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Elements in the group algebra of a symmetric group S,, are known
to have an interpretation in terms of card shuffling. I will discuss a
new family of such elements, recently constructed by Nadia Lafreniere:

Given a positive integer n, we define n elements ty,tp,...,t, in the
group algebra of S, by

t; = the sum of the cycles (i), (i,i+1),
(i,i+1,i+2), ..., (i,i+1,...,n),

where the cycle (i) is the identity permutation. The first of them,
t1, is known as the top-to-random shuffle and has been studied by
Diaconis, Fill, Pitman (among others).

The n elements tq,t»,...,t, do not commute. However, we show
that they can be simultaneously triangularized in an appropriate ba-
sis of the group algebra (the "descent-destroying basis"). As a conse-
quence, any rational linear combination of these n elements has ratio-
nal eigenvalues. The maximum number of possible distinct eigenval-
ues turns out to be the Fibonacci number f,,;, and underlying this
fact is a filtration of the group algebra connected to "lacunar subsets"
(i.e., subsets containing no consecutive integers).
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This talk will include an overview of other families (both well-
known and exotic) of elements of these group algebras. I will also
briefly discuss the probabilistic meaning of these elements as well as
some tempting conjectures.

This is joint work with Nadia Lafreniére.
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1. Finite group algebras

1.1. Finite group algebras

e This talk is mainly about a certain family of elements of the
group algebra of the symmetric group S,. But I shall begin
with some generalities.

@ Let k be any commutative ring (but k = Z is enough for most
of our results).

@ Let G be a finite group. (It will be a symmetric group from the
next chapter onwards.)

@ Let k [G] be the group algebra of G over k. Its elements are for-
mal k-linear combinations of elements of G. The multiplication
is inherited from G and extended bilinearly.

e Example: Let G be the symmetric group S; on the set {1,2,3}.
For i € {1,2}, lets; € S; be the simple transposition that swaps
i with i + 1. Then, in k [G] = k [S3], we have
(14+s1)(1—s)=1+s1—51—5]=1+5—5—1=0;
(1+s2) (1451 +5152) =145 451+ 5251 + 5152 + $25152 = Z w.

wEeS3

1.2. Left and right actions of u on k [G]
@ For each u € k[G], we define two k-linear maps

L(u):k[G] — k[G],
X — Ux (“left multiplication by u”)

and

R(u):k[G] = k][G],
X — XU (“right multiplication by u”) .

(So L (u) (x) =ux and R (u) (x) = xu.)

e Both L (1) and R () belong to the endomorphism ring Endy (k [G])
of the k-module k [G]. This ring is essentially a |G| x |G|-matrix
ring over k. Thus, L (1) and R (1) can be viewed as |G| x |G|-
matrices.
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e Studying u, L (1) and R (u) is often (but not always) equivalent,

1.3.

because the maps

L:k|[G] = Endy (k[G]) and
R: (k[G])™® — Endg (k[G])

opposite ring

are two injective k-algebra morphisms (known as the left and
right regular representations of the group G).

Minimal polynomials

@ Each u € k[G] has a minimal polynomial, i.e., a minimum-

1.4.

degree monic polynomial P € k [X] such that P (u) = 0. It is
unique when k is a field.

The minimal polynomial of u is also the minimal polynomial of
the endomorphisms L (1) and R (u).

Proposition 1.1. Let u € Z [G]. Then, the minimal polynomial
of u over Q is actually in Z [X], and is the minimal polynomial
of u over Z as well.

Proof: Follow the standard proof that the minimal polynomial
of an algebraic number is in Z [X]. (Use Gauss’s Lemma.)

Left and right are usually conjugate

Theorem 1.2. Assume that k is a field. Let u € k[G]. Then,
L (u) ~ R (u) as endomorphisms of k [G].

Note: The symbol ~ means “conjugate to”. Thinking of these
endomorphisms as |G| x |G|-matrices, this is just similarity of
matrices.

We will see a proof of this soon.

Note: L (1) ~ R (1) would fail if G was merely a monoid, or if k
was merely a commutative ring (e.g., for k = Q [f] and G = S3).
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1.5.

The antipode
The antipode of the group algebra k [G] is defined to be the

k-linear map
S:k[G] — k[G],
grs gt for each ¢ € G.

Proposition 1.3. The antipode S is an involution (thatis, So S =
id) and a k-algebra anti-automorphism (that is, S (ab) = S (b) -
S (a) for all a, b).

Lemma 1.4. Assume that k is a field. Let u € k[G]. Then,
L(u) ~ L(S(u))in Endy (k[G]).

Proof: Consider the standard basis (g),c; of k [G]. The matrix

representing the endomorphism L (S (u#)) in this basis is the
transpose of the matrix representing L (1). But the Taussky-
Zassenhaus theorem says that over a field, each matrix A is
similar to its transpose AT,

Lemma 1.5. Let u € k [G]|. Then, L (S (1)) ~ R (1) in Endy (k [G]).
Proof: We have R (1) = So L (S(u))oSand S =S~ L.
Proof of Theorem 1.2: Combine Lemma 1.4 with Lemma 1.5.

Remark (Martin Lorenz). Theorem 1.2 generalizes to arbitrary
Frobenius algebras.

Remark. Let u € k[G]. Even if k = C, we don’t always have
u ~ S(u)in k [G] (easy counterexample for G = C3).



https://math.stackexchange.com/a/596842/
https://math.stackexchange.com/a/596842/
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2. The symmetric group algebra

2.1. Symmetric groups
© LetIN:={0,1,2,...}.
© Let k] :={1,2,...,k} for each k € N.
© Now, fix a positive integer 7, and let S,, be the n-th symmetric

group, i.e., the group of permutations of the set [n].

Multiplication in S, is composition:
(aB) (i) = (o B) (i) = a (B (7)) foralla,f € S, and i € [n].

(Warning: SageMath has a different opinion!)

2.2. Symmetric group algebras

e What can we say about the group algebra k [S,] that doesn’t
hold for arbitrary k [G]?

* There is a classical theory (“Young’s seminormal form”) of the
structure of k [S,] when k has characteristic 0. Two modern
treatments are

— Adriano M. Garsia, Omer Egecioglu, Lectures in Algebraic
Combinatorics, Springer 2020.

— Murray Bremner, Sara Madariaga, Luiz A. Peresi, Structure
theory for the group algebra of the symmetric group, ..., Com-
mentationes Mathematicae Universitatis Carolinae, 2016.

The best source I know (dated but readable and careful) is:

— Daniel Edwin Rutherford, Substitutional Analysis, Edinburgh
1948.

e Theorem 2.1 (Artin-Wedderburn-Young). If k is a field of char-
acteristic 0, then

k[S,] = I M, (k) (as k-algebras),
A is a partition of n Irmmg

where f, is the number of standard Young tableaux of shape A.

* Proof: This follows from Young’s seminormal form. For the
shortest readable proof, see Theorem 1.45 in Bremner /Madariaga/Peresi.



https://doi.org/10.1007/978-3-030-58373-6
https://doi.org/10.1007/978-3-030-58373-6
https://eudml.org/doc/287582
https://eudml.org/doc/287582
https://eudml.org/doc/287582
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2.3. Antipodal conjugacy

@ Theorem 2.2. Let k be a field of characteristic 0. Let u € k [S,].
Then, u ~ S (1) in k [S,].

* Proof: Again use Young's seminormal form. Under the isomor-
phism k [S,] = I1 My, (k), the matrices correspond-

A is a partition of n
ing to S (u) are the transposes of the matrices corresponding to
u (this follows from (2.3.40) in Garsia/Egecioglu). Now, use the
Taussky—Zassenhaus theorem again.

o Alternative proof: More generally, let G be an ambivalent finite
group (i.e., a finite group in which each ¢ € G is conjugate to
¢ 1. Letu € k[G]. Then, u ~ S(u) in k[G]. To prove this,
pass to the algebraic closure of k. By Artin-Wedderburn, it
suffices to show that # and S (u) act by similar matrices on each
irreducible G-module V. But this is easy: Since G is ambivalent,
we have V = V* and thus

(1 Jy) ~ (u fy=) ~ (S () [v)" ~ (S () |v)
(by Taussky—Zassenhaus).

e Note. Characteristic 0 is needed!



https://math.stackexchange.com/a/596842/
https://math.stackexchange.com/a/596842/
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3. The Young—Jucys—Murphy elements

e From now on, we shall discuss concrete elements in k [S,,].

@ For any distinct elements iy, 1y, . . ., ik of [n], let YC; i i be the
permutation in S, that cyclically permutes i; — i, — i3 —
-+ - — I — i1 and leaves all other elements of [n] unchanged.

* Note. We have cyc, = id; cyc; ; is a transposition.

@ For each k € [n], we define the k-th Young-Jucys—Murphy
(YJM) element

my = CYCy k + CYCy i +eee CYCr_1k €k [S”] )

e Note. We have m; = 0. Also, S (my) = my for each k € [n].

e Theorem 3.1. The YJM elements my, my, ..., m, commute: We
have m;m; = m;m; for all 7,].

* Proof: Easy computational exercise.
@ Theorem 3.2. The minimal polynomial of m over Q divides

ﬁ (X—i)=(X—k+1)(X—k+2)- - (X+k—1).
i=—k+1

(For k < 3, some factors here are redundant.)

e First proof: Study the action of m; on each Specht module (sim-
ple S,-module). See, e.g., G. E. Murphy, A New Construction of
Young's Seminormal Representation ..., 1981 for details.

* Second proof (Igor Makhlin): Some linear algebra does the trick.
Induct on k using the facts that my; and my., are simultane-
ously diagonalizable over C (since they are symmetric as real
matrices and commute) and satisfy simyy1 = myisg + 1, where
Sk = CYCy ;.- See https://mathoverflow.net/a/83493/ for de-
tails.

® More results and context can be found in §3.3 in Ceccherini-
Silberstein /Scarabotti/Tolli, Representation Theory of the Symmet-
ric Groups, 2010.



https://doi.org/10.1016/0021-8693(81)90205-2
https://doi.org/10.1016/0021-8693(81)90205-2
https://mathoverflow.net/a/83493/
https://doi.org/10.1017/CBO9781139192361
https://doi.org/10.1017/CBO9781139192361
https://doi.org/10.1017/CBO9781139192361
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* Question. Is there a self-contained algebraic/combinatorial proof
of Theorem 3.2 without linear algebra or representation the-
ory? (Asked on MathOverflow: https://mathoverflow.net/
questions/420318/ .)

e Theorem 3.3. For each k € {0,1,...,n}, we can evaluate the
k-th elementary symmetric polynomial e, at the YJM elements
my, My, ..., m, to obtain

ex (my,my, ..., my) = Z c.
TESy;
o has exactly n—k cycles

* Proof: Nice homework exercise (once stripped of the algebra).

* There are formulas for other symmetric polynomials applied to
my, my, ..., m, (see Garsia/Egecioglu).

* Theorem 3.4 (Murphy).

{f(my,my,...,my) | fek[Xy, Xy, ..., X,] symmetric}
= (center of the group algebra k [S,]) .

* Proof: See any of:

— Gadi Moran, The center of Z [Sy+1] ..., 1992.

— G. E. Murphy, The Idempotents of the Symmetric Group ...,
1983, Theorem 1.9 (for the case k = Z, but the general case
easily follows).

(For k = Q, this is Theorem 4.4.5 in CS/S/T as well.)



https://mathoverflow.net/questions/420318/
https://mathoverflow.net/questions/420318/
https://www.ams.org/journals/tran/1992-332-01/S0002-9947-1992-1062873-1/
https://doi.org/10.1016/0021-8693(83)90219-3
https://doi.org/10.1016/0021-8693(83)90219-3
https://doi.org/10.1017/CBO9781139192361
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A. The card shuffling point of view

Permutations are often visualized as shuffled decks of cards:
Imagine a deck of cards labeled 1,2, ...,n.

A permutation ¢ € S, corresponds to the state in which the
cards are arranged o (1),0(2),...,0 (n) from top to bottom.

A random state is an element ) a,0 of R[S,] whose coeffi-
oESy,
cients 4, € R are nonnegative and add up to 1. This is inter-

preted as a distribution on the n! possible states, where 4, is the
probability for the deck to be in state ¢.

We drop the “add up to 1”7 condition, and only require that
Y. a, > 0. The probabilities must then be divided by }_ a,.

oceSy, oES,
For instance, 1+ cyc,,, corresponds to the random state in

which the deck is sorted as 1,2, 3 with probability % and sorted

1
as 2,3,1 with probability 5

An R-vector space endomorphism of R [S,], such as L (u) or
R (u) for some u € R[S,], acts as a (random) shulffle, i.e., a
transformation of random states. This is just the standard way
how Markov chains are constructed from transition matrices.

For example, if k > 1, then the right multiplication R () by
the YJM element m; corresponds to swapping the k-th card with
some card above it chosen uniformly at random.

Transposing such a matrix performs a time reversal of a random
shuffle.
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4. Top-to-random and random-to-top
shuffles

@ Another family of elements of k[S,] are the k-top-to-random

shuffles
Bk = Z o
o€Sy;
o k+1) <o (k+2)<--<o™ 1 (n)

defined for all k € {0,1,...,n}. Thus,

B, 1=B,= Z g,

0ES,
By = cyc; +cyc , Heyc o+ eye,
B, = id.

e As a random shuffle, By (to be precise, R (Bx)) takes the top k
cards and moves them to random positions.
* B; is known as the top-to-random shuffle or the Tsetlin library.

e Theorem 4.1 (Diaconis, Fill, Pitman). We have

Bri1 = (By — k) By foreachk € {0,1,...,n —1}.

e Corollary 4.2. The n + 1 elements By, By, ..., B, commute and
are polynomials in B;.

* Theorem 4.3 (Wallach). The minimal polynomial of B; over Q
is

|
N

n

[] X-i)=X-n]]X-i).

i€{0,1,..n—2n} i

|
o

* These are not hard to prove in this order. See https://mathoverflow.
net/questions/308536 for the details.

* More can be said: in particular, the multiplicities of the eigen-
values 0,1,...,n —2,n of R (B;) over Q are known.

e The antipodes S (By), S (B1),...,S (B,) are known as the random-
to-top shuffles and have the same properties (since S is an al-
gebra anti-automorphism).

¢ Main references:



https://mathoverflow.net/questions/308536
https://mathoverflow.net/questions/308536
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— Nolan R. Wallach, Lie Algebra Cohomology and Holomorphic
Continuation of Generalized Jacquet Integrals, 1988, Appendix.

— Persi Diaconis, James Allen Fill and Jim Pitman, Analysis of
Top to Random Shuffles, 1992.



https://doi.org/10.2969/aspm/01410123
https://doi.org/10.2969/aspm/01410123
https://statweb.stanford.edu/~cgates/PERSI/papers/randomshuff92.pdf
https://statweb.stanford.edu/~cgates/PERSI/papers/randomshuff92.pdf
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5. Random-to-random shuffles
e Here is a further family. For each k € {0,1,...,n}, we let

Ri:= ) noninv, () -0,
0ES,

where noninv,,_x (¢) denotes the number of (n — k)-element sub-
sets of [n] on which ¢ is increasing.

e Theorem 5.1 (Reiner, Saliola, Welker). The n + 1 elements
Ry, Ry, ..., R, commute (but are not polynomials in R; in gen-
eral).

* Theorem 5.2 (Dieker, Saliola, Lafreniere). The minimal poly-
nomial of each R; over Q is a product of X — i’s for distinct
integers i. For example, the one of R; divides

[T xX—19).

i=—n?

The exact factors can be given in terms of certain statistics on
Young diagrams.

e Main references:

— Victor Reiner, Franco Saliola, Volkmar Welker, Spectra of
Symmetrized Shuffling Operators, arXiv:1102.2460.

— A.B. Dieker, E.V. Saliola, Spectral analysis of random-to-random
Markov chains, 2018.

— Nadia Lafreniere, Valeurs propres des opérateurs de mélanges
symétrisés, thesis, 2019.

* Question: Simpler proofs? (Even commutativity takes a dozen
pages!)

* Question (Reiner): How big is the subalgebra of Q [S,] gener-
ated by Ro, Ry, ..., R, ? Does it have dimension O (n?) ? Some
small values:

n 1123456
dim (Q[Ro,Ry,...,R,]) [ 1]2]4]7]15]30



https://arxiv.org/abs/1102.2460
https://arxiv.org/abs/1102.2460
https://doi.org/10.1016/j.aim.2017.10.034
https://doi.org/10.1016/j.aim.2017.10.034
https://arxiv.org/abs/1912.07718
https://arxiv.org/abs/1912.07718
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¢ Remark 5.3. We have

1
Rk:H’S(Bk)‘Bk/

but this isn’t all that helpful, since the By don’t commute with
the S (Bk).
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6. Somewhere-to-below shuffles

e In 2021, Nadia Lafreniere defined the somewhere-to-below shuf-

fles t1,t5,...,t, by setting

b= €y eyCy iy +CYC g pip T CYC L, € KIS

for each ¢ € [n].

© Thus, {1 = By and ¢, = id.

As a card shulffle, t, takes the /-th card from the top and moves
it further down the deck.

Their linear combinations
Alt]+A2t2+"'+Antn With Al,AZ,...,)\n Ek

are called one-sided cycle shuffles and also have a probabilistic
meaning when A, Ay, ..., A, > 0.

Fact: t1,t5,...,t, do not commute for n > 3. For n = 3, we have
[t1, 2] = CyCy, +CYCy 53 —CYCy 3, — CYCy3-

However, they come pretty close to commuting!

e Theorem 6.1 (Lafreniere, G., 2022). There exists a basis of the

k-module k [S,] in which all of the endomorphisms
R(t1),R(t2),..., R (t,) are represented by upper-triangular ma-
trices.
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7. The descent-destroying basis

e This basis is not hard to define, but I haven’t seen it before.
@ Foreachw € S, we let

Desw:={ien—-1] | w(@) >w(i+1)} (the descent set of w).

© Foreachi € [n—1], welets; :=cyc,; .
@ For each I C [n—1], we let

G (I) := (the subgroup of S, generated by the s; fori € I).

@ Foreachw € S, we let

iy = Yy, woek[S,].

ceG(Desw)

In other words, you get a4, by breaking up the word w into
maximal decreasing factors and re-sorting each factor arbitrar-
ily (without mixing different factors).

© The family (ay),.s is a basis of k [S,] (by triangularity).

e For instance, for n = 3, we have

an23] = [123];

Apz) = [132] + [123];

Ap13) = [213] 4 [123];

A3y = [231] + [213];

aplo) = [312] + [132];

Az = [321] + [312] + [231] + [213] + [132] + [123].

@ Theorem 7.1 (Lafreniére, G.). For any w € S, and ¢ € [n], we
have
Aty = Hw, 0w + Z Aw,é,vav

VESy;
v=<w

for some nonnegative integer p,,, some integers A, ., and a
certain partial order < on S,,.

Thus, the endomorphisms R (t1),R (t2),...,R(t,) are upper-

triangular with respect to the basis (4 )¢5 -
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* Examples:

— For n = 4, we have

Ajg312)t2 = Ap312) + Ala21] — A[4231) — A[3241] — A[2143] -

-~

subscripts are <[4312]

— For n = 3, the endomorphism R (#;) is represented by the

matrix
A321) Ap231] 4[132] 4[213] 4[312] 4[123]

61[321] 3 1 1 1

0[231] 1 —1 1
a0132] 1

ap13] 1

a[312] 1

a1123] 1

(empty cells = zero entries). For instance, the last column
means ajp3)f1 = a[123) + ap31)-

* Corollary 7.2. The eigenvalues of these endomorphisms
R(t1),R(t2),...,R(t,) and of all their linear combinations

R (At + Agta + - - - + Apty)
are integers as long as A1, Ay, ..., A, are.
* How many different eigenvalues do they have?

e R(#1) = R(Bq) has only n eigenvalues: 0,1,...,n — 2,1, as we
have seen before. The other R (t/)’s have even fewer.

e But their linear combinations R (A1t + Axty + - - + Ayt,) can
have many more. How many?
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8. Lacunar sets and Fibonacci numbers

© A set S of integers is called lacunar if it contains no two consec-
utive integers (i.e., we have s +1 ¢ S for all s € S).

© Theorem 8.1 (combinatorial interpretation of Fibonacci num-
bers, folklore). The number of lacunar subsets of [n — 1] is the
Fibonacci number f, ..

(Recall: fo = 0, f1 = 1, fn = fn—l +fn—2-)

e Theorem 8.2. When Ay, Ay, ..., A, € C are generic, the number
of distinct eigenvalues of R (A1t1 + Aty + - - - + Ayty) is fut1. In
this case, the endomorphism R (A1t1 + Aty + - - - + Ayty) is di-
agonalizable.

e Note that f,+1 < nl.

We prove this by finding a filtration
P y 2]
0O=hCHCRC---CF, A6 =kl[S]

of the k-module k [S,] such that each R (t;) acts as a scalar
on each of its quotients F;/F;_;. In matrix terms, this means
bringing R (t;) to a block-triangular form, with the diagonal
blocks being “scalar times I” matrices.

It is only natural that the quotients should correspond to the
lacunar subsets of [n — 1].

* Let us approach the construction of this filtration.
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9. The F (I) filtration

@ For each I C [n], we set

sum|/ := Zi

icl
and
I:'={0}ulu{n+1} (“enclosure” of I)
and
I'=m-1\(IUu(I-1)) (“non-shadow” of I)
and

F(I):={q€k[S,] | gsi=qforalliecI'} CkI[S,].

In probabilistic terms, F (I) consists of those random states of
the deck that do not change if we swap the i-th and (i + 1)-st
cards from the top as long as neither i nor i + 1 is in I. To put it
informally: F (I) consists of those random states that are “fully

shuffled” between any two consecutive I-positions.

© For any ¢ € [n], we let m;, be the distance from ¢ to the next-
higher element of I. In other words,

My = (smallest element of I thatis > 6) —(e{0,1,...,n}.

For example, if n = 5 and I = {2,3}, then = {0,2,3,6} and
(myp1, mro, mys, mpa, mrs) = (1, 0,0, 2, 1).
We note that, for any ¢ € [n], we have the equivalence

~

myy=0 <= (el <+ [tecl.

@ Crucial Lemma 9.1. Let I C [n] and ¢ € [n]. Then,

qteempg+ Y, F(]) for each g € F(I).

J<n];
sum [<sum [
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* Proof: Expand qt, by the definition of t,, and break up the result-
ing sum into smaller bunches using the interval decomposition

[6, n] = [f, I — 1] LI [ik, ki1 — 1] LI [ik—i—l/ lkio — 1] L. [ip, n]

(where iy < i1 < --- < i, are the elements of I larger or equal
to £). The [¢,iy — 1] bunch gives the m; (g term; the others live
in appropriate F (])’s.

See the paper for the details.

© Thus, we obtain a filtration of k [S,] if we label the subsets I of
[n] in the order of increasing sum I and add up the respective
F (D)s.

e Unfortunately, this filtration has 2", not f,.; terms.

@ Fortunately, that’s because many of its terms are redundant.
The ones that aren’t correspond precisely to the I’s that are la-
cunar subsets of [n — 1]:

e Lemma 9.2. Let k € IN. Then,

L F= ) F(.
JC[nl; JC[n—1] is lacunar;
sum J<k sum J<k

e Proof: If | C [n] contains n or fails to be lacunar, then F (]) is a
submodule of some F (K) with sum K < sum J. (Exercise!)

* Now, we let Q1,Q,...,Qy,., be the f,1 lacunar subsets of
[n — 1], listed in such an order that

sum (Q1) < sum (Qz) < --- <sum (Qy,,,) -
Then, define a k-submodule
Fi:=F(Q1)+F(Q2)+---+F(Qi) of k [S,]
for each i € [0, f,41] (so that Fy = 0). The resulting filtration
0=RhCHRCHhC---CF,, =kI[S,]
satisfies the properties we need:

e Theorem 9.3. For each i € [f,11] and ¢ € [n], we have F, -
(tr —mgq,¢) C Fi_1 (so that R (t/) acts as multiplication by mg,
on F;/Fi_1).
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* Proof: Lemma 9.1 + Lemma 9.2.

e Lemma 9.4. The quotients F;/F,_; are nontrivial for all i €

[fn+1]-

* Proof: See below.

@ Corollary 9.5. Let k be a field, and let Ay,A,,..., 4, € k.
Then, the eigenvalues of R (A1t; + Azt + - - - + Ayt,) are the lin-
ear combinations

Amyq+ Aogmps + -+ -+ Aymyy, for I C [n — 1] lacunar.

* Theorem 8.2 easily follows by some linear algebra.
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10. Back to the basis

* The descent-destroying basis ()5, is compatible with our
filtration:
@ Theorem 10.1. For each I C [n], the family (a,) is a
basis of the k-module F (I).

weS,; I'CDesw

© If w € S, is any permutation, then the Q-index of w is defined
to be the smallest i € [f,+1] such that Q! C Desw. We call this
Q-index Qind w.

e Proposition 10.2. Let w € S, and i € [f,11]. Then, Qindw = i if
and only if Q! C Desw C [n — 1]\ Q..

@ Theorem 10.3. For each i € [0, f,11], the k-module F; is free

with basis (ay) s . Qind w<i*

@ Corollary 10.4. For each i € [f,+1], the k-module F;/F;_; is free

with basis (@) yes,.. Qind wi-

* This yields Lemma 9.4 and also leads to Theorem 7.1, made
precise as follows:

@ Theorem 10.5 (Lafreniére, G.). For any w € S, and ¢ € [n], we
have
awtf = Huw,lw + Z )\w,é,vav

vESy;
Qind v<Qind w

for some nonnegative integer p, ¢ and some integers Aw b o-

Thus, the endomorphisms R (t1),R (t2),...,R(t,) are upper-
triangular with respect to the basis (4y),.s_as long as the per-
mutations w € S, are ordered by increasing Q-index.

* Note that the numbering Q1,Q>,...,Qy,,, of the lacunar sub-
sets of [n — 1] is not unique; we just picked one. Neverthe-
less, our construction is “essentially” independent of choices,
since Proposition 10.2 describes Qqindw independently of this
numbering (it is the unique lacunar L C [n — 1] satisfying L' C
Desw C [n— 1]\ L). To get rid of the dependence on the num-
bering, we should think of the filtration as being indexed by a
poset.
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11. The multiplicities

e With Corollary 10.4, we know not only the eigenvalues of the
R (t;)’s, but also their multiplicities:

@ Corollary 11.1. Assume that k is a field. Let A1, A,,..., A, € k.
For each i € [f,41], let §; be the number of all permutations
w € S, satistying Qind w = i, and we let

gi = Z )Lngi,g e k.
/=1

Let k¥ € k. Then, the algebraic multiplicity of x as an eigenvalue
of the endomorphism R (A1t1 + Aztr + - - - + Ayt,) equals

Y s

i€ fur1l;
8i=K

e Can we compute the J; explicitly? Yes!

@ Theorem 11.2. Leti € [f,11]. Let §; be the number of all permu-
tations w € S, satisfying Qind w = i. Then:

(a) Write the set Q; in the form Q; = {i1 <i» < --- <i,}, and
set ip = 1 and i,11 = n+1. Let jr = it — i,y for each
k € [p+1]. Then,

p+1

n
\]1’]2’°"’]P+1 g g(]k )

TV
multinomial
coefficient

(b) We have 9; | n!.

* Note. This reminds of the hook-length formula for standard
tableaux, but is much simpler.
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12.

Variants

Most of what we said about the somewhere-to-below shuffles ¢,
can be extended to their antipodes S (/) (the “below-to-somewhere
shuffles”). For instance:

Theorem 12.1. There exists a basis of the k-module k [S,] in
which all of the endomorphisms R (S (t1)),R (S (t2)),..., R (S (tn))
are represented by upper-triangular matrices.

We can also use left instead of right multiplication:

Theorem 12.2. There exists a basis of the k-module k [S,] in
which all of the endomorphisms L (¢1),L (¢2),...,L () are rep-
resented by upper-triangular matrices.

These follow from Theorem 6.1 using dual bases, transpose ma-
trices and Proposition 1.3. No new combinatorics required!

Question. Do we have L (f;) ~ R (t;) in Endy (k [S,]) when k
is not a field?

Remark. The similarity t, ~ S (t;) in k [S,] holds when chark =
0, but not for general fields k. (E.g., it fails for k = F, and n = 4
and / = 1.)
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13. Commutators [updated September
2023]

* The simultaneous trigonalizability of the endomorphisms
R(t1),R(t2),...,R(t,) yields that their pairwise commutators
are nilpotent. Hence, the pairwise commutators [ti, t]} are also
nilpotent.

* Question. How small an exponent works in [, t] =07
© Theorem 13.1. We have [#;, t‘j}jiiH =0forany1<i<j<n.

@ Theorem 13.2. We have [f;, ;] (=D2HY g for any i,j € [n].

* Depending on i and j, one of the exponents is better than the
other.

Conjecture. The better one is optimal! (Checked for all n < 12.)
@ Stronger results hold, replacing powers by products.
@ Several other curious facts hold: For example,
tiviti = (L — 1)t and tivo (i —1) = (i —1) (tiy1 — 1)
and
tuo1 [t tu_1] =0 and [ti, tua] [tj, tua] =0
for all 7 and ;.

o All this is completely elementary but surprisingly hard to prove
(dozens of pages of manipulations with sums and cycles). The
proofs can be found in arXiv:2309.05340v2 aka

https://www.cip.ifi.lmu.de/ grinberg/algebra/s2b2.pdf

* What is “really” going on? No idea...



http://arxiv.org/abs/2309.05340v2
https://www.cip.ifi.lmu.de/~grinberg/algebra/s2b2.pdf
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14. Representation theory [updated
November 2023]

* Where groups go, representations are not far away...

If you know representation theory, you will have asked yourself
two questions:

1. How do the F (I) and the F; decompose into Specht mod-
ules?

2. How do ty,t,...,t, act on a given Specht module?
e We can answer these (in characteristic 0):

* The answer uses symmetric functions, specifically:

— Let sy mean the Schur function for a partition A.

— Let hy, = s, be the m-th complete homogeneous symmet-
ric function for each m > 0.

- Let zyy = S(yu—1,1) = hm—1M1 — hy, for each m > 0.

e For each subset I of [n], we define a symmetric function

k
zr = hj, 1 HZij—z’j_l,
j=2

where 71,1, ..., i are the elements of I U {n + 1} in increasing
order (sothatiy =n+1land [ = {i; <ip < --- <ix_1}).

e For each I C [n] and each partition A of n, we let ¢} be the
coefficient of s, in the Schur expansion of z;.

This is a nonnegative integer (actually a Littlewood—-Richardson
coefficient, since z; is a skew Schur function).

* Theorem. Let v be a partition. Let Ay, Ay, ..., A, € k. Then,
the one-sided cycle shuffle At; + Ayty + - - - + Ayt acts on the
Specht module S¥ as a linear map with eigenvalues

Ampi+Aampo 4+ Aymyy for I C [n — 1] lacunar satisfying cf, + 0,

and the multiplicity of each such eigenvalue is ¢! in the generic
case (i.e., if no two I's produce the same linear combination;
otherwise the multiplicities of colliding eigenvalues should be
added together).
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If all these linear combinations are distinct, then this linear map
is diagonalizable.

* Theorem. As a representation of S, the quotient module F;/F;_
has Frobenius characteristic zq..
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15. Conjectures and questions

e Question. What can be said about the k-subalgebra k [t1, f, .. ., t,]
of k[S,] ? Note:

n 1(2/3[4]5]6| 7 | 8
dim (Q [t to, ..., ta]) [ 11214 19] 23] 66212761

(this sequence is not in the OEIS as of 2023-09-14).
Also, the Lie subalgebra L (t1,t2,...,t,) of Q[S,] has dimensions

n 1213456 7
dim (L (t1,t2, ..., 4)) | 1]2 482059 | 196

(also not in the OEIS).

* Question (“Is there a g-deformation?”). Much of the above
(e.g., Theorems 10.5, 13.1, 13.2) seems to still hold if Q[S,] is
replaced by the Iwahori-Hecke algebra (but ¢y, t5, ..., t, are de-
fined in the exact same way, with w replaced by T,). Even
dim (Q [f1,t2, ..., t4]) appears to be the same for the Hecke alge-
bra, suggesting that all identities come from the Hecke algebra.
Why?
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