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1. Introduction: the Clifford algebra

One of the basic properties of the Clifford algebra gives an explicit basis for it in
terms of a basis of the underlying vector space (Theorem 1 below), and another one
provides a vector space isomorphism between the Clifford algebra and the exterior
algebra of the same vector space (the so-called Chevalley map, Theorem 2 below).
While both of these properties appear in standard literature such as [1] and [2], sadly
I have never seen them proven in the generality they deserve (they hold over arbitrary
commutative rings rather than just fields of characteristic 0, at least as long as we
are talking about bilinear rather than quadratic forms). Besides, some proofs found in
literature are sloppily written or otherwise unsatisfactory. Here we are going to present
a computational proof of both of these properties, giving integral2 recursive formulas
for the vector space isomorphism between the Clifford algebra and the exterior algebra
(in both directions).

Remark (added in 2016). As I now know, most of what is done in this
paper is not new. In particular, its main results already appear in §9 of
Chapter IX of [7]3; they also (essentially) appear in Chapter 2 of [8]4; the
main ideas also appear in (1.7) of Chapter IV of [9]5. Moreover, the proofs
given in [7], in [8] and in [9] are essentially the same as ours. (Moreover,
similar ideas and a variant of our map αf have been used for different
purposes in [10].) The results in Sections 11–14 of this paper might still be
new.

First, let us define everything in maximal generality:

Definition 1. In this note, a ring will always mean a ring with 1. If k
is a ring, a k-algebra will mean a (not necessarily commutative) k-algebra
with 1. Sometimes we will use the word ”algebra” as an abbreviation for
”k-algebra”. If L is a k-algebra, then a left L-module is always supposed to
be a left L-module on which the unity of L acts as the identity. Whenever
we use the tensor product sign ⊗ without an index, we mean ⊗k.

1This is a version including all the results, but excluding the straightforward proofs. Due to the
computational nature of the proofs, a reader with experience in tensor manipulations will be able to
derive all the proofs on his own without any trouble. If not, he can read them up in reference [0].

2in the sense of: no division by k!
3More precisely: Our Theorem 33 is Proposition 3 in §9 of Chapter IX of [7] (and thus, our Theorem

1 is a consequence of said proposition); our Theorem 2 is a particular case (for L = {1, 2, . . . , n}) of
Théorème 1 in §9 of Chapter IX of [7].

4More precisely, Theorem (2.16) in Chapter 2 of [8] includes both our Theorem 1 and our Theorem
2 in the case when the k-module L is finitely generated and projective. But the proof given in [8],
as far as it concerns our Theorem (2.16), does not require the “finitely generated and projective”
condition.

5Thanks to Rainer Schulze-Pillot for making me aware of [9].
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Definition 2. Let k be a commutative ring. Let L be a k-module. A bilin-
ear form on L means a bilinear map f : L×L→ k. A bilinear form f on L is
said to be symmetric if it satisfies (f (x, y) = f (y, x) for any x ∈ L and y ∈ L).

Definition 3. Let k be a commutative ring. Let L be a k-module, and
f : L × L → k be a bilinear form on L. For every i ∈ N, we define the
so-called i-th tensor power L⊗i of L to be the k-module L⊗ L⊗ ...⊗ L︸ ︷︷ ︸

i times

.

The tensor algebra ⊗L of L over k is defined to be the algebra ⊗L =
L⊗0 ⊕ L⊗1 ⊕ L⊗2 ⊕ ..., where the multiplication is given by the tensor
product. Now, we define the Clifford algebra Cl (L, f) to be the factor
algebra (⊗L)�If , where If is the two-sided ideal

(⊗L) · 〈v ⊗ v − f (v, v) | v ∈ L〉 · (⊗L)

of the algebra ⊗L. 6

Remark. We denote by 0 the symmetric bilinear form on L defined by
(0 (x, y) = 0 for every x ∈ L and y ∈ L). Then, I0 = (⊗L) · 〈v ⊗ v | v ∈ L〉 · (⊗L),
and thus Cl (L,0) = (⊗L)�I0 is the exterior algebra ∧L of the k-module L. Hence,
the exterior algebra ∧L is a particular case of the Clifford algebra - namely, it is the
Clifford algebra Cl (L,0).

In general, the Clifford algebra Cl (L, f) is not isomorphic to the exterior algebra
∧L as algebra. However, they are isomorphic as k-modules, as the following theorem
states:

Theorem 1 (Chevalley map theorem): Let k be a commutative ring.
Let L be a k-module, and f : L × L → k be a bilinear form on L. Then,
the k-modules ∧L and Cl (L, f) are isomorphic.

We are going to prove this theorem by explicitly constructing mutually inverse
homomorphisms in both directions. This proof substantially differs from the proofs
given in standard literature for the particular case of k being a field of characteristic
0 and L being a finite-dimensional k-vector space, which proceed by constructing the
isomorphism in one direction and showing either its injectivity or its surjectivity, or
proving both using the basis theorem (Theorem 2 below).7 Using Theorem 1 we will
be able to construct a basis for Cl (L, f) in the case when L has one:

Theorem 2 (Clifford basis theorem): Let k be a commutative ring. Let
L be a free k-module with a finite basis (e1, e2, ..., en), and f : L×L→ k be a
bilinear form on L. Let ϕf : L→ Cl (L, f) be the k-module homomorphism
defined by ϕf = projf ◦ inj, where inj : L → ⊗L is the canonical injection

6Here, whenever U is a set, and P : U → ⊗L is a map (not necessarily a linear map), we denote
by 〈P (v) | v ∈ U〉 the k-submodule of ⊗L generated by the elements P (v) for all v ∈ U .

7The proof of Theorem 1 in [2] (where Theorem 1 appears as Theorem 1.2, albeit only in the case
of k being a field) seems different, but I don’t completely understand it; to me it seems that it has a
flaw (it states that ”the r-homogeneous part of ϕ is then of the form ϕr =

∑
ai ⊗ vi ⊗ vi ⊗ bi (where

deg ai +deg bi = r−2 for each i)”, which I am not sure about, because theoretically one could imagine
that the representation of ϕ in the form ϕ =

∑
ai ⊗ (vi ⊗ vi + q (vi))⊗ bi involves some ai and bi of

extremely huge degree which cancel out in the sum).
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of the k-module L into its tensor algebra ⊗L, and where projf : ⊗L →
Cl (L, f) is the canonical projection of the tensor algebra ⊗L onto its factor
algebra (⊗L)�If = Cl (L, f).

Then,

(−→∏
i∈I
ϕf (ei)

)
I∈P({1,2,...,n})

is a basis of the k-module Cl (L, f), where

P ({1, 2, ..., n}) denotes the power set of the set {1, 2, ..., n}.

Here, we are using the following notation:

Definition 4. Let A be a ring, and let I be a finite subset of Z. Let ai
be an element of A for each i ∈ I. Then, we denote by

−→∏
i∈I
ai the element of

A defined as follows: We write the set I in the form I = {i1, i2, ..., i`} with
i1 < i2 < ... < i` (in other words, we let i1, i2, ..., i` be the elements of

I, written down in ascending order). Then, we define
−→∏
i∈I
ai as the product

ai1ai2 ...ai` . This product
−→∏
i∈I
ai is called the ascending product of the elements

ai of A.

One more theorem that is often (silently) used and will follow from our considera-
tions:

Theorem 3. Let k be a commutative ring. Let L be a k-module, and
f : L × L → k be a bilinear form on L. Let ϕf : L → Cl (L, f) be the
k-module homomorphism defined by ϕf = projf ◦ inj, where inj : L →
⊗L is the canonical injection of the k-module L into its tensor algebra
⊗L, and where projf : ⊗L → Cl (L, f) is the canonical projection of the
tensor algebra ⊗L onto its factor algebra (⊗L)�If = Cl (L, f). Then, the
homomorphism ϕf is injective.

Theorem 2 is known in the case of k being a field and L being a finite-dimensional
k-vector space; in this case, it is often proved using orthogonal decomposition of L into
f -orthogonal subspaces - a tactic not available to us in the general case of k being an
arbitrary commutative ring. We will have to derive Theorem 2 from Theorem 1 to
prove it in this generality. Most proofs of Theorem 1 rely on Theorem 2, and Theorem
3 is usually proven using either Theorem 1 or Theorem 2.

The nature of our proof will be computational - we are going to define some k-
module automorphisms of the tensor algebra ⊗L by recursive formulae. During the
course of the proof, we will show a lot of formulas, each of which has a more or less
straightforward inductive proof (using the results proven before). The inductive proofs
will be straightforward using the following three tactics:

• In order to prove an identity for every tensor U ∈ ⊗L, it is enough to prove it
only for homogeneous tensors U (i. e., for tensors U ∈ L⊗p for every p ∈ N), as
long as the identity is linear in U . (This is because every tensor U ∈ ⊗L is a
linear combination of elements of L⊗p for different p ∈ N.)
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• Let p ∈ N. In order to prove an identity for every tensor U ∈ L⊗p, it is enough
to prove it only for tensors U of the form u⊗ Ü (where u ∈ L and Ü ∈ L⊗(p−1)),
as long as the identity is linear in U . (This is because every tensor U ∈ L⊗p

is a linear combination of tensors of the form u ⊗ Ü for different u ∈ L and
Ü ∈ L⊗(p−1).)

• Let p ∈ N. In order to prove an identity for every tensor U ∈ L⊗p, it is enough
to prove it only for tensors U of the form Ü ⊗ u (where u ∈ L and Ü ∈ L⊗(p−1)),
as long as the identity is linear in U . (This is because every tensor U ∈ L⊗p

is a linear combination of tensors of the form Ü ⊗ u for different u ∈ L and
Ü ∈ L⊗(p−1).)

2. Left interior products on the tensor algebra

From now on, we fix a commutative ring k, and a k-module L. Let f be some
bilinear form on L.

First, we define some operations of L on ⊗L - the so-called interior products :

Definition 6. Let f : L× L→ k be a bilinear form. For every p ∈ N, we

are going to define a bilinear map
f
x : L × (⊗L) → ⊗L. We are going to

use infix notation for the map
f
x; this means that for every v ∈ L and every

T ∈ ⊗L, we will denote the image of (v, T ) under this bilinear map by v
f
xT

rather than by
f
x (v, T ).

In order to define this map
f
x on L× (⊗L), it is enough to specify the value

of v
f
x (u1 ⊗ u2 ⊗ ...⊗ up) for every p ∈ N, every v ∈ L and every p elements

u1, u2, ..., up of L (because every element T of ⊗L is a k-linear combination
of pure tensors of the form u1⊗u2⊗ ...⊗up for various p and u1, u2, ..., up,

and thus the values of v
f
x (u1 ⊗ u2 ⊗ ...⊗ up) determine the value of v

f
xT ).

This we do by setting

v
f
x (u1 ⊗ u2 ⊗ ...⊗ up) =

p∑
i=1

(−1)i−1 f (v, ui)·u1⊗u2⊗...⊗ûi⊗...⊗up. (1)

8 In particular, we have v
f
xu = f (v, u) 9 for every u ∈ L and v ∈ L, and

we have v
f
xλ = 0 10 for every v ∈ L and λ ∈ k.

We have two rather easy properties of our map:

8Here, the hat over the vector ui means that the vector ui is being omitted from the
tensor product; in other words, u1 ⊗ u2 ⊗ ... ⊗ ûi ⊗ ... ⊗ up is just another way to write
u1 ⊗ u2 ⊗ ...⊗ ui−1︸ ︷︷ ︸

tensor product of the
first i−1 vectors u`

⊗ui+1 ⊗ ui+2 ⊗ ...⊗ up︸ ︷︷ ︸
tensor product of the
last p−i vectors u`

.

9Here, f (v, u) ∈ k is considered as an element of ⊗L by means of the canonical inclusion k =
L⊗0 ⊆ ⊗L.

10Here, λ ∈ k is considered as an element of ⊗L by means of the canonical inclusion k = L⊗0 ⊆ ⊗L.
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Theorem 5. The bilinear map
f
x : L × (⊗L) → ⊗L is well-defined by

Definition 6.

Theorem 6. If u ∈ L, U ∈ ⊗L, and v ∈ L, then

v
f
x (u⊗ U) = f (v, u)U − u⊗

(
v
f
xU
)
. (2)

Three remarks:

• While the Definition 5 above is useful for computing the map
f
x in concrete cases,

Theorem 6 gives a powerful recurrence equation for the map
f
x (”recurrence”

because it reduces the computation of v
f
xT for a (p+ 1)-tensor T to the com-

putation of v
f
xS for p-tensors S), which (together with v

f
xλ = 0 for v ∈ L and

λ ∈ k) allows us to prove most properties of
f
x by induction (without having to

work with summations as we would have to do if we would use Definition 5).

• In the detailed version [0] of this paper, I define the map
f
x not by the Definition 5

given above, but instead by a different definition (which is more or less Theorem
6 in disguise).

• Many authors omit the f in the notation
f
x; in other words, they simply write x

for
f
x. We, however, cannot afford using this abbreviation, since we will have to

work with several different f ’s at once.

Now, it is time for some actually nontrivial formulas for
f
x. However, ”nontriv-

ial” doesn’t mean that the proofs aren’t obvious inductions using the three tactics I
described above.

Theorem 7. If v ∈ L and U ∈ ⊗L, then

v
f
x
(
v
f
xU
)

= 0. (3)

Theorem 8. If v ∈ L, w ∈ L and U ∈ ⊗L, then

v
f
x
(
w
f
xU
)

= −wf
x
(
v
f
xU
)
. (4)

Theorem 9. If p ∈ N, u ∈ L, U ∈ L⊗p, and v ∈ L, then

v
f
x (U ⊗ u) = (−1)p f (v, u)U +

(
v
f
xU
)
⊗ u. (5)

Theorem 10. If p ∈ N, v ∈ L, U ∈ L⊗p, and V ∈ ⊗L, then

v
f
x (U ⊗ V ) = (−1)p U ⊗

(
v
f
xV
)

+
(
v
f
xU
)
⊗ V. (6)
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Theorem 10
1

2
. If p ∈ N, u ∈ L, U ∈

⊕
i∈N;

i≡pmod 2

L⊗i, and v ∈ L, then

v
f
x (U ⊗ u) = (−1)p f (v, u)U +

(
v
f
xU
)
⊗ u. (7)

Theorem 10
3

4
. Let f : L × L → k and g : L × L → k be two bilinear

forms. If w ∈ L and U ∈ ⊗L, then

w
f
xU + w

g
xU = w

f+g
x U. (8)

3. Right interior products on the tensor algebra

We have proven a number of properties of the interior product
f
x. We are now going

to introduce a very analogous construction
f
y which works ”from the right” almost the

same way as
f
x works ”from the left”:

Definition 7. Let f : L× L→ k be a bilinear form. For every p ∈ N, we

are going to define a bilinear map
f
y : (⊗L) × L → ⊗L. We are going to

use infix notation for the map
f
y; this means that for every v ∈ L and every

T ∈ ⊗L, we will denote the image of (T, v) under this bilinear map by T
f
yv

rather than by
f
y (T, v).

In order to define this map
f
y on (⊗L)×L, it is enough to specify the value

of (u1 ⊗ u2 ⊗ ...⊗ up)
f
yv for every p ∈ N, every v ∈ L and every p elements

u1, u2, ..., up of L (because every element T of ⊗L is a k-linear combination
of pure tensors of the form u1⊗u2⊗ ...⊗up for various p and u1, u2, ..., up,

and thus the values of (u1 ⊗ u2 ⊗ ...⊗ up)
f
yv determine the value of T

f
yv).

This we do by setting

(u1 ⊗ u2 ⊗ ...⊗ up)
f
yv =

p∑
i=1

(−1)p−i f (ui, v)·u1⊗u2⊗...⊗ûi⊗...⊗up. (9)

11 In particular, we have u
f
yv = f (v, u) 12 for every u ∈ L and v ∈ L, and

we have λ
f
yv = 0 13 for every v ∈ L and λ ∈ k.

Again, many authors omit the f in the notation
f
y, but we will not.

Everything that we have proven for
f
x has an analogue for

f
y. In fact, we can take any

identity concerning
f
x, and ”read it from right to left” to obtain an analogous property

of
f
y 14. This way, we get the following new theorems:

11Here, the hat over the vector ui means that the same as it did in Definition 5.
12Here, f (v, u) ∈ k is considered as an element of ⊗L by means of the canonical inclusion k =

L⊗0 ⊆ ⊗L.
13Here, λ ∈ k is considered as an element of ⊗L by means of the canonical inclusion k = L⊗0 ⊆ ⊗L.
14See [0] for details about how this is to be understood.
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Theorem 11. The bilinear map
f
y : (⊗L) × L → ⊗L is well-defined by

Definition 7.

Theorem 12. If u ∈ L, U ∈ ⊗L, and v ∈ L, then

(U ⊗ u)
f
yv = f (u, v)U −

(
U
f
yv
)
⊗ u. (10)

Theorem 13. If v ∈ L and U ∈ ⊗L, then(
U
f
yv
)
f
yv = 0. (11)

Theorem 14. If v ∈ L, w ∈ L and U ∈ ⊗L, then(
U
f
yw
)
f
yv = −

(
U
f
yv
)
f
yw. (12)

Theorem 15. If p ∈ N, u ∈ L, U ∈ L⊗p, and v ∈ L, then

(u⊗ U)
f
yv = (−1)p f (u, v)U + u⊗

(
U
f
yv
)
. (13)

Theorem 16. If p ∈ N, v ∈ L, U ∈ L⊗p, and V ∈ ⊗L, then

(V ⊗ U)
f
yv = (−1)p

(
V
f
yv
)
⊗ U + V ⊗

(
U
f
yv
)
. (14)

Theorem 16
1

2
. If p ∈ N, u ∈ L, U ∈

⊕
i∈N;

i≡pmod 2

L⊗i, and v ∈ L, then

(u⊗ U)
f
yv = (−1)p f (u, v)U + u⊗

(
U
f
yv
)
. (15)

Theorem 16
3

4
. Let f : L × L → k and g : L × L → k be two bilinear

forms. If w ∈ L and U ∈ ⊗L, then

U
f
yw + U

g
yw = U

f+g
y w.

These Theorems 11-16 are simply the results of reading Theorems 5-10 from right to
left, so if we have proofs of Theorems 5-10, we automatically obtain proofs of Theorems
11-16. However, there is also an alternative way to prove Theorems 11-16 - namely, by

explicitly relating the right interior product
f
y to the left one:

Definition 8. Let t : ⊗L → ⊗L be the k-module endomorphism of ⊗L
defined by(

t (u1 ⊗ u2 ⊗ ...⊗ up) = up ⊗ up−1 ⊗ ...⊗ u1

for any p ∈ N and any vectors u1, u2, ..., up in L

)
.

(This is obviously well-defined.)
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Clearly, t2 = id. Hence, t : ⊗L→ ⊗L is bijective. Besides,

t (U ⊗ V ) = t (V )⊗ t (U) for every U ∈ ⊗L and V ∈ ⊗L.

Also, obviously, t (u) = u for every u ∈ L.

Our use for the map t is now to reduce the right interior product
f
y to the left

interior product
f
x. For this we need yet another definition:

Definition 9. Let f : L × L → k be a bilinear form. Then, we define a
new bilinear form f t : L× L→ k by(

f t (u, v) = f (v, u) for every u ∈ L and v ∈ L
)
.

This bilinear form f t is called the transpose of the bilinear form f .

It is clear that (f t)
t

= f for any bilinear form f , and that a bilinear form f is
symmetric if and only if f = f t.

Now, here is a way to write
f
y in terms of

f t

x :

Theorem 17. Let v ∈ L and U ∈ ⊗L. Then,

t
(
U
f
yv
)

= v
f t

xt (U)

and

t

(
v
f t

xU

)
= t (U)

f
yv.

4. The two operations commute

Now that we know quite a lot about each of the operations
f
x and

f
y, let us show a

relation between them:

Theorem 18. Let v ∈ L, w ∈ L and U ∈ ⊗L. Then

v
f
x
(
U
f
yw
)

=
(
v
f
xU
)
f
yw. (16)

More generally, if f : L×L→ k and g : L×L→ k are two bilinear forms,
then

v
f
x
(
U
g
yw
)

=
(
v
f
xU
)
g
yw. (17)

The proof is, just as all proofs above, induction over the rank of the tensor U (after
U has been assumed homogeneous).

5. The endomorphism αf

We are now going to define an endomorphism αf : ⊗L → ⊗L which depends on
the bilinear form f :

8



Definition 10. Let f : L×L→ k be a bilinear form. For every p ∈ N, we
define a k-linear map αfp : L⊗p → ⊗L by induction over p:

Induction base: For p = 0, we define the map αfp : L⊗0 → ⊗L to be the
canonical inclusion of L⊗0 into the tensor algebra⊗L = L⊗0⊕L⊗1⊕L⊗2⊕....
(In other words, we define the map αf0 : k → ⊗L by αfp (λ) = λ for every
λ ∈ k = L⊗0.)

Induction step: For each p ∈ N+, we define a k-linear map αfp : L⊗p → ⊗L
by(
αfp (u⊗ U) = u⊗ αfp−1 (U)− ufxαfp−1 (U) for every u ∈ L and U ∈ L⊗(p−1)

)
,

(18)
assuming that we have already defined a k-linear map αfp−1 : L⊗(p−1) → ⊗L.
(This definition is justified, because in order to define a k-linear map from
L⊗p to some other k-module, it is enough to define how it acts on tensors
of the form u ⊗ U for every u ∈ L and U ∈ L⊗(p−1), as long as this action
is bilinear with respect to u and U . This is because L⊗p = L⊗ L⊗(p−1).)

This way we have defined a k-linear map αfp : L⊗p → ⊗L for every p ∈ N.

We can combine these maps αf0 , αf1 , αf2 , ... into one k-linear map αf : ⊗L→
⊗L (since ⊗L = L⊗0 ⊕ L⊗1 ⊕ L⊗2 ⊕ ...), and the formula (18) rewrites as(
αf (u⊗ U) = u⊗ αf (U)− ufxαf (U) for every u ∈ L and U ∈ L⊗(p−1)

)
.

(19)

We note that, in contrast to the map δfv (which maps every homogeneous tensor
from L⊗p to L⊗(p−1)), the map αf can map homogeneous tensors to inhomogeneous
tensors.

This endomorphism αf now turns out to have plenty of properties. But first let us
first see how it evaluates on pure tensors of low rank (0, 1, 2, 3, 4):

Action of αf on tensors of rank 0: For any λ ∈ k, we have αf (λ) = λ, where we
consider λ as an element of ⊗L through the canonical injection k = L⊗0 → ⊗L. (In
fact, λ ∈ k = L⊗0 yields αf (λ) = αf0 (λ) = λ by the definition of αf0).

Action of αf on tensors of rank 1: For any u ∈ L, we have

αf (u) = αf (u⊗ 1) = u⊗ αf (1)︸ ︷︷ ︸
=1 (since 1∈k)

− u
f
xαf (1)︸ ︷︷ ︸

=0 (by Theorem 5 (a),

since αf (1)=1∈k)

(by (19), applied to U = 1)

= u⊗ 1− 0 = u⊗ 1 = u. (20)

Action of αf on tensors of rank 2: For any u ∈ L and v ∈ L, we have

αf (u⊗ v) = u⊗ v − f (u, v) ,

as a simple computation shows.
Action of αf on tensors of rank 3: For any u ∈ L, v ∈ L and w ∈ L, we have

αf (u⊗ v ⊗ w) = u⊗ v ⊗ w − f (v, w)u+ f (u,w) v − f (u, v)w,

9



as a result of a computation.
Action of αf on tensors of rank 4: For any u ∈ L, v ∈ L, w ∈ L and x ∈ L, we

have

αf (u⊗ v ⊗ w ⊗ x)

= u⊗ v ⊗ w ⊗ x− f (w, x)u⊗ v + f (v, x)u⊗ w − f (v, w)u⊗ x
− f (u, v)w ⊗ x+ f (u,w) v ⊗ x− f (u, x) v ⊗ w
+ f (w, x) f (u, v)− f (v, x) f (u,w) + f (v, w) f (u, x)

as the result of a rather lengthy computation.
These formulas can be generalized to αf (u1 ⊗ u2 ⊗ ...⊗ up) for general p ∈ N. As

a result, we obtain

αf (u1 ⊗ u2 ⊗ ...⊗ up)

=
∑

(−1)(number of all bad pairs) f (ui1 , uj1) f (ui2 , uj2) ...f (uik , ujk)ur1 ⊗ ur2 ⊗ ...⊗ urp−2k

for any p vectors u1, u2, ..., up in L, where the sum is over all partitions of the
set {1, 2, ..., p} into three subsets {i1, i2, ..., ik}, {j1, j2, ..., jk} and {r1, r2, ..., rp−2k} (for
various k) which satisfy i1 < i2 < ... < ik, j1 < j2 < ... < jk, r1 < r2 < ... <
rp−2k and (i` < j` for every ` ∈ {1, 2, ..., k}). Here, a ”bad pair” means a pair (`, `′) ∈
{1, 2, ..., k}2 satisfying ` ≥ `′ and i` < j`′ (so, in particular, for every ` ∈ {1, 2, ..., k},
the pair (`, `) is bad, since i` < j`).

15 Thus we have an explicit formula for
αf (u1 ⊗ u2 ⊗ ...⊗ up), but it is extremely hard to deal with; this is the reason why I
defined αf by induction rather than by a direct formula.

We remark that the formula (19) can be slightly generalized, in the sense that U
doesn’t have to be a homogeneous tensor:

Theorem 19. Let u ∈ L and U ∈ ⊗L. Then,

αf (u⊗ U) = u⊗ αf (U)− ufxαf (U) . (21)

Again, this is simply a consequence of (19) because every tensor U ∈ ⊗L is a linear
combination of homogeneous tensors.

Another fact is, while αf is not necessarily homogeneous, the degrees of all the
terms it spits out have the same parity as that of the original tensor:

Theorem 20. Let U ∈ L⊗p for some p ∈ N. Then,

αf (U) ∈
⊕
i∈N;

i≡pmod 2

L⊗i. (22)

Even a stronger assertion holds:

αf (U) ∈
⊕

i∈{0,1,...,p};
i≡pmod 2

L⊗i. (23)

15I hope I haven’t made a mistake in the formula.
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The proof of this fact is an induction over p; the ”trick” is that the terms u ⊗ V
and u

f
xV (for a homogeneous tensor V ) are homogeneous tensors whose degrees are

different but differ by 2 and thus have the same parity.
Now let us show some more interesting properties of αf . The proofs will be again

by induction akin to the proofs of Theorems 6-10 and 12-16.
First, we notice that the definition of αf had a bias towards left tensoring: we de-

fined the value of αfp on a tensor of rank p by writing this tensor as a linear combination

of tensors of the form u⊗U with u ∈ L and U ∈ L⊗(p−1), and then by setting the value
of αfp on each such u⊗ U tensor according (18). But what if we would try to define a
”right analogue” α̃f of αf , which would be (inductively) defined by(
α̃fp (U ⊗ u) = α̃fp−1 (U)⊗ u− αfp−1 (U)

f
yu for every u ∈ L and U ∈ L⊗(p−1)

)
instead of (18) ? It turns out that this wouldn’t give us anything new: This ”right
analogue” α̃f would be the same as αf . This is explained by the following theorem:

Theorem 21. Let u ∈ L and U ∈ ⊗L. Then,

αf (U ⊗ u) = αf (U)⊗ u− αf (U)
f
yu. (24)

Theorem 22. Let u ∈ L and U ∈ ⊗L. Let g : L × L → k be a bilinear
form. Then,

αf
(
U
g
yu
)

= αf (U)
g
yu. (25)

Theorem 23. Let u ∈ L and U ∈ ⊗L. Let g : L × L → k be a bilinear
form. Then,

αf
(
u
g
xU
)

= u
g
xαf (U) . (26)

Theorem 24. We have αf ◦ t = t ◦ αf t .

6. The endomorphism αg and the ideals I
(v)
f

In Definition 3, we have introduced the two-sided ideal If of the algebra ⊗L. It
was defined as

(⊗L) · 〈v ⊗ v − f (v, v) | v ∈ L〉 · (⊗L) .

We will now write this ideal If as a sum (not a direct sum, however) of certain smaller

k-modules, which we denote by I
(v)
f and I

(v;p;q)
f (the I

(v;p;q)
f are an even finer subdivision

of the I
(v)
f ). These ideals are not really necessary for our further goals, but they help

keeping our proof a bit more organized:

Definition 11. For any vector v ∈ L, let I
(v)
f be the k-submodule

(⊗L) · (v ⊗ v − f (v, v)) · (⊗L)

of the k-module ⊗L.

11



Note that the dot sign (the sign ·) in this definition stands for multiplication in the
algebra ⊗L; in other words, it is synonymous to the tensor product sign (the sign ⊗).

We then have If =
∑
v∈L

I
(v)
f (where the

∑
sign means a sum of k-modules).

Our main goal in this section is to prove the following result:

Theorem 25. Let f : L×L→ k and g : L×L→ k be two bilinear forms.
Then, αg (If ) ⊆ If+g.

In order to prove this theorem, we first start with an easy fact (easily following
from our above formulae):

Lemma 26. If w ∈ L, U ∈ ⊗L, and v ∈ L, then

w
g
x (v ⊗ v ⊗ U) = v ⊗ v ⊗

(
w
g
xU
)
,

and
αg (v ⊗ v ⊗ U) = (v ⊗ v − g (v, v))⊗ αg (U) .

As a consequence,

w
g
x ((v ⊗ v − f (v, v))⊗ U) = (v ⊗ v − f (v, v))⊗

(
w
g
xU
)

(27)

and

αg ((v ⊗ v − f (v, v))⊗ U) = (v ⊗ v − (f + g) (v, v))⊗ αg (U) . (28)

Now we are going to prove that the ideal If is stable under the map w
g
x for any two

bilinear forms f and g and any vector w:

Theorem 27. Let w ∈ L. Let f : L × L → k and g : L × L → k be two
bilinear forms. Then, w

g
xIf ⊆ If . (Here, whenever P is a k-submodule of

⊗L, we denote by w
g
xP the k-submodule

{
w
g
xp | p ∈ P

}
of ⊗L. This is

indeed a k-submodule, as follows from the bilinearity of
g
x.)

Proof of Theorem 27. We are going to show something stronger: We will show that
w
g
xI(v)

f ⊆ I
(v)
f for every v ∈ L.

In fact, in order to show this, we must prove that w
g
xT ∈ I

(v)
f for every T ∈

I
(v)
f . Notice that T ∈ I

(v)
f yields that T is a linear combination of tensors of the

form V ⊗ (v ⊗ v − f (v, v)) ⊗ U for some V ∈ ⊗L and U ∈ ⊗L (by the defini-

tion of I
(v)
f ). Hence, in order to prove that w

g
xT ∈ I

(v)
f , it is enough to prove that

w
g
x (V ⊗ (v ⊗ v − f (v, v))⊗ U) ∈ I(v)

f for every V ∈ ⊗L and U ∈ ⊗L. So let us prove
this now.

We can WLOG assume that the tensors V and U are homogeneous (because every-
thing is linear), and we denote by |V | the degree of V . Now, Theorem 10 (applied to

12



g, w, V and (v ⊗ v − f (v, v))⊗ U instead of f , v, U and W ) yields

w
g
x (V ⊗ (v ⊗ v − f (v, v))⊗ U)

= (−1)|V | V ⊗

w
g
x ((v ⊗ v − f (v, v))⊗ U)︸ ︷︷ ︸

=(v⊗v−f(v,v))⊗
(
w

g
xU
)

(by (27))

+
(
w
g
xV
)
⊗ ((v ⊗ v − f (v, v))⊗ U)

= (−1)|V | V ⊗ (v ⊗ v − f (v, v))⊗
(
w
g
xU
)

︸ ︷︷ ︸
∈I(v)f

+
(
w
g
xV
)
⊗ ((v ⊗ v − f (v, v))⊗ U)︸ ︷︷ ︸

∈I(v)f

∈ I(v)
f .

As we know, this yields w
g
xT ∈ I(v)

f . Thus, Theorem 27 is proven.
As an analogue of Theorem 27, we can show:

Theorem 28. Let w ∈ L. Let f : L × L → k and g : L × L → k be two
bilinear forms. Then, If

g
yw ⊆ If . (Here, whenever P is a k-submodule of

⊗L, we denote by P
g
yw the k-submodule

{
p
g
yw | p ∈ P

}
of ⊗L. This is

indeed a k-submodule, as follows from the bilinearity of
g
y.)

We can either prove this in complete analogy to Theorem 27, or use Theorem 27
and the following triviality:

Theorem 29. We have t (If ) = If .

Now, something more interesting: The map αg doesn’t (in general) leave If stable,
but instead maps it to If+g:

Theorem 30. Let w ∈ L. Let f : L × L → k and g : L × L → k be two
bilinear forms. Then, αg (If ) ⊆ If+g.

Proof of Theorem 30. Again, we can do better: We can show that αg
(
I

(v)
f

)
⊆ I

(v)
f+g

for every v ∈ L.
In order to show this, it is enough to prove that αg (V ⊗ (v ⊗ v − f (v, v))⊗ U) ∈

I
(v)
f for every V ∈ ⊗L and U ∈ ⊗L (for the same reasons as in the proof of Theorem 27).

So let us prove this. We can WLOG assume that the tensors V and U are homogeneous
tensors, and denote by |V | the degree of V . If |V | = 0, then we are easily done using
(28). So let us assume that |V | > 0. We can WLOG assume that V = v ⊗ S for some
v ∈ L and S ∈ L⊗(|V |−1) (because V ∈ L⊗|V |, and the k-module L⊗|V | = L ⊗ L⊗(|V |−1)

is spanned by elements of the form v ⊗ S for some v ∈ L and S ∈ L⊗(|V |−1)). Then,

αg

(
V︸︷︷︸

=v⊗S

⊗ (v ⊗ v − f (v, v))⊗ U

)
= αg (v ⊗ S ⊗ (v ⊗ v − f (v, v))⊗ U)

= v ⊗ αg (S ⊗ (v ⊗ v − f (v, v))⊗ U)− v gxαg (S ⊗ (v ⊗ v − f (v, v))⊗ U)

13



(by (21), applied to g, v and S⊗(v ⊗ v − f (v, v))⊗U instead of f , u and U). Therefore,

if we know that αg (S ⊗ (v ⊗ v − f (v, v))⊗ U) ∈ I(v)
f , then we can conclude that

αg (V ⊗ (v ⊗ v − f (v, v))⊗ U)

= v ⊗ αg (S ⊗ (v ⊗ v − f (v, v))⊗ U)︸ ︷︷ ︸
∈I(v)f

−v gxαg (S ⊗ (v ⊗ v − f (v, v))⊗ U)︸ ︷︷ ︸
∈I(v)f

∈ v ⊗ I(v)
f︸ ︷︷ ︸

⊆I(v)f

− v
g
xI(v)

f︸ ︷︷ ︸
⊆I(v)f (this was shown

in the proof of Theorem 27)

⊆ I
(v)
f − I

(v)
f = I

(v)
f .

So, if we know that αg (S ⊗ (v ⊗ v − f (v, v))⊗ U) ∈ I(v)
f , we can conclude that

αg (V ⊗ (v ⊗ v − f (v, v))⊗ U) ∈ I(v)
f . Since the tensor S has a smaller degree than the

tensor V , this allows us to prove αg (V ⊗ (v ⊗ v − f (v, v))⊗ U) ∈ I
(v)
f by induction

over |V |. The details are left to the reader (who can find them in [0] anyway).
The next section will show that Theorem 30 can be strengthened:

Theorem 31. Let w ∈ L. Let f : L × L → k and g : L × L → k be two
bilinear forms. Then, αg (If ) = If+g.

7. αf ◦ αg = αf+g

Until now, each of our results involved αf only for one bilinear form f . Though we
sometimes called it g instead of f , never did we consider the maps αf for two different
forms f together in one and the same theorem. Let us change this now:

Theorem 32. (a) Let f : L × L → k and g : L × L → k be two bilinear
forms. Then, αf ◦ αg = αf+g.

(b) The bilinear form 0 : L×L→ k defined by (0 (x, y) = 0 for every x ∈ L and y ∈ L)
satisfies α0 = id.

(c) Let f : L× L→ k be a bilinear form. Then, the map αf is invertible,
and its inverse is α−f .

Proof of Theorem 32. (a) It is clearly enough to show that for every p ∈ N, we
have

αf (αg (U)) = αf+g (U) (29)

for every U ∈ L⊗p (because every U ∈ ⊗L is a k-linear combination of elements of L⊗p

for various p ∈ N, and since the equation (29) is k-linear).
In order to prove (29), we can proceed by induction over p. The base case p = 0 is

trivial, and in the induction step, we can WLOG assume that the tensor U is of the
form U = u ⊗ Ü for some u ∈ L and Ü ∈ L⊗(p−1) (because every tensor in L⊗p is a
linear combination of such tensors, and the equation (29) is k-linear), and then prove

that αf
(
αg
(
u⊗ Ü

))
= αf+g

(
u⊗ Ü

)
using the induction assumption (along with

(21) and (26)). The details are explained in [0]. So much for (a).
(b) is trivial, and (c) follows from (a) and (b).
Theorem 31 readily follows from Theorems 30 and 32.
Now we are able to give a proof of Theorem 1. First a definition:
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Definition 12. Let f : L × L → k and g : L × L → k be two bilinear
forms. Theorem 25 yields αg (If ) ⊆ If+g. Therefore, the k-module homo-
morphism αg : ⊗L→ ⊗L induces a k-module homomorphism (⊗L)�If →
(⊗L)�If+g. We denote this homomorphism by αgf . Since (⊗L)�If =
Cl (L, f) and (⊗L)�If+g = Cl (L, f + g), this homomorphism αgf is a ho-
momorphism αgf : Cl (L, f)→ Cl (L, f + g).

Now consider two bilinear forms f and g. According to Theorem 32 (c) (applied to
g instead of f), the map αg is invertible, and its inverse is α−g. Thus, αg ◦α−g = id and
α−g ◦αg = id. Now, the homomorphism α−gf+g is a homomorphism from Cl (L, f + g) to

Cl

L, (f + g) + (−g)︸ ︷︷ ︸
=f

 = Cl (L, f), while the homomorphism αgf is a homomorphism

from Cl (L, f) to Cl (L, f + g). Therefore, αg ◦ α−g = id becomes αgf ◦ α
−g
f+g = id, and

for the same reason α−g ◦ αg = id becomes α−gf+g ◦ α
g
f = id. Thus, the homomorphism

αgf has an inverse - namely, the homomorphism α−gf+g. Therefore, αgf and α−gf+g are
isomorphisms. We have thus proven the following fact:

Theorem 33. Let f : L×L→ k and g : L×L→ k be two bilinear forms.
Then, the k-modules Cl (L, f) and Cl (L, f + g) are isomorphic, and the
maps αgf : Cl (L, f) → Cl (L, f + g) and α−gf+g : Cl (L, f + g) → Cl (L, f)
are two mutually inverse isomorphisms between them.

In particular, this (when applied to g = −f) yields the following fact:

Theorem 34. Let f : L×L→ k be a bilinear form. Then, the k-modules
Cl (L, f) and ∧L are isomorphic, and the maps α−ff : Cl (L, f) → ∧L and

αf0 : ∧L→ Cl (L, f) are two mutually inverse isomorphisms between them.

Clearly, Theorem 34 immediately yields Theorem 1. Theorem 3 is a simple conse-
quence, as well:

Proof of Theorem 3. Let projf : ⊗L → Cl (L, f) denote the canonical projection
of the k-algebra ⊗L onto its factor algebra (⊗L)�If = Cl (L, f), and let proj0 :
⊗L→ ∧L denote the canonical projection of the k-algebra ⊗L onto its factor algebra
(⊗L)�I0 = ∧L. The isomorphism αf0 is the map from ∧L to Cl (L, f) induced by the
homomorphism αf : ⊗L→ ⊗L; in other words, αf0 ◦ proj0 = projf ◦αf .

We identify any vector v ∈ L with the 1-tensor inj (v) in the tensor algebra ⊗L. In
other words, we write inj (v) = v for every vector v ∈ L. This makes L a subspace of
⊗L. It is known that the map proj0 |L: L→ ∧L (this is the canonical map from the k-
module L to the exterior algebra of L) is injective. Also, the map αf0 : ∧L→ Cl (L, f) is
injective (since it is an isomorphism, according to Theorem 34). Thus, the composition
αf0 ◦ (proj0 |L) is also an injective map (because the two maps proj0 |L and αf0 are
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injective). But every v ∈ L satisfies

(
αf0 ◦ (proj0 |L)

)
(v) = αf0

proj0 |L (v)︸ ︷︷ ︸
=proj0(v)

 = αf0 (proj0 (v)) =
(
αf0 ◦ proj0

)
︸ ︷︷ ︸

=projf ◦αf

(v)

=
(
projf ◦αf

)
(v) = projf

 αf (v)︸ ︷︷ ︸
=v (by (20))

 = projf (v) = ϕf (v)

(since we identify any vector v ∈ L with its image inj (v) in the tensor algebra ⊗L,
and thus projf (v) = projf (inj (v)) =

(
projf ◦ inj

)︸ ︷︷ ︸
=ϕf

(v) = ϕf (v)). In other words,

αf0 ◦ (proj0 |L) = ϕf . Since the map αf0 ◦ (proj0 |L) is injective, this yields that the map
ϕf is injective, and Theorem 3 is proven.

8. A simple formula for αf on special pure tensors

We record the following simple formula to compute αf of certain kinds of pure
tensors. It doesn’t help us to compute αf generally, but can be used to compute αf0
and α−ff .

Theorem 35. Let p ∈ N. Let u1, u2, ..., up be p elements of L such that

(f (ui, uj) = 0 for every i ∈ {1, 2, ..., p} and j ∈ {1, 2, ..., p} satisfying i < j) .
(30)

Then,
αf (u1 ⊗ u2 ⊗ ...⊗ up) = u1 ⊗ u2 ⊗ ...⊗ up.

Before we prove this, a lemma about the right interior product:

Theorem 36. Let p ∈ N. Let u1, u2, ..., up be p elements of L, and let v
be another element of L such that

(f (ui, v) = 0 for every i ∈ {1, 2, ..., p}) . (31)

Then,

(u1 ⊗ u2 ⊗ ...⊗ up)
f
yv = 0.

As usual, detailed proofs of these results can be found in [0]. But the reader
should have no trouble deriving Theorem 36 from the definitions and Theorem 35 from
Theorem 36 by induction.

9. The Clifford basis theorem

We now come closer to proving Theorem 2 - the Clifford basis theorem. First let
us make Theorem 20 a bit more precise:
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Theorem 37. Let U ∈ L⊗p for some p ∈ N. Then,

αf (U)− U ∈
⊕

i∈{0,1,...,p−2};
i≡pmod 2

L⊗i. (32)

The proof of this is just an obvious refinement of the proof of Theorem 20 (look at
the highest-degree terms).

Before we can finally prove Theorem 2, some preliminary work is needed. First, we
define some notations:

In Definition 4, we defined the ascending product
−→∏
i∈I
ai of a finite family (ai)i∈I of

elements of a ring A. However, this notation can turn out to be ambiguous if ai are
elements of two different rings with different multiplications. For instance, we consider
every vector in L both as an element of the tensor algebra ⊗L and as an element of
the exterior algebra ∧L. So, if ai is a vector in L for each i ∈ I, then what exactly

does the product
−→∏
i∈I
ai mean: does it mean the ascending product of the vectors ai

seen as elements of ⊗L, or does it mean the ascending product of the vectors ai seen
as elements of ∧L ? In order to avoid this ambiguity, we shall rename the ascending

product
−→∏
i∈I
ai in the algebra ⊗L as

−→⊗
i∈I
ai, and we shall rename the ascending product

−→∏
i∈I
ai in the algebra ∧L as

−→∧
i∈I
ai. In other words, we declare the following notation:

Definition 13. (a) Let I be a finite subset of Z. Let ai be an element of

⊗L for each i ∈ I. Then, we will denote by
−→⊗
i∈I
ai the ascending product of

the elements ai of ⊗L (this product is built using the multiplication in the
ring ⊗L, i. e., using the tensor product multiplication).

(b) Let I be a finite subset of Z. Let ai be an element of ∧L for each

i ∈ I. Then, we will denote by
−→∧
i∈I
ai the ascending product of the elements

ai of ∧L (this product is built using the multiplication in the ring ∧L, i.
e., using the exterior product multiplication).

One more definition:

Definition 14. If N is a set, and ` ∈ N, then we denote by P` (N) the set
of all `-element subsets of the set N .

It is known that if (e1, e2, ..., en) is a basis of the k-module L, then(−→∧
i∈I

ei

)
I∈P`({1,2,...,n})

is a basis of the k-module ∧` L. (33)

Proof of Theorem 2. We want to prove that the family

(−→∏
i∈I
ϕf (ei)

)
I∈P({1,2,...,n})

is

a basis of the k-module Cl (L, f). In order to prove this, we must show that this family
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is linearly independent, and that it generates the k-module Cl (L, f). Let us first prove
that it is linearly independent:

Proof of the linear independence of the family

(−→∏
i∈I
ϕf (ei)

)
I∈P({1,2,...,n})

:

Let (λI)I∈P({1,2,...,n}) be a family of elements of k such that∑
I∈P({1,2,...,n})

λI ·
−→∏
i∈I

ϕf (ei) = 0. (34)

Our goal is to prove that this family (λI)I∈P({1,2,...,n}) satisfies λI = 0 for all I ∈
P ({1, 2, ..., n}). In order to do this, we assume the contrary. This means that we
assume λI 6= 0 for some I ∈ P ({1, 2, ..., n}). Let i ∈ {0, 1, ..., n} be the greatest
element j of {0, 1, ..., n} such that there is some j-element subset I of {1, 2, ..., n}
satisfying λI 6= 0. This means that (34) can be rewritten as∑

I∈P({1,2,...,n});
|I|≤i

λI ·
−→∏
i∈I

ϕf (ei) = 0 (35)

(because all addends with |I| > i are zero), but on the other hand there exists some
i-element subset I1 of {1, 2, ..., n} satisfying λI1 6= 0.

Let us now denote by ∧<iL the sub-k-module
i−1∑̀
=0

∧`L of ∧L. Clearly,
(
∧<iL

)
∩∧iL =

0. We are now going to show that∑
I∈P({1,2,...,n});

|I|=i

λI ·
−→∧
i∈I

ei ∈ ∧<iL. (36)

Once this is proven, we will be able to conclude that the element
∑

I∈P({1,2,...,n});
|I|=i

λI ·
−→∧
i∈I
ei

of ∧L is zero (since it lies in ∧<iL and in ∧iL at the same time, but
(
∧<iL

)
∩∧iL = 0),

which will yield that λI = 0 for every I ∈ P ({1, 2, ..., n}) satisfying |I| = i (because(−→∧
i∈I
ei

)
I∈P({1,2,...,n})

is a basis of ∧L and therefore linearly independent), contradicting

the assumption that there exists some i-element subset I1 of {1, 2, ..., n} satisfying
λI1 6= 0. This contradiction will then complete the proof of the linear independence of

the family

(−→∏
i∈I
ϕf (ei)

)
I∈P({1,2,...,n})

.

It is thus enough to prove (36).
For this, consider the map α−ff : Cl (L, f)→ ∧L. We have defined this map α−ff as

the map from (⊗L)�If = Cl (L, f) to (⊗L)�I0 = Cl (L, 0) = ∧L canonically induced
by the map α−f : ⊗L→ ⊗L. In other words, if we denote by projf : ⊗L→ Cl (L, f) the
canonical projection of the k-algebra ⊗L onto its factor algebra (⊗L)�If = Cl (L, f),
and if we denote by proj0 : ⊗L → ∧L the canonical projection of the k-algebra ⊗L
onto its factor algebra (⊗L)�I0 = ∧L, then we have α−ff ◦ projf = proj0 ◦α−f . Note
that

∧` L = proj0
(
L⊗`
)

for every ` ∈ N. (37)
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Also, just as we denoted by ∧<iL the submodule
i−1∑̀
=0

∧`L of ∧L, let us denote by L⊗<i

the submodule
i−1∑̀
=0

L⊗` of ⊗L. Then, of course, (37) yields ∧<iL = proj0
(
L⊗<i

)
.

Clearly, for every subset I of {1, 2, ..., n}, we have

−→∏
i∈I

ϕf (ei)︸ ︷︷ ︸
=projf (ei)

=
−→∏
i∈I

projf (ei) = projf

(−→⊗
i∈I

ei

)

(because
−→∏
i∈I

denotes an ascending product in the algebra Cl (L, f), whereas
−→⊗
i∈I

denotes

an ascending product in the algebra ⊗L, and because taking products commutes with
projf since projf is a k-algebra homomorphism). Therefore,

α−ff

(−→∏
i∈I

ϕf (ei)

)
= α−ff

(
projf

(−→⊗
i∈I

ei

))
=
(
α−ff ◦ projf

)
︸ ︷︷ ︸

=proj0 ◦α−f

(−→⊗
i∈I

ei

)

=
(
proj0 ◦α−f

)(−→⊗
i∈I

ei

)

= proj0

(
α−f

(−→⊗
i∈I

ei

))
. (38)

But (34) yields

α−ff

 ∑
I∈P({1,2,...,n})

λI ·
−→∏
i∈I

ϕf (ei)

 = α−ff (0) = 0.

This, in view of

α−ff

 ∑
I∈P({1,2,...,n});

|I|≤i

λI ·
−→∏
i∈I

ϕf (ei)


=

∑
I∈P({1,2,...,n});

|I|≤i

λI · α−ff

(−→∏
i∈I

ϕf (ei)

) (
since α−ff is k-linear

)

=
∑

I∈P({1,2,...,n});
|I|≤i

λI · proj0

(
α−f

(−→⊗
i∈I

ei

))
(by (38)) ,

becomes ∑
I∈P({1,2,...,n});

|I|≤i

λI · proj0

(
α−f

(−→⊗
i∈I

ei

))
= 0. (39)
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Now, every I ∈ P ({1, 2, ..., n}) satisfying |I| ≤ i satisfies
−→⊗
i∈I
ei ∈ L⊗|I| and thus

α−f

(−→⊗
i∈I

ei

)
−
−→⊗
i∈I

ei

∈
⊕

i∈{0,1,...,|I|−2};
i≡|I|mod 2

L⊗i

(
due to Theorem 37, applied to

−→⊗
i∈I

ei, |I| and − f instead of U , p and f

)
⊆ L⊗<i (since |I| ≤ i)

and therefore

proj0

(
α−f

(−→⊗
i∈I

ei

))
− proj0

(−→⊗
i∈I

ei

)
= proj0

α−f
(−→⊗

i∈I

ei

)
−
−→⊗
i∈I

ei︸ ︷︷ ︸
∈L⊗<i


∈ proj0

(
L⊗<i

)
= ∧<iL.

In other words,

proj0

(
α−f

(−→⊗
i∈I

ei

))

≡ proj0

(−→⊗
i∈I

ei

)
=
−→∧
i∈I

proj0 (ei)
since

−→⊗
i∈I

denotes the ascending product in the algebra ⊗ L, while
−→∧
i∈I

denotes the ascending product in the algebra ∧ L, and since the map
proj0 commutes with taking products (because proj0 is a k-algebra

homomorphism)


=
−→∧
i∈I

ei mod∧<iL

(
since proj0 (ei) = ei, because we identify any

vector v ∈ L with its images in ⊗ L and in ∧ L

)
.

Therefore, (39) yields

0 =
∑

I∈P({1,2,...,n});
|I|≤i

λI · proj0

(
α−f

(−→⊗
i∈I

ei

))
︸ ︷︷ ︸

≡
−→∧
i∈I

ei mod∧<iL

≡
∑

I∈P({1,2,...,n});
|I|≤i

λI ·
−→∧
i∈I

ei

≡
∑

I∈P({1,2,...,n});
|I|=i

λI ·
−→∧
i∈I

ei mod∧<iL
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(where, in the last step, we stripped the sum of all addends with |I| < i, since these
addends all lie in ∧<iL). In other words, we have proven (36). As we know, this

completes the proof that the family

(−→∏
i∈I
ϕf (ei)

)
I∈P({1,2,...,n})

is linearly independent.

Proof that the family

(−→∏
i∈I
ϕf (ei)

)
I∈P({1,2,...,n})

generates the whole k-module Cl (L, f):

Next we must prove that the family

(−→∏
i∈I
ϕf (ei)

)
I∈P({1,2,...,n})

generates the k-module

Cl (L, f). We are not going to do this here, but instead refer the reader to [0] (the proof
uses roughly the same ideas as the proof of linear independency, but is actually easier).

Altogether, everything necessary for the proof of Theorem 2 is done.

10. The antisymmetrizer formula

We have constructed the Chevalley map αf0 : ∧L → Cl (L, f) through a canonical,
inductively defined map αf : ⊗L → ⊗L. This, however, is not the most common
definition of the Chevalley map. The purpose of this section is to prove a different
formula for αf0 (although the word ”formula” is not to be taken too seriously here,
since it gives a unique value for αf0 only if k is a Q-algebra), at least in the case when
the form f is symmetric:

Theorem 38. Let f : L×L→ k be a symmetric bilinear form. Let p ∈ N,
and let u1, u2, ..., up be p vectors in L. Then,

p! · αf0 (u1 ∧ u2 ∧ ... ∧ up) =
∑
σ∈Sp

(−1)σ ϕf
(
uσ(1)

)
ϕf
(
uσ(2)

)
...ϕf

(
uσ(p)

)
.

Here and in the following, we denote by Sp the group of all permutations of the set
{1, 2, ..., p}, and we denote by (−1)σ the sign of the permutation σ for every σ ∈ Sp.

Theorem 38 is often used as a definition of the map αf0 in the case when k is a Q-
algebra (because in this case, we can divide by p!). However, it does not yield a unique
value of αf0 (u1 ∧ u2 ∧ ... ∧ up) if the characteristic of k is too small, and therefore I

believe my definition of αf0 (through the map αf introduced in Definition 10 above) to
be a better one.

Theorem 38 is an equality in the Clifford algebra Cl (L, f). However, it can be
”lifted” into ⊗L:

Theorem 39. Let f : L×L→ k be a symmetric bilinear form. Let p ∈ N,
and let u1, u2, ..., up be p vectors in L. Then,

αf

∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)

 =
∑
σ∈Sp

(−1)σ uσ(1)⊗uσ(2)⊗...⊗uσ(p).

We will prove this... you guessed right, by induction. In the induction step we will
use a lemma which is interesting for its own merit:
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Theorem 40. Let f : L×L→ k be a symmetric bilinear form. Let p ∈ N,
and let u1, u2, ..., up be p vectors in L. Then,

αf

∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p)


=
∑
σ∈Sp

(−1)σ αf
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p−1)

)
⊗ uσ(p).

This, in turn, will be concluded from the following result:

Theorem 41. Let f : L×L→ k be a symmetric bilinear form. Let p ∈ N,
and let u1, u2, ..., up be p vectors in L. Then,∑

σ∈Sp

(−1)σ
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p−1)

) f
yuσ(p) = 0.

The proof of Theorem 41 (which, again, can be found in [0] in full detail) proceeds

by expanding
(
uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p−1)

) f
yuσ(p) using (9), and noticing that for every

i ∈ {1, 2, ..., p− 1}, the sum∑
σ∈Sp

(−1)σ f
(
uσ(i), uσ(p)

)
· uσ(1) ⊗ uσ(2) ⊗ ...⊗ ûσ(i) ⊗ ...⊗ uσ(p−1)

is zero (because it breaks up into two sums consisting of exactly the same addends
with opposite signs).

Theorem 41 has a ”left” analogue:

Theorem 42. Let f : L×L→ k be a symmetric bilinear form. Let p ∈ N,
and let u1, u2, ..., up be p vectors in L. Then,∑

σ∈Sp

(−1)σ uσ(1)
f
x
(
uσ(2) ⊗ uσ(3) ⊗ ...⊗ uσ(p)

)
= 0.

Theorem 40 easily follows from either Theorem 41 or Theorem 42. Now Theorem 39
follows from Theorem 40 by induction (details in [0]), and Theorem 38 from Theorem
39 by direct inspection.

11. Some more identities

Let us prove some more curious properties of
f
x,

f
y and αf for a symmetric bilinear

form f . The following theorems 43-45 bear a certain similarity to theorems 40-42 (and
can actually be used to give an alternative proof of Theorem 39, although we are not
going to elaborate on this proof).
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Theorem 43. Let f : L×L→ k be a symmetric bilinear form. Let p ∈ N,
and let u1, u2, ..., up be p vectors in L. Then,

p∑
i=1

(−1)i−1 αf ((u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up)⊗ ui)

=

p∑
i=1

(−1)i−1 αf (u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up)⊗ ui.

Here, the hat over the vector ui means that the vector ui is being omitted
from the tensor product; in other words, u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up is just
another way to write u1 ⊗ u2 ⊗ ...⊗ ui−1︸ ︷︷ ︸

tensor product of the
first i−1 vectors u`

⊗ui+1 ⊗ ui+2 ⊗ ...⊗ up︸ ︷︷ ︸
tensor product of the
last p−i vectors u`

.

This, in turn, will be concluded from the following result:

Theorem 44. Let f : L×L→ k be a symmetric bilinear form. Let p ∈ N,
and let u1, u2, ..., up be p vectors in L. Then,

p∑
i=1

(−1)i−1 (u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up)
f
yui = 0.

(For the meaning of the term u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up, see Theorem 43.)

Theorem 44 is trivial from the definitions, and it yields Theorem 43 almost imme-
diately. Theorem 44 has a ”left” analogue:

Theorem 45. Let f : L×L→ k be a symmetric bilinear form. Let p ∈ N,
and let u1, u2, ..., up be p vectors in L. Then,

p∑
i=1

(−1)i−1 ui
f
x (u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up) = 0.

(For the meaning of the term u1 ⊗ u2 ⊗ ...⊗ ûi ⊗ ...⊗ up, see Theorem 43.)

12. The invariant module of the αf maps for all symmetric bilinear f

Let us consider a fixed commutative ring k, and a fixed k-module L. However,
in this section, we are not going to fix a bilinear form f on L, but we will consider
all bilinear forms f at once. Each bilinear form f gives rise to an endomorphism
αf : ⊗L → ⊗L, and we are going to study the module Fixαsymm of all tensors in ⊗L
that are fixed under αf for all symmetric bilinear forms f . 16

16As for the space Fixα of all tensors in ⊗L that are fixed under αf for all (not only symmetric)
bilinear forms f , we are planning to study this space later.
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Definition 15. Let k be a commutative ring, and L be a k-module. We
denote by Fixαsymm the subset{
U ∈ ⊗L | every symmetric bilinear form f : L× L→ k satisfies αf (U) = U

}
=

⋂
f :L×L→k is a

symmetric bilinear form

Ker
(
αf − id

)

of ⊗L. Clearly, this subset Fixαsymm is a sub-k-module of ⊗L.

It seems to be a nontrivial question to further characterize Fixαsymm. First we note
that antisymmetrizers always lie in Fixαsymm:

Corollary 46. Let p ∈ N, and let u1, u2, ..., up be p vectors in L. Then,∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ...⊗ uσ(p) ∈ Fixαsymm.

This follows directly from Theorem 39.
However, elements of the form

∑
σ∈Sp

(−1)σ uσ(1) ⊗ uσ(2) ⊗ ... ⊗ uσ(p) as in Corollary

46 are not the only inhabitants of Fixαsymm. There are more. I do not claim that I
know all of them, but here is a result that construct at least a part:

Theorem 47. Let k be a commutative ring. Let L be a k-module.

(a) We have k ⊆ Fixαsymm (where k is regarded as a sub-k-module of ⊗L
because k = L⊗0 ⊆ L⊗0⊕L⊗1⊕L⊗2⊕ ... = ⊗L) and L ⊆ Fixαsymm (where
L is regarded as a sub-k-module of ⊗L because L = L⊗1 ⊆ L⊗0 ⊕ L⊗1 ⊕
L⊗2 ⊕ ... = ⊗L).

(b) Let m ∈ N. Any two elements u ∈ L and V ∈ L⊗m ∩ Fixαsymm satisfy
u⊗ V + (−1)m V ⊗ u ∈ Fixαsymm.

The proof of Theorem 47 relies on the following result:

Lemma 48. Let m ∈ N. Let k be a commutative ring. Let L be a k-
module. Let f : L × L → k be a symmetric bilinear form. Then, any
u ∈ L and U ∈ L⊗m satisfy αf (u⊗ U + (−1)m U ⊗ u) = u ⊗ αf (U) +
(−1)m αf (U) ⊗ u (where u is regarded as an element of ⊗L because u ∈
L = L⊗1 ⊆ L⊗0 ⊕ L⊗1 ⊕ L⊗2 ⊕ ... = ⊗L).

Lemma 49. Let m ∈ N. Let k be a commutative ring. Let L be a k-
module. Let f : L × L → k be a bilinear form. Then, any u ∈ L and

V ∈ L⊗m satisfy u
f
xV = (−1)m−1 V

f t

yu.

Lemma 50. Let m ∈ N. Let k be a commutative ring. Let L be a k-
module. Let f : L × L → k be a bilinear form. Then, any u ∈ L and

V ∈
⊕
i∈N;

i≡mmod 2

L⊗i satisfy u
f
xV = (−1)m−1 V

f t

yu.
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The proofs all are easy: First, show Lemma 49 directly. Then, conclude Lemma 50,
from which Lemma 48 easily follows (use Theorem 20). Then, Theorem 47 becomes
obvious.

Theorem 47 yields an inductive way to construct elements of Fixαsymm beginning
from elements of L. For example, for any two vectors u ∈ L and v ∈ L, Theorem 47
shows that u⊗ v − v ⊗ u ∈ Fixαsymm (not surprisingly). For any three vectors u ∈ L,
v ∈ L and w ∈ L, Theorem 47 shows that u⊗ (v ⊗ w − w ⊗ v)+(v ⊗ w − w ⊗ v)⊗u ∈
Fixαsymm. For any four vectors u ∈ L, v ∈ L, w ∈ L and x ∈ L, Theorem 47 shows
that

u⊗ (v ⊗ (w ⊗ x− x⊗ w) + (w ⊗ x− x⊗ w)⊗ v)

− (v ⊗ (w ⊗ x− x⊗ w) + (w ⊗ x− x⊗ w)⊗ v)⊗ u (40)

lies in Fixαsymm. And so on.
Do we get all elements of Fixαsymm this way? No. For example, for any four vectors

a ∈ L, b ∈ L, c ∈ L and d ∈ L, the tensor

a⊗ b⊗ (c⊗ d+ d⊗ c)− (c⊗ d+ d⊗ c)⊗ a⊗ b

lies in Fixαsymm (and is even fixed under αf for all (not only symmetric) bilinear forms
f). In general, this tensor cannot be written as a linear combination of elements of the
form (40) for u, v, w, x ∈ L, even if the underlying ring k is a field of characteristic 0.
(This was computed by Andrew Rupinski in [4].)

Another interesting question would be to generalize αf to super-vector spaces, thus
obtaining results about Weyl algebras rather than just Clifford algebras.

14. The αf morphisms and direct sums

In this section we are going to deal with the behaviour of αf morphisms when the
k-module L is a direct sum of two smaller k-modules.

First a relative triviality on submodules:

Lemma 60. Let k be a commutative ring. Let L be a k-module. Let
f : L× L→ k be a bilinear form. Let M be a k-submodule of L such that
f (L×M) = 0. Then:

(a) Every U ∈ ⊗L and every m ∈M satisfy U
f
ym = 0.

(b) Every U ∈ ⊗L and every m ∈M satisfy αf (U ⊗m) = αf (U)⊗m.

(c) We have αf ((⊗L) ·M) = (⊗L) ·M .

Lemma 60 (a) is proven in a straightforward way (either by induction or with the
help of Theorem 11), and the rest of Lemma 60 follows from that.

Now we can prove:

Theorem 61. Let k be a commutative ring. Let L be a k-module. Let
h : L×L→ k be a bilinear form. Let M and N be two k-submodules of L
such that h (M ×M) = 0 and L = M ⊕N . Then:
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(a) For every bilinear form g : L × L → k, there exists a k-module iso-
morphism Cl (L, g)→ Cl (L, h+ g) which sends the k-submodule Cl (L, g) ·
ϕg (M) of Cl (L, g) to the k-submodule Cl (L, h+ g)·ϕh+g (M) of Cl (L, h+ g).

(b) There exists a k-module isomorphism ∧L→ Cl (L, h) which sends the
k-submodule (∧L) · ϕ0 (M) of ∧L to the k-submodule Cl (L, h) · ϕh (M) of
Cl (L, h). Therefore,

(Cl (L, h))� (Cl (L, h) · ϕh (M)) ∼= (∧L)� ((∧L) · ϕ0 (M)) ∼= ∧ (L�M) ∼= ∧N

as k-modules.

(c) Let projM be the projection from L on M with kernel N , and let projN
be the projection from L on N with kernel M . (These two projections are
well-defined because L = M ⊕N). Define a map f : L× L→ k by

(f (u, v) = h (projM u, v) + h (projN v, u) for every (u, v) ∈ L× L) .
(41)

Then, f is a bilinear form satisfying f (L×M) = 0. Also,

f (v, v) = h (v, v) for every v ∈ L. (42)

As a consequence, If = Ih and Cl (L, f) = Cl (L, h). Moreover, If+g = Ih+g,
and Cl (L, f + g) = Cl (L, h+ g) for every bilinear form g : L × L → k.
We also have αf ((⊗L) ·M) = (⊗L) ·M . Finally, for every bilinear form
g : L×L→ k, the isomorphism αfg : Cl (L, g)→ Cl (L, g + f) is a k-module
isomorphism from Cl (L, g) to Cl (L, h+ g) satisfying

αfg (Cl (L, g) · ϕg (M)) = Cl (L, h+ g) · ϕh+g (M) . (43)

There is nothing about Theorem 61 that is not simple computation (provided one
begins with proving Theorem 61 (c), and then derives (a) and (b) from it), so we will
not delve into the proof. It can be found in [0] in all its detail.

Note that Theorem 61 (b) was inspired by the results of the paper [6] by Calaque,
Căldăraru and Tu. They considered, instead of a bilinear form h, a Lie bracket on L,
and instead of h (M ×M) = 0 they required [M,M ] ⊆M . In this situation, analogues
of Theorem 61 (b) for the universal enveloping algebra instead of the Clifford algebra
were shown; however, these analogues are much harder and require some additional
conditions.

References

[0] Darij Grinberg, The Clifford algebra and the Chevalley map - a computational
approach (detailed version).
http://www.cip.ifi.lmu.de/~grinberg/algebra/chevalley.pdf

[1] J. Roe, Elliptic operators, topology and asymptotic methods (2nd edition), Pit-
man Research Notes in Math. 395, Addison Wesley Longman, 1998.

[2] H. B. Lawson, M.-L. Michelsohn, Spin Geometry, Princeton University Press,
1989.

26

http://www.cip.ifi.lmu.de/~grinberg/algebra/chevalley.pdf


[3] James S. Milne, Algebraic Groups, Lie Groups, and their Arithmetic Subgroups,
ALA1: Basic Theory of Algebraic Groups. Version 2.21 (27.04.2010).
http://jmilne.org/math/CourseNotes/ala.html

[4] ARupinski (Andrew Rupinski), MathOverflow post #59446.
http://mathoverflow.net/questions/59368//59446#59446

[5] Darij Grinberg, A few classical results on tensor, symmetric and exterior powers.
http://www.cip.ifi.lmu.de/~grinberg/algebra/tensorext.pdf
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