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Abstract. This paper considers an invariant of modules over a finite-dimensional Hopf algebra, called the
critical group. This generalizes the critical groups of complex finite group representations studied in [1, 11].
A formula is given for the cardinality of the critical group generally, and the critical group for the regular
representation is described completely. A key role in the formulas is played by the greatest common divisor of
the dimensions of the indecomposable projective representations.

1. Introduction

Every connected finite graph has an interesting isomorphism invariant, called its critical or sandpile
group. This is a finite abelian group, defined as the cokernel of the (reduced) Laplacian matrix of the graph.
Its cardinality is the number of spanning trees in the graph, and it has distinguished coset representatives
related to the notion of chip-firing on graphs ([17], [24]). In recent work motivated by the classical McKay
correspondence, a similar critical group was defined by Benkart, Klivans and the third author [1] (and studied
further by Gaetz [11]) for complex representations of a finite group. They showed that the critical group of
such a representation has many properties in common with that of a graph.

The current paper was motivated in trying to understanding the role played by semisimplicity for the
group representations. In fact, we found that much of the theory generalizes not only to arbitrary finite group
representations in any characteristic, but even to representations of finite-dimensional Hopf algebras1.

Thus we start in Section 2 by reviewing modules V for a Hopf algebra A which is finite-dimensional over
an algebraically closed field F. This section also defines the critical group K(V) as follows: if n := dim V ,
and if A has `+1 simple modules, then the cokernel of the map LV on the Grothendieck group G0(A) � Z`+1

which multiplies by n − [V] has abelian group structure Z ⊕ K(V).
To develop this further, in Section 3 we show that the vectors in Z`+1 giving the dimensions of the simple

and indecomposable projective A-modules are left- and right-nullvectors for the map LV . In the case of a
group algebra A = FG for a finite group G, we extend results from [1] and show that the columns in the
Brauer character tables for the simple and indecomposable projective modules give complete sets of left-
and right-eigenvectors for LV .

Section 4 uses this to prove the following generalization of a result of Gaetz [11, Ex. 9]. Let d := dim A,
and let γ be the greatest common divisor of the dimensions of the `+1 indecomposable projective A-modules.

Theorem 1.1. If ` = 0 then K(A) = 0, else K(A) � (Z/γZ) ⊕ (Z/dZ)`−1 .

Section 5 proves the following formula for #K(V), analogous to one for critical groups of graphs.

Theorem 1.2. Assume K(V) is finite, so that LV has nullity one. If the characteristic polynomial of LV

factors as det(xI − LV ) = x
∏`

i=1(x − λi), then #K(V) =
��γ
d (λ1λ2 · · · λ`)

�� .
Section 5makes this muchmore explicit in the case of a group algebra FG for a finite groupG, generalizing

another result of Gaetz [11, Thm. 3(i)]. Let p ≥ 0 be the characteristic of the field F. Let pa be the order
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of the p-Sylow subgroups of G (with pa to be understood as 1 if p = 0), and denote by χV (g) the Brauer
character value for V on a p-regular element g in G; see Section 3 for definitions.

Corollary 1.3. For any FG-module V of dimension n with K(V) finite, one has

#K(V) =
pa

#G

∏
g,e

(n − χV (g)) ,

where the product runs through a set of representatives g for the non-identity p-regular G-conjugacy classes.
In particular, the quantity on the right is a positive integer.

The question of when the abelian group K(V) is finite, as opposed to having a free part, occupies Section 6.
The crucial condition is a generalization of faithfulness for semisimple finite group representations: one needs
the A-module V to be tensor-rich in the sense that every simple A-module occurs in at least one of its tensor
powers V ⊗k . In fact, we show that tensor-richness implies something much stronger about the map LV : its
submatrix LV obtained by striking out the row and column indexed by the trivial A-module turns out to be a

nonsingular M-matrix, that is, the inverse
(
LV

)−1
has all nonnegative entries.

Theorem 1.4. The following are equivalent for an A-module V .
(i) LV is a nonsingular M-matrix.
(ii) LV is nonsingular.
(iii) LV has rank `, so nullity 1.
(iv) K(V) is finite.
(v) V is tensor-rich.

The question of which A-modules V are tensor-rich is answered completely for group algebras A = FG
via a result of Brauer in Section 7. We suspect that the many questions on finite-dimensional Hopf algebras
raised here (Questions 3.12, 5.2, 5.12, 6.9) have good answers in general, not just for group algebras.

1.1. Notations and standing assumptions. Throughout this paper, F will be an algebraically closed field,
and A will be a finite-dimensional algebra over F. Outside of Section 2.1, we will further assume that A
is a Hopf algebra. We denote by dim V the dimension of an F-vector space V . Only finite-dimensional
A-modules V will be considered. All tensor products are over F.

Vectors v in Rm for various rings R are regarded as column vectors, with vi denoting their ith coordinate.
The (i, j) entry of a matrix M will be denoted Mi, j . (Caveat lector: Most of the matrices appearing in this
paper belong to Zm×m′ or Cm×m′, even when they are constructed from F-vector spaces. In particular, the
rank of such a matrix is always understood to be its rank over Q or C.)

Let S1, S2, . . . , S`+1 (resp., P1, P2, . . . , P`+1) be the inequivalent simple (resp., indecomposable projective)
A-modules, with top(Pi) := Pi/rad Pi = Si. Define two vectors s and p in Z`+1 as follows:

s := [dim(S1), . . . , dim(S`+1)]
T ,

p := [dim(P1), . . . , dim(P`+1)]
T .

2. Finite-dimensional Hopf algebras

2.1. Finite-dimensional algebras. Let A be a finite-dimensional algebra over an algebraically closed field
F. Unless explicitly mentioned otherwise, we will only consider left A-modules V , with dim V := dimFV
finite, and all tensor products ⊗ will be over the field F. We recall several facts about such modules; see, e.g.,
Webb [31, Chap. 7] and particularly [31, Thm. 7.3.9]. The left-regular A-module A has a decomposition

(2.1) A �
`+1⊕
i=1

Pdim Si
i .
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For an A-module V , if [V : Si] denotes the multiplicity of Si as a composition factor of V , then

(2.2) [V : Si] = dim HomA(Pi,V).

There are two Grothendieck groups, G0(A) and K0(A):

• The first one, G0(A), is defined as the quotient of the free abelian group on the set of all isomorphism
classes [V] of A-modules V , subject to the relations [U] − [V] + [W] for each short exact sequence
0 → U → V → W → 0 of A-modules. This group has a Z-module basis consisting of the classes
[S1], . . . , [S`+1], due to the Jordan-Hölder theorem.
• The second one, K0(A), is defined as the quotient of the free abelian group on the set of all
isomorphism classes [V] of projective A-modulesV , subject to the relations [U]−[V]+ [W] for each
direct sum decomposition V = U ⊕W of A-modules. This group has a Z-module basis consisting of
the classes [P1], . . . , [P`+1], due to the Krull-Remak-Schmidt theorem.

Note that (2.1) implies the following.

Proposition 2.1. For a finite-dimensional algebra A over an algebraically closed field F, in K0(A), the class
[A] of the left-regular A-module has the expansion [A] =

∑`+1
i=1 (dim Si)[Pi].

The two bases of G0(A) and K0(A) give rise to group isomorphisms G0(A) � Z`+1 � K0(A). There is
also a Z-bilinear pairing K0(A) × G0(A) → Z induced from 〈[P], [S]〉 := dim HomA(P, S). This is a perfect
pairing since the Z-basis elements satisfy

〈[Pi], [Sj]〉 = dim HomA(Pi, Sj) = [Sj : Si] = δi, j

(where (2.2) was used for the second equality). More generally,

(2.3) 〈[Pi], [V]〉 = dim HomA(Pi,V) = [V : Si]

for any A-module V . There is also a Z-linear map K0(A) → G0(A) which sends the class [P] of a projective
A-module P in K0(A) to the class [P] in G0(A). This map is expressed in the usual bases by the Cartan
matrix C of A; this is the integer (` + 1) × (` + 1)-matrix having entries

(2.4) Ci, j := [Pj : Si] = dim HomA(Pi, Pj).

If one chooses orthogonal idempotents ei in A for which Pi � Aei as A-modules, then one can reformulate

(2.5) Ci, j = dim HomA(Pi, Pj) = dim HomA

(
Aei, Aej

)
= dim

(
eiAej

)
where the last equality used the isomorphism HomA (Ae,V) � eV sending ϕ 7→ ϕ(1), for any A-module V
and any idempotent e of A; see, e.g., [31, Prop. 7.4.1 (3)].

Taking dimensions of both sides in (2.1) identifies the dot product of s and p.

Proposition 2.2. If A is a finite-dimensional algebra over an algebraically closed field, then sTp = dim(A).

Proof. From s = [dim(S1), . . . , dim(S`+1)]
T and p = [dim(P1), . . . , dim(P`+1)]

T , we obtain

sTp =
`+1∑
i=1

dim (Si) dim (Pi) = dim

(
`+1⊕
i=1

Pdim Si
i

)
= dim A (by (2.1)) . �

On the other hand, the definition (2.4) of the Cartan matrix C immediately yields the following:

Proposition 2.3. If A is a finite-dimensional algebra over an algebraically closed field, then pT = sTC.
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2.2. Hopf algebras. Let A be a finite-dimensional Hopf algebra over an algebraically closed field F, with
• counit ε : A→ F,
• coproduct ∆ : A→ A ⊗ A,
• antipode α : A→ A.

Example 2.4. Our main motivating example is the group algebra A = FG = {
∑

g∈G cgg : cg ∈ F}, for a
finite group G, with F of arbitrary characteristic. For g in G, the corresponding basis element g of FG has

ε(g) = 1,
∆(g) = g ⊗ g,

α(g) = g−1.

Example 2.5. For integers m, n > 0 with m dividing n, the generalized Taft Hopf algebra A = Hn,m is
discussed in Cibils [5] and in Li and Zhang [18]. As an algebra, it is a skew group ring [20, Example 4.1.6]

Hn,m = F[Z/nZ]n F[x]/(xm)

for the cyclic group Z/nZ = {e, g, g2, . . . , gn−1} acting on coefficients in a truncated polynomial algebra
F[x]/(xm), via gxg−1 = ω−1x, with ω a primitive nth root of unity in F. That is, the algebra Hn,m is the
quotient of the free associative F-algebra on two generators g, x, subject to the relations gn = 1, xm = 0 and
xg = ωgx. It has dimension mn, with F-basis {gix j : 0 ≤ i < n and 0 ≤ j < m}.

The remainder of its Hopf structure is determined by these choices:

ε(g) = 1, ε(x) = 0,
∆(g) = g ⊗ g, ∆(x) = 1 ⊗ x + x ⊗ g,

α(g) = g−1, α(x) = −ω−1g−1x.

Example 2.6. Radford defines in [26, Exercise 10.5.9] a further interesting Hopf algebra, which we will
denote A(n,m). Let n > 0 and m ≥ 0 be integers such that n is even and n lies in F×. Fix a primitive nth root
of unity ω in F. As an algebra, A(n,m) is again a skew group ring

A(n,m) = F[Z/nZ]n
∧
F

[x1, . . . , xm],

for the cyclic group Z/nZ = {e, g, g2, . . . , gn−1} acting this time on coefficients in an exterior algebra∧
F[x1, . . . , xm], via gxig−1 = ωxi. That is, A(n,m) is the quotient of the free associative F-algebra on

g, x1, . . . , xm, subject to relations gn = 1, x2
i = 0, xixj = −xj xi, and gxig−1 = ωxi. It has dimension n2m and

an F-basis
{
gixJ : 0 ≤ i < n, J ⊆ {1, 2, . . . ,m}

}
where xJ := xj1 xj2 · · · xjk if J = { j1 < j2 < · · · < jk}. The

remainder of its Hopf structure is determined by these choices:

ε (g) = 1, ε (xi) = 0,

∆ (g) = g ⊗ g, ∆ (xi) = 1 ⊗ xi + xi ⊗ gn/2,

α (g) = g−1, α (xi) = −xign/2.

In the special case where n = 2, the Hopf algebra A(2,m) is the Nichols Hopf algebra of dimension 2m+1

defined in Nichols [21]; see also Etingof et. al. [10, Example 5.5.7].

Example 2.7. When F has characteristic p, a restricted Lie algebra is a Lie algebra g over F, together with a
p-operation x 7→ x[p] on g satisfying certain properties; see Montgomery [20, Defn. 2.3.2]. The restricted
universal enveloping algebra u(g) is then the quotient of the usual universal enveloping algebra U(g) by the
two-sided ideal generated by all elements xp − x[p] for x in g. Since this two-sided ideal is also a Hopf ideal,
the quotient u(g) becomes a Hopf algebra over F. The dimension of u(g) is pdim g, as it has a PBW-style
F-basis of monomials {xi11 xi22 · · · x

im
m }0≤i j<p corresponding to a choice of ordered F-basis (x1, . . . , xm) of g.
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We return to discussing general finite-dimensional Hopf algebras A over F.
The counit ε : A→ F gives rise to the 1-dimensional trivial A-module ε , which is the vector space F on

which A acts through ε . Furthermore, for each A-module V , we can define its subspace of A-fixed points:

V A := {v ∈ V : av = ε(a)v for all a ∈ A}.

The coproduct ∆ gives rise to the tensor product V ⊗ W of two A-modules V and W , defined via
a(v ⊗ w) :=

∑
a1v ⊗ a2w, using the Sweedler notation ∆(a) =

∑
a1 ⊗ a2 for a ∈ A (see, e.g., [26, Sect. 2.1]

for an introduction to the Sweedler notation). With this definition, the canonical isomorphisms

(2.6) ε ⊗ V � V � V ⊗ ε

are A-module isomorphisms. The following lemma appears, for example, as [8, Prop. 7.2.2].

Lemma 2.8. Let V be an A-module.
(i) Then, V ⊗ A � A⊕ dimV as A-modules.
(ii) Also, A ⊗ V � A⊕ dimV as A-modules.

The antipode α : A→ A of the Hopf algebra A is bijective, since A is finite-dimensional; see, e.g., [20,
Thm. 2.1.3], [26, Thm. 7.1.14 (b)], [22, Prop. 4], or [10, Prop. 5.3.5]. Hence α is an algebra and coalgebra
anti-automorphism. In particular, as an algebra, A � Aopp. For each A-module V , the antipode gives rise to
two A-module structures on HomF(V, F): the left-dual V∗ and the right-dual ∗V of V . They are defined as
follows: For a ∈ A, f ∈ HomF(V, F) and v ∈ V , we set

(a f )(v) :=

{
f (α(a)v), when regarding f as an element of V∗,
f (α−1(a)v), when regarding f as an element of ∗V .

The following two facts are straightforward exercises in the definitions.

Lemma 2.9. We have A-module isomorphisms ε∗ � ∗ε � ε .

Lemma 2.10. Let V be an A-module. We have canonical A-module isomorphisms ∗(V∗) � V � ( ∗V )∗.

For any two A-modules V and W , we define an A-module structure on HomF(V,W) via

(aϕ)(v) :=
∑

a1ϕ(α(a2)v)

for all a ∈ A, ϕ ∈ HomF(V,W) and v ∈ V . The following result appears, for example, as [32, Lemma 2.2].

Lemma 2.11. Let V and W be two A-modules. Then, we have an A-module isomorphism

(2.7) Φ : W ⊗ V∗
�
→ HomF(V,W)

sending w ⊗ f to the linear map ϕ ∈ HomF(V,W) that is defined by ϕ(v) = f (v)w for all v ∈ V .
In particular, when W = ε , this shows V∗ � HomF(V, ε).

Next, we shall use a result that is proven in Schneider [28, Lemma 4.1]2

Lemma 2.12. Let V and W be two A-modules. Then, HomA(V,W) = HomF(V,W)A.

The next four results are proven in Appendix 8.

Lemma 2.13. Let V and W be two A-modules. Then, HomA(V,W) � HomA (W∗ ⊗ V, ε).

Lemma 2.14. Let U and V be A-modules. Then, (U ⊗ V)∗ � V∗ ⊗ U∗ and ∗(U ⊗ V) � ∗V ⊗ ∗U .

2Schneider makes various assumptions that are not used in the proof.
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Lemma 2.15. For A-modules U, V , and W , one has isomorphisms

HomA(U ⊗ V,W)
∼
−→ HomA(U,W ⊗ V∗),(2.8)

HomA(V∗ ⊗ U,W)
∼
−→ HomA(U,V ⊗W),(2.9)

HomA(U ⊗ ∗V ,W)
∼
−→ HomA(U,W ⊗ V),(2.10)

HomA(V ⊗ U,W)
∼
−→ HomA(U, ∗V ⊗W).(2.11)

Proposition 2.16. Any A-module V has dim HomA (V, A) = dim V .

Proposition 2.16 implies the following two Hopf algebra facts, to be compared with the two “transposed”
algebra facts, Propositions 2.1 and 2.3.

Corollary 2.17. Let A be a finite-dimensional Hopf algebra over an algebraically closed field F. Let Pi, Si,
p, s and C be as in Subsection 2.1.

(i) The class [A] of the left-regular A-module expands in G0(A) as [A] =
∑`+1

i=1 (dim Pi)[Si].
(ii) The Cartan matrix C has Cs = p.

Proof. The assertion in (i) follows by noting that for each i = 1, 2, . . . , ` + 1, one has

[A : Si] = dim HomA(Pi, A) = dim (Pi) ,

where the first equality applied (2.2) and the second equality applied Proposition 2.16 with V = Pi.
This then helps to deduce assertion (ii), since for each i = 1, 2, . . . ` + 1, one has

(Cs)i =
`+1∑
j=1

Ci jsj =
`+1∑
j=1

[
Pj : Si

]
dim Sj =


`+1⊕
j=1

Pdim S j

j : Si

 = [A : Si] = pi

where the second-to-last equality used (2.1), and the last equality is assertion (i). Thus, Cs = p. �

Note that Corollary 2.17 (ii) follows from Proposition 2.3 whenever the Cartan matrix C is symmetric.
However, C is not always symmetric, as illustrated by the following example.

Example 2.18. Consider Radford’s Hopf algebra A = A(n,m) from Example 2.6, whose algebra structure
is the skew group ring F[Z/nZ] n

∧
F[x1, . . . , xm]. In this case, it is not hard to see that the radical of

A is the two-sided ideal I generated by x1, . . . , xm, with A/I � F[Z/nZ], and that A has a system of
orthogonal primitive idempotents

{
ek := 1

n

∑n−1
i=0 ω

kigi
}
k=0,1,...,n−1 , where the subscript k can be regarded

as an element of Z/nZ. This gives n indecomposable projective A-modules {Pk}k=0,1,...,n−1 with Pk � Aek ,
whose corresponding simple A-modules {Sk}k=0,1,...,n−1 are the simple modules for the cyclic group algebra
A/I � F[Z/nZ], regarded as A-modules by inflation.

We compute here the Cartan matrix C for A, using the formulation Ci, j = dim
(
eiAej

)
from (2.5). Recall

that A has F-basis
{
gk xJ : 0 ≤ k < n, J ⊆ {1, 2, . . . ,m}

}
. Using the fact that the e0, . . . , en−1 are orthogonal

idempotents, and easy calculations such as eigk = ω−kiei and xJej = ej−#J xJ , one concludes that

ei
(
gk xJ

)
ej = ω−kieixJej = ω−kieiej−#J xJ =

{
ω−kieixJ, if i ≡ j − #J mod n,
0, otherwise.

Therefore Ci, j = dim
(
eiAej

)
= #{J ⊆ {1, 2, . . . ,m} : #J ≡ j − i mod n}. This matrix C will not be

symmetric in general; e.g. for n = 4 and m = 1, if one indexes rows and columns by e0, e1, e2, e3, then

C =
[ 1 1 0 0

0 1 1 0
0 0 1 1
1 0 0 1

]
.
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2.3. The Grothendieck ring and the critical group. The group G0(A) also has an associative (not neces-
sarily commutative) augmented Z-algebra structure:

• the multiplication is induced from [V] · [W] := [V ⊗ W] (which is well-defined, since the tensor
bifunctor over F is exact, and is associative since tensor products are associative),
• the unit element is 1 = [ε], the class of the trivial A-module ε , and
• the augmentation (algebra) map G0(A) → Z is induced from [V] 7→ dim(V).

In many examples that we consider, A will be cocommutative, so that V ⊗ W � W ⊗ V , and hence G0(A)
is also commutative. However, Lemma 2.14 shows that there is a ring homomorphism G0(A) → G0(A)opp

sending each [V] to [V∗]. Lemma 2.10 furthermore shows that this homomorphism is an isomorphism.
Thus, G0(A) � G0(A)opp as rings. Consequently, when discussing constructions involving G0(A) that
involve multiplication on the right, we will omit the discussion of the same construction on the left.

The kernel I of the augmentation map, defined by the short exact sequence
(2.12) 0→ I −→ G0(A) −→ Z→ 0,
is the (two-sided) augmentation ideal of G0(A). Recalling that the vector s gave the dimensions of the simple
A-modules, then under the additive isomorphism G0(A) � Z`+1, the augmentation map G0(A) � Z`+1 → Z
corresponds to the map x 7→ sTx that takes dot product with s. Therefore the augmentation ideal I ⊂ G0(A)
corresponds to the perp sublattice

I = s⊥ := {x ∈ Z`+1 : sTx = 0}.
We come now to our main definition.

Definition 2.19. Given an A-module V of dimension n, define its critical group as the quotient (left-)G0(A)-
module of I modulo the principal (left-)ideal generated by n − [V]:

K(V) := I/G0(A)(n − [V]) .

We are interested in the abelian group structure of K(V), which has some useful matrix reformulations.
First, note that the short exact sequence of abelian groups (2.12) is split, since Z is free abelian. This gives a
direct decomposition G0(A) = Z ⊕ I as abelian groups, which then induces a decomposition

G0(A)/G0(A)(n − [V]) = Z ⊕ K(V).

Second, note that in the ordered Z-basis ([S1], . . . , [S`+1]) for G0(A), one expresses multiplication on
the right by [V] via the McKay matrix M = MV in Z(`+1)×(`+1) where Mi, j = [Sj ⊗ V : Si]. Consequently
multiplication on the right by n − [V] is expressed by the matrix LV := nI`+1 − MV . Thus the abelian group
structure of K(V) can alternately be described in terms of the cokernel of LV :

Z ⊕ K(V) � Z`+1/im LV,(2.13)
K(V) � s⊥/im LV .(2.14)

We will sometimes be able to reformulate K(V) further as the cokernel of an ` × ` submatrix of LV (see
the discussion near the end of Section 6). For this and other purposes, it is important to know about the left-
and right-nullspaces of LV , explored next.

3. Left and right eigenspaces

A goal of this section is to record the observation that, for any A-module V , the vectors s and p introduced
earlier are always left- and right-eigenvectors for MV , both having eigenvalue n = dim(V), and hence left-
and right-nullvectors for LV = nI`+1 − MV . When A = FG is the group algebra of a finite group G, we
complete this to a full set of left- and right-eigenvectors and eigenvalues: the eigenvalues of MV turn out to
be the Brauer character values χV (g), while the left- and right-eigenvectors are the columns of the Brauer
character table for the simple A-modules and indecomposable projective A-modules, respectively. This
interestingly generalizes a well-known story from the McKay correspondence in characteristic zero; see [1,
Prop. 5.3, 5.6].



8 DARIJ GRINBERG, JIA HUANG, AND VICTOR REINER

Let us first establish terminology: a right-eigenvector (resp. left-eigenvector) of a matrix U is a vector v
such that Uv = λv (resp. vTU = λvT ) for some scalar λ; notions of left- and right-nullspaces and left- and
right-eigenspaces should be intepreted similarly.

We fix an A-module V throughout Section 3; we set n = dim(V).

3.1. Left-eigenvectors. Left-eigenvectors of MV and LV will arise from the simple A-modules.

Proposition 3.1. The vector s is a left-eigenvector for MV with eigenvalue n, and a left-nullvector for LV .

Proof. Letting M := MV , for each j = 1, 2, . . . , ` + 1, one has

nsj = dim(Sj) dim(V) = dim(Sj ⊗ V) =
`+1∑
i=1
[Sj ⊗ V : Si] dim(Si) =

`+1∑
i=1

dim(Si)Mi, j = (sT M)j . �

The full left-eigenspace decomposition for MV and LV , when A = FG is a group algebra, requires the
notions of p-regular elements and Brauer characters, recalled here.

Definition 3.2. Recall that for a finite group G and a field F of characteristic p ≥ 0, an element g in G is
p-regular if its multiplicative order lies in F×. That is, g is p-regular if it is has order coprime to p when F
has characteristic p > 0, and every g in G is p-regular when F has characteristic p = 0. Let pa be the order
of the p-Sylow subgroups of G, so that #G = paq with gcd(p, q) = 1. (In characteristic zero, set pa := 1 and
q := #G.) The order of any p-regular element of G divides q.

To define Brauer characters for G, one first fixes a (cyclic) group isomorphism λ 7→ λ̂ between the qth

roots of unity in the algebraic closure F of F and the qth roots of unity in C. Then for each FG-module V
of dimension n, and each p-regular element g in G, the Brauer character value χV (g) ∈ C can be defined
as follows. Since g is p-regular, it will act semisimply on V by Maschke’s theorem, and have eigenvalues
λ1, λ2, . . . , λn in F which are qth roots of unity when acting on V (or, strictly speaking, when 1 ⊗ g acts on
F ⊗F V). This lets one define χV (g) :=

∑n
i=1 λ̂i, using the isomorphism fixed earlier. This χV (g) depends

only on the conjugacy class of g (not on g itself), and so is also called the Brauer character value of V at the
conjugacy class of g.

Brauer showed [31, Theorem 9.3.6] that the number ` + 1 of simple FG-modules is the same as the
number of p-regular conjugacy classes. He further showed that the map sending V 7−→ χV induces a ring
isomorphism from theGrothendieck ringG0(A) toC`+1, whereC`+1 is the ring ofC-valued class functions on
the ` + 1 distinct p-regular G-conjugacy classes, under pointwise addition and multiplication; see [31, Prop.
10.1.3]. One has the accompanying notion of the Brauer character table for G, an invertible (` + 1) × (` + 1)
matrix [31, Theorem 10.2.2] having columns indexed by the p-regular conjugacy classes of G, rows indexed
by the simple FG-modules Si, and entry χSi (gj) in the row for Si and column indexed by the conjugacy class
of gj .

Definition 3.3. Given a p-regular element g in G, let s(g) = [χS1(g), . . . , χS`+1(g)]
T be the Brauer character

values of the simple FG-modules at g, that is, the column indexed by the conjugacy class of g in the Brauer
character table of G. In particular, s(e) = s, where e is the identity element of G.

Proposition 3.4. For any p-regular element g in G, the vector s(g) is a left-eigenvector for MV and LV , with
eigenvalues χV (g) and n − χV (g), respectively.

Proof. Generalize the calculation from Proposition 3.1, using the fact that [V] 7→ χV is a ring map:

χV (g) · s(g)j = χV (g)χS j (g) = χS j ⊗V (g) =

`+1∑
i=1
[Sj ⊗ V : Si]χSi (g) =

`+1∑
i=1

s(g)iMi, j = (s(g)T M)j . �
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3.2. Right-eigenvectors. Right-eigenvectors for LV and MV will come from the indecomposable projective
A-modules, as we will see below (Proposition 3.8 and, for group algebras, the stronger Proposition 3.10).
First, we shall show some lemmas.

Lemma 3.5. For any A-module V , and i, j ∈ {1, 2, . . . , ` + 1}, one has

(3.1) [V ⊗ P∗j : Si] = [ ∗Pi ⊗ V : Sj].

In particular, taking V = ε gives a “dual symmetry” for the Cartan matrix C of A:

(3.2) [P∗j : Si] = [ ∗Pi : Sj].

Proof. The result follows upon taking dimensions in the following consequence of (2.8) and (2.11):

HomA(Pi,V ⊗ P∗j ) � HomA(Pi ⊗ Pj,V) � HomA(Pj,
∗Pi ⊗ V). �

Lemma 3.6. The following equality holds in the Grothendieck group G0(A) for any [V] ∈ G0(A):

[V ⊗ P∗j ] =
`+1∑
i=1
[Si ⊗ V : Sj][P∗i ], ∀ j ∈ {1, 2, . . . , ` + 1} .

Proof. By (3.1), the multiplicity of Sk in the left hand side is

(3.3) [V ⊗ P∗j : Sk] = [ ∗Pk ⊗ V : Sj].

However, one also has in G0(A) that

[ ∗Pk ⊗ V] = [ ∗Pk ] · [V] =
∑
i

[ ∗Pk : Si][Si] · [V] =
∑
i

[ ∗Pk : Si][Si ⊗ V]

and substituting this into (3.3) gives

[V ⊗ P∗j : Sk] =
∑
i

[Si ⊗ V : Sj][
∗Pk : Si] =

∑
i

[Si ⊗ V : Sj][ P∗i : Sk]

where we have used (3.2) in the last equality. One can then recognize this last expression as the multiplicity
of Sk in the right hand side of the desired equation. �

Lemma 3.7. Any indecomposable projective A-module Pi has its left-dual P∗i and right-dual ∗Pi also
indecomposable projective. Consequently, P∗1, . . . , P

∗
`+1 form a permutation of P1, . . . , P`+1.

Proof. Lemma 2.10 shows that V 7→ V∗ is an equivalence of categories from the category of (finite-
dimensional) A-modules to its opposite category. Since we furthermore have A-module isomorphisms(⊕

i Vi

)∗
�

⊕
V∗i (for finite direct sums) and similarly for right-duals, we thus see that indecomposability

is preserved under taking left-duals. It is well-known [10, Prop. 6.1.3] that projectivity is preserved under
taking left-duals. Thus P∗i is also indecomposable projective and so is ∗Pi by the same argument. Then
P∗1, . . . , P

∗
`+1 form a permutation of P1, . . . , P`+1 since ∗(V∗) � V . �

Since dim(Pi) = dim(P∗i ), the definition of the vector p can be rewritten as

p := [dim(P1), . . . , dim(P`+1)]
T =

[
dim(P∗1), . . . , dim(P∗`+1)

]T
.

Proposition 3.8. This p is a right-eigenvector for MV with eigenvalue n, and a right-nullvector for LV .

Proof. Letting M := MV , for each j = 1, 2, . . . , ` + 1, using Lemma 3.6 one has

npj = dim(V) dim(P∗j ) = dim
(
V ⊗ P∗j

)
=

`+1∑
i=1
[Si ⊗ V : Sj] dim(P∗i ) =

`+1∑
i=1

Mj,ipi = (Mp)j . �

In the case of a group algebra A = FG, one has the analogous result to Proposition 3.4.
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Definition 3.9. For a p-regular g in G, let p∗(g) = [χP∗1 (g), . . . , χP∗`+1
(g)]T be the Brauer character values

of the (left-duals of the) indecomposable projective A-modules P∗i at g. Note that p∗(g) is a re-ordering of
the column indexed by g in the (` + 1) × (` + 1) table of Brauer characters of the indecomposable projective
FG-modules, whose (i, j)-entry is χPi (gj). In particular, p∗(e) = p, where e is the identity in G. Note that
this indecomposable projective Brauer character table is also an invertible matrix [31, Theorem 10.2.2].

Proposition 3.10. This p∗(g) is a right-eigenvector for MV and LV , with eigenvalues χV (g) and n − χV (g).

Proof. Generalize the calculation from Proposition 3.8 using the fact that [V] 7→ χV is a ring map:

χV (g) · p∗(g)j = χV (g)χP∗j (g) = χV ⊗P∗j (g) =

`+1∑
i=1
[Si ⊗ V : Sj]χP∗i (g) =

`+1∑
i=1

Mj,ip∗(g)i = (Mp∗(g))j . �

Remark 3.11. Note that since the Brauer character tables for the simple FG-modules and for the indecompos-
able projective FG-modules are both invertible, Propositions 3.4 and 3.10 yield full bases for C`+1 consisting
of right-eigenvectors for MV or LV , and of left-eigenvectors for MV or LV .

Question 3.12. Are there analogues of Propositions 3.4, 3.10 for all finite-dimensional Hopf algebras?

In particular, what plays the role of p-regular elements, and Brauer characters?

One little step towards resolving Question 3.12 is to observe that if a is a group-like element of a finite-
dimensional F-Hopf algebra A (that is, ∆(a) = a ⊗ a and ε(a) = 1), then the vector[
TrS1 (a) ,TrS2 (a) , . . . ,TrS`+1 (a)

]T
∈ F`+1 (where TrW (a) stands for the trace of the action of a on an

A-module W) is an eigenvector (with eigenvalue TrV (a)) for the matrix (MV )F obtained by mapping the
matrix MV ∈ Z

(`+1)×(`+1) into F(`+1)×(`+1). This gives us some eigenvectors for this matrix (MV )F; but we
do not know whether they can be lifted to eigenvectors of MV , and how far they are away from yielding the
diagonalization of (MV )F (if such a diagonalization even exists).

Remark 3.13. It is perhaps worth noting that many of the previous results which we have stated for a finite-
dimensional Hopf algebra A, including Propositions 3.1 and 3.8 on s and p as left- and right-nullvectors for
LV , hold in somewhat higher generality. One can replace the category of A-modules with a finite tensor
category C, replace G0(A) with the Grothendieck ring G0(C) of C, and replace the assignment V 7→ dim V
for A-modules V with the Frobenius-Perron dimension as an algebra morphism FPdim : G0(C) → R; see
[10, Chapters 1–4]. Most of our arguments mainly use the existence of left- and right-duals V∗ and ∗V for
objects V in such a category C, and properties of FPdim.

In fact, we feel that, in the same way that Frobenius-Perron dimension FPdim(V) is an interesting real-
valued invariant of an object in a tensor category, whenever FPdim(V) happens to be an integer, the critical
group K(V) is another interesting invariant taking values in abelian groups.

4. Proof of Theorem 1.1

We next give the structure of the critical group K(A) for the left-regular representation A. We start with a
description of its McKay matrix MA using the Cartan matrix C, and the vectors s, p from Subsection 2.1.

Proposition 4.1. Let A be a finite-dimensional Hopf algebra over an algebraically closed field F. Then the
McKay matrix MA of the left-regular representation A takes the form

MA = CssT = psT .

Proof. For every A-module V and any i ∈ {1, 2, . . . , ` + 1}, we obtain from3 Lemma 2.8(i) the equality

(4.1) [V ⊗ A : Si] =
[
A⊕ dimV : Si

]
= (dim V) [A : Si] .

3Instead of using Lemma 2.8 (i) here, we could also have used the weaker result that [V ⊗ A] = dim(V)[A] in G0(A); this weaker
result has the advantage of being generalizable to tensor categories [10, Prop. 6.1.11].
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Now, we can compute the entries of the McKay matrix MA:

(MA)i, j = [Sj ⊗ A : Si] = dim(Sj)[A : Si] = dim(Sj) dim (Pi) = sjpi =
(
psT

)
i, j

using (4.1) in the second equality, and Corollary 2.17 (i) in the third. Thus MA = psT and then psT = CssT ,
since p = Cs from Corollary 2.17 (ii). �

Wewill deduce the description of K(A) from Proposition 4.1 and the following lemma from linear algebra:

Lemma 4.2. Let s and p be column vectors in Z`+1 with ` ≥ 1 and s`+1 = 1. (In this lemma, s and p are not
required to be the vectors from Subsection 1.1.) Set d := sTp and assume that d , 0. Let γ := gcd(p). Then
the matrix L := dI`+1 − psT has cokernel

Z`+1/im L � Z ⊕ (Z/γZ) ⊕ (Z/dZ)`−1 .

We shall now give a proof of Lemma 4.2 using the Smith normal form of a matrix. For a second, more
elementary proof, see Section 9.

First proof of Lemma 4.2. Note that sT L = dsT − sTpsT = dsT − dsT = 0. This has two implications. One is
that L is singular, so its Smith normal form has diagonal entries (d1, d2, . . . , d`, 0), with di dividing di+1 for
each i. HenceZ`+1/im L � Z⊕

(⊕`
i=1 Z/diZ

)
, and our goal is to show that (d1, d2, . . . , d`) = (γ, d, d, . . . , d).

The second implication is that im L ⊂ s⊥, which we claim lets us reformulate the cokernel of L as follows:

(4.2) Z`+1/im L � Z ⊕ s⊥/im(L),

(
so that s⊥/im(L) �

⊕̀
i=1
Z/diZ

)
.

To see this claim, note that x 7→ sTx gives a surjection Z`+1 → Z, since s`+1 = 1, and hence a short exact
sequence 0→ s⊥ → Z`+1 → Z→ 0. The sequence splits since Z is a free (hence projective) Z-module, and
then the resulting direct sum decomposition Z`+1 = Z ⊕ s⊥ induces the claimed decomposition in (4.2).

Note furthermore that the abelian group s⊥/im(L) is all d-torsion, since for any x in s⊥, one has that im(L)
contains Lx = dx − psTx = dx. Therefore each of (d1, d2, . . . , d`) must divide d.

Note that γ = gcd(p) must divide d = sTp, and hence we may assume without loss of generality that
γ = 1, after replacing p with 1

γp: this has the effect of replacing d with d
γ , replacing γ with 1, replacing L

with 1
γ L, and (d1, d2, . . . , d`, 0) with 1

γ (d1, d2, . . . , d`, 0) (since the Smith normal form of 1
γ L is obtained from

that of L by dividing all entries by γ).
Once we have assumed γ = 1, our goal is to show (d1, d2, . . . , d`) = (1, d, d, . . . , d). However, since we

have seen that each di divides d, it only remains to show that d1 = 1, and d divides each of (d2, d3, . . . , d`). To
this end, recall (e.g., [9, §12.3 Exer. 35]) that if one defines gk as the gcd of all k × k minor subdeterminants
of L, then dk =

gk
gk−1

. Thus it remains only to show that g1 = 1 and that g2 is divisible by d.
To see that g1 = 1, we claim 1 lies in the ideal I of Z generated by the last column [−p1,−p2, . . . ,−p`, d −

p`+1]
T of L together with the (1, 1)-entry L1,1 = d −p1s1. To see this claim, note that d = (d −p1s1)+ s1 · p1

lies in I, hence p`+1 = d − (d − p`+1) lies in I, and therefore 1 = gcd(p1, p2, . . . , p`+1) also lies in I.
To see d divides g2, we need only to show that each 2 × 2 minor subdeterminant of dI − psT vanishes

modulo d. This holds, since working modulo d, one can replace dI − psT by −psT , a rank one matrix. �

We can now prove Theorem 1.1. Recall that its statement involves the number ` + 1 of simple A-modules,
the dimension d of A, and the gcd γ of the dimensions of the indecomposable projective A-modules.

Theorem 1.1. Let d := dim A and γ := gcd(p). If ` = 0 then K(A) = 0, else K(A) � (Z/γZ) ⊕ (Z/dZ)`−1 .

Proof. The case ` = 0 is somewhat trivial, since MA, LA are the 1 × 1 matrices [d], [0], and K(A) = 0.
When ` ≥ 1, note that Proposition 2.2 gives sTp = dim A = d, and Proposition 4.1 yields MA = psT , so

that LA = dI`+1−psT . Reindexing S1, . . . , S`+1 so that S`+1 = ε , the result now follows from Lemma 4.2. �



12 DARIJ GRINBERG, JIA HUANG, AND VICTOR REINER

5. Proofs of Theorem 1.2 and Corollary 1.3

We record here a key observation of Lorenzini [16, Prop. 2.1] that leads to a formula for the cardinality
of the critical group K(V).

Proposition 5.1 ([16, Prop. 2.1]). Let L be a matrix in Z(`+1)×(`+1), regarded as a linear map Z`+1 → Z`+1,
of rank `, with characteristic polynomial x

∏`
i=1(x − λi), and whose integer right-nullspace 4 (resp. left-

nullspace) is spanned over Z by the primitive vector n (resp. n′) in Z`+1. Assume that nTn′ , 0.
Then, the torsion part K of the cokernel Z`+1/im L � Z ⊕ K has cardinality #K =

�� 1
nT n′ (λ1λ2 · · · λ`)

�� .
Proof. This is a restatement of λ1λ2 · · · λ` = ±#K ·

(
nTn′

)
, which is the displayed equation in [16, Prop.

2.1]. (The requirement n > 1 is unnecessary.) �

This lets us prove Theorem 1.2 from the Introduction, whose statement we recall here.

Theorem 1.2. Let d := dim A and γ := gcd(p). Assume K(V) is finite, so that LV has nullity one. If the
characteristic polynomial of LV factors as det(xI − LV ) = x

∏`
i=1(x − λi), then #K(V) =

��γ
d (λ1λ2 · · · λ`)

�� .
Proof. From (2.13), we see that K (V) is isomorphic to the torsion part of Z`+1/im(LV ).

From Proposition 2.2, we obtain sTp = d(, 0). Propositions 3.1 and 3.8 exhibit s and p as left- and
right-nullvectors of LV in Z`+1. Note that s is primitive, since one of its coordinates is dim(ε) = 1, while
1
γp is also primitive. Since the integer left-nullspace and the integer right-nullspace of LV are free of rank 1
(because LV has nullity 1), this shows that s and 1

γp span these two nullspaces. Then Proposition 5.1 (applied
to n = 1

γp and n′ = s) implies

#K(V) =

������� 1(
1
γp

)T
s
(λ1λ2 · · · λ`)

������� =
���γ
d
(λ1λ2 · · · λ`)

��� . �

The important role played by γ = gcd(p) in Theorem 1.1 and Theorem 1.2 raises the following question.

Question 5.2. For a finite-dimensional Hopf algebra A over an algebraically closed field, what does the gcd
of the dimensions of the indecomposable projective A-modules “mean” in terms of the structure of A?

We shall answer this question for some Hopf algebras A in Remark 5.11 further below. The following
answer for group algebras may be known to experts, but we did not find it in the literature.

Proposition 5.3. For A = FG the group algebra of a finite group G, the gcd γ of the dimensions p of the
indecomposable projective FG-modules equals

• 1 when F has characteristic zero,
• the order of a p-Sylow subgroup of G when F has characteristic p > 0.

Proof. The statement is obvious in characteristic 0, since γ = 1, as ε is a 1-dimensional projective A-module.
Thus we may assume F has positive characteristic p. We first claim γ = gcd(p) is a power of p. To deduce

this, let C be the Cartan matrix of A. Proposition 2.3 shows that pT = sTC. Multiplying this equation on the
right by the adjugate matrix adj(C), whose entries are the cofactors of C, one finds that

(5.1) pT adj(C) = sTC adj(C) = det(C)sT .
The positive integer γ divides every entry of p, and hence divides every entry on the left of (5.1). Note that
det(C) occurs as an entry on the right of (5.1), so γ divides det(C), which by a result of Brauer [3, Thm. 1]
(also proven in [29, §16.1, Corollary 3] and [7, Theorem (18.25)]) is a power of p. That is, γ = pb for some
b ≥ 0.

4The integer right-nullspace of L is defined to be the Z-module of all column vectors u ∈ Z`+1 such that Lu = 0. The integer
left-nullspace of L is defined to be the Z-module of all column vectors u ∈ Z`+1 such that LT u = 0.
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All that remains is to apply a result of Dickson, asserting that the p-Sylow order pa for G is the minimum
of the powers of p dividing the dimensions dim(Pi); see Curtis and Reiner [6, (84.15)]. We give a modern
argument for this here. Since the p-Sylow order pa for G divides the dimension of every projective FG-
module (see [7, §18, Exer. 5], [31, Cor. 8.1.3]), it also divides γ = pb, implying b ≥ a. For the opposite
inequality, since #G = paq where gcd(p, q) = 1, and #G = dimFG = dim A = sTp by Proposition 2.2, the
prime power pb = γ divides sTp = #G = paq, and therefore b ≤ a. Thus b = a, so that γ = pb = pa. �

Since the number of simple FG-modules is the number of p-regular G-conjugacy classes, the following is
immediate from Theorem 1.1 and Proposition 5.3.

Corollary 5.4. For the group algebra A = FG of a finite group G, with ` + 1 ≥ 2 different p-regular
conjugacy classes, and p-Sylow order pa, the regular representation A has critical group

K(A) � (Z/paZ) ⊕ (Z/(#G)Z)`−1 .

Since for group algebras, either of Proposition 3.4 or 3.10 identified the eigenvalues of LV in terms of the
Brauer character values of V , one immediately deduces Corollary 1.3 from the Introduction:

Corollary 1.3. For any FG-module V of dimension n with K(V) finite, one has

#K(V) =
pa

#G

∏
g,e

(n − χV (g)) ,

where the product runs through a set of representatives g for the non-identity p-regular G-conjugacy classes.
In particular, the quantity on the right is a positive integer.

Example 5.5. Let us compute what some of the foregoing results say when A = FG for the symmetric
group G = S4, and F has characteristic p, assuming some facts about modular SN -representations that
can be found, e.g., in James and Kerber [14]. Every field F is a splitting field for each SN , so we may
assume F = Fp. Furthermore one need only consider three cases, namely p = 2, 3 and p ≥ 5, since FSN

is semisimple for p > N , and in that case, the theory is the same as in characteristic zero. The simple
A-modules can be indexed Dλ where λ are the p-regular partitions of N = 4, that is, those partitions having
no parts repeated p or more times. For p = 2, 3, we have the following Brauer character tables and Cartan
matrices (see [31, Example 10.1.5]):

p = 2 :
( e (i j k)

D4 1 1
D31 2 −1

)
C =

(
4 2
2 3

)

p = 3 :
©«

e (i j) (i j)(kl) (i j kl)
D4 1 1 1 1
D31 3 1 −1 −1
D22 1 −1 1 −1
D211 3 −1 −1 1

ª®®®¬ C =
©«
2 0 1 0
0 1 0 0
1 0 2 0
0 0 0 1

ª®®®¬
while for p ≥ 5, the Brauer character table is the ordinary one (and the Cartan matrix C is the identity):

©«

e (i j) (i j)(kl) (i j k) (i j kl)
D4 1 1 1 1 1
D31 3 1 0 −1 −1
D22 2 0 −1 2 0
D211 3 −1 0 −1 1
D1111 1 −1 1 1 −1

ª®®®®®¬
.

In each case, s is the first column of the Brauer character table, pT = sTC, and γ = gcd(p):
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p s p γ

2 [1, 2]T [8, 8]T 8 = 23

3 [1, 3, 1, 3]T [3, 3, 3, 3]T 3

≥ 5 [1, 3, 2, 3, 1]T [1, 3, 2, 3, 1]T 1

Note that γ is the order pa of the p-Sylow subgroups for G =S4 in each case.
In Section 6 we will show that the critical group K(V) is finite if and only if V is tensor-rich. One can read

off which simple FS4-modules V = Dλ are tensor-rich using Theorem 7.3 below: this holds exactly when
the only g ∈ S4 satisfying χV (g) = n := dim V is g = e. Perusing the above tables, one sees that in each
case, the simple modules labeled D4,D22,D1111 are the ones which are not tensor-rich. However, the module
V = D31 is tensor-rich for each p, and one can use its character values χV (g) to compute MV, LV,K(V) and
check Corollary 1.3 in each case as follows:

p MV for V = D31 LV = nI − MV Smith form of LV K(V) #K(V) = γ
#G

∏
g,e(n − χV (g))

2
( 0 2

1 1
) ( 2 −2

−1 1
) ( 1 0

0 0
)

0 1 = 8
24 (2 − (−1))

3
( 0 2 0 1

1 1 0 1
0 1 0 2
0 1 1 1

) ( 3 −2 0 −1
−1 2 0 −1
0 −1 3 −2
0 −1 −1 2

) ( 1 0 0 0
0 1 0 0
0 0 4 0
0 0 0 0

)
Z/4Z 4 = 3

24 (3 − 1)(3 − (−1))(3 − (−1))

≥ 5

( 0 1 0 0 0
1 1 1 1 0
0 1 0 1 0
0 1 1 1 1
0 0 0 1 0

) ( 3 −1 0 0 0
−1 2 −1 −1 0
0 −1 3 −1 0
0 −1 −1 2 −1
0 0 0 −1 3

) ( 1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 4 0
0 0 0 0 0

)
Z/4Z 4 = 1

24 (3 − 1)(3 − 0)(3 − (−1))(3 − (−1))

The answer K(D31) � Z/4Z for p ≥ 5 is also consistent with Gaetz [11, Example 6].

Example 5.6. The above examples with G =S4 are slightly deceptive, in that, for each prime p, there exists
an FS4-module Pi having dim Pi = γ = gcd(p). This fails for G = S5, e.g., examining F3S5-modules, one
finds that s = (1, 1, 4, 4, 6) and p = (6, 6, 9, 9, 6), so that γ = 3, but dim Pi , 3 for all i.

Example 5.7. (This example at least illustrates that γ is not always equal to dim(Pi) for some i.) Let A = FG
be the group algebra of the symmetric group G =S5 over the algebraic closure F of F3. By computations in
Magma, the Brauer character tables of the simple A-modules and indecomposable projective A-modules are

©«
1 1 1 1 1
1 −1 1 −1 1
4 2 0 0 −1
4 −2 0 0 −1
6 0 −2 0 1

ª®®®®®¬
and

©«
6 0 2 2 1
6 0 2 −2 1
9 3 1 −1 −1
9 −3 1 1 −1
6 0 −2 0 1

ª®®®®®¬
where the simple A-modules S1, . . . , S5 and the indecomposable projective A-modules P1, . . . , P5 are labeled
in such a way that S1 is the trivial A-module and Si = top(Pi) for all i. We have s = (1, 1, 4, 4, 6),
p = (6, 6, 9, 9, 6), and gcd(p) = 3 equals the order of a 3-Sylow subgroup of S5. The A-module V = P4 is
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tensor-rich by Proposition 7.1 and Theorem 7.3, since χV (e) = 9 , χV (g) for all 3-regular g , e. We have

MV =

©«
1 0 0 2 0
0 1 2 0 0
2 2 1 4 2
2 2 4 1 2
2 2 4 4 3

ª®®®®®¬
, LV =

©«
8 0 0 −2 0
0 8 −2 0 0
−2 −2 8 −4 −2
−2 −2 −4 8 −2
−2 −2 −4 −4 6

ª®®®®®¬
, LV =

©«
8 −2 0 0
−2 8 −4 −2
−2 −4 8 −2
−2 −4 −4 6

ª®®®¬ .
Then K(V) = Z5/im LV = (Z/2Z)3 ⊕Z/24Z and Z4/im LV = (Z/2Z)2 ⊕Z/4Z⊕Z/24Z, which are different.
The eigenvalues of LV are 0, 8, 8, 10, 12, and #K(V) = 23 ·24 = 3 ·82 ·10 ·12/5!, as predicted by Theorem 1.2.

Now let V = S2 be the “sign” representation, which is not tensor-rich since χV (g) = χV (e) = 1 for some
3-regular g , e by the above character table. Computations in Magma show

MV =

©«
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1

ª®®®®®¬
, LV =

©«
1 −1 0 0 0
−1 1 0 0 0
0 0 1 −1 0
0 0 −1 1 0
0 0 0 0 0

ª®®®®®¬
, LV =

©«
1 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

ª®®®¬ .
Then LV is singular and K(V) = Z2 = Z4/im LV is infinite.

For g ∈ S5, χV (g) = 1 if and only if g is an even permutation. There are 40 even 3-regular permutations
in S5: the 24 5-cycles, the 15 products of two disjoint 2-cycles, and the identity permutation. These
permutations generate the alternating group N = A5. Let B = F[G/N]. Then V is a one-dimensional
B-module on which N acts by 1 and (1, 2)N acts by −1. As a B-module, V is tensor-rich.

Example 5.8. Working over an algebraically closed field F of characteristic zero, the generalized Taft Hopf
algebra A = Hn,m from Example 2.5 has dimension mn. It has ` + 1 = n projective indecomposable
representations P1, . . . , Pn, each of dimension m, with top Si = top(Pi) one-dimensional (see [5, §4] and
[18, §2]). Hence in this case, γ = gcd(p) = m and Theorem 1.1 yields

K(A) � (Z/mZ) ⊕ (Z/mnZ)n−2 for n ≥ 2.

Example 5.9. For Radford’s Hopf algebra A = A(n,m) from Examples 2.6, 2.18, all indecomposable
projectives {Pk}

n−1
k=0 are 2m-dimensional, so γ := gcd(p) = 2m and Theorem 1.1 gives

K(A) � (Z/2mZ) ⊕ (Z/n2mZ)n−2 .

Example 5.10. There is a special case of the restricted universal enveloping algebras A = u(g) from
Example 2.7 where one has all the data needed for Theorem 1.1. Namely, when g is associated to a simple,
simply-connected algebraic group G defined and split over Fp, as in Humphreys [13, Chap. 1], then there is a
natural parametrization of the simple A-modules via the set X/pX where X � Zrank g is the weight lattice for
G or g. Although the dimensions of the projective indecomposable A-modules Pi are not known completely,
they are all divisible by the dimension of one among them, specifically, the Steinberg module of dimension
pN where N is the number of positive roots; see [13, §10.1]. Consequently, here one has

γ := gcd(p) = pN

d := dim(A) = pdim g

` + 1 := #{simple A-modules} = #X/pX = prank g,

and Theorem 1.1 implies

K(A) �
(
Z/pNZ

)
⊕

(
Z/pdim gZ

)prank g−2
.

Remark 5.11. All the above examples of Hopf algebras A share a common interpretation for γ = gcd(p)
which we find suggestive. Each has a family of F-subalgebras B ⊂ A, which one is tempted to call Sylow
subalgebras, with the following properties:
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(i) The augmentation ideal ker(B ε
→ F) is a nil ideal, that is, it consists entirely of nilpotent elements.

(ii) A is free as a left B-module.
(iii) dim B = γ.

We claim that properties (i) and (ii) already imply that dim B divides γ (cf. [31, proof of Cor. 8.1.3]):
property (i) implies B has only one simple module, namely ε , whose projective cover must be B itself, and
property (ii) implies that each projective A-module Pi restricts to a projective B-module, which must be of
form Bt , so that dim B divides dim Pi, and hence divides gcd({dim Pi}) = γ. Thus property (iii) implies that
B must be maximal among subalgebras of A having properties (i),(ii).

• When A is semisimple, then B = F1A.
• When A = FG is a group algebra and F has characteristic p, then B = FH is the group algebra for
any p-Sylow subgroup H.
• When A = Hn,m is the generalized Taft Hopf algebra, B is the subalgebra F〈x〉 generated by x, or by
any of the elements of the form gix for i = 0, 1, . . . , n − 1.
• When A = A(n,m) is Radford’s Hopf algebra, B is the exterior subalgebra Λ[x1, . . . , xm] generated
by x1, . . . , xm, or various isomorphic subalgebras Λ[gix1, . . . , g

ixm] for i ∈ Z.
• When A = u(g) is the restricted universal enveloping algebra for the Lie algebra g of a semisimple
algebraic group over Fp, then B = u(n+) for a nilpotent subalgebra n+ in a triangular decomposition
g = n− ⊕ h ⊕ n+.

Question 5.12. For which finite-dimensional Hopf algebras A over an algebraically closed field F is there a
subalgebra B satisfying properties (i),(ii),(iii) above?

6. Proof of Theorem 1.4

We recall the statement of the theorem, involving an A-module V of dimension n, with LV = nI`+1 − MV

in Z(`+1)×(`+1), and its submatrix LV in Z`×` .

Theorem 1.4. The following are equivalent for an A-module V:
(i) LV is a nonsingular M-matrix.
(ii) LV is nonsingular.
(iii) LV has rank `, so nullity 1.
(iv) K(V) is finite.
(v) V is tensor-rich.

The definitions for V to be tensor-rich and for LV to be a nonsingular M-matrix are given below.

Definition 6.1. Let V be an A-module. Say that V is rich if [V : Si] > 0 for every simple A-module Si. Say
that V is tensor-rich if for some positive integer t, the A-module

⊕t
k=0 V ⊗k is rich.

Definition 6.2. Let Q be a matrix in R`×` whose off-diagonal entries are nonpositive, that is, Qi, j ≤ 0 for
i , j. Then Q is called a nonsingular M-matrix if it is invertible and the entries in Q−1 are all nonnegative.

To prove the theorem, we will show the following implications:
(iv)
m

(i)⇒ (ii) ⇒ (iii) ⇒ (v) ⇒ (i),
after first establishing some inequality notation for vectors and matrices.

Definition 6.3. Given u, v in Rm, write u ≤ v (resp. u < v) if u j ≤ vj (resp. u j < vj) for all j. Given
matrices M, N in Rm×m′, similarly write M ≤ N (resp. M < N) if Mi, j ≤ Ni, j (resp. Mi, j < Ni, j) for all i, j.

Note that u ≤ v and u , v do not together imply that u < v; similarly for matrices.

6.1. The implication (i)⇒ (ii). This is trivial from Definition 6.2.
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6.2. The implication (ii) ⇒ (iii). Since LV is singular (as LV s = 0), if its submatrix LV is nonsingular,
then LV has rank ` and nullity 1.

6.3. The equivalence (iii) ⇔ (iv). For a square integer matrix LV , having nullity 1 is equivalent to its
integer cokernel Z`+1/im(LV ) = Z ⊕ K(V) having free rank 1, that is, to K(V) being finite.

6.4. The implication (iii)⇒ (v). We prove the contrapositive: not (v) implies not (iii).
To say that (v) fails, i.e., V is not tensor-rich, means that the composition factors within the various

tensor powers V ⊗k form a nonempty proper subset {Sj}j∈J of the set of simple A-modules {Si}i=1,2,...,`+1.
This implies that the McKay matrix MV has a nontrivial block-triangular decomposition, in the sense that
(MV )i, j = 0 for j ∈ J and i < J 5. This will allow us to apply the following property of nonnegative
matrices.

Lemma 6.4. Let M ≥ 0 be a nonnegative matrix in Rm×m. Let λ ∈ R. Set L = λIm − M . Let u ∈ Rm and
v ∈ Rm be two column vectors such that u > 0, v > 0, uT L = 0 and Lv = 0.

Let J be a nonempty proper subset of {1, 2, . . . ,m}. Assume that

(6.2) Mi, j = 0 for all i < J and j ∈ J .

Then, dim (ker L) ≥ 2.

Proof. Recall that L = λIm − M . Hence, for all i < J and j ∈ J, we have

(6.3) Li, j = (λIm − M)i, j = λ (Im)i, j︸︷︷︸
=δi, j=0

(since i<J and j∈J
lead to i,j)

− Mi, j︸︷︷︸
=0

(by (6.2))

= 0.

On the other hand, for all i ∈ J and j < J, we have

(6.4) Li, j = (λIm − M)i, j = λ (Im)i, j︸︷︷︸
=δi, j=0

(since i∈J and j<J
lead to i,j)

− Mi, j︸︷︷︸
≥0

(since M≥0)

≤ 0.

Define a column vector v′ ∈ Rm by setting

(v′)i =

{
vi, if i ∈ J;
0, if i < J

for all i ∈ {1, 2, . . . ,m} .

5 Assume the contrary. Thus, there exist i < J and j ∈ J such that (MV )i, j , 0. Consider these i and j. Since (MV )i, j =[
Sj ⊗ V : Si

]
, this rewrites as

[
Sj ⊗ V : Si

]
, 0. Hence, Si appears as a composition factor in the A-module Sj ⊗ V . Therefore,[

Sj ⊗ V
]
= [Si]+ [W] in G0(A) for some A-module W . Consider thisW . But we have

[
V ⊗k : Sj

]
> 0 for some k ∈ N (since j ∈ J).

Consider this k. Thus, Sj appears as a composition factor in V ⊗k . Hence,
[
V ⊗k

]
=

[
Sj

]
+ [X] in G0(A) for some A-module X .

Consider this X . Now, in G0(A), we have[
V ⊗(k+1)

]
=

[
V ⊗k ⊗ V

]
=

[
V ⊗k

]
[V] =

( [
Sj

]
+ [X]

)
[V]

(
since

[
V ⊗k

]
=

[
Sj

]
+ [X]

)
=

[
Sj ⊗ V

]︸    ︷︷    ︸
=[Si ]+[W ]

+ [X ⊗ V] = [Si] + [W] + [X ⊗ V] = [Si ⊕W ⊕ X ⊗ V] .(6.1)

But if Z is an A-module, then the number [Z : Si] depends only on the class [Z] ∈ G0(A) (but not on Z itself). (Indeed, this follows
from (2.3).) Hence, from (6.1), we obtain [

V ⊗(k+1) : Si
]
= [Si ⊕W ⊕ X ⊗ V : Si] > 0

(since Si clearly does appear in Si ⊕ W ⊕ X ⊗ V). By the definition of J, this shows that i ∈ J; but this contradicts i < J. This
contradiction completes our proof.
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Define a column vector v′′ ∈ Rm by setting

(v′′)i =

{
0, if i ∈ J;
vi, if i < J

for all i ∈ {1, 2, . . . ,m} .

Clearly, v = v′ + v′′. Moreover, the vectors v and v′ are linearly independent6. Thus, dim spanR (v, v′) = 2.
From v = v′ + v′′, we obtain Lv = Lv′ + Lv′′, so that Lv′ + Lv′′ = Lv = 0 and therefore Lv′ = −Lv′′.
Now, we claim that

(6.5) (Lv′)i ≥ 0 for all i ∈ {1, 2, . . . ,m} .

To prove this, we handle the cases i ∈ J and i < J separately:
• Let us consider the case when i ∈ J. In this case, recall that Lv′ = −Lv′′; hence, (Lv′)i = − (Lv′′)i.
Since

(Lv′′)i =
m∑
j=1

Li, j (v
′′)j =

m∑
j=1

Li, j

{
0, if j ∈ J;
vj, if j < J

(by the definition of v′′)

=
∑
j<J

Li, j︸︷︷︸
≤0

(by (6.4))

vj︸︷︷︸
>0

(since v>0)

≤ 0,

this results in (Lv′)i ≥ 0. Thus, (6.5) is proven when i ∈ J.
• Let us now consider the case when i < J. In this case,

(Lv′)i =
m∑
j=1

Li, j (v
′)j =

m∑
j=1

Li, j

{
vj, if j ∈ J;
0, if j < J

(by the definition of v′)

=
∑
j∈J

Li, j︸︷︷︸
=0

(by (6.3))

vj = 0.

Hence, (6.5) is proven when i < J.
Thus, (6.5) is proven in all cases. Consequently, Lv′ ≥ 0.
Now, recall that u > 0. Hence, if x ∈ Rm is any column vector satisfying x ≥ 0 and uT x = 0, then we

must have x = 0 (because a sum of nonnegative reals can only be 0 if all of its addends are 0). Applying this
to x = Lv′, we find Lv′ = 0 (since Lv′ ≥ 0 and uT L︸︷︷︸

=0

v′ = 0). Combined with Lv = 0, this shows that both

v and v′ lie in ker L. Therefore, ker L ⊇ spanR (v, v′). Hence, dim (ker L) ≥ dim spanR (v, v′) = 2. �

This lets us finish the proof that not (v) implies not (iii): the discussion preceding Lemma 6.4 shows that
whenV is not tensor-rich, one can apply Lemma 6.4 to MV , with the roles of u, v played by s, p, and conclude
that LV = nI`+1 − MV has nullity at least two.

6.5. The implication (v)⇒ (i). Here we will use a nontrivial fact which is part7 of the equivalence of two
characterizations for nonsingular M-matrices given by Plemmons [25, Thm. 1]; see his conditions F15,K34.

Proposition 6.5. A matrix Q ∈ R`×` with nonpositive off-diagonal entries is a nonsingular M-matrix as in
Definition 6.2 if and only if there exists x ∈ R` with both x > 0 and Qx > 0.

6To see this, recall that the vector v has all its coordinates nonzero (since v > 0), whereas the vector v′ has only a nonempty
proper subset of its coordinates nonzero (namely, the coordinates (v′)i for i ∈ J).

7See [12] for a more self-contained proof of the implication we are using, namely that if one has a matrix Q ∈ R`×` with Qi, j ≤ 0
for i , j, and a vector x ∈ R` with both x > 0 and Qx > 0, then Q is nonsingular.
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A few more notations are in order. For x in R`+1, let x be the vector in R` obtained by forgetting its last
coordinate. For M in R(`+1)×(`+1), let M be the matrix in R`×` obtained by forgetting its last row and last
column.8 Let M∗,k denote the vector which is the k-th column of M .

Proposition 6.6. For nonnegative matrices M, N ≥ 0 both in R(`+1)×(`+1), one has M · N ≤ MN .

Proof. Compare their (i, j)-entries for i, j ∈ {1, 2, . . . , `}:

MN i, j = (MN)i, j =
`+1∑
k=1

Mi,kNk, j = Mi,`+1N`+1, j +
∑̀
k=1

Mi,kNk, j

= Mi,`+1N`+1, j +
(
M · N

)
i, j
≥

(
M · N

)
i, j
. �

The following gives a useful method to produce nonsingular M-matrices, to be applied to M = MV below.

Proposition 6.7. Assume one has an eigenvector equation
M x = λx

with a nonnegative matrix M ≥ 0 in R(`+1)×(`+1), a real scalar λ, and a positive eigenvector x > 0 in R`+1.
Let L := λI` − M .

(i) One always has λ ≥ 0, and
M x ≤ λx.

Consequently, Lx ≥ 0.
(ii) Under the additional hypothesis that M has positive last column M∗,`+1 > 0, then

M x < λx.

Consequently, (under this hypothesis) L is a nonsingular M-matrix, since both x > 0 and Lx > 0.
(iii) Let t be a positive integer. Set y :=

∑t−1
k=0 M

k
x. Then, y > 0. Under the additional hypothesis

(different from (ii)) that the last column of
∑t−1

k=0 Mk is strictly positive, we also have

My < λy.

Consequently, (under this hypothesis) L is a nonsingular M-matrix, since both y > 0 and Ly > 0.

Proof. The nonnegativity λ ≥ 0 follows from M x = λx since M ≥ 0 and x > 0.
For the remaining assertions in (i) and (ii), note that the first ` equations in the system M x = λx assert

M x + M∗,`+1x`+1 = λx, where M∗,`+1 is the last column vector of M .

Since x`+1 > 0, and since the entries of M∗,`+1 are nonnegative (resp. strictly positive) under the hypotheses
in (i) (resp. in (ii)), the remaining assertions in (i) and (ii) follow.

For assertion (iii), note that y = x +
∑t−1

k=1 M
k

x, and hence y > 0 follows from the facts that x > 0 and
M ≥ 0. To prove My < λy, we first prove a weak inequality as follows. For each k = 0, 1, 2, . . . , t − 1,
multiply the inequality in (i) by M

k , obtaining:

(6.6) M
k+1

x ≤ λM
k

x.

Summing this over all k, we find
t−1∑
k=0

M
k+1

x ≤
t−1∑
k=0

λM
k

x.

In view of the definition of y, this can be rewritten as
(6.7) My ≤ λy.

8This notation will not conflict with the notation LV used (e.g.) in Theorem 1.4 because we shall re-index the simple A-modules
in such a way that the last row and the last column of LV are the ones corresponding to ε .
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It remains to show that for 1 ≤ j ≤ `, the inequality in the j th coordinate of (6.7) is strict. For the sake of
contradiction, assume

(
My

)
j
= λy j . This forces equalities in the j-th coordinate of (6.6) for 0 ≤ k ≤ t − 1:(

M
k+1

x
)
j
= λ

(
M

k
x
)
j
.

This implies via induction on k that
(
M

k
x
)
j
= λk x j, for k = 0, 1, 2, . . . , t − 1. Summing on k gives((

t−1∑
k=0

M
k

)
x

)
j

=

(
t−1∑
k=0

λk

)
x j .

However, this contradicts the strict inequality in the j th coordinate in the following:

(6.8)

(
t−1∑
k=0

M
k

)
x ≤

(
t−1∑
k=0

Mk

)
x <

(
t−1∑
k=0

λk

)
x.

The first (weak) inequality in (6.8) comes from the fact that M
k
≤ Mk (which follows by induction from

Proposition 6.6), while the second (strict) inequality comes from applying assertion (ii) to the eigenvector
equation

(∑t−1
k=0 Mk

)
x =

(∑t−1
k=0 λ

k
)

x (which follows from M x = λx). �

We return now to our usual context of a finite-dimensional Hopf algebra A over an algebraically closed field
F, and an A-module V of dimension n. Recall the matrices MV and LV are given by (MV )i, j = [Sj ⊗ V : Si]
and LV := nI`+1 − MV . For the remainder of this section, assume one has indexed the simple A-modules
{Si}i=1,2,...,`+1 such that S`+1 = ε is the trivial A-module on F. Thus MV, LV come from MV, LV by removing
the row and column indexed by ε .

Richness of V has an obvious reformulation in terms of MV .

Proposition 6.8. V is rich if and only if the McKay matrix MV has positive last column (MV )∗,`+1 > 0.

Proof. Using (2.6) one has [V : Si] = [ε ⊗ V : Si] = [S`+1 ⊗ V : Si] = (MV )i,`+1 . �

Proof of (v)⇒ (i). Assuming V is tensor-rich, there is some t > 0 for which W :=
⊕t

k=0 V ⊗k is rich.
Thus MW has positive last column (MW )∗,`+1 > 0. In G0(A), one has [W] =

∑t
k=0[V]

k , giving the matrix
equation MW =

∑t
k=0 Mk

V . Since MVp = np by Proposition 3.8, one can apply Proposition 6.7(iii), with
M = MV, λ = n, x = p, and conclude that LV is a nonsingular M-matrix. �

This completes the proof of Theorem 1.4.

Theorem 1.4 raises certain questions on finite-dimensional Hopf algebras.

Question 6.9. Let A be a finite-dimensional Hopf algebra over an algebraically closed field.
(i) How does one test whether V is tensor-rich in terms of some kind of character theory for A?
(ii) Can the nullity of LV be described in terms of the simple A-modules appearing in V ⊗k for k ≥ 1?

Section 7 answers Question 6.9(i) for group algebras A = FG, via Brauer characters.

6.6. Non-tensor-rich modules as inflations. Any module V over an algebra B can be regarded as an
inflation of a faithful B/AnnB V-module.9 A natural question to ask is whether a similar fact holds for
tensor-rich modules over Hopf algebras. The annihilator of an A-module is always an ideal, not necessarily a
Hopf ideal; thus, a subtler construction is needed. The answer is given by part (iv) of the following theorem,
communicated to us by Sebastian Burciu who graciously allowed us to include it in this paper.

9The annihilator of a B-module V is defined to be the ideal {b ∈ B | bV = 0} of B. It is denoted by AnnB V .
A B-module V is said to be faithful if and only if AnnB V = 0.
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Theorem 6.10. Let V be an A-module. Let ω be the map A → A sending each a ∈ A to a − ε(a)1. Let
JV =

⋂
k≥0 AnnA(V ⊗k).

(i) We have JV = ω(LKerV )A, where LKerV = {a ∈ A |
∑

a1 ⊗ a2v = a ⊗ v for all v ∈ V}.
(ii) The subspace JV of A is a Hopf ideal of A, and thus A/JV is a Hopf algebra.
(iii) If JV = 0, then V is tensor-rich.
(iv) The A-module V is the inflation of an A/JV -module via the canonical projection A → A/JV , and

the latter A/JV -module is tensor-rich.
(v) Let J ′ be any Hopf ideal of A such that the A-module V is the inflation of an A/J ′-module via the

canonical projection A→ A/J ′. Then, J ′ ⊆ JV .

Note that part (i) of the theorem allows for actually computing JV , while the definition of JV itself involves
an uncomputable infinite intersection.

Proof of Theorem 6.10. Part (i) is [4, Corollary 2.3.7].
Part (ii) follows from [23, Theorem 7 (i)], since the family

(
V ⊗n

)
n≥0 of A-modules is clearly closed under

tensor products.
Part (iii) is essentially [30, (3)], but let us also prove it for the sake of completeness: Assume that

JV = 0. Consider any simple A-module Si and the corresponding primitive idempotent ei of A. The
A-module

⊕
k≥0 V ⊗k is faithful (since its annihilator is JV = 0). Thus, ei ·

⊕
k≥0 V ⊗k , 0. Thus, there

exists some k ≥ 0 such that eiV ⊗k , 0. Consider this k. But recall (see, e.g., [31, Prop. 7.4.1 (3)]) that
HomA (Ae,W) � eW for any A-moduleW and any idempotent e of A. Thus, HomA

(
Aei,V ⊗k

)
� eiV ⊗k , 0,

so that dim HomA

(
Aei,V ⊗k

)
> 0. Hence,[

V ⊗k : Si
]
= dim HomA

(
Pi,V ⊗k

)
= dim HomA

(
Aei,V ⊗k

)
> 0.

Since we have shown this to hold for each i, we thus conclude that V is tensor-rich.
(iv) Since JV ⊆ AnnA (V), we see immediately that V is the inflation of an A/JV -module V ′. It remains

to show that this V ′ is tensor-rich. But this follows from part (iii), applied to A/JV , V ′ and 0 instead of A,
V and JV : Indeed, we have 0 =

⋂
k≥0 AnnA/JV ((V

′)⊗k), since
⋂

k≥0 AnnA/JV ((V
′)⊗k) is the projection of⋂

k≥0 AnnA(V ⊗k) = JV onto the quotient ring A/JV , which projection of course is JV/JV = 0.
(v) We assumed that the A-module V is the inflation of an A/J ′-module V ′ via the canonical projection

A → A/J ′. Thus, for each k ≥ 0, the A-module V ⊗k is the inflation of the A/J ′-module (V ′)⊗k via this
projection. Hence, for each k ≥ 0, we have J ′V ⊗k = 0. Thus, J ′ ⊆

⋂
k≥0 AnnA(V ⊗k) = JV . �

6.7. Avalanche-finiteness. We digress slightly to discuss avalanche-finite matrices and chip-firing.

Definition 6.11. An integer nonsingular M-matrix is called an avalanche-finite matrix; see [1, §2].

The terminology arises because the integer cokernel Z`/im L for an avalanche-finite matrix L in Z`×`
has certain convenient coset representatives in (Z≥0)

` , characterized via their behavior with respect to the
dynamics of a game in which one makes moves (called chip-firing or toppling or avalanches) that subtract
columns of L. One such family of coset representatives are called recurrent, and the other such family are
called superstable; see, e.g., [1, §2, Thm. 2.10] for their definitions and further discussion.10

Since LV = nI`+1 − MV always has LV in Z`×` , Theorem 1.4 has the following immediate consequence.

Proposition 6.12. For a finite-dimensional Hopf algebra A over an algebraically closed field, any tensor-rich
A-module V has LV avalanche-finite.

The problem in applying this to study the critical group is that K(V) � s⊥/im LV , which is not always
isomorphic to Z`/im LV . Under certain conditions, they are isomorphic, namely when the left-nullvector s
and the right-nullvector p both have their (` + 1)st coordinate equal to 1; see [1, §2, Prop. 2.19]. Since we

10This terminology harkens back to the theory of chip-firing on graphs (also known as the theory of sandpiles), where analogous
notions have been known for longer – see, e.g., [17] or [24].
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have indexed the simple A-modules in such a way that S`+1 = ε is the trivial A-module, this condition is
equivalent to the 1-dimensional trivial A-module ε being its own projective cover Pε = ε . This, in turn, is
known [10, Cor. 4.2.13] to be equivalent to semisimplicity of A. For example, this is always the case in the
setting of [1], where A = FG was a group algebra of a finite group and F had characteristic zero.

In the case where A is semisimple, many of the results on chip-firing from [1, §5] remain valid, with the
same proofs. For example, [1, Prop. 5.16] explains why removing the last entry from the last column of
MV gives a burning configuration for the avalanche-finite matrix MV , which allows one to easily test when
a configuration is recurrent.

7. Tensor-rich group representations

Brauer already characterized tensor-rich FG-modules, though he did not state it in these terms. We need
the following fact, well-known when F has characteristic zero (see, e.g., James and Liebeck [15, Thm.
13.11]), and whose proof works just as well in positive characteristic.

Proposition 7.1. Given a finite group G and n-dimensional FG-module V , a p-regular element g in G acts
as 1V on V if and only if χV (g) = n.

Proof. The forward implication is clear. For the reverse, if one has n = χV (g) =
∑n

i=1 λ̂i, then since each
|λ̂i | = 1, the Cauchy-Schwarz inequality implies that the λ̂i are all equal, and hence they must all equal 1,
since they sum to n. But then λi = 1 for all i, which means that g acts as 1V on V . �

We also need the following fact about Brauer characters; see, e.g., [31, Prop. 10.2.1].

Theorem 7.2. Given a simple FG-module S having projective cover P, then any FG-module V has

[V : S] = dim HomFG(P,V) =
1

#G

∑
p−regular

g∈G

χP(g)χV (g).

We come now to the characterization of tensor-rich finite group representations.

Theorem 7.3. (Brauer [2, Rmk. 4]) For F an algebraically closed field, and G a finite group, an FG-module
V is tensor-rich if and only if the only p-regular element acting as 1V on V is the identity element e of G.

More precisely, if the only p-regular element in G acting as 1V is the identity e, and if the Brauer character
values χV (g) take on exactly t distinct values, then

⊕t−1
k=0 V ⊗k is rich.

Proof. To see the “only if” direction of the first sentence, note that if some p-regular element g , e acts as
1V on V , then the action of G on V factors through some nontrivial quotient group G/N with g ∈ N , and
the same is true for G acting on every tensor power V ⊗k . Note that not every simple FG-module can be
the inflation of a simple F[G/N]-module through the quotient map G→ G/N in this way, else the columns
indexed by e and by g in the Brauer character table of G would be equal, contradicting its invertibility.
Therefore not all simple FG-modules can appear in the tensor algebra T(V), that is, V cannot be tensor-rich.

To see the “if” direction of the first sentence, it suffices to show the more precise statement in the
second sentence. So assume that the only p-regular element acting as 1V on V is e, and label the t distinct
Brauer character values χV (g) as a1, a2, . . . , at , where a1 = dim(V) = χV (e). Letting Aj denote the set
of p-regular elements g for which χV (g) = aj , Proposition 7.1 implies that A1 = {e}. Assuming for the
sake of contradiction that

⊕t−1
k=0 V ⊗k is not rich, then there exists some simple FG-module S such that for

k = 0, 1, . . . , t − 1, one has (with P denoting the projective cover of S) the equality

0 = [V ⊗k : S] = dim HomFG(P,V ⊗k) =
1

#G

∑
p−regular

g∈G

χP(g)χV⊗k (g) =
1

#G

t∑
j=1

ak
j

∑
g∈A j

χP(g).
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Multiplying each of these equations by #G, one can rewrite this as a matrix system

1 1 · · · 1
a1 a2 · · · at
a2

1 a2
2 · · · a2

t
...

...
. . .

...

at−1
1 at−1

2 · · · at−1
t



∑

g∈A1 χP(g)
...∑

g∈At
χP(g)

 =

0
0
...
0


.

The matrix on the left governing the system is an invertible Vandermonde matrix, forcing
∑

g∈A j
χP(g) = 0

for each j = 1, 2, . . . , t. However, the j = 1 case contradicts
∑

g∈A1 χP(g) = χP(e) = dim(P) , 0. �

Corollary 7.4. Faithful representations V of a finite group G are always tensor-rich.

In fact, in characteristic zero, Burnside had shown that faithfulness of V is the same as the condition in
Theorem 7.3 characterizing tensor-richness. Hence one can always regard a non-faithful G-representation
of V as a faithful (and hence tensor-rich) representation of some quotient G/N where N is the kernel of the
representation on V . There is a similar reduction in positive characteristic.

Proposition 7.5. For a finite group representation ρ : G→ GL(V) over a field F of characteristic p,
• the subgroup N of G generated by the p-regular elements in ker(ρ) is always normal, and
• ρ factors through the representation of the quotient ρ : G/N → GL(V) which is tensor-rich.

Proof. The subgroup N as defined above is normal since its generating set is stable under G-conjugation.
To show that the representation ρ : G/N → GL(V) is tensor-rich, by Theorem 7.3 above, it suffices to

check that if a coset gN in G/N is both p-regular and has gN in ker(ρ) (that is, g ∈ ker(ρ)), then g ∈ N . The
p-regularity means gm ∈ N for some m with gcd(m, p) = 1. Recall (e.g., from [31, proof of Lemma 9.3.4])
that one can write g = ab uniquely with a, b both powers of g in which a is p-regular, but b is p-singular
(that is, b has order a power of p). Since a is a power of g, one has a ∈ ker(ρ), and therefore also a ∈ N .
Additionally bm = a−mgm must also lie in N . Since b is p-singular, say of order pd, one has 1 = xm + ypd

with x, y in Z, and then b = bxm+yp
d
= (bm)x(bpd

)y = (bm)x ∈ N . Hence g = ab ∈ N , as desired. �

Proposition 7.5 implies the following fact, which should be contrasted with Theorem 6.10.

Corollary 7.6. A non-tensor-rich A-module V for A = FG the group algebra of a finite group is always
a B-module for a proper Hopf quotient A � B, namely the group algebra B = F[G/N], where N is the
subgroup generated by the p-regular elements in G that act as 1V .

Proof. B = A/I where I is the F-span of {g − gn}g∈G,n∈N , a two-sided ideal and coideal of A = FG. �

Remark 7.7. These last few results relate to a result of Rieffel [27, Cor. 1], asserting that an A-module V for
a finite-dimensional Hopf algebra A that cannot be factored through a proper Hopf quotient must be a faithful
representation of the algebra A, in the sense that the ring map A → End(V) is injective. He also shows
that this implies V is tensor-rich. However, as he notes there, faithfulness of a finite group representation
G→ GL(V) over F is a weaker condition than faithfulness of the FG-module V in the above sense.

8. Appendix A: Hopf algebra proofs

In this section, we collect proofs for some facts stated in Section 2.2 about Hopf algebras. In fact, we shall
prove more general versions of these facts.

To achieve this generality, we will not follow the conventions and assumptions made in Subsection 1.1.
In particular, we shall not require F to be algebraically closed. We shall also not require our Hopf algebra A
(and its modules) to be finite-dimensional unless we explicitly state so.

Instead, let us make the following standing assumptions: We let A be a Hopf algebra over a field F.
We denote its counit, its coproduct, and its antipode by ε , ∆ and α, respectively (as in Section 2.2). All
tensor products are over F. We shall use Sweedler notation for comultiplication in A, writing

∑
a1 ⊗ a2 for
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the coproduct ∆ (a) of any a ∈ A. We denote by dim V the dimension of an F-vector space V . The word
“module” always means “left module”.

We recall the following basic properties of Hopf algebras:
• The antipode α : A → A is an algebra anti-endomorphism and a coalgebra anti-endomorphism of

A. (This is proven, e.g., in [8, Proposition 4.2.6] or in [28, Theorem 1.5].)
• If A is finite-dimensional, then the antipode α : A→ A is bijective. (See, e.g., [20, Thm. 2.1.3] or
[26, Thm. 7.1.14 (b)] or [22, Prop. 4] or [28, Thm. 2.3. 2)] or [10, Prop. 5.3.5] for proofs of this
fact.)
• The vector space F becomes an A-module, by letting A act on F through the algebra homomorphism
ε . This A-module is denoted by ε , and called the trivial A-module.
• For each A-module V , we define its subspace of A-fixed points to be

V A := {v ∈ V : av = ε(a)v for all a ∈ A}.

• If V and W are two A-modules, then their tensor product V ⊗W becomes an A-module according to
the rule a (v ⊗ w) :=

∑
a1v ⊗ a2w for each a ∈ A, v ∈ V and w ∈ W . (This can be restated more

abstractly as follows: The A-module structure on V ⊗W is obtained from the obvious A⊗ A-module
structure on V ⊗W by restriction along the F-algebra homomorphism ∆ : A→ A ⊗ A.)

This concept of tensor products of A-modules satisfies the associativity law (more precisely: if
U, V and W are three A-modules, then the canonical F-vector space isomorphism (U ⊗ V) ⊗W →
U ⊗ (V ⊗W) is an A-module isomorphism), thus allowing us to write tensor products of multiple
factors without parenthesizing them. Furthermore, the canonical isomorphisms (2.6) hold for every
A-module V . However, the tensor product is not generally commutative (indeed, the A-modules
V ⊗W and W ⊗ V may be non-isomorphic).
• For any A-module V , the dual space HomF(V, F) becomes an A-module according to the rule
(a f ) (v) := f (α(a)v) for each a ∈ A, f ∈ HomF(V, F) and v ∈ V . This A-module HomF(V, F) is
denoted by V∗, and is called the left-dual of V . (This is a well-defined A-module because α : A→ A
is an algebra anti-homomorphism.)
• If A is finite-dimensional (so that α is bijective), then there is also another A-module structure on the
dual space HomF(V, F) of an A-module V : Namely, we define it by the rule (a f ) (v) := f

(
α−1(a)v

)
for each a ∈ A, f ∈ HomF(V, F) and v ∈ V . This A-module HomF(V, F) is denoted by ∗V , and is
called the right-dual of V . (This is a well-defined A-module because α−1 : A → A is an algebra
anti-homomorphism.)
• For any two A-modules V and W , we define an A-module structure on the vector space HomF(V,W)
via

(aϕ)(v) :=
∑

a1ϕ(α(a2)v)

for all a ∈ A, ϕ ∈ HomF(V,W) and v ∈ V . (See Lemma 8.1 below for a proof of the fact that this is
a well-defined A-module structure.) Sometimes, we will simply write Hom(V,W) for this A-module
HomF(V,W).

The following fact is folklore, but an explicit mention is hard to find in the literature:

Lemma 8.1. Let V and W be two A-modules. For any a ∈ A and ϕ ∈ HomF(V,W), define an element
aϕ ∈ HomF(V,W) by

(aϕ)(v) :=
∑

a1ϕ(α(a2)v) for all v ∈ V .

This defines an A-module structure on HomF(V,W).

Proof of Lemma 8.1. The definition of aϕ (for a ∈ A and ϕ ∈ HomF(V,W)) can be rewritten as follows: aϕ
is the image of a under the composition

A ∆ // A ⊗ A id ⊗α // A ⊗ A // HomF(V,W) ,
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where the last arrow is the F-linear map A ⊗ A → HomF(V,W) sending each b ⊗ c ∈ A ⊗ A to the map
V → W, v 7→ bϕ (cv). Thus, aϕ depends F-linearly on a. Also, aϕ depends F-linearly on ϕ (this is clear
from the definition).

Furthermore, 1ϕ = ϕ for each ϕ ∈ HomF(V,W). (This follows easily from ∆(1) = 1 ⊗ 1 and α(1) = 1.)
It thus remains to show that (ab) ϕ = a (bϕ) for any a ∈ A, b ∈ A and ϕ ∈ HomF(V,W).
For this purpose, let us fix a ∈ A, b ∈ A and ϕ ∈ HomF(V,W). Also, fix v ∈ V .
Now, the definition of a (bϕ) yields

(a (bϕ)) (v) =
∑

a1 (bϕ) (α (a2) v)︸           ︷︷           ︸
=
∑
b1ϕ(α(b2)α(a2)v)

(by the definition of bϕ)

=
∑∑

a1b1ϕ

©«
α (b2)α (a2)︸         ︷︷         ︸
=α(a2b2)

(since α is an algebra anti-endomorphism)

v

ª®®®®®®¬
=

∑∑
a1b1ϕ (α (a2b2) v) =

∑
(ab)1 ϕ (α ((ab)2) v)

(since one of the axioms of a bialgebra yields
∑∑

a1b1 ⊗ a2b2 =
∑
(ab)1 ⊗ (ab)2). Comparing this with

((ab) ϕ) (v) =
∑
(ab)1 ϕ (α ((ab)2) v) (by the definition of (ab) ϕ) ,

we obtain ((ab) ϕ) (v) = (a (bϕ)) (v). Since this holds for all v ∈ V , we thus have (ab) ϕ = a (bϕ). This
completes our proof. �

Let us now generalize Lemma 2.8:

Lemma 8.2. Let V be an A-module.
(i) If A is finite-dimensional, then V ⊗ A � A⊕ dimV as A-modules.
(ii) Also, A ⊗ V � A⊕ dimV as A-modules (independently on the dimension of A).

Proof of Lemma 8.2. (i) Recall that the antipode α : A → A is bijective (since A is finite-dimensional).
Hence, its inverse α−1 is well-defined and an algebra anti-homomorphism (since α is an algebra anti-
homomorphism).

The defining property of the antipode α of A shows that∑
a1α(a2) =

∑
α(a1)a2 = ε(a)1

for each a ∈ A. Applying the map α−1 to this chain of equalities, we obtain

α−1
(∑

a1α(a2)
)
= α−1

(∑
α(a1)a2

)
= α−1(ε(a)1).

Since α−1 is an algebra anti-homomorphism, this can be rewritten as

(8.1)
∑

a2α
−1(a1) =

∑
α−1(a2)a1 = ε(a)1.

Let V denote V considered as a mere F-vector space, without A-module structure. Then, V ⊗ A is a
well-defined A-module, isomorphic to A⊕ dimV . It remains to prove the isomorphism V ⊗ A � V ⊗ A.

Define an F-linear map Φ : V ⊗ A→ V ⊗ A by setting Φ (v ⊗ b) =
∑

b1v ⊗ b2 for all v ∈ V and b ∈ A.
Then, Φ is A-linear (as follows from a straightforward argument using

∑∑
a1b1 ⊗ a2b2 =

∑
(ab)1 ⊗ (ab)2).
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Define an F-linear map Ψ : V ⊗ A → V ⊗ A by setting Ψ (v ⊗ b) =
∑
α−1(b1)v ⊗ b2 for all v ∈ V and

b ∈ A. Then, every v ∈ V and b ∈ A satisfy

Φ (Ψ (v ⊗ b)) = Φ
(∑

α−1(b1)v ⊗ b2

)
=

∑
Φ

(
α−1(b1)v ⊗ b2

)
︸                  ︷︷                  ︸
=
∑
(b2)1α−1(b1)v⊗(b2)2

=
∑∑

(b2)1α
−1(b1)v ⊗ (b2)2

=
∑ ∑

(b1)2α
−1((b1)1)︸                  ︷︷                  ︸

=ε (b1)1
(by (8.1), applied to a=b1)

v ⊗ b2 =
∑

ε(b1)1v ⊗ b2 = v ⊗
(∑

ε(b1)b2

)
= v ⊗ b

(where the fourth equality sign relied on the coassociativity of A in the form
∑∑

b1 ⊗ (b2)1 ⊗ (b2)2 =∑∑
(b1)1 ⊗ (b1)2 ⊗ b2, and the seventh relied on

∑
ε(b1)b2 = b). Thus, Φ ◦ Ψ = id. A similar computation

reveals that Ψ ◦ Φ = id, whence we see that Φ and Ψ are mutually inverse bijections. Since Φ is A-linear,
they are thus A-isomorphisms, and hence V ⊗ A � V ⊗ A is proven.

(ii) A similar argument shows that A⊗V � A⊗V � A⊕ dimV via the isomorphisms A⊗V → A⊗V, b⊗v 7→∑
b1 ⊗ b2v and A ⊗ V → A ⊗ V, b ⊗ v 7→

∑
b1 ⊗ α(b2)v. �

Next, let us generalize Lemma 2.9:

Lemma 8.3. (i) We have an A-module isomorphism ε∗ � ε .
(ii) Assume that A is finite-dimensional. Then, we have an A-module isomorphism ∗ε � ε .

Proof of Lemma 8.3. (i) We have ε ◦ α = ε (since α is a coalgebra anti-homomorphism), and thus ε∗ � ε
(via the canonical isomorphism F∗ � F).

(ii) From ε ◦ α = ε , we obtain ε ◦ α−1 = ε , and therefore ∗ε � ε . �

Next, we restate and prove Lemma 2.10:

Lemma 8.4. Assume that A is finite-dimensional. Let V be a finite-dimensional A-module. We have
canonical A-module isomorphisms ∗(V∗) � V � ( ∗V )∗.

Proof of Lemma 8.4. There is a linear isomorphism φ : V → ∗(V∗) defined by φ(v)( f ) = f (v) for all v ∈ V
and f ∈ V∗. This isomorphism is A-equivariant, since each a ∈ A, v ∈ V and f ∈ V∗ satisfy

(aφ(v))( f ) = φ(v)(α−1(a) f ) = (α−1(a) f )(v) = f (α(α−1(a))v) = f (av) = φ(av)( f ).

This proves ∗(V∗) � V . The proof of ( ∗V )∗ � V is similar (again, the same φ works). �

Next, we shall show a generalization of Lemma 2.11:

Lemma 8.5. Let V and W be two A-modules. Consider the F-linear map

(8.2) Φ : W ⊗ V∗ → HomF(V,W)
sending each w ⊗ f (with w ∈ W and f ∈ V∗) to the linear map ϕ ∈ HomF(V,W) that is defined by
ϕ(v) = f (v)w for all v ∈ V .

(i) This map Φ is an A-module homomorphism.
(ii) Assume that at least one of the vector spaces V and W is finite-dimensional. Then, Φ is an A-module

isomorphism, and therefore W ⊗ V∗ � HomF(V,W) as A-modules.

Proof of Lemma 8.5. (i) Every v ∈ V , w ∈ W , f ∈ V∗ and a ∈ A satisfy

Φ(a(w ⊗ f ))(v) =
∑

Φ(a1w ⊗ a2 f )(v) =
∑
(a2 f )(v)a1w =

∑
f (α(a2)v)a1w

=
∑

a1 f (α(a2)v)w =
∑

a1Φ(w ⊗ f )(α(a2)v) = (aΦ(w ⊗ f ))(v).

Hence, every w ∈ W , f ∈ V∗ and a ∈ A satisfy Φ(a(w ⊗ f )) = aΦ(w ⊗ f ). By linearity, this entails that
every t ∈ W ⊗ V∗ and a ∈ A satisfy Φ(at) = aΦ(t). In other words, the map Φ is A-equivariant.
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(ii) We have assumed that at least one of the vector spaces V and W is finite-dimensional. Thus, we know
from linear algebra that Φ is a vector space isomorphism.11 Hence, Φ is an A-module isomorphism (since
Lemma 8.5 (i) shows that Φ is an A-module homomorphism). �

Corollary 8.6. For any A-module V , we have V∗ � HomF(V, ε).

Proof of Corollary 8.6. Clearly, the A-module ε is finite-dimensional. Hence, Lemma 8.5 (ii) (applied to
W = ε) shows that themapΦ : ε⊗V∗ → HomF(V, ε) (defined as in Lemma 8.5) is an A-module isomorphism.
Thus, HomF(V, ε) � ε ⊗ V∗ � V∗ (by (2.6), applied to V∗ instead of V) as A-modules. �

The following lemma generalizes Lemma 2.12:

Lemma 8.7. Let V and W be two A-modules. Then, HomA(V,W) = HomF(V,W)A.

The following proof of Lemma 8.7 is taken from [28, Lemma 4.1] (where the lemma is stated in far lesser
generality, but the proof equally applies in the general setting):

Proof of Lemma 8.7. If ϕ ∈ HomA(V,W) then ϕ ∈ HomF(V,W)A, since each a ∈ A and v ∈ V satisfy

(aϕ)(v) =
∑

a1 ϕ(α(a2)v)︸     ︷︷     ︸
=α(a2)ϕ(v)

(since ϕ∈HomA(V,W ))

=
∑

a1α(a2)ϕ(v) = ε(a)ϕ(v).

This proves HomA(V,W) ⊆ HomF(V,W)A.
Conversely, let ψ ∈ HomF(V,W)A. Thus,

(8.3) ε (b)ψ = bψ for each b ∈ A.

11For instance, its inverse can be constructed as follows:

• If V is finite-dimensional, then we can pick a basis {vi} of the F-vector space V , and the corresponding dual basis {v∗i } of
V∗. Then, the inverse of Φ can be defined by Φ−1(h) =

∑
i h(vi) ⊗ v∗i for all h ∈ HomF(V,W).

• If W is finite-dimensional, then we can pick a basis {wj } of the F-vector space W , and the corresponding dual basis {w∗j }

of W∗. Then, the inverse of Φ can be defined by Φ−1(h) =
∑

j wj ⊗

(
w∗j ◦ h

)
for all h ∈ HomF (V,W).
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Using a =
∑
ε (a1) a2, we find

ψ (av) = ψ
(∑

ε (a1) a2v
)
=

∑
ε (a1)ψ (a2v)︸          ︷︷          ︸
=(ε (a1)ψ)(a2v)

=
∑

(ε (a1)ψ)︸     ︷︷     ︸
=a1ψ

(by (8.3), applied to b=a1)

(a2v)

=
∑

(a1ψ) (a2v)︸       ︷︷       ︸
=
∑
(a1)1ψ(α((a1)2)a2v)

(by the definition of the A-action
on HomF(V,W ))

=
∑∑

(a1)1 ψ (α ((a1)2) a2v)

=
∑∑

a1ψ (α ((a2)1) (a2)2 v)(
by the coassociativity law

∑∑
(a1)1 ⊗ (a1)2 ⊗ a2 =

∑∑
a1 ⊗ (a2)1 ⊗ (a2)2

in the coalgebra A

)

=
∑

a1ψ

©«
∑

α ((a2)1) (a2)2︸                ︷︷                ︸
=ε (a2)1

(since
∑
α(b1)b2=ε (b)1

for every b∈A)

v

ª®®®®®®®®®¬
=

∑
a1ψ (ε (a2) v) =

∑
a1ε (a2)︸        ︷︷        ︸
=a

ψ (v)

= aψ (v) .

Since this holds for all a and v, we thus conclude that ψ lies in HomA(V,W). Hence, HomF(V,W)A ⊆
HomA(V,W) is proven. �

Remark 8.8. If A is a Hopf algebra, then α (A) is a Hopf subalgebra of A. As a consequence of our proof
of Lemma 8.7, we obtain the following curious fact: If V and W are two A-modules, then Homα(A)(V,W) =
HomF(V,W)A = HomA (V,W). In fact, in our proof of Lemma 8.7, we actually showed the two inclusions
Homα(A) (V,W) ⊆ HomF (V,W)A ⊆ HomA (V,W). But this chain of inclusions clearly is an equality, since
its last term is contained in its first term.

Next, let us generalize Lemma 2.13:

Lemma 8.9. Let V and W be two A-modules such that W is finite-dimensional. Then, HomA(V,W) �
HomA (W∗ ⊗ V, ε).

Proof of Lemma 8.9. For every f ∈ HomF(V,W), define a linear functional φ( f ) ∈ (W∗ ⊗ V)∗ by setting

φ( f )(g ⊗ v) = g ( f (v)) for all g ∈ W∗ and v ∈ V .

Thus, we have defined an F-linear map φ : HomF(V,W) → (W∗ ⊗ V)∗. This F-linear map is an isomorphism
of vector spaces12. It is not, in general, an A-module isomorphism. Nevertheless, we claim that it restricts
to an isomorphism HomA(V,W) → HomA (W∗ ⊗ V, ε). This claim (once proven) will immediately yield
Lemma 8.9; thus, it suffices to prove this claim. In other words, it suffices to prove that amap f ∈ HomF(V,W)
belongs to HomA(V,W) if and only if its image φ( f ) belongs to HomA (W∗ ⊗ V, ε). We shall prove the two
directions of this equivalence separately:

12Indeed, this map is the composition of the standard isomorphisms HomF(V,W) → HomF(V, (W∗)∗) =

HomF(V,HomF(W∗, F)) → HomF (W∗ ⊗ V, F) = (W∗ ⊗ V)∗. Here, the isomorphism W → (W∗)∗ (arising from the finite-
dimensionality of W) was used for the first arrow.



CRITICAL GROUPS FOR HOPF ALGEBRA MODULES 29

=⇒: Assume that f ∈ HomA(V,W). Recall that
∑
α(a1)a2 = a for each a ∈ A. Now, for each a ∈ A,

g ∈ W∗ and v ∈ V , we have

φ( f ) (a(g ⊗ v)) = φ( f )
(∑

a1g ⊗ a2v
)
=

∑
(a1g) ( f (a2v)) =

∑
g (α(a1) f (a2v))(8.4)

= g

©«
∑

α(a1) f (a2v)︸  ︷︷  ︸
=a2 f (v)

(since f ∈HomA(V,W ))

ª®®®®®®¬
(8.5)

= g

©«
∑

α(a1)a2︸        ︷︷        ︸
=ε (a)1

f (v)
ª®®®®¬
= ε(a) g ( f (v))︸   ︷︷   ︸

=φ( f )(g⊗v)

= ε(a)φ( f ) (g ⊗ v) .

Thus, φ( f ) belongs to HomA (W∗ ⊗ V, ε). This proves the =⇒ direction.
⇐=: Assume that φ( f ) belongs to HomA (W∗ ⊗ V, ε).
Let a ∈ A, g ∈ W∗ and v ∈ V . Then, as in (8.5), we find

(8.6) φ( f ) (a(g ⊗ v)) = g
(∑

α(a1) f (a2v)
)
.

But φ( f ) belongs to HomA (W∗ ⊗ V, ε). Hence,
φ( f ) (a(g ⊗ v)) = ε(a) φ( f ) (g ⊗ v)︸         ︷︷         ︸

=g( f (v))

= ε(a)g ( f (v)) = g (ε(a) f (v)) .

Comparing this with (8.6), we obtain

g
(∑

α(a1) f (a2v)
)
= g (ε(a) f (v)) .

Since this holds for all g ∈ W∗, we thus have

(8.7)
∑

α(a1) f (a2v) = ε(a) f (v)

(since an element w ∈ W is uniquely determined by its images under all g ∈ W∗).
Now, let b ∈ A and v ∈ V . Then, using the axiom b =

∑
ε(b1)b2, we find

f (bv) = f
(∑

ε(b1)b2v
)
=

∑
ε(b1) f (b2v) =

∑
ε(b1)1 f (b2v) =

∑∑
(b1)1α((b1)2) f (b2v)(

by the antipode axiom ε(a)1 =
∑

a1α(a2), applied to a = b1

)
=

∑
b1

∑
α((b2)1) f ((b2)2v)︸                      ︷︷                      ︸
=ε (b2) f (v)

(by (8.7), applied to a=b2)(
by the coassociativity law

∑∑
(b1)1 ⊗ (b1)2 ⊗ b2 =

∑
b1 ⊗

∑
(b2)1 ⊗ (b2)2

)
=

∑
b1ε(b2) f (v) = b f (v) .

Hence, f is A-linear, i.e., belongs to HomA(V,W). This proves the ⇐= direction. Hence, Lemma 8.9 is
proven. �

We next generalize Lemma 2.14:

Lemma 8.10. Let U and V be A-modules, at least one of which is finite-dimensional.
(i) We have (U ⊗ V)∗ � V∗ ⊗ U∗.
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(ii) Assume that A is finite-dimensional. Then, ∗(U ⊗ V) � ∗V ⊗ ∗U .

Proof of Lemma 8.10. (i) There is a linear map φ : V∗ ⊗U∗ → (U ⊗V)∗ given by φ(g⊗ f )(u⊗ v) = f (u)g(v)
for all u ∈ U, v ∈ V , f ∈ U∗, and g ∈ V∗. This linear map φ is an F-vector space isomorphism (since at least
one of U and V is finite-dimensional)13. We shall now show that this isomorphism is A-equivariant. Indeed,
for any a ∈ A, g ∈ V∗, f ∈ U∗, u ∈ U and v ∈ V , we have

φ
©« a(g ⊗ f )︸    ︷︷    ︸
=
∑

a1g⊗a2 f

ª®®®¬ (u ⊗ v) =
∑

φ(a1g ⊗ a2 f )(u ⊗ v) =
∑
(a2 f )(u)︸   ︷︷   ︸
= f (α(a2)u)

(a1g)(v)︸   ︷︷   ︸
=g(α(a1)v)

=
∑

f (α(a2)u)g(α(a1)v)

=
∑

φ(g ⊗ f )(α(a2)u ⊗ α(a1)v) = φ(g ⊗ f )(α(a)(u ⊗ v)) = (aφ(g ⊗ f ))(u ⊗ v),

where the fifth equality sign relied on the fact that
∑
α(a2) ⊗α(a1) = ∆(α(a)) (which is part of what it means

for α to be a coalgebra anti-homomorphism). Hence, φ (a(g ⊗ f )) = aφ(g ⊗ f ) for all a ∈ A, g ∈ V∗ and
f ∈ U∗ (because we have just shown that the two linear maps φ (a(g ⊗ f )) and aφ(g ⊗ f ) are equal on all
pure tensors). Therefore, φ (at) = aφ(t) for all a ∈ A and t ∈ V∗ ⊗ U∗ (by linearity). In other words, the
isomorphism φ : V∗ ⊗ U∗ → (U ⊗ V)∗ is A-equivariant. Therefore (U ⊗ V)∗ � V∗ ⊗ U∗.

(ii) The proof for ∗(U ⊗ V) � ∗V ⊗ ∗U is similar.14 �

Here is another basic property of Hopf algebras:

Lemma 8.11. Let V be a finite-dimensional A-module. Let {vi} be a basis for the F-vector space V , and
{v∗i } the dual basis for V∗. Identify V ⊗ ε with V and ε ⊗ V∗ with V∗ as usual. Then

(i)
∑

i vi ⊗ v∗i (v) = v for all v ∈ V ,
(ii)

∑
i v
∗(vi) ⊗ v∗i = v∗ for all v∗ ∈ V∗, and

(iii) a
∑

i vi ⊗ v∗i = ε(a)
∑

i vi ⊗ v∗i for all a ∈ A.

Proof of Lemma 8.11. (i) and (ii) are just restatements of the identities
∑

i v
∗
i (v)vi = v and

∑
i v
∗(vi)v

∗
i = v∗,

which are known facts from linear algebra.
(iii) The identity map idV belongs to HomA (V,V) = HomF (V,V)A (by Lemma 8.7). But Lemma 8.5 (ii)

provides an A-module isomorphismΦ : V⊗V∗
�
→ HomF(V,V). The image of the element

∑
i vi⊗v

∗
i ∈ V⊗V∗

under this isomorphism Φ is idV (because each v ∈ V satisfies
(
Φ

(∑
i vi ⊗ v∗i

) )
(v) =

∑
i v
∗
i (v) vi = v =

idV (v)), which belongs to HomA (V,V) = HomF (V,V)A. Hence,
∑

i vi ⊗ v∗i must belong to (V ⊗ V∗)A. In
other words, a

∑
i vi ⊗ v∗i = ε(a)

∑
i vi ⊗ v∗i for all a ∈ A. This proves part (iii). �

The next lemma generalizes Lemma 2.15:

Lemma 8.12. Let U, V , and W be A-modules such that V and W are finite-dimensional. Then, one has
isomorphisms

HomA(U ⊗ V,W)
∼
−→ HomA(U,W ⊗ V∗),(8.8)

HomA(V∗ ⊗ U,W)
∼
−→ HomA(U,V ⊗W).(8.9)

Assume furthermore that A is finite-dimensional. Then, one has isomorphisms

HomA(U ⊗ ∗V ,W)
∼
−→ HomA(U,W ⊗ V),(8.10)

HomA(V ⊗ U,W)
∼
−→ HomA(U, ∗V ⊗W).(8.11)

13The quickest way to prove this is to recall that both duals and tensor products commute with finite direct sums, so we can
reduce the proof to the case when one of U and V is F; but this case is obvious.

14 Indeed, the isomorphism is provided by the same map φ. The computation is also identical, except that α is replaced by α−1

(which, too, is a coalgebra anti-homomorphism). The finite-dimensionality of A is used to ensure that α−1 exists (and the right-duals
are well-defined).
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Proof of Lemma 8.12. Notice that V∗, W ⊗ V∗ and V ⊗W are finite-dimensional (since V and W are finite-
dimensional).

One only need check (8.8) and (8.9), since then replacing V by ∗V yields (8.10) and (8.11) (thanks to
Lemma 8.4).

We have

Hom(U ⊗ V,W) � W ⊗ (U ⊗ V)∗ (by Lemma 8.5 (ii))
� W ⊗ V∗ ⊗ U∗ (by Lemma 8.10 (i))
� Hom(U,W ⊗ V∗) (by Lemma 8.5 (ii)) .

Now, (8.8) holds since

HomA(U ⊗ V,W) = Hom(U ⊗ V,W)A (by Lemma 8.7)

� Hom(U,W ⊗ V∗)A (since Hom(U ⊗ V,W) � Hom(U,W ⊗ V∗))

= HomA(U,W ⊗ V∗) (by Lemma 8.7) .

Furthermore, (8.9) holds since

HomA(V∗ ⊗ U,W) � HomA(W∗ ⊗ V∗ ⊗ U, ε) (by Lemma 8.9)
� HomA((V ⊗W)∗ ⊗ U, ε) (since Lemma 8.10 (i) yields (V ⊗W)∗ � W∗ ⊗ V∗)

� HomA(U,V ⊗W) (by Lemma 8.9) .

Remark: Here is an alternative proof of (8.9): Fix a basis {vi} for the F-vector space V , and the corresponding
dual basis {v∗i } of V∗.

For each f ∈ Hom(V∗ ⊗ U,W), we define φ( f ) ∈ Hom(U,V ⊗W) by

φ( f )(u) =
∑
i

vi ⊗ f (v∗i ⊗ u), ∀u ∈ U.

This defines a linear map φ : Hom(V∗ ⊗ U,W) → Hom(U,V ⊗W). (Its definition uses a choice of bases, but φ itself
is independent of this choice, since the tensor

∑
i vi ⊗ v∗i does not depend on the choice of basis {vi}.)

Conversely, if g ∈ Hom(U,V ⊗W) then define ψ(g) ∈ Hom(V∗ ⊗ U,W) by

ψ(g)(v∗ ⊗ u) = (v∗ ⊗ id)(g(u)), ∀u ∈ U, ∀v∗ ∈ V∗.

This defines a linear map ψ : Hom(U,V ⊗W) → Hom(V∗ ⊗ U,W).
The maps φ and ψ are inverses of each other since Lemma 8.11 implies

φ(ψ(g))(u) =
∑
i

vi ⊗ ψ(g)(v
∗
i ⊗ u) =

∑
i

vi ⊗ (v
∗
i ⊗ id)(g(u)) = g(u),

ψ(φ( f ))(v∗ ⊗ u) = (v∗ ⊗ id)(φ( f )(u)) =
∑
i

v∗(vi) ⊗ f (v∗i ⊗ u) = f (v∗ ⊗ u).

It thus remains to show that φ (HomA(U ⊗ V,W)) ⊆ HomA(U,W ⊗V∗) and ψ (HomA(U,W ⊗ V∗)) ⊆ HomA(U⊗V,W).
Suppose f is A-linear. Let a ∈ A and u ∈ U. Then

aφ( f )(u) =
∑
i

∑
a1vi ⊗ a2 f (v∗i ⊗ u) =

∑
i

∑
a1vi ⊗ f (a′2v

∗
i ⊗ a′′2 u).

Combining this with Lemma 8.11 we have, for any v∗ ∈ V∗,

(v∗ ⊗ id)(aφ( f )(u)) =
∑
i

∑
f (v∗(a1vi)a′2v

∗
i ⊗ a′′2 u) =

∑
f (ε(a1)v

∗ ⊗ a2u)

= f (v∗ ⊗ au) =
∑
i

v∗(vi) ⊗ f (v∗i ⊗ au) = (v∗ ⊗ id)(φ( f )(au)).

This implies aφ( f )(u) = φ( f )(au). Thus φ( f ) is A-linear. Hence, φ (HomA(U ⊗ V,W)) ⊆ HomA(U,W ⊗ V∗).
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Now suppose g is A-linear. Let a ∈ A, u ∈ U, and v∗ ∈ V∗. Writing g(u) =
∑

i v
(i) ⊗ w(i), we have

ψ(g)(a(v∗ ⊗ u)) =
∑

ψ(g)(a1v
∗ ⊗ a2u) =

∑
(a1v

∗ ⊗ id)(g(a2u))

=
∑
(a1v

∗ ⊗ id)(a2g(u)) =
∑
(a1v

∗ ⊗ id)
∑
i

a′2v
(i) ⊗ a′′2 w

(i)

=
∑∑

i

v∗(α(a1)a′2v
(i)) ⊗ a′′2 w

(i) =
∑∑

i

v∗(ε(a1)v
(i)) ⊗ a2w

(i)

=
∑∑

i

v∗(v(i)) ⊗ ε(a1)a2w
(i) =

∑
i

v∗(v(i)) ⊗ aw(i)

= a
∑
i

v∗(v(i)) ⊗ w(i) = a((v∗ ⊗ id)(g(u))) = aψ(g)(v∗ ⊗ u).

Thus, ψ (HomA(U,W ⊗ V∗)) ⊆ HomA(U ⊗ V,W). Therefore (8.9) holds.
The advantage of this alternative proof of (8.9) is that it gets by without using the finite-dimensionality ofW . Hence,

the isomorphism (8.9) holds even if W is not finite-dimensional (as long as V is finite-dimensional).
The isomorphism (8.8) also holds in this generality (i.e., requiring onlyV to be finite-dimensional, notW). Here is an

outline of how to prove this: It clearly suffices to prove the isomorphism Hom(U ⊗V,W) � Hom(U,W ⊗V∗) (because
this isomorphism was the crucial step in our above proof). In view of the isomorphism W ⊗ V∗ � Hom(V,W) (a
consequence of Lemma 8.5 (ii)), this boils down to proving the isomorphism Hom(U ⊗V,W) � Hom(U,Hom(V,W)).
But this isomorphism is well-known: It is provided by the F-vector space isomorphism

Hom(U ⊗ V,W) → Hom(U,Hom(V,W)),
F 7→ (the map U → Hom(V,W) sending each u ∈ U to the map V → W

sending each v ∈ V to F (u ⊗ v)) ,

whose A-equivariance can be proven by a somewhat tedious but straightforward computation.15 �

Let us now extend Proposition 2.16. To wit, Proposition 2.16 will follow from part (ii) of the following
fact:

Proposition 8.13. Let A be a finite-dimensional Hopf algebra.
(i) We have dim

(
AA

)
= 1.

(ii) Let V be a finite-dimensional A-module. Then, dim HomA (V, A) = dim V .

Proposition 8.13 (i) is actually the well-known fact (see, e.g., [26, Thm. 10.2.2 (a)]) that the vector space
of left integrals of the finite-dimensional Hopf algebra A is 1-dimensional. Nevertheless, we shall give a
proof, as it is easy using what has been done before.

Proof of Proposition 8.13. Let V be a finite-dimensional A-module. Lemma 8.5 (ii) (applied to W = A)
shows that A ⊗ V∗ � HomF(V, A) as A-modules. But Lemma 8.2 (ii) (applied to V∗ instead of V) yields
A ⊗ V∗ � A⊕ dim(V ∗) = A⊕ dimV as A-modules. Hence, HomF(V, A) � A ⊗ V∗ � A⊕ dimV as A-modules.
Now, Lemma 8.7 (applied to W = A) yields

HomA(V, A) = HomF(V, A)A �
(
A⊕ dimV

)A (
since HomF(V, A) � A⊕ dimV

)
�

(
AA

) ⊕ dimV (
since the functor W 7→ W A preserves direct sums

)
as F-vector spaces. Taking dimensions, we thus find

(8.12) dim HomA(V, A) = dim
((

AA
) ⊕ dimV

)
= dim

(
AA

)
dim V .

Now, forget that we fixed V . It is well-known that HomA(A, A) � A as F-vector spaces (indeed, the map
HomA(A, A) → A, f 7→ f (1) is an isomorphism). Hence, dim A = HomA(A, A) = dim

(
AA

)
dim A (by

15The computation uses the fact that α is a coalgebra anti-homomorphism.
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(8.12), applied to V = A). We can cancel dim A from this equality (since dim A > 0), and thus obtain
1 = dim

(
AA

)
. This proves Proposition 8.13 (i).

(ii) From (8.12), we obtain dim HomA(V, A) = dim
(
AA

)
︸     ︷︷     ︸

=1

dim V = dim V . �

We record a curious corollary of Proposition 8.13, which we will not use below but we find worth
observing.

Corollary 8.14. Let e be an idempotent in the finite-dimensional Hopf algebra A. Then, dim (Ae) = dim (eA).

Proof. A well-known fact (see, e.g., [31, Prop. 7.4.1 (3)]) says that dim HomA (Ae,U) = dim (eU) for any
A-module U. Applying this to U = A, we obtain dim HomA (Ae, A) = dim (eA). But Proposition 8.13
(ii) (applied to V = Ae) yields dim HomA (Ae, A) = dim (Ae). Hence, dim (Ae) = dim HomA (Ae, A) =
dim (eA). �

9. Appendix B: an elementary proof of Lemma 4.2

In this section, we shall give a second proof of Lemma 4.2, using nothing but basic linear algebra. Besides
its elementary nature, this proof has the additional advantage of providing an explicit construction of the
isomorphism claimed in Lemma 4.2 under some circumstances (e.g., if two entries of s equal 1).

We prepare by showing some lemmas about Z-modules.

Lemma 9.1. Let m be a positive integer. Let (e1, e2, . . . , em) be the standard basis of the Z-module Zm
(consisting of column vectors). Let w ∈ Zm be a column vector. Let g = gcd(w). (Here and below, gcd(w)
denotes the greatest common divisor of the entries of w.) Then, there exists some B ∈ GLm (Z) such that
Bw = ge1.

Proof. This is a well-known fact, but let us sketch a proof. An operation on vectors in Zm (that is, a map
Zm → Zm) is called an elementary operation if and only if

• it is a negation operation, which means that it multiplies an entry of the vector by −1; or
• it is an addition operation, which means that it adds an integer multiple of an entry of the vector to
another entry; or
• it is a swap operation, which means that it swaps two entries of the vector.

It is well-known that each composition of elementary operations can be rewritten as left multiplication by
some matrix in GLm (Z) (i.e., as the map v 7→ Bv for some B ∈ GLm (Z)). Hence, if we can prove that the
vector ge1 can be obtained from w by a sequence of elementary operations, then we will be done.

But proving this is easy: Start with the vector w. Then, apply negation operations to turn all its entries
nonnegative. Then, apply addition operations (specifically, subtracting entries from other entries) to ensure
that at most one of its entries is nonzero16. Finally, apply a swap operation to ensure that this nonzero entry
is the first entry (if it was not already). The resulting vector has the form pe1 for some p ∈ Z. Consider this
p. But elementary operations do not change the greatest common divisor of the entries of a vector. Hence,
gcd (pe1) = gcd(w) (since we obtained pe1 from w by elementary operations). Since p is nonnegative, we
have gcd (pe1) = p, so that p = gcd (pe1) = gcd(w) = g and thus pe1 = ge1. Hence, we have obtained the
vector ge1 from w by a sequence of elementary operations (since we have obtained the vector pe1 in this
way). As we have said above, this proves the lemma. �

Lemma 9.2. Let m be a positive integer. Let d ∈ Z, and let w ∈ Zm be a column vector. Let γ =
gcd (d, gcd(w)). Then,

Zm/(dZm + Zw) � (Z/γZ) ⊕ (Z/dZ)m−1 .

16This can be done as follows: As long as our vector has (at least) two nonzero entries, we can apply an addition operation
(namely, subtracting the smaller of these two entries from the larger) to obtain a new vector, whose entries are still all nonnegative,
but whose sum of entries is smaller than that of the previous vector. We can repeat this step until no two nonzero entries remain
(which is destined to happen, since the sum of entries cannot keep decreasing forever).
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Proof. Let g = gcd(w). Thus, gcd(d, g) = gcd(d, gcd(w)) = γ. Now, Zd + Zg = Z gcd(d, g)︸    ︷︷    ︸
=γ

= Zγ.

Let (e1, e2, . . . , em) be the standard basis of the Z-module Zm (consisting of column vectors). Then,
Zde1 + Zge1 = (Zd + Zg)︸      ︷︷      ︸

=Zγ

e1 = Zγe1.

Lemma 9.1 shows that there exists some B ∈ GLm (Z) such that Bw = ge1. Consider this B. Left
multiplication by B is an automorphism of the Z-module Zm (since B ∈ GLm (Z)) and sends the submodule
dZm to dZm while sending the submodule Zw to Z Bw︸︷︷︸

=ge1

= Zge1. Hence, it induces an isomorphism

Zm/(dZm + Zw) → Zm/(dZm + Zge1). Thus,

Zm/(dZm + Zw) � Zm/(dZm + Zge1) = Z
m/((Zde1 + Zde2 + · · · + Zdem) + Zge1)

(since dZm = Zde1 + Zde2 + · · · + Zdem)

= Zm/
©«(Zde1 + Zge1)︸            ︷︷            ︸

=Zγe1

+ (Zde2 + Zde3 + · · · + Zdem)
ª®®®¬

= Zm/(Zγe1 + (Zde2 + Zde3 + · · · + Zdem))

= (Ze1 ⊕ Ze2 ⊕ · · · ⊕ Zem) /(Zγe1 ⊕ Zde2 ⊕ Zde3 ⊕ · · · ⊕ Zdem)

� (Ze1/Zγe1)︸        ︷︷        ︸
�Z/γZ

⊕ (Ze2/Zde2) ⊕ (Ze3/Zde3) ⊕ · · · ⊕ (Zem/Zdem)︸                                                         ︷︷                                                         ︸
�(Z/dZ)m−1

� (Z/γZ) ⊕ (Z/dZ)m−1 . �

Lemma 9.3. Let m > 1 be an integer. Let u ∈ Zm and v ∈ Zm be two column vectors such that v1 = 1. Let
γ = gcd(u), and set d = vTu ∈ Z. Let L = dIm − uvT ∈ Zm×m. Then,

Zm/im L � Z ⊕ (Z/γZ) ⊕ (Z/dZ)m−2 .

Proof. Let (e1, e2, . . . , em) be the standard basis of the Z-module Zm. Recall that L = dIm − uvT . Hence, for
each i ∈ {1, 2, . . . ,m}, we have

Lei =
(
dIm − uvT

)
ei = dei − u vT ei︸︷︷︸

=vi

= dei − uvi .

Applying this to i = 1, we obtain Le1 = de1 − u v1︸︷︷︸
=1

= de1 − u.

Now, for each i ∈ {1, 2, . . . ,m}, define a vector qi ∈ Zm by qi = ei − vie1. Then, each i ∈ {1, 2, . . . ,m}
satisfies

Lqi = L (ei − vie1) = Lei︸︷︷︸
=dei−uvi

−vi Le1︸︷︷︸
=de1−u

= (dei − uvi) − vi (de1 − u)

= d (ei − vie1)︸      ︷︷      ︸
=qi

= dqi .(9.1)
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Note that the definition of q1 yields q1 = e1 − v1︸︷︷︸
=1

e1 = e1 − e1 = 0. Hence,
∑m

i=1 uiqi =
∑m

i=2 uiqi +

u1 q1︸︷︷︸
=0

=
∑m

i=2 uiqi. Thus,

m∑
i=2

uiqi =
m∑
i=1

ui qi︸︷︷︸
=ei−vie1

=

m∑
i=1

ui (ei − vie1) =

m∑
i=1

uiei︸  ︷︷  ︸
=u

−

m∑
i=1

uivi︸  ︷︷  ︸
=vT u=d

e1

= u − de1 = − (de1 − u)︸    ︷︷    ︸
=Le1

= −Le1.(9.2)

Let u′ be the vector [u2, u3, . . . , um]T ∈ Zm−1. Recall that

d = vTu = v1︸︷︷︸
=1

u1 + v2u2 + v3u3 + · · · + vmum = u1 + v2u2 + v3u3 + · · · + vmum︸                           ︷︷                           ︸
∈gcd(u′)Z

(since ui ∈gcd(u′)Z for all i>1)

∈ u1 + gcd(u′)Z.

Hence, d ≡ u1 mod gcd(u′)Z. Thus, gcd(d, gcd(u′)) = gcd(u1, gcd(u′)) = gcd(u) = γ.
We shall identify the Z-module Zm−1 with the Z-submodule spanZ (e2, e3, . . . , em) of Zm by equating each

vector [p2, p3, . . . , pm]T ∈ Zm−1 with p2e2 + p3e3 + · · · + pmem ∈ spanZ (e2, e3, . . . , em). From this point of
view, we have u′ = u2e2 + u3e3 + · · · + umem and

Zm/
(
dZm−1 + Zu′

)
� Z ⊕

(
Zm−1/

(
dZm−1 + Zu′

))
︸                         ︷︷                         ︸

�(Z/γZ)⊕(Z/dZ)m−2

(by Lemma 9.2, applied to m−1 and u′ instead of m and w)

� Z ⊕ (Z/γZ) ⊕ (Z/dZ)m−2 .(9.3)

Now, we define a Z-linear map Φ : Zm → Zm by setting

Φ (ei) =

{
e1, if i = 1;
qi, if i > 1

for all i ∈ {1, 2, . . . ,m} .

This map Φ is tantamount to left multiplication by the matrix

©«

1 −v2 −v3 · · · −vm
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

ª®®®®®®¬
(since qi =

ei − vie1), which is invertible over Z (since it is upper-unitriangular). Hence, Φ is a Z-module isomorphism.
Next, we are going to show that Φ

(
dZm−1 + Zu′

)
= im L.

Indeed, for each i ∈ {2, 3, . . . ,m}, we have

(9.4) Φ (dei) = d Φ (ei)︸︷︷︸
=qi

(since i>1)

= dqi = Lqi (by (9.1)) .

Furthermore, u′ = u2e2 + u3e3 + · · · + umem =
∑m

i=2 uiei, so that

(9.5) Φ (u′) = Φ

(
m∑
i=2

uiei

)
=

m∑
i=2

ui Φ (ei)︸︷︷︸
=qi

(since i>1)

=

m∑
i=2

uiqi = −Le1 (by (9.2)) .
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But the map Φ is an isomorphism. Thus,
Zm = Φ (Zm) = Φ

(
spanZ (e1, e2, e3, . . . , em)

)
= spanZ (Φ (e1) ,Φ (e2) ,Φ (e3) , . . . ,Φ (em)) = spanZ (e1, q2, q3, . . . , qm)

(since the definition of Φ yields Φ (e1) = e1 and Φ (ei) = qi for each i > 1). Hence,
(9.6) L (Zm) = L

(
spanZ (e1, q2, q3, . . . , qm)

)
= spanZ (Le1, Lq2, Lq3, . . . , Lqm) .

On the other hand,
dZm−1 + Zu′ = Zu′︸︷︷︸

=spanZ(u′)

+ dZm−1︸ ︷︷ ︸
=d spanZ(e2,e3,...,em)
=spanZ(de2,de3,...,dem)

= spanZ (u
′) + spanZ (de2, de3, . . . , dem)

= spanZ (u
′, de2, de3, . . . , dem)

and thus

Φ

(
dZm−1 + Zu′

)
= Φ

(
spanZ (u

′, de2, de3, . . . , dem)
)

= spanZ (Φ (u
′) ,Φ (de2) ,Φ (de3) , . . . ,Φ (dem))

= spanZ (−Le1, Lq2, Lq3, . . . , Lqm) (by (9.5) and (9.4))
= spanZ (Le1, Lq2, Lq3, . . . , Lqm) = L (Zm) (by (9.6))
= im L.

Thus, the isomorphism Φ : Zm → Zm induces an isomorphism Zm/
(
dZm−1 + Zu′

)
→ Zm/im L. Hence,

Zm/im L � Zm/
(
dZm−1 + Zu′

)
� Z ⊕ (Z/γZ) ⊕ (Z/dZ)m−2 (by (9.3)) . �

Proof of Lemma 4.2. Lemma 4.2 would follow by applying Lemma 9.3 to m = `+1, u = p, v = s, except for
a minor inconvenience: Lemma 4.2 assumes s`+1 = 1, whereas Lemma 9.3 assumes v1 = 1. However, this
is merely a notational distinction, and can be straightened out by relabeling the indices (we leave the details
to the reader). �

10. Appendix C: Some more observations on gcds

In this short appendix, we relate the gcds of the entries of the vectors s and p to expansions of [A] in the
Grothendieck groups K0(A) and G0(A). This relation (which does not require A to be a Hopf algebra) was
found as a side result in our study of the critical group, but did not turn out to be useful for the latter. We
record it here merely to avoid losing it.

Proposition 10.1. Let A be a finite-dimensional F-algebra, with F algebraically closed. (We do not require
A to be a Hopf algebra here.) Let Pi, Si, p, s and C be as in Subsection 2.1.

(i) The class [A] of the left-regular A-module lies in gcd(s) · K0(A).
(ii) When A � Aopp as rings, the class [A] of the left-regular A-module lies in gcd(p) · G0(A).

Proof. Assertion (i) follows since (2.1) shows [A] =
∑`+1

i=1 dim(Si)[Pi] in K0(A).
(ii) We have [A] =

∑`+1
i=1 [A : Si][Si] in G0(A). Hence, it is enough to show that gcd(p) | [A : Si] for

each i ∈ {1, 2, . . . , ` + 1}. So let us fix i. Choose a primitive idempotent ei ∈ A such that Pi � Aei. The
hypothesis A � Aopp shows that there is a ring isomorphism φ : A → Aopp. The image of the primitive
idempotent ei under this isomorphism φ must be another primitive idempotent ej of A, and furthermore we
have φ (eiA) = Aej , whence dim(eiA) = dim(Aej). Now, (2.2) yields

[A : Si] = dim HomA(Pi, A) = dim HomA(Aei, A) = dim(eiA) = dim(Aej) = dim Pj for some Pj .

Here the third equality used the F-linear isomorphism HomA(Aei,V) � eiV (defined for each A-module V)
which sends ϕ to ϕ(ei). Since Pj is projective, we have gcd(p) | dim Pj = [A : Si], as desired. �
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Example 10.2. The matrix algebra A = Matn(F) is semisimple, with only one simple A-module S1(= P1)
having dim(S1) = n. Thus in this case, n = gcd(s) = gcd(p), and indeed, [A] = n[S1] = n[P1] in
G0(A)(= K0(A)).

Each finite-dimensional Hopf algebra A satisfies A � Aopp as rings (via the antipode α : A → Aopp);
therefore, Proposition 10.1 (ii) can be applied to any such A. For example, we obtain the following:

Example 10.3. Consider again the generalized Taft Hopf algebra A = Hn,m from Example 2.5. As we know
from Example 5.8, we have gcd(p) = m. Hence, Proposition 10.1 (ii) shows that [A] lies in mG0(A).
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