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Manifest

What you are going to see:

A new family (G (k ,m))m≥0 of symmetric functions for
each k > 0. (So, a family of families.)
It “interpolates” between the e’s and the h’s in a sense.
Various nice properties if I do say so myself.
A proof (sketch) of a conjecture coming from algebraic
groups.
A source of homework exercises for your symmetric
functions class.

What you are not going to see:

Meaning.
Theories.
(mostly) actual combinatorics (algorithms, bijections,
etc.).
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Symmetric functions: notation, 1

We will use standard notations for symmetric functions, such
as used in:

Richard Stanley, Enumerative Combinatorics, volume 2,
CUP 2001.
D.G. and Victor Reiner, Hopf algebras in Combinatorics,
2012-2020+.

Let k be a commutative ring (Z and Q will suffice).

Let N := {0, 1, 2, . . .}.
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Symmetric functions: notation, 2

A weak composition means a sequence (α1, α2, α3, . . .) ∈ N∞
such that all i � 0 satisfy αi = 0.

We let WC be the set of all weak compositions.

We write αi for the i-th entry of a weak composition α.

The size of a weak composition α is defined to be
|α| := α1 + α2 + α3 + · · · .
A partition means a weak composition α satisfying
α1 ≥ α2 ≥ α3 ≥ · · · .
A partition of n means a partition α with |α| = n.

We let Par denote the set of all partitions. For each n ∈ Z, we
let Parn denote the set of all partitions of n.

We often omit trailing zeroes from partitions: e.g.,
(3, 2, 1, 0, 0, 0, . . .) = (3, 2, 1) = (3, 2, 1, 0).

The partition (0, 0, 0, . . .) = () is called the empty partition
and denoted by ∅.
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Symmetric functions: notation, 3

We will use the notation mk for “m,m, . . . ,m︸ ︷︷ ︸
k times

” in partitions.

(For example,
(
2, 14

)
= (2, 1, 1, 1, 1).)

For any weak composition α, we let xα denote the monomial
xα1
1 xα2

2 xα3
3 · · · . It has degree |α|.

The ring k [[x1, x2, x3, . . .]] consists of formal infinite k-linear
combinations of monomials xα. These combinations are called
formal power series.
The symmetric functions are the formal power series
f ∈ k [[x1, x2, x3, . . .]] that are

of bounded degree (i.e., all monomials in f have degrees
< N for some N = Nf );
symmetric (i.e., permuting the xi does not change f ).

We let

Λ = {symmetric functions f ∈ k [[x1, x2, x3, . . .]]} .
This is a k-subalgebra of k [[x1, x2, x3, . . .]], graded by the
degree.
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Symmetric functions: m

The k-module Λ has several bases indexed by the set Par.

The monomial basis (mλ)λ∈Par:
For each partition λ, we define the monomial symmetric
function mλ ∈ Λ by

mλ =
∑

α is a weak composition;
α can be obtained from λ

by permuting entries

xα.

For example:

m(2,2,1) =
∑

i<j<k

x2i x
2
j xk +

∑
i<j<k

x2i xjx
2
k +

∑
i<j<k

xix
2
j x

2
k .

The family (mλ)λ∈Par is a basis of the k-module Λ, called the
monomial basis.
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Symmetric functions: h

The complete basis (hλ)λ∈Par:
For each n ∈ Z, define the complete homogeneous symmetric
function hn by

hn =
∑

i1≤i2≤···≤in

xi1xi2 · · · xin =
∑
α∈WC;
|α|=n

xα =
∑
λ∈Parn

mλ.

For example,

h1 = x1 + x2 + x3 + · · · ;

h2 =
∑
i≤j

xixj =
∑
i

x2i +
∑
i<j

xixj ;

h0 = 1;

hn = 0 for all n < 0.

For each partition λ, we define

hλ = hλ1hλ2hλ3 · · · ∈ Λ.

The family (hλ)λ∈Par is a basis of the k-module Λ.
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Symmetric functions: e

The elementary basis (eλ)λ∈Par:
For each n ∈ Z, define the elementary symmetric function en
by

en =
∑

i1<i2<···<in

xi1xi2 · · · xin =
∑

α∈WC∩{0,1}∞;
|α|=n

xα = m(1n).

For example,

e1 = x1 + x2 + x3 + · · · ;

e2 =
∑
i<j

xixj ;

e0 = 1;

en = 0 for all n < 0.

For each partition λ, we define

eλ = eλ1eλ2eλ3 · · · ∈ Λ.

The family (eλ)λ∈Par is a basis of the k-module Λ.
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Symmetric functions: p

The power-sum symmetric functions pn:
For each positive integer n, define the power-sum symmetric
function pn by

pn = xn1 + xn2 + xn3 + · · · = m(n).

We can make a basis out of (products of) pn’s when k is a
Q-algebra.
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Symmetric functions: s

The Schur basis (sλ)λ∈Par:
For each partition λ, we can define the Schur function sλ in
many equivalent ways, e.g.:

We have
sλ =

∑
T is a semistandard

Young tableau of shape λ

xT ,

where xT denotes the monomial obtained by multiplying
the xi for all entries i of T .
If λ = (λ1, λ2, . . . , λ`), then

sλ = det
(

(hλi−i+j)1≤i≤`, 1≤j≤`

)
(the first Jacobi–Trudi formula).

The family (sλ)λ∈Par is a basis of the k-module Λ.
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Petrie functions: definition of G (k)

For any positive integer k , set

G (k)

=
∑
α∈WC;

αi<k for all i

xα

=
∑

(all monomials whose exponents are all < k)

∈ k [[x1, x2, x3, . . .]] (not ∈ Λ in general) .
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Petrie functions: definition of G (k,m)

For any positive integer k and any m ∈ N, we let

G (k ,m)

=
∑
α∈WC;
|α|=m;

αi<k for all i

xα

=
∑

(all degree-m monomials whose exponents are all < k)

∈ Λ.

For example,

G (3, 4) =
∑

i<j<k<`

xixjxkx` +
∑

i<j<k

x2i xjxk +
∑

i<j<k

xix
2
j xk

+
∑

i<j<k

xixjx
2
k +

∑
i<j

x2i x
2
j

= m(1,1,1,1) + m(2,1,1) + m(2,2).
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Petrie functions: basic properties

I named G (k) and G (k ,m) the Petrie functions, for reasons
that will become clear eventually.

Basic properties (for arbitrary k > 0 and m ∈ N):

G (k) =
∑
λ∈Par;

λi<k for all i

mλ =
∞∏
i=1

(
x0i + x1i + · · ·+ xk−1i

)
.

G (k ,m) is the m-th degree component of G (k).

G (k ,m) =
∑
λ∈Par;
|λ|=m;

λi<k for all i

mλ.

G (2,m) = em.
G (k ,m) = hm whenever k > m.
G (m,m) = hm − pm.
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λi<k for all i

mλ.

G (2,m) = em.
G (k ,m) = hm whenever k > m.
G (m,m) = hm − pm.
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Petrie functions and the coproduct of Λ

This is for the friends of Hopf algebras:

∆ (G (k,m)) =
m∑
i=0

G (k , i)⊗ G (k,m − i)

for each k > 0 and m ∈ N.
Here, ∆ is the comultiplication of Λ, defined to be the
k-algebra homomorphism

∆ : Λ→ Λ⊗ Λ,

en 7→
n∑

i=0

ei ⊗ en−i .

In terms of alphabets, this says

(G (k ,m)) (x1, x2, x3, . . . , y1, y2, y3, . . .)

=
m∑
i=0

(G (k, i)) (x1, x2, x3, . . .) · (G (k ,m − i)) (y1, y2, y3, . . .) .
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Expanding Petries in the Schur basis

We can expand the G (k,m) in the Schur basis (sλ)λ∈Par: e.g.,

G (4, 6) = s(2,1,1,1,1) − s(2,2,1,1) + s(3,3).

Surprisingly, it turns out that all coefficients are in {0, 1,−1}.

Better yet: Any product G (k ,m) · sµ expands in the Schur
basis with coefficients in {0, 1,−1}.
Let us see what the coefficients are.
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Petrie numbers

We let [A] denote the truth value of a statement A (that is, 1
if A is true, and 0 if A is false).
Let λ = (λ1, λ2, . . . , λ`) ∈ Par and
µ = (µ1, µ2, . . . , µ`) ∈ Par, and let k be a positive integer.
Then, the k-Petrie number petk (λ, µ) of λ and µ is the
integer defined by

petk (λ, µ) = det
(

([0 ≤ λi − µj − i + j < k])1≤i≤`, 1≤j≤`

)
.

Proposition: We have petk (λ, µ) ∈ {0, 1,−1} for all λ and
µ.
Proof idea. Each row of the matrix
([0 ≤ λi − µj − i + j < k])1≤i≤`, 1≤j≤` has the form

(0, 0, . . . , 0︸ ︷︷ ︸
a zeroes

, 1, 1, . . . , 1︸ ︷︷ ︸
b ones

, 0, 0, . . . , 0︸ ︷︷ ︸
c zeroes

) for some a, b, c ∈ N.

Thus, this matrix is the transpose of a Petrie matrix. Hence,
its determinant is ∈ {−1, 0, 1} (by Gordon and Wilkinson
1974).
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Expanding Petries in the Schur basis: the formula

Theorem: Let k be a positive integer. Let µ ∈ Par. Then,

G (k) · sµ =
∑
λ∈Par

petk (λ, µ) sλ.

Thus, for each m ∈ N, we have

G (k ,m) · sµ =
∑

λ∈Parm+|µ|

petk (λ, µ) sλ.

One proof of the Theorem uses alternants; the other uses the
“semi-skew Cauchy identity”∑

λ∈Par
sλ (x) sλ/µ (y) = sµ (x) ·

∞∏
i ,j=1

(1− xiyj)
−1

= sµ (x) ·
∑
λ∈Par

hλ (x)mλ (y)

(for any µ ∈ Par and for two sets of indeterminates
x = (x1, x2, x3, . . .) and y = (y1, y2, y3, . . .)).
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What are the Petrie numbers?

We have shown that petk (λ, µ) ∈ {0, 1,−1}, but what
exactly is it?

Gordon and Wilkinson 1974 prove that Petrie matrices have
determinants ∈ {0, 1,−1} by induction. This is little help to
us.
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What are the Petrie numbers? The easy case

Proposition: Let λ ∈ Par and k > 0 be such that λ1 ≥ k.
Then, petk (λ,∅) = 0.

To get a description in all other cases, recall the definition of
transpose (aka conjugate) partitions:
Given a partition λ ∈ Par, we define the transpose partition λt

of λ to be the partition µ given by

µi = |{j ∈ {1, 2, 3, . . .} | λj ≥ i}| for all i ≥ 1.

In terms of Young diagrams, this is just flipping the diagram
of λ across the diagonal.
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What are the Petrie numbers? Formula for petk (λ,∅)

Theorem: Let λ ∈ Par and k > 0 be such that λ1 < k . Let
µ = λt (the transpose partition of λ). Thus, µk = 0.
For each i ∈ {1, 2, . . . , k − 1}, set

βi = µi − i and γi = 1 + (βi − 1) %k︸ ︷︷ ︸
remainder of βi−1

modulo k

.

(a) If the k − 1 numbers γ1, γ2, . . . , γk−1 are not distinct,
then petk (λ,∅) = 0.
(b) If the k − 1 numbers γ1, γ2, . . . , γk−1 are distinct, then

petk (λ,∅) = (−1)(β1+β2+···+βk−1)+g+(γ1+γ2+···+γk−1) ,

where

g =
∣∣∣{(i , j) ∈ {1, 2, . . . , k − 1}2 | i < j and γi < γj

}∣∣∣ .
Question: Is there such a description for petk (λ, µ) ?
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Other properties

For any k > 0, we define a map fk : Λ→ Λ by setting

fk (a) = a
(
xk1 , x

k
2 , x

k
3 , . . .

)
for each a ∈ Λ.

This map fk is called the k-th Frobenius endomorphism of Λ.
(Also known as plethysm by pk . Perhaps the nicest plethysm!)

Theorem: Let k be a positive integer. Let m ∈ N. Then,

G (k ,m) =
∑
i∈N

(−1)i hm−ki · fk (ei ) .

Theorem: Fix a positive integer k . Assume that 1− k is
invertible in k. Then, the family
(G (k,m))m≥1 = (G (k , 1) ,G (k , 2) ,G (k, 3) , . . .) is an
algebraically independent generating set of the commutative
k-algebra Λ.

Thus, products of several elements of this family form a basis
of Λ (if 1− k is invertible in k). These bases remain to be
studied.
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The Liu–Polo conjecture

This all begin with the following conjecture (Liu and Polo,
arXiv:1908.08432):

∑
λ∈Par2n−1;

(n−1,n−1,1).λ

mλ =
n−2∑
i=0

(−1)i s(n−1,n−1−i ,1i+1) for any n > 1.

Here, the symbol . stands for dominance of partitions (also
known as majorization); i.e., for two partitions λ and µ, we
have

λ . µ if and only if

(λ1 + λ2 + · · ·+ λi ≥ µ1 + µ2 + · · ·+ µi for all i) .

Let me briefly outline how this conjecture can be proved.
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The Liu–Polo conjecture, proof: 1

The partitions λ ∈ Par2n−1 satisfying (n − 1, n − 1, 1) . λ are
precisely the partitions λ ∈ Par2n−1 satisfying λi < n for all i .

Thus, ∑
λ∈Par2n−1;

(n−1,n−1,1).λ

mλ = G (n, 2n − 1) .

So it remains to show that

G (n, 2n − 1) =
n−2∑
i=0

(−1)i s(n−1,n−1−i ,1i+1).

The formula for petk (λ,∅) should be useful here, but the
combinatorics is tortuous.
Instead, we can work algebraically:
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The Liu–Polo conjecture, proof: G (n, 2n − 1) explicitly

We can easily see that

G (n, n + k) = hn+k−hkpn for each k ∈ {0, 1, . . . , n − 1} .

Thus, in particular, G (n, 2n − 1) = h2n−1 − hn−1pn.

By the way, this is also a particular case of the

G (k,m) =
∑
i∈N

(−1)i hm−ki · fk (ei )

formula.
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G (k,m) =
∑
i∈N

(−1)i hm−ki · fk (ei )

formula.
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The Liu–Polo conjecture, proof: Bernstein operators

Recall the skewing operations f ⊥ : Λ→ Λ for all f ∈ Λ.
For any m ∈ N, we define a map Bm : Λ→ Λ (known as a
m-th Bernstein operator in Zelevinsky’s language, or as a
Schur row-adder in Garsia’s) by setting

Bm (f ) =
∑
i∈N

(−1)i hm+ie
⊥
i f for all f ∈ Λ.

Theorem (implicit in Zelevinsky’s book; solved exercise in
G./Reiner): If λ ∈ Par and m ∈ Z satisfy m ≥ λ1, then

Bm (sλ) = s(m,λ1,λ2,λ3,...).

On the other hand, it is not hard to see that

Bm (hn) = hmhn − hm+1hn−1 and

Bm (pn) = hmpn − hm+n

for each n > 0 and each m ∈ {0, 1, . . . , n}.
Hence,

Bn−1 (hn − pn) = h2n−1 − hn−1pn = G (n, 2n − 1) .
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The Liu–Polo conjecture, proof: Applying Murnaghan–Nakayama

The Murnaghan–Nakayama rule yields

pn =
n−1∑
i=0

(−1)i s(n−i ,1i ).

Subtracting this from hn = s(n) = s(n−0,10), we find

hn − pn =
n−2∑
i=0

(−1)i s(n−1−i ,1i+1).

Hence,

Bn−1 (hn − pn) =
n−2∑
i=0

(−1)i Bn−1

(
s(n−1−i ,1i+1)

)
=

n−2∑
i=0

(−1)i s(n−1,n−1−i ,1i+1)

(by Bm (sλ) = s(m,λ1,λ2,λ3,...)).

26 / 43



The Liu–Polo conjecture, proof: Applying Murnaghan–Nakayama

Since Bn−1 (hn − pn) = G (n, 2n − 1), we now get

G (n, 2n − 1) = Bn−1 (hn − pn) =
n−2∑
i=0

(−1)i s(n−1,n−1−i ,1i+1).

This proves the conjecture from Liu/Polo.

27 / 43



MNable symmetric functions

Now to something different.
Recall our formula

G (k ,m) · sµ =
∑

λ∈Parm+|µ|

petk (λ, µ)︸ ︷︷ ︸
∈{0,1,−1}

sλ.

Problem: What other functions can we replace G (k ,m) by
and still get such a formula?
In other words, what other f ∈ Λ satisfy

f · sµ =
∑
λ∈Par

(something in {0, 1,−1}) sλ ?

Let us restate this more formally.
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The Hall inner product

We recall the Hall inner product (·, ·) : Λ× Λ→ k; it is the
unique k-bilinear form on Λ that satisfies

(sλ, sµ) = δλ,µ for all λ, µ ∈ Par .

It also is symmetric and nondegenerate and satisfies

(hλ,mµ) = δλ,µ for all λ, µ ∈ Par .
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MNable symmetric functions: definition

Definition: Let k = Z from now on.
A symmetric function f ∈ Λ will be called signed
multiplicity-free if f can be expanded as a linear
combination of distinct Schur functions with all
coefficients in {−1, 0, 1}. (That is, if the Hall inner
product (f , sµ) is −1 or 0 or 1 for each partition µ.)
A symmetric function f ∈ Λ will be called MNable if for
each partition µ, the product fsµ is signed
multiplicity-free.

For example, h3p2 is signed multiplicity-free, since

h3p2 = s(5) + s(3,2) − s(3,1,1);

but it is not MNable, since the product

h3p2s(2) = −s(3,2,1,1) + s(3,2,2) − s(4,1,1,1) + s(4,3)

− s(5,1,1) + 2s(5,2) + s(6,1) + s(7)

is not signed multiplicity-free (due to the coefficient of s(5,2)
being 2).
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MNable symmetric functions: examples

Definition: Let k = Z from now on.
A symmetric function f ∈ Λ will be called signed
multiplicity-free if f can be expanded as a linear
combination of distinct Schur functions with all
coefficients in {−1, 0, 1}. (That is, if the Hall inner
product (f , sµ) is −1 or 0 or 1 for each partition µ.)
A symmetric function f ∈ Λ will be called MNable if for
each partition µ, the product fsµ is signed
multiplicity-free.

First Pieri rule: Each µ ∈ Par and i ∈ N satisfy

hi sµ =
∑
λ∈Par;

λ/µ is a horizontal i-strip

sλ.

The right hand side is signed multiplicity-free (without any
−1’s). Thus, hi is MNable.

Roughly speaking, an f ∈ Λ is MNable if and only if there is a
Murnaghan-Nakayama-like rule for fsµ. Thus, the name
“MNable”.
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MNable symmetric functions: results, 1

Question: Which symmetric functions are MNable?

Theorem:

The functions hi and ei are MNable for each i ∈ N.
The function pi is MNable for each positive integer i .

The Petrie function G (k ,m) and the difference
G (k ,m)− hm are MNable for any integers k ≥ 1 and
m ≥ 0.
The differences hi − pi and hi − ei are MNable for each
positive integer i . (This includes h1 − e1 = 0.)
The difference hi − pi − ei is MNable for each even
positive integer i .
The product pipj is MNable whenever i > j > 0.
The function m(kn) as well as the differences hnk −m(kn)

and enk − (−1)(k−1)n m(kn) are MNable for any positive
integers n and k (where (kn) denotes the n-tuple
(k , k , . . . , k)).
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MNable symmetric functions: results, 2

Theorem (continued):
If some f ∈ Λ is MNable, then so are −f and ω (f ),
where ω : Λ→ Λ is the fundamental involution of Λ (that
is, the k-algebra automorphism sending en 7→ hn).
A symmetric function f ∈ Λ is MNable if and only if all
its homogeneous components are MNable.

If f ∈ Λ is MNable and k is a positive integer, then fk (f )
is MNable.
A symmetric function f ∈ Λ is MNable if and only if(
f , sλ/µ

)
∈ {−1, 0, 1} for each skew partition λ/µ.
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is MNable.
A symmetric function f ∈ Λ is MNable if and only if(
f , sλ/µ

)
∈ {−1, 0, 1} for each skew partition λ/µ.

The proofs use various techniques; the coefficients are not
always easy to describe.
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The MNability of a symmetric function can be tested in finite
time using the last bullet point.
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)
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The families listed above cover all MNable homogeneous
symmetric functions of degree < 4. In degree 4, we also have

s(1,1,1,1) − s(3,1) + s(4) and s(4) − s(2,2).
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where ω : Λ→ Λ is the fundamental involution of Λ (that
is, the k-algebra automorphism sending en 7→ hn).
A symmetric function f ∈ Λ is MNable if and only if all
its homogeneous components are MNable.
If f ∈ Λ is MNable and k is a positive integer, then fk (f )
is MNable.
A symmetric function f ∈ Λ is MNable if and only if(
f , sλ/µ

)
∈ {−1, 0, 1} for each skew partition λ/µ.

All MNable sλ, mλ, hλ and eλ appear in the list above. Not
sure if all MNable pλ.
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MNable symmetric functions: question

Question: What symmetric functions are MNable?

Any hope of a full classification?
Any more infinite families?
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Bonus problem

Bonus problem

Dual stable Grothendieck polynomials
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Reminder on Schur functions

Here is a conjecture I’m curious to hear ideas about.

Fix a commutative ring k.
Recall that for any skew partition λ/µ, the (skew) Schur
function sλ/µ is defined as the power series∑

T is an SST of shape λ/µ

xcontT ∈ k [[x1, x2, x3, . . .]] ,

where “SST” is short for “semistandard Young tableau”, and
where

xcontT =
∏
k≥1

xnumber of times T contains entry k
k .

Let us generalize this by extending the sum and introducing
extra parameters.
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Dual stable Grothendieck polynomials, 1: RPPs

A reverse plane partition (RPP) is defined like an SST
(semistandard Young tableau), but entries increase weakly
both along rows and down columns. For example,

1 2 2

2 2

2 4

is an RPP.

(In detail: An RPP is a map T from a skew Young diagram to
{positive integers} such that T (i , j) ≤ T (i , j + 1) and
T (i , j) ≤ T (i + 1, j) whenever these are defined.)

Let k be a commutative ring, and fix any elements
t1, t2, t3, . . . ∈ k.
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Dual stable Grothendieck polynomials, 2: definition

Given a skew partition λ/µ, we define the refined dual stable
Grothendieck polynomial g̃λ/µ to be the formal power series∑

T is an RPP of shape λ/µ

xircontT tceqT ∈ k [[x1, x2, x3, . . .]] ,

where

xircontT =
∏
k≥1

xnumber of columns of T containing entry k
k

and
tceqT =

∏
i≥1

t
number of j such that T (i ,j)=T (i+1,j)
i

(where T (i , j) = T (i + 1, j) implies, in particular, that both
(i , j) and (i + 1, j) are cells of T ).
This is a formal power series in x1, x2, x3, . . . (despite the
name “polynomial”).
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Dual stable Grothendieck polynomials, 3: examples on xircontT

Recall:

xircontT =
∏
k≥1

xnumber of columns of T containing entry k
k .

If T = 1 2 2

2 2

2 3

, then xircontT = x1x
4
2x3. The x2 has

exponent 4, not 5, because the two 2’s in column 3 count only
once.

If T is an SST, then xircontT = xcontT .
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Dual stable Grothendieck polynomials, 3: examples on tceqT

Recall that

tceqT =
∏
i≥1

t
number of j such that T (i ,j)=T (i+1,j)
i

If T = 1 2 2

2 2

2 3

, then tceqT = t1, due to

T (1, 3) = T (2, 3).

If T is an SST, then tceqT = 1.

In general, tceqT measures “how often” T breaks the SST
condition.
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Dual stable Grothendieck polynomials, 5

If we set t1 = t2 = t3 = · · · = 0, then g̃λ/µ = sλ/µ.

If we set t1 = t2 = t3 = · · · = 1, then g̃λ/µ = gλ/µ, the dual
stable Grothendieck polynomial of Lam and Pylyavskyy
(arXiv:0705.2189).

The general case, to our knowledge, is new.

Theorem (Galashin, G., Liu, arXiv:1509.03803): The
power series g̃λ/µ is symmetric in the xi (not in the ti ).

Example 1: If λ = (n) and µ = (), then g̃λ/µ = hn, the n-th
complete homogeneous symmetric function.

Example 2: If λ =

1, 1, . . . , 1︸ ︷︷ ︸
n ones

 and µ = (), then

g̃λ/µ = en (t1, t2, . . . , tn−1, x1, x2, x3, . . .), where en is the n-th
elementary symmetric function.

Example 3: If λ = (2, 1) and µ = (), then
g̃λ/µ =

∑
a≤b; a<c

xaxbxc + t1
∑
a≤b

xaxb = s(2,1) + t1s(2).
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Jacobi-Trudi identity?

Conjecture: Let the conjugate partitions of λ and µ be
λt = ((λt)1 , (λ

t)2 , . . . , (λ
t)N) and

µt = ((µt)1 , (µ
t)2 , . . . , (µ

t)N). Then,

g̃λ/µ

= det

((
e(λt)i−i−(µt)j+j

(
x, t
[(
µt
)
j

+ 1 :
(
λt
)
i

]))
1≤i≤N, 1≤j≤N

)
.

Here, (x, t [k : `]) denotes the alphabet
(x1, x2, x3, . . . , tk , tk+1, . . . , t`−1).
Warning: If ` ≤ k , then tk , tk+1, . . . , t`−1 means nothing. No
“antimatter” variables!

This would generalize the Jacobi-Trudi identity for Schur
functions in terms of ei ’s.

I have some even stronger conjectures, with less evidence...

The case µ = ∅ has been proven by Damir Yeliussizov in
arXiv:1601.01581.
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