Some simplicial complexes in combinatorics

[Corrected slides of a talk at UConn Algebra Seminar, 2021-03-11]

Darij Grinberg
April 12, 2023

Abstract

A number of combinatorial identities are concerned with certain classes of subsets of a finite set (e.g., matchings of a graph); they can be viewed as saying (roughly speaking) that equal numbers of these subsets have even size and odd size. In this talk, I will discuss a few such identities - some of them new - and their topological meaning. As a common theme, the "parity bias" (or lack thereof) is the Euler characteristic of a simplicial complex, and thus any expression for it is potentially the tip of a topological iceberg. Underneath are questions of homology, homotopy or even discrete Morse theory. Aside from the specific complexes in question, I hope to provide one more pair of "simplex glasses" through which combinatorial identities appear in a new light.

Preprint: https://arxiv.org/abs/2009.11527

1. Introduction

1.1. Alternating sums

- Enumerative combinatorics is full of alternating sums. Some examples:

$$
\begin{aligned}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} & =0 \quad \text { for integers } n>0 ; \\
\sum_{k=0}^{m}(-1)^{k}\binom{n}{k} & =(-1)^{m}\binom{n-1}{m} \quad \text { for } m \geqslant 0 ; \\
\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{n-k}{k} & =(1 \text { or } 0 \text { or }-1) ; \\
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{a k+b}{c} & =0 \quad \text { for } c, n \in \mathbb{N} \text { with } c<n ; \\
\sum_{i=0}^{m}(-1)^{i} \operatorname{sur}(m, i) & =(-1)^{m},
\end{aligned}
$$

where sur $(m, i)=(\#$ of surjections from $\{1,2, \ldots, m\}$ to $\{1,2, \ldots, i\})$.

- These alternating sums are among the most helpful tools in proving identities. (They often play a similar role as the formula $1+\zeta+\zeta^{2}+\cdots+$ $\zeta^{n-1}=0$ for ζ being a nontrivial n-th root of unity plays in the discrete Fourier transform.)
- An alternating sum identity generally looks like this:
$\sum_{(\text {some finite set })}(-1)^{\text {(something) }}($ something $)=($ something typically simpler $)$.
- In this talk, I shall
- present some alternating sum identities and their combinatorial proofs by "toggling" or "sign-reversing involutions";
- discuss how a few of these identities can be lifted to topological statements about simplicial complexes,
- and how these topological statements can be lifted to combinatorial statements again using discrete Morse theory.
- This is not a theory talk; you'll hear my personal favorites, not the most general or most important results.
- There will be various open questions.

2. Toggling

2.1. All subsets

- We start with the first identity listed above:

Theorem. Let n be a positive integer. Then,

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0
$$

- There are many ways to prove this:
e.g., expand $(1-1)^{n}$ using the binomial theorem.
- Here is a combinatorial proof:

Set $[n]=\{1,2, \ldots, n\}$. Then,

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=\sum_{I \subseteq[n]}(-1)^{|I|}
$$

Claim: In the sum on the RHS, all the addends cancel out.
Proof. For each subset I of $[n]$, we can

1. insert 1 into I if $1 \notin I$, or
2. remove 1 from I if $1 \in I$.

This gives us a new subset of $[n]$, which we denote by $I \triangle\{1\}$.
Easy to see: The map

$$
\begin{aligned}
\{\text { subsets of }[n]\} & \rightarrow\{\text { subsets of }[n]\}, \\
I & \mapsto I \triangle\{1\}
\end{aligned}
$$

is an involution (i.e., applying it twice gives the identity), and it flips the sign (meaning $(-1)^{|I \Delta\{1\}|}=-(-1)^{|I|}$ for any subset I of $[n]$).
Hence, all addends in the sum $\sum_{I \subseteq[n]}(-1)^{|I|}$ cancel out (the I-addend cancelling the $I \triangle\{1\}$-addend). Thus, the sum is 0 , qed.

- Our notation $I \triangle\{1\}$ is a particular case of the notation

$$
\begin{aligned}
I \triangle J & =(I \cup J) \backslash(I \cap J) \\
& =(I \backslash J) \cup(J \backslash I) \\
& =\{\text { all elements that belong to exactly one of } I \text { and } J\}
\end{aligned}
$$

for any two sets I and J.

- If a is any element, then the operation of replacing a set I by $I \triangle\{a\}$ (that is, inserting a into I if $a \notin I$, and removing a from I otherwise) is called toggling a in I. This is always an involution: $(I \triangle\{a\}) \triangle\{a\}=I$ for any I and a.
- Remark: It was actually sufficient for our proof that the map $I \mapsto I \triangle\{1\}$ is a bijection, not necessarily an involution. But all such maps we will encounter are involutions.

2.2. All subsets not too large

- Let us try the second identity:

Theorem. Let n be any number (e.g., a real), and let m be a nonnegative integer. Then,

$$
\sum_{k=0}^{m}(-1)^{k}\binom{n}{k}=(-1)^{m}\binom{n-1}{m}
$$

- Proof. First of all, we are proving a polynomial identity in n, so we WLOG assume that n is a positive integer (since two polynomials over a field are equal if they agree on sufficiently many points).
We have

$$
\sum_{k=0}^{m}(-1)^{k}\binom{n}{k}=\sum_{\substack{I \subseteq[n] ; \\|I| \leqslant m}}(-1)^{|I|}
$$

Now, we try the involution from the previous proof:

$$
\begin{aligned}
\{\text { subsets of }[n]\} & \rightarrow\{\text { subsets of }[n]\}, \\
I & \mapsto I \triangle\{1\} .
\end{aligned}
$$

Unfortunately, applying it to a set I might break the $|I| \leqslant m$ restriction. But it restricts to an involution

$$
\begin{aligned}
\mathcal{A} & \rightarrow \mathcal{A} \\
I & \mapsto I \triangle\{1\}
\end{aligned}
$$

where

$$
\mathcal{A}=\{\text { subsets } I \text { of }[n] \text { with }|I \backslash\{1\}|<m\} .
$$

Thus, all addends in the sum $\sum_{\substack{I \subseteq[n] ; \\|I| \leqslant m}}(-1)^{|I|}$ cancel except for those with $|I \backslash\{1\}|=m$. We get

$$
\sum_{\substack{I \subseteq[n] ; \\|I| \leqslant m}}(-1)^{|I|}=\sum_{\substack{I \subseteq[n] ; \\|I| \leqslant m ; \\|I \backslash\{1\}|=m}}(-1)^{|I|}=\sum_{\substack{I \subseteq[n] ; \\ 1 \notin I ; \\|I|=m}}(-1)^{|I|}=(-1)^{m}\binom{n-1}{m}
$$

since there are exactly $\binom{n-1}{m}$ many subsets I of $[n]$ satisfying $1 \notin I$ and $|I|=m$. This completes our proof.

2.3. Lacunar subsets

- Now to the third identity:

Theorem. Let n be a nonnegative integer. Then,

$$
\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{n-k}{k}= \begin{cases}1, & \text { if } n \% 6 \in\{0,1\} \\ 0, & \text { if } n \% 6 \in\{2,5\} \\ -1, & \text { if } n \% 6 \in\{3,4\}\end{cases}
$$

where $n \% 6$ means the remainder of n divided by 6 .

- To prove this combinatorially, we need to find out what $\binom{n-k}{k}$ counts.
- Convention. We shall write $[m]$ for $\{1,2, \ldots, m\}$ whenever $m \in \mathbb{Z}$.
- Definition. A set I of integers is said to be lacunar if it contains no two consecutive integers (i.e., there is no $i \in I$ such that $i+1 \in I$).
- For example, $\{1,3,6\}$ is lacunar, but $\{1,3,4\}$ is not. Empty and oneelement sets are always lacunar.
- Note that any lacunar subset of $[n-1]$ has size $\leqslant\lfloor n / 2\rfloor$.
- Proposition. For any $n \geqslant k \geqslant 0$, the number of lacunar k-element subsets of $[n-1]$ is $\binom{n-k}{k}$.
- Proof. Write "elt" for "element", and "subs" for "subsets".

There is a bijection
$\{$ lacunar k-elt subs of $[n-1]\} \rightarrow\{k$-elt subs of $\{0,1, \ldots, n-k-1\}\}$, $\left\{i_{1}<i_{2}<\cdots<i_{k}\right\} \mapsto\left\{i_{1}-1<i_{2}-2<\cdots<i_{k}-k\right\}$.

- Thus, we can start a combinatorial proof of our theorem as follows:

$$
\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k}\binom{n-k}{k}=\sum_{\substack{I \subseteq[n-1] ; \\ I \text { is lacunar }}}(-1)^{|I|} .
$$

We want to prove that this is 1 or 0 or -1 .

So let us try to construct a sign-reversing involution on the set

$$
\{\text { lacunar subsets of }[n-1]\}
$$

except for possibly one element.
Let I be a lacunar subset of $[n-1]$.

- We try to toggle 1 in I, but we only do this if the result is lacunar. If we succeed (i.e., if the result is lacunar), then we are done.

[Examples:

* If $I=\{1,3,7\}$, then we toggle 1 , and obtain the set $\{3,7\}$. Thus, in this case, we succeed and have found the image of I under our involution.
* If $I=\{3,7\}$, then we toggle 1 , and obtain the set $\{1,3,7\}$. Thus, in this case, we succeed and have found the image of I under our involution.
* If $I=\{2,7\}$, then we cannot toggle 1 , since this would produce the non-lacunar set $\{1,2,7\}$. Thus, in this case, we don't succeed and move on to the next step.]
- If we have not succeeded in the previous step, then $2 \in I$ and thus $3 \notin I$.
Thus we try to toggle 4 in I, but we only do this if the result is lacunar.
If we succeed, then we are done.

[Examples:

* If $I=\{2,4,9\}$, then we toggle 4, and obtain the set $\{2,9\}$. Thus, in this case, we succeed and have found the image of I under our involution.
* If $I=\{2,9\}$, then we toggle 4, and obtain the set $\{2,4,9\}$. Thus, in this case, we succeed and have found the image of I under our involution.
* If $I=\{2,5,8\}$, then we cannot toggle 4, since this would produce the non-lacunar set $\{2,4,5,8\}$. Thus, in this case, we don't succeed and move on to the next step.
* If $I=\{1,3,7\}$, then we do not get to this step in the first place, since the first step has already succeeded (turning I into $\{3,7\}$).]
- If we have not succeeded in the previous step, then $5 \in I$ and thus $6 \notin I$.
Thus we try to toggle 7 in I, but we only do this if the result is lacunar.

If we succeed, then we are done.

- And so on.

This operation goes on until we have run out of elements of $[n-1]$ to toggle. The only case in which we fail to toggle anything is if

$$
n \not \equiv 2 \bmod 3 \text { and } I=\{2,5,8, \ldots\} \cap[n-1] .
$$

Thus we have found a sign-reversing involution on the set \{lacunar subsets of $[n-1]\}$ with the exception of a single lacunar subset if $n \not \equiv 2 \bmod 3$ (and with no exceptions if $n \equiv 2 \bmod 3$). The conclusion easily follows.

- This proof is in [BenQui08] (where it is worded using domino tilings instead of lacunar subsets).

2.4. Independent sets of a graph

- Let us generalize this.
- Definition. Let $\Gamma=(V, E)$ be an (undirected) graph. An independent set of Γ means a subset I of V such that no two vertices in I are adjacent (i.e., no edge of Γ connects two vertices in I).
- Example. For the following graph:

the independent sets are

$$
\{x, y\},\{y, z\},\{z, x\},\{u, x\},\{v, y\},\{w, z\},\{x, y, z\}
$$

as well as all 1-element sets and the empty set.

- For any $m \geqslant 0$, let the m-path be the graph

$$
1-2-3-\cdots-m
$$

(that is, the graph with vertices $1,2, \ldots, m$ and edges $\{i, i+1\}$ for each $0<i<m$).
Then, the lacunar subsets of $[m]$ are the independent sets of the m-path.

- Now we can generalize our previous theorem as follows:

Question: For what graphs Γ do we have

$$
\sum_{\substack{I \text { is an independent } \\ \text { set of } \Gamma}}(-1)^{|I|} \in\{1,0,-1\} ?
$$

- Certainly not for all graphs Γ (e.g., the 3-cycle is a counterexample).
- But we know it's true for path graphs. For what other graphs?
- We can try to construct a sign-reversing involution again, and see where we fail.
- What order do we try to toggle the vertices in?
- Well, we can always pick some order at random.
- Unfortunately, toggling a vertex might be blocked by several vertices.
- Trying to solve the resulting conflicts often fails (e.g., for a 4 -cycle, even though the sum is -1 for a 4 -cycle).
- Our above proof can be adapted when Γ is a tree.
- However, a much more general result holds:
- Theorem (conjectured by Kalai and Meshulam, 1990s, proved by Chudnovsky, Scott, Seymour, Spirk1, 2018 ([CSSS18])): Let Γ be a simple loopless undirected graph that has no induced cycle of length divisible by 3. Then,

$$
\sum_{\substack{I \text { is an independent } \\ \text { set of } \Gamma}}(-1)^{|I|} \in\{1,0,-1\} .
$$

- Question: Is there any proof under 10 pages length?

2.5. Dominating sets of a graph

- Definition. Let $\Gamma=(V, E)$ be an (undirected) graph. A dominating set of Γ means a subset I of V such that each vertex of Γ belongs to I or has a neighbor in I.
- Example. For the following graph:

the non-dominating sets are

$$
\{u, y, z\}, \quad\{v, z, x\}, \quad\{w, x, y\}
$$

as well as all their subsets.

- Theorem (e.g., Brouwer 2009 ([Brouwe09], [BrCsSc09])): The number of dominating sets of a graph Γ is always odd.
- Theorem (Heinrich, Tittmann, 2017 ([HeiTit17], [Grinbe17, Theorem 3.2.2])): The number of dominating sets of a graph $\Gamma=(V, E)$ is

$$
2^{|V|}-1+\underbrace{}_{\begin{array}{c}
\text { pairs }(A, B) \text { of disjoint } \\
\text { nonempty subsets of } V ; \\
\{a, b\} \notin E \text { for all } a \in A \text { and } b \in B ; \\
|A| \equiv|B| \text { mod } 2
\end{array}}(-1)^{|A|} .
$$

- What about the alternating sum

$$
\sum_{\substack{I \text { is a dominating } \\ \text { set of } \Gamma}}(-1)^{|I|} ?
$$

Is it ± 1 ?

- No; for example:

Theorem (Alikhani, 2012 ([Alikha12, Lemma 1])): If Γ is an n-cycle (for $n>0$), then this alternating sum is

$$
\begin{cases}3, & \text { if } n \equiv 0 \bmod 4 \\ -1, & \text { otherwise }\end{cases}
$$

Exercise: Prove this! (Is there a nice proof without too much casework?)

- Theorem (Ehrenborg, Hetyei, 2005 ([EhrHet06, §7])): The alternating sum is ± 1 whenever Γ is a forest.

3. Simplicial complexes

3.1. Basic definitions

- The sums we have been discussing so far didn't range over some random collections of sets. Most of them had a commonality: If a set I appeared in the sum, then so did any subset of I.
- Such collections of sets are called simplicial complexes.
- Formally:

Definition. A simplicial complex means a pair (S, Δ), where S is a finite set and Δ is a collection ($=$ set) of subsets of S such that

$$
\text { any } I \in \Delta \text { and } J \subseteq I \text { satisfy } J \in \Delta
$$

- We often just write Δ for a simplicial complex (S, Δ).
- A face of a simplicial complex Δ means a set $I \in \Delta$.
- Note that $\}$ and $\{\varnothing\}$ are two different simplicial complexes on any set S.
- Examples of simplicial complexes:
- \{all subsets of $S\}$ for a given finite set S.
- $\{$ all lacunar subsets of $[m]\}$ for a given $m \in \mathbb{N}$.
- $\{$ all independent sets of $\Gamma\}$ for a given graph Γ.
- not $\{$ all dominating sets of Γ \} for a given graph Γ.
- \{all non-dominating sets of $\Gamma\}$ and \{all complements of dominating sets of Γ \} for a given graph Γ.
(Here the ground set is the set of vertices of Γ.)

3.2. Geometric realizations

- Each simplicial complex (S, Δ) has a geometric realization $|\Delta|$, which is a topological space glued out of (geometric) simplices. The easiest way to define it is by assuming (WLOG) that $S=[n]$ for some $n \in \mathbb{N}$, and setting

$$
\begin{gathered}
|\Delta|=\left\{\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in \mathbb{R}_{\geqslant 0}^{n} \mid t_{1}+t_{2}+\cdots+t_{n}=1\right. \\
\text { and } \left.\left\{i \mid t_{i}>0\right\} \in \Delta\right\} .
\end{gathered}
$$

- Normally we don't draw the literal $|\Delta|$ (since \mathbb{R}^{n} has too high dimension) but just something homeomorphic to it (usually in a smaller space).
- Some examples:
- The complex $\{$ all independent sets of $\Gamma\}$ of the graph Γ on the left is the simplicial complex drawn on the right:

- The complex \{all non-dominating sets of Γ \} of the graph Γ on the left is the simplicial complex drawn on the right:

3.3. Homotopy and homology

- A lot of features come for free with the geometric realization:

The homotopy type, the homology and the reduced Euler characteristic of a simplicial complex Δ are defined to be the homotopy type, the homology and the reduced Euler characteristic of its geometric realization.

- Explicitly, the Euler characteristic of a complex Δ is simply

$$
\sum_{I \in \Delta}(-1)^{|I|-1} .
$$

(The " -1 " in the exponent just negates the whole sum.)

- Thus, the alternating sums we have been computing are actually Euler characteristics in disguise.
- Homology is a stronger invariant than Euler characteristic, and homotopy type is an even stronger invariant than homology:
(homotopy type) \rightarrow (homology over $\mathbb{Z}) \rightarrow($ homology over $\mathbb{Q})$
\rightarrow (Euler characteristic).
Our results above are all about Euler characteristics; can we lift them to those stronger invariants?
- Note that homology can be easily redefined combinatorially in terms of Δ. (Homotopy type, too, but less easily; see [Kozlov20, Proposition 9.28].)

3.4. Examples of homotopy types

- Our first theorem said that the reduced Euler characteristic of the simplicial complex

$$
\{\text { all subsets of } E\}
$$

is 0 for any nonempty finite set E. This lifts all the way up to homotopy level:
Proposition. This simplicial complex is contractible (i.e., homotopy-equivalent to a point).
Geometrically, this is clear: Its geometric realization is a simplex, hence homeomorphic to an ($n-1$)-ball, where $n=|E|$.

- Our second theorem was

$$
\sum_{k=0}^{m}(-1)^{k}\binom{n}{k}=(-1)^{m}\binom{n-1}{m}
$$

This corresponds to the simplicial complex

$$
\{\text { all subsets of }[n] \text { having size } \leqslant m\} .
$$

This is called the $(m-1)$-skeleton of the $(n-1)$-ball. By classical algebraic topology, it is homotopy-equivalent to a bouquet of $\binom{n-1}{m}$ many ($m-1$)-spheres, which again explains the Euler characteristic.

- Now, recall the independent sets of graphs.

Theorem (Kalai, Meshulam, Engström, Chudnovsky, Scott, Seymour, Spirkl, Zhang, Wu, Kim, 2021 ([ZhaWu20], [Kim21])): Let Γ be a simple loopless undirected graph that has no induced cycle of length divisible by 3. Then, the simplicial complex

\{independent sets of Γ \}

is either contractible or homotopy-equivalent to a sphere (whence its reduced Euler characteristic is in $\{1,0,-1\}$).

- As we recall, the dominating sets of a graph do not form a simplicial complex, but their complements do, and so do the non-dominating sets. As far as the alternating sum $\sum_{I}(-1)^{|I|}$ is concerned, these are just as good (switching between dominating and non-dominating sets or between the sets and their complements changes the sum by a factor of ± 1).
Theorem (Ehrenborg, Hetyei, 2005 ([EhrHet06, §7])): Let Γ be a forest. Then, both simplicial complexes

$$
\begin{aligned}
& \{\text { non-dominating sets of } \Gamma\} \quad \text { and } \\
& \{\text { complements of dominating sets of } \Gamma\}
\end{aligned}
$$

are either contractible or homotopy-equivalent to a sphere.

- Question: What can be said about the case when Γ is an n-cycle?

3.5. Discrete Morse theory

- Thus we have two approaches to proving formulas for alternating sums:

- Could these two approaches be combined? I.e., is there a technique that gets us both homotopy information and a sign-reversing involution in one
(possibly harder) swoop?

- Discrete Morse theory is an answer. We will use some of its very basics.
- Definition. For two sets I and J, we write $I \prec J$ if $J=I \cup$ \{a single element $\}$ (that is, if $I \subseteq J$ and $|J \backslash I|=1$). Equivalently, we write $J \succ I$ for this.
- Definition. Let (S, Δ) be a simplicial complex. A partial matching on Δ shall mean an involution $\mu: \Delta \rightarrow \Delta$ such that

$$
\mu(I)=I \text { or } \mu(I) \prec I \text { or } \mu(I) \succ I \quad \text { for each } I \in \Delta .
$$

In other words, $\mu(I)$ is either I itself or is obtained from I by removing or inserting a single element.

- Definition. If μ is a partial matching on Δ, then the sets $I \in \Delta$ satisfying $\mu(I)=I$ will be called unmatched (by μ).
- Thus, if μ is a partial matching on Δ, then

$$
\sum_{I \in \Delta}(-1)^{|I|}=\sum_{\substack{I \in \Delta \text { is } \\ \text { unmatched }}}(-1)^{|I|}
$$

(by cancellation).

- Thus, partial matchings are just our partial sign-reversing involutions rewritten (instead of taking some sets out of our complex, we are now leaving them fixed).
- What about the homotopy information? We cannot in general "cancel" matched faces from a simplicial complex and hope that the homotopy information is preserved.
- However, we can restrict our matchings in a way that will make them homotopy-friendly! This is one of the main contributions of Forman that became discrete Morse theory ([Forman02, §3, §6], [Kozlov20]):
- Definition. Let (S, Δ) be a simplicial complex. A partial matching μ on Δ is said to be acyclic (or a Morse matching) if there exists no "cycle" of the form

$$
I_{1} \succ \mu\left(I_{1}\right) \prec I_{2} \succ \mu\left(I_{2}\right) \prec I_{3} \succ \cdots \prec I_{n} \succ \mu\left(I_{n}\right) \prec I_{1}
$$

with $n \geqslant 2$ and with $I_{1}, I_{2}, \ldots, I_{n}$ distinct.

- Intuition: The easiest way to ensure this is by making sure that when μ adds an element to a face I, then it does so in an "optimal" way (i.e., among all ways to add an element to I and still obtain a face of Δ, it picks the "best" one in some sense). This way, in the above "cycle", the faces $I_{1}, I_{2}, \ldots, I_{n}, I_{1}$ become "better and better", so the cycle cannot exist. There is freedom in defining what "optimal" /"best" is (it means specifying some partial order on the faces of any given size).
This is why Forman calls acyclic matchings "gradient vector fields" in [Forman02].
- Empiric fact(?): Sign-reversing involutions in combinatorics tend to be acyclic partial matchings.
- Question: Really? Check some of the more complicated ones!
- Theorem (Forman, I believe). Let (S, Δ) be a simplicial complex, and μ an acyclic partial matching on Δ. For each $k \in \mathbb{N}$, let c_{k} be the number of unmatched size- k faces of Δ.
Then, there is a CW-complex homotopy-equivalent to Δ that has exactly c_{k} faces of dimension $k-1$ for each $k \in \mathbb{N}$.
- Corollary. (a) If a simplicial complex (S, Δ) has an acyclic partial matching that leaves no face unmatched, then it is contractible.
(b) If a simplicial complex (S, Δ) has an acyclic partial matching that leaves exactly one face unmatched, then it is homotopy-equivalent to a sphere.
- As a consequence, having a good Morse matching gets us good (if not 100% complete) information both about the homotopy type and about the combinatorics of a simplicial complex.
- For example, all the sign-reversing involutions we used in our proofs above are Morse matchings.

4. Elser's "pandemic" complex

- A remarkable alternating sum identity appeared in a 1984 paper by Elser on mathematical physics (percolation theory) [Elser84]. I shall restate it in a slightly simpler language.
- Fix a (finite undirected multi)graph Γ with vertex set V and edge set E.

Fix a vertex $v \in V$.

- If $F \subseteq E$, then an F-path shall mean a path of Γ such that all edges of the path belong to F.
- If $e \in E$ is any edge and $F \subseteq E$ is any subset, then we say that F infects e if there exists an F-path from v to some endpoint of e.
(My go-to mental model: A virus starts out in v and spreads along any F-edge it can get to. Then, F infects e if the virus will eventually reach an endpoint of e. Note that F always infects any edge through v.)
- A subset $F \subseteq E$ is said to be pandemic if it infects each edge $e \in E$.
- Example: Let Γ be

Then:

- The set $\{1,2\} \subseteq E$ infects edges $1,2,3,6,8$ (but no others), since the virus gets to the vertices v, p, q.
- The set $\{1,2,5\}$ infects the same edges.
- The set $\{1,2,3\}$ infects every edge other than 5 .
- The set $\{1,2,3,4\}$ infects each edge, and thus is pandemic (even though the virus never gets to vertex w).
- Theorem (Elser, 1984 ([Elser84, Lemma 1], [Grinbe20, Theorem 1.2])): Assume that $E \neq \varnothing$. Then,

$$
\sum_{\substack{F \subseteq E \text { is } \\ \text { pandemic }}}(-1)^{|F|}=0 .
$$

- Remark: A version of pandemicity in which F has to infect all vertices (rather than all edges) would fail to produce such a theorem.

4.1. More generally

- If F is a subset of E, then we define a subset Shade F of E by

$$
\text { Shade } F=\{e \in E \mid F \text { infects } e\} .
$$

- Example: Let Γ be

Then, Shade $\{1,2\}=\{1,2,3,6,8\}$ and Shade $\{1\}=\{1,2,6\}$ and Shade $\{8\}=$ $\{1,6\}$.

- Theorem ([Grinbe20, Theorem 2.5], generalizing Elser's theorem): Let G be any subset of E. Assume that $E \neq \varnothing$. Then,

$$
\sum_{\substack{F \subset E ; \\ G \subseteq S \text { hade } F}}(-1)^{|F|}=0 .
$$

- Theorem ([Grinbe20, Theorem 2.6], equivalent restatement of previous theorem): Let G be any subset of E. Then,

$$
\sum_{\substack{F \subset E ; \\ G \nsubseteq \subseteq \text { Shade } F}}(-1)^{|F|}=0 .
$$

- This restatement looks useful since it gets rid of the $E \neq \varnothing$ assumption. That's a good sign!

4.2. Proof idea

- Let's prove this latter restatement. Here is it again:

Theorem ([Grinbe20, Theorem 2.6], equivalent restatement of previous theorem): Let G be any subset of E. Then,

$$
\sum_{\substack{F \subset E ; \\ G \nsubseteq S \text { Shade } F}}(-1)^{|F|}=0 .
$$

- Proof. Let

$$
\mathcal{A}=\{F \subseteq E \mid G \nsubseteq \text { Shade } F\} .
$$

Equip the set E with a total order. If $F \in \mathcal{A}$, then let $\varepsilon(F)$ be the smallest edge $e \in G \backslash$ Shade F.
Define a sign-reversing involution

$$
\begin{aligned}
\mathcal{A} & \rightarrow \mathcal{A} \\
F & \mapsto F \triangle\{\varepsilon(F)\}
\end{aligned}
$$

Check that this works! (The key observation: Shade F does not change when we toggle $\varepsilon(F)$ in F.)

4.3. Variants

- We cannot replace "infects all edges" by "infects all vertices" as long as we work with sets of edges.
- However, we can work with sets of vertices instead (mutatis mutandis).
- In detail:
- If $F \subseteq V$, then an F-vertex-path shall mean a path of Γ such that all vertices of the path except (possibly) for its two endpoints belong to F. (Thus, if a path has only one edge or none, then it automatically is an F-vertex-path.)
- If $w \in V \backslash\{v\}$ is any vertex and $F \subseteq V \backslash\{v\}$ is any subset, then we say that F vertex-infects w if there exists an F-vertex-path from v to w. (This is always true when w is v or a neighbor of v.)
- A subset $F \subseteq V \backslash\{v\}$ is said to be vertex-pandemic if it vertex-infects each vertex $w \in V \backslash\{v\}$.
- Theorem ([Grinbe20, Theorem 3.2]). Assume that $V \backslash\{v\} \neq \varnothing$. Then,

$$
\sum_{\substack{F \subseteq V \backslash\{v\} \text { is } \\ \text { vertex-pandemic }}}(-1)^{|F|}=0 .
$$

- Generalizations similar to the one above also hold.

4.4. A hammer in search of nails

- The proofs of the original Elser's theorem and of its vertex variant are suspiciously similar.
- Even worse, they use barely any graph theory. All we needed is that E is a finite set, and that Shade : $\mathcal{P}(E) \rightarrow \mathcal{P}(E)$ (where $\mathcal{P}(E)=\{$ all subsets of $E\}$) is a map with the property that

$$
\begin{aligned}
& \text { Shade }(F \triangle\{u\})=\text { Shade } F \\
& \text { for any } F \subseteq E \text { and } u \in E \backslash \text { Shade } F .
\end{aligned}
$$

I call such a map Shade a shade map. Our above argument then shows that

$$
\sum_{\substack{F \subseteq E ; \\ G \nsubseteq \text { Shade } F}}(-1)^{|F|}=0 \quad \text { for any } G \subseteq E .
$$

- Question. Have you seen other maps satisfying this property in the wild?
- Answer 1. Let A be an affine space over \mathbb{R}. Fix a finite subset E of A. For any $F \subseteq E$, we define

Shade $F=\{e \in E \mid e$ is not a nontrivial convex combination of $F\}$.
(A convex combination is said to be nontrivial if all coefficients are <1.) Then, this map Shade : $\mathcal{P}(E) \rightarrow \mathcal{P}(E)$ is a shade map.

- Other answers? Can you get shade maps from matroids? spanning trees? closure operators? lattices?

4.5. The topological viewpoint

- Now let us return to the case of a graph $\Gamma=(V, E)$. Fix a subset G of E, and let

$$
\begin{aligned}
\mathcal{A} & =\{F \subseteq E \mid G \nsubseteq \text { Shade } F\} \\
& =\{F \subseteq E \mid \text { not every edge in } G \text { is infected by } F\}
\end{aligned}
$$

as in the proof above.

- This \mathcal{A} is clearly a simplicial complex on ground set E.
- Theorem (G., 2020 ([Grinbe20, Theorem 5.5])). This simplicial complex has a Morse matching (i.e., an acyclic partial matching) with no unmatched faces. Thus, it is contractible.
- Proof idea. Argue that the sign-reversing involution above is a Morse matching.

4.6. The Alexander dual

- The complex

$$
\mathcal{A}=\{F \subseteq E \mid G \nsubseteq \text { Shade } F\}
$$

is not the only simplicial complex we can obtain from our setup. There is also

$$
\mathcal{A}^{*}=\{F \subseteq E \mid G \subseteq \text { Shade }(E \backslash F)\}
$$

- More generally, if (S, Δ) is any simplicial complex, then we can define a new simplicial complex $\left(S, \Delta^{*}\right)$, where

$$
\begin{aligned}
\Delta^{*} & :=\{I \subseteq S \mid S \backslash I \notin \Delta\} \\
& =\{\text { the complements of the non-faces of } \Delta\} .
\end{aligned}
$$

This $\left(S, \Delta^{*}\right)$ is called the Alexander dual of (S, Δ).

- The homologies of $\left(S, \Delta^{*}\right)$ and (S, Δ) are isomorphic (folklore - see, e.g., [BjoTan09]); thus the Euler characteristics agree up to sign.
But the homotopy types are not in general equivalent! Nor is the existence of a Morse matching with good properties.
- Thus, for any homotopy type question we can answer, we can state an analogous one for its dual.
- Question. What is the homotopy type of the \mathcal{A}^{*} above?

4.7. Multi-shades?

- I can't help spreading yet another open question that essentially comes from Dorpalen-Barry et al. [DHLetc19, Conjecture 9.1].
- Return to the setup of a graph $\Gamma=(V, E)$, but don't fix the vertex v this time.
- Rename Shade F as $\operatorname{Shade}_{v} F$ to stress its dependence on v.
- For any subset $U \subseteq V$, define the simplicial complex

$$
\mathcal{A}_{U}:=\left\{F \subseteq E \mid G \nsubseteq \text { Shade }_{v} F \text { for some } v \in U\right\}
$$

- Question: What can we say about the homotopy and discrete Morse theory of \mathcal{A}_{U} ? What about its Alexander dual?
- An optimistic yet reasonable expectation would be: a Morse matching whose unmatched faces all have the same size. (Thus, \mathcal{A}_{U} should be homotopy-equivalent to a bouquet of spheres.)

5. Bonus: Path-free and path-missing complexes

- This is joint work with Lukas Katthän and Joel Brewster Lewis [GrKaLe21].
- Fix a directed graph $G=(V, E)$ and two vertices s and t. We define the two simplicial complexes

$$
\begin{aligned}
& \mathcal{P F}(G)=\{F \subseteq E \mid \text { there is no } F \text {-path from } s \text { to } t\} \\
& \text { (the "path-free" complex of G) }
\end{aligned}
$$

and

$$
\begin{gathered}
\mathcal{P M}(G)=\{F \subseteq E \mid \text { there is an }(E \backslash F) \text {-path from } s \text { to } t\} \\
\text { (the "path-missing" complex of } G) .
\end{gathered}
$$

(These are Alexander duals of each other.)

- Example: Let G be the following directed graph:

Then:

- The faces of the simplicial complex $\mathcal{P \mathcal { F }}(G)$ are the sets $\{b, c, e, f, g\},\{a, c, e, f, g\},\{b, c, d, g\},\{a, c, d, f, g\},\{a, b, e, f\},\{a, b, d, f, g\}$ as well as all their subsets.
- The faces of the simplicial complex $\mathcal{P} \mathcal{M}(G)$ are the sets

$$
\{d, e, f, g\},\{c, d, f\},\{a, b, c, f, g\},\{a, e, g\}
$$

as well as all their subsets.

- Theorem (G., Katthän, Lewis, 2021 ([GrKaLe21])). Assume that $s \neq t$ and $E \neq \varnothing$ (the other cases are trivial). Then, both complexes $\mathcal{P F}(G)$ and $\mathcal{P} \mathcal{M}(G)$ are contractible or homotopy-equivalent to spheres. The dimensions of the spheres can be determined explicitly. The complexes are contractible if and only if G has a useless edge (i.e., an edge that appears in no path from s to t) or a (directed) cycle.
- Theorem (G., Katthän, Lewis, 2021+ ([GrKaLe21, future version])). Both complexes $\mathcal{P} \mathcal{F}(G)$ and $\mathcal{P} \mathcal{M}(G)$ have Morse matchings with at most one unmatched face.
- The proofs use (fairly intricate) deletion/contraction arguments.
- Question. Is there a good combinatorial description of these Morse matchings?

Acknowledgments

Thanks to

- Lukas Katthän, who showed me how simple discrete Morse theory is;
- Anders Björner, Galen Dorpalen-Barry, Dmitry Feichtner-Kozlov, Patricia Hersh, Vic Reiner, Tom Roby and Richard Stanley for insightful conversations;
- an anonymous referee for one of the most useful reports I have ever gotten (within just 2 weeks), greatly simplifying one of my proofs;
- the Mathematisches Forschungsinstitut Oberwolfach 2020 and specifically the programme "Oberwolfach Leibniz Fellows" for its hospitality (in 2020, of all times);
- you for your patience!

References

[Alikha12] Saeid Alikhani, The Domination Polynomial of a Graph at -1, Graphs and Combinatorics 29 (2013), pp. 1175-1181, doi:10.1007/s00373-012-1211-x.
[BenQui08] Arthur T. Benjamin and Jennifer J. Quinn, An Alternate Approach to Alternating Sums: A Method to DIE for, The College Mathematics Journal, Volume 39, Number 3, May 2008, pp. 191-202(12).
[BjoTan09] Anders Björner, Martin Tancer, Combinatorial Alexander Duality - A Short and Elementary Proof, Discrete Comput Geom (2009) 42, pp. 586-593.
[Brouwe09] A. E. Brouwer, The number of dominating sets of a finite graph is odd, 2 June 2009. https://www.win.tue.nl/~aeb/preprints/domin2.pdf
[BrCsSc09] A. E. Brouwer, P. Csorba \& A. Schrijver, The number of dominating sets of a finite graph is odd, 2 June 2009. https://www.win.tue.nl/~aeb/preprints/domin4a.pdf
[CSSS18] Maria Chudnovsky, Alex Scott, Paul Seymour, Sophie Spirkl, Proof of the Kalai-Meshulam conjecture, Israel Journal of Mathematics volume 238 (2020), pp. 639-661.
[DHLetc19] Galen Dorpalen-Barry, Cyrus Hettle, David C. Livingston, Jeremy L. Martin, George Nasr, Julianne Vega, Hays Whitlatch, A positivity phenomenon in Elser's Gaussian-cluster percolation model, arXiv:1905.11330v5, Journal of Combinatorial Theory, Series A, 179:105364, April 2021, doi:10.1016/j.jcta.2020.105364.
[EhrHet06] Richard Ehrenborg, Gábor Hetyei, The topology of the independence complex, European Journal of Combinatorics 27 (2006), pp. 906-923.
[Elser84] Veit Elser, Gaussian-cluster models of percolation and self-avoiding walks, J. Phys. A: Math. Gen. 17 (1984), pp. 1515-1523.
[Forman02] Robin Forman, A User's Guide to discrete Morse theory, Séminaire Lotharingien de Combinatoire 48 (2002), Article B48c.
[Grinbe17] Darij Grinberg, Notes on graph theory, 10 January 2019. http://www.cip.ifi.lmu.de/~grinberg/t/17s/
[Grinbe20] Darij Grinberg, The Elser nuclei sum revisited, detailed version of the present paper. Also available as an ancillary file at arXiv:2009.11527v5.
[GrKaLe21] Darij Grinberg, Lukas Katthän, Joel Brewster Lewis, The pathmissing and path-free complexes of a directed graph, arXiv:2102.0784v1.
[HeiTit17] Irene Heinrich, Peter Tittmann, Counting Dominating Sets of Graphs, arXiv:1701.03453v1.
[Kim21] Jinha Kim, The homotopy type of the independence complex of graphs with no induced cycle of length divisible by 3, arXiv:2101.07131v2.
[Kozlov20] Dmitry N. Kozlov, Organized Collapse: An Introduction to Discrete Morse Theory, Graduate Studies in Mathematics 207, AMS 2020.
[Sagan20] Bruce Sagan, Combinatorics: The Art of Counting, Graduate Studies in Mathematics 210, AMS 2020.
See https://users.math.msu.edu/users/bsagan/Books/Aoc/ final.pdf for a preprint.
[Stanle11] Richard P. Stanley, Enumerative Combinatorics, volume 1, 2nd edition, version of 15 July 2011.
http://math.mit.edu/~rstan/ec/. See http://math.mit.edu/~rstan/ec/for errata.
[Striker15] Jessica Striker, The toggle group, homomesy, and the RazumovStroganov correspondence, arXiv:1503.08898v2, Electron. J. Combin. 22 (2015) no. 2.
[ZhaWu20] Wentao Zhang, Hehui Wu, The Betti Number of the Independence Complex of Ternary Graphs, arXiv:2011.10939v1.

