Littlewood-Richardson coefficients and birational combinatorics

Darij Grinberg

14 October 2020
Drexel University, Philadelphia, PA
slides: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/drexel2020.pdf paper: arXiv:2008.06128 aka http:
//www.cip.ifi.lmu.de/~grinberg/algebra/lrhspr.pdf

Manifest

- I shall review the Littlewood-Richardson coefficients and some of their classical properties.
- I shall review the Littlewood-Richardson coefficients and some of their classical properties.
- I will then state a "hidden symmetry" conjectured by Pelletier and Ressayre (arXiv:2005.09877) and outline how I proved it.
- I shall review the Littlewood-Richardson coefficients and some of their classical properties.
- I will then state a "hidden symmetry" conjectured by Pelletier and Ressayre (arXiv:2005.09877) and outline how I proved it.
- The proof is a nice example of birational combinatorics: the use of birational transformations in elementary combinatorics (specifically, here, in finding and proving a bijection).

Chapter 1

Chapter 1

Littlewood-Richardson coefficients

References (among many):

- Richard Stanley, Enumerative Combinatorics, vol. 2, Chapter 7.
- Darij Grinberg, Victor Reiner, Hopf Algebras in Combinatorics, arXiv:1409.8356.
- Emmanuel Briand, Mercedes Rosas, The 144 symmetries of the Littlewood-Richardson coefficients of $S L_{3}$, arXiv:2004.04995.
- Igor Pak, Ernesto Vallejo, Combinatorics and geometry of Littlewood-Richardson cones, arXiv:math/0407170.
- Emmanuel Briand, Rosa Orellana, Mercedes Rosas, Rectangular symmetries for coefficients of symmetric functions, arXiv:1410.8017.
- Fix a commutative ring \mathbf{k} with unity. We shall do everything over \mathbf{k}.
- Consider the ring $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ of formal power series in countably many indeterminates.
- Fix a commutative ring \mathbf{k} with unity. We shall do everything over k.
- Consider the ring $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ of formal power series in countably many indeterminates.
- A formal power series f is said to be bounded-degree if the monomials it contains are bounded (from above) in degree.
- Fix a commutative ring \mathbf{k} with unity. We shall do everything over k.
- Consider the ring $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ of formal power series in countably many indeterminates.
- A formal power series f is said to be bounded-degree if the monomials it contains are bounded (from above) in degree.
- A formal power series f is said to be symmetric if it is invariant under permutations of the indeterminates.
- For example:
- $1+x_{1}+x_{2}^{3}$ is bounded-degree but not symmetric.
- $\left(1+x_{1}\right)\left(1+x_{2}\right)\left(1+x_{3}\right) \cdots$ is symmetric but not bounded-degree.
- Fix a commutative ring \mathbf{k} with unity. We shall do everything over k.
- Consider the ring $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ of formal power series in countably many indeterminates.
- A formal power series f is said to be bounded-degree if the monomials it contains are bounded (from above) in degree.
- A formal power series f is said to be symmetric if it is invariant under permutations of the indeterminates.
- Let Λ be the set of all symmetric bounded-degree power series in $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$. This is a \mathbf{k}-subalgebra, called the ring of symmetric functions over \mathbf{k}.
It is also known as Sym.

Schur functions, part 1: Young diagrams

- Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$ be a partition (i.e., a weakly decreasing sequence of nonnegative integers such that $\lambda_{i}=0$ for all $i \gg 0$).
We commonly omit trailing zeroes: e.g., the partition $(4,2,2,1,0,0,0,0, \ldots)$ is identified with the tuple $(4,2,2,1)$.
- Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$ be a partition (i.e., a weakly decreasing sequence of nonnegative integers such that $\lambda_{i}=0$ for all $i \gg 0$).
We commonly omit trailing zeroes: e.g., the partition $(4,2,2,1,0,0,0,0, \ldots)$ is identified with the tuple $(4,2,2,1)$. The Young diagram of λ is like a matrix, but the rows have different lengths, and are left-aligned; the i-th row has λ_{i} cells.

Examples:

- The Young diagram of $(3,2)$ has the form

- The Young diagram of $(4,2,1)$ has the form

- A semistandard tableau of shape λ is the Young diagram of λ, filled with positive integers, such that
- the entries in each row are weakly increasing;
- the entries in each column are strictly increasing.

Examples:

- A semistandard tableau of shape $(3,2)$ is

2	3	3
3	5	

- A semistandard tableau of shape $(4,2,1)$ is

2	2	3	4
3	4		
5			

- A semistandard tableau of shape λ is the Young diagram of λ, filled with positive integers, such that
- the entries in each row are weakly increasing;
- the entries in each column are strictly increasing.

Examples:

- The semistandard tableaux of shape $(3,2)$ are the arrays of the form

a	b	c
d	e	

with $a \leq b \leq c$ and $d \leq e$ and $a<d$ and $b<e$.

- Given a partition λ, we define the Schur function s_{λ} as the power series

$$
s_{\lambda}=\sum_{\substack{T \text { is a semistandard } \\ \text { tableau of shape } \lambda}} x_{T}, \quad \text { where } \mathrm{x}_{T}=\prod_{p \text { is a cell of } T} x_{T(p)}
$$

(where $T(p)$ denotes the entry of T in p).

- Examples:
-

$$
s_{(3,2)}=\sum_{\substack{a \leq b \leq c, d \leq e \\ a<d, b<e}} x_{a} x_{b} x_{c} x_{d} x_{e}
$$

because the semistandard tableau

$$
T=\begin{array}{|l|l|l|}
\hline a & b & c \\
\hline d & e & \\
\hline
\end{array}
$$

contributes the addend $x_{T}=x_{a} x_{b} x_{c} x_{d} x_{e}$.

- Given a partition λ, we define the Schur function s_{λ} as the power series

$$
s_{\lambda}=\sum_{\substack{T \text { is a semistandard } \\ \text { tableau of shape } \lambda}} \mathrm{X}_{T}, \quad \text { where } \mathrm{x}_{T}=\prod_{p \text { is a cell of } T} x_{T(p)}
$$

(where $T(p)$ denotes the entry of T in p).

- Examples:
- For any $n \geq 0$, we have

$$
s_{(n)}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}},
$$

since the semistandard tableaux of shape (n) are the fillings

$$
T=\begin{array}{|l|l|}
\hline i_{1} & i_{2} \\
& \cdots \cdots \\
\hline
\end{array}
$$

with $i_{1} \leq i_{2} \leq \cdots \leq i_{n}$.

- Given a partition λ, we define the Schur function s_{λ} as the power series

$$
s_{\lambda}=\sum_{\substack{T \text { is a semistandard } \\ \text { tableau of shape } \lambda}} \mathrm{X}_{T}, \quad \text { where } \mathrm{x}_{T}=\prod_{p \text { is a cell of } T} x_{T(p)}
$$

(where $T(p)$ denotes the entry of T in p).

- Examples:
- For any $n \geq 0$, we have

$$
s_{(n)}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}},
$$

since the semistandard tableaux of shape (n) are the fillings

$$
T=\begin{array}{|l|l|}
\hline i_{1} & i_{2} \\
& \cdots \cdots \\
\hline i_{n} \\
\hline
\end{array}
$$

with $i_{1} \leq i_{2} \leq \cdots \leq i_{n}$.
This symmetric function $s_{(n)}$ is commonly called h_{n}.

- Given a partition λ, we define the Schur function s_{λ} as the power series

$$
s_{\lambda}=\sum_{\substack{T \text { is a semistandard } \\ \text { tableau of shape } \lambda}} \mathrm{X}_{T}, \quad \text { where } \mathrm{x}_{T}=\prod_{p \text { is a cell of } T} x_{T(p)}
$$

(where $T(p)$ denotes the entry of T in p).

- Examples:
- For any $n \geq 0$, consider the partition $\left(1^{n}\right):=(1,1, \ldots, 1)$ (with n entries). Then,

$$
s_{\left(1^{n}\right)}=\sum_{i_{1}<i_{2}<\cdots<i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}
$$

since the semistandard tableaux of shape $\left(1^{n}\right)$ are the fillings $\quad T=\frac{i_{1}}{i_{2}}$, with $i_{1}<i_{2}<\cdots<i_{n}$.

- Given a partition λ, we define the Schur function s_{λ} as the power series

$$
s_{\lambda}=\sum_{\substack{T \text { is a semistandard } \\ \text { tableau of shape } \lambda}} \mathrm{X}_{T}, \quad \text { where } \mathrm{x}_{T}=\prod_{p \text { is a cell of } T} x_{T(p)}
$$

(where $T(p)$ denotes the entry of T in p).

- Examples:
- For any $n \geq 0$, consider the partition $\left(1^{n}\right):=(1,1, \ldots, 1)$ (with n entries). Then,

$$
s_{\left(1^{n}\right)}=\sum_{i_{1}<i_{2}<\cdots<i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}
$$

since the semistandard tableaux of shape (1^{n}) are
the fillings $\quad T=\begin{aligned} & i_{1} \\ & i_{2}\end{aligned} \quad$ with $i_{1}<i_{2}<\cdots<i_{n}$.

This symmetric function $s_{\left(1^{n}\right)}$ is commonly called e_{n}.

- Theorem: The Schur function s_{λ} is a symmetric function (= an element of Λ) for any partition λ.
- Theorem: The family $\left(s_{\lambda}\right)_{\lambda}$ is a partition is a basis of the \mathbf{k}-module Λ.
- Theorem: The Schur function s_{λ} is a symmetric function (= an element of Λ) for any partition λ.
- Theorem: The family $\left(s_{\lambda}\right)_{\lambda}$ is a partition is a basis of the k-module Λ.
- Theorem: Fix $n \geq 0$. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ be a partition with at most n nonzero entries. Then,

$$
\begin{aligned}
& s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =\underbrace{\operatorname{det}\left(\left(x_{i}^{\lambda_{j}+n-j}\right)_{1 \leq i, j \leq n}\right)}_{\text {this is called an alternant }} / \underbrace{\operatorname{det}\left(\left(x_{i}^{n-j}\right)_{1 \leq i, j \leq n}\right)}_{=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)}
\end{aligned}
$$

$$
\text { (}=\text { the Vandermonde determinant })
$$

Here, for any $f \in \Lambda$, we let $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ denote the result of substituting 0 for $x_{n+1}, x_{n+2}, x_{n+3}, \ldots$ in f; this is a symmetric polynomial in $x_{1}, x_{2}, \ldots, x_{n}$.

- Theorem: The Schur function s_{λ} is a symmetric function (= an element of Λ) for any partition λ.
- Theorem: The family $\left(s_{\lambda}\right)_{\lambda}$ is a partition is a basis of the k-module Λ.
- Theorem: Fix $n \geq 0$. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ be a partition with at most n nonzero entries. Then,

$$
\begin{aligned}
& s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =\underbrace{\operatorname{det}\left(\left(x_{i}^{\lambda_{j}+n-j}\right)_{1 \leq i, j \leq n}\right)}_{\text {this is called an alternant }} / \underbrace{\operatorname{det}\left(\left(x_{i}^{n-j}\right)_{1 \leq i, j \leq n}\right)}_{=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)}
\end{aligned}
$$

$$
(=\text { the Vandermonde determinant })
$$

Here, for any $f \in \Lambda$, we let $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ denote the result of substituting 0 for $x_{n+1}, x_{n+2}, x_{n+3}, \ldots$ in f; this is a symmetric polynomial in $x_{1}, x_{2}, \ldots, x_{n}$.

- For proofs, see any text on symmetric functions (e.g., Stanley's EC2, or Grinberg-Reiner, or Mark Wildon's notes).
- If μ and ν are two partitions, then $s_{\mu} s_{\nu}$ belongs to Λ (since Λ is a ring)
- If μ and ν are two partitions, then $s_{\mu} s_{\nu}$ belongs to Λ (since Λ is a ring) and thus can be written in the form

$$
s_{\mu} s_{\nu}=\sum_{\lambda \text { is a partition }} c_{\mu, \nu}^{\lambda} s_{\lambda}
$$

for some $c_{\mu, \nu}^{\lambda} \in \mathbf{k}$ (since the s_{λ} form a basis of Λ).

- If μ and ν are two partitions, then $s_{\mu} s_{\nu}$ belongs to Λ (since Λ is a ring) and thus can be written in the form

$$
s_{\mu} s_{\nu}=\sum_{\lambda \text { is a partition }} c_{\mu, \nu}^{\lambda} s_{\lambda}
$$

for some $c_{\mu, \nu}^{\lambda} \in \mathbf{k}$ (since the s_{λ} form a basis of Λ).

- The coefficients $c_{\mu, \nu}^{\lambda}$ are integers, and are called the Littlewood-Richardson coefficients.
- If μ and ν are two partitions, then $s_{\mu} s_{\nu}$ belongs to Λ (since Λ is a ring) and thus can be written in the form

$$
s_{\mu} s_{\nu}=\sum_{\lambda \text { is a partition }} c_{\mu, \nu}^{\lambda} s_{\lambda}
$$

for some $c_{\mu, \nu}^{\lambda} \in \mathbf{k}$ (since the s_{λ} form a basis of Λ).

- The coefficients $c_{\mu, \nu}^{\lambda}$ are integers, and are called the Littlewood-Richardson coefficients.
- Example:

$$
\begin{aligned}
s_{(2,1)} s_{(3,1)}= & s_{(3,2,1,1)}+s_{(3,2,2)}+s_{(3,3,1)} \\
& +s_{(4,1,1,1)}+2 s_{(4,2,1)}+s_{(4,3)} \\
& +s_{(5,1,1)}+s_{(5,2)}
\end{aligned}
$$

- If μ and ν are two partitions, then $s_{\mu} s_{\nu}$ belongs to Λ (since Λ is a ring) and thus can be written in the form

$$
s_{\mu} s_{\nu}=\sum_{\lambda \text { is a partition }} c_{\mu, \nu}^{\lambda} s_{\lambda}
$$

for some $c_{\mu, \nu}^{\lambda} \in \mathbf{k}$ (since the s_{λ} form a basis of Λ).

- The coefficients $c_{\mu, \nu}^{\lambda}$ are integers, and are called the Littlewood-Richardson coefficients.
- Example:

$$
\begin{gathered}
s_{(2,1)} s_{(3,1)}=s_{(3,2,1,1)}+s_{(3,2,2)}+s_{(3,3,1)} \\
+s_{(4,1,1,1)}+2 s_{(4,2,1)}+s_{(4,3)} \\
\\
+s_{(5,1,1)}+s_{(5,2)} \\
\text { so } c_{(2,1),(3,1)}^{(4,2,1)}=2 \text { and } c_{(2,1),(3,1)}^{(3,3,1)}=1
\end{gathered}
$$

- If μ and ν are two partitions, then $s_{\mu} s_{\nu}$ belongs to Λ (since Λ is a ring) and thus can be written in the form

$$
s_{\mu} s_{\nu}=\sum_{\lambda \text { is a partition }} c_{\mu, \nu}^{\lambda} s_{\lambda}
$$

for some $c_{\mu, \nu}^{\lambda} \in \mathbf{k}$ (since the s_{λ} form a basis of Λ).

- The coefficients $c_{\mu, \nu}^{\lambda}$ are integers, and are called the Littlewood-Richardson coefficients.
- Example:

$$
\begin{aligned}
s_{(2,1)} s_{(3,1)}= & s_{(3,2,1,1)}+s_{(3,2,2)}+s_{(3,3,1)} \\
& +s_{(4,1,1,1)}+2 s_{(4,2,1)}+s_{(4,3)} \\
& +s_{(5,1,1)}+s_{(5,2)}
\end{aligned}
$$

so $c_{(2,1),(3,1)}^{(4,2,1)}=2$ and $c_{(2,1),(3,1)}^{(3,3,1)}=1$.

- Theorem: The coefficients $c_{\mu, \nu}^{\lambda}$ are nonnegative integers. Various combinatorial interpretations ("Littlewood-Richardson rules'") for them are known.

Why Littlewood-Richardson coefficients? 1

- Before we say more about Littlewood-Richardson coefficients, let us see where else they appear.
- For $\mathbf{k}=\mathbb{Z}$, the cohomology ring

$$
\mathrm{H}^{*}(\operatorname{Gr}(k, n))
$$

of the complex $\operatorname{Grassmannian~} \operatorname{Gr}(k, n)$ (of k-subspaces in \mathbb{C}^{n}) is isomorphic to

$$
\Lambda /\left(h_{n-k+1}, h_{n-k+2}, \ldots, h_{n}, e_{k+1}, e_{k+2}, e_{k+3}, \ldots\right)_{\text {ideal }}
$$

The cohomology classes corresponding to the Schur functions s_{λ} are the Schubert classes - the classes of the Schubert varieties. Roughly speaking, these subdivide $\operatorname{Gr}(k, n)$ according to the positions of the pivots in the row-reduced echelon form.

- For $\mathbf{k}=\mathbb{Z}$, the cohomology ring

$$
\mathrm{H}^{*}(\operatorname{Gr}(k, n))
$$

of the complex $\operatorname{Grassmannian~} \operatorname{Gr}(k, n)$ (of k-subspaces in \mathbb{C}^{n}) is isomorphic to

$$
\Lambda /\left(h_{n-k+1}, h_{n-k+2}, \ldots, h_{n}, e_{k+1}, e_{k+2}, e_{k+3}, \ldots\right)_{\text {ideal }}
$$

The cohomology classes corresponding to the Schur functions s_{λ} are the Schubert classes - the classes of the Schubert varieties. Roughly speaking, these subdivide $\operatorname{Gr}(k, n)$ according to the positions of the pivots in the row-reduced echelon form.

- Thus, the Littlewood-Richardson coefficients $c_{\mu, \nu}^{\lambda}$ are intersection multiplicities of these Schubert varieties.
- For $\mathbf{k}=\mathbb{Z}$, the cohomology ring

$$
\mathrm{H}^{*}(\operatorname{Gr}(k, n))
$$

of the complex Grassmannian $\operatorname{Gr}(k, n)$ (of k-subspaces in \mathbb{C}^{n}) is isomorphic to

$$
\Lambda /\left(h_{n-k+1}, h_{n-k+2}, \ldots, h_{n}, e_{k+1}, e_{k+2}, e_{k+3}, \ldots\right)_{\text {ideal }}
$$

The cohomology classes corresponding to the Schur functions s_{λ} are the Schubert classes - the classes of the Schubert varieties. Roughly speaking, these subdivide $\operatorname{Gr}(k, n)$ according to the positions of the pivots in the row-reduced echelon form.

- Thus, the Littlewood-Richardson coefficients $c_{\mu, \nu}^{\lambda}$ are intersection multiplicities of these Schubert varieties.
- For details, see:
- Laurent Manivel, Symmetric Functions, Schubert Polynomials and Degeneracy Loci, AMS/SMF 1998.

Why Littlewood-Richardson coefficients? 2

- Here is another interpretation of Littlewood-Richardson coefficients, also related to subspaces of a vector space.
- Let V be a finite-dimensional vector space.
- The Jordan type $J(A)$ of a nilpotent endomorphism $A \in$ End V is the partition $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$ with λ_{i} being the size of the i-th largest Jordan block of A.
- Let V be a finite-dimensional vector space.
- The Jordan type $J(A)$ of a nilpotent endomorphism $A \in$ End V is the partition $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$ with λ_{i} being the size of the i-th largest Jordan block of A.
- Pick a nilpotent endomorphism $A \in$ End V, and let $\lambda=J(\lambda)$ be its Jordan type. Let μ and ν be two further partitions. When is there an A-invariant vector subspace $W \subseteq V$ with

$$
J(A)=\lambda, \quad J(A \mid w)=\mu, \quad J(A / w)=\nu ?
$$

(A / W is the endomorphism of V / W induced by A.)

- Let V be a finite-dimensional vector space.
- The Jordan type $J(A)$ of a nilpotent endomorphism $A \in$ End V is the partition $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$ with λ_{i} being the size of the i-th largest Jordan block of A.
- Pick a nilpotent endomorphism $A \in$ End V, and let $\lambda=J(\lambda)$ be its Jordan type. Let μ and ν be two further partitions. When is there an A-invariant vector subspace $W \subseteq V$ with

$$
J(A)=\lambda, \quad J(A \mid w)=\mu, \quad J(A / w)=\nu ?
$$

(A / W is the endomorphism of V / W induced by A.) Precisely when $c_{\mu, \nu}^{\lambda} \neq 0$.

- Let V be a finite-dimensional vector space.
- The Jordan type $J(A)$ of a nilpotent endomorphism $A \in$ End V is the partition $\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$ with λ_{i} being the size of the i-th largest Jordan block of A.
- Pick a nilpotent endomorphism $A \in$ End V, and let $\lambda=J(\lambda)$ be its Jordan type. Let μ and ν be two further partitions. When is there an A-invariant vector subspace $W \subseteq V$ with

$$
J(A)=\lambda, \quad J(A \mid w)=\mu, \quad J(A / w)=\nu ?
$$

(A / W is the endomorphism of V / W induced by A.) Precisely when $c_{\mu, \nu}^{\lambda} \neq 0$.

- Moreover, the set of all such W is a subvariety of $\operatorname{Gr}(k, n)$, and has $c_{\mu, \nu}^{\lambda}$ irreducible components.
- For details, see:
- Marc van Leeuwen, Flag Varieties and Interpretations of Young Tableau Algorithms.
- Fix an $N \geq 0$. The irreducible polynomial representations V_{λ} of the group $\mathrm{GL}(N):=\mathrm{GL}(N, \mathbb{C})$ are indexed by partitions having $\leq N$ entries.
- Fix an $N \geq 0$. The irreducible polynomial representations V_{λ} of the group $\mathrm{GL}(N):=\mathrm{GL}(N, \mathbb{C})$ are indexed by partitions having $\leq N$ entries.
- Their characters are the Schur functions s_{λ}.
- Fix an $N \geq 0$. The irreducible polynomial representations V_{λ} of the group $\mathrm{GL}(N):=\mathrm{GL}(N, \mathbb{C})$ are indexed by partitions having $\leq N$ entries.
- Their characters are the Schur functions s_{λ}.
- The Littlewood-Richardson coefficients tell how to decompose the tensor product of two such representations:

$$
V_{\mu} \otimes V_{\nu}=\bigoplus_{\lambda} V_{\lambda}^{\oplus c_{\mu, \nu}^{\lambda}}
$$

- For details, see:
- William Fulton, Young Tableaux, CUP 1997.
- In order to formulate the classic (or, at least, best known) Littlewood-Richardson rule, we need a
- Definition:
- Two partitions $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}, \ldots\right)$ are said to satisfy $\mu \subseteq \lambda$ if each $i \geq 1$ satisfies $\mu_{i} \leq \lambda_{i}$.
(Equivalently: if the Young diagram of μ is contained in that of λ.)
- In order to formulate the classic (or, at least, best known) Littlewood-Richardson rule, we need a
- Definition:
- Two partitions $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}, \ldots\right)$ are said to satisfy $\mu \subseteq \lambda$ if each $i \geq 1$ satisfies $\mu_{i} \leq \lambda_{i}$.
- A skew partition is a pair (λ, μ) of two partitions satisfying $\mu \subseteq \lambda$. Such a pair is denoted by λ / μ.
- In order to formulate the classic (or, at least, best known) Littlewood-Richardson rule, we need a
- Definition:
- Two partitions $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}, \ldots\right)$ are said to satisfy $\mu \subseteq \lambda$ if each $i \geq 1$ satisfies $\mu_{i} \leq \lambda_{i}$.
- A skew partition is a pair (λ, μ) of two partitions satisfying $\mu \subseteq \lambda$. Such a pair is denoted by λ / μ.
- If λ / μ is a skew partition, then the Young diagram of λ / μ is obtained from the Young diagram λ when all cells of the Young diagram of μ are removed. Example: The Young diagram of $(4,2,1) /(1,1)$ is

- In order to formulate the classic (or, at least, best known) Littlewood-Richardson rule, we need a
- Definition:
- Two partitions $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$ and $\mu=\left(\mu_{1}, \mu_{2}, \mu_{3}, \ldots\right)$ are said to satisfy $\mu \subseteq \lambda$ if each $i \geq 1$ satisfies $\mu_{i} \leq \lambda_{i}$.
- A skew partition is a pair (λ, μ) of two partitions satisfying $\mu \subseteq \lambda$. Such a pair is denoted by λ / μ.
- If λ / μ is a skew partition, then the Young diagram of λ / μ is obtained from the Young diagram λ when all cells of the Young diagram of μ are removed.
- Semistandard tableaux of shape λ / μ are defined just as ones of shape λ, except that we are now only filling the cells of λ / μ.
- Littlewood-Richardson rule: Let λ, μ and ν be three partitions. Then, $c_{\mu, \nu}^{\lambda}$ is the number of semistandard tableaux T of shape λ / μ such that cont $T=\nu$ and such that $\operatorname{cont}\left(\left.T\right|_{\text {cols } \geq j}\right)$ is a partition for each j. Here,
- cont T denotes the sequence $\left(c_{1}, c_{2}, c_{3}, \ldots\right)$, where c_{i} is the number of entries equal to i in T;
- $\left.T\right|_{\text {cols } \geq j}$ is what obtained from T when the first $j-1$ columns are deleted.
- Example: $c_{(2,1),(3,1)}^{(4,2,1)}=2$ due to the two tableaux
 and

- Littlewood-Richardson rule: Let λ, μ and ν be three partitions. Then, $c_{\mu, \nu}^{\lambda}$ is the number of semistandard tableaux T of shape λ / μ such that cont $T=\nu$ and such that $\operatorname{cont}\left(\left.T\right|_{\text {cols } \geq j}\right)$ is a partition for each j. Here,
- cont T denotes the sequence $\left(c_{1}, c_{2}, c_{3}, \ldots\right)$, where c_{i} is the number of entries equal to i in T;
- $\left.T\right|_{\text {cols } \geq j}$ is what obtained from T when the first $j-1$ columns are deleted.
- Example: $c_{(2,1),(3,1)}^{(4,2,1)}=2$ due to the two tableaux
 and

- The shortest proof is due to Stembridge (using ideas by Gasharov); see John R. Stembridge, A Concise Proof of the Littlewood-Richardson Rule, 2002, or Section 2.6 in Grinberg-Reiner.

Basic properties of Littlewood-Richardson coefficients

- Gradedness: $c_{\mu, \nu}^{\lambda}=0$ unless $|\lambda|=|\mu|+|\nu|$, where $|\kappa|$ denotes the size (i.e., the sum of the entries) of a partition κ. (This is because Λ is a graded ring and the s_{λ} are homogeneous.)

Basic properties of Littlewood-Richardson coefficients

- Gradedness: $c_{\mu, \nu}^{\lambda}=0$ unless $|\lambda|=|\mu|+|\nu|$, where $|\kappa|$ denotes the size (i.e., the sum of the entries) of a partition κ. (This is because Λ is a graded ring and the s_{λ} are homogeneous.)
- Transposition symmetry: $c_{\mu, \nu}^{\lambda}=c_{\mu^{t}, \nu^{t}}^{\lambda^{t}}$, where κ^{t} denotes the transpose of a partition κ (i.e., the partition whose Young diagram is obtained from that of κ by flipping across the main diagonal).

Example:

Basic properties of Littlewood-Richardson coefficients

- Gradedness: $c_{\mu, \nu}^{\lambda}=0$ unless $|\lambda|=|\mu|+|\nu|$, where $|\kappa|$ denotes the size (i.e., the sum of the entries) of a partition κ. (This is because Λ is a graded ring and the s_{λ} are homogeneous.)
- Transposition symmetry: $c_{\mu, \nu}^{\lambda}=c_{\mu^{t}, \nu^{t}}^{\lambda^{t}}$, where κ^{t} denotes the transpose of a partition κ (i.e., the partition whose Young diagram is obtained from that of κ by flipping across the main diagonal).
- Commutativity: $c_{\mu, \nu}^{\lambda}=c_{\nu, \mu}^{\lambda}$.
(Obvious from the definition, but hard to prove combinatorially using the Littlewood-Richardson rule.)

Littlewood-Richardson coefficients: more symmetries

- Fix $n \in \mathbb{N}$. Let $\operatorname{Par}[n]$ be the set of all partitions having at most n nonzero entries.

Littlewood-Richardson coefficients: more symmetries

- Fix $n \in \mathbb{N}$. Let $\operatorname{Par}[n]$ be the set of all partitions having at most n nonzero entries.
- If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \operatorname{Par}[n]$, and if $k \geq 0$ is such that all entries of λ are $\leq k$, then $\lambda^{\vee k}$ shall denote the partition

$$
\left(k-\lambda_{n}, k-\lambda_{n-1}, \ldots, k-\lambda_{1}\right) \in \operatorname{Par}[n] .
$$

This is called the k-complement of λ.
Example: If $n=5$, then

$$
\begin{aligned}
(3,1,1)^{\vee 7} & =(3,1,1,0,0)^{\vee 7}=(7-0,7-0,7-1,7-1,7-3) \\
& =(7,7,6,6,4)
\end{aligned}
$$

Littlewood-Richardson coefficients: more symmetries

- Fix $n \in \mathbb{N}$. Let $\operatorname{Par}[n]$ be the set of all partitions having at most n nonzero entries.
- If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \operatorname{Par}[n]$, and if $k \geq 0$ is such that all entries of λ are $\leq k$, then $\lambda^{\vee k}$ shall denote the partition

$$
\left(k-\lambda_{n}, k-\lambda_{n-1}, \ldots, k-\lambda_{1}\right) \in \operatorname{Par}[n] .
$$

This is called the k-complement of λ.
Illustration: If $n=3$, then

$(3,2)^{\vee 4}=$| | |
| :--- | :--- |
| | |

- Fix $n \in \mathbb{N}$. Let $\operatorname{Par}[n]$ be the set of all partitions having at most n nonzero entries.
- If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \operatorname{Par}[n]$, and if $k \geq 0$ is such that all entries of λ are $\leq k$, then $\lambda^{\vee k}$ shall denote the partition

$$
\left(k-\lambda_{n}, k-\lambda_{n-1}, \ldots, k-\lambda_{1}\right) \in \operatorname{Par}[n] .
$$

This is called the k-complement of λ.
Illustration: If $n=3$, then

$$
(3,2)^{\vee 4}=\square{ }^{\vee 4}
$$

- Fix $n \in \mathbb{N}$. Let $\operatorname{Par}[n]$ be the set of all partitions having at most n nonzero entries.
- If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \operatorname{Par}[n]$, and if $k \geq 0$ is such that all entries of λ are $\leq k$, then $\lambda^{\vee k}$ shall denote the partition

$$
\left(k-\lambda_{n}, k-\lambda_{n-1}, \ldots, k-\lambda_{1}\right) \in \operatorname{Par}[n] .
$$

This is called the k-complement of λ.
Illustration: If $n=3$, then

$$
(3,2)^{\vee 4}=\begin{array}{|l|l|l|l|}
\hline & & & \\
\hline
\end{array}
$$

- Fix $n \in \mathbb{N}$. Let $\operatorname{Par}[n]$ be the set of all partitions having at most n nonzero entries.
- If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \operatorname{Par}[n]$, and if $k \geq 0$ is such that all entries of λ are $\leq k$, then $\lambda^{\vee k}$ shall denote the partition

$$
\left(k-\lambda_{n}, k-\lambda_{n-1}, \ldots, k-\lambda_{1}\right) \in \operatorname{Par}[n] .
$$

This is called the k-complement of λ.
Illustration: If $n=3$, then

$$
\begin{array}{rl|l|}
(3,2)^{\vee 4}= & \begin{array}{l}
\\
\\
\\
\\
\\
\\
\hline
\end{array} & \\
\hline & & \\
\hline
\end{array}
$$

- Fix $n \in \mathbb{N}$. Let $\operatorname{Par}[n]$ be the set of all partitions having at most n nonzero entries.
- If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \operatorname{Par}[n]$, and if $k \geq 0$ is such that all entries of λ are $\leq k$, then $\lambda^{\vee k}$ shall denote the partition

$$
\left(k-\lambda_{n}, k-\lambda_{n-1}, \ldots, k-\lambda_{1}\right) \in \operatorname{Par}[n] .
$$

This is called the k-complement of λ.
Illustration: If $n=3$, then

Littlewood-Richardson coefficients: more symmetries

- Fix $n \in \mathbb{N}$. Let $\operatorname{Par}[n]$ be the set of all partitions having at most n nonzero entries.
- If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \operatorname{Par}[n]$, and if $k \geq 0$ is such that all entries of λ are $\leq k$, then $\lambda^{\vee k}$ shall denote the partition

$$
\left(k-\lambda_{n}, k-\lambda_{n-1}, \ldots, k-\lambda_{1}\right) \in \operatorname{Par}[n] .
$$

This is called the k-complement of λ.
Illustration: If $n=3$, then

$$
(3,2)^{\vee 4}=(4,2,1) .
$$

- Fix $n \in \mathbb{N}$. Let $\operatorname{Par}[n]$ be the set of all partitions having at most n nonzero entries.
- If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \operatorname{Par}[n]$, and if $k \geq 0$ is such that all entries of λ are $\leq k$, then $\lambda^{\vee k}$ shall denote the partition

$$
\left(k-\lambda_{n}, k-\lambda_{n-1}, \ldots, k-\lambda_{1}\right) \in \operatorname{Par}[n] .
$$

This is called the k-complement of λ.

- Complementation symmetry I: Let $\lambda, \mu, \nu \in \operatorname{Par}[n]$ and $k \geq 0$ be such that all entries of λ, μ, ν are $\leq k$. Then,

$$
c_{\mu, \nu}^{\lambda}=c_{\nu, \mu}^{\lambda}=c_{\lambda \vee k, \nu}^{\mu^{\vee k}}=c_{\nu, \lambda \vee k}^{\mu^{\vee k}}=c_{\mu, \lambda \vee k}^{\nu^{\vee k}}=c_{\lambda \vee k, \mu}^{v^{\vee k}} .
$$

- Fix $n \in \mathbb{N}$. Let $\operatorname{Par}[n]$ be the set of all partitions having at most n nonzero entries.
- If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \operatorname{Par}[n]$, and if $k \geq 0$ is such that all entries of λ are $\leq k$, then $\lambda^{\vee k}$ shall denote the partition

$$
\left(k-\lambda_{n}, k-\lambda_{n-1}, \ldots, k-\lambda_{1}\right) \in \operatorname{Par}[n] .
$$

This is called the k-complement of λ.

- Complementation symmetry I: Let $\lambda, \mu, \nu \in \operatorname{Par}[n]$ and $k \geq 0$ be such that all entries of λ, μ, ν are $\leq k$. Then,

$$
c_{\mu, \nu}^{\lambda}=c_{\nu, \mu}^{\lambda}=c_{\lambda \vee k, \nu}^{\mu^{\vee k}}=c_{\nu, \lambda \vee k}^{\mu^{\vee k}}=c_{\mu, \lambda \vee k}^{\nu^{\vee k}}=c_{\lambda \vee k, \mu}^{\nu \vee k} .
$$

(This can be proved by applying skew Schur functions to $x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}$, or by interpreting Schur functions as fundamental classes in the cohomology of the Grassmannian. See Exercise 2.9.15 in Grinberg-Reiner for the former proof.)

- Fix $n \in \mathbb{N}$. Let $\operatorname{Par}[n]$ be the set of all partitions having at most n nonzero entries.
- If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \operatorname{Par}[n]$, and if $k \geq 0$ is such that all entries of λ are $\leq k$, then $\lambda^{\vee k}$ shall denote the partition

$$
\left(k-\lambda_{n}, k-\lambda_{n-1}, \ldots, k-\lambda_{1}\right) \in \operatorname{Par}[n] .
$$

This is called the k-complement of λ.

- Complementation symmetry I: Let $\lambda, \mu, \nu \in \operatorname{Par}[n]$ and $k \geq 0$ be such that all entries of λ, μ, ν are $\leq k$. Then,

$$
c_{\mu, \nu}^{\lambda}=c_{\nu, \mu}^{\lambda}=c_{\lambda \vee k, \nu}^{\mu^{\vee k}}=c_{\nu, \lambda \vee k}^{\mu^{\vee k}}=c_{\mu, \lambda \vee k}^{\nu^{\vee k}}=c_{\lambda \vee k, \mu}^{v^{\vee k}} .
$$

- Complementation symmetry II: Let $\lambda, \mu, \nu \in \operatorname{Par}[n]$ and $q, r \geq 0$ be such that all entries of μ are $\leq q$, and all entries of ν are $\leq r$. Then:
- If all entries of λ are $\leq q+r$, then $c_{\mu, \nu}^{\lambda}=c_{\mu \vee q, \nu \vee r}^{\lambda \vee(q+r)}$.
- If not, then $c_{\mu, \nu}^{\lambda}=0$.
(See, e.g., Exercise 2.9.16 in Grinberg-Reiner.)
- In arXiv:2004.04995, Emmanuel Briand and Mercedas Rosas have used a computer (and prior work of Rassart, Knutson and Tao, which made the problem computable) to classify all such "symmetries" of Littlewood-Richardson coefficients $c_{\mu, \nu}^{\lambda}$ with $\lambda, \mu, \nu \in \operatorname{Par}[n]$ for fixed $n \in\{3,4, \ldots, 7\}$.
- In arXiv:2004.04995, Emmanuel Briand and Mercedas Rosas have used a computer (and prior work of Rassart, Knutson and Tao, which made the problem computable) to classify all such "symmetries" of Littlewood-Richardson coefficients $c_{\mu, \nu}^{\lambda}$ with $\lambda, \mu, \nu \in \operatorname{Par}[n]$ for fixed $n \in\{3,4, \ldots, 7\}$.
- For $n \in\{4,5, \ldots, 7\}$, they only found the complementation symmetries above, as well as the trivial translation symmetries (adding 1 to each entry of λ and ν does not change $c_{\mu, \nu}^{\lambda}$; nor does adding 1 to each entry of λ and μ).
- In arXiv:2004.04995, Emmanuel Briand and Mercedas Rosas have used a computer (and prior work of Rassart, Knutson and Tao, which made the problem computable) to classify all such "symmetries" of Littlewood-Richardson coefficients $c_{\mu, \nu}^{\lambda}$ with $\lambda, \mu, \nu \in \operatorname{Par}[n]$ for fixed $n \in\{3,4, \ldots, 7\}$.
- For $n \in\{4,5, \ldots, 7\}$, they only found the complementation symmetries above, as well as the trivial translation symmetries (adding 1 to each entry of λ and ν does not change $c_{\mu, \nu}^{\lambda}$; nor does adding 1 to each entry of λ and μ).
- For $n=3$, they found an extra symmetry:

$$
c_{\left(\mu_{1}, \mu_{2}\right),\left(\nu_{1}, \nu_{2}\right)}^{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}=c_{\left(\mu_{1}+\nu_{1}-\lambda_{2}, \mu_{2}+\nu_{1}-\lambda_{2}\right),\left(\lambda_{2}, \nu_{2}\right)}^{\left(\lambda_{1}, \nu_{1}, \lambda_{3}\right)} .
$$

(Read the right hand side as 0 if the tuples are not partitions.)

- In arXiv:2004.04995, Emmanuel Briand and Mercedas Rosas have used a computer (and prior work of Rassart, Knutson and Tao, which made the problem computable) to classify all such "symmetries" of Littlewood-Richardson coefficients $c_{\mu, \nu}^{\lambda}$ with $\lambda, \mu, \nu \in \operatorname{Par}[n]$ for fixed $n \in\{3,4, \ldots, 7\}$.
- For $n \in\{4,5, \ldots, 7\}$, they only found the complementation symmetries above, as well as the trivial translation symmetries (adding 1 to each entry of λ and ν does not change $c_{\mu, \nu}^{\lambda}$; nor does adding 1 to each entry of λ and μ).
- For $n=3$, they found an extra symmetry:

$$
c_{\left(\mu_{1}, \mu_{2}\right),\left(\nu_{1}, \nu_{2}\right)}^{\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}=c_{\left(\mu_{1}+\nu_{1}-\lambda_{2}, \mu_{2}+\nu_{1}-\lambda_{2}\right),\left(\lambda_{2}, \nu_{2}\right)}^{\left(\lambda_{1}\right) .} .
$$

(Read the right hand side as 0 if the tuples are not partitions.) Question: Is there a non-computer proof? What is the meaning of this identity?

Chapter 2

Chapter 2

The Pelletier-Ressayre symmetry

References (among many):

- Darij Grinberg, The Pelletier-Ressayre hidden symmetry for Littlewood-Richardson coefficients, arXiv:2008.06128.
- Maxime Pelletier, Nicolas Ressayre, Some unexpected properties of Littlewood-Richardson coefficients, arXiv:2005.09877.
- Robert Coquereaux, Jean-Bernard Zuber, On sums of tensor and fusion multiplicities, 2011.
- Theorem (Coquereaux and Zuber, 2011): Let $n \geq 0$ and $\mu, \nu \in \operatorname{Par}[n]$. Let $k \geq 0$ be such that all entries of μ are $\leq k$. Then,

$$
\sum_{\lambda \in \operatorname{Par}[n]} c_{\mu, \nu}^{\lambda}=\sum_{\lambda \in \operatorname{Par}[n]} c_{\mu^{\vee k}, \nu}^{\lambda} .
$$

(See https://mathoverflow.net/a/236220/for a hint at a combinatorial proof.)

- Theorem (Coquereaux and Zuber, 2011): Let $n \geq 0$ and $\mu, \nu \in \operatorname{Par}[n]$. Let $k \geq 0$ be such that all entries of μ are $\leq k$. Then,

$$
\sum_{\lambda \in \operatorname{Par}[n]} c_{\mu, \nu}^{\lambda}=\sum_{\lambda \in \operatorname{Par}[n]} c_{\mu^{\vee k}, \nu}^{\lambda} .
$$

- This can be interpreted in terms of Schur polynomials. For any $\lambda \in \operatorname{Par}[n]$, the Schur polynomial $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the symmetric polynomial

$$
\begin{aligned}
& s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =\underbrace{\operatorname{det}\left(\left(x_{i}^{\lambda_{j}+n-j}\right)_{1 \leq i, j \leq n}\right)}_{\text {this is called an alternant }} / \underbrace{\operatorname{det}\left(\left(x_{i}^{n-j}\right)_{1 \leq i, j \leq n}\right)}_{=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)}
\end{aligned}
$$

in $x_{1}, x_{2}, \ldots, x_{n}$ obtained by setting
$x_{n+1}=x_{n+2}=x_{n+3}=\cdots=0$ in s_{λ}.

- Theorem (Coquereaux and Zuber, 2011): Let $n \geq 0$ and $\mu, \nu \in \operatorname{Par}[n]$. Let $k \geq 0$ be such that all entries of μ are $\leq k$. Then,

$$
\sum_{\lambda \in \operatorname{Par}[n]} c_{\mu, \nu}^{\lambda}=\sum_{\lambda \in \operatorname{Par}[n]} c_{\mu^{\vee k}, \nu}^{\lambda} .
$$

- This can be interpreted in terms of Schur polynomials. For any $\lambda \in \operatorname{Par}[n]$, the Schur polynomial $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is the symmetric polynomial

$$
s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

- The family $\left(s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)_{\lambda \in \operatorname{Par}[n]}$ is a basis of the \mathbf{k}-module of symmetric polynomials in $x_{1}, x_{2}, \ldots, x_{n}$. We call it the Schur basis.
- The theorem of Coquereaux and Zuber says that

$$
\begin{aligned}
& \operatorname{coeffsum}\left(s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \\
& =\operatorname{coeffsum}\left(s_{\mu^{\vee k}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

where coeffsum f denotes the sum of all coefficients in the expansion of a symmetric polynomial f in the Schur basis.

- The theorem of Coquereaux and Zuber says that

$$
\begin{aligned}
& \operatorname{coeffsum}\left(s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \\
& =\operatorname{coeffsum}\left(s_{\mu^{\vee k}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

where coeffsum f denotes the sum of all coefficients in the expansion of a symmetric polynomial f in the Schur basis.

- So the products

$$
\begin{aligned}
& \quad s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \text { and } s_{\mu^{\vee k}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

have the same sum of coefficients when expanded in the Schur basis. Do they also have the same multiset of coefficients?

- The theorem of Coquereaux and Zuber says that

$$
\begin{aligned}
& \operatorname{coeffsum}\left(s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \\
& =\operatorname{coeffsum}\left(s_{\mu^{\vee k}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right),
\end{aligned}
$$

where coeffsum f denotes the sum of all coefficients in the expansion of a symmetric polynomial f in the Schur basis.

- So the products

$$
\begin{aligned}
& \quad s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \text { and } s_{\mu \vee k}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

have the same sum of coefficients when expanded in the Schur basis. Do they also have the same multiset of coefficients?
No.
(Counterexample: $n=5$ and $\mu=(5,2,1)$ and $\nu=(4,2,2)$.)

- The theorem of Coquereaux and Zuber says that

$$
\begin{aligned}
& \operatorname{coeffsum}\left(s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right) \\
& =\operatorname{coeffsum}\left(s_{\mu^{\vee k}}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right),
\end{aligned}
$$

where coeffsum f denotes the sum of all coefficients in the expansion of a symmetric polynomial f in the Schur basis.

- So the products

$$
\begin{aligned}
& \quad s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \text { and } s_{\mu \vee k}\left(x_{1}, x_{2}, \ldots, x_{n}\right) s_{\nu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

have the same sum of coefficients when expanded in the Schur basis. Do they also have the same multiset of coefficients?
No.
(Counterexample: $n=5$ and $\mu=(5,2,1)$ and $\nu=(4,2,2)$.)
Question: Does this hold for $n \leq 4$? (Proved for $n=3$.)

- Conjecture (Pelletier and Ressayre, 2020): It does hold when μ is near-rectangular - i.e., when $\mu=\left(a+b, a^{n-2}\right)$ for some $a, b \geq 0$. Here, a^{n-2} means $\underbrace{a, a, \ldots, a}_{n-2 \text { times }}$.
In this case, for $k=a+b$, we have $\mu^{\vee k}=\left(a+b, b^{n-2}\right)$.
(Taking k higher makes no real difference.)
- Conjecture (Pelletier and Ressayre, 2020): It does hold when μ is near-rectangular - i.e., when $\mu=\left(a+b, a^{n-2}\right)$ for some $a, b \geq 0$. Here, a^{n-2} means $\underbrace{a, a, \ldots, a}_{n-2 \text { times }}$.
In this case, for $k=a+b$, we have $\mu^{\vee k}=\left(a+b, b^{n-2}\right)$.
(Taking k higher makes no real difference.)
- In other words:

Conjecture (Pelletier and Ressayre, 2020): Let $n \geq 0$ and $\nu \in \operatorname{Par}[n]$. Let $a, b \geq 0$. Let $\alpha=\left(a+b, a^{n-2}\right)$ and $\beta=\left(a+b, b^{n-2}\right)$. Then,

$$
\left\{c_{\alpha, \nu}^{\lambda} \mid \lambda \in \operatorname{Par}[n]\right\}_{\text {multiset }}=\left\{c_{\beta, \nu}^{\lambda} \mid \lambda \in \operatorname{Par}[n]\right\}_{\text {multiset }} .
$$

- Conjecture (Pelletier and Ressayre, 2020): It does hold when μ is near-rectangular - i.e., when $\mu=\left(a+b, a^{n-2}\right)$ for some $a, b \geq 0$. Here, a^{n-2} means $\underbrace{a, a, \ldots, a}_{n-2 \text { times }}$.
In this case, for $k=a+b$, we have $\mu^{\vee k}=\left(a+b, b^{n-2}\right)$.
(Taking k higher makes no real difference.)
- In other words:

Conjecture (Pelletier and Ressayre, 2020): Let $n \geq 0$ and $\nu \in \operatorname{Par}[n]$. Let $a, b \geq 0$. Let $\alpha=\left(a+b, a^{n-2}\right)$ and $\beta=\left(a+b, b^{n-2}\right)$. Then,

$$
\left\{c_{\alpha, \nu}^{\lambda} \mid \lambda \in \operatorname{Par}[n]\right\}_{\text {multiset }}=\left\{c_{\beta, \nu}^{\lambda} \mid \lambda \in \operatorname{Par}[n]\right\}_{\text {multiset }}
$$

- This means that there should be a bijection $\varphi: \operatorname{Par}[n] \rightarrow \operatorname{Par}[n]$ such that

$$
c_{\alpha, \nu}^{\lambda}=c_{\beta, \nu}^{\varphi(\lambda)} \quad \text { for each } \lambda \in \operatorname{Par}[n]
$$

- Conjecture (Pelletier and Ressayre, 2020): Let $n \geq 0$ and $\nu \in \operatorname{Par}[n]$. Let $a, b \geq 0$. Let $\alpha=\left(a+b, a^{n-2}\right)$ and $\beta=\left(a+b, b^{n-2}\right)$. Then, there is a bijection $\varphi: \operatorname{Par}[n] \rightarrow \operatorname{Par}[n]$ such that

$$
c_{\alpha, \nu}^{\lambda}=c_{\beta, \nu}^{\varphi(\lambda)} \quad \text { for each } \lambda \in \operatorname{Par}[n] .
$$

- Conjecture (Pelletier and Ressayre, 2020): Let $n \geq 0$ and $\nu \in \operatorname{Par}[n]$. Let $a, b \geq 0$. Let $\alpha=\left(a+b, a^{n-2}\right)$ and $\beta=\left(a+b, b^{n-2}\right)$. Then, there is a bijection $\varphi: \operatorname{Par}[n] \rightarrow \operatorname{Par}[n]$ such that

$$
c_{\alpha, \nu}^{\lambda}=c_{\beta, \nu}^{\varphi(\lambda)} \quad \text { for each } \lambda \in \operatorname{Par}[n] .
$$

- Theorem (G., 2020): This is true. Moreover, this bijection φ can more or less be defined explicitly in terms of maxima of sums of entries of λ and ν.
("More or less" means that we find a bijection $\varphi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$, not $\varphi: \operatorname{Par}[n] \rightarrow \operatorname{Par}[n]$, where we set $c_{\alpha, \nu}^{\lambda}=c_{\beta, \nu}^{\lambda}=0$ for all $\left.\lambda \in \mathbb{Z}^{n} \backslash \operatorname{Par}[n].\right)$
- Conjecture (Pelletier and Ressayre, 2020): Let $n \geq 0$ and $\nu \in \operatorname{Par}[n]$. Let $a, b \geq 0$. Let $\alpha=\left(a+b, a^{n-2}\right)$ and $\beta=\left(a+b, b^{n-2}\right)$. Then, there is a bijection $\varphi: \operatorname{Par}[n] \rightarrow \operatorname{Par}[n]$ such that

$$
c_{\alpha, \nu}^{\lambda}=c_{\beta, \nu}^{\varphi(\lambda)} \quad \text { for each } \lambda \in \operatorname{Par}[n]
$$

- Theorem (G., 2020): This is true. Moreover, this bijection φ can more or less be defined explicitly in terms of maxima of sums of entries of λ and ν.
("More or less" means that we find a bijection $\varphi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$, not $\varphi: \operatorname{Par}[n] \rightarrow \operatorname{Par}[n]$, where we set $c_{\alpha, \nu}^{\lambda}=c_{\beta, \nu}^{\lambda}=0$ for all $\left.\lambda \in \mathbb{Z}^{n} \backslash \operatorname{Par}[n].\right)$
- The rest of this talk will sketch how this bijection φ was found.
- First, we notice that

$$
\begin{aligned}
& \begin{aligned}
\alpha & =\left(a+b, a^{n-2}\right)=\left(a+b, a^{n-2}, 0\right) \\
& =\left(b, 0^{n-2},-a\right)+a
\end{aligned} \\
& \text { (where " }+a^{\prime \prime} \text { means "add a to each entry"). }
\end{aligned}
$$

- First, we notice that

$$
\begin{aligned}
\alpha & =\left(a+b, a^{n-2}\right)=\left(a+b, a^{n-2}, 0\right) \\
& =\left(b, 0^{n-2},-a\right)+a
\end{aligned}
$$

(where " $+a$ " means "add a to each entry").
Likewise, $\beta=\left(a, 0^{n-2},-b\right)+b$.

- First, we notice that

$$
\begin{aligned}
\alpha & =\left(a+b, a^{n-2}\right)=\left(a+b, a^{n-2}, 0\right) \\
& =\left(b, 0^{n-2},-a\right)+a
\end{aligned}
$$

(where " $+a$ " means "add a to each entry").
Likewise, $\beta=\left(a, 0^{n-2},-b\right)+b$.

- This suggest allowing "partitions with negative entries". We call them snakes.
- First, we notice that

$$
\begin{aligned}
\alpha & =\left(a+b, a^{n-2}\right)=\left(a+b, a^{n-2}, 0\right) \\
& =\left(b, 0^{n-2},-a\right)+a
\end{aligned}
$$

(where " $+a$ " means "add a to each entry").
Likewise, $\beta=\left(a, 0^{n-2},-b\right)+b$.

- This suggest allowing "partitions with negative entries". We call them snakes.
- Formally: A snake will mean an n-tuple $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Thus,

$$
\operatorname{Par}[n] \subseteq\{\text { snakes }\} \subseteq \mathbb{Z}^{n}
$$

- First, we notice that

$$
\begin{aligned}
\alpha & =\left(a+b, a^{n-2}\right)=\left(a+b, a^{n-2}, 0\right) \\
& =\left(b, 0^{n-2},-a\right)+a
\end{aligned}
$$

(where " $+a$ " means "add a to each entry").
Likewise, $\beta=\left(a, 0^{n-2},-b\right)+b$.

- This suggest allowing "partitions with negative entries". We call them snakes.
- Formally: A snake will mean an n-tuple $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Thus,

$$
\operatorname{Par}[n] \subseteq\{\text { snakes }\} \subseteq \mathbb{Z}^{n}
$$

- Snakes index rational representations of $\mathrm{GL}(n)$: See John R. Stembridge, Rational tableaux and the tensor algebra of $\mathfrak{g l}_{n}$, 1987.
- First, we notice that

$$
\begin{align*}
\alpha & =\left(a+b, a^{n-2}\right)=\left(a+b, a^{n-2}, 0\right) \\
& =\left(b, 0^{n-2},-a\right)+a
\end{align*}
$$

(where " $+a$ " means "add a to each entry").
Likewise, $\beta=\left(a, 0^{n-2},-b\right)+b$.

- This suggest allowing "partitions with negative entries". We call them snakes.
- Formally: A snake will mean an n-tuple $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{Z}^{n}$ with $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Thus,

$$
\operatorname{Par}[n] \subseteq\{\text { snakes }\} \subseteq \mathbb{Z}^{n}
$$

- If $\lambda \in \mathbb{Z}^{n}$ is any n-tuple, then
- we let λ_{i} denote the i-th entry of λ (for any i);
- we let $\lambda+a$ denote the n-tuple

$$
\left(\lambda_{1}+a, \lambda_{2}+a, \ldots, \lambda_{n}+a\right)
$$

- we let λ - a denote the n-tuple

$$
\left(\lambda_{1}-a, \lambda_{2}-a, \ldots, \lambda_{n}-a\right)
$$

Schur Laurent polynomials

- We have defined a Schur polynomial $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ for any $\lambda \in \operatorname{Par}[n]$. We now denote it by \bar{s}_{λ}.

Schur Laurent polynomials

- We have defined a Schur polynomial $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ for any $\lambda \in \operatorname{Par}[n]$. We now denote it by \bar{s}_{λ}.
- It is easy to see that

$$
\bar{s}_{\lambda+a}=\left(x_{1} x_{2} \cdots x_{n}\right)^{a} \bar{s}_{\lambda} \quad \text { for any } \lambda \in \operatorname{Par}[n] \text { and } a \geq 0
$$

- We have defined a Schur polynomial $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ for any $\lambda \in \operatorname{Par}[n]$. We now denote it by \bar{s}_{λ}.
- It is easy to see that

$$
\bar{s}_{\lambda+a}=\left(x_{1} x_{2} \cdots x_{n}\right)^{a} \bar{s}_{\lambda} \quad \text { for any } \lambda \in \operatorname{Par}[n] \text { and } a \geq 0
$$

- This allows us to extend the definition of \bar{s}_{λ} from the case $\lambda \in \operatorname{Par}[n]$ to the more general case $\lambda \in\{$ snakes $\}:$
If λ is a snake, then we choose some $a \geq 0$ such that $\lambda+a \in \operatorname{Par}[n]$, and define

$$
\bar{s}_{\lambda}=\left(x_{1} x_{2} \cdots x_{n}\right)^{-a} \bar{s}_{\lambda+a} .
$$

This is a Laurent polynomial in $\mathbf{k}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$.

- We have defined a Schur polynomial $s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbf{k}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ for any $\lambda \in \operatorname{Par}[n]$. We now denote it by \bar{s}_{λ}.
- It is easy to see that

$$
\bar{s}_{\lambda+a}=\left(x_{1} x_{2} \cdots x_{n}\right)^{a} \bar{s}_{\lambda} \quad \text { for any } \lambda \in \operatorname{Par}[n] \text { and } a \geq 0
$$

- This allows us to extend the definition of \bar{s}_{λ} from the case $\lambda \in \operatorname{Par}[n]$ to the more general case $\lambda \in\{$ snakes $\}:$
If λ is a snake, then we choose some $a \geq 0$ such that $\lambda+a \in \operatorname{Par}[n]$, and define

$$
\bar{s}_{\lambda}=\left(x_{1} x_{2} \cdots x_{n}\right)^{-a} \bar{s}_{\lambda+a} .
$$

This is a Laurent polynomial in $\mathbf{k}\left[x_{1}^{ \pm 1}, x_{2}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$.

- Alternatively, we can define \bar{s}_{λ} explicitly by

$$
\bar{s}_{\lambda}=\operatorname{det}\left(\left(x_{i}^{\lambda_{j}+n-j}\right)_{1 \leq i, j \leq n}\right) / \operatorname{det}\left(\left(x_{i}^{n-j}\right)_{1 \leq i, j \leq n}\right)
$$

(same formula as before).

\bar{s}_{α} and \bar{s}_{β} revealed

- For any $k \geq 0$, define the two Laurent polynomials

$$
\begin{aligned}
& h_{k}^{+}=h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& h_{k}^{-}=h_{k}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right) .
\end{aligned}
$$

(Recall: $h_{k}=s_{(k)}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{k}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}$. .)

\bar{s}_{α} and \bar{s}_{β} revealed

- For any $k \geq 0$, define the two Laurent polynomials

$$
\begin{aligned}
& h_{k}^{+}=h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}, \\
& h_{k}^{-}=h_{k}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right)=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n} x_{i_{1}}^{-1} x_{i_{2}}^{-1} \cdots x_{i_{k}}^{-1} .
\end{aligned}
$$

\bar{s}_{α} and \bar{s}_{β} revealed

- For any $k \geq 0$, define the two Laurent polynomials

$$
\begin{aligned}
& h_{k}^{+}=h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}, \\
& h_{k}^{-}=h_{k}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right)=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n} x_{i_{1}}^{-1} x_{i_{2}}^{-1} \cdots x_{i_{k}}^{-1} .
\end{aligned}
$$

- Proposition: Let $a, b \geq 0$. Then,

$$
\bar{s}_{\left(b, 0^{n-2},-a\right)}=h_{a}^{-} h_{b}^{+}-h_{a-1}^{-} h_{b-1}^{+} .
$$

\bar{s}_{α} and \bar{s}_{β} revealed

- For any $k \geq 0$, define the two Laurent polynomials

$$
\begin{aligned}
& h_{k}^{+}=h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}, \\
& h_{k}^{-}=h_{k}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right)=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n} x_{i_{1}}^{-1} x_{i_{2}}^{-1} \cdots x_{i_{k}}^{-1} .
\end{aligned}
$$

- Proposition: Let $a, b \geq 0$. Then,

$$
\bar{s}_{\left(b, 0^{n-2},-a\right)}=h_{a}^{-} h_{b}^{+}-h_{a-1}^{-} h_{b-1}^{+} .
$$

- Corollary: Let $a, b \geq 0$. Let $\alpha=\left(a+b, a^{n-2}\right)$ and $\beta=\left(a+b, b^{n-2}\right)$. Then,

$$
\begin{aligned}
& \bar{s}_{\alpha}=\left(x_{1} x_{2} \cdots x_{n}\right)^{a} \cdot\left(h_{a}^{-} h_{b}^{+}-h_{a-1}^{-} h_{b-1}^{+}\right) ; \\
& \bar{s}_{\beta}=\left(x_{1} x_{2} \cdots x_{n}\right)^{b} \cdot\left(h_{b}^{-} h_{a}^{+}-h_{b-1}^{-} h_{a-1}^{+}\right) .
\end{aligned}
$$

\bar{s}_{α} and \bar{s}_{β} revealed

- For any $k \geq 0$, define the two Laurent polynomials

$$
\begin{aligned}
& h_{k}^{+}=h_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}, \\
& h_{k}^{-}=h_{k}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right)=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{k} \leq n} x_{i_{1}}^{-1} x_{i_{2}}^{-1} \cdots x_{i_{k}}^{-1} .
\end{aligned}
$$

- Proposition: Let $a, b \geq 0$. Then,

$$
\bar{s}_{\left(b, 0^{n-2},-a\right)}=h_{a}^{-} h_{b}^{+}-h_{a-1}^{-} h_{b-1}^{+} .
$$

- Corollary: Let $a, b \geq 0$. Let $\alpha=\left(a+b, a^{n-2}\right)$ and $\beta=\left(a+b, b^{n-2}\right)$. Then,

$$
\begin{aligned}
& \bar{s}_{\alpha}=\left(x_{1} x_{2} \cdots x_{n}\right)^{a} \cdot\left(h_{a}^{-} h_{b}^{+}-h_{a-1}^{-} h_{b-1}^{+}\right) ; \\
& \bar{s}_{\beta}=\left(x_{1} x_{2} \cdots x_{n}\right)^{b} \cdot\left(h_{b}^{-} h_{a}^{+}-h_{b-1}^{-} h_{a-1}^{+}\right) .
\end{aligned}
$$

- Thus, if we "know how to multiply by" h_{k}^{-}and h_{k}^{+}, then we "know how to multiply by" $\overline{\boldsymbol{s}}_{\alpha}$ and $\overline{\boldsymbol{s}}_{\beta}$.

Multiplying by h_{k}^{+}: the h-Pieri rule, 1

- Theorem (h-Pieri rule): Let λ be a partition. Let $k \in \mathbb{Z}$. Then,

$$
h_{k} \cdot s_{\lambda}=\sum_{\substack{\mu \text { is a partition; } \\|\mu|-|\lambda|=k ; \\ \mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq \lambda_{2} \geq \cdots}} s_{\mu} .
$$

Here:

- We let $h_{k}=0$ if $k<0$. (And we recall that $h_{0}=1$.)
- We let $|\kappa|$ denote the size (i.e., the sum of the entries) of any partition κ.
- The i-th entry of a partition κ is denoted by κ_{i}.

Multiplying by h_{k}^{+}: the h-Pieri rule, 1

- Theorem (h-Pieri rule): Let λ be a partition. Let $k \in \mathbb{Z}$. Then,

$$
h_{k} \cdot s_{\lambda}=\sum_{\substack{\mu \text { is a partition; } \\|\mu|-|\lambda|=k ; \\ \mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq \lambda_{2} \geq \cdots}} s_{\mu}
$$

Here:

- We let $h_{k}=0$ if $k<0$. (And we recall that $h_{0}=1$.)
- We let $|\kappa|$ denote the size (i.e., the sum of the entries) of any partition κ.
- The i-th entry of a partition κ is denoted by κ_{i}.
- Note that the chain of inequalities $\mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq \lambda_{2} \geq \cdots$ is saying that the diagram μ / λ is a horizontal strip (i.e., has no two cells in the same column). For example,

Multiplying by h_{k}^{+}: the h-Pieri rule, 1

- Theorem (h-Pieri rule): Let λ be a partition. Let $k \in \mathbb{Z}$. Then,

$$
h_{k} \cdot s_{\lambda}=\sum_{\substack{\mu \text { is a partition; } \\|\mu|-|\lambda|=k ; \\ \mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq \lambda_{2} \geq \cdots}} s_{\mu}
$$

Here:

- We let $h_{k}=0$ if $k<0$. (And we recall that $h_{0}=1$.)
- We let $|\kappa|$ denote the size (i.e., the sum of the entries) of any partition κ.
- The i-th entry of a partition κ is denoted by κ_{i}.
- The Pieri rule is actually a particular case of the Littlewood-Richardson rule (exercise!).

Multiplying by h_{k}^{+}: the h-Pieri rule, 1

- Theorem (h-Pieri rule): Let λ be a partition. Let $k \in \mathbb{Z}$. Then,

$$
h_{k} \cdot s_{\lambda}=\sum_{\substack{\mu \text { is a partition; } \\|\mu|-|\lambda|=k ; \\ \mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq \lambda_{2} \geq \cdots}} s_{\mu}
$$

Here:

- We let $h_{k}=0$ if $k<0$. (And we recall that $h_{0}=1$.)
- We let $|\kappa|$ denote the size (i.e., the sum of the entries) of any partition κ.
- The i-th entry of a partition κ is denoted by κ_{i}.
- By evaluating both sides at $x_{1}, x_{2}, \ldots, x_{n}$ (and recalling that $s_{\mu}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ whenever μ is a partition with more than n nonzero entries), we obtain:

Multiplying by h_{k}^{+}: the h-Pieri rule, 2

- Theorem (h^{+}-Pieri rule for symmetric polynomials): Let $\lambda \in \operatorname{Par}[n]$. Let $k \in \mathbb{Z}$. Then,

$$
h_{k}^{+} \cdot \bar{s}_{\lambda}=\sum_{\substack{\mu \in \operatorname{Par}[n] ; \\|\mu|-| |=k ; \\ \mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq \lambda_{2} \geq \cdots \geq \mu_{n} \geq \lambda_{n}}} \bar{s}_{\mu} .
$$

Here:

- We let $|\kappa|$ denote the size (i.e., the sum of the entries) of any n-tuple κ.
- The i-th entry of an n-tuple κ is denoted by κ_{i}.

Multiplying by h_{k}^{+}: the h-Pieri rule, 2

- Theorem (h^{+}-Pieri rule for symmetric polynomials): Let $\lambda \in \operatorname{Par}[n]$. Let $k \in \mathbb{Z}$. Then,

$$
h_{k}^{+} \cdot \bar{s}_{\lambda}=\sum_{\substack{\mu \in \operatorname{Par}[n] ; \\|\mu|-|\lambda|=k ; \\ \mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq \lambda_{2} \geq \cdots \geq \mu_{n} \geq \lambda_{n}}} \bar{s}_{\mu} .
$$

Here:

- We let $|\kappa|$ denote the size (i.e., the sum of the entries) of any n-tuple κ.
- The i-th entry of an n-tuple κ is denoted by κ_{i}.
- We can easily extend this from Par [n] to \{snakes\}, and obtain the following:

Multiplying by h_{k}^{+}: the h-Pieri rule, 3

- Theorem (h^{+}-Pieri rule for Laurent polynomials): Let $\lambda \in\{$ snakes $\}$. Let $k \in \mathbb{Z}$. Then,

$$
h_{k}^{+} \cdot \bar{s}_{\lambda}=\sum_{\substack{\mu \in\{\text { snakes }\} ; \\|\mu|-|\lambda|=k ; \\ \mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq \lambda_{2} \geq \cdots \geq \mu_{n} \geq \lambda_{n}}} \bar{s}_{\mu}
$$

Here:

- We let $|\kappa|$ denote the size (i.e., the sum of the entries) of any n-tuple κ.
- The i-th entry of an n-tuple κ is denoted by κ_{i}.

Multiplying by h_{k}^{+}: the h-Pieri rule, 3

- Theorem (h^{+}-Pieri rule for Laurent polynomials): Let $\lambda \in\{$ snakes $\}$. Let $k \in \mathbb{Z}$. Then,

$$
h_{k}^{+} \cdot \bar{s}_{\lambda}=\sum_{\substack{\mu \in\{\text { snakes }\} ; \\|\mu|-|\lambda|=k ; \\ \mu-\lambda}} \bar{s}_{\mu} .
$$

Here:

- We let $|\kappa|$ denote the size (i.e., the sum of the entries) of any n-tuple κ.
- The i-th entry of an n-tuple κ is denoted by κ_{i}.
- The notation $\mu \rightharpoonup \lambda$ stands for $\mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq \lambda_{2} \geq \cdots \geq \mu_{n} \geq \lambda_{n}$.
(Note that if $\lambda, \mu \in \mathbb{Z}^{n}$ satisfy $\mu \rightharpoonup \lambda$, then λ and μ are snakes automatically.)

Multiplying by h_{k}^{+}: the h-Pieri rule, 3

- Theorem (h^{+}-Pieri rule for Laurent polynomials): Let $\lambda \in\{$ snakes $\}$. Let $k \in \mathbb{Z}$. Then,

$$
h_{k}^{+} \cdot \bar{s}_{\lambda}=\sum_{\substack{\mu \in\{\text { snakes }\} ; \\|\mu|-|\lambda|=k ; \\ \mu \rightarrow \lambda}} \bar{s}_{\mu} .
$$

Here:

- We let $|\kappa|$ denote the size (i.e., the sum of the entries) of any n-tuple κ.
- The i-th entry of an n-tuple κ is denoted by κ_{i}.
- The notation $\mu \rightharpoonup \lambda$ stands for $\mu_{1} \geq \lambda_{1} \geq \mu_{2} \geq \lambda_{2} \geq \cdots \geq \mu_{n} \geq \lambda_{n}$. (Note that if $\lambda, \mu \in \mathbb{Z}^{n}$ satisfy $\mu \rightharpoonup \lambda$, then λ and μ are snakes automatically.)
- So we know how to multiply \bar{s}_{λ} by h_{k}^{+}. What about h_{k}^{-}?
- Theorem (h^{-}-Pieri rule for Laurent polynomials): Let $\lambda \in\{$ snakes $\}$. Let $k \in \mathbb{Z}$. Then,

$$
h_{k}^{-} \cdot \bar{s}_{\lambda}=\sum_{\substack{\mu \in\{\text { snakes }\} ; \\|\lambda|-|\mu|=k ; \\ \lambda \rightarrow \mu}} \bar{s}_{\mu} .
$$

- Theorem (h^{-}-Pieri rule for Laurent polynomials): Let $\lambda \in\{$ snakes $\}$. Let $k \in \mathbb{Z}$. Then,

$$
h_{k}^{-} \cdot \bar{s}_{\lambda}=\sum_{\substack{\mu \in\{\text { snakes }\} ; \\|\lambda|-|\mu|=k ; \\ \lambda \rightarrow \mu}} \bar{s}_{\mu} .
$$

- This follows from the h^{+}-Pieri rule by substituting $x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}$ for $x_{1}, x_{2}, \ldots, x_{n}$, using the following fact:
Proposition: For any snake λ, we have

$$
\bar{s}_{\lambda \vee}=\bar{s}_{\lambda}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right) .
$$

Here, λ^{\vee} denotes the snake $\left(-\lambda_{n},-\lambda_{n-1}, \ldots,-\lambda_{1}\right.$) (formerly denoted by $\lambda^{\vee 0}$, but now defined for any snake λ).

- Theorem (h^{-}-Pieri rule for Laurent polynomials): Let $\lambda \in\{$ snakes $\}$. Let $k \in \mathbb{Z}$. Then,

$$
h_{k}^{-} \cdot \bar{s}_{\lambda}=\sum_{\substack{\mu \in\{\text { snakes }\} ; \\|\lambda|-|\mu|=k ; \\ \lambda \rightarrow \mu}} \bar{s}_{\mu} .
$$

- This follows from the h^{+}-Pieri rule by substituting $x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}$ for $x_{1}, x_{2}, \ldots, x_{n}$, using the following fact:
Proposition: For any snake λ, we have

$$
\bar{s}_{\lambda \vee}=\bar{s}_{\lambda}\left(x_{1}^{-1}, x_{2}^{-1}, \ldots, x_{n}^{-1}\right) .
$$

Here, λ^{\vee} denotes the snake $\left(-\lambda_{n},-\lambda_{n-1}, \ldots,-\lambda_{1}\right.$) (formerly denoted by $\lambda^{\vee 0}$, but now defined for any snake λ).

- So we now know how to multiply \bar{s}_{λ} by h_{k}^{-}.

Back to the conjecture

- A consequence of the above:

Corollary: Let μ be a snake. Let $a, b \in \mathbb{Z}$. Then,

$$
h_{a}^{-} h_{b}^{+} \overline{\mathbf{s}}_{\mu}=\sum_{\gamma \text { is a snake }}\left|R_{\mu, a, b}(\gamma)\right| \bar{s}_{\gamma},
$$

where $R_{\mu, a, b}(\gamma)$ is the set of all snakes ν satisfying
$\mu \rightharpoonup \nu \quad$ and $\quad|\mu|-|\nu|=a \quad$ and $\quad \gamma \rightharpoonup \nu \quad$ and $\quad|\gamma|-|\nu|=b$.

Back to the conjecture

- A consequence of the above:

Corollary: Let μ be a snake. Let $a, b \in \mathbb{Z}$. Then,

$$
h_{a}^{-} h_{b}^{+} \bar{s}_{\mu}=\sum_{\gamma \text { is a snake }}\left|R_{\mu, a, b}(\gamma)\right| \bar{s}_{\gamma}
$$

where $\boldsymbol{R}_{\mu, a, b}(\gamma)$ is the set of all snakes ν satisfying
$\mu \rightharpoonup \nu \quad$ and $\quad|\mu|-|\nu|=a \quad$ and $\quad \gamma \rightharpoonup \nu \quad$ and $\quad|\gamma|-|\nu|=b$.

- Corollary: Let $\nu \in \operatorname{Par}[n]$. Let $a, b \geq 0$. Define the partition $\alpha=\left(a+b, a^{n-2}\right)$. Then, every $\lambda \in \mathbb{Z}^{n}$ satisfies

$$
c_{\alpha, \nu}^{\lambda}=\left|R_{\nu, a, b}(\lambda-a)\right|-\left|R_{\nu, a-1, b-1}(\lambda-a)\right| .
$$

Here, we understand $c_{\alpha, \nu}^{\lambda}$ to mean 0 if λ is not a partition (i.e., not a snake with all entries nonnegative).

- A consequence of the above:

Corollary: Let μ be a snake. Let $a, b \in \mathbb{Z}$. Then,

$$
h_{a}^{-} h_{b}^{+} \bar{s}_{\mu}=\sum_{\gamma \text { is a snake }}\left|R_{\mu, a, b}(\gamma)\right| \bar{s}_{\gamma},
$$

where $R_{\mu, a, b}(\gamma)$ is the set of all snakes ν satisfying
$\mu \rightharpoonup \nu \quad$ and $\quad|\mu|-|\nu|=a \quad$ and $\quad \gamma \rightharpoonup \nu \quad$ and $\quad|\gamma|-|\nu|=b$.

- Corollary: Let $\nu \in \operatorname{Par}[n]$. Let $a, b \geq 0$. Define the partition $\alpha=\left(a+b, a^{n-2}\right)$. Then, every $\lambda \in \mathbb{Z}^{n}$ satisfies

$$
c_{\alpha, \nu}^{\lambda}=\left|R_{\nu, a, b}(\lambda-a)\right|-\left|R_{\nu, a-1, b-1}(\lambda-a)\right| .
$$

Here, we understand $c_{\alpha, \nu}^{\lambda}$ to mean 0 if λ is not a partition (i.e., not a snake with all entries nonnegative).

- Recall that we want a bijection $\varphi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ such that

$$
c_{\alpha, \mu}^{\lambda}=c_{\beta, \mu}^{\varphi(\lambda)} \quad \text { for each } \lambda \in \operatorname{Par}[n]
$$

Closing in on the bijection, 1

- So we want a bijection $\varphi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ such that

$$
\begin{aligned}
& \left|R_{\mu, a, b}(\lambda-a)\right|-\left|R_{\mu, a-1, b-1}(\lambda-a)\right| \\
& =\left|R_{\mu, b, a}(\varphi(\lambda)-b)\right|-\left|R_{\mu, b-1, a-1}(\varphi(\lambda)-b)\right|
\end{aligned}
$$

for all $\lambda \in \mathbb{Z}^{n}$.

Closing in on the bijection, 1

- So we want a bijection $\mathbf{f}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ such that

$$
\begin{aligned}
& \left|R_{\mu, a, b}(\gamma)\right|-\left|R_{\mu, a-1, b-1}(\gamma)\right| \\
& =\left|R_{\mu, b, a}(\mathbf{f}(\gamma))\right|-\left|R_{\mu, b-1, a-1}(\mathbf{f}(\gamma))\right|
\end{aligned}
$$

for all $\gamma \in \mathbb{Z}^{n}$.

Closing in on the bijection, 1

- So we want a bijection $\mathbf{f}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ such that

$$
\begin{aligned}
& \left|R_{\mu, a, b}(\gamma)\right|-\left|R_{\mu, a-1, b-1}(\gamma)\right| \\
& =\left|R_{\mu, b, a}(\mathbf{f}(\gamma))\right|-\left|R_{\mu, b-1, a-1}(\mathbf{f}(\gamma))\right|
\end{aligned}
$$

for all $\gamma \in \mathbb{Z}^{n}$.

- It clearly suffices to find a bijection $\mathbf{f}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ such that

$$
\left|R_{\mu, a, b}(\gamma)\right|=\left|R_{\mu, b, a}(\mathbf{f}(\gamma))\right| \quad \text { for all } \gamma \in \mathbb{Z}^{n},
$$

as long as this \mathbf{f} is independent on a and b.

Closing in on the bijection, 1

- So we want a bijection $\mathbf{f}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ such that

$$
\begin{aligned}
& \left|R_{\mu, a, b}(\gamma)\right|-\left|R_{\mu, a-1, b-1}(\gamma)\right| \\
& =\left|R_{\mu, b, a}(\mathbf{f}(\gamma))\right|-\left|R_{\mu, b-1, a-1}(\mathbf{f}(\gamma))\right|
\end{aligned}
$$

for all $\gamma \in \mathbb{Z}^{n}$.

- It clearly suffices to find a bijection $\mathbf{f}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ such that

$$
\left|R_{\mu, a, b}(\gamma)\right|=\left|R_{\mu, b, a}(\mathbf{f}(\gamma))\right| \quad \text { for all } \gamma \in \mathbb{Z}^{n},
$$

as long as this \mathbf{f} is independent on a and b.

- In other words, if $\mathbf{f}(\gamma)=\eta$, then we want

$$
\left|R_{\mu, a, b}(\gamma)\right|=\left|R_{\mu, b, a}(\eta)\right| .
$$

Closing in on the bijection, 2

- In other words, if $\mathbf{f}(\gamma)=\eta$, then we want there to be a bijection from the snakes ν satisfying
$\mu \rightharpoonup \nu \quad$ and $\quad|\mu|-|\nu|=a \quad$ and $\quad \gamma \rightharpoonup \nu \quad$ and $\quad|\gamma|-|\nu|=b$ to the snakes ζ satisfying $\mu \rightharpoonup \zeta \quad$ and $\quad|\mu|-|\zeta|=b \quad$ and $\quad \eta \rightharpoonup \zeta \quad$ and $\quad|\eta|-|\zeta|=a$.

Closing in on the bijection, 2

- In other words, if $\mathbf{f}(\gamma)=\eta$, then we want there to be a bijection from the snakes ν satisfying
$\mu \rightharpoonup \nu \quad$ and $\quad|\mu|-|\nu|=a \quad$ and $\quad \gamma \rightharpoonup \nu \quad$ and $\quad|\gamma|-|\nu|=b$ to the snakes ζ satisfying $\mu \rightharpoonup \zeta \quad$ and $\quad|\mu|-|\zeta|=b \quad$ and $\quad \eta \rightharpoonup \zeta \quad$ and $\quad|\eta|-|\zeta|=a$.
- Forget at first about the size conditions $(|\mu|-|\nu|=a$, etc.). Then the former snakes satisfy

$$
\begin{array}{ll}
& \mu \rightharpoonup \nu \text { and } \gamma \rightharpoonup \nu \\
\Longleftrightarrow \quad & \left(\mu_{i} \geq \nu_{i} \text { for all } i \leq n\right) \wedge\left(\nu_{i} \geq \mu_{i+1} \text { for all } i<n\right) \\
& \wedge\left(\gamma_{i} \geq \nu_{i} \text { for all } i \leq n\right) \wedge\left(\gamma_{i} \geq \gamma_{i+1} \text { for all } i<n\right) \\
\Longleftrightarrow \quad & \left(\min \left\{\mu_{i}, \gamma_{i}\right\} \geq \nu_{i} \text { for all } i \leq n\right) \\
& \wedge\left(\nu_{i} \geq \max \left\{\mu_{i+1}, \gamma_{i+1}\right\} \text { for all } i<n\right) \\
\Longleftrightarrow \quad & \left(\nu_{i} \in\left[\max \left\{\mu_{i+1}, \gamma_{i+1}\right\}, \min \left\{\mu_{i}, \gamma_{i}\right\}\right] \text { for all } i<n\right) \\
& \wedge\left(\min \left\{\mu_{n}, \gamma_{n}\right\} \geq \nu_{n}\right) .
\end{array}
$$

Closing in on the bijection, 3

- Compare the condition

$$
\nu_{i} \in\left[\max \left\{\mu_{i+1}, \gamma_{i+1}\right\}, \min \left\{\mu_{i}, \gamma_{i}\right\}\right] \text { for all } i<n
$$

with the analogous condition

$$
\zeta_{i} \in\left[\max \left\{\mu_{i+1}, \eta_{i+1}\right\}, \min \left\{\mu_{i}, \eta_{i}\right\}\right] \text { for all } i<n
$$ on ζ.

Closing in on the bijection, 3

- Compare the condition

$$
\nu_{i} \in\left[\max \left\{\mu_{i+1}, \gamma_{i+1}\right\}, \min \left\{\mu_{i}, \gamma_{i}\right\}\right] \text { for all } i<n
$$

with the analogous condition

$$
\zeta_{i} \in\left[\max \left\{\mu_{i+1}, \eta_{i+1}\right\}, \min \left\{\mu_{i}, \eta_{i}\right\}\right] \text { for all } i<n
$$

on ζ.

- It is thus reasonable to hope for $\min \left\{\mu_{i}, \gamma_{i}\right\}-\max \left\{\mu_{i+1}, \gamma_{i+1}\right\}=\min \left\{\mu_{i}, \eta_{i}\right\}-\max \left\{\mu_{i+1}, \eta_{i+1}\right\}$ for all $i<n$.

Closing in on the bijection, 3

- Compare the condition

$$
\nu_{i} \in\left[\max \left\{\mu_{i+1}, \gamma_{i+1}\right\}, \min \left\{\mu_{i}, \gamma_{i}\right\}\right] \text { for all } i<n
$$

with the analogous condition

$$
\zeta_{i} \in\left[\max \left\{\mu_{i+1}, \eta_{i+1}\right\}, \min \left\{\mu_{i}, \eta_{i}\right\}\right] \text { for all } i<n
$$

on ζ.

- It is thus reasonable to hope for
$\min \left\{\mu_{i}, \gamma_{i}\right\}-\max \left\{\mu_{i+1}, \gamma_{i+1}\right\}=\min \left\{\mu_{i}, \eta_{i}\right\}-\max \left\{\mu_{i+1}, \eta_{i+1}\right\}$ for all $i<n$.
- Size conditions also suggest that we should have

$$
|\eta|-|\mu|=|\mu|-|\gamma| .
$$

Closing in on the bijection, 3

- Compare the condition

$$
\nu_{i} \in\left[\max \left\{\mu_{i+1}, \gamma_{i+1}\right\}, \min \left\{\mu_{i}, \gamma_{i}\right\}\right] \text { for all } i<n
$$

with the analogous condition

$$
\zeta_{i} \in\left[\max \left\{\mu_{i+1}, \eta_{i+1}\right\}, \min \left\{\mu_{i}, \eta_{i}\right\}\right] \text { for all } i<n
$$

on ζ.

- It is thus reasonable to hope for
$\min \left\{\mu_{i}, \gamma_{i}\right\}-\max \left\{\mu_{i+1}, \gamma_{i+1}\right\}=\min \left\{\mu_{i}, \eta_{i}\right\}-\max \left\{\mu_{i+1}, \eta_{i+1}\right\}$ for all $i<n$.
- Size conditions also suggest that we should have

$$
|\eta|-|\mu|=|\mu|-|\gamma| .
$$

- These conditions do not suffice to determine $\mathbf{f}(\gamma)=\eta$ (nor probably to guarantee $\left.\left|R_{\mu, a, b}(\gamma)\right|=\left|R_{\mu, b, a}(\eta)\right|\right)$, but let's see what they tell us.

Closing in on the bijection: the case $n=3$

- Let $n=3$. We want $\mathbf{f}(\gamma)=\eta$ to satisfy

$$
\begin{aligned}
\min \left\{\mu_{1}, \gamma_{1}\right\}-\max \left\{\mu_{2}, \gamma_{2}\right\} & =\min \left\{\mu_{1}, \eta_{1}\right\}-\max \left\{\mu_{2}, \eta_{2}\right\} ; \\
\min \left\{\mu_{2}, \gamma_{2}\right\}-\max \left\{\mu_{3}, \gamma_{3}\right\} & =\min \left\{\mu_{2}, \eta_{2}\right\}-\max \left\{\mu_{3}, \eta_{3}\right\} ; \\
|\eta|-|\mu| & =|\mu|-|\gamma| .
\end{aligned}
$$

Closing in on the bijection: the case $n=3$

- Let $n=3$. We want $\mathbf{f}(\gamma)=\eta$ to satisfy

$$
\begin{aligned}
\min \left\{\mu_{1}, \gamma_{1}\right\}-\max \left\{\mu_{2}, \gamma_{2}\right\} & =\min \left\{\mu_{1}, \eta_{1}\right\}-\max \left\{\mu_{2}, \eta_{2}\right\} ; \\
\min \left\{\mu_{2}, \gamma_{2}\right\}-\max \left\{\mu_{3}, \gamma_{3}\right\} & =\min \left\{\mu_{2}, \eta_{2}\right\}-\max \left\{\mu_{3}, \eta_{3}\right\} ; \\
|\gamma|+|\eta| & =2|\mu| .
\end{aligned}
$$

Closing in on the bijection: the case $n=3$

- Let $n=3$. We want $\mathbf{f}(\gamma)=\eta$ to satisfy
$\min \left\{\mu_{1}, \gamma_{1}\right\}-\max \left\{\mu_{2}, \gamma_{2}\right\}=\min \left\{\mu_{1}, \eta_{1}\right\}-\max \left\{\mu_{2}, \eta_{2}\right\} ;$ $\min \left\{\mu_{2}, \gamma_{2}\right\}-\max \left\{\mu_{3}, \gamma_{3}\right\}=\min \left\{\mu_{2}, \eta_{2}\right\}-\max \left\{\mu_{3}, \eta_{3}\right\}$;
$\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)+\left(\eta_{1}+\eta_{2}+\eta_{3}\right)=2\left(\mu_{1}+\mu_{2}+\mu_{3}\right)$

Closing in on the bijection: the case $n=3$

- Let $n=3$. We want $\mathbf{f}(\gamma)=\eta$ to satisfy $\min \left\{\mu_{1}, \gamma_{1}\right\}+\min \left\{-\mu_{2},-\gamma_{2}\right\}=\min \left\{\mu_{1}, \eta_{1}\right\}+\min \left\{-\mu_{2},-\eta_{2}\right\}$; $\min \left\{\mu_{2}, \gamma_{2}\right\}+\min \left\{-\mu_{3},-\gamma_{3}\right\}=\min \left\{\mu_{2}, \eta_{2}\right\}+\min \left\{-\mu_{3},-\eta_{3}\right\}$; $\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)+\left(\eta_{1}+\eta_{2}+\eta_{3}\right)=2\left(\mu_{1}+\mu_{2}+\mu_{3}\right)$ (here we used $\max (u, v)=-\min (-u,-v)$).
- Let $n=3$. We want $\mathbf{f}(\gamma)=\eta$ to satisfy $\min \left\{\mu_{1}, \gamma_{1}\right\}+\min \left\{-\mu_{2},-\gamma_{2}\right\}=\min \left\{\mu_{1}, \eta_{1}\right\}+\min \left\{-\mu_{2},-\eta_{2}\right\}$; $\min \left\{\mu_{2}, \gamma_{2}\right\}+\min \left\{-\mu_{3},-\gamma_{3}\right\}=\min \left\{\mu_{2}, \eta_{2}\right\}+\min \left\{-\mu_{3},-\eta_{3}\right\}$; $\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)+\left(\eta_{1}+\eta_{2}+\eta_{3}\right)=2\left(\mu_{1}+\mu_{2}+\mu_{3}\right)$ (here we used $\max (u, v)=-\min (-u,-v)$).
- This is a system of equations that only involves the operations ,+- and min. (Recall: $2 a=a+a$.)
- Let $n=3$. We want $\mathbf{f}(\gamma)=\eta$ to satisfy $\min \left\{\mu_{1}, \gamma_{1}\right\}+\min \left\{-\mu_{2},-\gamma_{2}\right\}=\min \left\{\mu_{1}, \eta_{1}\right\}+\min \left\{-\mu_{2},-\eta_{2}\right\}$; $\min \left\{\mu_{2}, \gamma_{2}\right\}+\min \left\{-\mu_{3},-\gamma_{3}\right\}=\min \left\{\mu_{2}, \eta_{2}\right\}+\min \left\{-\mu_{3},-\eta_{3}\right\}$; $\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)+\left(\eta_{1}+\eta_{2}+\eta_{3}\right)=2\left(\mu_{1}+\mu_{2}+\mu_{3}\right)$ (here we used $\max (u, v)=-\min (-u,-v)$).
- This is a system of equations that only involves the operations ,+- and min. (Recall: $2 a=a+a$.)
- There is a trick for studying such systems: detropicalization.
- A semifield is defined in the same way as a field, but
- additive inverses and a zero element are not required, and
- every element (not just every nonzero element) must have a multiplicative inverse.
- A semifield is defined in the same way as a field, but
- additive inverses and a zero element are not required, and
- every element (not just every nonzero element) must have a multiplicative inverse.
- Example: The set \mathbb{Q}_{+}of all positive rationals is a semifield.
- A semifield is defined in the same way as a field, but
- additive inverses and a zero element are not required, and
- every element (not just every nonzero element) must have a multiplicative inverse.
- Example: The set \mathbb{Q}_{+}of all positive rationals is a semifield.
- Example: The set \mathbb{Z}, equipped with the binary operation min as addition and the binary operation + as multiplication is a semifield (with the number 0 as unity).
- A semifield is defined in the same way as a field, but
- additive inverses and a zero element are not required, and
- every element (not just every nonzero element) must have a multiplicative inverse.
- Example: The set \mathbb{Q}_{+}of all positive rationals is a semifield.
- Example: The set \mathbb{Z}, equipped with the binary operation min as addition and the binary operation + as multiplication is a semifield (with the number 0 as unity). This is called the min tropical semifield of \mathbb{Z}. We denote it $\mathbb{Z}_{\text {trop }}$.
- A semifield is defined in the same way as a field, but
- additive inverses and a zero element are not required, and
- every element (not just every nonzero element) must have a multiplicative inverse.
- Example: The set \mathbb{Q}_{+}of all positive rationals is a semifield.
- Example: The set \mathbb{Z}, equipped with the binary operation \min as addition and the binary operation + as multiplication is a semifield (with the number 0 as unity). This is called the min tropical semifield of \mathbb{Z}. We denote it $\mathbb{Z}_{\text {trop }}$.
The same construction works for any totally ordered abelian group instead of \mathbb{Z}.
- A semifield is defined in the same way as a field, but
- additive inverses and a zero element are not required, and
- every element (not just every nonzero element) must have a multiplicative inverse.
- Example: The set \mathbb{Q}_{+}of all positive rationals is a semifield.
- Example: The set \mathbb{Z}, equipped with the binary operation min as addition and the binary operation + as multiplication is a semifield (with the number 0 as unity). This is called the min tropical semifield of \mathbb{Z}. We denote it $\mathbb{Z}_{\text {trop }}$.
- If you see a system of equations using only + and min, you can thus
- view it as a system of polynomial equations over $\mathbb{Z}_{\text {trop }}$;
- A semifield is defined in the same way as a field, but
- additive inverses and a zero element are not required, and
- every element (not just every nonzero element) must have a multiplicative inverse.
- Example: The set \mathbb{Q}_{+}of all positive rationals is a semifield.
- Example: The set \mathbb{Z}, equipped with the binary operation \min as addition and the binary operation + as multiplication is a semifield (with the number 0 as unity). This is called the min tropical semifield of \mathbb{Z}. We denote it $\mathbb{Z}_{\text {trop }}$.
- If you see a system of equations using only + and min, you can thus
- view it as a system of polynomial equations over $\mathbb{Z}_{\text {trop }}$;
- then solve it over the semifield \mathbb{Q}_{+}instead (or any other "normal" semifield);
- A semifield is defined in the same way as a field, but
- additive inverses and a zero element are not required, and
- every element (not just every nonzero element) must have a multiplicative inverse.
- Example: The set \mathbb{Q}_{+}of all positive rationals is a semifield.
- Example: The set \mathbb{Z}, equipped with the binary operation \min as addition and the binary operation + as multiplication is a semifield (with the number 0 as unity). This is called the min tropical semifield of \mathbb{Z}. We denote it $\mathbb{Z}_{\text {trop }}$.
- If you see a system of equations using only + and min, you can thus
- view it as a system of polynomial equations over $\mathbb{Z}_{\text {trop }}$;
- then solve it over the semifield \mathbb{Q}_{+}instead ;
- then check if your solution still works over $\mathbb{Z}_{\text {trop }}$.

This strategy is known as detropicalization.

- A semifield is defined in the same way as a field, but
- additive inverses and a zero element are not required, and
- every element (not just every nonzero element) must have a multiplicative inverse.
- Example: The set \mathbb{Q}_{+}of all positive rationals is a semifield.
- Example: The set \mathbb{Z}, equipped with the binary operation \min as addition and the binary operation + as multiplication is a semifield (with the number 0 as unity). This is called the min tropical semifield of \mathbb{Z}. We denote it $\mathbb{Z}_{\text {trop }}$.
- If you see a system of equations using only + and min, you can thus
- view it as a system of polynomial equations over $\mathbb{Z}_{\text {trop }}$;
- then solve it over the semifield \mathbb{Q}_{+}instead ;
- then check if your solution still works over $\mathbb{Z}_{\text {trop }}$.

This strategy is known as detropicalization.

- It is particularly useful if you just want one solution (rather than all of them). Often, solutions over \mathbb{Q}_{+}are unique, while those over the min tropical semifield are not.

Detropicalizing our system $(n=3), \mathbf{1}$

- Recall our system
$\min \left\{\mu_{1}, \gamma_{1}\right\}+\min \left\{-\mu_{2},-\gamma_{2}\right\}=\min \left\{\mu_{1}, \eta_{1}\right\}+\min \left\{-\mu_{2},-\eta_{2}\right\}$; $\min \left\{\mu_{2}, \gamma_{2}\right\}+\min \left\{-\mu_{3},-\gamma_{3}\right\}=\min \left\{\mu_{2}, \eta_{2}\right\}+\min \left\{-\mu_{3},-\eta_{3}\right\}$;
$\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)+\left(\eta_{1}+\eta_{2}+\eta_{3}\right)=2\left(\mu_{1}+\mu_{2}+\mu_{3}\right)$
(where $\eta_{1}, \eta_{2}, \eta_{3}$ are unknown).

Detropicalizing our system $(n=3), 1$

- Recall our system
$\min \left\{\mu_{1}, \gamma_{1}\right\}+\min \left\{-\mu_{2},-\gamma_{2}\right\}=\min \left\{\mu_{1}, \eta_{1}\right\}+\min \left\{-\mu_{2},-\eta_{2}\right\}$; $\min \left\{\mu_{2}, \gamma_{2}\right\}+\min \left\{-\mu_{3},-\gamma_{3}\right\}=\min \left\{\mu_{2}, \eta_{2}\right\}+\min \left\{-\mu_{3},-\eta_{3}\right\} ;$ $\left(\gamma_{1}+\gamma_{2}+\gamma_{3}\right)+\left(\eta_{1}+\eta_{2}+\eta_{3}\right)=2\left(\mu_{1}+\mu_{2}+\mu_{3}\right)$
(where $\eta_{1}, \eta_{2}, \eta_{3}$ are unknown).
- Detropicalization transforms this into

$$
\begin{aligned}
\left(\mu_{1}+\gamma_{1}\right)\left(\frac{1}{\mu_{2}}+\frac{1}{\gamma_{2}}\right) & =\left(\mu_{1}+\eta_{1}\right)\left(\frac{1}{\mu_{2}}+\frac{1}{\eta_{2}}\right) ; \\
\left(\mu_{2}+\gamma_{2}\right)\left(\frac{1}{\mu_{3}}+\frac{1}{\gamma_{3}}\right) & =\left(\mu_{2}+\eta_{2}\right)\left(\frac{1}{\mu_{3}}+\frac{1}{\eta_{3}}\right) ; \\
\left(\gamma_{1} \gamma_{2} \gamma_{3}\right)\left(\eta_{1} \eta_{2} \eta_{3}\right) & =\left(\mu_{1} \mu_{2} \mu_{3}\right)^{2} .
\end{aligned}
$$

Detropicalizing our system $(n=3), 2$

- So we now need to solve the system

$$
\begin{aligned}
\left(\mu_{1}+\gamma_{1}\right)\left(\frac{1}{\mu_{2}}+\frac{1}{\gamma_{2}}\right) & =\left(\mu_{1}+\eta_{1}\right)\left(\frac{1}{\mu_{2}}+\frac{1}{\eta_{2}}\right) ; \\
\left(\mu_{2}+\gamma_{2}\right)\left(\frac{1}{\mu_{3}}+\frac{1}{\gamma_{3}}\right) & =\left(\mu_{2}+\eta_{2}\right)\left(\frac{1}{\mu_{3}}+\frac{1}{\eta_{3}}\right) ; \\
\left(\gamma_{1} \gamma_{2} \gamma_{3}\right)\left(\eta_{1} \eta_{2} \eta_{3}\right) & =\left(\mu_{1} \mu_{2} \mu_{3}\right)^{2} .
\end{aligned}
$$

Detropicalizing our system $(n=3), 2$

- Let us rename μ, γ, η as u, x, y. Then, this becomes

$$
\begin{aligned}
\left(u_{1}+x_{1}\right)\left(\frac{1}{u_{2}}+\frac{1}{x_{2}}\right) & =\left(u_{1}+y_{1}\right)\left(\frac{1}{u_{2}}+\frac{1}{y_{2}}\right) ; \\
\left(u_{2}+x_{2}\right)\left(\frac{1}{u_{3}}+\frac{1}{x_{3}}\right) & =\left(u_{2}+y_{2}\right)\left(\frac{1}{u_{3}}+\frac{1}{y_{3}}\right) ; \\
\left(x_{1} x_{2} x_{3}\right)\left(y_{1} y_{2} y_{3}\right) & =\left(u_{1} u_{2} u_{3}\right)^{2} .
\end{aligned}
$$

Detropicalizing our system $(n=3), 2$

- Let us rename μ, γ, η as u, x, y. Then, this becomes

$$
\begin{aligned}
\left(u_{1}+x_{1}\right)\left(\frac{1}{u_{2}}+\frac{1}{x_{2}}\right) & =\left(u_{1}+y_{1}\right)\left(\frac{1}{u_{2}}+\frac{1}{y_{2}}\right) ; \\
\left(u_{2}+x_{2}\right)\left(\frac{1}{u_{3}}+\frac{1}{x_{3}}\right) & =\left(u_{2}+y_{2}\right)\left(\frac{1}{u_{3}}+\frac{1}{y_{3}}\right) ; \\
\left(x_{1} x_{2} x_{3}\right)\left(y_{1} y_{2} y_{3}\right) & =\left(u_{1} u_{2} u_{3}\right)^{2} .
\end{aligned}
$$

- This is a system of polynomial equations, so we can give it to a computer. The answer is:
- Solution 1:

$$
\begin{aligned}
y_{1} & =\frac{u_{1}\left(u_{1} u_{2} u_{3}+x_{1} u_{2} u_{3}+x_{1} x_{2} u_{3}+x_{1} x_{2} x_{3}\right)}{u_{1} x_{2} u_{3}-x_{1} x_{2} x_{3}} \\
y_{2} & =\frac{-u_{1} u_{2} u_{3}}{x_{1} x_{3}} \\
y_{3} & =\frac{u_{2} u_{3}\left(x_{1} x_{3}-u_{1} u_{3}\right)}{u_{1} u_{2} u_{3}+x_{1} u_{2} u_{3}+x_{1} x_{2} u_{3}+x_{1} x_{2} x_{3}}
\end{aligned}
$$

- Solution 2:

$$
\begin{aligned}
& y_{1}=\frac{u_{1} u_{3}\left(u_{1} u_{2}+x_{1} u_{2}+x_{1} x_{2}\right)}{x_{2}\left(u_{1} u_{3}+u_{1} x_{3}+x_{1} x_{3}\right)} \\
& y_{2}=\frac{u_{1} u_{2}\left(u_{2} u_{3}+x_{2} u_{3}+x_{2} x_{3}\right)}{x_{3}\left(u_{1} u_{2}+x_{1} u_{2}+x_{1} x_{2}\right)} \\
& y_{3}=\frac{u_{2} u_{3}\left(u_{1} u_{3}+u_{1} x_{3}+x_{1} x_{3}\right)}{x_{1}\left(u_{2} u_{3}+x_{2} u_{3}+x_{2} x_{3}\right)}
\end{aligned}
$$

- Solution 1:

$$
\begin{aligned}
& y_{1}=\frac{u_{1}\left(u_{1} u_{2} u_{3}+x_{1} u_{2} u_{3}+x_{1} x_{2} u_{3}+x_{1} x_{2} x_{3}\right)}{u_{1} x_{2} u_{3}-x_{1} x_{2} x_{3}} \\
& y_{2}=\frac{-u_{1} u_{2} u_{3}}{x_{1} x_{3}} \\
& y_{3}=\frac{u_{2} u_{3}\left(x_{1} x_{3}-u_{1} u_{3}\right)}{u_{1} u_{2} u_{3}+x_{1} u_{2} u_{3}+x_{1} x_{2} u_{3}+x_{1} x_{2} x_{3}}
\end{aligned}
$$

- Solution 2:

$$
\begin{aligned}
& y_{1}=\frac{u_{1} u_{3}\left(u_{1} u_{2}+x_{1} u_{2}+x_{1} x_{2}\right)}{x_{2}\left(u_{1} u_{3}+u_{1} x_{3}+x_{1} x_{3}\right)} \\
& y_{2}=\frac{u_{1} u_{2}\left(u_{2} u_{3}+x_{2} u_{3}+x_{2} x_{3}\right)}{x_{3}\left(u_{1} u_{2}+x_{1} u_{2}+x_{1} x_{2}\right)} \\
& y_{3}=\frac{u_{2} u_{3}\left(u_{1} u_{3}+u_{1} x_{3}+x_{1} x_{3}\right)}{x_{1}\left(u_{2} u_{3}+x_{2} u_{3}+x_{2} x_{3}\right)}
\end{aligned}
$$

- Solution 1 is useless, since we want $y_{1}, y_{2}, y_{3} \in \mathbb{Q}_{+}$.
- Solution 1:

$$
\begin{aligned}
y_{1} & =\frac{u_{1}\left(u_{1} u_{2} u_{3}+x_{1} u_{2} u_{3}+x_{1} x_{2} u_{3}+x_{1} x_{2} x_{3}\right)}{u_{1} x_{2} u_{3}-x_{1} x_{2} x_{3}} \\
y_{2} & =\frac{-u_{1} u_{2} u_{3}}{x_{1} x_{3}} \\
y_{3} & =\frac{u_{2} u_{3}\left(x_{1} x_{3}-u_{1} u_{3}\right)}{u_{1} u_{2} u_{3}+x_{1} u_{2} u_{3}+x_{1} x_{2} u_{3}+x_{1} x_{2} x_{3}}
\end{aligned}
$$

- Solution 2:

$$
\begin{aligned}
& y_{1}=\frac{u_{1} u_{3}\left(u_{1} u_{2}+x_{1} u_{2}+x_{1} x_{2}\right)}{x_{2}\left(u_{1} u_{3}+u_{1} x_{3}+x_{1} x_{3}\right)} \\
& y_{2}=\frac{u_{1} u_{2}\left(u_{2} u_{3}+x_{2} u_{3}+x_{2} x_{3}\right)}{x_{3}\left(u_{1} u_{2}+x_{1} u_{2}+x_{1} x_{2}\right)} \\
& y_{3}=\frac{u_{2} u_{3}\left(u_{1} u_{3}+u_{1} x_{3}+x_{1} x_{3}\right)}{x_{1}\left(u_{2} u_{3}+x_{2} u_{3}+x_{2} x_{3}\right)}
\end{aligned}
$$

- But Solution 2 looks promising.
- Solution 1:

$$
\begin{aligned}
y_{1} & =\frac{u_{1}\left(u_{1} u_{2} u_{3}+x_{1} u_{2} u_{3}+x_{1} x_{2} u_{3}+x_{1} x_{2} x_{3}\right)}{u_{1} x_{2} u_{3}-x_{1} x_{2} x_{3}} \\
y_{2} & =\frac{-u_{1} u_{2} u_{3}}{x_{1} x_{3}} \\
y_{3} & =\frac{u_{2} u_{3}\left(x_{1} x_{3}-u_{1} u_{3}\right)}{u_{1} u_{2} u_{3}+x_{1} u_{2} u_{3}+x_{1} x_{2} u_{3}+x_{1} x_{2} x_{3}}
\end{aligned}
$$

- Solution 2:

$$
\begin{aligned}
& y_{1}=\frac{u_{1} u_{3}\left(u_{1} u_{2}+x_{1} u_{2}+x_{1} x_{2}\right)}{x_{2}\left(u_{1} u_{3}+u_{1} x_{3}+x_{1} x_{3}\right)} \\
& y_{2}=\frac{u_{1} u_{2}\left(u_{2} u_{3}+x_{2} u_{3}+x_{2} x_{3}\right)}{x_{3}\left(u_{1} u_{2}+x_{1} u_{2}+x_{1} x_{2}\right)} \\
& y_{3}=\frac{u_{2} u_{3}\left(u_{1} u_{3}+u_{1} x_{3}+x_{1} x_{3}\right)}{x_{1}\left(u_{2} u_{3}+x_{2} u_{3}+x_{2} x_{3}\right)}
\end{aligned}
$$

- But Solution 2 looks promising. Note in particular the (unexpected) cyclic symmetry!
- Reverse-engineering Solution 2, we come up with the following Definition: Let \mathbb{K} be a semifield, let $n \geq 1$, and let $u \in \mathbb{K}^{n}$. We define a $\operatorname{map} \mathbf{f}: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ as follows:
Let $x \in \mathbb{K}^{n}$ be an n-tuple. For each $j \in \mathbb{Z}$ and $r \geq 0$, define an element $t_{r, j} \in \mathbb{K}$ by

$$
t_{r, j}=\sum_{k=0}^{r} \underbrace{x_{j+1} x_{j+2} \cdots x_{j+k}}_{=\prod_{i=1}^{k} x_{j+i}} \cdot \underbrace{u_{j+k+1} u_{j+k+2} \cdots u_{j+r}}_{=\prod_{i=k+1}^{r} u_{j+i}}
$$

(Here and in the following, all indices are cyclic modulo n.) Define $y \in \mathbb{K}^{n}$ by setting

$$
y_{i}=u_{i} \cdot \frac{u_{i-1} t_{n-1, i-1}}{x_{i+1} t_{n-1, i+1}} \quad \text { for each } i \in\{1,2, \ldots, n\}
$$

Set $\mathbf{f}(x)=y$.

The map f: definition

- Reverse-engineering Solution 2, we come up with the following Definition: Let \mathbb{K} be a semifield, let $n \geq 1$, and let $u \in \mathbb{K}^{n}$. We define a $\operatorname{map} \mathbf{f}: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$ as follows:
Let $x \in \mathbb{K}^{n}$ be an n-tuple. For each $j \in \mathbb{Z}$ and $r \geq 0$, define an element $t_{r, j} \in \mathbb{K}$ by

$$
t_{r, j}=\sum_{k=0}^{r} \underbrace{x_{j+1} x_{j+2} \cdots x_{j+k}}_{=\prod_{i=1}^{k} x_{j+i}} \cdot \underbrace{u_{j+k+1} u_{j+k+2} \cdots u_{j+r}}_{=\prod_{i=k+1}^{r} u_{j+i}}
$$

(Here and in the following, all indices are cyclic modulo n.) Define $y \in \mathbb{K}^{n}$ by setting

$$
y_{i}=u_{i} \cdot \frac{u_{i-1} t_{n-1, i-1}}{x_{i+1} t_{n-1, i+1}} \quad \text { for each } i \in\{1,2, \ldots, n\} .
$$

Set $\mathbf{f}(x)=y$.

- Note that \mathbf{f} depends on u (whence I call it \mathbf{f}_{u} in the paper).

The map f: main properties

- Theorem. Let \mathbb{K} be a semifield, $n \geq 1$ and $u \in \mathbb{K}^{n}$. Then:
(a) The map \mathbf{f} is an involution (i.e., we have $\mathbf{f} \circ \mathbf{f}=\mathrm{id}$).

The map f: main properties

- Theorem. Let \mathbb{K} be a semifield, $n \geq 1$ and $u \in \mathbb{K}^{n}$. Then:
(a) The map \mathbf{f} is an involution (i.e., we have $\mathbf{f} \circ \mathbf{f}=\mathrm{id}$).
(b) Let $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ be such that $y=\mathbf{f}(x)$. Then,

$$
\left(y_{1} y_{2} \cdots y_{n}\right) \cdot\left(x_{1} x_{2} \cdots x_{n}\right)=\left(u_{1} u_{2} \cdots u_{n}\right)^{2} .
$$

- Theorem. Let \mathbb{K} be a semifield, $n \geq 1$ and $u \in \mathbb{K}^{n}$. Then:
(a) The map \mathbf{f} is an involution (i.e., we have $\mathbf{f} \circ \mathbf{f}=\mathrm{id}$).
(b) Let $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ be such that $y=\mathbf{f}(x)$. Then,

$$
\left(y_{1} y_{2} \cdots y_{n}\right) \cdot\left(x_{1} x_{2} \cdots x_{n}\right)=\left(u_{1} u_{2} \cdots u_{n}\right)^{2}
$$

(c) Let $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ be such that $y=\mathbf{f}(x)$. Then,

$$
\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right)=\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right)
$$

for each $i \in \mathbb{Z}$. (Recall that indices are cyclic modulo n.)

- Theorem. Let \mathbb{K} be a semifield, $n \geq 1$ and $u \in \mathbb{K}^{n}$. Then:
(a) The map \mathbf{f} is an involution (i.e., we have $\mathbf{f} \circ \mathbf{f}=\mathrm{id}$).
(b) Let $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ be such that $y=\mathbf{f}(x)$. Then,

$$
\left(y_{1} y_{2} \cdots y_{n}\right) \cdot\left(x_{1} x_{2} \cdots x_{n}\right)=\left(u_{1} u_{2} \cdots u_{n}\right)^{2}
$$

(c) Let $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ be such that $y=\mathbf{f}(x)$. Then,

$$
\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right)=\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right)
$$

for each $i \in \mathbb{Z}$. (Recall that indices are cyclic modulo n.)
(d) Let $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ be such that $y=\mathbf{f}(x)$. Then,

$$
\prod_{i=1}^{n} \frac{u_{i}+x_{i}}{x_{i}}=\prod_{i=1}^{n} \frac{u_{i}+y_{i}}{u_{i}}
$$

The map f: main properties

- Theorem. Let \mathbb{K} be a semifield, $n \geq 1$ and $u \in \mathbb{K}^{n}$. Then:
(a) The map \mathbf{f} is an involution (i.e., we have $\mathbf{f} \circ \mathbf{f}=\mathrm{id}$).
(b) Let $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ be such that $y=\mathbf{f}(x)$. Then,

$$
\left(y_{1} y_{2} \cdots y_{n}\right) \cdot\left(x_{1} x_{2} \cdots x_{n}\right)=\left(u_{1} u_{2} \cdots u_{n}\right)^{2}
$$

(c) Let $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ be such that $y=\mathbf{f}(x)$. Then,

$$
\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right)=\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right)
$$

for each $i \in \mathbb{Z}$. (Recall that indices are cyclic modulo n.)
(d) Let $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ be such that $y=\mathbf{f}(x)$. Then,

$$
\prod_{i=1}^{n} \frac{u_{i}+x_{i}}{x_{i}}=\prod_{i=1}^{n} \frac{u_{i}+y_{i}}{u_{i}}
$$

- In short: $\mathbf{f}(x)$ solves our system and more. (Note that the $i=n$ case of part (c) is not part of our original system!)

The map f: main properties

- Theorem. Let \mathbb{K} be a semifield, $n \geq 1$ and $u \in \mathbb{K}^{n}$. Then:
(a) The map \mathbf{f} is an involution (i.e., we have $\mathbf{f} \circ \mathbf{f}=\mathrm{id}$).
(b) Let $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ be such that $y=\mathbf{f}(x)$. Then,

$$
\left(y_{1} y_{2} \cdots y_{n}\right) \cdot\left(x_{1} x_{2} \cdots x_{n}\right)=\left(u_{1} u_{2} \cdots u_{n}\right)^{2}
$$

(c) Let $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ be such that $y=\mathbf{f}(x)$. Then,

$$
\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right)=\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right)
$$

for each $i \in \mathbb{Z}$. (Recall that indices are cyclic modulo n.)
(d) Let $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ be such that $y=\mathbf{f}(x)$. Then,

$$
\prod_{i=1}^{n} \frac{u_{i}+x_{i}}{x_{i}}=\prod_{i=1}^{n} \frac{u_{i}+y_{i}}{u_{i}}
$$

- The proof is heavily computational but not too hard (various auxiliary identities had to be discovered).
- Recall that we were looking for a bijection $\mathbf{f}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ (independent on a and b) such that

$$
\left|R_{\mu, a, b}(\gamma)\right|=\left|R_{\mu, b, a}(\mathbf{f}(\gamma))\right| \quad \text { for all } \gamma \in \mathbb{Z}^{n} .
$$

- Recall that we were looking for a bijection $\mathbf{f}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ (independent on a and b) such that

$$
\left|R_{\mu, a, b}(\gamma)\right|=\left|R_{\mu, b, a}(\mathbf{f}(\gamma))\right| \quad \text { for all } \gamma \in \mathbb{Z}^{n}
$$

- The map \mathbf{f} constructed above, applied to $\mathbb{K}=\mathbb{Z}_{\text {trop }}$ and $u=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$, does the trick. (This is not hard to prove using the above Theorem.)
- Recall that we were looking for a bijection $\mathbf{f}: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ (independent on a and b) such that

$$
\left|R_{\mu, a, b}(\gamma)\right|=\left|R_{\mu, b, a}(\mathbf{f}(\gamma))\right| \quad \text { for all } \gamma \in \mathbb{Z}^{n}
$$

- The map \mathbf{f} constructed above, applied to $\mathbb{K}=\mathbb{Z}_{\text {trop }}$ and $u=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$, does the trick. (This is not hard to prove using the above Theorem.)
- Shifting by a and b thus produces the bijection φ needed for the Pelletier-Ressayre conjecture. Explicitly:
- Theorem (G., 2020): Assume that $n \geq 2$. Let $a, b \geq 0$, and set $\alpha=\left(a+b, a^{n-2}\right)$ and $\beta=\left(a+b, b^{n-2}\right)$.
Fix any partition $\mu \in \operatorname{Par}[n]$.
Define a map $\varphi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$ as follows:
Let $\omega \in \mathbb{Z}^{n}$. Set $\nu=\omega-a \in \mathbb{Z}^{n}$. For each $j \in \mathbb{Z}$, set

$$
\begin{aligned}
\tau_{j}=\min \left\{\left(\nu_{j+1}+\right.\right. & \left.\nu_{j+2}+\cdots+\nu_{j+k}\right) \\
& +\left(\mu_{j+k+1}+\mu_{j+k+2}+\cdots+\mu_{j+n-1}\right) \\
& \mid k \in\{0,1, \ldots, n-1\}\}
\end{aligned}
$$

where (unusually for partitions!) all indices are cyclic modulo n.
Define an n-tuple $\eta=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{n}\right) \in \mathbb{Z}^{n}$ by setting

$$
\eta_{i}=\mu_{i}+\left(\mu_{i-1}+\tau_{i-1}\right)-\left(\nu_{i+1}+\tau_{i+1}\right) \quad \text { for each } i .
$$

Let $\varphi(\omega)$ be the n-tuple $\eta+b \in \mathbb{Z}^{n}$. Thus, we have defined a $\operatorname{map} \varphi: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{n}$.

- Theorem (cont'd): Then:
(a) The map φ is a bijection.
(b) We have

$$
c_{\alpha, \mu}^{\omega}=c_{\beta, \mu}^{\varphi(\omega)} \quad \text { for each } \omega \in \mathbb{Z}^{n}
$$

Here, we are using the convention that every n-tuple $\omega \in \mathbb{Z}^{n}$ that is not a partition satisfies $c_{\alpha, \mu}^{\omega}=0$ and $c_{\beta, \mu}^{\omega}=0$.

- Theorem (cont'd): Then:
(a) The map φ is a bijection.
(b) We have

$$
c_{\alpha, \mu}^{\omega}=c_{\beta, \mu}^{\varphi(\omega)} \quad \text { for each } \omega \in \mathbb{Z}^{n}
$$

Here, we are using the convention that every n-tuple $\omega \in \mathbb{Z}^{n}$ that is not a partition satisfies $c_{\alpha, \mu}^{\omega}=0$ and $c_{\beta, \mu}^{\omega}=0$.

- This proves the conjecture.
- Theorem (cont'd): Then:
(a) The map φ is a bijection.
(b) We have

$$
c_{\alpha, \mu}^{\omega}=c_{\beta, \mu}^{\varphi(\omega)} \quad \text { for each } \omega \in \mathbb{Z}^{n} .
$$

Here, we are using the convention that every n-tuple $\omega \in \mathbb{Z}^{n}$ that is not a partition satisfies $c_{\alpha, \mu}^{\omega}=0$ and $c_{\beta, \mu}^{\omega}=0$.

- This proves the conjecture.
- Question: Does φ have a more mainstream combinatorial interpretation?
- Theorem (cont'd): Then:
(a) The map φ is a bijection.
(b) We have

$$
c_{\alpha, \mu}^{\omega}=c_{\beta, \mu}^{\varphi(\omega)} \quad \text { for each } \omega \in \mathbb{Z}^{n} .
$$

Here, we are using the convention that every n-tuple $\omega \in \mathbb{Z}^{n}$ that is not a partition satisfies $c_{\alpha, \mu}^{\omega}=0$ and $c_{\beta, \mu}^{\omega}=0$.

- This proves the conjecture.
- Question: Does φ have a more mainstream combinatorial interpretation?
- Question: Can φ be written as a composition of "toggles" (i.e., "local" transformations, each affecting only one entry of the tuple)?

Uniqueness questions, 1

- Question: Given a semifield \mathbb{K} and $n \geq 2$ and $u \in \mathbb{K}^{n}$. Assume that $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ satisfy

$$
\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right)=\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right)
$$

for each $i \in \mathbb{Z}$. Is it true that $y=\mathbf{f}(x)$

Uniqueness questions, 1

- Question: Given a semifield \mathbb{K} and $n \geq 2$ and $u \in \mathbb{K}^{n}$. Assume that $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ satisfy

$$
\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right)=\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right)
$$

for each $i \in \mathbb{Z}$. Is it true that $y=\mathbf{f}(x)$ or $y=x$?

- Question: Given a semifield \mathbb{K} and $n \geq 2$ and $u \in \mathbb{K}^{n}$. Assume that $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ satisfy

$$
\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right)=\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right)
$$

for each $i \in \mathbb{Z}$. Is it true that $y=\mathbf{f}(x)$ or $y=x$?

- Yes if $\mathbb{K}=\mathbb{Q}_{+}$(or, more generally, \mathbb{K} is a subsemifield of an integral domain).
- Question: Given a semifield \mathbb{K} and $n \geq 2$ and $u \in \mathbb{K}^{n}$. Assume that $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ satisfy

$$
\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right)=\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right)
$$

for each $i \in \mathbb{Z}$. Is it true that $y=\mathbf{f}(x)$ or $y=x$?

- Yes if $\mathbb{K}=\mathbb{Q}_{+}$(or, more generally, \mathbb{K} is a subsemifield of an integral domain).
- No if $\mathbb{K}=\mathbb{Z}_{\text {trop }}$.
- Question: Given a semifield \mathbb{K} and $n \geq 2$ and $u \in \mathbb{K}^{n}$. Assume that $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ satisfy

$$
\left(y_{1} y_{2} \cdots y_{n}\right) \cdot\left(x_{1} x_{2} \cdots x_{n}\right)=\left(u_{1} u_{2} \cdots u_{n}\right)^{2}
$$

and

$$
\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right)=\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right)
$$

for each $1 \leq i<n$. (This is our detropicalized system.) Is it true that $y=\mathbf{f}(x)$?

- Question: Given a semifield \mathbb{K} and $n \geq 2$ and $u \in \mathbb{K}^{n}$. Assume that $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ satisfy

$$
\left(y_{1} y_{2} \cdots y_{n}\right) \cdot\left(x_{1} x_{2} \cdots x_{n}\right)=\left(u_{1} u_{2} \cdots u_{n}\right)^{2}
$$

and

$$
\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right)=\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right)
$$

for each $1 \leq i<n$. (This is our detropicalized system.)
Is it true that $y=\mathbf{f}(x)$?

- Yes if $\mathbb{K}=\mathbb{Q}_{+}$. (Nice exercise!)
- Question: Given a semifield \mathbb{K} and $n \geq 2$ and $u \in \mathbb{K}^{n}$. Assume that $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ satisfy

$$
\left(y_{1} y_{2} \cdots y_{n}\right) \cdot\left(x_{1} x_{2} \cdots x_{n}\right)=\left(u_{1} u_{2} \cdots u_{n}\right)^{2}
$$

and

$$
\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right)=\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right)
$$

for each $1 \leq i<n$. (This is our detropicalized system.)
Is it true that $y=\mathbf{f}(x)$?

- Yes if $\mathbb{K}=\mathbb{Q}_{+}$. (Nice exercise!)
- No if $\mathbb{K}=\mathbb{Z}_{\text {trop }}$.
- Question: Given a semifield \mathbb{K} and $n \geq 2$ and $u \in \mathbb{K}^{n}$. Assume that $x \in \mathbb{K}^{n}$ and $y \in \mathbb{K}^{n}$ satisfy

$$
\left(y_{1} y_{2} \cdots y_{n}\right) \cdot\left(x_{1} x_{2} \cdots x_{n}\right)=\left(u_{1} u_{2} \cdots u_{n}\right)^{2}
$$

and

$$
\left(u_{i}+x_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{x_{i+1}}\right)=\left(u_{i}+y_{i}\right)\left(\frac{1}{u_{i+1}}+\frac{1}{y_{i+1}}\right)
$$

for each $1 \leq i<n$. (This is our detropicalized system.) Is it true that $y=\mathbf{f}(x)$?

- Yes if $\mathbb{K}=\mathbb{Q}_{+}$. (Nice exercise!)
- No if $\mathbb{K}=\mathbb{Z}_{\text {trop }}$.
- Thus, detropicalization has made the solution unique by removing the "extraneous" solutions.
- Maxime Pelletier and Nicolas Ressayre for the conjecture.
- Georgi Medvedev for the invitation.
- Tom Roby and Grigori Olshanski for enlightening discussions.
- you for your patience.

