Three etudes on quasisymmetric functions

Darij Grinberg (MIT)

5 April 2016
Combinatorics Seminar, Brandeis University (Chapter 1)
11 April 2016
Massachusetts Institute of Technology (Chapters 1-3)
slides:
http://mit.edu/~darij/www/algebra/brandeis06.pdf papers:
http://mit.edu/~darij/www/algebra/dp-abstr.pdf http://mit.edu/~darij/www/algebra/bernsteinproof.pdf http://mit.edu/~darij/www/algebra/dimcreation.pdf

Prologue

Quasisymmetric functions and Hopf algebras

References: (e.g.)

- Darij Grinberg, Victor Reiner, Hopf Algebras in Combinatorics, arXiv:1409.8356.
- Michiel Hazewinkel, Witt vectors. Part 1, arXiv:0804.3888.
- M. Hazewinkel, N. Gubareni, V.V. Kirichenko, Algebras, rings and modules. Lie algebras and Hopf algebras, AMS 2010.

Symmetric functions, part 1: definition

- Fix a commutative ring \mathbf{k} with unity. We shall do everything over k.
- Consider the ring $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ of formal power series in countably many indeterminates.
- Fix a commutative ring \mathbf{k} with unity. We shall do everything over k.
- Consider the ring $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ of formal power series in countably many indeterminates.
- A formal power series f is said to be bounded-degree if the monomials it contains are bounded (from above) in degree.
- Fix a commutative ring \mathbf{k} with unity. We shall do everything over \mathbf{k}.
- Consider the ring $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ of formal power series in countably many indeterminates.
- A formal power series f is said to be bounded-degree if the monomials it contains are bounded (from above) in degree.
- A formal power series f is said to be symmetric if it is invariant under permutations of the indeterminates.
Equivalently, if its coefficients in front of $x_{i_{1}}^{a_{1}} x_{i_{2}}^{a_{2}} \cdots x_{i_{k}}^{a_{k}}$ and $x_{j_{1}}^{a_{1}} x_{j_{2}}^{a_{2}} \cdots x_{j_{k}}^{a_{k}}$ are equal whenever $i_{1}, i_{2}, \ldots, i_{k}$ are distinct and $j_{1}, j_{2}, \ldots, j_{k}$ are distinct.
- For example:
- $1+x_{1}+x_{2}^{3}$ is bounded-degree but not symmetric.
- $\left(1+x_{1}\right)\left(1+x_{2}\right)\left(1+x_{3}\right) \cdots$ is symmetric but not bounded-degree.
- Fix a commutative ring \mathbf{k} with unity. We shall do everything over \mathbf{k}.
- Consider the ring $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ of formal power series in countably many indeterminates.
- A formal power series f is said to be bounded-degree if the monomials it contains are bounded (from above) in degree.
- A formal power series f is said to be symmetric if it is invariant under permutations of the indeterminates.
Equivalently, if its coefficients in front of $x_{i_{1}}^{a_{1}} x_{i_{2}}^{a_{2}} \cdots x_{i_{k}}^{a_{k}}$ and $x_{j_{1}}^{a_{1}} x_{j_{2}}^{a_{2}} \cdots x_{j_{k}}^{a_{k}}$ are equal whenever $i_{1}, i_{2}, \ldots, i_{k}$ are distinct and $j_{1}, j_{2}, \ldots, j_{k}$ are distinct.
- Let Λ be the set of all symmetric bounded-degree power series in $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$. This is a \mathbf{k}-subalgebra, called the ring of symmetric functions over \mathbf{k}.
It is also known as Sym.
- The \mathbf{k}-module Λ has several bases. All the important ones are indexed by partitions.
- A partition is a weakly decreasing sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$ of nonnegative integers such that $\lambda_{i}=0$ for all sufficiently high i.
- For example, $(3,2,2,0,0,0, \ldots)$ is a partition.
- The \mathbf{k}-module Λ has several bases. All the important ones are indexed by partitions.
- A partition is a weakly decreasing sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$ of nonnegative integers such that $\lambda_{i}=0$ for all sufficiently high i.
- For example, $(3,2,2,0,0,0, \ldots)$ is a partition.
- Always write λ_{i} for the i-th entry of a sequence λ.
- We identify a partition λ with the finite sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ whenever $\lambda_{k+1}=\lambda_{k+2}=\lambda_{k+3}=\cdots=0$.
- For example, $(3,2,2,0,0,0)=(3,2,2)=(3,2,2,0)$.
- The \mathbf{k}-module Λ has several bases. All the important ones are indexed by partitions.
- A partition is a weakly decreasing sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots\right)$ of nonnegative integers such that $\lambda_{i}=0$ for all sufficiently high i.
- For example, $(3,2,2,0,0,0, \ldots)$ is a partition.
- Always write λ_{i} for the i-th entry of a sequence λ.
- We identify a partition λ with the finite sequence $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$ whenever $\lambda_{k+1}=\lambda_{k+2}=\lambda_{k+3}=\cdots=0$.
- For example, $(3,2,2,0,0,0)=(3,2,2)=(3,2,2,0)$.
- Let Par be the set of all partitions.
- For every $\lambda \in$ Par, define

$$
\begin{aligned}
& m_{\lambda}=\text { sum of all distinct monomials obtained by } \\
& \text { permuting } x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} x_{3}^{\lambda_{3}} \cdots
\end{aligned}
$$

This is a homogeneous power series lying in Λ. Its degree is $|\lambda|:=\lambda_{1}+\lambda_{2}+\lambda_{3}+\cdots$, known as the size of λ.

- Examples:
- $m_{()}=1$.
- $m_{(1,1)}=\sum_{i<j} x_{i} x_{j}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{1} x_{4}+x_{2} x_{4}+\cdots$.
- $m_{(2,1)}=\sum_{i \neq j} x_{i}^{2} x_{j}=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+\cdots$.
- $m_{(3)}=\sum_{i} x_{i}^{3}=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+\cdots$.

Note: No repeated monomials even if the partition contains repeated entries!

- For every $\lambda \in$ Par, define

$$
\begin{gathered}
m_{\lambda}=\text { sum of all distinct monomials obtained by } \\
\text { permuting } x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} x_{3}^{\lambda_{3}} \cdots .
\end{gathered}
$$

This is a homogeneous power series lying in Λ. Its degree is $|\lambda|:=\lambda_{1}+\lambda_{2}+\lambda_{3}+\cdots$, known as the size of λ.

- In other words,

$$
\begin{gathered}
m_{\lambda}=\text { sum of all monomials whose exponents } \\
\text { are } \lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots \text { in some order. }
\end{gathered}
$$

- For every $\lambda \in$ Par, define

$$
\begin{aligned}
& m_{\lambda}=\text { sum of all distinct monomials obtained by } \\
& \text { permuting } x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} x_{3}^{\lambda_{3}} \cdots
\end{aligned}
$$

This is a homogeneous power series lying in Λ. Its degree is $|\lambda|:=\lambda_{1}+\lambda_{2}+\lambda_{3}+\cdots$, known as the size of λ.

- The family $\left(m_{\lambda}\right)_{\lambda \in \operatorname{Par}}$ is a basis of the \mathbf{k}-module Λ, called the monomial basis (or m-basis).
- There are many more, e.g.:
- the h-basis (complete homogeneous symmetric functions),
- the e-basis (elementary symmetric functions),
- the s-basis (Schur functions),
- the p-basis (power-sum symmetric functions; these are a basis only when $\mathbb{Q} \subseteq \mathbf{k}$).
- For every $\lambda \in$ Par, define

$$
\begin{aligned}
& m_{\lambda}=\text { sum of all distinct monomials obtained by } \\
& \text { permuting } x_{1}^{\lambda_{1}} x_{2}^{\lambda_{2}} x_{3}^{\lambda_{3}} \cdots
\end{aligned}
$$

This is a homogeneous power series lying in Λ. Its degree is $|\lambda|:=\lambda_{1}+\lambda_{2}+\lambda_{3}+\cdots$, known as the size of λ.

- The family $\left(m_{\lambda}\right)_{\lambda \in \operatorname{Par}}$ is a basis of the \mathbf{k}-module Λ, called the monomial basis (or m-basis).
- There are many more, e.g.:
- the h-basis (complete homogeneous symmetric functions),
- the e-basis (elementary symmetric functions),
- the s-basis (Schur functions),
- the p-basis (power-sum symmetric functions; these are a basis only when $\mathbb{Q} \subseteq \mathbf{k}$).
- We shall now define the quasisymmetric functions - a bigger algebra than Λ, but still with many of its nice properties.
- A formal power series f (still in $\left.\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]\right)$ is said to be quasisymmetric if its coefficients in front of $x_{i_{1}}^{a_{1}} x_{i_{2}}^{a_{2}} \cdots x_{i_{k}}^{a_{k}}$ and $x_{j_{1}}^{a_{1}} x_{j_{2}}^{a_{2}} \cdots x_{j_{k}}^{a_{k}}$ are equal whenever $i_{1}<i_{2}<\cdots<i_{k}$ and $j_{1}<j_{2}<\cdots<j_{k}$.
- For example:
- Every symmetric power series is quasisymmetric.
- $\sum_{i<j} x_{i}^{2} x_{j}=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1}^{2} x_{4}+\cdots$ is
quasisymmetric, but not symmetric.
- We shall now define the quasisymmetric functions - a bigger algebra than Λ, but still with many of its nice properties.
- A formal power series f (still in $\left.\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]\right)$ is said to be quasisymmetric if its coefficients in front of $x_{i_{1}}^{a_{1}} x_{i_{2}}^{a_{2}} \cdots x_{i_{k}}^{a_{k}}$ and $x_{j_{1}}^{a_{1}} x_{j_{2}}^{a_{2}} \cdots x_{j_{k}}^{a_{k}}$ are equal whenever $i_{1}<i_{2}<\cdots<i_{k}$ and $j_{1}<j_{2}<\cdots<j_{k}$.
- For example:
- Every symmetric power series is quasisymmetric.
- $\sum_{i<j} x_{i}^{2} x_{j}=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1}^{2} x_{4}+\cdots$ is
quasisymmetric, but not symmetric.
- Let QSym be the set of all quasisymmetric bounded-degree power series in $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$. This is a \mathbf{k}-subalgebra, called the ring of quasisymmetric functions over \mathbf{k}. (Gessel, 1980s.)
- We have $\Lambda \subseteq$ QSym $\subseteq \mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$.
- The \mathbf{k}-module QSym has several bases. All the important ones are indexed by compositions.
- A composition is a finite list of positive integers.
- For example, $(1,3,2)$ is a composition.
- The \mathbf{k}-module QSym has several bases. All the important ones are indexed by compositions.
- A composition is a finite list of positive integers.
- For example, $(1,3,2)$ is a composition.
- Let Comp be the set of all compositions.

Quasisymmetric functions, part 3: bases

- For every $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \in$ Comp, define

$$
M_{\alpha}=\sum_{i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}
$$

$=$ sum of all monomials whose nonzero exponents are $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ in this order.

This is a homogeneous power series lying in QSym. Its degree is $|\alpha|:=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$, known as the size of α.

- Examples:
- $M_{()}=1$.
- $M_{(1,1)}=\sum_{i<j} x_{i} x_{j}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+x_{1} x_{4}+x_{2} x_{4}+\cdots$.
- $M_{(2,1)}=\sum_{i<j} x_{i}^{2} x_{j}=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+\cdots$.
- $M_{(3)}=\sum_{i} x_{i}^{3}=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+\cdots$.

Note: $m_{(2,1)}=M_{(2,1)}+M_{(1,2)}$.

- For every $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \in$ Comp, define

$$
\begin{aligned}
M_{\alpha}= & \sum_{i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}} \\
= & \text { sum of all monomials whose nonzero exponents } \\
& \quad \text { are } \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k} \text { in this order. }
\end{aligned}
$$

This is a homogeneous power series lying in QSym. Its degree is $|\alpha|:=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$, known as the size of α.

- The family $\left(M_{\alpha}\right)_{\alpha \in \text { Comp }}$ is a basis of the \mathbf{k}-module QSym, called the monomial basis (or M-basis).
- For every $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \in$ Comp, define

$$
M_{\alpha}=\sum_{i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}
$$

$=$ sum of all monomials whose nonzero exponents are $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ in this order.
This is a homogeneous power series lying in QSym. Its degree is $|\alpha|:=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$, known as the size of α.

- The family $\left(M_{\alpha}\right)_{\alpha \in C o m p}$ is a basis of the \mathbf{k}-module QSym, called the monomial basis (or M-basis).
- There are many more, e.g.:
- the F-basis (Gessel's fundamental basis, aka the L-basis),
- the "quasisymmetric Schur basis",
- the "dual immaculate basis",
- the Ψ-basis (only when $\mathbb{Q} \subseteq \mathbf{k}$).
- But the \mathbf{k}-algebra structures are not the only structures on Λ and QSym. We shall also use the Hopf algebra structures.
- But the \mathbf{k}-algebra structures are not the only structures on Λ and QSym. We shall also use the Hopf algebra structures.
- Roughly speaking:
- algebra $=\mathbf{k}$-module A with a multiplication map $m: A \otimes A \rightarrow A$ and a unit map $u: \mathbf{k} \rightarrow A$ satisfying some axioms;
- But the \mathbf{k}-algebra structures are not the only structures on Λ and QSym. We shall also use the Hopf algebra structures.
- Roughly speaking:
- algebra $=\mathbf{k}$-module A with a multiplication map $m: A \otimes A \rightarrow A$ and a unit map $u: \mathbf{k} \rightarrow A$ satisfying some axioms;
- coalgebra $=\mathbf{k}$-module C with a comultiplication map $\Delta: C \rightarrow C \otimes C$ and a counit map $\varepsilon: C \rightarrow \mathbf{k}$ satisfying the duals of these axioms;
- But the \mathbf{k}-algebra structures are not the only structures on Λ and QSym. We shall also use the Hopf algebra structures.
- Roughly speaking:
- algebra $=\mathbf{k}$-module A with a multiplication map $m: A \otimes A \rightarrow A$ and a unit map $u: \mathbf{k} \rightarrow A$ satisfying some axioms;
- coalgebra $=\mathbf{k}$-module C with a comultiplication map $\Delta: C \rightarrow C \otimes C$ and a counit map $\varepsilon: C \rightarrow \mathbf{k}$ satisfying the duals of these axioms;
- bialgebra $=\mathbf{k}$-module H with both an algebra structure and a coalgebra structure which "commute" in a certain sense;
- But the \mathbf{k}-algebra structures are not the only structures on \wedge and QSym. We shall also use the Hopf algebra structures.
- Roughly speaking:
- algebra $=\mathbf{k}$-module A with a multiplication map $m: A \otimes A \rightarrow A$ and a unit map $u: \mathbf{k} \rightarrow A$ satisfying some axioms;
- coalgebra $=\mathbf{k}$-module C with a comultiplication map $\Delta: C \rightarrow C \otimes C$ and a counit map $\varepsilon: C \rightarrow \mathbf{k}$ satisfying the duals of these axioms;
- bialgebra $=\mathbf{k}$-module H with both an algebra structure and a coalgebra structure which "commute" in a certain sense;
- Hopf algebra $=\mathbf{k}$-bialgebra H with an "antipode" map $S: H \rightarrow H$
(compare with: group $=$ monoid M with an "inverse" $\left.\operatorname{map}()^{-1}: M \rightarrow M\right)$.
- But the \mathbf{k}-algebra structures are not the only structures on Λ and QSym. We shall also use the Hopf algebra structures.
- Roughly speaking:
- algebra $=\mathbf{k}$-module A with a multiplication map $m: A \otimes A \rightarrow A$ and a unit map $u: \mathbf{k} \rightarrow A$ satisfying some axioms;
- coalgebra $=\mathbf{k}$-module C with a comultiplication map $\Delta: C \rightarrow C \otimes C$ and a counit map $\varepsilon: C \rightarrow \mathbf{k}$ satisfying the duals of these axioms;
- bialgebra $=\mathbf{k}$-module H with both an algebra structure and a coalgebra structure which "commute" in a certain sense;
- Hopf algebra $=\mathbf{k}$-bialgebra H with an "antipode" map $S: H \rightarrow H$
(compare with: group $=$ monoid M with an "inverse" $\left.\operatorname{map}()^{-1}: M \rightarrow M\right)$.
- In some more detail...
- The snob's definition of an algebra (associative, unital): A \mathbf{k}-algebra is a \mathbf{k}-module A equipped with a \mathbf{k}-linear map $m: A \otimes A \rightarrow A$ (called "multiplication") and a \mathbf{k}-linear map $u: \mathbf{k} \rightarrow A$ (called "unit") such that the diagrams

and

commute. (All \otimes signs are over \mathbf{k}.)
- The snob's definition of an algebra (associative, unital): A \mathbf{k}-algebra is a \mathbf{k}-module A equipped with a \mathbf{k}-linear map $m: A \otimes A \rightarrow A$ (called "multiplication") and a \mathbf{k}-linear map $u: \mathbf{k} \rightarrow A$ (called "unit") such that the diagrams

and

commute. (All \otimes signs are over \mathbf{k}.)
- NB: The domain of m is $A \otimes A$, not $A \times A$. Thus, everything is \mathbf{k}-linear!
- Turning all arrows around, we can define coalgebras:

A \mathbf{k}-coalgebra is a \mathbf{k}-module C equipped with a \mathbf{k}-linear map $\Delta: C \rightarrow C \otimes C$ (called "comultiplication") and a \mathbf{k}-linear $\operatorname{map} \varepsilon: C \rightarrow \mathbf{k}$ (called "counit") such that the diagrams

and

commute.

- Turning all arrows around, we can define coalgebras:

A \mathbf{k}-coalgebra is a \mathbf{k}-module C equipped with a \mathbf{k}-linear map $\Delta: C \rightarrow C \otimes C$ (called "comultiplication") and a \mathbf{k}-linear $\operatorname{map} \varepsilon: C \rightarrow \mathbf{k}$ (called "counit") such that the diagrams

and

commute.

- No way to restate this without tensor products anymore!
- Turning all arrows around, we can define coalgebras:

A \mathbf{k}-coalgebra is a \mathbf{k}-module C equipped with a \mathbf{k}-linear map $\Delta: C \rightarrow C \otimes C$ (called "comultiplication") and a \mathbf{k}-linear $\operatorname{map} \varepsilon: C \rightarrow \mathbf{k}$ (called "counit") such that the diagrams

and

commute.

- If C is a free \mathbf{k}-module of finite rank, then C coalgebra \Longleftrightarrow $C^{*}=\operatorname{Hom}(C, \mathbf{k})$ algebra. Not in general!
- A \mathbf{k}-bialgebra is a \mathbf{k}-module H equipped with:
- the structure of a \mathbf{k}-algebra (i.e., suitable maps m and u);
- the structure of a \mathbf{k}-coalgebra (i.e., suitable maps Δ and $\varepsilon)$
such that the following equivalent statements hold:
- The maps Δ and ε are \mathbf{k}-algebra homomorphisms (where $H \otimes H$ becomes a \mathbf{k}-algebra in an appropriate way).
- The maps m and u are \mathbf{k}-coalgebra homomorphisms (where $H \otimes H$ becomes a \mathbf{k}-coalgebra in an appropriate way).
- Some four diagrams commute.
(We won't need these statements much.)
- A Hopf algebra is a \mathbf{k}-bialgebra H such that there exists a k-linear map $S: H \rightarrow H$ for which the diagram

commutes.
- If S exists, then it is unique, so S can be regarded as part of the Hopf algebra structure. (And should be.) It's called the antipode of H.
- A graded \mathbf{k}-bialgebra is a \mathbf{k}-bialgebra H which is graded as k-module, in the sense that

$$
H=\bigoplus_{n>0} H_{n}
$$

and whose structure maps m, u, Δ and ε all are graded.

- No Koszul signs here! (If you don't know what I mean, ignore this.)
- A graded \mathbf{k}-bialgebra is a \mathbf{k}-bialgebra H which is graded as \mathbf{k}-module, in the sense that

$$
H=\bigoplus_{n \geq 0} H_{n}
$$

and whose structure maps m, u, Δ and ε all are graded.

- For example, the gradedness of Δ means that

$$
\Delta\left(H_{n}\right) \subseteq \sum_{k=0}^{n} H_{k} \otimes H_{n-k}
$$

where $H_{k} \otimes H_{n-k}$ is canonically embedded into $H \otimes H$.

- A graded \mathbf{k}-bialgebra is a \mathbf{k}-bialgebra H which is graded as \mathbf{k}-module, in the sense that

$$
H=\bigoplus_{n>0} H_{n}
$$

and whose structure maps m, u, Δ and ε all are graded.

- The gradedness of m is the usual condition you know from the definition of a graded algebra: $H_{a} H_{b} \subseteq H_{a+b}$.
- A graded \mathbf{k}-bialgebra is a \mathbf{k}-bialgebra H which is graded as k-module, in the sense that

$$
H=\bigoplus_{n \geq 0} H_{n},
$$

and whose structure maps m, u, Δ and ε all are graded.

- A graded \mathbf{k}-bialgebra H is said to be connected if $\left(1_{H}\right)$ is a basis of the \mathbf{k}-module H_{0}.
- A graded \mathbf{k}-bialgebra is a \mathbf{k}-bialgebra H which is graded as \mathbf{k}-module, in the sense that

$$
H=\bigoplus_{n>0} H_{n}
$$

and whose structure maps m, u, Δ and ε all are graded.

- A graded \mathbf{k}-bialgebra H is said to be connected if $\left(1_{H}\right)$ is a basis of the \mathbf{k}-module H_{0}.
- Takeuchi's theorem (and slightly more): If H is a connected graded k-bialgebra, then H is a Hopf algebra and its antipode S is graded and invertible.
- A graded \mathbf{k}-bialgebra is a \mathbf{k}-bialgebra H which is graded as \mathbf{k}-module, in the sense that

$$
H=\bigoplus_{n \geq 0} H_{n}
$$

and whose structure maps m, u, Δ and ε all are graded.

- A graded \mathbf{k}-bialgebra H is said to be connected if $\left(1_{H}\right)$ is a basis of the \mathbf{k}-module H_{0}.
- Connected graded Hopf algebras tend to appear in combinatorics a lot. We shall now see that Λ and QSym are two such beasts.
- So how does Λ become a Hopf algebra?
- The counit is easy to define:

$$
\varepsilon(f)=f(0,0,0, \ldots)=\text { constant term of } f
$$

- So how does Λ become a Hopf algebra?
- The counit is easy to define:

$$
\varepsilon(f)=f(0,0,0, \ldots)=\text { constant term of } f
$$

- The comultiplication, the safe way: If
$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right) \in$ Par with $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}>0$, then set

$$
\Delta\left(m_{\lambda}\right)=\sum m_{\mu} \otimes m_{\nu}
$$

where the sum is over all pairs (μ, ν) of partitions such that concatenating the lists μ and ν and then sorting the result in decreasing order gives λ.
Don't worry, I'll make sense of this shortly.

- So how does Λ become a Hopf algebra?
- The counit is easy to define:

$$
\varepsilon(f)=f(0,0,0, \ldots)=\text { constant term of } f
$$

- The comultiplication, the safe way: If
$\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right) \in$ Par with $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}>0$, then set

$$
\Delta\left(m_{\lambda}\right)=\sum m_{\mu} \otimes m_{\nu}
$$

where the sum is over all pairs (μ, ν) of partitions such that concatenating the lists μ and ν and then sorting the result in decreasing order gives λ.
Don't worry, l'll make sense of this shortly.

- Example (writing $m_{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}}$ for $m_{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)}$, and writing \varnothing for the empty partition ()):

$$
\begin{aligned}
\Delta\left(m_{3,2,2}\right)= & m_{\varnothing} \otimes m_{3,2,2}+m_{3} \otimes m_{2,2}+m_{2} \otimes m_{3,2} \\
& +m_{3,2} \otimes m_{2}+m_{2,2} \otimes m_{3}+m_{3,2,2} \otimes m_{\varnothing}
\end{aligned}
$$

- So how does Λ become a Hopf algebra?
- The counit is easy to define:

$$
\varepsilon(f)=f(0,0,0, \ldots)=\text { constant term of } f
$$

- The comultiplication, the "right" way:

$$
\Delta(f)=f\left(x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots\right)
$$

where we pretend that $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots\right]\right] \cong$ $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right] \otimes \mathbf{k}\left[\left[y_{1}, y_{2}, y_{3}, \ldots\right]\right]$ (although it is not true). Making this formal requires work, but this is the actual meaning of comultiplication: it "doubles the alphabet", i.e., splits the indeterminates into two groups. Note that symmetry of f is used here.

Hopf structure on \wedge : the antipode

- Equipped with these Δ and ε, the \mathbf{k}-algebra Λ becomes a connected graded \mathbf{k}-bialgebra. Thus, it is a Hopf algebra (by Takeuchi's theorem). What is its antipode?
- Equipped with these Δ and ε, the \mathbf{k}-algebra Λ becomes a connected graded \mathbf{k}-bialgebra. Thus, it is a Hopf algebra (by Takeuchi's theorem). What is its antipode?
- The antipode S of Λ is given by

$$
S(f)=(-1)^{n} \omega(f)
$$

for every homogeneous $f \in \Lambda$ of degree n,
where ω is the "omega involution".
One way to define ω : It is the \mathbf{k}-algebra endomorphism of Λ sending each h_{n} to e_{n}, where

$$
\begin{aligned}
& h_{n}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}} \in \Lambda \quad \text { and } \\
& e_{n}=\sum_{i_{1}<i_{2}<\cdots<i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}} \in \Lambda .
\end{aligned}
$$

As the name says, it is an involution, and so is S.

- So how does QSym become a Hopf algebra?
- The counit is easy to define:

$$
\varepsilon(f)=f(0,0,0, \ldots)=\text { constant term of } f
$$

Hopf structure on QSym: coalgebra structure

- So how does QSym become a Hopf algebra?
- The counit is easy to define:

$$
\varepsilon(f)=f(0,0,0, \ldots)=\text { constant term of } f
$$

- The comultiplication, the safe way: If $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \in$ Comp, then set

$$
\Delta\left(M_{\alpha}\right)=\sum_{i=0}^{k} M_{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}\right)} \otimes M_{\left(\alpha_{i+1}, \alpha_{i+2}, \ldots, \alpha_{k}\right)}
$$

- So how does QSym become a Hopf algebra?
- The counit is easy to define:

$$
\varepsilon(f)=f(0,0,0, \ldots)=\text { constant term of } f
$$

- The comultiplication, the safe way: If $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \in$ Comp, then set

$$
\Delta\left(M_{\alpha}\right)=\sum_{i=0}^{k} M_{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}\right)} \otimes M_{\left(\alpha_{i+1}, \alpha_{i+2}, \ldots, \alpha_{k}\right)}
$$

- Example (writing $M_{\left.\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)}$ for $M_{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)}$, and writing \varnothing for the empty composition ()):

$$
\begin{aligned}
\Delta\left(M_{2,3,2}\right)= & M_{\varnothing} \otimes M_{2,3,2}+M_{2} \otimes M_{3,2} \\
& +M_{2,3} \otimes M_{2}+M_{2,3,2} \otimes M_{\varnothing}
\end{aligned}
$$

- So how does QSym become a Hopf algebra?
- The counit is easy to define:

$$
\varepsilon(f)=f(0,0,0, \ldots)=\text { constant term of } f
$$

- The comultiplication, the "right" way:

$$
\Delta(f)=f\left(x_{1}<x_{2}<x_{3}<\cdots<y_{1}<y_{2}<y_{3}<\cdots\right) .
$$

This is even harder to rigorously justify than for Λ, since f is no longer symmetric. We can still apply f to a totally ordered set of indeterminates (thus the $<$ signs), but this is not a-priori clear.
The "safe" way is the better one here for most purposes.

Hopf structure on QSym: the antipode

- Equipped with these Δ and ε, the \mathbf{k}-algebra QSym becomes a connected graded \mathbf{k}-bialgebra. Thus, it is a Hopf algebra (by Takeuchi's theorem). What is its antipode?

Hopf structure on QSym: the antipode

- Equipped with these Δ and ε, the \mathbf{k}-algebra QSym becomes a connected graded \mathbf{k}-bialgebra. Thus, it is a Hopf algebra (by Takeuchi's theorem). What is its antipode?
- The antipode S of QSym is given by

$$
S\left(M_{\alpha}\right)=(-1)^{k} \sum_{i_{1} \geq i_{2} \geq \cdots \geq i_{k}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}
$$

for every $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \in$ Comp.

- Alternatively, this can be written

$$
S\left(M_{\alpha}\right)=(-1)^{k} \sum_{\gamma \in \operatorname{Comp} ; \gamma \preceq \operatorname{rev} \alpha} M_{\gamma},
$$

where \preceq is a certain partial order on Comp, and where $\operatorname{rev} \alpha=\left(\alpha_{k}, \alpha_{k-1}, \ldots, \alpha_{1}\right)$.
(Classical result. Malvenuto? Reutenauer? Gessel?)

- Equipped with these Δ and ε, the \mathbf{k}-algebra QSym becomes a connected graded \mathbf{k}-bialgebra. Thus, it is a Hopf algebra (by Takeuchi's theorem). What is its antipode?
- The antipode S of QSym is given by

$$
S\left(M_{\alpha}\right)=(-1)^{k} \sum_{i_{1} \geq i_{2} \geq \cdots \geq i_{k}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}
$$

for every $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \in$ Comp.

- Alternatively, this can be written

$$
S\left(M_{\alpha}\right)=(-1)^{k} \sum_{\gamma \in \operatorname{Comp} ; \gamma \preceq \operatorname{rev} \alpha} M_{\gamma},
$$

where \preceq is a certain partial order on Comp, and where $\operatorname{rev} \alpha=\left(\alpha_{k}, \alpha_{k-1}, \ldots, \alpha_{1}\right)$.
(Classical result. Malvenuto? Reutenauer? Gessel?)

- Again, the antipode is just a sign away from the "omega involution", if you know the latter.

Homomorphisms preserve antipodes

- Standard theorem: If A and B are two Hopf algebras, and $f: A \rightarrow B$ is a \mathbf{k}-bialgebra homomorphism (i.e., a \mathbf{k}-linear map preserving m, u, Δ and ε), then f is a Hopf algebra homomorphism (i.e., also preserves S).
- Standard theorem: If A and B are two Hopf algebras, and $f: A \rightarrow B$ is a \mathbf{k}-bialgebra homomorphism (i.e., a \mathbf{k}-linear map preserving m, u, Δ and ε), then f is a Hopf algebra homomorphism (i.e., also preserves S).
- Corollary: If A is a Hopf subalgebra of a Hopf algebra B, then the antipode of A is the restriction of the antipode of B.
- Standard theorem: If A and B are two Hopf algebras, and $f: A \rightarrow B$ is a \mathbf{k}-bialgebra homomorphism (i.e., a \mathbf{k}-linear map preserving m, u, Δ and ε), then f is a Hopf algebra homomorphism (i.e., also preserves S).
- Corollary: If A is a Hopf subalgebra of a Hopf algebra B, then the antipode of A is the restriction of the antipode of B.
- Thus, the antipode of Λ is the restriction of the antipode of QSym.

Chapter 1

Chapter 1

E-partitions and the antipode

Reference:

- Darij Grinberg, Double posets and the antipode of QSym, arXiv:1509.08355.
(The version on my website is newer than the arXiv one, currently at least.)
- Recall: The antipode S of QSym sends

$$
\begin{aligned}
& M_{\alpha} \\
& \mapsto(-1)^{k} \sum_{i_{1} \geq i_{2} \geq \cdots \geq i_{k}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}
\end{aligned}
$$

for every $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \in$ Comp.

- Recall: The antipode S of QSym sends

$$
\begin{aligned}
& \qquad M_{\alpha}=\sum_{i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}} \\
& \mapsto(-1)^{k} \sum_{i_{1} \geq i_{2} \geq \cdots \geq i_{k}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}} \\
& \text { for every } \alpha= \\
& \left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \in \text { Comp. }
\end{aligned}
$$

- Recall: The antipode S of QSym sends

$$
\begin{aligned}
& M_{\alpha}=\sum_{i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}} \\
& \mapsto(-1)^{k} \sum_{i_{1} \geq i_{2} \geq \cdots \geq i_{k}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}
\end{aligned}
$$

for every $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \in$ Comp.

- Thus, $<$ becomes \geq, and a sign appears. This is a classical phenomenon (e.g., Ehrhart reciprocity). Is this specific to the M_{α} 's?
- Recall: The antipode S of QSym sends

$$
\begin{aligned}
& M_{\alpha}=\sum_{i_{1}<i_{2}<\cdots<i_{k}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}} \\
& \mapsto(-1)^{k} \sum_{i_{1} \geq i_{2} \geq \cdots \geq i_{k}} x_{i_{1}}^{\alpha_{1}} x_{i_{2}}^{\alpha_{2}} \cdots x_{i_{k}}^{\alpha_{k}}
\end{aligned}
$$

for every $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \in$ Comp.

- Thus, $<$ becomes \geq, and a sign appears. This is a classical phenomenon (e.g., Ehrhart reciprocity). Is this specific to the M_{α} 's?
- It isn't. Numerous antipode formulas for power series in QSym and in other combinatorial Hopf algebras share the same pattern. We shall show what might be the most general such result for QSym. (See Carolina Benedetti, Bruce Sagan, Antipodes and involutions, arXiv:1410.5023 for other Hopf algebras.)
- A double poset is a triple $\left(E,<_{1},<_{2}\right)$, where E is a finite set, and where $<_{1}$ and $<_{2}$ are two strict partial orders on E. ("Strict" means "smaller", not "smaller or equal".)
- A double poset is a triple $\left(E,<_{1},<_{2}\right)$, where E is a finite set, and where $<_{1}$ and $<_{2}$ are two strict partial orders on E. ("Strict" means "smaller", not "smaller or equal".)
- Let $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ be a double poset. An E-partition shall mean a map $\phi: E \rightarrow\{1,2,3, \ldots\}$ such that:
- every $e \in E$ and $f \in E$ satisfying $e<_{1} f$ satisfy $\phi(e) \leq \phi(f) ;$
- every $e \in E$ and $f \in E$ satisfying $e<_{1} f$ and $f<_{2} e$ satisfy $\phi(e)<\phi(f)$.
- A double poset is a triple $\left(E,<_{1},<_{2}\right)$, where E is a finite set, and where $<_{1}$ and $<_{2}$ are two strict partial orders on E. ("Strict" means "smaller", not "smaller or equal".)
- Let $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ be a double poset. An E-partition shall mean a map $\phi: E \rightarrow\{1,2,3, \ldots\}$ such that:
- every $e \in E$ and $f \in E$ satisfying $e<_{1} f$ satisfy $\phi(e) \leq \phi(f) ;$
- every $e \in E$ and $f \in E$ satisfying $e<_{1} f$ and $f<_{2} e$ satisfy $\phi(e)<\phi(f)$.
- Examples:
- If $<_{2}$ is the same as $<_{1}$ (or, more, generally, if $<_{2}$ extends $<_{1}$), then the \mathbf{E}-partitions are the weakly increasing maps $\left(E,<_{1}\right) \rightarrow\{1,2,3, \ldots\}$ (also known as poset homomorphisms).
- If $<_{2}$ is the same as $>_{1}$ (or, more, generally, if $<_{2}$ extends $>_{1}$), then the \mathbf{E}-partitions are the strictly increasing maps $\left(E,<_{1}\right) \rightarrow\{1,2,3, \ldots\}$.
- A double poset is a triple $\left(E,<_{1},<_{2}\right)$, where E is a finite set, and where $<_{1}$ and $<_{2}$ are two strict partial orders on E. ("Strict" means "smaller", not "smaller or equal".)
- Let $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ be a double poset. An E-partition shall mean a map $\phi: E \rightarrow\{1,2,3, \ldots\}$ such that:
- every $e \in E$ and $f \in E$ satisfying $e<_{1} f$ satisfy $\phi(e) \leq \phi(f) ;$
- every $e \in E$ and $f \in E$ satisfying $e<_{1} f$ and $f<_{2} e$ satisfy $\phi(e)<\phi(f)$.
- Examples:
- In the general case, you get "something inbetween": weakly increasing maps $\left(E,<_{1}\right) \rightarrow\{1,2,3, \ldots\}$ satisfying some strict inequalities.
- One specific examples: Semistandard tableaux of shape λ / μ are \mathbf{E}-partitions for a special choice of \mathbf{E}.
- Double posets are a generous source of quasisymmetric functions. To wit:
If $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ is a double poset, and
$w: E \rightarrow\{1,2,3, \ldots\}$ is a map, then we define a power series
$\Gamma(\mathbf{E}, w) \in \mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ by

$$
\Gamma(\mathbf{E}, w)=\sum_{\pi \text { is an } \mathbf{E} \text {-partition }} \mathbf{x}_{\pi, w}, \quad \text { where } \mathbf{x}_{\pi, w}=\prod_{e \in E} x_{\pi(e)}^{w(e)}
$$

- Easy to see: $\Gamma(\mathbf{E}, w) \in$ QSym.
- If $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ is a double poset, and
$w: E \rightarrow\{1,2,3, \ldots\}$ is a map, then we define a power series
$\Gamma(\mathbf{E}, w) \in \mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ by

$$
\Gamma(\mathbf{E}, w)=\sum_{\pi \text { is an } \mathbf{E} \text {-partition }} \mathbf{x}_{\pi, w}, \quad \text { where } \mathbf{x}_{\pi, w}=\prod_{e \in E} x_{\pi(e)}^{w(e)}
$$

- Easy to see: $\Gamma(\mathbf{E}, w) \in$ QSym.
- Examples:
- Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ be a composition. Let $E=\{1,2, \ldots, k\}$. Let $<_{1}$ be the usual $<$ relation, and let $<_{2}$ be the $>$ relation. Let $w: E \rightarrow\{1,2,3, \ldots\}$ send each i to α_{i}. Then,

$$
\Gamma(\mathbf{E}, w)=M_{\alpha} .
$$

- If $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ is a double poset, and
$w: E \rightarrow\{1,2,3, \ldots\}$ is a map, then we define a power series
$\Gamma(\mathbf{E}, w) \in \mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ by

$$
\Gamma(\mathbf{E}, w)=\sum_{\pi \text { is an } \mathbf{E} \text {-partition }} \mathbf{x}_{\pi, w}, \quad \text { where } \mathbf{x}_{\pi, w}=\prod_{e \in E} x_{\pi(e)}^{w(e)}
$$

- Easy to see: $\Gamma(\mathbf{E}, w) \in$ QSym.
- Examples:
- Let $n \in \mathbb{N}$ and $I \subseteq\{1,2, \ldots, n-1\}$. Then, there exists a double poset \mathbf{E} and a map w with

$$
\Gamma(\mathbf{E}, w)=\sum_{\substack{i_{1} \leq i_{2} \leq \ldots \leq i_{n} ; \\ i_{j}<i_{j+1} \text { whenever } j \in I}} x_{i_{1} x_{i_{2}} \cdots x_{i_{n}} .} .
$$

This power series is known as the α-th fundamental quasisymmetric function, usually called F_{α} or L_{α}. Here, α is a composition formed by the "gaps" between the elements of $I \cup\{0, n\}$.

- If $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ is a double poset, and
$w: E \rightarrow\{1,2,3, \ldots\}$ is a map, then we define a power series
$\Gamma(\mathbf{E}, w) \in \mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ by

$$
\Gamma(\mathbf{E}, w)=\sum_{\pi \text { is an } \mathbf{E} \text {-partition }} \mathbf{x}_{\pi, w}, \quad \text { where } \mathbf{x}_{\pi, w}=\prod_{e \in E} x_{\pi(e)}^{w(e)} .
$$

- Easy to see: $\Gamma(\mathbf{E}, w) \in$ QSym.
- Examples:
- Schur functions (including those of skew shapes and worse).
- Dual immaculate functions.
- P-partition enumerators (in Gessel's language), or (P, ω)-partition enumerators (in Stanley's).
- "Weighted" versions of the above.
- What is the antipode of $\Gamma(E, w)$?
- What is the antipode of $\Gamma(E, w)$?
- No general answer, but one for tertispecial double posets.

Tertispecial double posets

- A double poset $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ is called:
- special if the relation $<_{2}$ is a total order.

Tertispecial double posets

- A double poset $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ is called:
- special if the relation $<_{2}$ is a total order.
- semispecial if every two $<_{1}$-comparable elements of E are $<_{2}$-comparable.

Tertispecial double posets

- A double poset $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ is called:
- special if the relation $<_{2}$ is a total order.
- semispecial if every two $<_{1}$-comparable elements of E are <2-comparable.
- tertispecial if it satisfies the following condition: If a and b are two elements of E such that a is $<_{1}$-covered by b (that is, $a<_{1} b$, but no $c \in E$ satisfies $a<_{1} c<_{1} b$), then a and b are <2-comparable.

Tertispecial double posets

- A double poset $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ is called:
- special if the relation $<_{2}$ is a total order.
- semispecial if every two $<_{1}$-comparable elements of E are $<_{2}$-comparable.
- tertispecial if it satisfies the following condition: If a and b are two elements of E such that a is $<_{1}$-covered by b (that is, $a<_{1} b$, but no $c \in E$ satisfies $a<_{1} c<_{1} b$), then a and b are $<_{2}$-comparable.
- Special \Longrightarrow semispecial \Longrightarrow tertispecial.

Tertispecial double posets

- A double poset $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ is called:
- special if the relation $<_{2}$ is a total order.
- semispecial if every two $<_{1}$-comparable elements of E are $<_{2}$-comparable.
- tertispecial if it satisfies the following condition: If a and b are two elements of E such that a is $<_{1}$-covered by b (that is, $a<_{1} b$, but no $c \in E$ satisfies $a<_{1} c<_{1} b$), then a and b are $<_{2}$-comparable.
- Special \Longrightarrow semispecial \Longrightarrow tertispecial.
- WANTED: a better name!

Tertispecial double posets

- A double poset $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ is called:
- special if the relation $<_{2}$ is a total order.
- semispecial if every two $<_{1}$-comparable elements of E are $<_{2}$-comparable.
- tertispecial if it satisfies the following condition: If a and b are two elements of E such that a is $<_{1}$-covered by b (that is, $a<_{1} b$, but no $c \in E$ satisfies $a<_{1} c<_{1} b$), then a and b are $<_{2}$-comparable.
- Special \Longrightarrow semispecial \Longrightarrow tertispecial.
- WANTED: a better name!
- Examples:
- The posets whose E-partitions are semistandard tableaux are tertispecial.
- The posets generating M_{α} and F_{α} are special (at least if appropriately chosen).
- Theorem (Malvenuto, Reutenauer, 1998). Let ($E,<_{1},<_{2}$) be a tertispecial double poset. Let $w: E \rightarrow\{1,2,3, \ldots\}$. Then, the antipode S of QSym satisfies

$$
S\left(\Gamma\left(\left(E,<_{1},<_{2}\right), w\right)\right)=(-1)^{|E|} \Gamma\left(\left(E,>_{1},<_{2}\right), w\right),
$$

where $>_{1}$ denotes the opposite relation of $<_{1}$.

- Theorem (Malvenuto, Reutenauer, 1998). Let ($E,<_{1},<_{2}$) be a tertispecial double poset. Let $w: E \rightarrow\{1,2,3, \ldots\}$.
Then, the antipode S of QSym satisfies

$$
S\left(\Gamma\left(\left(E,<_{1},<_{2}\right), w\right)\right)=(-1)^{|E|} \Gamma\left(\left(E,>_{1},<_{2}\right), w\right),
$$

where $>_{1}$ denotes the opposite relation of $<_{1}$.

- Examples:
- The formula for $S\left(M_{\alpha}\right)$ given above.
- Theorem (Malvenuto, Reutenauer, 1998). Let ($E,<_{1},<_{2}$) be a tertispecial double poset. Let $w: E \rightarrow\{1,2,3, \ldots\}$.
Then, the antipode S of QSym satisfies

$$
S\left(\Gamma\left(\left(E,<_{1},<_{2}\right), w\right)\right)=(-1)^{|E|} \Gamma\left(\left(E,>_{1},<_{2}\right), w\right),
$$

where $>_{1}$ denotes the opposite relation of $<_{1}$.

- Examples:
- The formula for $S\left(M_{\alpha}\right)$ given above.
- A classical formula for $S\left(F_{\alpha}\right)$.
- The formula $S\left(s_{\lambda / \mu}\right)=(-1)^{|\lambda / \mu|} s_{\lambda^{t} / \mu^{t}}$ for skew Schur functions.
- Benedetti's and Sagan's formulas for antipodes of dual immaculate functions (only for a few simple shapes).
- Gessel's(?) formula for the antipode of a P-partition enumerator.

Generalizing further: E-partitions meet Pólya enumeration

- Theorem (G.). Let $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ be a tertispecial double poset. Let Par \mathbf{E} denote the set of all \mathbf{E}-partitions. Let $w: E \rightarrow\{1,2,3, \ldots\}$. Let G be a finite group which acts on E. Assume that G preserves both relations $<_{1}$ and $<_{2}$, and also preserves w. Then, G acts also on the set Par \mathbf{E}.
- Theorem (G.). Let $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ be a tertispecial double poset. Let Par \mathbf{E} denote the set of all \mathbf{E}-partitions. Let $w: E \rightarrow\{1,2,3, \ldots\}$. Let G be a finite group which acts on E. Assume that G preserves both relations $<_{1}$ and $<_{2}$, and also preserves w. Then, G acts also on the set Par \mathbf{E}.
For any G-orbit O on Par \mathbf{E}, we define a monomial $\mathbf{x}_{O, w}$ by

$$
\mathbf{x}_{O, w}=\mathbf{x}_{\pi, w} \quad \text { for some element } \pi \text { of } O
$$

(this does not depend on the choice of π). Let

$$
\begin{aligned}
\Gamma(\mathbf{E}, w, G) & =\sum_{O \text { is a } G \text {-orbit on Par } \mathbf{E}} \mathbf{x}_{O, w} ; \\
\Gamma^{+}(\mathbf{E}, w, G) & =\sum_{O \text { is an } E \text {-coeven } G \text {-orbit on } \operatorname{Par} \mathbf{E}} \mathbf{x}_{O, w} .
\end{aligned}
$$

Here, an orbit O is said to be E-coeven if for every $g \in G$ and every $\pi \in O$ satisfying $g \pi=\pi$, the action of g on E is an even permutation of E.

Generalizing further: E-partitions meet Pólya enumeration

- Theorem (G.). Let $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ be a tertispecial double poset. Let Par \mathbf{E} denote the set of all \mathbf{E}-partitions. Let $w: E \rightarrow\{1,2,3, \ldots\}$. Let G be a finite group which acts on E. Assume that G preserves both relations $<_{1}$ and $<_{2}$, and also preserves w. Then, G acts also on the set Par \mathbf{E}.
For any G-orbit O on Par \mathbf{E}, we define a monomial $\mathbf{x}_{O, w}$ by

$$
\mathbf{x}_{O, w}=\mathbf{x}_{\pi, w} \quad \text { for some element } \pi \text { of } O
$$

(this does not depend on the choice of π). Let

$$
\begin{aligned}
\Gamma(\mathbf{E}, w, G) & =\sum_{O \text { is a } G \text {-orbit on } \operatorname{Par} \mathbf{E}} \mathbf{x}_{O, w} ; \\
\Gamma^{+}(\mathbf{E}, w, G) & =\sum_{O \text { is an } E \text {-coeven } G \text {-orbit on } \operatorname{Par} \mathbf{E}} \mathbf{x}_{O, w} .
\end{aligned}
$$

Then, $\Gamma(\mathbf{E}, w, G) \in \mathrm{QSym}, \Gamma^{+}(\mathbf{E}, w, G) \in \mathrm{QSym}$, and

$$
S(\Gamma(\mathbf{E}, w, G))=(-1)^{|E|} \Gamma^{+}\left(\left(E,>_{1},<_{2}\right), w, G\right) .
$$

Generalizing further: E-partitions meet Pólya enumeration

- Theorem (G.). Let $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ be a tertispecial double poset. Let Par \mathbf{E} denote the set of all \mathbf{E}-partitions. Let $w: E \rightarrow\{1,2,3, \ldots\}$. Let G be a finite group which acts on E. Assume that G preserves both relations $<_{1}$ and $<_{2}$, and also preserves w. Then, G acts also on the set Par \mathbf{E}.
For any G-orbit O on Par \mathbf{E}, we define a monomial $\mathbf{x}_{O, w}$ by

$$
\mathbf{x}_{O, w}=\mathbf{x}_{\pi, w} \quad \text { for some element } \pi \text { of } O
$$

(this does not depend on the choice of π). Let

$$
\begin{aligned}
\Gamma(\mathbf{E}, w, G) & =\sum_{O \text { is a } G \text {-orbit on Par } \mathbf{E}} \mathbf{x}_{O, w} ; \\
\Gamma^{+}(\mathbf{E}, w, G) & =\sum_{O \text { is an } E \text {-coeven } G \text {-orbit on } \operatorname{Par} \mathbf{E}} \mathbf{x}_{O, w} .
\end{aligned}
$$

Then, $\Gamma(\mathbf{E}, w, G) \in \mathrm{QSym}, \Gamma^{+}(\mathbf{E}, w, G) \in \mathrm{QSym}$, and

$$
S(\Gamma(\mathbf{E}, w, G))=(-1)^{|E|} \Gamma^{+}\left(\left(E,>_{1},<_{2}\right), w, G\right) .
$$

Inspired by Katharina Jochemko's work (arXiv:1310.0838).

- I am not going to focus on my generalization. Instead I shall sketch my proof of the Malvenuto-Reutenauer result, which I consider the better part of my paper.
- I am not going to focus on my generalization. Instead I shall sketch my proof of the Malvenuto-Reutenauer result, which I consider the better part of my paper.
- More notations: Let $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ be a double poset.
- Then, Adm \mathbf{E} will mean the set of all pairs (P, Q), where P and Q are subsets of E such that:
- $P \cap Q=\varnothing$,
- $P \cup Q=E$,
- no $p \in P$ and $q \in Q$ satisfy $q<_{1} p$.

These pairs (P, Q) are called the admissible partitions of E.

- I am not going to focus on my generalization. Instead I shall sketch my proof of the Malvenuto-Reutenauer result, which I consider the better part of my paper.
- More notations: Let $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ be a double poset.
- Then, Adm \mathbf{E} will mean the set of all pairs (P, Q), where P and Q are subsets of E such that:
- $P \cap Q=\varnothing$,
- $P \cup Q=E$,
- no $p \in P$ and $q \in Q$ satisfy $q<_{1} p$.

These pairs (P, Q) are called the admissible partitions of E.

- For any $T \subseteq E$, we let $\left.\mathbf{E}\right|_{T}$ denote the double poset ($T,<_{1},<_{2}$), where $<_{1}$ and $<_{2}$ (by abuse of notation) denote the restrictions of the relations $<_{1}$ and $<_{2}$ to T.
- Lemma. Let $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ be a double poset. Let $w: E \rightarrow\{1,2,3, \ldots\}$ be a map. Then,

$$
\Delta(\Gamma(\mathbf{E}, w))=\sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}} \Gamma\left(\left.\mathbf{E}\right|_{P},\left.w\right|_{P}\right) \otimes \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right) .
$$

- Lemma. Let $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ be a double poset. Let $w: E \rightarrow\{1,2,3, \ldots\}$ be a map. Then,

$$
\Delta(\Gamma(\mathbf{E}, w))=\sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}} \Gamma\left(\left.\mathbf{E}\right|_{P},\left.w\right|_{P}\right) \otimes \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right) .
$$

- This is easy to prove if you believe in the formula

$$
\Delta(f)=f\left(x_{1}<x_{2}<x_{3}<\cdots<y_{1}<y_{2}<y_{3}<\cdots\right) .
$$

This formula would suggest that $\Delta(\Gamma(\mathbf{E}, w))$ is a sum over "E-partitions into the totally ordered set $\left\{x_{1}<x_{2}<x_{3}<\cdots<y_{1}<y_{2}<y_{3}<\cdots\right\}$ ". Any such E-partition π splits E into two subsets
$P=\pi^{-1}\left(\left\{x_{1}<x_{2}<x_{3}<\cdots\right\}\right)$ and
$Q=\pi^{-1}\left(\left\{y_{1}<y_{2}<y_{3}<\cdots\right\}\right)$, which satisfy $(P, Q) \in \operatorname{Adm} \mathbf{E}$.

- Lemma. Let $\mathbf{E}=\left(E,<_{1},<_{2}\right)$ be a double poset. Let $w: E \rightarrow\{1,2,3, \ldots\}$ be a map. Then,

$$
\Delta(\Gamma(\mathbf{E}, w))=\sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}} \Gamma\left(\left.\mathbf{E}\right|_{P},\left.w\right|_{P}\right) \otimes \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right) .
$$

- This is easy to prove if you believe in the formula

$$
\Delta(f)=f\left(x_{1}<x_{2}<x_{3}<\cdots<y_{1}<y_{2}<y_{3}<\cdots\right) .
$$

This formula would suggest that $\Delta(\Gamma(\mathbf{E}, w))$ is a sum over "E-partitions into the totally ordered set $\left\{x_{1}<x_{2}<x_{3}<\cdots<y_{1}<y_{2}<y_{3}<\cdots\right\}$ ". Any such E-partition π splits E into two subsets
$P=\pi^{-1}\left(\left\{x_{1}<x_{2}<x_{3}<\cdots\right\}\right)$ and
$Q=\pi^{-1}\left(\left\{y_{1}<y_{2}<y_{3}<\cdots\right\}\right)$, which satisfy $(P, Q) \in \operatorname{Adm} \mathbf{E}$.

- There is also a pedestrian proof in my preprint, which needs no such witchcraft.
- Once again, this is what we are proving:

Theorem (Malvenuto, Reutenauer, 1998). Let ($E,<_{1},<_{2}$) be a tertispecial double poset. Let $w: E \rightarrow\{1,2,3, \ldots\}$. Then, the antipode S of QSym satisfies

$$
S\left(\Gamma\left(\left(E,<_{1},<_{2}\right), w\right)\right)=(-1)^{|E|} \Gamma\left(\left(E,>_{1},<_{2}\right), w\right),
$$

where $>_{1}$ denotes the opposite relation of $<_{1}$.

- Once again, this is what we are proving:

Notation: If $\mathbf{E}=\left(E,<_{1},<_{2}\right)$, then write \mathbf{E}^{c} for $\left(E,>_{1},<_{2}\right)$. Theorem (Malvenuto, Reutenauer, 1998). Let
$\mathbf{E}=\left(E,<_{1},<_{2}\right)$ be a tertispecial double poset. Let
$w: E \rightarrow\{1,2,3, \ldots\}$. Then, the antipode S of QSym satisfies

$$
S(\Gamma(\mathbf{E}, w))=(-1)^{|E|} \Gamma\left(\mathbf{E}^{c}, w\right)
$$

- Once again, this is what we are proving:

Notation: If $\mathbf{E}=\left(E,<_{1},<_{2}\right)$, then write \mathbf{E}^{c} for $\left(E,>_{1},<_{2}\right)$.
Theorem (Malvenuto, Reutenauer, 1998). Let
$\mathbf{E}=\left(E,<_{1},<_{2}\right)$ be a tertispecial double poset. Let
$w: E \rightarrow\{1,2,3, \ldots\}$. Then, the antipode S of QSym satisfies

$$
S(\Gamma(\mathbf{E}, w))=(-1)^{|E|} \Gamma\left(\mathbf{E}^{c}, w\right)
$$

- Proceed by strong induction over $|E|$. So, WLOG, the

Theorem is proven for all smaller tertispecial double posets.

- The case $|E|=0$ is easy, so WLOG assume $|E|>0$.
- Recall the commutative diagram for the antipode:

It yields $m \circ(S \otimes \mathrm{id}) \circ \Delta=u \circ \varepsilon$. Thus,

$$
(m \circ(S \otimes \mathrm{id}) \circ \Delta)(\Gamma(\mathbf{E}, w))=(u \circ \varepsilon)(\Gamma(\mathbf{E}, w))=0
$$

(since $\Gamma(\mathbf{E}, w)$ has no constant term, and thus is annihilated by ε).

- Thus,

$$
\begin{aligned}
0 & =(m \circ(S \otimes \mathrm{id}) \circ \Delta)(\Gamma(\mathbf{E}, w))=m((S \otimes \mathrm{id})(\Delta(\Gamma(\mathbf{E}, w)))) \\
& =m\left((S \otimes \mathrm{id})\left(\sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}} \Gamma\left(\left.\mathbf{E}\right|_{P},\left.w\right|_{P}\right) \otimes \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right)\right)\right)
\end{aligned}
$$

(by the lemma on $\Delta(\Gamma(\mathbf{E}, w))$)
$=\sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}} S\left(\Gamma\left(\left.\mathbf{E}\right|_{P},\left.w\right|_{P}\right)\right) \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right)$

- Thus,

$$
\begin{aligned}
0 & =(m \circ(S \otimes \mathrm{id}) \circ \Delta)(\Gamma(\mathbf{E}, w))=m((S \otimes \mathrm{id})(\Delta(\Gamma(\mathbf{E}, w)))) \\
& =m\left((S \otimes \mathrm{id})\left(\sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}} \Gamma\left(\left.\mathbf{E}\right|_{P},\left.w\right|_{P}\right) \otimes \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right)\right)\right)
\end{aligned}
$$

(by the lemma on $\Delta(\Gamma(\mathbf{E}, w))$)

$$
=\sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}} S\left(\Gamma\left(\left.\mathbf{E}\right|_{P},\left.w\right|_{P}\right)\right) \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right)
$$

- On the other hand, let's say that we can show

$$
0=\sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}}(-1)^{|P|} \Gamma\left(\left.\mathbf{E}^{c}\right|_{P},\left.w\right|_{P}\right) \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right)
$$

Then, I claim, we will be done!

- Why will we be done?
- The two equalities

$$
\begin{aligned}
& 0=\sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}} S\left(\Gamma\left(\left.\mathbf{E}\right|_{P},\left.w\right|_{P}\right)\right) \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right) ; \\
& 0=\sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}}(-1)^{|P|} \Gamma\left(\left.\mathbf{E}^{c}\right|_{P},\left.w\right|_{P}\right) \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right)
\end{aligned}
$$

have the same LHS. The sums on their RHSes are equal to each other term by term except possibly the $(P, Q)=(E, \varnothing)$ terms.

- Why will we be done?
- The two equalities

$$
\begin{aligned}
& 0=\sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}} S\left(\Gamma\left(\left.\mathbf{E}\right|_{P},\left.w\right|_{P}\right)\right) \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right) ; \\
& 0=\sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}}(-1)^{|P|} \Gamma\left(\left.\mathbf{E}^{c}\right|_{P},\left.w\right|_{P}\right) \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right)
\end{aligned}
$$

have the same LHS. The sums on their RHSes are equal to each other term by term except possibly the $(P, Q)=(E, \varnothing)$ terms.

- Why? We need to show that if $(P, Q) \in$ Adm \mathbf{E} satisfies $(P, Q) \neq(E, \varnothing)$, then $\left.S\left(\Gamma\left(\left.\mathbf{E}\right|_{P},\left.w\right|_{P}\right)\right)=(-1)^{|P|} \Gamma\left(\left.\mathbf{E}^{c}\right|_{P},\left.w\right|_{P}\right)\right)$.
- This is easy: Check that $\left.\mathbf{E}\right|_{P}$ is tertispecial and that $\left(\left.\mathbf{E}\right|_{P}\right)^{c}=\left.\mathbf{E}^{c}\right|_{P}$. Now, $|P|<|E|$, so the induction hypothesis yields $S\left(\Gamma\left(\left.\mathbf{E}\right|_{P},\left.w\right|_{P}\right)\right)=$

$$
\left.(-1)^{|P|} \Gamma\left(\left(\left.\mathbf{E}\right|_{P}\right)^{c},\left.w\right|_{P}\right)=(-1)^{|P|} \Gamma\left(\left.\mathbf{E}^{c}\right|_{P},\left.w\right|_{P}\right)\right)
$$

- Why will we be done?
- The two equalities

$$
\begin{aligned}
& 0=\sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}} S\left(\Gamma\left(\left.\mathbf{E}\right|_{P},\left.w\right|_{P}\right)\right) \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right) ; \\
& 0=\sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}}(-1)^{|P|} \Gamma\left(\left.\mathbf{E}^{c}\right|_{P},\left.w\right|_{P}\right) \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right)
\end{aligned}
$$

have the same LHS. The sums on their RHSes are equal to each other term by term except possibly the $(P, Q)=(E, \varnothing)$ terms.

- So the $(P, Q)=(E, \varnothing)$ terms must also be equal. But this means $S(\Gamma(\mathbf{E}, w))=(-1)^{|E|} \Gamma\left(\mathbf{E}^{c}, w\right)$.
So, yeah, we will be done then.

The crucial identity

- So it remains to prove

$$
0=\sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}}(-1)^{|P|} \Gamma\left(\left.\mathbf{E}^{c}\right|_{P},\left.w\right|_{P}\right) \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right) .
$$

- We have

$$
\begin{aligned}
& \sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}}(-1)^{|P|} \Gamma\left(\left.\mathbf{E}^{c}\right|_{P},\left.w\right|_{P}\right) \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right) \\
= & \sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}}(-1)^{|P|}\left(\sum_{\sigma \text { is a }\left(P,>_{1},<2\right) \text {-partition }} \mathbf{x}_{\sigma,\left.w\right|_{P}}\right) \\
& \left(\sum_{\tau \text { is a }\left(Q,<1_{1}, \ll_{2}\right) \text {-partition }} \mathbf{x}_{\left.\tau,\left.w\right|_{Q}\right)}\right)
\end{aligned}
$$

- We have

$$
\begin{aligned}
& \sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}}(-1)^{|P|} \Gamma\left(\left.\mathbf{E}^{c}\right|_{P},\left.w\right|_{P}\right) \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right) \\
&=\sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}}(-1)^{|P|} \sum_{\substack{\sigma: P \rightarrow\{1,2,3, \ldots\} ; \\
\tau: Q \rightarrow\{1,2,3, \ldots\} ; \\
\sigma \text { is a }(P,>1,<2) \text {-partition; } \\
\tau \text { is a }(Q,<1,<2) \text {-partition }}} \mathbf{x}_{\sigma, w \mid P} \mathbf{x}_{\tau,\left.w\right|_{Q}}
\end{aligned}
$$

- We have

$$
\begin{aligned}
& \sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}}(-1)^{|P|} \Gamma\left(\left.\mathbf{E}^{c}\right|_{P},\left.w\right|_{P}\right) \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right) \\
= & \sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}}(-1)^{|P|} \sum_{\substack{\pi: E \rightarrow\{1,2,3, \ldots\} ; \\
\left.\pi\right|_{P} \text { is a }\left(P,>_{1},<2\right)-\text { partition; } \\
\left.\pi\right|_{Q} \text { is a }\left(Q,<_{1},<2\right) \text {-partition }}} \underbrace{\mathbf{x}_{\left.\pi\right|_{P},\left.w\right|_{P} \mathbf{x}_{\pi}}}_{=\mathbf{x}_{\pi, w}} .
\end{aligned}
$$

- We have

$$
\begin{aligned}
& \sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}}(-1)^{|P|} \Gamma\left(\left.\mathbf{E}^{c}\right|_{P},\left.w\right|_{P}\right) \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right) \\
& =\sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}}(-1)^{|P|} \sum_{\substack{\pi: E \rightarrow\{1,2,3, \ldots\} ; \\
\left.\pi\right|_{P} \text { is a }\left(P,>_{1},<2\right) \text {-partition; } \\
\left.\pi\right|_{Q} \text { is a }\left(Q,<_{1},<2\right) \text {-partition }}} \mathbf{x}_{\pi, w} .
\end{aligned}
$$

- We have

$$
\sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}}(-1)^{|P|} \Gamma\left(\left.\mathbf{E}^{c}\right|_{P},\left.w\right|_{P}\right) \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right)
$$

- We have

$$
\sum_{(P, Q) \in \operatorname{Adm} \mathbf{E}}(-1)^{|P|} \Gamma\left(\left.\mathbf{E}^{c}\right|_{P},\left.w\right|_{P}\right) \Gamma\left(\left.\mathbf{E}\right|_{Q},\left.w\right|_{Q}\right)
$$

$$
=\sum_{\pi: E \rightarrow\{1,2,3, \ldots\}}\left(\sum_{\substack{(P, Q) \in \operatorname{Adm} \mathbf{E} ; \\ \pi \mid P \text { is a }(P,>1,<2) \text {-partition; } \\\left.\pi\right|_{Q} \text { is a }(Q,<1,<2) \text {-partition }}}(-1)^{|P|}\right) \mathbf{x}_{\pi, w} .
$$

- So it suffices to prove that, for every map
$\pi: E \rightarrow\{1,2,3, \ldots\}$, we have

$$
\sum_{\substack{\left.(P, Q) \in \operatorname{Adm} \mathbf{E}_{;} \\ \pi\right|_{P} \text { is a }(P,>1,<2) \text {-partition; } \\\left.\pi\right|_{Q} \text { is a }(Q,<1,<2) \text {-partition }}}(-1)^{|P|}=0 .
$$

- We must prove that, for every map $\pi: E \rightarrow\{1,2,3, \ldots\}$, we have

$$
\sum_{\substack{\left.(P, Q) \in \operatorname{Adm} \mathbf{E}_{;} \\ \pi\right|_{P} \text { is a }(P,>1, \ll 2) \text {-partition; } \\\left.\pi\right|_{Q} \text { is a }\left(Q,<1_{1},<2\right) \text {-partition }}}(-1)^{|P|}=0 .
$$

- We must prove that, for every map $\pi: E \rightarrow\{1,2,3, \ldots\}$, we have

$$
\sum_{\substack{(P, Q) \in \operatorname{Adm} \mathbf{E} ; \\\left.\pi\right|_{P} \text { is a }(P,>1,<2) \text {-partition; } \\\left.\pi\right|_{Q} \text { is a }(Q,<1,<2) \text {-partition }}}(-1)^{|P|}=0 .
$$

- The strategy: Find an involution T on the set of all $(P, Q) \in \operatorname{Adm} \mathbf{E}$ satisfying the two conditions under the summation sign. Show that this T reverses the sign of $(-1)^{|P|}$.
- We must prove that, for every map $\pi: E \rightarrow\{1,2,3, \ldots\}$, we have

$$
\sum_{\substack{\left.(P, Q) \in A d m \\ \pi\right|_{P} \text { is a } \\\left.\pi\right|_{Q} \text { is a }(P,>1, \lll) \text {-partition; }}}(-1)^{|P|}=0 .
$$

- The strategy: Find an involution T on the set of all $(P, Q) \in \operatorname{Adm} \mathbf{E}$ satisfying the two conditions under the summation sign. Show that this T reverses the sign of $(-1)^{|P|}$.
- The definition of T is simple: Let

$$
F=\{e \in E \mid \pi(e) \text { is minimum }\} .
$$

Choose minimal element f of the poset $\left(F,<_{2}\right)$ (that is, no $g \in F$ satisfies $g<2 f)$. Now, the map T sends a $(P, Q) \in Z$ to $\left\{\begin{array}{ll}(P \cup\{f\}, Q \backslash\{f\}), & \text { if } f \notin P ; \\ (P \backslash\{f\}, Q \cup\{f\}), & \text { if } f \in P\end{array}\right.$.

- Not so simple: the proof that it works. See the preprint.

A few words on the generalization with the group action

- The generalization where G acts on E is proven by reduction to the Malvenuto-Reutenauer formula. The reduction uses a "quotient poset" construction (idea from Jochemko).

A few words on the generalization with the group action

- The generalization where G acts on E is proven by reduction to the Malvenuto-Reutenauer formula. The reduction uses a "quotient poset" construction (idea from Jochemko).
- Neat exercise (a classical lemma used in the proof): Let $(E,<)$ be a poset, and G be a finite group acting on E, preserving $<$. Let $g \in G$. Let E^{g} be the set of all orbits of g on E. Define a binary relation $<^{g}$ on E^{g} by
$\left(u<^{g} v\right) \Longleftrightarrow$ (there exist $a \in u$ and $b \in v$ such that $a<b$).
Then, $\left(E^{g},<^{g}\right)$ is a poset.
Actually, g can be replaced by a subgroup here.

References

This chapter was about:

- Darij Grinberg, Double posets and the antipode of QSym.

The work incorporated ideas from:

- Ira M. Gessel, Multipartite P-partitions and Inner Products of Skew Schur Functions, 1984. (I think QSym originates here. Antipodes are not studied, but lots of the groundwork is laid.)
- Claudia Malvenuto, Christophe Reutenauer, Plethysm and conjugation of quasi-symmetric functions, 1995. (Original statement of Malvenuto-Reutenauer antipode formula, relatively clumsy (IMHO).)
- Claudia Malvenuto, Christophe Reutenauer, A self paired Hopf algebra on double posets and a Littlewood-Richardson rule, 2011. (The notion of a double poset is introduced here, along with the $\Gamma(\mathbf{E}, w)$ and the lemma about $\Delta(\Gamma(\mathbf{E}, w))$.
Surprisingly, no connection is made to the antipode formula!)
- Katharina Jochemko, Order polynomials and Pólya's enumeration theorem, 2014. (The group action comes from here, though the setting is a lot less general and the claims weaker.)

This chapter was about:

- Darij Grinberg, Double posets and the antipode of QSym.

Related work:

- Carolina Benedetti, Bruce Sagan, Antipodes and involutions, 2015. (Other Hopf algebras. For QSym, much weaker result, but the method is more combinatorial.)
- See references in my preprint for more.

Thanks to Katharina Jochemko for the original inspiration, to
Victor Reiner for teaching me P-partitions, and to you for listening!

Chapter 2

Chapter 2

The Bernstein homomorphism

Reference:

- Darij Grinberg, The Bernstein homomorphism via Aguiar-Bergeron-Sottile universality.
- We shall need some more general Hopf algebra theory.
- If H is a graded \mathbf{k}-module $\left(H=\bigoplus_{n \in \mathbb{N}} H_{n}\right.$, where $\left.0 \in \mathbb{N}\right)$, then
- for any $n \in \mathbb{N}$, we let $\pi_{n}: H \rightarrow H$ denote the canonical projection onto H_{n};
- for any composition $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, we let $\pi_{\alpha}: H^{\otimes k} \rightarrow H^{\otimes k}$ denote the map $\pi_{a_{1}} \otimes \pi_{a_{2}} \otimes \cdots \otimes \pi_{a_{k}}$.

More on algebras

- For any \mathbf{k}-algebra A and any $k \in \mathbb{N}$, we define a \mathbf{k}-linear $m^{(k-1)}: A^{\otimes k} \rightarrow k$ recursively as follows: We set $m^{(-1)}=u_{A}$ (the unity map, sending 1_{k} to 1_{A}), $m^{(1)}=\mathrm{id}_{A}$ and

$$
m^{(k)}=m \circ\left(\operatorname{id}_{A} \otimes m^{(k-1)}\right) \quad \text { for every } k \geq 1
$$

The maps $m^{(k-1)}: A^{\otimes k} \rightarrow A$ are called the iterated multiplication maps of A.

- Or, in simpler language: $m^{(k-1)}$ is the \mathbf{k}-linear map $A^{\otimes k} \rightarrow A$ which sends every $a_{1} \otimes a_{2} \otimes \cdots \otimes a_{k} \in A^{\otimes k}$ to $a_{1} a_{2} \cdots a_{k}$.

More on algebras

- For any \mathbf{k}-algebra A and any $k \in \mathbb{N}$, we define a \mathbf{k}-linear $m^{(k-1)}: A^{\otimes k} \rightarrow k$ recursively as follows: We set $m^{(-1)}=u_{A}$ (the unity map, sending 1_{k} to 1_{A}), $m^{(1)}=\mathrm{id}_{A}$ and

$$
m^{(k)}=m \circ\left(\operatorname{id}_{A} \otimes m^{(k-1)}\right) \quad \text { for every } k \geq 1
$$

The maps $m^{(k-1)}: A^{\otimes k} \rightarrow A$ are called the iterated multiplication maps of A.

- Or, in simpler language: $m^{(k-1)}$ is the \mathbf{k}-linear map $A^{\otimes k} \rightarrow A$ which sends every $a_{1} \otimes a_{2} \otimes \cdots \otimes a_{k} \in A^{\otimes k}$ to $a_{1} a_{2} \cdots a_{k}$.
- But we want to dualize... and the simpler language won't help us do this.

More on coalgebras

- For any \mathbf{k}-coalgebra C and any $k \in \mathbb{N}$, we define a \mathbf{k}-linear $\operatorname{map} \Delta^{(k-1)}: C \rightarrow C^{\otimes k}$ recursively as follows: We set $\Delta^{(-1)}=\varepsilon_{C}$ (the counit), $\Delta^{(1)}=\mathrm{id}_{C}$ and

$$
\Delta^{(k)}=\left(\operatorname{id}_{C} \otimes \Delta^{(k-1)}\right) \circ \Delta \quad \text { for every } k \geq 1
$$

The maps $\Delta^{(k-1)}: C \rightarrow C^{\otimes k}$ are called the iterated comultiplication maps of C.

- Now to "something completely different": a second way to turn QSym into a k-bialgebra. (Implicit in Gessel's 1984 paper.)
- The counit, again, is easy to define:

$$
\varepsilon_{P}(f)=f(1,0,0,0, \ldots)
$$

Equivalently, $\varepsilon_{P}\left(M_{\alpha}\right)=1$ if the composition α has ≤ 1 entry, and $=0$ otherwise.

- The comultiplication, the safe way: If α is a composition, then set

$$
\Delta_{P}\left(M_{\alpha}\right)=\sum_{A} M_{\text {row } A} \otimes M_{\text {column } A}
$$

where the sum is over all matrices A with entries in \mathbb{N} such that

- no row of A is the zero vector;
- no column of A is the zero vector;
- reading the entries of A (from left to right, row by row, starting with the top row) gives the composition α, possibly with some zeroes interspersed.
Here,
- row A denotes the entrywise sum of all columns of A;
- column A denotes the entrywise sum of all rows of A.
- The comultiplication, the "right" way:

$$
\begin{aligned}
\Delta(f)=f & \left(x_{1} y_{1}<x_{1} y_{2}<x_{1} y_{3}<\cdots\right. \\
& <x_{2} y_{1}<x_{2} y_{2}<x_{2} y_{3}<\cdots \\
& \left.<x_{3} y_{1}<x_{3} y_{2}<x_{3} y_{3}<\cdots\right)
\end{aligned}
$$

(these are all products $x_{i} y_{j}$ in lexicographic order). Again, we pretend that this is all well-defined.

- The comultiplication, the "right" way:

$$
\begin{aligned}
\Delta(f)=f & \left(x_{1} y_{1}<x_{1} y_{2}<x_{1} y_{3}<\cdots\right. \\
& <x_{2} y_{1}<x_{2} y_{2}<x_{2} y_{3}<\cdots \\
& \left.<x_{3} y_{1}<x_{3} y_{2}<x_{3} y_{3}<\cdots\right)
\end{aligned}
$$

(these are all products $x_{i} y_{j}$ in lexicographic order). Again, we pretend that this is all well-defined.

- The comultiplication Δ_{P} and the counit ε_{P} make the \mathbf{k}-algebra QSym into a \mathbf{k}-bialgebra (but not graded and not a Hopf algebra). They are called the second, or internal, comultiplication and counit.

ABS (Aguiar-Bergeron-Sottile) universal property, part 1

- Aguiar, Bergeron and Sottile, in their 2003 paper "Combinatorial Hopf algebras and generalized Dehn-Sommerville relations" (updated version: http: //www.math.cornell.edu/~maguiar/CHalgebra.pdf) proved a universal property (henceforth ABS property) for QSym.
- The proof is surprisingly simple (the dual of QSym is NSym, which is a free algebra and thus has a universal property; there are a few more details, but that's basically it), but the property quite useful.

ABS (Aguiar-Bergeron-Sottile) universal property, part 1

- Aguiar, Bergeron and Sottile, in their 2003 paper "Combinatorial Hopf algebras and generalized Dehn-Sommerville relations" (updated version: http: //www.math.cornell.edu/~maguiar/CHalgebra.pdf) proved a universal property (henceforth ABS property) for QSym.
- The proof is surprisingly simple (the dual of QSym is NSym, which is a free algebra and thus has a universal property; there are a few more details, but that's basically it), but the property quite useful.
- The version you'll see here is not the strongest.

ABS (Aguiar-Bergeron-Sottile) universal property, part 2

- ABS property:

Let H be a connected graded Hopf algebra (over the commutative ring \mathbf{k}). Let $\zeta: H \rightarrow \mathbf{k}$ be a \mathbf{k}-algebra homomorphism.

ABS (Aguiar-Bergeron-Sottile) universal property, part 2

- ABS property:

Let H be a connected graded Hopf algebra (over the commutative ring \mathbf{k}). Let $\zeta: H \rightarrow \mathbf{k}$ be a \mathbf{k}-algebra homomorphism.
(a) Then, there exists a unique graded \mathbf{k}-coalgebra homomorphism $\Psi: H \rightarrow$ QSym for which the diagram

is commutative.

ABS (Aguiar-Bergeron-Sottile) universal property, part 2

- ABS property:

Let H be a connected graded Hopf algebra (over the commutative ring \mathbf{k}). Let $\zeta: H \rightarrow \mathbf{k}$ be a \mathbf{k}-algebra homomorphism.
(a) Then, there exists a unique graded \mathbf{k}-coalgebra homomorphism $\Psi: H \rightarrow$ QSym for which the diagram

is commutative.
(b) This Ψ is a \mathbf{k}-Hopf algebra homomorphism.

ABS (Aguiar-Bergeron-Sottile) universal property, part 3

- ABS property (continued):
(c) For every composition $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, define a \mathbf{k}-linear map $\zeta_{\alpha}: H \rightarrow \mathbf{k}$ as the composition

$$
H \xrightarrow{\Delta^{(k-1)}} H^{\otimes k} \xrightarrow{\pi_{\alpha}} H^{\otimes k} \xrightarrow{\zeta^{\otimes k}} \mathbf{k}^{\otimes k} \xrightarrow{\cong} m^{(k-1)} .
$$

(Most of these arrows have been defined a few slides before.) Then, the unique Ψ above is given by the formula

$$
\Psi(h)=\sum_{\alpha \in \text { Comp }} \zeta_{\alpha}(h) \cdot M_{\alpha} \quad \text { for every } h \in H
$$

(in particular, the sum on the right hand side of this equality has only finitely many nonzero addends).

ABS (Aguiar-Bergeron-Sottile) universal property, part 3

- ABS property (continued):

(c) For every composition $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, define a \mathbf{k}-linear map $\zeta_{\alpha}: H \rightarrow \mathbf{k}$ as the composition

$$
H \xrightarrow{\Delta^{(k-1)}} H^{\otimes k} \xrightarrow{\pi_{\alpha}} H^{\otimes k} \xrightarrow{\zeta^{\otimes k}} \mathbf{k}^{\otimes k} \xrightarrow{\cong} m^{(k-1)} .
$$

(Most of these arrows have been defined a few slides before.) Then, the unique Ψ above is given by the formula

$$
\Psi(h)=\sum_{\alpha \in \text { Comp }} \zeta_{\alpha}(h) \cdot M_{\alpha} \quad \text { for every } h \in H
$$

(in particular, the sum on the right hand side of this equality has only finitely many nonzero addends).
Note: Alternative definition of ζ_{α}, if you know about convolution:

$$
\zeta_{\alpha}=\left(\zeta \circ \pi_{a_{1}}\right) \star\left(\zeta \circ \pi_{a_{2}}\right) \star \cdots \star\left(\zeta \circ \pi_{a_{k}}\right) .
$$

ABS (Aguiar-Bergeron-Sottile) universal property, part 3

- ABS property (continued):

(c) For every composition $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, define a \mathbf{k}-linear map $\zeta_{\alpha}: H \rightarrow \mathbf{k}$ as the composition

$$
H \xrightarrow{\Delta^{(k-1)}} H^{\otimes k} \xrightarrow{\pi_{\alpha}} H^{\otimes k} \xrightarrow{\zeta^{\otimes k}} \mathbf{k}^{\otimes k} \xrightarrow[\cong]{\cong} \mathbf{m ^ { (k - 1) }} \mathbf{k} .
$$

(Most of these arrows have been defined a few slides before.) Then, the unique Ψ above is given by the formula

$$
\Psi(h)=\sum_{\alpha \in \text { Comp }} \zeta_{\alpha}(h) \cdot M_{\alpha} \quad \text { for every } h \in H
$$

(in particular, the sum on the right hand side of this equality has only finitely many nonzero addends).
(d) Assume that the \mathbf{k}-coalgebra H is cocommutative. Then, the unique Ψ above satisfies $\Psi(H) \subseteq \Lambda$, where Λ is the \mathbf{k}-algebra of symmetric functions over \mathbf{k}.

What is the connection?

- So the ABS property involves the second counit, ε_{p}. It characterizes (QSym, ε_{p}) as a terminal object in an arrow category (of connected graded Hopf algebras with a \mathbf{k}-algebra homomorphism to \mathbf{k}).
- What about the second comultiplication, Δ_{P} ?
- So the ABS property involves the second counit, ε_{P}. It characterizes (QSym, ε_{p}) as a terminal object in an arrow category (of connected graded Hopf algebras with a k-algebra homomorphism to \mathbf{k}).
- What about the second comultiplication, Δ_{P} ?
- Surprising (for me) observation: We get Δ_{P} "for free" from the ABS property.
- How?
- So the ABS property involves the second counit, ε_{P}. It characterizes (QSym, ε_{p}) as a terminal object in an arrow category (of connected graded Hopf algebras with a \mathbf{k}-algebra homomorphism to \mathbf{k}).
- What about the second comultiplication, Δ_{P} ?
- Surprising (for me) observation: We get Δ_{P} "for free" from the ABS property.
- How?
-

$$
\begin{aligned}
& \Delta_{P}: \text { QSym } \rightarrow \text { QSym } \otimes \text { QSym; } \\
& \psi: H \rightarrow \text { QSym. }
\end{aligned}
$$

These don't look like they match...

- So the ABS property involves the second counit, ε_{p}. It characterizes (QSym, ε_{p}) as a terminal object in an arrow category (of connected graded Hopf algebras with a k-algebra homomorphism to \mathbf{k}).
- What about the second comultiplication, Δ_{P} ?
- Surprising (for me) observation: We get Δ_{P} "for free" from the ABS property.
- How?
-

$$
\begin{aligned}
\Delta_{P} & : \text { QSym } \rightarrow \text { QSym } \otimes \text { QSym; } \\
\Psi & : H \rightarrow \text { QSym } .
\end{aligned}
$$

These don't look like they match...

- ... until we change the base ring (a.k.a. extend scalars).
- Idea: Regard QSym \otimes QSym as "QSym over QSym".
- For greater generality, we can replace some of the QSyms by a commutative algebra A.
- Let A be a commutative \mathbf{k}-algebra. Then, A is just as good a base ring as \mathbf{k}. Every \mathbf{k}-coalgebra H gives rise to an A-coalgebra $\underline{A} \otimes H$ by extension of scalars. Here, \underline{A} just denotes the \mathbf{k}-algebra A, with all its additional structure forgotten. (So far A has no additional structure, but we will later set $A=$ QSym, and then there will be a grading and a coalgebra structure to forget.)
- Similarly, every k-Hopf algebra H induces an A-Hopf algebra $\underline{A} \otimes H$.
Similarly for algebras, bialgebras, graded Hopf algebras, ...
- For example, $\underline{A} \otimes \mathrm{QSym} \cong \mathrm{QSym}_{A}$, where QSym_{A} denotes the graded Hopf algebra QSym defined over A instead of \mathbf{k}.
- Let A be a commutative \mathbf{k}-algebra. Then, A is just as good a base ring as \mathbf{k}. Every \mathbf{k}-coalgebra H gives rise to an A-coalgebra $\underline{A} \otimes H$ by extension of scalars. Here, \underline{A} just denotes the \mathbf{k}-algebra A, with all its additional structure forgotten. (So far A has no additional structure, but we will later set $A=$ QSym, and then there will be a grading and a coalgebra structure to forget.)
- Similarly, every k-Hopf algebra H induces an A-Hopf algebra $\underline{A} \otimes H$.
Similarly for algebras, bialgebras, graded Hopf algebras, ...
- For example, $\underline{A} \otimes$ QSym \cong QSym $_{A}$, where QSym_{A} denotes the graded Hopf algebra QSym defined over A instead of \mathbf{k}.
- Let H be a k-coalgebra, and let G be an A-coalgebra. A \mathbf{k}-linear map $f: H \rightarrow G$ is said to be a $(\mathbf{k}, \underline{A})$-coalgebra homomorphism if the A-linear map

$$
\underline{A} \otimes H \rightarrow G, \quad a \otimes h \mapsto a f(h)
$$

is an A-coalgebra homomorphism.

ABS property after change of bases, part 1

- Consequence of $A B S$ property:

Let A be a commutative \mathbf{k}-algebra. Let H be a connected graded Hopf algebra (over the commutative ring \mathbf{k}). Let $\xi: H \rightarrow A$ be a \mathbf{k}-algebra homomorphism.
(a) Then, there exists a unique graded (\mathbf{k}, A)-coalgebra homomorphism $\equiv: H \rightarrow \underline{A} \otimes$ QSym for which the diagram

is commutative.

ABS property after change of bases, part 1

- Consequence of ABS property:

Let A be a commutative \mathbf{k}-algebra. Let H be a connected graded Hopf algebra (over the commutative ring \mathbf{k}). Let $\xi: H \rightarrow A$ be a \mathbf{k}-algebra homomorphism.
(a) Then, there exists a unique graded (\mathbf{k}, A)-coalgebra homomorphism $\equiv: H \rightarrow \underline{A} \otimes$ QSym for which the diagram

is commutative.
(b) This \equiv is a \mathbf{k}-algebra homomorphism.

ABS property after change of bases, part 2

- Consequence of ABS property (continued):
(c) For every composition $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, define a \mathbf{k}-linear $\operatorname{map} \xi_{\alpha}: H \rightarrow A$ as the composition

$$
H \xrightarrow{\Delta^{(k-1)}} H^{\otimes k} \xrightarrow{\pi_{\alpha}} H^{\otimes k} \xrightarrow{\xi^{\otimes k}} A^{\otimes k} \xrightarrow{m^{(k-1)}} A .
$$

Then, the unique \equiv above is given by the formula

$$
\equiv(h)=\sum_{\alpha \in \text { Comp }} \xi_{\alpha}(h) \otimes M_{\alpha} \quad \text { for every } h \in H
$$

(in particular, the sum on the right hand side of this equality has only finitely many nonzero addends).
Note: Alternative definition of ξ_{α}, if you know about convolution:

$$
\xi_{\alpha}=\left(\xi \circ \pi_{a_{1}}\right) \star\left(\xi \circ \pi_{a_{2}}\right) \star \cdots \star\left(\xi \circ \pi_{a_{k}}\right) .
$$

ABS property after change of bases, part 2

- Consequence of ABS property (continued):
(c) For every composition $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, define a \mathbf{k}-linear $\operatorname{map} \xi_{\alpha}: H \rightarrow A$ as the composition

$$
H \xrightarrow{\Delta^{(k-1)}} H^{\otimes k} \xrightarrow{\pi_{\alpha}} H^{\otimes k} \xrightarrow{\xi^{\otimes k}} A^{\otimes k} \xrightarrow{m^{(k-1)}} A .
$$

Then, the unique \equiv above is given by the formula

$$
\equiv(h)=\sum_{\alpha \in \text { Comp }} \xi_{\alpha}(h) \otimes M_{\alpha} \quad \text { for every } h \in H
$$

(in particular, the sum on the right hand side of this equality has only finitely many nonzero addends).
(d) Assume that the \mathbf{k}-coalgebra H is cocommutative. Then, the unique \equiv above satisfies $\equiv(H) \subseteq \underline{A} \otimes \Lambda$, where Λ is the \mathbf{k}-algebra of symmetric functions over \mathbf{k}.

ABS property after change of bases, part 3

- Proof idea: Apply the ABS property to $\underline{A}, \underline{A} \otimes H$ and ξ^{\sharp} instead of \mathbf{k}, H and ζ, where

$$
\xi^{\sharp}: \underline{A} \otimes H \rightarrow \underline{A}, \quad a \otimes h \mapsto a \xi(h) .
$$

- There is a bijection between the \mathbf{k}-linear maps $H \rightarrow \underline{A} \otimes G$ and the A-linear maps $\underline{A} \otimes H \rightarrow \underline{A} \otimes G$ (where G is any A-module). (This is just the adjointness of induction and restriction.) Use it back and forth, many times.
- Some amount of work required to check that this bijection takes maps where you expect it to take them, and that all the identifications (e.g., ε_{P} defined over A is identified with $\mathrm{id}_{A} \otimes \varepsilon_{P}$) play well together. (See the preprint.)
- Apply the Consequence of ABS property to $A=H$ and $\xi=$ id. Obtain the following:
- Bernstein homomorphism theorem:

Let H be a commutative connected graded Hopf algebra (over the commutative ring \mathbf{k}).
(a) Then, there exists a unique graded (\mathbf{k}, H)-coalgebra homomorphism $\equiv: H \rightarrow \underline{H} \otimes$ QSym for which the diagram

is commutative (that is, we have $\left.\mathrm{id}_{H}=\left(\mathrm{id}_{H} \otimes \varepsilon_{P}\right) \circ \equiv\right)$.
Denote this \equiv by β_{H}.

- Apply the Consequence of ABS property to $A=H$ and $\xi=$ id. Obtain the following:
- Bernstein homomorphism theorem:

Let H be a commutative connected graded Hopf algebra (over the commutative ring \mathbf{k}).
(a) Then, there exists a unique graded (\mathbf{k}, H)-coalgebra homomorphism $\equiv: H \rightarrow \underline{H} \otimes$ QSym for which the diagram

is commutative (that is, we have $\left.\mathrm{id}_{H}=\left(\mathrm{id}_{H} \otimes \varepsilon_{P}\right) \circ \equiv\right)$.
Denote this \equiv by β_{H}.
(b) This β_{H} is a \mathbf{k}-algebra homomorphism.

- Bernstein homomorphism theorem (continued):
(c) For every composition $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, define a \mathbf{k}-linear $\operatorname{map} \xi_{\alpha}: H \rightarrow \mathbf{k}$ as the composition

$$
H \xrightarrow{\Delta^{(k-1)}} H^{\otimes k} \xrightarrow{\pi_{\alpha}} H^{\otimes k} \xrightarrow{m^{(k-1)}} A .
$$

Then, β_{H} ($=$ the unique \equiv above) is given by the formula

$$
\beta_{H}(h)=\sum_{\alpha \in \text { Comp }} \xi_{\alpha}(h) \otimes M_{\alpha} \quad \text { for every } h \in H
$$

(in particular, the sum on the right hand side of this equality has only finitely many nonzero addends).
Note: Alternative definition of ξ_{α}, if you know about convolution:

$$
\xi_{\alpha}=\pi_{a_{1}} \star \pi_{a_{2}} \star \cdots \star \pi_{a_{k}} .
$$

- Bernstein homomorphism theorem (continued):
(c) For every composition $\alpha=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$, define a \mathbf{k}-linear $\operatorname{map} \xi_{\alpha}: H \rightarrow \mathbf{k}$ as the composition

$$
H \xrightarrow{\Delta^{(k-1)}} H^{\otimes k} \xrightarrow{\pi_{\alpha}} H^{\otimes k} \xrightarrow{m^{(k-1)}} A .
$$

Then, β_{H} ($=$ the unique \equiv above) is given by the formula

$$
\beta_{H}(h)=\sum_{\alpha \in \text { Comp }} \xi_{\alpha}(h) \otimes M_{\alpha} \quad \text { for every } h \in H
$$

(in particular, the sum on the right hand side of this equality has only finitely many nonzero addends).
(d) Assume that the \mathbf{k}-coalgebra H is cocommutative. Then, $\beta_{H}(H) \subseteq \underline{H} \otimes \Lambda$, where Λ is the \mathbf{k}-algebra of symmetric functions over \mathbf{k}.

- Bernstein homomorphism theorem (continued): Additionally, it is not hard to show: (e) Let τ denote the twist map QSym \otimes QSym \rightarrow QSym \otimes QSym, $a \otimes b \mapsto b \otimes a$. Let $\Delta_{P}^{\prime}=\tau \circ \Delta_{P}$ be the "twisted second comultiplication" of QSym.
Then,

$$
\beta_{\mathrm{QSym}}=\Delta_{P}^{\prime}
$$

Thus, we have obtained Δ_{P}^{\prime} as a particular case of the Bernstein homomorphism.

- Bernstein homomorphism theorem (continued):
- The uniqueness part of the Consequence of $A B S$ property can be used to prove identities with β_{H}. For example:
(f) The diagram

is commutative.
Thus, every commutative connected graded Hopf algebra H becomes a comodule over the "second bialgebra" QSym.
- This easily gives an alternative proof of the fact that the second bialgebra is indeed a bialgebra (coassociative, etc.).
- The (restricted) Bernstein homomorphism $\beta_{H}: H \rightarrow \underline{H} \otimes \Lambda$ for commutative-and-cocommutative H appeared in Hazewinkel's "Witt vectors", $\S 18.24$. It is attributed to Joseph N. Bernstein (who apparently used it to classify PSH-algebras - see Zelevinsky's LNM book).
- I think the more general "Bernstein homomorphism" $\beta_{H}: H \rightarrow \underline{H} \otimes$ QSym constructed above (not assuming cocommutativity) is new.
- That said, the Marne-la-Vallée school has its own methods (alphabets, generalized Cauchy kernels, etc.) which probably lead to many of the same results. I don't know the details :(
- Bernstein homomorphism theorem (continued): (g) (Same notations as before.) We have

$$
\beta_{H} \circ S_{H}=\left(\mathrm{id}_{H} \otimes S_{\mathrm{QSym}}\right) \circ \beta_{H},
$$

where S_{G} means the antipode of a Hopf algebra G.

- Again, this comes "for free" out of universal properties.
- Probably more can be gotten this way. Idea:
β_{H} is injective (since $\left.\left(\mathrm{id}_{H} \otimes \varepsilon_{P}\right) \circ \beta_{H}=\mathrm{id}_{H}\right)$, and thus "embeds" H into $\underline{H} \otimes$ QSym \cong QSym $_{H}$. Scare quotes because the "embedding" changes the base ring. But $\underline{H} \otimes H \rightarrow \underline{H} \otimes$ QSym $\cong \operatorname{QSym}_{H}, \quad a \otimes b \mapsto a \beta_{H}(b)$ is a honest graded H-Hopf algebra homomorphism.
- Bernstein homomorphism theorem (continued): (g) (Same notations as before.) We have

$$
\beta_{H} \circ S_{H}=\left(\mathrm{id}_{H} \otimes S_{\mathrm{QSym}}\right) \circ \beta_{H},
$$

where S_{G} means the antipode of a Hopf algebra G.

- Again, this comes "for free" out of universal properties.
- Probably more can be gotten this way. Idea:
β_{H} is injective (since $\left.\left(\mathrm{id}_{H} \otimes \varepsilon_{P}\right) \circ \beta_{H}=\mathrm{id}_{H}\right)$, and thus "embeds" H into $\underline{H} \otimes$ QSym \cong QSym $_{H}$. Scare quotes because the "embedding" changes the base ring. But $\underline{H} \otimes H \rightarrow \underline{H} \otimes$ QSym $\cong \operatorname{QSym}_{H}, \quad a \otimes b \mapsto a \beta_{H}(b)$ is a honest graded H-Hopf algebra homomorphism.
\Longrightarrow Propagandistic slogan: Every commutative connected graded Hopf algebra embeds into QSym. (Fine print: over itself. But this should still be useful!)

This chapter was about:

- Darij Grinberg, The Bernstein homomorphism via Aguiar-Bergeron-Sottile universality.

The work incorporated ideas from:

- Andrey V. Zelevinsky, Representations of Finite Classical Groups - A Hopf Algebra Approach, LNM \#869, Springer 1981. (This is where the first "Bernstein homomorphism" appeared.)
- Michiel Hazewinkel, Witt vectors. Part 1, arXiv:0804.3888.
(An unusual introduction to symmetric functions, emphasizing categorical methods (among other things).)
- Marcelo Aguiar, Nantel Bergeron, Frank Sottile, Combinatorial Hopf algebras and generalized Dehn-Sommerville relations.
(The universal property of QSym with several applications.)
Thanks to Marcelo Aguiar for helpful emails!

Chapter 3

Chapter 3

On dual immaculate functions

Reference:

- Darij Grinberg, Dual immaculate creation operators and a dendriform algebra structure on the quasisymmetric functions.
- I won't actually use Schur functions, but I'll talk about an analogue; so let me recall their definition.
- Let λ be a partition. The Young diagram of λ is like a matrix, but the rows have different lengths, and are left-aligned; the i-th row has λ_{i} cells.

Examples:

- The Young diagram of $(3,2)$ has the form

- The Young diagram of $(4,2,1)$ has the form

- A semistandard tableau of shape λ is the Young diagram of λ, filled with positive integers, such that
- the entries in each row are weakly increasing;
- the entries in each column are strictly increasing.

Examples:

- A semistandard tableau of shape $(3,2)$ is

2	3	3
3	5	

- A semistandard tableau of shape $(4,2,1)$ is

2	2	3	4	
3	4			
$y y n n n$	5			

- A semistandard tableau of shape λ is the Young diagram of λ, filled with positive integers, such that
- the entries in each row are weakly increasing;
- the entries in each column are strictly increasing.

Examples:

- The semistandard tableaux of shape $(3,2)$ are the arrays of the form

a	b	c
d	e	

with $a \leq b \leq c$ and $d \leq e$ and $a<d$ and $b<e$.

- A semistandard tableau of shape λ is the Young diagram of λ, filled with positive integers, such that
- the entries in each row are weakly increasing;
- the entries in each column are strictly increasing.

Examples:

- The semistandard tableaux of shape $(3,2)$ are the arrays of the form

a	b	c
d	e	

with $a \leq b \leq c$ and $d \leq e$ and $a<d$ and $b<e$.

- So the semistandard tableaux of a given shape λ are the E-partitions, for a certain double poset \mathbf{E} (which we can choose to be special).

Schur functions, part 3

- Given a partition λ, we define the Schur function s_{λ} as the power series

$$
s_{\lambda}=\sum_{\substack{T \text { is a semistandard } \\ \text { tableau of shape } \lambda}} \mathbf{x}_{T}, \quad \text { where } \mathbf{x}_{T}=\prod_{p \text { is a cell of } T} x_{T(p)}
$$

(where $T(p)$ denotes the entry of T in p).

- Example:
-

$$
s_{(3,2)}=\sum_{\substack{a \leq b \leq c, d \leq e, a<d, b<e}} x_{a} x_{b} x_{c} x_{d} x_{e},
$$

because the semistandard tableau

$$
T=\begin{array}{|l|l|l|}
\hline a & b & c \\
\cline { 1 - 3 } & d & e \\
\hline
\end{array}
$$

contributes the addend $\mathbf{x}_{T}=x_{a} x_{b} x_{c} x_{d} x_{e}$.

- Classical theorem: The Schur function s_{λ} is a symmetric function ($=$ an element of Λ) for any partition λ.
- Classical theorem: The family $\left(s_{\lambda}\right)_{\lambda \in \mathrm{Par}}$ is a basis of the k-module Λ.
- Dual immaculate functions are a quasisymmetric analogue (one of several) of the Schur functions. They have been introduced in 2012 by Berg, Bergeron, Saliola, Serrano and Zabrocki (arXiv:1208.5191v3).
- Their original definition is complicated (they are defined as the dual basis to a basis of NSym, which is defined using "creation operators" - thus the name). We shall give an equivalent definition.
- Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ be a composition. The Young diagram of α is like a matrix, but the rows have different lengths, and are left-aligned; the i-th row has α_{i} cells (there are k rows in total).

Examples:

- The Young diagram of $(3,2)$ has the form

- The Young diagram of $(4,1,2)$ has the form

- An immaculate tableau of shape α is the Young diagram of α, filled with positive integers, such that
- the entries in each row are weakly increasing;
- the entries in the first column are strictly increasing. No requirements on the second, third, etc. columns!

Examples:

- An immaculate tableau of shape $(3,2)$ is

2	3	3
3	3	

- An immaculate tableau of shape $(4,1,2)$ is

2	6	7	7	
3				
5	5			

- An immaculate tableau of shape α is the Young diagram of α, filled with positive integers, such that
- the entries in each row are weakly increasing;
- the entries in the first column are strictly increasing. No requirements on the second, third, etc. columns!

Examples:

- The immaculate tableaux of shape $(3,2)$ are the arrays of the form

a	b	c
d	e	

with $a \leq b \leq c$ and $d \leq e$ and $a<d$.

- An immaculate tableau of shape α is the Young diagram of α, filled with positive integers, such that
- the entries in each row are weakly increasing;
- the entries in the first column are strictly increasing. No requirements on the second, third, etc. columns!

Examples:

- The immaculate tableaux of shape $(3,2)$ are the arrays of the form

a	b	c
d	e	

with $a \leq b \leq c$ and $d \leq e$ and $a<d$.

- So the immaculate tableaux of a given shape α are the E-partitions, for a certain double poset \mathbf{E} (which we can choose to be special).
- Immaculate tableaux can also be viewed as certain labellings of a binary tree (a special one - a "comb").
- Digression (won't be used, but good to know):

I just said that immaculate tableaux can be viewed as certain labellings of a binary tree; here is what I mean:

- The immaculate tableaux of shape $(3,1,2)$ are the arrays

a	b	c
d		
e	f	

satisfying $a \leq b \leq c$ and $e \leq f$ and $a<d<e$. In other words, they are labellings

of the binary tree

such that the label on each node is < to the label on its left child and \leq to the label on its right child.

- Given a composition α, we define the dual immaculate function $\mathfrak{S}_{\alpha}^{*}$ as the power series

$$
\begin{aligned}
& \mathfrak{S}_{\alpha}^{*}=\sum_{\substack{T \text { is an immaculate } \\
\text { tableau of shape } \alpha}} \mathbf{x}_{T}, \quad \text { where } \mathbf{x}_{T}=\prod_{p \text { is a cell of } T} x_{T(p)} \\
& \text { (where } T(p) \text { denotes the entry of } T \text { in } p \text {). }
\end{aligned}
$$

- Example:
-

$$
\mathfrak{S}_{(3,2)}^{*}=\sum_{\substack{a \leq b \leq c, d \leq e, a<d}} x_{a} x_{b} x_{c} x_{d} x_{e},
$$

because the immaculate tableau

$$
T=\begin{array}{|l|l|l|}
\hline a & b & c \\
\hline d & e & \\
\hline
\end{array}
$$

contributes the addend $\mathbf{x}_{T}=x_{a} x_{b} x_{c} x_{d} x_{e}$.

- Theorem: The dual immaculate function $\mathfrak{S}_{\alpha}^{*}$ is a quasisymmetric function (= an element of QSym) for any composition α.
(This is actually pretty obvious, since the immaculate tableaux are E-partitions.)
- Theorem: The family $\left(\mathfrak{S}_{\alpha}^{*}\right)_{\alpha \in \text { Comp }}$ is a basis of the \mathbf{k}-module QSym.
- It is natural to consider this basis an analogue of the Schur functions (although there are other contenders whose claims are equally valid).
- I mentioned the fundamental quasisymmetric functions F_{α} in Chapter 1, but now I'll need to define them in detail.
- I mentioned the fundamental quasisymmetric functions F_{α} in Chapter 1, but now l'll need to define them in detail.
- Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ be a composition of size $n=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$. Define a subset $D(\alpha)$ of $\{1,2, \ldots, n-1\}$ by

$$
D(\alpha)=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}, \ldots, \alpha_{1}+\alpha_{2}+\cdots+\alpha_{k-1}\right\}
$$

$=\{$ all nonempty partial sums of α, except for the total sum $\}$.

- Define a power series F_{α} (also known as L_{α}) by

$$
F_{\alpha}=\sum_{\substack{i_{1} \leq i_{2} \leq \cdots \leq i_{n} ; \\ i_{j}<i_{j+1} \\ \text { whenever } j \in D(\alpha)}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}} .
$$

- I mentioned the fundamental quasisymmetric functions F_{α} in Chapter 1, but now l'll need to define them in detail.
- Let $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ be a composition of size $n=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{k}$. Define a subset $D(\alpha)$ of $\{1,2, \ldots, n-1\}$ by
$D(\alpha)=\left\{\alpha_{1}, \alpha_{1}+\alpha_{2}, \alpha_{1}+\alpha_{2}+\alpha_{3}, \ldots, \alpha_{1}+\alpha_{2}+\cdots+\alpha_{k-1}\right\}$
$=\{$ all nonempty partial sums of α, except for the total sum $\}$.
- Define a power series F_{α} (also known as L_{α}) by

$$
F_{\alpha}=\sum_{\substack{i_{1} \leq i_{2} \leq \cdots \leq i_{n} ; \\ i_{j}<i_{j+1} \text { whenever } j \in D(\alpha)}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}} .
$$

- Theorem: The family $\left(F_{\alpha}\right)_{\alpha \in \text { Comp }}$ is a basis of the \mathbf{k}-module QSym, called Gessel's Fundamental basis.

Fundamental quasisymmetric functions, part 2

- Theorem. For any composition α, we have

$$
F_{\alpha}=\sum_{\substack{\beta \in \text { Comp; } \\ \beta \text { refines } \alpha}} M_{\beta} .
$$

Here, a composition β is said to refine α if and only if β can be obtained by splitting each entry α_{i} of α into several which sum to α_{i}.
Example. (2, 1, 3, 4, 2, 2, 1, 3) refines (3, 3, 8, 4), because \ldots

- Theorem. For any composition α, we have

$$
F_{\alpha}=\sum_{\substack{\beta \in \text { Comp } ; \\ \beta \text { refines } \alpha}} M_{\beta} .
$$

Here, a composition β is said to refine α if and only if β can be obtained by splitting each entry α_{i} of α into several which sum to α_{i}.
Example. $(\underbrace{2,1}_{\text {sum } 3}, \underbrace{3}_{\text {sum } 3}, \underbrace{4,2,2}_{\text {sum } 8}, \underbrace{1,3}_{\text {sum } 4})$ refines $(3,3,8,4)$.

- Theorem. For any composition α, we have

$$
F_{\alpha}=\sum_{\substack{\beta \in \text { Comp; } \\ \beta \in \text { refines } \alpha}} M_{\beta} .
$$

Here, a composition β is said to refine α if and only if β can be obtained by splitting each entry α_{i} of α into several which sum to α_{i}.

- The antipode S of QSym satisfies

$$
S\left(F_{\alpha}\right)=(-1)^{|\alpha|} F_{\omega(\alpha)}
$$

for each $\alpha \in$ Comp. Here, if α is a composition of n, then
$\omega(\alpha)$ is the composition of n defined by
$D(\omega(\alpha))=\{1,2, \ldots, n-1\} \backslash \underbrace{(n-D(\alpha))}$.
$=\{n-g \mid g \in D(\alpha)\}$
(This follows from Chapter 1.)

- Let β be a composition. We define the \mathbf{k}-linear map R_{β}^{\perp} : QSym \rightarrow QSym (called skewing by the ribbon function R_{β}) by

$$
R_{\beta}^{\perp}\left(F_{\alpha}\right)=\left\{\begin{array}{lc}
F_{\left(\alpha_{i+1}, \alpha_{i+2}, \ldots \alpha_{k}\right)}, & \text { if } \beta=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}\right) \text { for } \\
0, & \text { some } 0 \leq i \leq k \\
0, & \text { otherwise }
\end{array}\right.
$$

for every composition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$.
(This works because $\left(F_{\alpha}\right)_{\alpha \in \text { Comp }}$ is a basis of the \mathbf{k}-module QSym.)

- This is not the "official" definition of R_{β}^{\perp}, but is equivalent and self-contained. (The "official" definition involves the Hopf algebra NSym, which is the graded dual of QSym.)
- Let β be a composition. We define the \mathbf{k}-linear map R_{β}^{\perp} : QSym \rightarrow QSym (called skewing by the ribbon function R_{β}) by

$$
R_{\beta}^{\perp}\left(F_{\alpha}\right)=\left\{\begin{array}{lc}
F_{\left(\alpha_{i+1}, \alpha_{i+2}, \ldots \alpha_{k}\right)}, & \text { if } \beta=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}\right) \text { for } \\
0, & \text { some } 0 \leq i \leq k \\
0, & \text { otherwise }
\end{array}\right.
$$

for every composition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$.
(This works because $\left(F_{\alpha}\right)_{\alpha \in \text { Comp }}$ is a basis of the \mathbf{k}-module QSym.)

- This is not the "official" definition of R_{β}^{\perp}, but is equivalent and self-contained. (The "official" definition involves the Hopf algebra NSym, which is the graded dual of QSym.)
- Note: R_{β}^{\perp} lowers the degree by $|\beta|$.
- For each composition α, define a composition $\alpha \odot(m)$ as follows: If $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$, then $\alpha \odot(m)=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k-1}, \alpha_{k}+m\right)$. (If α is the empty composition, then $\alpha \odot(m)=(m)$.)
- For each composition α, define a composition $\alpha \odot(m)$ as follows: If $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$, then $\alpha \odot(m)=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k-1}, \alpha_{k}+m\right)$. (If α is the empty composition, then $\alpha \odot(m)=(m)$.)
- For each positive integer m, define a \mathbf{k}-linear map $\mathbf{W}_{m}:$ QSym \rightarrow QSym by

$$
\mathbf{W}_{m}=\sum_{\alpha \in \text { Comp }}(-1)^{|\alpha|} F_{\alpha \odot(m)} R_{\omega(\alpha)}^{\perp}
$$

(The right hand side converges pointwise: Every $f \in$ QSym is annihilated by all but finitely many addends.)

- This construction is similar to the creation operators defined on NSym for the (non-dual) immaculate functions, and to the Bernstein creation operators on Λ (not the Bernstein homomorphism of Chapter 2, but due to the same Bernstein, and also appearing in Zelevinsky's book).
- For each composition α, define a composition $\alpha \odot(m)$ as follows: If $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$, then $\alpha \odot(m)=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k-1}, \alpha_{k}+m\right)$. (If α is the empty composition, then $\alpha \odot(m)=(m)$.)
- For each positive integer m, define a \mathbf{k}-linear map $\mathbf{W}_{m}:$ QSym \rightarrow QSym by

$$
\mathbf{W}_{m}=\sum_{\alpha \in \text { Comp }}(-1)^{|\alpha|} F_{\alpha \odot(m)} R_{\omega(\alpha)}^{\perp}
$$

(The right hand side converges pointwise: Every $f \in$ QSym is annihilated by all but finitely many addends.)

- Theorem (Zabrocki, G.). For every composition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$, the dual immaculate function $\mathfrak{S}_{\alpha}^{*}$ is

$$
\mathfrak{S}_{\alpha}^{*}=\left(\mathbf{W}_{\alpha_{1}} \circ \mathbf{W}_{\alpha_{2}} \circ \cdots \circ \mathbf{W}_{\alpha_{k}}\right)(1) .
$$

- My proof uses a dendriform algebra structure on QSym. I won't explain the proof here, but I will define this structure.
- I think the structure is foreshadowed (if not implicitly introduced) in the works of Glânffrwd P . Thomas (mainly Frames, Young tableaux, and Baxter sequences). But I need to think about it more carefully.
(There are well-known adjoint functors between Rota-Baxter algebras and dendriform algebras: Kurusch Ebrahimi-Fard, Li Guo, Rota-Baxter Algebras and Dendriform Algebras, arXiv:math/0503647)
- My proof uses a dendriform algebra structure on QSym. I won't explain the proof here, but I will define this structure.
- I think the structure is foreshadowed (if not implicitly introduced) in the works of Glânffrwd P . Thomas (mainly Frames, Young tableaux, and Baxter sequences). But I need to think about it more carefully.
(There are well-known adjoint functors between Rota-Baxter algebras and dendriform algebras: Kurusch Ebrahimi-Fard, Li Guo, Rota-Baxter Algebras and Dendriform Algebras, arXiv:math/0503647)
- Also, does anyone have a copy of Thomas's thesis? (Glânffrwd P. Thomas, Baxter Algebras and Schur Functions, Ph.D. Thesis, University College of Swansea, September 1974.)
- For any monomial \mathfrak{m}, let Supp \mathfrak{m} denote the set $\left\{i \mid x_{i}\right.$ appears in $\left.\mathfrak{m}\right\}$.
- Example. Supp $\left(x_{3}^{5} x_{6} x_{8}\right)=\{3,6,8\}$.
- For any monomial \mathfrak{m}, let Supp \mathfrak{m} denote the set $\left\{i \mid x_{i}\right.$ appears in $\left.\mathfrak{m}\right\}$.
- Example. Supp $\left(x_{3}^{5} x_{6} x_{8}\right)=\{3,6,8\}$.
- We define a binary operation \prec on the \mathbf{k}-module $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ as follows:
- On monomials, it should be given by

$$
\mathfrak{m} \prec \mathfrak{n}=\left\{\begin{array}{cc}
\mathfrak{m} \cdot \mathfrak{n}, & \text { if } \min (\text { Supp } \mathfrak{m})<\min (\text { Supp } \mathfrak{n}) ; \\
0, & \text { if } \min (\text { Supp } \mathfrak{m}) \geq \min (\text { Supp } \mathfrak{n})
\end{array}\right.
$$

for any two monomials \mathfrak{m} and \mathfrak{n}.

- It should be k-bilinear.
- It should be continuous (i.e., its k-bilinearity also applies to infinite \mathbf{k}-linear combinations).
- Well-definedness is pretty clear.
- Example. $\left(x_{2}^{2} x_{4}\right) \prec\left(x_{3}^{2} x_{5}\right)=x_{2}^{2} x_{3}^{2} x_{4} x_{5}$, but $\left(x_{2}^{2} x_{4}\right) \prec\left(x_{2}^{2} x_{5}\right)=0$.
- For any monomial \mathfrak{m}, let Supp \mathfrak{m} denote the set $\left\{i \mid x_{i}\right.$ appears in $\left.\mathfrak{m}\right\}$.
- Example. Supp $\left(x_{3}^{5} x_{6} x_{8}\right)=\{3,6,8\}$.
- We define a binary operation \succeq on the \mathbf{k}-module $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ as follows:
- On monomials, it should be given by

$$
\mathfrak{m} \succeq \mathfrak{n}=\left\{\begin{array}{cc}
\mathfrak{m} \cdot \mathfrak{n}, & \text { if } \min (\text { Supp } \mathfrak{m}) \geq \min (\text { Supp } \mathfrak{n}) ; \\
0, & \text { if } \min (\text { Supp } \mathfrak{m})<\min (\text { Supp } \mathfrak{n})
\end{array}\right.
$$

for any two monomials \mathfrak{m} and \mathfrak{n}.

- It should be \mathbf{k}-bilinear.
- It should be continuous (i.e., its k-bilinearity also applies to infinite \mathbf{k}-linear combinations).
- Well-definedness is pretty clear.
- Example. $\left(x_{2}^{2} x_{4}\right) \succeq\left(x_{3}^{2} x_{5}\right)=0$, but

$$
\left(x_{2}^{2} x_{4}\right) \succeq\left(x_{2}^{2} x_{5}\right)=x_{2}^{4} x_{4} x_{5} .
$$

- We now have defined two binary operations \prec and \succeq on $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$. They satisfy:

$$
\begin{aligned}
& a \prec b+a \succeq b=a b ; \\
& (a \prec b) \prec c=a \prec(b c) ; \\
& (a \succeq b) \prec c=a \succeq(b \prec c) ; \\
& a \succeq(b \succeq c)=(a b) \succeq c .
\end{aligned}
$$

- We now have defined two binary operations \prec and \succeq on $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$. They satisfy:

$$
\begin{aligned}
a \prec b+a \succeq b & =a b ; \\
(a \prec b) \prec c & =a \prec(b c) ; \\
(a \succeq b) \prec c & =a \succeq(b \prec c) ; \\
a \succeq(b \succeq c) & =(a b) \succeq c .
\end{aligned}
$$

- This says that $\left(\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right], \prec, \succeq\right)$ is a dendriform algebra in the sense of Loday (see, e.g., Zinbiel, Encyclopedia of types of algebras 2010, arXiv:1101.0267).
- We now have defined two binary operations \prec and \succeq on $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$. They satisfy:

$$
\begin{aligned}
a \prec b+a \succeq b & =a b ; \\
(a \prec b) \prec c & =a \prec(b c) ; \\
(a \succeq b) \prec c & =a \succeq(b \prec c) ; \\
a \succeq(b \succeq c) & =(a b) \succeq c .
\end{aligned}
$$

- This says that ($\left.\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right], \prec, \succeq\right)$ is a dendriform algebra in the sense of Loday (see, e.g., Zinbiel, Encyclopedia of types of algebras 2010, arXiv:1101.0267).
- QSym becomes a dendriform subalgebra of $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$. (This is somewhat tangential to the actual proof.)
- Crucial lemma 1. For every positive integer m and every $f \in$ QSym, we have

$$
\mathbf{W}_{m} f=h_{m} \prec f
$$

where h_{m} is the m-th complete homogeneous symmetric function (that is, $\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{m}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}$).

- Crucial lemma 1. For every positive integer m and every $f \in$ QSym, we have

$$
\mathbf{W}_{m} f=h_{m} \prec f,
$$

where h_{m} is the m-th complete homogeneous symmetric function (that is,

$$
\left.\sum_{i_{2} \leq \cdots \leq i_{m}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{m}}\right) .
$$

- Crucial lemma 2. For every composition $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$, the dual immaculate function $\mathfrak{S}_{\alpha}^{*}$ is

$$
\mathfrak{S}_{\alpha}^{*}=h_{\alpha_{1}} \prec\left(h_{\alpha_{2}} \prec\left(\cdots \prec\left(h_{\alpha_{k}} \prec 1\right) \cdots\right)\right) .
$$

(This actually follows easily from our definition of $\mathfrak{S}_{\alpha}^{*}$.)

Main ideas of the proof, part 2

- In the proof of Crucial lemma 1, another binary operation on $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ appears, which I call ϕ.
- We define a binary operation Φ on the \mathbf{k}-module $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ as follows:
- On monomials, it should be given by

$$
\mathfrak{m} \phi \mathfrak{n}=\left\{\begin{array}{cc}
\mathfrak{m} \cdot \mathfrak{n}, & \text { if } \max (\text { Supp } \mathfrak{m}) \leq \min (\text { Supp } \mathfrak{n}) \\
0, & \text { if } \max (\text { Supp } \mathfrak{m})>\min (\text { Supp } \mathfrak{n})
\end{array}\right.
$$

for any two monomials \mathfrak{m} and \mathfrak{n}.

- It should be k-bilinear.
- It should be continuous (i.e., its k-bilinearity also applies to infinite \mathbf{k}-linear combinations).
- Well-definedness is pretty clear.
- Example. $\left(x_{2}^{2} x_{4}\right) \phi\left(x_{4}^{2} x_{5}\right)=x_{2}^{2} x_{4}^{3} x_{5}$ and $\left(x_{2}^{2} x_{4}\right) \phi\left(x_{3}^{2} x_{5}\right)=0$.

Main ideas of the proof, part 2

- In the proof of Crucial lemma 1, another binary operation on $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ appears, which I call ϕ.
- We define a binary operation $\mathbb{*}$ on the \mathbf{k}-module $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ as follows:
- On monomials, it should be given by

$$
\mathfrak{m} \not \mathfrak{n}=\left\{\begin{array}{cc}
\mathfrak{m} \cdot \mathfrak{n}, & \text { if } \max (\text { Supp } \mathfrak{m})<\min (\text { Supp } \mathfrak{n}) \\
0, & \text { if } \max (\text { Supp } \mathfrak{m}) \geq \min (\text { Supp } \mathfrak{n})
\end{array}\right.
$$

for any two monomials \mathfrak{m} and \mathfrak{n}.

- It should be k-bilinear.
- It should be continuous (i.e., its k-bilinearity also applies to infinite \mathbf{k}-linear combinations).
- Well-definedness is pretty clear.
- Example. $\left(x_{2}^{2} x_{4}\right) *\left(x_{4}^{2} x_{5}\right)=0$, but $\left(x_{2}^{2} x_{4}\right) \nVdash\left(x_{5}^{2} x_{6}\right)=x_{2}^{2} x_{4} x_{5}^{2} x_{6}$.

Main ideas of the proof, part 2

- In the proof of Crucial lemma 1, another binary operation on $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ appears, which I call ϕ.
- Belgthor (Φ) and Tvimadur (()2 are two calendar runes signifying two of the 19 years of the Metonic cycle. I sought two (unused) symbols that (roughly) look like "putting one thing (monomial) atop another", allowing overlap (ϕ) and disallowing overlap ($(\mathbb{)}$).
You be the judge whether I succeeded...

Main ideas of the proof, part 2

- In the proof of Crucial lemma 1, another binary operation on $\mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ appears, which I call ϕ.
- Belgthor (ϕ) and Tvimadur (()$_{)}$are two calendar runes signifying two of the 19 years of the Metonic cycle. I sought two (unused) symbols that (roughly) look like "putting one thing (monomial) atop another", allowing overlap (ϕ) and disallowing overlap ($(\mathbb{)}$).
You be the judge whether I succeeded...
- My apologies to the editors of the Canadian Journal of Mathematics who'll have to put up with a LaTeX package for runes in a mathematical document.
- A lemma (for Crucial lemma 1): For any $a \in \mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right]$ and $b \in$ QSym, we have

$$
\sum_{(b)}\left(S\left(b_{(1)}\right) \phi a\right) b_{(2)}=a \prec b,
$$

where we use Sweedler's notation $\sum_{(b)} b_{(1)} \otimes b_{(2)}$ for $\Delta(b)$.

A few more words about the runes

- The operations ϕ and \mathbb{W} restrict to QSym.
- They are associative and unital (with unity 1).
- They satisfy

$$
\begin{aligned}
& (a \phi b) \notin c-a \phi(b \notin c)=\varepsilon(b)(a \notin c-a \phi c) ; \\
& (a \nVdash b) \phi c-a \notin(b \phi c)=\varepsilon(b)(a \phi c-a \notin c),
\end{aligned}
$$

where $\varepsilon: \mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right] \rightarrow \mathbf{k}$ sends f to $f(0,0,0, \ldots)$ as before.

- The operations ϕ and $\not \nVdash$ restrict to QSym.
- They are associative and unital (with unity 1).
- They satisfy

$$
\begin{aligned}
& (a \phi b) \notin c-a \phi(b \notin c)=\varepsilon(b)(a \notin c-a \phi c) ; \\
& (a \nVdash b) \phi c-a \notin(b \phi c)=\varepsilon(b)(a \phi c-a \notin c),
\end{aligned}
$$

where $\varepsilon: \mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right] \rightarrow \mathbf{k}$ sends f to $f(0,0,0, \ldots)$ as before.

- As a consequence,

$$
(a \phi b) * c+(a * b) \phi c=a \phi(b * c)+a *(b \phi c) .
$$

This says that (QSym, $\Phi, \not{\not}$) is a $A s^{\langle 2\rangle}$-algebra (in the sense of Loday).

- The operations ϕ and \nVdash restrict to QSym.
- They are associative and unital (with unity 1).
- They satisfy

$$
\begin{aligned}
& (a \phi b) \nVdash c-a \phi(b \notin c)=\varepsilon(b)(a \notin c-a \phi c) ; \\
& (a \nVdash b) \phi c-a \notin(b \phi c)=\varepsilon(b)(a \phi c-a \notin c),
\end{aligned}
$$

where $\varepsilon: \mathbf{k}\left[\left[x_{1}, x_{2}, x_{3}, \ldots\right]\right] \rightarrow \mathbf{k}$ sends f to $f(0,0,0, \ldots)$ as before.

- As a consequence,

$$
(a \phi b) \nVdash c+(a \nVdash b) \phi c=a \phi(b \nVdash c)+a \nVdash(b \phi c) .
$$

This says that (QSym, $\phi, \mathbb{\not}$) is a $A s^{\langle 2\rangle}$-algebra (in the sense of Loday).

- What other identities do they satisfy? What identities do Φ, \notin, \prec and \succeq satisfy together?
- $\Lambda \subseteq$ QSym is not the end of the road.
- There are higher "combinatorial Hopf algebras" around, such as the noncommutative algebras FQSym and WQSym.
- All above-mentioned operations can be lifted to WQSym. Some also to FQSym. (See the preprint.)
- Actually, dendriform structures on WQSym and FQSym are known (Foissy, Novelli, Thibon).

References

This chapter was about:

- Darij Grinberg, Dual immaculate creation operators and a dendriform algebra structure on the quasisymmetric functions, to appear in the Canadian Journal of Mathematics.

Related work:

- Jean-Christophe Novelli, Jean-Yves Thibon, Construction of dendriform trialgebras, arXiv:math/0510218.
- Glânffrwd P. Thomas, Frames, Young tableaux, and Baxter sequences.
- Chris Berg, Nantel Bergeron, Franco Saliola, Luis Serrano, Mike Zabrocki, A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions, arXiv:1208.5191.

Thanks to Mike Zabrocki for the conjecture and to Nantel Bergeron for an invitation to Toronto.
And thanks to you for surviving!

