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What is this about?

From a modern point of view, Schubert calculus (a.k.a.
classical enumerative geometry, or Hilbert’s 15th problem) is
about two cohomology rings:

H∗

 Gr (k , n)︸ ︷︷ ︸
Grassmannian

 and H∗

 Fl (n)︸ ︷︷ ︸
flag variety


(both varieties over C).

In this talk, we are concerned with the first.

Classical result: as rings,

H∗ (Gr (k , n))
∼= (symmetric polynomials in x1, x2, . . . , xk over Z)

� (hn−k+1, hn−k+2, . . . , hn)ideal ,

where the hi are complete homogeneous symmetric
polynomials (to be defined soon).
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Quantum cohomology of Gr(k , n)

(Small) Quantum cohomology is a deformation of
cohomology from the 1980–90s. For the Grassmannian, it is

QH∗ (Gr (k , n))
∼= (symmetric polynomials in x1, x2, . . . , xk over Z [q])

�
(
hn−k+1, hn−k+2, . . . , hn−1, hn + (−1)k q

)
ideal

.

Many properties of classical cohomology still hold here.
In particular: QH∗ (Gr (k , n)) has a Z [q]-module basis
(sλ)λ∈Pk,n

of (projected) Schur polynomials (to be defined

soon), with λ ranging over all partitions with ≤ k parts and
each part ≤ n − k . The structure constants are the
Gromov–Witten invariants. References:

Aaron Bertram, Ionut Ciocan-Fontanine, William Fulton,
Quantum multiplication of Schur polynomials, 1999.
Alexander Postnikov, Affine approach to quantum
Schubert calculus, 2005.
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Where are we going?

Goal: Deform H∗ (Gr (k, n)) using k parameters instead of
one, generalizing QH∗ (Gr (k , n)).

The new ring has no geometric interpretation known so far,
but various properties suggesting such an interpretation likely
exists.

I will now start from scratch and define standard notations
around symmetric polynomials, then introduce the deformed
cohomology ring algebraically.
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A more general setting: P and S

Let k be a commutative ring.
Let N = {0, 1, 2, . . .}. Let k ∈ N.

Let P = k [x1, x2, . . . , xk ] be the polynomial ring in k
indeterminates over k.

For each k-tuple α ∈ Nk and each i ∈ {1, 2, . . . , k}, let αi be
the i-th entry of α. Same for infinite sequences.

For each α ∈ Nk , let xα be the monomial xα1
1 xα2

2 · · · x
αk
k , and

let |α| be the degree α1 + α2 + · · ·+ αk of this monomial.

Let S denote the ring of symmetric polynomials in P.
These are the polynomials f ∈ P satisfying

f (x1, x2, . . . , xk) = f
(
xσ(1), xσ(2), . . . , xσ(k)

)
for all permutations σ of {1, 2, . . . , k}.
Theorem (Artin ≤1944): The S-module P is free with basis

(xα)α∈Nk ; αi<i for each i (or, informally: “
(
x<1

1 x<2
2 · · · x

<k
k

)
”).

Example: For k = 3, this basis is
(
1, x3, x

2
3 , x2, x2x3, x2x

2
3

)
.
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Symmetric polynomials

The ring S of symmetric polynomials in P = k [x1, x2, . . . , xk ]
has several bases, usually indexed by certain sets of (integer)
partitions.
First, let us recall what partitions are:
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k-partitions: definition

A partition means a weakly decreasing sequence of
nonnegative integers that has only finitely many nonzero
entries.

If λ ∈ Nk is a k-partition, then its Young diagram Y (λ) is
defined as a table made out of k left-aligned rows, where the
i-th row has λi boxes.
Example: If k = 6 and λ = (5, 5, 3, 2, 0, 0), then

Y (λ) = .

(Empty rows are invisible.)
The same convention applies to partitions.
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Symmetric polynomials: the e-basis

For each m ∈ Z, we let em denote the m-th elementary
symmetric polynomial:

em =
∑

1≤i1<i2<···<im≤k
xi1xi2 · · · xim =

∑
α∈{0,1}k ;
|α|=m

xα ∈ S.

(Thus, e0 = 1, and em = 0 when m < 0.)

For each ν = (ν1, ν2, . . . , ν`) ∈ Z` (e.g., a k-partition when
` = k), set

eν = eν1eν2 · · · eν` ∈ S.

Theorem (Gauss): The commutative k-algebra S is freely
generated by the elementary symmetric polynomials
e1, e2, . . . , ek . (That is, it is generated by them, and they are
algebraically independent.)

Equivalent restatement: (eλ)λ is a partition whose entries are ≤ k

is a basis of the k-module S.

Note that em = 0 when m > k .
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Symmetric polynomials: the h-bases

For each m ∈ Z, we let hm denote the m-th complete
homogeneous symmetric polynomial:

hm =
∑

1≤i1≤i2≤···≤im≤k
xi1xi2 · · · xim =

∑
α∈Nk ;
|α|=m

xα ∈ S.

(Thus, h0 = 1, and hm = 0 when m < 0.)

For each ν = (ν1, ν2, . . . , ν`) ∈ Z` (e.g., a k-partition when
` = k), set

hν = hν1hν2 · · · hν` ∈ S.

Theorem: The commutative k-algebra S is freely generated
by the complete homogeneous symmetric polynomials
h1, h2, . . . , hk .

Equivalent restatement: (hλ)λ is a partition whose entries are ≤ k

is a basis of the k-module S.

Theorem: (hλ)λ is a k-partition is a basis of the k-module S.
(Another basis!)
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Symmetric polynomials: the s-basis (Schur polynomials)

For each k-partition λ, we let sλ be the λ-th Schur
polynomial:

sλ =

det

((
x
λj+k−j
i

)
1≤i≤k, 1≤j≤k

)
det

((
xk−ji

)
1≤i≤k, 1≤j≤k

) (alternant formula)

= det
(

(hλi−i+j)1≤i≤k, 1≤j≤k

)
(Jacobi-Trudi) .

Theorem: The equality above holds, and sλ is a symmetric
polynomial with nonnegative coefficients.

Theorem: (sλ)λ is a k-partition is a basis of the k-module S.
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x
(number of i ’s in T )
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where a semistandard λ-tableau with entries 1, 2, . . . , k is a
way of putting an integer i ∈ {1, 2, . . . , k} into each box of
Y (λ) such that the entries weakly increase along rows and
strictly increase along columns.
Theorem: (sλ)λ is a k-partition is a basis of the k-module S.
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Symmetric polynomials: Littlewood-Richardson coefficients

If λ and µ are two k-partitions, then the product sλsµ can be
again written as a k-linear combination of Schur polynomials
(since these form a basis):

sλsµ =
∑

ν is a k-partition

cνλ,µsν ,

where the cνλ,µ lie in k. These cνλ,µ are called the
Littlewood-Richardson coefficients.
Theorem: These Littlewood-Richardson coefficients cνλ,µ are
nonnegative integers (and count something).
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Symmetric polynomials: Schur polynomials for non-partitions

We have defined

sλ = det
(

(hλi−i+j)1≤i≤k, 1≤j≤k

)
for k-partitions λ.
Apply the same definition to arbitrary λ ∈ Zk .
Proposition: If α ∈ Zk , then sα is either 0 or equals ±sλ for
some k-partition λ.

More precisely: Let
β = (α1 + (k − 1) , α2 + (k − 2) , . . . , αk + (k − k)).

If β has a negative entry, then sα = 0.
If β has two equal entries, then sα = 0.
Otherwise, let γ be the k-tuple obtained by sorting β in
decreasing order, and let σ be the permutation of the
indices that causes this sorting. Let λ be the k-partition
(γ1 − (k − 1) , γ2 − (k − 2) , . . . , γk − (k − k)). Then,
sα = (−1)σ sλ.

Also, the alternant formula still holds if all λi + (k − i) are
≥ 0.
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A more general setting: a1, a2, . . . , ak and J

Pick any integer n ≥ k .

Let a1, a2, . . . , ak ∈ P such that deg ai < n − k + i for all i .
(For example, this holds if ai ∈ k.)

Let J be the ideal of P generated by the k differences

hn−k+1 − a1, hn−k+2 − a2, . . . , hn − ak .

Theorem (G.): The k-module P�J is free with basis

(xα)α∈Nk ; αi<n−k+i for each i(
informally: “

(
x<n−k+1

1 x<n−k+2
2 · · · x<n

n

)
”
)

where the overline means “projection” onto whatever
quotient we need (here: from P onto P�J).
(This basis has n (n − 1) · · · (n − k + 1) elements.)
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A slightly less general setting: symmetric a1, a2, . . . , ak and J

FROM NOW ON, assume that a1, a2, . . . , ak ∈ S.

Let I be the ideal of S generated by the k differences

hn−k+1 − a1, hn−k+2 − a2, . . . , hn − ak .

(Same differences as for J, but we are generating an ideal of
S now.)

Let ω = (n − k , n − k , . . . , n − k)︸ ︷︷ ︸
k entries

and

Pk,n = {λ is a k-partition | λ1 ≤ n − k}
= {k-partitions λ ⊆ ω} .

Here, for two k-partitions α and β, we say that α ⊆ β if and
only if αi ≤ βi for all i .

Theorem (G.): The k-module S�I is free with basis

(sλ)λ∈Pk,n
.
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An even less general setting: constant a1, a2, . . . , ak

FROM NOW ON, assume that a1, a2, . . . , ak ∈ k.

This setting still is general enough to encompass ...

classical cohomology: If k = Z and
a1 = a2 = · · · = ak = 0, then S�I becomes the
cohomology ring H∗ (Gr (k , n)); the basis (sλ)λ∈Pk,n

corresponds to the Schubert classes.
quantum cohomology: If k = Z [q] and
a1 = a2 = · · · = ak−1 = 0 and ak = − (−1)k q, then
S�I becomes the quantum cohomology ring
QH∗ (Gr (k, n)).

The above theorem lets us work in these rings (and more
generally) without relying on geometry.
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S3-symmetry of the Gromov–Witten invariants

Recall that (sλ)λ∈Pk,n
is a basis of the k-module S�I .

For each µ ∈ Pk,n, let coeffµ : S�I → k send each element to
its sµ-coordinate wrt this basis.

For every k-partition ν = (ν1, ν2, . . . , νk) ∈ Pk,n, we define

ν∨ := (n − k − νk , n − k − νk−1, . . . , n − k − ν1) ∈ Pk,n.

This k-partition ν∨ is called the complement of ν.
For any three k-partitions α, β, γ ∈ Pk,n, let

gα,β,γ := coeffγ∨ (sαsβ) ∈ k.

These generalize the Littlewood–Richardson coefficients and
(3-point) Gromov–Witten invariants.
Theorem (G.): For any α, β, γ ∈ Pk,n, we have

gα,β,γ = gα,γ,β = gβ,α,γ = gβ,γ,α = gγ,α,β = gγ,β,α

= coeffω (sαsβsγ) .

Equivalent restatement: Each ν ∈ Pk,n and f ∈ S�I satisfy
coeffω (sν f ) = coeffν∨ (f ).
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The h-basis

Theorem (G.): The k-module S�I is free with basis(
hλ
)
λ∈Pk,n

.

The transfer matrix between the two bases (sλ)λ∈Pk,n
and(

hλ
)
λ∈Pk,n

is unitriangular wrt the “size-then-anti-dominance”

order, but seems hard to describe.

Proposition (G.): Let m be a positive integer. Then,

hn+m =
k−1∑
j=0

(−1)j ak−js(m,1j ),

where
(
m, 1j

)
:= (m, 1, 1, . . . , 1︸ ︷︷ ︸

j ones

, 0, 0, 0, . . .) (a hook-shaped

k-partition).
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The Pieri rule for symmetric polynomials

If α and β are two k-partitions, then we say that α�β is a
horizontal strip if and only if the Young diagram Y (α) is
obtained from Y (β) by adding some (possibly none) extra
boxes with no two of these new boxes lying in the same
column.
Example: If k = 4 and α = (5, 3, 2, 1) and β = (3, 2, 2, 0),
then α�β is a horizontal strip, since

Y (β) = ⊆ X X

X

X

= Y (α)

with no two X ’s in the same column.
Equivalently, α�β is a horizontal strip if and only if

α1 ≥ β1 ≥ α2 ≥ β2 ≥ α3 ≥ · · · ≥ αk ≥ βk .

Furthermore, given j ∈ N, we say that α�β is a horizontal
j-strip if α�β is a horizontal strip and |α| − |β| = j .
Theorem (Pieri). Let λ be a k-partition. Let j ∈ N. Then,

sλhj =
∑

µ is a k-partition;
µ�λ is a

horizontal j-strip

sµ.
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A Pieri rule for S/I

Theorem (G.): Let λ ∈ Pk,n. Let j ∈ {0, 1, . . . , n − k}.
Then,

sλhj =
∑

µ∈Pk,n;
µ�λ is a

horizontal j-strip

sµ −
k∑

i=1

(−1)i ai
∑
ν⊆λ

cλ(n−k−j+1,1i−1),νsν .

This generalizes the h-Pieri rule from Bertram,
Ciocan-Fontanine and Fulton, but note that cλ

(n−k−j+1,1i−1),ν

may be > 1.

19 / 31
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A Pieri rule for S/I : example

Example: For n = 7 and k = 3, we have

s(4,3,2)h2 = s(4,4,3) + a1

(
s(4,2) + s(3,2,1) + s(3,3)

)
− a2

(
s(4,1) + s(2,2,1) + s(3,1,1) + 2s(3,2)

)
+ a3

(
s(2,2) + s(2,1,1) + s(3,1)

)
.

Multiplying by ej appears harder: For n = 5 and k = 3, we
have

s(2,2,1)e2 = a1s(2,2)−2a2s(2,1)+a3

(
s(2) + s(1,1)

)
+a2

1s(1)−2a1a2s().
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A “rim hook algorithm”

For QH∗ (Gr (k, n)), Bertram, Ciocan-Fontanine and Fulton
give a “rim hook algorithm” that rewrites an arbitrary sµ as

(−1)something qsomethingsλ with λ ∈ Pk,n.
Is there such a thing for S�I?
If n = 6 and k = 3, then

s(4,4,3) = a2
2s(1) − 2a1a2s(2) + a2

1s(3) + a3s(3,2) − a2s(3,3).

Theorem (G.): Let µ be a k-partition with µ1 > n − k. Let

W =
{
λ = (λ1, λ2, . . . , λk) ∈ Zk | λ1 = µ1 − n

and λi − µi ∈ {0, 1} for all i ∈ {2, 3, . . . , k}} .

Then,

sµ =
k∑

j=1

(−1)k−j aj
∑
λ∈W ;

|λ|=|µ|−(n−k+j)

sλ.
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Positivity?

Conjecture: Let bi = (−1)n−k−1 ai for each i ∈ {1, 2, . . . , k}.
Let λ, µ, ν ∈ Pk,n. Then, (−1)|λ|+|µ|−|ν| coeffν (sλsµ) is a
polynomial in b1, b2, . . . , bk with coefficients in N.

Verified for all n ≤ 7 using SageMath.

This would generalize positivity of Gromov–Witten invariants.
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More questions

Question: Does S�I have a geometric meaning? If not, why
does it behave so nicely?

Question: What other bases does S�I have? Monomial
symmetric? Power-sum?

Question: Do other properties of QH∗ (Gr (k , n)) generalize
to S�I?
Computations show that Postnikov’s “curious duality” and
“cyclic hidden symmetry” and Bertram et al’s
Gr (k , n)↔ Gr (n − k , n) duality do not generalize (at least
not in any straightforward way).

Question: Is there an analogous generalization of
QH∗ (Fl (n)) ? Is it connected to Fulton’s “universal Schubert
polynomials”?

Question: Is there an equivariant analogue?

Question: What about quotients of the quasisymmetric
polynomials?

23 / 31
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Sk-module structure

The symmetric group Sk acts on P, with invariant ring S.

What is the Sk -module structure on P�J ?

Almost-theorem (G., needs to be checked): Assume that
k is a Q-algebra. Then, as Sk -modules,

P�J ∼=
(
P�PS+

)×(nk
)
∼=

 kSk︸︷︷︸
regular rep

×
(
n

k

)
,

where PS+ is the ideal of P generated by symmetric
polynomials with constant term 0.
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Deforming symmetric functions, 1

Let us recall symmetric functions (not polynomials) now;
we’ll need them soon anyway.

S := {symmetric polynomials in x1, x2, . . . , xk} ;

Λ := {symmetric functions in x1, x2, x3, . . .} .
We use standard notations for symmetric functions, but in
boldface:

e = elementary symmetric,

h = complete homogeneous,

s = Schur (or skew Schur).

We have

S ∼= Λ� (ek+1, ek+2, ek+3, . . .)ideal , thus

S�I ∼= Λ� (hn−k+1 − a1, hn−k+2 − a2, . . . , hn − ak ,

ek+1, ek+2, ek+3, . . .)ideal .

So why not replace the ej by ej − bj too?
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Deforming symmetric functions, 2

Theorem (G.): Assume that a1, a2, . . . , ak as well as
b1, b2, b3, . . . are elements of k. Then,

Λ� (hn−k+1 − a1, hn−k+2 − a2, . . . , hn − ak ,

ek+1 − b1, ek+2 − b2, ek+3 − b3, . . .)ideal

is a free k-module with basis (sλ)λ∈Pk,n
.

26 / 31



On the proofs, 1

Proofs of all the above (except for the rim hook algorithm,
which will be done soon, and the Sk -action) can be found in

Darij Grinberg, A basis for a quotient of symmetric
polynomials (draft), http://www.cip.ifi.lmu.de/

~grinberg/algebra/basisquot.pdf .

Main ideas:

Use Gröbner bases to show that P�J is free with basis
(xα)α∈Nk ; αi<n−k+i for each i .
(This was already outlined in Aldo Conca, Christian
Krattenthaler, Junzo Watanabe, Regular Sequences of
Symmetric Polynomials, 2009.)

Using that + Jacobi–Trudi, show that S�I is free with
basis (sλ)λ∈Pk,n

.
As for the rest, compute in Λ... a lot.
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Use Gröbner bases to show that P�J is free with basis
(xα)α∈Nk ; αi<n−k+i for each i .
(This was already outlined in Aldo Conca, Christian
Krattenthaler, Junzo Watanabe, Regular Sequences of
Symmetric Polynomials, 2009.)
Using that + Jacobi–Trudi, show that S�I is free with
basis (sλ)λ∈Pk,n

.
As for the rest, compute in Λ... a lot.
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On the proofs, 2: the Gröbner basis argument

The Gröbner basis argument relies on the easy identity

hp (xi ..k) =
i−1∑
t=0

(−1)t et (x1..i−1) hp−t (x1..k)

for all i ∈ {1, 2, . . . , k + 1} and p ∈ N.
Here, xa..b means xa, xa+1, . . . , xb.

Use it to show that(
hn−k+i (xi ..k)−

i−1∑
t=0

(−1)t et (x1..i−1) ai−t

)
i∈{1,2,...,k}

is a Gröbner basis of the ideal J wrt the degree-lexicographic
term order, where the variables are ordered by
x1 > x2 > · · · > xk .

This Gröbner basis leads to a basis of P�J, which is precisely
our (xα)α∈Nk ; αi<n−k+i for each i .
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On the proofs, 3: the first basis of S�I

How to prove that S�I is free with basis (sλ)λ∈Pk,n
?

Jacobi–Trudi lets you recursively reduce each sλ with λ /∈ Pk,n

into smaller sµ’s.

=⇒ (sλ)λ∈Pk,n
spans S�I .

On the other hand, (xα)α∈Nk ; αi<i for each i spans P as an
S-module (Artin).

Combining these yields that (sλxα)λ∈Pk,n; α∈Nk ; αi<i for each i

spans P�IP = P�J.

But we also know that the family (xα)α∈Nk ; αi<n−k+i for each i

is a basis of P�J.

What can you say if a k-module has a basis (av )v∈V and a
spanning family (bu)u∈U of the same finite size
(|U| = |V | <∞)?
Easy exercise: You can say that (bu)u∈U is also a basis.

Thus, (sλxα)λ∈Pk,n; α∈Nk ; αi<i for each i is a basis of P�J.

=⇒ (sλ)λ∈Pk,n
is a basis of S�I .
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On the proofs, 4: Bernstein’s identity

The rest of the proofs are long computations inside Λ, using
various identities for symmetric functions.

Maybe the most important one:
Bernstein’s identity: Let λ be a partition. Let m ∈ Z be
such that m ≥ λ1. Then,∑

i∈N
(−1)i hm+i (ei )

⊥ sλ = s(m,λ1,λ2,λ3,...).

Here, f⊥g means “g skewed by f” (so that (sµ)⊥ sλ = sλ�µ).
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