A representation-theoretical solution to MathOverflow question \#88399

Darij Grinberg
version 2 (4 December 2013)

Sorry for hasty writing. Please let me know about any mistakes or unclarities (A@B.com with $\mathrm{A}=$ darijgrinberg and $\mathrm{B}=$ gmail).

§1. Statement of the problem

Let $n \in \mathbb{N}$.
For every $w \in S_{n}$, let $\sigma(w)$ denote the number of cycles in the cycle decomposition of the permutation w (this includes cycles consisting of one element).

We can consider the matrix $\left(x^{\sigma\left(g h^{-1}\right)}\right)_{g, h \in S_{n}} ;$ this is a matrix over the polynomial ring $\mathbb{Q}[x]$, whose rows and whose columns are indexed by the elements of S_{n}. (So this is a matrix with $n!$ rows and $n!$ columns, although there is no explicit ordering on the set of rows/columns given.)

The claim of MathOverflow question \#88399 is:
Theorem 1. The polynomial

$$
\operatorname{det}\left(\left(x^{\sigma\left(g h^{-1}\right)}\right)_{g, h \in S_{n}}\right) \in \mathbb{Q}[x]
$$

factors into linear factors of the form $x-\ell$ with $\ell \in\{-n+1,-n+2, \ldots, n-1\}$.
Before we head to the proof of this theorem, let us show some examples:
Example. If $n=1$, then the matrix $\left(x^{\sigma\left(g h^{-1}\right)}\right)_{g, h \in S_{n}}$ has only one row and one column, and its only entry is x. Its determinant thus is x, which is in agreement with Theorem 1.

If $n=2$, then the matrix $\left(x^{\sigma\left(g h^{-1}\right)}\right)_{g, h \in S_{n}}$ has two rows and two columns. Picking a reasonable ordering on S_{n}, we can represent it as the 2×2-matrix $\left(\begin{array}{cc}x^{2} & x \\ x & x^{2}\end{array}\right)$, which has determinant $x^{2}(x-1)(x+1)$.

If $n=3$, then the matrix $\left(x^{\sigma\left(g h^{-1}\right)}\right)_{g, h \in S_{n}}$ can be represented (by picking an ordering on S_{n}) by the 6×6-matrix

$$
\left(\begin{array}{cccccc}
x^{3} & x^{2} & x^{2} & x & x & x^{2} \\
x^{2} & x^{3} & x & x^{2} & x^{2} & x \\
x^{2} & x & x^{3} & x^{2} & x^{2} & x \\
x & x^{2} & x^{2} & x^{3} & x & x^{2} \\
x & x^{2} & x^{2} & x & x^{3} & x^{2} \\
x^{2} & x & x & x^{2} & x^{2} & x^{3}
\end{array}\right),
$$

and thus has determinant $x^{6}(x-2)(x+2)(x-1)^{5}(x+1)^{5}$. This, again, matches the claim of Theorem 1 .

For $n=4$, we have
$\operatorname{det}\left(\left(x^{\sigma\left(g h^{-1}\right)}\right)_{g, h \in S_{n}}\right)=(x-3)(x+3)(x-2)^{10}(x+2)^{10}(x-1)^{23}(x+1)^{23} x^{28}$.
Exercise 1. Prove that the polynomial $\operatorname{det}\left(\left(x^{\sigma\left(g h^{-1}\right)}\right)_{g, h \in S_{n}}\right)$ is even (that is, a polynomial in x^{2}) for every $n \geq 2$. (See the end of this note for a hint.)

§2. Reduction to representation theory

Let us first reduce Theorem 1 to a representation-theoretical statement:
For any finite group G, let $\operatorname{Irrep} G$ denote a set of representatives of all irreducible representations of G over \mathbb{C} modulo isomorphism. $?^{\top}$

From the theory of group determinants (more precisely, the results of [1], or the proof of Theorem 4.7 in [2]), we know that if G is a finite group, and X_{g} is an indeterminat \hookrightarrow^{2} for every $g \in G$, then the matrix $\left(X_{g h^{-1}}\right)_{g, h \in G}$ (both rows and columns of this matrix are indexed by elements of G) has determinant

$$
\operatorname{det}\left(\left(X_{g h^{-1}}\right)_{g, h \in G}\right)=\prod_{\rho \in \operatorname{Irrep} G}\left(\operatorname{det}\left(\sum_{g \in G} \rho(g) X_{g}\right)^{\operatorname{dim} \rho}\right)
$$

Applying this to $G=S_{n}$ and evaluating this polynomial identity at $X_{g}=$ $x^{\sigma(g)}$, we obtain

$$
\begin{equation*}
\operatorname{det}\left(\left(x^{\sigma\left(g h^{-1}\right)}\right)_{g, h \in S_{n}}\right)=\prod_{\rho \in \operatorname{Irrep} S_{n}}\left(\operatorname{det}\left(\sum_{g \in S_{n}} \rho(g) x^{\sigma(g)}\right)^{\operatorname{dim} \rho}\right) \tag{1}
\end{equation*}
$$

Hence, in order to show that the polynomial det $\left(\left(x^{\sigma\left(g h^{-1}\right)}\right)_{g, h \in S_{n}}\right) \in \mathbb{Q}[x]$ factors into linear factors of the form $x-\ell$ with $\ell \in\{-n+1,-n+2, \ldots, n-1\}$, it is enough to prove that, for every irreducible representation ρ of S_{n} over \mathbb{C},

[^0]the polynomial det $\left(\sum_{g \in S_{n}} \rho(g) x^{\sigma(g)}\right)$ factors into linear factors of the form $x-\ell$ with $\ell \in\{-n+1,-n+2, \ldots, n-1\}$.

We are going to show something better:
Theorem 2. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ be a partition of n. Let m_{λ} be the number of nonzero parts of the partition λ. Let ρ_{λ} be the irreducible representation of S_{n} over \mathbb{C} corresponding to the partition λ. Then,

$$
\begin{equation*}
\sum_{g \in S_{n}} \rho_{\lambda}(g) x^{\sigma(g)}=\frac{n!}{\operatorname{dim} \rho} \prod_{1 \leq i<j \leq m_{\lambda}} \frac{\lambda_{i}-\lambda_{j}+j-i}{j-i} \cdot \prod_{i=1}^{m_{\lambda}} \frac{\binom{x+\lambda_{i}-i}{\lambda_{i}}}{\binom{\lambda_{i}+m_{\lambda}-i}{m_{\lambda}-i}} \cdot \mathrm{id}_{\rho_{\lambda}} \tag{2}
\end{equation*}
$$

Let us first see how Theorem 1 follows from Theorem 2:
Proof of Theorem 1. For every partition λ of n, let us denote by ρ_{λ} the irreducible representation of S_{n} over \mathbb{C} corresponding to λ, and let us denote by m_{λ} the number of nonzero parts of the partition λ. It is known that the isomorphism classes of irreducible representations of S_{n} over \mathbb{C} are in 1-to-1 correspondence with the partitions of n, and this correspondence sends every partition λ to the representation ρ_{λ}. Thus,

$$
\begin{aligned}
& \prod_{\rho \in \operatorname{Irrep} S_{n}}\left(\operatorname{det}\left(\sum_{g \in S_{n}} \rho(g) x^{\sigma(g)}\right)^{\operatorname{dim} \rho}\right) \\
= & \prod_{\lambda \text { partition of } n}\left(\operatorname{det}\left(\sum_{g \in S_{n}} \rho_{\lambda}(g) x^{\sigma(g)}\right)^{\operatorname{dim} \rho_{\lambda}}\right) \\
= & \prod_{\lambda \text { partition of } n}\left(\left(\frac{n!}{\operatorname{dim} \rho} \prod_{1 \leq i<j \leq m_{\lambda}} \frac{\lambda_{i}-\lambda_{j}+j-i}{j-i} \cdot \prod_{i=1}^{m_{\lambda}} \frac{\binom{x+\lambda_{i}-i}{\lambda_{i}}}{\binom{\lambda_{i}+m_{\lambda}-i}{m_{\lambda}-i}} \cdot \operatorname{id}_{\rho_{\lambda}}\right)^{\operatorname{dim} \rho_{\lambda}}\right)
\end{aligned}
$$

(by (2)).
Combined with (1), this yields

$$
\begin{aligned}
& \operatorname{det}\left(\left(x^{\sigma\left(g h^{-1}\right)}\right)_{g, h \in S_{n}}\right) \\
& =\prod_{\lambda \text { partition of } n}\left(\left(\frac{n!}{\operatorname{dim} \rho} \prod_{1 \leq i<j \leq m_{\lambda}} \frac{\lambda_{i}-\lambda_{j}+j-i}{j-i} \cdot \prod_{i=1}^{m_{\lambda}} \frac{\binom{x+\lambda_{i}-i}{\lambda_{i}}}{\binom{\lambda_{i}+m_{\lambda}-i}{m_{\lambda}-i}} \cdot \operatorname{id}_{\rho_{\lambda}}\right)^{\operatorname{dim} \rho_{\lambda}}\right) .
\end{aligned}
$$

Now, the right hand side of this equation is clearly a polynomial in x which factors into a product of a constant and linear factors. All of the linear factors have the form $x+\lambda_{i}-i-\alpha$ for $\alpha \in\left\{0,1, \ldots, \lambda_{i}-1\right\}$ for various partitions λ of n and various $i \in\left\{1,2, \ldots, m_{\lambda}\right\}$. ${ }^{3}$ By very simple combinatorics, it is easy to see that each of these factors has the form $x-\ell$ for some $\ell \in$ $\{-n+1,-n+2, \ldots, n-1\}$. Thus, the polynomial $\operatorname{det}\left(\left(x^{\sigma\left(g h^{-1}\right)}\right)_{g, h \in S_{n}}\right) \in$ $\mathbb{Q}[x]$ factors into a product of a constant and linear factors of the form $x-\ell$ with $\ell \in\{-n+1,-n+2, \ldots, n-1\}$. Moreover, the constant is 1 because the polynomial $\operatorname{det}\left(\left(x^{\sigma\left(g h^{-1}\right)}\right)_{g, h \in S_{n}}\right)$ is moni 4^{4}. Hence, the polynomial $\operatorname{det}\left(\left(x^{\sigma\left(g h^{-1}\right)}\right)_{g, h \in S_{n}}\right) \in$ $\mathbb{Q}[x]$ factors into linear factors of the form $x-\ell$ with $\ell \in\{-n+1,-n+2, \ldots, n-1\}$. Thus, Theorem 1 is proven (using Theorem 2).

§3. Proof of Theorem 2

Proof of Theorem 2. First of all, (2) is a polynomial identity in x. Hence, we can WLOG assume that x is not a polynomial indeterminate in $\mathbb{Q}[x]$, but an integer greater than n (because if a polynomial identity over \mathbb{Q} holds for infinitely many integers, then it must always hold). Assume this.

Since x is an integer greater than n, we have $x \in \mathbb{N}$. This allows us to find a \mathbb{Q}-vector space of dimension x. Let V be such a vector space.

For every S_{n}-module P, let χ_{P} denote the character of this module P. Note that every $h \in S_{n}$ satisfies

$$
\begin{equation*}
\chi_{V^{\otimes n}}(h)=x^{\sigma(h)} . \tag{3}
\end{equation*}
$$

5
Let L_{λ} be the representation of GL (V) corresponding to the partition λ of n. In other words, let L_{λ} be the image of V under the λ-th Schur functor.
${ }^{3}$ In fact, the only place where x occurs on the right hand side
of this equation is $\binom{x+\lambda_{i}-i}{\lambda_{i}}, \quad$ and this factors as $\binom{x+\lambda_{i}-i}{\lambda_{i}}=$
$\left(x+\lambda_{i}-i\right)\left(x+\lambda_{i}-i-1\right) \ldots\left(x+\lambda_{i}-i-\left(\lambda_{i}-1\right)\right)$
${ }^{4}$ Proof. In order to see this, it is enough to show that when the determinant $\operatorname{det}\left(\left(x^{\sigma\left(g h^{-1}\right)}\right)_{g, h \in S_{n}}\right)$ is written as a sum over all permutations of the set S_{n} (nota bene: permutations of S_{n}, not permutations in S_{n}), the highest degree of x is contributed by the product of the main diagonal. But this is clear, because the main diagonal of the matrix $\left(x^{\sigma\left(g h^{-1}\right)}\right)_{g, h \in S_{n}}$ is filled with $x^{\sigma(\mathrm{id})}=x^{n}$ terms, while all other entries of the matrix are lower powers of x.
${ }^{5}$ Proof. Let $h \in S_{n}$. Denote the action of h on $V^{\otimes n}$ by $\left.h\right|_{V^{\otimes n}}$. Then, by the definition of a character, $\chi_{V^{\otimes n}}(h)=\operatorname{Tr}\left(\left.h\right|_{V^{\otimes n}}\right)$.
Pick a basis $\left(e_{1}, e_{2}, \ldots, e_{x}\right)$ of V. This basis induces a basis $\left(e_{i_{1}} \otimes e_{i_{2}} \otimes \ldots \otimes e_{i_{n}}\right)_{\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in\{1,2, \ldots, x\}^{n}}$ of $V^{\otimes n}$. By the definition of the action of

Then, $L_{\lambda}=\operatorname{Hom}_{\mathbb{Q}\left[S_{n}\right]}\left(\rho_{\lambda}, V^{\otimes n}\right)$ (by one of the definitions of Schur functors), so that

$$
\begin{aligned}
& \operatorname{dim} L_{\lambda}= \operatorname{dim}\left(\operatorname{Hom}_{\mathbb{Q}\left[S_{n}\right]}\left(\rho_{\lambda}, V^{\otimes n}\right)\right)=\left\langle\chi_{V} \otimes n, \chi_{\rho_{\lambda}}\right\rangle \\
&\text { (by Theorem 3.8 of } \left.[2], \text { applied to } V=V^{\otimes n} \text { and } W=\rho_{\lambda}\right) \\
&= \underbrace{\frac{1}{\left|S_{n}\right|}} \sum_{g \in S_{n}} \underbrace{\chi_{\rho_{\lambda}}(g)}_{=\operatorname{Tr}\left(\rho_{\lambda}(g)\right)} \underbrace{\chi_{V \otimes n}^{\otimes n}\left(g^{-1}\right)}_{\substack{x^{\sigma}\left(g^{-1}\right) \\
(\text { by } 33)}} \\
&=\frac{1}{n!}
\end{aligned}
$$

(by one of the definitions of the inner product of characters)

$$
\begin{align*}
& =\frac{1}{n!} \sum_{g \in S_{n}} \operatorname{Tr}\left(\rho_{\lambda}(g)\right) x^{\sigma\left(g^{-1}\right)}=\frac{1}{n!} \operatorname{Tr}\left(\sum_{g \in S_{n}} \rho_{\lambda}(g) x^{\sigma\left(g^{-1}\right)}\right) \\
& \left.=\frac{1}{n!} \operatorname{Tr}\left(\sum_{g \in S_{n}} \rho_{\lambda}(g) x^{\sigma(g)}\right) \quad \text { (since every } g \in S_{n} \text { satisfies } \sigma\left(g^{-1}\right)=\sigma(g)\right) . \tag{4}
\end{align*}
$$

S_{n} on $V^{\otimes n}$, every $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in\{1,2, \ldots, x\}^{n}$ satisfies

$$
h\left(e_{i_{1}} \otimes e_{i_{2}} \otimes \ldots \otimes e_{i_{n}}\right)=e_{h^{-1}\left(i_{1}\right)} \otimes e_{h^{-1}\left(i_{2}\right)} \otimes \ldots \otimes e_{h^{-1}\left(i_{n}\right)} .
$$

Thus, if $h^{(\times n)}$ denotes the permutation of the set $\{1,2, \ldots, x\}^{n}$ which sends every $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in\{1,2, \ldots, x\}^{n}$ to $\left(h^{-1}\left(i_{1}\right), h^{-1}\left(i_{2}\right), \ldots, h^{-1}\left(i_{n}\right)\right)$, then the linear map $\left.h\right|_{V^{\otimes n}}$ is represented by the permutation matrix of the permutation $h^{(\times n)}$ with respect to the basis $\left(e_{i_{1}} \otimes e_{i_{2}} \otimes \ldots \otimes e_{i_{n}}\right)_{\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in\{1,2, \ldots, x\}^{n}}$ of $V^{\otimes n}$. Hence,
$\operatorname{Tr}\left(\left.h\right|_{V \otimes n}\right)=\operatorname{Tr}\left(\right.$ permutation matrix of the permutation $\left.h^{(\times n)}\right)=\left(\right.$ number of fixed points of $\left.h^{(\times n)}\right)$
(because the trace of a permutation matrix always equals the number of fixed points of the corresponding permutation). Now, let us count the fixed points of $h^{(\times n)}$.

Clearly, an n-tuple $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in\{1,2, \ldots, x\}^{n}$ is a fixed point of $h^{(\times n)}$ if and only if every $j \in\{1,2, \ldots, n\}$ satisfies $i_{j}=i_{h^{-1}(j)}$. In other words, an n-tuple $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in\{1,2, \ldots, x\}^{n}$ is a fixed point of $h^{(\times n)}$ if and only if each pair of elements j and k of $\{1,2, \ldots, n\}$ which lie in the same cycle of h satisfies $i_{j}=i_{k}$. Hence, if we want to choose a fixed point of $h^{(\times n)}$, we need only to specify, for every cycle c of h, the value of i_{j} for some element j of this cycle c (which element j we choose doesn't matter). Thus, we have to choose one element of the set $\{1,2, \ldots, x\}$ for each cycle of h; these choices are arbitrary and independent, but beside them we have no more freedom. Thus, there is a total of $x^{\sigma(h)}$ ways to choose a fixed point of $h^{(\times n)}$ (because there are $\sigma(h)$ cycles of h, and there are x elements of the set $\{1,2, \ldots, x\}$). In other words,

$$
x^{\sigma(h)}=\left(\text { number of fixed points of } h^{(\times n)}\right)=\operatorname{Tr}\left(\left.h\right|_{V^{\otimes n}}\right)=\chi_{V^{\otimes n}}(h) .
$$

This proves (3).

On the other hand, Theorem 4.63 of [2] (the Weyl character formula) yields

$$
\begin{aligned}
& \operatorname{dim} L_{\lambda}=\prod_{1<i<j \leq x} \frac{\lambda_{i}-\lambda_{j}+j-i}{j-i} \quad\left(\text { where } \lambda_{\ell} \text { denotes } 0 \text { for all } \ell>m_{\lambda}\right. \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& =\prod_{1 \leq i<j \leq m_{\lambda}} \frac{\lambda_{i}-\lambda_{j}+j-i}{j-i} \cdot \prod_{i=1}^{m_{\lambda}} \underbrace{\prod_{j=m_{\lambda}+1}^{x} \frac{\lambda_{i}+j-i}{j-i}}_{\left(x+\lambda_{i}-i\right.} \cdot \underbrace{\prod_{m_{\lambda} \leq i<j \leq x}}_{=1} 1 \\
& =\frac{\binom{x+\lambda_{i}-i}{\lambda_{i}}}{\binom{\lambda_{i}+m_{\lambda}-i}{m_{\lambda}-i}} \\
& \text { (this is straightforward to check) } \\
& =\prod_{1 \leq i<j \leq m_{\lambda}} \frac{\lambda_{i}-\lambda_{j}+j-i}{j-i} \cdot \prod_{i=1}^{m_{\lambda}} \frac{\binom{x+\lambda_{i}-i}{\lambda_{i}}}{\binom{\lambda_{i}+m_{\lambda}-i}{m_{\lambda}-i}} .
\end{aligned}
$$

Combined with (4), this yields

$$
\frac{1}{n!} \operatorname{Tr}\left(\sum_{g \in S_{n}} \rho_{\lambda}(g) x^{\sigma(g)}\right)=\prod_{1 \leq i<j \leq m_{\lambda}} \frac{\lambda_{i}-\lambda_{j}+j-i}{j-i} \cdot \prod_{i=1}^{m_{\lambda}} \frac{\binom{x+\lambda_{i}-i}{\lambda_{i}}}{\binom{\lambda_{i}+m_{\lambda}-i}{m_{\lambda}-i}}
$$

so that

$$
\begin{equation*}
\operatorname{Tr}\left(\sum_{g \in S_{n}} \rho_{\lambda}(g) x^{\sigma(g)}\right)=n!\prod_{1 \leq i<j \leq m_{\lambda}} \frac{\lambda_{i}-\lambda_{j}+j-i}{j-i} \cdot \prod_{i=1}^{m_{\lambda}} \frac{\binom{x+\lambda_{i}-i}{\lambda_{i}}}{\binom{\lambda_{i}+m_{\lambda}-i}{m_{\lambda}-i}} \tag{5}
\end{equation*}
$$

But $\sum_{g \in S_{n}} g x^{\sigma(g)}$ is a central element of $\mathbb{Q}\left[S_{n}\right]$ (since the map $S_{n} \rightarrow \mathbb{Q}$, $g \mapsto \sigma(g)$ is a class function), so that $\sum_{g \in S_{n}} g x^{\sigma(g)}$ acts on any irreducible representation of S_{n} as a scalar multiple of id (by Schur's lemma). In particular, this yields that $\rho_{\lambda}\left(\sum_{g \in S_{n}} g x^{\sigma(g)}\right)=\kappa \cdot \operatorname{id}_{\rho_{\lambda}}$ for some $\kappa \in \mathbb{C}$ (since ρ_{λ} is an
irreducible representation of S_{n}). Consider this κ. Then,

$$
\begin{equation*}
\sum_{g \in S_{n}} \rho_{\lambda}(g) x^{\sigma(g)}=\rho_{\lambda}\left(\sum_{g \in S_{n}} g x^{\sigma(g)}\right)=\kappa \cdot \mathrm{id}_{\rho_{\lambda}}, \tag{6}
\end{equation*}
$$

so that

$$
\operatorname{Tr}\left(\sum_{g \in S_{n}} \rho_{\lambda}(g) x^{\sigma(g)}\right)=\operatorname{Tr}\left(\kappa \cdot \operatorname{id}_{\rho_{\lambda}}\right)=\kappa \cdot \operatorname{dim} \rho_{\lambda} .
$$

Combined with (5), this yields

$$
\kappa \cdot \operatorname{dim} \rho_{\lambda}=n!\prod_{1 \leq i<j \leq m_{\lambda}} \frac{\lambda_{i}-\lambda_{j}+j-i}{j-i} \cdot \prod_{i=1}^{m_{\lambda}} \frac{\binom{x+\lambda_{i}-i}{\lambda_{i}}}{\binom{\lambda_{i}+m_{\lambda}-i}{m_{\lambda}-i}},
$$

so that

$$
\kappa=\frac{n!}{\operatorname{dim} \rho} \prod_{1 \leq i<j \leq m_{\lambda}} \frac{\lambda_{i}-\lambda_{j}+j-i}{j-i} \cdot \prod_{i=1}^{m_{\lambda}} \frac{\binom{x+\lambda_{i}-i}{\lambda_{i}}}{\binom{\lambda_{i}+m_{\lambda}-i}{m_{\lambda}-i}} .
$$

Thus, (6) becomes

$$
\sum_{g \in S_{n}} \rho_{\lambda}(g) x^{\sigma(g)}=\frac{n!}{\operatorname{dim} \rho} \prod_{1 \leq i<j \leq m_{\lambda}} \frac{\lambda_{i}-\lambda_{j}+j-i}{j-i} \cdot \prod_{i=1}^{m_{\lambda}} \frac{\binom{x+\lambda_{i}-i}{\lambda_{i}}}{\binom{\lambda_{i}+m_{\lambda}-i}{m_{\lambda}-i}} \cdot \mathrm{id}_{\rho_{\lambda}}
$$

This proves Theorem 2.

Hints to exercises

Hint to exercise 1: Let $n \geq 2$. Expand $\operatorname{det}\left(\left(x^{\sigma\left(g h^{-1}\right)}\right)_{g, h \in S_{n}}\right)$ as a product over all permutations of S_{n} (a total of ($n!$)! permutations, but you don't have to actually do the computations...). It is clearly enough to show that every such permutation gives rise to a product which simplifies to x^{m} for some even m. To prove this, show that any permutation $\alpha \in S_{n}$ satisfies $\operatorname{sign} \alpha=(-1)^{n-\sigma(\alpha)}$.

References

[1] Keith Conrad, The Origin of Representation Theory. http://www.math.uconn.edu/~kconrad/articles/groupdet.pdf
[2] Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry Vaintrob, Elena Yudovina, Introduction to representation theory, arXiv:0901.0827v5.
http://arxiv.org/abs/0901.0827v5

[^0]: ${ }^{1}$ Remark. We are considering irreducible representations over \mathbb{C} here for simplicity, but actually the argument works more generally: We can replace \mathbb{C} by any field \mathbb{K} of characteristic 0 such that the group algebra $\mathbb{K}[G]$ factors into a direct product of matrix rings over \mathbb{K}. In particular, the algebraic closure of \mathbb{Q} does the trick. In the case $G=S_{n}$ (this is the case we are going to consider!), it is known that any field of characteristic 0 can be taken as \mathbb{K}, because the Specht modules are defined over \mathbb{Q} and thus provide a factorization of the group algebra $\mathbb{K}[G]$ into a direct product of matrix rings over \mathbb{K} for any field \mathbb{K} of characteristic 0 . See any good text on representation theory of S_{n} for details (the main reason for this to work is Corollary 4.38 of [2]).
 ${ }^{2}$ Distinct indeterminates are presumed to commute.

