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Symmetric functions

We need rather little about symmetric functions for this talk here.

Let k be a commutative ring. (Often, this is Z or Q.)

We consider power series in countably many commutative
variables: k [[x1, x2, x3, . . .]].

Let Λ be the ring of all symmetric bounded-degree power
series in these variables. It is a k-algebra.
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Skew diagrams

A partition is a weakly decreasing sequence
λ = (λ1, λ2, λ3, . . .) of nonnegative integers ending with
zeroes. We often leave out the zeroes when writing down a
partition.
A skew partition is a pair (λ, µ) of partitions such that
µi ≤ λi for each i . It is commonly written λ/µ.

The (skew) diagram of a skew partition λ/µ is the subset{
(i , j) ∈ {1, 2, 3, . . .}2 | µi < j ≤ λi

}
of {1, 2, 3, . . .}2.

Examples of skew diagrams:

λ = (3, 3, 2) (4, 3, 2, 1) (2, 1, 1)
µ = (1) (2, 1) ()

diagram:
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SSTs

As usual in the theory of Young diagrams, we draw the
elements of a diagram as cells, similar to the cells of a matrix
(but here the matrix is no longer rectangular). More precisely,
the element (i , j) is the j-th cell of the i-th row. This is the
“English notation”.

Given a skew partition λ/µ, a semistandard tableau (SST) of
shape λ/µ is a map T from the diagram of λ/µ to
{1, 2, 3, . . .} such that the entries of T increase weakly along
rows and increase strictly down columns.
Here, the entry of T in cell (i , j) means the image T (i , j).

Examples of SSTs:

1 1

1 3

1 4

2

1 2 2

3 3

2 4

5 5

not 1 2 2

2 2

2 3
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Skew Schur functions

Given a skew partition λ/µ, we define the skew Schur function
sλ/µ to be the formal power series∑

T is an SST of shape λ/µ

xcontT ∈ k [[x1, x2, x3, . . .]] ,

where

xcontT =
∏
i≥1

xnumber of cells of T having entry i
i =

∏
c

xT (c),

where the second product runs over all cells c of T .
This is a formal power series in x1, x2, x3, . . . (despite the
name “function”).

The usual Schur functions (non-skew) are the particular case
when µ = ().

Theorem (classical): sλ/µ ∈ Λ, that is, sλ/µ is symmetric.
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Skew Schurs are symmetric: proof, part 1

Theorem (classical): We have sλ/µ ∈ Λ, that is, sλ/µ is
symmetric.

Idea of proof (Bender and Knuth):

Enough to show that, for each i ≥ 1, the power series sλ/µ is
preserved when xi is switched with xi+1.

This will be done if we can find an involution on the set of all
SSTs of shape λ/µ, which involution switches the number of
entries = i with the number of entries = i + 1 (but leaves all
other entries unchanged).

We can pretend that i = 1, and that all entries of the SST are
1’s and 2’s. Indeed, we can achieve this by forgetting about all
entries other than i and i + 1 (we don’t want to change them
anyway), and renaming the i ’s and i + 1’s as 1’s and 2’s.
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Skew Schurs are symmetric: proof, part 2

Idea of proof (Bender and Knuth), continued:

Fix a skew partition λ/µ (not necessarily the one we started
with). Let S be the set of all SSTs of shape λ/µ with entries
in {1, 2}. We need to find an involution of S which switches
the number of entries = 1 with the number of entries = 2.

Just turning 1’s into 2’s and backwards doesn’t work – we
break increasingness:

1 1 1

1 1 1 2 2 2

1 2

7→ 2 2 2

2 2 2 1 1 1

2 1

which is not an SST.
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Skew Schurs are symmetric: proof, part 3

Idea of proof (Bender and Knuth), continued:

Instead, we color all 1’s that have a 2 beneath them blue, and
we color all 2’s that have a 1 above them blue:

1 1 1

1 1 1 2 2 2

1 2

The other 1’s and 2’s stay black.

Then, for every row, if the row has a black 1’s and b black
2’s, we replace them by b black 1’s and a black 2’s. So the
above SST becomes

1 1 2

1 1 2 2 2 2

2 2

and that’s it!
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RPPs

A reverse plane partition (RPP) is defined like an SST, but
now entries increase weakly both along rows and down

columns. For example, 1 2 2

2 2

2 3

is an RPP.

This definition is thus more symmetric than that of an SST.
Ironically, however, the obvious analogue of sλ/µ is no longer
symmetric! (Unless λ/µ particularly simple.)
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Refined stable dual Grothendieck polynomials, part 1

However, we can squeeze a symmetric function out of RPPs.

Let t1, t2, t3, . . . ∈ k. (Most commonly, k is taken to be
Z [t1, t2, t3, . . .].)
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Refined stable dual Grothendieck polynomials, part 2

Given a skew partition λ/µ, we define the refined stable dual
Grothendieck polynomial g̃λ/µ to be the formal power series∑

T is an RPP of shape λ/µ

xircontT tceqT ∈ k [[x1, x2, x3, . . .]] ,

where

xircontT =
∏
i≥1

xnumber of columns of T containing entry i
i

and
tceqT =

∏
i≥1

t
number of j such that T (i ,j)=T (i+1,j)
i

(where T (i , j) = T (i + 1, j) implies, in particular, that both
(i , j) and (i + 1, j) are cells of T ).
This is a formal power series in x1, x2, x3, . . . (despite the
name “polynomial”).
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Refined stable dual Grothendieck polynomials, part 3

Examples on xircontT :

We have

xircontT =
∏
i≥1

xnumber of columns of T containing entry i
i .

If T = 1 2 2

2 2

2 3

, then xircontT = x1x
4
2x3. The x2 has

exponent 4, not 5, because the two 2’s in column 3 count only
once.

If T is an SST, then xircontT = xcontT .
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Refined stable dual Grothendieck polynomials, part 4

Examples on tceqT :

We have

tceqT =
∏
i≥1

t
number of j such that T (i ,j)=T (i+1,j)
i

If T = 1 2 2

2 2

2 3

, then tceqT = t1, due to

T (1, 3) = T (2, 3).

If T is an SST, then tceqT = 1.

In general, tceqT measures “how often” T breaks the SST
condition.
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Refined stable dual Grothendieck polynomials, part 5

If we set t1 = t2 = t3 = · · · = 0, then g̃λ/µ = sλ/µ.

If we set t1 = t2 = t3 = · · · = 1, then g̃λ/µ = gλ/µ, the stable
dual Grothendieck polynomial of Lam and Pylyavskyy
(arXiv:0705.2189).

The general case, to our knowledge, is new.

Theorem (Galashin, G., Liu): We have g̃λ/µ ∈ Λ, that is,
g̃λ/µ is symmetric in the xi (not in the ti ).

Example 1: If λ = (n) and µ = (), then g̃λ/µ = hn, the n-th
complete homogeneous symmetric function.

Example 2: If λ =

1, 1, . . . , 1︸ ︷︷ ︸
n ones

 and µ = (), then

g̃λ/µ = en (t1, t2, . . . , tn−1, x1, x2, x3, . . .), where en is the n-th
elementary symmetric function.

Example 3: If λ = (2, 1) and µ = (), then
g̃λ/µ =

∑
a≤b; a<c

xaxbxc + t1
∑
a≤b

xaxb.
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Ref. st. dual Grothendiecks are symmetric: proof, part 1

Theorem (Galashin, G., Liu): We have g̃λ/µ ∈ Λ, that is,
g̃λ/µ is symmetric in the xi (not in the ti ).

Idea of first proof:

Again, as for the skew Schur functions, it is enough to only
consider entries in {1, 2}.
Fix a skew partition λ/µ. Let RPP be the set of all RPPs of
shape λ/µ with entries in {1, 2}. We need to find an
involution of RPP which switches the number of columns
containing 1 with the number of columns containing 2, but at
the same time preserves tceqT .
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Ref. st. dual Grothendiecks are symmetric: proof, part 2

Idea of first proof:

SSTs with entries in {1, 2} are simple. RPPs with entries in
{1, 2} can be messy:

1 1 2 2 2

1 1 1 2 2

1 1 1 2 2 2

1 2
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Ref. st. dual Grothendiecks are symmetric: proof, part 3

Idea of first proof:

We can still try to play the old game: Color the 1’s blue that
have a 2 somewhere below them, and the 2’s that have a 1
somewhere above them. Thus obtain

1 1 2 2 2

1 1 1 2 2

1 1 1 2 2 2

1 2

And we can try to “flip” all black 1’s and 2’s (i.e., 1→ 2 and
2→ 1). But now, how do we turn the rest back into an RPP?

We need something more systematic.
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Ref. st. dual Grothendiecks are symmetric: proof, part 4

Idea of first proof:

We fix λ/µ. Let us introduce some notations:

A 12-table is a map T from the diagram of λ/µ to {1, 2}
such that the entries of T weakly increase down columns.

A column of a 12-table is:

1-pure if it contains 1’s but no 2’s;
2-pure if it contains 2’s but no 1’s;
mixed if it both 1’s and 2’s;
empty otherwise.

(The mixed columns are the ones we colored blue.)
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Ref. st. dual Grothendiecks are symmetric: proof, part 5

Idea of first proof:

If T is a 12-table, and if j ≥ 1 is such that the j-th column of
T is mixed, then set

sepj T = min {i | T (i , j) = 2} .

(That is, sepj T marks the row where the 2’s in the j-th
column of T begin.)

Example: If

T = 1

1 1

1 1 2 1

2 1 2 2

2 1

then sep1 T = 4, sep3 T = 3 and sep4 T = 4.
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Ref. st. dual Grothendiecks are symmetric: proof, part 6

Idea of first proof:

If T is a 12-table, then seplistT denotes the list of all sepj T ,
where j ranges (in increasing order) over all positive integers
such that the j-th column of T is mixed.

A 12-table T is benign if seplistT is weakly decreasing.

Example:

seplist 1

1 1

1 1 2 1

2 1 2 2

2 1

= (4, 3, 4)

(the second column does not contribute here, since it is not
mixed!). In particular, this 12-table is not benign.
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Ref. st. dual Grothendiecks are symmetric: proof, part 7

Idea of first proof:

Tab is the set of all 12-tables.

Ben is the set of all benign 12-tables.

RPP is the set of all RPPs of shape λ/µ with entries in {1, 2}.
We have RPP ⊆ Ben ⊆ Tab.

Battle plan:

We define a map flip : RPP→ Ben as follows: Replace
all 1’s in 1-pure columns by 2’s, and simultaneously
replace all 2’s in 2-pure columns by 1’s.
We define a map norm : Ben→ RPP which turns a
benign 12-table into an RPP by iteratively “resolving” its
“descents” (places where its rows decrease). But it is not
as simple as sorting each row!
The map norm ◦ flip will be our involution on RPP.
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We define a map norm : Ben→ RPP which turns a
benign 12-table into an RPP by iteratively “resolving” its
“descents” (places where its rows decrease). But it is not
as simple as sorting each row!
The map norm ◦ flip will be our involution on RPP.
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Ref. st. dual Grothendiecks are symmetric: proof, part 8

Idea of first proof:

Why flip : RPP→ Ben is well-defined is clear: If T ∈ RPP,
then flipT is benign.
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Ref. st. dual Grothendiecks are symmetric: proof, part 9

Idea of first proof:

To define norm : Ben→ RPP, we define an operation on
benign 12-table which we call “resolving descents”.
A descent of a 12-table T is an j ≥ 1 such that, for some
i ≥ 1, we have T (i , j) = 2 and T (i , j + 1) = 1.
Thus, a descent records a place where a row decreases. (More
precisely, it records the column in which it happens.)
If k is a descent of a benign 12-table T , then we say that this
descent has

type M1, if the column k of T is mixed and the column
k + 1 of T is 1-pure;
type 2M, if the column k of T is 2-pure and the column
k + 1 of T is mixed;
type 21, if the column k of T is 2-pure and the column
k + 1 of T is 1-pure.

No other types are possible; in particular, the benignness of T
ensures that the columns k and k + 1 cannot both be mixed!
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Ref. st. dual Grothendiecks are symmetric: proof, part 10

Idea of first proof:

If k is a descent of a benign 12-table T , then we define the
result of resolving the descent k in T to be the benign
12-table T ′ obtained from T as follows:

If the descent k has type M1, then we replace all entries
of column k by 1’s and all entries of column k + 1 by 1’s
and 2’s. To decide where to use 1’s and where to use 2’s
in column k + 1, we require that sepk+1 T

′ = sepk T
(that is, the 2’s in column k + 1 of T ′ begin on the same
level as the 2’s in column k of T ).
In pictures:

1 1

2

7→

1

1
2
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Idea of first proof:

If k is a descent of a benign 12-table T , then we define the
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Ref. st. dual Grothendiecks are symmetric: proof, part 11

Idea of first proof:

Given T ∈ Ben, we want to define normT by iteratively
resolving descents in T until none remain:

1 2 1

1 1 2

2 1 1

2 2 1

2

7→ 1 2 1

1 1 2

2 1 1

2 1 2

2

7→ 1 2 1

2 1 2

1 2 1

1 2 2

1

7→ 2 2 1

1 2 2

1 1 2

1 2 2

1

7→ 2 1 2

1 2 1

1 1 2

1 2 2

1

7→ · · ·
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Ref. st. dual Grothendiecks are symmetric: proof, part 12

Idea of first proof:

· · · 7→ 2 1 2

1 2 1

1 1 2

1 2 2

1

7→ 1 2 2

1 1 2

1 1 1

1 2 1

1

7→ 1 2 2

1 1 2

1 1 1

1 1 2

1

(where we color those columns in red which are going to take
part in the next descent-resolution step).
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Ref. st. dual Grothendiecks are symmetric: proof, part 13

Idea of first proof:

Note that T stays benign during this procedure!

So we want to define normT as the result of this recursive
procedure. But

1 we first need to show that this procedure terminates, and
2 this procedure is non-deterministic: it involves choosing a

descent to resolve; we need to prove that these choices
do not influence the result.

The first problem is easy to solve: there is a monovariant.
(Roughly speaking, 1-pure columns “only move left”, while
2-pure columns “only move right”.)

The second problem is trickier. Fortunately, there is a
standard tactic for such problems: the “diamond lemma” (or
“Newman lemma”). (But once the dust has settled, it is
easier to reword the argument as an induction on the
monovariant than to state the lemma.)
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Ref. st. dual Grothendiecks are symmetric: proof, part 14

Idea of first proof:

We are defining normT as the result of iteratively resolving
descents in T until none remain.

We need to show that this is well-defined. We shall show this
by strong induction over `(T ), where

`(T ) =
∑
h≥1;

the h-th column
of T is mixed

h +
∑
h≥1;

the h-th column
of T is 1-pure

2h ∈ N.

The nice thing about `: If we resolve a descent in T , then
`(T ) decreases. (There are, of course, many other functions
with this property.)

This immediately shows that the process of iteratively
resolving descents will eventually terminate. We only need to
show that its result does not depend on the choices made in
the process.
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Ref. st. dual Grothendiecks are symmetric: proof, part 15

Idea of first proof:

So fix T ∈ Ben, and assume (as induction hypothesis) that
norm S is well-defined for every S ∈ Ben with `(S) < `(T ).
We need to prove that normT is well-defined.

If T has no descents, then there is nothing to prove. So,
WLOG, assume that T has descents. Thus, the construction
of normT must start with resolving a descent of T .

Let Tu ∈ Ben be obtained from T by resolving a descent u.
Let Tv ∈ Ben be obtained from T by resolving a descent v .
Then, `(Tu) and `(Tv ) are both < `(T ), and thus (by
induction hypothesis) norm(Tu) and norm(Tv ) are
well-defined. It is enough to show that norm(Tu) = norm(Tv ).

If u = v , then Tu = Tv and we are done. Hence, WLOG
u 6= v . WLOG, u < v .
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Ref. st. dual Grothendiecks are symmetric: proof, part 16

Idea of first proof:

Two cases: u = v − 1 and u < v − 1. We shall deal with the
former case only (the latter is easier).
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Ref. st. dual Grothendiecks are symmetric: proof, part 17

Idea of first proof:

So u = v − 1. Thus, columns v − 1, v , v + 1 of T look as
follows:

1 1

2
2
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Ref. st. dual Grothendiecks are symmetric: proof, part 18

Idea of first proof:

So u = v − 1. After resolving the descent v − 1, these
columns become

1
1 2

2
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Ref. st. dual Grothendiecks are symmetric: proof, part 19

Idea of first proof:

So u = v − 1. After resolving the descent v − 1 and then
resolving the descent v , these columns become

2
1 1

2
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Ref. st. dual Grothendiecks are symmetric: proof, part 20

Idea of first proof:

So u = v − 1. After resolving the descent v − 1 and then
resolving the descent v and then again resolving the descent
v − 1, these columns become

1 2

1
2
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Ref. st. dual Grothendiecks are symmetric: proof, part 21

Idea of first proof:

Thus we have gone from

T = · · ·

1 1

2
2

· · · to S := · · ·

1 2

1
2

· · ·

via three descent-resolution steps, passing through Tu (since
we started out by resolving the descent v − 1 = u).

Thus, norm(Tu) = normS .
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Ref. st. dual Grothendiecks are symmetric: proof, part 22

Idea of first proof:

Thus, norm(Tu) = normS .

Similarly, norm(Tv ) = normS (because we can just as well get
from T to S by resolving the descents v , v − 1, v in this order,
and this way we pass through Tv instead of through Tu).

Comparing, we obtain norm(Tu) = norm(Tv ), qed.
(See arXiv:1509.03803v1, §5.4 for details.)

Note: If you have heard of the “diamond lemma” (a.k.a. the
“Newman lemma”, a.k.a. the fact that a noetherian rewriting
system is confluent if it is locally confluent), then you have
probably realized that its proof was implicit in our argument
above.
Being explicit about it would just have made the proof
longer... [See the ancillary file of arXiv:1509.03803 for a
writeup of the proof that includes the diamond lemma and
invokes it explicitly.]
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Ref. st. dual Grothendiecks are symmetric: proof, part 23

Idea of first proof:

So norm is defined. We are almost there.

We need to show that norm ◦ flip : RPP→ RPP is an
involution.

This is mostly straightforward. Main observations:

We can define flipT not only for T ∈ RPP, but also for
all T ∈ Ben.
If k is a descent of a benign 12-table T , and if T ′ is the
12-table obtained by resolving this descent, then k is a
descent of the benign 12-table flipT ′, and resolving this
descent in flipT ′ gives us flipT .

Both flip and norm preserve seplistT and tceqT (actually,
tceqT and seplistT encode the same data about T ).

37 / 42



Ref. st. dual Grothendiecks are symmetric: proof, part 23

Idea of first proof:

So norm is defined. We are almost there.

We need to show that norm ◦ flip : RPP→ RPP is an
involution.

This is mostly straightforward. Main observations:

We can define flipT not only for T ∈ RPP, but also for
all T ∈ Ben.
If k is a descent of a benign 12-table T , and if T ′ is the
12-table obtained by resolving this descent, then k is a
descent of the benign 12-table flipT ′, and resolving this
descent in flipT ′ gives us flipT .
Both flip and norm preserve seplistT and tceqT (actually,
tceqT and seplistT encode the same data about T ).

37 / 42



Ref. st. dual Grothendiecks are symmetric: proof, part 23

Idea of first proof:

So norm is defined. We are almost there.

We need to show that norm ◦ flip : RPP→ RPP is an
involution.

This is mostly straightforward. Main observations:

We can define flipT not only for T ∈ RPP, but also for
all T ∈ Ben.
If k is a descent of a benign 12-table T , and if T ′ is the
12-table obtained by resolving this descent, then k is a
descent of the benign 12-table flipT ′, and resolving this
descent in flipT ′ gives us flipT .
Both flip and norm preserve seplistT and tceqT (actually,
tceqT and seplistT encode the same data about T ).

37 / 42



Remarks about the involution

The involution norm ◦ flip : RPP→ RPP restricts to an
involution on SST – namely, the classical (Bender-Knuth)
involution on SSTs with entries 1 and 2 which we used in
proving the symmetry of the sλ/µ.

It is also, in some sense, the only “canonical” extension of this
Bender-Knuth involution satisfying a certain “locality
condition” (see §6 of our paper for details).

This also gives yet another construction of our involution,
therefore yet another proof of the symmetry of g̃λ/µ.
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A Littlewood-Richardson rule

Generalized Littlewood-Richardson rule (not yet written
up): For any partitions λ, µ and ν, we have

sν g̃λ/µ =
∑

T is an RPP
of shape λ/µ such that for every

j∈{1,2,3,...}, the sequence

ν+ircont(T |cols≥j) is a partition

sν+ircont(T )t
ceqT .

Here, we define T |cols≥j as the result of restricting T to
columns j , j + 1, j + 2, . . ..

The proof is remarkably easy: Recall Stembridge’s proof of
Littlewood-Richardson (Electronic Journal of Combinatorics 9
(2002), #N5), and replace the Bender-Knuth involutions by
our extended involutions.

The classical Littlewood-Richardson rule is recovered when
t1 = t2 = t3 = · · · = 0.

Setting ν = () gives a Schur expansion for g̃λ/µ.
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Jacobi-Trudi identity?

Conjecture: Let the conjugate partitions of λ and µ be
λt = ((λt)1 , (λ

t)2 , . . . , (λ
t)N) and

µt = ((µt)1 , (µ
t)2 , . . . , (µ

t)N). Then,

g̃λ/µ

= det

((
e(λt)i−i−(µt)j+j

(
x, t
[(
µt
)
j

+ 1 :
(
λt
)
i

]))
1≤i≤N, 1≤j≤N

)
.

Here, (x, t [k : `]) denotes the alphabet
(x1, x2, x3, . . . , tk , tk+1, . . . , t`−1).
Warning: If ` ≤ k , then tk , tk+1, . . . , t`−1 means nothing. No
“antimatter” variables!

I have some even stronger conjectures, with less evidence...
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Thank you

Richard Stanley for acquainting us with the dual stable
Grothendiecks.

Alexander Postnikov, Thomas Lam, Pavlo Pylyavskyy for
interesting discussions.

you for your patience.
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