
Natural endomorphisms of
connected graded bialgebras

[talk slides: CATMI 2023, Lie-Størmer Center, Bergen

2023-06-26]

Darij Grinberg

June 26, 2023

Contents

1. Bialgebras 2
1.1. General conventions . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Algebras and coalgebras . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Bialgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4. Graded, connected, commutative, cocommutative . . . . . . . . . 5
1.5. Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6. Hopf algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7. Iterated multiplications and comultiplications . . . . . . . . . . . 7

2. Some identities 8
2.1. On the order of S2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2. The random-to-top operator . . . . . . . . . . . . . . . . . . . . . . 9
2.3. But what else can we say? . . . . . . . . . . . . . . . . . . . . . . . 10

3. Natural transformations on a graded Hopf algebra 10
3.1. What is our calculus? . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2. Descent operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3. Formulas for general descent operators . . . . . . . . . . . . . . . 13
3.4. The pα,σ are linearly independent . . . . . . . . . . . . . . . . . . . 13
3.5. Universal calculus of pα,σ maps . . . . . . . . . . . . . . . . . . . . 14

4. The combinatorial Hopf algebra behind this 14
4.1. NSym . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2. The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1



page 2

5. Thanks 17

• This is an attempt at a systematic study of identities that hold for con-
nected graded bialgebras.

• We start by recounting the definitions, then give some new examples of
such identities, then develop the early sprouts of a theory.

• Lots of questions here. Some might have already been solved. The liter-
ature is fragmented (topologists have been around for the longest but I
don’t quite speak their language), so surprises are possible.

• Preprints:

https://www.cip.ifi.lmu.de/~grinberg/algebra/aphae-proj.pdf (new
material, still a very rough sketch);
https://www.cip.ifi.lmu.de/~grinberg/algebra/bernsteinproof.pdf (old
treatment of the commutative case using base change; in a way obsolete,
but interesting for the methods).

1. Bialgebras

1.1. General conventions

• We fix a commutative ring k. (No assumptions on characteristic!)

• ⊗ always means ⊗k by default.

• Read “k-” in front of each of the nouns “module”, “algebra”, “coalgebra”,
“bialgebra” or “linear” by default.

1.2. Algebras and coalgebras

• Definition. An algebra means a module A equipped with a multiplica-
tion map

m : A ⊗ A → A (a ⊗ b 7→ ab)

and a unity map
u : k → A (1k 7→ 1A)

(both linear) such that the diagrams

A ⊗ A ⊗ A
m⊗id

ww

id⊗m

''

A ⊗ A
m

''

A ⊗ A
m

wwA

A ⊗ k

id⊗u
��

Aoo

id
��

// k ⊗ A

u⊗id
��

A ⊗ A m // A A ⊗ Amoo

https://www.cip.ifi.lmu.de/~grinberg/algebra/aphae-proj.pdf
https://www.cip.ifi.lmu.de/~grinberg/algebra/bernsteinproof.pdf
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commute.

One usually writes mA and uA for m and u (and similarly elsewhere).

• Dualizing this definition, one gets “coalgebras”:

Definition. A coalgebra means a module C equipped with a comultipli-
cation map

∆ : C → C ⊗ C

(
c 7→ ∑

i
c1,i ⊗ c2,i

)
and a counit map

ϵ : C → k

(both linear) such that the diagrams

C ⊗ C ⊗ C

C ⊗ C

∆⊗id
88

C ⊗ C

id⊗∆
ff

C

∆
88

∆
ff

C ⊗ k // C k ⊗ Coo

C ⊗ C

id⊗ϵ

OO

C
∆
oo

id

OO

∆
// C ⊗ C

ϵ⊗id

OO

commute.

• Definition. Algebra morphisms and coalgebra morphisms are defined
in the least surprising way (i.e., as linear maps that commute with m and
u resp. ∆ and ϵ in the obvious ways).

1.3. Bialgebras

• Definition. A bialgebra is a module H that is both an algebra and a
coalgebra, and that satisfies the further commutative diagrams

H ⊗ H
∆⊗∆

vv

m

��

H ⊗ H ⊗ H ⊗ H

id⊗T⊗id

��

H

∆

��

H ⊗ H ⊗ H ⊗ H

m⊗m ((

H ⊗ H
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H ⊗ H ϵ⊗ϵ
//

m
��

k ⊗ k

m
��

H ϵ
// k

k u //

∆
��

H

∆
��

k ⊗ k u⊗u
// H ⊗ H

k

u
��

id // k

H
ϵ

??

where T : H ⊗ H → H ⊗ H is the twist map a ⊗ b 7→ b ⊗ a.

• Examples:

– k itself is a bialgebra (with all maps being id : k → k).

– If M is a monoid (e.g., group), then the monoid algebra k [M] is a
bialgebra, with

∆ (g) = g ⊗ g for all g ∈ M;
ϵ (g) = 1 for all g ∈ M;

m (g ⊗ h) = gh for all g, h ∈ M;
u (1k) = eM (that is, the unity is eM) .

– If V is a k-module, then the tensor algebra T (V) is a bialgebra, with

∆

 a1a2 · · · an︸ ︷︷ ︸
short for a1⊗a2⊗···⊗an

 = ∑
I⊆{1,2,...,n}

aI ⊗ a{1,2,...,n}\I

for any a1, a2, . . . , an ∈ V. Here, aI is the product of all ai with i ∈ I
in increasing order.

– There is also a shuffle algebra Sh (V), which is in some way dual to
T (V).

– The symmetric algebra Sym V (defined as a quotient of T (V)) is also
a bialgebra.

– The ring Λ of symmetric functions over k is a bialgebra.

– The ring QSym of quasisymmetric functions over k is a bialgebra.

– Various other combinatorial bialgebras such as NSym, FQSym (=
Malvenuto–Reutenauer), posets, double posets, graphs, hypergraphs,
....
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1.4. Graded, connected, commutative, cocommutative

• Definition. A graded (co,bi)algebra is a (co,bi)algebra H that is graded
(= N-graded) as a module, and whose operations (m, u, ∆, ϵ, whichever
apply) respect the grading. This means

HaHb ⊆ Ha+b for all a, b ⩾ 0;
1H ∈ H0;

∆ (Hn) ⊆
n⊕

k=0

Hk ⊗ Hn−k for all n ⩾ 0;

ϵ (Hn) = 0 for all n > 0.

• We do not use topologists’ sign conventions.

• Definition. A graded (co,bi)algebra H is connected if and only if H0
∼= k

as k-modules. (For an algebra, this automatically entails H0 = k · 1H.)

• For example, the tensor algebra T (V) is connected graded, with

(T (V))n = V⊗n = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
n times

.

• Definition. An algebra A is commutative if the diagram

A ⊗ A T //

m
##

A ⊗ A

m
{{

A

commutes. (Again, T is the twist map.)

• Definition. Dually, a coalgebra C is cocommutative if the diagram

C ⊗ C T // C ⊗ C

C
∆

bb

∆

<<

commutes.

• Example: Monoid algebras and tensor algebras are cocommutative.

Shuffle algebras and QSym are commutative.

Symmetric algebras and Λ are both.
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1.5. Convolution

• Definition. If C is a coalgebra and A is an algebra, then the module

Hom (C, A) := {all k-linear maps f : C → A}

becomes an algebra itself, equipped with the convolution product ⋆ de-
fined by

f ⋆ g = mA ◦ ( f ⊗ g) ◦ ∆C.

The unity of Hom (C, A) is uA ◦ ϵC.

• In particular, if C is a coalgebra, then the dual module C∗ = Hom (C, k)
is an algebra.

• In nice situations, the dual statement holds: If A is an algebra that is finite
free as a module, then A∗ is a coalgebra.

Something similar holds for graded duals in the graded-finite case (=
graded, and each degree is finite free).

• Duality is a permanent theme in bialgebra theory: You can dualize every
statement, but it is not a-priori clear that the dual always holds. Still, it is
typically true and often can be derived from the primal using some tricks.

• Question: Are there general meta-theorems that guarantee this?

• Of course, a proof that uses only element-free diagram chasing guarantees
dualizability, but not every proof is so.

1.6. Hopf algebras

• If H is a bialgebra, then Hom (H, H) is an algebra (via convolution ⋆, as
explained above).

• The identity map idH belongs to this algebra.

• Definition. We call H a Hopf algebra if idH has an inverse in this algebra.

In this case, the inverse of idH is called the antipode of H.

• Theorem (Takeuchi). If H is a connected graded bialgebra, then H is
automatically a Hopf algebra.



page 7

1.7. Iterated multiplications and comultiplications

• Actually, the antipode can be computed explicitly.

• Definition. Let A be an algebra. For any integer k ⩾ 0, define the linear
map

m[k] : A⊗k → A

recursively by

m[0] = u and m[k] = m ◦
(

m[k−1] ⊗ id
)

.

In the language of elements:

m[k] (a1 ⊗ a2 ⊗ · · · ⊗ ak) = a1a2 · · · ak.

This map m[k] is called an iterated multiplication map. (It is commonly
called m(k−1), but my indexing is better :)

• Dually:

Definition. Let C be a coalgebra. For any integer k ⩾ 0, define the linear
map

∆[k] : C → C⊗k

recursively by

∆[0] = ϵ and ∆[k] =
(

∆[k−1] ⊗ id
)
◦ ∆.

This map ∆[k] is called an iterated comultiplication map.

• Proposition. Let A be an algebra, and C a coalgebra. Then, any k elements
f1, f2, . . . , fk of the convolution algebra Hom (C, A) satisfy

f1 ⋆ f2 ⋆ · · · ⋆ fk = m[k] ◦ ( f1 ⊗ f2 ⊗ · · · ⊗ fk) ◦ ∆[k].

• Theorem (Takeuchi’s formula for the antipode). Let H be a connected
graded bialgebra. Let

id = idH −u ◦ ϵ = id− p0︸︷︷︸
projection

H→H0

=

(
projection from H =

∞⊕
i=0

Hi onto
∞⊕

i=1

Hi

)
.
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Then, the antipode S of H is given by

S =
∞

∑
k=0

(−1)k id
⋆k︸︷︷︸

=id⋆id⋆···⋆id
=m[k]◦id

⊗k◦∆[k]

.

The sum here converges pointwise: In fact, if x ∈ Hn, then id
⋆k
(x) = 0

for all k > n.

• Proof. Actually quite easy!

idH = u ◦ ϵ︸︷︷︸
unity of the

convolution algebra

+ id,

and id is locally nilpotent; thus, the inverse of idH can be found using
(1 + q)−1 = 1 − q + q2 − q3 ± · · · .

2. Some identities

2.1. On the order of S2

• The antipode of a Hopf algebra is always called S.

• Theorem (Sweedler?). If a Hopf algebra H is commutative or cocommu-
tative, then its antipode is an involution: that is, S2 = id. (Here and in the
following, S2 = S ◦ S, not S ⋆ S.)

• Not true for general H. (In general, S may even be non-invertible.)

• However:

• Theorem (Aguiar and Lauve 2014). If H is a connected graded bialgebra,
then (

id−S2
)n

(Hn) = 0 for each n ⩾ 0.

(Thus, S2 is id “up to” a locally nilpotent “error term”. In other words, S2

is locally unipotent.)

• Theorem (Aguiar 2017). Even better: In the same setup,(
(id+S) ◦

(
id−S2

)n−1
)
(Hn) = 0 for each n > 0.

• For some H (for example, Malvenuto–Reutenauer), we even have(
id−S2

)n−1
(Hn) = 0 for each n > 1.

• I generalize these in arXiv:2109.02101.

https://arxiv.org/abs/2109.02101
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2.2. The random-to-top operator

• Here is another series of recent results (mostly unpublished – see https:
//www.cip.ifi.lmu.de/~grinberg/algebra/aphae-proj.pdf for outlined
proofs –, but related work was done by Amy Pang in arXiv:1609.04312,
arXiv:2108.09097).

• Definition. If H is any graded module (e.g., bialgebra), and if n ⩾ 0,
then pn shall denote the canonical projection H → Hn (regarded as a map
H → H).

Note that p0 = u ◦ ϵ when H is connected.

• Definition. If H is a graded bialgebra, and if n ⩾ 0, then we set

ρn := pn ⋆ id ∈ Hom (H, H) .

In particular, ρ1 = p1 ⋆ id is called random-to-top operator, since it acts
on a tensor algebra H = T (V) as follows:

ρ1

 a1a2 · · · an︸ ︷︷ ︸
short for a1⊗a2⊗···⊗an

 =
n

∑
k=1

ak · a1a2 · · · âk · · · an︸ ︷︷ ︸
this is our input tensor,

with the k-th factor moved to front

.

• Theorem. Let H be a connected graded bialgebra.

(a) We have ρ1 = 0 on H0, and ρ1 = id on H1.

(b) For each n ⩾ 2, we have

(ρ1 − n) ◦ (ρ1 − (n − 2))2 ◦
n−3

∏
i=0

(ρ1 − i)n−1−i = 0 on Hn.

(Note: Here and below, ∏ is product with respect to ◦, not to ⋆. Same
applies to powers.)

For example,

(ρ1 − 2) ◦ ρ2
1 = 0 on H2, and

(ρ1 − 3) ◦ (ρ1 − 1)2 ◦ ρ2
1 = 0 on H3, and

(ρ1 − 4) ◦ (ρ1 − 2)2 ◦ (ρ1 − 1)2 ◦ ρ3
1 = 0 on H4.

• It seems that this polynomial is minimal (in general). However:

• Theorem. If we assume further that H is commutative, or (even weaker)
that ab = ba for all a, b ∈ H1, then

(ρ1 − n) ◦
n−2

∏
i=0

(ρ1 − i) = 0 on Hn

for any n ⩾ 0.

https://www.cip.ifi.lmu.de/~grinberg/algebra/aphae-proj.pdf
https://www.cip.ifi.lmu.de/~grinberg/algebra/aphae-proj.pdf
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• More generally:

Theorem. Let k be a positive integer. Assume that every two elements of
H1 + H2 + · · ·+ Hk commute. Let n be a positive integer. Then,

∏
i∈F(n,k)

(ρk − i) = 0 on Hn,

where F (n, k) is a somewhat intricate finite set of integers.

• Question: Does an unconditional result hold for ρk, similar to our first
theorem for ρ1?

2.3. But what else can we say?

• These are instances of identities that hold in every connected graded bial-
gebra and involve only m, u, ∆, ϵ and projections on homogeneous com-
ponents. (Recall: id = id−p0, so that Takeuchi’s formula writes S in these
terms.)

• Question: Is there a mechanical way to prove such identities? (For a fixed
n, say.)

(We will partly answer this below.)

3. Natural transformations on a graded Hopf
algebra

3.1. What is our calculus?

• The operations we are working with are defined for any graded bialge-
bra. They are thus natural operations on a graded bialgebra, i.e., natural
transformations from one of the four forgetful functors

{graded bialgebras} → {modules} ,
{graded bialgebras} → {graded modules} ,

{connected graded bialgebras} → {modules} ,
{connected graded bialgebras} → {graded modules}

to itself. (These are four different but related settings.)

3.2. Descent operators

• How does a typical such operation look like?
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• Definition. A weak composition means a tuple α = (α1, α2, . . . , αk) of
nonnegative integers.

Example: (3, 0, 0, 5, 1, 0).

• Definition. A composition means a tuple α = (α1, α2, . . . , αk) of positive
integers.

Example: (3, 5, 1).

• Definition. Let α = (α1, α2, . . . , αk) be a weak composition, and let σ ∈ Sk
be a permutation of {1, 2, . . . , k} (for the same k). Then, for any graded
bialgebra H, we define a linear map

pα,σ = m[k] ◦ (pα1 ⊗ pα2 ⊗ · · · ⊗ pαk) ◦ Tσ ◦ ∆[k]

∈ Hom (H, H) .

Here, Tσ is the σ-twist map

H⊗k → H⊗k,
h1 ⊗ h2 ⊗ · · · ⊗ hk 7→ hσ(1) ⊗ hσ(2) ⊗ · · · ⊗ hσ(k).

• Example. For α = (3, 5) and σ = t1,2 (the transposition swapping 1 with
2), we have

pα,σ = m ◦ (p3 ⊗ p5) ◦ T︸︷︷︸
twist

◦∆.

Thus, in Sweedler notation,

pα,σ (x) = ∑
(x)

p3

(
x(2)

)
p5

(
x(1)

)
.

• We call pα,σ a descent operator or a BPPC operator (short for “break,
permute, project and combine”). Note that the pα1 ⊗ pα2 ⊗ · · · ⊗ pαk and
Tσ parts can be (quasi)commuted:

(pα1 ⊗ pα2 ⊗ · · · ⊗ pαk) ◦ Tσ = Tσ ◦
(

pβ1 ⊗ pβ2 ⊗ · · · ⊗ pβk

)
for (β1, β2, . . . , βk) =

(
ασ−1(1), ασ−1(2), . . . , ασ−1(k)

)
.

• Simple observation. Any such map pα,σ vanishes on Hn unless n is the
sum of the entries of α.

• Definition. Given any weak composition α, we set

pα := pα,id

(where id is the identity permutation).
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• Simple observation.

(a) We have
pα,σ = pσ·α if H is commutative.

(b) We have
pα,σ = pα if H is cocommutative.

• Operators of the form pα were studied by Patras and Reutenauer for com-
mutative or cocommutative H. They showed that the span of such pα

operators is closed under both ◦ and ⋆. But this is not true for general H.
Instead, we need all pα,σ.

• Simple observation. Let α be a weak composition of length k, and let
αred be the result of removing all zero entries from α. Let σ ∈ Sk be any
permutation. If H is connected, then

pα,σ = pαred,τ

for an appropriate permutation τ. (To get τ, find all i such that αi = 0,
and remove the respective σ (i) from σ; then standardize.)

• Thus, if H is connected, all descent operators can be written as pα,σ for
(non-weak) compositions α.

• Question: Is it true that any reasonable natural transformation from the
forgetful functor

{connected graded bialgebras} → {graded modules}

to itself is an infinite linear combination of pα,σ’s?

• Remark. The “infinite” part is technical; we can always restrict to a given
Hn, and then the combination will be finite.

• Remark. “Graded” is important: Otherwise, for k = Fp, the Frobenius
x 7→ xp would enter the stage.

• Question: But perhaps we can still characterize these natural transforma-
tions without gradedness if k is a field?

• In practice, all the identities we know can be stated in terms of pα,σ and ◦
and ⋆, unless they are conditional.
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3.3. Formulas for general descent operators

• Theorem (product formulas). Let α = (α1, α2, . . . , αk) be a weak composi-
tion, and let σ ∈ Sk be a permutation.

Let β = (β1, β2, . . . , βℓ) be a weak composition, and let τ ∈ Sℓ be a
permutation. Then:

(a) We have
pα,σ ⋆ pβ,τ = pαβ,σ⊕τ,

where αβ is the concatenation of α and β (that is, the weak com-
position (α1, α2, . . . , αk, β1, β2, . . . , βℓ)), whereas σ ⊕ τ is the image of
(σ, τ) under the obvious map Sk ×Sℓ → Sk+ℓ.

(b) We have

pα,σ ◦ pβ,τ = ∑
γi,j∈N for all i∈[k] and j∈[ℓ];

γi,1+γi,2+···+γi,ℓ=αi for all i∈[k];
γ1,j+γ2,j+···+γk,j=β j for all j∈[ℓ]

p(γ1,1,γ1,2,...,γk,ℓ),τ[σ],

where τ [σ] ∈ Skℓ is the permutation that sends each ℓ (i − 1) + j
(with i ∈ [k] and j ∈ [ℓ]) to k (τ (j)− 1) + σ (i).

Example: Using one-line notation for permutations,

p(a,b),[2,1] ◦ p(c,d),[2,1] = ∑
c1+d1=a;
c2+d2=b;
c1+c2=c;
d1+d2=d

p(c1,d1,c2,d2),[4,2,3,1].

• Proof: easy computation for (a); multi-page computation using several
lemmas for (b).

(Featuring the Zolotarev shuffle, known from quadratic reciprocity.)

• Particular cases of these formulas were found by Patras in 1993 for com-
mutative H and for cocommutative H. A Hopf monoid variant was found
by Aguiar and Mahajan (Chapters 10–11 in Bimonoids for Hyperplane Ar-
rangements, 2020).

3.4. The pα,σ are linearly independent

• Theorem. Generically, the pα,σ are linearly independent. That is: There is
a connected graded Hopf algebra H such that the family

(pα,σ) k∈N;
α is a composition of length k;

σ∈Sk

(of endomorphisms of H) is k-linearly independent.
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• This H is the free k-algebra with generators

xi,j for all i, j ∈ Z satisfying 1 ⩽ i < j,

which are understood to be homogeneous of degree j − i. The comultipli-
cation ∆ : H → H ⊗ H is given by

∆
(
xi,j
)
=

j

∑
k=i

xi,k ⊗ xk,j,

where xk,k := 1.

(Remark: This is a noncommutative version of a unipotent Schur algebra.)

3.5. Universal calculus of pα,σ maps

• The above theorems allow for mechanical verification of identities for con-
nected graded bialgebras: Expand in terms of pα,σ’s (using the product
formulas), and compare coefficients. Of course, this gets more laborious
the higher n is.

• Question. What about non-connected graded bialgebras?

(This includes bialgebras in general, as those are trivially graded with
H0 = H.)

• Note. Such questions would be easy if the respective categories had free
objects. Do they? I don’t think so (but the real question is “how close can
we get”)...

4. The combinatorial Hopf algebra behind this

4.1. NSym

• Patras’s formulas for pα ◦ pβ when H is commutative or cocommutative
can be restated in terms of a combinatorial Hopf algebra called NSym.

• Definition. Let NSym be the free algebra with generators H1, H2, H3, . . .
(that is, the tensor algebra of the free k-module with basis (H1, H2, H3, . . .)).

(Sorry – this is standard notation, unrelated to our old Hi for the i-th
degree component of H.)

We make NSym into a graded algebra by setting each Hi homogeneous
of degree i.
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We make NSym into a connected graded bialgebra by setting

∆ (Hn) =
n

∑
i=0

Hi ⊗ Hn−i and

ϵ (Hn) = 0 for each n ⩾ 1.

Here, H0 := 1.

• This connected graded bialgebra (thus Hopf algebra) NSym is called the
Hopf algebra of noncommutative symmetric functions, since its abelian-
ization NSymab is the Hopf algebra Λ = Sym of symmetric functions.

(NSym is also called the Leibniz–Hopf algebra by Hazewinkel, and is
denoted NCSF by the French school.)

• There is a second multiplication defined on NSym, called the internal
product or Kronecker product. Its definition needs a notation:

• Definition. We set

Hα := Hα1 Hα2 · · · Hαk for any composition α = (α1, α2, . . . , αk) ,

so that (Hα)α is a composition is a basis of the module NSym.

• Definition. We define a bilinear operation ∗ on NSym, called internal
product, by setting

Hβ ∗ Hγ = ∑
A∈Nk×ℓ;
row A=β;

column A=γ

H
(read A)red

for all compositions β = (β1, β2, . . . , βk)

and γ = (γ1, γ2, . . . , γℓ) .

Here, the sum ranges over all k × ℓ-matrices A with nonnegative integer
entries such that the row sums of A are β1, β2, . . . , βk and the column sums
of A are γ1, γ2, . . . , γℓ. The notation read A denotes the weak composition
obtained by concatenating the rows of A from top to bottom.

• This internal product ∗ is called “internal” since it is not graded but rather
stays inside a given degree: i.e.,

NSymn ∗NSymm = 0 for n ̸= m, and
NSymn ∗NSymn ⊆ NSymn .

• As a consequence, ∗ has no unity in NSym, but one in each component
NSymn and one in the completion N̂Sym (namely, H0 + H1 + H2 + · · · ).
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• We let NSym(2) denote the non-unital algebra NSym with product ∗.

• Theorem (Patras 1993). Let H be a cocommutative graded bialgebra
(sorry – no relation to the Hi ∈ NSym). Then, H becomes a left NSym(2)-
module, by having Hα ∈ NSym(2) act as pα for every composition α.

• The same applies to commutative H instead of cocommutative H; just
replace “left” by “right”.

• This can also be reinterpreted in terms of QSym(2)-comodules (this is
called the “Bernstein homomorphism” in Hazewinkel’s terms; see https:
//www.cip.ifi.lmu.de/~grinberg/algebra/bernsteinproof.pdf ).

4.2. The general case

• What if H is neither commutative nor cocommutative?

• Definition. A mopiscotion (please find a better name for this!) is a pair
(α, σ), where α is a composition of length k (for some k ∈ N) and σ is a
permutation in Sk.

Let PNSym be the free k-module with basis (Fα,σ)(α,σ) is a mopiscotion.

If α = (α1, α2, . . . , αk) is a weak composition and σ ∈ Sk, then we set

Fα,σ := Fαred,τ,

where τ is obtained from σ by removing all σ (i) for which αi = 0 (and
standardizing).

Define two multiplications on PNSym: one “external multiplication” (which
mirrors convolution of pα,σ’s) given by

Fα,σ · Fβ,τ = Fαβ,σ⊕τ;

and another “internal multiplication” (which mirrors composition of pα,σ’s)
given by

Fα,σ ∗ Fβ,τ = ∑
γi,j∈N for all i∈[k] and j∈[ℓ];

γi,1+γi,2+···+γi,ℓ=αi for all i∈[k];
γ1,j+γ2,j+···+γk,j=β j for all j∈[ℓ]

F(γ1,1,γ1,2,...,γk,ℓ),τ[σ].

Also, define a comultiplication ∆ on PNSym by

∆ (Fα,σ) = ∑
β,γ weak compositions;
entrywise sum β+γ=α

Fβ,σ ⊗ Fγ,σ,

https://www.cip.ifi.lmu.de/~grinberg/algebra/bernsteinproof.pdf
https://www.cip.ifi.lmu.de/~grinberg/algebra/bernsteinproof.pdf
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mirroring the formula

(pα,σ for H ⊗ G) = ∑
β,γ weak compositions;
entrywise sum β+γ=α

(
pβ,σ for H

)
⊗ (pγ,σ for G)

that holds for any two graded bialgebras H and G.

• If I have not made any mistakes, then:

Theorem. PNSym becomes a connected graded Hopf algebra when equipped
with the external multiplication ·, and a (non-graded) bialgebra when
equipped with the internal multiplication ∗.

• Theorem. Let PNSym(2) be the nonunital algebra PNSym with multipli-
cation ∗. Then, every connected graded bialgebra H becomes a PNSym(2)-
module, with Fα,σ acting as pα,σ.

• Question: Check this all.

• Question: What is the combinatorial meaning of PNSym ?

• Question: Is there a cancellation-free formula for the antipode of PNSym
?

• Question: Should we expect any identities that connect the internal mul-
tiplication with the external multiplication and the coproduct? Some kind
of “splitting formula”?

• Question: Does PNSym embed into noncommutative formal power se-
ries?

• Remark: An analogue of PNSym(2) for Hopf monoids is the Janus alge-
bra of Marcelo Aguiar. Is there a way to translate results between Hopf
monoids and Hopf algebras?

5. Thanks

• ... to Marcelo Aguiar, Amy Pang, Victor Reiner and Christophe Reutenauer
for conversations;

• ... to Kurusch Ebrahimi-Fard and Gunnar Fløystad for the invitation;

• ... to you for your patience.

• Extra kudos if you can make progress on some of the questions!
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