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The symmetric group algebra

e Definition. Fix a commutative ring k. (The main examples
are Z and Q.)
For each n € N, let S, be the n-th symmetric group, and
k [Sn] its group algebra over k. So

k [Sn] = { formal linear combinations Z aww with oy, € k
weS,

Also, let [n] := {1,2,...,n} for each n € N.
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Rook-to-rook sums: definition

e Definition. For any two subsets A and B of [n], we define the

elements
‘7B,A = 2{: w and Y7B,A = ZE: w
WESy; wESp;
w(A)=B w(A)CB

of k[Sp]. We shall refer to these elements as rectangular
rook sums.
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Rook-to-rook sums: definition

e Definition. For any two subsets A and B of [n], we define the

elements
VB,A = Z w and VB,A = Z w
WESy; wESp;
w(A)=B w(A)CB

of k[Sp]. We shall refer to these elements as rectangular
rook sums.

o Examples.

v@,@ = v[,,“,,] = (sum of all w € Sn);
Vi21,41} = (sum of all w € S, sending 1 to 2);
%{2,3},{1} = (sum of all w € S, sending 1 to 2 or 3).
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Rook-to-rook sums: simple properties

o Proposition. Let A and B be two subsets of [n]. Then:
(a) We have Vg 4 =0 if |A| # |B|.
(b) We have Vg 4 =0 if |[A| > |B].
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o Proposition. Let A and B be two subsets of [n]. Then:
(a) We have Vg 4 =0 if |A| # |B|.
(b) We have Vg 4 =0 if |[A| > |B].

(c) We have Vga= >  Vya.
VCB,;
[VI=|A|

(d) We have VB,A = V[n]\B, [nL\A.
(e) If |A| = |B|, then VB,A = VB,A-
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Rook-to-rook sums: simple properties

o Proposition. Let A and B be two subsets of [n]. Then:
(a) We have Vg 4 =0 if |A| # |B|.
(b) We have Vg 4 =0 if |[A| > |B].

(c) We have Vga= >  Vya.
VCB,;
[VI=|A|

(d) We have VB,A = V[n]\B, [nL\A.
(e) If |A| = |B|, then VB,A = VB,A-
Next, let S : k [S,] — k[S,] be the antipode of k[S,]; this is

the k-linear map sending each permutation w € S, to w™!.

Then:
(f) We have S(Vga) =Vas.
(g) We have S (VB,A> = VIa\A, [n\B-
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Minimal polynomials: a question

@ The simplest rectangular rook sum is
Voo = (sumof all we Sp).
Easily, V%yz = nlVg g, so that

P(Vgz)=0 for the polynomial P (x) = x (x — n!).
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Minimal polynomials: a question

@ The simplest rectangular rook sum is
Voo = (sumof all we Sp).
Easily, V%@ = nlVg g, so that

P(Vzz)=0 for the polynomial P (x) = x (x — n!).

® Question: What polynomials P satisfy P (Vg a) =0 or
P (65},4) = 0 for arbitrary A, B ?

In particular, what is the minimal polynomial of 657,4 ? (The
only interesting Vg a's are those for |A| = |B|, and they agree
with Vg 4, so that we need not study them separately.)

5/22



Minimal polynomials: experimental data

o Example. The minimal polynomial of 6{274,576}7 {1,2) for
n=~6is (x — 288)x(x + 12)(x + 36).
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n=~6is (x — 288)x(x + 12)(x + 36).

@ Example. The minimal polynomial of 6{172,576}7 {1,2,3) for
n=6is (x — 144)(x + 16)x>.

@ Looks like the minimal polynomial always splits over Z (i.e.,
factors into linear factors)!
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Minimal polynomials: experimental data

o Example. The minimal polynomial of 6{274,576}7 {1,2) for
n=~6is (x — 288)x(x + 12)(x + 36).

@ Example. The minimal polynomial of 6{172’576}7 {1,2,3) for
n=6is (x — 144)(x + 16)x>.

@ Looks like the minimal polynomial always splits over Z (i.e.,
factors into linear factors)!

@ How can we prove this?
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A product rule

@ A crucial step in the proof is a product rule for Vs:

@ Theorem (product rule). Let A, B, C, D be four subsets of
[n] such that |A| = |B| and |C| = |D|. Then,

_ U
Vb.cVB.a=ws,c Z (_1)|U\ |BNC| <|B‘Q|C|>VU’V'
UcCD,

VCA;
U=V
Here, for any two subsets B and C of [n], we set

we,c:=|BNCI-|B\C|'-|C\B|l-|[n]\ (BUC) € Z.
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A product rule

@ A crucial step in the proof is a product rule for Vs:

@ Theorem (product rule). Let A, B, C, D be four subsets of
[n] such that |A| = |B| and |C| = |D|. Then,

_ U
Vb.cVB.a=ws,c Z (_1)|U\ |BNC| <|B‘Q|C|>VU’V'
UcCD,

VCA;
U=V
Here, for any two subsets B and C of [n], we set

we,c:=|BNCI-|B\C|'-|C\B|l-|[n]\ (BUC) € Z.

@ Proof. Nice exercise in enumeration! First step is to show
that

Vp,cVBa=uws, Z w.
weSy;
|w(A)ND|=|BNC]|
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A product rule, restated

@ Recall that 637,4 is the sum of all Vi 4's for V C B satisfying
|V| = |A|. Thus, the product rule rewrites as follows:

e Theorem (product rule, rewritten). Let A, B, C, D be four
subsets of [n] such that |A| = |B| and |C| = |D|. Then,

_ v ~
Vb.cVB.a=ws.c Z (_1)|V| |BNC| <‘B|m‘c‘>vD,v.
VCA

8/22



An incomplete filtration

@ Now, fix a subset D of [n]. Define
Fi = span {69,5 | C C[n] with |C| < k}
for each k € Z.

9/22



An incomplete filtration

@ Now, fix a subset D of [n]. Define
Fi = span {%D,C | C C[n] with |C| < k}
for each k € Z. Of course,
Fn2Fp12--2F2 F_1=0.

It is easy to see that Fp is spanned by

VD,@ = V@,@ = Z w.
WESn

9/22



An incomplete filtration

@ Now, fix a subset D of [n]. Define
Fi = span {%D,C | C C[n] with |C| < k}
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e Proposition. Let C C [n] satisfy |C| = |D|. Let k € N. Then,
(Vbo,c —6p.c.k) Fk € Fi-1-
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An incomplete filtration

@ Now, fix a subset D of [n]. Define
Fi = span {%D,C | C C[n] with |C| < k}
for each k € Z. Of course,
Fn2Fp12--2F2 F_1=0.

@ For any subset C C [n] and any k € N, we define the integer

_ k
BCD;

|Bl=k

e Proposition. Let C C [n] satisfy |C| = |D|. Let k € N. Then,
(Vbo,c —6p.c.k) Fk € Fi-1-

@ Proof. Follows from the rewritten product rule.
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Annihilating polynomials, 1

@ So we have proved (Vp c — 0p,c k) Fk € Fk—1 whenever
|C| = |D| and k € N.
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|C| =|D| and k € N.
Since Vp ¢ € F, and F_1 = 0, this entails

D]

H (Vbo,c —6p,ck) | Vb,c =0.
k=0

@ However, the Fi depend only on D, not on C, so that we can
apply the same reasoning to any linear combination

VDo = Z acVp,c
CcC|n);
|CI=ID|

of Vp,c's instead of a single Vp c.
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Annihilating polynomials, 1

@ So we have proved (Vp c — 0p,c k) Fk € Fk—1 whenever
|C| =|D| and k € N.
Since Vp ¢ € F, and F_1 = 0, this entails

D]

H (Vbo,c —6p,ck) | Vb,c =0.
k=0

@ However, the Fi depend only on D, not on C, so that we can
apply the same reasoning to any linear combination

VDo = Z acVp,c
CcC|n);
IC|=|D|
of Vp,c's instead of a single Vp c.
@ Thus we find:
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Annihilating polynomials, 2

® Theorem. Let D C [n]. Let oo = (o¢)ccpa; |c|=|p| be 2
family of scalars in k indexed by the | D|-element subsets of

[n]. Then,
D
11 (Vo = 6pa) | Vo =0,
k=0
where
Vpai= Y. acVpc€k[S] and
cCln]:
ICI=ID]

OD,ak = Z acdp,ck € k.
CCln];
|C|=|D|
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Annihilating polynomials, 2

® Theorem. Let D C [n]. Let oo = (o¢)ccpa; |c|=|p| be 2
family of scalars in k indexed by the | D|-element subsets of
[n]. Then,

|D]
H (Vbpa = 0D,0,k) | VDo =0,
k=0

where

Vpai= Y. acVpc€k[S] and

CClnJ;
|Cl=|D]

OD,ak = Z acdp,ck € k.
CCln];
|C|=|D|

@ Thus, the minimal polynomial of Vp , splits over k.
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Annihilating polynomials, 2

® Theorem. Let D C [n]. Let oo = (o¢)ccpa; |c|=|p| be 2
family of scalars in k indexed by the | D|-element subsets of
[n]. Then,

D
H (Vbpa = 0D,0,k) | VDo =0,
k=0

where

Vpai= Y. acVpc€k[S] and
cCln]:
|Ci=ID|

OD,ak = Z acdp,ck € k.
CCln];
[C|=|D|
@ Thus, the minimal polynomial of Vp , splits over k.
@ In particular, the minimal polynomial of Vp ¢ splits over Z

(since ﬁD,C = Vp, for an appropriate «).
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The formal Nabla-algebra: definition and conjecture

@ The product rule for the V's suggests another question.
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@ The product rule for the V's suggests another question.

@ The V's are not linearly independent (e.g., we have
VA= Vs, [i\A)-
What happens if we create linearly independent “abstract
V's" (call them A’s) and define their product using the
product rule?

o Definition. For any two subsets A and B of [n] satisfying
|A| = |B|, introduce a formal symbol Ag 4. Let D be the free
k-module with basis (AByA)A,Bg[n] with |A|=| |- Define a
multiplication on D by
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The formal Nabla-algebra: definition and conjecture

@ The product rule for the V's suggests another question.

@ The V's are not linearly independent (e.g., we have
VA= Vs, [i\A)-
What happens if we create linearly independent “abstract
V's" (call them A’s) and define their product using the
product rule?

o Definition. For any two subsets A and B of [n] satisfying
|A| = |B|, introduce a formal symbol Ag 4. Let D be the free
k-module with basis (AByA)A,Bg[n] with |A|=| |- Define a
multiplication on D by

_ U
Apchpa=wsc S (~1)U-BnC <]B’m|C|>AU’V.
UCD,

VCA;
U=V

@ Theorem. This makes D into a nonunital k-algebra.

@ Conjecture. If n! is invertible in k, then this algebra D has a

unity.
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The formal Nabla-algebra: examples

e Example. For n =1, the nonunital algebra D has basis (u, v)
with u = Ag 5 and v = A{1}7{1}, and multiplication

uu = uv = vu = u, VW = V.

It is just k x k.
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The formal Nabla-algebra: examples

e Example. For n =1, the nonunital algebra D has basis (u, v)
with u = Ag 5 and v = A{l},{l}: and multiplication

uu = uv = vu = u, w = v.
It is just k x k.

o Example. For n = 2, the nonunital algebra D has basis
(u, Vi1, V12, V21, V22, W) with u = A@yg and Vij = A{,}’{J} and
w = A 2]- The multiplication on D is

uu = uw = wu = 2u, uvjj = vjju = u,
VdeVba = U — Vs if b+ c;
VdcVba = Vda if b= C,
Vijw = Vi1 + Vj2, wvjj = vij + v2j,
ww = 2w.

This nonunital k-algebra D has a unity if and only if 2 is
1
invertible in k. This unity is Z (V11 + Voo — V1o — Vo1 + 2W).
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The formal Nabla-algebra: questions

@ Question. Is D a known object? Since D is a free k-module

2
of rank ( n), could D be a nonunital Z-form of the planar
n

n n
n X
rook algebra (which is known to be = [] k<k> <k> )?
k=0
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The formal Nabla-algebra: questions

@ Question. Is D a known object? Since D is a free k-module

2
of rank ( n>’ could D be a nonunital Z-form of the planar
n

n n
n X
rook algebra (which is known to be = [] k<k> <k> )?
k=0
@ Question. Barring that, is there a nice proof of the above
theorem?
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Row-to-row sums

@ Let us generalize the Vg 4.
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@ Let us generalize the Vg 4.

e Definition. A set composition of [n] is a tuple
U= (U1, Us,..., U) of disjoint nonempty subsets of [n] such
that Uy U U U --- U U = [n]. We set £(U) = k and call k
the length of U.

o Definition. Let SC(n) be the set of all set compositions of
[n].

o Definition. If A = (A1, Az, ..., Ax) and B = (B1,Ba,...,Bx)
are two set compositions of [n] having the same length, then
we define the row-to-row sum

VB = Z w in k[Sh].
WGSn;
w(A;)=B; for all i
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Row-to-row sums

@ Let us generalize the Vg 4.

e Definition. A set composition of [n] is a tuple
U= (U1, Us,..., U) of disjoint nonempty subsets of [n] such
that Uy U U U --- U U = [n]. We set £(U) = k and call k
the length of U.

o Definition. Let SC(n) be the set of all set compositions of
[n].

o Definition. If A = (A1, Az, ..., Ax) and B = (B1,Ba,...,Bx)
are two set compositions of [n] having the same length, then
we define the row-to-row sum

VB = Z w in k[Sh].
WGSn;
w(A;)=B; for all i

o Example. We have
V&A = VB,A for B = (B, [n] \ B) and A = (A, [n] \A)
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Simple properties and non-properties

@ Proposition. Let A = (A1, Az, ..., Ax) and
B =(By,Ba,...,Bx).
(a) We have Vg a = 0 unless |A;j| = |B;i| for all i.
(b) We have Vg a = Vgsao for any o € S (acting on set
compositions by permuting the blocks).
(c) We have S(Vga) = Vag, where S (w) = w! for all
w € S, as before.
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(b) We have Vg a = Vgsao for any o € S (acting on set
compositions by permuting the blocks).
(c) We have S(Vga) = Vag, where S (w) = w! for all
w € S, as before.
@ The minimal polynomial of Vg o does not always split over Z
unless ¢ (A) < 2.
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Simple properties and non-properties

@ Proposition. Let A = (A1, Az, ..., Ax) and
B =(By,Ba,...,Bx).
(a) We have Vg a = 0 unless |A;j| = |B;i| for all i.
(b) We have Vg a = Vgsao for any o € S (acting on set
compositions by permuting the blocks).
(c) We have S(Vga) = Vag, where S (w) = w! for all
w € S, as before.
@ The minimal polynomial of Vg o does not always split over Z
unless ¢ (A) < 2.

@ The Vg a are not entirely new:
The Murphy basis of k [S,] consists of the elements Vg a for
the standard set compositions A and B of [n]. Here,
“standard” means that the blocks are the rows of a standard
Young tableau (in particular, they must be of partition shape).
See G. E. Murphy, On the Representation Theory of the
Symmetric Groups and Associated Hecke Algebras, 1991.
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The span of the generalized V’s, 1

@ Theorem. Let A =k|[S,]. Let k € N. We define two
k-submodules Z, and Jj of A by

Ty = span {VB,A | A,B e SC(n) with ¢(A)=1¢(B) < k}

and
Tk :=A-span{ay, | UC[n] of size k +1} - A,
where
oy =Y (-1)7c €k[S,].
o€Sy
Then:
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The span of the generalized V’s, 1

@ Theorem. Let A =k|[S,]. Let k € N. We define two
k-submodules Z, and Jj of A by

Ty = span {VB,A | A,B e SC(n) with ¢(A)=1¢(B) < k}

and

Tk :=A-span{ay, | UC[n] of size k +1} - A,
where

oy =Y (-1)7c €k[S,].
o€Sy

Then:
(a) Both Zyx and Jj are ideals of A, and are preserved under

S.
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The span of the generalized V'’s, 2

@ Theorem (cont’d).
(b) We have

Ty = jkl = LAnn Jx = RAnn Jj and
Ji = Iit = LAnnZ, = RAnnZ,.
Here, 24+ means orthogonal complement wrt the

standard bilinear form on A, whereas LAnn and RAnn
mean left and right annihilators.
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Ty = jkl = LAnn Jx = RAnn Jj and
Ji = Iit = LAnnZ, = RAnnZ,.

Here, 24+ means orthogonal complement wrt the
standard bilinear form on A, whereas LAnn and RAnn
mean left and right annihilators.

(c) The k-module Zy is free of rank = # of
(1,2,..., k + 1)-avoiding permutations in S,,.

(d) The k-module Jy is free of rank = # of
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The span of the generalized V'’s, 2

@ Theorem (cont’d).
(b) We have

Ty = j,f‘ = LAnn Jx = RAnn Jj and
Ji = Iit = LAnnZ, = RAnnZ,.

Here, 24+ means orthogonal complement wrt the
standard bilinear form on A, whereas LAnn and RAnn
mean left and right annihilators.

(c) The k-module Zy is free of rank = # of
(1,2,..., k + 1)-avoiding permutations in S,,.

(d) The k-module Jy is free of rank = # of
(1,2,..., k + 1)-nonavoiding permutations in S,.

(e) The quotients A/Jy and A/Zj are also free, with the
same ranks as Z, and Jj (respectively), and with bases
consisting of (residue classes of) the relevant

permutations.
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The span of the generalized V'’s, 3

@ Theorem (cont’d).

(f) If n!is invertible in k, then A = Z, @& Ji (internal direct
sum) as k-modules, and A = 7, x Jj as k-algebras.
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The span of the generalized V'’s, 3

@ Theorem (cont’d).

(f) If n!is invertible in k, then A = 7 & Ji (internal direct
sum) as k-modules, and A = 7, x Jj as k-algebras.

@ Proof. When k is a char-0 field, this can be done using
representations (note that Vg a vanishes on each Specht
module S* with £()\) > £(A)). In particular, A = T; x Jj is
(up to iso? morally?) a coarsening of the Artin—Wedderburn
decomposition of A.
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@ Proof. When k is a char-0 field, this can be done using
representations (note that Vg a vanishes on each Specht
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decomposition of A.
The case of general k is harder and has to be done from
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The span of the generalized V'’s, 3

@ Theorem (cont’d).

(f) If n!is invertible in k, then A = 7 & Ji (internal direct
sum) as k-modules, and A = 7, x Jj as k-algebras.

@ Proof. When k is a char-0 field, this can be done using
representations (note that Vg a vanishes on each Specht
module S* with £()\) > £(A)). In particular, A = T; x Jj is
(up to iso? morally?) a coarsening of the Artin—Wedderburn
decomposition of A.

The case of general k is harder and has to be done from
scratch.

@ Question. Is there a product rule for the Vg a's?

@ Question. How much of the representation theory of S, can
be developed using the Vg a's? (e.g., | think you can prove
> (f)‘)2 = n! using the Murphy basis and the Garnir

AFn
relations.)
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Unrelated(?): A commuting family, 1

@ Here is something rather different.
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@ The following is joint work with Theo Douvropoulos, inspired
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Bethe ansatz.

o Definition. Let 0 € S, be a permutation. Then, we define

exco = (# of i € [n] such that o (i) > i) and
anxco := (# of i € [n] such that o (i) < i)
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number” of o).
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Unrelated(?): A commuting family, 1

@ Here is something rather different.

@ The following is joint work with Theo Douvropoulos, inspired
by the work of Mukhin/Tarasov/Varchenko on the Gaudin
Bethe ansatz.

o Definition. Let 0 € S, be a permutation. Then, we define

exco := (# of i € [n] such that o (i) > i) and
anxco := (# of i € [n] such that o (i) < i)

(the “excedance number” and the "anti-excedance
number” of o).
@ For any a, b € N, define

xa,b = E o €k [Sn] .
og€ESp;
exco=a;
anxco=b

@ Conjecture. The elements X, ;, for all a, b € N commute (for
fixed n).
@ Checked for all n < 7 using SageMath.
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Unrelated(?): A commuting family, 2

@ The antipode plays well with these elements:
S(Xap) = Xpa-

@ Question. What can be said about the k-subalgebra
k[X,p | a,b€{0,1,...,n}] of k[S,] ? Note:

n 1/2(3]4|5]6
dim(Q[Xap]) | 1|24 |10 |26 76

So far, this looks like the # of involutions in S, which is
exactly the dimension of the Gelfand—Zetlin subalgebra
(generated by the Young—Jucys—Murphy elements)!

@ What is the exact relation?
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Thank you,

@ Per Alexandersson and Theo Douvropoulos for
conversations in 2023 that motivated this project.

o Nadia Lafreniere, Jon Novak, Vic Reiner, Richard P.
Stanley for helpful comments.

@ the organizers for the invitation.

@ you for your patience.

22/22



