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Section 4.2.
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Bubblesort, the game

Consider the following 1-player game:
Start with a list (a1, a2, . . . , an) of n numbers.
Allowed move: Pick any i ∈ {1, 2, . . . , n − 1} such that
ai > ai+1, and swap ai with ai+1.

Questions: Will the game always terminate?
And will the final result depend on the choice of moves?

Yes, it will terminate
since the number of inversions decreases at each move.
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→
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)
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(
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Looks good so far; what about other tuples?
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Bubblesort, the game

Consider the following 1-player game:
Start with a list (a1, a2, . . . , an) of n numbers.
Allowed move: Pick any i ∈ {1, 2, . . . , n − 1} such that
ai > ai+1, and swap ai with ai+1.

Questions: Will the game always terminate?
And will the final result depend on the choice of moves?
Yes, it will terminate

since the number of inversions decreases at each move.
No, the final result doesn’t depend on the choice of moves,

since an n-tuple has only one weakly increasing
permutation.
This is a non-deterministic version of bubblesort (the simplest
sorting algorithm ever).
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Bubblesort, the game: partial order

Now what if a1, a2, . . . , an aren’t numbers, but are elements of
a poset instead?
Example:

δ

β γ

α

Start with the list (δ, γ, β, α).

(
δ, γ, β, α

)
→
(
γ, δ, β, α

)
→
(
γ, δ, α, β

)
→
(
γ, α, δ, β

)
→
(
α, γ, δ, β

)
→ (α, γ, β, δ) .

We’ve got a linear extension of our poset, but is it still
independent of the moves?
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2. Chip-firing with a sink

2.
Chip-firing with a sink

References:

Holroyd/Levine/Mészáros/Peres/Propp/Wilson, Chip-Firing
and Rotor-Routing on Directed Graphs.

Corry/Perkinson, Divisors and Sandpiles.

Björner/Lovász, Chip-firing games on directed graphs.

Spring 2017 Math 5707 homework set 5.

more links.
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Chip-firing with a sink

Start with a digraph (= directed graph).

α //

��

β

��
ε

@@

// γ // δ

^^

The chip-firing game is played as follows:
Start with a chip configuration.
Allowed move: Choose a vertex v 6= s that has at least
as many chips as it has outgoing arcs,
and “fire” it (i.e., for each arc v

a→ w , send a chip from
v to w).
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Choose a vertex s that is globally reachable (i.e., for each
vertex v , there is a path from v to s). Call it the sink.
(Marked in blue above.)

The chip-firing game is played as follows:
Start with a chip configuration.
Allowed move: Choose a vertex v 6= s that has at least
as many chips as it has outgoing arcs,
and “fire” it (i.e., for each arc v

a→ w , send a chip from
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Chip-firing with a sink

Start with a digraph (= directed graph).

3 //

��

2

��
2

@@

// 1 // 2

^^

Choose a vertex s that is globally reachable (i.e., for each
vertex v , there is a path from v to s). Call it the sink.
(Marked in blue above.)
A chip configuration is a choice of nonnegative integer for
each vertex. We consider a number i at vertex v to mean “i
chips lying at v”.
The chip-firing game is played as follows:

Start with a chip configuration.
Allowed move: Choose a vertex v 6= s that has at least
as many chips as it has outgoing arcs,
and “fire” it (i.e., for each arc v

a→ w , send a chip from
v to w).
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Chip-firing with a sink

Start with a digraph (= directed graph).

1 //
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2

��
3
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// 2 // 2

^^

The chip-firing game is played as follows:
Start with a chip configuration.
Allowed move: Choose a vertex v 6= s that has at least
as many chips as it has outgoing arcs,
and “fire” it (i.e., for each arc v

a→ w , send a chip from
v to w).

Example: See image above (we underline the vertex about to
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Chip-firing with a sink

Start with a digraph (= directed graph).

1 //
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2
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3
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// 1 // 3
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The chip-firing game is played as follows:
Start with a chip configuration.
Allowed move: Choose a vertex v 6= s that has at least
as many chips as it has outgoing arcs,
and “fire” it (i.e., for each arc v
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Chip-firing with a sink

Start with a digraph (= directed graph).

1 //

��

2

��
3

@@

// 0 // 4

^^

The chip-firing game is played as follows:
Start with a chip configuration.
Allowed move: Choose a vertex v 6= s that has at least
as many chips as it has outgoing arcs,
and “fire” it (i.e., for each arc v

a→ w , send a chip from
v to w).

Example: See image above (we underline the vertex about to
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Chip-firing with a sink

Start with a digraph (= directed graph).

1 //

��

2

��
1

@@

// 1 // 5

^^

The chip-firing game is played as follows:
Start with a chip configuration.
Allowed move: Choose a vertex v 6= s that has at least
as many chips as it has outgoing arcs,
and “fire” it (i.e., for each arc v

a→ w , send a chip from
v to w).

Example: See image above (we underline the vertex about to
be fired).
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Chip-firing with a sink

Start with a digraph (= directed graph).

1 //

��

0

��
1

@@

// 3 // 5

^^

The chip-firing game is played as follows:
Start with a chip configuration.
Allowed move: Choose a vertex v 6= s that has at least
as many chips as it has outgoing arcs,
and “fire” it (i.e., for each arc v

a→ w , send a chip from
v to w).

Example: See image above (we underline the vertex about to
be fired).
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Chip-firing with a sink

Start with a digraph (= directed graph).

1 //

��

0

��
1

@@

// 2 // 6

^^

The chip-firing game is played as follows:
Start with a chip configuration.
Allowed move: Choose a vertex v 6= s that has at least
as many chips as it has outgoing arcs,
and “fire” it (i.e., for each arc v

a→ w , send a chip from
v to w).

Example: See image above (we underline the vertex about to
be fired).
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Chip-firing with a sink

Start with a digraph (= directed graph).

1 //

��

0

��
1

@@

// 1 // 7

^^

The chip-firing game is played as follows:
Start with a chip configuration.
Allowed move: Choose a vertex v 6= s that has at least
as many chips as it has outgoing arcs,
and “fire” it (i.e., for each arc v

a→ w , send a chip from
v to w).

Example: See image above (we underline the vertex about to
be fired).
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Chip-firing with a sink

Start with a digraph (= directed graph).

1 //

��

0

��
1

@@

// 0 // 8

^^

The chip-firing game is played as follows:
Start with a chip configuration.
Allowed move: Choose a vertex v 6= s that has at least
as many chips as it has outgoing arcs,
and “fire” it (i.e., for each arc v

a→ w , send a chip from
v to w).

Example: See image above (we underline the vertex about to
be fired). Note: The sink cannot be fired!
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Chip-firing with a sink

Start with a digraph (= directed graph).

1 //

��

0

��
1

@@

// 0 // 8

^^

The chip-firing game is played as follows:
Start with a chip configuration.
Allowed move: Choose a vertex v 6= s that has at least
as many chips as it has outgoing arcs,
and “fire” it (i.e., for each arc v

a→ w , send a chip from
v to w).

Example: See image above (we underline the vertex about to
be fired).
Questions: Will the game always terminate?
And will the final result depend on the choice of moves?
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3. The finite diamond lemma

3.
The finite diamond lemma

References:

Eriksson, Strong convergence and the polygon property of
1-player games.

MathOverflow answer #289320 (with list of references).
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Defining 1-player games

Let us generalize these examples.
A 1-player game consists of:

a set of positions;
a set of moves, each of which goes from one position to
another.

In more familiar terms:
game = digraph (possibly infinite);
positions = vertices;
moves = arcs.

A position is said to be terminal if no moves are possible from
this position (i.e., it is a vertex with outdegree 0).
If u and v are two positions (= vertices), then we write:

u −→ v if we can get to v from u in one move
(i.e., there is an arc u → v);

u
∗−→ v if we can get to v from u in several moves

(i.e., there is a walk u → v).

Note: u
∗−→ u, since “several moves” includes “0 moves”.
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Monovariance, confluence

A 1-player game is said to be:
monovariant if there is a map h from the set of all
positions to N such that

h (u) > h (v) whenever u −→ v .

This means that there is a nonnegative-integer
monovariant that decreases with each move. (Thus, the
game always terminates.)

confluent if for each position u, there is a unique
terminal position v such that u

∗−→ v .
This means that the terminal position does not depend
on the choice of moves.

So, we can answer our questions from the previous sections if
we can show that our games are monovariant and confluent.
Note: Monovariance is not a necessary condition; we will
loosen it later.
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Local confluence

A 1-player game is said to be:
locally confluent if for any positions u, v and w with

u −→ v and u −→ w ,

there exists a position t such that

v
∗−→ t and w

∗−→ t.

This means that if a position u allows two possible
moves u −→ v and u −→ w , then there are a sequence
of moves from v and a sequence of moves from w that
lead to the same outcome.
I.e., roughly speaking: There are no “watershed
decisions” that lead into irreconcileable branches.
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(Hence, local confluence is also called the “diamond
condition”.) This means that if a position u allows two
possible moves u −→ v and u −→ w , then there are a
sequence of moves from v and a sequence of moves from
w that lead to the same outcome.
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Newman’s diamond lemma, finite case

Theorem (Newman’s lemma, aka diamond lemma, in the
finite case).
If a 1-player game is

monovariant and
locally confluent,

then it is confluent.
In other words, in a monovariant 1-player game, confluence
can be checked locally:
If the result depends on the choice of moves, then we can
pinpoint one specific choice that acts as a watershed.
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A Rosetta stone

The diamond lemma is used in many places, and different
cultures use different languages.
Attempt at a dictionary:

our terminology digraphs computer science
1-player game digraph abstract rewriting system (ARS)

position vertex object
move arc reduction step

play sequence walk reduction sequence
terminal position sink normal form

Here, “sink” means “vertex with outdegree 0”; this has
nothing to do with the “sink” in chip-firing.
This is related to finite-state machines, but our moves aren’t
determined by input.
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Application: bubblesort, 1

Recall the bubblesort game on a poset:
Positions: lists (a1, a2, . . . , an) of n elements of a poset
P.
Moves: Pick any i ∈ {1, 2, . . . , n − 1} such that
ai > ai+1, and swap ai with ai+1.

Proposition. The game always terminates, and the outcome
does not depend on the choice of moves.

Proof: By the diamond lemma, it suffices to prove
monovariance and local confluence.
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ai > ai+1, and swap ai with ai+1.

Proposition. The game always terminates, and the outcome
does not depend on the choice of moves.
Proof: By the diamond lemma, it suffices to prove
monovariance and local confluence.
Monovariance: Let

h (a1, a2, . . . , an) = (number of inversions of (a1, a2, . . . , an))

= (number of pairs (i , j) with i < j and ai > aj) .

Easy to see:

h (u) > h (v) whenever u −→ v .
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v is obtained from u by swapping ai with ai+1;
w is obtained from u by swapping aj with aj+1.

Want to find t such that v
∗−→ t and w

∗−→ t.
WLOG assume j ≥ i (else swap v and w).
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w is obtained from u by swapping aj with aj+1.

Want to find t such that v
∗−→ t and w

∗−→ t.
WLOG assume j ≥ i (else swap v and w).

Case 1: j = i . Then, v
∗−→ t and w

∗−→ t for
t = v = w .
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Application: bubblesort, 2

Proof (continued). Local confluence:
Case 2: j = i + 1. Then, ai > ai+1 > ai+2 and

u =
(
. . . , ai , ai+1, ai+2, . . .

)
−→ (. . . , ai+1, ai , ai+2, . . .) = v and

u =
(
. . . , ai , ai+1, ai+2, . . .

)
−→ (. . . , ai , ai+2, ai+1, . . .) = w .
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Application: bubblesort, 2

Proof (continued). Local confluence:
Case 2: j = i + 1. Then, x > y > z and

u =
(
. . . , x , y , z , . . .

)
−→ (. . . , y , x , z , . . .) = v and

u =
(
. . . , x , y , z , . . .

)
−→ (. . . , x , z , y , . . .) = w .

(We have renamed ai , ai+1, ai+2 as x , y , z .)
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Application: bubblesort, 2

Proof (continued). Local confluence:
Case 2: j = i + 1. Then, x > y > z and

u =
(
x , y , z

)
−→ (y , x , z) = v and

u =
(
x , y , z

)
−→ (x , z , y) = w .

(We have omitted all other entries.)
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��
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(z , x , y)

vv
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Application: bubblesort, 3

Proof (continued). Local confluence:
Case 3: j > i + 1. Then, ai > ai+1 and aj > aj+1 and

u =
(
. . . , ai , ai+1, . . . , aj , aj+1, . . .

)
−→ (. . . , ai+1, ai , . . . , aj , aj+1, . . .) = v and

u =
(
. . . , ai , ai+1, . . . , aj , aj+1, . . .

)
−→ (. . . , ai , ai+1, . . . , aj+1, aj , . . .) = w .
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Application: bubblesort, 3

Proof (continued). Local confluence:
Case 3: j > i + 1. Then, p > q and x > y and

u =
(
. . . , p, q, . . . , x , y , . . .

)
−→ (. . . , q, p, . . . , x , y , . . .) = v and

u =
(
. . . , p, q, . . . , x , y , . . .

)
−→ (. . . , p, q, . . . , y , x , . . .) = w .

(We have renamed ai , ai+1, aj , aj+1 as p, q, x , y .)

15 / 54



Application: bubblesort, 3

Proof (continued). Local confluence:
Case 3: j > i + 1. Then, p > q and x > y and

u =
(
p, q, x , y

)
−→ (q, p, x , y) = v and

u =
(
p, q, x , y

)
−→ (p, q, y , x) = w .

(We have omitted all other entries.)
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Application: bubblesort, 3

Proof (continued). Local confluence:
Case 3: j > i + 1. Then, p > q and x > y and

u =
(
p, q, x , y

)
−→ (q, p, x , y) = v and

u =
(
p, q, x , y

)
−→ (p, q, y , x) = w .

(We have omitted all other entries.)
“Reconcile” v and w as follows:

u = (p, q, x , y)

uu ))
v = (q, p, x , y)

))

w = (p, q, y , x)

uu
t = (q, p, y , x)
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Application: bubblesort, 4

Proof (continued). We have now checked both monovariance
and local confluence.
Hence, by the diamond lemma, the game is confluent, qed.
This is a folklore fact; for a writeup, see Section 4.2 of
Galashin/Grinberg/Liu, arXiv:1509.03803v2 ancillary file.
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Application: chip-firing

Recall the chip-firing game on a digraph D with vertex set V :

3 //

��

2

��
2

@@

// 1 // 2

^^

−→
1 //

��

3

��
3

@@

// 1 // 2

^^

Positions: chip configurations, i.e., maps f : V → N.
Moves: “Firing” a vertex v 6= s that has at least as
many chips as it has outgoing arcs.

Proposition. The game always terminates, and the outcome
does not depend on the choice of moves.

Proof: By the diamond lemma, it suffices to prove
monovariance and local confluence.
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Positions: chip configurations, i.e., maps f : V → N.
Moves: “Firing” a vertex v 6= s that has at least as
many chips as it has outgoing arcs.

Proposition. The game always terminates, and the outcome
does not depend on the choice of moves.
Proof: By the diamond lemma, it suffices to prove
monovariance and local confluence.
Monovariance: Let t =

∑
v∈V

f (v) and

h (f ) =
∑
v∈V

f (v) ·
(

(t + 1)|V | − (t + 1)|V |−d(v ,s)
)
,

where d (v , s) is the minimum length of a path from v to s.
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Moves: “Firing” a vertex v 6= s that has at least as
many chips as it has outgoing arcs.

Proposition. The game always terminates, and the outcome
does not depend on the choice of moves.
Proof: By the diamond lemma, it suffices to prove
monovariance and local confluence.
Local confluence: Easy: If two vertices can both be fired at
the same time, then they can be fired in either order, and the
outcome is the same.
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Newman’s diamond lemma, finite case: proof, 1

Theorem (diamond lemma, in the finite case).
If a 1-player game is monovariant and locally confluent,
then it is confluent.
Proof. Let our game be monovariant (with function h) and
locally confluent.
We need to show that for each position u, there is a unique
terminal position reachable from u.
(I say that v is reachable from u if u

∗−→ v .)
We call this statement S(u).

We prove S(u) by strong induction on h (u).
Induction step: Let h (u) = n. Assume that S(x) holds for all
positions x with h (x) < n.
Thus, for each position x with h (x) < n, there is a unique

terminal position reachable from x . Call it x◦; thus, x
∗−→ x◦.

WLOG u is not terminal (otherwise, S(u) is obvious).
Thus there is a v such that u −→ v .
Hence, h (v) < h (u) = n, so that v◦ exists.
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Hence, h (v) < h (u) = n, so that v◦ exists.
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Newman’s diamond lemma, finite case: proof, 2

Proof (continued). We must prove S(u). So far we know:
u is a position with h (u) = n.
v is a position with u −→ v .
v◦ is a terminal position with u −→ v

∗−→ v◦.
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Proof (continued). We must prove S(u). So far we know:
u is a position with h (u) = n.
v is a position with u −→ v .
v◦ is a terminal position with u −→ v

∗−→ v◦.
Thus, there exists some terminal position reachable from u
(namely, v◦). Remains to prove its uniqueness.
Let q be any other terminal position reachable from u. We
want to prove q = v◦.
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v◦ is a terminal position with u −→ v
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Since q is terminal but u is not, we have u −→ w
∗−→ q

for some position w .
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u is a position with h (u) = n.
v is a position with u −→ v .
v◦ is a terminal position with u −→ v

∗−→ v◦.
u
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v◦ t◦ q

Local confluence shows that there is a t satisfying
v
∗−→ t and w

∗−→ t.
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h (t) ≤ h (v) < h (u) = n; thus, t◦ is well-defined.
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h (v) < h (u) = n, so S(v) holds.
Thus, there is a unique terminal position reachable from v .
Since both v◦ and t◦ fit the bill, we thus obtain v◦ = t◦.
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h (w) < h (u) = n, so S(w) holds.
Thus, there is a unique terminal position reachable from w .
Since both q and t◦ fit the bill, we thus obtain q = t◦.
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Newman’s diamond lemma, finite case: proof, 2

Proof (continued). We must prove S(u). So far we know:
u is a position with h (u) = n.
v is a position with u −→ v .
v◦ is a terminal position with u −→ v

∗−→ v◦.
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Thus, q = t◦ = v◦, qed.
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Newman’s diamond lemma, finite case: a variant

Theorem (diamond lemma, in the finite case).
If a 1-player game is monovariant and locally confluent,
then it is confluent.
Theorem (Eriksson’s polygon property theorem, in the
finite case).
If a 1-player game is monovariant and locally confluent, with
the additional property that the walks v

∗−→ t and w
∗−→ t in

the local confluence condition have equal lengths,

then it is confluent, with the additional property that for each
position v , all walks from v to the final position have equal
lengths.
Proof idea. Let P be the set of positions.
Define a new game, with

set of positions P × N;
moves (u, k) −→ (v , k + 1) whenever u −→ v is a move
of the original game and k ∈ N.

Apply the diamond lemma to this new game.
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“Baby diamond lemma”

Here is a similar, but simpler fact (exercise) also known as
diamond lemma sometimes:
Theorem (“baby diamond lemma”). Assume that a
1-player game has the following property:

For any positions u, v and w with u −→ v and u −→ w ,
there exists a position t such that v −→ t and w −→ t.

Then:
For any positions u, v and w with

u
∗−→ v by a sequence of n moves; and

u
∗−→ w by a sequence of m moves,

there exists a position t such that

v
∗−→ t by a sequence of m moves; and

w
∗−→ t by a sequence of n moves.

Note that monovariance is not required.
Chip-firing satisfies the above property. Bubblesort does not.
Some call only this theorem the “diamond lemma”.
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“Baby diamond lemma”: proof idea

Proof idea for “baby diamond lemma”:
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4. Further applications

4.
Application: the domino game

References:

Eriksson, Strong convergence and the polygon property of
1-player games.

Olsson, Combinatorics and Representations of Finite Groups,
sections 1–3.
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Application: The domino game, 1

Consider the following game:
Positions: integer partitions (drawn as Young diagrams).
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Application: The domino game, 1

Consider the following game:
Positions: integer partitions (drawn as Young diagrams).

Moves: Remove a domino (i.e., either or )

from the outer rim (i.e., the diagram must have no cells
to the right or below the domino).

6−→ not a valid move!

[Note: The “outer rim” condition ensures that the result of
removing the domino is still a Young diagram, without
shifting.]
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Application: The domino game, 1

Consider the following game:
Positions: integer partitions (drawn as Young diagrams).

Moves: Remove a domino (i.e., either or )

from the outer rim (i.e., the diagram must have no cells
to the right or below the domino).

Example of the game:

−→ −→

−→ −→ −→
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Application: The domino game, 2

Consider the following game:
Positions: integer partitions (drawn as Young diagrams).

Moves: Remove a domino (i.e., either or ) from

the outer rim (i.e., the diagram must have no cells to the
right or below the domino).

Proposition. The game terminates and is confluent (i.e., the
result does not depend on the choice of moves).

Proof. Apply the diamond lemma.
Local confluence: Easy check. The only nontrivial case:
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the outer rim (i.e., the diagram must have no cells to the
right or below the domino).

Proposition. The game terminates and is confluent (i.e., the
result does not depend on the choice of moves).
Proof. Apply the diamond lemma.
Monovariance: h (λ) = |λ| decreases by 2 with each move.
Local confluence: Easy check. The only nontrivial case:
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Consider the following game:
Positions: integer partitions (drawn as Young diagrams).

Moves: Remove a domino (i.e., either or ) from

the outer rim (i.e., the diagram must have no cells to the
right or below the domino).

Proposition. The game terminates and is confluent (i.e., the
result does not depend on the choice of moves).
Proof. Apply the diamond lemma.
Local confluence: Easy check. The only nontrivial case:
two overlapping dominos that can be removed simultaneously:
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result does not depend on the choice of moves).
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Application: The domino game: terminal positions

The terminal positions are called the 2-cores, aka staircases.
They are the partitions of the form

(m,m − 1,m − 2, . . . , 1) for m ∈ N.
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Application: The domino game: terminal positions

The terminal positions are called the 2-cores, aka staircases.
They are the partitions of the form

(m,m − 1,m − 2, . . . , 1) for m ∈ N.

Proof idea. If a Young diagram has no dominos to remove,
then it can have neither two equal-length rows, nor two
equal-length columns. Thus, each row is by 1 shorter than the
previous row.
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Application: The domino game, generalized

More generally, instead of removing dominos, one can remove
“p-rim hooks” for any given positive integer p.
(Eriksson calls this the “p-snake game”.)
This gives rise to “p-cores” (useful in characteristic-p
representation theory of symmetric groups).
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5. The general diamond lemma

5.
The general diamond lemma

References:

Bezem, Coquand, Newman’s Lemma – a Case Study in Proof
Automation and Geometric Logic.
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Monovariance revisited, 1

Recall: A 1-player game is said to be:
monovariant if there is a map h from the set of all
positions to N such that

h (u) > h (v) whenever u −→ v .

This is often too restrictive in practice.

Standard answer: replace monovariance by “termination”:
A 1-player game is said to be:

terminating if there is no infinite chain
u0 −→ u1 −→ u2 −→ · · · .

Theorem (Newman’s lemma, classical version).
If a 1-player game is

terminating and
locally confluent,

then it is confluent.
This is actually an “if and only if”.
Bad news: This theorem is no longer constructive, and the
proof uses tricky logic.
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Monovariance revisited, 2

Fortunately, we can turn the theorem constructive and make
the proof simple again.
Trick (Bezem/Coquand): Replace “terminating” by
“Noetherian”, and define the latter constructively by requiring
an induction rule to work.

(You might have seen Noetherian induction. Imagine defining
a Noetherian space as a space on which Noetherian induction
works, rather than using chains of subspaces!)
I will use my own notations, but the idea is from
Bezem/Coquand.
We will use posets (= partially ordered sets); but totally
ordered sets are enough for what we want to do.
You may read “totally ordered set” for “poset” in the
following.
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ordered sets are enough for what we want to do.
You may read “totally ordered set” for “poset” in the
following.

30 / 54



Monovariance revisited, 2

Fortunately, we can turn the theorem constructive and make
the proof simple again.
Trick (Bezem/Coquand): Replace “terminating” by
“Noetherian”, and define the latter constructively by requiring
an induction rule to work.
(You might have seen Noetherian induction. Imagine defining
a Noetherian space as a space on which Noetherian induction
works, rather than using chains of subspaces!)
I will use my own notations, but the idea is from
Bezem/Coquand.

We will use posets (= partially ordered sets); but totally
ordered sets are enough for what we want to do.
You may read “totally ordered set” for “poset” in the
following.

30 / 54



Monovariance revisited, 2

Fortunately, we can turn the theorem constructive and make
the proof simple again.
Trick (Bezem/Coquand): Replace “terminating” by
“Noetherian”, and define the latter constructively by requiring
an induction rule to work.
(You might have seen Noetherian induction. Imagine defining
a Noetherian space as a space on which Noetherian induction
works, rather than using chains of subspaces!)
I will use my own notations, but the idea is from
Bezem/Coquand.
We will use posets (= partially ordered sets); but totally
ordered sets are enough for what we want to do.
You may read “totally ordered set” for “poset” in the
following.

30 / 54



Monovariance revisited, 2

Fortunately, we can turn the theorem constructive and make
the proof simple again.
Trick (Bezem/Coquand): Replace “terminating” by
“Noetherian”, and define the latter constructively by requiring
an induction rule to work.
(You might have seen Noetherian induction. Imagine defining
a Noetherian space as a space on which Noetherian induction
works, rather than using chains of subspaces!)
I will use my own notations, but the idea is from
Bezem/Coquand.
We will use posets (= partially ordered sets); but totally
ordered sets are enough for what we want to do.
You may read “totally ordered set” for “poset” in the
following.

30 / 54



Monovariance revisited, 3

A poset S is said to be Noetherian if and only if it allows
(strong) induction over s ∈ S , i.e., if the following rule holds:

If A (s) is a statement for each s ∈ S , and if each s ∈ S
satisfies

(A (t) for all t < s) =⇒ A (s) ,

then each s ∈ S satisfies A (s).
A 1-player game is said to be:

Noetherian if there is a map h from the set of all
positions to a Noetherian poset S such that

h (u) > h (v) whenever u −→ v .

Theorem (Newman’s lemma, constructive version).
If a 1-player game is

Noetherian and
locally confluent,

then it is confluent.
Note how lazy we are: All but the blue parts are copied from
the finite case! The proof, too, can be directly copied over.
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Examples of Noetherian posets

This is only useful if we can find Noetherian posets S .
In classical logic, a poset S is Noetherian if it has no infinite
chains s0 > s1 > s2 > · · · .
So this is just the obvious way to force the game to be
terminating.

In constructive logic:
First of all, N is Noetherian.
So is each finite poset.
What else?
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Lexicographic product: definition

Let P and Q be two posets.
The lexicographic product of P and Q is the poset P × Q
with ordering given by(

(p, q) <
(
p′, q′

))
⇐⇒

((
p < p′

)
or
(
p = p′ and q < q′

))
.

If P and Q are totally ordered, then so is P × Q.

The lexicographic product is associative, and thus extends to
several posets, yielding P1 × P2 × · · · × Pk with lexicographic
order:

((a1, a2, . . . , ak) > (b1, b2, . . . , bk))

⇐⇒ (there is some i such that ai > bi , and

each j < i satisfies aj = bj) .

Theorem. If P and Q are Noetherian posets, then so is their
lexicographic product P × Q.
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Lexicographic product: proof of Noetherianness

Theorem. If P and Q are Noetherian posets, then so is their
lexicographic product P × Q.
Proof idea. Assume P and Q are Noetherian.

Let A (p, q) be a statement for each (p, q) ∈ P × Q.
Assume that each (p, q) ∈ P × Q satisfies(

A
(
p′, q′

)
for all

(
p′, q′

)
< (p, q)

)
=⇒ (A (p, q)) .

Goal: Show that each (p, q) ∈ P × Q satisfies A (p, q).
Prove A (p, q) by induction on p (thanks to Noetherianness of
P, using

A′ (p) := (A (p, q) holds for all q ∈ Q)

as the statement) and, inside it, an induction on q (thanks to
Noetherianness of Q).
This proves the Theorem.
Corollary. If P1,P2, . . . ,Pk are finitely many Noetherian
posets, then their lexicographic product P1 × P2 × · · · × Pk is
Noetherian as well.
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Chip-firing revisited

Example for use of a lexicographic product:
Recall the chip-firing game on a digraph D with vertex set V :

3 //

��

2

��
2

@@

// 1 // 2

^^

−→
1 //

��

3

��
3

@@

// 1 // 2

^^

Positions: chip configurations, i.e., maps f : V → N.
Moves: “Firing” a vertex v 6= s that has at least as
many chips as it has outgoing arcs.
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// 1 // 2

^^

Positions: chip configurations, i.e., maps f : V → N.
Moves: “Firing” a vertex v 6= s that has at least as
many chips as it has outgoing arcs.

We proved monovariance using

h : {positions} → N,

f 7→
∑
v∈V

f (v) ·
(

(t + 1)|V | − (t + 1)|V |−d(v ,s)
)
,

where t =
∑
v∈V

f (v) and where d (v , s) is the minimum length

of a path from v to s.
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��
3

@@

// 1 // 2

^^

Positions: chip configurations, i.e., maps f : V → N.
Moves: “Firing” a vertex v 6= s that has at least as
many chips as it has outgoing arcs.

We can more easily prove Noetherianness using

h : {positions} → (lexicographic product of m + 1 copies of N) ,

f 7→

 ∑
v∈V ; d(v ,s)>k

f (v)


0≤k≤m

,

where m = maxv∈V d (v , s).
(The monovariance was an afterthought of this.)
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Finite subsets form a Noetherian order: statement

Here comes another way of constructing Noetherian totally
ordered sets.
Let S be a totally ordered set.
Let Pfin (S) be the set of all finite subsets of S .
Equip Pfin (S) with a total order as follows:

(A ≤ B) ⇐⇒ (A ⊆ B or max (A \ B) < max (B \ A)) .

(We understand max (A \ B) < max (B \ A) to be false if
B ⊆ A.)

In other words, A ≤ B if and only if A can be obtained from
B by repeatedly

removing an element;
replacing an element by (possibly several) smaller
elements.

It is easy to see that Pfin (S) is totally ordered.
Theorem. If S is Noetherian, then so is Pfin (S).
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Finite subsets form a Noetherian order: proof, 1

Theorem. If S is Noetherian, then so is Pfin (S).
Proof idea. Assume S is Noetherian.
For each a ∈ S , we let S≤a be the subset {s ∈ S | s ≤ a} of S
(a totally ordered set, with order inherited from S).
Thus, Pfin (S≤a) is a sub-totally ordered set of Pfin (S).

For each a ∈ S , let G (a) be the statement
(Pfin (S≤a) is Noetherian).
We shall prove that G (a) holds for all a ∈ S .
This will easily yield the claim (since the S≤a for all a cover
S).
We shall prove G (a) by induction on a (since S is
Noetherian). So we assume that G (b) holds for all b < a.
We must prove G (a).
In other words, we must prove that Pfin (S≤a) is Noetherian.
Let A (M) be a statement for each M ∈ Pfin (S≤a).
Assume that A (M) holds whenever all N < M satisfy A (N).
We must show that A (M) holds for each M ∈ Pfin (S≤a).
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Finite subsets form a Noetherian order: proof, 2

What we know so far:
(1) G (b) holds (that is, Pfin (S≤b) is Noetherian) for all

b < a.
(2) A (M) is a statement for each M ∈ Pfin (S≤a).
(3) A (M) holds whenever all N < M satisfy A (N).
We must show that A (M) holds for each M ∈ Pfin (S≤a).
First, we claim that
(4) A (M) holds for each M ∈ Pfin (S≤b) for each b < a.
Indeed, this is proven by induction on M, which is allowed by
(1), and which uses (3) for the induction step.

Rewrite (4) (and the obvious fact that A (∅) holds, which
again follows from (3)) as
(5) A (M) holds for each M ∈ Pfin (S≤a) satisfying a /∈ M.
Thus, (3) yields that A ({a}) holds.
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Finite subsets form a Noetherian order: proof, 3

What we know so far:
(1) G (b) holds (that is, Pfin (S≤b) is Noetherian) for all

b < a.
(2) A (M) is a statement for each M ∈ Pfin (S≤a).
(3) A (M) holds whenever all N < M satisfy A (N).
(5) A (M) holds for each M ∈ Pfin (S≤a) satisfying a /∈ M.
We must show that A (M) holds for each M ∈ Pfin (S≤a).
Next, we claim that
(6) A (M ∪ {a}) holds for each M ∈ Pfin (S≤b) for each

b < a.
Indeed, this is proven by induction on M, which is allowed by
(1), and which uses (3) and (5) for the induction step (since
each set in Pfin (S≤a) that is < M ∪ {a} is either of the form
N ∪ {a} with N < M, or does not contain a).

Rewrite (6) (and the fact that A ({a}) holds) as
(7) A (M ∪ {a}) holds for each M ∈ Pfin (S≤a) satisfying

a /∈ M.
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Finite subsets form a Noetherian order: proof, 4

What we know so far:
(2) A (M) is a statement for each M ∈ Pfin (S≤a).
(5) A (M) holds for each M ∈ Pfin (S≤a) satisfying a /∈ M.
(7) A (M ∪ {a}) holds for each M ∈ Pfin (S≤a) satisfying

a /∈ M.
We must show that A (M) holds for each M ∈ Pfin (S≤a).
Rewrite (7) as
(8) A (M) holds for each M ∈ Pfin (S≤a) satisfying a ∈ M.

Combine (5) with (8) to conclude that A (M) holds for each
M ∈ Pfin (S≤a).
Thus, we proved that Pfin (S≤a) is Noetherian.
To prove that Pfin (S) is Noetherian, it suffices to notice that
each M ∈ Pfin (S) belongs to Pfin (S≤a) for some a ∈ S (or is
empty).
(I’ve got the idea from Mines/Richman/Ruitenburg, A Course
in Constructive Algebra, proof of Theorem 6.4. They work
with different notations and prove a more general result.)
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More posets

In classical logic, there are several nontrivial Noetherian
posets:

weakly decreasing tuples of arbitrary size with
lexicographic order;
infinite sequences with lexicographic order;
trees (infamous hydra theorem);
graphs w.r.t. minor relation,
etc.

(Correct me if/where I’m wrong.)
I don’t know which of these are still Noetherian in
constructive logic.
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6. Application: Gröbner bases

6.
Application: Gröbner bases

References:

Bremner/Dotsenko, Algebraic Operads: An Algorithmic
Companion.

Becker/Weispfennig, Gröbner Bases: A computational
approach to commutative algebra.

Cox/Little/O’Shea, Ideals, Varieties, and Algorithms.
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Introduction: polynomial division, the game, 1

Fix a commutative ring K, and a monic polynomial

d = xm − d1x
m−1 − d2x

m−2 − · · · − dmx
0 ∈ K [x ] .

The polynomial division game:
Positions: polynomials f ∈ K [x ].
Moves: Pick any n ≥ m such that xn appears in f ; call c
its coefficient; subtract cxn−md from f (that is, subtract
the multiple of d that kills the xn-term in f and leaves
the higher terms unchanged).

(“Appears in f ” means “appears with nonzero coefficient in
f ”.)
Proposition. The game always terminates, and the outcome
does not depend on the choice of moves.
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Introduction: polynomial division, the game, 2

The polynomial division game:
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Proposition. The game always terminates, and the outcome
does not depend on the choice of moves.
Proof: By the (general) diamond lemma, it suffices to prove
Noetherianness and local confluence.
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The polynomial division game:
Positions: polynomials f ∈ K [x ].
Moves: Pick any n ≥ m such that xn appears in f ; call c
its coefficient in f ; subtract cxn−md from f .

Proposition. The game always terminates, and the outcome
does not depend on the choice of moves.
Proof: By the (general) diamond lemma, it suffices to prove
Noetherianness and local confluence.
Noetherianness: Let

h : K [x ]→ Pfin (N) ,

f 7→ {n ∈ N | xn appears in f } .
Easy to see:

h (u) > h (v) whenever u −→ v .
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Introduction: polynomial division, the game, 2

The polynomial division game:
Positions: polynomials f ∈ K [x ].
Moves: Pick any n ≥ m such that xn appears in f ; call c
its coefficient in f ; subtract cxn−md from f .

Proposition. The game always terminates, and the outcome
does not depend on the choice of moves.
Proof: By the (general) diamond lemma, it suffices to prove
Noetherianness and local confluence.
Local confluence: Exercise.
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Introduction: polynomial division, the game, 2

The polynomial division game:
Positions: polynomials f ∈ K [x ].
Moves: Pick any n ≥ m such that xn appears in f ; call c
its coefficient in f ; subtract cxn−md from f .

Proposition. The game always terminates, and the outcome
does not depend on the choice of moves.
This shouldn’t come as a surprise: The “game” is just
polynomial division by d , but done in an unsystematic (and
slow) fashion.

44 / 54



Introduction: polynomial division, modified

Let us modify the game somewhat to make it more
predictable.
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Introduction: polynomial division, modified

Let us modify the game somewhat to make it more
predictable.
The polynomial division game:

Positions: polynomials f ∈ K [x ].
Moves: Pick any n ≥ m such that xn appears in f ;
call c its coefficient in f ;
subtract cxn−md from f .

The move requires the coefficient of xn to be nonzero.
This is fickle and not very constructive.
Better: Keep track of powers of x that have already been
killed in previous moves (but not by random cancellation), and
only require xn to be not one of them.
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Introduction: polynomial division, modified
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predictable.
The modified polynomial division game:
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and a polynomial f ∈ K [x ].
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and a polynomial f ∈ K [x ].
Moves: Pick any n ≥ m such that n ∈ M;
call c its coefficient in f ;
replace n by n − 1, n − 2, . . . , n −m in M;
subtract cxn−md from f .

All changes are in blue.
The set M keeps track of all powers of x that can possibly
still appear in f , but random cancellations do not get removed
from M.
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Introduction: polynomial division, modified

Let us modify the game somewhat to make it more
predictable.
The modified polynomial division game:
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and a polynomial f ∈ K [x ].
Moves: Pick any n ≥ m such that n ∈ M;
call c its coefficient in f ;
replace n by n − 1, n − 2, . . . , n −m in M;
subtract cxn−md from f .

If we forget about M, then each move of the modified game
either corresponds to a move or the original game, or leaves f
unchanged.
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Introduction: polynomial division, modified

The modified polynomial division game:
Positions: pairs (M, f ) consisting of an M ∈ Pfin (N)
and a polynomial f ∈ K [x ].
Moves: Pick any n ≥ m such that n ∈ M;
call c its coefficient in f ;
replace n by n − 1, n − 2, . . . , n −m in M;
subtract cxn−md from f .

Proposition. The modified game always terminates, and the
outcome does not depend on the choice of moves.
Proof. As for the previous game, but easier.
Noetherianness: Let

h : {positions} → Pfin (N) ,

(M, f ) 7→ M.

Local confluence: Even easier than before.
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Multiple variables

Let us generalize:
Consider a polynomial ring K [x1, x2, . . . , xn] in n variables.
Monomials are formal expressions xa1

1 xa2
2 · · · xann with

(a1, a2, . . . , an) ∈ Nn.
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2 · · · xann with

(a1, a2, . . . , an) ∈ Nn.
Monomials can be multiplied in the obvious way.
We say that a monomial m = xa1

1 xa2
2 · · · xann divides a

monomial n = xb1
1 xb2

2 · · · xbnn if ai ≤ bi for all i .

In this case, n/m := xb1−a1
1 xb2−a2

2 · · · xbn−ann .
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2 · · · xann with

(a1, a2, . . . , an) ∈ Nn.
Monomials can be multiplied in the obvious way.
We say that a monomial m = xa1

1 xa2
2 · · · xann divides a

monomial n = xb1
1 xb2

2 · · · xbnn if ai ≤ bi for all i .

In this case, n/m := xb1−a1
1 xb2−a2

2 · · · xbn−ann .
The lcm (lowest common multiple) of two monomials
m = xa1

1 xa2
2 · · · xann and n = xb1

1 xb2
2 · · · xbnn is defined to be the

monomial lcm (m, n) := x
max{a1,b1}
1 x

max{a2,b2}
2 · · · xmax{an,bn}

n .
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Multiple variables

Consider a polynomial ring K [x1, x2, . . . , xn] in n variables.
Monomials are formal expressions xa1

1 xa2
2 · · · xann with

(a1, a2, . . . , an) ∈ Nn.
We equip Nn with the lexicographic order (i.e., the total order
obtained as the lexicographic product N× N× · · · × N).
We transfer this order to monomials. Thus,(

xa1
1 xa2

2 · · · x
an
n > xb1

1 xb2
2 · · · x

bn
n

)
⇐⇒ ((a1, a2, . . . , an) > (b1, b2, . . . , bn))

⇐⇒ (there is some i such that ai > bi , and

each j < i satisfies aj = bj) .
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Consider a polynomial ring K [x1, x2, . . . , xn] in n variables.
Monomials are formal expressions xa1

1 xa2
2 · · · xann with

(a1, a2, . . . , an) ∈ Nn.
We equip Nn with the lexicographic order (i.e., the total order
obtained as the lexicographic product N× N× · · · × N).
We transfer this order to monomials. Thus,(

xa1
1 xa2

2 · · · x
an
n > xb1

1 xb2
2 · · · x

bn
n

)
⇐⇒ ((a1, a2, . . . , an) > (b1, b2, . . . , bn))

⇐⇒ (there is some i such that ai > bi , and

each j < i satisfies aj = bj) .

This is a total order.
Thus, every nonzero polynomial p has a unique leading
monomial (i.e., maximum monomial appearing with nonzero
coefficient).
We say that p is monic if the coefficient of its leading
monomial is 1.
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Multivariate polynomial division, the game

Fix a commutative ring K, and finitely many monic
polynomials g1, g2, . . . , gk in K [x1, x2, . . . , xn].
For each i , let hi be the leading monomial of gi .

The multivariate polynomial division game:
Positions: polynomials f ∈ K [x1, x2, . . . , xn].
Moves: Pick any monomial m that appears in f and any
i such that hi | m. Call c the coefficient of m in f .
Subtract c (m/hi ) gi from f (that is, subtract the
multiple of gi that kills the m-term in f and leaves higher
terms unchanged).

The game always terminates.
When is it confluent?
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Multivariate polynomial division, the game: Example 1

Example 1:
n = 2. Write x and y for x1 and x2.
k = 2. Let g1 = x2y − x and g2 = y2x − y .
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Example 1:
n = 2. Write x and y for x1 and x2.
k = 2. Let g1 = x2y − x and g2 = y2x − y .

Start the game with f = x2y2:

x2y2 g1−→ xy (terminal)

(where
gi−→ means that the move uses gi ) versus

x2y2 g2−→ xy (terminal).

Looks good so far.
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Example 1:
n = 2. Write x and y for x1 and x2.
k = 2. Let g1 = x2y − x and g2 = y2x − y .

Start the game with f = x3y3:

x3y3 g1−→ x2y2 g1−→ xy (terminal)

versus
x3y3 g2−→ x2y2 g1−→ xy (terminal).
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48 / 54



Multivariate polynomial division, the game: Example 1

Example 1:
n = 2. Write x and y for x1 and x2.
k = 2. Let g1 = x2y − x and g2 = y2x − y .

Not hard to see: This one is confluent.

48 / 54



Multivariate polynomial division, the game: Example 2

Example 2:
n = 2. Write x and y for x1 and x2.
k = 2. Let g1 = x2y − y and g2 = y2x − x .
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Multivariate polynomial division, the game: Example 3

Example 3:
n = 2. Write x and y for x1 and x2.
k = 2. Let g1 = x2 − x − y and g2 = y2 − x − y .
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Example 3:
n = 2. Write x and y for x1 and x2.
k = 2. Let g1 = x2 − x − y and g2 = y2 − x − y .

Start the game with f = x2y2:

x2y2 g1−→ xy2 + y3 g2−→ x2 + xy + y3 g2−→ x2 + 2xy + y2

g1−→ x + y + 2xy + y2 g2−→ 2x + 2y + 2xy (terminal)

versus

x2y2 g2−→ x3 + x2y
g1−→ x2 + xy + x2y

g1−→ x2 + 2xy + y2

g2−→ x + y + x2 + 2xy
g1−→ 2x + 2y + 2xy . (terminal)

Looks confluent so far. But how to prove it in general?
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Multivariate polynomial division, the game: Confluence criterion

Fix a commutative ring K, and finitely many monic
polynomials g1, g2, . . . , gk in K [x1, x2, . . . , xn].
For each i , let hi be the leading monomial of gi .
The multivariate polynomial division game:

Positions: polynomials f ∈ K [x1, x2, . . . , xn].
Moves: Pick any monomial m that appears in f and any
i such that hi | m. Call c the coefficient of m in f .
Subtract c (m/hi ) gi from f (that is, subtract the
multiple of gi that kills the m-term in f and leaves higher
terms unchanged).
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Multivariate polynomial division, the game: Confluence criterion

Fix a commutative ring K, and finitely many monic
polynomials g1, g2, . . . , gk in K [x1, x2, . . . , xn].
For each i , let hi be the leading monomial of gi .
Theorem (Buchberger). The game is confluent if and only
if for each i and j , there is a position t such that

lcm (hi , hj)
gi

yy

gj

%%

%% yy
t

(where
gi−→ means “move using gi”, while

gj−→ means “move
using gj”).
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polynomials g1, g2, . . . , gk in K [x1, x2, . . . , xn].
For each i , let hi be the leading monomial of gi .
Theorem (Buchberger). The game is confluent if and only
if for each i and j , there is a position t such that

lcm (hi , hj)
gi

yy

gj

%%

%% yy
t

(where
gi−→ means “move using gi”, while

gj−→ means “move
using gj”).
It suffices to consider the case i < j .
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Multivariate polynomial division, the game: Confluence criterion

Fix a commutative ring K, and finitely many monic
polynomials g1, g2, . . . , gk in K [x1, x2, . . . , xn].
For each i , let hi be the leading monomial of gi .
Theorem (Buchberger). The game is confluent if and only
if for each i and j , there is a position t such that

lcm (hi , hj)
gi

yy

gj

%%

%% yy
t

(where
gi−→ means “move using gi”, while

gj−→ means “move
using gj”).
Again, the game can be modified so it no longer depends on
the nonvanishing of coefficients.
The modified game has the same properties.
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Multivariate polynomial division, the game: Example 3 revisited

Example 3:
n = 2. Write x and y for x1 and x2.
k = 2. Let g1 = x2 − x − y and g2 = y2 − x − y .

Let us prove that this game is confluent.
lcm (h1, h2) = x2y2.

We only need to consider the case i < j ; thus i = 1 and j = 2.
Thus we need to find t such that

x2y2

g1

}}

g2

!!

"" ||
t

But we did that a few slides ago! (t = 2x + 2y + 2xy .)
So the game is confluent.
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Multivariate polynomial division, the game: Buchberger 1

Actually, this holds more generally:
Theorem (Buchberger’s 1st criterion). If the monomials hi
and hj have no indeterminates in common (i.e., no variable
appears in both; equivalently, lcm (hi , hj) = hihj), then there
is a position t such that

lcm (hi , hj)
gi

yy

gj

%%

%% yy
t

Thus, for example, the game is always confluent if
hi = x something

i for each i .
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Multivariate polynomial division, the game: Gröbner bases

Fix a commutative ring K, and finitely many monic
polynomials g1, g2, . . . , gk in K [x1, x2, . . . , xn].
For each i , let hi be the leading monomial of gi .
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Multivariate polynomial division, the game: Gröbner bases

Fix a commutative ring K, and finitely many monic
polynomials g1, g2, . . . , gk in K [x1, x2, . . . , xn].
For each i , let hi be the leading monomial of gi .
When the game is confluent, the polynomials g1, g2, . . . , gk
are said to form a Gröbner basis.
The terminal position obtained in the game is then called the
remainder of f upon division by g1, g2, . . . , gk .

54 / 54



Multivariate polynomial division, the game: Gröbner bases
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For each i , let hi be the leading monomial of gi .
When the game is confluent, the polynomials g1, g2, . . . , gk
are said to form a Gröbner basis.
The terminal position obtained in the game is then called the
remainder of f upon division by g1, g2, . . . , gk .
Gröbner bases are often defined with respect to other orders
(not just the lexicographic one).
The theory is then similar.
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Gröbner bases are often defined with respect to other orders
(not just the lexicographic one).
The theory is then similar.
Used throughout computational algebraic geometry and
beyond.
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Fix a commutative ring K, and finitely many monic
polynomials g1, g2, . . . , gk in K [x1, x2, . . . , xn].
For each i , let hi be the leading monomial of gi .
When the game is confluent, the polynomials g1, g2, . . . , gk
are said to form a Gröbner basis.
The terminal position obtained in the game is then called the
remainder of f upon division by g1, g2, . . . , gk .
Gröbner bases are often defined with respect to other orders
(not just the lexicographic one).
The theory is then similar.
Used throughout computational algebraic geometry and
beyond.
There is a noncommutative version, where monomials are
replaced by words (and the indeterminates don’t commute).
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