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Symmetric functions, part 1: definition

Fix a commutative ring k with unity. We shall do everything
over k.
Consider the ring k [[x1, x2, x3, . . .]] of formal power series in
countably many indeterminates.
A formal power series f is said to be bounded-degree if the
monomials it contains are bounded (from above) in degree.

A formal power series f is said to be symmetric if it is
invariant under permutations of the indeterminates.
Equivalently, if its coefficients in front of xa1

i1
xa2
i2
· · · xakik and

xa1
j1
xa2
j2
· · · xakjk are equal whenever i1, i2, . . . , ik are distinct and

j1, j2, . . . , jk are distinct.
For example:

1 + x1 + x3
2 is bounded-degree but not symmetric.

(1 + x1) (1 + x2) (1 + x3) · · · is symmetric but not
bounded-degree.
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countably many indeterminates.
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monomials it contains are bounded (from above) in degree.
A formal power series f is said to be symmetric if it is
invariant under permutations of the indeterminates.
Equivalently, if its coefficients in front of xa1

i1
xa2
i2
· · · xakik and

xa1
j1
xa2
j2
· · · xakjk are equal whenever i1, i2, . . . , ik are distinct and

j1, j2, . . . , jk are distinct.
Let Λ be the set of all symmetric bounded-degree power series
in k [[x1, x2, x3, . . .]]. This is a k-subalgebra, called the ring of
symmetric functions over k.
It is also known as Sym.
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Symmetric functions, part 2: partitions

The k-module Λ has several bases. All the important ones are
indexed by partitions.

A partition is a weakly decreasing sequence
λ = (λ1, λ2, λ3, . . .) of nonnegative integers such that λi = 0
for all sufficiently high i .

For example, (3, 2, 2, 0, 0, 0, . . .) is a partition.

Always write λi for the i-th entry of a sequence λ.

We identify a partition λ with the finite sequence
(λ1, λ2, . . . , λk) whenever λk+1 = λk+2 = λk+3 = · · · = 0.

For example, (3, 2, 2, 0, 0, 0) = (3, 2, 2) = (3, 2, 2, 0).

Let Par be the set of all partitions.
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Symmetric functions, part 3: bases

For every λ ∈ Par, define

mλ = sum of all distinct monomials obtained by

permuting xλ1
1 xλ2

2 xλ3
3 · · · .

This is a homogeneous power series lying in Λ. Its degree is
|λ| := λ1 + λ2 + λ3 + · · · , known as the size of λ.
Examples:

m() = 1.
m(1,1) =

∑
i<j

xixj = x1x2 + x1x3 + x2x3 + x1x4 + x2x4 + · · · .

m(2,1) =
∑
i 6=j

x2
i xj = x2

1x2 +x1x
2
2 +x2

1x3 +x1x
2
3 +x2

2x3 + · · · .

m(3) =
∑
i
x3
i = x3

1 + x3
2 + x3

3 + · · · .

Note: No repeated monomials even if the partition contains
repeated entries!

5 / 83



Symmetric functions, part 3: bases

For every λ ∈ Par, define

mλ = sum of all distinct monomials obtained by
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1 xλ2

2 xλ3
3 · · · .

This is a homogeneous power series lying in Λ. Its degree is
|λ| := λ1 + λ2 + λ3 + · · · , known as the size of λ.
In other words,

mλ = sum of all monomials whose exponents

are λ1, λ2, λ3, . . . in some order.
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The family (mλ)λ∈Par is a basis of the k-module Λ, called the
monomial basis (or m-basis).
There are many more, e.g.:

the h-basis (complete homogeneous symmetric
functions),
the e-basis (elementary symmetric functions),
the s-basis (Schur functions),
the p-basis (power-sum symmetric functions; these are a
basis only when Q ⊆ k).
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Quasisymmetric functions, part 1: definition

We shall now define the quasisymmetric functions – a bigger
algebra than Λ, but still with many of its nice properties.

A formal power series f (still in k [[x1, x2, x3, . . .]]) is said to
be quasisymmetric if its coefficients in front of xa1

i1
xa2
i2
· · · xakik

and xa1
j1
xa2
j2
· · · xakjk are equal whenever i1 < i2 < · · · < ik and

j1 < j2 < · · · < jk .

For example:

Every symmetric power series is quasisymmetric.∑
i<j

x2
i xj = x2

1x2 + x2
1x3 + x2

2x3 + x2
1x4 + · · · is

quasisymmetric, but not symmetric.

Let QSym be the set of all quasisymmetric bounded-degree
power series in k [[x1, x2, x3, . . .]]. This is a k-subalgebra,
called the ring of quasisymmetric functions over k. (Gessel,
1980s.)

We have Λ ⊆ QSym ⊆ k [[x1, x2, x3, . . .]].
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Quasisymmetric functions, part 2: compositions

The k-module QSym has several bases. All the important
ones are indexed by compositions.

A composition is a finite list of positive integers.

For example, (1, 3, 2) is a composition.

Let Comp be the set of all compositions.
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Quasisymmetric functions, part 3: bases

For every α = (α1, α2, . . . , αk) ∈ Comp, define

Mα =
∑

i1<i2<···<ik

xα1
i1
xα2
i2
· · · xαk

ik

= sum of all monomials whose nonzero exponents

are α1, α2, . . . , αk in this order.

This is a homogeneous power series lying in QSym. Its degree
is |α| := α1 + α2 + · · ·+ αk , known as the size of α.
Examples:

M() = 1.
M(1,1) =

∑
i<j

xixj = x1x2 + x1x3 + x2x3 + x1x4 + x2x4 + · · · .

M(2,1) =
∑
i<j

x2
i xj = x2

1x2 + x2
1x3 + x2

2x3 + · · · .

M(3) =
∑
i
x3
i = x3

1 + x3
2 + x3

3 + · · · .

Note: m(2,1) = M(2,1) + M(1,2).
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i2
· · · xαk

ik

= sum of all monomials whose nonzero exponents

are α1, α2, . . . , αk in this order.

This is a homogeneous power series lying in QSym. Its degree
is |α| := α1 + α2 + · · ·+ αk , known as the size of α.
The family (Mα)α∈Comp is a basis of the k-module QSym,
called the monomial basis (or M-basis).
There are many more, e.g.:

the F -basis (Gessel’s fundamental basis, aka the L-basis),
the “quasisymmetric Schur basis”,
the “dual immaculate basis”,
the Ψ-basis (only when Q ⊆ k).
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Hopf algebras, part 1: introduction

But the k-algebra structures are not the only structures on Λ
and QSym. We shall also use the Hopf algebra structures.
Roughly speaking:

algebra = k-module A with a multiplication map
m : A⊗ A→ A and a unit map u : k→ A satisfying
some axioms;

coalgebra = k-module C with a comultiplication map
∆ : C → C ⊗ C and a counit map ε : C → k satisfying
the duals of these axioms;
bialgebra = k-module H with both an algebra structure
and a coalgebra structure which “commute” in a certain
sense;
Hopf algebra = k-bialgebra H with an “antipode” map
S : H → H
(compare with: group = monoid M with an “inverse”
map ()−1 : M → M).

In some more detail...
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Hopf algebras, part 2: algebras

The snob’s definition of an algebra (associative, unital):
A k-algebra is a k-module A equipped with a k-linear map
m : A⊗ A→ A (called “multiplication”) and a k-linear map
u : k→ A (called “unit”) such that the diagrams

A⊗ A⊗ A
m⊗id //

id⊗m
��

A⊗ A

m
��

A⊗ A m
// A

and

k⊗ A
∼= //

u⊗id $$

A A⊗ k
∼=oo

id⊗uzz
A⊗ A

m

OO

commute. (All ⊗ signs are over k.)
NB: The domain of m is A⊗ A, not A× A. Thus, everything
is k-linear!
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Hopf algebras, part 3: coalgebras

Turning all arrows around, we can define coalgebras:
A k-coalgebra is a k-module C equipped with a k-linear map
∆ : C → C ⊗ C (called “comultiplication”) and a k-linear
map ε : C → k (called “counit”) such that the diagrams

C ⊗ C ⊗ C C ⊗ C
∆⊗idoo

C ⊗ C

id⊗∆

OO

C
∆

oo

∆

OO

and

k⊗ C C
∼=oo

∼= //

∆
��

C ⊗ k
∼=oo

C ⊗ C
ε⊗id

ee

id⊗ε

99

commute.
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k⊗ C C
∼=oo

∼= //

∆
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C ⊗ k
∼=oo

C ⊗ C
ε⊗id

ee

id⊗ε

99

commute.
No way to restate this without tensor products anymore!
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Turning all arrows around, we can define coalgebras:
A k-coalgebra is a k-module C equipped with a k-linear map
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∼=oo
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commute.
If C is a free k-module of finite rank, then C coalgebra ⇐⇒
C ∗ = Hom (C , k) algebra. Not in general!
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Hopf algebras, part 4: bialgebras

A k-bialgebra is a k-module H equipped with:

the structure of a k-algebra (i.e., suitable maps m and u);
the structure of a k-coalgebra (i.e., suitable maps ∆ and
ε)

such that the following equivalent statements hold:

The maps ∆ and ε are k-algebra homomorphisms (where
H ⊗ H becomes a k-algebra in an appropriate way).
The maps m and u are k-coalgebra homomorphisms
(where H ⊗ H becomes a k-coalgebra in an appropriate
way).
Some four diagrams commute.

(We won’t need these statements much.)
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Hopf algebras, part 5: Hopf algebras

A Hopf algebra is a k-bialgebra H such that there exists a
k-linear map S : H → H for which the diagram

H
∆

uu
∆

))
ε

��

H ⊗ H

id⊗S

��

H ⊗ H

S⊗id

��

k

u

��

H ⊗ H

m ))

H ⊗ H

muuH

commutes.

If S exists, then it is unique, so S can be regarded as part of
the Hopf algebra structure. (And should be.) It’s called the
antipode of H.
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Hopf algebras, part 6: grading

A graded k-bialgebra is a k-bialgebra H which is graded as
k-module, in the sense that

H =
⊕
n≥0

Hn,

and whose structure maps m, u, ∆ and ε all are graded.
No Koszul signs here! (If you don’t know what I mean, ignore
this.)
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k-module, in the sense that

H =
⊕
n≥0

Hn,

and whose structure maps m, u, ∆ and ε all are graded.
For example, the gradedness of ∆ means that

∆ (Hn) ⊆
n∑

k=0

Hk ⊗ Hn−k ,

where Hk ⊗ Hn−k is canonically embedded into H ⊗ H.
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Hopf algebras, part 6: grading

A graded k-bialgebra is a k-bialgebra H which is graded as
k-module, in the sense that

H =
⊕
n≥0

Hn,

and whose structure maps m, u, ∆ and ε all are graded.
The gradedness of m is the usual condition you know from the
definition of a graded algebra: HaHb ⊆ Ha+b.
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A graded k-bialgebra is a k-bialgebra H which is graded as
k-module, in the sense that

H =
⊕
n≥0

Hn,

and whose structure maps m, u, ∆ and ε all are graded.
A graded k-bialgebra H is said to be connected if (1H) is a
basis of the k-module H0.
Takeuchi’s theorem (and slightly more): If H is a
connected graded k-bialgebra, then H is a Hopf algebra and
its antipode S is graded and invertible.
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Hopf algebras, part 6: grading

A graded k-bialgebra is a k-bialgebra H which is graded as
k-module, in the sense that

H =
⊕
n≥0

Hn,

and whose structure maps m, u, ∆ and ε all are graded.
A graded k-bialgebra H is said to be connected if (1H) is a
basis of the k-module H0.
Connected graded Hopf algebras tend to appear in
combinatorics a lot. We shall now see that Λ and QSym are
two such beasts.
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Hopf structure on Λ: coalgebra structure

So how does Λ become a Hopf algebra?
The counit is easy to define:

ε (f ) = f (0, 0, 0, . . .) = constant term of f .
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ε (f ) = f (0, 0, 0, . . .) = constant term of f .

The comultiplication, the safe way: If
λ = (λ1, λ2, . . . , λk) ∈ Par with λ1, λ2, . . . , λk > 0, then set

∆ (mλ) =
∑

mµ ⊗mν ,

where the sum is over all pairs (µ, ν) of partitions such that
concatenating the lists µ and ν and then sorting the result in
decreasing order gives λ.
Don’t worry, I’ll make sense of this shortly.
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∆ (mλ) =
∑

mµ ⊗mν ,

where the sum is over all pairs (µ, ν) of partitions such that
concatenating the lists µ and ν and then sorting the result in
decreasing order gives λ.
Don’t worry, I’ll make sense of this shortly.
Example (writing mλ1,λ2,...,λk for m(λ1,λ2,...,λk ), and writing ∅
for the empty partition ()):

∆ (m3,2,2) = m∅ ⊗m3,2,2 + m3 ⊗m2,2 + m2 ⊗m3,2

+ m3,2 ⊗m2 + m2,2 ⊗m3 + m3,2,2 ⊗m∅.

15 / 83



Hopf structure on Λ: coalgebra structure

So how does Λ become a Hopf algebra?
The counit is easy to define:

ε (f ) = f (0, 0, 0, . . .) = constant term of f .

The comultiplication, the “right” way:

∆ (f ) = f (x1, x2, x3, . . . , y1, y2, y3, . . .) ,

where we pretend that k [[x1, x2, x3, . . . , y1, y2, y3, . . .]] ∼=
k [[x1, x2, x3, . . .]]⊗ k [[y1, y2, y3, . . .]] (although it is not true).
Making this formal requires work, but this is the actual
meaning of comultiplication: it “doubles the alphabet”, i.e.,
splits the indeterminates into two groups. Note that
symmetry of f is used here.
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Hopf structure on Λ: the antipode

Equipped with these ∆ and ε, the k-algebra Λ becomes a
connected graded k-bialgebra. Thus, it is a Hopf algebra (by
Takeuchi’s theorem). What is its antipode?
The antipode S of Λ is given by

S (f ) = (−1)n ω (f )

for every homogeneous f ∈ Λ of degree n,

where ω is the “omega involution”.
One way to define ω: It is the k-algebra endomorphism of Λ
sending each hn to en, where

hn =
∑

i1≤i2≤···≤in

xi1xi2 · · · xin ∈ Λ and

en =
∑

i1<i2<···<in

xi1xi2 · · · xin ∈ Λ.

As the name says, it is an involution, and so is S .
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Hopf structure on QSym: coalgebra structure

So how does QSym become a Hopf algebra?
The counit is easy to define:

ε (f ) = f (0, 0, 0, . . .) = constant term of f .
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M(α1,α2,...,αi ) ⊗M(αi+1,αi+2,...,αk ).
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∆ (Mα) =
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i=0

M(α1,α2,...,αi ) ⊗M(αi+1,αi+2,...,αk ).

Example (writing Mα1,α2,...,αk
for M(α1,α2,...,αk ), and writing ∅

for the empty composition ()):

∆ (M2,3,2) = M∅ ⊗M2,3,2 + M2 ⊗M3,2

+ M2,3 ⊗M2 + M2,3,2 ⊗M∅.
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Hopf structure on QSym: coalgebra structure

So how does QSym become a Hopf algebra?
The counit is easy to define:

ε (f ) = f (0, 0, 0, . . .) = constant term of f .

The comultiplication, the “right” way:

∆ (f ) = f (x1 < x2 < x3 < · · · < y1 < y2 < y3 < · · · ) .
This is even harder to rigorously justify than for Λ, since f is
no longer symmetric. We can still apply f to a totally ordered
set of indeterminates (thus the < signs), but this is not
a-priori clear.
The “safe” way is the better one here for most purposes.
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Hopf structure on QSym: the antipode

Equipped with these ∆ and ε, the k-algebra QSym becomes a
connected graded k-bialgebra. Thus, it is a Hopf algebra (by
Takeuchi’s theorem). What is its antipode?
The antipode S of QSym is given by

S (Mα) = (−1)k
∑

i1≥i2≥···≥ik

xα1
i1
xα2
i2
· · · xαk

ik

for every α = (α1, α2, . . . , αk) ∈ Comp.
Alternatively, this can be written

S (Mα) = (−1)k
∑

γ∈Comp; γ�revα

Mγ ,

where � is a certain partial order on Comp, and where
revα = (αk , αk−1, . . . , α1).
(Classical result. Malvenuto? Reutenauer? Gessel?)

Again, the antipode is just a sign away from the “omega
involution”, if you know the latter.
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Homomorphisms preserve antipodes

Standard theorem: If A and B are two Hopf algebras, and
f : A→ B is a k-bialgebra homomorphism (i.e., a k-linear
map preserving m, u, ∆ and ε), then f is a Hopf algebra
homomorphism (i.e., also preserves S).
Corollary: If A is a Hopf subalgebra of a Hopf algebra B,
then the antipode of A is the restriction of the antipode of B.

Thus, the antipode of Λ is the restriction of the antipode of
QSym.

19 / 83



Homomorphisms preserve antipodes

Standard theorem: If A and B are two Hopf algebras, and
f : A→ B is a k-bialgebra homomorphism (i.e., a k-linear
map preserving m, u, ∆ and ε), then f is a Hopf algebra
homomorphism (i.e., also preserves S).
Corollary: If A is a Hopf subalgebra of a Hopf algebra B,
then the antipode of A is the restriction of the antipode of B.
Thus, the antipode of Λ is the restriction of the antipode of
QSym.

19 / 83



Homomorphisms preserve antipodes

Standard theorem: If A and B are two Hopf algebras, and
f : A→ B is a k-bialgebra homomorphism (i.e., a k-linear
map preserving m, u, ∆ and ε), then f is a Hopf algebra
homomorphism (i.e., also preserves S).
Corollary: If A is a Hopf subalgebra of a Hopf algebra B,
then the antipode of A is the restriction of the antipode of B.
Thus, the antipode of Λ is the restriction of the antipode of
QSym.

19 / 83



Chapter 1

Chapter 1
E-partitions and the antipode

Reference:

Darij Grinberg, Double posets and the antipode of QSym,
arXiv:1509.08355.
(The version on my website is newer than the arXiv one,
currently at least.)
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Hopf structure on QSym: the antipode, again

Recall: The antipode S of QSym sends

Mα

7→ (−1)k
∑

i1≥i2≥···≥ik

xα1
i1
xα2
i2
· · · xαk

ik

for every α = (α1, α2, . . . , αk) ∈ Comp.
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Thus, < becomes ≥, and a sign appears. This is a classical
phenomenon (e.g., Ehrhart reciprocity). Is this specific to the
Mα’s?
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7→ (−1)k
∑

i1≥i2≥···≥ik

xα1
i1
xα2
i2
· · · xαk

ik

for every α = (α1, α2, . . . , αk) ∈ Comp.
Thus, < becomes ≥, and a sign appears. This is a classical
phenomenon (e.g., Ehrhart reciprocity). Is this specific to the
Mα’s?
It isn’t. Numerous antipode formulas for power series in
QSym and in other combinatorial Hopf algebras share the
same pattern. We shall show what might be the most general
such result for QSym. (See Carolina Benedetti, Bruce Sagan,
Antipodes and involutions, arXiv:1410.5023 for other Hopf
algebras.)
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Double posets and E-partitions

A double poset is a triple (E , <1, <2), where E is a finite set,
and where <1 and <2 are two strict partial orders on E .
(“Strict” means “smaller”, not “smaller or equal”.)
Let E = (E , <1, <2) be a double poset. An E-partition shall
mean a map φ : E → {1, 2, 3, . . .} such that:

every e ∈ E and f ∈ E satisfying e <1 f satisfy
φ (e) ≤ φ (f );
every e ∈ E and f ∈ E satisfying e <1 f and f <2 e
satisfy φ (e) < φ (f ).
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and where <1 and <2 are two strict partial orders on E .
(“Strict” means “smaller”, not “smaller or equal”.)
Let E = (E , <1, <2) be a double poset. An E-partition shall
mean a map φ : E → {1, 2, 3, . . .} such that:

every e ∈ E and f ∈ E satisfying e <1 f satisfy
φ (e) ≤ φ (f );
every e ∈ E and f ∈ E satisfying e <1 f and f <2 e
satisfy φ (e) < φ (f ).

Examples:

If <2 is the same as <1 (or, more, generally, if <2

extends <1), then the E-partitions are the weakly
increasing maps (E , <1)→ {1, 2, 3, . . .} (also known as
poset homomorphisms).
If <2 is the same as >1 (or, more, generally, if <2

extends >1), then the E-partitions are the strictly
increasing maps (E , <1)→ {1, 2, 3, . . .}.
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Double posets and E-partitions

A double poset is a triple (E , <1, <2), where E is a finite set,
and where <1 and <2 are two strict partial orders on E .
(“Strict” means “smaller”, not “smaller or equal”.)
Let E = (E , <1, <2) be a double poset. An E-partition shall
mean a map φ : E → {1, 2, 3, . . .} such that:

every e ∈ E and f ∈ E satisfying e <1 f satisfy
φ (e) ≤ φ (f );
every e ∈ E and f ∈ E satisfying e <1 f and f <2 e
satisfy φ (e) < φ (f ).

Examples:

In the general case, you get “something inbetween”:
weakly increasing maps (E , <1)→ {1, 2, 3, . . .} satisfying
some strict inequalities.
One specific examples: Semistandard tableaux of shape
λ/µ are E-partitions for a special choice of E.
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Double posets: Γ (E,w)

Double posets are a generous source of quasisymmetric
functions. To wit:
If E = (E , <1, <2) is a double poset, and
w : E → {1, 2, 3, . . .} is a map, then we define a power series
Γ (E,w) ∈ k [[x1, x2, x3, . . .]] by

Γ (E,w) =
∑

π is an E-partition

xπ,w , where xπ,w =
∏
e∈E

x
w(e)
π(e) .

Easy to see: Γ (E,w) ∈ QSym.
Examples:
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π is an E-partition

xπ,w , where xπ,w =
∏
e∈E

x
w(e)
π(e) .

Easy to see: Γ (E,w) ∈ QSym.
Examples:

Let α = (α1, α2, . . . , αk) be a composition. Let
E = {1, 2, . . . , k}. Let <1 be the usual < relation, and
let <2 be the > relation. Let w : E → {1, 2, 3, . . .} send
each i to αi . Then,

Γ (E,w) = Mα.
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If E = (E , <1, <2) is a double poset, and
w : E → {1, 2, 3, . . .} is a map, then we define a power series
Γ (E,w) ∈ k [[x1, x2, x3, . . .]] by

Γ (E,w) =
∑

π is an E-partition

xπ,w , where xπ,w =
∏
e∈E

x
w(e)
π(e) .

Easy to see: Γ (E,w) ∈ QSym.
Examples:

Let n ∈ N and I ⊆ {1, 2, . . . , n − 1}. Then, there exists a
double poset E and a map w with

Γ (E,w) =
∑

i1≤i2≤···≤in;
ij<ij+1 whenever j∈I

xi1xi2 · · · xin .

This power series is known as the α-th fundamental
quasisymmetric function, usually called Fα or Lα. Here,
α is a composition formed by the “gaps” between the
elements of I ∪ {0, n}.
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Double posets: Γ (E,w)

If E = (E , <1, <2) is a double poset, and
w : E → {1, 2, 3, . . .} is a map, then we define a power series
Γ (E,w) ∈ k [[x1, x2, x3, . . .]] by

Γ (E,w) =
∑

π is an E-partition

xπ,w , where xπ,w =
∏
e∈E

x
w(e)
π(e) .

Easy to see: Γ (E,w) ∈ QSym.
Examples:

Schur functions (including those of skew shapes and
worse).
Dual immaculate functions.
P-partition enumerators (in Gessel’s language), or
(P, ω)-partition enumerators (in Stanley’s).
“Weighted” versions of the above.
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Double posets: Γ (E,w)

What is the antipode of Γ (E,w) ?

No general answer, but one for tertispecial double posets.
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Tertispecial double posets

A double poset E = (E , <1, <2) is called:
special if the relation <2 is a total order.
semispecial if every two <1-comparable elements of E
are <2-comparable.

tertispecial if it satisfies the following condition: If a and
b are two elements of E such that a is <1-covered by b
(that is, a <1 b, but no c ∈ E satisfies a <1 c <1 b),
then a and b are <2-comparable.

Special =⇒ semispecial =⇒ tertispecial.
WANTED: a better name!
Examples:

The posets whose E-partitions are semistandard tableaux
are tertispecial.
The posets generating Mα and Fα are special (at least if
appropriately chosen).
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The antipode of Γ (E,w)

Theorem (Malvenuto, Reutenauer, 1998). Let (E , <1, <2)
be a tertispecial double poset. Let w : E → {1, 2, 3, . . .}.
Then, the antipode S of QSym satisfies

S (Γ ((E , <1, <2) ,w)) = (−1)|E | Γ ((E , >1, <2) ,w) ,

where >1 denotes the opposite relation of <1.
Examples:

The formula for S (Mα) given above.

A classical formula for S (Fα).

The formula S
(
sλ/µ

)
= (−1)|λ/µ| sλt/µt for skew Schur

functions.
Benedetti’s and Sagan’s formulas for antipodes of dual
immaculate functions (only for a few simple shapes).
Gessel’s(?) formula for the antipode of a P-partition
enumerator.
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Generalizing further: E-partitions meet Pólya enumeration

Theorem (G.). Let E = (E , <1, <2) be a tertispecial double
poset. Let Par E denote the set of all E-partitions. Let
w : E → {1, 2, 3, . . .}. Let G be a finite group which acts on
E . Assume that G preserves both relations <1 and <2, and
also preserves w . Then, G acts also on the set Par E.
For any G -orbit O on Par E, we define a monomial xO,w by

xO,w = xπ,w for some element π of O

(this does not depend on the choice of π). Let

Γ (E,w ,G ) =
∑

O is a G -orbit on Par E

xO,w ;

Γ+ (E,w ,G ) =
∑

O is an E -coeven G -orbit on Par E

xO,w .
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Γ+ (E,w ,G ) =
∑

O is an E -coeven G -orbit on Par E

xO,w .

Here, an orbit O is said to be E -coeven if for every g ∈ G and
every π ∈ O satisfying gπ = π, the action of g on E is an
even permutation of E .
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S (Γ (E,w ,G )) = (−1)|E | Γ+ ((E , >1, <2) ,w ,G ) .

Inspired by Katharina Jochemko’s work (arXiv:1310.0838).
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Proof of Malvenuto-Reutenauer formula: preliminaries

I am not going to focus on my generalization. Instead I shall
sketch my proof of the Malvenuto-Reutenauer result, which I
consider the better part of my paper.
More notations: Let E = (E , <1, <2) be a double poset.

Then, Adm E will mean the set of all pairs (P,Q), where

P and Q are subsets of E such that:

P ∩ Q = ∅,
P ∪ Q = E ,
no p ∈ P and q ∈ Q satisfy q <1 p.

These pairs (P,Q) are called the admissible partitions of
E.

For any T ⊆ E , we let E |T denote the double poset
(T , <1, <2), where <1 and <2 (by abuse of notation)
denote the restrictions of the relations <1 and <2 to T .
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Proof of Malvenuto-Reutenauer formula: ∆ (Γ (E,w))

Lemma. Let E = (E , <1, <2) be a double poset. Let
w : E → {1, 2, 3, . . .} be a map. Then,

∆ (Γ (E,w)) =
∑

(P,Q)∈Adm E

Γ (E |P ,w |P)⊗ Γ (E |Q ,w |Q) .

This is easy to prove if you believe in the formula

∆ (f ) = f (x1 < x2 < x3 < · · · < y1 < y2 < y3 < · · · ) .
This formula would suggest that ∆ (Γ (E,w)) is a sum over
“E-partitions into the totally ordered set
{x1 < x2 < x3 < · · · < y1 < y2 < y3 < · · · }”. Any such
E-partition π splits E into two subsets
P = π−1 ({x1 < x2 < x3 < · · · }) and
Q = π−1 ({y1 < y2 < y3 < · · · }), which satisfy
(P,Q) ∈ Adm E.

There is also a pedestrian proof in my preprint, which needs
no such witchcraft.
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Proof of Malvenuto-Reutenauer formula: Strategy, part 1

Once again, this is what we are proving:
Theorem (Malvenuto, Reutenauer, 1998). Let (E , <1, <2)
be a tertispecial double poset. Let w : E → {1, 2, 3, . . .}.
Then, the antipode S of QSym satisfies

S (Γ ((E , <1, <2) ,w)) = (−1)|E | Γ ((E , >1, <2) ,w) ,

where >1 denotes the opposite relation of <1.
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Notation: If E = (E , <1, <2), then write Ec for (E , >1, <2).
Theorem (Malvenuto, Reutenauer, 1998). Let
E = (E , <1, <2) be a tertispecial double poset. Let
w : E → {1, 2, 3, . . .}. Then, the antipode S of QSym satisfies

S (Γ (E,w)) = (−1)|E | Γ (Ec ,w) ,

Proceed by strong induction over |E |. So, WLOG, the
Theorem is proven for all smaller tertispecial double posets.
The case |E | = 0 is easy, so WLOG assume |E | > 0.
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Proof of Malvenuto-Reutenauer formula: Strategy, part 2

Recall the commutative diagram for the antipode:

H
∆

uu
∆

))
ε

��

H ⊗ H

id⊗S

��

H ⊗ H

S⊗id

��

k

u

��

H ⊗ H

m ))

H ⊗ H

muuH

It yields m ◦ (S ⊗ id) ◦∆ = u ◦ ε. Thus,

(m ◦ (S ⊗ id) ◦∆) (Γ (E,w)) = (u ◦ ε) (Γ (E,w)) = 0

(since Γ (E,w) has no constant term, and thus is annihilated
by ε).

31 / 83



Proof of Malvenuto-Reutenauer formula: Strategy, part 3

Thus,

0 = (m ◦ (S ⊗ id) ◦∆) (Γ (E,w)) = m ((S ⊗ id) (∆ (Γ (E,w))))

= m

(S ⊗ id)

 ∑
(P,Q)∈Adm E

Γ (E |P ,w |P)⊗ Γ (E |Q ,w |Q)


(by the lemma on ∆ (Γ (E,w)))

=
∑

(P,Q)∈Adm E

S (Γ (E |P ,w |P)) Γ (E |Q ,w |Q)

On the other hand, let’s say that we can show

0 =
∑

(P,Q)∈Adm E

(−1)|P| Γ (Ec |P ,w |P) Γ (E |Q ,w |Q)

Then, I claim, we will be done!
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Proof of Malvenuto-Reutenauer formula: Strategy, part 4

Why will we be done?
The two equalities

0 =
∑

(P,Q)∈Adm E

S (Γ (E |P ,w |P)) Γ (E |Q ,w |Q) ;

0 =
∑

(P,Q)∈Adm E

(−1)|P| Γ (Ec |P ,w |P) Γ (E |Q ,w |Q)

have the same LHS. The sums on their RHSes are equal to
each other term by term except possibly the
(P,Q) = (E ,∅) terms.
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(−1)|P| Γ (Ec |P ,w |P) Γ (E |Q ,w |Q)

have the same LHS. The sums on their RHSes are equal to
each other term by term except possibly the
(P,Q) = (E ,∅) terms.

Why? We need to show that if (P,Q) ∈ Adm E satisfies
(P,Q) 6= (E ,∅), then

S (Γ (E |P ,w |P)) = (−1)|P| Γ (Ec |P ,w |P)).
This is easy: Check that E |P is tertispecial and that
(E |P)c = Ec |P . Now, |P| < |E |, so the induction
hypothesis yields S (Γ (E |P ,w |P)) =

(−1)|P| Γ ((E |P)c ,w |P) = (−1)|P| Γ (Ec |P ,w |P)).
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0 =
∑
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(−1)|P| Γ (Ec |P ,w |P) Γ (E |Q ,w |Q)

have the same LHS. The sums on their RHSes are equal to
each other term by term except possibly the
(P,Q) = (E ,∅) terms.
So the (P,Q) = (E ,∅) terms must also be equal. But this

means S (Γ (E,w)) = (−1)|E | Γ (Ec ,w).
So, yeah, we will be done then.
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The crucial identity

So it remains to prove

0 =
∑

(P,Q)∈Adm E

(−1)|P| Γ (Ec |P ,w |P) Γ (E |Q ,w |Q) .
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Proof of the crucial identity, part 1

We have ∑
(P,Q)∈Adm E

(−1)|P| Γ (Ec |P ,w |P) Γ (E |Q ,w |Q)

=
∑

(P,Q)∈Adm E

(−1)|P|

 ∑
σ is a (P,>1,<2)-partition

xσ,w |P


 ∑
τ is a (Q,<1,<2)-partition

xτ,w |Q
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=
∑

π:E→{1,2,3,...}


∑

(P,Q)∈Adm E;
π|P is a (P,>1,<2)-partition;
π|Q is a (Q,<1,<2)-partition

(−1)|P|

 xπ,w .

So it suffices to prove that, for every map
π : E → {1, 2, 3, . . .}, we have∑

(P,Q)∈Adm E;
π|P is a (P,>1,<2)-partition;
π|Q is a (Q,<1,<2)-partition

(−1)|P| = 0.
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Proof of the crucial identity, part 2

We must prove that, for every map π : E → {1, 2, 3, . . .}, we
have ∑

(P,Q)∈Adm E;
π|P is a (P,>1,<2)-partition;
π|Q is a (Q,<1,<2)-partition

(−1)|P| = 0.

The strategy: Find an involution T on the set of all
(P,Q) ∈ Adm E satisfying the two conditions under the
summation sign. Show that this T reverses the sign of
(−1)|P|.

The definition of T is simple: Let

F = {e ∈ E | π (e) is minimum} .
Choose minimal element f of the poset (F , <2) (that is, no
g ∈ F satisfies g <2 f ). Now, the map T sends a (P,Q) ∈ Z

to

{
(P ∪ {f } ,Q \ {f }) , if f /∈ P;

(P \ {f } ,Q ∪ {f }) , if f ∈ P
.

Not so simple: the proof that it works. See the preprint.
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A few words on the generalization with the group action

The generalization where G acts on E is proven by reduction
to the Malvenuto-Reutenauer formula. The reduction uses a
“quotient poset” construction (idea from Jochemko).
Neat exercise (a classical lemma used in the proof):
Let (E , <) be a poset, and G be a finite group acting on E ,
preserving <. Let g ∈ G . Let E g be the set of all orbits of g
on E . Define a binary relation <g on E g by

(u <g v)⇐⇒ (there exist a ∈ u and b ∈ v such that a < b) .

Then, (E g , <g ) is a poset.
Actually, g can be replaced by a subgroup here.
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More on graded modules

We shall need some more general Hopf algebra theory.
If H is a graded k-module (H =

⊕
n∈N

Hn, where 0 ∈ N), then

for any n ∈ N, we let πn : H → H denote the canonical
projection onto Hn;
for any composition α = (a1, a2, . . . , ak), we let
πα : H⊗k → H⊗k denote the map πa1 ⊗ πa2 ⊗ · · · ⊗ πak .
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More on algebras

For any k-algebra A and any k ∈ N, we define a k-linear
m(k−1) : A⊗k → k recursively as follows: We set m(−1) = uA
(the unity map, sending 1k to 1A), m(1) = idA and

m(k) = m ◦
(

idA⊗m(k−1)
)

for every k ≥ 1.

The maps m(k−1) : A⊗k → A are called the iterated
multiplication maps of A.
Or, in simpler language: m(k−1) is the k-linear map A⊗k → A
which sends every a1 ⊗ a2 ⊗ · · · ⊗ ak ∈ A⊗k to a1a2 · · · ak .
But we want to dualize... and the simpler language won’t help
us do this.
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More on coalgebras

For any k-coalgebra C and any k ∈ N, we define a k-linear
map ∆(k−1) : C → C⊗k recursively as follows: We set
∆(−1) = εC (the counit), ∆(1) = idC and

∆(k) =
(

idC ⊗∆(k−1)
)
◦∆ for every k ≥ 1.

The maps ∆(k−1) : C → C⊗k are called the iterated
comultiplication maps of C .
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The second (internal) coalgebra structure on QSym, part 1

Now to “something completely different”: a second way to
turn QSym into a k-bialgebra. (Implicit in Gessel’s 1984
paper.)
The counit, again, is easy to define:

εP (f ) = f (1, 0, 0, 0, . . .) .

Equivalently, εP (Mα) = 1 if the composition α has ≤ 1 entry,
and = 0 otherwise.
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The second (internal) coalgebra structure on QSym, part 2

The comultiplication, the safe way: If α is a composition,
then set

∆P (Mα) =
∑
A

Mrow A ⊗McolumnA

where the sum is over all matrices A with entries in N such
that

no row of A is the zero vector;
no column of A is the zero vector;
reading the entries of A (from left to right, row by row,
starting with the top row) gives the composition α,
possibly with some zeroes interspersed.

Here,
rowA denotes the entrywise sum of all columns of A;
columnA denotes the entrywise sum of all rows of A.
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The second (internal) coalgebra structure on QSym, part 2

The comultiplication, the “right” way:

∆ (f ) = f (x1y1 < x1y2 < x1y3 < · · ·
< x2y1 < x2y2 < x2y3 < · · ·
< x3y1 < x3y2 < x3y3 < · · · )

(these are all products xiyj in lexicographic order). Again, we
pretend that this is all well-defined.
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(these are all products xiyj in lexicographic order). Again, we
pretend that this is all well-defined.
The comultiplication ∆P and the counit εP make the
k-algebra QSym into a k-bialgebra (but not graded and not a
Hopf algebra). They are called the second, or internal,
comultiplication and counit.

44 / 83



ABS (Aguiar-Bergeron-Sottile) universal property, part 1

Aguiar, Bergeron and Sottile, in their 2003 paper
“Combinatorial Hopf algebras and generalized
Dehn-Sommerville relations” (updated version: http:

//www.math.cornell.edu/~maguiar/CHalgebra.pdf)
proved a universal property (henceforth ABS property) for
QSym.
The proof is surprisingly simple (the dual of QSym is NSym,
which is a free algebra and thus has a universal property;
there are a few more details, but that’s basically it), but the
property quite useful.
The version you’ll see here is not the strongest.
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ABS (Aguiar-Bergeron-Sottile) universal property, part 2

ABS property:
Let H be a connected graded Hopf algebra (over the
commutative ring k). Let ζ : H → k be a k-algebra
homomorphism.
(a) Then, there exists a unique graded k-coalgebra
homomorphism Ψ : H → QSym for which the diagram

H
Ψ //

ζ ��

QSym

εP
||

k

is commutative.

(b) This Ψ is a k-Hopf algebra homomorphism.
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ABS (Aguiar-Bergeron-Sottile) universal property, part 3

ABS property (continued):
(c) For every composition α = (a1, a2, . . . , ak), define a
k-linear map ζα : H → k as the composition

H
∆(k−1)

// H⊗k
πα // H⊗k

ζ⊗k
// k⊗k ∼=

m(k−1)
// k .

(Most of these arrows have been defined a few slides before.)
Then, the unique Ψ above is given by the formula

Ψ (h) =
∑

α∈Comp

ζα (h) ·Mα for every h ∈ H

(in particular, the sum on the right hand side of this equality
has only finitely many nonzero addends).
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Ψ (h) =
∑

α∈Comp

ζα (h) ·Mα for every h ∈ H

(in particular, the sum on the right hand side of this equality
has only finitely many nonzero addends).
(d) Assume that the k-coalgebra H is cocommutative. Then,
the unique Ψ above satisfies Ψ (H) ⊆ Λ, where Λ is the
k-algebra of symmetric functions over k.
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What is the connection?

So the ABS property involves the second counit, εP . It
characterizes (QSym, εP) as a terminal object in an arrow
category (of connected graded Hopf algebras with a k-algebra
homomorphism to k).
What about the second comultiplication, ∆P ?
Surprising (for me) observation: We get ∆P “for free”
from the ABS property.
How?

∆P : QSym→ QSym⊗QSym;

Ψ : H → QSym .

These don’t look like they match...
... until we change the base ring (a.k.a. extend scalars).
Idea: Regard QSym⊗QSym as “QSym over QSym”.
For greater generality, we can replace some of the QSyms by a
commutative algebra A.
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Some notations

Let A be a commutative k-algebra. Then, A is just as good a
base ring as k. Every k-coalgebra H gives rise to an
A-coalgebra A⊗ H by extension of scalars.
Here, A just denotes the k-algebra A, with all its additional
structure forgotten. (So far A has no additional structure, but
we will later set A = QSym, and then there will be a grading
and a coalgebra structure to forget.)
Similarly, every k-Hopf algebra H induces an A-Hopf algebra
A⊗ H.
Similarly for algebras, bialgebras, graded Hopf algebras, ...
For example, A⊗QSym ∼= QSymA, where QSymA denotes the
graded Hopf algebra QSym defined over A instead of k.
Let H be a k-coalgebra, and let G be an A-coalgebra. A
k-linear map f : H → G is said to be a (k,A)-coalgebra
homomorphism if the A-linear map

A⊗ H → G , a⊗ h 7→ af (h)

is an A-coalgebra homomorphism.
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ABS property after change of bases, part 1

Consequence of ABS property:
Let A be a commutative k-algebra. Let H be a connected
graded Hopf algebra (over the commutative ring k). Let
ξ : H → A be a k-algebra homomorphism.
(a) Then, there exists a unique graded (k,A)-coalgebra
homomorphism Ξ : H → A⊗ QSym for which the diagram

H
Ξ //

ξ ��

A⊗ QSym

idA⊗εPzz
A

is commutative.
(b) This Ξ is a k-algebra homomorphism.
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ABS property after change of bases, part 2

Consequence of ABS property (continued):
(c) For every composition α = (a1, a2, . . . , ak), define a
k-linear map ξα : H → A as the composition

H
∆(k−1)

// H⊗k
πα // H⊗k

ξ⊗k
// A⊗k

m(k−1)
// A .

Then, the unique Ξ above is given by the formula

Ξ (h) =
∑

α∈Comp

ξα (h)⊗Mα for every h ∈ H

(in particular, the sum on the right hand side of this equality
has only finitely many nonzero addends).
Note: Alternative definition of ξα, if you know about
convolution:

ξα = (ξ ◦ πa1)F (ξ ◦ πa2)F · · ·F (ξ ◦ πak ) .
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ABS property after change of bases, part 2

Consequence of ABS property (continued):
(c) For every composition α = (a1, a2, . . . , ak), define a
k-linear map ξα : H → A as the composition
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∑

α∈Comp

ξα (h)⊗Mα for every h ∈ H

(in particular, the sum on the right hand side of this equality
has only finitely many nonzero addends).
(d) Assume that the k-coalgebra H is cocommutative. Then,
the unique Ξ above satisfies Ξ (H) ⊆ A⊗ Λ, where Λ is the
k-algebra of symmetric functions over k.

51 / 83



ABS property after change of bases, part 3

Proof idea: Apply the ABS property to A, A⊗ H and ξ]

instead of k, H and ζ, where

ξ] : A⊗ H → A, a⊗ h 7→ aξ (h) .

There is a bijection between the k-linear maps H → A⊗ G
and the A-linear maps A⊗ H → A⊗ G (where G is any
A-module). (This is just the adjointness of induction and
restriction.) Use it back and forth, many times.
Some amount of work required to check that this bijection
takes maps where you expect it to take them, and that all the
identifications (e.g., εP defined over A is identified with
idA⊗εP) play well together. (See the preprint.)
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The Bernstein homomorphism, part 1

Apply the Consequence of ABS property to A = H and
ξ = id. Obtain the following:
Bernstein homomorphism theorem:
Let H be a commutative connected graded Hopf algebra
(over the commutative ring k).
(a) Then, there exists a unique graded (k,H)-coalgebra
homomorphism Ξ : H → H ⊗ QSym for which the diagram

H
Ξ //

id ��

H ⊗ QSym

idH ⊗εPzz
H

is commutative (that is, we have idH = (idH ⊗εP) ◦ Ξ).
Denote this Ξ by βH .
(b) This βH is a k-algebra homomorphism.
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The Bernstein homomorphism, part 2

Bernstein homomorphism theorem (continued):
(c) For every composition α = (a1, a2, . . . , ak), define a
k-linear map ξα : H → k as the composition

H
∆(k−1)

// H⊗k
πα // H⊗k

m(k−1)
// A .

Then, βH (= the unique Ξ above) is given by the formula

βH (h) =
∑

α∈Comp

ξα (h)⊗Mα for every h ∈ H

(in particular, the sum on the right hand side of this equality
has only finitely many nonzero addends).
Note: Alternative definition of ξα, if you know about
convolution:

ξα = πa1Fπa2F · · ·Fπak .
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The Bernstein homomorphism, part 2

Bernstein homomorphism theorem (continued):
(c) For every composition α = (a1, a2, . . . , ak), define a
k-linear map ξα : H → k as the composition

H
∆(k−1)

// H⊗k
πα // H⊗k

m(k−1)
// A .

Then, βH (= the unique Ξ above) is given by the formula

βH (h) =
∑

α∈Comp

ξα (h)⊗Mα for every h ∈ H

(in particular, the sum on the right hand side of this equality
has only finitely many nonzero addends).
(d) Assume that the k-coalgebra H is cocommutative. Then,
βH (H) ⊆ H ⊗ Λ, where Λ is the k-algebra of symmetric
functions over k.
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The Bernstein homomorphism, part 3

Bernstein homomorphism theorem (continued):
Additionally, it is not hard to show:
(e) Let τ denote the twist map
QSym⊗QSym→ QSym⊗QSym, a⊗ b 7→ b ⊗ a. Let
∆′P = τ ◦∆P be the “twisted second comultiplication” of
QSym.
Then,

βQSym = ∆′P .

Thus, we have obtained ∆′P as a particular case of the
Bernstein homomorphism.
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The Bernstein homomorphism, part 4

Bernstein homomorphism theorem (continued):
The uniqueness part of the Consequence of ABS property can
be used to prove identities with βH . For example:
(f) The diagram

H
βH //

βH
��

H ⊗ QSym

βH⊗id

��
H ⊗ QSym

id⊗∆′P

// H ⊗ QSym⊗ QSym

is commutative.
Thus, every commutative connected graded Hopf algebra H
becomes a comodule over the “second bialgebra” QSym.
This easily gives an alternative proof of the fact that the
second bialgebra is indeed a bialgebra (coassociative, etc.).
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The Bernstein homomorphism, history

The (restricted) Bernstein homomorphism βH : H → H ⊗ Λ
for commutative-and-cocommutative H appeared in
Hazewinkel’s “Witt vectors”, §18.24. It is attributed to
Joseph N. Bernstein (who apparently used it to classify
PSH-algebras – see Zelevinsky’s LNM book).
I think the more general “Bernstein homomorphism”
βH : H → H ⊗ QSym constructed above (not assuming
cocommutativity) is new.
That said, the Marne-la-Vallée school has its own methods
(alphabets, generalized Cauchy kernels, etc.) which probably
lead to many of the same results. I don’t know the details :(
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The Bernstein homomorphism, part 5

Bernstein homomorphism theorem (continued):
(g) (Same notations as before.) We have

βH ◦ SH = (idH ⊗SQSym) ◦ βH ,
where SG means the antipode of a Hopf algebra G .
Again, this comes “for free” out of universal properties.
Probably more can be gotten this way. Idea:
βH is injective (since (idH ⊗εP) ◦ βH = idH), and thus
“embeds” H into H ⊗QSym ∼= QSymH . Scare quotes because
the “embedding” changes the base ring. But
H ⊗ H → H ⊗ QSym ∼= QSymH , a⊗ b 7→ aβH (b) is a honest
graded H-Hopf algebra homomorphism.
=⇒ Propagandistic slogan: Every commutative connected
graded Hopf algebra embeds into QSym. (Fine print: over
itself. But this should still be useful!)
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Chapter 3

Chapter 3
On dual immaculate functions
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Schur functions, part 1

I won’t actually use Schur functions, but I’ll talk about an
analogue; so let me recall their definition.
Let λ be a partition. The Young diagram of λ is like a matrix,
but the rows have different lengths, and are left-aligned; the
i-th row has λi cells.
Examples:

The Young diagram of (3, 2) has the form

.

The Young diagram of (4, 2, 1) has the form

.
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Schur functions, part 2

A semistandard tableau of shape λ is the Young diagram of λ,
filled with positive integers, such that

the entries in each row are weakly increasing;
the entries in each column are strictly increasing.

Examples:
A semistandard tableau of shape (3, 2) is

2 3 3

3 5
.

A semistandard tableau of shape (4, 2, 1) is

2 2 3 4

3 4

5

.

62 / 83



Schur functions, part 2

A semistandard tableau of shape λ is the Young diagram of λ,
filled with positive integers, such that

the entries in each row are weakly increasing;
the entries in each column are strictly increasing.

Examples:
The semistandard tableaux of shape (3, 2) are the arrays
of the form

a b c

d e

with a ≤ b ≤ c and d ≤ e and a < d and b < e.
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Schur functions, part 2

A semistandard tableau of shape λ is the Young diagram of λ,
filled with positive integers, such that

the entries in each row are weakly increasing;
the entries in each column are strictly increasing.

Examples:
The semistandard tableaux of shape (3, 2) are the arrays
of the form

a b c

d e

with a ≤ b ≤ c and d ≤ e and a < d and b < e.
So the semistandard tableaux of a given shape λ are the
E-partitions, for a certain double poset E (which we can
choose to be special).
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Schur functions, part 3

Given a partition λ, we define the Schur function sλ as the
power series

sλ =
∑

T is a semistandard
tableau of shape λ

xT , where xT =
∏

p is a cell of T

xT (p)

(where T (p) denotes the entry of T in p).
Example:

s(3,2) =
∑

a≤b≤c, d≤e,
a<d , b<e

xaxbxcxdxe ,

because the semistandard tableau

T = a b c

d e

contributes the addend xT = xaxbxcxdxe .
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Schur functions, part 4

Classical theorem: The Schur function sλ is a symmetric
function (= an element of Λ) for any partition λ.
Classical theorem: The family (sλ)λ∈Par is a basis of the
k-module Λ.
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Dual immaculate functions, part 1

Dual immaculate functions are a quasisymmetric analogue
(one of several) of the Schur functions. They have been
introduced in 2012 by Berg, Bergeron, Saliola, Serrano and
Zabrocki (arXiv:1208.5191v3).
Their original definition is complicated (they are defined as
the dual basis to a basis of NSym, which is defined using
“creation operators” – thus the name). We shall give an
equivalent definition.
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Dual immaculate functions, part 2

Let α = (α1, α2, . . . , αk) be a composition. The Young
diagram of α is like a matrix, but the rows have different
lengths, and are left-aligned; the i-th row has αi cells (there
are k rows in total).
Examples:

The Young diagram of (3, 2) has the form

.

The Young diagram of (4, 1, 2) has the form

.
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Dual immaculate functions, part 3

An immaculate tableau of shape α is the Young diagram of α,
filled with positive integers, such that

the entries in each row are weakly increasing;
the entries in the first column are strictly increasing.

No requirements on the second, third, etc. columns!
Examples:

An immaculate tableau of shape (3, 2) is

2 3 3

3 3
.

An immaculate tableau of shape (4, 1, 2) is

2 6 7 7

3

5 5

.
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An immaculate tableau of shape α is the Young diagram of α,
filled with positive integers, such that

the entries in each row are weakly increasing;
the entries in the first column are strictly increasing.

No requirements on the second, third, etc. columns!
Examples:

The immaculate tableaux of shape (3, 2) are the arrays of
the form

a b c

d e

with a ≤ b ≤ c and d ≤ e and a < d .
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Dual immaculate functions, part 3

An immaculate tableau of shape α is the Young diagram of α,
filled with positive integers, such that

the entries in each row are weakly increasing;
the entries in the first column are strictly increasing.

No requirements on the second, third, etc. columns!
Examples:

The immaculate tableaux of shape (3, 2) are the arrays of
the form

a b c

d e

with a ≤ b ≤ c and d ≤ e and a < d .
So the immaculate tableaux of a given shape α are the
E-partitions, for a certain double poset E (which we can
choose to be special).
Immaculate tableaux can also be viewed as certain labellings
of a binary tree (a special one – a “comb”).
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Dual immaculate functions, digression

Digression (won’t be used, but good to know):
I just said that immaculate tableaux can be viewed as certain
labellings of a binary tree; here is what I mean:

68 / 83



Dual immaculate functions, digression

The immaculate tableaux of shape (3, 1, 2) are the arrays

a b c

d

e f

satisfying a ≤ b ≤ c and e ≤ f and a < d < e. In other
words, they are labellings

f

e c

d b

a

of the binary tree •

• •

• •

•

such that the label on each node is < to the label on its left
child and ≤ to the label on its right child.
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Dual immaculate functions, part 4

Given a composition α, we define the dual immaculate
function S∗α as the power series

S∗α =
∑

T is an immaculate
tableau of shape α

xT , where xT =
∏

p is a cell of T

xT (p)

(where T (p) denotes the entry of T in p).
Example:

S∗(3,2) =
∑

a≤b≤c, d≤e,
a<d

xaxbxcxdxe ,

because the immaculate tableau

T = a b c

d e

contributes the addend xT = xaxbxcxdxe .
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Dual immaculate functions, part 5

Theorem: The dual immaculate function S∗α is a
quasisymmetric function (= an element of QSym) for any
composition α.
(This is actually pretty obvious, since the immaculate tableaux
are E-partitions.)
Theorem: The family (S∗α)α∈Comp is a basis of the k-module
QSym.
It is natural to consider this basis an analogue of the Schur
functions (although there are other contenders whose claims
are equally valid).
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Fundamental quasisymmetric functions, part 1

I mentioned the fundamental quasisymmetric functions Fα in
Chapter 1, but now I’ll need to define them in detail.
Let α = (α1, α2, . . . , αk) be a composition of size
n = α1 + α2 + · · ·+ αk . Define a subset D (α) of
{1, 2, . . . , n − 1} by

D (α) = {α1, α1 + α2, α1 + α2 + α3, . . . , α1 + α2 + · · ·+ αk−1}
= {all nonempty partial sums of α, except

for the total sum} .
Define a power series Fα (also known as Lα) by

Fα =
∑

i1≤i2≤···≤in;
ij<ij+1 whenever j∈D(α)

xi1xi2 · · · xin .

Theorem: The family (Fα)α∈Comp is a basis of the k-module
QSym, called Gessel’s Fundamental basis.
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Fundamental quasisymmetric functions, part 2

Theorem. For any composition α, we have

Fα =
∑

β∈Comp;
β refines α

Mβ.

Here, a composition β is said to refine α if and only if β can
be obtained by splitting each entry αi of α into several which
sum to αi .
Example. (2, 1, 3, 4, 2, 2, 1, 3) refines (3, 3, 8, 4), because ...
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Theorem. For any composition α, we have

Fα =
∑

β∈Comp;
β refines α

Mβ.

Here, a composition β is said to refine α if and only if β can
be obtained by splitting each entry αi of α into several which
sum to αi .

Example.

 2, 1︸︷︷︸
sum 3

, 3︸︷︷︸
sum 3

, 4, 2, 2︸ ︷︷ ︸
sum 8

, 1, 3︸︷︷︸
sum 4

 refines (3, 3, 8, 4).
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Fundamental quasisymmetric functions, part 2

Theorem. For any composition α, we have

Fα =
∑

β∈Comp;
β refines α

Mβ.

Here, a composition β is said to refine α if and only if β can
be obtained by splitting each entry αi of α into several which
sum to αi .
The antipode S of QSym satisfies

S (Fα) = (−1)|α| Fω(α)

for each α ∈ Comp. Here, if α is a composition of n, then
ω (α) is the composition of n defined by
D (ω (α)) = {1, 2, . . . , n − 1} \ (n − D (α))︸ ︷︷ ︸

={n−g |g∈D(α)}

.

(This follows from Chapter 1.)
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Skewing by Rβ: a quick definition

Let β be a composition. We define the k-linear map
R⊥β : QSym→ QSym (called skewing by the ribbon function
Rβ) by

R⊥β (Fα) =


F(αi+1,αi+2,...αk ), if β = (α1, α2, . . . , αi ) for

some 0 ≤ i ≤ k;

0, otherwise

for every composition α = (α1, α2, . . . , αk).
(This works because (Fα)α∈Comp is a basis of the k-module
QSym.)
This is not the “official” definition of R⊥β , but is equivalent
and self-contained. (The “official” definition involves the Hopf
algebra NSym, which is the graded dual of QSym.)
Note: R⊥β lowers the degree by |β|.
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Zabrocki’s “dual creation operators”

For each composition α, define a composition α� (m) as
follows: If α = (α1, α2, . . . , αk), then
α� (m) = (α1, α2, . . . , αk−1, αk + m). (If α is the empty
composition, then α� (m) = (m).)
For each positive integer m, define a k-linear map
Wm : QSym→ QSym by

Wm =
∑

α∈Comp

(−1)|α| Fα�(m)R
⊥
ω(α).

(The right hand side converges pointwise: Every f ∈ QSym is
annihilated by all but finitely many addends.)
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For each composition α, define a composition α� (m) as
follows: If α = (α1, α2, . . . , αk), then
α� (m) = (α1, α2, . . . , αk−1, αk + m). (If α is the empty
composition, then α� (m) = (m).)
For each positive integer m, define a k-linear map
Wm : QSym→ QSym by

Wm =
∑

α∈Comp

(−1)|α| Fα�(m)R
⊥
ω(α).

(The right hand side converges pointwise: Every f ∈ QSym is
annihilated by all but finitely many addends.)
This construction is similar to the creation operators defined
on NSym for the (non-dual) immaculate functions, and to the
Bernstein creation operators on Λ (not the Bernstein
homomorphism of Chapter 2, but due to the same Bernstein,
and also appearing in Zelevinsky’s book).
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Zabrocki’s “dual creation operators”

For each composition α, define a composition α� (m) as
follows: If α = (α1, α2, . . . , αk), then
α� (m) = (α1, α2, . . . , αk−1, αk + m). (If α is the empty
composition, then α� (m) = (m).)
For each positive integer m, define a k-linear map
Wm : QSym→ QSym by

Wm =
∑

α∈Comp

(−1)|α| Fα�(m)R
⊥
ω(α).

(The right hand side converges pointwise: Every f ∈ QSym is
annihilated by all but finitely many addends.)
Theorem (Zabrocki, G.). For every composition
α = (α1, α2, . . . , αk), the dual immaculate function S∗α is

S∗α = (Wα1 ◦Wα2 ◦ · · · ◦Wαk
) (1) .
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Dendriform structure on QSym, introduction

My proof uses a dendriform algebra structure on QSym. I
won’t explain the proof here, but I will define this structure.
I think the structure is foreshadowed (if not implicitly
introduced) in the works of Glânffrwd P. Thomas (mainly
Frames, Young tableaux, and Baxter sequences). But I need
to think about it more carefully.
(There are well-known adjoint functors between Rota-Baxter
algebras and dendriform algebras: Kurusch Ebrahimi-Fard, Li
Guo, Rota-Baxter Algebras and Dendriform Algebras,
arXiv:math/0503647)
Also, does anyone have a copy of Thomas’s thesis?
(Glânffrwd P. Thomas, Baxter Algebras and Schur Functions,
Ph.D. Thesis, University College of Swansea, September
1974.)
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Dendriform structure on QSym, part 1

For any monomial m, let Suppm denote the set
{i | xi appears in m}.
Example. Supp

(
x5

3x6x8

)
= {3, 6, 8}.
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Dendriform structure on QSym, part 1

For any monomial m, let Suppm denote the set
{i | xi appears in m}.
Example. Supp

(
x5

3x6x8

)
= {3, 6, 8}.

We define a binary operation ≺ on the k-module
k [[x1, x2, x3, . . .]] as follows:

On monomials, it should be given by

m ≺ n =

{
m · n, if min (Suppm) < min (Supp n) ;

0, if min (Suppm) ≥ min (Supp n)

for any two monomials m and n.
It should be k-bilinear.
It should be continuous (i.e., its k-bilinearity also applies
to infinite k-linear combinations).

Well-definedness is pretty clear.
Example.

(
x2

2x4

)
≺
(
x2

3x5

)
= x2

2x
2
3x4x5, but(

x2
2x4

)
≺
(
x2

2x5

)
= 0.
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Dendriform structure on QSym, part 1

For any monomial m, let Suppm denote the set
{i | xi appears in m}.
Example. Supp

(
x5

3x6x8

)
= {3, 6, 8}.

We define a binary operation � on the k-module
k [[x1, x2, x3, . . .]] as follows:

On monomials, it should be given by

m � n =

{
m · n, if min (Suppm) ≥ min (Supp n) ;

0, if min (Suppm) < min (Supp n)

for any two monomials m and n.
It should be k-bilinear.
It should be continuous (i.e., its k-bilinearity also applies
to infinite k-linear combinations).

Well-definedness is pretty clear.
Example.

(
x2

2x4

)
�
(
x2

3x5

)
= 0, but(

x2
2x4

)
�
(
x2

2x5

)
= x4

2x4x5.
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Dendriform structure on QSym, part 2

We now have defined two binary operations ≺ and � on
k [[x1, x2, x3, . . .]]. They satisfy:

a ≺ b + a � b = ab;

(a ≺ b) ≺ c = a ≺ (bc) ;

(a � b) ≺ c = a � (b ≺ c) ;

a � (b � c) = (ab) � c .

This says that (k [[x1, x2, x3, . . .]] , ≺ , �) is a dendriform
algebra in the sense of Loday (see, e.g., Zinbiel, Encyclopedia
of types of algebras 2010, arXiv:1101.0267).

QSym becomes a dendriform subalgebra of k [[x1, x2, x3, . . .]].
(This is somewhat tangential to the actual proof.)
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Main ideas of the proof, part 1

Crucial lemma 1. For every positive integer m and every
f ∈ QSym, we have

Wmf = hm ≺ f ,

where hm is the m-th complete homogeneous symmetric
function (that is,

∑
i1≤i2≤···≤im

xi1xi2 · · · xim).

Crucial lemma 2. For every composition
α = (α1, α2, . . . , αk), the dual immaculate function S∗α is

S∗α = hα1 ≺ (hα2 ≺ (· · · ≺ (hαk
≺ 1) · · · )) .

(This actually follows easily from our definition of S∗α.)
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Main ideas of the proof, part 2

In the proof of Crucial lemma 1, another binary operation on
k [[x1, x2, x3, . . .]] appears, which I call Á.
We define a binary operation Á on the k-module
k [[x1, x2, x3, . . .]] as follows:

On monomials, it should be given by

mÁn =

{
m · n, if max (Suppm) ≤ min (Supp n) ;

0, if max (Suppm) > min (Supp n)

for any two monomials m and n.
It should be k-bilinear.
It should be continuous (i.e., its k-bilinearity also applies
to infinite k-linear combinations).

Well-definedness is pretty clear.
Example.

(
x2

2x4

)
Á
(
x2

4x5

)
= x2

2x
3
4x5 and(

x2
2x4

)
Á
(
x2

3x5

)
= 0.
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Main ideas of the proof, part 2

In the proof of Crucial lemma 1, another binary operation on
k [[x1, x2, x3, . . .]] appears, which I call Á.
We define a binary operation ź on the k-module
k [[x1, x2, x3, . . .]] as follows:

On monomials, it should be given by

mźn =

{
m · n, if max (Suppm) < min (Supp n) ;

0, if max (Suppm) ≥ min (Supp n)

for any two monomials m and n.
It should be k-bilinear.
It should be continuous (i.e., its k-bilinearity also applies
to infinite k-linear combinations).

Well-definedness is pretty clear.
Example.

(
x2

2x4

)
ź
(
x2

4x5

)
= 0, but(

x2
2x4

)
ź
(
x2

5x6

)
= x2

2x4x
2
5x6.
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Main ideas of the proof, part 2

In the proof of Crucial lemma 1, another binary operation on
k [[x1, x2, x3, . . .]] appears, which I call Á.
Belgthor (Á) and Tvimadur (ź) are two calendar runes
signifying two of the 19 years of the Metonic cycle. I sought
two (unused) symbols that (roughly) look like “putting one
thing (monomial) atop another”, allowing overlap (Á) and
disallowing overlap (ź).
You be the judge whether I succeeded...
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In the proof of Crucial lemma 1, another binary operation on
k [[x1, x2, x3, . . .]] appears, which I call Á.
Belgthor (Á) and Tvimadur (ź) are two calendar runes
signifying two of the 19 years of the Metonic cycle. I sought
two (unused) symbols that (roughly) look like “putting one
thing (monomial) atop another”, allowing overlap (Á) and
disallowing overlap (ź).
You be the judge whether I succeeded...
My apologies to the editors of the Canadian Journal of
Mathematics who’ll have to put up with a LaTeX package for
runes in a mathematical document.
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Main ideas of the proof, part 3

A lemma (for Crucial lemma 1): For any a ∈ k [[x1, x2, x3, . . .]]
and b ∈ QSym, we have∑

(b)

(
S
(
b(1)

)
Áa
)
b(2) = a ≺ b,

where we use Sweedler’s notation
∑
(b)

b(1) ⊗ b(2) for ∆ (b).
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A few more words about the runes

The operations Á and ź restrict to QSym.
They are associative and unital (with unity 1).
They satisfy

(a Á b) ź c − a Á (b ź c) = ε (b) (a ź c − a Á c) ;

(a ź b) Á c − a ź (b Á c) = ε (b) (a Á c − a ź c) ,

where ε : k [[x1, x2, x3, . . .]]→ k sends f to f (0, 0, 0, . . .) as
before.
As a consequence,

(a Á b) ź c + (a ź b) Á c = a Á (b ź c) + a ź (b Á c) .

This says that (QSym,Á,ź) is a As〈2〉-algebra (in the sense
of Loday).

What other identities do they satisfy? What identities do Á,
ź, ≺ and � satisfy together?
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Higher combinatorial Hopf algebras

Λ ⊆ QSym is not the end of the road.
There are higher “combinatorial Hopf algebras” around, such
as the noncommutative algebras FQSym and WQSym.
All above-mentioned operations can be lifted to WQSym.
Some also to FQSym. (See the preprint.)
Actually, dendriform structures on WQSym and FQSym are
known (Foissy, Novelli, Thibon).
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