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This is not a paper, but just a computation that I am writing up in order to ensure
there are no errors. (As if this could be ensured this way.)

The purpose of the computation is to negatively answer the Concrete Question in
[3].

§1. The largest involutive quotient of a Hopf algebra

First a very easy positive result.

Definition 1. Let H be a Hopf algebra over a field k. We say that the
Hopf algebra H is involutive if S2 = id, where S denotes the antipode of
H.

Theorem 2. Let H be a Hopf algebra over a field k. Let InvH denote the
k-submodule H · ((S2 − id) (H)) ·H of H (where S denotes the antipode of
H). Then:

(a) The k-submodule InvH is a Hopf ideal of H.

(b) The quotient Hopf algebra H� (InvH) is an involutive Hopf algebra.

(c) Whenever G is an involutive Hopf algebra and f : H → G is a Hopf
algebra homomorphism, we have f (InvH) = 0, so that the homomorphism
f factors through H� (InvH).

(d) If H is a graded Hopf algebra, then InvH is a homogeneous ideal, so
that H� (InvH) is a graded Hopf algebra canonically.

(e) If H is a connected graded Hopf algebra, then H� (InvH) is a con-
nected graded Hopf algebra.

Theorem 2 shows that we can consider H� (InvH) as the largest involutive quo-
tient Hopf algebra of H. While it is well-known that every commutative and every
cocommutative Hopf algebra is involutive, it is definitely not true that every involutive
Hopf algebra is either commutative or cocommutative; and Theorem 2 shows how to
construct involutive Hopf algebras which are neither commutative nor cocommutative
from ”generic” Hopf algebras.

There is also a different way to construct involutive Hopf algebras: namely, by tak-
ing the tensor product of a commutative with a cocommutative Hopf algebra. However,
these are not really the most general possible case; in particular, they don’t help me
answering the Concrete Question in [3].

In order to prove the main part of Theorem 2 (a), we abstract from the antipode
and prove something more general:

Theorem 3. Let H be a bialgebra over a field k. Let t : H → H
be a coalgebra homomorphism. Let InvtH denote the k-submodule H ·
((t− id) (H)) ·H of H. Then, the k-submodule InvtH is a biideal of H.
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In the following proofs of Theorem 2 and Theorem 3, we will use the standard
notations for bialgebras: namely, we will denote by ∆ the comultiplication of H, and
by ε the counit of H.

Proof of Theorem 3. In the following, id will always denote idH , whereas the identity
map of H ⊗H will always be written idH⊗H .

First of all,

H · (InvtH)︸ ︷︷ ︸
=H·((t−id)(H))·H

= H ·H︸ ︷︷ ︸
⊆H

· ((t− id) (H)) ·H ⊆ H · ((t− id) (H)) ·H = InvtH,

so that InvtH is a left ideal of H. Similarly, InvtH is a right ideal of H. Thus, InvtH
is both a left ideal and a right ideal of H. In other words, InvtH is an ideal of H.

Note that

InvtH = H︸︷︷︸
31

· ((t− id) (H)) · H︸︷︷︸
31

⊇ 1 · ((t− id) (H)) · 1 = (t− id) (H) .

Furthermore, t⊗ t = (t⊗ id) ◦ (id⊗t), where id denotes idH
1. Also notice that

∆ ◦ t = (t⊗ t) ◦∆ (since t is a coalgebra homomorphism). Thus,

∆ ◦ t = (t⊗ t)︸ ︷︷ ︸
=(t⊗id)◦(id⊗t)

◦∆ = (t⊗ id) ◦ (id⊗t) ◦∆.

Hence,

∆ ◦ (t− id) = ∆ ◦ t︸ ︷︷ ︸
=(t⊗id)◦(id⊗t)◦∆

− ∆ ◦ id︸ ︷︷ ︸
=∆=idH⊗H ◦∆

(since composition of k-linear maps is k-bilinear)

= (t⊗ id) ◦ (id⊗t) ◦∆− idH⊗H ◦∆ = ((t⊗ id) ◦ (id⊗t)− idH⊗H) ◦∆.

1Proof. Every (x, y) ∈ H ⊗H satisfies

((t⊗ id) ◦ (id⊗t)) (x⊗ y) = (t⊗ id)

(id⊗t) (x⊗ y)︸ ︷︷ ︸
=id(x)⊗t(y)

 = (t⊗ id) (id (x)⊗ t (y))

= t

id (x)︸ ︷︷ ︸
=x

⊗ id (t (y))︸ ︷︷ ︸
=t(y)

= t (x)⊗ t (y) = (t⊗ t) (x⊗ y) .

In other words, the two maps (t⊗ id) ◦ (id⊗t) and t⊗ t are equal to each other on every pure tensor.
Since these two maps are k-linear, this yields that these two maps are identic (because two k-linear
maps from a tensor product must be identic if they are equal to each other on every pure tensor). In
other words, t⊗ t = (t⊗ id) ◦ (id⊗t), qed.
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Since

(t⊗ id) ◦ (id⊗t)− idH⊗H

= (t⊗ id) ◦ (id⊗t)− (id⊗t)︸ ︷︷ ︸
=idH⊗H ◦(id⊗t)

+ (id⊗t)− idH⊗H

= (t⊗ id) ◦ (id⊗t)− idH⊗H︸ ︷︷ ︸
=id⊗ id

◦ (id⊗t) + (id⊗t)− idH⊗H︸ ︷︷ ︸
=id⊗ id

= (t⊗ id) ◦ (id⊗t)− (id⊗ id) ◦ (id⊗t)︸ ︷︷ ︸
=(t⊗id− id⊗ id)◦(id⊗t)

(since composition of k-linear maps
is k-bilinear)

+ (id⊗t)− (id⊗ id)︸ ︷︷ ︸
=id⊗(t−id)

(since tensoring of k-linear maps
is k-bilinear)

= (t⊗ id− id⊗ id)︸ ︷︷ ︸
=(t−id)⊗id

(since tensoring of k-linear maps
is k-bilinear)

◦ (id⊗t)− id⊗ (t− id)

= ((t− id)⊗ id) ◦ (id⊗t)− id⊗ (t− id) ,

this becomes

∆ ◦ (t− id) =

(t⊗ id) ◦ (id⊗t)− idH⊗H︸ ︷︷ ︸
=((t−id)⊗id)◦(id⊗t)−id⊗(t−id)

 ◦∆

= (((t− id)⊗ id) ◦ (id⊗t)− id⊗ (t− id)) ◦∆.

Thus,

(∆ ◦ (t− id)) (H) = ((((t− id)⊗ id) ◦ (id⊗t)− id⊗ (t− id)) ◦∆) (H)

= (((t− id)⊗ id) ◦ (id⊗t)− id⊗ (t− id)) (∆ (H))︸ ︷︷ ︸
⊆H⊗H

⊆ (((t− id)⊗ id) ◦ (id⊗t)− id⊗ (t− id)) (H ⊗H)

⊆ (((t− id)⊗ id) ◦ (id⊗t)) (H ⊗H)︸ ︷︷ ︸
=((t−id)⊗id)((id⊗t)(H⊗H))

− (id⊗ (t− id)) (H ⊗H)︸ ︷︷ ︸
=id(H)⊗(t−id)(H)

= ((t− id)⊗ id) ((id⊗t) (H ⊗H))︸ ︷︷ ︸
⊆H⊗H

− id (H)︸ ︷︷ ︸
=H

⊗ (t− id) (H)

⊆ ((t− id)⊗ id) (H ⊗H)︸ ︷︷ ︸
=(t−id)(H)⊗id(H)

−H ⊗ (t− id) (H)

= (t− id) (H)⊗ id (H)︸ ︷︷ ︸
=H

−H ⊗ (t− id) (H)

= (t− id) (H)︸ ︷︷ ︸
⊆InvtH

⊗H −H ⊗ (t− id) (H)︸ ︷︷ ︸
⊆InvtH=− InvtH

(since InvtH is a k-module)

⊆ (InvtH)⊗H −H ⊗ (− InvtH) = (InvtH)⊗H +H ⊗ (InvtH) .

Now, it is a known (and very easy) fact that if A and B are two k-algebras, and I
is an ideal of A, then I ⊗B is an ideal of the k-algebra A ⊗B. Applied to A = H,
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B = H and I = InvtH, this yields that (InvtH)⊗H is an ideal of H ⊗H. Similarly,
H ⊗ (InvtH) is an ideal of H ⊗H.

So we know that (InvtH) ⊗ H and H ⊗ (InvtH) are ideals of H ⊗ H. Thus,
(InvtH) ⊗ H + H ⊗ (InvtH) is an ideal of H ⊗ H (because the sum of two ideals is
always an ideal).

Now, InvtH = H · ((t− id) (H)) ·H, so that

∆ (InvtH) = ∆ (H · ((t− id) (H)) ·H) = (∆ (H))︸ ︷︷ ︸
⊆H⊗H

· (∆ ((t− id) (H)))︸ ︷︷ ︸
=(∆◦(t−id))(H)

⊆(InvtH)⊗H+H⊗(InvtH)

· (∆ (H))︸ ︷︷ ︸
⊆H⊗H(

since H is a bialgebra, so (by the axioms of a bialgebra)
∆ is a k-algebra homomorphism

)
⊆ (H ⊗H) · ((InvtH)⊗H +H ⊗ (InvtH)) · (H ⊗H)︸ ︷︷ ︸

⊆(InvtH)⊗H+H⊗(InvtH)
(since (InvtH)⊗H+H⊗(InvtH) is an ideal of H⊗H)

⊆ (H ⊗H) · ((InvtH)⊗H +H ⊗ (InvtH)) ⊆ (InvtH)⊗H +H ⊗ (InvtH)

(since (InvtH)⊗H +H ⊗ (InvtH) is an ideal of H ⊗H).
Moreover,

ε ◦ (t− id) = ε ◦ t︸︷︷︸
=ε

(since t is a
coalgebra homomorphism)

− ε ◦ id︸ ︷︷ ︸
=ε

(since composition of k-linear maps is k-bilinear)

= ε− ε = 0.

Now, InvtH = H · ((t− id) (H)) ·H, so that

ε (InvtH) = ε (H · ((t− id) (H)) ·H) = (ε (H)) · (ε ((t− id) (H)))︸ ︷︷ ︸
=(ε◦(t−id))(H)=0

· (ε (H))

(
since H is a bialgebra, so (by the axioms of a bialgebra)

ε is a k-algebra homomorphism

)
= (ε (H)) · 0 · (ε (H)) = 0.

So we have shown that ∆ (InvtH) ⊆ (InvtH)⊗H+H⊗(InvtH) and ε (InvtH) = 0.
In other words, InvtH is a coideal of H.

Since InvtH is both an ideal and a coideal of H, it follows that InvtH is a biideal
of H. This proves Theorem 3.

Proof of Theorem 2. (a) It is well-known that the antipode S is an anti-coalgebra
homomorphism. Hence, S ◦ S is a coalgebra homomorphism (because the composition
of any two anti-coalgebra homomorphisms is a coalgebra homomorphism). In other
words, S2 is a coalgebra homomorphism (since S2 = S ◦ S). Hence, we can apply
Theorem 3 to t = S2. This yields that the k-submodule InvS2 H is a biideal of H
(where InvS2 H is defined as in Theorem 3). Since

InvS2 H = H ·
((
S2 − id

)
(H)

)
·H (by the definition of InvS2 H)

= InvH,

this yields that InvH is a biideal of H.
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Now,

S ◦
(
S2 − id

)
= S ◦ S2︸ ︷︷ ︸

=S3=S2◦S

− S ◦ id︸ ︷︷ ︸
=S=id ◦S

(since composition of k-linear maps is k-bilinear)

= S2 ◦ S − id ◦S =
(
S2 − id

)
◦ S (since composition of k-linear maps is k-bilinear) ,

so that

(
S ◦

(
S2 − id

))
(H) =

((
S2 − id

)
◦ S
)

(H) =
(
S2 − id

)S (H)︸ ︷︷ ︸
⊆H

 ⊆ (S2 − id
)

(H) .

But InvH = H · ((S2 − id) (H)) ·H yields

S (InvH) = S
(
H ·

((
S2 − id

)
(H)

)
·H
)

= (S (H))︸ ︷︷ ︸
⊆H

·
(
S
((
S2 − id

)
(H)

))︸ ︷︷ ︸
=(S◦(S2−id))(H)

⊆(S2−id)(H)

· (S (H))︸ ︷︷ ︸
⊆H

(since the antipode S is an anti-algebra homomorphism)

⊆ H ·
((
S2 − id

)
(H)

)
·H = InvH.

Thus, InvH is a biideal of H satisfying S (InvH) ⊆ InvH. In other words, InvH is a
Hopf ideal of H. This proves Theorem 2 (a).

(b) For every y ∈ H, let y denote the residue class of y modulo InvH.
Note that

InvH = H︸︷︷︸
31

·
((
S2 − id

)
(H)

)
· H︸︷︷︸
31

⊇ 1 ·
((
S2 − id

)
(H)

)
· 1 =

(
S2 − id

)
(H) .

Let S denote the antipode of the quotient Hopf algebra H� (InvH). By the defini-
tion of the antipode of a quotient Hopf algebra, we have S (x) = S (x) for every x ∈ H.
Thus, every y ∈ H satisfies

S
2

(y) = S
(
S (y)

)
= S

(
S (y)

)
(

since the formula S (x) = S (x) (applied to x = y) yields S (y) = S (y)
)

= S (S (y))
(

by the formula S (x) = S (x) (applied to x = S (y) )
)

= y + (S2 − id) (y) since
S (S (y)) = S2 (y) = y + S2 (y)− y︸︷︷︸

=id(y)

= y + S2 (y)− id (y)︸ ︷︷ ︸
=(S2−id)(y)

= y + (S2 − id) (y)


= y since

(
S2 − id

)
(y)︸︷︷︸
∈H

∈
(
S2 − id

)
(H) ⊆ InvH, so that y +

(
S2 − id

)
(y) ≡ ymod InvH

 .
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Thus, every z ∈ H� (InvH) satisfies S
2

(z) = idH�(InvH) (z) 2. In other words,

S
2

= idH�(InvH). This shows that the quotient Hopf algebra H� (InvH) is involutive.
Theorem 2 (b) is proven.

(c) Let G be an involutive Hopf algebra and f : H → G be a Hopf algebra
homomorphism. Then, since f is a Hopf algebra homomorphism, we have f◦S = SG◦f ,
where SG denotes the antipode of G. Thus,

f ◦ S2︸︷︷︸
=S◦S

= f ◦ S︸ ︷︷ ︸
=SG◦f

◦S = SG ◦ f ◦ S︸ ︷︷ ︸
=SG◦f

= SG ◦ SG︸ ︷︷ ︸
=S2

G=idG

(since G is involutive)

◦f = f,

so that

f ◦
(
S2 − id

)
= f ◦ S2︸ ︷︷ ︸

=f

− f ◦ id︸ ︷︷ ︸
=f

(since composition of k-linear maps is k-bilinear)

= f − f = 0.

Hence, (f ◦ (S2 − id)) (H) = 0. Now, InvH = H · ((S2 − id) (H)) ·H yields

f (InvH) = f
(
H ·

((
S2 − id

)
(H)

)
·H
)

= (f (H)) ·
(
f
((
S2 − id

)
(H)

))︸ ︷︷ ︸
=(f◦(S2−id))(H)=0

· (f (H))

(since f is a k-algebra homomorphism)

= (f (H)) · 0 · (f (H)) = 0.

Hence, the homomorphism f factors through H� (InvH). Theorem 2 (c) is thus
proven.

Parts (d) and (e) of Theorem 2 are completely straightforward and thus left to the
reader. The proof of Theorem 2 is thus complete.

We notice that we could generalize Theorems 2 and 3 by replacing ”field” by ”com-
mutative ring”. These generalizations are proven in exactly the same way as we verified
Theorems 2 and 3, with the only difference that we would have to use more compli-
cated notations, because we couldn’t anymore identify (for instance) (InvtH)⊗H with
a k-submodule of H ⊗H in the proof of Theorem 3 (because if A, B and C are three
k-modules over a commutative ring k such that A is a submodule of B, then A ⊗ C
is in general not a submodule of B ⊗ C), so we would have to explicitly work with
inclusion maps instead.

§2. The Dynkin operator

We can define a Dynkin operator for an arbitrary graded Hopf algebra, even though
it enjoys most of its interesting properties in less general cases (for instance, when H
is commutative or cocommutative).

Definition 4. Let H be a graded Hopf algebra over a field k. For every
n ∈ N, the denote by Hn the n-th graded component of H.

2Proof. Let z ∈ H� (InvH). Then, there exists some y ∈ H such that z = y. Consider this y.

Then, z = y yields S
2

(z) = S
2

(y) = y = z = idH�(InvH) (z), qed.
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(a) Let E : H → H be the k-linear map which sends every x ∈ Hn to nx
for every n ∈ N. Note that this map E is easily seen to be a derivation
(i. e., it satisfies E (xy) = E (x) y + xE (y) for all x ∈ H and y ∈ H, or,
equivalently, it satisfies the identity E ◦ µ = µ ◦ (E ⊗ id + id⊗E) with µ
denoting the multiplication map of H) and a coderivation (i. e., it satisfies
∆ ◦ E = (E ⊗ id + id⊗E) ◦ ∆ with ∆ denoting the comultiplication map
of H).

(b) The Dynkin operator of H is defined to mean the convolution E ∗ S of
the maps E : H → H and S : H → H (where S denotes the antipode of
H, as usual).

Note that E ∗ S is not the only ”Dynkin operator” around. One can just as well
call S ∗E a ”Dynkin operator” (it is a kind of mirror version of E ∗ S), and for a field
k of characteristic 0 one can even ”interpolate” between these two ”Dynkin operators”
E ∗ S and S ∗E by introducing a ”Dynkin operator” Sα ∗E ∗ Sβ for any two elements
α and β of k satisfying α+β = 1. See the Remark in §3 of [2] (where our E is denoted
by D) for this definition (which is due to Claudio Procesi).

A well-known theorem states that:

Theorem 5. Let H be a graded Hopf algebra over k.

(a) If H is cocommutative, then the Dynkin operator E ∗ S (defined in
Definition 4) satisfies (E ∗ S) ◦ (E ∗ S) = E ◦ (E ∗ S), (E ∗ S) |PrimH=
E |PrimH and (E ∗ S) (H) ⊆ PrimH. (Here, PrimH denotes the subspace
of H formed by all primitive elements of H.)

(b) If H is commutative, then the Dynkin operator E∗S (defined in Defini-
tion 4) satisfies (E ∗ S)◦(E ∗ S) = E◦(E ∗ S), Ker (E ∗ S) ⊆ KerE+(H+)

2

and (E ∗ S)
(

(H+)
2
)

= 0. (Here, H+ denotes the ideal Ker ε of H.)

Our goal in the next section (§3) is to prove that (E ∗ S)◦(E ∗ S) = E◦(E ∗ S) is not
necessarily true for an involutive (but not necessarily commutative or cocommutative)
connected graded Hopf algebra H. (Note that tensor products of commutative with
cocommutative Hopf algebras are easily seen to satisfy (E ∗ S)◦ (E ∗ S) = E ◦ (E ∗ S),
so we need a more subtle counterexample).

§3. The counterexample

To construct a counterexample, we will need the Hopf algebra Ho defined by Foissy
in [1], Definition 2. This is the Hopf algebra of ordered (rooted) forests, where ”ordered”
means that the set of vertices is totally ordered (but not necessarily heap-ordered, i.
e., a child needs not be greater than its father). We recall its definition (mostly quoted
from [1]):

Definition 6. (a) An ordered forest means a rooted forest endowed with
a total order on the set of its vertices. We are going to represent such an
ordered forest pictorially by drawing the forest and decorating every vertex
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with its position number3. The empty forest is denoted by 1 (as it will later
become the unity of an algebra).

(b) For every n ∈ N, let Fo (n) denote the set of all ordered forests with n
vertices. The set of all ordered forests will be called Fo; it is the union of
the mutually disjoint sets Fo (n) over all n ∈ N.

(c) Let k be a field. We denote by Ho the free k-vector space with basis
Fo; it is canonically graded, with the n-th graded component Ho,n being
the free k-vector space with basis Fo (n).

(d) We make Ho into a graded k-algebra as follows: For any two ordered
forests a and b, let ab be the ordered forest whose underlying forest is the
disjoint union of the forests a and b, and the order on which is defined by
letting each vertex of a be smaller than each vertex of b (but the order of
the vertices of a is kept from a, and the order of the vertices of b is kept
from b). The unity of this k-algebra is 1 (the empty forest).

(e) For every forest F , let V (F ) denote the set of the vertices of F . If F
is a forest and v is a subset of V (F ), then we write v |= V (F ) (and we
say that v is an admissible cut of F ) if and only if no element of v is a
descendant4 of another element of v except of itself. If F is a forest and v
is a subset of V (F ) satisfying v |= V (F ), then we denote by LeavF the
rooted subforest of F obtained by keeping only the vertices above v (where
a vertex of F is said to be ”above v” if it is a descendant of an element of
v), and we denote by RoovF the rooted subforest of F obtained by keeping
only the other vertices. If F is an ordered forest, then LeavF and RoovF
canonically become ordered forests.

(f) We now make Ho into a k-bialgebra by defining

∆ (F ) =
∑

v|=V (F )

LeavF ⊗RoovF for every forest F

and

ε (F ) =

{
1, if F = 1;
0, if F 6= 1

for every forest F.

Theorem 7. Definition 6 makes Ho into a connected graded k-Hopf alge-
bra.

For the proof of Theorem 7, see the references in §1.2 of [1]. Here are the Fo (n) for
0 ≤ n ≤ 3 (this table is copied from [1]):

Fo (0) = {1} ;

Fo (1) = { q1} ;

Fo (2) = { q1 q2 , qq12 , qq21 } ;

Fo (3) =
{ q1 q2 q3 , q1 qq23 , q1 qq32 , qq13 q2 , q2 qq31 , qq12 q3 , qq21 q3 , q∨qq 1

32 , q∨qq 231 , q∨qq 3
21 , qqq123 , qqq132 , qqq213 , qqq231 , qqq312 , qqq321 } .

3By a position number of an element a in a totally ordered finite set T , I mean the number n such
that a is the n-th smallest element of T .

4Descendants mean direct or indirect descendants. (In particular, every vertex is a descendant of
itself.)
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Here are some examples of how multiplication, comultiplication and the antipode
look on Ho:

Multiplication:

qq12 · q∨qq 2
31 = qq12 q∨qq 453 ;q∨qq 231 · qq12 = q∨qq 231 qq45 .

Comultiplication:

∆ ( q1) = q1 ⊗ 1 + 1⊗ q1 ;

∆ ( q1 q2) = q1 q2 ⊗ 1 + 2 q1 ⊗ q1 + 1⊗ q1 q2 ;

∆ ( qq21 ) = qq21 ⊗ 1 + q1 ⊗ q1 + 1⊗ qq21 ;

∆ ( qq12 ) = qq12 ⊗ 1 + q1 ⊗ q1 + 1⊗ qq12 ;

∆
( qqq321 ) = qqq321 ⊗ 1 + qq21 ⊗ q1 + q1 ⊗ qq21 + 1⊗ qqq321 ;

∆
( qqq231 ) = qqq231 ⊗ 1 + qq21 ⊗ q1 + q1 ⊗ qq12 + 1⊗ qqq231 ;

∆ ( qq23 q1) = qq23 q1 ⊗ 1 + q1 q2 ⊗ q1 + qq12 ⊗ q1 + q1 ⊗ q1 q2 + q1 ⊗ qq12 + 1⊗ qq23 q1 ;

∆
( q∨qq 231

)
= q∨qq 2

31 ⊗ 1 + q1 q2 ⊗ q1 + q1 ⊗ qq21 + q1 ⊗ qq12 + 1⊗ q∨qq 2
31 ;

∆

( q∨qqq 2
34

1

)
= q∨qqq 234

1

⊗ 1 + 1⊗ q∨qqq 2
34

1

+ q1 ⊗ q∨qq 1
32 + qq21 ⊗ qq12 + q1 ⊗ qqq231 + q1 q2 ⊗ qq12 + qq31 q2 ⊗ q1 ;

∆

( qqqq3421
)

= qqqq3421 ⊗ 1 + qqq321 ⊗ q1 + qq21 ⊗ qq12 + q1 ⊗ qqq231 + 1⊗ qqqq3421 .
Antipode:5

S ( q1) = − q1 (no wonder, since q1 is primitive) ;

S ( qq21 ) = q1 q2 − qq21 ;

S ( qq12 ) = q1 q2 − qq12 ;

S
( qqq321 ) = − q1 q2 q3 + qq21 q3 + q1 qq32 − qqq321 ;

S
( qqq231 ) = − q1 q2 q3 + qq21 q3 + q1 qq23 − qqq231 .

Note that, at this place, our notations are slightly ambiguous: For example, what

does qq12 q∨qq 5
34 qq21 mean? Does it mean

( qq12 q∨qq 5
34
) qq21 = qq12 q∨qq 5

34 qq76 or does it mean qq12 ( q∨qq 534 qq21 ) =qq12 q∨qq 7
56 qq43 ? The ambiguity is due to the fact that when we write two trees one after

the other, it is not clear whether we mean to multiply these two trees as elements of
Ho or join these two trees into a forest. One way to get rid of this ambiguity is never
to suppress the product sign (so that when two trees are written one after the other,
it cannot mean multiplication, but can only mean the forest). This is what we are

5Computing the antipode can be done by recurrently solving the equation (id ∗S) (x) = ε (x) ·1 (or
the equation (S ∗ id) (x) = ε (x) · 1), but in some cases one can simplify one’s work by using the fact
that the antipode is an anti-algebra homomorphism.
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going to do in the following. But let us also note that we will use × instead of · as our
product sign, because · is too similar to a one-vertex tree.

Let now R be the k-subalgebra of Ho generated by the ordered trees q1 , qq21 , qq12 ,

qqq321 , qqq231 and qqqq3421 . It is very easy to see that R is a connected graded Hopf subalgebra of
Ho

6. Let R′ be the involutive Hopf algebra R� (InvR). Assume that the field k
has characteristic 0. Then we are going to prove that (E ∗ S) ◦ (E ∗ S) 6= E ◦ (E ∗ S)
in R′. This will answer the Concrete Question in [3] negatively.

We denote by ∆, ε, µ, η and S the usual operations of the Hopf algebra R (in this
order: comultiplication, counit, multiplication map, unit map and antipode). Also, let
[·, ·] denote the commutator.

First, a very simple lemma:

Lemma 8. Let H be a graded Hopf algebra over k. Let E and S be defined
as in Theorem 5. Then:

(a) Every graded map f : H → H satisfies E ◦ f = f ◦ E.

(b) Let S be the antipode of H, let ε be the counit map of H, and let η be
the unit map of H. Then,

(E ∗ S) ◦ (E ∗ S)− E ◦ (E ∗ S) = (E ∗ S) ◦
(
E ∗ S

)
,

where S denotes the map S − η ◦ ε : H → H.

Proof of Lemma 8 (sketched). Lemma 8 (a) is left to the reader.
(b) By Lemma 8 (a) (applied to f = E ∗ S, which is easily seen to be graded), we

have E ◦ (E ∗ S) = (E ∗ S) ◦ E. Hence,

(E ∗ S) ◦ (E ∗ S)− E ◦ (E ∗ S) = (E ∗ S) ◦ (E ∗ S)− (E ∗ S) ◦ E = (E ∗ S) ◦

E ∗ S − E︸︷︷︸
=E∗(η◦ε)


(since composition of k-linear maps is k-bilinear)

= (E ∗ S) ◦ (E ∗ S − E ∗ (η ◦ ε))︸ ︷︷ ︸
=E∗(S−η◦ε)

(since convolution of k-linear maps is k-bilinear)

= (E ∗ S) ◦

E ∗ (S − η ◦ ε)︸ ︷︷ ︸
=S

 = (E ∗ S) ◦
(
E ∗ S

)
,

proving Lemma 8 (b).
Now, let us come back to our R. In order to prove that (E ∗ S) ◦ (E ∗ S) 6=

E◦(E ∗ S) in R′, it is enough to show that (E ∗ S)◦
(
E ∗ S

)
6= 0 in R′ (by Lemma 8 (b),

applied to H = R′). We will achieve this by showing that
(
(E ∗ S) ◦

(
E ∗ S

))( qqqq3421
)
6=

6More generally: If S is a set of ordered trees which, for every ordered tree s ∈ S, contains
each ordered subtree of S, then the k-subalgebra of Ho generated by S is a connected graded Hopf
subalgebra of Ho.
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0 in R′. This means showing that(
(E ∗ S) ◦

(
E ∗ S

))( qqqq3421
)
/∈ InvR. (1)

We will prove (1) by showing something stronger: We will show that(
(E ∗ S) ◦

(
E ∗ S

))( qqqq3421
)
/∈ InvR +

(
R+
)3
. (2)

Here, for every coalgebra C, we denote by C+ the subspace Ker ε of C. We notice that
R+ is an ideal of R, so that (R+)

3
is an ideal as well. Since R⊗R also is a bialgebra, we

have a well-defined ideal (R⊗R)+ of R⊗R as well, and it is important to notice that

(R⊗R)+ = R+⊗R+R⊗R+, so that every n ∈ N satisfies
(
(R⊗R)+)n =

n∑
i=0

(R+)
i⊗

(R+)
n−i

. As a consequence, every n ∈ N satisfies µ
((

(R⊗R)+)n) ⊆ (R+)
n
. Also,

every n ∈ N satisfies ∆ ((R+)
n
) ⊆

(
(R⊗R)+)n (since ∆ is an algebra homomorphism

and commutes with the counity maps of R and R⊗R), S ((R+)
n
) ⊆ (R+)

n
(since S is

an anti-algebra homomorphism and S (R+) ⊆ R+) and E ((R+)
n
) ⊆ (R+)

n
(very easy

to check). As a consequence, (E ∗ S)
(

(R+)
3
)
⊆ (R+)

3
(since E ∗ S = µ ◦ (E ⊗ S) ◦∆

by the definition of convolution).
This allows us to work modulo (R+)

3
(when we are working in R) and modulo(

(R⊗R)+)3
(when we are working in R ⊗ R), i. e., to forget all terms which include

more than 2 (disjoint) trees (because (R+)
3

is the k-vector subspace of R which is
formed by products of more than 2 disjoint trees). Thus, proving (2) will require less
computations than proving (1), even though (2) is a slightly stronger result.

First of all, we are always going to compute in the first 5 degrees of R. Let us give
bases for these degrees:

R0 = 〈1〉 ;
R1 = 〈 q1〉 ;
R2 = 〈 q1 × q1 , qq21 , qq12 〉
R3 =

〈 q1 × q1 × q1 , q1 × qq21 , qq21 × q1 , q1 × qq12 , qq12 × q1 , qqq321 , qqq231 〉

R4 =

〈 q1 × q1 × q1 × q1 , q1 × q1 × qq21 , q1 × qq21 × q1 , qq21 × q1 × q1 ,q1 × q1 × qq12 , q1 × qq12 × q1 , qq12 × q1 × q1 , qq21 × qq21 , qq21 × qq12 ,qq12 × qq21 , qq12 × qq12 , q1 × qqq321 , qqq321 × q1 , q1 × qqq231 ,
qqq231 × q1 , qqqq3421

〉
.

To be able to prove (2), we need to compute a basis for
(

InvR + (R+)
3
)
∩ R4. Since

everything is graded, we have
(

InvR + (R+)
3
)
∩R4 = (InvR)∩R4 + (R+)

3 ∩R4 (see

a more detailed proof of this further below). It is clear that (R+)
3 ∩R4 is the k-vector

subspace of R which is formed by products of more than 2 disjoint trees, so a basis is
obvious:(
R+
)3 ∩R4 =

〈 q1 × q1 × q1 × q1 , q1 × q1 × qq21 , q1 × qq21 × q1 , qq21 × q1 × q1 ,q1 × q1 × qq12 , q1 × qq12 × q1 , qq12 × q1 × q1
〉
.
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It remains to compute (InvR) ∩R4. For this we first notice that:

Lemma 9. Let H be a Hopf algebra over a field k. Then, Ker (S2 − id) is
a k-subalgebra of H.

Proof of Lemma 9. Notice that the antipode S is an anti-algebra homomor-
phism. Hence, S (1) = 1, so that S (S (1)) = S (1) = 1. Hence, (S2 − id) (1) =
S2 (1)︸ ︷︷ ︸

=S(S(1))=1

− id (1)︸ ︷︷ ︸
=1

= 1− 1 = 0, so that 1 ∈ Ker (S2 − id).

Let a ∈ Ker (S2 − id) and b ∈ Ker (S2 − id). Then, S2 (a)− a︸︷︷︸
=id(a)

= S2 (a)−id (a) =

(S2 − id) (a) = 0 (since a ∈ Ker (S2 − id)), so that S2 (a) = a. Similarly, S2 (b) = b.
We know that the antipode S is an anti-algebra homomorphism. Hence, S (ab) =

S (b)S (a) and S (S (b)S (a)) = S (S (a))S (S (b)). Thus,

S2 (ab) = S

 S (ab)︸ ︷︷ ︸
=S(b)S(a)

 = S (S (b)S (a)) = S (S (a))︸ ︷︷ ︸
=S2(a)=a

S (S (b))︸ ︷︷ ︸
=S2(b)=b

= ab,

so that (S2 − id) (ab) = S2 (ab)︸ ︷︷ ︸
=ab

− id (ab)︸ ︷︷ ︸
=ab

= ab − ab = 0. In other words, ab ∈

Ker (S2 − id).
So we have shown that any a ∈ Ker (S2 − id) and b ∈ Ker (S2 − id) satisfy ab ∈

Ker (S2 − id). Combined with the fact that 1 ∈ Ker (S2 − id), this yields that Ker (S2 − id)
is a k-subalgebra of H (since Ker (S2 − id) is clearly a k-submodule of H). Lemma 9
is proven.

Next we notice that R0 + R1 + R2 ⊆ Ker (S2 − id). This is very easy to check
manually, but actually is a particular case of something general:

Lemma 10. Let H be a connected graded Hopf algebra over a field k such
that any a ∈ H1 and b ∈ H1 satisfy ab = ba. Then, H0 + H1 + H2 ⊆
Ker (S2 − id).

The proof of Lemma 10 is left to the reader; it can be applied to H = R since R1

is one-dimensional.
Now we notice that InvR = R · ((S2 − id) (R)) · R (by the definition of InvR), so

that

(InvR) ∩R4

=
(
R ·
((
S2 − id

)
(R)
)
·R
)
∩R4 =

∑
(i,j,`)∈N3;
i+j+`=4

Ri ·
((
S2 − id

)
(Rj)

)
·R` (since R is graded)

=
∑

(i,j,`)∈N3;
i+j+`=4;
j>2

Ri ·
((
S2 − id

)
(Rj)

)
·R`

(
here we removed all terms with j ≤ 2 from the sum,

since R0 +R1 +R2 ⊆ Ker (S2 − id)

)

=
(
S2 − id

)
(R4) +

(
S2 − id

)
(R3) ·R1 +R1 ·

(
S2 − id

)
(R3) . (3)
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We need now to compute (S2 − id) (R3) and (S2 − id) (R4).
Computation of (S2 − id) (R3): We know that

R3 =
〈 q1 × q1 × q1 , q1 × qq21 , qq21 × q1 , q1 × qq12 , qq12 × q1 , qqq321 , qqq231 〉 .

Hence, to compute (S2 − id) (R3), we need to apply S2− id to each of these generators.
But since

any product of elements of R0 +R1 +R2 lies in Ker
(
S2 − id

)
(4)

(by R0 +R1 +R2 ⊆ Ker (S2 − id) and Lemma 9), it is clear that q1 × q1 × q1 , q1 × qq21 ,qq21 × q1 , q1 × qq12 and qq12 × q1 all lie in Ker (S2 − id), so we only need to apply S2 − id

to qqq321 and qqq231 only.
It is easy to check from the recurrent definition of S that

S
( qqq321 ) = − q1 × q1 × q1 + qq21 × q1 + q1 × qq21 − qqq321 ; (5)

S
( qqq231 ) = − q1 × q1 × q1 + qq21 × q1 + q1 × qq12 − qqq231 . (6)

Now,

S2
( qqq321 ) = S

(
S
( qqq321 )) = S

(
− q1 × q1 × q1 + qq21 × q1 + q1 × qq21 − qqq321 )

(by (5))

= −S ( q1)× S ( q1)× S ( q1) + S ( q1)× S ( qq21 ) + S ( qq21 )× S ( q1)− S
( qqq321 )

(since S is an anti-algebra homomorphism)

= q1 × q1 × q1 − q1 × ( q1 × q1 − qq21 )− ( q1 × q1 − qq21 )× q1
−
(
− q1 × q1 × q1 + qq21 × q1 + q1 × qq21 − qqq321 )

(using already-known values of S)

= qqq321 .
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Hence, (S2 − id)
( qqq321 ) = 0. 7 Besides,

S2
( qqq231 ) = S

(
S
( qqq231 )) = S

(
− q1 × q1 × q1 + qq21 × q1 + q1 × qq12 − qqq231 )

(by (6))

= −S ( q1)× S ( q1)× S ( q1) + S ( q1)× S ( qq21 ) + S ( qq12 )× S ( q1)− S
( qqq231 )

(since S is an anti-algebra homomorphism)

= q1 × q1 × q1 − q1 × ( q1 × q1 − qq21 )− ( q1 × q1 − qq12 )× q1
−
(
− q1 × q1 × q1 + qq21 × q1 + q1 × qq12 − qqq231 )

(using already-known values of S)

= [ q1 , qq21 − qq12 ] + qqq231 ,
so that (S2 − id)

( qqq231 ) = [ q1 , qq21 − qq12 ].

As a result of this all, (
S2 − id

)
(R3) = 〈[ q1 , qq21 − qq12 ]〉 . (7)

Computation of (S2 − id) (R4): We have

R4 =

〈 q1 × q1 × q1 × q1 , q1 × q1 × qq21 , q1 × qq21 × q1 , qq21 × q1 × q1 ,q1 × q1 × qq12 , q1 × qq12 × q1 , qq12 × q1 × q1 , qq21 × qq21 , qq21 × qq12 ,qq12 × qq21 , qq12 × qq12 , q1 × qqq321 , qqq321 × q1 , q1 × qqq231 ,
qqq231 × q1 , qqqq3421

〉
.

As in the case of R3, we don’t have to apply S2− id to each of these generators because
of (4). We only need to apply S2 − id to the five elements q1 × qqq321 , qqq321 × q1 , q1 ×
qqq231 , qqq231 × q1 , qqqq3421 . We notice that whenever a and b are two elements of a Hopf algebra
H with a being primitive, then

S2 (ab) = S

 S (ab)︸ ︷︷ ︸
=S(b)S(a)

 = S (S (b)S (a)) = S (S (a))︸ ︷︷ ︸
=a

(since a is primitive, thus S(a)=−a, and −a
is primitive again, so that S(−a)=a)

S (S (b))︸ ︷︷ ︸
=S2(b)

= aS2 (b) ,

so that (S2 − id) (ab) = a (S2 − id) (b). Applying this to a = q1 and b = qqq321 , we obtain(
S2 − id

) ( q1 × qqq321 ) = q1 × (S2 − id
) ( qqq321 )︸ ︷︷ ︸

=0

= 0.

7This result should not surprise us in the least, and we could actually have found it without
any computation: It is easy to see that the subalgebra of R generated by ladders ordered from top to

bottom (i. e., trees of the form q1 , qq21 , qqq321 , qqqq4321 , ...) is a Hopf subalgebra of R, and this Hopf subalgebra

is cocommutative, so it satisfies S2 = id. Thus,
(
S2 − id

) ( qqq321 ) = 0.
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Similarly, (
S2 − id

) ( qqq321 × q1) = 0;(
S2 − id

) ( q1 × qqq231 ) = q1 × [ q1 , qq21 − qq12 ] ;(
S2 − id

) ( qqq231 × q1) = [ q1 , qq21 − qq12 ]× q1 .
It is the fifth element, qqqq3421 , that makes us the most trouble. From

∆

( qqqq3421
)

= qqqq3421 ⊗ 1 + qqq321 ⊗ q1 + qq21 ⊗ qq12 + q1 ⊗ qqq231 + 1⊗ qqqq3421
and the recursive interpretation of S ∗ id = η ◦ ε, we obtain

0 = S

( qqqq3421
)
× 1 + S

( qqq321 )︸ ︷︷ ︸
=− q1× q1× q1+ qq21 × q1+ q1× qq21 − qqq321

× q1 + S ( qq21 )︸ ︷︷ ︸
= q1× q1− qq21 × qq12

+ S ( q1)︸ ︷︷ ︸
=− q1 × qqq231 + S (1)︸ ︷︷ ︸

=1

× qqqq3421

= S

( qqqq3421
)
× 1− q1 × q1 × q1 × q1 + qq21 × q1 × q1 + q1 × qq21 × q1 − qqq321 × q1

+ q1 × q1 × qq12 − qq21 × qq12 − q1 × qqq231 + qqqq3421 ,
so that

S

( qqqq3421
)

= q1 × q1 × q1 × q1 − qq21 × q1 × q1 − q1 × qq21 × q1 + qqq321 × q1
− q1 × q1 × qq12 + qq21 × qq12 + q1 × qqq231 − qqqq3421 . (8)

Applying S to this again (and using that S is an anti-algebra homomorphism), we get

S2

( qqqq3421
)

= S ( q1)× S ( q1)× S ( q1)× S ( q1)− S ( q1)× S ( q1)× S ( qq21 )− S ( q1)× S ( qq21 )× S ( q1)

+ S ( q1)× S
( qqq321 )− S ( qq12 )× S ( q1)× S ( q1) + S ( qq12 )× S ( qq21 ) + S

( qqq231 )× S ( q1)− S

( qqqq3421
)

=
[ q1 , qqq321 ]+ q1 × [ q1 , qq12 − qq21 ]−

[ q1 , qqq231 ]− [ qq21 , qq12 ] + qqqq3421 using the known values S ( q1) = − q1 , S ( qq21 ) = q1 × q1 − qq21 , S ( qq12 ) = q1 × q1 − qq12 ,

and the values of S
( qqq321 ) , S

( qqq231 ) and S

( qqqq3421
)

given by (1), (2) and (8)

 ,
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so that (
S2 − id

)( qqqq3421
)

=
[ q1 , qqq321 ]+ q1 × [ q1 , qq12 − qq21 ]−

[ q1 , qqq231 ]− [ qq21 , qq12 ] .

Hence, altogether,(
S2 − id

)
(R4)

=

〈
0, 0, q1 × [ q1 , qq21 − qq12 ] , [ q1 , qq21 − qq12 ]× q1 ,[ q1 , qqq321 ]+ q1 × [ q1 , qq12 − qq21 ]−

[ q1 , qqq231 ]− [ qq21 , qq12 ]

〉
=
〈 q1 × [ q1 , qq21 − qq12 ] , [ q1 , qq21 − qq12 ]× q1 , [ q1 , qqq321 ]− [ q1 , qqq231 ]− [ qq21 , qq12 ]

〉
. (9)

Substituting (7) and (9) (and R1 = 〈 q1〉) in (3), we obtain

(InvR) ∩R4

=
〈 q1 × [ q1 , qq21 − qq12 ] , [ q1 , qq21 − qq12 ]× q1 , [ q1 , qqq321 ]− [ q1 , qqq231 ]− [ qq21 , qq12 ]

〉
+ 〈[ q1 , qq21 − qq12 ]〉 × 〈 q1〉+ 〈 q1〉 × 〈[ q1 , qq21 − qq12 ]〉

=
〈 q1 × [ q1 , qq21 − qq12 ] , [ q1 , qq21 − qq12 ]× q1 , [ q1 , qqq321 ]− [ q1 , qqq231 ]− [ qq21 , qq12 ]

〉
(10)

= 〈 q1 × [ q1 , qq21 − qq12 ] , [ q1 , qq21 − qq12 ]× q1〉︸ ︷︷ ︸
⊆(R+)3∩R4

+
〈[ q1 , qqq321 ]− [ q1 , qqq231 ]− [ qq21 , qq12 ]

〉
⊆
(
R+
)3 ∩R4 +

〈[ q1 , qqq321 ]− [ q1 , qqq231 ]− [ qq21 , qq12 ]
〉
,

so that

(InvR) ∩R4 +
(
R+
)3 ∩R4

=
〈[ q1 , qqq321 ]− [ q1 , qqq231 ]− [ qq21 , qq12 ]

〉
+
(
R+
)3 ∩R4. (11)

But since the ideals InvR and (R+)
3

are homogeneous, we have (InvR)∩R4 +(R+)
3∩

R4 =
(

(InvR) + (R+)
3
)
∩R4 (because the sum of the intersections of two homogeneous

ideals with R4 equals the intersection of their sum with R4
8). Hence, (11) becomes(

(InvR) +
(
R+
)3
)
∩R4

=
〈[ q1 , qqq321 ]− [ q1 , qqq231 ]− [ qq21 , qq12 ]

〉
+
(
R+
)3 ∩R4. (12)

We now take aim at (2) and compute
(
E ∗ S

)( qqqq3421
)

modulo (R+)
3
: Since

∆

( qqqq3421
)

= qqqq3421 ⊗ 1 + qqq321 ⊗ q1 + qq21 ⊗ qq12 + q1 ⊗ qqq231 + 1⊗ qqqq3421 ,
8Proof (sketched). The intersection of a homogeneous ideal with R4 is the same as the projection

of this ideal on R4. But the sum of the projections of two ideals on R4 clearly equals the projection
of their sum on R4, qed.
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we have (using the fact that S (x) = S (x) for every x ∈ R+) the following computation:

(
E ∗ S

)( qqqq3421
)

= E

( qqqq3421
)
× S (1)︸ ︷︷ ︸

=0

+E
( qqq321 )︸ ︷︷ ︸

=3 qqq321
×S ( q1)︸ ︷︷ ︸

=− q1 +E ( qq21 )︸ ︷︷ ︸
=2 qq21 × S ( qq12 )︸ ︷︷ ︸

= q1× q1− qq12
+ E ( q1)︸ ︷︷ ︸

=1 q1 × S
( qqq231 )︸ ︷︷ ︸

=− q1× q1× q1+ qq21 × q1+ q1× qq12 − qqq231
+E (1)︸ ︷︷ ︸

=0·1

×S

( qqqq3421
)

= −3 qqq321 × q1 + 2 qq21 × ( q1 × q1 − qq12 ) + q1 × (− q1 × q1 × q1 + qq21 × q1 + q1 × qq12 − qqq231 )
≡ −3 qqq321 × q1 − 2 qq21 × qq12 − q1 × qqq231 mod

(
R+
)3
. (13)

We want to apply E ∗S to (13), but for this we need to compute (E ∗ S)
( qqq321 × q1),

(E ∗ S) ( qq21 × qq12 ) and (E ∗ S)
( q1 × qqq231 ). This is a routine computation, but we can

simplify it using the following lemma:

Lemma 11. Let H be a connected graded Hopf algebra over a field k. We
will use the notations of Definition 4. Let x ∈ H1 and y ∈ H+.

(a) Then, (E ∗ S) (xy) = [x, (E ∗ S) (y)].

(b) Besides, (E ∗ S) (yx) = y(1)xS
(
y(2)

)
using the sumfree Sweedler nota-

tion.

Note that Lemma 11 (a) is a particular case of Theorem 6 in [2] (using Theorem 4
in [2]).

Proof of Lemma 11 (sketched). We will use the sumfree Sweedler notation.
It is known enough that every element of H1 is primitive (due to the connectedness

of H). Thus, in particular, x is primitive, so that x(1) ⊗ x(2) = x ⊗ 1 + 1 ⊗ x. Also,
x ∈ H1 yields E (x) = 1x = x.
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(a) We have

(E ∗ S) (xy) = E
(

(xy)(1)

)
S
(

(xy)(2)

)
= E

(
x(1)y(1)

)︸ ︷︷ ︸
=E(x(1))y(1)+x(1)E(y(1))

(since E is a derivation)

S
(
x(2)y(2)

)︸ ︷︷ ︸
=S(y(2))S(x(2))

(since S is an anti-algebra homomorphism)

=
(
E
(
x(1)

)
y(1) + x(1)E

(
y(1)

))
S
(
y(2)

)
S
(
x(2)

)
= E

(
x(1)

)
y(1)S

(
y(2)

)︸ ︷︷ ︸
=(id ∗S)(y)=ε(y)1

S
(
x(2)

)
+ x(1)E

(
y(1)

)
S
(
y(2)

)
S
(
x(2)

)
= E

(
x(1)

)
S
(
x(2)

)
ε (y) 1 + x(1)E

(
y(1)

)
S
(
y(2)

)
S
(
x(2)

)
= E (x)︸ ︷︷ ︸

=x

S (1)︸ ︷︷ ︸
=1

ε (y)︸︷︷︸
=0

(since y∈H+)

1 + E (1)︸ ︷︷ ︸
=0

S (x) ε (y) 1

+ xE
(
y(1)

)
S
(
y(2)

)
S (1)︸ ︷︷ ︸

=1

+1E
(
y(1)

)
S
(
y(2)

)
S (x)︸ ︷︷ ︸
=−x

(since x is primitive)(
since x(1) ⊗ x(2) = x⊗ 1 + 1⊗ x

)
= xE

(
y(1)

)
S
(
y(2)

)
− E

(
y(1)

)
S
(
y(2)

)
x =

x,E (y(1)

)
S
(
y(2)

)︸ ︷︷ ︸
=(E∗S)(y)

 = [x, (E ∗ S) (y)] .

Lemma 11 (a) is thus proven.
(b) We have

(E ∗ S) (yx) = E
(

(yx)(1)

)
S
(

(yx)(2)

)
= E

(
y(1)x(1)

)︸ ︷︷ ︸
=E(y(1))x(1)+y(1)E(x(1))

(since E is a derivation)

S
(
y(2)x(2)

)︸ ︷︷ ︸
=S(x(2))S(y(2))

(since S is an anti-algebra homomorphism)

=
(
E
(
y(1)

)
x(1) + y(1)E

(
x(1)

))
S
(
x(2)

)
S
(
y(2)

)
= E

(
y(1)

)
x(1)S

(
x(2)

)︸ ︷︷ ︸
=(id ∗S)(x)=ε(x)1=0

(since x∈H1⊆H+)

S
(
y(2)

)
+ y(1)E

(
x(1)

)
S
(
x(2)

)
S
(
y(2)

)

= y(1)E
(
x(1)

)
S
(
x(2)

)
S
(
y(2)

)
= y(1) E (x)︸ ︷︷ ︸

=x

S (1)︸ ︷︷ ︸
=1

S
(
y(2)

)
+ y(1)E (1)︸ ︷︷ ︸

=0

S (x)S
(
y(2)

)
(
since x(1) ⊗ x(2) = x⊗ 1 + 1⊗ x

)
= y(1)xS

(
y(2)

)
.

Lemma 11 (b) is thus proven.
Back to work: First, let us compute (E ∗ S) ( qq21 × qq12 ). This is where Lemma 11

doesn’t help. Since ∆ is an algebra homomorphism,

∆ ( qq21 × qq12 ) = ∆ ( qq21 )︸ ︷︷ ︸
= qq21 ⊗1+ q1⊗ q1+1⊗ qq21 × ∆ ( qq12 )︸ ︷︷ ︸

= qq12 ⊗1+ q1⊗ q1+1⊗ qq12
= ( qq21 ⊗ 1 + q1 ⊗ q1 + 1⊗ qq21 )× ( qq12 ⊗ 1 + q1 ⊗ q1 + 1⊗ qq12 )

= qq21 × qq12 ⊗ 1 + qq21 × q1 ⊗ q1 + qq21 ⊗ qq12
+ q1 × qq12 ⊗ q1 + q1 × q1 ⊗ q1 × q1 + q1 ⊗ q1 × qq12
+ qq12 ⊗ qq21 + q1 ⊗ qq21 × q1 + 1⊗ qq21 × qq12 .
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Hence,

(E ∗ S) ( qq21 × qq12 )

= E ( qq21 × qq12 )︸ ︷︷ ︸
=4 qq21 × qq12 ×S (1)︸ ︷︷ ︸

=1

+E ( qq21 × q1)︸ ︷︷ ︸
=3 qq21 × q1 ×S ( q1)︸ ︷︷ ︸

=− q1 +E ( qq21 )︸ ︷︷ ︸
=2 qq21 × S ( qq12 )︸ ︷︷ ︸

= q1× q1− qq12
+ E ( q1 × qq12 )︸ ︷︷ ︸

=3 q1× qq12 ×S ( q1)︸ ︷︷ ︸
=− q1 +E ( q1 × q1)︸ ︷︷ ︸

=2 q1× q1 ×S ( q1 × q1)︸ ︷︷ ︸
= q1× q1 +E ( q1)︸ ︷︷ ︸

=1 q1 × S ( q1 × qq12 )︸ ︷︷ ︸
=S( qq12 )×S( q1 )

=( q1× q1− qq12 )×(− q1 )

+ E ( qq12 )︸ ︷︷ ︸
=2 qq12 × S ( qq21 )︸ ︷︷ ︸

= q1× q1− qq21 +E ( q1)︸ ︷︷ ︸
=1 q1 × S ( qq21 × q1)︸ ︷︷ ︸

=S( q1 )×S( qq21 )
=(− q1 )×( q1× q1− qq21 )

+E (1)︸ ︷︷ ︸
=0

×S ( qq21 × qq12 )

= 2 [ qq21 , qq12 ]− qq21 × q1 × q1 − 2 q1 × qq12 × q1 + 2 qq12 × q1 × q1 + q1 × q1 × qq21
≡ 2 [ qq21 , qq12 ] mod

(
R+
)3
. (14)

Now, the easy parts: Using the sumfree Sweedler notation,

(E ∗ S)
( qqq321 × q1)

= qqq321 (1) × q1 × S ( qqq321 (2)

) (
by Lemma 11 (b), applied to H = R, x = q1 and y = qqq321 )

= qqq321 × q1 × S (1)︸ ︷︷ ︸
=1

+ qq21 × q1 × S ( q1)︸ ︷︷ ︸
=− q1 + q1 × q1 × S ( qq21 )︸ ︷︷ ︸

= q1× q1− qq21 +1× q1 × S
( qqq321 )︸ ︷︷ ︸

=− q1× q1× q1+ qq21 × q1+ q1× qq21 − qqq321(
since ∆

( qqq321 ) = qqq321 ⊗ 1 + qq21 ⊗ q1 + q1 ⊗ qq21 + 1⊗ qqq321 )
= −

[ q1 , qqq321 ]+ [ q1 , qq21 ]× q1 ≡ − [ q1 , qqq321 ]mod
(
R+
)3
. (15)

Also,

(E ∗ S)
( qqq231 ) = E

( qqq231 )︸ ︷︷ ︸
=3 qqq231

×S (1)︸ ︷︷ ︸
=1

+E ( qq21 )︸ ︷︷ ︸
=2 qq21 ×S ( q1)︸ ︷︷ ︸

=− q1 +E ( q1)︸ ︷︷ ︸
=1 q1 × S ( qq12 )︸ ︷︷ ︸

= q1× q1− qq12 +E (1)︸ ︷︷ ︸
=0

×S
( qqq231 )

(
since ∆

( qqq231 ) = qqq231 ⊗ 1 + qq21 ⊗ q1 + q1 ⊗ qq12 + 1⊗ qqq231 )
= 3 qqq231 − 2 qq21 × q1 + q1 × ( q1 × q1 − qq12 )

= 3 qqq231 − 2 qq21 × q1 + q1 × q1 × q1 − q1 × qq12 ,
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and now

(E ∗ S)
( q1 × qqq231 ) =

 q1 , (E ∗ S)
( qqq231 )︸ ︷︷ ︸

=3 qqq231 −2 qq21 × q1+ q1× q1× q1− q1× qq12


(

by Lemma 11 (a), applied to H = R, x = q1 and y = qqq321 )
=
[ q1 , 3 qqq231 − 2 qq21 × q1 + q1 × q1 × q1 − q1 × qq12 ]

= 3
[ q1 , qqq231 ]− 2 [ q1 , qq21 × q1 ] + [ q1 , q1 × q1 × q1 ]︸ ︷︷ ︸

=0

− [ q1 , q1 × qq12 ]

= 3
[ q1 , qqq231 ]− 2 [ q1 , qq21 × q1 ]− [ q1 , q1 × qq12 ]

≡ 3
[ q1 , qqq231 ]mod

(
R+
)3
. (16)

Now, applying E ∗ S to (13), we get

(
(E ∗ S) ◦

(
E ∗ S

))( qqqq3421
)

≡ −3 (E ∗ S)
( qqq321 × q1)︸ ︷︷ ︸

≡−
[ q1 , qqq321 ]

mod(R+)
3

(by (15))

−2 (E ∗ S) ( qq21 × qq12 )︸ ︷︷ ︸
≡2[ qq21 , qq12 ] mod(R+)

3
.

(by (14))

− (E ∗ S)
( q1 × qqq231 )︸ ︷︷ ︸

≡3

[ q1 , qqq231 ]
mod(R+)

3

(by (16))

≡ −3
(
−
[ q1 , qqq321 ])− 2 (2 [ qq21 , qq12 ])− 3

[ q1 , qqq231 ]
= 3

[ q1 , qqq321 ]− 4 [ qq21 , qq12 ]− 3
[ q1 , qqq231 ]mod

(
R+
)3
. (17)

This yields

(
(E ∗ S) ◦

(
E ∗ S

))( qqqq3421
)
≡ 3

[ q1 , qqq321 ]− 4 [ qq21 , qq12 ]− 3
[ q1 , qqq231 ]mod

((
R+
)3 ∩R4

)

(because both sides
(
(E ∗ S) ◦

(
E ∗ S

))( qqqq3421
)

and 3
[ q1 , qqq321 ]− 4 [ qq21 , qq12 ]− 3

[ q1 , qqq231 ]
lie in R4, and thus so does their difference).

Thus,
(
(E ∗ S) ◦

(
E ∗ S

))( qqqq3421
)

is not in
(

(InvR) + (R+)
3
)
∩ R4 (according to

(12)). Hence,
(
(E ∗ S) ◦

(
E ∗ S

))( qqqq3421
)

lies in R4 (because the maps E∗S and E∗S are

graded) but not in
(

(InvR) + (R+)
3
)
∩R4. Consequently,

(
(E ∗ S) ◦

(
E ∗ S

))( qqqq3421
)
/∈

InvR + (R+)
3
. This proves (2). Thus, we have shown that (E ∗ S) ◦ (E ∗ S) 6= E ◦

(E ∗ S) in R′.
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§4. A shortcut

The proof that (E ∗ S) ◦ (E ∗ S) 6= E ◦ (E ∗ S) in R′ is complete, but let us give an
alternative shortcut from (13) to (17), without requiring that much computation:

We will prove that

(E ∗ S) (a× b) ≡ deg b·[a, b] mod
(
R+
)3

for any two ordered trees a and b. (18)

(Here, deg b means the number of vertices of the tree b, or, equivalently, the degree of
b in the graded Hopf algebra R.)

Proof of (18). Let t be an ordered tree. We first notice that, from the definition of
∆, it is pretty much clear that

∆ (t) ≡ t⊗ 1 + 1⊗ tmodR+ ⊗R+.

Applying id⊗S to this congruence, we get

(id⊗S) (∆ (t)) ≡ t⊗ S (1)︸ ︷︷ ︸
=1

+1⊗ S (t) = t⊗ 1 + 1⊗ S (t) mod (id⊗S)
(
R+ ⊗R+

)
.

Since (id⊗S) (R+ ⊗R+) = R+ ⊗ S
(
R+
)︸ ︷︷ ︸

⊆R+

⊆ R+ ⊗R+, this becomes

(id⊗S) (∆ (t)) ≡ t⊗ 1 + 1⊗ S (t) modR+ ⊗R+.

Since µ (R+ ⊗R+) = (R+)
2
, we can apply µ to this congruence, and obtain

µ ((id⊗S) (∆ (t))) ≡ t+ S (t) mod
(
R+
)2
.

Since (by the axioms of a Hopf algebra) we have µ ((id⊗S) (∆ (t))) = ε (t) = 0, this
becomes 0 ≡ t+ S (t) mod (R+)

2
, so that S (t) ≡ −tmod (R+)

2
. We have thus proven

that
S (t) ≡ −tmod

(
R+
)2

for every ordered tree t. (19)

Now, let a and b be two ordered trees. Then,

∆ (a× b) ≡ (a× b)⊗ 1 + 1⊗ (a× b) + a⊗ b+ b⊗ amod
((
R+
)2 ⊗R+ +R+ ⊗

(
R+
)2
)

(this is, again, easy to see from the definition of ∆: for every v |= V (a× b), we have
either v ∈ {V (a× b) , V (a) , V (b) ,∅} or LeavF⊗RoovF ∈ (R+)

2⊗R++R+⊗(R+)
2
).

Thus,

(E ⊗ S) (∆ (a× b)) ≡ E (a× b)︸ ︷︷ ︸
=deg(a×b)·a×b

=(deg a+deg b)·a×b

⊗S (1)︸ ︷︷ ︸
=1

+E (1)︸ ︷︷ ︸
=0

⊗S (a× b)

+ E (a)︸ ︷︷ ︸
=deg a·a

⊗S (b) + E (b)︸ ︷︷ ︸
=deg b·b

⊗S (a)

≡ (deg a+ deg b) · (a× b)⊗ 1 + deg a · a⊗ S (b) + deg b · b⊗ S (a)

mod (E ⊗ S)
((
R+
)2 ⊗R+ +R+ ⊗

(
R+
)2
)
.

21



Since (E ⊗ S)
(

(R+)
2 ⊗R+ +R+ ⊗ (R+)

2
)
⊆ (R+)

2 ⊗ R+ + R+ ⊗ (R+)
2

(very easily

seen), this becomes

(E ⊗ S) (∆ (a× b))
≡ (deg a+ deg b) · (a× b)⊗ 1 + deg a · a⊗ S (b)︸ ︷︷ ︸

≡a⊗(−b) modR+⊗(R+)
2

(since a∈R+ and S(b)≡−bmod(R+)
2

(by (19)))

+ deg b · b⊗ S (a)︸ ︷︷ ︸
≡b⊗(−a) modR+⊗(R+)

2

(since b∈R+ and S(a)≡−amod(R+)
2

(by (19)))

≡ (deg a+ deg b) · (a× b)⊗ 1 + deg a · a⊗ (−b) + deg b · b⊗ (−a)

mod
((
R+
)2 ⊗R+ +R+ ⊗

(
R+
)2
)
.

Applying µ to this equation, and using µ
(

(R+)
2 ⊗R+ +R+ ⊗ (R+)

2
)

= (R+)
3
, we

obtain

µ ((E ⊗ S) (∆ (a× b))) ≡ (deg a+ deg b) · a× b+ deg a · a× (−b) + deg b · b× (−a)

= deg b · [a, b] mod
(
R+
)3
.

Since µ ((E ⊗ S) (∆ (a× b))) = (E ∗ S) (a× b), this proves (18).

Now, applying E ∗ S to (13) (and using that (E ∗ S)
(

(R+)
3
)
⊆ (R+)

3
), we obtain

(
(E ∗ S) ◦

(
E ∗ S

))( qqqq3421
)

≡ (E ∗ S)
(
−3 qqq321 × q1 − 2 qq21 × qq12 − q1 × qqq231 )

= −3 (E ∗ S)
( qqq321 × q1)︸ ︷︷ ︸

≡1

[ qqq321 , q1]mod(R+)
3

(after (18))

−2 (E ∗ S) ( qq21 × qq12 )︸ ︷︷ ︸
≡2[ qq21 , qq12 ] mod(R+)

3

(after (18))

− (E ∗ S)
( q1 × qqq231 )︸ ︷︷ ︸

≡3

[ q1 , qqq231 ]
mod(R+)

3

(after (18))

≡ −3
[ qqq321 , q1]︸ ︷︷ ︸

=−
[ q1 , qqq321 ]

−4 [ qq21 , qq12 ]− 3
[ q1 , qqq231 ]

= 3
[ q1 , qqq321 ]− 4 [ qq21 , qq12 ]− 3

[ q1 , qqq231 ]mod
(
R+
)3
.

Hence, (17) is proven once again.

References

[1] Loic Foissy, Ordered forests and parking functions, arXiv:1007.1547v3.
http://arxiv.org/abs/1007.1547v3

22



[2] Frédéric Patras, Christophe Reutenauer, On Dynkin and Klyachko idempotents
in graded bialgebras.
http://www-irma.u-strasbg.fr/annexes/publications/pdf/01029.pdf

[3] Darij Grinberg, MathOverflow question #84345.
http://mathoverflow.net/questions/84345

23


