
Function-field symmetric functions:
In search of an Fq [T ]-combinatorics

Darij Grinberg (UMN)

27 February 2017, Cornell

slides:
http://www.cip.ifi.lmu.de/~grinberg/algebra/

cornell-feb17.pdf

preprint (WIP, and currently a mess):
http:

//www.cip.ifi.lmu.de/~grinberg/algebra/schur-ore.pdf

1 / 33

http://www.cip.ifi.lmu.de/~grinberg/algebra/cornell-feb17.pdf
http://www.cip.ifi.lmu.de/~grinberg/algebra/cornell-feb17.pdf
http://www.cip.ifi.lmu.de/~grinberg/algebra/schur-ore.pdf
http://www.cip.ifi.lmu.de/~grinberg/algebra/schur-ore.pdf


Symmetric functions and Witt vectors

The connection between symmetric functions and (big) Witt
vectors is due to Cartier around 1970 (vaguely; made explicit
by Reutenauer in 1995), and can be used to the benefit of
either.

Modern references: e.g., Hazewinkel’s Witt vectors, part 1
(arXiv:0804.3888v1, see also errata), and works of James
Borger (mainly arXiv:0801.1691v6, as well as
arXiv:math/0407227v1 joint with Wieland).

Let N+ = {1, 2, 3, . . .}. The (big) Witt vector functor is a
functor W : CRing→ CRing, sending any commutative ring
A to a new commutative ring W (A) with some extra
structure.

Note that W (A) is a ring, not an A-algebra.
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Definition of Witt vectors, 1: ghost maps

Let A be a commutative ring.
We abbreviate a family (ak)k∈N+

∈ AN+ as a. Similarly for
other letters.

For each n ∈ N+, define a map wn : AN+ → A by

wn (a) =
∑
d |n

da
n/d
d .

The map wn is called the n-th ghost projection.

Examples:

w1 = a1.
If p is a prime, then wp = ap1 + pap.
w6 = a61 + 2a32 + 3a23 + 6a6.
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Let w : AN+ → AN+ be the map given by

w (a) = (wn (a))n∈N+
.

We call w the ghost map.

This ghost map w is not linear and in general not injective or
surjective. However, its image turns out to be a subring of
AN+ . It is called the ring of ghost-Witt vectors.
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Definition of Witt vectors, 2: addition

For example, for any a,b ∈ AN+ , we have
w (a) + w (b) = w (c) for some c ∈ AN+ . How to compute
this c ?

Good news:

w is injective if A is torsionfree (as Z-module).
w is bijective if A is a Q-vector space.

Hence, we can compute c back from w (c) by recursion
(coordinate by coordinate). Miraculously, the denominators
vanish.
Examples:

w1(c) = w1(a) + w1(b) ⇐⇒ c1 = a1 + b1.
w2(c) = w2(a) + w2(b) ⇐⇒
c21 + 2c2 =

(
a21 + 2a2

)
+
(
b21 + 2b2

) naturality⇐⇒

c2 = a2 + b2 +
1

2

(
a21 + b21 − (a1 + b1)2

)
, and the RHS is

indeed a Z-polynomial.
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Definition of Witt vectors, 3: W (A)

Let’s make a new ring out of this: We define W (A) to be the
ring that equals AN+ as a set, but whose ring structure is such
that W : CRing→ CRing is a functor, and w is a natural (in
A) ring homomorphism from W (A) to AN+ .

This looks abstract and confusing, but the underlying idea is
simple: Define addition on W (A) so that
wn (a + b) = wn(a) + wn(b) for all n.
Thus, a + b is the c from last page.

Functoriality is needed, because there might be several choices
for a given A (if A is not torsionfree), but only one consistent
choice for all rings A. Functoriality forces us to pick the
consistent choice.

If a ∈W (A), then the an are called the Witt coordinates of a,
while the wn(a) are called the ghost coordinates of a.
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Definition of Witt vectors, 4: coda

The ring W (A) is called the ring of (big) Witt vectors over A.

The functor CRing→ CRing, A 7→W (A) is called the (big)
Witt vector functor.

For any given prime p, there is a canonical quotient Wp(A) of
W (A) called the ring of p-typical Witt vectors of A. Number
theorists usually care about the latter ring. For example,
Wp (Fp) = Zp (the p-adics). We have nothing to say about it
here.

W (A) comes with more structure: Frobenius and
Verschiebung endomorphisms, a comonad comultiplication
map W (A)→W (W (A)), etc.
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Avatars of Witt vectors, 1: Power series

There are some equivalent ways to define W (A). Let me show
two.

One is the Grothendieck construction using power series (see,
again, Hazewinkel, or Rabinoff’s arXiv:1409.7445):

Let Λ(A) be the topological ring defined as follows:

As topological spaces, Λ(A) = 1 + tA [[t]] =
{power series with constant term 1}.
Addition +̂ in Λ(A) is multiplication of power series.
Multiplication ·̂ in Λ(A) is given by

(1− at) ·̂ (1− bt) = 1− abt

(and distributivity and continuity, and naturality in A).

Canonical ring isomorphism

W (A)→ Λ(A), a 7→
∞∏
n=1

(1− ant
n) .
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Avatars of Witt vectors, 2: Characters of Λ (virtual alphabets)

Here is another: Let Λ be the Hopf algebra of symmetric
functions over Z. (No direct relation to Λ(A); just traditional
notations clashing.)

Define ring Alg(Λ,A) as follows:

As set, Alg(Λ,A) = {algebra homomorphisms Λ→ A}.
Addition = convolution.
Multiplication = convolution using the second
comultiplication on Λ (= Kronecker comultiplication =
Hall dual of Kronecker multiplication).

The elements of Alg(Λ,A) are known as characters of Λ (as in
Aguiar-Bergeron-Sottile) or virtual alphabets (to the Lascoux
school) or as specializations of symmetric functions (as in
Stanley’s EC2).

8 / 33
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Avatars of Witt vectors, 2: Characters of Λ, cont’d

There is a unique family (wn)n∈N+
of symmetric functions

satisfying pn =
∑

d |n dw
n/d
d for all n ∈ N+. (Equivalently, it is

determined by hn =
∑

λ`n wλ, where wλ = wλ1wλ2 · · · .)
These generate Λ as a ring, are called the Witt coordinates,
and were first introduced in 1995 by Reutenauer.
We have a ring isomorphism

Alg(Λ,A)→W (A), f 7→ (f (wn))n∈N+
.

We also have a ring homomorphism (isomorphism when A is a
Q-algebra)

Alg(Λ,A)→ AN+ , f 7→ (f (pn))n∈N+
.

These form a commutative diagram

Alg(Λ,A)
∼= //

%%

W (A)

w
��

AN+
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Reconstructing Λ from W = Alg(Λ,−)

This also works in reverse: We can reconstruct Λ from the
functor W , as its representing object. Namely:

The functor Forget ◦W : CRing→ Set determines Λ as
a ring (by Yoneda).
The functor Forget ◦W : CRing→ Ab (additive group of
W (A)) determines Λ as a Hopf algebra.
The functor W : CRing→ CRing determines Λ as a
Hopf algebra equipped with a second comultiplication.
The comonad structure on W additionally determines
plethysm on Λ.

Thus, if symmetric functions hadn’t been around, Witt vectors
would have let us rediscover them.
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The ghost-Witt integrality theorem (aka Dwork lemma), 1

Assume you don’t know about Λ(A) or Λ. How would you go
about proving that the Witt vector functor W exists?
In other words, why do the denominators (e.g., in the
computation of c satisfying w(a) + w(b) = w(c))
“miraculously” vanish?

This is a consequence of the ghost-Witt integrality theorem,
also known (in parts) as Dwork’s lemma. I shall state a (more
or less) maximalist version of it; only the C ⇐⇒ E part is
actually needed.
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The ghost-Witt integrality theorem (aka Dwork lemma), 2

Ghost-Witt integrality theorem.
Let A be a commutative ring. For every n ∈ N+, let
ϕn : A→ A be an endomorphism of the ring A. Assume that:

We have ϕp (a) ≡ ap mod pA for every a ∈ A and every
prime p.
We have ϕ1 = id, and we have ϕn ◦ ϕm = ϕnm for every
n,m ∈ N+. (Thus, n 7→ ϕn is an action of the
multiplicative monoid N+ on A by ring endomorphisms.)

[For a stupid example, let A = Z and ϕn = id.
For an example that is actually useful to Witt vectors, let A
be a polynomial ring over Z, and let ϕn send each
indeterminate to its n-th power.]

Let b = (bn)n∈N+
∈ AN+ be a sequence of elements of A.

Then, the following assertions are equivalent: [continued on
next page]
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The ghost-Witt integrality theorem (aka Dwork lemma), 3

Ghost-Witt integrality theorem, continued.
The following are equivalent:
C: Every n ∈ N+ and every prime divisor p of n satisfy

ϕp

(
bn/p

)
≡ bn mod pvp(n)A

(where vp(n) is the multiplicity of p in the factorization
of n).

D: There exists a sequence x = (xn)n∈N+
∈ AN+ of elements

of A such that

bn =
∑
d |n

dx
n/d
d = wn (x) for every n ∈ N+.

In other words, x belongs to the image of the ghost map
w .

E: There exists a sequence y = (yn)n∈N+
∈ AN+ of elements

of A such that

bn =
∑
d |n

dϕn/d (yd) for every n ∈ N+.
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The ghost-Witt integrality theorem (aka Dwork lemma), 3
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The ghost-Witt integrality theorem (aka Dwork lemma), 4

Ghost-Witt integrality theorem, continued.

F : Every n ∈ N+ satisfies∑
d |n

µ (d)ϕd

(
bn/d

)
∈ nA.

G: Every n ∈ N+ satisfies∑
d |n

φ (d)ϕd

(
bn/d

)
∈ nA.

J : There exists a ring homomorphism from the ring Λ to A
which sends pn (the n-th power sum symmetric function)
to bn for every n ∈ N+.

Note that this theorem has various neat consequences, like the
famous necklace divisibility n |

∑
d |n
µ(d)qn/d for n ∈ N+ and

q ∈ Z. (And various generalizations.)
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which sends pn (the n-th power sum symmetric function)
to bn for every n ∈ N+.

Note that this theorem has various neat consequences, like the
famous necklace divisibility n |

∑
d |n
µ(d)qn/d for n ∈ N+ and

q ∈ Z. (And various generalizations.)
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Z and Fq [T ]: a tale of two rings

Now to something completely different...

Fix a prime power q.

There is a famous analogy between the elements of Z and the
elements of Fq [T ]. (This is related to q-enumeration, the lore
of the field with 1 element, etc.)
All that matters to us is that

positive integers in Z correspond to monic polynomials
in Fq [T ];
primes in Z correspond to irreducible monic polynomials
in Fq [T ].

Let Fq [T ]+ be the set of all monic polynomials in Fq [T ].

Let’s define an analogue of (big) Witt vectors for Fq [T ]
instead of Z.
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Definition of Fq [T ]-Witt vectors, 1: ghost maps

Let A be a commutative Fq [T ]-algebra.

We abbreviate a family (aN)N∈Fq [T ]+
∈ AFq [T ]+ as a.

For each N ∈ Fq [T ]+, define a map wN : AFq [T ]+ → A by

wN (a) =
∑
D|N

Daq
deg(N/D)

D ,

where the sum is over all monic divisors D of N.

Let w : AFq [T ]+ → AFq [T ]+ be the map given by

w (a) = (wN (a))N∈Fq [T ]+
.

This “ghost map” w is Fq-linear, but not Fq [T ]-linear.
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Definition of Fq [T ]-Witt vectors, 2: Wq(A)

Let’s make a new Fq [T ]-algebra out of this: We define
Wq(A) to be the Fq [T ]-algebra

that equals AFq [T ]+ as a set, but
which is functorial in A (that is, we are really defining a
functor Wq : CRingFq [T ] → CRingFq [T ], where CRingR

is the category of commutative R-algebras), and
whose Fq [T ]-algebra structure is such that w is a natural
(in A) homomorphism of Fq [T ]-algebras from Wq(A) to

AFq [T ]+ .
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Definition of Fq [T ]-Witt vectors, 2: Wq(A), cont’d

Example: The addition in Wq(A) is the same as in AFq [T ]+

(since w is Fq-linear, and so Wq(A) = AFq [T ]+ as
Fq-modules), so this would be boring. Instead, let’s set
c = Ta in Wq(A), and compute wπ(c) for an irreducible π.

Start with c1 = Ta1, which is easy to check.
wπ(c) = Twπ(a)

⇐⇒ cq
deg π

1 + πcπ = Taq
deg π

1 + Tπaπ
c1=Ta1⇐⇒ (Ta1)q

deg π

+ πcπ = Taq
deg π

1 + Tπaπ

⇐⇒ πcπ = Tπaπ −
(
T qdeg π − T

)
aq

deg π

1

naturality⇐⇒ cπ = Taπ −
T qdeg π − T

π
aq

deg π

1 .

The fraction on the RHS is a polynomial due to a known fact
from Galois theory (namely:

T qk − T =
∏

γ∈Fq [T ]+ irreducible; deg γ|k
γ).
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Definition of Fq [T ]-Witt vectors, 3: coda

There is also a second construction of Wq(A), using Carlitz
polynomials, yielding an isomorphic Fq [T ]-algebra. (See the
preprint.)
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Avatars of Fq [T ]-Witt vectors?

Can we find anything similar to the two avatars of W (A) ?

Power series? This appears to require a notion of power series
where the exponents are polynomials in Fq [T ]. Product
ill-defined due to lack of actual “positivity”. Seems too much
to wish...

Alg(Λ,A)? Well, we can try brute force: Remember how Λ
was reconstructed from W , and do something similar to
“reconstruct” a representing object from Wq. We’ll come
back to this shortly.
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Surprise: F-modules, 1

First, a surprise...

We aren’t using the whole Fq [T ]-algebra structure on A !
(This is unlike the Z-case, where it seems that we use the
commutative ring A in full.)
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Surprise: F-modules, 2

Let F be the noncommutative ring

Fq 〈F ,T | FT = T qF 〉 .

This is an Fq-vector space with basis
(
T iF j

)
(i ,j)∈N2 , and is an

Ore polynomial ring. It shares many properties of usual
univariate polynomials (see papers of Ore).

Actually,

F ∼=
(
Fq [T ] [X ]q−lin ,+, ◦

)
,

where Fq [T ] [X ]q−lin are the polynomials in X over Fq [T ]

where X occurs only with exponents qk , and where ◦ is
composition of polynomials.
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(
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)
(i ,j)∈N2 , and is an

Ore polynomial ring. It shares many properties of usual
univariate polynomials (see papers of Ore).

What matters to us:
Each commutative Fq [T ]-algebra canonically becomes a (left)
F-module by having

T act as multiplication by T , and
F act as the Frobenius (i.e., taking q-th powers).

Thus, we have a functor CRingFq [T ] →ModF .
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F-module by having

T act as multiplication by T , and
F act as the Frobenius (i.e., taking q-th powers).

Thus, we have a functor CRingFq [T ] →ModF .

There are other sources of F-modules too (cf. Jacobson on
“commutative restricted Lie algebras”).
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Fq [T ]-Witt vectors of an F-module

Let A be a (left) F-module.
We abbreviate a family (aN)N∈Fq [T ]+

∈ AFq [T ]+ as a.

For each N ∈ Fq [T ]+, define a map wN : AFq [T ]+ → A by

wN (a) =
∑
D|N

DF deg(N/D)aD ,

where the sum is over all monic divisors D of N.

Let w : AFq [T ]+ → AFq [T ]+ be the map given by

w (a) = (wN (a))N∈Fq [T ]+
.

We define Wq(A) to be the F-module

that equals AFq [T ]+ as a set, but
which is functorial in A (that is, we are really defining a
functor Wq : ModF →ModF ), and
whose F-module structure is such that w is a natural (in
A) homomorphism of F-modules from Wq(A) to AFq [T ]+ .
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An F-ghost-Witt integrality theorem, 1

Again, there is a “ghost-Witt integrality theorem” that helps
prove the existence of the Wq functors.
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An F-ghost-Witt integrality theorem, 2

F-ghost-Witt integrality theorem.
Let A be a (left) F-module. For every P ∈ Fq [T ]+, let
ϕP : A→ A be an endomorphism of the F-module A.
Assume that:

We have ϕπ (a) ≡ F deg πamodπA for every a ∈ A and
every monic irreducible π ∈ Fq [T ]+.
We have ϕ1 = id, and we have ϕN ◦ ϕM = ϕNM for every
N,M ∈ Fq [T ]+. (Thus, N 7→ ϕN is an action of the
multiplicative monoid Fq [T ]+ on A by F-module
endomorphisms.)

Let b = (bn)n∈N+
∈ AFq [T ]+ be a family of elements of A.

Then, the following assertions are equivalent: [continued on
next page]
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An F-ghost-Witt integrality theorem, 3

Ghost-Witt integrality theorem, continued.
The following are equivalent:
C: Every N ∈ Fq [T ]+ and every monic irreducible divisor π

of N satisfy

ϕπ
(
bN/π

)
≡ bN modπvπ(N)A.

D2: There exists a family x = (xN)N∈Fq [T ]+
∈ AFq [T ]+ of

elements of A such that

bN =
∑
D|N

DF deg(N/D)xD = wN (x) for every N ∈ Fq [T ]+.

In other words, x belongs to the image of the ghost map
w .

E: There exists a family y = (yN)N∈Fq [T ]+
∈ AFq [T ]+ of

elements of A such that

bN =
∑
D|N

DϕN/D (yD) for every N ∈ Fq [T ]+.
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Ghost-Witt integrality theorem, continued.
The following are equivalent:
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D
N

D
[T + F ] xD for every N ∈ Fq [T ]+.

[This is mainly interesting due to the connection to
Carlitz polynomials.]
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An F-ghost-Witt integrality theorem, 3

Ghost-Witt integrality theorem, continued.
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An F-ghost-Witt integrality theorem, 4

Ghost-Witt integrality theorem, continued.

F : Every N ∈ Fq [T ]+ satisfies∑
D|N

µ (D)ϕD

(
bN/D

)
∈ NA.

Here, µ is an Fq [T ]-version of the Möbius function,
defined as the usual one (i.e., squarefree 7→ number of
distinct irreducible factors; non-squarefree 7→ 0).

G: Every N ∈ Fq [T ]+ satisfies∑
D|N

φ (D)ϕD

(
bN/D

)
∈ NA,

where φ is one of two reasonable Fq [T ]-versions of the
Euler totient function.

J : ???

To state J , we need an Fq [T ]-analogue of the symmetric
functions.
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Tinfoil, 1: What is ΛF ?

Now, back to the question: We have found two functors

Wq : CRingFq [T ] → CRingFq [T ] and

Wq : ModF →ModF .

What are their representing objects? Call them Λ′F and ΛF .

Both objects (they are distinct) have good claims on the
name “Fq [T ]-symmetric functions”.

I shall focus on ΛF , since it is smaller.
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Tinfoil, 2: “Re”constructing ΛF

Proceed in the same way as when we reconstructed Λ from
the functor W , but now reconstruct the representing object
ΛF of the functor Wq : ModF →ModF :

The functor Forget ◦Wq : ModF → Set determines ΛF
as an F-module (by Yoneda).
The functor Wq : ModF →ModF determines ΛF as an
F-F-bimodule.
There is an additional comonad structure on Wq, which
determines a “plethysm” on ΛF , but I know nothing
about it.

So what is this ΛF ?

I don’t really know.
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Tinfoil, 3: Some computations inside ΛF

At least, we can compute in ΛF (in theory):
The left F-module ΛF has a basis (wN)N∈Fq [T ]+

, similarly to

the generating set (wn)n∈N+
of the commutative ring Λ.

The left F-module ΛF has an “almost-basis” (pN)N∈Fq [T ]+
,

similarly to the “almost-generating set” (pn)n∈N+
of the

commutative ring Λ.
Here, “almost-basis” means “basis after localizing so that
elements of Fq [T ]+ become invertible”. (Noncommutative
localization, but a harmless case thereof.)
The right F-module structure is easily expressed on the pN ’s
(just as the second comultiplication of Λ is easily expressed on
the pn’s):

pN f = fpN for all f ∈ F and N ∈ Fq [T ]+.

You can thus express qf for each f ∈ F and q ∈ ΛF by
recursion (all fractions will turn out polynomial at the end),
but nothing really explicit.

30 / 33



Tinfoil, 3: Some computations inside ΛF

At least, we can compute in ΛF (in theory):
The left F-module ΛF has a basis (wN)N∈Fq [T ]+

, similarly to

the generating set (wn)n∈N+
of the commutative ring Λ.

The left F-module ΛF has an “almost-basis” (pN)N∈Fq [T ]+
,

similarly to the “almost-generating set” (pn)n∈N+
of the

commutative ring Λ.
Here, “almost-basis” means “basis after localizing so that
elements of Fq [T ]+ become invertible”. (Noncommutative
localization, but a harmless case thereof.)
The right F-module structure is easily expressed on the pN ’s
(just as the second comultiplication of Λ is easily expressed on
the pn’s):

pN f = fpN for all f ∈ F and N ∈ Fq [T ]+.

You can thus express qf for each f ∈ F and q ∈ ΛF by
recursion (all fractions will turn out polynomial at the end),
but nothing really explicit.

30 / 33



Tinfoil, 4: Examples

Here are some of these expressions:

wπT = Twπ −
T qdeg π − T

π
F deg πw1;

wπF = πq−1Fwπ

for any irreducible π ∈ Fq [T ]+.
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Bonus oddity (back in Z): a “ghost-Burnside theorem”

This is not Fq [T ]-related, but I find it curious.

Remember how the ghost-Witt equivalence theorem
generalizes the divisibility n |

∑
d |n
µ(d)qn/d for n ∈ N+ and

q ∈ Z:

Ghost-Witt: The following (among others) are equivalent:

C: Every n ∈ N+ and every prime divisor p of n satisfy

ϕp

(
bn/p

)
≡ bn mod pvp(n)A

(where vp(n) is the multiplicity of p in the factorization
of n).

G: Every n ∈ N+ satisfies∑
d |n

φ (d)ϕd

(
bn/d

)
∈ nA.

[Remember that you can pick ϕn = id when A = Z.]
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Bonus oddity (back in Z): a “ghost-Burnside theorem”

This is not Fq [T ]-related, but I find it curious.

The following strange equivalence also generalizes the
divisibility n |

∑
d |n
µ(d)qn/d for n ∈ N+ and q ∈ Z:

Ghost-Burnside: The following are equivalent:

R: Every n ∈ N+, every d | n and every prime divisor p of d
satisfy

φ (d) b
n/d
d ≡ φ (d) b

n/(d/p)
d/p mod pvp(n)A

(where vp(n) is the multiplicity of p in the factorization
of n).

S: Every n ∈ N+ satisfies∑
d |n

φ (d) b
n/d
d ∈ nA.

This leads to a notion of “ghost-Burnside vectors”, which also
form a subring of AN+ . Not sure yet what they are good for...
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Thanks to James Borger for some inspiring discussions. Thanks to
Christophe Reutenauer for historiographical comments.
And thank you!
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