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The symmetric group algebra

Definition. Fix a commutative ring k. (The main examples
are Z and Q.)
For each n ∈ N, let Sn be the n-th symmetric group, and
k [Sn] its group algebra over k. So

k [Sn] =

formal linear combinations
∑
w∈Sn

αww with αw ∈ k

 .

Also, let [n] := {1, 2, . . . , n} for each n ∈ N.
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Rook-to-rook sums: definition

Definition. For any two subsets A and B of [n], we define the
elements

∇B,A :=
∑
w∈Sn;

w(A)=B

w and ∇̃B,A :=
∑
w∈Sn;

w(A)⊆B

w

of k [Sn]. We shall refer to these elements as rectangular
rook sums.

Examples.

∇∅,∅ = ∇[n],[n] = (sum of all w ∈ Sn) ;

∇{2},{1} = (sum of all w ∈ Sn sending 1 to 2) ;

∇̃{2,3},{1} = (sum of all w ∈ Sn sending 1 to 2 or 3) .
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Rook-to-rook sums: simple properties

Proposition. Let A and B be two subsets of [n]. Then:

(a) We have ∇B,A = 0 if |A| ≠ |B|.
(b) We have ∇̃B,A = 0 if |A| > |B|.
(c) We have ∇̃B,A =

∑
V⊆B;
|V |=|A|

∇V ,A.

(d) We have ∇B,A = ∇[n]\B, [n]\A.

(e) If |A| = |B|, then ∇B,A = ∇̃B,A.

Next, let S : k [Sn] → k [Sn] be the antipode of k [Sn]; this is
the k-linear map sending each permutation w ∈ Sn to w−1.
Then:

(f) We have S (∇B,A) = ∇A,B .

(g) We have S
(
∇̃B,A

)
= ∇̃[n]\A, [n]\B .
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(b) We have ∇̃B,A = 0 if |A| > |B|.
(c) We have ∇̃B,A =

∑
V⊆B;
|V |=|A|

∇V ,A.

(d) We have ∇B,A = ∇[n]\B, [n]\A.

(e) If |A| = |B|, then ∇B,A = ∇̃B,A.

Next, let S : k [Sn] → k [Sn] be the antipode of k [Sn]; this is
the k-linear map sending each permutation w ∈ Sn to w−1.
Then:

(f) We have S (∇B,A) = ∇A,B .

(g) We have S
(
∇̃B,A

)
= ∇̃[n]\A, [n]\B .

4 / 22



Rook-to-rook sums: simple properties

Proposition. Let A and B be two subsets of [n]. Then:

(a) We have ∇B,A = 0 if |A| ≠ |B|.
(b) We have ∇̃B,A = 0 if |A| > |B|.
(c) We have ∇̃B,A =

∑
V⊆B;
|V |=|A|

∇V ,A.

(d) We have ∇B,A = ∇[n]\B, [n]\A.

(e) If |A| = |B|, then ∇B,A = ∇̃B,A.

Next, let S : k [Sn] → k [Sn] be the antipode of k [Sn]; this is
the k-linear map sending each permutation w ∈ Sn to w−1.
Then:

(f) We have S (∇B,A) = ∇A,B .

(g) We have S
(
∇̃B,A

)
= ∇̃[n]\A, [n]\B .

4 / 22



Rook-to-rook sums: simple properties

Proposition. Let A and B be two subsets of [n]. Then:

(a) We have ∇B,A = 0 if |A| ≠ |B|.
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Minimal polynomials: a question

The simplest rectangular rook sum is

∇∅,∅ = (sum of all w ∈ Sn) .

Easily, ∇2
∅,∅ = n!∇∅,∅, so that

P (∇∅,∅) = 0 for the polynomial P (x) = x (x − n!) .

Question: What polynomials P satisfy P (∇B,A) = 0 or

P
(
∇̃B,A

)
= 0 for arbitrary A,B ?

In particular, what is the minimal polynomial of ∇̃B,A ? (The
only interesting ∇B,A’s are those for |A| = |B|, and they agree

with ∇̃B,A, so that we need not study them separately.)
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Minimal polynomials: experimental data

Example. The minimal polynomial of ∇̃{2,4,5,6}, {1,2} for
n = 6 is (x − 288)x(x + 12)(x + 36).

Example. The minimal polynomial of ∇̃{1,2,5,6}, {1,2,3} for
n = 6 is (x − 144)(x + 16)x2.

Looks like the minimal polynomial always splits over Z (i.e.,
factors into linear factors)!

How can we prove this?

6 / 22



Minimal polynomials: experimental data

Example. The minimal polynomial of ∇̃{2,4,5,6}, {1,2} for
n = 6 is (x − 288)x(x + 12)(x + 36).

Example. The minimal polynomial of ∇̃{1,2,5,6}, {1,2,3} for
n = 6 is (x − 144)(x + 16)x2.

Looks like the minimal polynomial always splits over Z (i.e.,
factors into linear factors)!

How can we prove this?

6 / 22



Minimal polynomials: experimental data

Example. The minimal polynomial of ∇̃{2,4,5,6}, {1,2} for
n = 6 is (x − 288)x(x + 12)(x + 36).

Example. The minimal polynomial of ∇̃{1,2,5,6}, {1,2,3} for
n = 6 is (x − 144)(x + 16)x2.

Looks like the minimal polynomial always splits over Z (i.e.,
factors into linear factors)!

How can we prove this?

6 / 22



Minimal polynomials: experimental data

Example. The minimal polynomial of ∇̃{2,4,5,6}, {1,2} for
n = 6 is (x − 288)x(x + 12)(x + 36).

Example. The minimal polynomial of ∇̃{1,2,5,6}, {1,2,3} for
n = 6 is (x − 144)(x + 16)x2.

Looks like the minimal polynomial always splits over Z (i.e.,
factors into linear factors)!

How can we prove this?

6 / 22



A product rule

A crucial step in the proof is a product rule for ∇s:

Theorem (product rule). Let A,B,C ,D be four subsets of
[n] such that |A| = |B| and |C | = |D|. Then,

∇D,C∇B,A = ωB,C

∑
U⊆D,
V⊆A;
|U|=|V |

(−1)|U|−|B∩C |
(

|U|
|B ∩ C |

)
∇U,V .

Here, for any two subsets B and C of [n], we set

ωB,C := |B ∩ C |! · |B \ C |! · |C \ B|! · |[n] \ (B ∪ C )|! ∈ Z.

Proof. Nice exercise in enumeration! First step is to show
that

∇D,C∇B,A = ωB,C

∑
w∈Sn;

|w(A)∩D|=|B∩C |

w .
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A product rule, restated

Recall that ∇̃B,A is the sum of all ∇V ,A’s for V ⊆ B satisfying
|V | = |A|. Thus, the product rule rewrites as follows:

Theorem (product rule, rewritten). Let A,B,C ,D be four
subsets of [n] such that |A| = |B| and |C | = |D|. Then,

∇D,C∇B,A = ωB,C

∑
V⊆A

(−1)|V |−|B∩C |
(

|V |
|B ∩ C |

)
∇̃D,V .
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An incomplete filtration

Now, fix a subset D of [n]. Define

Fk := span
{
∇̃D,C | C ⊆ [n] with |C | ≤ k

}
for each k ∈ Z. Of course,

Fn ⊇ Fn−1 ⊇ · · · ⊇ F0 ⊇ F−1 = 0.

For any subset C ⊆ [n] and any k ∈ N, we define the integer

δD,C ,k :=
∑
B⊆D;
|B|=k

ωB,C (−1)k−|B∩C |
(

k

|B ∩ C |

)
∈ Z.

Proposition. Let C ⊆ [n] satisfy |C | = |D|. Let k ∈ N. Then,

(∇D,C − δD,C ,k)Fk ⊆ Fk−1.

Proof. Follows from the rewritten product rule.
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Annihilating polynomials, 1

So we have proved (∇D,C − δD,C ,k)Fk ⊆ Fk−1 whenever
|C | = |D| and k ∈ N.
Since ∇D,C ∈ Fn and F−1 = 0, this entails |D|∏

k=0

(∇D,C − δD,C ,k)

∇D,C = 0.

However, the Fk depend only on D, not on C , so that we can
apply the same reasoning to any linear combination

∇D,α :=
∑

C⊆[n];
|C |=|D|

αC∇D,C

of ∇D,C ’s instead of a single ∇D,C .

Thus we find:
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Annihilating polynomials, 2

Theorem. Let D ⊆ [n]. Let α = (αC )C⊆[n]; |C |=|D| be a
family of scalars in k indexed by the |D|-element subsets of
[n]. Then,  |D|∏

k=0

(∇D,α − δD,α,k)

∇D,α = 0,

where

∇D,α :=
∑

C⊆[n];
|C |=|D|

αC∇D,C ∈ k [Sn] and

δD,α,k :=
∑

C⊆[n];
|C |=|D|

αCδD,C ,k ∈ k.

Thus, the minimal polynomial of ∇D,α splits over k.

In particular, the minimal polynomial of ∇̃D,C splits over Z
(since ∇̃D,C = ∇D,α for an appropriate α).
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The formal Nabla-algebra: definition and conjecture

The product rule for the ∇’s suggests another question.
The ∇’s are not linearly independent (e.g., we have
∇B,A = ∇[n]\B, [n]\A).
What happens if we create linearly independent “abstract
∇’s” (call them ∆’s) and define their product using the
product rule?

Definition. For any two subsets A and B of [n] satisfying
|A| = |B|, introduce a formal symbol ∆B,A. Let D be the free
k-module with basis (∆B,A)A,B⊆[n] with |A|=|B|. Define a
multiplication on D by

∆D,C∆B,A := ωB,C

∑
U⊆D,
V⊆A;
|U|=|V |

(−1)|U|−|B∩C |
(

|U|
|B ∩ C |

)
∆U,V .

Theorem. This makes D into a nonunital k-algebra.
Conjecture. If n! is invertible in k, then this algebra D has a
unity.
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The formal Nabla-algebra: examples

Example. For n = 1, the nonunital algebra D has basis (u, v)
with u = ∆∅,∅ and v = ∆{1},{1}, and multiplication

uu = uv = vu = u, vv = v .

It is just k× k.
Example. For n = 2, the nonunital algebra D has basis
(u, v11, v12, v21, v22,w) with u = ∆∅,∅ and vij = ∆{i},{j} and
w = ∆[2],[2]. The multiplication on D is

uu = uw = wu = 2u, uvij = viju = u,

vdcvba = u − vda if b ̸= c ;

vdcvba = vda if b = c ,

vijw = vi1 + vi2, wvij = v1j + v2j ,

ww = 2w .

This nonunital k-algebra D has a unity if and only if 2 is

invertible in k. This unity is
1

4
(v11 + v22 − v12 − v21 + 2w).
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The formal Nabla-algebra: questions

Question. Is D a known object? Since D is a free k-module

of rank

(
2n

n

)
, could D be a nonunital Z-form of the planar

rook algebra (which is known to be ∼=
n∏

k=0

k

(
n

k

)
×

(
n

k

)
)?

Question. Barring that, is there a nice proof of the above
theorem?
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Row-to-row sums

Let us generalize the ∇B,A.

Definition. A set composition of [n] is a tuple
U = (U1,U2, . . . ,Uk) of disjoint nonempty subsets of [n] such
that U1 ∪ U2 ∪ · · · ∪ Uk = [n]. We set ℓ (U) = k and call k
the length of U.

Definition. Let SC (n) be the set of all set compositions of
[n].

Definition. If A = (A1,A2, . . . ,Ak) and B = (B1,B2, . . . ,Bk)
are two set compositions of [n] having the same length, then
we define the row-to-row sum

∇B,A :=
∑
w∈Sn;

w(Ai )=Bi for all i

w in k [Sn] .

Example. We have

∇B,A = ∇B,A for B = (B, [n] \ B) and A = (A, [n] \ A) .
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Simple properties and non-properties

Proposition. Let A = (A1,A2, . . . ,Ak) and
B = (B1,B2, . . . ,Bk).

(a) We have ∇B,A = 0 unless |Ai | = |Bi | for all i .
(b) We have ∇B,A = ∇Bσ,Aσ for any σ ∈ Sk (acting on set

compositions by permuting the blocks).
(c) We have S (∇B,A) = ∇A,B, where S (w) = w−1 for all

w ∈ Sn as before.

The minimal polynomial of ∇B,A does not always split over Z
unless ℓ (A) ≤ 2.

The ∇B,A are not entirely new:
The Murphy basis of k [Sn] consists of the elements ∇B,A for
the standard set compositions A and B of [n]. Here,
“standard” means that the blocks are the rows of a standard
Young tableau (in particular, they must be of partition shape).
See G. E. Murphy, On the Representation Theory of the
Symmetric Groups and Associated Hecke Algebras, 1991.
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The span of the generalized ∇’s, 1

Theorem. Let A = k [Sn]. Let k ∈ N. We define two
k-submodules Ik and Jk of A by

Ik := span {∇B,A | A,B ∈ SC (n) with ℓ (A) = ℓ (B) ≤ k}

and

Jk := A · span
{
α−

U | U ⊆ [n] of size k + 1
}
· A,

where
α−

U :=
∑
σ∈SU

(−1)σ σ ∈ k [Sn] .

Then:

(a) Both Ik and Jk are ideals of A, and are preserved under
S .
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The span of the generalized ∇’s, 2

Theorem (cont’d).

(b) We have

Ik = J ⊥
k = LAnnJk = RAnnJk and

Jk = I⊥
k = LAnn Ik = RAnn Ik .

Here, U⊥ means orthogonal complement wrt the
standard bilinear form on A, whereas LAnn and RAnn
mean left and right annihilators.

(c) The k-module Ik is free of rank = # of
(1, 2, . . . , k + 1)-avoiding permutations in Sn.

(d) The k-module Jk is free of rank = # of
(1, 2, . . . , k + 1)-nonavoiding permutations in Sn.

(e) The quotients A/Jk and A/Ik are also free, with the
same ranks as Ik and Jk (respectively), and with bases
consisting of (residue classes of) the relevant
permutations.

18 / 22



The span of the generalized ∇’s, 2

Theorem (cont’d).

(b) We have

Ik = J ⊥
k = LAnnJk = RAnnJk and

Jk = I⊥
k = LAnn Ik = RAnn Ik .

Here, U⊥ means orthogonal complement wrt the
standard bilinear form on A, whereas LAnn and RAnn
mean left and right annihilators.

(c) The k-module Ik is free of rank = # of
(1, 2, . . . , k + 1)-avoiding permutations in Sn.

(d) The k-module Jk is free of rank = # of
(1, 2, . . . , k + 1)-nonavoiding permutations in Sn.

(e) The quotients A/Jk and A/Ik are also free, with the
same ranks as Ik and Jk (respectively), and with bases
consisting of (residue classes of) the relevant
permutations.

18 / 22



The span of the generalized ∇’s, 2

Theorem (cont’d).

(b) We have

Ik = J ⊥
k = LAnnJk = RAnnJk and

Jk = I⊥
k = LAnn Ik = RAnn Ik .

Here, U⊥ means orthogonal complement wrt the
standard bilinear form on A, whereas LAnn and RAnn
mean left and right annihilators.

(c) The k-module Ik is free of rank = # of
(1, 2, . . . , k + 1)-avoiding permutations in Sn.

(d) The k-module Jk is free of rank = # of
(1, 2, . . . , k + 1)-nonavoiding permutations in Sn.

(e) The quotients A/Jk and A/Ik are also free, with the
same ranks as Ik and Jk (respectively), and with bases
consisting of (residue classes of) the relevant
permutations.

18 / 22



The span of the generalized ∇’s, 3

Theorem (cont’d).

(f) If n! is invertible in k, then A = Ik ⊕ Jk (internal direct
sum) as k-modules, and A ∼= Ik × Jk as k-algebras.

Proof. When k is a char-0 field, this can be done using
representations (note that ∇B,A vanishes on each Specht
module Sλ with ℓ (λ) > ℓ (A)). In particular, A ∼= Ik × Jk is
(up to iso? morally?) a coarsening of the Artin–Wedderburn
decomposition of A.

The case of general k is harder and has to be done from
scratch.

Question. Is there a product rule for the ∇B,A’s?

Question. How much of the representation theory of Sn can
be developed using the ∇B,A’s? (e.g., I think you can prove∑
λ⊢n

(
f λ

)2
= n! using the Murphy basis and the Garnir

relations.)

19 / 22



The span of the generalized ∇’s, 3

Theorem (cont’d).

(f) If n! is invertible in k, then A = Ik ⊕ Jk (internal direct
sum) as k-modules, and A ∼= Ik × Jk as k-algebras.

Proof. When k is a char-0 field, this can be done using
representations (note that ∇B,A vanishes on each Specht
module Sλ with ℓ (λ) > ℓ (A)). In particular, A ∼= Ik × Jk is
(up to iso? morally?) a coarsening of the Artin–Wedderburn
decomposition of A.
The case of general k is harder and has to be done from
scratch.

Question. Is there a product rule for the ∇B,A’s?

Question. How much of the representation theory of Sn can
be developed using the ∇B,A’s? (e.g., I think you can prove∑
λ⊢n

(
f λ

)2
= n! using the Murphy basis and the Garnir

relations.)

19 / 22



The span of the generalized ∇’s, 3

Theorem (cont’d).

(f) If n! is invertible in k, then A = Ik ⊕ Jk (internal direct
sum) as k-modules, and A ∼= Ik × Jk as k-algebras.

Proof. When k is a char-0 field, this can be done using
representations (note that ∇B,A vanishes on each Specht
module Sλ with ℓ (λ) > ℓ (A)). In particular, A ∼= Ik × Jk is
(up to iso? morally?) a coarsening of the Artin–Wedderburn
decomposition of A.
The case of general k is harder and has to be done from
scratch.

Question. Is there a product rule for the ∇B,A’s?

Question. How much of the representation theory of Sn can
be developed using the ∇B,A’s? (e.g., I think you can prove∑
λ⊢n

(
f λ

)2
= n! using the Murphy basis and the Garnir

relations.)

19 / 22



The span of the generalized ∇’s, 3

Theorem (cont’d).

(f) If n! is invertible in k, then A = Ik ⊕ Jk (internal direct
sum) as k-modules, and A ∼= Ik × Jk as k-algebras.

Proof. When k is a char-0 field, this can be done using
representations (note that ∇B,A vanishes on each Specht
module Sλ with ℓ (λ) > ℓ (A)). In particular, A ∼= Ik × Jk is
(up to iso? morally?) a coarsening of the Artin–Wedderburn
decomposition of A.
The case of general k is harder and has to be done from
scratch.

Question. Is there a product rule for the ∇B,A’s?

Question. How much of the representation theory of Sn can
be developed using the ∇B,A’s? (e.g., I think you can prove∑
λ⊢n

(
f λ

)2
= n! using the Murphy basis and the Garnir

relations.)

19 / 22



Unrelated(?): A commuting family, 1

Here is something rather different.
The following is joint work with Theo Douvropoulos, inspired
by the work of Mukhin/Tarasov/Varchenko on the Gaudin
Bethe ansatz.

Definition. Let σ ∈ Sn be a permutation. Then, we define

excσ := (# of i ∈ [n] such that σ (i) > i) and

anxcσ := (# of i ∈ [n] such that σ (i) < i)

(the “excedance number” and the “anti-excedance
number” of σ).
For any a, b ∈ N, define

Xa,b :=
∑
σ∈Sn;

excσ=a;
anxcσ=b

σ ∈ k [Sn] .

Conjecture. The elements Xa,b for all a, b ∈ N commute (for
fixed n).
Checked for all n ≤ 7 using SageMath.
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Unrelated(?): A commuting family, 2

The antipode plays well with these elements:

S (Xa,b) = Xb,a.

Question. What can be said about the k-subalgebra
k [Xa,b | a, b ∈ {0, 1, . . . , n}] of k [Sn] ? Note:

n 1 2 3 4 5 6

dim (Q [Xa,b]) 1 2 4 10 26 76
.

So far, this looks like the # of involutions in Sn, which is
exactly the dimension of the Gelfand–Zetlin subalgebra
(generated by the Young–Jucys–Murphy elements)!

What is the exact relation?
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