0 for any roots α > 0 and γ > 0;

(xi, xj) = δi,j for all i ∈ {1, 2, ..., r} and j ∈ {1, 2, ..., r} ;

(eα, fα) = (fα, eα) = 1 for any root α > 0,

we see that (xi)i∈{1,2,...,r}∪(fα)α>0∪(eα)α>0 is the dual basis to this basis (xi)i∈{1,2,...,r}∪
(eα)α>0 ∪ (fα)α>0 with respect to the standard form (·, ·). Thus, (308) yields

C =
r∑
i=1

x2
i +

∑
α>0

(fαeα + eαfα) ,

207This is a well-known property of the quadratic Casimir.
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so that (denoting v+
λ by vλ) we have

Cvλ =
r∑
i=1

x2
i vλ︸︷︷︸

=λ(xi)
2vλ

+
∑
α>0

(fαeα + eαfα) vλ =
r∑
i=1

λ (xi)
2

︸ ︷︷ ︸
=(λ,λ)

vλ +
∑
α>0

fα eαvλ︸︷︷︸
=0

+ eαfα︸︷︷︸
=fαeα+[eα,fα]

vλ


= (λ, λ) vλ +

∑
α>0

(fαeα + [eα, fα]) vλ

= (λ, λ) vλ +
∑
α>0

fα eαvλ︸︷︷︸
=0

+
∑
α>0

[eα, fα]︸ ︷︷ ︸
=hα

vλ

= (λ, λ) vλ +
∑
α>0

hαvλ︸︷︷︸
=λ(hα)vλ

= (λ, λ) vλ +
∑
α>0

λ (hα)︸ ︷︷ ︸
=(λ,α)

vλ

= (λ, λ) vλ +
∑
α>0

(λ, α) vλ =

(
(λ, λ) +

∑
α>0

(λ, α)

)
︸ ︷︷ ︸
=

(
λ,λ+

∑
α>0

α

)
=(λ,λ+2ρ)

(since
∑
α>0

α=2ρ)

vλ = (λ, λ+ 2ρ) vλ.

Thus, every a ∈ U (g) satisfies

Cavλ = a Cvλ︸︷︷︸
=(λ,λ+2ρ)vλ

(since C is central in U (g))

= (λ, λ+ 2ρ) avλ.

Hence, C acts as (λ, λ+ 2ρ) · id on Lλ (because every element of Lλ has the form avλ
for some a ∈ U (g)). This proves Lemma 4.3.17 (1).

(2) We have g = Lθ, and thus Lemma 4.3.17 (1) yields

C |Lθ= (θ, θ + 2ρ) = (θ, θ)︸ ︷︷ ︸
=2

+2 (θ, ρ) = 2 + 2 (θ, ρ) = 2h∨.

This proves Lemma 4.3.17 (2).
Here is a little table of dual Coxeter numbers, depending on the root system type of

g:
For An−1, we have h∨ = n.
For Bn, we have h∨ = 2n− 1.
For Cn, we have h∨ = n+ 1.
For Dn, we have h∨ = 2n− 2.
For E6, we have h∨ = 12.
For E7, we have h∨ = 18.
For E8, we have h∨ = 30.
For F4, we have h∨ = 9.
For G2, we have h∨ = 4.
Every Lie theorist is supposed to remember these by heart.
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Lemma 4.3.18. Let g be a simple finite-dimensional Lie algebra. Then,

Kil (a, b) = 2h∨ · (a, b) for any a, b ∈ g.

Proof of Lemma 4.3.18. Let B be an orthonormal basis of g with respect to the
standard form. Define the quadratic Casimir C =

∑
a∈B

a2 as in Lemma 4.3.17. Then,

Trg (C) =
∑
a∈B

Trg
(
a2
)︸ ︷︷ ︸

=Tr((ad a)◦(ad a))=Kil(a,a)

=
∑
a∈B

Kil (a, a) .

Comparing this with

Trg (C) = 2h∨Trg (id)︸ ︷︷ ︸
=dim g

(since C |g= 2h∨ id by Lemma 4.3.17 (2))

= 2h∨ dim g︸ ︷︷ ︸
=|B|=

∑
a∈B

1=
∑
a∈B

(a,a)

(since every a∈B satisfies (a,a)=1)

= 2h∨
∑
a∈B

(a, a) ,

we obtain
∑
a∈B

Kil (a, a) = 2h∨
∑
a∈B

(a, a). Since Kil is a scalar multiple of (·, ·) (because

there is only one g-invariant symmetric bilinear form on g up to scaling), this yields
Kil = 2h∨ · (·, ·) (because

∑
a∈B

(a, a)︸ ︷︷ ︸
=1

=
∑
a∈B

1 = |B| 6= 0). Lemma 4.3.18 is proven.

So let us now look at the Sugawara construction when g is simple finite-dimensional.
First of all, k is non-critical if and only if k 6= −h∨. (The value k = −h∨ is called the
critical level.)

IfB′ is an orthonormal basis under (·, ·) (rather than under k (·, ·)+1

2
Kil = (k + h∨) (·, ·)),

then we have

Ln =
1

2 (k + h∨)

∑
a∈B′

∑
m∈Z

: aman−m : and

c =
k

k + h∨

∑
a∈B′

(a, a)︸ ︷︷ ︸
=|B′|

(since (a,a)=1 for every a∈B′)

=
k

k + h∨
|B′|︸︷︷︸

=dim g

=
k dim g

k + h∨
. (309)

In particular, this induces an internal grading on any ĝ-module which is a quotient of
M+

λ by eigenvalues of L0, whenever λ is a weight of ĝ. This is a grading by complex
numbers, since eigenvalues of L0 are not necessarily integers. (Note that this does not
work for general admissible modules in lieu of quotients of M+

λ .)
What happens at the critical level k = −h∨ ? The above formulas with k + h∨ in

the denominators clearly don’t work at this level anymore. We can, however, remove
the denominators, i. e., consider the operators

Tn =
1

2

∑
a∈B′

∑
m∈Z

: aman−m : .
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Then, the same calculations as we did in the proof of Theorem 4.3.4 tell us that these
Tn satisfy [Tn, am] = 0 and [Tn, Tm] = 0; they are thus central “elements” of U (ĝ)
(except that they are not actually elements of U (ĝ), but of some completion of U (ĝ)
acting on admissible modules).

For any complex numbers γ1, γ2, γ3, ..., we can construct a ĝ-moduleMλ�
(∑
m≥1

((Tm − γm)Mλ)

)
,

which does not have a grading. So, at the critical level, we do not automatically get
gradings on quotients of Mλ anymore. This is one reason why representations at the
critical level are considered more difficult than those at non-critical levels.

4.4. The Sugawara construction and unitarity

We now will show that the Sugawara construction preserves unitarity:

Proposition 4.4.1. Consider the situation of Theorem 4.3.4. If M is a unitary
admissible module for ĝ, then M is a unitary Virnĝ-module. (We recall that the
Virasoro algebra had its unitary structure given by L†n = L−n.)

But for M to be unitary for ĝ, we need k ∈ Z+ (this is easy to prove; we proved
it for sln, and the general case is similar). Since for k = 0, there is only the trivial
representation, we really must require k ≥ 1 to get something interesting. And since

c =
k dim g

k + h∨
, the c is then ≥ 1, since dim g ≥ 1+h∨. These modules are already known

to us to be unitary, so this construction does not help us in constructing new unitary
modules.

But there is a way to amend this by a variation of the Sugawara construction: the
Goddard-Kent-Olive construction.

4.5. The Goddard-Kent-Olive construction (a.k.a. the coset
construction)

Definition 4.5.1. Let g and p be two finite-dimensional Lie algebras such that
g ⊇ p. Let (·, ·) be a g-invariant form (possibly degenerate) on g. We can restrict
this form to p, and obtain a p-invariant form on p. Construct an affine Lie algebra
ĝ as in Definition 4.3.1 using the g-invariant form (·, ·) on g, and similarly construct
an affine Lie algebra p̂ using the restriction of this form to p. Then, ĝ ⊇ p̂. Choose
a level k which is non-critical for both g and p.

Let M be an admissible ĝ-module at level k. Then, M automatically becomes an
admissible p̂-module at level k. Hence, on M , we have two Virasoro actions: one
which is obtained from the ĝ-action, and one which is obtained from the p̂-action.
We will denote these actions by (Lg

i )i∈Z and
(
Lp
i

)
i∈Z, respectively (that is, for every

i ∈ Z, we denote by Lg
i the action of Li ∈ Vir obtained from the ĝ-module structure

on M , and we denote by Lp
i the action of Li ∈ Vir obtained from the p̂-module

structure on M), and we will denote their central charges by cg and cp, respectively.
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Theorem 4.5.2. Consider the situation of Definition 4.5.1. Let Li = Lg
i − L

p
i for

all i ∈ Z.
(a) Then, (Li)i∈Z is a Vir-action on M with central charge c = cg − cp.
(b) Also, [Ln, p̂] = 0 for all p̂ ∈ p̂ and n ∈ Z.
(c) Moreover, [Ln, L

p
m] = 0 for all n ∈ Z and m ∈ Z.

Proof of Theorem 4.5.2. (b) Let n ∈ Z. Every p ∈ p and m ∈ Z satisfy Ln︸︷︷︸
=Lg

n−Lp
n

, pm

 = [Lg
n, pm]︸ ︷︷ ︸

=−mpn+m

(by Theorem 4.3.4 (e),
applied to p instead of a)

− [Lp
n, pm]︸ ︷︷ ︸

=−mpn+m

(by Theorem 4.3.4 (e),
applied to p and p instead of a and g)

= (−mpm+n)−(−mpm+n) = 0.

Combined with the fact that [Ln, K] = 0 (this is trivial, since K acts as k · id on M),
this yields that [Ln, p̂] = 0 for all p̂ ∈ p̂ and n ∈ Z (because every p̂ ∈ p̂ is a C-linear
combination of terms of the form pm (with p ∈ p and m ∈ Z) and K). Thus, Theorem
4.5.2 (b) is proven.

(c) Let n ∈ Z. We recall that Lp
n was defined by Lp

n =
1

2

∑
a∈B

∑
m∈Z

: aman−m : , where

B is an orthonormal basis of p with respect to a certain bilinear form on p. Thus, Lp
n

is a sum of products of elements of p̂ (or, more precisely, their actions on M).
Now, let m ∈ Z. We have just seen that Lp

n is a sum of products of elements of p̂ (or,
more precisely, their actions on M). Similarly, Lp

m is a sum of products of elements
of p̂ (or, more precisely, their actions on M). Since we know that Ln commutes with
every element of p̂ (due to Theorem 4.5.2 (b)), this yields that Ln commutes with Lp

m.
In other words, [Ln, L

p
m] = 0. Theorem 4.5.2 (c) is thus established.
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(a) Any n ∈ Z and m ∈ Z satisfyLn, Lm︸︷︷︸
=Lg

m−Lp
m


= [Ln, L

g
m − Lp

m] = [Ln, L
g
m]− [Ln, L

p
m]︸ ︷︷ ︸

=0
(by Theorem 4.5.2 (c))

=

 Ln︸︷︷︸
=Lg

n−Lp
n

, Lg
m


= [Lg

n − Lp
n, L

g
m] = [Lg

n, L
g
m]− [Lp

n, L
g
m]︸ ︷︷ ︸

=[Lp
n,L

g
m−Lp

m]+[Lp
n,L

p
m]

(since Lg
m=(Lg

m−Lp
m)+Lp

m)

= [Lg
n, L

g
m]−

Lp
n, L

g
m − Lp

m︸ ︷︷ ︸
=Lm

− [Lp
n, L

p
m]

= [Lg
n, L

g
m]︸ ︷︷ ︸

=(n−m)Lg
n+m−

n3 − n
12

cgδn,−m

(by Theorem 4.3.4 (c))

− [Lp
n, Lm]︸ ︷︷ ︸

=−[Lm,Lp
n]

− [Lp
n, L

p
m]︸ ︷︷ ︸

=(n−m)Lp
n+m−

n3 − n
12

cpδn,−m

(by Theorem 4.3.4 (c),
applied to p instead of g)

=

(
(n−m)Lg

n+m −
n3 − n

12
cgδn,−m

)
+ [Lm, L

p
n]−

(
(n−m)Lp

n+m −
n3 − n

12
cpδn,−m

)
= (n−m)

(
Lg
n+m − L

p
n+m

)︸ ︷︷ ︸
=Ln+m

−n
3 − n
12

(cg − cp) δn,−m + [Lm, L
p
n]︸ ︷︷ ︸

=0
(by Theorem 4.5.2 (c),

applied to m and n instead of n and m)

= (n−m)Ln+m −
n3 − n

12
(cg − cp) δn,−m.

Hence, (Li)i∈Z is a Vir-action on M with central charge c = cg− cp. Theorem 4.5.2 (a)
is thus proven. This completes the proof of Theorem 4.5.2.

Example 4.5.3. Let a be a simple finite-dimensional Lie algebra. Let g = a⊕ a, and
let p = adiag ⊆ a⊕a (where adiag denotes the Lie subalgebra {(x, x) | x ∈ a} of a⊕a).
Consider the standard form (·, ·) on a. Define a symmetric bilinear form on a ⊕ a as
the direct sum of the standard forms on a and a.

Let V ′ and V ′′ be admissible â-modules at levels k′ and k′′. Theorem 4.3.4 endows
these vector spaces V ′ and V ′′ with Vir-module structures. These Vir-module structures

have central charges c′a =
k′ dim a

k′ + h∨
and c′′a =

k′′ dim a

k′′ + h∨
, respectively (by (309)). Let

(L′i)i∈Z and (L′′i )i∈Z denote the actions of Vir on these modules.
Then, V ′ ⊗ V ′′ is an admissible ĝ-module at level k′ + k′′. Thus, by Theorem 4.3.4,

this vector space V ′ ⊗ V ′′ becomes a Vir-module. The action (Lg
i )i∈Z of Vir on this

Vir-module V ′⊗V ′′ is given by Lg
i = L′i+L

′′
i (or, more precisely, Lg

i = L′i⊗id + id⊗L′′i ).
The central charge cg of this Vir-module V ′ ⊗ V ′′ is

cg = c′a + c′′a =
k′ dim a

k′ + h∨
+
k′′ dim a

k′′ + h∨
.
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Since p̂ = â acts on V ′ ⊗ V ′′ by diagonal action, we also get a Vir-module structure(
Lp
i

)
i∈Z on V ′ ⊗ V ′′ by applying Theorem 4.3.4 to p instead of g. The central charge

of this Vir-module is

cp =
k′ + k′′

k′ + k′′ + h∨
dim a

(since the level of the p̂-module V ′ ⊗ V ′′ is k′ + k′′).
Thus, the central charge c of the Vir-action on V ′ ⊗ V ′′ given by Theorem 4.5.2 is

c = c′a + c′′a − cp =
k′ dim a

k′ + h∨
+
k′′ dim a

k′′ + h∨
− k′ + k′′

k′ + k′′ + h∨
dim a

=

(
k′

k′ + h∨
+

k′′

k′′ + h∨
− k′ + k′′

k′ + k′′ + h∨

)
dim a.

We can use this construction to obtain, for every positive integer m, a unitary rep-

resentation of Vir with central charge 1− 6

(m+ 2) (m+ 3)
: In fact, let a = sl2, so that

h∨ = 2, and let k′ = 1 and k′′ = m. Then,

c = 3

(
1

3
+

m

m+ 2
− m+ 1

m+ 3

)
= 1− 6

(m+ 2) (m+ 3)
.

So we get unitary representations of Vir with central charge c for these values of c.

4.6. Preliminaries to simple and Kac-Moody Lie algebras

Our next goal is defining and studying the Kac-Moody Lie algebras. Before we do this,
however, we will recollect some properties of simple finite-dimensional Lie algebras
(which are, in some sense, the prototypical Kac-Moody Lie algebras); and yet before
that, we show some general results from the theory of Lie algebras which will be used
in our later proofs.

[This whole Section 4.6 is written by Darij and aims at covering the gap between
introductory courses in Lie algebras and Etingof’s class. It states some folklore facts
about Lie algebras which will be used later.]

4.6.1. A basic property of sl2-modules

We begin with a lemma from the representation theory of sl2:

Lemma 4.6.1. Let e, f and h mean the classical basis elements of sl2. Let λ ∈ C.
We consider any sl2-module as a U (sl2)-module.

(a) Let V be an sl2-module. Let x ∈ V be such that ex = 0 and hx = λx. Then,
every n ∈ N satisfies enfnx = n!λ (λ− 1) ... (λ− n+ 1)x.

(b) Let V be an sl2-module. Let x ∈ V be such that fx = 0 and hx = λx. Then,
every n ∈ N satisfies fnenx = n!λ (λ+ 1) ... (λ+ n− 1)x.

(c) Let V be a finite-dimensional sl2-module. Let x be a nonzero element of V
satisfying ex = 0 and hx = λx. Then, λ ∈ N and fλ+1x = 0.

Proof of Lemma 4.6.1. (a) 1st step: We will see that

hfmx = (λ− 2m) fmx for every m ∈ N. (310)
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Proof of (310): We will prove (310) by induction over m:
Induction base: For m = 0, we have hfmx = hf 0x = hx = λx and (λ− 2m) fmx =

(λ− 2 · 0) f 0x = λx, so that hfmx = (λ− 2m) fmx holds for m = 0. In other words,
(310) holds for m = 0. This completes the induction base.

Induction step: Let M ∈ N. Assume that (310) holds for m = M . We must then
prove that (310) holds for m = M + 1 as well.

Since (310) holds for m = M , we have hfMx = (λ− 2M) fMx. Now,

h fM+1︸ ︷︷ ︸
=ffM

x = hf︸︷︷︸
=fh+[h,f ]

fMx = (fh+ [h, f ]) fMx = f hfMx︸ ︷︷ ︸
=(λ−2M)fMx

+ [h, f ]︸ ︷︷ ︸
=−2f

fMx

= (λ− 2M) ffM︸︷︷︸
=fM+1

x− 2 ffM︸︷︷︸
=fM+1

x = (λ− 2M) fM+1x− 2fM+1x

= (λ− 2M − 2)︸ ︷︷ ︸
=λ−2(M+1)

fM+1x = (λ− 2 (M + 1)) fM+1x.

Thus, (310) holds for m = M + 1 as well. This completes the induction step. The
induction proof of (310) is thus complete.

2nd step: We will see that

efmx = m (λ−m+ 1) fm−1x for every positive m ∈ N. (311)

Proof of (311): We will prove (311) by induction over m:
Induction base: For m = 1, we have

efmx = ef 1︸︷︷︸
=ef=[e,f ]+fe

x = ([e, f ] + fe)x = [e, f ]︸︷︷︸
=h

x+ f ex︸︷︷︸
=0

= hx+ f0 = hx = λx

andm (λ−m+ 1) fm−1x = 1 (λ− 1 + 1)︸ ︷︷ ︸
=λ

f 1−1︸︷︷︸
=1

x = λx, so that efmx = m (λ−m+ 1) fm−1x

holds for m = 1. In other words, (311) holds for m = 1. This completes the induction
base.

Induction step: Let M ∈ N be positive. Assume that (311) holds for m = M . We
must then prove that (311) holds for m = M + 1 as well.

Since (311) holds for m = M , we have efMx = M (λ−M + 1) fM−1x. Now,

e fM+1︸ ︷︷ ︸
=ffM

x = ef︸︷︷︸
=fe+[e,f ]

fMx = (fe+ [e, f ]) fMx = f efM︸︷︷︸
=M(λ−M+1)fM−1x

x+ [e, f ]︸︷︷︸
=h

fMx

= M (λ−M + 1) ffM−1︸ ︷︷ ︸
=fM

x+ hfMx︸ ︷︷ ︸
=(λ−2M)fMx

(by (310), applied to m=M)

= M (λ−M + 1) fMx+ (λ− 2M) fMx = (M (λ−M + 1) + (λ− 2M))︸ ︷︷ ︸
=(M+1)(λ−(M+1)+1)

fMx

= (M + 1) (λ− (M + 1) + 1) fMx.

Thus, (311) holds for m = M + 1 as well. This completes the induction step. The
induction proof of (311) is thus complete.
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3rd step: We will see that

enfnx = n!λ (λ− 1) ... (λ− n+ 1)x for every n ∈ N. (312)

Proof of (312): We will prove (312) by induction over n:
Induction base: For n = 0, we have enfnx = e0f 0x = x and n!λ (λ− 1) ... (λ− n+ 1)x =

0!︸︷︷︸
=1

λ (λ− 1) ... (λ− 0 + 1)︸ ︷︷ ︸
=(empty product)=1

x = x, so that enfnx = n!λ (λ− 1) ... (λ− n+ 1)x holds

for n = 0. In other words, (312) holds for n = 0. This completes the induction base.
Induction step: Let N ∈ N. Assume that (312) holds for n = N . We must then

prove that (312) holds for n = N + 1 as well.
Since (312) holds for n = N , we have eNfNx = N !λ (λ− 1) ... (λ−N + 1)x. Now,

eN+1︸︷︷︸
=eNe

fN+1x = eN efN+1x︸ ︷︷ ︸
=(N+1)(λ−(N+1)+1)f (N+1)−1x

(by (311), applied to m=N+1)

= (N + 1) (λ− (N + 1) + 1) eN f (N+1)−1︸ ︷︷ ︸
=fN

x

= (N + 1) (λ− (N + 1) + 1) eNfNx︸ ︷︷ ︸
=N !λ(λ−1)...(λ−N+1)x

= (N + 1) (λ− (N + 1) + 1) ·N !λ (λ− 1) ... (λ−N + 1)x

= ((N + 1) ·N !)︸ ︷︷ ︸
=(N+1)!

· (λ (λ− 1) ... (λ−N + 1)) · (λ− (N + 1) + 1)︸ ︷︷ ︸
=λ(λ−1)...(λ−(N+1)+1)

x

= (N + 1)!λ (λ− 1) ... (λ− (N + 1) + 1)x.

Thus, (312) holds for n = N + 1 as well. This completes the induction step. The
induction proof of (312) is thus complete.

Lemma 4.6.1 (a) immediately follows from (312).
(b) The proof of Lemma 4.6.1 (b) is analogous to the proof of Lemma 4.6.1 (a).
(c) By assumption, dimV < ∞. Now, the endomorphism h |V of V has at most

dimV distinct eigenvalues (since an endomorphism of any finite-dimensional vector
space W has at most dimW distinct eigenvalues). From this, it is easy to conclude
that fdimV x = 0 208. Thus, there exists a smallest m ∈ N satisfying fmx = 0.
Denote this m by u. Then, fux = 0. Since f 0x = x 6= 0, this u is 6= 0, so that fu−1x is
well-defined. Moreover, fu−1x 6= 0 (since u is the smallest m ∈ N satisfying fmx = 0).

Lemma 4.6.1 (a) (applied to n = u) yields eufux = u!λ (λ− 1) ... (λ− u+ 1)x.
Since eu fux︸︷︷︸

=0

= 0, this rewrites as u!λ (λ− 1) ... (λ− u+ 1)x = 0. Since charC = 0,

we can divide this equation by u!, and obtain λ (λ− 1) ... (λ− u+ 1)x = 0. Since
x 6= 0, this yields λ (λ− 1) ... (λ− u+ 1) = 0. Thus, one of the numbers λ, λ − 1, ...,
λ−u+ 1 must be 0. In other words, λ ∈ {0, 1, ..., u− 1}. Hence, λ ∈ N and λ ≤ u− 1.

208Proof. Assume the opposite. Then, fdimV x 6= 0.
Now, let m ∈ {0, 1, ...,dimV } be arbitrary. We will prove that λ− 2m is an eigenvalue of h |V .
In fact, m ≤ dimV , so that fdimV−m (fmx) = fdimV−m+mx = fdimV x 6= 0 and thus fmx 6= 0.

Since hfmx = (λ− 2m) fmx (by (310)), this yields that fmx is a nonzero eigenvector of h |V with
eigenvalue λ− 2m. Thus, λ− 2m is an eigenvalue of h |V .

Now forget that we fixed m. Thus, we have proven that λ−2m is an eigenvalue of h |V for every
m ∈ {0, 1, ...,dimV }. Thus we have found dimV + 1 pairwise distinct eigenvalues of h |V . This
contradicts the fact that h |V has at most dimV distinct eigenvalues. This contradiction shows
that our assumption was wrong, qed.
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Applying (310) to m = u − 1, we obtain hfu−1x = (λ− 2 (u− 1)) fu−1x. Denote
λ − 2 (u− 1) by µ. Then, hfu−1x = (λ− 2 (u− 1))︸ ︷︷ ︸

=µ

fu−1x = µfu−1x. Also, ffu−1x =

fux = 0. Thus, we can apply Lemma 4.6.1 (b) to µ, fu−1x and u− 1 instead of λ, x
and n. Thus, we obtain

fu−1eu−1fu−1x = (u− 1)!µ (µ+ 1) ... (µ+ (u− 1)− 1) fu−1x.

But µ = λ︸︷︷︸
≤u−1

−2 (u− 1) ≤ (u− 1)− 2 (u− 1) = − (u− 1), so that each of the integers

µ, µ+1, ..., µ+(u− 1)−1 is nonzero. Thus, their product µ (µ+ 1) ... (µ+ (u− 1)− 1)
also is 6= 0. Combined with (u− 1)! 6= 0, this yields (u− 1)!µ (µ+ 1) ... (µ+ (u− 1)− 1) 6=
0. Combined with fu−1x 6= 0, this yields (u− 1)!µ (µ+ 1) ... (µ+ (u− 1)− 1) fu−1x 6=
0. Thus,

fu−1eu−1fu−1x = (u− 1)!µ (µ+ 1) ... (µ+ (u− 1)− 1) fu−1x 6= 0,

so that eu−1fu−1x 6= 0.
But Lemma 4.6.1 (a) (applied to n = u−1) yields eu−1fu−1x = (u− 1)!λ (λ− 1) ... (λ− (u− 1) + 1) x.

Thus,
(u− 1)!λ (λ− 1) ... (λ− (u− 1) + 1) x = eu−1fu−1x 6= 0.

Hence, λ (λ− 1) ... (λ− (u− 1) + 1) 6= 0. Hence,

(
λ

u− 1

)
=

1

(u− 1)!
λ (λ− 1) ... (λ− (u− 1) + 1)︸ ︷︷ ︸

6=0

6=

0, so that u − 1 ≤ λ (because otherwise, we would have

(
λ

u− 1

)
= 0, contradicting(

λ

u− 1

)
6= 0). Combined with u − 1 ≥ λ, this yields u − 1 = λ. Thus, u = λ + 1.

Hence, fux = 0 rewrites as fλ+1x = 0. This proves Lemma 4.6.1 (c).

4.6.2. Q-graded Lie algebras

The following generalization of the standard definition of a Z-graded Lie algebra sug-
gests itself:

Definition 4.6.2. Let Q be an abelian group, written additively.
(a) A Q-graded vector space will mean a vector space V equipped with a family

(V [α])α∈Q of vector subspaces V [α] of V (indexed by elements of Q) satisfying
V =

⊕
α∈Q

V [α]. For every α ∈ Q, the subspace V [α] is called the α-th homogeneous

component of the Q-graded vector space V . The family (V [α])α∈Q is called a Q-
grading on the vector space V .

(b) A Q-graded Lie algebra will mean a Lie algebra g equipped with a family
(g [α])α∈Q of vector subspaces g [α] of g (indexed by elements of Q) satisfying g =⊕
α∈Q

g [α] and satisfying

[g [α] , g [β]] ⊆ g [α + β] for all α, β ∈ Q.
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In this case, Q is called the root lattice of this Q-graded Lie algebra g. (This does
not mean that Q actually has to be a lattice of roots of g, or that Q must be related
in any way to the roots of g.) Clearly, any Q-graded Lie algebra is a Q-graded
vector space. Thus, the notion of the α-th homogeneous component of a Q-graded
Lie algebra makes sense for every α ∈ Q.

Convention 4.6.3. Whenever Q is an abelian group, α is an element of Q, and
V is a Q-graded vector space or a Q-graded Lie algebra, we will denote the α-th
homogeneous component of V by V [α].

In the context of a Q-graded vector space (or Lie algebra) V , one often writes Vα
instead of V [α] for the α-th homogeneous component of V . This notation, however,
can sometimes be misunderstood.

When a group homomorphism from Q to Z is given, a Q-graded Lie algebra canon-
ically becomes a Z-graded Lie algebra:

Proposition 4.6.4. Let Q be an abelian group. Let ` : Q → Z be a group homo-
morphism. Let g be a Q-graded Lie algebra.

(a) For every m ∈ Z, the internal direct sum
⊕
α∈Q;
`(α)=m

g [α] is well-defined.

(b) Denote this internal direct sum
⊕
α∈Q;
`(α)=m

g [α] by g[m]. Then, the Lie algebra g

equipped with the grading
(
g[m]

)
m∈Z is a Z-graded Lie algebra.

(This grading
(
g[m]

)
m∈Z is called the principal grading on g induced by the given

Q-grading on g and the map `.)

The proof of this proposition is straightforward and left to the reader.

4.6.3. A few lemmas on generating subspaces of Lie algebras

We proceed with some facts about generating sets of Lie algebras (free or not):

Lemma 4.6.5. Let g be a Lie algebra, and let T be a vector subspace of g. Assume
that g is generated by T as a Lie algebra.

Let U be a vector subspace of g such that T ⊆ U and [T, U ] ⊆ U . Then, U = g.

Notice that Lemma 4.6.5 is not peculiar to Lie algebras. A similar result holds (for
instance) if “Lie algebra” is replaced by “commutative nonunital algebra” and “[T, U ]”
is replaced by “TU”.

The following proof is written merely for the sake of completeness; intuitively, Lemma
4.6.5 should be obvious from the observation that all iterated Lie brackets of elements of
T can be written as linear combinations of Lie brackets of the form [t1, [t2, [..., [tk−1, tk]]]]
(with t1, t2, ..., tk ∈ T ) by applying the Jacobi identity iteratively.

Proof of Lemma 4.6.5. Define a sequence (Tn)n≥1 of vector subspaces of g recursively
as follows: Let T1 = T , and for every positive integer n, set Tn+1 = [T, Tn].

We have
[Ti, Tj] ⊆ Ti+j for any positive integers i and j. (313)

427



209 Now, let S be the vector subspace
∑
i≥1

Ti of g. Then, every positive integer k satisfies

Tk ⊆ S. In particular, T1 ⊆ S. Since S =
∑
i≥1

Ti and S =
∑
i≥1

Ti =
∑
j≥1

Tj, we have

[S, S] =

[∑
i≥1

Ti,
∑
j≥1

Tj

]
=
∑
i≥1

∑
j≥1

[Ti, Tj]︸ ︷︷ ︸
⊆Ti+j⊆S

(since every positive
integer k satisfies Tk⊆S)

⊆
∑
i≥1

∑
j≥1

S ⊆ S

(since S is a vector space). Thus, S is a Lie subalgebra of g. Since T = T1 ⊆ S, this
yields that S is a Lie subalgebra of g containing T as a subset. Since the smallest Lie
subalgebra of g containing T as a subset is g itself (because g is generated by T as a
Lie algebra), this yields that S ⊇ g. In other words, S = g.

Now, it is easy to see that

Ti ⊆ U for every positive integer i. (315)

209Proof of (313): We will prove (313) by induction over i.
Induction base: For any positive integer j, we have Tj+1 = [T, Tj ] (by the definition of Tj+1) and

thus

 T1︸︷︷︸
=T

, Tj

 = [T, Tj ] = Tj+1 = T1+j . In other words, (313) holds for i = 1. This completes

the induction base.
Induction step: Let k be a positive integer. Assume that (313) is proven for i = k. We now will

prove (313) for i = k + 1.
Since (313) is proven for i = k, we have

[Tk, Tj ] ⊆ Tk+j for any positive integer j. (314)

Now, let j be a positive integer. Then, Tk+j+1 = [T, Tk+j ] (by the definition of Tk+j+1) and
Tj+1 = [T, Tj ] (by the definition of Tj+1). Now, any x ∈ T , y ∈ Tk and z ∈ Tj satisfy

[[x, y] , z] = − [[y, z] , x]︸ ︷︷ ︸
=−[x,[y,z]]

−

 [z, x]︸ ︷︷ ︸
=−[x,z]

, y

 (by the Jacobi identity)

= − (− [x, [y, z]])︸ ︷︷ ︸
=[x,[y,z]]

− [− [x, z] , y]︸ ︷︷ ︸
=−[[x,z],y]=[y,[x,z]]

=

 x︸︷︷︸
∈T

,

 y︸︷︷︸
∈Tk

, z︸︷︷︸
∈Tj


−

 y︸︷︷︸
∈Tk

,

 x︸︷︷︸
∈T

, z︸︷︷︸
∈Tj




∈

T, [Tk, Tj ]︸ ︷︷ ︸
⊆Tk+j

(by (314))

+

Tk, [T, Tj ]︸ ︷︷ ︸
=Tj+1

 ⊆ [T, Tk+j ]︸ ︷︷ ︸
=Tk+j+1

+ [Tk, Tj+1]︸ ︷︷ ︸
⊆Tk+j+1

(by (314), applied to
j+1 instead of j)

⊆ Tk+j+1 + Tk+j+1 ⊆ Tk+j+1 (since Tk+j+1 is a vector space)

= T(k+1)+j .

Hence, [[T, Tk] , Tj ] ⊆ T(k+1)+j (since T(k+1)+j is a vector space). Since [T, Tk] = Tk+1 (by the
definition of Tk+1), this rewrites as [Tk+1, Tj ] ⊆ T(k+1)+j . Since we have proven this for every
positive integer j, we have thus proven (313) for i = k + 1. The induction step is thus complete.
This finishes the proof of (313).

428



210 Hence,

g = S =
∑
i≥1

Ti︸︷︷︸
⊆U

⊆
∑
i≥1

U ⊆ U

(since U is a vector space). Thus, U = g, and this proves Lemma 4.6.5.
The next result is related:

Theorem 4.6.6. Let g be a Z-graded Lie algebra. Let T be a vector subspace of
g [1] such that g is generated by T as a Lie algebra. Then, T = g [1].

The proof of this theorem proceeds by defining the sequence (Tn)n≥1 as in the proof
of Lemma 4.6.5, and showing that Ti ⊆ g [i] for every positive integer i. The details
are left to the reader.

Generating subspaces can help in proving that Lie algebra homomorphisms are Q-
graded:

Proposition 4.6.7. Let g and h be two Q-graded Lie algebras. Let T be a Q-graded
vector subspace of g. Assume that g is generated by T as a Lie algebra.

Let f : g → h be a Lie algebra homomorphism. Assume that f |T : T → h is a
Q-graded map.

Then, the map f is Q-graded.

The proof of this is left to the reader.
Next, a result on free Lie algebras:

Proposition 4.6.8. Let V be a vector space. We let FreeLieV denote the free Lie
algebra on the vector space V (not on the set V ), and let T (V ) denote the tensor
algebra of V . Then, there exists a canonical algebra isomorphism U (FreeLieV ) →
T (V ), which commutes with the canonical injections of V into U (FreeLieV ) and
into T (V ).

We are going to prove Proposition 4.6.8 by combining the universal properties of the
universal enveloping algebra, the free Lie algebra, and the tensor algebra. Let us first
formulate these properties. First, the universal property of the universal enveloping
algebra:

Theorem 4.6.9. Let g be a Lie algebra. We denote by ιUg : g→ U (g) the canonical
map from g into U (g). (This map ιUg is injective by the Poincaré-Birkhoff-Witt
theorem, but this is not relevant to the current theorem.) For any algebra B and

210Proof of (315): We will prove (315) by induction over i.
Induction base: We have T1 = T ⊆ U . Thus, (315) holds for i = 1. This completes the induction

base.
Induction step: Let k be a positive integer. Assume that (315) holds for i = k. We now will

prove (315) for i = k + 1.
Since (315) holds for i = k, we have Tk ⊆ U . Since Tk+1 = [T, Tk] (by the definition of Tk+1),

we have Tk+1 =

T, Tk︸︷︷︸
⊆U

 ⊆ [T,U ] ⊆ U . In other words, (315) holds for i = k+ 1. This completes

the induction step. Thus, (315) is proven.
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any Lie algebra homomorphism f : g→ B (where the Lie algebra structure on B is
defined by the commutator of the multiplication of B), there exists a unique algebra
homomorphism F : U (g)→ B satisfying f = F ◦ ιUg .

Next, the universal property of the free Lie algebra:

Theorem 4.6.10. Let V be a vector space. We denote by ιFreeLie
V : V → FreeLieV

the canonical map from V into FreeLieV . (The construction of FreeLieV readily
shows that this map ιFreeLie

V is injective.) For any Lie algebra h and any linear map
f : V → h, there exists a unique Lie algebra homomorphism F : FreeLieV → h
satisfying f = F ◦ ιFreeLie

V .

Finally, the universal property of the tensor algebra:

Theorem 4.6.11. Let V be a vector space. We denote by ιTV : V → T (V ) the
canonical map from V into T (V ). (This map ιTV is known to be injective.) For any
algebra B and any linear map f : V → B, there exists a unique algebra homomor-
phism F : T (V )→ B satisfying f = F ◦ ιTV .

Proof of Proposition 4.6.8. The algebra T (V ) canonically becomes a Lie algebra (by
defining the Lie bracket on T (V ) as the commutator of the multiplication). Similarly,
the algebra U (FreeLieV ) becomes a Lie algebra.

Applying Theorem 4.6.10 to h = T (V ) and f = ιTV , we obtain that there exists a
unique Lie algebra homomorphism F : FreeLieV → T (V ) satisfying ιTV = F ◦ ιFreeLie

V .
Denote this Lie algebra homomorphism F by h. Then, h : FreeLieV → T (V ) is a Lie
algebra homomorphism satisfying ιTV = h ◦ ιFreeLie

V .
Applying Theorem 4.6.9 to g = FreeLieV , B = T (V ) and f = h, we obtain that

there exists a unique algebra homomorphism F : U (FreeLieV )→ T (V ) satisfying h =
F ◦ ιUFreeLieV . Denote this algebra homomorphism F by α. Then, α : U (FreeLieV )→
T (V ) is an algebra homomorphism satisfying h = α ◦ ιUFreeLieV .

Applying Theorem 4.6.11 to B = U (FreeLieV ) and f = ιUFreeLieV ◦ ιFreeLie
V , we obtain

that there exists a unique algebra homomorphism F : T (V )→ U (FreeLieV ) satisfying
ιUFreeLieV ◦ ιFreeLie

V = F ◦ ιTV . Denote this algebra homomorphism F by β. Then, β :
T (V )→ U (FreeLieV ) is an algebra homomorphism satisfying ιUFreeLieV ◦ιFreeLie

V = β◦ιTV .
Both α and β are algebra homomorphisms, and therefore Lie algebra homomor-

phisms. Also, ιUFreeLieV is a Lie algebra homomorphism.
We have

β ◦ α ◦ ιUFreeLieV︸ ︷︷ ︸
=h

◦ιFreeLie
V = β ◦ h ◦ ιFreeLie

V︸ ︷︷ ︸
=ιTV

= β ◦ ιTV = ιUFreeLieV ◦ ιFreeLie
V

and
α ◦ β ◦ ιTV︸ ︷︷ ︸

=ιUFreeLieV ◦ι
FreeLie
V

= α ◦ ιUFreeLieV︸ ︷︷ ︸
=h

◦ιFreeLie
V = h ◦ ιFreeLie

V = ιTV .

Now, applying Theorem 4.6.10 to h = U (FreeLieV ) and f = ιUFreeLieV ◦ ιFreeLie
V ,

we obtain that there exists a unique Lie algebra homomorphism F : FreeLieV →
U (FreeLieV ) satisfying ιUFreeLieV ◦ ιFreeLie

V = F ◦ ιFreeLie
V . Thus, any two Lie algebra
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homomorphisms F : FreeLieV → U (FreeLieV ) satisfying ιUFreeLieV ◦ ιFreeLie
V = F ◦

ιFreeLie
V must be equal. Since β ◦ α ◦ ιUFreeLieV and ιUFreeLieV are two such Lie algebra

homomorphisms (because we know that β ◦ α ◦ ιUFreeLieV ◦ ιFreeLie
V = ιUFreeLieV ◦ ιFreeLie

V

and clearly ιUFreeLieV ◦ ιFreeLie
V = ιUFreeLieV ◦ ιFreeLie

V ), this yields that β ◦ α ◦ ιUFreeLieV and
ιUFreeLieV must be equal. In other words,

β ◦ α ◦ ιUFreeLieV = ιUFreeLieV .

Next, applying Theorem 4.6.9 to g = FreeLieV , B = U (FreeLieV ) and f = ιUFreeLieV ,
we obtain that there exists a unique algebra homomorphism F : U (FreeLieV ) →
U (FreeLieV ) satisfying ιUFreeLieV = F ◦ιUFreeLieV . Thus, any two algebra homomorphisms
F : U (FreeLieV ) → U (FreeLieV ) satisfying ιUFreeLieV = F ◦ ιUFreeLieV must be equal.
Since β ◦ α and idU(FreeLieV ) are two such algebra homomorphisms (because β ◦ α ◦
ιUFreeLieV = ιUFreeLieV and idU(FreeLieV ) ◦ιUFreeLieV = ιUFreeLieV ), this yields that β ◦ α and
idU(FreeLieV ) must be equal. Thus,

β ◦ α = idU(FreeLieV ) .

On the other hand, applying Theorem 4.6.11 to B = T (V ) and f = ιTV , we obtain
that there exists a unique algebra homomorphism F : T (V ) → T (V ) satisfying ιTV =
F ◦ ιTV . Therefore, any two algebra homomorphisms F : T (V ) → T (V ) satisfying
ιTV = F ◦ ιTV must be equal. Since α◦β and idT (V ) are two such algebra homomorphisms
(because we know that α ◦ β ◦ ιTV = ιTV and idT (V ) ◦ιTV = ιTV ), this yields that α ◦ β
and idT (V ) must be equal. In other words, α ◦ β = idT (V ). Combined with β ◦ α =
idU(FreeLieV ), this yields that α and β are mutually inverse, and thus α and β are algebra
isomorphisms. Hence, α : U (FreeLieV ) → T (V ) is a canonical algebra isomorphism.
Also, α commutes with the canonical injections of V into U (FreeLieV ) and into T (V ),
because

α ◦ ιUFreeLieV︸ ︷︷ ︸
=h

◦ιFreeLie
V = h ◦ ιFreeLie

V = ιTV .

Hence, there exists a canonical algebra isomorphism U (FreeLieV ) → T (V ), which
commutes with the canonical injections of V into U (FreeLieV ) and into T (V ) (namely,
α). Proposition 4.6.8 is proven.

4.6.4. Universality of the tensor algebra with respect to derivations

Next, let us notice that the universal property of the tensor algebra (Theorem 4.6.11)
has an analogue for derivations in lieu of algebra homomorphisms:

Theorem 4.6.12. Let V be a vector space. We denote by ιTV : V → T (V ) the
canonical map from V into T (V ). (This map ιTV is known to be injective.) For any
T (V )-bimodule M and any linear map f : V →M , there exists a unique derivation
F : T (V )→M satisfying f = F ◦ ιTV .

It should be noticed that “derivation” means “C-linear derivation” here.
Before we prove this theorem, let us extend its uniqueness part a bit:
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Proposition 4.6.13. Let A be an algebra. Let M be an A-bimodule, and d : A→
M and e : A→M two derivations. Let S be a subset of A which generates A as an
algebra. Assume that d |S= e |S. Then, d = e.

Proof of Proposition 4.6.13. Let U be the subset Ker (d− e) of A. Clearly, U is a
vector space (since d− e is a linear map (since d and e are linear)).

It is known that any derivation f : A → M satisfies f (1) = 0. Applying this to
f = d, we get d (1) = 0. Similarly, e (1) = 0. Thus, (d− e) (1) = d (1)︸︷︷︸

=0

− e (1)︸︷︷︸
=0

= 0, so

that 1 ∈ Ker (d− e) = U .
Now let b ∈ U and c ∈ U . Since b ∈ U = Ker (d− e), we have (d− e) (b) = 0. Thus,

d (b)− e (b) = (d− e) (b) = 0, so that d (b) = e (b). Similarly, d (c) = e (c).
Now, since d is a derivation, the Leibniz formula yields d (bc) = d (b) · c + b · d (c).

Similarly, e (bc) = e (b) · c+ b · e (c). Hence,

(d− e) (bc) = d (bc)︸ ︷︷ ︸
=d(b)·c+b·d(c)

− e (bc)︸ ︷︷ ︸
=e(b)·c+b·e(c)

=

d (b)︸︷︷︸
=e(b)

·c+ b · d (c)︸︷︷︸
=e(c)

− (e (b) · c+ b · e (c))

= (e (b) · c+ b · e (c))− (e (b) · c+ b · e (c)) = 0.

In other words, bc ∈ Ker (d− e) = U .
Now forget that we fixed b and c. We have thus showed that any b ∈ U and c ∈ U

satisfy bc ∈ U . Combined with the fact that U is a vector space and that 1 ∈ U , this
yields that U is a subalgebra of A. Since S ⊆ U (because every s ∈ S satisfies

(d− e) (s) = d (s)︸︷︷︸
=(d|S)(s)

− e (s)︸︷︷︸
=(e|S)(s)

= (d |S)︸ ︷︷ ︸
=e|S

(s)− (e |S) (s) = (e |S) (s)− (e |S) (s) = 0

and thus s ∈ Ker (d− e) = U), this yields that U is a subalgebra of A containing S as
a subset. But since the smallest subalgebra of A containing S as a subset is A itself
(because S generates A as an algebra), this yields that U ⊇ A. Hence, A ⊆ U =
Ker (d− e), so that d− e = 0 and thus d = e. Proposition 4.6.13 is proven.

Proof of Theorem 4.6.12. For any n ∈ N, we can define a linear map Φn : V ⊗n →M
by the equation Φn (v1 ⊗ v2 ⊗ ...⊗ vn) =

n∑
k=1

v1 · v2 · ... · vk−1 · f (vk) · vk+1 · vk+2 · ... · vn
for all v1, v2, ..., vn ∈ V

 (316)

(by the universal property of the tensor product, since the term
n∑
k=1

v1 · v2 · ... · vk−1 ·

f (vk) · vk+1 · vk+2 · ... · vn is clearly multilinear in v1, v2, ..., vn). Define this map Φn.
Let Φ be the map

⊕
n∈N

Φn :
⊕
n∈N

V ⊗n → M . Then, every n ∈ N and every v1, v2, ..., vn

satisfy

Φ (v1 ⊗ v2 ⊗ ...⊗ vn) = Φn (v1 ⊗ v2 ⊗ ...⊗ vn)

=
n∑
k=1

v1 · v2 · ... · vk−1 · f (vk) · vk+1 · vk+2 · ... · vn. (317)
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Since
⊕
n∈N

V ⊗n = T (V ), the map Φ is a map from T (V ) to M . We will now prove

that Φ is a derivation. In fact, in order to prove this, we must show that

Φ (ab) = Φ (a) · b+ a · Φ (b) for any a ∈ T (V ) and b ∈ T (V ) . (318)

Proof of (318): Every element of T (V ) is a linear combination of elements of V ⊗n

for various n ∈ N (because T (V ) =
⊕
n∈N

V ⊗n). Meanwhile, every element of V ⊗n for

any n ∈ N is a linear combination of pure tensors. Combining these two observations,
we see that every element of T (V ) is a linear combination of pure tensors.

We need to prove the equation (318) for all a ∈ T (V ) and b ∈ T (V ). Since this
equation is linear in each of a and b, we can WLOG assume that a and b are pure
tensors (since every element of T (V ) is a linear combination of pure tensors). Assume
this. Then, a is a pure tensor, so that there exists an n ∈ N and some v1, v2, ..., vn ∈ V
satisfying a = v1 ⊗ v2 ⊗ ... ⊗ vn. Consider this n and these v1, v2, ..., vn. Also, b is
a pure tensor, so that there exists an m ∈ N and some w1, w2, ..., wm ∈ V satisfying
b = w1 ⊗ w2 ⊗ ...⊗ wm. Consider this m and these w1, w2, ..., wm.

By (317) (applied to m and w1, w2, ..., wm instead of n and v1, v2, ..., vn), we have

Φ (w1 ⊗ w2 ⊗ ...⊗ wm) =
m∑
k=1

w1 · w2 · ... · wk−1 · f (wk) · wk+1 · wk+2 · ... · wm

=
n+m∑
k=n+1

w1 · w2 · ... · wk−n−1 · f (wk−n) · wk−n+1 · wk−n+2 · ... · wm

(here, we substituted k − n for k in the sum).
Let (u1, u2, ..., un+m) be the (n+m)-tuple (v1, v2, ..., vn, w1, w2, ..., wm). Then,

u1 ⊗ u2 ⊗ ...⊗ un+m = v1 ⊗ v2 ⊗ ...⊗ vn︸ ︷︷ ︸
=a

⊗w1 ⊗ w2 ⊗ ...⊗ wm︸ ︷︷ ︸
=b

= a⊗ b = ab.

By (317) (applied to n + m and u1, u2, ..., un+m instead of n and v1, v2, ..., vn), we
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have

Φ (u1 ⊗ u2 ⊗ ...⊗ un+m)

=
n+m∑
k=1

u1 · u2 · ... · uk−1 · f (uk) · uk+1 · uk+2 · ... · un+m

=
n∑
k=1

u1 · u2 · ... · uk−1 · f (uk) · uk+1 · uk+2 · ... · un+m︸ ︷︷ ︸
=v1·v2·...·vk−1·f(vk)·vk+1·vk+2·...·vn·w1·w2·...·wm

(since (u1,u2,...,un+m)=(v1,v2,...,vn,w1,w2,...,wm) and k≤n)

+
n+m∑
k=n+1

u1 · u2 · ... · uk−1 · f (uk) · uk+1 · uk+2 · ... · un+m︸ ︷︷ ︸
=v1·v2·...·vn·w1·w2·...·wk−n−1·f(wk−n)·wk−n+1·wk−n+2·...·wm

(since (u1,u2,...,un+m)=(v1,v2,...,vn,w1,w2,...,wm) and k>n)

=
n∑
k=1

v1 · v2 · ... · vk−1 · f (vk) · vk+1 · vk+2 · ... · vn · w1 · w2 · ... · wm︸ ︷︷ ︸
=w1⊗w2⊗...⊗wm=b

+
n+m∑
k=n+1

v1 · v2 · ... · vn︸ ︷︷ ︸
=v1⊗v2⊗...⊗vn=a

·w1 · w2 · ... · wk−n−1 · f (wk−n) · wk−n+1 · wk−n+2 · ... · wm

=
n∑
k=1

v1 · v2 · ... · vk−1 · f (vk) · vk+1 · vk+2 · ... · vn · b

+
n+m∑
k=n+1

a · w1 · w2 · ... · wk−n−1 · f (wk−n) · wk−n+1 · wk−n+2 · ... · wm

=

(
n∑
k=1

v1 · v2 · ... · vk−1 · f (vk) · vk+1 · vk+2 · ... · vn

)
︸ ︷︷ ︸

=Φ(v1⊗v2⊗...⊗vn)
(by (317))

·b

+ a ·

(
n+m∑
k=n+1

w1 · w2 · ... · wk−n−1 · f (wk−n) · wk−n+1 · wk−n+2 · ... · wm

)
︸ ︷︷ ︸

=Φ(w1⊗w2⊗...⊗wm)

= Φ

v1 ⊗ v2 ⊗ ...⊗ vn︸ ︷︷ ︸
=a

 · b+ a · Φ

w1 ⊗ w2 ⊗ ...⊗ wm︸ ︷︷ ︸
=b

 = Φ (a) · b+ a · Φ (b) .

Thus, (318) is proven.
Now that we know that Φ satisfies (318), we conclude that Φ is a derivation.
Next, notice that every v ∈ V satisfies ιTV (v) = v (since ιTV is just the inclusion map).
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Hence, every v ∈ V satisfies

(
Φ ◦ ιTV

)
(v) = Φ

ιTV (v)︸ ︷︷ ︸
=v

 = Φ (v)

=
1∑

k=1

f (v) (by (317), applied to n = 1 and v1 = v)

= f (v) .

Thus, Φ ◦ ιTV = f .
So we know that Φ is a derivation satisfying f = Φ ◦ ιTV . Thus, we have shown that

there exists a derivation F : T (V ) → M satisfying f = F ◦ ιTV (namely, F = Φ).
In order to complete the proof of Theorem 4.6.12, we only need to check that this
derivation is unique. In other words, we need to check that whenever a derivation
F : T (V )→M satisfies f = F ◦ ιTV , we must have F = Φ. Let us prove this now. Let
F : T (V )→M be any derivation satisfying f = F ◦ ιTV . Then, every v ∈ V satisfies

(F |V ) (v) = F

 v︸︷︷︸
=ιTV (v)

 = F
(
ιTV (v)

)
=
(
F ◦ ιTV

)︸ ︷︷ ︸
=f=Φ◦ιTV

(v) =
(
Φ ◦ ιTV

)
(v)

= Φ

ιTV (v)︸ ︷︷ ︸
=v

 = Φ (v) = (Φ |V ) (v) .

Thus, F |V = Φ |V . Proposition 4.6.13 (applied to A = T (V ), d = F , e = Φ and
S = V ) thus yields F = Φ (since V generates T (V ) as an algebra). This completes
the proof of Theorem 4.6.12 (as we have seen above).

We will later use a corollary of Proposition 4.6.13:

Corollary 4.6.14. Let A be an algebra. Let B be a subalgebra of A. Let C be a
subalgebra of B. Let d : A→ A be a derivation of the algebra A. Let S be a subset
of C which generates C as an algebra. Assume that d (S) ⊆ B. Then, d (C) ⊆ B.

Proof of Corollary 4.6.14. Since C ⊆ B ⊆ A, the vector spaces A and B become
C-modules.

Let π : A → A�B be the canonical projection. Clearly, π is a C-module homo-
morphism, and satisfies Kerπ = B. Let d′ : C → A�B be the restriction of the map
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π ◦ d : A→ A�B to C. It is easy to see that d′ : C → A�B is a derivation211. On the
other hand, 0 : C → A�B is a derivation as well. Every s ∈ S satisfies

(d′ |S) (s) = d′ (s) = (π ◦ d) (s) (since d′ is the restriction of π ◦ d to C)

= π (d (s)) = 0

(
since d

(
s︸︷︷︸
∈S

)
∈ d (S) ⊆ B = Kerπ

)
= 0 (s) = (0 |S) (s) .

Thus, d′ |S= 0 |S. Proposition 4.6.13 (applied to C, A�M , d′ and 0 instead of A, M ,
d and e) therefore yields that d′ = 0 on C. But since d′ is the restriction of π ◦ d to
C, we have d′ = (π ◦ d) |C . Thus, (π ◦ d) |C= d′ = 0, so that (π ◦ d) (C) = 0. Thus,
π (d (C)) = (π ◦ d) (C) = 0, so that d (C) ⊆ Ker π = B. Corollary 4.6.14 is therefore
proven.

Corollary 4.6.15. Let g be a Lie algebra. Let h be a vector space equipped with
both a Lie algebra structure and a g-module structure. Assume that g acts on h
by derivations. Consider the semidirect product gn h defined as in Definition 3.2.1
(b). Consider g as a Lie subalgebra of gn h. Consider gn h as a Lie subalgebra of
U (gn h) (where the Lie bracket on U (gn h) is defined as the commutator of the
multiplication). Consider h as a Lie subalgebra of g n h, whence U (h) becomes a
subalgebra of U (gn h).

Then, [g, U (h)] ⊆ U (h) (as subsets of U (gn h)).

Proof of Corollary 4.6.15. Let x ∈ g. Define a map ξ : U (gn h)→ U (gn h) by

(ξ (y) = [x, y] for every y ∈ U (gn h)) .

Then, ξ is clearly a derivation of the algebra U (gn h).
We are identifying g with a Lie subalgebra of g n h. Clearly, x ∈ g corresponds to

(x, 0) ∈ gn h under this identification.
We are also identifying h with a Lie subalgebra of g n h. Every y ∈ h corresponds

to (0, y) ∈ gn h under this identification.

211Proof. Every x ∈ C and y ∈ C satisfy

d′ (xy) = (π ◦ d) (xy) (since d′ is the restriction of π ◦ d to C)

= π

 d (xy)︸ ︷︷ ︸
=d(x)·y+x·d(y)

(since d is a derivation)

 = π (d (x) · y + x · d (y))

= π (d (x) · y)︸ ︷︷ ︸
=π(d(x))·y

(since π is a C-module
homomorphism)

+ π (x · d (y))︸ ︷︷ ︸
=x·π(d(y))

(since π is a C-module
homomorphism)

= π (d (x))︸ ︷︷ ︸
=(π◦d)(x)=d′(x)

(since d′ is the restriction of
π◦d to C, and since x∈C)

·y + x · π (d (y))︸ ︷︷ ︸
=(π◦d)(y)=d′(y)

(since d′ is the restriction of
π◦d to C, and since y∈C)

= d′ (x) · y + x · d′ (y) .

Thus, d′ is a derivation, qed.
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Thus, every y ∈ h satisfies x︸︷︷︸
=(x,0)

, y︸︷︷︸
=(0,y)

 = [(x, 0) , (0, y)] =

[x, 0]︸︷︷︸
=0

, [0, y]︸︷︷︸
=0

+x ⇀ y − 0 ⇀ 0︸ ︷︷ ︸
=0


(by the definition of the Lie bracket on gn h)

= (0, x ⇀ y) = x ⇀ y ∈ h.

Hence, ξ (y) = [x, y] ∈ h for every y ∈ h. Thus, ξ (h) ⊆ h ⊆ U (h).
Now, we notice that the subset h of U (h) generates U (h) as an algebra. Thus,

Corollary 4.6.14 (applied to A = U (gn h), B = U (h), C = U (h), d = ξ and S = h)
yields ξ (U (h)) ⊆ U (h). Hence, every u ∈ U (h) satisfies ξ (u) ∈ U (h). But since
ξ (u) = [x, u] (by the definition of ξ), this yields that every u ∈ U (h) satisfies [x, u] ∈
U (h).

Now forget that we fixed x. We thus have shown that every x ∈ g and every
u ∈ U (h) satisfy [x, u] ∈ U (h). Thus, [g, U (h)] ⊆ U (h) (since U (h) is a vector space).
This proves Corollary 4.6.15.

4.6.5. Universality of the free Lie algebra with respect to derivations

Both Theorem 4.6.12 and Proposition 4.6.13 have analogues pertaining to Lie algebras
in lieu of (associative) algebras.212 We are going to formulate both of these analogues,
but we start with that of Proposition 4.6.13, since it is the one we will find utile in our
study of Kac-Moody Lie algebras:

Proposition 4.6.16. Let g be a Lie algebra. Let M be a g-module, and d : g→M
and e : g → M two 1-cocycles. Let S be a subset of g which generates g as a Lie
algebra. Assume that d |S= e |S. Then, d = e.

The proof of Proposition 4.6.16 is analogous to that of Proposition 4.6.13.
We record a corollary of Proposition 4.6.16:

Corollary 4.6.17. Let g be a Lie algebra. Let h be a Lie subalgebra of g. Let i
be a Lie subalgebra of h. Let d : g → g be a derivation of the Lie algebra g. Let S
be a subset of i which generates i as a Lie algebra. Assume that d (S) ⊆ h. Then,
d (i) ⊆ h.

This corollary is analogous to Corollary 4.6.14, and proven accordingly.
Let us now state the analogue of Proposition 4.6.13 in the Lie-algebraic setting:

Theorem 4.6.18. Let V be a vector space. We denote by ιFreeLie
V : V → FreeLieV

the canonical map from V into FreeLieV . (This map ιFreeLie
V is easily seen to be

injective.) For any FreeLieV -module M and any linear map f : V → M , there
exists a unique 1-cocycle F : FreeLieV →M satisfying f = F ◦ ιFreeLie

V .

212Notice that the Lie-algebraic analogue of a derivation from an algebra A into an A-bimodule is a
1-cocycle from a Lie algebra g into a g-module.
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Although we will not use this theorem anywhere in the following, let us briefly discuss
how it is proven. Theorem 4.6.18 cannot be proven as directly as we proved Theorem
4.6.12. Instead, a way to prove Theorem 4.6.18 is by using the following lemma:

Lemma 4.6.19. Let g be a Lie algebra. Let M be a g-module. Define the semidirect
product g n M as in Definition 1.7.7. Let ϕ : g → M be a linear map. Then,
ϕ : g→M is a 1-cocycle if and only if the map

g→ gnM, x 7→ (x, ϕ (x))

is a Lie algebra homomorphism.

This lemma helps reducing Theorem 4.6.18 to Theorem 4.6.10. We leave the details
of this proof (both of the lemma and of Theorem 4.6.18) to the reader.

An alternative way to prove Theorem 4.6.18 is the following: Apply Theorem 4.6.12
to construct a derivation F : T (V ) → M (of algebras) satisfying f = F ◦ ιTV , and
then identify FreeLieV with a Lie subalgebra of T (V ) (because Proposition 4.6.8
U (FreeLieV ) ∼= T (V ), and because the Poincaré-Birkhoff-Witt theorem entails an
injection FreeLieV → U (FreeLieV )). Then, restricting the derivation F : T (V )→M
to FreeLieV , we obtain a 1-cocycle FreeLieV →M with the required properties. The
uniqueness part of Theorem 4.6.18 is easy (and follows from Proposition 4.6.16 below).
This proof of Theorem 4.6.18 has the disadvantage that it makes use of the Poincaré-
Birkhoff-Witt theorem, which does not generalize to the case of Lie algebras over rings
(whereas Theorem 4.6.18 does generalize to this case).

4.6.6. Derivations from grading

The following simple lemma will help us defining derivations on Lie algebras:

Lemma 4.6.20. Let Q be an abelian group. Let s ∈ Hom (Q,C) be a group
homomorphism. Let n be a Q-graded Lie algebra. Let η : n → n be a linear map
satisfying

η (x) = s (w) · x for every w ∈ Q and every x ∈ n [w] . (319)

Then, η is a derivation (of Lie algebras).

Proof of Lemma 4.6.20. In order to prove that η is a derivation, we need to check
that

η ([a, b]) = [η (a) , b] + [a, η (b)] for any a ∈ n and b ∈ n. (320)

Let us prove the equation (320). Since this equation is linear in each of a and b, we
can WLOG assume that a and b are homogeneous (because any element of n is a sum
of homogeneous elements). So, assume this. We will write the binary operation of
the group Q as addition. Since a is homogeneous, we have a ∈ n [u] for some u ∈ Q.
Consider this u. Since b is homogeneous, we have b ∈ n [v] for some v ∈ Q. Fix this
v. Thus, [a, b] ∈ n [u+ v] (since a ∈ n [u] and b ∈ n [v] and since n is Q-graded). Thus,
(319) (applied to x = a + b and w = u + v) yields η ([a, b]) = s (u+ v)︸ ︷︷ ︸

=s(u)+s(v)
(since s is a group
homomorphism)

· [a, b] =
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(s (u) + s (v)) · [a, b]. On the other hand, (319) (applied to x = a and w = u) yields
η (a) = s (u) · a. Also, (319) (applied to x = b and y = v) yields η (b) = s (v) · b. Now, η (a)︸︷︷︸

=s(u)·a

, b

+

a, η (b)︸︷︷︸
=s(v)·b

 = s (u) · [a, b] + s (v) · [a, b] = (s (u) + s (v)) · [a, b] = η ([a, b]) .

This proves (320). Now that (320) is proven, we conclude that η is a derivation. Lemma
4.6.20 is proven.

4.6.7. The commutator of derivations

The following proposition is the classical analogue of Proposition 1.4.1 for algebras in
lieu of Lie algebras:

Proposition 4.6.21. Let A be an algebra. Let f : A → A and g : A → A be two
derivations of A. Then, [f, g] is a derivation of A. (Here, the Lie bracket is to be
understood as the Lie bracket on EndA, so that we have [f, g] = f ◦ g − g ◦ f .)

The proof of this is completely analogous to that of Proposition 1.4.1. Moreover,
by the same argument, the following slight generalization of Proposition 4.6.21 can be
shown:

Proposition 4.6.22. Let A be a subalgebra of an algebra B. Let f : A → B and
g : B → B be two derivations such that g (A) ⊆ A. Then, f ◦ (g |A)− g ◦ f : A→ B
is a derivation.

4.7. Simple Lie algebras: a recollection

The Kac-Moody Lie algebras form a class of Lie algebras which contains all simple
finite-dimensional and all affine Lie algebras, but also many more. Before we start
studying them, let us recall some facts about simple Lie algebras:

Let g be a finite-dimensional simple Lie algebra over C. A Cartan subalgebra of g
means a maximal commutative Lie subalgebra which consists of semisimple213 elements.
There are usually many Cartan subalgebras of g, but they are all conjugate under the
action of the corresponding Lie group G (which satisfies g = LieG, and can be defined
as the connected component of the identity in the group Aut g). Thus, there is no loss
of generality in picking one such subalgebra. So pick a Cartan subalgebra h of g. We
denote the dimension dim h by n and also by rank g. This dimension dim h = rank g is
called the rank of g. The restriction of the Killing form on g to h×h is a nondegenerate
symmetric bilinear form on h.

For every α ∈ h∗, we can define a vector subspace gα of g by

gα = {a ∈ g | [h, a] = α (h) a for all h ∈ h} .

It can be shown that g0 = h. Now we let ∆ be the finite subset {α ∈ h∗� {0} | gα 6= 0}
of h∗� {0}. Then, g = h⊕

⊕
α∈∆

gα (as a direct sum of vector spaces). The subset ∆ is

213An element of a Lie algebra is said to be semisimple if and only if its action on the adjoint repre-
sentation is a semisimple operator.
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called the root system of g. The elements of ∆ are called the roots of g. It is known
that for each α ∈ ∆, the vector space gα is one-dimensional and can be written as
gα = Ceα for some particular eα ∈ gα.

We want to use the decomposition g = h ⊕
⊕
α∈∆

gα in order to construct a triangu-

lar decomposition of g. This can be done with the grading which we constructed in
Proposition 2.5.6, but let us do it again now, with more elementary means: Fix an
h ∈ h such that every α ∈ ∆ satisfies α

(
h
)
∈ R� {0} (it can be seen that such h

exists). Define ∆+ =
{
α ∈ ∆ | α

(
h
)
> 0
}

and ∆− =
{
α ∈ ∆ | α

(
h
)
< 0
}

. Then,
∆ is the union of two disjoint subsets ∆+ and ∆−, and we have ∆+ = −∆−. The
triangular decomposition of g is now defined as g = n− ⊕ h⊕ n+, where n− =

⊕
α∈∆−

gα

and n+ =
⊕
α∈∆+

gα. This decomposition depends on the choice of h (and h, of course).

The elements of ∆+ are called positive roots of g, and the elements of ∆− are called
negative roots of g. If α is a root of g, then we write α > 0 if α is a positive root, and
we write α < 0 if α is a negative root.

Let us now construct the grading on g which yields this triangular decomposition
g = n− ⊕ h⊕ n+. This grading was already constructed in Proposition 2.5.6, but now
we are going to do this in detail:

We define the simple roots of g as the elements of ∆+ which cannot be written as
sums of more than one element of ∆+. It can be shown that there are exactly n of
these simple roots, and they form a basis of h∗. Denote these simple roots as α1, α2, ...,

αn. Every root α ∈ ∆+ can now be written in the form α =
n∑
i=1

ki (α)αi for a unique

n-tuple (k1 (α) , k2 (α) , ..., kn (α)) of nonnegative integers.
For all α, β ∈ ∆ with α + β /∈ ∆ ∪ {0}, we have [gα, gβ] = 0. For all α, β ∈ h∗, we

have [gα, gβ] ⊆ gα+β. In particular, for every α ∈ h∗, we have [gα, g−α] ⊆ h. Better
yet, we can show that for every α ∈ ∆, there exists some nonzero hα ∈ h such that
[gα, g−α] = Chα.

For every i ∈ {1, 2, ..., n}, pick a generator ei of the vector space gαi and a generator
fi of the vector space g−αi .

It is possible to normalize ei and fi in such a way that [hi, ei] = 2ei and [hi, fi] = −2fi,
where hi = [ei, fi]. This hi will, of course, lie in h and be a scalar multiple of hαi . We
can normalize hαi in such a way that hi = hαi . We suppose that all these normalizations
are done. Then:

Proposition 4.7.1. With the notations introduced above, we have:
(a) The family (h1, h2, ..., hn) is a basis of h.
(b) For any i and j in {1, 2, ..., n}, denote αj (hi) by ai,j. The Lie algebra g is

generated (as a Lie algebra) by the elements ei, fi and hi with i ∈ {1, 2, ..., n} (a
total of 3n elements), and the following relations hold:

[hi, hj] = 0 for all i, j ∈ {1, 2, ..., n} ;

[hi, ej] = αj (hi) ej = ai,jej for all i, j ∈ {1, 2, ..., n} ;

[hi, fj] = −αj (hi) fj = ai,jfj for all i, j ∈ {1, 2, ..., n} ;

[ei, fj] = δi,jhi for all i, j ∈ {1, 2, ..., n} .
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(This does not mean that no more relations hold. In fact, additional relations, the
so-called Serre relations, do hold in g; we will see these relations later, in Theorem
4.7.3.)

The n× n matrix A = (ai,j)1≤i,j≤n is called the Cartan matrix of g.
Let (·, ·) denote the standard form on g (defined in Definition 4.3.16). Then,

(·, ·) is a nonzero scalar multiple of the Killing form on g (since any two nonzero
invariant symmetric bilinear forms on g are scalar multiples of each other). Hence,
the restriction of (·, ·) to h× h is nondegenerate (since the restriction of the Killing
form to h × h is nondegenerate). Thus, this restriction gives rise to a vector space

isomorphism h→ h∗. This isomorphism sends hi to α∨i =
2αi

(αi, αi)
for every i (where

we denote by (·, ·) not only the standard form, but also the inverse form of its

restriction to h). Thus, ai,j = αj (hi) =
2 (αj, αi)

(αi, αi)
for all i and j. (Note that the

latter equality would still hold if (·, ·) would mean the Killing form rather than the
standard form.)

The elements e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn are called Chevalley
generators of g.

Properties of the matrix A:
1) We have ai,i = 2 for all i ∈ {1, 2, ..., n}.
2) Any two distinct i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., n} satisfy ai,j ≤ 0 and

ai,j ∈ Z. Also, ai,j = 0 if and only if aj,i = 0.
3) The matrix A is indecomposable (i. e., if conjugation of A by a permutation

matrix brings A into a block-diagonal form

(
A1 0
0 A2

)
, then either A1 or A2 is a

0× 0 matrix).
4) The matrix A is positive. Here is what we mean by this: There exists a

diagonal n×n matrix D with positive diagonal entries such that DA is a symmetric
and positive definite matrix.

Theorem 4.7.2. An n× n matrix A = (ai,j)1≤i,j≤n satisfies the four properties 1),
2), 3) and 4) of Proposition 4.7.1 if and only if it is a Cartan matrix of a simple Lie
algebra.

Such matrices (and thus, simple finite-dimensional Lie algebras) can be encoded by
so-called Dynkin diagrams. The Dynkin diagram of a simple Lie algebra g is defined
as the graph with vertex set {1, 2, ..., n}, and the following rules for drawing edges214:

• If ai,j = 0, then the vertices i and j are not connected by any edge (directed or
undirected).

• If ai,j = aj,i = −1, then the vertices i and j are connected by exactly one edge,
and this edge is undirected.

• If ai,j = −2 and aj,i = −1, then the vertices i and j are connected by two directed
edges from j to i (and no other edges).

214The notion of a graph we are using here is slightly different from the familiar notions of a graph in
graph theory, since this graph can have both directed and undirected edges.
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• If ai,j = −3 and aj,i = −1, then the vertices i and j are connected by three
directed edges from j to i (and no other edges).

Here is a classification of simple finite-dimensional Lie algebras by their Dynkin
diagrams:
An = sl (n+ 1) for n ≥ 1; the Dynkin diagram is ◦ ◦ ◦ ... ◦ ◦ ◦

(with n nodes).
Bn = so (2n+ 1) for n ≥ 2; the Dynkin diagram is ◦ ◦ ◦ ... ◦ ◦ +3 ◦

(with n nodes, only the last edge being directed and double). (Note that so (3) ∼= sl (2).)
Cn = sp (2n) for n ≥ 2; the Dynkin diagram is ◦ ◦ ◦ ... ◦ ◦ ks ◦

(with n nodes, only the last edge being directed and double). (Note that sp (2) ∼= sl (2)
and sp (4) ∼= so (5).)
Dn = so (2n) for n ≥ 4; the Dynkin diagram is ◦

◦ ◦ ◦ ... ◦ ◦

◦
(with n nodes). (Note that so (4) ∼= sl (2)⊕ sl (2) and so (6) ∼= sl (4).)

Exceptional Lie algebras:
E6; the Dynkin diagram is ◦

◦ ◦ ◦ ◦ ◦

.

E7; the Dynkin diagram is ◦

◦ ◦ ◦ ◦ ◦ ◦

.

E8; the Dynkin diagram is ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦

.

F4; the Dynkin diagram is ◦ ◦ +3 ◦ ◦ .
G2; the Dynkin diagram is ◦ ◦jt .
Now to the Serre relations, which we have not yet written down:

Theorem 4.7.3. Let g be a simple finite-dimensional Lie algebra. Use the notations
introduced in Proposition 4.7.1.

(a) Let i and j be two distinct elements of {1, 2, ..., n}. Then, in g, we have
(ad (ei))

1−ai,j ej = 0 and (ad (fi))
1−ai,j fj = 0. These relations (totalling up to

2n (n− 1) relations, because there are n (n− 1) pairs (i, j) of distinct elements of
{1, 2, ..., n}) are called the Serre relations for g.

(b) Combined with the relations
[hi, hj] = 0 for all i, j ∈ {1, 2, ..., n} ;
[hi, ej] = ai,jej for all i, j ∈ {1, 2, ..., n} ;
[hi, fj] = −ai,jfj for all i, j ∈ {1, 2, ..., n} ;
[ei, fj] = δi,jhi for all i, j ∈ {1, 2, ..., n}

(321)

of Proposition 4.7.1, the Serre relations form a set of defining relations for g. This
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means that, if g̃ denotes the quotient Lie algebra

FreeLie (hi, fi, ei | i ∈ {1, 2, ..., n})� (the relations (321)) ,

then g̃� (Serre relations) ∼= g. (Here, FreeLie (hi, fi, ei | i ∈ {1, 2, ..., n}) denotes
the free Lie algebra with 3n generators e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn.)

Remark 4.7.4. If g ∼= sl2, then g has no Serre relations (because n = 1), and thus
the claim of Theorem 4.7.3 (b) rewrites as g̃ ∼= g (where g̃ is defined as in Theorem
4.7.3). But in all other cases, the Lie algebra g̃ is infinite-dimensional, and while it
clearly projects onto g, it is much bigger than g.

We will give a partial proof of Theorem 4.7.3: We will only prove part (a).
Proof of Theorem 4.7.3 (a). Define a C-linear map

Φi : sl2 → g,

e 7→ ei,

f 7→ fi,

h 7→ hi.

Since [ei, fi] = hi, [hi, ei] = 2ei and [hi, fi] = −2fi, this map Φi is a Lie algebra
homomorphism.

But g is a g-module (by the adjoint representation of g), and thus becomes an sl2-
module by means of Φi : sl2 → g. This sl2-module satisfies

efj = (Φi (e))︸ ︷︷ ︸
=ei

fj = (ad (ei)) fj = [ei, fj] = 0 (since i 6= j)

and
hfj = (Φi (h))︸ ︷︷ ︸

=hi

fj = (ad (hi)) fj = [hi, fj] = −ai,jfj.

Hence, Lemma 4.6.1 (c) (applied to V = g, λ = −ai,j and x = fj) yields that −ai,j ∈ N
and f−ai,j+1fj = 0. Since

f−ai,j+1fj = f 1−ai,jfj =

Φi (f)︸ ︷︷ ︸
=fi

1−ai,j

fj = (ad (fi))
1−ai,j fj,

this rewrites as (ad (fi))
1−ai,j fj = 0. Similarly, (ad (ei))

1−ai,j ej = 0. Theorem 4.7.3
(a) is thus proven.

As we said, we are not going to prove Theorem 4.7.3 (b) here.

4.8. [unfinished] Kac-Moody Lie algebras: definition and
construction

Now forget about our simple Lie algebra g. Let us first define the notion of contragre-
dient Lie algebras by axioms; we will construct these algebras later.
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Definition 4.8.1. Suppose that A = (ai,j)1≤i,j≤n is any n × n matrix of complex
numbers.

Let Q be the free abelian group generated by n symbols α1, α2, ..., αn (that is,
Q = Zα1 ⊕ Zα2 ⊕ ... ⊕ Zαn). These symbols are just symbols, not weights of any
Lie algebra (at the moment). We write the group Q additively.

A contragredient Lie algebra corresponding to A is a Q-graded C-Lie algebra g
which is (as a Lie algebra) generated by some elements e1, e2, ..., en, f1, f2, ..., fn,
h1, h2, ..., hn which satisfy the following three conditions:

(1) These elements satisfy the relations (321).
(2) The vector space g [0] has (h1, h2, ..., hn) as a C-vector space basis, and we

have g [αi] = Cei and g [−αi] = Cfi for all i ∈ {1, 2, ..., n}.
(3) Every nonzero Q-graded ideal in g has a nonzero intersection with g [0].
(Here, we are using the notation g [α] for the α-th homogeneous component of the

Q-graded Lie algebra g, just as in Definition 4.6.2.)
Just as in the case of Z-graded Lie algebras, we will denote g [0] by h.

Note that the condition (3) is satisfied for simple finite-dimensional Lie algebras g
(graded by their weight spaces, where Q is the root lattice215 of g, and A is the Cartan
matrix); hence, simple finite-dimensional Lie algebras (graded by their weight spaces)
are contragredient.

Theorem 4.8.2. Let A = (ai,j)1≤i,j≤n be a (fixed) n×n matrix of complex numbers.
(a) Then, there exists a unique (up to Q-graded isomorphism respecting the gen-

erators e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn) contragredient Lie algebra g
corresponding to A.

(b) If A is a Cartan matrix, then the contragredient Lie algebra g corresponding
to A is finite-dimensional and simple.

Definition 4.8.3. Let A be an n×n matrix of complex numbers. Then, the unique
(up to isomorphism) contragredient Lie algebra g corresponding to A is denoted by
g (A).

The proof of Theorem 4.8.2 rests upon the following fact:

Theorem 4.8.4. Let A = (ai,j)1≤i,j≤n be an n × n matrix of complex numbers.
Let e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn be 3n distinct symbols (which are, a
priori, new and unrelated to the vectors e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn in
Definition 4.8.1). Let g̃ be the quotient Lie algebra

FreeLie (hi, fi, ei | i ∈ {1, 2, ..., n})� (the relations (321)) .

(Here, FreeLie (hi, fi, ei | i ∈ {1, 2, ..., n}) denotes the free Lie algebra with 3n gen-
erators e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn.)

By abuse of notation, we will denote the projections of the elements e1, e2, ..., en,
f1, f2, ..., fn, h1, h2, ..., hn onto the quotient Lie algebra g̃ by the same letters e1,
e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn.

215in the meaning which this word has in the theory of simple Lie algebras
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Let Q be the free abelian group generated by n symbols α1, α2, ..., αn (that is,
Q = Zα1 ⊕ Zα2 ⊕ ... ⊕ Zαn). These symbols are just symbols, not weights of any
Lie algebra (at the moment).

(a) We can make g̃ uniquely into a Q-graded Lie algebra by setting

deg (ei) = αi, deg (fi) = −αi and deg (hi) = 0 for all i ∈ {1, 2, ..., n} .

(b) Let ñ+ = FreeLie (ei | i ∈ {1, 2, ..., n}) (this means the free Lie algebra with
n generators e1, e2, ..., en).

Let ñ− = FreeLie (fi | i ∈ {1, 2, ..., n}) (this means the free Lie algebra with n
generators f1, f2, ..., fn).

Let h̃ be the free vector space with basis h1, h2, ..., hn. Consider h̃ as an abelian
Lie algebra.

Then, we have well-defined canonical Lie algebra homomorphisms ι+ : ñ+ → g̃
and ι− : ñ− → g̃ given by sending the generators e1, e2, ..., en (in the case of ι+),
respectively, f1, f2, ..., fn (in the case of ι−) to the corresponding generators e1, e2,
..., en (in the case of ι+), respectively, f1, f2, ..., fn (in the case of ι−). Moreover,

we have a well-defined linear map ι0 : h̃→ g̃ given by sending the generators h1, h2,
..., hn to h1, h2, ..., hn, respectively.

These maps ι+, ι− and ι0 are injective Lie algebra homomorphisms.

(c) We have g̃ = ι+ (ñ+)⊕ ι− (ñ−)⊕ ι0
(
h̃
)

.

(d) Both ι+ (ñ+)⊕ ι0
(
h̃
)

and ι− (ñ−)⊕ ι0
(
h̃
)

are Lie subalgebras of g̃.

(e) The 0-th homogeneous component of g̃ (in the Q-grading) is ι0

(
h̃
)

. That is,

g̃ [0] = ι0

(
h̃
)

. Moreover, ⊕
α is a Z-linear combination

of α1, α2, ..., αn with nonnegative
coefficients; α 6=0

g̃ [α] = ι+ (ñ+)

and ⊕
α is a Z-linear combination

of α1, α2, ..., αn with nonpositive
coefficients; α 6=0

g̃ [α] = ι− (ñ−) .

(f) There exists an involutive Lie algebra automorphism of g̃ which sends e1, e2,
..., en, f1, f2, ..., fn, h1, h2, ..., hn to f1, f2, ..., fn, e1, e2, ..., en, −h1, −h2, ..., −hn,
respectively.

(g) Every i ∈ {1, 2, ..., n} satisfies g̃ [αi] = Cei and g̃ [−αi] = Cfi.
(h) Let I be the sum of all Q-graded ideals in g̃ which have zero intersection

with ι0

(
h̃
)

. Then, I itself is a Q-graded ideal in g̃ which has zero intersection with

ι0

(
h̃
)

.

(i) Let g = g̃�I. Clearly, g is a Q-graded Lie algebra. The projections of the
elements e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn of g̃ on the quotient Lie algebra
g̃�I = g will still be denoted by e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn. Then, g
is a contragredient Lie algebra corresponding to A.
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Definition 4.8.5. Let A be an n × n matrix of complex numbers. Then, the Lie
algebra g̃ defined in Theorem 4.8.4 is denoted by g̃ (A).

Proof of Theorem 4.8.4. First of all, for the sake of clarity, let us make a convention:
In the following proof, the word “Lie derivation” will always mean “derivation of Lie
algebras”, whereas the word “derivation” without the word “Lie” directly in front of
it will always mean “derivation of algebras”. The only exception to this will be the
formulation “a acts on b by derivations” where a and b are two Lie algebras; this
formulation has been defined in Definition 3.2.1 (a).

(f) The relations
[−hi,−hj] = 0 for all i, j ∈ {1, 2, ..., n} ;
[−hi, fj] = ai,jfj for all i, j ∈ {1, 2, ..., n} ;
[−hi, ej] = −ai,jej for all i, j ∈ {1, 2, ..., n} ;
[fi, ej] = δi,j (−hi) for all i, j ∈ {1, 2, ..., n}

are satisfied in g̃ (since they are easily seen to be equivalent to the relations (321), and
the relations (321) are satisfied in g̃ by the definition of g̃). Hence, we can define a Lie
algebra homomorphism

ω : FreeLie (hi, fi, ei | i ∈ {1, 2, ..., n})� (the relations (321))→ g̃

by requiring 
ω (ei) = fi for every i ∈ {1, 2, ..., n} ;
ω (fi) = ei for every i ∈ {1, 2, ..., n} ;
ω (hi) = −hi for every i ∈ {1, 2, ..., n}

.

Consider this ω. Since FreeLie (hi, fi, ei | i ∈ {1, 2, ..., n})� (the relations (321)) = g̃,
this homomorphism ω is a Lie algebra endomorphism of g̃. It is easy to see that the
Lie algebra homomorphisms ω2 and id are equal on the generators e1, e2, ..., en, f1, f2,
..., fn, h1, h2, ..., hn of g̃. Hence, these must be identical, i. e., we have ω2 = id. Thus,
ω is an involutive Lie algebra automorphism of g̃, and as we know from its definition,
it sends e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn to f1, f2, ..., fn, e1, e2, ..., en, −h1,
−h2, ..., −hn, respectively. This proves Theorem 4.8.4 (f).

(a) In order to define a Q-grading on a free Lie algebra, it is enough to choose the
degrees of its free generators. Thus, we can define a Q-grading on the Lie algebra
FreeLie (hi, fi, ei | i ∈ {1, 2, ..., n}) by setting

deg (ei) = αi, deg (fi) = −αi and deg (hi) = 0 for all i ∈ {1, 2, ..., n} .

The relations (321) are homogeneous with respect to thisQ-grading; hence, the quotient
Lie algebra FreeLie (hi, fi, ei | i ∈ {1, 2, ..., n})� (the relations (321)) inherits the Q-
grading from FreeLie (hi, fi, ei | i ∈ {1, 2, ..., n}). Since this quotient Lie algebra is g̃,
we thus have constructed a Q-grading on g̃ which satisfies

deg (ei) = αi, deg (fi) = −αi and deg (hi) = 0 for all i ∈ {1, 2, ..., n} .
(322)

446



Since this grading is clearly the only one to satisfy (322) (because g̃ is generated as a
Lie algebra by e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn), this proves Theorem 4.8.4
(a).

(b) 1st step: Definitions and identifications.
LetN+ be the free vector space with basis e1, e2, ..., en. Since ñ+ = FreeLie (ei | i ∈ {1, 2, ..., n}),

we then have a canonical isomorphism ñ+
∼= FreeLie (N+) (where FreeLie (N+) means

the free Lie algebra over the vector space (not the set) N+). We identify ñ+ with
FreeLie (N+) along this isomorphism. Due to the construction of the free Lie algebra,
we have a canonical injection N+ → FreeLie (N+) = ñ+. We will regard this injection
as an inclusion (so that N+ ⊆ ñ+).

By Proposition 4.6.8 (applied to V = N+), there exists a canonical algebra iso-
morphism U (FreeLie (N+)) → T (N+). We identify U (ñ+) = U (FreeLie (N+)) with
T (N+) along this isomorphism.

LetN− be the free vector space with basis f1, f2, ..., fn. Since ñ− = FreeLie (fi | i ∈ {1, 2, ..., n}),
we then have a canonical isomorphism ñ− ∼= FreeLie (N−) (where FreeLie (N−) means
the free Lie algebra over the vector space (not the set) N−). We identify ñ− with
FreeLie (N−) along this isomorphism. Due to the construction of the free Lie algebra,
we have a canonical injection N− → FreeLie (N−) = ñ−. We will regard this injection
as an inclusion (so that N− ⊆ ñ−).

By Proposition 4.6.8 (applied to V = N−), there exists a canonical algebra iso-
morphism U (FreeLie (N−)) → T (N−). We identify U (ñ−) = U (FreeLie (N−)) with
T (N−) along this isomorphism.

A consequence of the Poincaré-Birkhoff-Witt theorem says that for any Lie algebra
i, the canonical map i→ U (i) is injective. Thus, the canonical map ñ+ → U (ñ+) and
the canonical map ñ− → U (ñ−) are injective. We will therefore regard these maps as
inclusions.

Let us identify the group Q with Zn by means of identifying αi with the column

vector ei =

0, 0, ..., 0︸ ︷︷ ︸
i−1 zeroes

, 1, 0, 0, ..., 0︸ ︷︷ ︸
n−i zeroes

T

for every i ∈ {1, 2, ..., n}. As a consequence, for

every i ∈ {1, 2, ..., n}, the row vector eTi A is an element of the group Hom (Q,C) of
group homomorphisms from Q to C. Thus, for every w ∈ Q and every i ∈ {1, 2, ..., n},
the product eTi Aw is a complex number.

2nd step: Defining a Q-grading on ñ−.
Let us define a Q-grading on the vector space N− by setting

deg (fi) = −αi for all i ∈ {1, 2, ..., n} .

(This is well-defined since (f1, f2, ..., fn) is a basis of N−.) Then, the free Lie algebra
FreeLie (N−) = ñ− canonically becomes a Q-graded Lie algebra, and the grading on
this Lie algebra also satisfies

deg (fi) = −αi for all i ∈ {1, 2, ..., n} .

(This grading clearly makes the map ι− graded. We will not use this fact, however.)
We will later use this grading to define certain Lie derivations η1, η2, ..., ηn of the Lie
algebra ñ−.
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3rd step: Defining an h̃-module ñ−.
For every i ∈ {1, 2, ..., n}, let us define a linear map ηi : ñ− → ñ− by setting(

ηi (x) =
(
eTi Aw

)
· x for every w ∈ Q and every x ∈ ñ− [w]

)
. (323)

This map ηi is well-defined (because in order to define a linear map from a Q-graded
vector space, it is enough to define it linearly on every homogeneous component) and
graded (because it multiplies any homogeneous element of ñ− by a scalar). Actually,
ηi acts as a scalar on each homogeneous component of ñ−. Moreover, for every i ∈
{1, 2, ..., n}, Lemma 4.6.20 (applied to s = eTi A, n = ñ− and η = ηi) yields that ηi is a
Lie derivation. That is, ηi ∈ Der (ñ−). One can directly see that

ηi (fj) = −ai,jfj for any i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., n} (324)

216.
[Note that, while we defined the ηi using the grading, there is also an alternative

way to define them, by applying Theorem 4.6.18.]
It is easy to see that

[ηi, ηj] = 0 for all i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., n} (325)

(since each of the maps ηi and ηj acts as a scalar on each homogeneous component of
ñ−).

Define a linear map Ξ : h̃→ Der (ñ−) by

(Ξ (hi) = ηi for every i ∈ {1, 2, ..., n})

(this map is well-defined, since (h1, h2, ..., hn) is a basis of h̃). Then, Ξ is a Lie algebra

homomorphism (this follows from (325)), and thus makes ñ− into an h̃-module on which

h̃ acts by derivations. Thus, a Lie algebra h̃nñ− is well-defined (according to Definition

3.2.1). Both Lie algebras h̃ and ñ− canonically inject (by Lie algebra homomorphisms)

into this Lie algebra h̃ n ñ−. Therefore, both h̃ and ñ− will be considered as Lie
subalgebras of h̃n ñ−.

In the Lie algebra h̃n ñ−, every i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., n} satisfy

[hi, fj] = hi ⇀ fj

(
where ⇀ denotes the action of h̃ on ñ−

)
= (Ξ (hi))︸ ︷︷ ︸

=ηi

(fj) = ηi (fj) = −ai,jfj (by (324)) . (326)

From (321), we see that the same relation is satisfied in the Lie algebra g̃.

Since ñ− is a Lie subalgebra of h̃ n ñ−, the universal enveloping algebra U (ñ−) is

a subalgebra of U
(
h̃n ñ−

)
. This makes U

(
h̃n ñ−

)
into a U (ñ−)-bimodule. Since

U (ñ−) = T (N−), this means that U
(
h̃n ñ−

)
is a T (N−)-bimodule.

216Proof of (324): Let i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., n}. By the definition of our grading on ñ−,
we have deg (fj) = − αj︸︷︷︸

=ej

= −ej , so that fj ∈ ñ− [−ej ]. Hence, (323) (applied to x = fj and

w = −αj) yields ηi (fj) =
(
eTi A (−ej)

)
· fj = −

(
eTi Aej

)︸ ︷︷ ︸
=ai,j

·fj = −ai,jfj . This proves (324).
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4th step: Defining an action of g̃ on U
(
h̃n ñ−

)
.

We are going to construct an action of the Lie algebra g̃ on U
(
h̃n ñ−

)
(but not by

derivations). First, let us define some further maps.
Let ιTN− : N− → T (N−) be the canonical inclusion map. Notice that we are regarding

ιTN− as an inclusion.

For every i ∈ {1, 2, ..., n}, let us define a derivation217 εi : U (ñ−) → U
(
h̃n ñ−

)
by

requiring that
(εi (fj) = δi,jhi for every j ∈ {1, 2, ..., n}) .

218

Let ρ : U (ñ−) ⊗ U
(
h̃
)
→ U

(
h̃n ñ−

)
be the vector space homomorphism defined

by

ρ (α⊗ β) = αβ for all α ∈ U (ñ−) and β ∈ U
(
h̃
)

(this is clearly well-defined). Since h̃ n ñ− = ñ− ⊕ h̃ as vector spaces, Corollary 2.4.2

(applied to k = C, c = h̃ n ñ−, a = ñ− and b = h̃) yields that ρ is an isomorphism of

filtered vector spaces, of left U (ñ−)-modules and of right U
(
h̃
)

-modules. Thus, ρ−1

also is an isomorphism of filtered vector spaces, of left U (ñ−)-modules and of right

U
(
h̃
)

-modules.

For every i ∈ {1, 2, ..., n}, define a linear map Ei : U
(
h̃n ñ−

)
→ U

(
h̃n ñ−

)
by(

Ei (u−u0) = εi (u−)u0 for every u− ∈ U (ñ−) and u0 ∈ U
(
h̃
))

. (327)
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217Here, by “derivation”, we mean a derivation of algebras, not of Lie algebras.
218Why is this well-defined? We know that U (ñ−) = T (N−). Hence, (by Theorem 4.6.12, applied to

V = N− and M = U
(
h̃n ñ−

)
) we can lift any linear map f : N− → U

(
h̃n ñ−

)
to a derivation

U (ñ−)→ U
(
h̃n ñ−

)
. Taking f equal to the linear map N− → U

(
h̃n ñ−

)
which sends every fj

to δi,jhi, we obtain a derivation U (ñ−)→ U
(
h̃n ñ−

)
which sends every fj to δi,jhi. This is why

εi is well-defined.
219Why is this well-defined? Since ρ is an isomorphism, we have U

(
h̃n ñ−

)
∼= U (ñ−) ⊗ U

(
h̃
)

. In

order to define a linear map U (ñ−) ⊗ U
(
h̃
)
→ U

(
h̃n ñ−

)
, we just need to take a bilinear map

U (ñ−)× U
(
h̃
)
→ U

(
h̃n ñ−

)
and apply the universal property of the tensor product. Taking

U (ñ−)× U
(
h̃
)
→ U

(
h̃n ñ−

)
, (u−, u0) 7→ εi (u−)u0

as this bilinear map, we obtain (by the universal property) a linear map U (ñ−) ⊗ U
(
h̃
)
→

U
(
h̃n ñ−

)
which sends u−⊗ u0 to εi (u−)u0 for every u− ∈ U (ñ−) and u0 ∈ U

(
h̃
)

. Composing

this map with the isomorphism ρ−1 : U
(
h̃n ñ−

)
→ U (ñ−) ⊗ U

(
h̃
)

, we obtain a linear map

U
(
h̃n ñ−

)
→ U

(
h̃n ñ−

)
which sends u−u0 to εi (u−)u0 for every u− ∈ U (ñ−) and u0 ∈ U

(
h̃
)

.

Therefore, Ei is well-defined.
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For every i ∈ {1, 2, ..., n}, define a linear map Fi : U
(
h̃n ñ−

)
→ U

(
h̃n ñ−

)
by(

Fi (u) = fiu for every u ∈ U
(
h̃n ñ−

))
.

Clearly, Fi is a right U
(
h̃
)

-module homomorphism.

For every i ∈ {1, 2, ..., n}, define a linear map Hi : U
(
h̃n ñ−

)
→ U

(
h̃n ñ−

)
by(

Hi (u) = hiu for every u ∈ U
(
h̃n ñ−

))
.

Clearly, Hi is a right U
(
h̃
)

-module homomorphism.

Our next goal is to prove the relations
[Hi, Hj] = 0 for all i, j ∈ {1, 2, ..., n} ;
[Hi, Ej] = ai,jEj for all i, j ∈ {1, 2, ..., n} ;
[Hi, Fj] = −ai,jFj for all i, j ∈ {1, 2, ..., n} ;
[Ei, Fj] = δi,jHi for all i, j ∈ {1, 2, ..., n}

(328)

in End
(
U
(
h̃n ñ−

))
. Once these relations are proven, it will follow that a Lie algebra

homomorphism g̃→ End
(
U
(
h̃n ñ−

))
mapping hi, ei, fi to Hi, Ei, Fi for all i exists

(and is unique), and this map will make U
(
h̃n ñ−

)
into a g̃-module. This g̃-module

structure will then yield Theorem 4.8.4 (b) by a rather simple argument. But we must
first verify (328).

5th step: Verifying the relations (328).
We will verify the four relations (328) one after the other:

Proof of the relation [Hi, Hj] = 0 for all i, j ∈ {1, 2, ..., n}:
Let i and j be two elements of {1, 2, ..., n}. Every u ∈ U

(
h̃n ñ−

)
satisfies

[Hi, Hj]︸ ︷︷ ︸
=Hi◦Hj−Hj◦Hi

u = (Hi ◦Hj −Hj ◦Hi) (u) = Hi (Hju)︸ ︷︷ ︸
=hju

(by the definition
of Hj)

−Hj (Hiu)︸ ︷︷ ︸
=hiu

(by the definition
of Hi)

= Hi (hju)︸ ︷︷ ︸
=hi(hju)

(by the definition
of Hi)

− Hj (hiu)︸ ︷︷ ︸
=hj(hiu)

(by the definition
of Hj)

= hi (hju)− hj (hiu) = (hihj − hjhi)︸ ︷︷ ︸
=[hi,hj ]=0

in U(h̃nñ−)
(since [hi,hj ]=0 in h̃)

u = 0.

Thus, [Hi, Hj] = 0.
Now forget that we fixed i and j. We have thus proven the relation [Hi, Hj] = 0 for

all i, j ∈ {1, 2, ..., n}.
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Proof of the relation [Hi, Ej] = ai,jEj for all i, j ∈ {1, 2, ..., n}:
This will be the most difficult among the four relations that we must prove.

Applying Corollary 4.6.15 to h̃ and ñ− instead of g and h, we obtain
[
h̃, U (ñ−)

]
⊆

U (ñ−) in U
(
h̃n ñ−

)
.

Let us consider U (ñ−) as ñ−-module via the adjoint action. Then, ñ− ⊆ U (ñ−) as
ñ−-modules.

Let i be any element of {1, 2, ..., n}. Define a map ζi : U
(
h̃n ñ−

)
→ U

(
h̃n ñ−

)
by(

ζi (u) = [hi, u] for every u ∈ U
(
h̃n ñ−

))
.

Clearly, ζi is a derivation of algebras.

Now, using the relation
[
h̃, U (ñ−)

]
⊆ U (ñ−), it is easy to check that ζi (U (ñ−)) ⊆

U (ñ−) 220.

Now, let j ∈ {1, 2, ..., n} be arbitrary. Recall that ζi : U
(
h̃n ñ−

)
→ U

(
h̃n ñ−

)
and εj : U (ñ−) → U

(
h̃n ñ−

)
are derivations satisfying ζi (U (ñ−)) ⊆ U (ñ−). Thus,

Proposition 4.6.22 (applied to U (ñ−), U
(
h̃n ñ−

)
, εj and ζi instead of A, B, f and g)

yields that εj ◦
(
ζi |U(ñ−)

)
− ζi ◦ εj : U (ñ−)→ U

(
h̃n ñ−

)
is a derivation (of algebras).

On the other hand, −ai,jεj : U (ñ−)→ U
(
h̃n ñ−

)
is also a derivation (of algebras),

since εj is a derivation.
We will now prove that

εj ◦
(
ζi |U(ñ−)

)
− ζi ◦ εj = −ai,jεj. (329)

221 This will bring us very close to the proof of the relation [Hi, Ej] = ai,jEj.

220Proof. Every u ∈ U
(
h̃n ñ−

)
satisfies

ζi (u) =

 hi︸︷︷︸
∈h̃

, u︸︷︷︸
∈U(ñ−)

 ∈ [h̃, U (ñ−)
]
⊆ U (ñ−) .

In other words, ζi (U (ñ−)) ⊆ U (ñ−), qed.
221Note that the term εj ◦

(
ζi |U(ñ−)

)
in this equality is well-defined because

(
ζi |U(ñ−)

)
(U (ñ−)) =

ζi (U (ñ−)) ⊆ U (ñ−).
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Proof of (329): Every k ∈ {1, 2, ..., n} satisfies((
εj ◦

(
ζi |U(ñ−)

)
− ζi ◦ εj

)
|N−
)

(fk)

= εj

 ζi (fk)︸ ︷︷ ︸
=[hi,fk]

(by the definition of ζi)

− ζi (εj (fk))︸ ︷︷ ︸
=[hi,εj(fk)]

(by the definition of ζi)

= εj

 [hi, fk]︸ ︷︷ ︸
=−ai,kfk

(by (326), applied to
k instead of j)

−
hi, εj (fk)︸ ︷︷ ︸

=δj,khj
(by the definition of εj)


= εj (−ai,kfk)︸ ︷︷ ︸

=−ai,kεj(fk)

− [hi, δj,khj]︸ ︷︷ ︸
=0

(since h̃ is an abelian Lie algebra)

= −ai,k εj (fk)︸ ︷︷ ︸
=δj,khj

(by the definition of εj)

= − ai,kδj,k︸ ︷︷ ︸
=ai,jδj,k

hj = −ai,j δj,khj︸ ︷︷ ︸
=εj(fk)

(by the definition of εj)

= −ai,jεj (fk) =
(
(−ai,jεj) |N−

)
(fk) .

In other words, the maps
(
εj ◦

(
ζi |U(ñ−)

)
− ζi ◦ εj

)
|N− and (−ai,jεj) |N− are equal to

each other on each of the elements f1, f2, ..., fn of N−. Since (f1, f2, ..., fn) is a basis
of N−, this yields that(

εj ◦
(
ζi |U(ñ−)

)
− ζi ◦ εj

)
|N−= (−ai,jεj) |N−

(because the maps
(
εj ◦

(
ζi |U(ñ−)

)
− ζi ◦ εj

)
|N− and (−ai,jεj) |N− are linear). Hence,

since the setN− generates U (ñ−) as an algebra (because U (ñ−) = T (N−)), Proposition

4.6.13 (applied to U (ñ−), N−, U
(
h̃n ñ−

)
, εj ◦

(
ζi |U(ñ−)

)
−ζi◦εj and −ai,jεj instead of

A, S, M , d and e) yields that εj◦
(
ζi |U(ñ−)

)
−ζi◦εj = −ai,jεj (since εj◦

(
ζi |U(ñ−)

)
−ζi◦εj

and −ai,jεj are derivations). This proves (329).
Now, we will show that

[hi, εj (u−)]− εj ([hi, u−]) = ai,jεj (u−) for every u− ∈ U (ñ−) . (330)

Proof of (330): Let u− ∈ U (ñ−). Then,

(
εj ◦

(
ζi |U(ñ−)

)
− ζi ◦ εj

)
(u−) = εj

 (
ζi |U(ñ−)

)
(u−)︸ ︷︷ ︸

=ζi(u−)=[hi,u−]
(by the definition of ζi)

− ζi (εj (u−))︸ ︷︷ ︸
=[hi,εj(u−)]

(by the definition of ζi)

= εj ([hi, u−])− [hi, εj (u−)] .

Comparing this with(
εj ◦

(
ζi |U(ñ−)

)
− ζi ◦ εj

)︸ ︷︷ ︸
=−ai,jεj
(by (329))

(u−) = −ai,jεj (u−) ,
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we obtain −ai,jεj (u−) = εj ([hi, u−]) − [hi, εj (u−)]. In other words, [hi, εj (u−)] −
εj ([hi, u−]) = ai,jεj (u−). This proves (330).

Now, let us finally prove that [Hi, Ej] = ai,jEj.

Indeed, let u− ∈ U (ñ−) and u0 ∈ U
(
h̃
)

. Then,

 hi︸︷︷︸
∈h

, u−︸︷︷︸
∈U(ñ−)

 ∈ [h̃, U (ñ−)
]
⊆

U (ñ−). Thus, (327) (applied to [hi, u−] and j instead of u− and i) yields

Ej ([hi, u−]u0) = εj ([hi, u−])u0.

On the other hand, hi︸︷︷︸
∈h̃

u0︸︷︷︸
∈U(h̃)

∈ h̃U
(
h̃
)
⊆ U

(
h̃
)

. Hence, (327) (applied to hiu0 and

j instead of u0 and i) yields

Ej (u−hiu0) = εj (u−)hiu0.

But hiu−︸︷︷︸
=[hi,u−]+u−hi

u0 = [hi, u−]u0 + u−hiu0, so that

Ej (hiu−u0) = Ej ([hi, u−]u0 + u−hiu0) = Ej ([hi, u−]u0)︸ ︷︷ ︸
=εj([hi,u−])u0

+Ej (u−hiu0)︸ ︷︷ ︸
=εj(u−)hiu0

= εj ([hi, u−])u0 + εj (u−)hiu0.

On the other hand,

[Hi, Ej]︸ ︷︷ ︸
=Hi◦Ej−Ej◦Hi

(u−u0) = (Hi ◦ Ej − Ej ◦Hi) (u−u0)

= Hi

 Ej (u−u0)︸ ︷︷ ︸
=εj(u−)u0

(by (327), applied
to j instead of i)

− Ej
 Hi (u−u0)︸ ︷︷ ︸

=hiu−u0

(by the definition of Hi)


= Hi (εj (u−)u0)︸ ︷︷ ︸

=hiεj(u−)u0

(by the definition of Hi)

− Ej (hiu−u0)︸ ︷︷ ︸
=εj([hi,u−])u0+εj(u−)hiu0

(as we saw above)

= hiεj (u−)u0 − (εj ([hi, u−])u0 + εj (u−)hiu0) = hiεj (u−)u0 − εj (u−)hiu0 − εj ([hi, u−])u0

=

hiεj (u−)− εj (u−)hi︸ ︷︷ ︸
=[hi,εj(u−)]

−εj ([hi, u−])

u0 = ([hi, εj (u−)]− εj ([hi, u−]))︸ ︷︷ ︸
=ai,jεj(u−)
(by (330))

u0

= ai,j εj (u−)u0︸ ︷︷ ︸
=Ej(u−u0)

(since (327) (applied to j instead of i)
yields Ej(u−u0)=εj(u−)u0)

= ai,jEj (u−u0) .
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Now, forget that we fixed u− and u0. We thus have proven that

[Hi, Ej] (u−u0) = (ai,jEj) (u−u0) for all u− ∈ U (ñ−) and u0 ∈ U
(
h̃
)
.

Since the vector space U
(
h̃n ñ−

)
is generated by products u−u0 with u− ∈ U (ñ−)

and u0 ∈ U
(
h̃
)

(this is because ρ : U (ñ−)⊗U
(
h̃
)
→ U

(
h̃n ñ−

)
is an isomorphism),

this yields that [Hi, Ej] = ai,jEj.
Now forget that we fixed i and j. We have thus proven the relation [Hi, Ej] = ai,jEj

for all i, j ∈ {1, 2, ..., n}.

Proof of the relation [Hi, Fj] = −ai,jFj for all i, j ∈ {1, 2, ..., n}:
The proof of the relation [Hi, Fj] = −ai,jFj for all i, j ∈ {1, 2, ..., n} is analogous to

the above-given proof of the relation [Hi, Hj] = 0 for all i, j ∈ {1, 2, ..., n} (except that

this time, instead of using the equality [hi, hj] = 0 in h̃, need to apply the equality

[hi, fj] = −ai,jfj in h̃n ñ−; the latter equality is a consequence of (326)).

Proof of the relation [Ei, Fj] = δi,jHi for all i, j ∈ {1, 2, ..., n}:
Let i and j be two elements of {1, 2, ..., n}. Let u− ∈ U (ñ−) and u0 ∈ U

(
h̃
)

. Since

fj ∈ ñ− and u− ∈ U (ñ−), we have fju− ∈ ñ− · U (ñ−) ⊆ U (ñ−). Thus, we can apply
(327) to fju− instead of u−, and obtain

Ei (fju−u0) = εi (fju−)︸ ︷︷ ︸
=εi(fj)u−+fjεi(u−)

(since εi is a derivation)

u0 = (εi (fj)u− + fjεi (u−))u0

= εi (fj)︸ ︷︷ ︸
=δi,jhi

(by the definition of εi)

u−u0 + fjεi (u−)u0 = δi,jhiu−u0 + fjεi (u−)u0.

But

[Ei, Fj]︸ ︷︷ ︸
=Ei◦Fj−Fj◦Ei

(u−u0) = (Ei ◦ Fj − Fj ◦ Ei) (u−u0)

= Ei

 Fj (u−u0)︸ ︷︷ ︸
=fju−u0

(by the definition of Fj)

− Fj
Ei (u−u0)︸ ︷︷ ︸

=εi(u−)u0

(by (327))


= Ei (fju−u0)︸ ︷︷ ︸

=δi,jhiu−u0+fjεi(u−)u0

(as we have proven above)

− Fj (εi (u−)u0)︸ ︷︷ ︸
=fjεi(u−)u0

(by the definition of Fj)

= δi,jhiu−u0 + fjεi (u−)u0 − fjεi (u−)u0 = δi,jhiu−u0

= δi,j hiu−u0︸ ︷︷ ︸
=Hi(u−u0)

(since the definition of Hi yields
Hi(u−u0)=hiu−u0)

= δi,jHi (u−u0) .
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Now, forget that we fixed u− and u0. We thus have proven that

[Ei, Fj] (u−u0) = δi,jHi (u−u0) for all u− ∈ U (ñ−) and u0 ∈ U
(
h̃
)

.

Since the vector space U
(
h̃n ñ−

)
is generated by products u−u0 with u− ∈ U (ñ−)

and u0 ∈ U
(
h̃
)

(this is because ρ : U (ñ−)⊗U
(
h̃
)
→ U

(
h̃n ñ−

)
is an isomorphism),

this yields that [Ei, Fj] = δi,jHi.
Now forget that we fixed i and j. We have thus proven the relation [Ei, Fj] = δi,jHi

for all i, j ∈ {1, 2, ..., n}.

Altogether, we have thus verified all four relations (328). Now, let us define a Lie

algebra homomorphism ξ′ : FreeLie (hi, fi, ei | i ∈ {1, 2, ..., n}) → End
(
U
(
h̃n ñ−

))
by the relations 

ξ′ (ei) = Ei for every i ∈ {1, 2, ..., n} ;
ξ′ (fi) = Fi for every i ∈ {1, 2, ..., n} ;
ξ′ (hi) = Hi for every i ∈ {1, 2, ..., n}

.

This ξ′ is clearly well-defined (because a Lie algebra homomorphism from a free Lie
algebra over a set can be defined by arbitrarily choosing its values at the elements
of this set). This homomorphism ξ′ clearly maps the four relations (321) to the
four relations (328). Since we know that the four relations (328) are satisfied in

End
(
U
(
h̃n ñ−

))
, we conclude that the homomorphism ξ′ factors through the Lie al-

gebra FreeLie (hi, fi, ei | i ∈ {1, 2, ..., n})� (the relations (321)) = g̃. In other words,

there exists a Lie algebra homomorphism ξ : g̃→ End
(
U
(
h̃n ñ−

))
such that

ξ (ei) = Ei for every i ∈ {1, 2, ..., n} ;
ξ (fi) = Fi for every i ∈ {1, 2, ..., n} ;
ξ (hi) = Hi for every i ∈ {1, 2, ..., n}

.

Consider this ξ. Clearly, the Lie algebra homomorphism ξ : g̃ → End
(
U
(
h̃n ñ−

))
makes the vector space U

(
h̃n ñ−

)
into a g̃-module.

6th step: Proving the injectivity of ι−.
We are very close to proving Theorem 4.8.4 (b) now.

Let ξ− be the map ξ ◦ ι− : ñ− → End
(
U
(
h̃n ñ−

))
. Then, ξ− is a Lie algebra

homomorphism (since ξ and ι− are Lie algebra homomorphisms).

Every i ∈ {1, 2, ..., n} satisfies ξ−︸︷︷︸
=ξ◦ι−

(fi) = (ξ ◦ ι−) (fi) = ξ

 ι− (fi)︸ ︷︷ ︸
=fi

(by the definition of ι−)

 =

ξ (fi) = Fi (by the definition of ξ).
Let s be the subset{

s ∈ ñ− | (ξ− (s)) (u) = su for all u ∈ U
(
h̃n ñ−

)}
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of ñ−. Every i ∈ {1, 2, ..., n} satisfies

(ξ− (fi))︸ ︷︷ ︸
=Fi

(u) = Fi (u) = fiu (by the definition of Fi)

for all u ∈ U
(
h̃n ñ−

)
, and therefore

fi ∈
{
s ∈ ñ− | (ξ− (s)) (u) = su for all u ∈ U

(
h̃n ñ−

)}
= s.

In other words, s contains the elements f1, f2, ..., fn.
On the other hand, it is very easy to see that s is a Lie subalgebra of ñ−. (In fact, all

that is needed to prove this is knowing that ξ− is a Lie algebra homomorphism. The
details are left to the reader.)

But now recall that ñ− = FreeLie (fi | i ∈ {1, 2, ..., n}). Hence, the elements f1, f2,
..., fn generate ñ− as a Lie algebra. Thus, every Lie subalgebra of ñ− which contains
the elements f1, f2, ..., fn must be ñ− itself. Since we know that s is a Lie subalgebra
of ñ− and contains the elements f1, f2, ..., fn, this yields that s must be ñ− itself. In
other words, s = ñ−.

Now, let s′ ∈ ñ− be such that ι− (s′) = 0. Then, ξ−︸︷︷︸
=ξ◦ι−

(s′) = (ξ ◦ ι−) (s′) =

ξ

ι− (s′)︸ ︷︷ ︸
=0

 = ξ (0) = 0. But since

s′ ∈ ñ− = s =
{
s ∈ ñ− | (ξ− (s)) (u) = su for all u ∈ U

(
h̃n ñ−

)}
,

we have (ξ− (s′)) (u) = s′u for all u ∈ U
(
h̃n ñ−

)
. Applied to u = 1, this yields

(ξ− (s′)) (1) = s′ · 1 = s′. Compared with (ξ− (s′))︸ ︷︷ ︸
=0

(1) = 0, this yields s′ = 0.

Now forget that we fixed s′. We have thus shown that every s′ ∈ ñ− such that
ι− (s′) = 0 must satisfy s′ = 0. In other words, ι− is injective.

7th step: Proving the injectivity of ι0.
A similar, but even simpler, argument shows that ι0 is injective. Again, the reader

can fill in the details.

8th step: Proving the injectivity of ι+.
We have proven the injectivity of the maps ι− and ι0 above. The proof of the

injectivity of the map ι+ is analogous to the above proof of the injectivity of the
map ι−. (Alternately, the injectivity of ι+ can be obtained from that of ι− using the
involutive Lie algebra automorphism constructed in Theorem 4.8.4 (f).)

(c) 1st step: The existence of the direct sum in question.
Define a relation ≤ on Q by positing that two n-tuples (λ1, λ2, ..., λn) ∈ Zn and

(µ1, µ2, ..., µn) ∈ Zn satisfy λ1α1 + λ2α2 + ... + λnαn ≤ µ1α1 + µ2α2 + ... + µnαn if
and only if every i ∈ {1, 2, ..., n} satisfies λi ≤ µi. It is clear that this relation ≤ is
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a non-strict partial order. Define ≥ to be the opposite of ≤. Define > and < to be
the strict versions of the relations ≥ and ≤, respectively; thus, any α ∈ Q and β ∈ Q
satisfy α > β if and only if (α 6= β and α ≥ β).

The elements α of Q satisfying α > 0 are exactly the nonzero sums λ1α1 +λ2α2 + ...+
λnαn with λ1, λ2, ..., λn being nonnegative integers. The elements α of Q satisfying
α < 0 are exactly the nonzero sums λ1α1 + λ2α2 + ...+ λnαn with λ1, λ2, ..., λn being
nonpositive integers.

Let g̃ [< 0] =
⊕
α∈Q;
α<0

g̃ [α] and g̃ [> 0] =
⊕
α∈Q;
α>0

g̃ [α]. Then, g̃ [0], g̃ [< 0] and g̃ [> 0] are

Q-graded Lie subalgebras of g̃ (this is easy to see from the fact that g̃ is a Q-graded
Lie algebra).

It is easy to see that the (internal) direct sum g̃ [> 0]⊕g̃ [< 0]⊕g̃ [0] is well-defined.222

Every i ∈ {1, 2, ..., n} satisfies

fi ∈ g̃ [−αi] (since deg (fi) = −αi)

⊆
⊕
α∈Q;
α<0

g̃ [α] (since − αi < 0)

= g̃ [< 0] .

Hence, the Lie algebra g̃ [< 0] contains the elements f1, f2, ..., fn. But now, recall that
ñ− = FreeLie (fi | i ∈ {1, 2, ..., n}). Hence, the elements f1, f2, ..., fn of ñ− generate
ñ− as a Lie algebra. Thus, the elements f1, f2, ..., fn of g̃ generate ι− (ñ−) as a Lie
algebra (because the elements f1, f2, ..., fn of g̃ are the images of the elements f1, f2,
..., fn of ñ− under the map ι−). Thus, every Lie subalgebra of g̃ which contains the
elements f1, f2, ..., fn must contain ι− (ñ−) as a subset. Since we know that g̃ [< 0] is a
Lie subalgebra of g̃ and contains the elements f1, f2, ..., fn, this yields that g̃ [< 0] must
contain ι− (ñ−) as a subset. In other words, ι− (ñ−) ⊆ g̃ [< 0]. Similarly (by considering
the elements e1, e2, ..., en instead of f1, f2, ..., fn), we can show ι+ (ñ+) ⊆ g̃ [> 0].

A similar argument proves ι0

(
h̃
)
⊆ g̃ [0].

222Proof. We have g̃ =
⊕
α∈Q

g̃ [α] (since g̃ is Q-graded). But every α ∈ Q satisfies exactly one of the

four assertions α > 0, α < 0, α = 0 and (neither α < 0 nor α > 0 nor α = 0). Thus,

⊕
α∈Q

g̃ [α] =

⊕
α∈Q;
α>0

g̃ [α]


︸ ︷︷ ︸

=g̃[>0]

⊕

⊕
α∈Q;
α<0

g̃ [α]


︸ ︷︷ ︸

=g̃[<0]

⊕

⊕
α∈Q;
α=0

g̃ [α]


︸ ︷︷ ︸

=g̃[0]

⊕

 ⊕
α∈Q;

neither α<0
nor α>0 nor α=0

g̃ [α]



= g̃ [> 0]⊕ g̃ [< 0]⊕ g̃ [0]⊕

 ⊕
α∈Q;

neither α<0
nor α>0 nor α=0

g̃ [α]

 .

Thus, the (internal) direct sum g̃ [> 0]⊕ g̃ [< 0]⊕ g̃ [0] is well-defined (because it is a partial sum

of the direct sum g̃ [> 0]⊕ g̃ [< 0]⊕ g̃ [0]⊕

 ⊕
α∈Q;

neither α<0
nor α>0 nor α=0

g̃ [α]

).
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Since the internal direct sum g̃ [< 0]⊕ g̃ [> 0]⊕ g̃ [0] is well-defined, the internal direct

sum ι+ (ñ+) ⊕ ι− (ñ−) ⊕ ι0

(
h̃
)

must also be well-defined (because ι+ (ñ+) ⊆ g̃ [> 0],

ι− (ñ−) ⊆ g̃ [< 0] and ι0

(
h̃
)
⊆ g̃ [0]). We now must prove that this direct sum is g̃.

2nd step: Identifications.
Since the maps ι+, ι− and ι0 are injective Lie algebra homomorphisms, and since

their images are linearly disjoint (because the direct sum ι+ (ñ+)⊕ ι− (ñ−)⊕ ι0
(
h̃
)

is

well-defined), we can regard these maps ι+, ι− and ι0 as inclusions of Lie algebras. Let

us do this from now on. Thus, ñ+, ñ− and h̃ are Lie subalgebras of g̃. The identification
of ñ− with the Lie subalgebra ι− (ñ−) of g̃ eliminates the need of distinguishing between
the elements fi of ñ− and the elements fi of g̃ (because for every i ∈ {1, 2, ..., n}, the
element fi of g̃ is the image of the element fi of ñ− under the map ι−, and since we
regard this map ι− as inclusion, these two elements fi are therefore equal). Similarly,
we don’t have to distinguish between the elements ei of ñ+ and the elements ei of g̃,
nor is it necessary to distinguish between the elements hi of h̃ and the elements hi of
g̃.

Since we regard the maps ι+, ι− and ι0 as inclusions, we have ι+ (ñ+) = ñ+, ι− (ñ−) =

ñ− and ι0

(
h̃
)

= h̃. Hence, ι+ (ñ+)⊕ ι− (ñ−)⊕ ι0
(
h̃
)

= ñ+ ⊕ ñ− ⊕ h̃. This shows that

the internal direct sums ñ−⊕ h̃ and ñ+⊕ h̃ are well-defined (since they are partial sums

of the direct sum ñ+ ⊕ ñ− ⊕ h̃).

3rd step: Proving that ñ− ⊕ h̃ is a Lie subalgebra of g̃.
We now will prove part (d) of Theorem 4.8.4 before we come back and finish the

proof of part (c).

Indeed, let us first prove that
[
h̃, ñ−

]
⊆ ñ−.

In fact, in order to prove this, it is enough to show that [hi, ñ−] ⊆ ñ− for every

i ∈ {1, 2, ..., n} (since the elements h1, h2, ..., hn of h̃ span the vector space h̃). So let
i ∈ {1, 2, ..., n}. Let ξi : g̃→ g̃ be the map defined by

(ξi (x) = [hi, x] for any x ∈ g̃) .

Then, ξi is a Lie derivation of the Lie algebra g̃. On the other hand, the subset
{f1, f2, ..., fn} of ñ− generates ñ− as a Lie algebra (since the elements f1, f2, ..., fn of
ñ− generate ñ− as a Lie algebra), and we can easily check that ξi ({f1, f2, ..., fn}) ⊆ ñ−
223. Hence, Corollary 4.6.17 (applied to g̃, ñ−, ñ−, ξi and {f1, f2, ..., fn} instead of g, h, i,
d and S) yields that ξi (ñ−) ⊆ ñ−. But by the definition of ξi, we have ξi (ñ−) = [hi, ñ−].
Hence, [hi, ñ−] = ξi (ñ−) ⊆ ñ−. Now forget that we fixed i. We thus have proven that

[hi, ñ−] ⊆ ñ− for every i ∈ {1, 2, ..., n}. As explained above, this yields
[
h̃, ñ−

]
⊆ ñ−.

223Proof. For every j ∈ {1, 2, ..., n}, we have

ξi (fj) = [hi, fj ] (by the definition of ξi)

= −ai,j fj︸︷︷︸
∈ñ−

(by the relations (321))

∈ −ai,j ñ− ⊆ ñ−.

Thus, ξi ({f1, f2, ..., fn}) ⊆ ñ−, qed.
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Now, ñ− ⊕ h̃ = ñ− + h̃, so that[
ñ− ⊕ h̃, ñ− ⊕ h̃

]
=
[
ñ− + h̃, ñ− + h̃

]
= [ñ−, ñ−]︸ ︷︷ ︸

⊆ñ−
(since ñ− is a Lie algebra)

+
[
ñ−, h̃

]
︸ ︷︷ ︸

=−[h̃,ñ−]⊆[h̃,ñ−]⊆ñ−

+
[
h̃, ñ−

]
︸ ︷︷ ︸
⊆ñ−

+
[
h̃, h̃
]

︸ ︷︷ ︸
⊆h̃

(since h̃ is a Lie algebra)

(since the Lie bracket is bilinear)

⊆ ñ− + ñ− + ñ−︸ ︷︷ ︸
⊆ñ−

+h̃ ⊆ ñ− + h̃ = ñ− ⊕ h̃.

Thus, ñ− ⊕ h̃ is a Lie subalgebra of g̃.
(Note that the map (ι−, ι0) : ñ− ⊕ h̃→ g̃ is actually a Lie algebra isomorphism from

the semidirect product h̃ n ñ− (which was constructed during our proof of Theorem
4.8.4 (b)) to g̃. But we will not need this fact, so we will not prove it either.)

So we have shown that ñ− ⊕ h̃ is a Lie subalgebra of g̃. A similar argument (but
with ñ− replaced by ñ+, and with fj replaced by ej, and with −ai,j replaced by ai,j)

shows that ñ+ ⊕ h̃ is a Lie subalgebra of g̃.
We now know that ñ− ⊕ h̃ and ñ+ ⊕ h̃ are Lie subalgebras of g̃. Since ñ− = ι− (ñ−),

ñ+ = ι+ (ñ+) and h̃ = ι0

(
h̃
)

, this rewrites as follows: ι− (ñ−) ⊕ ι0
(
h̃
)

and ι+ (ñ+) ⊕

ι0

(
h̃
)

are Lie subalgebras of g̃. This proves Theorem 4.8.4 (d).

4th step: Finishing the proof of Theorem 4.8.4 (c).

We know that the internal direct sum ñ+ ⊕ ñ− ⊕ h̃ makes sense. Denote this direct
sum ñ+ ⊕ ñ− ⊕ h̃ as V . We know that V is a vector subspace of g̃. We need to prove
that V = g̃.

Let N be the vector subspace of g̃ spanned by the 3n elements e1, e2, ..., en, f1, f2,
..., fn, h1, h2, ..., hn. Then, g̃ is generated by N as a Lie algebra (because the elements
e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn generate g̃ as a Lie algebra).

We will now prove that [N, V ] ⊆ V .

Indeed, since N =
n∑
i=1

(eiC) +
n∑
i=1

(fiC) +
n∑
i=1

(hiC) (because N is the vector subspace

of g̃ spanned by the 3n elements e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn) and

V = ñ+ ⊕ ñ− ⊕ h̃ = ñ+ + ñ− + h̃ (since direct sums are sums), we have

[N, V ] =

[
n∑
i=1

(eiC) +
n∑
i=1

(fiC) +
n∑
i=1

(hiC) , ñ+ + ñ− + h̃

]

⊆
n∑
i=1

[eiC, ñ+] +
n∑
i=1

[eiC, ñ−] +
n∑
i=1

[
eiC, h̃

]
+

n∑
i=1

[fiC, ñ+] +
n∑
i=1

[fiC, ñ−] +
n∑
i=1

[
fiC, h̃

]
+

n∑
i=1

[hiC, ñ+] +
n∑
i=1

[hiC, ñ−] +
n∑
i=1

[
hiC, h̃

]
(331)
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(since the Lie bracket is bilinear).
We will now prove that each summand of each of the nine sums on the right hand

side of (331) is ⊆ V .
Proof that every i ∈ {1, 2, ..., n} satisfies [eiC, ñ+] ⊆ V :
For every i ∈ {1, 2, ..., n}, we have ei ∈ ñ+ and thus eiC ⊆ ñ+, so that

[eiC, ñ+] ⊆ [ñ+, ñ+] ⊆ ñ+ (since ñ+ is a Lie algebra)

⊆ ñ+ + ñ− + h̃ = V.

We have thus proven that every i ∈ {1, 2, ..., n} satisfies [eiC, ñ+] ⊆ V .
Proof that every i ∈ {1, 2, ..., n} satisfies [eiC, ñ−] ⊆ V :
Let i ∈ {1, 2, ..., n}. Define a map ψi : g̃→ g̃ by

(ψi (x) = [ei, x] for every x ∈ g̃) .

Then, ψi is a Lie derivation of the Lie algebra g̃. On the other hand, the subset
{f1, f2, ..., fn} of ñ− generates ñ− as a Lie algebra (since the elements f1, f2, ..., fn of ñ−
generate ñ− as a Lie algebra), and we can easily check that ψi ({f1, f2, ..., fn}) ⊆ ñ−⊕ h̃
224. Hence, Corollary 4.6.17 (applied to g̃, ñ− ⊕ h̃, ñ−, ψi and {f1, f2, ..., fn} instead of

g, h, i, d and S) yields that ψi (ñ−) ⊆ ñ− ⊕ h̃ (since ñ− ⊕ h̃ is a Lie subalgebra of g̃).
But by the definition of ψi, we have

ψi (ñ−) = [ei, ñ−] = [ei, ñ−]C (since [ei, ñ−] is a vector space)

= [eiC, ñ−] (since the Lie bracket is bilinear) .

Thus, [eiC, ñ−] ⊆ ñ− ⊕ h̃ ⊆ ñ+ ⊕ ñ− ⊕ h̃ = V . Now, forget that we fixed i. We thus
have shown that [eiC, ñ−] ⊆ V for every i ∈ {1, 2, ..., n}.

Proof that every i ∈ {1, 2, ..., n} satisfies
[
eiC, h̃

]
⊆ V :

Every i ∈ {1, 2, ..., n} satisfies eiC ⊆ ñ+ (since ei ∈ ñ+). Thus, every i ∈ {1, 2, ..., n}
satisfies eiC︸︷︷︸

⊆ñ+⊆ñ+⊕h̃

, h̃︸︷︷︸
⊆ñ+⊕h̃

 ⊆ [ñ+ ⊕ h̃, ñ+ ⊕ h̃
]

⊆ ñ+ ⊕ h̃
(

since ñ+ ⊕ h̃ is a Lie subalgebra of g̃
)

⊆ ñ+ ⊕ ñ− ⊕ h̃ = V.

Proof that every i ∈ {1, 2, ..., n} satisfies [fiC, ñ+] ⊆ V :

224Proof. For every j ∈ {1, 2, ..., n}, we have

ψi (fj) = [ei, fj ] (by the definition of ψi)

= δi,j hi︸︷︷︸
∈h̃

(by the relations (321))

∈ h̃ ⊆ ñ− ⊕ h̃.

Thus, ψi ({f1, f2, ..., fn}) ⊆ ñ− ⊕ h̃, qed.
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We have proven above that every i ∈ {1, 2, ..., n} satisfies [eiC, ñ−] ⊆ V . An anal-
ogous argument (or an invocation of the automorphism guaranteed by Theorem 4.8.4
(f)) shows that every i ∈ {1, 2, ..., n} satisfies [fiC, ñ+] ⊆ V .

Proof that every i ∈ {1, 2, ..., n} satisfies [fiC, ñ−] ⊆ V :
We have proven above that every i ∈ {1, 2, ..., n} satisfies [eiC, ñ+] ⊆ V . A similar

argument (but with ñ+ replaced by ñ−, and with ei replaced by fi) shows that every
i ∈ {1, 2, ..., n} satisfies [fiC, ñ−] ⊆ V .

Proof that every i ∈ {1, 2, ..., n} satisfies
[
fiC, h̃

]
⊆ V :

We have proven above that every i ∈ {1, 2, ..., n} satisfies
[
eiC, h̃

]
⊆ V . A similar

argument (but with ñ+ replaced by ñ−, and with ei replaced by fi) shows that every

i ∈ {1, 2, ..., n} satisfies
[
fiC, h̃

]
⊆ V .

Proof that every i ∈ {1, 2, ..., n} satisfies [hiC, ñ+] ⊆ V :

Every i ∈ {1, 2, ..., n} satisfies hiC ⊆ h̃ (since hi ∈ h̃). Thus, every i ∈ {1, 2, ..., n}
satisfies hiC︸︷︷︸

⊆ñ+⊆ñ+⊕h̃

, ñ+︸︷︷︸
⊆ñ+⊕h̃

 ⊆ [ñ+ ⊕ h̃, ñ+ ⊕ h̃
]

⊆ ñ+ ⊕ h̃
(

since ñ+ ⊕ h̃ is a Lie subalgebra of g̃
)

⊆ ñ+ ⊕ ñ− ⊕ h̃ = V.

Proof that every i ∈ {1, 2, ..., n} satisfies [hiC, ñ−] ⊆ V :
We have proven above that every i ∈ {1, 2, ..., n} satisfies [hiC, ñ+] ⊆ V . A similar

argument (but with ñ+ replaced by ñ−) shows that every i ∈ {1, 2, ..., n} satisfies
[hiC, ñ−] ⊆ V .

Proof that every i ∈ {1, 2, ..., n} satisfies
[
hiC, h̃

]
⊆ V :

Every i ∈ {1, 2, ..., n} satisfies hiC ⊆ h̃ (since hi ∈ h̃). Thus, every i ∈ {1, 2, ..., n}
satisfies hiC︸︷︷︸

⊆ñ+⊆ñ+⊕h̃

, h̃︸︷︷︸
⊆ñ+⊕h̃

 ⊆ [ñ+ ⊕ h̃, ñ+ ⊕ h̃
]

⊆ ñ+ ⊕ h̃
(

since ñ+ ⊕ h̃ is a Lie subalgebra of g̃
)

⊆ ñ+ ⊕ ñ− ⊕ h̃ = V.

Thus, we have proven that every i ∈ {1, 2, ..., n} satisfies the nine relations [eiC, ñ+] ⊆
V , [eiC, ñ−] ⊆ V ,

[
eiC, h̃

]
⊆ V , [fiC, ñ+] ⊆ V , [fiC, ñ−] ⊆ V ,

[
fiC, h̃

]
⊆ V ,
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[hiC, ñ+] ⊆ V , [hiC, ñ−] ⊆ V , and
[
hiC, h̃

]
⊆ V . Thus, (331) becomes

[N, V ] ⊆
n∑
i=1

[eiC, ñ+]︸ ︷︷ ︸
⊆V

+
n∑
i=1

[eiC, ñ−]︸ ︷︷ ︸
⊆V

+
n∑
i=1

[
eiC, h̃

]
︸ ︷︷ ︸
⊆V

+
n∑
i=1

[fiC, ñ+]︸ ︷︷ ︸
⊆V

+
n∑
i=1

[fiC, ñ−]︸ ︷︷ ︸
⊆V

+
n∑
i=1

[
fiC, h̃

]
︸ ︷︷ ︸
⊆V

+
n∑
i=1

[hiC, ñ+]︸ ︷︷ ︸
⊆V

+
n∑
i=1

[hiC, ñ−]︸ ︷︷ ︸
⊆V

+
n∑
i=1

[
hiC, h̃

]
︸ ︷︷ ︸
⊆V

⊆
n∑
i=1

V +
n∑
i=1

V +
n∑
i=1

V +
n∑
i=1

V +
n∑
i=1

V +
n∑
i=1

V +
n∑
i=1

V +
n∑
i=1

V +
n∑
i=1

V

⊆ V

(since V is a vector space). This proves [N, V ] ⊆ V .
Moreover,

N =
n∑
i=1

(eiC)︸ ︷︷ ︸
⊆V

(since ei∈ñ+⊆ñ+⊕ñ−⊕h̃=V )

+
n∑
i=1

(fiC)︸ ︷︷ ︸
⊆V

(since fi∈ñ−⊆ñ+⊕ñ−⊕h̃=V )

+
n∑
i=1

(hiC)︸ ︷︷ ︸
⊆V

(since hi∈h̃⊆ñ+⊕ñ−⊕h̃=V )

⊆
n∑
i=1

V +
n∑
i=1

V +
n∑
i=1

V ⊆ V

(since V is a vector space).
So we know that N and V are vector subspaces of g̃ such that g̃ is generated by N

as a Lie algebra and such that N ⊆ V and [N, V ] ⊆ V . Hence, Lemma 4.6.5 (applied

to g̃, N and V instead of g, T and U) yields V = g̃. Thus, g̃ = V = ñ+ ⊕ ñ− ⊕ h̃ =

ι+ (ñ+) ⊕ ι− (ñ−) ⊕ ι0

(
h̃
)

(since ñ− = ι− (ñ−), ñ+ = ι+ (ñ+) and h̃ = ι0

(
h̃
)

). This

proves Theorem 4.8.4 (c).

(d) During the proof of Theorem 4.8.4 (c), we have already proven Theorem 4.8.4
(d).

(e) We will use the notations we introduced in our proof of Theorem 4.8.4 (d).

During this proof, we have shown that ι+ (ñ+) ⊆ g̃ [> 0], ι− (ñ−) ⊆ g̃ [< 0] and ι0

(
h̃
)
⊆

g̃ [0]. Also, we know that g̃ = ι+ (ñ+) ⊕ ι− (ñ−) ⊕ ι0
(
h̃
)

. Finally, we know that the

internal direct sum g̃ [> 0]⊕ g̃ [< 0]⊕ g̃ [0] is well-defined.
Now, a simple fact from linear algebra says the following: If U1, U2, U3, V1, V2,

V3 are six vector subspaces of a vector space V satisfying the four relations U1 ⊆ V1,
U2 ⊆ V2, U3 ⊆ V3 and V = U1⊕U2⊕U3, and if the internal direct sum V1⊕ V2⊕ V3 is
well-defined, then we must have U1 = V1, U2 = V2 and U3 = V3.

If we apply this fact to g̃, ι+ (ñ+), ι− (ñ−), ι0

(
h̃
)

, g̃ [> 0], g̃ [< 0], g̃ [0] instead of

V , U1, U2, U3, V1, V2, V3, then we obtain that ι+ (ñ+) = g̃ [> 0], ι− (ñ−) = g̃ [< 0]
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and ι0

(
h̃
)

= g̃ [0] (because we know that ι+ (ñ+), ι− (ñ−), ι0

(
h̃
)

, g̃ [> 0], g̃ [< 0], g̃ [0]

are six vector subspaces of g̃ satisfying the four relations ι+ (ñ+) ⊆ g̃ [> 0], ι− (ñ−) ⊆
g̃ [< 0], ι0

(
h̃
)
⊆ g̃ [0] and g̃ = ι+ (ñ+)⊕ ι− (ñ−)⊕ ι0

(
h̃
)

, and we know that the internal

direct sum g̃ [> 0]⊕ g̃ [< 0]⊕ g̃ [0] is well-defined).

So we have proven that g̃ [0] = ι0

(
h̃
)

. In other words, the 0-th homogeneous com-

ponent of g̃ (in the Q-grading) is ι0

(
h̃
)

.

On the other hand, we have proven that ι+ (ñ+) = g̃ [> 0]. Thus,

ι+ (ñ+) = g̃ [> 0] =
⊕
α∈Q;
α>0

g̃ [α] =
⊕

α is a Z-linear combination
of α1, α2, ..., αn with nonnegative

coefficients; α 6=0

g̃ [α]

(since an element α ∈ Q satisfies α > 0 if and only if α is a Z-linear combination of
α1, α2, ..., αn with nonnegative coefficients such that α 6= 0).

Similarly, ι− (ñ−) =
⊕

α is a Z-linear combination
of α1, α2, ..., αn with nonpositive

coefficients; α 6=0

g̃ [α].

This completes the proof of Theorem 4.8.4 (e).

(g) Define a Z-linear map ` : Q→ Z by

(` (αi) = 1 for every i ∈ {1, 2, ..., n}) .

(This is well-defined since Q is a free abelian group with generators α1, α2, ..., αn.)
Then, ` is a group homomorphism.

We will use the notations we introduced in our proof of Theorem 4.8.4 (c). As shown
in the proof of Theorem 4.8.4 (e), we have ι+ (ñ+) = g̃ [> 0], ι− (ñ−) = g̃ [< 0] and

ι0

(
h̃
)

= g̃ [0].

Just as in the proof of Theorem 4.8.4 (c), we will regard the maps ι+, ι− and ι0 as

inclusions. Thus, ι+ (ñ+) = ñ+, ι− (ñ−) = ñ− and ι0

(
h̃
)

= h̃.

From the proof of Theorem 4.8.4 (c), we know that g̃ [0], g̃ [< 0] and g̃ [> 0] are

Q-graded Lie subalgebras of g̃. Since g̃ [0] = ι0

(
h̃
)

= h̃, g̃ [< 0] = ι− (ñ−) = ñ−

and g̃ [> 0] = ι+ (ñ+) = ñ+, this rewrites as follows: h̃, ñ− and ñ+ are Q-graded Lie
subalgebras of g̃.

Fix i ∈ {1, 2, ..., n}. Since αi > 0, the space g̃ [αi] is an addend in the direct sum⊕
α∈Q;
α>0

g̃ [α] (namely, the addend for α = αi). Hence, g̃ [αi] ⊆
⊕
α∈Q;
α>0

g̃ [α] = g̃ [> 0] = ñ+.

But since ñ+ is a Q-graded vector subspace of g̃, we have ñ+ [αi] = (g̃ [αi])∩ ñ+ = g̃ [αi]
(since g̃ [αi] ⊆ ñ+).

Now, ñ+ is a Q-graded Lie algebra, and ` is a group homomorphism. Hence, we
can apply Proposition 4.6.4 to ñ+ instead of g̃. Applying Proposition 4.6.4 (a) to ñ+

instead of g, we see that for every m ∈ Z, the internal direct sum
⊕
α∈Q;
`(α)=m

ñ+ [α] is well-

defined. Denote this internal direct sum
⊕
α∈Q;
`(α)=m

ñ+ [α] by ñ+[m]. Applying Proposition
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4.6.4 (b) to ñ+ instead of g, we see that the Lie algebra ñ+ equipped with the grading(
ñ+[m]

)
m∈Z is a Z-graded Lie algebra.

LetN+ be the free vector space with basis e1, e2, ..., en. Since ñ+ = FreeLie (ei | i ∈ {1, 2, ..., n}),
we then have a canonical isomorphism ñ+

∼= FreeLie (N+) (where FreeLie (N+) means
the free Lie algebra over the vector space (not the set) N+). We identify ñ+ with
FreeLie (N+) along this isomorphism. Due to the construction of the free Lie algebra,
we have a canonical injection N+ → FreeLie (N+) = ñ+. We will regard this injection
as an inclusion (so that N+ ⊆ ñ+).

Since ñ+ = FreeLie (N+), it is clear that ñ+ is generated by N+ as a Lie algebra.
Clearly, ej ∈ ñ+ [αj] ⊆ ñ+[1] for every j ∈ {1, 2, ..., n}. Thus, N+ ⊆ ñ+[1]. Combining

this with the fact that ñ+ is generated by N+ as a Lie algebra, we see that we can
apply Theorem 4.6.6 to the Lie algebra ñ+ (with the Z-grading

(
ñ+[m]

)
m∈Z, not with

the original Q-grading) and N+ instead of the Lie algebra g and T . As a result, we
obtain N+ = ñ+[1]. Since g̃ [αi] = ñ+ [αi] ⊆ ñ+[1] = N+, we have g̃ [αi] = N+ [αi] (since
N+ is a Q-graded subspace of g̃). But N+ [αi] = Cei (this is clear from the fact that
N+ has basis e1, e2, ..., en, and each of the vectors in this basis has a different degree
in the Q-grading). Hence, g̃ [αi] = N+ [αi] = Cei. A similar argument (with −` taking
the role of `) shows that g̃ [−αi] = Cfi. This proves Theorem 4.8.4 (g).

(h) It is clear that I (being a sum of Q-graded ideals) is a Q-graded ideal. We only

need to prove that I has zero intersection with ι0

(
h̃
)

.

Let π0 : g̃ → g̃ [0] be the canonical projection from the Q-graded vector space g̃ on
its 0-th homogeneous component g̃ [0].

For every Q-graded vector subspace M of g̃, we have π0 (M) = M ∩ (g̃ [0]) (this

is just an elementary property of Q-graded vector spaces). Since g̃ [0] = ι0

(
h̃
)

(by

Theorem 4.8.4 (e)), this rewrites as follows: For every Q-graded vector subspace M

of g̃, we have π0 (M) = M ∩ ι0
(
h̃
)

. Thus, every Q-graded ideal i of g̃ which has zero

intersection with ι0

(
h̃
)

satisfies π0 (i) = i ∩ ι0
(
h̃
)

= 0. Therefore, the sum I of all

such ideals also satisfies π0 (I) = 0 (since π0 is linear). But since π0 (I) = I ∩ ι0
(
h̃
)

(because for every Q-graded vector subspace M of g̃, we have π0 (M) = M ∩ ι0
(
h̃
)

),

this rewrites as I ∩ ι0
(
h̃
)

= 0. In other words, I has zero intersection with ι0

(
h̃
)

.

Theorem 4.8.4 (h) is proven.

(i) First, we notice that the Lie algebra g̃ is generated by its elements e1, e2, ..., en,
f1, f2, ..., fn, h1, h2, ..., hn (since

g̃ = FreeLie (hi, fi, ei | i ∈ {1, 2, ..., n})� (the relations (321))

). Hence, the Lie algebra g is generated by its elements e1, e2, ..., en, f1, f2, ..., fn, h1,
h2, ..., hn as well (since g = g̃�I).

In order to prove that g is a contragredient Lie algebra corresponding to A, we must
prove that it satisfies the conditions (1), (2) and (3) of Definition 4.8.1.

Proof of condition (1): The relations (321) are satisfied in g̃ (by the definition of g̃
as the quotient Lie algebra FreeLie (hi, fi, ei)� (the relations (321))) and thus also in
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g (since g is a quotient Lie algebra of g̃). This proves condition (1) for our Q-graded
Lie algebra g.

Proof of condition (2): By Theorem 4.8.4 (e), we have g̃ [0] = ι0

(
h̃
)

. We know

that h1, h2, ..., hn is a basis of the vector space h̃ (since h̃ was defined as the free vector
space with basis h1, h2, ..., hn). Since ι0 is injective, this yields that h1, h2, ..., hn is a

basis of ι0

(
h̃
)

(because we identify the images of the vectors h1, h2, ..., hn under ι0

with h1, h2, ..., hn). Thus, in particular, the vectors h1, h2, ..., hn in g̃ span the vector

space ι0

(
h̃
)

= g̃ [0]. As a consequence, the vectors h1, h2, ..., hn in g span the vector

space g [0] (because g = g̃�I).
The vectors h1, h2, ..., hn in g are linearly independent225. Hence, h1, h2, ..., hn is

a basis of the vector space g [0] (since the vectors h1, h2, ..., hn in g span the vector
space g [0] and are linearly independent). In other words, the vector space g [0] has
(h1, h2, ..., hn) as a C-vector space basis.

Let i ∈ {1, 2, ..., n}. Theorem 4.8.4 (g) yields g̃ [αi] = Cei. Projecting this onto
g̃�I = g, we obtain g [αi] = Cei (since the projection of ei onto g is also called ei).
Similarly, g [−αi] = Cfi.

Condition (2) is thus verified for our Q-graded Lie algebra g.
Proof of condition (3): Let J be a nonzero Q-graded ideal in g. Assume that

J ∩ (g [0]) = 0.

Recall that I has zero intersection with ι0

(
h̃
)

. That is, I ∩ ι0
(
h̃
)

= 0.

Let proj : g̃ → g̃�I = g be the canonical projection. Then, proj is a Q-graded
Lie algebra homomorphism, so that proj−1 (J) is a Q-graded ideal of g̃ (since J is
a Q-graded ideal of g). Also, Ker proj = I (since proj is the canonical projection
g̃→ g̃�I).

Let x ∈ proj−1 (J) ∩ ι0
(
h̃
)

. Then, x ∈ proj−1 (J) and x ∈ ι0

(
h̃
)

. Since x ∈

proj−1 (J), we have proj (x) ∈ J . Since x ∈ ι0
(
h̃
)

= g̃ [0] (by Theorem 4.8.4 (e)), we

have proj (x) ∈ g [0] (since proj is Q-graded). Combined with proj (x) ∈ J , this yields
proj (x) ∈ J ∩ (g [0]) = 0, so that proj (x) = 0, thus x ∈ Ker proj = I. Combined with

x ∈ ι0
(
h̃
)

, this yields x ∈ I ∩
(
ι0

(
h̃
))

= 0, so that x = 0.

Forget that we fixed x. We thus have proven that every x ∈ proj−1 (J) ∩ ι0
(
h̃
)

satisfies x = 0. Hence, proj−1 (J)∩ ι0
(
h̃
)

= 0. Thus, proj−1 (J) is a Q-graded ideal in

225Proof. Let (λ1, λ2, ..., λn) ∈ Cn be such that λ1h1 +λ2h2 + ...+λnhn = 0 in g. Then, λ1h1 +λ2h2 +

...+λnhn ∈ I in g̃ (since g = g̃�I). Combined with λ1h1 +λ2h2 + ...+λnhn ∈ g̃ [0] = ι0

(
h̃
)

, this

yields λ1h1 + λ2h2 + ... + λnhn ∈ I ∩ ι0
(
h̃
)

= 0 (since Theorem 4.8.4 (h) yields that I has zero

intersection with ι0

(
h̃
)

). Thus, λ1h1 + λ2h2 + ... + λnhn = 0 in ι0

(
h̃
)

. Since h1, h2, ..., hn is a

basis of ι0

(
h̃
)

, this yields λ1 = λ2 = ... = λn = 0.

Now forget that we fixed (λ1, λ2, ..., λn). We have thus shown that every (λ1, λ2, ..., λn) ∈ Cn
such that λ1h1 + λ2h2 + ...+ λnhn = 0 in g satisfies λ1 = λ2 = ... = λn = 0. In other words, the
vectors h1, h2, ..., hn in g are linearly independent, qed.
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g̃ which has zero intersection with ι0

(
h̃
)

. Hence,

proj−1 (J) ⊆
(

sum of all Q-graded ideals in g̃ which have zero intersection with ι0

(
h̃
))

= I.

Now let y ∈ J be arbitrary. Since y ∈ J ⊆ g = g̃�I, there exists a y′ ∈ g̃ such that
y = proj (y′). Consider this y. Since proj (y′) = y ∈ J , we have y′ ∈ proj−1 (J) ⊆ I =
Ker proj, so that proj (y′) = 0. Thus, y = proj (y′) = 0. Now, forget that we fixed y.
We thus have proven that every y ∈ J satisfies y = 0. Thus, J = 0, contradicting to
the fact that J is nonzero.

This contradiction shows that our assumption (that J ∩ (g [0]) = 0) was wrong. In
other words, J ∩ (g [0]) 6= 0.

Now forget that we fixed J . We thus have proven that every nonzero Q-graded ideal
J in g satisfies J ∩ (g [0]) 6= 0. In other words, every nonzero Q-graded ideal in g has a
nonzero intersection with g [0]. This proves that Condition (3) holds for our Q-graded
Lie algebra g.

Now that we have checked all three conditions (1), (2) and (3) for our Q-graded
Lie algebra g, we conclude that g indeed is a contragredient Lie algebra corresponding
to A. Theorem 4.8.4 (i) is proven.

Proof of Theorem 4.8.2. (a) Let the Q-graded Lie algebra g be defined as in The-
orem 4.8.4. According to Theorem 4.8.4 (i), this g is a contragredient Lie algebra
corresponding to A. Thus, there exists at least one contragredient Lie algebra corre-
sponding to A, namely this g. Now, it only remains to prove that it is the only such
Lie algebra (up to isomorphism). In other words, it remains to prove that whenever g′

is a contragredient Lie algebra corresponding to A, then there exists a Q-graded Lie
algebra isomorphism g→ g′ which sends the generators e1, e2, ..., en, f1, f2, ..., fn, h1,
h2, ..., hn of g to the respective generators e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn of
g′.

So let g′ be a contragredient Lie algebra. Then, condition (1) of Definition 4.8.1 is
satisfied for g′. Thus, the relations (321) are satisfied in g′.

Define a Lie algebra homomorphism ψ : g̃→ g′ by
ψ (ei) = ei for every i ∈ {1, 2, ..., n} ;
ψ (fi) = fi for every i ∈ {1, 2, ..., n} ;
ψ (hi) = hi for every i ∈ {1, 2, ..., n}

.

This ψ is well-defined because the relations (321) are satisfied in g′ (and because g̃ =
FreeLie (hi, fi, ei | i ∈ {1, 2, ..., n})� (the relations (321))).

Since the Lie algebra g′ is generated by its elements e1, e2, ..., en, f1, f2, ..., fn, h1,
h2, ..., hn (by the definition of a contragredient Lie algebra), the homomorphism ψ is
surjective (since all of the elements e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn clearly lie
in the image of ψ).

Since g′ is a contragredient Lie algebra, the condition (2) of Definition 4.8.1 is
satisfied for g′. In other words, the vector space g′ [0] has (h1, h2, ..., hn) as a C-vector
space basis, and we have g′ [αi] = Cei and g′ [−αi] = Cfi for all i ∈ {1, 2, ..., n}. This
yields that the elements ei, fi and hi of g′ satisfy

deg (ei) = αi, deg (fi) = −αi and deg (hi) = 0 for all i ∈ {1, 2, ..., n} .
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Of course, the elements ei, fi and hi of g̃ satisfy the same relations (because of the
definition of the Q-grading on g̃). As a consequence, it is easy to see that Lie algebra
homomorphism ψ is Q-graded226. As a consequence, Kerψ is a Q-graded Lie ideal of
g̃.

Define h̃, I and ι0 as in Theorem 4.8.4. Then, h̃ is the free vector space with
basis h1, h2, ..., hn. Thus, the vector space h̃ is spanned by h1, h2, ..., hn. As a con-

sequence, the vector space ι0

(
h̃
)

is spanned by h1, h2, ..., hn (since ι0 maps the ele-

ments h1, h2, ..., hn of h̃ to the elements h1, h2, ..., hn of g̃). Now, it is easy to see that

(Kerψ) ∩ ι0
(
h̃
)

= 0 227. Hence, Kerψ is a Q-graded Lie ideal of g̃ which has zero

intersection with ι0

(
h̃
)

.

But I is the sum of all Q-graded ideals in g̃ which have zero intersection with ι0

(
h̃
)

.

Thus, every Q-graded ideal of g̃ which has zero intersection with ι0

(
h̃
)

must be a

subset of I. Since Kerψ is a Q-graded Lie ideal of g̃ which has zero intersection with

ι0

(
h̃
)

, this yields that Kerψ ⊆ I.

We will now prove the reverse inclusion, i. e., we will show that I ⊆ Kerψ.
We know that I is Q-graded (by Theorem 4.8.4 (h)). Since ψ is Q-graded, this yields

that ψ (I) is a Q-graded vector subspace of g′. On the other hand, since I is Q-graded,

we have I [0] = I ∩ (g̃ [0])︸ ︷︷ ︸
=ι0(h̃)

(by Theorem 4.8.4 (e))

= I ∩ ι0
(
h̃
)

= 0 (since Theorem 4.8.4 (h) yields

that I has zero intersection with ι0

(
h̃
)

).

Since g′ is a contragredient Lie algebra, the condition (3) of Definition 4.8.1 is
satisfied for g′. In other words, every nonzero Q-graded ideal in g′ has a nonzero

226Proof. Let T be the vector subspace of g̃ spanned by the elements e1, e2, ..., en, f1, f2, ..., fn, h1,
h2, ..., hn. Then, g̃ is generated by T as a Lie algebra (because g̃ is generated by the elements e1,
e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn as a Lie algebra). Due to the relations

deg (ei) = αi, deg (fi) = −αi and deg (hi) = 0 for all i ∈ {1, 2, ..., n}

holding both in g̃ and in g′, it is clear that the map ψ |T is Q-graded. Proposition 4.6.7 (applied
to g̃, g′ and ψ instead of g, h and f) now yields that ψ is Q-graded, qed.

227Proof. Let x ∈ (Kerψ)∩ι0
(
h̃
)

. Then, x ∈ Kerψ and x ∈ ι0
(
h̃
)

. Since x ∈ ι0
(
h̃
)

, there exist some

elements λ1, λ2, ..., λn of C such that x = λ1h1 + λ2h2 + ...+ λnhn (since the vector space ι0

(
h̃
)

is spanned by h1, h2, ..., hn). Consider these λ1, λ2, ..., λn. Since x ∈ Kerψ, we have ψ (x) = 0, so
that

0 = ψ (x) = ψ (λ1h1 + λ2h2 + ...+ λnhn) = λ1ψ (h1) + λ2ψ (h2) + ...+ λnψ (hn)

= λ1h1 + λ2h2 + ...+ λnhn (since ψ (hi) = hi for every i ∈ {1, 2, ..., n})

in g′. But since the elements h1, h2, ..., hn of g′ are linearly independent (because the vector space
g′ [0] has (h1, h2, ..., hn) as a C-vector space basis), this yields that λ1 = λ2 = ... = λn = 0. Thus,
x = λ1h1 + λ2h2 + ...+ λnhn becomes x = 0h1 + 0h2 + ...+ 0hn = 0.

Now forget that we fixed x. We thus have seen that every x ∈ (Kerψ) ∩ ι0
(
h̃
)

satisfies x = 0.

In other words, (Kerψ) ∩ ι0
(
h̃
)

= 0, qed.
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intersection with g′ [0]. Since I is an ideal of g̃, the image ψ (I) is an ideal of g′

(because ψ is a surjective homomorphism of Lie algebras, and because the image of an
ideal under a surjective homomorphism of Lie algebras must always be an ideal of
the target Lie algebra). Assume that ψ (I) 6= 0. Clearly, ψ (I) is Q-graded (since I is
Q-graded (by Theorem 4.8.4 (h)) and since ψ is Q-graded). Thus, ψ (I) is a nonzero
Q-graded ideal in g′. Thus, ψ (I) has a nonzero intersection with g′ [0] (because every
nonzero Q-graded ideal in g′ has a nonzero intersection with g′ [0]). In other words,
ψ (I) ∩ (g′ [0]) 6= 0.

The following is a known and easy fact from linear algebra: If A and B are two
Q-graded vector spaces, and Φ : A → B is a Q-graded linear map, then Φ (A [β]) =
(Φ (A)) [β] for every β ∈ Q. Applying this fact to A = I, B = g′, Φ = ψ and β = 0,
we obtain ψ (I [0]) = (ψ (I)) [0]. But since I [0] = 0, this rewrites as ψ (0) = (ψ (I)) [0].
Hence, (ψ (I)) [0] = ψ (0) = 0.

But since ψ (I) is a Q-graded vector subspace of g′, we have ψ (I) ∩ (g′ [0]) =
(ψ (I)) [0] = 0. This contradicts the fact that ψ (I) ∩ (g′ [0]) 6= 0. Hence, our as-
sumption (that ψ (I) 6= 0) must have been wrong. In other words, ψ (I) = 0, so that
I ⊆ Kerψ. Combined with Kerψ ⊆ I, this yields I = Kerψ.

Since the Q-graded Lie algebra homomorphism ψ : g̃→ g′ is surjective, it factors (ac-
cording to the homomorphism theorem) through a Q-graded Lie algebra isomorphism
g̃� (Kerψ) → g′. Since g̃� (Kerψ)︸ ︷︷ ︸

=I

= g̃�I = g, this means that ψ factors through

a Q-graded Lie algebra isomorphism g → g′. This Q-graded Lie algebra isomorphism
g → g′ clearly sends the generators e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn of g to
the respective generators e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn of g′.

We have thus proven that there exists a Q-graded Lie algebra isomorphism g → g′

which sends the generators e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn of g to the
respective generators e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn of g′. This completes
the proof of Theorem 4.8.2 (a).

(b) Let A be the Cartan matrix of a simple finite-dimensional Lie algebra. Clearly it
is enough to prove that this Lie algebra is a contragredient Lie algebra corresponding to
A, that is, is generated by e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn as a Lie algebra and
satisfies the conditions (1), (2) and (3) of Definition 4.8.1. But this follows from the
standard theory of roots of simple finite-dimensional Lie algebras228. Theorem 4.8.2
(b) is thus proven.

Remark 4.8.6. Let A = (ai,j)1≤i,j≤n be a complex n × n matrix such that every
i ∈ {1, 2, ..., n} satisfies ai,i = 2. One can show that the Lie algebra g (A) is finite-
dimensional if and only if A is the Cartan matrix of a semisimple finite-dimensional
Lie algebra. (In this case, g (A) is exactly this semisimple Lie algebra, and the
ideal I of Theorem 4.8.4 is generated by the left hand sides (ad (ei))

1−ai,j ej and
(ad (fi))

1−ai,j fj of the Serre relations.)

[...]
[Add something about the total degree on g̃, since this will later be used for the

bilinear form. g̃ [tot 0] = g̃ [0] = h̃, g̃ [tot < 0] ..., g̃ [1] = ...]

228For instance, condition (3) follows from the fact that the Lie algebra in question is simple and thus
contains no ideals other than 0 and itself.
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Remark 4.8.7. Let A1 and A2 be two square complex matrices. As usual, we

denote by A1 ⊕ A2 the block-diagonal matrix

(
A1 0
0 A2

)
. Then, g (A1 ⊕ A2) ∼=

g (A1)⊕ g (A2) as Lie algebras naturally.

Proof of Remark 4.8.7 (sketched). Say A1 is an ` × ` matrix, and A2 is an m ×m
matrix. Let n = `+m and A = A1 ⊕A2. Introduce the notations g̃, h̃, ñ+, ñ−, ι0, ι+,
ι− and I as in Theorem 4.8.4. Let j+ be the ideal of the Lie algebra ñ+ generated by
all elements of the form [ei, ej] with i ∈ {1, 2, ..., `} and j ∈ {`+ 1, `+ 2, ..., n}. Let j−
be the ideal of the Lie algebra ñ− generated by all elements of the form [fi, fj] with i ∈
{1, 2, ..., `} and j ∈ {`+ 1, `+ 2, ..., n}. Prove that ι+ (j+) and ι− (j−) are actually Q-
graded ideals of g̃ (and not only of ι+ (ñ+) and ι− (ñ−)), so that both ι+ (j+) and ι− (j−)
are subsets of I. For every i ∈ {1, 2}, let g̃i be the Lie algebra constructed analogously
to g̃ but for the matrix Ai instead of A. Notice that g̃� (ι+ (j+) + ι− (j−)) ∼= g̃1 ⊕ g̃2.
Conclude the proof by noticing that if J is a Q-graded ideal in g̃ which has zero

intersection with ι0

(
h̃
)

, and K is the sum of all Q-graded ideals in g̃�J which have

zero intersection with the projection of ι0

(
h̃
)

on g̃�J , then (g̃�J)�K ∼= g̃�I = g.

The details are left to the reader.

4.9. [unfinished] Kac-Moody algebras for generalized Cartan
matrices

For general A, we do not know much about g (A); its definition was not even construc-
tive (find that I !). It is not known in general how to obtain generators for I. But for
some particular cases – not only Cartan matrices of semisimple Lie algebras –, things
behave well. Here is the most important such case:

Definition 4.9.1. An n× n matrix A = (ai,j)1≤i,j≤n of complex numbers is said to
be a generalized Cartan matrix if it satisfies:

(1) We have ai,i = 2 for all i ∈ {1, 2, ..., n}.
(2) For every i and j, the number ai,j is a nonpositive integer. Also, ai,j = 0 if

and only if aj,i = 0.
(3) The matrix A is symmetrizable, i. e., there exists a diagonal matrix D > 0

such that (DA)T = DA.

Note that a Cartan matrix is the same as a generalized Cartan matrix A with DA >
0.

Example 4.9.2. Let A =

(
2 −m
−1 2

)
for m ≥ 1. This matrix A is a gener-

alized Cartan matrix, since

(
1 0
0 m

)(
2 −m
−1 2

)
=

(
2 −m
−m 2m

)
. Note that

det

(
2 −m
−1 2

)
= 4−m.

For m = 1, we have g (A) ∼= A2 = sl3.
For m = 2, we have g (A) ∼= B2

∼= C2
∼= sp4

∼= so5.
For m = 3, we have g (A) ∼= G2.
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For m ≥ 4, the Lie algebra g (A) is infinite-dimensional.

For m = 4, it is a twisted version of ŝl2, called A2
2.

For m ≥ 5, the Lie algebra g (A) is big (in the sense of having exponential growth).
This strange behaviour is related to the behaviour of the m-subspaces problem (finite

for m ≤ 3, tame for m = 4, wild for m ≥ 5). More generally, Kac-Moody algebras are
related to representation theory of quivers.

Definition 4.9.3. A symmetrizable Kac-Moody algebra is a Lie algebra of the form
g (A) for a generalized Cartan matrix A.

Theorem 4.9.4 (Gabber-Kac). If A is a generalized Cartan matrix, then the ideal
I ⊆ g̃ (A) is generated by the Serre relations (where the notation I comes from
Theorem 4.8.4).

Partial proof of Theorem 4.9.4. Proving this theorem requires showing two asser-
tions: first, that the Serre relations are contained in I; second, that they actually
generate I. We will only prove the first of these two assertions.

Set I+ = I ∩ ñ+ and I− = I ∩ ñ−. Denote g̃ (A) by g̃ as in Theorem 4.8.4.
We know (from Theorem 4.8.4 (h)) that I is a Q-graded ideal in g̃ which has zero

intersection with ι0

(
h̃
)

(where the notations are those of Theorem 4.8.4). Since g̃ [0] =

ι0

(
h̃
)

(by Theorem 4.8.4 (e)), this rewrites as follows: I is a Q-graded ideal in g̃ which

has zero intersection with g̃ [0]. Thus, I = I+ ⊕ I−.
Let us show that (ad (fi))

1−ai,j fj ∈ I−.
To do that, it is sufficient to show that

[
ek, (ad (fi))

1−ai,j fj
]

= 0 for all k. (If we
grade g̃ by setting deg (fi) = −1, deg (ei) = 1 and deg (hi) = 0 (this is called the
principal grading), then fk can only lower degree, so that the Lie ideal generated by
(ad (fi))

1−ai,j fj will lie entirely in negative degrees, and thus (ad (fi))
1−ai,j fj will lie in

I−.)
Case 1: We have k 6= i, j. This case is clear since ek commutes with fi and fj (by

our relations).
Case 2: We have k = j. In this case,[
ek, (ad (fi))

1−ai,j fj
]

=
[
ej, (ad (fi))

1−ai,j fj
]

= (ad (fi))
1−ai,j ([ej, fj])

(since ad (fi) and ad (ej) commute, due to i 6= j)

= (ad (fi))
1−ai,j hj.

We now distinguish between two cases according to whether ai,j is = 0 or < 0:
Case 2a: We have ai,j = 0. Then, aj,i = 0 by the definition of generalized Cartan

matrices. Thus, [fi, hj] = − [hj, fi] = −aj,ifi = 0, and we are done.
Case 2b: We have ai,j < 0. Then, 1−ai,j ≥ 2. Now, (ad (fi))

2 hj = (ad (fi)) (cfi) = 0
for some constant c.

Case 3: We have k = i. Let (sl2)i = 〈ei, fi, hi〉. Let M be the (sl2)i-submodule in
g̃ (A) generated by fj.

We have [hi, fj] = −ai,jfj = mfj, where m = −ai,j ≥ 0. Together with [ei, fj] = 0,
this shows that fj =: v is a highest-weight vector of M with weight m. Thus, fm+1

i v =
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(ad (fi))
1−ai,j fj is a singular vector for (sl2)i (by representation theory of sl2

229).
So much for our part of the proof of Theorem 4.9.4.
Of course, simple Lie algebras are Kac-Moody algebras. The next class of Kac-Moody

algebras we are interested in is the affine Lie algebras :

Remark 4.9.5. Let σ ∈ Sn be a permutation, and A be an n× n complex matrix.
Then, g (A) ∼= g (σAσ−1).

Definition 4.9.6. A generalized Cartan matrix A is said to be indecomposable if it
cannot be written in the form σ (A1 ⊕ A2)σ−1 for some permutation σ and nontrivial
square matrices A1 and A2. Due to the above remark and to Remark 4.8.7, we need
to only consider indecomposable generalized Cartan matrices.

Definition 4.9.7. A generalized Cartan matrix A is said to be affine if DA ≥ 0
but DA 6> 0 (thus, det (DA) = 0).

Definition 4.9.8. If A is an affine generalized Cartan matrix, then g (A) is called
an affine Kac-Moody algebra.

Now let A be the (usual) Cartan matrix of a simple Lie algebra, and let g = g (A)
be this simple Lie algebra. Let Lg = g [t, t−1], and let ĝ = Lg ⊕ CK as defined long
ago.

Theorem 4.9.9. This ĝ is an affine Kac-Moody algebra with generalized Cartan
matrix Ã whose (1, 1)-entry is 2 and whose submatrix obtained by omitting the first
row and the first column is A. (We do not yet say what the remaining entries are.)

Proof of Theorem. Let h be the Cartan subalgebra of g. Let r = dim h; thus, r is the
rank of g. Let (h1, h2, ..., hr) be a corresponding basis of h, and let ei, fi be standard
generators for every i ∈ {1, 2, ..., r}.

Let θ be the maximal root.
Let us now define elements e0 = fθ · t, f0 = eθ · t−1 and h0 = [e0, f0] = −hθ +

(fθ, eθ)︸ ︷︷ ︸
=1 (due to our normalization)

K = K −hθ of ĝ (the commutator is computed in ĝ, not in Lg).

Add these elements to our system of generators.
Why do we then get a system of generators of ĝ ?
First, hi for i ∈ {0, 1, ..., r} are a basis of ĥ = h⊕ CK.
Also, gt0 is generated by ei, fi, hi for i ∈ {1, 2, ..., r}. Now, gt1 is an irreducible

g-module with lowest-weight vector fθ · t.
=⇒ U (g) · fθt = gt. Now, gt generates gtC [t] (since [g, g] = g). Similarly, U (g) ·

eθt
−1 = gt−1, and gt−1 generates gt−1C [t−1]. =⇒ our ei, fi, hi (including i = 0)

generate all of ĝ.
Now to the relations.
[hi, hj] = 0 is clear for all (i, j) ∈ {0, 1, ..., r}2.
We have [h0, e0] = [K − hθ, fθt] = − [hθ, fθ] t = 2fθt = 2e0.

229What we are using is the following: Consider the module Mλ = C [f ] v over sl2. Then, efnv =
n (λ− n+ 1) fn−1v. Thus, when n = m+ 1 and λ = m, we get efnv = 0.

471



We have [h0, f0] = −2f0 similarly.
We have [e0, f0] = h0.
We have [h0, ei] = [K − hθ, ei] = −αi (hθ) ei = − (αi, θ) ei =⇒ a0,i = − (αi, θ) =

(some nonpositive integer).
We have [h0, fi] = (αi, θ) fi, same argument.
We have [hi, e0] = [hi, fθt] = −θ (hi) fθt = −θ (hi) e0 = − (α∨i , θ) e0 (where α∨i =
2αi

(αi, αi)
) =⇒ ai,0 = − (α∨i , θ).

We have [hi, f0] = (α∨i , θ) f0, same argument.
We have [e0, fi] = [fθt, fi] = 0.
We have [ei, f0] = [ei, eθt

−1] = 0.
Thus, all basic relations are satisfied.
Now let us define a grading: Q̂ = Q ⊕ Zδ, where Q is the root lattice of g. Define

α0 = δ − θ. δ |ĥ= 0. So if we think of α0 as an element of ĥ∗, then α0, α1, ..., αr is
neither linearly independent nor spanning. So the direct sum Q ⊕ Zδ is an external
direct sum, not an internal one!!
Q̂-grading: deg (ei) = αi, deg (fi) = −αi and deg (hi) = 0 for i = 0, 1, ..., r. Also

deg
(
atk
)

= deg a+ kδ (so, so to speak, “deg t = δ”).

So we have ĝ [0] = ĥ and ĝ [αi] = 〈ei〉 and ĝ [−αi] = 〈fi〉.
Note (which we won’t use): [h, a] = α (h) a, a ∈ ĝ [α] “if you define things this way”.
The only thing we now have to do is to show that I = 0 in ĝ.
Let I be the projection of I to Lg = ĝ� (K). Clearly, I ∩ h = 0.
We must prove that I = 0.
But there is a claim that any Q̂-graded ideal in Lg is 0 or Lg. (Proof: If J is a Q̂-

graded ideal of Lg different from 0, then there exists a nonzero a ∈ g and an m ∈ Z such
that atm ∈ J . But atm generates Lg under the action of Lg, since [btn−m, atm] = [b, a] tn

and g = [g, g].)
Proof of Theorem complete.
Let us show how Dynkin diagrams look like for these affine Kac-Moody algebras.
Consider the case ofAn−1 = sln. Then, θ = (1, 0, 0, ..., 0,−1). Also, α1 = (1,−1, 0, 0, ..., 0),

α2 = (0, 1,−1, 0, 0, ..., 0), ..., αn−1 = (0, 0, ..., 0, 1,−1). Also, α = α∨ for all simple roots
α. We thus have (θ, αi) = 1 if α ∈ {1, n− 1} and = 0 otherwise. The Dynkin diagram

of Ân−1 = A1
n−1 = ŝln (these are just three notations for one and the same thing) is

thus ◦ ◦ ◦ ... ◦ ◦ ◦ with a cyclically connected dot underneath.
The case n = 2 is special: double link. ◦ = ◦ double link.
Now let us consider other types. Suppose that θ is a fundamental weight, i. e.,

satisfies (θ, α∨i ) = 1 for some i and satisfies (θ, α∨i ) = 0 for all other i. (This happens
for a lot of simple Lie algebras.)

To get D̂n = ŝo2n, need to attach a new vertex to the second vertex from the left.
To get Ĉn = ŝp2n, need to attach a new vertex doubly-linked to the first vertex

from the left. (The arrow points to the right, i. e., to the Cn diagram.)

For Ĝ2, attach a vertex on the left (where the arrow points to the right).

For F̂4, attach a vertex on the left (where the arrow points to the right).

For Ê6, attach a vertex to the “bottom” (the vertex off the line).

For Ê7, attach a vertex to the short leg (to make the graph symmetric).

For Ê8, attach a vertex to the long leg.
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These are untwisted affine Lie algebras (ĝ).

There are also twisted ones: A2
2 with Cartan matrix

(
2 −4
−1 2

)
and Dynkin dia-

gram ◦ (4 arrows pointing rightward) ◦. We will not discuss this kind of Lie algebras
here.

4.10. [unfinished] Representation theory of g (A)

We will now work out the representation theory of g (A).
Let us start with the case of g (A) being finite-dimensional. In contrast with usual

courses on Lie algebras, we will not restrict ourselves to finite-dimensional represen-
tations. We define a Category O which is analogous but (in its details) somewhat
different from the one we defined above. In future, we will use only the new definition.

Definition 4.10.1. The objects of category O will be g-modules M such that:
1) The module M is h-diagonalizable. By this we mean that M =

⊕
µ∈h∗

M [µ]

(where M [µ] means the µ-weight space of M), and every µ ∈ h∗ satisfies
dim (M [µ]) <∞.

2) Let SuppM denote the set of all µ ∈ h∗ such that M [µ] 6= 0. Then, there exist
finitely many λ1, λ2, ..., λn ∈ h∗ such that SuppM ⊆ D (λ1) ∪D (λ2) ∪ ... ∪D (λn),
where for every λ ∈ h∗, we denote by D (λ) the subset

{λ− k1α1 − k2α2 − ...− krαr | (k1, k2, ..., kr) ∈ Nr} of h∗.

The morphisms of category O will be g-module homomorphisms.

Examples of modules in Category O are Verma modules Mλ = M+
λ and their irre-

ducible quotients Lλ (and all of their quotients). Category O is an abelian category (in
our case, this simply means it is closed under taking subquotients and direct sums).

Definition 4.10.2. Let M ∈ O be a g-module. Then, the formal character of M
denotes the sum chM =

∑
µ∈h∗

dim (M [µ]) eµ. Here C [h∗] denotes the group algebra

of the additive group h∗, where this additive group h∗ is written multiplicatively and
every µ ∈ h∗ is renamed as eµ.

Where does this sum
∑
µ∈h∗

dim (M [µ]) eµ lie?

Let Γ be a coset of Q (the root lattice) in h∗. Then, let RΓ denote the space
lim
µ∈Γ

eµC [[e−α1 , e−α2 , ..., e−αr ]] (this is a union, but not a disjoint union, since Rµ ⊆
Rµ+αi for all i and µ). Let R =

⊕
Γ∈h∗�Q

RΓ. This R is a ring. We view chM as an

element of R.

Now, for an example, let us compute the formal character ch (Mλ) of the Verma
module Mλ = U (n−) vλ.

Recall that U (n−) has a Poincaré-Birkhoff-Witt basis consisting of all elements of the
form fm1

α(1)f
m2

α(2) ...f
m`
α(`) where α(1), α(2), ..., α(`) are all positive roots of g, and ` = dim (n−).

The weight of this element fm1

α(1)f
m2

α(2) ...f
m`
α(`) is −

(
m1α

(1) +m2α
(2) + ...+m`α

(`)
)
. Thus,

the weight of fm1

α(1)f
m2

α(2) ...f
m`
α(`)vλ is λ−

(
m1α

(1) +m2α
(2) + ...+m`α

(`)
)
.
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Thus, dim (Mλ [λ− β]) is the number of partitions of β into positive roots. We
denote this by p (β), and call p the Kostant partition function.

Now, it is very easy (using geometric series) to see that∑
β∈Q+

p (β) e−β =
∏
α root;
a>0

1

1− e−α
.

Thus,

ch (Mλ) =
∑
β∈Q+

p (β) eλ−β = eλ
∑
β∈Q+

p (β) e−β︸ ︷︷ ︸
=

∏
α root;
a>0

1

1− e−α

= eλ
∏
α root;
a>0

1

1− e−α
.

Example: Let g = sl2. Then,

ch (Mλ) =
eλ

1− e−α
= eλ + eλ−α + eλ−2α + ....

Classically, one identifies weights of sl2 with elements of C (by ω1 7→ 1 and thus α 7→ 2).
Write x for eω1 . Then,

ch (Mλ) =
xλ

1− x−2
= xλ + xλ−2 + xλ−4 + ....

The quotient Lλ has weights λ, λ− 2, ..., −λ and thus satisfies

ch (Lλ) = xλ + xλ−2 + ...+ x−λ =
xλ+1 − x−λ−1

x− x−1
.

Back to the general case of finite-dimensional g (A). First of all, category O has
tensor products, and they make it into a tensor category.

Proposition 4.10.3. 1) We have ch (M1 ⊗M2) = ch (M1) · ch (M2).
2) If N ⊆M are both in O, then chM = chN + ch (M�N).

Proof of Proposition. 1)

(M1 ⊗M2) [µ] =
⊕

µ1+µ2=µ

M1 [µ1]⊗M2 [µ2] .

2)
(M�N) [µ] = M [µ]�N [µ] .

Now, let us generalize to the case of Kac-Moody Lie algebras (or g (A) for general

A). Here we run into troubles: For example, for ŝl2, we have Mλ = U (ñ−) vλ, and the

vectors ht−1vλ, ht
−2vλ, ... all have weight λ with respect to ĥ = 〈h0, h1〉 with h1 = h,

h0 = K − h. This yields that weight spaces are infinite-dimensional, and we cannot
define characters.

Let us work around this by adding derivations.
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Assume that A is an r× r complex matrix. Let gext (A) = g (A)⊕
r⊕
i=1

CDi with new

relations

[Di, Dj] = 0 for all i, j;

[Di, ej] = 0 for all i 6= j;

[Di, fj] = 0 for all i 6= j;

[Di, hj] = 0 for all i 6= j;

[Di, ei] = ei;

[Di, fi] = −fi;
[Di, hi] = 0.

Note that this definition is equivalent to making gext (A) a semidirect product, so there
is no cancellation here.

We have gext (A) = n+ ⊕ hext ⊕ n− where hext = Cr ⊕ h (here the Cr is spanned by
the CDi).

Consider αi as maps hext → C given by αi (hj) = aj,i and αi (Dj) = δi,j.
Then, for every h ∈ hext, we have [h, ei] = αi (h) ei and [h, fi] = −αi (h) fi.
Let F = Q⊗Z C and P = h∗ ⊕ F .
Let ϕ : P → h∗ext be given by ϕ (h∗i ) (Dj) = 0, ϕ (h∗i ) (hj) = δi,j, ϕ (αi) (Dj) = δi,j,

ϕ (αi) (hj) = aj,i.
Easy to see ϕ is an iso.
Now the trouble disappears. Do the same as for simple Lie algebras. Now weights

lie in h∗ext.
Annoying fact: Now, even when A is a Cartan matrix and g is simple finite-

dimensional, this is not the same as the usual theory [what?]. But it is equivalent.
Namely: Suppose χ ∈ h∗ext. Let Oχ be the category of modules whose weights lie in
χ+ F . Therefore, O =

⊕
χ∈h∗
Oχ.

Proposition 4.10.4. If χ1 − χ2 ∈ Im (F → h∗), then Oχ1
∼= Oχ2 .

(See Feigin-Zelevinsky paper for proof.)
If A is invertible (in particular, for simple g), all Oχ are the same and we just have

a single category O (which is the category O we defined).
Affine case: Coker (F → h∗) is 1-dimensional, so χ has one essential parameter

(namely, the image k of χ in this Coker). So we get a 1-parameter category of cate-
gories, O (k), parametrized by a complex number k. In our old approach to ĝ, this k
is the level of representations (i. e., the eigenvalue of the action of K). So we did not
get anything new, but we have got a uniform way to treat all cases of this kind.

4.11. [unfinished] Invariant bilinear forms

Now let us start developing the theory of invariant bilinear forms on g (A) and g̃ (A).
[We denote g [α] as gα.]
Let A be an indecomposable complex matrix. We want to see when we can have

nontrivial nonzero invariant symmetric bilinear forms on g̃ (A) and g (A). Let us only
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care about forms of degree 0, which means that they send gα×gβ to 0 unless α+β = 0.
It also sounds like a good goal to have the forms nondegenerate, but this cannot always
be reached. Let us impose the weaker condition that, if ei and fi denote generators of
gαi and g−αi , respectively, then (ei, fi) = di for some di 6= 0.

These conditions already force some properties upon g (A): First,

(hi, hj) = (hi, [ej, fj]) = − ([hi, fj] , ej) = ai,j (fj, ej) = ai,jdj,

so that the symmetry of our form (and the condition di 6= 0) enforces ai,jdj = aj,idi.

Thus, if D denotes the matrix diag (d1, d2, ..., dr), then (AD)T = AD. This means that
A is symmetrizable. (Our definition of “symmetrizable” spoke of DA instead of AD,
but this is simply a matter of replacing D by D−1.)

Lemma 4.11.1. Let A be an indecomposable symmetrizable matrix. Then, there
is a unique diagonal matrix D satisfying (AD)T = AD up to scaling.

This lemma is purely combinatorial and more or less trivial.

Proposition 4.11.2. Let A be an indecomposable symmetrizable matrix. Then,
there is at most one invariant symmetric bilinear form of degree 0 on g̃ (A) up to
scaling.

Note that the degree in “degree 0” is the degree with respect to Q-grading; this is a
tuple.

Proof of Proposition. Let B be such a form. Then, we can view B as a g-module
homomorphism B∨ : g → g∗. If we fix di (uniquely up to scaling, as we know from
Lemma), then we know B∨ (hi), B

∨ (fi) and B∨ (ei) (because the form is of degree 0,
and thus the linear maps B∨ (hi), B

∨ (fi) and B∨ (ei) are determined by what they do
to the corresponding elements of the corresponding degree). But g is generated as a
g-module by ei, fi, hi, so B is uniquely determined if it exists. Proposition is proven.

Theorem 4.11.3. Let A be a symmetrizable matrix. Then, there is a nonzero
invariant bilinear symmetric form of degree 0 on g̃ (A). (We know from the previous
proposition that this form is unique up to scaling if A is indecomposable.)

Proof of Theorem (incomplete, as we will skip some steps). First, fix the di. Then,
we can calculate the form by[ei1 , [ei2 , ... [ein−1 , ein

]
...
]]︸ ︷︷ ︸

∈gα

,
[
fj1 ,

[
fj2 , ...

[
fjn−1 , fjn

]
...
]]︸ ︷︷ ︸

∈g−α


= −

[ei1 , ...] ,
[[
ei2 ,
[
ei3 , ...

[
ein−1 , ein

]
...
]]
,
[
fj1 ,

[
fj2 , ...

[
fjn−1 , fjn

]
...
]]]︸ ︷︷ ︸

∈g−α


+ ...

induction on α. For details and well-definedness, see page 51 of the Feigin-Zelevinsky
paper.

Also, g̃ (A) has such a form by pullback.
As usual, denote these forms by (·, ·).
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Proposition 4.11.4. The kernel I of the canonical projection g̃ (A) → g (A) is a
subset of Ker ((·, ·)).

Proof of Proposition. We defined the form (·, ·) on g̃ (A) × g̃ (A) as the pullback of
the form (·, ·) : g (A) × g (A) → C through the canonical projection g̃ (A) × g̃ (A) →
g (A) × g (A). Thus, it is clear that the kernel of the former form contains the kernel
of the canonical projection g̃ (A)→ g (A). Proposition proven.

Lemma 4.11.5. 1) The center Z of g (A) is contained in h, and is

Z =

{∑
i

βihi | βi ∈ C for all i, and
∑
i

βiai,j = 0 for all j

}
.

2) If A is an indecomposable symmetrizable matrix, and A 6= 0, then any graded
proper ideal in g (A) is contained in Z.

3) If ai,i 6= 0 for all i, then [g (A) , g (A)] = g (A).

Proof of Lemma. 1) Let z be a nonzero central element of g (A). We can WLOG
assume that z is homogeneous. Then, Cz is a graded nonzero ideal of g (A), so that
deg z must be 0, and thus z ∈ h. If z =

∑
i

βihi, then every j satisfies 0 = [z, ej] =[∑
i

βihi, ej

]
=

(∑
i

βiai,j

)
ej, so that

∑
i

βiai,j = 0.

This proves that Z ⊆
{∑

i

βihi | βi ∈ C for all i, and
∑
i

βiai,j = 0 for all j

}
. The

reverse inclusion is easy to see (using [hi, fj] = −ai,jfj).
2) Let I 6= 0 be a graded ideal. Then, I ∩ h 6= 0. So I = I+ ⊕ I0 ⊕ I− with I0 being

a nonzero subspace of h. Assume I 6⊆ Z. Then we claim that I+ 6= 0 or I− 6= 0.
(In fact, otherwise, we would have I+ = 0 and I− = 0, so that I ⊆ h, so that there

exists some h ∈ I ⊆ h with h /∈ Z, so that [h, ej] = λej for some j and some λ 6= 0, so
that ej ∈ I+, contradicting I+ = 0 and I− = 0.)

Let G be the subset {e1, e2, ..., en, f1, f2, ..., fn, h1, h2, ..., hn} of g (A). As we know,
this subset G generates the Lie algebra g (A).

So let us WLOG assume I+ 6= 0. Then there exists a nonzero a ∈ I+ [α] for some
α 6= 0. Set J be the ideal generated by a. In other words, J = U (g (A)) ·a. This J is a
graded ideal. Thus, J ∩ h 6= 0. Hence, there exists x ∈ U (g (A)) such that x ⇀ a ∈ h
and x ⇀ a 6= 0. We can WLOG assume that x has degree −α and is a product of some
elements of the set G (with repetitions allowed). Of course, this product is nonempty
(otherwise, a itself would be in I0, not in I+), and hence (by splitting off its first factor)
can be written as ξ · η with ξ being an element of the set G and η being a product
of elements of G. Consider these ξ and η. We assume WLOG that η is a product of
elements of G with a minimum possible number of factors. Then, ξ /∈ {h1, h2, ..., hn}
(because otherwise, we could replace x by η, and would then, by splitting off the first
factor, obtain a new η with an even smaller number of factors). So we have either
ξ = ei for some i, or ξ = fi for some i. Let us WLOG assume that we are in the first
case, i. e., we have ξ = ei for some i.
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Let y = η ⇀ a. Then, y ∈ I (since a ∈ I and since I is an ideal) and

[ξ, y] = ξ ⇀ y︸︷︷︸
=η⇀a

(since ξ ∈ G ⊆ g (A))

= ξ ⇀ (η ⇀ a) = (ξ · η)︸ ︷︷ ︸
=x

⇀ a = x ⇀ a ∈ h

and [ξ, y] = x ⇀ a 6= 0. Since ξ = ei ∈ gαi and y is homogeneous, this yields that
y ∈ g−αi . Thus, y = χ · fi for some χ ∈ C. This χ is nonzero, since y is nonzero (since
[ξ, y] 6= 0).

Since y = χ · fi, we have [ei, y] = χ · [ei, fi]︸ ︷︷ ︸
=hi

= χhi. Since [ei, y] ∈ I (because I is an

ideal and y ∈ I), this becomes χhi ∈ I, so that hi ∈ I (since χ is nonzero). Moreover,
since χ · fi = y ∈ I, we have fi ∈ I (since χ is nonzero). Altogether, we now know that
hi ∈ I and fi ∈ I.

If A is an 1× 1 matrix, then ai,i 6= 0 (since A 6= 0), so that ei =
[hi, ei]

ai,i
∈ I (because

hi ∈ I). Hence, if A is an 1×1 matrix, then all of ei, fi and hi lie in I, so that I = g (A)
(because there exists only one i).

If the size of A is > 1, there exists some j 6= i such that ai,j 6= 0 and aj,i 6= 0 (since

A is indecomposable and symmetrizable), so that ej =
[hi, ej]

ai,j
∈ I (since hi ∈ I),

furthermore fj = − [hi, fj]

ai,j
∈ I, therefore hj = [ej, fj] ∈ I, and finally ei =

[hj, ei]

aj,i
∈ I.

And for every k 6= i with ai,k 6= 0 and ak,i 6= 0, we similarly get hk, fk, ek ∈ I
etc.. By repeating this argument, we conclude that e`, f`, h` ∈ I for all ` (since A is
indecomposable). That is, G ⊆ I. Since G is a generating set of the Lie algebra g (A),
this entails I = g (A).

3) If ai,i 6= 0, then the relations (321) imply that all generators are in [g (A) , g (A)].
Qed.

Proposition 4.11.6. Assume that A is symmetrizable. We have Ker
(
(·, ·) |g(A)

)
=

Z (g (A)).

Proof of Proposition. Assume WLOG that A is indecomposable.
1) 1×1 case, A = 0 trivial: [e, f ] = h, [h, e] = [h, f ] = 0, (e, f) = 1. Then the kernel

of this form is a graded ideal and is not g (A). Hence, it must be contained in Z by

the lemma. But Z ⊆ Ker
(
(·, ·) |g(A)

)
is easy (because

(∑
i

βihi, hj

)
=
∑
i

βiai,jdj = 0).

Let F = Q⊗Z C =
⊕r

i=1Cαi.
Define γ : F → h isomorphism by γ (αi) = d−1

i hi =: hαi . Extend by linearity: γ (α)
will be called hα, α ∈ F .

Claim: (hα, h) = α (h), where α is the image of α in h∗.
Proof: (hαi , hj) = d−1

i (hi, hj) = d−1
i ai,jdj = d−1

i aj,idi = aj,i = αi (hj) ([hj, ei] =
aj,iei).
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Proposition 4.11.7. If x ∈ gα and y ∈ g−α, then [x, y] = (x, y)hα.

Proof of Proposition. By induction over |α|, where |α| means the sum of the coordi-
nates of α.

Base: |α| = 1, α = αi. Want to prove [ei, fi] =? (ei, fi)hαi . But [ei, fi] = hi and
(ei, fi)hαi = did

−1
i hi, so we are done with the base.

Step: For x ∈ gα−αi and y ∈ gα−αj , we have

[[ei, x] , [fj, y]]

= [[ei, [fj, y]] , x] + [ei, [x, [fj, y]]]

= − ([ei, [fj, y]] , x)hα−αi + (ei, [x, [fj, y]])hαi
(by the induction assumption)

= ([fj, y] , [ei, x]) (hα−αi + hαi) = ([ei, x] , [fj, y])hα.

Induction step complete. Proposition proven.

Corollary 4.11.8. If we give g (A) the principal Z-grading (so that g (A) [n] =⊕
α∈Q;
|α|=n

g (A) [α]), then g (A) is a nondegenerate Lie algebra.

Proof. If λ ∈ h∗ is such that λ (hα) 6= 0, then λ ([x, y]) is a nondegenerate form
gα × g−α → C. Qed.

Recall P = h∗ ⊕ F ∼= h∗ext.

(·, ·) on P :

 ϕ︸︷︷︸
∈h∗

⊕ α︸︷︷︸
∈F

, ψ︸︷︷︸
∈h∗

⊕ β︸︷︷︸
∈F

 = ψ (hα) + ϕ (hβ) + (hα, hβ)(
hαi , hαj

)
= d−1

i d−1
j (hi, hj) = d−1

i d−1
j ai,jdj = d−1

i ai,j.

Basis h∗αi ∈ h∗, αi ∈ F =⇒ matrix of the form

(
0 1
1 D−1A

)
.

Inverse form on hext: dual basis: hαi , Di.
(Di, Dj) = 0,

(
Di, hαj

)
= δi,j,

(
hαi , hαj

)
= d−1

i ai,j.

Proposition 4.11.9. The form on gext (A) = g (A)⊕CD1⊕CD2⊕ ...⊕CDr defined
by this is a nondegenerate symmetric invariant form.

4.12. [unfinished] Casimir element

We now define the Casimir element. The problem with the classical “sum of squares
of orthonormal basis” construction which works well in the finite-dimensional case is
that now we are infinite-dimensional and such a sum needs to be defined.

Note that it will be a generalization of the L0 of the Sugawara construction.

Define ρ ∈ h∗ by ρ (hi) =
ai,i
2

(in the Kac-Moody case, this becomes ρ (hi) = 1).

(ρ, ρ) = 0.

Case of a finite-dimensional simple Lie algebra: ∆ =
∑
a∈B

a2 =
r∑
i=1

x2
i +2hρ+2

∑
α>0

fαeα

where (xi)i=1,...,r is an orthonormal basis of h.
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In the infinite-dimensional case, we fix a basis (eiα)i of gα for every α, and a dual
basis (f iα)i of g−α under the inner product. Then define ∆+ = 2

∑
α>0

∑
i

f iαe
i
α and

∆0 =
∑
j

x2
j + 2hρ (where (xj) is an orthonormal basis of hext). We set ∆ = ∆+ + ∆0.

Note that ∆+ is an infinite sum and not in U (g (A)). But it becomes finite after
applying to any vector in a module in category O.

Theorem 4.12.1. 1) The operator ∆ commutes with g (A).
2) We have ∆ |Mλ

= (λ, λ+ 2ρ) id.

Proof of Theorem. Let us first prove 2) using 1):

2) We have ∆vλ = ∆0vλ =

(∑
j

λ (xj)
2 + 2λ (hρ)

)
vλ = ((λ, λ) + 2 (λ, ρ)) vλ =

(λ, λ+ 2ρ) vλ.
From 1), we see that every a ∈ U (g (A)) satisfies ∆avλ = a∆vλ = (λ, λ+ 2ρ) avλ.

This proves 2) since Mλ = U (g (A)) vλ.
1) We need to show that [∆, ei] = [∆, fi] = 0.
Let us prove [∆, ei] = 0 (the proof of [∆, fi] = 0 is similar).
We have [∆0, ei] =

[∑
x2
j + 2hρ, ei

]
=
∑
xj [xj, ei] +

∑
[xj, ei]xj + 2 (αi, ρ) ei

=
∑
xj αi (xj)︸ ︷︷ ︸

=(hαi ,xj)

ei +
∑
αi (xj) eixj + 2 (αi, ρ) ei

= 2hαiei −
∑

αi (xj)︸ ︷︷ ︸
=(αi,αi)ei

αi (xj) ei + 2 (αi, ρ) ei = 2hαei

=⇒ Our job is to show [∆+, ei] = −2hαiei. But

[∆+, ei] = 2
∑
α>0

f jα [ejα, ei] + 2
∑
α>0

[
f jα, ei

]
ejα︸ ︷︷ ︸

for α=αi the addend is
−2hαiei

because fαi=d
−1
i fi, eαi=ei,

[d−1
i fi,ei]ei=−d−1

i hiei=−hαiei

.

So we need to show that∑
α>0

f jα
[
ejα, ei

]
+ 2

∑
α>0;
α6=αi

[
f jα, ei

]
ejα = 0.

For this it is enough to check∑
α>0

f jα ⊗
[
ejα, ei

]
+ 2

∑
α>0;
α6=αi

[
f jα, ei

]
⊗ ejα = 0.

For this it is enough to check that
[
ei, e

k
α

]
=
∑(

ekβ, [f
j
α, ei]

)
ejα. This is somehow

obvious. Proof complete.
Exercise: for ĝ (affine), ∆ = (k + h∨) (L0 − d) (Sugawara).

4.13. [unfinished] Preparations for the Weyl-Kac character formula

Let A be a symmetrizable generalized Cartan matrix, WLOG indecomposable.
We consider the Kac-Moody algebra g = g (A) ⊆ gext (A).
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Proposition 4.13.1. The Serre relations (ad (ei))
1−ai,j ej = (ad (fi))

1−ai,j fj = 0
hold in g (A).

This is a part of Theorem 4.9.4 (actually, the part that we proved above).

Definition 4.13.2. Let A be an associative algebra (with 1, as always). Let V be
an A-module.

(a) Let v ∈ V . Then, the vector v is said to be of finite type if dim (Av) <∞.
(b) The A-module V is said to be locally finite if every v ∈ V is of finite type.

It is very easy to check that:

Proposition 4.13.3. Let A be an associative algebra (with 1, as always). Let V be
an A-module. Then, V is locally finite if and only if V is a sum of finite-dimensional
A-modules.

Proof of Proposition 4.13.3 (sketched). =⇒: Assume that V is locally finite. Then,
for every v ∈ V , we have dim (Av) <∞ (since v is of finite type), so that Av is a finite-
dimensional A-module. Thus, V =

∑
v∈V

Av is a sum of finite-dimensional A-modules.

⇐=: Assume that V is a sum of finite-dimensional A-modules. Then, for every
v ∈ V , the vector v belongs to a sum of finitely many finite-dimensional A-modules.
But such a sum is finite-dimensional as well. As a consequence, for every v ∈ V , the
vector v belongs to a finite-dimensional A-module, and thus dim (Av) <∞, so that v
is of finite type. Thus, V is locally finite.

Proposition 4.13.3 is proven.

Convention 4.13.4. If g is a Lie algebra, then “locally finite” and “of finite type”
with respect to g mean locally finite resp. of finite type with respect to U (g).

In the following, let A = U (g) for g = g (A).

Definition 4.13.5. Let V be a g (A)-module. We say that V is integrable if V is
locally finite under the sl2-subalgebra (sl2)i = 〈ei, fi, hi〉 for every i ∈ {1, 2, ..., r}.

To motivate the terminology “integrable”, let us notice:

Proposition 4.13.6. If V is a sl2-module, then V is locally finite if and only if V

is isomorphic to a direct sum
∞⊕
n=0

Wn⊗Vn, where Wn are vector spaces and Vn is the

irreducible representation of sl2 of highest weight n (so that dim (Vn) = n + 1) for
every n ∈ N. (In such a direct sum, we have Wn

∼= Homsl2 (Vn, V ).)
Locally-finite sl2-modules can be lifted to modules over the algebraic group

SL2 (C).

Since lifting is called “integrating” (in analogy to geometry, where an action of a Lie
group gives rise to an action of the corresponding of the Lie algebra by “differentiation”,
and thus the converse operation, when it makes sense, is called “integration”), the last
sentence of this proposition explains the name “integrable”.
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Proposition 4.13.7. The g-module g = g (A) itself is integrable.

The proof of this proposition is based on the following lemma:

Lemma 4.13.8. Let a be a Lie algebra, and b be another Lie algebra. Assume that
we are given a Lie algebra homomorphism b→ Der a; this makes a into a b-module.
Then, if x, y ∈ a are of finite type for b, then so is [x, y].

Proof of Lemma 4.13.8. In a (not in U (a)), we have

U (b) · [x, y] ⊆

 U (b) · x︸ ︷︷ ︸
finite dimensional

, U (b) · y︸ ︷︷ ︸
finite dimensional

 .
Hence, U (b) · [x, y] is finite-dimensional. Hence, [x, y] is of finite type for b. Lemma
4.13.8 is proven.

Proof of Proposition 4.13.7. We know that ei is of finite type under (sl2)i (in fact, ei
generates a 3-dimensional representation of (sl2)i), and that ej is of finite type under
(sl2)i for every j 6= i (in fact, ej generates a representation of dimension 1− ai,j). The
same applies to fj, and hence also to hj (by Lemma 4.13.8). Hence (again using Lemma
4.13.8), the whole g (A) is locally finite under (sl2)i. [Fix some stuff here.] Proposition
4.13.7 is proven.

Proposition 4.13.9. If V is a g (A)-module, then V is integrable if and only if
there exists a generating family (vα)α∈A of the g (A)-module V such that each vα is
of finite type under (sl2)i for each i.

Note that this proposition could just as well be formulated for every Lie algebra g
instead of g (A).

Proof of Proposition. ⇐=: Let v ∈ V . We need to show that v is of finite type under
(sl2)i for all i.

Pick some i ∈ {1, 2, ..., r}. Let g = g (A).
Fix some i. Then, there exist i1, i2, ..., im ∈ A such that v ∈ U (g) · vi1 + U (g) ·

vi2 + ... + U (g) · vim . WLOG assume that i1 = 1, i2 = 2, ..., im = m, and denote
the g-submodule U (g) · v1 + U (g) · v2 + ... + U (g) · vm of V by V ′. Then, v ∈
U (g) ·vi1 +U (g) ·vi2 + ...+U (g) ·vim = U (g) ·v1 +U (g) ·v2 + ...+U (g) ·vm = V ′ ⊆ V .

Pick a finite-dimensional (sl2)i-subrepresentation W of V ′ such that v1, v2, ..., vm ∈
W . (This is possible because v1, v2, ..., vm are of finite type under (sl2)i.) Then we have
a surjective homomorphism of (sl2)i-modules U (g)⊗W → V ′ (namely, the homomor-
phism sending x⊗w to xw), where g acts on U (g) by adjoint action, and where (sl2)i
acts on U (g) by restricting the g-action on U (g) to (sl2)i. So it suffices to show that
U (g) is integrable for the adjoint action of g. But by the symmetrization map (which
is an isomorphism by PBW), we have U (g) ∼= S (g) =

⊕
m∈N

Sm (g) (as g-modules) (this

is true for every Lie algebra over a field of characteristic 0). Since Sm (g) injects into
g⊗m, and since g⊗m is integrable (because g is (in fact, it is easy to see that if X and
Y are locally finite a-modules, then so is X ⊗ Y )), this yields that U (g) is integrable.
Hence, U (g)⊗W is a locally finite (sl2)i-module, and thus V ′ (being a quotient module
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of U (g)⊗W ) is a locally finite (sl2)i-module also as well. Hence, v (being an element
of V ′) is of finite type under (sl2)i.

=⇒: Trivial (take all vectors of V as generators).
Proposition proven.

Corollary 4.13.10. Let Lλ be the irreducible highest-weight module for g (A).
Then, Lλ is integrable if and only if for every i ∈ {1, 2, ..., r}, the value λ (hi) is a
nonnegative integer.

Proof of Corollary. =⇒: Assume that Lλ is integrable. Consider the element vλ of
Lλ. Since Lλ is integrable, we know that vλ is of finite type under (sl2)i. In other
words, U ((sl2)i) vλ is a finite-dimensional (sl2)i-module. Also, we know that vλ 6= 0,
eivλ = 0 and hivλ = λ (hi) vλ. Hence, Lemma 4.6.1 (c) (applied to (sl2)i, ei, hi, fi,
U ((sl2)i) vλ, vλ and λ (hi) instead of sl2, e, h, f , V , x and λ) yields that λ (hi) ∈ N
and f

λ(hi)+1
i vλ = 0. In particular, λ (hi) is a nonnegative integer.

⇐=: We have

eif
λ(hi)+1
i vλ = (λ (hi) + 1) (λ (hi)− (λ (hi) + 1) + 1)︸ ︷︷ ︸

=0

f
λ(hi)
i vλ(

by the formula eif
m
i vλ = m (λ (hi)−m+ 1) fm−1

i vλ
)

= 0.

Hence, f
λ(hi)+1
i vλ must also be zero (since otherwise, this vector would generate a proper

graded submodule). This implies that vλ generates a finite-dimensional (sl2)i-module

of dimension λ (hi) + 1 with basis
(
vλ, fivλ, ..., f

λ(hi)
i vλ

)
. Hence, vλ is of finite type

with respect to (sl2)i.
By the previous proposition, this yields that Lλ is integrable. Proof of Corollary

complete.

Remark 4.13.11. Assume that for every i ∈ {1, 2, ..., r}, the value λ (hi) is a

nonnegative integer. Then, the relations f
λ(hi)+1
i vλ = 0 are defining for Lλ.

We will not prove this now, but this will follow from things we do later (from the
main theorem for the character formula).

Definition 4.13.12. A weight λ for which all λ (hi) are nonnegative integers is
called integral (for g (A) or for gext (A)).

Now, our next goal is to compute the character of Lλ for any dominant integral
weight λ.

For finite-dimensional simple Lie algebras, these Lλ are exactly the finite-dimensional
irreducible representations, and their characters can be computed by the well-known
Weyl character formula. So our goal is to generalize this formula.

The Weyl character formula involves a summation over the Weyl group. So, first of
all, we need to define a “Weyl group” for Kac-Moody Lie algebras.

4.14. [unfinished] Weyl group
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Definition 4.14.1. Consider P = h∗ ⊕ F . We know that there is a nondegenerate
form (·, ·) on P , and we have dimP = 2r. Let i ∈ {1, 2, ..., r}. Let ri : P → P be
the map given by ri (χ) = χ− χ (hi)αi.

Note that ri is an involution, since

r2
i (χ) = χ− χ (hi)αi − χ (hi)αi + χ (hi)αi (hi)︸ ︷︷ ︸

=2

αi = χ

for every χ ∈ P . Since ri (αi) = −αi, this yields det (ri) = −1.
Easy to check that (rix, riy) = (x, y) for all x, y ∈ P .

Proposition 4.14.2. Let V be an integrable g (A)-module. Then, for each i ∈
{1, 2, ..., r} and any µ ∈ P , we have an isomorphism V [µ]→ V [riµ]. In particular,
dim (V [µ]) = dim (V [riµ]).

Proof of Proposition. We have riµ = µ − µ (hi)αi. Since V is integrable for (sl2)i,
we know that µ (hi) is an integer. We have (riµ) (hi) = −µ (hi). Hence, we can assume
WLOG that µ (hi) is nonnegative (because otherwise, we can switch µ with riµ, and

it will change sign). Then we have f
µ(hi)
i : V [µ]→ V [riµ].

I claim that f
µ(hi)
i is an isomorphism.

This follows from:

Lemma 4.14.3. If V is a locally finite sl2-module, then fm : V [m]→ V [−m] is an
isomorphism.

Definition 4.14.4. The Weyl group of g (A) is defined as the subgroup of GL (P )
generated by the ri. This Weyl group is denoted by W . The elements ri are called
simple reflections.

We will not prove:

Remark 4.14.5. The Weyl group W is finite if and only if A is a Cartan matrix
(of a finite-dimensional Lie algebra).

Proposition 4.14.6. 1) The form (·, ·) on P is W -invariant.
2) There exists an isomorphism V [µ]→ V [wµ] for every µ ∈ P , w ∈ W and any

integrable V .
3) The set of roots R is W -invariant. (We recall that a root means a nonzero

element α ∈ F = Q⊗Z C such that gα 6= 0. We consider F as a subspace of P .)
4) We have ri (αi) = −αi. Moreover, ri induces a permutation of all positive roots

except for αi.

Proof of Proposition. 1) and 2) follow easily from the corresponding statement for
generators proven above.

3) By part 2), the set of weights P (V ) of an integrable g-module V is W -invariant.
(Here, “weight” means a weight whose weight subspace is nonzero.) Applied to V = g,
this implies 3) (since P (g) = 0 ∪R).
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4) Proving ri (αi) = −αi is straightforward. Now for the other part:
Any positive root can be written as α =

∑
i kiαi where all ki are ≥ 0 and

∑
i ki > 0.

Thus, for such a root, ri (α) = α− α (hi)αi =
∑

j 6=i kjαj + (ki − α (hi))αi.
If there exists a j 6= i such that kj > 0, then ri (α) must be a positive root (since

there is no such thing as a partly-negative-partly-positive root).
Alternative: kj = 0 for all j 6= i. But then α = kiαi, so that ki = 1 (because a

positive multiple of a simple root is not a root, unless we are multiplying with 1), but
this is the case we excluded (“except for αi”). Proposition proven.

4.15. [unfinished] The Weyl-Kac character formula

Theorem 4.15.1 (Kac). Denote by P+ the set
{χ ∈ P | χ (hi) ∈ N for all i ∈ {1, 2, ..., r}}.

Let χ be a dominant integral weight of g (A). (This means that χ (hi) is a non-
negative integer for every i ∈ {1, 2, ..., r}.) Let V be an integrable highest-weight
gext (A)-module with highest weight χ. Then:

(1) The g-module V is isomorphic to Lχ. (In other words, the g-module V is
irreducible.)

(2) The character of V is

ch (V ) =

∑
w∈W

det (w) · ew(χ+ρ)−ρ

∏
α>0

(1− e−α)dim(gα)
in R.

Here, we recall that R is the ring lim
λ∈P+

eλC [[e−α1 , e−α2 , ..., e−αr ]] (note that this term

increases when λ is changed to λ+ αi) in which the characters are defined.
Here, ρ is the element of h∗ satisfying ρ (hi) = 1 (as defined above). Since h∗ ⊆ P ,

this ρ becomes an element of P .
Note that det (w) is always 1 or −1 (and, in fact, equals (−1)k, where w is written

in the form w = ri1ri2 ...rik).

Part (2) of this theorem is called the Weyl-Kac character formula.
We want to prove this theorem.
Since χ is a dominant integral weight, we have χ ∈ P+.
Some comments on the theorem:
First of all, part (2) implies part (1), since both V and Lχ satisfy the conditions of

the Theorem and thus (according to part (2)) share the same character, but we also
have a surjective homomorphism ϕ : V → Lχ, so (because of the characters being the
same) it is an isomorphism. Thus, we only need to bother about proving part (2).

Secondly, let us remark that the theorem yields Lλ = Mλ�
〈
f
λ(hi)+1
i vλ | i ∈ {1, 2, ..., r}

〉
for all dominant integral weights λ. Indeed, denoteMλ�

〈
f
λ(hi)+1
i vλ | i ∈ {1, 2, ..., r}

〉
by L′λ. Then, L′λ is integrable (as we showed above more or less; more precisely, we
showed that Lλ was integrable, but this proof went exactly through proving that L′λ is
integrable), so that the theorem is still applicable to L′λ and we obtain L′λ

∼= Lλ.
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Our third remark: In the case of a simple finite-dimensional Lie algebra g, we have

ch (Mλ) =
eλ∏

α>0

(1− e−α)
.

The denominator can be rewritten
∏
α>0

(1− e−α)
dim(gα)

, since dim (gα) = 1 for all roots

α.
In the case of Kac-Moody Lie algebras g = g (A), we can use similar arguments to

show that

ch (Mλ) =
eλ∏

α>0

(1− e−α)dim(gα)
.

So the Weyl-Kac character formula can be written as

ch (V ) =
∑
w∈W

det (w) · ch
(
Mw(χ+ρ)−ρ

)
.

This formula can be proven using the BGG230 resolution (in fact, it is obtained as
the Euler character of that resolution), but we will take a different route here.

Another remark before we prove the formula. The Weyl-Kac character formula has
the following corollary:

Corollary 4.15.2 (Weyl-Kac denominator formula). We have
∏
α>0

(1− e−α)
dim(gα)

=∑
w∈W

det (w) · ewρ−ρ.

Proof of Corollary (using Weyl-Kac character formula). Set χ = 0. Then Lχ = C,

so that ch (Lχ) = 1 but on the other hand ch (Lχ) =

∑
w∈W

det (w) · ewρ−ρ∏
α>0

(1− e−α)dim(gα)
. Thus,

∏
α>0

(1− e−α)
dim(gα)

=
∑
w∈W

det (w) · ewρ−ρ.

To prove the Weyl-Kac character formula, we will have to show several lemmas.

Lemma 4.15.3. Let χ ∈ P+.
(1) Then, Wχ ⊆ D (χ) (where, as we recall, D (χ) denotes the set
{χ−

∑
i kiαi | ki ∈ N for all i}.

(2) If D ⊆ D (χ) is a W -invariant subset, then D ∩ P+ 6= ∅.

Proof of Lemma 4.15.3. (1) Consider Lχ. Since Lχ is integrable, the set P (Lχ) is
W -invariant, so that Wχ ⊆ P (Lχ). But P (Lχ) ⊆ D (χ), since any weight of Lχ is χ
minus a sum of positive roots. Part (1) is proven.

(2) Let ψ ∈ D. Pick w ∈ W such that x− wψ =
∑

i kiαi with nonnegative integers
ki and minimal

∑
i ki. We claim that this w satisfies wψ ∈ P+. This, of course, will

prove part (2).

230Bernstein-Gelfand-Gelfand
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To prove wψ ∈ P+, assume that wψ /∈ P+. Then, there exists an i such that
(wψ, αi) = d−1

i (wψ) (hi) < 0. (Note that all the di are > 0.) Then, riwψ = wψ −
(wψ) (hi)αi, so that χ − riwψ = χ − wψ + (wψ) (hi)αi =

∑
j kjαj + (wψ) (hi)αi =∑

j k
′
jαj and

∑
j k
′
j =

∑
j kj + (wψ) (hi) <

∑
j kj. This contradicts the minimality in

our choice of w. Part (2) is thus proven.

Corollary 4.15.4. Let w ∈ W satisfy w 6= 1. Then, there exists i such that wαi < 0.
(By wαi < 0 we mean that wαi is a negative root.)

Proof of Corollary 4.15.4. Choose χ ∈ P+ such that wχ 6= χ. (Such a χ always
exists, due to the definition of P+). Then, w−1χ = χ −

∑
kiαi for some ki ∈ N (by

Lemma 4.15.3 (1)). Hence,

χ = ww−1χ = wχ−
∑

kiwαi =
(
χ−

∑
k′iαi

)
−
∑

kiwαi.

Thus,
∑
k′iαi+

∑
kiwαi = 0. But

∑
k′i > 0, so there must exist an i such that wαi < 0.

Corollary 4.15.4 is proven.

Proposition 4.15.5. Let ϕ, ψ ∈ P be such that ϕ (hi) > 0 and ψ (hi) ≥ 0 for each
i. Let w ∈ W .

Then, wϕ = ψ if and only if ϕ = ψ and w = 1.

Proof of Proposition 4.15.5. For every i, we have ϕ (hi) > 0 if and only if (ϕ, αi) > 0.
Now suppose that there exists a w 6= 1 such that wϕ = ψ. Then, by Corollary 4.15.4,
there exists an i such that wαi < 0. Then, (ϕ, αi) > 0 but (ϕ, αi) = (w−1ψ, αi) =
(ψ,wαi) ≤ 0. This is a contradiction. Proposition 4.15.5 is proven.

Next, notice that W acts on R.

Proposition 4.15.6. Let K denote the Weyl-Kac denominator
∏
α>0

(1− e−α)
dim(gα)

.

Then, w ·K = det (w) ·K for every w ∈ W .

Proof of Proposition 4.15.6. We can WLOG take w = ri (since det is multiplicative).
Then,

riK = eriρ
∏
α>0

(
1− e−riα

)dim(gα)
= eriρ

(
1− e+αi

)dim(gαi)
∏
α>0;
α 6=αi

(
1− e−α

)dim(gα)

(by Proposition 4.14.6)

= eriρ
(
1− e+αi

) ∏
α>0;
α 6=αi

(
1− e−α

)dim(gα)
(since dim (gαi) = 1)

=
eriρ (1− e+αi)

eρ (1− e−αi)
·K.

Thus, we must only prove that
eriρ (1− e+αi)

eρ (1− e−αi)
= −1.
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But this is very easy: We have riρ = ρ− ρ (hi)︸ ︷︷ ︸
=1

αi = ρ− αi, so that

eriρ (1− e+αi)

eρ (1− e−αi)
=
eρ−αi (1− e+αi)

eρ (1− e−αi)
=
e−αi (1− e+αi)

1− e−αi
=
e−αi − 1

1− e−αi
= −1.

Proposition 4.15.6 is proven.

Proposition 4.15.7. Let µ, ν ∈ P+ be such that µ ∈ D (ν) and µ 6= ν. Then,
(ν + ρ)2 − (µ+ ρ)2 > 0. Here, λ2 is defined to mean the inner product (λ, λ).

Proof of Proposition 4.15.7. We have ν − µ =
∑
i

kiαi for some ki ≥ 0 (since

µ ∈ D (ν)). There exists an i such that ki > 0 (because µ 6= ν). Now,

(ν + ρ)2 − (µ+ ρ)2 = (ν − µ, µ+ ν + 2ρ) =
∑
i

ki (αi, µ+ ν + 2ρ) .

But now use (αi, µ) ≥ 0 (since µ ∈ P+), also (αi, ν) ≥ 0 (since ν ∈ P+) and (αi, ρ) =
d−1
i > 0 to conclude that this is > 0 (since there exists an i such that ki > 0).

Proposition 4.15.7 is proven.

Proposition 4.15.8. Suppose that V is a gext (A)-module from Category O such
that the Casimir C satisfies ∆ |V = γ · id. Then, ch (V ) =

∑
cλ ch (Mλ), where the

sum is over all λ satisfying (λ, λ+ 2ρ) = γ, and cλ ∈ Z are some integers.

Proof of Proposition 4.15.8. The expansion is built inductively as follows:
Suppose P (V ) ⊆ D (λ1)∪D (λ2)∪...∪D (λm) for some weights λ1, λ2, ..., λm. Assume

that this is a minimal such union. Then, λi + αj /∈ P (V ) for any i, j.
Let di = dim (V [λi]). Then, we have a homomorphism ϕ :

⊕
i diMλi → V which is

an isomorphism in weight λi. Let K = Kerϕ. Let C = Cokerϕ. Clearly, both K and
C lie in Category O. We have an exact sequence 0→ K →

⊕
i diMλi → V → C → 0.

Since the alternating sum of characters in an exact sequence is 0, this yields chV =∑
i di ch (Mλi)− chK + chC.
Now we claim that ∆ |Mλi

= (λi, λi + 2ρ) = γ if di 6= 0. (Otherwise, a homomorphism
ϕ could not exist.)

Also, ∆ |K= ∆ |C= γ.
But if µ ∈ P (K)∪ P (C), then for some i, we have λi− µ =

∑
kjαj with

∑
kj ≥ 1.

Next step:
∑
ki ≥ 2.

Etc.
If we run this procedure indefinitely, eventually every weight in this cone will be

exhausted. Then we apply the procedure to K and C, and then to their K and C etc..
Proof of Weyl-Kac character formula. According to Proposition 4.15.8, we have

ch (V ) =
∑

ψ∈D(χ)

cψ ch (Mψ) with cχ = 1.

We will now need:
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Corollary 4.15.9. If cψ 6= 0, then (ψ + ρ)2 = (χ+ ρ)2.

Proof of Corollary 4.15.9. This follows from Proposition 4.15.8.

Lemma 4.15.10. If ψ + ρ = w (χ+ ρ), then cψ = det (w) · cχ.

Proof of Lemma 4.15.10. We have wK = (detw) ·K and w · chV = chV . Hence,

w (K · chV ) = (detw) · (K chV ). But since ch (Mψ) =

∑
cψe

ψ+ρ

K
, we have K chV =∑

ψ∈D(χ)

cψe
ψ+ρ = (detw) ·

∑
ψ∈D(χ)

cψe
ψ+ρ. (If ψ + ρ = w (χ+ ρ).) Thus, cψ = (detw) · cχ.

Lemma 4.15.11. Let D = {ψ | cψ−ρ 6= 0}. Then, D = W (χ+ ρ).

Proof of Lemma 4.15.11. We have W (χ+ ρ) ⊆ D by Lemma 4.15.10. Also, D is
W -invariant since V is integrable.

Suppose D 6= W (χ+ ρ). Then, (D�W (χ+ ρ)) ∩ P+ 6= ∅ by Lemma 4.15.3 (2).
Take some β ∈ (D�W (χ+ ρ)) ∩ P+. Then, β − ρ ∈ D (χ), so that (χ+ ρ, χ+ ρ) −
(β, β) > 0 (by Proposition 4.15.7). Thus, β cannot occur in the sum (by Corollary
4.15.9).

Punchline: chV =
∑

w∈W
(detw) · ew(χ+ρ)

K
. This is exactly the Weyl-Kac character

formula.

4.16. [unfinished] ...

[...]

5. [unfinished] ...

[...] [747l22.pdf]
KZ equations, consistent (define a flat connection)
g simple Lie algebra
V1, V2, ..., VN representations of g from Category O.
CN0 = CN� {zi = zj}
U ⊆ CN0 simply connected open set
F (z1, ..., zN) ∈ (V1 ⊗ V2 ⊗ ...⊗ VN) [ν] holomorphic function in z1, ..., zN for a fixed

weight ν.
x ∈ C [or was it κ ∈ C ?]
∂F

∂zi
− h

∑
i 6=j

Ωi,j

zi − zj
F where Ωi,j : V1 ⊗ V2 ⊗ ...⊗ VN → V1 ⊗ V2 ⊗ ...⊗ VN

Ω ∈ (S2g)
g

Consistent means: setting ∇i =
∂

∂zi
−h

∑
i 6=j

Ωi,j

zi − zj
, we have [∇i,∇j] = 0. Consistent

systems are known to have locally unique-and-existent solutions.
Why is this in our course?
The reason is that these equations arise in the representation theory of affine Lie

algebras.
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Interpretation of KZ equations in terms of ĝ:
Consider Lg, ĝ, g̃ = ĝoCd.
Define Weyl modules:

Definition 5.0.1. Let λ ∈ P+ be a dominant integral weight for a simple finite-
dimensional Lie algebra g. Let Lλ be an irreducible finite-dimensional representation
of g with highest weight λ. Let us extend Lλ to a g [t]⊕CK-module by making tg [t]
act by 0 and K act by some scalar k (that is, K |Lλ= k · id for some k ∈ C).

Denote this g [t] ⊕ CK-module by L
(k)
λ . Then, we define a ĝ-module Vλ,k =

U (ĝ)⊗U(g[t]⊕CK) L
(k)
λ . This module is called a Weyl module for ĝ at level k.

By the PBW theorem, we immediately see that U (ĝ) ∼= U (t−1g [t−1])⊗U (g [t]⊕ CK)
and thus Vλ,k ∼= U (t−1g [t−1])⊗ Lλ (canonically, but only as vector spaces).

Assuming that k 6= −h∨, we can extend Vλ,k to g̃ by letting d act as −L0 (from
Sugawara construction).

Definition 5.0.2. If V is a g-module, then V [z, z−1] is an Lg-module, and in fact

a ĝ-module where K acts by 0. It extends to g̃ by setting d = z
∂

∂z
.

More generally: Can set d (vzn) = (n−∆) vzn for any fixed ∆ ∈ C.
Call this module z−∆V [z, z−1].

Lemma 5.0.3. If k /∈ Q, then Vλ,k is irreducible.

Proof of Lemma. Assume Vλ,k is reducible. This Vλ,k is a highest-weight module.
So, it must have a singular vector in degree ` > 0. Let C be the Casimir for g̃. We
know C = L0 − deg (where deg returns the positive degree).

Assume that w (our singular vector) lives in an irr. repr. of g. Singular vector means
a (m)w = 0 for all m > 0. Here a (m) means atm.

C |Vλ,k=
(λ, λ+ 2ρ)

2 (k + h∨)

Cw =

(
(µ, µ+ 2ρ)

2 (k + h∨)
− `
)
w

L0 =
1

2 (k + h∨)

∑
i∈Z
∑

a∈B : a (i) a (−i) : =
1

2 (k + h∨)

(∑
a∈B a (0)2 + 2

∑
a∈B

∑
m≥1 a (−m) a (m)

)
where a (m) = atm.

=⇒ (λ, λ+ 2ρ) = (µ, µ+ 2ρ)︸ ︷︷ ︸
∈Z

−2` (k + h∨) =⇒ k = −h∨+(λ, λ+ 2ρ)− (µ, µ+ 2ρ)

2`
∈

Q. =⇒ contradiction.

Corollary 5.0.4. If k /∈ Q, then V ∗λ,k (restricted dual) is U (ĝ)⊗U(g[t−1]⊕CK) L
∗(−k)
λ .

(Here, L
∗(−k)
λ means L∗λ with K acting as −k.)

Proof of Corollary. From Frobenius reciprocity, we have a homomorphism ϕ :
U (ĝ)⊗U(g[t−1]⊕CK) L

∗(−k)
λ → V ∗λ,k which is id in degree 0. In fact, Frobenius reciprocity

tells us that

Homĝ

(
U (ĝ)⊗U(g[t−1]⊕CK) L

∗(−k)
λ ,M

)
∼= Homg[t−1]⊕CK

(
L
∗(−k)
λ ,M

)
,
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which, in the case M = V ∗λ,k, becomes [...].
Because Vλ,k is irreducible (here we are using k /∈ Q), V ∗λ,k is irreducible as well, this

homomorphism ϕ is surjective. This ϕ also preserves grading, and the characters are
equal. =⇒ ϕ is an isomorphism.

Corollary 5.0.5. Homg̃

(
Vλ,k ⊗ V ∗ν,k, z−∆V [z, z−1]

) ∼= Homg (Lλ ⊗ L∗ν , V ) if ∆ =
∆ (λ)−∆ (ν).

Proof of Corollary. Frobenius reciprocity as for the previous corollary. (Skip.)
[...]
We now cite a classical theorem on ODEs.

Theorem 5.0.6. Let N ∈ N. Let A (z) = A0 + A1z + A2z
2 + ... be a holomorphic

function on {z ∈ C | |z| < 1} with values in MN (C). Assume that for any eigenval-

ues λ and µ of A0 such that λ 6= µ, one has λ−µ /∈ Z. Then, the ODE z
dF

dz
= A (z)F

(which, of course, is equivalent to
dF

dz
=
A (z)

z
F ) has a matrix solution of the form

F (z) = (1 +B1z +B2z
2 + ...) zA0 such that the power series 1 + B1z + B2z

2 + ...
converges for |z| < 1. Here, zA0 means exp (A0 log z) (on C�R≤0).

Remark 5.0.7. This is a development of the following basic theorem: If we are given

an ODE
dF

dz
= C (z)F with C (z) holomorphic, then there exists a holomorphic F

satisfying this equation and having the form F = 1+O (z) (the so-called fundamental
equation).

Proof of Theorem. Plug in the solution F (z) in the above formula:(∑
n≥1

nBnz
n

)
zA0+

(
1 +

∑
n≥1

Bnz
n

)
A0z

A0 =
(
A0 + A1z + A2z

2 + ...
) (

1 +B1z +B2z
2 + ...

)
zA0 .

Cancel zA0 from this to obtain∑
n≥1

nBnz
n +

(
1 +

∑
n≥1

Bnz
n

)
A0 =

(
A0 + A1z + A2z

2 + ...
) (

1 +B1z +B2z
2 + ...

)
.

This is the system of recursive equations

nBn − A0Bn +BnA0 = A1Bn−1 + A2Bn−2 + ...+ An−1B1 + An.

This rewrites as

(n− adA0) (Bn) = A1Bn−1 + A2Bn−2 + ...+ An−1B1 + An.

The operator n − adA0 : MN (C) → MN (C) is invertible (because eigenvalues of this
operator are n − (λ− µ) for λ and µ being eigenvalues of A0, and because of the
condition that for any eigenvalues λ and µ of A0 such that λ 6= µ, one has λ− µ /∈ Z).
Hence, we can use the above equation to recursively compute Bn for all n.

This implies that a solution in the formal sense exists.
We also need to estimate radius of convergence. [...]
The following generalizes our theorem to several variables:
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Theorem 5.0.8. Let m ∈ N and N ∈ N. For every i ∈ {1, 2, ...,m}, let
Ai (ξ1, ξ2, ..., ξm) be a holomorphic on {(ξ1, ξ2, ..., ξm) | |ξj| < 1 for all j} with val-

ues in MN (C). Consider the system of differential equations ξi
dF

dξi
= Ai (ξ)F for all

i ∈ {1, 2, ...,m} on a single function F : Cm → MN (C). Assume[
ξi
d

dξi
− Ai, ξj

d

dξj
− Aj

]
= 0 for all i, j ∈ {1, 2, ...,m}

(this is called a consistency condition, aka a zero curvature equation). Then,
[Ai (0) , Aj (0)] = 0 for all i, j ∈ {1, 2, ...,m}, and thus the matrices Ai (0) for all
i can be simultaneously trigonalized. Under this trigonalization, let λi,1, λi,2, ...,
λi,N be the diagonal entries of Ai (0).

Assume that the condition

(λ1,k − λ1,`, λ2,k − λ2,`, ..., λm,k − λm,`) /∈ Zm�0

holds for all k and `. [...]
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