Shuffle-compatibility for the exterior peak set

Darij Grinberg (UMN)

12 July 2018
Dartmouth College

slides: http://www.cip.ifi.lmu.de/~grinberg/algebra/
dartmouth18.pdf
paper: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/gzshuf2.pdf project: https://github.com/darijgr/gzshuf

Section 1

Shuffle-compatibility

Reference:

- Ira M. Gessel, Yan Zhuang, Shuffle-compatible permutation statistics, arXiv:1706.00750, Adv. in Math. 332 (2018), pp. 85-141.
- This project spun off from a paper by Ira Gessel and Yan Zhuang (arXiv:1706.00750). We prove a conjecture (shuffle-compatibility of Epk) and study a stronger version of shuffle-compatibility.
- This project spun off from a paper by Ira Gessel and Yan Zhuang (arXiv:1706.00750). We prove a conjecture (shuffle-compatibility of Epk) and study a stronger version of shuffle-compatibility.
- Let $\mathbb{N}=\{0,1,2, \ldots\}$ and $[n]=\{1,2, \ldots, n\}$.
- For $n \in \mathbb{N}$, an n-permutation means an n-tuple of distinct positive integers ("letters").
Example: $(3,1,7)$ is a 3 -permutation, but $(2,1,2)$ is not.
- This project spun off from a paper by Ira Gessel and Yan Zhuang (arXiv:1706.00750). We prove a conjecture (shuffle-compatibility of Epk) and study a stronger version of shuffle-compatibility.
- Let $\mathbb{N}=\{0,1,2, \ldots\}$ and $[n]=\{1,2, \ldots, n\}$.
- For $n \in \mathbb{N}$, an n-permutation means an n-tuple of distinct positive integers ("letters").
Example: $(3,1,7)$ is a 3 -permutation, but $(2,1,2)$ is not.
- A permutation means an n-permutation for some n.
- This project spun off from a paper by Ira Gessel and Yan Zhuang (arXiv:1706.00750). We prove a conjecture (shuffle-compatibility of Epk) and study a stronger version of shuffle-compatibility.
- Let $\mathbb{N}=\{0,1,2, \ldots\}$ and $[n]=\{1,2, \ldots, n\}$.
- For $n \in \mathbb{N}$, an n-permutation means an n-tuple of distinct positive integers ("letters").
Example: $(3,1,7)$ is a 3 -permutation, but $(2,1,2)$ is not.
- A permutation means an n-permutation for some n. If π is an n-permutation, then $|\pi|:=n$.
- This project spun off from a paper by Ira Gessel and Yan Zhuang (arXiv:1706.00750). We prove a conjecture (shuffle-compatibility of Epk) and study a stronger version of shuffle-compatibility.
- Let $\mathbb{N}=\{0,1,2, \ldots\}$ and $[n]=\{1,2, \ldots, n\}$.
- For $n \in \mathbb{N}$, an n-permutation means an n-tuple of distinct positive integers ("letters").
Example: $(3,1,7)$ is a 3 -permutation, but $(2,1,2)$ is not.
- A permutation means an n-permutation for some n. If π is an n-permutation, then $|\pi|:=n$.
We say that π is nonempty if $n>0$.
- This project spun off from a paper by Ira Gessel and Yan Zhuang (arXiv:1706.00750). We prove a conjecture (shuffle-compatibility of Epk) and study a stronger version of shuffle-compatibility.
- Let $\mathbb{N}=\{0,1,2, \ldots\}$ and $[n]=\{1,2, \ldots, n\}$.
- For $n \in \mathbb{N}$, an n-permutation means an n-tuple of distinct positive integers ("letters").
Example: $(3,1,7)$ is a 3 -permutation, but $(2,1,2)$ is not.
- A permutation means an n-permutation for some n. If π is an n-permutation, then $|\pi|:=n$.
We say that π is nonempty if $n>0$.
- If π is an n-permutation and $i \in\{1,2, \ldots, n\}$, then π_{i} denotes the i-th entry of π.
- Two n-permutations α and β (with the same n) are order-equivalent if all $i, j \in\{1,2, \ldots, n\}$ satisfy $\left(\alpha_{i}<\alpha_{j}\right) \Longleftrightarrow\left(\beta_{i}<\beta_{j}\right)$.
- Order-equivalence is an equivalence relation on permutations. Its equivalence classes are called order-equivalence classes.
- Two n-permutations α and β (with the same n) are order-equivalent if all $i, j \in\{1,2, \ldots, n\}$ satisfy $\left(\alpha_{i}<\alpha_{j}\right) \Longleftrightarrow\left(\beta_{i}<\beta_{j}\right)$.
- Order-equivalence is an equivalence relation on permutations. Its equivalence classes are called order-equivalence classes.
- A permutation statistic (henceforth just statistic) is a map st from the set of all permutations (to anywhere) that is constant on each order-equivalence class. Intuition: A statistic computes some "fingerprint" of a permutation that only depends on the relative order of its letters.
- Two n-permutations α and β (with the same n) are order-equivalent if all $i, j \in\{1,2, \ldots, n\}$ satisfy $\left(\alpha_{i}<\alpha_{j}\right) \Longleftrightarrow\left(\beta_{i}<\beta_{j}\right)$.
- Order-equivalence is an equivalence relation on permutations. Its equivalence classes are called order-equivalence classes.
- A permutation statistic (henceforth just statistic) is a map st from the set of all permutations (to anywhere) that is constant on each order-equivalence class. Intuition: A statistic computes some "fingerprint" of a permutation that only depends on the relative order of its letters.
Note. A statistic need not be integer-valued! It can be set-valued, or list-valued for example.
- If π is an n-permutation, then a descent of π means an $i \in\{1,2, \ldots, n-1\}$ such that $\pi_{i}>\pi_{i+1}$.
- If π is an n-permutation, then a descent of π means an $i \in\{1,2, \ldots, n-1\}$ such that $\pi_{i}>\pi_{i+1}$.
- The descent set Des π of a permutation π is the set of all descents of π.
Thus, Des is a statistic.
Example: $\operatorname{Des}(3,1,5,2,4)=\{1,3\}$.
- If π is an n-permutation, then a descent of π means an $i \in\{1,2, \ldots, n-1\}$ such that $\pi_{i}>\pi_{i+1}$.
- The descent set Des π of a permutation π is the set of all descents of π. Thus, Des is a statistic. Example: $\operatorname{Des}(3,1,5,2,4)=\{1,3\}$.
- The descent number des π of a permutation π is the number of all descents of π : that is, $\operatorname{des} \pi=|\operatorname{Des} \pi|$.
Thus, des is a statistic.
Example: $\operatorname{des}(3,1,5,2,4)=2$.
- If π is an n-permutation, then a descent of π means an $i \in\{1,2, \ldots, n-1\}$ such that $\pi_{i}>\pi_{i+1}$.
- The descent set $\operatorname{Des} \pi$ of a permutation π is the set of all descents of π.
Thus, Des is a statistic.
Example: $\operatorname{Des}(3,1,5,2,4)=\{1,3\}$.
- The descent number des π of a permutation π is the number of all descents of π : that is, des $\pi=|\operatorname{Des} \pi|$.
Thus, des is a statistic.
Example: $\operatorname{des}(3,1,5,2,4)=2$.
- The major index $\operatorname{maj} \pi$ of a permutation π is the sum of all descents of π.
Thus, maj is a statistic.
Example: $\operatorname{maj}(3,1,5,2,4)=1+3=4$.
- If π is an n-permutation, then a descent of π means an $i \in\{1,2, \ldots, n-1\}$ such that $\pi_{i}>\pi_{i+1}$.
- The descent set Des π of a permutation π is the set of all descents of π.
Thus, Des is a statistic.
Example: $\operatorname{Des}(3,1,5,2,4)=\{1,3\}$.
- The descent number des π of a permutation π is the number of all descents of π : that is, des $\pi=|\operatorname{Des} \pi|$.
Thus, des is a statistic.
Example: $\operatorname{des}(3,1,5,2,4)=2$.
- The major index $\operatorname{maj} \pi$ of a permutation π is the sum of all descents of π.
Thus, maj is a statistic.
Example: $\operatorname{maj}(3,1,5,2,4)=1+3=4$.
- The Coxeter length inv (i.e., number of inversions) and the set of inversions are statistics, too.

Examples of permutation statistics, 2: peaks

- If π is an n-permutation, then a peak of π means an $i \in\{2,3, \ldots, n-1\}$ such that $\pi_{i-1}<\pi_{i}>\pi_{i+1}$.
(Thus, peaks can only exist if $n \geq 3$.
The name refers to the plot of π, where peaks look like this:
/ \backslash.)
- If π is an n-permutation, then a peak of π means an
$i \in\{2,3, \ldots, n-1\}$ such that $\pi_{i-1}<\pi_{i}>\pi_{i+1}$.
(Thus, peaks can only exist if $n \geq 3$.
The name refers to the plot of π, where peaks look like this:
/ \backslash.)
- The peak set $\operatorname{Pk} \pi$ of a permutation π is the set of all peaks of π.
Thus, Pk is a statistic.

Examples:

- $\operatorname{Pk}(3,1,5,2,4)=\{3\}$.
- $\operatorname{Pk}(1,3,2,5,4,6)=\{2,4\}$.
- $\operatorname{Pk}(3,2)=\{ \}$.
- If π is an n-permutation, then a peak of π means an
$i \in\{2,3, \ldots, n-1\}$ such that $\pi_{i-1}<\pi_{i}>\pi_{i+1}$.
(Thus, peaks can only exist if $n \geq 3$.
The name refers to the plot of π, where peaks look like this:
/ \backslash.)
- The peak set $\operatorname{Pk} \pi$ of a permutation π is the set of all peaks of π.
Thus, Pk is a statistic.

Examples:

- $\operatorname{Pk}(3,1,5,2,4)=\{3\}$.
- $\operatorname{Pk}(1,3,2,5,4,6)=\{2,4\}$.
- $\operatorname{Pk}(3,2)=\{ \}$.
- The peak number $\mathrm{pk} \pi$ of a permutation π is the number of all peaks of π : that is, $\mathrm{pk} \pi=|\mathrm{Pk} \pi|$.
Thus, pk is a statistic.
Example: $\operatorname{pk}(3,1,5,2,4)=1$.
- If π is an n-permutation, then a left peak of π means an $i \in\{1,2, \ldots, n-1\}$ such that $\pi_{i-1}<\pi_{i}>\pi_{i+1}$, where we set $\pi_{0}=0$.
(Thus, left peaks are the same as peaks, except that 1 counts as a left peak if $\pi_{1}>\pi_{2}$.)
- The left peak set $\operatorname{Lpk} \pi$ of a permutation π is the set of all left peaks of π.
Thus, Lpk is a statistic.

Examples:

- $\operatorname{Lpk}(3,1,5,2,4)=\{1,3\}$.
- $\operatorname{Lpk}(1,3,2,5,4,6)=\{2,4\}$.
- $\operatorname{Lpk}(3,2)=\{1\}$.
- The left peak number lpk π of a permutation π is the number of all left peaks of π : that is, $\operatorname{lpk} \pi=|\operatorname{Lpk} \pi|$.
Thus, Ipk is a statistic.
Example: $\operatorname{lpk}(3,1,5,2,4)=2$.
- If π is an n-permutation, then a right peak of π means an $i \in\{2,3, \ldots, n\}$ such that $\pi_{i-1}<\pi_{i}>\pi_{i+1}$, where we set $\pi_{n+1}=0$.
(Thus, right peaks are the same as peaks, except that n counts as a right peak if $\pi_{n-1}<\pi_{n}$.)
- The right peak set $\mathrm{Rpk} \pi$ of a permutation π is the set of all right peaks of π.
Thus, Rpk is a statistic.

Examples:

- $\operatorname{Rpk}(3,1,5,2,4)=\{3,5\}$.
- $\operatorname{Rpk}(1,3,2,5,4,6)=\{2,4,6\}$.
- $\operatorname{Rpk}(3,2)=\{ \}$.
- The right peak number $\operatorname{rpk} \pi$ of a permutation π is the number of all right peaks of π : that is, $\mathrm{rpk} \pi=|\operatorname{Rpk} \pi|$. Thus, rpk is a statistic.
Example: $\operatorname{rpk}(3,1,5,2,4)=2$.
- If π is an n-permutation, then an exterior peak of π means an $i \in\{1,2, \ldots, n\}$ such that $\pi_{i-1}<\pi_{i}>\pi_{i+1}$, where we set $\pi_{0}=0$ and $\pi_{n+1}=0$.
(Thus, exterior peaks are the same as peaks, except that 1 counts if $\pi_{1}>\pi_{2}$, and n counts if $\pi_{n-1}<\pi_{n}$.)
- The exterior peak set Epk π of a permutation π is the set of all exterior peaks of π.
Thus, Epk is a statistic.

Examples:

- $\operatorname{Epk}(3,1,5,2,4)=\{1,3,5\}$.
- $\operatorname{Epk}(1,3,2,5,4,6)=\{2,4,6\}$.
- $\operatorname{Epk}(3,2)=\{1\}$.
- Thus, $\operatorname{Epk} \pi=\operatorname{Lpk} \pi \cup \operatorname{Rpk} \pi$ if $n \geq 2$.
- The exterior peak number epk π of a permutation π is the number of all exterior peaks of π : that is, epk $\pi=|\operatorname{Epk} \pi|$. Thus, epk is a statistic.
Example: epk (3, 1, 5, 2, 4) $=3$.

Shuffles of permutations

- Let π and σ be two permutations.
- We say that π and σ are disjoint if they have no letter in common.
- Let π and σ be two permutations.
- We say that π and σ are disjoint if they have no letter in common.
- Assume that π and σ are disjoint. Set $m=|\pi|$ and $n=|\sigma|$. An $(m+n)$-permutation τ is called a shuffle of π and σ if both π and σ appear as subsequences of τ. (And thus, no other letters can appear in τ.)
- We let $S(\pi, \sigma)$ be the set of all shuffles of π and σ.
- Example:

$$
\begin{aligned}
S((4,1),(2,5))=\{ & (4,1,2,5),(4,2,1,5),(4,2,5,1) \\
& (2,4,1,5),(2,4,5,1),(2,5,4,1)\} .
\end{aligned}
$$

- Let π and σ be two permutations.
- We say that π and σ are disjoint if they have no letter in common.
- Assume that π and σ are disjoint. Set $m=|\pi|$ and $n=|\sigma|$. An $(m+n)$-permutation τ is called a shuffle of π and σ if both π and σ appear as subsequences of τ. (And thus, no other letters can appear in τ.)
- We let $S(\pi, \sigma)$ be the set of all shuffles of π and σ.
- Example:

$$
\begin{aligned}
S((4,1),(2,5))=\{ & (4,1,2,5),(4,2,1,5),(4,2,5,1) \\
& (2,4,1,5),(2,4,5,1),(2,5,4,1)\} .
\end{aligned}
$$

- Observe that π and σ have $\binom{m+n}{m}$ shuffles, in bijection with m-element subsets of $\{1,2, \ldots, m+n\}$.
- A statistic st is said to be shuffle-compatible if for any two disjoint permutations π and σ, the multiset

$$
\{\text { st } \tau \mid \tau \in S(\pi, \sigma)\}_{\text {multiset }}
$$

depends only on st π, st $\sigma,|\pi|$ and $|\sigma|$.

- A statistic st is said to be shuffle-compatible if for any two disjoint permutations π and σ, the multiset

$$
\{\text { st } \tau \mid \tau \in S(\pi, \sigma)\}_{\text {multiset }}
$$

depends only on st π, st $\sigma,|\pi|$ and $|\sigma|$.

- In other words, st is shuffle-compatible if and only the distribution of st on the set $S(\pi, \sigma)$ stays unchaged if π and σ are replaced by two other disjoint permutations of the same size and same st-values.
- A statistic st is said to be shuffle-compatible if for any two disjoint permutations π and σ, the multiset

$$
\{\text { st } \tau \mid \tau \in S(\pi, \sigma)\}_{\text {multiset }}
$$

depends only on st π, st $\sigma,|\pi|$ and $|\sigma|$.

- In other words, st is shuffle-compatible if and only the distribution of st on the set $S(\pi, \sigma)$ stays unchaged if π and σ are replaced by two other disjoint permutations of the same size and same st-values.
In particular, it has to stay unchanged if π and σ are replaced by two permutations order-equivalent to them: e.g., st must have the same distribution on the three sets

$$
S((4,1),(2,5)), \quad S((2,1),(3,5)), \quad S((9,8),(2,3))
$$

Shuffle-compatible statistics: results of Gessel and Zhuang

- Gessel and Zhuang, in arXiv:1706.00750, prove that various important statistics are shuffle-compatible (but some are not).
- Gessel and Zhuang, in arXiv:1706.00750, prove that various important statistics are shuffle-compatible (but some are not).
- Statistics they show to be shuffle-compatible: Des, des, maj, Pk, Lpk, Rpk, lpk, rpk, epk, and various others.
- Gessel and Zhuang, in arXiv:1706.00750, prove that various important statistics are shuffle-compatible (but some are not).
- Statistics they show to be shuffle-compatible: Des, des, maj, Pk, Lpk, Rpk, lpk, rpk, epk, and various others.
- Statistics that are not shuffle-compatible: inv, des + maj, maj$_{2}$ (sending π to the sum of the squares of its descents), (Pk, des) (sending π to ($\mathrm{Pk} \pi$, $\operatorname{des} \pi$)), and others.

Shuffle-compatible statistics: results of Gessel and Zhuang

- Gessel and Zhuang, in arXiv:1706.00750, prove that various important statistics are shuffle-compatible (but some are not).
- Statistics they show to be shuffle-compatible: Des, des, maj, Pk, Lpk, Rpk, lpk, rpk, epk, and various others.
- Statistics that are not shuffle-compatible: inv, des + maj, maj_{2} (sending π to the sum of the squares of its descents), (Pk, des) (sending π to ($\mathrm{Pk} \pi$, $\operatorname{des} \pi$)), and others.
- Their proofs use a mixture of enumerative combinatorics (including some known formulas of MacMahon, Stanley, ...), quasisymmetric functions, Hopf algebra theory, P-partitions (and variants by Stembridge and Petersen), Eulerian polynomials (based on earlier work by Zhuang, and even earlier work by Foata and Strehl).
- Gessel and Zhuang, in arXiv:1706.00750, prove that various important statistics are shuffle-compatible (but some are not).
- Statistics they show to be shuffle-compatible: Des, des, maj, Pk, Lpk, Rpk, lpk, rpk, epk, and various others.
- Statistics that are not shuffle-compatible: inv, des + maj, maj_{2} (sending π to the sum of the squares of its descents), (Pk, des) (sending π to ($\mathrm{Pk} \pi$, $\operatorname{des} \pi$)), and others.
- Their proofs use a mixture of enumerative combinatorics (including some known formulas of MacMahon, Stanley, ...), quasisymmetric functions, Hopf algebra theory, P-partitions (and variants by Stembridge and Petersen), Eulerian polynomials (based on earlier work by Zhuang, and even earlier work by Foata and Strehl).
- Theorem (G.). The statistic Epk is shuffle-compatible (as conjectured in Gessel/Zhuang).

LR-shuffle-compatibility

- We further introduce a finer version of shuffle-compatibility: "LR-shuffle-compatibility".
- Given two disjoint nonempty permutations π and σ,
- a left shuffle of π and σ is a shuffle of π and σ that starts with a letter of π;
- a right shuffle of π and σ is a shuffle of π and σ that starts with a letter of σ.

LR-shuffle-compatibility

- We further introduce a finer version of shuffle-compatibility: "LR-shuffle-compatibility".
- Given two disjoint nonempty permutations π and σ,
- a left shuffle of π and σ is a shuffle of π and σ that starts with π_{1};
- a right shuffle of π and σ is a shuffle of π and σ that starts with σ_{1}.
- We further introduce a finer version of shuffle-compatibility: "LR-shuffle-compatibility".
- Given two disjoint nonempty permutations π and σ,
- a left shuffle of π and σ is a shuffle of π and σ that starts with π_{1};
- a right shuffle of π and σ is a shuffle of π and σ that starts with σ_{1}.
- We let $S_{\prec}(\pi, \sigma)$ be the set of all left shuffles of π and σ. We let $S_{\succ}(\pi, \sigma)$ be the set of all right shuffles of π and σ.
- We further introduce a finer version of shuffle-compatibility: "LR-shuffle-compatibility".
- Given two disjoint nonempty permutations π and σ,
- a left shuffle of π and σ is a shuffle of π and σ that starts with π_{1};
- a right shuffle of π and σ is a shuffle of π and σ that starts with σ_{1}.
- We let $S_{\prec}(\pi, \sigma)$ be the set of all left shuffles of π and σ. We let $S_{\succ}(\pi, \sigma)$ be the set of all right shuffles of π and σ.
- A statistic st is said to be $L R$-shuffle-compatible if for any two disjoint nonempty permutations π and σ, the multisets $\left\{\text { st } \tau \mid \tau \in S_{\prec}(\pi, \sigma)\right\}_{\text {multiset }} \quad$ and $\quad\left\{\text { st } \tau \mid \tau \in S_{\succ}(\pi, \sigma)\right\}_{\text {multiset }}$ depend only on st π, st $\sigma,|\pi|,|\sigma|$ and the truth value of $\pi_{1}>\sigma_{1}$.
- We further introduce a finer version of shuffle-compatibility: "LR-shuffle-compatibility".
- Given two disjoint nonempty permutations π and σ,
- a left shuffle of π and σ is a shuffle of π and σ that starts with π_{1};
- a right shuffle of π and σ is a shuffle of π and σ that starts with σ_{1}.
- We let $S_{\prec}(\pi, \sigma)$ be the set of all left shuffles of π and σ. We let $S_{\succ}(\pi, \sigma)$ be the set of all right shuffles of π and σ.
- A statistic st is said to be $L R$-shuffle-compatible if for any two disjoint nonempty permutations π and σ, the multisets $\left\{\text { st } \tau \mid \tau \in S_{\prec}(\pi, \sigma)\right\}_{\text {multiset }} \quad$ and $\quad\left\{\text { st } \tau \mid \tau \in S_{\succ}(\pi, \sigma)\right\}_{\text {multiset }}$ depend only on st π, st $\sigma,|\pi|,|\sigma|$ and the truth value of $\pi_{1}>\sigma_{1}$.
- Theorem (G.). Des, des, Lpk and Epk are LR-shuffle-compatible.
- We further introduce a finer version of shuffle-compatibility: "LR-shuffle-compatibility".
- Given two disjoint nonempty permutations π and σ,
- a left shuffle of π and σ is a shuffle of π and σ that starts with π_{1};
- a right shuffle of π and σ is a shuffle of π and σ that starts with σ_{1}.
- We let $S_{\prec}(\pi, \sigma)$ be the set of all left shuffles of π and σ. We let $S_{\succ}(\pi, \sigma)$ be the set of all right shuffles of π and σ.
- A statistic st is said to be $L R$-shuffle-compatible if for any two disjoint nonempty permutations π and σ, the multisets $\left\{\text { st } \tau \mid \tau \in S_{\prec}(\pi, \sigma)\right\}_{\text {multiset }} \quad$ and $\quad\left\{\text { st } \tau \mid \tau \in S_{\succ}(\pi, \sigma)\right\}_{\text {multiset }}$ depend only on st π, st $\sigma,|\pi|,|\sigma|$ and the truth value of $\pi_{1}>\sigma_{1}$.
- Theorem (G.). Des, des, Lpk and Epk are LR-shuffle-compatible. (But not maj or Rpk or Pk.)

LR-shuffle-compatibility: alternative definition

- The "LR" in "LR-shuffle-compatibility" stands for "left and right".

LR-shuffle-compatibility: alternative definition

- The "LR" in "LR-shuffle-compatibility" stands for "left and right". Indeed:
- A statistic st is said to be left-shuffle-compatible if for any two disjoint nonempty permutations π and σ such that

$$
\pi_{1}>\sigma_{1}
$$

the multiset

$$
\left\{\text { st } \tau \mid \tau \in S_{\prec}(\pi, \sigma)\right\}_{\text {multiset }}
$$

depends only on st π, st $\sigma,|\pi|$ and $|\sigma|$.

LR-shuffle-compatibility: alternative definition

- The "LR" in "LR-shuffle-compatibility" stands for "left and right". Indeed:
- A statistic st is said to be right-shuffle-compatible if for any two disjoint nonempty permutations π and σ such that

$$
\pi_{1}>\sigma_{1}
$$

the multiset

$$
\left\{\text { st } \tau \mid \tau \in S_{\succ}(\pi, \sigma)\right\}_{\text {multiset }}
$$

depends only on st π, st $\sigma,|\pi|$ and $|\sigma|$.

LR-shuffle-compatibility: alternative definition

- The "LR" in "LR-shuffle-compatibility" stands for "left and right". Indeed:
- A statistic st is said to be right-shuffle-compatible if for any two disjoint nonempty permutations π and σ such that

$$
\pi_{1}>\sigma_{1}
$$

the multiset

$$
\left\{\text { st } \tau \mid \tau \in S_{\succ}(\pi, \sigma)\right\}_{\text {multiset }}
$$

depends only on st π, st $\sigma,|\pi|$ and $|\sigma|$.

- Proposition. A permutation statistic st is

LR-shuffle-compatible if and only if it is both left-shuffle-compatible and right-shuffle-compatible.

Section 2

Methods of proof

References:

- Darij Grinberg, Shuffle-compatible permutation statistics II: the exterior peak set.
- John R. Stembridge, Enriched P-partitions, Trans. Amer. Math. Soc. 349 (1997), no. 2, pp. 763-788.
- T. Kyle Petersen, Enriched P-partitions and peak algebras, Adv. in Math. 209 (2007), pp. 561-610.
- Now to the general ideas of our proof that Epk is shuffle-compatible.
- Strategy: imitate the classical proofs for Des, Pk and Lpk, using (yet) another version of enriched P-partitions.
- Now to the general ideas of our proof that Epk is shuffle-compatible.
- Strategy: imitate the classical proofs for Des, Pk and Lpk, using (yet) another version of enriched P-partitions.
- More precisely, we define \mathcal{Z}-enriched P-partitions: a generalization of
- P-partitions (Stanley 1972);
- enriched P-partitions (Stembridge 1997);
- left enriched P-partitions (Petersen 2007), which are used in the proofs for Des, Pk and Lpk, respectively.
- Now to the general ideas of our proof that Epk is shuffle-compatible.
- Strategy: imitate the classical proofs for Des, Pk and Lpk, using (yet) another version of enriched P-partitions.
- More precisely, we define \mathcal{Z}-enriched P-partitions: a generalization of
- P-partitions (Stanley 1972);
- enriched P-partitions (Stembridge 1997);
- left enriched P-partitions (Petersen 2007), which are used in the proofs for Des, Pk and Lpk, respectively.
- The idea is simple, but the proof takes work. Let me just show the highlights without using P-partition language.

The main identity

- Let \mathcal{N} be the totally ordered set $\{0<1<2<\cdots<\infty\}$.
- Let \mathcal{N} be the totally ordered set $\{0<1<2<\cdots<\infty\}$.
- Let $\operatorname{Pow} \mathcal{N}$ be the ring of power series over \mathbb{Q} in the indeterminates $x_{0}, x_{1}, x_{2}, \ldots, x_{\infty}$.
- If $n \in \mathbb{N}$ and if Λ is any subset of $[n]$, then we define a power series $K_{n, \Lambda}^{\mathcal{Z}} \in \operatorname{Pow} \mathcal{N}$ by

$$
K_{n, \Lambda}^{\mathcal{Z}}=\sum_{g} 2^{k(g)} x_{g_{1}} x_{g_{2}} \cdots x_{g_{n}}, \quad \text { where }
$$

- the sum is over all weakly increasing n-tuples

$$
g=\left(0 \leq g_{1} \leq g_{2} \leq \cdots \leq g_{n} \leq \infty\right) \text { of elements of } \mathcal{N}
$$ such that no $i \in \Lambda$ satisfies $g_{i-1}=g_{i}=g_{i+1}$ (where we set $g_{0}=0$ and $g_{n+1}=\infty$);

- we let $k(g)$ be the number of distinct entries of this n-tuple g, not counting those that equal 0 or ∞.
- If $n \in \mathbb{N}$ and if Λ is any subset of $[n]$, then we define a power series $K_{n, \Lambda}^{\mathcal{Z}} \in \operatorname{Pow} \mathcal{N}$ by

$$
K_{n, \Lambda}^{\mathcal{Z}}=\sum_{g} 2^{k(g)} x_{g_{1}} x_{g_{2}} \cdots x_{g_{n}}, \quad \text { where }
$$

- the sum is over all weakly increasing n-tuples

$$
g=\left(0 \leq g_{1} \leq g_{2} \leq \cdots \leq g_{n} \leq \infty\right) \text { of elements of } \mathcal{N}
$$ such that no $i \in \Lambda$ satisfies $g_{i-1}=g_{i}=g_{i+1}$ (where we set $g_{0}=0$ and $g_{n+1}=\infty$);

- we let $k(g)$ be the number of distinct entries of this n-tuple g, not counting those that equal 0 or ∞.
- Product formula. If π is an n-permutation and σ is an m-permutation, then

$$
K_{n, \mathrm{Epk} \pi}^{\mathcal{Z}} \cdot K_{m, \mathrm{Epk} \sigma}^{\mathcal{Z}}=\sum_{\tau \in S(\pi, \sigma)} K_{n+m, \mathrm{Epk} \tau}^{\mathcal{Z}} .
$$

- If $n \in \mathbb{N}$ and if Λ is any subset of $[n]$, then we define a power series $K_{n, \Lambda}^{\mathcal{Z}} \in \operatorname{Pow} \mathcal{N}$ by

$$
K_{n, \Lambda}^{\mathcal{Z}}=\sum_{g} 2^{k(g)} x_{g_{1}} x_{g_{2}} \cdots x_{g_{n}}, \quad \text { where }
$$

- the sum is over all weakly increasing n-tuples

$$
g=\left(0 \leq g_{1} \leq g_{2} \leq \cdots \leq g_{n} \leq \infty\right) \text { of elements of } \mathcal{N}
$$ such that no $i \in \Lambda$ satisfies $g_{i-1}=g_{i}=g_{i+1}$ (where we set $g_{0}=0$ and $g_{n+1}=\infty$);

- we let $k(g)$ be the number of distinct entries of this n-tuple g, not counting those that equal 0 or ∞.
- Product formula. If π is an n-permutation and σ is an m-permutation, then

$$
K_{n, \mathrm{Epk} \pi}^{\mathcal{Z}} \cdot K_{m, \mathrm{Epk} \sigma}^{\mathcal{Z}}=\sum_{\tau \in S(\pi, \sigma)} K_{n+m, \mathrm{Epk} \tau}^{\mathcal{Z}}
$$

- Proof idea: $K_{n, \mathrm{Epk} \pi}^{\mathcal{Z}}$ is the generating function of \mathcal{Z}-enriched P-partitions for a certain totally ordered set P.
- A set S of integers is called lacunar if it contains no two consecutive integers. (Some call this "sparse".)
- Well-known fact: The number of lacunar subsets of $[n]$ is the Fibonacci number f_{n+1}.

Lacunar subsets and linear independence

- A set S of integers is called lacunar if it contains no two consecutive integers. (Some call this "sparse".)
- Well-known fact: The number of lacunar subsets of $[n]$ is the Fibonacci number f_{n+1}.
- Lemma. For each nonempty permutation π, the set $\mathrm{Epk} \pi$ is a nonempty lacunar subset of [n]. (And conversely - although we don't need it -, any such subset has the form Epk π for some π.)
- A set S of integers is called lacunar if it contains no two consecutive integers. (Some call this "sparse".)
- Well-known fact: The number of lacunar subsets of $[n]$ is the Fibonacci number f_{n+1}.
- Lemma. For each nonempty permutation π, the set $\mathrm{Epk} \pi$ is a nonempty lacunar subset of [n].
(And conversely - although we don't need it -, any such subset has the form Epk π for some π.)
- Lemma. The family

$$
\left(K_{n, \Lambda}^{\mathcal{Z}}\right)_{n \in \mathbb{N} ; \Lambda \subseteq[n] \text { is lacunar and nonempty }}
$$

is \mathbb{Q}-linearly independent.

- These lemmas, and the above product formula, prove the shuffle-compatibility of Epk.

LR-shuffle-compatibility redux

- Now to the proofs of LR-shuffle-compatibility.
- Now to the proofs of LR-shuffle-compatibility.
- Recall again the definitions:
- We let $S_{\prec}(\pi, \sigma)$ be the set of all left shuffles of π and σ (= the shuffles that start with π_{1}).
We let $S_{\succ}(\pi, \sigma)$ be the set of all right shuffles of π and $\sigma(=$ the shuffles that start with σ_{1}).
- Now to the proofs of LR-shuffle-compatibility.
- Recall again the definitions:
- We let $S_{\prec}(\pi, \sigma)$ be the set of all left shuffles of π and σ (= the shuffles that start with π_{1}).
We let $S_{\succ}(\pi, \sigma)$ be the set of all right shuffles of π and $\sigma(=$ the shuffles that start with σ_{1}).
- A statistic st is said to be $L R$-shuffle-compatible if for any two disjoint nonempty permutations π and σ, the multisets
$\left\{\text { st } \tau \mid \tau \in S_{\prec}(\pi, \sigma)\right\}_{\text {multiset }} \quad$ and $\quad\left\{\text { st } \tau \mid \tau \in S_{\succ}(\pi, \sigma)\right\}_{\text {multiset }}$
depend only on st π, st $\sigma,|\pi|,|\sigma|$ and the truth value of $\pi_{1}>\sigma_{1}$.
- Now to the proofs of LR-shuffle-compatibility.
- Recall again the definitions:
- We let $S_{\prec}(\pi, \sigma)$ be the set of all left shuffles of π and σ (= the shuffles that start with π_{1}).
We let $S_{\succ}(\pi, \sigma)$ be the set of all right shuffles of π and $\sigma(=$ the shuffles that start with σ_{1}).
- A statistic st is said to be $L R$-shuffle-compatible if for any two disjoint nonempty permutations π and σ, the multisets
$\left\{\text { st } \tau \mid \tau \in S_{\prec}(\pi, \sigma)\right\}_{\text {multiset }} \quad$ and $\quad\left\{\text { st } \tau \mid \tau \in S_{\succ}(\pi, \sigma)\right\}_{\text {multiset }}$
depend only on st π, st $\sigma,|\pi|,|\sigma|$ and the truth value of $\pi_{1}>\sigma_{1}$.
- We claim that Des, des, Lpk and Epk are LR-shuffle-compatible.

Head-graft-compatibility

- Crucial observation:
(LR-shuffle-compatible)
\Longleftrightarrow (shuffle-compatible) \wedge (head-graft-compatible) .

Head-graft-compatibility

- Crucial observation:
(LR-shuffle-compatible)
\Longleftrightarrow (shuffle-compatible) $\wedge \underbrace{(\text { head-graft-compatible) }}_{\text {easy-to-check property }}$.
- Crucial observation:

$$
\begin{aligned}
& \text { (LR-shuffle-compatible) } \\
\Longleftrightarrow & \text { (shuffle-compatible) } \wedge \underbrace{(\text { head-graft-compatible) }}_{\text {easy-to-check property }} .
\end{aligned}
$$

- A permutation statistic st is said to be head-graft-compatible if for any nonempty permutation π and any letter a that does not appear in π, the element st $(a: \pi)$ depends only on st (π), $|\pi|$ and on the truth value of $a>\pi_{1}$.
Here, $a: \pi$ is the permutation obtained from π by appending a at the front:

$$
\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right) \quad \Longrightarrow \quad a: \pi=\left(a, \pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)
$$

- Crucial observation:

$$
\begin{aligned}
& (\text { LR-shuffle-compatible }) \\
\Longleftrightarrow & \text { (shuffle-compatible) } \wedge \underbrace{(\text { head-graft-compatible) }}_{\text {easy-to-check property }} .
\end{aligned}
$$

- A permutation statistic st is said to be head-graft-compatible if for any nonempty permutation π and any letter a that does not appear in π, the element st $(a: \pi)$ depends only on st (π), $|\pi|$ and on the truth value of $a>\pi_{1}$.
Here, $a: \pi$ is the permutation obtained from π by appending a at the front:

$$
\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right) \quad \Longrightarrow \quad a: \pi=\left(a, \pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)
$$

- For example, Epk is head-graft-compatible, since

$$
\operatorname{Epk}(a: \pi)= \begin{cases}\operatorname{Epk} \pi+1, & \text { if not } a>\pi_{1} ; \\ ((\operatorname{Epk} \pi+1) \backslash\{2\}) \cup\{1\}, & \text { if } a>\pi_{1} .\end{cases}
$$

- Crucial observation:

$$
\begin{aligned}
& \text { (LR-shuffle-compatible) } \\
\Longleftrightarrow & \text { (shuffle-compatible) } \wedge \underbrace{(\text { head-graft-compatible) }}_{\text {easy-to-check property }} .
\end{aligned}
$$

- A permutation statistic st is said to be head-graft-compatible if for any nonempty permutation π and any letter a that does not appear in π, the element st $(a: \pi)$ depends only on st (π), $|\pi|$ and on the truth value of $a>\pi_{1}$.
Here, $a: \pi$ is the permutation obtained from π by appending a at the front:

$$
\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right) \quad \Longrightarrow \quad a: \pi=\left(a, \pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)
$$

- Likewise, Des, Lpk and des are head-graft-compatible.
- Crucial observation:

$$
\begin{aligned}
& (\text { LR-shuffle-compatible }) \\
\Longleftrightarrow & \text { (shuffle-compatible) } \wedge \underbrace{(\text { head-graft-compatible) }}_{\text {easy-to-check property }} .
\end{aligned}
$$

- A permutation statistic st is said to be head-graft-compatible if for any nonempty permutation π and any letter a that does not appear in π, the element st $(a: \pi)$ depends only on st (π), $|\pi|$ and on the truth value of $a>\pi_{1}$.
Here, $a: \pi$ is the permutation obtained from π by appending a at the front:

$$
\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right) \quad \Longrightarrow \quad a: \pi=\left(a, \pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)
$$

- Theorem (G.). A statistic st is LR-shuffle-compatible if and only if it is shuffle-compatible and head-graft-compatible.
- Crucial observation:

$$
\begin{aligned}
& (\text { LR-shuffle-compatible }) \\
\Longleftrightarrow & \text { (shuffle-compatible) } \wedge \underbrace{(\text { head-graft-compatible) }}_{\text {easy-to-check property }} .
\end{aligned}
$$

- A permutation statistic st is said to be head-graft-compatible if for any nonempty permutation π and any letter a that does not appear in π, the element st $(a: \pi)$ depends only on st (π), $|\pi|$ and on the truth value of $a>\pi_{1}$.
Here, $a: \pi$ is the permutation obtained from π by appending a at the front:

$$
\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right) \quad \Longrightarrow \quad a: \pi=\left(a, \pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)
$$

- Theorem (G.). A statistic st is LR-shuffle-compatible if and only if it is shuffle-compatible and head-graft-compatible.
- Hence, Epk, Des, Lpk and des are LR-shuffle-compatible.
- Theorem. A statistic st is LR-shuffle-compatible if and only if it is shuffle-compatible and head-graft-compatible.
- Theorem. A statistic st is LR-shuffle-compatible if and only if it is shuffle-compatible and head-graft-compatible.
- Main idea of the proof of \Longleftarrow :

If π is an n-permutation with $n>0$, then let $\pi_{\sim 1}$ be the ($n-1$)-permutation $\left(\pi_{2}, \pi_{3}, \ldots, \pi_{n}\right)$.

- Theorem. A statistic st is LR-shuffle-compatible if and only if it is shuffle-compatible and head-graft-compatible.
- Main idea of the proof of \Longleftarrow :

If π is an n-permutation with $n>0$, then let $\pi_{\sim 1}$ be the $(n-1)$-permutation $\left(\pi_{2}, \pi_{3}, \ldots, \pi_{n}\right)$.
If π and σ are two disjoint permutations, then

$$
\begin{array}{ll}
S_{\prec}(\pi, \sigma)=S_{\succ}(\sigma, \pi) ; & \\
S_{\prec}(\pi, \sigma)=S_{\succ}\left(\pi \sim 1, \pi_{1}: \sigma\right) & \text { if } \pi \text { is nonempty; } \\
S_{\succ}(\pi, \sigma)=S_{\prec}\left(\sigma_{1}: \pi, \sigma_{\sim 1}\right) & \text { if } \sigma \text { is nonempty. }
\end{array}
$$

These allow for an inductive argument.

- Theorem. A statistic st is LR-shuffle-compatible if and only if it is shuffle-compatible and head-graft-compatible.
- Main idea of the proof of \Longleftarrow :

If π is an n-permutation with $n>0$, then let $\pi_{\sim 1}$ be the $(n-1)$-permutation $\left(\pi_{2}, \pi_{3}, \ldots, \pi_{n}\right)$.
If π and σ are two disjoint permutations, then

$$
\begin{array}{ll}
S_{\prec}(\pi, \sigma)=S_{\succ}(\sigma, \pi) ; & \\
S_{\prec}(\pi, \sigma)=S_{\succ}\left(\pi \sim 1, \pi_{1}: \sigma\right) & \text { if } \pi \text { is nonempty; } \\
S_{\succ}(\pi, \sigma)=S_{\prec}\left(\sigma_{1}: \pi, \sigma_{\sim 1}\right) & \text { if } \sigma \text { is nonempty. }
\end{array}
$$

These allow for an inductive argument.

- Note that the concept of LR-shuffle-compatibility is not invariant under reversal: st can be LR-shuffle-compatible while st o rev is not, where

$$
\operatorname{rev}\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)=\left(\pi_{n}, \pi_{n-1}, \ldots, \pi_{1}\right)
$$

For example, Lpk is LR-shuffle-compatible, but Rpk is not.

Section 3

The QSym connection

References:

- Ira M. Gessel, Yan Zhuang, Shuffle-compatible permutation statistics, arXiv:1706.00750.
- Darij Grinberg, Victor Reiner, Hopf Algebras in Combinatorics, arXiv:1409.8356, and various other texts on combinatorial Hopf algebras.
- Gessel and Zhuang prove most of their shuffle-compatibilities algebraically. Their methods involve combinatorial Hopf algebras (QSym and NSym).
- These methods work for descent statistics only. What is a descent statistic?
- Gessel and Zhuang prove most of their shuffle-compatibilities algebraically. Their methods involve combinatorial Hopf algebras (QSym and NSym).
- These methods work for descent statistics only. What is a descent statistic?
- A descent statistic is a statistic st such that st π depends only on $|\pi|$ and Des π (in other words: if π and σ are two n-permutations with $\operatorname{Des} \pi=\operatorname{Des} \sigma$, then st $\pi=$ st σ). Intuition: A descent statistic is a statistic which "factors through Des in each size".
- A composition is a finite list of positive integers.

A composition of $n \in \mathbb{N}$ is a composition whose entries sum to n.

- A composition is a finite list of positive integers.

A composition of $n \in \mathbb{N}$ is a composition whose entries sum to n.

- For example, $(1,3,2)$ is a composition of 6 .
- A composition is a finite list of positive integers.

A composition of $n \in \mathbb{N}$ is a composition whose entries sum to n.

- For example, $(1,3,2)$ is a composition of 6 .
- Let $n \in \mathbb{N}$, and let $[n-1]=\{1,2, \ldots, n-1\}$.

Then, there are mutually inverse bijections
Des: $\{$ compositions of $n\} \rightarrow\{$ subsets of $[n-1]\}$,

$$
\left(i_{1}, i_{2}, \ldots, i_{k}\right) \mapsto\left\{i_{1}+i_{2}+\cdots+i_{j} \mid 1 \leq j \leq k-1\right\}
$$

and
Comp : $\{$ subsets of $[n-1]\} \rightarrow\{$ compositions of $n\}$,

$$
\left\{s_{1}<s_{2}<\cdots<s_{k}\right\} \mapsto\left(s_{1}-s_{0}, s_{2}-s_{1}, \ldots, s_{k+1}-s_{k}\right)
$$

(using the notations $s_{0}=0$ and $s_{k+1}=n$).

- A composition is a finite list of positive integers.

A composition of $n \in \mathbb{N}$ is a composition whose entries sum to n.

- For example, $(1,3,2)$ is a composition of 6 .
- Let $n \in \mathbb{N}$, and let $[n-1]=\{1,2, \ldots, n-1\}$.

Then, there are mutually inverse bijections Des and Comp between \{subsets of $[n-1]\}$ and $\{$ compositions of $n\}$. If π is an n-permutation, then $\operatorname{Comp}(\operatorname{Des} \pi)$ is called the descent composition of π, and is written Comp π.

- A composition is a finite list of positive integers. A composition of $n \in \mathbb{N}$ is a composition whose entries sum to n.
- For example, $(1,3,2)$ is a composition of 6 .
- Let $n \in \mathbb{N}$, and let $[n-1]=\{1,2, \ldots, n-1\}$.

Then, there are mutually inverse bijections Des and Comp between \{subsets of $[n-1]\}$ and $\{$ compositions of $n\}$. If π is an n-permutation, then $\operatorname{Comp}(\operatorname{Des} \pi)$ is called the descent composition of π, and is written Comp π.

- Thus, a descent statistic is a statistic st that factors through Comp (that is, st π depends only on Comp π).
- A composition is a finite list of positive integers. A composition of $n \in \mathbb{N}$ is a composition whose entries sum to n.
- For example, $(1,3,2)$ is a composition of 6 .
- Let $n \in \mathbb{N}$, and let $[n-1]=\{1,2, \ldots, n-1\}$.

Then, there are mutually inverse bijections Des and Comp between \{subsets of $[n-1]\}$ and $\{$ compositions of $n\}$. If π is an n-permutation, then $\operatorname{Comp}(\operatorname{Des} \pi)$ is called the descent composition of π, and is written Comp π.

- Thus, a descent statistic is a statistic st that factors through Comp (that is, st π depends only on Comp π).
- If st is a descent statistic, then we use the notation st α (where α is a composition) for st π, where π is any permutation with Comp $\pi=\alpha$.
- A composition is a finite list of positive integers. A composition of $n \in \mathbb{N}$ is a composition whose entries sum to n.
- For example, $(1,3,2)$ is a composition of 6 .
- Let $n \in \mathbb{N}$, and let $[n-1]=\{1,2, \ldots, n-1\}$.

Then, there are mutually inverse bijections Des and Comp between \{subsets of $[n-1]\}$ and $\{$ compositions of $n\}$. If π is an n-permutation, then $\operatorname{Comp}(\operatorname{Des} \pi)$ is called the descent composition of π, and is written Comp π.

- If st is a descent statistic, then we use the notation st α (where α is a composition) for st π, where π is any permutation with Comp $\pi=\alpha$.
- Warning:
$\operatorname{Des}((1,5,2)$ the composition $)=\{1,6\} ;$
$\operatorname{Des}((1,5,2)$ the permutation $)=\{2\}$.
Same for other statistics! Context must disambiguate.
- Almost all of our statistics so far are descent statistics. Examples:
- Almost all of our statistics so far are descent statistics. Examples:
- Des, des and maj are descent statistics.
- Almost all of our statistics so far are descent statistics. Examples:
- Des, des and maj are descent statistics.
- Pk is a descent statistic: If π is an n-permutation, then

$$
\operatorname{Pk} \pi=(\operatorname{Des} \pi) \backslash((\operatorname{Des} \pi \cup\{0\})+1),
$$

where for any set K of integers and any integer a we set $K+a=\{k+a \mid k \in K\}$.

- Similarly, Lpk, Rpk and Epk are descent statistics.
- Almost all of our statistics so far are descent statistics. Examples:
- Des, des and maj are descent statistics.
- Pk is a descent statistic: If π is an n-permutation, then

$$
\operatorname{Pk} \pi=(\operatorname{Des} \pi) \backslash((\operatorname{Des} \pi \cup\{0\})+1),
$$

where for any set K of integers and any integer a we set $K+a=\{k+a \mid k \in K\}$.

- Similarly, Lpk, Rpk and Epk are descent statistics.
- inv is not a descent statistic: The permutations $(2,1,3)$ and $(3,1,2)$ have the same descents, but different numbers of inversions.
- Almost all of our statistics so far are descent statistics. Examples:
- Des, des and maj are descent statistics.
- Pk is a descent statistic: If π is an n-permutation, then

$$
\operatorname{Pk} \pi=(\operatorname{Des} \pi) \backslash((\operatorname{Des} \pi \cup\{0\})+1),
$$

where for any set K of integers and any integer a we set $K+a=\{k+a \mid k \in K\}$.

- Similarly, Lpk, Rpk and Epk are descent statistics.
- Question (Gessel \& Zhuang). Is every shuffle-compatible statistic a descent statistic?
- Almost all of our statistics so far are descent statistics. Examples:
- Des, des and maj are descent statistics.
- Pk is a descent statistic: If π is an n-permutation, then

$$
\operatorname{Pk} \pi=(\operatorname{Des} \pi) \backslash((\operatorname{Des} \pi \cup\{0\})+1),
$$

where for any set K of integers and any integer a we set $K+a=\{k+a \mid k \in K\}$.

- Similarly, Lpk, Rpk and Epk are descent statistics.
- Question (Gessel \& Zhuang). Is every shuffle-compatible statistic a descent statistic?
Answer (Ezgi Kantarcı Oğuz, arXiv:1807.01398v1): No.
- Almost all of our statistics so far are descent statistics. Examples:
- Des, des and maj are descent statistics.
- Pk is a descent statistic: If π is an n-permutation, then

$$
\operatorname{Pk} \pi=(\operatorname{Des} \pi) \backslash((\operatorname{Des} \pi \cup\{0\})+1),
$$

where for any set K of integers and any integer a we set $K+a=\{k+a \mid k \in K\}$.

- Similarly, Lpk, Rpk and Epk are descent statistics.
- Question (Gessel \& Zhuang). Is every shuffle-compatible statistic a descent statistic?
Answer (Ezgi Kantarcı Oğuz, arXiv:1807.01398v1): No.
- However: Every LR-shuffle-compatible statistic is a descent statistic.
- Almost all of our statistics so far are descent statistics. Examples:
- Des, des and maj are descent statistics.
- Pk is a descent statistic: If π is an n-permutation, then

$$
\operatorname{Pk} \pi=(\operatorname{Des} \pi) \backslash((\operatorname{Des} \pi \cup\{0\})+1),
$$

where for any set K of integers and any integer a we set $K+a=\{k+a \mid k \in K\}$.

- Similarly, Lpk, Rpk and Epk are descent statistics.
- Question (Gessel \& Zhuang). Is every shuffle-compatible statistic a descent statistic?
Answer (Ezgi Kantarcı Oğuz, arXiv:1807.01398v1): No.
- However: Every LR-shuffle-compatible statistic is a descent statistic.
(Better yet, every head-graft-compatible statistic is a descent statistic.)

Quasisymmetric functions, part 1: definition

- Consider the ring $\mathbb{Q}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ of formal power series in countably many indeterminates.
- Consider the ring $\mathbb{Q}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ of formal power series in countably many indeterminates.
- A formal power series f is said to be bounded-degree if the monomials it contains are bounded (from above) in degree.
- Consider the ring $\mathbb{Q}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ of formal power series in countably many indeterminates.
- A formal power series f is said to be bounded-degree if the monomials it contains are bounded (from above) in degree.
- A formal power series $f \in \mathbb{Q}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ is said to be quasisymmetric if its coefficients in front of $x_{i_{1}}^{a_{1}} x_{i_{2}}^{a_{2}} \cdots x_{i_{k}}^{a_{k}}$ and $x_{j_{1}}^{a_{1}} x_{j_{2}}^{a_{2}} \cdots x_{j_{k}}^{a_{k}}$ are equal whenever $i_{1}<i_{2}<\cdots<i_{k}$ and $j_{1}<j_{2}<\cdots<j_{k}$.
- For example:
- Every symmetric power series is quasisymmetric.
- $\sum_{i<j} x_{i}^{2} x_{j}=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1}^{2} x_{4}+\cdots$ is
quasisymmetric, but not symmetric.
- Consider the ring $\mathbb{Q}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ of formal power series in countably many indeterminates.
- A formal power series f is said to be bounded-degree if the monomials it contains are bounded (from above) in degree.
- A formal power series $f \in \mathbb{Q}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ is said to be quasisymmetric if its coefficients in front of $x_{i_{1}}^{a_{1}} x_{i_{2}}^{a_{2}} \cdots x_{i_{k}}^{a_{k}}$ and $x_{j_{1}}^{a_{1}} x_{j_{2}}^{a_{2}} \cdots x_{j_{k}}^{a_{k}}$ are equal whenever $i_{1}<i_{2}<\cdots<i_{k}$ and $j_{1}<j_{2}<\cdots<j_{k}$.
- For example:
- Every symmetric power series is quasisymmetric.
- $\sum_{i<j} x_{i}^{2} x_{j}=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1}^{2} x_{4}+\cdots$ is
quasisymmetric, but not symmetric.
- Let QSym be the set of all quasisymmetric bounded-degree power series in $\mathbb{Q}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$. This is a \mathbb{Q}-subalgebra, called the ring of quasisymmetric functions over \mathbb{Q}. (Gessel, 1980s.)
- For every composition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$, define

$$
M_{\alpha}=\sum_{i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}
$$

$=$ sum of all monomials whose nonzero exponents are $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ in this order.
This is a homogeneous power series of degree $|\alpha|$ (the size of α, defined by $\left.|\alpha|:=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}\right)$.

- Examples:
- $M_{()}=1$.
- $M_{(1,1)}=\sum_{i<j} x_{i} x_{j}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{1} x_{4}+x_{2} x_{4}+\cdots$.
- $M_{(2,1)}=\sum_{i<j} x_{i}^{2} x_{j}=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+\cdots$.
- $M_{(3)}=\sum_{i} x_{i}^{3}=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+\cdots$.
- For every composition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$, define

$$
M_{\alpha}=\sum_{i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}
$$

$=$ sum of all monomials whose nonzero exponents are $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ in this order.
This is a homogeneous power series of degree $|\alpha|$ (the size of α, defined by $\left.|\alpha|:=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}\right)$.

- The family $\left(M_{\alpha}\right)_{\alpha}$ is a composition is a basis of the \mathbb{Q}-vector space QSym, called the monomial basis (or M-basis).
- For every composition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$, define

$$
\begin{aligned}
F_{\alpha} & =\sum_{\substack{i_{1} \leq i_{2} \leq \cdots \leq i_{n} ; \\
i_{j}<i_{j+1} \text { for all } j \in \operatorname{Des} \alpha}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}} \\
& =\sum_{\substack{\beta \text { is a composition of } n ; \\
\text { Des } \beta \supseteq \operatorname{Des} \alpha}} M_{\beta}, \quad \text { where } n=|\alpha| .
\end{aligned}
$$

This is a homogeneous power series of degree $|\alpha|$ again.

- Examples:
- $F_{()}=1$.
- $F_{(1,1)}=\sum_{i<j} x_{i} x_{j}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{1} x_{4}+x_{2} x_{4}+\cdots$.
- $F_{(2,1)}=\sum_{i \leq j<k} x_{i} x_{j} x_{k}$.
- $F_{(3)}=\sum_{i \leq j \leq k} x_{i} x_{j} x_{k}$.
- For every composition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$, define

$$
\begin{aligned}
F_{\alpha} & =\sum_{\substack{i_{1} \leq i_{2} \leq \cdots \leq i_{n} ; \\
i_{j}<i_{j+1} \text { for all } j \in \operatorname{Des} \alpha}} x_{i_{1} x_{i_{2}} \cdots x_{i_{n}}} \sum_{\substack{\beta \text { is a composition of } n ; \\
\text { Des } \beta \supseteq \operatorname{Des} \alpha}} M_{\beta}, \quad \text { where } n=|\alpha| .
\end{aligned}
$$

This is a homogeneous power series of degree $|\alpha|$ again.

- The family $\left(F_{\alpha}\right)_{\alpha}$ is a composition is a basis of the \mathbb{Q}-vector space QSym, called the fundamental basis (or F-basis). Sometimes, F_{α} is also denoted L_{α}.
- For every composition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$, define

$$
\begin{aligned}
F_{\alpha} & =\sum_{\substack{i_{1} \leq i_{2} \leq \cdots \leq i_{n} ; \\
i_{j}<i_{j+1} \text { for all } j \in \operatorname{Des} \alpha}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}} \\
& =\sum_{\substack{\beta \text { is a composition of } n ; \\
\text { Des } \beta \supseteq \operatorname{Des} \alpha}} M_{\beta}, \quad \text { where } n=|\alpha| .
\end{aligned}
$$

This is a homogeneous power series of degree $|\alpha|$ again.

- What connects QSym with shuffles of permutations is the following fact:
Theorem. If π and σ are two disjoint permutations, then

$$
F_{\text {Comp } \pi} \cdot F_{\text {Comp } \sigma}=\sum_{\tau \in S(\pi, \sigma)} F_{\text {Comp } \tau} .
$$

- If st is a descent statistic, then two compositions α and β are said to be st-equivalent if $|\alpha|=|\beta|$ and st $\alpha=$ st β.
(Remember: st α means st π for any permutation π satisfying Comp $\pi=\alpha$.)
- If st is a descent statistic, then two compositions α and β are said to be st-equivalent if $|\alpha|=|\beta|$ and st $\alpha=$ st β.
(Remember: st α means st π for any permutation π satisfying Comp $\pi=\alpha$.)
- The kernel $\mathcal{K}_{\text {st }}$ of a descent statistic st is the \mathbb{Q}-vector subspace of QSym spanned by all differences of the form $F_{\alpha}-F_{\beta}$, with α and β being two st-equivalent compositions:

$$
\left.\mathcal{K}_{\mathrm{st}}=\left\langle F_{\alpha}-F_{\beta}\right| \quad|\alpha|=|\beta| \text { and st } \alpha=\text { st } \beta\right\rangle_{\mathbb{Q}}
$$

- If st is a descent statistic, then two compositions α and β are said to be st-equivalent if $|\alpha|=|\beta|$ and st $\alpha=$ st β. (Remember: st α means st π for any permutation π satisfying Comp $\pi=\alpha$.)
- The kernel $\mathcal{K}_{\text {st }}$ of a descent statistic st is the \mathbb{Q}-vector subspace of QSym spanned by all differences of the form $F_{\alpha}-F_{\beta}$, with α and β being two st-equivalent compositions:

$$
\left.\mathcal{K}_{\mathrm{st}}=\left\langle F_{\alpha}-F_{\beta}\right| \quad|\alpha|=|\beta| \text { and st } \alpha=\text { st } \beta\right\rangle_{\mathbb{Q}}
$$

- Theorem. The descent statistic st is shuffle-compatible if and only if $\mathcal{K}_{\text {st }}$ is an ideal of QSym.
(This is essentially due to Gessel \& Zhuang.)
- If st is a descent statistic, then two compositions α and β are said to be st-equivalent if $|\alpha|=|\beta|$ and st $\alpha=$ st β. (Remember: st α means st π for any permutation π satisfying Comp $\pi=\alpha$.)
- The kernel $\mathcal{K}_{\text {st }}$ of a descent statistic st is the \mathbb{Q}-vector subspace of QSym spanned by all differences of the form $F_{\alpha}-F_{\beta}$, with α and β being two st-equivalent compositions:

$$
\left.\mathcal{K}_{\mathrm{st}}=\left\langle F_{\alpha}-F_{\beta}\right| \quad|\alpha|=|\beta| \text { and st } \alpha=\text { st } \beta\right\rangle_{\mathbb{Q}}
$$

- Theorem. The descent statistic st is shuffle-compatible if and only if $\mathcal{K}_{\text {st }}$ is an ideal of QSym. (This is essentially due to Gessel \& Zhuang.)
- Since Epk is shuffle-compatible, its kernel $\mathcal{K}_{\text {Epk }}$ is an ideal of QSym. How can we describe it?
- Two ways: using the F-basis and using the M-basis.
- If $J=\left(j_{1}, j_{2}, \ldots, j_{m}\right)$ and K are two compositions, then we write $J \rightarrow K$ if there exists an $\ell \in\{2,3, \ldots, m\}$ such that $j_{\ell}>2$ and $K=\left(j_{1}, j_{2}, \ldots, j_{\ell-1}, 1, j_{\ell}-1, j_{\ell+1}, j_{\ell+2}, \ldots, j_{m}\right)$. (In other words, we write $J \rightarrow K$ if K can be obtained from J by "splitting" some non-initial entry $j_{\ell}>2$ into two consecutive entries 1 and $j_{\ell}-1$.)
- Example. Here are all instances of the \rightarrow relation on compositions of size ≤ 5 :

$$
\begin{aligned}
(1,3) & \rightarrow(1,1,2), \quad(1,4) \rightarrow(1,1,3) \\
(1,3,1) & \rightarrow(1,1,2,1), \quad(1,1,3) \rightarrow(1,1,1,2) \\
(2,3) & \rightarrow(2,1,2)
\end{aligned}
$$

- Proposition. The ideal $\mathcal{K}_{\text {Epk }}$ of QSym is spanned (as a \mathbb{Q}-vector space) by all differences of the form $F_{J}-F_{K}$, where J and K are two compositions satisfying $J \rightarrow K$.
- If $J=\left(j_{1}, j_{2}, \ldots, j_{m}\right)$ and K are two compositions, then we write $J \underset{M}{\rightarrow} K$ if there exists an $\ell \in\{2,3, \ldots, m\}$ such that $j_{\ell}>2$ and $K=\left(j_{1}, j_{2}, \ldots, j_{\ell-1}, 2, j_{\ell}-2, j_{\ell+1}, j_{\ell+2}, \ldots, j_{m}\right)$. (In other words, we write $J \underset{M}{\rightarrow} K$ if K can be obtained from J by "splitting" some non-initial entry $j_{\ell}>2$ into two consecutive entries 2 and $j_{\ell}-2$.)
- Example. Here are all instances of the \vec{M} relation on compositions of size ≤ 5 :

$$
\begin{aligned}
& (1,3) \underset{M}{\vec{M}}(1,2,1), \\
& (1,4) \underset{M}{\rightarrow}(1,2,2), \\
& (1,3,1) \underset{M}{\rightarrow}(1,2,1,1) \text {, } \\
& (1,1,3) \underset{M}{\rightarrow}(1,1,2,1), \\
& (2,3) \vec{M}(2,2,1) \text {. }
\end{aligned}
$$

- Proposition. The ideal $\mathcal{K}_{E p k}$ of QSym is spanned (as a \mathbb{Q}-vector space) by all sums of the form $M_{J}+M_{K}$, where J and K are two compositions satisfying $J \underset{M}{\rightarrow} K$.

What about other statistics?

- Question. Do other descent statistics allow for similar descriptions of $\mathcal{K}_{\text {st }}$?
(See the paper for some experimental results.)

What does LR-shuffle-compatibility mean algebraically?

- If shuffle-compatible descent statistics induce ideals of QSym, then what do LR-shuffle-compatible descent statistics induce?
(shuffle-compatible des. statistics) \leftrightarrow ((some) ideals of QSym) ;
(LR-shuffle-compatible des. statistics) \leftrightarrow ??

What does LR-shuffle-compatibility mean algebraically?

- We will answer this question using the dendriform algebra structure on QSym.
- We will answer this question using the dendriform algebra structure on QSym.
This structure first appeared in:
Darij Grinberg, Dual immaculate creation operators and a dendriform algebra structure on the quasisymmetric functions, Canad. J. Math. 69 (2017), pp. 21-53.
But the ideas go back to:
- Glânffrwd P. Thomas, Frames, Young tableaux, and Baxter sequences, Advances in Mathematics, Volume 26, Issue 3, December 1977, Pages 275-289.
- Jean-Christophe Novelli, Jean-Yves Thibon, Construction of dendriform trialgebras, arXiv:math/0510218.
Something similar also appeared in: Aristophanes Dimakis, Folkert Müller-Hoissen, Quasi-symmetric functions and the KP hierarchy, Journal of Pure and Applied Algebra, Volume 214, Issue 4, April 2010, Pages 449-460.
- For any monomial \mathfrak{m}, let Supp \mathfrak{m} denote the set $\left\{i \mid x_{i}\right.$ appears in $\left.\mathfrak{m}\right\}$.
- Example. Supp $\left(x_{3}^{5} x_{6} x_{8}\right)=\{3,6,8\}$.
- For any monomial \mathfrak{m}, let Supp \mathfrak{m} denote the set $\left\{i \mid x_{i}\right.$ appears in $\left.\mathfrak{m}\right\}$.
- Example. Supp $\left(x_{3}^{5} x_{6} x_{8}\right)=\{3,6,8\}$.
- We define a binary operation \prec on the \mathbb{Q}-vector space $\mathbb{Q}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ as follows:
- On monomials, it should be given by

$$
\mathfrak{m} \prec \mathfrak{n}=\left\{\begin{array}{cc}
\mathfrak{m} \cdot \mathfrak{n}, & \text { if } \min (\text { Supp } \mathfrak{m})<\min (\text { Supp } \mathfrak{n}) ; \\
0, & \text { if } \min (\text { Supp } \mathfrak{m}) \geq \min (\text { Supp } \mathfrak{n})
\end{array}\right.
$$

for any two monomials \mathfrak{m} and \mathfrak{n}.

- It should be \mathbb{Q}-bilinear.
- It should be continuous (i.e., its \mathbb{Q}-bilinearity also applies to infinite \mathbb{Q}-linear combinations).
- Well-definedness is pretty clear.
- Example. $\left(x_{2}^{2} x_{4}\right) \prec\left(x_{3}^{2} x_{5}\right)=x_{2}^{2} x_{3}^{2} x_{4} x_{5}$, but $\left(x_{2}^{2} x_{4}\right) \prec\left(x_{2}^{2} x_{5}\right)=0$.
- For any monomial \mathfrak{m}, let Supp \mathfrak{m} denote the set $\left\{i \mid x_{i}\right.$ appears in $\left.\mathfrak{m}\right\}$.
- Example. Supp $\left(x_{3}^{5} x_{6} x_{8}\right)=\{3,6,8\}$.
- We define a binary operation \succeq on the \mathbb{Q}-vector space $\mathbb{Q}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ as follows:
- On monomials, it should be given by

$$
\mathfrak{m} \succeq \mathfrak{n}=\left\{\begin{array}{cc}
\mathfrak{m} \cdot \mathfrak{n}, & \text { if } \min (\text { Supp } \mathfrak{m}) \geq \min (\text { Supp } \mathfrak{n}) \\
0, & \text { if } \min (\text { Supp } \mathfrak{m})<\min (\text { Supp } \mathfrak{n})
\end{array}\right.
$$

for any two monomials \mathfrak{m} and \mathfrak{n}.

- It should be \mathbb{Q}-bilinear.
- It should be continuous (i.e., its \mathbb{Q}-bilinearity also applies to infinite \mathbb{Q}-linear combinations).
- Well-definedness is pretty clear.
- Example. $\left(x_{2}^{2} x_{4}\right) \succeq\left(x_{3}^{2} x_{5}\right)=0$, but

$$
\left(x_{2}^{2} x_{4}\right) \succeq\left(x_{2}^{2} x_{5}\right)=x_{2}^{4} x_{4} x_{5} .
$$

- We now have defined two binary operations \prec and \succeq on $\mathbb{Q}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$. They satisfy:

$$
\begin{aligned}
a \prec b+a \succeq b & =a b ; \\
(a \prec b) \prec c & =a \prec(b c) ; \\
(a \succeq b) \prec c & =a \succeq(b \prec c) ; \\
a \succeq(b \succeq c) & =(a b) \succeq c .
\end{aligned}
$$

- We now have defined two binary operations \prec and \succeq on $\mathbb{Q}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$. They satisfy:

$$
\begin{aligned}
a \prec b+a \succeq b & =a b ; \\
(a \prec b) \prec c & =a \prec(b c) ; \\
(a \succeq b) \prec c & =a \succeq(b \prec c) ; \\
a \succeq(b \succeq c) & =(a b) \succeq c .
\end{aligned}
$$

- This says that $\left(\mathbb{Q}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right], \prec, \succeq\right)$ is a dendriform algebra in the sense of Loday (see, e.g., Zinbiel, Encyclopedia of types of algebras 2010, arXiv:1101.0267).
- We now have defined two binary operations \prec and \succeq on $\mathbb{Q}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$. They satisfy:

$$
\begin{aligned}
a \prec b+a \succeq b & =a b ; \\
(a \prec b) \prec c & =a \prec(b c) ; \\
(a \succeq b) \prec c & =a \succeq(b \prec c) ; \\
a \succeq(b \succeq c) & =(a b) \succeq c .
\end{aligned}
$$

- This says that $\left(\mathbb{Q}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right], \prec, \succeq\right)$ is a dendriform algebra in the sense of Loday (see, e.g., Zinbiel, Encyclopedia of types of algebras 2010, arXiv:1101.0267).
- QSym is closed under both operations \prec and \succeq. Thus, QSym becomes a dendriform subalgebra of $\mathbb{Q}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$.

The kernel criterion for LR-shuffle-compatibility

- Recall the Theorem: The descent statistic st is shuffle-compatible if and only if $\mathcal{K}_{\text {st }}$ is an ideal of QSym.
- Recall the Theorem: The descent statistic st is shuffle-compatible if and only if $\mathcal{K}_{\text {st }}$ is an ideal of QSym.
- Similarly, Theorem: The descent statistic st is LR-shuffle-compatible if and only if

$$
\begin{array}{llll}
\text { QSym } \prec \mathcal{K}_{s t} \subseteq \mathcal{K}_{s t} & \text { and } & \mathcal{K}_{s t} \prec \mathrm{QSym} \subseteq \mathcal{K}_{s t} & \text { and } \\
\text { QSym } \succeq \mathcal{K}_{\mathrm{st}} \subseteq \mathcal{K}_{\mathrm{st}} & \text { and } & \mathcal{K}_{\mathrm{st}} \succeq \mathrm{QSym} \subseteq \mathcal{K}_{\mathrm{st}} &
\end{array}
$$

(that is, $\mathcal{K}_{\text {st }}$ is an ideal of the dendriform algebra QSym).

- Recall the Theorem: The descent statistic st is shuffle-compatible if and only if $\mathcal{K}_{\text {st }}$ is an ideal of QSym.
- Similarly, Theorem: The descent statistic st is LR-shuffle-compatible if and only if

QSym $\prec \mathcal{K}_{\text {st }} \subseteq \mathcal{K}_{\text {st }} \quad$ and $\quad \mathcal{K}_{\text {st }} \prec$ QSym $\subseteq \mathcal{K}_{\text {st }} \quad$ and QSym $\succeq \mathcal{K}_{\text {st }} \subseteq \mathcal{K}_{\text {st }} \quad$ and $\quad \mathcal{K}_{\text {st }} \succeq \mathrm{QSym} \subseteq \mathcal{K}_{\text {st }}$
(that is, $\mathcal{K}_{s t}$ is an ideal of the dendriform algebra QSym).

- Thus, for example, $\mathcal{K}_{E p k}$ is an ideal of the dendriform algebra QSym, and the quotient QSym $/ \mathcal{K}_{\mathrm{Epk}}$ is a dendriform algebra.
- Recall the Theorem: The descent statistic st is shuffle-compatible if and only if $\mathcal{K}_{\text {st }}$ is an ideal of QSym.
- Similarly, Theorem: The descent statistic st is

LR-shuffle-compatible if and only if
QSym $\prec \mathcal{K}_{\text {st }} \subseteq \mathcal{K}_{\text {st }} \quad$ and $\quad \mathcal{K}_{\text {st }} \prec$ QSym $\subseteq \mathcal{K}_{\text {st }} \quad$ and
QSym $\succeq \mathcal{K}_{\text {st }} \subseteq \mathcal{K}_{\text {st }} \quad$ and $\quad \mathcal{K}_{\text {st }} \succeq \mathrm{QSym} \subseteq \mathcal{K}_{\text {st }}$
(that is, $\mathcal{K}_{\text {st }}$ is an ideal of the dendriform algebra QSym).

- Thus, for example, $\mathcal{K}_{E p k}$ is an ideal of the dendriform algebra QSym, and the quotient QSym $/ \mathcal{K}_{\mathrm{Epk}}$ is a dendriform algebra.
- This actually inspired the (combinatorial) proof of LR-shuffle-compatibility hinted at above.
- Question. What mileage do we get out of \mathcal{Z}-enriched (P, γ)-partitions for other choices of \mathcal{N} and \mathcal{Z} than the ones used in the known proofs?
- Question. What ring do the $K_{n, \Lambda}^{\mathcal{Z}}$ span?
- Question. Hsiao and Petersen have generalized enriched (P, γ)-partitions to "colored (P, γ)-partitions" (with $\{+,-\}$ replaced by an m-element set). Does this generalize our results?
- Question. How do the kernels $\mathcal{K}_{\text {st }}$ look like for st $=P k, L p k, \ldots$?
- Question. Are the quotients QSym $/ \mathcal{K}_{\text {st }}$ for st $=$ des, Lpk, Epk known dendriform algebras?

Section 4

Quadri-compatibility (work in progress)

References:

- a forthcoming preprint.
- Marcelo Aguiar, Jean-Louis Loday, Quadri-algebras, Journal of Pure and Applied Algebra, Volume 191 (2004), Issue 3, Pages 205-221.
- Loïc Foissy, Free quadri-algebras and dual quadri-algebras, arXiv:1504.06056.
- We can refine LR-shuffle-compatibility even further.
- Given two disjoint nonempty permutations $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ and $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right)$, define sets $S_{i, j}(\pi, \sigma)$ for all $i, j \in\{1,2\}$ as follows:

$$
\begin{array}{l|l}
S_{1,1}(\pi, \sigma)=\{\tau \in S(\pi, \sigma) \mid & \left.\tau_{1}=\pi_{1} \text { and } \tau_{n+m}=\pi_{n}\right\} ; \\
S_{1,2}(\pi, \sigma)=\{\tau \in S(\pi, \sigma) \mid & \left.\tau_{1}=\pi_{1} \text { and } \tau_{n+m}=\sigma_{m}\right\} ; \\
S_{2,1}(\pi, \sigma)=\left\{\tau \in S(\pi, \sigma) \mid \tau_{1}=\sigma_{1} \text { and } \tau_{n+m}=\pi_{n}\right\} ; \\
S_{2,2}(\pi, \sigma)=\{\tau \in S(\pi, \sigma) \mid & \left.\tau_{1}=\sigma_{1} \text { and } \tau_{n+m}=\sigma_{m}\right\} .
\end{array}
$$

- We can refine LR-shuffle-compatibility even further.
- Given two disjoint nonempty permutations $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ and $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right)$, define sets $S_{i, j}(\pi, \sigma)$ for all $i, j \in\{1,2\}$ as follows:

$$
\begin{array}{l|l}
S_{1,1}(\pi, \sigma)=\{\tau \in S(\pi, \sigma) & \left.\tau_{1}=\pi_{1} \text { and } \tau_{n+m}=\pi_{n}\right\} ; \\
S_{1,2}(\pi, \sigma)=\{\tau \in S(\pi, \sigma) & \left.\tau_{1}=\pi_{1} \text { and } \tau_{n+m}=\sigma_{m}\right\} ; \\
S_{2,1}(\pi, \sigma)=\{\tau \in S(\pi, \sigma) & \left.\tau_{1}=\sigma_{1} \text { and } \tau_{n+m}=\pi_{n}\right\} ; \\
S_{2,2}(\pi, \sigma)=\{\tau \in S(\pi, \sigma) & \left.\tau_{1}=\sigma_{1} \text { and } \tau_{n+m}=\sigma_{m}\right\} .
\end{array}
$$

- A statistic st is said to be quadri-compatible if for any two disjoint nonempty permutations π and σ and any $i, j \in\{1,2\}$, the multiset

$$
\left\{\text { st } \tau \mid \tau \in S_{i, j}(\pi, \sigma)\right\}_{\text {multiset }}
$$

depends only on st π, st $\sigma,|\pi|,|\sigma|, i, j$, the truth value of $\pi_{1}>\sigma_{1}$, and the truth value of $\pi_{n}>\sigma_{m}$.

- A permutation statistic st is said to be tail-graft-compatible if for any nonempty permutation $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ and any letter a that does not appear in π, the element st ($\pi: a$) depends only on st $(\pi),|\pi|$ and on the truth value of $a>\pi_{n}$. Here, π : a is the permutation obtained from π by appending a at the end:

$$
\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right) \quad \Longrightarrow \quad \pi: a=\left(a, \pi_{1}, \pi_{2}, \ldots, \pi_{n}, a\right)
$$

- A permutation statistic st is said to be tail-graft-compatible if for any nonempty permutation $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ and any letter a that does not appear in π, the element st ($\pi: a$) depends only on st $(\pi),|\pi|$ and on the truth value of $a>\pi_{n}$. Here, π : a is the permutation obtained from π by appending a at the end:

$$
\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right) \quad \Longrightarrow \quad \pi: a=\left(a, \pi_{1}, \pi_{2}, \ldots, \pi_{n}, a\right)
$$

- (Almost-)Theorem (G.) A statistic st is quadri-compatible if and only if it is shuffle-compatible, head-graft-compatible and tail-graft-compatible.
- My proof uses both induction and QSym and still needs to be written up. (Hopefully it survives the process.)
- A permutation statistic st is said to be tail-graft-compatible if for any nonempty permutation $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ and any letter a that does not appear in π, the element st ($\pi: a$) depends only on st $(\pi),|\pi|$ and on the truth value of $a>\pi_{n}$. Here, $\pi: a$ is the permutation obtained from π by appending a at the end:
$\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right) \quad \Longrightarrow \quad \pi: a=\left(a, \pi_{1}, \pi_{2}, \ldots, \pi_{n}, a\right)$.
- (Almost-)Theorem (G.) A statistic st is quadri-compatible if and only if it is shuffle-compatible, head-graft-compatible and tail-graft-compatible.
- My proof uses both induction and QSym and still needs to be written up. (Hopefully it survives the process.)
- Hence, Des, des, and Epk are quadri-compatible.
- A permutation statistic st is said to be tail-graft-compatible if for any nonempty permutation $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ and any letter a that does not appear in π, the element st ($\pi: a$) depends only on st $(\pi),|\pi|$ and on the truth value of $a>\pi_{n}$. Here, $\pi: a$ is the permutation obtained from π by appending a at the end:
$\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right) \quad \Longrightarrow \quad \pi: a=\left(a, \pi_{1}, \pi_{2}, \ldots, \pi_{n}, a\right)$.
- (Almost-)Theorem (G.) A statistic st is quadri-compatible if and only if it is shuffle-compatible, head-graft-compatible and tail-graft-compatible.
- My proof uses both induction and QSym and still needs to be written up. (Hopefully it survives the process.)
- Hence, Des, des, and Epk are quadri-compatible. (But not maj or Lpk or Rpk or Pk.)
- A permutation statistic st is said to be tail-graft-compatible if for any nonempty permutation $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ and any letter a that does not appear in π, the element st ($\pi: a$) depends only on st $(\pi),|\pi|$ and on the truth value of $a>\pi_{n}$. Here, $\pi: a$ is the permutation obtained from π by appending a at the end:

$$
\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right) \quad \Longrightarrow \quad \pi: a=\left(a, \pi_{1}, \pi_{2}, \ldots, \pi_{n}, a\right)
$$

- (Almost-)Theorem (G.) A statistic st is quadri-compatible if and only if it is shuffle-compatible, head-graft-compatible and tail-graft-compatible.
- My proof uses both induction and QSym and still needs to be written up. (Hopefully it survives the process.)
- Hence, Des, des, and Epk are quadri-compatible. (But not maj or Lpk or Rpk or Pk.)
- The proof (so far) uses a refined version of dendriform algebras: the quadri-algebras of Aguiar and Loday (arXiv:math/0309171, arXiv:1504.06056).

Thanks to Ira Gessel and Yan Zhuang for initiating this direction (and for helpful discussions).
Thank you for attending!
slides: http://www.cip.ifi.lmu.de/~grinberg/algebra/
dartmouth18.pdf
paper: http:
//www.cip.ifi.lmu.de/~grinberg/algebra/gzshuf2.pdf project: https://github.com/darijgr/gzshuf

