Function-field symmetric functions: In search of an $\mathbb{F}_{q}[T]$-combinatorics

Darij Grinberg (UMN)

27 February 2017, Cornell
slides:
http://www.cip.ifi.lmu.de/~grinberg/algebra/
cornell-feb17.pdf
preprint (WIP, and currently a mess):
http:
//www.cip.ifi.lmu.de/~grinberg/algebra/schur-ore.pdf

- The connection between symmetric functions and (big) Witt vectors is due to Cartier around 1970 (vaguely; made explicit by Reutenauer in 1995), and can be used to the benefit of either.
- Modern references: e.g., Hazewinkel's Witt vectors, part 1 (arXiv:0804.3888v1, see also errata), and works of James Borger (mainly arXiv:0801.1691v6, as well as arXiv:math/0407227v1 joint with Wieland).
- The connection between symmetric functions and (big) Witt vectors is due to Cartier around 1970 (vaguely; made explicit by Reutenauer in 1995), and can be used to the benefit of either.
- Modern references: e.g., Hazewinkel's Witt vectors, part 1 (arXiv:0804.3888v1, see also errata), and works of James Borger (mainly arXiv:0801.1691v6, as well as arXiv:math/0407227v1 joint with Wieland).
- Let $\mathbb{N}_{+}=\{1,2,3, \ldots\}$. The (big) Witt vector functor is a functor W : CRing \rightarrow CRing, sending any commutative ring A to a new commutative ring $W(A)$ with some extra structure.
- Note that $W(A)$ is a ring, not an A-algebra.
- Let A be a commutative ring. We abbreviate a family $\left(a_{k}\right)_{k \in \mathbb{N}_{+}} \in A^{\mathbb{N}_{+}}$as a. Similarly for other letters.
- For each $n \in \mathbb{N}_{+}$, define a map $w_{n}: A^{\mathbb{N}_{+}} \rightarrow A$ by

$$
w_{n}(\mathbf{a})=\sum_{d \mid n} d a_{d}^{n / d}
$$

The map w_{n} is called the n-th ghost projection.

- Examples:
- $w_{1}=a_{1}$.
- If p is a prime, then $w_{p}=a_{1}^{p}+p a_{p}$.
- $w_{6}=a_{1}^{6}+2 a_{2}^{3}+3 a_{3}^{2}+6 a_{6}$.
- Let A be a commutative ring.

We abbreviate a family $\left(a_{k}\right)_{k \in \mathbb{N}_{+}} \in A^{\mathbb{N}_{+}}$as a. Similarly for other letters.

- For each $n \in \mathbb{N}_{+}$, define a map $w_{n}: A^{\mathbb{N}_{+}} \rightarrow A$ by

$$
w_{n}(\mathbf{a})=\sum_{d \mid n} d a_{d}^{n / d}
$$

The map w_{n} is called the n-th ghost projection.

- Let $w: A^{\mathbb{N}_{+}} \rightarrow A^{\mathbb{N}_{+}}$be the map given by

$$
w(\mathbf{a})=\left(w_{n}(\mathbf{a})\right)_{n \in \mathbb{N}_{+}} .
$$

We call w the ghost map.

- Let A be a commutative ring.

We abbreviate a family $\left(a_{k}\right)_{k \in \mathbb{N}_{+}} \in A^{\mathbb{N}_{+}}$as a. Similarly for other letters.

- For each $n \in \mathbb{N}_{+}$, define a map $w_{n}: A^{\mathbb{N}_{+}} \rightarrow A$ by

$$
w_{n}(\mathbf{a})=\sum_{d \mid n} d a_{d}^{n / d}
$$

The map w_{n} is called the n-th ghost projection.

- Let $w: A^{\mathbb{N}_{+}} \rightarrow A^{\mathbb{N}_{+}}$be the map given by

$$
w(\mathbf{a})=\left(w_{n}(\mathbf{a})\right)_{n \in \mathbb{N}_{+}} .
$$

We call w the ghost map.

- This ghost map w is not linear and in general not injective or surjective. However, its image turns out to be a subring of $A^{\mathbb{N}_{+}}$. It is called the ring of ghost-Witt vectors.
- For example, for any $\mathbf{a}, \mathbf{b} \in A^{\mathbb{N}_{+}}$, we have
$w(\mathbf{a})+w(\mathbf{b})=w(\mathbf{c})$ for some $\mathbf{c} \in A^{\mathbb{N}_{+}}$. How to compute this c ?
- For example, for any $\mathbf{a}, \mathbf{b} \in A^{\mathbb{N}_{+}}$, we have $w(\mathbf{a})+w(\mathbf{b})=w(\mathbf{c})$ for some $\mathbf{c} \in A^{\mathbb{N}_{+}}$. How to compute this c ?
- Good news:
- w is injective if A is torsionfree (as \mathbb{Z}-module).
- w is bijective if A is a \mathbb{Q}-vector space.
- For example, for any $\mathbf{a}, \mathbf{b} \in A^{\mathbb{N}_{+}}$, we have $w(\mathbf{a})+w(\mathbf{b})=w(\mathbf{c})$ for some $\mathbf{c} \in A^{\mathbb{N}_{+}}$. How to compute this c ?
- Good news:
- w is injective if A is torsionfree (as \mathbb{Z}-module).
- w is bijective if A is a \mathbb{Q}-vector space.
- Hence, we can compute c back from $w(\mathbf{c})$ by recursion (coordinate by coordinate). Miraculously, the denominators vanish.

Examples:

- $w_{1}(\mathbf{c})=w_{1}(\mathbf{a})+w_{1}(\mathbf{b}) \Longleftrightarrow c_{1}=a_{1}+b_{1}$.
- $w_{2}(\mathbf{c})=w_{2}(\mathbf{a})+w_{2}(\mathbf{b}) \Longleftrightarrow$
$c_{1}^{2}+2 c_{2}=\left(a_{1}^{2}+2 a_{2}\right)+\left(b_{1}^{2}+2 b_{2}\right) \stackrel{\text { naturality }}{\Longleftrightarrow}$
$c_{2}=a_{2}+b_{2}+\frac{1}{2}\left(a_{1}^{2}+b_{1}^{2}-\left(a_{1}+b_{1}\right)^{2}\right)$, and the RHS is indeed a \mathbb{Z}-polynomial.
- Let's make a new ring out of this: We define $W(A)$ to be the ring that equals $A^{\mathbb{N}_{+}}$as a set, but whose ring structure is such that W : CRing \rightarrow CRing is a functor, and w is a natural (in A) ring homomorphism from $W(A)$ to $A^{\mathbb{N}_{+}}$.
- Let's make a new ring out of this: We define $W(A)$ to be the ring that equals $A^{\mathbb{N}_{+}}$as a set, but whose ring structure is such that W : CRing \rightarrow CRing is a functor, and w is a natural (in A) ring homomorphism from $W(A)$ to $A^{\mathbb{N}_{+}}$.
- This looks abstract and confusing, but the underlying idea is simple: Define addition on $W(A)$ so that $w_{n}(\mathbf{a}+\mathbf{b})=w_{n}(\mathbf{a})+w_{n}(\mathbf{b})$ for all n.
Thus, $\mathbf{a}+\mathbf{b}$ is the \mathbf{c} from last page.
- Functoriality is needed, because there might be several choices for a given A (if A is not torsionfree), but only one consistent choice for all rings A. Functoriality forces us to pick the consistent choice.
- Let's make a new ring out of this: We define $W(A)$ to be the ring that equals $A^{\mathbb{N}_{+}}$as a set, but whose ring structure is such that W : CRing \rightarrow CRing is a functor, and w is a natural (in $A)$ ring homomorphism from $W(A)$ to $A^{\mathbb{N}_{+}}$.
- This looks abstract and confusing, but the underlying idea is simple: Define addition on $W(A)$ so that $w_{n}(\mathbf{a}+\mathbf{b})=w_{n}(\mathbf{a})+w_{n}(\mathbf{b})$ for all n.
Thus, $\mathbf{a}+\mathbf{b}$ is the \mathbf{c} from last page.
- Functoriality is needed, because there might be several choices for a given A (if A is not torsionfree), but only one consistent choice for all rings A. Functoriality forces us to pick the consistent choice.
- If $\mathbf{a} \in W(A)$, then the a_{n} are called the Witt coordinates of \mathbf{a}, while the $w_{n}(\mathbf{a})$ are called the ghost coordinates of \mathbf{a}.
- The ring $W(A)$ is called the ring of (big) Witt vectors over A.
- The functor CRing $\rightarrow \mathbf{C R i n g}, A \mapsto W(A)$ is called the (big) Witt vector functor.
- The ring $W(A)$ is called the ring of (big) Witt vectors over A.
- The functor CRing $\rightarrow \mathbf{C R i n g}, A \mapsto W(A)$ is called the (big) Witt vector functor.
- For any given prime p, there is a canonical quotient $W_{p}(A)$ of $W(A)$ called the ring of p-typical Witt vectors of A. Number theorists usually care about the latter ring. For example, $W_{p}\left(\mathbb{F}_{p}\right)=\mathbb{Z}_{p}$ (the p-adics). We have nothing to say about it here.
- $W(A)$ comes with more structure: Frobenius and Verschiebung endomorphisms, a comonad comultiplication $\operatorname{map} W(A) \rightarrow W(W(A))$, etc.
- There are some equivalent ways to define $W(A)$. Let me show two.
- One is the Grothendieck construction using power series (see, again, Hazewinkel, or Rabinoff's arXiv:1409.7445):
- Let $\Lambda(A)$ be the topological ring defined as follows:
- As topological spaces, $\Lambda(A)=1+t A[[t]]=$ \{power series with constant term 1 \}.
- Addition $\widehat{+}$ in $\Lambda(A)$ is multiplication of power series.
- Multiplication • in $\Lambda(A)$ is given by

$$
(1-a t) \widehat{\cdot}(1-b t)=1-a b t
$$

(and distributivity and continuity, and naturality in A).

- There are some equivalent ways to define $W(A)$. Let me show two.
- One is the Grothendieck construction using power series (see, again, Hazewinkel, or Rabinoff's arXiv:1409.7445):
- Let $\Lambda(A)$ be the topological ring defined as follows:
- As topological spaces, $\Lambda(A)=1+t A[[t]]=$ \{power series with constant term 1 \}.
- Addition $\widehat{+}$ in $\Lambda(A)$ is multiplication of power series.
- Multiplication • in $\Lambda(A)$ is given by

$$
(1-a t) \widehat{\cdot}(1-b t)=1-a b t
$$

(and distributivity and continuity, and naturality in A).

- Canonical ring isomorphism

$$
W(A) \rightarrow \Lambda(A), \quad \mathbf{a} \mapsto \prod_{n=1}^{\infty}\left(1-a_{n} t^{n}\right)
$$

- Here is another: Let Λ be the Hopf algebra of symmetric functions over \mathbb{Z}. (No direct relation to $\Lambda(A)$; just traditional notations clashing.)
- Define ring $\operatorname{Alg}(\Lambda, A)$ as follows:
- As set, $\operatorname{Alg}(\Lambda, A)=\{$ algebra homomorphisms $\Lambda \rightarrow A\}$.
- Addition $=$ convolution.
- Multiplication $=$ convolution using the second comultiplication on \wedge ($=$ Kronecker comultiplication $=$ Hall dual of Kronecker multiplication).
- Here is another: Let Λ be the Hopf algebra of symmetric functions over \mathbb{Z}. (No direct relation to $\Lambda(A)$; just traditional notations clashing.)
- Define ring $\operatorname{Alg}(\Lambda, A)$ as follows:
- As set, $\operatorname{Alg}(\Lambda, A)=\{$ algebra homomorphisms $\Lambda \rightarrow A\}$.
- Addition $=$ convolution.
- Multiplication $=$ convolution using the second comultiplication on $\wedge(=$ Kronecker comultiplication $=$ Hall dual of Kronecker multiplication).
- The elements of $\operatorname{Alg}(\Lambda, A)$ are known as characters of $\Lambda($ as in Aguiar-Bergeron-Sottile) or virtual alphabets (to the Lascoux school) or as specializations of symmetric functions (as in Stanley's EC2).

Avatars of Witt vectors, 2: Characters of \wedge (virtual alphabets)

- Here is another: Let Λ be the Hopf algebra of symmetric functions over \mathbb{Z}. (No direct relation to $\Lambda(A)$; just traditional notations clashing.)
- Define ring $\operatorname{Alg}(\Lambda, A)$ as follows:
- As set, $\operatorname{Alg}(\Lambda, A)=\{$ algebra homomorphisms $\Lambda \rightarrow A\}$.
- Addition $=$ convolution.
- Multiplication $=$ convolution using the second comultiplication on $\wedge(=$ Kronecker comultiplication $=$ Hall dual of Kronecker multiplication).
- There is a unique family $\left(w_{n}\right)_{n \in \mathbb{N}_{+}}$of symmetric functions satisfying $p_{n}=\sum_{d \mid n} d w_{d}^{n / d}$ for all $n \in \mathbb{N}_{+}$. (Equivalently, it is determined by $h_{n}=\sum_{\lambda \vdash n} w_{\lambda}$, where $w_{\lambda}=w_{\lambda_{1}} w_{\lambda_{2}} \cdots$.) These are called the Witt coordinates.
- We have a ring isomorphism

$$
\operatorname{Alg}(\Lambda, A) \rightarrow W(A), \quad f \mapsto\left(f\left(w_{n}\right)\right)_{n \in \mathbb{N}_{+}} .
$$

Avatars of Witt vectors, 2: Characters of Λ, cont'd

- There is a unique family $\left(w_{n}\right)_{n \in \mathbb{N}_{+}}$of symmetric functions satisfying $p_{n}=\sum_{d \mid n} d w_{d}^{n / d}$ for all $n \in \mathbb{N}_{+}$. (Equivalently, it is determined by $h_{n}=\sum_{\lambda \vdash n} w_{\lambda}$, where $w_{\lambda}=w_{\lambda_{1}} w_{\lambda_{2}} \cdots$.) These generate Λ as a ring, are called the Witt coordinates, and were first introduced in 1995 by Reutenauer.
- We have a ring isomorphism

$$
\operatorname{Alg}(\Lambda, A) \rightarrow W(A), \quad f \mapsto\left(f\left(w_{n}\right)\right)_{n \in \mathbb{N}_{+}} .
$$

- There is a unique family $\left(w_{n}\right)_{n \in \mathbb{N}_{+}}$of symmetric functions satisfying $p_{n}=\sum_{d \mid n} d w_{d}^{n / d}$ for all $n \in \mathbb{N}_{+}$. (Equivalently, it is determined by $h_{n}=\sum_{\lambda \vdash n} w_{\lambda}$, where $w_{\lambda}=w_{\lambda_{1}} w_{\lambda_{2}} \cdots$.) These generate Λ as a ring, are called the Witt coordinates, and were first introduced in 1995 by Reutenauer.
- We have a ring isomorphism

$$
\operatorname{Alg}(\Lambda, A) \rightarrow W(A), \quad f \mapsto\left(f\left(w_{n}\right)\right)_{n \in \mathbb{N}_{+}} .
$$

- We also have a ring homomorphism (isomorphism when A is a \mathbb{Q}-algebra)

$$
\operatorname{Alg}(\Lambda, A) \rightarrow A^{\mathbb{N}_{+}}, \quad f \mapsto\left(f\left(p_{n}\right)\right)_{n \in \mathbb{N}_{+}}
$$

These form a commutative diagram

- This also works in reverse: We can reconstruct Λ from the functor W, as its representing object. Namely:
- The functor Forget \circ W: CRing \rightarrow Set determines Λ as a ring (by Yoneda).
- The functor Forget \circ : CRing $\rightarrow \mathbf{A b}$ (additive group of $W(A)$) determines Λ as a Hopf algebra.
- The functor W : CRing \rightarrow CRing determines Λ as a Hopf algebra equipped with a second comultiplication.
- The comonad structure on W additionally determines plethysm on Λ.
- This also works in reverse: We can reconstruct Λ from the functor W, as its representing object. Namely:
- The functor Forget \circ W: CRing \rightarrow Set determines Λ as a ring (by Yoneda).
- The functor Forget $\circ W$: CRing $\rightarrow \mathbf{A b}$ (additive group of $W(A))$ determines Λ as a Hopf algebra.
- The functor W : CRing \rightarrow CRing determines Λ as a Hopf algebra equipped with a second comultiplication.
- The comonad structure on W additionally determines plethysm on Λ.
- Thus, if symmetric functions hadn't been around, Witt vectors would have let us rediscover them.
- Assume you don't know about $\Lambda(A)$ or Λ. How would you go about proving that the Witt vector functor W exists?
- Assume you don't know about $\Lambda(A)$ or Λ. How would you go about proving that the Witt vector functor W exists? In other words, why do the denominators (e.g., in the computation of \mathbf{c} satisfying $w(\mathbf{a})+w(\mathbf{b})=w(\mathbf{c}))$ "miraculously" vanish?
- Assume you don't know about $\Lambda(A)$ or Λ. How would you go about proving that the Witt vector functor W exists? In other words, why do the denominators (e.g., in the computation of \mathbf{c} satisfying $w(\mathbf{a})+w(\mathbf{b})=w(\mathbf{c}))$ "miraculously" vanish?
- This is a consequence of the ghost-Witt integrality theorem, also known (in parts) as Dwork's lemma. I shall state a (more or less) maximalist version of it; only the $\mathcal{C} \Longleftrightarrow \mathcal{E}$ part is actually needed.
- Ghost-Witt integrality theorem.

Let A be a commutative ring. For every $n \in \mathbb{N}_{+}$, let $\varphi_{n}: A \rightarrow A$ be an endomorphism of the ring A. Assume that:

- We have $\varphi_{p}(a) \equiv a^{p} \bmod p A$ for every $a \in A$ and every prime p.
- We have $\varphi_{1}=$ id, and we have $\varphi_{n} \circ \varphi_{m}=\varphi_{n m}$ for every $n, m \in \mathbb{N}_{+}$. (Thus, $n \mapsto \varphi_{n}$ is an action of the multiplicative monoid \mathbb{N}_{+}on A by ring endomorphisms.)
- Ghost-Witt integrality theorem.

Let A be a commutative ring. For every $n \in \mathbb{N}_{+}$, let $\varphi_{n}: A \rightarrow A$ be an endomorphism of the ring A. Assume that:

- We have $\varphi_{p}(a) \equiv a^{p} \bmod p A$ for every $a \in A$ and every prime p.
- We have $\varphi_{1}=$ id, and we have $\varphi_{n} \circ \varphi_{m}=\varphi_{n m}$ for every $n, m \in \mathbb{N}_{+}$. (Thus, $n \mapsto \varphi_{n}$ is an action of the multiplicative monoid \mathbb{N}_{+}on A by ring endomorphisms.)
[For a stupid example, let $A=\mathbb{Z}$ and $\varphi_{n}=\mathrm{id}$.
For an example that is actually useful to Witt vectors, let A be a polynomial ring over \mathbb{Z}, and let φ_{n} send each indeterminate to its n-th power.]
- Ghost-Witt integrality theorem.

Let A be a commutative ring. For every $n \in \mathbb{N}_{+}$, let $\varphi_{n}: A \rightarrow A$ be an endomorphism of the ring A. Assume that:

- We have $\varphi_{p}(a) \equiv a^{p} \bmod p A$ for every $a \in A$ and every prime p.
- We have $\varphi_{1}=$ id, and we have $\varphi_{n} \circ \varphi_{m}=\varphi_{n m}$ for every $n, m \in \mathbb{N}_{+}$. (Thus, $n \mapsto \varphi_{n}$ is an action of the multiplicative monoid \mathbb{N}_{+}on A by ring endomorphisms.)
[For a stupid example, let $A=\mathbb{Z}$ and $\varphi_{n}=\mathrm{id}$.
For an example that is actually useful to Witt vectors, let A be a polynomial ring over \mathbb{Z}, and let φ_{n} send each indeterminate to its n-th power.]
- Let $\mathbf{b}=\left(b_{n}\right)_{n \in \mathbb{N}_{+}} \in A^{\mathbb{N}_{+}}$be a sequence of elements of A. Then, the following assertions are equivalent: [continued on next page]

The ghost-Witt integrality theorem (aka Dwork lemma), 3

- Ghost-Witt integrality theorem, continued.

The following are equivalent:
\mathcal{C} : Every $n \in \mathbb{N}_{+}$and every prime divisor p of n satisfy

$$
\varphi_{p}\left(b_{n / p}\right) \equiv b_{n} \bmod p^{v_{p}(n)} A
$$

(where $v_{p}(n)$ is the multiplicity of p in the factorization of n).

- Ghost-Witt integrality theorem, continued.

The following are equivalent:
\mathcal{C} : Every $n \in \mathbb{N}_{+}$and every prime divisor p of n satisfy

$$
\varphi_{p}\left(b_{n / p}\right) \equiv b_{n} \bmod p^{v_{p}(n)} A
$$

(where $v_{p}(n)$ is the multiplicity of p in the factorization of n).
\mathcal{D} : There exists a sequence $\mathbf{x}=\left(x_{n}\right)_{n \in \mathbb{N}_{+}} \in A^{\mathbb{N}_{+}}$of elements of A such that

$$
b_{n}=\sum_{d \mid n} d x_{d}^{n / d}=w_{n}(\mathbf{x}) \text { for every } n \in \mathbb{N}_{+}
$$

In other words, \mathbf{x} belongs to the image of the ghost map w.

- Ghost-Witt integrality theorem, continued.

The following are equivalent:
\mathcal{C} : Every $n \in \mathbb{N}_{+}$and every prime divisor p of n satisfy

$$
\varphi_{p}\left(b_{n / p}\right) \equiv b_{n} \bmod p^{v_{p}(n)} A
$$

(where $v_{p}(n)$ is the multiplicity of p in the factorization of n).
\mathcal{D} : There exists a sequence $\mathbf{x}=\left(x_{n}\right)_{n \in \mathbb{N}_{+}} \in A^{\mathbb{N}_{+}}$of elements of A such that

$$
b_{n}=\sum_{d \mid n} d x_{d}^{n / d}=w_{n}(\mathbf{x}) \text { for every } n \in \mathbb{N}_{+}
$$

In other words, \mathbf{x} belongs to the image of the ghost map w.
\mathcal{E} : There exists a sequence $\mathbf{y}=\left(y_{n}\right)_{n \in \mathbb{N}_{+}} \in A^{\mathbb{N}_{+}}$of elements of A such that

$$
b_{n}=\sum_{d \mid n} d \varphi_{n / d}\left(y_{d}\right) \text { for every } n \in \mathbb{N}_{+}
$$

The ghost-Witt integrality theorem (aka Dwork lemma), 4

- Ghost-Witt integrality theorem, continued.
\mathcal{F} : Every $n \in \mathbb{N}_{+}$satisfies

$$
\sum_{d \mid n} \mu(d) \varphi_{d}\left(b_{n / d}\right) \in n A
$$

The ghost-Witt integrality theorem (aka Dwork lemma), 4

- Ghost-Witt integrality theorem, continued.
\mathcal{F} : Every $n \in \mathbb{N}_{+}$satisfies

$$
\sum_{d \mid n} \mu(d) \varphi_{d}\left(b_{n / d}\right) \in n A
$$

$\mathcal{G}:$ Every $n \in \mathbb{N}_{+}$satisfies

$$
\sum_{d \mid n} \phi(d) \varphi_{d}\left(b_{n / d}\right) \in n A
$$

The ghost-Witt integrality theorem (aka Dwork lemma), 4

- Ghost-Witt integrality theorem, continued.
\mathcal{F} : Every $n \in \mathbb{N}_{+}$satisfies

$$
\sum_{d \mid n} \mu(d) \varphi_{d}\left(b_{n / d}\right) \in n A
$$

$\mathcal{G}:$ Every $n \in \mathbb{N}_{+}$satisfies

$$
\sum_{d \mid n} \phi(d) \varphi_{d}\left(b_{n / d}\right) \in n A
$$

\mathcal{J} : There exists a ring homomorphism from the ring Λ to A which sends p_{n} (the n-th power sum symmetric function) to b_{n} for every $n \in \mathbb{N}_{+}$.

- Ghost-Witt integrality theorem, continued.
\mathcal{F} : Every $n \in \mathbb{N}_{+}$satisfies

$$
\sum_{d \mid n} \mu(d) \varphi_{d}\left(b_{n / d}\right) \in n A
$$

$\mathcal{G}:$ Every $n \in \mathbb{N}_{+}$satisfies

$$
\sum_{d \mid n} \phi(d) \varphi_{d}\left(b_{n / d}\right) \in n A
$$

\mathcal{J} : There exists a ring homomorphism from the ring Λ to A which sends p_{n} (the n-th power sum symmetric function) to b_{n} for every $n \in \mathbb{N}_{+}$.

- Note that this theorem has various neat consequences, like the famous necklace divisibility $n \mid \sum_{d \mid n} \mu(d) q^{n / d}$ for $n \in \mathbb{N}_{+}$and $q \in \mathbb{Z}$. (And various generalizations.)

Now to something completely different...

- Fix a prime power q.
- There is a famous analogy between the elements of \mathbb{Z} and the elements of $\mathbb{F}_{q}[T]$. (This is related to q-enumeration, the lore of the field with 1 element, etc.)
All that matters to us is that
- positive integers in \mathbb{Z} correspond to monic polynomials in $\mathbb{F}_{q}[T] ;$
- primes in \mathbb{Z} correspond to irreducible monic polynomials in $\mathbb{F}_{q}[T]$.

Now to something completely different...

- Fix a prime power q.
- There is a famous analogy between the elements of \mathbb{Z} and the elements of $\mathbb{F}_{q}[T]$. (This is related to q-enumeration, the lore of the field with 1 element, etc.)
All that matters to us is that
- positive integers in \mathbb{Z} correspond to monic polynomials in $\mathbb{F}_{q}[T]$;
- primes in \mathbb{Z} correspond to irreducible monic polynomials in $\mathbb{F}_{q}[T]$.
- Let $\mathbb{F}_{q}[T]_{+}$be the set of all monic polynomials in $\mathbb{F}_{q}[T]$.

Now to something completely different...

- Fix a prime power q.
- There is a famous analogy between the elements of \mathbb{Z} and the elements of $\mathbb{F}_{q}[T]$. (This is related to q-enumeration, the lore of the field with 1 element, etc.)
All that matters to us is that
- positive integers in \mathbb{Z} correspond to monic polynomials in $\mathbb{F}_{q}[T]$;
- primes in \mathbb{Z} correspond to irreducible monic polynomials in $\mathbb{F}_{q}[T]$.
- Let $\mathbb{F}_{q}[T]_{+}$be the set of all monic polynomials in $\mathbb{F}_{q}[T]$.
- Let's define an analogue of (big) Witt vectors for $\mathbb{F}_{q}[T]$ instead of \mathbb{Z}.
- Let A be a commutative $\mathbb{F}_{q}[T]$-algebra. We abbreviate a family $\left(a_{N}\right)_{N \in \mathbb{F}_{q}[T]_{+}} \in A^{\mathbb{F}_{q}[T]_{+}}$as a.
- For each $N \in \mathbb{F}_{q}[T]_{+}$, define a map $w_{N}: A^{\mathbb{F}_{q}[T]_{+}} \rightarrow A$ by

$$
w_{N}(\mathbf{a})=\sum_{D \mid N} D a_{D}^{q^{\operatorname{deg}(N / D)}}
$$

where the sum is over all monic divisors D of N.

- Let $w: A^{\mathbb{F}_{q}[T]_{+}} \rightarrow A^{\mathbb{F}_{q}[T]_{+}}$be the map given by

$$
w(\mathbf{a})=\left(w_{N}(\mathbf{a})\right)_{N \in \mathbb{F}_{q}[T]_{+}} .
$$

- Let A be a commutative $\mathbb{F}_{q}[T]$-algebra. We abbreviate a family $\left(a_{N}\right)_{N \in \mathbb{F}_{q}[T]_{+}} \in A^{\mathbb{F}_{q}[T]_{+}}$as a.
- For each $N \in \mathbb{F}_{q}[T]_{+}$, define a map $w_{N}: A^{\mathbb{F}_{q}[T]_{+}} \rightarrow A$ by

$$
w_{N}(\mathbf{a})=\sum_{D \mid N} D a_{D}^{q^{\operatorname{deg}(N / D)}}
$$

where the sum is over all monic divisors D of N.

- Let $w: A^{\mathbb{F}_{q}[T]_{+}} \rightarrow A^{\mathbb{F}_{q}[T]_{+}}$be the map given by

$$
w(\mathbf{a})=\left(w_{N}(\mathbf{a})\right)_{N \in \mathbb{F}_{q}[T]_{+}} .
$$

- This "ghost map" w is \mathbb{F}_{q}-linear, but not $\mathbb{F}_{q}[T]$-linear.
- Let's make a new $\mathbb{F}_{q}[T]$-algebra out of this: We define $W_{q}(A)$ to be the $\mathbb{F}_{q}[T]$-algebra
- that equals $A^{\mathbb{F}_{q}[T]_{+}}$as a set, but
- which is functorial in A (that is, we are really defining a functor $W_{q}: \mathbf{C R i n g}_{\mathbb{F}_{q}[T]} \rightarrow \mathbf{C R i n g}_{\mathbb{F}_{q}[T]}$, where $\mathbf{C R i n g}_{R}$ is the category of commutative R-algebras), and
- whose $\mathbb{F}_{q}[T]$-algebra structure is such that w is a natural (in A) homomorphism of $\mathbb{F}_{q}[T]$-algebras from $W_{q}(A)$ to $A^{\mathbb{F}_{q}[T]_{+}}$.
- Example: The addition in $W_{q}(A)$ is the same as in $A^{\mathbb{F}_{q}[T]_{+}}$ (since w is $\mathbb{F}_{q^{-}}$linear, and so $W_{q}(A)=A^{\mathbb{F}_{q}[T]_{+}}$as \mathbb{F}_{q}-modules), so this would be boring.
- Example: The addition in $W_{q}(A)$ is the same as in $A^{\mathbb{F}_{q}[T]_{+}}$ (since w is $\mathbb{F}_{q^{-}}$linear, and so $W_{q}(A)=A^{\mathbb{F}_{q}[T]_{+}}$as \mathbb{F}_{q}-modules), so this would be boring. Instead, let's set $\mathbf{c}=T \mathbf{a}$ in $W_{q}(A)$, and compute $w_{\pi}(\mathbf{c})$ for an irreducible π.
- Example: The addition in $W_{q}(A)$ is the same as in $A^{\mathbb{F}_{q}[T]_{+}}$ (since w is $\mathbb{F}_{q^{-}}$linear, and so $W_{q}(A)=A^{\mathbb{F}_{q}[T]_{+}}$as \mathbb{F}_{q}-modules), so this would be boring. Instead, let's set $\mathbf{c}=T \mathbf{a}$ in $W_{q}(A)$, and compute $W_{\pi}(\mathbf{c})$ for an irreducible π. Start with $c_{1}=T a_{1}$, which is easy to check.
- Example: The addition in $W_{q}(A)$ is the same as in $A^{\mathbb{F}_{q}[T]_{+}}$ (since w is $\mathbb{F}_{q^{-}}$linear, and so $W_{q}(A)=A^{\mathbb{F}_{q}[T]_{+}}$as \mathbb{F}_{q}-modules), so this would be boring. Instead, let's set $\mathbf{c}=T \mathbf{a}$ in $W_{q}(A)$, and compute $w_{\pi}(\mathbf{c})$ for an irreducible π. Start with $c_{1}=T a_{1}$, which is easy to check.
$w_{\pi}(\mathbf{c})=T w_{\pi}(\mathbf{a})$
$\Longleftrightarrow c_{1}^{q^{\operatorname{deg} \pi}}+\pi c_{\pi}=T a_{1}^{q^{\operatorname{deg} \pi}}+T \pi a_{\pi}$
$\stackrel{c_{1}=T a_{1}}{\Longleftrightarrow}\left(T a_{1}\right)^{q^{\operatorname{deg} \pi}}+\pi c_{\pi}=T a_{1}^{q^{\operatorname{deg} \pi}}+T \pi a_{\pi}$
$\Longleftrightarrow \pi c_{\pi}=T \pi a_{\pi}-\left(T^{q^{\operatorname{deg} \pi}}-T\right) a_{1}^{q^{\operatorname{deg} \pi}}$
$\stackrel{\text { naturality }}{\Longleftrightarrow} c_{\pi}=T a_{\pi}-\frac{T^{q^{\operatorname{deg} \pi}}-T}{\pi} a_{1}^{q^{\operatorname{deg} \pi}}$.
The fraction on the RHS ${ }_{\text {is }}^{\pi}$ a polynomial due to a known fact from Galois theory (namely:
$\left.T^{q^{k}}-T=\prod_{\gamma \in \mathbb{F}_{q}[T]_{+}} \prod_{\text {irreducible; } \operatorname{deg} \gamma \mid k} \gamma\right)$.
- There is also a second construction of $W_{q}(A)$, using Carlitz polynomials, yielding an isomorphic $\mathbb{F}_{q}[T]$-algebra. (See the preprint.)

Avatars of $\mathbb{F}_{q}[T]$-Witt vectors?

- Can we find anything similar to the two avatars of $W(A)$?

Avatars of $\mathbb{F}_{q}[T]$-Witt vectors?

- Can we find anything similar to the two avatars of $W(A)$?
- Power series? This appears to require a notion of power series where the exponents are polynomials in $\mathbb{F}_{q}[T]$. Product ill-defined due to lack of actual "positivity". Seems too much to wish...
- Can we find anything similar to the two avatars of $W(A)$?
- Power series? This appears to require a notion of power series where the exponents are polynomials in $\mathbb{F}_{q}[T]$. Product ill-defined due to lack of actual "positivity". Seems too much to wish...
- $\operatorname{Alg}(\Lambda, A)$? Well, we can try brute force: Remember how Λ was reconstructed from W, and do something similar to "reconstruct" a representing object from W_{q}. We'll come back to this shortly.

Surprise: \mathcal{F}-modules, 1

- First, a surprise...
- First, a surprise...
- We aren't using the whole $\mathbb{F}_{q}[T]$-algebra structure on A ! (This is unlike the \mathbb{Z}-case, where it seems that we use the commutative ring A in full.)

Surprise: \mathcal{F}-modules, 2

- Let \mathcal{F} be the noncommutative ring

$$
\mathbb{F}_{q}\left\langle F, T \mid F T=T^{q} F\right\rangle
$$

This is an $\mathbb{F}_{q^{-}}$-vector space with basis $\left(T^{i} F^{j}\right)_{(i, j) \in \mathbb{N}^{2}}$, and is an Ore polynomial ring. It shares many properties of usual univariate polynomials (see papers of Ore).

- Let \mathcal{F} be the noncommutative ring

$$
\mathbb{F}_{q}\left\langle F, T \mid F T=T^{q} F\right\rangle
$$

This is an $\mathbb{F}_{q^{-}}$-vector space with basis $\left(T^{i} F^{j}\right)_{(i, j) \in \mathbb{N}^{2}}$, and is an Ore polynomial ring. It shares many properties of usual univariate polynomials (see papers of Ore).

- Actually,

$$
\mathcal{F} \cong\left(\mathbb{F}_{q}[T][X]_{q-\operatorname{lin}},+, \circ\right)
$$

where $\mathbb{F}_{q}[T][X]_{q-\text { lin }}$ are the polynomials in X over $\mathbb{F}_{q}[T]$ where X occurs only with exponents q^{k}, and where \circ is composition of polynomials.

- Let \mathcal{F} be the noncommutative ring

$$
\mathbb{F}_{q}\left\langle F, T \mid F T=T^{q} F\right\rangle
$$

This is an $\mathbb{F}_{q^{-}}$-vector space with basis $\left(T^{i} F^{j}\right)_{(i, j) \in \mathbb{N}^{2}}$, and is an Ore polynomial ring. It shares many properties of usual univariate polynomials (see papers of Ore).

- What matters to us:

Each commutative $\mathbb{F}_{q}[T]$-algebra canonically becomes a (left) \mathcal{F}-module by having

- T act as multiplication by T, and
- F act as the Frobenius (i.e., taking q-th powers).

Thus, we have a functor $\operatorname{CRing}_{\mathbb{F}_{q}[T]} \rightarrow \operatorname{Mod}_{\mathcal{F}}$.

- Let \mathcal{F} be the noncommutative ring

$$
\mathbb{F}_{q}\left\langle F, T \mid F T=T^{q} F\right\rangle
$$

This is an $\mathbb{F}_{q^{-}}$-vector space with basis $\left(T^{i} F^{j}\right)_{(i, j) \in \mathbb{N}^{2}}$, and is an Ore polynomial ring. It shares many properties of usual univariate polynomials (see papers of Ore).

- What matters to us:

Each commutative $\mathbb{F}_{q}[T]$-algebra canonically becomes a (left) \mathcal{F}-module by having

- T act as multiplication by T, and
- F act as the Frobenius (i.e., taking q-th powers).

Thus, we have a functor $\operatorname{CRing}_{\mathbb{F}_{q}[T]} \rightarrow \operatorname{Mod}_{\mathcal{F}}$.

- There are other sources of \mathcal{F}-modules too (cf. Jacobson on "commutative restricted Lie algebras").
- Let A be a (left) \mathcal{F}-module.

We abbreviate a family $\left(a_{N}\right)_{N \in \mathbb{F}_{q}[T]_{+}} \in A^{\mathbb{F}_{q}[T]_{+}}$as a.

- For each $N \in \mathbb{F}_{q}[T]_{+}$, define a map $w_{N}: A^{\mathbb{F}_{q}[T]_{+}} \rightarrow A$ by

$$
w_{N}(\mathbf{a})=\sum_{D \mid N} D F^{\operatorname{deg}(N / D)} a_{D}
$$

where the sum is over all monic divisors D of N.

- Let $w: A^{\mathbb{F}_{q}[T]_{+}} \rightarrow A^{\mathbb{F}_{q}[T]_{+}}$be the map given by

$$
w(\mathbf{a})=\left(w_{N}(\mathbf{a})\right)_{N \in \mathbb{F}_{q}[T]_{+}} .
$$

- Let A be a (left) \mathcal{F}-module.

We abbreviate a family $\left(a_{N}\right)_{N \in \mathbb{F}_{q}[T]_{+}} \in A^{\mathbb{F}_{q}[T]_{+}}$as a.

- For each $N \in \mathbb{F}_{q}[T]_{+}$, define a map $w_{N}: A^{\mathbb{F}_{q}[T]_{+}} \rightarrow A$ by

$$
w_{N}(\mathbf{a})=\sum_{D \mid N} D F^{\operatorname{deg}(N / D)} a_{D}
$$

where the sum is over all monic divisors D of N.

- Let $w: A^{\mathbb{F}_{q}[T]_{+}} \rightarrow A^{\mathbb{F}_{q}[T]_{+}}$be the map given by

$$
w(\mathbf{a})=\left(w_{N}(\mathbf{a})\right)_{N \in \mathbb{F}_{q}[T]_{+}} .
$$

- We define $W_{q}(A)$ to be the \mathcal{F}-module
- that equals $A^{\mathbb{F}_{q}[T]_{+}}$as a set, but
- which is functorial in A (that is, we are really defining a functor $W_{q}: \operatorname{Mod}_{\mathcal{F}} \rightarrow \operatorname{Mod}_{\mathcal{F}}$), and
- whose \mathcal{F}-module structure is such that w is a natural (in A) homomorphism of \mathcal{F}-modules from $W_{q}(A)$ to $A^{\mathbb{F}_{q}[T]_{+}}$.

An \mathcal{F}-ghost-Witt integrality theorem, 1

- Again, there is a "ghost-Witt integrality theorem" that helps prove the existence of the W_{q} functors.

An \mathcal{F}-ghost-Witt integrality theorem, 2

- \mathcal{F}-ghost-Witt integrality theorem.

Let A be a (left) \mathcal{F}-module. For every $P \in \mathbb{F}_{q}[T]_{+}$, let $\varphi_{P}: A \rightarrow A$ be an endomorphism of the \mathcal{F}-module A.
Assume that:

- We have $\varphi_{\pi}(a) \equiv F^{\operatorname{deg} \pi} a \bmod \pi A$ for every $a \in A$ and every monic irreducible $\pi \in \mathbb{F}_{q}[T]_{+}$.
- We have $\varphi_{1}=$ id, and we have $\varphi_{N} \circ \varphi_{M}=\varphi_{N M}$ for every $N, M \in \mathbb{F}_{q}[T]_{+}$. (Thus, $N \mapsto \varphi_{N}$ is an action of the multiplicative monoid $\mathbb{F}_{q}[T]_{+}$on A by \mathcal{F}-module endomorphisms.)

An \mathcal{F}-ghost-Witt integrality theorem, 2

- \mathcal{F}-ghost-Witt integrality theorem. Let A be a (left) \mathcal{F}-module. For every $P \in \mathbb{F}_{q}[T]_{+}$, let $\varphi_{P}: A \rightarrow A$ be an endomorphism of the \mathcal{F}-module A.
Assume that:
- We have $\varphi_{\pi}(a) \equiv F^{\mathrm{deg} \pi} a \bmod \pi A$ for every $a \in A$ and every monic irreducible $\pi \in \mathbb{F}_{q}[T]_{+}$.
- We have $\varphi_{1}=$ id, and we have $\varphi_{N} \circ \varphi_{M}=\varphi_{N M}$ for every $N, M \in \mathbb{F}_{q}[T]_{+}$. (Thus, $N \mapsto \varphi_{N}$ is an action of the multiplicative monoid $\mathbb{F}_{q}[T]_{+}$on A by \mathcal{F}-module endomorphisms.)
- Let $\mathbf{b}=\left(b_{n}\right)_{n \in \mathbb{N}_{+}} \in A^{\mathbb{F} q[T]_{+}}$be a family of elements of A. Then, the following assertions are equivalent: [continued on next page]

An \mathcal{F}-ghost-Witt integrality theorem, 3

- Ghost-Witt integrality theorem, continued.

The following are equivalent:
\mathcal{C} : Every $N \in \mathbb{F}_{q}[T]_{+}$and every monic irreducible divisor π of N satisfy

$$
\varphi_{\pi}\left(b_{N / \pi}\right) \equiv b_{N} \bmod \pi^{v_{\pi}(N)} A
$$

An \mathcal{F}-ghost-Witt integrality theorem, 3

- Ghost-Witt integrality theorem, continued.

The following are equivalent:
\mathcal{C} : Every $N \in \mathbb{F}_{q}[T]_{+}$and every monic irreducible divisor π of N satisfy

$$
\varphi_{\pi}\left(b_{N / \pi}\right) \equiv b_{N} \bmod \pi^{v_{\pi}(N)} A
$$

\mathcal{D}_{2} : There exists a family $\mathbf{x}=\left(x_{N}\right)_{N \in \mathbb{F}_{q}[T]_{+}} \in A^{\mathbb{F}_{q}[T]_{+}}$of elements of A such that $b_{N}=\sum_{D \mid N} D F^{\operatorname{deg}(N / D)} x_{D}=w_{N}(\mathbf{x})$ for every $N \in \mathbb{F}_{q}[T]_{+}$. In other words, \mathbf{x} belongs to the image of the ghost map w.

An \mathcal{F}-ghost-Witt integrality theorem, 3

- Ghost-Witt integrality theorem, continued.

The following are equivalent:
\mathcal{C} : Every $N \in \mathbb{F}_{q}[T]_{+}$and every monic irreducible divisor π of N satisfy

$$
\varphi_{\pi}\left(b_{N / \pi}\right) \equiv b_{N} \bmod \pi^{v_{\pi}(N)} A
$$

\mathcal{D}_{1} : There exists a family $\mathbf{x}=\left(x_{N}\right)_{N \in \mathbb{F}_{q}[T]_{+}} \in A^{\mathbb{F}_{q}[T]_{+}}$of elements of A such that

$$
b_{N}=\sum_{D \mid N} D \frac{N}{D}[T+F] x_{D} \quad \text { for every } N \in \mathbb{F}_{q}[T]_{+}
$$

[This is mainly interesting due to the connection to Carlitz polynomials.]

An \mathcal{F}-ghost-Witt integrality theorem, 3

- Ghost-Witt integrality theorem, continued.

The following are equivalent:
\mathcal{C} : Every $N \in \mathbb{F}_{q}[T]_{+}$and every monic irreducible divisor π of N satisfy

$$
\varphi_{\pi}\left(b_{N / \pi}\right) \equiv b_{N} \bmod \pi^{v_{\pi}(N)} A
$$

\mathcal{D}_{2} : There exists a family $\mathbf{x}=\left(x_{N}\right)_{N \in \mathbb{F}_{q}[T]_{+}} \in A^{\mathbb{F}_{q}[T]_{+}}$of elements of A such that

$$
b_{N}=\sum_{D \mid N} D F^{\operatorname{deg}(N / D)} x_{D}=w_{N}(\mathbf{x}) \text { for every } N \in \mathbb{F}_{q}[T]_{+} .
$$

In other words, \mathbf{x} belongs to the image of the ghost map w.
\mathcal{E} : There exists a family $\mathbf{y}=\left(y_{N}\right)_{N \in \mathbb{F}_{q}[T]_{+}} \in A^{\mathbb{F}_{q}[T]_{+}}$of elements of A such that

$$
b_{N}=\sum_{D \mid N} D \varphi_{N / D}\left(y_{D}\right) \text { for every } N \in \mathbb{F}_{q}[T]_{+}
$$

An \mathcal{F}-ghost-Witt integrality theorem, 4

- Ghost-Witt integrality theorem, continued.
$\mathcal{F}:$ Every $N \in \mathbb{F}_{q}[T]_{+}$satisfies

$$
\sum_{D \mid N} \mu(D) \varphi_{D}\left(b_{N / D}\right) \in N A
$$

Here, μ is an $\mathbb{F}_{q}[T]$-version of the Möbius function, defined as the usual one (i.e., squarefree \mapsto number of distinct irreducible factors; non-squarefree $\mapsto 0$).

An \mathcal{F}-ghost-Witt integrality theorem, 4

- Ghost-Witt integrality theorem, continued.
$\mathcal{F}:$ Every $N \in \mathbb{F}_{q}[T]_{+}$satisfies

$$
\sum_{D \mid N} \mu(D) \varphi_{D}\left(b_{N / D}\right) \in N A
$$

Here, μ is an $\mathbb{F}_{q}[T]$-version of the Möbius function, defined as the usual one (i.e., squarefree \mapsto number of distinct irreducible factors; non-squarefree $\mapsto 0$).
\mathcal{G} : Every $N \in \mathbb{F}_{q}[T]_{+}$satisfies

$$
\sum_{D \mid N} \phi(D) \varphi_{D}\left(b_{N / D}\right) \in N A
$$

where ϕ is one of two reasonable $\mathbb{F}_{q}[T]$-versions of the Euler totient function.

An \mathcal{F}-ghost-Witt integrality theorem, 4

- Ghost-Witt integrality theorem, continued.
$\mathcal{F}:$ Every $N \in \mathbb{F}_{q}[T]_{+}$satisfies

$$
\sum_{D \mid N} \mu(D) \varphi_{D}\left(b_{N / D}\right) \in N A
$$

Here, μ is an $\mathbb{F}_{q}[T]$-version of the Möbius function, defined as the usual one (i.e., squarefree \mapsto number of distinct irreducible factors; non-squarefree $\mapsto 0$).
\mathcal{G} : Every $N \in \mathbb{F}_{q}[T]_{+}$satisfies

$$
\sum_{D \mid N} \phi(D) \varphi_{D}\left(b_{N / D}\right) \in N A
$$

where ϕ is one of two reasonable $\mathbb{F}_{q}[T]$-versions of the Euler totient function.
\mathcal{J} : ???

An \mathcal{F}-ghost-Witt integrality theorem, 4

- Ghost-Witt integrality theorem, continued.
\mathcal{F} : Every $N \in \mathbb{F}_{q}[T]_{+}$satisfies

$$
\sum_{D \mid N} \mu(D) \varphi_{D}\left(b_{N / D}\right) \in N A
$$

Here, μ is an $\mathbb{F}_{q}[T]$-version of the Möbius function, defined as the usual one (i.e., squarefree \mapsto number of distinct irreducible factors; non-squarefree $\mapsto 0$).
\mathcal{G} : Every $N \in \mathbb{F}_{q}[T]_{+}$satisfies

$$
\sum_{D \mid N} \phi(D) \varphi_{D}\left(b_{N / D}\right) \in N A
$$

where ϕ is one of two reasonable $\mathbb{F}_{q}[T]$-versions of the Euler totient function.
\mathcal{J} : ???

- To state \mathcal{J}, we need an $\mathbb{F}_{q}[T]$-analogue of the symmetric functions.
- Now, back to the question: We have found two functors

$$
\begin{aligned}
& W_{q}: \mathbf{C R i n g}_{\mathbb{F}_{q}[T]} \rightarrow \mathbf{C R i n g}_{\mathbb{F}_{q}[T]} \quad \text { and } \\
& W_{q}: \operatorname{Mod}_{\mathcal{F}} \rightarrow \operatorname{Mod}_{\mathcal{F}} .
\end{aligned}
$$

What are their representing objects? Call them $\Lambda_{\mathcal{F}}^{\prime}$ and $\Lambda_{\mathcal{F}}$.

- Now, back to the question: We have found two functors

$$
\begin{aligned}
& W_{q}: \mathbf{C R i n g}_{\mathbb{F}_{q}[T]} \rightarrow \mathbf{C R i n g}_{\mathbb{F}_{q}[T]} \quad \text { and } \\
& W_{q}: \operatorname{Mod}_{\mathcal{F}} \rightarrow \operatorname{Mod}_{\mathcal{F}}
\end{aligned}
$$

What are their representing objects? Call them $\Lambda_{\mathcal{F}}^{\prime}$ and $\Lambda_{\mathcal{F}}$.

- Both objects (they are distinct) have good claims on the name " $\mathbb{F}_{q}[T]$-symmetric functions".
- Now, back to the question: We have found two functors

$$
\begin{aligned}
& W_{q}: \mathbf{C R i n g}_{\mathbb{F}_{q}[T]} \rightarrow \mathbf{C R i n g}_{\mathbb{F}_{q}[T]} \quad \text { and } \\
& W_{q}: \operatorname{Mod}_{\mathcal{F}} \rightarrow \operatorname{Mod}_{\mathcal{F}}
\end{aligned}
$$

What are their representing objects? Call them $\Lambda_{\mathcal{F}}^{\prime}$ and $\Lambda_{\mathcal{F}}$.

- Both objects (they are distinct) have good claims on the name " $\mathbb{F}_{q}[T]$-symmetric functions".
- I shall focus on $\Lambda_{\mathcal{F}}$, since it is smaller.
- Proceed in the same way as when we reconstructed Λ from the functor W, but now reconstruct the representing object $\Lambda_{\mathcal{F}}$ of the functor $W_{q}: \operatorname{Mod}_{\mathcal{F}} \rightarrow \operatorname{Mod}_{\mathcal{F}}:$
- The functor Forget $\circ W_{q}: \operatorname{Mod}_{\mathcal{F}} \rightarrow$ Set determines $\Lambda_{\mathcal{F}}$ as an \mathcal{F}-module (by Yoneda).
- The functor $W_{q}: \operatorname{Mod}_{\mathcal{F}} \rightarrow \operatorname{Mod}_{\mathcal{F}}$ determines $\Lambda_{\mathcal{F}}$ as an \mathcal{F} - \mathcal{F}-bimodule.
- There is an additional comonad structure on W_{q}, which determines a "plethysm" on $\Lambda_{\mathcal{F}}$, but I know nothing about it.
- Proceed in the same way as when we reconstructed Λ from the functor W, but now reconstruct the representing object $\Lambda_{\mathcal{F}}$ of the functor $W_{q}: \operatorname{Mod}_{\mathcal{F}} \rightarrow \operatorname{Mod}_{\mathcal{F}}:$
- The functor Forget $\circ W_{q}: \operatorname{Mod}_{\mathcal{F}} \rightarrow$ Set determines $\Lambda_{\mathcal{F}}$ as an \mathcal{F}-module (by Yoneda).
- The functor $W_{q}: \operatorname{Mod}_{\mathcal{F}} \rightarrow \operatorname{Mod}_{\mathcal{F}}$ determines $\Lambda_{\mathcal{F}}$ as an \mathcal{F} - \mathcal{F}-bimodule.
- There is an additional comonad structure on W_{q}, which determines a "plethysm" on $\Lambda_{\mathcal{F}}$, but I know nothing about it.
- So what is this $\Lambda_{\mathcal{F}}$?
- Proceed in the same way as when we reconstructed Λ from the functor W, but now reconstruct the representing object $\Lambda_{\mathcal{F}}$ of the functor $W_{q}: \operatorname{Mod}_{\mathcal{F}} \rightarrow \operatorname{Mod}_{\mathcal{F}}:$
- The functor Forget $\circ W_{q}: \operatorname{Mod}_{\mathcal{F}} \rightarrow$ Set determines $\Lambda_{\mathcal{F}}$ as an \mathcal{F}-module (by Yoneda).
- The functor $W_{q}: \operatorname{Mod}_{\mathcal{F}} \rightarrow \operatorname{Mod}_{\mathcal{F}}$ determines $\Lambda_{\mathcal{F}}$ as an \mathcal{F} - \mathcal{F}-bimodule.
- There is an additional comonad structure on W_{q}, which determines a "plethysm" on $\Lambda_{\mathcal{F}}$, but I know nothing about it.
- So what is this $\Lambda_{\mathcal{F}}$?
- I don't really know.
- At least, we can compute in $\Lambda_{\mathcal{F}}$ (in theory):
- The left \mathcal{F}-module $\Lambda_{\mathcal{F}}$ has a basis $\left(w_{N}\right)_{N \in \mathbb{F}_{q}[T]_{+}}$, similarly to the generating set $\left(w_{n}\right)_{n \in \mathbb{N}_{+}}$of the commutative ring Λ.
- The left \mathcal{F}-module $\Lambda_{\mathcal{F}}$ has an "almost-basis" $\left(p_{N}\right)_{N \in \mathbb{F}_{q}[T]_{+}}$, similarly to the "almost-generating set" $\left(p_{n}\right)_{n \in \mathbb{N}_{+}}$of the commutative ring Λ.
Here, "almost-basis" means "basis after localizing so that elements of $\mathbb{F}_{q}[T]_{+}$become invertible". (Noncommutative localization, but a harmless case thereof.)
- At least, we can compute in $\Lambda_{\mathcal{F}}$ (in theory):
- The left \mathcal{F}-module $\Lambda_{\mathcal{F}}$ has a basis $\left(w_{N}\right)_{N \in \mathbb{F}_{q}[T]_{+}}$, similarly to the generating set $\left(w_{n}\right)_{n \in \mathbb{N}_{+}}$of the commutative ring Λ.
- The left \mathcal{F}-module $\Lambda_{\mathcal{F}}$ has an "almost-basis" $\left(p_{N}\right)_{N \in \mathbb{F}_{q}[T]_{+}}$, similarly to the "almost-generating set" $\left(p_{n}\right)_{n \in \mathbb{N}_{+}}$of the commutative ring Λ. Here, "almost-basis" means "basis after localizing so that elements of $\mathbb{F}_{q}[T]_{+}$become invertible". (Noncommutative localization, but a harmless case thereof.)
- The right \mathcal{F}-module structure is easily expressed on the p_{N} 's (just as the second comultiplication of Λ is easily expressed on the p_{n} 's):

$$
p_{N} f=f p_{N} \quad \text { for all } f \in \mathcal{F} \text { and } N \in \mathbb{F}_{q}[T]_{+}
$$

- You can thus express $q f$ for each $f \in \mathcal{F}$ and $q \in \Lambda_{\mathcal{F}}$ by recursion (all fractions will turn out polynomial at the end), but nothing really explicit.
- Here are some of these expressions:

$$
\begin{aligned}
& w_{\pi} T=T w_{\pi}-\frac{T^{q^{\operatorname{deg} \pi}}-T}{\pi} F^{\operatorname{deg} \pi} w_{1} \\
& w_{\pi} F=\pi^{q-1} F w_{\pi}
\end{aligned}
$$

for any irreducible $\pi \in \mathbb{F}_{q}[T]_{+}$.

- This is not $\mathbb{F}_{q}[T]$-related, but I find it curious.
- Remember how the ghost-Witt equivalence theorem generalizes the divisibility $n \mid \sum_{d \mid n} \mu(d) q^{n / d}$ for $n \in \mathbb{N}_{+}$and $q \in \mathbb{Z}:$
- This is not $\mathbb{F}_{q}[T]$-related, but I find it curious.
- Remember how the ghost-Witt equivalence theorem generalizes the divisibility $n \mid \sum_{d \mid n} \mu(d) q^{n / d}$ for $n \in \mathbb{N}_{+}$and $q \in \mathbb{Z}:$
- Ghost-Witt: The following (among others) are equivalent:
\mathcal{C} : Every $n \in \mathbb{N}_{+}$and every prime divisor p of n satisfy

$$
\varphi_{p}\left(b_{n / p}\right) \equiv b_{n} \bmod p^{v_{p}(n)} A
$$

(where $v_{p}(n)$ is the multiplicity of p in the factorization of n).
\mathcal{G} : Every $n \in \mathbb{N}_{+}$satisfies

$$
\sum_{d \mid n} \phi(d) \varphi_{d}\left(b_{n / d}\right) \in n A
$$

[Remember that you can pick $\varphi_{n}=$ id when $A=\mathbb{Z}$.]

- This is not $\mathbb{F}_{q}[T]$-related, but I find it curious.
- The following strange equivalence also generalizes the divisibility $n \mid \sum_{d \mid n} \mu(d) q^{n / d}$ for $n \in \mathbb{N}_{+}$and $q \in \mathbb{Z}$:
- Ghost-Burnside: The following are equivalent:
\mathcal{R} : Every $n \in \mathbb{N}_{+}$, every $d \mid n$ and every prime divisor p of d satisfy

$$
\phi(d) b_{d}^{n / d} \equiv \phi(d) b_{d / p}^{n /(d / p)} \quad \bmod p^{v_{p}(n)} A
$$

(where $v_{p}(n)$ is the multiplicity of p in the factorization of n).
\mathcal{S} : Every $n \in \mathbb{N}_{+}$satisfies

$$
\sum_{d \mid n} \phi(d) b_{d}^{n / d} \in n A
$$

- This is not $\mathbb{F}_{q}[T]$-related, but I find it curious.
- The following strange equivalence also generalizes the divisibility $n \mid \sum_{d \mid n} \mu(d) q^{n / d}$ for $n \in \mathbb{N}_{+}$and $q \in \mathbb{Z}$:
- Ghost-Burnside: The following are equivalent:
\mathcal{R} : When A is "nice" (viz., $p x \in p^{k} A \Longrightarrow x \in p^{k-1} A$, and the quotient ring $A / p A$ is reduced), this simplifies to: Every $d \in \mathbb{N}_{+}$and every prime divisor p of d satisfy

$$
b_{d / p}^{p} \equiv b_{d} \quad \bmod p A
$$

\mathcal{S} : Every $n \in \mathbb{N}_{+}$satisfies

$$
\sum_{d \mid n} \phi(d) b_{d}^{n / d} \in n A
$$

- This is not $\mathbb{F}_{q}[T]$-related, but I find it curious.
- The following strange equivalence also generalizes the divisibility $n \mid \sum_{d \mid n} \mu(d) q^{n / d}$ for $n \in \mathbb{N}_{+}$and $q \in \mathbb{Z}$:
- Ghost-Burnside: The following are equivalent:
\mathcal{R} : Every $n \in \mathbb{N}_{+}$, every $d \mid n$ and every prime divisor p of d satisfy

$$
\phi(d) b_{d}^{n / d} \equiv \phi(d) b_{d / p}^{n /(d / p)} \quad \bmod p^{v_{p}(n)} A
$$

(where $v_{p}(n)$ is the multiplicity of p in the factorization of n).
$\mathcal{S}:$ Every $n \in \mathbb{N}_{+}$satisfies

$$
\sum_{d \mid n} \phi(d) b_{d}^{n / d} \in n A
$$

- This leads to a notion of "ghost-Burnside vectors", which also form a subring of $A^{\mathbb{N}_{+}}$. Not sure yet what they are good for...

Thanks to James Borger for some inspiring discussions. Thanks to Christophe Reutenauer for historiographical comments.
And thank you!

