The Petrie symmetrie functions and Murnaghan-Nakayama rules

Darij Grinberg

4 February 2020
Institut Mittag-Leffler, Djursholm, Sweden
slides: http://www.cip.ifi.lmu.de/~grinberg/algebra/
djursholm2020.pdf
paper: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/petriesym.pdf overview: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/fps20pet.pdf

- What you are going to see:
- A new family $(G(k, m))_{m \geq 0}$ of symmetric functions for each $k>0$. (So, a family of families.)
- It "interpolates" between the e 's and the h 's in a sense.
- Various nice properties if I do say so myself.
- A proof (sketch) of a conjecture coming from algebraic groups.
- A source of homework exercises for your symmetric functions class.
- What you are going to see:
- A new family $(G(k, m))_{m \geq 0}$ of symmetric functions for each $k>0$. (So, a family of families.)
- It "interpolates" between the e 's and the h 's in a sense.
- Various nice properties if I do say so myself.
- A proof (sketch) of a conjecture coming from algebraic groups.
- A source of homework exercises for your symmetric functions class.
- What you are not going to see:
- Meaning.
- Theories.
- (mostly) actual combinatorics (algorithms, bijections, etc.).
- We will use standard notations for symmetric functions, such as used in:
- Richard Stanley, Enumerative Combinatorics, volume 2, CUP 2001.
- D.G. and Victor Reiner, Hopf algebras in Combinatorics, 2012-2020+.
- We will use standard notations for symmetric functions, such as used in:
- Richard Stanley, Enumerative Combinatorics, volume 2, CUP 2001.
- D.G. and Victor Reiner, Hopf algebras in Combinatorics, 2012-2020+.
- Let k be a commutative ring (\mathbb{Z} and \mathbb{Q} will suffice).
- Let $\mathbb{N}:=\{0,1,2, \ldots\}$.
- A weak composition means a sequence $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right) \in \mathbb{N}^{\infty}$ such that all $i \gg 0$ satisfy $\alpha_{i}=0$.
- We let WC be the set of all weak compositions.
- We write α_{i} for the i-th entry of a weak composition α.
- The size of a weak composition α is defined to be $|\alpha|:=\alpha_{1}+\alpha_{2}+\alpha_{3}+\cdots$.
- A weak composition means a sequence $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right) \in \mathbb{N}^{\infty}$ such that all $i \gg 0$ satisfy $\alpha_{i}=0$.
- We let WC be the set of all weak compositions.
- We write α_{i} for the i-th entry of a weak composition α.
- The size of a weak composition α is defined to be $|\alpha|:=\alpha_{1}+\alpha_{2}+\alpha_{3}+\cdots$.
- A partition means a weak composition α satisfying $\alpha_{1} \geq \alpha_{2} \geq \alpha_{3} \geq \cdots$.
- A partition of n means a partition α with $|\alpha|=n$.
- We let Par denote the set of all partitions. For each $n \in \mathbb{Z}$, we let Par_{n} denote the set of all partitions of n.
- A weak composition means a sequence $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right) \in \mathbb{N}^{\infty}$ such that all $i \gg 0$ satisfy $\alpha_{i}=0$.
- We let WC be the set of all weak compositions.
- We write α_{i} for the i-th entry of a weak composition α.
- The size of a weak composition α is defined to be $|\alpha|:=\alpha_{1}+\alpha_{2}+\alpha_{3}+\cdots$.
- A partition means a weak composition α satisfying $\alpha_{1} \geq \alpha_{2} \geq \alpha_{3} \geq \cdots$.
- A partition of n means a partition α with $|\alpha|=n$.
- We let Par denote the set of all partitions. For each $n \in \mathbb{Z}$, we let Par_{n} denote the set of all partitions of n.
- We often omit trailing zeroes from partitions: e.g., $(3,2,1,0,0,0, \ldots)=(3,2,1)=(3,2,1,0)$.
- The partition $(0,0,0, \ldots)=()$ is called the empty partition and denoted by \varnothing.

Symmetric functions: notation, 3

- We will use the notation m^{k} for " $\underbrace{m, m, \ldots, m}_{k \text { times }}$ " in partitions.
(For example, $\left(2,1^{4}\right)=(2,1,1,1,1)$. .)
- We will use the notation m^{k} for " $\underbrace{m, m, \ldots, m}_{k \text { times }}$ " in partitions.
(For example, $\left(2,1^{4}\right)=(2,1,1,1,1)$.)
- For any weak composition α, we let x^{α} denote the monomial $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} x_{3}^{\alpha_{3}} \cdots$. It has degree $|\alpha|$.

Symmetric functions: notation, 3

- We will use the notation m^{k} for " $\underbrace{m, m, \ldots, m}_{k \text { times }}$ " in partitions. (For example, $\left(2,1^{4}\right)=(2,1,1,1,1)$.)
- For any weak composition α, we let x^{α} denote the monomial $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} x_{3}^{\alpha_{3}} \cdots$. It has degree $|\alpha|$.
- The ring $\mathrm{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ consists of formal infinite k -linear combinations of monomials x^{α}. These combinations are called formal power series.
- The symmetric functions are the formal power series $f \in \mathrm{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ that are
- of bounded degree (i.e., all monomials in f have degrees $<N$ for some $N=N_{f}$);
- symmetric (i.e., permuting the x_{i} does not change f).

Symmetric functions: notation, 3

- We will use the notation m^{k} for " $\underbrace{m, m, \ldots, m}_{k \text { times }}$ " in partitions. (For example, $\left(2,1^{4}\right)=(2,1,1,1,1)$.)
- For any weak composition α, we let x^{α} denote the monomial $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} x_{3}^{\alpha_{3}} \cdots$. It has degree $|\alpha|$.
- The ring $\mathrm{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ consists of formal infinite k -linear combinations of monomials x^{α}. These combinations are called formal power series.
- The symmetric functions are the formal power series $f \in \mathrm{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ that are
- of bounded degree (i.e., all monomials in f have degrees $<N$ for some $N=N_{f}$);
- symmetric (i.e., permuting the x_{i} does not change f).
- We let

$$
\Lambda=\left\{\text { symmetric functions } f \in \mathrm{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]\right\}
$$

This is a k -subalgebra of $\mathrm{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$, graded by the degree.

- The k-module Λ has several bases indexed by the set Par.
- The k-module Λ has several bases indexed by the set Par.
- The monomial basis $\left(m_{\lambda}\right)_{\lambda \in \mathrm{Par}}$:

For each partition λ, we define the monomial symmetric function $m_{\lambda} \in \Lambda$ by

$$
m_{\lambda}=\sum_{\substack{\alpha \text { is a weak composition; } \\ \alpha \text { can be obtained from } \lambda \\ \text { by permuting entries }}} \mathrm{x}^{\alpha}
$$

- The k-module Λ has several bases indexed by the set Par.
- The monomial basis $\left(m_{\lambda}\right)_{\lambda \in \mathrm{Par}}$:

For each partition λ, we define the monomial symmetric function $m_{\lambda} \in \Lambda$ by

$$
m_{\lambda}=\sum_{\substack{\alpha \text { is a weak composition; } \\ \alpha \text { can be obtained from } \lambda \\ \text { by permuting entries }}} \mathrm{x}^{\alpha}
$$

For example:

$$
m_{(2,2,1)}=\sum_{i<j<k} x_{i}^{2} x_{j}^{2} x_{k}+\sum_{i<j<k} x_{i}^{2} x_{j} x_{k}^{2}+\sum_{i<j<k} x_{i} x_{j}^{2} x_{k}^{2}
$$

- The k-module Λ has several bases indexed by the set Par.
- The monomial basis $\left(m_{\lambda}\right)_{\lambda \in \mathrm{Par}}$:

For each partition λ, we define the monomial symmetric function $m_{\lambda} \in \Lambda$ by

$$
m_{\lambda}=\sum_{\substack{\alpha \text { is a weak composition; } \\ \alpha \text { can be obtained from } \lambda \\ \text { by permuting entries }}} \mathrm{x}^{\alpha}
$$

For example:

$$
m_{(2,2,1)}=\sum_{i<j<k} x_{i}^{2} x_{j}^{2} x_{k}+\sum_{i<j<k} x_{i}^{2} x_{j} x_{k}^{2}+\sum_{i<j<k} x_{i} x_{j}^{2} x_{k}^{2}
$$

The family $\left(m_{\lambda}\right)_{\lambda \in \operatorname{Par}}$ is a basis of the k -module Λ, called the monomial basis.

- The complete basis $\left(h_{\lambda}\right)_{\lambda \in \mathrm{Par}}$:

For each $n \in \mathbb{Z}$, define the complete homogeneous symmetric function h_{n} by

$$
h_{n}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}=\sum_{\substack{\alpha \in \mathrm{WC} ; \\|\alpha|=n}} x^{\alpha}=\sum_{\lambda \in \operatorname{Par}_{n}} m_{\lambda} .
$$

- The complete basis $\left(h_{\lambda}\right)_{\lambda \in \mathrm{Par}}$:

For each $n \in \mathbb{Z}$, define the complete homogeneous symmetric function h_{n} by

$$
h_{n}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}=\sum_{\substack{\alpha \in \mathrm{WC} ; \\|\alpha|=n}} x^{\alpha}=\sum_{\lambda \in \operatorname{Par}_{n}} m_{\lambda} .
$$

For example,

$$
\begin{aligned}
& h_{1}=x_{1}+x_{2}+x_{3}+\cdots ; \\
& h_{2}=\sum_{i \leq j} x_{i} x_{j}=\sum_{i} x_{i}^{2}+\sum_{i<j} x_{i} x_{j} ; \\
& h_{0}=1 ; \\
& h_{n}=0 \quad \text { for all } n<0 .
\end{aligned}
$$

- The complete basis $\left(h_{\lambda}\right)_{\lambda \in \mathrm{Par}}$:

For each $n \in \mathbb{Z}$, define the complete homogeneous symmetric function h_{n} by

$$
h_{n}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}=\sum_{\substack{\alpha \in \mathrm{WC} ; \\|\alpha|=n}} x^{\alpha}=\sum_{\lambda \in \operatorname{Par}_{n}} m_{\lambda} .
$$

For example,

$$
\begin{aligned}
& h_{1}=x_{1}+x_{2}+x_{3}+\cdots ; \\
& h_{2}=\sum_{i \leq j} x_{i} x_{j}=\sum_{i} x_{i}^{2}+\sum_{i<j} x_{i} x_{j} ; \\
& h_{0}=1 ; \\
& h_{n}=0 \quad \text { for all } n<0 .
\end{aligned}
$$

For each partition λ, we define

$$
h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} h_{\lambda_{3}} \cdots \in \Lambda .
$$

The family $\left(h_{\lambda}\right)_{\lambda \in \operatorname{Par}}$ is a basis of the k-module Λ.

- The elementary basis $\left(e_{\lambda}\right)_{\lambda \in \mathrm{Par}}$: For each $n \in \mathbb{Z}$, define the elementary symmetric function e_{n} by

$$
e_{n}=\sum_{i_{1}<i_{2}<\cdots<i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}=\sum_{\substack{\alpha \in \mathrm{WC} \cap\{0,1\}^{\infty} ; \\|\alpha|=n}} x^{\alpha}=m_{\left(1^{n}\right)} .
$$

- The elementary basis $\left(e_{\lambda}\right)_{\lambda \in \mathrm{Par}}$: For each $n \in \mathbb{Z}$, define the elementary symmetric function e_{n} by

$$
e_{n}=\sum_{i_{1}<i_{2}<\cdots<i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}=\sum_{\substack{\alpha \in \mathrm{WC} \cap\{0,1\}^{\infty} ; \\|\alpha|=n}} x^{\alpha}=m_{\left(1^{n}\right)} .
$$

For example,

$$
\begin{aligned}
& e_{1}=x_{1}+x_{2}+x_{3}+\cdots ; \\
& e_{2}=\sum_{i<j} x_{i} x_{j} ; \\
& e_{0}=1 ; \\
& e_{n}=0 \quad \text { for all } n<0 .
\end{aligned}
$$

- The elementary basis $\left(e_{\lambda}\right)_{\lambda \in \mathrm{Par}}$:

For each $n \in \mathbb{Z}$, define the elementary symmetric function e_{n} by

$$
e_{n}=\sum_{i_{1}<i_{2}<\cdots<i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}}=\sum_{\substack{\alpha \in \mathrm{WC} \cap\{0,1\}^{\infty} ; \\|\alpha|=n}} x^{\alpha}=m_{\left(1^{n}\right)} .
$$

For example,

$$
\begin{aligned}
& e_{1}=x_{1}+x_{2}+x_{3}+\cdots ; \\
& e_{2}=\sum_{i<j} x_{i} x_{j} ; \\
& e_{0}=1 ; \\
& e_{n}=0 \quad \text { for all } n<0 .
\end{aligned}
$$

For each partition λ, we define

$$
e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} e_{\lambda_{3}} \cdots \in \Lambda
$$

The family $\left(e_{\lambda}\right)_{\lambda \in \operatorname{Par}}$ is a basis of the k-module Λ.

- The power-sum symmetric functions p_{n} : For each positive integer n, define the power-sum symmetric function p_{n} by

$$
p_{n}=x_{1}^{n}+x_{2}^{n}+x_{3}^{n}+\cdots=m_{(n)} .
$$

- The power-sum symmetric functions p_{n} : For each positive integer n, define the power-sum symmetric function p_{n} by

$$
p_{n}=x_{1}^{n}+x_{2}^{n}+x_{3}^{n}+\cdots=m_{(n)} .
$$

We can make a basis out of (products of) p_{n} 's when k is a \mathbb{Q}-algebra.

- The Schur basis $\left(s_{\lambda}\right)_{\lambda \in \mathrm{Par}}$:

For each partition λ, we can define the Schur function s_{λ} in many equivalent ways, e.g.:

- We have

$$
s_{\lambda}=\sum_{T \text { is a semistandard }} x_{T}
$$ Young tableau of shape λ

where x_{T} denotes the monomial obtained by multiplying the x_{i} for all entries i of T.

- The Schur basis $\left(s_{\lambda}\right)_{\lambda \in \mathrm{Par}}$:

For each partition λ, we can define the Schur function s_{λ} in many equivalent ways, e.g.:

- We have

$$
s_{\lambda}=\sum_{\substack{T \text { is a semistandard } \\ \text { Young tableau of shape } \lambda}} x_{T}
$$

where x_{T} denotes the monomial obtained by multiplying the x_{i} for all entries i of T.

- If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$, then

$$
s_{\lambda}=\operatorname{det}\left(\left(h_{\lambda_{i}-i+j}\right)_{1 \leq i \leq \ell, 1 \leq j \leq \ell}\right)
$$

(the first Jacobi-Trudi formula).
The family $\left(s_{\lambda}\right)_{\lambda \in \operatorname{Par}}$ is a basis of the k-module Λ.

- For any positive integer k, set

$$
\begin{aligned}
& G(k) \\
& =\sum_{\substack{\alpha \in \mathrm{WC} ; \\
\alpha_{i}<k \text { for all } i}} \mathrm{x}^{\alpha} \\
& \left.=\sum_{\text {(all monomials whose exponents are all }<k)} \in \mathrm{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right] \quad \text { (not } \in \Lambda \text { in general }\right) .
\end{aligned}
$$

- For any positive integer k and any $m \in \mathbb{N}$, we let

$$
G(k, m)
$$

$$
=\sum_{\substack{\alpha \in \mathrm{WC} ; \\|\alpha|=m ; \\ \alpha_{i}<k \text { for all } i}} \mathrm{x}^{\alpha}
$$

$=\sum$ (all degree- m monomials whose exponents are all $<k$)
$\in \Lambda$.

- For any positive integer k and any $m \in \mathbb{N}$, we let
$G(k, m)$
$=\sum_{\substack{\alpha \in \mathrm{WC}_{;} \\ \mid \alpha=m_{i} \\ \alpha_{i}<k \text { for all } i}} \mathrm{x}^{\alpha}$
$=\sum$ (all degree- m monomials whose exponents are all $<k$)
$\in \Lambda$.
For example,

$$
\begin{aligned}
G(3,4)= & \sum_{i<j<k<\ell} x_{i} x_{j} x_{k} x_{\ell}+\sum_{i<j<k} x_{i}^{2} x_{j} x_{k}+\sum_{i<j<k} x_{i} x_{j}^{2} x_{k} \\
& +\sum_{i<j<k} x_{i} x_{j} x_{k}^{2}+\sum_{i<j} x_{i}^{2} x_{j}^{2} \\
= & m_{(1,1,1,1)}+m_{(2,1,1)}+m_{(2,2)} .
\end{aligned}
$$

- I named $G(k)$ and $G(k, m)$ the Petrie functions, for reasons that will become clear eventually.
- I named $G(k)$ and $G(k, m)$ the Petrie functions, for reasons that will become clear eventually.
- Basic properties (for arbitrary $k>0$ and $m \in \mathbb{N}$):
-

$$
G(k)=\sum_{\substack{\lambda \in \operatorname{Par} ; \\ \lambda_{i}<k \text { for all } i}} m_{\lambda}=\prod_{i=1}^{\infty}\left(x_{i}^{0}+x_{i}^{1}+\cdots+x_{i}^{k-1}\right) .
$$

- I named $G(k)$ and $G(k, m)$ the Petrie functions, for reasons that will become clear eventually.
- Basic properties (for arbitrary $k>0$ and $m \in \mathbb{N}$):
-

$$
G(k)=\sum_{\substack{\lambda \in \text { Par; } \\ \lambda_{i}<k \text { for all } i}} m_{\lambda}=\prod_{i=1}^{\infty}\left(x_{i}^{0}+x_{i}^{1}+\cdots+x_{i}^{k-1}\right) .
$$

- $G(k, m)$ is the m-th degree component of $G(k)$.
- I named $G(k)$ and $G(k, m)$ the Petrie functions, for reasons that will become clear eventually.
- Basic properties (for arbitrary $k>0$ and $m \in \mathbb{N}$):
-

$$
G(k)=\sum_{\substack{\lambda \in \operatorname{Par} ; \\ \lambda i<k \text { for all } i}} m_{\lambda}=\prod_{i=1}^{\infty}\left(x_{i}^{0}+x_{i}^{1}+\cdots+x_{i}^{k-1}\right)
$$

- $G(k, m)$ is the m-th degree component of $G(k)$.
-

$$
G(k, m)=\sum_{\substack{\lambda \in \operatorname{Par} ; \\|\lambda|=m ; \\ \lambda_{i}<k \text { for all } i}} m_{\lambda}
$$

- I named $G(k)$ and $G(k, m)$ the Petrie functions, for reasons that will become clear eventually.
- Basic properties (for arbitrary $k>0$ and $m \in \mathbb{N}$):
-

$$
G(k)=\sum_{\substack{\lambda \in \operatorname{Par} ; \\ \lambda_{i}<k \text { for all } i}} m_{\lambda}=\prod_{i=1}^{\infty}\left(x_{i}^{0}+x_{i}^{1}+\cdots+x_{i}^{k-1}\right)
$$

- $G(k, m)$ is the m-th degree component of $G(k)$.
-

$$
G(k, m)=\sum_{\substack{\lambda \in \operatorname{Par} ; \\|\lambda|=m ; \\ \lambda_{i}<k \text { for all } i}} m_{\lambda}
$$

- $G(2, m)=e_{m}$.
- I named $G(k)$ and $G(k, m)$ the Petrie functions, for reasons that will become clear eventually.
- Basic properties (for arbitrary $k>0$ and $m \in \mathbb{N}$):
-

$$
G(k)=\sum_{\substack{\lambda \in \operatorname{Par} ; \\ \lambda_{i}<k \text { for all } i}} m_{\lambda}=\prod_{i=1}^{\infty}\left(x_{i}^{0}+x_{i}^{1}+\cdots+x_{i}^{k-1}\right)
$$

- $G(k, m)$ is the m-th degree component of $G(k)$.
-

$$
G(k, m)=\sum_{\substack{\lambda \in \operatorname{Par} ; \\|\lambda|=m ; \\ \lambda_{i}<k \text { for all } i}} m_{\lambda}
$$

- $G(2, m)=e_{m}$.
- $G(k, m)=h_{m}$ whenever $k>m$.
- I named $G(k)$ and $G(k, m)$ the Petrie functions, for reasons that will become clear eventually.
- Basic properties (for arbitrary $k>0$ and $m \in \mathbb{N}$):
-

$$
G(k)=\sum_{\substack{\lambda \in \operatorname{Par} ; \\ \lambda_{i}<k \text { for all } i}} m_{\lambda}=\prod_{i=1}^{\infty}\left(x_{i}^{0}+x_{i}^{1}+\cdots+x_{i}^{k-1}\right)
$$

- $G(k, m)$ is the m-th degree component of $G(k)$.
-

$$
G(k, m)=\sum_{\substack{\lambda \in \operatorname{Par} ; \\|\lambda|=m ; \\ \lambda_{i}<k \text { for all } i}} m_{\lambda}
$$

- $G(2, m)=e_{m}$.
- $G(k, m)=h_{m}$ whenever $k>m$.
- $G(m, m)=h_{m}-p_{m}$.
- This is for the friends of Hopf algebras:

$$
\Delta(G(k, m))=\sum_{i=0}^{m} G(k, i) \otimes G(k, m-i)
$$

for each $k>0$ and $m \in \mathbb{N}$.
Here, Δ is the comultiplication of Λ, defined to be the k-algebra homomorphism

$$
\begin{aligned}
\Delta: \Lambda & \rightarrow \Lambda \otimes \Lambda, \\
e_{n} & \mapsto \sum_{i=0}^{n} e_{i} \otimes e_{n-i} .
\end{aligned}
$$

- This is for the friends of Hopf algebras:

$$
\Delta(G(k, m))=\sum_{i=0}^{m} G(k, i) \otimes G(k, m-i)
$$

for each $k>0$ and $m \in \mathbb{N}$.
Here, Δ is the comultiplication of Λ, defined to be the k-algebra homomorphism

$$
\begin{aligned}
\Delta: \Lambda & \rightarrow \Lambda \otimes \Lambda, \\
e_{n} & \mapsto \sum_{i=0}^{n} e_{i} \otimes e_{n-i} .
\end{aligned}
$$

- In terms of alphabets, this says

$$
\begin{aligned}
& (G(k, m))\left(x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots\right) \\
& =\sum_{i=0}^{m}(G(k, i))\left(x_{1}, x_{2}, x_{3}, \ldots\right) \cdot(G(k, m-i))\left(y_{1}, y_{2}, y_{3}, \ldots\right) .
\end{aligned}
$$

- We can expand the $G(k, m)$ in the Schur basis $\left(s_{\lambda}\right)_{\lambda \in \mathrm{Par}}$: e.g.,

$$
G(4,6)=s_{(2,1,1,1,1)}-s_{(2,2,1,1)}+s_{(3,3)} .
$$

- We can expand the $G(k, m)$ in the Schur basis $\left(s_{\lambda}\right)_{\lambda \in \mathrm{Par}}$: e.g.,

$$
G(4,6)=s_{(2,1,1,1,1)}-s_{(2,2,1,1)}+s_{(3,3)} .
$$

- Surprisingly, it turns out that all coefficients are in $\{0,1,-1\}$.
- We can expand the $G(k, m)$ in the Schur basis $\left(s_{\lambda}\right)_{\lambda \in \mathrm{Par}}$: e.g.,

$$
G(4,6)=s_{(2,1,1,1,1)}-s_{(2,2,1,1)}+s_{(3,3)}
$$

- Surprisingly, it turns out that all coefficients are in $\{0,1,-1\}$.
- Better yet: Any product $G(k, m) \cdot s_{\mu}$ expands in the Schur basis with coefficients in $\{0,1,-1\}$.
- We can expand the $G(k, m)$ in the Schur basis $\left(s_{\lambda}\right)_{\lambda \in \mathrm{Par}}$: e.g.,

$$
G(4,6)=s_{(2,1,1,1,1)}-s_{(2,2,1,1)}+s_{(3,3)}
$$

- Surprisingly, it turns out that all coefficients are in $\{0,1,-1\}$.
- Better yet: Any product $G(k, m) \cdot s_{\mu}$ expands in the Schur basis with coefficients in $\{0,1,-1\}$.
- Let us see what the coefficients are.
- We let $[\mathcal{A}]$ denote the truth value of a statement \mathcal{A} (that is, 1 if \mathcal{A} is true, and 0 if \mathcal{A} is false).
- We let $[\mathcal{A}]$ denote the truth value of a statement \mathcal{A} (that is, 1 if \mathcal{A} is true, and 0 if \mathcal{A} is false).
- Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right) \in$ Par and
$\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{\ell}\right) \in \operatorname{Par}$, and let k be a positive integer.
Then, the k-Petrie number pet ${ }_{k}(\lambda, \mu)$ of λ and μ is the integer defined by

$$
\operatorname{pet}_{k}(\lambda, \mu)=\operatorname{det}\left(\left(\left[0 \leq \lambda_{i}-\mu_{j}-i+j<k\right]\right)_{1 \leq i \leq \ell, 1 \leq j \leq \ell}\right) .
$$

- We let $[\mathcal{A}]$ denote the truth value of a statement \mathcal{A} (that is, 1 if \mathcal{A} is true, and 0 if \mathcal{A} is false).
- Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right) \in$ Par and
$\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{\ell}\right) \in \operatorname{Par}$, and let k be a positive integer.
Then, the k-Petrie number pet ${ }_{k}(\lambda, \mu)$ of λ and μ is the integer defined by

$$
\operatorname{pet}_{k}(\lambda, \mu)=\operatorname{det}\left(\left(\left[0 \leq \lambda_{i}-\mu_{j}-i+j<k\right]\right)_{1 \leq i \leq \ell, 1 \leq j \leq \ell}\right) .
$$

For example, for $\ell=3$, we have

$$
\begin{aligned}
& \operatorname{pet}_{k}(\lambda, \mu) \\
& =\operatorname{det}\left(\begin{array}{ccc}
{\left[0 \leq \lambda_{1}-\mu_{1}<k\right]} & {\left[0 \leq \lambda_{1}-\mu_{2}+1<k\right]} & {\left[0 \leq \lambda_{1}-\mu_{3}+2<k\right]} \\
{\left[0 \leq \lambda_{2}-\mu_{1}-1<k\right]} & {\left[0 \leq \lambda_{2}-\mu_{2}<k\right]} & {\left[0 \leq \lambda_{2}-\mu_{3}+1<k\right]} \\
{\left[0 \leq \lambda_{3}-\mu_{1}-2<k\right]} & {\left[0 \leq \lambda_{3}-\mu_{2}-1<k\right]} & {\left[0 \leq \lambda_{3}-\mu_{3}<k\right]}
\end{array}\right) .
\end{aligned}
$$

For example,

$$
\operatorname{pet}_{4}((3,1,1),(2,1))=\operatorname{det}\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)=1
$$

- We let $[\mathcal{A}]$ denote the truth value of a statement \mathcal{A} (that is, 1 if \mathcal{A} is true, and 0 if \mathcal{A} is false).
- Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right) \in$ Par and
$\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{\ell}\right) \in$ Par, and let k be a positive integer.
Then, the k-Petrie number pet ${ }_{k}(\lambda, \mu)$ of λ and μ is the integer defined by

$$
\operatorname{pet}_{k}(\lambda, \mu)=\operatorname{det}\left(\left(\left[0 \leq \lambda_{i}-\mu_{j}-i+j<k\right]\right)_{1 \leq i \leq \ell, 1 \leq j \leq \ell}\right) .
$$

- Proposition: We have $\operatorname{pet}_{k}(\lambda, \mu) \in\{0,1,-1\}$ for all λ and μ.
- We let $[\mathcal{A}]$ denote the truth value of a statement \mathcal{A} (that is, 1 if \mathcal{A} is true, and 0 if \mathcal{A} is false).
- Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right) \in$ Par and $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{\ell}\right) \in$ Par, and let k be a positive integer. Then, the k-Petrie number $\operatorname{pet}_{k}(\lambda, \mu)$ of λ and μ is the integer defined by

$$
\operatorname{pet}_{k}(\lambda, \mu)=\operatorname{det}\left(\left(\left[0 \leq \lambda_{i}-\mu_{j}-i+j<k\right]\right)_{1 \leq i \leq \ell, 1 \leq j \leq \ell}\right) .
$$

- Proposition: We have $\operatorname{pet}_{k}(\lambda, \mu) \in\{0,1,-1\}$ for all λ and μ.
- Proof idea. Each row of the matrix

$$
\begin{aligned}
& \left(\left[0 \leq \lambda_{i}-\mu_{j}-i+j<k\right]\right)_{1 \leq i \leq \ell, 1 \leq j \leq \ell} \text { has the form } \\
& (\underbrace{0,0, \ldots, 0}_{a \text { zeroes }}, \underbrace{1,1, \ldots, 1}_{b \text { ones }}, \underbrace{0,0, \ldots, 0}_{c \text { zeroes }}) \text { for some } a, b, c \in \mathbb{N} .
\end{aligned}
$$

Thus, this matrix is the transpose of a Petrie matrix. Hence, its determinant is $\in\{-1,0,1\}$ (by Gordon and Wilkinson 1974).

Expanding Petries in the Schur basis: the formula

- Theorem: Let k be a positive integer. Let $\mu \in$ Par. Then,

$$
G(k) \cdot s_{\mu}=\sum_{\lambda \in \mathrm{Par}} \operatorname{pet}_{k}(\lambda, \mu) s_{\lambda} .
$$

- Theorem: Let k be a positive integer. Let $\mu \in$ Par. Then,

$$
G(k) \cdot s_{\mu}=\sum_{\lambda \in \operatorname{Par}} \operatorname{pet}_{k}(\lambda, \mu) s_{\lambda} .
$$

Thus, for each $m \in \mathbb{N}$, we have

$$
G(k, m) \cdot s_{\mu}=\sum_{\lambda \in \operatorname{Par}_{m+|\mu|}} \operatorname{pet}_{k}(\lambda, \mu) s_{\lambda} .
$$

- Theorem: Let k be a positive integer. Let $\mu \in$ Par. Then,

$$
G(k) \cdot s_{\mu}=\sum_{\lambda \in \operatorname{Par}} \operatorname{pet}_{k}(\lambda, \mu) s_{\lambda} .
$$

Thus, for each $m \in \mathbb{N}$, we have

$$
G(k, m) \cdot s_{\mu}=\sum_{\lambda \in \operatorname{Par}_{m+|\mu|}} \operatorname{pet}_{k}(\lambda, \mu) s_{\lambda} .
$$

- Corollary: Let k be a positive integer. Then,

$$
G(k)=\sum_{\lambda \in \operatorname{Par}} \operatorname{pet}_{k}(\lambda, \varnothing) s_{\lambda} .
$$

Thus, for each $m \in \mathbb{N}$, we have

$$
G(k, m)=\sum_{\lambda \in \operatorname{Par}_{m}} \operatorname{pet}_{k}(\lambda, \varnothing) s_{\lambda} .
$$

- Theorem: Let k be a positive integer. Let $\mu \in$ Par. Then,

$$
G(k) \cdot s_{\mu}=\sum_{\lambda \in \operatorname{Par}} \operatorname{pet}_{k}(\lambda, \mu) s_{\lambda} .
$$

Thus, for each $m \in \mathbb{N}$, we have

$$
G(k, m) \cdot s_{\mu}=\sum_{\lambda \in \operatorname{Par}_{m+|\mu|}} \operatorname{pet}_{k}(\lambda, \mu) s_{\lambda} .
$$

- One proof of the Theorem uses alternants; the other uses the "semi-skew Cauchy identity"

$$
\begin{aligned}
\sum_{\lambda \in \operatorname{Par}} s_{\lambda}(\mathrm{x}) s_{\lambda / \mu}(\mathrm{y}) & =s_{\mu}(\mathrm{x}) \cdot \prod_{i, j=1}^{\infty}\left(1-x_{i} y_{j}\right)^{-1} \\
& =s_{\mu}(\mathrm{x}) \cdot \sum_{\lambda \in \operatorname{Par}} h_{\lambda}(\mathrm{x}) m_{\lambda}(\mathrm{y})
\end{aligned}
$$

(for any $\mu \in$ Par and for two sets of indeterminates
$x=\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ and $\left.y=\left(y_{1}, y_{2}, y_{3}, \ldots\right)\right)$.

What are the Petrie numbers?

- We have shown that $\operatorname{pet}_{k}(\lambda, \mu) \in\{0,1,-1\}$, but what exactly is it?
- We have shown that $\operatorname{pet}_{k}(\lambda, \mu) \in\{0,1,-1\}$, but what exactly is it?
- Gordon and Wilkinson 1974 prove that Petrie matrices have determinants $\in\{0,1,-1\}$ by induction. This is little help to us.

What are the Petrie numbers? The easy case

- Proposition: Let $\lambda \in$ Par and $k>0$ be such that $\lambda_{1} \geq k$. Then, $\operatorname{pet}_{k}(\lambda, \varnothing)=0$.
- Proposition: Let $\lambda \in$ Par and $k>0$ be such that $\lambda_{1} \geq k$. Then, $\operatorname{pet}_{k}(\lambda, \varnothing)=0$.
- To get a description in all other cases, recall the definition of transpose (aka conjugate) partitions:
Given a partition $\lambda \in \operatorname{Par}$, we define the transpose partition λ^{t} of λ to be the partition μ given by

$$
\mu_{i}=\left|\left\{j \in\{1,2,3, \ldots\} \quad \mid \quad \lambda_{j} \geq i\right\}\right| \quad \text { for all } i \geq 1
$$

In terms of Young diagrams, this is just flipping the diagram of λ across the diagonal.

- Theorem: Let $\lambda \in$ Par and $k>0$ be such that $\lambda_{1}<k$. Let $\mu=\lambda^{t}$ (the transpose partition of λ). Thus, $\mu_{k}=0$.
For each $i \in\{1,2, \ldots, k-1\}$, set

$$
\beta_{i}=\mu_{i}-i \quad \text { and } \quad \gamma_{i}=1+\underbrace{\left(\beta_{i}-1\right) \% k}_{\begin{array}{c}
\text { remainder of } \beta_{i}-1 \\
\text { modulo } k
\end{array}}
$$

(a) If the $k-1$ numbers $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k-1}$ are not distinct, then $\operatorname{pet}_{k}(\lambda, \varnothing)=0$.
(b) If the $k-1$ numbers $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k-1}$ are distinct, then

$$
\operatorname{pet}_{k}(\lambda, \varnothing)=(-1)^{\left(\beta_{1}+\beta_{2}+\cdots+\beta_{k-1}\right)+g+\left(\gamma_{1}+\gamma_{2}+\cdots+\gamma_{k-1}\right)}
$$

where

$$
g=\mid\left\{(i, j) \in\{1,2, \ldots, k-1\}^{2} \mid i<j \text { and } \gamma_{i}<\gamma_{j}\right\} \mid .
$$

- Theorem: Let $\lambda \in \operatorname{Par}$ and $k>0$ be such that $\lambda_{1}<k$. Let $\mu=\lambda^{t}$ (the transpose partition of λ). Thus, $\mu_{k}=0$.
For each $i \in\{1,2, \ldots, k-1\}$, set

$$
\beta_{i}=\mu_{i}-i \quad \text { and } \quad \gamma_{i}=1+\underbrace{\left(\beta_{i}-1\right) \% k}_{\begin{array}{c}
\text { remainder of } \beta_{i}-1 \\
\text { modulo } k
\end{array}}
$$

(a) If the $k-1$ numbers $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k-1}$ are not distinct, then $\operatorname{pet}_{k}(\lambda, \varnothing)=0$.
(b) If the $k-1$ numbers $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{k-1}$ are distinct, then

$$
\operatorname{pet}_{k}(\lambda, \varnothing)=(-1)^{\left(\beta_{1}+\beta_{2}+\cdots+\beta_{k-1}\right)+g+\left(\gamma_{1}+\gamma_{2}+\cdots+\gamma_{k-1}\right)},
$$

where

$$
g=\mid\left\{(i, j) \in\{1,2, \ldots, k-1\}^{2} \mid i<j \text { and } \gamma_{i}<\gamma_{j}\right\} \mid .
$$

- Question: Is there such a description for $\operatorname{pet}_{k}(\lambda, \mu)$?

Other properties

- For any $k>0$, we define a map $\mathrm{f}_{k}: \Lambda \rightarrow \Lambda$ by setting

$$
f_{k}(a)=a\left(x_{1}^{k}, x_{2}^{k}, x_{3}^{k}, \ldots\right) \quad \text { for each } a \in \Lambda
$$

This map f_{k} is called the k-th Frobenius endomorphism of Λ. (Also known as plethysm by p_{k}. Perhaps the nicest plethysm!)

Other properties

- For any $k>0$, we define a map $\mathrm{f}_{k}: \Lambda \rightarrow \Lambda$ by setting

$$
f_{k}(a)=a\left(x_{1}^{k}, x_{2}^{k}, x_{3}^{k}, \ldots\right) \quad \text { for each } a \in \Lambda
$$

This map f_{k} is called the k-th Frobenius endomorphism of Λ.
(Also known as plethysm by p_{k}. Perhaps the nicest plethysm!)

- Theorem: Let k be a positive integer. Let $m \in \mathbb{N}$. Then,

$$
G(k, m)=\sum_{i \in \mathbb{N}}(-1)^{i} h_{m-k i} \cdot f_{k}\left(e_{i}\right) .
$$

- For any $k>0$, we define a map $\mathrm{f}_{k}: \Lambda \rightarrow \Lambda$ by setting

$$
f_{k}(a)=a\left(x_{1}^{k}, x_{2}^{k}, x_{3}^{k}, \ldots\right) \quad \text { for each } a \in \Lambda
$$

This map f_{k} is called the k-th Frobenius endomorphism of Λ.
(Also known as plethysm by p_{k}. Perhaps the nicest plethysm!)

- Theorem: Let k be a positive integer. Let $m \in \mathbb{N}$. Then,

$$
G(k, m)=\sum_{i \in \mathbb{N}}(-1)^{i} h_{m-k i} \cdot f_{k}\left(e_{i}\right) .
$$

- Theorem: Fix a positive integer k. Assume that $1-k$ is invertible in k. Then, the family $(G(k, m))_{m \geq 1}=(G(k, 1), G(k, 2), G(k, 3), \ldots)$ is an algebraically independent generating set of the commutative k-algebra Λ.
- Thus, products of several elements of this family form a basis of Λ (if $1-k$ is invertible in k). These bases remain to be studied.
- This all begin with the following conjecture (Liu and Polo, arXiv:1908.08432):

$$
\sum_{\substack{\lambda \in \operatorname{Par}_{2 n-1} ; \\(n-1, n-1,1) \triangleright \lambda}} m_{\lambda}=\sum_{i=0}^{n-2}(-1)^{i} s_{\left(n-1, n-1-i, 1^{i+1}\right)} \quad \text { for any } n>1
$$

Here, the symbol \triangleright stands for dominance of partitions (also known as majorization); i.e., for two partitions λ and μ, we have

$$
\begin{aligned}
& \lambda \triangleright \mu \quad \text { if and only if } \\
& \left(\lambda_{1}+\lambda_{2}+\cdots+\lambda_{i} \geq \mu_{1}+\mu_{2}+\cdots+\mu_{i} \text { for all } i\right) .
\end{aligned}
$$

- Let me briefly outline how this conjecture can be proved.

The Liu-Polo conjecture, proof: 1

- The partitions $\lambda \in \operatorname{Par}_{2 n-1}$ satisfying $(n-1, n-1,1) \triangleright \lambda$ are precisely the partitions $\lambda \in \operatorname{Par}_{2 n-1}$ satisfying $\lambda_{i}<n$ for all i.
- The partitions $\lambda \in \operatorname{Par}_{2 n-1}$ satisfying $(n-1, n-1,1) \triangleright \lambda$ are precisely the partitions $\lambda \in \operatorname{Par}_{2 n-1}$ satisfying $\lambda_{i}<n$ for all i.
- Thus,

$$
\sum_{\substack{\left.\in \operatorname{Par}_{2 n-1} ; \\-1, n-1,1\right) \triangleright \lambda}} m_{\lambda}=G(n, 2 n-1) .
$$

- The partitions $\lambda \in \operatorname{Par}_{2 n-1}$ satisfying $(n-1, n-1,1) \triangleright \lambda$ are precisely the partitions $\lambda \in \operatorname{Par}_{2 n-1}$ satisfying $\lambda_{i}<n$ for all i.
- Thus,

$$
m_{\lambda}=G(n, 2 n-1)
$$

- So it remains to show that

$$
G(n, 2 n-1)=\sum_{i=0}^{n-2}(-1)^{i} s_{\left(n-1, n-1-i, 1^{i+1}\right)}
$$

The Liu-Polo conjecture, proof: 1

- The partitions $\lambda \in \operatorname{Par}_{2 n-1}$ satisfying $(n-1, n-1,1) \triangleright \lambda$ are precisely the partitions $\lambda \in \operatorname{Par}_{2 n-1}$ satisfying $\lambda_{i}<n$ for all i.
- Thus,

$$
\sum_{\substack{\left(\in \mathrm{Par}_{2 n-1} ; \\-1, n-1,1\right) \triangleright \lambda}} m_{\lambda}=G(n, 2 n-1) .
$$

- So it remains to show that

$$
G(n, 2 n-1)=\sum_{i=0}^{n-2}(-1)^{i} s_{\left(n-1, n-1-i, 1^{i+1}\right)} .
$$

- The formula for $\operatorname{pet}_{k}(\lambda, \varnothing)$ should be useful here, but the combinatorics is tortuous.
Instead, we can work algebraically:

The Liu-Polo conjecture, proof: $G(n, 2 n-1)$ explicitly

- We can easily see that

$$
G(n, n+k)=h_{n+k}-h_{k} p_{n} \quad \text { for each } k \in\{0,1, \ldots, n-1\} .
$$

- We can easily see that

$$
G(n, n+k)=h_{n+k}-h_{k} p_{n} \quad \text { for each } k \in\{0,1, \ldots, n-1\} .
$$

Thus, in particular, $G(n, 2 n-1)=h_{2 n-1}-h_{n-1} p_{n}$.

- We can easily see that

$$
G(n, n+k)=h_{n+k}-h_{k} p_{n} \quad \text { for each } k \in\{0,1, \ldots, n-1\} .
$$

Thus, in particular, $G(n, 2 n-1)=h_{2 n-1}-h_{n-1} p_{n}$.

- By the way, this is also a particular case of the

$$
G(k, m)=\sum_{i \in \mathbb{N}}(-1)^{i} h_{m-k i} \cdot f_{k}\left(e_{i}\right)
$$

formula.

The Liu-Polo conjecture, proof: Bernstein operators

- Recall the skewing operations $f^{\perp}: \Lambda \rightarrow \Lambda$ for all $f \in \Lambda$.
- Recall the skewing operations $f^{\perp}: \Lambda \rightarrow \Lambda$ for all $f \in \Lambda$.
- For any $m \in \mathbb{N}$, we define a map $B_{m}: \Lambda \rightarrow \Lambda$ (known as a m-th Bernstein operator in Zelevinsky's language, or as a Schur row-adder in Garsia's) by setting

$$
\mathrm{B}_{m}(f)=\sum_{i \in \mathbb{N}}(-1)^{i} h_{m+i} e_{i}^{\perp} f \quad \text { for all } f \in \Lambda
$$

- Recall the skewing operations $f^{\perp}: \Lambda \rightarrow \Lambda$ for all $f \in \Lambda$.
- For any $m \in \mathbb{N}$, we define a map $B_{m}: \Lambda \rightarrow \Lambda$ (known as a m-th Bernstein operator in Zelevinsky's language, or as a Schur row-adder in Garsia's) by setting

$$
\mathrm{B}_{m}(f)=\sum_{i \in \mathbb{N}}(-1)^{i} h_{m+i} e_{i}^{\perp} f \quad \text { for all } f \in \Lambda
$$

- Theorem (implicit in Zelevinsky's book; solved exercise in G./Reiner): If $\lambda \in \operatorname{Par}$ and $m \in \mathbb{Z}$ satisfy $m \geq \lambda_{1}$, then

$$
\mathrm{B}_{m}\left(s_{\lambda}\right)=s_{\left(m, \lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)}
$$

- Recall the skewing operations $f^{\perp}: \Lambda \rightarrow \Lambda$ for all $f \in \Lambda$.
- For any $m \in \mathbb{N}$, we define a map $B_{m}: \Lambda \rightarrow \Lambda$ (known as a m-th Bernstein operator in Zelevinsky's language, or as a Schur row-adder in Garsia's) by setting

$$
\mathrm{B}_{m}(f)=\sum_{i \in \mathbb{N}}(-1)^{i} h_{m+i} e_{i}^{\perp} f \quad \text { for all } f \in \Lambda
$$

- Theorem (implicit in Zelevinsky's book; solved exercise in G./Reiner): If $\lambda \in \operatorname{Par}$ and $m \in \mathbb{Z}$ satisfy $m \geq \lambda_{1}$, then

$$
\mathrm{B}_{m}\left(s_{\lambda}\right)=s_{\left(m, \lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)}
$$

- On the other hand, it is not hard to see that

$$
\begin{aligned}
& \mathrm{B}_{m}\left(h_{n}\right)=h_{m} h_{n}-h_{m+1} h_{n-1} \quad \text { and } \\
& \mathrm{B}_{m}\left(p_{n}\right)=h_{m} p_{n}-h_{m+n}
\end{aligned}
$$

for each $n>0$ and each $m \in\{0,1, \ldots, n\}$.

- Recall the skewing operations $f^{\perp}: \Lambda \rightarrow \Lambda$ for all $f \in \Lambda$.
- For any $m \in \mathbb{N}$, we define a map $B_{m}: \Lambda \rightarrow \Lambda$ (known as a m-th Bernstein operator in Zelevinsky's language, or as a Schur row-adder in Garsia's) by setting

$$
\mathrm{B}_{m}(f)=\sum_{i \in \mathbb{N}}(-1)^{i} h_{m+i} e_{i}^{\perp} f \quad \text { for all } f \in \Lambda
$$

- Theorem (implicit in Zelevinsky's book; solved exercise in G./Reiner): If $\lambda \in \operatorname{Par}$ and $m \in \mathbb{Z}$ satisfy $m \geq \lambda_{1}$, then

$$
\mathrm{B}_{m}\left(s_{\lambda}\right)=s_{\left(m, \lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)}
$$

- On the other hand, it is not hard to see that

$$
\begin{array}{ll}
\mathrm{B}_{m}\left(h_{n}\right)=h_{m} h_{n}-h_{m+1} h_{n-1} & \text { and } \\
\mathrm{B}_{m}\left(p_{n}\right)=h_{m} p_{n}-h_{m+n} &
\end{array}
$$

for each $n>0$ and each $m \in\{0,1, \ldots, n\}$. Hence,

$$
\mathrm{B}_{n-1}\left(h_{n}-p_{n}\right)=h_{2 n-1}-h_{n-1} p_{n}=G(n, 2 n-1) .
$$

- The Murnaghan-Nakayama rule yields

$$
p_{n}=\sum_{i=0}^{n-1}(-1)^{i} s_{\left(n-i, 1^{i}\right)}
$$

Subtracting this from $h_{n}=s_{(n)}=s_{\left(n-0,1^{0}\right)}$, we find

$$
h_{n}-p_{n}=\sum_{i=0}^{n-2}(-1)^{i} s_{\left(n-1-i, 1^{i+1}\right)}
$$

Hence,

$$
\begin{aligned}
\mathrm{B}_{n-1}\left(h_{n}-p_{n}\right) & =\sum_{i=0}^{n-2}(-1)^{i} \mathrm{~B}_{n-1}\left(s_{\left(n-1-i, 1^{i+1}\right)}\right) \\
& =\sum_{i=0}^{n-2}(-1)^{i} s_{\left(n-1, n-1-i, 1^{i+1}\right)}
\end{aligned}
$$

(by $\left.\mathrm{B}_{m}\left(s_{\lambda}\right)=s_{\left(m, \lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)}\right)$.

- Since $\mathrm{B}_{n-1}\left(h_{n}-p_{n}\right)=G(n, 2 n-1)$, we now get

$$
G(n, 2 n-1)=\mathrm{B}_{n-1}\left(h_{n}-p_{n}\right)=\sum_{i=0}^{n-2}(-1)^{i} s_{\left(n-1, n-1-i, 1^{i+1}\right)} .
$$

This proves the conjecture from Liu/Polo.

- Now to something different.

Recall our formula

$$
G(k, m) \cdot s_{\mu}=\sum_{\lambda \in \operatorname{Par}_{m+|\mu|}} \underbrace{\operatorname{pet}_{k}(\lambda, \mu)}_{\in\{0,1,-1\}} s_{\lambda} .
$$

MNable symmetric functions

- Now to something different.

Recall our formula

$$
G(k, m) \cdot s_{\mu}=\sum_{\lambda \in \operatorname{Par}_{m+|\mu|}} \underbrace{\operatorname{pet}_{k}(\lambda, \mu)}_{\in\{0,1,-1\}} s_{\lambda} .
$$

- Problem: What other functions can we replace $G(k, m)$ by and still get such a formula? In other words, what other $f \in \Lambda$ satisfy

$$
f \cdot s_{\mu}=\sum_{\lambda \in \mathrm{Par}}(\text { something in }\{0,1,-1\}) s_{\lambda} \quad ?
$$

MNable symmetric functions

- Now to something different.

Recall our formula

$$
G(k, m) \cdot s_{\mu}=\sum_{\lambda \in \operatorname{Par}_{m+|\mu|}} \underbrace{\operatorname{pet}_{k}(\lambda, \mu)}_{\in\{0,1,-1\}} s_{\lambda} .
$$

- Problem: What other functions can we replace $G(k, m)$ by and still get such a formula? In other words, what other $f \in \Lambda$ satisfy

$$
f \cdot s_{\mu}=\sum_{\lambda \in \mathrm{Par}}(\text { something in }\{0,1,-1\}) s_{\lambda} \quad ?
$$

- Let us restate this more formally.
- We recall the Hall inner product $(\cdot, \cdot): \Lambda \times \Lambda \rightarrow k$; it is the unique k-bilinear form on Λ that satisfies

$$
\left(s_{\lambda}, s_{\mu}\right)=\delta_{\lambda, \mu} \quad \text { for all } \lambda, \mu \in \operatorname{Par}
$$

It also is symmetric and nondegenerate and satisfies

$$
\left(h_{\lambda}, m_{\mu}\right)=\delta_{\lambda, \mu} \quad \text { for all } \lambda, \mu \in \operatorname{Par}
$$

- Definition: Let $k=\mathbb{Z}$ from now on.
- A symmetric function $f \in \Lambda$ will be called signed multiplicity-free if f can be expanded as a linear combination of distinct Schur functions with all coefficients in $\{-1,0,1\}$. (That is, if the Hall inner product $\left(f, s_{\mu}\right)$ is -1 or 0 or 1 for each partition μ.)
- Definition: Let $k=\mathbb{Z}$ from now on.
- A symmetric function $f \in \Lambda$ will be called signed multiplicity-free if f can be expanded as a linear combination of distinct Schur functions with all coefficients in $\{-1,0,1\}$. (That is, if the Hall inner product $\left(f, s_{\mu}\right)$ is -1 or 0 or 1 for each partition μ.)
- A symmetric function $f \in \Lambda$ will be called M Nable if for each partition μ, the product $f s_{\mu}$ is signed multiplicity-free.
- Definition: Let $k=\mathbb{Z}$ from now on.
- A symmetric function $f \in \Lambda$ will be called signed multiplicity-free if f can be expanded as a linear combination of distinct Schur functions with all coefficients in $\{-1,0,1\}$. (That is, if the Hall inner product $\left(f, s_{\mu}\right)$ is -1 or 0 or 1 for each partition μ.)
- A symmetric function $f \in \Lambda$ will be called M Nable if for each partition μ, the product $f s_{\mu}$ is signed multiplicity-free.
- For example, $h_{3} p_{2}$ is signed multiplicity-free, since

$$
h_{3} p_{2}=s_{(5)}+s_{(3,2)}-s_{(3,1,1)}
$$

- Definition: Let $k=\mathbb{Z}$ from now on.
- A symmetric function $f \in \Lambda$ will be called signed multiplicity-free if f can be expanded as a linear combination of distinct Schur functions with all coefficients in $\{-1,0,1\}$. (That is, if the Hall inner product $\left(f, s_{\mu}\right)$ is -1 or 0 or 1 for each partition μ.)
- A symmetric function $f \in \Lambda$ will be called M Nable if for each partition μ, the product $f s_{\mu}$ is signed multiplicity-free.
- For example, $h_{3} p_{2}$ is signed multiplicity-free, since

$$
h_{3} p_{2}=s_{(5)}+s_{(3,2)}-s_{(3,1,1)}
$$

but it is not MNable, since the product

$$
\begin{array}{r}
h_{3} p_{2} s_{(2)}=-s_{(3,2,1,1)}+s_{(3,2,2)}-s_{(4,1,1,1)}+s_{(4,3)} \\
-s_{(5,1,1)}+2 s_{(5,2)}+s_{(6,1)}+s_{(7)}
\end{array}
$$

is not signed multiplicity-free (due to the coefficient of $s_{(5,2)}$
being 2).

MNable symmetric functions: examples

- Definition: Let $k=\mathbb{Z}$ from now on.
- A symmetric function $f \in \Lambda$ will be called signed multiplicity-free if f can be expanded as a linear combination of distinct Schur functions with all coefficients in $\{-1,0,1\}$. (That is, if the Hall inner product $\left(f, s_{\mu}\right)$ is -1 or 0 or 1 for each partition μ.)
- A symmetric function $f \in \Lambda$ will be called M Nable if for each partition μ, the product $f s_{\mu}$ is signed multiplicity-free.
- First Pieri rule: Each $\mu \in \operatorname{Par}$ and $i \in \mathbb{N}$ satisfy

$$
h_{i} s_{\mu}=\sum_{\substack{\lambda \in \operatorname{Par} ; \\ \lambda / \mu \text { is a horizontal } i \text {-strip }}} s_{\lambda} .
$$

The right hand side is signed multiplicity-free (without any -1 's). Thus, h_{i} is MNable.

MNable symmetric functions: examples

- Definition: Let $k=\mathbb{Z}$ from now on.
- A symmetric function $f \in \Lambda$ will be called signed multiplicity-free if f can be expanded as a linear combination of distinct Schur functions with all coefficients in $\{-1,0,1\}$. (That is, if the Hall inner product $\left(f, s_{\mu}\right)$ is -1 or 0 or 1 for each partition μ.)
- A symmetric function $f \in \Lambda$ will be called M Nable if for each partition μ, the product $f s_{\mu}$ is signed multiplicity-free.
- Second Pieri rule: Each $\mu \in \operatorname{Par}$ and $i \in \mathbb{N}$ satisfy

$$
e_{i} s_{\mu}=\sum_{\lambda / \mu \text { is a vertical } i \text {-strip }} s_{\lambda} .
$$

The right hand side is signed multiplicity-free (without any -1 's). Thus, e_{i} is MNable.

MNable symmetric functions: examples

- Definition: Let $k=\mathbb{Z}$ from now on.
- A symmetric function $f \in \Lambda$ will be called signed multiplicity-free if f can be expanded as a linear combination of distinct Schur functions with all coefficients in $\{-1,0,1\}$. (That is, if the Hall inner product $\left(f, s_{\mu}\right)$ is -1 or 0 or 1 for each partition μ.)
- A symmetric function $f \in \Lambda$ will be called M Nable if for each partition μ, the product $f s_{\mu}$ is signed multiplicity-free.
- Murnaghan-Nakayama rule: Each $\mu \in \operatorname{Par}$ and $i>0$ satisfy

$$
p_{i} s_{\mu}=\sum_{\substack{\lambda \in \text { Par; } \\ \lambda / \mu \text { is a rim hook of size } i}} \pm s_{\lambda} .
$$

The right hand side is signed multiplicity-free. Thus, p_{i} is MNable.

MNable symmetric functions: examples

- Definition: Let $k=\mathbb{Z}$ from now on.
- A symmetric function $f \in \Lambda$ will be called signed multiplicity-free if f can be expanded as a linear combination of distinct Schur functions with all coefficients in $\{-1,0,1\}$. (That is, if the Hall inner product $\left(f, s_{\mu}\right)$ is -1 or 0 or 1 for each partition μ.)
- A symmetric function $f \in \Lambda$ will be called M Nable if for each partition μ, the product $f s_{\mu}$ is signed multiplicity-free.
- Murnaghan-Nakayama rule: Each $\mu \in \operatorname{Par}$ and $i>0$ satisfy

$$
p_{i} s_{\mu}=\sum_{\lambda \in \operatorname{Par} ;} \pm s_{\lambda}
$$

λ / μ is a rim hook of size i
The right hand side is signed multiplicity-free. Thus, p_{i} is MNable.

- Roughly speaking, an $f \in \Lambda$ is MNable if and only if there is a Murnaghan-Nakayama-like rule for $f s_{\mu}$. Thus, the name "MNable".
- Question: Which symmetric functions are MNable?
- Question: Which symmetric functions are MNable?
- Theorem:
- The functions h_{i} and e_{i} are MNable for each $i \in \mathbb{N}$.
- The function p_{i} is MNable for each positive integer i.
- Question: Which symmetric functions are MNable?
- Theorem:
- The functions h_{i} and e_{i} are MNable for each $i \in \mathbb{N}$.
- The function p_{i} is MNable for each positive integer i.
- The Petrie function $G(k, m)$ and the difference $G(k, m)-h_{m}$ are MNable for any integers $k \geq 1$ and $m \geq 0$.
- Question: Which symmetric functions are MNable?
- Theorem:
- The functions h_{i} and e_{i} are MNable for each $i \in \mathbb{N}$.
- The function p_{i} is MNable for each positive integer i.
- The Petrie function $G(k, m)$ and the difference $G(k, m)-h_{m}$ are MNable for any integers $k \geq 1$ and $m \geq 0$.
- The differences $h_{i}-p_{i}$ and $h_{i}-e_{i}$ are MNable for each positive integer i. (This includes $h_{1}-e_{1}=0$.)
- Question: Which symmetric functions are MNable?
- Theorem:
- The functions h_{i} and e_{i} are MNable for each $i \in \mathbb{N}$.
- The function p_{i} is MNable for each positive integer i.
- The Petrie function $G(k, m)$ and the difference $G(k, m)-h_{m}$ are MNable for any integers $k \geq 1$ and $m \geq 0$.
- The differences $h_{i}-p_{i}$ and $h_{i}-e_{i}$ are MNable for each positive integer i. (This includes $h_{1}-e_{1}=0$.)
- The difference $h_{i}-p_{i}-e_{i}$ is MNable for each even positive integer i.
- Question: Which symmetric functions are MNable?
- Theorem:
- The functions h_{i} and e_{i} are MNable for each $i \in \mathbb{N}$.
- The function p_{i} is MNable for each positive integer i.
- The Petrie function $G(k, m)$ and the difference $G(k, m)-h_{m}$ are MNable for any integers $k \geq 1$ and $m \geq 0$.
- The differences $h_{i}-p_{i}$ and $h_{i}-e_{i}$ are MNable for each positive integer i. (This includes $h_{1}-e_{1}=0$.)
- The difference $h_{i}-p_{i}-e_{i}$ is MNable for each even positive integer i.
- The product $p_{i} p_{j}$ is MNable whenever $i>j>0$.

MNable symmetric functions: results, 1

- Question: Which symmetric functions are MNable?
- Theorem:
- The functions h_{i} and e_{i} are MNable for each $i \in \mathbb{N}$.
- The function p_{i} is MNable for each positive integer i.
- The Petrie function $G(k, m)$ and the difference $G(k, m)-h_{m}$ are MNable for any integers $k \geq 1$ and $m \geq 0$.
- The differences $h_{i}-p_{i}$ and $h_{i}-e_{i}$ are MNable for each positive integer i. (This includes $h_{1}-e_{1}=0$.)
- The difference $h_{i}-p_{i}-e_{i}$ is MNable for each even positive integer i.
- The product $p_{i} p_{j}$ is MNable whenever $i>j>0$.
- The function $m_{\left(k^{n}\right)}$ as well as the differences $h_{n k}-m_{\left(k^{n}\right)}$ and $e_{n k}-(-1)^{(k-1) n} m_{\left(k^{n}\right)}$ are MNable for any positive integers n and k (where $\left(k^{n}\right)$ denotes the n-tuple $(k, k, \ldots, k))$.
- Theorem (continued):
- If some $f \in \Lambda$ is MNable, then so are $-f$ and $\omega(f)$, where $\omega: \Lambda \rightarrow \Lambda$ is the fundamental involution of Λ (that is, the k-algebra automorphism sending $e_{n} \mapsto h_{n}$).
- Theorem (continued):
- If some $f \in \Lambda$ is MNable, then so are $-f$ and $\omega(f)$, where $\omega: \Lambda \rightarrow \Lambda$ is the fundamental involution of Λ (that is, the k-algebra automorphism sending $e_{n} \mapsto h_{n}$).
- A symmetric function $f \in \Lambda$ is MNable if and only if all its homogeneous components are MNable.
- Theorem (continued):
- If some $f \in \Lambda$ is MNable, then so are $-f$ and $\omega(f)$, where $\omega: \Lambda \rightarrow \Lambda$ is the fundamental involution of Λ (that is, the k-algebra automorphism sending $e_{n} \mapsto h_{n}$).
- A symmetric function $f \in \Lambda$ is MNable if and only if all its homogeneous components are MNable.
- If $f \in \Lambda$ is MNable and k is a positive integer, then $\mathrm{f}_{k}(f)$ is MNable.
- Theorem (continued):
- If some $f \in \Lambda$ is MNable, then so are $-f$ and $\omega(f)$, where $\omega: \Lambda \rightarrow \Lambda$ is the fundamental involution of Λ (that is, the k-algebra automorphism sending $e_{n} \mapsto h_{n}$).
- A symmetric function $f \in \Lambda$ is MNable if and only if all its homogeneous components are MNable.
- If $f \in \Lambda$ is MNable and k is a positive integer, then $\mathrm{f}_{k}(f)$ is MNable.
- A symmetric function $f \in \Lambda$ is MNable if and only if $\left(f, s_{\lambda / \mu}\right) \in\{-1,0,1\}$ for each skew partition λ / μ.
- Theorem (continued):
- If some $f \in \Lambda$ is MNable, then so are $-f$ and $\omega(f)$, where $\omega: \Lambda \rightarrow \Lambda$ is the fundamental involution of Λ (that is, the k-algebra automorphism sending $e_{n} \mapsto h_{n}$).
- A symmetric function $f \in \Lambda$ is MNable if and only if all its homogeneous components are MNable.
- If $f \in \Lambda$ is MNable and k is a positive integer, then $\mathrm{f}_{k}(f)$ is MNable.
- A symmetric function $f \in \Lambda$ is MNable if and only if $\left(f, s_{\lambda / \mu}\right) \in\{-1,0,1\}$ for each skew partition λ / μ.
- The proofs use various techniques; the coefficients are not always easy to describe.
- Theorem (continued):
- If some $f \in \Lambda$ is MNable, then so are $-f$ and $\omega(f)$, where $\omega: \Lambda \rightarrow \Lambda$ is the fundamental involution of Λ (that is, the k-algebra automorphism sending $e_{n} \mapsto h_{n}$).
- A symmetric function $f \in \Lambda$ is MNable if and only if all its homogeneous components are MNable.
- If $f \in \Lambda$ is MNable and k is a positive integer, then $\mathrm{f}_{k}(f)$ is MNable.
- A symmetric function $f \in \Lambda$ is MNable if and only if $\left(f, s_{\lambda / \mu}\right) \in\{-1,0,1\}$ for each skew partition λ / μ.
- The MNability of a symmetric function can be tested in finite time using the last bullet point.

MNable symmetric functions: results, 2

- Theorem (continued):
- If some $f \in \Lambda$ is MNable, then so are $-f$ and $\omega(f)$, where $\omega: \Lambda \rightarrow \Lambda$ is the fundamental involution of Λ (that is, the k-algebra automorphism sending $e_{n} \mapsto h_{n}$).
- A symmetric function $f \in \Lambda$ is MNable if and only if all its homogeneous components are MNable.
- If $f \in \Lambda$ is MNable and k is a positive integer, then $\mathrm{f}_{k}(f)$ is MNable.
- A symmetric function $f \in \Lambda$ is MNable if and only if $\left(f, s_{\lambda / \mu}\right) \in\{-1,0,1\}$ for each skew partition λ / μ.
- The families listed above cover all MNable homogeneous symmetric functions of degree <4. In degree 4 , we also have

$$
s_{(1,1,1,1)}-s_{(3,1)}+s_{(4)} \quad \text { and } \quad s_{(4)}-s_{(2,2)}
$$

- Theorem (continued):
- If some $f \in \Lambda$ is MNable, then so are $-f$ and $\omega(f)$, where $\omega: \Lambda \rightarrow \Lambda$ is the fundamental involution of Λ (that is, the k-algebra automorphism sending $e_{n} \mapsto h_{n}$).
- A symmetric function $f \in \Lambda$ is MNable if and only if all its homogeneous components are MNable.
- If $f \in \Lambda$ is MNable and k is a positive integer, then $\mathrm{f}_{k}(f)$ is MNable.
- A symmetric function $f \in \Lambda$ is MNable if and only if $\left(f, s_{\lambda / \mu}\right) \in\{-1,0,1\}$ for each skew partition λ / μ.
- All MNable $s_{\lambda}, m_{\lambda}, h_{\lambda}$ and e_{λ} appear in the list above. Not sure if all MNable p_{λ}.
- Question: What symmetric functions are MNable?
- Any hope of a full classification?
- Any more infinite families?

Bonus problem

Dual stable Grothendieck polynomials

- Here is a conjecture I'm curious to hear ideas about.
- Here is a conjecture I'm curious to hear ideas about.
- Fix a commutative ring k. Recall that for any skew partition λ / μ, the (skew) Schur function $s_{\lambda / \mu}$ is defined as the power series

$$
\sum_{T \text { is an SST of shape } \lambda / \mu} \mathrm{x}^{\operatorname{cont} T} \in \mathrm{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right],
$$

where "SST" is short for "semistandard Young tableau", and where

$$
x^{\text {cont } T}=\prod_{k \geq 1} x_{k}^{\text {number of times } T \text { contains entry } k}
$$

- Here is a conjecture I'm curious to hear ideas about.
- Fix a commutative ring k . Recall that for any skew partition λ / μ, the (skew) Schur function $s_{\lambda / \mu}$ is defined as the power series

$$
\sum_{T \text { is an SST of shape } \lambda / \mu} \mathrm{x}^{\operatorname{cont} T} \in \mathrm{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right] \text {, }
$$

where "SST" is short for "semistandard Young tableau", and where

$$
x^{\text {cont } T}=\prod_{k \geq 1} x_{k}^{\text {number of times } T \text { contains entry } k}
$$

- Let us generalize this by extending the sum and introducing extra parameters.
- A reverse plane partition (RPP) is defined like an SST (semistandard Young tableau), but entries increase weakly both along rows and down columns. For example,

1	2	2
	2	2
is an RPP.		
2	4	

- A reverse plane partition (RPP) is defined like an SST (semistandard Young tableau), but entries increase weakly both along rows and down columns. For example,

1	2	2			
	2	2			
is an RPP.					
2	4				

(In detail: An RPP is a map T from a skew Young diagram to \{positive integers\} such that $T(i, j) \leq T(i, j+1)$ and $T(i, j) \leq T(i+1, j)$ whenever these are defined.)

- A reverse plane partition (RPP) is defined like an SST (semistandard Young tableau), but entries increase weakly both along rows and down columns. For example,

1	2	2
	2	2
2	4	

(In detail: An RPP is a map T from a skew Young diagram to \{positive integers\} such that $T(i, j) \leq T(i, j+1)$ and $T(i, j) \leq T(i+1, j)$ whenever these are defined.)

- Let k be a commutative ring, and fix any elements $t_{1}, t_{2}, t_{3}, \ldots \in \mathrm{k}$.
- Given a skew partition λ / μ, we define the refined dual stable Grothendieck polynomial $\widetilde{g}_{\lambda / \mu}$ to be the formal power series

T is an RPP of shape λ / μ
where

$$
x^{\text {ircont } T}=\prod_{k \geq 1} x_{k}^{\text {number of columns of } T \text { containing entry } k}
$$

and

$$
\mathrm{t}^{\mathrm{ceq} T}=\prod_{i \geq 1} t_{i}^{\text {number of } j \text { such that } T(i, j)=T(i+1, j)}
$$

(where $T(i, j)=T(i+1, j)$ implies, in particular, that both (i, j) and $(i+1, j)$ are cells of $T)$.
This is a formal power series in $x_{1}, x_{2}, x_{3}, \ldots$ (despite the name "polynomial").

- Recall:

$$
x^{\text {ircont } T}=\prod_{k \geq 1} x_{k}^{\text {number of columns of } T \text { containing entry } k}
$$

- If $T=$| 1 | 2 | 2 |
| :--- | :--- | :--- |
| | 2 | 2 | , then $x^{\mathrm{ircont} T}=x_{1} x_{2}^{4} x_{3}$. The x_{2} has

exponent 4, not 5, because the two 2's in column 3 count only once.

- Recall:

$$
x^{\text {ircont } T}=\prod_{k \geq 1} x_{k}^{\text {number of columns of } T \text { containing entry } k}
$$

- If $T=$| 1 | 2 | 2 |
| :--- | :--- | :--- |
| | 2 | 2 | , then $x^{\mathrm{ircont} T}=x_{1} x_{2}^{4} x_{3}$. The x_{2} has

exponent 4, not 5, because the two 2's in column 3 count only once.

- If T is an SST, then $x^{\text {ircont } T}=x^{\text {cont } T}$.
- Recall that

$$
\mathrm{t}^{\mathrm{ceq} T}=\prod_{i \geq 1} t_{i}^{\text {number of } j \text { such that } T(i, j)=T(i+1, j)}
$$

- If $T=$| 1 | 2 | 2 |
| :--- | :--- | :--- |
| | 2 | 2 | , then $\mathrm{t}^{\text {ceq } T}=t_{1}$, due to

2	3
$T(1,3)$	$=T(2,3)$.

- Recall that

$$
\mathrm{t}^{\mathrm{ceq} T}=\prod_{i \geq 1} t_{i}^{\text {number of } j \text { such that } T(i, j)=T(i+1, j)}
$$

- If $T=$| 1 | 2 | 2 |
| :--- | :--- | :--- |
| | 2 | 2 | , then $\mathrm{t}^{\text {ceq } T}=t_{1}$, due to

2	3
$T(1,3)$	$=T(2,3)$.

- If T is an SST, then $\mathrm{t}^{\text {ceq } T}=1$.
- In general, $\mathrm{t}^{\mathrm{ceq}} T$ measures "how often" T breaks the SST condition.

Dual stable Grothendieck polynomials, 5

- If we set $t_{1}=t_{2}=t_{3}=\cdots=0$, then $\widetilde{g}_{\lambda / \mu}=s_{\lambda / \mu}$.
- If we set $t_{1}=t_{2}=t_{3}=\cdots=0$, then $\widetilde{g}_{\lambda / \mu}=s_{\lambda / \mu}$.
- If we set $t_{1}=t_{2}=t_{3}=\cdots=1$, then $\widetilde{g}_{\lambda / \mu}=g_{\lambda / \mu}$, the dual stable Grothendieck polynomial of Lam and Pylyavskyy (arXiv:0705.2189).
- The general case, to our knowledge, is new.
- If we set $t_{1}=t_{2}=t_{3}=\cdots=0$, then $\widetilde{g}_{\lambda / \mu}=s_{\lambda / \mu}$.
- If we set $t_{1}=t_{2}=t_{3}=\cdots=1$, then $\widetilde{g}_{\lambda / \mu}=g_{\lambda / \mu}$, the dual stable Grothendieck polynomial of Lam and Pylyavskyy (arXiv:0705.2189).
- The general case, to our knowledge, is new.
- Theorem (Galashin, G., Liu, arXiv:1509.03803): The power series $\widetilde{g}_{\lambda / \mu}$ is symmetric in the x_{i} (not in the t_{i}).
- If we set $t_{1}=t_{2}=t_{3}=\cdots=0$, then $\widetilde{g}_{\lambda / \mu}=s_{\lambda / \mu}$.
- If we set $t_{1}=t_{2}=t_{3}=\cdots=1$, then $\widetilde{g}_{\lambda / \mu}=g_{\lambda / \mu}$, the dual stable Grothendieck polynomial of Lam and Pylyavskyy (arXiv:0705.2189).
- The general case, to our knowledge, is new.
- Theorem (Galashin, G., Liu, arXiv:1509.03803): The power series $\widetilde{g}_{\lambda / \mu}$ is symmetric in the x_{i} (not in the t_{i}).
- Example 1: If $\lambda=(n)$ and $\mu=()$, then $\widetilde{g}_{\lambda / \mu}=h_{n}$, the n-th complete homogeneous symmetric function.
- If we set $t_{1}=t_{2}=t_{3}=\cdots=0$, then $\widetilde{g}_{\lambda / \mu}=s_{\lambda / \mu}$.
- If we set $t_{1}=t_{2}=t_{3}=\cdots=1$, then $\widetilde{g}_{\lambda / \mu}=g_{\lambda / \mu}$, the dual stable Grothendieck polynomial of Lam and Pylyavskyy (arXiv:0705.2189).
- The general case, to our knowledge, is new.
- Theorem (Galashin, G., Liu, arXiv:1509.03803): The power series $\widetilde{g}_{\lambda / \mu}$ is symmetric in the x_{i} (not in the t_{i}).
- Example 1: If $\lambda=(n)$ and $\mu=()$, then $\widetilde{g}_{\lambda / \mu}=h_{n}$, the n-th complete homogeneous symmetric function.
- Example 2: If $\lambda=(\underbrace{1,1, \ldots, 1}_{n \text { ones }})$ and $\mu=()$, then $\widetilde{g}_{\lambda / \mu}=e_{n}\left(t_{1}, t_{2}, \ldots, t_{n-1}, x_{1}, x_{2}, x_{3}, \ldots\right)$, where e_{n} is the n-th elementary symmetric function.
- If we set $t_{1}=t_{2}=t_{3}=\cdots=0$, then $\widetilde{g}_{\lambda / \mu}=s_{\lambda / \mu}$.
- If we set $t_{1}=t_{2}=t_{3}=\cdots=1$, then $\widetilde{g}_{\lambda / \mu}=g_{\lambda / \mu}$, the dual stable Grothendieck polynomial of Lam and Pylyavskyy (arXiv:0705.2189).
- The general case, to our knowledge, is new.
- Theorem (Galashin, G., Liu, arXiv:1509.03803): The power series $\widetilde{g}_{\lambda / \mu}$ is symmetric in the x_{i} (not in the t_{i}).
- Example 1: If $\lambda=(n)$ and $\mu=()$, then $\widetilde{g}_{\lambda / \mu}=h_{n}$, the n-th complete homogeneous symmetric function.
- Example 2: If $\lambda=(\underbrace{1,1, \ldots, 1}_{n \text { ones }})$ and $\mu=()$, then $\widetilde{g}_{\lambda / \mu}=e_{n}\left(t_{1}, t_{2}, \ldots, t_{n-1}, x_{1}, x_{2}, x_{3}, \ldots\right)$, where e_{n} is the n-th elementary symmetric function.
- Example 3: If $\lambda=(2,1)$ and $\mu=()$, then

$$
\tilde{g}_{\lambda / \mu}=\sum_{a \leq b ; a<c} x_{a} x_{b} x_{c}+t_{1} \sum_{a \leq b} x_{a} x_{b}=s_{(2,1)}+t_{1} s_{(2)} .
$$

Jacobi-Trudi identity?

- Conjecture: Let the conjugate partitions of λ and μ be

$$
\begin{aligned}
& \lambda^{t}=\left(\left(\lambda^{t}\right)_{1},\left(\lambda^{t}\right)_{2}, \ldots,\left(\lambda^{t}\right)_{N}\right) \text { and } \\
& \mu^{t}=\left(\left(\mu^{t}\right)_{1},\left(\mu^{t}\right)_{2}, \ldots,\left(\mu^{t}\right)_{N}\right) . \text { Then, }
\end{aligned}
$$

$\widetilde{g}_{\lambda / \mu}$
$=\operatorname{det}\left(\left(e_{\left(\lambda^{t}\right)_{i}-i-\left(\mu^{t}\right)_{j}+j}\left(x, \mathrm{t}\left[\left(\mu^{t}\right)_{j}+1:\left(\lambda^{t}\right)_{i}\right]\right)\right)_{1 \leq i \leq N, 1 \leq j \leq N}\right)$.
Here, $(x, t[k: \ell])$ denotes the alphabet $\left(x_{1}, x_{2}, x_{3}, \ldots, t_{k}, t_{k+1}, \ldots, t_{\ell-1}\right)$.
Warning: If $\ell \leq k$, then $t_{k}, t_{k+1}, \ldots, t_{\ell-1}$ means nothing. No "antimatter" variables!

- Conjecture: Let the conjugate partitions of λ and μ be

$$
\begin{aligned}
& \lambda^{t}=\left(\left(\lambda^{t}\right)_{1},\left(\lambda^{t}\right)_{2}, \ldots,\left(\lambda^{t}\right)_{N}\right) \text { and } \\
& \mu^{t}=\left(\left(\mu^{t}\right)_{1},\left(\mu^{t}\right)_{2}, \ldots,\left(\mu^{t}\right)_{N}\right) . \text { Then, }
\end{aligned}
$$

$\widetilde{g}_{\lambda / \mu}$
$=\operatorname{det}\left(\left(e_{\left(\lambda^{t}\right)_{i}-i-\left(\mu^{t}\right)_{j}+j}\left(x, t\left[\left(\mu^{t}\right)_{j}+1:\left(\lambda^{t}\right)_{i}\right]\right)\right)_{1 \leq i \leq N, 1 \leq j \leq N}\right)$.
Here, $(x, t[k: \ell])$ denotes the alphabet $\left(x_{1}, x_{2}, x_{3}, \ldots, t_{k}, t_{k+1}, \ldots, t_{\ell-1}\right)$.
Warning: If $\ell \leq k$, then $t_{k}, t_{k+1}, \ldots, t_{\ell-1}$ means nothing. No "antimatter" variables!

- This would generalize the Jacobi-Trudi identity for Schur functions in terms of e_{i} 's.
- Conjecture: Let the conjugate partitions of λ and μ be

$$
\begin{aligned}
& \lambda^{t}=\left(\left(\lambda^{t}\right)_{1},\left(\lambda^{t}\right)_{2}, \ldots,\left(\lambda^{t}\right)_{N}\right) \text { and } \\
& \mu^{t}=\left(\left(\mu^{t}\right)_{1},\left(\mu^{t}\right)_{2}, \ldots,\left(\mu^{t}\right)_{N}\right) . \text { Then, }
\end{aligned}
$$

$\widetilde{g}_{\lambda / \mu}$
$=\operatorname{det}\left(\left(e_{\left(\lambda^{t}\right)_{i}-i-\left(\mu^{t}\right)_{j}+j}\left(x, t\left[\left(\mu^{t}\right)_{j}+1:\left(\lambda^{t}\right)_{i}\right]\right)\right)_{1 \leq i \leq N, 1 \leq j \leq N}\right)$.
Here, $(x, t[k: \ell])$ denotes the alphabet $\left(x_{1}, x_{2}, x_{3}, \ldots, t_{k}, t_{k+1}, \ldots, t_{\ell-1}\right)$.
Warning: If $\ell \leq k$, then $t_{k}, t_{k+1}, \ldots, t_{\ell-1}$ means nothing. No "antimatter" variables!

- This would generalize the Jacobi-Trudi identity for Schur functions in terms of e_{i} 's.
- I have some even stronger conjectures, with less evidence...
- Conjecture: Let the conjugate partitions of λ and μ be

$$
\begin{aligned}
& \lambda^{t}=\left(\left(\lambda^{t}\right)_{1},\left(\lambda^{t}\right)_{2}, \ldots,\left(\lambda^{t}\right)_{N}\right) \text { and } \\
& \mu^{t}=\left(\left(\mu^{t}\right)_{1},\left(\mu^{t}\right)_{2}, \ldots,\left(\mu^{t}\right)_{N}\right) . \text { Then, }
\end{aligned}
$$

$\widetilde{g}_{\lambda / \mu}$
$=\operatorname{det}\left(\left(e_{\left(\lambda^{t}\right)_{i}-i-\left(\mu^{t}\right)_{j}+j}\left(x, t\left[\left(\mu^{t}\right)_{j}+1:\left(\lambda^{t}\right)_{i}\right]\right)\right)_{1 \leq i \leq N, 1 \leq j \leq N}\right)$.
Here, $(x, t[k: \ell])$ denotes the alphabet $\left(x_{1}, x_{2}, x_{3}, \ldots, t_{k}, t_{k+1}, \ldots, t_{\ell-1}\right)$.
Warning: If $\ell \leq k$, then $t_{k}, t_{k+1}, \ldots, t_{\ell-1}$ means nothing. No "antimatter" variables!

- This would generalize the Jacobi-Trudi identity for Schur functions in terms of e_{i} 's.
- I have some even stronger conjectures, with less evidence...
- The case $\mu=\varnothing$ has been proven by Damir Yeliussizov in arXiv:1601.01581.
- Linyuan Liu, Patrick Polo for the original motivation.
- Ira Gessel, Jim Haglund, Christopher Ryba, Richard Stanley and Mark Wildon for interesting discussions.
- the Mathematisches Forschungsinstitut Oberwolfach and the Institut Mittag-Leffler for hosting me.
- you for your patience and corrections.

