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***

This is a companion note to [GriVas22]. The purpose of this note is to prove some
elementary properties of integer compositions that are used in [GriVas22]. All of
these proofs are elementary and generally quite easy, but they are hard to find
written down and often left to the reader to prove.

1. Notations

We let N = {0, 1, 2, . . .}.
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A composition means a finite list (α1, α2, . . . , αk) of positive integers. The set of all
compositions will be denoted by Comp.

The empty composition is defined to be the composition (), which is a 0-tuple. It
is denoted by ∅.

The length ℓ (α) of a composition α = (α1, α2, . . . , αk) is defined to be the number
k.

If α = (α1, α2, . . . , αk) is a composition, then the nonnegative integer α1 + α2 +
· · ·+ αk is called the size of α and is denoted by |α|. For any n ∈ N, we define a
composition of n to be a composition that has size n. We let Compn be the set of
all compositions of n (for given n ∈ N). The notation “α |= n” is short for “α ∈
Compn”. For example, (1, 5, 2, 1) is a composition with size 9 (since |(1, 5, 2, 1)| =
1 + 5 + 2 + 1 = 9), so that (1, 5, 2, 1) ∈ Comp9, or, in other words, (1, 5, 2, 1) |= 9.
Note that the empty composition ∅ is a composition of 0. In other words, ∅ ∈
Comp0.

For any n ∈ Z, we let [n] denote the set {1, 2, . . . , n}. This set is empty whenever
n ≤ 0, and otherwise has size n.

If X is any set, then P (X) shall denote the powerset of X. This is the set of all
subsets of X.

2. The maps D and comp

It is well-known that any positive integer n has exactly 2n−1 compositions. This has
a standard bijective proof (“stars and bars”) which relies on the following bijections:

Definition 2.1. Let n ∈ N.

(a) We define a map D : Compn → P ([n − 1]) by setting1

D (α1, α2, . . . , αk) = {α1 + α2 + · · ·+ αi | i ∈ [k − 1]}
= {α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ αk−1}

for each (α1, α2, . . . , αk) ∈ Compn. (It is easy to see that this map D is
well-defined; see [Grinbe15, detailed version, Lemma 10.4] for a detailed
proof.)

(b) We define a map comp : P ([n − 1]) → Compn as follows: For any I ∈
P ([n − 1]), we set

comp (I) = (i1 − i0, i2 − i1, . . . , im − im−1) ,

where i0, i1, . . . , im are the elements of the set I ∪ {0, n} listed in increas-
ing order (so that i0 < i1 < · · · < im, therefore i0 = 0 and im = n and
{i1, i2, . . . , im−1} = I). (It is easy to see that this map comp is well-defined;
see [Grinbe15, detailed version, Lemma 10.15 (d)] for a detailed proof.)

The maps D and comp are mutually inverse bijections. (See [Grinbe15, de-
tailed version, Proposition 10.17] for a detailed proof of this.)
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We note that both of these maps D and comp depend on n. Thus, they should
be denoted by Dn or compn to avoid ambiguity. Otherwise, for example, the ex-
pression “comp ({2, 3})” would have different meanings depending on whether
n is 4 or 5. However, we shall not use the map comp in what follows. As for
the map D, we need not be afraid of any ambiguity, since the value of D (α) for a
given composition α is uniquely determined (indeed, the expression “D (α)” makes
sense only for one value of n, namely for n = |α|; no other value of n would sat-
isfy α ∈ Compn). Thus, we shall freely use the notation “D (α)” without explicitly
specifying n.

The notation D we just introduced presumably originates in the word “descent”,
but the connection between D and actual descents is indirect and rather misleading.
I prefer to call D the “partial sum map” (as D (α) consists of the partial sums of the
composition α) and its inverse comp the “interstitial map” (as comp (I) consists of
the lengths of the intervals into which the elements of I split the interval [n]).

Example 2.2. Let n = 10.

(a) The map D defined in Definition 2.1 (a) satisfies

D (1, 4, 2, 3) = {1, 1 + 4, 1 + 4 + 2} = {1, 5, 7} ;
D (3, 5, 2) = {3, 3 + 5} = {3, 8} ;

D (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) = {1, 2, 3, 4, 5, 6, 7, 8, 9} = [9] = [n − 1] ;
D (10) = {} = ∅.

(b) The map comp defined in Definition 2.1 (b) satisfies

comp ({2, 3, 7}) = (2 − 0, 3 − 2, 7 − 3, 10 − 7) = (2, 1, 4, 3)

(since 0, 2, 3, 7, 10 are the elements of the set {2, 3, 7} ∪ {0, 10} listed in in-
creasing order).

Our first observation about the bijections D and comp concerns the relation be-
tween the size of D (α) and the length ℓ (α) of α. Namely, we shall show that every
composition α of size |α| > 0 satisfies |D (α)| = ℓ (α)− 1:

Proposition 2.3. Let α be a composition such that |α| > 0. Then, |D (α)| =
ℓ (α)− 1.

Note that the “|α| > 0” assumption in Proposition 2.3 is necessary, since Propo-
sition 2.3 would fail if α was the empty composition ∅ = () (because D (∅) = ∅
and thus |D (∅)| = 0 ̸= ℓ (∅)− 1).

1The notation “D (α1, α2, . . . , αk)” means D ((α1, α2, . . . , αk)) (that is, the image of the composition
(α1, α2, . . . , αk) under the map D).
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Proof of Proposition 2.3. Write the composition α in the form α = (α1, α2, . . . , αk).
Then, ℓ (α) = k (by the definition of ℓ (α)) and |α| = α1 + α2 + · · · + αk (by the
definition of |α|). If we had k = 0, then we would have

|α| = α1 + α2 + · · ·+ αk = α1 + α2 + · · ·+ α0 (since k = 0)
= (empty sum) = 0,

which would contradict |α| > 0. Thus, we cannot have k = 0. Hence, k ̸= 0, so that
k ≥ 1 (since k ∈ N).

From α = (α1, α2, . . . , αk), we obtain

D (α) = D (α1, α2, . . . , αk)

= {α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ αk−1} (1)

(by the definition of the map D). However, it is easy to see that the chain of
inequalities

α1 < α1 + α2 < α1 + α2 + α3 < · · · < α1 + α2 + · · ·+ αk−1

holds2. Thus, the k− 1 numbers α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ αk−1
are distinct. Therefore, the set of these k− 1 numbers has size k− 1. In other words,
we have

|{α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ αk−1}| = k − 1.

In view of (1), we can rewrite this as |D (α)| = k − 1. In other words, |D (α)| =
ℓ (α)− 1 (since ℓ (α) = k). This proves Proposition 2.3.

The analogue of Proposition 2.3 for |α| = 0 is almost trivial:

Proposition 2.4. Let α be a composition such that |α| = 0. Then, α = ∅ and
ℓ (α) = 0 and D (α) = ∅.

2Proof. Let i ∈ [k]. Then, αi is an entry of α (since α = (α1, α2, . . . , αk)).
Recall that α is a composition, i.e., a finite list of positive integers. Hence, αi is a positive

integer (since αi is an entry of α). Therefore, αi > 0. Hence,

α1 + α2 + · · ·+ αi = α1 + α2 + · · ·+ αi−1 + αi︸︷︷︸
>0

> α1 + α2 + · · ·+ αi−1.

In other words, α1 + α2 + · · ·+ αi−1 < α1 + α2 + · · ·+ αi.
Forget that we fixed i. We thus have proved the inequality α1 + α2 + · · ·+ αi−1 < α1 + α2 +

· · ·+ αi for each i ∈ [k]. Hence, in particular, this inequality holds for each i ∈ {2, 3, . . . , k − 1}.
In other words, we have the chain of inequalities

α1 < α1 + α2 < α1 + α2 + α3 < · · · < α1 + α2 + · · ·+ αk−1.
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Proof of Proposition 2.4. Write the composition α in the form α = (α1, α2, . . . , αk).
Then, |α| = α1 + α2 + · · · + αk (by the definition of |α|) and ℓ (α) = k (by the
definition of ℓ (α)).

Assume (for the sake of contradiction) that k ̸= 0. Thus, k ≥ 1 (since k ∈ N).
However, α is a composition, i.e., a finite list of positive integers. In other words,

(α1, α2, . . . , αk) is a finite list of positive integers (since α = (α1, α2, . . . , αk)). Thus,
α1, α2, . . . , αk are positive integers. Therefore, in particular, α2, α3, . . . , αk are positive
integers. Hence, α2 + α3 + · · ·+ αk ≥ 0 (since a sum of positive integers is always
≥ 0). However, from |α| = 0, we obtain

0 = |α| = α1 + α2 + · · ·+ αk = α1 + (α2 + α3 + · · ·+ αk)︸ ︷︷ ︸
≥0

(since k ≥ 1)

≥ α1 > 0 (since α1 is a positive integer) ,

which is absurd. This contradiction shows that our assumption (that k ̸= 0) was
false. Hence, k = 0.

Now,

α = (α1, α2, . . . , αk) = (α1, α2, . . . , α0) (since k = 0)
= () = ∅ (recall that ∅ denotes the empty composition) .

Moreover, ℓ (α) = k = 0. Finally, from α = (), we obtain D (α) = D () = ∅
(by the definition of the map D : Comp0 → P ([0 − 1])). Thus, Proposition 2.4 is
proved.

We can unite Proposition 2.3 with Proposition 2.4 by using the Iverson bracket
notation:

Convention 2.5. If A is a logical statement, then [A] shall denote the truth value
of A; this is the integer defined by

[A] =

{
1, if A is true;
0, if A is false.

For example, [2 + 2 = 4] = 1 (since the statement 2 + 2 = 4 is true) and
[2 + 2 = 5] = 0 (since the statement 2 + 2 = 5 is false).

Now, Proposition 2.3 with Proposition 2.4 can be combined into the following:

Corollary 2.6. Let n ∈ N. Let α ∈ Compn. Then, ℓ (α) = |D (α)|+ [n ̸= 0].

Proof of Corollary 2.6. From α ∈ Compn, we see that α is a composition of n (since
Compn is the set of all compositions of n). In other words, α is a composition
having size n. Therefore, |α| = n (since |α| is the size of α, but we know that α has
size n).
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We are in one of the following two cases:
Case 1: We have n = 0.
Case 2: We have n ̸= 0.
Let us first consider Case 1. In this case, we have n = 0. Hence, we don’t have

n ̸= 0. Thus, [n ̸= 0] = 0.
However, |α| = n = 0. Thus, Proposition 2.4 yields α = ∅ and ℓ (α) =

0 and D (α) = ∅. From D (α) = ∅, we obtain |D (α)| = |∅| = 0. Thus,
|D (α)|︸ ︷︷ ︸

=0

+ [n ̸= 0]︸ ︷︷ ︸
=0

= 0. Comparing this with ℓ (α) = 0, we obtain ℓ (α) = |D (α)|+

[n ̸= 0]. Hence, Corollary 2.6 is proved in Case 1.
Let us now consider Case 2. In this case, we have n ̸= 0. Hence, [n ̸= 0] = 1.

Also, from n ̸= 0, we obtain n > 0 (since n ∈ N). Thus, |α| = n > 0. Hence,
Proposition 2.3 yields |D (α)| = ℓ (α)− 1. Hence, ℓ (α) = |D (α)|+ 1. Comparing
this with |D (α)|+ [n ̸= 0]︸ ︷︷ ︸

=1

= |D (α)|+ 1, we obtain ℓ (α) = |D (α)|+ [n ̸= 0]. Thus,

Corollary 2.6 is proved in Case 2.
We have now proved Corollary 2.6 in both Cases 1 and 2. Hence, Corollary 2.6

always holds.

Corollary 2.7. Let n ∈ N. Let α ∈ Compn and β ∈ Compn. Then, ℓ (β)− ℓ (α) =
|D (β)| − |D (α)|.

Proof of Corollary 2.7. Corollary 2.6 yields ℓ (α) = |D (α)| + [n ̸= 0]. Corollary 2.6
(applied to β instead of α) yields ℓ (β) = |D (β)|+ [n ̸= 0]. Hence,

ℓ (β)︸︷︷︸
=|D(β)|+[n ̸=0]

− ℓ (α)︸︷︷︸
=|D(α)|+[n ̸=0]

= (|D (β)|+ [n ̸= 0])− (|D (α)|+ [n ̸= 0])

= |D (β)| − |D (α)| .

This proves Corollary 2.7.

3. Reversals

We shall now discuss a certain operation on compositions:

Definition 3.1. If α = (α1, α2, . . . , αk) is a composition, then the reversal of α is
defined to be the composition (αk, αk−1, . . . , α1). It is denoted by rev α.

Thus, we have defined a map rev : Comp → Comp that sends each composi-
tion α to the composition rev α.

Example 3.2. We have

rev (2, 3, 6) = (6, 3, 2) ;
rev (4, 1, 1, 2) = (2, 1, 1, 4) ;

rev∅ = ∅.
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Proposition 3.3. Let α ∈ Comp. Then, |rev α| = |α|.

Proof of Proposition 3.3. Write the composition α in the form α = (α1, α2, . . . , αk).
Then, rev α = (αk, αk−1, . . . , α1) (by Definition 3.1) and |α| = α1 + α2 + · · ·+ αk (by
the definition of |α|). Now,

|rev α| = |(αk, αk−1, . . . , α1)| (since rev α = (αk, αk−1, . . . , α1))

= αk + αk−1 + · · ·+ α1 (by the definition of |(αk, αk−1, . . . , α1)|)
= α1 + α2 + · · ·+ αk

= |α| (since |α| = α1 + α2 + · · ·+ αk) .

This proves Proposition 3.3.

Proposition 3.4. Let α ∈ Comp. Then, rev (rev α) = α.

Proof of Proposition 3.4. Write the composition α in the form α = (α1, α2, . . . , αk).
Then, Definition 3.1 yields rev α = (αk, αk−1, . . . , α1). However, Definition 3.1 also
yields rev (αk, αk−1, . . . , α1) = (α1, α2, . . . , αk). Now,

rev (rev α)︸ ︷︷ ︸
=(αk,αk−1,...,α1)

= rev (αk, αk−1, . . . , α1) = (α1, α2, . . . , αk) = α.

This proves Proposition 3.4.

Corollary 3.5. The map

Comp → Comp,
δ 7→ rev δ

is a bijection.

Proof of Corollary 3.5. Let us denote this map by rev (since the image of any δ ∈
Comp under this map is already being called rev δ). Thus, we must prove that this
map rev is a bijection.

But this is easy: Every α ∈ Comp satisfies

(rev ◦ rev) (α) = rev (rev α) = α (by Proposition 3.4)
= id (α) .

Thus, rev ◦ rev = id. Hence, the map rev is inverse to itself. Thus, the map rev
is invertible, i.e., bijective. In other words, it is a bijection. This proves Corollary
3.5.

We also define a related operation on subsets of [n − 1]:
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Definition 3.6. Let n ∈ N. For any subset X of [n − 1], we let revn X denote the
set {n − x | x ∈ X}.

Example 3.7. If n = 7, then

revn ({2, 4}) = {7 − 2, 7 − 4} = {5, 3} = {3, 5} ;
revn ({1, 2, 5, 6}) = {7 − 1, 7 − 2, 7 − 5, 7 − 6} = {6, 5, 2, 1} = {1, 2, 5, 6} ;

revn (∅) = ∅;
revn ([6]) = [6] .

Informally speaking, the set revn X defined in Definition 3.6 is the reflection of
the set X across the midpoint of the interval [n − 1] (where we regard numbers as
points on the number line). From this point of view, all claims of the following
theorem are visually obvious:

Theorem 3.8. Let n ∈ N. Then:

(a) We have revn X ⊆ [n − 1] for each subset X of [n − 1].

(b) We have revn (revn X) = X for any subset X of [n − 1].

(c) If two subsets X and Y of [n − 1] satisfy X ⊆ Y, then revn X ⊆ revn Y.

(d) We have |revn X| = |X| for any subset X of [n − 1].

(e) We have revn X = {i ∈ [n − 1] | n − i ∈ X} for any subset X of [n − 1].

(f) We have revn (X \ Y) = (revn X) \ (revn Y) for any subsets X and Y of
[n − 1].

(g) We have revn (X ∩ Y) = (revn X) ∩ (revn Y) for any subsets X and Y of
[n − 1].

(h) We have revn ([n − 1]) = [n − 1].

(i) We have D (rev α) = revn (D (α)) for any composition α ∈ Compn.

Proof of Theorem 3.8. (a) Let X be a subset of [n − 1]. Then, n − x ∈ [n − 1] for each
x ∈ X 3. In other words,

{n − x | x ∈ X} ⊆ [n − 1] .

3Proof. Let x ∈ X. Then, x ∈ X ⊆ [n − 1] = {1, 2, . . . , n − 1}, so that n − x ∈ {1, 2, . . . , n − 1} =
[n − 1].

Forget that we fixed x. We thus have shown that n − x ∈ [n − 1] for each x ∈ X.
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This rewrites as revn X ⊆ [n − 1] (since revn X is defined to be {n − x | x ∈ X}).
This proves Theorem 3.8 (a).

(b) Let X be a subset of [n − 1]. Let Y = revn X.
Let p ∈ revn Y. We shall show that p ∈ X.
We have

p ∈ revn Y = {n − x | x ∈ Y} (by the definition of revn Y)
= {n − y | y ∈ Y} (here, we have renamed the index x as y) .

In other words, p = n − y for some y ∈ Y. Consider this y. Now,

y ∈ Y = revn X = {n − x | x ∈ X} (by the definition of revn X) .

In other words, y = n − x for some x ∈ X. Consider this x. Now, p = n − y︸︷︷︸
=n−x

=

n − (n − x) = x ∈ X.
Forget that we fixed p. We thus have shown that p ∈ X for each p ∈ revn Y. In

other words, revn Y ⊆ X.
On the other hand, let q ∈ X. Then, n − q has the form n − x for some x ∈ X

(namely, for x = q). In other words, n − q ∈ {n − x | x ∈ X}. Since Y = revn X =
{n − x | x ∈ X} (by the definition of revn X), we can rewrite this as n − q ∈ Y.

Furthermore, q = n − (n − q). Hence, q has the form n − x for some x ∈ Y
(namely, for x = n − q). In other words, q ∈ {n − x | x ∈ Y}. Since revn Y =
{n − x | x ∈ Y} (by the definition of revn Y), we can rewrite this as q ∈ revn Y.

Forget that we fixed q. We thus have shown that q ∈ revn Y for each q ∈ X. In
other words, X ⊆ revn Y.

Combining this with revn Y ⊆ X, we obtain revn Y = X. In other words,
revn (revn X) = X (since Y = revn X). This proves Theorem 3.8 (b).

(c) Let X and Y be two subsets of [n − 1] that satisfy X ⊆ Y. The definition of
revn Y yields revn Y = {n − x | x ∈ Y}.

Let p ∈ revn X. Then, p ∈ revn X = {n − x | x ∈ X} (by the definition of
revn X). In other words, p = n − x for some x ∈ X. Consider this x, and denote it
by z. Thus, z ∈ X and p = n − z.

Now, z ∈ X ⊆ Y and p = n − z. Therefore, p = n − x for some x ∈ Y (namely,
for x = z). In other words, p ∈ {n − x | x ∈ Y}. This rewrites as p ∈ revn Y (since
revn Y = {n − x | x ∈ Y}).

Forget that we fixed p. We thus have shown that p ∈ revn Y for each p ∈ revn X.
In other words, revn X ⊆ revn Y. This proves Theorem 3.8 (c).

(d) Let X be a subset of [n − 1]. Let Y = revn X.
The definition of revn X yields revn X = {n − x | x ∈ X}. Thus, the elements of

revn X are precisely the numbers n − x for x ∈ X. Clearly, there are at most |X|
many such numbers (since there are |X| many elements x ∈ X). Hence, the set
revn X has at most |X| many elements. In other words, |revn X| ≤ |X|.
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The same argument (applied to Y instead of X) yields |revn Y| ≤ |Y|. However,
from Y = revn X, we obtain revn Y = revn (revn X) = X (by Theorem 3.8 (b)). In
view of this, we can rewrite |revn Y| ≤ |Y| as |X| ≤ |Y|.

But from Y = revn X, we also obtain |Y| = |revn X| ≤ |X|. Combining this
inequality with |X| ≤ |Y|, we find |X| = |Y| = |revn X|. In other words, |revn X| =
|X|. This proves Theorem 3.8 (d).

(e) Let X be a subset of [n − 1]. Let Y = {i ∈ [n − 1] | n − i ∈ X}. We shall show
that revn X = Y.

Note that revn X = {n − x | x ∈ X} (by the definition of revn X).
Let p ∈ revn X. Then, p ∈ revn X = {n − x | x ∈ X}. In other words, p =

n − x for some x ∈ X. Consider this x. Thus, p = n − x, so that n = p + x.
Therefore, n − p = x ∈ X. Also, p ∈ revn X ⊆ [n − 1] (by Theorem 3.8 (a)).
Hence, p is an element i of [n − 1] satisfying n − i ∈ X (since n − p ∈ X). In
other words, p ∈ {i ∈ [n − 1] | n − i ∈ X}. In other words, p ∈ Y (since Y =
{i ∈ [n − 1] | n − i ∈ X}).

Forget that we fixed p. We thus have shown that p ∈ Y for each p ∈ revn X. In
other words, revn X ⊆ Y.

Now, let q ∈ Y. Thus, q ∈ Y = {i ∈ [n − 1] | n − i ∈ X}. In other words, q
is an i ∈ [n − 1] satisfying n − i ∈ X. In other words, q ∈ [n − 1] and n − q ∈ X.
Furthermore, q = n− (n − q). Hence, q has the form n− x for some x ∈ X (namely,
for x = n − q). In other words, q ∈ {n − x | x ∈ X}. This rewrites as q ∈ revn X
(since revn X = {n − x | x ∈ X}).

Forget that we fixed q. We thus have shown that q ∈ revn X for each q ∈ Y. In
other words, Y ⊆ revn X.

Combining this with revn X ⊆ Y, we obtain revn X = Y = {i ∈ [n − 1] | n − i ∈ X}.
This proves Theorem 3.8 (e).

(f) Let X and Y be two subsets of [n − 1]. Then, X \ Y is a subset of [n − 1] as
well (since X \ Y ⊆ X ⊆ [n − 1]). Thus, revn (X \ Y) ⊆ [n − 1] (by Theorem 3.8 (a),
applied to X \ Y instead of X). Also, (revn X) \ (revn Y) ⊆ revn X ⊆ [n − 1] (by
Theorem 3.8 (a)).

Theorem 3.8 (e) yields

revn X = {i ∈ [n − 1] | n − i ∈ X} .

Hence, for any i ∈ [n − 1], we have the logical equivalence

(i ∈ revn X) ⇐⇒ (n − i ∈ X) . (2)

The same argument (applied to Y instead of X) shows that for any i ∈ [n − 1], we
have the logical equivalence

(i ∈ revn Y) ⇐⇒ (n − i ∈ Y) . (3)

The same argument (applied to X \ Y instead of Y) shows that for any i ∈ [n − 1],
we have the logical equivalence

(i ∈ revn (X \ Y)) ⇐⇒ (n − i ∈ X \ Y) . (4)
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Now, for each i ∈ [n − 1], we have the following chain of logical equivalences:

(i ∈ revn (X \ Y)) ⇐⇒ (n − i ∈ X \ Y) (by (4))
⇐⇒ (n − i ∈ X and n − i /∈ Y)

⇐⇒

 n − i ∈ X︸ ︷︷ ︸
⇐⇒ (i∈revn X)

(by (2))

but not n − i ∈ Y︸ ︷︷ ︸
⇐⇒ (i∈revn Y)

(by (3))


⇐⇒ (i ∈ revn X but not i ∈ revn Y)
⇐⇒ (i ∈ revn X and i /∈ revn Y)
⇐⇒ (i ∈ (revn X) \ (revn Y)) . (5)

Now, from revn (X \ Y) ⊆ [n − 1], we obtain

revn (X \ Y) = [n − 1] ∩ (revn (X \ Y))

=

i ∈ [n − 1] | i ∈ revn (X \ Y)︸ ︷︷ ︸
⇐⇒ (i∈(revn X)\(revn Y))

(by (5))


= {i ∈ [n − 1] | i ∈ (revn X) \ (revn Y)} . (6)

However, from (revn X) \ (revn Y) ⊆ [n − 1], we obtain

(revn X) \ (revn Y) = [n − 1] ∩ ((revn X) \ (revn Y))
= {i ∈ [n − 1] | i ∈ (revn X) \ (revn Y)} .

Comparing this with (6), we find revn (X \ Y) = (revn X) \ (revn Y). This proves
Theorem 3.8 (f).

(g) Recall that
A \ (A \ B) = A ∩ B (7)

for any two sets A and B.
Let X and Y be two subsets of [n − 1]. Then, X \ Y is a subset of [n − 1] as well

(since X \ Y ⊆ X ⊆ [n − 1]). Hence, Theorem 3.8 (f) (applied to X \ Y instead of Y)
yields

revn (X \ (X \ Y)) = (revn X) \ (revn (X \ Y))︸ ︷︷ ︸
=(revn X)\(revn Y)
(by Theorem 3.8 (f))

= (revn X) \ ((revn X) \ (revn Y))
= (revn X) ∩ (revn Y) (8)
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(by (7), applied to A = revn X and B = revn Y). However, X \ (X \ Y) = X ∩ Y
(by (7), applied to A = X and B = Y). Thus, we can rewrite (8) as revn (X ∩ Y) =
(revn X) ∩ (revn Y). This proves Theorem 3.8 (g).

(h) The definition of revn ([n − 1]) yields

revn ([n − 1]) = {n − x | x ∈ [n − 1]}
= {n − x | x ∈ {1, 2, . . . , n − 1}} (since [n − 1] = {1, 2, . . . , n − 1})
= {n − 1, n − 2, . . . , n − (n − 1)}
= {n − 1, n − 2, . . . , 1}
= {1, 2, . . . , n − 1} = [n − 1] .

This proves Theorem 3.8 (h).

(i) Let α ∈ Compn be a composition. Write this composition α in the form
α = (α1, α2, . . . , αk). Then, rev α = (αk, αk−1, . . . , α1) (by the definition of rev α).
Also, the definition of |α| yields |α| = α1 + α2 + · · ·+ αk.

From α ∈ Compn, we see that α is a composition of n (since Compn is the set of
all compositions of n). In other words, α is a composition having size n. Therefore,
|α| = n (since |α| is the size of α, but we know that α has size n).

For each i ∈ {0, 1, . . . , k}, we define two numbers

ui := α1 + α2 + · · ·+ αi and
vi := αi+1 + αi+2 + · · ·+ αk.

Each i ∈ {0, 1, . . . , k} satisfies

ui︸︷︷︸
=α1+α2+···+αi

+ vi︸︷︷︸
=αi+1+αi+2+···+αk

= (α1 + α2 + · · ·+ αi) + (αi+1 + αi+2 + · · ·+ αk)

= α1 + α2 + · · ·+ αk = |α| (since |α| = α1 + α2 + · · ·+ αk)

= n

and therefore
vi = n − ui. (9)

From α = (α1, α2, . . . , αk), we obtain

D (α) = D (α1, α2, . . . , αk) =


α1 + α2 + · · ·+ αi︸ ︷︷ ︸

=ui
(since ui is defined

to be α1+α2+···+αi)

| i ∈ [k − 1]


(by the definition of D (α1, α2, . . . , αk))

= {ui | i ∈ [k − 1]} = {u1, u2, . . . , uk−1} .
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The definition of revn (D (α)) yields

revn (D (α)) = {n − x | x ∈ D (α)}
= {n − x | x ∈ {u1, u2, . . . , uk−1}} (since D (α) = {u1, u2, . . . , uk−1})
= {n − u1, n − u2, . . . , n − uk−1}

=

n − ui︸ ︷︷ ︸
=vi

(by (9))

| i ∈ [k − 1]

 = {vi | i ∈ [k − 1]}

= {v1, v2, . . . , vk−1} .

Comparing this with

D (rev α) = D (αk, αk−1, . . . , α1) (since rev α = (αk, αk−1, . . . , α1))

=


αk + αk−1 + · · ·+ αk−i+1︸ ︷︷ ︸

=αk−i+1+αk−i+2+···+αk
=vk−i

(since vk−i is defined
to be αk−i+1+αk−i+2+···+αk)

| i ∈ [k − 1]


(by the definition of D (αk, αk−1, . . . , α1))

= {vk−i | i ∈ [k − 1]} =
{

vk−1, vk−2, . . . , vk−(k−1)

}
= {vk−1, vk−2, . . . , v1} = {v1, v2, . . . , vk−1} ,

we obtain D (rev α) = revn (D (α)). This proves Theorem 3.8 (i).

Corollary 3.9. Let n ∈ N, and let α ∈ Compn. Then, revn (D (rev α)) = D (α).

Proof of Corollary 3.9. We have α ∈ Compn. In other words, α is a composition of
n. That is, α is a composition having size n. In other words, α ∈ Comp and
|α| = n. Hence, Proposition 3.3 yields |rev α| = |α| = n. In other words, the
composition rev α has size n. In other words, rev α is a composition of n. In
other words, rev α ∈ Compn. Hence, D (rev α) ∈ P ([n − 1]) (since D is a map
Compn → P ([n − 1])). In other words, D (rev α) is a subset of [n − 1]. Hence,
revn (D (rev α)) is well-defined.

Furthermore, D (α) ∈ P ([n − 1]) (since D is a map Compn → P ([n − 1])). In
other words, D (α) is a subset of [n − 1].

Theorem 3.8 (i) yields D (rev α) = revn (D (α)). Thus,

revn

 D (rev α)︸ ︷︷ ︸
=revn(D(α))

 = revn (revn (D (α))) = D (α)
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(by Theorem 3.8 (b), applied to X = D (α)). This proves Corollary 3.9.

Corollary 3.10. Let n ∈ N. Then, the map

Compn → Compn,
δ 7→ rev δ

is a bijection.

Proof of Corollary 3.10. Each δ ∈ Compn satisfies rev δ ∈ Compn
4. Hence, the

map

Compn → Compn,
δ 7→ rev δ

is well-defined. It remains to prove that this map is a bijection.
Let us denote this map by rev (since the image of any δ ∈ Comp under this map

is already being called rev δ). Thus, we must prove that this map rev is a bijection.
But this is easy: Every α ∈ Compn satisfies

(rev ◦ rev) (α) = rev (rev α) = α (by Proposition 3.4)
= id (α) .

Thus, rev ◦ rev = id. Hence, the map rev is inverse to itself. Thus, the map rev
is invertible, i.e., bijective. In other words, it is a bijection. This proves Corollary
3.10.

Proposition 3.11. Let n ∈ N. Let α ∈ Compn and β ∈ Compn be arbitrary. Then,
we have the logical equivalence

(D (rev β) ⊆ D (rev α)) ⇐⇒ (D (β) ⊆ D (α)) .

Proof of Proposition 3.11. We have α ∈ Compn and thus D (α) ∈ P ([n − 1]) (since
D : Compn → P ([n − 1]) is a map). In other words, D (α) is a subset of [n − 1].
Similarly, D (β) is a subset of [n − 1].

Theorem 3.8 (i) yields D (rev α) = revn (D (α)). Also, Theorem 3.8 (i) (applied to
β instead of α) yields D (rev β) = revn (D (β)).

Now, if D (β) ⊆ D (α), then revn (D (β)) ⊆ revn (D (α)) (by Theorem 3.8 (c),
applied to X = D (β) and Y = D (α)) and therefore

D (rev β) = revn (D (β)) ⊆ revn (D (α)) = D (rev α)

4Proof. Let δ ∈ Compn. Thus, δ is a composition of n. In other words, δ is a composition that has
size n. In other words, δ is a composition and satisfies |δ| = n. Now, Proposition 3.3 (applied
to α = δ) yields |rev δ| = |δ| = n. Hence, rev δ is a composition that has size n (since it has size
|rev δ| = n). In other words, rev δ is a composition of n. In other words, rev δ ∈ Compn. Qed.
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(since D (rev α) = revn (D (α))). In other words, the implication

(D (β) ⊆ D (α)) =⇒ (D (rev β) ⊆ D (rev α)) (10)

holds.
Proposition 3.4 yields rev (rev α) = α. Similarly, rev (rev β) = β.
However, Corollary 3.10 says that the map

Compn → Compn,
δ 7→ rev δ

is a bijection. Thus, in particular, this map is well-defined. In other words, for
any δ ∈ Compn, we have rev δ ∈ Compn. Applying this to δ = α, we obtain
rev α ∈ Compn (since α ∈ Compn). Similarly, rev β ∈ Compn. Thus, we can apply
the implication (10) to rev α and rev β instead of α and β. Hence, we obtain the
implication

(D (rev β) ⊆ D (rev α)) =⇒ (D (rev (rev β)) ⊆ D (rev (rev α))) .

In view of rev (rev α) = α and rev (rev β) = β, we can rewrite this as

(D (rev β) ⊆ D (rev α)) =⇒ (D (β) ⊆ D (α)) .

Combining this implication with (10), we obtain the logical equivalence

(D (rev β) ⊆ D (rev α)) ⇐⇒ (D (β) ⊆ D (α)) .

This proves Proposition 3.11.

4. The omega operation

Proposition 4.1. Let n ∈ N. Let γ ∈ Compn. Then, there exists a unique compo-
sition δ of n satisfying

D (δ) = [n − 1] \ D (rev γ) .

Proof of Proposition 4.1. The set [n − 1] \ D (rev γ) is clearly a subset of [n − 1], and
thus belongs to P ([n − 1]). Hence, there exists a unique δ ∈ Compn satisfying
D (δ) = [n − 1] \ D (rev γ) (since the map D : Compn → P ([n − 1]) is a bijection).
In other words, there exists a unique composition δ of n satisfying D (δ) = [n − 1] \
D (rev γ) (because a composition δ of n is the same as an element δ ∈ Compn).
This proves Proposition 4.1.

We now define another operation on compositions:
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Definition 4.2. Let n ∈ N. For any composition γ ∈ Compn, we let ω (γ) denote
the unique composition δ of n satisfying

D (δ) = [n − 1] \ D (rev γ) .

(This ω (γ) is indeed well-defined, according to Proposition 4.1.)

We observe the following simple properties of these compositions ω (γ):

Proposition 4.3. Let n ∈ N. Let γ ∈ Compn. Then:

(a) We have ω (γ) ∈ Compn.

(b) We have D (ω (γ)) = [n − 1] \ D (rev γ).

(c) We have D (ω (γ)) = [n − 1] \ revn (D (γ)).

(d) We have ω (ω (γ)) = γ.

Proof of Proposition 4.3. We have defined ω (γ) to be the unique composition δ of
n satisfying D (δ) = [n − 1] \ D (rev γ). Thus, ω (γ) is a composition of n and
satisfies D (ω (γ)) = [n − 1] \ D (rev γ). This proves Proposition 4.3 (b). Moreover,
we have ω (γ) ∈ Compn (since ω (γ) is a composition of n); this proves Proposition
4.3 (a).

It remains to prove parts (c) and (d).

(c) Theorem 3.8 (i) (applied to α = γ) yields D (rev γ) = revn (D (γ)). Now,

D (ω (γ)) = [n − 1] \ D (rev γ)︸ ︷︷ ︸
=revn(D(γ))

= [n − 1] \ revn (D (γ)) .

This proves Proposition 4.3 (c).

(d) We observe that γ is a composition of n (since γ ∈ Compn). In other words,
γ is a composition having size n. In other words, γ ∈ Comp and |γ| = n. However,
Proposition 3.3 (applied to α = γ) yields |rev γ| = |γ| = n. Hence, rev γ is a
composition having size |rev γ| = n. In other words, rev γ is a composition of n.
Hence, rev γ ∈ Compn. Thus, D (rev γ) ∈ P ([n − 1]) (since D is a map Compn →
P ([n − 1])). In other words, D (rev γ) is a subset of [n − 1]. Furthermore, D (γ) ∈
P ([n − 1]) (since γ ∈ Compn and since D is a map Compn → P ([n − 1])). In other
words, D (γ) is a subset of [n − 1]. Also, [n − 1] is a subset of [n − 1] as well.
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Theorem 3.8 (i) (applied to α = ω (γ)) yields

D (rev (ω (γ)))

= revn

 D (ω (γ))︸ ︷︷ ︸
=[n−1]\D(rev γ)


= revn ([n − 1] \ D (rev γ))

= revn ([n − 1])︸ ︷︷ ︸
=[n−1]

(by Theorem 3.8 (h))

\ revn (D (rev γ))︸ ︷︷ ︸
=D(γ)

(by Corollary 3.9,
applied to α=γ)

(by Theorem 3.8 (f), applied to X = [n − 1] and Y = D (rev γ))

= [n − 1] \ D (γ) .

We have ω (ω (γ)) ∈ Compn (by Proposition 4.3 (a), applied to ω (γ) instead of
γ). Moreover, Proposition 4.3 (b) (applied to ω (γ) instead of γ) yields

D (ω (ω (γ))) = [n − 1] \ D (rev (ω (γ)))︸ ︷︷ ︸
=[n−1]\D(γ)

= [n − 1] \ ([n − 1] \ D (γ))

= [n − 1] ∩ D (γ)

(
since X \ (X \ Y) = X ∩ Y for

any two sets X and Y

)
= D (γ) (since D (γ) is a subset of [n − 1]) .

Recall that the map D : Compn → P ([n − 1]) is a bijection. Hence, this map
is bijective, therefore injective. Thus, any α, β ∈ Compn satisfying D (α) = D (β)
must satisfy α = β. We can apply this to α = ω (ω (γ)) and β = γ (since γ ∈
Compn and ω (ω (γ)) ∈ Compn and D (ω (ω (γ))) = D (γ)), and thus we obtain
ω (ω (γ)) = γ. This proves Proposition 4.3 (d).

Proposition 4.4. Let n be a positive integer. Let α ∈ Compn and γ ∈ Compn.
Then:

(a) We have

|D (ω (γ)) ∩ D (α)| = ℓ (α)− 1 − |D (γ) ∩ D (rev α)| .

(b) We have

|D (ω (γ)) \ D (α)| = n − ℓ (α)− |D (γ) \ D (rev α)| .

Proof of Proposition 4.4. We have α ∈ Compn. In other words, α is a composition of
n. That is, α is a composition having size n. In other words, α ∈ Comp and |α| = n.
The same argument (applied to γ instead of α) yields γ ∈ Comp and |γ| = n.
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We have n ≥ 1 (since n is a positive integer) and thus n − 1 ∈ N. Hence,
|[n − 1]| = n − 1.

Also, we have |α| = n ≥ 1 > 0. Hence, Proposition 2.3 yields

|D (α)| = ℓ (α)− 1. (11)

Moreover, D (α) ∈ P ([n − 1]) (since D is a map Compn → P ([n − 1])); in other
words, D (α) is a subset of [n − 1]. The same argument (applied to γ instead of α)
shows that D (γ) is a subset of [n − 1]. That is, we have D (γ) ⊆ [n − 1]. Hence,
revn (D (γ)) ⊆ [n − 1] as well (by Theorem 3.8 (a), applied to X = D (γ)).

Also, D (rev α) is a subset of [n − 1] (this can be easily proved in the same way
as in the proof of Corollary 3.9 above).

Proposition 4.3 (c) yields D (ω (γ)) = [n − 1] \ revn (D (γ)).
However, for any three sets X, Y and Z, we have (X \ Y) ∩ Z = (X ∩ Z) \ Y.

Applying this to X = [n − 1] and Y = revn (D (γ)) and Z = D (α), we obtain

([n − 1] \ revn (D (γ))) ∩ D (α) = ([n − 1] ∩ D (α))︸ ︷︷ ︸
=D(α)

(since D(α) is a
subset of [n−1])

\ revn (D (γ))

= D (α) \ revn (D (γ)) .

Thus,

D (ω (γ))︸ ︷︷ ︸
=[n−1]\revn(D(γ))

∩ D (α) = ([n − 1] \ revn (D (γ))) ∩ D (α)

= D (α) \ revn (D (γ)) .

Therefore,

|D (ω (γ)) ∩ D (α)| = |D (α) \ revn (D (γ))|
= |D (α)| − |D (α) ∩ revn (D (γ))| (12)

(since any finite sets X and Y satisfy |X \ Y| = |X| − |X ∩ Y|).
However, Theorem 3.8 (g) (applied to X = D (γ) and Y = D (rev α)) yields

revn (D (γ) ∩ D (rev α)) = revn (D (γ)) ∩ revn (D (rev α))︸ ︷︷ ︸
=D(α)

(by Corollary 3.9)

= revn (D (γ)) ∩ D (α)

= D (α) ∩ revn (D (γ)) . (13)

However, D (γ)∩ D (rev α) is a subset of [n − 1] (since D (γ)∩ D (rev α) ⊆ D (γ) ⊆
[n − 1]). Hence, Theorem 3.8 (d) (applied to X = D (γ) ∩ D (rev α)) yields

|revn (D (γ) ∩ D (rev α))| = |D (γ) ∩ D (rev α)| .
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In view of (13), we can rewrite this as

|D (α) ∩ revn (D (γ))| = |D (γ) ∩ D (rev α)| .

Therefore, (12) becomes

|D (ω (γ)) ∩ D (α)| = |D (α)|︸ ︷︷ ︸
=ℓ(α)−1
(by (11))

− |D (α) ∩ revn (D (γ))|︸ ︷︷ ︸
=|D(γ)∩D(rev α)|

= ℓ (α)− 1 − |D (γ) ∩ D (rev α)| .

This proves Proposition 4.4 (a).

(b) From Proposition 4.3 (c), we obtain D (ω (γ)) = [n − 1] \ revn (D (γ)).
However, if two finite sets X and Y satisfy Y ⊆ X, then |X \ Y| = |X| − |Y|.

Applying this to X = [n − 1] and Y = revn (D (γ)), we obtain

|[n − 1] \ revn (D (γ))| = |[n − 1]|︸ ︷︷ ︸
=n−1

− |revn (D (γ))|︸ ︷︷ ︸
=|D(γ)|

(by Theorem 3.8 (d),
applied to X=D(γ))

(since revn (D (γ)) ⊆ [n − 1])

= n − 1 − |D (γ)| .

In view of D (ω (γ)) = [n − 1] \ revn (D (γ)), we can rewrite this as

|D (ω (γ))| = n − 1 − |D (γ)| . (14)

Next, recall that |X \ Y| = |X| − |X ∩ Y| for any two finite sets X and Y. From
this equality, we obtain

|D (ω (γ)) \ D (α)| = |D (ω (γ))| − |D (ω (γ)) ∩ D (α)| (15)

and
|D (γ) \ D (rev α)| = |D (γ)| − |D (γ) ∩ D (rev α)| . (16)

Adding these two equalities together, we find

|D (ω (γ)) \ D (α)|+ |D (γ) \ D (rev α)|
= |D (ω (γ))|︸ ︷︷ ︸

=n−1−|D(γ)|
(by (14))

− |D (ω (γ)) ∩ D (α)|︸ ︷︷ ︸
=ℓ(α)−1−|D(γ)∩D(rev α)|

(by Proposition 4.4 (a))

+ |D (γ)| − |D (γ) ∩ D (rev α)|

= n − 1 − |D (γ)| − (ℓ (α)− 1 − |D (γ) ∩ D (rev α)|) + |D (γ)| − |D (γ) ∩ D (rev α)|
= n − ℓ (α) .

In other words,

|D (ω (γ)) \ D (α)| = n − ℓ (α)− |D (γ) \ D (rev α)| .

This proves Proposition 4.4 (b).
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5. Concatenation

5.1. Definition and basic properties

The simplest binary operation on compositions is concatenation:

Definition 5.1. The concatenation of two compositions β =
(

β1, β2, . . . , βp
)

and
γ =

(
γ1, γ2, . . . , γq

)
is defined to be the composition(

β1, β2, . . . , βp, γ1, γ2, . . . , γq
)

.

It is denoted by βγ.

It is clear that any composition α satisfies α∅ = ∅α = α (where ∅ denotes the
empty composition, as before). The next fact is also evident:

Proposition 5.2. Let β and γ be two compositions. Then:

(a) We have ℓ (βγ) = ℓ (β) + ℓ (γ).

(b) We have |βγ| = |β|+ |γ|.

Proof of Proposition 5.2. Write the compositions β and γ in the forms β =
(

β1, β2, . . . , βp
)

and γ =
(
γ1, γ2, . . . , γq

)
. Thus, the definition of βγ yields

βγ =
(

β1, β2, . . . , βp, γ1, γ2, . . . , γq
)

.

Hence, the definition of ℓ (βγ) yields ℓ (βγ) = p + q, whereas the definition of |βγ|
yields

|βγ| = β1 + β2 + · · ·+ βp + γ1 + γ2 + · · ·+ γq. (17)

However, from β =
(

β1, β2, . . . , βp
)
, we obtain ℓ (β) = p and |β| = β1 + β2 +

· · · + βp. Moreover, from γ =
(
γ1, γ2, . . . , γq

)
, we obtain ℓ (γ) = q and |γ| =

γ1 + γ2 + · · ·+ γq. Thus,

ℓ (β)︸︷︷︸
=p

+ ℓ (γ)︸︷︷︸
=q

= p + q = ℓ (βγ) (since ℓ (βγ) = p + q) .

This proves Proposition 5.2 (a).

(b) Adding the equalities |β| = β1 + β2 + · · ·+ βp and |γ| = γ1 + γ2 + · · ·+ γq
together, we obtain

|β|+ |γ| = β1 + β2 + · · ·+ βp + γ1 + γ2 + · · ·+ γq = |βγ|

(by (17)). This proves Proposition 5.2 (b).
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5.2. Concatenation and reversal

Concatenation and reversal interact in a nice way:

Proposition 5.3. Let β and γ be two compositions. Then, rev (βγ) =
(rev γ) (rev β).

Proof of Proposition 5.3. Write the compositions β and γ in the forms β =
(

β1, β2, . . . , βp
)

and γ =
(
γ1, γ2, . . . , γq

)
. Thus, the definition of βγ yields

βγ =
(

β1, β2, . . . , βp, γ1, γ2, . . . , γq
)

.

Hence, the definition of rev (βγ) yields

rev (βγ) =
(
γq, γq−1, . . . , γ1, βp, βp−1, . . . , β1

)
. (18)

However, the definition of rev β yields rev β =
(

βp, βp−1, . . . , β1
)

(since β =
(

β1, β2, . . . , βp
)
).

Furthermore, the definition of rev γ yields rev γ =
(
γq, γq−1, . . . , γ1

)
(since γ =(

γ1, γ2, . . . , γq
)
). Thus,

(rev γ)︸ ︷︷ ︸
=(γq,γq−1,...,γ1)

(rev β)︸ ︷︷ ︸
=(βp,βp−1,...,β1)

=
(
γq, γq−1, . . . , γ1

) (
βp, βp−1, . . . , β1

)
=

(
γq, γq−1, . . . , γ1, βp, βp−1, . . . , β1

)
(by the definition of concatenation). Comparing this with (18), we obtain rev (βγ) =
(rev γ) (rev β). This proves Proposition 5.3.

5.3. Concatenation and partial sums

We shall next show some less trivial properties of concatenations of compositions.
We will need the following notation:

Definition 5.4. If K is a set of integers, and if m is an integer, then we define two
sets K + m and K − m by

K + m := {k + m | k ∈ K} ,
K − m := {k − m | k ∈ K} .

Clearly, both of these sets K + m and K − m are again sets of integers.

For example, {2, 3, 5}+ 10 = {12, 13, 15} and {2, 3, 5} − 1 = {1, 2, 4}. Visually,
you can think of K + m as being the set K, moved to the right by m units on the
number line. Similarly, K − m is the set K, moved to the left by m units on the
number line.
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Clearly, if K is any set of integers, and if m is an integer, then (K + m)− m = K
and (K − m) + m = K.

Now, if we know the sizes and the partial sum sets of two compositions β and γ,
then we can compute the partial sum set of their concatenation βγ as follows:

Proposition 5.5. Let β and γ be two compositions such that β ̸= ∅ and γ ̸= ∅.
Let m = |β|. Then,

D (βγ) = {m} ∪ D (β) ∪ (D (γ) + m) .

Proof of Proposition 5.5. Write the compositions β and γ in the forms β =
(

β1, β2, . . . , βp
)

and γ =
(
γ1, γ2, . . . , γq

)
. From β ̸= ∅, we easily obtain p ̸= 0 5. Similarly, from

γ ̸= ∅, we obtain q ̸= 0. Also, m = |β| = β1 + β2 + · · ·+ βp (by the definition of
|β|, since β =

(
β1, β2, . . . , βp

)
). Thus, β1 + β2 + · · ·+ βp = m.

From β =
(

β1, β2, . . . , βp
)
, we obtain

D (β) =
{

β1, β1 + β2, β1 + β2 + β3, . . . , β1 + β2 + · · ·+ βp−1
}

(19)

(by the definition of D (β)).
From γ =

(
γ1, γ2, . . . , γq

)
, we obtain

D (γ) =
{

γ1, γ1 + γ2, γ1 + γ2 + γ3, . . . , γ1 + γ2 + · · ·+ γq−1
}

.

However, the definition of D (γ) + m yields

D (γ) + m

=

k + m︸ ︷︷ ︸
=m+k

| k ∈ D (γ)

 = {m + k | k ∈ D (γ)}

=
{

m + k | k ∈
{

γ1, γ1 + γ2, γ1 + γ2 + γ3, . . . , γ1 + γ2 + · · ·+ γq−1
}}(

since D (γ) =
{

γ1, γ1 + γ2, γ1 + γ2 + γ3, . . . , γ1 + γ2 + · · ·+ γq−1
})

=
{

m + γ1, m + γ1 + γ2, m + γ1 + γ2 + γ3, . . . , m + γ1 + γ2 + · · ·+ γq−1
}

.
(20)

Now, recall that β =
(

β1, β2, . . . , βp
)

and γ =
(
γ1, γ2, . . . , γq

)
. Hence, the defini-

tion of βγ yields
βγ =

(
β1, β2, . . . , βp, γ1, γ2, . . . , γq

)
.

5Proof. If we had p = 0, then we would have

β =
(

β1, β2, . . . , βp
)
= (β1, β2, . . . , β0) (since p = 0)

= () = ∅,

which would contradict β ̸= ∅. Hence, we cannot have p = 0. Thus, we have p ̸= 0.
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Hence, the definition of D (βγ) yields6

D (βγ)

= {β1, β1 + β2, β1 + β2 + β3, . . . , β1 + β2 + · · ·+ βp−1,

β1 + β2 + · · ·+ βp,
β1 + β2 + · · ·+ βp + γ1,
β1 + β2 + · · ·+ βp + γ1 + γ2,
β1 + β2 + · · ·+ βp + γ1 + γ2 + γ3,
. . . ,
β1 + β2 + · · ·+ βp + γ1 + γ2 + · · ·+ γq−1}

= {β1, β1 + β2, β1 + β2 + β3, . . . , β1 + β2 + · · ·+ βp−1,

m, m + γ1, m + γ1 + γ2, m + γ1 + γ2 + γ3, . . . , m + γ1 + γ2 + · · ·+ γq−1}(
since β1 + β2 + · · ·+ βp = m

)
=

{
β1, β1 + β2, β1 + β2 + β3, . . . , β1 + β2 + · · ·+ βp−1

}︸ ︷︷ ︸
=D(β)

(by (19))

∪ {m}
∪
{

m + γ1, m + γ1 + γ2, m + γ1 + γ2 + γ3, . . . , m + γ1 + γ2 + · · ·+ γq−1
}︸ ︷︷ ︸

=D(γ)+m
(by (20))

= D (β) ∪ {m} ∪ (D (γ) + {m}) = {m} ∪ D (β) ∪ (D (γ) + m) .

This proves Proposition 5.5.

The following is a variant of Proposition 5.5 that avoids the requirements that
β ̸= ∅ and γ ̸= ∅:

Proposition 5.6. Let β and γ be two compositions. Let m = |β| and n = |γ|.
Then,

D (βγ) = ({m} ∪ D (β) ∪ (D (γ) + m)) ∩ [m + n − 1] .

Proof of Proposition 5.6. We know that γ is a composition having size n (since the
size of γ is |γ| = n). In other words, γ is a composition of n. In other words,
γ ∈ Compn (since Compn is the set of all compositions of n).

We know that β is a composition having size m (since the size of β is |β| = m).
In other words, β is a composition of m. In other words, β ∈ Compm (since Compm
is the set of all compositions of m).

We have 0 /∈ [n − 1] (since the set [n − 1] = {1, 2, . . . , n − 1} does not contain 0)
and m /∈ [m − 1] (since the set [m − 1] = {1, 2, . . . , m − 1} does not contain m).

6Note the tacit use of p ̸= 0 and q ̸= 0 in this computation.
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We are in one of the following three cases:
Case 1: We have β = ∅.
Case 2: We have γ = ∅.
Case 3: We have neither β = ∅ nor γ = ∅.
Let us first consider Case 1. In this case, we have β = ∅. Thus, D (β) = D (∅) =

∅ (by the definition of the map D : Comp0 → P ([0 − 1])).
Moreover, m = |β|. In view of β = ∅, this rewrites as m = |∅| = 0. Thus,

D (γ) + m︸︷︷︸
=0

= D (γ) + 0 = D (γ) (because any set K of integers satisfies K + 0 =

K).
Recall that D is a map Compn → P ([n − 1]). Hence, D (γ) ∈ P ([n − 1]) (since

γ ∈ Compn). In other words, D (γ) ⊆ [n − 1].
Now, 

 m︸︷︷︸
=0

 ∪ D (β)︸ ︷︷ ︸
=∅

∪ (D (γ) + m)︸ ︷︷ ︸
=D(γ)

 ∩

 m︸︷︷︸
=0

+n − 1



=

{0} ∪∅︸ ︷︷ ︸
={0}

∪D (γ)

 ∩

0 + n − 1︸ ︷︷ ︸
=n−1


= ({0} ∪ D (γ)) ∩ [n − 1] . (21)

However, recall that any three sets X1, X2, Y satisfy

(X1 ∪ X2) ∩ Y = (X1 ∩ Y) ∪ (X2 ∩ Y) .

Applying this to X1 = {0}, X2 = D (γ) and Y = [n − 1], we obtain

({0} ∪ D (γ)) ∩ [n − 1] = ({0} ∩ [n − 1])︸ ︷︷ ︸
=∅

(since 0/∈[n−1])

∪ (D (γ) ∩ [n − 1])︸ ︷︷ ︸
=D(γ)

(since D(γ)⊆[n−1])

= ∅∪ D (γ) = D (γ) .

Thus, (21) rewrites as

({m} ∪ D (β) ∪ (D (γ) + m)) ∩ [m + n − 1]

= D (γ) = D (βγ)

since γ = βγ (because β︸︷︷︸
=∅

γ = ∅γ = γ)

 .

Hence, Proposition 5.6 is proved in Case 1.
Let us now consider Case 2. In this case, we have γ = ∅. Hence, D (γ) =

D (∅) = ∅. Hence, D (γ)︸ ︷︷ ︸
=∅

+m = ∅+ m = ∅ (since ∅+ k = ∅ for any integer k).
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Moreover, n = |γ|. In view of γ = ∅, this rewrites as n = |∅| = 0.
Recall that D is a map Compm → P ([m − 1]). Hence, D (β) ∈ P ([m − 1]) (since

β ∈ Compm). In other words, D (β) ⊆ [m − 1].
Now, {m} ∪ D (β) ∪ (D (γ) + m)︸ ︷︷ ︸

=∅

 ∩

m + n︸︷︷︸
=0

−1


= ({m} ∪ D (β) ∪∅)︸ ︷︷ ︸

={m}∪D(β)

∩

m + 0 − 1︸ ︷︷ ︸
=m−1


= ({m} ∪ D (β)) ∩ [m − 1] . (22)

However, recall that any three sets X1, X2, Y satisfy

(X1 ∪ X2) ∩ Y = (X1 ∩ Y) ∪ (X2 ∩ Y) .

Applying this to X1 = {m}, X2 = D (β) and Y = [m − 1], we obtain

({m} ∪ D (β)) ∩ [m − 1] = ({m} ∩ [m − 1])︸ ︷︷ ︸
=∅

(since m/∈[m−1])

∪ (D (β) ∩ [m − 1])︸ ︷︷ ︸
=D(β)

(since D(β)⊆[m−1])

= ∅∪ D (β) = D (β) .

Thus, (22) rewrites as

({m} ∪ D (β) ∪ (D (γ) + m)) ∩ [m + n − 1]

= D (β) = D (βγ)

since β = βγ (because β γ︸︷︷︸
=∅

= β∅ = β)

 .

Hence, Proposition 5.6 is proved in Case 2.
Now, let us consider Case 3. In this case, we have neither β = ∅ nor γ = ∅. In

other words, we have β ̸= ∅ and γ ̸= ∅. Thus, Proposition 5.5 yields

D (βγ) = {m} ∪ D (β) ∪ (D (γ) + m) .

However, Proposition 5.2 (b) yields |βγ| = |β|︸︷︷︸
=m

+ |γ|︸︷︷︸
=n

= m + n. Thus, the com-

position βγ has size |βγ| = m + n. In other words, βγ is a composition of m + n.
In other words, βγ ∈ Compm+n. Hence, D (βγ) ∈ P ([m + n − 1]) (since D is a
map Compm+n → P ([m + n − 1])). In other words, D (βγ) ⊆ [m + n − 1]. Hence,
D (βγ) ∩ [m + n − 1] = D (βγ), so that

D (βγ) = D (βγ)︸ ︷︷ ︸
={m}∪D(β)∪(D(γ)+m)

∩ [m + n − 1]

= ({m} ∪ D (β) ∪ (D (γ) + m)) ∩ [m + n − 1] .
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Therefore, Proposition 5.6 is proved in Case 3.
We have now proved Proposition 5.6 in each of the three Cases 1, 2 and 3. This

completes the proof of Proposition 5.6.

Conversely, given two compositions β and γ, we can reconstruct the partial sum
sets D (β) and D (γ) if we know the size |β| and the partial sum set D (βγ) as
follows:

Proposition 5.7. Let β and γ be two compositions. Let m = |β|. Then:

(a) We have D (β) = D (βγ) ∩ [m − 1].

(b) We have D (γ) = (D (βγ) \ [m])− m.

Proof of Proposition 5.7. Let n = |γ|. Then, as in the above proof of Proposition 5.6,
we can show that β ∈ Compm and γ ∈ Compn.

Recall that D is a map Compn → P ([n − 1]). Hence, D (γ) ∈ P ([n − 1]) (since
γ ∈ Compn). In other words, D (γ) ⊆ [n − 1]. The same argument (applied to
β and m instead of γ and n) yields D (β) ⊆ [m − 1]. Also, note that [m − 1] ⊆
[m + n − 1] (since m − 1 ≤ m + n − 1 (because n ≥ 0)).

(a) Let x ∈ D (β). We shall show that x ∈ D (βγ) ∩ [m − 1].
Indeed, we observe that

x ∈ D (β) ⊆ {m} ∪ D (β) ∪ (D (γ) + m) .

Combining this with x ∈ D (β) ⊆ [m − 1] ⊆ [m + n − 1], we obtain

x ∈ ({m} ∪ D (β) ∪ (D (γ) + m)) ∩ [m + n − 1]
= D (βγ) (by Proposition 5.6) .

Combining this with x ∈ [m − 1], we obtain x ∈ D (βγ) ∩ [m − 1].
Forget that we fixed x. We thus have shown that x ∈ D (βγ) ∩ [m − 1] for each

x ∈ D (β). In other words,

D (β) ⊆ D (βγ) ∩ [m − 1] . (23)

On the other hand, let y ∈ D (βγ) ∩ [m − 1]. Thus, y ∈ D (βγ) and y ∈ [m − 1].
From y ∈ [m − 1] = {1, 2, . . . , m − 1}, we obtain y ≤ m − 1 < m. Thus, we cannot
have y ∈ {m} (because y ∈ {m} would entail y = m, which would contradict
y < m). Furthermore, we cannot have y ∈ D (γ) + m (because y ∈ D (γ) + m
would entail that y ≥ m 7, which would contradict y < m).

7Proof. Assume that y ∈ D (γ) + m. We must show that y ≥ m.
We have y ∈ D (γ) + m = {k + m | k ∈ D (γ)} (by the definition of D (γ) + m). In other

words, y = k + m for some k ∈ D (γ). Consider this k. From k ∈ D (γ) ⊆ [n − 1] =
{1, 2, . . . , n − 1}, we obtain k ≥ 1 > 0. Hence, y = k︸︷︷︸

>0

+m > m, thus y ≥ m.
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However,

y ∈ D (βγ)

= ({m} ∪ D (β) ∪ (D (γ) + m)) ∩ [m + n − 1] (by Proposition 5.6)
⊆ {m} ∪ D (β) ∪ (D (γ) + m) .

In other words, we have y ∈ {m} or y ∈ D (β) or y ∈ D (γ) + m. Hence, we must
have y ∈ D (β) (since we cannot have y ∈ {m}, and we cannot have y ∈ D (γ) +m).

Forget that we fixed y. We thus have shown that y ∈ D (β) for each y ∈ D (βγ)∩
[m − 1]. In other words,

D (βγ) ∩ [m − 1] ⊆ D (β) .

Combining this with (23), we obtain D (β) = D (βγ) ∩ [m − 1]. This proves Propo-
sition 5.7 (a).

(b) The definition of D (γ) + m yields

D (γ) + m = {k + m | k ∈ D (γ)} . (24)

The definition of (D (βγ) \ [m])− m yields

(D (βγ) \ [m])− m = {k − m | k ∈ D (βγ) \ [m]} . (25)

Let x ∈ D (γ). We shall show that x ∈ (D (βγ) \ [m])− m.
Indeed, we have x ∈ D (γ) ⊆ [n − 1] = {1, 2, . . . , n − 1}, so that

x + m ∈ {m + 1, m + 2, . . . , m + n − 1} ⊆ {1, 2, . . . , m + n − 1} = [m + n − 1] .

Also, from x ∈ {1, 2, . . . , n − 1}, we obtain x ≥ 1 > 0, and therefore x︸︷︷︸
>0

+m > m,

so that x + m /∈ [m] 8.
Next, we recall that x ∈ D (γ). Thus, the number x + m can be written in the

form k + m for some k ∈ D (γ) (namely, for k = x). In other words, x + m ∈
{k + m | k ∈ D (γ)}. In view of (24), we can rewrite this as x + m ∈ D (γ) + m.
Hence,

x + m ∈ D (γ) + m ⊆ {m} ∪ D (β) ∪ (D (γ) + m) .

Combining this with x + m ∈ [m + n − 1], we obtain

x + m ∈ ({m} ∪ D (β) ∪ (D (γ) + m)) ∩ [m + n − 1]
= D (βγ) (by Proposition 5.6) .

Combining this with x + m /∈ [m], we obtain x + m ∈ D (βγ) \ [m]. We also have
x = (x + m) − m. Therefore, x has the form k − m for some k ∈ D (βγ) \ [m]

8Proof. If we had x + m ∈ [m], then we would have x + m ≤ m (since x + m ∈ [m] = {1, 2, . . . , m}),
but this would contradict x + m > m. Hence, we cannot have x + m ∈ [m]. In other words, we
have x + m /∈ [m].
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(namely, for k = x + m), because x + m ∈ D (βγ) \ [m]. In other words, x ∈
{k − m | k ∈ D (βγ) \ [m]}. In view of (25), this rewrites as x ∈ (D (βγ) \ [m])−m.

Forget that we fixed x. We thus have shown that x ∈ (D (βγ) \ [m])− m for each
x ∈ D (γ). In other words,

D (γ) ⊆ (D (βγ) \ [m])− m. (26)

On the other hand, let y ∈ (D (βγ) \ [m])− m. Thus,

y ∈ (D (βγ) \ [m])− m = {k − m | k ∈ D (βγ) \ [m]}

(by (25)). In other words, y = k − m for some k ∈ D (βγ) \ [m]. Consider this k, and
denote it by z. Thus, y = z − m and z ∈ D (βγ) \ [m].

From z ∈ D (βγ) \ [m], we obtain z ∈ D (βγ) and z /∈ [m]. In particular,

z ∈ D (βγ)

= ({m} ∪ D (β) ∪ (D (γ) + m)) ∩ [m + n − 1] (by Proposition 5.6)
⊆ [m + n − 1] = {1, 2, . . . , m + n − 1} .

Combining this with z /∈ [m] = {1, 2, . . . , m}, we obtain

z ∈ {1, 2, . . . , m + n − 1} \ {1, 2, . . . , m} = {m + 1, m + 2, . . . , m + n − 1} .

Hence, z ≥ m + 1 > m.
Furthermore,

z ∈ ({m} ∪ D (β) ∪ (D (γ) + m)) ∩ [m + n − 1]
⊆ {m} ∪ D (β) ∪ (D (γ) + m) .

In other words, we have z ∈ {m} or z ∈ D (β) or z ∈ D (γ) + m. However, we
cannot have z ∈ {m} 9, and we also cannot have z ∈ D (β) 10. Hence, we must
have z ∈ D (γ) + m (since we have z ∈ {m} or z ∈ D (β) or z ∈ D (γ) + m). In view
of (24), this rewrites as

z ∈ {k + m | k ∈ D (γ)} .

In other words, z = k + m for some k ∈ D (γ). Consider this k. We have y =
z︸︷︷︸

=k+m

−m = k + m − m = k ∈ D (γ).

Forget that we fixed y. We thus have shown that y ∈ D (γ) for each y ∈
(D (βγ) \ [m])− m. In other words,

(D (βγ) \ [m])− m ⊆ D (γ) .

Combining this with (26), we obtain (D (βγ) \ [m]) − m = D (γ). This proves
Proposition 5.7 (b).

9Proof. Assume the contrary. Thus, z ∈ {m}. Hence, z = m, which contradicts z > m. This
contradiction shows that our assumption was wrong. Thus, we cannot have z ∈ {m}.

10Proof. Assume the contrary. Thus, z ∈ D (β) ⊆ [m − 1] = {1, 2, . . . , m − 1}. Hence, z ≤ m− 1 < m,
which contradicts z > m. This contradiction shows that our assumption was wrong. Thus, we
cannot have z ∈ D (β).
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5.4. Further lemmas

The next few propositions and lemmas will be used in a later proof.

Proposition 5.8. Let β, γ, β′ and γ′ be four compositions such that |β′| = |β| and
D (β′) ⊆ D (β) and |γ′| = |γ| and D (γ′) ⊆ D (γ). Then, D (β′γ′) ⊆ D (βγ).

Proof of Proposition 5.8. Let m = |β| and n = |γ|. Thus, |β′| = |β| = m and |γ′| =
|γ| = n.

It is easy to see that if K and L are two sets of integers satisfying K ⊆ L, and if k
is any integer, then K + k ⊆ L + k. Applying this to K = D (γ′) and L = D (γ) and
k = m, we obtain D (γ′) + m ⊆ D (γ) + m (since D (γ′) ⊆ D (γ)).

Now, Proposition 5.6 yields

D (βγ) = ({m} ∪ D (β) ∪ (D (γ) + m)) ∩ [m + n − 1] . (27)

Also, we have m = |β′| (since |β′| = m) and n = |γ′| (since |γ′| = n). Hence,
Proposition 5.6 (applied to β′ and γ′ instead of β and γ) yields

D
(

β′γ′) =
{m} ∪ D

(
β′)︸ ︷︷ ︸

⊆D(β)

∪
(

D
(
γ′)+ m

)︸ ︷︷ ︸
⊆D(γ)+m

 ∩ [m + n − 1]

⊆ ({m} ∪ D (β) ∪ (D (γ) + m)) ∩ [m + n − 1] = D (βγ)

(by (27)). This proves Proposition 5.8.

Proposition 5.9. Let α ∈ Comp be any composition, and let m ∈ N. Then, there
exists at most one pair (β, γ) of compositions such that |β| = m and βγ = α.

Proof of Proposition 5.9. Let (β′, γ′) and (β′′, γ′′) be two pairs (β, γ) of compositions
such that |β| = m and βγ = α. Thus, (β′, γ′) and (β′′, γ′′) are two pairs of composi-
tions and have the property that |β′| = m and β′γ′ = α and |β′′| = m and β′′γ′′ = α.
Thus, α = β′′γ′′.

We have m = |β′| (since |β′| = m). Thus, Proposition 5.7 (a) (applied to β′ and γ′

instead of β and γ) yields

D
(

β′) = D

β′γ′︸︷︷︸
=α

 ∩ [m − 1] = D (α) ∩ [m − 1] .

The same argument (applied to β′′ and γ′′ instead of β′ and γ′) yields

D
(

β′′) = D (α) ∩ [m − 1] .

Comparing these two equalities, we find D (β′) = D (β′′).
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Now, β′ is a composition having size |β′| = m. In other words, β′ is a composition
of m. In other words, β′ ∈ Compm. Similarly, β′′ ∈ Compm.

Recall that the map D : Compn → P ([n − 1]) is a bijection. Similarly, the map
D : Compm → P ([m − 1]) is a bijection. Hence, this map D is bijective, thus
injective. In other words, if φ, ψ ∈ Compm satisfy D (φ) = D (ψ), then φ = ψ.
Applying this to φ = β′ and ψ = β′′, we obtain β′ = β′′ (since β′ ∈ Compm and
β′′ ∈ Compm and D (β′) = D (β′′)).

Furthermore, Proposition 5.7 (b) (applied to β′ and γ′ instead of β and γ) yields

D
(
γ′) =

D

β′γ′︸︷︷︸
=α

 \ [m]

− m = (D (α) \ [m])− m.

The same argument (applied to β′′ and γ′′ instead of β′ and γ′) yields

D
(
γ′′) = (D (α) \ [m])− m.

Comparing these two equalities, we find D (γ′) = D (γ′′).
Set n = |γ′|. Then, from β′γ′ = α, we obtain α = β′γ′. Thus,

|α| =
∣∣β′γ′∣∣ = ∣∣β′∣∣︸︷︷︸

=m

+
∣∣γ′∣∣︸︷︷︸
=n

(
by Proposition 5.2 (b),

applied to β = β′ and γ = γ′

)
= m + n.

Hence,

m + n = |α| =
∣∣β′′γ′′∣∣ (

since α = β′′γ′′)
=

∣∣β′′∣∣︸︷︷︸
=m

+
∣∣γ′′∣∣ (

by Proposition 5.2 (b),
applied to β = β′′ and γ = γ′′

)
= m +

∣∣γ′′∣∣ .

Subtracting m from this equality, we obtain n = |γ′′|.
Now, γ′ is a composition having size |γ′| = n (since n = |γ′|). In other words, γ′

is a composition of n. In other words, γ′ ∈ Compn. Similarly, γ′′ ∈ Compn (since
n = |γ′′|).

Recall that the map D : Compn → P ([n − 1]) is a bijection. Hence, this map D
is bijective, thus injective. In other words, if φ, ψ ∈ Compn satisfy D (φ) = D (ψ),
then φ = ψ. Applying this to φ = γ′ and ψ = γ′′, we obtain γ′ = γ′′ (since
γ′ ∈ Compn and γ′′ ∈ Compn and D (γ′) = D (γ′′)).

Now,

 β′︸︷︷︸
=β′′

, γ′︸︷︷︸
=γ′′

 = (β′′, γ′′).

Forget that we fixed (β′, γ′) and (β′′, γ′′). We thus have shown that if (β′, γ′)
and (β′′, γ′′) are two pairs (β, γ) of compositions such that |β| = m and βγ = α,
then (β′, γ′) = (β′′, γ′′). In other words, there exists at most one pair (β, γ) of
compositions such that |β| = m and βγ = α. This proves Proposition 5.9.
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Next, we shall show a nearly trivial lemma:

Lemma 5.10. Let m ∈ N. Let K be a subset of {1, 2, 3, . . .}. Then,

(K ∩ [m − 1]) ∪ (K \ [m]) = K \ {m} .

Proof of Lemma 5.10. Any element k ∈ K is an element of {1, 2, 3, . . .} (since K is a
subset of {1, 2, 3, . . .}) and therefore is a positive integer. Hence, for any element
k ∈ K, we have the following chain of logical equivalences:

(k ∈ [m − 1]) ⇐⇒ (k ≤ m − 1) (since k is a positive integer)
⇐⇒ (k < m) (since k and m are integers) .

Thus,
{k ∈ K | k ∈ [m − 1]} = {k ∈ K | k < m} .

Recall again that any element k ∈ K is a positive integer. Hence, for any element
k ∈ K, we have the following chain of logical equivalences:

(k /∈ [m]) ⇐⇒ (we don’t have k ∈ [m])

⇐⇒ (we don’t have k ≤ m)

 since k is a positive integer,
and thus the statement “k ∈ [m] ”

is equivalent to “k ≤ m”


⇐⇒ (k > m) .

Hence,
{k ∈ K | k /∈ [m]} = {k ∈ K | k > m} .

Now,

(K ∩ [m − 1])︸ ︷︷ ︸
={k∈K | k∈[m−1]}
={k∈K | k<m}

∪ (K \ [m])︸ ︷︷ ︸
{k∈K | k/∈[m]}
={k∈K | k>m}

= {k ∈ K | k < m} ∪ {k ∈ K | k > m}
= {k ∈ K | k < m or k > m}

= {k ∈ K | k ̸= m}
(

since the statement “k < m or k > m”
is equivalent to “k ̸= m”

)
= K \ {m} .

This proves Lemma 5.10.

Our next proposition characterizes of the concatenation φψ of two compositions
φ and ψ in terms of how its partial sum set D (α) relates to D (φ) and D (ψ):
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Proposition 5.11. Let n ∈ N and m ∈ N. Let α ∈ Compm+n be any composition
of m + n such that m ∈ D (α) ∪ {0, m + n}.

Let φ ∈ Compm be a composition that satisfies D (φ) = D (α) ∩ [m − 1].
Let ψ ∈ Compn be a composition that satisfies D (ψ) = (D (α) \ [m])− m.
Then, φψ = α.

Proof of Proposition 5.11. We have φ ∈ Compm. In other words, φ is a composition
of m. In other words, φ is a composition having size m. In other words, φ ∈ Comp
and |φ| = m. Similarly, from ψ ∈ Compn, we obtain ψ ∈ Comp and |ψ| = n.

Now, Proposition 5.2 (b) (applied to β = φ and γ = ψ) yields |φψ| = |φ|︸︷︷︸
=m

+ |ψ|︸︷︷︸
=n

=

m + n. Thus, φψ is a composition having size |φψ| = m + n. In other words, φψ is
a composition of m + n. In other words, φψ ∈ Compm+n.

Recall that the map D : Compm+n → P ([m + n − 1]) is a bijection. Hence, this
map D is bijective, thus injective. Furthermore, from α ∈ Compm+n, we obtain
D (α) ∈ P ([m + n − 1]) (since D is a map from Compm+n to P ([m + n − 1])). In
other words, D (α) ⊆ [m + n − 1]. Hence,

D (α) ⊆ [m + n − 1] ⊆ {1, 2, 3, . . .} .

In other words, D (α) is a subset of {1, 2, 3, . . .}. Hence, Lemma 5.10 (applied to
K = D (α)) yields

(D (α) ∩ [m − 1]) ∪ (D (α) \ [m]) = D (α) \ {m} . (28)

If K is any set of integers, then (K − m) +m = K (indeed, this follows easily from
Definition 5.4). Applying this to K = D (α) \ [m], we obtain

((D (α) \ [m])− m) + m = D (α) \ [m] .

In view of D (ψ) = (D (α) \ [m])− m, we can rewrite this as

D (ψ) + m = D (α) \ [m] . (29)
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Proposition 5.6 (applied to β = φ and γ = ψ) yields

D (φψ) =

{m} ∪ D (φ)︸ ︷︷ ︸
=D(α)∩[m−1]

∪ (D (ψ) + m)︸ ︷︷ ︸
=D(α)\[m]

(by (29))

 ∩ [m + n − 1]

=

{m} ∪ (D (α) ∩ [m − 1]) ∪ (D (α) \ [m])︸ ︷︷ ︸
=D(α)\{m}

(by (28))

 ∩ [m + n − 1]

= ({m} ∪ (D (α) \ {m}))︸ ︷︷ ︸
={m}∪D(α)

(since (X∪(Y\X))=X∪Y
for any two sets X and Y)

∩ [m + n − 1]

= ({m} ∪ D (α)) ∩ [m + n − 1] . (30)

Now, we recall that m ∈ D (α) ∪ {0, m + n} (by assumption). Hence, {m} ⊆
D (α) ∪ {0, m + n}. Thus,

{m}︸︷︷︸
⊆D(α)∪{0,m+n}

∪D (α) ⊆ (D (α) ∪ {0, m + n}) ∪ D (α)

= D (α) ∪ D (α)︸ ︷︷ ︸
=D(α)

∪ {0, m + n}

= D (α) ∪ {0, m + n} .

Hence,

({m} ∪ D (α))︸ ︷︷ ︸
⊆D(α)∪{0,m+n}

∩ [m + n − 1]

⊆ (D (α) ∪ {0, m + n}) ∩ [m + n − 1]
= (D (α) ∩ [m + n − 1]) ∪ ({0, m + n} ∩ [m + n − 1])︸ ︷︷ ︸

=∅
(since neither 0 nor m+n belongs

to the set [m+n−1])(
since (X ∪ Y) ∩ Z = (X ∩ Z) ∪ (Y ∩ Z)

for any three sets X, Y and Z

)
= (D (α) ∩ [m + n − 1]) ∪∅ = D (α) ∩ [m + n − 1]
= D (α) (since D (α) ⊆ [m + n − 1]) .
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Combining this inclusion with

D (α) = D (α)︸ ︷︷ ︸
⊆({m}∪D(α))

∩ [m + n − 1] (since D (α) ⊆ [m + n − 1])

⊆ ({m} ∪ D (α)) ∩ [m + n − 1] ,

we obtain
({m} ∪ D (α)) ∩ [m + n − 1] = D (α) .

Hence, we can rewrite (30) as D (φψ) = D (α).
Now, recall that the map D : Compm+n → P ([m + n − 1]) is injective. Hence,

if ζ and η are two elements of Compm+n satisfying D (ζ) = D (η), then ζ = η.
Applying this to ζ = φψ and η = α, we obtain φψ = α (since φψ ∈ Compm+n and
α ∈ Compm+n and D (φψ) = D (α)). This proves Proposition 5.11.

5.5. Concatenation and coarsenings

We shall next study the interaction between concatenation and coarsenings. First,
we define coarsenings:

Definition 5.12. If γ is a composition, then C (γ) shall denote the set of all com-
positions β ∈ Comp|γ| satisfying D (β) ⊆ D (γ).

The compositions belonging to C (γ) are often called the coarsenings of γ.

Example 5.13. Let γ be the composition (4, 1, 2). Then, the set C (γ) consists of
the compositions β ∈ Comp7 satisfying D (β) ⊆ D (γ) = {4, 5}. Thus,

C (γ) = {(7) , (5, 2) , (4, 3) , (4, 1, 2)} .

So the coarsenings of γ are the four compositions (7), (5, 2), (4, 3) and (4, 1, 2).

An equivalent definition of the coarsenings of a composition γ can be informally
given as follows: If γ is a composition, then a coarsening of γ means a composition
obtained by “combining” some groups of consecutive entries of γ (that is, replacing
them by their sums). For instance, one of the many coarsenings of a composition
(α1, α2, α3, α4, α5, α6, α7) is (α1 + α2, α3, α4 + α5 + α6, α7). We shall not formalize
this equivalent definition, as we will not use it.

The following lemma is a trivial consequence of the definition of a coarsening,
restated for convenience:

Lemma 5.14. Let γ be a composition.

(a) If ν ∈ C (γ), then ν ∈ Comp and |ν| = |γ| and D (ν) ⊆ D (γ).

(b) If ν ∈ Comp is a composition that satisfies |ν| = |γ| and D (ν) ⊆ D (γ),
then ν ∈ C (γ).
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Proof. (a) Assume that ν ∈ C (γ). According to the definition of C (γ), this means
that ν is a composition β ∈ Comp|γ| satisfying D (β) ⊆ D (γ). In other words,
ν ∈ Comp|γ| and D (ν) ⊆ D (γ). From ν ∈ Comp|γ|, we obtain ν ∈ Comp and
|ν| = |γ|. Thus, we have ν ∈ Comp and |ν| = |γ| and D (ν) ⊆ D (γ). This proves
Lemma 5.14 (a).

(b) Assume that ν ∈ Comp is a composition that satisfies |ν| = |γ| and D (ν) ⊆
D (γ). From ν ∈ Comp and |ν| = |γ|, we obtain ν ∈ Comp|γ|. Thus, ν is a
composition β ∈ Comp|γ| satisfying D (β) ⊆ D (γ) (since D (ν) ⊆ D (γ)). In other
words, ν ∈ C (γ) (by the definition of C (γ)). This proves Lemma 5.14 (b).

We can now restate Proposition 5.8 in terms of coarsenings:

Proposition 5.15. Let β and γ be two compositions. Let µ ∈ C (β) and ν ∈ C (γ).
Then, µν ∈ C (βγ).

Proof of Proposition 5.15. We have ν ∈ C (γ). Thus, Lemma 5.14 (a) yields that ν ∈
Comp and |ν| = |γ| and D (ν) ⊆ D (γ). The same argument (applied to µ and β
instead of ν and γ) shows that µ ∈ Comp and |µ| = |β| and D (µ) ⊆ D (β). Hence,
Proposition 5.8 (applied to β′ = µ and γ′ = ν) yields D (µν) ⊆ D (βγ).

However, Proposition 5.2 (b) yields |βγ| = |β|+ |γ|.
Furthermore, Proposition 5.2 (b) (applied to µ and ν instead of β and γ) yields

|µν| = |µ|︸︷︷︸
=|β|

+ |ν|︸︷︷︸
=|γ|

= |β|+ |γ| = |βγ| (since |βγ| = |β|+ |γ|) .

Thus, we now know that µν ∈ Comp and |µν| = |βγ| and D (µν) ⊆ D (βγ). Hence,
Lemma 5.14 (b) (applied to βγ and µν instead of γ and ν) yields that µν ∈ C (βγ).
This proves Proposition 5.15.

The following proposition is a sort of converse to Proposition 5.15:

Proposition 5.16. Let α be a composition. Let µ and ν be two compositions
satisfying µν ∈ C (α). Then, there exists a unique pair (β, γ) ∈ Comp×Comp of
compositions satisfying βγ = α and µ ∈ C (β) and ν ∈ C (γ).

Proof of Proposition 5.16. Let m = |µ| and n = |ν|. Then, µ ∈ Compm (since µ is
a composition that satisfies |µ| = m) and ν ∈ Compn (since ν is a composition
that satisfies |ν| = n). Also, from µν ∈ C (α), we conclude (by the definition of
C (α)) that µν ∈ Comp|α| and D (µν) ⊆ D (α). Now, from µν ∈ Comp|α|, we obtain
|µν| = |α|. Thus, |α| = |µν|.

On the other hand, Proposition 5.2 (b) (applied to β = µ and γ = ν) yields

|µν| = |µ|︸︷︷︸
=m

+ |ν|︸︷︷︸
=n

= m + n.
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Hence, |α| = |µν| = m + n, so that α ∈ Compm+n. Thus, D (α) ∈ P ([m + n − 1])
(since D : Compm+n → P ([m + n − 1]) is a bijection). In other words, D (α) ⊆
[m + n − 1].

It is furthermore easy to see that

m ∈ D (α) ∪ {0, m + n}
11.

We have D (α) ∩ [m − 1] ⊆ [m − 1], so that D (α) ∩ [m − 1] ∈ P ([m − 1]).
Furthermore, it is easy to see that (D (α) \ [m])− m ∈ P ([n − 1]) 12.
Recall that the map D : Compm → P ([m − 1]) is a bijection. Hence, it is bijective,

thus surjective. Therefore, there exists some composition φ ∈ Compm that satisfies

D (φ) = D (α) ∩ [m − 1] (32)

11Proof. We are in one of the following three cases:
Case 1: We have m = 0.
Case 2: We have n = 0.
Case 3: We have neither m = 0 nor n = 0.
Let us first consider Case 1. In this case, we have m = 0. Hence, m = 0 ∈ {0, m + n} ⊆

D (α) ∪ {0, m + n}. Thus, m ∈ D (α) ∪ {0, m + n} is proved in Case 1.
Let us next consider Case 2. In this case, we have n = 0. Hence, m + n︸︷︷︸

=0

= m, so that

m = m + n ∈ {0, m + n} ⊆ D (α)∪ {0, m + n}. Thus, m ∈ D (α)∪ {0, m + n} is proved in Case 2.
Now, let us consider Case 3. In this case, we have neither m = 0 nor n = 0. Hence, m ̸= 0 and

n ̸= 0. Therefore, µ ̸= ∅ (since |µ| = m ̸= 0 = |∅|) and ν ̸= ∅ (since |ν| = n ̸= 0 = |∅|). Hence,
Proposition 5.5 (applied to µ and ν instead of β and γ) yields

D (µν) = {m} ∪ D (µ) ∪ (D (ν) + m) . (31)

Now,

m ∈ {m} ⊆ {m} ∪ D (µ) ∪ (D (ν) + m)

= D (µν) (by (31))
⊆ D (α) ⊆ D (α) ∪ {0, m + n} .

Thus, m ∈ D (α) ∪ {0, m + n} is proved in Case 3.
Hence, we have proved m ∈ D (α) ∪ {0, m + n} in all three Cases 1, 2 and 3. Thus, m ∈

D (α) ∪ {0, m + n} always holds.
12Proof. Let g ∈ (D (α) \ [m])− m. We shall show that g ∈ [n − 1].

Indeed,
g ∈ (D (α) \ [m])− m = {k − m | k ∈ D (α) \ [m]}

(by the definition of (D (α) \ [m]) − m). In other words, g = k − m for some k ∈ D (α) \ [m].
Consider this k.

We have k ∈ D (α) \ [m], so that k ∈ D (α) and k /∈ [m]. From k ∈ D (α) ⊆ [m + n − 1],
we obtain 1 ≤ k ≤ m + n − 1. If we had k ≤ m, then we would have k ∈ [m] (since 1 ≤
k ≤ m), which would contradict k /∈ [m]. Thus, we cannot have k ≤ m. Hence, we must have
k > m. Thus, k ≥ m + 1 (since k and m are integers), so that k − m ≥ 1. Furthermore, from
k ≤ m + n − 1, we obtain k − m ≤ n − 1. Combining k − m ≥ 1 with k − m ≤ n − 1, we find
k − m ∈ {1, 2, . . . , n − 1} = [n − 1]. Thus, g = k − m ∈ [n − 1].

Forget now that we fixed g. We thus have shown that g ∈ [n − 1] for each g ∈ (D (α) \ [m])−
m. In other words, (D (α) \ [m])− m ⊆ [n − 1]. In other words, (D (α) \ [m])− m ∈ P ([n − 1]).
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(since D (α) ∩ [m − 1] ∈ P ([m − 1])). Consider this φ.
Recall that the map D : Compn → P ([n − 1]) is a bijection. Hence, it is bijective,

thus surjective. Therefore, there exists some composition ψ ∈ Compn that satisfies

D (ψ) = (D (α) \ [m])− m (33)

(since (D (α) \ [m])− m ∈ P ([n − 1])). Consider this ψ.
Proposition 5.11 yields that

φψ = α.

Also, φ ∈ Compm ⊆ Comp and |φ| = m (since φ ∈ Compm). Furthermore,
ψ ∈ Compn ⊆ Comp and |ψ| = n (since ψ ∈ Compn). From φ ∈ Comp and
ψ ∈ Comp, we obtain (φ, ψ) ∈ Comp×Comp.

Proposition 5.7 (a) (applied to β = µ and γ = ν) yields

D (µ) = D (µν)︸ ︷︷ ︸
⊆D(α)

∩ [m − 1] ⊆ D (α) ∩ [m − 1] = D (φ)

(by (32)). Also, we have |µ| = m = |φ| (since |φ| = m), so that µ ∈ Comp|φ|. Thus,
µ is a composition β ∈ Comp|φ| satisfying D (β) ⊆ D (φ) (since we have shown
that D (µ) ⊆ D (φ)). In other words, µ ∈ C (φ) (by the definition of C (φ)).

Proposition 5.7 (b) (applied to β = µ and γ = ν) yields

D (ν) = (D (µν) \ [m])− m. (34)

However, D (µν)︸ ︷︷ ︸
⊆D(α)

\ [m] ⊆ D (α) \ [m]. But it is easy to see that if k is any integer,

and if K and K′ are two sets of integers satisfying K ⊆ K′, then K − k ⊆ K′ − k.
Applying this to k = m and K = D (µν) \ [m] and K′ = D (α) \ [m], we conclude
that (D (µν) \ [m])− m ⊆ (D (α) \ [m])− m (since D (µν) \ [m] ⊆ D (α) \ [m]). In
view of (34), we can rewrite this as

D (ν) = (D (α) \ [m])− m = D (ψ)

(by (33)). Also, we have |ν| = n = |ψ| (since |ψ| = n), so that ν ∈ Comp|ψ|. Thus, ν

is a composition β ∈ Comp|ψ| satisfying D (β) ⊆ D (ψ) (since we have shown that
D (ν) ⊆ D (ψ)). In other words, ν ∈ C (ψ) (by the definition of C (ψ)).

We have now shown that (φ, ψ) ∈ Comp×Comp is a pair of compositions sat-
isfying φψ = α and µ ∈ C (φ) and ν ∈ C (ψ). Hence, there exists at least one
pair (β, γ) ∈ Comp×Comp of compositions satisfying βγ = α and µ ∈ C (β) and
ν ∈ C (γ) (namely, the pair (φ, ψ)).

It remains to show that there exists only one such pair. So let us show this now.
Indeed, let (β′, γ′) and (β′′, γ′′) be two pairs (β, γ) ∈ Comp×Comp of com-

positions satisfying βγ = α and µ ∈ C (β) and ν ∈ C (γ). We must prove that
(β′, γ′) = (β′′, γ′′).
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We know that (β′, γ′) is a pair (β, γ) ∈ Comp×Comp of compositions satisfying
βγ = α and µ ∈ C (β) and ν ∈ C (γ). In other words, (β′, γ′) ∈ Comp×Comp is
a pair of compositions satisfying β′γ′ = α and µ ∈ C (β′) and ν ∈ C (γ′). From
µ ∈ C (β′), we easily obtain |β′| = m 13.

We have now shown that |β′| = m and β′γ′ = α. In other words, (β′, γ′) is a pair
(β, γ) of compositions such that |β| = m and βγ = α. The same argument (applied
to (β′′, γ′′) instead of (β′, γ′)) shows that (β′′, γ′′) is such a pair as well.

However, Proposition 5.9 shows that there exists at most one pair (β, γ) of com-
positions such that |β| = m and βγ = α. Hence, any two such pairs (β, γ) must
be equal. Since (β′, γ′) and (β′′, γ′′) are two such pairs (as we have shown in the
previous paragraph), we thus can conclude that (β′, γ′) and (β′′, γ′′) must be equal.
In other words, (β′, γ′) = (β′′, γ′′).

Now, forget that we fixed (β′, γ′) and (β′′, γ′′). We thus have shown that if (β′, γ′)
and (β′′, γ′′) are two pairs (β, γ) ∈ Comp×Comp of compositions satisfying βγ =
α and µ ∈ C (β) and ν ∈ C (γ), then (β′, γ′) = (β′′, γ′′). In other words, any two
pairs (β, γ) ∈ Comp×Comp of compositions satisfying βγ = α and µ ∈ C (β) and
ν ∈ C (γ) must be equal. In other words, there exists at most one such pair (β, γ).
Since we also know that there exists at least one such pair (β, γ) (because we have
proved this further above), we thus conclude that there exists a unique such pair
(β, γ). This proves Proposition 5.16.

We can combine Propositions 5.15 and 5.16 into a convenient package:

Proposition 5.17. Let (A,+, 0) be an abelian group. Let uµ,ν be an element of A
for each pair (µ, ν) ∈ Comp×Comp of two compositions. Let α ∈ Comp. Then,

∑
(µ,ν)∈Comp×Comp;

µν∈C(α)

uµ,ν = ∑
(β,γ)∈Comp×Comp;

βγ=α

∑
µ∈C(β)

∑
ν∈C(γ)

uµ,ν.

13Proof. We have µ ∈ C (β′). By the definition of C (β′), this means that µ is a composition
β ∈ Comp|β′ | satisfying D (β) ⊆ D (β′). In other words, µ ∈ Comp|β′ | and D (µ) ⊆ D (β′).
Hence, µ ∈ Comp|β′ |, so that |µ| = |β′|. Thus, |β′| = |µ| = m.
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Proof of Proposition 5.17. We have

∑
(β,γ)∈Comp×Comp;

βγ=α

∑
µ∈C(β)︸ ︷︷ ︸

= ∑
µ∈Comp;
µ∈C(β)

(since C(β)⊆Comp )

∑
ν∈C(γ)︸ ︷︷ ︸

= ∑
ν∈Comp;
ν∈C(γ)

(since C(γ)⊆Comp )

uµ,ν

= ∑
(β,γ)∈Comp×Comp;

βγ=α

∑
µ∈Comp;
µ∈C(β)

∑
ν∈Comp;
ν∈C(γ)︸ ︷︷ ︸

= ∑
µ∈Comp

∑
ν∈Comp

∑
(β,γ)∈Comp×Comp;

βγ=α;
µ∈C(β);
ν∈C(γ)

uµ,ν

= ∑
µ∈Comp

∑
ν∈Comp︸ ︷︷ ︸

= ∑
(µ,ν)∈Comp×Comp

∑
(β,γ)∈Comp×Comp;

βγ=α;
µ∈C(β);
ν∈C(γ)

uµ,ν

= ∑
(µ,ν)∈Comp×Comp

∑
(β,γ)∈Comp×Comp;

βγ=α;
µ∈C(β);
ν∈C(γ)

uµ,ν. (35)

Now, we claim the following:

Claim 1: Let (µ, ν) ∈ Comp×Comp be such that µν ∈ C (α). Then,

∑
(β,γ)∈Comp×Comp;

βγ=α;
µ∈C(β);
ν∈C(γ)

uµ,ν = uµ,ν.

[Proof of Claim 1: Proposition 5.16 shows that there exists a unique pair (β, γ) ∈
Comp×Comp of compositions satisfying βγ = α and µ ∈ C (β) and ν ∈ C (γ).
In other words, the sum ∑

(β,γ)∈Comp×Comp;
βγ=α;

µ∈C(β);
ν∈C(γ)

uµ,ν has exactly one addend. Hence, this

sum equals uµ,ν. This proves Claim 1.]

Claim 2: Let (µ, ν) ∈ Comp×Comp be such that µν /∈ C (α). Then,

∑
(β,γ)∈Comp×Comp;

βγ=α;
µ∈C(β);
ν∈C(γ)

uµ,ν = 0.
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[Proof of Claim 2: If (β, γ) ∈ Comp×Comp is a pair of compositions satisfying
βγ = α and µ ∈ C (β) and ν ∈ C (γ), then Proposition 5.15 shows that µν ∈

C

 βγ︸︷︷︸
=α

 = C (α), which contradicts µν /∈ C (α). Hence, there exists no pair

(β, γ) ∈ Comp×Comp of compositions satisfying βγ = α and µ ∈ C (β) and
ν ∈ C (γ). In other words, the sum ∑

(β,γ)∈Comp×Comp;
βγ=α;

µ∈C(β);
ν∈C(γ)

uµ,ν is empty. Therefore, this

sum equals 0. This proves Claim 2.]
Now, each pair (µ, ν) ∈ Comp×Comp satisfies either µν ∈ C (α) or µν /∈ C (α)

(but not both). Hence, we can split the outer sum on the right hand side of (35) as
follows:

∑
(µ,ν)∈Comp×Comp

∑
(β,γ)∈Comp×Comp;

βγ=α;
µ∈C(β);
ν∈C(γ)

uµ,ν

= ∑
(µ,ν)∈Comp×Comp;

µν∈C(α)

∑
(β,γ)∈Comp×Comp;

βγ=α;
µ∈C(β);
ν∈C(γ)

uµ,ν

︸ ︷︷ ︸
=uµ,ν

(by Claim 1)

+ ∑
(µ,ν)∈Comp×Comp;

µν/∈C(α)

∑
(β,γ)∈Comp×Comp;

βγ=α;
µ∈C(β);
ν∈C(γ)

uµ,ν

︸ ︷︷ ︸
=0

(by Claim 2)

= ∑
(µ,ν)∈Comp×Comp;

µν∈C(α)

uµ,ν + ∑
(µ,ν)∈Comp×Comp;

µν/∈C(α)

0

︸ ︷︷ ︸
=0

= ∑
(µ,ν)∈Comp×Comp;

µν∈C(α)

uµ,ν.

Hence, we can rewrite (35) as

∑
(β,γ)∈Comp×Comp;

βγ=α

∑
µ∈C(β)

∑
ν∈C(γ)

uµ,ν = ∑
(µ,ν)∈Comp×Comp;

µν∈C(α)

uµ,ν.

This proves Proposition 5.17.
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