Chromatic symmetric functions and broken circuits [talk slides]

Darij Grinberg

Algebraic and Combinatorial Perspectives in the
Mathematical Sciences, 2023-04-28

Abstract

In his 1995 paper introducing the chromatic symmetric function of a graph, Richard Stanley proved an expression for it as a sign-alternating sum of p-functions over subsets that contain no broken circuit of the graph. This (partly expository) talk will generalize this formula to some degree, in that the exclusion of all broken circuits will be replaced by the exclusion of some (arbitrarily chosen) set of broken circuits. This generality comes for cheap, but has a curious application to bipartite graphs and to an isotropic analogue of hyperplane arrangements. An analogous generalization of the broken-circuit formula for the characteristic polynomial of a matroid will also be given.

Preprint:

- Darij Grinberg, Generalized Whitney formulas for broken circuits in ambigraphs and matroids, preprint, https://www.cip.ifi.lmu.de/~grinberg/algebra/chromatic.pdf
(Previously called "A note on non-broken-circuit sets and the chromatic polynomial".)

Slides of this talk:

- https://www.cip.ifi.lmu.de/~grinberg/algebra/acpms2023.pdf
- This talk is about a project started back in 2016, still in a somewhat larval stage.
- I hope it gives some food for thought even if there is a lack of deep and striking theorems.

1. Motivation: Hyperplane arrangements

- Recall: A linear hyperplane arrangement in a vector space V is a finite set \mathcal{A} of linear hyperplanes in V.
("Linear" means "passing through 0 ".)
- A classical example of such an arrangement:
- Definition. Let G be a finite graph with vertex set $\{1,2, \ldots, n\}$. Then, its graphical arrangement \mathcal{A}_{G} (over a field K) is the hyperplane arrangement in K^{n} defined by

$$
\left\{\left\{x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in K^{n} \mid x_{i}=x_{j}\right\}\right\}_{\{i, j\} \text { is an edge of } G} .
$$

- Definition. Let \mathcal{A} be a linear hyperplane arrangement in a vector space V. Then, its characteristic polynomial $\chi_{\mathcal{A}}$ is defined by

$$
\chi_{\mathcal{A}}=\sum_{\mathcal{B} \subseteq \mathcal{A}}(-1)^{|\mathcal{B}|} x^{\operatorname{dim}(\cap \mathcal{B})} \in \mathbb{Z}[x] .
$$

Here, $\cap \mathcal{B}$ denotes the intersection of the hyperplanes in \mathcal{B}.

- For a graphical arrangement, this turns out to recover the chromatic polynomial:
- Definition. Let G be a finite graph with vertex set V. A proper coloring of G means a map $f: V \rightarrow\{1,2,3, \ldots\}$ such that

$$
f(v) \neq f(w) \text { for each edge }\{v, w\} \text { of } G .
$$

The values of such a map are called its colors.
The chromatic polynomial χ_{G} of G is the polynomial in $\mathbb{Z}[x]$ such that

$$
\begin{aligned}
& \chi_{G}(q)=(\# \text { of proper colorings of } G \text { with colors in }\{1,2, \ldots, q\}) \\
& \text { for all } q \in \mathbb{N} .
\end{aligned}
$$

- Theorem (folklore; see Theorem 2.7 in Stanley's Introduction). Let G be a finite graph with vertex set $\{1,2, \ldots, n\}$. Then, the characteristic polynomial $\chi_{\mathcal{A}_{G}}$ of its graphical arrangement \mathcal{A}_{G} equals the chromatic polynomial of G :

$$
\chi_{\mathcal{A}_{G}}=\chi_{G} .
$$

2. Coisotropic hyperplane arrangements

- Now, consider a vector space V (over a field K) equipped with a bilinear form $f: V \times V \rightarrow K$.
- Assume that this form f is symmetric or alternating.
- Then, for each vector subspace W of V, there is an orthogonal space

$$
\begin{aligned}
W^{\perp} & :=\{v \in V \mid f(v, w)=0 \text { for all } w \in W\} \\
& =\{v \in V \mid f(w, v)=0 \text { for all } w \in W\}
\end{aligned}
$$

(also a subspace of V).

- We say that a vector subspace W of V is coisotropic if $W^{\perp} \subseteq W$.
- A coisotropic subspace W always has dimension $\geq \frac{\operatorname{dim} W}{2}$.
- A linear hyperplane arrangement \mathcal{A} in V will be called coisotropic if each hyperplane $H \in \mathcal{A}$ is coisotropic.
- This does not mean that every intersection $\cap \mathcal{B}$ for $\mathcal{B} \subseteq \mathcal{A}$ is coisotropic!
- Definition. Let \mathcal{A} be a coisotropic linear hyperplane arrangement in V. Then, its coisotropic characteristic polynomial $\chi_{\mathcal{A}, \perp}$ is defined by

$$
\chi_{\mathcal{A}, \perp}=\sum_{\substack{\cap \mathcal{B} \text { is a coisotropic } \\ \text { subspace of } V}}(-1)^{|\mathcal{B}|} x^{\operatorname{dim}(\cap \mathcal{B})} \in \mathbb{Z}[x] .
$$

- We have an analogue of the graphical arrangement:
- Definition. Let D be a digraph (= directed graph) with vertex set $\{1,2, \ldots, n\}$ and with no loops (i.e., no arcs of the form (v, v)). Let V be the K-vector space $K^{n} \oplus K^{n}$. A typical vector in V has the form $(x ; y)=\left(x_{1}, x_{2}, \ldots, x_{n} ; y_{1}, y_{2}, \ldots, y_{n}\right)$. Define a bilinear form

$$
\begin{aligned}
f: V \times V & \rightarrow K, \\
\left((x ; y),\left(x^{\prime} ; y^{\prime}\right)\right) & \mapsto \sum_{i=1}^{n} x_{i} y_{i}^{\prime}+\sum_{i=1}^{n} y_{i} x_{i}^{\prime} .
\end{aligned}
$$

Let \mathcal{A}_{D}^{\perp} be the coisotropic hyperplane arrangement

$$
\left\{\left\{(x ; y) \in V \mid x_{i}=y_{j}\right\}_{(i, j)} \text { is an } \operatorname{arc} \text { of } D\right\} .
$$

Assume that the field K has characteristic $\neq 2$.

- Proposition. In this situation,

$$
\chi_{\mathcal{A}_{D}, \perp}=\sum_{\substack{F \text { is a set of arcs of } D ; \\ F \text { is } 2 \text {-step-free }}}(-1)^{|F|} x^{n+\kappa(F)} .
$$

Here,

- a set F of arcs of D is said to be 2-step-free if two arcs of the form (i, j) and (j, k) cannot simultaneously belong to F.
- the number $\kappa(F)$ is the number of connected components of the graph whose vertices are $1,2, \ldots, n$ and whose edges are the undirected versions of the arcs in F.
- Theorem (suggested by Postnikov 2016). Assume that this digraph D is transitive - i.e., if (i, j) and (j, k) are arcs of D, then so is (i, k). Then,

$$
\chi_{\mathcal{A}_{\mathcal{D}}^{\perp}, \perp}=x^{n} \chi_{\underline{D}} .
$$

Here, \underline{D} denotes the underlying undirected graph of D (that is, replace all arcs by edges in D), and $\chi_{\underline{D}}$ is its chromatic polynomial.

- Proving this theorem has motivated the following combinatorial considerations.

3. Chromatic symmetric functions

- In 1995, Richard P. Stanley generalized chromatic polynomials to "chromatic symmetric functions": a finer invariant of a graph.
- Definition. If V is a set, then $\mathcal{P}_{2}(V)$ is the set of all 2-element subsets of V.
- Definition. A graph (or simple graph) means a pair (V, E) of a finite set V and a subset E of $\mathcal{P}_{2}(V)$ (that is, each edge is a 2-element set of vertices).

Of course, the elements of V are called vertices, and the elements of E are called edges of the graph.

- Definition. If $G=(V, E)$ is a graph, then
- a coloring of G means a map $f: V \rightarrow \mathbb{N}_{+}$;
- a proper coloring of G means a coloring f of G such that

$$
f(v) \neq f(w) \text { for each edge }\{v, w\} \in E .
$$

Here and in the following, $\mathbb{N}_{+}=\{1,2,3, \ldots\}=\mathbb{N} \backslash\{0\}$.

- Definition. Let $G=(V, E)$ be a graph. The chromatic symmetric function of G is defined to be the formal power series

$$
X_{G}:=\sum_{f \text { is a proper coloring of } G} \mathbf{x}_{f}, \quad \text { where } \mathbf{x}_{f}=\prod_{v \in V} x_{f(v)} \text {. }
$$

This is a symmetric function in $x_{1}, x_{2}, x_{3}, \ldots$ over \mathbb{Z}.

- Remark. The chromatic polynomial χ_{G} of G is then determined by

$$
\chi_{G}(q)=X_{G}(\underbrace{1,1, \ldots, 1}_{q \text { times }}, 0,0,0, \ldots) \quad \text { for all } q \in \mathbb{N} .
$$

- Theorem (all-subsets Whitney formula; Stanley 1995). Let $G=(V, E)$ be a graph. Then,

$$
X_{G}=\sum_{F \subseteq E}(-1)^{|F|} p_{\lambda(V, F)} .
$$

Here, $\lambda(V, F)$ is the partition whose entries are the sizes of the connected components of the graph (V, F).
And p_{μ} is the power-sum symmetric function for the partition μ.

- This formula has lots of cancellation, but it yields that X_{G} is p-integral.
- Corollary (Whitney's original all-subsets formula; Whitney 1932). Let $G=$ (V, E) be a graph. Then,

$$
\chi_{G}=\sum_{F \subseteq E}(-1)^{|F|} x^{\operatorname{conn}(V, F)},
$$

where conn means "number of connected components".

4. Broken circuits

- A way to manage this cancellation was found by Whitney (1932) and extended to symmetric functions by Stanley (1995). We now recall the definitions.
- Definition. Let $G=(V, E)$ be a graph. If \mathbf{c} is a cycle of G, then the set of all edges of \mathbf{c} is called a circuit of G.
- Definition. Let $G=(V, E)$ be a graph. A labeling function means a map $\ell: E \rightarrow X$ to some totally ordered set X. Its value $\ell(e)$ is called the label of an edge e.
- Definition. Let $G=(V, E)$ be a graph. Fix a labeling function $\ell: E \rightarrow X$. If C is a circuit of G, and if C contains a unique edge e of highest label (among all edges in C), then the set $C \backslash\{e\}$ is called a broken circuit of G.
- Note. If this e is not unique, then C generates no broken circuit.
- Theorem (broken-circuits Whitney formula; Stanley 1995). Let $G=(V, E)$ be a graph. Let $\ell: E \rightarrow X$ be a labeling function. Then,

$$
X_{G}=\sum_{\substack{F \subseteq E ; \\
\begin{array}{c}
F \text { contains } \\
\text { circuit of } G \text { as a a suben } \\
\hline
\end{array}}}(-1)^{|F|} p_{\lambda(V, F)} .
$$

- Note that each (V, F) in this sum is a forest if ℓ is injective.
- Corollary (Whitney's original broken-circuits formula). Let $G=(V, E)$ be a graph. Let $\ell: E \rightarrow X$ be an injective labeling function. Then,

$$
\chi_{G}=\sum_{\substack{F \subseteq \in E_{i}^{F} \text { contains no broken } \\ \text { circuit of } G \text { as a subset }}}(-1)^{|F|} x^{|V|-|F|} .
$$

5. Relaxing Whitney's formula

- For each of X_{G} and χ_{G}, we have seen two formulas: one sum over all subsets of E, and one that excludes all subsets that contain any broken circuit.
- Everything inbetween also works!
- Theorem (relaxed Whitney formula; explicitly G. 2016+ but essentially Dohmen/Trinks 2014). Let $G=(V, E)$ be a graph. Let $\ell: E \rightarrow X$ be a labeling function. Let \mathfrak{K} be some set of broken circuits of G (not necessarily containing all of them). Then,

$$
X_{G}=\sum_{\substack{F \subset E ; \\ F \text { is } \hat{\Omega} \text {-free }}}(-1)^{|F|} p_{\lambda(V, F)} .
$$

Here (and in the following), "is \mathfrak{K}-free" means "contains no $K \in \mathfrak{K}$ as a subset".

- Proof idea. For any $F \subseteq E$, we have

$$
p_{\lambda(V, F)}=\sum_{\substack{f: V \rightarrow \mathbb{N}_{+} \text {is a map; } \\ f \text { is constant on each } \\ \text { connected component of }(V, F)}} \mathbf{x}_{f} .
$$

Thus,

$$
\left.\sum_{\substack{F \subset E_{j} \\
F \text { is } \\
\mathfrak{K} \text {-free }}}(-1)^{|F|} p_{\lambda(V, F)}=\sum_{f: V \rightarrow \mathbb{N}_{+} \text {is a map }} \sum_{\begin{array}{c}
F \subset E ; \\
f \text { is } \mathcal{K} \text {-free; } \\
f \text { is constant on each } \\
\text { connected component of }(V, F)
\end{array}}(-1)^{|F|}\right) \mathbf{x}_{f} .
$$

It remains to argue that the inner sum is 1 whenever f is a proper coloring of G, and 0 otherwise.
The former is trivial; the latter follows by a sign-reversing involution (pick an edge $\{s, t\} \in E$ with $f(s)=f(t)$ that has maximum possible label; toggle it in/out of F).

- Both Whitney formulas for X_{G} follow.
- Corollary (relaxed Whitney formula; explicitly G. 2016+ but essentially Dohmen/Trinks 2014). Let $G=(V, E)$ be a graph. Let $\ell: E \rightarrow X$ be a labeling function. Let \mathfrak{K} be some set of broken circuits of G (not necessarily containing all of them). Then,

$$
\chi_{G}=\sum_{\substack{F \subset E_{;} \\ F \text { is } \hat{K} \text {-free }}}(-1)^{|F|} x^{\operatorname{conn}(V, F)} .
$$

- Proof idea. Apply the previous theorem to $(1,1, \ldots, 1,0,0,0, \ldots)$.
- Both Whitney formulas for χ_{G} follow.
- Even a somewhat more general result holds:
- Theorem (generalized Whitney formula; explicitly G. 2016+, but essentially Dohmen/Trinks 2014). Let $G=(V, E)$ be a graph. Let $\ell: E \rightarrow X$ be a labeling function. Let \mathfrak{K} be some set of broken circuits of G (not necessarily containing all of them). Let a_{K} be an element of the base ring for every $K \in \mathfrak{K}$. Then,

$$
X_{G}=\sum_{F \subseteq E}(-1)^{|F|}\left(\prod_{\substack{K \in \mathfrak{F} ; \\ K \subseteq F}} a_{K}\right) p_{\lambda(V, F)}
$$

- Proof. Essentially the same argument.

6. Application to transitive digraphs

- The freedom to exclude some (rather than all) broken circuits has some applications. In particular, we can prove what we need for the hyperplane arrangement equality.
- Definition. A digraph (= directed graph) means a pair (V, A) of a finite set V (the set of vertices) and a subset A of $V \times V$ (the set of arcs). Thus, each arc is an ordered pair of vertices.
- Definition. A digraph (V, A) is said to be
- loopless if $(v, v) \notin A$ for all $v \in V$;
- transitive if $(u, v) \in A$ and $(v, w) \in A$ imply $(u, w) \in A$;
- 2-step-free if $(u, v) \in A$ and $(v, w) \in A$ never happen together.
- Definition. If D is a loopless digraph, then \underline{D} shall mean the underlying undirected graph (i.e., replace each arc by an edge).
- Examples. Here are three loopless digraphs:

- Note. Transitive loopless digraphs have no cycles.
- Theorem (G. 2016+, suggested by Alex Postnikov). Let $D=(V, A)$ be a transitive loopless digraph. Then,

$$
\chi_{\underline{D}}=\sum_{\substack{F \subset A ; \\ \text { the digraph }(V, F) \text { is 2-step-free }}}(-1)^{|F|} x^{\operatorname{conn} \underline{(V, F)},}
$$

where conn means "number of connected components".

- Proof idea. Let E be the edge set of \underline{D}. The map

$$
\begin{aligned}
A & \rightarrow E \\
(i, j) & \mapsto\{i, j\}
\end{aligned}
$$

is a bijection (since D has no 2-cycles).
Hence, each triple $(i, j, k) \in V \times V \times V$ with $(i, j) \in A$ and $(j, k) \in A$ yields a 3-cycle (i, j, k, i) in \underline{D}, and thus a circuit

$$
\{\{i, j\},\{i, k\},\{j, k\}\}
$$

of \underline{D}. Define a labeling function $\ell: E \rightarrow \mathbb{N}$ in such a way that the edge $\{i, k\}$ of this circuit has a higher label than the other two (this is possible since D has no cycles). Thus,

$$
\{\{i, j\},\{j, k\}\}
$$

is a broken circuit of \underline{D}. Let \mathfrak{K} be the set of all such broken circuits.
Argue that the above bijection $A \rightarrow E$ transforms subsets $F \subseteq A$ for which the digraph (V, F) is 2 -step-free into subsets $F^{\prime} \subseteq E$ that are \mathfrak{K}-free. Now, apply the relaxed Whitney formula for χ_{G} to $G=\underline{D}$.

- Note that \mathfrak{K} is not the set of all broken circuits of \underline{D}, only some of them. We don't want to remove too much!
- The above theorem can then be used to obtain the $\chi_{\mathcal{A}_{\bar{D}}^{\perp}, \perp}=x^{n} \chi_{\underline{D}}$ theorem.

7. Ambigraphs

- Simple graphs are not the end-all. Chromatic polynomials have also been defined for
- multigraphs (graphs with multiple edges);
- hypergraphs ("graphs" where an edge can have more than 2 endpoints).

They still satisfy Whitney formulas (folklore for multigraphs; Dohmen 1995 and Dohmen/Trinks 2014 for hypergraphs).

- For a multigraph, parallel edges don't affect X_{G} and χ_{G} but make the alternating sums bigger.
- We ignore loops, as they trivialize everything $(0=0)$ but make proofs messier.
- For a hypergraph, a proper coloring has to ensure that no edge is monochromatic: i.e., if f is a coloring, and $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ is an edge, then at least two of the values $f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{k}\right)$ must be distinct in order for f to be proper.
- Observation (new?): Hypergraphs aren't the right level of generality for this.
- Definition. An ambigraph shall mean a triple (V, E, φ), where V and E are two finite sets, and where $\varphi: E \rightarrow \mathcal{P}\left(\mathcal{P}_{2}(V)\right)$ is a map (where $\mathcal{P}(S)$ means the set of all subsets of S). Thus, the map φ sends each $e \in E$ to a set of 2-element subsets of V.

Some related terminology:

- The elements of V are called vertices, and the elements of E are called edgeries.
- The edges of an edgery $e \in E$ are the elements of $\varphi(e)$. These edges are "real" edges, i.e., sets of the form $\{s, t\}$ for $s \neq t$ in V.
- An edgery $e \in E$ is called singleton if e has only 1 edge.

Idea: An edgery is a collection of edges (in the simple-graph sense).

- Example. This here:

shows the ambigraph (V, E, φ) with $V=\{1,2,3,4\}$ and $E=\{a, b, c, d\}$ and

$$
\begin{aligned}
\varphi(a) & =\{\{1,3\},\{2,4\}\}, \quad \varphi(b)=\{\{1,2\},\{3,4\}\}, \\
\varphi(c) & =\{\{2,3\}\}, \quad \varphi(d)=\{\{2,3\},\{3,4\}\} .
\end{aligned}
$$

The only singleton edgery here is c, whose only edge is $\{2,3\}$.

- Definition. If $G=(V, E, \varphi)$ is an ambigraph, then
- a coloring of G means a map $f: V \rightarrow \mathbb{N}_{+}$;
- a proper coloring of G means a coloring f of G such that

$$
\begin{aligned}
& \text { each edgery } e \in E \text { has at least one } \\
& \text { edge }\{v, w\} \text { satisfying } f(v) \neq f(w) .
\end{aligned}
$$

- Example. If G is as above, then a proper coloring of G is a map $f: V \rightarrow \mathbb{N}_{+}$ such that

$$
\begin{aligned}
& (f(1) \neq f(3) \text { or } f(2) \neq f(4)) \quad \text { and } \quad(f(1) \neq f(2) \text { or } f(3) \neq f(4)) \\
& \text { and } \quad f(2) \neq f(3) \quad \text { and } \quad(f(2) \neq f(3) \text { or } f(3) \neq f(4)) .
\end{aligned}
$$

(Note: The last condition is redundant, since $\varphi(c) \subseteq \varphi(d)$.)

- Remark. If G has an edgery with no edges, then G has no proper colorings. (This is like having a loop.)
- Ambigraphs generalize multigraphs (all edgeries are singleton or empty) and hypergraphs (e.g., an edge $\{a, b, c, d\}$ becomes an edgery with 6 edges).
- Definition. Let $G=(V, E, \varphi)$ be an ambigraph. The chromatic symmetric function of G is defined to be the formal power series

$$
X_{G}:=\sum_{f \text { is a proper coloring of } G} \mathbf{x}_{f}, \quad \text { where } \mathbf{x}_{f}=\prod_{v \in V} x_{f(v)}
$$

This is a symmetric function in $x_{1}, x_{2}, x_{3}, \ldots$ over \mathbb{Z}.

- Again, we can define the chromatic polynomial χ_{G} accordingly:

$$
\begin{aligned}
\chi_{G}(q) & =X_{G}(\underbrace{1,1, \ldots, 1}_{q \text { ones }}, 0,0,0, \ldots) \\
& =(\# \text { of proper colorings of } G \text { with colors in }\{1,2, \ldots, q\}) .
\end{aligned}
$$

- Theorem (all-subsets Whitney formula; G. 2016+). Let $G=(V, E, \varphi)$ be an ambigraph. Then,

$$
X_{G}=\sum_{F \subseteq E}(-1)^{|F|} p_{\lambda(V, \text { union } F)} .
$$

Here, union F denotes the set $\bigcup_{e \in F} \varphi(e)$, which consists of all edges of all edgeries in F.

- We can get rid of some (not all) cancellation in this formula by introducing broken circuits.

8. Whitney formulas for ambigraphs

- Definition. Let $G=(V, E, \varphi)$ be an ambigraph. A cycle of G means a list

$$
\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{m}, e_{m}, v_{m+1}\right)
$$

with the following properties:

- $v_{1}, v_{2}, \ldots, v_{m+1} \in V$ and $e_{1}, e_{2}, \ldots, e_{m} \in E$.
- $m \geq 1$.
$-v_{m+1}=v_{1}$.
- The vertices $v_{1}, v_{2}, \ldots, v_{m}$ are pairwise distinct.
- The edgeries $e_{1}, e_{2}, \ldots, e_{m}$ are pairwise distinct.
$-\left\{v_{i}, v_{i+1}\right\} \in \varphi\left(e_{i}\right)$ for every $i \in\{1,2, \ldots, m\}$.
If $\left(v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{m}, e_{m}, v_{m+1}\right)$ is a cycle of G, then the set $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ is called a circuit of G.
- Definition. Let $G=(V, E, \varphi)$ be an ambigraph. A labeling function means a $\operatorname{map} \ell: E \rightarrow X$ for some totally ordered set X. Its value $\ell(e)$ is called the label of an edgery e.
- Definition. Let $G=(V, E, \varphi)$ be an ambigraph. Fix a labeling function ℓ : $E \rightarrow X$. If C is a circuit of G, and if C contains a unique singleton edgery e of highest label (among all singleton edgeries in C), then the set $C \backslash\{e\}$ is called a broken circuit of G.
- Theorem (broken-circuits Whitney formula for ambigraphs; G. 2016+). Let $G=(V, E, \varphi)$ be an ambigraph. Let $\ell: E \rightarrow X$ be a labeling function. Then,

$$
X_{G}=\sum_{\substack{F \subseteq E_{i} \text { contains no broken } \\ \text { circuit of } G \text { as a subset }}}(-1)^{|F|} p_{\lambda(V, \text { union } F)} .
$$

- Again, we get a formula for χ_{G} as a corollary. Note that we cannot simplify conn (V, union F) this time, since (V, union F) needs not be a forest.
- More generally:
- Theorem (relaxed Whitney formula for ambigraphs; G. 2016+). Let $G=$ (V, E, φ) be an ambigraph. Let $\ell: E \rightarrow X$ be a labeling function. Let \mathfrak{K} be some set of broken circuits of G (not necessarily containing all of them). Then,

$$
X_{G}=\sum_{\substack{F \subset E_{j} \\ F \text { is } \mathfrak{k} \text {-free }}}(-1)^{|F|} p_{\lambda(V, \text { union } F)} .
$$

- Proof. Quite similar to the one for graphs.

9. Weighted versions

- A weighted version of the chromatic symmetric function was defined for graphs by Crew and Spirkl in 2020. We can do the same for ambigraphs:
- Definition. A weight function on a set V means a map $w: V \rightarrow \mathbb{N}_{+}$.
- Definition. Let $G=(V, E, \varphi)$ be an ambigraph. Let w be a weight function on V. The chromatic symmetric function of (G, w) is defined to be the formal power series

$$
X_{G, w}:=\sum_{f \text { is a proper coloring of } G} \mathbf{x}_{f, w}, \quad \text { where } \mathbf{x}_{f, w}=\prod_{v \in V} x_{f(v)}^{w(v)}
$$

This is a symmetric function in $x_{1}, x_{2}, x_{3}, \ldots$ over \mathbb{Z}.

- Theorem (weighted relaxed Whitney formula for ambigraphs; G. 2016+). Let $G=(V, E, \varphi)$ be an ambigraph. Let w be a weight function on V. Let $\ell: E \rightarrow X$ be a labeling function. Let \mathfrak{K} be some set of broken circuits of G (not necessarily containing all of them). Then,

$$
X_{G, w}=\sum_{\substack{F \subset E_{j} \\ F \text { is } \\ \mathfrak{\kappa} \text {-free }}}(-1)^{|F|} p_{\lambda((V, \text { union } F), w)} .
$$

Here, $\lambda(H, w)$ (for a graph H) means the partition whose parts are the total weights of the connected components of H.

- Proof. Analogous to the unweighted case.
- The advantage of $X_{G, w}$ (compared to X_{G}) is the existence of a deletion-contraction recurrence. Note:
- To contract an edgery e means to contract every edge of e simultaneously. Loops are removed if they appear.
- When an edge is contracted, the weights of its endpoints are added.

10. Matroids

- Some features of graphs are generalized by matroids.
- In particular, the chromatic polynomial χ_{G} of a graph G is generalized by the characteristic polynomial $\widetilde{\chi}_{M}$ of a matroid M.
- Definition. Let M be a matroid with ground set E, rank function r_{M} and rank m. The characteristic polynomial $\tilde{\chi}_{M}$ of the matroid M is defined to be the polynomial

$$
\begin{aligned}
\widetilde{\chi}_{M} & =\sum_{F \subseteq E}(-1)^{|F|} x^{m-r_{M}(F)} \\
& =[\bar{\varnothing}=\varnothing] \sum_{F \in \text { Flats } M} \underbrace{\mu(\bar{\varnothing}, F)}_{\begin{array}{c}
\text { Möbius function of } \\
\text { the lattice of flats }
\end{array}} x^{m-r_{M}(F)} \\
& \quad \text { (where } \bar{\varnothing} \text { is the rank-0 flat, i.e., the set of loops) } \\
& \in \mathbb{Z}[x] .
\end{aligned}
$$

- There is also a slightly different definition, which has no $[\bar{\varnothing}=\varnothing]$ factor. These agree if M has no loops.
- Matroids also have circuits (= minimal dependent sets) and therefore, given a labeling function $\ell: E \rightarrow X$, also have broken circuits (= circuits minus their highest-label element).
- Theorem (relaxed Whitney formula; explicitly G. 2016+, but essentially Dohmen/Trinks 2014). Let M be a matroid with ground set E and rank m. Let $\ell: E \rightarrow X$ be a labeling function. Let \mathfrak{K} be some set of broken circuits of M (not necessarily containing all of them). Then,

$$
\widetilde{\chi}_{M}=\sum_{\substack{F \subset E ; \\ F \text { is } \bar{k} \text {-free }}}(-1)^{|F|} x^{m-r_{M}(F)}
$$

- Theorem (generalized Whitney formula; explicitly G. 2016+, but essentially Dohmen/Trinks 2014). Let M be a matroid with ground set E and rank m. Let $\ell: E \rightarrow X$ be a labeling function. Let \mathfrak{K} be some set of broken circuits of M (not necessarily containing all of them). Let a_{K} be an element of the base ring for every $K \in \mathfrak{K}$. Then,

$$
\tilde{\chi}_{M}=\sum_{F \subseteq E}(-1)^{|F|}\left(\prod_{\substack{K \in \mathfrak{K} ; \\ K \subseteq F}} a_{K}\right) x^{m-r_{M}(F)} .
$$

- I am not aware of any generalization of X_{G} to matroids. Are you?

11. Questions

- I think ambigraphs and coisotropic hyperplane arrangements are worth exploring!
- Question. What can we say about $\chi_{\mathcal{A}_{D}^{\perp}, \perp}$ for general D ?
- Question. Are there similar formulas for the Tutte polynomial?
- Question. Is there a Stanley (-1)-color theorem for ambigraphs?
(The sign of $(-1)^{|V(G)|} \chi_{G}(-1)$ is inconsistent, so maybe not, or it is an alternating sum.)
- Question. Is there a Tutte polynomial for ambigraphs?
- Question. Is there a chromatic homology theory (categorifying χ_{G}) for ambigraphs?

12. I thank

- Alexander Postnikov for a crucial suggestion on the hyperplane arrangement part.
- Richard P. Stanley for selling me on hyperplane arrangements.
- Kurusch Ebrahimi-Fard for the invitation.
- you for your patience.

