On coprime characteristic polynomials over finite fields

[Fragment of the paper "Additive Cellular Automata Over Finite

Abelian Groups: Topological and Measure Theoretic

Properties"]

Alberto Dennunzio Enrico Formenti Darij Grinberg Luciano Margara

March 3, 2020

Contents

1.	On	coprime characteristic polynomials over finite fields	1
	1.1.	The main theorem	2
	1.2.	Proof of the main theorem	2
	1.3.	Extending Lemma 1.3 to rings	6

1. On coprime characteristic polynomials over finite fields

The following is a fragment of the paper "Additive Cellular Automata Over Finite Abelian Groups: Topological and Measure Theoretic Properties" in which we prove some purely algebraic properties of matrices and their characteristic polynomials. The fragment has been somewhat rewritten to make it self-contained.

Acknowledgments

DG thanks the Mathematisches Forschungsinstitut Oberwolfach for its hospitality during part of the writing process.

1.1. The main theorem

We shall use the following notations:

- The symbol \mathbb{N} shall mean the set $\{0, 1, 2, \ldots\}$.
- If $n \in \mathbb{N}$, then the notation I_n shall always stand for an $n \times n$ identity matrix (over whatever ring we are using).
- If K is a commutative ring, and if n ∈ N, and if A ∈ K^{n×n} is an n × n-matrix over K, then χ_A shall denote the characteristic polynomial det (tI_n − A) ∈ K [t] of A.
- If *f* and *g* are two univariate polynomials over a field *K*, then " $f \perp g$ " will mean that the polynomials *f* and *g* are coprime. (This makes sense, since the polynomial ring *K*[*t*] is a Euclidean domain.)

We are now ready to state the main result of this section:

Theorem 1.1. We fix a prime power q and consider the corresponding finite field \mathbb{F}_q . Let F be a field such that F/\mathbb{F}_q is a purely transcendental field extension. (For example, F can be the field of all rational functions in a single variable over \mathbb{F}_q .)

Let $n \in \mathbb{N}$. Let $N \in F^{n \times n}$ be a matrix. Then, the following three assertions are equivalent:

- Assertion \mathcal{X} : We have det $(N^k I_n) \neq 0$ for all positive integers k.
- Assertion \mathcal{Y} : We have $\chi_N \perp t^k 1$ for all positive integers k.
- Assertion \mathcal{Z} : We have $\chi_N \perp t^{q^i-1} 1$ for all $i \in \{1, 2, \dots, n\}$.

1.2. Proof of the main theorem

Our proof of this theorem will rely on the following two lemmas:

Lemma 1.2. Let q, \mathbb{F}_q and F be as in Theorem 1.1.

Let $n \in \mathbb{N}$. Let $f \in F[t]$ be a polynomial such that deg $f \leq n$. Assume that $f \perp t^{q^i-1} - 1$ for all $i \in \{1, 2, ..., n\}$. Then, $f \perp t^k - 1$ for all positive integers k.

Proof of Lemma 1.2. Let *k* be a positive integer. We must show that $f \perp t^k - 1$.

Indeed, assume the contrary. Then, the polynomials f and $t^k - 1$ have a nonconstant common divisor $g \in F[t]$. Consider this g. Then, $g \mid f$ and $g \mid t^k - 1$.

Hence, the polynomial g is a divisor of $t^k - 1$; thus, its roots are k-th roots of unity, and therefore are algebraic over the field \mathbb{F}_q . Hence, the coefficients of g are

algebraic over the field \mathbb{F}_q as well (since these coefficients are symmetric polynomials in these roots with integer coefficients). On the other hand, these coefficients belong to *F*. But F/\mathbb{F}_q is a purely transcendental field extension. Thus, every element of *F* that is algebraic over \mathbb{F}_q must belong to \mathbb{F}_q ¹. Thus, the coefficients of *g* must belong to \mathbb{F}_q (since they are elements of *F* that are algebraic over \mathbb{F}_q). In other words, $g \in \mathbb{F}_q[t]$.

Since this polynomial $g \in \mathbb{F}_q[t]$ is non-constant, it must have a monic irreducible divisor in $\mathbb{F}_q[t]$. In other words, there exists a monic irreducible $\pi \in \mathbb{F}_q[t]$ such that $\pi \mid g$. Consider this π . Let $j = \deg \pi$. Then, $j \ge 1$ (since π is irreducible) and

$$j = \deg \pi \le \deg f \qquad (\text{since } \pi \mid g \mid f) \le n.$$

Hence, $j \in \{1, 2, ..., n\}$. Thus, $f \perp t^{q^{i}-1} - 1$ (since we assumed that $f \perp t^{q^{i}-1} - 1$ for all $i \in \{1, 2, ..., n\}$). Hence, every common divisor of f and $t^{q^{i}-1} - 1$ in F[t] must be constant.

From $\pi \mid g \mid t^k - 1$, we conclude that $t^k \equiv 1 \mod \pi$ in F[t]. If we had $\pi \mid t$ in F[t], then we would have $t \equiv 0 \mod \pi$ in F[t], which would entail $t^k \equiv 0^k = 0 \mod \pi$ and thus $0 \equiv t^k \equiv 1 \mod \pi$, which would lead to $\pi \mid 1$, which would be absurd (since deg $\pi = j \ge 1$). Thus, we cannot have $\pi \mid t$ in F[t]. Thus, we cannot have $\pi \mid t$ in $\mathbb{F}_q[t]$ either. Hence, $\pi \nmid t$ in $\mathbb{F}_q[t]$. Therefore, $\pi \mid t^{q^j-1} - 1^{-2}$.

Combining $\pi | g | f$ with $\pi | t^{q^{j-1}} - 1$, we conclude that π is a common divisor of f and $t^{q^{j-1}} - 1$ in F[t]. Hence, π is constant (since every common divisor of f and $t^{q^{j-1}} - 1$ in F[t] must be constant). This contradicts the irreducibility of π . This contradiction shows that our assumption was false. Hence, Lemma 1.2 is proven.

¹Here we are using one of the basic properties of purely transcendental field extensions: If L/K is a purely transcendental field extension, then every element of *L* that is algebraic over *K* must belong to *K*. (Equivalently: If L/K is a purely transcendental field extension, then every element $x \in L \setminus K$ is transcendental over *K*.) This is proven in [Bosch18, §7.1, Remark 10], for example.

²*Proof.* This is a well-known fact about irreducible polynomials in $\mathbb{F}_q[t]$ distinct from *t*, but for the sake of completeness let us give a proof:

For each $u \in \mathbb{F}_q[t]$, we let \overline{u} denote the projection of u onto $\mathbb{F}_q[t] / (\pi)$.

We have $\pi \nmid t$ in $\mathbb{F}_q[t]$. In other words, $\overline{t} \neq 0$ in $\mathbb{F}_q[t] / (\pi)$. In other words, the element \overline{t} of $\mathbb{F}_q[t] / (\pi)$ is nonzero.

The polynomial π has degree deg $\pi = j$. Hence, the quotient ring $\mathbb{F}_q[t] / (\pi)$ is an \mathbb{F}_q -vector space of dimension j (indeed, it has a basis consisting of $\overline{t^0}, \overline{t^1}, \ldots, \overline{t^{j-1}}$). Hence, it has size $|\mathbb{F}_q[t] / (\pi)| = |\mathbb{F}_q|^j = q^j$ (since $|\mathbb{F}_q| = q$). Moreover, this quotient ring $\mathbb{F}_q[t] / (\pi)$ is a field (since π is irreducible). Thus, $\mathbb{F}_q[t] / (\pi)$ is a finite field of size q^j . As a consequence, its group of units is a finite group of size $q^j - 1$. Thus, Lagrange's theorem shows that $u^{q^j-1} = 1$ for every nonzero element $u \in \mathbb{F}_q[t] / (\pi)$. Applying this to $u = \overline{t}$, we conclude that $\overline{t}^{q^j-1} = 1$ (since the element \overline{t} of $\mathbb{F}_q[t] / (\pi)$ is nonzero). Hence, $\overline{tq^{j-1}} = \overline{t}^{q^{j-1}} = 1 = \overline{1}$, so that $t^{q^j-1} \equiv 1 \mod \pi$ in $\mathbb{F}_q[t]$. In other words, $\pi \mid t^{q^j-1} - 1$, qed.

Lemma 1.3. Let $n \in \mathbb{N}$. Let K be any field. Let $N \in K^{n \times n}$ be a matrix. Let $f \in K[t]$ be any polynomial. Then, det $(f(N)) \neq 0$ if and only if $\chi_N \perp f$.

First proof of Lemma 1.3. Pick a splitting field *L* of *f* over *K*. Then, we can factor *f* in the polynomial ring L[t] as follows:

 $f = \lambda (t - a_1) (t - a_2) \cdots (t - a_k)$ for some $\lambda \in L \setminus \{0\}$ and some $a_1, a_2, \dots, a_k \in L$.

Consider these λ and a_1, a_2, \ldots, a_k . Note that these k elements a_1, a_2, \ldots, a_k of L are precisely the roots of f in L. Evaluating both sides of the equality $f = \lambda (t - a_1) (t - a_2) \cdots (t - a_k)$ at N, we obtain the equality

$$f(N) = \lambda \left(N - a_1 I_n \right) \left(N - a_2 I_n \right) \cdots \left(N - a_k I_n \right)$$

in the matrix ring $L^{n \times n}$. Hence,

$$\det (f (N)) = \det (\lambda (N - a_1 I_n) (N - a_2 I_n) \cdots (N - a_k I_n))$$

= $\lambda^n \cdot \det (N - a_1 I_n) \cdot \det (N - a_2 I_n) \cdots \det (N - a_k I_n).$

Thus, we have the following chain of equivalences:

Here, the last equivalence sign is due to a standard argument about polynomials³. This chain of equivalences entails $(\det(f(N)) \neq 0) \iff (f \perp \chi_N)$. Thus, Lemma 1.3 is proven.

(none of the roots of *f* in *L* is a root of χ_N) \iff $(f \perp \chi_N)$. (1)

We shall show its " \Longrightarrow " and " \Leftarrow " directions separately:

 \implies : Assume that none of the roots of *f* in *L* is a root of χ_N . We must prove that $f \perp \chi_N$.

³Here is a detailed proof: We must show the equivalence

We will soon give a second proof of Lemma 1.3, which generalizes it to arbitrary commutative rings (see Lemma 1.7 below).

Proof of Theorem 1.1. Let *k* be a positive integer. Then, Lemma 1.3 (applied to K = F and $f = t^k - 1$) shows that det $(N^k - I_n) \neq 0$ if and only if $\chi_N \perp t^k - 1$.

Now, forget that we fixed *k*. We thus have proven the equivalence $(\det(N^k - I_n) \neq 0) \iff (\chi_N \perp t^k - 1)$ for each positive integer *k*. Hence, Assertion \mathcal{X} is equivalent to Assertion \mathcal{Y} .

On the other hand, $\chi_N \in F[t]$ is a polynomial with deg $(\chi_N) = n$. Thus, Lemma 1.2 (applied to $f = \chi_N$) shows that if we have $\chi_N \perp t^{q^i-1} - 1$ for all $i \in \{1, 2, ..., n\}$, then we have $\chi_N \perp t^k - 1$ for all positive integers k. In other words, Assertion \mathcal{Z} implies Assertion \mathcal{Y} . Conversely, Assertion \mathcal{Y} implies Assertion \mathcal{Z} (since each $q^i - 1$ with $i \in \{1, 2, ..., n\}$ is a positive integer). Combining these two sentences, we conclude that Assertion \mathcal{Y} is equivalent to Assertion \mathcal{Z} . Since we have also shown that Assertion \mathcal{X} is equivalent to Assertion \mathcal{Y} , we thus conclude that all three Assertions \mathcal{X} , \mathcal{Y} and \mathcal{Z} are equivalent. Theorem 1.1 is thus proven.

$$g = \prod_{i \in I} (t - a_i) = (\text{empty product}) \quad (\text{since } I \text{ is empty})$$
$$= 1,$$

which would contradict the fact that *g* is non-constant. Hence, *I* is nonempty. Thus, there exists some $j \in I$. Consider this *j*. Now, a_j is a root of *f* in *L* (since a_1, a_2, \ldots, a_k are the roots of *f* in *L*), and thus is not a root of χ_N (since none of the roots of *f* in *L* is a root of χ_N). Hence, a_j is not a root of *g* either (since $g \mid \chi_N$). On the other hand, $g = \prod_{i \in I} (t - a_i)$ is a multiple of $t - a_j$ (since $j \in I$), and thus a_j is a root of *g*. This contradicts the fact that a_j is not a root of *g*. This contradicts the fact that a_j is not a root of *g*. This contradiction shows that our assumption was false. Hence, the " \Longrightarrow " direction of (1) is proven.

 \Leftarrow : Assume that $f \perp \chi_N$. We must prove that none of the roots of f in L is a root of χ_N . Indeed, assume the contrary. Thus, some root α of f in L is a root of χ_N . Consider this α .

But $f \perp \chi_N$. Hence, Bezout's theorem shows that there exist two polynomials $a, b \in K[t]$ such that $af + b\chi_N = 1$. Consider these a, b. Now, evaluating both sides of the equality $af + b\chi_N = 1$ at α , we obtain $a(\alpha) f(\alpha) + b(\alpha) \chi_N(\alpha) = 1$. Hence,

$$1 = a(\alpha) \underbrace{f(\alpha)}_{\text{(since } \alpha \text{ is a root of } f)} + b(\alpha) \underbrace{\chi_N(\alpha)}_{\text{(since } \alpha \text{ is a root of } \chi_N)} = 0 + 0 = 0$$

This is absurd. This contradiction shows that our assumption was false. Hence, the " \Leftarrow " direction of (1) is proven.

Thus, the proof of (1) is complete.

Indeed, assume the contrary. Thus, the polynomials f and χ_N have a non-constant common divisor $g \in K[t]$. Consider this g. Thus, $g \mid f$ and $g \mid \chi_N$ in K[t]. We WLOG assume that g is monic (since we can always achieve this by scaling g). We have $g \mid f$ in K[t], thus also in L[t]. Hence, $g \mid f = \lambda (t - a_1) (t - a_2) \cdots (t - a_k)$ in L[t]. Hence, g must be a product of some of the linear polynomials $t - a_1, t - a_2, \ldots, t - a_k$ (since L[t] is a unique factorization domain, and g is monic). In other words, $g = \prod_{i \in I} (t - a_i)$ for some subset I of $\{1, 2, \ldots, k\}$. Consider this I. If I was empty, then we would have

1.3. Extending Lemma 1.3 to rings

As promised, we shall now extend Lemma 1.3 to arbitrary commutative rings and re-prove it in that generality. First, we need some more lemmas:

Lemma 1.4. Let \mathbb{K} be any commutative ring. Let $f \in \mathbb{K}[t]$ be any polynomial. Let \mathbb{L} be any commutative \mathbb{K} -algebra. Let u and v be two elements of \mathbb{L} . Then, $u - v \mid f(u) - f(v)$ in \mathbb{L} .

Proof of Lemma 1.4. This is well-known in the case when $\mathbb{K} = \mathbb{Z}$ and $\mathbb{L} = \mathbb{Z}$; but the same proof applies in the general case.⁴ Note that commutativity of \mathbb{L} is crucial. \Box

Lemma 1.5. Let $n \in \mathbb{N}$. Let \mathbb{L} be any commutative ring. Let $A \in \mathbb{L}^{n \times n}$ be any $n \times n$ -matrix. Let $\lambda \in \mathbb{L}$. Then,

$$\det \left(\lambda I_n + A\right) \equiv \det A \operatorname{mod} \lambda \mathbb{L}.$$

Proof of Lemma 1.5. This can be proven using the explicit formula for det $(\lambda I_n + A)$ in terms of principal minors of A, or using the fact that the characteristic polynomial of A has constant term $(-1)^n \det A$. Here is another argument: For each $u \in \mathbb{L}$, we let \overline{u} be the projection of u onto the quotient ring $\mathbb{L}/\lambda\mathbb{L}$; furthermore, for each matrix $B \in \mathbb{L}^{n \times n}$, we let $\overline{B} \in (\mathbb{L}/\lambda\mathbb{L})^{n \times n}$ be the result of projecting each entry of the matrix B onto the quotient ring $\mathbb{L}/\lambda\mathbb{L}$. Then, $\lambda \in \lambda\mathbb{L}$ and thus $\overline{\lambda} = 0$. Hence, $\overline{\lambda I_n + A} = \underbrace{\lambda I_n}_{=0} + \overline{A} = \overline{A}$. But the determinant of a matrix is a polynomial of a matrix is a polynomial of the matrix is a polynomial of th

mial in the entries of the matrix, and thus is respected by the canonical projection $\mathbb{L} \to \mathbb{L}/\lambda \mathbb{L}$; hence,

$$\det\left(\overline{\lambda I_n + A}\right) = \overline{\det\left(\lambda I_n + A\right)} \quad \text{and} \quad \det\overline{A} = \overline{\det A}.$$

⁴Here is this proof:

Write the polynomial $f \in \mathbb{K}[t]$ in the form $f = \sum_{i=0}^{n} a_i t^i$ for some $n \in \mathbb{N}$ and some $a_0, a_1, \ldots, a_n \in \mathbb{K}$. Then, $f(u) = \sum_{i=0}^{n} a_i u^i$ and $f(v) = \sum_{i=0}^{n} a_i v^i$. Subtracting these two equalities from each other, we obtain

$$f(u) - f(v) = \sum_{i=0}^{n} a_{i}u^{i} - \sum_{i=0}^{n} a_{i}v^{i} = \sum_{i=0}^{n} a_{i} \underbrace{\left(u^{i} - v^{i}\right)}_{=\left(u - v\right)\sum_{k=0}^{i-1} u^{k}v^{i-1-k}}$$
$$= \sum_{i=0}^{n} a_{i}\left(u - v\right)\sum_{k=0}^{i-1} u^{k}v^{i-1-k} = \left(u - v\right)\sum_{i=0}^{n} a_{i}\sum_{k=0}^{i-1} u^{k}v^{i-1-k}$$

The right hand side of this equality is clearly divisible by u - v. Thus, so is the left hand side. In other words, we have u - v | f(u) - f(v) in \mathbb{L} .

The left hand sides of these two equalities are equal (since $\overline{\lambda I_n + A} = \overline{A}$). Thus, the right hand sides are equal as well. In other words, $\overline{\det (\lambda I_n + A)} = \overline{\det A}$. In other words, $\det (\lambda I_n + A) \equiv \det A \mod \lambda \mathbb{L}$. This proves Lemma 1.5.

Lemma 1.6. Let $n \in \mathbb{N}$. Let \mathbb{K} be any commutative ring. Let $f \in \mathbb{K}[t]$ be any polynomial. Let $N \in \mathbb{K}^{n \times n}$ be any $n \times n$ -matrix. Then, there exist two polynomials $a, b \in \mathbb{K}[t]$ such that

$$\det\left(f\left(N\right)\right) = fa + \chi_N b \qquad \text{ in } \mathbb{K}\left[t\right].$$

(Note that the left hand side of this equality is a constant polynomial, since $f(N) \in \mathbb{K}^{n \times n}$.)

Proof of Lemma 1.6. Consider *N* as a matrix over the polynomial ring $\mathbb{K}[t]$ (via the standard embedding $\mathbb{K}^{n \times n} \to (\mathbb{K}[t])^{n \times n}$). The \mathbb{K} -subalgebra $(\mathbb{K}[t])[N]$ of $(\mathbb{K}[t])^{n \times n}$ is commutative (since it is generated by the single element *N* over the commutative ring $\mathbb{K}[t]$).

Hence, Lemma 1.4 (applied to $\mathbb{L} = (\mathbb{K}[t])[N]$ and $u = tI_n$ and v = N) shows that $tI_n - N \mid f(tI_n) - f(N)$ in $(\mathbb{K}[t])[N]$. In other words, there exists some $U \in (\mathbb{K}[t])[N]$ such that

$$f(tI_n) - f(N) = (tI_n - N) \cdot U.$$
(2)

Consider this U. Taking determinants on both sides of the equality (2), we find

$$\det \left(f\left(tI_{n}\right) - f\left(N\right) \right) = \det \left(\left(tI_{n} - N\right) \cdot U \right) = \underbrace{\det \left(tI_{n} - N\right)}_{=\chi_{N}} \cdot \det U$$
(by the definition of χ_{N})

 $= \chi_N \cdot \det U.$

In view of $f(tI_n) = f(t) \cdot I_n$, this rewrites as

$$\det\left(f\left(t\right)\cdot I_{n}-f\left(N\right)\right)=\chi_{N}\cdot\det U.$$

Hence,

$$\chi_{N} \cdot \det U$$

$$= \det \underbrace{(f(t) \cdot I_{n} - f(N))}_{=f(t) \cdot I_{n} + (-f(N))} = \det (f(t) \cdot I_{n} + (-f(N)))$$

$$\equiv \det (-f(N)) \qquad \left(\begin{array}{c} \text{by Lemma 1.5, applied to } \mathbb{L} = \mathbb{K}[t], \lambda = f(t) \\ \text{and } A = -f(N) \end{array} \right)$$

$$= (-1)^{n} \det (f(N)) \mod f(t) \mathbb{K}[t].$$

Multiplying this congruence by $(-1)^n$, we obtain

$$(-1)^{n} \chi_{N} \cdot \det U \equiv \underbrace{(-1)^{n} (-1)^{n}}_{=1} \det (f(N)) = \det (f(N)) \mod f(t) \mathbb{K} [t].$$

In other words, $(-1)^n \chi_N \cdot \det U - \det (f(N)) \in f(t) \mathbb{K}[t]$. In other words, there exists a polynomial $c \in \mathbb{K}[t]$ such that

$$(-1)^{n} \chi_{N} \cdot \det U - \det \left(f\left(N\right) \right) = f\left(t\right) c.$$
(3)

Consider this *c*. Solving the equality (3) for det (f(N)), we find

$$\det (f(N)) = (-1)^n \chi_N \cdot \det U - \underbrace{f(t)}_{=f} c = (-1)^n \chi_N \cdot \det U - fc$$
$$= f \cdot (-c) + \chi_N \cdot (-1)^n \det U.$$

Hence, there exist two polynomials $a, b \in \mathbb{K}[t]$ such that det $(f(N)) = fa + \chi_N b$ in $\mathbb{K}[t]$ (namely, a = -c and $b = (-1)^n \det U$). This proves Lemma 1.6.

We can now generalize Lemma 1.3 to arbitrary rings:

Lemma 1.7. Let $n \in \mathbb{N}$. Let \mathbb{K} be any commutative ring. Let $N \in \mathbb{K}^{n \times n}$ be a matrix. Let $f \in \mathbb{K}[t]$ be any polynomial. Then, det $(f(N)) \in \mathbb{K}$ is invertible if and only if there exist polynomials $a, b \in \mathbb{K}[t]$ such that $fa + \chi_N b = 1$.

Proof of Lemma 1.7. \implies : Assume that det $(f(N)) \in \mathbb{K}$ is invertible. Thus, there exists some $c \in \mathbb{K}$ such that det $(f(N)) \cdot c = 1$. Consider this *c*.

Lemma 1.6 shows that there exist two polynomials $a, b \in \mathbb{K}[t]$ such that det $(f(N)) = fa + \chi_N b$ in $\mathbb{K}[t]$. Consider these a and b, and denote them by a_0 and b_0 . Thus, a_0 and b_0 are two polynomials in $\mathbb{K}[t]$ such that det $(f(N)) = fa_0 + \chi_N b_0$. Now, comparing det $(f(N)) \cdot c = 1$ with

$$\underbrace{\det\left(f\left(N\right)\right)}_{=fa_{0}+\chi_{N}b_{0}} \cdot c = (fa_{0}+\chi_{N}b_{0}) \cdot c = fa_{0}c + \chi_{N}b_{0}c,$$

we obtain $fa_0c + \chi_N b_0c = 1$. Thus, there exist polynomials $a, b \in \mathbb{K}[t]$ such that $fa + \chi_N b = 1$ (namely, $a = a_0c$ and $b = b_0c$). This proves the " \Longrightarrow " direction of Lemma 1.7.

 \Leftarrow : Assume that there exist polynomials $a, b \in \mathbb{K}[t]$ such that $fa + \chi_N b = 1$. Consider these *a* and *b*. Now, evaluating both sides of the equality $fa + \chi_N b = 1$ at *N*, we obtain

$$f(N) a(N) + \chi_N(N) b(N) = I_n.$$

Hence,

$$I_{n} = f(N) a(N) + \underbrace{\chi_{N}(N)}_{\text{(by the Cayley-Hamilton theorem)}} b(N) = f(N) a(N).$$

Taking determinants on both sides of this equality, we find

$$\det (I_n) = \det (f(N) a(N)) = \det (f(N)) \cdot \det (a(N)).$$

Thus,

$$\det (f(N)) \cdot \det (a(N)) = \det (I_n) = 1.$$

Hence, det $(f(N)) \in \mathbb{K}$ is invertible (and its inverse is det (a(N))). This proves the " \Leftarrow " direction of Lemma 1.7.

Second proof of Lemma 1.3. Lemma 1.7 (applied to $\mathbb{K} = K$) shows that det $(f(N)) \in K$ is invertible if and only if there exist polynomials $a, b \in K[t]$ such that $fa + \chi_N b = 1$. But this is precisely the statement of Lemma 1.3, because:

- the element det $(f(N)) \in K$ is invertible if and only if det $(f(N)) \neq 0$ (because *K* is a field), and
- there exist polynomials $a, b \in K[t]$ such that $fa + \chi_N b = 1$ if and only if $\chi_N \perp f$ (by Bezout's theorem).

Thus, Lemma 1.3 is proven again.

References

[Bosch18] Siegfried Bosch, *Algebra*, From the Viewpoint of Galois Theory, Springer 2018.

https://doi.org/10.1007/978-3-319-95177-5