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Manifest

I shall review the Littlewood–Richardson coefficients and some
of their classical properties.

I will then state a “hidden symmetry” conjectured by Pelletier
and Ressayre (arXiv:2005.09877) and outline how I proved
it.

The proof is a nice example of birational combinatorics: the
use of birational transformations in elementary combinatorics
(specifically, here, in finding and proving a bijection).
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Chapter 1

Chapter 1
Littlewood–Richardson coefficients
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Reminder on symmetric functions

Fix a commutative ring k with unity. We shall do everything
over k.
Consider the ring k [[x1, x2, x3, . . .]] of formal power series in
countably many indeterminates.
A formal power series f is said to be bounded-degree if the
monomials it contains are bounded (from above) in degree.

A formal power series f is said to be symmetric if it is
invariant under permutations of the indeterminates.
For example:

1 + x1 + x32 is bounded-degree but not symmetric.
(1 + x1) (1 + x2) (1 + x3) · · · is symmetric but not
bounded-degree.

Let Λ be the set of all symmetric bounded-degree power series
in k [[x1, x2, x3, . . .]]. This is a k-subalgebra, called the ring of
symmetric functions over k.
It is also known as Sym.
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Schur functions, part 1: Young diagrams

Let λ = (λ1, λ2, λ3, . . .) be a partition (i.e., a weakly
decreasing sequence of nonnegative integers such that λi = 0
for all i � 0).
We commonly omit trailing zeroes: e.g., the partition
(4, 2, 2, 1, 0, 0, 0, 0, . . .) is identified with the tuple (4, 2, 2, 1).
The Young diagram of λ is like a matrix, but the rows have
different lengths, and are left-aligned; the i-th row has λi cells.
Examples:

The Young diagram of (3, 2) has the form

.

The Young diagram of (4, 2, 1) has the form

.
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Schur functions, part 2: semistandard tableaux

A semistandard tableau of shape λ is the Young diagram of λ,
filled with positive integers, such that

the entries in each row are weakly increasing;
the entries in each column are strictly increasing.

Examples:
A semistandard tableau of shape (3, 2) is

2 3 3

3 5
.

A semistandard tableau of shape (4, 2, 1) is

2 2 3 4

3 4

5

.
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Schur functions, part 2: semistandard tableaux

A semistandard tableau of shape λ is the Young diagram of λ,
filled with positive integers, such that

the entries in each row are weakly increasing;
the entries in each column are strictly increasing.

Examples:
The semistandard tableaux of shape (3, 2) are the arrays
of the form

a b c

d e

with a ≤ b ≤ c and d ≤ e and a < d and b < e.
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Schur functions, part 3: definition of Schur functions

Given a partition λ, we define the Schur function sλ as the
power series

sλ =
∑

T is a semistandard
tableau of shape λ

xT , where xT =
∏

p is a cell of T

xT (p)

(where T (p) denotes the entry of T in p).
Examples:

s(3,2) =
∑

a≤b≤c, d≤e,
a<d , b<e

xaxbxcxdxe ,

because the semistandard tableau

T = a b c

d e

contributes the addend xT = xaxbxcxdxe .
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Schur functions, part 4: classical properties

Theorem: The Schur function sλ is a symmetric function (=
an element of Λ) for any partition λ.
Theorem: The family (sλ)λ is a partition is a basis of the
k-module Λ.
Theorem: Fix n ≥ 0. Let λ = (λ1, λ2, . . . , λn) be a partition
with at most n nonzero entries. Then,

sλ (x1, x2, . . . , xn)

= det

((
x
λj+n−j
i

)
1≤i ,j≤n

)
︸ ︷︷ ︸

this is called an alternant

� det

((
xn−ji

)
1≤i ,j≤n

)
︸ ︷︷ ︸

=
∏

1≤i<j≤n
(xi−xj)

(= the Vandermonde determinant)

.

Here, for any f ∈ Λ, we let f (x1, x2, . . . , xn) denote the result
of substituting 0 for xn+1, xn+2, xn+3, . . . in f ; this is a
symmetric polynomial in x1, x2, . . . , xn.

For proofs, see any text on symmetric functions (e.g.,
Stanley’s EC2, or Grinberg-Reiner, or Mark Wildon’s notes).
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Littlewood–Richardson coefficients: definition

If µ and ν are two partitions, then sµsν belongs to Λ (since Λ
is a ring) and thus can be written in the form

sµsν =
∑

λ is a partition

cλµ,νsλ

for some cλµ,ν ∈ k (since the sλ form a basis of Λ).

The coefficients cλµ,ν are integers, and are called the
Littlewood–Richardson coefficients.
Example:
Theorem: The coefficients cλµ,ν are nonnegative integers.
Various combinatorial interpretations (“Littlewood–Richardson
rules”) for them are known.
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Why Littlewood–Richardson coefficients? 1

Before we say more about Littlewood–Richardson coefficients,
let us see where else they appear.
For k = Z, the cohomology ring

H∗ (Gr (k, n))

of the complex Grassmannian Gr (k , n) (of k-subspaces in Cn)
is isomorphic to

Λ� (hn−k+1, hn−k+2, . . . , hn, ek+1, ek+2, ek+3, . . .)ideal .

The cohomology classes corresponding to the Schur functions
sλ are the Schubert classes – the classes of the Schubert
varieties. Roughly speaking, these subdivide Gr (k , n)
according to the positions of the pivots in the row-reduced
echelon form.

Thus, the Littlewood–Richardson coefficients cλµ,ν are
intersection multiplicities of these Schubert varieties.
For details, see:

Laurent Manivel, Symmetric Functions, Schubert
Polynomials and Degeneracy Loci, AMS/SMF 1998.
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Why Littlewood–Richardson coefficients? 2

Here is another interpretation of Littlewood–Richardson
coefficients, also related to subspaces of a vector space.
Let V be a finite-dimensional vector space.
The Jordan type J (A) of a nilpotent endomorphism
A ∈ EndV is the partition (λ1, λ2, λ3, . . .) with λi being the
size of the i-th largest Jordan block of A.

Pick a nilpotent endomorphism A ∈ EndV , and let λ = J (λ)
be its Jordan type. Let µ and ν be two further partitions.
When is there an A-invariant vector subspace W ⊆ V with

J (A) = λ, J (A |W ) = µ, J (A/W ) = ν?

(A/W is the endomorphism of V /W induced by A.)
Precisely when cλµ,ν 6= 0.
Moreover, the set of all such W is a subvariety of Gr (k, n),
and has cλµ,ν irreducible components.
For details, see:

Marc van Leeuwen, Flag Varieties and Interpretations of
Young Tableau Algorithms.

11 / 46
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Why Littlewood–Richardson coefficients? 3

Fix an N ≥ 0. The irreducible polynomial representations Vλ
of the group GL (N) := GL (N,C) are indexed by partitions
having ≤ N entries.
Their characters are the Schur functions sλ.

The Littlewood–Richardson coefficients tell how to decompose
the tensor product of two such representations:

Vµ ⊗ Vν =
⊕
λ

V
⊕cλµ,ν
λ .

For details, see:
William Fulton, Young Tableaux, CUP 1997.
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Skew semistandard tableaux

In order to formulate the classic (or, at least, best known)
Littlewood–Richardson rule, we need a
Definition:

Two partitions λ = (λ1, λ2, λ3, . . .) and
µ = (µ1, µ2, µ3, . . .) are said to satisfy µ ⊆ λ if each
i ≥ 1 satisfies µi ≤ λi .
(Equivalently: if the Young diagram of µ is contained in
that of λ.)
A skew partition is a pair (λ, µ) of two partitions
satisfying µ ⊆ λ. Such a pair is denoted by λ/µ.

If λ/µ is a skew partition, then the Young diagram of
λ/µ is obtained from the Young diagram λ when all cells
of the Young diagram of µ are removed.
Semistandard tableaux of shape λ/µ are defined just as
ones of shape λ, except that we are now only filling the
cells of λ/µ.
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Littlewood–Richardson rule: the classical version

Littlewood–Richardson rule: Let λ, µ and ν be three
partitions. Then, cλµ,ν is the number of semistandard tableaux
T of shape λ/µ such that contT = ν and such that
cont (T |cols≥ j) is a partition for each j . Here,

contT denotes the sequence (c1, c2, c3, . . .), where ci is
the number of entries equal to i in T ;
T |cols≥ j is what obtained from T when the first j − 1
columns are deleted.

Example: c
(4,2,1)
(2,1),(3,1) = 2 due to the two tableaux

1 1

1

2

and 1 1

2

1

.

The shortest proof is due to Stembridge (using ideas by
Gasharov); see John R. Stembridge, A Concise Proof of the
Littlewood-Richardson Rule, 2002, or Section 2.6 in
Grinberg-Reiner. 14 / 46
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Basic properties of Littlewood–Richardson coefficients

Gradedness: cλµ,ν = 0 unless |λ| = |µ|+ |ν|, where |κ|
denotes the size (i.e., the sum of the entries) of a partition κ.
(This is because Λ is a graded ring and the sλ are
homogeneous.)
Transposition symmetry: cλµ,ν = cλ

t

µt ,νt , where κt denotes
the transpose of a partition κ (i.e., the partition whose Young
diagram is obtained from that of κ by flipping across the main
diagonal).

Commutativity: cλµ,ν = cλν,µ.
(Obvious from the definition, but hard to prove
combinatorially using the Littlewood–Richardson rule.)
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Littlewood–Richardson coefficients: more symmetries

Fix n ∈ N. Let Par[n] be the set of all partitions having at
most n nonzero entries.
If λ = (λ1, λ2, . . . , λn) ∈ Par[n], and if k ≥ 0 is such that all
entries of λ are ≤ k , then λ∨k shall denote the partition

(k − λn, k − λn−1, . . . , k − λ1) ∈ Par[n].

This is called the k-complement of λ.

Complementation symmetry I: Let λ, µ, ν ∈ Par[n] and
k ≥ 0 be such that all entries of λ, µ, ν are ≤ k . Then,

cλµ,ν = cλν,µ = cµ
∨k

λ∨k ,ν
= cµ

∨k

ν,λ∨k
= cν

∨k

µ,λ∨k = cν
∨k

λ∨k ,µ.

Complementation symmetry II: Let λ, µ, ν ∈ Par[n] and
q, r ≥ 0 be such that all entries of µ are ≤ q, and all entries
of ν are ≤ r . Then:

If all entries of λ are ≤ q + r , then cλµ,ν = cλ
∨(q+r)

µ∨q ,ν∨r .

If not, then cλµ,ν = 0.
(See, e.g., Exercise 2.9.16 in Grinberg-Reiner.)
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The Briand–Rosas symmetry

In arXiv:2004.04995, Emmanuel Briand and Mercedas
Rosas have used a computer (and prior work of Rassart,
Knutson and Tao, which made the problem computable) to
classify all such “symmetries” of Littlewood–Richardson
coefficients cλµ,ν with λ, µ, ν ∈ Par[n] for fixed
n ∈ {3, 4, . . . , 7}.
For n ∈ {4, 5, . . . , 7}, they only found the complementation
symmetries above, as well as the trivial translation symmetries
(adding 1 to each entry of λ and ν does not change cλµ,ν ; nor
does adding 1 to each entry of λ and µ).

For n = 3, they found an extra symmetry:

c
(λ1,λ2,λ3)
(µ1,µ2),(ν1,ν2)

= c
(λ1,ν1,λ3)
(µ1+ν1−λ2,µ2+ν1−λ2),(λ2,ν2) .

(Read the right hand side as 0 if the tuples are not partitions.)
Question: Is there a non-computer proof? What is the
meaning of this identity?
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Chapter 2

Chapter 2
The Pelletier–Ressayre symmetry

References (among many):

Darij Grinberg, The Pelletier–Ressayre hidden symmetry for
Littlewood–Richardson coefficients, arXiv:2008.06128.

Maxime Pelletier, Nicolas Ressayre, Some unexpected
properties of Littlewood-Richardson coefficients,
arXiv:2005.09877.

Robert Coquereaux, Jean-Bernard Zuber, On sums of tensor
and fusion multiplicities, 2011.
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Inspiration: The Coquereaux–Zuber sum identity, 1

Theorem (Coquereaux and Zuber, 2011): Let n ≥ 0 and
µ, ν ∈ Par[n]. Let k ≥ 0 be such that all entries of µ are ≤ k.
Then, ∑

λ∈Par[n]

cλµ,ν =
∑

λ∈Par[n]

cλµ∨k ,ν .

(See https://mathoverflow.net/a/236220/ for a hint at
a combinatorial proof.)
This can be interpreted in terms of Schur polynomials. For
any λ ∈ Par[n], the Schur polynomial sλ (x1, x2, . . . , xn) is the
symmetric polynomial

The family (sλ (x1, x2, . . . , xn))λ∈Par[n] is a basis of the
k-module of symmetric polynomials in x1, x2, . . . , xn. We call
it the Schur basis.
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((
x
λj+n−j
i

)
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this is called an alternant

� det

((
xn−ji

)
1≤i ,j≤n

)
︸ ︷︷ ︸

=
∏

1≤i<j≤n
(xi−xj)

(= the Vandermonde determinant)
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Inspiration: The Coquereaux–Zuber sum identity, 2

The theorem of Coquereaux and Zuber says that

coeffsum (sµ (x1, x2, . . . , xn) sν (x1, x2, . . . , xn))

= coeffsum
(
sµ∨k (x1, x2, . . . , xn) sν (x1, x2, . . . , xn)

)
,

where coeffsum f denotes the sum of all coefficients in the
expansion of a symmetric polynomial f in the Schur basis.
So the products

sµ (x1, x2, . . . , xn) sν (x1, x2, . . . , xn)

and sµ∨k (x1, x2, . . . , xn) sν (x1, x2, . . . , xn)

have the same sum of coefficients when expanded in the Schur
basis. Do they also have the same multiset of coefficients?

No.
(Counterexample: n = 5 and µ = (5, 2, 1) and ν = (4, 2, 2).)
Question: Does this hold for n ≤ 4 ? (Proved for n = 3.)
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The Pelletier–Ressayre conjecture

Conjecture (Pelletier and Ressayre, 2020): It does hold
when µ is near-rectangular – i.e., when µ =

(
a + b, an−2

)
for

some a, b ≥ 0. Here, an−2 means a, a, . . . , a︸ ︷︷ ︸
n−2 times

.

In this case, for k = a + b, we have µ∨k =
(
a + b, bn−2

)
.

(Taking k higher makes no real difference.)
In other words:
Conjecture (Pelletier and Ressayre, 2020): Let n ≥ 0 and
ν ∈ Par [n]. Let a, b ≥ 0. Let α =

(
a + b, an−2

)
and

β =
(
a + b, bn−2

)
. Then,{

cλα,ν | λ ∈ Par [n]
}
multiset

=
{
cλβ,ν | λ ∈ Par [n]

}
multiset

.

This means that there should be a bijection
ϕ : Par [n]→ Par [n] such that

cλα,ν = c
ϕ(λ)
β,ν for each λ ∈ Par [n] .
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The Pelletier–Ressayre conjecture, restated

Conjecture (Pelletier and Ressayre, 2020): Let n ≥ 0 and
ν ∈ Par [n]. Let a, b ≥ 0. Let α =

(
a + b, an−2

)
and

β =
(
a + b, bn−2

)
. Then, there is a bijection

ϕ : Par [n]→ Par [n] such that

cλα,ν = c
ϕ(λ)
β,ν for each λ ∈ Par [n] .

Theorem (G., 2020): This is true. Moreover, this bijection
ϕ can more or less be defined explicitly in terms of maxima of
sums of entries of λ and ν.
(“More or less” means that we find a bijection ϕ : Zn → Zn,
not ϕ : Par [n]→ Par [n], where we set cλα,ν = cλβ,ν = 0 for all
λ ∈ Zn \ Par [n].)

The rest of this talk will sketch how this bijection ϕ was
found.
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Snakes

First, we notice that

α =
(
a + b, an−2

)
=
(
a + b, an−2, 0

)
(as n-tuple)

=
(
b, 0n−2,−a

)
+ a

(where “+a” means “add a to each entry”).
Likewise, β =

(
a, 0n−2,−b

)
+ b.

This suggest allowing “partitions with negative entries”. We
call them snakes.
Formally: A snake will mean an n-tuple (λ1, λ2, . . . , λn) ∈ Zn

with λ1 ≥ λ2 ≥ · · · ≥ λn. Thus,

Par [n] ⊆ {snakes} ⊆ Zn.

If λ ∈ Zn is any n-tuple, then
we let λi denote the i-th entry of λ (for any i);
we let λ+ a denote the n-tuple
(λ1 + a, λ2 + a, . . . , λn + a);
we let λ− a denote the n-tuple
(λ1 − a, λ2 − a, . . . , λn − a).
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Snakes index rational representations of GL (n): See John R.
Stembridge, Rational tableaux and the tensor algebra of gln,
1987.
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Schur Laurent polynomials

We have defined a Schur polynomial
sλ (x1, x2, . . . , xn) ∈ k [x1, x2, . . . , xn] for any λ ∈ Par [n]. We
now denote it by sλ.
It is easy to see that

sλ+a = (x1x2 · · · xn)a sλ for any λ ∈ Par [n] and a ≥ 0.

This allows us to extend the definition of sλ from the case
λ ∈ Par [n] to the more general case λ ∈ {snakes}:
If λ is a snake, then we choose some a ≥ 0 such that
λ+ a ∈ Par [n], and define

sλ = (x1x2 · · · xn)−a sλ+a.

This is a Laurent polynomial in k
[
x±11 , x±12 , . . . , x±1n

]
.

Alternatively, we can define sλ explicitly by

sλ = det

((
x
λj+n−j
i

)
1≤i ,j≤n

)
� det

((
xn−ji

)
1≤i ,j≤n

)
(same formula as before).
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sα and sβ revealed

For any k ≥ 0, define the two Laurent polynomials

h+k = hk (x1, x2, . . . , xn) ,

h−k = hk
(
x−11 , x−12 , . . . , x−1n

)
.

(Recall: hk = s(k) =
∑

i1≤i2≤···≤ik
xi1xi2 · · · xik .)

Proposition: Let a, b ≥ 0. Then,

s(b,0n−2,−a) = h−a h
+
b − h−a−1h

+
b−1.

Corollary: Let a, b ≥ 0. Let α =
(
a + b, an−2

)
and

β =
(
a + b, bn−2

)
. Then,

sα = (x1x2 · · · xn)a ·
(
h−a h

+
b − h−a−1h

+
b−1
)

;

sβ = (x1x2 · · · xn)b ·
(
h−b h

+
a − h−b−1h

+
a−1
)
.

Thus, if we “know how to multiply by” h−k and h+k , then we
“know how to multiply by” sα and sβ.
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Multiplying by h+k : the h-Pieri rule, 1

Theorem (h-Pieri rule): Let λ be a partition. Let k ∈ Z.
Then,

hk · sλ =
∑

µ is a partition;
|µ|−|λ|=k;

µ1≥λ1≥µ2≥λ2≥···

sµ.

Here:
We let hk = 0 if k < 0. (And we recall that h0 = 1.)
We let |κ| denote the size (i.e., the sum of the entries) of
any partition κ.
The i-th entry of a partition κ is denoted by κi .

By evaluating both sides at x1, x2, . . . , xn (and recalling that
sµ (x1, x2, . . . , xn) = 0 whenever µ is a partition with more
than n nonzero entries), we obtain:
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Littlewood–Richardson rule (exercise!).
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Multiplying by h+k : the h-Pieri rule, 2

Theorem (h+-Pieri rule for symmetric polynomials): Let
λ ∈ Par [n]. Let k ∈ Z. Then,

h+k · sλ =
∑

µ∈Par[n];
|µ|−|λ|=k;

µ1≥λ1≥µ2≥λ2≥···≥µn≥λn

sµ.

Here:
We let |κ| denote the size (i.e., the sum of the entries) of
any n-tuple κ.
The i-th entry of an n-tuple κ is denoted by κi .

We can easily extend this from Par [n] to {snakes}, and obtain
the following:
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Multiplying by h+k : the h-Pieri rule, 3

Theorem (h+-Pieri rule for Laurent polynomials): Let
λ ∈ {snakes}. Let k ∈ Z. Then,

h+k · sλ =
∑

µ∈{snakes};
|µ|−|λ|=k;

µ1≥λ1≥µ2≥λ2≥···≥µn≥λn

sµ.

Here:
We let |κ| denote the size (i.e., the sum of the entries) of
any n-tuple κ.
The i-th entry of an n-tuple κ is denoted by κi .

So we know how to multiply sλ by h+k . What about h−k ?
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Multiplying by h−k : the reversed h-Pieri rule

Theorem (h−-Pieri rule for Laurent polynomials): Let
λ ∈ {snakes}. Let k ∈ Z. Then,

h−k · sλ =
∑

µ∈{snakes};
|λ|−|µ|=k;
λ⇀µ

sµ.

This follows from the h+-Pieri rule by substituting
x−11 , x−12 , . . . , x−1n for x1, x2, . . . , xn, using the following fact:
Proposition: For any snake λ, we have

sλ∨ = sλ
(
x−11 , x−12 , . . . , x−1n

)
.

Here, λ∨ denotes the snake (−λn,−λn−1, . . . ,−λ1) (formerly
denoted by λ∨0, but now defined for any snake λ).

So we now know how to multiply sλ by h−k .
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Back to the conjecture

A consequence of the above:
Corollary: Let µ be a snake. Let a, b ∈ Z. Then,

h−a h
+
b sµ =

∑
γ is a snake

|Rµ,a,b (γ)| sγ ,

where Rµ,a,b (γ) is the set of all snakes ν satisfying

µ ⇀ ν and |µ|−|ν| = a and γ ⇀ ν and |γ|−|ν| = b.

Corollary: Let ν ∈ Par [n]. Let a, b ≥ 0. Define the partition
α =

(
a + b, an−2

)
. Then, every λ ∈ Zn satisfies

cλα,ν = |Rν,a,b (λ− a)| − |Rν,a−1,b−1 (λ− a)| .

Here, we understand cλα,ν to mean 0 if λ is not a partition
(i.e., not a snake with all entries nonnegative).

Recall that we want a bijection ϕ : Zn → Zn such that

cλα,µ = c
ϕ(λ)
β,µ for each λ ∈ Par [n] .
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Closing in on the bijection, 1

So we want a bijection ϕ : Zn → Zn such that

|Rµ,a,b (λ− a)| − |Rµ,a−1,b−1 (λ− a)|
= |Rµ,b,a (ϕ (λ)− b)| − |Rµ,b−1,a−1 (ϕ (λ)− b)|

for all λ ∈ Zn.

It clearly suffices to find a bijection f : Zn → Zn such that

|Rµ,a,b (γ)| = |Rµ,b,a (f (γ))| for all γ ∈ Zn,

as long as this f is independent on a and b.
In other words, if f (γ) = η, then we want

|Rµ,a,b (γ)| = |Rµ,b,a (η)| .
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Closing in on the bijection, 2

In other words, if f (γ) = η, then we want there to be a
bijection from the snakes ν satisfying

µ ⇀ ν and |µ|−|ν| = a and γ ⇀ ν and |γ|−|ν| = b

to the snakes ζ satisfying

µ ⇀ ζ and |µ|−|ζ| = b and η ⇀ ζ and |η|−|ζ| = a.

Forget at first about the size conditions (|µ| − |ν| = a, etc.).
Then the former snakes satisfy

µ ⇀ ν and γ ⇀ ν

⇐⇒ (µi ≥ νi for all i ≤ n) ∧ (νi ≥ µi+1 for all i < n)

∧ (γi ≥ νi for all i ≤ n) ∧ (γi ≥ γi+1 for all i < n)

⇐⇒ (min {µi , γi} ≥ νi for all i ≤ n)

∧ (νi ≥ max {µi+1, γi+1} for all i < n)

⇐⇒ (νi ∈ [max {µi+1, γi+1} ,min {µi , γi}] for all i < n)

∧ (min {µn, γn} ≥ νn) .
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Closing in on the bijection, 3

Compare the condition

νi ∈ [max {µi+1, γi+1} ,min {µi , γi}] for all i < n

with the analogous condition

ζi ∈ [max {µi+1, ηi+1} ,min {µi , ηi}] for all i < n

on ζ.
It is thus reasonable to hope for

min {µi , γi}−max {µi+1, γi+1} = min {µi , ηi}−max {µi+1, ηi+1}
for all i < n.

Size conditions also suggest that we should have

|η| − |µ| = |µ| − |γ| .

These conditions do not suffice to determine f (γ) = η (nor
probably to guarantee |Rµ,a,b (γ)| = |Rµ,b,a (η)|), but let’s see
what they tell us.
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probably to guarantee |Rµ,a,b (γ)| = |Rµ,b,a (η)|), but let’s see
what they tell us.
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Closing in on the bijection: the case n = 3

Let n = 3. We want f (γ) = η to satisfy

min {µ1, γ1} −max {µ2, γ2} = min {µ1, η1} −max {µ2, η2} ;

min {µ2, γ2} −max {µ3, γ3} = min {µ2, η2} −max {µ3, η3} ;

|η| − |µ| = |µ| − |γ| .

(here we used max (u, v) = −min (−u,−v)).
This is a system of equations that only involves the operations
+, − and min. (Recall: 2a = a + a.)
There is a trick for studying such systems: detropicalization.
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Detropicalization in a nutshell

A semifield is defined in the same way as a field, but
additive inverses and a zero element are not required, and
every element (not just every nonzero element) must
have a multiplicative inverse.

Example: The set Q+ of all positive rationals is a semifield.

Example: The set Z, equipped with the binary operation min
as addition and the binary operation + as multiplication is a
semifield (with the number 0 as unity). This is called the min
tropical semifield of Z. We denote it Ztrop.
If you see a system of equations using only + and min, you
can thus

view it as a system of polynomial equations over Ztrop;
then solve it over the semifield Q+ instead
then check if your solution still works over Ztrop.

This strategy is known as detropicalization.
It is particularly useful if you just want one solution (rather
than all of them). Often, solutions over Q+ are unique, while
those over the min tropical semifield are not.
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Detropicalizing our system (n = 3), 1

Recall our system

min {µ1, γ1}+ min {−µ2,−γ2}= min {µ1, η1}+ min {−µ2,−η2} ;

min {µ2, γ2}+ min {−µ3,−γ3}= min {µ2, η2}+ min {−µ3,−η3} ;

(γ1 + γ2 + γ3) + (η1 + η2 + η3)= 2 (µ1 + µ2 + µ3)

(where η1, η2, η3 are unknown).
Detropicalization transforms this into

(µ1 + γ1)

(
1

µ2
+

1

γ2

)
= (µ1 + η1)

(
1

µ2
+

1

η2

)
;

(µ2 + γ2)

(
1

µ3
+

1

γ3

)
= (µ2 + η2)

(
1

µ3
+

1

η3

)
;

(γ1γ2γ3) (η1η2η3) = (µ1µ2µ3)2 .
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Detropicalizing our system (n = 3), 2

So we now need to solve the system

(µ1 + γ1)

(
1

µ2
+

1

γ2

)
= (µ1 + η1)

(
1

µ2
+

1

η2

)
;

(µ2 + γ2)

(
1

µ3
+

1

γ3

)
= (µ2 + η2)

(
1

µ3
+

1

η3

)
;

(γ1γ2γ3) (η1η2η3) = (µ1µ2µ3)2 .

This is a system of polynomial equations, so we can give it to
a computer. The answer is:
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Solving the detropicalized system (n = 3)

Solution 1:

y1 =
u1 (u1u2u3 + x1u2u3 + x1x2u3 + x1x2x3)

u1x2u3 − x1x2x3
,

y2 =
−u1u2u3
x1x3

,

y3 =
u2u3 (x1x3 − u1u3)

u1u2u3 + x1u2u3 + x1x2u3 + x1x2x3
.

Solution 2:

y1 =
u1u3 (u1u2 + x1u2 + x1x2)

x2 (u1u3 + u1x3 + x1x3)
,

y2 =
u1u2 (u2u3 + x2u3 + x2x3)

x3 (u1u2 + x1u2 + x1x2)
,

y3 =
u2u3 (u1u3 + u1x3 + x1x3)

x1 (u2u3 + x2u3 + x2x3)
.

But Solution 2 looks promising. Note in particular the
(unexpected) cyclic symmetry!

38 / 46



Solving the detropicalized system (n = 3)

Solution 1:

y1 =
u1 (u1u2u3 + x1u2u3 + x1x2u3 + x1x2x3)

u1x2u3 − x1x2x3
,

y2 =
−u1u2u3
x1x3

,

y3 =
u2u3 (x1x3 − u1u3)

u1u2u3 + x1u2u3 + x1x2u3 + x1x2x3
.

Solution 2:

y1 =
u1u3 (u1u2 + x1u2 + x1x2)

x2 (u1u3 + u1x3 + x1x3)
,

y2 =
u1u2 (u2u3 + x2u3 + x2x3)

x3 (u1u2 + x1u2 + x1x2)
,

y3 =
u2u3 (u1u3 + u1x3 + x1x3)

x1 (u2u3 + x2u3 + x2x3)
.

Solution 1 is useless, since we want y1, y2, y3 ∈ Q+. But
Solution 2 looks promising.

Note in particular the
(unexpected) cyclic symmetry!
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The map f: definition

Reverse-engineering Solution 2, we come up with the following
Definition: Let K be a semifield, let n ≥ 1, and let u ∈ Kn.
We define a map f : Kn → Kn as follows:
Let x ∈ Kn be an n-tuple. For each j ∈ Z and r ≥ 0, define
an element tr ,j ∈ K by

tr ,j =
r∑

k=0

xj+1xj+2 · · · xj+k︸ ︷︷ ︸
=

k∏
i=1

xj+i

· uj+k+1uj+k+2 · · · uj+r︸ ︷︷ ︸
=

r∏
i=k+1

uj+i

.

(Here and in the following, all indices are cyclic modulo n.)
Define y ∈ Kn by setting

yi = ui ·
ui−1tn−1,i−1
xi+1tn−1,i+1

for each i ∈ {1, 2, . . . , n} .

Set f (x) = y .
Note that f depends on u (whence I call it fu in the paper).

39 / 46



The map f: definition

Reverse-engineering Solution 2, we come up with the following
Definition: Let K be a semifield, let n ≥ 1, and let u ∈ Kn.
We define a map f : Kn → Kn as follows:
Let x ∈ Kn be an n-tuple. For each j ∈ Z and r ≥ 0, define
an element tr ,j ∈ K by

tr ,j =
r∑

k=0

xj+1xj+2 · · · xj+k︸ ︷︷ ︸
=

k∏
i=1

xj+i

· uj+k+1uj+k+2 · · · uj+r︸ ︷︷ ︸
=

r∏
i=k+1

uj+i

.

(Here and in the following, all indices are cyclic modulo n.)
Define y ∈ Kn by setting

yi = ui ·
ui−1tn−1,i−1
xi+1tn−1,i+1

for each i ∈ {1, 2, . . . , n} .

Set f (x) = y .
Note that f depends on u (whence I call it fu in the paper).

39 / 46



The map f: main properties

Theorem. Let K be a semifield, n ≥ 1 and u ∈ Kn. Then:
(a) The map f is an involution (i.e., we have f ◦ f = id).
(b) Let x ∈ Kn and y ∈ Kn be such that y = f (x). Then,

(y1y2 · · · yn) · (x1x2 · · · xn) = (u1u2 · · · un)2 .

(c) Let x ∈ Kn and y ∈ Kn be such that y = f (x). Then,

(ui + xi )

(
1

ui+1
+

1

xi+1

)
= (ui + yi )

(
1

ui+1
+

1

yi+1

)
for each i ∈ Z. (Recall that indices are cyclic modulo n.)

(d) Let x ∈ Kn and y ∈ Kn be such that y = f (x). Then,
n∏

i=1

ui + xi
xi

=
n∏

i=1

ui + yi
ui

.
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In short: f (x) solves our system and more. (Note that the
i = n case of part (c) is not part of our original system!)
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The proof is heavily computational but not too hard (various
auxiliary identities had to be discovered).
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Back to snakes

Recall that we were looking for a bijection f : Zn → Zn

(independent on a and b) such that

|Rµ,a,b (γ)| = |Rµ,b,a (f (γ))| for all γ ∈ Zn.

The map f constructed above, applied to K = Ztrop and
u = (µ1, µ2, . . . , µn), does the trick. (This is not hard to
prove using the above Theorem.)

Shifting by a and b thus produces the bijection ϕ needed for
the Pelletier–Ressayre conjecture. Explicitly:
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The Pelletier–Ressayre hidden symmetry, 1

Theorem (G., 2020): Assume that n ≥ 2. Let a, b ≥ 0, and
set α =

(
a + b, an−2

)
and β =

(
a + b, bn−2

)
.

Fix any partition µ ∈ Par [n].
Define a map ϕ : Zn → Zn as follows:
Let ω ∈ Zn. Set ν = ω − a ∈ Zn. For each j ∈ Z, set

τj = min {(νj+1 + νj+2 + · · ·+ νj+k)

+ (µj+k+1 + µj+k+2 + · · ·+ µj+n−1)

| k ∈ {0, 1, . . . , n − 1}} ,
where (unusually for partitions!) all indices are cyclic modulo
n.
Define an n-tuple η = (η1, η2, . . . , ηn) ∈ Zn by setting

ηi = µi + (µi−1 + τi−1)− (νi+1 + τi+1) for each i .

Let ϕ (ω) be the n-tuple η + b ∈ Zn. Thus, we have defined a
map ϕ : Zn → Zn.
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The Pelletier–Ressayre hidden symmetry, 2

Theorem (cont’d): Then:
(a) The map ϕ is a bijection.
(b) We have

cωα,µ = c
ϕ(ω)
β,µ for each ω ∈ Zn.

Here, we are using the convention that every n-tuple
ω ∈ Zn that is not a partition satisfies cωα,µ = 0 and
cωβ,µ = 0.

This proves the conjecture.

Question: Does ϕ have a more mainstream combinatorial
interpretation?
Question: Can ϕ be written as a composition of “toggles”
(i.e., “local” transformations, each affecting only one entry of
the tuple)?
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Uniqueness questions, 1

Question: Given a semifield K and n ≥ 2 and u ∈ Kn.
Assume that x ∈ Kn and y ∈ Kn satisfy

(ui + xi )

(
1

ui+1
+

1

xi+1

)
= (ui + yi )

(
1

ui+1
+

1

yi+1

)
for each i ∈ Z. Is it true that y = f (x) or y = x ?

Yes if K = Q+ (or, more generally, K is a subsemifield of an
integral domain).
No if K = Ztrop.
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Uniqueness questions, 2

Question: Given a semifield K and n ≥ 2 and u ∈ Kn.
Assume that x ∈ Kn and y ∈ Kn satisfy

(y1y2 · · · yn) · (x1x2 · · · xn) = (u1u2 · · · un)2

and

(ui + xi )

(
1

ui+1
+

1

xi+1

)
= (ui + yi )

(
1

ui+1
+

1

yi+1

)
for each 1 ≤ i < n. (This is our detropicalized system.)
Is it true that y = f (x) ?
Yes if K = Q+. (Nice exercise!)

No if K = Ztrop.
Thus, detropicalization has made the solution unique by
removing the “extraneous” solutions.
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