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Introduction

The concept of a Hopf algebra crystallized out of algebraic topology and the study of algebraic groups
in the 1940s and 1950s (see [8] and [35] for its history). Being a fairly elementary algebraic notion itself, it
subsequently found applications in other mathematical disciplines, and is now particularly commonplace in
representation theory1.

These notes concern themselves (after a brief introduction into the algebraic foundations of Hopf algebra
theory in Chapter 1) with the Hopf algebras that appear in combinatorics. These Hopf algebras tend to have
bases naturally parametrized by combinatorial objects (partitions, compositions, permutations, tableaux,
graphs, trees, posets, polytopes, etc.), and their Hopf-algebraic operations often encode basic operations on
these objects2. Combinatorial results can then be seen as particular cases of general algebraic properties
of Hopf algebras (e.g., the multiplicativity of the Möbius function can be recovered from the fact that the
antipode of a Hopf algebra is an algebra anti-endomorphism), and many interesting invariants of combina-
torial objects turn out to be evaluations of Hopf morphisms. In some cases (particularly that of symmetric
functions), the rigidity in the structure of a Hopf algebra can lead to enlightening proofs.

One of the most elementary interesting examples of a combinatorial Hopf algebra is that of the symmetric
functions. We will devote all of Chapter 2 to studying it, deviating from the usual treatments (such as in
Stanley [206, Ch. 7], Sagan [186] and Macdonald [142]) by introducing the Hopf-algebraic structure early
on and using it to obtain combinatorial results. Chapter 3 will underpin the importance of this algebra
by proving Zelevinsky’s main theorem of PSH theory, which (roughly) claims that a Hopf algebra over
Z satisfying a certain set of axioms must be a tensor product of copies of the Hopf algebra of symmetric
functions. These axioms are fairly restrictive, so this result is far from curtailing the diversity of combinatorial
Hopf algebras; but they are natural enough that, as we will see in Chapter 4, they are satisfied for a
Hopf algebra of representations of symmetric groups. As a consequence, this Hopf algebra will be revealed
isomorphic to the symmetric functions – this is the famous Frobenius correspondence between symmetric
functions and characters of symmetric groups, usually obtained through other ways ([73, §7.3], [186, §4.7]).
We will further elaborate on the representation theories of wreath products and general linear groups over
finite fields; while Zelevinsky’s PSH theory does not fully explain the latter, it illuminates it significantly.

In the next chapters, we will study further examples of combinatorial Hopf algebras: the quasisymmetric
functions and the noncommutative symmetric functions in Chapter 5, various other algebras (of graphs,
posets, matroids, etc.) in Chapter 7, and the Malvenuto-Reutenauer Hopf algebra of permutations in Chap-
ter 8.

The main prerequisite for reading these notes is a good understanding of graduate algebra3, in partic-
ular multilinear algebra (tensor products, symmetric powers and exterior powers)4 and basic categorical
language5. In Chapter 4, familiarity with representation theory of finite groups (over C) is assumed, along
with the theory of finite fields and (at some places) the rational canonical form of a matrix. Only basic
knowledge of combinatorics is required (except for a few spots in Chapter 7), and familiarity with geometry
and topology is needed only to understand some tangential remarks. The concepts of Hopf algebras and
coalgebras and the basics of symmetric function theory will be introduced as needed. We will work over a
commutative base ring most of the time, but no commutative algebra (besides, occasionally, properties of
modules over a PID) will be used.

These notes began as an accompanying text for Fall 2012 Math 8680 Topics in Combinatorics, a graduate
class taught by the second author at the University of Minnesota. The first author has since added many
exercises (and solutions), as well as Chapter 6 on Lyndon words and the polynomiality of QSym. The notes
might still grow, and any comments, corrections and complaints are welcome!

1where it provides explanations for similarities between group representations and Lie algebra representations
2such as concatenating two compositions, or taking the disjoint union of two graphs – but, more often, operations which

return a multiset of results, such as cutting a composition into two pieces at all possible places, or partitioning a poset into two
subposets in every way that satisfies a certain axiom

3William Schmitt’s expositions [193] are tailored to a reader interested in combinatorial Hopf algebras; his notes on modules
and algebras cover a significant part of what we need from abstract algebra, whereas those on categories cover all category

theory we will use and much more.
4Keith Conrad’s expository notes [40] are useful, even if not comprehensive, sources for the latter.
5We also will use a few nonstandard notions from linear algebra that are explained in the Appendix (Chapter 11).
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The course was an attempt to focus on examples that we find interesting, but which are hard to find fully
explained currently in books or in one paper. Much of the subject of combinatorial Hopf algebras is fairly
recent (1990s onwards) and still spread over research papers, although sets of lecture notes do exist, such
as Foissy’s [70]. A reference which we discovered late, having a great deal of overlap with these notes is
Hazewinkel, Gubareni, and Kirichenko [93]. References for the purely algebraic theory of Hopf algebras are
much more frequent (see the beginning of Chapter 1 for a list). Another recent text that has a significant
amount of material in common with ours (but focuses on representation theory and probability applications)
is Méliot’s [153].

Be warned that our notes are highly idiosyncratic in choice of topics, and they steal heavily from the
sources in the bibliography.

Warnings: Unless otherwise specified ...

• k here usually denotes a commutative ring6.
• all maps between k-modules are k-linear.
• every ring or k-algebra is associative and has a 1, and every ring morphism or k-algebra morphism

preserves the 1’s.
• all k-algebras A have the property that (λ1A) a = a (λ1A) = λa for all λ ∈ k and a ∈ A.
• all tensor products are over k (unless a subscript specifies a different base ring).
• 1 will denote the multiplicative identity in some ring like k or in some k-algebra (sometimes also the

identity of a group written multiplicatively).
• for any set S, we denote by idS (or by id) the identity map on S.
• The symbols ⊂ (for “subset”) and < (for “subgroup”) don’t imply properness (so Z ⊂ Z and Z < Z).
• the n-th symmetric group (i.e., the group of all permutations of {1, 2, . . . , n}) is denoted Sn.
• A permutation σ ∈ Sn will often be identified with the n-tuple (σ (1) , σ (2) , . . . , σ (n)), which will

occasionally be written without commas and parentheses (i.e., as follows: σ (1)σ (2) · · ·σ (n)). This
is called the one-line notation for permutations.

• The product of permutations a ∈ Sn and b ∈ Sn is defined by (ab)(i) = a(b(i)) for all i.
• Words over (or in) an alphabet I simply mean finite tuples of elements of a set I. It is custom-

ary to write such a word (a1, a2, . . . , ak) as a1a2 . . . ak when this is not likely to be confused for
multiplication.

• N := {0, 1, 2, . . .}.
• if i and j are any two objects, then δi,j denotes the Kronecker delta of i and j; this is the integer 1

if i = j and 0 otherwise.
• a family of objects indexed by a set I means a choice of an object fi for each element i ∈ I; this

family will be denoted either by (fi)i∈I or by {fi}i∈I (and sometimes the “i ∈ I” will be omitted
when the context makes it obvious – so we just write {fi}).

• several objects s1, s2, . . . , sk are said to be distinct if every i 6= j satisfy si 6= sj .
• similarly, several sets S1, S2, . . . , Sk are said to be disjoint if every i 6= j satisfy Si ∩ Sj = ∅.
• the symbol t (and the corresponding quantifier

⊔
) denotes a disjoint union of sets or posets. For

example, if S1, S2, . . . , Sk are k sets, then
⊔k
i=1 Si is their disjoint union. This disjoint union can

mean either of the following two things:

• It can mean the union
⋃k
i=1 Si in the case when the sets S1, S2, . . . , Sk are disjoint. This is

called an “internal disjoint union”, and is simply a way to refer to the union of sets while
simultaneously claiming that these sets are disjoint. Thus, of course, it is only well-defined if
the sets are disjoint.

• It can also mean the union
⋃k
i=1 {i} × Si. This is called an “external disjoint union”, and is

well-defined whether or not the sets S1, S2, . . . , Sk are disjoint; it is a way to assemble the sets
S1, S2, . . . , Sk into a larger set which contains a copy of each of their elements that “remembers”
which set this element comes from.

The two meanings are different, but in the case when S1, S2, . . . , Sk are disjoint, they are isomorphic.
We hope the reader will not have a hard time telling which of them we are trying to evoke.

6As explained below, “ring” means “associative ring with 1”. The most important cases are when k is a field or when k = Z.
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Similarly, the notion of a direct sum of k-modules has two meanings (“internal direct sum” and
“external direct sum”).

• A sequence (w1, w2, . . . , wk) of numbers (or, more generally, of elements of a poset) is said to be
strictly increasing (or, for short, increasing) if it satisfies w1 < w2 < · · · < wk. A sequence
(w1, w2, . . . , wk) of numbers (or, more generally, of elements of a poset) is said to be weakly in-
creasing (or nondecreasing) if it satisfies w1 ≤ w2 ≤ · · · ≤ wk. Reversing the inequalities, we obtain
the definitions of a strictly decreasing (a.k.a. decreasing) and of a weakly decreasing (a.k.a. nonin-
creasing) sequence. All these definitions extend in an obvious way to infinite sequences. Note that
“nondecreasing” is not the same as “not decreasing”; for example, any sequence having at most one
entry is both decreasing and nondecreasing, whereas the sequence (1, 3, 1) is neither.

Hopefully context will resolve some of the ambiguities.
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1. What is a Hopf algebra?

The standard references for Hopf algebras are Abe [1] and Sweedler [213], and some other good ones are
[33, 36, 47, 93, 107, 118, 157, 176, 196, 225]. See also Foissy [70] and Manchon [149] for introductions to
Hopf algebras tailored to combinatorial applications. Most texts only study Hopf algebras over fields (with
exceptions such as [36, 33, 225]). We will work over arbitrary commutative rings7, which requires some more
care at certain points (but we will not go deep enough into the algebraic theory to witness the situation over
commutative rings diverge seriously from that over fields).

Let’s build up the definition of Hopf algebra structure bit-by-bit, starting with the more familiar definition
of algebras.

1.1. Algebras. Recall that an associative k-algebra is defined to be a k-module A equipped with an associa-
tive k-bilinear map mult : A×A→ A (the multiplication map of A) and an element 1 ∈ A (the (multiplicative)
unity or identity of A) that is neutral for this map mult (that is, it satisfies mult (a, 1) = mult (1, a) = a for
all a ∈ A). If we recall that

• k-bilinear maps A × A → A are in 1-to-1 correspondence with k-linear maps A ⊗ A → A (by the
universal property of the tensor product), and

• elements of A are in 1-to-1 correspondence with k-linear maps k→ A,

then we can restate this classical definition of associative k-algebras as follows in terms of k-linear maps8:

Definition 1.1.1. An associative k-algebra is a k-module A equipped with a k-linear associative operation

A⊗A m→ A, and a k-linear unit k
u→ A, for which the following two diagrams are commutative:

(1.1.1) A⊗A⊗A
m⊗id

xx

id⊗m

&&
A⊗A

m

&&

A⊗A
m

xx
A

(1.1.2) A⊗ k

id⊗u
��

Aoo

id

��

// k⊗A

u⊗id

��
A⊗A m // A A⊗Amoo

where the maps A→ A⊗ k and A→ k⊗A are the isomorphisms sending a 7→ a⊗ 1 and a 7→ 1⊗ a.
We abbreviate “associative k-algebra” as “k-algebra” (associativity is assumed unless otherwise specified)

or as “algebra” (when k is clear from the context). We sometimes refer to m as the “multiplication map” of
A as well.

As we said, the multiplication map m : A⊗A→ A sends each a⊗ b to the product ab, and the unit map
u : k→ A sends the identity 1k of k to the identity 1A of A.

Well-known examples of k-algebras are tensor and symmetric algebras, which we can think of as algebras
of words and multisets, respectively.

Example 1.1.2. If V is a k-module and n ∈ N, then the n-fold tensor power V ⊗n of V is the k-module
V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸

n times

. (For n = 0, this is the k-module k, spanned by the “empty tensor” 1k.)

The tensor algebra T (V ) =
⊕

n≥0 V
⊗n on a k-module V is an associative k-algebra spanned (as k-module)

by decomposable tensors v1v2 · · · vk := v1⊗v2⊗· · ·⊗vk with k ∈ N and v1, v2, . . . , vk ∈ V . Its multiplication

7and we will profit from this generality in Chapters 3 and 4, where we will be applying the theory of Hopf algebras to k = Z
in a way that would not be possible over k = Q

8Explicitly speaking, we are replacing the k-bilinear multiplication map mult : A×A→ A by the k-linear map m : A⊗A→
A, a⊗ b 7→ mult (a, b), and we are replacing the element 1 ∈ A by the k-linear map u : k→ A, 1k 7→ 1.
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is defined k-linearly by

m (v1v2 · · · vk ⊗ w1w2 · · ·w`) := v1v2 · · · vkw1w2 · · ·w`
9 for all k, ` ∈ N and v1, v2, . . . , vk, w1, w2, . . . , w` in V . The unit map u : k→ T (V ) sends 1k to the empty
tensor 1T (V ) = 1k ∈ k = V ⊗0.

If V is a free k-module, say with k-basis {xi}i∈I , then T (V ) has a k-basis of decomposable tensors
xi1 · · ·xik := xi1 ⊗ · · · ⊗ xik indexed by words (i1, . . . , ik) in the alphabet I, and the multiplication on this
basis is given by concatenation of words:

m(xi1 · · ·xik ⊗ xj1 · · ·xj`) = xi1 · · ·xikxj1 · · ·xj` .

Recall that a two-sided ideal of a k-algebra A is defined to be a k-submodule J of A such that all j ∈ J
and a ∈ A satisfy ja ∈ J and aj ∈ J . Using tensors, we can restate this as follows: A two-sided ideal of a
k-algebra A means a k-submodule J of A satisfying m(J ⊗ A) ⊂ J and m(A ⊗ J) ⊂ J . Often, the word
“two-sided” is omitted and one just speaks of an ideal.

It is well-known that if J is a two-sided ideal of a k-algebra A, then one can form a quotient algebra A/J .

Example 1.1.3. Let V be a k-module. The symmetric algebra Sym(V ) =
⊕

n≥0 Symn(V ) is the quotient

of T (V ) by the two-sided ideal generated by all elements xy− yx with x, y in V . When V is a free k-module
with basis {xi}i∈I , this symmetric algebra S (V ) can be identified with a (commutative) polynomial algebra
k[xi]i∈I , having a k-basis of (commutative) monomials xi1 · · ·xik as {i1, . . . , ik}multiset runs through all finite
multisubsets10 of I, and with multiplication defined k-linearly via multiset union11.

Note that the k-module k itself canonically becomes a k-algebra. Its associative operation m : k⊗k→ k
is the canonical isomorphism k⊗ k→ k, and its unit u : k→ k is the identity map.

Topology and group theory give more examples.

Example 1.1.4. The cohomology algebra H∗(X; k) =
⊕

i≥0H
i(X; k) with coefficients in k for a topological

space X has an associative cup product. Its unit k = H∗(pt; k)
u→ H∗(X; k) is induced from the unique

(continuous) map X → pt, where pt is a one-point space.

Example 1.1.5. For a group G, the group algebra kG has k-basis {tg}g∈G and multiplication defined
k-linearly by tgth = tgh, and unit defined by u(1) = te, where e is the identity element of G.

1.2. Coalgebras. In Definition 1.1.1, we have defined the notion of an algebra entirely in terms of linear
maps; thus, by reversing all arrows, we can define a dual notion, which is called a coalgebra. If we are to
think of the multiplication A ⊗ A → A in an algebra as putting together two basis elements of A to get a
sum of basis elements of A, then coalgebra structure should be thought of as taking basis elements apart.

Definition 1.2.1. A co-associative k-coalgebra is a k-module C equipped with a comultiplication, that is, a

k-linear map C
∆→ C ⊗C, and a k-linear counit C

ε→ k for which the following diagrams (which are exactly
the diagrams in (1.1.1) and (1.1.2) but with all arrows reversed) are commutative:

9Some remarks about our notation (which we are using here and throughout these notes) are in order.
Since we are working with tensor products of k-modules like T (V ) – which themselves are made of tensors – here, we must

specify what the ⊗ sign means in expressions like a⊗ b where a and b are elements of T (V ). Our convention is the following:
When a and b are elements of a tensor algebra T (V ), we always understand a⊗ b to mean the pure tensor a⊗ b ∈ T (V )⊗T (V )

rather than the product of a and b inside the tensor algebra T (V ). The latter product will plainly be written ab.

The operator precedence between ⊗ and multiplication in T (V ) is such that multiplication in T (V ) binds more tightly than
the ⊗ sign; e.g., the term ab⊗ cd means (ab)⊗ (cd). The same convention applies to any algebra instead of T (V ).

10By a multisubset of a set S, we mean a multiset each of whose elements belongs to S (but can appear arbitrarily often).
11The multiset union of two finite multisets A and B is defined to be the multiset C with the property that every x satisfies

(multiplicity of x in C) = (multiplicity of x in A) + (multiplicity of x in B) .

Equivalently, the multiset union of {a1, a2, . . . , ak}multiset and {b1, b2, . . . , b`}multiset is {a1, a2, . . . , ak, b1, b2, . . . , b`}multiset.

The multiset union is also known as the disjoint union of multisets.
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(1.2.1) C ⊗ C ⊗ C

C ⊗ C

∆⊗id
88

C ⊗ C

id⊗∆
ff

C

∆

88
∆

ff

(1.2.2) C ⊗ k // C k⊗ Coo

C ⊗ C

id⊗ε

OO

C
∆
oo

id

OO

∆
// C ⊗ C

ε⊗id

OO

Here the maps C ⊗ k→ C and k⊗ C → C are the isomorphisms sending c⊗ 1 7→ c and 1⊗ c 7→ c.
We abbreviate “co-associative k-coalgebra” as “k-coalgebra” (co-associativity, i.e., the commutativity of

the diagram (1.2.1), is assumed unless otherwise specified) or as “coalgebra” (when k is clear from the
context).

Sometimes, the word “coproduct” is used as a synonym for “comultiplication”12.

One often uses the Sweedler notation

(1.2.3) ∆(c) =
∑
(c)

c1 ⊗ c2 =
∑

c1 ⊗ c2

to abbreviate formulas involving ∆. This means that an expression of the form
∑

(c) f (c1, c2) (where f :

C × C → M is some k-bilinear map from C × C to some k-module M) has to be understood to mean∑m
k=1 f (dk, ek), where k ∈ N and d1, d2, . . . , dk ∈ C and e1, e2, . . . , ek ∈ C are chosen such that ∆ (c) =∑m
k=1 dk ⊗ ek. (There are many ways to choose such k, di and ei, but they all produce the same result∑m
k=1 f (dk, ek). Indeed, the result they produce is F (∆ (c)), where F : C ⊗ C → M is the k-linear

map induced by the bilinear map f .) For example, commutativity of the left square in (1.2.2) asserts
that

∑
(c) c1ε(c2) = c for each c ∈ C. Likewise, commutativity of the right square in (1.2.2) asserts that∑

(c) ε(c1)c2 = c for each c ∈ C. The commutativity of (1.2.1) can be written as
∑

(c) ∆(c1) ⊗ c2 =∑
(c) c1 ⊗∆(c2), or (using nested Sweedler notation to unravel the two remaining ∆’s) as∑

(c)

∑
(c1)

(c1)1 ⊗ (c1)2 ⊗ c2 =
∑
(c)

∑
(c2)

c1 ⊗ (c2)1 ⊗ (c2)2.

The k-module k itself canonically becomes a k-coalgebra, with its comultiplication ∆ : k→ k⊗ k being
the canonical isomorphism k→ k⊗ k, and its counit ε : k→ k being the identity map.

Example 1.2.2. Let k be a field. The homology H∗(X; k) =
⊕

i≥0Hi(X; k) for a topological space X

is naturally a coalgebra: the (continuous) diagonal embedding X → X × X sending x 7→ (x, x) induces a
coassociative map

H∗(X; k)→ H∗(X ×X; k) ∼= H∗(X; k)⊗H∗(X; k)

in which the last isomorphism comes from the Künneth theorem with field coefficients k. As before, the

unique (continuous) map X → pt induces the counit H∗(X; k)
ε→ H∗(pt; k) ∼= k.

Exercise 1.2.3. Let C be a k-module, and let ∆ : C → C ⊗ C be a k-linear map. Prove that there exists
at most one k-linear map ε : C → k such that the diagram (1.2.2) commutes.

For us, the notion of a coalgebra serves mostly as a stepping stone towards that of a Hopf algebra, which
will be the focus of these notes. However, coalgebras have interesting properties of their own (see, e.g., [150]).

12although the word “coproduct” already has a different meaning in algebra
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1.3. Morphisms, tensor products, and bialgebras. Just as we rewrote the definition of an algebra in
terms of linear maps (in Definition 1.1.1), we can likewise rephrase the standard definition of a morphism of
algebras:

Definition 1.3.1. A morphism of algebras is a k-linear map A
ϕ→ B between two k-algebras A and B that

makes the following two diagrams commute:

(1.3.1) A
ϕ // B

A⊗A

mA

OO

ϕ⊗ϕ // B ⊗B

mB

OO A
ϕ // B

k

uA

__

uB

??

Here the subscripts on mA,mB , uA, uB indicate for which algebra they are part of the structure (e.g., the
map uA is the map u of the algebra A); we will occasionally use such conventions from now on.

Similarly, a morphism of coalgebras is a k-linear map C
ϕ→ D between two k-coalgebras C and D that

makes the reverse diagrams commute:

(1.3.2) C

∆C

��

ϕ // D

∆D

��
C ⊗ C

ϕ⊗ϕ // D ⊗D

C

εC ��

ϕ // D

εD
��

k

As usual, we shall use the word “homomorphism” as a synonym for “morphism”, and we will say “k-
coalgebra homomorphism” for “homomorphism of coalgebras” (and similarly for algebras and other struc-
tures).

As usual, the word “isomorphism” (of algebras, of coalgebras, or of other structures that we will de-
fine further below) means “invertible morphism whose inverse is a morphism as well”. Two algebras (or
coalgebras, or other structures) are said to be isomorphic if there exists an isomorphism between them.

Example 1.3.2. Let k be a field. Continuous maps X
f→ Y of topological spaces induce algebra morphisms

H∗(Y ; k)→ H∗(X; k), and coalgebra morphisms H∗(X; k)→ H∗(Y ; k).

Coalgebra morphisms behave similarly to algebra morphisms in many regards: For example, the inverse of
an invertible coalgebra morphism is again a coalgebra morphism13. Thus, the invertible coalgebra morphisms
are precisely the coalgebra isomorphisms.

Definition 1.3.3. Given two k-algebras A,B, their tensor product A⊗B also becomes a k-algebra defining
the multiplication bilinearly via

m((a⊗ b)⊗ (a′ ⊗ b′)) := aa′ ⊗ bb′,
or, in other words, mA⊗B is the composite map

A⊗B ⊗A⊗B id⊗T⊗id // A⊗A⊗B ⊗B mA⊗mB // A⊗B
where T is the twist map B ⊗A→ A⊗B that sends b⊗ a 7→ a⊗ b. (See Exercise 1.3.4(a) below for a proof
that this k-algebra A⊗B is well-defined.)

Here we are omitting the topologist’s sign in the twist map which should be present for graded algebras
and coalgebras that come from cohomology and homology: For homogeneous elements a and b of two graded
modules A and B, the topologist’s twist map T : B ⊗A→ A⊗B sends

(1.3.3) b⊗ a 7−→ (−1)deg(b) deg(a)a⊗ b
instead of b⊗ a 7→ a⊗ b. This means that, if one is using the topologists’ convention, most of our examples
which we later call graded should actually be considered to live in only even degrees (which can be achieved,
e.g., by artificially doubling all degrees in their grading). We will, however, keep to our own definitions (so
that our twist map T will always send b⊗a 7→ a⊗b) unless otherwise noted. Only in parts of Exercise 1.6.5 will
we use the topologist’s sign. Readers interested in the wide world of algebras defined using the topologist’s

13The easy proof of this fact is left to the reader.
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sign convention (which is also known as the Koszul sign rule) can consult [65, Appendix A2]; see also [87]
for applications to algebraic combinatorics14.

The unit element of A⊗B is 1A ⊗ 1B , meaning that the unit map k
uA⊗B→ A⊗B is the composite

k // k⊗ k
uA⊗uB // A⊗B .

Similarly, given two coalgebras C,D, one can make C ⊗D a coalgebra in which the comultiplication and
counit maps are the composites of

C ⊗D ∆C⊗∆D // C ⊗ C ⊗D ⊗D id⊗T⊗id // C ⊗D ⊗ C ⊗D

and

C ⊗D εC⊗εD // k⊗ k // k .

(See Exercise 1.3.4(b) below for a proof that this k-coalgebra C ⊗D is well-defined.)

Exercise 1.3.4. (a) Let A and B be two k-algebras. Show that the k-algebra A ⊗ B introduced in
Definition 1.3.3 is actually well-defined (i.e., its multiplication and unit satisfy the axioms of a
k-algebra).

(b) Let C and D be two k-coalgebras. Show that the k-coalgebra C ⊗D introduced in Definition 1.3.3
is actually well-defined (i.e., its comultiplication and counit satisfy the axioms of a k-coalgebra).

It is straightforward to show that the concept of tensor products of algebras and of coalgebras satisfy the
properties one would expect:

• For any three k-coalgebras C, D and E, the k-linear map

(C ⊗D)⊗ E → C ⊗ (D ⊗ E) , (c⊗ d)⊗ e 7→ c⊗ (d⊗ e)

is a coalgebra isomorphism. This allows us to speak of the k-coalgebra C ⊗D⊗E without worrying
about the parenthesization.

• For any two k-coalgebras C and D, the k-linear map

T : C ⊗D → D ⊗ C, c⊗ d 7→ d⊗ c

is a coalgebra isomorphism.
• For any k-coalgebra C, the k-linear maps

C → k⊗ C, c 7→ 1⊗ c and

C → C ⊗ k, c 7→ c⊗ 1

are coalgebra isomorphisms.
• Similar properties hold for algebras instead of coalgebras.

One of the first signs that these definitions interact nicely is the following straightforward proposition.

Proposition 1.3.5. When A is both a k-algebra and a k-coalgebra, the following are equivalent:

• The maps ∆ and ε are morphisms for the algebra structure (A,m, u).
• The maps m and u are morphisms for the coalgebra structure (A,∆, ε).

14To be precise, [87] works with the related concept of superalgebras, which are graded by elements of Z/2Z rather than N
but use the same sign convention as the topologists have for algebras.
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• These four diagrams commute:

(1.3.4)

A⊗A
∆⊗∆

ww
m

��

A⊗A⊗A⊗A

id⊗T⊗id

��

A

∆

��

A⊗A⊗A⊗A

m⊗m ''
A⊗A

A⊗A ε⊗ε //

m

��

k⊗ k

m

��
A

ε
// k

k
u //

∆

��

A

∆

��
k⊗ k

u⊗u
// A⊗A

k

u
��

id // k

A

ε

??

Exercise 1.3.6. (a) If A, A′, B and B′ are four k-algebras, and f : A → A′ and g : B → B′ are two
k-algebra homomorphisms, then show that f ⊗ g : A⊗B → A′ ⊗B′ is a k-algebra homomorphism.

(b) If C, C ′, D and D′ are four k-coalgebras, and f : C → C ′ and g : D → D′ are two k-coalgebra
homomorphisms, then show that f ⊗ g : C ⊗D → C ′ ⊗D′ is a k-coalgebra homomorphism.

Definition 1.3.7. Call the k-module A a k-bialgebra if it is a k-algebra and k-coalgebra satisfying the three
equivalent conditions in Proposition 1.3.5.

Example 1.3.8. For a group G, one can make the group algebra kG a coalgebra with counit kG
ε→ k

mapping tg 7→ 1 for all g in G, and with comultiplication kG
∆→ kG ⊗ kG given by ∆(tg) := tg ⊗ tg.

Checking the various diagrams in (1.3.4) commute is easy. For example, one can check the pentagonal
diagram on each basis element tg ⊗ th:

tg ⊗ th
∆⊗∆

vv
m

��

tg ⊗ tg ⊗ th ⊗ th

id⊗T⊗id

��

tgh

∆

��

tg ⊗ th ⊗ tg ⊗ th

m⊗m
((
tgh ⊗ tgh

Remark 1.3.9. In fact, one can think of adding a bialgebra structure to a k-algebra A as a way of making
A-modules M,N have an A-module structure on their tensor product M ⊗ N : the algebra A ⊗ A already
acts naturally on M ⊗N , so one can let a in A act via ∆(a) in A⊗A. In the theory of group representations
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over k, that is, kG-modules M , this is how one defines the diagonal action of G on M ⊗N , namely tg acts
as tg ⊗ tg.

Definition 1.3.10. An element x in a coalgebra for which ∆(x) = x⊗ x and ε(x) = 1 is called group-like.
An element x in a bialgebra for which ∆(x) = 1⊗ x+ x⊗ 1 is called primitive. We shall also sometimes

abbreviate “primitive element” as “primitive”.

Example 1.3.11. Let V be a k-module. The tensor algebra T (V ) =
⊕

n≥0 V
⊗n is a coalgebra, with counit

ε equal to the identity on V ⊗0 = k and the zero map on V ⊗n for n > 0, and with comultiplication defined
to make the elements x in V ⊗1 = V all primitive:

∆(x) := 1⊗ x+ x⊗ 1 for x ∈ V ⊗1.

Since the elements of V generate T (V ) as a k-algebra, and since T (V )⊗T (V ) is also an associative k-algebra,
the universal property of T (V ) as the free associative k-algebra on the generators V allows one to define

T (V )
∆→ T (V )⊗ T (V ) arbitrarily on V , and extend it as an algebra morphism.

It may not be obvious that this ∆ is coassociative, but one can prove this as follows. Note that

((id⊗∆) ◦∆) (x) = x⊗ 1⊗ 1 + 1⊗ x⊗ 1 + 1⊗ 1⊗ x = ((∆⊗ id) ◦∆) (x)

for every x in V . Hence the two maps (id⊗∆) ◦ ∆ and (∆ ⊗ id) ◦ ∆, considered as algebra morphisms
T (V )→ T (V )⊗ T (V )⊗ T (V ), must coincide on every element of T (V ) since they coincide on V . We leave
it as an exercise to check the map ε defined as above satisfies the counit axioms (1.2.2).

Here is a sample calculation in T (V ) when x, y, z are three elements of V :

∆(xyz) = ∆(x)∆(y)∆(z)

= (1⊗ x+ x⊗ 1)(1⊗ y + y ⊗ 1)(1⊗ z + z ⊗ 1)

= (1⊗ xy + x⊗ y + y ⊗ x+ xy ⊗ 1)(1⊗ z + z ⊗ 1)

= 1⊗ xyz + x⊗ yz + y ⊗ xz + z ⊗ xy
+ xy ⊗ z + xz ⊗ y + yz ⊗ x+ xyz ⊗ 1.

This illustrates the idea that comultiplication “takes basis elements apart” (and, in the case of T (V ), not
just basis elements, but any decomposable tensors). Here for any v1, v2, . . . , vn in V one has

∆ (v1v2 · · · vn) =
∑

vj1 · · · vjr ⊗ vk1
· · · vkn−r

where the sum is over ordered pairs (j1, j2, . . . , jr) , (k1, k2, . . . , kn−r) of complementary subwords of the word
(1, 2, . . . , n). 15 Equivalently (and in a more familiar language),

(1.3.5) ∆ (v1v2 · · · vn) =
∑

I⊂{1,2,...,n}

vI ⊗ v{1,2,...,n}\I ,

where vJ (for J a subset of {1, 2, . . . , n}) denotes the product of all vj with j ∈ J in the order of increasing
j.

We can rewrite the axioms of a k-bialgebra A using Sweedler notation. Indeed, asking for ∆ : A→ A⊗A
to be a k-algebra morphism is equivalent to requiring that

(1.3.6)
∑
(ab)

(ab)1 ⊗ (ab)2 =
∑
(a)

∑
(b)

a1b1 ⊗ a2b2 for all a, b ∈ A

and
∑

(1) 11⊗12 = 1A⊗1A. (The other axioms have already been rewritten or don’t need Sweedler notation.)

Recall one can quotient a k-algebra A by a two-sided ideal J to obtain a quotient algebra A/J . An
analogous construction can be done for coalgebras using the following concept, which is dual to that of a
two-sided ideal:

15More formally speaking, the sum is over all permutations (j1, j2, . . . , jr, k1, k2, . . . , kn−r) of (1, 2, . . . , n) satisfying j1 <

j2 < · · · < jr and k1 < k2 < · · · < kn−r.
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Definition 1.3.12. In a coalgebra C, a two-sided coideal is a k-submodule J ⊂ C for which

∆(J) ⊂ J ⊗ C + C ⊗ J,
ε(J) = 0.

The quotient k-module C/J then inherits a coalgebra structure16. Similarly, in a bialgebra A, a subset
J ⊂ A which is both a two-sided ideal and two-sided coideal gives rise to a quotient bialgebra A/J .

Exercise 1.3.13. Let A and C be two k-coalgebras, and f : A→ C a surjective coalgebra homomorphism.

(a) If f is surjective, then show that ker f is a two-sided coideal of A.
(b) If k is a field, then show that ker f is a two-sided coideal of A.

Example 1.3.14. Let V be a k-module. The symmetric algebra Sym(V ) was defined as the quotient of the
tensor algebra T (V ) by the two-sided ideal J generated by all commutators [x, y] = xy−yx for x, y in V (see
Example 1.1.3). Note that x, y are primitive elements in T (V ), and the following very reusable calculation
shows that the commutator of two primitives is primitive:

∆[x, y] = ∆(xy − yx) = ∆ (x) ∆ (y)−∆ (y) ∆ (x)

(since ∆ is an algebra homomorphism)

= (1⊗ x+ x⊗ 1)(1⊗ y + y ⊗ 1)− (1⊗ y + y ⊗ 1)(1⊗ x+ x⊗ 1)

= 1⊗ xy − 1⊗ yx+ xy ⊗ 1− yx⊗ 1

+ x⊗ y + y ⊗ x− x⊗ y − y ⊗ x
= 1⊗ (xy − yx) + (xy − yx)⊗ 1

= 1⊗ [x, y] + [x, y]⊗ 1.(1.3.7)

In particular, the commutators [x, y] have ∆[x, y] in J⊗T (V )+T (V )⊗J . They also satisfy ε([x, y]) = 0. Since
they are generators for J as a two-sided ideal, it is not hard to see this implies ∆(J) ⊂ J⊗T (V )+T (V )⊗J ,
and ε(J) = 0. Thus J is also a two-sided coideal, and Sym(V ) = T (V )/J inherits a bialgebra structure.

In fact we will see in Section 3.1 that symmetric algebras are the universal example of bialgebras which
are graded, connected, commutative, cocommutative. But first we should define some of these concepts.

Definition 1.3.15. (a) A graded k-module17 is a k-module V equipped with a k-module direct sum
decomposition V =

⊕
n≥0 Vn. In this case, the addend Vn (for any given n ∈ N) is called the n-th

homogeneous component (or the n-th graded component) of the graded k-module V . Furthermore,
elements x in Vn are said to be homogeneous of degree n; occasionally, the notation deg(x) = n is
used to signify this18. The decomposition

⊕
n≥0 Vn of V (that is, the family of submodules (Vn)n∈N)

is called the grading of V .
(b) The tensor product V ⊗W of two graded k-modules V and W is, by default, endowed with the

graded module structure in which

(V ⊗W )n :=
⊕
i+j=n

Vi ⊗Wj .

(c) A k-linear map V
ϕ→ W between two graded k-modules is called graded if ϕ(Vn) ⊂ Wn for all

n. Graded k-linear maps are also called homomorphisms of graded k-modules. An isomorphism of
graded k-modules means an invertible graded k-linear map whose inverse is also graded.19

16Indeed, J ⊗ C + C ⊗ J is contained in the kernel of the canonical map C ⊗ C → (C/J)⊗ (C/J); therefore, the condition

∆(J) ⊂ J ⊗ C + C ⊗ J shows that the map C
∆→ C ⊗ C � (C/J)⊗ (C/J) factors through a map ∆ : C/J → (C/J)⊗ (C/J).

Likewise, ε(J) = 0 shows that the map ε : C → k factors through a map ε : C/J → k. Equipping C/J with these maps ∆ and

ε, we obtain a coalgebra (as the commutativity of the required diagrams follows from the corresponding property of C).
17also known as an “N-graded k-module”
18This notation should not be taken too literally, as it would absurdly imply that deg(0) “equals” every n ∈ N at the same

time, since 0 ∈ Vn for all n.
19We shall see in Exercise 1.3.18 that the “whose inverse is also graded” requirement is actually superfluous (i.e., it is

automatically satisfied for an invertible graded k-linear map); we are imposing it only in order to stick to our tradition of

defining “isomorphisms” as invertible morphisms whose inverses are morphisms as well.
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(d) Say that a k-algebra (or coalgebra, or bialgebra) is graded if it is a graded k-module and all of the
relevant structure maps (u, ε,m,∆) are graded.

(e) Say that a graded k-module V is connected if V0
∼= k.

(f) Let V be a graded k-module. Then, a graded k-submodule of V (sometimes also called a homogeneous
k-submodule of V ) means a graded k-module W such that W ⊂ V as sets, and such that the inclusion
map W ↪→ V is a graded k-linear map.
Note that if W is a graded k-submodule of V , then the grading of W is uniquely determined by
the underlying set of W and the grading of V – namely, the n-th graded component Wn of W is
Wn = W ∩ Vn for each n ∈ N. Thus, we can specify a graded k-submodule of V without explicitly
specifying its grading. From this point of view, a graded k-submodule of V can also be defined as
a k-submodule W of V satisfying W =

∑
n∈N (W ∩ Vn). (This sum is automatically a direct sum,

and thus defines a grading on W .)

Example 1.3.16. Let k be a field. A path-connected space X has its homology and cohomology

H∗(X; k) =
⊕
i≥0

Hi(X; k),

H∗(X; k) =
⊕
i≥0

Hi(X; k)

carrying the structure of connected graded coalgebras and algebras, respectively. If in addition, X is a
topological group, or even less strongly, a homotopy-associative H-space (e.g. the loop space ΩY on some
other space Y ), the continuous multiplication map X ×X → X induces an algebra structure on H∗(X; k)
and a coalgebra structure on H∗(X; k), so that each become bialgebras in the topologist’s sense (i.e., with
the twist as in (1.3.3)), and these bialgebras are dual to each other in a sense soon to be discussed. This
was Hopf’s motivation: the (co-)homology of a compact Lie group carries bialgebra structure that explains
why it takes a certain form; see Cartier [35, §2].

Example 1.3.17. Let V be a graded k-module. Then, its tensor algebra T (V ) and its symmetric algebra
Sym(V ) are graded Hopf algebras. The grading is given as follows: If v1, v2, . . . , vk are homogeneous ele-
ments of V having degrees i1, i2, . . . , ik, respectively, then the elements v1v2 · · · vk of T (V ) and Sym(V ) are
homogeneous of degree i1 + i2 + · · ·+ ik. That is, we have

deg (v1v2 · · · vk) = deg (v1) + deg (v2) + · · ·+ deg (vk)

for any homogeneous elements v1, v2, . . . , vk of V .
Assuming that V0 = 0, the graded algebras T (V ) and Sym(V ) are connected. This is a fairly common

situation in combinatorics. For example, we will often turn a (non-graded) k-module V into a graded k-
module by declaring that all elements of V are homogeneous of degree 1, but at other times, it will make
sense to have V live in different (positive) degrees.

Exercise 1.3.18. Let V and W be two graded k-modules. Prove that if f : V →W is an invertible graded
k-linear map, then its inverse f−1 : W → V is also graded.

Exercise 1.3.19. Let A =
⊕

n≥0An be a graded k-bialgebra. We denote by p the set of all primitive
elements of A.

(a) Show that p is a graded k-submodule of A (that is, we have p =
⊕

n≥0 (p ∩An)).

(b) Show that p is a two-sided coideal of A.

Exercise 1.3.20. Let A be a connected graded k-bialgebra. Show the following:

(a) The k-submodule k = k · 1A of A lies in A0.

(b) The map u is an isomorphism k
u→ A0.

(c) We have A0 = k · 1A.
(d) The two-sided ideal ker ε is the k-module of positive degree elements I =

⊕
n>0An.

(e) The map ε restricted to A0 is the inverse isomorphism A0
ε→ k to u.

(f) For every x ∈ A, we have

∆(x) ∈ x⊗ 1 +A⊗ I.
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(g) Every x in I satisfies

∆(x) = 1⊗ x+ x⊗ 1 + ∆+(x), where ∆+(x) lies in I ⊗ I.

(h) Every n > 0 and every x ∈ An satisfy

∆ (x) = 1⊗ x+ x⊗ 1 + ∆+ (x) , where ∆+ (x) lies in

n−1∑
k=1

Ak ⊗An−k.

(Use only the gradedness of the unit u and counit ε maps, along with commutativity of diagrams (1.2.2),
and (1.3.4) and the connectedness of A.)

Having discussed graded k-modules, let us also define the concept of a graded basis, which is the analogue
of the notion of a basis in the graded context. Roughly speaking, a graded basis of a graded k-module is a
basis that comprises bases of all its homogeneous components. More formally:

Definition 1.3.21. Let V =
⊕

n≥0 Vn be a graded k-module. A graded basis of the graded k-module V

means a basis {vi}i∈I of the k-module V whose indexing set I is partitioned into subsets I0, I1, I2, . . . (which
are allowed to be empty) with the property that, for every n ∈ N, the subfamily {vi}i∈In is a basis of the
k-module Vn.

Example 1.3.22. Consider the polynomial ring k [x] in one variable x over k. This is a graded k-module
(graded by the degree of a polynomial; thus, each xn is homogeneous of degree n). Then, the family
(xn)n∈N =

(
x0, x1, x2, . . .

)
is a graded basis of k [x] (presuming that its indexing set N is partitioned into the

one-element subsets {0} , {1} , {2} , . . .). The family ((−x)
n
)n∈N =

(
x0,−x1, x2,−x3, . . .

)
is a graded basis of

k [x] as well. But the family ((1 + x)
n
)n∈N is not, since it contains non-homogeneous elements.

We end this section by discussing morphisms between bialgebras. They are defined as one would expect:

Definition 1.3.23. A morphism of bialgebras (also known as a k-bialgebra homomorphism) is a k-linear

map A
ϕ→ B between two k-bialgebras A and B that is simultaneously a k-algebra homomorphism and a

k-coalgebra homomorphism.

For example, any k-linear map f : V → W between two k-modules V and W induces a k-linear
map T (f) : T (V ) → T (W ) between their tensor algebras (which sends each v1v2 · · · vk ∈ T (V ) to
f (v1) f (v2) · · · f (vk) ∈ T (W )) as well as a k-linear map Sym (f) : Sym (V ) → Sym (W ) between their
symmetric algebras; both of these maps T (f) and Sym (f) are morphisms of bialgebras.

Graded bialgebras come with a special family of endomorphisms, as the following exercise shows:

Exercise 1.3.24. Fix q ∈ k. Let A =
⊕

n∈NAn be a graded k-bialgebra (where the An are the homogeneous
components of A). Let Dq : A→ A be the k-module endomorphism of A defined by setting

Dq (a) = qna for each n ∈ N and each a ∈ An.

(It is easy to see that this is well-defined; equivalently, Dq could be defined as the direct sum
⊕

n∈N (qn · idAn) :⊕
n∈NAn →

⊕
n∈NAn of the maps qn · idAn : An → An.)

Prove that Dq is a k-bialgebra homomorphism.

The tensor product of two bialgebras is canonically a bialgebra, as the following proposition shows:

Proposition 1.3.25. Let A and B be two k-bialgebras. Then, A⊗B is both a k-algebra and a k-coalgebra
(by Definition 1.3.3). These two structures, combined, turn A⊗B into a k-bialgebra.

Exercise 1.3.26. (a) Prove Proposition 1.3.25.
(b) Let G and H be two groups. Show that the k-bialgebra kG⊗ kH (defined as in Proposition 1.3.25)

is isomorphic to the k-bialgebra k [G×H]. (The notation k [S] is a synonym for kS.)

1.4. Antipodes and Hopf algebras. There is one more piece of structure needed to make a bialgebra a
Hopf algebra, although it will come for free in the connected graded case.

Definition 1.4.1. For any coalgebra C and algebra A, one can endow the k-module Hom(C,A) (which
consists of all k-linear maps from C to A) with an associative algebra structure called the convolution
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algebra: Define the product f ? g of two maps f, g in Hom(C,A) by (f ? g)(c) =
∑
f(c1)g(c2), using the

Sweedler notation20 ∆(c) =
∑
c1 ⊗ c2. Equivalently, f ? g is the composite

C
∆ // C ⊗ C

f⊗g // A⊗A m // A .

The associativity of this multiplication ? is easy to check (see Exercise 1.4.2 below).
The map u ◦ ε is a two-sided identity element for ?, meaning that every f ∈ Hom(C,A) satisfies∑

f(c1)ε(c2) = f(c) =
∑

ε(c1)f(c2)

for all c ∈ C. One sees this by adding a top row to (1.2.2):

(1.4.1) A⊗ k // A k⊗Aoo

C ⊗ k

f⊗id

OO

// C

f

OO

k⊗ C

id⊗f

OO

oo

C ⊗ C

id⊗ε

OO

C
∆
oo

id

OO

∆
// C ⊗ C

ε⊗id

OO

In particular, when one has a bialgebra A, the convolution product ? gives an associative algebra structure
on End(A) := Hom(A,A).

Exercise 1.4.2. Let C be a k-coalgebra and A be a k-algebra. Show that the binary operation ? on
Hom (C,A) is associative.

The product f ? g of two elements f and g in a convolution algebra Hom(C,A) is often called their
convolution.

The following simple (but useful) property of convolution algebras says essentially that the k-algebra
(Hom (C,A) , ?) is a covariant functor in A and a contravariant functor in C, acting on morphisms by pre-
and post-composition:

Proposition 1.4.3. Let C and C ′ be two k-coalgebras, and let A and A′ be two k-algebras. Let γ : C → C ′

be a k-coalgebra morphism. Let α : A→ A′ be a k-algebra morphism.
The map

Hom (C ′, A)→ Hom (C,A′) , f 7→ α ◦ f ◦ γ

is a k-algebra homomorphism from the convolution algebra (Hom (C ′, A) , ?) to the convolution algebra
(Hom (C,A′) , ?).

Proof of Proposition 1.4.3. Denote this map by ϕ. We must show that ϕ is a k-algebra homomorphism.
Recall that α is an algebra morphism; thus, α ◦ mA = mA′ ◦ (α⊗ α) and α ◦ uA = uA′ . Also, γ is a

coalgebra morphism; thus, ∆C′ ◦ γ = (γ ⊗ γ) ◦∆C and εC′ ◦ γ = εC .
Now, the definition of ϕ yields ϕ(uA ◦ εC′) = α ◦ uA︸ ︷︷ ︸

=uA′

◦ εC′ ◦ γ︸ ︷︷ ︸
=εC

= uA′ ◦ εC ; in other words, ϕ sends the unity

of the algebra (Hom (C ′, A) , ?) to the unity of the algebra (Hom (C,A′) , ?).

20See the paragraph around (1.2.3) for the meaning of this notation.
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Furthermore, every f ∈ Hom (C ′, A) and g ∈ Hom (C ′, A) satisfy

ϕ(f ? g) = α ◦ (f ? g)︸ ︷︷ ︸
=mA◦(f⊗g)◦∆C′

◦γ

= α ◦mA︸ ︷︷ ︸
=mA′◦(α⊗α)

◦(f ⊗ g) ◦ ∆C′ ◦ γ︸ ︷︷ ︸
=(γ⊗γ)◦∆C

= mA′ ◦ (α⊗ α) ◦ (f ⊗ g) ◦ (γ ⊗ γ)︸ ︷︷ ︸
=(α◦f◦γ)⊗(α◦g◦γ)

◦∆C

= mA′ ◦ ((α ◦ f ◦ γ)⊗ (α ◦ g ◦ γ)) ◦∆C

= (α ◦ f ◦ γ)︸ ︷︷ ︸
=ϕ(f)

? (α ◦ g ◦ γ)︸ ︷︷ ︸
=ϕ(g)

= ϕ(f) ? ϕ(g).(1.4.2)

Thus, ϕ is a k-algebra homomorphism (since ϕ is a k-linear map and sends the unity of the algebra
(Hom (C ′, A) , ?) to the unity of the algebra (Hom (C,A′) , ?)). �

Exercise 1.4.4. Let C and D be two k-coalgebras, and let A and B be two k-algebras. Prove that:

(a) If f : C → A, f ′ : C → A, g : D → B and g′ : D → B are four k-linear maps, then

(f ⊗ g) ? (f ′ ⊗ g′) = (f ? f ′)⊗ (g ? g′)

in the convolution algebra Hom (C ⊗D,A⊗B).
(b) Let R be the k-linear map (Hom (C,A) , ?) ⊗ (Hom (D,B) , ?) → (Hom (C ⊗D,A⊗B) , ?) which

sends every tensor f ⊗ g ∈ (Hom (C,A) , ?)⊗ (Hom (D,B) , ?) to the map f ⊗ g : C ⊗D → A⊗ B.
(Notice that the tensor f ⊗ g and the map f ⊗ g are different things which happen to be written in
the same way.) Then, R is a k-algebra homomorphism.

Exercise 1.4.5. Let C and D be two k-coalgebras. Let A be a k-algebra. Let Φ be the canonical k-
module isomorphism Hom (C ⊗D,A) → Hom (C,Hom (D,A)) (defined by ((Φ (f)) (c)) (d) = f (c⊗ d) for
all f ∈ Hom (C ⊗D,A), c ∈ C and d ∈ D). Prove that Φ is a k-algebra isomorphism

(Hom (C ⊗D,A) , ?)→ (Hom (C, (Hom (D,A) , ?)) , ?) .

Definition 1.4.6. A bialgebra A is called a Hopf algebra if there is an element S (called an antipode for
A) in End(A) which is a 2-sided inverse under ? for the identity map idA. In other words, this diagram
commutes:

(1.4.3) A⊗A S⊗idA // A⊗A
m

""
A

∆

<<

ε //

∆ ""

k
u // A

A⊗A
idA⊗S

// A⊗A
m

<<

Or equivalently, if we follow the Sweedler notation in writing ∆(a) =
∑
a1 ⊗ a2, then

(1.4.4)
∑
(a)

S(a1)a2 = u(ε(a)) =
∑
(a)

a1S(a2).

Example 1.4.7. For a group algebra kG, one can define an antipode k-linearly via S(tg) = tg−1 . The top
pentagon in the above diagram commutes because

(S ? id)(tg) = m((S ⊗ id)(tg ⊗ tg)) = S(tg)tg = tg−1tg = te = (u ◦ ε)(tg).

Note that when it exists, the antipode S is unique, as with all 2-sided inverses in associative algebras: if
S, S′ are both 2-sided ?-inverses to idA then

S′ = (u ◦ ε) ? S′ = (S ? idA) ? S′ = S ? (idA ?S
′) = S ? (u ◦ ε) = S.

Thus, we can speak of “the antipode” of a Hopf algebra.
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Unlike the comultiplication ∆, the antipode S of a Hopf algebra is not always an algebra homomorphism.
It is instead an algebra anti-homomorphism, a notion we shall now introduce:

Definition 1.4.8. (a) For any two k-modules U and V , we let TU,V : U ⊗ V → V ⊗ U be the k-linear
map U ⊗V → V ⊗U sending every u⊗ v to v⊗ u. This map TU,V is called the twist map for U and
V .

(b) A k-algebra anti-homomorphism means a k-linear map f : A→ B between two k-algebras A and B
which satisfies f ◦mA = mB ◦ (f ⊗ f) ◦ TA,A and f ◦ uA = uB .

(c) A k-coalgebra anti-homomorphism means a k-linear map f : C → D between two k-coalgebras C
and D which satisfies ∆D ◦ f = TD,D ◦ (f ⊗ f) ◦∆C and εD ◦ f = εC .

(d) A k-algebra anti-endomorphism of a k-algebra A means a k-algebra anti-homomorphism from A to
A.

(e) A k-coalgebra anti-endomorphism of a k-coalgebra C means a k-coalgebra anti-homomorphism from
C to C.

Parts (b) and (c) of Definition 1.4.8 can be restated in terms of elements:

• A k-linear map f : A → B between two k-algebras A and B is a k-algebra anti-homomorphism if
and only if it satisfies f (ab) = f (b) f (a) for all a, b ∈ A as well as f (1) = 1.

• A k-linear map f : C → D between two k-coalgebras C and D is a k-coalgebra anti-homomorphism
if and only if it satisfies

∑
(f(c)) (f (c))1 ⊗ (f (c))2 =

∑
(c) f (c2) ⊗ f (c1) and ε (f (c)) = ε (c) for all

c ∈ C.

Example 1.4.9. Let n ∈ N, and consider the k-algebra kn×n of n× n-matrices over k. The map kn×n →
kn×n that sends each matrix A to its transpose AT is a k-algebra anti-endomorphism of kn×n.

We warn the reader that the composition of two k-algebra anti-homomorphisms is not generally a k-
algebra anti-homomorphism again, but rather a k-algebra homomorphism. The same applies to coalgebra
anti-homomorphisms. Other than that, however, anti-homomorphisms share many of the helpful properties of
homomorphisms. In particular, two k-algebra anti-homomorphisms are identical if they agree on a generating
set of their domain. Thus, the next proposition is useful when one wants to check that a certain map is the
antipode in a particular Hopf algebra, by checking it on an algebra generating set.

Proposition 1.4.10. The antipode S in a Hopf algebra A is an algebra anti-endomorphism: S(1) = 1, and
S(ab) = S(b)S(a) for all a, b in A.

Proof. This is surprisingly nontrivial; the following argument comes from [213, proof of Proposition 4.0.1].
Since ∆ is an algebra morphism, one has ∆(1) = 1⊗ 1, and therefore 1 = uε(1) = S(1) · 1 = S(1).
To show S(ab) = S(b)S(a), consider A⊗A as a coalgebra and A as an algebra. Then Hom(A⊗A,A) is an

associative algebra with a convolution product ~ (to be distinguished from the convolution ? on End(A)),
having two-sided identity element uAεA⊗A. We define three elements f , g, h of Hom(A⊗A,A) by

f(a⊗ b) = ab,

g(a⊗ b) = S(b)S(a),

h(a⊗ b) = S(ab).

We will show that these three elements have the property that

(1.4.5) h~f = uAεA⊗A = f~g,

which would then show the desired equality h = g via associativity:

h = h~(uAεA⊗A) = h~(f~g) = (h~f)~g = (uAεA⊗A)~g = g.
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So we evaluate the three elements in (1.4.5) on a⊗ b. To do so, we use Sweedler notation – i.e., we assume
∆(a) =

∑
(a) a1 ⊗ a2 and ∆(b) =

∑
(b) b1 ⊗ b2, and hence ∆(ab) =

∑
(a),(b) a1b1 ⊗ a2b2 (by (1.3.6)); then,

(uAεA⊗A)(a⊗ b) = uA(εA(a)εA(b)) = uA(εA(ab)).

(h~f)(a⊗ b) =
∑

(a),(b)

h(a1 ⊗ b1)f(a2 ⊗ b2)

=
∑

(a),(b)

S(a1b1)a2b2

= (S ? idA)(ab) = uA(εA(ab)).

(f~g)(a⊗ b) =
∑

(a),(b)

f(a1 ⊗ b1)g(a2 ⊗ b2)

=
∑

(a),(b)

a1b1S(b2)S(a2)

=
∑
(a)

a1 · (idA ?S)(b) · S(a2)

= uA(εA(b))
∑
(a)

a1S(a2) = uA(εA(b))uA(εA(a)) = uA(εA(ab)).

These results are equal, so that (1.4.5) holds, and we conclude that h = g as explained above. �

Remark 1.4.11. Recall from Remark 1.3.9 that the comultiplication on a bialgebra A allows one to define an
A-module structure on the tensor product M⊗N of two A-modules M,N . Similarly, the anti-endomorphism
S in a Hopf algebra allows one to turn left A-modules into right A-modules, or vice-versa.21 E.g., left A-
modules M naturally have a right A-module structure on the dual k-module M∗ := Hom(M,k), defined
via (fa)(m) := f(am) for f in M∗ and a in A. The antipode S can be used to turn this back into a left
A-module M∗, via (af)(m) = f(S(a)m).

For groups G and left kG-modules (group representations) M , this is how one defines the contragredient
action of G on M∗, namely tg acts as (tgf)(m) = f(tg−1m).

More generally, if A is a Hopf algebra and M and N are two left A-modules, then Hom (M,N) (the Hom
here means Homk, not HomA) canonically becomes a left A-module by setting

(af) (m) =
∑
(a)

a1f (S (a2)m) for all a ∈ A, f ∈ Hom (M,N) and m ∈M.

22 When A is the group algebra kG of a group G, this leads to

(tgf) (m) = tgf
(
tg−1m

)
for all g ∈ G, f ∈ Hom (M,N) and m ∈M.

This is precisely how one commonly makes Hom (M,N) a representation of G for two representations M
and N .

21Be warned that these two transformations are not mutually inverse! Turning a left A-module into a right one and then

again into a left one using the antipode might lead to a non-isomorphic A-module, unless the antipode S satisfies S2 = id.
22In more abstract terms, this A-module structure is given by the composition

A
∆ // A⊗A

idA ⊗S // A⊗Aop // End (Hom (M,N)) ,

where the last arrow is the morphism

A⊗Aop −→ End (Hom (M,N)) ,

a⊗ b 7−→ (f 7→ (M → N, m 7→ af (bm))) .

Here, Aop denotes the opposite algebra of A, which is the k-algebra differing from A only in the multiplication being twisted
(the product of a and b in Aop is defined to be the product of b and a in A). As k-modules, Aop = A, but we prefer to use Aop

instead of A here to ensure that all morphisms in the above composition are algebra morphisms.
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Along the same lines, whenever A is a k-bialgebra, we are supposed to think of the counit A
ε→ k as giving

a way to make k into a trivial A-module. This A-module k behaves as one would expect: the canonical
isomorphisms k ⊗M → M , M ⊗ k → M and (if A is a Hopf algebra) Hom (M,k) → M∗ are A-module
isomorphisms for any A-module M .

Corollary 1.4.12. Let A be a commutative Hopf algebra. Then, its antipode is an involution: S2 = idA.

Proof. One checks that S2 = S ◦ S is a right ?-inverse to S, as follows:

(S ? S2)(a) =
∑
(a)

S(a1)S2(a2)

= S

∑
(a)

S(a2)a1

 (by Proposition 1.4.10)

= S

∑
(a)

a1S(a2)

 (by commutativity of A)

= S (u(ε(a)))

= u(ε(a)) (since S(1) = 1 by Proposition 1.4.10) .

Since S itself is the ?-inverse to idA, this shows that S2 = idA. �

Remark 1.4.13. We won’t need it, but it is easy to adapt the above proof to show that S2 = idA also holds
for cocommutative Hopf algebras (the dual notion to commutativity; see Definition 1.5.2 below for the precise
definition); see [157, Corollary 1.5.12] or [213, Proposition 4.0.1 6)] or Exercise 1.5.13 below. For a general
Hopf algebra which is not finite-dimensional over a field k, the antipode S may not even have finite order,
even in the connected graded setting. E.g., Aguiar and Sottile [7] show that the Malvenuto-Reutenauer Hopf
algebra of permutations has antipode of infinite order. In general, antipodes need not even be invertible
[214].

Proposition 1.4.14. Let A and B be two Hopf algebras. Then, the k-bialgebra A ⊗ B (defined as in
Proposition 1.3.25) is a Hopf algebra. The antipode of this Hopf algebra A ⊗ B is the map SA ⊗ SB :
A⊗B → A⊗B, where SA and SB are the antipodes of the Hopf algebras A and B.

Exercise 1.4.15. Prove Proposition 1.4.14.

In our frequent setting of connected graded bialgebras, antipodes come for free.

Proposition 1.4.16. A connected graded bialgebra A has a unique antipode S, which is a graded map

A
S−→ A, endowing it with a Hopf structure.

Proof. Let us try to define a (k-linear) left ?-inverse S to idA on each homogeneous component An, via
induction on n.

In the base case n = 0, Proposition 1.4.10 and its proof show that one must define S(1) = 1 so S is the
identity on A0 = k.

In the inductive step, recall from Exercise 1.3.20(h) that a homogeneous element a of degree n > 0 has
∆(a) = a⊗ 1 +

∑
a′1 ⊗ a′2, with each deg(a′1) < n. (Here

∑
a′1 ⊗ a′2 stands for a sum of tensors a′1,k ⊗ a′2,k,

with each a′1,k being homogeneous of degree deg(a′1,k) < n. This is a slight variation on Sweedler notation.)

Hence in order to have S ? idA = uε, one must define S(a) in such a way that S(a) · 1 +
∑
S(a′1)a′2 =

uε(a) = 0 and hence S(a) := −
∑
S(a′1)a′2, where S(a′1) have already been uniquely defined by induction

(since deg(a′1,k) < n). This does indeed define such a left ?-inverse S to idA, by induction. It is also a graded
map by induction.

The same argument shows how to define a right ?-inverse S′ to idA. Then S = S′ is a two-sided ?-inverse
to idA by the associativity of ?. �

Here is another consequence of the fact that S(1) = 1.

Proposition 1.4.17. In bialgebras, primitive elements x have ε(x) = 0, and in Hopf algebras, they have
S(x) = −x.
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Proof. In a bialgebra, ε(1) = 1. Hence ∆(x) = 1⊗ x+ x⊗ 1 implies via (1.2.2) that 1 · ε(x) + ε(1)x = x, so
ε(x) = 0. It also implies via (1.4.3) that S(x)1 + S(1)x = uε(x) = u(0) = 0, so S(x) = −x. �

Thus, whenever A is a Hopf algebra generated as an algebra by its primitive elements, S is its unique
k-algebra anti-endomorphism that negates all primitive elements.

Example 1.4.18. The tensor and symmetric algebras T (V ) and Sym(V ) are each generated by V , and each
element of V is primitive when regarded as an element of either of them. Hence one has in T (V ) that

(1.4.6) S(xi1xi2 · · ·xik) = (−xik) · · · (−xi2)(−xi1) = (−1)kxik · · ·xi2xi1
for each word (i1, . . . , ik) in the alphabet I if V is a free k-module with basis {xi}i∈I . The same holds in
Sym(V ) for each multiset {i1, . . . , ik}multiset, recalling that the monomials are now commutative. In other
words, for a commutative polynomial f(x1, x2, . . . , xn) in Sym(V ), the antipode S sends f(x1, x2, . . . , xn) to
f(−x1,−x2, . . . ,−xn), negating all the variables.

The antipode for a connected graded Hopf algebra has an interesting formula due to Takeuchi [214],
reminiscent of P. Hall’s formula for the Möbius function of a poset23. For the sake of stating this, consider
(for every k ∈ N) the k-fold tensor power A⊗k = A⊗ · · · ⊗A (defined in Example 1.1.2) and define iterated
multiplication and comultiplication maps

A⊗k
m(k−1)

// A and A
∆(k−1)

// A⊗k

by induction over k, setting m(−1) = u, ∆(−1) = ε, m(0) = ∆(0) = idA, and

m(k) = m ◦ (idA⊗m(k−1)) for every k ≥ 1;
∆(k) = (idA⊗∆(k−1)) ◦∆ for every k ≥ 1.

Using associativity and coassociativity, one can see that for k ≥ 1 these maps also satisfy

m(k) = m ◦ (m(k−1) ⊗ idA) for every k ≥ 1;
∆(k) = (∆(k−1) ⊗ idA) ◦∆ for every k ≥ 1

(so we could just as well have used idA⊗m(k−1) instead of m(k−1) ⊗ idA in defining them) and further
symmetry properties (see Exercise 1.4.19 and Exercise 1.4.20). They are how one gives meaning to the right
sides of these equations:

m(k)(a(1) ⊗ · · · ⊗ a(k+1)) = a(1) · · · a(k+1);

∆(k)(b) =
∑

b1 ⊗ · · · ⊗ bk+1 in Sweedler notation.

Exercise 1.4.19. Let A be a k-algebra. Let us define, for every k ∈ N, a k-linear map m(k) : A⊗(k+1) → A.
Namely, we define these maps by induction over k, with the induction base m(0) = idA, and with the
induction step m(k) = m ◦

(
idA⊗m(k−1)

)
for every k ≥ 1. (This generalizes our definition of m(k) for Hopf

algebras A given above, except for m(−1) which we have omitted.)

(a) Show that m(k) = m ◦
(
m(i) ⊗m(k−1−i)) for every k ≥ 0 and 0 ≤ i ≤ k − 1.

(b) Show that m(k) = m ◦
(
m(k−1) ⊗ idA

)
for every k ≥ 1.

(c) Show that m(k) = m(k−1) ◦ (idA⊗i ⊗m⊗ idA⊗(k−1−i)) for every k ≥ 0 and 0 ≤ i ≤ k − 1.
(d) Show that m(k) = m(k−1) ◦ (idA⊗(k−1) ⊗m) = m(k−1) ◦ (m⊗ idA⊗(k−1)) for every k ≥ 1.

Exercise 1.4.20. Let C be a k-coalgebra. Let us define, for every k ∈ N, a k-linear map ∆(k) : C → C⊗(k+1).
Namely, we define these maps by induction over k, with the induction base ∆(0) = idC , and with the induction
step ∆(k) =

(
idC ⊗∆(k−1)

)
◦∆ for every k ≥ 1. (This generalizes our definition of ∆(k) for Hopf algebras A

given above, except for ∆(−1) which we have omitted.)

(a) Show that ∆(k) =
(
∆(i) ⊗∆(k−1−i)) ◦∆ for every k ≥ 0 and 0 ≤ i ≤ k − 1.

(b) Show that ∆(k) =
(
∆(k−1) ⊗ idC

)
◦∆ for every k ≥ 1.

(c) Show that ∆(k) = (idC⊗i ⊗∆⊗ idC⊗(k−1−i)) ◦∆(k−1) for every k ≥ 0 and 0 ≤ i ≤ k − 1.
(d) Show that ∆(k) = (idC⊗(k−1) ⊗∆) ◦∆(k−1) = (∆⊗ idC⊗(k−1)) ◦∆(k−1) for every k ≥ 1.

23In fact, for incidence Hopf algebras, Takeuchi’s formula generalizes Hall’s formula– see Corollary 7.2.3.
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Remark 1.4.21. Exercise 1.4.19 holds more generally for nonunital associative algebras A (that is, k-modules
A equipped with a k-linear map m : A ⊗ A → A such that the diagram (1.1.1) is commutative, but not
necessarily admitting a unit map u). Similarly, Exercise 1.4.20 holds for non-counital coassociative coalgebras
C. The existence of a unit in A, respectively a counit in C, allows slightly extending these two exercises by
additionally introducing maps m(−1) = u : k→ A and ∆(−1) = ε : C → k; however, not much is gained from
this extension.24

Exercise 1.4.22. For every k ∈ N and every k-bialgebra H, consider the map ∆
(k)
H : H → H⊗(k+1) (this is

the map ∆(k) defined as in Exercise 1.4.20 for C = H), and the map m
(k)
H : H⊗(k+1) → H (this is the map

m(k) defined as in Exercise 1.4.19 for A = H).
Let H be a k-bialgebra. Let k ∈ N. Show that:25

(a) The map m
(k)
H : H⊗(k+1) → H is a k-coalgebra homomorphism.

(b) The map ∆
(k)
H : H → H⊗(k+1) is a k-algebra homomorphism.

(c) We have m
(`)

H⊗(k+1) ◦
(

∆
(k)
H

)⊗(`+1)

= ∆
(k)
H ◦m

(`)
H for every ` ∈ N.

(d) We have
(
m

(`)
H

)⊗(k+1)

◦∆
(k)

H⊗(`+1) = ∆
(k)
H ◦m

(`)
H for every ` ∈ N.

The iterated multiplication and comultiplication maps allow explicitly computing the convolution of mul-
tiple maps; the following formula will often be used without explicit mention:

Exercise 1.4.23. Let C be a k-coalgebra, and A be a k-algebra. Let k ∈ N. Let f1, f2, . . . , fk be k elements
of Hom (C,A). Show that

f1 ? f2 ? · · · ? fk = m
(k−1)
A ◦ (f1 ⊗ f2 ⊗ · · · ⊗ fk) ◦∆

(k−1)
C .

We are now ready to state Takeuchi’s formula for the antipode:

Proposition 1.4.24. In a connected graded Hopf algebra A, the antipode has formula

(1.4.7)

S =
∑
k≥0

(−1)km(k−1)f⊗k∆(k−1)

= uε− f +m ◦ f⊗2 ◦∆−m(2) ◦ f⊗3 ◦∆(2) + · · ·

where f := idA−uε in End(A).

Proof. We argue as in [214, proof of Lemma 14] or [7, §5]. For any f in End(A), the following explicit formula
expresses its k-fold convolution power f?k := f ? · · · ? f in terms of its tensor powers f⊗k := f ⊗ · · · ⊗ f
(according to Exercise 1.4.23):

f?k = m(k−1) ◦ f⊗k ◦∆(k−1).

Therefore any f annihilating A0 will be locally ?-nilpotent on A, meaning that for each n one has that An
is annihilated by f?m for every m > n: homogeneity forces that for a in An, every summand of ∆(m−1)(a)
must contain among its m tensor factors at least one factor lying in A0, so each summand is annihilated by
f⊗m, and f?m(a) = 0.

In particular such f have the property that uε+ f has as two-sided ?-inverse

(uε+ f)?(−1) = uε− f + f ? f − f ? f ? f + · · ·

=
∑
k≥0

(−1)kf?k =
∑
k≥0

(−1)km(k−1) ◦ f⊗k ◦∆(k−1).

The proposition follows upon taking f := idA−uε, which annihilates A0. �

Remark 1.4.25. In fact, one can see that Takeuchi’s formula applies more generally to define an antipode

A
S−→ A in any (not necessarily graded) bialgebra A where the map idA−uε is locally ?-nilpotent.

It is also worth noting that the proof of Proposition 1.4.24 gives an alternate proof of Proposition 1.4.16.

24The identity m(k) = m ◦
(
idA⊗m(k−1)

)
for a k-algebra A still holds when k = 0 if it is interpreted in the right way (viz.,

if A is identified with A⊗ k using the canonical homomorphism).
25The following statements are taken from [167]; specifically, part (c) is [167, Lem. 1.8].
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To finish our discussion of antipodes, we mention some properties (taken from [213, Lemma 4.0.3]) relating
antipodes to convolutional inverses.

Proposition 1.4.26. Let H be a Hopf algebra with antipode S.

(a) For any algebra A and algebra morphism H
α→ A, one has α ◦ S = α?−1, the convolutional inverse

to α in Hom(H,A).

(b) For any coalgebra C and coalgebra morphism C
γ→ H, one has S ◦ γ = γ?−1, the convolutional

inverse to γ in Hom(C,H).

Proof. We prove (a); the proof of (b) is similar.
For assertion (a), note that Proposition 1.4.3 (applied to H, H, H, A, idH and α instead of C, C ′, A, A′,

γ and α) shows that the map

Hom (H,H)→ Hom (H,A) , f 7→ α ◦ f
is a k-algebra homomorphism from the convolution algebra (Hom (H,H) , ?) to the convolution algebra

(Hom (H,A) , ?). Denoting this homomorphism by ϕ, we thus have ϕ
(
(idH)?−1

)
= (ϕ(idH))

?−1
(since

k-algebra homomorphisms preserve inverses). Now,

α ◦ S = ϕ(S) = ϕ
(
(idH)?−1

)
= (ϕ(idH))

?−1
= (α ◦ idH)

?−1
= α?−1.

�

A rather useful consequence of Proposition 1.4.26 is the fact ([213, Lemma 4.0.4]) that a bialgebra mor-
phism between Hopf algebras automatically respects the antipodes:

Corollary 1.4.27. Let H1 and H2 be Hopf algebras with antipodes S1 and S2, respectively. Then, any

bialgebra morphism H1
β→ H2 is a Hopf morphism26, that is, it commutes with the antipodes (i.e., we have

β ◦ S1 = S2 ◦ β).

Proof. Proposition 1.4.26(a) (applied to H = H1, S = S1, A = H2 and α = β) yields β ◦ S1 = β?−1.
Proposition 1.4.26(b) (applied to H = H2, S = S2, C = H1 and γ = β) yields S2 ◦ β = β?−1. Comparing
these equalities shows that β ◦ S1 = S2 ◦ β, qed. �

Exercise 1.4.28. Prove that the antipode S of a Hopf algebra A is a coalgebra anti-endomorphism, i.e.,
that it satisfies ε ◦ S = ε and ∆ ◦ S = T ◦ (S ⊗ S) ◦∆, where T : A⊗ A→ A⊗ A is the twist map sending
every a⊗ b to b⊗ a.

Exercise 1.4.29. If C is a k-coalgebra and if A is a k-algebra, then a k-linear map f : C → A is said to be
?-invertible if it is invertible as an element of the k-algebra (Hom (C,A) , ?). In this case, the multiplicative
inverse f?(−1) of f in (Hom (C,A) , ?) is called the ?-inverse of f .

Recall the concepts introduced in Definition 1.4.8.

(a) If C is a k-bialgebra, if A is a k-algebra, and if r : C → A is a ?-invertible k-algebra homomorphism,
then prove that the ?-inverse r?(−1) of r is a k-algebra anti-homomorphism.

(b) If C is a k-bialgebra, if A is a k-coalgebra, and if r : A→ C is a ?-invertible k-coalgebra homomor-
phism, then prove that the ?-inverse r?(−1) of r is a k-coalgebra anti-homomorphism.

(c) Derive Proposition 1.4.10 from Exercise 1.4.29(a), and derive Exercise 1.4.28 from Exercise 1.4.29(b).
(d) Prove Corollary 1.4.12 again using Proposition 1.4.26.
(e) If C is a graded k-coalgebra, if A is a graded k-algebra, and if r : C → A is a ?-invertible k-linear

map that is graded, then prove that the ?-inverse r?(−1) of r is also graded.

Exercise 1.4.30. (a) Let A be a Hopf algebra. If P : A → A is a k-linear map such that every a ∈ A
satisfies ∑

(a)

P (a2) · a1 = u (ε (a)) ,

then prove that the antipode S of A is invertible and its inverse is P .

26A Hopf morphism (or, more officially, a Hopf algebra morphism, or homomorphism of Hopf algebras) between two Hopf

algebras A and B is defined to be a bialgebra morphism f : A→ B that satisfies f ◦ SA = SB ◦ f .
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(b) Let A be a Hopf algebra. If P : A→ A is a k-linear map such that every a ∈ A satisfies∑
(a)

a2 · P (a1) = u (ε (a)) ,

then prove that the antipode S of A is invertible and its inverse is P .
(c) Show that the antipode of a connected graded Hopf algebra is invertible.

(Compare this exercise to [157, Lemma 1.5.11].)

Definition 1.4.31. Let C be a k-coalgebra. A subcoalgebra of C means a k-coalgebra D such that D ⊂ C
and such that the canonical inclusion map D → C is a k-coalgebra homomorphism27. When k is a field, we
can equivalently define a subcoalgebra of C as a k-submodule D of C such that ∆C (D) is a subset of the
k-submodule D ⊗D of C ⊗ C; however, this might no longer be equivalent when k is not a field28.

Similarly, a subbialgebra of a bialgebra C is a k-bialgebra D such that D ⊂ C and such that the canonical
inclusion map D → C is a k-bialgebra homomorphism. Also, a Hopf subalgebra of a Hopf algebra C is a
k-Hopf algebra D such that D ⊂ C and such that the canonical inclusion map D → C is a k-Hopf algebra
homomorphism.29

Exercise 1.4.32. Let C be a k-coalgebra. Let D be a k-submodule of C such that D is a direct summand
of C as a k-module (i.e., there exists a k-submodule E of C such that C = D ⊕ E). (This is automatically
satisfied if k is a field.) Assume that ∆ (D) ⊂ C⊗D and ∆ (D) ⊂ D⊗C. (Here, we are abusing the notation
C ⊗D to denote the k-submodule of C ⊗ C spanned by tensors of the form c ⊗ d with c ∈ C and d ∈ D;
similarly, D ⊗ C should be understood.) Show that there is a canonically defined k-coalgebra structure on
D which makes D a subcoalgebra of C.

The next exercise is implicit in [4, §5]:

Exercise 1.4.33. Let k be a field. Let C be a k-coalgebra, and let U be any k-module. Let f : C → U be
a k-linear map. Recall the map ∆(2) : C → C⊗3 from Exercise 1.4.20. Let K = ker

(
(idC ⊗f ⊗ idC) ◦∆(2)

)
.

(a) Show that K is a k-subcoalgebra of C.
(b) Show that every k-subcoalgebra of C which is a subset of ker f must be a subset of K.

Exercise 1.4.34. (a) Let C =
⊕

n≥0 Cn be a graded k-coalgebra, and A be any k-algebra. Notice that

C0 itself is a k-subcoalgebra of C. Let h : C → A be a k-linear map such that the restriction h |C0

is a ?-invertible map in Hom (C0, A). Prove that h is a ?-invertible map in Hom (C,A). (This is a
weaker version of Takeuchi’s [214, Lemma 14].)

(b) Let A =
⊕

n≥0An be a graded k-bialgebra. Notice that A0 is a subbialgebra of A. Assume that A0

is a Hopf algebra. Show that A is a Hopf algebra.
(c) Obtain yet another proof of Proposition 1.4.16.

Exercise 1.4.35. Let A =
⊕

n≥0An be a connected graded k-bialgebra. Let p be the k-submodule of A
consisting of the primitive elements of A.

(a) If I is a two-sided coideal of A such that I ∩ p = 0 and such that I =
⊕

n≥0 (I ∩An), then prove
that I = 0.

(b) Let f : A→ C be a graded surjective coalgebra homomorphism from A to a graded k-coalgebra C.
If f |p is injective, then prove that f is injective.

(c) Assume that k is a field. Show that the claim of Exercise 1.4.35(b) is valid even without requiring
f to be surjective.

Remark 1.4.36. Exercise 1.4.35 (b) and (c) are often used in order to prove that certain coalgebra homo-
morphisms are injective.

The word “bialgebra” can be replaced by “coalgebra” in Exercise 1.4.35, provided that the notion of a
connected graded coalgebra is defined correctly (namely, as a graded coalgebra such that the restriction of

27In this definition, we follow [162, p. 55] and [225, §6.7]; other authors may use other definitions.
28This is because the k-submodule D⊗D of C ⊗C is generally not isomorphic to the k-module D⊗D. See [162, p. 56] for

specific counterexamples for the non-equivalence of the two notions of a subcoalgebra. Notice that the equivalence is salvaged

if D is a direct summand of C as a k-module (see Exercise 1.4.32 for this).
29By Corollary 1.4.27, we can also define it as a subbialgebra of C that happens to be a Hopf algebra.
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ε to the 0-th graded component is an isomorphism), and the notion of the element 1 of a connected graded
coalgebra is defined accordingly (namely, as the preimage of 1 ∈ k under the restriction of ε to the 0-th
graded component).

1.5. Commutativity, cocommutativity. Recall that a k-algebra A is commutative if and only if all
a, b ∈ A satisfy ab = ba. Here is a way to restate this classical definition using tensors instead of pairs of
elements:

Definition 1.5.1. A k-algebra A is said to be commutative if the following diagram commutes:

(1.5.1) A⊗A T //

m
""

A⊗A

m
||

A

where T is the twist map TA,A (see Definition 1.4.8(a) for its definition).

Having thus redefined commutative algebras in terms of tensors and linear maps, we can dualize this
definition (reversing all arrows) and obtain the notion of cocommutative coalgebras:

Definition 1.5.2. A k-coalgebra C is said to be cocommutative if the following diagram commutes:

(1.5.2) C ⊗ C T // C ⊗ C

C

∆

cc

∆

;;

where T is the twist map TC,C (see Definition 1.4.8(a) for its definition).

Example 1.5.3. Group algebras kG are always cocommutative. They are commutative if and only if G is
abelian or k = 0.

Tensor algebras T (V ) are always cocommutative, but not generally commutative30.
Symmetric algebras Sym(V ) are always cocommutative and commutative.
Homology and cohomology of H-spaces are always cocommutative and commutative in the topologist’s

sense where one reinterprets that twist map A⊗A T→ A⊗A to have the extra sign as in (1.3.3).

Note how the cocommutative Hopf algebras T (V ),Sym(V ) have much of their structure controlled by their
k-submodules V , which consist of primitive elements only (although, in general, not of all their primitive
elements). This is not far from the truth in general, and closely related to Lie algebras.

Exercise 1.5.4. Recall that a Lie algebra over k is a k-module g with a k-bilinear map [·, ·] : g × g → g
that satisfies [x, x] = 0 for x in g, and the Jacobi identity

[x, [y, z]] = [[x, y], z] + [y, [x, z]], or equivalently

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0

for all x, y, z ∈ g. This k-bilinear map [·, ·] is called the Lie bracket of g.

(a) Check that any associative algebra A gives rise to a Lie algebra by means of the commutator operation
[a, b] := ab− ba.

(b) If A is also a bialgebra, show that the k-submodule of primitive elements p ⊂ A is closed under the
Lie bracket, that is, [p, p] ⊂ p, and hence forms a Lie subalgebra.

Conversely, given a Lie algebra p, one constructs the universal enveloping algebra U(p) := T (p)/J as the
quotient of the tensor algebra T (p) by the two-sided ideal J generated by all elements xy − yx − [x, y] for
x, y in p.

(c) Show that J is also a two-sided coideal in T (p) for its usual coalgebra structure, and hence the
quotient U(p) inherits the structure of a cocommutative bialgebra.

(d) Show that the antipode S on T (p) preserves J , meaning that S(J) ⊂ J , and hence U(p) inherits the
structure of a (cocommutative) Hopf algebra.

30If k is a field, then T (V ) is commutative if and only if dimk V ≤ 1.
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There are theorems, discussed in [35, §3.8], [157, Chap. 5], [60, §3.2] giving various mild hypotheses in
addition to cocommutativity which imply that the inclusion of the k-module p of primitives in a Hopf algebra
A extends to a Hopf isomorphism U(p) ∼= A.

Exercise 1.5.5. Let C be a cocommutative k-coalgebra. Let A be a commutative k-algebra. Show that
the convolution algebra (Hom (C,A) , ?) is commutative (i.e., every f, g ∈ Hom (C,A) satisfy f ? g = g ? f).

Exercise 1.5.6. (a) Let C be a k-coalgebra. Show that C is cocommutative if and only if its comulti-
plication ∆C : C → C ⊗ C is a k-coalgebra homomorphism.

(b) Let A be a k-algebra. Show that A is commutative if and only if its multiplication mA : A⊗A→ A
is a k-algebra homomorphism.

Remark 1.5.7. If C is a k-coalgebra, then εC : C → k is always a k-coalgebra homomorphism. Similarly,
uA : k→ A is a k-algebra homomorphism whenever A is a k-algebra.

Exercise 1.5.8. (a) Let A and B be two k-algebras, at least one of which is commutative. Prove that
the k-algebra anti-homomorphisms from A to B are the same as the k-algebra homomorphisms from
A to B.

(b) State and prove the dual of this result.

Exercise 1.5.9. Let A be a commutative k-algebra, and let k ∈ N. The symmetric group Sk acts on the k-
fold tensor power A⊗k by permuting the tensor factors: σ (v1 ⊗ v2 ⊗ · · · ⊗ vk) = vσ−1(1)⊗vσ−1(2)⊗· · ·⊗vσ−1(k)

for all v1, v2, . . . , vk ∈ A and σ ∈ Sk. For every π ∈ Sk, denote by ρ (π) the action of π on A⊗k (this is
an endomorphism of A⊗k). Show that every π ∈ Sk satisfies m(k−1) ◦ (ρ (π)) = m(k−1). (Recall that
m(k−1) : A⊗k → A is defined as in Exercise 1.4.19 for k ≥ 1, and by m(−1) = u : k→ A for k = 0.)

Exercise 1.5.10. State and solve the analogue of Exercise 1.5.9 for cocommutative k-coalgebras.

Exercise 1.5.11. (a) If H is a k-bialgebra and A is a commutative k-algebra, and if f and g are two
k-algebra homomorphisms H → A, then prove that f ?g also is a k-algebra homomorphism H → A.

(b) If H is a k-bialgebra and A is a commutative k-algebra, and if f1, f2, . . . , fk are several k-algebra
homomorphisms H → A, then prove that f1 ?f2 ? · · ·?fk also is a k-algebra homomorphism H → A.

(c) If H is a Hopf algebra and A is a commutative k-algebra, and if f : H → A is a k-algebra ho-
momorphism, then prove that f ◦ S : H → A (where S is the antipode of H) is again a k-algebra
homomorphism, and is a ?-inverse to f .

(d) If A is a commutative k-algebra, then show that m(k) is a k-algebra homomorphism for every k ∈ N.
(The map m(k) : A⊗(k+1) → A is defined as in Exercise 1.4.19.)

(e) If C ′ and C are two k-coalgebras, if γ : C → C ′ is a k-coalgebra homomorphism, if A and A′ are
two k-algebras, if α : A→ A′ is a k-algebra homomorphism, and if f1, f2, . . . , fk are several k-linear
maps C ′ → A, then prove that

α ◦ (f1 ? f2 ? · · · ? fk) ◦ γ = (α ◦ f1 ◦ γ) ? (α ◦ f2 ◦ γ) ? · · · ? (α ◦ fk ◦ γ) .

(f) If H is a commutative k-bialgebra, and k and ` are two nonnegative integers, then prove that

id?kH ◦ id?`H = id
?(k`)
H .

(g) If H is a commutative k-Hopf algebra, and k and ` are two integers, then prove that id?kH ◦ id?`H =

id
?(k`)
H . (These powers id?kH , id?`H and id

?(k`)
H are well-defined since idH is ?-invertible.)

(h) State and prove the duals of parts (a)–(g) of this exercise.

Remark 1.5.12. The maps id?kH for k ∈ N are known as the Adams operators of the bialgebra H; they are
studied, inter alia, in [5]. Particular cases (and variants) of Exercise 1.5.11(f) appear in [167, Corollaire II.9]
and [78, Theorem 1]. Exercise 1.5.11(f) and its dual are [135, Prop. 1.6].

Exercise 1.5.13. Prove that the antipode S of a cocommutative Hopf algebra A satisfies S2 = idA. (This
was a statement made in Remark 1.4.13.)

Exercise 1.5.14. Let A be a cocommutative graded Hopf algebra with antipode S. Define a k-linear map
E : A→ A by having E (a) = (deg a) · a for every homogeneous element a of A.

(a) Prove that for every a ∈ A, the elements (S ? E) (a) and (E ? S) (a) (where ? denotes convolution in
Hom (A,A)) are primitive.
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(b) Prove that for every primitive p ∈ A, we have (S ? E) (p) = (E ? S) (p) = E (p).
(c) Prove that for every a ∈ A and every primitive p ∈ A, we have (S ? E) (ap) = [(S ? E) (a) , p] +

ε (a)E (p), where [u, v] denotes the commutator uv − vu of u and v.
(d) If A is connected and Q is a subring of k, prove that the k-algebra A is generated by the k-submodule

p consisting of the primitive elements of A.
(e) Assume that A is the tensor algebra T (V ) of a k-module V , and that the k-submodule V =

V ⊗1 of T (V ) is the degree-1 homogeneous component of A. Show that (S ? E) (x1x2 . . . xn) =
[. . . [[x1, x2] , x3] , . . . , xn] for any n ≥ 1 and any x1, x2, . . . , xn ∈ V .

Remark 1.5.15. Exercise 1.5.14 gives rise to a certain idempotent map A → A when k is a commutative
Q-algebra and A is a cocommutative connected graded k-Hopf algebra. Namely, the k-linear map A → A
sending every homogeneous a ∈ A to 1

deg a (S ? E) (a) (or 0 if deg a = 0) is idempotent and is a projection

on the k-module of primitive elements of A. It is called the Dynkin idempotent ; see [168] for more of its
properties.31 Part (c) of the exercise is more or less Baker’s identity.

1.6. Duals. Recall that for k-modules V , taking the dual k-module V ∗ := Hom(V,k) reverses k-linear

maps. That is, every k-linear map V
ϕ→W induces an adjoint map W ∗

ϕ∗→ V ∗ defined uniquely by

(f, ϕ(v)) = (ϕ∗(f), v)

in which (f, v) is the bilinear pairing V ∗ × V → k sending (f, v) 7→ f(v). If V and W are finite free k-
modules32, more can be said: When ϕ is expressed in terms of a basis {vi}i∈I for V and a basis {wj}j∈J for
W by some matrix, the map ϕ∗ is expressed by the transpose matrix in terms of the dual bases of these two
bases33.

The correspondence ϕ 7→ ϕ∗ between k-linear maps V
ϕ→ W and k-linear maps W ∗

ϕ∗→ V ∗ is one-to-one
when W is finite free. However, this is not the case in many combinatorial situations (in which W is usually
free but not finite free). Fortunately, many of the good properties of finite free modules carry over to a
certain class of graded modules as long as the dual V ∗ is replaced by a smaller module V o called the graded
dual. Let us first introduce the latter:

When V =
⊕

n≥0 Vn is a graded k-module, note that the dual V ∗ =
∏
n≥0(Vn)∗ can contain functionals

f supported on infinitely many Vn. However, we can consider the k-submodule V o :=
⊕

n≥0(Vn)∗ ⊂∏
n≥0(Vn)∗ = V ∗, sometimes called the graded dual34, consisting of the functions f that vanish on all but

finitely many Vn. Notice that V o is graded, whereas V ∗ (in general) is not. If V
ϕ→ W is a graded k-linear

map, then the adjoint map W ∗
ϕ∗→ V ∗ restricts to a graded k-linear map W o → V o, which we (abusively)

still denote by ϕ∗.
A graded k-module V =

⊕
n≥0 Vn is said to be of finite type if each Vn is a finite free k-module35. When

the graded k-module V is of finite type, the graded k-module V o is again of finite type36 and satisfies
(V o)

o ∼= V . Many other properties of finite free modules are salvaged in this situation; most importantly:
The correspondence ϕ 7→ ϕ∗ between graded k-linear maps V → W and graded k-linear maps W o → V o is
one-to-one when W is of finite type37.

Reversing the diagrams should then make it clear that, in the finite free or finite-type situation, duals
of algebras are coalgebras, and vice-versa, and duals of bialgebras or Hopf algebras are bialgebras or Hopf

31We will see another such idempotent in Exercise 5.4.6.
32A k-module is said to be finite free if it has a finite basis. If k is a field, then a finite free k-module is the same as a

finite-dimensional k-vector space.
33If {vi}i∈I is a basis of a finite free k-module V , then the dual basis of this basis is defined as the basis {fi}i∈I of V ∗ that

satisfies (fi, vj) = δi,j for all i and j. (Recall that δi,j is the Kronecker delta: δi,j = 1 if i = j and 0 else.)
34Do not mistake this for the coalgebraic restricted dual A◦ of [213, §6.0].
35This meaning of “finite type” can differ from the standard one.
36More precisely: Let V =

⊕
n≥0 Vn be of finite type, and let {vi}i∈I be a graded basis of V , that is, a basis of the k-module

V such that the indexing set I is partitioned into subsets I0, I1, I2, . . . (which are allowed to be empty) with the property that,
for every n ∈ N, the subfamily {vi}i∈In is a basis of the k-module Vn. Then, we can define a family {fi}i∈I of elements of V o

by setting (fi, vj) = δi,j for all i, j ∈ I. This family {fi}i∈I is a graded basis of the graded k-module V o. (Actually, for every

n ∈ N, the subfamily {fi}i∈In is a basis of the k-submodule (Vn)∗ of V o – indeed the dual basis to the basis {vi}i∈In of Vn.)

This basis {fi}i∈I is said to be the dual basis to the basis {vi}i∈I of V .
37Only W has to be of finite type here; V can be any graded k-module.
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algebras. For example, the product in a Hopf algebra A of finite type uniquely defines the coproduct of Ao

via adjointness:
(∆Ao(f), a⊗ b)A⊗A = (f, ab)A.

Thus if A has a basis {ai}i∈I with product structure constants {cij,k}, meaning

ajak =
∑
i∈I

cij,kai,

then the dual basis {fi}i∈I has the same {cij,k} as its coproduct structure constants:

∆Ao(fi) =
∑

(j,k)∈I×I

cij,kfj ⊗ fk.

The assumption that A be of finite type was indispensable here; in general, the dual of a k-algebra does
not become a k-coalgebra. However, the dual of a k-coalgebra still becomes a k-algebra, as shown in the
following exercise:

Exercise 1.6.1. For any two k-modules U and V , let ρU,V : U∗ ⊗ V ∗ → (U ⊗ V )
∗

be the k-linear map

which sends every tensor f ⊗ g ∈ U∗ ⊗ V ∗ to the composition U ⊗ V f⊗g−→ k ⊗ k
mk−→ k of the map38 f ⊗ g

with the canonical isomorphism k⊗k
mk−→ k. When k is a field and U is finite-dimensional, this map ρU,V is

a k-vector space isomorphism (and usually regarded as the identity); more generally, it is injective whenever
k is a field39. Also, let s : k→ k∗ be the canonical isomorphism. Prove that:

(a) If C is a k-coalgebra, then C∗ becomes a k-algebra if we define its associative operation by mC∗ =
∆∗C ◦ ρC,C : C∗ ⊗ C∗ → C∗ and its unit map to be ε∗C ◦ s : k→ C∗. 40

(b) The k-algebra structure defined on C∗ in part (a) is precisely the one defined on Hom (C,k) = C∗

in Definition 1.4.1 applied to A = k.
(c) If C is a graded k-coalgebra, then Co is a k-subalgebra of the k-algebra C∗ defined in part (a).
(d) If f : C → D is a homomorphism of k-coalgebras, then f∗ : D∗ → C∗ is a homomorphism of

k-algebras.
(e) Let U be a graded k-module (not necessarily of finite type), and let V be a graded k-module of

finite type. Then, there is a 1-to-1 correspondence between graded k-linear maps U → V and graded
k-linear maps V o → Uo given by f 7→ f∗.

(f) Let C be a graded k-coalgebra (not necessarily of finite type), and let D be a graded k-coalgebra
of finite type. Part (e) of this exercise shows that there is a 1-to-1 correspondence between graded
k-linear maps C → D and graded k-linear maps Do → Co given by f 7→ f∗. This correspondence
has the property that a given graded k-linear map f : C → D is a k-coalgebra morphism if and only
if f∗ : Do → Co is a k-algebra morphism.

Another example of a Hopf algebra is provided by the so-called shuffle algebra. Before we introduce it,
let us define the shuffles of two words:

Definition 1.6.2. Given two words a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bm), the multiset of shuffles of
a and b is defined as the multiset{(

cw(1), cw(2), . . . , cw(n+m)

)
: w ∈ Shn,m

}
multiset

,

where (c1, c2, . . . , cn+m) is the concatenation a · b = (a1, a2, . . . , an, b1, b2, . . . , bm), and where Shn,m is the
subset41{

w ∈ Sn+m : w−1 (1) < w−1 (2) < · · · < w−1 (n) ; w−1 (n+ 1) < w−1 (n+ 2) < · · · < w−1 (n+m)
}

of the symmetric group Sn+m. Informally speaking, the shuffles of the two words a and b are the words
obtained by overlaying the words a and b, after first moving their letters apart so that no letters get

38Keep in mind that the tensor f ⊗ g ∈ U∗ ⊗ V ∗ is not the same as the map U ⊗ V f⊗g−→ k⊗ k.
39Over arbitrary rings it does not have to be even that!
40If C is a finite free k-module, then this k-algebra structure is the same as the one defined above by adjointness. But the

advantage of the new definition is that it works even if C is not a finite free k-module.
41Warning: This definition of Shn,m is highly nonstandard, and many authors define Shn,m to be the set of the inverses

of the permutations belonging to what we call Shn,m.
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superimposed when the words are overlayed42. In particular, any shuffle of a and b contains a and b as
subsequences. The multiset of shuffles of a and b has

(
m+n
n

)
elements (counted with multiplicity) and is

denoted by a � b. For instance, the shuffles of (1, 2, 1) and (3, 2) are

(1, 2, 1, 3, 2) , (1, 2, 3, 1, 2) , (1, 2, 3, 2, 1) , (1, 3, 2, 1, 2) , (1, 3, 2, 2, 1) ,

(1, 3, 2, 2, 1) , (3, 1, 2, 1, 2) , (3, 1, 2, 2, 1) , (3, 1, 2, 2, 1) , (3, 2, 1, 2, 1) ,

listed here as often as they appear in the multiset (1, 2, 1) � (3, 2). Here we have underlined the letters
taken from a – that is, the letters at positions w−1 (1), w−1 (2), . . ., w−1 (n).

Example 1.6.3. When A = T (V ) is the tensor algebra for a finite free k-module V , having k-basis {xi}i∈I ,
its graded dual Ao is another Hopf algebra whose basis

{
y(i1,...,i`)

}
(the dual basis of the basis {xi1 · · ·xi`} of

A = T (V )) is indexed by words in the alphabet I. This Hopf algebra Ao could be called the shuffle algebra
of V ∗. (To be more precise, it is isomorphic to the shuffle algebra of V ∗ introduced in Proposition 1.6.7
further below; we prefer not to call Ao itself the shuffle algebra of V ∗, since Ao has several disadvantages43.)
Duality shows that the cut coproduct in Ao is defined by

(1.6.1) ∆y(i1,...,i`) =
∑̀
j=0

y(i1,...,ij) ⊗ y(ij+1,ij+2,...,i`).

For example,

∆yabcb = y∅ ⊗ yabcb + ya ⊗ ybcb + yab ⊗ ycb + yabc ⊗ yb + yabcb ⊗ y∅.
Duality also shows that the shuffle product in Ao will be given by

(1.6.2) y(i1,...,i`)y(j1,...,jm) =
∑

k=(k1,...,k`+m)∈i� j

y(k1,...,k`+m)

where i � j (as in Definition 1.6.2) denotes the multiset of the
(
`+m
`

)
words obtained as shuffles of the two

words i = (i1, . . . , i`) and j = (j1, . . . , jm). For example,

yabycb = yabcb + yacbb + ycabb + ycabb + yacbb + ycbab

= yabcb + 2yacbb + 2ycabb + ycbab.

Equivalently, one has

y(i1,i2,...,i`)y(i`+1,i`+2,...,i`+m) =
∑

w∈S`+m:
w(1)<···<w(`),

w(`+1)<···<w(`+m)

y(iw−1(1),iw−1(2),...,iw−1(`+m))
(1.6.3)

=
∑

σ∈Sh`,m

y(iσ(1),iσ(2),...,iσ(`+m))(1.6.4)

(using the notations of Definition 1.6.2 again). Lastly, the antipode S of Ao is the adjoint of the antipode of
A = T (V ) described in (1.4.6):

Sy(i1,i2,...,i`) = (−1)`y(i`,...,i2,i1).

Since the coalgebra T (V ) is cocommutative, its graded dual T (V )
o

is commutative.

Exercise 1.6.4. Let V be a 1-dimensional free k-module with basis element x, so Sym(V ) ∼= k[x], with
k-basis {1 = x0, x1, x2, . . .}.

42For instance, if a = (1, 3, 2, 1) and b = (2, 4), then the shuffle (1, 2, 3, 2, 4, 1) of a and b can be obtained by moving the

letters of a and b apart as follows:

a = 1 3 2 1
b = 2 4

and then overlaying them to obtain 1 2 3 2 4 1 . Other ways of moving letters apart lead to further shuffles (not

always distinct).
43Specifically, Ao has the disadvantages of being defined only when V ∗ is the dual of a finite free k-module V , and depending

on a choice of basis, whereas Proposition 1.6.7 will define shuffle algebras in full generality and canonically.
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(a) Check that the powers xi satisfy

xi · xj = xi+j ,

∆(xn) =
∑
i+j=n

(
n

i

)
xi ⊗ xj ,

S(xn) = (−1)nxn.

(b) Check that the dual basis elements {f (0), f (1), f (2), . . .} for Sym(V )o, defined by f (i)(xj) = δi,j ,
satisfy

f (i)f (j) =

(
i+ j

i

)
f (i+j),

∆(f (n)) =
∑
i+j=n

f (i) ⊗ f (j),

S(f (n)) = (−1)nf (n).

(c) Show that if Q is a subring of k, then the k-linear map Sym(V )o → Sym(V ) sending f (n) 7→ xn

n! is
a graded Hopf isomorphism.

For this reason, the Hopf structure on Sym(V )o is called a divided power algebra.
(d) Show that when k is a field of characteristic p > 0, one has (f (1))p = 0, and hence why there can be

no Hopf isomorphism Sym(V )o → Sym(V ).

Exercise 1.6.5. Let V have k-basis {x1, . . . , xn}, and let V ⊕ V have k-basis {x1, . . . , xn, y1, . . . , yn}, so
that one has isomorphisms

Sym(V ⊕ V ) ∼= k[x,y] ∼= k[x]⊗ k[y] ∼= Sym(V )⊗ Sym(V ).

Here we are using the abbreviations x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).

(a) Show that our usual coproduct on Sym(V ) can be re-expressed as follows:

Sym(V ) Sym(V )⊗ Sym(V )
‖ ‖

k[x]
∆−→ k[x,y],

f(x1, . . . , xn) 7−→ f(x1 + y1, . . . , xn + yn).

In other words, it is induced from the diagonal map

(1.6.5)
V −→ V ⊕ V,
xi 7−→ xi + yi.

(b) One can similarly define a coproduct on the exterior algebra ∧V , which is the quotient T (V )/J
where J is the two-sided ideal generated by the elements {x2(= x⊗ x)}x∈V in T 2(V ). The ideal J
is a graded k-submodule of T (V ) (this is not obvious!), and the quotient T (V )/J becomes a graded
commutative algebra

∧V =

n⊕
d=0

∧dV

(
=

∞⊕
d=0

∧dV

)
,

if one views the elements of V = ∧1V as having odd degree, and uses the topologist’s sign convention
(as in (1.3.3)). One again has ∧(V ⊕ V ) = ∧V ⊗ ∧V as graded algebras. Show that one can again
let the diagonal map (1.6.5) induce a map

(1.6.6)

∧(V )
∆−→ ∧V ⊗ ∧V,

f(x1, . . . , xn) 7−→ f(x1 + y1, . . . , xn + yn)
‖ ‖∑

ci1,...,id · xi1 ∧ · · · ∧ xid
∑
ci1,...,id · (xi1 + yi1) ∧ · · · ∧ (xid + yid),

which makes ∧V into a connected graded Hopf algebra.
(c) Show that in the tensor algebra T (V ), if one views the elements of V = V ⊗1 as having odd degree,

and uses the topologist’s sign convention (1.3.3) in the twist map when defining T (V ), then for any
x in V one has ∆(x2) = 1⊗ x2 + x2 ⊗ 1.
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(d) Let us use the convention (1.3.3) as in part (c). Show that the two-sided ideal J ⊂ T (V ) generated
by {x2}x∈V is also a two-sided coideal and a graded k-submodule of T (V ), and hence the quotient
∧V = T (V )/J inherits the structure of a graded bialgebra. Check that the coproduct on ∧V inherited
from T (V ) is the same as the one defined in part (b).

[Hint: The ideal J in part (b) is a graded k-submodule of T (V ), but this is not completely obvious (not
all elements of V have to be homogeneous!).]

Exercise 1.6.6. Let C be a k-coalgebra. As we know from Exercise 1.6.1(a), this makes C∗ into a k-algebra.
Let A be a k-algebra which is finite free as k-module. This makes A∗ into a k-coalgebra.
Let f : C → A and g : C → A be two k-linear maps. Show that f∗ ? g∗ = (f ? g)

∗
.

The above arguments might have created the impression that duals of bialgebras have good properties only
under certain restrictive conditions (e.g., the dual of a bialgebra H does not generally become a bialgebra
unless H is of finite type), and so they cannot be used in proofs and constructions unless one is willing to
sacrifice some generality (e.g., we had to require V to be finite free in Example 1.6.3). While the first part
of this impression is true, the second is not always; often there is a way to gain back the generality lost from
using duals. As an example of this, let us define the shuffle algebra of an arbitrary k-module (not just of a
dual of a finite free k-module as in Example 1.6.3):

Proposition 1.6.7. Let V be a k-module. Define a k-linear map ∆� : T (V )→ T (V )⊗ T (V ) by setting

∆� (v1v2 · · · vn) =

n∑
k=0

(v1v2 · · · vk)⊗ (vk+1vk+2 · · · vn) for all n ∈ N and v1, v2, . . . , vn ∈ V.

44 Define a k-bilinear map � : T (V ) × T (V ) → T (V ), which will be written in infix notation (that is, we
will write a� b instead of � (a, b)), by setting45

(v1v2 · · · v`)� (v`+1v`+2 · · · v`+m) =
∑

σ∈Sh`,m

vσ(1)vσ(2) · · · vσ(`+m)

for all `,m ∈ N and v1, v2, . . . , v`+m ∈ V.
46 Consider also the comultiplication ε of the Hopf algebra T (V ).

Then, the k-module T (V ), endowed with the multiplication �, the unit 1T (V ) ∈ V ⊗0 ⊂ T (V ), the
comultiplication ∆� and the counit ε, becomes a commutative Hopf algebra. This Hopf algebra is called
the shuffle algebra of V , and denoted by Sh (V ). The antipode of the Hopf algebra Sh (V ) is precisely the
antipode S of T (V ).

Exercise 1.6.8. Prove Proposition 1.6.7.
[Hint: When V is a finite free k-module, Proposition 1.6.7 follows from Example 1.6.3. The trick is to

derive the general case from this specific one. Every k-linear map f : W → V between two k-modules W
and V induces a map T (f) : T (W ) → T (V ) which preserves ∆�, �, 1T (W ), ε and S (in the appropriate
meanings – e.g., preserving ∆� means ∆� ◦T (f) = (T (f)⊗ T (f)) ◦∆�). Show that each of the equalities
that need to be proven in order to verify Proposition 1.6.7 can be “transported” along such a map T (f)
from a T (W ) for a suitably chosen finite free k-module W .]

It is also possible to prove Proposition 1.6.7 “by foot”, as long as one is ready to make combinatorial
arguments about cutting shuffles.

Remark 1.6.9. (a) Let V be a finite free k-module. The Hopf algebra T (V )
o

(studied in Example 1.6.3) is
naturally isomorphic to the shuffle algebra Sh (V ∗) (defined as in Proposition 1.6.7 but for V ∗ instead
of V ) as Hopf algebras, by the obvious isomorphism (namely, the direct sum of the isomorphisms

(V ⊗n)
∗ → (V ∗)

⊗n
over all n ∈ N). 47

44This is well-defined, because the right hand side is n-multilinear in v1, v2, . . . , vn, and because any n-multilinear map

V ×n →M into a k-module M gives rise to a unique k-linear map V ⊗n →M .
45Many authors use the symbol � instead of � here, but we prefer to reserve the former notation for the shuffle product of

words.
46Again, this is well-defined by the `+m-multilinearity of the right hand side.
47This can be verified by comparing (1.6.1) with the definition of ∆�, and comparing (1.6.4) with the definition of �.
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(b) The same statement applies to the case when V is a graded k-module of finite type satisfying V0 = 0
rather than a finite free k-module, provided that V ∗ and (V ⊗n)

∗
are replaced by V o and (V ⊗n)

o
.

We shall return to shuffle algebras in Section 6.3, where we will show that under certain conditions (Q
being a subring of k, and V being a free k-module) the algebra structure on a shuffle algebra Sh(V ) is a
polynomial algebra in an appropriately chosen set of generators48.

1.7. Infinite sums and Leray’s theorem. In this section (which can be skipped, as it will not be used
except in a few exercises), we will see how a Hopf algebra structure on a k-algebra reveals knowledge about the
k-algebra itself. Specifically, we will show that if k is a commutative Q-algebra, and if A is any commutative
connected graded k-Hopf algebra, then A as a k-algebra must be (isomorphic to) a symmetric algebra of a
k-module49. This is a specimen of a class of facts which are commonly called Leray theorems; for different
specimens, see [156, Theorem 7.5] or [35, p. 17, “Hopf’s theorem”] or [35, §2.5, A, B, C] or [35, Theorem
3.8.3].50 In a sense, these facts foreshadow Zelevinsky’s theory of positive self-dual Hopf algebras, which we
shall encounter in Chapter 3; however, the latter theory works in a much less general setting (and makes
much stronger claims).

We shall first explore the possibilities of applying a formal power series v to a linear map f : C → A from a
coalgebra C to an algebra A. We have already seen an example of this in the proof of Proposition 1.4.7 above

(where the power series
∑
k≥0 (−1)

k
T k ∈ k [[T ]] was applied to the locally ?-nilpotent map idA−uAεA : A→

A); we shall now take a more systematic approach and establish general criteria for when such applications
are possible. First, we will have to make sense of infinite sums of maps from a coalgebra to an algebra. This
is somewhat technical, but the effort will pay off.

Definition 1.7.1. Let A be an abelian group (written additively).
We say that a family (aq)q∈Q ∈ A

Q of elements of A is finitely supported if all but finitely many q ∈ Q
satisfy aq = 0. Clearly, if (aq)q∈Q ∈ A

Q is a finitely supported family, then the sum
∑
q∈Q aq is well-defined

(since all but finitely many of its addends are 0). Sums like this satisfy the usual rules for sums, even
though their indexing set Q may be infinite. (For example, if (aq)q∈Q and (bq)q∈Q are two finitely supported

families in AQ, then the family (aq + bq)q∈Q is also finitely supported, and we have
∑
q∈Q aq +

∑
q∈Q bq =∑

q∈Q (aq + bq).)

Definition 1.7.2. Let C and A be two k-modules.
We say that a family (fq)q∈Q ∈ (Hom (C,A))

Q
of maps fq ∈ Hom (C,A) is pointwise finitely supported

if for each x ∈ C, the family (fq (x))q∈Q ∈ AQ of elements of A is finitely supported.51 If (fq)q∈Q ∈
(Hom (C,A))

Q
is a pointwise finitely supported family, then the sum

∑
q∈Q fq is defined to be the map

C → A sending each x ∈ C to
∑
q∈Q fq (x). 52

Note that the concept of a “pointwise finitely supported” family (fq)q∈Q ∈ (Hom (C,A))
Q

is precisely the

concept of a “summable” family in [60, Definition 1].

Definition 1.7.3. For the rest of Section 1.7, we shall use the following conventions:

• Let C be a k-coalgebra. Let A be a k-algebra.

48This says nothing about the coalgebra structure on Sh(V ) – which is much more complicated in these generators.
49If k is a field, then this simply means that A as a k-algebra must be a polynomial ring over k.
50Notice that many of these sources assume k to be a field; some of their proofs rely on this assumption.
51Here are some examples of pointwise finitely supported families:

• If Q is a finite set, then any family (fq)q∈Q ∈ (Hom (C,A))Q is pointwise finitely supported.

• More generally, any finitely supported family (fq)q∈Q ∈ (Hom (C,A))Q is pointwise finitely supported.

• If C is a graded k-module, and if (fn)n∈N ∈ (Hom (C,A))N is a family of maps such that fn (Cm) = 0 whenever

n 6= m, then the family (fn)n∈N is pointwise finitely supported.

• If C is a graded k-coalgebra and A is any k-algebra, and if f ∈ Hom (C,A) satisfies f (C0) = 0, then the family

(f?n)n∈N ∈ (Hom (C,A))N is pointwise finitely supported. (This will be proven in Proposition 1.7.11(h).)

52This definition of
∑
q∈Q fq generalizes the usual definition of

∑
q∈Q fq when Q is a finite set (because if Q is a finite set,

then any family (fq)q∈Q ∈ (Hom (C,A))Q is pointwise finitely supported).
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• We shall avoid our standard practice of denoting the unit map uA : k → A of a k-algebra A by u;
instead, we will use the letter u (without the subscript A) for other purposes.

Definition 1.7.2 allows us to work with infinite sums in Hom (C,A), provided that we are summing a
pointwise finitely supported family. We shall next state some properties of such sums:53

Proposition 1.7.4. Let (fq)q∈Q ∈ (Hom (C,A))
Q

be a pointwise finitely supported family. Then, the map∑
q∈Q fq belongs to Hom (C,A).

Proposition 1.7.5. Let (fq)q∈Q and (gq)q∈Q be two pointwise finitely supported families in (Hom (C,A))
Q

.

Then, the family (fq + gq)q∈Q ∈ (Hom (C,A))
Q

is also pointwise finitely supported, and satisfies∑
q∈Q

fq +
∑
q∈Q

gq =
∑
q∈Q

(fq + gq) .

Proposition 1.7.6. Let (fq)q∈Q ∈ (Hom (C,A))
Q

and (gr)r∈R ∈ (Hom (C,A))
R

be two pointwise finitely

supported families. Then, the family (fq ? gr)(q,r)∈Q×R ∈ (Hom (C,A))
Q×R

is pointwise finitely supported,

and satisfies ∑
(q,r)∈Q×R

(fq ? gr) =

∑
q∈Q

fq

 ?

(∑
r∈R

gr

)
.

Roughly speaking, the above three propositions say that sums of the form
∑
q∈Q fq (where (fq)q∈Q is

a pointwise finitely supported family) satisfy the usual rules for finite sums. Furthermore, the following
properties of pointwise finitely supported families hold:

Proposition 1.7.7. Let (fq)q∈Q ∈ (Hom (C,A))
Q

be a pointwise finitely supported family. Let (λq)q∈Q ∈
kQ be any family of elements of k. Then, the family (λqfq)q∈Q ∈ (Hom (C,A))

Q
is pointwise finitely

supported.

Proposition 1.7.8. Let (fq)q∈Q ∈ (Hom (C,A))
Q

and (gq)q∈Q ∈ (Hom (C,A))
Q

be two families such that

(fq)q∈Q is pointwise finitely supported. Then, the family (fq ? gq)q∈Q ∈ (Hom (C,A))
Q

is also pointwise

finitely supported.

Exercise 1.7.9. Prove Propositions 1.7.4, 1.7.5, 1.7.6, 1.7.7 and 1.7.8.

We can now define the notion of a “pointwise ?-nilpotent” map. Roughly speaking, this will mean an
element of (Hom (C,A) , ?) that can be substituted into any power series because its powers (with respect
to the convolution ?) form a pointwise finitely supported family. Here is the definition:

Definition 1.7.10. (a) A map f ∈ Hom (C,A) is said to be pointwise ?-nilpotent if and only if the fam-

ily (f?n)n∈N ∈ (Hom (C,A))
N

is pointwise finitely supported. Equivalently, a map f ∈ Hom (C,A)
is pointwise ?-nilpotent if and only if for each x ∈ C, the family (f?n (x))n∈N of elements of A is
finitely supported.

(b) If f ∈ Hom (C,A) is a pointwise ?-nilpotent map, and if (λn)n∈N ∈ kN is any family of scalars, then

the family (λnf
?n)n∈N ∈ (Hom (C,A))

N
is pointwise finitely supported54, and thus the infinite sum∑

n≥0 λnf
?n =

∑
n∈N λnf

?n is well-defined and belongs to Hom (C,A) (by Proposition 1.7.4).55

53See Exercise 1.7.9 below for the proofs of these properties.
54This follows easily from Proposition 1.7.7 above. (In fact, the map f is pointwise ?-nilpotent, and thus the family

(f?n)n∈N ∈ (Hom (C,A))N is pointwise finitely supported (by the definition of “pointwise ?-nilpotent”). Hence, Proposition 1.7.7

(applied to Q = N and (fq)q∈Q = (f?n)n∈N and (λq)q∈Q = (λn)n∈N) shows that the family (λnf?n)n∈N ∈ (Hom (C,A))N is

pointwise finitely supported.)
55Notice that the concept of “local ?-nilpotence” we used in the proof of Proposition 1.4.24 serves the same function (viz.,

ensuring that the sum
∑
n∈N λnf

?n is well-defined). But local ?-nilpotence is only defined when a grading is present, whereas

pointwise ?-nilpotence is defined in the general case. Also, local ?-nilpotence is more restrictive (i.e., a locally ?-nilpotent map

is always pointwise ?-nilpotent, but the converse does not always hold).
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(c) We let n (C,A) be the set of all pointwise ?-nilpotent maps f ∈ Hom (C,A). Note that this is not
necessarily a k-submodule of Hom (C,A).

(d) Consider the ring k [[T ]] of formal power series in an indeterminate T over k. For any power series
u ∈ k [[T ]] and any f ∈ n (C,A), we define a map u? (f) ∈ Hom (C,A) by u? (f) =

∑
n≥0 unf

?n,

where u is written in the form u =
∑
n≥0 unT

n with (un)n≥0 ∈ kN. (This sum
∑
n≥0 unf

?n is

well-defined in Hom (C,A), since f is pointwise ?-nilpotent.)

The following proposition gathers some properties of pointwise ?-nilpotent maps56:

Proposition 1.7.11. (a) For any f ∈ n (C,A) and k ∈ N, we have

(1.7.1)
(
T k
)?

(f) = f?k.

(b) For any f ∈ n (C,A) and u, v ∈ k [[T ]], we have

(u+ v)
?

(f) = u? (f) + v? (f) and(1.7.2)

(uv)
?

(f) = u? (f) ? v? (f) .(1.7.3)

Also, for any f ∈ n (C,A) and u ∈ k [[T ]] and λ ∈ k, we have

(1.7.4) (λu)
?

(f) = λu? (f) .

Also, for any f ∈ n (C,A), we have

0? (f) = 0 and(1.7.5)

1? (f) = uAεC .(1.7.6)

(c) If f, g ∈ n (C,A) satisfy f ? g = g ? f , then f + g ∈ n (C,A).
(d) For any λ ∈ k and f ∈ n (C,A), we have λf ∈ n (C,A).
(e) If f ∈ n (C,A) and g ∈ Hom (C,A) satisfy f ? g = g ? f , then f ? g ∈ n (C,A).
(f) If v ∈ k [[T ]] is a power series whose constant term is 0, then v? (f) ∈ n (C,A) for each f ∈ n (C,A).
(g) If u, v ∈ k [[T ]] are two power series such that the constant term of v is 0, and if f ∈ n (C,A) is

arbitrary, then

(1.7.7) (u [v])
?

(f) = u? (v? (f)) .

Here, u [v] denotes the composition of u with v; this is the power series obtained by substituting v
for T in u. (This power series is well-defined, since v has constant term 0.) Furthermore, notice that
the right hand side of (1.7.7) is well-defined, since Proposition 1.7.11(f) shows that v? (f) ∈ n (C,A).

(h) If C is a graded k-coalgebra, and if f ∈ Hom (C,A) satisfies f (C0) = 0, then f ∈ n (C,A).
(i) If B is any k-algebra, and if s : A→ B is any k-algebra homomorphism, then every u ∈ k [[T ]] and

f ∈ n (C,A) satisfy

s ◦ f ∈ n (C,B) and u? (s ◦ f) = s ◦ (u? (f)) .

(j) If C is a connected graded k-bialgebra, and if F : C → A is a k-algebra homomorphism, then
F − uAεC ∈ n (C,A).

Example 1.7.12. Let C be a graded k-coalgebra. Let f ∈ Hom (C,A) be such that f (C0) = 0. Then, we
claim that the map uAεC + f : C → A is ?-invertible. (This observation has already been made in the proof
of Proposition 1.4.24, at least in the particular case when C = A.)

Let us see how this claim follows from Proposition 1.7.11. First, Proposition 1.7.11(h) shows that f ∈
n (C,A). Now, define a power series u ∈ k [[T ]] by u = 1 + T . Then, the power series u has constant term
1, and thus has a multiplicative inverse v = u−1 ∈ k [[T ]]. Consider this v. (Explicitly, v =

∑
n≥0 (−1)

n
Tn,

but this does not matter for us.) Now, (1.7.3) yields (uv)
?

(f) = u? (f) ? v? (f). Since uv = 1 (because
v = u−1), we have (uv)

?
(f) = 1? (f) = uAεC (by (1.7.6)). Thus, u? (f) ? v? (f) = (uv)

?
(f) = uAεC . Hence,

the map u? (f) has a right ?-inverse.

56See Exercise 1.7.13 below for the proofs of these properties.
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Also, from u = 1 + T , we obtain

u? (f) = (1 + T )
?

(f) = 1? (f)︸ ︷︷ ︸
=uAεC

+ T ? (f)︸ ︷︷ ︸
=f?1

(by (1.7.1), applied to k=1)

(by (1.7.2))

= uAεC + f?1︸︷︷︸
=f

= uAεC + f.

Thus, the map uAεC+f has a right ?-inverse (since the map u? (f) has a right ?-inverse). A similar argument
shows that this map uAεC + f has a left ?-inverse. Consequently, the map uAεC + f is ?-invertible.

Exercise 1.7.13. Prove Proposition 1.7.11.

Definition 1.7.14. (a) For the rest of Section 1.7, we assume that k is a commutative Q-algebra. Thus,

the two formal power series exp =
∑
n≥0

1

n!
Tn ∈ k [[T ]] and log (1 + T ) =

∑
n≥1

(−1)
n−1

n
Tn ∈ k [[T ]]

are well-defined.
(b) Define two power series exp ∈ k [[T ]] and log ∈ k [[T ]] by exp = exp−1 and log = log (1 + T ).
(c) If u and v are two power series in k [[T ]] such that v has constant term 0, then u [v] denotes the

composition of u with v; this is the power series obtained by substituting v for T in u.

The following proposition is just a formal analogue of the well-known fact that the exponential function
and the logarithm are mutually inverse (on their domains of definition):57

Proposition 1.7.15. Both power series exp and log have constant term 0 and satisfy exp
[
log
]

= T and

log [exp] = T .

For any map f ∈ n (C,A), the power series exp, exp and log give rise to three further maps exp? f , exp?f

and log
?
f . We can also define a map log? g whenever g is a map in Hom (C,A) satisfying g−uAεC ∈ n (C,A)

(but we cannot define log? f for f ∈ n (C,A), since log is not per se a power series); in order to do this, we
need a simple lemma:

Lemma 1.7.16. Let g ∈ Hom (C,A) be such that g − uAεC ∈ n (C,A). Then, log
?

(g − uAεC) is a well-
defined element of n (C,A).

Definition 1.7.17. If g ∈ Hom (C,A) is a map satisfying g − uAεC ∈ n (C,A), then we define a map

log? g ∈ n (C,A) by log? g = log
?

(g − uAεC). (This is well-defined, according to Lemma 1.7.16.)

Proposition 1.7.18. (a) Each f ∈ n (C,A) satisfies exp? f − uAεC ∈ n (C,A) and

log? (exp? f) = f.

(b) Each g ∈ Hom (C,A) satisfying g − uAεC ∈ n (C,A) satisfies

exp? (log? g) = g.

(c) If f, g ∈ n (C,A) satisfy f ? g = g ? f , then f + g ∈ n (C,A) and exp? (f + g) = (exp? f) ? (exp? g).
(d) The k-linear map 0 : C → A satisfies 0 ∈ n (C,A) and exp? 0 = uAεC .
(e) If f ∈ n (C,A) and n ∈ N, then nf ∈ n (C,A) and exp? (nf) = (exp? f)

?n
.

(f) If f ∈ n (C,A), then

(1.7.8) log? (f + uAεC) =
∑
n≥1

(−1)
n−1

n
f?n.

Example 1.7.19. Consider again the Hopf algebra k [x] from Exercise 1.6.4. Let c1 : k [x] → k be the
k-linear map sending each polynomial p ∈ k [x] to the coefficient of x1 in p. (In other words, c1 sends each
polynomial p ∈ k [x] to its derivative at 0.)

Then, c1 ((k [x])0) = 0 (as can easily be seen). Hence, Proposition 1.7.11(h) shows that c1 ∈ n (k [x] ,k).
Thus, a map exp? (c1) : k [x]→ k is well-defined. It is not hard to see that this map is explicitly given by

(exp? (c1)) (p) = p (1) for every p ∈ k [x] .

57See Exercise 1.7.20 below for the proof of this proposition, as well as of the lemma and proposition that follow afterwards.
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(In fact, this follows easily after showing that each n ∈ N satisfies

(c1)
?n

(p) = n! · (the coefficient of xn in p) for every p ∈ k [x] ,

which in turn is easily seen by induction.)
Note that the equality (exp? (c1)) (p) = p (1) shows that the map exp? (c1) is a k-algebra homomorphism.

This is a particular case of a fact that we will soon see (Proposition 1.7.23).

Exercise 1.7.20. Prove Proposition 1.7.15, Lemma 1.7.16 and Proposition 1.7.18.

Next, we state another sequence of facts (some of which have nothing to do with Hopf algebras), beginning
with a fact about convolutions which is similar to Proposition 1.4.3:58

Proposition 1.7.21. Let C and C ′ be two k-coalgebras, and let A and A′ be two k-algebras. Let γ : C → C ′

be a k-coalgebra morphism. Let α : A→ A′ be a k-algebra morphism.

(a) If f ∈ Hom (C,A), g ∈ Hom (C,A), f ′ ∈ Hom (C ′, A′) and g′ ∈ Hom (C ′, A′) satisfy f ′ ◦ γ = α ◦ f
and g′ ◦ γ = α ◦ g, then (f ′ ? g′) ◦ γ = α ◦ (f ? g).

(b) If f ∈ Hom (C,A) and f ′ ∈ Hom (C ′, A′) satisfy f ′ ◦ γ = α ◦ f , then each n ∈ N satisfies (f ′)
?n ◦ γ =

α ◦ f?n.

Proposition 1.7.22. Let C be a k-bialgebra. Let A be a commutative k-algebra. Let f ∈ Hom (C,A) be

such that f
(

(ker ε)
2
)

= 0 and f (1) = 0. Then, any x, y ∈ C and n ∈ N satisfy

f?n (xy) =

n∑
i=0

(
n

i

)
f?i (x) f?(n−i) (y) .

Proposition 1.7.23. Let C be a k-bialgebra. Let A be a commutative k-algebra. Let f ∈ n (C,A) be such

that f
(

(ker ε)
2
)

= 0 and f (1) = 0. Then, exp? f : C → A is a k-algebra homomorphism.

Lemma 1.7.24. Let V be any torsionfree abelian group (written additively). Let N ∈ N. For every
k ∈ {0, 1, . . . , N}, let wk be an element of V . Assume that

(1.7.9)

N∑
k=0

wkn
k = 0 for all n ∈ N.

Then, wk = 0 for every k ∈ {0, 1, . . . , N}.

Lemma 1.7.25. Let V be a torsionfree abelian group (written additively). Let (wk)k∈N ∈ V N be a finitely
supported family of elements of V . Assume that∑

k∈N
wkn

k = 0 for all n ∈ N.

Then, wk = 0 for every k ∈ N.

Proposition 1.7.26. Let C be a graded k-bialgebra. LetA be a commutative k-algebra. Let f ∈ Hom (C,A)

be such that f (C0) = 0. Assume that59 exp? f : C → A is a k-algebra homomorphism. Then, f
(

(ker ε)
2
)

=

0.

Proposition 1.7.27. Let C be a connected graded k-bialgebra. Let A be a commutative k-algebra. Let

f ∈ n (C,A) be such that f
(

(ker ε)
2
)

= 0 and f (1) = 0. Assume further that f (C) generates the k-algebra

A. Then, exp? f : C → A is a surjective k-algebra homomorphism.

Exercise 1.7.28. Prove Lemmas 1.7.24 and 1.7.25 and Propositions 1.7.21, 1.7.22, 1.7.23, 1.7.26 and 1.7.27.
[Hint: For Proposition 1.7.26, show first that exp? (nf) = (exp? f)

?n
is a k-algebra homomorphism for

each n ∈ N. Turn this into an equality between polynomials in n, and use Lemma 1.7.25.]

With these preparations, we can state our version of Leray’s theorem:

58See Exercise 1.7.28 below for their proofs.
59Notice that exp? f is well-defined, since Proposition 1.7.11(h) yields f ∈ n (C,A).
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Theorem 1.7.29. Let A be a commutative connected graded k-bialgebra.60

(a) We have idA−uAεA ∈ n (A,A); thus, the map log? (idA) ∈ n (A,A) is well-defined. We denote this
map log? (idA) by e.

(b) We have ker e = k · 1A + (ker ε)
2

and e (A) ∼= (ker ε) / (ker ε)
2

(as k-modules).
(c) For each k-module V , let ιV be the canonical inclusion V → SymV . Let q be the map

A
e−→ e (A)

ιe(A)−→ Sym (e (A)) .

Then, q ∈ n (A,Sym (e (A))) 61.
(d) Let i be the canonical inclusion e (A)→ A. Recall the universal property of the symmetric algebra:

If V is a k-module, if W is a commutative k-algebra, and if ϕ : V → W is any k-linear map, then
there exists a unique k-algebra homomorphism Φ : SymV →W satisfying ϕ = Φ◦ ιV . Applying this
to V = e (A), W = A and ϕ = i, we conclude that there exists a unique k-algebra homomorphism
Φ : Sym (e (A)) → A satisfying i = Φ ◦ ιe(A). Denote this Φ by s. Then, the maps exp? q : A →
Sym (e (A)) and s : Sym (e (A))→ A are mutually inverse k-algebra isomorphisms.

(e) We have A ∼= Sym
(

(ker ε) / (ker ε)
2
)

as k-algebras.

(f) The map e : A→ A is a projection (i.e., it satisfies e ◦ e = e).

Remark 1.7.30. (a) The main upshot of Theorem 1.7.29 is that any commutative connected graded
k-bialgebra A (where k is a commutative Q-algebra) is isomorphic as a k-algebra to the sym-
metric algebra SymW of some k-module W . (Specifically, Theorem 1.7.29(e) claims this for W =

(ker ε) / (ker ε)
2
, whereas Theorem 1.7.29(d) claims this for W = e (A); these two modules W are

isomorphic by Theorem 1.7.29(b).) This is a useful statement even without any specific knowledge
about W , since symmetric algebras are a far tamer class of algebras than arbitrary commutative
algebras. For example, if k is a field, then symmetric algebras are just polynomial algebras (up
to isomorphism). This can be applied, for example, to the case of the shuffle algebra Sh (V ) of a
k-module V . The consequence is that the shuffle algebra Sh (V ) of any k-module V (where k is a
commutative Q-algebra) is isomorphic as a k-algebra to a symmetric algebra SymW . When V is
a free k-module, one can actually show that Sh (V ) is isomorphic as a k-algebra to the symmetric
algebra of a free k-module W (that is, to a polynomial ring over k); however, this W is not easy
to characterize. Such a characterization is given by Radford’s theorem (Theorem 6.3.4 below) using
the concept of Lyndon words. Notice that if V has rank ≥ 2, then W is not finitely generated.

(b) The isomorphism in Theorem 1.7.29(e) is generally not an isomorphism of Hopf algebras. However,
with a little (rather straightforward) work, it reveals to be an isomorphism of graded k-algebras.
Actually, all maps mentioned in Theorem 1.7.29 are graded, provided that we use the appropriate
gradings for e (A) and Sym (e (A)). (To define the appropriate grading for e (A), we must show that e
is a graded map, whence e (A) is a homogeneous submodule of A; this provides e (A) with the grading
we seek. The grading on Sym (e (A)) then follows from the usual definition of the grading on the
symmetric algebra SymV of a graded k-module V : Namely, if V is a graded k-module, then the n-th
graded component of SymV is defined to be the span of all products of the form v1v2 · · · vk ∈ SymV ,
where v1, v2, . . . , vk ∈ V are homogeneous elements satisfying deg (v1)+deg (v2)+· · ·+deg (vk) = n.)

(c) The map e : A→ A from Theorem 1.7.29 is called the Eulerian idempotent of A.
(d) Theorem 1.7.29 is concerned with commutative bialgebras. Most of its claims have a “dual version”,

concerning cocommutative bialgebras. Again, the Eulerian idempotent plays a crucial role; but the
result characterizes not the k-algebra structure on A, but the k-coalgebra structure on A. This leads
to the Cartier-Milnor-Moore theorem; see [35, §3.8] and [60, §3.2]. We shall say a bit about the
Eulerian idempotent for a cocommutative bialgebra in Exercises 5.4.6 and 5.4.8.

Example 1.7.31. Consider the symmetric algebra SymV of a k-module V . Then, SymV is a commutative
connected graded k-bialgebra, and thus Theorem 1.7.29 can be applied to A = SymV . What is the projection
e : A→ A obtained in this case?

60Keep in mind that k is assumed to be a commutative Q-algebra.
61Do not mistake the map q for e. While every a ∈ A satisfies q (a) = e (a), the two maps q and e have different target sets,

and thus we do not have (exp? q) (a) = (exp? e) (a) for every a ∈ A.
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Theorem 1.7.29(b) shows that its kernel is

(1.7.10) Ker e = k · 1A︸ ︷︷ ︸
=Sym0 V

+ (ker ε)
2︸ ︷︷ ︸

=
∑
n≥2 Symn V

= Sym0 V +
∑
n≥2

Symn V =
∑
n 6=1

Symn V.

This does not yet characterize e completely, because we have yet to determine the action of e on Sym1 V .
Fortunately, the elements of Sym1 V are all primitive (recall that ∆SymV (v) = 1⊗ v+ v⊗ 1 for each v ∈ V ),
and it can easily be shown that the map e fixes any primitive element of A 62. Therefore, the map e fixes
all elements of Sym1 V . Since we also know that e annihilates all elements of

∑
n6=1 Symn V (by (1.7.10)),

we thus conclude that e is the canonical projection from the direct sum SymV =
⊕

n∈N Symn V onto its

addend Sym1 V .

Example 1.7.32. For this example, let A be the shuffle algebra Sh (V ) of a k-module V . (See Proposition
1.6.7 for its definition, and keep in mind that its product is being denoted by �, whereas the notation uv is
still being used for the product of two elements u and v in the tensor algebra T (V ).)

Theorem 1.7.29 can be applied to A = Sh (V ). What is the projection e : A→ A obtained in this case?

Let us compute e (v1v2) for two elements v1, v2 ∈ V . Indeed, define a map ĩd : A→ A by ĩd = idA−uAεA.

Then, ĩd ∈ n (A,A) and log?

ĩd + uAεA︸ ︷︷ ︸
=idA

 = log? (idA) = e. Hence, (1.7.8) (applied to C = A and f = ĩd)

shows that

(1.7.11) e =
∑
n≥1

(−1)
n−1

n
ĩd
?n
.

Thus, we need to compute ĩd
?n

(v1v2) for each n ≥ 1.

Notice that the map ĩd annihilates A0, but fixes any element of Ak for k > 0. Thus,

ĩd (w1w2 · · ·wk) =

{
w1w2 · · ·wk, if k > 0;

0, if k = 0
for any w1, w2, . . . , wk ∈ V.

But it is easy to see that the map ĩd
?n

: A → A annihilates Ak whenever n > k. In particular, for every

n > 2, the map ĩd
?n

: A→ A annihilates A2, and therefore satisfies

(1.7.12) ĩd
?n

(v1v2) = 0 (since v1v2 ∈ A2) .

It remains to find ĩd
?n

(v1v2) for n ∈ {1, 2}.
We have ĩd

?1
= ĩd and thus

ĩd
?1

(v1v2) = ĩd (v1v2) = v1v2

and

ĩd
?2

(v1v2) = ĩd (1)︸ ︷︷ ︸
=0

� ĩd (v1v2)︸ ︷︷ ︸
=v1v2

+ ĩd (v1)︸ ︷︷ ︸
=v1

� ĩd (v2)︸ ︷︷ ︸
=v2

+ ĩd (v1v2)︸ ︷︷ ︸
=v1v2

� ĩd (1)︸ ︷︷ ︸
=0

(since ∆ShV (v1v2) = 1⊗ v1v2 + v1 ⊗ v2 + v1v2 ⊗ 1)

= 0� (v1v2)︸ ︷︷ ︸
=0

+ v1 � v2︸ ︷︷ ︸
=v1v2+v2v1

+ (v1v2)� 0︸ ︷︷ ︸
=0

= v1v2 + v2v1.

62See Exercise 5.4.6(f) further below for this proof. (While Exercise 5.4.6 requires A to be cocommutative, this requirement
is not used in the solution to Exercise 5.4.6(f). That said, this requirement is actually satisfied for A = SymV , so we do not

even need to avoid it here.)



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 43

Now, applying both sides of (1.7.11) to v1v2, we find

e (v1v2)

=
∑
n≥1

(−1)
n−1

n
ĩd
?n

(v1v2) =
(−1)

1−1

1︸ ︷︷ ︸
=1

ĩd
?1

(v1v2)︸ ︷︷ ︸
=v1v2

+
(−1)

2−1

2︸ ︷︷ ︸
=
−1

2

ĩd
?2

(v1v2)︸ ︷︷ ︸
=v1v2+v2v1

+
∑
n≥3

(−1)
n−1

n
ĩd
?n

(v1v2)︸ ︷︷ ︸
=0

(by (1.7.12))

= v1v2 +
−1

2
(v1v2 + v2v1) +

∑
n≥3

(−1)
n−1

n
0︸ ︷︷ ︸

=0

=
1

2
(v1v2 − v2v1) .

This describes the action of e on the graded component A2 of A = Sh (V ).
Similarly, we can describe e acting on any other graded component:

e (1) = 0;

e (v1) = v1 for each v1 ∈ V ;

e (v1v2) =
1

2
(v1v2 − v2v1) for any v1, v2 ∈ V ;

e (v1v2v3) =
1

6
(2v1v2v3 − v1v3v2 − v2v1v3 − v2v3v1 − v3v1v2 + 2v3v2v1) for any v1, v2, v3 ∈ V,

. . . .

With some more work, one can show the following formula for the action of e on any nontrivial pure tensor:

e (v1v2 · · · vn) =
∑
σ∈Sn

 n∑
k=1+des(σ−1)

(−1)
k−1

k

(
n− 1− des

(
σ−1

)
k − 1− des (σ−1)

) vσ(1)vσ(2) · · · vσ(n)

=
∑
σ∈Sn

(−1)
des(σ−1)

des (σ−1) + 1

(
n

des (σ−1) + 1

)−1

vσ(1)vσ(2) · · · vσ(n)

for any n ≥ 1 and v1, v2, . . . , vn ∈ V,

where we use the notation desπ for the number of descents63 of any permutation π ∈ Sn. (A statement
essentially dual to this appears in [191, Theorem 9.5].)

Theorem 1.7.29(b) yields ker e = k · 1A + (ker ε)
2
. Notice, however, that (ker ε)

2
means the square of

the ideal ker ε with respect to the shuffle multiplication �; thus, (ker ε)
2

is the k-linear span of all shuffle
products of the form a� b with a ∈ ker ε and b ∈ ker ε.

Exercise 1.7.33. Prove Theorem 1.7.29.
[Hint: (a) is easy. For (b), define an element ĩd of n (A,A) by ĩd = idA−uAεA. Observe that e =∑
n≥1

(−1)
n−1

n
ĩd
?n

, and draw the conclusions that e (1A) = 0 and that each x ∈ A satisfies ĩd (x)− e (x) ∈

(ker ε)
2

(because ĩd
?n

(x) ∈ (ker ε)
2

for every n ≥ 2). Use this to prove ker e ⊂ k · 1A + (ker ε)
2
. On the other

hand, prove e
(

(ker ε)
2
)

= 0 by applying Proposition 1.7.26. Combine to obtain ker e = k · 1A + (ker ε)
2
.

Finish (b) by showing that A/
(
k · 1A + (ker ε)

2
)
∼= (ker ε) / (ker ε)

2
as k-modules. Part (c) is easy again.

For (d), first apply Proposition 1.7.11(i) to show that exp? (s ◦ q) = s ◦ (exp? q). In light of s ◦ q = e and
exp? e = idA, this becomes idA = s ◦ (exp? q). To obtain part (d), it remains to show that exp? q is a
surjective k-algebra homomorphism; but this follows from Proposition 1.7.27. For (e), combine (d) and (b).

For (f), use once again the observation that each x ∈ A satisfies ĩd (x)− e (x) ∈ (ker ε)
2
.]

63A descent of a permutation π ∈ Sn means an i ∈ {1, 2, . . . , n− 1} satisfying π (i) > π (i+ 1).
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2. Review of symmetric functions Λ as Hopf algebra

Here we review the ring of symmetric functions, borrowing heavily from standard treatments, such as
Macdonald [142, Chap. I], Sagan [186, Chap. 4], Stanley [206, Chap. 7], and Mendes and Remmel [154],
but emphasizing the Hopf structure early on. Other recent references for this subject are [224], [189], [63],
[153, Chapters 2–3] and [187, Chapter 7].

2.1. Definition of Λ. As before, k here is a commutative ring (hence could be a field or the integers Z;
these are the usual choices).

Given an infinite variable set x = (x1, x2, . . .), a monomial xα := xα1
1 xα2

2 · · · is indexed by a sequence
α = (α1, α2, . . .) in N∞ having finite support64; such sequences α are called weak compositions. The nonzero
entries of the sequence α = (α1, α2, . . .) are called the parts of the weak composition α.

The sum α1 +α2 +α3 + · · · of all entries of a weak composition α = (α1, α2, α3, . . .) (or, equivalently, the
sum of all parts of α) is called the size of α and denoted by |α|.

Consider the k-algebra k [[x]] := k [[x1, x2, x3, . . .]] of all formal power series in the indeterminates
x1, x2, x3, . . . over k; these series are infinite k-linear combinations

∑
α cαxα (with cα in k) of the monomials

xα where α ranges over all weak compositions. The product of two such formal power series is well-defined
by the usual multiplication rule.

The degree of a monomial xα is defined to be the number deg(xα) :=
∑
i αi ∈ N. Given a number d ∈ N,

we say that a formal power series f(x) =
∑
α cαxα ∈ k [[x]] (with cα in k) is homogeneous of degree d if

every weak composition α satisfying deg(xα) 6= d must satisfy cα = 0. In other words, a formal power series
is homogeneous of degree d if it is an infinite k-linear combination of monomials of degree d. Every formal
power series f ∈ k [[x]] can be uniquely represented as an infinite sum f0 + f1 + f2 + · · · , where each fd is
homogeneous of degree d; in this case, we refer to each fd as the d-th homogeneous component of f . Note
that this does not make k [[x]] into a graded k-module, since these sums f0 +f1 +f2 + · · · can have infinitely
many nonzero addends. Nevertheless, if f and g are homogeneous power series of degrees d and e, then fg
is homogeneous of degree d+ e.

A formal power series f(x) =
∑
α cαxα ∈ k [[x]] (with cα in k) is said to be of bounded degree if there exists

some bound d = d(f) ∈ N such that every weak composition α = (α1, α2, α3, . . .) satisfying deg(xα) > d
must satisfy cα = 0. Equivalently, a formal power series f ∈ k [[x]] is of bounded degree if all but finitely
many of its homogeneous components are zero. (For example, x2

1 + x2
2 + x2

3 + · · · and 1 + x1 + x2 + x3 + · · ·
are of bounded degree, while x1 + x1x2 + x1x2x3 + · · · and 1 + x1 + x2

1 + x3
1 + · · · are not.) It is easy to see

that the sum and the product of two power series of bounded degree also have bounded degree. Thus, the
formal power series of bounded degree form a k-subalgebra of k [[x]], which we call R(x). This subalgebra
R(x) is graded (by degree).

The symmetric group Sn permuting the first n variables x1, . . . , xn acts as a group of automorphisms
on R(x), as does the union S(∞) =

⋃
n≥0 Sn of the infinite ascending chain S0 ⊂ S1 ⊂ S2 ⊂ · · · of

symmetric groups65. This group S(∞) can also be described as the group of all permutations of the set
{1, 2, 3, . . .} which leave all but finitely many elements invariant. It is known as the finitary symmetric group
on {1, 2, 3, . . .}.

The group S(∞) also acts on the set of all weak compositions by permuting their entries:

σ (α1, α2, α3, . . .) =
(
ασ−1(1), ασ−1(2), ασ−1(3), . . .

)
for any weak composition (α1, α2, α3, . . .) and any σ ∈ S(∞).

These two actions are connected by the equality σ (xα) = xσα for any weak composition α and any
σ ∈ S(∞).

64The support of a sequence α = (α1, α2, α3, . . .) ∈ N∞ is defined to be the set of all positive integers i for which αi 6= 0.
65This ascending chain is constructed as follows: For every n ∈ N, there is an injective group homomorphism ιn : Sn → Sn+1

which sends every permutation σ ∈ Sn to the permutation ιn (σ) = τ ∈ Sn+1 defined by

τ (i) =

{
σ (i) , if i ≤ n;

i, if i = n+ 1
for all i ∈ {1, 2, . . . , n+ 1} .

These homomorphisms ιn for all n form a chain S0
ι0−→ S1

ι1−→ S2
ι2−→ · · · , which is often regarded as a chain of inclusions.
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Definition 2.1.1. The ring of symmetric functions in x with coefficients in k, denoted Λ = Λk = Λ(x) =
Λk(x), is the S(∞)-invariant subalgebra R(x)S(∞) of R(x):

Λ :=
{
f ∈ R(x) : σ (f) = f for all σ ∈ S(∞)

}
=

{
f =

∑
α

cαxα ∈ R(x) : cα = cβ if α, β lie in the same S(∞)-orbit

}
.

We refer to the elements of Λ as symmetric functions (over k); however, despite this terminology, they
are not functions in the usual sense.66

Note that Λ is a graded k-algebra, since Λ =
⊕

n≥0 Λn where Λn are the symmetric functions f =
∑
α cαxα

which are homogeneous of degree n, meaning deg(xα) = n for all cα 6= 0.

Exercise 2.1.2. Let f ∈ R (x). Let A be a commutative k-algebra, and a1, a2, . . . , ak be finitely many
elements of A. Show that substituting a1, a2, . . . , ak, 0, 0, 0, . . . for x1, x2, x3, . . . in f yields an infinite sum in
which all but finitely many addends are zero. Hence, this sum has a value in A, which is commonly denoted
by f (a1, a2, . . . , ak).

Definition 2.1.3. A partition λ = (λ1, λ2, . . . , λ`, 0, 0, . . .) is a weak composition whose entries weakly
decrease: λ1 ≥ · · · ≥ λ` > 0. The (uniquely defined) ` is said to be the length of the partition λ and denoted
by ` (λ). Thus, ` (λ) is the number of parts67 of λ. One sometimes omits trailing zeroes from a partition:
e.g., one can write the partition (3, 1, 0, 0, 0, . . .) as (3, 1). We will often (but not always) write λi for the
i-th entry of the partition λ (for instance, if λ = (5, 3, 1, 1), then λ2 = 3 and λ5 = 0). If λi is nonzero, we
will also call it the i-th part of λ. The sum λ1 + λ2 + · · ·+ λ` = λ1 + λ2 + · · · (where ` = ` (λ)) of all entries
of λ (or, equivalently, of all parts of λ) is the size |λ| of λ. For a given integer n, the partitions of size n are
referred to as the partitions of n. The empty partition () = (0, 0, 0, . . .) is denoted by ∅.

Partitions (as defined above) are sometimes called integer partitions in order to distinguish them from set
partitions.

Every weak composition α lies in the S(∞)-orbit of a unique partition λ = (λ1, λ2, . . . , λ`, 0, 0, . . .) with
λ1 ≥ · · · ≥ λ` > 0. For any partition λ, define the monomial symmetric function

(2.1.1) mλ :=
∑

α∈S(∞)λ

xα.

Letting λ run through the set Par of all partitions, this gives the monomial k-basis {mλ} of Λ. Letting λ
run only through the set Parn of partitions of n gives the monomial k-basis for Λn.

Example 2.1.4. For n = 3, one has

m(3) = x3
1 + x3

2 + x3
3 + · · · ,

m(2,1) = x2
1x2 + x1x

2
2 + x2

1x3 + x1x
2
3 + · · · ,

m(1,1,1) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 + x1x2x5 + · · · .

The monomial basis {mλ}λ∈Par of Λ is thus a graded basis68 of the graded k-module Λ. (Here and in the
following, when we say that a basis {uλ}λ∈Par indexed by Par is a graded basis of Λ, we tacitly understand
that Par is partitioned into Par0,Par1,Par2, . . ., so that for each n ∈ N, the subfamily {uλ}λ∈Parn

should be

a basis for Λn.)

Remark 2.1.5. We have defined the symmetric functions as the elements of R (x) invariant under the group
S(∞). However, they also are the elements of R (x) invariant under the group S∞ of all permutations of

the set {1, 2, 3, . . .} (which acts on R (x) in the same way as its subgroup S(∞) does).69

66Being power series, they can be evaluated at appropriate families of variables. But this does not make them functions (no
more than polynomials are functions). The terminology “symmetric function” is thus not well-chosen; but it is standard.

67Recall that a part of a partition means a nonzero entry of the partition.
68See Definition 1.3.21 for the meaning of “graded basis”.
69Proof. We need to show that Λ = R (x)S∞ . Since

Λ =

{
f =

∑
α

cαxα ∈ R (x) : cα = cβ if α, β lie in the same S(∞)-orbit

}
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Remark 2.1.6. It is sometimes convenient to work with finite variable sets x1, . . . , xn, which one justifies as
follows. Note that the algebra homomorphism

R(x)→ R(x1, . . . , xn) = k[x1, . . . , xn]

which sends xn+1, xn+2, . . . to 0 restricts to an algebra homomorphism

Λk(x)→ Λk(x1, . . . , xn) = k[x1, . . . , xn]Sn .

Furthermore, this last homomorphism is a k-module isomorphism when restricted to Λi for 0 ≤ i ≤ n, since
it sends the monomial basis elements mλ(x) to the monomial basis elements mλ(x1, . . . , xn). Thus, when
one proves identities in Λk(x1, . . . , xn) for all n, they are valid in Λ, that is, Λ is the inverse limit of the
Λ(x1, . . . , xn) in the category of graded k-algebras.70

This characterization of Λ as an inverse limit of the graded k-algebras Λ(x1, . . . , xn) can be used as an
alternative definition of Λ. The definitions used by Macdonald [142] and Wildon [224] are closely related (see
[142, §1.2, p. 19, Remark 1], [90, §A.11] and [224, §1.7] for discussions of this definition). It also suggests
that much of the theory of symmetric functions can be rewritten in terms of the Λ(x1, . . . , xn) (at the cost
of extra complexity); and this indeed is possible71.

One can also define a comultiplication on Λ as follows.
Consider the countably infinite set of variables (x,y) = (x1, x2, . . . , y1, y2, . . .). Although it properly

contains x, there are nevertheless bijections between x and (x,y), since these two variable sets have the
same cardinality.

Let R(x,y) denote the k-algebra of formal power series in (x,y) of bounded degree. Let S(∞,∞) be the
group of all permutations of {x1, x2, . . . , y1, y2, . . .} leaving all but finitely many variables invariant. Then,
S(∞,∞) acts on R(x,y) by permuting variables, in the same way as S(∞) acts on R(x). The fixed space

R(x,y)S(∞,∞) is a k-algebra, which we denote by Λ(x,y). This k-algebra Λ(x,y) is isomorphic to Λ = Λ(x),
since there is a bijection between the two sets of variables (x,y) and x. More explicitly: The map

(2.1.2) Λ = Λ(x)
∆−→ Λ(x,y),

f(x) = f(x1, x2, . . .) 7−→ f(x,y) = f(x1, x2, . . . , y1, y2, . . .)

is a graded k-algebra isomorphism. Here, f (x1, x2, . . . , y1, y2, . . .) means the result of choosing some bijection
φ : {x1, x2, x3, . . .} → {x1, x2, . . . , y1, y2, . . .} and substituting φ (xi) for every xi in f . (The choice of φ is
irrelevant since f is symmetric.72)

The group S(∞) × S(∞) is a subgroup of the group S(∞,∞) (via the obvious injection, which lets each
(σ, τ) ∈ S(∞)×S(∞) act by separately permuting the x1, x2, x3, . . . using σ and permuting the y1, y2, y3, . . .

using τ), and thus also acts on R(x,y). Hence, we have an inclusion of k-algebras Λ(x,y) = R(x,y)S(∞,∞) ⊂
R(x,y)S(∞)×S(∞) ⊂ R(x,y). The k-module R(x,y)S(∞)×S(∞) has k-basis {mλ(x)mµ(y)}λ,µ∈Par, since
mλ(x)mµ(y) is just the sum of all monomials in the S(∞)×S(∞)-orbit of xλyµ (and since any S(∞)×S(∞)-

orbit of monomials has exactly one representative of the form xλyµ with λ, µ ∈ Par). Here, of course, y
stands for the set of variables (y1, y2, y3, . . .), and we define yµ to be yµ1

1 yµ2

2 · · · .
On the other hand, the map

R(x)⊗R(x) −→ R(x,y),
f(x)⊗ g(x) 7−→ f(x)g(y)

and

R (x)S∞ =

{
f =

∑
α

cαxα ∈ R (x) : cα = cβ if α, β lie in the same S∞-orbit

}
,

this will follow immediately if we can show that two weak compositions α and β lie in the same S(∞)-orbit if and only if they

lie in the same S∞-orbit. But this is straightforward to check (in fact, two weak compositions α and β lie in the same orbit

under either group if and only if they have the same multiset of nonzero entries).
70Warning: The word “graded” here is crucial. Indeed, Λ is not the inverse limit of the Λ(x1, . . . , xn) in the category of

k-algebras. In fact, the latter limit is the k-algebra of all symmetric power series f in k [x] with the following property: For
each g ∈ N, there exists a d ∈ N such that every monomial in f that involves exactly g distinct indeterminates has degree at

most d. For example, the power series (1 + x1) (1 + x2) (1 + x3) · · · and m(1) + m(2,2) + m(3,3,3) + · · · satisfy this property,

although they do not lie in Λ (unless k is a trivial ring).
71See, for example, [119, Chapter SYM], [174] and [138, Chapters 10–11] for various results of this present chapter rewritten

in terms of symmetric polynomials in finitely many variables.
72To be more precise, the choice of φ is irrelevant because f is S∞-invariant, with the notations of Remark 2.1.5.
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is a k-algebra homomorphism. Restricting it to R(x)S(∞)⊗R(x)S(∞) , we obtain a k-algebra homomorphism

(2.1.3) Λ⊗ Λ = R(x)S(∞) ⊗R(x)S(∞) −→ R(x,y)S(∞)×S(∞) ,

which is an isomorphism because it sends the basis {mλ ⊗mµ}λ,µ∈Par of the k-module Λ ⊗ Λ to the basis
{mλ(x)mµ(y)}λ,µ∈Par of the k-module R(x,y)S(∞)×S(∞) . Thus, we get an inclusion of graded k-algebras

Λ(x,y) = R(x,y)S(∞,∞) ↪→ R(x,y)S(∞)×S(∞) ∼= Λ⊗ Λ

where the last isomorphism is the inverse of the one in (2.1.3). This gives a comultiplication

Λ = Λ(x)
∆−→ Λ(x,y) ↪→ Λ⊗ Λ,

f(x) = f(x1, x2, . . .) 7−→ f(x,y) = f(x1, x2, . . . , y1, y2, . . .).

Here, f (x1, x2, . . . , y1, y2, . . .) is understood as in (2.1.2).

Example 2.1.7. One has

∆m(2,1) = m(2,1)(x1, x2, . . . , y1, y2, . . .)

= x2
1x2 + x1x

2
2 + · · ·

+ x2
1y1 + x2

1y2 + · · ·
+ x1y

2
1 + x1y

2
2 + · · ·

+ y2
1y2 + y1y

2
2 + · · ·

= m(2,1)(x) +m(2)(x)m(1)(y) +m(1)(x)m(2)(y) +m(2,1)(y)

= m(2,1) ⊗ 1 +m(2) ⊗m(1) +m(1) ⊗m(2) + 1⊗m(2,1).

This example generalizes easily to the following formula:

(2.1.4) ∆mλ =
∑

(µ,ν):
µtν=λ

mµ ⊗mν ,

in which µ t ν is the partition obtained by taking the multiset union of the parts of µ and ν, and then
reordering them to make them weakly decreasing.

Checking that ∆ is coassociative amounts to checking that

(∆⊗ id) ◦∆f = f(x,y, z) = (id⊗∆) ◦∆f

inside Λ(x,y, z) as a subring of Λ⊗ Λ⊗ Λ.

The counit Λ
ε→ k is defined in the usual fashion for connected graded coalgebras, namely ε annihilates

I =
⊕

n>0 Λn, and ε is the identity on Λ0 = k; alternatively ε sends a symmetric function f(x) to its constant
term f(0, 0, . . .).

Note that ∆ is an algebra morphism Λ→ Λ⊗Λ because it is a composition of maps which are all algebra
morphisms. As the unit and counit axioms are easily checked, Λ becomes a connected graded k-bialgebra of
finite type, and hence also a Hopf algebra by Proposition 1.4.16. We will identify its antipode more explicitly
in Section 2.4 below.

2.2. Other Bases. We introduce the usual other bases of Λ, and explain their significance later.

Definition 2.2.1. Define the families of power sum symmetric functions pn, elementary symmetric functions
en, and complete homogeneous symmetric functions hn, for n = 1, 2, 3, . . . by

pn := xn1 + xn2 + · · · = m(n),(2.2.1)

en :=
∑

i1<···<in

xi1 · · ·xin = m(1n),(2.2.2)

hn :=
∑

i1≤···≤in

xi1 · · ·xin =
∑

λ∈Parn

mλ.(2.2.3)

Here, we are using the multiplicative notation for partitions: whenever (m1,m2,m3, . . .) is a weak compo-
sition, (1m12m23m3 · · · ) denotes the partition λ such that for every i, the multiplicity of the part i in λ
is mi. The imi satisfying mi = 0 are often omitted from this notation, and so the (1n) in (2.2.2) means
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n ones

. (For another example,
(
123143

)
=
(
12203143506070 · · ·

)
means the partition (4, 4, 4, 3, 1, 1).)

By convention, also define h0 = e0 = 1, and hn = en = 0 if n < 0. Extend these multiplicatively to partitions
λ = (λ1, λ2, . . . , λ`) with λ1 ≥ · · · ≥ λ` > 0 by setting

pλ := pλ1
pλ2
· · · pλ` ,

eλ := eλ1
eλ2
· · · eλ` ,

hλ := hλ1hλ2 · · ·hλ` .

Also define the Schur function

(2.2.4) sλ :=
∑
T

xcont(T )

where T runs through all column-strict tableaux of shape λ, that is, T is an assignment of entries in
{1, 2, 3, . . .} to the cells of the Ferrers diagram73 for λ, weakly increasing left-to-right in rows, and strictly in-
creasing top-to-bottom in columns. Here cont(T ) denotes the weak composition

(
|T−1(1)|, |T−1(2)|, |T−1(3)|, . . .

)
,

so that xcont(T ) =
∏
i x
|T−1(i)|
i . For example,74

T =

1 1 1 4 7
2 3 3
4 4 6
6 7

is a column-strict tableau of shape λ = (5, 3, 3, 2) with xcont(T ) = x3
1x

1
2x

2
3x

3
4x

0
5x

2
6x

2
7. If T is a column-strict

tableau, then the weak composition cont(T ) is called the content of T .

Column-strict tableaux are also known as semistandard tableaux , and some authors even omit the adjective
and just call them tableaux (e.g., Fulton in [73], a book entirely devoted to them).

73The Ferrers diagram of a partition λ is defined as the set of all pairs (i, j) ∈ {1, 2, 3, . . .}2 satisfying j ≤ λi. This is a

set of cardinality |λ|. Usually, one visually represents a Ferrers diagram by drawing its elements (i, j) as points on the plane,

although (unlike the standard convention for drawing points on the plane) one lets the x-axis go top-to-bottom (i.e., the point
(i+ 1, j) is one step below the point (i, j)), and the y-axis go left-to-right (i.e., the point (i, j + 1) is one step to the right of

the point (i, j)). (This is the so-called English notation, also known as the matrix notation because it is precisely the way one
labels the entries of a matrix. Other notations appear in literature, such as the French notation used, e.g., in Malvenuto’s [145],
and the Russian notation used, e.g., in parts of Kerov’s [108].) These points are drawn either as dots or as square boxes; in the

latter case, the boxes are centered at the points they represent, and they have sidelength 1 so that the boxes centered around

(i, j) and (i, j + 1) touch each other along a sideline. For example, the Ferrers diagram of the partition (3, 2, 2) is represented
as

• • •
• •
• •

(using dots) or as (using boxes).

The Ferrers diagram of a partition λ uniquely determines λ. One refers to the elements of the Ferrers diagram of λ as the

cells (or boxes) of this diagram (which is particularly natural when one represents them by boxes) or, briefly, as the cells of λ.
Notation like “west”, “north”, “left”, “right”, “row” and “column” concerning cells of Ferrers diagrams normally refers to their

visual representation.

Ferrers diagrams are also known as Young diagrams.
One can characterize the Ferrers diagrams of partitions as follows: A finite subset S of {1, 2, 3, . . .}2 is the Ferrers diagram of

some partition if and only if for every (i, j) ∈ S and every (i′, j′) ∈ {1, 2, 3, . . .}2 satisfying i′ ≤ i and j′ ≤ j, we have (i′, j′) ∈ S.

In other words, a finite subset S of {1, 2, 3, . . .}2 is the Ferrers diagram of some partition if and only if it is a lower set of the

poset {1, 2, 3, . . .}2 with respect to the componentwise order.
74To visually represent a column-strict tableau T of shape λ, we draw the same picture as when representing the Ferrers

diagram of λ, but with a little difference: a cell (i, j) is no longer represented by a dot or box, but instead is represented by the

entry of T assigned to this cell. Accordingly, the entry of T assigned to a given cell c is often referred to as the entry of T in c.
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Example 2.2.2. One has

m(1) = p(1) = e(1) = h(1) = s(1) = x1 + x2 + x3 + · · · ,
s(n) = hn,

s(1n) = en.

Example 2.2.3. One has for λ = (2, 1) that

p(2,1) = p2p1 = (x2
1 + x2

2 + · · · )(x1 + x2 + · · · )
= m(2,1) +m(3),

e(2,1) = e2e1 = (x1x2 + x1x3 + · · · )(x1 + x2 + · · · )
= m(2,1) + 3m(1,1,1),

h(2,1) = h2h1 = (x2
1 + x2

2 + · · ·+ x1x2 + x1x3 + · · · )(x1 + x2 + · · · )
= m(3) + 2m(2,1) + 3m(1,1,1),

and

s(2,1) = x2
1x2 +x2

1x3 +x1x
2
2 +x1x

2
3 +x1x2x3 +x1x2x3 +x1x2x4 + · · ·

11 11 12 13 12 13 12
2 3 2 3 3 2 4

= m(2,1) + 2m(1,1,1).

In fact, one has these transition matrices for n = 3 expressing elements in terms of the monomial basis mλ:


p(3) p(2,1) p(1,1,1)

m(3) 1 1 1
m(2,1) 0 1 3
m(1,1,1) 0 0 6

 ,


e(3) e(2,1) e(1,1,1)

m(3) 0 0 1
m(2,1) 0 1 3
m(1,1,1) 1 3 6

 ,


h(3) h(2,1) h(1,1,1)

m(3) 1 1 1
m(2,1) 1 2 3
m(1,1,1) 1 3 6

 ,


s(3) s(2,1) s(1,1,1)

m(3) 1 0 0
m(2,1) 1 1 0
m(1,1,1) 1 2 1

 .

Our next goal is to show that eλ, sλ, hλ (and, under some conditions, the pλ as well) all give bases for Λ.
However at the moment it is not yet even clear that sλ are symmetric!

Proposition 2.2.4. Schur functions sλ are symmetric, that is, they lie in Λ.

Proof. It suffices to show sλ is symmetric under swapping the variables xi, xi+1, by providing an involution
ι on the set of all column-strict tableaux T of shape λ which switches the cont(T ) for (i, i + 1) cont(T ).
Restrict attention to the entries i, i+ 1 in T , which must look something like this:

i i i i i+ 1 i+ 1
i i i i i i+ 1 i+ 1 i+ 1 i+ 1 i+ 1

i+ 1 i+ 1 i+ 1

One finds several vertically aligned pairs
i

i+ 1
. If one were to remove all such pairs, the remaining entries

would be a sequence of rows, each looking like this:

(2.2.5) i, i, . . . , i︸ ︷︷ ︸
r occurrences

, i+ 1, i+ 1, . . . , i+ 1︸ ︷︷ ︸
s occurrences

.

An involution due to Bender and Knuth tells us to leave fixed all the vertically aligned pairs
i

i+ 1
, but

change each sequence of remaining entries as in (2.2.5) to this:

i, i, . . . , i︸ ︷︷ ︸
s occurrences

, i+ 1, i+ 1, . . . , i+ 1︸ ︷︷ ︸
r occurrences

.
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For example, the above configuration in T would change to

i i i i i i+ 1
i i i i i+ 1 i+ 1 i+ 1 i+ 1 i+ 1 i+ 1

i i+ 1 i+ 1

It is easily checked that this map is an involution, and that it has the effect of swapping (i, i + 1) in
cont(T ). �

Remark 2.2.5. The symmetry of Schur functions allows one to reformulate them via column-strict tableaux
defined with respect to any total ordering L on the positive integers, rather than the usual 1 < 2 < 3 < · · · .
For example, one can use the reverse order75 · · · < 3 < 2 < 1, or even more exotic orders, such as

1 < 3 < 5 < 7 < · · · < 2 < 4 < 6 < 8 < · · · .
Say that an assignment T of entries in {1, 2, 3, . . .} to the cells of the Ferrers diagram of λ is an L-column-
strict tableau if it is weakly L-increasing left-to-right in rows, and strictly L-increasing top-to-bottom in
columns.

Proposition 2.2.6. For any total order L on the positive integers,

(2.2.6) sλ =
∑
T

xcont(T )

as T runs through all L-column-strict tableaux of shape λ.

Proof. Given a weak composition α = (α1, α2, . . .) with αn+1 = αn+2 = · · · = 0, assume that the integers
1, 2, . . . , n are totally ordered by L as w(1) <L · · · <L w(n) for some w in Sn. Then the coefficient of

xα = xα1
1 · · ·xαnn on the right side of (2.2.6) is the same as the coefficient of xw

−1(α) on the right side
of (2.2.4) defining sλ, which by symmetry of sλ is the same as the coefficient of xα on the right side of
(2.2.4). �

It is now not hard to show that pλ, eλ, sλ give bases by a triangularity argument76. For this purpose, let
us introduce a useful partial order on partitions.

Definition 2.2.7. The dominance or majorization order on Parn is the partial order on the set Parn whose
greater-or-equal relation . is defined as follows: For two partitions λ and µ of n, we set λ . µ (and say that
λ dominates, or majorizes, µ) if and only if

λ1 + λ2 + · · ·+ λk ≥ µ1 + µ2 + · · ·+ µk for k = 1, 2, . . . , n.

(The definition of dominance would not change if we would replace “for k = 1, 2, . . . , n” by “for every
positive integer k” or by “for every k ∈ N”.)

Definition 2.2.8. For a partition λ, its conjugate or transpose partition λt is the one whose Ferrers diagram
is obtained from that of λ by exchanging rows for columns (i.e., by flipping the diagram across the “main”,
i.e., top-right-to-bottom-left, diagonal)77. Alternatively, one has this formula for its i-th entry:

(2.2.7) (λt)i := |{j : λj ≥ i}|.

For example, (4, 3, 1)
t

= (3, 2, 2, 1), which can be easily verified by flipping the Ferrers diagram of (4, 3, 1)
across the “main diagonal”:

• • • •
• • •
•︸ ︷︷ ︸

Ferrers diagram of (4, 3, 1)

7−→

• • •
• •
• •
•︸ ︷︷ ︸

Ferrers diagram of (4, 2, 2, 1)

(or simply counting the boxes in each column of this diagram).

75This reverse order is what one uses when one defines a Schur function as a generating function for reverse semistandard
tableaux or column-strict plane partitions; see Stanley [206, Proposition 7.10.4].

76See Section 11.1 for some notions and notations that will be used in this argument.
77In more rigorous terms: The cells of the Ferrers diagram of λt are the pairs (j, i), where (i, j) ranges over all cells of λ. It

is easy to see that this indeed uniquely determines a partition λt.
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Exercise 2.2.9. Let λ, µ ∈ Parn. Show that λ . µ if and only if µt . λt.

Proposition 2.2.10. The families {eλ} and {sλ}, as λ runs through all partitions, are graded bases for the
graded k-module Λk whenever k is a commutative ring. The same holds for the family {pλ} when Q is a
subring of k.

Our proof of this proposition will involve three separate arguments, one for each of the three alleged bases
{sλ}, {eλ} and {pλ}; however, all these three arguments fit the same mold: Each one shows that the alleged
basis expands invertibly triangularly78 in the basis {mλ} (possibly after reindexing), with an appropriately
chosen partial order on the indexing set. We will simplify our life by restricting ourselves to Parn for a given
n ∈ N, and by stating the common part of the three arguments in a greater generality (so that we won’t
have to repeat it thrice):

Lemma 2.2.11. Let S be a finite poset. We write ≤ for the smaller-or-equal relation of S.
Let M be a free k-module with a basis (bλ)λ∈S . Let (aλ)λ∈S be a further family of elements of M .
For each λ ∈ S, let (gλ,µ)µ∈S be the family of the coefficients in the expansion of aλ ∈ M in the basis

(bµ)µ∈S ; in other words, let (gλ,µ)µ∈S ∈ kS be such that aλ =
∑
µ∈S

gλ,µbµ. Assume that:

• Assumption A1: Any λ ∈ S and µ ∈ S satisfy gλ,µ = 0 unless µ ≤ λ.
• Assumption A2: For any λ ∈ S, the element gλ,λ of k is invertible.

Then, the family (aλ)λ∈S is a basis of the k-module M .

Proof of Lemma 2.2.11. Use the notations of Section 11.1. Assumptions A1 and A2 yield that the S × S-
matrix (gλ,µ)(λ,µ)∈S×S ∈ kS×S is invertibly triangular. But the definition of the gλ,µ yields that the family

(aλ)λ∈S expands in the family (bλ)λ∈S through this matrix (gλ,µ)(λ,µ)∈S×S . Since the latter matrix is

invertibly triangular, this shows that the family (aλ)λ∈S expands invertibly triangularly in the family (bλ)λ∈S .
Therefore, Corollary 11.1.19(e) (applied to (es)s∈S = (aλ)λ∈S and (fs)s∈S = (bλ)λ∈S) shows that (aλ)λ∈S is
a basis of the k-module M (since (bλ)λ∈S is a basis of the k-module M). �

Proof of Proposition 2.2.10. We can restrict our attention to each homogeneous component Λn and partitions
λ of n. Thus, we have to prove that, for each n ∈ N, the families (eλ)λ∈Parn

and (sλ)λ∈Parn
are bases of the

k-module Λn, and that the same holds for (pλ)λ∈Parn
if Q is a subring of k.

Fix n ∈ N. We already know that (mλ)λ∈Parn
is a basis of the k-module Λn.

1. We shall first show that the family (sλ)λ∈Parn
is a basis of the k-module Λn.

For every partition λ, we have sλ =
∑
µ∈ParKλ,µmµ, where the coefficient Kλ,µ is the Kostka

number counting the column-strict tableaux T of shape λ having cont(T ) = µ; this follows because
both sides are symmetric functions, and Kλ,µ is the coefficient of xµ on both sides79. Thus, for every
λ ∈ Parn, one has

(2.2.8) sλ =
∑

µ∈Parn

Kλ,µmµ

(since sλ is homogeneous of degree n). 80 But if λ and µ are partitions satisfying Kλ,µ 6= 0,
then there exists a column-strict tableau T of shape λ having cont(T ) = µ (since Kλ,µ counts such
tableaux), and therefore we must have λ1 + λ2 + · · · + λk ≥ µ1 + µ2 + · · · + µk for each positive
integer k (since the entries 1, 2, . . . , k in T must all lie within the first k rows of λ); in other words,
λ . µ (if Kλ,µ 6= 0) 81. In other words,

(2.2.9) any λ ∈ Parn and µ ∈ Parn satisfy Kλ,µ = 0 unless λ . µ.

78i.e., triangularly, with all diagonal coefficients being invertible
79In general, in order to prove that two symmetric functions f and g are equal, it suffices to show that, for every µ ∈ Par,

the coefficients of xµ in f and in g are equal. (Indeed, all other coefficients are determined by these coefficients because of the

symmetry.)
80See Exercise 2.2.13(c) below for a detailed proof of (2.2.8).
81See Exercise 2.2.13(d) below for a detailed proof of this fact.
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One can also check that Kλ,λ = 1 for any λ ∈ Parn
82. Hence,

(2.2.10) for any λ ∈ Parn , the element Kλ,λ of k is invertible.

Now, let us regard the set Parn as a poset, whose greater-or-equal relation is .. Lemma 2.2.11
(applied to S = Parn, M = Λn, aλ = sλ, bλ = mλ and gλ,µ = Kλ,µ) shows that the family (sλ)λ∈Parn

is a basis of the k-module Λn (because the Assumptions A1 and A2 of Lemma 2.2.11 are satisfied83).
2. Before we show that (eλ)λ∈Parn

is a basis, we define a few notations regarding integer matrices. A

{0, 1}-matrix means a matrix whose entries belong to the set {0, 1}. If A ∈ N`×m is a matrix, then
the row sums of A means the `-tuple (r1, r2, . . . , r`), where each ri is the sum of all entries in the
i-th row of A; similarly, the column sums of A means the m-tuple (c1, c2, . . . , cm), where each cj
is the sum of all entries in the j-th column of A. (For instance, the row sums of the {0, 1}-matrix(

0 1 1 0 0
1 1 0 1 0

)
is (2, 3), whereas its column sums is (1, 2, 1, 1, 0).) We identify any k-tuple of

nonnegative integers (a1, a2, . . . , ak) with the weak composition (a1, a2, . . . , ak, 0, 0, 0, . . .); thus, the
row sums and the column sums of a matrix in N`×m can be viewed as weak compositions. (For

example, the column sums of the matrix

(
0 1 1 0 0
1 1 0 1 0

)
is the 5-tuple (1, 2, 1, 1, 0), and can be

viewed as the weak composition (1, 2, 1, 1, 0, 0, 0, . . .).)
For every λ ∈ Parn, one has

(2.2.11) eλ =
∑

µ∈Parn

aλ,µmµ,

where aλ,µ counts {0, 1}-matrices (of size ` (λ) × ` (µ)) having row sums λ and column sums µ:
indeed, when one expands eλ1

eλ2
· · · , choosing the monomial xj1 . . . xjλi in the eλi factor corresponds

to putting 1’s in the i-th row and columns j1, . . . , jλi of the {0, 1}-matrix 84. Applying (2.2.11) to
λt instead of λ, we see that

(2.2.12) eλt =
∑

µ∈Parn

aλt,µmµ

for every λ ∈ Parn.
It is not hard to check85 that aλ,µ vanishes unless λt . µ. Applying this to λt instead of λ, we

conclude that

(2.2.13) any λ ∈ Parn and µ ∈ Parn satisfy aλt,µ = 0 unless λ . µ.

Moreover, one can show that aλt,λ = 1 for each λ ∈ Parn
86. Hence,

(2.2.14) for any λ ∈ Parn , the element aλt,λ of k is invertible.

Now, let us regard the set Parn as a poset, whose greater-or-equal relation is .. Lemma 2.2.11
(applied to S = Parn, M = Λn, aλ = eλt , bλ = mλ and gλ,µ = aλt,µ) shows that the family
(eλt)λ∈Parn

is a basis of the k-module Λn (because the Assumptions A1 and A2 of Lemma 2.2.11 are

satisfied87). Hence, (eλ)λ∈Parn
is a basis of Λn.

3. Assume now that Q is a subring of k. For every λ ∈ Parn, one has

(2.2.15) pλ =
∑

µ∈Parn

bλ,µmµ,

82See Exercise 2.2.13(e) below for a proof of this.
83Indeed, they follow from (2.2.9) and (2.2.10), respectively.
84See Exercise 2.2.13(g) below for a detailed proof of (2.2.11).
85See Exercise 2.2.13(h) below for a proof of this. This is the easy implication in the Gale-Ryser Theorem. (The hard

implication is the converse: It says that if λ, µ ∈ Parn satisfy λt . µ, then there exists a {0, 1}-matrix having row sums λ and

column sums µ, so that aλ,µ is a positive integer. This is proven, e.g., in [114], in [46, Theorem 2.4] and in [224, Section 5.2].)
86See Exercise 2.2.13(i) below for a proof of this.
87Indeed, they follow from (2.2.13) and (2.2.14), respectively.
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where bλ,µ counts the ways to partition the nonzero parts λ1, . . . , λ` (where ` = ` (λ)) into blocks
such that the sums of the blocks give µ; more formally, bλ,µ is the number of maps ϕ : {1, 2, . . . , `} →
{1, 2, 3, . . .} having

µj =
∑

i:ϕ(i)=j

λi for all j = 1, 2, . . .

88. Again it is not hard to check that

(2.2.16) any λ ∈ Parn and µ ∈ Parn satisfy bλ,µ = 0 unless µ . λ.

89 Furthermore, for any λ ∈ Parn, the element bλ,λ is a positive integer90, and thus invertible in k
(since Q is a subring of k). Thus,

(2.2.17) for any λ ∈ Parn , the element bλ,λ of k is invertible

(although we don’t always have bλ,λ = 1 this time).
Now, let us regard the set Parn as a poset, whose smaller-or-equal relation is .. Lemma 2.2.11

(applied to S = Parn, M = Λn, aλ = pλ, bλ = mλ and gλ,µ = bλ,µ) shows that the family (pλ)λ∈Parn

is a basis of the k-module Λn (because the Assumptions A1 and A2 of Lemma 2.2.11 are satisfied91).

�

Remark 2.2.12. When Q is not a subring of k, the family {pλ} is not (in general) a basis of Λk; for instance,
e2 = 1

2

(
p(1,1) − p2

)
∈ ΛQ is not in the Z-span of this family. However, if we define bλ,µ as in the above

proof, then the Z-linear span of all pλ equals the Z-linear span of all bλ,λmλ. Indeed, if µ = (µ1, µ2, . . . , µk)
with k = `(µ), then bµ,µ is the size of the subgroup of Sk consisting of all permutations σ ∈ Sk having each
i satisfy µσ(i) = µi

92. As a consequence, bµ,µ divides bλ,µ for every partition µ of the same size as λ

(because this group acts93 freely on the set which is enumerated by bλ,µ) 94. Hence, the Parn×Parn-matrix(
bλ,µ
bµ,µ

)
(λ,µ)∈Parn×Parn

has integer entries. Furthermore, this matrix is unitriangular95 (indeed, (2.2.16)

shows that it is triangular, but its diagonal entries are clearly 1) and thus invertibly triangular. But (2.2.15)
shows that the family (pλ)λ∈Parn

expands in the family (bλ,λmλ)λ∈Parn
through this matrix. Hence, the

family (pλ)λ∈Parn
expands invertibly triangularly in the family (bλ,λmλ)λ∈Parn

. Thus, Corollary 11.1.19(b)

(applied to Z, Λn, Parn, (pλ)λ∈Parn
and (bλ,λmλ)λ∈Parn

instead of k, M , S, (es)s∈S and (fs)s∈S) shows that

the Z-submodule of Λn spanned by (pλ)λ∈Parn
is the Z-submodule of Λn spanned by (bλ,λmλ)λ∈Parn

.

The purpose of the following exercise is to fill in some details omitted from the proof of Proposition 2.2.10.

Exercise 2.2.13. Let n ∈ N.

(a) Show that every f ∈ Λn satisfies

f =
∑

µ∈Parn

([xµ] f)mµ.

Here, [xµ] f denotes the coefficient of the monomial xµ in the power series f .

Now, we introduce a notation (which generalizes the notation Kλ,µ from the proof of Proposition 2.2.10):
For any partition λ and any weak composition µ, we let Kλ,µ denote the number of all column-strict tableaux
T of shape λ having cont (T ) = µ.

(b) Prove that this number Kλ,µ is well-defined (i.e., there are only finitely many column-strict tableaux
T of shape λ having cont (T ) = µ).

88See Exercise 2.2.13(k) below for a detailed proof of (2.2.15) (and see Exercise 2.2.13(j) for a proof that the numbers bλ,µ
are well-defined).

89See Exercise 2.2.13(l) below for a proof of this.
90This is proven in Exercise 2.2.13(m) below.
91Indeed, they follow from (2.2.16) and (2.2.17), respectively.
92See Exercise 2.2.13(n) below for a proof of this.
93Specifically, an element σ of the group takes ϕ : {1, 2, . . . , `} → {1, 2, 3, . . .} to σ ◦ ϕ.
94See Exercise 2.2.13(o) below for a detailed proof of this.
95Here, we are using the terminology defined in Section 11.1, and we are regarding Parn as a poset whose smaller-or-equal

relation is ..
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(c) Show that sλ =
∑
µ∈Parn

Kλ,µmµ for every λ ∈ Parn.

(d) Show that Kλ,µ = 0 for any partitions λ ∈ Parn and µ ∈ Parn that don’t satisfy λ . µ.
(e) Show that Kλ,λ = 1 for any λ ∈ Parn.

Next, we recall a further notation: For any two partitions λ and µ, we let aλ,µ denote the number of all
{0, 1}-matrices of size ` (λ)×` (µ) having row sums λ and column sums µ. (See the proof of Proposition 2.2.10
for the concepts of {0, 1}-matrices and of row sums and column sums.)

(f) Prove that this number aλ,µ is well-defined (i.e., there are only finitely many {0, 1}-matrices of size
` (λ)× ` (µ) having row sums λ and column sums µ).

(g) Show that eλ =
∑
µ∈Parn

aλ,µmµ for every λ ∈ Parn.

(h) Show that aλ,µ = 0 for any partitions λ ∈ Parn and µ ∈ Parn that don’t satisfy λt . µ.
(i) Show that aλt,λ = 1 for any λ ∈ Parn.

Next, we introduce a further notation (which generalizes the notation bλ,µ from the proof of Propo-
sition 2.2.10): For any partition λ and any weak composition µ, we let bλ,µ be the number of all maps

ϕ : {1, 2, . . . , `} → {1, 2, 3, . . .} satisfying

µj =
∑

i∈{1,2,...,`};
ϕ(i)=j

λi for all j ≥ 1

, where ` = ` (λ).

(j) Prove that this number bλ,µ is well-defined (i.e., there are only finitely many maps ϕ : {1, 2, . . . , `} →

{1, 2, 3, . . .} satisfying

µj =
∑

i∈{1,2,...,`};
ϕ(i)=j

λi for all j ≥ 1

).

(k) Show that pλ =
∑
µ∈Parn

bλ,µmµ for every λ ∈ Parn.

(l) Show that bλ,µ = 0 for any partitions λ ∈ Parn and µ ∈ Parn that don’t satisfy µ . λ.
(m) Show that bλ,λ is a positive integer for any λ ∈ Parn.
(n) Show that for any partition µ = (µ1, µ2, . . . , µk) ∈ Parn with k = ` (µ), the integer bµ,µ is the size

of the subgroup of Sk consisting of all permutations σ ∈ Sk having each i satisfy µσ(i) = µi. (In
particular, show that this subgroup is indeed a subgroup.)

(o) Show that bµ,µ | bλ,µ for every λ ∈ Parn and µ ∈ Parn.

The bases {pλ} and {eλ} of Λ are two examples of multiplicative bases: these are bases constructed from a
sequence v1, v2, v3, . . . of symmetric functions by taking all possible finite products. We will soon encounter
another example. First, let us observe that the finite products of a sequence v1, v2, v3, . . . of symmetric
functions form a basis of Λ if and only if the sequence is an algebraically independent generating set of Λ.
This holds more generally for any commutative algebra, as the following simple exercise shows:

Exercise 2.2.14. Let A be a commutative k-algebra. Let v1, v2, v3, . . . be some elements of A.
For every partition λ, define an element vλ ∈ A by vλ = vλ1

vλ2
· · · vλ`(λ)

. Prove the following:

(a) The k-subalgebra of A generated by v1, v2, v3, . . . is the k-submodule of A spanned by the family
(vλ)λ∈Par.

(b) The elements v1, v2, v3, . . . generate the k-algebra A if and only if the family (vλ)λ∈Par spans the
k-module A.

(c) The elements v1, v2, v3, . . . are algebraically independent over k if and only if the family (vλ)λ∈Par is
k-linearly independent.

The next exercise states two well-known identities for the generating functions of the sequences (e0, e1, e2, . . .)
and (h0, h1, h2, . . .), which will be used several times further below:

Exercise 2.2.15. In the ring of formal power series (k [[x]]) [[t]], prove the two identities

(2.2.18)

∞∏
i=1

(1− xit)−1
= 1 + h1 (x) t+ h2 (x) t2 + · · · =

∑
n≥0

hn (x) tn

and

(2.2.19)

∞∏
i=1

(1 + xit) = 1 + e1 (x) t+ e2 (x) t2 + · · · =
∑
n≥0

en (x) tn.
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2.3. Comultiplications. Thinking about comultiplication Λ
∆→ Λ ⊗ Λ on Schur functions forces us to

immediately confront the following.

Definition 2.3.1. For partitions µ and λ say that µ ⊆ λ if µi ≤ λi for i = 1, 2, . . .. In other words, two
partitions µ and λ satisfy µ ⊆ λ if and only if the Ferrers diagram for µ is a subset of the Ferrers diagram
of λ. In this case, define the skew (Ferrers) diagram λ/µ to be their set difference.96

Then define the skew Schur function sλ/µ(x) to be the sum sλ/µ :=
∑
T xcont(T ), where the sum ranges

over all column-strict tableaux T of shape λ/µ, that is, assignments of a value in {1, 2, 3, . . .} to each cell of
λ/µ, weakly increasing left-to-right in rows, and strictly increasing top-to-bottom in columns.

Example 2.3.2. Let λ = (5, 3, 3, 2) and µ = (3, 1, 1, 0). Then, µ ⊆ λ. The Ferrers diagrams for λ and µ
and the skew Ferrers diagram for λ/µ look as follows:

• • • • •
• • •
• • •
• •︸ ︷︷ ︸

Ferrers diagram of λ

• • •
•
•

︸ ︷︷ ︸
Ferrers diagram of µ

· · · • •
· • •
· • •
• •︸ ︷︷ ︸

skew Ferrers diagram of λ/µ

(where the small dots represent boxes removed from the diagram). The filling

T =

· · · 2 5
· 1 1
2 2 4
4 5

is a column-strict tableau of shape λ/µ = (5, 3, 3, 2)/(3, 1, 0, 0) and it has xcont(T ) = x2
1x

3
2x

0
3x

2
4x

2
5.

On the other hand, if we took λ = (5, 3, 1) and µ = (1, 1, 1, 1), then we wouldn’t have µ ⊆ λ, since
µ4 = 1 > 0 = λ4.

Remark 2.3.3. If µ and λ are partitions such that µ ⊆ λ, then sλ/µ ∈ Λ. (This is proven similarly as
Proposition 2.2.4.) Actually, if µ ⊆ λ, then sλ/µ ∈ Λ|λ/µ|, where |λ/µ| denotes the number of cells of the
skew shape λ/µ (so |λ/µ| = |λ| − |µ|).

It is customary to define sλ/µ to be 0 if we don’t have µ ⊆ λ. This can also be seen by a literal reading

of the definition sλ/µ :=
∑
T xcont(T ), as long as we understand that there are no column-strict tableaux of

shape λ/µ when λ/µ is not defined.
Clearly, every partition λ satisfies sλ = sλ/∅.
It is easy to see that two partitions λ and µ satisfy µ ⊆ λ if and only if they satisfy µt ⊆ λt.

Exercise 2.3.4. (a) State and prove an analogue of Proposition 2.2.6 for skew Schur functions.
(b) Let λ, µ, λ′ and µ′ be partitions such that µ ⊆ λ and µ′ ⊆ λ′. Assume that the skew Ferrers

diagram λ′/µ′ can be obtained from the skew Ferrers diagram λ/µ by a 180◦ rotation.97 Prove that
sλ/µ = sλ′/µ′ .

Exercise 2.3.5. Let λ and µ be two partitions, and let k ∈ N be such that98 µk ≥ λk+1. Let F be the skew
Ferrers diagram λ/µ. Let Frows≤k denote the subset of F consisting of all (i, j) ∈ F satisfying i ≤ k. Let
Frows>k denote the subset of F consisting of all (i, j) ∈ F satisfying i > k. Let α and β be two partitions
such that β ⊆ α and such that the skew Ferrers diagram α/β can be obtained from Frows≤k by parallel

96In other words, the skew Ferrers diagram λ/µ is the set of all (i, j) ∈ {1, 2, 3, . . .}2 satisfying µi < j ≤ λi.
While the Ferrers diagram for a single partition λ uniquely determines λ, the skew Ferrers diagram λ/µ does not uniquely

determine µ and λ. (For instance, it is empty whenever λ = µ.) When one wants to keep µ and λ in memory, one speaks of the

skew shape λ/µ; this simply means the pair (µ, λ). Every notion defined for skew Ferrers diagrams also makes sense for skew

shapes, because to any skew shape λ/µ we can assign the skew Ferrers diagram λ/µ (even if not injectively). For instance, the
cells of the skew shape λ/µ are the cells of the skew Ferrers diagram λ/µ.

One can characterize the skew Ferrers diagrams as follows: A finite subset S of {1, 2, 3, . . .}2 is a skew Ferrers diagram (i.e.,

there exist two partitions λ and µ such that µ ⊆ λ and such that S is the skew Ferrers diagram λ/µ) if and only if for every

(i, j) ∈ S, every (i′, j′) ∈ {1, 2, 3, . . .}2 and every (i′′, j′′) ∈ S satisfying i′′ ≤ i′ ≤ i and j′′ ≤ j′ ≤ j, we have (i′, j′) ∈ S.
97For example, this happens when λ = (3, 2), µ = (1), λ′ = (5, 4) and µ′ = (3, 1).
98As usual, we write νk for the k-th entry of a partition ν.
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translation. Let γ and δ be two partitions such that δ ⊆ γ and such that the skew Ferrers diagram γ/δ can
be obtained from Frows>k by parallel translation.99 Prove that sλ/µ = sα/βsγ/δ.

Proposition 2.3.6. The comultiplication Λ
∆→ Λ ⊗ Λ has the following effect on the symmetric functions

discussed so far100:

(i) ∆pn = 1⊗ pn + pn ⊗ 1 for every n ≥ 1, that is, the power sums pn are primitive.
(ii) ∆en =

∑
i+j=n ei ⊗ ej for every n ∈ N.

(iii) ∆hn =
∑
i+j=n hi ⊗ hj for every n ∈ N.

(iv) ∆sλ =
∑
µ⊆λ sµ ⊗ sλ/µ for any partition λ.

(v) ∆sλ/ν =
∑

µ∈Par:
ν⊆µ⊆λ

sµ/ν ⊗ sλ/µ for any partitions λ and ν.

Proof. Recall that ∆ sends f(x) 7→ f(x,y), and one can easily check that

(i) pn(x,y) =
∑
i x

n
i +

∑
i y
n
i = pn(x) · 1 + 1 · pn(y) for every n ≥ 1;

(ii) en(x,y) =
∑
i+j=n ei(x)ej(y) for every n ∈ N;

(iii) hn(x,y) =
∑
i+j=n hi(x)hj(y) for every n ∈ N.

For assertion (iv), note that by (2.2.6), one has

(2.3.1) sλ(x,y) =
∑
T

(x,y)cont(T ),

where the sum is over column-strict tableaux T of shape λ having entries in the linearly ordered alphabet

(2.3.2) x1 < x2 < · · · < y1 < y2 < · · · .
101 For example,

T =

x1 x1 x1 y2 y5

x2 y1 y1

y2 y2 y4

y4 y5

is such a tableau of shape λ = (5, 3, 3, 2). Note that the restriction of T to the alphabet x gives a column-
strict tableau Tx of some shape µ ⊆ λ, and the restriction of T to the alphabet y gives a column-strict
tableau Ty of shape λ/µ (e.g. for T in the example above, the tableau Ty appeared in Example 2.3.2).
Consequently, one has

sλ(x,y) =
∑
T

xcont(Tx) · ycont(Ty)

=
∑
µ⊆λ

(∑
Tx

xcont(Tx)

)∑
Ty

ycont(Ty)

 =
∑
µ⊆λ

sµ(x)sλ/µ(y).(2.3.3)

99Here is an example of the situation: λ = (6, 5, 5, 2, 2), µ = (4, 4, 3, 1), k = 3 (satisfying µk = µ3 = 3 ≥ 2 = λ4 = λk+1),

α = (3, 2, 2), β = (1, 1), γ = (2, 2), and δ = (1).
100The abbreviated summation indexing

∑
i+j=n ti,j used here is intended to mean∑

(i,j)∈N2;
i+j=n

ti,j .

101Here, (x,y)cont(T ) means the monomial
∏
a∈A a

|T−1(a)|, where A denotes the totally ordered alphabet x1 < x2 < · · · <
y1 < y2 < · · · . In other words, (x,y)cont(T ) is the product of all entries of the tableau T (which is a monomial, since the entries

of T are not numbers but variables).

The following rather formal argument should allay any doubts as to why (2.3.1) holds: Let L denote the totally ordered
set which is given by the set {1, 2, 3, . . .} of positive integers, equipped with the total order 1 <L 3 <L 5 <L 7 <L · · · <L
2 <L 4 <L 6 <L 8 <L · · · . Then, (2.2.6) yields sλ =

∑
T xcont(T ) as T runs through all L-column-strict tableaux of shape λ.

Substituting the variables x1, y1, x2, y2, x3, y3, . . . for x1, x2, x3, x4, x5, x6, . . . (that is, substituting xi for x2i−1 and yi for x2i)

in this equality, we obtain (2.3.1).



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 57

Assertion (v) is obvious in the case when we don’t have ν ⊆ λ (in fact, in this case, both sλ/ν and∑
µ∈Par:
ν⊆µ⊆λ

sµ/ν ⊗ sλ/µ are clearly zero). In the remaining case, the proof of assertion (v) is similar to that of

(iv). (Of course, the tableaux T and Tx now have skew shapes λ/ν and µ/ν, and instead of (2.2.6), we need
to use the answer to Exercise 2.3.4(a).) �

Notice that parts (ii) and (iii) of Proposition 2.3.6 are particular cases of part (iv), since hn = s(n) and
en = s(1n).

Exercise 2.3.7. (a) Show that the Hopf algebra Λ is cocommutative.
(b) Show that ∆sλ/ν =

∑
µ∈Par:
ν⊆µ⊆λ

sλ/µ ⊗ sµ/ν for any partitions λ and ν.

Exercise 2.3.8. Let n ∈ N. Consider the finite variable set (x1, x2, . . . , xn) as a subset of x = (x1, x2, x3, . . .).
Recall that f (x1, x2, . . . , xn) is a well-defined element of k [x1, x2, . . . , xn] for every f ∈ R (x) (and therefore
also for every f ∈ Λ, since Λ ⊂ R (x)), according to Exercise 2.1.2.

(a) Show that any two partitions λ and µ satisfy

sλ/µ (x1, x2, . . . , xn) =
∑

T is a column-strict
tableau of shape λ/µ;
all entries of T belong

to {1,2,...,n}

xcont(T ).

(b) If λ is a partition having more than n parts102, then show that sλ (x1, x2, . . . , xn) = 0.

Remark 2.3.9. An analogue of Proposition 2.2.10 holds for symmetric polynomials in finitely many variables:
Let N ∈ N. Then, we have

(a) The family {mλ (x1, x2, . . . , xN )}, as λ runs through all partitions having length ≤ N , is a graded

basis of the graded k-module Λ (x1, x2, . . . , xN ) = k [x1, x2, . . . , xN ]
SN .

(b) For any partition λ having length > N , we have mλ (x1, x2, . . . , xN ) = 0.
(c) The family {eλ (x1, x2, . . . , xN )}, as λ runs through all partitions whose parts are all ≤ N , is a graded

basis of the graded k-module Λ (x1, x2, . . . , xN ).
(d) The family {sλ (x1, x2, . . . , xN )}, as λ runs through all partitions having length ≤ N , is a graded

basis of the graded k-module Λ (x1, x2, . . . , xN ).
(e) If Q is a subring of k, then the family {pλ (x1, x2, . . . , xN )}, as λ runs through all partitions having

length ≤ N , is a graded basis of the graded k-module Λ (x1, x2, . . . , xN ).
(f) If Q is a subring of k, then the family {pλ (x1, x2, . . . , xN )}, as λ runs through all partitions whose

parts are all ≤ N , is a graded basis of the graded k-module Λ (x1, x2, . . . , xN ).

Indeed, the claims (a) and (b) are obvious, while the claims (c), (d) and (e) are proven similarly to our proof
of Proposition 2.2.10. We leave the proof of (f) to the reader; this proof can also be found in [138, Theorem
10.86]103.

Claim (c) can be rewritten as follows: The elementary symmetric polynomials ei (x1, x2, . . . , xN ), for
i ∈ {1, 2, . . . , N}, form an algebraically independent generating set of Λ (x1, x2, . . . , xN ). This is precisely
the well-known theorem (due to Gauss)104 that every symmetric polynomial in N variables x1, x2, . . . , xN
can be written uniquely as a polynomial in the N elementary symmetric polynomials.

2.4. The antipode, the involution ω, and algebra generators. Since Λ is a connected graded k-

bialgebra, it will have an antipode Λ
S→ Λ making it a Hopf algebra by Proposition 1.4.16. However, we can

identify S more explicitly now.

Proposition 2.4.1. Each of the families {en}n=1,2,... and {hn}n=1,2,... are algebraically independent, and
generate Λk as a polynomial algebra for any commutative ring k. The same holds for {pn}n=1,2,... when Q
is a subring of k.

Furthermore, the antipode S acts as follows:

102Recall that the parts of a partition are its nonzero entries.
103See [138, Remark 10.76] for why [138, Theorem 10.86] is equivalent to our claim (f).
104See, e.g., [40, Symmetric Polynomials, Theorem 5 and Remark 17] or [221, §5.3] or [26, Theorem 1]. In a slightly different

form, it also appears in [119, Theorem (5.10)].
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(i) S(pn) = −pn for every positive integer n.
(ii) S(en) = (−1)nhn for every n ∈ N.
(iii) S(hn) = (−1)nen for every n ∈ N.

Proof. The assertion that {en}n≥1 are algebraically independent and generate Λ is equivalent to Proposi-
tion 2.2.10 asserting that {eλ}λ∈Par is a basis for Λ. (Indeed, this equivalence follows from parts (b) and (c)
of Exercise 2.2.14, applied to vn = en and vλ = eλ.) Thus, the former assertion is true. If Q is a subring
of k, then a similar argument (using pn and pλ instead of en and eλ) shows that {pn}n≥1 are algebraically
independent and generate Λ.

The assertion S(pn) = −pn follows from Proposition 1.4.17 since pn is primitive by Proposition 2.3.6(i).
For the remaining assertions, start with the easy generating function identities105

H(t) :=

∞∏
i=1

(1− xit)−1 = 1 + h1(x)t+ h2(x)t2 + · · · =
∑
n≥0

hn(x)tn;(2.4.1)

E(t) :=

∞∏
i=1

(1 + xit) = 1 + e1(x)t+ e2(x)t2 + · · · =
∑
n≥0

en(x)tn.(2.4.2)

These show that

(2.4.3) 1 = E(−t)H(t) =

∑
n≥0

en(x)(−t)n
∑

n≥0

hn(x)tn

 .

Hence, equating coefficients of powers of t, we see that for n = 0, 1, 2, . . . we have

(2.4.4)
∑
i+j=n

(−1)ieihj = δ0,n.

This lets us recursively express the en in terms of hn and vice-versa:

e0 = 1 = h0;(2.4.5)

en = en−1h1 − en−2h2 + en−3h3 − · · · ;(2.4.6)

hn = hn−1e1 − hn−2e2 + hn−3e3 − · · ·(2.4.7)

for n = 1, 2, 3, . . . Now, let us use the algebraic independence of the generators {en} for Λ to define a
k-algebra endomorphism

Λ
ω→ Λ,

en 7−→ hn (for positive integers n).

Then,

ω (en) = hn for each n ≥ 0(2.4.8)

(indeed, this holds for n > 0 by definition, and for n = 0 because ω (e0) = ω (1) = 1 = h0). Hence, the
identical form of the two recursions (2.4.6) and (2.4.7) shows that

ω (hn) = en for each n ≥ 0(2.4.9)

106. Combining this with (2.4.8), we conclude that (ω ◦ ω) (en) = en for each n ≥ 0. Therefore, the two
k-algebra homomorphisms ω ◦ ω : Λ → Λ and id : Λ → Λ agree on each element of the generating set

105See the solution to Exercise 2.2.15 for the proofs of the identities.
106Here is this argument in more detail: We must show that ω (hn) = en for each n ≥ 0. We shall prove this by strong

induction on n. Thus, we fix an n ≥ 0, and assume as induction hypothesis that ω (hm) = em for each m < n. We must then

prove that ω (hn) = en. If n = 0, then this is obvious; thus, assume WLOG that n > 0. Hence,

ω (hn) = ω (hn−1e1 − hn−2e2 + hn−3e3 − · · · ) (by (2.4.7))

= ω (hn−1)ω (e1)− ω (hn−2)ω (e2) + ω (hn−3)ω (e3)− · · · (since ω is a k-algebra homomorphism)

= en−1ω (e1)− en−2ω (e2) + en−3ω (e3)− · · · (since ω (hm) = em for each m < n)

= en−1h1 − en−2h2 + en−3h3 − · · · (since (2.4.8) shows that ω (em) = hm for each m ≥ 0)

= en (by (2.4.6)) ,

as desired. This completes the induction step.
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{en} of Λ. Hence, they are equal, i.e., we have ω ◦ ω = id. Therefore ω is an involution and therefore a
k-algebra automorphism of Λ. This, in turn, yields that the {hn} (being the images of the {en} under this
automorphism) are another algebraically independent generating set for Λ.

For the assertion about the antipode S applied to en or hn, note that the coproduct formulas for en, hn
in Proposition 2.3.6(ii),(iii) show that the defining relations for their antipodes (1.4.4) will in this case be∑

i+j=n

S(ei)ej = δ0,n =
∑
i+j=n

eiS(ej),∑
i+j=n

S(hi)hj = δ0,n =
∑
i+j=n

hiS(hj)

because uε(en) = uε(hn) = δ0,n. Comparing these to (2.4.4), one concludes via induction on n that S(en) =
(−1)nhn and S(hn) = (−1)nen. �

The k-algebra endomorphism ω of Λ defined in the proof of Proposition 2.4.1 is sufficiently important
that we record its definition and a selection of fundamental properties:

Definition 2.4.2. Let ω be the k-algebra homomorphism

(2.4.10)
Λ → Λ,
en 7−→ hn (for positive integers n).

This homomorphism ω is known as the fundamental involution of Λ.

Proposition 2.4.3. Consider the fundamental involution ω and the antipode S of the Hopf algebra Λ.

(a) We have

ω (en) = hn for each n ∈ Z.

(b) We have

ω (hn) = en for each n ∈ Z.

(c) We have

ω (pn) = (−1)
n−1

pn for each positive integer n.

(d) The map ω is a k-algebra automorphism of Λ and an involution.
(e) If n ∈ N, then

(2.4.11) S (f) = (−1)
n
ω (f) for all f ∈ Λn.

(f) The map ω is a Hopf algebra automorphism of Λ.
(g) The map S is a Hopf algebra automorphism of Λ.
(h) Every partition λ satisfies the three equalities

ω (hλ) = eλ;(2.4.12)

ω (eλ) = hλ;(2.4.13)

ω (pλ) = (−1)
|λ|−`(λ)

pλ.(2.4.14)

(i) The map ω is an isomorphism of graded k-modules.
(j) The family (hλ)λ∈Par is a graded basis of the graded k-module Λ.

Exercise 2.4.4. Prove Proposition 2.4.3.
[Hint: Parts (a), (b) and (d) have been shown in the proof of Proposition 2.4.1 above. For part (e), let

D−1 : Λ → Λ be the k-algebra morphism sending each homogeneous f ∈ Λn to (−1)
n
f ; then argue that

ω ◦D−1 and S are two k-algebra morphisms that agree on all elements of the generating set {en}. Derive
part (c) from (d) and Proposition 2.4.1. Part (h) then follows by multiplicativity. For parts (f) and (g),
check the coalgebra homomorphism axioms on the en. Parts (i) and (j) are easy consequences.]

Proposition 2.4.3(e) shows that the antipode S on Λ is, up to sign, the same as the fundamental involution
ω. Thus, studying ω is essentially equivalent to studying S.
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Remark 2.4.5. Up to now we have not yet derived how the involution ω and the antipode S act on (skew)
Schur functions, which is quite beautiful: If λ and µ are partitions satisfying µ ⊆ λ, then

(2.4.15)
ω(sλ/µ) = sλt/µt ,

S(sλ/µ) = (−1)|λ/µ|sλt/µt

where recall that λt is the transpose or conjugate partition to λ, and |λ/µ| is the number of squares in the
skew diagram λ/µ, that is, |λ/µ| = n− k if λ, µ lie in Parn,Park respectively.

We will deduce this later in three ways (once as an exercise using the Pieri rules in Exercise 2.7.11, once
again using skewing operators in Exercise 2.8.7, and for the third time from the action of the antipode in
QSym on P -partition enumerators in Corollary 5.2.22). However, one could also deduce it immediately from
our knowledge of the action of ω and S on en, hn, if we were to prove the following famous Jacobi-Trudi and
dual Jacobi-Trudi formulas107:

Theorem 2.4.6. Skew Schur functions are the following polynomials in {hn}, {en}:

sλ/µ = det(hλi−µj−i+j)i,j=1,2,...,`,(2.4.16)

sλt/µt = det(eλi−µj−i+j)i,j=1,2,...,`(2.4.17)

for any two partitions λ and µ and any ` ∈ N satisfying ` (λ) ≤ ` and ` (µ) ≤ `.

Since we appear not to need these formulas in the sequel, we will not prove them right away. However, a
proof is sketched in the solution to Exercise 2.7.13, and various proofs are well-explained in [126, (39) and
(41)], [142, §I.5], [184, Thm. 7.1], [186, §4.5], [206, §7.16], [220, Thms. 3.5 and 3.5∗]; also, a simultaneous
generalization of both formulas is shown in [83, Theorem 11], and three others in [181, 1.9], [88, Thm.
3.1] and [105]. An elegant treatment of Schur polynomials taking the Jacobi-Trudi formula (2.4.16) as the
definition of sλ is given by Tamvakis [215].

2.5. Cauchy product, Hall inner product, self-duality. The Schur functions, although a bit unmo-
tivated right now, have special properties with regard to the Hopf structure. One property is intimately
connected with the following Cauchy identity .

Theorem 2.5.1. In the power series ring k [[x,y]] := k [[x1, x2, . . . , y1, y2, . . .]], one has the following expan-
sion:

(2.5.1)

∞∏
i,j=1

(1− xiyj)−1 =
∑
λ∈Par

sλ(x)sλ(y).

Remark 2.5.2. The left hand side of (2.5.1) is known as the Cauchy product , or Cauchy kernel .
An equivalent version of the equality (2.5.1) is obtained by replacing each xi by xit, and writing the

resulting identity in the power series ring R(x,y)[[t]]:

(2.5.2)

∞∏
i,j=1

(1− txiyj)−1 =
∑
λ∈Par

t|λ|sλ(x)sλ(y).

(Recall that |λ| = λ1 + λ2 + · · ·+ λ` for any partition λ = (λ1, λ2, . . . , λ`).)

Proof of Theorem 2.5.1. We follow the standard combinatorial proof (see [186, §4.8],[206, §7.11,7.12]), which
rewrites the left and right sides of (2.5.2), and then compares them with the Robinson-Schensted-Knuth
(RSK) bijection.108 On the left side, expanding out each geometric series

(1− txiyj)−1 = 1 + txiyj + (txiyj)
2 + (txiyj)

3 + · · ·

107The second of the following identities is also known as the von Nägelsbach-Kostka identity.
108The RSK bijection has been introduced by Knuth [111], where what we call “biletters” is referred to as “two-line arrays”.

The most important ingredient of this algorithm – the RS-insertion operation – however goes back to Schensted. The special

case of the RSK algorithm where the biword has to be a permutation (written in two-line notation) and the two tableaux
have to be standard (i.e., each of them has content (1n), where n is the size of their shape) is the famous Robinson-Schensted
correspondence [130]. More about these algorithms can be found in [186, Chapter 3], [154, Chapter 5], [206, §7.11-7.12], [138,

Sections 10.9–10.22], [73, Chapters 1 and A], [28, §3, §6] and various other places.
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and thinking of (xiyj)
m as m occurrences of a biletter109

(
i
j

)
, we see that the left hand side can be rewritten

as the sum of t` (xi1yj1) (xi2yj2) · · · (xi`yj`) over all multisets
{(

i1
j1

)
, . . . ,

(
i`
j`

)}
multiset

of biletters. Order the

biletters in such a multiset in the lexicographic order ≤lex, which is the total order on the set of all biletters
defined by (

i1
j1

)
≤lex

(
i2
j2

)
⇐⇒ (we have i1 ≤ i2, and if i1 = i2, then j1 ≤ j2) .

Defining a biword to be an array
(
i
j

)
=
(
i1···i`
j1···j`

)
in which the biletters are ordered

(
i1
j1

)
≤lex · · · ≤lex

(
i`
j`

)
,

then the left side of (2.5.2) is the sum
∑
t`xcont(i)ycont(j) over all biwords

(
i
j

)
, where ` stands for the number

of biletters in the biword. On the right side, expanding out the Schur functions as sums of tableaux gives∑
(P,Q) t

`xcont(Q)ycont(P ) in which the sum is over all ordered pairs (P,Q) of column-strict tableaux having

the same shape110, with ` cells. (We shall refer to such pairs as tableau pairs from now on.)

The Robinson-Schensted-Knuth algorithm gives us a bijection between the biwords
(
i
j

)
and the tableau

pairs (P,Q), which has the property that

cont(i) = cont(Q),

cont(j) = cont(P )

(and that the length ` of the biword
(
i
j

)
equals the size |λ| of the common shape of P and Q; but this follows

automatically from cont(i) = cont(Q)). Clearly, once such a bijection is constructed, the equality (2.5.2)
will follow.

Before we define this algorithm, we introduce a simpler operation known as RS-insertion (short for
Robinson-Schensted insertion). RS-insertion takes as input a column-strict tableau P and a letter j, and
returns a new column-strict tableau P ′ along with a corner cell111 c of P ′, which is constructed as follows:
Start out by setting P ′ = P . The letter j tries to insert itself into the first row of P ′ by either bumping out
the leftmost letter in the first row strictly larger than j, or else placing itself at the right end of the row if
no such larger letter exists. If a letter was bumped from the first row, this letter follows the same rules to
insert itself into the second row, and so on112. This series of bumps must eventually come to an end113. At
the end of the bumping, the tableau P ′ created has an extra corner cell not present in P . If we call this
corner cell c, then P ′ (in its final form) and c are what the RS-insertion operation returns. One says that
P ′ is the result of inserting114 j into the tableau P . It is straightforward to see that this resulting filling P ′

is a column-strict tableau115.

Example 2.5.3. To give an example of this operation, let us insert the letter j = 3 into the column-strict

tableau

1 1 3 3 4
2 2 4 6
3 4 7
5

(we are showing all intermediate states of P ′; the underlined letter is always the one

109A biletter here simply means a pair of letters, written as a column vector. A letter means a positive integer.
110And this shape should be the Ferrers diagram of a partition (not just a skew diagram).
111A corner cell of a tableau or of a Ferrers diagram is defined to be a cell c which belongs to the tableau (resp. diagram)

but whose immediate neighbors to the east and to the south don’t. For example, the cell (3, 2) is a corner cell of the Ferrers
diagram of the partition (3, 2, 2, 1), and thus also of any tableau whose shape is this partition. But the cell (2, 2) is not a corner

cell of this Ferrers diagram, since its immediate neighbor to the south is still in the diagram.
112Here, rows are allowed to be empty – so it is possible that a letter is bumped from the last nonempty row of P ′ and

settles in the next, initially empty, row.
113since we can only bump out entries from nonempty rows
114This terminology is reminiscent of insertion into binary search trees, a basic operation in theoretical computer science.

This is more than superficial similarity; there are, in fact, various analogies between Ferrers diagrams (and their fillings) and
unlabelled plane binary trees (resp. their labellings), and one of them is the analogy between RS-insertion and binary search

tree insertion. See [97, §4.1].
115Indeed, the reader can check that P ′ remains a column-strict tableau throughout the algorithm that defines RS-insertion.

(The only part of this that isn’t obvious is showing that when a letter t bumped out of some row k is inserted into row k + 1,
the property that the letters increase strictly down columns is preserved. Argue that the bumping-out of t from row k was
caused by the insertion of another letter u < t, and that the cell of row k+ 1 into which t is then being inserted is in the same

column as this u, or in a column further left than it.)
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that is going to be bumped out at the next step):

1 1 3 3 4
2 2 4 6
3 4 7
5

7−→
insert 3;

bump out 4

1 1 3 3 3
2 2 4 6
3 4 7
5

7−→
insert 4;

bump out 6

1 1 3 3 3
2 2 4 4
3 4 7
5

7−→
insert 6;

bump out 7

1 1 3 3 3
2 2 4 4
3 4 6
5

7−→
insert 7;

done

1 1 3 3 3
2 2 4 4
3 4 6
5 7

.

The last tableau in this sequence is the column-strict tableau that is returned. The corner cell that is
returned is the second cell of the fourth row (the one containing 7).

RS-insertion will be used as a step in the RSK algorithm; the construction will rely on a simple fact known
as the row bumping lemma. Let us first define the notion of a bumping path (or bumping route): If P is a
column-strict tableau, and j is a letter, then some letters are inserted into some cells when RS-insertion is
applied to P and j. The sequence of these cells (in the order in which they see letters inserted into them) is
called the bumping path for P and j. This bumping path always ends with the corner cell c which is returned
by RS-insertion. As an example, when j = 1 is inserted into the tableau P shown below, the result P ′ is
shown with all entries on the bumping path underlined:

P =

1 1 2 2 3
2 2 4 4
3 4 5
4 6 6

insert7−→
j=1

P ′ =

1 1 1 2 3
2 2 2 4
3 4 4
4 5 6
6

A first simple observation about bumping paths is that bumping paths trend weakly left – that is, if the
bumping path of P and j is (c1, c2, . . . , ck), then, for each 1 ≤ i < k, the cell ci+1 lies in the same column as
ci or in a column further left.116 A subtler property of bumping paths is the following row bumping lemma
([73, p. 9]):

Row bumping lemma: Let P be a column-strict tableau, and let j and j′ be two letters.
Applying RS-insertion to the tableau P and the letter j yields a new column-strict tableau
P ′ and a corner cell c. Applying RS-insertion to the tableau P ′ and the letter j′ yields a
new column-strict tableau P ′′ and a corner cell c′.
(a) Assume that j ≤ j′. Then, the bumping path for P ′ and j′ stays strictly to the right,

within each row, of the bumping path for P and j. The cell c′ (in which the bumping
path for P ′ and j′ ends) is in the same row as the cell c (in which the bumping path
for P and j ends) or in a row further up; it is also in a column further right than c.

(b) Assume instead that j > j′. Then, the bumping path for P ′ and j′ stays weakly to
the left, within each row, of the bumping path for P and j. The cell c′ (in which the
bumping path for P ′ and j′ ends) is in a row further down than the cell c (in which
the bumping path for P and j ends); it is also in the same column as c or in a column
further left.

This lemma can be easily proven by induction over the row.117

116This follows easily from the preservation of column-strictness during RS-insertion.
117We leave the details to the reader, only giving the main idea for (a) (the proof of (b) is similar). To prove the first claim

of (a), it is enough to show that for every i, if any letter is inserted into row i during RS-insertion for P ′ and j′, then some letter

is also inserted into row i during RS-insertion for P and j, and the former insertion happens in a cell strictly to the right of the

cell where the latter insertion happens. This follows by induction over i. In the induction step, we need to show that if, for a
positive integer i, we try to consecutively insert two letters k and k′, in this order, into the i-th row of a column-strict tableau,

possibly bumping out existing letters in the process, and if we have k ≤ k′, then the cell into which k is inserted is strictly to
the left of the cell into which k′ is inserted, and the letter bumped out by the insertion of k is ≤ to the letter bumped out by

the insertion of k′ (or else the insertion of k′ bumps out no letter at all – but it cannot happen that k′ bumps out a letter but

k does not). This statement is completely straightforward to check (by only studying the i-th row). This way, the first claim
of (a) is proven, and this entails that the cell c′ (being the last cell of the bumping path for P ′ and j′) is in the same row as

the cell c or in a row further up. It only remains to show that c′ is in a column further right than c. This follows by noticing
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We can now define the actual RSK algorithm. Let
(
i
j

)
be a biword. Starting with the pair (P0, Q0) = (∅,∅)

and m = 0, the algorithm applies the following steps (see Example 2.5.4 below):

• If im+1 does not exist (that is, m is the length of i), stop.

• Apply RS-insertion to the column-strict tableau Pm and the letter jm+1 (the bottom letter of
(
im+1

jm+1

)
).

Let Pm+1 be the resulting column-strict tableau, and let cm+1 be the resulting corner cell.
• Create Qm+1 from Qm by adding the top letter im+1 of

(
im+1

jm+1

)
to Qm in the cell cm+1 (which, as we

recall, is the extra corner cell of Pm+1 not present in Pm).
• Set m to m+ 1.

After all of the biletters have been thus processed, the result of the RSK algorithm is (P`, Q`) =: (P,Q).

Example 2.5.4. The term in the expansion of the left side of (2.5.1) corresponding to

(x1y2)1(x1y4)1(x2y1)1(x4y1)1(x4y3)2(x5y2)1

is the biword
(
i
j

)
=
(

1124445
2411332

)
, whose RSK algorithm goes as follows:

P0 = ∅ Q0 = ∅

P1 = 2 Q1 = 1

P2 = 2 4 Q2 = 1 1

P3 =
1 4
2

Q3 =
1 1
2

P4 =
1 1
2 4

Q4 =
1 1
2 4

P5 =
1 1 3
2 4

Q5 =
1 1 4
2 4

P6 =
1 1 3 3
2 4

Q6 =
1 1 4 4
2 4

P := P7 =
1 1 2 3
2 3
4

Q := Q7 =
1 1 4 4
2 4
5

The bumping rule obviously maintains the property that Pm is a column-strict tableau of some Ferrers
shape throughout. It should be clear that (Pm, Qm) have the same shape at each stage. Also, the construction
of Qm shows that it is at least weakly increasing in rows and weakly increasing in columns throughout. What
is perhaps least clear is that Qm remains strictly increasing down columns. That is, when one has a string of
equal letters on top im = im+1 = · · · = im+r, so that on bottom one bumps in jm ≤ jm+1 ≤ · · · ≤ jm+r, one
needs to know that the new cells form a horizontal strip, that is, no two of them lie in the same column118.
This follows from (the last claim of) part (a) of the row bumping lemma. Hence, the result (P,Q) of the
RSK algorithm is a tableau pair.

To see that the RSK map is a bijection, we show how to recover
(
i
j

)
from (P,Q). This is done by reverse

bumping from (Pm+1, Qm+1) to recover both the biletter
(
im+1

jm+1

)
and the tableaux (Pm, Qm), as follows.

Firstly, im+1 is the maximum entry of Qm+1, and Qm is obtained by removing the rightmost occurrence of

that, if k is the row in which the cell c′ lies, then c′ is in a column further right than the entry of the bumping path for P and
j in row k (by the first claim of (a)), and this latter entry is further right than or in the same column as the ultimate entry c

of this bumping path (since bumping paths trend weakly left).
118Actually, each of these new cells (except for the first one) is in a column further right than the previous one. We will use

this stronger fact further below.
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this letter im+1 from Qm+1. 119 To produce Pm and jm+1, find the position of the rightmost occurrence
of im+1 in Qm+1, and start reverse bumping in Pm+1 from the entry in this same position, where reverse
bumping an entry means inserting it into one row higher by having it bump out the rightmost entry which
is strictly smaller.120 The entry bumped out of the first row is jm+1, and the resulting tableau is Pm.

Finally, to see that the RSK map is surjective, one needs to show that the reverse bumping procedure can
be applied to any pair (P,Q) of column-strict tableaux of the same shape, and will result in a (lexicograph-

ically ordered) biword
(
i
j

)
. We leave this verification to the reader.121 �

This is by far not the only known proof of Theorem 2.5.1. Two further proofs will be sketched in
Exercise 2.7.10 and Exercise 2.7.8.

Before we move on to extracting identities in Λ from Theorem 2.5.1, let us state (as an exercise) a simple
technical fact that will be useful:

Exercise 2.5.5. Let (qλ)λ∈Par be a basis of the k-module Λ. Assume that for each partition λ, the element
qλ ∈ Λ is homogeneous of degree |λ|.

(a) If two families (aλ)λ∈Par ∈ kPar and (bλ)λ∈Par ∈ kPar satisfy

(2.5.3)
∑
λ∈Par

aλqλ (x) =
∑
λ∈Par

bλqλ (x)

in k [[x]], then (aλ)λ∈Par = (bλ)λ∈Par.
122

(b) Consider a further infinite family y = (y1, y2, y3, . . .) of indeterminates (disjoint from x). If two

families (aµ,ν)(µ,ν)∈Par2 ∈ kPar2

and (bµ,ν)(µ,ν)∈Par2 ∈ kPar2

satisfy

(2.5.4)
∑

(µ,ν)∈Par2

aµ,νqµ (x) qν (y) =
∑

(µ,ν)∈Par2

bµ,νqµ (x) qν (y)

119It necessarily has to be the rightmost occurrence, since (according to the previous footnote) the cell into which im+1 was

filled at the step from Qm to Qm+1 lies further right than any existing cell of Qm containing the letter im+1.
120Let us give a few more details on this “reverse bumping” procedure. Reverse bumping (also known as RS-deletion

or reverse RS-insertion) is an operation which takes a column-strict tableau P ′ and a corner cell c of P ′, and constructs a

column-strict tableau P and a letter j such that RS-insertion for P and j yields P ′ and c. It starts by setting P = P ′, and
removing the entry in the cell c from P . This removed entry is then denoted by k, and is inserted into the row of P above c,

bumping out the rightmost entry which is smaller than k. The letter which is bumped out – say, ` –, in turn, is inserted into

the row above it, bumping out the rightmost entry which is smaller than `. This procedure continues in the same way until
an entry is bumped out of the first row (which will eventually happen). The reverse bumping operation returns the resulting

tableau P and the entry which is bumped out of the first row.

It is straightforward to check that the reverse bumping operation is well-defined (i.e., P does stay a column-strict tableau
throughout the procedure) and is the inverse of the RS-insertion operation. (In fact, these two operations undo each other step

by step.)
121It is easy to see that repeatedly applying reverse bumping to (P,Q) will result in a sequence

(i`
j`

)
,
(i`−1
j`−1

)
, . . . ,

(i1
j1

)
of

biletters such that applying the RSK algorithm to
(i1···i`
j1···j`

)
gives back (P,Q). The question is why we have

(i1
j1

)
≤lex · · · ≤lex

(i`
j`

)
.

Since the chain of inequalities i1 ≤ i2 ≤ · · · ≤ i` is clear from the choice of entry to reverse-bump, it only remains to show

that for every string im = im+1 = · · · = im+r of equal top letters, the corresponding bottom letters weakly increase (that is,
jm ≤ jm+1 ≤ · · · ≤ jm+r). One way to see this is the following:

Assume the contrary; i.e., assume that the bottom letters corresponding to some string im = im+1 = · · · = im+r of equal

top letters do not weakly increase. Thus, jm+p > jm+p+1 for some p ∈ {0, 1, . . . , r − 1}. Consider this p.
Let us consider the cells containing the equal letters im = im+1 = · · · = im+r in the tableau Qm+r. Label these cells as

cm, cm+1, . . . , cm+r from left to right (noticing that no two of them lie in the same column, since Qm+r is column-strict). By

the definition of reverse bumping, the first entry to be reverse bumped from Pm+r is the entry in position cm+r (since this is
the rightmost occurrence of the letter im+r in Qm+r); then, the next entry to be reverse bumped is the one in position cm+r−1,

etc., moving further and further left. Thus, for each q ∈ {0, 1, . . . , r}, the tableau Pm+q−1 is obtained from Pm+q by reverse

bumping the entry in position cm+q . Hence, conversely, the tableau Pm+q is obtained from Pm+q−1 by RS-inserting the entry
jm+q , which creates the corner cell cm+q .

But recall that jm+p > jm+p+1. Hence, part (b) of the row bumping lemma (applied to Pm+p−1, jm+p, jm+p+1, Pm+p,

cm+p, Pm+p+1 and cm+p+1 instead of P , j, j′, P ′, c, P ′′ and c′) shows that the cell cm+p+1 is in the same column as the cell
cm+p or in a column further left. But this contradicts the fact that the cell cm+p+1 is in a column further right than the cell

cm+p (since we have labeled our cells as cm, cm+1, . . . , cm+r from left to right, and no two of them lied in the same column).

This contradiction completes our proof.
122Note that this does not immediately follow from the linear independence of the basis (qλ)λ∈Par. Indeed, linear indepen-

dence would help if the sums in (2.5.3) were finite, but they are not. A subtler argument (involving the homogeneity of the qλ)

thus has to be used.
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in k [[x,y]], then (aµ,ν)(µ,ν)∈Par2 = (bµ,ν)(µ,ν)∈Par2 .

(c) Consider a further infinite family z = (z1, z2, z3, . . .) of indeterminates (disjoint from x and y). If

two families (aλ,µ,ν)(µ,ν,λ)∈Par3 ∈ kPar3

and (bλ,µ,ν)(µ,ν,λ)∈Par3 ∈ kPar3

satisfy

(2.5.5)
∑

(µ,ν,λ)∈Par3

aλ,µ,νqµ (x) qν (y) qλ (z) =
∑

(µ,ν,λ)∈Par3

bλ,µ,νqµ (x) qν (y) qλ (z)

in k [[x,y, z]], then (aλ,µ,ν)(µ,ν,λ)∈Par3 = (bλ,µ,ν)(µ,ν,λ)∈Par3 .

Remark 2.5.6. Clearly, for any n ∈ N, we can state an analogue of Exercise 2.5.5 for n infinite families
xi = (xi,1, xi,2, xi,3, . . .) of indeterminates (with i ∈ {1, 2, . . . , n}). The three parts of Exercise 2.5.5 are the
particular cases of this analogue for n = 1, for n = 2 and for n = 3. We have shied away from stating this
analogue in full generality because these particular cases are the only ones we will need.

Corollary 2.5.7. In the Schur function basis {sλ} for Λ, the structure constants for multiplication and
comultiplication are the same, that is, if one defines scalars cλµ,ν , ĉ

λ
µ,ν via the unique expansions

sµsν =
∑
λ

cλµ,νsλ,(2.5.6)

∆(sλ) =
∑
µ,ν

ĉλµ,νsµ ⊗ sν ,(2.5.7)

then cλµ,ν = ĉλµ,ν .

Proof. Work in the ring k [[x,y, z]], where y = (y1, y2, y3, . . .) and z = (z1, z2, z3, . . .) are two new sets of
variables. The identity (2.5.1) lets one interpret both cλµ,ν , ĉ

λ
µ,ν as the coefficient123 of sµ(x)sν(y)sλ(z) in the

product
∞∏

i,j=1

(1− xizj)−1
∞∏

i,j=1

(1− yizj)−1 (2.5.1)
=

(∑
µ

sµ(x)sµ(z)

)(∑
ν

sν(y)sν(z)

)
=
∑
µ,ν

sµ(x)sν(y) · sµ(z)sν(z)

=
∑
µ,ν

sµ(x)sν(y)

(∑
λ

cλµ,νsλ(z)

)
since, regarding x1, x2, . . . , y1, y2, . . . as lying in a single variable set (x,y), separate from the variables z,
the Cauchy identity (2.5.1) expands the same product as

∞∏
i,j=1

(1− xizj)−1
∞∏

i,j=1

(1− yizj)−1 =
∑
λ

sλ(x,y)sλ(z)

=
∑
λ

(∑
µ,ν

ĉλµ,νsµ(x)sν(y)

)
sλ(z).

�

Definition 2.5.8. The coefficients cλµ,ν = ĉλµ,ν appearing in the expansions (2.5.6) and (2.5.7) are called
Littlewood-Richardson coefficients.

Remark 2.5.9. We will interpret cλµ,ν combinatorially in Section 2.6. By now, however, we can already prove
some properties of these coefficients:

We have

(2.5.8) cλµ,ν = cλν,µ for all λ, µ, ν ∈ Par

123Let us explain why speaking of coefficients makes sense here:

We want to use the fact that if a power series f ∈ k [[x,y, z]] is written in the form f =
∑

(µ,ν,λ)∈Par3 aλ,µ,νsµ (x) sν (y) sλ (z)

for some coefficients aλ,µ,ν ∈ k, then these coefficients aλ,µ,ν are uniquely determined by f . But this fact is precisely the claim

of Exercise 2.5.5(c) above (applied to qλ = sλ).
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(by comparing coefficients in
∑
λ c

λ
µ,νsλ = sµsν = sνsµ =

∑
λ c

λ
ν,µsλ). Furthermore, let λ and µ be two

partitions (not necessarily satisfying µ ⊆ λ). Comparing the expansion

sλ(x,y) = ∆(sλ) =
∑
µ,ν

cλµ,νsµ(x)sν(y) =
∑
µ∈Par

( ∑
ν∈Par

cλµ,νsν(y)

)
sµ(x)

with
sλ(x,y) =

∑
µ⊆λ

sµ(x)sλ/µ(y) =
∑
µ∈Par

sµ(x)sλ/µ(y)

124, one concludes that∑
µ∈Par

( ∑
ν∈Par

cλµ,νsν(y)

)
sµ(x) =

∑
µ∈Par

sµ(x)sλ/µ(y) =
∑
µ∈Par

sλ/µ(y)sµ(x).

Treating the indeterminates y as constants, and comparing coefficients before sµ(x) on both sides of this
equality125, we arrive at another standard interpretation for cλµ,ν :

sλ/µ =
∑
ν

cλµ,νsν .

In particular, cλµ,ν vanishes unless µ ⊆ λ. Consequently, cλµ,ν vanishes unless ν ⊆ λ as well (since cλµ,ν = cλν,µ)

and furthermore vanishes unless the equality |µ| + |ν| = |λ| holds126. Altogether, we conclude that cλµ,ν
vanishes unless µ, ν ⊆ λ and |µ|+ |ν| = |λ|.

Exercise 2.5.10. Show that any four partitions κ, λ, ϕ and ψ satisfy∑
ρ∈Par

cρκ,λc
ρ
ϕ,ψ =

∑
(α,β,γ,δ)∈Par4

cλβ,δc
ϕ
α,βc

ψ
γ,δ.

Exercise 2.5.11. (a) For any partition µ, prove that∑
λ∈Par

sλ (x) sλ/µ (y) = sµ (x) ·
∞∏

i,j=1

(1− xiyj)−1

in the power series ring k [[x,y]] = k [[x1, x2, x3, . . . , y1, y2, y3, . . .]].
(b) Let α and β be two partitions. Show that

∑
λ∈Par

sλ/α (x) sλ/β (y) =

 ∑
ρ∈Par

sβ/ρ (x) sα/ρ (y)

 · ∞∏
i,j=1

(1− xiyj)−1

in the power series ring k [[x,y]] = k [[x1, x2, x3, . . . , y1, y2, y3, . . .]].
[Hint: For (b), expand the product

∞∏
i,j=1

(1− xiyj)−1
∞∏

i,j=1

(1− xiwj)−1
∞∏

i,j=1

(1− ziyj)−1
∞∏

i,j=1

(1− ziwj)−1

in the power series ring k [[x1, x2, x3, . . . , y1, y2, y3, . . . , z1, z2, z3, . . . , w1, w2, w3, . . .]] in two ways: once by
applying Theorem 2.5.1 to the two variable sets (z,x) and (w,y) and then using (2.3.3); once again by
applying (2.5.1) to the two variable sets z and w and then applying Exercise 2.5.11(a) twice.]

The statement of Exercise 2.5.11(b) is known as the skew Cauchy identity , and appears in Sagan-Stanley
[188, Cor. 6.12], Stanley [206, exercise 7.27(c)] and Macdonald [142, §I.5, example 26]; it seems to be
due to Zelevinsky. It generalizes the statement of Exercise 2.5.11(a), which in turn is a generalization of
Theorem 2.5.1.

124In the last equality, we removed the condition µ ⊆ λ on the addends of the sum; this does not change the value of the
sum (because we have sλ/µ = 0 whenever we don’t have µ ⊆ λ).

125“Comparing coefficients” means applying Exercise 2.5.5(a) to qλ = sλ in this case (although the base ring k is now
replaced by k [[y]], and the index µ is used instead of λ, since λ is already taken).

126In fact, this is clear when we don’t have µ ⊆ λ. When we do have µ ⊆ λ, this follows from observing that sλ/µ ∈ Λ|λ/µ|
has zero coefficient before sν whenever |µ|+ |ν| 6= |λ|.
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Definition 2.5.12. Define the Hall inner product on Λ to be the k-bilinear form (·, ·) which makes {sλ} an
orthonormal basis, that is, (sλ, sν) = δλ,ν .

Exercise 2.5.13. (a) If n and m are two distinct nonnegative integers, and if f ∈ Λn and g ∈ Λm, then
show that (f, g) = 0.

(b) If n ∈ N and f ∈ Λn, then prove that (hn, f) = f (1) (where f (1) is defined as in Exercise 2.1.2).
(c) Show that (f, g) = (g, f) for all f ∈ Λ and g ∈ Λ. (In other words, the Hall inner product is

symmetric.)

The Hall inner product induces a k-module homomorphism Λ→ Λo (sending every f ∈ Λ to the k-linear
map Λ→ k, g 7→ (f, g)). This homomorphism is invertible (since the Hall inner product has an orthonormal
basis), so that Λo ∼= Λ as k-modules. But in fact, more can be said:

Corollary 2.5.14. The isomorphism Λo ∼= Λ induced by the Hall inner product is an isomorphism of Hopf
algebras.

Proof. We have seen that the orthonormal basis {sλ} of Schur functions is self-dual, in the sense that its
multiplication and comultiplication structure constants are the same. Thus the isomorphism Λo ∼= Λ induced
by the Hall inner product is an isomorphism of bialgebras127, and hence also a Hopf algebra isomorphism by
Corollary 1.4.27. �

We next identify two other dual pairs of bases, by expanding the Cauchy product in two other ways.

Proposition 2.5.15. One can also expand

(2.5.11)

∞∏
i,j=1

(1− xiyj)−1 =
∑
λ∈Par

hλ(x)mλ(y) =
∑
λ∈Par

z−1
λ pλ(x)pλ(y)

127Here are some details on the proof:
Let γ : Λ → Λo be the k-module isomorphism Λ → Λo induced by the Hall inner product. We want to show that γ is an

isomorphism of bialgebras.

Let
{
s∗λ
}

be the basis of Λo dual to the basis {sλ} of Λ. Thus, for any partition λ, we have

(2.5.9) γ (sλ) = s∗λ

(since any partition µ satisfies (γ (sλ)) (sµ) = (sλ, sµ) = δλ,µ = s∗λ (sµ), and thus the two k-linear maps γ (sλ) : Λ → k and
s∗λ : Λ→ k are equal to each other on the basis {sµ} of Λ, which forces them to be identical).

The coproduct structure constants of the basis
{
s∗λ
}

of Λo equal the product structure constants of the basis {sλ} of Λ

(according to our discussion of duals in Section 1.6). Since the latter are the Littlewood-Richardson numbers cλµ,ν (because of

(2.5.6)), we thus conclude that the former are cλµ,ν as well. In other words, every λ ∈ Par satisfies

(2.5.10) ∆Λos
∗
λ =

∑
µ,ν

cλµ,νs
∗
µ ⊗ s∗ν

(where the sum is over all pairs (µ, ν) of partitions). On the other hand, applying the map γ ⊗ γ : Λ ⊗ Λ → Λo ⊗ Λo to the
equality (2.5.7) yields

(γ ⊗ γ) (∆(sλ)) = (γ ⊗ γ)

∑
µ,ν

ĉλµ,νsµ ⊗ sν

 =
∑
µ,ν

ĉλµ,ν︸︷︷︸
=cλµ,ν

γ (sµ)︸ ︷︷ ︸
=s∗µ

(by (2.5.9))

⊗ γ (sν)︸ ︷︷ ︸
=s∗ν

(by (2.5.9))

=
∑
µ,ν

cλµ,νs
∗
µ ⊗ s∗ν

= ∆Λo s∗λ︸︷︷︸
=γ(sλ)

(by (2.5.9))

(by (2.5.10))

= ∆Λo (γ (sλ))

for each λ ∈ Par. In other words, the two k-linear maps (γ ⊗ γ) ◦ ∆ and ∆Λo ◦ γ are equal to each other on each sλ with
λ ∈ Par. Hence, these two maps must be identical (since the sλ form a basis of Λ). Hence, ∆Λo ◦ γ = (γ ⊗ γ) ◦∆.

Our next goal is to show that εΛo ◦ γ = ε. Indeed, each λ ∈ Par satisfies

(εΛo ◦ γ) (sλ) = εΛo (γ (sλ)) = (γ (sλ)) (1) (by the definition of εΛo )

=

sλ, 1︸︷︷︸
=s∅

 = (sλ, s∅) = δλ,∅ = ε (sλ) .

Hence, εΛo ◦γ = ε. Combined with ∆Λo ◦γ = (γ ⊗ γ)◦∆, this shows that γ is a k-coalgebra homomorphism. Similar reasoning
can be used to prove that γ is a k-algebra homomorphism. Altogether, we thus conclude that γ is a bialgebra homomorphism.

Since γ is a k-module isomorphism, this yields that γ is an isomorphism of bialgebras. Qed.
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where zλ := m1! · 1m1 · m2! · 2m2 · · · if λ is written in multiplicative notation as λ = (1m1 , 2m2 , . . .) with
multiplicity mi for the part i. (Here, we assume that Q is a subring of k for the last equality.)

Remark 2.5.16. It is relevant later (and explains the notation) that zλ is the size of the Sn-centralizer
subgroup for a permutation having cycle type128 λ with |λ| = n. This is a classical (and fairly easy) result
(see, e.g., [186, Prop. 1.1.1] or [206, Prop. 7.7.3] for a proof).

Proof of Proposition 2.5.15. For the first expansion, note that (2.2.18) shows

∞∏
i,j=1

(1− xiyj)−1 =

∞∏
j=1

∑
n≥0

hn(x)ynj

=
∑

weak
compositions

(n1,n2,...)

(hn1
(x)hn2

(x) · · · )(yn1
1 yn2

2 · · · )

=
∑
λ∈Par

∑
weak

compositions
(n1,n2,...)
satisfying

(n1,n2,...)∈S(∞)λ

(hn1
(x)hn2

(x) · · · )︸ ︷︷ ︸
=hλ(x)

(since (n1,n2,...)∈S(∞)λ)

(yn1
1 yn2

2 · · · )︸ ︷︷ ︸
=y(n1,n2,...)

=
∑
λ∈Par

hλ(x)
∑

weak
compositions

(n1,n2,...)
satisfying

(n1,n2,...)∈S(∞)λ

y(n1,n2,...)

︸ ︷︷ ︸
=mλ(y)

=
∑
λ∈Par

hλ(x)mλ(y).

For the second expansion (and for later use in the proof of Theorem 4.9.5) note that

(2.5.12) logH(t) = log

∞∏
i=1

(1− xit)−1 =

∞∑
i=1

− log(1− xit) =

∞∑
i=1

∞∑
m=1

(xit)
m

m
=

∞∑
m=1

1

m
pm(x)tm,

so that taking d
dt then shows that

(2.5.13) P (t) :=
∑
m≥0

pm+1t
m =

H ′(t)

H(t)
= H ′(t)E(−t).

A similar calculation shows that

(2.5.14) log

∞∏
i,j=1

(1− xiyj)−1 =

∞∑
m=1

1

m
pm(x)pm(y)

128If σ is a permutation of a finite set X, then the cycle type of σ is defined as the list of the lengths of all cycles of σ (that
is, of all orbits of σ acting on X) written in decreasing order. This is clearly a partition of |X|. (Some other authors write it

in increasing order instead, or treat it as a multiset.)
For instance, the permutation of the set {0, 3, 6, 9, 12} that sends 0 to 3, 3 to 9, 6 to 6, 9 to 0, and 12 to 12 has cycle type

(3, 1, 1), since the cycles of this permutation have lengths 3, 1 and 1.

It is known that two permutations in Sn have the same cycle type if and only if they are conjugate. Thus, for a given
partition λ with |λ| = n, any two permutations in Sn having cycle type λ are conjugate and therefore their Sn-centralizer

subgroups have the same size.
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and hence
∞∏

i,j=1

(1− xiyj)−1 = exp

( ∞∑
m=1

1

m
pm(x)pm(y)

)
=

∞∏
m=1

exp

(
1

m
pm(x)pm(y)

)

=

∞∏
m=1

∞∑
k=0

1

k!

(
1

m
pm(x)pm(y)

)k
=

∑
weak compositions

(k1,k2,k3,...)

∞∏
m=1

(
1

km!

(
1

m
pm(x)pm(y)

)km)

(by the product rule)

=
∑

weak compositions
(k1,k2,k3,...)

∞∏
m=1

(pm(x)pm(y))
km

km!mkm
=

∑
weak compositions

(k1,k2,k3,...)

∏∞
m=1 (pm(x))

km∏∞
m=1 (pm(y))

km∏∞
m=1 (km!mkm)

=
∑

weak compositions
(k1,k2,k3,...)

p(1k12k23k3 ··· ) (x) p(1k12k23k3 ··· ) (y)

z(1k12k23k3 ··· )
=
∑
λ∈Par

pλ(x)pλ(y)

zλ

due to the fact that every partition can be uniquely written in the form
(
1k12k23k3 · · ·

)
with (k1, k2, k3, . . .)

a weak composition. �

Corollary 2.5.17. (a) With respect to the Hall inner product on Λ, one also has dual bases {hλ} and
{mλ}.

(b) If Q is a subring of k, then {pλ} and
{
z−1
λ pλ

}
are also dual bases with respect to the Hall inner

product on Λ.

(c) If R is a subring of k, then

{
pλ√
zλ

}
is an orthonormal basis of Λ with respect to the Hall inner

product.

Proof. Since (2.5.1) and (2.5.11) showed
∞∏

i,j=1

(1− xiyj)−1 =
∑
λ∈Par

sλ(x)sλ(y) =
∑
λ∈Par

hλ(x)mλ(y) =
∑
λ∈Par

pλ(x)z−1
λ pλ(y) =

∑
λ∈Par

pλ(x)
√
zλ

pλ(y)
√
zλ

,

it suffices to show that any pair of graded bases129 {uλ}, {vλ} of Λ having∑
λ∈Par

sλ(x)sλ(y) =
∑
λ∈Par

uλ(x)vλ(y)

will be dual with respect to (·, ·). To show this, consider such a pair of graded bases. Write transition
matrices A = (aν,λ)(ν,λ)∈Par×Par and B = (bν,λ)(ν,λ)∈Par×Par uniquely expressing

uλ =
∑
ν

aν,λsν ,(2.5.15)

vλ =
∑
ν

bν,λsν .(2.5.16)

Recall that Par =
⊔
r∈N Parr. Hence, we can view A as a block matrix, where the blocks are indexed by pairs

of nonnegative integers, and the (r, s)-th block is (aν,λ)(ν,λ)∈Parr ×Pars
. For reasons of homogeneity130, we

have aν,λ = 0 for any (ν, λ) ∈ Par2 satisfying |ν| 6= |λ|. Therefore, the (r, s)-th block of A is zero whenever
r 6= s. In other words, the block matrix A is block-diagonal. Similarly, B can be viewed as a block-diagonal
matrix. The diagonal blocks of A and B are finite square matrices (since Parr is a finite set for each r ∈ N);
therefore, products such as AtB, BtA and ABt are well-defined (since all sums involved in their definition
have only finitely many nonzero addends) and subject to the law of associativity. Moreover, the matrix A is

129See Definition 1.3.21 for the concept of a “graded basis”, and recall our convention that a graded basis of Λ is tacitly

assumed to have its indexing set Par partitioned into Par0,Par1,Par2, . . .. Thus, a graded basis of Λ means a basis {wλ}λ∈Par

of the k-module Λ (indexed by the partitions λ ∈ Par) with the property that, for every n ∈ N, the subfamily {wλ}λ∈Parn
is a

basis of the k-module Λn.
130More precisely: The power series uλ is homogeneous of degree |λ|, and the power series sν is homogeneous of degree |ν|.
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invertible (being a transition matrix between two bases), and its inverse is again block-diagonal (because A
is block-diagonal).

The equalities (2.5.15) and (2.5.16) show that (uα, vβ) =
∑
ν aν,αbν,β (by the orthonormality of the sλ).

Hence, we want to prove that
∑
ν aν,αbν,β = δα,β . In other words, we want to prove that AtB = I, that is,

B−1 = At. On the other hand, one has∑
λ

sλ(x)sλ(y) =
∑
λ

uλ(x)vλ(y) =
∑
λ

∑
ν

aν,λsν(x)
∑
ρ

bρ,λsρ(y).

Comparing coefficients131 of sν(x)sρ(y) forces
∑
λ aν,λbρ,λ = δν,ρ, or in other words, ABt = I. Since A is

invertible, this yields BtA = I, and hence AtB = I, as desired.132 �

Corollary 2.5.17 is a known and fundamental fact133. However, our definition of the Hall inner product
is unusual; most authors (e.g., Macdonald in [142, §I.4, (4.5)], Hazewinkel/Gubareni/Kirichenko in [93, Def.
4.1.21], and Stanley in [206, (7.30)]) define the Hall inner product as the bilinear form satisfying (hλ,mµ) =
δλ,µ (or, alternatively, (mλ, hµ) = δλ,µ), and only later prove that the basis {sλ} is orthonormal with respect
to this scalar product. (Of course, the fact that this definition is equivalent to our Definition 2.5.12 follows
either from this orthonormality, or from our Corollary 2.5.17(a).)

The tactic applied in the proof of Corollary 2.5.17 can not only be used to show that certain bases of Λ
are dual, but also, with a little help from linear algebra over rings (Exercise 2.5.18), it can be strengthened
to show that certain families of symmetric functions are bases to begin with, as we will see in Exercise 2.5.19
and Exercise 2.5.20.

Exercise 2.5.18. (a) Prove that if an endomorphism of a finitely generated k-module is surjective, then
this endomorphism is a k-module isomorphism.

(b) Let A be a finite free k-module with finite basis (γi)i∈I . Let (βi)i∈I be a family of elements of A
which spans the k-module A. Prove that (βi)i∈I is a k-basis of A.

Exercise 2.5.19. For each partition λ, let vλ be an element of Λ|λ|. Assume that the family (vλ)λ∈Par spans
the k-module Λ. Prove that the family (vλ)λ∈Par is a graded basis of the graded k-module Λ.

Exercise 2.5.20. (a) Assume that for every partition λ, two homogeneous elements uλ and vλ of Λ,
both having degree |λ|, are given. Assume further that∑

λ∈Par

sλ (x) sλ (y) =
∑
λ∈Par

uλ (x) vλ (y)

in k [[x,y]] = k [[x1, x2, x3, . . . , y1, y2, y3, . . .]]. Show that (uλ)λ∈Par and (vλ)λ∈Par are k-bases of Λ,
and actually are dual bases with respect to the Hall inner product on Λ.

(b) Use this to give a new proof of the fact that (hλ)λ∈Par is a k-basis of Λ.

Exercise 2.5.21. Prove that
∑
m≥0 pm+1t

m =
H ′ (t)

H (t)
. (This was proven in (2.5.13) in the case when Q is

a subring of k, but here we make no requirements on k.)

The following exercises give some useful criteria for algebraic independence of families of symmetric
functions:

131Comparing coefficients is legitimate because if a power series f ∈ k [[x,y]] is written in the form f =∑
(ν,ρ)∈Par2 aρ,νsν (x) sρ (y) for some coefficients aρ,ν ∈ k, then these coefficients aρ,ν are uniquely determined by f . This is

just a restatement of Exercise 2.5.5(b).
132In our argument above, we have obtained the invertibility of A from the fact that A is a transition matrix between two

bases. Here is an alternative way to prove that A is invertible:

Recall that A and Bt are block-diagonal matrices. Hence, the equality ABt = I rewrites as Ar,r
(
Bt
)
r,r

= I for all r ∈ N,

where we are using the notation Cr,s for the (r, s)-th block of a block matrix C. But this shows that each diagonal block Ar,r
of A is right-invertible. Therefore, each diagonal block Ar,r of A is invertible (because Ar,r is a square matrix of finite size, and

such matrices are always invertible when they are right-invertible). Consequently, the block-diagonal matrix A is invertible,

and its inverse is again a block-diagonal matrix (whose diagonal blocks are the inverses of the Ar,r).
133For example, Corollary 2.5.17(a) appears in [126, Corollary 3.3] (though the definition of Schur functions in [126] is

different from ours; we will meet this alternative definition later on), and parts (b) and (c) of Corollary 2.5.17 are equivalent to
[142, §I.4, (4.7)] (though Macdonald defines the Hall inner product using Corollary 2.5.17(a)).
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Exercise 2.5.22. Let v1, v2, v3, . . . be elements of Λ. Assume that vn ∈ Λn for each positive integer n.
Assume further that v1, v2, v3, . . . generate the k-algebra Λ. Then:

(a) Prove that v1, v2, v3, . . . are algebraically independent over k.
(b) For every partition λ, define an element vλ ∈ Λ by vλ = vλ1

vλ2
· · · vλ`(λ)

. Prove that the family

(vλ)λ∈Par is a graded basis of the graded k-module Λ.

Exercise 2.5.23. For each partition λ, let aλ ∈ k. Assume that the element a(n) ∈ k is invertible
for each positive integer n. Let v1, v2, v3, . . . be elements of Λ such that each positive integer n satisfies
vn =

∑
λ∈Parn

aλhλ. Prove that the elements v1, v2, v3, . . . generate the k-algebra Λ and are algebraically
independent over k.

Exercise 2.5.24. Let v1, v2, v3, . . . be elements of Λ. Assume that vn ∈ Λn for each positive integer
n. Assume further that (pn, vn) ∈ k is invertible for each positive integer n. Prove that the elements
v1, v2, v3, . . . generate the k-algebra Λ and are algebraically independent over k.

Exercise 2.5.25. Let f ∈ Λ, and let β be a weak composition. Let µ ∈ Par be the partition consisting of
the nonzero entries of β (sorted in decreasing order).134 Prove that

(f, hµ) = (hµ, f) =
(
the coefficient of xβ in f

)
.

Exercise 2.5.26. Assume that Q is a subring of k. Define a positive integer zλ for each λ ∈ Par as in
Proposition 2.5.15. Prove that every n ∈ N satisfies the two equalities

(2.5.17) hn =
∑

λ∈Parn

z−1
λ pλ

and

(2.5.18) en =
∑

λ∈Parn

(−1)
|λ|−`(λ)

z−1
λ pλ.

2.6. Bialternants, Littlewood-Richardson: Stembridge’s concise proof. There is a more natural
way in which Schur functions arise as a k-basis for Λ, coming from consideration of polynomials in a finite
variable set, and the relation between those which are symmetric and those which are alternating.

For the remainder of this section, fix a nonnegative integer n, and let x = (x1, . . . , xn) be a finite variable
set. This means that sλ/µ = sλ/µ(x) =

∑
T xcont(T ) is a generating function for column-strict tableaux

T as in Definition 2.3.1, but with the extra condition that T have entries in {1, 2, . . . , n}. 135 As a
consequence, sλ/µ is a polynomial in k [x1, x2, . . . , xn] (not just a power series), since there are only finitely
many column-strict tableaux T of shape λ/µ having all their entries in {1, 2, . . . , n}. We will assume without
further mention that all partitions appearing in the section have at most n parts.

Definition 2.6.1. Let k be the ring Z or a field of characteristic not equal to 2. (We require this to avoid
certain annoyances in the discussion of alternating polynomials in characteristic 2.)

Say that a polynomial f(x) = f(x1, . . . , xn) is alternating if for every permutation w in Sn one has that

(wf)(x) = f(xw(1), . . . , xw(n)) = sgn(w)f(x).

Let Λsgn ⊂ k[x1, . . . , xn] denote the subset of alternating polynomials136.

As with Λ and its monomial basis {mλ}, there is an obvious k-basis for Λsgn, coming from the fact that a
polynomial f =

∑
α cαxα is alternating if and only if cw(α) = sgn(w)cα for every w in Sn and every α ∈ Nn.

This means that every alternating f is a k-linear combination of the following elements.

Definition 2.6.2. For α = (α1, . . . , αn) in Nn, define the alternant

aα :=
∑
w∈Sn

sgn(w)w(xα) = det


xα1

1 · · · xαn1

xα1
2 · · · xαn2
...

. . .
...

xα1
n · · · xαnn

 .
134For example, if β = (1, 0, 3, 1, 2, 3, 0, 0, 0, . . .), then µ = (3, 3, 2, 1, 1).
135See Exercise 2.3.8(a) for this.
136When k has characteristic 2 (or, more generally, is an arbitrary commutative ring), it is probably best to define the

alternating polynomials Λsgn
k as the k-submodule Λsgn ⊗Z k of Z[x1, . . . , xn]⊗Z k ∼= k[x1, . . . , xn].
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Example 2.6.3. One has

a(1,5,0) = x1
1x

5
2x

0
3 − x5

1x
1
2x

0
3 − x1

1x
0
2x

5
3 − x0

1x
5
2x

1
3 + x0

1x
1
2x

5
3 + x5

1x
0
2x

1
3 = −a(5,1,0).

Similarly, aw(α) = sgn(w)aα for every w ∈ Sn and every α ∈ Nn.

Meanwhile, a(5,2,2) = 0 since the transposition t =
(

123
132

)
fixes (5, 2, 2) and hence

a(5,2,2) = t(a(5,2,2)) = sgn(t)a(5,2,2) = −a(5,2,2).

137 Alternatively, a(5,2,2) = 0 as it is a determinant of a matrix with two equal columns. Similarly, aα = 0
for every n-tuple α ∈ Nn having two equal entries.

This example illustrates that, for a k-basis for Λsgn, one can restrict attention to alternants aα in which α is
a strict partition, i.e., in which α satisfies α1 > α2 > · · · > αn. One can therefore uniquely express α = λ+ρ,
where λ is a (weak) partition λ1 ≥ · · · ≥ λn ≥ 0 and where ρ := (n− 1, n− 2, . . . , 2, 1, 0) is sometimes called
the staircase partition138. For example α = (5, 1, 0) = (3, 0, 0) + (2, 1, 0) = λ+ ρ.

Proposition 2.6.4. Let k be the ring Z or a field of characteristic not equal to 2.
The alternants {aλ+ρ} as λ runs through the partitions with at most n parts form a k-basis for Λsgn.

In addition, the bialternants {aλ+ρ

aρ
} as λ runs through the same set form a k-basis for Λ(x1, . . . , xn) =

k[x1, . . . , xn]Sn .

Proof. The first assertion should be clear from our previous discussion: the alternants {aλ+ρ} span Λsgn by
definition, and they are k-linearly independent because they are supported on disjoint sets of monomials xα.

The second assertion follows from the first, after proving the following Claim: f(x) lies in Λsgn if and
only if f(x) = aρ · g(x) where g(x) lies in k[x]Sn and where

aρ = det(xn−ji )i,j=1,2,...,n =
∏

1≤i<j≤n

(xi − xj)

is the Vandermonde determinant/product . In other words,

Λsgn = aρ · k[x]Sn

is a free k[x]Sn -module of rank 1, with aρ as its k[x]Sn -basis element.
To see the Claim, first note the inclusion

Λsgn ⊃ aρ · k[x]Sn

since the product of a symmetric polynomial and an alternating polynomial is an alternating polynomial. For
the reverse inclusion, note that since an alternating polynomial f(x) changes sign whenever one exchanges
two distinct variables xi, xj , it must vanish upon setting xi = xj , and therefore be divisible by xi − xj , so

divisible by the entire product
∏

1≤i<j≤n(xi− xj) = aρ. But then the quotient g(x) = f(x)
aρ

is symmetric, as

it is a quotient of two alternating polynomials. �

Let us now return to the general setting, where k is an arbitrary commutative ring. We are not requiring
that the assumptions of Proposition 2.6.4 be valid; we can still study the aα of Definition 2.6.2, but we
cannot use Proposition 2.6.4 anymore. We will show that the fraction

aλ+ρ

aρ
is nevertheless a well-defined

polynomial in Λ (x1, . . . , xn) whenever λ is a partition139, and in fact equals the Schur function sλ(x). As
a consequence, the mysterious bialternant basis {aλ+ρ

aρ
} of Λ (x1, . . . , xn) defined in Proposition 2.6.4 still

137One subtlety should be addressed: We want to prove that a(5,2,2) = 0 in k [x1, . . . , xn] for every commutative ring k. It

is clearly enough to prove that a(5,2,2) = 0 in Z [x1, . . . , xn]. Since 2 is not a zero-divisor in Z [x1, . . . , xn], we can achieve this
by showing that a(5,2,2) = −a(5,2,2). We would not be able to make this argument directly over an arbitrary commutative ring

k.
138The name is owed to its Ferrers shape. For instance, if n = 5, then the Ferrers diagram of ρ (represented using dots) has

the form
• • • •
• • •
• •
•

.

139This can also be deduced by base change from the k = Z case of Proposition 2.6.4.
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exists in the general setting, and is plainly the Schur functions {sλ(x)}. Stembridge [210] noted that one
could give a remarkably concise proof of an even stronger assertion, which simultaneously gives one of the
standard combinatorial interpretations for the Littlewood-Richardson coefficients cλµ,ν . For the purposes of
stating it, we introduce for a tableau T the notation T |cols≥j (resp. T |cols≤j) to indicate the subtableau
which is the restriction of T to the union of its columns j, j + 1, j + 2, . . . (resp. columns 1, 2, . . . , j).

Example 2.6.5. If T =
1 2

2 2 3
3 5

, then

T |cols≥3 =
1 2
2 3

and T |cols≤2 = 2
3 5

(note that T |cols≤2 has an empty first row).

Theorem 2.6.6. For partitions λ, µ, ν with µ ⊆ λ, one has140

aν+ρsλ/µ =
∑
T

aν+cont(T )+ρ

where T runs through all column-strict tableaux with entries in {1, 2, . . . , n} of shape λ/µ with the property
that for each j = 1, 2, 3, . . ., the weak composition ν + cont(T |cols≥j) is a partition.

Before proving Theorem 2.6.6, let us see some of its consequences.

Corollary 2.6.7. For any partition λ, we have141

sλ(x) =
aλ+ρ

aρ
.

Proof. Fix a partition λ. Take ν = µ = ∅ in Theorem 2.6.6. Note that there is only one column-strict
tableau T of shape λ such that each cont(T |cols≥j) is a partition, namely the tableau having every entry in
row i equal to i:

1 1 1 1 1
2 2 2
3 3 3
4 4

142. Furthermore, this T has cont(T ) = λ, so the theorem says aρsλ = aλ+ρ. �

140Again, we can drop the requirement that µ ⊆ λ, provided that we understand that there are no column-strict tableaux

of shape λ/µ unless µ ⊆ λ.
141Notice that division by aρ is unambiguous in the ring k [x1, . . . , xn], since aρ is not a zero-divisor (in fact, aρ =∏

1≤i<j≤n(xi − xj) is the product of the binomials xi − xj , none of which is a zero-divisor).

142Proof. It is clear that the tableau having every entry in row i equal to i indeed satisfies the condition that each

cont(T |cols≥j) is a partition. It remains to show that it is the only column-strict tableau (of shape λ) satisfying this condition.
Let T be a column-strict tableau of shape λ satisfying the condition that each cont(T |cols≥j) is a partition. We must show

that for each i, every entry in row i of T is equal to i. Assume the contrary. Thus, there exists some i such that row i
of T contains an entry distinct from i. Consider the smallest such i. Hence, rows 1, 2, . . . , i − 1 of T are filled with entries

1, 2, . . . , i − 1, whereas row i has some entry distinct from i. Choose some j such that the j-th entry of row i of T is distinct
from i. This entry cannot be smaller than i (since it has i − 1 entries above it in its column, and the entries of T increase

strictly down columns); thus, it has to be larger than i. Therefore, all entries in rows i, i + 1, i + 2, . . . of T |cols≥j are larger
than i as well (since they lie southeast of this entry). Hence, each entry of T |cols≥j is either smaller than i (if it is in one of

rows 1, 2, . . . , i − 1) or larger than i (if it is in row i or further down). Thus, i is not an entry of T |cols≥j . In other words,
conti(T |cols≥j) = 0. Since cont(T |cols≥j) is a partition, we thus conclude that contk(T |cols≥j) = 0 for all k > i. In other words,
T |cols≥j has no entries larger than i. But this contradicts the fact that the j-th entry of row i of T is larger than i. This

contradiction completes our proof.
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Example 2.6.8. For n = 2, so that ρ = (1, 0), if we take λ = (4, 2), then one has

aλ+ρ

aρ
=
a(4,2)+(1,0)

a(1,0)
=
a(5,2)

a(1,0)

=
x5

1x
2
2 − x2

1x
5
2

x1 − x2

= x4
1x

2
2 + x3

1x
3
2 + x2

1x
4
2

= x
cont

1111
22


+ x

cont

1112
22


+ x

cont

1122
22


= s(4,2) = sλ.

Some authors use the equality in Corollary 2.6.7 to define the Schur polynomial sλ (x1, x2, . . . , xn) in n
variables; this definition, however, has the drawback of not generalizing easily to infinitely many variables
or to skew Schur functions143.

Next divide through by aρ on both sides of Theorem 2.6.6 (and use Corollary 2.6.7) to give the following.

Corollary 2.6.9. For partitions λ, µ, ν having at most n parts, one has

(2.6.1) sνsλ/µ =
∑
T

sν+cont(T )

where T runs through the same set as in Theorem 2.6.6. In particular, taking ν = ∅, we obtain

(2.6.2) sλ/µ =
∑
T

scont(T )

where in the sum T runs through all column-strict tableaux of shape λ/µ for which each cont(T |cols≥j) is a
partition.

Proof of Theorem 2.6.6. Start by rewriting the left side of the theorem:

aν+ρsλ/µ =
∑
w∈Sn

sgn(w)xw(ν+ρ)sλ/µ =
∑
w∈Sn

sgn(w)xw(ν+ρ)w(sλ/µ)(
since w(sλ/µ) = sλ/µ for any w ∈ Sn

)
=
∑
w∈Sn

sgn(w)xw(ν+ρ)
∑

column-strict T
of shape λ/µ

xw(cont(T ))

=
∑

column-strict T
of shape λ/µ

∑
w∈Sn

sgn(w)xw(ν+cont(T )+ρ)

=
∑

column-strict T
of shape λ/µ

aν+cont(T )+ρ.

We wish to cancel out all the summands indexed by column-strict tableaux T which fail any of the conditions
that ν+cont(T |cols≥j) be a partition. Given such a T , find the maximal j for which it fails this condition144,
and then find the minimal k for which

νk + contk(T |cols≥j) < νk+1 + contk+1(T |cols≥j).

Maximality of j forces

νk + contk(T |cols≥j+1) ≥ νk+1 + contk+1(T |cols≥j+1).

143With some effort, it is possible to use Corollary 2.6.7 in order to define the Schur function sλ in infinitely many variables.

Indeed, one can define this Schur function as the unique element of Λ whose evaluation at (x1, x2, . . . , xn) equals
aλ+ρ

aρ
for every

n ∈ N. If one wants to use such a definition, however, one needs to check that such an element exists. This is the approach to

defining sλ taken in [126, Definition 1.4.2] and in [142, §I.3].
144Such a j exists because ν + cont(T |cols≥j) is a partition for all sufficiently high j (in fact, ν itself is a partition).
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Since column-strictness implies that column j of T can contain at most one occurrence of k or of k + 1 (or
neither or both), the previous two inequalities imply that column j must contain an occurrence of k+ 1 and
no occurrence of k, so that

νk + contk(T |cols≥j) + 1 = νk+1 + contk+1(T |cols≥j).

This implies that the adjacent transposition tk,k+1 swapping k and k+1 fixes the vector ν+cont(T |cols≥j)+ρ.
Now create a new tableau T ∗ from T by applying the Bender-Knuth involution (from the proof of Propo-

sition 2.2.4) on letters k, k + 1, but only to columns 1, 2, . . . , j − 1 of T , leaving columns j, j + 1, j + 2, . . .
unchanged.145 One should check that T ∗ is still column-strict, but this holds because column j of T has no
occurrences of letter k. Note that

tk,k+1 cont(T |cols≤j−1) = cont(T ∗|cols≤j−1)

and hence

tk,k+1(ν + cont(T ) + ρ) = ν + cont(T ∗) + ρ,

so that aν+cont(T )+ρ = −aν+cont(T∗)+ρ.
Because T and T ∗ have exactly the same columns j, j + 1, j + 2, . . ., the tableau T ∗ is also a violator of

at least one of the conditions that ν + cont(T ∗|cols≥j) be a partition, and has the same choice of maximal j
and minimal k as did T . Hence the map T 7→ T ∗ is an involution on the violators that lets one cancel their
summands aν+cont(T )+ρ and aν+cont(T∗)+ρ in pairs.146 �

Example 2.6.10. Here is an example of the construction of T ∗ in the above proof. Let n = 6 and λ = (5, 4, 4)
and µ = (2, 2) and ν = (1). Let T be the column-strict tableau

1 2 2
2 3

2 2 3 4
of shape λ/µ.

Then,

cont(T |cols≥5) = (0, 1, 0, 0, 0, . . .) (since T |cols≥5 has a single entry, which is 2),

so that ν + cont(T |cols≥5) = (1, 1, 0, 0, 0, . . .) is a partition.

But

cont(T |cols≥4) = (0, 2, 1, 1, 0, 0, 0, . . .) ,

and thus ν + cont(T |cols≥4) = (1, 2, 1, 1, 0, 0, 0, . . .) is not a partition.

Thus, the j in the above proof of Theorem 2.6.6 is 4. Furthermore, the k in the proof is 1, since ν1 +
cont1(T |cols≥4) = 1 + 0 = 1 < 2 = 0 + 2 = ν2 + cont2(T |cols≥4). Thus, T ∗ is obtained from T by applying the
Bender-Knuth involution on letters 1, 2 to columns 1, 2, 3 only, leaving columns 4, 5 unchanged. The result
is

T ∗ =
1 2 2
2 3

1 1 3 4
.

So far (in this section) we have worked with a finite set of variables x1, x2, . . . , xn (where n is a fixed nonneg-
ative integer) and with partitions having at most n parts. We now drop these conventions and restrictions;
thus, partitions again mean arbitrary partitions, and x again means the infinite family (x1, x2, x3, . . .) of
variables. In this setting, we have the following analogue of Corollary 2.6.9:

145See Example 2.6.10 below for an example of this construction.
146One remark is in order: The tableaux T and T ∗ may be equal. In this case, the summands aν+cont(T )+ρ and

aν+cont(T∗)+ρ do not cancel, as they are the same summand. However, this summand is zero (because tk,k+1(ν+cont(T )+ρ) =

ν+cont

 T ∗︸︷︷︸
=T

+ρ = ν+cont(T )+ρ shows that the n-tuple ν+cont(T )+ρ has two equal entries, and thus aν+cont(T )+ρ = 0),

and thus does not affect the sum.
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Corollary 2.6.11. For partitions λ, µ, ν (of any lengths), one has

(2.6.3) sνsλ/µ =
∑
T

sν+cont(T )

where T runs through all column-strict tableaux of shape λ/µ with the property that for each j = 1, 2, 3, . . .,
the weak composition ν + cont(T |cols≥j) is a partition. In particular, taking ν = ∅, we obtain

(2.6.4) sλ/µ =
∑
T

scont(T )

where in the sum T runs through all column-strict tableaux of shape λ/µ for which each cont(T |cols≥j) is a
partition.

Proof of Corollary 2.6.11. Essentially, Corollary 2.6.11 is obtained from Corollary 2.6.9 by “letting n (that
is, the number of variables) tend to ∞”. This can be formalized in different ways: One way is to endow the
ring of power series k [[x]] = k [[x1, x2, x3, . . .]] with the coefficientwise topology147, and to show that the left
hand side of (2.6.1) tends to the left hand side of (2.6.3) when n → ∞, and the same holds for the right
hand sides. A different approach proceeds by regarding Λ as the inverse limit of the Λ (x1, x2, . . . , xn). �

Comparing coefficients of a given Schur function sν in (2.6.4), we obtain the following version of the
Littlewood-Richardson rule.

Corollary 2.6.12. For partitions λ, µ, ν (of any lengths), the Littlewood-Richardson coefficient cλµ,ν counts
column-strict tableaux T of shape λ/µ with cont(T ) = ν having the property that each cont(T |cols≥j) is a
partition.

2.7. The Pieri and Assaf-McNamara skew Pieri rule. The classical Pieri rule refers to two special
cases of the Littlewood-Richardson rule. To state them, recall that a skew shape is called a horizontal (resp.
vertical) strip if no two of its cells lie in the same column (resp. row). A horizontal (resp. vertical) n-strip
(for n ∈ N) shall mean a horizontal (resp. vertical) strip of size n (that is, having exactly n cells).

Theorem 2.7.1. For every partition λ and any n ∈ N, we have

sλhn =
∑

λ+:λ+/λ is a
horizontal n-strip

sλ+ ;(2.7.1)

sλen =
∑

λ+:λ+/λ is a
vertical n-strip

sλ+ .(2.7.2)

147This topology is defined as follows:
We endow the ring k with the discrete topology. Then, we can regard the k-module k [[x]] as a direct product of infinitely

many copies of k (by identifying every power series in k [[x]] with the family of its coefficients). Hence, the product topology
is a well-defined topology on k [[x]]; this topology is denoted as the coefficientwise topology. Its name is due to the fact that a
sequence (an)n∈N of power series converges to a power series a with respect to this topology if and only if for every monomial

m, all sufficiently high n ∈ N satisfy

(the coefficient of m in an) = (the coefficient of m in a) .
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Example 2.7.2. In the following equality, we are representing each partition by its Ferrers diagram148.

s
� � �
� �
� �

•

h2

=

s
� � �
� �
� �
� �

+

s
� � �
� � �
� �
�

+

s
� � � �
� �
� �
�

+

s
� � � �
� � �
� �

+

s
� � � � �
� �
� �

If λ is the partition (3, 2, 2) on the left hand side, then all partitions λ+ on the right hand side visibly have
the property that λ+/λ is a horizontal 2-strip149, as (2.7.1) predicts.

Proof of Theorem 2.7.1. For the first Pieri formula involving hn, as hn = s(n) one has

sλhn =
∑
λ+

cλ
+

λ,(n)sλ+ .

Corollary 2.6.12 says cλ
+

λ,(n) counts column-strict tableaux T of shape λ+/λ having cont(T ) = (n) (i.e. all

entries of T are 1’s), with an extra condition. Since its entries are all equal, such a T must certainly have
shape being a horizontal strip, and more precisely a horizontal n-strip (since it has n cells). Conversely,
for any horizontal n-strip, there is a unique such filling, and it will trivially satisfy the extra condition that

cont(T |cols≥j) is a partition for each j. Hence cλ
+

λ,(n) is 1 if λ+/λ is a horizontal n-strip, and 0 else.

For the second Pieri formula involving en, using en = s(1n) one has

sλen =
∑
λ+

cλ
+

λ,(1n)sλ+ .

Corollary 2.6.12 says cλ
+

λ,(1n) counts column-strict tableaux T of shape λ+/λ having cont(T ) = (1n), so its

entries are 1, 2, . . . , n each occurring once, with the extra condition that 1, 2, . . . , n appear from right to left.
Together with the tableau condition, this forces at most one entry in each row, that is λ+/λ is a vertical
strip, and then there is a unique way to fill it (maintaining column-strictness and the extra condition that

1, 2, . . . , n appear from right to left). Thus cλ
+

λ,(1n) is 1 if λ+/λ is a vertical n-strip, and 0 else. �

In 2009, Assaf and McNamara [9] proved an elegant generalization.

148And we are drawing each Ferrers diagram with its boxes spaced out, in order to facilitate counting the boxes.
149We have colored the boxes of λ+/λ black.
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Theorem 2.7.3. For any partitions λ and µ and any n ∈ N, we have150

sλ/µhn =
∑

λ+,µ−:
λ+/λ a horizontal strip;

µ/µ− a vertical strip;

|λ+/λ|+|µ/µ−|=n

(−1)|µ/µ
−|sλ+/µ− ;(2.7.3)

sλ/µen =
∑

λ+,µ−:
λ+/λ a vertical strip;

µ/µ− a horizontal strip;

|λ+/λ|+|µ/µ−|=n

(−1)|µ/µ
−|sλ+/µ− .(2.7.4)

Example 2.7.4. With the same conventions as in Example 2.7.2151, we have

s
� �
�

� �

•

h2

=

s
� �
�

� �
� �

+

s
� �
� �

� �
�

+

s
� � �
�

� �
�

+

s
� � �
� �

� �

+

s
� � � �
�

� �

−

s
� �

� �
� �
�

−

s
� �

� � �
� �

−

s
� � �

� �
� �

+

s
� � �
� �
� �

which illustrates the first equality of Theorem 2.7.3.

Theorem 2.7.3 is proven in the next section, using an important Hopf algebra tool.

Exercise 2.7.5. Let λ = (λ1, λ2, λ3, . . .) and µ = (µ1, µ2, µ3, . . .) be two partitions such that µ ⊆ λ.

(a) Show that λ/µ is a horizontal strip if and only if every i ∈ {1, 2, 3, . . .} satisfies µi ≥ λi+1. 152

(b) Show that λ/µ is a vertical strip if and only if every i ∈ {1, 2, 3, . . .} satisfies λi ≤ µi + 1.

Exercise 2.7.6. (a) Let λ and µ be two partitions such that µ ⊆ λ. Let n ∈ N. Show that
(
hn, sλ/µ

)
equals 1 if λ/µ is a horizontal n-strip, and equals 0 otherwise.

150Note that µ ⊆ λ is not required. (The left hand sides are 0 otherwise, but this does not trivialize the equalities.)
151but this time coloring both the boxes in λ+/λ and the boxes in µ/µ− black
152In other words, λ/µ is a horizontal strip if and only if (λ2, λ3, λ4, . . .) ⊆ µ. This simple observation has been used by

Pak and Postnikov [165, §10] for a new approach to RSK-type algorithms.
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(b) Use part (a) to give a new proof of (2.7.1).

Exercise 2.7.7. Prove Theorem 2.7.1 again using the ideas of the proof of Theorem 2.5.1.

Exercise 2.7.8. Let A be a commutative ring, and n ∈ N.

(a) Let a1, a2, . . . , an be n elements of A. Let b1, b2, . . . , bn be n further elements of A. If ai − bj is an
invertible element of A for every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n}, then prove that

det

((
1

ai − bj

)
i,j=1,2,...,n

)
=

∏
1≤j<i≤n ((ai − aj) (bj − bi))∏

(i,j)∈{1,2,...,n}2 (ai − bj)
.

(b) Let a1, a2, . . . , an be n elements of A. Let b1, b2, . . . , bn be n further elements of A. If 1− aibj is an
invertible element of A for every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n}, then prove that

det

((
1

1− aibj

)
i,j=1,2,...,n

)
=

∏
1≤j<i≤n ((ai − aj) (bi − bj))∏

(i,j)∈{1,2,...,n}2 (1− aibj)
.

(c) Use the result of part (b) to give a new proof for Theorem 2.5.1.153

The determinant on the left hand side of Exercise 2.7.8(a) is known as the Cauchy determinant .

Exercise 2.7.9. Prove that s(a,b) = hahb − ha+1hb−1 for any two integers a ≥ b ≥ 0 (where we set h−1 = 0
as usual).

(Note that this is precisely the Jacobi-Trudi formula (2.4.16) in the case when λ = (a, b) is a partition
with at most two entries and µ = ∅.)

Exercise 2.7.10. If λ is a partition and µ is a weak composition, let Kλ,µ denote the number of column-strict
tableaux T of shape λ having cont (T ) = µ. (This Kλ,µ is called the (λ, µ)-Kostka number .)

(a) Use Theorem 2.7.1 to show that every partition µ satisfies hµ =
∑
λKλ,µsλ, where the sum ranges

over all partitions λ.
(b) Use this to give a new proof for Theorem 2.5.1.154

(c) Give a new proof of the fact (previously shown as Proposition 2.4.3(j)) that (hλ)λ∈Par is a graded
basis of the graded k-module Λ.

Exercise 2.7.11. (a) Define a k-linear map Z : Λ → Λ by having it send sλ to sλt for every partition
λ. (This is clearly well-defined, since (sλ)λ∈Par is a k-basis of Λ.) Show that

Z (fhn) = Z (f) · Z (hn) for every f ∈ Λ and every n ∈ N.
(b) Show that Z = ω.

(c) Show that cλµ,ν = cλ
t

µt,νt for any three partitions λ, µ and ν.

(d) Use this to prove (2.4.15).155

Exercise 2.7.12. (a) Show that
∞∏

i,j=1

(1 + xiyj) =
∑
λ∈Par

sλ (x) sλt (y) =
∑
λ∈Par

eλ (x)mλ (y)

in the power series ring k [[x,y]] = k [[x1, x2, x3, . . . , y1, y2, y3, . . .]].
(b) Assume that Q is a subring of k. Show that

∞∏
i,j=1

(1 + xiyj) =
∑
λ∈Par

(−1)
|λ|−`(λ)

z−1
λ pλ (x) pλ (y)

in the power series ring k [[x,y]] = k [[x1, x2, x3, . . . , y1, y2, y3, . . .]], where zλ is defined as in Propo-
sition 2.5.15.

153This approach to Theorem 2.5.1 is taken in [44, §4] (except that [44] only works with finitely many variables).
154Of course, this gives a new proof of Theorem 2.5.1 only when coupled with a proof of Theorem 2.7.1 which does not rely

on Theorem 2.5.1. The proof of Theorem 2.7.1 we gave in the text above did not rely on Theorem 2.5.1, whereas the proof of

(2.7.1) given in Exercise 2.7.6(b) did.
155The first author learned this approach to (2.4.15) from Alexander Postnikov.
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The first equality of Exercise 2.7.12(a) appears in [206, Thm. 7.14.3], [186, Thm. 4.8.6] and several other
references under the name of the dual Cauchy identity , and is commonly proven using a “dual” analogue of
the Robinson-Schensted-Knuth algorithm.

Exercise 2.7.13. Prove Theorem 2.4.6.
[Hint:156 Switch x and y in the formula of Exercise 2.5.11(a), and specialize the resulting equality by

replacing y by a finite set of variables (y1, y2, . . . , y`); then, set n = ` and ρ = (n− 1, n− 2, . . . , 0), and
multiply with the alternant aρ (y1, y2, . . . , y`), using Corollary 2.6.7 to simplify the result; finally, extract the
coefficient of yλ+ρ.]

Exercise 2.7.14. Prove the following:

(a) We have (S (f) , S (g)) = (f, g) for all f ∈ Λ and g ∈ Λ.
(b) We have (en, f) = (−1)

n · (S (f)) (1) for any n ∈ N and f ∈ Λn. (See Exercise 2.1.2 for the meaning
of (S (f)) (1).)

2.8. Skewing and Lam’s proof of the skew Pieri rule. We codify here the operation s⊥µ of skewing by
sµ, acting on Schur functions via

s⊥µ (sλ) = sλ/µ

(where, as before, one defines sλ/µ = 0 if µ 6⊆ λ). These operations play a crucial role

• in Lam’s proof of the skew Pieri rule,
• in Lam, Lauve, and Sottile’s proof [120] of a more general skew Littlewood-Richardson rule that had

been conjectured by Assaf and McNamara, and
• in Zelevinsky’s structure theory of PSH’s to be developed in the next chapter.

We are going to define them in the general setting of any graded Hopf algebra.

Definition 2.8.1. Given a graded Hopf algebra A, and its (graded) dual Ao, let (·, ·) = (·, ·)A : Ao×A→ k
be the pairing defined by (f, a) := f(a) for f in Ao and a in A. Then define for each f in Ao an operator

A
f⊥→ A as follows157: for a in A with ∆(a) =

∑
a1 ⊗ a2, let

f⊥(a) =
∑

(f, a1)a2.

In other words, f⊥ is the composition

A
∆ // A⊗A

f⊗id // k⊗A
∼= // A,

where the rightmost arrow is the canonical isomorphism k⊗A→ A. This operator f⊥ is called skewing by
f .

Now, recall that the Hall inner product induces an isomorphism Λo ∼= Λ (by Corollary 2.5.14). Hence, we
can regard any element f ∈ Λ as an element of Λo; this allows us to define an operator f⊥ : Λ → Λ for
each f ∈ Λ (by regarding f as an element of Λo, and applying Definition 2.8.1 to A = Λ). Explicitly, this
operator is given by

(2.8.1) f⊥(a) =
∑

(f, a1)a2 whenever ∆(a) =
∑

a1 ⊗ a2,

where the inner product (f, a1) is now understood as a Hall inner product.
Recall that each partition λ satisfies

∆sλ =
∑
µ⊆λ

sµ ⊗ sλ/µ =
∑
ν⊆λ

sν ⊗ sλ/ν =
∑
ν

sν ⊗ sλ/ν

(since sλ/ν = 0 unless ν ⊆ λ). Hence, for any two partitions λ and µ, we have

s⊥µ (sλ) =
∑
ν

(sµ, sν)︸ ︷︷ ︸
=δµ,ν

sλ/ν (by (2.8.1), applied to f = sµ and a = sλ)

=
∑
ν

δµ,νsλ/ν = sλ/µ.(2.8.2)

156This is the proof given in Stanley [206, §7.16, Second Proof of Thm. 7.16.1] and Macdonald [142, proof of (5.4)].
157This f⊥(a) is called a ↼ f in Montgomery [157, Example 1.6.5].
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Thus, skewing acts on the Schur functions exactly as desired.

Proposition 2.8.2. Let A be a graded Hopf algebra. The f⊥ operators A→ A have the following properties.

(i) For every f ∈ Ao, the map f⊥ is adjoint to left multiplication Ao
f ·→ Ao in the sense that

(g, f⊥(a)) = (fg, a).

(ii) For every f, g ∈ Ao, we have (fg)⊥(a) = g⊥(f⊥(a)), that is, A becomes a right Ao-module via the
f⊥ action.158

(iii) The unity 1Ao of the k-algebra Ao satisfies (1Ao)
⊥

= idA.
(iv) Assume that A is of finite type (so Ao becomes a Hopf algebra, not just an algebra). If an f ∈ Ao

satisfies ∆(f) =
∑
f1 ⊗ f2, then

f⊥(ab) =
∑

f⊥1 (a)f⊥2 (b).

In particular, if f is primitive in Ao, so that ∆(f) = f ⊗ 1 + 1⊗ f , then f⊥ is a derivation:

f⊥(ab) = f⊥(a) · b+ a · f⊥(b).

Proof. For (i), note that

(g, f⊥(a)) =
∑

(f, a1)(g, a2) = (f ⊗ g,∆A(a)) = (mAo(f ⊗ g), a) = (fg, a).

For (ii), using (i) and considering any h in Ao, one has that

(h, (fg)⊥(a)) = (fgh, a) = (gh, f⊥(a)) = (h, g⊥(f⊥(a))).

For (iii), we recall that the unity 1Ao of Ao is the counit ε of A, and thus every a ∈ A satisfies

(1Ao)
⊥

(a) = ε⊥ (a) =
∑
(a)

(ε, a1)︸ ︷︷ ︸
=ε(a1)

a2

(
by the definition of ε⊥

)
=
∑
(a)

ε (a1) a2 = a (by the axioms of a coalgebra) ,

so that (1Ao)
⊥

= idA.
For (iv), noting that

∆(ab) = ∆(a)∆(b) =

∑
(a)

a1 ⊗ a2

∑
(b)

b1 ⊗ b2

 =
∑

(a),(b)

a1b1 ⊗ a2b2,

one has that

f⊥(ab) =
∑

(a),(b)

(f, a1b1)A a2b2 =
∑

(a),(b)

(∆(f), a1 ⊗ b1)A⊗A a2b2

=
∑

(f),(a),(b)

(f1, a1)A(f2, b1)A a2b2

=
∑
(f)

∑
(a)

(f1, a1)Aa2

∑
(b)

(f2, b1)Ab2

 =
∑
(f)

f⊥1 (a)f⊥2 (b).

�

The Pieri rules (Theorem 2.7.1) expressed multiplication by hn or by en in the basis (sλ)λ∈Par of Λ. We
can similarly express skewing by hn or by en:

158This makes sense, since Ao is a k-algebra (by Exercise 1.6.1(c), applied to C = A).
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Proposition 2.8.3. For every partition λ and any n ∈ N, we have

h⊥n sλ =
∑

λ−:λ/λ− is a
horizontal n-strip

sλ− ;(2.8.3)

e⊥n sλ =
∑

λ−:λ/λ− is a
vertical n-strip

sλ− .(2.8.4)

Exercise 2.8.4. Prove Proposition 2.8.3.
[Hint: Use Theorem 2.7.1 and (sµ− , e

⊥
n sµ) = (ensµ− , sµ).]

The following interaction between multiplication and h⊥ is the key to deducing the skew Pieri formula from
the usual Pieri formulas.

Lemma 2.8.5. For any f, g in Λ and any n ∈ N, one has

f · h⊥n (g) =

n∑
k=0

(−1)kh⊥n−k(e⊥k (f) · g).

Proof. Starting with the right side, first apply Proposition 2.8.2(iv):

n∑
k=0

(−1)k h⊥n−k(e⊥k (f) · g)︸ ︷︷ ︸
=
∑n−k
j=0 h⊥j (e⊥k (f))·h⊥n−k−j(g)

(by Proposition 2.8.2(iv), applied

to hn−k, e⊥k (f) and g instead of f , a and b)

=

n∑
k=0

(−1)k
n−k∑
j=0

h⊥j (e⊥k (f)) · h⊥n−k−j(g)

=

n∑
j=0

n−j∑
k=0

(−1)kh⊥j (e⊥k (f)) · h⊥n−k−j(g)

=

n∑
j=0

n−j∑
i=0

(−1)n−i−jh⊥j (e⊥n−i−j(f)) · h⊥i (g) (reindexing i := n− k − j in the inner sum )

=

n∑
i=0

(−1)n−i

n−i∑
j=0

(−1)jh⊥j (e⊥n−i−j(f))

 · h⊥i (g)

=

n∑
i=0

(−1)n−i

n−i∑
j=0

(−1)jen−i−jhj

⊥ (f) · h⊥i (g) (by Proposition 2.8.2(ii) )

= 1⊥(f) · h⊥n (g) = f · h⊥n (g)

where the second-to-last equality used (2.4.4). �

Proof of Theorem 2.7.3. We prove (2.7.3); the equality (2.7.4) is analogous, swapping hi ↔ ei and swapping
the words “vertical” ↔ “horizontal”. For any f ∈ Λ, we have(

sλ/µ, f
)

=
(
s⊥µ (sλ), f

)
(by (2.8.2))

=
(
f, s⊥µ (sλ)

)
(by symmetry of (·, ·)Λ)

= (sµf, sλ) (by Proposition 2.8.2(i))

= (sλ, sµf) (by symmetry of (·, ·)Λ) .(2.8.5)
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Hence for any g in Λ, one can compute that

(hnsλ/µ , g)
Prop.

=
2.8.2(i)

(sλ/µ , h
⊥
n g)

(2.8.5)
= (sλ , sµ · h⊥n g)

Lemma
=

2.8.5

n∑
k=0

(−1)k(sλ , h
⊥
n−k(e⊥k (sµ) · g))

Prop.
=

2.8.2(i)

n∑
k=0

(−1)k(hn−ksλ , e
⊥
k (sµ) · g).(2.8.6)

The first Pieri rule in Theorem 2.7.1 lets one rewrite hn−ksλ =
∑
λ+ sλ+ , with the sum running through λ+

for which λ+/λ is a horizontal (n− k)-strip. Meanwhile, (2.8.4) lets one rewrite e⊥k sµ =
∑
µ− sµ− , with the

sum running through µ− for which µ/µ− is a vertical k-strip. Thus the right hand side of (2.8.6) becomes

n∑
k=0

(−1)k

∑
λ+

sλ+ ,
∑
µ−

sµ− · g

 (2.8.5)
=

 n∑
k=0

(−1)k
∑

(λ+,µ−)

sλ+/µ− , g


where the sum is over the pairs (λ+, µ−) for which λ+/λ is a horizontal (n− k)-strip and µ/µ− is a vertical
k-strip. This proves (2.7.3). �

Exercise 2.8.6. Let n ∈ N.

(a) For every k ∈ N, let p (n, k) denote the number of partitions of n of length k. Let c (n) denote the
number of self-conjugate partitions of n (that is, partitions λ of n satisfying λt = λ). Show that

(−1)
n
c (n) =

n∑
k=0

(−1)
k
p (n, k) .

(This application of Hopf algebras was found by Aguiar and Lauve, [5, §5.1]. See also [206, Chapter
1, Exercise 22(b)] for an elementary proof.)

(b) For every partition λ, let C (λ) denote the number of corner cells of the Ferrers diagram of λ (these
are the cells of the Ferrers diagram whose neighbors to the east and to the south both lie outside of
the Ferrers diagram). For every partition λ, let µ1 (λ) denote the number of parts of λ equal to 1.
Show that ∑

λ∈Parn

C (λ) =
∑

λ∈Parn

µ1 (λ) .

(This is also due to Stanley.)

Exercise 2.8.7. The goal of this exercise is to prove (2.4.15) using the skewing operators that we have
developed.159 Recall the involution ω : Λ→ Λ defined in (2.4.10).

(a) Show that ω (pλ) = (−1)
|λ|−`(λ)

pλ for any λ ∈ Par, where ` (λ) denotes the length of the partition
λ.

(b) Show that ω is an isometry.
(c) Show that this same map ω : Λ→ Λ is a Hopf automorphism.

(d) Prove that ω
(
a⊥b

)
= (ω (a))

⊥
(ω (b)) for every a ∈ Λ and b ∈ Λ.

(e) For any partition λ = (λ1, . . . , λ`) with length ` (λ) = `, prove that

e⊥` sλ = s(λ1−1,λ2−1,...,λ`−1).

(f) For any partition λ = (λ1, λ2, . . .), prove that

h⊥λ1
sλ = s(λ2,λ3,λ4,...).

(g) Prove (2.4.15).

Exercise 2.8.8. Let n be a positive integer. Prove the following:

(a) We have (en, pn) = (−1)
n−1

.
(b) We have (em, pn) = 0 for each m ∈ N satisfying m 6= n.

159Make sure not to use the results of Exercise 2.7.11 or Exercise 2.7.12 or Exercise 2.7.14 here, or anything else that relied

on (2.4.15), in order to avoid circular reasoning.
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(c) We have e⊥n pn = (−1)
n−1

.
(d) We have e⊥mpn = 0 for each positive integer m satisfying m 6= n.

2.9. Assorted exercises on symmetric functions. Over a hundred exercises on symmetric functions are
collected in Stanley’s [206, chapter 7], and even more (but without any hints or references) on his website160.
Further sources for results related to symmetric functions are Macdonald’s work, including his monograph
[142] and his expository [143]. In this section, we gather a few exercises that are not too difficult to handle
with the material given above.

Exercise 2.9.1. (a) Let m ∈ Z. Prove that, for every f ∈ Λ, the infinite sum
∑
i∈N (−1)

i
hm+ie

⊥
i f is

convergent in the discrete topology (i.e., all but finitely many addends of this sum are zero). Hence,
we can define a map Bm : Λ→ Λ by setting

Bm (f) =
∑
i∈N

(−1)
i
hm+ie

⊥
i f for all f ∈ Λ.

Show that this map Bm is k-linear.
(b) Let λ = (λ1, λ2, λ3, . . .) be a partition, and let m ∈ Z be such that m ≥ λ1. Show that∑

i∈N
(−1)

i
hm+ie

⊥
i sλ = s(m,λ1,λ2,λ3,...).

(c) Let n ∈ N. For every n-tuple (α1, α2, . . . , αn) ∈ Zn, we define an element s(α1,α2,...,αn) ∈ Λ by

s(α1,α2,...,αn) = det
(

(hαi−i+j)i,j=1,2,...,n

)
.

Show that

(2.9.1) sλ = s(λ1,λ2,...,λn)

for every partition λ = (λ1, λ2, λ3, . . .) having at most n parts161.
Furthermore, show that for every n-tuple (α1, α2, . . . , αn) ∈ Zn, the symmetric function s(α1,α2,...,αn)

either is 0 or equals ±sν for some partition ν having at most n parts.
Finally, show that for any n-tuples (α1, α2, . . . , αn) ∈ Zn and (β1, β2, . . . , βn) ∈ Nn, we have

(2.9.2) s⊥(β1,β2,...,βn)s(α1,α2,...,αn) = det
((
hαi−βj−i+j

)
i,j=1,2,...,n

)
.

(d) For every n ∈ N, every m ∈ Z and every n-tuple (α1, α2, . . . , αn) ∈ Zn, prove that

(2.9.3)
∑
i∈N

(−1)
i
hm+ie

⊥
i s(α1,α2,...,αn) = s(m,α1,α2,...,αn),

where we are using the notations of Exercise 2.9.1(c).
(e) For every n ∈ N and every n-tuple (α1, α2, . . . , αn) ∈ Zn, prove that

s(α1,α2,...,αn) = (Bα1
◦Bα2

◦ · · · ◦Bαn) (1) ,

where we are using the notations of Exercise 2.9.1(c) and Exercise 2.9.1(a).
(f) For every m ∈ Z and every positive integer n, prove that Bm (pn) = hmpn − hm+n. Here, we are

using the notations of Exercise 2.9.1(a).

Remark 2.9.2. The map Bm defined in Exercise 2.9.1(a) is the so-called m-th Bernstein creation oper-
ator ; it appears in Zelevinsky [227, §4.20(a)] and has been introduced by J.N. Bernstein, who found
the result of Exercise 2.9.1(b). It is called a “Schur row adder” in [74]. Exercise 2.9.1(e) appears in
Berg/Bergeron/Saliola/Serrano/Zabrocki [17, Theorem 2.3], where it is used as a prototype for defining
noncommutative analogues of Schur functions, the so-called immaculate functions. The particular case of
Exercise 2.9.1(e) for (α1, α2, . . . , αn) a partition of length n (a restatement of Exercise 2.9.1(b)) is proven in
[142, §I.5, example 29].

160 http://math.mit.edu/~rstan/ec/ch7supp.pdf
161Recall that a part of a partition means a nonzero entry of the partition.

http://math.mit.edu/~rstan/ec/ch7supp.pdf
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Exercise 2.9.3. (a) Prove that there exists a unique family (xn)n≥1 of elements of Λ such that

H (t) =

∞∏
n=1

(1− xntn)
−1
.

Denote this family (xn)n≥1 by (wn)n≥1. For instance,

w1 = s(1), w2 = −s(1,1), w3 = −s(2,1),

w4 = −s(1,1,1,1) − s(2,1,1) − s(2,2) − s(3,1), w5 = −s(2,1,1,1) − s(2,2,1) − s(3,1,1) − s(3,2) − s(4,1).

(b) Show that wn is homogeneous of degree n for every positive integer n.
(c) For every partition λ, define wλ ∈ Λ by wλ = wλ1wλ2 · · ·wλ` (where λ = (λ1, λ2, . . . , λ`) with

` = ` (λ)). Notice that wλ is homogeneous of degree |λ|. Prove that
∑
λ∈Parn

wλ = hn for every
n ∈ N.

(d) Show that {wλ}λ∈Par is a k-basis of Λ. (This basis is called the Witt basis162; it is studied in [90,

§9-§10].163)

(e) Prove that pn =
∑
d|n dw

n/d
d for every positive integer n. (Here, the summation sign

∑
d|n means a

sum over all positive divisors d of n.)
(f) We are going to show that −wn is a sum of Schur functions (possibly with repetitions, but without

signs!) for every n ≥ 2. (For n = 1, the opposite is true: w1 is a single Schur function.) This proof
goes back to Doran [55]164.

For any positive integers n and k, define fn,k ∈ Λ by fn,k =
∑

λ∈Parn,
minλ≥k

wλ, where minλ denotes the

smallest part165 of λ. Show that

−fn,k = s(n−1,1) +

k−1∑
i=2

fi,ifn−i,i for every n ≥ k ≥ 2.

Conclude that −fn,k is a sum of Schur functions for every n ∈ N and k ≥ 2. Conclude that −wn is
a sum of Schur functions for every n ≥ 2.

(g) For every partition λ, define rλ ∈ Λ by rλ =
∏
i≥1 hvi

(
xi1, x

i
2, x

i
3, . . .

)
, where vi is the number of

occurrences of i in λ. Show that
∑
λ∈Par wλ (x) rλ (y) =

∏∞
i,j=1 (1− xiyj)−1

.

(h) Show that {rλ}λ∈Par and {wλ}λ∈Par are dual bases of Λ.

Exercise 2.9.4. For this exercise, set k = Z, and consider Λ = ΛZ as a subring of ΛQ. Also, consider Λ⊗Z Λ
as a subring of ΛQ ⊗Q ΛQ. 166 Recall that the family (pn)n≥1 generates the Q-algebra ΛQ, but does not
generate the Z-algebra Λ.

(a) Define a Q-linear map Z : ΛQ → ΛQ by setting

Z (pλ) = zλpλ for every partition λ,

where zλ is defined as in Proposition 2.5.15.167 Show that Z (Λ) ⊂ Λ.

162This is due to its relation with Witt vectors in the appropriate sense. Most of the work on this basis has been done by
Reutenauer and Hazewinkel.

163It also implicitly appears in [12, §5]. Indeed, the qn of [12] are our wn (for k = R).
164See also Stanley [206, Exercise 7.46].
165Recall that a part of a partition means a nonzero entry of the partition.
166Here is how this works: We have ΛQ ∼= Q⊗Z Λ. But fundamental properties of tensor products yield

(2.9.4) Q⊗Z (Λ⊗Z Λ) ∼= (Q⊗Z Λ)︸ ︷︷ ︸
∼=ΛQ

⊗Q (Q⊗Z Λ)︸ ︷︷ ︸
∼=ΛQ

∼= ΛQ ⊗Q ΛQ

as Q-algebras. But Λ⊗Z Λ is a free Z-module (since Λ is a free Z-module), and so the canonical ring homomorphism Λ⊗Z Λ→
Q⊗Z (Λ⊗Z Λ) sending every u to 1Q ⊗Z u is injective. Composing this ring homomorphism with the Q-algebra isomorphism of

(2.9.4) gives an injective ring homomorphism Λ⊗Z Λ→ ΛQ ⊗Q ΛQ. We use this latter homomorphism to identify Λ⊗Z Λ with

a subring of ΛQ ⊗Q ΛQ.
167This is well-defined, since (pλ)λ∈Par is a Q-module basis of ΛQ.
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(b) Define a Q-algebra homomorphism ∆× : ΛQ → ΛQ ⊗Q ΛQ by setting

∆× (pn) = pn ⊗ pn for every positive integer n.
168 Show that ∆× (Λ) ⊂ Λ⊗Z Λ.

(c) Let r ∈ Z. Define a Q-algebra homomorphism εr : ΛQ → Q by setting

εr (pn) = r for every positive integer n.
169 Show that εr (Λ) ⊂ Z.

(d) Let r ∈ Z. Define a Q-algebra homomorphism ir : ΛQ → ΛQ by setting

ir (pn) = rpn for every positive integer n.
170 Show that ir (Λ) ⊂ Λ.

(e) Define a Q-linear map Sq : ΛQ → ΛQ by setting

Sq (pλ) = p2
λ for every partition λ.

171 Show that Sq (Λ) ⊂ Λ.
(f) Let r ∈ Z. Define a Q-algebra homomorphism ∆r : ΛQ → ΛQ ⊗Q ΛQ by setting

∆r (pn) =

n−1∑
i=1

(
n

i

)
pi ⊗ pn−i + r ⊗ pn + pn ⊗ r for every positive integer n.

172 Show that ∆r (Λ) ⊂ Λ⊗Z Λ.
(g) Consider the map ∆× introduced in Exercise 2.9.4(b) and the map ε1 introduced in Exercise 2.9.4(c).

Show that the Q-algebra ΛQ, endowed with the comultiplication ∆× and the counit ε1, becomes a
cocommutative Q-bialgebra.173

(h) Define a Q-bilinear map ∗ : ΛQ × ΛQ → ΛQ, which will be written in infix notation (that is, we will
write a ∗ b instead of ∗ (a, b)), by setting

pλ ∗ pµ = δλ,µzλpλ for any partitions λ and µ

(where zλ is defined as in Proposition 2.5.15). 174 Show that f ∗ g ∈ Λ for any f ∈ Λ and g ∈ Λ.
(i) Show that ε1 (f) = f (1) for every f ∈ ΛQ (where we are using the notation εr defined in Exer-

cise 2.9.4(c)).

[Hint:

• For (b), show that, for every f ∈ ΛQ, the tensor ∆× (f) is the preimage of f
(

(xiyj)(i,j)∈{1,2,3,...}2
)

=

f (x1y1, x1y2, x1y3, . . . , x2y1, x2y2, x2y3, . . . , . . .) ∈ Q [[x,y]] under the canonical injection ΛQ ⊗Q
ΛQ → Q [[x,y]] which maps every f⊗g to f (x) g (y). (This requires making sure that the evaluation

f
(

(xiyj)(i,j)∈{1,2,3,...}2
)

is well-defined to begin with, i.e., converges as a formal power series.)

For an alternative solution to (b), compute ∆× (hn) or ∆× (en).
• For (c), compute εr (en) or εr (hn).
• Reduce (d) to (b) and (c) using Exercise 1.3.6.
• Reduce (e) to (b).
• (f) is the hardest part. It is tempting to try and interpret the definition of ∆r as a convoluted way of

saying that ∆r (f) is the preimage of f
(

(xi + yj)(i,j)∈{1,2,3,...}2
)

under the canonical injection ΛQ⊗Q

ΛQ → Q [[x,y]] which maps every f ⊗ g to f (x) g (y). However, this does not make sense since the

evaluation f
(

(xi + yj)(i,j)∈{1,2,3,...}2
)

is (in general) not well-defined175 (and even if it was, it would

fail to explain the r). So we need to get down to finitely many variables. For every N ∈ N, define a

168This is well-defined, since the family (pn)n≥1 generates the Q-algebra ΛQ and is algebraically independent.
169This is well-defined, since the family (pn)n≥1 generates the Q-algebra ΛQ and is algebraically independent.
170This is well-defined, since the family (pn)n≥1 generates the Q-algebra ΛQ and is algebraically independent.
171This is well-defined, since (pλ)λ∈Par is a Q-module basis of ΛQ.
172This is well-defined, since the family (pn)n≥1 generates the Q-algebra ΛQ and is algebraically independent.
173But unlike ΛQ with the usual coalgebra structure, it is neither graded nor a Hopf algebra.
174This is well-defined, since (pλ)λ∈Par is a Q-module basis of ΛQ.
175e.g., it involves summing infinitely many x1’s if f = e1
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Q-algebra homomorphism EN : ΛQ ⊗Q ΛQ → Q [x1, x2, . . . , xN , y1, y2, . . . , yN ] by sending each f ⊗ g
to f (x1, x2, . . . , xN ) g (y1, y2, . . . , yN ). Show that ∆N (Λ) ⊂ E−1

N (Z [x1, x2, . . . , xN , y1, y2, . . . , yN ]).
This shows that, at least, the coefficients of ∆r (f) in front of the mλ ⊗ mµ with ` (λ) ≤ r and
` (µ) ≤ r (in the Q-basis (mλ ⊗mµ)λ,µ∈Par of ΛQ ⊗Q ΛQ) are integral for f ∈ Λ. Of course, we want

all coefficients. Show that ∆a = ∆b ?
(
∆ΛQ ◦ ia−b

)
in Hom (ΛQ,ΛQ ⊗Q ΛQ) for any integers a and

b. This allows “moving” the r. This approach to (f) was partly suggested to the first author by
Richard Stanley.

• For (h), notice that Definition 3.1.1(b) (below) allows us to construct a bilinear form (·, ·)ΛQ⊗QΛQ
:

(ΛQ ⊗Q ΛQ)× (ΛQ ⊗Q ΛQ)→ Q from the Hall inner product (·, ·) : ΛQ × ΛQ → Q. Show that

(2.9.5) (a ∗ b, c) = (a⊗ b,∆× (c))ΛQ⊗QΛQ
for all a, b, c ∈ ΛQ,

and then use (b).

]

Remark 2.9.5. The map ∆× defined in Exercise 2.9.4(b) is known as the internal comultiplication (or Kro-
necker comultiplication) on ΛQ. Unlike the standard comultiplication ∆ΛQ , it is not a graded map, but rather
sends every homogeneous component (ΛQ)n into (ΛQ)n ⊗ (ΛQ)n. The bilinear map ∗ from Exercise 2.9.4(h)
is the so-called internal multiplication (or Kronecker multiplication), and is similarly not graded but rather
takes (ΛQ)n × (ΛQ)m to (ΛQ)n if n = m and to 0 otherwise.

The analogy between the two internal structures is not perfect: While we saw in Exercise 2.9.4(g) how
the internal comultiplication yields another bialgebra structure on ΛQ, it is not true that the internal mul-
tiplication (combined with the usual coalgebra structure of ΛQ) forms a bialgebra structure as well. What
is missing is a multiplicative unity; if we would take the closure of ΛQ with respect to the grading, then
1 + h1 + h2 + h3 + · · · would be such a unity.

The structure constants of the internal comultiplication on the Schur basis (sλ)λ∈Par are equal to the

structure constants of the internal multiplication on the Schur basis176, and are commonly referred to as the
Kronecker coefficients. They are known to be nonnegative integers (this follows from Exercise 4.4.8(c)177),
but no combinatorial proof is known for their nonnegativity. Combinatorial interpretations for these coeffi-
cients akin to the Littlewood-Richardson rule have been found only in special cases (cf., e.g., [183] and [23]
and [132]).

The map ∆r of Exercise 2.9.4(f) also has some classical theory behind it, relating to Chern classes of
tensor products ([151], [142, §I.4, example 5]).

Parts (b), (c), (d), (e) and (f) of Exercise 2.9.4 are instances of a general phenomenon: Many Z-algebra
homomorphisms Λ→ A (with A a commutative ring, usually torsionfree) are easiest to define by first defining
a Q-algebra homomorphism ΛQ → A⊗Q and then showing that this homomorphism restricts to a Z-algebra
homomorphism Λ→ A. One might ask for general criteria when this is possible; specifically, for what choices
of (bn)n≥1 ∈ A{1,2,3,...} does there exist a Z-algebra homomorphism Λ → A sending the pn to bn ? Such

choices are called ghost-Witt vectors in Hazewinkel [90], and we can give various equivalent conditions for a
family (bn)n≥1 to be a ghost-Witt vector:

Exercise 2.9.6. Let A be a commutative ring.
For every n ∈ {1, 2, 3, . . .}, let ϕn : A → A be a ring endomorphism of A. Assume that the following

properties hold:

• We have ϕn ◦ ϕm = ϕnm for any two positive integers n and m.
• We have ϕ1 = id.
• We have ϕp (a) ≡ ap mod pA for every a ∈ A and every prime number p.

(For example, when A = Z, one can set ϕn = id for all n; this simplifies the exercise somewhat. More
generally, setting ϕn = id works whenever A is a binomial ring178. However, the results of this exercise are
at their most useful when A is a multivariate polynomial ring Z [x1, x2, x3, . . .] over Z and the homomorphism
ϕn sends every P ∈ A to P (xn1 , x

n
2 , x

n
3 , . . .).)

176This can be obtained, e.g., from (2.9.5).
177Their integrality can also be easily deduced from Exercise 2.9.4(b).
178A binomial ring is defined to be a torsionfree (as an additive group) commutative ring A which has one of the following

equivalent properties:
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Let µ denote the number-theoretic Möbius function; this is the function {1, 2, 3, . . .} → Z defined by

µ (m) =

{
0, if m is not squarefree;

(−1)
(number of prime factors of m)

, if m is squarefree
for every positive integer m.

Let φ denote the Euler totient function; this is the function {1, 2, 3, . . .} → N which sends every positive
integer m to the number of elements of {1, 2, . . . ,m} coprime to m.

Let (bn)n≥1 ∈ A{1,2,3,...} be a family of elements of A. Prove that the following seven assertions are
equivalent:

• Assertion C: For every positive integer n and every prime factor p of n, we have

ϕp
(
bn/p

)
≡ bn mod pvp(n)A.

Here, vp (n) denotes the exponent of p in the prime factorization of n.

• Assertion D: There exists a family (αn)n≥1 ∈ A{1,2,3,...} of elements of A such that every positive
integer n satisfies

bn =
∑
d|n

dα
n/d
d .

179

• Assertion E: There exists a family (βn)n≥1 ∈ A{1,2,3,...} of elements of A such that every positive
integer n satisfies

bn =
∑
d|n

dϕn/d (βd) .

• Assertion F : Every positive integer n satisfies∑
d|n

µ (d)ϕd
(
bn/d

)
∈ nA.

• Assertion G: Every positive integer n satisfies∑
d|n

φ (d)ϕd
(
bn/d

)
∈ nA.

• Assertion H: Every positive integer n satisfies

n∑
i=1

ϕn/ gcd(i,n)

(
bgcd(i,n)

)
∈ nA.

• Assertion J : There exists a ring homomorphism ΛZ → A which, for every positive integer n, sends
pn to bn.

• For every n ∈ N and a ∈ A, we have a (a− 1) · · · (a− n+ 1) ∈ n! · A. (That is, binomial coefficients
(a
n

)
with a ∈ A

and n ∈ N are defined in A.)

• We have ap ≡ amod pA for every a ∈ A and every prime number p.

See [226] and the references therein for studies of these rings. It is not hard to check that Z and every localization of Z are

binomial rings, and so is any commutative Q-algebra as well as the ring

{P ∈ Q [X] | P (n) ∈ Z for every n ∈ Z}

(but not the ring Z [X] itself).
179Here and in the following, summations of the form

∑
d|n range over all positive divisors of n.
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[Hint: The following identities hold for every positive integer n:∑
d|n

φ (d) = n;(2.9.6)

∑
d|n

µ (d) = δn,1;(2.9.7)

∑
d|n

µ (d)
n

d
= φ (n) ;(2.9.8)

∑
d|n

dµ (d)φ
(n
d

)
= µ (n) .(2.9.9)

Furthermore, the following simple lemma is useful: If k is a positive integer, and if p ∈ N, a ∈ A and b ∈ A
are such that a ≡ bmod pkA, then ap

` ≡ bp` mod pk+`A for every ` ∈ N.]

Remark 2.9.7. Much of Exercise 2.9.6 is folklore, but it is hard to pinpoint concrete appearances in literature.
The equivalence C ⇐⇒ D appears in Hesselholt [95, Lemma 1] and [96, Lemma 1.1] (in slightly greater
generality), where it is referred to as Dwork’s lemma and used in the construction of the Witt vector
functor. This equivalence is also [90, Lemma 9.93]. The equivalence D ⇐⇒ F ⇐⇒ G ⇐⇒ H in the case
A = Z is [57, Corollary on p. 10], where it is put into the context of Burnside rings and necklace counting.
The equivalence C ⇐⇒ F for finite families (bn)n∈{1,2,...,m} in lieu of (bn)n≥1 is [206, Exercise 5.2 a]. One

of the likely oldest relevant sources is Schur’s [195], which proves the equivalence C ⇐⇒ D ⇐⇒ F for finite
families (bn)n∈{1,2,...,m}, as well as a “finite version” of C ⇐⇒ J (Schur did not have Λ, but was working

with actual power sums of roots of polynomials).

Exercise 2.9.8. Let A denote the ring Z. For every n ∈ {1, 2, 3, . . .}, let ϕn denote the identity endomor-
phism id of A. Prove that the seven equivalent assertions C, D, E , F , G, H and J of Exercise 2.9.6 are
satisfied for each of the following families (bn)n≥1 ∈ Z{1,2,3,...}:

• the family (bn)n≥1 = (qn)n≥1, where q is a given integer.

• the family (bn)n≥1 = (q)n≥1, where q is a given integer.

• the family (bn)n≥1 =

((
qn

rn

))
n≥1

, where r ∈ Q and q ∈ Z are given. (Here, a binomial coefficient(
a

b

)
has to be interpreted as 0 when b /∈ N.)

• the family (bn)n≥1 =

((
qn− 1

rn− 1

))
n≥1

, where r ∈ Z and q ∈ Z are given.

Exercise 2.9.9. For every n ∈ {1, 2, 3, . . .}, define a map fn : Λ→ Λ by setting

fn (a) = a (xn1 , x
n
2 , x

n
3 , . . .) for every a ∈ Λ.

(So what fn does to a symmetric function is replacing all variables x1, x2, x3, . . . by their n-th powers.)

(a) Show that fn : Λ→ Λ is a k-algebra homomorphism for every n ∈ {1, 2, 3, . . .}.
(b) Show that fn ◦ fm = fnm for any two positive integers n and m.
(c) Show that f1 = id.
(d) Prove that fn : Λ→ Λ is a Hopf algebra homomorphism for every n ∈ {1, 2, 3, . . .}.
(e) Prove that f2 (hm) =

∑2m
i=0 (−1)

i
hih2m−i for every m ∈ N.

(f) Assume that k = Z. Prove that fp (a) ≡ ap mod pΛ for every a ∈ Λ and every prime number p.
(g) Use Exercise 2.9.6 to obtain new solutions to parts (b), (c), (d), (e) and (f) of Exercise 2.9.4.

The maps fn constructed in Exercise 2.9.9 are known as the Frobenius endomorphisms of Λ. They are
a (deceptively) simple particular case of the notion of plethysm ([206, Chapter 7, Appendix 2] and [142,
Section I.8]), and are often used as intermediate steps in computing more complicated plethysms180.

180In the notations of [206, (A2.160)], the value fn (a) for an a ∈ Λ can be written as a [pn] or (when k = Z) as pn [a].



90 DARIJ GRINBERG AND VICTOR REINER

Exercise 2.9.10. For every n ∈ {1, 2, 3, . . .}, define a k-algebra homomorphism vn : Λ→ Λ by

vn (hm) =

{
hm/n, if n | m;

0, if n - m
for every positive integer m

181.

(a) Show that any positive integers n and m satisfy

vn (pm) =

{
npm/n, if n | m;

0, if n - m
.

(b) Show that any positive integers n and m satisfy

vn (em) =

{
(−1)

m−m/n
em/n, if n | m;

0, if n - m
.

(c) Prove that vn ◦ vm = vnm for any two positive integers n and m.
(d) Prove that v1 = id.
(e) Prove that vn : Λ→ Λ is a Hopf algebra homomorphism for every n ∈ {1, 2, 3, . . .}.

Now, consider also the maps fn : Λ→ Λ defined in Exercise 2.9.9. Fix a positive integer n.

(f) Prove that the maps fn : Λ→ Λ and vn : Λ→ Λ are adjoint with respect to the Hall inner product
on Λ.

(g) Show that vn ◦ fn = id?nΛ .
(h) Prove that fn ◦ vm = vm ◦ fn whenever m is a positive integer coprime to n.

Finally, recall the wm ∈ Λ defined in Exercise 2.9.3.

(i) Show that any positive integer m satisfies

vn (wm) =

{
wm/n, if n | m;

0, if n - m
.

The homomorphisms vn : Λ → Λ defined in Exercise 2.9.10 are called the Verschiebung endomorphisms
of Λ; this name comes from German, where “Verschiebung” means “shift”. This terminology, as well as
that of Frobenius endomorphisms, originates in the theory of Witt vectors, and the connection between the
Frobenius and Verschiebung endomorphisms of Λ and the identically named operators on Witt vectors is
elucidated in [90, Chapter 13]182.

Exercise 2.9.11. Fix n ∈ N. For any n-tuple w = (w1, w2, . . . , wn) of integers, define the descent set
Des (w) of w to be the set {i ∈ {1, 2, . . . , n− 1} : wi > wi+1}.

(a) We say that an n-tuple (w1, w2, . . . , wn) is Smirnov if every i ∈ {1, 2, . . . , n− 1} satisfies wi 6= wi+1.
Fix k ∈ N, and let Xn,k ∈ k [[x]] denote the sum of the monomials xw1

xw2
· · ·xwn over all Smirnov

n-tuples w = (w1, w2, . . . , wn) ∈ {1, 2, 3, . . .}n satisfying |Des (w)| = k. Prove that Xn,k ∈ Λ.
(b) For any n-tuple w = (w1, w2, . . . , wn), define the stagnation set Stag (w) of w to be the set
{i ∈ {1, 2, . . . , n− 1} : wi = wi+1}. (Thus, an n-tuple is Smirnov if and only if its stagnation set is
empty.)

For any d ∈ N and s ∈ N, define a power series Xn,d,s ∈ k [[x]] as the sum of the monomials
xw1

xw2
· · ·xwn over all n-tuples w = (w1, w2, . . . , wn) ∈ {1, 2, 3, . . .}n satisfying |Des (w)| = d and

|Stag (w)| = s. Prove that Xn,d,s ∈ Λ for any nonnegative integers d and s.

181This is well-defined, since the family (hm)m≥1 generates the k-algebra Λ and is algebraically independent.
182which is also where most of the statements of Exercises 2.9.9 and 2.9.10 come from
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(c) Assume that n is positive. For any d ∈ N and s ∈ N, define three further power series Un,d,s, Vn,d,s
and Wn,d,s in k [[x]] by the following formulas:

Un,d,s =
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des(w)|=d; |Stag(w)|=s;

w1<wn

xw1xw2 · · ·xwn ;(2.9.10)

Vn,d,s =
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des(w)|=d; |Stag(w)|=s;

w1=wn

xw1xw2 · · ·xwn ;(2.9.11)

Wn,d,s =
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des(w)|=d; |Stag(w)|=s;

w1>wn

xw1xw2 · · ·xwn .(2.9.12)

Prove that these three power series Un,d,s, Vn,d,s and Wn,d,s belong to Λ.

Remark 2.9.12. The function Xn,k in Exercise 2.9.11(a) is a simple example ([199, Example 2.5, Theorem
C.3]) of a chromatic quasisymmetric function that happens to be symmetric. See Shareshian/Wachs [199]
for more general criteria for such functions to be symmetric, as well as deeper results. For example, [199,
Theorem 6.3] gives an expansion for a wide class of chromatic quasisymmetric functions in the Schur basis
of Λ, which, in particular, shows that our Xn,k satisfies

Xn,k =
∑

λ∈Parn

aλ,ksλ,

where aλ,k is the number of all assignments T of entries in {1, 2, . . . , n} to the cells of the Ferrers diagram
of λ such that the following four conditions are satisfied:

• Every element of {1, 2, . . . , n} is used precisely once in the assignment (i.e., we have cont (T ) = (1n)).
• Whenever a cell y of the Ferrers diagram lies immediately to the right of a cell x, we have T (y) −
T (x) ≥ 2.

• Whenever a cell y of the Ferrers diagram lies immediately below a cell x, we have T (y)−T (x) ≥ −1.
• There exist precisely k elements i ∈ {1, 2, . . . , n− 1} such that the cell T−1 (i) lies in a row below
T−1 (i+ 1).

Are there any such rules for the Xn,d,s of part (b)?
Smirnov n-tuples are more usually called Smirnov words, or (occasionally) Carlitz words.
See [68, Chapter 6] for further properties of the symmetric functions Un,d,0, Vn,d,0 and Wn,d,0 from

Exercise 2.9.11(c) (or, more precisely, of their generating functions
∑
d Un,d,0t

d etc.).

Exercise 2.9.13. (a) Let n ∈ N. Define a matrix An = (ai,j)i,j=1,2,...,n ∈ Λn×n by

ai,j =


pi−j+1, if i ≥ j;
i, if i = j − 1;

0, if i < j − 1

for all (i, j) ∈ {1, 2, . . . , n}2 .

This matrix An looks as follows:

An =



p1 1 0 · · · 0 0
p2 p1 2 · · · 0 0
p3 p2 p1 · · · 0 0
...

...
...

. . .
...

...
pn−1 pn−2 pn−3 · · · p1 n− 1
pn pn−1 pn−2 · · · p2 p1


.

Show that det (An) = n!en.
(b) Let n be a positive integer. Define a matrix Bn = (bi,j)i,j=1,2,...,n ∈ Λn×n by

bi,j =

{
iei, if j = 1;

ei−j+1, if j > 1
for all (i, j) ∈ {1, 2, . . . , n}2 .
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The matrix Bn looks as follows:

Bn =



e1 e0 e−1 · · · e−n+3 e−n+2

2e2 e1 e0 · · · e−n+4 e−n+3

3e3 e2 e1 · · · e−n+5 e−n+4

...
...

...
. . .

...
...

(n− 1) en−1 en−2 en−3 · · · e1 e0

nen en−1 en−2 · · · e2 e1



=



e1 1 0 · · · 0 0
2e2 e1 1 · · · 0 0
3e3 e2 e1 · · · 0 0
...

...
...

. . .
...

...
(n− 1) en−1 en−2 en−3 · · · e1 1

nen en−1 en−2 · · · e2 e1


.

Show that det (Bn) = pn.

The formulas of Exercise 2.9.13, for finitely many variables, appear in Prasolov’s [171, §4.1]183. In [171,
§4.2], Prasolov gives four more formulas, which express en as a polynomial in the h1, h2, h3, . . ., or hn as a
polynomial in the e1, e2, e3, . . ., or pn as a polynomial in the h1, h2, h3, . . ., or n!hn as a polynomial in the
p1, p2, p3, . . .. These are not novel for us, since the first two of them are particular cases of Theorem 2.4.6,
whereas the latter two can be derived from Exercise 2.9.13 by applying ω. (Note that ω is only well-defined
on symmetric functions in infinitely many indeterminates, so we need to apply ω before evaluating at finitely
many indeterminates; this explains why Prasolov has to prove the latter two identities separately.)

Exercise 2.9.14. In the following, if k ∈ N, we shall use the notation 1k for 1, 1, . . . , 1︸ ︷︷ ︸
k times

(in contexts such as

(n, 1m)). So, for example,
(
3, 14

)
is the partition (3, 1, 1, 1, 1).

(a) Show that enhm = s(m+1,1n−1) + s(m,1n) for any two positive integers n and m.
(b) Show that

b∑
i=0

(−1)
i
ha+i+1eb−i = s(a+1,1b)

for any a ∈ N and b ∈ N.
(c) Show that

b∑
i=0

(−1)
i
ha+i+1eb−i = (−1)

b
δa+b,−1

for any negative integer a and every b ∈ N. (As usual, we set hj = 0 for j < 0 here.)
(d) Show that

∆s(a+1,1b) = 1⊗ s(a+1,1b) + s(a+1,1b) ⊗ 1

+
∑

(c,d,e,f)∈N4;
c+e=a−1;
d+f=b

s(c+1,1d) ⊗ s(e+1,1f ) +
∑

(c,d,e,f)∈N4;
c+e=a;
d+f=b−1

s(c+1,1d) ⊗ s(e+1,1f )

for any a ∈ N and b ∈ N.

Our next few exercises survey some results on Littlewood-Richardson coefficients.

Exercise 2.9.15. Let m ∈ N and k ∈ N. Let λ and µ be two partitions such that ` (λ) ≤ k and ` (µ) ≤ k.
Assume that all parts of λ and all parts of µ are ≤ m. (It is easy to see that this assumption is equivalent
to requiring λi ≤ m and µi ≤ m for every positive integer i. 184). Let λ∨ and µ∨ denote the k-tuples
(m− λk,m− λk−1, . . . ,m− λ1) and (m− µk,m− µk−1, . . . ,m− µ1), respectively.

183where our symmetric functions ek, hk, pk, evaluated in finitely many indeterminates, are denoted σk, pk, sk, respectively
184As usual, we are denoting by νi the i-th entry of a partition ν here.



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 93

(a) Show that λ∨ and µ∨ are partitions, and that sλ/µ = sµ∨/λ∨ .

(b) Show that cλµ,ν = cµ
∨

λ∨,ν for any partition ν.

(c) Let ν be a partition such that ` (ν) ≤ k, and such that all parts of ν are ≤ m. Let ν∨ denote the
k-tuple (m− νk,m− νk−1, . . . ,m− ν1). Show that ν∨ is a partition, and satisfies

cλµ,ν = cλν,µ = cµ
∨

λ∨,ν = cµ
∨

ν,λ∨ = cν
∨

µ,λ∨ = cν
∨

λ∨,µ.

(d) Show that
sλ∨ (x1, x2, . . . , xk) = (x1x2 · · ·xk)

m · sλ
(
x−1

1 , x−1
2 , . . . , x−1

k

)
in the Laurent polynomial ring k

[
x1, x2, . . . , xk, x

−1
1 , x−1

2 , . . . , x−1
k

]
.

(e) Let r be a nonnegative integer. Show that (r + λ1, r + λ2, . . . , r + λk) is a partition and satisfies

s(r+λ1,r+λ2,...,r+λk) (x1, x2, . . . , xk) = (x1x2 · · ·xk)
r · sλ (x1, x2, . . . , xk)

in the polynomial ring k [x1, x2, . . . , xk].

Exercise 2.9.16. Let m ∈ N, n ∈ N and k ∈ N. Let µ and ν be two partitions such that ` (µ) ≤ k and
` (ν) ≤ k. Assume that all parts of µ are ≤ m (that is, µi ≤ m for every positive integer i) 185, and
that all parts of ν are ≤ n (that is, νi ≤ n for every positive integer i). Let µ∨{m} denote the k-tuple
(m− µk,m− µk−1, . . . ,m− µ1), and let ν∨{n} denote the k-tuple (n− νk, n− νk−1, . . . , n− ν1).

(a) Show that µ∨{m} and ν∨{n} are partitions.

Now, let λ be a further partition such that ` (λ) ≤ k.

(b) If not all parts of λ are ≤ m+ n, then show that cλµ,ν = 0.

(c) If all parts of λ are ≤ m+n, then show that cλµ,ν = cλ
∨{m+n}

µ∨{m},ν∨{n}
, where λ∨{m+n} denotes the k-tuple

(m+ n− λk,m+ n− λk−1, . . . ,m+ n− λ1).

The results of Exercise 2.7.11(c) and Exercise 2.9.15(c) are two symmetries of Littlewood-Richardson
coefficients186; combining them yields further such symmetries. While these symmetries were relatively
easy consequences of our algebraic definition of the Littlewood-Richardson coefficients, it is a much more
challenging task to derive them bijectively from a combinatorial definition of these coefficients (such as the one
given in Corollary 2.6.12). Some such derivations appear in [218], in [11], in [16, Example 3.6, Proposition 5.11
and references therein], [73, §5.1, §A.1, §A.4] and [109, (2.12)] (though a different combinatorial interpretation
of cλµ,ν is used in the latter three).

Exercise 2.9.17. Recall our usual notations: For every partition λ and every positive integer i, the i-th
entry of λ is denoted by λi. The sign . stands for dominance order. We let λt denote the conjugate partition
of a partition λ.

For any two partitions µ and ν, we define two new partitions µ+ ν and µ t ν of |µ|+ |ν| as follows:

• The partition µ+ ν is defined as (µ1 + ν1, µ2 + ν2, µ3 + ν3, . . .).
• The partition µ t ν is defined as the result of sorting the list

(
µ1, µ2, . . . , µ`(µ), ν1, ν2, . . . , ν`(ν)

)
in

decreasing order.

(a) Show that any two partitions µ and ν satisfy (µ+ ν)
t

= µt t νt and (µ t ν)
t

= µt + νt.
(b) Show that any two partitions µ and ν satisfy cµ+ν

µ,ν = 1 and cµtνµ,ν = 1.

(c) If k ∈ N and n ∈ N satisfy k ≤ n, and if µ ∈ Park, ν ∈ Parn−k and λ ∈ Parn are such that cλµ,ν 6= 0,
then prove that µ+ ν . λ . µ t ν.

(d) If n ∈ N and m ∈ N and α, β ∈ Parn and γ, δ ∈ Parm are such that α . β and γ . δ, then show that
α+ γ . β + δ and α t γ . β t δ.

(e) Let m ∈ N and k ∈ N, and let λ be the partition
(
mk
)

=

m,m, . . . ,m︸ ︷︷ ︸
k times

. Show that any two

partitions µ and ν satisfy cλµ,ν ∈ {0, 1}.
(f) Let a ∈ N and b ∈ N, and let λ be the partition

(
a+ 1, 1b

)
(using the notation of Exercise 2.9.14).

Show that any two partitions µ and ν satisfy cλµ,ν ∈ {0, 1}.

185As usual, we are denoting by νi the i-th entry of a partition ν here.
186The result of Exercise 2.9.16(c) can also be regarded as a symmetry of Littlewood-Richardson coefficients; see [10, §3.3].



94 DARIJ GRINBERG AND VICTOR REINER

(g) If λ is any partition, and if µ and ν are two rectangular partitions187, then show that cλµ,ν ∈ {0, 1}.

Exercise 2.9.17(g) is part of Stembridge’s [211, Thm. 2.1]; we refer to that article for further results of its
kind.

The Littlewood-Richardson rule comes in many different forms, whose equivalence is not always immediate.
Our version (Corollary 2.6.12) has the advantage of being the simplest to prove and one of the simplest to
state. Other versions can be found in [206, appendix 1 to Ch. 7], Fulton’s [73, Ch. 5] and van Leeuwen’s [129].
We restrict ourselves to proving some very basic equivalences that allow us to restate parts of Corollary 2.6.12:

Exercise 2.9.18. We shall use the following notations:

• If T is a column-strict tableau and j is a positive integer, then we use the notation T |cols≥j for the
restriction of T to the union of its columns j, j + 1, j + 2, . . .. (This notation has already been used
in Section 2.6.)

• If T is a column-strict tableau and S is a set of cells of T , then we write T |S for the restriction of T
to the set S of cells.188

• If T is a column-strict tableau, then an NE-set of T means a set S of cells of T such that whenever
s ∈ S, every cell of T which lies northeast189 of s must also belong to S.

• The Semitic reading word190 of a column-strict tableau T is the concatenation191 r1r2r3 · · · , where
ri is the word obtained by reading the i-th row of T from right to left.192

• If w = (w1, w2, . . . , wn) is a word, then a prefix of w means a word of the form (w1, w2, . . . , wi) for
some i ∈ {0, 1, . . . , n}. (In particular, both w and the empty word are prefixes of w.)

A word w over the set of positive integers is said to be Yamanouchi if for any prefix v of w and
any positive integer i, there are at least as many i’s among the letters of v as there are (i+ 1)’s
among them.193

Prove the following two statements:

(a) Let µ be a partition. Let bi,j be a nonnegative integer for every two positive integers i and j. Assume
that bi,j = 0 for all but finitely many pairs (i, j).

The following two assertions are equivalent:
– Assertion A: There exist a partition λ and a column-strict tableau T of shape λ/µ such that

all (i, j) ∈ {1, 2, 3, . . .}2 satisfy

(2.9.13) bi,j = (the number of all entries i in the j-th row of T ) .

– Assertion B: The inequality

(2.9.14) µj+1 + (b1,j+1 + b2,j+1 + · · ·+ bi+1,j+1) ≤ µj + (b1,j + b2,j + · · ·+ bi,j)

holds for all (i, j) ∈ N× {1, 2, 3, . . .}.

187A partition is called rectangular if it has the form
(
mk
)

=

m,m, . . . ,m︸ ︷︷ ︸
k times

 for some m ∈ N and k ∈ N.

188This restriction T |S is not necessarily a tableau of skew shape; it is just a map from S to {1, 2, 3, . . .}. The content

cont (T |S) is nevertheless well-defined (in the usual way: (cont (T |S))i =
∣∣∣(T |S)−1 (i)

∣∣∣).
189A cell (r, c) is said to lie northeast of a cell (r′, c′) if and only if we have r ≤ r′ and c ≥ c′.
190The notation comes from [129] and is a reference to the Arabic and Hebrew way of writing.
191If s1, s2, s3, . . . are several words (finitely or infinitely many), then the concatenation s1s2s3 · · · is defined as the word

which is obtained by starting with the empty word, then appending s1 to its end, then appending s2 to the end of the result,
then appending s3 to the end of the result, etc.

192For example, the Semitic reading word of the tableau

3 4 4 5
1 4 6

3 5

is 544364153.

The Semitic reading word of a tableau T is what is called the reverse reading word of T in [206, §A.1.3].
193For instance, the words 11213223132 and 1213 are Yamanouchi, while the words 132, 21 and 1121322332111 are not.

The Dyck words (defined as in [206, Example 6.6.6], and written using 1’s and 2’s instead of x’s and y’s) are precisely the
Yamanouchi words whose letters are 1’s and 2’s and in which the letter 1 appears as often as the letter 2.

Yamanouchi words are often called lattice permutations.
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(b) Let λ and µ be two partitions, and let T be a column-strict tableau of shape λ/µ. Then, the following
five assertions are equivalent:

– Assertion C: For every positive integer j, the weak composition cont (T |cols≥j) is a partition.
– Assertion D: For every positive integers j and i, the number of entries i+1 in the first j rows194

of T is ≤ to the number of entries i in the first j − 1 rows of T .
– Assertion E: For every NE-set S of T , the weak composition cont (T |S) is a partition.
– Assertion F : The Semitic reading word of T is Yamanouchi.
– Assertion G: There exists a column-strict tableau S whose shape is a partition and which

satisfies the following property: For any positive integers i and j, the number of entries i in the
j-th row of T equals the number of entries j in the i-th row of S.

Remark 2.9.19. The equivalence of Assertions C and F in Exercise 2.9.18(b) is the “not-too-difficult exer-
cise” mentioned in [210]. It yields the equivalence between our version of the Littlewood-Richardson rule
(Corollary 2.6.12) and that in [206, A1.3.3].

In the next exercises, we shall restate Corollary 2.6.11 in a different form. While Corollary 2.6.11 provided
a decomposition of the product of a skew Schur function with a Schur function into a sum of Schur functions,
the different form that we will encounter in Exercise 2.9.21(b) will give a combinatorial interpretation for
the Hall inner product between two skew Schur functions. Let us first generalize Exercise 2.9.18(b):

Exercise 2.9.20. Let us use the notations of Exercise 2.9.18. Let κ, λ and µ be three partitions, and let T
be a column-strict tableau of shape λ/µ.

(a) Prove that the following five assertions are equivalent:
– Assertion C(κ): For every positive integer j, the weak composition κ + cont (T |cols≥j) is a

partition.
– Assertion D(κ): For every positive integers j and i, we have

κi+1 + (the number of entries i+ 1 in the first j rows of T )

≤ κi + (the number of entries i in the first j − 1 rows of T ) .

– Assertion E(κ): For every NE-set S of T , the weak composition κ+ cont (T |S) is a partition.
– Assertion F (κ): For every prefix v of the Semitic reading word of T , and for every positive

integer i, we have

κi + (the number of i’s among the letters of v)

≥ κi+1 + (the number of (i+ 1) ’s among the letters of v) .

– Assertion G(κ): There exist a partition ζ and a column-strict tableau S of shape ζ/κ which
satisfies the following property: For any positive integers i and j, the number of entries i in the
j-th row of T equals the number of entries j in the i-th row of S.

(b) Let τ be a partition such that τ = κ+ contT . Consider the five assertions C(κ), D(κ), E(κ), F (κ) and
G(κ) introduced in Exercise 2.9.20(a). Let us also consider the following assertion:

– Assertion H(κ): There exists a column-strict tableau S of shape τ/κ which satisfies the following
property: For any positive integers i and j, the number of entries i in the j-th row of T equals
the number of entries j in the i-th row of S.

Prove that the six assertions C(κ), D(κ), E(κ), F (κ), G(κ) and H(κ) are equivalent.

Clearly, Exercise 2.9.18(b) is the particular case of Exercise 2.9.20 when κ = ∅.
Using Exercise 2.9.20, we can restate Corollary 2.6.11 in several ways:

Exercise 2.9.21. Let λ, µ and κ be three partitions.

(a) Show that

sκsλ/µ =
∑
T

sκ+contT ,

where the sum ranges over all column-strict tableaux T of shape λ/µ satisfying the five equivalent
assertions C(κ), D(κ), E(κ), F (κ) and G(κ) introduced in Exercise 2.9.20(a).

194The “first j rows” mean the 1-st row, the 2-nd row, etc., the j-th row (even if some of these rows are empty).
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(b) Let τ be a partition. Show that
(
sλ/µ, sτ/κ

)
Λ

is the number of all column-strict tableaux T of shape

λ/µ satisfying τ = κ+ contT and also satisfying the six equivalent assertions C(κ), D(κ), E(κ), F (κ),
G(κ) and H(κ) introduced in Exercise 2.9.20.

Exercise 2.9.21(a) is merely Corollary 2.6.11, rewritten in light of Exercise 2.9.20. Various parts of
it appear in the literature. For instance, [126, (53)] easily reveals to be a restatement of the fact that
sκsλ/µ =

∑
T sν+contT , where the sum ranges over all column-strict tableaux T of shape λ/µ satisfying

Assertion D(κ).
Exercise 2.9.21(b) is one version of a “skew Littlewood-Richardson rule” that goes back to Zelevinsky [228]

(although Zelevinsky’s version uses both a different language and a combinatorial interpretation which is not
obviously equivalent to ours). It appears in various sources; for instance, [126, Theorem 5.2, second formula]
says that

(
sλ/µ, sτ/κ

)
Λ

is the number of all column-strict tableaux T of shape λ/µ satisfying τ = κ+ contT

and the assertion H(κ), whereas [75, Theorem 1.2] says that
(
sλ/µ, sτ/κ

)
Λ

is the number of all all column-

strict tableaux T of shape λ/µ satisfying τ = κ + contT and the assertion F (κ). (Notice that Gasharov’s
proof of [75, Theorem 1.2] uses the same involutions as Stembridge’s proof of Theorem 2.6.6; it can thus
be regarded as a close precursor to Stembridge’s proof. However, it uses the Jacobi-Trudi identities, while
Stembridge’s does not.)

Exercise 2.9.22. Let K be a field.195 If N ∈ Kn×n is a nilpotent matrix, then the Jordan type of N is
defined to be the list of the sizes of the Jordan blocks in the Jordan normal form of N , sorted in decreasing
order196. This Jordan type is a partition of n, and uniquely determines N up to similarity (i.e., two nilpotent
n×n-matrices N and N ′ are similar if and only if the Jordan types of N and N ′ are equal). If f is a nilpotent
endomorphism of a finite-dimensional K-vector space V , then we define the Jordan type of f as the Jordan
type of any matrix representing f (the choice of the matrix does not matter, since the Jordan type of a
matrix remains unchanged under conjugation).

(a) Let n ∈ N. Let N ∈ Kn×n be a nilpotent matrix. Let λ ∈ Parn. Show that the matrix N has Jordan
type λ if and only if every k ∈ N satisfies

dim
(
ker
(
Nk
))

=
(
λt
)

1
+
(
λt
)

2
+ . . .+

(
λt
)
k
.

(Here, we are using the notation λt for the transpose of a partition λ, and the notation νi for the
i-th entry of a partition ν.)

(b) Let f be a nilpotent endomorphism of a finite-dimensional K-vector space V . Let U be an f -stable
K-vector subspace of V (that is, a K-vector subspace of V satisfying f (U) ⊂ U). Then, restricting f
to U gives a nilpotent endomorphism f | U of U , and the endomorphism f also induces a nilpotent
endomorphism f of the quotient space V/U . Let λ, µ and ν be the Jordan types of f , f | U and f ,
respectively. Show that cλµ,ν 6= 0 (if Z is a subring of k).

[Hint: For (b), Exercise 2.7.11(c) shows that it is enough to prove that cλ
t

µt,νt 6= 0. Due to Corol-

lary 2.6.12, this only requires constructing a column-strict tableau T of shape λt/µt with contT = νt

which has the property that each cont (T |cols≥j) is a partition. Construct this tableau by defining ai,j =

dim
((
f i
)−1

(U) ∩ ker
(
f j
))

for all (i, j) ∈ N2, and requiring that the number of entries i in the j-th row

of T be ai,j − ai,j−1 − ai−1,j + ai−1,j−1 for all (i, j) ∈ {1, 2, 3, . . .}2. Use Exercise 2.9.18(a) to prove that
this indeed defines a column-strict tableau, and Exercise 2.9.18(b) to verify that it satisfies the condition on
cont (T |cols≥j).]

Remark 2.9.23. Exercise 2.9.22 is a taste of the connections between the combinatorics of partitions and the
Jordan normal form. Much more can, and has, been said. Marc van Leeuwen’s [127] is dedicated to some of
these connections; in particular, our Exercise 2.9.22(a) is [127, Proposition 1.1], and a far stronger version of
Exercise 2.9.22(b) appears in [127, Theorem 4.3 (2)], albeit only for the case of an infinite K. One can prove
a converse to Exercise 2.9.22(b) as well: If cλµ,ν 6= 0, then there exist V , f and U satisfying the premises of
Exercise 2.9.22(b). When K is a finite field, we can ask enumerative questions, such as how many U ’s are

195This field has no relation to the ring k, over which our symmetric functions are defined.
196The Jordan normal form of N is well-defined even if K is not algebraically closed, because N is nilpotent (so the

characteristic polynomial of N is Xn).



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 97

there for given V , f , λ, µ and ν; we will see a few answers in Section 4.9 (specifically, Proposition 4.9.4),
and a more detailed treatment is given in [142, Ch. 2].

The relationship between partitions and Jordan normal forms can be exploited to provide linear-algebraic
proofs of purely combinatorial facts. See [28, Sections 6 and 9] for some examples. Note that [28, Lemma
9.10] is the statement that, under the conditions of Exercise 2.9.22(b), we have ν ⊆ λ. This is a direct
consequence of Exercise 2.9.22(b) (since cλµ,ν 6= 0 can happen only if ν ⊆ λ).

Exercise 2.9.24. Let a ∈ Λ. Prove the following:

(a) The set
{
g ∈ Λ | g⊥a = (ω (g))

⊥
a
}

is a k-subalgebra of Λ.

(b) Assume that e⊥k a = h⊥k a for each positive integer k. Then, g⊥a = (ω (g))
⊥
a for each g ∈ Λ.

Exercise 2.9.25. Let n ∈ N. Let ρ be the partition (n− 1, n− 2, . . . , 1). Prove that sρ/µ = sρ/µt for every
µ ∈ Par.

Remark 2.9.26. Exercise 2.9.25 appears in [180, Corollary 7.32], and is due to John Stembridge. Using
Remark 2.5.9, we can rewrite it as yet another equality between Littlewood-Richardson coefficients: Namely,
cρµ,ν = cρµt,ν for any µ ∈ Par and ν ∈ Par.
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3. Zelevinsky’s structure theory of positive self-dual Hopf algebras

Chapter 2 showed that, as a Z-basis for the Hopf algebra Λ = ΛZ, the Schur functions {sλ} have two special
properties: they have the same structure constants cλµ,ν for their multiplication as for their comultiplication
(Corollary 2.5.7), and these structure constants are all nonnegative integers (Corollary 2.6.12). Zelevinsky
[227, §2,3] isolated these two properties as crucial.

Definition 3.0.1. Say that a connected graded Hopf algebra A over k = Z with a distinguished Z-basis
{σλ} consisting of homogeneous elements197 is a positive self-dual Hopf algebra (or PSH ) if it satisfies the
two further axioms

• (self-duality) The same structure constants aλµ,ν appear for the product σµσν =
∑
λ a

λ
µ,νσλ and

the coproduct ∆σλ =
∑
µ,ν a

λ
µ,νσµ ⊗ σν .

• (positivity) The aλµ,ν are all nonnegative (integers).

Call {σλ} the PSH-basis of A.

He then developed a beautiful structure theory for PSH’s, explaining how they can be uniquely expressed
as tensor products of copies of PSH’s each isomorphic to Λ after rescaling their grading. The next few
sections explain this, following his exposition closely.

3.1. Self-duality implies polynomiality. We begin with a property that forces a Hopf algebra to have
algebra structure which is a polynomial algebra, specifically the symmetric algebra Sym(p), where p is the
k-submodule of primitive elements.

Recall from Exercise 1.3.20(g) that for a connected graded Hopf algebra A =
⊕∞

n=0An, every x in the
two-sided ideal I := ker ε =

⊕
n>0An has the property that its comultiplication takes the form

∆(x) = 1⊗ x+ x⊗ 1 + ∆+(x)

where ∆+(x) lies in I ⊗ I. Recall also that the elements x for which ∆+(x) = 0 are called the primitives.
Denote by p the k-submodule of primitive elements inside A.

Given a PSH A (over k = Z) with a PSH-basis {σλ}, we consider the bilinear form (·, ·)A : A × A → Z
on A that makes this basis orthonormal. Similarly, the elements {σλ ⊗ σµ} give an orthonormal basis for a
form (·, ·)A⊗A on A⊗A. The bilinear form (·, ·)A on the PSH A gives rise to a Z-linear map A→ Ao, which
is easily seen to be injective and a Z-algebra homomorphism. We thus identify A with a subalgebra of Ao.
When A is of finite type, this map is a Hopf algebra isomorphism, thus allowing us to identify A with Ao.
This is an instance of the following notion of self-duality.

Definition 3.1.1. (a) If (·, ·) : V ×W → k is a bilinear form on the product V ×W of two graded
k-modules V =

⊕
n≥0 Vn and W =

⊕
n≥0Wn, then we say that this form (·, ·) is graded if every

two distinct nonnegative integers n and m satisfy (Vn,Wm) = 0 (that is, if every two homogeneous
elements v ∈ V and w ∈W having distinct degrees satisfy (v, w) = 0).

(b) If (·, ·)V : V ×V → k and (·, ·)W : W ×W → k are two symmetric bilinear forms on some k-modules
V and W , then we can canonically define a symmetric bilinear form (·, ·)V⊗W on the k-module
V ⊗W by letting

(v ⊗ w, v′ ⊗ w′)V⊗W = (v, v′)V (w,w′)W for all v, v′ ∈ V and w,w′ ∈W.
This new bilinear form is graded if the original two forms (·, ·)V and (·, ·)W were graded (presuming
that V and W are graded).

(c) Say that a bialgebra A is self-dual with respect to a given symmetric bilinear form (·, ·) : A×A→ k
if one has (a,m(b⊗ c))A = (∆(a), b⊗ c)A⊗A and (1A, a) = ε(a) for a, b, c in A. If A is a graded Hopf
algebra of finite type, and this form (·, ·) is graded, then this is equivalent to the k-module map
A→ Ao induced by (·, ·)A giving a Hopf algebra homomorphism.

Thus, any PSH A is self-dual with respect to the bilinear form (·, ·)A that makes its PSH-basis orthonormal.
Notice also that the injective Z-algebra homomorphism A → Ao obtained from the bilinear form (·, ·)A

on a PSH A allows us to regard each f ∈ A as an element of Ao. Thus, for any PSH A and any f ∈ A, an
operator f⊥ : A→ A is well-defined (indeed, regard f as an element of Ao, and apply Definition 2.8.1).

197not necessarily indexed by partitions
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Proposition 3.1.2. Let A be a Hopf algebra over k = Z or k = Q which is graded, connected, and self-dual
with respect to a positive definite graded198 bilinear form. Then:

(a) Within the ideal I, the k-submodule of primitives p is the orthogonal complement to the k-submodule
I2.

(b) In particular, p ∩ I2 = 0.
(c) When k = Q, one has I = p⊕ I2.

Proof. (a) Note that I2 = m(I ⊗ I). Hence an element x in I lies in the perpendicular space to I2 if and
only if one has for all y in I ⊗ I that

0 = (x,m(y))A = (∆(x), y)A⊗A = (∆+(x), y)A⊗A

where the second equality uses self-duality, while the third equality uses the fact that y lies in I ⊗ I and the
form (·, ·)A⊗A makes distinct homogeneous components orthogonal. Since y was arbitrary, this means x is
perpendicular to I2 if and only if ∆+(x) = 0, that is, x lies in p.

(b) This follows from (a), since the form (·, ·)A is positive definite.
(c) This follows from (a) using some basic linear algebra199 when A is of finite type (which is the only

case we will ever encounter in practice). See Exercise 3.1.6 for the general proof. �

Remark 3.1.3. One might wonder why we didn’t just say I = p⊕I2 even when k = Z in Proposition 3.1.2(c).
However, this is false even for A = ΛZ: the second homogeneous component (p⊕I2)2 is the index 2 sublattice
of Λ2 which is Z-spanned by {p2, e

2
1}, containing 2e2, but not containing e2 itself.

Already the fact that p ∩ I2 = 0 has a strong implication.

Lemma 3.1.4. A connected graded Hopf algebra A over any ring k having p ∩ I2 = 0 must necessarily be
commutative (as an algebra).

Proof. The component A0 = k commutes with all of A. This forms the base case for an induction on i+ j
in which one shows that any elements x in Ai and y in Aj with i, j > 0 will have [x, y] := xy− yx = 0. Since
[x, y] lies in I2, it suffices to show that [x, y] also lies in p:

∆[x, y] = [∆(x),∆(y)]

= [1⊗ x+ x⊗ 1 + ∆+(x), 1⊗ y + y ⊗ 1 + ∆+(y)]

= [1⊗ x+ x⊗ 1, 1⊗ y + y ⊗ 1]

+ [1⊗ x+ x⊗ 1,∆+(y)] + [∆+(x), 1⊗ y + y ⊗ 1] + [∆+(x),∆+(y)]

= [1⊗ x+ x⊗ 1, 1⊗ y + y ⊗ 1]

= 1⊗ [x, y] + [x, y]⊗ 1

showing that [x, y] lies in p. Here the second-to-last equality used the inductive hypotheses: homogeneity
implies that ∆+(x) is a sum of homogeneous tensors of the form z1 ⊗ z2 satisfying deg(z1),deg(z2) < i,
so that by induction they will commute with 1 ⊗ y, y ⊗ 1, thus proving that [∆+(x), 1 ⊗ y + y ⊗ 1] = 0; a
symmetric argument shows [1 ⊗ x + x ⊗ 1,∆+(y)] = 0, and a similar argument shows [∆+(x),∆+(y)] = 0.
The last equality is an easy calculation, and was done already in the process of proving (1.3.7). �

Remark 3.1.5. Zelevinsky actually shows [227, Proof of A.1.3, p. 150] that the assumption of p ∩ I2 = 0
(along with hypotheses of unit, counit, graded, connected, and ∆ being a morphism for multiplication)
already implies the associativity of the multiplication in A ! One shows by induction on i + j + k that
any x, y, z in Ai, Aj , Ak with i, j, k > 0 have vanishing associator assoc(x, y, z) := x(yz) − (xy)z. In the
inductive step, one first notes that assoc(x, y, z) lies in I2, and then checks that assoc(x, y, z) also lies in p,
by a calculation very similar to the one above, repeatedly using the fact that assoc(x, y, z) is multilinear in
its three arguments.

Exercise 3.1.6. Prove Proposition 3.1.2(c) in the general case.

198That is, (Ai, Aj) = 0 for i 6= j.
199Specifically, either the existence of an orthogonal projection on a subspace of a finite-dimensional inner-product space

over Q, or the fact that dim
(
W⊥

)
= dimV − dimW for a subspace W of a finite-dimensional inner-product space V over Q

can be used.
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This leads to a general structure theorem.

Theorem 3.1.7. If a connected graded Hopf algebra A over a field k of characteristic zero has I = p⊕ I2,
then the inclusion p ↪→ A extends to a Hopf algebra isomorphism from the symmetric algebra Symk(p)→ A.
In particular, A is both commutative and cocommutative.

Note that the hypotheses of Theorem 3.1.7 are valid, using Proposition 3.1.2(c), whenever A is obtained
from a PSH (over Z) by tensoring with Q.

Proof of Theorem 3.1.7. Since Lemma 3.1.4 implies thatA is commutative, the universal property of Symk(p)
as a free commutative algebra on generators p shows that the inclusion p ↪→ A at least extends to an algebra

morphism Symk(p)
ϕ→ A. Since the Hopf structure on Symk(p) makes the elements of p primitive (see

Example 1.3.14), this ϕ is actually a coalgebra morphism (since ∆ ◦ ϕ = (ϕ ⊗ ϕ) ◦ ∆ and ε ◦ ϕ = ε need
only to be checked on algebra generators), hence a bialgebra morphism, hence a Hopf algebra morphism (by
Corollary 1.4.27). It remains to show that ϕ is surjective, and injective.

For the surjectivity of ϕ, note that the hypothesis I = p ⊕ I2 implies that the composite p ↪→ I → I/I2

gives a k-vector space isomorphism. What follows is a standard argument to deduce that p generates A as
a commutative graded k-algebra. One shows by induction on n that any homogeneous element a in An lies
in the k-subalgebra generated by p. The base case n = 0 is trivial as a lies in A0 = k · 1A. In the inductive
step where a lies in I, write a ≡ p mod I2 for some p in p. Thus a = p+

∑
i bici, where bi, ci lie in I but have

strictly smaller degree, so that by induction they lie in the subalgebra generated by p, and hence so does a.
Note that the surjectivity argument did not use the assumption that k has characteristic zero, but we will

now use it in the injectivity argument for ϕ, to establish the following

(3.1.1) Claim: Every primitive element of Sym(p) lies in p = Sym1(p).

Note that this claim fails in positive characteristic, e.g. if k has characteristic 2 then x2 lies in Sym2(p),
however

∆(x2) = 1⊗ x2 + 2x⊗ x+ x2 ⊗ 1 = 1⊗ x2 + x2 ⊗ 1.

To prove the claim (3.1.1), assume not, so that by gradedness, there must exist some primitive element y 6= 0
lying in some Symn(p) with n ≥ 2. This would mean that f(y) = 0, where the map f is defined as the
composition

Symn(p)
∆−→

⊕
i+j=n

Symi(p)⊗ Symj(p)
projection−→ Sym1(p)⊗ Symn−1(p)

of the coproduct ∆ with the component projection of
⊕

i+j=n Symi(p)⊗Symj(p) onto Sym1(p)⊗Symn−1(p).

However, one can check on a basis that the multiplication backward Sym1(p)⊗ Symn−1(p)
m→ Symn(p) has

the property that m ◦ f = n · idSymn(p): Indeed,

(m ◦ f)(x1 · · ·xn) = m

 n∑
j=1

xj ⊗ x1 · · · x̂j · · ·xn

 = n · x1 · · ·xn

for x1, . . . , xn in p. Then n · y = m(f(y)) = m(0) = 0 leads to the contradiction that y = 0, since k has
characteristic zero. Thus, (3.1.1) is proven.

Now one can argue the injectivity of the (graded) map200 ϕ by assuming that one has a nonzero homo-
geneous element u in ker(ϕ) of minimum degree. In particular, deg(u) ≥ 1. Also since p ↪→ A, one has that
u is not in Sym1(p) = p, and hence u is not primitive by (3.1.1). Consequently ∆+(u) 6= 0, and one can
find a nonzero component u(i,j) of ∆+(u) lying in Sym(p)i ⊗ Sym(p)j for some i, j > 0. Since this forces
i, j < deg(u), one has that ϕ maps both Sym(p)i,Sym(p)j injectively into Ai, Aj . Hence the tensor product
map

Sym(p)i ⊗ Sym(p)j
ϕ⊗ϕ−→ Ai ⊗Aj

200The grading on Sym(p) is induced from the grading on p, a homogeneous subspace of I ⊂ A as it is the kernel of the

graded map I
∆+−→ A⊗A.
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is also injective201. This implies (ϕ⊗ ϕ)(u(i,j)) 6= 0, giving the contradiction that

0 = ∆A
+(0) = ∆A

+(ϕ(u)) = (ϕ⊗ ϕ)(∆
Sym(p)
+ (u))

contains the nonzero Ai ⊗Aj-component (ϕ⊗ ϕ)(u(i,j)).
(An alternative proof of the injectivity of ϕ proceeds as follows: By (3.1.1), the subspace of primitive

elements of Sym(p) is p, and clearly ϕ |p is injective. Hence, Exercise 1.4.35(b) (applied to the homomorphism
ϕ) shows that ϕ is injective.) �

Before closing this section, we mention one nonobvious corollary of the Claim (3.1.1), when applied to the
ring of symmetric functions ΛQ with Q-coefficients, since Proposition 2.4.1 says that ΛQ = Q[p1, p2, . . .] =
Sym(V ) where V = Q{p1, p2, . . .}.

Corollary 3.1.8. The subspace p of primitives in ΛQ is one-dimensional in each degree n = 1, 2, . . ., and
spanned by {p1, p2, . . .}.

We note in passing that this corollary can also be obtained in a simpler fashion and a greater generality:

Exercise 3.1.9. Let k be any commutative ring. Show that the primitive elements of Λ are precisely the
elements of the k-linear span of p1, p2, p3, . . ..

3.2. The decomposition theorem. Our goal here is Zelevinsky’s theorem [227, Theorem 2.2] giving a
canonical decomposition of any PSH as a tensor product into PSH’s that each have only one primitive
element in their PSH-basis. For the sake of stating it, we introduce some notation.

Definition 3.2.1. Given a PSH A with PSH-basis Σ, let C := Σ ∩ p be the primitive elements in Σ. For
each ρ in C, let A(ρ) ⊂ A be the Z-span of

Σ(ρ) := {σ ∈ Σ : there exists n ≥ 0 with (σ, ρn) 6= 0}.

Definition 3.2.2. The tensor product of two PSHs A1 and A2 with PSH-bases Σ1 and Σ2 is defined as the
graded Hopf algebra A1 ⊗ A2 with PSH-basis {σ1 ⊗ σ2}(σ1,σ2)∈Σ1×Σ2

. It is easy to see that this is again a

PSH. The tensor product of any finite family of PSHs is defined similarly202.

Theorem 3.2.3. Any PSH A has a canonical tensor product decomposition

A =
⊗
ρ∈C

A(ρ)

with A(ρ) a PSH, and ρ the only primitive element in its PSH-basis Σ(ρ).

Although in all the applications, C will be finite, when C is infinite one should interpret the tensor product
in the theorem as the inductive limit of tensor products over finite subsets of C, that is, linear combinations
of basic tensors

⊗
ρ aρ in which there are only finitely many factors aρ 6= 1.

The first step toward the theorem uses a certain unique factorization property.

Lemma 3.2.4. Let P be a set of pairwise orthogonal primitives in a PSH A. Then,

(ρ1 · · · ρr, π1 · · ·πs) = 0

for ρi, πj in P unless r = s and one can reindex so that ρi = πi.

201One needs to know that for two injective maps Vi
ϕi→ Wi of k-vector spaces Vi,Wi with i = 1, 2, the tensor product

ϕ1 ⊗ ϕ2 is also injective. Factoring it as ϕ1 ⊗ ϕ2 = (id⊗ϕ2) ◦ (ϕ1 ⊗ id) , one sees that it suffices to show that for an injective

map V
ϕ
↪→W of free k-modules, and any free k-module U , the map V ⊗ U ϕ⊗id−→ W ⊗ U is also injective. Since tensor products

commute with direct sums, and U is (isomorphic to) a direct sum of copies of k, this reduces to the easy-to-check case where

U = k.

Note that some kind of freeness or flatness hypothesis on U is needed here since, e.g. the injective Z-module maps Z
ϕ1=(·×2)−→ Z

and Z/2Z ϕ2=id−→ Z/2Z have ϕ1 ⊗ ϕ2 = 0 on Z⊗Z Z/2Z ∼= Z/2Z 6= 0.
202For the empty family, it is the connected graded Hopf algebra Z with PSH-basis {1}.
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Proof. Induct on r. For r > 0, one has

(ρ1 · · · ρr, π1 · · ·πs) = (ρ2 · · · ρr, ρ⊥1 (π1 · · ·πs))

= (ρ2 · · · ρr,
s∑
j=1

(π1 · · ·πj−1 · ρ⊥1 (πj) · πj+1 · · ·πs))

from Proposition 2.8.2(iv) because ρ1 is primitive203. On the other hand, since each πj is primitive, one has
ρ⊥1 (πj) = (ρ1, 1) · πj + (ρ1, πj) · 1 = (ρ1, πj) which vanishes unless ρ1 = πj . Hence (ρ1 · · · ρr, π1 · · ·πs) = 0
unless ρ1 ∈ {π1, . . . , πs}, in which case after reindexing so that π1 = ρ1, it equals

n · (ρ1, ρ1) · (ρ2 · · · ρr, π2 · · ·πs)
if there are exactly n occurrences of ρ1 among π1, . . . , πs. Now apply induction. �

So far the positivity hypothesis for a PSH has played little role. Now we use it to introduce a certain
partial order on the PSH A, and then a semigroup grading.

Definition 3.2.5. For a subset S of an abelian group, let ZS (resp. NS) denote the subgroup of Z-linear
combinations (resp. submonoid of N-linear combinations204) of the elements of S.

In a PSH A with PSH-basis Σ, the subset NΣ forms a submonoid, and lets one define a partial order on
A via a ≤ b if b− a lies in NΣ.

We note a few trivial properties of this partial order:

• The positivity hypothesis implies that NΣ · NΣ ⊂ NΣ.
• Hence multiplication by an element c ≥ 0 (meaning c lies in NΣ) preserves the order: a ≤ b implies
ac ≤ bc since (b− a)c lies in NΣ.

• Thus 0 ≤ c ≤ d and 0 ≤ a ≤ b together imply ac ≤ bc ≤ bd.

This allows one to introduce a semigroup grading on A.

Definition 3.2.6. Let NCfin denote the additive submonoid of NC consisting of those α = (αρ)ρ∈C with finite
support.

Note that for any α in NCfin, one has that the product
∏
ρ∈C ρ

αρ ≥ 0. Define

Σ(α) := {σ ∈ Σ : σ ≤
∏
ρ∈C

ραρ},

that is, the subset of Σ on which
∏
ρ∈C ρ

αρ has support. Also define

A(α) := ZΣ(α) ⊂ A.

Proposition 3.2.7. The PSH A has an NCfin-semigroup-grading: one has an orthogonal direct sum decom-
position

A =
⊕
α∈NCfin

A(α)

for which

A(α)A(β) ⊂ A(α+β),(3.2.1)

∆A(α) ⊂
⊕

α=β+γ

A(β) ⊗A(γ).(3.2.2)

Proof. We will make free use of the fact that a PSH A is commutative, since it embeds in A⊗Z Q, which is
commutative by Theorem 3.1.7.

Note that the orthogonality
(
A(α), A(β)

)
= 0 for α 6= β is equivalent to the assertion that∏
ρ∈C

ραρ ,
∏
ρ∈C

ρβρ

 = 0,

203Strictly speaking, this argument needs further justification since A might not be of finite type (and if it is not, Proposi-

tion 2.8.2(iv) cannot be applied). It is more adequate to refer to the proof of Proposition 2.8.2(iv), which indeed goes through

with ρ1 taking the role of f .
204Recall that N := {0, 1, 2, . . .}.
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which follows from Lemma 3.2.4.
Next let us deal with the assertion (3.2.1). It suffices to check that when τ, ω in Σ lie in A(α), A(β),

respectively, then τω lies in A(α+β). But note that any σ in Σ having σ ≤ τω will then have

σ ≤ τω ≤
∏
ρ∈C

ραρ ·
∏
ρ∈C

ρβρ =
∏
ρ∈C

ραρ+βρ

so that σ lies in A(α+β). This means that τω lies in A(α+β).
This lets us check that

⊕
α∈NCfin

A(α) exhaust A. It suffices to check that any σ in Σ lies in some A(α).

Proceed by induction on deg(σ), with the case σ = 1 being trivial; the element 1 always lies in Σ, and hence
lies in A(α) for α = 0. For σ lying in I, one either has (σ, a) 6= 0 for some a in I2, or else σ lies in (I2)⊥ = p

(by Proposition 3.1.2(a)), so that σ is in C and we are done. If (σ, a) 6= 0 with a in I2, then σ appears in
the support of some Z-linear combination of elements τω where τ, ω lie in Σ and have strictly smaller degree
than σ has. There exists at least one such pair τ, ω for which (σ, τω) 6= 0, and therefore σ ≤ τω. Then by
induction τ, ω lie in some A(α), A(β), respectively, so τω lies in A(α+β), and hence σ lies in A(α+β) also.

Self-duality shows that (3.2.1) implies (3.2.2): if a, b, c lie in A(α), A(β), A(γ), respectively, then (∆a, b ⊗
c)A⊗A = (a, bc)A = 0 unless α = β + γ. �

Proposition 3.2.8. For α, β in NCfin with disjoint support, one has a bijection

Σ(α)× Σ(β) −→ Σ(α+ β),
(σ, τ) 7−→ στ.

Thus, the multiplication map A(α) ⊗A(β) → A(α+β) is an isomorphism.

Proof. We first check that for σ1, σ2 in Σ(α) and τ1, τ2 in Σ(β), one has

(3.2.3) (σ1τ1, σ2τ2) = δ(σ1,τ1),(σ2,τ2).

Note that this is equivalent to showing both

• that στ lie in Σ(α+ β) so that the map is well-defined, since it shows (στ, στ) = 1, and
• that the map is injective.

One calculates

(σ1τ1, σ2τ2)A = (σ1τ1,m(σ2 ⊗ τ2))A

= (∆(σ1τ1), σ2 ⊗ τ2)A⊗A

= (∆(σ1)∆(τ1), σ2 ⊗ τ2)A⊗A.

Note that due to (3.2.2), ∆(σ1)∆(τ1) lies in
∑
A(α′+β′) ⊗A(α′′+β′′) where

α′ + α′′ = α,

β′ + β′′ = β.

Since σ2 ⊗ τ2 lies in A(α) ⊗A(β), the only nonvanishing terms in the inner product come from those with

α′ + β′ = α,

α′′ + β′′ = β.

As α, β have disjoint support, this can only happen if

α′ = α, α′′ = 0, β′ = 0, β′′ = β;

that is, the only nonvanishing term comes from (σ1 ⊗ 1)(1⊗ τ1) = σ1 ⊗ τ1. Hence

(σ1τ1, σ2τ2)A = (σ1 ⊗ τ1, σ2 ⊗ τ2)A⊗A = δ(σ1,τ1),(σ2,τ2).

To see that the map is surjective, express ∏
ρ∈C

ραρ =
∑
i

σi,∏
ρ∈C

ρβρ =
∑
j

τj
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with σi ∈ Σ(α) and τj ∈ Σ(β). Then each product σiτj is in Σ(α+ β) by (3.2.3), and∏
ρ∈C

ραρ+βρ =
∑
i,j

σiτj

shows that {σiτj} exhausts Σ(α+ β). This gives surjectivity. �

Proof of Theorem 3.2.3. Recall from Definition 3.2.1 that for each ρ in C, one defines A(ρ) ⊂ A to be the
Z-span of

Σ(ρ) := {σ ∈ Σ : there exists n ≥ 0 with (σ, ρn) 6= 0}.
In other words, A(ρ) :=

⊕
n≥0A(n·eρ) where eρ in NCfin is the standard basis element indexed by ρ. Proposi-

tion 3.2.7 then shows that A(ρ) is a Hopf subalgebra of A. Since every α in NCfin can be expressed as the (fi-
nite) sum

∑
ρ αρeρ, and the eρ have disjoint support, iterating Proposition 3.2.8 shows that A =

⊗
ρ∈C A(ρ).

Lastly, Σ(ρ) is clearly a PSH-basis for A(ρ), and if σ is any primitive element in Σ(ρ) then (σ, ρn) 6= 0 lets
one conclude via Lemma 3.2.4 that σ = ρ (and n = 1). �

3.3. Λ is the unique indecomposable PSH. The goal here is to prove the rest of Zelevinsky’s structure
theory for PSH’s. Namely, if A has only one primitive element ρ in its PSH-basis Σ, then A must be
isomorphic as a PSH to the ring of symmetric functions Λ, after one rescales the grading of A. Note that
every σ in Σ has σ ≤ ρn for some n, and hence has degree divisible by the degree of ρ. Thus one can divide
all degrees by that of ρ and assume ρ has degree 1.

The idea is to find within A and Σ a set of elements that play the role of

{hn = s(n)}n=0,1,2,..., {en = s(1n)}n=0,1,2,...

within A = Λ and its PSH-basis of Schur functions Σ = {sλ}. Zelevinsky’s argument does this by isolating
some properties that turn out to characterize these elements:

(a) h0 = e0 = 1, and h1 = e1 =: ρ has ρ2 a sum of two elements of Σ, namely

ρ2 = h2 + e2.

(b) For all n = 0, 1, 2, . . ., there exist unique elements hn, en in An ∩ Σ that satisfy

h⊥2 en = 0,

e⊥2 hn = 0

with h2, e2 being the two elements of Σ introduced in (a).
(c) For k = 0, 1, 2, . . . , n one has

h⊥k hn = hn−k and σ⊥hn = 0 for σ ∈ Σ \ {h0, h1, . . . , hn},

e⊥k en = en−k and σ⊥en = 0 for σ ∈ Σ \ {e0, e1, . . . , en}.

In particular, e⊥k hn = 0 = h⊥k en for k ≥ 2.
(d) Their coproducts are

∆(hn) =
∑
i+j=n

hi ⊗ hj ,

∆(en) =
∑
i+j=n

ei ⊗ ej .

We will prove Zelevinsky’s result [227, Theorem 3.1] as a combination of the following two theorems.

Theorem 3.3.1. Let A be a PSH with PSH-basis Σ containing only one primitive ρ, and assume that the
grading has been rescaled so that ρ has degree 1. Then, after renaming ρ = e1 = h1, one can find unique
sequences {hn}n=0,1,2,..., {en}n=0,1,2,... of elements of Σ having properties (a),(b),(c),(d) listed above.

The second theorem uses the following notion.
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Definition 3.3.2. A PSH-morphism A
ϕ→ A′ between two PSH’s A,A′ having PSH-bases Σ,Σ′ is a graded

Hopf algebra morphism for which ϕ(NΣ) ⊂ NΣ′. If A = A′ and Σ = Σ′ it will be called a PSH-endomorphism.
If ϕ is an isomorphism and restricts to a bijection Σ → Σ′, it will be called a PSH-isomorphism205; if it is
both a PSH-isomorphism and an endomorphism, it is a PSH-automorphism.206

Theorem 3.3.3. The elements {hn}n=0,1,2,..., {en}n=0,1,2,... in Theorem 3.3.1 also satisfy the following.

(e) The elements hn, en in A satisfy the same relation (2.4.4)∑
i+j=n

(−1)ieihj = δ0,n

as their counterparts in Λ, along with the property that

A = Z[h1, h2, . . .] = Z[e1, e2, . . .].

(f) There is exactly one nontrivial automorphism A
ω→ A as a PSH, swapping hn ↔ en.

(g) There are exactly two PSH-isomorphisms A→ Λ:
• one sending hn to the complete homogeneous symmetric functions hn(x), while sending en to

the elementary symmetric functions en(x),
• the second one (obtained by composing the first with ω) sending hn 7→ en(x) and en 7→ hn(x).

Before embarking on the proof, we mention one more bit of convenient terminology: say that an element
σ in Σ is a constituent of a in NΣ when σ ≤ a, that is, σ appears with nonzero coefficient cσ in the unique
expansion a =

∑
τ∈Σ cττ .

Proof of Theorem 3.3.1. One fact that occurs frequently is this:

(3.3.1) Every σ in Σ ∩An is a constituent of ρn.

This follows from Theorem 3.2.3, since ρ is the only primitive element of Σ: one has A = A(ρ) and Σ = Σ(ρ),
so that σ is a constituent of some ρm, and homogeneity considerations force m = n.

Notice that A is of finite type (due to (3.3.1)). Thus, Ao is a graded Hopf algebra isomorphic to A.

Assertion (a). Note that

(ρ2, ρ2) = (ρ⊥(ρ2), ρ) = (2ρ, ρ) = 2

using the fact that ρ⊥ is a derivation since ρ is primitive (Proposition 2.8.2(iv)). On the other hand,
expressing ρ2 =

∑
σ∈Σ cσσ with cσ in N, one has (ρ2, ρ2) =

∑
σ c

2
σ. Hence exactly two of the cσ = 1, so ρ2

has exactly two distinct constituents. Denote them by h2 and e2. One concludes that Σ ∩ A2 = {h2, e2}
from (3.3.1).

Note also that the same argument shows Σ∩A1 = {ρ}, so that A1 = Zρ. Since ρ⊥h2 lies in A1 = Zρ and
(ρ⊥h2, ρ) = (h2, ρ

2) = 1, we have ρ⊥h2 = ρ. Similarly ρ⊥e2 = ρ.

Assertion (b). We will show via induction on n the following three assertions for n ≥ 1:

(3.3.2)

• There exists an element hn in Σ ∩An with e⊥2 hn = 0.

• This element hn is unique.

• Furthermore ρ⊥hn = hn−1.

In the base cases n = 1, 2, it is not hard to check that our previously labelled elements, h1, h2 (namely
h1 := ρ, and h2 as named in part (a)) really are the unique elements satisfying these hypotheses.

205This definition is easily seen to be equivalent to saying that a PSH-isomorphism is an invertible PSH-morphism whose
inverse is again a PSH-morphism.

206The reader should be warned that not every invertible PSH-endomorphism is necessarily a PSH-automorphism. For
instance, it is an easy exercise to check that Λ ⊗ Λ → Λ ⊗ Λ, f ⊗ g 7→

∑
(f) f1 ⊗ f2g is a well-defined invertible PSH-

endomorphism of the PSH Λ⊗ Λ with PSH-basis (sλ ⊗ sµ)(λ,µ)∈Par×Par, but not a PSH-automorphism.
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In the inductive step, it turns out that we will find hn as a constituent of ρhn−1. Thus we again use the
derivation property of ρ⊥ to compute that ρhn−1 has exactly two constituents:

(ρhn−1, ρhn−1) = (ρ⊥(ρhn−1), hn−1)

= (hn−1 + ρ · ρ⊥hn−1, hn−1)

= (hn−1 + ρhn−2, hn−1)

= 1 + (hn−2, ρ
⊥hn−1)

= 1 + (hn−2, hn−2) = 1 + 1 = 2

where the inductive hypothesis ρ⊥hn−1 = hn−2 was used twice. We next show that exactly one of the two
constituents of ρhn−1 is annihilated by e⊥2 . Note that since e2 lies in A2, and A1 has Z-basis element ρ,
there is a constant c in Z such that

(3.3.3) ∆(e2) = e2 ⊗ 1 + cρ⊗ ρ+ 1⊗ e2.

On the other hand, (a) showed

1 = (e2, ρ
2)A = (∆(e2), ρ⊗ ρ)A⊗A

so one must have c = 1. Therefore by Proposition 2.8.2(iv) again,

(3.3.4)
e⊥2 (ρhn−1) = e⊥2 (ρ)hn−1 + ρ⊥(ρ)ρ⊥(hn−1) + ρe⊥2 (hn−1)

= 0 + hn−2 + 0
= hn−2,

where the first term vanished due to degree considerations and the last term vanished by the inductive
hypothesis. Bearing in mind that ρhn−1 lies in NΣ, and in a PSH with PSH-basis Σ, any skewing operator
σ⊥ for σ in Σ will preserve NΣ, one concludes from (3.3.4) that

• one of the two distinct constituents of the element ρhn−1 must be sent by e⊥2 to hn−2, and
• the other constituent of ρhn−1 must be annihilated by e⊥2 ; call this second constituent hn.

Lastly, to see that this hn is unique, it suffices to show that any element σ of Σ ∩ An which is killed by
e⊥2 must be a constituent of ρhn−1. This holds for the following reason. We know σ ≤ ρn by (3.3.1), and
hence 0 6= (ρn, σ) = (ρn−1, ρ⊥σ), implying that ρ⊥σ 6= 0. On the other hand, since 0 = ρ⊥e⊥2 σ = e⊥2 ρ

⊥σ,
one has that ρ⊥σ is annihilated by e⊥2 , and hence ρ⊥σ must be a (positive) multiple of hn−1 by part of our
inductive hypothesis. Therefore (σ, ρhn−1) = (ρ⊥σ, hn−1) is positive, that is, σ is a constituent of ρhn−1.

The preceding argument, applied to σ = hn, shows that ρ⊥hn = chn−1 for some c in {1, 2, . . .}. Since
(ρ⊥hn, hn−1) = (hn, ρhn−1) = 1, this c must be 1, so that ρ⊥hn = hn−1. This completes the induction step
in the proof of (3.3.2).

One can then argue, swapping the roles of en, hn in the above argument, the existence and uniqueness of
a sequence {en}∞n=0 in Σ satisfying the properties analogous to (3.3.2), with e0 := 1, e1 := ρ.

Assertion (c). Iterating the property from (b) that ρ⊥hn = hn−1 shows that (ρk)⊥hn = hn−k for 0 ≤ k ≤ n.
However one also has an expansion

ρk = chk +
∑

σ∈Σ∩Ak:
σ 6=hk

cσσ

for some integers c, cσ > 0, since every σ in Σ ∩Ak is a constituent of ρk. Hence

1 = (hn−k, hn−k) = ((ρk)⊥hn, (ρ
k)⊥hn) ≥ c2(h⊥k hn, h

⊥
k hn)

using Proposition 2.8.2(ii). Hence if we knew that h⊥k hn 6= 0 this would force

h⊥k hn = (ρk)⊥hn = hn−k

as well as σ⊥hn = 0 for all σ 6∈ {h0, h1, . . . , hn}. But

(ρn−k)⊥h⊥k hn = h⊥k (ρn−k)⊥hn = h⊥k hk = 1 6= 0

so h⊥k hn 6= 0, as desired. The argument for e⊥k en = en−k is symmetric.
The last assertion in (c) follows if one checks that en 6= hn for each n ≥ 2, but this holds since e⊥2 (hn) = 0

but e⊥2 (en) = en−2.
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Assertion (d). Part (c) implies that

(∆hn, σ ⊗ τ)A⊗A = (hn, στ)A = (σ⊥hn, τ)A = 0

unless σ = hk for some k = 0, 1, 2, . . . , n and τ = hn−k. Also one can compute

(∆hn, hk ⊗ hn−k) = (hn, hkhn−k) = (h⊥k hn, hn−k)
(c)
= (hn−k, hn−k) = 1.

This is equivalent to the assertion for ∆hn in (d). The argument for ∆en is symmetric. �

Before proving Theorem 3.3.3, we note some consequences of Theorem 3.3.1. Define for each partition
λ = (λ1 ≥ λ2 ≥ · · · ≥ λ`) the following two elements of A:

hλ = hλ1hλ2 · · ·hλ` = hλ1hλ2 · · · ,
eλ = eλ1eλ2 · · · eλ` = eλ1eλ2 · · · .

Also, define the lexicographic order on Parn by saying λ <lex µ if λ 6= µ and the smallest index i for which
λi 6= µi has λi < µi. Recall also that λt denotes the conjugate or transpose partition to λ, obtained by
swapping rows and columns in the Ferrers diagram.

The following unitriangularity lemma will play a role in the proof of Theorem 3.3.3(e).

Lemma 3.3.4. Under the hypotheses of Theorem 3.3.1, for λ, µ in Parn, one has

(3.3.5) e⊥µ hλ =

{
1, if µ = λt;

0, if µ >lex λ
t.

Consequently

(3.3.6) det [(eµt , hλ)]λ,µ∈Parn
= 1.

Proof. Notice that A is of finite type (as shown in the proof of Theorem 3.3.1). Thus, Ao is a graded Hopf
algebra isomorphic to A.

Also, notice that any m ∈ N and any a1, a2, . . . , a` ∈ A satisfy

(3.3.7) e⊥m (a1a2 · · · a`) =
∑

i1+···+i`=m
e⊥i1 (a1) · · · e⊥i` (a`) .

Indeed, this follows by induction over ` using Proposition 2.8.2(iv) (and the coproduct formula for ∆(en) in
Theorem 3.3.1(d)).

In order to prove (3.3.5), induct on the length of µ. If λ has length `, so that λt1 = `, then

e⊥µ hλ = e⊥(µ2,µ3,...)

(
e⊥µ1

(hλ1 · · ·hλ`)
) (

since eµ = eµ1e(µ2,µ3,...) and thus e⊥µ = e⊥(µ2,µ3,...)
◦ e⊥µ1

)
= e⊥(µ2,µ3,...)

∑
i1+···+i`=µ1

e⊥i1(hλ1
) · · · e⊥i`(hλ`) (by (3.3.7))

= e⊥(µ2,µ3,...)

∑
i1+···+i`=µ1;

each of i1,...,i` is ≤1

e⊥i1(hλ1
) · · · e⊥i`(hλ`)

(
since e⊥k hn = 0 for k ≥ 2

)

=

{
0, if µ1 > ` = λt1;

e⊥(µ2,µ3,...)
h(λ1−1,...,λ`−1), if µ1 = ` = λt1

where the last equality used

e⊥k (hn) =

{
hn−1, if k = 1;

0, if k ≥ 2.

Now apply the induction hypothesis, since (λ1 − 1, . . . , λ` − 1)t = (λt2, λ
t
3, . . .).

To prove (3.3.6), note that any λ, µ in Parn satisfy (eµt , hλ) = (e⊥µt(hλ), 1) = e⊥µt(hλ) (since degree

considerations enforce e⊥µt(hλ) ∈ A0 = k · 1), and thus

(eµt , hλ) = e⊥µt(hλ) =

{
1, if µt = λt;

0, if µt >lex λ
t
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(by (3.3.5)). This means that the matrix [(eµt , hλ)]λ,µ∈Parn
is unitriangular with respect to some total order

on Parn (namely, the lexicographic order on the conjugate partitions), and hence has determinant 1. �

The following proposition will be the crux of the proof of Theorem 3.3.3(f) and (g), and turns out to be
closely related to Kerov’s asymptotic theory of characters of the symmetric groups [108].

Proposition 3.3.5. Given a PSH A with PSH-basis Σ containing only one primitive ρ, the two maps A→ Z
defined on A =

⊕
n≥0An via

δh =
⊕
n

h⊥n ,

δe =
⊕
n

e⊥n

are characterized as the only two Z-linear maps A
δ→ Z with the three properties of being

• positive: δ(NΣ) ⊂ N,
• multiplicative: δ(a1a2) = δ(a1)δ(a2) for all a1, a2 ∈ A, and
• normalized: δ(ρ) = 1.

Proof. Notice that A is of finite type (as shown in the proof of Theorem 3.3.1). Thus, Ao is a graded Hopf
algebra isomorphic to A.

It should be clear from their definitions that δh, δe are Z-linear, positive and normalized. To see that δh
is multiplicative, by Z-linearity, it suffices to check that for a1, a2 in An1

, An2
with n1 + n2 = n, one has

δh(a1a2) = h⊥n (a1a2) =
∑

i1+i2=n

h⊥i1(a1)h⊥i2(a2) = h⊥n1
(a1)h⊥n2

(a2) = δh(a1)δh(a2)

in which the second equality used Proposition 2.8.2(iv) and Theorem 3.3.1(d). The argument for δe is
symmetric.

Conversely, given A
δ→ Z which is Z-linear, positive, multiplicative, and normalized, note that

δ(h2) + δ(e2) = δ(h2 + e2) = δ(ρ2) = δ(ρ)2 = 12 = 1

and hence positivity implies that either δ(h2) = 0 or δ(e2) = 0. Assume the latter holds, and we will show
that δ = δh.

Given any σ in Σ ∩ An \ {hn}, note that e⊥2 σ 6= 0 by Theorem 3.3.1(b), and hence 0 6= (e⊥2 σ, ρ
n−2) =

(σ, e2ρ
n−2). Thus σ is a constituent of e2ρ

n−2, so positivity implies

0 ≤ δ(σ) ≤ δ(e2ρ
n−2) = δ(e2)δ(ρn−2) = 0.

Thus δ(σ) = 0 for σ in Σ ∩ An \ {hn}. Since δ(ρn) = δ(ρ)n = 1n = 1, this forces δ(hn) = 1, for each n ≥ 0
(including n = 0, as 1 = δ(ρ) = δ(ρ · 1) = δ(ρ)δ(1) = 1 · δ(1) = δ(1)). Thus δ = δh. The argument when
δ(h2) = 0 showing δ = δe is symmetric. �

Proof of Theorem 3.3.3. Many of the assertions of parts (e) and (f) will come from constructing the unique
nontrivial PSH-automorphism ω of A from the antipode S: for homogeneous a in An, define ω(a) :=
(−1)nS(a). We now study some of the properties of S and ω.

Notice that A is of finite type (as shown in the proof of Theorem 3.3.1). Thus, Ao is a graded Hopf algebra
isomorphic to A.

Since A is a PSH, it is commutative by Theorem 3.1.7 (applied to A ⊗Z Q). This implies both that
S is an algebra endomorphism by Proposition 1.4.10 (since Exercise 1.5.8(a) shows that the algebra anti-
endomorphisms of a commutative algebra are the same as its algebra endomorphisms), and that S2 = idA
by Corollary 1.4.12. Thus, ω is an algebra endomorphism and satisfies ω2 = idA.

Since A is self-dual and the defining diagram (1.4.3) satisfied by the antipode S is sent to itself when one
replaces A by Ao and all maps by their adjoints, one concludes that S = S∗ (where S∗ means the restricted
adjoint S∗ : Ao → Ao), i.e., S is self-adjoint. Since S is an algebra endomorphism, and S = S∗, in fact S is
also a coalgebra endomorphism, a bialgebra endomorphism, and a Hopf endomorphism (by Corollary 1.4.27).
The same properties are shared by ω.

Since idA = S2 = SS∗, one concludes that S is an isometry, and hence so is ω.
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Since ρ is primitive, one has S(ρ) = −ρ and ω(ρ) = ρ. Therefore ω(ρn) = ρn for n = 1, 2, . . .. Use this as
follows to check that ω is a PSH-automorphism, which amounts to checking that every σ in Σ has ω(σ) in
Σ:

(ω(σ), ω(σ)) = (σ, σ) = 1

so that ±ω(σ) lies in Σ, but also if σ lies in An, then

(ω(σ), ρn) = (σ, ω(ρn)) = (σ, ρn) > 0.

In summary, ω is a PSH-automorphism of A, an isometry, and an involution.
Let us try to determine the action of ω on the {hn}. By similar reasoning as in (3.3.3), one has

∆(h2) = h2 ⊗ 1 + ρ⊗ ρ+ 1⊗ h2.

Thus 0 = S(h2) + S(ρ)ρ + h2, and combining this with S(ρ) = −ρ, one has S(h2) = e2. Thus also
ω(h2) = (−1)2S(h2) = e2.

We claim that this forces ω(hn) = en, because h⊥2 ω(hn) = 0 via the following calculation: for any a in A
one has

(h⊥2 ω(hn), a) = (ω(hn), h2a)

= (hn, ω(h2a))

= (hn, e2ω(a))

= (e⊥2 hn, ω(a)) = (0, ω(a)) = 0.

Consequently the involution ω swaps hn and en, while the antipode S has S(hn) = (−1)nen and S(en) =
(−1)nhn. Thus the coproduct formulas in (d) and definition of the antipode S imply the relation (2.4.4)
between {hn} and {en}.

This relation (2.4.4) also lets one recursively express the hn as polynomials with integer coefficients in the
{en}, and vice-versa, so that {hn} and {en} each generate the same Z-subalgebra A′ of A. We wish to show
that A′ exhausts A.

We argue that Lemma 3.3.4 implies that the Gram matrix [(hµ, hλ)]µ,λ∈Parn
has determinant ±1 as

follows. Since {hn} and {en} both generate A′, there exists a Z-matrix (aµ,λ) expressing eµt =
∑
λ aµ,λhλ,

and one has
[(eµt , hλ)] = [aµ,λ] · [(hµ, hλ)] .

Taking determinants of these three Z-matrices, and using the fact that the determinant on the left is 1 (by
(3.3.6)), both determinants on the right must also be ±1.

Now we will show that every σ ∈ Σ ∩ An lies in A′n. Uniquely express σ = σ′ + σ′′ in which σ′ lies in
the R-span RA′n and σ′′ lies in the real perpendicular space (RA′n)⊥ inside R ⊗Z An. One can compute
R-coefficients (cµ)µ∈Parn that express σ′ =

∑
µ cµhµ by solving the system(∑

µ

cµhµ, hλ

)
= (σ, hλ) for λ ∈ Parn .

This linear system is governed by the Gram matrix [(hµ, hλ)]µ,λ∈Parn
with determinant ±1, and its right

side has Z-entries since σ, hλ lie in A. Hence the solution (cµ)µ∈Parn will have Z-entries, so σ′ lies in A′.
Furthermore, σ′′ = σ − σ′ will lie in A, and hence by the orthogonality of σ′, σ′′,

1 = (σ, σ) = (σ′, σ′) + (σ′′, σ′′).

One concludes that either σ′′ = 0, or σ′ = 0. The latter cannot occur since it would mean that σ = σ′′ is per-
pendicular to all of A′. But ρn = hn1 lies in A′, and (σ, ρn) 6= 0. Thus σ′′ = 0, meaning σ = σ′ lies in A′. This
completes the proof of assertion (e). Note that in the process, having shown det(hµ, hλ)λ,µ∈Parn = ±1, one
also knows that {hλ}λ∈Parn are Z-linearly independent, so that {h1, h2, . . .} are algebraically independent207,
and A = Z[h1, h2, . . .] is the polynomial algebra generated by {h1, h2, . . .}.

For assertion (f), we have seen that ω gives such a PSH-automorphism A → A, swapping hn ↔ en.

Conversely, given a PSH-automorphism A
ϕ→ A, consider the positive, multiplicative, normalized Z-linear

map δ := δh ◦ ϕ : A→ Z. Proposition 3.3.5 shows that either

207by Exercise 2.2.14(c)
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• δ = δh, which then forces ϕ(hn) = hn for all n, so ϕ = idA, or
• δ = δe, which then forces ϕ(en) = hn for all n, so ϕ = ω.

For assertion (g), given a PSH A with PSH-basis Σ having exactly one primitive ρ, since we have seen
A = Z[h1, h2, . . .], where hn in A is as defined in Theorem 3.3.1, one can uniquely define an algebra morphism

A
ϕ→ Λ that sends the element hn to the complete homogeneous symmetric function hn(x). Assertions (d)

and (e) show that ϕ is a bialgebra isomorphism, and hence it is a Hopf isomorphism. To show that it is a
PSH-isomorphism, we first note that it is an isometry because one can iterate Proposition 2.8.2(iv) together
with assertions (c) and (d) to compute all inner products

(hµ, hλ)A = (1, h⊥µ hλ)A = (1, h⊥µ1
h⊥µ2
· · · (hλ1

hλ2
· · · ))A

for µ, λ in Parn. Hence
(hµ, hλ)A = (hµ(x), hλ(x))Λ = (ϕ(hµ), ϕ(hλ))Λ.

Once one knows ϕ is an isometry, then elements ω in Σ ∩An are characterized in terms of the form (·, ·) by
(ω, ω) = 1 and (ω, ρn) > 0. Hence ϕ sends each σ in Σ to a Schur function sλ, and is a PSH-isomorphism. �
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4. Complex representations for Sn, wreath products, GLn(Fq)

After reviewing the basics that we will need from representation and character theory of finite groups,
we give Zelevinsky’s three main examples of PSH’s arising as spaces of virtual characters for three towers of
finite groups:

• symmetric groups,
• their wreath products with any finite group, and
• the finite general linear groups.

Much in this chapter traces its roots to Zelevinsky’s book [227]. The results concerning the symmetric
groups, however, are significantly older and spread across the literature: see, e.g., [206, §7.18], [73, §7.3],
[142, §I.7], [186, §4.7], [113], for proofs using different tools.

4.1. Review of complex character theory. We shall now briefly discuss some basics of representation
(and character) theory that will be used below. A good source for this material, including the crucial Mackey
formula, is Serre [197, Chaps. 1-7].208

4.1.1. Basic definitions, Maschke, Schur. For a group G, a representation of G is a homomorphism G
ϕ→

GL(V ) for some vector space V over a field. We will take the field to be C from now on, and we will also
assume that V is finite-dimensional over C. Thus a representation of G is the same as a finite-dimensional
(left) CG-module V . (We use the notations CG and C [G] synonymously for the group algebra of G over C.
More generally, if S is a set, then CS = C [S] denotes the free C-module with basis S.)

We also assume that G is finite, so that Maschke’s Theorem209 says that CG is semisimple, meaning that
every CG-module U ⊂ V has a CG-module complement U ′ with V = U ⊕U ′. Equivalently, indecomposable
CG-modules are the same thing as simple (=irreducible) CG-modules.

Schur’s Lemma implies that for two simple CG-modules V1, V2, one has

HomCG(V1, V2) ∼=

{
C, if V1

∼= V2;

0, if V1 6∼= V2.

4.1.2. Characters and Hom spaces. A CG-module V is completely determined up to isomorphism by its
character

G
χV−→ C,

g 7−→ χV (g) := trace(g : V → V ).

This character χV is a class function, meaning it is constant on G-conjugacy classes. The space RC(G) of
class functions G→ C has a Hermitian, positive definite form

(f1, f2)G :=
1

|G|
∑
g∈G

f1(g)f2(g).

For any two CG-modules V1, V2,

(4.1.1) (χV1
, χV2

)G = dimC HomCG(V1, V2).

The set of all irreducible characters

Irr(G) = {χV : V is a simple CG-module}
forms an orthonormal basis of RC(G) with respect to this form, and spans a Z-sublattice

R(G) := Z Irr(G) ⊂ RC(G)

sometimes called the virtual characters of G. For every CG-module V , the character χV belongs to R(G).
Instead of working with the Hermitian form (·, ·)G on G, we could also (and some authors do) define a

C-bilinear form 〈·, ·〉G on RC(G) by

〈f1, f2〉G :=
1

|G|
∑
g∈G

f1(g)f2(g−1).

208More advanced treatments of representation theory can be found in [222] and [69].
209... which has a beautiful generalization to finite-dimensional Hopf algebras due to Larson and Sweedler; see Montgomery

[157, §2.2].
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This form is not identical with (·, ·)G (indeed, 〈·, ·〉G is bilinear while (·, ·)G is Hermitian), but it still satisfies
(4.1.1), and thus is identical with (·, ·)G on R(G)×R(G). Hence, for all we are going to do until Section 4.9,
we could just as well use the form 〈·, ·〉G instead of (·, ·)G.

4.1.3. Tensor products. Given two groups G1, G2 and CGi-modules Vi for i = 1, 2, their tensor product
V1 ⊗C V2 becomes a C[G1 × G2]-module via (g1, g2)(v1 ⊗ v2) = g1(v1) ⊗ g2(v2). This module is called the
(outer) tensor product of V1 and V2. When V1, V2 are both simple, then so is V1 ⊗ V2, and every simple
C[G1 ×G2]-module arises this way (with V1 and V2 determined uniquely up to isomorphism).210 Thus one
has identifications and isomorphisms

Irr(G1 ×G2) = Irr(G1)× Irr(G2),

R(G1 ×G2) ∼= R(G1)⊗Z R(G2);

here, χV1 ⊗χV2 ∈ R(G1)⊗ZR(G2) is being identified with χV1⊗V2 ∈ R(G1×G2) for all CG1-modules V1 and
all CG2-modules V2. The latter isomorphism is actually a restriction of the isomorphism RC(G1 × G2) ∼=
RC(G1) ⊗C RC(G2) under which every pure tensor φ1 ⊗ φ2 ∈ RC(G1) ⊗C RC(G2) corresponds to the class
function G1 ×G2 → C, (g1, g2) 7→ φ1 (g1)⊗ φ2 (g2).

Given two CG1-modules V1 and W1 and two CG2-modules V2 and W2, we have

(4.1.2) (χV1⊗V2
, χW1⊗W2

)G1×G2
= (χV1

, χW1
)G1

(χV2
, χW2

)G2
.

4.1.4. Induction and restriction. Given a subgroup H < G and CH-module U , one can use the fact that CG
is a (CG,CH)-bimodule to form the induced CG-module

IndGH U := CG⊗CH U.

The fact that CG is free as a (right-)CH-module211 on basis elements {tg}gH∈G/H makes this tensor product
easy to analyze. For example one can compute its character

(4.1.3) χIndGH U (g) =
1

|H|
∑
k∈G:

kgk−1∈H

χU (kgk−1).

212 One can also recognize when a CG-module V is isomorphic to IndGH U for some CH-module U : this
happens if and only if there is an H-stable subspace U ⊂ V having the property that V =

⊕
gH∈G/H gU .

The above construction of a CG-module IndGH U corresponding to any CH-module U is part of a functor

IndGH from the category of CH-modules to the category of CG-modules213; this functor is called induction.
Besides induction on CH-modules, one can define induction on class functions of H:

Exercise 4.1.1. Let G be a finite group, and H a subgroup of G. Let f ∈ RC (H) be a class function. We

define the induction IndGH f of f to be the function G→ C given by

(4.1.4)
(

IndGH f
)

(g) =
1

|H|
∑
k∈G:

kgk−1∈H

f
(
kgk−1

)
for all g ∈ G.

(a) Prove that this induction IndGH f is a class function on G, hence belongs to RC (G).
(b) Let J be a system of right coset214 representatives for H\G, so that G =

⊔
j∈J Hj. Prove that(

IndGH f
)

(g) =
∑
j∈J:

jgj−1∈H

f
(
jgj−1

)
for all g ∈ G.

210This is proven in [197, §3.2, Thm. 10]. The fact that C is algebraically closed is essential for this!
211... which also has a beautiful generalization to finite-dimensional Hopf algebras due to Nichols and Zoeller; see [157, §3.1].
212See [197, §7.2, Prop. 20(ii)] for the proof of this equality. (Another proof is given in [69, Remark 5.9.2 (the Remark after

Theorem 4.32 in the arXiv version)], but [69] uses a different definition of IndGH U ; see Remark 4.1.5 for why it is equivalent to

ours. Yet another proof of (4.1.3) is given in Exercise 4.1.14(k).)
213On morphisms, it sends any f : U → U ′ to idCG⊗CHf : CG⊗CH U → CG⊗CH U ′.
214A right coset of a subgroup H in a group G is defined to be a subset of G having the form Hj for some j ∈ G. Similarly,

a left coset has the form jH for some j ∈ G.
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The induction IndGH defined in Exercise 4.1.1 is a C-linear map RC (H)→ RC (G). Since every CH-module
U satisfies

(4.1.5) χIndGH U = IndGH(χU )

215, this C-linear map IndGH restricts to a Z-linear map R (H)→ R (G) (also denoted IndGH) which sends the

character χU of any CH-module U to the character χIndGH U of the induced CG-module IndGH U .

Exercise 4.1.2. Let G, H and I be three finite groups such that I < H < G. Let U be a CI-module. Prove
that IndGH IndHI U

∼= IndGI U . (This fact is often referred to as the transitivity of induction.)

Exercise 4.1.3. Let G1 and G2 be two groups. Let H1 < G1 and H2 < G2 be two subgroups. Let U1 be a
CH1-module, and U2 be a CH2-module. Show that

(4.1.6) IndG1×G2

H1×H2
(U1 ⊗ U2) ∼=

(
IndG1

H1
U1

)
⊗
(

IndG2

H2
U2

)
as C [G1 ×G2]-modules.

The restriction operation V 7→ ResGH V restricts a CG-module V to a CH-module. Frobenius reciprocity

asserts the adjointness between IndGH and ResGH

(4.1.7) HomCG(IndGH U, V ) ∼= HomCH(U,ResGH V ),

as a special case (S = A = CG,R = CH,B = U,C = V ) of the general adjoint associativity

(4.1.8) HomS(A⊗R B,C) ∼= HomR(B,HomS(A,C))

for S,R two rings, A an (S,R)-bimodule, B a left R-module, C a left S-module.
We can define not just the restriction of a CG-module, but also the restriction of a class function f ∈

RC(G). When H is a subgroup of G, the restriction ResGH f of an f ∈ RC(G) is defined as the result of

restricting the map f : G → C to H. This ResGH f is easily seen to belong to RC(H), and so ResGH is
a C-linear map RC(G) → RC(H). This map restricts to a Z-linear map R(G) → R(H), since we have

ResGH χV = χResGH V for any CG-module V . Taking characters in (4.1.7) (and recalling ResGH χV = χResGH V

and (4.1.5)), we obtain

(4.1.9) (IndGH χU , χV )G = (χU ,ResGH χV )H .

By bilinearity, this yields the equality (
IndGH α, β

)
G

=
(
α,ResGH β

)
H

for any class functions α ∈ RC(H) and β ∈ RC(G) (since R(G) spans RC(G) as a C-vector space).

Exercise 4.1.4. Let G be a finite group, and let H < G. Let U be a CH-module. If A and B are two
algebras, P is a (B,A)-bimodule and Q is a left B-module, then HomB (P,Q) is a left A-module (since CG
is a (CH,CG)-bimodule). As a consequence, HomCH (CG,U) is a CG-module. Prove that this CG-module

is isomorphic to IndGH U .

Remark 4.1.5. Some texts define the induction IndGH U of a CH-module U to be HomCH (CG,U) (rather
than to be CG⊗CH U , as we did).216 As Exercise 4.1.4 shows, this definition is equivalent to ours as long as
G is finite (but not otherwise).

Exercise 4.1.4 yields the following “wrong-way” version of Frobenius reciprocity:

Exercise 4.1.6. Let G be a finite group; let H < G. Let U be a CG-module, and let V be a CH-module.

Prove that HomCG

(
U, IndGH V

)
∼= HomCH

(
ResGH U, V

)
.

215This follows by comparing the value of χIndG
H
U (g) obtained from (4.1.3) with the value of

(
IndGH(χU )

)
(g) found using

(4.1.4).
216Or they define it as a set of morphisms of H-sets from G to U (this is how [69, Def. 5.8.1 (Def. 4.28 in the arXiv version)]

defines it); this is easily seen to be equivalent to HomCH (CG,U).
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4.1.5. Mackey’s formula. Mackey gave an alternate description of a module which has been induced and
then restricted. To state it, for a subgroup H < G and g in G, let Hg := g−1Hg and gH := gHg−1. Given

a CH-module U , say defined by a homomorphism H
ϕ→ GL(U), let Ug denote the C[gHg−1]-module on the

same C-vector space U defined by the composite homomorphism

gH −→ H
ϕ−→ GL(U),

h 7−→ g−1hg.

Theorem 4.1.7. (Mackey’s formula) Consider subgroups H,K < G, and any CH-module U . If {g1, . . . , gt}
are double coset representatives for K\G/H, then

ResGK IndGH U
∼=

t⊕
i=1

IndKgiH∩K

((
ResHH∩Kgi U

)gi)
.

Proof. In this proof, all tensor product symbols ⊗ should be interpreted as ⊗CH . Recall CG has C-basis
{tg}g∈G. For subsets S ⊂ G, let C[S] denote the C-span of {tg}g∈S in CG.

Note that each double coset KgH gives rise to a sub-(K,H)-bimodule C[KgH] within CG, and one has
a CK-module direct sum decomposition

IndGH U = CG⊗ U =

t⊕
i=1

C[KgiH]⊗ U.

Hence it suffices to check for any element g in G that

C[KgH]⊗ U ∼= IndKgH∩K

((
ResHH∩Kg U

)g)
.

Note that gH ∩K is the subgroup of K consisting of the elements k in K for which kgH = gH. Hence by
picking {k1, . . . , ks} to be coset representatives for K/(gH ∩K), one disjointly decomposes the double coset

KgH =

s⊔
j=1

kj(
gH ∩K)gH,

giving a C-vector space direct sum decomposition

C[KgH]⊗ U =

s⊕
j=1

C [kj (gH ∩K) gH]⊗ U

∼= IndKgH∩K (C[(gH ∩K) gH]⊗ U) .

So it remains to check that one has a C[gH ∩K]-module isomorphism

C[(gH ∩K) gH]⊗ U ∼=
(
ResHH∩Kg U

)g
.

Bearing in mind that, for each k in gH ∩K and h in H, one has g−1kg in H and hence

tkgh ⊗ u = tg · tg−1kg·h ⊗ u = tg ⊗ g−1kgh · u,
one sees that this isomorphism can be defined by mapping

tkgh ⊗ u 7−→ g−1kgh · u.
�

4.1.6. Inflation and fixed points. There are two (adjoint) constructions on representations that apply when

one has a normal subgroup K / G. Given a C[G/K]-module U , say defined by the homomorphism G/K
ϕ→

GL(U), the inflation of U to a CG-module InflGG/K U has the same underlying space U , and is defined by

the composite homomorphism G → G/K
ϕ→ GL(U). We will later use the easily-checked fact that when

H < G is any other subgroup, one has

(4.1.10) ResGH InflGG/K U = InflHH/H∩K Res
G/K
H/H∩K U.

(We regard H/H ∩ K as a subgroup of G/K, since the canonical homomorphism H/H ∩ K → G/K is
injective.)
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Inflation turns out to be adjoint to the K-fixed space construction sending a CG-module V to the C[G/K]-
module

V K := {v ∈ V : k(v) = v for k ∈ K}.
Note that V K is indeed a G-stable subspace: for any v in V K and g in G, one has that g(v) lies in V K since
an element k in K satisfies kg(v) = g · g−1kg(v) = g(v) as g−1kg lies in K. One has this adjointness

(4.1.11) HomCG(InflGG/K U, V ) = HomC[G/K](U, V
K),

because any CG-module homomorphism ϕ on the left must have the property that kϕ(u) = ϕ(k(u)) = ϕ(u)
for all k in K, so that ϕ actually lies on the right.

We will also need the following formula for the character χV K in terms of the character χV :

(4.1.12) χV K (gK) =
1

|K|
∑
k∈K

χV (gk).

To see this, note that when one has a C-linear endomorphism ϕ on a space V that preserves some C-subspace

W ⊂ V , if V
π→ W is any idempotent projection onto W , then the trace of the restriction ϕ|W equals the

trace of ϕ ◦ π on V . Applying this to W = V K and ϕ = g, with π = 1
|K|
∑
k∈K k, gives (4.1.12).217

Another way to restate (4.1.12) is:

(4.1.13) χV K (gK) =
1

|K|
∑
h∈gK

χV (h).

Inflation and K-fixed space construction can also be defined on class functions. For inflation, this is par-

ticularly easy: Inflation InflGG/K f of an f ∈ RC(G/K) is defined as the composition G // // G/K
f // C .

This is a class function of G and thus lies in RC(G). Thus, inflation InflGG/K is a C-linear map RC(G/K)→
RC(G). It restricts to a Z-linear map R(G/K) → R(G), since it is clear that every C(G/K)-module U

satisfies InflGG/K χU = χInflG
G/K

U .

We can also use (4.1.12) (or (4.1.13)) as inspiration for defining a “K-fixed space construction” on class
functions. Explicitly, for every class function f ∈ RC(G), we define a class function fK ∈ RC(G/K) by

fK(gK) =
1

|K|
∑
k∈K

f(gk) =
1

|K|
∑
h∈gK

f(h).

The map (·)K : RC(G)→ RC(G/K), f 7→ fK is C-linear, and restricts to a Z-linear map R(G)→ R(G/K).

Again, we have a compatibility with the K-fixed point construction on modules: We have χV K = (χV )
K

for
every CG-module V .

Taking characters in (4.1.11), we obtain

(4.1.14) (InflGG/K χU , χV )G = (χU , χ
K
V )G/K

for any C [G/K]-module U and any CG-module V (since χInflG
G/K

U = InflGG/K χU and χV K = (χV )
K

). By

Z-linearity, this implies that (
InflGG/K α, β

)
G

=
(
α, βK

)
G/K

for any class functions α ∈ RC (G/K) and β ∈ RC (G).
There is also an analogue of (4.1.6):

Lemma 4.1.8. Let G1 and G2 be two groups, and K1 < G1 and K2 < G2 be two respective subgroups.
Let Ui be a CGi-module for each i ∈ {1, 2}. Then,

(4.1.15) (U1 ⊗ U2)
K1×K2 = UK1

1 ⊗ UK2
2

(as subspaces of U1 ⊗ U2).

217For another proof of (4.1.12), see Exercise 4.1.14(l).
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Proof. The subgroup K1 = K1×1 of G1×G2 acts on U1⊗U2, and its fixed points are (U1 ⊗ U2)
K1 = UK1

1 ⊗U2

(because for a CK1-module, tensoring with U2 is the same as taking a direct power, which clearly commutes

with taking fixed points). Similarly, (U1 ⊗ U2)
K2 = U1 ⊗ UK2

2 . Now,

(U1 ⊗ U2)
K1×K2 = (U1 ⊗ U2)

K1 ∩ (U1 ⊗ U2)
K2 =

(
UK1

1 ⊗ U2

)
∩
(
U1 ⊗ UK2

2

)
= UK1

1 ⊗ UK2
2

according to the known linear-algebraic fact stating that if P and Q are subspaces of two vector spaces U
and V , respectively, then (P ⊗ V ) ∩ (U ⊗Q) = P ⊗Q. �

Exercise 4.1.9. (a) Let G1 and G2 be two groups. Let Vi and Wi be finite-dimensional CGi-modules
for every i ∈ {1, 2}. Prove that the C-linear map

HomCG1
(V1,W1)⊗HomCG2

(V2,W2)→ HomC[G1×G2] (V1 ⊗ V2,W1 ⊗W2)

sending each tensor f⊗g to the tensor product f⊗g of homomorphisms is a vector space isomorphism.
(b) Use part (a) to give a new proof of (4.1.2).

As an aside, (4.1.10) has a “dual” analogue:

Exercise 4.1.10. LetG be a finite group, and letK/G andH < G. Let U be a CH-module. As usual, regard

H/ (H ∩K) as a subgroup of G/K. Show that
(

IndGH U
)K ∼= Ind

G/K
H/(H∩K)

(
UH∩K

)
as C [G/K]-modules.

Inflation also “commutes” with induction:

Exercise 4.1.11. Let G be a finite group, and let K < H < G be such that K / G. Thus, automatically,
K / H, and we regard the quotient H/K as a subgroup of G/K. Let V be a C [H/K]-module. Show that

InflGG/K Ind
G/K
H/K V

∼= IndGH InflHH/K V as CG-modules.

Exercise 4.1.12. Let G be a finite group, and let K / G. Let V be a CG-module. Let IV,K denote the
C-vector subspace of V spanned by all elements of the form v − kv for k ∈ K and v ∈ V .

(a) Show that IV,K is a CG-submodule of V .
(b) Let VK denote the quotient CG-module V/IV,K . (This module is occasionally called theK-coinvariant

module of V , a name it sadly shares with at least two other non-equivalent constructions in algebra.)

Show that VK ∼= InflGG/K
(
V K
)

as CG-modules. (Use charC = 0.)

In the remainder of this subsection, we shall briefly survey generalized notions of induction and restriction,
defined in terms of a group homomorphism ρ rather than in terms of a group G and a subgroup H. These
generalized notions (defined by van Leeuwen in [128, §2.2]) will not be used in the rest of these notes, but
they shed some new light on the facts about induction, restriction, inflation and fixed point construction
discussed above. (In particular, they reveal that some of said facts have common generalizations.)

The reader might have noticed that the definitions of inflation and of restriction (both for characters and
for modules) are similar. In fact, they both are particular cases of the following construction:

Remark 4.1.13. Let G and H be two finite groups, and let ρ : H → G be a group homomorphism.

• If f ∈ RC (G), then the ρ-restriction Resρ f of f is defined as the map f ◦ ρ : H → C. This map is
easily seen to belong to RC (H).

• If V is a CG-module, then the ρ-restriction Resρ V of V is the CH-module with ground space V
and action given by

h · v = ρ (h) · v for every h ∈ H and v ∈ V.
This construction generalizes both inflation and restriction: If H is a subgroup of G, and if ρ : H → G is

the inclusion map, then Resρ f = ResGH f (for any f ∈ RC (G)) and Resρ V = ResGH V (for any CG-module
V ). If, instead, we have G = H/K for a normal subgroup K of H, and if ρ : H → G is the projection map,

then Resρ f = InflHH/K f (for any f ∈ RC (H/K)) and Resρ V = InflHH/K V (for any C [H/K]-module V ).

A subtler observation is that induction and fixed point construction can be generalized by a common
notion. This is the subject of Exercise 4.1.14 below.

Exercise 4.1.14. Let G and H be two finite groups, and let ρ : H → G be a group homomorphism. We
introduce the following notations:
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• If f ∈ RC (H), then the ρ-induction Indρ f of f is a map G→ C which is defined as follows:

(Indρ f) (g) =
1

|H|
∑

(h,k)∈H×G;

kρ(h)k−1=g

f (h) for every g ∈ G.

• If U is a CH-module, then the ρ-induction Indρ U of U is defined as the CG-module CG ⊗CH U ,
where CG is regarded as a (CG,CH)-bimodule according to the following rule: The left CG-module
structure on CG is plain multiplication inside CG; the right CH-module structure on CG is induced
by the C-algebra homomorphism C [ρ] : CH → CG (thus, it is explicitly given by γη = γ · (C [ρ]) η
for all γ ∈ CG and η ∈ CH).

Prove the following properties of this construction:

(a) For every f ∈ RC (H), we have Indρ f ∈ RC (G).
(b) For any finite-dimensional CH-module U , we have χIndρ U = Indρ χU .

(c) If H is a subgroup of G, and if ρ : H → G is the inclusion map, then Indρ f = IndGH f for every
f ∈ RC (H).

(d) If H is a subgroup of G, and if ρ : H → G is the inclusion map, then Indρ U = IndGH U for every
CH-module U .

(e) If G = H/K for some normal subgroup K of H, and if ρ : H → G is the projection map, then
Indρ f = fK for every f ∈ RC (H).

(f) If G = H/K for some normal subgroup K of H, and if ρ : H → G is the projection map, then
Indρ U ∼= UK for every CH-module U .

(g) Any class functions α ∈ RC (H) and β ∈ RC (G) satisfy

(4.1.16) (Indρ α, β)G = (α,Resρ β)H

and

(4.1.17) 〈Indρ α, β〉G = 〈α,Resρ β〉H .
(See Remark 4.1.13 for the definition of Resρ β.)

(h) We have HomCG (Indρ U, V ) ∼= HomCH (U,Resρ V ) for every CH-module U and every CG-module
V . (See Remark 4.1.13 for the definition of Resρ V .)

(i) Similarly to how we made CG into a (CG,CH)-bimodule, let us make CG into a (CH,CG)-bimodule
(so the right CG-module structure is plain multiplication inside CG, whereas the left CH-module
structure is induced by the C-algebra homomorphism C [ρ] : CH → CG). If U is any CH-module,
then the CG-module HomCH (CG,U) (defined as in Exercise 4.1.4 using the (CH,CG)-bimodule
structure on CG) is isomorphic to Indρ U .

(j) We have HomCG (U, Indρ V ) ∼= HomCH (Resρ U, V ) for every CG-module U and every CH-module
V . (See Remark 4.1.13 for the definition of Resρ V .)

Furthermore:

(k) Use the above to prove the formula (4.1.3).
(l) Use the above to prove the formula (4.1.12).

[Hint: Part (b) of this exercise is hard. To solve it, it is useful to have a way of computing the trace of a
linear operator without knowing a basis of the vector space it is acting on. There is a way to do this using
a “finite dual generating system”, which is a somewhat less restricted notion than that of a basis218. Try to
create a finite dual generating system for Indρ U from one for U (and from the group G), and then use it to
compute χIndρ U .

218More precisely: Let K be a field, and V be a K-vector space. A finite dual generating system for V means a triple(
I, (ai)i∈I , (fi)i∈I

)
, where

• I is a finite set;
• (ai)i∈I is a family of elements of V ;

• (fi)i∈I is a family of elements of V ∗ (where V ∗ means HomK (V,K))

such that every v ∈ V satisfies v =
∑
i∈I fi (v) ai. For example, if (ej)j∈J is a finite basis of the vector space V , and if(

e∗j

)
j∈J

is the basis of V ∗ dual to this basis (ej)j∈J , then

(
J, (ej)j∈J ,

(
e∗j

)
j∈J

)
is a finite dual generating system for V ;

however, most finite dual generating systems are not obtained this way.
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The solution of part (i) is a modification of the solution of Exercise 4.1.4, but complicated by the fact
that H is no longer (necessarily) a subgroup of G. Part (f) can be solved by similar arguments, or using
part (i), or using Exercise 4.1.12(b).]

The result of Exercise 4.1.14(h) generalizes (4.1.7) (because of Exercise 4.1.14(d)), but also generalizes
(4.1.11) (due to Exercise 4.1.14(f)). Similarly, Exercise 4.1.14(g) generalizes both (4.1.9) and (4.1.14). Sim-
ilarly, Exercise 4.1.14(i) generalizes Exercise 4.1.4, and Exercise 4.1.14(j) generalizes Exercise 4.1.6.

Similarly, Exercise 4.1.3 is generalized by the following exercise:

Exercise 4.1.15. Let G1, G2, H1 and H2 be four finite groups. Let ρ1 : H1 → G1 and ρ2 : H2 → G2

be two group homomorphisms. These two homomorphisms clearly induce a group homomorphism ρ1 × ρ2 :
H1 ×H2 → G1 ×G2. Let U1 be a CH1-module, and U2 be a CH2-module. Show that

Indρ1×ρ2 (U1 ⊗ U2) ∼= (Indρ1 U1)⊗ (Indρ2 U2)

as C [G1 ×G2]-modules.

The Indρ and Resρ operators behave “functorially” with respect to composition. Here is what this means:

Exercise 4.1.16. Let G, H and I be three finite groups. Let ρ : H → G and τ : I → H be two group
homomorphisms.

(a) We have Indρ Indτ U ∼= Indρ◦τ U for every CI-module U .
(b) We have Indρ Indτ f = Indρ◦τ f for every f ∈ RC (I).
(c) We have Resτ Resρ V = Resρ◦τ V for every CG-module V .
(d) We have Resτ Resρ f = Resρ◦τ f for every f ∈ RC (G).

Exercise 4.1.16(a), of course, generalizes Exercise 4.1.2.

4.1.7. Semidirect products. Recall that a semidirect product is a group G nK having two subgroups G,K
with

• K / (GnK) is a normal subgroup,
• GnK = GK = KG, and
• G ∩K = {e}.

In this setting one has two interesting adjoint constructions, applied in Section 4.5.

Proposition 4.1.17. Fix a C[GnK]-module V .

(i) For any CG-module U , one has C[GnK]-module structure

Φ(U) := U ⊗ V,

determined via

k(u⊗ v) = u⊗ k(v),

g(u⊗ v) = g(u)⊗ g(v).

(ii) For any C[GnK]-module W , one has CG-module structure

Ψ(W ) := HomCK(ResGnK
K V,ResGnK

K W ),

determined via g(ϕ) = g ◦ ϕ ◦ g−1.
(iii) The maps

CG−mods
Φ


Ψ

C[GnK]−mods

The crucial observation is now that if
(
I, (ai)i∈I , (fi)i∈I

)
is a finite dual generating system for a vector space V , and if T

is an endomorphism of V , then

traceT =
∑
i∈I

fi (Tai) .

Prove this!
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are adjoint in the sense that one has an isomorphism

HomCG(U,Ψ(W )) −→ HomC[GnK](Φ(U),W )
‖ ‖

HomCG(U,HomCK(ResGnK
K V,ResGnK

K W )) HomC[GnK](U ⊗ V,W ),

ϕ 7−→ ϕ(u⊗ v) := ϕ(u)(v).

(iv) One has a CG-module isomorphism

(Ψ ◦ Φ)(U) ∼= U ⊗ EndCK(ResGnK
K V ).

In particular, if ResGnK
K V is a simple CK-module, then (Ψ ◦ Φ)(U) ∼= U .

Proof. These are mostly straightforward exercises in the definitions. To check assertion (iv), for example,

note that K acts only in the right tensor factor in ResGnK
K (U ⊗ V ), and hence as CG-modules one has

(Ψ ◦ Φ)(U) = HomCK(ResGnK
K V, ResGnK

K (U ⊗ V ))

= HomCK(ResGnK
K V, U ⊗ ResGnK

K V )

= U ⊗HomCK(ResGnK
K V, ResGnK

K V )

= U ⊗ EndCK(ResGnK
K V ).

�

4.2. Three towers of groups. Here we consider three towers of groups

G∗ = (G0 < G1 < G2 < G3 < · · · )

where either

• Gn = Sn, the symmetric group219, or
• Gn = Sn[Γ], the wreath product of the symmetric group with some arbitrary finite group Γ, or
• Gn = GLn(Fq), the finite general linear group220.

Here the wreath product Sn[Γ] can be thought of informally as the group of monomial n×n matrices whose
nonzero entries lie in Γ, that is, n × n matrices having exactly one nonzero entry in each row and column,
and that entry is an element of Γ. E.g. 0 g2 0

g1 0 0
0 0 g3

 0 0 g6

0 g5 0
g4 0 0

 =

 0 g2g5 0
0 0 g1g6

g3g4 0 0

 .
More formally, Sn[Γ] is the semidirect product Sn n Γn in which Sn acts on Γn via σ(γ1, . . . , γn) =
(γσ−1(1), . . . , γσ−1(n)).

For each of the three towers G∗, there are embeddings Gi × Gj ↪→ Gi+j and we introduce maps indi+ji,j

taking C[Gi×Gj ]-modules to CGi+j-modules, as well as maps resi+ji,j carrying modules in the reverse direction
which are adjoint:

(4.2.1) HomCGi+j (indi+ji,j U, V ) = HomC[Gi×Gj ](U, resi+ji,j V ).

Definition 4.2.1. For Gn = Sn, one embeds Si × Sj into Si+j as the permutations that permute
{1, 2, . . . , i} and {i+ 1, i+ 2, . . . , i+ j} separately. Here one defines

indi+ji,j := Ind
Si+j
Si×Sj ,

resi+ji,j := Res
Si+j
Si×Sj .

219The symmetric group S0 is the group of all permutations of the empty set {1, 2, . . . , 0} = ∅. It is a trivial group. (Note

that S1 is also a trivial group.)
220The group GL0(Fq) is a trivial group, consisting of the empty 0× 0 matrix.
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For Gn = Sn[Γ], similarly embed Si[Γ]×Sj [Γ] into Si+j [Γ] as block monomial matrices whose two diagonal
blocks have sizes i, j respectively, and define

indi+ji,j := Ind
Si+j [Γ]

Si[Γ]×Sj [Γ],

resi+ji,j := Res
Si+j [Γ]

Si[Γ]×Sj [Γ] .

For Gn = GLn(Fq), which we will denote just GLn, similarly embed GLi × GLj into GLi+j as block
diagonal matrices whose two diagonal blocks have sizes i, j respectively. However, one also introduces as an
intermediate the parabolic subgroup Pi,j consisting of the block upper-triangular matrices of the form[

gi `
0 gj

]
where gi, gj lie in GLi, GLj , respectively, and ` in Fi×jq is arbitrary. One has a quotient map Pi,j → GLi×GLj
whose kernel Ki,j is the set of matrices of the form[

Ii `
0 Ij

]
with ` again arbitrary. Here one defines

indi+ji,j := Ind
GLi+j
Pi,j

Infl
Pi,j
GLi×GLj ,

resi+ji,j :=
(

Res
GLi+j
Pi,j

(−)
)Ki,j

.

In the case Gn = GLn, the operation indi+ji,j is sometimes called parabolic induction or Harish-Chandra

induction. The operation resi+ji,j is essentially just the Ki,j-fixed point construction V 7→ V Ki,j . However

writing it as the above two-step composite makes it more obvious, (via (4.1.7) and (4.1.11)) that resi+ji,j is

again adjoint to indi+ji,j .

Definition 4.2.2. For each of the three towers G∗, define a graded Z-module

A := A(G∗) =
⊕
n≥0

R(Gn)

with a bilinear form (·, ·)A whose restriction to An := R(Gn) is the usual form (·, ·)Gn , and such that
Σ :=

⊔
n≥0 Irr(Gn) gives an orthonormal Z-basis. Notice that A0 = Z has its basis element 1 equal to the

unique irreducible character of the trivial group G0.

Bearing in mind that An = R(Gn) and

Ai ⊗Aj = R(Gi)⊗R(Gj) ∼= R(Gi ×Gj),

one then has candidates for product and coproduct defined by

m := indi+ji,j : Ai ⊗Aj −→ Ai+j ,

∆ :=
⊕

i+j=n resi+ji,j : An −→
⊕

i+j=nAi ⊗Aj .

The coassociativity of ∆ is an easy consequence of transitivity of the constructions of restriction and fixed
points221. We could derive the associativity of m from the transitivity of induction and inflation, but this
would be more complicated222; we will instead prove it differently.

221More precisely, using this transitivity, it is easily reduced to proving that Ki+j,k · (Ki,j × {Ik}) = Ki,j+k ·
(
{Ii} ×Kj,k

)
(an equality between subgroups of GLi+j+k) for any three nonnegative integers i, j, k. But this equality can be proven by

realizing that both of its sides equal the set of all block matrices of the form

 Ii ` `′

0 Ij `′′

0 0 Ik

 with `, `′ and `′′ being matrices

of sizes i× j, i× k and j × k, respectively.
222See Exercise 4.3.11(c) for such a derivation.
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We first show that the maps m and ∆ are adjoint with respect to the forms (·, ·)A and (·, ·)A⊗A. In fact,
if U , V , W are modules over CGi, CGj , CGi+j , respectively, then we can write the C[Gi × Gj ]-module

resi+ji,j W as a direct sum
⊕

kXk⊗Yk with Xk being CGi-modules and Yk being CGj-modules; we then have

(4.2.2) resi+ji,j χW =
∑
k

χXk ⊗ χYk

and

(m (χU ⊗ χV ) , χW )A =
(

indi+ji,j (χU⊗V ) , χW

)
A

=
(

indi+ji,j (χU⊗V ) , χW

)
Gi+j

=
(
χU⊗V , resi+ji,j χW

)
Gi×Gj

=

(
χU⊗V ,

∑
k

χXk ⊗ χYk

)
Gi×Gj

=
∑
k

(χU⊗V , χXk⊗Yk)Gi×Gj =
∑
k

(χU , χXk)Gi (χV , χYk)Gj

(the third equality sign follows by taking dimensions in (4.2.1) and recalling (4.1.1); the fourth equality sign
follows from (4.2.2); the sixth one follows from (4.1.2)) and

(χU ⊗ χV ,∆ (χW ))A⊗A =
(
χU ⊗ χV , resi+ji,j χW

)
A⊗A

=

(
χU ⊗ χV ,

∑
k

χXk ⊗ χYk

)
A⊗A

=
∑
k

(χU , χXk)A (χV , χYk)A =
∑
k

(χU , χXk)Gi (χV , χYk)Gj

(the first equality sign follows by removing all terms in ∆ (χW ) whose scalar product with χU ⊗ χV van-
ishes for reasons of gradedness; the second equality sign follows from (4.2.2)), which in comparison yield
(m (χU ⊗ χV ) , χW )A = (χU ⊗ χV ,∆ (χW ))A⊗A, thus showing that m and ∆ are adjoint maps. Therefore,
m is associative (since ∆ is coassociative).

Endowing A =
⊕

n≥0R(Gn) with the obvious unit and counit maps, it thus becomes a graded, finite-type
Z-algebra and Z-coalgebra.

The next section addresses the issue of why they form a bialgebra. However, assuming this for the mo-
ment, it should be clear that each of these algebras A is a PSH having Σ =

⊔
n≥0 Irr(Gn) as its PSH-basis. Σ

is self-dual because m,∆ are defined by adjoint maps, and it is positive because m,∆ take irreducible repre-
sentations to genuine representations not just virtual ones, and hence have characters which are nonnegative
sums of irreducible characters.

Exercise 4.2.3. Let i, j and k be three nonnegative integers. Let U be a CSi-module, let V be a CSj-
module, and let W be a CSk-module. Show that there are canonical C [Si ×Sj ×Sk]-module isomorphisms

Ind
Si+j+k
Si+j×Sk

(
Ind

Si+j
Si×Sj (U ⊗ V )⊗W

)
∼= Ind

Si+j+k
Si×Sj×Sk (U ⊗ V ⊗W )

∼= Ind
Si+j+k
Si×Sj+k

(
U ⊗ Ind

Sj+k
Sj×Sk (V ⊗W )

)
.

(Similar statements hold for the other two towers of groups and their respective ind functors, although
the one for the GL∗ tower is harder to prove. See Exercise 4.3.11(a) for a more general result.)

4.3. Bialgebra and double cosets. To show that the algebra and coalgebras A = A(G∗) are bialgebras,
the central issue is checking the pentagonal diagram in (1.3.4), that is, as maps A⊗A→ A⊗A, one has

(4.3.1) ∆ ◦m = (m⊗m) ◦ (id⊗T ⊗ id) ◦ (∆⊗∆).

In checking this, it is convenient to have a lighter notation for various subgroups of the groups Gn
corresponding to compositions α.

Definition 4.3.1. (a) An almost-composition is a (finite) tuple α = (α1, α2, . . . , α`) of nonnegative
integers. Its length is defined to be ` and denoted by `(α); its size is defined to be α1 +α2 + · · ·+α`
and denoted by |α|; its parts are its entries α1, α2, . . . , α`. The almost-compositions of size n are
called the almost-compositions of n.
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(b) A composition is a finite tuple of positive integers. Of course, any composition is an almost-
composition, and so all notions defined for almost-compositions (like size and length) make sense for
compositions.

Note that any partition of n (written without trailing zeroes) is a composition of n. We write ∅
(and sometimes, sloppily, (0), when there is no danger of mistaking it for the almost-composition
(0)) for the empty composition ().

Definition 4.3.2. Given an almost-composition α = (α1, . . . , α`) of n, define a subgroup

Gα ∼= Gα1
× · · · ×Gα` < Gn

via the block-diagonal embedding with diagonal blocks of sizes (α1, . . . , α`). This Gα is called a Young
subgroup Sα when Gn = Sn, and a Levi subgroup when Gn = GLn. In the case when Gn = Sn[Γ], we
also denote Gα by Sα[Γ]. In the case where Gn = GLn, also define the parabolic subgroup Pα to be the
subgroup of Gn consisting of block-upper triangular matrices whose diagonal blocks have sizes (α1, . . . , α`),
and let Kα be the kernel of the obvious surjection Pα → Gα which sends a block upper-triangular matrix to
the tuple of its diagonal blocks whose sizes are α1, α2, . . . , α`. Notice that P(i,j) = Pi,j for any i and j with
i + j = n; similarly, K(i,j) = Ki,j for any i and j with i + j = n. We will also abbreviate G(i,j) = Gi ×Gj
by Gi,j .

When (α1, α2, . . . , α`) is an almost-composition, we abbreviate G(α1,α2,...,α`) by Gα1,α2,...,α` (and similarly
for the P ’s).

Definition 4.3.3. Let K and H be two groups, τ : K → H a group homomorphism, and U a CH-module.
Then, Uτ is defined as the CK-module with ground space U and action given by k ·u = τ(k) ·u for all k ∈ K
and u ∈ U . 223 This very simple construction generalizes the definition of Ug for an element g ∈ G, where
G is a group containing H as a subgroup; in fact, in this situation we have Ug = Uτ , where K = gH and
τ : K → H is the map k 7→ g−1kg.

Using homogeneity, checking the bialgebra condition (4.3.1) in the homogeneous component (A ⊗ A)n
amounts to the following: for each pair of representations U1, U2 of Gr1 , Gr2 with r1 + r2 = n, and for each
(c1, c2) with c1 + c2 = n, one must verify that

(4.3.2)

resnc1,c2
(
indnr1,r2 (U1 ⊗ U2)

)
∼=
⊕
A

(
indc1a11,a21

⊗ indc2a12,a22

)((
resr1a11,a12

U1 ⊗ resr2a21,a22
U2

)τ−1
A

)

where the direct sum is over all matrices A =

[
a11 a12

a21 a22

]
in N2×2 with row sums (r1, r2) and column sums

(c1, c2), and where τA is the obvious isomorphism between the subgroups

(4.3.3)
Ga11,a12,a21,a22

(< Gr1,r2) and

Ga11,a21,a12,a22 (< Gc1,c2)

(we are using the inverse τ−1
A of this isomorphism τA to identify modules for the first subgroup with modules

for the second subgroup, according to Definition 4.3.3).
As one might guess, (4.3.2) comes from the Mackey formula (Theorem 4.1.7), once one identifies the

appropriate double coset representatives. This is just as easy to do in a slightly more general setting.

Definition 4.3.4. Given almost-compositions α, β of n having lengths `,m and a matrix A in N`×m with
row sums α and column sums β, define a permutation wA in Sn as follows. Disjointly decompose [n] =
{1, 2, . . . , n} into consecutive intervals of numbers

[n] = I1 t · · · t I` such that |Ii| = αi

(so the smallest α1 elements of [n] go into I1, the next-smallest α2 elements of [n] go into I2, and so on).
Likewise, disjointly decompose [n] into consecutive intervals of numbers

[n] = J1 t · · · t Jm such that |Jj | = βj .

223We have already met this CK-module Uτ in Remark 4.1.13, where it was called Resτ U .
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For every j ∈ [m], disjointly decompose Jj into consecutive intervals of numbers Jj = Jj,1 t Jj,2 t · · · t Jj,`
such that every i ∈ [`] satisfies |Jj,i| = aij . For every i ∈ [`], disjointly decompose Ii into consecutive intervals
of numbers Ii = Ii,1 t Ii,2 t · · · t Ii,m such that every j ∈ [m] satisfies |Ii,j | = aij . Now, for every i ∈ [`] and
j ∈ [m], let πi,j be the increasing bijection from Jj,i to Ii,j (this is well-defined since these two sets both
have cardinality aij). The disjoint union of these bijections πi,j over all i and j is a bijection [n]→ [n] (since
the disjoint union of the sets Jj,i over all i and j is [n], and so is the disjoint union of the sets Ii,j), that is,
a permutation of [n]; this permutation is what we call wA.

Example 4.3.5. Taking n = 9 and α = (4, 5), β = (3, 4, 2), one has

I1 = {1, 2, 3, 4}, I2 = {5, 6, 7, 8, 9},
J1 = {1, 2, 3}, J2 = {4, 5, 6, 7}, J3 = {8, 9}.

Then one possible matrix A having row and column sums α, β is A =

[
2 2 0
1 2 2

]
, and its associated permu-

tation wA written in two-line notation is(
1 2 3 | 4 5 6 7 | 8 9
1 2 5 | 3 4 6 7 | 8 9

)
with vertical lines dividing the sets Jj on top, and with elements of Ii underlined i times on the bottom.

Remark 4.3.6. Given almost-compositions α and β of n having lengths ` and m, and a permutation w ∈ Sn.
It is easy to see that there exists a matrix A ∈ N`×m satisfying wA = w if and only if the restriction of w
to each Jj and the restriction of w−1 to each Ii are increasing. In this case, the matrix A is determined by
aij = |w(Jj) ∩ Ii|.

Among our three towers G∗ of groups, the symmetric group tower (Gn = Sn) is the simplest one. We
will now see that it also embeds into the two others, in the sense that Sn embeds into Sn[Γ] for every Γ
and into GLn(Fq) for every q.

First, for every n ∈ N and any group Γ, we embed the group Sn into Sn[Γ] by means of the canonical
embedding Sn → Sn n Γn = Sn[Γ]. If we regard elements of Sn[Γ] as n × n monomial matrices with
nonzero entries in Γ, then this boils down to identifying every π ∈ Sn with the permutation matrix of π (in
which the 1’s are read as the neutral element of Γ). If α is an almost-composition of n, then this embedding
Sn → Sn [Γ] makes the subgroup Sα of Sn become a subgroup of Sn [Γ], more precisely a subgroup of
Sα [Γ] < Sn [Γ].

For every n ∈ N and every q, we embed the group Sn into GLn (Fq) by identifying every permutation
π ∈ Sn with its permutation matrix in GLn (Fq). If α is an almost-composition of n, then this embedding
makes the subgroup Sα of Sn become a subgroup of GLn (Fq). If we let Gn = GLn (Fq), then Sα < Gα <
Pα.

The embeddings we have just defined commute with the group embeddings Gn < Gn+1 on both sides.

Proposition 4.3.7. The permutations {wA}, as A runs over all matrices in N`×m having row sums α and
column sums β, give

(a) a system of double coset representatives for Sα\Sn/Sβ ;
(b) a system of double coset representatives for Sα[Γ]\Sn[Γ]/Sβ [Γ];
(c) a system of double coset representatives for Pα\GLn/Pβ .

Proof. (a) We give an algorithm to show that every double coset SαwSβ contains some wA. Start by altering
w within its coset wSβ , that is, by permuting the positions within each set Jj , to obtain a representative
w′ for wSβ in which each set w′(Jj) appears in increasing order in the second line of the two-line notation
for w′. Then alter w′ within its coset Sαw

′, that is, by permuting the values within each set Ii, to obtain a
representative wA having the elements of each set Ii appearing in increasing order in the second line; because
the values within each set Ii are consecutive, this alteration will not ruin the property that one had each set
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w′(Jj) appearing in increasing order. For example, one might have

w =

(
1 2 3 | 4 5 6 7 | 8 9
4 8 2 | 5 3 9 1 | 7 6

)
,

w′ =

(
1 2 3 | 4 5 6 7 | 8 9
2 4 8 | 1 3 5 9 | 6 7

)
∈ wSβ ,

wA =

(
1 2 3 | 4 5 6 7 | 8 9
1 2 5 | 3 4 6 7 | 8 9

)
∈ Sαw

′ ⊂ Sαw
′Sβ = SαwSβ .

Next note that SαwASβ = SαwBSβ implies A = B, since the quantities

ai,j(w) := |w(Jj) ∩ Ii|
are easily seen to be constant on double cosets SαwSβ .

(b) Double coset representatives for Sα\Sn/Sβ should also provide double coset representatives for
Sα[Γ]\Sn[Γ]/Sβ [Γ], since

Sα[Γ] = SαΓn = ΓnSα.

Thus, part (b) follows from part (a).
(c) In our proof of part (a) above, we showed that SαwASβ = SαwBSβ implies A = B. A similar

argument shows that PαwAPβ = PαwBPβ implies A = B: for g in GLn, the rank rij(g) of the matrix
obtained by restricting g to rows Ii t Ii+1 t · · · t I` and columns J1 t J2 t · · · t Jj is constant on double
cosets PαgPβ , and for a permutation matrix w one can recover ai,j(w) from the formula

ai,j(w) = ri,j(w)− ri,j−1(w)− ri+1,j(w) + ri+1,j−1(w).

Thus it only remains to show that every double coset PαgPβ contains some wA. Since Sα < Pα, and we
have seen already that every double coset SαwSβ contains some wA, it suffices to show that every double
coset PαgPβ contains some permutation w. However, we claim that this is already true for the smaller
double cosets BgB where B = P1n is the Borel subgroup of upper triangular invertible matrices, that is, one
has the usual Bruhat decomposition

GLn =
⊔

w∈Sn

BwB.

To prove this decomposition, we show how to find a permutation w in each double coset BgB. The freedom
to alter g within its coset gB allows one to scale columns and add scalar multiples of earlier columns to later
columns. We claim that using such column operations, one can always find a representative g′ for coset gB
in which

• the bottommost nonzero entry of each column is 1 (call this entry a pivot),
• the entries to right of each pivot within its row are all 0, and
• there is one pivot in each row and each column, so that their positions are the positions of the 1’s

in some permutation matrix w.

In fact, we will see below that BgB = BwB in this case. The algorithm which produces g′ from g is simple:
starting with the leftmost column, find its bottommost nonzero entry, and scale the column to make this
entry a 1, creating the pivot in this column. Now use this pivot to clear out all entries in its row to its right,
using column operations that subtract multiples of this column from later columns. Having done this, move
on to the next column to the right, and repeat, scaling to create a pivot, and using it to eliminate entries to
its right.224

224To see that this works, we need to check three facts:

(a) We will find a nonzero entry in every column during our algorithm.
(b) Our column operations preserve the zeroes lying to the right of already existing pivots.

(c) Every row contains exactly one pivot at the end of the algorithm.

But fact (a) simply says that our matrix can never have an all-zero column during the algorithm; this is clear (since the rank of

the matrix remains constant during the algorithm and was n at its beginning). Fact (b) holds because all our operations either

scale columns (which clearly preserves zero entries) or subtract a multiple of the column c containing the current pivot from a
later column d (which will preserve every zero lying to the right of an already existing pivot, because any already existing pivot

must lie in a column b < c and therefore both columns c and d have zeroes in its row). Fact (c) follows from noticing that
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For example, the typical matrix g lying in the double coset BwB where

w =

(
1 2 3 | 4 5 6 7 | 8 9
4 8 2 | 5 3 9 1 | 7 6

)
from before is one that can be altered within its coset gB to look like this:

g′ =



∗ ∗ ∗ ∗ ∗ ∗ 1 0 0
∗ ∗ 1 0 0 0 0 0 0
∗ ∗ 0 ∗ 1 0 0 0 0
1 0 0 0 0 0 0 0 0
0 ∗ 0 1 0 0 0 0 0
0 ∗ 0 0 0 ∗ 0 ∗ 1
0 ∗ 0 0 0 ∗ 0 1 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0


∈ gB.

Having found this g′ in gB, a similar algorithm using left multiplication by B shows that w lies in Bg′ ⊂
Bg′B = BgB. This time no scalings are required to create the pivot entries: starting with the bottom row,
one uses its pivot to eliminate all the entries above it in the same column (shown by stars ∗ above) by adding
multiples of the bottom row to higher rows. Then do the same using the pivot in the next-to-bottom row,
etc. The result is the permutation matrix for w. �

Remark 4.3.8. The Bruhat decomposition GLn =
⊔
w∈Sn BwB is related to the so-called LPU factorization

– one of a myriad of matrix factorizations appearing in linear algebra.225 It is actually a fairly general
phenomenon, and requires neither the finiteness of F, nor the invertibility, nor even the squareness of the
matrices (see Exercise 4.3.9(b) for an analogue holding in a more general setup).

Exercise 4.3.9. Let F be any field.

(a) For any n ∈ N and any A ∈ GLn(F), prove that there exist a lower-triangular matrix L ∈ GLn(F),
an upper-triangular matrix U ∈ GLn(F) and a permutation matrix P ∈ Sn ⊂ GLn(F) (here, we
identify permutations with the corresponding permutation matrices) such that A = LPU .

(b) Let n ∈ N and m ∈ N. Let Fn,m denote the set of all n×m-matrices B ∈ {0, 1}n×m such that each
row of B contains at most one 1 and each column of B contains at most one 1. We regard Fn,m as
a subset of Fn×m by means of regarding {0, 1} as a subset of F.

For every k ∈ N, we let Bk denote the subgroup of GLk(F) consisting of all upper-triangular
matrices.

Prove that

Fn×m =
⊔

f∈Fn,m

BnfBm.

Corollary 4.3.10. For each of the three towers of groups G∗, the product and coproduct structures on
A = A(G∗) endow it with a bialgebra structure, and hence they form PSH’s.

Proof. The first two towers Gn = Sn and Gn = Sn[Γ] have product, coproduct defined by induction,
restriction along embeddings Gi × Gj < Gi+j . Hence the desired bialgebra equality (4.3.2) follows from
Mackey’s Theorem 4.1.7, taking G = Gn, H = G(r1,r2),K = G(c1,c2), U = U1 ⊗ U2 with double coset

there are n pivots altogether at the end of the algorithm, but no row can contain two of them (since the entries to the right of

a pivot in its row are 0).
225Specifically, an LPU factorization of a matrix A ∈ GLn(F) (for an arbitrary field F) means a way to write A as a product

A = LPU with L ∈ GLn(F) being lower-triangular, U ∈ GLn(F) being upper-triangular, and P ∈ Sn ⊂ GLn(F) being a
permutation matrix. Such a factorization always exists (although it is generally not unique). This can be derived from the

Bruhat decomposition (see Exercise 4.3.9(a) for a proof). See also [212] for related discussion.
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representatives226

{g1, . . . , gt} =
{
wAt : A ∈ N2×2, A has row sums (r1, r2) and column sums (c1, c2)

}
and checking for a given double coset

KgH = (Gc1,c2)wAt(Gr1,r2)

indexed by a matrix A in N2×2 with row sums (r1, r2) and column sums (c1, c2), that the two subgroups
appearing on the left in (4.3.3) are exactly

H ∩KwAt = Gr1,r2 ∩ (Gc1,c2)wAt ,
wAtH ∩K = wAt (Gr1,r2) ∩Gc1,c2 ,

respectively. One should also apply (4.1.6) and check that the isomorphism τA between the two subgroups
in (4.3.3) is the conjugation isomorphism by wAt (that is, τA(g) = wAtgw

−1
At for every g ∈ H ∩KwAt ). We

leave all of these bookkeeping details to the reader to check. 227

For the tower with Gn = GLn, there is slightly more work to be done to check the equality (4.3.2). Via
Mackey’s Theorem 4.1.7 and Proposition 4.3.7(c), the left side is

resnc1,c2
(
indnr1,r2 (U1 ⊗ U2)

)
=
(

ResGnPc1,c2
IndGnPr1,r2

Infl
Pr1,r2
Gr1,r2

(U1 ⊗ U2)
)Kc1,c2

=
⊕
A

(
Ind

Pc1,c2
w
AtPr1,r2∩Pc1,c2

((
Res

Pr1,r2

Pr1,r2∩P
w
At

c1,c2

Infl
Pr1,r2
Gr1,r2

(U1 ⊗ U2)

)τ−1
A

))Kc1,c2
(4.3.4)

where A runs over the usual 2× 2 matrices. The right side is a direct sum over this same set of matrices A:⊕
A

(
indc1a11,a21

⊗ indc2a12,a22

)((
resr1a11,a12

U1 ⊗ resr2a21,a22
U2

)τ−1
A

)
=
⊕
A

(
Ind

Gc1
Pa11,a21

⊗ Ind
Gc2
Pa12,a22

)
◦
(

Infl
Pa11,a21

Ga11,a21
⊗ Infl

Pa12,a22

Ga12,a22

)
(((

Res
Gr1
Pa11,a12

U1

)Ka11,a12 ⊗
(

Res
Gr2
Pa21,a22

U2

)Ka21,a22

)τ−1
A

)
=
⊕
A

Ind
Gc1,c2
Pa11,a21

×Pa12,a22

Infl
Pa11,a21×Pa12,a22

Ga11,a21,a12,a22

(((
Res

Gr1,r2
Pa11,a12

×Pa21,a22
(U1 ⊗ U2)

)Ka11,a12
×Ka21,a22

)τ−1
A

)
(4.3.5)

(by (4.1.6), (4.1.15) and their obvious analogues for restriction and inflation). Thus it suffices to check for
each 2 × 2 matrix A that any CGc1,c2-module of the form V1 ⊗ V2 has the same inner product with the

A-summands of (4.3.4) and (4.3.5). Abbreviate w := wAt and τ := τ−1
A .

226Proposition 4.3.7 gives as a system of double coset representatives for G(c1,c2)\Gn/G(r1,r2) the elements{
wA : A ∈ N2×2, A has row sums (c1, c2) and column sums (r1, r2)

}
=
{
wAt : A ∈ N2×2, A has row sums (r1, r2) and column sums (c1, c2)

}
where At denotes the transpose matrix of A.

227It helps to recognize wAt as the permutation written in two-line notation as(
1 2 . . . a11 | a11 + 1 a11 + 2 . . . r1 | r1 + 1 r1 + 2 . . . a′22 | a′22 + 1 a′22 + 2 . . . n
1 2 . . . a11 | c1 + 1 c1 + 2 . . . a′22 | a11 + 1 a11 + 2 . . . c1 | a′22 + 1 a′22 + 2 . . . n

)
,

where a′22 = r1 + a21 = c1 + a12 = n− a22. In matrix form, wAt is the block matrix


Ia11 0 0 0

0 0 Ia21 0

0 Ia12 0 0
0 0 0 Ia22

.
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Notice that wPr1,r2 is the group of all matrices having the block form

(4.3.6)


g11 h i j
0 g21 0 k
d e g12 `
0 f 0 g22


in which the diagonal blocks gij for i, j = 1, 2 are invertible of size aij×aij , while the blocks h, i, j, k, `, d, e, f
are all arbitrary matrices228 of the appropriate (rectangular) block sizes. Hence, wPr1,r2 ∩Pc1,c2 is the group
of all matrices having the block form

(4.3.7)


g11 h i j
0 g21 0 k
0 0 g12 `
0 0 0 g22


in which the diagonal blocks gij for i, j = 1, 2 are invertible of size aij × aij , while the blocks h, i, j, k, `
are all arbitrary matrices of the appropriate (rectangular) block sizes; then wPr1,r2 ∩Gc1,c2 is the subgroup
where the blocks i, j, k all vanish. The canonical projection wPr1,r2 ∩ Pc1,c2 → wPr1,r2 ∩Gc1,c2 (obtained by
restricting the projection Pc1,c2 → Gc1,c2) has kernel wPr1,r2 ∩ Pc1,c2 ∩Kc1,c2 . Consequently,

(4.3.8) (wPr1,r2 ∩ Pc1,c2) / (wPr1,r2 ∩ Pc1,c2 ∩Kc1,c2) = wPr1,r2 ∩Gc1,c2 .

Similarly,

(4.3.9)
(
Pr1,r2 ∩ Pwc1,c2

)
/
(
Pr1,r2 ∩ Pwc1,c2 ∩Kr1,r2

)
= Gr1,r2 ∩ Pwc1,c2 .

Computing first the inner product of V1 ⊗ V2 with the A-summand of (4.3.4), and using adjointness
properties, one gets((

Res
Pr1,r2
Pr1,r2∩Pwc1,c2

Infl
Pr1,r2
Gr1,r2

(U1 ⊗ U2)
)τ
,

Res
Pc1,c2
wPr1,r2∩Pc1,c2

Infl
Pc1,c2
Gc1,c2

(V1 ⊗ V2)
)
wPr1,r2∩Pc1,c2

(4.1.10)
=

((
Infl

Pr1,r2∩P
w
c1,c2

Gr1,r2∩Pwc1,c2
Res

Gr1,r2
Gr1,r2∩Pwc1,c2

(U1 ⊗ U2)
)τ
,

Infl
wPr1,r2∩Pc1,c2
wPr1,r2∩Gc1,c2

Res
Gc1,c2
wPr1,r2∩Gc1,c2

(V1 ⊗ V2)
)
wPr1,r2∩Pc1,c2

(by (4.3.9) and (4.3.8)). One can compute this inner product by first recalling that wPr1,r2 ∩ Pc1,c2 is the
group of matrices having the block form (4.3.7) in which the diagonal blocks gij for i, j = 1, 2 are invertible
of size aij × aij , while the blocks h, i, j, k, ` are all arbitrary matrices of the appropriate (rectangular) block
sizes; then wPr1,r2 ∩Gc1,c2 is the subgroup where the blocks i, j, k all vanish. The inner product above then
becomes

(4.3.10)

1

|wPr1,r2 ∩ Pc1,c2 |
∑
(gij)

(h,i,j,k,`)

χU1

(
g11 i
0 g12

)
χU2

(
g21 k
0 g22

)

χV1

(
g11 h
0 g21

)
χV2

(
g12 `
0 g22

)
.

228The blocks i and j have nothing to do with the indices i, j in gij .
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If one instead computes the inner product of V1 ⊗ V2 with the A-summand of (4.3.5), using adjointness
properties and (4.1.13) one gets(((

Res
Gr1,r2
Pa11,a12

×Pa21,a22
(U1 ⊗ U2)

)Ka11,a12
×Ka21,a22

)τ
,(

Res
Gc1,c2
Pa11,a21

×Pa12,a22
(V1 ⊗ V2)

)Ka11,a21
×Ka12,a22

)
Ga11,a21,a12,a22

=
1

|Ga11,a21,a12,a22
|
∑
(gij)

1

|Ka11,a12
×Ka21,a22

|
∑
(i,k)

χU1

(
g11 i
0 g12

)
χU2

(
g21 k
0 g22

)
1

|Ka11,a21 ×Ka12,a22 |
∑
(h,`)

χV1

(
g11 h
0 g21

)
χV2

(
g12 `
0 g22

)
.

But this right hand side can be seen to equal (4.3.10), after one notes that

|wPr1,r2 ∩ Pc1,c2 | = |Ga11,a21,a12,a22 | · |Ka11,a12 ×Ka21,a22 | · |Ka11,a21 ×Ka12,a22 | ·#{j ∈ Fa11×a22
q }

and that the summands in (4.3.10) are independent of the matrix j in the summation. �

We can also define a C-vector space AC as the direct sum
⊕

n≥0RC(Gn). In the same way as we have

made A =
⊕

n≥0R(Gn) into a Z-bialgebra, we can turn AC =
⊕

n≥0RC(Gn) into a C-bialgebra229. There

is a C-bilinear form (·, ·)AC
on AC which can be defined either as the C-bilinear extension of the Z-bilinear

form (·, ·)A : A×A→ Z to AC, or (equivalently) as the C-bilinear form on AC which restricts to 〈·, ·〉Sn on

every homogeneous component RC(Gn) and makes different homogeneous components mutually orthogonal.
The obvious embedding of A into the C-bialgebra AC (obtained from the embeddings R(Gn)→ RC(Gn) for
all n) respects the bialgebra operations230, and the C-bialgebra AC can be identified with A⊗ZC (the result
of extending scalars to C in A), because every finite group G satisfies RC(G) ∼= R(G)⊗Z C. The embedding
of A into AC also respects the bilinear forms.

Exercise 4.3.11. Let G∗ be one of the three towers.
For every almost-composition α = (α1, α2, . . . , α`) of n ∈ N, let us define a map indnα which takes CGα-

modules to CGn-modules as follows: If G∗ = S∗ or G∗ = S∗ [Γ], we set

indnα := IndGnGα .

If G∗ = GL∗, then we set

indnα := IndGnPα InflPαGα .

(Note that indnα = indni,j if α has the form (i, j).)
Similarly, for every almost-composition α = (α1, α2, . . . , α`) of n ∈ N, let us define a map resnα which

takes CGn-modules to CGα-modules as follows: If G∗ = S∗ or G∗ = S∗ [Γ], we set

resnα := ResGnGα .

If G∗ = GL∗, then we set

resnα :=
(

ResGnPα (−)
)Kα

.

(Note that resnα = resni,j if α has the form (i, j).)

229The definitions of m and ∆ for this C-bialgebra look the same as for A: For instance, m is still defined to be indi+ji,j

on (AC)i ⊗ (AC)j , where indi+ji,j is defined by the same formulas as in Definition 4.2.1. However, the operators of induction,

restriction, inflation and K-fixed space construction appearing in these formulas now act on class functions as opposed to

modules.

The fact that these maps m and ∆ satisfy the axioms of a C-bialgebra is easy to check: they are merely the C-linear
extensions of the maps m and ∆ of the Z-bialgebra A (this is because, for instance, induction of class functions and induction

of modules are related by the identity (4.1.5)), and thus satisfy the same axioms as the latter.
230This is because, for example, induction of class functions harmonizes with induction of modules (i.e., the equality (4.1.5)

holds).
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(a) If α = (α1, α2, . . . , α`) is an almost-composition of an integer n ∈ N satisfying ` ≥ 1, and if Vi is a
CGαi-module for every i ∈ {1, 2, . . . , `}, then show that

indnα1+α2+···+α`−1,α`

(
ind

α1+α2+···+α`−1

(α1,α2,...,α`−1) (V1 ⊗ V2 ⊗ · · · ⊗ V`−1)⊗ V`
)

∼= indnα (V1 ⊗ V2 ⊗ · · · ⊗ V`)
∼= indnα1,α2+α3+···+α`

(
V1 ⊗ indα2+α3+···+α`

(α2,α3,...,α`)
(V2 ⊗ V3 ⊗ · · · ⊗ V`)

)
.

(b) Solve Exercise 4.2.3 again using Exercise 4.3.11(a).
(c) We proved above that the map m : A ⊗ A → A (where A = A (G∗)) is associative, by using the

adjointness of m and ∆. Give a new proof of this fact, which makes no use of ∆.
(d) If α = (α1, α2, . . . , α`) is an almost-composition of an n ∈ N, and if χi ∈ R (Gαi) for every i ∈
{1, 2, . . . , `}, then show that

χ1χ2 · · ·χ` = indnα (χ1 ⊗ χ2 ⊗ · · · ⊗ χ`)

in A = A (G∗).
(e) If n ∈ N, ` ∈ N and χ ∈ R (Gn), then show that

∆(`−1)χ =
∑

resnα χ

in A⊗`, where A = A (G∗). Here, the sum on the right hand side runs over all almost-compositions
α of n having length `.

4.4. Symmetric groups. Finally, some payoff. Consider the tower of symmetric groups Gn = Sn, and
A = A(G∗) =: A(S). Denote by 1Sn , sgnSn the trivial and sign characters on Sn. For a partition λ of n,
denote by 1Sλ , sgnSλ

the trivial and sign characters restricted to the Young subgroup Sλ = Sλ1
×Sλ2

×· · · ,
and denote by 1λ the class function which is the characteristic function for the Sn-conjugacy class of
permutations of cycle type λ.

Theorem 4.4.1. (a) Irreducible complex characters {χλ} of Sn are indexed by partitions λ in Parn,
and one has a PSH-isomorphism, the Frobenius characteristic map231,

A = A(S)
ch−→ Λ

that for n ≥ 0 and λ ∈ Parn sends

1Sn 7−→ hn,

sgnSn 7−→ en,

χλ 7−→ sλ,

IndSn
Sλ

1Sλ 7−→ hλ,

IndSn
Sλ

sgnSλ
7−→ eλ,

1λ 7−→ pλ
zλ

(where ch is extended to a C-linear map AC → ΛC), and for n ≥ 1 sends

1(n) 7−→ pn
n .

Here, zλ is defined as in Proposition 2.5.15.
(b) For each n ≥ 0, the involution on class functions f : Sn → C sending f 7−→ sgnSn ∗f where

(sgnSn ∗f)(g) := sgn(g)f(g)

preserves the Z-sublattice R(Sn) of genuine characters. The direct sum of these involutions induces
an involution on A = A(S) =

⊕
n≥0R(Sn) that corresponds under ch to the involution ω on Λ.

231It is unrelated to the Frobenius endomorphisms from Exercise 2.9.9.
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Proof. (a) Corollary 4.3.10 implies that the set Σ =
⊔
n≥0 Irr(Sn) gives a PSH-basis for A. Since a character

χ of Sn has

(4.4.1) ∆(χ) =
⊕
i+j=n

ResSnSi×Sj χ,

such an element χ ∈ Σ ∩An is never primitive for n ≥ 2. Hence the unique irreducible character ρ = 1S1
of

S1 is the only element of C = Σ ∩ p.
Thus Theorem 3.3.3(g) tells us that there are two PSH-isomorphisms A→ Λ, each of which sends Σ to the

PSH-basis of Schur functions {sλ} for Λ. It also tells us that we can pin down one of the two isomorphisms
to call ch, by insisting that it map the two characters 1S2

, sgnS2
in Irr(S2) to h2, e2 (and not e2, h2).

Bearing in mind the coproduct formula (4.4.1), and the fact that 1Sn , sgnSn restrict, respectively, to

trivial and sign characters of Si×Sj for i+ j = n, one finds that for n ≥ 2 one has sgn⊥S2
annihilating 1Sn ,

and 1⊥S2
annihilating sgnSn . Therefore Theorem 3.3.1(b) (applied to Λ) implies 1Sn , sgnSn are sent under

ch to hn, en. Then the fact that IndSn
Sλ

1Sλ , IndSn
Sλ

sgnSλ
are sent to hλ, eλ follows via induction products.

Recall that the C-vector space AC =
⊕

n≥0RC(Sn) is a C-bialgebra, and can be identified with A⊗Z C.
The multiplication and the comultiplication of AC are C-linear extensions of those of A, and are still given
by the same formulas m = indi+ji,j and ∆ =

⊕
i+j=n resi+ji,j as those of A (but now, induction and restriction

are defined for class functions, not just for representations). The C-bilinear form (·, ·)AC
on AC extends both

the Z-bilinear form (·, ·)A on A and the C-bilinear forms 〈·, ·〉Sn on all RC(Sn).
For the assertion about 1(n), note that it is primitive in AC for n ≥ 1, because as a class function, the

indicator function of n-cycles vanishes upon restriction to Si × Sj for i + j = n if both i, j ≥ 1; these
subgroups contain no n-cycles. Hence Corollary 3.1.8 implies that ch(1(n)) is a scalar multiple of pn. To pin

down the scalar, note pn = m(n) so (hn, pn)Λ = (hn,mn)Λ = 1, while ch−1(hn) = 1Sn has

(1Sn , 1(n)) =
1

n!
· (n− 1)! =

1

n
.

232 Thus ch(1(n)) = pn
n . The fact that ch(1λ) = pλ

zλ
then follows via induction product calculations233. Part

(b) follows from Exercise 4.4.4 below. �

Remark 4.4.2. The paper of Liulevicius [133] gives a very elegant alternate approach to the Frobenius map

as a Hopf isomorphism A(S)
ch−→ Λ, inspired by equivariant K-theory and vector bundles over spaces which

are finite sets of points!

Exercise 4.4.3. If P is a subset of a group G, we denote by 1P the map G→ C which sends every element
of P to 1 and all remaining elements of G to 0. 234 For any finite group G and any h ∈ G, we introduce
the following notations:

• Let ZG (h) denote the centralizer of h in G.
• Let ConjG (h) denote the conjugacy class of h in G.
• Define a map αG,h : G→ C by αG,h = |ZG (h)| 1ConjG(h). This map αG,h is a class function235.

(a) Prove that αG,h (g) =
∑
k∈G

[
khk−1 = g

]
for every finite group G and any h ∈ G and g ∈ G. Here,

we are using the Iverson bracket notation (that is, for any statement A, we define [A] to be the
integer 1 if A is true, and 0 otherwise).

(b) Prove that if H is a subgroup of a finite group G, and if h ∈ H, then IndGH αH,h = αG,h.
(c) Prove that ifG1 andG2 are finite groups, and if h1 ∈ G1 and h2 ∈ G2, then the canonical isomorphism

RC (G1)⊗RC (G2)→ RC (G1 ×G2) sends αG1,h1
⊗ αG2,h2

to αG1×G2,(h1,h2).

232The first equality sign in this computation uses the fact that the number of all n-cycles in Sn is (n− 1)!. This is because
any n-cycle in Sn can be uniquely written in the form (i1, i2, . . . , in−1, n) (in cycle notation) with (i1, i2, . . . , in−1) being a
permutation in Sn−1 (written in one-line notation).

233For instance, one can use (4.1.3) to show that zλ1λ = λ1λ2 · · ·λ` ·1(λ1)1(λ2) · · · 1(λ`)
if λ = (λ1, λ2, . . . , λ`) with ` = ` (λ).

See Exercise 4.4.3(d) for the details.
234This is not in conflict with the notation 1G for the trivial character of G, since 1P = 1G for P = G. Note that 1P is a

class function when P is a union of conjugacy classes of G.
235In fact, 1ConjG(h) is a class function (since ConjG (h) is a conjugacy class), and so αG,h (being the scalar multiple

|ZG (h)| 1ConjG(h) of 1ConjG(h)) must also be a class function.
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(d) Fill in the details of the proof of ch(1λ) = pλ
zλ

in the proof of Theorem 4.4.1.

(e) Obtain an alternative proof of Remark 2.5.16.
(f) If G and H are two finite groups, and if ρ : H → G is a group homomorphism, then prove that

Indρ αH,h = αG,ρ(h) for every h ∈ H, where Indρ αH,h is defined as in Exercise 4.1.14.

Exercise 4.4.4. If G is a group and U1 and U2 are two CG-modules, then the tensor product U1 ⊗ U2 is
a C [G×G]-module, which can be made into a CG-module by letting g ∈ G act as (g, g) ∈ G × G. This
CG-module U1⊗U2 is called the inner tensor product236 of U1 and U2, and is a restriction of the outer tensor
product U1 ⊗ U2 using the inclusion map G→ G×G, g 7→ (g, g).

Let n ≥ 0, and let sgnSn be the 1-dimensional CSn-module C on which every g ∈ Sn acts as multi-
plication by sgn(g). If V is a CSn-module, show that the involution on A(S) =

⊕
n≥0R(Sn) defined in

Theorem 4.4.1(b) sends χV 7→ χsgnSn
⊗V where sgnSn ⊗V is the inner tensor product of sgnSn and V . Use

this to show that this involution is a nontrivial PSH-automorphism of A(S), and deduce Theorem 4.4.1(b).

Exercise 4.4.5. Let n ∈ N. For every permutation σ ∈ Sn, we let typeσ denote the cycle type of σ. Extend
ch : A = A (S)→ Λ to a C-linear map AC → ΛC. We shall call the latter map ch, too.

(a) Prove that every class function f ∈ RC (Sn) satisfies

ch (f) =
1

n!

∑
σ∈Sn

f (σ) ptypeσ.

(b) Let H be a subgroup of Sn. Prove that every class function f ∈ RC (H) satisfies

ch
(

IndSn
H f

)
=

1

|H|
∑
h∈H

f (h) ptypeh.

Exercise 4.4.6. (a) Show that for every n ≥ 0, every g ∈ Sn and every finite-dimensional CSn-module
V , we have χV (g) ∈ Z.

(b) Show that for every n ≥ 0 and every finite-dimensional CSn-module V , there exists a QSn-module
W such that V ∼= C⊗QW . (In the representation theorists’ parlance, this says that all representations
of Sn are defined over Q. This part of the exercise requires some familiarity with representation
theory.)

Remark 4.4.7. Parts (a) and (b) of Exercise 4.4.6 both follow from an even stronger result: For every n ≥ 0
and every finite-dimensional CSn-module V , there exists a ZSn-module W which is finitely generated and
free as a Z-module and satisfies V ∼= C⊗ZW as CSn-modules. This follows from the combinatorial approach
to the representation theory of Sn, in which the irreducible representations of CSn (the Specht modules)
are constructed using Young tableaux and tabloids. See the literature on the symmetric group, e.g., [186],
[73, §7], [223] or [115, Section 2.2] for this approach.

The connection between Λ and A (S) as established in Theorem 4.4.1 benefits both the study of Λ and
that of A (S). The following two exercises show some applications to Λ:

Exercise 4.4.8. If G is a group and U1 and U2 are two CG-modules, then let U1 � U2 denote the inner
tensor product of U1 and U2 (as defined in Exercise 4.4.4). Consider also the binary operation ∗ on ΛQ
defined in Exercise 2.9.4(h).

(a) Show that ch (χU1�U2
) = ch (χU1) ∗ ch (χU2) for any n ∈ N and any two CSn-modules U1 and U2.

(b) Use this to obtain a new solution for Exercise 2.9.4(h).
(c) Show that sµ ∗ sν ∈

∑
λ∈Par Nsλ for any two partitions µ and ν.

[Hint: For any group G, introduce a binary operation ∗ on RC (G) which satisfies χU1�U2
= χU1

∗ χU2

for any two CG-modules U1 and U2.]

Exercise 4.4.9. Define a Q-bilinear map � : ΛQ × ΛQ → ΛQ, which will be written in infix notation (that
is, we will write a� b instead of � (a, b)), by setting

pλ � pµ =

`(λ)∏
i=1

`(µ)∏
j=1

p
gcd(λi,µj)

lcm(λi,µj)
for any partitions λ and µ.

236Do not confuse this with the inner product of characters.



132 DARIJ GRINBERG AND VICTOR REINER

237

(a) Show that ΛQ, equipped with the binary operation �, becomes a commutative Q-algebra with unity
p1.

(b) For every r ∈ Z, define the Q-algebra homomorphism εr : ΛQ → Q as in Exercise 2.9.4(c). Show
that 1� f = ε1 (f) 1 for every f ∈ ΛQ (where 1 denotes the unity of Λ).

(c) Show that sµ � sν ∈
∑
λ∈Par Nsλ for any two partitions µ and ν.

(d) Show that f � g ∈ Λ for any f ∈ Λ and g ∈ Λ.

[Hint: For every set X, let SX denote the group of all permutations of X. For two sets X and
Y , there is a canonical group homomorphism SX × SY → SX×Y , which is injective if X and Y are
nonempty. For positive integers n and m, this yields an embedding Sn × Sm → S{1,2,...,n}×{1,2,...,m},
which, once S{1,2,...,n}×{1,2,...,m} is identified with Snm (using an arbitrary but fixed bijection {1, 2, . . . , n}×
{1, 2, . . . ,m} → {1, 2, . . . , nm}), can be regarded as an embedding Sn×Sm → Snm and thus allows defining

a CSnm-module IndSnm
Sn×Sm (U ⊗ V ) for any CSn-module U and any CSm-module V . This gives a binary

operation on A (S). Show that this operation corresponds to � under the PSH-isomorphism ch : A (S)→ Λ.]

Remark 4.4.10. The statements (and the idea of the solution) of Exercise 4.4.9 are due to Manuel Maia and
Miguel Méndez (see [144] and, more explicitly, [155]), who call the operation � the arithmetic product . Li
[131, Thm. 3.5] denotes it by � and relates it to the enumeration of unlabelled graphs.

4.5. Wreath products. Next consider the tower of groups Gn = Sn[Γ] for a finite group Γ, and the Hopf
algebra A = A(G∗) =: A(S[Γ]). Recall (from Theorem 4.4.1) that irreducible complex representations
χλ of Sn are indexed by partitions λ in Parn. Index the irreducible complex representations of Γ as
Irr(Γ) = {ρ1, . . . , ρd}.

Definition 4.5.1. Define for a partition λ in Parn and ρ in Irr(Γ) a representation χλ,ρ of Sn[Γ] in which
σ in Sn and γ = (γ1, . . . , γn) in Γn act on the space χλ ⊗ (ρ⊗n) as follows:

(4.5.1)
σ(u⊗ (v1 ⊗ · · · ⊗ vn)) = σ(u)⊗ (vσ−1(1) ⊗ · · · ⊗ vσ−1(n));

γ(u⊗ (v1 ⊗ · · · ⊗ vn)) = u⊗ (γ1v1 ⊗ · · · ⊗ γnvn).

Theorem 4.5.2. The irreducible CSn[Γ]-modules are the induced characters

χλ := Ind
Sn[Γ]
Sdegs(λ)[Γ]

(
χλ

(1),ρ1 ⊗ · · · ⊗ χλ
(d),ρd

)
as λ runs through all functions

Irr(Γ)
λ−→ Par,

ρi 7−→ λ(i)

with the property that
∑d
i=1 |λ(i)| = n. Here, degs(λ) denotes the d-tuple

(∣∣λ(1)
∣∣ , ∣∣λ(2)

∣∣ , . . . , ∣∣λ(d)
∣∣) ∈ Nd,

and Sdegs(λ) is defined as the subgroup S|λ(1)| ×S|λ(2)| × · · · ×S|λ(d)| of Sn.

Furthermore, one has a PSH-isomorphism

A(S[Γ]) −→ Λ⊗d,
χλ 7−→ sλ(1) ⊗ · · · ⊗ sλ(d) .

Proof. We know from Corollary 4.3.10 that A(S[Γ]) is a PSH, with PSH-basis Σ given by the union of all
irreducible characters of all groups Sn[Γ]. Therefore Theorem 3.2.3 tells us that A(S[Γ]) ∼=

⊗
ρ∈C A(S[Γ])(ρ)

where C is the set of irreducible characters which are also primitive. Just as in the case of Sn, it is clear
from the definition of the coproduct that an irreducible character ρ of Sn[Γ] is primitive if and only if n = 1,
that in this case Sn[Γ] = Γ, and ρ lies in Irr(Γ) = {ρ1, . . . , ρd}.

The remaining assertions of the theorem will then follow from the definition of the induction product
algebra structure on A(S[Γ]), once we have shown that, for every ρ ∈ Irr(Γ), there is a PSH-isomorphism
sending

(4.5.2)
A(S) −→ A(S[Γ])(ρ),
χλ 7−→ χλ,ρ.

237This is well-defined, since (pλ)λ∈Par is a Q-module basis of ΛQ.
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Such an isomorphism comes from applying Proposition 4.1.17 to the semidirect product Sn[Γ] = Sn n Γn,
so that K = Γn, G = Sn, and fixing V = ρ⊗n as CSn[Γ]-module with structure as defined in (4.5.1) (but
with λ set to (n), so that χλ is the trivial 1-dimensional CSn-module). One obtains for each n, maps

R(Sn)
Φ


Ψ
R(Sn[Γ])

where

χ
Φ7−→ χ⊗ (ρ⊗n),

α
Ψ7−→ HomCΓn(ρ⊗n, α).

Taking the direct sum of these maps for all n gives maps A(S)
Φ


Ψ
A(S[Γ]).

These maps are coalgebra morphisms because of their interaction with restriction to Si × Sj . Since
Proposition 4.1.17(iii) gives the adjointness property that

(χ,Ψ(α))A(S) = (Φ(χ), α)A(S[Γ]),

one concludes from the self-duality of A(S), A(S[Γ]) that Φ,Ψ are also algebra morphisms. Since they
take genuine characters to genuine characters, they are PSH-morphisms. Since ρ being a simple CΓ-module
implies that V = ρ⊗n is a simple CΓn-module, Proposition 4.1.17(iv) shows that

(4.5.3) (Ψ ◦ Φ)(χ) = χ

for all Sn-characters χ. Hence Φ is an injective PSH-morphism. Using adjointness, (4.5.3) also shows that
Φ sends CSn-simples χ to C[Sn[Γ]]-simples Φ(χ):

(Φ(χ),Φ(χ))A(S[Γ]) = ((Ψ ◦ Φ)(χ), χ)A(S) = (χ, χ)A(S) = 1.

Since Φ(χ) = χ⊗ (ρ⊗n) has V = ρ⊗n as a constituent upon restriction to Γn, Frobenius Reciprocity shows

that the irreducible character Φ(χ) is a constituent of Ind
Sn[Γ]
Γn ρ⊗n = ρn. Hence the entire image of Φ lies

in A(S[Γ])(ρ) (due to how we defined A(ρ) in the proof of Theorem 3.2.3), and so Φ must restrict to an
isomorphism as desired in (4.5.2). �

One of Zelevinsky’s sample applications of the theorem is this branching rule.

Corollary 4.5.3. Given λ = (λ(1), . . . , λ(d)) with
∑d
i=1 |λ(i)| = n, one has

Res
Sn[Γ]
Sn−1[Γ]×Γ

(
χλ
)

=

d∑
i=1

∑
λ

(i)
− ⊆λ

(i):

|λ(i)/λ
(i)
− |=1

χ(λ(1),...,λ
(i)
− ,...,λ(d)) ⊗ ρi.

(We are identifying functions λ : Irr(Γ)→ Par with the corresponding d-tuples
(
λ(1), λ(2), . . . , λ(d)

)
here.)

Example 4.5.4. For Γ a two-element group, so Irr(Γ) = {ρ1, ρ2} and d = 2, then

Res
S6[Γ]
S5[Γ]×Γ

(
χ((3,1),(1,1))

)
= χ((3),(1,1)) ⊗ ρ1 + χ((2,1),(1,1)) ⊗ ρ1 + χ((3,1),(1)) ⊗ ρ2.

Proof of Corollary 4.5.3. By Theorem 4.5.2, this is equivalent to computing in the Hopf algebra A := Λ⊗d

the component of the coproduct of sλ(1) ⊗ · · · ⊗ sλ(d) that lies in An−1 ⊗ A1. Working within each tensor
factor Λ, we conclude from Proposition 2.3.6(iv) that the Λ|λ|−1 ⊗ Λ1-component of ∆(sλ) is∑

λ−⊆λ:
|λ/λ−|=1

sλ− ⊗ ρ.

One must apply this in each of the d tensor factors of A = Λ⊗d, then sum on i. �
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4.6. General linear groups. We now consider the tower of finite general linear groups Gn = GLn =
GLn(Fq) and A = A(G∗) =: A(GL). Corollary 4.3.10 tells us that A(GL) is a PSH, with PSH-basis Σ given
by the union of all irreducible characters of all groups GLn. Therefore Theorem 3.2.3 tells us that

(4.6.1) A(GL) ∼=
⊗
ρ∈C

A(GL)(ρ)

where C = Σ ∩ p is the set of primitive irreducible characters.

Definition 4.6.1. Call an irreducible representation ρ of GLn cuspidal for n ≥ 1 if it lies in C, that is, its
restriction to proper parabolic subgroups Pi,j with i+j = n and i, j > 0 contain no nonzero vectors which are
Ki,j-invariant. Given an irreducible character σ of GLn, say that d(σ) = n, and let Cn := {ρ ∈ C : d(ρ) = n}
for n ≥ 1 denote the subset of cuspidal characters of GLn.

Just as was the case for S1 and S1[Γ] = Γ, every irreducible character ρ of GL1(Fq) = F×q is cuspidal.
However, this does not exhaust the cuspidal characters. In fact, one can predict the number of cuspidal
characters in Cn, using knowledge of the number of conjugacy classes in GLn. Let F denote the set of all
nonconstant monic irreducible polynomials f(x) 6= x in Fq[x]. Let Fn := {f ∈ F : deg(f) = n} for n ≥ 1.

Proposition 4.6.2. The number |Cn| of cuspidal characters of GLn(Fq) is the number of |Fn| of irreducible
monic degree n polynomials f(x) 6= x in Fq[x] with nonzero constant term.

Proof. We show |Cn| = |Fn| for n ≥ 1 by strong induction on n. For the base case238 n = 1, just as with
the families Gn = Sn and Gn = Sn[Γ], when n = 1 any irreducible character χ of G1 = GL1(Fq) gives a
primitive element of A = A(GL), and hence is cuspidal. Since GL1(Fq) = F×q is abelian, there are |F×q | = q−1
such cuspidal characters in C1, which agrees with the fact that there are q − 1 monic (irreducible) linear
polynomials f(x) 6= x in Fq[x], namely F1 := {f(x) = x− c : c ∈ F×q }.

In the inductive step, use the fact that the number |Σn| of irreducible complex characters χ of GLn(Fq)
equals its number of conjugacy classes. These conjugacy classes are uniquely represented by rational canonical
forms, which are parametrized by functions λ : F → Par with the property that

∑
f∈F deg(f)|λ(f)| = n.

On the other hand, (4.6.1) tells us that |Σn| is similarly parametrized by the functions λ : C → Par having
the property that

∑
ρ∈C d(ρ)|λ(ρ)| = n. Thus we have parallel disjoint decompositions

C =
⊔
n≥1 Cn where Cn = {ρ ∈ C : d(ρ) = n} ,

F =
⊔
n≥1 Fn where Fn = {f ∈ F : deg(f) = n} ,

and hence an equality for all n ≥ 1∣∣∣∣∣∣
C λ−→ Par :

∑
ρ∈C

d(ρ)|λ(ρ)| = n


∣∣∣∣∣∣ = |Σn| =

∣∣∣∣∣∣
F λ−→ Par :

∑
f∈F

deg(f)|λ(f)| = n


∣∣∣∣∣∣ .

Since there is only one partition λ having |λ| = 1 (namely, λ = (1)), this leads to parallel recursions

|Cn| = |Σn| −

∣∣∣∣∣∣

n−1⊔
i=1

Ci
λ−→ Par :

∑
ρ∈C

d(ρ)|λ(ρ)| = n


∣∣∣∣∣∣ ,

|Fn| = |Σn| −

∣∣∣∣∣∣

n−1⊔
i=1

Fi
λ−→ Par :

∑
f∈F

deg(f)|λ(f)| = n


∣∣∣∣∣∣ ,

and induction implies that |Cn| = |Fn|. �

We shall use the notation 1H for the trivial character of a group H whenever H is a finite group. This
generalizes the notations 1Sn and 1Sλ introduced above.

238Actually, we don’t need any base case for our strong induction. We nevertheless handle the case n = 1 as a warmup.
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Example 4.6.3. Taking q = 2, let us list the sets Fn of monic irreducible polynomials f(x) 6= x in F2[x] of
degree n for n ≤ 3, so that we know how many cuspidal characters of GLn(Fq) in Cn to expect:

F1 = {x+ 1};
F2 = {x2 + x+ 1};
F3 = {x3 + x+ 1, x3 + x2 + 1}.

Thus we expect

• one cuspidal character of GL1(F2), namely ρ1(= 1GL1(F2)),

• one cuspidal character ρ2 of GL2(F2), and
• two cuspidal characters ρ3, ρ

′
3 of GL3(F2).

We will say more about ρ2, ρ3, ρ
′
3 in the next section.

Exercise 4.6.4. Let µ : {1, 2, 3, . . .} → Z denote the number-theoretic Möbius function, defined by setting
µ(m) = (−1)d if m = p1 · · · pd for d distinct primes p1, p2, . . . , pd, and µ(m) = 0 if m is not squarefree.

(a) Show that for n ≥ 2, we have

(4.6.2) |Cn|(= |Fn|) =
1

n

∑
d|n

µ
(n
d

)
qd.

(Here, the summation sign
∑
d|n means a sum over all positive divisors d of n.)

(b) Show that (4.6.2) also counts the necklaces with n beads of q colors (= the equivalence classes under
the Z/nZ-action of cyclic rotation on sequences (a1, . . . , an) in Fnq ) which are primitive in the sense
that no nontrivial rotation fixes any of the sequences within the equivalence class. For example,
when q = 2, here are systems of distinct representatives of these primitive necklaces for n = 2, 3, 4:

n = 2 : {(0, 1)};
n = 3 : {(0, 0, 1), (0, 1, 1)};
n = 4 : {(0, 0, 0, 1), (0, 0, 1, 1), (0, 1, 1, 1)}.

The result of Exercise 4.6.4(a) was stated by Gauss for prime q, and by Witt for general q; it is discussed
in [37], [182, Section 7.6.2] and (for prime q) [84, (4.12.3)]. Exercise 4.6.4(b) is also well-known. See [182,
Section 7.6.2] for a bijection explaining why the answers to both parts of Exercise 4.6.4 are the same.

4.7. Steinberg’s unipotent characters. Not surprisingly, the (cuspidal) character ι := 1GL1
of GL1(Fq)

plays a distinguished role. The parabolic subgroup P(1n) of GLn(Fq) is the Borel subgroup B of upper

triangular matrices, and we have ιn = IndGLnB 1B = C[GLn/B] (identifying representations with their
characters as usual)239. The subalgebra A(GL)(ι) of A(GL) is the Z-span of the irreducible characters σ

that appear as constituents of ιn = IndGLnB 1B = C[GLn/B] for some n.

Definition 4.7.1. An irreducible character σ of GLn appearing as a constituent of IndGLnB 1B = C[GLn/B]
is called a unipotent character . Equivalently, by Frobenius reciprocity, σ is unipotent if it contains a nonzero
B-invariant vector.

In particular, 1GLn is a unipotent character of GLn for each n.

Proposition 4.7.2. One can choose Λ ∼= A(GL)(ι) in Theorem 3.3.3(g) so that hn 7−→ 1GLn .

239Proof. Exercise 4.3.11(d) (applied to G∗ = GL∗, ` = n, α = (1n) =

1, 1, . . . , 1︸ ︷︷ ︸
n times

 and χi = ι) gives

ιn = indn(1n) ι
⊗n = IndGnP(1n)︸ ︷︷ ︸

=Ind
GLn
B

Infl
P(1n)

G(1n)
ι⊗n︸ ︷︷ ︸

=1P(1n)
=1B

= IndGLnB 1B = C [GLn/B] ,

where the last equality follows from the general fact that if G is a finite group and H is a subgroup of G, then IndGH 1H
∼= C [G/H]

as CG-modules.
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Proof. Theorem 3.3.1(a) tells us ι2 = IndGL2

B 1B must have exactly two irreducible constituents, one of which
is 1GL2

; call the other one St2. Choose the isomorphism so as to send h2 7−→ 1GL2
. Then hn 7→ 1GLn follows

from the claim that St⊥2 (1GLn) = 0 for n ≥ 2: one has

∆(1GLn) =
∑
i+j=n

(
ResGnPi,j 1GLn

)Ki,j
=
∑
i+j=n

1GLi ⊗ 1GLj

so that St⊥2 (1GLn) = (St2, 1GL2
)1GLn−2

= 0 since St2 6= 1GL2
.

�

This subalgebra A(GL)(ι), and the unipotent characters χλq corresponding under this isomorphism to the

Schur functions sλ, were introduced by Steinberg [208]. He wrote down χλq as a virtual sum of induced

characters IndGLnPα
1Pα(= 1Gα1

· · · 1Gα` ), modelled on the Jacobi-Trudi determinantal expression for sλ =

det(hλi−i+j). Note that IndGLnPα
1Pα is the transitive permutation representation C[G/Pα] for GLn permuting

the finite partial flag variety G/Pα, that is, the set of α-flags of subspaces

{0} ⊂ Vα1
⊂ Vα1+α2

⊂ · · · ⊂ Vα1+α2+···+α`−1
⊂ Fnq

where dimFq Vd = d in each case. This character has dimension equal to |G/Pα|, with formula given by the
q-multinomial coefficient (see e.g. Stanley [206, §1.7]):[

n
α

]
q

=
[n]!q

[α1]!q · · · [α`]!q

where [n]!q := [n]q[n− 1]q · · · [2]q[1]q and [n]q := 1 + q + · · ·+ qn−1 = qn−1
q−1 .

Our terminology St2 is motivated by the n = 2 special case of the Steinberg character Stn, which is the
unipotent character corresponding under the isomorphism in Proposition 4.7.2 to en = s(1n). It can be
defined by the virtual sum

Stn := χ(1n)
q =

∑
α

(−1)n−`(α) IndGLnPα
1Pα

in which the sum runs through all compositions α of n. This turns out to be the genuine character for
GLn(Fq) acting on the top homology group of its Tits building : the simplicial complex whose vertices are
nonzero proper subspaces V of Fnq , and whose simplices correspond to flags of nested subspaces. One needs
to know that this Tits building has only top homology, so that one can deduce the above character formula
from the Hopf trace formula; see Björner [22].

4.8. Examples: GL2(F2) and GL3(F2). Let’s get our hands dirty.

Example 4.8.1. For n = 2, there are two unipotent characters, χ
(2)
q = 1GL2

and

(4.8.1) St2 := χ(1,1)
q = 12

GL1
− 1GL2

= IndGL2

B 1B − 1GL2

since the Jacobi-Trudi formula (2.4.16) gives s(1,1) = det

[
h1 h2

1 h1

]
= h2

1 − h2. The description (4.8.1) for

this Steinberg character St2 shows that it has dimension

|GL2/B| − 1 = (q + 1)− 1 = q

and that one can think of it as follows: consider the permutation action ofGL2 on the q+1 lines {`0, `1, . . . , `q}
in the projective space P1

Fq = GL2(Fq)/B, and take the invariant subspace perpendicular to the sum of basis

elements e`0 + · · ·+ e`q .

Example 4.8.2. Continuing the previous example, but taking q = 2, we find that we have constructed two

unipotent characters: 1GL2
= χ

(2)
q=2 of dimension 1, and St2 = χ

(1,1)
q=2 of dimension q = 2. This lets us identify

the unique cuspidal character ρ2 of GL2(F2), using knowledge of the character table of GL2(F2) ∼= S3:
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[
1 0
0 1

] [
1 1
0 1

]
,

[
1 0
1 1

]
,

[
0 1
1 0

] [
1 1
1 0

]
,

[
0 1
1 1

]

1GL2
= χ

(2)
q=2 unipotent 1 1 1

St2 = χ
(1,1)
q=2 unipotent 2 0 −1

ρ2 cuspidal 1 −1 1

In other words, the cuspidal character ρ2 of GL2(F2) corresponds under the isomorphism GL2(F2) ∼= S3 to
the sign character sgnS3

.

Example 4.8.3. Continuing the previous example to q = 2 and n = 3 lets us analyze the irreducible
characters of GL3(F2). Recalling our labelling ρ1, ρ2, ρ3, ρ

′
3 from Example 4.6.3 of the cuspidal characters of

GLn(F2) for n = 1, 2, 3, Zelevinsky’s Theorem 3.2.3 tells us that the GL3(F2)-irreducible characters should

be labelled by functions {ρ1, ρ2, ρ3, ρ
′
3}

λ−→ Par for which

1 · |λ(ρ1)|+ 2 · |λ(ρ2)|+ 3 · |λ(ρ3)|+ 3 · |λ(ρ′3)| = 3.

We will label such an irreducible character χλ = χ(λ(ρ1),λ(ρ2),λ(ρ3),λ(ρ′3)).
Three of these irreducibles will be the unipotent characters, mapping under the isomorphism from Propo-

sition 4.7.2 as follows:

• s(3) = h3 7−→ χ((3),∅,∅,∅) = 1GL3
of dimension 1.

•

s(2,1) = det

[
h2 h3

1 h1

]
= h2h1 − h3 7−→ χ((2,1),∅,∅,∅) = IndGL3

P2,1
1P2,1

− 1GL3
,

of dimension

[
3

2, 1

]
q

−
[
3
3

]
q

= [3]q − 1 = q2 + q
q=2
 6.

• Lastly,

s(1,1,1) = det

h1 h2 h3

1 h1 h2

0 1 h1

 = h3
1 − h2h1 − h1h2 + h3

7−→ St3 = χ((1,1,1),∅,∅,∅) = IndGL3

B 1B − IndGL3

P2,1
1P2,1

− IndGL3

P1,2
1P1,2

+ 1GL3

of dimension [
3

1, 1, 1

]
q

−
[

3
2, 1

]
q

−
[

3
1, 2

]
q

+

[
3
3

]
q

= [3]!q − [3]q − [3]q + 1 = q3 q=2
 8.

There should also be one non-unipotent, non-cuspidal character, namely

χ((1),(1),∅,∅) = ρ1ρ2 = IndGL3

P1,2
Infl

P1,2

GL1×GL2

(
1GL1

⊗ ρ2

)
having dimension

[
3

1, 2

]
q

· 1 · 1 = [3]q
q=2
 7.

Finally, we expect cuspidal characters ρ3 = χ(∅,∅,(1),∅), ρ′3 = χ(∅,∅,∅,(1)), whose dimensions d3, d
′
3 can be

deduced from the equation

12 + 62 + 82 + 72 + d2
3 + (d′3)2 = |GL3(F2)| =

[
(q3 − q0)(q3 − q1)(q3 − q2)

]
q=2

= 168.

This forces d2
3 + (d′3)2 = 18, whose only solution in positive integers is d3 = d′3 = 3.

We can check our predictions of the dimensions for the various GL3(F2)-irreducible characters since
GL3(F2) is the finite simple group of order 168 (also isomorphic to PSL2(F7)), with known character table
(see James and Liebeck [104, p. 318]):
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centralizer order 168 8 4 3 7 7
unipotent?/cuspidal?

1GL3
= χ((3),∅,∅,∅) unipotent 1 1 1 1 1 1

χ((2,1),∅,∅,∅) unipotent 6 2 0 0 −1 −1

St3 = χ((1,1,1),∅,∅,∅) unipotent 8 0 0 −1 1 1

χ((1),(1),∅,∅) 7 −1 −1 1 0 0

ρ3 = χ(∅,∅,(1),∅) cuspidal 3 −1 1 0 α α

ρ′3 = χ(∅,∅,∅,(1)) cuspidal 3 −1 1 0 α α

Here α := −1/2 + i
√

7/2.

Remark 4.8.4. It is known (see e.g. Bump [30, Cor. 7.4]) that, for n ≥ 2, the dimension of any cuspidal
irreducible character ρ of GLn(Fq) is

(qn−1 − 1)(qn−2 − 1) · · · (q2 − 1)(q − 1).

Note that when q = 2,

• for n = 2 this gives 21 − 1 = 1 for the dimension of ρ2, and
• for n = 3 it gives (22 − 1)(2− 1) = 3 for the dimensions of ρ3, ρ

′
3,

agreeing with our calculations above. Much more is known about the character table of GLn(Fq); see
Remark 4.9.14 below, Zelevinsky [227, Chap. 11], and Macdonald [142, Chap. IV].

4.9. The Hall algebra. There is another interesting Hopf subalgebra (and quotient Hopf algebra) of A(GL),
related to unipotent conjugacy classes in GLn(Fq).

Definition 4.9.1. Say that an element g in GLn(Fq) is unipotent if its eigenvalues are all equal to 1.
Equivalently, g ∈ GLn(Fq) is unipotent if and only if g − idFnq is nilpotent. A conjugacy class in GLn(Fq) is
unipotent if its elements are unipotent.

Denote by Hn the C-subspace of RC(GLn) consisting of those class functions which are supported only
on unipotent conjugacy classes, and let H =

⊕
n≥0Hn as a C-subspace of AC(GL) =

⊕
n≥0RC(GLn).

Proposition 4.9.2. The subspace H is a Hopf subalgebra of AC(GL), which is graded, connected, and of
finite type, and self-dual with respect to the inner product on class functions inherited from AC(GL). It is
also a quotient Hopf algebra of AC(GL), as the C-linear surjection AC(GL)� H restricting class functions
to unipotent classes is a Hopf algebra homomorphism. This surjection has kernel H⊥, which is both an ideal
and a two-sided coideal.

Proof. It is immediately clear that H⊥ is a graded C-vector subspace of AC (GL), whose n-th homogeneous
component consists of those class functions on GLn whose values on all unipotent classes are 0. (This holds
no matter whether the perpendicular space is taken with respect to the Hermitian form (·, ·)G or with respect
to the bilinear form 〈·, ·〉G.) In other words, H⊥ is the kernel of the surjection AC(GL)� H defined in the
proposition.

Given two class functions χi, χj on GLi, GLj and g in GLi+j , one has

(4.9.1) (χi · χj) (g) =
1

|Pi,j |
∑

h∈GLi+j :

h−1gh=

gi ∗
0 gj

∈Pi,j
χi(gi)χj(gj).

Since g is unipotent if and only if h−1gh is unipotent if and only if both gi, gj are unipotent, the formula
(4.9.1) shows both that H is a subalgebra240 and that H⊥ is a two-sided ideal241. It also shows that the
surjection AC(GL)� H restricting every class function to unipotent classes is an algebra homomorphism242.

240Indeed, if χi and χj are both supported only on unipotent classes, then the same holds for χi · χj .
241In fact, if one of χi and χj annihilates all unipotent classes, then so does χi · χj .
242because if g is unipotent, then the only values of χi and χj appearing on the right hand side of (4.9.1) are those on

unipotent elements
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Similarly, for class functions χ on GLn and (gi, gj) in GLi,j = GLi ×GLj , one has

∆(χ)(gi, gj) =
1

qij

∑
k∈Fi×jq

χ

[
gi k
0 gj

]
using (4.1.13). This shows both that H is a sub-coalgebra of A = AC(GL) (that is, it satisfies ∆H ⊂ H⊗H)
and that H⊥ is a two-sided coideal (that is, we have ∆(H⊥) ⊂ H⊥⊗A+A⊗H⊥), since it shows that if χ is
supported only on unipotent classes, then ∆(χ) vanishes on (g1, g2) that have either g1 or g2 non-unipotent.
It also shows that the surjection AC(GL) � H restricting every class function to unipotent classes is a
coalgebra homomorphism. The rest follows. �

The subspace H is called the Hall algebra. It has an obvious orthogonal C-basis, with interesting structure
constants.

Definition 4.9.3. Given a partition λ of n, let Jλ denote the GLn-conjugacy class of unipotent matrices
whose Jordan type (that is, the list of the sizes of the Jordan blocks, in decreasing order) is given by λ.
Furthermore, let zλ(q) denote the size of the centralizer of any element of this conjugacy class Jλ.

The indicator class functions243 {1Jλ}λ∈Par form a C-basis for H whose multiplicative structure constants

are called the Hall coefficients gλµ,ν(q):

1Jµ1Jν =
∑
λ

gλµ,ν(q) 1Jλ .

Because the dual basis to {1Jλ} is {zλ(q)1Jλ}, self-duality of H shows that the Hall coefficients are (essen-
tially) also structure constants for the comultiplication:

∆1Jλ =
∑
µ,ν

gλµ,ν(q)
zµ(q)zν(q)

zλ(q)
· 1Jµ ⊗ 1Jν .

The Hall coefficient gλµ,ν(q) has the following interpretation.

Proposition 4.9.4. Fix any g in GLn(Fq) acting unipotently on Fnq with Jordan type λ. Then gλµ,ν(q)
counts the g-stable Fq-subspaces V ⊂ Fnq for which the restriction g|V acts with Jordan type µ, and the
induced map ḡ on the quotient space Fnq /V has Jordan type ν.

Proof. Given µ, ν partitions of i, j with i + j = n, taking χi, χj equal to 1Jµ , 1Jν in (4.9.1) shows that for

any g in GLn, the value of
(

1Jµ · 1Jν
)

(g) is given by

(4.9.2)
1

|Pi,j |

∣∣∣∣{h ∈ GLn : h−1gh =

[
gi ∗
0 gj

]
with gi ∈ Jµ, gj ∈ Jν

}∣∣∣∣ .
Let S denote the set appearing in (4.9.2), and let Fiq denote the i-dimensional subspace of Fnq spanned by

the first i standard basis vectors. Note that the condition on an element h in S saying that h−1gh is in
block upper-triangular form can be re-expressed by saying that the subspace V := h(Fiq) is g-stable. One

then sees that the map h
ϕ7−→ V = h(Fiq) surjects S onto the set of i-dimensional g-stable subspaces V of

Fnq for which g|V and ḡ are unipotent of types µ, ν, respectively. Furthermore, for any particular such V ,

its fiber ϕ−1(V ) in S is a coset of the stabilizer within GLn of V , which is conjugate to Pi,j , and hence has
cardinality |ϕ−1(V )| = |Pi,j |. This proves the assertion of the proposition. �

The Hall algebraH will turn out to be isomorphic to the ring ΛC of symmetric functions with C coefficients,
via a composite ϕ of three maps

ΛC −→ A(GL)(ι)C −→ A(GL)C −→ H
in which the first map is the isomorphism from Proposition 4.7.2, the second is inclusion, and the third is
the quotient map from Proposition 4.9.2.

243Here we use the following notation: Whenever P is a subset of a group G, we denote by 1P the map G → C which

sends every element of P to 1 and all remaining elements of G to 0. This is not in conflict with the notation 1G for the trivial

character of G, since 1P = 1G for P = G. Note that 1P is a class function when P is a union of conjugacy classes of G.
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Theorem 4.9.5. The above composite ϕ is a Hopf algebra isomorphism, sending

hn 7−→
∑
λ∈Parn

1Jλ ,

en 7−→ q(
n
2)1J(1n)

,

pn 7−→
∑
λ∈Parn

(q; q)`(λ)−11Jλ (for n > 0) ,

where we are using the notation

(x; q)m := (1− x)(1− qx)(1− q2x) · · · (1− qm−1x) for all m ∈ N and x in any ring.

Proof. That ϕ is a graded Hopf morphism follows because it is a composite of three such morphisms. We
claim that once one shows the formula for the (nonzero) image ϕ(pn) given above is correct, then this will
already show ϕ is an isomorphism, by the following argument. Note first that ΛC and H both have dimension
|Parn | for their n-th homogeneous components, so it suffices to show that the graded map ϕ is injective.
On the other hand, both ΛC and H are (graded, connected, finite type) self-dual Hopf algebras (although
with respect to a sesquilinear form), so Theorem 3.1.7 says that each is the symmetric algebra on its space
of primitive elements. Thus it suffices to check that ϕ is injective when restricted to their subspaces of
primitives.244 For ΛC, by Corollary 3.1.8 the primitives are spanned by {p1, p2, . . .}, with only one basis
element in each degree n ≥ 1. Hence ϕ is injective on the subspace of primitives if and only if it does not
annihilate any pn.

Thus it only remains to show the above formulas for the images of hn, en, pn under ϕ. This is clear for
hn, since Proposition 4.7.2 shows that it maps under the first two composites to the indicator function 1GLn
which then restricts to the sum of indicators

∑
λ∈Parn

1Jλ in H. For en, pn, we resort to generating functions.

Let h̃n, ẽn, p̃n denote the three putative images in H of hn, en, pn, appearing on the right side in the theorem,
and define generating functions

H̃(t) :=
∑
n≥0

h̃nt
n, Ẽ(t) :=

∑
n≥0

ẽnt
n, P̃ (t) :=

∑
n≥0

p̃n+1t
n in H[[t]].

We wish to show that the map ϕ[[t]] : ΛC[[t]]→ H[[t]] (induced by ϕ) maps H(t), E(t), P (t) in Λ[[t]] to these
three generating functions245. Since we have already shown this is correct for H(t), by (2.4.3), (2.5.13), it
suffices to check that in H[[t]] one has

H̃(t)Ẽ(−t) = 1, or equivalently,
∑n
k=0(−1)kẽkh̃n−k = δ0,n;

H̃ ′(t)Ẽ(−t) = P̃ (t), or equivalently,
∑n
k=0(−1)k(n− k)ẽkh̃n−k = p̃n.

Thus it would be helpful to evaluate the class function ẽkh̃n−k. Note that a unipotent g in GLn having `
Jordan blocks has an `-dimensional 1-eigenspace, so that the number of k-dimensional g-stable Fq-subspaces
of Fnq on which g has Jordan type

(
1k
)

(that is, on which g acts as the identity) is the q-binomial coefficient[
`
k

]
q

=
(q; q)`

(q; q)k(q; q)`−k
,

counting k-dimensional Fq-subspaces V of an `-dimensional Fq-vector space; see, e.g., [206, §1.7]. Hence, for
a unipotent g in GLn having ` Jordan blocks, we have

(ẽkh̃n−k)(g) = q(
k
2) ·
(

1J
(1k)
· h̃n−k

)
(g) = q(

k
2) ·

∑
ν∈Parn−k

(
1J

(1k)
· 1Jν

)
(g) = q(

k
2)
[
`
k

]
q

(by Proposition 4.9.4). Thus one needs for ` ≥ 1 that∑̀
k=0

(−1)kq(
k
2)
[
`
k

]
q

= 0,(4.9.3)

∑̀
k=0

(−1)k(n− k)q(
k
2)
[
`
k

]
q

= (q; q)`−1.(4.9.4)

244An alternative way to see that it suffices to check this is by recalling Exercise 1.4.35(c).
245See (2.4.1), (2.4.2), (2.5.13) for the definitions of H(t), E(t), P (t).
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Identity (4.9.3) comes from setting x = 1 in the q-binomial theorem [206, Exer. 3.119]:

(4.9.5)
∑̀
k=0

(−1)kq(
k
2)
[
`
k

]
q

x`−k = (x− 1)(x− q)(x− q2) · · · (x− q`−1).

Identity (4.9.4) comes from applying d
dx to (4.9.5), then setting x = 1, and finally adding (n − `) times

(4.9.3). �

Exercise 4.9.6. Fix a prime power q. For any k ∈ N, and any k partitions λ(1), λ(2), . . . , λ(k), we define a

family
(
gλ
λ(1),λ(2),...,λ(k) (q)

)
λ∈Par

of elements of C by the equation

1J
λ(1)

1J
λ(2)
· · · 1J

λ(k)
=
∑
λ∈Par

gλλ(1),λ(2),...,λ(k) (q) 1Jλ

inH. This notation generalizes the notation gλµ,ν (q) we introduced in Definition 4.9.3. Note that gλµ (q) = δλ,µ
for any two partitions λ and µ, and that gλ (q) = δλ,∅ for any partition λ (where gλ (q) is to be understood
as gλ

λ(1),λ(2),...,λ(k) (q) for k = 0).

(a) Let λ ∈ Par, and let n = |λ|. Let V be an n-dimensional Fq-vector space, and let g be a unipotent

endomorphism of V having Jordan type λ. Let k ∈ N, and let λ(1), λ(2), . . . , λ(k) be k partitions. A(
λ(1), λ(2), . . . , λ(k)

)
-compatible g-flag will mean a sequence 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk = V of

g-invariant Fq-vector subspaces Vi of V such that for every i ∈ {1, 2, . . . , k}, the endomorphism of

Vi/Vi−1 induced by g 246 has Jordan type λ(i).
Show that gλ

λ(1),λ(2),...,λ(k) (q) is the number of
(
λ(1), λ(2), . . . , λ(k)

)
-compatible g-flags.247

(b) Let λ ∈ Par. Let k ∈ N, and let λ(1), λ(2), . . . , λ(k) be k partitions. Show that gλ
λ(1),λ(2),...,λ(k) (q) = 0

unless
∣∣λ(1)

∣∣+
∣∣λ(2)

∣∣+ · · ·+
∣∣λ(k)

∣∣ = |λ| and λ(1) + λ(2) + · · ·+ λ(k) . λ. (Here and in the following,
we are using the notations of Exercise 2.9.17).

(c) Let λ ∈ Par, and let us write the transpose partition λt as λt = ((λt)1 , (λ
t)2 , . . . , (λ

t)`). Show that
gλ(

1(λt)1

)
,
(

1(λt)2

)
,...,
(

1(λt)`
) (q) 6= 0.

(d) Let n ∈ N and λ ∈ Parn. Show that

ϕ (eλ) =
∑

µ∈Parn; λt.µ

αλ,µ1Jµ

for some coefficients αλ,µ ∈ C satisfying αλ,λt 6= 0.
(e) Give another proof of the fact that the map ϕ is injective.

[Hint: For (b), use Exercise 2.9.22(b).]

We next indicate, without proof, how H relates to the classical Hall algebra.

Definition 4.9.7. Let p be a prime. The usual Hall algebra, or what Schiffmann [190, §2.3] calls Steinitz’s
classical Hall algebra (see also Macdonald [142, Chap. II]), has Z-basis elements {uλ}λ∈Par, with the multi-
plicative structure constants gλµ,ν(p) in

uµuν =
∑
λ

gλµ,ν(p) uλ

defined as follows: fix a finite abelian p-group L of type λ, meaning that

L ∼=
`(λ)⊕
i=1

Z/pλiZ,

246This is well-defined. In fact, both Vi and Vi−1 are g-invariant, so that g restricts to an endomorphism of Vi, which further

restricts to an endomorphism of Vi−1, and thus gives rise to an endomorphism of Vi/Vi−1.
247This can be seen as a generalization of Proposition 4.9.4. In fact, if µ and ν are two partitions, then a (µ, ν)-compatible

g-flag is a sequence 0 = V0 ⊂ V1 ⊂ V2 = V of g-invariant Fq-vector subspaces Vi of V such that the endomorphism of V1/V0
∼= V1

induced by g has Jordan type µ, and the endomorphism of V2/V1
∼= V/V1 induced by g has Jordan type ν. Choosing such

a sequence amounts to choosing V1 (since there is only one choice for each of V0 and V2), and the conditions on this V1 are

precisely the conditions on V in Proposition 4.9.4.



142 DARIJ GRINBERG AND VICTOR REINER

and let gλµ,ν(p) be the number of subgroups M of L of type µ, for which the quotient N := L/M is of type ν.

In other words, gλµ,ν(p) counts, for a fixed abelian p-group L of type λ, the number of short exact sequences
0 → M → L → N → 0 in which M,N have types µ, ν, respectively (modulo isomorphism of short exact
sequences restricting to the identity on L).

We claim that when one takes the finite field Fq of order q = p a prime, the Z-linear map

(4.9.6) uλ 7−→ 1Jλ

gives an isomorphism from this classical Hall algebra to the Z-algebra HZ ⊂ H. The key point is Hall’s
Theorem, a non-obvious statement for which Macdonald includes two proofs in [142, Chap. II], one of them
due to Zelevinsky248. To state it, we first recall some notions about discrete valuation rings.

Definition 4.9.8. A discrete valuation ring (short DVR) o is a principal ideal domain having only one
maximal ideal m 6= 0, with quotient k = o/m called its residue field .

The structure theorem for finitely generated modules over a PID implies that an o-module L with finite

composition series of composition length n must have L ∼=
⊕`(λ)

i=1 o/mλi for some partition λ of n; say L has
type λ in this situation.

Here are the two crucial examples for us.

Example 4.9.9. For any field F, the power series ring o = F[[t]] is a DVR with maximal ideal m = (t)
and residue field k = o/m = F[[t]]/(t) ∼= F. An o-module L of type λ is an F-vector space together with an
F-linear transformation T ∈ EndL that acts on L nilpotently (so that g := T + 1 acts unipotently, where
1 = idL) with Jordan blocks of sizes given by λ: each summand o/mλi = F[[t]]/(tλi) of L has an F-basis
{1, t, t2, . . . , tλi−1} on which the map T that multiplies by t acts as a nilpotent Jordan block of size λi. Note
also that, in this setting, o-submodules are the same as T -stable (or g-stable) F-subspaces.

Example 4.9.10. The ring of p-adic integers o = Zp is a DVR with maximal ideal m = (p) and residue field
k = o/m = Zp/pZp ∼= Z/pZ. An o-module L of type λ is an abelian p-group of type λ: for each summand,
o/mλi = Zp/pλiZp ∼= Z/pλiZ. Note also that, in this setting, o-submodules are the same as subgroups.

One last notation: n(λ) :=
∑
i≥1(i− 1)λi, for λ in Par. Hall’s Theorem is as follows.

Theorem 4.9.11. Assume o is a DVR with maximal ideal m, and that its residue field k = o/m is finite of
cardinality q. Fix an o-module L of type λ. Then the number of o-submodules M of type µ for which the
quotient N = L/M is of type ν can be written as the specialization

[gλµ,ν(t)]t=q

of a polynomial gλµ,ν(t) in Z[t], called the Hall polynomial.

Furthermore, the Hall polynomial gλµ,ν(t) has degree at most n(λ) − (n(µ) + n(ν)), and its coefficient of

tn(λ)−(n(µ)+n(ν)) is the Littlewood-Richardson coefficient cλµ,ν .

Comparing what Hall’s Theorem says in Examples 4.9.9 and 4.9.10, shows that the map (4.9.6) gives the
desired isomorphism from the classical Hall algebra to HZ.

We close this section with some remarks on the vast literature on Hall algebras that we will not discuss
here.

Remark 4.9.12. Macdonald’s version of Hall’s Theorem [142, (4.3)] is stronger than Theorem 4.9.11, and use-
ful for certain applications: he shows that gλµ,ν(t) is the zero polynomial whenever the Littlewood-Richardson

coefficient cλµ,ν is zero.

Remark 4.9.13. In general, not all coefficients of the Hall polynomials gλµ,ν(t) are nonnegative (see But-

ler/Hales [32] for a study of when they are); it often happens that gλµ,ν(1) = 0 despite gλµ,ν(t) not being the

248See also [190, Thm. 2.6, Prop. 2.7] for quick proofs of part of it, similar to Zelevinsky’s. Another proof, based on a

recent category-theoretical paradigm, can be found in [61, Theorem 3.53].
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zero polynomial249. However, in [110, Thm. 4.2], Klein showed that the polynomial values gλµ,ν (p) for p

prime are always positive when cλµ,ν 6= 0. (This easily yields the same result for p a prime power.)

Remark 4.9.14. Zelevinsky in [227, Chaps 10, 11] uses the isomorphism ΛC → H to derive J. Green’s formula
for the value of any irreducible character χ of GLn on any unipotent class Jλ. The answer involves values
of irreducible characters of Sn along with Green’s polynomials Qλµ(q) (see Macdonald [142, §III.7]; they are
denoted Q(λ, µ) by Zelevinsky), which express the images under the isomorphism of Theorem 4.9.5 of the
symmetric function basis {pµ} in terms of the basis {1Jλ}.

Remark 4.9.15. The Hall polynomials gλµ,ν(t) also essentially give the multiplicative structure constants for
Λ(x)[t] with respect to its basis of Hall-Littlewood symmetric functions Pλ = Pλ(x; t):

PµPν =
∑
λ

tn(λ)−(n(µ)+n(ν))gλµ,ν(t−1)Pλ.

See Macdonald [142, §III.3].

Remark 4.9.16. Schiffmann [190] discusses self-dual Hopf algebras which vastly generalize the classical Hall
algebra called Ringel-Hall algebras, associated to abelian categories which are hereditary. Examples come
from categories of nilpotent representations of quivers; the quiver having exactly one node and one arc
recovers the classical Hall algebra HZ discussed above.

Remark 4.9.17. The general linear groups GLn(Fq) are one of four families of so-called classical groups.
Progress has been made on extending Zelevinsky’s PSH theory to the other families:

(a) Work of Thiem and Vinroot [217] shows that the tower {G∗} of finite unitary groups Un(Fq2) give
rise to another positive self-dual Hopf algebra A =

⊕
n≥0R(Un(Fq2)), in which the role of Harish-Chandra

induction is played by Deligne-Lusztig induction. In this theory, character and degree formulas for Un(Fq2)
are related to those ofGLn(Fq) by substituting q 7→ −q, along with appropriate scalings by±1, a phenomenon
sometimes called Ennola duality. See also [207, §4].

(b) van Leeuwen [128] has studied
⊕

n≥0R (Sp2n (Fq)),
⊕

n≥0R (O2n (Fq)) and
⊕

n≥0R
(
Un
(
Fq2

))
not

as Hopf algebras, but rather as so-called twisted PSH-modules over the PSH A(GL) (a “deformed” version of
the older notion of Hopf modules). He classified these PSH-modules axiomatically similarly to Zelevinsky’s
above classification of PSH’s.

(c) In a recent honors thesis [201], Shelley-Abrahamson defined yet another variation of the concept of Hopf
modules, named 2-compatible Hopf modules, and identified

⊕
n≥0R (Sp2n (Fq)) and

⊕
n≥0R (O2n+1 (Fq)) as

such modules over A(GL).

249Actually, Butler/Hales show in [32, proof of Prop. 2.4] that the values gλµ,ν(1) are the structure constants of the ring Λ

with respect to its basis (mλ)λ∈Par: we have

mµmν =
∑
λ∈Par

gλµ,ν(1)mλ

for all partitions µ and ν.
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5. Quasisymmetric functions and P -partitions

We discuss here our next important example of a Hopf algebra arising in combinatorics: the quasisym-
metric functions of Gessel [79], with roots in work of Stanley [203] on P -partitions. Other treatments of
quasisymmetric functions can be found in [206, Section 7.19] and [187, Chapter 8] (with focus on their enu-
merative applications rather than on their Hopf structure) and in [153, Chapter 6] (with a focus on their
representation-theoretical meaning). Quasisymmetric functions have found applications in combinatorial
enumeration ([187, Chapter 8], [206, Section 7.19]), topology ([12]) and algebraic geometry ([158], [163]).

5.1. Definitions, and Hopf structure. The definitions of quasisymmetric functions require a totally
ordered variable set. Usually we will use a variable set denoted x = (x1, x2, . . .) with the usual ordering
x1 < x2 < · · · . However, it is good to have some flexibility in changing the ordering, which is why we make
the following definition.

Definition 5.1.1. Given any totally ordered set I, create a totally ordered variable set {xi}i∈I , and then
let R({xi}i∈I) denote the power series of bounded degree in {xi}i∈I having coefficients in k.

The ring of quasisymmetric functions QSym({xi}i∈I) over the alphabet {xi}i∈I will be the k-submodule
consisting of the elements f in R({xi}i∈I) that have the same coefficient on the monomials xα1

i1
· · ·xα`i` and

xα1
j1
· · ·xα`j` whenever both i1 < · · · < i` and j1 < · · · < j` in the total order on I. We write QSymk({xi}i∈I)

instead of QSym({xi}i∈I) to stress the choice of base ring k.

It immediately follows from this definition that QSym({xi}i∈I) is a free k-submodule of R({xi}i∈I), having
as k-basis elements the monomial quasisymmetric functions

Mα({xi}i∈I) :=
∑

i1<···<i` in I

xα1
i1
· · ·xα`i`

for all compositions250 α satisfying `(α) ≤ |I|. When I is infinite, this means that the Mα for all compositions
α form a basis of QSym({xi}i∈I).

Note that QSym({xi}i∈I) =
⊕

n≥0 QSymn({xi}i∈I) is a graded k-module of finite type, where QSymn({xi}i∈I)
is the k-submodule of quasisymmetric functions which are homogeneous of degree n. Letting Comp denote
the set of all compositions α, and Compn the compositions α of n (that is, compositions whose parts sum
to n), the subset {Mα}α∈Compn; `(α)≤|I| gives a k-basis for QSymn({xi}i∈I).

Example 5.1.2. Taking the variable set x = (x1 < x2 < · · · ) to define QSym(x), for n = 0, 1, 2, 3, one has
these basis elements in QSymn(x):

M() = M∅ = 1,

M(1) = x1 + x2 + x3 + · · · = m(1) = s(1) = e1 = h1 = p1,

M(2) = x2
1 + x2

2 + x2
3 + · · · = m(2) = p2,

M(1,1) = x1x2 + x1x3 + x2x3 + · · · = m(1,1) = e2,

M(3) = x3
1 + x3

2 + x3
3 + · · · = m(3) = p3,

M(2,1) = x2
1x2 + x2

1x3 + x2
2x3 + · · · ,

M(1,2) = x1x
2
2 + x1x

2
3 + x2x

2
3 + · · · ,

M(1,1,1) = x1x2x3 + x1x2x4 + x1x3x4 + · · · = m(1,1,1) = e3.

It is not obvious that QSym(x) is a subalgebra of R(x), but we will show this momentarily. For example,

M(a)M(b,c) = (xa1 + xa2 + xa3 + · · · )(xb1xc2 + xb1x
c
3 + xb2x

c
3 + · · · )

= xa+b
1 xc2 + · · ·+ xb1x

a+c
3 + · · ·+ xa1x

b
2x
c
3 + · · ·+ xb1x

a
2x
c
3 + · · ·+ xb1x

c
2x
a
3 + · · ·

= M(a+b,c) +M(b,a+c) +M(a,b,c) +M(b,a,c) +M(b,c,a).

Proposition 5.1.3. For any infinite totally ordered set I, one has that QSym({xi}i∈I) is a k-subalgebra of
R({xi}i∈I), with multiplication in the {Mα}-basis as follows: Fix three disjoint chain posets (i1 < · · · < i`),

250Recall that compositions were defined in Definition 4.3.1, along with related concepts such as length and size.
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(j1 < · · · < jm) and (k1 < k2 < · · · ). Now, if α = (α1, . . . , α`) and β = (β1, . . . , βm) are two compositions,
then

(5.1.1) MαMβ =
∑
f

Mwt(f)

in which the sum is over all p ∈ N and all maps f from the disjoint union of two chains to a chain

(5.1.2) (i1 < · · · < i`) t (j1 < · · · < jm)
f−→ (k1 < · · · < kp)

which are both surjective and strictly order-preserving (that is, if x and y are two elements in the domain
satisfying x < y, then f(x) < f(y)), and where the composition wt(f) := (wt1(f), . . . ,wtp(f)) is defined by
wts(f) :=

∑
iu∈f−1(ks)

αu +
∑
jv∈f−1(ks)

βv.

Example 5.1.4. For this example, set α = (2, 1) and β = (3, 4, 2). Let us compute MαMβ using (5.1.1).
Indeed, the length of α is ` = 2, and the length of β is m = 3, so the sum on the right hand side of
(5.1.1) is a sum over all p ∈ N and all surjective strictly order-preserving maps f from the disjoint union
(i1 < i2) t (j1 < j2 < j3) of two chains to the chain (k1 < k2 < · · · < kp). Such maps can exist only when
p ≤ 5 (due to having to be surjective) and only for p ≥ 3 (since, being strictly order-preserving, they have
to be injective when restricted to (j1 < j2 < j3)). Hence, enumerating them is a finite problem. The reader
can check that the value obtained for MαMβ is

M(2,1,3,4,2) +M(2,3,1,4,2) +M(2,3,4,1,2) +M(2,3,4,2,1) +M(3,2,1,4,2)

+M(3,2,4,1,2) +M(3,2,4,2,1) +M(3,4,2,1,2) +M(3,4,2,2,1) +M(3,4,2,2,1)

+M(2,3,4,3) +M(2,3,5,2) +M(2,4,4,2) +M(3,2,4,3) +M(3,2,5,2) +M(3,4,2,3)

+M(3,4,4,1) +M(3,6,1,2) +M(3,6,2,1) +M(5,1,4,2) +M(5,4,1,2) +M(5,4,2,1)

+M(5,4,3) +M(5,5,2) +M(3,6,3).

Here, we have listed the addends corresponding to p = 5 on the first two rows, the addends corresponding
to p = 4 on the next two rows, and those corresponding to p = 3 on the fifth row. The reader might notice
that the first two rows (i.e., the addends with p = 5) are basically a list of shuffles of α and β: In general,
the maps (5.1.2) for p = ` + m are in bijection with the elements of Sh`,m

251, and the corresponding
compositions wt(f) are the shuffles of α and β. Therefore the name “overlapping shuffle product”.

Proof of Proposition 5.1.3. It clearly suffices to prove the formula (5.1.1). Let α = (α1, . . . , α`) and β =
(β1, . . . , βm) be two compositions. Fix three disjoint chain posets (i1 < · · · < i`), (j1 < · · · < jm) and
(k1 < k2 < · · · ).

Thus, multiplying Mα =
∑
u1<···<u` x

α1
u1
· · ·xα`u` with Mβ =

∑
v1<···<vm x

β1
v1
· · ·xβmvm , we obtain

MαMβ =
∑

u1<···<u`

∑
v1<···<vm

(
xα1
u1
· · ·xα`u`

) (
xβ1
v1
· · ·xβmvm

)
=

∑
γ=(γ1,...,γp)∈Comp

∑
w1<···<wp in I

Nγ
w1,...,wpx

γ1
w1
· · ·xγpwp ,(5.1.3)

where Nγ
w1,...,wp is the number of all pairs

((u1 < · · · < u`) , (v1 < · · · < vm)) ∈ I` × Im(5.1.4)

of two strictly increasing tuples satisfying(
xα1
u1
· · ·xα`u`

) (
xβ1
v1
· · ·xβmvm

)
= xγ1

w1
· · ·xγpwp .(5.1.5)

252 Thus, we need to show that Nγ
w1,...,wp (for a given γ = (γ1, . . . , γp) ∈ Comp and a given (w1 < · · · < wp) ∈

Ip) is also the number of all surjective strictly order-preserving maps

(i1 < · · · < i`) t (j1 < · · · < jm)
f−→ (k1 < · · · < kp) satisfying wt(f) = γ(5.1.6)

251The bijection takes a map f to the inverse of the permutation σ ∈ Sp which sends every x ∈ {1, 2, . . . , `} to the index y

satisfying f (ix) = ky , and sends every x ∈ {`+ 1, `+ 2, . . . , `+m} to the index y satisfying f (jx−`) = ky .
252In the second equality in (5.1.3), we have used the fact that each monomial can be uniquely written in the form xγ1

w1 · · ·x
γp
wp

for some composition γ = (γ1, . . . , γp) ∈ Comp and some strictly increasing tuple (w1 < · · · < wp) ∈ Ip.
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(because then, (5.1.3) will simplify to (5.1.1)).
In order to show this, it suffices to construct a bijection from the set of all pairs (5.1.4) satisfying (5.1.5)

to the set of all surjective strictly order-preserving maps (5.1.6). This bijection is easy to construct: Given
a pair (5.1.4) satisfying (5.1.5), the bijection sends it to the map (5.1.6) determined by:

ig
f7→ kh, where h is chosen such that ug = wh;

jg
f7→ kh, where h is chosen such that vg = wh.

Proving that this bijection is well-defined and bijective is straightforward253. �

The multiplication rule (5.1.1) shows that the k-algebra QSym({xi}i∈I) does not depend much on I, as
long as I is infinite. More precisely, all such k-algebras are mutually isomorphic. We can use this to define
a k-algebra of quasisymmetric functions without any reference to I:

Definition 5.1.5. Let QSym be the k-algebra defined as having k-basis {Mα}α∈Comp and with multiplica-
tion defined k-linearly by (5.1.1). This is called the k-algebra of quasisymmetric functions. We write QSymk

instead of QSym to stress the choice of base ring k.
The k-algebra QSym is graded, and its n-th graded component QSymn has k-basis {Mα}α∈Compn .
For every infinite totally ordered set I, the k-algebra QSym is isomorphic to the k-algebra QSym({xi}i∈I).

The isomorphism sends Mα 7−→Mα({xi}i∈I).
In particular, we obtain the isomorphism QSym ∼= QSym (x) for x being the infinite chain (x1 < x2 < x3 < · · · ).

We will identify QSym with QSym (x) along this isomorphism. This allows us to regard quasisymmetric
functions either as power series in a specific set of variables (“alphabet”), or as formal linear combinations
of Mα’s, whatever is more convenient.

For any infinite alphabet {xi}i∈I and any f ∈ QSym, we denote by f
(
{xi}i∈I

)
the image of f under the

algebra isomorphism QSym→ QSym
(
{xi}i∈I

)
defined in Definition 5.1.5.

The comultiplication of QSym will extend the one that we defined for Λ, but we need to take care about
the order of the variables this time. We consider the linear order from (2.3.2) on two sets of variables
(x,y) = (x1 < x2 < · · · < y1 < y2 < · · · ), and we embed the k-algebra QSym(x) ⊗ QSym(y) into the
k-algebra R(x,y) by identifying every f ⊗ g ∈ QSym(x) ⊗ QSym(y) with fg ∈ R(x,y) (this embedding is
indeed injective254). It can then be seen that

QSym(x,y) ⊂ QSym(x)⊗QSym(y)

(where the right hand side is viewed as k-subalgebra of R(x,y) via said embedding)255, so that one can

define QSym
∆−→ QSym⊗QSym as the composite of the maps in the bottom row here:

(5.1.7)
R(x,y) = R(x,y)
∪ ∪

QSym ∼= QSym(x,y) ↪→ QSym(x)⊗QSym(y) ∼= QSym⊗QSym,
f 7−→ f(x,y) = f(x1, x2, . . . , y1, y2, . . .).

(Recall that f(x,y) is formally defined as the image of f under the algebra isomorphism QSym→ QSym(x,y)
defined in Definition 5.1.5.)

253The inverse of this bijection sends each map (5.1.6) to the pair (5.1.4) determined by

ug = wh, where h is chosen such that f (ig) = kh;

vg = wh, where h is chosen such that f (jg) = kh.

254This is because it sends the basis elements Mβ(x) ⊗Mγ(y) of the former k-algebra to the linearly independent power

series Mβ(x)Mγ(y).
255This is not completely obvious, but can be easily checked by verifying that Mα(x,y) =

∑
(β,γ):
β·γ=α

Mβ(x)⊗Mγ(y) for every

composition α (see the proof of Proposition 5.1.7 for why this holds).
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Example 5.1.6. For example,

∆M(a,b,c) = M(a,b,c)(x1, x2, . . . , y1, y2, . . .)

= xa1x
b
2x
c
3 + xa1x

b
2x
c
4 + · · ·

+ xa1x
b
2 · yc1 + xa1x

b
2 · yc2 + · · ·

+ xa1 · yb1yc2 + xa1 · yb1yc3 + · · ·

+ ya1y
b
2y
c
3 + ya1y

b
2y
c
4 + · · ·

= M(a,b,c)(x) +M(a,b)(x)M(c)(y) +M(a)(x)M(b,c)(y) +M(a,b,c)(y)

= M(a,b,c) ⊗ 1 +M(a,b) ⊗M(c) +M(a) ⊗M(b,c) + 1⊗M(a,b,c).

Defining the concatenation β ·γ of two compositions β = (β1, . . . , βr), γ = (γ1, . . . , γs) to be the composition
(β1, . . . , βr, γ1, . . . , γs), one has the following description of the coproduct in the {Mα} basis.

Proposition 5.1.7. For a composition α = (α1, . . . , α`), one has

∆Mα =
∑̀
k=0

M(α1,...,αk) ⊗M(αk+1,...,α`) =
∑

(β,γ):
β·γ=α

Mβ ⊗Mγ .

Proof. We work with the infinite totally ordered set I = {1 < 2 < 3 < · · · }. The definition of ∆ yields

(5.1.8) ∆Mα = Mα(x,y) =
∑

p1<p2<···<p` in (x,y)

pα1
1 pα2

2 · · · p
α`
` ,

where the sum runs over strictly increasing `-tuples (p1 < p2 < · · · < p`) of variables in the variable set (x,y).
But every such `-tuple (p1 < p2 < · · · < p`) can be expressed uniquely in the form

(
xi1 , . . . , xik , yj1 , . . . , yj`−k

)
for some k ∈ {0, 1, . . . , `} and some subscripts i1 < · · · < ik and j1 < · · · < j`−k in I. The corresponding
monomial pα1

1 pα2
2 · · · p

α`
` then rewrites as xα1

i1
· · ·xαkik · y

αk+1

j1
· · · yα`j`−k . Thus, the sum on the right hand side

of (5.1.8) rewrites as ∑̀
k=0

∑
i1<···<ik

∑
j1<···<j`−k

xα1
i1
· · ·xαkik · y

αk+1

j1
· · · yα`j`−k

=
∑̀
k=0

( ∑
i1<···<ik

xα1
i1
· · ·xαkik

)
︸ ︷︷ ︸

=M(α1,...,αk)(x)

·

 ∑
j1<···<j`−k

y
αk+1

j1
· · · yα`j`−k


︸ ︷︷ ︸

=M(αk+1,...,α`)
(y)

=
∑̀
k=0

M(α1,...,αk)(x)M(αk+1,...,α`)(y).

Thus, (5.1.8) becomes

∆Mα =
∑

p1<p2<···<p` in (x,y)

pα1
1 pα2

2 · · · p
α`
` =

∑̀
k=0

M(α1,...,αk)(x)M(αk+1,...,α`)(y)

=
∑̀
k=0

M(α1,...,αk) ⊗M(αk+1,...,α`) =
∑

(β,γ):
β·γ=α

Mβ ⊗Mγ .

�

Proposition 5.1.8. The quasisymmetric functions QSym form a connected graded Hopf algebra of finite
type, which is commutative, and contains the symmetric functions Λ as a Hopf subalgebra.

Proof. To prove coassociativity of ∆, we need to be slightly careful. It seems reasonable to argue by
(∆⊗ id)◦∆f = f(x,y, z) = (id⊗∆)◦∆f as in the case of Λ, but this would now require further justification,
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as terms like f(x,y) and f(x,y, z) are no longer directly defined as evaluations of f on some sequences (but
rather are defined as images of f under certain homomorphisms). However, it is very easy to see that ∆ is
coassociative by checking (∆⊗ id) ◦∆ = (id⊗∆) ◦∆ on the {Mα} basis: Proposition 5.1.7 yields

((∆⊗ id) ◦∆)Mα =
∑̀
k=0

∆(M(α1,...,αk))⊗M(αk+1,...,α`)

=
∑̀
k=0

(
k∑
i=0

M(α1,...,αi) ⊗M(αi+1,...,αk)

)
⊗M(αk+1,...,α`)

=
∑̀
k=0

k∑
i=0

M(α1,...,αi) ⊗M(αi+1,...,αk) ⊗M(αk+1,...,α`)

and the same expression for ((id⊗∆) ◦∆)Mα.
The coproduct ∆ of QSym is an algebra morphism because it is defined as a composite of algebra mor-

phisms in the bottom row of (5.1.7). To prove that the restriction of ∆ to the subring Λ of QSym is the
comultiplication of Λ, it thus is enough to check that it sends the elementary symmetric function en to∑n
i=0 ei ⊗ en−i for every n ∈ N. This again follows from Proposition 5.1.7, since en = M(1,1,...,1) (with n

times 1).
The counit is as usual for a connected graded coalgebra, and just as in the case of Λ, sends a quasisymmetric

function f(x) to its constant term f(0, 0, . . .). This is an evaluation, and hence an algebra morphism. Hence
QSym forms a bialgebra, and as it is graded and connected, also a Hopf algebra by Proposition 1.4.16. It is
clearly of finite type and contains Λ as a Hopf subalgebra. �

We will identify the antipode in QSym shortly, but we first deal with another slightly subtle issue. In
addition to the counit evaluation ε(f) = f(0, 0, . . .), starting in Section 7.1, we will want to specialize elements
in QSym(x) by making other variable substitutions, in which all but a finite list of variables are set to zero.
We justify this here.

Proposition 5.1.9. Fix a totally ordered set I, a commutative k-algebra A, a finite list of variables
xi1 , . . . , xim , say with i1 < · · · < im in I, and an ordered list of elements (a1, . . . , am) ∈ Am.

Then there is a well-defined evaluation homomorphism

QSym({xi}i∈I) −→ A,
f 7−→ [f ] xi1=a1,...,xim=am

xj=0 for j 6∈{i1,...,im}
.

Furthermore, this homomorphism depends only upon the list (a1, . . . , am), as it coincides with the following:

QSym({xi}i∈I) ∼= QSym(x1, x2, . . .) −→ A,
f(x1, x2, . . .) 7−→ f(a1, . . . , am, 0, 0 . . .).

(This latter statement is stated for the case when I is infinite; otherwise, read “x1, x2, . . . , x|I|” for “x1, x2, . . .”,
and interpret (a1, . . . , am, 0, 0 . . .) as an |I|-tuple.)

Proof. One already can make sense of evaluating xi1 = a1, . . . , xim = am and xj = 0 for j 6∈ {i1, . . . , im}
in the ambient ring R({xi}i∈I) containing QSym({xi}i∈I), since a power series f of bounded degree will
have finitely many monomials that only involve the variables xi1 , . . . , xim . The last assertion follows from
quasisymmetry of f , and is perhaps checked most easily when f = Mα({xi}i∈I) for some α. �

The antipode in QSym has a reasonably simple expression in the {Mα} basis, but requiring a definition.

Definition 5.1.10. For α, β in Compn, say that α refines β or β coarsens α if, informally, one can obtain
β from α by combining some of its adjacent parts. Alternatively, this can be defined as follows: One has
a bijection Compn → 2[n−1] where [n − 1] := {1, 2, . . . , n − 1} which sends α = (α1, . . . , α`) having length
`(α) = ` to its subset of partial sums

D(α) := {α1, α1 + α2, . . . , α1 + · · ·+ α`−1} ,

and this sends the refinement ordering to the inclusion ordering on the Boolean algebra 2[n−1] (to be more
precise: a composition α ∈ Compn refines a composition β ∈ Compn if and only if D(α) ⊃ D(β)).
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There is also a bijection sending every composition α to its ribbon diagram Rib (α): the skew diagram
λ/µ having rows of sizes α1, . . . , α` read from bottom to top with exactly one column of overlap between
adjacent rows. These bijections and the refinement partial order are illustrated here for n = 4:

{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

∅

(1, 1, 1, 1)

(1, 1, 2) (1, 2, 1) (2, 1, 1)

(1, 3) (2, 2) (3, 1)

(4)

�
�
�
�

��
�
�

�
��
�

�
�
��

���
�

��
��

�
���

����

(where we have drawn each ribbon diagram with its boxes spaced out).
Given α = (α1, . . . , α`), its reverse composition is rev(α) = (α`, α`−1, . . . , α2, α1). Note that α 7→ rev(α)

is a poset automorphism of Compn for the refinement ordering.

Theorem 5.1.11. For any composition α in Comp,

S(Mα) = (−1)`(α)
∑

γ∈Comp:
γ coarsens rev(α)

Mγ .

For example,

S(M(a,b,c)) = −
(
M(c,b,a) +M(b+c,a) +M(c,a+b) +M(a+b+c)

)
.

Proof. We give Ehrenborg’s proof256 [64, Prop. 3.4] via induction on ` = `(α). One has easy base cases
when `(α) = 0, where S(M∅) = S(1) = 1 = (−1)0Mrev(∅), and when `(α) = 1, where M(n) is primitive by

Proposition 5.1.7, so Proposition 1.4.17 shows S(M(n)) = −M(n) = (−1)1Mrev((n)).
For the inductive step, apply the inductive definition of S from the proof of Proposition 1.4.16:

S(M(α1,...,α`)) = −
`−1∑
i=0

S(M(α1,...,αi))M(αi+1,...,α`)

=

`−1∑
i=0

∑
β coarsening

(αi,αi−1,...,α1)

(−1)i+1MβM(αi+1,...,α`).

The idea will be to cancel terms of opposite sign that appear in the expansions of the productsMβM(αi+1,...,α`).
Note that each composition β appearing above has first part β1 of the form αi + αi−1 + · · · + αh for some
h ≤ i (unless β = ∅), and hence each term Mγ in the expansion of the product MβM(αi+1,...,α`) has γ1 (that
is, the first entry of γ) a sum that can take one of these three forms:

• αi + αi−1 + · · ·+ αh,
• αi+1 + (αi + αi−1 + · · ·+ αh),
• αi+1.

Say that the type of γ is i in the first case, and i+ 1 in the second two cases257; in other words, the type is
the largest subscript k on a part αk which was combined in the sum γ1. It is not hard to see that a given
γ for which the type k is strictly smaller than ` arises from exactly two pairs (β, γ), (β′, γ), having opposite

256A different proof was given by Malvenuto and Reutenauer [146, Cor. 2.3], and is sketched in Remark 5.4.4 below.
257We imagine that we label the terms obtained by expanding MβM(αi+1,...,α`)

by distinct labels, so that each term knows

how exactly it was created (i.e., which i, which β and which map f as in (5.1.2) gave rise to it). Strictly speaking, it is these

triples (i, β, f) that we should be assigning types to, not terms.
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signs (−1)k and (−1)k+1 in the above sum258. For example, if α = (α1, . . . , α8), then the composition
γ = (α6 + α5 + α4, α3, α7, α8 + α2 + α1) of type 6 can arise from either of

β = (α6 + α5 + α4, α3, α2 + α1) with i = 6 and sign (−1)7,

β′ = (α5 + α4, α3, α2 + α1) with i = 5 and sign (−1)6.

Similarly, γ = (α6, α5 + α4, α3, α7, α8 + α2 + α1) can arise from either of

β = (α6, α5 + α4, α3, α2 + α1) with i = 6 and sign (−1)7,

β′ = (α5 + α4, α3, α2 + α1) with i = 5 and sign (−1)6.

Thus one can cancel almost all the terms, excepting those with γ of type ` among the terms Mγ in the
expansion of the last (i = `− 1) summand MβM(α`). A bit of thought shows that these are the γ coarsening

rev(α), and all have sign (−1)`. �

5.2. The fundamental basis and P -partitions. There is a second important basis for QSym which arose
originally in Stanley’s P -partition theory [203].259

Definition 5.2.1. A labelled poset will here mean a partially ordered set P whose underlying set is some

finite subset of the integers. A P -partition is a function P
f→ {1, 2, . . .} with the following two properties:

• If i ∈ P and j ∈ P satisfy i <P j and i <Z j, then f(i) ≤ f(j).
• If i ∈ P and j ∈ P satisfy i <P j and i >Z j, then f(i) < f(j).

Denote by A(P ) the set of all P -partitions f , and let FP (x) :=
∑
f∈A(P ) xf where xf :=

∏
i∈P xf(i). This

FP (x) is an element of k [[x]] := k [[x1, x2, . . .]].

Example 5.2.2. Depicted is a labelled poset P , along with the relations among the four values f =
(f(1), f(2), f(3), f(4)) that define its P -partitions f :

2

4 1

3

f(2)

f(4) f(1)

≤

f(3)

≤
<

Remark 5.2.3. Stanley’s treatment of P -partitions in [206, §3.15 and §7.19] uses a language different from
ours. First, Stanley works not with labelled posets P , but with pairs (P, ω) of a poset P and a bijective
labelling ω : P → [n]. Thus, the relation <Z is not given on P a priori, but has to be pulled back from [n]
using ω (and it depends on ω, whence Stanley speaks of “(P, ω)-partitions”). Furthermore, what we call
“P -partition” is called a “reverse P -partition” in [206]. Finally, Stanley uses the notations FP and FP,ω for
something different from what we denote by FP , whereas what we call FP is dubbed KP,ω in [206, §7.19].

The so-called fundamental quasisymmetric functions are an important special case of the FP (x). We shall
first define them directly and then see how they are obtained as P -partition enumerators FP (x) for some
special labelled posets P .

Definition 5.2.4. Let n ∈ N and α ∈ Compn. We define the fundamental quasisymmetric function Lα =
Lα(x) ∈ QSym by

(5.2.1) Lα :=
∑

β∈Compn:
β refines α

Mβ .

258Strictly speaking, this means that we have an involution on the set of our (i, β, f) triples having type smaller than `, and

this involution switches the sign of (−1)iMwt(f).
259See [80] for a history of P -partitions; our notations, however, strongly differ from those in [80].



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 151

Example 5.2.5. The extreme cases for α in Compn give quasisymmetric functions Lα which are symmetric:

L(1n) = M(1n) = en,

L(n) =
∑

α∈Compn

Mα = hn.

Before studying the Lα in earnest, we recall a basic fact about finite sets, which is sometimes known as
the “principle of inclusion and exclusion” (although it is more general than the formula for the size of a
union of sets that commonly goes by this name):

Lemma 5.2.6. Let G be a finite set. Let V be a k-module. For each subset A of G, we let fA and gA be
two elements of V .

(a) If

every A ⊂ G satisfies gA =
∑
B⊂A

fB ,

then

every A ⊂ G satisfies fA =
∑
B⊂A

(−1)
|A\B|

gB .

(b) If

every A ⊂ G satisfies gA =
∑

B⊂G; B⊃A
fB ,

then

every A ⊂ G satisfies fA =
∑

B⊂G; B⊃A
(−1)

|B\A|
gB .

Proof. This can be proven by elementary arguments (easy exercise). Alternatively, Lemma 5.2.6 can be
viewed as a particular case of the Möbius inversion principle (see, e.g., [206, Propositions 3.7.1 and 3.7.2])
applied to the Boolean lattice 2G (whose Möbius function is very simple: see [206, Example 3.8.3]). (This is
spelled out in [138, Example 4.52], for example.) �

Lemma 5.2.6 can be translated into the language of compositions:

Lemma 5.2.7. Let n ∈ N. Let V be a k-module. For each α ∈ Compn, we let fα and gα be two elements
of V .

(a) If

every α ∈ Compn satisfies gα =
∑

β coarsens α

fβ ,

then

every α ∈ Compn satisfies fα =
∑

β coarsens α

(−1)
`(α)−`(β)

gβ .

(b) If

every α ∈ Compn satisfies gα =
∑

β refines α

fβ ,

then

every α ∈ Compn satisfies fα =
∑

β refines α

(−1)
`(β)−`(α)

gβ .

Proof. Set [n− 1] = {1, 2, . . . , n− 1}. Recall (from Definition 5.1.10) that there is a bijection D : Compn →
2[n−1] that sends each α ∈ Compn to D (α) ⊂ [n− 1]. This bijection D has the properties that:

• a composition β refines a composition α if and only if D (β) ⊃ D (α);
• a composition β coarsens a composition α if and only if D (β) ⊂ D (α);
• any composition α ∈ Compn satisfies |D (α)| = ` (α)− 1 (unless n = 0), and thus
• any compositions α and β in Compn satisfy |D (α)| − |D (β)| = ` (α)− ` (β).
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This creates a dictionary between compositions in Compn and subsets of [n− 1]. Now, apply Lemma 5.2.6
to G = [n− 1], fA = fD−1(A) and gA = gD−1(A), and translate using the dictionary. �

Now, we can see the following about the fundamental quasisymmetric functions:

Proposition 5.2.8. The family {Lα}α∈Comp is a k-basis for QSym, and each n ∈ N and α ∈ Compn satisfy

(5.2.2) Mα =
∑

β∈Compn:
β refines α

(−1)`(β)−`(α)Lβ .

Proof. Fix n ∈ N. Recall the equality (5.2.1). Thus, Lemma 5.2.7(b) (applied to V = QSym, fα = Mα and
gα = Lα) yields (5.2.2).

Recall that the family (Mα)α∈Compn
is a basis of the k-module QSymn. The equality (5.2.1) shows that

the family (Lα)α∈Compn
expands invertibly triangularly260 with respect to the family (Mα)α∈Compn

(where

Compn is equipped with the refinement order).261 Thus, Corollary 11.1.19(e) (applied to QSymn, Compn,
(Mα)α∈Compn

and (Lα)α∈Compn
instead of M , S, (es)s∈S and (fs)s∈S) shows that the family (Lα)α∈Compn

is

a basis of the k-module QSymn. Combining this fact for all n ∈ N, we conclude that the family (Lα)α∈Comp

is a basis of the k-module QSym. This completes the proof of Proposition 5.2.8. �

Proposition 5.2.9. Let n ∈ N. Let α be a composition of n. Let I be an infinite totally ordered set. Then,

Lα
(
{xi}i∈I

)
=

∑
i1≤i2≤···≤in in I;
ij<ij+1 if j∈D(α)

xi1xi2 · · ·xin ,

where Lα
(
{xi}i∈I

)
is defined as the image of Lα under the isomorphism QSym→ QSym

(
{xi}i∈I

)
obtained

in Definition 5.1.5. In particular, for the standard (totally ordered) variable set x = (x1 < x2 < · · · ), we
obtain

(5.2.3) Lα = Lα (x) =
∑

(1≤)i1≤i2≤···≤in;
ij<ij+1 if j∈D(α)

xi1xi2 · · ·xin .

Proof. Every composition β = (β1, . . . , β`) of n satisfies

(5.2.4) Mβ ({xi}i∈I) =
∑

k1<···<k` in I

xβ1

k1
· · ·xβ`k` =

∑
i1≤i2≤···≤in in I;

ij<ij+1 if and only if j∈D(β)

xi1xi2 · · ·xin .

Applying the ring homomorphism QSym→ QSym
(
{xi}i∈I

)
to (5.2.1), we obtain

Lα
(
{xi}i∈I

)
=

∑
β∈Compn:
β refines α

Mβ

(
{xi}i∈I

) (5.2.4)
=

∑
β∈Compn:
β refines α

∑
i1≤i2≤···≤in in I;

ij<ij+1 if and only if j∈D(β)

xi1xi2 · · ·xin

=
∑

β∈Compn:
D(α)⊂D(β)

∑
i1≤i2≤···≤in in I;

ij<ij+1 if and only if j∈D(β)

xi1xi2 · · ·xin

=
∑

Z⊂[n−1]:
D(α)⊂Z

∑
i1≤i2≤···≤in in I;

ij<ij+1 if and only if j∈Z

xi1xi2 · · ·xin =
∑

i1≤i2≤···≤in in I;
ij<ij+1 if j∈D(α)

xi1xi2 · · ·xin .

�

Proposition 5.2.10. Assume that the labelled poset P is a total or linear order w = (w1 < · · · < wn) (that
is, P = {w1, w2, . . . , wn} as sets, and the order <P is given by w1 <P w2 <P · · · <P wn). Let Des(w) be the
descent set of w, defined by

Des(w) := {i : wi >Z wi+1} ⊂ {1, 2, . . . , n− 1}.

260See Section 11.1 for a definition of this concept.
261In fact, it expands unitriangularly with respect to the latter family.
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Let α ∈ Compn be the unique composition in Compn having partial sums D(α) = Des(w). Then, the
generating function Fw(x) equals the fundamental quasisymmetric function Lα. In particular, Fw(x) depends
only upon the descent set Des(w).

E.g., total order w = 35142 has Des(w) = {2, 4} and composition α = (2, 2, 1), so

F35142(x) =
∑

f(3)≤f(5)<f(1)≤f(4)<f(2)

xf(3)xf(5)xf(1)xf(4)xf(2)

=
∑

i1≤i2<i3≤i4<i5

xi1xi2xi3xi4xi5

= L(2,2,1) = M(2,2,1) +M(2,1,1,1) +M(1,1,2,1) +M(1,1,1,1,1).

Proof of Proposition 5.2.10. Write Fw(x) as a sum of monomials xf(w1) · · ·xf(wn) over all w-partitions f .
These w-partitions are exactly the maps f : w → {1, 2, 3, . . .} satisfying f(w1) ≤ · · · ≤ f(wn) and having
strict inequalities f(wi) < f(wi+1) whenever i is in Des(w) (because if two elements wa and wb of w satisfy
wa <w wb and wa >Z wb, then they must satisfy a < b and i ∈ Des(w) for some i ∈ {a, a+ 1, . . . , b− 1}; thus,
the conditions “f(w1) ≤ · · · ≤ f(wn)” and “f(wi) < f(wi+1) whenever i is in Des(w)” ensure that f (wa) <
f (wb) in this case). Therefore, they are in bijection with the weakly increasing sequences (i1 ≤ i2 ≤ · · · ≤ in)
of positive integers having strict inequalities ij < ij+1 whenever i ∈ Des(w) (namely, the bijection sends any
w-partition f to the sequence (f (w1) ≤ f (w2) ≤ · · · ≤ f (wn))). Hence,

Fw(x) =
∑

f∈A(w)

xf =
∑

(1≤)i1≤i2≤···≤in;
ij<ij+1 if j∈Des(w)

xi1xi2 · · ·xin =
∑

(1≤)i1≤i2≤···≤in;
ij<ij+1 if j∈D(α)

xi1xi2 · · ·xin

(since Des(w) = D(α)). Comparing this with (5.2.3), we conclude that Fw(x) = Lα. �

The next proposition ([206, Cor. 7.19.5], [140, Cor. 3.3.24]) is an algebraic shadow of Stanley’s main
lemma [206, Thm. 7.19.4] in P -partition theory. It expands any FP (x) in the {Lα} basis, as a sum over
the set L(P ) of all linear extensions w of P 262. E.g., the poset P from Example 5.2.2 has L(P ) =
{3124, 3142, 3412}.

Theorem 5.2.11. For any labelled poset P ,

FP (x) =
∑

w∈L(P )

Fw(x).

Proof. We give Gessel’s proof [79, Thm. 1], via induction on the number of pairs i, j which are incomparable
in P . When this quantity is 0, then P is itself a linear order w, so that L(P ) = {w} and there is nothing to
prove.

In the inductive step, let i, j be incomparable elements. Consider the two posets Pi<j and Pj<i which are
obtained from P by adding in an order relation between i and j, and then taking the transitive closure; it is
not hard to see that these transitive closures cannot contain a cycle, so that these really do define two posets.
The result then follows by induction applied to Pi<j , Pj<i, once one notices that L(P ) = L(Pi<j) tL(Pj<i)
since every linear extension w of P either has i before j or vice-versa, and A(P ) = A(Pi<j)tA(Pj<i) since,
assuming that i <Z j without loss of generality, every f inA(P ) either satisfies f(i) ≤ f(j) or f(i) > f(j). �

262Let us explain what we mean by linear extensions and how we represent them.

If P is a finite poset, then a linear extension of P denotes a total order w on the set P having the property that every two
elements i and j of P satisfying i <P j satisfy i <w j. (In other words, it is a linear order on the ground set P which extends

P as a poset; therefore the name.) We identify such a total order w with the list (p1,p2, . . . ,pn) containing all elements of P
in w-increasing order (that is, p1 <w p2 <w · · · <w pn).

(Stanley, in [206, §3.5], defines linear extensions in a slightly different way: For him, a linear extension of a finite poset P

is an order-preserving bijection from P to the subposet {1, 2, . . . , |P|} of Z. But this is equivalent to our definition, since a
bijection like this can be used to transport the order relation of {1, 2, . . . , |P|} back to P, thus resulting in a total order on P

which is a linear extension of P in our sense.)
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Example 5.2.12. To illustrate the induction in the above proof, consider the poset P from Example 5.2.2,
having L(P ) = {3124, 3142, 3412}. Then choosing as incomparable pair (i, j) = (1, 4), one has

4 2

Pi<j = 1

3

f(4) f(2)

f(1)

≤

≤

f(3)

<

, thus L(Pi<j) = {3124, 3142}

and
2

Pj<i = 1

4

3

f(2)

f(1)

≤

f(4)

<

f(3)

≤

, thus L(Pj<i) = {3412}.

Exercise 5.2.13. Give an alternative proof for Theorem 5.2.11.
[Hint: For every f : P → {1, 2, 3, . . .}, we can define a binary relation ≺f on the set P by letting i ≺f j

hold if and only if
(f (i) < f (j) or (f (i) = f (j) and i <Z j)) .

Show that this binary relation ≺f is (the smaller relation of) a total order. When f is a P -partition, then
endowing the set P with this total order yields a linear extension of P . Use this to show that the set A (P )
is the union of its disjoint subsets A (w) with w ∈ L (P ).]

Various other properties of the quasisymmetric functions FP (x) are studied, e.g., in [152].
We next wish to describe the structure maps for the Hopf algebra QSym in the basis {Lα} of fundamental

quasisymmetric functions. For this purpose, two more definitions are useful.

Definition 5.2.14. Given two nonempty compositions α = (α1, . . . , α`) and β = (β1, . . . , βm), their near-
concatenation is

α� β := (α1, . . . , α`−1, α` + β1, β2, . . . , βm).

For example, the figure below depicts for α = (1, 3, 3) (black squares) and β = (4, 2) (white squares) the
concatenation and near-concatenation as ribbons:263

Rib (α · β) =

� �
� � � �

� � �
� � �
�

Rib (α� β) =

� �
� � � � � � �

� � �
�

Lastly, given α in Compn, let ω(α) be the unique composition in Compn whose partial sums D(ω(α)) form
the complementary set within [n− 1] to the partial sums D(rev(α)); alternatively, one can check this means
that the ribbon for ω(α) is obtained from that of α by conjugation or transposing, that is, if Rib (α) = λ/µ

263The ribbons are drawn with their boxes spaced out in order to facilitate counting.
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then Rib (ω(α)) = λt/µt. E.g. if α = (4, 2, 2) so that n = 8, then rev(α) = (2, 2, 4) has D(rev(α)) = {2, 4} ⊂
[7], complementary to the set {1, 3, 5, 6, 7} which are the partial sums for ω(α) = (1, 2, 2, 1, 1, 1), and the
ribbon diagrams of α and ω(α) are

Rib (α) =
� �

� �
� � � �

and Rib (ω(α)) =

�
�
�

� �
� �
�

Proposition 5.2.15. The structure maps for the Hopf algebra QSym in the basis {Lα} of fundamental
quasisymmetric functions are as follows:

∆Lα =
∑

(β,γ):
β·γ=α or β�γ=α

Lβ ⊗ Lγ ,(5.2.5)

LαLβ =
∑

w∈wα�wβ

Lγ(w),(5.2.6)

S(Lα) = (−1)|α|Lω(α).(5.2.7)

Here we are making use of the following notations in (5.2.6) (recall also Definition 1.6.2):

• A labelled linear order will mean a labelled poset P whose order <P is a total order. We will
identify any labelled linear order P with the word (over the alphabet Z) obtained by writing down
the elements of P in increasing order (with respect to the total order <P ). This way, every word
(over the alphabet Z) which has no two equal letters becomes identified with a labelled linear order.

• wα is any labelled linear order with underlying set {1, 2, . . . , |α|} such that Des (wα) = D (α).
• wβ is any labelled linear order with underlying set {|α|+ 1, |α|+ 2, . . . , |α|+ |β|} such that Des (wβ) =
D (β).

• γ(w) is the unique composition of |α|+ |β| with D(γ(w)) = Des(w).

(The right hand side of (5.2.6) is to be read as a sum over all w, for a fixed choice of wα and wβ .)

At first glance the formula (5.2.5) for ∆Lα might seem more complicated than the formula of Proposition 5.1.7
for ∆Mα. However, it is equally simple when viewed in terms of ribbon diagrams: it cuts the ribbon diagram
Rib (α) into two smaller ribbons Rib (β) and Rib (γ), in all |α|+1 possible ways, via horizontal cuts (β ·γ = α)
or vertical cuts (β � γ = α). For example,

∆L(3,2)

= 1⊗ L(3,2) +L(1) ⊗ L(2,2) +L(2) ⊗ L(1,2) +L(3) ⊗ L(2) +L(3,1) ⊗ L(1) +L(3,2) ⊗ 1.
� �

� � �
� �

� |� �
� �

� � |�
� �

� � �
� |�

� � �
� �

� � �

Example 5.2.16. To multiply L(1,1)L(2), one could pick wα = 21 and wβ = 34, and then

L(1,1)L(2) =
∑

w∈21� 34
Lγ(w) = Lγ(2134) + Lγ(2314) + Lγ(3214) + Lγ(2341) + Lγ(3241) + Lγ(3421)

= L(1,3) + L(2,2) + L(1,1,2) + L(3,1) + L(1,2,1) + L(2,1,1).

Before we prove Proposition 5.2.15, we state a simple lemma:

Lemma 5.2.17. Let Q and R be two labelled posets whose underlying sets are disjoint. Let Q tR be the
disjoint union of these posets Q and R; this is again a labelled poset. Then,

FQ (x)FR (x) = FQtR (x) .

Proof. We identify the underlying set of Q t R with Q ∪ R (since the sets Q and R are already disjoint).
If f : Q t R → {1, 2, 3, . . .} is a Q t R-partition, then its restrictions f |Q and f |R are a Q-partition and
an R-partition, respectively. Conversely, any pair of a Q-partition and an R-partition can be combined to
form a QtR-partition. Thus, there is a bijective correspondence between the addends in the expanded sum
FQ (x)FR (x) and the addends in FQtR (x). �
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Proof of Proposition 5.2.15. To prove formula (5.2.5) for α in Compn, note that

(5.2.8) ∆Lα = Lα(x,y) =

n∑
k=0

∑
1≤i1≤···≤ik,

1≤ik+1≤···≤in:
ir<ir+1 for r∈D(α)\{k}

xi1 · · ·xik · yik+1
· · · yin

by Proposition 5.2.9 (where we identify QSym⊗QSym with a k-subalgebra of R (x,y) by means of the

embedding QSym⊗QSym
∼=→ QSym (x) ⊗ QSym (y) ↪→ R (x,y) as in the definition of the comultiplication

on QSym). One then realizes that the inner sums corresponding to values of k that lie (resp. do not lie) in
D(α) ∪ {0, n} correspond to the terms Lβ(x)Lγ(y) for pairs (β, γ) in which β · γ = α (resp. β � γ = α).

For formula (5.2.6), let P be the labelled poset which is the disjoint union of linear orders wα, wβ . Then

LαLβ = Fwα(x)Fwβ (x) = FP (x) =
∑

w∈L(P )

Fw(x) =
∑

w∈wα�wβ

Lγ(w)

where the first equality used Proposition 5.2.10, the second equality comes from Lemma 5.2.17, the third
equality from Theorem 5.2.11, and the fourth from the equality L(P ) = wα � wβ .

To prove formula (5.2.7), compute using Theorem 5.1.11 that

S(Lα) =
∑

β refining α

S(Mβ) =
∑

(β,γ):
β refines α,

γ coarsens rev(β)

(−1)`(β)Mγ =
∑
γ

Mγ

∑
β

(−1)`(β)

in which the last inner sum is over β for which

D(β) ⊃ D(α) ∪D(rev(γ)).

The alternating signs make such inner sums vanish unless they have only the single term where D(β) = [n−1]
(that is, β = (1n)). This happens exactly when D(rev(γ))∪D(α) = [n− 1] or equivalently, when D(rev(γ))
contains the complement of D(α), that is, when D(γ) contains the complement of D(rev(α)), that is, when
γ refines ω(α). Thus

S(Lα) =
∑

γ∈Compn:
γ refines ω(α)

Mγ · (−1)n = (−1)|α|Lω(α).

�

The antipode formula (5.2.7) for Lα leads to a general interpretation for the antipode of QSym acting on
P -partition enumerators FP (x).

Definition 5.2.18. Given a labelled poset P on {1, 2, . . . , n}, let the opposite or dual labelled poset P opp

be the labelled poset on {1, 2, . . . , n} that has i <P opp j if and only if j <P i.

For example,

P = 2

4 1

3

P opp = 3

4 1

2

The following observation is straightforward.

Proposition 5.2.19. When P is a linear order corresponding to some permutation w = (w1, . . . , wn) in
Sn, then wopp = ww0 where w0 ∈ Sn is the permutation that swaps i ↔ n + 1 − i (this is the so-called
longest permutation, thus named due to it having the highest “Coxeter length” among all permutations in
Sn). Furthermore, in this situation one has Fw(x) = Lα, that is, Des(w) = D(α) if and only if Des(wopp) =
D(ω(α)), that is Fwopp(x) = Lω(α). Thus,

S(Fw(x)) = (−1)nFwopp(x).
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For example, given the compositions considered earlier:

α = (4, 2, 2) =
� �

� �
� � � �

and ω(α) = (1, 2, 2, 1, 1, 1) =

�
�
�

� �
� �
�

if one picks w = 1235 · 47 · 68 (with descent positions marked by dots) having Des(w) = {4, 6} = D(α), then
wopp = ww0 = 8 · 67 · 45 · 3 · 2 · 1 has Des(wopp) = {1, 3, 5, 6, 7} = D(ω(α)).

Corollary 5.2.20. For any labelled poset P on {1, 2, . . . , n}, one has

S (FP (x)) = (−1)nFP opp(x).

Proof. Since S is linear, one can apply Theorem 5.2.11 and Proposition 5.2.19, obtaining

S (FP (x)) =
∑

w∈L(P )

S(Fw(x)) =
∑

w∈L(P )

(−1)nFwopp(x) = (−1)nFP opp(x),

as L(P opp) = {wopp : w ∈ L(P )}. �

Remark 5.2.21. Malvenuto and Reutenauer, in [147, Theorem 3.1], prove an even more general antipode
formula, which encompasses our Corollary 5.2.20, Proposition 5.2.19, Theorem 5.1.11 and (5.2.7). See [85,
Theorem 4.2] for a restatement and a self-contained proof of this theorem (and [85, Theorem 4.7] for an even
further generalization).

We remark on a special case of Corollary 5.2.20 to which we alluded earlier, related to skew Schur functions.

Corollary 5.2.22. In Λ, the action of ω and the antipode S on skew Schur functions sλ/µ are as follows:

ω(sλ/µ) = sλt/µt ,(5.2.9)

S(sλ/µ) = (−1)|λ/µ|sλt/µt .(5.2.10)

Proof. Given a skew shape λ/µ, one can always create a labelled poset P which is its skew Ferrers poset ,
together with one of many column-strict labellings, in such a way that FP (x) = sλ/µ(x). An example is
shown here for λ/µ = (4, 4, 2)/(1, 1, 0):

λ/µ =
� � �
� � �

� �
P = 5

8 4 2

7 3 1

6

f(5)

f(8)

<

f(4)
≤

f(2)

f(7)
≤

<

f(3)
≤

<

f(1)
≤

f(6)
≤

<

The general definition is as follows: Let P be the set of all boxes of the skew diagram λ/µ. Label these
boxes by the numbers 1, 2, . . . , n (where n = |λ/µ|) row by row from bottom to top (reading every row from
left to right), and then define an order relation <P on P by requiring that every box be smaller (in P ) than
its right neighbor and smaller (in P ) than its lower neighbor. It is not hard to see that in this situation,
FP opp(x) =

∑
T xcont(T ) as T ranges over all reverse semistandard tableaux or column-strict plane partitions
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of λt/µt:

λt/µt =

�
� � �
� �
� �

P opp = 6

7 3 1

8 4 2

5

f(6)

f(7)

<

f(3)
≤

f(1)

f(8)

<

f(4)

<

≤
f(2)

<

≤

f(5)

<

≤

But this means that FP opp(x) = sλt/µt(x), since the fact that skew Schur functions lie in Λ implies that they
can be defined either as generating functions for column-strict tableaux or reverse semistandard tableaux;
see Remark 2.2.5 above, or [206, Prop. 7.10.4].

Thus we have

FP (x) = sλ/µ(x),

FP opp(x) = sλt/µt(x).

Corollary 1.4.27 tells us that the antipode for QSym must specialize to the antipode for Λ (see also Re-
mark 5.4.11 below), so (5.2.10) is a special case of Corollary 5.2.20. Then (5.2.9) follows from the relation
(2.4.11) that S(f) = (−1)nω(f) for f in Λn. �

Remark 5.2.23. Before leaving P -partitions temporarily, we mention two open questions about them.
The first is a conjecture of Stanley from his thesis [203]. As mentioned in the proof of Corollary 5.2.22,

each skew Schur function sλ/µ(x) is a special instance of P -partition enumerator FP (x).

Conjecture 5.2.24. A labelled poset P has FP (x) symmetric, and not just quasisymmetric, if and only if
P is a column-strict labelling of some skew Ferrers poset λ/µ.

A somewhat weaker result in this direction was proven by Malvenuto in her thesis [145, Thm. 6.4], showing
that if a labelled poset P has the stronger property that its set of linear extensions L(P ) is a union of plactic
or Knuth equivalence classes, then P must be a column-strict labelling of a skew Ferrers poset.

The next question is due to P. McNamara, and is suggested by the obvious factorizations of P -partition
enumerators FP1tP2

(x) = FP1
(x)FP2

(x) (Lemma 5.2.17).

Question 5.2.25. If k is a field, does a connected labelled poset P always have FP (x) irreducible within the
ring QSym?

The phrasing of this question requires further comment. It is assumed here that x = (x1, x2, . . .) is infinite;
for example when P is a 2-element chain labelled “against the grain” (i.e., the bigger element of the chain
has the smaller label), then FP (x) = e2(x) is irreducible, but its specialization to two variables x = (x1, x2)
is e2(x1, x2) = x1x2, which is reducible. If one wishes to work in finitely many variables x = (x1, . . . , xm)
one can perhaps assume that m is at least |P |+ 1.

When working in QSym = QSym(x) in infinitely many variables, it is perhaps not so clear where fac-
torizations occur. For example, if f lies in QSym and factors f = g · h with g, h in R(x), does this imply
that g, h also lie in QSym? The answer is “Yes” (for k = Z), but this is not obvious, and was proven by P.
Pylyavskyy in [175, Chap. 11].

One also might wonder whether QSymZ is a unique factorization domain, but this follows from the result
of M. Hazewinkel ([89] and [93, Thm. 6.7.5], and Theorem 6.4.3 further below) who proved a conjecture of
Ditters that QSymZ is a polynomial algebra; earlier Malvenuto and Reutenauer [146, Cor. 2.2] had shown
that QSymQ is a polynomial algebra. In fact, one can find polynomial generators {Pα} for QSymQ as a subset
of the dual basis to the Q-basis {ξα} for NSymQ which comes from taking products ξα := ξα1

· · · ξα` of the
elements {ξn} defined in Remark 5.4.4 below. Specifically, one takes those Pα for which the composition α
is a Lyndon composition; see the First proof of Proposition 6.4.4 for a mild variation on this construction.
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Hazewinkel’s proof [93, Thm. 6.7.5] of the polynomiality of QSymZ also shows that QSym is a polynomial
ring over Λ (see Corollary 6.5.33); in particular, this yields that QSym is a free Λ-module.264

An affirmative answer to Question 5.2.25 is known at least in the special case where P is a connected
column-strict labelling of a skew Ferrers diagram, that is, when FP (x) = sλ/µ(x) for some connected skew
diagram λ/µ; see [13].

5.3. Standardization of n-tuples and the fundamental basis. Another equivalent description of the
fundamental quasisymmetric functions Lα (Lemma 5.3.6 below) relies on the concept of words and of their
standardizations. We shall study words in detail in Chapter 6; at this point, we merely introduce the few
notions that we will need:

Definition 5.3.1. We fix a totally ordered set A, which we call the alphabet .
We recall that a word over A is just a (finite) tuple of elements of A. A word (w1, w2, . . . , wn) can be

written as w1w2 · · ·wn when this incurs no ambiguity.
If w ∈ An is a word and i ∈ {1, 2, . . . , n}, then the i-th letter of w means the i-th entry of the n-tuple w.

This i-th letter will be denoted by wi.

Our next definition relies on a simple fact about permutations and words:265

Proposition 5.3.2. Let w = (w1, w2, . . . , wn) ∈ An be any word. Then, there exists a unique per-
mutation σ ∈ Sn such that for every two elements a and b of {1, 2, . . . , n} satisfying a < b, we have
(σ (a) < σ (b) if and only if wa ≤ wb).

Definition 5.3.3. Let w ∈ An be any word. The unique permutation σ ∈ Sn defined in Proposition 5.3.2
is called the standardization of w, and is denoted by stdw.

Example 5.3.4. If A is the alphabet {1 < 2 < 3 < · · · }, then std (41211424) is the permutation which is
written (in one-line notation) as 61423758.

A simple method to compute the standardization of a word w ∈ An is the following: Replace all oc-
currences of the smallest letter appearing in w by the numbers 1, 2, . . . ,m1 (where m1 is the number of
these occurrences); then replace all occurrences of the second-smallest letter appearing in w by the numbers
m1 + 1,m1 + 2, . . . ,m1 +m2 (where m2 is the number of these occurrences), and so on, until all letters are
replaced by numbers.266 The result is the standardization of w, in one-line notation.

Another method to compute the standardization stdw of a word w = (w1, w2, . . . , wn) ∈ An is based on
sorting. Namely, consider the total order on the set A× Z given by

(a, i) ≤ (b, j) if and only if (either a < b or (a = b and i ≤ j)) .
(In other words, two pairs in A × Z are compared by first comparing their first entries, and then, in the
case of a tie, using the second entries as tiebreakers.) Now, in order to compute stdw, we sort the n-
tuple ((w1, 1) , (w2, 2) , . . . , (wn, n)) ∈ (A× Z)

n
into increasing order (with respect to the total order just

described), thus obtaining a new n-tuple of the form
((
wτ(1), τ (1)

)
,
(
wτ(2), τ (2)

)
, . . . ,

(
wτ(n), τ (n)

))
for

some τ ∈ Sn; the standardization stdw is then τ−1.

Definition 5.3.5. Let n ∈ N. Let σ ∈ Sn. Define a subset Desσ of {1, 2, . . . , n− 1} by

Desσ = {i ∈ {1, 2, . . . , n− 1} | σ (i) > σ (i+ 1)} .
(This is a particular case of the definition of Desw in Exercise 2.9.11, if we identify σ with the n-tuple
(σ (1) , σ (2) , . . . , σ (n)). It is also a particular case of the definition of Desw in Proposition 5.2.10, if we
identify σ with the total order (σ (1) < σ (2) < · · · < σ (n)) on the set {1, 2, . . . , n}.)

There is a unique composition α of n satisfying D (α) = Desσ (where D (α) is defined as in Definition
5.1.10). This composition will be denoted by γ (σ).

264The latter statement has an analogue in finitely many indeterminates, proven by Lauve and Mason in [125, Corollary
13]: The quasisymmetric functions QSym

(
{xi}i∈I

)
are free as a Λ

(
{xi}i∈I

)
-module for any totally ordered set I, infinite or

not. In the case of finite I, this cannot be derived by Hazewinkel’s arguments, as the ring QSym
(
{xi}i∈I

)
is not in general a

polynomial ring (e.g., when k = Q and I = {1, 2}, this ring is not even a UFD, as witnessed by
(
x2

1x2

)
·
(
x1x2

2

)
= (x1x2)3).

265See Exercise 5.3.7 below for a proof of Proposition 5.3.2.
266Here, a number is not considered to be a letter; thus, a number that replaces a letter will always be left in peace

afterwards.
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The following lemma (equivalent to [182, Lemma 9.39]) yields another description of the fundamental
quasisymmetric functions:

Lemma 5.3.6. Let A denote the totally ordered set {1 < 2 < 3 < · · · } of positive integers. For each word
w = (w1, w2, . . . , wn) ∈ An, we define a monomial xw in k [[x]] by xw = xw1

xw2
· · ·xwn .

Let n ∈ N and σ ∈ Sn. Then,

Lγ(σ) =
∑
w∈An;

stdw=σ−1

xw.

Exercise 5.3.7. Prove Proposition 5.3.2 and Lemma 5.3.6.

5.4. The Hopf algebra NSym dual to QSym. We introduce here the (graded) dual Hopf algebra to QSym.
This is well-defined, as QSym is connected graded of finite type.

Definition 5.4.1. Let NSym := QSymo, with dual pairing NSym⊗QSym
(·,·)−→ k. Let {Hα} be the k-basis

of NSym dual to the k-basis {Mα} of QSym, so that

(Hα,Mβ) = δα,β .

When the base ring k is not clear from the context, we write NSymk in lieu of NSym.
The Hopf algebra NSym is known as the Hopf algebra of noncommutative symmetric functions. Its study

goes back to [77].

Theorem 5.4.2. Letting Hn := H(n) for n = 0, 1, 2, . . ., with H0 = 1, one has that

(5.4.1) NSym ∼= k〈H1, H2, . . .〉,
the free associative (but not commutative) algebra on generators {H1, H2, . . .} with coproduct determined
by267

(5.4.2) ∆Hn =
∑
i+j=n

Hi ⊗Hj .

Proof. Since Proposition 5.1.7 asserts that ∆Mα =
∑

(β,γ):β·γ=αMβ⊗Mγ , and since {Hα} are dual to {Mα},
one concludes that for any compositions β, γ, one has

HβHγ = Hβ·γ .

Iterating this gives

(5.4.3) Hα = H(α1,...,α`) = Hα1
· · ·Hα` .

Since the Hα are a k-basis for NSym, this shows NSym ∼= k〈H1, H2, . . .〉.
Note that Hn = H(n) is dual to M(n), so to understand ∆Hn, one should understand how M(n) can appear

as a term in the product MαMβ . By (5.1.1) this occurs only if α = (i), β = (j) where i+ j = n, where

M(i)M(j) = M(i+j) +M(i,j) +M(j,i)

(where the M(i,j) and M(j,i) addends have to be disregarded if one of i and j is 0). By duality, this implies
the formula (5.4.2). �

Corollary 5.4.3. The algebra homomorphism defined by

NSym
π−→ Λ,

Hn 7−→ hn

is a Hopf algebra surjection, and adjoint to the inclusion Λ
i
↪→ QSym (with respect to the dual pairing

NSym⊗QSym
(·,·)−→ k).

267The abbreviated summation indexing
∑
i+j=n ti,j used here is intended to mean∑

(i,j)∈N2;
i+j=n

ti,j .
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Proof. As an algebra morphism, π may be identified with the surjection T (V ) → Sym(V ) from the tensor
algebra on a graded free k-module V with basis {H1, H2, . . .} to the symmetric algebra on V , since

NSym ∼= k〈H1, H2, . . .〉,
Λ ∼= k[h1, h2, . . .].

As (5.4.2) and Proposition 2.3.6(iii) assert that

∆Hn =
∑
i+j=n

Hi ⊗Hj ,

∆hn =
∑
i+j=n

hi ⊗ hj ,

this map π is also a bialgebra morphism, and hence a Hopf morphism by Corollary 1.4.27.
To check π is adjoint to i, let λ(α) denote the partition which is the weakly decreasing rearrangement of

the composition α, and note that the bases {Hα} of NSym and {mλ} of Λ satisfy

(π(Hα),mλ) = (hλ(α),mλ) =

{
1 if λ(α) = λ
0 otherwise

}
=

Hα,
∑

β:λ(β)=λ

Mβ

 = (Hα, i(mλ)).

�

Remark 5.4.4. For those who prefer generating functions to sign-reversing involutions, we sketch here Mal-
venuto and Reutenauer’s elegant proof [146, Cor. 2.3] of the antipode formula (Theorem 5.1.11). One needs
to know that when Q is a subring of k, and A is a k-algebra (possibly noncommutative), in the ring of power
series A[[t]] where t commutes with all of A, one still has familiar facts, such as

a(t) = log b(t) if and only if b(t) = exp a(t)

and whenever a(t), b(t) commute in A[[t]], one has

exp (a(t) + b(t)) = exp a(t) exp b(t),(5.4.4)

log (a(t)b(t)) = log a(t) + log b(t).(5.4.5)

Start by assuming WLOG that k = Z (as NSymk = NSymZ⊗Zk in the general case). Now, define in
NSymQ = NSym⊗ZQ the elements {ξ1, ξ2, . . .} via generating functions in NSymQ[[t]]:

(5.4.6)

H̃(t) :=
∑
n≥0

Hnt
n,

ξ(t) :=
∑
n≥1

ξnt
n = log H̃(t).

One first checks that this makes each ξn primitive, via a computation in the ring (NSymQ⊗NSymQ)[[t]] (into
which we “embed” the ring (NSymQ[[t]])⊗Q[[t]] (NSymQ[[t]]) via the canonical ring homomorphism from the

latter into the former 268):

∆ξ(t) = ∆

log
∑
n≥0

Hnt
n

 = log
∑
n≥0

∆(Hn)tn = log
∑
n≥0

 ∑
i+j=n

Hi ⊗Hj

 tn

= log

∑
i≥0

Hit
i

⊗
∑
j≥0

Hjt
j

 = log

∑
i≥0

Hit
i ⊗ 1

1⊗
∑
j≥0

Hjt
j


(5.4.5)

= log H̃(t)⊗ 1 + 1⊗ log H̃(t) = ξ(t)⊗ 1 + 1⊗ ξ(t).

268This ring homomorphism might fail to be injective, whence the “embed” stands in quotation marks. This does not need
to worry us, since we will not draw any conclusions in (NSymQ[[t]])⊗Q[[t]] (NSymQ[[t]]) from our computation.

We are also somewhat cavalier with the notation ∆: we use it both for the comultiplication ∆ : NSymQ → NSymQ⊗NSymQ
of the Hopf algebra NSymQ and for the continuous k-algebra homomorphism NSymQ [[t]]→

(
NSymQ⊗NSymQ

)
[[t]] it induces.
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Comparing coefficients in this equality yields ∆(ξn) = ξn ⊗ 1 + 1 ⊗ ξn. Thus S(ξn) = −ξn, by Proposi-
tion 1.4.17. This allows one to determine S(Hn) and S(Hα), after one first inverts the relation (5.4.6) to get

that H̃(t) = exp ξ(t), and hence

S(H̃(t)) = S(exp ξ(t)) = expS(ξ(t)) = exp (−ξ(t)) (5.4.4)
= (exp ξ(t))−1

= H̃(t)−1 =
(
1 +H1t+H2t

2 + · · ·
)−1

.

Upon expanding the right side, and comparing coefficients of tn, this gives

S(Hn) =
∑

β∈Compn

(−1)`(β)Hβ

and hence

S(Hα) = S(Hα`) · · ·S(Hα2)S(Hα1) =
∑
γ:

γ refines rev(α)

(−1)`(γ)Hγ =
∑
γ:

rev(γ) refines α

(−1)`(γ)Hγ

(because if µ and ν are two compositions, then µ refines ν if and only if rev(µ) refines rev(ν)). As
SNSym, SQSym are adjoint, and {Hα}, {Mα} are dual bases, this is equivalent to saying that

S(Mα) = (−1)`(α)
∑
γ:

rev(α) refines γ

Mγ for all α ∈ Comp.

But this is precisely the claim of Theorem 5.1.11. Thus, Theorem 5.1.11 is proven once again.
Let us say a bit more about the elements ξn defined in (5.4.6) above. The elements nξn are noncommu-

tative analogues of the power sum symmetric functions pn (and, indeed, are lifts of the latter to NSym, as
Exercise 5.4.5 below shows). They are called the noncommutative power sums of the second kind in [77]269,
and their products form a basis of NSym. They are furthermore useful in studying the so-called Eulerian
idempotent of a cocommutative Hopf algebra, as shown in Exercise 5.4.6 below.

Exercise 5.4.5. Assume that Q is a subring of k. Define a sequence of elements ξ1, ξ2, ξ3, . . . of NSym =
NSymk by (5.4.6).

(a) For every n ≥ 1, show that ξn is a primitive homogeneous element of NSym of degree n.
(b) For every n ≥ 1, show that π (nξn) is the n-th power sum symmetric function pn ∈ Λ.
(c) For every n ≥ 1, show that

(5.4.7) ξn =
∑

α∈Compn

(−1)
`(α)−1 1

` (α)
Hα.

(d) For every composition α, define an element ξα of NSym by ξα = ξα1
ξα2
· · · ξα` , where α is written

in the form α = (α1, α2, . . . , α`) with ` = ` (α). Show that

(5.4.8) Hn =
∑

α∈Compn

1

` (α)!
ξα

for every n ∈ N.
Use this to prove that (ξα)α∈Compn

is a k-basis of NSymn for every n ∈ N.

Exercise 5.4.6. Assume that Q is a subring of k. Let A be a cocommutative connected graded k-bialgebra.
Let A =

⊕
n≥0An be the decomposition of A into homogeneous components. If f is any k-linear map A→ A

annihilating A0, then f is locally ?-nilpotent270, and so the sum log? (f + uε) :=
∑
n≥1 (−1)

n−1 1
nf

?n is a

well-defined endomorphism of A 271. Let e denote the endomorphism log? (idA) of A (obtained by setting
f = idA−uε : A → A). Show that e is a projection from A to the k-submodule p of all primitive elements
of A (and thus, in particular, is idempotent).

269See Exercise 5.4.12 for the ones of the first kind.
270See the proof of Proposition 1.4.24 for what this means.
271This definition of log? (f + uε) is actually a particular case of Definition 1.7.17. This can be seen as follows:

We have f (A0) = 0. Thus, Proposition 1.7.11(h) (applied to C = A) yields f ∈ n (A,A) (where n (A,A) is defined as in
Section 1.7), so that (f + uε) − uε = f ∈ n (A,A). Therefore, Definition 1.7.17 defines a map log? (f + uε) ∈ n (A,A). This

map is identical to the map log? (f + uε) :=
∑
n≥1 (−1)n−1 1

n
f?n we have just defined, because Proposition 1.7.18(f) (applied
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Hint: For every n ≥ 0, let πn : A → A be the projection onto the n-th homogeneous component An.
Since NSym is the free k-algebra with generators H1, H2, H3, . . ., we can define a k-algebra homomorphism
W : NSym→ (EndA, ?) by sending Hn to πn. Show that:

(a) The map e : A→ A is graded. For every n ≥ 0, we will denote the map πn ◦ e = e ◦ πn : A→ A by
en.

(b) We have W (ξn) = en for all n ≥ 1, where ξn is defined as in Exercise 5.4.5.
(c) If w is an element of NSym, and if we write ∆ (w) =

∑
(w) w1⊗w2 using the Sweedler notation, then

∆ ◦ (W (w)) =
(∑

(w) W (w1)⊗W (w2)
)
◦∆.

(d) We have en (A) ⊂ p for every n ≥ 0.
(e) We have e (A) ⊂ p.
(f) The map e fixes any element of p.

Remark 5.4.7. The endomorphism e of Exercise 5.4.6 is known as the Eulerian idempotent of A, and can be
contrasted with the Dynkin idempotent of Remark 1.5.15. It has been studied in [166], [169], [31] and [60],
and relates to the Hochschild cohomology of commutative algebras [134, §4.5.2].

Exercise 5.4.8. Assume that Q is a subring of k. Let A, An and e be as in Exercise 5.4.6.

(a) Show that e?n ◦ e?m = n!δn,me?n for all n ∈ N and m ∈ N.
(b) Show that e?n ◦ id?mA = id?mA ◦e?n = mne?n for all n ∈ N and m ∈ N.

We next explore the basis for NSym dual to the {Lα} in QSym.

Definition 5.4.9. Define the noncommutative ribbon functions {Rα}α∈Comp to be the k-basis of NSym dual
to the fundamental basis {Lα}α∈Comp of QSym, so that

(Rα, Lβ) = δα,β for all α, β ∈ Comp.

Theorem 5.4.10. (a) One has that

Hα =
∑

β coarsens α

Rβ ;(5.4.9)

Rα =
∑

β coarsens α

(−1)`(β)−`(α)Hβ .(5.4.10)

(b) The surjection NSym
π−→ Λ sends Rα 7−→ sRib(α), the skew Schur function associated to the ribbon

Rib (α).
(c) Furthermore,

RαRβ = Rα·β +Rα�β if α and β are nonempty;(5.4.11)

S(Rα) = (−1)|α|Rω(α).(5.4.12)

Finally, R∅ is the multiplicative identity of NSym.

Proof. (a) For (5.4.9), note that

Hα =
∑
β

(Hα, Lβ)Rβ =
∑
β

Hα,
∑
γ:

γ refines β

Mγ

Rβ =
∑
β:

β coarsens α

Rβ .

The equality (5.4.10) follows from (5.4.9) by Lemma 5.2.7(a).
(b) Write α as (α1, . . . , α`). To show that π(Rα) = sRib(α), we instead examine π(Hα):

π(Hα) = π(Hα1
· · ·Hα`) = hα1

· · ·hα` = s(α1) · · · s(α`) = s(α1)⊕···⊕(α`)

to C = A) shows that the map log? (f + uε) defined using Definition 1.7.17 satisfies

log? (f + uε) =
∑
n≥1

(−1)n−1

n
f?n =

∑
n≥1

(−1)n−1 1

n
f?n.
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where (α1)⊕· · ·⊕ (α`) is some skew shape which is a horizontal strip having rows of lengths α1, . . . , α` from
bottom to top. We claim

s(α1)⊕···⊕(α`) =
∑
β:

β coarsens α

sRib(β),

because column-strict tableaux T of shape (α1) ⊕ · · · ⊕ (α`) biject to column-strict tableaux T ′ of some
ribbon Rib (β) with β coarsening α, as follows: Let ai, bi denote the leftmost, rightmost entries of the i-th
row from the bottom in T , of length αi, and

• if bi ≤ ai+1, merge parts αi, αi+1 in β, and concatenate the rows of length αi, αi+1 in T ′, or
• if bi > ai+1, do not merge parts αi, αi+1 in β, and let these two rows overlap in one column in T ′.

E.g., if α = (3, 3, 2, 3, 2), then

the tableau T =

3 4
4 4 5

4 4
2 2 3

1 1 3

of shape (α1)⊕ · · · ⊕ (α`)

maps to the tableau T ′ =
3 4

2 2 3 4 4 4 4 5
1 1 3

of shape Rib (β) for β = (3, 8, 2).

The reverse bijection breaks the rows of T ′ into the rows of T of lengths dictated by the parts of α. Having
shown π(Hα) =

∑
β:β coarsens α sRib(β), we can now apply Lemma 5.2.7(a) to obtain

sRib(α) =
∑

β:β coarsens α

(−1)
`(α)−`(β)

π (Hβ) = π (Rα) (by (5.4.10)) ;

thus, π(Rα) = sRib(α) is proven.
(c) Finally, (5.4.11) and (5.4.12) follow from (5.2.5) and (5.2.7) by duality. �

Remark 5.4.11. Since the maps

NSym

π
"" ""

QSym

Λ
- 

i

<<

are Hopf morphisms, they must respect the antipodes SΛ, SQSym, SNSym, but it is interesting to compare
them explicitly using the fundamental basis for QSym and the ribbon basis for NSym.

On one hand (5.2.7) shows that SQSym(Lα) = (−1)|α|Lω(α) extends the map SΛ since L(1n) = en and
L(n) = hn, as observed in Example 5.2.5, and ω((n)) = (1n).

On the other hand, (5.4.12) shows that SNSym(Rα) = (−1)|α|Rω(α) lifts the map SΛ to SNSym: Theo-
rem 5.4.10(b) showed that Rα lifts the skew Schur function sRib(α), while (2.4.15) asserted that S(sλ/µ) =

(−1)|λ/µ|sλt/µt , and a ribbon Rib (α) = λ/µ has Rib (ω(α)) = λt/µt.

Exercise 5.4.12. (a) Show that any integers n and i with 0 ≤ i < n satisfy

R(1i,n−i) =

i∑
j=0

(−1)
i−j

R(1j)Hn−j .

(Here, as usual, 1i stands for the number 1 repeated i times.)
(b) Show that any integers n and i with 0 ≤ i < n satisfy

(−1)
i
R(1i,n−i) =

i∑
j=0

S (Hj)Hn−j .
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(c) For every positive integer n, define an element Ψn of NSym by

Ψn =

n−1∑
i=0

(−1)
i
R(1i,n−i).

Show that Ψn = (S ? E) (Hn), where the map E : NSym → NSym is defined as in Exercise 1.5.14
(for A = NSym). Conclude that Ψn is primitive.

(d) Prove that
n−1∑
k=0

HkΨn−k = nHn

for every n ∈ N.

(e) Define two power series ψ (t) and H̃ (t) in NSym [[t]] by

ψ (t) =
∑
n≥1

Ψnt
n−1;

H̃ (t) =
∑
n≥0

Hnt
n.

Show that272 d

dt
H̃ (t) = H̃ (t) · ψ (t).

(The functions Ψn are called noncommutative power sums of the first kind ; they are studied in
[77]. The power sums of the second kind are the nξn in Remark 5.4.4.)

(f) Show that π (Ψn) equals the power sum symmetric function pn for every positive integer n.
(g) Show that every positive integer n satisfies

pn =

n−1∑
i=0

(−1)
i
s(n−i,1i) in Λ.

(h) For every nonempty composition α, define a positive integer lp (α) by lp (α) = α`, where α is written
in the form α = (α1, α2, . . . , α`) with ` = ` (α). (Thus, lp (α) is the last part of α.) Show that every
positive integer n satisfies

(5.4.13) Ψn =
∑

α∈Compn

(−1)
`(α)−1

lp (α)Hα.

(i) Assume that Q is a subring of k. For every composition α, define an element Ψα of NSym by
Ψα = Ψα1

Ψα2
· · ·Ψα` , where α is written in the form α = (α1, α2, . . . , α`) with ` = ` (α). For every

composition α, define πu (α) to be the positive integer α1 (α1 + α2) · · · (α1 + α2 + · · ·+ α`), where
α is written in the form α = (α1, α2, . . . , α`) with ` = ` (α). Show that

(5.4.14) Hn =
∑

α∈Compn

1

πu (α)
Ψα

for every n ∈ N.
Use this to prove that (Ψα)α∈Compn

is a k-basis of NSymn for every n ∈ N.

(j) Assume that Q is a subring of k. Let V be the free k-module with basis (bn)n∈{1,2,3,...}. Define a k-

module homomorphism f : V → NSym by requiring that f (bn) = Ψn for every n ∈ {1, 2, 3, . . .}. Let
F be the k-algebra homomorphism T (V )→ NSym induced by this f (using the universal property
of the tensor algebra T (V )). Show that F is a Hopf algebra isomorphism (where the Hopf algebra
structure on T (V ) is as in Example 1.4.18).

(k) Assume that Q is a subring of k. Let V be as in Exercise 5.4.12(j). Show that QSym is isomorphic
to the shuffle algebra Sh (V ) (defined as in Proposition 1.6.7) as Hopf algebras.

(l) Solve parts (a) and (b) of Exercise 2.9.14 again using the ribbon basis functions Rα.

272The derivative d
dt
Q (t) of a power series Q (t) ∈ R [[t]] over a noncommutative ring R is defined just as in the case of R

commutative: by setting d
dt
Q (t) =

∑
i≥1 iqit

i−1, where Q (t) is written in the form Q (t) =
∑
i≥0 qit

i.
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One might wonder whether the Frobenius endomorphisms of Λ (defined in Exercise 2.9.9) and the Ver-
schiebung endomorphisms of Λ (defined in Exercise 2.9.10) generalize to analogous operators on either
QSym or NSym. The next two exercises (whose claims mostly come from [90, §13]) answer this question:
The Frobenius endomorphisms extend to QSym, and the Verschiebung ones lift to NSym.

Exercise 5.4.13. For every n ∈ {1, 2, 3, . . .}, define a map Fn : QSym→ QSym by setting

Fn (a) = a (xn1 , x
n
2 , x

n
3 , . . .) for every a ∈ QSym .

(So what Fn does to a quasi-symmetric function is replacing all variables x1, x2, x3, . . . by their n-th powers.)

(a) Show that Fn : QSym→ QSym is a k-algebra homomorphism for every n ∈ {1, 2, 3, . . .}.
(b) Show that Fn ◦ Fm = Fnm for any two positive integers n and m.
(c) Show that F1 = id.
(d) Prove that Fn

(
M(β1,β2,...,βs)

)
= M(nβ1,nβ2,...,nβs) for every n ∈ {1, 2, 3, . . .} and (β1, β2, . . . , βs) ∈

Comp.
(e) Prove that Fn : QSym→ QSym is a Hopf algebra homomorphism for every n ∈ {1, 2, 3, . . .}.
(f) Consider the maps fn : Λ → Λ defined in Exercise 2.9.9. Show that Fn |Λ= fn for every n ∈
{1, 2, 3, . . .}.

(g) Assume that k = Z. Prove that fp (a) ≡ ap mod pQSym for every a ∈ QSym and every prime
number p.

(h) Give a new solution to Exercise 2.9.9(d).

Exercise 5.4.14. For every n ∈ {1, 2, 3, . . .}, define a k-algebra homomorphism Vn : NSym→ NSym by

Vn (Hm) =

{
Hm/n, if n | m;

0, if n - m
for every positive integer m

273.

(a) Show that any positive integers n and m satisfy

Vn (Ψm) =

{
nΨm/n, if n | m;

0, if n - m
,

where the elements Ψm and Ψm/n of NSym are as defined in Exercise 5.4.12(c).
(b) Show that if Q is a subring of k, then any positive integers n and m satisfy

Vn (ξm) =

{
ξm/n, if n | m;

0, if n - m
,

where the elements ξm and ξm/n of NSym are as defined in Exercise 5.4.5.
(c) Prove that Vn ◦Vm = Vnm for any two positive integers n and m.
(d) Prove that V1 = id.
(e) Prove that Vn : NSym→ NSym is a Hopf algebra homomorphism for every n ∈ {1, 2, 3, . . .}.

Now, consider also the maps Fn : QSym→ QSym defined in Exercise 2.9.9. Fix a positive integer n.

(f) Prove that the maps Fn : QSym→ QSym and Vn : NSym→ NSym are adjoint with respect to the

dual pairing NSym⊗QSym
(·,·)−→ k.

(g) Consider the maps vn : Λ → Λ defined in Exercise 2.9.10. Show that the surjection π : NSym → Λ
satisfies vn ◦ π = π ◦Vn for every n ∈ {1, 2, 3, . . .}.

(h) Give a new solution to Exercise 2.9.10(f).

273This is well-defined, since NSym is (isomorphic to) the free associative algebra with generators H1, H2, H3, . . . (according

to (5.4.1)).
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6. Polynomial generators for QSym and Lyndon words

In this chapter, we shall construct an algebraically independent generating set for QSym as a k-algebra,
thus showing that QSym is a polynomial ring over k. This has been done by Malvenuto [145, Cor. 4.19] when
k is a field of characteristic 0, and by Hazewinkel [89] in the general case. We will begin by introducing the
notion of Lyndon words (Section 6.1), on which both of these constructions rely; we will then (Section 6.2)
elucidate the connection of Lyndon words with shuffles, and afterwards (Section 6.3) apply it to prove
Radford’s theorem stating that the shuffle algebra of a free k-module over a commutative Q-algebra is a
polynomial algebra (Theorem 6.3.4). The shuffle algebra is not yet QSym, but Radford’s theorem on the
shuffle algebra serves as a natural stepping stone for the study of the more complicated algebra QSym. We
will prove – in two ways – that QSym is a polynomial algebra when Q is a subring of k in Section 6.4,
and then we will finally prove the general case in Section 6.5. In Section 6.6, we will explore a different
aspect of the combinatorics of words: the notion of necklaces (which are in bijection with Lyndon words,
as Exercise 6.1.34 will show) and the Gessel-Reutenauer bijection, which help us define and understand the
Gessel-Reutenauer symmetric functions. This will rely on Section 6.1, but not on any of the other sections
of Chapter 6.

Strictly speaking, this whole Chapter 6 is a digression, as it involves almost no coalgebraic or Hopf-
algebraic structures, and its results will not be used in further chapters (which means it can be skipped if so
desired). However, it sheds additional light on both quasisymmetric and symmetric functions, and serves as
an excuse to study Lyndon words, which are a combinatorial object of independent interest (and are involved
in the study of free algebras and Hopf algebras, apart from QSym – see [177] and [182]274).

We will take a scenic route to the proof of Hazewinkel’s theorem. A reader only interested in the proof
proper can restrict themselves to reading only the following:

• from Section 6.1, everything up to Corollary 6.1.6, then from Definition 6.1.13 up to Proposi-
tion 6.1.18, then from Definition 6.1.25 up to Lemma 6.1.28, and finally Theorem 6.1.30. (Proposi-
tion 6.1.19 and Theorem 6.1.20 are also relevant if one wants to use a different definition of Lyndon
words, as they prove the equivalence of most such definitions.)

• from Section 6.2, everything except for Exercise 6.2.25.
• from Section 6.3, Definition 6.3.1, Lemma 6.3.7, and Lemma 6.3.10.
• from Section 6.4, Definition 6.4.1, Theorem 6.4.3, then from Proposition 6.4.5 up to Definition 6.4.9,

and Lemma 6.4.11.
• all of Section 6.5.

Likewise, Section 6.6 can be read immediately after Section 6.1.

6.1. Lyndon words. Lyndon words have been independently defined by Shirshov [202], Lyndon [141],
Radford [177, §2] and de Bruijn/Klarner [29] (though using different and sometimes incompatible notations).
They have since been surfacing in various places in noncommutative algebra (particularly the study of free
Lie algebras); expositions of their theory can be found in [139, §5], [182, §5.1] and [124, §1] (in German).
We will follow our own approach to the properties of Lyndon words that we need.

Definition 6.1.1. We fix a totally ordered set A, which we call the alphabet . Throughout Section 6.1 and
Section 6.2, we will understand “word” to mean a word over A.

We recall that a word is just a (finite) tuple of elements of A. In other words, a word is an element of the
set
⊔
n≥0 A

n. We denote this set by A∗.
The empty word is the unique tuple with 0 elements. It is denoted by ∅. If w ∈ An is a word and

i ∈ {1, 2, . . . , n}, then the i-th letter of w means the i-th entry of the n-tuple w. This i-th letter will be
denoted by wi.

The length ` (w) of a word w ∈
⊔
n≥0 A

n is defined to be the n ∈ N satisfying w ∈ An. Thus, w =(
w1, w2, . . . , w`(w)

)
for every word w.

Given two words u and v, we say that u is longer than v (or, equivalently, v is shorter than u) if and only
if ` (u) > ` (v).

The concatenation of two words u and v is defined to be the word
(
u1, u2, . . . , u`(u), v1, v2, . . . , v`(v)

)
. This

concatenation is denoted by uv or u · v. The set A∗ of all words is a monoid with respect to concatenation,

274They also are involved in indexing basis elements of combinatorial Hopf algebras other than QSym. See Bergeron/Zabrocki

[18].
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with neutral element ∅. It is precisely the free monoid on generators A. If u is a word and i ∈ N, we will
understand ui to mean the i-th power of u in this monoid (that is, the word uu · · ·u︸ ︷︷ ︸

i times

).

The elements of A are called letters, and will be identified with elements of A1 ⊂
⊔
n≥0 A

n = A∗.

This identification equates every letter u ∈ A with the one-letter word (u) ∈ A1. Thus, every word
(u1, u2, . . . , un) ∈ A∗ equals the concatenation u1u2 · · ·un of letters, hence allowing us to use u1u2 · · ·un
as a brief notation for the word (u1, u2, . . . , un).

If w is a word, then:

• a prefix of w means a word of the form (w1, w2, . . . , wi) for some i ∈ {0, 1, . . . , ` (w)};
• a suffix of w means a word of the form

(
wi+1, wi+2, . . . , w`(w)

)
for some i ∈ {0, 1, . . . , ` (w)};

• a proper suffix of w means a word of the form
(
wi+1, wi+2, . . . , w`(w)

)
for some i ∈ {1, 2, . . . , ` (w)}.

In other words,

• a prefix of w ∈ A∗ is a word u ∈ A∗ such that there exists a v ∈ A∗ satisfying w = uv;
• a suffix of w ∈ A∗ is a word v ∈ A∗ such that there exists a u ∈ A∗ satisfying w = uv;
• a proper suffix of w ∈ A∗ is a word v ∈ A∗ such that there exists a nonempty u ∈ A∗ satisfying
w = uv.

Clearly, any proper suffix of w ∈ A∗ is a suffix of w. Moreover, if w ∈ A∗ is any word, then a proper suffix
of w is the same thing as a suffix of w distinct from w.

We define a relation ≤ on the set A∗ as follows: For two words u ∈ A∗ and v ∈ A∗, we set u ≤ v to hold
if and only if

either there exists an i ∈ {1, 2, . . . ,min {` (u) , ` (v)}}
such that (ui < vi, and every j ∈ {1, 2, . . . , i− 1} satisfies uj = vj) ,

or the word u is a prefix of v.

This order relation (taken as the smaller-or-equal relation) makes A∗ into a poset (by Proposition 6.1.2(a)
below), and we will always be regarding A∗ as endowed with this poset structure (thus, notations such as <,
≤, > and ≥ will be referring to this poset structure). This poset is actually totally ordered (see Proposition
6.1.2(a)).

Here are some examples of words compared by the relation ≤:

113 ≤ 114, 113 ≤ 132, 19 ≤ 195, 41 ≤ 412,

41 ≤ 421, 539 ≤ 54, ∅ ≤ 21, ∅ ≤ ∅

(where A is the alphabet {1 < 2 < 3 < · · · }).
Notice that if u and v are two words of the same length (i.e., we have u, v ∈ An for one and the same

n), then u ≤ v holds if and only if u is lexicographically smaller-or-equal to v. In other words, the relation
≤ is an extension of the lexicographic order on every An to A∗. This is the reason why this relation ≤
is usually called the lexicographic order on A∗. In particular, we will be using this name.275 However,
unlike the lexicographic order on An, it does not always respect concatenation from the right: It can happen
that u, v, w ∈ A∗ satisfy u ≤ v but not uw ≤ vw. (For example, u = 1, v = 13 and w = 4, again with
A = {1 < 2 < 3 < · · · }.) We will see in Proposition 6.1.2 that this is rather an exception than the rule and
the relation ≤ still behaves mostly predictably with respect to concatenation.

Some basic properties of the order relation ≤ just defined are collected in the following proposition:

Proposition 6.1.2. (a) The order relation ≤ is (the smaller-or-equal relation of) a total order on the
set A∗.

(b) If a, c, d ∈ A∗ satisfy c ≤ d, then ac ≤ ad.
(c) If a, c, d ∈ A∗ satisfy ac ≤ ad, then c ≤ d.
(d) If a, b, c, d ∈ A∗ satisfy a ≤ c, then either we have ab ≤ cd or the word a is a prefix of c.
(e) If a, b, c, d ∈ A∗ satisfy ab ≤ cd, then either we have a ≤ c or the word c is a prefix of a.
(f) If a, b, c, d ∈ A∗ satisfy ab ≤ cd and ` (a) ≤ ` (c), then a ≤ c.

275The relation ≤ is also known as the dictionary order , due to the fact that it is the order in which words appear in a

dictionary.
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(g) If a, b, c ∈ A∗ satisfy a ≤ b ≤ ac, then a is a prefix of b.
(h) If a ∈ A∗ is a prefix of b ∈ A∗, then a ≤ b.
(i) If a and b are two prefixes of c ∈ A∗, then either a is a prefix of b, or b is a prefix of a.
(j) If a, b, c ∈ A∗ are such that a ≤ b and ` (a) ≥ ` (b), then ac ≤ bc.
(k) If a ∈ A∗ and b ∈ A∗ are such that b is nonempty, then a < ab.

Exercise 6.1.3. Prove Proposition 6.1.2.
[Hint: No part of Proposition 6.1.2 requires more than straightforward case analysis. However, the proof

of (a) can be simplified by identifying the order relation ≤ on A∗ as a restriction of the lexicographic order
on the set B∞, where B is a suitable extension of the alphabet A. What is this extension, and how to embed
A∗ into B∞ ?]

Proposition 6.1.2 provides a set of tools for working with the lexicographic order without having to refer
to its definition; we shall use it extensively. Proposition 6.1.2(h) (and its equivalent form stating that a ≤ ac
for every a ∈ A∗ and c ∈ A∗) and Proposition 6.1.2(k) will often be used without explicit mention.

Before we define Lyndon words, let us show two more facts about words which will be used later. First,
when do words commute?

Proposition 6.1.4. Let u, v ∈ A∗ satisfy uv = vu. Then, there exist a t ∈ A∗ and two nonnegative integers
n and m such that u = tn and v = tm.

Proof. We prove this by strong induction on ` (u)+ ` (v). We assume WLOG that ` (u) and ` (v) are positive
(because otherwise, one of u and v is the empty word, and everything is trivial). It is easy to see that either
u is a prefix of v, or v is a prefix of u 276. We assume WLOG that u is a prefix of v (since our situation
is symmetric). Thus, we can write v in the form v = uw for some w ∈ A∗. Consider this w. Clearly,

` (u) + ` (w) = `

 uw︸︷︷︸
=v

 = ` (v) < ` (u) + ` (v) (since ` (v) is positive). Since v = uw, the equality uv = vu

becomes uuw = uwu. Cancelling u from this equality, we obtain uw = wu. Now, we can apply Proposition
6.1.4 to w instead of v (by the induction assumption, since ` (u) + ` (w) < ` (u) + ` (v)), and obtain that
there exist a t ∈ A∗ and two nonnegative integers n and m such that u = tn and w = tm. Consider this t
and these n and m. Of course, u = tn and v = u︸︷︷︸

=tn

w︸︷︷︸
=tm

= tntm = tn+m. So the induction step is complete,

and Proposition 6.1.4 is proven. �

Proposition 6.1.5. Let u, v, w ∈ A∗ be nonempty words satisfying uv ≥ vu, vw ≥ wv and wu ≥ uw. Then,
there exist a t ∈ A∗ and three nonnegative integers n, m and p such that u = tn, v = tm and w = tp.

Proof. We prove this by strong induction on ` (u) + ` (v) + ` (w). Clearly, ` (u), ` (v) and ` (w) are positive
(since u, v and w are nonempty). We assume WLOG that ` (u) = min {` (u) , ` (v) , ` (w)} (because there is
a cyclic symmetry in our situation). Thus, ` (u) ≤ ` (v) and ` (u) ≤ ` (w). But vu ≤ uv. Hence, Proposition
6.1.2(e) (applied to a = v, b = u, c = u and d = v) yields that either we have v ≤ u or the word u is a prefix
of v. But Proposition 6.1.2(f) (applied to a = u, b = w, c = w and d = u) yields u ≤ w (since uw ≤ wu
and ` (u) ≤ ` (w)). Furthermore, wv ≤ vw. Hence, Proposition 6.1.2(e) (applied to a = w, b = v, c = v and
d = w) yields that either we have w ≤ v or the word v is a prefix of w.

From what we have found so far, it is easy to see that u is a prefix of v 277. In other words, there exists
a v′ ∈ A∗ such that v = uv′. Consider this v′.

If the word v′ is empty, then the statement of Proposition 6.1.5 can be easily deduced from Proposition
6.1.4278. Thus, we assume WLOG that this is not the case. Hence, v′ is nonempty.

276Proof. The word u is a prefix of uv. But the word v is also a prefix of uv (since uv = vu). Hence, Proposition 6.1.2(i)
(applied to a = u, b = v and c = uv) yields that either u is a prefix of v, or v is a prefix of u, qed.

277Proof. Assume the contrary. Then, u is not a prefix of v. Hence, we must have v ≤ u (since either we have v ≤ u or the
word u is a prefix of v), and in fact v < u (because v = u would contradict to u not being a prefix of v). Thus, v < u ≤ w. But

recall that either we have w ≤ v or the word v is a prefix of w. Thus, v must be a prefix of w (because v < w rules out w ≤ v).

In other words, there exists a q ∈ A∗ such that w = vq. Consider this q. We have v < u ≤ w = vq. Thus, Proposition 6.1.2(g)
(applied to a = v, b = u and c = q) yields that v is a prefix of u. In light of ` (u) ≤ ` (v), this is only possible if v = u, but this

contradicts v < u. This contradiction completes this proof.
278Proof. Assume that the word v′ is empty. Then, v = uv′ becomes v = u. Therefore, vw ≥ wv becomes uw ≥ wu.

Combined with wu ≥ uw, this yields uw = wu. Hence, Proposition 6.1.4 (applied to w instead of v) yields that there exist a
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Using v = uv′, we can rewrite uv ≥ vu as uuv′ ≥ uv′u. That is, uv′u ≤ uuv′, so that v′u ≤ uv′ (by
Proposition 6.1.2(c), applied to a = u, c = v′u and d = uv′). That is, uv′ ≥ v′u. But ` (uw) = ` (u)+` (w) =
` (w) + ` (u) = ` (wu) ≥ ` (wu). Hence, Proposition 6.1.2(i) (applied to a = uw, b = wu and c = v′) yields
uwv′ ≤ wuv′ (since uw ≤ wu). Now, uv′︸︷︷︸

=v

w = vw ≥ w v︸︷︷︸
=uv′

= wuv′ ≥ uwv′ (since uwv′ ≤ wuv′), so that

uwv′ ≤ uv′w. Hence, wv′ ≤ v′w (by Proposition 6.1.2(c), applied to a = u, c = wv′ and d = v′w), so that
v′w ≥ wv′. Now, we can apply Proposition 6.1.5 to v′ instead of v (by the induction hypothesis, because
` (u) + ` (v′)︸ ︷︷ ︸
=`(uv′)=`(v)

(since uv′=v)

+` (w) = ` (v) + ` (w) < ` (u) + ` (v) + ` (w)). As a result, we see that there exist a t ∈ A∗ and

three nonnegative integers n, m and p such that u = tn, v′ = tm and w = tp. Clearly, this t and these n,m, p
satisfy v = u︸︷︷︸

=tn

v′︸︷︷︸
=tm

= tntm = tn+m, and so the statement of Proposition 6.1.5 is satisfied. The induction

step is thus complete. �

Corollary 6.1.6. Let u, v, w ∈ A∗ be words satisfying uv ≥ vu and vw ≥ wv. Assume that v is nonempty.
Then, uw ≥ wu.

Proof. Assume the contrary. Thus, uw < wu, so that wu ≥ uw.
If u or w is empty, then everything is obvious. We thus WLOG assume that u and w are nonempty.

Thus, Proposition 6.1.5 shows that there exist a t ∈ A∗ and three nonnegative integers n, m and p such
that u = tn, v = tm and w = tp. But this yields wu = tptn = tp+n = tn+p = tn︸︷︷︸

=u

tp︸︷︷︸
=w

= uw, contradicting

uw < wu. This contradiction finishes the proof. �

Exercise 6.1.7. Find an alternative proof of Corollary 6.1.6 which does not use Proposition 6.1.5.

The above results have a curious consequence, which we are not going to use:

Corollary 6.1.8. We can define a preorder on the set A∗\{∅} of all nonempty words by defining a nonempty
word u to be greater-or-equal to a nonempty word v (with respect to this preorder) if and only if uv ≥ vu.
Two nonempty words u, v are equivalent with respect to the equivalence relation induced by this preorder if
and only if there exist a t ∈ A∗ and two nonnegative integers n and m such that u = tn and v = tm.

Proof. The alleged preorder is transitive (by Corollary 6.1.6) and reflexive (obviously), and hence is really a
preorder. The claim in the second sentence follows from Proposition 6.1.4. �

As another consequence of Proposition 6.1.5, we obtain a classical property of words [139, Proposition
1.3.1]:

Exercise 6.1.9. Let u and v be words and n and m be positive integers such that un = vm. Prove that
there exists a word t and positive integers i and j such that u = ti and v = tj .

Here is another application of Corollary 6.1.6:

Exercise 6.1.10. Let n and m be positive integers. Let u ∈ A∗ and v ∈ A∗ be two words. Prove that
uv ≥ vu holds if and only if unvm ≥ vmun holds.

Exercise 6.1.11. Let n and m be positive integers. Let u ∈ A∗ and v ∈ A∗ be two words satisfying
n` (u) = m` (v). Prove that uv ≥ vu holds if and only if un ≥ vm holds.

We can also generalize Propositions 6.1.4 and 6.1.5:

Exercise 6.1.12. Let u1, u2, . . . , uk be nonempty words such that every i ∈ {1, 2, . . . , k} satisfies uiui+1 ≥
ui+1ui, where uk+1 means u1. Show that there exist a word t and nonnegative integers n1, n2, . . . , nk such
that u1 = tn1 , u2 = tn2 , . . ., uk = tnk .

Now, we define the notion of a Lyndon word. There are several definitions in literature, some of which
will be proven equivalent in Theorem 6.1.20.

t ∈ A∗ and two nonnegative integers n and m such that u = tn and w = tm. Clearly, v = u = tn as well, and so the statement

of Proposition 6.1.5 is true.
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Definition 6.1.13. A word w ∈ A∗ is said to be Lyndon if it is nonempty and satisfies the following
property: Every nonempty proper suffix v of w satisfies v > w.

For example, the word 113 is Lyndon (because its nonempty proper suffixes are 13 and 3, and these are
both > 113), and the word 242427 is Lyndon (its nonempty proper suffixes are 42427, 2427, 427, 27 and
7, and again these are each > 242427). The words 2424 and 35346 are not Lyndon (the word 2424 has a
nonempty proper suffix 24 ≤ 2424, and the word 35346 has a nonempty proper suffix 346 ≤ 35346). Every
word of length 1 is Lyndon (since it has no nonempty proper suffixes). A word w = (w1, w2) with two letters
is Lyndon if and only if w1 < w2. A word w = (w1, w2, w3) of length 3 is Lyndon if and only if w1 < w3 and
w1 ≤ w2. A four-letter word w = (w1, w2, w3, w4) is Lyndon if and only if w1 < w4, w1 ≤ w3, w1 ≤ w2 and
(if w1 = w3 then w2 < w4). (These rules only get more complicated as the words grow longer.)

We will show several properties of Lyndon words now. We begin with trivialities which will make some
arguments a bit shorter:

Proposition 6.1.14. Let w be a Lyndon word. Let u and v be words such that w = uv.

(a) If v is nonempty, then v ≥ w.
(b) If v is nonempty, then v > u.
(c) If u and v are nonempty, then vu > uv.
(d) We have vu ≥ uv.

Proof. (a) Assume that v is nonempty. Clearly, v is a suffix of w (since w = uv). If v is a proper suffix of w,
then the definition of a Lyndon word yields that v > w (since w is a Lyndon word); otherwise, v must be w
itself. In either case, we have v ≥ w. Hence, Proposition 6.1.14(a) is proven.

(b) Assume that v is nonempty. From Proposition 6.1.14(a), we obtain v ≥ w = uv > u (since v is
nonempty). This proves Proposition 6.1.14(b).

(c) Assume that u and v are nonempty. Since u is nonempty, we have vu > v ≥ w (by Proposition
6.1.14(a)). Since w = uv, this becomes vu > uv. This proves Proposition 6.1.14(c).

(d) We need to prove that vu ≥ uv. If either u or v is empty, vu and uv are obviously equal, and thus
vu ≥ uv is true in this case. Hence, we can WLOG assume that u and v are nonempty. Assume this. Then,
vu ≥ uv follows from Proposition 6.1.14(c). This proves Proposition 6.1.14(d). �

Corollary 6.1.15. Let w be a Lyndon word. Let v be a nonempty suffix of w. Then, v ≥ w.

Proof. Since v is a nonempty suffix of w, there exists u ∈ A∗ such that w = uv. Thus, v ≥ w follows from
Proposition 6.1.14(a). �

Our next proposition is [93, Lemma 6.5.4]; its part (a) is also [182, (5.1.2)]:

Proposition 6.1.16. Let u and v be two Lyndon words such that u < v. Then:

(a) The word uv is Lyndon.
(b) We have uv < v.

Proof. (b) The word u is Lyndon and thus nonempty. Hence, uv 6= v 279. If uv ≤ v∅, then Proposition
6.1.16(b) easily follows280. Hence, for the rest of this proof, we can WLOG assume that we don’t have
uv ≤ v∅. Assume this.

We have u < v. Hence, Proposition 6.1.2(d) (applied to a = u, b = v, c = v and d = ∅) yields that either
we have uv ≤ v∅ or the word u is a prefix of v. Since we don’t have uv ≤ v∅, we thus see that the word u
is a prefix of v. In other words, there exists a t ∈ A∗ satisfying v = ut. Consider this t. Then, t is nonempty
(else we would have v = u t︸︷︷︸

=∅

= u in contradiction to u < v).

Now, v = ut. Hence, t is a proper suffix of v (proper because u is nonempty). Thus, t is a nonempty
proper suffix of v. Since every nonempty proper suffix of v is > v (because v is Lyndon), this shows that

279Proof. Assume the contrary. Then, uv = v. Thus, uv = v = ∅v. Cancelling v from this equation, we obtain u = ∅. That

is, u is empty. This contradicts the fact that u is nonempty. This contradiction proves that our assumption was wrong, qed.
280Proof. Assume that uv ≤ v∅. Thus, uv ≤ v∅ = v. Since uv 6= v, this becomes uv < v, so that Proposition 6.1.16(b) is

proven.
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t > v. Hence, v ≤ t. Thus, Proposition 6.1.2(b) (applied to a = u, c = v and d = t) yields uv ≤ ut = v.
Combined with uv 6= v, this yields uv < v. Hence, Proposition 6.1.16(b) is proven.

(a) The word v is nonempty (since it is Lyndon). Hence, uv is nonempty. It thus remains to check that
every nonempty proper suffix p of uv satisfies p > uv.

So let p be a nonempty proper suffix of uv. We must show that p > uv. Since p is a nonempty proper
suffix of uv, we must be in one of the following two cases (depending on whether this suffix begins before
the suffix v of uv begins or afterwards):

Case 1: The word p is a nonempty suffix of v. (Note that p = v is allowed.)
Case 2: The word p has the form qv where q is a nonempty proper suffix of u.
Let us first handle Case 1. In this case, p is a nonempty suffix of v. Since v is Lyndon, this yields that

p ≥ v (by Corollary 6.1.15, applied to v and p instead of w and v). But Proposition 6.1.16(b) yields uv < v,
thus v > uv. Hence, p ≥ v > uv. We thus have proven p > uv in Case 1.

Let us now consider Case 2. In this case, p has the form qv where q is a nonempty proper suffix of u.
Consider this q. Clearly, q > u (since u is Lyndon and since q is a nonempty proper suffix of u), so that
u ≤ q. Thus, Proposition 6.1.2(d) (applied to a = u, b = v, c = q and d = v) yields that either we have
uv ≤ qv or the word u is a prefix of q. Since u being a prefix of q is impossible (in fact, q is a proper suffix
of u, thus shorter than u), we thus must have uv ≤ qv. Since uv 6= qv (because otherwise we would have
uv = qv, thus u = q (because we can cancel v from the equality uv = qv), contradicting q > u), this can be
strengthened to uv < qv = p. Thus, p > uv is proven in Case 2 as well.

Now that p > uv is shown to hold in both cases, we conclude that p > uv always holds.
Now, let us forget that we fixed p. We have thus shown that every nonempty proper suffix p of uv satisfies

p > uv. Since uv is nonempty, this yields that uv is Lyndon (by the definition of a Lyndon word). Thus,
the proof of Proposition 6.1.16(a) is complete. �

Proposition 6.1.16(b), combined with Corollary 6.1.6, leads to a technical result which we will find good
use for later:

Corollary 6.1.17. Let u and v be two Lyndon words such that u < v. Let z be a word such that zv ≥ vz
and uz ≥ zu. Then, z is the empty word.

Proof. Assume the contrary. Then, z is nonempty. Thus, Corollary 6.1.6 (applied to z and v instead of v and
w) yields uv ≥ vu. But Proposition 6.1.16(b) yields uv < v ≤ vu, contradicting uv ≥ vu. This contradiction
completes our proof. �

We notice that the preorder of Corollary 6.1.8 becomes particularly simple on Lyndon words:

Proposition 6.1.18. Let u and v be two Lyndon words. Then, u ≥ v if and only if uv ≥ vu.

Proof. We distinguish between three cases:
Case 1: We have u < v.
Case 2: We have u = v.
Case 3: We have u > v.
Let us consider Case 1. In this case, we have u < v. Thus,

uv < v (by Proposition 6.1.16(b))

≤ vu.
Hence, we have neither u ≥ v nor uv ≥ vu (because we have u < v and uv < vu). Thus, Proposition 6.1.18
is proven in Case 1.

In Case 2, we have u = v. Therefore, in Case 2, both inequalities u ≥ v and uv ≥ vu hold (and actually
are equalities). Thus, Proposition 6.1.18 is proven in Case 2 as well.

Let us finally consider Case 3. In this case, we have u > v. In other words, v < u. Thus,

vu < u (by Proposition 6.1.16(b), applied to v and u instead of u and v)

≤ uv.
Hence, we have both u ≥ v and uv ≥ vu (because we have v < u and vu < uv). Thus, Proposition 6.1.18 is
proven in Case 3.

Proposition 6.1.18 is now proven in all three possible cases. �
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Proposition 6.1.19. Let w be a nonempty word. Let v be the (lexicographically) smallest nonempty suffix
of w. Then:

(a) The word v is a Lyndon word.
(b) Assume that w is not a Lyndon word. Then there exists a nonempty u ∈ A∗ such that w = uv,

u ≥ v and uv ≥ vu.

Proof. (a) Every nonempty proper suffix of v is ≥ v (since every nonempty proper suffix of v is a nonempty
suffix of w, but v is the smallest such suffix) and therefore > v (since a proper suffix of v cannot be = v).
Combined with the fact that v is nonempty, this yields that v is Lyndon. Proposition 6.1.19(a) is proven.

(b) Assume that w is not a Lyndon word. Then, w 6= v (since v is Lyndon (by Proposition 6.1.19(a))
while w is not). Now, v is a suffix of w. Thus, there exists an u ∈ A∗ such that w = uv. Consider this u.
Clearly, u is nonempty (since uv = w 6= v). Assume (for the sake of contradiction) that u < v. Let v′ be
the (lexicographically) smallest nonempty suffix of u. Then, v′ is a Lyndon word (by Proposition 6.1.19(a),
applied to u and v′ instead of w and v) and satisfies v′ ≤ u (since u is a nonempty suffix of u, whereas v′

is the smallest such suffix). Thus, v′ and v are Lyndon words such that v′ ≤ u < v. Proposition 6.1.16(a)
(applied to v′ instead of u) now yields that the word v′v is Lyndon. Hence, every nonempty proper suffix of
v′v is > v′v. Since v is a nonempty proper suffix of v′v, this yields that v > v′v.

But v′ is a nonempty suffix of u, so that v′v is a nonempty suffix of uv = w. Since v is the smallest such
suffix, this yields that v′v ≥ v. This contradicts v > v′v. Our assumption (that u < v) therefore falls. We
conclude that u ≥ v.

It remains to prove that uv ≥ vu. Assume the contrary. Then, uv < vu. Thus, there exists at least one
suffix t of u such that tv < vt (namely, t = u). Let p be the minimum-length such suffix. Then, pv < vp.
Thus, p is nonempty.

Since p is a suffix of u, it is clear that pv is a suffix of uv = w. So we know that pv is a nonempty suffix
of w. Since v is the smallest such suffix, this yields that v ≤ pv < vp. Thus, Proposition 6.1.2(g) (applied
to a = v, b = pv and c = p) yields that v is a prefix of pv. In other words, there exists a q ∈ A∗ such
that pv = vq. Consider this q. This q is nonempty (because otherwise we would have pv = v q︸︷︷︸

=∅

= v,

contradicting the fact that p is nonempty). From vq = pv < vp, we obtain q ≤ p (by Proposition 6.1.2(c),
applied to a = v, c = q and d = p).

We know that q is a suffix of pv (since vq = pv), whereas pv is a suffix of w. Thus, q is a suffix of w.
So q is a nonempty suffix of w. Since v is the smallest such suffix, this yields that v ≤ q. We now have
v ≤ q ≤ p ≤ pv < vp. Hence, v is a prefix of p (by Proposition 6.1.2(g), applied to a = v, b = p and c = p).
In other words, there exists an r ∈ A∗ such that p = vr. Consider this r. Clearly, r is a suffix of p, while
p is a suffix of u; therefore, r is a suffix of u. Also, pv < vp rewrites as vrv < vvr (because p = vr). Thus,
Proposition 6.1.2(c) (applied to a = v, c = rv and d = vr) yields rv ≤ vr. Since rv 6= vr (because otherwise,
we would have rv = vr, thus v rv︸︷︷︸

=vr

= vvr, contradicting vrv < vvr), this becomes rv < vr.

Now, r is a suffix of u such that rv < vr. Since p is the minimum-length such suffix, this yields ` (r) ≥ ` (p).

But this contradicts the fact that `

 p︸︷︷︸
=vr

 = ` (vr) = ` (v)︸︷︷︸
>0

+` (r) > ` (r). This contradiction proves our

assumption wrong; thus, we have shown that uv ≥ vu. Proposition 6.1.19(b) is proven. �

Theorem 6.1.20. Let w be a nonempty word. The following four assertions are equivalent:

• Assertion A: The word w is Lyndon.
• Assertion B: Any nonempty words u and v satisfying w = uv satisfy v > w.
• Assertion C: Any nonempty words u and v satisfying w = uv satisfy v > u.
• Assertion D: Any nonempty words u and v satisfying w = uv satisfy vu > uv.

Proof. Proof of the implication A =⇒ B: If Assertion A holds, then Assertion B clearly holds (in fact,
whenever u and v are nonempty words satisfying w = uv, then v is a nonempty proper suffix of w, and
therefore > w by the definition of a Lyndon word).

Proof of the implication A =⇒ C: This implication follows from Proposition 6.1.14(b).
Proof of the implication A =⇒ D: This implication follows from Proposition 6.1.14(c).
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Proof of the implication B =⇒ A: Assume that Assertion B holds. If v is a nonempty proper suffix of w,
then there exists an u ∈ A∗ satisfying w = uv. This u is nonempty because v is a proper suffix, and thus
Assertion B yields v > w. Hence, every nonempty proper suffix v of w satisfies v > w. By the definition of
a Lyndon word, this yields that w is Lyndon, so that Assertion A holds.

Proof of the implication C =⇒ A: Assume that Assertion C holds. If w was not Lyndon, then Proposition
6.1.19(b) would yield nonempty words u and v such that w = uv and u ≥ v; this would contradict Assertion
C. Thus, w is Lyndon, and Assertion A holds.

Proof of the implication D =⇒ A: Assume that Assertion D holds. If w was not Lyndon, then Proposition
6.1.19(b) would yield nonempty words u and v such that w = uv and uv ≥ vu; this would contradict Assertion
D. Thus, w is Lyndon, and Assertion A holds.

Now we have proven enough implications to conclude the equivalence of all four assertions. �

Theorem 6.1.20 connects our definition of Lyndon words with some of the definitions appearing in litera-
ture. For example, Lothaire [139, §5.1], Shirshov [202] and de Bruijn/Klarner [29, §4] define Lyndon words
using AssertionD (note, however, that Shirshov takes< instead of> and calls Lyndon words “regular words”;
also, de Bruijn/Klarner call Lyndon words “normal words”). Chen-Fox-Lyndon [38, §1], Reutenauer [182]
and Radford [177] use our definition (but Chen-Fox-Lyndon call the Lyndon words “standard sequences”,
and Radford calls them “primes” and uses < instead of >).

Theorem 6.1.20 appears (with different notations) in Zhou-Lu [229, Proposition 1.4]. The equivalence
D ⇐⇒ A of our Theorem 6.1.20 is equivalent to [139, Proposition 5.12] and to [38, A′′ = A′′′].

The following exercise provides a different (laborious) approach to Theorem 6.1.20:

Exercise 6.1.21. (a) Prove that if u ∈ A∗ and v ∈ A∗ are two words satisfying uv < vu, then there
exists a nonempty suffix s of u satisfying sv < v.

(b) Give a new proof of Theorem 6.1.20 (avoiding the use of Proposition 6.1.19).
[Hint: For (a), perform strong induction on ` (u) + ` (v), assume the contrary, and distinguish between

the case when u ≤ v and the case when v is a prefix of u. For (b), use part (a) in proving the implication
D =⇒ B, and factor v as v = umv′ with m maximal in the proof of the implication C =⇒ B.]

The following two exercises are taken from [91]281.

Exercise 6.1.22. Let w be a nonempty word. Prove that w is Lyndon if and only if every nonempty word
t and every positive integer n satisfy (if w ≤ tn, then w ≤ t).

Exercise 6.1.23. Let w1, w2, . . ., wn be n Lyndon words, where n is a positive integer. Assume that
w1 ≤ w2 ≤ · · · ≤ wn and w1 < wn. Show that w1w2 · · ·wn is a Lyndon word.

The following exercise is a generalization (albeit not in an obvious way) of Exercise 6.1.23:

Exercise 6.1.24. Let w1, w2, . . ., wn be n Lyndon words, where n is a positive integer. Assume that
wiwi+1 · · ·wn ≥ w1w2 · · ·wn for every i ∈ {1, 2, . . . , n}. Show that w1w2 · · ·wn is a Lyndon word.

We are now ready to meet one of the most important features of Lyndon words: a bijection between all
words and multisets of Lyndon words282; it is clear that such a bijection is vital for constructing polynomial
generating sets of commutative algebras with bases indexed by words, such as QSym or shuffle algebras.
This bijection is given by the Chen-Fox-Lyndon factorization:

Definition 6.1.25. Let w be a word. A Chen-Fox-Lyndon factorization (in short, CFL factorization) of w
means a tuple (a1, a2, . . . , ak) of Lyndon words satisfying w = a1a2 · · · ak and a1 ≥ a2 ≥ · · · ≥ ak.

Example 6.1.26. The tuple (23, 2, 14, 13323, 13, 12, 12, 1) is a CFL factorization of the word 23214133231312121
over the alphabet {1, 2, 3, . . .} (ordered by 1 < 2 < 3 < · · · ), since 23, 2, 14, 13323, 13, 12, 12 and 1 are
Lyndon words satisfying 23214133231312121 = 23 · 2 · 14 · 13323 · 13 · 12 · 12 · 1 and 23 ≥ 2 ≥ 14 ≥ 13323 ≥
13 ≥ 12 ≥ 12 ≥ 1.

The bijection is given by the following Chen-Fox-Lyndon theorem ([93, Theorem 6.5.5], [139, Thm. 5.1.5],
[177, part of Thm. 2.1.4]):

281Exercise 6.1.22 is more or less [91, Lemma 4.3] with a converse added; Exercise 6.1.23 is [91, Lemma 4.2].
282And it is not even the only such bijection: we will see another in Subsection 6.6.1.
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Theorem 6.1.27. Let w be a word. Then, there exists a unique CFL factorization of w.

Before we prove this, we need to state and prove a lemma (which is [139, Proposition 5.1.6]):

Lemma 6.1.28. Let (a1, a2, . . . , ak) be a CFL factorization of a nonempty word w. Let p be a nonempty
suffix of w. Then, p ≥ ak.

Proof. We will prove Lemma 6.1.28 by induction over the (obviously) positive integer k.
Induction base: Assume that k = 1. Thus, (a1, a2, . . . , ak) = (a1) is a tuple of Lyndon words satisfying

w = a1a2 · · · ak. We have w = a1a2 · · · ak = a1 (since k = 1), so that w is a Lyndon word (since a1 is a
Lyndon word). Thus, Corollary 6.1.15 (applied to v = p) yields p ≥ w = a1 = ak (since 1 = k). Thus,
Lemma 6.1.28 is proven in the case k = 1. The induction base is complete.

Induction step: Let K be a positive integer. Assume (as the induction hypothesis) that Lemma 6.1.28 is
proven for k = K. We now need to show that Lemma 6.1.28 holds for k = K + 1.

So let (a1, a2, . . . , aK+1) be a CFL factorization of a nonempty word w. Let p be a nonempty suffix of w.
We need to prove that p ≥ aK+1.

By the definition of a CFL factorization, (a1, a2, . . . , aK+1) is a tuple of Lyndon words satisfying w =
a1a2 · · · aK+1 and a1 ≥ a2 ≥ · · · ≥ aK+1. Let w′ = a2a3 · · · aK+1; then, w = a1a2 · · · aK+1 = a1 (a2a3 · · · aK+1)︸ ︷︷ ︸

=w′

=

a1w
′. Hence, every nonempty suffix of w is either a nonempty suffix of w′, or has the form qw′ for a nonempty

suffix q of a1. Since p is a nonempty suffix of w, we thus must be in one of the following two cases:
Case 1: The word p is a nonempty suffix of w′.
Case 2: The word p has the form qw′ for a nonempty suffix q of a1.
Let us first consider Case 1. In this case, p is a nonempty suffix of w′. The K-tuple (a2, a3, . . . , aK+1) of

Lyndon words satisfies w′ = a2a3 · · · aK+1 and a2 ≥ a3 ≥ · · · ≥ aK+1; therefore, (a2, a3, . . . , aK+1) is a CFL
factorization of w′. We can thus apply Lemma 6.1.28 to K, w′ and (a2, a3, . . . , aK+1) instead of k, w and
(a1, a2, . . . , ak) (because we assumed that Lemma 6.1.28 is proven for k = K). As a result, we obtain that
p ≥ aK+1. Thus, p ≥ aK+1 is proven in Case 1.

Let us now consider Case 2. In this case, p has the form qw′ for a nonempty suffix q of a1. Consider this
q. Since a1 is a Lyndon word, we have q ≥ a1 (by Corollary 6.1.15, applied to a1 and q instead of w and v).
Thus, q ≥ a1 ≥ a2 ≥ · · · ≥ aK+1, so that p = qw′ ≥ q ≥ aK+1. Thus, p ≥ aK+1 is proven in Case 2.

We have now proven p ≥ aK+1 in all cases. This proves that Lemma 6.1.28 holds for k = K + 1. The
induction step is thus finished, and with it the proof of Lemma 6.1.28. �

Proof of Theorem 6.1.27. Let us first prove that there exists a CFL factorization of w.
Indeed, there clearly exists a tuple (a1, a2, . . . , ak) of Lyndon words satisfying w = a1a2 · · · ak 283. Fix

such a tuple with minimum k. We claim that a1 ≥ a2 ≥ · · · ≥ ak.
Indeed, if some i ∈ {1, 2, . . . , k − 1} would satisfy ai < ai+1, then the word aiai+1 would be Lyndon (by

Proposition 6.1.16(a), applied to u = ai and v = ai+1), whence (a1, a2, . . . , ai−1, aiai+1, ai+2, ai+3, . . . , ak)
would also be a tuple of Lyndon words satisfying w = a1a2 · · · ai−1 (aiai+1) ai+2ai+3 · · · ak but having length
k−1 < k, contradicting the fact that k is the minimum length of such a tuple. Hence, no i ∈ {1, 2, . . . , k − 1}
can satisfy ai < ai+1. In other words, every i ∈ {1, 2, . . . , k − 1} satisfies ai ≥ ai+1. In other words,
a1 ≥ a2 ≥ · · · ≥ ak. Thus, (a1, a2, . . . , ak) is a CFL factorization of w, so we have shown that such a CFL
factorization exists.

It remains to show that there exists at most one CFL factorization of w. We shall prove this by induction
over ` (w). Thus, we fix a word w and assume that

(6.1.1) for every word v with ` (v) < ` (w) , there exists at most one CFL factorization of v.

We now have to prove that there exists at most one CFL factorization of w.
Indeed, let (a1, a2, . . . , ak) and (b1, b2, . . . , bm) be two CFL factorizations of w. We need to prove that

(a1, a2, . . . , ak) = (b1, b2, . . . , bm). If w is empty, then this is obvious, so we WLOG assume that it is not;
thus, k > 0 and m > 0.

Since (b1, b2, . . . , bm) is a CFL factorization of w, we have w = b1b2 · · · bm, and thus bm is a nonempty
suffix of w. Thus, Lemma 6.1.28 (applied to p = bm) yields bm ≥ ak. The same argument (but with the

283For instance, the tuple
(
w1, w2, . . . , w`(w)

)
of one-letter words is a valid example (recall that one-letter words are always

Lyndon).
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roles of (a1, a2, . . . , ak) and (b1, b2, . . . , bm) switched) shows that ak ≥ bm. Combined with bm ≥ ak, this
yields ak = bm. Now let v = a1a2 · · · ak−1. Then, (a1, a2, . . . , ak−1) is a CFL factorization of v (since
a1 ≥ a2 ≥ · · · ≥ ak−1).

Since (a1, a2, . . . , ak) is a CFL factorization of w, we have w = a1a2 · · · ak = a1a2 · · · ak−1︸ ︷︷ ︸
=v

ak︸︷︷︸
=bm

= vbm, so

that
vbm = w = b1b2 · · · bm = b1b2 · · · bm−1bm.

Cancelling bm yields v = b1b2 · · · bm−1. Thus, (b1, b2, . . . , bm−1) is a CFL factorization of v (since b1 ≥ b2 ≥
· · · ≥ bm−1). Since ` (v) < ` (w) (because v = a1a2 · · · ak−1 is shorter than w = a1a2 · · · ak), we can apply
(6.1.1) to obtain that there exists at most one CFL factorization of v. But we already know two such CFL
factorizations: (a1, a2, . . . , ak−1) and (b1, b2, . . . , bm−1). Thus, (a1, a2, . . . , ak−1) = (b1, b2, . . . , bm−1), which,
combined with ak = bm, leads to (a1, a2, . . . , ak) = (b1, b2, . . . , bm). This is exactly what we needed to prove.
So we have shown (by induction) that there exists at most one CFL factorization of w. This completes the
proof of Theorem 6.1.27. �

The CFL factorization allows us to count all Lyndon words of a given length if A is finite:

Exercise 6.1.29. Assume that the alphabet A is finite. Let q = |A|. Let µ be the number-theoretic
Möbius function (defined as in Exercise 2.9.6). Show that the number of Lyndon words of length n equals
1

n

∑
d|n

µ (d) qn/d for every positive integer n (where “
∑
d|n

” means a sum over all positive divisors of n). 284

Exercise 6.1.29 is a well-known result and appears, e.g., in [38, Theorem 1.5] or in [139, Section 5.1].
We will now study another kind of factorization: not of an arbitrary word into Lyndon words, but of a

Lyndon word into two smaller Lyndon words. This factorization is called standard factorization ([139, §5.1])
or canonical factorization ([93, Lemma 6.5.33]); we only introduce it from the viewpoint we are interested
in, namely its providing a way to do induction over Lyndon words285. Here is what we need to know:

Theorem 6.1.30. Let w be a Lyndon word of length > 1. Let v be the (lexicographically) smallest
nonempty proper suffix of w. Since v is a proper suffix of w, there exists a nonempty u ∈ A∗ such that
w = uv. Consider this u. Then:

(a) The words u and v are Lyndon.
(b) We have u < w < v.

Proof. Every nonempty proper suffix of v is ≥ v (since every nonempty proper suffix of v is a nonempty
proper suffix of w, but v is the smallest such suffix) and therefore > v (since a proper suffix of v cannot be
= v). Combined with the fact that v is nonempty, this yields that v is Lyndon.

Since w is Lyndon, we know that every nonempty proper suffix of w is > w. Applied to the nonempty
proper suffix v of w, this yields that v > w. Hence, w < v. Since v is nonempty, we have u < uv = w < v.
This proves Theorem 6.1.30(b).

Let p be a nonempty proper suffix of u. Then, pv is a nonempty proper suffix of uv = w. Thus, pv > w
(since every nonempty proper suffix of w is > w). Thus, pv > w = uv, so that uv < pv. Thus, Proposition
6.1.2(e) (applied to a = u, b = v, c = p and d = v) yields that either we have u ≤ p or the word p is a prefix
of u.

Let us assume (for the sake of contradiction) that p ≤ u. Then, p < u (because p is a proper suffix of u,
and therefore p 6= u). Hence, we cannot have u ≤ p. Thus, the word p is a prefix of u (since either we have
u ≤ p or the word p is a prefix of u). In other words, there exists a q ∈ A∗ such that u = pq. Consider this
q. We have w = u︸︷︷︸

=pq

v = pqv = p (qv), and thus qv is a proper suffix of w (proper because p is nonempty).

Moreover, qv is nonempty (since v is nonempty). Hence, qv is a nonempty proper suffix of w. Since v is
the smallest such suffix, this entails that v ≤ qv. Proposition 6.1.2(b) (applied to a = p, c = v and d = qv)
thus yields pv ≤ pqv. Hence, pv ≤ pqv = w, which contradicts pv > w. This contradiction shows that our
assumption (that p ≤ u) was false. We thus have p > u.

284In particular,
1

n

∑
d|n

µ (d) qn/d is an integer.

285e.g., allowing to solve Exercise 6.1.24 in a simpler way
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We now have shown that p > u whenever p is a nonempty proper suffix of u. Combined with the fact that
u is nonempty, this shows that u is a Lyndon word. This completes the proof of Theorem 6.1.30(a). �

Another approach to the standard factorization is given in the following exercise:

Exercise 6.1.31. Let w be a Lyndon word of length > 1. Let v be the longest proper suffix of w such that
v is Lyndon286. Since v is a proper suffix of w, there exists a nonempty u ∈ A∗ such that w = uv. Consider
this u. Prove that:

(a) The words u and v are Lyndon.
(b) We have u < w < v.
(c) The words u and v are precisely the words u and v constructed in Theorem 6.1.30.

Notice that a well-known recursive characterization of Lyndon words [38, A′ = A′′] can be easily derived
from Theorem 6.1.30 and Proposition 6.1.16(a). We will not dwell on it.

The following exercise surveys some variations on the characterizations of Lyndon words287:

Exercise 6.1.32. Let w be a nonempty word. Consider the following nine assertions:

• Assertion A′: The word w is a power of a Lyndon word.
• Assertion B′: If u and v are nonempty words satisfying w = uv, then either we have v ≥ w or the

word v is a prefix of w.
• Assertion C′: If u and v are nonempty words satisfying w = uv, then either we have v ≥ u or the

word v is a prefix of u.
• Assertion D′: If u and v are nonempty words satisfying w = uv, then we have vu ≥ uv.
• Assertion E ′: If u and v are nonempty words satisfying w = uv, then either we have v ≥ u or the

word v is a prefix of w.
• Assertion F ′: The word w is a prefix of a Lyndon word in A∗.
• Assertion F ′′: Let m be an object not in the alphabet A. Let us equip the set A∪ {m} with a total

order which extends the total order on the alphabet A and which satisfies (a < m for every a ∈ A).
Then, the word wm ∈ (A ∪ {m})∗ (the concatenation of the word w with the one-letter word m) is
a Lyndon word.

• Assertion G′: There exists a Lyndon word t ∈ A∗, a positive integer ` and a prefix p of t (possibly
empty) such that w = t`p.

• Assertion H′: There exists a Lyndon word t ∈ A∗, a nonnegative integer ` and a prefix p of t
(possibly empty) such that w = t`p.

(a) Prove the equivalence A′ ⇐⇒ D′.
(b) Prove the equivalence B′ ⇐⇒ C′ ⇐⇒ E ′ ⇐⇒ F ′′ ⇐⇒ G′ ⇐⇒ H′.
(c) Prove the implication F ′ =⇒ B′.
(d) Prove the implication D′ =⇒ B′. (The implication B′ =⇒ D′ is false, as witnessed by the word

11211.)
(e) Prove that if there exists a letter µ ∈ A such that (µ > a for every letter a of w), then the equivalence
F ′ ⇐⇒ F ′′ holds.

(f) Prove that if there exists a letter µ ∈ A such that (µ > a for some letter a of w), then the equivalence
F ′ ⇐⇒ F ′′ holds.

The next exercise (based on work of Hazewinkel [92]) extends some of the above properties of Lyndon
words (and words in general) to a more general setting, in which the alphabet A is no longer required to be
totally ordered, but only needs to be a poset:

Exercise 6.1.33. In this exercise, we shall loosen the requirement that the alphabet A be a totally ordered
set: Instead, we will only require A to be a poset. The resulting more general setting will be called the
partial-order setting , to distinguish it from the total-order setting in which A is required to be a totally
ordered set. All results in Chapter 6 so far address the total-order setting. In this exercise, we will generalize
some of them to the partial-order setting.

286This is well-defined, because there exists at least one proper suffix v of w such that v is Lyndon. (Indeed, the last letter

of w forms such a suffix, because it is a proper suffix of w (since w has length > 1) and is Lyndon (since it is a one-letter word,

and since every one-letter word is Lyndon).)
287Compare this with [112, §7.2.11, Theorem Q].
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All notions that we have defined in the total-order setting (the notion of a word, the relation ≤, the notion
of a Lyndon word, etc.) are defined in precisely the same way in the partial-order setting. However, the
poset A∗ is no longer totally ordered in the partial-order setting.

(a) Prove that Proposition 6.1.2 holds in the partial-order setting, as long as one replaces “a total order”
by “a partial order” in part (a) of this Proposition.

(b) Prove (in the partial-order setting) that if a, b, c, d ∈ A∗ are four words such that the words ab and
cd are comparable (with respect to the partial order ≤), then the words a and c are comparable.

(c) Prove that Proposition 6.1.4, Proposition 6.1.5, Corollary 6.1.6, Corollary 6.1.8, Exercise 6.1.9,
Exercise 6.1.10, Exercise 6.1.11, Exercise 6.1.12, Proposition 6.1.14, Corollary 6.1.15, Proposition
6.1.16, Corollary 6.1.17, Proposition 6.1.18, Theorem 6.1.20, Exercise 6.1.21(a), Exercise 6.1.23,
Exercise 6.1.24, Exercise 6.1.31(a) and Exercise 6.1.31(b) still hold in the partial-order setting.

(d) Find a counterexample to Exercise 6.1.22 in the partial-order setting.
(e) Salvage Exercise 6.1.22 in the partial-order setting (i.e., find a statement which is easily equivalent

to this exercise in the total-order setting, yet true in the partial-order setting).
(f) In the partial-order setting, a Hazewinkel-CFL factorization of a word w will mean a tuple (a1, a2, . . . , ak)

of Lyndon words such that w = a1a2 · · · ak and such that no i ∈ {1, 2, . . . , k − 1} satisfies ai < ai+1.
Prove that every word w has a unique Hazewinkel-CFL factorization (in the partial-order setting).288

(g) Prove that Exercise 6.1.32 still holds in the partial-order setting.

The reader is invited to try extending other results to the partial-order setting (it seems that no research
has been done on this except for Hazewinkel’s [92]). We shall now, however, return to the total-order setting
(which has the most known applications).

Another extension of the notion of Lyndon words has been introduced in 2018 by Dolce, Restivo and
Reutenauer [53]; it is based on a generalized version of the lexicographic order, in which different letters are
compared differently depending on their positions in the word (i.e., there is one total order for comparing
first letters, another for comparing second letters, etc.).

Lyndon words are related to various other objects in mathematics, such as free Lie algebras (Subsection
6.1.1 below), shuffles and shuffle algebras (Sections 6.2 and 6.3 below), QSym (Sections 6.4 and 6.5), Markov
chains on combinatorial Hopf algebras ([52]), de Bruijn sequences ([72], [159], [160], [112, §7.2.11, Algorithm
F]), symmetric functions (specifically, the transition matrices between the bases (hλ)λ∈Par, (eλ)λ∈Par and
(mλ)λ∈Par; see [117] for this), and the Burrows-Wheeler algorithm for data compression (see Remark 6.6.31
below for a quick idea, and [45], [81], [116] for more). They are also connected to necklaces (in the combina-
torial sense) – a combinatorial object that also happens to be related to a lot of algebra ([185, Chapter 5],
[48]). Let us survey the basics of this latter classical connection in an exercise:

Exercise 6.1.34. Let A be any set (not necessarily totally ordered). Let C denote the infinite cyclic group,
written multiplicatively. Fix a generator c of C. 289 Fix a positive integer n. The group C acts on An

from the left according to the rule

c · (a1, a2, . . . , an) = (a2, a3, . . . , an, a1) for all (a1, a2, . . . , an) ∈ An.

290 The orbits of this C-action will be called n-necklaces291; they form a set partition of the set An.

288This result, as well as the validity of Proposition 6.1.16 in the partial-order setting, are due to Hazewinkel [92].
289So C is a group isomorphic to (Z,+), and the isomorphism (Z,+) → C sends every n ∈ Z to cn. (Recall that we write

the binary operation of C as · instead of +.)
290In other words, c rotates any n-tuple of elements of A cyclically to the left. Thus, cn ∈ C acts trivially on An, and so

this action of C on An factors through C/ 〈cn〉 (a cyclic group of order n).
291Classically, one visualizes them as necklaces of n beads of |A| colors. (The colors are the elements of A.) For example,

the necklace containing an n-tuple (w1, w2, . . . , wn) is visualized as follows:

w1
,, w2

��
wn

;;

w3

��
wn−1

WW

. .
.

mm
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The n-necklace containing a given n-tuple w ∈ An will be denoted by [w].

(a) Prove that every n-necklace N is a finite nonempty set and satisfies |N | | n. (Recall that N is an
orbit, thus a set; as usual, |N | denotes the cardinality of this set.)

The period of an n-necklace N is defined as the positive integer |N |. (This |N | is indeed a positive integer,
since N is a finite nonempty set.)292

An n-necklace is said to be aperiodic if its period is n.

(b) Given any n-tuple w = (w1, w2, . . . , wn) ∈ An, prove that the n-necklace [w] is aperiodic if and only
if every k ∈ {1, 2, . . . , n− 1} satisfies (wk+1, wk+2, . . . , wn, w1, w2, . . . , wk) 6= w.

From now on, we assume that the set A is totally ordered. We use A as our alphabet to define the notions
of words, the lexicographic order, and Lyndon words. All notations that we introduced for words will thus
be used for elements of An.

(c) Prove that every aperiodic n-necklace contains exactly one Lyndon word.
(d) If N is an n-necklace which is not aperiodic, then prove that N contains no Lyndon word.
(e) Show that the aperiodic n-necklaces are in bijection with Lyndon words of length n.

From now on, we assume that the set A is finite. Define the number-theoretic Möbius function µ and the
Euler totient function φ as in Exercise 2.9.6.

(f) Prove that the number of all aperiodic n-necklaces is

1

n

∑
d|n

µ (d) |A|n/d .

(g) Prove that the number of all n-necklaces is

1

n

∑
d|n

φ (d) |A|n/d .

(h) Solve Exercise 6.1.29 again.
(i) Forget that we fixed A. Show that every q ∈ Z satisfies n |

∑
d|n µ (d) qn/d and n |

∑
d|n φ (d) qn/d.

[Hint: For (c), use Theorem 6.1.20. For (i), either use parts (f) and (g) and a trick to extend to q
negative; or recall Exercise 2.9.8.]

We will pick up the topic of necklaces again in Section 6.6, where we will connect it back to symmetric
functions.

6.1.1. Free Lie algebras. In this brief subsection, we shall review the connection between Lyndon words and
free Lie algebras (following [124, Kap. 4], but avoiding the generality of Hall sets in favor of just using
Lyndon words). None of this material shall be used in the rest of these notes. We will only prove some basic
results; for more thorough and comprehensive treatments of free Lie algebras, see [182], [27, Chapter 2] and
[124, Kap. 4].

We begin with some properties of Lyndon words.

with w1, w2, . . . , wn being the colors of the respective beads. The intuition behind this is that a necklace is an object that
doesn’t really change when we rotate it in its plane. However, to make this intuition match the definition, we need to think of

a necklace as being stuck in its (fixed) plane, so that we cannot lift it up and turn it around, dropping it back to its plane in a

reflected state.
292For example, the 6-necklace [232232] – or, visually,

2 ++ 3

��
2

AA

2

��
3

SS

2kk

– has period 3, as it is a set of size 3 (with elements 232232, 322322 and 223223). The word “period” hints at the geometric
meaning: If an n-necklace N is represented by coloring the vertices of a regular n-gon, then its period is the smallest positive

integer d such that the colors are preserved when the n-gon is rotated by 2πd/n.
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Exercise 6.1.35. Let w ∈ A∗ be a nonempty word. Let v be the longest Lyndon suffix of w 293. Let t be
a Lyndon word. Then, t is the longest Lyndon suffix of wt if and only if we do not have v < t.

(We have written “we do not have v < t” instead of “v ≥ t” in Exercise 6.1.35 for reasons of generalizability:
This way, Exercise 6.1.35 generalizes to the partial-order setting introduced in Exercise 6.1.33, whereas the
version with “v ≥ t” does not.)

Exercise 6.1.36. Let w ∈ A∗ be a word of length > 1. Let v be the longest Lyndon proper suffix of w
294. Let t be a Lyndon word. Then, t is the longest Lyndon proper suffix of wt if and only if we do not have
v < t.

(Exercise 6.1.36, while being a trivial consequence of Exercise 6.1.35, is rather useful in the study of free
Lie algebras. It generalizes both [38, Lemma (1.6)] (which is obtained by taking w = c, v = b and t = d)
and [139, Proposition 5.1.4] (which is obtained by taking v = m and t = n).)

Definition 6.1.37. For the rest of Subsection 6.1.1, we let L be the set of all Lyndon words (over the
alphabet A).

Definition 6.1.38. Let w be a Lyndon word of length > 1. Let v be the longest proper suffix of w such
that v is Lyndon. (This is well-defined, as we know from Exercise 6.1.31.) Since v is a proper suffix of w,
there exists a nonempty u ∈ A∗ such that w = uv. Consider this u. (Clearly, this u is unique.) Theorem
6.1.30(a) shows that the words u and v are Lyndon. In other words, u ∈ L and v ∈ L. Hence, (u, v) ∈ L×L.
The pair (u, v) ∈ L× L is called the standard factorization of w, and is denoted by stf w.

For the sake of easier reference, we gather a few basic properties of the standard factorization:

Exercise 6.1.39. Let w be a Lyndon word of length > 1. Let (g, h) = stf w. Prove the following:

(a) The word h is the longest Lyndon proper suffix of w.
(b) We have w = gh.
(c) We have g < gh < h.
(d) The word g is Lyndon.
(e) We have g ∈ L, h ∈ L, ` (g) < ` (w) and ` (h) < ` (w).
(f) Let t be a Lyndon word. Then, t is the longest Lyndon proper suffix of wt if and only if we do not

have h < t.

Exercise 6.1.40. Let g be a Lie algebra. For every Lyndon word w, let bw be an element of g. Assume
that for every Lyndon word w of length > 1, we have

(6.1.2) bw = [bu, bv] , where (u, v) = stf w.

Let B be the k-submodule of g spanned by the family (bw)w∈L.

(a) Prove that B is a Lie subalgebra of g.
(b) Let h be a k-Lie algebra. Let f : B → h be a k-module homomorphism. Assume that whenever w

is a Lyndon word of length > 1, we have

(6.1.3) f ([bu, bv]) = [f (bu) , f (bv)] , where (u, v) = stf w.

Prove that f is a Lie algebra homomorphism.

[Hint: Given two words w and w′, write w ∼ w′ if and only if w′ is a permutation of w. Part (a) follows
from the fact that for any (p, q) ∈ L × L satisfying p < q, we have [bp, bq] ∈ Bpq,q, where Bh,s denotes the
k-linear span of {bw | w ∈ L, w ∼ h and w < s} for any two words h and s. Prove this fact by a double
induction, first inducting over ` (pq), and then (for fixed ` (pq)) inducting over the rank of q in lexicographic
order (i.e., assume that the fact is already proven for every q′ < q instead of q). In the induction step, assume
that (p, q) 6= stf (pq) (since otherwise the claim is rather obvious) and conclude that p has length > 1; thus,

set (u, v) = stf p, so that

 bp︸︷︷︸
=[bu,bv ]

, bq

 = [[bu, bv] , bq] = [[bu, bq] , bv]− [[bv, bq] , bu], and use Exercise 6.1.36 to

obtain v < q.

293Of course, a Lyndon suffix of w just means a suffix p of w such that p is Lyndon.
294Of course, a Lyndon proper suffix of w just means a proper suffix p of w such that p is Lyndon.
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The proof of (b) proceeds by a similar induction, piggybacking on the [bp, bq] ∈ Bpq,q claim.]

Exercise 6.1.41. Let V be the free k-module with basis (xa)a∈A. For every word w ∈ A∗, let xw be the
tensor xw1

⊗xw2
⊗· · ·⊗xw`(w)

. As we know from Example 1.1.2, the tensor algebra T (V ) is a free k-module

with basis (xw)w∈A∗ . We regard V as a k-submodule of T (V ).
The tensor algebra T (V ) becomes a Lie algebra via the commutator (i.e., its Lie bracket is defined by

[α, β] = αβ − βα for all α ∈ T (V ) and β ∈ T (V )).
We define a sequence (g1, g2, g3, . . .) of k-submodules of T (V ) as follows: Recursively, we set g1 = V , and

for every i ∈ {2, 3, 4, . . .}, we set gi = [V, gi−1]. Let g be the k-submodule g1 + g2 + g3 + · · · of T (V ).
Prove the following:

(a) The k-submodule g is a Lie subalgebra of T (V ).
(b) If k is any Lie subalgebra of T (V ) satisfying V ⊂ k, then g ⊂ k.

Now, for every w ∈ L, we define an element bw of T (V ) as follows: We define bw by recursion on the
length of w. If the length of w is 1 295, then we have w = (a) for some letter a ∈ A, and we set bw = xa
for this letter a. If the length of w is > 1, then we set bw = [bu, bv], where (u, v) = stf w 296.

Prove the following:

(c) For every w ∈ L, we have

bw ∈ xw +
∑

v∈A`(w);
v>w

kxv.

(d) The family (bw)w∈L is a basis of the k-module g.
(e) Let h be any k-Lie algebra. Let ξ : A → h be any map. Then, there exists a unique Lie algebra

homomorphism Ξ : g→ h such that every a ∈ A satisfies Ξ (xa) = ξ (a).

Remark 6.1.42. Let V and g be as in Exercise 6.1.41. In the language of universal algebra, the statement
of Exercise 6.1.41(e) says that g (or, to be more precise, the pair (g, f), where f : A→ g is the map sending
each a ∈ A to xa ∈ g) satisfies the universal property of the free Lie algebra on the set A. Thus, this exercise
allows us to call g the free Lie algebra on A. Most authors define the free Lie algebra differently, but all
reasonable definitions of a free Lie algebra297 lead to isomorphic Lie algebras (because the universal property
determines the free Lie algebra uniquely up to canonical isomorphism).

Notice that the Lie algebra g does not depend on the total order on the alphabet A, but the basis (bw)w∈L
constructed in Exercise 6.1.41(d) does. There is no known basis of g defined without ordering A.

It is worth noticing that our construction of g proves not only that the free Lie algebra on A exists, but also
that this free Lie algebra can be realized as a Lie subalgebra of the (associative) algebra T (V ). Therefore, if
we want to prove that a certain identity holds in every Lie algebra, we only need to check that this identity
holds in every associative algebra (if all Lie brackets are replaced by commutators); the universal property
of the free Lie algebra (i.e., Exercise 6.1.41(e)) will then ensure that this identity also holds in every Lie
algebra h.

There is much more to say about free Lie algebras than what we have said here; in particular, there are
connections to symmetric functions, necklaces, representations of symmetric groups and NSym. See [139,
§5.3], [182], [27, Chapter 2], [124, §4] and [24] for further developments298.

6.2. Shuffles and Lyndon words. We will now connect the theory of Lyndon words with the notion of
shuffle products. We have already introduced the latter notion in Definition 1.6.2, but we will now study it

295The length of any w ∈ L must be at least 1. (Indeed, if w ∈ L, then the word w is Lyndon and thus nonempty, and hence
its length must be at least 1.)

296This is well-defined, because bu and bv have already been defined. [Proof. Let (u, v) = stf w. Then, Exercise 6.1.39(e)

(applied to (g, h) = (u, v)) shows that u ∈ L, v ∈ L, ` (u) < ` (w) and ` (v) < ` (w). Recall that we are defining bw by recursion
on the length of w. Hence, bp is already defined for every p ∈ L satisfying ` (p) < ` (w). Applying this to p = u, we see that bu
is already defined (since u ∈ L and ` (u) < ` (w)). The same argument (but applied to v instead of u) shows that bv is already
defined. Hence, bu and bv have already been defined. Thus, bw is well-defined by bw = [bu, bv ], qed.]

297Here, we call a definition “reasonable” if the “free Lie algebra” it defines satisfies the universal property.
298The claim made in [24, page 2] that “{x1, . . . , xn} generates freely a Lie subalgebra of AR” is essentially our Exer-

cise 6.1.41(e).



182 DARIJ GRINBERG AND VICTOR REINER

more closely and introduce some more convenient notations (e.g., we will need a notation for single shuffles,
not just the whole multiset).299

Definition 6.2.1. (a) Let n ∈ N and m ∈ N. Then, Shn,m denotes the subset{
σ ∈ Sn+m : σ−1 (1) < σ−1 (2) < · · · < σ−1 (n) ; σ−1 (n+ 1) < σ−1 (n+ 2) < · · · < σ−1 (n+m)

}
of the symmetric group Sn+m.

(b) Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vm) be two words. If σ ∈ Shn,m, then, u �
σ
v will

denote the word
(
wσ(1), wσ(2), . . . , wσ(n+m)

)
, where (w1, w2, . . . , wn+m) is the concatenation u · v =

(u1, u2, . . . , un, v1, v2, . . . , vm). We notice that the multiset of all letters of u �
σ
v is the disjoint

union of the multiset of all letters of u with the multiset of all letters of v. As a consequence,

`
(
u�
σ
v
)

= ` (u) + ` (v).

(c) Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vm) be two words. The multiset of shuffles of u and v is
defined as the multiset

{(
wσ(1), wσ(2), . . . , wσ(n+m)

)
: σ ∈ Shn,m

}
multiset

, where (w1, w2, . . . , wn+m)

is the concatenation u · v = (u1, u2, . . . , un, v1, v2, . . . , vm). In other words, the multiset of shuffles of
u and v is the multiset {

u�
σ
v : σ ∈ Shn,m

}
multiset

.

It is denoted by u� v.

The next fact provides the main connection between Lyndon words and shuffles:

Theorem 6.2.2. Let u and v be two words.
Let (a1, a2, . . . , ap) be the CFL factorization of u. Let (b1, b2, . . . , bq) be the CFL factorization of v.

(a) Let (c1, c2, . . . , cp+q) be the result of sorting the list (a1, a2, . . . , ap, b1, b2, . . . , bq) in decreasing or-
der300. Then, the lexicographically highest element of the multiset u � v is c1c2 · · · cp+q (and
(c1, c2, . . . , cp+q) is the CFL factorization of this element).

(b) Let L denote the set of all Lyndon words. If w is a Lyndon word and z is any word, let multw z
denote the number of terms in the CFL factorization of z which are equal to w. The multiplicity
with which the lexicographically highest element of the multiset u� v appears in the multiset u� v

is
∏
w∈L

(
multw u+ multw v

multw u

)
. (This product is well-defined because almost all of its factors are 1.)

(c) If ai ≥ bj for every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}, then the lexicographically highest element
of the multiset u� v is uv.

(d) If ai > bj for every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}, then the multiplicity with which the word
uv appears in the multiset u� v is 1.

(e) Assume that u is a Lyndon word. Also, assume that u ≥ bj for every j ∈ {1, 2, . . . , q}. Then, the
lexicographically highest element of the multiset u� v is uv, and the multiplicity with which this
word uv appears in the multiset u� v is multu v + 1.

Example 6.2.3. For this example, let u and v be the words u = 23232 and v = 323221 over the alpha-
bet A = {1, 2, 3, . . .} with total order given by 1 < 2 < 3 < · · · . The CFL factorizations of u and v
are (23, 23, 2) and (3, 23, 2, 2, 1), respectively. Thus, using the notations of Theorem 6.2.2, we have p = 3,
(a1, a2, . . . , ap) = (23, 23, 2), q = 5 and (b1, b2, . . . , bq) = (3, 23, 2, 2, 1). Thus, Theorem 6.2.2(a) predicts that
the lexicographically highest element of the multiset u�v is c1c2c3c4c5c6c7c8, where c1, c2, c3, c4, c5, c6, c7, c8
are the words 23, 23, 2, 3, 23, 2, 2, 1 listed in decreasing order (in other words, (c1, c2, c3, c4, c5, c6, c7, c8) =
(3, 23, 23, 23, 2, 2, 2, 1)). In other words, Theorem 6.2.2(a) predicts that the lexicographically highest element
of the multiset u � v is 32323232221. We could verify this by brute force, but this would be laborious

since the multiset u� v has

(
5 + 6

5

)
= 462 elements (with multiplicities). Theorem 6.2.2(b) predicts that

this lexicographically highest element 32323232221 appears in the multiset u � v with a multiplicity of

299Parts (a) and (c) of the below Definition 6.2.1 define notions which have already been introduced in Definition 1.6.2. Of
course, the definitions of these notions are equivalent; however, the variables are differently labelled in the two definitions (for

example, the variables u, v, w and σ of Definition 6.2.1(c) correspond to the variables a, b, c and w of Definition 1.6.2). The

labels in Definition 6.2.1 have been chosen to match with the rest of Section 6.2.
300with respect to the total order on A∗ whose greater-or-equal relation is ≥
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∏
w∈L

(
multw u+ multw v

multw u

)
. This product

∏
w∈L

(
multw u+ multw v

multw u

)
is infinite, but all but finitely many

of its factors are 1 and therefore can be omitted; the only factors which are not 1 are those corresponding to
Lyndon words w which appear both in the CFL factorization of u and in the CFL factorization of v (since for
any other factor, at least one of the numbers multw u or multw v equals 0, and therefore the binomial coeffi-

cient

(
multw u+ multw v

multw u

)
equals 1). Thus, in order to compute the product

∏
w∈L

(
multw u+ multw v

multw u

)
,

we only need to multiply these factors. In our example, these are the factors for w = 23 and for w = 2
(these are the only Lyndon words which appear both in the CFL factorization (23, 23, 2) of u and in the
CFL factorization (3, 23, 2, 2, 1) of v). So we have∏

w∈L

(
multw u+ multw v

multw u

)
=

(
mult23 u+ mult23 v

mult23 u

)
︸ ︷︷ ︸

=

(
2 + 1

2

)
=3

(
mult2 u+ mult2 v

mult2 u

)
︸ ︷︷ ︸

=

(
1 + 2

1

)
=3

= 3 · 3 = 9.

The word 32323232221 must thus appear in the multiset u� v with a multiplicity of 9. This, too, could be
checked by brute force.

Theorem 6.2.2 (and Theorem 6.2.22 further below, which describes more precisely how the lexicographi-
cally highest element of u� v emerges by shuffling u and v) is fairly close to [177, Theorem 2.2.2] (and will
be used for the same purposes), the main difference being that we are talking about the shuffle product of
two (not necessarily Lyndon) words, while Radford (and most other authors) study the shuffle product of
many Lyndon words.

In order to prove Theorem 6.2.2, we will need to make some stronger statements, for which we first have
to introduce some more notation:

Definition 6.2.4. (a) If p and q are two integers, then [p : q]
+

denotes the interval {p+ 1, p+ 2, . . . , q}
of Z. Note that

∣∣∣[p : q]
+
∣∣∣ = q − p if q ≥ p.

(b) If I and J are two nonempty intervals of Z, then we say that I < J if and only if every i ∈ I and
j ∈ J satisfy i < j. This defines a partial order on the set of nonempty intervals of Z. (Roughly
speaking, I < J if the interval I ends before J begins.)

(c) If w is a word with n letters (for some n ∈ N), and I is an interval of Z such that I ⊂ [0 : n]
+

,

then w [I] will denote the word (wp+1, wp+2, . . . , wq), where I is written in the form I = [p : q]
+

with q ≥ p. Obviously, ` (w [I]) = |I| = q − p. A word of the form w [I] for an interval I ⊂ [0 : n]
+

(equivalently, a word which is a prefix of a suffix of w) is called a factor of w.
(d) Let α be a composition. Then, we define a tuple intsysα of intervals of Z as follows: Write α in the

form (α1, α2, . . . , α`) (so that ` = ` (α)). Then, set intsysα = (I1, I2, . . . , I`), where

Ii =

[
i−1∑
k=1

αk :

i∑
k=1

αk

]+

for every i ∈ {1, 2, . . . , `} .

This `-tuple intsysα is a tuple of nonempty intervals of Z. This tuple intsysα is called the interval
system corresponding to α. (This is precisely the `-tuple (I1, I2, . . . , I`) constructed in Definition
4.3.4.) The length of the tuple intsysα is ` (α).

Example 6.2.5. (a) We have [2 : 4]
+

= {3, 4} and [3 : 3]
+

= ∅.

(b) We have [2 : 4]
+
< [4 : 5]

+
< [6 : 8]

+
, but we have neither [2 : 4]

+
< [3 : 5]

+
nor [3 : 5]

+
< [2 : 4]

+
.

(c) If w is the word 915352, then w
[
[0 : 3]

+
]

= (w1, w2, w3) = 915 and w
[
[2 : 4]

+
]

= (w3, w4) = 53.

(d) If α is the composition (4, 1, 4, 2, 3), then the interval system corresponding to α is

intsysα =
(

[0 : 4]
+
, [4 : 5]

+
, [5 : 9]

+
, [9 : 11]

+
, [11 : 14]

+
)

= ({1, 2, 3, 4} , {5} , {6, 7, 8, 9} , {10, 11} , {12, 13, 14}) .

The following properties of the notions introduced in the preceding definition are easy to check:

Remark 6.2.6. (a) If I and J are two nonempty intervals of Z satisfying I < J , then I and J are disjoint.
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(b) If I and J are two disjoint nonempty intervals of Z, then either I < J or J < I.
(c) Let α be a composition. Write α in the form (α1, α2, . . . , α`) (so that ` = ` (α)). The interval system

intsysα can be described as the unique `-tuple (I1, I2, . . . , I`) of nonempty intervals of Z satisfying
the following three properties:

– The intervals I1, I2, . . ., I` form a set partition of the set [0 : n]
+

, where n = |α|.
– We have I1 < I2 < · · · < I`.
– We have |Ii| = αi for every i ∈ {1, 2, . . . , `}.

Exercise 6.2.7. Prove Remark 6.2.6.

The following two lemmas are collections of more or less trivial consequences of what it means to be an
element of Shn,m and what it means to be a shuffle:

Lemma 6.2.8. Let n ∈ N and m ∈ N. Let σ ∈ Shn,m.

(a) If I is an interval of Z such that I ⊂ [0 : n+m]
+

, then σ (I) ∩ [0 : n]
+

and σ (I) ∩ [n : n+m]
+

are
intervals.

(b) Let K and L be nonempty intervals of Z such that K ⊂ [0 : n]
+

and L ⊂ [0 : n]
+

and K < L and such
that K ∪ L is an interval. Assume that σ−1 (K) and σ−1 (L) are intervals, but σ−1 (K) ∪ σ−1 (L)

is not an interval. Then, there exists a nonempty interval P ⊂ [n : n+m]
+

such that σ−1 (P ),
σ−1 (K)∪ σ−1 (P ) and σ−1 (P )∪ σ−1 (L) are intervals and such that σ−1 (K) < σ−1 (P ) < σ−1 (L).

(c) Lemma 6.2.8(b) remains valid if “K ⊂ [0 : n]
+

and L ⊂ [0 : n]
+

” and “P ⊂ [n : n+m]
+

” are

replaced by “K ⊂ [n : n+m]
+

and L ⊂ [n : n+m]
+

” and “P ⊂ [0 : n]
+

”, respectively.

Exercise 6.2.9. Prove Lemma 6.2.8.

Lemma 6.2.10. Let u and v be two words. Let n = ` (u) and m = ` (v). Let σ ∈ Shn,m.

(a) If I is an interval of Z satisfying either I ⊂ [0 : n]
+

or I ⊂ [n : n+m]
+

, and if σ−1 (I) is an interval,
then

(6.2.1)
(
u�
σ
v
) [
σ−1 (I)

]
= (uv) [I] .

(b) Assume that u�
σ
v is the lexicographically highest element of the multiset u�v. Let I ⊂ [0 : n]

+
and

J ⊂ [n : n+m]
+

be two nonempty intervals. Assume that σ−1 (I) and σ−1 (J) are also intervals,
that σ−1 (I) < σ−1 (J), and that σ−1 (I) ∪ σ−1 (J) is an interval as well. Then, (uv) [I] · (uv) [J ] ≥
(uv) [J ] · (uv) [I].

(c) Lemma 6.2.10(b) remains valid if “I ⊂ [0 : n]
+

and J ⊂ [n : n+m]
+

” is replaced by “I ⊂ [n : n+m]
+

and J ⊂ [0 : n]
+

”.

Exercise 6.2.11. Prove Lemma 6.2.10.
[Hint: For (b), show that there exists a τ ∈ Shn,m such that u�

τ
v differs from u�

σ
v only in the order

of the subwords (uv) [I] and (uv) [J ].]

We are still a few steps away from stating our results in a way that allows comfortably proving Theorem
6.2.2. For the latter aim, we introduce the notion of α-clumping permutations, and characterize them in two
ways:

Definition 6.2.12. Let n ∈ N. Let α be a composition of n. Let ` = ` (α).

(a) For every set S of positive integers, let
−→
S denote the list of all elements of S in increasing order

(with each element appearing exactly once). Notice that this list
−→
S is a word over the set of positive

integers.
(b) For every τ ∈ S`, we define a permutation iper (α, τ) ∈ Sn as follows:

The interval system corresponding to α is an `-tuple of intervals (since ` (α) = `); denote this
`-tuple by (I1, I2, . . . , I`). Now, define iper (α, τ) to be the permutation in Sn which (in one-line

notation) is the word
−−→
Iτ(1)
−−→
Iτ(2) · · ·

−−→
Iτ(`) (a concatenation of ` words). This is well-defined301; hence,

iper (α, τ) ∈ Sn is defined.

301In fact, from the properties of interval systems, we know that the intervals I1, I2, . . ., I` form a set partition of the

set [0 : n]+. Hence, the intervals Iτ(1), Iτ(2), . . ., Iτ(`) form a set partition of the set [0 : n]+. As a consequence, the word
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(c) The interval system corresponding to α is an `-tuple of intervals (since ` (α) = `); denote this `-tuple
by (I1, I2, . . . , I`).

A permutation σ ∈ Sn is said to be α-clumping if every i ∈ {1, 2, . . . , `} has the two properties
that:

– the set σ−1 (Ii) is an interval;
– the restriction of the map σ−1 to the interval Ii is increasing.

Example 6.2.13. For this example, let n = 7 and α = (2, 1, 3, 1). Then, ` = ` (α) = 4 and (I1, I2, I3, I4) =

({1, 2} , {3} , {4, 5, 6} , {7}) (where we are using the notations of Definition 6.2.12). Hence,
−→
I1 = 12,

−→
I2 = 3,

−→
I3 = 456 and

−→
I4 = 7.

(a) If τ ∈ S` = S4 is the permutation (2, 3, 1, 4), then iper (α, τ) is the permutation in S7 which (in

one-line notation) is the word
−−→
Iτ(1)
−−→
Iτ(2)
−−→
Iτ(3)
−−→
Iτ(4) =

−→
I2
−→
I3
−→
I1
−→
I4 = 3456127.

If τ ∈ S` = S4 is the permutation (3, 1, 4, 2), then iper (α, τ) is the permutation in S7 which (in

one-line notation) is the word
−−→
Iτ(1)
−−→
Iτ(2)
−−→
Iτ(3)
−−→
Iτ(4) =

−→
I3
−→
I1
−→
I4
−→
I2 = 4561273.

(b) The permutation σ = (3, 7, 4, 5, 6, 1, 2) ∈ S7 (given here in one-line notation) is α-clumping, because:
– every i ∈ {1, 2, . . . , `} = {1, 2, 3, 4} has the property that σ−1 (Ii) is an interval (namely,
σ−1 (I1) = σ−1 ({1, 2}) = {6, 7}, σ−1 (I2) = σ−1 ({3}) = {1}, σ−1 (I3) = σ−1 ({4, 5, 6}) =
{3, 4, 5} and σ−1 (I4) = σ−1 ({7}) = {2}), and

– the restrictions of the map σ−1 to the intervals Ii are increasing (this means that σ−1 (1) <
σ−1 (2) and σ−1 (4) < σ−1 (5) < σ−1 (6), since the one-element intervals I2 and I4 do not
contribute anything to this condition).

Here is a more or less trivial observation:

Proposition 6.2.14. Let n ∈ N. Let α be a composition of n. Let ` = ` (α). Write α in the form
(α1, α2, . . . , α`). The interval system corresponding to α is an `-tuple of intervals (since ` (α) = `); denote
this `-tuple by (I1, I2, . . . , I`). Let τ ∈ S`. Set σ = iper (α, τ).

(a) We have σ−1
(
Iτ(j)

)
=
[∑j−1

k=1 ατ(k) :
∑j
k=1 ατ(k)

]+
for every j ∈ {1, 2, . . . , `}.

(b) For every j ∈ {1, 2, . . . , `}, the restriction of the map σ−1 to the interval Iτ(j) is increasing.
(c) The permutation iper (α, τ) is α-clumping.
(d) Let i ∈ {1, 2, . . . , `− 1}. Then, the sets σ−1

(
Iτ(i)

)
, σ−1

(
Iτ(i+1)

)
and σ−1

(
Iτ(i)

)
∪ σ−1

(
Iτ(i+1)

)
are

nonempty intervals. Also, σ−1
(
Iτ(i)

)
< σ−1

(
Iτ(i+1)

)
.

Exercise 6.2.15. Prove Proposition 6.2.14.

Proposition 6.2.16. Let n ∈ N. Let α be a composition of n. Let ` = ` (α).

(a) Define a map

iperα : S` −→ {ω ∈ Sn | ω is α-clumping} ,
τ 7−→ iper (α, τ)

302. This map iperα is bijective.
(b) Let σ ∈ Sn be an α-clumping permutation. Then, there exists a unique τ ∈ S` satisfying σ =

iper (α, τ).

Exercise 6.2.17. Prove Proposition 6.2.16.

Next, we recall that the concatenation α · β of two compositions α and β is defined in the same way as
the concatenation of two words; if we regard compositions as words over the alphabet {1, 2, 3, . . .}, then the
concatenation α · β of two compositions α and β is the concatenation αβ of the words α and β. Thus, we
are going to write αβ for the concatenation α · β of two compositions α and β from now on.

−−→
Iτ(1)

−−→
Iτ(2) · · ·

−−→
Iτ(`) is a permutation of the word 12 . . . n, and so there exists a permutation in Sn which (in one-line notation)

is this word, qed.
302This map is well-defined because for every τ ∈ S`, the permutation iper (α, τ) is α-clumping (according to Proposition

6.2.14(c)).
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Proposition 6.2.18. Let n ∈ N and m ∈ N. Let α be a composition of n, and β be a composition of m.
Let p = ` (α) and q = ` (β). Let τ ∈ Sp+q. Notice that iper (αβ, τ) ∈ Sn+m (since αβ is a composition of
n+m having length ` (αβ) = ` (α) + ` (β) = p+ q). Then, τ ∈ Shp,q if and only if iper (αβ, τ) ∈ Shn,m.

Exercise 6.2.19. Prove Proposition 6.2.18.

Here is one more simple fact:

Lemma 6.2.20. Let u and v be two words. Let n = ` (u) and m = ` (v). Let α be a composition of n, and
let β be a composition of m. Let p = ` (α) and q = ` (β). The concatenation αβ is a composition of n+m
having length ` (αβ) = ` (α)+ ` (β) = p+ q. Thus, the interval system corresponding to αβ is a (p+ q)-tuple

of intervals which covers [0 : n+m]
+

. Denote this (p+ q)-tuple by (I1, I2, . . . , Ip+q).
Let τ ∈ Shp,q. Set σ = iper (αβ, τ). Then,

u�
σ
v = (uv)

[
Iτ(1)

]
· (uv)

[
Iτ(2)

]
· · · · · (uv)

[
Iτ(p+q)

]
.

Exercise 6.2.21. Prove Lemma 6.2.20.

Having these notations and trivialities in place, we can say a bit more about the lexicographically highest
element of a shuffle product than what was said in Theorem 6.2.2:

Theorem 6.2.22. Let u and v be two words. Let n = ` (u) and m = ` (v).
Let (a1, a2, . . . , ap) be the CFL factorization of u. Let (b1, b2, . . . , bq) be the CFL factorization of v.
Let α be the p-tuple (` (a1) , ` (a2) , . . . , ` (ap)). Then, α is a composition303 of length p and size

∑p
k=1 ` (ak) =

`

a1a2 · · · ap︸ ︷︷ ︸
=u

 = ` (u) = n.

Let β be the q-tuple (` (b1) , ` (b2) , . . . , ` (bq)). Then, β is a composition of length q and size
∑q
k=1 ` (bk) =

m. 304

Now, α is a composition of length p and size n, and β is a composition of length q and size m. Thus, the
concatenation αβ of these two tuples is a composition of length p + q and size n + m. The interval system
corresponding to this composition αβ is a (p+ q)-tuple (since said composition has length p + q); denote
this (p+ q)-tuple by (I1, I2, . . . , Ip+q).

(a) If τ ∈ Shp,q satisfies (uv)
[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
, and if we set σ = iper (αβ, τ),

then σ ∈ Shn,m, and the word u�
σ
v is the lexicographically highest element of the multiset u� v.

(b) Let σ ∈ Shn,m be a permutation such that u�
σ
v is the lexicographically highest element of the multiset

u � v. Then, there exists a unique permutation τ ∈ Shp,q satisfying (uv)
[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥

· · · ≥ (uv)
[
Iτ(p+q)

]
and σ = iper (αβ, τ).

Proof. Before we step to the actual proof, we need to make some preparation. First of all, (I1, I2, . . . , Ip+q)
is the interval system corresponding to the composition αβ. In other words,

(6.2.2) (I1, I2, . . . , Ip+q) = intsys (αβ) .

But since α = (` (a1) , ` (a2) , . . . , ` (ap)) and β = (` (b1) , ` (b2) , . . . , ` (bq)), we have

αβ = (` (a1) , ` (a2) , . . . , ` (ap) , ` (b1) , ` (b2) , . . . , ` (bq)) .

Thus, (6.2.2) rewrites as

(I1, I2, . . . , Ip+q) = intsys (` (a1) , ` (a2) , . . . , ` (ap) , ` (b1) , ` (b2) , . . . , ` (bq)) .

By the definition of intsys (` (a1) , ` (a2) , . . . , ` (ap) , ` (b1) , ` (b2) , . . . , ` (bq)), we thus have

Ii =

[
i−1∑
k=1

` (ak) :
i∑

k=1

` (ak)

]+

for every i ∈ {1, 2, . . . , p} ,

303since Lyndon words are nonempty, and thus ` (ai) > 0 for every i
304The proof of this is the same as the proof of the fact that α is a composition of length p and size

∑p
k=1 ` (αk) = n.
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and besides

Ip+j =

[
n+

j−1∑
k=1

` (bk) : n+

j∑
k=1

` (bk)

]+

for every j ∈ {1, 2, . . . , q}

(since
∑p
k=1 ` (ak) = n). Moreover, Remark 6.2.6(c) shows that (I1, I2, . . . , Ip+q) is a (p+ q)-tuple of

nonempty intervals of Z and satisfies the following three properties:

• The intervals I1, I2, . . ., Ip+q form a set partition of the set [0 : n+m]
+

.
• We have I1 < I2 < · · · < Ip+q.
• We have |Ii| = ` (ai) for every i ∈ {1, 2, . . . , p} and |Ip+j | = ` (bj) for every j ∈ {1, 2, . . . , q}.

Of course, every i ∈ {1, 2, . . . , p} satisfies

(6.2.3) Ii ⊂ [0 : n]
+

and (uv) [Ii] = u [Ii] = ai.

Meanwhile, every i ∈ {p+ 1, p+ 2, . . . , p+ q} satisfies

(6.2.4) Ii ⊂ [n : n+m]
+

and (uv) [Ii] = v [Ii − n] = bi−p

(where Ii − n denotes the interval {k − n | k ∈ Ii}). We thus see that

(6.2.5) (uv) [Ii] is a Lyndon word for every i ∈ {1, 2, . . . , p+ q}
305.

By the definition of a CFL factorization, we have a1 ≥ a2 ≥ · · · ≥ ap and b1 ≥ b2 ≥ · · · ≥ bq.
We have σ ∈ Shn,m, so that σ−1 (1) < σ−1 (2) < · · · < σ−1 (n) and σ−1 (n+ 1) < σ−1 (n+ 2) < · · · <

σ−1 (n+m). In other words, the restriction of the map σ−1 to the interval [0 : n]
+

is strictly increasing,

and so is the restriction of the map σ−1 to the interval [n : n+m]
+

.
(b) We will first show that

(6.2.6) if J ⊂ [0 : n]
+

is an interval such that the word (uv) [J ] is Lyndon, then σ−1 (J) is an interval.

Proof of (6.2.6): We will prove (6.2.6) by strong induction over |J |.
So, fix some N ∈ N. Assume (as the induction hypothesis) that (6.2.6) has been proven whenever |J | < N .

We now need to prove (6.2.6) when |J | = N .

Let J ⊂ [0 : n]
+

be an interval such that the word (uv) [J ] is Lyndon and such that |J | = N . We have to
prove that σ−1 (J) is an interval. This is obvious if |J | = 1 (because in this case, σ−1 (J) is a one-element
set, thus trivially an interval). Hence, we WLOG assume that we don’t have |J | = 1. We also don’t have
|J | = 0, because (uv) [J ] has to be Lyndon (and the empty word is not). So we have |J | > 1. Now,
` ((uv) [J ]) = |J | > 1, and thus (uv) [J ] is a Lyndon word of length > 1. Let v′ be the (lexicographically)
smallest nonempty proper suffix of (uv) [J ]. Since v′ is a proper suffix of w, there exists a nonempty u′ ∈ A∗

such that (uv) [J ] = u′v′. Consider this u′.
Now, Theorem 6.1.30(a) (applied to (uv) [J ], u′ and v′ instead of w, u and v) yields that the words u′

and v′ are Lyndon. Also, Theorem 6.1.30(b) (applied to (uv) [J ], u′ and v′ instead of w, u and v) yields that
u′ < (uv) [J ] < v′.

But from the fact that (uv) [J ] = u′v′ with u′ and v′ both being nonempty, it becomes immediately clear
that we can write J as a union of two disjoint nonempty intervals K and L such that K < L, u′ = (uv) [K]
and v′ = (uv) [L]. Consider these K and L. The intervals K and L are nonempty and have their sizes add up
to |J | (since they are disjoint and their union is J), and hence both must have size smaller than |J | = N . So

K ⊂ [0 : n]
+

is an interval of size |K| < N having the property that (uv) [K] is Lyndon (since (uv) [K] = u′

is Lyndon). Thus, we can apply (6.2.6) to K instead of J (because of the induction hypothesis). As a
result, we conclude that σ−1 (K) is an interval. Similarly, we can apply (6.2.6) to L instead of J (we know
that (uv) [L] is Lyndon since (uv) [L] = v′), and learn that σ−1 (L) is an interval. The intervals σ−1 (K)
and σ−1 (L) are both nonempty (since K and L are nonempty), and their union is σ−1 (J) (because the

union of K and L is J). The nonempty intervals K and L both are subsets of [0 : n]
+

(since their union is

J ⊂ [0 : n]
+

), and their union K ∪ L is an interval (since their union K ∪ L is J , and we know that J is an
interval).

305Indeed, when i ≤ p, this follows from (6.2.3) and the fact that ai is Lyndon; whereas in the other case, this follows from

(6.2.4) and the fact that bi−p is Lyndon.
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Now, assume (for the sake of contradiction) that σ−1 (J) is not an interval. Since J is the union of K
and L, we have J = K ∪ L and thus σ−1 (J) = σ−1 (K ∪ L) = σ−1 (K) ∪ σ−1 (L) (since σ is a bijection).
Therefore, σ−1 (K) ∪ σ−1 (L) is not an interval (since σ−1 (J) is not an interval). Thus, Lemma 6.2.8(b)

yields that there exists a nonempty interval P ⊂ [n : n+m]
+

such that σ−1 (P ), σ−1 (K) ∪ σ−1 (P ) and
σ−1 (P ) ∪ σ−1 (L) are intervals and such that σ−1 (K) < σ−1 (P ) < σ−1 (L). Consider this P . Since P is
nonempty, we have |P | 6= 0.

Lemma 6.2.10(b) (applied to K and P instead of I and J) yields

(6.2.7) (uv) [K] · (uv) [P ] ≥ (uv) [P ] · (uv) [K] .

Since (uv) [K] = u′, this rewrites as

(6.2.8) u′ · (uv) [P ] ≥ (uv) [P ] · u′.
But Lemma 6.2.10(c) (applied to P and L instead of I and J) yields

(6.2.9) (uv) [P ] · (uv) [L] ≥ (uv) [L] · (uv) [P ] .

Since (uv) [L] = v′, this rewrites as

(6.2.10) (uv) [P ] · v′ ≥ v′ · (uv) [P ] .

Recall also that u′ < v′, and that both words u′ and v′ are Lyndon. Now, Corollary 6.1.17 (applied to
u′, v′ and (uv) [P ] instead of u, v and z) yields that (uv) [P ] is the empty word (because of (6.2.8) and
(6.2.10)), so that ` ((uv) [P ]) = 0. This contradicts ` ((uv) [P ]) = |P | 6= 0. This contradiction shows that our
assumption (that σ−1 (J) is not an interval) was wrong. Hence, σ−1 (J) is an interval. This completes the
induction step, and thus (6.2.6) is proven.

Similarly to (6.2.6), we can show that
(6.2.11)

if J ⊂ [n : n+m]
+

is an interval such that the word (uv) [J ] is Lyndon, then σ−1 (J) is an interval.

Now, let i ∈ {1, 2, . . . , p+ q} be arbitrary. We are going to prove that

(6.2.12) σ−1 (Ii) is an interval.

Proof of (6.2.12): We must be in one of the following two cases:
Case 1: We have i ∈ {1, 2, . . . , p}.
Case 2: We have i ∈ {p+ 1, p+ 2, . . . , p+ q}.
Let us first consider Case 1. In this case, we have i ∈ {1, 2, . . . , p}. Thus, Ii ⊂ [0 : n]

+
(by (6.2.3)). Also,

(6.2.3) yields that (uv) [Ii] = ai is a Lyndon word. Hence, (6.2.6) (applied to J = Ii) yields that σ−1 (Ii) is
an interval. Thus, (6.2.12) is proven in Case 1.

Similarly, we can prove (6.2.12) in Case 2, using (6.2.4) and (6.2.11) instead of (6.2.3) and (6.2.6), respec-
tively. Hence, (6.2.12) is proven.

So we know that σ−1 (Ii) is an interval. But we also know that either Ii ⊂ [0 : n]
+

or Ii ⊂ [n : n+m]
+

(depending on whether i ≤ p or i > p). As a consequence, the restriction of the map σ−1 to the interval Ii
is increasing (because the restriction of the map σ−1 to the interval [0 : n]

+
is strictly increasing, and so is

the restriction of the map σ−1 to the interval [n : n+m]
+

).
Now, let us forget that we fixed i. We thus have shown that every i ∈ {1, 2, . . . , p+ q} has the two

properties that:

• the set σ−1 (Ii) is an interval;
• the restriction of the map σ−1 to the interval Ii is increasing.

In other words, the permutation σ is (αβ)-clumping (since (I1, I2, . . . , Ip+q) is the interval system corre-
sponding to the composition αβ). Hence, Proposition 6.2.16(b) (applied to n+m, αβ and p+ q instead of
n, α and `) shows that there exists a unique τ ∈ Sp+q satisfying σ = iper (αβ, τ). Thus, the uniqueness part
of Theorem 6.2.22(b) (i.e., the claim that the τ in Theorem 6.2.22(b) is unique if it exists) is proven.

It now remains to prove the existence part of Theorem 6.2.22(b), i.e., to prove that there exists at least one
permutation τ ∈ Shp,q satisfying (uv)

[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
and σ = iper (αβ, τ). We

already know that there exists a unique τ ∈ Sp+q satisfying σ = iper (αβ, τ). Consider this τ . We will now
prove that (uv)

[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
and τ ∈ Shp,q. Once this is done, the existence

part of Theorem 6.2.22(b) will be proven, and thus the proof of Theorem 6.2.22(b) will be complete.
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Proposition 6.2.18 yields that τ ∈ Shp,q if and only if iper (αβ, τ) ∈ Shn,m. Since we know that
iper (αβ, τ) = σ ∈ Shn,m, we thus conclude that τ ∈ Shp,q. The only thing that remains to be proven
now is that

(6.2.13) (uv)
[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
.

Proof of (6.2.13): We have τ ∈ Shp,q. In other words, τ−1 (1) < τ−1 (2) < · · · < τ−1 (p) and τ−1 (p+ 1) <

τ−1 (p+ 2) < · · · < τ−1 (p+ q). In other words, the restriction of the map τ−1 to the interval [0 : p]
+

is

strictly increasing, and so is the restriction of the map τ−1 to the interval [p : p+ q]
+

.
Let i ∈ {1, 2, . . . , p+ q − 1}. We will show that

(6.2.14) (uv)
[
Iτ(i)

]
≥ (uv)

[
Iτ(i+1)

]
.

Clearly, both τ (i) and τ (i+ 1) belong to {1, 2, . . . , p+ q} = {1, 2, . . . , p}∪{p+ 1, p+ 2, . . . , p+ q}. Thus,
we must be in one of the following four cases:

Case 1: We have τ (i) ∈ {1, 2, . . . , p} and τ (i+ 1) ∈ {1, 2, . . . , p}.
Case 2: We have τ (i) ∈ {1, 2, . . . , p} and τ (i+ 1) ∈ {p+ 1, p+ 2, . . . , p+ q}.
Case 3: We have τ (i) ∈ {p+ 1, p+ 2, . . . , p+ q} and τ (i+ 1) ∈ {1, 2, . . . , p}.
Case 4: We have τ (i) ∈ {p+ 1, p+ 2, . . . , p+ q} and τ (i+ 1) ∈ {p+ 1, p+ 2, . . . , p+ q}.
Let us consider Case 1 first. In this case, we have τ (i) ∈ {1, 2, . . . , p} and τ (i+ 1) ∈ {1, 2, . . . , p}. From

the fact that the restriction of the map τ−1 to the interval [0 : p]
+

is strictly increasing, we can easily deduce
τ (i) < τ (i+ 1) 306. Therefore, aτ(i) ≥ aτ(i+1) (since a1 ≥ a2 ≥ · · · ≥ ap).

But (uv)
[
Iτ(i)

]
= aτ(i) (by (6.2.3), applied to τ (i) instead of i) and (uv)

[
Iτ(i+1)

]
= aτ(i+1) (similarly). In

view of these equalities, the inequality aτ(i) ≥ aτ(i+1) rewrites as (uv)
[
Iτ(i)

]
≥ (uv)

[
Iτ(i+1)

]
. Thus, (6.2.14)

is proven in Case 1.
Similarly, we can show (6.2.14) in Case 4 (observing that (uv)

[
Iτ(i)

]
= bτ(i)−p and (uv)

[
Iτ(i+1)

]
=

bτ(i+1)−p in this case).
Let us now consider Case 2. In this case, we have τ (i) ∈ {1, 2, . . . , p} and τ (i+ 1) ∈ {p+ 1, p+ 2, . . . , p+ q}.

From τ (i) ∈ {1, 2, . . . , p}, we conclude that Iτ(i) ⊂ [0 : n]
+

. From τ (i+ 1) ∈ {p+ 1, p+ 2, . . . , p+ q}, we

conclude that Iτ(i+1) ⊂ [n : n+m]
+

. The intervals Iτ(i) and Iτ(i+1) are clearly nonempty.
Proposition 6.2.14(d) (applied to n+m, αβ, p+q and (I1, I2, . . . , Ip+q) instead of n, α, ` and (I1, I2, . . . , I`))

yields that the sets σ−1
(
Iτ(i)

)
, σ−1

(
Iτ(i+1)

)
and σ−1

(
Iτ(i)

)
∪σ−1

(
Iτ(i+1)

)
are nonempty intervals, and that

we have σ−1
(
Iτ(i)

)
< σ−1

(
Iτ(i+1)

)
. Hence, Lemma 6.2.10(b) (applied to I = Iτ(i) and J = Iτ(i+1)) yields

(uv)
[
Iτ(i)

]
· (uv)

[
Iτ(i+1)

]
≥ (uv)

[
Iτ(i+1)

]
· (uv)

[
Iτ(i)

]
.

But (uv)
[
Iτ(i)

]
and (uv)

[
Iτ(i+1)

]
are Lyndon words (as a consequence of (6.2.5)). Thus, Proposition 6.1.18

(applied to (uv)
[
Iτ(i)

]
and (uv)

[
Iτ(i+1)

]
instead of u and v) shows that (uv)

[
Iτ(i)

]
≥ (uv)

[
Iτ(i+1)

]
if and

only if (uv)
[
Iτ(i)

]
·(uv)

[
Iτ(i+1)

]
≥ (uv)

[
Iτ(i+1)

]
·(uv)

[
Iτ(i)

]
. Since we know that (uv)

[
Iτ(i)

]
·(uv)

[
Iτ(i+1)

]
≥

(uv)
[
Iτ(i+1)

]
· (uv)

[
Iτ(i)

]
holds, we thus conclude that (uv)

[
Iτ(i)

]
≥ (uv)

[
Iτ(i+1)

]
. Thus, (6.2.14) is proven

in Case 2.
The proof of (6.2.14) in Case 3 is analogous to that in Case 2 (the main difference being that Lemma

6.2.10(c) is used in lieu of Lemma 6.2.10(b)).
Thus, (6.2.14) is proven in all possible cases. So we always have (6.2.14). In other words, (uv)

[
Iτ(i)

]
≥

(uv)
[
Iτ(i+1)

]
.

Now, forget that we fixed i. We hence have shown that (uv)
[
Iτ(i)

]
≥ (uv)

[
Iτ(i+1)

]
for all i ∈ {1, 2, . . . , p+ q − 1}.

This proves (6.2.13), and thus completes our proof of Theorem 6.2.22(b).
(a) Let τ ∈ Shp,q be such that

(6.2.15) (uv)
[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
.

Set σ = iper (αβ, τ). Then, Proposition 6.2.18 yields that τ ∈ Shp,q if and only if iper (αβ, τ) ∈ Shn,m. Since
we know that τ ∈ Shp,q, we can deduce from this that iper (αβ, τ) ∈ Shn,m, so that σ = iper (αβ, τ) ∈ Shn,m.

It remains to prove that the word u�
σ
v is the lexicographically highest element of the multiset u� v.

306Proof. Assume the contrary. Then, τ (i) ≥ τ (i+ 1). Since both τ (i) and τ (i+ 1) belong to {1, 2, . . . , p} = [0 : p]+, this

yields τ−1 (τ (i)) ≥ τ−1 (τ (i+ 1)) (since the restriction of the map τ−1 to the interval [0 : p]+ is strictly increasing), which

contradicts τ−1 (τ (i)) = i < i+ 1 = τ−1 (τ (i+ 1)). This contradiction proves the assumption wrong, qed.
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It is clear that the multiset u� v has some lexicographically highest element. This element has the form
u�
σ̃
v for some σ̃ ∈ Shn,m (because any element of this multiset has such a form). Consider this σ̃. Theorem

6.2.22(b) (applied to σ̃ instead of σ) yields that there exists a unique permutation τ̃ ∈ Shp,q satisfying
(uv)

[
Iτ̃(1)

]
≥ (uv)

[
Iτ̃(2)

]
≥ · · · ≥ (uv)

[
Iτ̃(p+q)

]
and σ̃ = iper (αβ, τ̃). (What we call τ̃ here is what has been

called τ in Theorem 6.2.22(b).)
Now, the chain of inequalities (uv)

[
Iτ̃(1)

]
≥ (uv)

[
Iτ̃(2)

]
≥ · · · ≥ (uv)

[
Iτ̃(p+q)

]
shows that the list(

(uv)
[
Iτ̃(1)

]
, (uv)

[
Iτ̃(2)

]
, . . . , (uv)

[
Iτ̃(p+q)

])
is the result of sorting the list ((uv) [I1] , (uv) [I2] , . . . , (uv) [Ip+q])

in decreasing order. But the chain of inequalities (6.2.15) shows that the list(
(uv)

[
Iτ(1)

]
, (uv)

[
Iτ(2)

]
, . . . , (uv)

[
Iτ(p+q)

])
is the result of sorting the same list ((uv) [I1] , (uv) [I2] , . . . , (uv) [Ip+q])

in decreasing order. So each of the two lists
(
(uv)

[
Iτ̃(1)

]
, (uv)

[
Iτ̃(2)

]
, . . . , (uv)

[
Iτ̃(p+q)

])
and(

(uv)
[
Iτ(1)

]
, (uv)

[
Iτ(2)

]
, . . . , (uv)

[
Iτ(p+q)

])
is the result of sorting one and the same list

((uv) [I1] , (uv) [I2] , . . . , (uv) [Ip+q]) in decreasing order. Since the result of sorting a given list in decreasing
order is unique, this yields(

(uv)
[
Iτ̃(1)

]
, (uv)

[
Iτ̃(2)

]
, . . . , (uv)

[
Iτ̃(p+q)

])
=
(
(uv)

[
Iτ(1)

]
, (uv)

[
Iτ(2)

]
, . . . , (uv)

[
Iτ(p+q)

])
.

Hence,

(6.2.16) (uv)
[
Iτ̃(1)

]
· (uv)

[
Iτ̃(2)

]
· · · · · (uv)

[
Iτ̃(p+q)

]
= (uv)

[
Iτ(1)

]
· (uv)

[
Iτ(2)

]
· · · · · (uv)

[
Iτ(p+q)

]
.

But Lemma 6.2.20 yields

(6.2.17) u�
σ
v = (uv)

[
Iτ(1)

]
· (uv)

[
Iτ(2)

]
· · · · · (uv)

[
Iτ(p+q)

]
.

Meanwhile, Lemma 6.2.20 (applied to τ̃ and σ̃ instead of τ and σ) yields

u�
σ̃
v = (uv)

[
Iτ̃(1)

]
· (uv)

[
Iτ̃(2)

]
· · · · · (uv)

[
Iτ̃(p+q)

]
= (uv)

[
Iτ(1)

]
· (uv)

[
Iτ(2)

]
· · · · · (uv)

[
Iτ(p+q)

]
(by (6.2.16))

= u�
σ
v (by (6.2.17)) .

Thus, u�
σ
v is the lexicographically highest element of the multiset u� v (since we know that u�

σ̃
v is the

lexicographically highest element of the multiset u� v). This proves Theorem 6.2.22(a). �

Now, in order to prove Theorem 6.2.2, we record a very simple fact about counting shuffles:

Proposition 6.2.23. Let p ∈ N and q ∈ N. Let W be a totally ordered set, and let h : {1, 2, . . . , p+ q} →W
be a map. Assume that h (1) ≥ h (2) ≥ · · · ≥ h (p) and h (p+ 1) ≥ h (p+ 2) ≥ · · · ≥ h (p+ q).

For every w ∈ W, let a (w) denote the number of all i ∈ {1, 2, . . . , p} satisfying h (i) = w, and let b (w)
denote the number of all i ∈ {p+ 1, p+ 2, . . . , p+ q} satisfying h (i) = w.

Then, the number of τ ∈ Shp,q satisfying h (τ (1)) ≥ h (τ (2)) ≥ · · · ≥ h (τ (p+ q)) is
∏
w∈W

(
a (w) + b (w)

a (w)

)
.

(Of course, all but finitely many factors of this product are 1.)

Exercise 6.2.24. Prove Proposition 6.2.23.

Proof of Theorem 6.2.2. Let n = ` (u) and m = ` (v). Define α, β and (I1, I2, . . . , Ip+q) as in Theorem
6.2.22.

Since (a1, a2, . . . , ap) is the CFL factorization of u, we have a1 ≥ a2 ≥ · · · ≥ ap and a1a2 · · · ap = u.
Similarly, b1 ≥ b2 ≥ · · · ≥ bq and b1b2 · · · bq = v.

From (6.2.3), we see that (uv) [Ii] = ai for every i ∈ {1, 2, . . . , p}. From (6.2.4), we see that (uv) [Ii] = bi−p
for every i ∈ {p+ 1, p+ 2, . . . , p+ q}. Combining these two equalities, we obtain

(6.2.18) (uv) [Ii] =

{
ai, if i ≤ p;
bi−p, if i > p

for every i ∈ {1, 2, . . . , p+ q} .

In other words,

(6.2.19) ((uv) [I1] , (uv) [I2] , . . . , (uv) [Ip+q]) = (a1, a2, . . . , ap, b1, b2, . . . , bq) .

(a) Let z be the lexicographically highest element of the multiset u � v. We must prove that z =
c1c2 · · · cp+q.
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Since z ∈ u� v, we can write z in the form u�
σ
v for some σ ∈ Shn,m (since we can write any element

of u � v in this form). Consider this σ. Then, u �
σ
v = z is the lexicographically highest element of the

multiset u� v. Hence, Theorem 6.2.22(b) yields that there exists a unique permutation τ ∈ Shp,q satisfying
(uv)

[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
and σ = iper (αβ, τ). Consider this τ .

Now, τ ∈ Shp,q ⊂ Sp+q is a permutation, and thus the list
(
(uv)

[
Iτ(1)

]
, (uv)

[
Iτ(2)

]
, . . . , (uv)

[
Iτ(p+q)

])
is

a rearrangement of the list ((uv) [I1] , (uv) [I2] , . . . , (uv) [Ip+q]). Due to (6.2.19), this rewrites as follows: The
list

(
(uv)

[
Iτ(1)

]
, (uv)

[
Iτ(2)

]
, . . . , (uv)

[
Iτ(p+q)

])
is a rearrangement of the list (a1, a2, . . . , ap, b1, b2, . . . , bq).

Hence,
(
(uv)

[
Iτ(1)

]
, (uv)

[
Iτ(2)

]
, . . . , (uv)

[
Iτ(p+q)

])
is the result of sorting the list (a1, a2, . . . , ap, b1, b2, . . . , bq)

in decreasing order (since (uv)
[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
). But since the result of sorting

the list (a1, a2, . . . , ap, b1, b2, . . . , bq) in decreasing order is (c1, c2, . . . , cp+q), this becomes(
(uv)

[
Iτ(1)

]
, (uv)

[
Iτ(2)

]
, . . . , (uv)

[
Iτ(p+q)

])
= (c1, c2, . . . , cp+q) .

Hence,

(uv)
[
Iτ(1)

]
· (uv)

[
Iτ(2)

]
· · · · · (uv)

[
Iτ(p+q)

]
= c1 · c2 · · · · · cp+q.

But Lemma 6.2.20 yields

u�
σ
v = (uv)

[
Iτ(1)

]
· (uv)

[
Iτ(2)

]
· · · · · (uv)

[
Iτ(p+q)

]
.

Altogether, we have

z = u�
σ
v = (uv)

[
Iτ(1)

]
· (uv)

[
Iτ(2)

]
· · · · · (uv)

[
Iτ(p+q)

]
= c1 · c2 · · · · · cp+q = c1c2 · · · cp+q.

This proves Theorem 6.2.2(a).

(b) Recall that u� v =
{
u�
σ
v : σ ∈ Shn,m

}
multiset

. Hence,

(the multiplicity with which the lexicographically highest element of the multiset

u� v appears in the multiset u� v)

=
(

the number of all σ ∈ Shn,m such that u�
σ
v is the

lexicographically highest element of the multiset u� v) .

However, for a given σ ∈ Shn,m, we know that u �
σ
v is the lexicographically highest element of the

multiset u � v if and only if σ can be written in the form σ = iper (αβ, τ) for some τ ∈ Shp,q satisfying
(uv)

[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
. 307 Hence,

(
the number of all σ ∈ Shn,m such that u�

σ
v is the

lexicographically highest element of the multiset u� v)

= (the number of all σ ∈ Shn,m which can be written in the form σ = iper (αβ, τ)

for some τ ∈ Shp,q satisfying (uv)
[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

])
=
(
the number of all τ ∈ Shp,q satisfying (uv)

[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

])

307In fact, the “if” part of this assertion follows from Theorem 6.2.22(a), whereas its “only if” part follows from Theorem

6.2.22(b).
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(because if a σ ∈ Shn,m can be written in the form σ = iper (αβ, τ) for some τ ∈ Shp,q satisfying (uv)
[
Iτ(1)

]
≥

(uv)
[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
, then σ can be written uniquely in this form308). Thus,

(the multiplicity with which the lexicographically highest element of the multiset

u� v appears in the multiset u� v)

=
(

the number of all σ ∈ Shn,m such that u�
σ
v is the

lexicographically highest element of the multiset u� v)

=
(
the number of all τ ∈ Shp,q satisfying (uv)

[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

])
.(6.2.20)

Now, define a map h : {1, 2, . . . , p+ q} → L by

h (i) =

{
ai, if i ≤ p;
bi−p, if i > p

for every i ∈ {1, 2, . . . , p+ q} .

Then, h (1) ≥ h (2) ≥ · · · ≥ h (p) (because this is just a rewriting of a1 ≥ a2 ≥ · · · ≥ ap) and h (p+ 1) ≥
h (p+ 2) ≥ · · · ≥ h (p+ q) (since this is just a rewriting of b1 ≥ b2 ≥ · · · ≥ bq). For every w ∈ L, the number
of all i ∈ {1, 2, . . . , p} satisfying h (i) = w is∣∣∣∣∣∣∣

i ∈ {1, 2, . . . , p} | h (i)︸︷︷︸
=ai

= w


∣∣∣∣∣∣∣

= |{i ∈ {1, 2, . . . , p} | ai = w}|
= (the number of terms in the list (a1, a2, . . . , ap) which are equal to w)

= (the number of terms in the CFL factorization of u which are equal to w)

(since the list (a1, a2, . . . , ap) is the CFL factorization of u)

= multw u

(because multw u is defined as the number of terms in the CFL factorization of u which are equal to w).
Similarly, for every w ∈ L, the number of all i ∈ {p+ 1, p+ 2, . . . , p+ q} satisfying h (i) = w equals
multw v. Thus, we can apply Proposition 6.2.23 to W = L, a (w) = multw u and b (w) = multw v. As
a result, we see that the number of τ ∈ Shp,q satisfying h (τ (1)) ≥ h (τ (2)) ≥ · · · ≥ h (τ (p+ q)) is∏
w∈L

(
multw u+ multw v

multw u

)
. In other words,

(the number of all τ ∈ Shp,q satisfying h (τ (1)) ≥ h (τ (2)) ≥ · · · ≥ h (τ (p+ q)))

=
∏
w∈L

(
multw u+ multw v

multw u

)
.(6.2.21)

However, for every i ∈ {1, 2, . . . , p+ q}, we have

h (i) =

{
ai, if i ≤ p;
bi−p, if i > p

= (uv) [Ii] (by (6.2.18)) .

308Proof. Let σ ∈ Shn,m be such that σ can be written in the form σ = iper (αβ, τ) for some τ ∈ Shp,q satisfying
(uv)

[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
. Then, the word u �

σ
v is the lexicographically highest element of the

multiset u� v (according to Theorem 6.2.22(a)). Hence, there exists a unique permutation τ ∈ Shp,q satisfying (uv)
[
Iτ(1)

]
≥

(uv)
[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
and σ = iper (αβ, τ) (according to Theorem 6.2.22(b)). In other words, σ can be written

uniquely in the form σ = iper (αβ, τ) for some τ ∈ Shp,q satisfying (uv)
[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
, qed.
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Hence, for any τ ∈ Shp,q, the condition h (τ (1)) ≥ h (τ (2)) ≥ · · · ≥ h (τ (p+ q)) is equivalent to (uv)
[
Iτ(1)

]
≥

(uv)
[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

]
. Thus,the number of all τ ∈ Shp,q satisfying h (τ (1)) ≥ h (τ (2)) ≥ · · · ≥ h (τ (p+ q))︸ ︷︷ ︸

this is equivalent to

(uv)[Iτ(1)]≥(uv)[Iτ(2)]≥···≥(uv)[Iτ(p+q)]


=
(
the number of all τ ∈ Shp,q satisfying (uv)

[
Iτ(1)

]
≥ (uv)

[
Iτ(2)

]
≥ · · · ≥ (uv)

[
Iτ(p+q)

])
= (the multiplicity with which the lexicographically highest element of the multiset

u� v appears in the multiset u� v)

(by (6.2.20)). Compared with (6.2.21), this yields

(the multiplicity with which the lexicographically highest element of the multiset

u� v appears in the multiset u� v)

=
∏
w∈L

(
multw u+ multw v

multw u

)
.

This proves Theorem 6.2.2(b).
(c) We shall use the notations of Theorem 6.2.2(a) and Theorem 6.2.2(b).
Assume that ai ≥ bj for every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}. This, combined with a1 ≥ a2 ≥

· · · ≥ ap and b1 ≥ b2 ≥ · · · ≥ bq, yields that a1 ≥ a2 ≥ · · · ≥ ap ≥ b1 ≥ b2 ≥ · · · ≥ bq. Thus, the list
(a1, a2, . . . , ap, b1, b2, . . . , bq) is weakly decreasing. Thus, the result of sorting the list (a1, a2, . . . , ap, b1, b2, . . . , bq)
in decreasing order is the list (a1, a2, . . . , ap, b1, b2, . . . , bq) itself. But since this result is (c1, c2, . . . , cp+q), this
shows that (c1, c2, . . . , cp+q) = (a1, a2, . . . , ap, b1, b2, . . . , bq). Hence, c1c2 · · · cp+q = a1a2 · · · ap︸ ︷︷ ︸

=u

b1b2 · · · bq︸ ︷︷ ︸
=v

=

uv. Now, Theorem 6.2.2(a) yields that the lexicographically highest element of the multiset u � v is
c1c2 · · · cp+q = uv. This proves Theorem 6.2.2(c).

(d) We shall use the notations of Theorem 6.2.2(a) and Theorem 6.2.2(b).
Assume that ai > bj for every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}. Thus, ai ≥ bj for every i ∈

{1, 2, . . . , p} and j ∈ {1, 2, . . . , q}. Hence, Theorem 6.2.2(c) yields that the lexicographically highest element
of the multiset u� v is uv. Therefore, Theorem 6.2.2(b) shows that the multiplicity with which this word

uv appears in the multiset u� v is
∏
w∈L

(
multw u+ multw v

multw u

)
.

Now, every w ∈ L satisfies

(
multw u+ multw v

multw u

)
= 1 309. Thus, as we know, the multiplicity with

which this word uv appears in the multiset u� v is
∏
w∈L

(
multw u+ multw v

multw u

)
︸ ︷︷ ︸

=1

=
∏
w∈L 1 = 1. This proves

Theorem 6.2.2(d).
(e) We shall use the notations of Theorem 6.2.2(a) and Theorem 6.2.2(b).
Since u is a Lyndon word, the 1-tuple (u) is the CFL factorization of u. Hence, we can apply Theorem

6.2.2(c) to 1 and (u) instead of p and (a1, a2, . . . , ap). As a result, we conclude that the lexicographically
highest element of the multiset u� v is uv. It remains to prove that the multiplicity with which this word
uv appears in the multiset u� v is multu v + 1.

309Proof. Assume the contrary. Then, there exists at least one w ∈ L such that
(multw u+ multw v

multw u

)
6= 1. Consider this

w. Both multw u and multw v must be positive (since
(multw u+ multw v

multw u

)
6= 1). Since multw u is positive, there must be at

least one term in the CFL factorization of u which is equal to w. In other words, there is at least one i ∈ {1, 2, . . . , p} satisfying

ai = w (since (a1, a2, . . . , ap) is the CFL factorization of u). Similarly, there is at least one j ∈ {1, 2, . . . , q} satisfying bj = w.

These i and j satisfy ai = w = bj , which contradicts ai > bj . This contradiction shows that our assumption was false, qed.
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For every w ∈ L satisfying w 6= u, we have

(6.2.22) multw u = 0
310. Also, multu u = 1 (for a similar reason). But uv is the lexicographically highest element of the multiset
u� v. Hence, the multiplicity with which the word uv appears in the multiset u� v is the multiplicity with
which the lexicographically highest element of the multiset u� v appears in the multiset u� v. According
to Theorem 6.2.2(b), the latter multiplicity is∏

w∈L

(
multw u+ multw v

multw u

)
=

(
multu u+ multu v

multu u

)
︸ ︷︷ ︸

=

(
1 + multu v

1

)
(since multu u=1)

·
∏
w∈L;
w 6=u

(
multw u+ multw v

multw u

)
︸ ︷︷ ︸

=

(
0 + multw v

0

)
(since multw u=0 (by (6.2.22)))

(since u ∈ L)

=

(
1 + multu v

1

)
︸ ︷︷ ︸

=1+multu v=multu v+1

·
∏
w∈L;
w 6=u

(
0 + multw v

0

)
︸ ︷︷ ︸

=1

= (multu v + 1) ·
∏
w∈L;
w 6=u

1

︸ ︷︷ ︸
=1

= multu v + 1.

This proves Theorem 6.2.2(e). �

As an application of our preceding results, we can prove a further necessary and sufficient criterion for a
word to be Lyndon; this criterion is due to Chen/Fox/Lyndon [38, A′′ = A′′′′]:

Exercise 6.2.25. Let w ∈ A∗ be a nonempty word. Prove that w is Lyndon if and only if for any two
nonempty words u ∈ A∗ and v ∈ A∗ satisfying w = uv, there exists at least one s ∈ u� v satisfying s > w.

6.3. Radford’s theorem on the shuffle algebra. We recall that our goal in Chapter 6 is to exhibit an
algebraically independent generating set of the k-algebra QSym. Having the notion of Lyndon words –
which will, to some extent, but not literally, parametrize this generating set – in place, we could start the
construction of this generating set immediately. However, it might come off as rather unmotivated this way,
and so we begin with some warmups. First, we shall prove Radford’s theorem on the shuffle algebra.

Definition 6.3.1. A polynomial algebra will mean a k-algebra which is isomorphic to the polynomial ring
k [xi | i ∈ I] as a k-algebra (for some indexing set I). Note that I need not be finite.

Equivalently, a polynomial algebra can be defined as a k-algebra which has an algebraically independent
(over k) generating set. Yet equivalently, a polynomial algebra can be defined as a k-algebra which is
isomorphic to the symmetric algebra of a free k-module.

Keep in mind that when we say that a certain bialgebra A is a polynomial algebra, we are making no
statement about the coalgebra structure on A. The isomorphism from A to the symmetric algebra of a free
k-module need not be a coalgebra isomorphism, and the algebraically independent generating set of A need
not consist of primitives. Thus, showing that a bialgebra A is a polynomial algebra does not trivialize the
study of its bialgebraic structure.

Remark 6.3.2. Let V be a k-module, and let A be a totally ordered set. Let ba be an element of V for every
a ∈ A. Consider the shuffle algebra Sh (V ) (defined in Definition 1.6.7).

For every word w ∈ A∗ over the alphabet A, let us define an element bw of Sh (V ) by bw = bw1
bw2
· · · bw` ,

where ` is the length of w. (The multiplication used here is that of T (V ), not that of Sh (V ); the latter is
denoted by �.)

Let u ∈ A∗ and v ∈ A∗ be two words over the alphabet A. Let n = ` (u) and m = ` (v). Then,

bu � bv =
∑

σ∈Shn,m

bu�
σ
v.

310Proof of (6.2.22): Let w ∈ L be such that w 6= u. Then, the number of terms in the list (u) which are equal to w is 0.
Since (u) is the CFL factorization of u, this rewrites as follows: The number of terms in the CFL factorization of u which are

equal to w is 0. In other words, multw u = 0. This proves (6.2.22).
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Exercise 6.3.3. Prove Remark 6.3.2.
[Hint: This follows from the definition of �.]

We can now state Radford’s theorem [177, Theorem 3.1.1(e)]:

Theorem 6.3.4. Assume that Q is a subring of k. Let V be a free k-module with a basis (ba)a∈A, where
A is a totally ordered set. Then, the shuffle algebra Sh (V ) (defined in Definition 1.6.7) is a polynomial
k-algebra. An algebraically independent generating set of Sh (V ) can be constructed as follows:

For every word w ∈ A∗ over the alphabet A, let us define an element bw of Sh (V ) by bw = bw1bw2 · · · bw` ,
where ` is the length of w. (The multiplication used here is that of T (V ), not that of Sh (V ); the latter
is denoted by �.) Let L denote the set of all Lyndon words over the alphabet A. Then, (bw)w∈L is an
algebraically independent generating set of the k-algebra Sh (V ).

Example 6.3.5. For this example, let A be the alphabet {1, 2, 3, . . .} with total order given by 1 < 2 <
3 < · · · , and assume that Q is a subring of k. Let V be the free k-module with basis (ba)a∈A. We use
the notations of Theorem 6.3.4. Then, Theorem 6.3.4 yields that (bw)w∈L is an algebraically independent
generating set of the k-algebra Sh (V ). Here are some examples of elements of Sh (V ) written as polynomials
in this generating set:

b12 = b12 (the word 12 itself is Lyndon) ;

b21 = b1 � b2 − b12;

b11 =
1

2
b1 � b1;

b123 = b123 (the word 123 itself is Lyndon) ;

b132 = b132 (the word 132 itself is Lyndon) ;

b213 = b2 � b13 − b123 − b132;

b231 = b23 � b1 − b2 � b13 + b132;

b312 = b3 � b12 − b123 − b132;

b321 = b1 � b2 � b3 − b23 � b1 − b3 � b12 + b123;

b112 = b112 (the word 112 itself is Lyndon) ;

b121 = b12 � b1 − 2b112;

b1212 =
1

2
b12 � b12 − 2b1122;

b4321 = b1 � b2 � b3 � b4 − b1 � b2 � b34 − b1 � b23 � b4 − b12 � b3 � b4

+ b1 � b234 + b12 � b34 + b123 � b4 − b1234.

311

Note that Theorem 6.3.4 cannot survive without the condition that Q be a subring of k. For instance, for
any v ∈ V , we have v � v = 2vv in Sh (V ), which vanishes if 2 = 0 in k; this stands in contrast to the fact
that polynomial k-algebras are integral domains when k itself is one. We will see that QSym is less sensitive
towards the base ring in this regard (although proving that QSym is a polynomial algebra is much easier
when Q is a subring of k).

311A pattern emerges in the formulas for b21, b321 and b4321: for every n ∈ N, we have

b(n,n−1,...,1) =
∑

α∈Compn

(−1)n−`(α) bd1(α) � bd2(α) � · · ·� bd`(α)(α),

where (d1 (α)) · (d2 (α)) · · · · ·
(
d`(α) (α)

)
is the factorization of the word (1, 2, . . . , n) into factors of length α1, α2, . . ., α` (where

α = (α1, α2, . . . , α`)). This can be proved by an application of Lemma 5.2.7(a) (as it is easy to see that for any composition α

of n, we have

bd1(α) � bd2(α) � · · ·� bd`(α)(α) =
(
the sum of bπ for all words π ∈ Sn satisfying Des

(
π−1

)
⊂ D (α)

)
=

∑
β∈Compn;
β coarsens α

∑
π∈Sn;

γ(π−1)=β

bπ ,

where γ
(
π−1

)
denotes the composition τ of n satisfying D (τ) = Des

(
π−1

)
).
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Remark 6.3.6. Theorem 6.3.4 can be contrasted with the following fact: If Q is a subring of k, then the shuffle
algebra Sh (V ) of any k-module V (not necessarily free!) is isomorphic (as a k-algebra) to the symmetric

algebra Sym
(

(ker ε) / (ker ε)
2
)

(by Theorem 1.7.29(e), applied to A = Sh (V )). This fact is closely related

to Theorem 6.3.4, but neither follows from it (since Theorem 6.3.4 only considers the case of free k-modules

V ) nor yields it (since this fact does not provide explicit generators for the k-module (ker ε) / (ker ε)
2

and
thus for the k-algebra Sh (V )).

In our proof of Theorem 6.3.4 (but not only there), we will use part (a) of the following lemma312, which
makes proving that certain families indexed by Lyndon words generate certain k-algebras more comfortable:

Lemma 6.3.7. Let A be a commutative k-algebra. Let A be a totally ordered set. Let L be the set of all
Lyndon words over the alphabet A. Let bw be an element of A for every w ∈ L. For every word u ∈ A∗,
define an element bu of A by bu = ba1ba2 · · · bap , where (a1, a2, . . . , ap) is the CFL factorization of u.

(a) The family (bw)w∈L is an algebraically independent generating set of the k-algebra A if and only if
the family (bu)u∈A∗ is a basis of the k-module A.

(b) The family (bw)w∈L generates the k-algebra A if and only if the family (bu)u∈A∗ spans the k-module
A.

(c) Assume that the k-algebra A is graded. Let wt : A → {1, 2, 3, . . .} be any map such that for every
N ∈ {1, 2, 3, . . .}, the set wt−1 (N) is finite.

For every word w ∈ A∗, define an element Wt (w) ∈ N by Wt (w) = wt (w1) + wt (w2) + · · · +
wt (wk), where k is the length of w.

Assume that for every w ∈ L, the element bw of A is homogeneous of degree Wt (w).
Assume further that the k-module A has a basis (gu)u∈A∗ having the property that for every

u ∈ A∗, the element gu of A is homogeneous of degree Wt (u).
Assume also that the family (bw)w∈L generates the k-algebra A.
Then, this family (bw)w∈L is an algebraically independent generating set of the k-algebra A.

Exercise 6.3.8. Prove Lemma 6.3.7.
[Hint: For (a) and (b), notice that the bu are the “monomials” in the bw. For (c), use Exercise 2.5.18(b)

in every homogeneous component of A.]

The main workhorse of our proof of Theorem 6.3.4 will be the following consequence of Theorem 6.2.2(c):

Proposition 6.3.9. Let V be a free k-module with a basis (ba)a∈A, where A is a totally ordered set.
For every word w ∈ A∗ over the alphabet A, let us define an element bw of Sh (V ) by bw = bw1

bw2
· · · bw` ,

where ` is the length of w. (The multiplication used here is that of T (V ), not that of Sh (V ); the latter is
denoted by �.)

For every word u ∈ A∗, define an element bu by bu = ba1 � ba2 � · · ·� bap , where (a1, a2, . . . , ap) is the
CFL factorization of u.

If ` ∈ N and if x ∈ A` is a word, then there is a family (ηx,y)y∈A` ∈ NA` of elements of N satisfying

bx =
∑
y∈A`;
y≤x

ηx,yby

and ηx,x 6= 0 (in N).

Before we prove this, let us show a very simple lemma:

Lemma 6.3.10. Let A be a totally ordered set. Let n ∈ N and m ∈ N. Let σ ∈ Shn,m.
(a) If u, v and v′ are three words satisfying ` (u) = n, ` (v) = m, ` (v′) = m and v′ < v, then u�

σ
v′ < u�

σ
v.

(b) If u, u′ and v are three words satisfying ` (u) = n, ` (u′) = n, ` (v) = m and u′ < u, then u′�
σ
v < u�

σ
v.

(c) If u, v and v′ are three words satisfying ` (u) = n, ` (v) = m, ` (v′) = m and v′ ≤ v, then u�
σ
v′ ≤ u�

σ
v.

Exercise 6.3.11. Prove Lemma 6.3.10.

312And in a later proof, we will also use its part (c) (which is tailored for application to QSym).
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Exercise 6.3.12. Prove Proposition 6.3.9.
[Hint: Proceed by induction over `. In the induction step, apply Theorem 6.2.2(c)313 to u = a1 and

v = a2a3 · · · ap, where (a1, a2, . . . , ap) is the CFL factorization of x. Use Lemma 6.3.10 to get rid of smaller
terms.]

Exercise 6.3.13. Prove Theorem 6.3.4.
[Hint: According to Lemma 6.3.7(a), it suffices to show that the family (bu)u∈A∗ defined in Proposition

6.3.9 is a basis of the k-module Sh (V ). When A is finite, the latter can be proven by triangularity using
Proposition 6.3.9. Reduce the general case to that of finite A.]

6.4. Polynomial freeness of QSym: statement and easy parts.

Definition 6.4.1. For the rest of Section 6.4 and for Section 6.5, we introduce the following notations: We
let A be the totally ordered set {1, 2, 3, . . .} with its natural order (that is, 1 < 2 < 3 < · · · .) Thus, the
words over A are precisely the compositions. That is, A∗ = Comp. We let L denote the set of all Lyndon
words over A. These Lyndon words are also called Lyndon compositions.

A natural question is how many Lyndon compositions of a given size exist. While we will not use the
answer, we nevertheless record it:

Exercise 6.4.2. Show that the number of Lyndon compositions of size n equals

1

n

∑
d|n

µ (d)
(

2n/d − 1
)

=
1

n

∑
d|n

µ (d) 2n/d − δn,1

for every positive integer n (where “
∑
d|n

” means a sum over all positive divisors of n, and where µ is the

number-theoretic Möbius function).
[Hint: One solution is similar to the solution of Exercise 6.1.29 using CFL factorization. Another proceeds

by defining a bijection between Lyndon compositions and Lyndon words over a two-letter alphabet {0,1}
(with 0 < 1) which are 6= 1. 314]

Let us now state Hazewinkel’s result ([89, Theorem 8.1], [93, §6.7]) which is the main goal of Chapter 6:

Theorem 6.4.3. The k-algebra QSym is a polynomial algebra. It is isomorphic, as a graded k-algebra, to

the k-algebra k [xw | w ∈ L]. Here, the grading on k [xw | w ∈ L] is defined by setting deg (xw) =
∑`(w)
i=1 wi

for every w ∈ L.

We shall prove Theorem 6.4.3 in the next section (Section 6.5). But the particular case of Theorem 6.4.3
when Q is a subring of k can be proven more easily; we state it as a proposition:

Proposition 6.4.4. Assume that Q is a subring of k. Then, Theorem 6.4.3 holds.

We will give two proofs of Proposition 6.4.4 in this Section 6.4; a third proof of Proposition 6.4.4 will
immediately result from the proof of Theorem 6.4.3 in Section 6.5. (There is virtue in giving three different
proofs, as they all construct different isomorphisms k [xw | w ∈ L]→ QSym.)

Our first proof – originating in Malvenuto’s [145, Corollaire 4.20] – can be given right away; it relies on
Exercise 5.4.12:

First proof of Proposition 6.4.4. Let V be the free k-module with basis (bn)n∈{1,2,3,...}. Endow the k-module

V with a grading by assigning to each basis vector bn the degree n. Exercise 5.4.12(k) shows that QSym
is isomorphic to the shuffle algebra Sh (V ) (defined as in Proposition 1.6.7) as Hopf algebras. By being a

313Or Theorem 6.2.2(e), if you prefer.
314This bijection is obtained by restricting the bijection

Comp→ {w ∈ {0,1}∗ | w does not start with 1} ,

(α1, α2, . . . , α`) 7→ 01α1−101α2−1 · · ·01α`−1

(where 01k is to be read as 0
(
1k
)
, not as (01)k) to the set of Lyndon compositions. The idea behind this bijection is well-known

in the Grothendieck-Teichmüller community: see, e.g., [94, §3.1] (and see [77, Note 5.16] for a different appearance of this idea).
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bit more careful, we can obtain the slightly stronger result that QSym is isomorphic to the shuffle algebra
Sh (V ) as graded Hopf algebras315. In particular, QSym ∼= Sh (V ) as graded k-algebras.

Theorem 6.3.4 (applied to ba = ba) yields that the shuffle algebra Sh (V ) is a polynomial k-algebra, and
that an algebraically independent generating set of Sh (V ) can be constructed as follows:

For every word w ∈ A∗ over the alphabet A, let us define an element bw of Sh (V ) by bw = bw1
bw2
· · · bw` ,

where ` is the length of w. (The multiplication used here is that of T (V ), not that of Sh (V ); the latter is
denoted by �.) Then, (bw)w∈L is an algebraically independent generating set of the k-algebra Sh (V ).

For every w ∈ A∗, we have bw = bw1
bw2
· · · bw`(w)

(by the definition of bw). For every w ∈ A∗, the element

bw = bw1bw2 · · · bw`(w)
of Sh (V ) is homogeneous of degree

∑`(w)
i=1 deg (bwi)︸ ︷︷ ︸

=wi

=
∑`(w)
i=1 wi.

Now, define a grading on the k-algebra k [xw | w ∈ L] by setting deg (xw) =
∑`(w)
i=1 wi for every w ∈ L. By

the universal property of the polynomial algebra k [xw | w ∈ L], we can define a k-algebra homomorphism
Φ : k [xw | w ∈ L]→ Sh (V ) by setting

Φ (xw) = bw for every w ∈ L.

This homomorphism Φ is a k-algebra isomorphism (since (bw)w∈L is an algebraically independent gener-
ating set of the k-algebra Sh (V )) and is graded (because for every w ∈ L, the element bw of Sh (V ) is

homogeneous of degree
∑`(w)
i=1 wi = deg (xw)). Thus, Φ is an isomorphism of graded k-algebras. Hence,

Sh (V ) ∼= k [xw | w ∈ L] as graded k-algebras. Altogether, QSym ∼= Sh (V ) ∼= k [xw | w ∈ L] as graded
k-algebras. Thus, QSym is a polynomial algebra. This proves Theorem 6.4.3 under the assumption that Q
be a subring of k. In other words, this proves Proposition 6.4.4. �

Our second proof of Proposition 6.4.4 comes from Hazewinkel/Gubareni/Kirichenko [93] (where Proposi-
tion 6.4.4 appears as [93, Theorem 6.5.13]). This proof will construct an explicit algebraically independent
family generating the k-algebra QSym. 316 The generating set will be very unsophisticated: it will be
(Mα)α∈L, where A and L are as in Theorem 6.4.3. Here, we are using the fact that words over the alphabet
{1, 2, 3, . . .} are the same thing as compositions, so, in particular, a monomial quasisymmetric function Mα

is defined for every such word α.
It takes a bit of work to show that this family indeed fits the bill. We begin with a corollary of Proposition

5.1.3 that is essentially obtained by throwing away all non-bijective maps f :

Proposition 6.4.5. Let α ∈ A∗ and β ∈ A∗. Then,

MαMβ

=
∑

γ∈α�β

Mγ + (a sum of terms of the form Mδ with δ ∈ A∗ satisfying ` (δ) < ` (α) + ` (β)) .

317

Exercise 6.4.6. Prove Proposition 6.4.5.
[Hint: Recall what was said about the p = `+m case in Example 5.1.4.]

Corollary 6.4.7. Let α ∈ A∗ and β ∈ A∗. Then, MαMβ is a sum of terms of the form Mδ with δ ∈ A∗

satisfying ` (δ) ≤ ` (α) + ` (β).

Exercise 6.4.8. Prove Corollary 6.4.7.

We now define a partial order on the compositions of a given nonnegative integer:

315Proof. In the solution of Exercise 5.4.12(k), we have shown that QSym ∼= T (V )o as graded Hopf algebras. But Remark
1.6.9(b) shows that the Hopf algebra T (V )o is naturally isomorphic to the shuffle algebra Sh (V o) as Hopf algebras; it is

easy to see that the natural isomorphism T (V )o → Sh (V o) is graded (because it is the direct sum of the isomorphisms(
V ⊗n

)o → (V o)⊗n over all n ∈ N, and each of these isomorphisms is graded). Hence, T (V )o ∼= Sh (V o) as graded Hopf
algebras. But V o ∼= V as graded k-modules (since V is of finite type), and thus Sh (V o) ∼= Sh (V ) as graded Hopf algebras.
Altogether, we obtain QSym ∼= T (V )o ∼= Sh (V o) ∼= Sh (V ) as graded Hopf algebras, qed.

316We could, of course, obtain such a family from our above proof as well (this is done by Malvenuto in [145, Corollaire
4.20]), but it won’t be a very simple one.

317The sum
∑
γ∈α�βMγ ranges over the multiset α�β; if an element appears several times in α�β, then it has accordingly

many addends corresponding to it.
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Definition 6.4.9. Let n ∈ N. We define a binary relation ≤
wll

on the set Compn as follows: For two

compositions α and β in Compn, we set α ≤
wll
β if and only if

either ` (α) < ` (β) or (` (α) = ` (β) and α ≤ β in lexicographic order) .

This binary relation ≤
wll

is the smaller-or-equal relation of a total order on Compn; we refer to said total order

as the wll-order on Compn, and we denote by <
wll

the smaller relation of this total order.

Notice that if α and β are two compositions satisfying ` (α) = ` (β), then α ≤ β in lexicographic order if
and only if α ≤ β with respect to the relation ≤ defined in Definition 6.1.1.

A remark about the name “wll-order” is in order. We have taken this notation from [89, Definition 6.7.14],
where it is used for an extension of this order to the whole set Comp. We will never use this extension, as
we will only ever compare two compositions of the same integer.318

We now state a fact which is similar (and plays a similar role) to Proposition 6.3.9:

Proposition 6.4.10. For every composition u ∈ Comp = A∗, define an element Mu ∈ QSym by Mu =
Ma1

Ma2
· · ·Map , where (a1, a2, . . . , ap) is the CFL factorization of the word u.

If n ∈ N and if x ∈ Compn, then there is a family (ηx,y)y∈Compn
∈ NCompn of elements of N satisfying

Mx =
∑

y∈Compn;
y≤

wll
x

ηx,yMy

and ηx,x 6= 0 (in N).

Before we prove it, let us show the following lemma:

Lemma 6.4.11. Let n ∈ N and m ∈ N. Let u ∈ Compn and v ∈ Compm. Let z be the lexicographically
highest element of the multiset u� v.

(a) We have z ∈ Compn+m.
(b) There exists a positive integer h such that

MuMv = hMz +

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
z

)
.

(c) Let v′ ∈ Compm be such that v′ <
wll
v. Then,

MuMv′ =

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
z

)
.

Exercise 6.4.12. Prove Lemma 6.4.11.
[Hint: For (b), set h to be the multiplicity with which the word z appears in the multiset u� v, then use

Proposition 6.4.5 and notice that MuMv is homogeneous of degree n+m. For (c), use (b) for v′ instead of
v and notice that Lemma 6.3.10(a) shows that the lexicographically highest element of the multiset u� v′

is <
wll
z.]

Exercise 6.4.13. Prove Proposition 6.4.10.
[Hint: Proceed by strong induction over n. In the induction step, let (a1, a2, . . . , ap) be the CFL fac-

torization of x, and set u = a1 and v = a2a3 · · · ap; then apply Proposition 6.4.10 to v instead of x, and
multiply the resulting equality Mv =

∑
y∈Comp|v|;

y≤
wll
v

ηv,yMy with Mu to obtain an expression for MuMv = Mx.

Use Lemma 6.4.11 to show that this expression has the form
∑

y∈Compn;
y≤

wll
x

ηx,yMy with ηx,x 6= 0; here it helps to

remember that the lexicographically highest element of the multiset u� v is uv = x (by Theorem 6.2.2(c)).]

318In [89, Definition 6.7.14], the name “wll-order” is introduced as an abbreviation for “weight first, then length, then

lexicographic” (in the sense that two compositions are first compared by their weights, then, if the weights are equal, by their
lengths, and finally, if the lengths are also equal, by the lexicographic order). For us, the alternative explanation “word length,

then lexicographic” serves just as well.
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We are almost ready to give our second proof of Proposition 6.4.4; our last step is the following proposition:

Proposition 6.4.14. Assume that Q is a subring of k. Then, (Mw)w∈L is an algebraically independent
generating set of the k-algebra QSym.

Exercise 6.4.15. Prove Proposition 6.4.14.
[Hint: Define Mu for every u ∈ Comp as in Proposition 6.4.10. Conclude from Proposition 6.4.10 that,

for every n ∈ N, the family (Mu)u∈Compn
expands invertibly triangularly319 (with respect to the total order

≤
wll

on Compn) with respect to the basis (Mu)u∈Compn
of QSymn. Conclude that this family (Mu)u∈Compn

is a basis of QSymn itself, and so the whole family (Mu)u∈Comp is a basis of QSym. Conclude using Lemma

6.3.7(a).]

Second proof of Proposition 6.4.4. Proposition 6.4.14 yields that (Mw)w∈L is an algebraically independent
generating set of the k-algebra QSym.

Define a grading on the k-algebra k [xw | w ∈ L] by setting deg (xw) =
∑`(w)
i=1 wi for every w ∈ L. By

the universal property of the polynomial algebra k [xw | w ∈ L], we can define a k-algebra homomorphism
Φ : k [xw | w ∈ L]→ QSym by setting

Φ (xw) = Mw for every w ∈ L.

This homomorphism Φ is a k-algebra isomorphism (since (Mw)w∈L is an algebraically independent generating
set of the k-algebra QSym) and is graded (because for every w ∈ L, the element Mw of QSym is homogeneous

of degree |w| =
∑`(w)
i=1 wi = deg (xw)). Thus, Φ is an isomorphism of graded k-algebras. Hence, QSym ∼=

k [xw | w ∈ L] as graded k-algebras. In particular, this shows that QSym is a polynomial algebra. This
proves Theorem 6.4.3 under the assumption that Q be a subring of k. Proposition 6.4.4 is thus proven
again. �

6.5. Polynomial freeness of QSym: the general case. We now will prepare for proving Theorem 6.4.3
without any assumptions on k. In our proof, we follow [89] and [93, §6.7], but without using the language
of plethysm and Frobenius maps. We start with the following definition:

Definition 6.5.1. Let α be a composition. Write α in the form α = (α1, α2, . . . , α`) with ` = ` (α).
(a) Let SIS (`) denote the set of all strictly increasing `-tuples (i1, i2, . . . , i`) of positive integers.320 For

every `-tuple i = (i1, i2, . . . , i`) ∈ SIS (`), we denote the monomial xα1
i1
xα2
i2
· · ·xα`i` by xαi . This xαi is a

monomial of degree α1 + α2 + · · ·+ α` = |α|. Then,

(6.5.1) Mα =
∑

i∈SIS(`)

xαi .

321

319See Definition 11.1.16(b) for the meaning of this.
320“Strictly increasing” means that i1 < i2 < · · · < i` here. Of course, the elements of SIS (`) are in 1-to-1 correspondence

with `-element subsets of {1, 2, 3, . . .}.
321Proof of (6.5.1): By the definition of Mα, we have

Mα =
∑

i1<i2<···<i` in {1,2,3,...}︸ ︷︷ ︸
=
∑

(i1,i2,...,i`)∈SIS(`)

xα1
i1
xα2
i2
· · ·xα`i` =

∑
(i1,i2,...,i`)∈SIS(`)

xα1
i1
xα2
i2
· · ·xα`i` =

∑
i=(i1,i2,...,i`)∈SIS(`)

xα1
i1
xα2
i2
· · ·xα`i`︸ ︷︷ ︸

=xαi
(by the definition of xαi )

=
∑

i=(i1,i2,...,i`)∈SIS(`)

xαi =
∑

i∈SIS(`)

xαi ,

qed.
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(b) Consider the ring k [[x]] endowed with the coefficientwise topology322. The family (xαi )i∈SIS(`) of

elements of k [[x]] is power-summable323. Hence, for every f ∈ Λ, there is a well-defined power series

f
(

(xαi )i∈SIS(`)

)
∈ k [[x]] obtained by “evaluating” f at (xαi )i∈SIS(`)

324. In particular, for every s ∈
Z, we can evaluate the symmetric function es ∈ Λ 325 at (xαi )i∈SIS(`). The resulting power series

es

(
(xαi )i∈SIS(`)

)
∈ k [[x]] will be denoted M

〈s〉
α . Thus,

M 〈s〉α = es

(
(xαi )i∈SIS(`)

)
.

The power series M
〈s〉
α are the power series es (α) in [93]. We will shortly (in Corollary 6.5.8(a)) see that

M
〈s〉
α ∈ QSym (although this is also easy to prove by inspection). Here are some examples of M

〈s〉
α :

322This topology is defined as follows:

We endow the ring k with the discrete topology. Then, we can regard the k-module k [[x]] as a direct product of infinitely
many copies of k (by identifying every power series in k [[x]] with the family of its coefficients). Hence, the product topology is

a well-defined topology on k [[x]]; this topology is denoted as the coefficientwise topology. A sequence (an)n∈N of power series
converges to a power series a with respect to this topology if and only if for every monomial m, all sufficiently high n ∈ N satisfy

(the coefficient of m in an) = (the coefficient of m in a) .

Note that this is not the topology obtained by taking the completion of k [x1, x2, x3, . . .] with respect to the standard grading

(in which all xi have degree 1). (The latter completion is actually a smaller ring than k [[x]].)
323Let us define what “power-summable” means for us:

A family (ni)i∈I ∈ NI (where I is some set) is said to be finitely supported if all but finitely many i ∈ I satisfy ni = 0.

If (ni)i∈I ∈ NI is a finitely supported family, then
∑

i∈I ni is a well-defined element of N. If N ∈ N, then a family (ni)i∈I ∈ NI

will be called (≤ N)-supported if it is finitely supported and satisfies
∑

i∈I ni ≤ N .

We say that a family (si)i∈I ∈ RI of elements of a topological commutative k-algebra R is power-summable if it satisfies the

following property: For every N ∈ N, the sum ∑
(ni)i∈I∈N

I;

(ni)i∈I is (≤N)-supported

α(ni)i∈I

∏
i∈I

s
ni
i

converges in the topology on R for every choice of scalars α(ni)i∈I
∈ k corresponding to all (≤ N)-supported (ni)i∈I ∈ NI. In

our specific case, we consider k [[x]] as a topological commutative k-algebra, where the topology is the coefficientwise topology.
The fact that the family

(
xαi
)
i∈SIS(`)

is power-summable then can be proven as follows:

• If α 6= ∅, then this fact follows from the (easily-verified) observation that every given monomial in the variables

x1, x2, x3, . . . can be written as a product of monomials of the form xαi (with i ∈ SIS (`)) in only finitely many ways.

• If α = ∅, then this fact follows by noticing that
(
xαi
)
i∈SIS(`)

is a finite family (indeed, SIS (`) = SIS (0) = {()}), and

every finite family is power-summable.

324Here is how this power series f
((

xαi
)
i∈SIS(`)

)
is formally defined:

Let R be any topological commutative k-algebra, and let (si)i∈I ∈ RI be any power-summable family of elements of R.

Assume that the indexing set I is countably infinite, and fix a bijection j : {1, 2, 3, . . .} → I. Let g ∈ R (x) be arbitrary. Then,

we can substitute sj(1), sj(2), sj(3), . . . for the variables x1, x2, x3, . . . in g, thus obtaining an infinite sum which converges in R

(in fact, its convergence follows from the fact that the family (si)i∈I ∈ RI is power-summable). The value of this sum will be

denoted by g
(
(si)i∈I

)
. In general, this value depends on the choice of the bijection j, so the notation g

(
(si)i∈I

)
is unambiguous

only if this bijection j is chosen once and for all. However, when g ∈ Λ, one can easily see that the choice of j has no effect on
g
(
(si)i∈I

)
.

We can still define g
(
(si)i∈I

)
when the set I is finite instead of being countably infinite. In this case, we only need to modify

our above definition as follows: Instead of fixing a bijection j : {1, 2, 3, . . .} → I, we now fix a bijection j : {1, 2, . . . , |I|} → I, and
instead of substituting sj(1), sj(2), sj(3), . . . for the variables x1, x2, x3, . . . in g, we now substitute sj(1), sj(2), . . ., sj(|I|), 0, 0,

0, . . . for the variables x1, x2, x3, . . . in g. Again, the same observations hold as before: g
(
(si)i∈I

)
is independent on j if g ∈ Λ.

Hence, g
(
(si)i∈I

)
is well-defined for every g ∈ R (x), every countable (i.e., finite or countably infinite) set I, every topological

commutative k-algebra R and every power-summable family (si)i∈I ∈ RI of elements of R, as long as a bijection j is chosen. In

particular, we can apply this to g = f , I = SIS (`), R = k [[x]] and (si)i∈I =
(
xαi
)
i∈SIS(`)

, choosing j to be the bijection which

sends every positive integer k to the k-th smallest element of SIS (`) in the lexicographic order. (Of course, since f ∈ Λ, the

choice of j is irrelevant.)
325Recall that e0 = 1, and that es = 0 for s < 0.
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Example 6.5.2. If α is a composition and ` denotes its length ` (α), then

M 〈0〉α = e0︸︷︷︸
=1

(
(xαi )i∈SIS(`)

)
= 1

(
(xαi )i∈SIS(`)

)
= 1

and

M 〈1〉α = e1

(
(xαi )i∈SIS(`)

)
=

∑
i∈SIS(`)

xαi = Mα (by (6.5.1))

and326

M 〈2〉α = e2

(
(xαi )i∈SIS(`)

)
=

∑
i∈SIS(`), j∈SIS(`);

i<j

xαi xαj

(where the notation “i < j” should be interpreted with respect to an arbitrary but fixed total order on the
set SIS (`) – for example, the lexicographic order). Applying the last of these three equalities to α = (2, 1),
we obtain

M
〈2〉
(2,1) =

∑
i∈SIS(2), j∈SIS(2),

i<j

x
(2,1)
i x

(2,1)
j =

∑
(i1,i2)∈SIS(2), (j1,j2)∈SIS(2);

(i1,i2)<(j1,j2)

x
(2,1)
(i1,i2)︸ ︷︷ ︸

=x2
i1
x1
i2

x
(2,1)
(j1,j2)︸ ︷︷ ︸

=x2
j1
x1
j2

=
∑

(i1,i2)∈SIS(2), (j1,j2)∈SIS(2);
(i1,i2)<(j1,j2)

x2
i1x

1
i2x

2
j1x

1
j2

=
∑

i1<i2; j1<j2;
i1<j1

x2
i1x

1
i2x

2
j1x

1
j2

︸ ︷︷ ︸
=M(2,1,2,1)+M(2,3,1)+2M(2,2,1,1)+M(2,2,2)

+
∑

i1<i2; j1<j2;
i1=j1; i2<j2

x2
i1x

1
i2x

2
j1x

1
j2

︸ ︷︷ ︸
=M(4,1,1)

(here, we have WLOG assumed that the order on SIS (2) is lexicographic)

= M(2,1,2,1) +M(2,3,1) + 2M(2,2,1,1) +M(2,2,2) +M(4,1,1).

Of course, every negative integer s satisfies M
〈s〉
α = es︸︷︷︸

=0

(
(xαi )i∈SIS(`)

)
= 0.

There is a determinantal formula for the s!M
〈s〉
α (and thus also for M

〈s〉
α when s! is invertible in k), but

in order to state it, we need to introduce one more notation:

Definition 6.5.3. Let α = (α1, α2, . . . , α`) be a composition, and let k be a positive integer. Then, α {k}
will denote the composition (kα1, kα2, . . . , kα`). Clearly, ` (α {k}) = ` (α) and |α {k}| = k |α|.

Exercise 6.5.4. Let α be a composition. Write the composition α in the form α = (α1, α2, . . . , α`) with
` = ` (α).

(a) Show that the s-th power-sum symmetric function ps ∈ Λ satisfies

ps

(
(xαi )i∈SIS(`)

)
= Mα{s}

for every positive integer s.
(b) Let us fix a total order on the set SIS (`) (for example, the lexicographic order). Show that the s-th

elementary symmetric function es ∈ Λ satisfies

M 〈s〉α = es

(
(xαi )i∈SIS(`)

)
=

∑
(i1,i2,...,is)∈(SIS(`))s;

i1<i2<···<is

xαi1x
α
i2 · · ·x

α
is

for every s ∈ N.

(c) Let s ∈ N, and let n be a positive integer. Let e
〈n〉
s be the symmetric function

∑
i1<i2<···<is x

n
i1
xni2 · · ·x

n
is
∈

Λ. Then, show that

M
〈s〉
α{n} = e〈n〉s

(
(xαi )i∈SIS(`)

)
.

326This is not completely obvious, but easy to check (see Exercise 6.5.4(b)).
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(d) Let s ∈ N, and let n be a positive integer. Prove that there exists a polynomial P ∈ k [z1, z2, z3, . . .]

such that M
〈s〉
α{n} = P

(
M
〈1〉
α ,M

〈2〉
α ,M

〈3〉
α , . . .

)
.

[Hint: For (a), (b) and (c), apply the definition of f
(

(xαi )i∈SIS(`)

)
with f a symmetric function327. For

(d), recall that Λ is generated by e1, e2, e3, . . ..]

Exercise 6.5.5. Let s ∈ N. Show that the composition (1) satisfies M
〈s〉
(1) = es.

Proposition 6.5.6. Let α = (α1, α2, . . . , α`) be a composition.

(a) Let n ∈ N. Define a matrix A
〈α〉
n =

(
a
〈α〉
i,j

)
i,j=1,2,...,n

by

a
〈α〉
i,j =


Mα{i−j+1}, if i ≥ j;
i, if i = j − 1;

0, if i < j − 1

for all (i, j) ∈ {1, 2, . . . , n}2 .

This matrix A
〈α〉
n looks as follows:

A〈α〉n =



Mα{1} 1 0 · · · 0 0
Mα{2} Mα{1} 2 · · · 0 0
Mα{3} Mα{2} Mα{1} · · · 0 0
...

...
...

. . .
...

...
Mα{n−1} Mα{n−2} Mα{n−3} · · · Mα{1} n− 1
Mα{n} Mα{n−1} Mα{n−2} · · · Mα{2} Mα{1}


.

Then, det
(
A
〈α〉
n

)
= n!M

〈n〉
α .

(b) Let n be a positive integer. Define a matrix B
〈α〉
n =

(
b
〈α〉
i,j

)
i,j=1,2,...,n

by

b
〈α〉
i,j =

{
iM
〈i〉
α , if j = 1;

M
〈i−j+1〉
α , if j > 1

for all (i, j) ∈ {1, 2, . . . , n}2 .

327There are two subtleties that need to be addressed:

• the fact that the definition of f
((

xαi
)
i∈SIS(`)

)
distinguishes between two cases depending on whether or not SIS (`)

is finite;
• the fact that the total order on the set {1, 2, 3, . . .} (which appears in the summation subscript in the equality

es =
∑

(i1,i2,...,is)∈{1,2,3,...}s;
i1<i2<···<is

xi1xi2 · · ·xis ) has nothing to do with the total order on the set SIS (`) (which appears in

the summation subscript in
∑

(i1,i2,...,is)∈(SIS(`))s;
i1<i2<···<is

xαi1xαi2 · · ·x
α
is

). For instance, the former total order is well-founded,

whereas the latter may and may not be. So there is (generally) no bijection between {1, 2, 3, . . .} and SIS (`) preserving
these orders (even if SIS (`) is infinite). Fortunately, this does not matter much, because the total order is only being
used to ensure that every product of s distinct elements appears exactly once in the sum.
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The matrix B
〈α〉
n looks as follows:

B〈α〉n =



M
〈1〉
α M

〈0〉
α M

〈−1〉
α · · · M

〈−n+3〉
α M

〈−n+2〉
α

2M
〈2〉
α M

〈1〉
α M

〈0〉
α · · · M

〈−n+4〉
α M

〈−n+3〉
α

3M
〈3〉
α M

〈2〉
α M

〈1〉
α · · · M

〈−n+5〉
α M

〈−n+4〉
α

...
...

...
. . .

...
...

(n− 1)M
〈n−1〉
α M

〈n−2〉
α M

〈n−3〉
α · · · M

〈1〉
α M

〈0〉
α

nM
〈n〉
α M

〈n−1〉
α M

〈n−2〉
α · · · M

〈2〉
α M

〈1〉
α



=



M
〈1〉
α 1 0 · · · 0 0

2M
〈2〉
α M

〈1〉
α 1 · · · 0 0

3M
〈3〉
α M

〈2〉
α M

〈1〉
α · · · 0 0

...
...

...
. . .

...
...

(n− 1)M
〈n−1〉
α M

〈n−2〉
α M

〈n−3〉
α · · · M

〈1〉
α 1

nM
〈n〉
α M

〈n−1〉
α M

〈n−2〉
α · · · M

〈2〉
α M

〈1〉
α


.

Then, det
(
B
〈α〉
n

)
= Mα{n}.

Exercise 6.5.7. Prove Proposition 6.5.6.
[Hint: Substitute (xαi )i∈SIS(`) for the variable set in Exercise 2.9.13, and recall Exercise 6.5.4(a).]

Corollary 6.5.8. Let α be a composition. Let s ∈ Z.

(a) We have M
〈s〉
α ∈ QSym.

(b) We have M
〈s〉
α ∈ QSyms|α|.

Exercise 6.5.9. Prove Corollary 6.5.8.

We make one further definition:

Definition 6.5.10. Let α be a nonempty composition. Then, we denote by gcdα the greatest common
divisor of the parts of α. (For instance, gcd (8, 6, 4) = 2.) We also define redα to be the composition(

α1

gcdα
,
α2

gcdα
, . . . ,

α`
gcdα

)
, where α is written in the form (α1, α2, . . . , α`).

We say that a nonempty composition α is reduced if gcdα = 1.
We define RL to be the set of all reduced Lyndon compositions. In other words, RL = {w ∈ L | w is reduced}

(since L is the set of all Lyndon compositions).

Hazewinkel, in [93, proof of Thm. 6.7.5], denotes RL by eLY N , calling reduced Lyndon compositions
“elementary Lyndon words”.

Remark 6.5.11. Let α be a nonempty composition.
(a) We have α = (redα) {gcdα}.
(b) The composition α is Lyndon if and only if the composition redα is Lyndon.
(c) The composition redα is reduced.
(d) If α is reduced, then redα = α.
(e) If s ∈ {1, 2, 3, . . .}, then the composition α {s} is nonempty and satisfies red (α {s}) = redα and

gcd (α {s}) = s gcdα.
(f) We have (gcdα) |redα| = |α|.

Exercise 6.5.12. Prove Remark 6.5.11.

Our goal in this section is now to prove the following result of Hazewinkel:

Theorem 6.5.13. The family
(
M
〈s〉
w

)
(w,s)∈RL×{1,2,3,...}

is an algebraically independent generating set of

the k-algebra QSym.



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 205

This will (almost) immediately yield Theorem 6.4.3.
Our first step towards proving Theorem 6.5.13 is the following observation:

Lemma 6.5.14. The family
(
M
〈s〉
w

)
(w,s)∈RL×{1,2,3,...}

is a reindexing of the family
(
M
〈gcdα〉
redα

)
α∈L

.

Exercise 6.5.15. Prove Lemma 6.5.14.

Next, we show a lemma:

Lemma 6.5.16. Let α be a nonempty composition. Let s ∈ N. Then,

(6.5.2) s!M 〈s〉α −Ms
α ∈

∑
β∈Comps|α|;

`(β)≤(s−1)`(α)

kMβ .

(That is, s!M
〈s〉
α −Ms

α is a k-linear combination of terms of the form Mβ with β ranging over the compositions
of s |α| satisfying ` (β) ≤ (s− 1) ` (α).)

Exercise 6.5.17. Prove Lemma 6.5.16.
[Hint: There are two approaches: One is to apply Proposition 6.5.6(a) and expand the determinant; the

other is to argue which monomials can appear in s!M
〈s〉
α −Ms

α.]

We now return to studying products of monomial quasisymmetric functions:

Lemma 6.5.18. Let n ∈ N and m ∈ N. Let u ∈ Compn and v ∈ Compm. Let z be the lexicographically
highest element of the multiset u�v. Let h be the multiplicity with which the word z appears in the multiset
u� v. Then,328

MuMv = hMz +

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
z

)
.

Proof of Lemma 6.5.18. Lemma 6.5.18 was shown during the proof of Lemma 6.4.11(b). �

Corollary 6.5.19. Let n ∈ N and m ∈ N. Let u ∈ Compn and v ∈ Compm. Regard u and v as words in
A∗. Assume that u is a Lyndon word. Let (b1, b2, . . . , bq) be the CFL factorization of the word v.

Assume that u ≥ bj for every j ∈ {1, 2, . . . , q}. Let

h = 1 + |{j ∈ {1, 2, . . . , q} | bj = u}| .

Then,

MuMv = hMuv +

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
uv

)
.

Exercise 6.5.20. Prove Corollary 6.5.19.
[Hint: Apply Lemma 6.5.18, and notice that uv is the lexicographically highest element of the multiset

u� v (by Theorem 6.2.2(e)), and that h is the multiplicity with which this word uv appears in the multiset
u� v (this is a rewriting of Theorem 6.2.2(e)).]

Corollary 6.5.21. Let k ∈ N and s ∈ N. Let x ∈ Compk be such that x is a Lyndon word. Then:

(a) The lexicographically highest element of the multiset x� xs is xs+1.
(b) We have

MxMxs = (s+ 1)Mxs+1 +

(
a sum of terms of the form Mw with w ∈ Comp(s+1)k satisfying w <

wll
xs+1

)
.

(c) Let t ∈ Compsk be such that t <
wll
xs. Then,

MxMt =

(
a sum of terms of the form Mw with w ∈ Comp(s+1)k satisfying w <

wll
xs+1

)
.

328The following equality makes sense because we have z ∈ Compn+m (by Lemma 6.4.11(a)).
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Exercise 6.5.22. Prove Corollary 6.5.21.

[Hint: Notice that

x, x, . . . , x︸ ︷︷ ︸
s times

 is the CFL factorization of the word xs. Now, part (a) of Corollary

6.5.21 follows from Theorem 6.2.2(c), part (b) follows from Corollary 6.5.19, and part (c) from Lemma
6.4.11(c) (using part (a)).]

Corollary 6.5.23. Let n ∈ N and m ∈ N. Let u ∈ Compn and v ∈ Compm. Regard u and v as words in
A∗. Let (a1, a2, . . . , ap) be the CFL factorization of u. Let (b1, b2, . . . , bq) be the CFL factorization of the
word v. Assume that ai > bj for every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}. Then,

MuMv = Muv +

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
uv

)
.

Exercise 6.5.24. Prove Corollary 6.5.23.
[Hint: Combine Lemma 6.5.18 with the parts (c) and (d) of Theorem 6.2.2.]

Corollary 6.5.25. Let n ∈ N. Let u ∈ Compn be a nonempty composition. Regard u as a word in A∗. Let
(a1, a2, . . . , ap) be the CFL factorization of u. Let k ∈ {1, 2, . . . , p− 1} be such that ak > ak+1. Let x be
the word a1a2 · · · ak, and let y be the word ak+1ak+2 · · · ap. Then,

Mu = MxMy −
(

a sum of terms of the form Mw with w ∈ Compn satisfying w <
wll
u

)
.

Exercise 6.5.26. Prove Corollary 6.5.25.
[Hint: Apply Corollary 6.5.23 to x, y, |x|, |y|, k, p − k, (a1, a2, . . . , ak) and (ak+1, ak+2, . . . , ap) instead

of u, v, n, m, p, q, (a1, a2, . . . , ap) and (b1, b2, . . . , bq); then, notice that xy = u and |x|+ |y| = n.]

Corollary 6.5.27. Let k ∈ N. Let x ∈ Compk be a composition. Assume that x is a Lyndon word. Let
s ∈ N. Then,

Ms
x − s!Mxs ∈

∑
w∈Compsk;
w<

wll
xs

kMw.

(Recall that xs is defined to be the word xx · · ·x︸ ︷︷ ︸
s times

.)

Exercise 6.5.28. Prove Corollary 6.5.27.
[Hint: Rewrite the claim of Corollary 6.5.27 in the form Ms

x ∈ s!Mxs +
∑

w∈Compsk;
w<

wll
xs

kMw. This can be

proven by induction over s, where in the induction step we need the following two observations:

(1) We have MxMxs ∈ (s+ 1)Mxs+1 +
∑

w∈Comp(s+1)k;

w<
wll
xs+1

kMw.

(2) For every t ∈ Compsk satisfying t <
wll
xs, we have MxMt ∈

∑
w∈Comp(s+1)k;

w<
wll
xs+1

kMw.

These two observations follow from parts (b) and (c) of Corollary 6.5.21.]

Corollary 6.5.29. Let k ∈ N. Let x ∈ Compk be a composition. Assume that x is a Lyndon word. Let
s ∈ N. Then,

M 〈s〉x −Mxs ∈
∑

w∈Compsk;
w<

wll
xs

kMw.

(Recall that xs is defined to be the word xx · · ·x︸ ︷︷ ︸
s times

.)
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Exercise 6.5.30. Prove Corollary 6.5.29.
[Hint: Lemma 6.5.16 (applied to α = x) yields

s!M 〈s〉x −Ms
x ∈

∑
β∈Compsk;

`(β)≤(s−1)`(x)

Mβ =
∑

w∈Compsk;
`(w)≤(s−1)`(x)

kMw ⊂
∑

w∈Compsk;
w<

wll
xs

kMw

329. Adding this to the claim of Corollary 6.5.27, obtain s!M
〈s〉
x − s!Mxs ∈

∑
w∈Compsk;
w<

wll
xs

kMw, that is,

s!
(
M
〈s〉
x −Mxs

)
∈

∑
w∈Compsk;
w<

wll
xs

kMw. It remains to get rid of the s! on the left hand side. Assume WLOG that

k = Z, and argue that every f ∈ QSym satisfying s! · f ∈
∑

w∈Compsk;
w<

wll
xs

kMw must itself lie in
∑

w∈Compsk;
w<

wll
xs

kMw.]

We are now ready to prove Theorem 6.5.13:

Exercise 6.5.31. Prove Theorem 6.5.13.

[Hint: Lemma 6.5.14 yields that the family
(
M
〈s〉
w

)
(w,s)∈RL×{1,2,3,...}

is a reindexing of the family(
M
〈gcdw〉
redw

)
w∈L

. Hence, it is enough to prove that the family
(
M
〈gcdw〉
redw

)
w∈L

is an algebraically independent

generating set of the k-algebra QSym. The latter claim, in turn, will follow from Lemma 6.3.7(c)330 once

it is proven that the family
(
M
〈gcdw〉
redw

)
w∈L

generates the k-algebra QSym. So it remains to show that the

family
(
M
〈gcdw〉
redw

)
w∈L

generates the k-algebra QSym.

Let U denote the k-subalgebra of QSym generated by
(
M
〈gcdw〉
redw

)
w∈L

. It then suffices to prove that

U = QSym. To this purpose, it is enough to prove that

(6.5.3) Mβ ∈ U for every composition β.

For every reduced Lyndon composition α and every j ∈ {1, 2, 3, . . .}, the quasisymmetric function M
〈j〉
α

is an element of the family
(
M
〈gcdw〉
redw

)
w∈L

and thus belongs to U . Combine this with Exercise 6.5.4(d) to

see that

(6.5.4) M
〈s〉
β ∈ U for every Lyndon composition β and every s ∈ {1, 2, 3, . . .}

(because every Lyndon composition β can be written as α {n} for a reduced Lyndon composition α and
an n ∈ {1, 2, 3, . . .}). Now, prove (6.5.3) by strong induction: first, induct on |β|, and then, for fixed |β|,
induct on β in the wll-order. The induction step looks as follows: Fix some composition α, and assume (as
induction hypothesis) that:

• (6.5.3) holds for every composition β satisfying |β| < |α|;
• (6.5.3) holds for every composition β satisfying |β| = |α| and β <

wll
α.

It remains to prove that (6.5.3) holds for β = α. In other words, it remains to prove that Mα ∈ U .
Let (a1, a2, . . . , ap) be the CFL factorization of the word α. Assume WLOG that p 6= 0 (else, all is trivial).

We are in one of the following two cases:
Case 1: All of the words a1, a2, . . ., ap are equal.
Case 2: Not all of the words a1, a2, . . ., ap are equal.

329since every w ∈ Compsk with the property that ` (w) ≤ (s− 1) ` (x) must satisfy w <
wll

xs

330applied to A = QSym, bw = M
〈gcdw〉
redw , wt (N) = N and gu = Mu
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In Case 2, there exists a k ∈ {1, 2, . . . , p− 1} satisfying ak > ak+1 (since a1 ≥ a2 ≥ · · · ≥ ap), and thus
Corollary 6.5.25 (applied to u = α, n = |α|, x = a1a2 · · · ak and y = ak+1ak+2 · · · ap) shows that

Mα = Ma1a2···ak︸ ︷︷ ︸
∈U

(by the induction
hypothesis)

Mak+1ak+2···ap︸ ︷︷ ︸
∈U

(by the induction
hypothesis)

−

a sum of terms of the form Mw︸︷︷︸
∈U

(by the induction
hypothesis)

with w ∈ Comp|α| satisfying w <
wll
α


∈ UU − (a sum of terms in U) ⊂ U.

Hence, it only remains to deal with Case 1. In this case, set x = a1 = a2 = · · · = ap. Thus, α =
a1a2 · · · ap = xp, whence |α| = p |x|. But Corollary 6.5.29 (applied to s = p and k = |x|) yields

M 〈p〉x −Mxp ∈
∑

w∈Compp|x|;

w<
wll
xp

kMw =
∑

w∈Comp|α|;
w<

wll
α

k Mw︸︷︷︸
∈U

(by the induction
hypothesis)

(since p |x| = |α| and xp = α)

⊂
∑

w∈CompN ;
w<

wll
α

kU ⊂ U,

so that Mxp ∈ M 〈p〉x︸ ︷︷ ︸
∈U

(by (6.5.4))

−U ⊂ U − U ⊂ U . This rewrites as Mα ∈ U (since α = xp). So Mα ∈ U is proven

in both Cases 1 and 2, and thus the induction proof of (6.5.3) is finished.]

Exercise 6.5.32. Prove Theorem 6.4.3.

Of course, this proof of Theorem 6.4.3 yields a new (third) proof for Proposition 6.4.4.
We notice the following corollary of our approach to Theorem 6.4.3:

Corollary 6.5.33. The Λ-algebra QSym is a polynomial algebra (over Λ).

Exercise 6.5.34. Prove Corollary 6.5.33.

[Hint: The algebraically independent generating set
(
M
〈s〉
w

)
(w,s)∈RL×{1,2,3,...}

of QSym contains the

elements M
〈s〉
(1) = es ∈ Λ for all s ∈ {1, 2, 3, . . .}.]

6.6. The Gessel-Reutenauer bijection and symmetric functions. In this section, we shall discuss the
Gessel-Reutenauer bijection between words and multisets of aperiodic necklaces, and use it to study another
family of symmetric functions.

The Gessel-Reutenauer bijection was studied in [82], where it was applied to various enumeration problems
(e.g., counting permutations in Sn with given descent set and given cycle type); it is also closely related to
the Burrows-Wheeler bijection used in data compression ([45]), and to the structure of free Lie algebras ([81],
[182]). We shall first introduce the Gessel-Reutenauer bijection and study it combinatorially in Subsection
6.6.1; then, in the following Subsection 6.6.2, we shall apply it to symmetric functions.

6.6.1. Necklaces and the Gessel-Reutenauer bijection. We begin with definitions, some of which have already
been made in Exercise 6.1.34:

Definition 6.6.1. Throughout Section 6.6, we shall freely use Definition 6.1.1 and Definition 6.1.13. We
fix a totally ordered alphabet A. (This alphabet can be arbitrary, although most examples will use A =
{1 < 2 < 3 < · · · }.)

Let C denote the infinite cyclic group, written multiplicatively. Fix a generator c of C. 331

331So C is a group isomorphic to (Z,+), and the isomorphism (Z,+) → C sends every n ∈ Z to cn. (Recall that we write

the binary operation of C as · instead of +.)
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For any positive integer n, the group C acts on An from the left according to the rule

c · (a1, a2, . . . , an) = (a2, a3, . . . , an, a1) for all (a1, a2, . . . , an) ∈ An.
332 The orbits of this C-action will be called n-necklaces333; they form a set partition of the set An.

The n-necklace containing a given n-tuple w ∈ An will be denoted by [w].
A necklace shall mean an n-necklace for some positive integer n. Thus, for each nonempty word w, there

is a well-defined necklace [w] (namely, [w] is an n-necklace, where n = ` (w)).
The period of a necklace N is defined as the positive integer |N |. (This |N | is indeed a positive integer,

since N is a finite nonempty set334.)
An n-necklace is said to be aperiodic if its period is n.

Example 6.6.2. Let A be the alphabet {1 < 2 < 3 < · · · }. The orbit of the word 223 under the C-action
is the 3-necklace {223, 232, 322}; it is an aperiodic 3-necklace. The orbit of the word 223223 under the
C-action is the 6-necklace {223223, 232232, 322322}; it is not aperiodic (since it has period 3). The orbit of
any nonempty word w = (w1, w2, . . . , wn) ∈ An is the n-necklace

{(wi, wi+1, . . . , wn, w1, w2, . . . , wi−1) | i ∈ {1, 2, . . . , n}} .
We can draw this n-necklace on the plane as follows:

w1
,, w2

��
wn

::

w3

��
wn−1

WW

. .
.

mm

It is easy to see that the notion of an “aperiodic necklace” we just defined is equivalent to the notion of
a “primitive necklace” used in Exercise 4.6.4(b).

Exercise 6.1.34(a) shows that any n-necklace for any positive integer n is a finite nonempty set. In other
words, any necklace is a finite nonempty set.

Let us next introduce some notations regarding words and permutations. We recall that a cycle of a
permutation τ ∈ Sn is an orbit under the action of τ on {1, 2, . . . , n}. (This orbit can be a 1-element set,
when τ has fixed points.) We begin with a basic definition:

Definition 6.6.3. Let τ ∈ Sn be a permutation. Let h ∈ {1, 2, . . . , n}.
(a) We let ordτ (h) denote the smallest positive integer i such that τ i (h) = h. (Basic properties of

permutations show that this i exists.)
(b) Let w = (w1, w2, . . . , wn) ∈ An be a word. Then, wτ,h shall denote the word wτ1(h)wτ2(h) · · ·wτk(h),

where k = ordτ (h).

Example 6.6.4. Let τ be the permutation 3142765 ∈ S7 (in one-line notation). Then, ordτ (1) = 4 (since
τ4 (1) = 1, but τ i (1) 6= 1 for every positive integer i < 4). Likewise, ordτ (2) = 4 and ordτ (3) = 4 and
ordτ (4) = 4 and ordτ (5) = 2 and ordτ (6) = 1 and ordτ (7) = 2.

Now, let w be the word 4112524 ∈ A7. Then,

wτ,3 = wτ1(3)wτ2(3)wτ3(3)wτ4(3) (since ordτ (3) = 4)

= w4w2w1w3(
since τ1 (3) = 4 and τ2 (3) = τ (4) = 2 and τ3 (3) = τ (2) = 1 and τ4 (3) = τ (1) = 3

)
= 2141.

Likewise, we can check that wτ,1 = w3w4w2w1 = 1214 and wτ,5 = w7w5 = 45 and wτ,6 = w6 = 2.

332In other words, c rotates any n-tuple of elements of A cyclically to the left. Thus, cn ∈ C acts trivially on An, and so
this action of C on An factors through C/ 〈cn〉 (a cyclic group of order n).

333See Exercise 6.1.34 for the motivation behind this word.

Notice that there are no 0-necklaces, because we required n to be positive in the definition of a necklace. This is intentional.
334by Exercise 6.1.34(a), because N is an n-necklace for some positive integer n
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We begin the study of the words wτ,h by stating some of their simplest properties:335

Proposition 6.6.5. Let w = (w1, w2, . . . , wn) ∈ An be a word. Let τ ∈ Sn. Let h ∈ {1, 2, . . . , n}. Then:

(a) The word wτ,h is nonempty and has length ordτ (h).
(b) The first letter of the word wτ,h is wτ(h).
(c) The last letter of the word wτ,h is wh.
(d) We have wτ,τ(h) = c · wτ,h.

(e) We have wτ,τ i(h) = ci · wτ,h for each i ∈ Z.

Recall that if n ∈ N and if w ∈ An is a word, then a permutation stdw ∈ Sn was defined in Definition
5.3.3. The words wτ,h have particularly nice properties when τ = (stdw)

−1
:

Lemma 6.6.6. Let w = (w1, w2, . . . , wn) ∈ An be a word. Let τ be the permutation (stdw)
−1 ∈ Sn. Let

α and β be two elements of {1, 2, . . . , n} such that α < β. Then:

(a) If τ−1 (α) < τ−1 (β), then wα ≤ wβ .
(b) If τ−1 (α) ≥ τ−1 (β), then wα > wβ .
(c) We have wτ(α) ≤ wτ(β).
(d) If τ (α) ≥ τ (β), then wτ(α) < wτ(β).
(e) If wτ(α) = wτ(β), then τ (α) < τ (β).
(f) If wτ,α = wτ,β , then τ (α) < τ (β) and wτ,τ(α) = wτ,τ(β).

(g) If wτ,α = wτ,β , then τ i (α) < τ i (β) for each i ∈ N.
(h) Let j ∈ N be such that every i ∈ {0, 1, . . . , j − 1} satisfies wτ i+1(α) = wτ i+1(β). Then, wτj+1(α) ≤

wτj+1(β).

Proposition 6.6.7. Let w ∈ An be a word. Let τ be the permutation (stdw)
−1 ∈ Sn. Let z be a cycle of

τ . Then:

(a) For each h ∈ z, we have [wτ,h] = {wτ,i | i ∈ z}.
(b) If α and β are two distinct elements of z, then wτ,α 6= wτ,β .
(c) We have |{wτ,i | i ∈ z}| = |z|.
(d) The set {wτ,i | i ∈ z} is an aperiodic necklace.

Exercise 6.6.8. Prove Proposition 6.6.5, Lemma 6.6.6 and Proposition 6.6.7.

Definition 6.6.9. Let w ∈ An be a word. Let τ be the permutation (stdw)
−1 ∈ Sn. Let z be a cycle of τ .

Then, we define an aperiodic necklace [w]z by [w]z = {wτ,i | i ∈ z}. (This is indeed an aperiodic necklace,
according to Proposition 6.6.7(d).)

Example 6.6.10. Let A be the alphabet {1 < 2 < 3 < · · · }, and let w be the word 2511321 ∈ A7. Let τ be

the permutation (stdw)
−1 ∈ S7; this is the permutation 3471652 (in one-line notation). One cycle of τ is

z = {1, 3, 7, 2, 4}. The corresponding aperiodic necklace [w]z is

[w]z = {wτ,i | i ∈ z} = {wτ,1, wτ,3, wτ,7, wτ,2, wτ,4} (since z = {1, 3, 7, 2, 4})
= {11512, 15121, 51211, 12115, 21151} = [11512] .

Definition 6.6.11. We let N be the set of all necklaces. We let Na be the set of all aperiodic necklaces.
We let MNa be the set of all finite multisets of aperiodic necklaces.

Definition 6.6.12. We define a map GR : A∗ →MNa as follows:
Let w ∈ A∗. Let n = ` (w) (so that w ∈ An). Let τ be the permutation (stdw)

−1 ∈ Sn. Then, we define
the multiset GRw ∈MNa by setting

GRw = {[w]z | z is a cycle of τ}
multiset

.

(This multiset GRw is indeed a finite multiset of aperiodic necklaces336, and thus belongs to MNa.)

335See Exercise 6.6.8 below for the proof of Proposition 6.6.5, as well as for the proofs of all other propositions stated before

Exercise 6.6.8.
336Indeed, this multiset GRw is finite (since τ has only finitely many cycles), and its elements [w]z are aperiodic necklaces

(as we have seen in the definition of [w]z).
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Example 6.6.13. Let A be the alphabet {1 < 2 < 3 < · · · }, and let w = 33232112 ∈ A8.
To compute GRw, we first notice that stdw = 67384125 (in one-line notation). Hence, the permutation

τ from Definition 6.6.12 satisfies τ = (stdw)
−1

= 67358124. The cycles of τ are {1, 6}, {2, 7}, {3} and
{4, 5, 8}. Thus,

GRw = {[w]z | z is a cycle of τ}multiset =
{

[w]{1,6} , [w]{2,7} , [w]{3} , [w]{4,5,8}

}
multiset

= {[31] , [31] , [2] , [322]}multiset = {[13] , [13] , [2] , [223]}multiset

(since [31] = [13] and [322] = [223] as necklaces). Drawn on the plane, the necklaces in GRw look as follows:

1
��
3^^ 1

��
3^^ 2

2

��
2

qq3

@@

The map GR is called the Gessel-Reutenauer bijection. In order to show that it indeed is a bijection, we
shall construct its inverse. First, we introduce some further objects.

Definition 6.6.14. A nonempty word w is said to be aperiodic if there exist no m ≥ 2 and u ∈ A∗ satisfying
w = um.

Let Aa be the set of all aperiodic words in A∗.

For example, the word 132231 is aperiodic, but the word 132132 is not (since 132132 = um for u = 132
and m = 2).

Aperiodic words are directly connected to aperiodic necklaces, as the following facts show:337

Proposition 6.6.15. Let w ∈ A∗ be a nonempty word. Then, the word w is aperiodic if and only if the
necklace [w] is aperiodic.

Corollary 6.6.16. Let w ∈ A∗ be an aperiodic word. Then, the word c · w is aperiodic.338

Corollary 6.6.17. Each aperiodic necklace is a set of aperiodic words.

Let us now introduce a new total order on the set Aa of all aperiodic words:

Definition 6.6.18. Let u and v be two aperiodic words. Then, we write u ≤ω v if and only if uv ≤ vu.
Thus, we have defined a binary relation ≤ω on the set Aa of all aperiodic words.

Proposition 6.6.19. The relation ≤ω on the set Aa is the smaller-or-equal relation of a total order.

For the next proposition, we should recall Definition 6.6.1 (and, in particular, the meaning of c and its
action on words).

Proposition 6.6.20. Let u and v be two aperiodic words.

(a) We have u ≤ω v if and only if either u1 < v1 or (u1 = v1 and c · u ≤ω c · v). 339

(b) If u 6= v, then there exists some i ∈ N satisfying
(
ci · u

)
1
6=
(
ci · v

)
1
.

(c) We have u ≤ω v if and only if the smallest i ∈ N satisfying
(
ci · u

)
1
6=
(
ci · v

)
1
either does not exist

or satisfies
(
ci · u

)
1
<
(
ci · v

)
1
.

(d) Let n and m be positive integers such that n` (u) = m` (v). We have u ≤ω v if and only if un ≤ vm.

Remark 6.6.21. We are avoiding the use of infinite words here; if we didn’t, we could restate the relation
≤ω in a simpler way (which is easily seen to be equivalent to Proposition 6.6.20(c)): Two aperiodic words u
and v satisfy u ≤ω v if and only if u∞ ≤ v∞. Here, for any nonempty word w, we are letting w∞ denote the
infinite word (

w1, w2, . . . , w`(w), w1, w2, . . . , w`(w), w1, w2, . . . , w`(w), . . .
)

337See Exercise 6.6.23 for the proofs of all unproved statements made until Exercise 6.6.23.
338See Definition 6.6.1 for the definition of c and its action on words.
339The relation “c · u ≤ω c · v” here makes sense because the words c · u and c · v are aperiodic (by Corollary 6.6.16).
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(that is, the word w repeated endlessly), and the symbol “≤” in “u∞ ≤ v∞” refers to the lexicographic order
on A∞.

Other equivalent descriptions of the relation ≤ω (or, more precisely, of the “strictly less” relation corre-
sponding to it) can be found in [54, Corollary 11].

Proposition 6.6.22. Let w ∈ An be a word. Let τ be the permutation (stdw)
−1 ∈ Sn. Then:

(a) The words wτ,1, wτ,2, . . . , wτ,n are aperiodic.
(b) We have wτ,1 ≤ω wτ,2 ≤ω · · · ≤ω wτ,n.

Exercise 6.6.23. Prove Proposition 6.6.15, Corollary 6.6.16, Corollary 6.6.17, Proposition 6.6.19, Proposi-
tion 6.6.20 and Proposition 6.6.22.

We need two more notations about multisets:

Definition 6.6.24. Let T be a totally ordered set, and let ≤T be the smaller-or-equal relation of T . Let M
be a finite multiset of elements of T . Then, there is a unique list (m1,m2, . . . ,mn) such that

{m1,m2, . . . ,mn}multiset = M and m1 ≤T m2 ≤T · · · ≤T mn.

This list (m1,m2, . . . ,mn) is obtained by listing all elements of M (with their multiplicities) in increasing
order (increasing with respect to ≤T ). We shall refer to this list (m1,m2, . . . ,mn) as the ≤T -increasing list
of M .

(For example, the ≤Z-increasing list of {1, 2, 3, 2, 1}multiset is (1, 1, 2, 2, 3).)

Definition 6.6.25. Let S be a finite multiset.

(a) The support SuppS is defined to be the set of all elements of S. Thus, if S = {m1,m2, . . . ,mn}multiset,
then SuppS = {m1,m2, . . . ,mn}.

(b) For each s ∈ S, let Ms be a finite multiset. Then, we define the multiset union
⊎
s∈SMs to be the

finite multiset M with the following property: For any object x, we have

(multiplicity of x in M) =
∑

s∈SuppS

(multiplicity of s in S) · (multiplicity of x in Ms) .

For example:
• If S = {1, 2, 3}multiset and Ms = {s, s+ 1}multiset for each s ∈ SuppS, then

⊎
s∈SMs =

{1, 2, 2, 3, 3, 4}multiset.
• If S = {1, 1, 2}multiset and Ms = {s, s+ 1}multiset for each s ∈ SuppS, then

⊎
s∈SMs =

{1, 1, 2, 2, 2, 3}multiset.
We regard each set as a multiset; thus, the multiset union

⊎
s∈SMs is also defined when the Ms

are sets.

Now, we can construct the inverse of the Gessel-Reutenauer bijection:

Definition 6.6.26. We define a map RG : MNa → A∗ as follows:
Let M ∈ MNa be a finite multiset of aperiodic necklaces. Let M ′ =

⊎
N∈M N . (We are here using the

fact that each necklace N ∈ M is a finite set, thus a finite multiset.) Notice that M ′ is a finite multiset of
aperiodic words340. Let (m1,m2, . . . ,mn) be the ≤ω-increasing list of M ′. For each i ∈ {1, 2, . . . , n}, let `i
be the last letter of the nonempty word mi. Then, RG (M) is defined to be the word (`1, `2, . . . , `n) ∈ A∗.

Example 6.6.27. Let A be the alphabet {1 < 2 < 3 < · · · }, and let M = {[13] , [13] , [2] , [223]}multiset.
Clearly, M ∈ MNa (since M is a finite multiset of aperiodic necklaces). (Actually, M is the multiset of

340Indeed:

• Each N ∈M is an aperiodic necklace (since M is a multiset of aperiodic necklaces), and thus (by Corollary 6.6.17) a

set of aperiodic words. Therefore,
⊎
N∈M N is a multiset of aperiodic words.

• Each N ∈ M is a necklace, and thus is a finite set (since any necklace is a finite set). Since the multiset M is also
finite, this shows that

⊎
N∈M N is finite.

Thus,
⊎
N∈M N is a finite multiset of aperiodic words. In other words, M ′ is a finite multiset of aperiodic words (since

M ′ =
⊎
N∈M N).
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aperiodic necklaces drawn in Example 6.6.13.) In order to compute the word RG (M), let us first compute
the multiset M ′ from Definition 6.6.26. Indeed, the definition of M ′ yields

M ′ =
⊎
N∈M

N = [13]︸︷︷︸
={13,31}

] [13]︸︷︷︸
={13,31}

] [2]︸︷︷︸
={2}

] [223]︸︷︷︸
={223,232,322}where we are using the notation M1 ]M2 ] · · · ]Mk for a multiset union

⊎
s∈{1,2,...,k}

Ms


= {13, 31} ] {13, 31} ] {2} ] {223, 232, 322}
= {13, 31, 13, 31, 2, 223, 232, 322}multiset .

Hence, the ≤ω-increasing list of M ′ is (13, 13, 2, 223, 232, 31, 31, 322) (since 13 ≤ω 13 ≤ω 2 ≤ω 223 ≤ω 232 ≤ω
31 ≤ω 31 ≤ω 322). The last letters of the words in this list are 3, 3, 2, 3, 2, 1, 1, 2 (in this order). Hence,
Definition 6.6.26 shows that

RG (M) = (3, 3, 2, 3, 2, 1, 1, 2) = 33232112.

Remark 6.6.28. The ≤ω-increasing list of a multiset M ′ of aperiodic words is not always the same as its
≤-increasing list. For example, the ≤ω-increasing list of {2, 21} is (21, 2) (since 21 ≤ω 2), whereas its
≤-increasing list is (2, 21) (since 2 ≤ 21).

A comparison of Examples 6.6.13 and 6.6.27 suggests that the maps GR and RG undo one another. This
is indeed true, as the following theorem (due to Gessel and Reutenauer [82, Lemma 3.4 and Example 3.5];
also proved in [182, Theorem 7.20], [51, Theorem 3.1 and Proposition 3.1] and [81, §2]) shows:

Theorem 6.6.29. The maps GR : A∗ →MNa and RG : MNa → A∗ are mutually inverse bijections.

Exercise 6.6.30. Prove Theorem 6.6.29.
[Hint: First, use Proposition 6.6.22 to show that RG ◦GR = id. Then recall the fact that any injective

map between two finite sets of the same sizes is a bijection. This does not directly apply here, since the sets
A∗ and MNa are usually not finite. However, GR can be restricted to a map between two appropriate finite
subsets, obtained by focussing on a finite sub-alphabet of A and fixing the length of the words; these subsets
can be shown to have equal size using the Chen-Fox-Lyndon factorization (see the following paragraph for
the connection).341]

Theorem 6.6.29 shows that the sets A∗ and MNa are in bijection. This bijection is in some sense similar
to the Chen-Fox-Lyndon factorization342, and preserves various quantities (for example, the number of times
a given letter a appears in a word w ∈ A∗ equals the number of times this letter a appears in the words
in the corresponding multiset GRw ∈ MNa, provided that we pick one representative of each necklace in
GRw), and predictably affects other quantities (for example, the cycles of the standardization stdw of a
word w ∈ A∗ have the same lengths as the aperiodic necklaces in the corresponding multiset GRw ∈MNa);
these properties have ample applications to enumerative questions (discussed in [82]).

Remark 6.6.31. The Gessel-Reutenauer bijection relates to the Burrows-Wheeler transformation (e.g., [45,
§2]). Indeed, the latter sends an aperiodic word w ∈ Aa to the word RG ({[w]}multiset) obtained by applying
RG to the multiset consisting of the single aperiodic necklace [w]. This transformation is occasionally applied
in (lossless) data compression, as the word RG ({[w]}multiset) tends to have many strings of consecutive equal
letters when w has substrings occurring multiple times (for example, if A = {a < b < c < d < · · · } and
w = bananaban, then RG ({[w]}multiset) = nnbbnaaaa), and strings of consecutive equal letters can easily be
compressed. (In order to guarantee that w can be recovered from the result, one can add a new letter ζ –
called a “sentinel symbol” – to the alphabet A, and apply the Burrows-Wheeler transformation to the word

341This argument roughly follows [81].
342The Chen-Fox-Lyndon factorization (Theorem 6.1.27) provides a bijection between words in A∗ and multisets of Lyndon

words (because the factors in the CFL factorization of a word w ∈ A∗ can be stored in a multiset), whereas the Gessel-Reutenauer

bijection GR : A∗ → MNa is a bijection between words in A∗ and multisets of aperiodic necklaces. Since the Lyndon words
are in bijection with the aperiodic necklaces (by Exercise 6.1.34(e)), we can thus view the two bijections as having the same

targets (and the same domains). That said, they are not the same bijection.
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wζ instead of w. This also ensures that wζ is an aperiodic word, so the Burrows-Wheeler transformation
can be applied to wζ even if it cannot be applied to w.)

Kufleitner, in [116, §4], suggests a bijective variant of the Burrows-Wheeler transformation. In our
notations, it sends a word w ∈ A∗ to the word RG ({[a1] , [a2] , . . . , [ak]}multiset), where (a1, a2, . . . , ak) is
the CFL factorization of w.

For variants and generalizations of the Gessel-Reutenauer bijection, see [116], [209], [200], [56] and [179].

6.6.2. The Gessel-Reutenauer symmetric functions. In this subsection, we shall study a certain family of
symmetric functions. First, we recall that every word w ∈ A∗ has a unique CFL factorization (see Theorem
6.1.27). Based on this fact, we can make the following definition:

Definition 6.6.32. For the rest of Subsection 6.6.2, we let A be the alphabet {1 < 2 < 3 < · · · }.
Let w ∈ A∗ be a word. The CFL type of w is defined to be the partition whose parts are the positive

integers ` (a1) , ` (a2) , . . . , ` (ak) (listed in decreasing order), where (a1, a2, . . . , ak) is the CFL factorization
of w. This CFL type is denoted by CFLtypew.

Example 6.6.33. Let w be the word 213212412112. Then, the tuple (2, 132, 124, 12, 112) is the CFL
factorization of w. Hence, the CFL type of w is the partition whose parts are the positive integers
` (2) , ` (132) , ` (124) , ` (12) , ` (112) (listed in decreasing order). In other words, the CFL type of w is the
partition (3, 3, 3, 2, 1) (since the positive integers ` (2) , ` (132) , ` (124) , ` (12) , ` (112) are 1, 3, 3, 2, 3).

Definition 6.6.34. For each word w = (w1, w2, . . . , wn) ∈ A∗, we define a monomial xw in k [[x]] by setting
xw = xw1xw2 · · ·xwn . (For example, x(1,3,2,1) = x1x3x2x1 = x2

1x2x3.)
For any partition λ, we define a power series GRλ ∈ k [[x]] by

GRλ =
∑
w∈A∗;

CFLtypew=λ

xw.

Example 6.6.35. Let us compute GR(2,1). Indeed, the words w ∈ A∗ satisfying CFLtypew = (2, 1) are
the words whose CFL factorization consists of two words, one of which has length 1 and the other has
length 2. In other words, these words w ∈ A∗ must have the form w = a1a2 for two Lyndon words a1

and a2 satisfying a1 ≥ a2 and (` (a1) , ` (a2)) ∈ {(1, 2) , (2, 1)}. A straightforward analysis of possibilities
reveals that these are precisely the 3-letter words w = (w1, w2, w3) satisfying either (w1 < w2 and w1 ≥ w3)
or (w1 > w2 and w2 < w3). Hence,

GR(2,1) =
∑
w∈A∗;

CFLtypew=(2,1)

xw =
∑
w∈A∗;

w1<w2 and w1≥w3

xw +
∑
w∈A∗;

w1>w2 and w2<w3

xw

=
∑
w∈A∗;

w1<w2 and w1≥w3

xw +
∑
w∈A∗;

w1>w2 and w2<w3 and w1≤w3

xw +
∑
w∈A∗;

w1>w2 and w2<w3 and w1>w3

xw

(here, we have split the second sum according to the relation between w1 and w3)

=
∑
w∈A∗;

w3≤w1<w2

xw +
∑
w∈A∗;

w2<w1≤w3

xw +
∑
w∈A∗;

w2<w3<w1

xw

(here, we rewrote the conditions under the summation signs). The three sums on the right hand side are
clearly quasisymmetric functions. Using (5.2.3), we can rewrite them as L(2,1), L(1,2) and L(1,1,1), respectively.
Thus, we obtain

GR(2,1) = L(2,1) + L(1,2) + L(1,1,1) = 3M(1,1,1) +M(1,2) +M(2,1)

= 3m(1,1,1) +m(2,1).

Thus, GR(2,1) is actually a symmetric function! We shall soon (in Proposition 6.6.37) see that this is not a
coincidence.

We shall now state various properties of the power series GRλ; their proofs are all part of Exercise 6.6.51.

Proposition 6.6.36. Let n be a positive integer. Then:
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(a) The partition (n) satisfies

GR(n) =
∑
w∈An;

w is Lyndon

xw.

(b) Assume that k is a Q-algebra. Then,

GR(n) =
1

n

∑
d|n

µ (d) p
n/d
d .

Here, µ denotes the number-theoretical Möbius function (defined as in Exercise 2.9.6), and the
summation sign “

∑
d|n” is understood to range over all positive divisors d of n.

Proposition 6.6.37. Let λ be a partition. Then, the power series GRλ belongs to Λ.

Thus, (GRλ)λ∈Par is a family of symmetric functions.343 Unlike many other such families we have studied,
it is not a basis of Λ; it is not linearly independent (e.g., it satisfies GR(2,1,1) = GR(4)). Nevertheless, it

satisfies a Cauchy-kernel-like identity344:

Proposition 6.6.38. Consider two countable sets of indeterminates x = (x1, x2, x3, . . .) and y = (y1, y2, y3, . . .).

(a) In the power series ring k [[x,y]] = k [[x1, x2, x3, . . . , y1, y2, y3, . . .]], we have∑
λ∈Par

GRλ (x) pλ (y) =
∑
λ∈Par

pλ (x) GRλ (y) .

(b) For each word w = (w1, w2, . . . , wn) ∈ A∗, we define a monomial yw in k [[y]] by setting yw =
yw1

yw2
· · · ywn . Then,∑

λ∈Par

GRλ (x) pλ (y) =
∑
w∈A∗

xwpCFLtypew (y) =
∏
w∈L

∏
u∈L

1

1− x
`(u)
w y

`(w)
u

=
∑
λ∈Par

pλ (x) GRλ (y) .

The proof of this proposition rests upon the following simple equality345:

Proposition 6.6.39. In the power series ring (k [[x]]) [[t]], we have

1

1− p1t
=
∏
w∈L

1

1− xwt`(w)
.

We can furthermore represent the symmetric functions GRλ in terms of the fundamental basis (Lα)α∈Comp

of QSym; here, the Gessel-Reutenauer bijection from Theorem 6.6.29 reveals its usefulness. We will use
Definition 5.3.5.

Proposition 6.6.40. Let λ be a partition. Let n = |λ|. Then,

GRλ =
∑
σ∈Sn;

σ has cycle type λ

Lγ(σ).

The proof of this relies on Lemma 5.3.6 (see Exercise 6.6.51 below for the details).

Definition 6.6.41. Let S =
⊔
n∈N Sn (an external disjoint union). For each σ ∈ S, we let typeσ denote

the cycle type of σ.

343Several sources, including [82], [206, Exercise 7.89] and [66], write Lλ for what we call GRλ. (So would we if Lα didn’t
already have another meaning here.)

344Recall that L denotes the set of Lyndon words in A∗.
345Recall that L denotes the set of Lyndon words in A∗. Also, recall that A = {1 < 2 < 3 < · · · }. Thus, p1 =

∑
i≥1 xi =∑

a∈A xa.
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Proposition 6.6.42. Consider two countable sets of indeterminates x = (x1, x2, x3, . . .) and y = (y1, y2, y3, . . .).
In the power series ring k [[x,y]], we have∑

λ∈Par

GRλ (x) pλ (y) =
∑
λ∈Par

pλ (x) GRλ (y) =
∑
σ∈S

Lγ(σ) (x) ptypeσ (y) .

Let us finally give two alternative descriptions of the GRλ that do not rely on the notion of CFL factor-
ization. First, we state a fact that is essentially trivial:

Proposition 6.6.43. Let N be a necklace. Let w and w′ be two elements of N . Then:

(a) There exist words u and v such that w = uv and w′ = vu.
(b) We have xw = xw′ .

Definition 6.6.44. Let N ∈ N be a necklace. Then, we define a monomial xN in k [[x]] by setting xN = xw,
where w is any element of N . (This is well-defined, because Proposition 6.6.43(b) shows that xw does not
depend on the choice of w.)

Definition 6.6.45. Let M be a finite multiset of necklaces. Then, we define a monomial xM in k [[x]] by
setting xM = xN1

xN2
· · ·xNk , where M is written in the form M = {N1, N2, . . . , Nk}multiset.

Definition 6.6.46. Let M be a finite multiset of necklaces. Then, we can obtain a partition by listing the
sizes of the necklaces in M in decreasing order. This partition will be called the type of M , and will be
denoted by typeM .

Example 6.6.47. If M = {[13] , [13] , [2] , [223]}multiset, then the type of M is (3, 2, 2, 1) (because the sizes
of the necklaces in M are 2, 2, 1, 3).

Proposition 6.6.48. Let λ be a partition. Then,

GRλ =
∑

M∈MNa;
typeM=λ

xM .

This was our first alternative description of GRλ. Note that it is used as a definition of GRλ in [82,
(2.1)] (where GRλ is denoted by Lλ). Using the Gessel-Reutenauer bijection, we can restate it as follows:

Proposition 6.6.49. Let λ be a partition. Then,

GRλ =
∑
w∈A∗;

type(GRw)=λ

xw.

Let us finally give a second alternative description of GRλ:

Proposition 6.6.50. Let λ be a partition. Then,

GRλ =
∑
w∈A∗;

type(stdw)=λ

xw.

Exercise 6.6.51. Prove all statements made in Subsection 6.6.2.
[Hint: Here is one way to proceed:

• First prove Proposition 6.6.39, by using the CFL factorization to argue that both sides equal∑
w∈A∗ xwt

`(w).
• Use a similar argument to derive Proposition 6.6.38 (starting with part (b)).
• Proposition 6.6.43 is almost trivial.
• Derive Proposition 6.6.48 from the definition of GRλ using the uniqueness of the CFL factorization.
• Derive Proposition 6.6.49 from Proposition 6.6.48 using the bijectivity of GR.
• Derive Proposition 6.6.50 from Proposition 6.6.49.
• Obtain Proposition 6.6.40 by combining Proposition 6.6.50 with Lemma 5.3.6.
• Derive Proposition 6.6.42 from Propositions 6.6.40 and 6.6.38.
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• Derive Proposition 6.6.37 either from Proposition 6.6.48 or from Proposition 6.6.38. (In the latter
case, make sure to work with k = Q first, and then extend to all other k, as the proof will rely on
the k-linear independence of (pλ)λ∈Par, which doesn’t hold for all k.)

• Prove Proposition 6.6.36(a) directly using the definition of GR(n).

• Show that each positive integer n satisfies pn1 =
∑
d|n d · GR(d)

(
x
n/d
1 , x

n/d
2 , x

n/d
3 , . . .

)
by taking

logarithms in Proposition 6.6.39. Use this and (2.9.7) to prove Proposition 6.6.36(b) recursively.

Other approaches are, of course, possible.]

Remark 6.6.52. Let n be a positive integer. The symmetric function GR(n) has a few more properties:

(a) It is an N-linear combination of Schur functions. To state the precise rule, we need a few more
notations: A standard tableau can be defined as a column-strict tableau T with cont (T ) = (1m),
where m is the number of boxes of T . (That is, each of the numbers 1, 2, . . . ,m appears exactly once
in T , and no other numbers appear.) If T is a standard tableau with m boxes, then a descent of T
means an i ∈ {1, 2, . . . ,m− 1} such that the entry i + 1 appears in T in a row further down than
i does. The major index majT of a standard tableau T is defined to be the sum of its descents.346

Now,

GR(n) =
∑

λ∈Parn

aλ,1sλ,

where aλ,1 is the number of standard tableaux T of shape λ satisfying majT ≡ 1 modn. (See [206,
Exercise 7.89 (c)].)

(b) Assume that k = C. Recall the map ch : A (S) → Λ from Theorem 4.4.1. Embed the cyclic group
Cn = Z/nZ as a subgroup in the symmetric group Sn by identifying some generator g of Cn with
some n-cycle in Sn. Let ω be a primitive n-th root of unity in C (for instance, exp (2πi/n)). Let
γ : Cn → C be the character of Cn that sends each gi ∈ Cn to ωi. Then,

GR(n) = ch
(

IndSn
Cn

γ
)
.

(See [206, Exercise 7.89 (b)].)

(c) The character IndSn
Cn

γ of Sn is actually the character of a representation. To construct it, set
k = C, and recall the notations from Exercise 6.1.41 (while keeping A = {1, 2, 3, . . .}). Let mn
be the C-vector subspace of T (V ) spanned by the products xσ(1)xσ(2) · · ·xσ(n) with σ ∈ Sn. The
symmetric group Sn acts on T (V ) by algebra homomorphisms, with σ ∈ Sn sending each xi to
xσ(i) when i ≤ n and to xi otherwise. Both gn and mn are CSn-submodules of T (V ). Thus,
so is the intersection gn ∩ mn. It is not hard to see that this intersection is spanned by all “nested
commutators”

[
xσ(1),

[
xσ(2),

[
xσ(3), . . .

]]]
(in T (V )) with σ ∈ Sn. The character of this CSn-module

gn ∩ mn is precisely the IndSn
Cn

γ from Remark 6.6.52(b), so applying the Frobenius characteristic
map ch to it yields the symmetric function GR(n). (See [182, Theorem 9.41(i)]. There are similar
ways to obtain GRλ for all λ ∈ Par.)

Exercise 6.6.53. Prove the claim of Remark 6.6.52(b).
[Hint: It helps to recall (or prove) that for any positive integer m, the sum of all primitive m-th roots of

unity in C is µ (m).]

The symmetric functions GRλ for more general partitions λ can be expressed in terms of the symmetric
functions GR(n) (which, as we recall from Proposition 6.6.36(b), have a simple expression in terms of the
pm) using the concept of plethysm; see [82, Theorem 3.6].

In [82], Gessel and Reutenauer apply the symmetric functions GRλ to questions of permutation enumer-
ation via the following result347:

346For example, the tableau

1 3 4 8

2 5 6 9
7

is standard and has descents 1, 4, 6, 8 and major index 1 + 4 + 6 + 8 = 19.
347Proposition 6.6.54(a) is [82, Corollary 2.2]; Proposition 6.6.54(b) is [82, Theorem 2.1].



218 DARIJ GRINBERG AND VICTOR REINER

Proposition 6.6.54. Let n ∈ N. Let λ ∈ Parn and β = (β1, β2, . . . , βk) ∈ Compn. We shall use the
notations introduced in Definition 5.1.10. Definition 5.3.5 and Definition 6.6.41.

(a) Let µ ∈ Parn be the partition obtained by sorting the entries of β into decreasing order. Then,

(the number of permutations σ ∈ Sn satisfying typeσ = λ such that β refines γ (σ))

= (the number of permutations σ ∈ Sn satisfying typeσ = λ and Desσ ⊂ D (β))

=
(

the coefficient of xβ1

1 xβ2

2 · · ·x
βk
k in GRλ

)
= (the coefficient of xµ in GRλ)

= (GRλ, hµ) (this is the Hall inner product of GRλ ∈ Λ and hµ ∈ Λ) .

(b) Recall the ribbon diagram Rib (β) corresponding to the composition β (defined as in Definition 5.1.10).
Then,

(the number of permutations σ ∈ Sn satisfying typeσ = λ and β = γ (σ))

= (the number of permutations σ ∈ Sn satisfying typeσ = λ and Desσ = D (β))

=
(
GRλ, sRib(β)

) (
this is the Hall inner product of GRλ ∈ Λ and sRib(β) ∈ Λ

)
.

Exercise 6.6.55. Prove Proposition 6.6.54.
[Hint: Use Proposition 6.6.40, Theorem 5.4.10, the equality (5.4.3) and the adjointness between π and i

in Corollary 5.4.3.]

By strategic application of Proposition 6.6.54, Gessel and Reutenauer arrive at several enumerative con-
sequences, such as the following:

• ([82, Theorem 8.3]) If A is a proper subset of {1, 2, . . . , n− 1}, then

(the number of permutations σ ∈ Sn satisfying |Fixσ| = 0 and Desσ = A)

= (the number of permutations σ ∈ Sn satisfying |Fixσ| = 1 and Desσ = A) ,

where Fixσ denotes the set of all fixed points of a permutation σ. This can also be proved bijectively;
such a bijective proof can be obtained by combining [50, Theorems 5.1 and 6.1].

• ([82, Theorem 9.4]) If i ∈ {1, 2, . . . , n− 1}, then

(the number of n-cycles σ ∈ Sn satisfying Desσ = {i}) =
∑

d|gcd(n,i)

µ (d)

(
n/d

i/d

)
.

Note that this also equals the number of necklaces [(w1, w2, . . . , wn)] (or, equivalently, Lyndon words
(w1, w2, . . . , wn)) with w1, w2, . . . , wn ∈ {0, 1} and w1 + w2 + · · · + wn = i. This suggests that
there should be a bijection between {n-cycles σ ∈ Sn satisfying Desσ = {i}} and the set of such
necklaces; and indeed, such a bijection can be found in [45, Theorem 1].

See [82] and [66] for more such applications.
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7. Aguiar-Bergeron-Sottile character theory Part I: QSym as a terminal object

It turns out that the universal mapping property of NSym as a free associative algebra leads via duality
to a universal property for its dual QSym, elegantly explaining several combinatorial invariants that take
the form of quasisymmetric or symmetric functions:

• Ehrenborg’s quasisymmetric function of a ranked poset [64],
• Stanley’s chromatic symmetric function of a graph [205],
• the quasisymmetric function of a matroid considered in [21].

7.1. Characters and the universal property.

Definition 7.1.1. Given a Hopf algebra A over k, a character is an algebra morphism A
ζ−→ k, that is,

• ζ(1A) = 1k,
• ζ is k-linear, and
• ζ(ab) = ζ(a)ζ(b) for a, b in A.

Example 7.1.2. A particularly important character for A = QSym is defined as follows:348

QSym
ζQ−→ k,

f(x) 7−→ f(1, 0, 0, . . .) = [f(x)]x1=1,x2=x3=···=0 .

Hence,

ζQ(Mα) = ζQ(Lα) =

{
1, if α = (n) for some n;

0, otherwise.

In other words, the restriction ζQ|QSymn
coincides with the functional Hn in NSymn = Homk(QSymn,k):

one has for f in QSymn that

(7.1.1) ζQ(f) = (Hn, f).

It is worth remarking that there is nothing special about setting x1 = 1 and x2 = x3 = · · · = 0: for
quasisymmetric f , we could have defined the same character ζQ by picking any variable, say xn, and sending

f(x) 7−→ [f(x)] xn=1, and
xm=0 for m 6=n

.

This character QSym
ζQ−→ k has a certain universal property, known as the Aguiar-Bergeron-Sottile

universality theorem (part of [4, Theorem 4.1]):

Theorem 7.1.3. Let A be a connected graded Hopf algebra, and let A
ζ−→ k be a character. Then, there

is a unique graded Hopf morphism A
Ψ−→ QSym making the following diagram commute:

(7.1.2) A
Ψ //

ζ ��

QSym

ζQ||
k

Furthermore, Ψ is given by the following formula on homogeneous elements:

(7.1.3) Ψ(a) =
∑

α∈Compn

ζα(a)Mα for all n ∈ N and a ∈ An,

where for α = (α1, . . . , α`), the map ζα is the composite

An
∆(`−1)

−→ A⊗`
πα−→ Aα1

⊗ · · · ⊗Aα`
ζ⊗`−→ k

in which A⊗`
πα−→ Aα1

⊗ · · · ⊗Aα` is the canonical projection.

348We are using the notation of Proposition 5.1.9 here, and we are still identifying QSym with QSym (x), where x denotes

the infinite chain (x1 < x2 < · · · ).
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Proof. One argues that Ψ is unique, and has formula (7.1.3), using only that ζ is k-linear and sends 1
to 1 and that Ψ is a graded k-coalgebra map making (7.1.2) commute. Equivalently, consider the adjoint
k-algebra map349

NSym = QSymo Ψ∗−→ Ao.

Commutativity of (7.1.2) implies that for a in An,

(Ψ∗(Hn), a) = (Hn,Ψ(a))
(7.1.1)

= ζQ(Ψ(a)) = ζ(a),

whereas gradedness of Ψ∗ yields that (Ψ∗(Hm), a) = 0 whenever a ∈ An and m 6= n. In other words, Ψ∗(Hn)
is the element of Ao defined as the following functional on A:

(7.1.4) Ψ∗(Hn)(a) =

{
ζ(a), if a ∈ An;

0, if a ∈ Am for some m 6= n.

By the universal property for NSym ∼= k〈H1, H2, . . .〉 as free associative k-algebra, we see that any choice of

a k-linear map A
ζ→ k uniquely produces a k-algebra morphism Ψ∗ : QSymo → Ao which satisfies (7.1.4)

for all n ≥ 1. It is easy to see that this Ψ∗ then automatically satisfies (7.1.4) for n = 0 as well if ζ sends

1 to 1 (it is here that we use ζ(1) = 1 and the connectedness of A). Hence, any given k-linear map A
ζ→ k

sending 1 to 1 uniquely produces a k-algebra morphism Ψ∗ : QSymo → Ao which satisfies (7.1.4) for all
n ≥ 0. Formula (7.1.3) follows as

Ψ(a) =
∑

α∈Comp

(Hα,Ψ(a)) Mα

and for a composition α = (α1, . . . , α`), one has

(Hα,Ψ(a)) = (Ψ∗(Hα), a) = (Ψ∗(Hα1
) · · ·Ψ∗(Hα`), a)

=
(

Ψ∗(Hα1
)⊗ · · · ⊗Ψ∗(Hα`),∆

(`−1)(a)
)

(7.1.4)
=

(
ζ⊗` ◦ πα

) (
∆(`−1)(a)

)
= ζα(a),

where the definition of ζα was used in the last equality.

We wish to show that if, in addition, A is a Hopf algebra and A
ζ−→ k is a character (i.e., an algebra

morphism), then A
Ψ−→ QSym will be an algebra morphism, that is, the two maps A⊗A −→ QSym given by

Ψ ◦m and m ◦ (Ψ⊗Ψ) coincide. To see this, consider these two diagrams having the two maps in question
as the composites of their top rows:

(7.1.5) A⊗A m //

ζ⊗ζ
""

A
Ψ //

ζ

��

QSym

ζQ||
k

A⊗A Ψ⊗Ψ //

ζ⊗ζ
((

QSym⊗2 m //

ζQ⊗ζQ
��

QSym

ζQ
vv

k

The fact that ζ, ζQ are algebra morphisms makes the above diagrams commute, so that applying the unique-

ness in the first part of the proof to the character A ⊗ A
ζ⊗ζ−→ k proves the desired equality Ψ ◦ m =

m ◦ (Ψ⊗Ψ). �

Remark 7.1.4. When one assumes in addition that A is cocommutative, it follows that the image of Ψ will lie
in the subalgebra Λ ⊂ QSym, e.g. from the explicit formula (7.1.3) and the fact that one will have ζα = ζβ

whenever β is a rearrangement of α. In other words, the character Λ
ζΛ−→ k defined by restricting ζQ to Λ,

or by

ζΛ(mλ) =

{
1, if λ = (n) for some n;

0, otherwise,

has a universal property as terminal object with respect to characters on cocommutative Hopf algebras.

349Here we are using the fact that there is a 1-to-1 correspondence between graded k-linear maps A → QSym and graded
k-linear maps QSymo → Ao given by f 7→ f∗, and this correspondence has the property that a given graded map f : A→ QSym

is a k-coalgebra morphism if and only if f∗ is a k-algebra morphism. This is a particular case of Exercise 1.6.1(f).
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The graded Hopf morphism Ψ in Theorem 7.1.3 will be called the map A→ QSym induced by the character
ζ.

We close this section by discussing a well-known polynomiality and reciprocity phenomenon; see, e.g.,
Humpert and Martin [103, Prop. 2.2], Stanley [205, §4].

Definition 7.1.5. The binomial Hopf algebra (over the commutative ring k) is the polynomial algebra k [m]
in a single variable m, with a Hopf algebra structure transported from the symmetric algebra Sym

(
k1
)

(which

is a Hopf algebra by virtue of Example 1.3.14, applied to V = k1) along the isomorphism Sym
(
k1
)
→ k [m]

which sends the standard basis element of k1 to m. Thus the element m is primitive; that is, ∆m =
1 ⊗m + m ⊗ 1 and S(m) = −m. As S is an algebra anti-endomorphism by Proposition 1.4.10 and k[m] is
commutative, one has S(g)(m) = g(−m) for all polynomials g(m) in k[m].

Definition 7.1.6. For an element f(x) in QSym and a nonnegative integer m, let ps1(f)(m) denote the
element of k obtained by principal specialization at q = 1

ps1(f)(m) = [f(x)] x1=x2=···=xm=1,
xm+1=xm+2=···=0

= f(1, 1, . . . , 1︸ ︷︷ ︸
m ones

, 0, 0, . . .).

Proposition 7.1.7. Assume that Q is a subring of k. The map ps1 has the following properties.

(i) Let f ∈ QSym. There is a unique polynomial in k[m] which agrees for each nonnegative integer
m with ps1(f)(m), and which, by abuse of notation, we will also denote ps1(f)(m). If f lies in
QSymn, then ps1(f)(m) is a polynomial of degree at most n, taking these values on Mα, Lα for
α = (α1, . . . , α`) in Compn:

ps1(Mα)(m) =

(
m

`

)
,

ps1(Lα)(m) =

(
m− `+ n

n

)
.

(ii) The map QSym
ps1

−→ k[m] is a Hopf morphism into the binomial Hopf algebra.
(iii) For all m in Z and f in QSym one has

ζ?mQ (f) = ps1(f)(m).

In particular, one also has

ζ
?(−m)
Q (f) = ps1(S(f))(m) = ps1(f)(−m).

(iv) For a graded Hopf algebra A with a character A
ζ−→ k, and any element a in An, the polynomial

ps1(Ψ(a))(m) in k[m] has degree at most n, and when specialized to m in Z satisfies

ζ?m(a) = ps1(Ψ(a))(m).

Proof. To prove assertion (i), note that one has

ps1(Mα)(m) = Mα(1, 1, . . . , 1, 0, 0, . . .) =
∑

1≤i1<···<i`≤m

[
xα1
i1
· · ·xα`i`

]
xj=1

=

(
m

`

)
,

ps1(Lα)(m) = Lα(1, 1, . . . , 1, 0, 0, . . .) =
∑

1≤i1≤···≤in≤m:
ik<ik+1 if k∈D(α)

[xi1 · · ·xin ]xj=1

= |{1 ≤ j1 ≤ j2 ≤ · · · ≤ jn ≤ m− `+ 1}| =
(
m− `+ n

n

)
.

As {Mα}α∈Compn form a basis for QSymn, and
(
m
`

)
is a polynomial function in m of degree `(≤ n), one

concludes that for f in QSymn one has that ps1(f)(m) is a polynomial function in m of degree at most n.
The polynomial giving rise to this function is unique, since infinitely many of its values are fixed.
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To prove assertion (ii), note that ps1 is an algebra morphism because it is an evaluation homomorphism.
To check that it is a coalgebra morphism, it suffices to check ∆ ◦ ps1 = (ps1 ⊗ ps1) ◦ ∆ on each Mα for

α = (α1, . . . , α`) in Compn. Using the Vandermonde summation
(
A+B
`

)
=
∑
k

(
A
k

)(
B
`−k
)
, one has

(∆ ◦ ps1)(Mα) = ∆

(
m

`

)
=

(
m⊗ 1 + 1⊗m

`

)
=
∑̀
k=0

(
m⊗ 1

k

)(
1⊗m
`− k

)
=
∑̀
k=0

(
m

k

)
⊗
(

m

`− k

)
while at the same time(

(ps1 ⊗ ps1) ◦∆
)

(Mα) =
∑̀
k=0

ps1(M(α1,...,αk))⊗ ps1(M(αk+1,...,α`)) =
∑̀
k=0

(
m

k

)
⊗
(

m

`− k

)
.

Thus ps1 is a bialgebra morphism, and hence also a Hopf morphism, by Corollary 1.4.27.
For assertion (iii), first assume m lies in {0, 1, 2, . . .}. Since ζQ(f) = f(1, 0, 0, . . .), one has

ζ?mQ (f) = ζ⊗mQ ◦∆(m−1)f(x) = ζ⊗mQ

(
f(x(1),x(2), . . . ,x(m))

)
=
[
f(x(1),x(2), . . . ,x(m))

]
x

(1)
1 =x

(2)
1 =···=x(m)

1 =1,

x
(j)
2 =x

(j)
3 =···=0 for all j

= f(1, 0, 0, . . . , 1, 0, 0, . . . , · · · , 1, 0, 0, . . .) = f(1, 1, . . . , 1︸ ︷︷ ︸
m ones

, 0, 0, . . .) = ps1(f)(m).

350 But then Proposition 1.4.26(a) also implies

ζ
?(−m)
Q (f) =

(
ζ
?(−1)
Q

)?m
(f) = (ζQ ◦ S)

?m
(f) = ζ?mQ (S(f))

= ps1(S(f))(m) = S(ps1(f))(m) = ps1(f)(−m).

For assertion (iv), note that

ζ?m(a) = (ζQ ◦Ψ)?m(a) = (ζ?mQ )(Ψ(a)) = ps1(Ψ(a))(m),

where the three equalities come from (7.1.2), Proposition 1.4.26(a), and assertion (iii) above, respectively. �

Remark 7.1.8. Aguiar, Bergeron and Sottile give a very cute (third) proof of the QSym antipode formula
Theorem 5.1.11, via Theorem 7.1.3, in [4, Example 4.8]. They apply Theorem 7.1.3 to the coopposite

coalgebra QSymcop and its character ζ
?(−1)
Q . One can show that the map QSymcop Ψ→ QSym induced by

ζ
?(−1)
Q is Ψ = S, the antipode of QSym, because S : QSym → QSym is a coalgebra anti-endomorphism (by

Exercise 1.4.28) satisfying ζ
?(−1)
Q = ζQ ◦ S. They then use the formula (7.1.3) for Ψ = S (together with the

polynomiality Proposition 7.1.7) to derive Theorem 5.1.11.

Exercise 7.1.9. Show that ζ?mQ (f) = ps1(f)(m) for all f ∈ QSym and m ∈ {0, 1, 2, . . .}. (This was already

proven in Proposition 7.1.7(iii); give an alternative proof using Proposition 5.1.7.)

7.2. Example: Ehrenborg’s quasisymmetric function of a ranked poset. Here we consider incidence
algebras, coalgebras and Hopf algebras generally, and then particularize to the case of graded posets, to
recover Ehrenborg’s interesting quasisymmetric function invariant via Theorem 7.1.3.

7.2.1. Incidence algebras, coalgebras, Hopf algebras.

Definition 7.2.1. Given a family P of finite partially ordered sets P , let k[P] denote the free k-module
whose basis consists of symbols [P ] corresponding to isomorphism classes of posets P in P.

We will assume throughout that each P in P is bounded , that is, it has a unique minimal element 0̂ := 0̂P
and a unique maximal element 1̂ := 1̂P . In particular, P 6= ∅, although it is allowed that |P | = 1, so that

0̂ = 1̂; denote this isomorphism class of posets with one element by [o].
If P is closed under taking intervals

[x, y] := [x, y]P := {z ∈ P : x ≤P z ≤P y},

350See Exercise 7.1.9 for an alternative way to prove this, requiring less thought to verify its soundness.
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then one can easily see that the following coproduct and counit endow k[P] with the structure of a coalgebra,
called the (reduced) incidence coalgebra:

∆[P ] :=
∑
x∈P

[0̂, x]⊗ [x, 1̂],

ε[P ] :=

{
1, if |P | = 1;

0, otherwise.

The dual algebra k[P]∗ is generally called the reduced incidence algebra (modulo isomorphism) for the family

P (see, e.g., [192]). It contains the important element k[P]
ζ−→ k, called the ζ-function that takes the value

ζ[P ] = 1 for all P .
If P (is not empty and) satisfies the further property of being hereditary in the sense that for every P1, P2

in P, the Cartesian product poset P1×P2 with componentwise partial order is also in P, then one can check
that the following product and unit endow k[P] with the structure of a (commutative) algebra:

[P1] · [P2] := m([P1]⊗ [P2]) := [P1 × P2],

1k[P] := [o].

Proposition 7.2.2. For any hereditary family P of finite posets, k[P] is a bialgebra, and even a Hopf
algebra with antipode S given as in (1.4.7) (Takeuchi’s formula):

S[P ] =
∑
k≥0

(−1)k
∑

0̂=x0<···<xk=1̂

[x0, x1] · · · [xk−1, xk].

Proof. Checking the commutativity of the pentagonal diagram in (1.3.4) amounts to the fact that, for any
(x1, x2) <P1×P2

(y1, y2), one has a poset isomorphism

[(x1, x2) , (y1, y2)]P1×P2

∼= [x1, y1]P1 × [x2, y2]P2 .

Commutativity of the remaining diagrams in (1.3.4) is straightforward, and so k[P] is a bialgebra. But then
Remark 1.4.25 implies that it is a Hopf algebra, with antipode S as in (1.4.7), because the map f := idk[P]−uε
(sending the class [o] to 0, and fixing all other [P ]) is locally ?-nilpotent:

f?k[P ] =
∑

0̂=x0<···<xk=1̂

[x0, x1] · · · [xk−1, xk]

will vanish due to an empty sum whenever k exceeds the maximum length of a chain in the finite poset
P . �

It is perhaps worth remarking how this generalizes the Möbius function formula of P. Hall. Note that the

zeta function k[P]
ζ−→ k is a character, that is, an algebra morphism. Proposition 1.4.26(a) then tells us

that ζ should have a convolutional inverse k[P]
µ=ζ?−1

−→ k, traditionally called the Möbius function, with the
formula µ = ζ?−1 = ζ ◦ S. Rewriting this via the antipode formula for S given in Proposition 7.2.2 yields P.
Hall’s formula.

Corollary 7.2.3. For a finite bounded poset P , one has

µ[P ] =
∑
k≥0

(−1)k|{chains 0̂ = x0 < · · · < xk = 1̂ in P}|.

We can also notice that S is an algebra anti-endomorphism (by Proposition 1.4.10), thus an algebra
endomorphism (since k[P] is commutative, so Exercise 1.5.8(a) shows that the algebra anti-endomorphisms
of k[P] are the same as the algebra endomorphisms of k[P]). Hence, µ = ζ ◦ S is a composition of two
algebra homomorphisms, thus an algebra homomorphism itself. We therefore obtain the following classical
fact:

Corollary 7.2.4. For two finite bounded posets P and Q, we have µ[P ×Q] = µ[P ] · µ[Q].
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7.2.2. The incidence Hopf algebras for ranked posets and Ehrenborg’s function.

Definition 7.2.5. Take P to be the class of bounded ranked finite posets P , that is, those for which all
maximal chains from 0̂ to 1̂ have the same length r(P ). This is a hereditary class, as it implies that any
interval is [x, y]P is also ranked, and the product of two bounded ranked posets is also bounded and ranked.

It also uniquely defines a rank function P
r−→ N in which r(0̂) = 0 and r(x) is the length of any maximal

chain from 0̂ to x.

Example 7.2.6. Consider a pyramid with apex vertex a over a square base with vertices b, c, d, e:

a

b e

c d

Ordering its faces by inclusion gives a bounded ranked poset P , where the rank of an element is one more
than the dimension of the face it represents:

rank:

abcd 4

abc acd ade abe bcde 3

ab ac ad ae be bc cd de 2

a b c d e 1

∅ 0

Definition 7.2.7. Ehrenborg’s quasisymmetric function Ψ[P ] for a bounded ranked poset P is the image of

[P ] under the map k[P]
Ψ−→ QSym induced by the zeta function k[P]

ζ−→ k as a character, via Theorem 7.1.3.

The quasisymmetric function Ψ[P ] captures several interesting combinatorial invariants of P ; see Stanley
[206, Chap. 3] for more background on these notions.

Definition 7.2.8. Let P be a bounded ranked poset P of rank r(P ) := r(1̂). Define its rank-generating
function

RGF (P, q) :=
∑
p∈P

qr(p) ∈ Z [q] ,

its characteristic polynomial

χ(P, q) :=
∑
p∈P

µ(0̂, p)qr(p) ∈ Z [q]

(where µ(u, v) is shorthand for µ([u, v])), and its zeta polynomial

Z(P,m) = |{multichains 0̂ ≤P p1 ≤P · · · ≤P pm−1 ≤P 1̂}|(7.2.1)

=

r(P )−1∑
s=0

(
m

s+ 1

)
|{chains 0̂ < p1 < · · · < ps < 1̂}| ∈ Q [m](7.2.2)
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351. Also, for each subset S ⊂ {1, 2, . . . , r(P )− 1}, define the flag number fS of P by

fS = |{chains 0̂ <P p1 <P · · · <P ps <P 1̂ with {r(p1), . . . , r(ps)} = S}|.

These flag numbers are the components of the flag f -vector (fS)S⊂[r−1] of P . Further define the flag

h-vector (hT )T⊂[r−1] of P , whose entries hT are given by fS =
∑
T⊂S hT , or, equivalently352, by hS =∑

T⊂S(−1)|S\T |fT .

Example 7.2.9. For the poset P in Example 7.2.6, one has RGF (P, q) = 1 + 5q + 8q2 + 5q3 + q4. Since
P is the poset of faces of a polytope, the Möbius function values for its intervals are easily predicted:
µ(x, y) = (−1)r[x,y], that is, P is an Eulerian ranked poset ; see Stanley [206, §3.16]. Hence its characteristic
polynomial is trivially related to the rank generating function, sending q 7→ −q, that is,

χ(P, q) = RGF (P,−q) = 1− 5q + 8q2 − 5q3 + q4.

Its flag f -vector and h-vector entries are given in the following table.

S fS hS

∅ 1 1
{1} 5 5− 1 = 4
{2} 8 8− 1 = 7
{3} 5 5− 1 = 4
{1, 2} 16 16− (5 + 8) + 1 = 4
{1, 3} 16 16− (5 + 5) + 1 = 7
{2, 3} 16 16− (5 + 8) + 1 = 4
{1, 2, 3} 32 32− (16 + 16 + 16) + (5 + 8 + 5)− 1 = 1

and using (7.2.2), its zeta polynomial is

Z(P,m) = 1

(
m

1

)
+ (5 + 8 + 5)

(
m

2

)
+ (16 + 16 + 16)

(
m

3

)
+ 32

(
m

4

)
=
m2(2m− 1)(2m+ 1)

3
.

Theorem 7.2.10. Assume that Q is a subring of k. Ehrenborg’s quasisymmetric function Ψ[P ] for a
bounded ranked poset P encodes

(i) the flag f -vector entries fS and flag h-vector entries hS as its Mα and Lα expansion coefficients353 :

Ψ[P ] =
∑
α

fD(α)(P ) Mα =
∑
α

hD(α)(P ) Lα,

(ii) the zeta polynomial as the specialization from Definition 7.1.6

Z(P,m) = ps1(Ψ[P ])(m) = [Ψ[P ]] x1=x2=···=xm=1,
xm+1=xm+2=···=0

,

(iii) the rank-generating function as the specialization

RGF (P, q) = [Ψ[P ]] x1=q,x2=1,
x3=x4=···=0

,

(iv) the characteristic polynomial as the convolution

χ(P, q) = ((ψq ◦ S) ? ζQ) ◦Ψ[P ],

where QSym
ψq−→ k[q] maps f(x) 7−→ f(q, 0, 0, . . .).

Proof. In assertion (i), the expansion Ψ[P ] =
∑
α fD(α)(P )Mα is (7.1.3), since ζα[P ] = fD(α)(P ). The Lα

expansion follows from this, as Lα =
∑
β:D(β)⊃D(α)Mβ and fS(P ) =

∑
T⊂S hT .

Assertion (ii) is immediate from Proposition 7.1.7(iv), since Z(P,m) = ζ?m[P ].

351Actually, (7.2.2) is false if |P | = 1 (but only then). We use (7.2.1) to define Z(P,m) in this case.
352The equivalence follows from inclusion-exclusion (more specifically, from the converse of Lemma 5.2.6(a)).
353In fact, Ehrenborg defined Ψ[P ] in [64, Defn. 4.1] via this Mα expansion, and then showed that it gave a Hopf morphism.
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Assertion (iii) can be deduced from assertion (i), but it is perhaps more fun and in the spirit of things
to proceed as follows. Note that ψq(Mα) = qn for α = (n), and ψq(Mα) vanishes for all other α 6= (n) in
Compn. Hence for a bounded ranked poset P one has

(7.2.3) (ψq ◦Ψ)[P ] = qr(P ).

But if we treat ζQ : QSym→ k as a map QSym→ k [q], then (1.4.2) (applied to k [P], QSym, k [q], k [q], Ψ,
idk[q], ψq and ζQ instead of C, C ′, A, A′, γ, α, f and g) shows that

(7.2.4) (ψq ? ζQ) ◦Ψ = (ψq ◦Ψ) ? (ζQ ◦Ψ) ,

since Ψ : k [P]→ QSym is a k-coalgebra homomorphism. Consequently, one can compute

RGF (P, q) =
∑
p∈P

qr(p) · 1 =
∑
p∈P

qr([0̂,p]) · ζ[p, 1̂]

(7.2.3),
(7.1.2)

=
∑
p∈P

(ψq ◦Ψ)[0̂, p] · (ζQ ◦Ψ)[p, 1̂]

= ((ψq ◦Ψ) ? (ζQ ◦Ψ)) [P ]
(7.2.4)

= (ψq ? ζQ)(Ψ[P ]) = (ψq ⊗ ζQ) (∆Ψ[P ])

= [Ψ[P ](x,y)]x1=q,x2=x3=···=0
y1=1,y2=y3=···=0

= [Ψ[P ](x)] x1=q,x2=1,
x3=x4=···=0

.

Similarly, for assertion (iv) first note that

(7.2.5) ((ψq ◦ S) ? ζQ) ◦Ψ = (ψq ◦ S ◦Ψ) ? (ζQ ◦Ψ) ,

(this is proven similarly to (7.2.4), but now using the map ψq ◦S instead of ψq). Now, Proposition 7.2.2 and
Corollary 7.2.3 let one calculate that

(ψq ◦Ψ ◦ S)[P ] =
∑
k

(−1)k
∑

0̂=x0<···<xk=1̂

(ψq ◦Ψ)([x0, x1]) · · · (ψq ◦Ψ)([xk−1, xk])

(7.2.3)
=

∑
k

(−1)k
∑

0̂=x0<···<xk=1̂

qr(P ) = µ(0̂, 1̂)qr(P ).

This is used in the penultimate equality here:

((ψq ◦ S) ? ζQ) ◦Ψ[P ]
(7.2.5)

= ((ψq ◦ S ◦Ψ) ? (ζQ ◦Ψ))[P ] = ((ψq ◦Ψ ◦ S) ? ζ)[P ]

=
∑
p∈P

(ψq ◦Ψ ◦ S)[0̂, p] · ζ[p, 1̂] =
∑
p∈P

µ[0̂, p]qr(p) = χ(P, q).

�

7.3. Example: Stanley’s chromatic symmetric function of a graph. We introduce the chromatic
Hopf algebra of graphs and an associated character ζ so that the map Ψ from Theorem 7.1.3 sends a graph G
to Stanley’s chromatic symmetric function of G. Then principal specialization ps1 sends this to the chromatic
polynomial of the graph.

7.3.1. The chromatic Hopf algebra of graphs.

Definition 7.3.1. The chromatic Hopf algebra (see Schmitt [194, §3.2]) G is a free k-module whose k-
basis elements [G] are indexed by isomorphism classes of (finite) simple graphs G = (V,E). Define for
G1 = (V1, E1), G2 = (V2, E2) the multiplication

[G1] · [G2] := [G1 tG2]

where [G1 t G2] denote the isomorphism class of the disjoint union, on vertex set V = V1 t V2 which is a
disjoint union of copies of their vertex sets V1, V2, with edge set E = E1 t E2. For example, • •

•

 ·
 •
•

 =

 • • •
• •


Thus the class [∅] of the empty graph ∅ having V = ∅, E = ∅ is a unit element.
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Given a graph G = (V,E) and a subset V ′ ⊂ V , the subgraph induced on vertex set V ′ is defined as
the graph G|V ′ := (V ′, E′) with edge set E′ = {e ∈ E : e = {v1, v2} ⊂ V ′}. This lets one define a
comultiplication ∆ : G → G ⊗ G by setting

∆[G] :=
∑

(V1,V2):V1tV2=V

[G|V1
]⊗ [G|V2

].

Define a counit ε : G → k by

ε[G] :=

{
1, if G = ∅;

0, otherwise.

Proposition 7.3.2. The above maps endow G with the structure of a connected graded finite type Hopf
algebra over k, which is both commutative and cocommutative.

Example 7.3.3. Here are some examples of these structure maps: • •
•

 ·
 •
•

 =

 • • •
• •

 ;

∆

 • •
•

 = 1⊗

 • •
•

+ 2 [ • ]⊗

 •
•

+ 2

 •
•

⊗ [ • ] + [ • • ]⊗ [ • ]

+ [ • ]⊗ [ • • ] +

 • •
•

⊗ 1

Proof of Proposition 7.3.2. The associativity of the multiplication and comultiplication should be clear as

m(2)([G1]⊗ [G2]⊗ [G3]) = [G1 tG2 tG3],

∆(2)[G] =
∑

(V1,V2,V3):
V=V1tV2tV3

[G|V1 ]⊗ [G|V2 ]⊗ [G|V3 ].

Checking the unit and counit conditions are straightforward. Commutativity of the pentagonal bialgebra
diagram in (1.3.4) comes down to check that, given graphs G1, G2 on disjoint vertex sets V1, V2 , when one
applies to [G1] ⊗ [G2] either the composite ∆ ◦m or the composite (m ⊗m) ◦ (id⊗T ⊗ id) ◦ (∆ ⊗∆), the
result is the same: ∑

(V11,V12,V21,V22):
V1=V11tV12
V2=V21tV22

[G1|V11 tG2|V21 ]⊗ [G1|V12 tG2|V22 ].

Letting Gn be the k-span of [G] having n vertices makes G a bialgebra which is graded and connected,
and hence also a Hopf algebra by Proposition 1.4.16. Cocommutativity should be clear, and commutativity
follows from the graph isomorphism G1 t G2

∼= G2 t G1. Finally, G is of finite type since there are only
finitely many isomorphism classes of simple graphs on n vertices for every given n. �

Remark 7.3.4. Humpert and Martin [103, Theorem 3.1] gave the following expansion for the antipode in
the chromatic Hopf algebra, containing fewer terms than Takeuchi’s general formula (1.4.7): given a graph
G = (V,E), one has

(7.3.1) S[G] =
∑
F

(−1)|V |−rank(F ) acyc(G/F )[GV,F ].

Here F runs over all subsets of edges that form flats in the graphic matroid for G, meaning that if e = {v, v′}
is an edge in E for which one has a path of edges in F connecting v to v′, then e also lies in F . Here G/F
denotes the quotient graph in which all of the edges of F have been contracted, while acyc(G/F ) denotes its
number of acyclic orientations, and GV,F := (V, F ) as a simple graph.354

354The notation rank(F ) denotes the rank of F in the graphic matroid of G. We can define it without reference to matroid

theory as the maximum cardinality of a subset F ′ of F such that the graph GV,F ′ is acyclic. Equivalently, rank(F ) is |V |−c(F ),
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Remark 7.3.5. In [14], Benedetti, Hallam and Machacek define a Hopf algebra of simplicial complexes, which
contains G as a Hopf subalgebra (and also has G as a quotient Hopf algebra). They compute a formula for
its antipode similar to (and generalizing) (7.3.1).

Remark 7.3.6. The chromatic Hopf algebra G is used in [122] and [39, §14.4] to study Vassiliev invariants
of knots. In fact, a certain quotient of G (named F in [122] and L in [39, §14.4]) is shown to naturally host
invariants of chord diagrams and therefore Vassiliev invariants of knots.

Remark 7.3.7. The k-algebra G is isomorphic to a polynomial algebra (in infinitely many indeterminates)
over k. Indeed, every finite graph can be uniquely written as a disjoint union of finitely many connected finite
graphs (up to order). Therefore, the basis elements [G] of G corresponding to connected finite graphs G are
algebraically independent in G and generate the whole k-algebra G (indeed, the disjoint unions of connected
finite graphs are precisely the monomials in these elements). Thus, G is isomorphic to a polynomial k-
algebra with countably many generators (one for each isomorphism class of connected finite graphs). As a
consequence, for example, we see that G is an integral domain if k is an integral domain.

7.3.2. A “ribbon basis” for G and self-duality. In this subsection, we shall explore a second basis of G and
a bilinear form on G. This material will not be used in the rest of these notes (except in Exercise 7.3.25),
but it is of some interest and provides an example of how a commutative cocommutative Hopf algebra can
be studied.

First, let us define a second basis of G, which is obtained by Möbius inversion (in an appropriate sense)
from the standard basis ([G])[G] is an isomorphism class of finite graphs:

Definition 7.3.8. For every finite graph G = (V,E), set

[G]
]

=
∑

H=(V,E′);

E′⊃Ec

(−1)|E
′\Ec| [H] ∈ G,

where Ec denotes the complement of the subset E in the set of all two-element subsets of V . Clearly, [G]
]

depends only on the isomorphism class [G] of G, not on G itself.

Proposition 7.3.9. (a) Every finite graph G = (V,E) satisfies

[G] =
∑

H=(V,E′);

E′∩E=∅

[H]
]
.

(b) The elements [G]
]
, where [G] ranges over all isomorphism classes of finite graphs, form a basis of the

k-module G.
(c) For any graph H = (V,E), we have

(7.3.2) ∆ [H]
]

=
∑

(V1,V2);
V=V1tV2;

H=H|V1
tH|V2

[H|V1
]
] ⊗ [H|V2

]
]
.

(d) For any two graphs H1 = (V1, E1) and H2 = (V2, E2), we have

(7.3.3) [H1]
]
[H2]

]
=

∑
H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2

[H]
]
.

where c(F ) denotes the number of connected components of the graph GV,F . Thus, the equality (7.3.1) can be rewritten as

S[G] =
∑
F (−1)c(F ) acyc(G/F )[GV,F ]. In this form, this equality is also proven in [15, Thm. 7.1].
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For example,  • •
•

] =

 • •
•

−
 • •

•

−
 • •

•

+

 • •
•


=

 • •
•

− 2

 • •
•

+

 • •
•

 .
Proving Proposition 7.3.9 is part of Exercise 7.3.14 further below.

The equalities that express the elements [G]
]

in terms of the elements [H] (as in Definition 7.3.8), and
vice versa (Proposition 7.3.9(a)), are reminiscent of the relations (5.4.10) and (5.4.9) between the bases (Rα)

and (Hα) of NSym. In this sense, we can call the basis of G formed by the [G]
]

a “ribbon basis” of G.
We now define a k-bilinear form on G:

Definition 7.3.10. For any two graphs G and H, let Iso (G,H) denote the set of all isomorphisms from G
to H 355. Let us now define a k-bilinear form (·, ·) : G × G → k on G by setting(

[G]
]
, [H]

)
= |Iso (G,H)| .

356

Proposition 7.3.11. The form (·, ·) : G × G → k is symmetric.

Again, we refer to Exercise 7.3.14 for a proof of Proposition 7.3.11.
The basis of G constructed in Proposition 7.3.9(b) and the bilinear form (·, ·) defined in Definition 7.3.10

can be used to construct a Hopf algebra homomorphism from G to its graded dual Go:

Definition 7.3.12. For any finite graph G, let aut (G) denote the number |Iso (G,G)|. Notice that this is
a positive integer, since the set Iso (G,G) is nonempty (it contains idG).

Now, recall that the Hopf algebra G is a connected graded Hopf algebra of finite type. The n-th homoge-
neous component is spanned by the [G] where G ranges over the graphs with n vertices. Since G is of finite
type, its graded dual Go is defined. Let

(
[G]
∗)

[G] is an isomorphism class of finite graphs
be the basis of Go dual to

the basis ([G])[G] is an isomorphism class of finite graphs of G. Define a k-linear map ψ : G → Go by

ψ
(

[G]
]
)

= aut (G) · [G]
∗

for every finite graph G.

357

Proposition 7.3.13. Consider the map ψ : G → Go defined in Definition 7.3.12.

(a) This map ψ satisfies (ψ (a)) (b) = (a, b) for all a ∈ G and b ∈ G.
(b) The map ψ : G → Go is a Hopf algebra homomorphism.
(c) If Q is a subring of k, then the map ψ is a Hopf algebra isomorphism G → Go.

Exercise 7.3.14. Prove Proposition 7.3.9, Proposition 7.3.11 and Proposition 7.3.13.

355We recall that if G = (V,E) and H = (W,F ) are two graphs, then an isomorphism from G to H means a bijection
ϕ : V → W such that ϕ∗ (E) = F . Here, ϕ∗ denotes the map from the powerset of V to the powerset of W which sends every

T ⊂ V to ϕ (T ) ⊂W .
356This is well-defined, because:

• the number |Iso (G,H)| depends only on the isomorphism classes [G] and [H] of G and H, but not on G and H

themselves;

• the elements [G]], where [G] ranges over all isomorphism classes of finite graphs, form a basis of the k-module G
(because of Proposition 7.3.9(b));

• the elements [G], where [G] ranges over all isomorphism classes of finite graphs, form a basis of the k-module G.

357This is well-defined, since
(

[G]]
)

[G] is an isomorphism class of finite graphs
is a basis of the k-module G (because of Propo-

sition 7.3.9(b)).
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Remark 7.3.15. Proposition 7.3.13(c) shows that the Hopf algebra G is self-dual when Q is a subring of k.
On the other hand, if k is a field of positive characteristic, then G is never self-dual. Here is a quick way to
see this: The elements [G]

∗
of Go defined in Definition 7.3.12 have the property that(

[◦]∗
)n

= n! ·
∑

[G] is an isomorphism
class of finite graphs on

n vertices

[G]
∗

for every n ∈ N, where ◦ denotes the graph with one vertex.358 Thus, if p is a prime and k is a field of
characteristic p, then

(
[◦]∗
)p

= 0. Hence, the k-algebra Go has nilpotents in this situation. However, the
k-algebra G does not (indeed, Remark 7.3.7 shows that it is an integral domain whenever k is an integral
domain). Thus, when k is a field of characteristic p, then G and Go are not isomorphic as k-algebras (let
alone as Hopf algebras).

7.3.3. Stanley’s chromatic symmetric function of a graph.

Definition 7.3.16. Stanley’s chromatic symmetric function Ψ[G] for a simple graph G = (V,E) is the image

of [G] under the map G Ψ−→ QSym induced via Theorem 7.1.3 from the edge-free character G ζ−→ k defined
by

(7.3.4) ζ[G] =

{
1, if G has no edges, that is, G is an independent/stable set of vertices;

0, otherwise.

Note that, because G is cocommutative, Ψ[G] is symmetric and not just quasisymmetric; see Remark 7.1.4.

Recall that for a graph G = (V,E), a (vertex-)coloring f : V → {1, 2, . . .} is called proper if no edge
e = {v, v′} in E has f(v) = f(v′).

Proposition 7.3.17. For a graph G = (V,E), the symmetric function Ψ[G] has the expansion 359

Ψ[G] =
∑

proper colorings
f :V→{1,2,...}

xf

where xf :=
∏
v∈V xf(v). In particular, its specialization from Proposition 7.1.6 gives the chromatic polyno-

mial of G:
ps1Ψ[G](m) = χG(m) = |{proper colorings f : V → {1, 2, . . . ,m}}| .

Proof. The iterated coproduct G ∆(`−1)

−→ G⊗` sends

[G] 7−→
∑

(V1,...,V`):
V=V1t···tV`

[G|V1
]⊗ · · · ⊗ [G|V` ]

and the map ζ⊗` sends each addend on the right to 1 or 0, depending upon whether each Vi ⊂ V is a stable
set or not, that is, whether the assignment of color i to the vertices in Vi gives a proper coloring of G. Thus
formula (7.1.3) shows that the coefficient ζα of xα1

1 · · ·x
α`
` in Ψ[G] counts the proper colorings f in which

|f−1(i)| = αi for each i. �

Example 7.3.18. For the complete graph Kn on n vertices, one has

Ψ[Kn] = n!en, thus

ps1(Ψ[Kn])(m) = n!en(1, 1, . . . , 1︸ ︷︷ ︸
m ones

) = n!

(
m

n

)
= m(m− 1) · · · (m− (n− 1)) = χKn(m).

In particular, the single vertex graph K1 has Ψ[K1] = e1, and since the Hopf morphism Ψ is in particular
an algebra morphism, a graph Ktn1 having n isolated vertices and no edges will have Ψ[Ktn1 ] = en1 .

358To see this, observe that the tensor [◦]⊗n appears in the iterated coproduct ∆(n−1) ([G]) exactly n! times whenever G is

a graph on n vertices.
359In fact, Stanley defined Ψ[G] in [205, Defn. 2.1] via this expansion.
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As a slightly more interesting example, the graph P3 which is a path having three vertices and two edges
will have

Ψ[P3] = m(2,1) + 6m(1,1,1) = e2e1 + 3e3.

One might wonder, based on the previous examples, when Ψ[G] is e-positive, that is, when does its unique
expansion in the {eλ} basis for Λ have nonnegative coefficients? This is an even stronger assertion than
s-positivity , that is, having nonnegative coefficients for the expansion in terms of Schur functions {sλ}, since
each eλ is s-positive. This weaker property fails, starting with the claw graph K3,1, which has

Ψ[K3,1] = s(3,1) − s(2,2) + 5s(2,1,1) + 8s(1,1,1,1).

On the other hand, a result of Gasharov [75, Theorem 2] shows that one at least has s-positivity for Ψ[inc(P )]
where inc(P ) is the incomparability graph of a poset which is (3 + 1)-free; we refer the reader to Stanley
[205, §5] for a discussion of the following conjecture, which remains open360:

Conjecture 7.3.19. For any (3 + 1)-free poset P , the incomparability graph inc(P ) has Ψ[inc(P )] an
e-positive symmetric function.

Here is another question about Ψ[G]: how well does it distinguish nonisomorphic graphs? Stanley gave
this example of two graphs G1, G2 having Ψ[G1] = Ψ[G2]:

G1 = • •
•

• •

G2 = • •

• • •
At least Ψ[G] appears to do better at distinguishing trees, much better than its specialization, the chromatic
polynomial χG(m), which takes the same value m(m− 1)n−1 on all trees with n vertices.

Question 7.3.20. Does the chromatic symmetric function (for k = Z) distinguish trees?

It has been checked that the answer is affirmative for trees on 23 vertices or less. There are also interesting
partial results on this question by Martin, Morin and Wagner [161].

We close this section with a few other properties of Ψ[G] proven by Stanley which follow easily from the
theory we have developed. For example, his work makes no explicit mention of the chromatic Hopf algebra G,
and the fact that Ψ is a Hopf morphism (although he certainly notes the trivial algebra morphism property
Ψ[G1 tG2] = Ψ[G1]Ψ[G2]). One property he proves is implicitly related to Ψ as a coalgebra morphism: he
considers (in the case when Q is a subring of k) the effect on Ψ of the operator ∂

∂p1
: ΛQ −→ ΛQ which acts

by first expressing a symmetric function f ∈ ΛQ as a polynomial in the power sums {pn}, and then applies
the partial derivative operator ∂

∂p1
of the polynomial ring Q [p1, p2, p3, . . .]. It is not hard to see that ∂

∂p1
is

the same as the skewing operator s⊥(1) = p⊥1 : both act as derivations on ΛQ = Q[p1, p2, . . .] (since p1 ∈ ΛQ is

primitive), and agree in their effect on each pn, in that both send p1 7→ 1, and both annihilate p2, p3, . . ..

Proposition 7.3.21. (Stanley [205, Cor. 2.12(a)]) For any graph G = (V,E), one has

∂

∂p1
Ψ[G] =

∑
v∈V

Ψ[G|V \v].

Proof. Since Ψ is a coalgebra homomorphism, we have

∆Ψ[G] = (Ψ⊗Ψ)∆[G] =
∑

(V1,V2):
V=V1tV2

Ψ[G|V1
]⊗Ψ[G|V2

].

Using this expansion (and the equality ∂
∂p1

= s⊥(1)), we now compute

∂

∂p1
Ψ[G] = s⊥(1)Ψ[G] =

∑
(V1,V2):
V=V1tV2

(s(1),Ψ[G|V1 ]) ·Ψ[G|V2 ] =
∑
v∈V

Ψ[G|V \v]

(since degree considerations force (s(1),Ψ[G|V1
]) = 0 unless |V1| = 1, in which case Ψ[G|V1

] = s(1)). �

360A recent refinement for incomparability graphs of posets which are both (3 + 1)- and (2 + 2)-free, also known as unit

interval orders is discussed by Shareshian and Wachs [198].
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Definition 7.3.22. Given a graph G = (V,E), an acyclic orientation Ω of the edges E (that is, an orientation
of each edge such that the resulting directed graph has no cycles), and a vertex-coloring f : V → {1, 2, . . .},
say that the pair (Ω, f) are weakly compatible if whenever Ω orients an edge {v, v′} in E as v → v′, one
has f(v) ≤ f(v′). Note that a proper vertex-coloring f of a graph G = (V,E) is weakly compatible with a
unique acyclic orientation Ω.

Proposition 7.3.23. (Stanley [205, Prop. 4.1, Thm. 4.2]) The involution ω of Λ sends Ψ[G] to ω (Ψ[G]) =∑
(Ω,f) xf in which the sum runs over weakly compatible pairs (Ω, f) of an acyclic orientation Ω and vertex-

coloring f .
Furthermore, the chromatic polynomial χG(m) has the property that (−1)|V |χG(−m) counts all such

weakly compatible pairs (Ω, f) in which f : V → {1, 2, . . . ,m} is a vertex-m-coloring.

Proof. As observed above, a proper coloring f is weakly compatible with a unique acyclic orientation Ω of
G. Denote by PΩ the poset on V which is the transitive closure of Ω, endowed with a strict labelling by
integers, that is, every i ∈ PΩ and j ∈ PΩ satisfying i <PΩ

j must satisfy i >Z j. Then proper colorings f
that induce Ω are the same as PΩ-partitions, so that

(7.3.5) Ψ[G] =
∑
Ω

FPΩ(x).

Applying the antipode S and using Corollary 5.2.20 gives

ω (Ψ[G]) = (−1)|V |S (Ψ[G]) =
∑
Ω

FP opp
Ω

(x) =
∑

(Ω,f)

xf

where in the last line one sums over weakly compatible pairs as in the proposition. The last equality comes
from the fact that since each PΩ has been given a strict labelling, P opp

Ω acquires a weak (or natural) labelling ,
that is, every i ∈ PΩ and j ∈ Pω satisfying i <P opp

Ω
j must satisfy i <Z j.

The last assertion follows from Proposition 7.1.7(iii). �

Remark 7.3.24. The interpretation of χG(−m) in Proposition 7.3.23 is a much older result of Stanley [204].
The special case interpreting χG(−1) as (−1)|V | times the number of acyclic orientations of G has sometimes
been called Stanley’s (-1)-color theorem. It also follows (via Proposition 7.1.7) from Humpert and Martin’s
antipode formula for G discussed in Remark 7.3.4: taking ζ to be the character of G given in (7.3.4),

χG(−1) = ζ?(−1)[G] = ζ(S[G]) =
∑
F

(−1)|V |−rank(F ) acyc(G/F )ζ[GV,F ] = (−1)|V | acyc(G)

where the last equality uses the vanishing of ζ on graphs that have edges, so only the F = ∅ term survives.

Exercise 7.3.25. If V and X are two sets, and if f : V → X is any map, then eqs f will denote the set

{{u, u′} | u ∈ V, u′ ∈ V, u 6= u′ and f (u) = f (u′)} .

This is a subset of the set of all two-element subsets of V .
If G = (V,E) is a finite graph, then show that the map Ψ introduced in Definition 7.3.16 satisfies

Ψ
(

[G]
]
)

=
∑

f :V→{1,2,3,...};
eqs f=E

xf ,

where xf :=
∏
v∈V xf(v). Here, [G]

]
is defined as in Definition 7.3.8.

7.4. Example: The quasisymmetric function of a matroid. We introduce the matroid-minor Hopf
algebra of Schmitt [191], and studied extensively by Crapo and Schmitt [41, 42, 43]. A very simple character
ζ on this Hopf algebra will then give rise, via the map Ψ from Theorem 7.1.3, to the quasisymmetric function
invariant of matroids from the work of Billera, Jia and the second author [21].



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 233

7.4.1. The matroid-minor Hopf algebra. We begin by reviewing some notions from matroid theory; see Oxley
[164] for background, undefined terms and unproven facts.

Definition 7.4.1. A matroid M of rank r on a (finite) ground set E is specified by a nonempty collection
B(M) of r-element subsets of E with the following exchange property :

For any B,B′ in B(M) and b in B, there exists b′ in B′ with (B \ {b}) ∪ {b′} in B(M).

The elements of B (M) are called the bases of the matroid M .

Example 7.4.2. A matroid M with ground set E is represented by a family of vectors S = (ve)e∈E in a
vector space if B (M) is the collection of subsets B ⊂ E having the property that the subfamily (ve)e∈B is a
basis for the span of all of the vectors in S.

For example, if M is the matroid with B(M) = {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}} on the ground set
E = {a, b, c, d}, then M is represented by the family S = (va, vb, vc, vd) of the four vectors va = (1, 0), vb =
(1, 1), vc = (0, 1) = vd in R2 depicted here

vc, vd vb

//

OOOO ;;

va

.

Conversely, whenever E is a finite set and S = (ve)e∈E is a family of vectors in a vector space, then the
set {

B ⊂ E : the subfamily (ve)e∈B is a basis for the span of all of the vectors in S
}

is a matroid on the ground set E.
A matroid is said to be linear if there exists a family of vectors in a vector space representing it. Not all

matroids are linear, but many important ones are.

Example 7.4.3. A special case of matroids M represented by vectors are graphic matroids, coming from a
graph G = (V,E), with parallel edges and self-loops allowed. One represents these by vectors in RV with
standard basis {εv}v∈V by associating the vector εv − εv′ to any edge connecting a vertex v with a vertex v′.
One can check (or see [164, §1.2]) that the bases B in B(M) correspond to the edge sets of spanning forests
for G, that is, edge sets which are acyclic and contain one spanning tree for each connected component of
G. For example, the matroid B(M) corresponding to the graph G = (V,E) shown below:

•
a b

•
c

d

•

is exactly the matroid represented by the vectors in Example 7.4.2; indeed, the spanning forests of this
graph G are the edge sets {a, b}, {a, c}, {a, d}, {b, c}, {b, d}. (In this example, spanning forests are the same
as spanning trees, since G is connected.)

To define the matroid-minor Hopf algebra one needs the basic matroid operations of deletion and con-
traction. These model the operations of deleting or contracting an edge in a graph. For configurations of
vectors they model the deletion of a vector, or the passage to images in the quotient space modulo the span
of a vector.

Definition 7.4.4. Given a matroid M of rank r and an element e of its ground set E, say that e is loop
(resp. coloop) of M if e lies in no basis (resp. every basis) B in B(M). If e is not a coloop, the deletion
M \ e is a matroid of rank r on ground set E \ {e} having bases

(7.4.1) B(M \ e) := {B ∈ B(M) : e 6∈ B}.

If e is not a loop, the contraction M/e is a matroid of rank r − 1 on ground set E \ {e} having bases

(7.4.2) B(M/e) := {B \ {e} : e ∈ B ∈ B(M)}.
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When e is a loop of M , then M/e has rank r instead of r − 1 and one defines its bases as in (7.4.1) rather
than (7.4.2); similarly, if e is a coloop of M then M \ e has rank r − 1 instead of r and one defines its bases
as in (7.4.2) rather than (7.4.1).

Example 7.4.5. Starting with the graph G and its graphic matroid M from Example 7.4.3, the deletion
M \ a and contraction M/c correspond to the graphs G \ a and G/c shown here:

G \ a = •
b

•
c

d

•

G/c = •
a b

•
d

One has

• B(M \ a) = {{b, c}, {b, d}}, so that b has become a coloop in M \ a, and
• B(M/c) = {{a}, {b}}, so that d has become a loop in M/c.

Definition 7.4.6. Deletions and contractions commute with each other. Thus, given a matroid M with
ground set E, and a subset A ⊂ E, two well-defined matroids can be constructed:

• the restriction M |A, which is a matroid on ground set A, obtained from M by deleting all e ∈ E \A
in any order, and

• the quotient/contraction M/A, which is a matroid on ground set E \ A, obtained from M by con-
tracting all e ∈ A in any order.

We will also need the direct sum M1⊕M2 of two matroids M1 and M2. This is the matroid whose ground
set E = E1 t E2 is the disjoint union of a copy of the ground sets E1, E2 for M1,M2, and whose bases are

B(M1 ⊕M2) := {B1 tB2 : Bi ∈ B(Mi) for i = 1, 2}.

Lastly, say that two matroids M1,M2 are isomorphic if there is a bijection of their ground sets E1
ϕ−→ E2

having the property that ϕB(M1) = B(M2).

Now one can define the matroid-minor Hopf algebra, originally introduced by Schmitt [191, §15], and
studied further by Crapo and Schmitt [41, 42, 43].

Definition 7.4.7. Let M have k-basis elements [M ] indexed by isomorphism classes of matroids. Define
the multiplication via

[M1] · [M2] := [M1 ⊕M2],

so that the class [∅] of the empty matroid ∅ having empty ground set gives a unit. Define the comultiplication
for M a matroid on ground set E via

∆[M ] :=
∑
A⊂E

[M |A]⊗ [M/A],

and a counit

ε[M ] :=

{
1, if M = ∅;

0, otherwise.

Proposition 7.4.8. The above maps endow M with the structure of a connected graded finite type Hopf
algebra over k, which is commutative.

Proof. Checking the unit and counit conditions are straightforward. Associativity and commutativity of the
multiplication follow because the direct sum operation ⊕ for matroids is associative and commutative up
to isomorphism. Coassociativity follows because for a matroid M on ground set E, one has the following
equality between the two candidates for ∆(2)[M ]:∑

∅⊂A1⊂A2⊂E
[M |A1

]⊗ [(M |A2
)/A1]⊗ [M/A2]

=
∑

∅⊂A1⊂A2⊂E
[M |A1

]⊗ [(M/A1)|A2\A1
]⊗ [M/A2]
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due to the matroid isomorphism (M |A2)/A1
∼= (M/A1)|A2\A1

. Commutativity of the bialgebra diagram in
(1.3.4) amounts to the fact that for a pair of matroids M1,M2 and subsets A1, A2 of their (disjoint) ground
sets E1, E2, one has isomorphisms

M1|A1
⊕M2|A2

∼= (M1 ⊕M2) |A1tA2
,

M1/A1 ⊕M2/A2
∼= (M1 ⊕M2) /(A1 tA2).

Letting Mn be the k-span of [M ] for matroids whose ground set E has cardinality |E| = n, one can then
easily check that M becomes a bialgebra which is graded, connected, and of finite type, hence also a Hopf
algebra by Proposition 1.4.16. �

See [59] for an application of M (and the operator exp? from Section 1.7) to proving the Tutte recipe
theorem, a “universal” property of the Tutte polynomial of a matroid.

7.4.2. A quasisymmetric function for matroids.

Definition 7.4.9. Define a character M ζ−→ k by

ζ[M ] =

{
1, if M has only one basis;

0, otherwise.

It is easily checked that this is a character, that is, an algebra morphismM ζ−→ k. Note that if M has only
one basis, say B(M) = {B}, then B := coloops(M) is the set of coloops of M , and E \B = loops(M) is the
set of loops of M . Equivalently, M =

⊕
e∈EM |{e} is the direct sum of matroids each having one element,

each a coloop or loop.

Define Ψ[M ] for a matroid M to be the image of [M ] under the map M Ψ−→ QSym induced via Theo-
rem 7.1.3 from the above character ζ.

It turns out that Ψ[M ] is intimately related with greedy algorithms and finding minimum cost bases. A
fundamental property of matroids (and one that characterizes them, in fact; see [164, §1.8]) is that no matter
how one assigns costs f : E → R to the elements of E, the following greedy algorithm (generalizing Kruskal’s
algorithm for finding minimum cost spanning trees) always succeeds in finding one basis B in B(M) achieving
the minimum total cost f(B) :=

∑
b∈B f(b):

Algorithm 7.4.10. Start with the empty subset I0 = ∅ of E. For j = 1, 2, . . . , r, having already defined
the set Ij−1, let e be the element of E \ Ij−1 having the lowest cost f(e) among all those for which Ij−1∪{e}
is independent, that is, still a subset of at least one basis B in B(M). Then define Ij := Ij−1 ∪ {e}. Repeat
this until j = r, and B = Ir will be among the bases that achieve the minimum cost.

Definition 7.4.11. Say that a cost function f : E → {1, 2, . . .} is M -generic if there is a unique basis B in
B(M) achieving the minimum cost f(B).

Example 7.4.12. For the graphic matroid M of Example 7.4.3, this cost function f1 : E → {1, 2, . . .}
•

f1(a)=1 f1(b)=3

•
f1(c)=3

f1(d)=2

•

is M -generic, as it minimizes uniquely on the basis {a, d}, whereas this cost function f2 : E → {1, 2, . . .}
•

f2(a)=1 f2(b)=3

•
f2(c)=2

f2(d)=2

•
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is not M -generic, as it achieves its minimum value on the two bases {a, c}, {a, d}.

Proposition 7.4.13. For a matroid M on ground set E, one has this expansion361

Ψ[M ] =
∑

M -generic
f :E→{1,2,...}

xf

where xf :=
∏
e∈E xf(e). In particular, for m ≥ 0, its specialization ps1 from Definition 7.1.6 has this

interpretation:
ps1Ψ[M ](m) = |{M -generic f : E → {1, 2, . . . ,m}}|.

Proof. The iterated coproduct M ∆(`−1)

−→ M⊗` sends

[M ] 7−→
∑

[M |A1 ]⊗ [(M |A2)/A1]⊗ · · · ⊗ [(M |A`)/A`−1]

where the sum is over flags of nested subsets

(7.4.3) ∅ = A0 ⊂ A1 ⊂ · · · ⊂ A`−1 ⊂ A` = E.

The map ζ⊗` sends each summand to 1 or 0, depending upon whether each (M |Aj )/Aj−1 has a unique basis
or not. Thus formula (7.1.3) shows that the coefficient ζα of xα1

i1
· · ·xα`i` in Ψ[M ] counts the flags of subsets

in (7.4.3) for which |Aj \Aj−1| = αj and (M |Aj )/Aj−1 has a unique basis, for each j.
Given a flag as in (7.4.3), associate the cost function f : E → {1, 2, . . .} whose value on each element

of Aj \ Aj−1 is ij ; conversely, given any cost function f , say whose distinct values are i1 < · · · < i`, one
associates the flag having Aj \Aj−1 = f−1(ij) for each j.

Now, apply the greedy algorithm (Algorithm 7.4.10) to find a minimum-cost basis of M for such a
cost function f . At each step of the greedy algorithm, one new element is added to the independent set;
these elements weakly increase in cost as the algorithm progresses362. Thus, the algorithm first adds some
elements of cost i1, then adds some elements of cost i2, then adds some elements of cost i3, and so on. We
can therefore subdivide the execution of the algorithm into phases 1, 2, . . . , `, where each phase consists of
some finite number of steps, such that all elements added in phase k have cost ik. (A phase may be empty.)
For each k ∈ {1, 2, . . . , `}, we let βk be the number of steps in phase k; in other words, βk is the number of
elements of elements of cost ik added during the algorithm.

We will prove below, using induction on s = 0, 1, 2, . . . , ` the following claim: After having completed
phases 1, 2, . . . , s in the greedy algorithm (Algorithm 7.4.10), there is a unique choice for the independent
set produced thus far, namely

(7.4.4) Iβ1+β2+···+βs =

s⊔
j=1

coloops((M |Aj )/Aj−1),

if and only if each of the matroids (M |Aj )/Aj−1 for j = 1, 2, . . . , s has a unique basis.
The case s = ` in this claim would show what we want, namely that f is M -generic, minimizing uniquely

on the basis shown in (7.4.4) with s = `, if and only if each (M |Aj )/Aj−1 has a unique basis.
The assertion of the claim is trivially true for s = 0. In the inductive step, one may assume that

• the independent set Iβ1+β2+···+βs−1
takes the form in (7.4.4), replacing s by s− 1,

• it is the unique f -minimizing basis for M |As−1 , and
• (M |Aj )/Aj−1 has a unique basis for j = 1, 2, . . . , s− 1.

Since As−1 exactly consists of all of the elements e of E whose costs f(e) lie in the range {i1, i2, . . . , is−1},
in phase s the algorithm will work in the quotient matroid M/As−1 and attempt to augment Iβ1+β2+···+βs−1

using the next-cheapest elements, namely the elements of As \As−1, which all have cost f equal to is. Thus
the algorithm will have no choices about how to do this augmentation if and only if (M |As)/As−1 has a
unique basis, namely its set of coloops, in which case the algorithm will choose to add all of these coloops,
giving Iβ1+β2+···+βs as described in (7.4.4). This completes the induction.

The last assertion follows from Proposition 7.1.7. �

361In fact, this expansion was the original definition of Ψ[M ] in [21, Defn. 1.1].
362Proof. Let e be the element added at step i, and let e′ be the element added at step i + 1. We want to show that

f (e) ≤ f (e′). But the element e′ could already have been added at step i. Since it wasn’t, we thus conclude that the element

e that was added instead must have been cheaper or equally expensive. In other words, f (e) ≤ f (e′), qed.
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Example 7.4.14. If M has one basis then every function f : E → {1, 2, . . .} is M -generic, and

Ψ[M ] =
∑

f :E→{1,2,...}

xf = (x1 + x2 + · · · )|E| = M
|E|
(1) .

Example 7.4.15. Let Ur,n denote the uniform matroid of rank r on n elements E, having B(Ur,n) equal to
all of the r-element subsets of E.

As U1,2 has E = {1, 2} and B = {{1}, {2}}, genericity means f(1) 6= f(2), so

Ψ[U1,2] =
∑

(f(1),f(2)):
f(1) 6=f(2)

xf(1)xf(2) = x1x2 + x2x1 + x1x3 + x3x1 + · · · = 2M(1,1).

Similarly U1,3 has E = {1, 2, 3} with B = {{1}, {2}, {3}}, and genericity means either that f(1), f(2), f(3)
are all distinct, or that two of them are the same and the third is smaller. This shows

Ψ[U1,3] = 3
∑
i<j

xix
2
j + 6

∑
i<j<k

xixjxk

= 3M(1,2) + 6M(1,1,1);

ps1Ψ[U1,3](m) = 3

(
m

2

)
+ 6

(
m

3

)
=
m(m− 1)(2m− 1)

2
.

One can similarly analyze U2,3 and check that

Ψ[U2,3] = 3M(2,1) + 6M(1,1,1);

ps1Ψ[U2,3](m) = 3

(
m

2

)
+ 6

(
m

3

)
=
m(m− 1)(2m− 1)

2
.

These last examples illustrate the behavior of Ψ under the duality operation on matroids.

Definition 7.4.16. Given a matroid M of rank r on ground set E, its dual or orthogonal matroid M⊥ is a
matroid of rank |E| − r on the same ground set E, having

B(M⊥) := {E \B}B∈B(M).

See [164, Theorem 2.1.1] or [34, Section 4] for a proof of the fact that this is well-defined (i.e., that the
collection {E \B}B∈B(M) really satisfies the exchange property). Here are a few examples of dual matroids.

Example 7.4.17. The dual of a uniform matroid is another uniform matroid:

U⊥r,n = Un−r,n.

Example 7.4.18. If M is matroid of rank r represented by family of vectors {e1, . . . , en} in a vector space
over some field k, one can find a family of vectors {e⊥1 , . . . , e⊥n } that represent M⊥ in the following way. Pick
a basis for the span of the vectors {ei}ni=1, and create a matrix A in kr×n whose columns express the ei in
terms of this basis. Then pick any matrix A⊥ whose row space is the null space of A, and one finds that the
columns {e⊥i }ni=1 of A⊥ represent M⊥. See Oxley [164, §2.2].

Example 7.4.19. Let G = (V,E) be a graph embedded in the plane with edge set E, giving rise to a
graphic matroid M on ground set E. Let G⊥ be a planar dual of G, so that, in particular, for each edge e
in E, the graph G⊥ has one edge e⊥, crossing e transversely. Then the graphic matroid of G⊥ is M⊥. See
Oxley [164, §2.3].

Proposition 7.4.20. If Ψ[M ] =
∑
α cαMα then Ψ[M⊥] =

∑
α cαMrev(α).

Consequently, ps1Ψ[M ](m) = ps1Ψ[M⊥](m).

Proof. First, let us prove that if Ψ[M ] =
∑
α cαMα then Ψ[M⊥] =

∑
α cαMrev(α). In other words, let us

show that for any given composition α, the coefficient of Mα in Ψ[M ] (when Ψ[M ] is expanded in the basis
(Mβ)β∈Comp of QSym) equals the coefficient of Mrev(α) in Ψ[M⊥]. This amounts to showing that for any

composition α = (α1, . . . , α`), the cardinality of the set of M -generic f having xf = xα is the same as the
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cardinality of the set of M⊥-generic f⊥ having xf⊥ = xrev(α). We claim that the map f 7−→ f⊥ in which

f⊥(e) = `+ 1− f(e) gives a bijection between these sets. To see this, note that any basis B of M satisfies

f(B) + f(E \B) =
∑
e∈E

f(e),(7.4.5)

f(E \B) + f⊥(E \B) = (`+ 1)(|E| − r),(7.4.6)

where r denotes the rank of M . Thus B is f -minimizing if and only if E \B is f -maximizing (by (7.4.5)) if
and only if E\B is f⊥-minimizing (by (7.4.6)). Consequently f is M -generic if and only if f⊥ is M⊥-generic.

The last assertion follows, for example, from the calculation in Proposition 7.1.7(i) that ps1(Mα)(m) =(
m
`(α)

)
together with the fact that `(rev(α)) = `(α). �

Just as (7.3.5) showed that Stanley’s chromatic symmetric function of a graph has an expansion as a sum
of P -partition enumerators for certain strictly labelled posets363 P , the same holds for Ψ[M ].

Definition 7.4.21. Given a matroid M on ground set E, and a basis B in B(M), define the base-cobase
poset PB to have b < b′ whenever b lies in B and b′ lies in E \B and (B \ {b}) ∪ {b′} is in B(M).

Proposition 7.4.22. For any matroid M , one has Ψ[M ] =
∑
B∈B(M) F(PB ,strict)(x) where F(P, strict)(x) for

a poset P means the P -partition enumerator for any strict labelling of P , i.e. a labelling such that the
P -partitions satisfy f(i) < f(j) whenever i <P j.

In particular, Ψ[M ] expands nonnegatively in the {Lα} basis.

Proof. A basic result about matroids, due to Edmonds [62], describes the edges in the matroid base polytope
which is the convex hull of all vectors {

∑
b∈B εb}B∈B(M) inside RE with standard basis {εe}e∈E . He shows

that all such edges connect two bases B,B′ that differ by a single basis exchange, that is, B′ = (B \ {b})∪{b′}
for some b in B and b′ in E \B.

Polyhedral theory then says that a cost function f on E will minimize uniquely at B if and only if one
has a strict increase f(B) < f(B′) along each such edge B → B′ emanating from B, that is, if and only if
f(b) < f(b′) whenever b <PB b

′ in the base-cobase poset PB , that is, f lies in A(PB , strict). �

Example 7.4.23. The graphic matroid from Example 7.4.3 has this matroid base polytope, with the bases
B in B(M) labelling the vertices:

cd

ac ad

bc bd

The base-cobase posets PB for its five vertices B are as follows:

a b

c d

b d

a c

a d

b c

a c

b d

b c

a d

One can label the first of these five strictly as

1 2

3 4

and compute its strict P -partition enumerator from the linear extensions {3412, 3421, 4312, 4321} as

L(2,2) + L(2,1,1) + L(1,1,2) + L(1,1,1,1),

363A labelled poset P is said to be strictly labelled if every two elements i and j of P satisfying i <P j satisfy i >Z j.
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while any of the last four can be labelled strictly as

1 2

3 4

and they each have an extra linear extension 3142 giving their strict P -partition enumerators as

L(2,2) + L(2,1,1) + L(1,1,2) + L(1,1,1,1) + L(1,2,1).

Hence one has

Ψ[M ] = 5L(2,2) + 5L(1,1,2) + 4L(1,2,1) + 5L(2,1,1) + 5L(1,1,1,1).

As M is a graphic matroid for a self-dual planar graph, one has a matroid isomorphism M ∼= M⊥ (see
Example 7.4.19), reflected in the fact that Ψ[M ] is invariant under the symmetry swapping Mα ↔ Mrev(α)

(and simultaneously swapping Lα ↔ Lrev(α)).

This P -partition expansion for Ψ[M ] also allows us to identify its image under the antipode of QSym.

Proposition 7.4.24. For a matroid M on ground set E, one has

S(Ψ[M ]) = (−1)|E|
∑

f :E→{1,2,...}

|{f -maximizing bases B}| · xf

and

ps1Ψ[M ](−m) = (−1)|E|
∑

f :E→{1,2,...,m}

|{f -maximizing bases B}|.

In particular, the expected number of f -maximizing bases among all cost functions f : E → {1, 2, . . . ,m} is
(−m)−|E|ps1Ψ[M ](−m).

Proof. Corollary 5.2.20 implies

S(Ψ[M ]) =
∑

B∈B(M)

S(F(PB ,strict)(x)) = (−1)|E|
∑

B∈B(M)

F(P opp
B ,natural)(x),

where F(P,natural)(x) is the enumerator for P -partitions in which P has been naturally labelled, so that
they satisfy f(i) ≤ f(j) whenever i <P j. When P = P opp

B , this is exactly the condition for f to achieve
its maximum value at f(B) (possibly not uniquely), that is, for f to lie in the closed normal cone to
the vertex indexed by B in the matroid base polytope; compare this with the discussion in the proof of
Proposition 7.4.22. Thus one has

S(Ψ[M ]) = (−1)|E|
∑

(B,f):
B∈B(M)

f maximizing at B

xf ,

which agrees with the statement of the proposition, after reversing the order of the summation.
The rest follows from Proposition 7.1.7. �

Example 7.4.25. We saw in Example 7.4.23 that the matroid M from Example 7.4.3 has

Ψ[M ] = 5L(2,2) + 5L(1,1,2) + 4L(1,2,1) + 5L(2,1,1) + 5L(1,1,1,1),

and therefore will have

ps1Ψ[M ](m) = 5

(
m− 2 + 4

4

)
+ (5 + 4 + 5)

(
m− 3 + 4

4

)
+ 5

(
m− 4 + 4

4

)
=
m(m− 1)(2m2 − 2m+ 1)

2

using ps1(Lα)(m) =
(
m−`+|α|
|α|

)
from Proposition 7.1.7 (i). Let us first do a reality-check on a few of its values

with m ≥ 0 using Proposition 7.4.13, and for negative m using Proposition 7.4.24:

m −1 0 1 2
ps1Ψ[M ](m) 5 0 0 5

When m = 0, interpreting the set of cost functions f : E → {1, 2, . . . ,m} as being empty explains why
the value shown is 0. When m = 1, there is only one function f : E → {1}, and it is not M -generic; any of
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the 5 bases in B(M) will minimize f(B), explaining both why the value for m = 1 is 0, but also explaining
the value of 5 for m = −1. The value of 5 for m = 2 counts these M -generic cost functions f : E → {1, 2}:

•
1 1

•
2

2

•

•
1 2

•
1

2

•

•
1 2

•
2

1

•

•
2 1

•
1

2

•

•
2 1

•
2

1

•

Lastly, Proposition 7.4.24 predicts the expected number of f -minimizing bases for f : E → {1, 2, . . . ,m} as

(−m)−|E|ps1Ψ[M ](−m) = (−m)−4m(m+ 1)(2m2 + 2m+ 1)

2
=

(m+ 1)(2m2 + 2m+ 1)

2m3
,

whose limit as m → ∞ is 1, consistent with the notion that “most” cost functions should be generic with
respect to the bases of M , and maximize/minimize on a unique basis.

Remark 7.4.26. It is not coincidental that there is a similarity of results for Stanley’s chromatic symmet-
ric function of a graph Ψ[G] and for the matroid quasisymmetric function Ψ[M ], such as the P -partition
expansions (7.3.5) versus Proposition 7.4.22, and the reciprocity results Proposition 7.3.23 versus Propo-
sition 7.4.24. It was noted in [21, §9] that one can associate a similar quasisymmetric function invariant
to any generalized permutohedra in the sense of Postnikov [173]. Furthermore, recent work of Ardila and
Aguiar [3] has shown that there is a Hopf algebra of such generalized permutohedra, arising from a Hopf
monoid in the sense of Aguiar and Mahajan [6]. This Hopf algebra generalizes the chromatic Hopf algebra
of graphs364 and the matroid-minor Hopf algebra, and its quasisymmetric function invariant derives as usual
from Theorem 7.1.3. Their work [3] also provides a generalization of the chromatic Hopf algebra antipode
formula of Humpert and Martin [103] discussed in Remark 7.3.4 above.

364Aguiar and Ardila actually work with a larger Hopf algebra of graphs. Namely, their concept of graphs allows parallel
edges, and it also allows “half-edges”, which have only one endpoint. If G = (V,E) is such a graph (where E is the set of its

edges and its half-edges), and if V ′ is a subset of V , then they define G/V ′ to be the graph on vertex set V ′ obtained from G
by

• removing all vertices that are not in V ′,
• removing all edges that have no endpoint in V ′, and all half-edges that have no endpoint in V ′, and

• replacing all edges that have only one endpoint in V ′ by half-edges.

(This is to be contrasted with the induced subgraph G |V ′ , which is constructed in the same way but with the edges that have

only one endpoint in V ′ getting removed as well.) The comultiplication they define on the Hopf algebra of such graphs sends
the isomorphism class [G] of a graph G = (V,E) to

∑
(V1,V2):V1tV2=V

[
G |V1

]
⊗
[
G/V2

]
. This is no longer a cocommutative Hopf

algebra; our Hopf algebra G is a quotient of it. In [3, Corollary 13.10], Ardila and Aguiar compute the antipode of the Hopf
monoid of such graphs; this immediately leads to a formula for the antipode of the corresponding Hopf algebra, because what

they call the Fock functor K preserves antipodes [3, Theorem 2.18].



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 241

8. The Malvenuto-Reutenauer Hopf algebra of permutations

Like so many Hopf algebras we have seen, the Malvenuto-Reutenauer Hopf algebra FQSym can be thought
of fruitfully in more than one way. One is that it gives a natural noncommutative lift of the quasisymmetric
P -partition enumerators and the fundamental basis {Lα} of QSym, rendering their product and coproduct
formulas even more natural.

8.1. Definition and Hopf structure.

Definition 8.1.1. We shall regard permutations as words (over the alphabet {1, 2, 3, . . .}) by identifying
every permutation π ∈ Sn with the word (π(1), π(2), . . . , π(n)).

Define FQSym =
⊕

n≥0 FQSymn to be a graded k-module in which FQSymn has k-basis {Fw}w∈Sn
indexed by the permutations w = (w1, . . . , wn) in Sn.

We first attempt to lift the product and coproduct formulas (5.2.6), (5.2.5) in the {Lα} basis of QSym.
We attempt to define a product for u ∈ Sk and v ∈ S` as follows365:

(8.1.1) FuFv :=
∑

w∈u� v[k]

Fw,

where for any word v = (v1, . . . , v`) we set v[k] := (k+ v1, . . . , k+ v`). Note that the multiset u � v[k] is an
actual set in this situation (i.e., has each element appear only once) and is a subset of Sk+`.

The coproduct will be defined using the notation of standardization of std(w) a word w in some linearly
ordered alphabet (see Definition 5.3.3).

Example 8.1.2. Considering words in the Roman alphabet a < b < c < · · · , we have

std(b a c c b a a b a c b)
= (5 1 9 10 6 2 3 7 4 11 8).

Using this, define for w = (w1, . . . , wn) in Sn the element ∆Fw ∈ FQSym⊗FQSym by

(8.1.2) ∆Fw :=

n∑
k=0

Fstd(w1,w2,...,wk) ⊗ Fstd(wk+1,wk+2,...,wn).

It is possible to check directly that the maps defined in (8.1.1) and (8.1.2) endow FQSym with the
structure of a connected graded finite type Hopf algebra; see Hazewinkel, Gubareni, Kirichenko [93, Thm.
7.1.8]. However in justifying this here, we will follow the approach of Duchamp, Hivert and Thibon [58, §3],
which exhibits FQSym as a subalgebra of a larger ring of (noncommutative) power series of bounded degree
in a totally ordered alphabet.

Definition 8.1.3. Given a totally ordered set I, create a totally ordered variable set {Xi}i∈I , and the ring
R〈{Xi}i∈I〉 of noncommutative power series of bounded degree in this alphabet366. Many times, we will use
a variable set X := (X1 < X2 < · · · ), and call the ring R〈X〉.

365Recall that we regard permutations as words.
366Let us recall the definition of R〈{Xi}i∈I〉.
Let N denote the free monoid on the alphabet {Xi}i∈I ; it consists of words Xi1Xi2 · · ·Xik . We define a topological k-module

k 〈〈{Xi}i∈I〉〉 to be the Cartesian product kN (equipped with the product topology), but we identify its element (δw,u)u∈N
with the word w for every w ∈ N . Thus, every element (λw)w∈N ∈ kN = k 〈〈{Xi}i∈I〉〉 can be rewritten as the convergent

sum
∑
w∈N λww. We call λw the coefficient of w in this element (or the coefficient of this element before w). The elements of

k 〈〈{Xi}i∈I〉〉 will be referred to as noncommutative power series. We define a multiplication on k 〈〈{Xi}i∈I〉〉 by the formula∑
w∈N

λww

∑
w∈N

µww

 =
∑
w∈N

 ∑
(u,v)∈N2; w=uv

λuµv

w.

(This is well-defined thanks to the fact that, for each w ∈ N , there are only finitely many (u, v) ∈ N2 satisfying w = uv.) Thus,
k 〈〈{Xi}i∈I〉〉 becomes a k-algebra with unity 1 (the empty word). (It is similar to the monoid algebra kN of N over k, with

the only difference that infinite sums are allowed.)

Now, we define R〈{Xi}i∈I〉 to be the k-subalgebra of k 〈〈{Xi}i∈I〉〉 consisting of all noncommutative power series∑
w∈N λww ∈ k 〈〈{Xi}i∈I〉〉 of bounded degree (i.e., such that all words w ∈ N of sufficiently high length satisfy λw = 0).
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We first identify the algebra structure for FQSym as the subalgebra of finite type within R〈{Xi}i∈I〉
spanned by the elements

(8.1.3) Fw = Fw({Xi}i∈I) :=
∑

i=(i1,...,in):

std(i)=w−1

Xi,

where Xi := Xi1 · · ·Xin , as w ranges over
⋃
n≥0 Sn .

Example 8.1.4. For the alphabet X = (X1 < X2 < · · · ), in R〈X〉 one has

F1 =
∑
1≤i

Xi = X1 +X2 + · · · ,

F12 =
∑

1≤i≤j

XiXj = X2
1 +X2

2 + · · ·+X1X2 +X1X3 +X2X3 +X1X4 + · · · ,

F21 =
∑

1≤i<j

XjXi = X2X1 +X3X1 +X3X2 +X4X1 + · · · ,

F312 =
∑

i:std(i)=231

Xi =
∑

1≤i<j≤k

XjXkXi

= X2
2X1 +X2

3X1 +X2
3X2 + · · ·+X2X3X1 +X2X4X1 + · · · .

Proposition 8.1.5. For any totally ordered infinite set I, the elements {Fw} as w ranges over
⋃
n≥0 Sn

form a k-basis for a subalgebra FQSym({Xi}i∈I) of R〈X〉, which is connected graded and of finite type,
having multiplication defined k-linearly by (8.1.1).

Consequently all such algebras are isomorphic to a single algebra FQSym, having basis {Fw} and multi-
plication given by the rule (8.1.1), with the isomorphism mapping Fw 7−→ Fw({Xi}i∈I).

For example,

F1F21 = (X1 +X2 +X3 + · · · )(X2X1 +X3X1 +X3X2 +X4X1 + · · · )
= X1 ·X3X2 +X1 ·X4X2 + · · ·+X1 ·X2X1 +X2 ·X3X2 +X2 ·X4X2 + · · ·

+X2 ·X3X1 +X2 ·X4X1 + · · ·+X2 ·X2X1 +X3 ·X3X1 +X3 ·X3X2 + · · ·
+X3 ·X2X1 +X4 ·X2X1 + · · ·

=
∑

i:std(i)=132

Xi +
∑

i:std(i)=231

Xi +
∑

i:std(i)=321

Xi = F132 + F312 + F321 =
∑

w∈1� 32

Fw.

Proof of Proposition 8.1.5. The elements {Fw({Xi}i∈I)} are linearly independent as they are supported on
disjoint monomials, and so form a k-basis for their span. The fact that they multiply via rule (8.1.1) is the
equivalence of conditions (i) and (iii) in the following Lemma 8.1.6, from which all the remaining assertions
follow. �

Lemma 8.1.6. For a triple of permutations

u = (u1, . . . , uk) in Sk,

v = (v1, . . . , vn−k) in Sn−k,

w = (w1, . . . , wn) in Sn,

the following conditions are equivalent:

(i) w−1 lies in the set u−1
� v−1[k].

(ii) u = std(w1, . . . , wk) and v = std(wk+1, . . . , wn),
(iii) for some word i = (i1, . . . , in) with std(i) = w one has u = std(i1, . . . , ik) and v = std(ik+1, . . . , in).
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Proof. The implication (ii) ⇒ (iii) is clear since std(w) = w. The reverse implication (iii) ⇒ (ii) is best
illustrated by example, e.g. considering Example 8.1.2 as concatenated, with n = 11 and k = 6 and n−k = 5:

w = std (b a c c b a | a b a c b)
= (5 1 9 10 6 2 | 3 7 4 11 8)

u = std (5 1 9 10 6 2) v = std (3 7 4 11 8)
= (3 1 5 6 4 2) = (1 3 2 5 4)

= std (b a c c b a) = std (a b a c b)

The equivalence of (i) and (ii) is a fairly standard consequence of unique parabolic factorization W =
W JWJ where W = Sn and WJ = Sk × Sn−k, so that W J are the minimum-length coset representatives
for cosets xWJ (that is, the permutations x ∈ Sn satisfying x1 < · · · < xk and xk+1 < · · · < xn). One can
uniquely express any w in W as w = xy with x in W J and y in WJ , which here means that y = u·v[k] = v[k]·u
for some u in Sk and v in Sn−k. Therefore w = xuv[k], if and only if w−1 = u−1v−1[k]x−1, which means that
w−1 is the shuffle of the sequences u−1 in positions {x1, . . . , xk} and v−1[k] in positions {xk+1, . . . , xn}. �

Example 8.1.7. To illustrate the equivalence of (i) and (ii) and the parabolic factorization in the preceding
proof, let n = 9 and k = 5 with

w =

(
1 2 3 4 5 | 6 7 8 9
4 9 6 1 5 | 8 2 3 7

)
=

(
1 2 3 4 5 | 6 7 8 9
1 4 5 6 9 | 2 3 7 8

)(
1 2 3 4 5
2 5 4 1 3

)(
6 7 8 9
9 6 7 8

)
= x · u · v[k];

then

w−1 =

(
1 2 3 4 5 6 7 8 9
4 9 6 1 5 8 2 3 7

)
=

(
1 2 3 4 5
4 1 5 3 2

)(
6 7 8 9
7 8 9 6

)(
1 2 3 4 5 6 7 8 9
1 6 7 2 3 4 8 9 5

)
= u−1 · v−1[k] · x−1.

Proposition 8.1.5 yields that FQSym is isomorphic to the k-subalgebra FQSym (X) of the k-algebra R 〈X〉
when X is the variable set (X1 < X2 < · · · ). We identify FQSym with FQSym (X) along this isomorphism.
For any infinite alphabet {Xi}i∈I and any f ∈ FQSym, we denote by f

(
{Xi}i∈I

)
the image of f under the

algebra isomorphism FQSym→ FQSym
(
{Xi}i∈I

)
defined in Proposition 8.1.5.

One can now use this to define a coalgebra structure on FQSym. Roughly speaking, one wants to first
evaluate an element f in FQSym ∼= FQSym (X) ∼= FQSym (X,Y) as f(X,Y), using the linearly ordered
variable set (X,Y) := (X1 < X2 < · · · < Y1 < Y2 < · · · ). Then one should take the image of f(X,Y) after
imposing the partial commutativity relations

(8.1.4) XiYj = YjXi for every pair (Xi, Yj) ∈ X×Y,

and hope that this image lies in a subalgebra isomorphic to

FQSym (X)⊗ FQSym (Y) ∼= FQSym⊗FQSym .

We argue this somewhat carefully. Start by considering the canonical monoid epimorphism

(8.1.5) F 〈X,Y〉
ρ
�M,

where F 〈X,Y〉 denotes the free monoid on the alphabet (X,Y) and M denotes its quotient monoid imposing
the partial commutativity relations (8.1.4). Let kM denote the k-module of all functions f : M → k, with
pointwise addition and scalar multiplication; similarly define kF 〈X,Y〉. As both monoids F 〈X,Y〉 and M
enjoy the property that an element m has only finitely many factorizations as m = m1m2, one can define a
convolution algebra structure on both kF 〈X,Y〉 and kM via

(f1 ? f2)(m) =
∑

(m1,m2)∈N×N :
m=m1m2

f1(m1)f2(m2),
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where N is respectively F 〈X,Y〉 or M . As fibers of the map ρ in (8.1.5) are finite, it induces a map of
convolution algebras, which we also call ρ:

(8.1.6) kF 〈X,Y〉
ρ
� kM .

Now recall that R〈X〉 denotes the algebra of noncommutative formal power series in the variable set X, of
bounded degree, with coefficients in k. One similarly has the ring R〈X,Y〉, which can be identified with
the subalgebra of kF 〈X,Y〉 consisting of the functions f : F 〈X,Y〉 → k having a bound on the length of the
words in their support (the value of f on a word in (X,Y) gives its power series coefficient corresponding
to said word). We let R〈M〉 denote the analogous subalgebra of kM ; this can be thought of as the algebra
of bounded degree “partially commutative power series” in the variable sets X and Y. Note that ρ restricts
to a map

(8.1.7) R〈X,Y〉 ρ→ R〈M〉.

Finally, we claim (and see Proposition 8.1.9 below for a proof) that this further restricts to a map

(8.1.8) FQSym (X,Y)
ρ→ FQSym (X)⊗ FQSym (Y)

in which the target is identified with its image under the (injective367) multiplication map

FQSym (X)⊗ FQSym (Y) ↪→ R〈M〉,
f(X)⊗ g(Y) 7→ f(X)g(Y).

Using the identification of FQSym with all three of FQSym (X) ,FQSym (Y) ,FQSym (X,Y), the map ρ in
(8.1.8) will then define a coproduct structure on FQSym. Abusing notation, for f in FQSym, we will simply
write ∆(f) = f(X,Y) instead of ρ(f(X,Y)).

Example 8.1.8. Recall from Example 8.1.4 that one has

F312 =
∑

i:std(i)=231

Xi =
∑

1≤i<j≤k

XjXkXi,

and therefore its coproduct is

∆F312 = F312(X1, X2, . . . , Y1, Y2, . . .) (by our abuse of notation)

=
∑
i<j≤k

XjXkXi +
∑
i<j,
k

XjYkXi +
∑
i,
j≤k

YjYkXi +
∑
i<j≤k

YjYkYi

=
∑
i<j≤k

XjXkXi · 1 +
∑
i<j,
k

XjXi · Yk +
∑
i,
j≤k

Xi · YjYk +
∑
i<j≤k

1 · YjYkYi

= F312(X) · 1 + F21(X) · F1(Y) + F1(X) · F12(Y) + 1 · F312(Y)

= F312 ⊗ 1 + F21 ⊗ F1 + F1 ⊗ F12 + 1⊗ F312.

Proposition 8.1.9. The map ρ in (8.1.7) does restrict as claimed to a map as in (8.1.8), and hence defines a
coproduct on FQSym, acting on the {Fw} basis by the rule (8.1.2). This endows FQSym with the structure
of a connected graded finite type Hopf algebra.

Proof. Let I be the totally ordered set {1 < 2 < 3 < · · · }. Let J be the totally ordered set{
1 < 2 < 3 < · · · < 1̃ < 2̃ < 3̃ < · · ·

}
. We set Xĩ = Yi for every positive integer i. Then, the alphabet

(X,Y) can be written as {Xi}i∈J .

If i is a word over the alphabet I = {1 < 2 < 3 < · · · }, then we denote by ĩ the word over J obtained

from i by replacing every letter i by ĩ.

367as images of the basis Fu(X) ⊗ Fv(Y) of FQSym(X) ⊗ FQSym(Y) are supported on disjoint monomials in R〈M〉, so

linearly independent.
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For the first assertion of Proposition 8.1.9, it suffices to check that Fw indeed has the image under ∆
claimed in (8.1.2). Let n ∈ N and w ∈ Sn. Then,

∆Fw = Fw (X,Y) (by our abuse of notation)

=
∑

i∈Jn:std(i)=w−1

(X,Y)i =
∑

t∈Jn:std(t)=w−1

(X,Y)t

=

n∑
k=0

∑
(i,j)∈Ik×In−k

∑
t∈Jn:

std(t)=w−1;

t∈i� j̃

(X,Y)t(8.1.9)

(since for every t ∈ Jn, there exists exactly one choice of k ∈ {0, 1, . . . , n} and (i, j) ∈ Ik × In−k satisfying

t ∈ i � j̃; namely, i is the restriction of t to the subalphabet I of J , whereas j is the restriction of t to J \ I,
and k is the length of i).

We now fix k and (i, j), and try to simplify the inner sum
∑

t∈Jn:
std(t)=w−1;

t∈i� j̃

(X,Y)t on the right hand side of

(8.1.9). First we notice that this sum is nonempty if and only if there exists some t ∈ i� j̃ satisfying std(t) =
w−1. This existence is easily seen to be equivalent to w−1 ∈ std(i) � std(j)[k] (since the standardization

of any shuffle in i � j̃ is the corresponding shuffle in std(i) � std(j)[k]). This, in turn, is equivalent to
std(i) = (std(w1, . . . , wk))−1 and std(j) = (std(wk+1, . . . , wn))−1 (according to the equivalence (i) ⇐⇒ (ii)
in Lemma 8.1.6). Hence, the inner sum on the right hand side of (8.1.9) is nonempty if and only if std(i) =
(std(w1, . . . , wk))−1 and std(j) = (std(wk+1, . . . , wn))−1. When it is nonempty, it has only one addend368,

and this addend is (X,Y)t = XiYj (since t ∈ i � j̃). Summarizing, we see that the inner sum on the right
hand side of (8.1.9) equals XiYj when std(i) = (std(w1, . . . , wk))−1 and std(j) = (std(wk+1, . . . , wn))−1, and
is empty otherwise. Thus, (8.1.9) simplifies to

∆Fw =

n∑
k=0

∑
(i,j)∈Ik×In−k:

std(i)=(std(w1,...,wk))−1

std(j)=(std(wk+1,...,wn))−1

XiYj

=

n∑
k=0

Fstd(w1,...,wk)(X)Fstd(wk+1,...,wn)(Y)

=

n∑
k=0

Fstd(w1,...,wk) ⊗ Fstd(wk+1,...,wn) ∈ FQSym⊗FQSym .

This proves (8.1.2), and thus the first assertion of Proposition 8.1.9.
From this, it is easy to derive that ∆ satisfies coassociativity (i.e., the diagram (1.2.1) holds for C =

FQSym). (Alternatively, one can obtain this from the associativity of multiplication using Corollary 8.1.11.)
We have already verified the rule (8.1.2). The connected graded structure on FQSym gives a counit and an
antipode for free. �

Exercise 8.1.10. We say that a permutation w ∈ Sn is connected if n is a positive integer and if there
exists no i ∈ {1, 2, . . . , n− 1} satisfying f ({1, 2, . . . , i}) = {1, 2, . . . , i}. Let CS denote the set of all con-
nected permutations of all n ∈ N. Show that FQSym is a free (noncommutative) k-algebra with generators
(Fw)w∈CS. (This statement means that (Fw1

Fw2
· · ·Fwk)k∈N; (w1,w2,...,wk)∈CSk is a basis of the k-module

FQSym.)
[Hint: This is a result of Poirier and Reutenauer [172, Theorem 2.1]; it is much easier than the similar

Theorem 6.4.3.]

368In fact, the elements std (t) for t ∈ i � j̃ are distinct, and thus only one of them can equal w−1.
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Corollary 8.1.11. The Hopf algebra FQSym is self-dual: Let {Gw} be the dual k-basis to the k-basis {Fw}
for FQSym. Then, the k-linear map sending Gw 7−→ Fw−1 is a Hopf algebra isomorphism FQSymo −→
FQSym.

Proof. For any 0 ≤ k ≤ n, any u ∈ Sk and any v ∈ Sn−k, one has

Fu−1Fv−1 =
∑

w−1∈u−1
� v−1[k]

Fw−1 =
∑

w∈Sn:
std(w1,...,wk)=u

std(wk+1,...,wn)=v

Fw−1

via the equivalence of (i) and (ii) in Lemma 8.1.6. On the other hand, in FQSymo, the dual k-basis {Gw}
to the k-basis {Fw} for FQSym should have product formula

GuGv =
∑

w∈Sn:
std(w1,...,wk)=u

std(wk+1,...,wn)=v

Gw

coming from the coproduct formula (8.1.2) for FQSym in the {Fw}-basis. Comparing these equalities, we see
that the k-linear map τ sending Gw 7−→ Fw−1 is an isomorphism FQSymo −→ FQSym of k-algebras. Hence,
the adjoint τ∗ : FQSymo → (FQSymo)

o
of this map is an isomorphism of k-coalgebras. But identifying

(FQSymo)
o

with FQSym in the natural way (since FQSym is of finite type), we easily see that τ∗ = τ ,
whence τ itself is an isomorphism of both k-algebras and k-coalgebras, hence of k-bialgebras, hence of Hopf
algebras. �

We can now be a bit more precise about the relations between the various algebras

Λ,QSym,NSym,FQSym, R〈X〉, R(x).

Not only does FQSym allow one to lift the Hopf structure of QSym, it dually allows one to extend the
Hopf structure of NSym. To set up this duality, note that Corollary 8.1.11 motivates the choice of an inner
product on FQSym in which

(Fu, Fv) := δu−1,v.

We wish to identify the images of the ribbon basis {Rα} of NSym when included in FQSym.

Definition 8.1.12. For any composition α, define an element Rα of FQSym by

Rα :=
∑

w∈S|α|:
Des(w)=D(α)

Fw−1 =
∑

(w,i):
w∈S|α|;

Des(w)=D(α);
std(i)=w

Xi =
∑

i:Des(i)=D(α)

Xi,

where the descent set of a sequence i = (i1, . . . , in) is defined by

Des(i) := {j ∈ {1, 2, . . . , n− 1} : ij > ij+1} = Des(std(i)).

Alternatively,

(8.1.10) Rα =
∑
T

XT

in which the sum is over column-strict tableaux of the ribbon skew shape Rib (α), and XT = Xi in which i
is the sequence of entries of T read in order from the southwest toward the northeast.

Example 8.1.13. Taking α = (1, 3, 2), with ribbon shape and column-strict fillings T as shown:

Rib (α) =
� �

� � �
�

and T =

i5 ≤ i6
∧

i2 ≤ i3 ≤ i4
∧
i1

one has that

R(1,3,2) =
∑

i=(i1,i2,i3,i4,i5,i6):
Des(i)=D(α)={1,4}

Xi =
∑

i1>i2≤i3≤i4>i5≤i6

Xi1Xi2Xi3Xi4Xi5Xi6 =
∑
T

XT .
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Corollary 8.1.14. For every n ∈ N and w ∈ Sn, we let γ(w) denote the unique composition α of n satisfying
D (α) = Des (w).

(a) The k-linear map

FQSym
π
� QSym,

Fw 7−→ Lγ(w)

is a surjective Hopf algebra homomorphism.
(b) The k-linear map

NSym
ι
↪→ FQSym,

Rα 7−→ Rα

is an injective Hopf algebra homomorphism.
(c) The linear maps π and ι are adjoint maps with respect to the above choice of inner product on

FQSym and the usual dual pairing between NSym and QSym.

Now, consider the abelianization map ab : R〈X〉� R(x) defined as the continuous k-algebra homomorphism
sending the noncommutative variable Xi to the commutative xi.

(d) The map π is a restriction of ab.
(e) The map ι lets one factor the surjection NSym� Λ as follows:

NSym → FQSym ↪→ R〈X〉 ab→ R(x),
Rα 7−→ Rα 7−→ sRib(α)(x).

Proof. Given n ∈ N, each composition α of n can be written in the form γ (w) for some w ∈ Sn. 369

Hence, each fundamental quasisymmetric function Lα lies in the image of π. Thus, π is surjective.
Also, for each n ∈ N and α ∈ Compn, the element Rα is a nonempty sum of noncommutative monomials

(nonempty because α can be written in the form γ (w) for some w ∈ Sn). Moreover, the elements Rα for
varying n and α are supported on disjoint monomials. Thus, these elements are linearly independent. Hence,
the map ι is injective.

(d) Let A denote the totally ordered set {1 < 2 < 3 < · · · } of positive integers. For each word w =
(w1, w2, . . . , wn) ∈ An, we define a monomial xw in k [[x]] by xw = xw1

xw2
· · ·xwn .

Let n ∈ N and σ ∈ Sn. Then,

Lγ(σ) =
∑
w∈An;

stdw=σ−1

xw

(by Lemma 5.3.6). But (8.1.3) (applied to w = σ) yields

Fσ =
∑

i=(i1,...,in):

std(i)=σ−1

Xi =
∑
w∈An;

stdw=σ−1

Xw

and thus

ab (Fσ) = ab

 ∑
w∈An;

stdw=σ−1

Xw

 =
∑
w∈An;

stdw=σ−1

ab (Xw)︸ ︷︷ ︸
=xw

=
∑
w∈An;

stdw=σ−1

xw = Lγ(σ) = π (Fσ) .

We have shown this for all n ∈ N and σ ∈ Sn. Thus, π is a restriction of ab. This proves Corollary 8.1.14(d).

369Indeed, write our composition α as (α1, α2, . . . , αk). Then, we can pick w to be the permutation whose first α1 entries are
the largest α1 elements of {1, 2, . . . , n} in increasing order; whose next α2 entries are the next-largest α2 elements of {1, 2, . . . , n}
in increasing order; and so on. This permutation w will satisfy Des (w) = {α1, α1 + α2, . . . , α1 + α2 + · · ·+ αk−1} = D (α)

and thus γ (w) = α.
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(a) Let n ∈ N and w = (w1, w2, . . . , wn) ∈ Sn. Let α be the composition γ (w) of n. Thus, the definition
of π yields π (Fw) = Lα. But applying the map π ⊗ π to the equality (8.1.2), we obtain

(π ⊗ π) (∆Fw) = (π ⊗ π)

(
n∑
k=0

Fstd(w1,w2,...,wk) ⊗ Fstd(wk+1,wk+2,...,wn)

)

=

n∑
k=0

π
(
Fstd(w1,w2,...,wk)

)
⊗ π

(
Fstd(wk+1,wk+2,...,wn)

)
=

n∑
k=0

Lγ(std(w1,w2,...,wk)) ⊗ Lγ(std(wk+1,wk+2,...,wn))(8.1.11)

(by the definition of π). Now, for each k ∈ {0, 1, . . . , n}, the two compositions γ (std(w1, w2, . . . , wk))
γ (std(wk+1, wk+2, . . . , wn)) form a pair (β, γ) of compositions satisfying370 either β · γ = α or β � γ = α,
and in fact they form the only such pair satisfying |β| = k and |γ| = n − k. Thus, the right hand side of
(8.1.11) can be rewritten as ∑

(β,γ):
β·γ=α or β�γ=α

Lβ ⊗ Lγ .

But this sum is ∆Lα, as we know from (5.2.5). Hence, (8.1.11) becomes

(π ⊗ π) (∆Fw) = ∆Lα = ∆ (π (Fw)) (since Lα = π (Fw)) .

We have proven this for each n ∈ N and w ∈ Sn. Thus, we have proven that (π ⊗ π)◦∆FQSym = ∆QSym◦π.
Combined with εFQSym = εQSym◦π (which is easy to check), this shows that π is a coalgebra homomorphism.

We can similarly see that π is an algebra homomorphism by checking that it respects the product (compare
(5.2.6) and (8.1.1)). However, this also follows trivially from Corollary 8.1.14(d).

Thus, π is a bialgebra morphism, and therefore a Hopf algebra morphism (by Corollary 1.4.27). This
proves Corollary 8.1.14(a).

(c) For any composition α and any w ∈ S, we have

(ι(Rα), Fw) = (Rα, Fw) =
∑

u:Des(u)=D(α)

(Fu−1 , Fw) =

{
1, if Des(w) = D(α);

0, otherwise
=

{
1, if γ(w) = α;

0, otherwise

= (Rα, Lγ(w)) = (Rα, π(Fw)).

Thus, the maps π and ι are adjoint. This proves Corollary 8.1.14(c).
(b) Again, there are several ways to prove this. Here is one:
First, note that ι (1) = 1 (because R∅ = 1 and R∅ = 1). Next, let α and β be two nonempty compositions.

Let m = |α| and n = |β|. Then, RαRβ = Rα·β +Rα�β (by (5.4.11)) and thus

ι (RαRβ) = ι (Rα·β +Rα�β) = ι (Rα·β)︸ ︷︷ ︸
=Rα·β=

∑
i:Des(i)=D(α·β) Xi

+ ι (Rα�β)︸ ︷︷ ︸
=Rα�β=

∑
i:Des(i)=D(α�β) Xi

=
∑

i:Des(i)=D(α·β)

Xi +
∑

i:Des(i)=D(α�β)

Xi =
∑

i:Des(i)=D(α·β) or Des(i)=D(α�β)

Xi

=
∑

i=(i1,i2,...,im+n):
Des(i1,i2,...,im)=D(α) and

Des(im+1,im+2,...,im+n)=D(β)

Xi(8.1.12)

(since the words i of length m+ n satisfying Des(i) = D(α · β) or Des(i) = D(α� β) are precisely the words
i = (i1, i2, . . . , im+n) satisfying Des (i1, i2, . . . , im) = D (α) and Des (im+1, im+2, . . . , im+n) = D (β)). But
choosing a word i = (i1, i2, . . . , im+n) satisfying Des (i1, i2, . . . , im) = D (α) and Des (im+1, im+2, . . . , im+n) =

370See Definition 5.2.14 for the notation we are using.
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D (β) is tantamount to choosing a pair (u,v) of a word u = (i1, i2, . . . , im) satisfying Des u = D (α) and a
word v = (im+1, im+2, . . . , im+n) satisfying Des v = D (β). Thus, (8.1.12) becomes

ι (RαRβ) =
∑

i=(i1,i2,...,im+n):
Des(i1,i2,...,im)=D(α) and

Des(im+1,im+2,...,im+n)=D(β)

Xi =
∑

u:Des u=D(α)

∑
v:Des v=D(β)

XuXv

=

 ∑
u:Des u=D(α)

Xu


︸ ︷︷ ︸

=Rα=ι(Rα)

 ∑
v:Des v=D(β)

Xv


︸ ︷︷ ︸

=Rβ=ι(Rβ)

= ι (Rα) ι (Rβ) .

Thus, we have proven the equality ι (RαRβ) = ι (Rα) ι (Rβ) whenever α and β are two nonempty composi-
tions. It also holds if we drop the “nonempty” requirement (since R∅ = 1 and ι (1) = 1). Thus, the k-linear
map ι respects the multiplication. Since ι (1) = 1, this shows that ι is a k-algebra homomorphism.

For each n ∈ N, we let idn be the identity permutation in Sn. Next, we observe that each n ∈ N satisfies
Hn = R(n) (this follows, e.g., from (5.4.9), because the composition (n) is coarsened only by itself). Hence,
each n ∈ N satisfies

ι (Hn) = ι
(
R(n)

)
= R(n) =

∑
w∈Sn:

Des(w)=D((n))

Fw−1

= Fid−1
n

(since the only w ∈ Sn satisfying Des(w) = D ((n)) is idn)

= Fidn .(8.1.13)

In order to show that ι is a k-coalgebra homomorphism, it suffices to check the equalities (ι⊗ ι)◦∆NSym =
∆FQSym ◦ ι and εNSym = εFQSym ◦ ι. We shall only prove the first one, since the second is easy. Since ι,
∆NSym and ∆FQSym are k-algebra homomorphisms, it suffices to check it on the generators H1, H2, H3, . . .
of NSym. But on these generators, it follows from comparing

((ι⊗ ι) ◦∆NSym) (Hn) = (ι⊗ ι) (∆NSymHn) = (ι⊗ ι)

 ∑
i+j=n

Hi ⊗Hj

 (by (5.4.2))

=
∑
i+j=n

ι (Hi)︸ ︷︷ ︸
=Fidi

(by (8.1.13))

⊗ ι (Hj)︸ ︷︷ ︸
=Fidj

(by (8.1.13))

=
∑
i+j=n

Fidi ⊗ Fidj =

n∑
k=0

Fidk ⊗ Fidn−k

with

(∆FQSym ◦ ι) (Hn) = ∆FQSym (ι (Hn)) = ∆FQSym (Fidn) (by (8.1.13))

=

n∑
k=0

Fidk ⊗ Fidn−k (by (8.1.2)) .

Thus, we know that ι is a k-algebra homomorphism and a k-coalgebra homomorphism. Hence, ι is a
bialgebra morphism, and therefore a Hopf algebra morphism (by Corollary 1.4.27). This proves Corol-
lary 8.1.14(b).

An alternative proof of Corollary 8.1.14(b) can be obtained by adjointness from Corollary 8.1.14(a). Both
the inner product on FQSym and the dual pairing (·, ·) : NSym⊗QSym → k respect the Hopf structures
(i.e., the maps ∆NSym and mQSym are mutually adjoint with respect to these forms, and so are the maps
mNSym and ∆QSym, and the maps ∆FQSym and mFQSym, and so on). Corollary 8.1.14(c) shows that the map
ι is adjoint to the map π with respect to these two bilinear forms. Hence, we have a commutative diagram

NSym �
� ι //

∼=
��

FQSym

∼=
��

QSymo

π∗
// FQSymo
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of Hopf algebras (where the two vertical arrows are the isomorphisms induced by the two bilinear forms).
Thus, Corollary 8.1.14(b) follows from Corollary 8.1.14(a) by duality.

(e) For each composition α, the abelianization map ab sends the noncommutative tableau monomial XT to
the commutative tableau monomial xT whenever T is a tableau of ribbon shape Rib (α). Thus, ab sends Rα to

sRib(α)(x) (because of the formula (8.1.10)). Hence, the composition NSym→ FQSym ↪→ R〈X〉 ab→ R(x) does
indeed send Rα to sRib(α)(x). But so does the projection π : NSym → Λ, according to Theorem 5.4.10(b).
Hence, the composition factors the projection. This proves Corollary 8.1.14(e). �

We summarize some of this picture as follows:

FQSym
dual

FQSym

π
����

NSym
dual

π
����

?�

ι

OO

QSym

Λ
dual

Λ
?�

OO

Furthermore, if we denote by ι the canonical inclusion Λ→ QSym as well, then the diagram

FQSym

π

%% %%
NSym

π

%% %%

, �
ι

99

QSym

Λ
+ �

ι

99

is commutative (according to Corollary 8.1.14(e)).

Remark 8.1.15. Different notations for FQSym appear in the literature. In the book [24] (which presents an
unusual approach to the character theory of the symmetric group using FQSym), the Hopf algebra FQSym
is called P, and its basis that we call {Gw}w∈Sn is denoted {w}w∈Sn . In [93, Chapter 7], the Hopf algebra

FQSym and its basis {Fw}w∈Sn are denoted MPR and {w}w∈Sn , respectively.

9. Further topics

The following is a list of topics that were, at one point, planned to be touched in class, but did not make
the cut. They might get elaborated upon in a future version of these notes.

9.0.1. 0-Hecke algebras.

• Review of representation theory of finite-dimensional algebras.
Review the notions of indecomposables, simples, projectives, along with the theorems of Krull-

Remak-Schmidt, of Jordan-Hölder, and the two kinds of Grothendieck groups dual to each other.
• 0-Hecke algebra representation theory.

Describe the simples and projectives, following Denton, Hivert, Schilling, Thiery [49] on J -trivial
monoids.

• Nsym and Qsym as Grothendieck groups.
Give Krob and Thibon’s interpretation (see [216, §5] for a brief summary) of
• QSym and the Grothendieck group of composition series, and
• NSym and the Grothendieck group of projectives.

Remark 9.0.1. Mention P. McNamara’s interpretation, in the case of supersolvable lattices, of the
Ehrenborg quasisymmetric function as the composition series enumerator for an Hn(0)-action on the
maximal chains

9.0.2. Aguiar-Bergeron-Sottile character theory Part II: Odd and even characters, subalgebras.
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9.0.3. Face enumeration, Eulerian posets, and cd-indices. Borrowing from Billera’s ICM notes [19].

• f-vectors, h-vectors
• flag f-vectors, flag h-vectors
• ab-indices and cd-indices

9.0.4. Other topics.

• Loday-Ronco Hopf algebra of planar binary trees [137]
• Poirier-Reutenauer Hopf algebra of tableaux
• Reading Hopf algebra of Baxter permutations
• Hopf monoids, e.g. of Hopf algebra of generalized permutohedra, of matroids, of graphs, Stanley

chromatic symmetric functions and Tutte polynomials
• Lam-Pylyavskyy Hopf algebra of set-valued tableaux
• Connes-Kreimer Hopf algebra and renormalization
• Noncommutative symmetric functions and ΩΣCP∞
• Maschke’s theorem and “integrals” for Hopf algebras
• Nichols-Zoeller structure theorem and group-like elements
• Cartier-Milnor-Moore structure theorem and primitive elements
• Quasi-triangular Hopf algebras and quantum groups
• The Steenrod algebra, its dual, and tree Hopf algebras
• Ringel-Hall algebras of quivers
• Ellis-Khovanov odd symmetric function Hopf algebras [67] (see also Lauda-Russell [123])

Student talks given in class were:

(1) Al Garver, on Maschke’s theorem for finite-dimensional Hopf algebras
(2) Jonathan Hahn, on the paper by Humpert and Martin.
(3) Emily Gunawan, on the paper by Lam, Lauve and Sottile.
(4) Jonas Karlsson, on the paper by Connes and Kreimer
(5) Thomas McConville, on Butcher’s group and generalized Runge-Kutta methods.
(6) Cihan Bahran, on universal enveloping algebras and the Poincaré-Birkhoff-Witt theorem.
(7) Theodosios Douvropolos, on the Cartier-Milnor-Moore theorem.
(8) Alex Csar, on the Loday-Ronco Hopf algebra of binary trees
(9) Kevin Dilks, on Reading’s Hopf algebra of (twisted) Baxter permutations

(10) Becky Patrias, on the paper by Lam and Pylyavskyy
(11) Meng Wu, on multiple zeta values and Hoffman’s homomorphism from QSym

10. Some open problems and conjectures

• Is there a proof of the Assaf-McNamara skew Pieri rule that gives a resolution of Specht or Schur/Weyl
modules whose character corresponds to sλ/µhn, whose terms model their alternating sum?

• Explicit antipodes in the Lam-Pylyavskyy Hopf algebras? (Answered by Patrias in [170].)
• P. McNamara’s question [152, Question 7.1]: are P -partition enumerators irreducible for connected

posets P?
• Stanley’s question: are the only P -partition enumerators which are symmetric (not just quasisym-

metric) those for which P is a skew shape with a column-strict labelling?
• Does Stanley’s chromatic symmetric function distinguish trees?
• Hoffman’s stuffle conjecture
• Billera-Brenti’s nonnegativity conjecture for the total cd-index of Bruhat intervals ([20, Conjecture

6.1])
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11. Appendix: Some basics

In this appendix, we briefly discuss some basic notions from linear algebra and elementary combinatorics
that are used in these notes.

11.1. Linear expansions and triangularity. In this Section, we shall recall some fundamental results from
linear algebra (most importantly, the notions of a change-of-basis matrix and of a unitriangular matrix), but
in greater generality than how it is usually done in textbooks. We shall use these results later when studying
bases of combinatorial Hopf algebras; but per se, this section has nothing to do with Hopf algebras.

11.1.1. Matrices. Let us first define the notion of a matrix whose rows and columns are indexed by arbitrary
objects (as opposed to numbers):371

Definition 11.1.1. Let S and T be two sets. An S×T -matrix over k shall mean a family (as,t)(s,t)∈S×T ∈
kS×T of elements of k indexed by elements of S × T . Thus, the set of all S × T -matrices over k is kS×T .

We shall abbreviate “S × T -matrix over k” by “S × T -matrix” when the value of k is clear from the
context.

This definition of S × T -matrices generalizes the usual notion of matrices (i.e., the notion of n × m-
matrices): Namely, if n ∈ N and m ∈ N, then the {1, 2, . . . , n} × {1, 2, . . . ,m}-matrices are precisely the
n×m-matrices (in the usual meaning of this word). We shall often use the word “matrix” for both the usual
notion of matrices and for the more general notion of S × T -matrices.

Various concepts defined for n×m-matrices (such as addition and multiplication of matrices, or the notion
of a row) can be generalized to S × T -matrices in a straightforward way. The following four definitions are
examples of such generalizations:

Definition 11.1.2. Let S and T be two sets.

(a) The sum of two S × T -matrices is defined by (as,t)(s,t)∈S×T + (bs,t)(s,t)∈S×T = (as,t + bs,t)(s,t)∈S×T .

(b) If u ∈ k and if (as,t)(s,t)∈S×T ∈ kS×T , then we define u (as,t)(s,t)∈S×T to be the S × T -matrix

(uas,t)(s,t)∈S×T .

(c) Let A = (as,t)(s,t)∈S×T be an S × T -matrix. For every s ∈ S, we define the s-th row of A to be the

{1} × T -matrix (as,t)(i,t)∈{1}×T . (Notice that {1} × T -matrices are a generalization of row vectors.)

Similarly, for every t ∈ T , we define the t-th column of A to be the S × {1}-matrix (as,t)(s,i)∈S×{1}.

Definition 11.1.3. Let S be a set.

(a) The S × S identity matrix is defined to be the S × S-matrix (δs,t)(s,t)∈S×S . This S × S-matrix is

denoted by IS . (Notice that the n× n identity matrix In is I{1,2,...,n} for each n ∈ N.)
(b) An S×S-matrix (as,t)(s,t)∈S×S is said to be diagonal if every (s, t) ∈ S×T satisfying s 6= t satisfies

as,t = 0.
(c) Let A = (as,t)(s,t)∈S×S be an S × S-matrix. The diagonal of A means the family (as,s)s∈S . The

diagonal entries of A are the entries of this diagonal (as,s)s∈S .

Definition 11.1.4. Let S, T and U be three sets. Let A = (as,t)(s,t)∈S×T be an S × T -matrix, and

let B = (bt,u)(t,u)∈T×U be a T × U -matrix. Assume that the sum
∑
t∈T as,tbt,u is well-defined for every

(s, u) ∈ S ×U . (For example, this is guaranteed to hold if the set T is finite. For infinite T , it may and may
not hold.) Then, the S × U -matrix AB is defined by

AB =

(∑
t∈T

as,tbt,u

)
(s,u)∈S×U

.

Definition 11.1.5. Let S and T be two finite sets. We say that an S×T -matrix A is invertible if and only
if there exists a T × S-matrix B satisfying AB = IS and BA = IT . In this case, this matrix B is unique; it
is denoted by A−1 and is called the inverse of A.

371As before, k denotes a commutative ring.
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The definitions that we have just given are straightforward generalizations of the analogous definitions
for n ×m-matrices; thus, unsurprisingly, many properties of n ×m-matrices still hold for S × T -matrices.
For example:

Proposition 11.1.6. (a) Let S and T be two sets. Let A be an S × T -matrix. Then, ISA = A and
AIT = A.

(b) Let S, T and U be three sets such that T is finite. Let A and B be two S × T -matrices. Let C be a
T × U -matrix. Then, (A+B)C = AC +BC.

(c) Let S, T , U and V be four sets such that T and U are finite. Let A be an S × T -matrix. Let B be
a T × U -matrix. Let C be a U × V -matrix. Then, (AB)C = A (BC).

The proof of Proposition 11.1.6 (and of similar properties that will be left unstated) is analogous to the
proofs of the corresponding properties of n×m-matrices.372 As a consequence of these properties, it is easy
to see that if S is any finite set, then kS×S is a k-algebra.

In general, S × T -matrices (unlike n × m-matrices) do not have a predefined order on their rows and
their columns. Thus, the classical notion of a triangular n × n-matrix cannot be generalized to a notion of
a “triangular S × S-matrix” when S is just a set with no additional structure. However, when S is a poset,
such a generalization can be made:

Definition 11.1.7. Let S be a poset. Let A = (as,t)(s,t)∈S×S be an S × S-matrix.

(a) The matrix A is said to be triangular if and only if every (s, t) ∈ S × S which does not satisfy t ≤ s
must satisfy as,t = 0. (Here, ≤ denotes the smaller-or-equal relation of the poset S.)

(b) The matrix A is said to be unitriangular if and only if A is triangular and has the further property
that, for every s ∈ S, we have as,s = 1.

(c) The matrix A is said to be invertibly triangular if and only if A is triangular and has the further
property that, for every s ∈ S, the element as,s of k is invertible.

Of course, all three notions of “triangular”, “unitriangular” and “invertibly triangular” depend on the
partial order on S.

Clearly, every invertibly triangular S × S-matrix is triangular. Also, every unitriangular S × S-matrix is
invertibly triangular (because the element 1 of k is invertible).

We can restate the definition of “invertibly triangular” as follows: The matrix A is said to be invertibly
triangular if and only if it is triangular and its diagonal entries are invertible. Similarly, we can restate the
definition of “unitriangular” as follows: The matrix A is said to be unitriangular if and only if it is triangular
and all its diagonal entries equal 1.

Definition 11.1.7(a) generalizes both the notion of upper-triangular matrices and the notion of lower-
triangular matrices. To wit:

Example 11.1.8. Let n ∈ N. Let N1 be the poset whose ground set is {1, 2, . . . , n} and whose smaller-or-
equal relation ≤1 is given by

s ≤1 t ⇐⇒ s ≤ t (as integers).

(This is the usual order relation on this set.) Let N2 be the poset whose ground set is {1, 2, . . . , n} and
whose order relation ≤2 is given by

s ≤2 t ⇐⇒ s ≥ t (as integers).

Let A ∈ kn×n.

(a) The matrix A is upper-triangular if and only if A is triangular when regarded as an N1×N1-matrix.

372A little warning: In Proposition 11.1.6(c), the condition that T and U be finite can be loosened (we leave this to

the interested reader), but cannot be completely disposed of. It can happen that both (AB)C and A (BC) are defined, but

(AB)C = A (BC) does not hold (if we remove this condition). For example, this happens if S = Z, T = Z, U = Z, V = Z,

A =

({
1, if i ≥ j;
0, if i < j

)
(i,j)∈Z×Z

, B = (δi,j − δi,j+1)(i,j)∈Z×Z and C =

({
0, if i ≥ j;
1, if i < j

)
(i,j)∈Z×Z

. (Indeed, in this example, it

is easy to check that AB = IZ and BC = −IZ and thus (AB)︸ ︷︷ ︸
=IZ

C = IZC = C 6= −A = A (−IZ)︸ ︷︷ ︸
=BC

= A (BC).)

This seeming paradox is due to the subtleties of rearranging infinite sums (similarly to how a conditionally convergent series

of real numbers can change its value when its entries are rearranged).
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(b) The matrix A is lower-triangular if and only if A is triangular when regarded as an N2×N2-matrix.

More interesting examples of triangular matrices are obtained when the order on S is not a total order:

Example 11.1.9. Let S be the poset whose ground set is {1, 2, 3} and whose smaller relation <S is given
by 1 <S 2 and 3 <S 2. Then, the triangular S × S-matrices are precisely the 3 × 3-matrices of the form a1,1 0 0

a2,1 a2,2 a2,3

0 0 a3,3

 with a1,1, a2,1, a2,2, a2,3, a3,3 ∈ k.

We shall now state some basic properties of triangular matrices:

Proposition 11.1.10. Let S be a finite poset.

(a) The triangular S × S-matrices form a subalgebra of the k-algebra kS×S .
(b) The invertibly triangular S × S-matrices form a group with respect to multiplication.
(c) The unitriangular S × S-matrices form a group with respect to multiplication.
(d) Any invertibly triangular S × S-matrix is invertible, and its inverse is again invertibly triangular.
(e) Any unitriangular S × S-matrix is invertible, and its inverse is again unitriangular.

Exercise 11.1.11. Prove Proposition 11.1.10.

11.1.2. Expansion of a family in another. We will often study situations where two families (es)s∈S and
(ft)t∈T of vectors in a k-module M are given, and the vectors es can be written as linear combinations
of the vectors ft. In such situations, we can form an S × T -matrix out of the coefficients of these linear
combinations; this is one of the ways how matrices arise in the theory of modules. Let us define the notations
we are going to use in such situations:

Definition 11.1.12. Let M be a k-module. Let (es)s∈S and (ft)t∈T be two families of elements of M . (The
sets S and T may and may not be finite.)

Let A = (as,t)(s,t)∈S×T be an S × T -matrix. Assume that, for every s ∈ S, all but finitely many t ∈ T
satisfy as,t = 0. (This assumption is automatically satisfied if T is finite.)

We say that the family (es)s∈S expands in the family (ft)t∈T through the matrix A if

(11.1.1) every s ∈ S satisfies es =
∑
t∈T

as,tft.

In this case, we furthermore say that the matrix A is a change-of-basis matrix (or transition matrix ) from
the family (es)s∈S to the family (ft)t∈T .

Remark 11.1.13. The notation in Definition 11.1.12 is not really standard; even we ourselves will occasionally
deviate in its use. In the formulation “the family (es)s∈S expands in the family (ft)t∈T through the matrix
A”, the word “in” can be replaced by “with respect to”, and the word “through” can be replaced by “using”.

The notion of a “change-of-basis matrix” is slightly misleading, because neither of the families (es)s∈S
and (ft)t∈T has to be a basis. Our use of the words “transition matrix” should not be confused with the
different meaning that these words have in the theory of Markov chains. The indefinite article in “a change-
of-basis matrix” is due to the fact that, for given families (es)s∈S and (ft)t∈T , there might be more than
one change-of-basis matrix from (es)s∈S to (ft)t∈T . (There also might be no such matrix.) When (es)s∈S
and (ft)t∈T are bases of the k-module M , there exists precisely one change-of-basis matrix from (es)s∈S to
(ft)t∈T .

So a change-of-basis matrix A = (as,t)(s,t)∈S×T from one family (es)s∈S to another family (ft)t∈T allows

us to write the elements of the former family as linear combinations of the elements of the latter (using
(11.1.1)). When such a matrix A is invertible (and the sets S and T are finite373), it also (indirectly) allows
us to do the opposite: i.e., to write the elements of the latter family as linear combinations of the elements
of the former. This is because if A is an invertible change-of-basis matrix from (es)s∈S to (ft)t∈T , then A−1

is a change-of-basis matrix from (ft)t∈T to (es)s∈S . This is part (a) of the following theorem:

373We are requiring the finiteness of S and T mainly for the sake of simplicity. We could allow S and T to be infinite, but

then we would have to make some finiteness requirements on A and A−1.
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Theorem 11.1.14. Let M be a k-module. Let S and T be two finite sets. Let (es)s∈S and (ft)t∈T be two
families of elements of M .

Let A be an invertible S × T -matrix. Thus, A−1 is a T × S-matrix.
Assume that the family (es)s∈S expands in the family (ft)t∈T through the matrix A. Then:

(a) The family (ft)t∈T expands in the family (es)s∈S through the matrix A−1.
(b) The k-submodule of M spanned by the family (es)s∈S is the k-submodule of M spanned by the

family (ft)t∈T .
(c) The family (es)s∈S spans the k-module M if and only if the family (ft)t∈T spans the k-module M .
(d) The family (es)s∈S is k-linearly independent if and only if the family (ft)t∈T is k-linearly independent.
(e) The family (es)s∈S is a basis of the k-module M if and only if the family (ft)t∈T is a basis of the

k-module M .

Exercise 11.1.15. Prove Theorem 11.1.14.

Definition 11.1.16. Let M be a k-module. Let S be a finite poset. Let (es)s∈S and (fs)s∈S be two families
of elements of M .

(a) We say that the family (es)s∈S expands triangularly in the family (fs)s∈S if and only if there exists
a triangular S×S-matrix A such that the family (es)s∈S expands in the family (fs)s∈S through the
matrix A.

(b) We say that the family (es)s∈S expands invertibly triangularly in the family (fs)s∈S if and only if
there exists an invertibly triangular S × S-matrix A such that the family (es)s∈S expands in the
family (fs)s∈S through the matrix A.

(c) We say that the family (es)s∈S expands unitriangularly in the family (fs)s∈S if and only if there
exists a unitriangular S × S-matrix A such that the family (es)s∈S expands in the family (fs)s∈S
through the matrix A.

Clearly, if the family (es)s∈S expands unitriangularly in the family (fs)s∈S , then it also expands invertibly
triangularly in the family (fs)s∈S (because any unitriangular matrix is an invertibly triangular matrix).

We notice that in Definition 11.1.16, the two families (es)s∈S and (fs)s∈S must be indexed by one and
the same set S.

The concepts of “expanding triangularly”, “expanding invertibly triangularly” and “expanding unitrian-
gularly” can also be characterized without referring to matrices, as follows:

Remark 11.1.17. Let M be a k-module. Let S be a finite poset. Let (es)s∈S and (fs)s∈S be two families
of elements of M . Let < denote the smaller relation of the poset S, and let ≤ denote the smaller-or-equal
relation of the poset S. Then:

(a) The family (es)s∈S expands triangularly in the family (fs)s∈S if and only if every s ∈ S satisfies

es = (a k-linear combination of the elements ft for t ∈ S satisfying t ≤ s) .
(b) The family (es)s∈S expands invertibly triangularly in the family (fs)s∈S if and only if every s ∈ S

satisfies

es = αsfs + (a k-linear combination of the elements ft for t ∈ S satisfying t < s)

for some invertible αs ∈ k.
(c) The family (es)s∈S expands unitriangularly in the family (fs)s∈S if and only if every s ∈ S satisfies

es = fs + (a k-linear combination of the elements ft for t ∈ S satisfying t < s) .

All three parts of Remark 11.1.17 follow easily from the definitions.

Example 11.1.18. Let n ∈ N. For this example, let S be the poset {1, 2, . . . , n} (with its usual order).
Let M be a k-module, and let (es)s∈S and (fs)s∈S be two families of elements of M . We shall identify
these families (es)s∈S and (fs)s∈S with the n-tuples (e1, e2, . . . , en) and (f1, f2, . . . , fn). Then, the family
(es)s∈S = (e1, e2, . . . , en) expands triangularly in the family (fs)s∈S = (f1, f2, . . . , fn) if and only if, for
every s ∈ {1, 2, . . . , n}, the vector es is a k-linear combination of f1, f2, . . . , fs. Moreover, the family
(es)s∈S = (e1, e2, . . . , en) expands unitriangularly in the family (fs)s∈S = (f1, f2, . . . , fn) if and only if, for
every s ∈ {1, 2, . . . , n}, the vector es is a sum of fs with a k-linear combination of f1, f2, . . . , fs−1.
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Corollary 11.1.19. Let M be a k-module. Let S be a finite poset. Let (es)s∈S and (fs)s∈S be two families
of elements of M . Assume that the family (es)s∈S expands invertibly triangularly in the family (fs)s∈S .
Then:

(a) The family (fs)s∈S expands invertibly triangularly in the family (es)s∈S .
(b) The k-submodule of M spanned by the family (es)s∈S is the k-submodule of M spanned by the

family (fs)s∈S .
(c) The family (es)s∈S spans the k-module M if and only if the family (fs)s∈S spans the k-module M .
(d) The family (es)s∈S is k-linearly independent if and only if the family (fs)s∈S is k-linearly indepen-

dent.
(e) The family (es)s∈S is a basis of the k-module M if and only if the family (fs)s∈S is a basis of the

k-module M .

Exercise 11.1.20. Prove Remark 11.1.17 and Corollary 11.1.19.

An analogue of Corollary 11.1.19 can be stated for unitriangular expansions, but we leave this to the
reader.
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12. Further hints to the exercises (work in progress)

The following pages contain hints to (some of374) the exercises in the text (beyond the hints occasionally
included in the exercises themselves). Some of the hints rise to the level of outlined solutions.

Detailed solutions (sometimes different from the solutions hinted at) can be found in Chapter 13.
Warning: The hints below are new and have never been proofread. Typos (or worse) are likely. In case

of doubt, consult the detailed solutions.

12.1. Hints for Chapter 1. Hint to Exercise 1.2.3. The claim of the exercise is dual to the classical fact
that if A is a k-module and m : A ⊗ A → A is a k-linear map, then there exists at most one k-linear map
u : k → A such that the diagram (1.1.2) commutes375. Take any proof of this latter fact, rewrite it in an
“element-free” fashion376, and “reverse all arrows”. This will yield a solution to Exercise 1.2.3.

For an alternative solution, use Sweedler notation (as in (1.2.3)) as follows: The commutativity of the
diagram (1.2.2) says that

c =
∑
(c)

ε (c1) c2 =
∑
(c)

ε (c2) c1 for each c ∈ C.

Thus, if ε1 and ε2 are two k-linear maps ε : C → k such that the diagram (1.2.2) commutes, then each c ∈ C
satisfies

c =
∑
(c)

ε1 (c1) c2 =
∑
(c)

ε1 (c2) c1

and

c =
∑
(c)

ε2 (c1) c2 =
∑
(c)

ε2 (c2) c1.

Apply ε2 to both sides of the equality c =
∑

(c) ε1 (c2) c1, and apply ε1 to both sides of the equality c =∑
(c) ε2 (c1) c2. Compare the results, and conclude that ε1 = ε2.

Hint to Exercise 1.3.4. Part (a) is well-known, and part (b) is dual to part (a). So the trick is (again) to
rewrite the classical proof of part (a) in an “element-free” way, and then “reversing all arrows”. Alternatively,
part (b) can be solved using Sweedler notation.

Hint to Exercise 1.3.6. Same method as for Exercise 1.3.4 above.

Hint to Exercise 1.3.13. (a) Use the following fact from linear algebra: If U , V , U ′ and V ′ are four
k-modules, and φ : U → U ′ and ψ : V → V ′ are two surjective k-linear maps, then the kernel of φ ⊗ ψ :
U ⊗ V → U ′ ⊗ V ′ is

ker (φ⊗ ψ) = (kerφ)⊗ V + U ⊗ (kerψ) .

(b) The fact just mentioned also holds if we no longer require φ and ψ to be surjective, but instead require
k to be a field.

Hint to Exercise 1.3.18. Let f : V → W be an invertible graded k-linear map. Let n ∈ N and w ∈ Wn.
Show that the n-th homogeneous component of f−1 (w) is also a preimage of w under f , and thus must
equal f−1 (w). Therefore, f−1 (w) ∈Wn.

Hint to Exercise 1.3.19. (a) Define the k-linear map ∆̃ : A→ A⊗A by ∆̃ (x) = ∆ (x)− (x⊗ 1 + 1⊗ x).

Argue that ∆̃ is graded, so its kernel ker ∆̃ is a graded k-submodule of A. But this kernel is precisely p.
(b) The hard part is to show that ε (p) = 0. To do so, consider any x ∈ p, and apply the map ε ⊗ id to

both sides of the equality ∆ (x) = x⊗1+1⊗x. The result simplifies to x = ε (x) ·1A+x. Thus, ε (x) ·1A = 0.
Now apply ε to this, thus obtaining ε (x) = 0.

374Currently only the ones from Chapter 1.
375This fact is just the linearization of the known fact that any binary operation has at most one neutral element.
376This means rewriting it completely in terms of linear maps rather than elements. For example, instead of talking about

m (m (a⊗ b)⊗ c) for three elements a, b, c ∈ A, you should talk about the map m ◦ (m⊗ idA) : A ⊗ A ⊗ A → A (which is, of
course, the map that sends each a⊗ b⊗ c to m (m (a⊗ b)⊗ c)). Instead of computing with elements, you should compute with

maps (and commutative diagrams).
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Hint to Exercise 1.3.20. (a) This follows from 1A ∈ A0, which is part of what it means for A to be a
graded k-algebra.

(b) Let ε′ : A0 → k be the restriction of the map ε to A0. We know that ε′ is surjective (since ε′ (1A) = 1k),
and that both A0 and k are free k-modules of rank 1 (since connectedness of A means A0

∼= k as k-modules).
It is an an easy exercise in linear algebra to conclude from these facts that ε′ is an isomorphism. Since
ε′ ◦ u = idk, we thus conclude that u : k→ A0 is an isomorphism as well (from k to A0).

(c) This follows from part (b).
(e) This follows from how we solved part (b).
(d) Since the bialgebra A is graded, the map ε must be graded. Thus, for each positive integer n, we have

ε (An) ⊂ kn = 0. This quickly yields ε (I) = 0 (where I =
⊕

n>0An), hence I ⊂ ker ε. On the other hand,
ker ε ⊂ I can be shown as follows: Let a ∈ ker ε; write a in the form a = a′ + a′′ for some a′ ∈ A0 and some
a′′ ∈ I, and then argue that 0 = ε (a) = ε (a′ + a′′) = ε (a′) + ε (a′′)︸ ︷︷ ︸

=0
(since a′′∈I⊂ker ε)

= ε (a′), so that a′ = 0 by part

(e) and therefore a ∈ I.
(f) This is most intuitive with Sweedler notation: Let x ∈ A. Then, ∆ (x) =

∑
(x) x1⊗x2. Applying id⊗ε

and recalling the commutativity of (1.2.2), we thus get x =
∑

(x) ε (x2)x1. Thus,

∆ (x)︸ ︷︷ ︸
=
∑

(x) x1⊗x2

− x︸︷︷︸
=
∑

(x) ε(x2)x1

⊗1 =
∑
(x)

x1 ⊗ x2 −
∑
(x)

ε (x2)x1 ⊗ 1

=
∑
(x)

x1︸︷︷︸
∈A

⊗ (x2 − ε (x2) · 1)︸ ︷︷ ︸
∈ker ε=I

(by part (d))

∈ A⊗ I.

(g) Let x ∈ I. Proceeding similarly to part (f), show that

∆ (x)− 1⊗ x− x⊗ 1 + ε (x) 1⊗ 1 =
∑
(x)

(x1 − ε (x1) · 1)︸ ︷︷ ︸
∈ker ε=I

(by part (d))

⊗ (x2 − ε (x2) · 1)︸ ︷︷ ︸
∈ker ε=I

(by part (d))

∈ I ⊗ I.

Since x ∈ I = ker ε, the ε (x) 1⊗ 1 term on the left hand side vanishes.

(h) This follows from part (g), since a simple homogeneity argument shows that (I ⊗ I)n =
∑n−1
k=1 Ak ⊗

An−k.

Hint to Exercise 1.3.24. We need to check the four equalities Dq ◦m = m ◦ (Dq ⊗Dq) and Dq ◦ u = u
and (Dq ⊗Dq) ◦ ∆ = ∆ ◦ Dq and ε ◦ Dq = ε. This can easily be done by hand (just check everything
on homogeneous elements); a more erudite proof proceeds as follows: Generalize the map Dq to a map
Dq,V : V → V defined (in the same way as Dq) for every graded k-module V , and show that these maps
Dq,V are functorial (i.e., if f : V → W is a graded k-linear map between two graded k-modules V and W ,
then Dq,W ◦ f = f ◦ Dq,V ) and “respect tensor products” (i.e., we have Dq,V⊗W = Dq,V ⊗ Dq,W for any
two graded k-modules V and W ). The four equalities are then easily obtained from these two facts, without
having to introduce elements.

Hint to Exercise 1.3.26. (a) Our definition of the k-coalgebra A⊗B yields

∆A⊗B = (idA⊗TA,B ⊗ idB) ◦ (∆A ⊗∆B) and εA⊗B = θ ◦ (εA ⊗ εB) ,

where θ is the canonical k-module isomorphism k⊗ k→ k. All maps on the right hand sides are k-algebra
homomorphisms (see Exercise 1.3.6(a)); thus, so are ∆A⊗B and εA⊗B .

(b) Straightforward.

Hint to Exercise 1.4.2. Simple computation (either element-free or with Sweedler notation).

Hint to Exercise 1.4.4. Simple computation (either element-free or with Sweedler notation).

Hint to Exercise 1.4.5. Straightforward computation, best done using Sweedler notation.

Hint to Exercise 1.4.15. Use Exercise 1.4.2.
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Hint to Exercise 1.4.19. The following is more context than hint (see the last paragraph for an actual
hint).

It is easiest to prove this by calculating with elements. To wit, in order to prove that two k-linear maps
from A⊗(k+1) are identical, it suffices to show that they agree on all pure tensors a1⊗a2⊗· · ·⊗ak+1 ∈ A⊗(k+1).
But the recursive definition of m(k) shows that

(12.1.1) m(k) (a1 ⊗ a2 ⊗ · · · ⊗ ak+1) = a1 (a2 (a3 (· · · (akak+1) · · · )))
for all a1, a2, . . . , ak+1 ∈ A. Now, the “general associativity” law (a fundamental result in abstract algebra,
commonly used without mention) says that, because the multiplication of A is associative, the parentheses
in the product a1 (a2 (a3 (· · · (akak+1) · · · ))) can be omitted without making it ambiguous – i.e., any two
ways of parenthesizing the product a1a2 · · · ak+1 evaluate to the same result. (For example, for k = 4, this
says that

a1 (a2 (a3a4)) = a1 ((a2a3) a4) = (a1a2) (a3a4) = (a1 (a2a3)) a4 = ((a1a2) a3) a4

for all a1, a2, a3, a4 ∈ A.) Thus, we can rewrite (12.1.1) as

m(k) (a1 ⊗ a2 ⊗ · · · ⊗ ak+1) = a1a2 · · · ak+1.

Using this formula, all four parts of the exercise become trivial: For example, part (a) simply says that

a1a2 · · · ak+1 = (a1a2 · · · ai+1) (ai+2ai+3 · · · ak+1)

for all a1, a2, . . . , ak+1 ∈ A, because we have(
m ◦

(
m(i) ⊗m(k−1−i)

))
(a1 ⊗ a2 ⊗ · · · ⊗ ak+1) = (a1a2 · · · ai+1) (ai+2ai+3 · · · ak+1) .

Likewise, part (c) simply says that

a1a2 · · · ak+1 = a1a2 · · · ai (ai+1ai+2) ai+3ai+4 · · · ak+1

for all a1, a2, . . . , ak+1 ∈ A. Parts (b) and (d) are particular cases of parts (a) and (c), respectively.
Of course, in order for this to be a complete solution, you have to prove the “general associativity” law

used above. It turns out that doing so is not much easier than solving the exercise from scratch (in fact,
part (a) of the exercise is an equivalent form of the “general associativity” law). So we can just as well start
from scratch and solve part (a) directly by induction on k, then derive part (b) as its particular case, then
solve part (c) by induction on k using the result of part (b), then derive part (d) as a particular case of (c).

Hint to Exercise 1.4.20. If you have solved Exercise 1.4.19 in an “element-free” way, then you can reverse
all arrows in said solution and thus obtain a solution to Exercise 1.4.20.

Hint to Exercise 1.4.22. (a) Induction on k, using Exercise 1.3.6(b).
(b) This is dual to (a).

(d) For every k-coalgebra C, consider the map ∆
(k)
C : C → C⊗(k+1) (this is the map ∆(k) defined in

Exercise 1.4.20). This map ∆
(k)
C is clearly functorial in C. By this we mean that if C and D are any two

k-coalgebras, and f : C → D is any k-coalgebra homomorphism, then the diagram

C
f //

∆
(k)
C��

D

∆
(k)
D��

C⊗(k+1)

f⊗(k+1)

// D⊗(k+1)

commutes. Now, apply this to C = H⊗(`+1), D = H and f = m
(`)
H (using part (a)).

(c) This is dual to (d).

Hint to Exercise 1.4.23. Induction on k.

Hint to Exercise 1.4.28. This is dual to Proposition 1.4.10, so the usual strategy (viz., rewriting element-
free and reversing all arrows) applies.

Hint to Exercise 1.4.29. (a) A straightforward generalization of the proof of Proposition 1.4.10 (which
corresponds to the particular case when C = A and r = id) does the trick.
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(b) This is dual to (a).
(c) Easy.
(d) Apply Exercise 1.4.29(a) to C = A and r = idA; then, apply Proposition 1.4.26(a) to H = A and

α = S.
(e) Let s : C → A be the k-linear map that sends every homogeneous element c ∈ Cn (for every n ∈ N)

to the n-th homogeneous component of r?(−1) (c). Then, s is graded, and (this takes some work) is also a
?-inverse to r. But r has only one ?-inverse.

Hint to Exercise 1.4.30. (a) Rewrite the assumption as m ◦ (P ⊗ id) ◦ T ◦∆ = u ◦ ε, where T is the twist
map TA,A. Proposition 1.4.10 leads to m ◦ (S ⊗ S) = S ◦ m ◦ T and u = S ◦ u. Exercise 1.4.28 leads to
(S ⊗ S) ◦∆ = T ◦∆ ◦ S and ε ◦ S = ε. Use these to show that (P ◦ S) ? S = u ◦ ε, so that P ◦ S = id. Also,
show that S ? (S ◦ P ) = u ◦ ε, so that S ◦ P = id.

(b) Similar to (a).
(c) Let A be a connected graded Hopf algebra. Just as a left ?-inverse S to idA has been constructed in

the proof of Proposition 1.4.16, we could construct a k-linear map P : A→ A such that every a ∈ A satisfies∑
(a) P (a2) · a1 = u (ε (a)). Now apply part (a).

Hint to Exercise 1.4.32. Since D is a direct summand of C, we can identify the tensor products D ⊗ C,
C ⊗ D and D ⊗ D with their canonical images inside C ⊗ C. Now, we can show that ∆ (D) ⊂ D ⊗ D as
follows: Let p : C → D be the canonical projection from C onto its direct summand D; then, ∆ (D) ⊂ D⊗C
shows that (p⊗ id) ◦∆ = ∆, and ∆ (D) ⊂ C ⊗D shows that (id⊗p) ◦∆ = ∆. Hence,

(p⊗ p)︸ ︷︷ ︸
=(p⊗id)◦(id⊗p)

◦∆ = (p⊗ id) ◦ (id⊗p) ◦∆︸ ︷︷ ︸
=∆

= (p⊗ id) ◦∆ = ∆.

This yields ∆ (D) ⊂ D ⊗D. Hence, we get a map ∆D : D → D ⊗D by restricting ∆. Obviously, the map
ε : C → k restricts to a map εD : D → k as well. It remains to check the commutativity of the diagrams
(1.2.1) and (1.2.2) for D instead of C; but this is inherited from C.

Hint to Exercise 1.4.33. (a) Let f̃ = (idC ⊗f ⊗ idC) ◦∆(2) : C → C ⊗ U ⊗C; then, K = ker f̃ . Show (by

manipulation of maps, using Exercise 1.4.20(b)) that (idC ⊗ idU ⊗∆) ◦ f̃ =
(
f̃ ⊗ idC

)
◦∆. Now,

K = ker f̃ ⊂ ker

(idC ⊗ idU ⊗∆) ◦ f̃︸ ︷︷ ︸
=(f̃⊗idC)◦∆

 = ker
((
f̃ ⊗ idC

)
◦∆
)

= ∆−1
(

ker
(
f̃ ⊗ idC

))
and therefore

∆ (K) ⊂ ker
(
f̃ ⊗ idC

)
=
(

ker f̃
)

︸ ︷︷ ︸
=K

⊗C (since tensoring over a field is left-exact)

= K ⊗ C.
Similarly, ∆ (K) ⊂ C ⊗K. Now, apply Exercise 1.4.32 to D = K.

(b) Let E be a k-subcoalgebra of C which is a subset of ker f . Then, ∆(2) (E) ⊂ E ⊗E ⊗E (since E is a
subcoalgebra) and f (E) = 0 (since E ⊂ ker f). Now,

(
(idC ⊗f ⊗ idC) ◦∆(2)

)
(E) = (idC ⊗f ⊗ idC)

∆(2) (E)︸ ︷︷ ︸
⊂E⊗E⊗E


⊂ (idC ⊗f ⊗ idC) (E ⊗ E ⊗ E)

= idC (E)⊗ f (E)︸ ︷︷ ︸
=0

⊗ idC (E) = 0.

Hence, E ⊂ ker
(
(idC ⊗f ⊗ idC) ◦∆(2)

)
= K.

[Remark: Exercise 1.4.33(a) would not hold if we allowed k to be an arbitrary commutative ring rather
than a field.]
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Hint to Exercise 1.4.34. (a) Here is Takeuchi’s argument: We know that the map h |C0∈ Hom (C0, A) is
?-invertible; let g̃ be its ?-inverse. Extend g̃ to a k-linear map g : C → A by defining it as 0 on every Cn
for n > 0. It is then easy to see that (h ? g) |C0

= (g ? h) |C0
= (uε) |C0

. This allows us to assume WLOG
that h |C0

= (uε) |C0
(because once we know that h ? g and g ? h are ?-invertible, it follows that so is h).

Assuming this, we conclude that h− uε annihilates C0. Define f as h− uε. Now, we can proceed as in the

proof of Proposition 1.4.24 to show that
∑
k≥0 (−1)

k
f?k is a well-defined linear map C → A and a two-sided

?-inverse for h. Thus, h is ?-invertible, and part (a) of the exercise is proven. (An alternative proof proceeds
by mimicking the proof of Proposition 1.4.16, again by first assuming WLOG that h |C0

= (uε) |C0
.)

(b) Apply part (a) to C = A and the map idA : A→ A.
(c) Applying part (b), we see that A is a Hopf algebra (since A0 = k is a Hopf algebra) in the setting of

Proposition 1.4.16. This yields the existence of the antipode. Its uniqueness is trivial, and its gradedness
follows from Exercise 1.4.29(e).

Hint to Exercise 1.4.35. (a) Let I be a two-sided coideal of A such that I ∩ p = 0 and such that
I =

⊕
n≥0 (I ∩An). Let In = I ∩ An for every n ∈ N. Then, I =

⊕
n≥0 In. Since I is a two-sided coideal,

we have ε (I) = 0.
We want to prove that I = 0. It clearly suffices to show that every n ∈ N satisfies In = 0 (since

I =
⊕

n≥0 In). We shall show this by strong induction: We fix an N ∈ N, and we assume (as induction

hypothesis) that In = 0 for all n < N . We must prove that IN = 0.
Fix i ∈ IN ; we aim to show that i = 0. We have i ∈ IN ⊂ AN and thus ∆ (i) ∈ (A⊗A)N (since ∆ is a

graded map). On the other hand, from i ∈ IN ⊂ I, we obtain

∆ (i) ∈ ∆ (I) ⊂ I︸︷︷︸
=
⊕
n≥0 In

⊗ A︸︷︷︸
=
⊕
m≥0 Am

+ A︸︷︷︸
=
⊕
m≥0 Am

⊗ I︸︷︷︸
=
⊕
n≥0 In

(since I is a two-sided coideal)

=
∑

(m,n)∈N2

In ⊗Am +
∑

(m,n)∈N2

Am ⊗ In.

Combining this with ∆ (i) ∈ (A⊗A)N , we obtain

∆ (i) ∈
∑

(m,n)∈N2;
m+n=N

In ⊗Am +
∑

(m,n)∈N2;
m+n=N

Am ⊗ In
(
since In ⊗Am and Am ⊗ In are subsets of (A⊗A)n+m

)

=

N∑
n=0

In ⊗AN−n +

N∑
n=0

AN−n ⊗ In

= IN ⊗ A0︸︷︷︸
=k·1A

+

N−1∑
n=0

In︸︷︷︸
=0

(by the induction
hypothesis)

⊗AN−n + A0︸︷︷︸
=k·1A

⊗IN +

N−1∑
n=0

AN−n ⊗ In︸︷︷︸
=0

(by the induction
hypothesis)

= IN ⊗ (k · 1A) + (k · 1A)⊗ IN .

In other words,

(12.1.2) ∆ (i) = j ⊗ 1A + 1A ⊗ k

for some j, k ∈ IN . By applying ε ⊗ id to both sides of this equality, and recalling the commutativity of
(1.2.2), we obtain i = ε (j) 1A + k. But ε (j) = 0 (since j ∈ IN ⊂ I, so ε (j) ∈ ε (I) = 0), so this simplifies to
i = k. Similarly, i = j. Hence, (12.1.2) rewrites as ∆ (i) = i ⊗ 1A + 1A ⊗ i, which shows that i ∈ p, hence
i ∈ I ∩ p = 0 and thus i = 0. This was for proved for each i ∈ IN , so we obtain IN = 0. This completes the
induction step, and so part (a) is solved.

(b) Exercise 1.3.13(a) shows that ker f is a two-sided coideal of C. If f |p is injective, then (ker f)∩p = 0.
Now, apply part (a) of the current exercise to I = ker f .

(c) Proceed as in part (b), but use Exercise 1.3.13(b) instead of Exercise 1.3.13(a).

Hint to Exercise 1.5.4. (a) Straightforward (if slightly laborious) computations.
(b) Direct verification (the hard part of which has been done in (1.3.7) already).
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(c) For every subset S of a k-module U , we let 〈S〉 denote the k-submodule of U spanned by S. Our
definition of J thus becomes

(12.1.3) J = T (p) · C · T (p) ,

where C = 〈xy − yx− [x, y] | x, y ∈ p〉. A simple computation shows that each element of C is primitive.
Hence,

∆ (C) ⊂ C ⊗ T (p) + T (p)⊗ C.
Applying ∆ to both sides of (12.1.3), and recalling that ∆ is a k-algebra homomorphism, we find

∆ (J) = ∆ (T (p))︸ ︷︷ ︸
⊂T (p)⊗T (p)

· ∆ (C)︸ ︷︷ ︸
⊂C⊗T (p)+T (p)⊗C

· ∆ (T (p))︸ ︷︷ ︸
⊂T (p)⊗T (p)

⊂ (T (p)⊗ T (p)) · (C ⊗ T (p) + T (p)⊗ C) · (T (p)⊗ T (p))

= J ⊗ T (p) + T (p)⊗ J.

A similar (but simpler) argument shows ε (J) = 0. Thus, J is a two-sided coideal of T (p). This yields that
T (p) /J is a k-bialgebra.

(d) We need to show that S (J) ⊂ J . This can be done in a similar way as we proved ∆ (J) ⊂ J ⊗T (p) +
T (p) ⊗ J in part (c), once you know (from Proposition 1.4.10) that the antipode S of T (p) is a k-algebra
anti-homomorphism.

Hint to Exercise 1.5.5. Straightforward and easy verification.

Hint to Exercise 1.5.6. Straightforward and easy verification. Parts (a) and (b) are dual, of course.

Hint to Exercise 1.5.8. (a) Straightforward and easy verification.
(b) The dual says the following: Let A and B be two k-coalgebras, at least one of which is cocom-

mutative. Prove that the k-coalgebra anti-homomorphisms from A to B are the same as the k-coalgebra
homomorphisms from A to B.

Hint to Exercise 1.5.9. For every 1 ≤ i < j ≤ k, let ti,j be the transposition in Sk which transposes i with
j. It is well-known that the symmetric group Sk is generated by the transpositions ti,i+1 with i ranging over
{1, 2, . . . , k − 1}. However, we have (ρ (π)) ◦ (ρ (ψ)) = ρ (πψ) for any two elements π and ψ of Sk. Thus, it
suffices to check that

m(k−1) ◦ (ρ (ti,i+1)) = m(k−1) for all i ∈ {1, 2, . . . , k − 1} .

But this is not hard to check using m(k−1) = m(k−2) ◦ (idA⊗(i−1) ⊗m⊗ idA⊗(k−1−i)) (a consequence of Exer-
cise 1.4.19(c)) and m ◦ T = m.

Hint to Exercise 1.5.10. Here is the dual statement: Let C be a cocommutative k-coalgebra, and let
k ∈ N. The symmetric group Sk acts on the k-fold tensor power C⊗k by permuting the tensor factors:
σ (v1 ⊗ v2 ⊗ · · · ⊗ vk) = vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(k) for all v1, v2, . . . , vk ∈ C and σ ∈ Sk. For every

π ∈ Sk, denote by ρ (π) the action of π on C⊗k (this is an endomorphism of C⊗k). Show that every π ∈ Sk

satisfies (ρ (π)) ◦∆(k−1) = ∆(k−1). (Recall that ∆(k−1) : C → C⊗k is defined as in Exercise 1.4.20 for k ≥ 1,
and by ∆(−1) = ε : C → k for k = 0.)

Hint to Exercise 1.5.11. (a) Use Exercise 1.5.6(b) and Exercise 1.3.6(a) to represent f ?g as a composition
of three k-algebra homomorphisms.

(b) Induction on k, using part (a).
(c) Use Proposition 1.4.10, Proposition 1.4.26(a) and the easy fact that a composition of a k-algebra homo-

morphism with a k-algebra anti-homomorphism (in either order) always is a k-algebra anti-homomorphism.
(d) Use Exercise 1.5.6(b). Then, proceed by induction on k as in the solution of Exercise 1.4.22(a).
(e) Use Proposition 1.4.3.
(f) LetH be a commutative k-bialgebra. Let k and ` be two nonnegative integers. Then, Exercise 1.5.11(b)

(applied to A = H and fi = idH) yields that id?kH is a k-algebra homomorphism H → H. Now, apply

Exercise 1.5.11(e) to H, H, H, H, `, idH , id?kH and idH instead of C, C ′, A, A′, k, fi, α and γ.
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(g) This is an exercise in bootstrapping. First, let k ∈ N. Then, part (b) of this exercise shows that id?kH
is a k-algebra homomorphism. Use this together with part (c) to conclude that id?kH ◦S is again a k-algebra

homomorphism and a ?-inverse to id?kH ; thus, id?kH ◦S =
(

id?kH

)?(−1)

= id
?(−k)
H , and this map id

?(−k)
H is a

k-algebra homomorphism.

Now forget that we fixed k. We thus have shown that id?kH and id
?(−k)
H are k-algebra homomorphisms for

each k ∈ N. In other words,

(12.1.4) id?kH is a k-algebra homomorphism for every k ∈ Z.

Furthermore, we have proved the equality id?kH ◦S = id
?(−k)
H for each k ∈ N. Repeating the proof of this,

but now taking k ∈ Z instead of k ∈ N, we conclude that it also holds for each k ∈ Z (since we already have
proved (12.1.4)). In other words,

(12.1.5) id
?(−k)
H = id?kH ◦S for every k ∈ Z.

Now, fix two integers k and `. From (12.1.4), we know that id?kH is a k-algebra homomorphism. Hence, if

` is nonnegative, then we can prove id?kH ◦ id?`H = id
?(k`)
H just as we did in the solution to Exercise 1.5.11(f).

But the case when ` is negative can be reduced to the previous case by applying (12.1.5) (once to −` instead

of k, and once again to −k` instead of k). Thus, in each case, we obtain id?kH ◦ id?`H = id
?(k`)
H .

(h) The dual of Exercise 1.5.11(a) is the following exercise:

If H is a k-bialgebra and C is a cocommutative k-coalgebra, and if f and g are two k-
coalgebra homomorphisms C → H, then prove that f ?g also is a k-coalgebra homomorphism
C → H.

The dual of Exercise 1.5.11(b) is the following exercise:

If H is a k-bialgebra and C is a cocommutative k-coalgebra, and if f1, f2, . . . , fk are several
k-coalgebra homomorphisms C → H, then prove that f1 ? f2 ? · · · ? fk also is a k-coalgebra
homomorphism C → H.

The dual of Exercise 1.5.11(c) is the following exercise:

If H is a Hopf algebra and C is a cocommutative k-coalgebra, and if f : C → H is a k-
coalgebra homomorphism, then prove that S ◦ f : C → H (where S is the antipode of H) is
again a k-coalgebra homomorphism, and is a ?-inverse to f .

The dual of Exercise 1.5.11(d) is the following exercise:

If C is a cocommutative k-coalgebra, then show that ∆(k) is a k-coalgebra homomorphism
for every k ∈ N. (The map ∆(k) : C → C⊗(k+1) is defined as in Exercise 1.4.20.)

The dual of Exercise 1.5.11(e) is Exercise 1.5.11(e) itself (up to renaming objects and maps).
The dual of Exercise 1.5.11(f) is the following exercise:

If H is a cocommutative k-bialgebra, and k and ` are two nonnegative integers, then prove

that id?`H ◦ id?kH = id
?(`k)
H .

The dual of Exercise 1.5.11(g) is the following exercise:

If H is a cocommutative k-Hopf algebra, and k and ` are two integers, then prove that

id?`H ◦ id?kH = id
?(`k)
H .

Hint to Exercise 1.5.13. This is dual to Corollary 1.4.12 (but can also easily be shown using Exer-
cise 1.4.29(b), Exercise 1.5.8(b) and Proposition 1.4.26(b)).

Hint to Exercise 1.5.14. (a) This can be proved computationally (using Sweedler notation), but there is
a nicer argument as well:

A coderivation of a k-coalgebra (C,∆, ε) is defined as a k-linear map F : C → C such that ∆ ◦ F =
(F ⊗ id + id⊗F )◦∆. (The reader can check that this axiom is the result of writing the axiom for a derivation
in element-free terms and reversing all arrows. Nothing less should be expected.) It is easy to see that E
is a coderivation. Hence, it will be enough to check that (S ? f) (a) and (f ? S) (a) are primitive whenever
f : A→ A is a coderivation and a ∈ A. So fix a coderivation f : A→ A. Notice that the antipode S of A is
a coalgebra anti-endomorphism (by Exercise 1.4.28), thus a coalgebra endomorphism (by Exercise 1.5.8(b)).
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Thus, ∆ ◦ S = (S ⊗ S) ◦∆. Moreover, ∆ : A→ A⊗A is a coalgebra homomorphism (by Exercise 1.5.6(a))
and an algebra homomorphism (since A is a bialgebra). Applying (1.4.2) to A⊗ A, A, A, ∆, idA, S and f
instead of A′, C, C ′, α, γ, f and g, we obtain

∆ ◦ (S ? f) = (∆ ◦ S)︸ ︷︷ ︸
=(S⊗S)◦∆

? (∆ ◦ f)︸ ︷︷ ︸
=(f⊗id + id⊗f)◦∆

(since f is a coderivation)

= ((S ⊗ S) ◦∆) ? ((f ⊗ id + id⊗f) ◦∆) = ((S ⊗ S) ? (f ⊗ id + id⊗f)) ◦∆

= ((S ⊗ S) ? (f ⊗ id))︸ ︷︷ ︸
=(S?f)⊗(S?id)

(by Exercise 1.4.4(a))

◦∆ + ((S ⊗ S) ? (id⊗f))︸ ︷︷ ︸
=(S?id)⊗(S?f)

(by Exercise 1.4.4(a))

◦∆

=

(S ? f)⊗ (S ? id)︸ ︷︷ ︸
=uε

 ◦∆ +

(S ? id)︸ ︷︷ ︸
=uε

⊗ (S ? f)

 ◦∆

= ((S ? f)⊗ uε) ◦∆ + (uε⊗ (S ? f)) ◦∆.

Hence, every a ∈ A satisfies

(∆ ◦ (S ? f)) (a) = (((S ? f)⊗ uε) ◦∆ + (uε⊗ (S ? f)) ◦∆) (a)

= (S ? f) (a)⊗ 1 + 1⊗ (S ? f) (a)

(after some brief computations using (1.2.2)). In other words, for every a ∈ A, the element (S ? f) (a) is
primitive. Similarly the same can be shown for (f ? S) (a), and so we are done.

(b) is a very simple computation. (Alternatively, the (S ? E) (p) = E (p) part follows from applying part
(c) to a = 1, and similarly one can show (E ? S) (p) = E (p).)

(c) This is another computation, using Proposition 1.4.17 and the (easy) observation that E is a derivation
of the algebra A.

(d) Assume that the graded algebra A =
⊕

n≥0An is connected and that Q is a subring of k. Let B be

the k-subalgebra of A generated by p. In order to prove part (d), we need to show that A ⊂ B. Clearly, it
suffices to show that An ⊂ B for every n ∈ N. We prove this by strong induction on n; thus, we fix some
n ∈ N, and assume as induction hypothesis that Am ⊂ B for every m < n. Our goal is then to show that
An ⊂ B. This being trivial for n = 0 (since A is connected), we WLOG assume that n > 0. Let a ∈ An.
Part (a) of this exercise yields (S ? E) (a) ∈ p ⊂ B. On the other hand, Exercise 1.3.20(h) (applied to x = a)
yields

∆ (a) ∈ 1⊗ a+ a⊗ 1 +

n−1∑
k=1

Ak ⊗An−k.

Hence, from the definition of convolution, we obtain

(S ? E) (a) ∈ S (1)︸ ︷︷ ︸
=1

E (a) + S (a)E (1)︸ ︷︷ ︸
=0

+ (m ◦ (S ⊗ E))

(
n−1∑
k=1

Ak ⊗An−k

)
︸ ︷︷ ︸

=
∑n−1
k=1 S(Ak)E(An−k)

= E (a) +

n−1∑
k=1

S (Ak)︸ ︷︷ ︸
⊂Ak

(since S is graded)

E (An−k)︸ ︷︷ ︸
⊂An−k⊂B

(by the induction
hypothesis)

⊂ E (a) +

n−1∑
k=1

Ak︸︷︷︸
⊂B

(by the induction
hypothesis)

B ⊂ E (a) +B

(since B is a subalgebra). Hence, E (a) ∈ (S ? E) (a) + B = B (since (S ? E) (a) ∈ B). Since E (a) = na,
this becomes na ∈ B, thus a ∈ B (since Q is a subring of k). Since we have shown this for each a ∈ An, we
thus obtain An ⊂ B, and our induction is complete.

This solution of part (d) is not the most generalizable one – for instance, (d) also holds if A is connected
filtered instead of connected graded, and then a different argument is necessary. This is a part of the
Cartier-Milnor-Moore theorem, and appears e.g. in [60, §3.2].
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(e) If a ∈ T (V ) is homogeneous of positive degree and p ∈ V , then part (c) quickly yields (S ? E) (ap) =
[(S ? E) (a) , p]. This allows proving (e) by induction over n, with the induction base n = 1 being a conse-
quence of part (b).

Hint to Exercise 1.6.1. (a) This can be done by diagram chasing. For example, if m denotes the map
∆∗C ◦ ρC,C : C∗ ⊗ C∗ → C∗, then the diagram

C∗ ⊗ C∗ ⊗ C∗
m⊗id

��

ρC,C⊗idvv

id⊗ρC,C

((

id⊗m

��

(C ⊗ C)
∗ ⊗ C∗

∆∗C⊗idww

ρC⊗C,C

((

C∗ ⊗ (C ⊗ C)
∗

id⊗∆∗C ''
ρC,C⊗Cvv

C∗ ⊗ C∗
ρC,C

''

m
66

(C ⊗ C ⊗ C)
∗

(∆C⊗id)∗vv

(id⊗∆C)∗

((

C∗ ⊗ C∗
ρC,C

ww

m

hh

(C ⊗ C)
∗

∆∗C

((

(C ⊗ C)
∗

∆∗Cvv
C∗

is commutative (since each of its little triangles and squares is); thus, m ◦ (m⊗ id) = m ◦ (id⊗m) for m. This
proves that the diagram (1.1.1) commutes for our algebra C∗. The commutativity of (1.1.2) is obtained
similarly.

Alternatively, we could also solve part (a) trivially by first solving part (b) and then recalling Exercise
1.4.2.

(b) Straightforward verification on pure tensors.
(c) Let C =

⊕
n≥0 Cn be a graded k-coalgebra. For every n ∈ N, we identify (Cn)

∗
with a k-submodule of

C∗, namely with the k-submodule {f ∈ C∗ | f (Cp) = 0 for all p ∈ N satisfying p 6= n}. By the definition
of Co, we have Co =

⊕
n≥0 (Cn)

∗
. Hence, it remains to show that (Ca)

∗
(Cb)

∗ ⊂ (Ca+b)
∗

for all a, b ∈ N,

and that 1C∗ ∈ (C0)
∗
. But this is straightforward using the gradedness of ∆ and ε.

(d) Diagram chasing or simple element-wise verification.
(e) Simple linear algebra (no Hopf algebras involved here).
(f) The “only if” direction is proved in the same way as part (d) (or as a corollary of part (d), since D◦

and C◦ are subalgebras of D∗ and C∗). It remains to prove the “if” direction.
Assume that f∗ : Do → Co is a k-algebra morphism. We want to show that f : C → D is a k-coalgebra

morphism. In other words, we want to show that the two diagrams

(12.1.6) C

∆C

��

f // D

∆D

��
C ⊗ C

f⊗f // D ⊗D

and C

εC ��

f // D

εD
��

k

commute. Let us start with the left one of these diagrams. The graded k-module D is of finite type, and
therefore the map ρD,D : Do ⊗Do → (D ⊗D)

o
(a restriction of the map ρD,D : D∗ ⊗D∗ → (D ⊗D)

∗
) is

an isomorphism. Its inverse ρ−1
D,D : (D ⊗D)

o → Do ⊗Do is therefore well-defined377. We can thus form the

377Beware: we don’t have an inverse of the non-restricted map ρD,D : D∗ ⊗D∗ → (D ⊗D)∗.
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(asymmetric!) diagram

(12.1.7) Do f∗ // Co

Do ⊗Do

mD∗

ii

f∗⊗f∗ // Co ⊗ Co

mC∗

55

ρC,C

))
(D ⊗D)

o

∆∗D

OO

ρ−1
D,D

55

(f⊗f)∗
// (C ⊗ C)

o

∆∗C

OO .

(The arrows labelled mC∗ and mD∗ could just as well have been labelled mCo and mDo , since the multipli-
cation maps mCo and mDo are restrictions of mC∗ and mD∗ .) Argue that the diagram (12.1.7) commutes.
Thus, f∗ ◦∆∗D = ∆∗C ◦ (f ⊗ f)

∗
as maps from (D ⊗D)

o
to Co. In other words, (∆D ◦ f)

∗
= ((f ⊗ f) ◦∆C)

∗

as maps from (D ⊗D)
o

to Co. But a general linear-algebraic fact states that if U and V are two graded
k-modules such that V is of finite type, and if α and β are two graded k-linear maps U → V such that
α∗ = β∗ as maps from V o to Uo, then α = β 378. Hence, (∆D ◦ f)

∗
= ((f ⊗ f) ◦∆C)

∗
leads to

∆D ◦ f = (f ⊗ f) ◦∆C . In other words, the first diagram in (12.1.6) commutes. The second is similar but
easier. Thus, f is a k-coalgebra morphism, and the “if” direction is proved.

Hint to Exercise 1.6.4. Straightforward computations. For part (d), first show (independently of whether

k is a field and its characteristic) that
(
f (1)

)m
= m!f (m) for every m ∈ N.

Hint to Exercise 1.6.5. It is best to solve parts (c) and (d) before approaching (b).
(a) Both maps ∆SymV and

k[x]
∆−→ k[x,y],

f(x1, . . . , xn) 7−→ f(x1 + y1, . . . , xn + yn)

are k-algebra homomorphisms. Thus, in order to check that they are equal, it suffices to verify that they
agree on V (since V generates SymV ).

(c) This is a straightforward computation unless you get confused with the topologist’s sign convention.
The latter convention affects the twist map T = TT (V ),T (V ) : T (V )⊗ T (V )→ T (V )⊗ T (V ) (in particular,
we now have T (x⊗ x) = −x ⊗ x instead of T (x⊗ x) = x ⊗ x), and thus also affects the multiplication in
the k-algebra T (V )⊗ T (V ), because this multiplication is given by

mT (V )⊗T (V ) =
(
mT (V ) ⊗mT (V )

)
◦ (id⊗T ⊗ id) .

Make sure you understand why this leads to (1⊗ x) · (x⊗ 1) = −x⊗ x (whereas (x⊗ 1) · (1⊗ x) = x⊗ x).
(d) The trickiest part is showing that J is a graded k-submodule of T (V ). It suffices to check that J is

generated (as a two-sided ideal) by homogeneous elements379; however, this is not completely trivial, as the
designated generators x2 for x ∈ V need not be homogeneous. However, it helps to observe that J is also
the two-sided ideal generated by the set

{x⊗ x}x∈V is homogeneous ∪ {x⊗ y + y ⊗ x}x,y∈V are homogeneous

(why?), which set does consist of homogeneous elements. Thus, J is a graded k-submodule of T (V ). From
part (c), it is easy to observe that J is a two-sided coideal of T (V ) as well. Hence, T (V ) /J inherits a graded
k-bialgebra structure from T (V ). The rest is easy.

(b) is now a consequence of what has been done in (d).

Hint to Exercise 1.6.6. Easy and straightforward.

Hint to Exercise 1.6.8. The hint after the exercise shows the way; here are a few more pointers. The
solution proceeds in two steps:

• Step 1: Show that Proposition 1.6.7 holds when V is a finite free k-module.
• Step 2: Use this to conclude that Proposition 1.6.7 always holds.

378This follows immediately from Exercise 1.6.1 (e).
379Make sure you understand why.
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The trick to Step 1 is to reduce the proof to Example 1.6.3. In a bit more detail: If V is a finite
free k-module with basis (v1, v2, . . . , vn), then we know from Example 1.6.3 that the graded dual Ao of its
tensor algebra A := T (V ) is a Hopf algebra whose basis

{
y(i1,i2,...,i`)

}
is indexed by words in the alphabet

I := {1, 2, . . . , n}. This allows us to define a k-linear map φ : Ao → T (V ) by setting

φ
(
y(i1,i2,...,i`)

)
= vi1vi2 · · · vi` for every ` ∈ N and (i1, i2, . . . , i`) ∈ I`.

This k-linear map φ then is an isomorphism from the Hopf algebra Ao to the putative Hopf algebra(
Sh (V ) ,�, 1T (V ),∆�, ε, S

)
, in the sense that it is invertible (since it sends a basis to a basis) and sat-

isfies the five equalities

φ ◦mAo = m� ◦ (φ⊗ φ) ,

φ ◦ uAo = u,

(φ⊗ φ) ◦∆Ao = ∆� ◦ φ,
εAo = ε ◦ φ,

φ ◦ SAo = S ◦ φ

(check all these – for instance, the first of these equalities follows by comparing (1.6.4) with the definition
of �). Thus, the latter putative Hopf algebra is an actual Hopf algebra (since the former is). This proves
Proposition 1.6.7 for our finite free V , and thus completes Step 1.

Step 2 demonstrates the power of functoriality. We want to prove Proposition 1.6.7 in the general case,
knowing that it holds when V is finite free. So let V be an arbitrary k-module. For the sake of brevity, we
shall write V for T (V ). Let m� denote the k-linear map V ⊗V → V which sends every a ⊗ b to a� b.
One of the things that need to be shown is the commutativity of the diagram

(12.1.8) V ⊗V
∆�⊗∆�

vv
m�

��

V ⊗V ⊗V ⊗V

id⊗T⊗id

��

V

∆�

��

V ⊗V ⊗V ⊗V

m�⊗m� ((
V ⊗V

,

where T is the twist map TV,V. By linearity, it is clearly enough to verify this only on the pure tensors; that
is, it is enough to check that every a ∈ V and b ∈ V satisfy

(12.1.9) ((m� ⊗m�) ◦ (id⊗T ⊗ id) ◦ (∆� ⊗∆�)) (a⊗ b) = (∆� ◦m�) (a⊗ b) .

So let a, b ∈ V be arbitrary. WLOG assume that a = v1v2 · · · vp and b = vp+1vp+2 · · · vp+q for some
p, q ∈ N and v1, v2, . . . , vp+q ∈ V . Define W to be the free k-module with basis (x1, x2, . . . , xp+q), and
let W be its tensor algebra T (W ). Then, W is a finite free k-module, and so we know from Step 1
that Proposition 1.6.7 holds for W instead of V . But we can define a k-linear map f : W → V that
sends x1, x2, . . . , xp+q to v1, v2, . . . , vp+q, respectively. This map f : W → V clearly induces a k-algebra
homomorphism f := T (f) : W → V that respects all relevant shuffle-algebraic structure (i.e., it satisfies
f ◦m� = m� ◦ (f ⊗ f) and (f ⊗ f) ◦∆� = ∆� ◦ f and so on), simply because this structure has been defined
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canonically in terms of each of V and W . Thus, in the diagram

W ⊗W

∆�⊗∆�

tt

m�

!!

f⊗f

��
V ⊗V

∆�⊗∆�

uu
m�

��

W ⊗W ⊗W ⊗W

id⊗T⊗id

��

f⊗f⊗f⊗f
// V ⊗V ⊗V ⊗V

id⊗T⊗id

��

V

∆�

��

W

∆�

}}

f
oo

W ⊗W ⊗W ⊗W

m�⊗m�

**

f⊗f⊗f⊗f // V ⊗V ⊗V ⊗V

m�⊗m� ))
V ⊗V

W ⊗W

f⊗f

OO

,

all the little quadrilaterals commute. The outer pentagon also commutes, since Proposition 1.6.7 holds for W
instead of V . If f was surjective, then we would be able to conclude that the inner pentagon also commutes,
so we would immediately get the commutativity of (12.1.8). But even if f is not surjective, we are almost
there: The inner pentagon commutes on the image of the map f ⊗ f : W ⊗W→ V ⊗V (because when we
start at W ⊗W, we can walk around the outer pentagon instead, which is known to commute), but this
image contains a ⊗ b (since a = v1v2 · · · vp = f (x1x2 · · ·xp) and similarly b = f (xp+1xp+2 · · ·xp+q)), so we
conclude that (12.1.9) holds, as we wanted to show.

This is only one of the diagrams we need to prove in order to prove Proposition 1.6.7, but the other
diagrams are done in the exact same way.

Hint to Exercise 1.7.9. Straightforward reasoning using facts like “a union of finitely many finite sets is
finite” and “a tensor is a sum of finitely many pure tensors”.

Hint to Exercise 1.7.13. Parts (a), (b), (d) and (e) of Proposition 1.7.11 are easy. (In proving (1.7.3)
and later, it helps to first establish an extension of (1.7.2) to infinite sums380.) For part (c), recall that the

binomial formula (a+ b)
n

=
∑n
k=0

(
n

k

)
akbn−k holds for any two commuting elements a and b of any ring

(such as f and g in the convolution algebra Hom (C,A)). Part (f) follows from (e) using (1.7.3). Part (g)
is best proved in two steps: First, use induction to prove part (g) in the case when u = T k for some k ∈ N
(this relies on (1.7.3)); then, notice that both sides of (1.7.7) depend k-linearly on u, whence the general
case follows (up to some mudfighting with infinite sums). Part (h) is an instance of the “local ?-nilpotence”
already observed in the proof of Proposition 1.4.7. Part (j) follows from (h). Part (i) follows from Proposition
1.4.3 (applied to C ′ = C, A′ = B, γ = idC and α = s) in a similar way as part (g) followed from (1.7.3).

Hint to Exercise 1.7.20. Proposition 1.7.15 is a classical result, often proved by a lazy reference to the
mythical complex analysis class the reader has surely seen it in. Here is a do-it-yourself purely algebraic
proof:

380Namely: Let (rq)q∈Q ∈ (k [[T ]])Q be a family of power series such that the (possibly infinite) sum
∑
q∈Q rq converges

in k [[T ]]. Let f ∈ n (C,A). Then, the family ((rq)
? (f))q∈Q ∈ (Hom (C,A))Q is pointwise finitely supported and satisfies(∑

q∈Q rq
)?

(f) =
∑
q∈Q (rq)

? (f).
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• Step 1: If u, v ∈ k [[T ]] are two power series having the same constant term and satisfying
d

dT
u =

d

dT
v, then u = v. This simple lemma (whose analogue for differentiable functions is a fundamental

fact of real analysis) is easily proved by comparing coefficients in
d

dT
u =

d

dT
v and recalling that k

is a Q-algebra (so 1, 2, 3, . . . are invertible in k).

• Step 2: If u, v ∈ k [[T ]] are two power series having constant term 1 and satisfying

(
d

dT
u

)
· v =(

d

dT
v

)
· u, then u = v. This can be proved by applying Step 1 to uv−1 and 1 instead of u and v.

• Step 3: The power series log [exp] and exp
[
log
]

are well-defined and have constant term 0. (Easy.)
• Step 4: If w ∈ k [[T ]] is a power series having constant term 0, then

d

dT
(exp [w]) =

(
d

dT
w

)
· exp [w] and

d

dT

(
log [w]

)
=

(
d

dT
w

)
· 1

1 + w
.

These formulas can be derived from the chain rule, or more directly from exp [w] =
∑
n≥1

1

n!
wn and

log [w] =
∑
n≥1

(−1)
n−1

n
wn.

• Step 5: Show exp
[
log
]

= T by applying Step 2 to u = exp
[
log
]

and v = 1 + T .

• Step 6: Show log [exp] = T by applying Step 1 to u = log [exp] and v = T .

Lemma 1.7.16 easily follows from Proposition 1.7.11(f).

Remains to prove Proposition 1.7.18. It is easy to see that log? (exp? f) = log
?

(exp?f) for each f ∈
n (C,A); thus, Proposition 1.7.18(a) follows from (1.7.7) using Proposition 1.7.15 and Proposition 1.7.11(f)
(since T ? (f) = f). A similar argument yields Proposition 1.7.18(b) (this time, we need to observe that

exp? (log? g) = exp?
(

log
?

(g − uAεC)
)

+ uAεC first). To prove Proposition 1.7.18(c), first use Proposi-

tion 1.7.11(c) to show that exp? (f + g) is well-defined; then, apply the well-known fact that exp (x+ y) =
expx · exp y for any two commuting elements x and y of a ring (provided the exponentials are well-defined;
some yak-shaving is required here to convince oneself that the infinite sums behave well)381. Part (d) is

trivial. Part (e) is an induction on n. Part (f) is a rehash of the definition of log? (f + uAεC) = log
?
f .

Hint to Exercise 1.7.28. Proposition 1.7.21(a) is easily proved by unpacking the definition of convolution
(just like Proposition 1.4.3). Part (b) follows from (a) by induction.

The trick to Proposition 1.7.22 is to realize that if f ∈ Hom (C,A) is as in Proposition 1.7.22, then every
x, y ∈ C satisfy

(12.1.10) f (xy) = ε (y) f (x) + ε (x) f (y) ,

because xy − ε (x) y − ε (y)x = ε (x) ε (y) · 1 + (x− ε (x))︸ ︷︷ ︸
∈ker ε

(y − ε (y))︸ ︷︷ ︸
∈ker ε

is annihilated by f . Once this equality

is known, it is not hard to prove Proposition 1.7.22 “by hand” by induction on n (using Sweedler notation).
Alternatively, for a cleaner proof, the equality (12.1.10) can be restated in an element-free way as

f ◦mC = mA ◦ (f ⊗ i + i⊗ f) ,

381If you have not seen this well-known fact, prove it by a quick computation using the binomial formula.
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where i = uA ◦ εC is the unity of the k-algebra (Hom (C,A) , ?); then, an application of Proposition 1.7.21(b)
shows that every n ∈ N satisfies

f?n ◦mC = mA ◦ (f ⊗ i + i⊗ f)
?n︸ ︷︷ ︸

=
∑n
i=0

(
n

i

)
(f⊗i)?i?(i⊗f)?(n−i)

(by the binomial formula,
since f⊗i and i⊗f commute in

the convolution algebra Hom(C⊗C,A⊗A))

= mA ◦


n∑
i=0

(
n

i

)
(f ⊗ i)

?i
? (i⊗ f)

?(n−i)︸ ︷︷ ︸
=f?i⊗f?(n−i)

(by repeated application of Exercise 1.4.4(a))



= mA ◦

(
n∑
i=0

(
n

i

)
f?i ⊗ f?(n−i)

)
,

which is precisely Proposition 1.7.22 (restated in an element-free way).

Proposition 1.7.23 is an easy consequence of Proposition 1.7.22, since (exp? f) (xy) =
∑
n∈N

1

n!
f?n (xy).

(Again, fighting infinite sums is probably the most laborious part of the proof.)
Lemma 1.7.24 can be reduced to the fact that the matrix

(
iN+1−j)

i,j=1,2,...,N+1
∈ Q(N+1)×(N+1) is

invertible (since its determinant is the Vandermonde determinant
∏

1≤i<j≤N+1 (i− j)︸ ︷︷ ︸
6=0

6= 0) and thus has

trivial kernel (not just over Q, but on any torsionfree abelian group).
Lemma 1.7.25 follows from Lemma 1.7.24, because a finitely supported family indexed by nonnegative

integers must become all zeroes from some point on.
The proof of Proposition 1.7.26 is rather surprising: It suffices to show that f (xy) = 0 for all x, y ∈ ker ε.

So let us fix x, y ∈ ker ε. Proposition 1.7.11(h) yields f ∈ n (C,A). Let t ∈ N be arbitrary. Then,

Proposition 1.7.18(e) (applied to n = t) shows that tf ∈ n (C,A) and exp? (tf) = (exp? f)
?t

. But Ex-

ercise 1.5.11(b) shows that (exp? f)
?t

is a k-algebra homomorphism C → A. Hence, (exp? f)
?t

(xy) =

(exp? f)
?t

(x) · (exp? f)
?t

(y). Rewriting (exp? f)
?t

as exp? (tf) =
∑
n∈N

1

n!
f?ntn on both sides, and multi-

plying out the right hand side, we can rewrite this as

∑
k∈N

1

k!
f?k (xy) tk =

∑
k∈N

(
k∑
i=0

f?i (x)

i!
· f

?(k−i) (y)

(k − i)!

)
tk.

In other words,

∑
k∈N

wkt
k = 0, where we set wk =

1

k!
f?k (xy)−

k∑
i=0

f?i (x)

i!
· f

?(k−i) (y)

(k − i)!
.

But we have proved this for all t ∈ N. Thus, Lemma 1.7.25 shows that

wk = 0 for every k ∈ N.

Applying this to k = 1 and simplifying, we obtain f (xy)− ε (x) f (y)− f (x) ε (y) = 0. Since x, y ∈ ker ε, this
simplifies even further to f (xy) = 0, which proves Proposition 1.7.26.

Finally, we need to prove Proposition 1.7.27. Set F = exp? f and F̃ = F − uAεC , so that F̃ ∈ n (C,A).
Then, Proposition 1.7.23 shows that F : C → A is a k-algebra homomorphism, so it remains to show that

F is surjective. But it is easy to see using Proposition 1.7.18(a) that f = log
?
F̃ .

Define ĩd ∈ n (C,C) by ĩd = idC −uCεC . Then, it is not hard to see that F ◦ ĩd = F̃ . Hence, f =

log
?

F̃︸︷︷︸
=F◦ĩd

= log
?
(
F ◦ ĩd

)
= F◦

(
log

?
(

ĩd
))

(by Proposition 1.7.11(i), since F is a k-algebra homomorphism).

Therefore, f (C) ⊂ F (C). Since F is a k-algebra homomorphism, this entails that F (C) is a k-subalgebra
of A that contains f (C) as a subset. But this causes F (C) to be the whole A (since f (C) generates A).
Thus, F is surjective, so Proposition 1.7.27 is proven.
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Hint to Exercise 1.7.33. We must prove Theorem 1.7.29. Part (a) is easy. For the remainder of the proof,

we set ĩd = idA−uAεA ∈ EndA, and equip ourselves with some simple lemmas:

• The kernel ker ε is an ideal of A.
• We have ĩd ∈ n (A,A) and ker ĩd = k · 1A and ĩd (A) = ker ε.

• We have A/
(
k · 1A + (ker ε)

2
)
∼= (ker ε) / (ker ε)

2
as k-modules.

Now, to the proof of Theorem 1.7.29(b). Using e = log? (idA) = log
?
ĩd and ĩd (1A) = 0, it is easy

to see that e (1A) = 0. Hence, e (A0) = 0 since A is connected. Thus, Proposition 1.7.26 shows that

e
(

(ker ε)
2
)

= 0 (since exp? e = idA is a k-algebra homomorphism). Combined with e (1A) = 0, this yields

k·1A+(ker ε)
2 ⊂ ker e. But this inclusion is actually an equality, as we can show by the following computation:

We have e = log
?
ĩd =

∑
n≥1

(−1)
n−1

n
ĩd
?n

, and therefore each x ∈ A satisfies

e (x) =
∑
n≥1

(−1)
n−1

n
ĩd
?n

(x) = ĩd (x)︸ ︷︷ ︸
=x−ε(x)1A

(by the definition of ĩd)

+
∑
n≥2

(−1)
n−1

n
ĩd
?n

(x)︸ ︷︷ ︸
∈(ĩd(A))

n

(by induction on n,
using the definition

of convolution)

∈ x− ε (x) 1A +
∑
n≥2

(−1)
n−1

n

ĩd (A)︸ ︷︷ ︸
=ker ε

n

= x− ε (x)︸︷︷︸
∈k

1A +
∑
n≥2

(−1)
n−1

n
(ker ε)

n

︸ ︷︷ ︸
⊂(ker ε)2

⊂ x− k · 1A + (ker ε)
2
,

so that

(12.1.11) x− e (x) ∈ k · 1A + (ker ε)
2
.

If x ∈ ker e, then this simplifies to x ∈ k · 1A + (ker ε)
2
. Thus, ker e ⊂ k · 1A + (ker ε)

2
. Combining this with

k · 1A + (ker ε)
2 ⊂ ker e, we obtain ker e = k · 1A + (ker ε)

2
. But the homomorphism theorem yields

e (A) ∼= A/ ker e︸︷︷︸
=k·1A+(ker ε)2

= A/
(
k · 1A + (ker ε)

2
)
∼= (ker ε) / (ker ε)

2
(as seen above)

as k-modules. This completes the proof of Theorem 1.7.29(b).
Theorem 1.7.29(c) just requires showing that q (A0) = 0, which is a consequence of e (A0) = 0.
Next, we shall prove Theorem 1.7.29(d). We have q ∈ n (A,Sym (e (A))). Furthermore, q (A) generates the

k-algebra Sym (e (A)) (since q (A) = Sym1 (e (A))). From Theorem 1.7.29(b), we get ker e = k · 1A + (ker ε)
2
,

from which we easily obtain q (1A) = 0 and q
(

(ker ε)
2
)

= 0. Thus, Proposition 1.7.27 (applied to A,

Sym (e (A)) and q instead of C, A and f) shows that exp? q : A → Sym (e (A)) is a surjective k-algebra
homomorphism. But s is a k-algebra homomorphism Sym (e (A)) → A and satisfies i = s ◦ ιe(A) (by its
definition). Thus, Proposition 1.7.11(i) (applied to A, Sym (e (A)), A, s, exp and q instead of C, A, B, s, u
and f) shows that s◦q ∈ n (A,A) and exp? (s ◦ q) = s◦(exp? q). However, it is easy to see that s◦q = e (since
i = s ◦ ιe(A)); this lets us rewrite the equality exp? (s ◦ q) = s ◦ (exp? q) as exp? e = s ◦ (exp? q). Comparing
this with exp? e = idA, we obtain s ◦ (exp? q) = idA. Since exp? q is surjective, this entails that the maps
exp? q and s are mutually inverse. This proves Theorem 1.7.29(d).

Theorem 1.7.29(d) shows that A ∼= Sym (e (A)) as k-algebras, but Theorem 1.7.29(b) shows that e (A) ∼=
(ker ε) / (ker ε)

2
as k-modules. Combining these, we obtain Theorem 1.7.29(e).

Finally, to prove Theorem 1.7.29(f), we notice that each x ∈ A satisfies

x− e (x) ∈ k · 1A + (ker ε)
2

(by (12.1.11))

= ker e (by Theorem 1.7.29(b))

and thus 0 = e (x− e (x)) = e (x)− (e ◦ e) (x).
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An index goes here!

13. Solutions to the exercises

This chapter contains solutions to the exercises scattered throughout the text. These solutions vary in
level of detail (some of them are detailed, some only outline the most important steps, and many lie inbetween
these two extremes), and sometimes in notation (as they have been written over a long timespan). They
also have seen far less quality control than the main text, so typos and worse are to be expected. Comments
and alternative solutions are welcome!

13.1. Solution to Exercise 1.2.3. First solution to Exercise 1.2.3. This is analogous to the well-known
fact that any nonunital nonassociative383 k-algebra has at most one multiplicative identity. If you can prove
the latter fact by pure abstract nonsense (i.e., without referring to elements), then the same proof serves as
a solution to Exercise 1.2.3 once all arrows are reversed (and all m’s and u’s are replaced by ∆’s and ε’s).
Let us see how this works.

How does one classically prove that every nonunital nonassociative k-algebra has at most one multiplicative
identity? Let A be a nonunital nonassociative k-algebra, and let 1 and 1′ be two elements of A which could
both serve as multiplicative identities. That is, every a ∈ A satisfies both 1a = a1 = a and 1′a = a1′ = a.
Now, applying a1 = a to a = 1′ yields 1′ · 1 = 1′. But applying 1′a = a to a = 1 yields 1′ · 1 = 1. Comparing
1′ · 1 = 1 with 1′ · 1 = 1′ yields 1 = 1′, and thus the multiplicative identity is unique.

This argument made use of elements, which we need to get rid of in order to be able to reverse the arrows.
The idea is to replace every element α of A by the linear map k → A which sends 1 ∈ k to α. In terms of
commutative diagrams, a nonunital nonassociative k-algebra is a k-module A endowed with a k-linear map
m : A⊗ A→ A which is not a priori required to satisfy any properties. A multiplicative identity of A then
corresponds to a k-linear map u : k → A making the diagram (1.1.2) commute. Let u and u′ be two such
k-linear maps k→ A. Instead of applying a1 = a to a = 1′, we now need to take the commutative diagram

A⊗ k

id⊗u
��

Aoo

id

��
A⊗A m // A

(which commutes because u makes (1.1.2) commute, and corresponds to the axiom a1 = a) and pre-compose
it with the morphism u′ (which corresponds to the multiplicative identity 1′), thus obtaining

(13.1.1) k

u′��
A⊗ k

id⊗u
��

Aoo

id

��
A⊗A m // A

.

Similarly, the element-free version of applying 1′a = a to a = 1 yields the commutative diagram

(13.1.2) k

u

��
A

id

��

// k⊗A

u′⊗id

��
A A⊗Amoo

.

383The word “nonassociative” does not prohibit associativity; it simply means that associativity is not required. Similarly,

“nonunital” does not force the nonexistence of a multiplicative identity.
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The path k
u′−→ A −→ A⊗k

id⊗u−→ A⊗A through the diagram (13.1.1) and the path k
u−→ A −→ k⊗A u′⊗id−→

A ⊗ A through the diagram (13.1.2) give the same map, since they both correspond to the element 1 ⊗ 1′

of A ⊗ A. How can this be seen without referring to elements? Being a tautology at the level of elements,
this must follow from formal properties of tensor products (without using axioms like the commutativity of
(1.1.2)). And so it does: In fact, the three small quadrilaterals in the diagram

k

u′

zz

u

$$��
A

��

k⊗ k

u′⊗idzz id⊗u $$

A

��
A⊗ k

id⊗u $$

k⊗A

u′⊗idzz
A⊗A

commute, and therefore so does the whole diagram. We can now piece this diagram together with the
diagrams (13.1.1) and (13.1.2) (this is the diagrammatic equivalent of comparing 1 · 1′ = 1 with 1 · 1′ = 1′),
and obtain

k

u′

zz
u

$$��
A

id

00

��

k⊗ k

u′⊗idzz id⊗u $$

A

��

id

nn

A⊗ k

id⊗u $$

k⊗A

u′⊗idzz
A⊗A

m

��
A

.

Following the outside quadrilateral of this commutative diagram yields id ◦u = id ◦u′, so that u = u′, which
shows that the two maps u and u′ are equal. The purely diagrammatic argument that we made can now be
easily transformed into a solution of Exercise 1.2.3 by merely reversing arrows and replacing m and u by ∆
and ε.

Second solution to Exercise 1.2.3. The exercise can also be solved using Sweedler notation, which makes
some good practice in using the latter. Here is how the solution goes:

We must prove that there exists at most one k-linear map ε : C → k such that the diagram (1.2.2)
commutes. In other words, we must show that if ε1 and ε2 are two such maps, then ε1 = ε2.

So let ε1 and ε2 be two such maps. We must then show that ε1 = ε2.
We know that ε1 is a k-linear map ε : C → k such that the diagram (1.2.2) commutes. Thus, the diagram

(13.1.3) C ⊗ k // C k⊗ Coo

C ⊗ C

id⊗ε1

OO

C
∆
oo

id

OO

∆
// C ⊗ C

ε1⊗id

OO

commutes. Let us denote the top-left horizontal arrow of this diagram by κ; thus, κ : C ⊗ k → C is the
canonical isomorphism (sending each c⊗ λ ∈ C ⊗ k to λc ∈ k). The commutativity of the left square in the
commutative diagram (13.1.3) thus says that

(13.1.4) id = κ ◦ (id⊗ε1) ◦∆.



282 DARIJ GRINBERG AND VICTOR REINER

We shall use Sweedler notation as in (1.2.3) to abbreviate formulas involving ∆. For each c ∈ C, we have

c = id︸︷︷︸
=κ◦(id⊗ε1)◦∆

(by (13.1.4))

(c) = (κ ◦ (id⊗ε1) ◦∆) (c) = κ

(id⊗ε1)

 ∆ (c)︸ ︷︷ ︸
=
∑

(c) c1⊗c2




= κ

(id⊗ε1)

∑
(c)

c1 ⊗ c2


︸ ︷︷ ︸

=
∑

(c) id(c1)⊗ε1(c2)

 = κ

∑
(c)

id (c1)︸ ︷︷ ︸
=c1

⊗ε1 (c2)



= κ

∑
(c)

c1 ⊗ ε1 (c2)


=
∑
(c)

ε1 (c2) c1 (by the definition of κ) .(13.1.5)

We have obtained this equality from the commutativity of the left square in the commutative diagram
(13.1.3). Similarly, from the commutativity of the right square in the same diagram, we can obtain the
equality

c =
∑
(c)

ε1 (c1) c2.

The same argument (with the roles of ε1 and ε2 interchanged) yields

c =
∑
(c)

ε2 (c1) c2.

Applying the map ε1 to both sides of this equality, we find

ε1 (c) = ε1

∑
(c)

ε2 (c1) c2

 =
∑
(c)

ε2 (c1) ε1 (c2) (since the map ε1 is k-linear)

On the other hand, applying the map ε2 to both sides of the equality (13.1.5), we find

ε2 (c) = ε2

∑
(c)

ε1 (c2) c1

 =
∑
(c)

ε1 (c2) ε2 (c1)︸ ︷︷ ︸
=ε2(c1)ε1(c2)

(since the multiplication
in k is commutative)

(since the map ε2 is k-linear)

=
∑
(c)

ε2 (c1) ε1 (c2) .

Comparing these two equalities, we find ε1 (c) = ε2 (c).
Forget that we fixed c. We thus have shown that ε1 (c) = ε2 (c) for each c ∈ C. In other words, ε1 = ε2.

This is precisely what we set out to prove. Thus, Exercise 1.2.3 is solved again.

13.2. Solution to Exercise 1.3.4. Solution to Exercise 1.3.4. (a) Exercise 1.3.4(a) is a classical result
about algebras, and proven in various textbooks. Nevertheless, we shall give two solutions to it: one solution
by elementwise computation, and another by formally manipulating homomorphisms (this is essentially what
is called “diagram chasing”, except that we are not going to draw any diagrams). Both solutions have their
advantages, and it is useful to see them both.
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First solution to Exercise 1.3.4(a). Let ξ be the canonical k-module isomorphism k → k ⊗ k. We have
defined the multiplication map mA⊗B of the k-algebra A⊗B by

mA⊗B = (mA ⊗mB) ◦ (idA⊗T ⊗ idB) ,

and the unit map uA⊗B of the k-algebra A⊗B by

uA⊗B = (uA ⊗ uB) ◦ ξ.
We now must prove that the k-module A⊗B, equipped with these two maps mA⊗B and uA⊗B , is indeed a
k-algebra. In other words, we must show that the two diagrams

(13.2.1) A⊗B ⊗A⊗B ⊗A⊗B
mA⊗B⊗idA⊗B

tt

idA⊗B ⊗mA⊗B

**
A⊗B ⊗A⊗B

mA⊗B

**

A⊗B ⊗A⊗B
mA⊗B

tt
A⊗B

and

(13.2.2) A⊗B ⊗ k

idA⊗B ⊗uA⊗B
��

A⊗Boo

idA⊗B

��

// k⊗A⊗B

uA⊗B⊗idA⊗B

��
A⊗B ⊗A⊗B

mA⊗B // A⊗B A⊗B ⊗A⊗B
mA⊗Boo

384 commute (since Definition 1.1.1 yields that A ⊗ B is a k-algebra if and only if these two diagrams
commute).

We shall only prove that the diagram (13.2.1) commutes. The commutativity of the diagram (13.2.2) is
proven similarly (but with less work), and so is left to the reader.

So we need to prove that the diagram (13.2.1) commutes. In other words, we need to prove that

mA⊗B ◦ (mA⊗B ⊗ idA⊗B) = mA⊗B ◦ (idA⊗B ◦mA⊗B) .

We first notice that

(13.2.3) mA⊗B (p⊗ q ⊗ p′ ⊗ q′) = pp′ ⊗ qq′

for any p ∈ A, q ∈ B, p′ ∈ A and q′ ∈ B 385.

384where the maps A ⊗ B → A ⊗ B ⊗ k and A ⊗ B → k ⊗ A ⊗ B are the isomorphisms sending each a ∈ A ⊗ B to a ⊗ 1
and to 1⊗ a, respectively

385Proof of (13.2.3): Let p ∈ A, q ∈ B, p′ ∈ A and q′ ∈ B. Then,

mA⊗B︸ ︷︷ ︸
=(mA⊗mB)◦(idA ⊗T⊗idB)

(
p⊗ q ⊗ p′ ⊗ q′

)
= ((mA ⊗mB) ◦ (idA⊗T ⊗ idB))

(
p⊗ q ⊗ p′ ⊗ q′

)
= (mA ⊗mB)

(idA⊗T ⊗ idB)
(
p⊗ q ⊗ p′ ⊗ q′

)︸ ︷︷ ︸
=idA(p)⊗T (q⊗p′)⊗idB(q′)



= (mA ⊗mB)

idA (p)︸ ︷︷ ︸
=p

⊗ T
(
q ⊗ p′

)︸ ︷︷ ︸
=p′⊗q

(by the definition of T )

⊗ idB
(
q′
)︸ ︷︷ ︸

=q′


= (mA ⊗mB)

(
p⊗ p′ ⊗ q ⊗ q′

)
= mA

(
p⊗ p′

)︸ ︷︷ ︸
=pp′

(since mA is the
multiplication map of A)

⊗ mB
(
q ⊗ q′

)︸ ︷︷ ︸
=qq′

(since mB is the
multiplication map of B)

= pp′ ⊗ qq′.

Qed.
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Let x ∈ A⊗B ⊗A⊗B ⊗A⊗B. Thus, x (like any tensor in A⊗B ⊗A⊗B ⊗A⊗B) must be a k-linear
combination of pure tensors.

We want to show the equality

(13.2.4) (mA⊗B ◦ (mA⊗B ⊗ idA⊗B)) (x) = (mA⊗B ◦ (idA⊗B ◦mA⊗B)) (x) .

This equality is k-linear in x (since all maps that appear in it are k-linear). Hence, we can WLOG assume
that x is a pure tensor (since x is a k-linear combination of pure tensors). Assume this. Thus, x =
a⊗ b⊗ a′ ⊗ b′ ⊗ a′′ ⊗ b′′ for some a ∈ A, b ∈ B, a′ ∈ A, b′ ∈ B, a′′ ∈ A and b′′ ∈ B. Consider these a, b, a′,
b′, a′′ and b′′.

Now,

(mA⊗B ◦ (mA⊗B ⊗ idA⊗B)) (x) = mA⊗B

(mA⊗B ⊗ idA⊗B)

 x︸︷︷︸
=a⊗b⊗a′⊗b′⊗a′′⊗b′′


= mA⊗B

(mA⊗B ⊗ idA⊗B) (a⊗ b⊗ a′ ⊗ b′ ⊗ a′′ ⊗ b′′)︸ ︷︷ ︸
=mA⊗B(a⊗b⊗a′⊗b′)⊗idA⊗B(a′′⊗b′′)



= mA⊗B

mA⊗B (a⊗ b⊗ a′ ⊗ b′)︸ ︷︷ ︸
=aa′⊗bb′

(by (13.2.3))

⊗ idA⊗B (a′′ ⊗ b′′)︸ ︷︷ ︸
=a′′⊗b′′


= mA⊗B (aa′ ⊗ bb′ ⊗ a′′ ⊗ b′′) = (aa′) a′′︸ ︷︷ ︸

=aa′a′′

⊗ (bb′) b′′︸ ︷︷ ︸
=bb′b′′

(by (13.2.3))

= aa′a′′ ⊗ bb′b′′.

A similar computation shows that

(mA⊗B ◦ (idA⊗B ⊗mA⊗B)) (x) = aa′a′′ ⊗ bb′b′′.

Comparing these two equalities, we obtain (mA⊗B ◦ (mA⊗B ⊗ idA⊗B)) (x) = (mA⊗B ◦ (idA⊗B ⊗mA⊗B)) (x).
Thus, the equality (13.2.4) is proven.

Now, forget that we fixed x. We thus have proven the equality (13.2.4) for every x ∈ A⊗B⊗A⊗B⊗A⊗B.
In other words, we have mA⊗B ◦ (mA⊗B ⊗ idA⊗B) = mA⊗B ◦ (idA⊗B ◦mA⊗B). In other words, the diagram
(13.2.1) commutes.

It remains to prove that the diagram (13.2.2) commutes. We leave this to the reader, as the proof is
similar to (but simpler than) the proof of the commutativity of (13.2.1) given above. Hence, both diagrams
(13.2.1) and (13.2.2) commute. In other words, the k-module A ⊗ B, equipped with the two maps mA⊗B
and uA⊗B , is a k-algebra. In other words, the k-algebra A ⊗ B introduced in Definition 1.3.3 is actually
well-defined. This solves Exercise 1.3.4(a).

Second solution to Exercise 1.3.4(a). For any two k-modules U and V , let TU,V : U ⊗ V → V ⊗U be the
twist map (i.e., the k-linear map U ⊗ V → V ⊗ U sending every u⊗ v to v ⊗ u). A simple linear-algebraic
fact says that if U , V , U ′ and V ′ are four k-modules and x : U → U ′ and y : V → V ′ are two k-linear maps,
then

(13.2.5) (y ⊗ x) ◦ TU,V = TU ′,V ′ ◦ (x⊗ y) .

For every k-module U , let kan1,U : U → U ⊗ k and kan2,U : U → k ⊗ U be the canonical k-module
isomorphisms. Every k-modules U and V satisfy the identities

idU ⊗ kan1,V = kan1,U⊗V ,(13.2.6)

kan2,V ⊗ idU = kan2,V⊗U ,(13.2.7)

idU ⊗ kan−1
1,V = kan−1

1,U⊗V ,(13.2.8)

kan−1
2,V ⊗ idU = kan−1

2,V⊗U .(13.2.9)

(These identities are well-known and straightforward to check.)
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Recall that the k-module A, equipped with the maps mA and uA, is a k-algebra. In other words, the two
diagrams

(13.2.10) A⊗A⊗A
mA⊗idA

xx

idA⊗mA

&&
A⊗A

mA

&&

A⊗A
mA

xx
A

and

(13.2.11) A⊗ k

idA⊗uA
��

A
kan1,Aoo

idA
��

kan2,A // k⊗A

uA⊗idA
��

A⊗A mA // A A⊗AmAoo

commute (since Definition 1.1.1 yields that A is a k-algebra if and only if these two diagrams commute).
The diagram (13.2.10) commutes. In other words, we have

(13.2.12) mA ◦ (mA ⊗ idA) = mA ◦ (idA⊗mA) .

The same argument (applied to B instead of A) shows that

(13.2.13) mB ◦ (mB ⊗ idB) = mB ◦ (idB ⊗mB) .

The diagram (13.2.11) commutes. In other words, we have

idA = mA ◦ (idA⊗uA) ◦ kan1,A and(13.2.14)

idA = mA ◦ (uA ⊗ idA) ◦ kan2,A .(13.2.15)

The same argument (applied to B instead of A) shows that

idB = mB ◦ (idB ⊗uB) ◦ kan1,B and(13.2.16)

idB = mB ◦ (uB ⊗ idB) ◦ kan2,B .(13.2.17)

Let ξ be the canonical k-module isomorphism k → k ⊗ k. According to Definition 1.3.3, we define the
map mA⊗B : A⊗B ⊗A⊗B → A⊗B by

mA⊗B = (mA ⊗mB) ◦ (idA⊗TB,A ⊗ idB) ,

and we define the map uA⊗B : k→ A⊗B by

uA⊗B = (uA ⊗ uB) ◦ ξ.
We now must prove that the k-module A⊗B, equipped with these two maps mA⊗B and uA⊗B , is indeed a
k-algebra. In other words, we must show that the two diagrams

(13.2.18) A⊗B ⊗A⊗B ⊗A⊗B
mA⊗B⊗idA⊗B

tt

idA⊗B ⊗mA⊗B

**
A⊗B ⊗A⊗B

mA⊗B

**

A⊗B ⊗A⊗B
mA⊗B

tt
A⊗B

and

(13.2.19) A⊗B ⊗ k

idA⊗B ⊗uA⊗B
��

A⊗B
kan1,A⊗Boo

idA⊗B

��

kan2,A,⊗B // k⊗A⊗B

uA⊗B⊗idA⊗B

��
A⊗B ⊗A⊗B

mA⊗B // A⊗B A⊗B ⊗A⊗B
mA⊗Boo

commute (since Definition 1.1.1 yields that A⊗B is a k-algebra if and only if these two diagrams commute).
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Let us first prove that the diagram (13.2.18) commutes. In other words, let us prove that

mA⊗B ◦ (mA⊗B ⊗ idA⊗B) = mA⊗B ◦ (idA⊗B ⊗mA⊗B) .

Define a k-linear map Q : B ⊗A⊗B ⊗A→ A⊗A⊗B ⊗B by

(13.2.20) Q = (idA⊗TB,A ⊗ idB) ◦ (TB,A ⊗ TB,A) .

It is easy to see that

(13.2.21) Q = (idA⊗TB⊗B,A) ◦ (TB,A ⊗ idB ⊗ idA) .

[Proof of (13.2.21): Let b ∈ B, a ∈ A, b′ ∈ B and a′ ∈ A be arbitrary. Applying both sides of the equality
(13.2.20) to b⊗ a⊗ b′ ⊗ a′, we obtain

Q (b⊗ a⊗ b′ ⊗ a′) = ((idA⊗TB,A ⊗ idB) ◦ (TB,A ⊗ TB,A)) (b⊗ a⊗ b′ ⊗ a′)

= (idA⊗TB,A ⊗ idB)

(TB,A ⊗ TB,A) (b⊗ a⊗ b′ ⊗ a′)︸ ︷︷ ︸
=TB,A(b⊗a)⊗TB,A(b′⊗a′)



= (idA⊗TB,A ⊗ idB)

 TB,A (b⊗ a)︸ ︷︷ ︸
=a⊗b

(by the definition of TB,A)

⊗ TB,A (b′ ⊗ a′)︸ ︷︷ ︸
=a′⊗b′

(by the definition of TB,A)


= (idA⊗TB,A ⊗ idB) (a⊗ b⊗ a′ ⊗ b′) = idA (a)︸ ︷︷ ︸

=a

⊗ TB,A (b⊗ a′)︸ ︷︷ ︸
=a′⊗b

(by the definition of TB,A)

⊗ idB (b′)︸ ︷︷ ︸
=b′

= a⊗ a′ ⊗ b⊗ b′.(13.2.22)

Comparing this with

((idA⊗TB⊗B,A) ◦ (TB,A ⊗ idB ⊗ idA)) (b⊗ a⊗ b′ ⊗ a′)

= (idA⊗TB⊗B,A)

(TB,A ⊗ idB ⊗ idA) (b⊗ a⊗ b′ ⊗ a′)︸ ︷︷ ︸
=TB,A(b⊗a)⊗idB(b′)⊗idA(a′)



= (idA⊗TB⊗B,A)

 TB,A (b⊗ a)︸ ︷︷ ︸
=a⊗b

(by the definition of TB,A)

⊗ idB (b′)︸ ︷︷ ︸
=b′

⊗ idA (a′)︸ ︷︷ ︸
=a′


= (idA⊗TB⊗B,A) (a⊗ b⊗ b′ ⊗ a′) = idA (a)︸ ︷︷ ︸

=a

⊗ TB⊗B,A (b⊗ b′ ⊗ a′)︸ ︷︷ ︸
=a′⊗b⊗b′

(by the definition of TB⊗B,A)

= a⊗ a′ ⊗ b⊗ b′,

we obtain

(13.2.23) Q (b⊗ a⊗ b′ ⊗ a′) = ((idA⊗TB⊗B,A) ◦ (TB,A ⊗ idB ⊗ idA)) (b⊗ a⊗ b′ ⊗ a′) .

Now, forget that we fixed b, a, b′, a′. We thus have shown that every b ∈ B, a ∈ A, b′ ∈ B and a′ ∈ A
satisfy (13.2.23). In other words, the two maps Q and (idA⊗TB⊗B,A) ◦ (TB,A ⊗ idB ⊗ idA) are equal to each
other on each pure tensor. Since these two maps are k-linear, we thus conclude that these two maps are
identical (because if two k-linear maps from a tensor product are equal to each other on each pure tensor,
then these two maps are identical). In other words,

Q = (idA⊗TB⊗B,A) ◦ (TB,A ⊗ idB ⊗ idA) .

This proves (13.2.21).]
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Now,

idA︸︷︷︸
=idA ◦ idA

⊗ Q︸︷︷︸
=(idA⊗TB⊗B,A)◦(TB,A⊗idB ⊗ idA)

(by (13.2.21))

⊗ idB︸︷︷︸
=idB ◦ idB

= (idA ◦ idA)⊗ ((idA⊗TB⊗B,A) ◦ (TB,A ⊗ idB ⊗ idA))⊗ (idB ◦ idB)

= (idA⊗ (idA⊗TB⊗B,A)⊗ idB)︸ ︷︷ ︸
=idA⊗ idA⊗TB⊗B,A⊗idB

◦ (idA⊗ (TB,A ⊗ idB ⊗ idA)⊗ idB)︸ ︷︷ ︸
=idA⊗TB,A⊗idB ⊗ idA⊗ idB

= (idA⊗ idA⊗TB⊗B,A ⊗ idB) ◦ (idA⊗TB,A ⊗ idB ⊗ idA⊗ idB) .(13.2.24)

Now, we shall show that

(13.2.25) (idA⊗TB,A ⊗ idB) ◦ (mA⊗B ⊗ idA⊗B) = (mA ⊗ idA⊗mB ⊗ idB) ◦ (idA⊗Q⊗ idB)

(as maps from A⊗B ⊗A⊗B ⊗A⊗B to A⊗A⊗B ⊗B).
[Proof of (13.2.25): We have

mA⊗B︸ ︷︷ ︸
=(mA⊗mB)◦(idA⊗TB,A⊗idB)

⊗ idA⊗B︸ ︷︷ ︸
=idA⊗B ◦ idA⊗B

= ((mA ⊗mB) ◦ (idA⊗TB,A ⊗ idB))⊗ (idA⊗B ◦ idA⊗B)

= ((mA ⊗mB)⊗ idA⊗B)︸ ︷︷ ︸
=mA⊗mB⊗idA⊗B

◦ ((idA⊗TB,A ⊗ idB)⊗ idA⊗B)︸ ︷︷ ︸
=idA⊗TB,A⊗idB ⊗ idA⊗B

= (mA ⊗mB ⊗ idA⊗B) ◦ (idA⊗TB,A ⊗ idB ⊗ idA⊗B) .(13.2.26)

The equality (13.2.5) (applied to B ⊗B, A, B, A, mB and idA instead of U , V , U ′, V ′, x and y) yields

(idA⊗mB) ◦ TB⊗B,A = TB,A ◦ (mB ⊗ idA) .

Hence,

(idA ◦mA)⊗ ((idA⊗mB) ◦ TB⊗B,A)︸ ︷︷ ︸
=TB,A◦(mB⊗idA)

⊗ (idB ◦ idB)

= (idA ◦mA)⊗ (TB,A ◦ (mB ⊗ idA))⊗ (idB ◦ idB)

= (idA⊗TB,A ⊗ idB) ◦ (mA ⊗ (mB ⊗ idA)⊗ idB)︸ ︷︷ ︸
=mA⊗mB⊗idA⊗ idB=mA⊗mB⊗idA⊗B

(since idA⊗ idB=idA⊗B)

= (idA⊗TB,A ⊗ idB) ◦ (mA ⊗mB ⊗ idA⊗B) .

Thus,

(idA⊗TB,A ⊗ idB) ◦ (mA ⊗mB ⊗ idA⊗B)

= (idA ◦mA)︸ ︷︷ ︸
=mA=mA◦idA⊗A

⊗ ((idA⊗mB) ◦ TB⊗B,A)⊗ (idB ◦ idB)

= (mA ◦ idA⊗A)⊗ ((idA⊗mB) ◦ TB⊗B,A)⊗ (idB ◦ idB)

= (mA ⊗ (idA⊗mB)⊗ idB)︸ ︷︷ ︸
=mA⊗idA⊗mB⊗idB

◦

 idA⊗A︸ ︷︷ ︸
=idA⊗ idA

⊗TB⊗B,A ⊗ idB


= (mA ⊗ idA⊗mB ⊗ idB) ◦ (idA⊗ idA⊗TB⊗B,A ⊗ idB) .(13.2.27)
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Now,

(idA⊗TB,A ⊗ idB) ◦ (mA⊗B ⊗ idA⊗B)︸ ︷︷ ︸
=(mA⊗mB⊗idA⊗B)◦(idA⊗TB,A⊗idB ⊗ idA⊗B)

(by (13.2.26))

= (idA⊗TB,A ⊗ idB) ◦ (mA ⊗mB ⊗ idA⊗B)︸ ︷︷ ︸
=(mA⊗idA⊗mB⊗idB)◦(idA⊗ idA⊗TB⊗B,A⊗idB)

(by (13.2.27))

◦

idA⊗TB,A ⊗ idB ⊗ idA⊗B︸ ︷︷ ︸
=idA⊗ idB


= (mA ⊗ idA⊗mB ⊗ idB) ◦ (idA⊗ idA⊗TB⊗B,A ⊗ idB) ◦ (idA⊗TB,A ⊗ idB ⊗ idA⊗ idB)︸ ︷︷ ︸

=idA⊗Q⊗idB
(by (13.2.24))

= (mA ⊗ idA⊗mB ⊗ idB) ◦ (idA⊗Q⊗ idB) .

This proves (13.2.25).]
Now,

mA⊗B︸ ︷︷ ︸
=(mA⊗mB)◦(idA⊗TB,A⊗idB)

◦ (mA⊗B ⊗ idA⊗B)

= (mA ⊗mB) ◦ (idA⊗TB,A ⊗ idB) ◦ (mA⊗B ⊗ idA⊗B)︸ ︷︷ ︸
=(mA⊗idA⊗mB⊗idB)◦(idA⊗Q⊗idB)

(by (13.2.25))

= (mA ⊗mB) ◦ (mA ⊗ idA⊗mB ⊗ idB)︸ ︷︷ ︸
=(mA⊗idA)⊗(mB⊗idB)

◦ (idA⊗Q⊗ idB)

= (mA ⊗mB) ◦ ((mA ⊗ idA)⊗ (mB ⊗ idB))︸ ︷︷ ︸
=(mA◦(mA⊗idA))⊗(mB◦(mB⊗idB))

◦ (idA⊗Q⊗ idB)

=

(mA ◦ (mA ⊗ idA))︸ ︷︷ ︸
=mA◦(idA⊗mA)

(by (13.2.12))

⊗ (mB ◦ (mB ⊗ idB))︸ ︷︷ ︸
=mB◦(idB ⊗mB)

(by (13.2.13))

 ◦ (idA⊗Q⊗ idB)

= ((mA ◦ (idA⊗mA))⊗ (mB ◦ (idB ⊗mB)))︸ ︷︷ ︸
=(mA⊗mB)◦((idA⊗mA)⊗(idB ⊗mB))

◦ (idA⊗Q⊗ idB)

= (mA ⊗mB) ◦ ((idA⊗mA)⊗ (idB ⊗mB))︸ ︷︷ ︸
=idA⊗mA⊗idB ⊗mB

◦ (idA⊗Q⊗ idB)

= (mA ⊗mB) ◦ (idA⊗mA ⊗ idB ⊗mB) ◦ (idA⊗Q⊗ idB) .(13.2.28)

On the other hand, it is easy to see that

(13.2.29) Q = (TB,A⊗A ⊗ idB) ◦ (idB ⊗ idA⊗TB,A) .

[Proof of (13.2.29): This proof is similar to the proof of (13.2.21), so we omit it.]
Now,

idA︸︷︷︸
=idA ◦ idA

⊗ Q︸︷︷︸
=(TB,A⊗A⊗idB)◦(idB ⊗ idA⊗TB,A)

(by (13.2.29))

⊗ idB︸︷︷︸
=idB ◦ idB

= (idA ◦ idA)⊗ ((TB,A⊗A ⊗ idB) ◦ (idB ⊗ idA⊗TB,A))⊗ (idB ◦ idB)

= (idA⊗ (TB,A⊗A ⊗ idB)⊗ idB)︸ ︷︷ ︸
=idA⊗TB,A⊗A⊗idB ⊗ idB

◦ (idA⊗ (idB ⊗ idA⊗TB,A)⊗ idB)︸ ︷︷ ︸
=idA⊗ idB ⊗ idA⊗TB,A⊗idB

= (idA⊗TB,A⊗A ⊗ idB ⊗ idB) ◦ (idA⊗ idB ⊗ idA⊗TB,A ⊗ idB) .(13.2.30)
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Now, we shall show that

(13.2.31) (idA⊗TB,A ⊗ idB) ◦ (idA⊗B ⊗mA,B) = (idA⊗mA ⊗ idB ⊗mB) ◦ (idA⊗Q⊗ idB)

(as maps from A⊗B ⊗A⊗B ⊗A⊗B to A⊗A⊗B ⊗B).
[Proof of (13.2.31): We have

idA⊗B︸ ︷︷ ︸
=idA⊗B ◦ idA⊗B

⊗ mA⊗B︸ ︷︷ ︸
=(mA⊗mB)◦(idA⊗TB,A⊗idB)

= (idA⊗B ◦ idA⊗B)⊗ ((mA ⊗mB) ◦ (idA⊗TB,A ⊗ idB))

= (idA⊗B ⊗ (mA ⊗mB))︸ ︷︷ ︸
=idA⊗B ⊗mA⊗mB

◦ (idA⊗B ⊗ (idA⊗TB,A ⊗ idB))︸ ︷︷ ︸
=idA⊗B ⊗ idA⊗TB,A⊗idB

= (idA⊗B ⊗mA ⊗mB) ◦ (idA⊗B ⊗ idA⊗TB,A ⊗ idB) .(13.2.32)

The equality (13.2.5) (applied to B, A⊗A, B, A, idB and mA instead of U , V , U ′, V ′, x and y) yields

(mA ⊗ idB) ◦ TB,A⊗A = TB,A ◦ (idB ⊗mA) .

Hence,

(idA ◦ idA)⊗ ((mA ⊗ idB) ◦ TB,A⊗A)︸ ︷︷ ︸
=TB,A◦(idB ⊗mA)

⊗ (idB ◦mB)

= (idA ◦ idA)⊗ (TB,A ◦ (idB ⊗mA))⊗ (idB ◦mB)

= (idA⊗TB,A ⊗ idB) ◦ (idA⊗ (idB ⊗mA)⊗mB)︸ ︷︷ ︸
=idA⊗ idB ⊗mA⊗mB=idA⊗B ⊗mA⊗mB

(since idA⊗ idB=idA⊗B )

= (idA⊗TB,A ⊗ idB) ◦ (idA⊗B ⊗mA ⊗mB) .

Thus,

(idA⊗TB,A ⊗ idB) ◦ (idA⊗B ⊗mA ⊗mB)

= (idA ◦ idA)⊗ ((mA ⊗ idB) ◦ TB,A⊗A)⊗ (idB ◦mB)︸ ︷︷ ︸
=mB=mB◦idB⊗B

= (idA ◦ idA)⊗ ((mA ⊗ idB) ◦ TB,A⊗A)⊗ (mB ◦ idB⊗B)

= (idA⊗ (mA ⊗ idB)⊗mB)︸ ︷︷ ︸
=idA⊗mA⊗idB ⊗mB

◦

idA⊗TB,A⊗A ⊗ idB⊗B︸ ︷︷ ︸
=idB ⊗ idB


= (idA⊗mA ⊗ idB ⊗mB) ◦ (idA⊗TB,A⊗A ⊗ idB ⊗ idB) .(13.2.33)

Now,

(idA⊗TB,A ⊗ idB) ◦ (idA⊗B ⊗mA⊗B)︸ ︷︷ ︸
=(idA⊗B ⊗mA⊗mB)◦(idA⊗B ⊗ idA⊗TB,A⊗idB)

(by (13.2.32))

= (idA⊗TB,A ⊗ idB) ◦ (idA⊗B ⊗mA ⊗mB)︸ ︷︷ ︸
=(idA⊗mA⊗idB ⊗mB)◦(idA⊗TB,A⊗A⊗idB ⊗ idB)

(by (13.2.33))

◦

 idA⊗B︸ ︷︷ ︸
=idA⊗ idB

⊗ idA⊗TB,A ⊗ idB


= (idA⊗mA ⊗ idB ⊗mB) ◦ (idA⊗TB,A⊗A ⊗ idB ⊗ idB) ◦ (idA⊗ idB ⊗ idA⊗TB,A ⊗ idB)︸ ︷︷ ︸

=idA⊗Q⊗idB
(by (13.2.30))

= (idA⊗mA ⊗ idB ⊗mB) ◦ (idA⊗Q⊗ idB) .

This proves (13.2.31).]
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Now,

mA⊗B︸ ︷︷ ︸
=(mA⊗mB)◦(idA⊗TB,A⊗idB)

◦ (idA⊗B ⊗mA⊗B)

= (mA ⊗mB) ◦ (idA⊗TB,A ⊗ idB) ◦ (idA⊗B ⊗mA⊗B)︸ ︷︷ ︸
=(idA⊗mA⊗idB ⊗mB)◦(idA⊗Q⊗idB)

(by (13.2.31))

= (mA ⊗mB) ◦ (idA⊗mA ⊗ idB ⊗mB) ◦ (idA⊗Q⊗ idB) .

Comparing this with (13.2.28), we obtain

mA⊗B ◦ (mA⊗B ⊗ idA⊗B) = mA⊗B ◦ (idA⊗B ⊗mA⊗B) .

In other words, the diagram (13.2.18) commutes.
Let us next prove that the diagram (13.2.19) commutes.
We first observe that

(13.2.34) (idA⊗TB,k ⊗ idk) ◦ (idA⊗B ⊗ξ) ◦ kan1,A⊗B = kan1,A⊗ kan1,B .

[Proof of (13.2.34): This can be proven along the same lines as the proof of proof of (13.2.21): We fix
a ∈ A and b ∈ B, and apply both sides of (13.2.34) to a⊗ b, then check that the results are the same.]

The equality (13.2.6) (applied to U = A and V = B) yields

(13.2.35) idA⊗ kan1,B = kan1,A⊗B .

From

(idA ◦ idA)⊗ ((uA ⊗ idB) ◦ TB,k)︸ ︷︷ ︸
=TB,A◦(idB ⊗uA)

(by (13.2.5) (applied
to B, k, B, A, idB and uA

instead of U , V , U ′, V ′, x and y))

⊗ (uB ◦ idk)︸ ︷︷ ︸
=uB=idB ◦uB

= (idA ◦ idA)⊗ (TB,A ◦ (idB ⊗uA))⊗ (idB ◦uB) = (idA⊗TB,A ⊗ idB) ◦ (idA⊗ (idB ⊗uA)⊗ uB)︸ ︷︷ ︸
=idA⊗ idB ⊗uA⊗uB

= (idA⊗TB,A ⊗ idB) ◦

idA⊗ idB︸ ︷︷ ︸
=idA⊗B

⊗uA ⊗ uB

 = (idA⊗TB,A ⊗ idB) ◦ (idA⊗B ⊗uA ⊗ uB) ,

we obtain

(idA⊗TB,A ⊗ idB) ◦ (idA⊗B ⊗uA ⊗ uB)

= (idA ◦ idA)⊗ ((uA ⊗ idB) ◦ TB,k)⊗ (uB ◦ idk)

= (idA⊗ (uA ⊗ idB)⊗ uB)︸ ︷︷ ︸
=idA⊗uA⊗idB ⊗uB

◦ (idA⊗TB,k ⊗ idk)

= (idA⊗uA ⊗ idB ⊗uB) ◦ (idA⊗TB,k ⊗ idk) .(13.2.36)

Next, we observe that

idA⊗B︸ ︷︷ ︸
=idA⊗B ◦ idA⊗B

⊗ uA⊗B︸ ︷︷ ︸
=(uA⊗uB)◦ξ

= (idA⊗B ◦ idA⊗B)⊗ ((uA ⊗ uB) ◦ ξ) = (idA⊗B ⊗ (uA ⊗ uB))︸ ︷︷ ︸
=idA⊗B ⊗uA⊗uB

◦ (idA⊗B ⊗ξ)

= (idA⊗B ⊗uA ⊗ uB) ◦ (idA⊗B ⊗ξ) .



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 291

Hence,

mA⊗B︸ ︷︷ ︸
=(mA⊗mB)◦(idA⊗TB,A⊗idB)

◦ (idA⊗B ⊗uA⊗B)︸ ︷︷ ︸
=(idA⊗B ⊗uA⊗uB)◦(idA⊗B ⊗ξ)

= (mA ⊗mB) ◦ (idA⊗TB,A ⊗ idB) ◦ (idA⊗B ⊗uA ⊗ uB)︸ ︷︷ ︸
=(idA⊗uA⊗idB ⊗uB)◦(idA⊗TB,k⊗idk)

(by (13.2.36))

◦ (idA⊗B ⊗ξ)

= (mA ⊗mB) ◦ (idA⊗uA ⊗ idB ⊗uB) ◦ (idA⊗TB,k ⊗ idk) ◦ (idA⊗B ⊗ξ) .

Hence,

mA⊗B ◦ (idA⊗B ⊗uA⊗B)︸ ︷︷ ︸
=(mA⊗mB)◦(idA⊗uA⊗idB ⊗uB)◦(idA⊗TB,k⊗idk)◦(idA⊗B ⊗ξ)

◦ kan1,A⊗B

= (mA ⊗mB) ◦ (idA⊗uA ⊗ idB ⊗uB)︸ ︷︷ ︸
=(idA⊗uA)⊗(idB ⊗uB)

◦ (idA⊗TB,k ⊗ idk) ◦ (idA⊗B ⊗ξ) ◦ kan1,A⊗B︸ ︷︷ ︸
=kan1,A⊗ kan1,B

(by (13.2.34))

= (mA ⊗mB) ◦ ((idA⊗uA)⊗ (idB ⊗uB)) ◦ (kan1,A⊗ kan1,B) .

Comparing this with

idA⊗B = idA︸︷︷︸
=mA◦(idA⊗uA)◦kan1,A

(by (13.2.14))

⊗ idB︸︷︷︸
=mB◦(idB ⊗uB)◦kan1,B

(by (13.2.16))

= (mA ◦ (idA⊗uA) ◦ kan1,A)⊗ (mB ◦ (idB ⊗uB) ◦ kan1,B)

= (mA ⊗mB) ◦ ((idA⊗uA)⊗ (idB ⊗uB)) ◦ (kan1,A⊗ kan1,B) ,

we obtain

mA⊗B ◦ (idA⊗B ⊗uA⊗B) ◦ kan1,A⊗B = idA⊗B .

In other words, the left rectangle of the diagram (13.2.19) commutes.
A similar argument shows that the right rectangle of the diagram (13.2.19) commutes386. Thus, the whole

diagram (13.2.19) commutes.
We have now shown that the two diagrams (13.2.18) and (13.2.19) commute. Thus, the k-module A⊗B,

equipped with the two maps mA⊗B and uA⊗B , is a k-algebra (since Definition 1.1.1 yields that A⊗ B is a
k-algebra if and only if the two diagrams (13.2.18) and (13.2.19) commute). In other words, the k-algebra
A⊗B introduced in Definition 1.3.3 is actually well-defined. This solves Exercise 1.3.4(a) again.

(b) Exercise 1.3.4(b) is the “dual” statement to Exercise 1.3.4(a). We shall sketch two solutions to it: one
solution by elementwise computation (similar to the first solution to Exercise 1.3.4(a), but somewhat more
complicated due to the many sums involved), and another by formally manipulating homomorphisms. The
second solution will be very brief, because we will not elaborate on it; we will merely explain how it can be
obtained by “reversing arrows” from the second solution to Exercise 1.3.4(a).

First solution to Exercise 1.3.4(b). Let θ be the canonical k-module isomorphism k ⊗ k → k. We have
defined the comultiplication map ∆C⊗D of the k-coalgebra C ⊗D by

(13.2.38) ∆C⊗D = (idC ⊗T ⊗ idD) ◦ (∆C ⊗∆D) ,

and the counit map εC⊗D of the k-coalgebra C ⊗D by

εC⊗D = θ ◦ (εC ⊗ εD) .

386We leave the details of this argument to the reader. Let us just mention that it uses the following equality (analogous to
the equality (13.2.34) used in the proof of the commutativity of the left diagram):(

idk⊗Tk,A ⊗ idB
)
◦ (ξ ⊗ idA⊗B) ◦ kan2,A⊗B = kan2,A⊗ kan2,B .(13.2.37)
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We now must prove that the k-module C ⊗D, equipped with these two maps ∆C⊗D and εC⊗D, is indeed a
k-coalgebra. In other words, we must show that the two diagrams

(13.2.39) C ⊗D ⊗ C ⊗D ⊗ C ⊗D44
∆C⊗D⊗idC⊗D

jj
idC⊗D ⊗∆C⊗D

C ⊗D ⊗ C ⊗Djj
∆C⊗D

C ⊗D ⊗ C ⊗D44
∆C⊗D

C ⊗D
and

(13.2.40) C ⊗D ⊗ kOO

idC⊗D ⊗εC⊗D

C ⊗D//
OO

idC⊗D

oo k⊗ C ⊗DOO

εC⊗D⊗idC⊗D

C ⊗D ⊗ C ⊗D oo
∆C⊗D

C ⊗D C ⊗D ⊗ C ⊗D//∆C⊗D

387 commute (since Definition 1.2.1 yields that C ⊗ D is a k-coalgebra if and only if these two diagrams
commute).

We shall only prove that the diagram (13.2.39) commutes. The commutativity of the diagram (13.2.40)
is proven similarly (but with less work), and so is left to the reader.

So we need to prove that the diagram (13.2.39) commutes. In other words, we need to prove that

(∆C⊗D ⊗ idC⊗D) ◦∆C⊗D = (idC⊗D ⊗∆C⊗D) ◦∆C⊗D.

We shall use the Sweedler notation, by writing
∑

(x) x1 ⊗ x2 for ∆ (x) whenever x is an element of

a coalgebra. This is a neat opportunity to practice the use of the Sweedler notation. But if you are
uncomfortable with the Sweedler notation, you can easily exorcise it from the following argument as follows:

• Whenever an element e ∈ C is defined, fix a decomposition ∆C (e) =
∑b
a=1 ra ⊗ sa of ∆C (e) into a

sum of pure tensors.

• Whenever an element f ∈ D is defined, fix a decomposition ∆D (f) =
∑b′

a′=1 r
′
a′ ⊗ s′a′ of ∆D (f) into

a sum of pure tensors.
• Whenever an element c ∈ C is defined, fix a decomposition ∆C (c) =

∑n
i=1 pi ⊗ qi of ∆C (c) into a

sum of pure tensors, and furthermore:

– For each i ∈ {1, 2, . . . , n}, fix a decomposition ∆C (pi) =
∑ki
j=1 p

′
i,j ⊗ p′′i,j of ∆C (pi) into a sum

of pure tensors.

– For each i ∈ {1, 2, . . . , n}, fix a decomposition ∆C (qi) =
∑`i
h=1 q

′
i,h ⊗ q′′i,h of ∆C (qi) into a sum

of pure tensors.

• Whenever an element d ∈ D is defined, fix a decomposition ∆D (d) =
∑n′

i′=1 xi′ ⊗ yi′ of ∆D (d) into
a sum of pure tensors, and furthermore:

– For each i′ ∈ {1, 2, . . . , n′}, fix a decomposition ∆D (xi′) =
∑k′

i′
j′=1 x

′
i′,j′ ⊗ x′′i′,j′ of ∆D (xi′) into

a sum of pure tensors.

– For each i′ ∈ {1, 2, . . . , n′}, fix a decomposition ∆D (yi′) =
∑`′

i′
h′=1 y

′
i′,h′ ⊗ y′′i′,h′ of ∆D (yi′) into

a sum of pure tensors.

Once these decompositions are chosen, it remains to replace each appearance of one of the symbols∑
(e)

, e1, e2,
∑
(f)

, f1, f2,

∑
(c)

, c1, c2,
∑
(c1)

, (c1)1 , (c1)2 ,
∑
(c2)

, (c2)1 , (c2)2 ,∑
(d)

, d1, d2,
∑
(d1)

, (d1)1 , (d1)2 ,
∑
(d2)

, (d2)1 , (d2)2

387where the maps C ⊗D ⊗ k → C ⊗D and k ⊗ C ⊗D → C ⊗D are the isomorphisms sending each a ⊗ λ ∈ C ⊗D ⊗ k

with a ∈ C ⊗D and λ ∈ k (resp., each λ⊗ a ∈ k⊗ C ⊗D with λ ∈ k and a ∈ C ⊗D) to λa.
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by the symbol

b∑
a=1

, ra, sa,

b′∑
a′=1

, r′a′ , s′a′ ,

n∑
i=1

, pi, qi,

ki∑
j=1

, p′i,j , p′′i,j ,

`i∑
h=1

, q′i,h, q′′i,h,

n′∑
i′=1

, xi′ , yi′ ,

k′
i′∑

j′=1

, x′i′,j′ , x′′i′,j′ ,

`′
i′∑

h′=1

, y′i′,h′ , y′′i′,h′ ,

respectively388. For example, these replacements transform the expression

∑
(c)

∑
(c2)

∑
(d)

∑
(d2)

c1 ⊗ d1 ⊗ (c2)1 ⊗ (d2)1 ⊗ (c2)2 ⊗ (d2)2

into

n∑
i=1

`i∑
h=1

n′∑
i′=1

`′
i′∑

h′=1

pi ⊗ xi′ ⊗ q′i,h ⊗ y′i′,h′ ⊗ q′′i,h ⊗ y′′i′,h′ .

Once these replacements are all done, the argument we give below becomes a perfectly valid argument that
does not use the Sweedler notation.

So let us come to the actual argument.
We first notice that

(13.2.41) ∆C⊗D (e⊗ f) =
∑
(e)

∑
(f)

e1 ⊗ f1 ⊗ e2 ⊗ f2

for every e ∈ C and f ∈ D.

388Some care must be taken here: For example, if the symbol “c1” appears inside “(c1)1”, then it should not be replaced

by “pi”, but instead the whole “(c1)1” should be replaced by “p′i,j”.
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[Proof of (13.2.41): Let e ∈ C and f ∈ D. Applying both sides of the equality (13.2.38) to e ⊗ f , we
obtain

∆C⊗D (e⊗ f) = ((idC ⊗T ⊗ idD) ◦ (∆C ⊗∆D)) (e⊗ f) = (idC ⊗T ⊗ idD) ((∆C ⊗∆D) (e⊗ f))︸ ︷︷ ︸
=∆C(e)⊗∆D(f)

= (idC ⊗T ⊗ idD)

 ∆C (e)︸ ︷︷ ︸
=
∑

(e) e1⊗e2

⊗ ∆D (f)︸ ︷︷ ︸
=
∑

(f) f1⊗f2



= (idC ⊗T ⊗ idD)


∑

(e)

e1 ⊗ e2

⊗
∑

(f)

f1 ⊗ f2


︸ ︷︷ ︸

=
∑

(e)

∑
(f) e1⊗e2⊗f1⊗f2


= (idC ⊗T ⊗ idD)

∑
(e)

∑
(f)

e1 ⊗ e2 ⊗ f1 ⊗ f2


=
∑
(e)

∑
(f)

(idC ⊗T ⊗ idD) (e1 ⊗ e2 ⊗ f1 ⊗ f2)︸ ︷︷ ︸
=idC(e1)⊗T (e2⊗f1)⊗idD(f2)

=
∑
(e)

∑
(f)

idC (e1)︸ ︷︷ ︸
=e1

⊗ T (e2 ⊗ f1)︸ ︷︷ ︸
=f1⊗e2

(by the definition of T )

⊗ idD (f2)︸ ︷︷ ︸
=f2

=
∑
(e)

∑
(f)

e1 ⊗ f1 ⊗ e2 ⊗ f2.

This proves (13.2.41).]
Furthermore, every c ∈ C satisfies

(13.2.42)
∑
(c)

∑
(c1)

(c1)1 ⊗ (c1)2 ⊗ c2 =
∑
(c)

∑
(c2)

c1 ⊗ (c2)1 ⊗ (c2)2 .

[Proof of (13.2.42): Let c ∈ C. Recall that C is a k-coalgebra. Thus, the diagram (1.2.1) commutes (by
the definition of a k-coalgebra). In other words, we have (∆C ⊗ idC) ◦ ∆C = (idC ⊗∆C) ◦ ∆C . Applying
both sides of this equality to c, we obtain

((∆C ⊗ idC) ◦∆C) (c) = ((idC ⊗∆C) ◦∆C) (c) .

In light of

((∆C ⊗ idC) ◦∆C) (c) = (∆C ⊗ idC)

 ∆C (c)︸ ︷︷ ︸
=
∑

(c) c1⊗c2

 = (∆C ⊗ idC)

∑
(c)

c1 ⊗ c2



=
∑
(c)

∆C (c1)︸ ︷︷ ︸
=
∑

(c1)(c1)1⊗(c1)2

⊗ idC (c2)︸ ︷︷ ︸
=c2

=
∑
(c)

∑
(c1)

(c1)1 ⊗ (c1)2

⊗ c2
=
∑
(c)

∑
(c1)

(c1)1 ⊗ (c1)2 ⊗ c2
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and

((idC ⊗∆C) ◦∆C) (c) = (idC ⊗∆C)

 ∆C (c)︸ ︷︷ ︸
=
∑

(c) c1⊗c2

 = (idC ⊗∆C)

∑
(c)

c1 ⊗ c2



=
∑
(c)

idC (c1)︸ ︷︷ ︸
=c1

⊗ ∆C (c2)︸ ︷︷ ︸
=
∑

(c2)(c2)1⊗(c2)2

=
∑
(c)

c1 ⊗

∑
(c2)

(c2)1 ⊗ (c2)2


=
∑
(c)

∑
(c2)

c1 ⊗ (c2)1 ⊗ (c2)2 ,

this rewrites as ∑
(c)

∑
(c1)

(c1)1 ⊗ (c1)2 ⊗ c2 =
∑
(c)

∑
(c2)

c1 ⊗ (c2)1 ⊗ (c2)2 .

This proves (13.2.42).]
Also, every d ∈ D satisfies

(13.2.43)
∑
(d)

∑
(d1)

(d1)1 ⊗ (d1)2 ⊗ d2 =
∑
(d)

∑
(d2)

d1 ⊗ (d2)1 ⊗ (d2)2 .

[Proof of (13.2.43): This proof is analogous to the proof of (13.2.42).]
Let z ∈ C ⊗D. Thus, z (like any tensor in C ⊗D) must be a k-linear combination of pure tensors.
We want to show the equality

(13.2.44) ((∆C⊗D ⊗ idC⊗D) ◦∆C⊗D) (z) = ((idC⊗D ⊗∆C⊗D) ◦∆C⊗D) (z) .

This equality is k-linear in z (since all maps that appear in it are k-linear). Hence, we can WLOG assume
that z is a pure tensor (since z is a k-linear combination of pure tensors). Assume this. Thus, z = c⊗ d for
some c ∈ C and d ∈ D. Consider these c and d.

Taking the tensor product of the equalities (13.2.42) and (13.2.43), we obtain∑
(c)

∑
(c1)

(c1)1 ⊗ (c1)2 ⊗ c2

⊗
∑

(d)

∑
(d1)

(d1)1 ⊗ (d1)2 ⊗ d2


=

∑
(c)

∑
(c2)

c1 ⊗ (c2)1 ⊗ (c2)2

⊗
∑

(d)

∑
(d2)

d1 ⊗ (d2)1 ⊗ (d2)2

 .

In other words, ∑
(c)

∑
(d)

∑
(c1)

∑
(d1)

(c1)1 ⊗ (c1)2 ⊗ c2 ⊗ (d1)1 ⊗ (d1)2 ⊗ d2

=
∑
(c)

∑
(d)

∑
(c2)

∑
(d2)

c1 ⊗ (c2)1 ⊗ (c2)2 ⊗ d1 ⊗ (d2)1 ⊗ (d2)2 .(13.2.45)

Applying the k-linear map

C ⊗ C ⊗ C ⊗D ⊗D ⊗D → C ⊗D ⊗ C ⊗D ⊗ C ⊗D,
γ1 ⊗ γ2 ⊗ γ3 ⊗ δ1 ⊗ δ2 ⊗ δ3 7→ γ1 ⊗ δ1 ⊗ γ2 ⊗ δ2 ⊗ γ3 ⊗ δ3

to both sides of this equality, we obtain∑
(c)

∑
(d)

∑
(c1)

∑
(d1)

(c1)1 ⊗ (d1)1 ⊗ (c1)2 ⊗ (d1)2 ⊗ c2 ⊗ d2

=
∑
(c)

∑
(d)

∑
(c2)

∑
(d2)

c1 ⊗ d1 ⊗ (c2)1 ⊗ (d2)1 ⊗ (c2)2 ⊗ (d2)2 .(13.2.46)
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Now,

((∆C⊗D ⊗ idC⊗D) ◦∆C⊗D) (z)

= (∆C⊗D ⊗ idC⊗D)

∆C⊗D

 z︸︷︷︸
=c⊗d



= (∆C⊗D ⊗ idC⊗D)

 ∆C⊗D (c⊗ d)︸ ︷︷ ︸
=
∑

(c)

∑
(d) c1⊗d1⊗c2⊗d2

(by (13.2.41) (applied to e=c and f=d))


= (∆C⊗D ⊗ idC⊗D)

∑
(c)

∑
(d)

c1 ⊗ d1 ⊗ c2 ⊗ d2


=
∑
(c)

∑
(d)

(∆C⊗D ⊗ idC⊗D) (c1 ⊗ d1 ⊗ c2 ⊗ d2)︸ ︷︷ ︸
=∆C⊗D(c1⊗d1)⊗idC⊗D(c2⊗d2)

=
∑
(c)

∑
(d)

∆C⊗D (c1 ⊗ d1)︸ ︷︷ ︸
=
∑

(c1)

∑
(d1)(c1)1⊗(d1)1⊗(c1)2⊗(d1)2

(by (13.2.41) (applied to e=c1 and f=d1))

⊗ idC⊗D (c2 ⊗ d2)︸ ︷︷ ︸
=c2⊗d2

=
∑
(c)

∑
(d)

∑
(c1)

∑
(d1)

(c1)1 ⊗ (d1)1 ⊗ (c1)2 ⊗ (d1)2

⊗ c2 ⊗ d2

=
∑
(c)

∑
(d)

∑
(c1)

∑
(d1)

(c1)1 ⊗ (d1)1 ⊗ (c1)2 ⊗ (d1)2 ⊗ c2 ⊗ d2;(13.2.47)

an analogous computation shows that

((idC⊗D ⊗∆C⊗D) ◦∆C⊗D) (z)

=
∑
(c)

∑
(d)

∑
(c2)

∑
(d2)

c1 ⊗ d1 ⊗ (c2)1 ⊗ (d2)1 ⊗ (c2)2 ⊗ (d2)2 .(13.2.48)

In light of (13.2.47) and (13.2.48), the equality (13.2.46) rewrites as

((∆C⊗D ⊗ idC⊗D) ◦∆C⊗D) (z) = ((idC⊗D ⊗∆C⊗D) ◦∆C⊗D) (z) .

Thus, the equality (13.2.44) is proven.
Now, forget that we fixed z. We thus have proven the equality (13.2.44) for every z ∈ C ⊗D. In other

words, we have (∆C⊗D ⊗ idC⊗D)◦∆C⊗D = (idC⊗D ⊗∆C⊗D)◦∆C⊗D. In other words, the diagram (13.2.39)
commutes.

It remains to prove that the diagram (13.2.40) commutes. We leave this to the reader, as the proof is
similar to (but simpler than) the proof of the commutativity of (13.2.39) given above. Hence, both diagrams
(13.2.39) and (13.2.40) commute. In other words, the k-module C ⊗D, equipped with the two maps ∆C⊗D
and εC⊗D, is a k-coalgebra. In other words, the k-coalgebra C⊗D introduced in Definition 1.3.3 is actually
well-defined. This solves Exercise 1.3.4(b).

Second solution to Exercise 1.3.4(b). Let θ be the canonical k-module isomorphism k⊗ k→ k.
A solution to Exercise 1.3.4(b) can now be obtained in a straightforward fashion from the Second solution

to Exercise 1.3.4(a), by making the following modifications:

(1) Replace every appearance of any of the terms

A, B, mA, mB , mA⊗B , uA, uB , uA⊗B , ξ, kan1,U , kan2,U , TU,V

(for any k-modules U and V ) by

C, D, ∆C , ∆D, ∆C⊗D, uC , uD, uC⊗D, θ, kan−1
1,U , kan−1

2,U , TV,U ,

respectively.
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(For example, the equation (13.2.25) becomes

(13.2.49) (idC ⊗TC,D ⊗ idD) ◦ (∆C⊗D ⊗ idC⊗D) = (∆C ⊗ idC ⊗∆D ⊗ idD) ◦ (idC ⊗Q⊗ idD) .

This new equation makes no sense, because (for example) the maps idC ⊗TD,C ⊗ idD and ∆C⊗D ⊗
idC⊗D cannot be composed; but this is fine, since we shall make a further modification which will
turn this equation into a meaningful one.

For another example, the map Q : B ⊗ A ⊗ B ⊗ A → A ⊗ A ⊗ B ⊗ B becomes a map Q :
D ⊗ C ⊗D ⊗ C → C ⊗ C ⊗D ⊗D.)

(2) Reverse the direction of all arrows389. In other words, any map which used to go from a set X to a
set Y shall now go from Y to X.

(For example, the map Q : D⊗C⊗D⊗C → C⊗C⊗D⊗D becomes a map Q : C⊗C⊗D⊗D →
D ⊗ C ⊗D ⊗ C.)

(3) In any composition of k-linear maps, reverse the order of the maps being composed. In other words,
replace any composition f1 ◦ f2 ◦ · · · ◦ fk by fk ◦ fk−1 ◦ · · · ◦ f1.

(For example, the meaningless equality (13.2.49) thus becomes

(∆C⊗D ⊗ idC⊗D) ◦ (idC ⊗TC,D ⊗ idD) = (idC ⊗Q⊗ idD) ◦ (∆C ⊗ idC ⊗∆D ⊗ idD) .

This equality is meaningful and correct.)
(4) Any part of our solution that involved elements of A and B (as opposed to mere computations with

maps) must be redone from scratch. For example, the proof of (13.2.21) involved elements of A
and B (because we picked b ∈ B, a ∈ A, b′ ∈ B and a′ ∈ A in that proof), and thus must be
redone, whereas the proof of (13.2.31) did not involve elements of A and B and therefore needs not
be modified any further.

Fortunately, very few parts of our solution involved elements of A and B. To wit, these parts are
the proofs of the equalities (13.2.21), (13.2.29), (13.2.34) and (13.2.37). After the above modifica-
tions, these equalities have become

Q = (TC,D ⊗ idD ⊗ idC) ◦ (idC ⊗TC,D⊗D) ,

Q = (idD ⊗ idC ⊗TC,D) ◦ (TC⊗C,D ⊗ idD) ,

kan−1
1,C⊗D ◦ (idC⊗D ⊗θ) ◦ (idC ⊗Tk,D ⊗ idk) = kan−1

1,C ⊗ kan−1
1,D, and

kan−1
2,C⊗D ◦ (θ ⊗ idC⊗D) ◦ (idk⊗TC,k ⊗ idD) = kan−1

2,C ⊗ kan−1
2,D,

respectively. So these four equalities must be proven. Fortunately, these proofs are completely
straightforward390; the reader can easily come up with them.

These four modifications are sufficient to transform our Second solution to Exercise 1.3.4(a) into a solution
to Exercise 1.3.4(b). Thus, Exercise 1.3.4(b) is solved again.

[Remark: The second and the third modifications made above are usually subsumed under the concept
of “reversing all arrows”.]

13.3. Solution to Exercise 1.3.6. Solution to Exercise 1.3.6.
(b) Let C, C ′, D and D′ be four k-coalgebras. Let f : C → C ′ and g : D → D′ be two k-coalgebra

homomorphisms. We need to prove that f ⊗ g : C ⊗D → C ′ ⊗D′ is a k-coalgebra homomorphism.
Recall that (by the definition of a “k-coalgebra homomorphism”) the map f ⊗ g : C ⊗D → C ′ ⊗D′ is a

k-coalgebra homomorphism if and only if the two diagrams

(13.3.1) C ⊗D

∆C⊗D

��

f⊗g // C ′ ⊗D′

∆C′⊗D′

��
(C ⊗D)⊗ (C ⊗D)

(f⊗g)⊗(f⊗g) // (C ′ ⊗D′)⊗ (C ′ ⊗D′)

389This includes both the arrows in the description of maps and the arrows in commutative diagrams.
390These equalities are properties of tensor products of k-modules; they make no use of the coalgebra structures on C and

D.
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and

(13.3.2) C ⊗D

εC⊗D
""

f⊗g // C ′ ⊗D′

εC′⊗D′
{{

k

commute. We shall now prove that these diagrams indeed commute.
We know that the map f : C → C ′ is a k-coalgebra homomorphism. By the definition of a k-coalgebra

homomorphism, this means that the two diagrams

(13.3.3) C

∆C

��

f // C ′

∆C′

��
C ⊗ C

f⊗f // C ′ ⊗ C ′

and

(13.3.4) C

εC
��

f // C ′

εC′��
k

commute.
For any two k-modules U and V , let TU,V : U ⊗ V → V ⊗ U be the twist map (i.e., the k-linear map

U ⊗ V → V ⊗ U sending every u⊗ v to v ⊗ u). A simple linear-algebraic fact says that if U , V , U ′ and V ′

are four k-modules and x : U → U ′ and y : V → V ′ are two k-linear maps, then

(13.3.5) (y ⊗ x) ◦ TU,V = TU ′,V ′ ◦ (x⊗ y) .

The definition of the k-coalgebra C ⊗D yields

(13.3.6) ∆C⊗D = (idC ⊗TC,D ⊗ idD) ◦ (∆C ⊗∆D) .

Similarly,

(13.3.7) ∆C′⊗D′ = (idC′ ⊗TC′,D′ ⊗ idD′) ◦ (∆C′ ⊗∆D′) .

But (f ⊗ f) ◦∆C = ∆C′ ◦ f (since the diagram (13.3.3) commutes), and similarly (g ⊗ g) ◦∆D = ∆D′ ◦ g.
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Now,

((f ⊗ g)⊗ (f ⊗ g))︸ ︷︷ ︸
=f⊗(g⊗f)⊗g

◦ ∆C⊗D︸ ︷︷ ︸
=(idC ⊗TC,D⊗idD)◦(∆C⊗∆D)

= (f ⊗ (g ⊗ f)⊗ g) ◦ (idC ⊗TC,D ⊗ idD)︸ ︷︷ ︸
=(f◦idC)⊗((g⊗f)◦TC,D)⊗(g◦idD)

◦ (∆C ⊗∆D)

=

 (f ◦ idC)︸ ︷︷ ︸
=f=idC′ ◦f

⊗ ((g ⊗ f) ◦ TC,D)︸ ︷︷ ︸
=TC′,D′◦(f⊗g)

(by (13.3.5))

⊗ (g ◦ idD)︸ ︷︷ ︸
=g=idD′ ◦g

 ◦ (∆C ⊗∆D)

= ((idC′ ◦f)⊗ (TC′,D′ ◦ (f ⊗ g))⊗ (idD′ ◦g))︸ ︷︷ ︸
=(idC′ ⊗TC′,D′⊗idD′)◦(f⊗(f⊗g)⊗g)

◦ (∆C ⊗∆D)

= (idC′ ⊗TC′,D′ ⊗ idD′) ◦ (f ⊗ (f ⊗ g)⊗ g)︸ ︷︷ ︸
=(f⊗f)⊗(g⊗g)

◦ (∆C ⊗∆D)

= (idC′ ⊗TC′,D′ ⊗ idD′) ◦ ((f ⊗ f)⊗ (g ⊗ g)) ◦ (∆C ⊗∆D)︸ ︷︷ ︸
=((f⊗f)◦∆C)⊗((g⊗g)◦∆D)

= (idC′ ⊗TC′,D′ ⊗ idD′) ◦

((f ⊗ f) ◦∆C)︸ ︷︷ ︸
=∆C′◦f

⊗ ((g ⊗ g) ◦∆D)︸ ︷︷ ︸
=∆D′◦g


= (idC′ ⊗TC′,D′ ⊗ idD′) ◦ ((∆C′ ◦ f)⊗ (∆D′ ◦ g))︸ ︷︷ ︸

=(∆C′⊗∆D′ )◦(f⊗g)

= (idC′ ⊗TC′,D′ ⊗ idD′) ◦ (∆C′ ⊗∆D′)︸ ︷︷ ︸
=∆C′⊗D′

(by (13.3.7))

◦ (f ⊗ g) = ∆C′⊗D′ ◦ (f ⊗ g) .

In other words, the diagram (13.3.1) commutes.
We have εC′ ◦ f = εC (since the diagram (13.3.4) commutes) and εD′ ◦ g = εD (similarly).
Now, let θ be the canonical k-module isomorphism k ⊗ k → k. Then, the definition of the k-coalgebra

C ⊗D yields

(13.3.8) εC⊗D = θ ◦ (εC ⊗ εD) .

Similarly,

(13.3.9) εC′⊗D′ = θ ◦ (εC′ ⊗ εD′) .
Now,

εC′⊗D′︸ ︷︷ ︸
=θ◦(εC′⊗εD′ )

◦ (f ⊗ g) = θ ◦ (εC′ ⊗ εD′) ◦ (f ⊗ g)︸ ︷︷ ︸
=(εC′◦f)⊗(εD′◦g)

= θ ◦

(εC′ ◦ f)︸ ︷︷ ︸
=εC

⊗ (εD′ ◦ g)︸ ︷︷ ︸
=εD

 = θ ◦ (εC ⊗ εD) = εC⊗D

(by (13.3.8)). In other words, the diagram (13.3.2) commutes.
We now know that the two diagrams (13.3.1) and (13.3.2) commute. Thus, the map f⊗g : C⊗D → C ′⊗D′

is a k-coalgebra homomorphism (because we know that the map f ⊗ g : C ⊗D → C ′ ⊗D′ is a k-coalgebra
homomorphism if and only if the two diagrams (13.3.1) and (13.3.2) commute). This solves Exercise 1.3.6(b).

(a) In order to obtain a solution to Exercise 1.3.6(a), it is enough to reverse all arrows in the above solution
to Exercise 1.3.6(b) (and, of course, replace C, D, ∆C etc. by A, B, mA etc.).
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13.4. Solution to Exercise 1.3.13. Solution to Exercise 1.3.13. (a) Assume that f is surjective. It is
a known fact from linear algebra391 that if U , V , U ′ and V ′ are four k-modules, and φ : U → U ′ and
ψ : V → V ′ are two surjective k-linear maps, then the kernel of φ⊗ ψ : U ⊗ V → U ′ ⊗ V ′ is

ker (φ⊗ ψ) = (kerφ)⊗ V + U ⊗ (kerψ) .

Applying this to U = A, U ′ = C, V = A, V ′ = C, φ = f and ψ = f , we obtain ker (f ⊗ f) = (ker f)⊗ A+
A⊗ (ker f).

But f is a coalgebra homomorphism, so that ε = ε ◦ f . Hence, every x ∈ ker f satisfies ε︸︷︷︸
=ε◦f

(x) =

(ε ◦ f) (x) = ε

 f (x)︸ ︷︷ ︸
=0

(since x∈ker f)

 = ε (0) = 0. In other words, ε (ker f) = 0. Also,

ker f ⊂ ker (∆ ◦ f)︸ ︷︷ ︸
=(f⊗f)◦∆

(since f is a coalgebra
homomorphism)

= ker ((f ⊗ f) ◦∆) = ∆−1 (ker (f ⊗ f)) ,

so that

∆ (ker f) ⊂ ker (f ⊗ f) = (ker f)⊗A+A⊗ (ker f) .

Combined with ε (ker f) = 0, this shows that ker f is a two-sided coideal of A. Thus, Exercise 1.3.13(a) is
solved.

(b) Assume that k is a field. Then, it is a known fact from linear algebra392 that if U , V , U ′ and V ′ are four
k-modules, and φ : U → U ′ and ψ : V → V ′ are two k-linear maps, then the kernel of φ⊗ψ : U⊗V → U ′⊗V ′
is

ker (φ⊗ ψ) = (kerφ)⊗ V + U ⊗ (kerψ) .

Starting from this point, we can continue arguing as in the solution of part (a). Thus, Exercise 1.3.13(b) is
solved.

13.5. Solution to Exercise 1.3.18. Solution to Exercise 1.3.18.
It is not hard to solve Exercise 1.3.18 directly; we shall take a longer but somewhat more elegant approach.

We begin with a definition:

Definition 13.5.1. Let V =
⊕

n∈N Vn be a graded k-module (where the Vn are the homogeneous components
of V ). Let n ∈ N. Then, we shall let πn,V : V → Vn denote the canonical projection from V to its n-th
graded component Vn.

Let us show a few properties of these projections:

Lemma 13.5.2. Let V and W be two graded k-modules. Let f : V → W be a graded k-linear map. Let
m ∈ N. Let v be a homogeneous element of V . Then, πm,W (f (v)) = f (πm,V (v)).

Proof of Lemma 13.5.2. Write V as V =
⊕

n∈N Vn (where the Vn are the homogeneous components of V ).
Write W as W =

⊕
n∈NWn (where the Wn are the homogeneous components of W ).

The map πm,V is the canonical projection from V to its m-th graded component Vm. Hence, πm,V fixes
every element of Vm. In other words, we have

(13.5.1) πm,V (p) = p for each p ∈ Vm.

The same argument (applied to W and Wm instead of V and Vm) yields

(13.5.2) πm,W (p) = p for each p ∈Wm.

391proven, e.g., in Keith Conrad’s [40, “Tensor Products II”, Thm. 2.19]
392proven, e.g., in Keith Conrad’s [40, “Tensor Products II”, Thm. 5.5]
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The map πm,V is the canonical projection from V to its m-th graded component Vm. Hence, πm,V
annihilates all graded components of V other than Vm. In other words,

(13.5.3) πm,V (Vn) = 0 for every n ∈ N satisfying n 6= m.

The same argument (applied to W and Wm instead of V and Vm) yields

(13.5.4) πm,W (Wn) = 0 for every n ∈ N satisfying n 6= m.

Recall that v is a homogeneous element of V . Thus, there exists some n ∈ N such that v ∈ Vn. Consider
this n. From v ∈ Vn, we obtain f (v) ∈ f (Vn) ⊂ Wn (since the map f is graded). We must show that
πm,W (f (v)) = f (πm,V (v)).

We are in one of the following two cases:
Case 1: We have n = m.
Case 2: We have n 6= m.
Let us first consider Case 1 first. In this case, we have n = m. Now, v ∈ Vn = Vm (since n = m). Thus,

(13.5.1) (applied to p = v) yields πm,V (v) = v. Hence, v = πm,V (v). Also, f (v) ∈Wn = Wm (since n = m).
Hence, (13.5.2) (applied to p = f (v)) yields

πm,W (f (v)) = f

 v︸︷︷︸
=πm,V (v)

 = f (πm,V (v)) .

Thus, πm,W (f (v)) = f (πm,V (v)) is proved in Case 1.
Let us next consider Case 2. In this case, we have n 6= m. But v ∈ Vn, so that πm,V (v) ∈ πm,V (Vn) = 0

(by (13.5.3)). Hence, πm,V (v) = 0. Therefore, f

πm,V (v)︸ ︷︷ ︸
=0

 = f (0) = 0 (since the map f is k-linear). On

the other hand, πm,W

f (v)︸︷︷︸
∈Wn

 ∈ πm,W (Wn) = 0 (by (13.5.4)), so that

πm,W (f (v)) = 0 = f (πm,V (v)) (since f (πm,V (v)) = 0) .

Thus, πm,W (f (v)) = f (πm,V (v)) is proved in Case 2.
We have now proved πm,W (f (v)) = f (πm,V (v)) in each of these two Cases 1 and 2. Since these two

Cases cover all possibilities, we thus conclude that πm,W (f (v)) = f (πm,V (v)) always holds.
This proves Lemma 13.5.2. �

Proposition 13.5.3. Let V and W be two graded k-modules. Let f : V → W be a graded k-linear map.
Let m ∈ N. Let v ∈ V be arbitrary. Then, πm,W (f (v)) = f (πm,V (v)).

Proof of Proposition 13.5.3. Every element of V is a sum of homogeneous elements (since V is graded).
Thus, v is a sum of homogeneous elements (since v is an element of V ). In other words, we can write v in

the form v =
∑k
i=1 vi, where k ∈ N, and where v1, v2, . . . , vk are homogeneous elements of V . Consider this

k and these v1, v2, . . . , vk.
For each i ∈ {1, 2, . . . , k}, the element vi of V is homogeneous (since v1, v2, . . . , vk are homogeneous

elements of V ) and therefore satisfies

(13.5.5) πm,W (f (vi)) = f (πm,V (vi))
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(by Lemma 13.5.2, applied to vi instead of v). Now,

πm,W

f
 v︸︷︷︸

=
∑k
i=1 vi


 = πm,W


f

(
k∑
i=1

vi

)
︸ ︷︷ ︸
=
∑k
i=1 f(vi)

(since the map f is k-linear)


= πm,W

(
k∑
i=1

f (vi)

)

=

k∑
i=1

πm,W (f (vi))︸ ︷︷ ︸
=f(πm,V (vi))
(by (13.5.5))

(since the map πm,W is k-linear)

=

k∑
i=1

f (πm,V (vi)) .

Comparing this with

f

πm,V
 v︸︷︷︸

=
∑k
i=1 vi


 = f


πm,V

(
k∑
i=1

vi

)
︸ ︷︷ ︸
=
∑k
i=1 πm,V (vi)

(since the map πm,V is k-linear)


= f

(
k∑
i=1

πm,V (vi)

)

=

k∑
i=1

f (πm,V (vi)) (since the map f is k-linear) ,

we obtain πm,W (f (v)) = f (πm,V (v)). This proves Proposition 13.5.3. �

Let us now come to the solution of Exercise 1.3.18. Let f : V → W be an invertible graded k-linear
map. We must prove that its inverse f−1 : W → V is also graded. In other words, we must prove that
f−1 (Wn) ⊂ Vn for each n ∈ N.

So let n ∈ N. Let v ∈ f−1 (Wn). Thus, v ∈ V and f (v) ∈Wn.
The map πn,W is the canonical projection from W to its n-th graded component Wn. Hence, πn,W fixes

every element of Wn. In other words, we have πn,W (p) = p for each p ∈ Wn. Applying this to p = f (v),
we obtain πn,W (f (v)) = f (v) (since f (v) ∈ Wn). But Proposition 13.5.3 (applied to m = n) yields
πn,W (f (v)) = f (πn,V (v)). Comparing these two equalities, we obtain f (v) = f (πn,V (v)).

But the map f is invertible, thus injective. In other words, if a, b ∈ V are two elements satisfying f (a) =
f (b), then a = b. Applying this to a = v and b = πn,V (v), we find v = πn,V (v) (since f (v) = f (πn,V (v))).

But the map πn,V is the canonical projection from V to its n-th graded component Vn. Thus, πn,V (V ) ⊂
Vn. Hence, πn,V (v) ∈ Vn (since v ∈ V ). Thus, v = πn,V (v) ∈ Vn.

Forget that we fixed v. We thus have shown that v ∈ Vn for each v ∈ f−1 (Wn). In other words,
f−1 (Wn) ⊂ Vn.

Forget that we fixed n. We thus have shown that f−1 (Wn) ⊂ Vn for each n ∈ N. In other words, the
map f−1 is graded. This solves Exercise 1.3.18.

13.6. Solution to Exercise 1.3.19. Solution to Exercise 1.3.19.
(a) Define a map ∆̃ : A→ A⊗A by

∆̃ (x) = ∆ (x)− (x⊗ 1 + 1⊗ x) for all x ∈ A.

It is easily seen that ∆̃ is a homomorphism of graded k-modules. Hence, the kernel ker ∆̃ of ∆̃ is a graded
k-submodule of A (since the kernel of a homomorphism of graded k-modules always is a graded k-submodule
of the domain).
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We have defined p as the set of all primitive elements of A. In other words,

p = {x ∈ A | ∆ (x) = x⊗ 1 + 1⊗ x}

=


x ∈ A | ∆ (x)− (x⊗ 1 + 1⊗ x)︸ ︷︷ ︸

=∆̃(x)

(since ∆̃(x)=∆(x)−(x⊗1+1⊗x))

= 0


=
{
x ∈ A | ∆̃ (x) = 0

}
= ker ∆̃.

Thus, p is a graded k-submodule of A (since we know that ker ∆̃ is a graded k-submodule of A). This solves
Exercise 1.3.19 (a).

(b) We notice first that

(13.6.1) ε (x) = 0 for every x ∈ p.

[Proof of (13.6.1). We know that A is a k-bialgebra. Thus, ε is a k-algebra homomorphism (by the
definition of a k-bialgebra). Hence, ε (1A) = 1k and ε (0) = 0.

Let x ∈ p. Thus, x is primitive, so that ∆ (x) = x⊗ 1 + 1⊗ x (by the definition of a primitive element).
Applying the map ε⊗ id to both sides of this equality, we obtain

(ε⊗ id) (∆ (x)) = (ε⊗ id) (x⊗ 1 + 1⊗ x) = ε (x) · id (1) + ε (1) · id (x)

(where we are identifying k⊗A with A along the canonical isomorphism). Compared with (ε⊗ id) (∆ (x)) = x
(this is a consequence of the axioms of a coalgebra), this yields

x = ε (x) · id (1)︸ ︷︷ ︸
=1=1A

+ ε (1)︸︷︷︸
=ε(1A)=1k

· id (x)︸ ︷︷ ︸
=x

= ε (x) · 1A + x.

Subtracting x from this equality, we obtain 0 = ε (x) · 1A. Applying the map ε to this equality, we find
ε (0) = ε (ε (x) · 1A) = ε (x) · ε (1A)︸ ︷︷ ︸

=1k

= ε (x). Hence, ε (x) = ε (0) = 0. This proves (13.6.1).]

(Note: We will reprove (13.6.1) below in Proposition 1.4.17.)
Now, for every x ∈ p, we have

∆ (x) = x︸︷︷︸
∈p

⊗ 1︸︷︷︸
∈A

+ 1︸︷︷︸
∈A

⊗ x︸︷︷︸
∈p

(since x ∈ p, so that x is primitive)

∈ p⊗A+A⊗ p.

In other words, ∆ (p) ⊂ p⊗A+A⊗ p. Combined with ε (p) = 0 (this follows from (13.6.1)), this yields that
p is a two-sided coideal of A. This solves Exercise 1.3.19 (b).

13.7. Solution to Exercise 1.3.20. Solution to Exercise 1.3.20. (a) The unit map u : k → A is graded
(since A is a graded algebra). Hence, u (k0) ⊂ A0, where k0 denotes the 0-th graded component of k. But
the grading on k is such that k0 = k. Thus, u (k0) = u (k), so that u (k) = u (k0) ⊂ A0. But

u (k) =

 u (λ)︸ ︷︷ ︸
=λ·1A

(by the definition of u)

: λ ∈ k

 = {λ · 1A : λ ∈ k} = k · 1A.

Hence, k · 1A = u (k) ⊂ A0, so that part (a) is solved.
(b) Since A is connected, we have A0

∼= k. In other words, there exists a k-module isomorphism φ :
A0 → k. Consider this φ. Since φ is a k-module isomorphism A0 → k, the inverse φ−1 of φ is a well-defined
k-module isomorphism k→ A0.



304 DARIJ GRINBERG AND VICTOR REINER

We saw in the proof of part (a) that u (k) ⊂ A0. Hence, u restricts to a map k → A0. Denote this map
k→ A0 by u′. Then, u′ is a restriction of u (more precisely, a corestriction of u, because we are restricting
the target rather than the domain).

Let also ε′ denote the restriction of ε to A0. Since ε′ and u′ are restrictions of ε and u, we have ε′ ◦ u′ =
ε ◦ u = idk (by the axioms of a coalgebra). Now,

(
ε′ ◦ φ−1

)
◦ (φ ◦ u′) = ε′ ◦ u′ = idk. Hence, the k-linear

map ε′ ◦ φ−1 : k→ k has a right inverse. Thus, the k-linear map ε′ ◦ φ−1 : k→ k is surjective. Since every
surjective k-linear map k→ k is an isomorphism393, this shows that the k-linear map ε′ ◦ φ−1 : k→ k is an
isomorphism. Since φ also is an isomorphism, the map ε′ ◦ φ−1 ◦ φ is a composition of two isomorphisms,
and thus an isomorphism. In other words, ε′ is an isomorphism (since ε′ ◦ φ−1 ◦ φ = ε′). Hence, the inverse
map of ε′ is well-defined. This inverse map must be u′ (since ε′ ◦ u′ = idk), and so we conclude that u′ is an
isomorphism. In other words, the restriction of u to a map k→ A0 is an isomorphism. This solves part (b).

(c) Part (b) shows that the map k
u→ A0 is an isomorphism. Hence, this map k

u→ A0 is bijective, and
thus also surjective. In other words, we have A0 = u (k). Hence,

A0 = u

 k︸︷︷︸
=k·1

 = u (k · 1) = k · u (1)︸︷︷︸
=1·1A

(by the definition of u)

(since the map u is k-linear)

= k · 1︸︷︷︸
=k

·1A = k · 1A.

This proves part (c).
(e) In the proof of part (b), we showed that u′ is the inverse map of ε′. Hence, ε′ is the inverse map of u′.

In other words, the restriction of ε to A0 is the inverse map of the restriction of u to a map k → A0. This
solves part (e).

(d) The counit map ε is graded (since A is a graded coalgebra). Hence, every n ≥ 0 satisfies ε (An) ⊂ kn
(where kn denotes the n-th graded component of k). For every positive n, this shows that An ⊂ ker ε 394.
Hence,

⊕
n>0An =

∑
n>0 An︸︷︷︸

⊂ker ε

⊂
∑
n>0 ker ε ⊂ ker ε (since ker ε is a k-submodule of A).

Now, let a ∈ ker ε be arbitrary. Then, a ∈ A satisfies ε (a) = 0. We have a ∈ A =
⊕

n≥0An =

A0 ⊕
⊕

n>0An. Hence, we can write a in the form a = a′ + a′′ for a′ ∈ A0 and a′′ ∈
⊕

n>0An. Consider
these a′ and a′′. We have a′′ ∈

⊕
n>0An ⊂ ker ε, so that ε (a′′) = 0. Since a = a′ + a′′, we have

ε (a) = ε (a′ + a′′) = ε (a′) + ε (a′′)︸ ︷︷ ︸
=0

= ε (a′), thus ε (a′) = ε (a) = 0. Since ε restricted to A0 is injective

(in fact, part (e) of this problem shows that ε restricted to A0 is an isomorphism), this yields that a′ = 0
(because a′ ∈ A0). Hence, a = a′︸︷︷︸

=0

+a′′ = a′′ ∈
⊕

n>0An.

Now forget that we fixed a. We thus have seen that every a ∈ ker ε satisfies a ∈
⊕

n>0An. In other words,
ker ε ⊂

⊕
n>0An. Combined with

⊕
n>0An ⊂ ker ε, this yields ker ε =

⊕
n>0An. This solves part (d).

(f) Let x ∈ A. We have A =
⊕

n≥0An = A0︸︷︷︸
=k·1A

⊕
⊕
n>0

An︸ ︷︷ ︸
=I

= k · 1A ⊕ I = k · 1A + I and

∆ (x) ∈ A⊗ A︸︷︷︸
=k·1A+I

= A⊗ (k · 1A + I) = A⊗ (k · 1A) +A⊗ I.

393Proof. Let α be a surjective k-linear map k→ k. We need to show that α is an isomorphism.
Let λ ∈ kerα. Then, λ ∈ k satisfies α (λ) = 0. But α is surjective, so that k = α (k). Hence, 1 ∈ k = α (k). Thus, there

exists a µ ∈ k such that 1 = α (µ). Consider this µ. Then, the k-linearity of α yields α (λµ) = λα (µ)︸ ︷︷ ︸
=1

= λ. But the k-linearity

of α also shows that α (µλ) = µα (λ)︸ ︷︷ ︸
=0

= 0. Thus, 0 = α (µλ) = α (λµ) = λ, so that λ = 0. We thus have shown that every

λ ∈ kerα satisfies λ = 0. Hence, kerα = 0, so that the map α is injective. Since α is injective and surjective, we see that α is

bijective, thus an isomorphism, qed.
394Proof. Let n be a positive integer. Then, ε (An) ⊂ kn = 0 (because of how the grading on k is constructed), so that

ε (An) = 0 and thus An ⊂ ker ε, qed.
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Hence, there exist y ∈ A⊗ (k · 1A) and z ∈ A⊗ I such that ∆ (x) = y + z. Consider these y and z. We will
show that y = x⊗ 1A.

Since y ∈ A⊗ (k · 1A) = k · (A⊗ 1A) = A⊗ 1A, we can write y in the form y = y′ ⊗ 1A for some y′ ∈ A.
Consider this y′.

By the commutativity of (1.2.2), we have (idA⊗ε) (∆ (x)) = x (where we identify A⊗ k with A). Hence,

x = (idA⊗ε)

∆ (x)︸ ︷︷ ︸
=y+z

 = (idA⊗ε) (y + z) = (idA⊗ε)

 y︸︷︷︸
=y′⊗1A

+ (idA⊗ε)

 z︸︷︷︸
∈A⊗I


∈ (idA⊗ε) (y′ ⊗ 1A)︸ ︷︷ ︸

=y′ε(1A)

+ (idA⊗ε) (A⊗ I)︸ ︷︷ ︸
=idA(A)ε(I)

= y′ ε (1A)︸ ︷︷ ︸
=1

+ idA (A) ε (I)︸︷︷︸
=0

(since I=ker ε by part (d))

= y′1 + idA (A) 0 = y′ + 0 = y′,

which shows that x = y′. Now, y = y′︸︷︷︸
=x

⊗1A = x⊗ 1A and

x = y︸︷︷︸
=x⊗1A

+ z︸︷︷︸
∈A⊗I

∈ x⊗ 1A︸︷︷︸
=1

+A⊗ I = x⊗ 1 +A⊗ I.

This solves part (f).
(g) Let x ∈ I. Thus, x ∈ I = ker ε (by part (d)), so that ε (x) = 0.
Let us introduce y and z as in the solution to part (f). As we saw in that solution, we have y = x⊗ 1A.
We have

z ∈ A︸︷︷︸
=k·1A+I

⊗I = (k · 1A + I)⊗ I = (k · 1A)⊗ I + I ⊗ I.

Hence, there exist u ∈ (k · 1A)⊗ I and v ∈ I ⊗ I such that z = u+ v. Consider these u and v. We will show
that u = 1A ⊗ x.

We have v ∈ I⊗I, so that (ε⊗ idA) (v) ∈ (ε⊗ idA) (I ⊗ I) = ε (I)︸︷︷︸
=0

(since I=ker ε)

idA (I) = 0. Thus, (ε⊗ idA) (v) =

0.
Since u ∈ (k · 1A) ⊗ I = k · (1A ⊗ I) = 1A ⊗ I, we can write u in the form u = 1A ⊗ u′ for some u′ ∈ I.

Consider this u′.
By the commutativity of (1.2.2), we have (ε⊗ idA) (∆ (x)) = x (where we identify k⊗A with A). Hence,

x = (ε⊗ idA)

∆ (x)︸ ︷︷ ︸
=y+z

 = (ε⊗ idA) (y + z) = (ε⊗ idA)

 y︸︷︷︸
=x⊗1A

+ (ε⊗ idA)

 z︸︷︷︸
=u+v


= (ε⊗ idA) (x⊗ 1A)︸ ︷︷ ︸

=ε(x) idA(1A)=0
(since ε(x)=0)

+ (ε⊗ idA) (u+ v) = (ε⊗ idA) (u+ v) = (ε⊗ idA) (u) + (ε⊗ idA) (v)︸ ︷︷ ︸
=0

= (ε⊗ idA)

 u︸︷︷︸
=1A⊗u′

 = (ε⊗ idA) (1A ⊗ u′) = ε (1A)︸ ︷︷ ︸
=1

u′ = u′.

Now, u = 1A ⊗ u′︸︷︷︸
=x

= 1A ⊗ x. Now,

∆ (x) = y︸︷︷︸
=x⊗1A

+ z︸︷︷︸
=u+v

= x⊗ 1A + u︸︷︷︸
=1A⊗x

+ v︸︷︷︸
∈I⊗I

∈ x⊗ 1A︸︷︷︸
=1

+ 1A︸︷︷︸
=1

⊗x+ I ⊗ I = x⊗ 1 + 1⊗ x+ I ⊗ I = 1⊗ x+ x⊗ 1 + I ⊗ I.

In other words, ∆ (x) = 1⊗ x+ x⊗ 1 + ∆+ (x) for some ∆+ (x) ∈ I ⊗ I. This solves part (g).
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(h) The definition of I yields

(13.7.1) I =
⊕
n>0

An =
⊕
`>0

A` =
∑
`>0

A`.

Now, let n > 0 and x ∈ An. We must show that ∆ (x) = 1 ⊗ x + x ⊗ 1 + ∆+ (x), where ∆+ (x) lies in∑n−1
k=1 Ak ⊗An−k.
Part (g) yields ∆ (x) = 1⊗ x+ x⊗ 1 + ∆+ (x) for some ∆+ (x) ∈ I ⊗ I. Consider this ∆+ (x). It clearly

suffices to show that this ∆+ (x) satisfies ∆+ (x) ∈
∑n−1
k=1 Ak ⊗An−k.

Regard I ⊗ I as a k-submodule of A⊗A. From I =
∑
`>0A`, we obtain

(13.7.2) I ⊗ I =

(∑
`>0

A`

)
⊗

(∑
`>0

A`

)
=

∑
i>0, j>0

Ai ⊗Aj .

Let πn : A⊗A→ A⊗A be the projection of the graded k-module A⊗A onto its n-th graded component
(A⊗A)n. Then:

• The map πn annihilates the k-th graded component (A⊗A)k for every k 6= n. In other words,

(13.7.3) πn ((A⊗A)k) = 0 for every k ∈ N satisfying k 6= n.

Hence, every i ∈ N and j ∈ N satisfying i+ j 6= n satisfy

(13.7.4) πn (Ai ⊗Aj) = 0

395.
• The map πn acts as the identity on the n-th graded component (A⊗A)n. In other words,

(13.7.5) πn (z) = z for each z ∈ (A⊗A)n .

Therefore, every i ∈ N and j ∈ N satisfying i+ j = n satisfy

(13.7.6) πn (Ai ⊗Aj) = Ai ⊗Aj

396.

Now, x ∈ An, so that ∆ (x) ∈ ∆ (An) ⊂ (A⊗A)n (since the map ∆ is graded). Also, 1︸︷︷︸
∈A0

⊗ x︸︷︷︸
∈An

∈

A0 ⊗ An ⊂ (A⊗A)0+n (by the definition of the grading on A ⊗ A); this rewrites as 1 ⊗ x ∈ (A⊗A)n.
Similarly, x⊗ 1 ∈ (A⊗A)n. From ∆ (x) = 1⊗ x+ x⊗ 1 + ∆+ (x), we obtain

∆+ (x) = ∆ (x)︸ ︷︷ ︸
∈(A⊗A)n

− 1⊗ x︸ ︷︷ ︸
∈(A⊗A)n

− x⊗ 1︸ ︷︷ ︸
∈(A⊗A)n

∈ (A⊗A)n − (A⊗A)n − (A⊗A)n ⊂ (A⊗A)n .

395Proof of (13.7.4): Let i ∈ N and j ∈ N be such that i + j 6= n. The definition of the grading on A ⊗ A yields

Ai ⊗Aj ⊂ (A⊗A)i+j . Applying the map πn to both sides of this relation, we find

πn (Ai ⊗Aj) ⊂ πn
(

(A⊗A)i+j

)
= 0

(by (13.7.3), applied to k = i+ j). Hence, πn (Ai ⊗Aj) = 0. This proves (13.7.4).
396Proof of (13.7.6): Let i ∈ N and j ∈ N be such that i + j = n. The definition of the grading on A ⊗ A yields

Ai ⊗ Aj ⊂ (A⊗A)i+j = (A⊗A)n (since i+ j = n). Hence, each z ∈ Ai ⊗ Aj satisfies z ∈ (A⊗A)n and therefore πn (z) = z

(by (13.7.5)). In other words, the map πn acts as the identity on the set Ai ⊗ Aj . Therefore, πn (Ai ⊗Aj) = Ai ⊗ Aj . This

proves (13.7.6).
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Hence, (13.7.5) (applied to z = ∆+ (x)) yields πn (∆+ (x)) = ∆+ (x). Thus,

∆+ (x) = πn

∆+ (x)︸ ︷︷ ︸
∈I⊗I

 ∈ πn (I ⊗ I) = πn

 ∑
i>0, j>0

Ai ⊗Aj

 (by (13.7.2))

=
∑

i>0, j>0

πn (Ai ⊗Aj) (since the map πn is k-linear)

=
∑

i>0, j>0;
i+j=n

πn (Ai ⊗Aj)︸ ︷︷ ︸
=Ai⊗Aj

(by (13.7.6))

+
∑

i>0, j>0;
i+j 6=n

πn (Ai ⊗Aj)︸ ︷︷ ︸
=0

(by (13.7.4))

=
∑

i>0, j>0;
i+j=n

Ai ⊗Aj +
∑

i>0, j>0;
i+j 6=n

0

︸ ︷︷ ︸
=0

=
∑

i>0, j>0;
i+j=n

Ai ⊗Aj =

n−1∑
k=1

Ak ⊗An−k.

We thus have shown that ∆ (x) = 1⊗x+x⊗ 1 + ∆+ (x), where ∆+ (x) lies in
∑n−1
k=1 Ak⊗An−k. This solves

Exercise 1.3.20(h).

13.8. Solution to Exercise 1.3.24. Solution to Exercise 1.3.24.
It is easy to solve Exercise 1.3.24 by direct verification of all the axioms on homogeneous elements.

However, we shall take a different (more “functorial”) route instead. The first step on that route is to
generalize the definition of Dq given in the exercise:

Definition 13.8.1. Fix q ∈ k. Let V =
⊕

n∈N Vn be a graded k-module (where the Vn are the homogeneous
components of V ). Let Dq,V : V → V be the k-module endomorphism of V defined by setting

Dq,V (a) = qna for each n ∈ N and each a ∈ Vn.
(It is easy to see that this is well-defined; equivalently, Dq,V could be defined as the direct sum

⊕
n∈N (qn · idVn) :⊕

n∈N Vn →
⊕

n∈N Vn of the maps qn · idVn : Vn → Vn.)

Let us now state a few basic properties of these endomorphisms Dq,V :

Proposition 13.8.2. Fix q ∈ k. Let V and W be two graded k-modules. Let f : V → W be a graded
k-linear map. Then, Dq,W ◦ f = f ◦Dq,V .

Proof of Proposition 13.8.2. Write V as V =
⊕

n∈N Vn (where the Vn are the homogeneous components of
V ). Write W as W =

⊕
n∈NWn (where the Wn are the homogeneous components of W ).

Every element of V is a k-linear combination of homogeneous elements of V (since V is graded). Thus,
if two k-linear maps from V agree on each homogeneous element of V , then these two maps must be equal.

Let v be a homogeneous element of V . Thus, there exists some n ∈ N such that v ∈ Vn. Consider this n.
From v ∈ Vn, we obtain Dq,V (v) = qnv (by the definition of Dq,V ).

But from v ∈ Vn, we also obtain f (v) ∈ f (Vn) ⊂Wn (since the map f is graded).
But the definition of Dq,W shows that Dq,W (a) = qna for each a ∈ Wn. Applying this to a = f (v), we

find Dq,W (f (v)) = qnf (v) (since f (v) ∈Wn). Now, comparing

(Dq,W ◦ f) (v) = Dq,W (f (v)) = qnf (v)

with

(f ◦Dq,V ) (v) = f

Dq,V (v)︸ ︷︷ ︸
=qnv

 = f (qnv) = qnf (v) (since the map f is k-linear) ,

we obtain (Dq,W ◦ f) (v) = (f ◦Dq,V ) (v).
Let us forget that we fixed v. We thus have proved that (Dq,W ◦ f) (v) = (f ◦Dq,V ) (v) for each homoge-

neous element v of V . In other words, the two maps Dq,W ◦ f and f ◦Dq,V (from V to W ) agree on each
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homogeneous element of V . Since these two maps are k-linear, we can thus conclude that they must be
equal (because if two k-linear maps from V agree on each homogeneous element of V , then these two maps
must be equal). In other words, we have Dq,W ◦ f = f ◦Dq,V . This proves Proposition 13.8.2. �

Proposition 13.8.3. Fix q ∈ k. Let V and W be two graded k-modules. Then, Dq,V⊗W = Dq,V ⊗Dq,W .

Proof of Proposition 13.8.3. Let us first show the following:

Claim 1: Let v ∈ V and w ∈W . Then, Dq,V⊗W (v ⊗ w) = (Dq,V ⊗Dq,W ) (v ⊗ w).

[Proof of Claim 1: We must prove the equality Dq,V⊗W (v ⊗ w) = (Dq,V ⊗Dq,W ) (v ⊗ w). This equality
is clearly k-linear in v (that is, both of its sides depend k-linearly on v). Thus, we can WLOG assume that
v is a homogeneous element of V (since v is always a k-linear combination of homogeneous elements of V
(because V is graded)). Assume this.

For the same reason, we can WLOG assume that w is a homogeneous element of W . Assume this.
The element v ∈ V is homogeneous. Thus, there exists some i ∈ N such that v ∈ Vi. Consider this i.

From v ∈ Vi, we obtain Dq,V (v) = qiv (by the definition of Dq,V ).
The element w ∈ W is homogeneous. Thus, there exists some j ∈ N such that w ∈ Wj . Consider this j.

From w ∈Wj , we obtain Dq,W (w) = qjw (by the definition of Dq,W ).
The definition of the grading on V ⊗W yields Vi ⊗Wj ⊂ (V ⊗W )i+j . Hence,

v︸︷︷︸
∈Vi

⊗ w︸︷︷︸
∈Wj

∈ Vi ⊗Wj ⊂ (V ⊗W )i+j .

But the definition of Dq,V⊗W shows that Dq,V⊗W (a) = qna for each n ∈ N and each a ∈ (V ⊗W )n.
Applying this to n = i+ j and a = v ⊗ w, we obtain

Dq,V⊗W (v ⊗ w) = qi+j︸︷︷︸
=qiqj

(v ⊗ w)
(

since v ⊗ w ∈ (V ⊗W )i+j

)
= qiqj (v ⊗ w) = qiv ⊗ qjw = (Dq,V ⊗Dq,W ) (v ⊗ w)since (Dq,V ⊗Dq,W ) (v ⊗ w) = Dq,V (v)︸ ︷︷ ︸

=qiv

⊗Dq,W (w)︸ ︷︷ ︸
=qjw

= qiv ⊗ qjw

 .

This proves Claim 1.]
Now, recall that the k-module V ⊗W is spanned by the pure tensors. Thus, if two k-linear maps from

V ⊗W agree on each pure tensor, then these two maps must be equal.
But Claim 1 shows precisely that the two maps Dq,V⊗W and Dq,V ⊗Dq,W (from V ⊗W to V ⊗W ) agree

on each pure tensor. Since these two maps are k-linear, we can thus conclude that these two maps must be
equal (because if two k-linear maps from V ⊗W agree on each pure tensor, then these two maps must be
equal). In other words, Dq,V⊗W = Dq,V ⊗Dq,W . This proves Proposition 13.8.3. �

We are now ready to solve Exercise 1.3.24:
In Definition 13.8.1, we have defined a map Dq,V for any graded k-module V . Applying this to V = A,

we obtain a map Dq,A. This map Dq,A equals our map Dq (because these two maps are defined in the exact
same way). In other words, we have Dq,A = Dq.

Let m,u,∆, ε be the structure maps of the bialgebra A, labelled as usual (so m : A ⊗ A → A is the
multiplication map, u : k → A is the unit, ∆ : A → A ⊗ A is the comultiplication, and ε : A → k is the
counit). These structure maps m,u,∆, ε are graded (since A is a graded bialgebra).

The map Dq is a k-algebra homomorphism if and only if it is k-linear and makes the diagrams

A
Dq // A

A⊗A

m

OO

Dq⊗Dq // A⊗A

m

OO A
Dq // A

k

u

__

u

??

commute (by the definition of a k-algebra homomorphism). In other words, the map Dq is a k-algebra
homomorphism if and only if it is k-linear and satisfies Dq ◦m = m ◦ (Dq ⊗Dq) and Dq ◦ u = u.
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But Proposition 13.8.3 (applied to V = A and W = A) yields Dq,A⊗A = Dq,A ⊗Dq,A.
The map m : A ⊗ A → A is graded and k-linear; hence, Proposition 13.8.2 (applied to V = A ⊗ A,

W = A and f = m) yields Dq,A ◦ m = m ◦ Dq,A⊗A. In view of Dq,A⊗A = Dq,A ⊗ Dq,A, this rewrites as
Dq,A ◦m = m ◦ (Dq,A ⊗Dq,A). In other words, Dq ◦m = m ◦ (Dq ⊗Dq) (since Dq,A = Dq).

Also, the graded k-module k satisfies Dq,k = idk
397.

The map u : k → A is graded and k-linear; hence, Proposition 13.8.2 (applied to V = k, W = A and
f = u) yields Dq,A ◦ u = u ◦Dq,k︸︷︷︸

=idk

= u. In other words, Dq ◦ u = u (since Dq,A = Dq).

Recall that the map Dq is a k-algebra homomorphism if and only if it is k-linear and satisfies Dq ◦m =
m ◦ (Dq ⊗Dq) and Dq ◦ u = u. Thus, the map Dq is a k-algebra homomorphism (since it is k-linear and
satisfies Dq ◦m = m ◦ (Dq ⊗Dq) and Dq ◦ u = u).

The map Dq is a k-coalgebra homomorphism if and only if it is k-linear and makes the diagrams

A

∆

��

Dq // A

∆

��
A⊗A

Dq⊗Dq // A⊗A

A

ε
��

Dq // A

ε
��

k

commute (by the definition of a k-coalgebra homomorphism). In other words, the map Dq is a k-coalgebra
homomorphism if and only if it is k-linear and satisfies (Dq ⊗Dq) ◦∆ = ∆ ◦Dq and ε ◦Dq = ε.

The map ∆ : A → A ⊗ A is graded and k-linear; hence, Proposition 13.8.2 (applied to V = A, W =
A ⊗ A and f = ∆) yields Dq,A⊗A ◦ ∆ = ∆ ◦ Dq,A. In view of Dq,A⊗A = Dq,A ⊗ Dq,A, this rewrites as
(Dq,A ⊗Dq,A) ◦∆ = ∆ ◦Dq,A. In other words, (Dq ⊗Dq) ◦∆ = ∆ ◦Dq (since Dq,A = Dq).

The map ε : A → k is graded and k-linear; hence, Proposition 13.8.2 (applied to V = A, W = k and
f = ε) yields Dq,k ◦ ε = ε ◦Dq,A︸ ︷︷ ︸

=Dq

= ε ◦Dq. Hence, ε ◦Dq = Dq,k︸︷︷︸
=idk

◦ε = ε.

Recall that the map Dq is a k-coalgebra homomorphism if and only if it is k-linear and satisfies (Dq ⊗Dq)◦
∆ = ∆ ◦ Dq and ε ◦ Dq = ε. Hence, the map Dq is a k-coalgebra homomorphism (since it is k-linear and
satisfies (Dq ⊗Dq) ◦∆ = ∆ ◦Dq and ε ◦Dq = ε).

Now, we know that the map Dq is a k-algebra homomorphism and a k-coalgebra homomorphism. In
other words, Dq is a k-bialgebra homomorphism (by the definition of a k-bialgebra homomorphism). This
solves Exercise 1.3.24.

13.9. Solution to Exercise 1.3.26. Solution to Exercise 1.3.26. (a)

Proof of Proposition 1.3.25. Let θ be the canonical k-module isomorphism k ⊗ k → k (sending each λ ⊗ µ
to λµ). Thus, θ is a k-algebra isomorphism. Our definition of the k-coalgebra A⊗B yields

∆A⊗B = (idA⊗T ⊗ idB) ◦ (∆A ⊗∆B) and(13.9.1)

εA⊗B = θ ◦ (εA ⊗ εB) .(13.9.2)

But recall that A is a k-bialgebra. Thus, the maps ∆A : A → A ⊗ A and εA : A → k are k-algebra
homomorphisms (by the definition of a bialgebra). The same argument (applied to B instead of A) shows
that the maps ∆B : B → B ⊗B and εB : B → k are k-algebra homomorphisms.

Now, Exercise 1.3.6(a) (applied to A′ = A ⊗ A, B′ = B ⊗ B, f = ∆A and g = ∆B) shows that
∆A ⊗∆B : A⊗B → A⊗A⊗B ⊗B is a k-algebra homomorphism.

Also, it is easy to show that if A and B are any two k-algebras, then the map T : A⊗B→ B⊗A is a k-
algebra homomorphism. Applying this to A = A and B = B, we conclude that the map T : A⊗B → B⊗A is

397Proof. Let λ ∈ k. Then, λ ∈ k = k0 (by the definition of the grading on k). But the definition of Dq,k yields

Dq,k (a) = qna for each n ∈ N and each a ∈ kn.

Applying this to n = 0 and a = λ, we obtain Dq,k (λ) = q0λ (since λ ∈ k0). Hence, Dq,k (λ) = q0︸︷︷︸
=1

λ = λ = idk (λ).

Forget that we fixed λ. We thus have shown that Dq,k (λ) = idk (λ) for each λ ∈ k. In other words, Dq,k = idk.



310 DARIJ GRINBERG AND VICTOR REINER

a k-algebra homomorphism. Also, the maps idA : A→ A and idB : B → B are k-algebra homomorphisms.
Now, Exercise 1.3.6(a) (applied to A, A, A ⊗ B, B ⊗ A, idA and T instead of A, A′, B, B′, f and g)
shows that idA⊗T : A ⊗ A ⊗ B → A ⊗ B ⊗ A is a k-algebra homomorphism. Hence, Exercise 1.3.6(a)
(applied to A ⊗ A ⊗ B, A ⊗ B ⊗ A, B, B, idA⊗T and idB instead of A, A′, B, B′, f and g) shows that
idA⊗T ⊗ idB : A⊗A⊗B ⊗B → A⊗B ⊗A⊗B is a k-algebra homomorphism.

We now know that the two maps ∆A⊗∆B : A⊗B → A⊗A⊗B⊗B and idA⊗T ⊗ idB : A⊗A⊗B⊗B →
A⊗B ⊗A⊗B are k-algebra homomorphisms. Hence, their composition (idA⊗T ⊗ idB) ◦ (∆A ⊗∆B) must
also be a k-algebra homomorphism. In light of (13.9.1), this rewrites as follows: The map ∆A⊗B is a
k-algebra homomorphism.

Furthermore, Exercise 1.3.6(a) (applied to A′ = k, B′ = k, f = εA and g = εB) shows that εA ⊗ εB :
A⊗B → k⊗k is a k-algebra homomorphism. We now know that the two maps εA⊗ εB : A⊗B → k⊗k and
θ : k⊗k→ k are k-algebra homomorphisms. Hence, their composition θ◦(εA ⊗ εB) must also be a k-algebra
homomorphism. In light of (13.9.2), this rewrites as follows: The map εA⊗B is a k-algebra homomorphism.

Now, we know that the maps ∆A⊗B and εA⊗B are k-algebra homomorphisms. In other words, A⊗ B is
a k-bialgebra (by the definition of a bialgebra). This proves Proposition 1.3.25. �

Hence, Exercise 1.3.26(a) is solved.
(b) We know that (tg)g∈G is a basis of the k-module kG, whereas (th)h∈H is a basis of the k-module

kH. Thus, (tg ⊗ th)(g,h)∈G×H is a basis of the k-module kG ⊗ kH. Hence, we can define a k-linear map

Φ : kG⊗ kH → k [G×H] by setting

(13.9.3)
(
Φ (tg ⊗ th) = t(g,h) for each (g, h) ∈ G×H

)
.

Consider this map Φ.
The family

(
t(g,h)

)
(g,h)∈G×H is a basis of the k-module k [G×H]. Now, the map Φ is k-linear, and sends

the basis (tg ⊗ th)(g,h)∈G×H of kG⊗kH to the basis
(
t(g,h)

)
(g,h)∈G×H of k [G×H] (by (13.9.3)). Therefore,

this map Φ is an isomorphism of k-modules. Thus, in particular, the map Φ is invertible.
It is easy to see that

(13.9.4) Φ (ab) = Φ (a) Φ (b) for every a ∈ kG⊗ kH and b ∈ kG⊗ kH

398. It is also easy to see that Φ (1kG⊗kH) = 1k[G×H] (since 1kG⊗kH = 1kG ⊗ 1kH = t1G ⊗ t1H and
1k[G×H] = t1G×H = t(1G,1H)). Combining this with (13.9.4), we conclude that Φ is a k-algebra homomorphism
(since the map Φ is k-linear). Hence, Φ is a k-algebra isomorphism (since Φ is invertible).

Furthermore,

(13.9.5) ∆k[G×H] ◦ Φ = (Φ⊗ Φ) ◦∆kG⊗kH

398Proof of (13.9.4): Let a ∈ kG⊗ kH and b ∈ kG⊗ kH be arbitrary. We must prove the equality Φ (ab) = Φ (a) Φ (b).

Since this equality is k-linear in a, we can WLOG assume that a belongs to the basis (tg ⊗ th)(g,h)∈G×H of the k-module

kG⊗ kH. Assume this. Thus, a = tg1 ⊗ th1
for some (g1, h1) ∈ G×H. Consider this (g1, h1).

Since the equality Φ (ab) = Φ (a) Φ (b) is k-linear in b, we can WLOG assume that b belongs to the basis (tg ⊗ th)(g,h)∈G×H
of the k-module kG⊗ kH. Assume this. Thus, b = tg2 ⊗ th2

for some (g2, h2) ∈ G×H. Consider this (g2, h2).
Multiplying the equalities a = tg1 ⊗ th1

and b = tg2 ⊗ th2
, we obtain

ab =
(
tg1 ⊗ th1

) (
tg2 ⊗ th2

)
= tg1 tg2︸ ︷︷ ︸

=tg1g2

⊗ th1
th2︸ ︷︷ ︸

=th1h2

= tg1g2 ⊗ th1h2
.

Applying the map Φ to both sides of this equality, we find

Φ (ab) = Φ
(
tg1g2 ⊗ th1h2

)
= t(g1g2,h1h2) (by the definition of Φ) .

Comparing this with

Φ

 a︸︷︷︸
=tg1⊗th1

Φ

 b︸︷︷︸
=tg2⊗th2

 = Φ
(
tg1 ⊗ th1

)︸ ︷︷ ︸
=t(g1,h1)

(by the definition of Φ)

Φ
(
tg2 ⊗ th2

)︸ ︷︷ ︸
=t(g2,h2)

(by the definition of Φ)

= t(g1,h1)t(g2,h2) = t(g1,h1)(g2,h2) = t(g1g2,h1h2) (since (g1, h1) (g2, h2) = (g1g2, h1h2)) ,

we obtain Φ (ab) = Φ (a) Φ (b). This proves (13.9.4).
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399. A similar argument shows that

εk[G×H] ◦ Φ = εkG⊗kH .

Combining this with (13.9.5), we conclude that Φ is a k-coalgebra homomorphism (since the map Φ is
k-linear). Hence, Φ is a k-coalgebra isomorphism (since Φ is invertible).

Thus, the map Φ is both a k-algebra isomorphism and a k-coalgebra isomorphism. Hence, Φ is a k-
bialgebra isomorphism. Therefore, the k-bialgebra kG ⊗ kH is isomorphic to the k-bialgebra k [G×H]
(through the map Φ). This solves Exercise 1.3.26(b).

13.10. Solution to Exercise 1.4.2. Solution to Exercise 1.4.2. We have to prove that the binary operation
? on Hom (C,A) is associative. In other words, we have to prove that any three elements f , g and h of
Hom (C,A) satisfy f ? (g ? h) = (f ? g) ? h.

So let f , g and h be three elements of Hom (C,A). As usual, denote by m : A⊗A→ A the multiplication
of A, and by ∆ : C → C ⊗ C the comultiplication of C.

By the definition of g ? h, we have g ? h = m ◦ (g ⊗ h) ◦∆, so that

f︸︷︷︸
=idA ◦f◦idC

⊗ (g ? h)︸ ︷︷ ︸
=m◦(g⊗h)◦∆

= (idA ◦f ◦ idC)⊗ (m ◦ (g ⊗ h) ◦∆)

= (idA⊗m) ◦ (f ⊗ (g ⊗ h)) ◦ (idC ⊗∆)

= (idA⊗m) ◦ (f ⊗ g ⊗ h) ◦ (idC ⊗∆) .

399Proof of (13.9.5): Let (g, h) ∈ G×H. Then,

(13.9.6)
(
∆k[G×H] ◦ Φ

)
(tg ⊗ th) = ∆k[G×H]

 Φ (tg ⊗ th)︸ ︷︷ ︸
=t(g,h)

(by the definition of Φ)

 = ∆k[G×H]

(
t(g,h)

)
= t(g,h) ⊗ t(g,h)

(by the definition of the coalgebra structure on k [G×H]).

On the other hand, the definition of the coalgebra structure on kG shows that ∆kG (tg) = tg ⊗ tg . Similarly, ∆kH (th) =

th ⊗ th. But the definition of the coalgebra kG ⊗ kH shows that ∆kG⊗kH = (idkG⊗T ⊗ idkH) ◦ (∆kG ⊗∆kH). Applying
both sides of this equality to tg ⊗ th, we find

∆kG⊗kH (tg ⊗ th) = ((idkG⊗T ⊗ idkH) ◦ (∆kG ⊗∆kH)) (tg ⊗ th) = (idkG⊗T ⊗ idkH)

(∆kG ⊗∆kH) (tg ⊗ th)︸ ︷︷ ︸
=∆kG(tg)⊗∆kH (th)



= (idkG⊗T ⊗ idkH)

∆kG (tg)︸ ︷︷ ︸
=tg⊗tg

⊗∆kH (th)︸ ︷︷ ︸
=th⊗th

 = (idkG⊗T ⊗ idkH) (tg ⊗ tg ⊗ th ⊗ th)

= idkG (tg)︸ ︷︷ ︸
=tg

⊗ T (tg ⊗ th)︸ ︷︷ ︸
=th⊗tg

(by the definition of T )

⊗ idkH (th)︸ ︷︷ ︸
=th

= tg ⊗ th ⊗ tg ⊗ th.

Applying the map Φ⊗ Φ to both sides of this equality, we find

(Φ⊗ Φ) (∆kG⊗kH (tg ⊗ th)) = (Φ⊗ Φ) (tg ⊗ th ⊗ tg ⊗ th) = Φ (tg ⊗ th)︸ ︷︷ ︸
=t(g,h)

(by the definition of Φ)

⊗ Φ (tg ⊗ th)︸ ︷︷ ︸
=t(g,h)

(by the definition of Φ)

= t(g,h) ⊗ t(g,h).

Comparing this with (13.9.6), we obtain(
∆k[G×H] ◦ Φ

)
(tg ⊗ th) = (Φ⊗ Φ) (∆kG⊗kH (tg ⊗ th)) = ((Φ⊗ Φ) ◦∆kG⊗kH) (tg ⊗ th) .

Now, forget that we fixed (g, h). We thus have shown that
(
∆k[G×H] ◦ Φ

)
(tg ⊗ th) = ((Φ⊗ Φ) ◦∆kG⊗kH) (tg ⊗ th) for

every (g, h) ∈ G×H. In other words, the two maps ∆k[G×H] ◦Φ and (Φ⊗ Φ) ◦∆kG⊗kH are equal to each other on the basis

(tg ⊗ th)(g,h)∈G×H of the k-module kG ⊗ kH. Therefore, these two maps must be identical (because they are k-linear). In

other words, ∆k[G×H] ◦ Φ = (Φ⊗ Φ) ◦∆kG⊗kH . This proves (13.9.5).
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But the definition of f ? (g ? h) yields

(13.10.1) f ? (g ? h) = m ◦ (f ⊗ (g ? h))︸ ︷︷ ︸
=(idA⊗m)◦(f⊗g⊗h)◦(idC ⊗∆)

◦∆ = m ◦ (idA⊗m) ◦ (f ⊗ g ⊗ h) ◦ (idC ⊗∆) ◦∆.

On the other hand, f ? g = m ◦ (f ⊗ g) ◦∆ (by the definition of f ? g), so that

(f ? g)︸ ︷︷ ︸
=m◦(f⊗g)◦∆

◦ h︸︷︷︸
=idA ◦h◦idC

= (m ◦ (f ⊗ g) ◦∆)⊗ (idC ◦h ◦ idC)

= (m⊗ idA) ◦ ((f ⊗ g)⊗ h) ◦ (∆⊗ idC)

= (m⊗ idA) ◦ (f ⊗ g ⊗ h) ◦ (∆⊗ idC) .

Now, the definition of (f ? g) ? h yields

(13.10.2) (f ? g) ? h = m ◦ ((f ? g)⊗ h)︸ ︷︷ ︸
=(m⊗idA)◦(f⊗g⊗h)◦(∆⊗idC)

◦∆ = m ◦ (m⊗ idA) ◦ (f ⊗ g ⊗ h) ◦ (∆⊗ idC) ◦∆.

Now, recall that A is a k-algebra, and hence the diagram (1.1.1) commutes (by the definition of a k-
algebra). Thus, m ◦ (idA⊗m) = m ◦ (m⊗ idA). Also, C is a k-coalgebra, and thus the diagram (1.2.1)
commutes (by the definition of a k-coalgebra). Hence, (idC ⊗∆) ◦ ∆ = (∆⊗ idC) ◦ ∆. Now, (13.10.1)
becomes

f ? (g ? h) = m ◦ (idA⊗m)︸ ︷︷ ︸
=m◦(m⊗idA)

◦ (f ⊗ g ⊗ h) ◦ (idC ⊗∆) ◦∆︸ ︷︷ ︸
=(∆⊗idC)◦∆

= m ◦ (m⊗ idA) ◦ (f ⊗ g ⊗ h) ◦ (∆⊗ idC) ◦∆ = (f ? g) ? h

(by (13.10.2)). Thus, f ? (g ? h) = (f ? g) ? h is proven, and the solution of Exercise 1.4.2 is complete.

13.11. Solution to Exercise 1.4.4. Solution to Exercise 1.4.4. (a) There are two ways to solve an exercise
like this: either by explicitly evaluating the two sides on elements of their domain (in this case, it is of course
enough to only evaluate them on pure tensors) or by diagram chasing. In the case of this particular exercise,
both solutions are very easy, so let us show them both.

First solution: Here is the solution by explicit computations:
We need to prove that (f ⊗ g) ? (f ′ ⊗ g′) = (f ? f ′)⊗ (g ? g′). For this, it is clearly enough to show that

((f ⊗ g) ? (f ′ ⊗ g′)) (c⊗ d) = ((f ? f ′)⊗ (g ? g′)) (c⊗ d) for every c ∈ C and d ∈ D. But this can be done
directly: Since ∆ (c⊗ d) =

∑
(c),(d) (c1 ⊗ d1)⊗ (c2 ⊗ d2) (we are using the Sweedler notation here), we have

((f ⊗ g) ? (f ′ ⊗ g′)) (c⊗ d) =
∑

(c),(d)

(f ⊗ g) (c1 ⊗ d1)︸ ︷︷ ︸
=f(c1)⊗g(d1)

· (f ′ ⊗ g′) (c2 ⊗ d2)︸ ︷︷ ︸
=f ′(c2)⊗g′(d2)

=
∑

(c),(d)

(f (c1)⊗ g (d1)) (f ′ (c2)⊗ g′ (d2))

=
∑

(c),(d)

f (c1) f ′ (c2)⊗ g (d1) g′ (d2) .

Compared to

((f ? f ′)⊗ (g ? g′)) (c⊗ d) = (f ? f ′) (c)︸ ︷︷ ︸
=
∑

(c) f(c1)f ′(c2)

⊗ (g ? g′) (d)︸ ︷︷ ︸
=
∑

(d) g(d1)g′(d2)

=

∑
(c)

f (c1) f ′ (c2)

⊗
∑

(d)

g (d1) g′ (d2)


=
∑

(c),(d)

f (c1) f ′ (c2)⊗ g (d1) g′ (d2) ,
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this yields ((f ⊗ g) ? (f ′ ⊗ g′)) (c⊗ d) = ((f ? f ′)⊗ (g ? g′)) (c⊗ d), which completes our solution of Exer-
cise 1.4.4(a).

Second solution: Now comes the solution by diagram chasing. Actually, we will not see any diagrams
here because in this particular case it would be a waste of space to draw them; everything can be done by
a short computation. Denote by T the twist map U ⊗ V → V ⊗ U for any two k-modules U and V . (We
leave U and V out of the notation since these will always be clear from the context.) By the definition of
convolution, we have

(f ⊗ g) ? (f ′ ⊗ g′) = mA⊗B︸ ︷︷ ︸
=(mA⊗mB)◦(id⊗T⊗id)

◦ ((f ⊗ g)⊗ (f ′ ⊗ g′)) ◦ ∆C⊗D︸ ︷︷ ︸
=(id⊗T⊗id)◦(∆C⊗∆D)

= (mA ⊗mB) ◦ (id⊗T ⊗ id) ◦ ((f ⊗ g)⊗ (f ′ ⊗ g′))︸ ︷︷ ︸
=(f⊗f ′⊗g⊗g′)◦(id⊗T⊗id)

◦ (id⊗T ⊗ id) ◦ (∆C ⊗∆D)

= (mA ⊗mB) ◦ (f ⊗ f ′ ⊗ g ⊗ g′) ◦ (id⊗T ⊗ id) ◦ (id⊗T ⊗ id)︸ ︷︷ ︸
=id

(since T 2=id )

◦ (∆C ⊗∆D)

= (mA ⊗mB) ◦ (f ⊗ f ′ ⊗ g ⊗ g′) ◦ (∆C ⊗∆D)

= (mA ◦ (f ⊗ f ′) ◦∆C)︸ ︷︷ ︸
=f?f ′

(by the definition of convolution)

⊗ (mB ◦ (g ⊗ g′) ◦∆D)︸ ︷︷ ︸
=g?g′

(by the definition of convolution)

= (f ? f ′)⊗ (g ? g′) .

This solves Exercise 1.4.4(a) again.
(b) Recall that the products in the k-algebras (Hom (C,A) , ?), (Hom (D,B) , ?) and (Hom (C ⊗D,A⊗B) , ?)

are the convolution products ?. For the sake of consistency, we will also denote by ? the product in the
k-algebra (Hom (C,A) , ?)⊗ (Hom (D,B) , ?).

We need to prove that R is a k-algebra homomorphism. For this, it is clearly enough to show that R
preserves products and sends the unity (uAεC)⊗ (uBεD) of the k-algebra (Hom (C,A) , ?)⊗ (Hom (D,B) , ?)
to the unity uA⊗BεC⊗D of the k-algebra (Hom (C ⊗D,A⊗B) , ?).

Let us check this. First, let us verify that R preserves products. So we need to show that R (F ? F ′) =
R (F )?R (F ′) for all F and F ′ in (Hom (C,A) , ?)⊗ (Hom (D,B) , ?). In proving this, we can WLOG assume
that F and F ′ are pure tensors (since the claim R (F ? F ′) = R (F ) ? R (F ′) is linear in F and F ′). Assume
this, and write F and F ′ as F = f ⊗ g and F ′ = f ′ ⊗ g′, respectively. Then,

R (F ? F ′) = R


(f ⊗ g) ? (f ′ ⊗ g′)︸ ︷︷ ︸

=(f?f ′)⊗(g?g′)
(by the definition of the product in

(Hom(C,A),?)⊗(Hom(D,B),?))


= R ((f ? f ′)⊗ (g ? g′)) = (f ? f ′)⊗ (g ? g′)

(by the definition of R; note that the tensor sign changed its meaning here)

= (f ⊗ g)︸ ︷︷ ︸
=R(f⊗g)

(by the definition of R)

? (f ′ ⊗ g′)︸ ︷︷ ︸
=R(f ′⊗g′)

(by the definition of R)

(by Exercise 1.4.4(a))

= R

f ⊗ g︸ ︷︷ ︸
=F

 ? R

f ′ ⊗ g′︸ ︷︷ ︸
=F ′

 = R (F ) ? R (F ′) ,

where the meaning of the tensor sign (each time standing either for a tensor or for a tensor product of maps)
should be clear from the context. Thus, we are done checking that R preserves products.
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It thus remains to verify that R sends (uAεC) ⊗ (uBεD) to uA⊗BεC⊗D. This is straightforward: If s
denotes the canonical isomorphism k→ k⊗ k, then

R ((uAεC)⊗ (uBεD)) = (uAεC)⊗ (uBεD) = (uA ⊗ uB)︸ ︷︷ ︸
=uA⊗B◦s−1

◦ (εC ⊗ εD)︸ ︷︷ ︸
=s◦εC⊗D

= uA⊗B ◦ s−1 ◦ s ◦ εC⊗D = uA⊗BεC⊗D.

The solution of Exercise 1.4.4(b) is thus complete.

13.12. Solution to Exercise 1.4.5. Solution to Exercise 1.4.5. Let f and g be two elements of Hom (C ⊗D,A).
We are going to show that Φ (f) ? Φ (g) = Φ (f ? g).

Let c ∈ C. Let d ∈ D.
We shall use the Sweedler notation, namely writing ∆C (c) =

∑
(c) c1 ⊗ c2 and ∆D (d) =

∑
(d) d1 ⊗ d2.

(This is a neat opportunity to practice the use of the Sweedler notation in a particularly simple setting. If you
are uncomfortable with the Sweedler notation, you are invited to fix a decomposition ∆C (c) =

∑n
i=1 pi ⊗ qi

of ∆C (c) into a sum of pure tensors, as well as a similar decomposition ∆D (d) =
∑k
j=1 xj ⊗ yj for ∆D (d),

and to replace each appearance of one of the symbols

∑
(c)

, c1, c2,
∑
(d)

, d1, d2

by the symbol

n∑
i=1

, pi, qi,

k∑
j=1

, xj , yj ,

respectively. This will translate our argument into a perfectly valid argument that does not use the Sweedler
notation.)

The definition of the k-coalgebra C ⊗D yields

∆C⊗D = (idC ⊗T ⊗ idD) ◦ (∆C ⊗∆D) .
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Applying both sides of this equality to c⊗ d, we obtain

∆C⊗D (c⊗ d) = ((idC ⊗T ⊗ idD) ◦ (∆C ⊗∆D)) (c⊗ d) = (idC ⊗T ⊗ idD) ((∆C ⊗∆D) (c⊗ d))︸ ︷︷ ︸
=∆C(c)⊗∆D(d)

= (idC ⊗T ⊗ idD)

 ∆C (c)︸ ︷︷ ︸
=
∑

(c) c1⊗c2

⊗ ∆D (d)︸ ︷︷ ︸
=
∑

(d) d1⊗d2



= (idC ⊗T ⊗ idD)


∑

(c)

c1 ⊗ c2

⊗
∑

(d)

d1 ⊗ d2


︸ ︷︷ ︸

=
∑

(c)

∑
(d) c1⊗c2⊗d1⊗d2


= (idC ⊗T ⊗ idD)

∑
(c)

∑
(d)

c1 ⊗ c2 ⊗ d1 ⊗ d2


=
∑
(c)

∑
(d)

(idC ⊗T ⊗ idD) (c1 ⊗ c2 ⊗ d1 ⊗ d2)︸ ︷︷ ︸
=idC(c1)⊗T (c2⊗d1)⊗idD(d2)

=
∑
(c)

∑
(d)

idC (c1)︸ ︷︷ ︸
=c1

⊗ T (c2 ⊗ d1)︸ ︷︷ ︸
=d1⊗c2

(by the definition of T )

⊗ idD (d2)︸ ︷︷ ︸
=d2

=
∑
(c)

∑
(d)

c1 ⊗ d1 ⊗ c2 ⊗ d2.(13.12.1)

Now, the definition of convolution yields

(Φ (f) ? Φ (g)) (c) =
∑
(c)

(Φ (f)) (c1) ? (Φ (g)) (c2)

(since the multiplication in the k-algebra (Hom (D,A) , ?) is ?). Applying both sides of this equality to d,
we obtain

((Φ (f) ? Φ (g)) (c)) (d)

=

∑
(c)

(Φ (f)) (c1) ? (Φ (g)) (c2)

 (d)

=
∑
(c)

((Φ (f)) (c1) ? (Φ (g)) (c2)) (d)︸ ︷︷ ︸
=
∑

(d)((Φ(f))(c1))(d1)·((Φ(g))(c2))(d2)

(by the definition of convolution)

=
∑
(c)

∑
(d)

((Φ (f)) (c1)) (d1)︸ ︷︷ ︸
=f(c1⊗d1)

(by the definition of Φ)

· ((Φ (g)) (c2)) (d2)︸ ︷︷ ︸
=g(c2⊗d2)

(by the definition of Φ)

=
∑
(c)

∑
(d)

f (c1 ⊗ d1) g (c2 ⊗ d2) .(13.12.2)
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On the other hand, the definition of Φ yields

((Φ (f ? g)) (c)) (d)

= (f ? g)︸ ︷︷ ︸
=mA◦(f⊗g)◦∆C⊗D

(by the definition of convolution)

(c⊗ d) = (mA ◦ (f ⊗ g) ◦∆C⊗D) (c⊗ d)

= mA

(f ⊗ g)

 ∆C⊗D (c⊗ d)︸ ︷︷ ︸
=
∑

(c)

∑
(d) c1⊗d1⊗c2⊗d2

(by (13.12.1))


 = mA

(f ⊗ g)

∑
(c)

∑
(d)

c1 ⊗ d1 ⊗ c2 ⊗ d2



=
∑
(c)

∑
(d)

mA

(f ⊗ g) (c1 ⊗ d1 ⊗ c2 ⊗ d2)︸ ︷︷ ︸
=f(c1⊗d1)⊗g(c2⊗d2)

 =
∑
(c)

∑
(d)

mA (f (c1 ⊗ d1)⊗ g (c2 ⊗ d2))︸ ︷︷ ︸
=f(c1⊗d1)g(c2⊗d2)

(by the definition of mA)

=
∑
(c)

∑
(d)

f (c1 ⊗ d1) g (c2 ⊗ d2) .

Comparing this with (13.12.2), we obtain

((Φ (f) ? Φ (g)) (c)) (d) = ((Φ (f ? g)) (c)) (d) .

Now, forget that we fixed d. We thus have shown that ((Φ (f) ? Φ (g)) (c)) (d) = ((Φ (f ? g)) (c)) (d) for
each d ∈ D. In other words, we have (Φ (f) ? Φ (g)) (c) = (Φ (f ? g)) (c).

Now, forget that we fixed c. We thus have shown that (Φ (f) ? Φ (g)) (c) = (Φ (f ? g)) (c) for each c ∈ C.
In other words, we have Φ (f) ? Φ (g) = Φ (f ? g).

Now, forget that we fixed f and g. We thus have proven that every two elements f and g of Hom (C ⊗D,A)
satisfy

(13.12.3) Φ (f) ? Φ (g) = Φ (f ? g) .

Now, let θ be the canonical k-module isomorphism k ⊗ k → k. Then, the definition of the k-coalgebra
C ⊗D yields

εC⊗D = θ ◦ (εC ⊗ εD) .

The unity of the k-algebra (Hom (D,A) , ?) is uA ◦ εD. In other words,

(13.12.4) 1(Hom(D,A),?) = uA ◦ εD.
Similarly,

(13.12.5) 1(Hom(C,(Hom(D,A),?)),?) = u(Hom(D,A),?) ◦ εC
and

(13.12.6) 1(Hom(C⊗D,A),?) = uA ◦ εC⊗D.
Let c ∈ C. Let d ∈ D. The definition of Φ yields

((Φ (uA ◦ εC⊗D)) (c)) (d)

= (uA ◦ εC⊗D) (c⊗ d) = uA

 εC⊗D︸ ︷︷ ︸
=θ◦(εC⊗εD)

(c⊗ d)

 = uA ((θ ◦ (εC ⊗ εD)) (c⊗ d))

= uA

θ
(εC ⊗ εD) (c⊗ d)︸ ︷︷ ︸

=εC(c)⊗εD(d)


 = uA

 θ (εC (c)⊗ εD (d))︸ ︷︷ ︸
=εC(c)εD(d)

(by the definition of θ)

 = uA (εC (c) εD (d))

= εC (c) εD (d) · 1A (by the definition of uA) .
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Comparing this with(u(Hom(D,A),?) ◦ εC
)

(c)︸ ︷︷ ︸
=u(Hom(D,A),?)(εC(c))

 (d) =

 u(Hom(D,A),?) (εC (c))︸ ︷︷ ︸
=εC(c)·1(Hom(D,A),?)

(by the definition of u(Hom(D,A),?))

 (d) =
(
εC (c) · 1(Hom(D,A),?)

)
(d)

= εC (c) · 1(Hom(D,A),?)︸ ︷︷ ︸
=uA◦εD

(d) = εC (c) · (uA ◦ εD) (d)︸ ︷︷ ︸
=uA(εD(d))=εD(d)·1A

(by the definition of uA)

= εC (c) εD (d) · 1A,

we obtain ((Φ (uA ◦ εC⊗D)) (c)) (d) =
((
u(Hom(D,A),?) ◦ εC

)
(c)
)

(d).

Now, forget that we fixed d. We thus have shown that ((Φ (uA ◦ εC⊗D)) (c)) (d) =
((
u(Hom(D,A),?) ◦ εC

)
(c)
)

(d)

for each d ∈ D. In other words, we have (Φ (uA ◦ εC⊗D)) (c) =
(
u(Hom(D,A),?) ◦ εC

)
(c).

Now, forget that we fixed c. We thus have shown that (Φ (uA ◦ εC⊗D)) (c) =
(
u(Hom(D,A),?) ◦ εC

)
(c) for

each c ∈ C. In other words, we have Φ (uA ◦ εC⊗D) = u(Hom(D,A),?) ◦ εC .
Now,

Φ

1(Hom(C⊗D,A),?)︸ ︷︷ ︸
=uA◦εC⊗D

(by (13.12.6))

 = Φ (uA ◦ εC⊗D) = u(Hom(D,A),?) ◦ εC = 1(Hom(C,(Hom(D,A),?)),?)

(by (13.12.5)).
We now know that the map Φ is k-linear and satisfies (13.12.3) and Φ

(
1(Hom(C⊗D,A),?)

)
= 1(Hom(C,(Hom(D,A),?)),?).

Thus, the map Φ is a k-algebra homomorphism

(Hom (C ⊗D,A) , ?)→ (Hom (C, (Hom (D,A) , ?)) , ?) .

Since the map Φ is furthermore invertible (because Φ is a k-module isomorphism), we thus conclude that Φ
is a k-algebra isomorphism

(Hom (C ⊗D,A) , ?)→ (Hom (C, (Hom (D,A) , ?)) , ?) .

This solves Exercise 1.4.5.

13.13. Solution to Exercise 1.4.15. Solution to Exercise 1.4.15.

Proof of Proposition 1.4.14. Let SA and SB be the antipodes of the Hopf algebras A and B. Recall that the
antipode SA of the Hopf algebra A is the 2-sided inverse under ? for the identity map idA ∈ Hom (A,A). In
other words, SA is the multiplicative inverse of idA in the convolution algebra (Hom (A,A) , ?). Therefore,

SA ? idA = 1(Hom(A,A),?) and idA ?SA = 1(Hom(A,A),?).

The same argument (applied to B instead of A) shows that

SB ? idB = 1(Hom(B,B),?) and idB ?SB = 1(Hom(B,B),?).

Now, it is easy to see that

1(Hom(A,A),?) ⊗ 1(Hom(B,B),?) = 1(Hom(A⊗B,A⊗B),?)

(as maps from A⊗B to A⊗B) 400.

400Proof. We know that the unity of the convolution algebra (Hom (A,A) , ?) is uAεA. In other words, 1(Hom(A,A),?) = uAεA.

Similarly, 1(Hom(B,B),?) = uBεB and 1(Hom(A⊗B,A⊗B),?) = uA⊗BεA⊗B .
Now, let s denote the canonical isomorphism k → k ⊗ k. Then, the definition of the k-algebra A ⊗ B yields uA⊗B =

(uA ⊗ uB) ◦ s. On the other hand, the definition of the k-coalgebra A ⊗ B yields εA⊗B = s−1 ◦ (εA ⊗ εB) (since s−1 is the
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Exercise 1.4.4(a) (applied to C = A, D = B, f = SA, f ′ = idA, g = SB and g′ = idB) shows that

(SA ⊗ SB) ? (idA⊗ idB) = (SA ? idA)︸ ︷︷ ︸
=1(Hom(A,A),?)

⊗ (SB ? idB)︸ ︷︷ ︸
=1(Hom(B,B),?)

= 1(Hom(A,A),?) ⊗ 1(Hom(B,B),?) = 1(Hom(A⊗B,A⊗B),?)(13.13.1)

in the convolution algebra Hom (A⊗B,A⊗B).
Exercise 1.4.4(a) (applied to C = A, D = B, f = idA, f ′ = SA, g = idB and g′ = SB) shows that

(idA⊗ idB) ? (SA ⊗ SB) = (idA ?SA)︸ ︷︷ ︸
=1(Hom(A,A),?)

⊗ (idB ?SB)︸ ︷︷ ︸
=1(Hom(B,B),?)

= 1(Hom(A,A),?) ⊗ 1(Hom(B,B),?) = 1(Hom(A⊗B,A⊗B),?)

in the convolution algebra Hom (A⊗B,A⊗B). Combining this with (13.13.1), we conclude that the two
elements SA ⊗ SB and idA⊗ idB of the convolution algebra (Hom (A⊗B,A⊗B) , ?) are mutually inverse.
In other words, SA ⊗ SB is a 2-sided inverse for idA⊗ idB under ?. In other words, SA ⊗ SB is a 2-sided
inverse for idA⊗B under ? (since idA⊗ idB = idA⊗B). Hence, the element idA⊗B ∈ Hom (A⊗B,A⊗B) has
a 2-sided inverse under ? (namely, SA ⊗ SB).

We recall that a bialgebra D is a Hopf algebra if and only if the element idD ∈ Hom (D,D) has a 2-sided
inverse under ?. Applying this to D = A⊗B, we conclude that the bialgebra A⊗B is a Hopf algebra if and
only if the element idA⊗B ∈ Hom (A⊗B,A⊗B) has a 2-sided inverse under ?. Therefore, the bialgebra
A⊗B is a Hopf algebra (since the element idA⊗B ∈ Hom (A⊗B,A⊗B) has a 2-sided inverse under ?).

The antipode of any Hopf algebra D is the 2-sided inverse for idD under ?. Applying this to D = A⊗B,
we conclude that the antipode of A⊗B is the 2-sided inverse for idA⊗B under ?. In other words, the antipode
of A ⊗ B is the map SA ⊗ SB : A ⊗ B → A ⊗ B (since the 2-sided inverse for idA⊗B under ? is the map
SA⊗SB : A⊗B → A⊗B (since SA⊗SB is a 2-sided inverse for idA⊗B under ?)). This completes the proof
of Proposition 1.4.14. �

Thus, Exercise 1.4.15 is solved.

13.14. Solution to Exercise 1.4.19. Solution to Exercise 1.4.19. Let us start with an observation which
is irrelevant to our solution of the exercise. Namely, let us notice that

m(k) (a1 ⊗ a2 ⊗ ...⊗ ak+1) = a1 (a2 (a3 (... (akak+1) ...)))

for any k ≥ 0 and any k+ 1 elements a1, a2, ..., ak+1 of A. The statements of Exercise 1.4.19 are nothing but
different aspects of what is known as “general associativity”401 (although they all fall short of defining an
“arbitrary bracketing” of a (k + 1)-fold product), written in an element-free fashion (that is, written without
any reference to elements of A, but only in terms of maps). For instance, part (a) of the exercise says that
any k + 1 elements a1, a2, ..., ak+1 of A satisfy

a1 (a2 (a3 (... (akak+1) ...))) = (a1 (a2 (a3 (... (aiai+1) ...)))) · (ai+2 (ai+3 (ai+4 (... (akak+1) ...)))) .

However, there is virtue in solving Exercise 1.4.19 in an element-free way (i.e., without referring to elements,
but only referring to maps), because such a solution will automatically yield a solution of Exercise 1.4.20 by
reversing all arrows. So let us show an element-free solution of Exercise 1.4.19.

(a) We will solve Exercise 1.4.19(a) by induction over k.
The induction base (k = 0) is vacuously true, since there exists no 0 ≤ i ≤ k−1 for k = 0. So let us proceed

to the induction step. Let K be a positive integer. We want to prove that the claim of Exercise 1.4.19(a)

canonical isomorphism k⊗ k→ k). Thus, εA ⊗ εB = s ◦ εA⊗B . Now,

1(Hom(A,A),?)︸ ︷︷ ︸
=uAεA

⊗ 1(Hom(B,B),?)︸ ︷︷ ︸
=uBεB

= (uAεA)⊗ (uBεB) = (uA ⊗ uB) ◦ (εA ⊗ εB)︸ ︷︷ ︸
=s◦εA⊗B

= (uA ⊗ uB) ◦ s︸ ︷︷ ︸
=uA⊗B

◦εA⊗B = uA⊗BεA⊗B

= 1(Hom(A⊗B,A⊗B),?).

Qed.
401that is, the rule stating that the product of several elements of a k-algebra does not depend on the bracketing
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holds for k = K, assuming (as the induction hypothesis) that the claim of Exercise 1.4.19(a) holds for
k = K − 1.

We first notice that

(13.14.1) m(K−1) = m ◦
(
m(i) ⊗m((K−1)−1−i)

)
for all 0 ≤ i ≤ (K − 1)− 1. (This is merely a restatement of the induction hypothesis.)

Now fix 0 ≤ i ≤ K − 1. We need to show that

(13.14.2) m(K) = m ◦
(
m(i) ⊗m(K−1−i)

)
.

If i = 0, then (13.14.2) is obviously true402. Hence, we can WLOG assume that we don’t have i = 0.
Assume this. Then, i > 0. Hence, the recursive definition of m(i) yields m(i) = m ◦

(
idA⊗m(i−1)

)
. Thus,

m(i)︸︷︷︸
=m◦(idA⊗m(i−1))

⊗ m(K−1−i)︸ ︷︷ ︸
=idA ◦m(K−1−i)

=
(
m ◦

(
idA⊗m(i−1)

))
⊗
(

idA ◦m(K−1−i)
)

= (m⊗ idA) ◦
((

idA⊗m(i−1)
)
⊗m(K−1−i)

)
= (m⊗ idA) ◦

(
idA⊗m(i−1) ⊗m(K−1−i)

)
(13.14.3)

On the other hand,

idA⊗ m(K−1)︸ ︷︷ ︸
=m◦(m(i−1)⊗m((K−1)−1−(i−1)))

(by (13.14.1), applied to i−1 instead of i)

= idA⊗
(
m ◦

(
m(i−1) ⊗m((K−1)−1−(i−1))

))

= idA⊗
(
m ◦

(
m(i−1) ⊗m(K−1−i)

))
= (idA⊗m) ◦

(
idA⊗

(
m(i−1) ⊗m(K−1−i)

))
= (idA⊗m) ◦

(
idA⊗m(i−1) ⊗m(K−1−i)

)
(13.14.4)

Now, the upper left triangle in the diagram

(13.14.5) A⊗(K+1)

idA⊗m(K−1)

!!

idA⊗m(i−1)⊗m(K−1−i)

))

m(i)⊗m(K−1−i)

..

A⊗A⊗A
idA⊗m

//

m⊗idA
��

A⊗A

m

��
A⊗A

m
// A

is commutative (by (13.14.4)), and so is the lower left triangle (according to (13.14.3)). Since the square
in the diagram (13.14.5) is also commutative (by the commutativity of (1.1.1)), we thus conclude that
the whole diagram (13.14.5) is commutative. Hence, following the outermost arrows in this diagram, we
obtain m ◦

(
idA⊗m(K−1)

)
= m ◦

(
m(i) ⊗m(K−1−i)). Now, the recursive definition of m(K) yields m(K) =

m ◦
(
idA⊗m(K−1)

)
= m ◦

(
m(i) ⊗m(K−1−i)). Hence, (13.14.2) is proven.

We thus have shown that Exercise 1.4.19(a) holds for k = K. This completes the induction step, and thus
Exercise 1.4.19(a) is solved by induction.

402because if i = 0, then m◦

 m(i)︸︷︷︸
=m(0)=idA

⊗ m(K−1−i)︸ ︷︷ ︸
=m(K−1−0)=m(K−1)

 = m◦
(
idA⊗m(K−1)

)
= m(K) (by the inductive definition

of m(K))
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(b) Let k ≥ 1. Then, Exercise 1.4.19(a) (applied to i = k−1) yieldsm(k) = m◦

m(k−1) ⊗m(k−1−(k−1))︸ ︷︷ ︸
=m(0)=idA

 =

m ◦
(
m(k−1) ⊗ idA

)
. Thus, Exercise 1.4.19(b) is solved.

(c) We will solve Exercise 1.4.19(c) by induction over k.
The induction base (k = 0) is vacuously true, since there exists no 0 ≤ i ≤ k−1 for k = 0. So let us proceed

to the induction step. Let K be a positive integer. We want to prove that the claim of Exercise 1.4.19(c)
holds for k = K, assuming (as the induction hypothesis) that the claim of Exercise 1.4.19(c) holds for
k = K − 1.

So let 0 ≤ i ≤ K − 1 be arbitrary. Thus, K − 1 ≥ 0, so that K ≥ 1. We are going to prove that

(13.14.6) m(K) = m(K−1) ◦ (idA⊗i ⊗m⊗ idA⊗(K−1−i)) .

We must be in one of the following three cases:
Case 1: We have i 6= 0.
Case 2: We have i 6= K − 1.
Case 3: We have neither i 6= 0 nor i 6= K − 1.
Let us consider Case 1 first. In this case, we have i 6= 0. Hence, i ≥ 1 (because 0 ≤ i), so that i− 1 ≥ 0.

Thus, we can apply Exercise 1.4.19(c) to K − 1 and i− 1 instead of k and i (because we have assumed that
the claim of Exercise 1.4.19(c) holds for k = K − 1). As a result, we obtain

m(K−1) = m((K−1)−1)︸ ︷︷ ︸
=m(K−2)

◦

idA⊗(i−1) ⊗m⊗ idA⊗((K−1)−1−(i−1))︸ ︷︷ ︸
=id

A⊗(K−1−i)


= m(K−2) ◦ (idA⊗(i−1) ⊗m⊗ idA⊗(K−1−i)) .

But K ≥ 1. Hence, the recursive definition of m(K) yields

m(K) = m ◦

idA⊗ m(K−1)︸ ︷︷ ︸
=m(K−2)◦(id

A⊗(i−1) ⊗m⊗id
A⊗(K−1−i))


= m ◦

(
idA⊗

(
m(K−2) ◦ (idA⊗(i−1) ⊗m⊗ idA⊗(K−1−i))

))
︸ ︷︷ ︸

=(idA⊗m(K−2))◦(idA⊗(id
A⊗(i−1) ⊗m⊗id

A⊗(K−1−i)))

= m ◦
(

idA⊗m(K−2)
)
◦ (idA⊗ (idA⊗(i−1) ⊗m⊗ idA⊗(K−1−i)))︸ ︷︷ ︸

=idA⊗ id
A⊗(i−1) ⊗m⊗id

A⊗(K−1−i)

= m ◦
(

idA⊗m(K−2)
)
◦

idA⊗ idA⊗(i−1)︸ ︷︷ ︸
=idA⊗i

⊗m⊗ idA⊗(K−1−i)


= m ◦

(
idA⊗m(K−2)

)
◦ (idA⊗i ⊗m⊗ idA⊗(K−1−i)) .(13.14.7)

But i ≥ 1 and i ≤ K − 1 together yield 1 ≤ i ≤ K − 1, so that K − 1 ≥ 1. Thus, the recursive definition of
m(K−1) yields

(13.14.8) m(K−1) = m ◦

idA⊗m((K−1)−1)︸ ︷︷ ︸
=m(K−2)

 = m ◦
(

idA⊗m(K−2)
)
.
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Hence, (13.14.7) becomes

m(K) = m ◦
(

idA⊗m(K−2)
)

︸ ︷︷ ︸
=m(K−1)

(by (13.14.8))

◦ (idA⊗i ⊗m⊗ idA⊗(K−1−i))

= m(K−1) ◦ (idA⊗i ⊗m⊗ idA⊗(K−1−i)) .

Thus, (13.14.6) is proven in Case 1.
Let us next consider Case 2. In this case, we have i 6= K − 1. Hence, i < K − 1 (since 0 ≤ k− 1), so that

i ≤ (K − 1)−1 (since i and K−1 are integers). Thus, we can apply Exercise 1.4.19(c) to K−1 instead of k
(because we have assumed that the claim of Exercise 1.4.19(c) holds for k = K − 1). As a result, we obtain

m(K−1) = m((K−1)−1)︸ ︷︷ ︸
=m(K−2)

◦

idA⊗i ⊗m⊗ idA⊗((K−1)−1−i)︸ ︷︷ ︸
=id

A⊗(K−1−i−1)


= m(K−2) ◦ (idA⊗i ⊗m⊗ idA⊗(K−1−i−1)) .

But K ≥ 1. Hence, Exercise 1.4.19(b) (applied to k = K) yields

m(K) = m ◦

 m(K−1)︸ ︷︷ ︸
=m(K−2)◦(idA⊗i ⊗m⊗id

A⊗(K−1−i−1))

⊗ idA


= m ◦

((
m(K−2) ◦ (idA⊗i ⊗m⊗ idA⊗(K−1−i−1))

)
⊗ idA

)
︸ ︷︷ ︸

=(m(K−2)⊗idA)◦((idA⊗i ⊗m⊗id
A⊗(K−1−i−1))⊗idA)

= m ◦
(
m(K−2) ⊗ idA

)
◦ ((idA⊗i ⊗m⊗ idA⊗(K−1−i−1))⊗ idA)︸ ︷︷ ︸

=idA⊗i ⊗m⊗id
A⊗(K−1−i−1) ⊗ idA

= m ◦
(
m(K−2) ⊗ idA

)
◦

idA⊗i ⊗m⊗ idA⊗(K−1−i−1) ⊗ idA︸ ︷︷ ︸
=id

A⊗(K−1−i)


= m ◦

(
m(K−2) ⊗ idA

)
◦ (idA⊗i ⊗m⊗ idA⊗(K−1−i)) .(13.14.9)

But 0 ≤ i ≤ (K − 1)−1 yields 1 ≤ K−1, so that K−1 ≥ 1. Thus, Exercise 1.4.19(b) (applied to k = K−1)
yields

(13.14.10) m(K−1) = m ◦

m((K−1)−1)︸ ︷︷ ︸
=m(K−2)

⊗ idA

 = m ◦
(
m(K−2) ⊗ idA

)
.

Hence, (13.14.9) becomes

m(K) = m ◦
(
m(K−2) ⊗ idA

)
︸ ︷︷ ︸

=m(K−1)

(by (13.14.10))

◦ (idA⊗i ⊗m⊗ idA⊗(K−1−i))

= m(K−1) ◦ (idA⊗i ⊗m⊗ idA⊗(K−1−i)) .

Thus, (13.14.6) is proven in Case 2.
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Let us finally consider Case 3. In this case, we have neither i 6= 0 nor i 6= K − 1. Hence, we have both
i = 0 and i = K − 1. Thus, K − 1 = i = 0, so that K = 1. Thus,

m(K) = m(1) = m ◦

idA⊗ m(1−1)︸ ︷︷ ︸
=m(0)=idA

 (
by the recursive definition of m(1)

)
= m ◦ (idA⊗ idA)︸ ︷︷ ︸

=idA⊗A

= m.

Compared with

m(K−1) ◦ (idA⊗i ⊗m⊗ idA⊗(K−1−i))

= m(0)︸︷︷︸
=idA

◦ (idA⊗0 ⊗m⊗ idA⊗0)︸ ︷︷ ︸
=m

since K − 1 = 0 and i = 0 and K − 1︸ ︷︷ ︸
=0

− i︸︷︷︸
=0

= 0− 0 = 0


= idA ◦m = m,

this yields m(K) = m(K−1) ◦ (idA⊗i ⊗m⊗ idA⊗(K−1−i)). Thus, (13.14.6) is proven in Case 3.
We have now proven (13.14.6) in each of the three Cases 1, 2 and 3. Since these three Cases cover all

possibilities, this shows that (13.14.6) always holds (for all 0 ≤ i ≤ K − 1). In other words, the claim of
Exercise 1.4.19(c) holds for k = K. This completes the induction step. The induction proof of the claim of
Exercise 1.4.19(c) is therefore complete.

(d) Let k ≥ 1. Applying Exercise 1.4.19(c) to i = 0, we obtain

m(k) = m(k−1) ◦ (idA⊗0 ⊗m⊗ idA⊗(k−1−0))︸ ︷︷ ︸
=m⊗id

A⊗(k−1−0)=m⊗id
A⊗(k−1)

= m(k−1) ◦ (m⊗ idA⊗(k−1)) .

Applying Exercise 1.4.19(c) to i = k − 1, we obtain

m(k) = m(k−1) ◦

idA⊗(k−1) ⊗m⊗ idA⊗(k−1−(k−1))︸ ︷︷ ︸
=idA⊗0

 = m(k−1) ◦

idA⊗(k−1) ⊗m⊗ idA⊗0︸ ︷︷ ︸
=m


= m(k−1) ◦ (idA⊗(k−1) ⊗m) .

This solves Exercise 1.4.19(d).

13.15. Solution to Exercise 1.4.20. Solution to Exercise 1.4.20. A solution for Exercise 1.4.20 can be
obtained by reversing all arrows (and renaming A, m and m(k) by C, ∆ and ∆(k)) in the element-free solution
of Exercise 1.4.19 that we gave above.

13.16. Solution to Exercise 1.4.22. Solution to Exercise 1.4.22. (a) We will solve Exercise 1.4.22(a) by
induction over k:

The induction base (k = 0) requires us to prove that the map m
(0)
H : H⊗(0+1) → H is a k-coalgebra

homomorphism. But this is obvious, because m
(0)
H = idH (by the definition of m

(0)
H ).

Now, let us proceed to the induction step. Let K be a positive integer. We want to prove that the claim
of Exercise 1.4.22(a) holds for k = K, assuming (as the induction hypothesis) that the claim of Exercise
1.4.22(a) holds for k = K − 1.

By the axioms of a bialgebra, we know that mH is a k-coalgebra homomorphism (since H is a k-bialgebra).

We have m
(K)
H = mH ◦

(
idH ⊗m(K−1)

H

)
(by the recursive definition of m

(K)
H ). We know that m

(K−1)
H :

H⊗((K−1)+1) → H is a k-coalgebra homomorphism (since the claim of Exercise 1.4.22(a) holds for k = K−1).
Of course, idH : H → H is also a k-coalgebra homomorphism. Exercise 1.3.6(b) (applied to C = H,

C ′ = H, D = H⊗((K−1)+1), D′ = H, f = idH and g = m
(K−1)
H ) thus yields that the map idH ⊗m(K−1)

H :
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H ⊗H⊗((K−1)+1) → H ⊗H is a k-coalgebra homomorphism. Since H ⊗H⊗((K−1)+1) = H⊗(((K−1)+1)+1) =

H⊗(K+1), this rewrites as follows: The map idH ⊗m(K−1)
H : H⊗(K+1) → H ⊗H is a k-coalgebra homomor-

phism. Thus, mH ◦
(

idH ⊗m(K−1)
H

)
is the composition of two k-coalgebra homomorphisms (namely, of mH

and idH ⊗m(K−1)
H ), hence a k-coalgebra homomorphism itself (since the composition of any two k-coalgebra

homomorphisms is a k-coalgebra homomorphism). In other words, m
(K)
H is a k-coalgebra homomorphism

(since m
(K)
H = mH ◦

(
idH ⊗m(K−1)

H

)
). In other words, the claim of Exercise 1.4.22(a) holds for k = K. This

completes the induction step. Thus, Exercise 1.4.22(a) is solved by induction.
(b) The solution of Exercise 1.4.22(b) can be obtained from the solution of Exercise 1.4.22(a) by “reversing

all arrows”. (The details of this are left to the reader.)

(d) Let ` ∈ N. Exercise 1.4.22(a) (applied to ` instead of k) yields that the map m
(`)
H : H⊗(`+1) → H is a

k-coalgebra homomorphism.

For every k-coalgebra C, consider the map ∆
(k)
C : C → C⊗(k+1) (this is the map ∆(k) defined in Ex-

ercise 1.4.20). This map ∆
(k)
C is clearly functorial in C. By this we mean that if C and D are any two

k-coalgebras, and f : C → D is any k-coalgebra homomorphism, then the diagram

C
f //

∆
(k)
C��

D

∆
(k)
D��

C⊗(k+1)

f⊗(k+1)

// D⊗(k+1)

commutes.403 We can apply this to C = H⊗(`+1), D = H and f = m
(`)
H (since m

(`)
H is a k-coalgebra

homomorphism). As a result, we conclude that the diagram

H⊗(`+1)
m

(`)
H //

∆
(k)

H⊗(`+1)��

H

∆
(k)
H

��(
H⊗(`+1)

)⊗(k+1) (
m

(`)
H

)⊗(k+1)

// H⊗(k+1)

commutes. In other words,
(
m

(`)
H

)⊗(k+1)

◦∆
(k)

H⊗(`+1) = ∆
(k)
H ◦m

(`)
H . This solves Exercise 1.4.22(d).

(c) The solution of Exercise 1.4.22(c) can be obtained from the solution of Exercise 1.4.22(d) by “reversing
all arrows”.

13.17. Solution to Exercise 1.4.23. Solution to Exercise 1.4.23. If k = 0, then the statement of Exer-
cise 1.4.23 is clearly true404. Hence, for the rest of this solution, we can WLOG assume that we don’t have
k = 0. Assume this.

403This can be proven by induction over k in a completely straightforward manner.
404Proof. Let k = 0. Then,

f1 ? f2 ? · · · ? fk = f1 ? f2 ? · · · ? f0 = (empty product in (Hom (C,A) , ?))

= 1(Hom(C,A),?) = uAεC

and

m
(k−1)
A ◦ (f1 ⊗ f2 ⊗ · · · ⊗ fk) ◦∆

(k−1)
C = m

(0−1)
A︸ ︷︷ ︸

=m
(−1)
A

=uA

◦ (f1 ⊗ f2 ⊗ · · · ⊗ f0)︸ ︷︷ ︸
=(empty tensor product)=idk

◦ ∆
(k−1)
C︸ ︷︷ ︸

=∆
(−1)
C

=εC

= uA ◦ idk ◦εC = uAεC .

Hence, f1 ? f2 ? · · · ? fk = uAεC = m
(k−1)
A ◦ (f1 ⊗ f2 ⊗ · · · ⊗ fk) ◦∆

(k−1)
C , so that Exercise 1.4.23 is solved in the case when

k = 0.
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We shall show that

(13.17.1) f1 ? f2 ? · · · ? fi = m
(i−1)
A ◦ (f1 ⊗ f2 ⊗ · · · ⊗ fi) ◦∆

(i−1)
C

for every i ∈ {1, 2, ..., k}.
Proof of (13.17.1): We will prove (13.17.1) by induction over i:
Induction base: If i = 1, then (13.17.1) holds.405 This completes the induction base.
Induction step: Let I ∈ {1, 2, ..., k} be such that I < k. Assume that (13.17.1) holds for i = I. We must

prove that (13.17.1) holds for i = I + 1.
Denote the k-linear map f1 ⊗ f2 ⊗ · · · ⊗ fI : C⊗I → A⊗I by g. Then, g = f1 ⊗ f2 ⊗ · · · ⊗ fI . But we

assumed that (13.17.1) holds for i = I. In other words,

f1 ? f2 ? · · · ? fI = m
(I−1)
A ◦ (f1 ⊗ f2 ⊗ · · · ⊗ fI)︸ ︷︷ ︸

=g

◦∆(I−1)
C = m

(I−1)
A ◦ g ◦∆

(I−1)
C .

Now,

f1 ? f2 ? · · · ? fI+1 = (f1 ? f2 ? · · · ? fI) ? fI+1

= mA ◦

(f1 ? f2 ? · · · ? fI)︸ ︷︷ ︸
=m

(I−1)
A ◦g◦∆(I−1)

C

⊗ fI+1︸︷︷︸
=idA ◦fI+1◦idC

 ◦∆C

(by the definition of convolution)

= mA ◦
((
m

(I−1)
A ◦ g ◦∆

(I−1)
C

)
⊗ (idA ◦fI+1 ◦ idC)

)
︸ ︷︷ ︸

=
(
m

(I−1)
A ⊗idA

)
◦(g⊗fI+1)◦

(
∆

(I−1)
C ⊗idC

)
◦∆C

= mA ◦
(
m

(I−1)
A ⊗ idA

)
︸ ︷︷ ︸

=m
(I)
A

(since m
(I)
A =mA◦

(
m

(I−1)
A ⊗idA

)
(by Exercise 1.4.19(b), applied to k=I))

◦

 g︸︷︷︸
=f1⊗f2⊗···⊗fI

⊗fI+1

 ◦ (
∆

(I−1)
C ⊗ idC

)
◦∆C︸ ︷︷ ︸

=∆
(I)
C

(since ∆
(I)
C =

(
∆

(I−1)
C ⊗idC

)
◦∆C

(by Exercise 1.4.20(b), applied to k=I))

= m
(I)
A︸︷︷︸

=m
((I+1)−1)
A

◦ ((f1 ⊗ f2 ⊗ · · · ⊗ fI)⊗ fI+1)︸ ︷︷ ︸
=f1⊗f2⊗···⊗fI+1

◦ ∆
(I)
C︸︷︷︸

=∆
((I+1)−1)
C

= m
((I+1)−1)
A ◦ (f1 ⊗ f2 ⊗ · · · ⊗ fI+1) ◦∆

((I+1)−1)
C .

In other words, (13.17.1) holds for i = I + 1. Thus, the induction step is complete. Therefore, (13.17.1) is
proven by induction.

Recall that we don’t have k = 0. Hence, k > 0, so that k ∈ {1, 2, ..., k}. Therefore, (13.17.1) (applied to
i = k) yields

f1 ? f2 ? · · · ? fk = m
(k−1)
A ◦ (f1 ⊗ f2 ⊗ · · · ⊗ fk) ◦∆

(k−1)
C .

This solves Exercise 1.4.23.

405Proof. Assume that i = 1. Then, since i = 1, we have

f1 ? f2 ? · · · ? fi = f1 ? f2 ? · · · ? f1 = f1.

Also, since i = 1, we have

m
(i−1)
A ◦ (f1 ⊗ f2 ⊗ · · · ⊗ fi) ◦∆

(i−1)
C = m

(1−1)
A︸ ︷︷ ︸

=m
(0)
A

=idA

◦ (f1 ⊗ f2 ⊗ · · · ⊗ f1)︸ ︷︷ ︸
=f1

◦ ∆
(1−1)
C︸ ︷︷ ︸

=∆
(0)
C

=idC

= idA ◦f1 ◦ idC = f1.

Thus, f1 ? f2 ? · · · ? fi = f1 = m
(i−1)
A ◦ (f1 ⊗ f2 ⊗ · · · ⊗ fi) ◦∆

(i−1)
C . Hence, (13.17.1) holds, qed.
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13.18. Solution to Exercise 1.4.28. Solution to Exercise 1.4.28. The solution of this exercise, of course,
proceeds by inverting all the arrows in the proof of Proposition 1.4.10, but this is complicated by the fact
that said proof first has to be rewritten in terms of arrows (i.e., freed of all uses of elements)406. We give
such a solution to Exercise 1.4.28 further below – see the solution of Exercise 1.4.29(c).

Alternatively, solutions of Exercise 1.4.28 can be found in many places: e.g., [1, Thm. 2.1.4(iv)], [107,
III.(3.5)], [149, Prop. I.7.1 2)].

13.19. Solution to Exercise 1.4.29. Solution to Exercise 1.4.29. (a) We shall give two solutions of Exer-
cise 1.4.29(a). The first of these solutions will be a (completely straightforward) generalization of the proof of
Proposition 1.4.10 (which proposition, as we will see in solving Exercise 1.4.29(c), is a particular case of this
exercise). The second solution will be element-free (i.e., it will only manipulate linear maps, but never refer
to elements of C or A), but essentially is just a result of rewriting the first solution in element-free terms.
One of the advantages of an element-free solution is the ease of applying it to more general contexts (such as
tensor categories), but also the possibility of straightforwardly “reversing the arrows” in such a solution and
thus obtaining a solution to Exercise 1.4.29(b). (We will elaborate on this when we solve Exercise 1.4.29(b).)

First solution to Exercise 1.4.29(a). Let r = r?(−1). Then, r = r?(−1) is the ?-inverse of f . Thus,
r ? r = 1(Hom(C,A),?) = uA ◦ εC and similarly r ? r = uA ◦ εC .

Since ∆C is an algebra morphism, one has ∆C (1C) = 1C ⊗ 1C , and thus

(r ? r) (1C) = r (1C)︸ ︷︷ ︸
=1A

(since r is a k-algebra
homomorphism)

r (1C) = r (1C) ,

so that r (1C) = (r ? r)︸ ︷︷ ︸
=uA◦εC

(1C) = (uA ◦ εC) (1C) = 1A.

But we need to prove that r?(−1) is a k-algebra anti-homomorphism. In other words, we need to prove
that r is a k-algebra anti-homomorphism (because r = r?(−1)). In other words, we need to prove that
r (1C) = 1A and that every a ∈ C and b ∈ C satisfy r (ab) = r (b) r (a). Since r (1C) = 1A is already proven,
it thus remains to prove that every a ∈ C and b ∈ C satisfy r (ab) = r (b) r (a).

For this purpose, we shall not fix a and b. Instead, we consider C ⊗ C as a k-coalgebra, and A as a k-
algebra. Then, Hom (C ⊗ C,A) is an associative algebra with a convolution product ~ (to be distinguished
from the convolution ? on Hom (C,A)), having two-sided identity element uAεC⊗C . We define three k-linear
maps f , g and h from C ⊗ C to A as follows:

f (a⊗ b) = r (a) r (b) for all a ∈ C and b ∈ C;

g (a⊗ b) = r (b) r (a) for all a ∈ C and b ∈ C;

h (a⊗ b) = r (ab) for all a ∈ C and b ∈ C.
(These definitions make sense, since each of r (a) r (b), r (b) r (a) and r (ab) depends k-bilinearly on (a, b).)
Thus, f , g and h are three elements of Hom (C ⊗ C,A). We shall now prove that

(13.19.1) h~ f = uAεC⊗C = f ~ g.

Once this equality is proven, we will then obtain

h = h~ (uAεC⊗C) (since uAεC⊗C is the identity element of (Hom (C ⊗ C,A) ,~))

= h~ (f ~ g) = (h~ f)~ g (by the associativity of the convolution ~)

= (uAεC⊗C)~ g = g (since uAεC⊗C is the identity element of (Hom (C ⊗ C,A) ,~)) .

In order to prove (13.19.1), we evaluate the three maps h ~ f , uAεC⊗C and f ~ g on pure tensors
a ⊗ b ∈ C ⊗ C. We use the Sweedler notation in the form ∆(a) =

∑
(a) a1 ⊗ a2 and ∆(b) =

∑
(b) b1 ⊗ b2;

thus, ∆(ab) =
∑

(a),(b) a1b1 ⊗ a2b2 (since ∆ is a k-algebra homomorphism). We then obtain

(uAεC⊗C) (a⊗ b) = uA (εC (a) εC (b)) = uA (εC (ab)) .

406Rewriting a proof in terms of arrows is usually an exercise in category theory (or, rather, category practice); see the First

solution to Exercise 1.2.3 (or the solution to Exercise 1.5.6 further below) for how this is done (in a simple case).
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Furthermore,

(h~ f) (a⊗ b) =
∑

(a),(b)

h (a1 ⊗ b1) f (a2 ⊗ b2) =
∑

(a),(b)

r (a1b1) r (a2) r (b2)︸ ︷︷ ︸
=r(a2b2)

(since r is a k-algebra
homomorphism)

=
∑

(a),(b)

r (a1b1) r (a2b2) = (r ? r)︸ ︷︷ ︸
=uA◦εC

(ab)

since
∑

(a),(b)

a1b1 ⊗ a2b2 = ∆ (ab)


= (uA ◦ εC) (ab) = uA (εC (ab))(13.19.2)

and

(f ~ g) (a⊗ b) =
∑

(a),(b)

f (a1 ⊗ b1) g (a2 ⊗ b2) =
∑

(a),(b)

r (a1) r (b1) r (b2) r (a2)

=
∑
(a)

r (a1)

∑
(b)

r (b1) r (b2)


︸ ︷︷ ︸
=(r?r)(b)=(uA◦εC)(b)

(since r?r=uA◦εC)

r (a2) =
∑
(a)

r (a1) (uA ◦ εC) (b) r (a2)︸ ︷︷ ︸
=εC(b)r(a2)

=
∑
(a)

r (a1) εC (b) r (a2) =

∑
(a)

r (a1) r (a2)


︸ ︷︷ ︸
=(r?r)(a)=(uA◦εC)(a)

(since r?r=uA◦εC)

εC (b)

= (uA ◦ εC) (a) εC (b) = (uA ◦ εC) (a) (uA ◦ εC) (b) = (uA ◦ εC) (ab)

(since uA ◦ εC is a k-algebra homomorphism)

= uA (εC (ab)) .(13.19.3)

These three results being all equal, we thus have shown that the maps h~f , uAεC⊗C and f ~ g are equal on
each pure tensor. Correspondingly, these maps must be identical (since they are k-linear). In other words,
(13.19.1) holds. As explained above, this yields h = g. Thus, every a ∈ C and b ∈ C satisfy

r (ab) = h︸︷︷︸
=g

(a⊗ b) (since h (a⊗ b) is defined to be r (ab))

= g (a⊗ b) = r (b) r (a) (by the definition of g (a⊗ b)) .

As we already know, this completes the solution of Exercise 1.4.29(a).
Second solution to Exercise 1.4.29(a). Let us first recall some linear-algebraic facts. One such fact states

that if U , V , U ′ and V ′ are four k-modules and x : U → U ′ and y : V → V ′ are two k-linear maps, then

(13.19.4) (y ⊗ x) ◦ TU,V = TU ′,V ′ ◦ (x⊗ y) .

For every k-module U , let kan1,U : U → U ⊗ k and kan2,U : U → k ⊗ U be the canonical k-module
isomorphisms. These two isomorphisms are related to each other via the equalities

kan−1
2,U ◦TU,k = kan−1

1,U ,(13.19.5)

kan−1
1,U ◦Tk,U = kan−1

2,U ,(13.19.6)

Tk,U ◦ kan2,U = kan1,U , and(13.19.7)

TU,k ◦ kan1,U = kan2,U(13.19.8)
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for every k-module U . Moreover, every k-modules U and V satisfy

idU ⊗ kan1,V = kan1,U⊗V ,(13.19.9)

kan2,V ⊗ idU = kan2,V⊗U ,(13.19.10)

idU ⊗ kan−1
1,V = kan−1

1,U⊗V ,(13.19.11)

kan−1
2,V ⊗ idU = kan−1

2,V⊗U ,(13.19.12)

idU ⊗ kan2,V = kan1,U ⊗ idV ,(13.19.13)

idU ⊗ kan−1
2,V = kan−1

1,U ⊗ idV .(13.19.14)

Furthermore, if U and V are two k-modules and α : U → V is a k-linear map, then

kan1,V ◦α = (α⊗ idk) ◦ kan1,U ,(13.19.15)

kan2,V ◦α = (idk⊗α) ◦ kan2,U ,(13.19.16)

kan−1
1,V ◦ (α⊗ idk) = α ◦ kan−1

1,U , and(13.19.17)

kan−1
2,V ◦ (idk⊗α) = α ◦ kan−1

2,U .(13.19.18)

Now, let us step to the actual solution of Exercise 1.4.29(a).
Let r = r?(−1). Then, r = r?(−1) is the ?-inverse of f . Thus, r ? r = 1(Hom(C,A),?) = uA ◦ εC and similarly

r ? r = uA ◦ εC .
Recall that C is a k-coalgebra. By the axioms of a k-coalgebra, this shows that

(∆C ⊗ idC) ◦∆C = (idC ⊗∆C) ◦∆C ,

(idC ⊗εC) ◦∆C = kan1,C ;

(εC ⊗ idC) ◦∆C = kan2,C .

Also, recall that C is a k-algebra. By the axioms of a k-algebra, this shows that

mC ◦ (mC ⊗ idC) = mC ◦ (idC ⊗mC) ;

mC ◦ (idC ⊗uC) = kan−1
1,C ;

mC ◦ (uC ⊗ idC) = kan−1
2,C .

Also, recall that C is a k-bialgebra. Due to the axioms of a k-bialgebra, this shows that ∆C and εC are
k-algebra homomorphisms, and that mC and uC are k-coalgebra homomorphisms.

Furthermore, A is a k-algebra. By the axioms of a k-algebra, this shows that

mA ◦ (mA ⊗ idA) = mA ◦ (idA⊗mA) ;

mA ◦ (idA⊗uA) = kan−1
1,A;

mA ◦ (uA ⊗ idA) = kan−1
2,A .

Since εC is a k-algebra homomorphism, we have εC ◦ uC = uk = idk.
Recall that kan1,k is the canonical k-module isomorphism k→ k⊗k. Hence, uC⊗C = (uC ⊗ uC) ◦ kan1,k

(by the definition of the k-algebra C ⊗ C). Also, kan1,k = kan2,k (since each of kan1,k and kan2,k is the
canonical k-module isomorphism k→ k⊗ k).

We know that r : C → A is a k-algebra homomorphism. In other words, r is a k-linear map satisfying
r ◦mC = mA ◦ (r ⊗ r) and r ◦ uC = uA.

Now, we need to prove that r?(−1) is a k-algebra anti-homomorphism. In other words, we need to prove
that r is a k-algebra anti-homomorphism (since r = r?(−1)). In other words, we need to prove that r satisfies
the two equations r ◦ mC = mA ◦ (r ⊗ r) ◦ TC,C and r ◦ uC = uA (because these two equations are what
makes r a k-algebra anti-homomorphism, according to the definition of a “k-algebra anti-homomorphism”).

Let us first prove the equality r ◦ uC = uA.
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We have r ? r = uA ◦ εC , so that (r ? r)︸ ︷︷ ︸
=uA◦εC

◦uC = uA ◦ εC ◦ uC︸ ︷︷ ︸
=idk

= uA. Hence,

uA = (r ? r)︸ ︷︷ ︸
=mA◦(r⊗r)◦∆C

(by the definition
of convolution)

◦uC = mA ◦ (r ⊗ r) ◦ ∆C ◦ uC︸ ︷︷ ︸
=uC⊗C

(since ∆C is a k-algebra
homomorphism)

= mA ◦ (r ⊗ r) ◦ uC⊗C︸ ︷︷ ︸
=(uC⊗uC)◦kan1,k

= mA ◦ (r ⊗ r) ◦ (uC ⊗ uC)︸ ︷︷ ︸
=(r◦uC)⊗(r◦uC)

◦ kan1,k

= mA ◦

 (r ◦ uC)︸ ︷︷ ︸
=uA=uA◦idk

⊗ (r ◦ uC)︸ ︷︷ ︸
=idA ◦(r◦uC)

 ◦ kan1,k︸ ︷︷ ︸
=kan2,k

= mA ◦ ((uA ◦ idk)⊗ (idA ◦ (r ◦ uC)))︸ ︷︷ ︸
=(uA⊗idA)◦(idk⊗(r◦uC))

◦ kan2,k

= mA ◦ (uA ⊗ idA)︸ ︷︷ ︸
=kan−1

2,A

◦ (idk⊗ (r ◦ uC)) ◦ kan2,k︸ ︷︷ ︸
=kan2,A ◦(r◦uC)

(since (13.19.16) (applied to U=k,
V=A and α=r◦uC) yields

kan2,A ◦(r◦uC)=(idk⊗(r◦uC))◦kan2,k )

= kan−1
2,A ◦ kan2,A︸ ︷︷ ︸

=idA

◦ (r ◦ uC)

= r ◦ uC .

Hence, r ◦ uC = uA.
Now, it remains to prove the equality r ◦mC = mA ◦ (r ⊗ r) ◦ TC,C . This is harder. Let us first make

some preparations.
Recall that C⊗C is a k-coalgebra (since C is a k-coalgebra), and A is an k-algebra. Thus, Hom (C ⊗ C,A)

is an associative algebra with respect to convolution. We shall denote the convolution on Hom (C ⊗ C,A)
by ~ rather than by ? (in order to distinguish it from the convolution ? on Hom (C,A)). The algebra
(Hom (C ⊗ C,A) , ?) has two-sided identity element uA ◦ εC⊗C .

We define a k-linear map f : C ⊗ C → A by f = mA ◦ (r ⊗ r).
We define a k-linear map g : C ⊗ C → A by g = mA ◦ TA,A ◦ (r ⊗ r).
We define a k-linear map h : C ⊗ C → A by h = r ◦mC .
Clearly, f , g and h are three elements of Hom (C ⊗ C,A). Our next goal is to prove that

(13.19.19) h~ f = uA ◦ εC⊗C = f ~ g.

Once this equality is proven, we will then obtain

h = h~ (uA ◦ εC⊗C)︸ ︷︷ ︸
=f~g

(by (13.19.19))

(since uA ◦ εC⊗C is the identity element of (Hom (C ⊗ C,A) ,~))

= h~ (f ~ g) = (h~ f)︸ ︷︷ ︸
=uA◦εC⊗C

(by (13.19.19))

~g (by the associativity of the convolution ~)

= (uA ◦ εC⊗C)~ g = g(13.19.20)

(since uA ◦ εC⊗C is the identity element of (Hom (C ⊗ C,A) ,~)) .

So let us concentrate on proving (13.19.19). Let us first notice that

(13.19.21) uA ◦ εC ◦mC = uA ◦ εC⊗C .
407

Next, we make the following observations:

407Proof of (13.19.21): We know that mC is a k-coalgebra homomorphism. Hence, εC ◦mC = εC⊗C . Thus, uA ◦εC ◦mC︸ ︷︷ ︸
=εC⊗C

=

uA ◦ εC⊗C . This proves (13.19.21).
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• First, we notice that

(13.19.22) h~ f = mA ◦ (h⊗ f) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C) .

408

• Next, we notice that

mA ◦ (h⊗ f) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C)

= mA ◦ ((r ◦mC)⊗ (mA ◦ (r ⊗ r))) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C) .(13.19.23)

409

• Next, we have

mA ◦ ((r ◦mC)⊗ (mA ◦ (r ⊗ r))) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C)

= mA ◦ ((r ◦mC)⊗ (r ◦mC)) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C)(13.19.24)

410

• Furthermore, we have

mA ◦ ((r ◦mC)⊗ (r ◦mC)) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C)

= mA ◦ (r ⊗ r) ◦∆C ◦mC(13.19.25)

411

• Moreover, we have

(13.19.26) mA ◦ (r ⊗ r) ◦∆C ◦mC = (r ? r) ◦mC .

408Proof of (13.19.22): By the definition of the convolution h ~ f , we have

h ~ f = mA ◦ (h⊗ f) ◦ ∆C⊗C︸ ︷︷ ︸
=(idC ⊗TC,C⊗idC)◦(∆C⊗∆C)

(by the definition of the k-coalgebra C⊗C)

= mA ◦ (h⊗ f) ◦
(
idC ⊗TC,C ⊗ idC

)
◦ (∆C ⊗∆C) .

This proves (13.19.22).
409Proof of (13.19.23): We have

mA ◦

 h︸︷︷︸
=r◦mC

⊗ f︸︷︷︸
=mA◦(r⊗r)

 ◦ (idC ⊗TC,C ⊗ idC
)
◦ (∆C ⊗∆C)

= mA ◦ ((r ◦mC)⊗ (mA ◦ (r ⊗ r))) ◦
(
idC ⊗TC,C ⊗ idC

)
◦ (∆C ⊗∆C) .

This proves (13.19.23).
410Proof of (13.19.24): We have

mA ◦

(r ◦mC)⊗ (r ◦mC)︸ ︷︷ ︸
=mA◦(r⊗r)

 ◦ (idC ⊗TC,C ⊗ idC
)
◦ (∆C ⊗∆C)

= mA ◦ ((r ◦mC)⊗ (mA ◦ (r ⊗ r))) ◦
(
idC ⊗TC,C ⊗ idC

)
◦ (∆C ⊗∆C) .

This proves (13.19.24).
411Proof of (13.19.25): We have

mA ◦ ((r ◦mC)⊗ (r ◦mC))︸ ︷︷ ︸
=(r⊗r)◦(mC⊗mC)

◦
(
idC ⊗TC,C ⊗ idC

)
◦ (∆C ⊗∆C)

= mA ◦ (r ⊗ r) ◦ (mC ⊗mC) ◦
(
idC ⊗TC,C ⊗ idC

)︸ ︷︷ ︸
=mC⊗C

(since the definition of the k-algebra C⊗C
yields mC⊗C=(mC⊗mC)◦(idC ⊗TC,C⊗idC))

◦ (∆C ⊗∆C)

= mA ◦ (r ⊗ r) ◦ mC⊗C ◦ (∆C ⊗∆C)︸ ︷︷ ︸
=∆C◦mC

(since ∆C :C→C⊗C is a k-algebra homomorphism)

= mA ◦ (r ⊗ r) ◦∆C ◦mC .

This proves (13.19.25).
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412

• Finally, we have

(13.19.27) (r ? r) ◦mC = uA ◦ εC ◦mC .

413

Now, we have

h~ f = mA ◦ (h⊗ f) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C) (by (13.19.22))

= mA ◦ ((r ◦mC)⊗ (mA ◦ (r ⊗ r))) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C) (by (13.19.23))

= mA ◦ ((r ◦mC)⊗ (r ◦mC)) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C) (by (13.19.24))

= mA ◦ (r ⊗ r) ◦∆C ◦mC (by (13.19.25))

= (r ? r) ◦mC (by (13.19.26))

= uA ◦ εC ◦mC (by (13.19.27))

= uA ◦ εC⊗C (by (13.19.21)) .

The first equality in (13.19.19) is thus proven.
We shall next show the second equality in (13.19.19).
For every k ∈ N, let us define the map m(k) : A⊗(k+1) → A as in Exercise 1.4.19. We recall that these

maps m(k) are defined by induction over k, with the induction base m(0) = idA, and with the induction step

(13.19.28) m(k) = mA ◦
(

idA⊗m(k−1)
)

for every k ≥ 1.

414 Out of these maps, we shall only need m(0), m(1), m(2) and m(3). These satisfy the following formulae:

m(0) = idA;(13.19.29)

m(1) = mA;(13.19.30)

m(2) = mA ◦ (mA ⊗ idA) ;(13.19.31)

m(2) = mA ◦ (idA⊗mA) ;(13.19.32)

m(3) = mA ◦ (mA ⊗mA) ;(13.19.33)

m(3) = m(2) ◦ (idA⊗mA ⊗ idA) .(13.19.34)

415

Now, we make the following observations:

412Proof of (13.19.26): The definition of the convolution r?r yields r?r = mA◦(r ⊗ r)◦∆C . Hence, (r ? r)︸ ︷︷ ︸
=mA◦(r⊗r)◦∆C

◦mC =

mA ◦ (r ⊗ r) ◦∆C ◦mC . This proves (13.19.26).
413Proof of (13.19.27): We have (r ? r)︸ ︷︷ ︸

=uA◦εC

◦mC = uA ◦ εC ◦mC . Thus, (13.19.27) is proven.

414This is precisely the definition of these maps given in Exercise 1.4.19, with the only difference that mA was denoted by
m in that exercise.

415Here are proofs for these formulae:
Proof of (13.19.29): The formula (13.19.29) follows immediately from the definition of m(0).

Proof of (13.19.30): Applying (13.19.28) to k = 1, we obtain m(1) = mA ◦

idA⊗ m(1−1)︸ ︷︷ ︸
=m(0)=idA

 = mA ◦ (idA⊗ idA)︸ ︷︷ ︸
=idA⊗A

= mA.

This proves (13.19.30).

Proof of (13.19.32): Applying (13.19.28) to k = 2, we obtain m(2) = mA ◦

idA⊗ m(2−1)︸ ︷︷ ︸
=m(1)=mA

(by (13.19.30))

 = mA ◦ (idA⊗mA). This

proves (13.19.32).

Proof of (13.19.31): From (13.19.32), we obtain m(2) = mA ◦ (idA⊗mA) = mA ◦ (mA ⊗ idA) (since mA ◦ (mA ⊗ idA) =

mA ◦ (idA⊗mA)). This proves (13.19.31).
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• We have

(13.19.35) f ~ g = mA ◦ (f ⊗ g) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C) .

416

• We have

mA ◦ (f ⊗ g) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C)

= m(3) ◦ (r ⊗ r ⊗ r ⊗ r) ◦ (idC ⊗ idC ⊗TC,C) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C) .(13.19.36)

417

Proof of (13.19.33): Applying (13.19.28) to k = 3, we obtain

m(3) = mA ◦

 idA︸︷︷︸
=idA ◦ idA

⊗ m(3−1)︸ ︷︷ ︸
=m(2)=mA◦(idA ⊗mA)

(by (13.19.32))

 = mA ◦ ((idA ◦ idA)⊗ (mA ◦ (idA⊗mA)))︸ ︷︷ ︸
=(idA ⊗mA)◦(idA ⊗(idA ⊗mA))

= mA ◦ (idA⊗mA)︸ ︷︷ ︸
=mA◦(mA⊗idA)

(since mA◦(mA⊗idA)=mA◦(idA ⊗mA))

◦ (idA⊗ (idA⊗mA))︸ ︷︷ ︸
=idA ⊗ idA ⊗mA

=idA⊗A ⊗mA

= mA ◦ (mA ⊗ idA) ◦ (idA⊗A⊗mA)︸ ︷︷ ︸
=(mA◦idA⊗A)⊗(idA ◦mA)

= mA ◦

(mA ◦ idA⊗A)︸ ︷︷ ︸
=mA

⊗ (idA ◦mA)︸ ︷︷ ︸
=mA

 = mA ◦ (mA ⊗mA) .

This proves (13.19.33).

Proof of (13.19.34): Applying (13.19.28) to k = 3, we obtain

m(3) = mA ◦

 idA︸︷︷︸
=idA ◦ idA

⊗ m(3−1)︸ ︷︷ ︸
=m(2)=mA◦(mA⊗idA)

(by (13.19.31))

 = mA ◦ ((idA ◦ idA)⊗ (mA ◦ (mA ⊗ idA)))︸ ︷︷ ︸
=(idA ⊗mA)◦(idA ⊗(mA⊗idA))

= mA ◦ (idA⊗mA)︸ ︷︷ ︸
=m(2)

(by (13.19.32))

◦ (idA⊗ (mA ⊗ idA))︸ ︷︷ ︸
=idA ⊗mA⊗idA

= m(2) ◦ (idA⊗mA ⊗ idA) .

This proves (13.19.34).
416Proof of (13.19.35): By the definition of the convolution f ~ g, we have

f ~ g = mA ◦ (f ⊗ g) ◦ ∆C⊗C︸ ︷︷ ︸
=(idC ⊗TC,C⊗idC)◦(∆C⊗∆C)

(by the definition of the k-coalgebra C⊗C)

= mA ◦ (f ⊗ g) ◦
(
idC ⊗TC,C ⊗ idC

)
◦ (∆C ⊗∆C) .

This proves (13.19.35).
417Proof of (13.19.36): The equality (13.19.4) (applied to U = C, V = C, U ′ = A, V ′ = A, x = r and y = r) yields

(r ⊗ r) ◦ TC,C = TA,A ◦ (r ⊗ r). Hence, g = mA ◦ TA,A ◦ (r ⊗ r)︸ ︷︷ ︸
=(r⊗r)◦TC,C

= mA ◦
(
(r ⊗ r) ◦ TC,C

)
. Now,

mA ◦

 f︸︷︷︸
=mA◦(r⊗r)

⊗ g︸︷︷︸
=mA◦((r⊗r)◦TC,C)



= mA ◦
(
(mA ◦ (r ⊗ r))⊗

(
mA ◦

(
(r ⊗ r) ◦ TC,C

)))︸ ︷︷ ︸
=(mA⊗mA)◦((r⊗r)⊗((r⊗r)◦TC,C))

= mA ◦ (mA ⊗mA)︸ ︷︷ ︸
=m(3)

(by (13.19.33))

◦

 (r ⊗ r)︸ ︷︷ ︸
=(r⊗r)◦idC⊗C

⊗
(
(r ⊗ r) ◦ TC,C

)

= m(3) ◦
(
((r ⊗ r) ◦ idC⊗C)⊗

(
(r ⊗ r) ◦ TC,C

))︸ ︷︷ ︸
=((r⊗r)⊗(r⊗r))◦(idC⊗C ⊗TC,C)

= m(3) ◦ ((r ⊗ r)⊗ (r ⊗ r))︸ ︷︷ ︸
=r⊗r⊗r⊗r

◦

 idC⊗C︸ ︷︷ ︸
=idC ⊗ idC

⊗TC,C


= m(3) ◦ (r ⊗ r ⊗ r ⊗ r) ◦

(
idC ⊗ idC ⊗TC,C

)
.
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• We have

m(3) ◦ (r ⊗ r ⊗ r ⊗ r) ◦ (idC ⊗ idC ⊗TC,C) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C)

= m(2) ◦ (r ⊗ (mA ◦ (r ⊗ r) ◦∆C)⊗ r) ◦ (idC ⊗TC,C) ◦ (∆C ⊗ idC) .(13.19.37)

418

• We have

m(2) ◦ (r ⊗ (mA ◦ (r ⊗ r) ◦∆C)⊗ r) ◦ (idC ⊗TC,C) ◦ (∆C ⊗ idC)

= m(2) ◦ (r ⊗ (uA ◦ εC)⊗ r) ◦ (idC ⊗TC,C) ◦ (∆C ⊗ idC) .(13.19.39)

Hence,

mA ◦ (f ⊗ g)︸ ︷︷ ︸
=m(3)◦(r⊗r⊗r⊗r)◦(idC ⊗ idC ⊗TC,C)

◦
(
idC ⊗TC,C ⊗ idC

)
◦ (∆C ⊗∆C)

= m(3) ◦ (r ⊗ r ⊗ r ⊗ r) ◦
(
idC ⊗ idC ⊗TC,C

)
◦
(
idC ⊗TC,C ⊗ idC

)
◦ (∆C ⊗∆C) .

This proves (13.19.36).
418Proof of (13.19.37): We first notice that

(13.19.38)
(
idC ⊗ idC ⊗TC,C

)
◦
(
idC ⊗TC,C ⊗ idC

)
= idC ⊗TC,C⊗C .

In fact, the two maps
(
idC ⊗ idC ⊗TC,C

)
◦
(
idC ⊗TC,C ⊗ idC

)
and idC ⊗TC,C⊗C are k-linear, and are equal to each other on

pure tensors (in fact, each of them sends every pure tensor a⊗ b⊗ c⊗ d ∈ C ⊗C ⊗C ⊗C to a⊗ c⊗ d⊗ b); therefore, they must
be identical, so that (13.19.38) holds.

Now,

m(3)︸ ︷︷ ︸
=m(2)◦(idA ⊗mA⊗idA)

(by (13.19.34))

◦ (r ⊗ r ⊗ r ⊗ r) ◦
(
idC ⊗ idC ⊗TC,C

)
◦
(
idC ⊗TC,C ⊗ idC

)︸ ︷︷ ︸
=idC ⊗TC,C⊗C
(by (13.19.38))

◦

 ∆C︸︷︷︸
=idC⊗C ◦∆C

⊗ ∆C︸︷︷︸
=∆C◦idC


= m(2) ◦ (idA⊗mA ⊗ idA) ◦ (r ⊗ r ⊗ r ⊗ r) ◦

(
idC ⊗TC,C⊗C

)
◦ ((idC⊗C ◦∆C)⊗ (∆C ◦ idC))︸ ︷︷ ︸

=(idC⊗C ⊗∆C)◦(∆C⊗idC)

= m(2) ◦ (idA⊗mA ⊗ idA) ◦ (r ⊗ r ⊗ r ⊗ r) ◦
(
idC ⊗TC,C⊗C

)
◦ (idC⊗C ⊗∆C) ◦ (∆C ⊗ idC) .

Since

(idA⊗mA ⊗ idA) ◦ (r ⊗ r ⊗ r ⊗ r)︸ ︷︷ ︸
=r⊗(r⊗r)⊗r

= (idA⊗mA ⊗ idA) ◦ (r ⊗ (r ⊗ r)⊗ r) = (idA ◦r)︸ ︷︷ ︸
=r

⊗ (mA ◦ (r ⊗ r))⊗ (idA ◦r)︸ ︷︷ ︸
=r

= r ⊗ (mA ◦ (r ⊗ r))⊗ r

and

(
idC ⊗TC,C⊗C

)
◦

 idC⊗C︸ ︷︷ ︸
=idC ⊗ idC

⊗∆C


=
(
idC ⊗TC,C⊗C

)
◦ (idC ⊗ idC ⊗∆C) =

(
idC ⊗TC,C⊗C

)
◦ (idC ⊗ (idC ⊗∆C))

= (idC ◦ idC)⊗
(
TC,C⊗C ◦ (idC ⊗∆C)

)︸ ︷︷ ︸
=(∆C⊗idC)◦TC,C

(since (∆C⊗idC)◦TC,C=TC,C⊗C◦(idC ⊗∆C)

(by (13.19.4), applied to U=C, V=C,

U′=C, V ′=C⊗C, x=idC and y=∆C))

= (idC ◦ idC)⊗
(
(∆C ⊗ idC) ◦ TC,C

)
= (idC ⊗ (∆C ⊗ idC))︸ ︷︷ ︸

=idC ⊗∆C⊗idC

◦
(
idC ⊗TC,C

)
= (idC ⊗∆C ⊗ idC) ◦

(
idC ⊗TC,C

)
,
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419

• We have

m(2) ◦ (r ⊗ (uA ◦ εC)⊗ r) ◦ (idC ⊗TC,C) ◦ (∆C ⊗ idC)

= mA ◦
(
idA⊗ kan−1

1,A

)
◦ (r ⊗ r ⊗ εC) ◦ (∆C ⊗ idC) .(13.19.40)

420

this becomes

m(3) ◦ (r ⊗ r ⊗ r ⊗ r) ◦
(
idC ⊗ idC ⊗TC,C

)
◦
(
idC ⊗TC,C ⊗ idC

)
◦ (∆C ⊗∆C)

= m(2) ◦ (idA⊗mA ⊗ idA) ◦ (r ⊗ r ⊗ r ⊗ r)︸ ︷︷ ︸
=r⊗(mA◦(r⊗r))⊗r

◦
(
idC ⊗TC,C⊗C

)
◦ (idC⊗C ⊗∆C)︸ ︷︷ ︸

=(idC ⊗∆C⊗idC)◦(idC ⊗TC,C)

◦ (∆C ⊗ idC)

= m(2) ◦ (r ⊗ (mA ◦ (r ⊗ r))⊗ r) ◦ (idC ⊗∆C ⊗ idC)︸ ︷︷ ︸
=(r◦idC)⊗((mA◦(r⊗r))◦∆C)⊗(r◦idC)

◦
(
idC ⊗TC,C

)
◦ (∆C ⊗ idC)

= m(2) ◦

(r ◦ idC)︸ ︷︷ ︸
=r

⊗ ((mA ◦ (r ⊗ r)) ◦∆C)︸ ︷︷ ︸
=mA◦(r⊗r)◦∆C

⊗ (r ◦ idC)︸ ︷︷ ︸
=r

 ◦ (idC ⊗TC,C) ◦ (∆C ⊗ idC)

= m(2) ◦ (r ⊗ (mA ◦ (r ⊗ r) ◦∆C)⊗ r) ◦
(
idC ⊗TC,C

)
◦ (∆C ⊗ idC) .

This proves (13.19.37).
419Proof of (13.19.39): We have r ? r = mA ◦ (r ⊗ r) ◦ ∆C (according to the definition of convolution). Compared with

r ? r = uA ◦ εC , this yields mA ◦ (r ⊗ r) ◦∆C = uA ◦ εC . Thus,

m(2) ◦

r ⊗ (mA ◦ (r ⊗ r) ◦∆C)︸ ︷︷ ︸
=uA◦εC

⊗r

 ◦ (idC ⊗TC,C) ◦ (∆C ⊗ idC)

= m(2) ◦ (r ⊗ (uA ◦ εC)⊗ r) ◦
(
idC ⊗TC,C

)
◦ (∆C ⊗ idC) .

This proves (13.19.39).
420Proof of (13.19.40): We have

r︸︷︷︸
=idA ◦r

⊗ (uA ◦ εC)⊗ r︸︷︷︸
=idA ◦r

= (idA ◦r)⊗ (uA ◦ εC)⊗ (idA ◦r) = (idA⊗uA ⊗ idA) ◦ (r ⊗ εC ⊗ r) ,

so that

m(2)︸ ︷︷ ︸
=mA◦(idA ⊗mA)

(by (13.19.32))

◦ (r ⊗ (uA ◦ εC)⊗ r)︸ ︷︷ ︸
=(idA ⊗uA⊗idA)◦(r⊗εC⊗r)

= mA ◦ (idA⊗mA) ◦ (idA⊗uA ⊗ idA)︸ ︷︷ ︸
=idA ⊗(uA⊗idA)

◦ (r ⊗ εC ⊗ r) = mA ◦ (idA⊗mA) ◦ (idA⊗ (uA ⊗ idA))︸ ︷︷ ︸
=(idA ◦ idA)⊗(mA◦(uA⊗idA))

◦ (r ⊗ εC ⊗ r)

= mA ◦

(idA ◦ idA)︸ ︷︷ ︸
=idA

⊗ (mA ◦ (uA ⊗ idA))︸ ︷︷ ︸
=kan−1

2,A

 ◦ (r ⊗ εC ⊗ r) = mA ◦
(

idA⊗ kan−1
2,A

)
◦ (r ⊗ εC ⊗ r) .

Hence,

m(2) ◦ (r ⊗ (uA ◦ εC)⊗ r)︸ ︷︷ ︸
=mA◦

(
idA ⊗ kan−1

2,A

)
◦(r⊗εC⊗r)

◦
(
idC ⊗TC,C

)
◦ (∆C ⊗ idC)

= mA ◦
(

idA⊗ kan−1
2,A

)
◦ (r ⊗ εC ⊗ r) ◦

(
idC ⊗TC,C

)
◦ (∆C ⊗ idC) .

Since

(r ⊗ εC ⊗ r)︸ ︷︷ ︸
=r⊗(εC⊗r)

◦
(
idC ⊗TC,C

)
= (r ⊗ (εC ⊗ r)) ◦

(
idC ⊗TC,C

)
= (r ◦ idC)︸ ︷︷ ︸

=r=idA ◦r

⊗
(
(εC ⊗ r) ◦ TC,C

)︸ ︷︷ ︸
=TA,k◦(r⊗εC)

(by (13.19.4), applied to U=C, V=C, U′=A, V ′=k,
x=r and y=εC)

= (idA ◦r)⊗
(
TA,k ◦ (r ⊗ εC)

)
=
(
idA⊗TA,k

)
◦ (r ⊗ (r ⊗ εC))︸ ︷︷ ︸

=r⊗r⊗εC

=
(
idA⊗TA,k

)
◦ (r ⊗ r ⊗ εC) ,
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• We have

mA ◦
(
idA⊗ kan−1

1,A

)
◦ (r ⊗ r ⊗ εC) ◦ (∆C ⊗ idC)

= kan−1
1,A ◦ ((mA ◦ (r ⊗ r) ◦∆C)⊗ εC) .(13.19.41)

421

• We have

(13.19.42) kan−1
1,A ◦ ((mA ◦ (r ⊗ r) ◦∆C)⊗ εC) = kan−1

1,A ◦ ((uA ◦ εC)⊗ εC) .

422

• We have

(13.19.43) kan−1
1,A ◦ ((uA ◦ εC)⊗ εC) = mA ◦ ((uA ◦ εC)⊗ (uA ◦ εC))

423

this becomes

m(2) ◦ (r ⊗ (uA ◦ εC)⊗ r) ◦
(
idC ⊗TC,C

)
◦ (∆C ⊗ idC)

= mA ◦
(

idA⊗ kan−1
2,A

)
◦ (r ⊗ εC ⊗ r) ◦

(
idC ⊗TC,C

)︸ ︷︷ ︸
=(idA ⊗TA,k)◦(r⊗r⊗εC)

◦ (∆C ⊗ idC)

= mA ◦
(

idA⊗ kan−1
2,A

)
◦
(
idA⊗TA,k

)
◦ (r ⊗ r ⊗ εC) ◦ (∆C ⊗ idC) .

Since (
idA⊗ kan−1

2,A

)
◦
(
idA⊗TA,k

)
= (idA ◦ idA)︸ ︷︷ ︸

=idA

⊗
(

kan−1
2,A ◦TA,k

)
︸ ︷︷ ︸

=kan−1
1,A

(by (13.19.5), applied to U=A)

= idA⊗ kan−1
1,A,

this becomes

m(2) ◦ (r ⊗ (uA ◦ εC)⊗ r) ◦
(
idC ⊗TC,C

)
◦ (∆C ⊗ idC) = mA ◦

(
idA⊗ kan−1

2,A

)
◦
(
idA⊗TA,k

)
︸ ︷︷ ︸

=idA ⊗ kan−1
1,A

◦ (r ⊗ r ⊗ εC) ◦ (∆C ⊗ idC)

= mA ◦
(

idA⊗ kan−1
1,A

)
◦ (r ⊗ r ⊗ εC) ◦ (∆C ⊗ idC) .

This proves (13.19.40).
421Proof of (13.19.41): The equality (13.19.17) (applied to U = A⊗A, V = A and α = mA) yields kan−1

1,A ◦ (mA ⊗ idk) =

mA ◦ kan−1
1,A⊗A. But idA⊗ kan−1

1,A = kan−1
1,A⊗A (according to (13.19.11), applied to U = A and V = A), and thus mA ◦(

idA⊗ kan−1
1,A

)
︸ ︷︷ ︸

=kan−1
1,A⊗A

= mA ◦ kan−1
1,A⊗A = kan−1

1,A ◦ (mA ⊗ idk). Hence,

mA ◦
(

idA⊗ kan−1
1,A

)
︸ ︷︷ ︸

=kan−1
1,A
◦(mA⊗idk)

◦ (r ⊗ r ⊗ εC) ◦ (∆C ⊗ idC)

= kan−1
1,A ◦ (mA ⊗ idk) ◦ (r ⊗ r ⊗ εC)︸ ︷︷ ︸

=(r⊗r)⊗εC

◦ (∆C ⊗ idC) = kan−1
1,A ◦ (mA ⊗ idk) ◦ ((r ⊗ r)⊗ εC) ◦ (∆C ⊗ idC)︸ ︷︷ ︸

=(mA◦(r⊗r)◦∆C)⊗(idk ◦εC◦idC)

= kan−1
1,A ◦

(mA ◦ (r ⊗ r) ◦∆C)⊗ (idk ◦εC ◦ idC)︸ ︷︷ ︸
=εC

 = kan−1
1,A ◦ ((mA ◦ (r ⊗ r) ◦∆C)⊗ εC) .

This proves (13.19.41).
422Proof of (13.19.42): The definition of convolution yields r ? r = mA ◦ (r ⊗ r) ◦∆C . Compared with r ? r = uA ◦ εC , this

yields mA ◦ (r ⊗ r) ◦ ∆C = uA ◦ εC . Hence, kan−1
1,A ◦

(mA ◦ (r ⊗ r) ◦∆C)︸ ︷︷ ︸
=uA◦εC

⊗εC

 = kan−1
1,A ◦ ((uA ◦ εC)⊗ εC). This proves

(13.19.42).
423Proof of (13.19.43): We have

(uA ◦ εC)⊗ εC︸︷︷︸
=idk ◦εC

= (uA ◦ εC)⊗ (idk ◦εC) = (uA ⊗ idk) ◦ (εC ⊗ εC) ,
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• We have

(13.19.44) mA ◦ ((uA ◦ εC)⊗ (uA ◦ εC)) = uA ◦ εC ◦mC .

424

Now,

f ~ g = mA ◦ (f ⊗ g) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C) (by (13.19.35))

= m(3) ◦ (r ⊗ r ⊗ r ⊗ r) ◦ (idC ⊗ idC ⊗TC,C) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C) (by (13.19.36))

= m(2) ◦ (r ⊗ (mA ◦ (r ⊗ r) ◦∆C)⊗ r) ◦ (idC ⊗TC,C) ◦ (∆C ⊗ idC) (by (13.19.37))

= m(2) ◦ (r ⊗ (uA ◦ εC)⊗ r) ◦ (idC ⊗TC,C) ◦ (∆C ⊗ idC) (by (13.19.39))

= mA ◦
(
idA⊗ kan−1

1,A

)
◦ (r ⊗ r ⊗ εC) ◦ (∆C ⊗ idC) (by (13.19.40))

= kan−1
1,A ◦ ((mA ◦ (r ⊗ r) ◦∆C)⊗ εC) (by (13.19.41))

= kan−1
1,A ◦ ((uA ◦ εC)⊗ εC) (by (13.19.42))

= mA ◦ ((uA ◦ εC)⊗ (uA ◦ εC)) (by (13.19.43))

= uA ◦ εC ◦mC (by (13.19.44))

= uA ◦ εC⊗C (by (13.19.21)) .

The second equality in (13.19.19) is thus proven.
Thus, both equalities in (13.19.19) are proven. Hence, (13.19.19) is proven. As we have already seen, this

yields (13.19.20). In other words, h = g. But h = r ◦mC , so that r ◦mC = h = g = mA ◦ TA,A ◦ (r ⊗ r).
Finally, (13.19.4) (applied to U = C, V = C, U ′ = A, V ′ = A, x = r and y = r) yields (r ⊗ r) ◦ TC,C =

TA,A◦(r ⊗ r). Thus, TA,A◦(r ⊗ r) = (r ⊗ r)◦TC,C , so that r◦mC = mA◦TA,A ◦ (r ⊗ r)︸ ︷︷ ︸
=(r⊗r)◦TC,C

= mA◦(r ⊗ r)◦TC,C .

As we know, this completes the solution of Exercise 1.4.29(a).
[Remark: The second solution of Exercise 1.4.29(a) has been obtained more or less straightforwardly from

the first solution by rewriting it in an element-free fashion. First of all, the maps f , g and h introduced in
the second solution are precisely the maps f , g and h introduced in the first solution, just rewritten in an
element-free way. Also, for example, the equalities (13.19.22), (13.19.23), (13.19.24), (13.19.25), (13.19.26)
and (13.19.27) have been found by rewriting the six equality signs in the computation (13.19.2) in an
element-free way: For instance, the second equality sign in (13.19.2) stands for the equality∑

(a),(b)

h (a1 ⊗ b1) f (a2 ⊗ b2) =
∑

(a),(b)

r (a1b1) r (a2) r (b2) for all a ∈ C and b ∈ C,

so that

kan−1
1,A ◦ ((uA ◦ εC)⊗ εC)︸ ︷︷ ︸

=(uA⊗idk)◦(εC⊗εC)

= kan−1
1,A ◦ (uA ⊗ idk) ◦ (εC ⊗ εC) .

Compared with

mA ◦


 uA︸︷︷︸

=idA ◦uA

◦εC

⊗
 uA︸︷︷︸

=uA◦idk

◦εC


 = mA ◦ ((idA ◦uA ◦ εC)⊗ (uA ◦ idk ◦εC))︸ ︷︷ ︸

=(idA ⊗uA)◦(uA⊗idk)◦(εC⊗εC)

= mA ◦ (idA⊗uA)︸ ︷︷ ︸
=kan−1

1,A

◦ (uA ⊗ idk) ◦ (εC ⊗ εC) = kan−1
1,A ◦ (uA ⊗ idk) ◦ (εC ⊗ εC) ,

this yields kan−1
1,A ◦ ((uA ◦ εC)⊗ εC) = mA ◦ ((uA ◦ εC)⊗ (uA ◦ εC)). Thus, (13.19.43) is solved.

424Proof of (13.19.44): We know that uA is a k-algebra homomorphism (indeed, this is an easy fact that holds whenever

A is a k-algebra). Since the two maps uA and εC are k-algebra homomorphisms, their composition uA ◦ εC is a k-algebra
homomorphism. Consequently, (uA ◦ εC) ◦mC = mA ◦ ((uA ◦ εC)⊗ (uA ◦ εC)) (in fact, this is one of the axioms a k-algebra

homomorphism has to satisfy), so that mA ◦ ((uA ◦ εC)⊗ (uA ◦ εC)) = (uA ◦ εC) ◦mC = uA ◦ εC ◦mC . This proves (13.19.44).
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i.e., for the following equality of maps:the k-linear map C ⊗ C → A sending every a⊗ b to
∑

(a),(b)

h (a1 ⊗ b1) f (a2 ⊗ b2)


=

the k-linear map C ⊗ C → A sending every a⊗ b to
∑

(a),(b)

r (a1b1) r (a2) r (b2)

 .

But upon rewriting these two maps without referring to elements, this takes the form

mA ◦ (h⊗ f) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C)

= mA ◦ ((r ◦mC)⊗ (mA ◦ (r ⊗ r))) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C)

(because the k-linear map C ⊗ C → A sending every a ⊗ b to
∑

(a),(b) h (a1 ⊗ b1) f (a2 ⊗ b2) is mA ◦
(h⊗ f) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C), and the k-linear map C ⊗ C → A sending every a ⊗ b to∑

(a),(b) r (a1b1) r (a2) r (b2) is mA ◦ ((r ◦mC)⊗ (mA ◦ (r ⊗ r))) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C)); and this

is precisely the equality (13.19.23). The process of rewriting a map in an element-free way is not com-
pletely deterministic (e.g., we could also have rewritten the k-linear map C ⊗C → A sending every a⊗ b to∑

(a),(b) r (a1b1) r (a2) r (b2) as m(3) ◦ ((r ◦mC)⊗ r ⊗ r) ◦ (idC ⊗TC,C ⊗ idC) ◦ (∆C ⊗∆C), since m(3) is the

k-linear map A⊗A⊗A→ A sending every a⊗ b⊗ c to abc), but all possible results (for a given map) can
be reduced to each other using purely linear-algebraic formulae425 and various forms of the general associa-
tivity law (such as (13.19.33) and (13.19.34))426. The equalities (13.19.22), (13.19.23), (13.19.24), (13.19.25),
(13.19.26) and (13.19.27) are somewhat more complicated to check than the corresponding equality signs in
(13.19.2), because of the fact that one and the same map can be written in different forms whose equivalence
needs to be proven. However, this additional complexity is straightforward to surmount: each equality,
when rewritten in element-free terms, can be proven by the same arguments as the corresponding equality
that uses elements, combined with purely linear-algebraic formulae like (13.19.4) and (13.19.5) and various
forms of the general associativity law (such as (13.19.33) and (13.19.34)). (There is also a way how to do
element-free computations without such added difficulty, using string diagrams427.)

See the First solution of Exercise 1.2.3 as well as the solution of Exercise 1.5.6 for other examples of how
a proof that uses elements can be rewritten in an element-free fashion.]

(b) We have solved Exercise 1.4.29(a) in an element-free fashion (in the Second solution to Exercise 1.4.29(a)
given above)428. Thus, by “reversing all arrows” in this solution of Exercise 1.4.29(a), we can obtain a solution
to the dual of Exercise 1.4.29(a). Consequently, the dual of Exercise 1.4.29(a) holds.

But it is easy to see that the notion of a k-coalgebra anti-homomorphism is dual to the notion of a
k-algebra anti-homomorphism (i.e., is obtained from the latter notion by “reversing all arrows”), and the
notion of convolution is dual to itself. Hence, the dual of Exercise 1.4.29(a) is the following exercise:

Exercise A: If C is a k-bialgebra, if A is a k-coalgebra, and if r : A → C is a ?-invertible
k-coalgebra homomorphism, then prove that the ?-inverse r?(−1) of r is a k-coalgebra anti-
homomorphism.

425By “purely linear-algebraic formulae”, I mean formulae such as (13.19.4) and (13.19.5) and the identity (β ◦ α)⊗(β′ ◦ α′) =

(β ⊗ β′) ◦ (α⊗ α′) for tensor products of compositions of maps. This kind of formulae hold in any tensor category (at least if
we follow the abuse of notation that allows us to treat the tensor product as associative).

426The reason why we need to use the general associativity law is that, in the first solution, we used unparenthesized products
of more than one element of A (for example, the expression

∑
(a),(b) r (a1b1) r (a2) r (b2) contains the unparenthesized product

r (a1b1) r (a2) r (b2) of three factors). If we would parenthesize all such products in such a way that no more than two factors

are ever multiplied at the same time (e.g., we could replace r (a1b1) r (a2) r (b2) by r (a1b1) (r (a2) r (b2))), and if we would
explicitly use the (non-general) associativity law (xy) z = x (yz) to switch between these parenthesizations, then we would not
have to use general associativity any more when rewriting the proof in an element-free fashion (but, of course, the proof would
be longer).

427See http://ncatlab.org/nlab/show/string+diagram and the references therein.
428To be fully honest, this second solution was not entirely element-free, since we proved the auxiliary equality (13.19.38)

using elements. However, for the purposes of what we are going to do (reversing arrows), this is not problematic, since this
auxiliary equality (13.19.38) can be easily shown to hold with all arrows reversed (the proof is more or less the same as for the

original (13.19.38)).

http://ncatlab.org/nlab/show/string+diagram


HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 337

Exercise 1.4.29(b) immediately follows from this Exercise A (applied to A and C instead of C and A).
Exercise 1.4.29(b) is thus solved.

(c) Alternative proof of Proposition 1.4.10 using Exercise 1.4.29(a). Let A be a Hopf algebra. The

antipode S of this Hopf algebra A is defined as the ?-inverse of the identity map idA; thus, S = id
?(−1)
A .

Hence, the k-algebra homomorphism idA : A → A is ?-invertible. Therefore, Exercise 1.4.29(a) (applied to

C = A and r = idA) yields that the ?-inverse id
?(−1)
A of idA is a k-algebra anti-homomorphism. In other

words, S is a k-algebra anti-homomorphism (since S is the ?-inverse id
?(−1)
A of idA). In other words, S is a

k-algebra anti-endomorphism of A. This proves Proposition 1.4.10.
Alternative solution of Exercise 1.4.28 using Exercise 1.4.29(b). This is analogous to the proof of Propo-

sition 1.4.10 using Exercise 1.4.29(a) just shown, but instead of Exercise 1.4.29(a) we now need to use
Exercise 1.4.29(b).

(d) Alternative proof of Corollary 1.4.12 using Proposition 1.4.26. Let A be a commutative Hopf algebra.
Then, a k-algebra anti-homomorphism A → A is the same thing as a k-algebra homomorphism A → A
(since A is commutative). (This follows from Exercise 1.5.8(a), but it is also nearly trivial to check by hand.)

The k-linear map idA : A→ A is ?-invertible (since A is a Hopf algebra), and its ?-inverse id
?(−1)
A is the

antipode S of A. That is, id
?(−1)
A = S. Applying Exercise 1.4.29(a) to C = A and r = idA, we now conclude

that id
?(−1)
A is a k-algebra anti-homomorphism A→ A (since idA is a k-algebra homomorphism A→ A). In

other words, id
?(−1)
A is a k-algebra homomorphism A → A (since a k-algebra anti-homomorphism A → A

is the same thing as a k-algebra homomorphism A → A). In other words, S is a k-algebra homomorphism

A→ A (since id
?(−1)
A = S). Now, Proposition 1.4.26(a) (applied to H = A and α = S) yields S ◦S = S?(−1).

But S?(−1) = idA (since S = id
?(−1)
A ). Hence, S2 = S ◦ S = S?(−1) = idA. This proves Corollary 1.4.12.

Exercise 1.4.29(d) is solved.
(e) Let us first prepare some general properties of maps between graded k-modules. We begin with two

definitions:

Definition 13.19.1. Let V =
⊕

n∈N Vn be a graded k-module (where the Vn are the homogeneous compo-
nents of V ). Let n ∈ N. Then:

(a) We shall let πn,V : V → Vn denote the canonical projection from V to its n-th graded component Vn.
(This has already been defined in Definition 13.5.1; we are just repeating it here for convenience.)

(b) We shall let ιn,V : Vn → V denote the inclusion map from Vn to V .

Definition 13.19.2. Let V =
⊕

n∈N Vn and W =
⊕

n∈NWn be two graded k-modules (where the Vn and
the Wn are the homogeneous components of V and W , respectively). Let f : V → W be a k-linear map.
For each n ∈ N, let fn : Vn → Wn be the k-linear map πn,W ◦ f ◦ ιn,V : Vn → Wn. We let f be the direct

sum
⊕

n∈N fn :
⊕

n∈N Vn →
⊕

n∈NWn of these k-linear maps fn : Vn → Wn over all n ∈ N; thus, f is a
k-linear map from V to W (since V =

⊕
n∈N Vn and W =

⊕
n∈NWn).

Let us now state a litany of basic properties of this map f :

Proposition 13.19.3. Let V and W be two graded k-modules. Write V as V =
⊕

n∈N Vn (where the Vn
are the homogeneous components of V ). Let f : V →W be a k-linear map. Then,

f (v) = πn,W (f (v)) for each n ∈ N and each v ∈ Vn.

Proof of Proposition 13.19.3. Write W in the form W =
⊕

n∈NWn (where the Wn are the homogeneous

components of W ). Consider the k-linear maps fn defined in Definition 13.19.2; thus, fn = πn,W ◦ f ◦ ιn,V
for each n ∈ N. The map f was defined to be the direct sum

⊕
n∈N fn. Thus, we have

(13.19.45) f (v) = fn (v) for each n ∈ N and each v ∈ Vn.
Now, let n ∈ N and v ∈ Vn. Then, ιn,V (v) = v (since ιn,V is the inclusion map from Vn to V ). Now,
(13.19.45) yields

f (v) = fn︸︷︷︸
=πn,W ◦f◦ιn,V

(by the definition of fn)

(v) = (πn,W ◦ f ◦ ιn,V ) (v) = πn,W

f
ιn,V (v)︸ ︷︷ ︸

=v

 = πn,W (f (v)) .
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This proves Proposition 13.19.3. �

Proposition 13.19.4. Let V and W be two graded k-modules. Let f : V →W be a graded k-linear map.
Then, f = f .

Proof of Proposition 13.19.4. Write V as V =
⊕

n∈N Vn (where the Vn are the homogeneous components of
V ). Write W as W =

⊕
n∈NWn (where the Wn are the homogeneous components of W ).

Let v be a homogeneous element of V . Thus, there exists some n ∈ N such that v ∈ Vn. Consider this n.

We have f (Vn) ⊂Wn (since the map f is graded). Hence, f

 v︸︷︷︸
∈Vn

 ∈ f (Vn) ⊂Wn.

But πn,W (w) = w for each w ∈ Wn (since πn,W is the canonical projection from W to its n-th graded
component Wn). Applying this to w = f (v), we obtain πn,W (f (v)) = f (v) (since f (v) ∈Wn). Now, recall
that v ∈ Vn; hence, Proposition 13.19.3 yields

f (v) = πn,W (f (v)) = f (v) .

Forget that we fixed v. We thus have shown that f (v) = f (v) for each homogeneous element v of V . In
other words, the two k-linear maps f and f (from V to W ) agree on each homogeneous element of V .

But V is a graded k-module. Hence, each element of V is a k-linear combination of homogeneous elements
of V . Therefore, if two k-linear maps from V agree on each homogeneous element of V , then these two maps
must be equal. Hence, the two k-linear maps f and f (from V to W ) must be equal (because we have
shown that they agree on each homogeneous element of V ). In other words, f = f . This proves Proposition
13.19.4. �

Proposition 13.19.5. Let V and W be two graded k-modules. Let f : V → W be a k-linear map. Then,
the k-linear map f : V →W is graded.

Proof of Proposition 13.19.5. Write V and W in the form V =
⊕

n∈N Vn and W =
⊕

n∈NWn (where the Vn
and the Wn are the homogeneous components of V and W , respectively). Consider the k-linear maps fn
defined in Definition 13.19.2; thus, fn = πn,W ◦ f ◦ ιn,V for each n ∈ N. The map f was defined to be the

direct sum
⊕

n∈N fn. Thus, we have

(13.19.46) f (v) = fn (v) for each n ∈ N and each v ∈ Vn.

Let n ∈ N. We have πn,W (W ) ⊂ Wn (since πn,W is the canonical projection from W to its n-th graded
component Wn). Now,

f (Vn) =

 f (v)︸︷︷︸
=fn(v)

(by (13.19.46))

| v ∈ Vn

 =
{
fn (v) | v ∈ Vn

}
= fn︸︷︷︸

=πn,W ◦f◦ιn,V
(by the definition of fn)

(Vn)

= (πn,W ◦ f ◦ ιn,V ) (Vn) = πn,W

f (ιn,V (Vn))︸ ︷︷ ︸
⊂W

 ⊂ πn,W (W ) ⊂Wn.

Now, forget that we fixed n. We thus have shown that f (Vn) ⊂Wn for every n ∈ N. In other words, the
k-linear map f : V →W is graded. This proves Proposition 13.19.5. �

Proposition 13.19.6. Let U , V and W be three graded k-modules. Let f : V →W and g : U → V be two
k-linear maps such that f is graded. Then, f ◦ g = f ◦ g.

Proof of Proposition 13.19.6. Write U in the form U =
⊕

n∈N Un (where the Un are the homogeneous
components of U).

Every element of U is a k-linear combination of homogeneous elements of U (since U is graded). Thus, if
two k-linear maps from U agree on each homogeneous element of U , then these two maps must be equal.
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Let u be a homogeneous element of U . Thus, there exists some n ∈ N such that u ∈ Un. Consider this n.
Then, Proposition 13.19.3 (applied to U , V , Um, g and u instead of V , W , Vm, f and v) yields

(13.19.47) g (u) = πn,V (g (u)) .

Also, f ◦ g : U → W is a k-linear map; thus, Proposition 13.19.3 (applied to U , Um, f ◦ g and u instead of
V , Vm, f and v) yields f ◦ g (u) = πn,W ((f ◦ g) (u)). Hence,

f ◦ g (u) = πn,W ((f ◦ g) (u)) = πn,W (f (g (u))) = f

πn,V (g (u))︸ ︷︷ ︸
=g(u)

(by (13.19.47))


(by Proposition 13.5.3, applied to v = g (u) and m = n)

= f (g (u)) = (f ◦ g) (u) .

Now, forget that we fixed u. We thus have proved that f ◦ g (u) = (f ◦ g) (u) for each homogeneous
element u of U . In other words, the two maps f ◦ g and f ◦ g (from U to W ) agree on each homogeneous
element of U . Since these two maps are k-linear, we can thus conclude that they must be equal (because if
two k-linear maps from U agree on each homogeneous element of U , then these two maps must be equal).
In other words, we have f ◦ g = f ◦ g. This proves Proposition 13.19.6. �

Proposition 13.19.7. Let U , V and W be three graded k-modules. Let f : V →W and g : U → V be two
k-linear maps such that g is graded. Then, f ◦ g = f ◦ g.

Proof of Proposition 13.19.7. Write U and V in the forms U =
⊕

n∈N Un and V =
⊕

n∈N Vn (where the Un
and Vn are the homogeneous components of U and V , respectively).

Every element of U is a k-linear combination of homogeneous elements of U (since U is graded). Thus, if
two k-linear maps from U agree on each homogeneous element of U , then these two maps must be equal.

Let u be a homogeneous element of U . Thus, there exists some n ∈ N such that u ∈ Un. Consider this n.
From u ∈ Un, we obtain g (u) ∈ g (Un) ⊂ Vn (since g is a graded map). Hence, Proposition 13.19.3 (applied
to v = g (u)) yields

(13.19.48) f (g (u)) = πn,W (f (g (u))) .

Also, f ◦ g : U → W is a k-linear map; thus, Proposition 13.19.3 (applied to U , Um, f ◦ g and u instead of
V , Vm, f and v) yields f ◦ g (u) = πn,W ((f ◦ g) (u)) = πn,W (f (g (u))). Comparing this with (13.19.48), we

find f ◦ g (u) = f (g (u)) =
(
f ◦ g

)
(u).

Now, forget that we fixed u. We thus have proved that f ◦ g (u) =
(
f ◦ g

)
(u) for each homogeneous

element u of U . In other words, the two maps f ◦ g and f ◦ g (from U to W ) agree on each homogeneous
element of U . Since these two maps are k-linear, we can thus conclude that they must be equal (because if
two k-linear maps from U agree on each homogeneous element of U , then these two maps must be equal).
In other words, we have f ◦ g = f ◦ g. This proves Proposition 13.19.7. �

Remark 13.19.8. Proposition 13.19.6 and Proposition 13.19.7 cannot be generalized to “f ◦ g = f ◦ g for any
two (not necessarily graded) k-linear maps f : V → W and g : U → V ”. Counterexamples are easy to find

(e.g., take U = k [x], V = k [x], W = k [x], f
(
xi
)

= xi+1, g
(
xj
)

=

{
xj−1, if j > 0;

0, if j = 0
).

Proposition 13.19.9. Let U , V , X and Y be four graded k-modules. Let f : U → V and g : X → Y be
two k-linear maps such that f is graded. Then, g ⊗ f = g ⊗ f .

Proof of Proposition 13.19.9. Write U , V , X and Y in the forms U =
⊕

n∈N Un, V =
⊕

n∈N Vn, X =⊕
n∈NXn and Y =

⊕
n∈N Yn (where the Un, Vn, Xn and Yn are the homogeneous components of U , V , X and

Y , respectively). Write X⊗U and Y ⊗V in the forms X⊗U =
⊕

n∈N (X ⊗ U)n and Y ⊗V =
⊕

n∈N (Y ⊗ V )n
(where the (X ⊗ U)n and (Y ⊗ V )n are the homogeneous components of X ⊗ U and Y ⊗ V , respectively).
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Recall that the grading on X ⊗ U is defined in such a way that

(13.19.49) (X ⊗ U)n =
⊕

(i,j)∈N2;
i+j=n

Xi ⊗ Uj

for each n ∈ N. Likewise, the grading on Y ⊗ V is defined in such a way that

(13.19.50) (Y ⊗ V )n =
⊕

(i,j)∈N2;
i+j=n

Yi ⊗ Vj

for each n ∈ N.
If n ∈ N, then

(13.19.51) πn,X (Xm) = 0 for every m ∈ N satisfying m 6= n

(since the map πn,X is the canonical projection from X to its n-th graded component Xn, and thus annihilates
all graded components of X other than Xn). The same reasoning (applied to X ⊗U and (X ⊗ U)m instead
of X and Xm) shows that if n ∈ N, then

(13.19.52) πn,X⊗U ((X ⊗ U)m) = 0 for every m ∈ N satisfying m 6= n.

If n ∈ N, then

(13.19.53) πn,Y (Ym) = 0 for every m ∈ N satisfying m 6= n

(since the map πn,Y is the canonical projection from Y to its n-th graded component Yn, and thus annihilates
all graded components of Y other than Yn). The same reasoning (applied to Y ⊗ V and (Y ⊗ V )m instead
of Y and Ym) shows that if n ∈ N, then

(13.19.54) πn,Y⊗V ((Y ⊗ V )m) = 0 for every m ∈ N satisfying m 6= n.

We shall now prove the following:

Claim 1: Let q ∈ N. Let v ∈ Vq. Let y ∈ Y . Let p ∈ N. Then,

πp+q,Y⊗V (y ⊗ v) = πp,Y (y)⊗ v.

[Proof of Claim 1: We have y ∈ Y =
⊕

n∈N Yn. Hence, we can write y in the form y =
∑
n∈N yn for some

family (yn)n∈N ∈
∏
n∈N Yn with the property that all but finitely many n ∈ N satisfy yn = 0. Consider this

family (yn)n∈N. Note that

(13.19.55) yn ∈ Yn for each n ∈ N

(since (yn)n∈N ∈
∏
n∈N Yn).

It is easy to see that

(13.19.56) yn ⊗ v ∈ (Y ⊗ V )n+q for each n ∈ N

429.
It is easy to see that

(13.19.58) πp,Y (y) = yp

429Proof of (13.19.56): Let n ∈ N. Applying (13.19.50) to n+ q instead of n, we find

(13.19.57) (Y ⊗ V )n+q =
⊕

(i,j)∈N2;
i+j=n+q

Yi ⊗ Vj .

But Yn ⊗ Vq is an addend of the direct sum
⊕

(i,j)∈N2;
i+j=n+q

Yi ⊗ Vj (namely, the addend for (i, j) = (n, q)), since (n, q) ∈ N2 and

n + q = n + q. Hence, Yn ⊗ Vq ⊂
⊕

(i,j)∈N2;
i+j=n+q

Yi ⊗ Vj . In view of (13.19.57), this rewrites as Yn ⊗ Vq ⊂ (Y ⊗ V )n+q . But

(13.19.55) yields yn ∈ Yn. Combining this with v ∈ Vq , we find yn ⊗ v ∈ Yn ⊗ Vq ⊂ (Y ⊗ V )n+q . This proves (13.19.56).
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430. We can also see that
πp+q,Y⊗V (y ⊗ v) = yp ⊗ v

431. Hence,
πp+q,Y⊗V (y ⊗ v) = yp︸︷︷︸

=πp,Y (y)
(by (13.19.58))

⊗v = πp,Y (y)⊗ v.

This proves Claim 1.]

430Proof. Applying the map πp,Y to both sides of the equality y =
∑
n∈N yn, we obtain

πp,Y (y) = πp,Y

∑
n∈N

yn

 =
∑
n∈N

πp,Y (yn)
(
since the map πp,Y is k-linear

)
= πp,Y (yp) +

∑
n∈N;
n 6=p

πp,Y (yn)(13.19.59)

(here, we have split off the addend for n = p from the sum).
But (13.19.55) (applied to n = p) yields yp ∈ Yp. Recall that πp,Y is the canonical projection from Y to its p-th graded

component Yp. Hence, πp,Y fixes every element of Yp. In other words, we have πp,Y (a) = a for each a ∈ Yp. Applying this to
a = yp, we obtain πp,Y (yp) = yp.

The map πp,Y is the canonical projection from Y to its p-th graded component Yp. Hence, πp,Y annihilates all graded

components of Y other than Yp. In other words,

(13.19.60) πp,Y (Yn) = 0 for every n ∈ N satisfying n 6= p.

Now, each n ∈ N satisfying n 6= p satisfies

πp,Y

 yn︸︷︷︸
∈Yn

(by (13.19.55))

 ∈ πp,Y (Yn) = 0 (by (13.19.60))

and thus

(13.19.61) πp,Y (yn) = 0.

Now, (13.19.59) becomes

πp,Y (y) = πp,Y (yp)︸ ︷︷ ︸
=yp

+
∑
n∈N;
n 6=p

πp,Y (yn)︸ ︷︷ ︸
=0

(by (13.19.61))

= yp +
∑
n∈N;
n 6=p

0

︸ ︷︷ ︸
=0

= yp.

431Proof. We have

y︸︷︷︸
=
∑
n∈N yn

⊗v =

∑
n∈N

yn

⊗ v =
∑
n∈N

yn ⊗ v.

Applying the map πp+q,Y⊗V to both sides of this equality, we obtain

πp+q,Y⊗V (y ⊗ v) = πp+q,Y⊗V

∑
n∈N

yn ⊗ v

 =
∑
n∈N

πp+q,Y⊗V (yn ⊗ v)
(
since the map πp+q,Y⊗V is k-linear

)
= πp+q,Y⊗V (yp ⊗ v) +

∑
n∈N;
n 6=p

πp+q,Y⊗V (yn ⊗ v)(13.19.62)

(here, we have split off the addend for n = p from the sum).
But (13.19.56) (applied to n = p) yields yp⊗v ∈ (Y ⊗ V )p+q . Recall that πp+q,Y⊗V is the canonical projection from Y ⊗V

to its (p+ q)-th graded component (Y ⊗ V )p+q . Hence, πp+q,Y⊗V fixes every element of (Y ⊗ V )p+q . In other words, we have

πp+q,Y⊗V (a) = a for each a ∈ (Y ⊗ V )p+q . Applying this to a = yp ⊗ v, we obtain πp+q,Y⊗V (yp ⊗ v) = yp ⊗ v.

The map πp+q,Y⊗V is the canonical projection from Y ⊗V to its (p+ q)-th graded component (Y ⊗ V )p+q . Hence, πp+q,Y⊗V
annihilates all graded components of Y ⊗ V other than (Y ⊗ V )p+q . In other words,

(13.19.63) πp+q,Y⊗V
(
(Y ⊗ V )m

)
= 0 for every m ∈ N satisfying m 6= p+ q.

Now, if n ∈ N satisfies n 6= p, then n+ q 6= p+ q (since n 6= p) and therefore

(13.19.64) πp+q,Y⊗V
(

(Y ⊗ V )n+q

)
= 0

(by (13.19.63), applied to m = n+ q).
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Claim 2: Let p ∈ N and q ∈ N. Let x ∈ Xp and u ∈ Uq. Then,

g ⊗ f (x⊗ u) = (g ⊗ f) (x⊗ u) .

[Proof of Claim 2: We have u ∈ Uq, thus f (u) ∈ f (Uq) ⊂ Vq (since f is graded).
We have x ∈ Xp. Hence, Proposition 13.19.3 (applied to X, Y , Xm, g, p and x instead of V , W , Vm, f ,

n and v) yields g (x) = πp,Y (g (x)). Hence, πp,Y (g (x)) = g (x).
Applying (13.19.49) to n = p+ q, we find

(13.19.66) (X ⊗ U)p+q =
⊕

(i,j)∈N2;
i+j=p+q

Xi ⊗ Uj .

But Xp⊗Uq is an addend of the direct sum
⊕

(i,j)∈N2;
i+j=p+q

Xi⊗Uj (namely, the addend for (i, j) = (p, q)), since

(p, q) ∈ N2 and p+ q = p+ q. Hence, Xp ⊗ Uq ⊂
⊕

(i,j)∈N2;
i+j=p+q

Xi ⊗ Uj . In view of (13.19.66), this rewrites as

Xp ⊗ Uq ⊂ (X ⊗ U)p+q.

From x ∈ Xp and u ∈ Uq, we obtain x⊗ u ∈ Xp⊗Uq ⊂ (X ⊗ U)p+q. Hence, Proposition 13.19.3 (applied

to X ⊗ U , Y ⊗ V , (X ⊗ U)m, g ⊗ f , p+ q and x⊗ u instead of V , W , Vm, f , n and v) yields

g ⊗ f (x⊗ u) = πp+q,Y⊗V

(g ⊗ f) (x⊗ u)︸ ︷︷ ︸
=g(x)⊗f(u)

 = πp+q,Y⊗V (g (x)⊗ f (u))

= πp,Y (g (x))︸ ︷︷ ︸
=g(x)

⊗f (u) (by Claim 1, applied to y = g (x) and v = f (u))

= g (x)⊗ f (u) = (g ⊗ f) (x⊗ u) (since (g ⊗ f) (x⊗ u) = g (x)⊗ f (u)) .

This proves Claim 2.]

Claim 3: Let p ∈ N and q ∈ N. Let t ∈ Xp ⊗ Uq. Then,

g ⊗ f (t) = (g ⊗ f) (t) .

[Proof of Claim 3: We have t ∈ Xp ⊗ Uq. Hence, t is a k-linear combination of pure tensors in Xp ⊗ Uq.
In other words, we can write t in the form

(13.19.67) t =

k∑
i=1

xi ⊗ ui

for some k ∈ N, some elements x1, x2, . . . , xk of Xp and some elements u1, u2, . . . , uk of Uq. Consider this k,
these x1, x2, . . . , xk and these u1, u2, . . . , uk. For each i ∈ {1, 2, . . . , k}, we have

(13.19.68) g ⊗ f (xi ⊗ ui) = (g ⊗ f) (xi ⊗ ui)
(by Claim 2, applied to x = xi and u = ui), since xi ∈ Xp and ui ∈ Uq.

Now, each n ∈ N satisfying n 6= p satisfies

πp+q,Y⊗V

 yn ⊗ v︸ ︷︷ ︸
∈(Y⊗V )n+q

(by (13.19.56))

 ∈ πp+q,Y⊗V
(

(Y ⊗ V )n+q

)
= 0 (by (13.19.64))

and thus

(13.19.65) πp+q,Y⊗V (yn ⊗ v) = 0.

Now, (13.19.62) becomes

πp+q,Y⊗V (y ⊗ v) = πp+q,Y⊗V (yp ⊗ v)︸ ︷︷ ︸
=yp⊗v

+
∑
n∈N;
n 6=p

πp+q,Y⊗V (yn ⊗ v)︸ ︷︷ ︸
=0

(by (13.19.65))

= yp ⊗ v +
∑
n∈N;
n 6=p

0

︸ ︷︷ ︸
=0

= yp ⊗ v.
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Applying the map g ⊗ f to both sides of the equality (13.19.67), we find

g ⊗ f (t) = g ⊗ f

(
k∑
i=1

xi ⊗ ui

)
=

k∑
i=1

g ⊗ f (xi ⊗ ui)︸ ︷︷ ︸
=(g⊗f)(xi⊗ui)
(by (13.19.68))

(
since the map g ⊗ f is k-linear

)

=

k∑
i=1

(g ⊗ f) (xi ⊗ ui) = (g ⊗ f)


k∑
i=1

xi ⊗ ui︸ ︷︷ ︸
=t

(by (13.19.67))

 (since the map g ⊗ f is k-linear)

= (g ⊗ f) (t) .

This proves Claim 3.]

Claim 4: Let t ∈ X ⊗ U . Then,

g ⊗ f (t) = (g ⊗ f) (t) .

[Proof of Claim 4: Let t ∈ X ⊗ U . Then,

t ∈ X︸︷︷︸
=
⊕
n∈NXn=

∑
n∈NXn=

∑
p∈NXp

(here, we have renamed the
summation index n as p)

⊗ U︸︷︷︸
=
⊕
n∈N Un=

∑
n∈N Un=

∑
q∈N Uq

(here, we have renamed the
summation index n as q)

=

∑
p∈N

Xp

⊗
∑
q∈N

Uq



=
∑
p∈N

∑
q∈N

Xp ⊗ Uq =
∑

(p,q)∈N2

Xp ⊗ Uq.

Hence, we can write t in the form

(13.19.69) t =
∑

(p,q)∈N2

t(p,q)

for some family
(
t(p,q)

)
(p,q)∈N2 ∈

∏
(p,q)∈N2 Xp ⊗ Uq such that all but finitely many (p, q) ∈ N2 satisfy

t(p,q) = 0. Consider this family
(
t(p,q)

)
(p,q)∈N2 .

Now, we have
(
t(p,q)

)
(p,q)∈N2 ∈

∏
(p,q)∈N2 Xp ⊗ Uq. In other words, t(p,q) ∈ Xp ⊗ Uq for each (p, q) ∈ N2.

Hence, for each (p, q) ∈ N2, we have

(13.19.70) g ⊗ f
(
t(p,q)

)
= (g ⊗ f)

(
t(p,q)

)
(by Claim 3, applied to t = t(p,q)). Now, applying the map g ⊗ f to both sides of the equality (13.19.69), we
obtain

g ⊗ f (t) = g ⊗ f

 ∑
(p,q)∈N2

t(p,q)

 =
∑

(p,q)∈N2

g ⊗ f
(
t(p,q)

)︸ ︷︷ ︸
=(g⊗f)(t(p,q))

(
since the map g ⊗ f is k-linear

)

=
∑

(p,q)∈N2

(g ⊗ f)
(
t(p,q)

)
= (g ⊗ f)


∑

(p,q)∈N2

t(p,q)︸ ︷︷ ︸
=t

(by (13.19.69))


(since the map g ⊗ f is k-linear)

= (g ⊗ f) (t) .

This proves Claim 4.]
Now, Claim 4 says that g ⊗ f (t) = (g ⊗ f) (t) for every t ∈ X ⊗ U . In other words, g ⊗ f = g ⊗ f . This

proves Proposition 13.19.9. �
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Proposition 13.19.10. Let U , V , X and Y be four graded k-modules. Let f : U → V and g : X → Y be
two k-linear maps such that f is graded. Then, f ⊗ g = f ⊗ g.

Proof of Proposition 13.19.10. This proof is analogous to the proof of Proposition 13.19.9. (The only differ-
ence is that the order of the tensorands has been swapped.) �

Remark 13.19.11. Again, Proposition 13.19.10 and Proposition 13.19.9 cannot be generalized to the case
when neither f nor g is graded.

We can now step to the solution of Exercise 1.4.29(e). Let C be a graded k-coalgebra; let A be a graded
k-algebra; let r : C → A be a ?-invertible k-linear map that is graded. We must prove that the ?-inverse
r?(−1) of r is also graded.

The ?-inverse r?(−1) of r exists (since r is ?-invertible), and is a k-linear map from C to A. Let s = r?(−1)

(defined according to Definition 13.19.2). Thus, r?(−1) = s.

The k-linear map r?(−1) : C → A is graded (by Proposition 13.19.5, applied to V = C, W = A and

f = r?(−1)). In other words, the k-linear map s : C → A is graded (since s = r?(−1)).
We know that r?(−1) is the ?-inverse of r. Thus, r?(−1) ? r = r ? r?(−1) = uA ◦ εC (since uA ◦ εC is the

unity of the convolution algebra Hom (C,A)). Thus,

(13.19.71) uA ◦ εC = r?(−1) ? r = mA ◦
(
r?(−1) ⊗ r

)
◦∆C

(by the definition of convolution).

Proposition 13.19.9 (applied to U = C, V = A, X = C, Y = A, f = r and g = r?(−1)) yields r?(−1) ⊗ r =

r?(−1)︸ ︷︷ ︸
=s

⊗r = s⊗ r.

The map mA : A⊗A→ A is graded (since A is a graded k-algebra). Hence, Proposition 13.19.6 (applied

to U = C⊗C, V = A⊗A, W = A, f = mA and g = r?(−1)⊗r) yields mA ◦
(
r?(−1) ⊗ r

)
= mA ◦r?(−1) ⊗ r︸ ︷︷ ︸

=s⊗r

=

mA ◦ (s⊗ r).
The map ∆C : C → C⊗C is graded (since C is a graded k-coalgebra). Thus, Proposition 13.19.7 (applied

to U = C, V = C ⊗ C, W = A, f = mA ◦
(
r?(−1) ⊗ r

)
and g = ∆C) yields

mA ◦
(
r?(−1) ⊗ r

)
◦∆C = mA ◦

(
r?(−1) ⊗ r

)︸ ︷︷ ︸
=mA◦(s⊗r)

◦∆C = mA ◦ (s⊗ r) ◦∆C = s ? r

(since the definition of convolution yields s ? r = mA ◦ (s⊗ r) ◦∆C). In view of (13.19.71), we can rewrite
this as

(13.19.72) uA ◦ εC = s ? r.

But the map εC : C → k is graded (since C is a graded k-coalgebra), and the map uA : k→ A is graded
as well (since A is a graded k-algebra). Hence, the composition uA ◦ εC : C → A of these two maps is also
graded. Thus, Proposition 13.19.4 (applied to V = C, W = A and f = uA ◦ εC) yields uA ◦ εC = uA ◦ εC .
Comparing this with (13.19.72), we find

s ? r = uA ◦ εC = (the unity of the convolution algebra Hom (C,A)) .

This yields that s is the ?-inverse of r (since we know that r is ?-invertible). In other words, s = r?(−1).
Since s is graded, we thus conclude that r?(−1) is graded. This solves Exercise 1.4.29(e).

13.20. Solution to Exercise 1.4.30. Solution to Exercise 1.4.30. (a) Consider a map P satisfying the given
assumption. Consider also the antipode S of A. Let T be the twist map TA,A : A⊗A→ A⊗A, c⊗d 7→ d⊗c.
Then, T ◦ T = id. Moreover, if f : A→ A and g : A→ A are any two k-linear maps, then

T ◦ (f ⊗ g) = (g ⊗ f) ◦ T.(13.20.1)

(Indeed, this is a basic property of the twist map432, and can easily be checked.)

432actually, a particular case of (13.19.4)
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We know from Exercise 1.4.28 that S is a coalgebra anti-endomorphism; thus, ∆ ◦ S = T ◦ (S ⊗ S) ◦∆
and ε ◦ S = ε. Hence,

T ◦ ∆ ◦ S︸ ︷︷ ︸
=T◦(S⊗S)◦∆

= T ◦ T︸ ︷︷ ︸
=id

◦ (S ⊗ S) ◦∆ = (S ⊗ S) ◦∆,

so that (S ⊗ S)◦∆ = T ◦∆◦S. We also know from Proposition 1.4.10 that S is an algebra anti-endomorphism;
this can be rewritten as S ◦m = m ◦ (S ⊗ S) ◦ T and S ◦ u = u. Hence,

S ◦m︸ ︷︷ ︸
=m◦(S⊗S)◦T

◦T = m ◦ (S ⊗ S) ◦ T ◦ T︸ ︷︷ ︸
=id

= m ◦ (S ⊗ S) ,

so that m ◦ (S ⊗ S) = S ◦m ◦ T .
On the other hand, we know that m◦ (P ⊗ id)◦T ◦∆ = u◦ ε (indeed, this is just an element-free rewriting

of the assumption that every a ∈ A satisfies
∑

(a) P (a2) · a1 = u (ε (a))). Now, the definition of convolution

shows that

(P ◦ S) ? S = m ◦ ((P ◦ S)⊗ S)︸ ︷︷ ︸
=(P⊗id)◦(S⊗S)

◦∆ = m ◦ (P ⊗ id) ◦ (S ⊗ S) ◦∆︸ ︷︷ ︸
=T◦∆◦S

= m ◦ (P ⊗ id) ◦ T ◦∆︸ ︷︷ ︸
=u◦ε

◦S = u ◦ ε ◦ S︸︷︷︸
=ε

= u ◦ ε,

so that P ◦ S is a left ?-inverse to S. Since S is ?-invertible with ?-inverse id, this yields that P ◦ S = id.
Furthermore, the definition of convolution shows that

S ? (S ◦ P ) = m ◦ (S ⊗ (S ◦ P ))︸ ︷︷ ︸
=(S⊗S)◦(id⊗P )

◦∆ = m ◦ (S ⊗ S)︸ ︷︷ ︸
=S◦m◦T

◦ (id⊗P ) ◦∆

= S ◦m ◦ T ◦ (id⊗P )︸ ︷︷ ︸
=(P⊗id)◦T

(by (13.20.1))

◦∆ = S ◦m ◦ (P ⊗ id) ◦ T ◦∆︸ ︷︷ ︸
=u◦ε

= S ◦ u︸ ︷︷ ︸
=u

◦ε = u ◦ ε,

whence S ◦ P is a right ?-inverse to S. Since S is ?-invertible with ?-inverse id, this yields that S ◦ P = id.
Combined with P ◦ S = id, this yields that S is invertible and its inverse is P .

(b) Similar to the solution for (a), the details being left to the reader.
(c) Let A be a connected graded Hopf algebra. Just as a left ?-inverse S to idA has been constructed in

the proof of Proposition 1.4.16, we could construct a k-linear map P : A→ A such that every a ∈ A satisfies∑
(a)

P (a2) · a1 = u (ε (a)) .

By part (a), this yields that the antipode of A is invertible.

13.21. Solution to Exercise 1.4.32. Solution to Exercise 1.4.32. We will be maximally explicit in this
solution; in particular, we will not regard inclusions as identities even in cases where we would usually do
that. We will only use the notations ∆ and ε to denote the maps ∆C and εC (not the maps ∆D and εD,
which we will introduce later).

We know that D is a direct summand of C as a k-module. In other words, there exists a k-submodule E
of C such that C = D ⊕ E. Fix such an E.

Let i : D → C be the canonical inclusion map. Let p : D ⊕ E → D be the canonical projection from the
direct sum D⊕E onto its summand D. Notice that p is a k-linear map from D⊕E = C to D, and satisfies
p ◦ i = idD. Hence, i ◦ p ◦ i︸︷︷︸

=idD

= i.

In the statement of the exercise, we have assumed that ∆ (D) ⊂ C ⊗ D. Since we don’t want to abuse
notation, we have to rewrite this as ∆ (D) ⊂ (idC ⊗i) (C ⊗D) (because the k-submodule of C ⊗C spanned
by tensors of the form c ⊗ d with c ∈ C and d ∈ D is precisely (idC ⊗i) (C ⊗D)). Similarly, ∆ (D) ⊂
(i⊗ idC) (D ⊗ C).
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Now,

(13.21.1) (i⊗ i) ((p⊗ p) (x)) = x for every x ∈ ∆ (D) .

Proof of (13.21.1): Let x ∈ ∆ (D). Then, x ∈ ∆ (D) ⊂ (idC ⊗i) (C ⊗D). Hence, there exists some
y ∈ C ⊗D such that x = (idC ⊗i) (y). Consider this y. We have

(i⊗ i)

(p⊗ p)

 x︸︷︷︸
=(idC ⊗i)(y)

 = (i⊗ i) ((p⊗ p) ((idC ⊗i) (y))) = ((i⊗ i) ◦ (p⊗ p) ◦ (idC ⊗i))︸ ︷︷ ︸
=(i◦p◦idC)⊗(i◦p◦i)

(y)

=

(i ◦ p ◦ idC)︸ ︷︷ ︸
=((i◦p)◦idC)

⊗ (i ◦ p ◦ i)︸ ︷︷ ︸
=i=idC ◦i

 (y) = (((i ◦ p) ◦ idC)⊗ (idC ◦i))︸ ︷︷ ︸
=((i◦p)⊗idC)◦(idC ⊗i)

(y)

= (((i ◦ p)⊗ idC) ◦ (idC ⊗i)) (y) = ((i ◦ p)⊗ idC)

(idC ⊗i) (y)︸ ︷︷ ︸
=x


= ((i ◦ p)⊗ idC) (x) .

On the other hand, x ∈ ∆ (D) ⊂ (i⊗ idC) (D ⊗ C). Thus, there exists some z ∈ D ⊗ C such that x =
(i⊗ idC) (z). Consider this z. We have

(i⊗ i) ((p⊗ p) (x)) = ((i ◦ p)⊗ idC)

 x︸︷︷︸
=(i⊗idC)(z)

 = ((i ◦ p)⊗ idC) ((i⊗ idC) (z))

= (((i ◦ p)⊗ idC) ◦ (i⊗ idC))︸ ︷︷ ︸
=((i◦p)◦i)⊗(idC ◦ idC)

(z) =

((i ◦ p) ◦ i)︸ ︷︷ ︸
=i◦p◦i=i

⊗ (idC ◦ idC)︸ ︷︷ ︸
=idC

 (z)

= (i⊗ idC) (z) = x.

This proves (13.21.1).
Next, let us define a k-linear map ∆D : D → D ⊗D by

∆D = (p⊗ p) ◦∆ ◦ i.

Let us also define a k-linear map εD : D → k by

εD = ε ◦ i.

We will show that (D,∆D, εD) is a k-coalgebra.433 But first, let us see that

(13.21.2) (i⊗ i) ◦∆D = ∆ ◦ i.

Proof of (13.21.2): Let d ∈ D. Then, i (d) = d (since i is just an inclusion map), so that ∆

 i (d)︸︷︷︸
=d∈D

 ∈
∆ (D). Hence, (i⊗ i) ((p⊗ p) (∆ (i (d)))) = ∆ (i (d)) (by (13.21.1), applied to x = ∆ (i (d))). Now,(i⊗ i) ◦ ∆D︸︷︷︸

=(p⊗p)◦∆◦i

 (d) = ((i⊗ i) ◦ (p⊗ p) ◦∆ ◦ i) (d)

= (i⊗ i) ((p⊗ p) (∆ (i (d)))) = ∆ (i (d)) = (∆ ◦ i) (d) .

Now, forget that we fixed d. We thus have shown that every d ∈ D satisfies ((i⊗ i) ◦∆D) (d) = (∆ ◦ i) (d).
In other words, (i⊗ i) ◦∆D = ∆ ◦ i. This proves (13.21.2).

433Recall that we are not going to abbreviate ∆D and εD by ∆ and ε; thus, ∆ and ε still mean the maps ∆C and εC .
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Now, let us check that (D,∆D, εD) is a k-coalgebra. In order to do so, we must check that the diagrams

(13.21.3) D ⊗D ⊗D

D ⊗D

∆D⊗idD

88

D ⊗D

idD ⊗∆D

ff

D

∆D

88
∆D

ff

and

(13.21.4) D ⊗ k
∼= // D k⊗D

∼=oo

D ⊗D

idD ⊗εD

OO

D
∆D

oo

idD

OO

∆D

// D ⊗D

εD⊗idD

OO

are commutative (where the canonical isomorphisms k⊗D → D and D⊗k→ D are used in (13.21.4)). Let
us start with the first diagram.

Since the diagram (1.2.1) for C is commutative (as C is a k-coalgebra), we have (∆⊗ idC)◦∆ = (idC ⊗∆)◦
∆. But

(i⊗ i⊗ i) ◦ (∆D ⊗ idD)︸ ︷︷ ︸
=((i⊗i)⊗i)◦(∆D⊗idD)
=((i⊗i)◦∆D)⊗(i◦idD)

◦∆D =

((i⊗ i) ◦∆D)︸ ︷︷ ︸
=∆◦i

(by (13.21.2))

⊗ (i ◦ idD)︸ ︷︷ ︸
=i=idC ◦i

 ◦∆D = ((∆ ◦ i)⊗ (idC ◦i))︸ ︷︷ ︸
=(∆⊗idC)◦(i⊗i)

◦∆D

= (∆⊗ idC) ◦ (i⊗ i) ◦∆D︸ ︷︷ ︸
=∆◦i

(by (13.21.2))

= (∆⊗ idC) ◦∆ ◦ i.

Using this and the analogously provable identity (i⊗ i⊗ i) ◦ (idD ⊗∆D) ◦∆D = (idC ⊗∆) ◦∆ ◦ i, we obtain

(i⊗ i⊗ i) ◦ (∆D ⊗ idD) ◦∆D = (∆⊗ idC) ◦∆︸ ︷︷ ︸
=(idC ⊗∆)◦∆

◦i = (idC ⊗∆) ◦∆ ◦ i = (i⊗ i⊗ i) ◦ (idD ⊗∆D) ◦∆D.

We can cancel the left i⊗ i⊗ i factor from this equation434, and thus obtain (∆D ⊗ idD)◦∆D = (idD ⊗∆D)◦
∆D. In other words, the diagram (13.21.3) is commutative.

Let us now check that the diagram (13.21.4) is commutative. We will only prove this for its left square,
leaving the (completely analogous) right square to the reader. For every k-module V , we let canV denote
the canonical k-module isomorphism V ⊗ k → V . The upper left horizontal arrow on diagram (13.21.4)
is precisely canD. Notice that canC ◦ (idC ⊗ε) ◦ ∆ = idC due to the commutativity of the diagram (1.2.2)
(which, of course, commutes since C is a coalgebra).

Now, any two k-modules V and W and any k-linear map f : V →W satisfy

f ◦ canV = canW ◦ (f ⊗ idk)

434because i⊗ i⊗ i is left-invertible:

(p⊗ p⊗ p) ◦ (i⊗ i⊗ i) = (p ◦ i)︸ ︷︷ ︸
=idD

⊗ (p ◦ i)︸ ︷︷ ︸
=idD

⊗ (p ◦ i)︸ ︷︷ ︸
=idD

= idD ⊗ idD ⊗ idD = idD⊗D⊗D .
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(this is just trivial linear algebra). This (applied to V = D, W = C and f = i) yields i ◦ canD =
canC ◦ (i⊗ idk). Hence,

i ◦ canD︸ ︷︷ ︸
=canC ◦(i⊗idk)

◦ (idD ⊗εD) ◦∆D = canC ◦ (i⊗ idk) ◦ (idD ⊗εD)︸ ︷︷ ︸
=(i◦idD)⊗(idk ◦εD)

◦∆D = canC ◦

(i ◦ idD)︸ ︷︷ ︸
=i=idC ◦i

⊗ (idk ◦εD)︸ ︷︷ ︸
=εD=ε◦i

 ◦∆D

= canC ◦ ((idC ◦i)⊗ (ε ◦ i))︸ ︷︷ ︸
=(idC ⊗ε)◦(i⊗i)

◦∆D = canC ◦ (idC ⊗ε) ◦ ((i⊗ i) ◦∆D)︸ ︷︷ ︸
=∆◦i

(by (13.21.2))

= canC ◦ (idC ⊗ε) ◦∆︸ ︷︷ ︸
=idC

◦i = idC ◦i = i.

We can cancel the i factors from this equation (because i is left-invertible: p◦ i = idD), and thus are left with
canD ◦ (idD ⊗εD) ◦∆D = idD. This means precisely that the left square of (13.21.4) is commutative. As we
said, this completes the verification of the fact that (D,∆D, εD) must be a k-coalgebra. We will denote this
k-coalgebra simply by D.

Now, the diagrams

D

∆D

��

i // C

∆

��
D ⊗D i⊗i // C ⊗ C

and D

εD
��

i // C

ε
��

k

are commutative435. Hence, i is a k-coalgebra homomorphism (by the definition of a k-coalgebra homomor-
phism). In other words, the canonical inclusion map D → C is a k-coalgebra homomorphism (since i is the
canonical inclusion map D → C).

So we know that D is a k-coalgebra such that D ⊂ C and such that the canonical inclusion map D → C
is a k-coalgebra homomorphism. In other words, D is a k-subcoalgebra of C (by the definition of a k-
subcoalgebra). This solves the exercise.

13.22. Solution to Exercise 1.4.33. Solution to Exercise 1.4.33. We will identify the tensor products
K ⊗ K, C ⊗ K and K ⊗ C with the corresponding k-submodules of the tensor product C ⊗ C. (We can
afford to do this since k is a field.)

We will only use the notations ∆ and ε to denote the maps ∆C and εC .
Notice that C is a free k-module. Hence, tensoring with C is an exact functor, thus a left-exact functor.

By the recursive definition of ∆(1), we have ∆(1) =

idC ⊗ ∆(1−1)︸ ︷︷ ︸
=∆(0)=idC

 ◦∆ = (idC ⊗ idC)︸ ︷︷ ︸
=idC⊗C

◦∆ = ∆.

By the recursive definition of ∆(2), we have ∆(2) =

idC ⊗∆(1)︸︷︷︸
=∆

 ◦∆ = (idC ⊗∆) ◦∆ = (∆⊗ idC) ◦∆

(by the axioms of a coalgebra).
(a) Applying Exercise 1.4.20(b) to k = 3, we obtain ∆(3) =

(
∆(2) ⊗ idC

)
◦∆, so that

(13.22.1)
(

∆(2) ⊗ idC

)
◦∆ = ∆(3) =

(
idC ⊗∆(2)

)
◦∆

(by the recursive definition of ∆(3)).

435In fact, the commutativity of the first of these diagrams follows from (13.21.2), whereas the commutativity of the second

diagram follows from εD = ε ◦ i.
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Let f̃ = (idC ⊗f ⊗ idC) ◦∆(2) : C → C ⊗ U ⊗ C. Then, ker f̃ = ker
(
(idC ⊗f ⊗ idC) ◦∆(2)

)
= K. But

f̃︸︷︷︸
=(idC ⊗f⊗idC)◦∆(2)

⊗ idC

=
(

(idC ⊗f ⊗ idC) ◦∆(2)
)
⊗ idC = ((idC ⊗f ⊗ idC)⊗ idC)︸ ︷︷ ︸

=idC ⊗f⊗idC ⊗ idC
=idC ⊗f⊗idC⊗C

◦
(

∆(2) ⊗ idC

)

= (idC ⊗f ⊗ idC⊗C) ◦
(

∆(2) ⊗ idC

)
,

so that (
f̃ ⊗ idC

)
︸ ︷︷ ︸

=(idC ⊗f⊗idC⊗C)◦(∆(2)⊗idC)

◦∆

= (idC ⊗f ⊗ idC⊗C) ◦
(

∆(2) ⊗ idC

)
◦∆︸ ︷︷ ︸

=(idC ⊗∆(2))◦∆
(by (13.22.1))

= (idC ⊗f ⊗ idC⊗C) ◦
(

idC ⊗∆(2)
)

︸ ︷︷ ︸
=idC ⊗((f⊗idC⊗C)◦∆(2))

◦∆

=

idC ⊗

(f ⊗ idC⊗C) ◦ ∆(2)︸︷︷︸
=(idC ⊗∆)◦∆

 ◦∆

=

idC ⊗

(f ⊗ idC⊗C) ◦ (idC ⊗∆)︸ ︷︷ ︸
=f⊗∆

=(idU ⊗∆)◦(f⊗idC)

◦∆


 ◦∆

= (idC ⊗ ((idU ⊗∆) ◦ (f ⊗ idC) ◦∆))︸ ︷︷ ︸
=(idC ⊗(idU ⊗∆))◦(idC ⊗(f⊗idC))◦(idC ⊗∆)

◦∆

= (idC ⊗ (idU ⊗∆))︸ ︷︷ ︸
=idC ⊗ idU ⊗∆

◦ (idC ⊗ (f ⊗ idC))︸ ︷︷ ︸
=idC ⊗f⊗idC

◦ (idC ⊗∆) ◦∆︸ ︷︷ ︸
=∆(2)

= (idC ⊗ idU ⊗∆) ◦ (idC ⊗f ⊗ idC) ◦∆(2)︸ ︷︷ ︸
=f̃

= (idC ⊗ idU ⊗∆) ◦ f̃ .

Hence,

ker
((
f̃ ⊗ idC

)
◦∆
)

= ker
(

(idC ⊗ idU ⊗∆) ◦ f̃
)
⊃ ker f̃ = K,

so that

K ⊂ ker
((
f̃ ⊗ idC

)
◦∆
)

= ∆−1
(

ker
(
f̃ ⊗ idC

))
,

so that

∆ (K) ⊂ ker
(
f̃ ⊗ idC

)
=
(

ker f̃
)

︸ ︷︷ ︸
=K

⊗C (since tensoring with C is a left-exact functor)

= K ⊗ C.

Similarly, ∆ (K) ⊂ C ⊗ K. But K is a direct summand of C as a k-module (since k is a field). Hence,
Exercise 1.4.32 (applied toD = K) yields that there is a canonically defined k-coalgebra structure onK which
makes K a subcoalgebra of C. In other words, K is a k-subcoalgebra of C. This solves Exercise 1.4.33(a).



350 DARIJ GRINBERG AND VICTOR REINER

(b) Let E be a k-subcoalgebra of C which is a subset of ker f . We must show that E is a subset of K.
We have E ⊂ ker f , so that f (E) = 0. Since E is a k-subcoalgebra of C, we have ∆ (E) ⊂ E ⊗ E, and

∆(2)︸︷︷︸
=(idC ⊗∆)◦∆

(E) = ((idC ⊗∆) ◦∆) (E) = (idC ⊗∆)

∆ (E)︸ ︷︷ ︸
⊂E⊗E


⊂ (idC ⊗∆) (E ⊗ E) = idC (E)︸ ︷︷ ︸

=E

⊗∆ (E)︸ ︷︷ ︸
⊂E⊗E

⊂ E ⊗ E ⊗ E

and thus

(
(idC ⊗f ⊗ idC) ◦∆(2)

)
(E) = (idC ⊗f ⊗ idC)

∆(2) (E)︸ ︷︷ ︸
⊂E⊗E⊗E


⊂ (idC ⊗f ⊗ idC) (E ⊗ E ⊗ E)

= idC (E)⊗ f (E)︸ ︷︷ ︸
=0

⊗ idC (E) = 0.

Hence, E ⊂ ker
(
(idC ⊗f ⊗ idC) ◦∆(2)

)
= K, which means that E is a subset of K. This solves Exer-

cise 1.4.33(b).
Remark: Exercise 1.4.33(a) would not hold if we allowed k to be an arbitrary commutative ring rather

than a field. (For a stupid counterexample, try k = Z, C = k and U = Z/2, with f being the canonical
projection.) It might be an interesting question to figure out how much freedom we can allow without
breaking correctness. Here is one case which definitely works: If k is a principal ideal domain and C and U
are finite free k-modules, then Exercise 1.4.33 is correct. (In fact, our above solution works in this case, after
one notices that (idC ⊗f ⊗ idC) ◦∆(2) is a homomorphism of finite free k-modules, and the kernel of every
homomorphism of finite free k-modules over a principal ideal domain is a direct summand of its domain.)

13.23. Solution to Exercise 1.4.34. Solution to Exercise 1.4.34.

Lemma 13.23.1. Let C be a k-coalgebra, and let A be a k-algebra. Let D be a subcoalgebra of C. Let
f : C → A and g : C → A be two k-linear maps. Then, (f ? g) |D = (f |D) ? (g |D).

Proof of Lemma 13.23.1. Recall the following classical formula from linear algebra:

• If U , V , W , U ′, V ′ and W ′ are six k-modules and α : U → V , β : V → W , α′ : U ′ → V ′ and
β′ : V ′ →W ′ are four k-linear maps, then (β ◦ α)⊗ (β′ ◦ α′) = (β ⊗ β′) ◦ (α⊗ α′).

We will refer to this formula as the composition-tensor relation.
Let i : D → C be the inclusion map from D to C. Then, i is a k-coalgebra homomorphism (since D is a

subcoalgebra of C). In other words, i is a k-linear map that makes the diagrams

D

∆D

��

i // C

∆C

��
D ⊗D i⊗i // C ⊗ C

D

εD
��

i // C

εC��
k

commute. In other words, i is a k-linear map satisfying (i⊗ i) ◦∆D = ∆C ◦ i and εD = εC ◦ i.
Recall that i is the inclusion map from D to C. Hence, if h : C → A is any map, then

(13.23.1) h |D = h ◦ i.
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Now, the definition of convolution yields

(f |D) ? (g |D) = mA ◦

 (f |D)︸ ︷︷ ︸
=f◦i

(by (13.23.1),
applied to h=f)

⊗ (g |D)︸ ︷︷ ︸
=g◦i

(by (13.23.1),
applied to h=g)

 ◦∆D

= mA ◦ ((f ◦ i)⊗ (g ◦ i))︸ ︷︷ ︸
=(f⊗g)◦(i⊗i)

(by the composition-tensor relation)

◦∆D

= mA ◦ (f ⊗ g) ◦ (i⊗ i) ◦∆D︸ ︷︷ ︸
=∆C◦i

= mA ◦ (f ⊗ g) ◦∆C ◦ i.

Comparing this with

(f ? g) |D = (f ? g)︸ ︷︷ ︸
=mA◦(f⊗g)◦∆C

(by the definition
of convolution)

◦i (by (13.23.1), applied to h = f ? g)

= mA ◦ (f ⊗ g) ◦∆C ◦ i,
we obtain (f ? g) |D = (f |D) ? (g |D). This proves Lemma 13.23.1. �

Our next lemma is a particular case of Exercise 1.4.34(a), which we will use as a stepping stone towards
solving the exercise in the general case:

Lemma 13.23.2. Let C =
⊕

n≥0 Cn be a graded k-coalgebra, and A be any k-algebra. Let h : C → A be

a k-linear map such that h |C0
= (uA ◦ εC) |C0

. Then, h is a ?-invertible map in Hom (C,A).

Proof of Lemma 13.23.2. Define a k-linear map f : C → A as h− uA ◦ εC . Thus, h = uA ◦ εC + f = uε+ f .
Furthermore, the map f annihilates C0, because

f︸︷︷︸
=h−uA◦εC

|C0 = (h− uA ◦ εC) |C0= (h |C0)− ((uA ◦ εC) |C0) = 0 (since h |C0 = (uA ◦ εC) |C0) .

Thus, we can proceed as in the proof of Proposition 1.4.24 to show that
∑
k≥0 (−1)

k
f?k is a well-defined

linear map C → A and a two-sided ?-inverse for uε + f . Thus, uε + f is ?-invertible. In other words, h is
?-invertible (since h = uε+ f). This proves Lemma 13.23.2.

An alternative proof of Lemma 13.23.2 proceeds by mimicking the proof of Proposition 1.4.16. �

We now step to the solution of the exercise.
(a) Here is Takeuchi’s argument: We know that the map h |C0

∈ Hom (C0, A) is ?-invertible; let g̃ be its
?-inverse. Thus, g̃ : C0 → A is a k-linear map satisfying

g̃ ? (h |C0
) = (h |C0

) ? g̃ = uA ◦ εC0︸︷︷︸
=εC |C0

= uA ◦ (εC |C0
) = (uA ◦ εC) |C0

.

Extend g̃ to a k-linear map g : C → A by defining it to be 0 on every Cn for n > 0. Then, g |C0 = g̃, so that

(g ? h) |C0 = (g |C0)︸ ︷︷ ︸
=g̃

? (h |C0) (by Lemma 13.23.1, applied to C0, g and h instead of D, f and g)

= g̃ ? (h |C0) = (uA ◦ εC) |C0

and similarly
(h ? g) |C0 = (uA ◦ εC) |C0 .

Now, Lemma 13.23.2 (applied to g ? h instead of h) shows that g ? h is a ?-invertible map in Hom (C,A)
(since (g ? h) |C0 = (uA ◦ εC) |C0). In other words, there exists a map p ∈ Hom (C,A) such that (g ? h)?p =
p ? (g ? h) = uAεC . Consider this p. Also, Lemma 13.23.2 (applied to h ? g instead of h) shows that h ? g
is a ?-invertible map in Hom (C,A) (since (h ? g) |C0

= (uA ◦ εC) |C0
). In other words, there exists a map
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q ∈ Hom (C,A) such that (h ? g) ? q = q ? (h ? g) = uAεC . Consider this q. We conclude that p ? g is a
left ?-inverse to h (since (p ? g) ? h = p ? (g ? h) = uAεC), so that the map h has a left ?-inverse. We also
conclude that g ? q is a right ?-inverse to h (since h ? (g ? q) = (h ? g) ? q = uAεC), so that the map h has a
right ?-inverse. Altogether, we now know that the map h has a left ?-inverse and a right ?-inverse; therefore,
it is ?-invertible (because an element of an algebra that has a left inverse and a right inverse must always be
invertible). This solves part (a) of the exercise.

(b) Apply part (a) to C = A and the map idA : A→ A.
(c) Let A be a connected graded bialgebra. We must show that A has a unique antipode S, which is a

graded map A
S→ A, and that this endows A with a Hopf structure.

The map u : k → A is a k-algebra homomorphism and a k-coalgebra homomorphism. Hence, u is

a k-bialgebra homomorphism. Hence, k
u→ A0 is a k-bialgebra homomorphism. Since we know from

Exercise 1.3.20(b) that the map u is an isomorphism k
u→ A0, we thus conclude that k

u→ A0 is a k-bialgebra
isomorphism. Hence, A0

∼= k as k-bialgebras. Since k is a Hopf algebra (with antipode idk), we thus conclude
that A0 is a Hopf algebra. Hence, part (b) of this exercise shows that A is a Hopf algebra. Therefore, A has
an antipode. It is clear that this antipode is unique (since an antipode of A is the same thing as a ?-inverse
to the map id : A → A, but it is clear that the ?-inverse of any given map is unique). Thus, we know that
A has a unique antipode S, endowing it with a Hopf structure. In order to conclude the (new) proof of
Proposition 1.4.16, it thus remains to show that this antipode S is graded.

The antipode S is the ?-inverse of the map id : A→ A. Hence, the map id : A→ A is ?-invertible. This
map id is also graded (obviously). Thus, Exercise 1.4.29(e) (applied to C = A and r = id) shows that the

?-inverse id?(−1) of id is also graded. In other words, S is graded (since the ?-inverse id?(−1) of id is S). This
concludes the (new) proof of Proposition 1.4.16. Thus, part (c) of the exercise is solved.

13.24. Solution to Exercise 1.4.35. Solution to Exercise 1.4.35. (a) Let I be a two-sided coideal of
A such that I ∩ p = 0 and such that I =

⊕
n≥0 (I ∩An). Let In = I ∩ An for every n ∈ N. Then,

I =
⊕

n≥0 (I ∩An)︸ ︷︷ ︸
=In

=
⊕

n≥0 In.

Since I is a two-sided coideal, we have ε (I) = 0.
We now will prove that

(13.24.1) every n ∈ N satisfies In = 0.

Proof of (13.24.1): Let us prove (13.24.1) by strong induction over n:
Let N ∈ N. Assume that (13.24.1) holds for every n ∈ N satisfying n < N . We must then prove that

(13.24.1) holds for n = N .
We know that (13.24.1) holds for every n ∈ N satisfying n < N . In other words,

(13.24.2) for every n ∈ N satisfying n < N , we have In = 0.

We have IN = I ∩AN ⊂ I and thus ε

 IN︸︷︷︸
⊂I

 ⊂ ε (I) = 0, hence ε (IN ) = 0.

Let πN : A ⊗ A → (A⊗A)N be the projection from the graded k-module A ⊗ A to its N -th graded
component (A⊗A)N . Then,

(13.24.3) πN (t) = t for every t ∈ (A⊗A)N ,

and

(13.24.4) πN (t) = 0 for every ` ∈ N \ {N} and every t ∈ (A⊗A)` .

As a consequence,

(13.24.5) every (n,m) ∈ N2 such that n+m 6= N satisfy πN (An ⊗Am) = 0.
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Let i ∈ IN be arbitrary. Then, i ∈ AN , so that ∆ (i) ∈ ∆ (AN ) ⊂ (A⊗A)N (since ∆ is a graded map).
Thus, πN (∆ (i)) = ∆ (i) (by (13.24.3), applied to t = ∆ (i)). On the other hand, since i ∈ IN ⊂ I, we have

∆ (i) ∈ ∆ (I) ⊂ I︸︷︷︸
=
⊕
n≥0 In

⊗ A︸︷︷︸
=
⊕
m≥0 Am

+ A︸︷︷︸
=
⊕
m≥0 Am

⊗ I︸︷︷︸
=
⊕
n≥0 In

(since I is a two-sided coideal)

=

⊕
n≥0

In

⊗
⊕
m≥0

Am


︸ ︷︷ ︸

=
∑

(m,n)∈N2
In⊗Am

+

⊕
m≥0

Am

⊗
⊕
n≥0

In


︸ ︷︷ ︸

=
∑

(m,n)∈N2
Am⊗In

=
∑

(m,n)∈N2

In ⊗Am +
∑

(m,n)∈N2

Am ⊗ In.
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Thus,

πN (∆ (i))

∈ πN

 ∑
(m,n)∈N2

In ⊗Am +
∑

(m,n)∈N2

Am ⊗ In


=

∑
(m,n)∈N2

πN (In ⊗Am)

︸ ︷︷ ︸
=

∑
(m,n)∈N2;
n+m=N

πN (In⊗Am)+
∑

(m,n)∈N2;
n+m 6=N

πN (In⊗Am)

+
∑

(m,n)∈N2

πN (Am ⊗ In)

︸ ︷︷ ︸
=

∑
(m,n)∈N2;
m+n=N

πN (Am⊗In)+
∑

(m,n)∈N2;
m+n 6=N

πN (Am⊗In)

=
∑

(m,n)∈N2;
n+m=N

πN (In ⊗Am) +
∑

(m,n)∈N2;
n+m 6=N

πN

 In︸︷︷︸
⊂An

⊗Am



+
∑

(m,n)∈N2;
m+n=N

πN (Am ⊗ In) +
∑

(m,n)∈N2;
m+n 6=N

πN

Am ⊗ In︸︷︷︸
⊂An


⊂

∑
(m,n)∈N2;
n+m=N

πN (In ⊗Am) +
∑

(m,n)∈N2;
n+m 6=N

πN (An ⊗Am)︸ ︷︷ ︸
=0

(by (13.24.5))

+
∑

(m,n)∈N2;
m+n=N

πN (Am ⊗ In) +
∑

(m,n)∈N2;
m+n 6=N

πN (Am ⊗An)︸ ︷︷ ︸
=0

(by (13.24.5), applied
to (m,n) instead of (n,m))

=
∑

(m,n)∈N2;
n+m=N

πN (In ⊗Am)

︸ ︷︷ ︸
=

∑
(m,n)∈N2;
n+m=N ;
n<N

πN (In⊗Am)+
∑

(m,n)∈N2;
n+m=N ;
n≥N

πN (In⊗Am)

+
∑

(m,n)∈N2;
m+n=N

πN (Am ⊗ In)

︸ ︷︷ ︸
=

∑
(m,n)∈N2;
m+n=N ;
n<N

πN (Am⊗In)+
∑

(m,n)∈N2;
m+n=N ;
n≥N

πN (Am⊗In)

=
∑

(m,n)∈N2;
n+m=N ;
n<N

πN

 In︸︷︷︸
=0

(by (13.24.2))

⊗Am

+
∑

(m,n)∈N2;
n+m=N ;
n≥N

πN (In ⊗Am)

︸ ︷︷ ︸
=IN⊗A0

(since the only pair (m,n)∈N2

satisfying n+m=N and n≥N is (0,N))

+
∑

(m,n)∈N2;
m+n=N ;
n<N

πN

Am ⊗ In︸︷︷︸
=0

(by (13.24.2))

+
∑

(m,n)∈N2;
m+n=N ;
n≥N

πN (Am ⊗ In)

︸ ︷︷ ︸
=A0⊗IN

(since the only pair (m,n)∈N2

satisfying m+n=N and n≥N is (0,N))

=
∑

(m,n)∈N2;
n+m=N ;
n<N

πN (0⊗Am)︸ ︷︷ ︸
=0

+IN ⊗ A0︸︷︷︸
=k1A

(since A is connected)

+
∑

(m,n)∈N2;
m+n=N ;
n<N

πN (Am ⊗ 0)︸ ︷︷ ︸
=0

+ A0︸︷︷︸
=k1A

(since A is connected)

⊗IN

= IN ⊗ k1A + k1A ⊗ IN .
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Since πN (∆ (i)) = ∆ (i), this rewrites as ∆ (i) ∈ IN ⊗ k1A + k1A ⊗ IN . In other words, there exists some
y ∈ IN ⊗ k1A and some z ∈ k1A ⊗ IN such that ∆ (i) = y + z. Consider these y and z.

Since y ∈ IN ⊗ k1A = IN ⊗ 1A, there exists a j ∈ IN such that y = j ⊗ 1A. Consider this j.
Since z ∈ k1A ⊗ IN = 1A ⊗ IN , there exists a k ∈ IN such that z = 1A ⊗ k. Consider this k.
Now,

∆ (i) = y︸︷︷︸
=j⊗1A

+ z︸︷︷︸
=1A⊗k

= j ⊗ 1A + 1A ⊗ k.

Applying the map ε⊗ id : A⊗A→ A to both sides of this equation, we obtain

(ε⊗ id) (∆ (i)) = (ε⊗ id) (j ⊗ 1A + 1A ⊗ k) = ε (j)︸︷︷︸
=0

(since j∈IN , so that
ε(j)∈ε(IN )=0)

id (1A) + ε (1A)︸ ︷︷ ︸
=1

id (k)︸ ︷︷ ︸
=k

= 0 id (1A)︸ ︷︷ ︸
=0

+k = k.

Since (ε⊗ id) (∆ (i)) = i (by the axioms of a coalgebra), this rewrites as i = k.
Similarly, applying id⊗ε to both sides of the equation ∆ (i) = j⊗ 1A + 1A⊗ k and simplifying, we obtain

i = j.
Now,

∆ (i) = j︸︷︷︸
=i

⊗1A + 1A ⊗ k︸︷︷︸
=i

= i⊗ 1A + 1A ⊗ i.

Hence, i is primitive. In other words, i ∈ p. Combined with i ∈ IN = I ∩ AN ⊂ I, this yields i ∈ I ∩ p = 0,
so that i = 0.

Now, forget that we fixed i. We thus have shown that every i ∈ IN satisfies i = 0. In other words, IN = 0.
In other words, (13.24.1) holds for n = N . This completes the induction proof of (13.24.1).

Now, I =
⊕

n≥0 In︸︷︷︸
=0

(by (13.24.1))

=
⊕

n≥0 0 = 0. This solves part (a) of the exercise.

(b) By Exercise 1.3.13(a), we know that ker f is a two-sided coideal of A. It further satisfies ker f =⊕
n≥0 ((ker f) ∩An) (since f is graded). If f |p is injective, then (ker f) ∩ p = 0, and thus part (a) of the

current exercise (applied to I = ker f) yields that ker f = 0, so that f is injective. This solves part (b) of
the exercise.

(c) The solution of part (c) proceeds precisely as the solution of part (b), except that instead of using
Exercise 1.3.13(a) we now must use Exercise 1.3.13(b).

13.25. Solution to Exercise 1.5.4. Solution to Exercise 1.5.4.
(a) Let A be any associative k-algebra. Define a k-bilinear map [·, ·] : A×A→ A by setting

[a, b] = ab− ba for all a, b ∈ A.

We must prove that this k-bilinear map [·, ·] makes A into a Lie algebra. In order to do so, it is clearly
enough to prove that

(13.25.1) [x, x] = 0 for all x ∈ A,

and that

(13.25.2) [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 for all x, y, z ∈ A.

Proof of (13.25.1): Every x ∈ A satisfies

[x, x] = xx− xx (by the definition of [x, x])

= 0.

This proves (13.25.1).
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Proof of (13.25.2): Every x, y, z ∈ A satisfy

[x, [y, z]]︸ ︷︷ ︸
=x[y,z]−[y,z]x

(by the definition
of [x,[y,z]])

+ [z, [x, y]]︸ ︷︷ ︸
=z[x,y]−[x,y]z

(by the definition
of [z,[x,y]])

+ [y, [z, x]]︸ ︷︷ ︸
=y[z,x]−[z,x]y

(by the definition
of [y,[z,x]])

= x [y, z]︸︷︷︸
=yz−zy

(by the definition
of [y,z])

− [y, z]︸︷︷︸
=yz−zy

(by the definition
of [y,z])

x+ z [x, y]︸ ︷︷ ︸
=xy−yx

(by the definition
of [x,y])

− [x, y]︸ ︷︷ ︸
=xy−yx

(by the definition
of [x,y])

z + y [z, x]︸ ︷︷ ︸
=zx−xz

(by the definition
of [z,x])

− [z, x]︸ ︷︷ ︸
=zx−xz

(by the definition
of [z,x])

y

= x (yz − zy)− (yz − zy)x+ z (xy − yx)− (xy − yx) z + y (zx− xz)− (zx− xz) y
= xyz − xzy − yzx+ zyx+ zxy − zyx− xyz + yxz + yzx− yxz − zxy + xzy

= 0.

This proves (13.25.2).
Now, both (13.25.1) and (13.25.2) are proven. Hence, the k-module A endowed with the k-bilinear map

[·, ·] satisfies the axioms of a Lie algebra, and therefore is a Lie algebra. This solves part (a) of the exercise.
(b) Let A be a bialgebra. Let p be the set of all primitive elements of A. Then, p is a k-submodule of A

(because it is easy to see that 0 ∈ p, that λa ∈ p for every λ ∈ k and a ∈ p, and that a+ b ∈ p for all a ∈ p
and b ∈ p). A simple computation shows that every x ∈ p and y ∈ p satisfy [x, y] ∈ p 436. Hence, [p, p] ⊂ p
(since p is a k-submodule of A). Therefore, p is a Lie subalgebra of A. This solves part (b) of the exercise.

(c) For every subset S of a k-module U , we let 〈S〉 denote the k-submodule of U spanned by S.
We have defined J as the two-sided ideal of T (p) generated by all elements xy − yx− [x, y] for x, y in p.

In other words,

J = T (p)︸ ︷︷ ︸
⊃k

· 〈xy − yx− [x, y] | x, y ∈ p〉 · T (p)︸ ︷︷ ︸
⊃k

(13.25.3)

⊃ k · 〈xy − yx− [x, y] | x, y ∈ p〉 · k = 〈xy − yx− [x, y] | x, y ∈ p〉(13.25.4)

⊃ {xy − yx− [x, y] | x, y ∈ p} .

Thus,

(13.25.5) xy − yx− [x, y] ∈ J for all x, y ∈ p.

It is also easy to show that

(13.25.6) xy − yx− [x, y] is a primitive element of T (p) for all x, y ∈ p.

437

From this it is easy to obtain

(13.25.7) ∆ (〈xy − yx− [x, y] | x, y ∈ p〉) ⊂ J ⊗ T (p) + T (p)⊗ J.

436Proof. Let x ∈ p and y ∈ p. Then, ∆ [x, y] = 1⊗ [x, y] + [x, y]⊗ 1 (by (1.3.7)). In other words, the element [x, y] of A is

primitive. In other words, [x, y] ∈ p (since p is the set of all primitive elements of A), qed.
437Proof. Let x, y ∈ p. Then, ∆ (xy − yx) = 1⊗(xy − yx)+(xy − yx)⊗1 (this can be proven just as in the proof of (1.3.7)).

But [x, y] is an element of p, and thus (by the definition of the comultiplication of T (p)) satisfies ∆ [x, y] = 1⊗ [x, y] + [x, y]⊗ 1
in T (p)⊗ T (p). Now, since ∆ is a k-linear map, we have

∆ (xy − yx− [x, y]) = ∆ (xy − yx)︸ ︷︷ ︸
=1⊗(xy−yx)+(xy−yx)⊗1

− ∆ [x, y]︸ ︷︷ ︸
=1⊗[x,y]+[x,y]⊗1

= (1⊗ (xy − yx) + (xy − yx)⊗ 1)− (1⊗ [x, y] + [x, y]⊗ 1)

=

(xy − yx)⊗ 1− [x, y]⊗ 1︸ ︷︷ ︸
=(xy−yx−[x,y])⊗1

+

1⊗ (xy − yx)− 1⊗ [x, y]︸ ︷︷ ︸
=1⊗(xy−yx−[x,y])


= (xy − yx− [x, y])⊗ 1 + 1⊗ (xy − yx− [x, y])

= 1⊗ (xy − yx− [x, y]) + (xy − yx− [x, y])⊗ 1.

In other words, the element xy − yx− [x, y] of T (p) is primitive. This proves (13.25.6).
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438 But applying ∆ to both sides of the equality (13.25.3), we obtain

∆ (J) = ∆ (T (p) · 〈xy − yx− [x, y] | x, y ∈ p〉 · T (p))

⊂ ∆ (T (p))︸ ︷︷ ︸
⊂T (p)⊗T (p)

·∆ (〈xy − yx− [x, y] | x, y ∈ p〉)︸ ︷︷ ︸
⊂J⊗T (p)+T (p)⊗J

(by (13.25.7))

· ∆ (T (p))︸ ︷︷ ︸
⊂T (p)⊗T (p)

(since ∆ is a k-algebra homomorphism)

⊂ (T (p)⊗ T (p)) · (J ⊗ T (p) + T (p)⊗ J) · (T (p)⊗ T (p))

= (T (p)⊗ T (p)) · (J ⊗ T (p)) · (T (p)⊗ T (p))︸ ︷︷ ︸
=(T (p)·J·T (p))⊗(T (p)·T (p)·T (p))

+ (T (p)⊗ T (p)) · (T (p)⊗ J) · (T (p)⊗ T (p))︸ ︷︷ ︸
=(T (p)·T (p)·T (p))⊗(T (p)·J·T (p))

= (T (p) · J · T (p))︸ ︷︷ ︸
=J

(since J is a two-sided ideal of T (p))

⊗ (T (p) · T (p) · T (p))︸ ︷︷ ︸
=T (p)

+ (T (p) · T (p) · T (p))︸ ︷︷ ︸
=T (p)

⊗ (T (p) · J · T (p))︸ ︷︷ ︸
=J

(since J is a two-sided ideal of T (p))

= J ⊗ T (p) + T (p)⊗ J.(13.25.8)

Also,

(13.25.9) ε (〈xy − yx− [x, y] | x, y ∈ p〉) = 0.
439 Applying the map ε to both sides of the equality (13.25.3), we obtain

ε (J) = ε (T (p) · 〈xy − yx− [x, y] | x, y ∈ p〉 · T (p)) ⊂ ε (T (p)) · ε (〈xy − yx− [x, y] | x, y ∈ p〉)︸ ︷︷ ︸
=0

(by (13.25.9))

·ε (T (p))

(since ε is a k-algebra homomorphism)

= 0.

Thus, ε (J) = 0. Combined with (13.25.8), this yields that J is a two-sided coideal of T (p). Thus, the
quotient T (p) /J becomes a k-coalgebra. Also, T (p) /J is a k-algebra, since J is a two-sided ideal of T (p).

Now we want to show that T (p) /J has a structure of a cocommutative k-bialgebra inherited from T (p).
We already know that T (p) /J is a k-algebra and a k-coalgebra, with both structures being inherited from
T (p). The remaining axioms of a cocommutative k-bialgebra that need to be checked for T (p) /J are the
commutativity of the diagrams (1.3.4) and the commutativity of the diagram (1.5.2); these axioms are clearly
preserved under taking quotients. Hence, T (p) /J is a cocommutative k-bialgebra, with its structure being
inherited from T (p). In other words, U (p) is a cocommutative k-bialgebra, with its structure being inherited
from T (p) (since U (p) = T (p) /J). This solves part (c) of the exercise.

(d) Proposition 1.4.10 shows that the antipode S of T (p) is a k-algebra anti-homomorphism from T (p)
to T (p).

438Proof. Let x, y ∈ p be arbitrary. Then, xy − yx− [x, y] is a primitive element of T (p) (by (13.25.6)). In other words,

∆ (xy − yx− [x, y]) = 1⊗ (xy − yx− [x, y]) + (xy − yx− [x, y])⊗ 1

= (xy − yx− [x, y])︸ ︷︷ ︸
∈J

(by (13.25.5))

⊗ 1︸︷︷︸
∈T (p)

+ 1︸︷︷︸
∈T (p)

⊗ (xy − yx− [x, y])︸ ︷︷ ︸
∈J

(by (13.25.5))

∈ J ⊗ T (p) + T (p)⊗ J.

Now forget that we fixed x, y. We thus have proven that ∆ (xy − yx− [x, y]) ∈ J ⊗ T (p) + T (p)⊗ J for all x, y ∈ p. Since
J ⊗T (p) +T (p)⊗J is a k-submodule of T (p)⊗T (p), this yields that ∆ (〈xy − yx− [x, y] | x, y ∈ p〉) ⊂ J ⊗T (p) +T (p)⊗J .
Thus, (13.25.7) is proven.

439Proof. Let x, y ∈ p. Then, xy − yx ∈ p⊗2 and thus ε (xy − yx) = 0 (by the definition of the comultiplication ε on T (p)).

Also, [x, y] ∈ p⊗1 and thus ε ([x, y]) = 0 (again by the definition of the comultiplication ε on T (p)). Since ε is k-linear, we have

ε (xy − yx− [x, y]) = ε (xy − yx)︸ ︷︷ ︸
=0

− ε ([x, y])︸ ︷︷ ︸
=0

= 0− 0 = 0.

Now, forget that we fixed x, y. We thus have shown that ε (xy − yx− [x, y]) = 0 for all x, y ∈ p. By linearity, this yields

ε (〈xy − yx− [x, y] | x, y ∈ p〉) = 0, so that (13.25.9) is proven.
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It is easy to see that

(13.25.10) S (〈xy − yx− [x, y] | x, y ∈ p〉) ⊂ J.
440 But recall that if A and B are two k-algebras and ϕ : A → B is a k-algebra homomorphism, then any
k-submodules V1, V2, ..., Vn of A satisfy

ϕ (V1V2...Vn) = ϕ (V1) · ϕ (V2) · ... · ϕ (Vn) .

Similarly, if A and B are two k-algebras and ϕ : A → B is a k-algebra anti-homomorphism, then any
k-submodules V1, V2, ..., Vn of A satisfy

ϕ (V1V2...Vn) = ϕ (Vn) · ϕ (Vn−1) · ... · ϕ (V1) .

Applying this to A = T (p), B = T (p), ϕ = S, n = 3, V1 = T (p), V2 = 〈xy − yx− [x, y] | x, y ∈ p〉 and
V3 = T (p), we obtain

S (T (p) · 〈xy − yx− [x, y] | x, y ∈ p〉 · T (p)) = S (T (p))︸ ︷︷ ︸
⊂T (p)

·S (〈xy − yx− [x, y] | x, y ∈ p〉)︸ ︷︷ ︸
⊂J

·S (T (p))︸ ︷︷ ︸
⊂T (p)

⊂ T (p) · J · T (p) ⊂ J

(since J is a two-sided ideal). Due to (13.25.3), this rewrites as S (J) ⊂ J . Hence, the k-linear map
S : T (p)→ T (p) induces a k-linear map S : T (p) /J → T (p) /J on the quotient k-modules. This resulting
map S : T (p) /J → T (p) /J is an antipode for the k-bialgebra T (p) /J (in fact, the diagram (1.4.3) with
A and S replaced by T (p) /J and S commutes, because the diagram (1.4.3) with A replaced by T (p)
commutes). Hence, the k-bialgebra T (p) /J has an antipode, and thus is a Hopf algebra. In other words,
U (p) is a Hopf algebra (since U (p) = T (p) /J). Since we already know that U (p) is cocommutative, this
yields that U (p) is a cocommutative Hopf algebra. This solves part (d) of the exercise.

13.26. Solution to Exercise 1.5.5. Solution to Exercise 1.5.5. Let f, g ∈ Hom (C,A). We must show that
f ? g = g ? f .

There are several ways to do this. The slickest one is perhaps the following:
The k-algebra A is commutative. In other words, the diagram (1.5.1) commutes. In other words, mA =

mA ◦ TA, where TA denotes the twist map A⊗A→ A⊗A, b⊗ a 7→ a⊗ b.
The k-coalgebra C is cocommutative. In other words, the diagram (1.5.2) commutes. In other words,

∆C = TC ◦∆C , where TC denotes the twist map C ⊗ C → C ⊗ C, c⊗ d 7→ d⊗ c.
It is straightforward to see that

(13.26.1) TA ◦ (f ⊗ g) = (g ⊗ f) ◦ TC .
441

440Proof. Let x, y ∈ p. Then, xy − yx − [x, y] is a primitive element of T (p) (by (13.25.6)). Hence, Proposition 1.4.17

(applied to xy − yx− [x, y] instead of x) yields

S (xy − yx− [x, y]) = − (xy − yx− [x, y])︸ ︷︷ ︸
∈J

(by (13.25.5))

∈ −J = J

(since J is a two-sided ideal).
Now, forget that we fixed x, y. We thus have shown that S (xy − yx− [x, y]) ∈ J for all x, y ∈ p. Since J is a k-module, this

yields that S (〈xy − yx− [x, y] | x, y ∈ p〉) ⊂ J . Thus, (13.25.10) is proven.
441Proof of (13.26.1): Let z ∈ C ⊗ C. We shall prove the equality (TA ◦ (f ⊗ g)) (z) = ((g ⊗ f) ◦ TC) (z).

Since this equality is k-linear in z, we can WLOG assume that z is a pure tensor (since each tensor C ⊗ C is a k-linear
combination of pure tensors). Assume this. Hence, z = c⊗ d for some c ∈ C and d ∈ C. Consider these c and d.

Now,

(TA ◦ (f ⊗ g))

 z︸︷︷︸
=c⊗d

 = (TA ◦ (f ⊗ g)) (c⊗ d) = TA

(f ⊗ g) (c⊗ d)︸ ︷︷ ︸
=f(c)⊗g(d)

 = TA (f (c)⊗ g (d))

= g (d)⊗ f (c) (by the definition of the map TA) .
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Now, the definition of convolution yields f ? g = mA ◦ (f ⊗ g) ◦∆C and g ? f = mA ◦ (g ⊗ f) ◦∆C . Hence,

f ? g = mA︸︷︷︸
=mA◦TA

◦ (f ⊗ g) ◦∆C = mA ◦ TA ◦ (f ⊗ g)︸ ︷︷ ︸
=(g⊗f)◦TC

◦∆C

= mA ◦ (g ⊗ f) ◦ TC ◦∆C︸ ︷︷ ︸
=∆C

= mA ◦ (g ⊗ f) ◦∆C = g ? f.

This solves Exercise 1.5.5.

13.27. Solution to Exercise 1.5.6. Solution to Exercise 1.5.6. Recall that our abstract definition of a
k-algebra (Definition 1.1.1) and our definition of a k-coalgebra (Definition 1.2.1) differ from each other
only in the directions of the arrows. More precisely, reversing all arrows in the former definition yields the
latter definition. Similarly, our definition of a cocommutative k-coalgebra is obtained by reversing all arrows
in our abstract definition of a commutative k-algebra, and our definition of a k-coalgebra homomorphism
is obtained by reversing all arrows in our abstract definition of a k-algebra homomorphism. Hence, the
statements of parts (a) and (b) of this exercise can be obtained from each other by reversing all arrows.
Therefore, if we can solve part (b) of this exercise in an element-free way442, then we can clearly apply the
same argument “with all arrows reversed” (and, of course, with A, mA and uA replaced by C, ∆C and εC)
to solve part (a). Hence, in order to solve this exercise, it is enough to find an element-free solution to its
part (b). Let us do this now.

Let us first show how to solve part (b) using computations with elements (i.e., not in an element-free
way). This is very easy. We need to prove the following statements:

Statement 1: If a k-algebra A is commutative, then its multiplication mA : A⊗A→ A is a
k-algebra homomorphism.

Statement 2: If a k-algebra A has the property that its multiplication mA : A⊗A→ A is a
k-algebra homomorphism, then A is commutative.

Proof of Statement 1 using computations with elements: Assume that a k-algebra A is commutative. We
need to prove that mA : A⊗A→ A is a k-algebra homomorphism. To do so, it is enough to show that mA

preserves products and that mA maps the unity of A⊗A to the unity of A.
Let us show that mA preserves products. This means proving that mA (uv) = mA (u) · mA (v) for

all u ∈ A ⊗ A and v ∈ A ⊗ A. So let u ∈ A ⊗ A and v ∈ A ⊗ A. Since the equality in question
(mA (uv) = mA (u) · mA (v)) is linear in each of u and v, we can WLOG assume that u and v are pure
tensors. Having made this assumption, we can write u = a⊗ b for some a ∈ A and b ∈ A, and we can write
v = c⊗ d for some c ∈ A and d ∈ A. Now,

mA

 u︸︷︷︸
=a⊗b

v︸︷︷︸
=c⊗d

 = mA

(a⊗ b) (c⊗ d)︸ ︷︷ ︸
=ac⊗bd

 = mA (ac⊗ bd) = (ac) (bd)

Comparing this with

((g ⊗ f) ◦ TC)

 z︸︷︷︸
=c⊗d

 = ((g ⊗ f) ◦ TC) (c⊗ d) = (g ⊗ f)

 TC (c⊗ d)︸ ︷︷ ︸
=d⊗c

(by the definition of the map TC)

 = (g ⊗ f) (d⊗ c) = g (d)⊗ f (c) ,

we obtain (TA ◦ (f ⊗ g)) (z) = ((g ⊗ f) ◦ TC) (z).
Now, forget that we fixed z. We thus have shown that (TA ◦ (f ⊗ g)) (z) = ((g ⊗ f) ◦ TC) (z) for each z ∈ C ⊗ C. In other

words, TA ◦ (f ⊗ g) = (g ⊗ f) ◦ TC . This proves (13.26.1).
442By an “element-free” argument, we mean an argument which only talks about linear maps, but never talks about elements

of modules such as A and A ⊗ A. For instance, the Second solution of Exercise 1.4.4(a) that we gave above was element-free,

whereas the First solution of Exercise 1.4.4(a) (which we also showed above) was not element-free (since it involved elements c
and d of C and D). A synonym for “element-free argument” is “argument by pure diagram chasing”, although it is not required

that one actually draws any diagrams in the argument (commutative diagrams are just shortcuts for identities between maps).
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and

mA

 u︸︷︷︸
=a⊗b

 ·mA

 v︸︷︷︸
=c⊗d

 = mA (a⊗ b)︸ ︷︷ ︸
=ab

·mA (c⊗ d)︸ ︷︷ ︸
=cd

= (ab) (cd) .

But443

(13.27.1) (ac) (bd) = ((ac) b) d =

a (cb)︸︷︷︸
=bc

(since A is
commutative)

 d = (a (bc)) d = ((ab) c) d = (ab) (cd) .

Hence, altogether,
mA (uv) = (ac) (bd) = (ab) (cd) = mA (u) ·mA (v) .

Thus, we have proven that mA preserves products. In order to prove that mA maps the unity of A ⊗ A
to the unity of A, we recall that the former unity is 1A ⊗ 1A and the latter unity is 1A, which satisfy
mA (1A ⊗ 1A) = 1A ·1A = 1A. We have thus shown that mA preserves products and that mA maps the unity
of A⊗A to the unity of A. In other words, mA is a k-algebra homomorphism, and Statement 1 is proven.

Proof of Statement 2 using computations with elements: Assume that a k-algebra A has the property that
its multiplication mA : A⊗A→ A is a k-algebra homomorphism. Let a and b be elements of A. Then,

mA

(1A ⊗ b) (a⊗ 1A)︸ ︷︷ ︸
=(1Aa)⊗(b1A)=a⊗b

 = mA (a⊗ b) = ab.

Comparing this with

mA ((1A ⊗ b) (a⊗ 1A)) = mA (1A ⊗ b)︸ ︷︷ ︸
=1Ab=b

mA (a⊗ 1A)︸ ︷︷ ︸
=a1A=a

(since mA is a k-algebra homomorphism)

= ba,

this becomes ab = ba. We thus have shown that ab = ba for all a ∈ A and b ∈ A. In other words, A is
commutative, and thus Statement 2 is proven.

We thus have solved part (b) of the exercise using computations with elements. But we want an element-
free solution of part (b). It turns out that we can obtain such a solution from our above solution by a more
or less straightforward rewriting procedure. Let us show how this works.

Again, we need to prove Statements 1 and 2 made above.
Element-free proof of Statement 1: Assume that a k-algebra A is commutative. We need to prove that

mA : A⊗A→ A is a k-algebra homomorphism. To do so, it is enough to show that the diagrams

A⊗A mA // A

A⊗A⊗A⊗A

mA⊗A

OO

mA⊗mA // A⊗A

mA

OO and A⊗A mA // A

k

uA⊗A

hh
uA
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are commutative. In other words, it is enough to show that

(13.27.2) mA ◦mA⊗A = mA ◦ (mA ⊗mA)

and

(13.27.3) uA = mA ◦ uA⊗A.
Let us prove (13.27.2) first. If we were allowed to compute with elements, then we could prove (13.27.2)

by evaluating both sides of (13.27.2) at a pure tensor a⊗ b⊗ c⊗d ∈ A⊗A⊗A⊗A; this would leave us with
the task of showing that (ac) (bd) = (ab) (cd), which we already have done in the computation which proved

443In the following computation, we are deliberately being painstakingly slow and writing down every single step, including
every application of associativity. This is to simplify our job later on (when we will translate this computation to an element-free

argument).
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(13.27.1). However, we are not allowed to do this, because we want this proof to be element-free. But what
we can do is computing with maps instead of elements. We just need to replace the computation which
proved (13.27.1) by a computation which uses maps instead of elements. If we replace every expression in
(13.27.1) by the k-linear map which sends every a⊗ b⊗ c⊗ d ∈ A⊗A⊗A⊗A to said expression, then we
obtain:

(the k-linear map sending every a⊗ b⊗ c⊗ d ∈ A⊗A⊗A⊗A to (ac) (bd))

= (the k-linear map sending every a⊗ b⊗ c⊗ d ∈ A⊗A⊗A⊗A to ((ac) b) d)

= (the k-linear map sending every a⊗ b⊗ c⊗ d ∈ A⊗A⊗A⊗A to (a (cb)) d)

= (the k-linear map sending every a⊗ b⊗ c⊗ d ∈ A⊗A⊗A⊗A to (a (bc)) d)

= (the k-linear map sending every a⊗ b⊗ c⊗ d ∈ A⊗A⊗A⊗A to ((ab) c) d)

= (the k-linear map sending every a⊗ b⊗ c⊗ d ∈ A⊗A⊗A⊗A to (ab) (cd)) .(13.27.4)

We are not yet done, because we still are using elements (in describing the maps). So we should rewrite
the maps appearing in the computation (13.27.4) in such a way that no elements occur in them anymore.
Denoting by T the twist map A⊗A→ A⊗A (sending every a⊗ b to b⊗ a) 444, we have

(the k-linear map sending every a⊗ b⊗ c⊗ d ∈ A⊗A⊗A⊗A to (ac) (bd))

= mA ◦ (mA ⊗mA) ◦ (idA⊗T ⊗ idA) ;

(the k-linear map sending every a⊗ b⊗ c⊗ d ∈ A⊗A⊗A⊗A to ((ac) b) d)

= mA ◦ (mA ⊗ idA) ◦ (mA ⊗ idA⊗ idA) ◦ (idA⊗T ⊗ idA) ;

(the k-linear map sending every a⊗ b⊗ c⊗ d ∈ A⊗A⊗A⊗A to (a (cb)) d)

= mA ◦ (mA ⊗ idA) ◦ (idA⊗mA ⊗ idA) ◦ (idA⊗T ⊗ idA) ;

(the k-linear map sending every a⊗ b⊗ c⊗ d ∈ A⊗A⊗A⊗A to (a (bc)) d)

= mA ◦ (mA ⊗ idA) ◦ (idA⊗mA ⊗ idA) ;

(the k-linear map sending every a⊗ b⊗ c⊗ d ∈ A⊗A⊗A⊗A to ((ab) c) d)

= mA ◦ (mA ⊗ idA) ◦ (mA ⊗ idA⊗ idA) ;

(the k-linear map sending every a⊗ b⊗ c⊗ d ∈ A⊗A⊗A⊗A to (ab) (cd))

= mA ◦ (mA ⊗mA) .

Hence, the computation (13.27.4) rewrites as

mA ◦ (mA ⊗mA) ◦ (idA⊗T ⊗ idA)

= mA ◦ (mA ⊗ idA) ◦ (mA ⊗ idA⊗ idA) ◦ (idA⊗T ⊗ idA)

= mA ◦ (mA ⊗ idA) ◦ (idA⊗mA ⊗ idA) ◦ (idA⊗T ⊗ idA)

= mA ◦ (mA ⊗ idA) ◦ (idA⊗mA ⊗ idA)

= mA ◦ (mA ⊗ idA) ◦ (mA ⊗ idA⊗ idA)

= mA ◦ (mA ⊗mA) .(13.27.5)

However, now that we are no longer talking about elements, our computation has become significantly
harder to follow. For example, the first equality in the computation (13.27.5) is far less obvious than
the corresponding equality (ac) (bd) = ((ac) b) d in the computation (13.27.1). So, in order to justify the
computation (13.27.5), we need to recall where exactly we used associativity or commutativity in (13.27.4),
and translate these uses into element-free language. Let us do this step by step:

444We do not count the use of this map T as a use of elements (even though we just defined it using elements). Twist maps

like T are one of the basic features of tensor products (along with associativity isomorphisms (U ⊗ V ) ⊗W → U ⊗ (V ⊗W ),
which we are suppressing, and with trivial isomorphisms of the form k ⊗ U → U), and their use is allowed in element-free

arguments. They don’t interfere with “reversing the arrows” because arrows like T are very easy to reverse.
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The first equality in (13.27.5): The first equality in (13.27.5) is simply an element-free way to state
(ac) (bd) = ((ac) b) d for all a, b, c, d ∈ A. On the level of elements, this follows from applying associativ-
ity to the elements ac, b and d of A. In other words, this follows from applying the associativity law mA ◦
(idA⊗mA) = mA◦(mA ⊗ idA) to the tensor ac⊗b⊗d = ((mA ⊗ idA⊗ idA) ◦ (idA⊗T ⊗ idA)) (a⊗ b⊗ c⊗ d).
Therefore, the first equality in (13.27.5) should follow from mA ◦ (idA⊗mA) = mA ◦ (mA ⊗ idA) by compo-
sition with the map (mA ⊗ idA⊗ idA) ◦ (idA⊗T ⊗ idA) on the right. And indeed, this is how it is proven:

mA ◦ (mA ⊗mA)︸ ︷︷ ︸
=(idA⊗mA)◦(mA⊗idA⊗A)

=(idA⊗mA)◦(mA⊗idA⊗ idA)

◦ (idA⊗T ⊗ idA)

= mA ◦ (idA⊗mA)︸ ︷︷ ︸
=mA◦(mA⊗idA)

◦ (mA ⊗ idA⊗ idA) ◦ (idA⊗T ⊗ idA)

= mA ◦ (mA ⊗ idA) ◦ (mA ⊗ idA⊗ idA) ◦ (idA⊗T ⊗ idA) .

Thus, we have found an element-free proof of the first equality in (13.27.5).
The second equality in (13.27.5): The second equality in (13.27.5) is simply an element-free way to state

((ac) b) d = (a (cb)) d for all a, b, c, d ∈ A. On the level of elements, this follows from applying associativity
to the elements a, c and b of A, and then multiplying with d on the right. In other words, this follows
from applying the associativity law mA ◦ (mA ⊗ idA) = mA ◦ (idA⊗mA) to the first three tensorands
of the tensor a ⊗ c ⊗ b ⊗ d = (idA⊗T ⊗ idA) (a⊗ b⊗ c⊗ d), and then applying mA. In other words,
this follows from applying the equality (mA ◦ (mA ⊗ idA)) ⊗ idA = (mA ◦ (idA⊗mA)) ⊗ idA to the tensor
(idA⊗T ⊗ idA) (a⊗ b⊗ c⊗ d), and then applying mA. Therefore, the second equality in (13.27.5) should
follow from mA ◦ (mA ⊗ idA) = mA ◦ (idA⊗mA) by tensoring both sides with idA on the right and then
composing them with the map idA⊗T ⊗ idA on the right and with mA on the left. And indeed, this is how
it is proven:

mA ◦ (mA ⊗ idA) ◦ (mA ⊗ idA⊗ idA)︸ ︷︷ ︸
=(mA◦(mA⊗idA))⊗idA

◦ (idA⊗T ⊗ idA)

= mA ◦

(mA ◦ (mA ⊗ idA))︸ ︷︷ ︸
=mA◦(idA⊗mA)

⊗ idA

 ◦ (idA⊗T ⊗ idA)

= mA ◦ ((mA ◦ (idA⊗mA))⊗ idA)︸ ︷︷ ︸
=(mA⊗idA)◦(idA⊗mA⊗idA)

◦ (idA⊗T ⊗ idA)

= mA ◦ (mA ⊗ idA) ◦ (idA⊗mA ⊗ idA) ◦ (idA⊗T ⊗ idA) .

Thus, we have obtained an element-free proof of the second equality in (13.27.5).
The third equality in (13.27.5): The third equality in (13.27.5) is simply an element-free way to state

(a (cb)) d = (a (bc)) d for all a, b, c, d ∈ A. On the level of elements, this follows from applying commutativity
to the elements c and b of A, then multiplying with a on the left, and then multiplying with d on the right.
In other words, this follows from applying the commutativity law mA = mA ◦ T to the second and third
tensorands of the tensor a⊗ c⊗ b⊗ d = (idA⊗T ⊗ idA) (a⊗ b⊗ c⊗ d), and then applying mA ◦ (mA ⊗ idA).
In other words, this follows from applying the equality idA⊗mA⊗ idA = idA⊗ (mA ◦ T )⊗ idA to the tensor
(idA⊗T ⊗ idA) (a⊗ b⊗ c⊗ d), and then applying mA◦(mA ⊗ idA). Therefore, the third equality in (13.27.5)
should follow from mA = mA ◦ T by tensoring both sides with idA on the left and on the right and then
composing them with the map idA⊗T ⊗ idA on the right and with the map mA ◦ (mA ⊗ idA) on the left.
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And indeed, this is how it is proven:

mA ◦ (mA ⊗ idA) ◦

idA⊗ mA︸︷︷︸
=mA◦T

⊗ idA

 ◦ (idA⊗T ⊗ idA)

= mA ◦ (mA ⊗ idA) ◦ (idA⊗ (mA ◦ T )⊗ idA)︸ ︷︷ ︸
=(idA⊗mA⊗idA)◦(idA⊗T⊗idA)

◦ (idA⊗T ⊗ idA)

= mA ◦ (mA ⊗ idA) ◦ (idA⊗mA ⊗ idA) ◦ (idA⊗T ⊗ idA) ◦ (idA⊗T ⊗ idA)︸ ︷︷ ︸
=idA⊗A⊗A⊗A

(since T◦T=idA⊗A )

= mA ◦ (mA ⊗ idA) ◦ (idA⊗mA ⊗ idA) .

Thus, we have obtained an element-free proof of the third equality in (13.27.5).
The fourth equality in (13.27.5): The fourth equality in (13.27.5) is simply an element-free way to state

(a (bc)) d = ((ab) c) d for all a, b, c, d ∈ A. On the level of elements, this follows from applying associativity
to the elements a, b and c of A, and then multiplying with d on the right. In other words, this follows
from applying the associativity law mA ◦ (idA⊗mA) = mA ◦ (mA ⊗ idA) to the first three tensorands of the
tensor a⊗ b⊗ c⊗ d, and then applying the map mA. In other words, this follows from applying the equality
(mA ◦ (idA⊗mA))⊗ idA = (mA ◦ (mA ⊗ idA))⊗ idA to the tensor a⊗ b⊗ c⊗ d, and then applying the map
mA. Therefore, the fourth equality in (13.27.5) should follow from mA ◦ (idA⊗mA) = mA ◦ (mA ⊗ idA) by
tensoring both sides with idA on the right and then composing them with the map mA on the left. And
indeed, this is how it is proven:

mA ◦ (mA ⊗ idA) ◦ (idA⊗mA ⊗ idA)︸ ︷︷ ︸
=(mA◦(idA⊗mA))⊗idA

= mA ◦

(mA ◦ (idA⊗mA))︸ ︷︷ ︸
=mA◦(mA⊗idA)

⊗ idA


= mA ◦ ((mA ◦ (mA ⊗ idA))⊗ idA)︸ ︷︷ ︸

=(mA⊗idA)◦(mA⊗idA⊗ idA)

= mA ◦ (mA ⊗ idA) ◦ (mA ⊗ idA⊗ idA) .

Thus, we have obtained an element-free proof of the fourth equality in (13.27.5).
The fifth equality in (13.27.5): The fifth equality in (13.27.5) is simply an element-free way to state

((ab) c) d = (ab) (cd) for all a, b, c, d ∈ A. On the level of elements, this follows from applying associativity
to the elements ab, c and d of A. In other words, this follows from applying the associativity law mA ◦
(mA ⊗ idA) = mA ◦ (idA⊗mA) to the tensor ab ⊗ c ⊗ d = (mA ⊗ idA⊗ idA) (a⊗ b⊗ c⊗ d). Therefore, the
fifth equality in (13.27.5) should follow from mA ◦ (mA ⊗ idA) = mA ◦ (idA⊗mA) by composing both sides
of this equality with mA ⊗ idA⊗ idA on the right. And indeed, this is how it is proven:

mA ◦ (mA ⊗ idA)︸ ︷︷ ︸
=mA◦(idA⊗mA)

◦ (mA ⊗ idA⊗ idA)

= mA ◦ (idA⊗mA) ◦ (mA ⊗ idA⊗ idA)︸ ︷︷ ︸
=(idA⊗mA)◦(mA⊗idA⊗A)=mA⊗mA

= mA ◦ (mA ⊗mA) .

Thus, we have obtained an element-free proof of the fifth equality in (13.27.5).
Now, all five equalities in the computation (13.27.5) are proven without reference to elements. Hence, we

have shown mA ◦ (mA ⊗mA) ◦ (idA⊗T ⊗ idA) = mA ◦ (mA ⊗mA) in an element-free way. In other words,
mA ◦ mA⊗A = mA ◦ (mA ⊗mA) is proven in an element-free way (because the definition of mA⊗A yields
mA⊗A = (mA ⊗mA) ◦ (idA⊗T ⊗ idA)). In other words, (13.27.2) is proven.

It remains to prove (13.27.3). We leave this very simple proof to the reader (noticing that it does not
require the commutativity of A).
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Now we know that both (13.27.2) and (13.27.3) hold. Statement 1 is thus proven in an element-free way.
We leave it to the reader to prove Statement 2 in an element-free way. Altogether, Statements 1 and 2

have now been proven. Therefore, part (b) of the exercise has been solved in an element-free way. Therefore,
a solution of part (a) can be obtained mechanically by “reversing all arrows”.

Of course, part (a) can alternatively be solved using the Sweedler notation.

13.28. Solution to Exercise 1.5.8. Solution to Exercise 1.5.8.
We shall use the notations introduced in Definition 1.4.8. Let us first state two simple facts from linear

algebra:

Proposition 13.28.1. Let U , V , U ′ and V ′ be four k-modules. Let x : U → U ′ and y : V → V ′ be two
k-linear maps. Then,

(13.28.1) (y ⊗ x) ◦ TU,V = TU ′,V ′ ◦ (x⊗ y) .

Proposition 13.28.2. Let U and V be two k-modules. Then,

(13.28.2) TV,U ◦ TU,V = idU⊗V .

We shall further need the following lemma, which follows easily from the definition of commutativity:

Lemma 13.28.3. Let A be a commutative k-algebra. Then, mA = mA ◦ TA,A.

Proof of Lemma 13.28.3. Let T denote the twist map TA,A. The k-algebra A is commutative if and only
if the diagram (1.5.1) commutes (by Definition 1.5.1). Hence, the diagram (1.5.1) commutes (since A is
commutative). In other words, we have m = m ◦ T . In other words, we have mA = mA ◦ TA,A (since
m = mA and T = TA,A). This proves Lemma 13.28.3. �

We now come to the solution of the exercise.
(a) This is easy to prove by computing with elements, but let us give an “element-free” proof.
Let f : A→ B be a k-linear map. We shall prove the logical equivalence

(13.28.3) (f ◦mA = mB ◦ (f ⊗ f) ◦ TA,A) ⇐⇒ (f ◦mA = mB ◦ (f ⊗ f)) .

[Proof of (13.28.3): We have assumed that at least one of the k-algebras A and B is commutative. In
other words, the k-algebra A is commutative or the k-algebra B is commutative. Thus, we are in one of the
following two cases:

Case 1: The k-algebra A is commutative.
Case 2: The k-algebra B is commutative.
Let us first consider Case 1. In this case, the k-algebra A is commutative. Thus, Lemma 13.28.3 yields

mA = mA ◦ TA,A.
But Proposition 13.28.2 (applied to U = A and V = A) yields TA,A ◦ TA,A = idA⊗A. Thus, if we have

f ◦mA = mB ◦ (f ⊗ f) ◦ TA,A, then we also have

f ◦ mA︸︷︷︸
=mA◦TA,A

= f ◦mA︸ ︷︷ ︸
=mB◦(f⊗f)◦TA,A

◦TA,A = mB ◦ (f ⊗ f) ◦ TA,A ◦ TA,A︸ ︷︷ ︸
=idA⊗A

= mB ◦ (f ⊗ f) .

Thus, we have proved the implication

(13.28.4) (f ◦mA = mB ◦ (f ⊗ f) ◦ TA,A) =⇒ (f ◦mA = mB ◦ (f ⊗ f)) .

On the other hand, if we have f ◦mA = mB ◦ (f ⊗ f), then we also have

f ◦ mA︸︷︷︸
=mA◦TA,A

= f ◦mA︸ ︷︷ ︸
=mB◦(f⊗f)

◦TA,A = mB ◦ (f ⊗ f) ◦ TA,A.

Hence, we have proved the implication

(f ◦mA = mB ◦ (f ⊗ f)) =⇒ (f ◦mA = mB ◦ (f ⊗ f) ◦ TA,A) .

Combining this implication with (13.28.4), we obtain the logical equivalence

(f ◦mA = mB ◦ (f ⊗ f) ◦ TA,A) ⇐⇒ (f ◦mA = mB ◦ (f ⊗ f)) .
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Thus, (13.28.3) is proved in Case 1.
Let us next consider Case 2. In this case, the k-algebra B is commutative. Thus, Lemma 13.28.3 (applied

to B instead of A) yields mB = mB ◦ TB,B , so that mB ◦ TB,B = mB . On the other hand, Proposition
13.28.1 (applied to U = A, V = A, U ′ = B, V ′ = B, x = f and y = f) yields

(f ⊗ f) ◦ TA,A = TB,B ◦ (f ⊗ f) .

Now, we have the following chain of logical equivalences:f ◦mA = mB ◦ (f ⊗ f) ◦ TA,A︸ ︷︷ ︸
=TB,B◦(f⊗f)

 ⇐⇒
f ◦mA = mB ◦ TB,B︸ ︷︷ ︸

=mB

◦ (f ⊗ f)

 ⇐⇒ (f ◦mA = mB ◦ (f ⊗ f)) .

Hence, the equivalence (13.28.3) holds. Thus, (13.28.3) is proved in Case 2.
We have now proved (13.28.3) in both Cases 1 and 2. Hence, the proof of (13.28.3) is complete (since

Cases 1 and 2 cover all possibilities).]
Now, forget that we fixed f . We thus have proved the equivalence (13.28.3) for any k-linear map f : A→

B.
Now, the k-algebra homomorphisms from A to B are precisely the k-linear maps f : A → B that make

the two diagrams

A
f // B

A⊗A

mA

OO

f⊗f // B ⊗B

mB

OO and A
f // B

k

uA

__

uB

??

commute (by Definition 1.3.1). In other words, the k-algebra homomorphisms from A to B are the k-linear
maps f : A→ B that satisfy f ◦mA = mB ◦ (f ⊗ f) and f ◦ uA = uB . Thus,

{the k-algebra homomorphisms from A to B}
= {the k-linear maps f : A→ B that satisfy f ◦mA = mB ◦ (f ⊗ f) and f ◦ uA = uB} .(13.28.5)

On the other hand, the k-algebra anti-homomorphisms from A to B are the k-linear maps f : A → B
that satisfy f ◦mA = mB ◦ (f ⊗ f) ◦ TA,A and f ◦ uA = uB (by Definition 1.4.8(b)). Hence,

{the k-algebra anti-homomorphisms from A to B}

=

the k-linear maps f : A→ B that satisfy f ◦mA = mB ◦ (f ⊗ f) ◦ TA,A︸ ︷︷ ︸
⇐⇒ (f◦mA=mB◦(f⊗f))

(by (13.28.3))

and f ◦ uA = uB


= {the k-linear maps f : A→ B that satisfy f ◦mA = mB ◦ (f ⊗ f) and f ◦ uA = uB}
= {the k-algebra homomorphisms from A to B} (by (13.28.5)) .

In other words, the k-algebra anti-homomorphisms from A to B are the same as the k-algebra homomor-
phisms from A to B. This solves Exercise 1.5.8(a).

(b) We have solved Exercise 1.5.8(a) in an element-free fashion. Thus, by “reversing all arrows” in this
solution of Exercise 1.5.8(a) (and replacing “algebra” and “commutative” by “coalgebra” and “cocommu-
tative”, respectively), we can obtain a solution to the dual of Exercise 1.5.8(a). Consequently, the dual of
Exercise 1.5.8(a) holds.

The notion of a cocommutative k-coalgebra is dual to the notion of a commutative k-algebra (i.e., is
obtained from the latter notion by “reversing all arrows”). Furthermore, it is easy to see that the notion
of a k-coalgebra anti-homomorphism is dual to the notion of a k-algebra anti-homomorphism, whereas the
notion of a k-coalgebra homomorphism is dual to the notion of a k-algebra homomorphism. Thus, the dual
of Exercise 1.5.8(a) is the following exercise:

Exercise A: Let A and B be two k-coalgebras, at least one of which is cocommutative. Prove
that the k-coalgebra anti-homomorphisms from A to B are the same as the k-coalgebra
homomorphisms from A to B.



366 DARIJ GRINBERG AND VICTOR REINER

As we have seen above, this dual holds. Thus, Exercise 1.5.8(b) is solved.

13.29. Solution to Exercise 1.5.9. Solution to Exercise 1.5.9. For every 1 ≤ i < j ≤ k, let ti,j be the
transposition in Sk which transposes i with j. It is well-known that the symmetric group Sk is generated
by the transpositions ti,i+1 with i ranging over {1, 2, . . . , k − 1}.

But let us notice that (ρ (π)) ◦ (ρ (ψ)) = ρ (πψ) for any two elements π and ψ of Sk. Hence, the set of
all π ∈ Sk satisfying m(k−1) ◦ (ρ (π)) = m(k−1) is closed under multiplication. Since this set also contains
the trivial permutation id = 1Sk ∈ Sk and is closed under taking inverses (this is easy to check), this
shows that this set is a subgroup of Sk. Therefore, if this set contains a set of generators of Sk, then
this set must be the whole Sk. Hence, if we can show that this set contains the transposition ti,i+1 for
every i ∈ {1, 2, . . . , k − 1}, then it will follow that this set must be the whole Sk (because the group Sk is
generated by the transpositions ti,i+1 with i ranging over {1, 2, . . . , k − 1}), and this will entail that every

π ∈ Sk satisfies m(k−1) ◦ (ρ (π)) = m(k−1), which will solve the problem. Hence, in order to complete this
solution, it is enough to check that the set of all π ∈ Sk satisfying m(k−1) ◦ (ρ (π)) = m(k−1) contains the
transposition ti,i+1 for every i ∈ {1, 2, . . . , k − 1}. In other words, it is enough to check that

(13.29.1) m(k−1) ◦ (ρ (ti,i+1)) = m(k−1) for all i ∈ {1, 2, . . . , k − 1} .

Proof of (13.29.1): Let i ∈ {1, 2, . . . , k − 1}. Let T denote the twist map A⊗ A→ A⊗ A sending every
pure tensor a⊗ b to b⊗ a. Any k vectors v1, v2, . . . , vk in A satisfy

(ρ (ti,i+1)) (v1 ⊗ v2 ⊗ · · · ⊗ vk)

= ti,i+1 (v1 ⊗ v2 ⊗ · · · ⊗ vk) = v1 ⊗ v2 ⊗ · · · ⊗ vi−1︸ ︷︷ ︸
=id

A⊗(i−1) (v1⊗v2⊗···⊗vi−1)

⊗ vi+1 ⊗ vi︸ ︷︷ ︸
=T (vi⊗vi+1)

⊗ vi+2 ⊗ vi+3 ⊗ · · · ⊗ vk︸ ︷︷ ︸
=id

A⊗(k−1−i) (vi+2⊗vi+3⊗···⊗vk)

= idA⊗(i−1) (v1 ⊗ v2 ⊗ · · · ⊗ vi−1)⊗ T (vi ⊗ vi+1)⊗ idA⊗(k−1−i) (vi+2 ⊗ vi+3 ⊗ · · · ⊗ vk)

= (idA⊗(i−1) ⊗T ⊗ idA⊗(k−1−i))

v1 ⊗ v2 ⊗ · · · ⊗ vi−1 ⊗ vi ⊗ vi+1 ⊗ vi+2 ⊗ vi+3 ⊗ · · · ⊗ vk︸ ︷︷ ︸
=v1⊗v2⊗···⊗vk


= (idA⊗(i−1) ⊗T ⊗ idA⊗(k−1−i)) (v1 ⊗ v2 ⊗ · · · ⊗ vk) .

In other words, the two maps ρ (ti,i+1) and idA⊗(i−1) ⊗T ⊗ idA⊗(k−1−i) are equal to each other on every
pure tensor. Being k-linear maps, these two maps must therefore be identical, i.e., we have ρ (ti,i+1) =
idA⊗(i−1) ⊗T ⊗ idA⊗(k−1−i) .

But recall that A is commutative, whence the diagram (1.5.1) commutes. Thus, m ◦ T = m.
We have i ∈ {1, 2, . . . , k − 1}, so that 1 ≤ i ≤ k − 1 and therefore 0 ≤ i − 1 ≤ (k − 1) − 1. Hence, in

particular, k − 1 ≥ 1 ≥ 0. We can thus apply Exercise 1.4.19(c) to k − 1 and i− 1 instead of k and i. As a
result, we obtain

m(k−1) = m((k−1)−1) ◦ (idA⊗(i−1) ⊗m⊗ idA⊗((k−1)−1−(i−1))) = m((k−1)−1) ◦ (idA⊗(i−1) ⊗m⊗ idA⊗(k−1−i)) .

Hence,

m(k−1)︸ ︷︷ ︸
=m((k−1)−1)◦(id

A⊗(i−1) ⊗m⊗id
A⊗(k−1−i))

◦ (ρ (ti,i+1))︸ ︷︷ ︸
=id

A⊗(i−1) ⊗T⊗id
A⊗(k−1−i)

= m((k−1)−1) ◦ (idA⊗(i−1) ⊗m⊗ idA⊗(k−1−i)) ◦ (idA⊗(i−1) ⊗T ⊗ idA⊗(k−1−i))︸ ︷︷ ︸
=(id

A⊗(i−1) ⊗(m◦T )⊗id
A⊗(k−1−i))

= m((k−1)−1) ◦

idA⊗(i−1) ⊗ (m ◦ T )︸ ︷︷ ︸
=m

⊗ idA⊗(k−1−i)


= m((k−1)−1) ◦ (idA⊗(i−1) ⊗m⊗ idA⊗(k−1−i))

= m(k−1).
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Thus, (13.29.1) is proven. This completes the solution of Exercise 1.5.9.

13.30. Solution to Exercise 1.5.10. Solution to Exercise 1.5.10. Here is the statement:

Exercise. Let C be a cocommutative k-coalgebra, and let k ∈ N. The symmetric group Sk

acts on the k-fold tensor power C⊗k by permuting the tensor factors: σ (v1 ⊗ v2 ⊗ · · · ⊗ vk) =
vσ−1(1) ⊗ vσ−1(2) ⊗ · · · ⊗ vσ−1(k) for all v1, v2, . . . , vk ∈ C and σ ∈ Sk. For every π ∈ Sk,

denote by ρ (π) the action of π on C⊗k (this is an endomorphism of C⊗k). Show that every
π ∈ Sk satisfies (ρ (π)) ◦∆(k−1) = ∆(k−1). (Recall that ∆(k−1) : C → C⊗k is defined as in
Exercise 1.4.20 for k ≥ 1, and by ∆(−1) = ε : C → k for k = 0.)

The solution of this exercise can be obtained from the above solution of Exercise 1.5.9 by reversing all
arrows (and replacing A, m and m(i) by C, ∆ and ∆(i)).

13.31. Solution to Exercise 1.5.11. Solution to Exercise 1.5.11. (a) Let H be a k-bialgebra and A be a
commutative k-algebra. Let f and g be two k-algebra homomorphisms H → A.

Since A is commutative, the map mA : A ⊗ A → A is a k-algebra homomorphism (according to Exer-
cise 1.5.6(b)). Also, f ⊗ g is a k-algebra homomorphism (by Exercise 1.3.6(a), since f and g are k-algebra
homomorphisms). Finally, the axioms of a k-bialgebra show that ∆H : H → H⊗H is a k-algebra homomor-
phism (since H is a k-bialgebra). Now, the definition of convolution yields that f ? g = mA ◦ (f ⊗ g) ◦∆H .
Thus, f ? g is a composition of three k-algebra homomorphisms (namely, of mA, f ⊗ g and ∆H), and hence
a k-algebra homomorphism itself. This solves Exercise 1.5.11(a).

(b) Exercise 1.5.11(b) can be solved by straightforward induction over k using (in the induction step) the
result of Exercise 1.5.11(a) and (in the induction base) the fact that uA ◦ εH is a k-algebra homomorphism
(since uA and εH are k-algebra homomorphisms). The details are left to the reader.

(c) Let H be a Hopf algebra, and let A be a commutative k-algebra. Let f : H → A be a k-algebra
homomorphism.

Proposition 1.4.10 shows that the antipode S of H is an algebra anti-endomorphism. Combined with
the fact that f is a k-algebra homomorphism, this yields that the composition f ◦ S is a k-algebra anti-
homomorphism445. But since algebra anti-homomorphisms H → A are the same as algebra homomorphisms
H → A (since A is commutative), this yields that f ◦ S is a k-algebra homomorphism. It remains to prove
that f ◦S is ?-inverse to f . But this follows from Proposition 1.4.26(a) (applied to α = f). 446 This solves
Exercise 1.5.11(c).

(d) Let A be a commutative k-algebra. Then, the map mA : A ⊗ A → A is a k-algebra homomorphism
(according to Exercise 1.5.6(b)).

We need to prove that m
(k)
A is a k-algebra homomorphism (since m(k) = m

(k)
A ). To do so, it suffices to

adapt the solution of Exercise 1.4.22(a) with only very minor changes (mainly we have to change H into A,
replace “coalgebra” by “algebra” and use Exercise 1.3.6(a) instead of using Exercise 1.3.6(b)). The details
of this adaptation are left to the reader.

445Here, we have used the (easily proved) fact that a composition of a k-algebra homomorphism with a k-algebra anti-

homomorphism (in either order) always is a k-algebra anti-homomorphism.
446Just for the sake of it, here is a standalone proof of this claim: The definition of convolution yields

(f ◦ S) ? f = mA ◦

(f ◦ S)⊗ f︸︷︷︸
=f◦id

 ◦∆H = mA ◦ ((f ◦ S)⊗ (f ◦ id))︸ ︷︷ ︸
=(f⊗f)◦(S⊗id)

◦∆H

= mA ◦ (f ⊗ f)︸ ︷︷ ︸
=f◦mH

(since f is a k-algebra homomorphism)

◦ (S ⊗ id) ◦∆H = f ◦ mH ◦ (S ⊗ id) ◦∆H︸ ︷︷ ︸
=uH◦εH

(by the commutativity of (1.4.3))

= f ◦ uH︸ ︷︷ ︸
=uA

(since f is a k-algebra homomorphism)

◦εH = uA ◦ εH ,

and similarly f ? (f ◦ S) = uA ◦ εH , so that f ◦ S is ?-inverse to f .
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(e) Let C ′ and C be two k-coalgebras. Let γ : C → C ′ be a k-coalgebra homomorphism. Let A and A′ be
two k-algebras. Let α : A → A′ be a k-algebra homomorphism. Let f1, f2, . . . , fk be several k-linear maps
C ′ → A.

Proposition 1.4.3 shows that the map

Hom (C ′, A)→ Hom (C,A′) , f 7→ α ◦ f ◦ γ
is a k-algebra homomorphism (Hom (C ′, A) , ?) → (Hom (C,A′) , ?). Denote this k-algebra homomorphism
by ϕ.

Since ϕ is a k-algebra homomorphism, we have

ϕ (f1 ? f2 ? · · · ? fk) = ϕ (f1)︸ ︷︷ ︸
=α◦f1◦γ

(by the definition of ϕ)

? ϕ (f2)︸ ︷︷ ︸
=α◦f2◦γ

(by the definition of ϕ)

? · · · ? ϕ (fk)︸ ︷︷ ︸
=α◦fk◦γ

(by the definition of ϕ)

= (α ◦ f1 ◦ γ) ? (α ◦ f2 ◦ γ) ? · · · ? (α ◦ fk ◦ γ) .

Hence,

(α ◦ f1 ◦ γ) ? (α ◦ f2 ◦ γ) ? · · · ? (α ◦ fk ◦ γ) = ϕ (f1 ? f2 ? · · · ? fk) = α ◦ (f1 ? f2 ? · · · ? fk) ◦ γ
(by the definition of ϕ). This solves Exercise 1.5.11(e).

(f) LetH be a commutative k-bialgebra. Let k and ` be two nonnegative integers. Then, Exercise 1.5.11(b)
(applied to A = H and fi = idH) yields that idH ? idH ? · · · ? idH︸ ︷︷ ︸

k times

is a k-algebra homomorphism H → H.

Since idH ? idH ? · · · ? idH︸ ︷︷ ︸
k times

= id?kH , this shows that id?kH is a k-algebra homomorphism H → H. We can thus

apply Exercise 1.5.11(e) to H, H, H, H, `, idH , id?kH and idH instead of C, C ′, A, A′, k, fi, α and γ. As a
result, we obtain

id?kH ◦

idH ? idH ? · · · ? idH︸ ︷︷ ︸
` times

 ◦ idH =
(

id?kH ◦ idH ◦ idH

)
?
(

id?kH ◦ idH ◦ idH

)
? · · · ?

(
id?kH ◦ idH ◦ idH

)
︸ ︷︷ ︸

` times

.

Since id?kH ◦ idH ◦ idH = id?kH and idH ? idH ? · · · ? idH︸ ︷︷ ︸
` times

= id?`H , this rewrites as

id?kH ◦ id?`H = id?kH ? id?kH ? · · · ? id?kH︸ ︷︷ ︸
` times

=
(

id?kH

)?`
= id

?(k`)
H .

This solves Exercise 1.5.11(f).
(g) Let H be a commutative k-Hopf algebra.
First, it is easy to see that

(13.31.1) id?kH is a k-algebra homomorphism H → H for every k ∈ Z.
447

Furthermore, we have

(13.31.2) id
?(−k)
H = id?kH ◦S for every k ∈ Z.

447Proof of (13.31.1): Let k ∈ Z. If k is nonnegative, then (13.31.1) can be proven just as in the solution to Exercise 1.5.11(f).
Hence, for the rest of this proof of (13.31.1), we assume WLOG that k is not nonnegative. Thus, k < 0, so that −k is

nonnegative. Hence, Exercise 1.5.11(b) (applied to H, −k and idH instead of A, k and fi) yields that idH ? idH ? · · · ? idH︸ ︷︷ ︸
−k times

is a

k-algebra homomorphism H → H. Since idH ? idH ? · · · ? idH︸ ︷︷ ︸
−k times

= id
?(−k)
H , this shows that id

?(−k)
H is a k-algebra homomorphism

H → H. Thus, Exercise 1.5.11(c) (applied to A = H and f = id
?(−k)
H ) yields that id

?(−k)
H ◦S : H → H is again a k-algebra

homomorphism, and is a ?-inverse to id
?(−k)
H .

Since id
?(−k)
H ◦S is a ?-inverse to id

?(−k)
H , we have id

?(−k)
H ◦S =

(
id
?(−k)
H

)?(−1)
= id

?((−k)(−1))
H = id?kH . Hence, id?kH is a

k-algebra homomorphism (since id
?(−k)
H ◦S is a k-algebra homomorphism), and thus (13.31.1) is proven.
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448

Now, fix two integers k and `. Due to (13.31.1), we know that id?kH is a k-algebra homomorphism

H → H. Hence, if ` is nonnegative, then we can prove id?kH ◦ id?`H = id
?(k`)
H just as we did in the solution to

Exercise 1.5.11(f) (and thus finish the solution to Exercise 1.5.11(g)). Hence, for the rest of this solution,
we WLOG assume that ` is not nonnegative. Thus, ` < 0, so that −` is nonnegative. We can thus apply
Exercise 1.5.11(e) to H, H, H, H, −`, idH , id?kH and idH instead of C, C ′, A, A′, k, fi, α and γ. As a result,
we obtain

id?kH ◦

idH ? idH ? · · · ? idH︸ ︷︷ ︸
−` times

 ◦ idH =
(

id?kH ◦ idH ◦ idH

)
?
(

id?kH ◦ idH ◦ idH

)
? · · · ?

(
id?kH ◦ idH ◦ idH

)
︸ ︷︷ ︸

−` times

.

Since id?kH ◦ idH ◦ idH = id?kH and idH ? idH ? · · · ? idH︸ ︷︷ ︸
−` times

= id
?(−`)
H , this rewrites as

id?kH ◦ id
?(−`)
H ◦ idH = id?kH ? id?kH ? · · · ? id?kH︸ ︷︷ ︸

−` times

=
(

id?kH

)?(−`)
= id

?(k(−`))
H = id

?(−k`)
H .

In view of id
?(−`)
H ◦ idH = id

?(−`)
H , this rewrites as

id?kH ◦ id
?(−`)
H = id

?(−k`)
H .

Now, id?`H = id
?(−(−`))
H = id

?(−`)
H ◦S (by (13.31.2), applied to −` instead of k), and thus

id?kH ◦ id?`H︸︷︷︸
=id

?(−`)
H ◦S

= id?kH ◦ id
?(−`)
H︸ ︷︷ ︸

=id
?(−k`)
H

◦S = id
?(−k`)
H ◦S.

Compared with id
?(k`)
H = id

?(−(−k`))
H = id

?(−k`)
H ◦S (by (13.31.2), applied to −k` instead of k), this yields

id?kH ◦ id?`H = id
?(k`)
H . This solves Exercise 1.5.11(g).

(h) The dual of Exercise 1.5.11(a) is the following exercise:

If H is a k-bialgebra and C is a cocommutative k-coalgebra, and if f and g are two k-
coalgebra homomorphisms C → H, then prove that f ?g also is a k-coalgebra homomorphism
C → H.

The solution of this exercise is obtained from our above solution of Exercise 1.5.11(a) by “reversing arrows”
(and replacing “algebra” by “coalgebra”, and applying Exercise 1.5.6(a) instead of Exercise 1.5.6(b), and
using Exercise 1.3.6(b) instead of Exercise 1.3.6(a)).

The dual of Exercise 1.5.11(b) is the following exercise:

If H is a k-bialgebra and C is a cocommutative k-coalgebra, and if f1, f2, . . . , fk are several
k-coalgebra homomorphisms C → H, then prove that f1 ? f2 ? · · · ? fk also is a k-coalgebra
homomorphism C → H.

This can be solved by induction over k in the same way as Exercise 1.5.11(b) (but now using the dual of
Exercise 1.5.11(a) instead of Exercise 1.5.11(a) itself).

The dual of Exercise 1.5.11(c) is the following exercise:

If H is a Hopf algebra and C is a cocommutative k-coalgebra, and if f : C → H is a k-
coalgebra homomorphism, then prove that S ◦ f : C → H (where S is the antipode of H) is
again a k-coalgebra homomorphism, and is a ?-inverse to f .

A solution of this can be obtained by reversing all arrows in the above solution of Exercise 1.5.11(c) (and
using Exercise 1.4.28 in lieu of Proposition 1.4.10, and using Proposition 1.4.26(b) in lieu of Proposition
1.4.26(a)).

The dual of Exercise 1.5.11(d) is the following exercise:

448Proof of (13.31.2): Let k ∈ Z. We know that id?kH is a k-algebra homomorphism H → H (according to (13.31.1)). Thus,

Exercise 1.5.11(c) (applied to A = H and f = id?kH ) yields that id?kH ◦S : H → H is again a k-algebra homomorphism, and is a

?-inverse to id?kH .

Since id?kH ◦S is a ?-inverse to id?kH , we have id?kH ◦S =
(
id?kH

)?(−1)
= id

?(k(−1))
H = id

?(−k)
H . This proves (13.31.2).
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If C is a cocommutative k-coalgebra, then show that ∆(k) is a k-coalgebra homomorphism
for every k ∈ N. (The map ∆(k) : C → C⊗(k+1) is defined as in Exercise 1.4.20.)

This can be solved just as we solved Exercise 1.5.11(d), but again with all arrows reversed (and referring to
Exercise 1.5.6(a) and Exercise 1.4.22(b) instead of Exercise 1.5.6(b) and Exercise 1.4.22(a), respectively).

The dual of Exercise 1.5.11(e) is Exercise 1.5.11(e) itself (up to renaming objects and maps).
The dual of Exercise 1.5.11(f) is the following exercise:

If H is a cocommutative k-bialgebra, and k and ` are two nonnegative integers, then prove

that id?`H ◦ id?kH = id
?(`k)
H .

This can be solved just as we solved Exercise 1.5.11(f), but again with all arrows reversed.
The dual of Exercise 1.5.11(g) is the following exercise:

If H is a cocommutative k-Hopf algebra, and k and ` are two integers, then prove that

id?`H ◦ id?kH = id
?(`k)
H .

This can be solved just as we solved Exercise 1.5.11(g), but again with all arrows reversed.

13.32. Solution to Exercise 1.5.13. Solution to Exercise 1.5.13. We will use the concepts of “?-invertible”
maps and their “?-inverses” as defined in Exercise 1.4.29. We will also use the notations introduced in
Definition 1.4.8.

Let A be a cocommutative Hopf algebra. Then, the k-linear map idA : A → A is ?-invertible (since

A is a Hopf algebra), and its ?-inverse id
?(−1)
A is the antipode S of A. That is, id

?(−1)
A = S. Applying

Exercise 1.4.29(b) to C = A and r = idA, we now conclude that id
?(−1)
A is a k-coalgebra anti-homomorphism

A → A (since idA is a k-coalgebra homomorphism A → A). Since a k-coalgebra anti-homomorphism
A → A is the same thing as a k-coalgebra homomorphism A → A (by Exercise 1.5.8(b), because A is

cocommutative), this yields that id
?(−1)
A is a k-coalgebra homomorphism A → A. In other words, S is a k-

coalgebra homomorphism A→ A (since id
?(−1)
A = S). Now, Proposition 1.4.26(b) (applied to H = A, C = A

and γ = S) yields S ◦ S = S?(−1). But S?(−1) = idA (since S = id
?(−1)
A ). Hence, S2 = S ◦ S = S?(−1) = idA.

This solves Exercise 1.5.13.

13.33. Solution to Exercise 1.5.14. Solution to Exercise 1.5.14. (a) We shall solve Exercise 1.5.14(a) in
two ways.

First, here is a messy computational solution:
Fix a ∈ A, and assume WLOG that a is homogeneous of degree n ∈ N. Let us prove that (S ? E) (a) is

primitive.
In fact, using the Sweedler notation, we can write ∆ (a) =

∑
(a) a1 ⊗ a2 with all a1 and a2 homogeneous.

Thus,

(S ? E) (a) =
∑
(a)

S (a1) · E (a2)︸ ︷︷ ︸
=(deg a2)·a2

=
∑
(a)

(deg a2)S (a1) · a2.
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Hence,

∆ ((S ? E) (a)) =
∑
(a)

(deg a2) ∆ (S (a1) · a2) =
∑
(a)

(deg a2)
∑
(a1)

∑
(a2)

(S (a1))1 · (a2)1 ⊗ (S (a1))2 · (a2)2︸ ︷︷ ︸
=
∑

(a1)

∑
(a2)(S((a1)2))·(a2)1⊗(S((a1)1))·(a2)2

(here we used (S(a1))1⊗(S(a1))2=S((a1)2)⊗S((a1)1),

which is a consequence of Exercise 1.4.28)

=
∑
(a)

(deg a2)
∑
(a1)

∑
(a2)

(S ((a1)2)) · (a2)1 ⊗ (S ((a1)1)) · (a2)2

=
∑
(a)

(deg a3 + deg a4) (S (a2)) · a3 ⊗ (S (a1)) · a4

=
∑
(a)

(deg a3) (S (a2)) · a3 ⊗ (S (a1)) · a4 +
∑
(a)

(deg a4) (S (a2)) · a3 ⊗ (S (a1)) · a4

=
∑
(a)

(deg a2) (S (a1)) · a2 ⊗ (S (a3)) · a4︸ ︷︷ ︸
=ε(a3)

+
∑
(a)

(deg a2) (S (a3)) · a4︸ ︷︷ ︸
=ε(a3)

⊗ (S (a1)) · a2

(by the cocommutativity of A)

=
∑
(a)

(deg a2) (S (a1)) · a2︸ ︷︷ ︸
=(S?E)(a)

⊗1 + 1⊗
∑
(a)

(deg a2) (S (a1)) · a2︸ ︷︷ ︸
=(S?E)(a)

= (S ? E) (a)⊗ 1 + 1⊗ (S ? E) (a) .

This (slightly unclean but easily formalizable) computation shows that (S ? E) (a) is primitive, and similarly
the same can be shown for (E ? S) (a). This proves (a).

There is, however, a nicer proof: A coderivation of a k-coalgebra (C,∆, ε) is defined as a k-linear map
F : C → C such that ∆ ◦ F = (F ⊗ id + id⊗F ) ◦ ∆. (The reader can check that this axiom is the result
of writing the axiom for a derivation in element-free terms and reversing all arrows. Nothing less should
be expected.) It is easy to see (by checking on each homogeneous component) that E is a coderivation.
Hence, it will be enough to check that (S ? f) (a) and (f ? S) (a) are primitive whenever f : A → A is
a coderivation and a ∈ A. So fix a coderivation f : A → A. Notice that the antipode S of A is a
coalgebra anti-endomorphism (by Exercise 1.4.28), thus a coalgebra endomorphism (because coalgebra anti-
endomorphisms of a cocommutative coalgebra are precisely the same as its coalgebra endomorphisms449).
Thus, ∆ ◦ S = (S ⊗ S) ◦ ∆. Moreover, ∆ : A → A ⊗ A is a coalgebra homomorphism450 and an algebra
homomorphism (since A is a bialgebra). Applying (1.4.2) to A⊗A, A, A, ∆, idA, S and f instead of A′, C,
C ′, α, γ, f and g, we obtain

∆ ◦ (S ? f) = (∆ ◦ S)︸ ︷︷ ︸
=(S⊗S)◦∆

? (∆ ◦ f)︸ ︷︷ ︸
=(f⊗id + id⊗f)◦∆

(since f is a coderivation)

= ((S ⊗ S) ◦∆) ? ((f ⊗ id + id⊗f) ◦∆) = ((S ⊗ S) ? (f ⊗ id + id⊗f)) ◦∆(
by (1.4.2), applied to A⊗A, A⊗A, A⊗A⊗A⊗A, A⊗A,

id , ∆, S ⊗ S and f ⊗ id + id⊗f instead of A, A′, C, C ′, α, γ, f and g

)
= ((S ⊗ S) ? (f ⊗ id)) ◦∆ + ((S ⊗ S) ? (id⊗f)) ◦∆.(13.33.1)

449This is the result of Exercise 1.5.8(b).
450In fact, Exercise 1.5.6(a) (applied to C = A) shows that A is cocommutative if and only if ∆ : A→ A⊗A is a coalgebra

homomorphism. But we know that A is cocommutative, so that ∆ : A→ A⊗A is a coalgebra homomorphism.
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But Exercise 1.4.4(a) yields (S ⊗ S) ? (f ⊗ id) = (S ? f) ⊗ (S ? id)︸ ︷︷ ︸
=uε

= (S ? f) ⊗ uε and similarly (S ⊗ S) ?

(id⊗f) = uε⊗ (S ? f). Now, (13.33.1) becomes

∆ ◦ (S ? f) = ((S ⊗ S) ? (f ⊗ id))︸ ︷︷ ︸
=(S?f)⊗uε

◦∆ + ((S ⊗ S) ? (id⊗f))︸ ︷︷ ︸
=uε⊗(S?f)

◦∆

= ((S ? f)⊗ uε) ◦∆ + (uε⊗ (S ? f)) ◦∆.

Hence, every a ∈ A satisfies (using the Sweedler notation)

(∆ ◦ (S ? f)) (a) = (((S ? f)⊗ uε) ◦∆ + (uε⊗ (S ? f)) ◦∆) (a)

= ((S ? f)⊗ uε) (∆ (a)) + (uε⊗ (S ? f)) (∆ (a))

=
∑
(a)

(S ? f) (a1)⊗ (uε) (a2) +
∑
(a)

(uε) (a1)⊗ (S ? f) (a2)

=
∑
(a)

(S ? f) (a1) ε (a2)

︸ ︷︷ ︸
=(S?f)(a)

⊗1 + 1⊗
∑
(a)

ε (a1) (S ? f) (a2)

︸ ︷︷ ︸
=(S?f)(a)

= (S ? f) (a)⊗ 1 + 1⊗ (S ? f) (a) .

In other words, for every a ∈ A, the element (S ? f) (a) is primitive. Similarly the same can be shown for
(f ? S) (a), and so we are done.

(b) is a very simple computation. (Alternatively, the (S ? E) (p) = E (p) part follows from applying part
(c) to a = 1, and similarly one can show (E ? S) (p) = E (p).)

(c) This is computational again: It is straightforward to check that E is a derivation of the algebra A.
Now,

∆ (ap) = ∆ (a)︸ ︷︷ ︸
=
∑

(a) a1⊗a2

∆ (p)︸ ︷︷ ︸
=p⊗1+1⊗p

=

∑
(a)

a1 ⊗ a2

 (p⊗ 1 + 1⊗ p)

=
∑
(a)

a1p⊗ a2 +
∑
(a)

a1 ⊗ a2p,

so that

(S ? E) (ap) =
∑
(a)

S (a1p)︸ ︷︷ ︸
=S(p)S(a1)

(since S is an algebra
anti-endomorphism)

E (a2) +
∑
(a)

S (a1) E (a2p)︸ ︷︷ ︸
=E(a2)p+a2E(p)

(since E is a derivation)

=
∑
(a)

S (p)︸ ︷︷ ︸
=−p

(by Proposition 1.4.17)

S (a1)E (a2) +
∑
(a)

S (a1) (E (a2) p+ a2E (p))

= −p
∑
(a)

S (a1)E (a2)

︸ ︷︷ ︸
=(S?E)(a)

+
∑
(a)

S (a1)E (a2)

︸ ︷︷ ︸
=(S?E)(a)

p+
∑
(a)

S (a1) a2︸ ︷︷ ︸
=u(ε(a))

E (p)

= −p (S ? E) (a) + (S ? E) (a) p︸ ︷︷ ︸
=[(S?E)(a),p]

+u (ε (a))E (p)︸ ︷︷ ︸
=ε(a)E(p)

= [(S ? E) (a) , p] + ε (a)E (p) ,

thus proving part (c).
(d) Assume that A is connected and that Q is a subring of k. Let B be the k-subalgebra of A generated

by p. In order to prove part (d), we need to show that A ⊂ B. Clearly, p ⊂ B.
Consider the grading A =

⊕
n≥0An of A. Now, we need to prove that A ⊂ B. In order to prove this,

it is clearly enough to show that An ⊂ B for every n ∈ N. We will prove this by strong induction over n.
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Let n ∈ N, and assume that we have shown that Am ⊂ B for every nonnegative integer m < n. We need to
prove that An ⊂ B.

If n = 0, then this is obvious (since A0 = k · 1A ⊂ B). Thus, for the rest of this proof, we WLOG assume
that n 6= 0. Hence, n is a positive integer.

Let a ∈ An. We know that (S ? E) (a) is primitive (by part (a)), so that (S ? E) (a) ∈ p ⊂ B. On the
other hand, a ∈ An shows that

∆ (a) ∈ ∆ (An) ⊂ (A⊗A)n (since ∆ is a graded map)

=

n∑
i=0

Ai ⊗An−i = A0 ⊗An +

n∑
i=1

Ai ⊗An−i.

We can thus write ∆ (a) in the form ∆ (a) = u+ v for some u ∈ A0⊗An and v ∈
∑n
i=1Ai⊗An−i. Consider

these u and v.
We are first going to prove that u = 1 ⊗ a. Indeed, applying ε ⊗ id to the equality ∆ (a) = u + v, we

obtain (ε⊗ id) (∆ (a)) = (ε⊗ id) (u+ v) = (ε⊗ id) (u) + (ε⊗ id) (v). But since (ε⊗ id) (∆ (a)) = a (by the
commutativity of the diagram (1.2.2)) and (ε⊗ id) (v) = 0 (because

(ε⊗ id) (v) ∈ (ε⊗ id)

(
n∑
i=1

Ai ⊗An−i

) (
since v ∈

n∑
i=1

Ai ⊗An−i

)

=

n∑
i=1

ε (Ai)︸ ︷︷ ︸
=0

(since i>0)

⊗An−i =

n∑
i=1

0⊗An−i = 0

), this rewrites as a = (ε⊗ id) (u) + 0. In other words, a = (ε⊗ id) (u). But the element u has the form
u = 1A ⊗ u′ for some u′ ∈ An (because u ∈ A0︸︷︷︸

=k·1A

⊗An = k · 1A ⊗ An = 1A ⊗ An). This u′ ∈ An can be

recovered by u′ = (ε⊗ id) (u) (since it satisfies (ε⊗ id)

 u︸︷︷︸
=1A⊗u′

 = (ε⊗ id) (1A ⊗ u′) = ε (1A)︸ ︷︷ ︸
=1

u′ = u′), and

thus simply equals a (since a = (ε⊗ id) (u)). Thus, u = 1A ⊗ a.
Now,

(S ? E)︸ ︷︷ ︸
=m◦(S⊗E)◦∆

(a) = (m ◦ (S ⊗ E) ◦∆) (a) = (m ◦ (S ⊗ E))

∆ (a)︸ ︷︷ ︸
=u+v


= (m ◦ (S ⊗ E)) (u+ v) = (m ◦ (S ⊗ E)) (u) + (m ◦ (S ⊗ E)) (v) .

Since

(m ◦ (S ⊗ E))

 u︸︷︷︸
=1A⊗a

 = (m ◦ (S ⊗ E)) (1A ⊗ a) = m

(S ⊗ E) (1A ⊗ a)︸ ︷︷ ︸
=S(1A)⊗E(a)


= m (S (1A)⊗ E (a)) = S (1A)︸ ︷︷ ︸

=1A

E (a)︸ ︷︷ ︸
=na

(since a∈An)

= na
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and

(m ◦ (S ⊗ E))

 v︸︷︷︸
∈
∑n
i=1 Ai⊗An−i


∈ (m ◦ (S ⊗ E))

(
n∑
i=1

Ai ⊗An−i

)
=

n∑
i=1

(m ◦ (S ⊗ E)) (Ai ⊗An−i)

=

n∑
i=1

m ((S ⊗ E) (Ai ⊗An−i))︸ ︷︷ ︸
=S(Ai)⊗E(An−i)

=

n∑
i=1

m (S (Ai)⊗ E (An−i))

=

n∑
i=1

S (Ai) · E (An−i) =

n−1∑
i=1

S (Ai) · E (An−i) + S (An) · E (A0)︸ ︷︷ ︸
=0

(by the definition
of E)

=

n−1∑
i=1

S (Ai)︸ ︷︷ ︸
⊂Ai

(since the map S is graded)

· E (An−i)︸ ︷︷ ︸
⊂An−i

(since the map E is graded)

⊂
n−1∑
i=1

Ai︸︷︷︸
⊂B

(since Am⊂B for every
nonnegative integer m<n)

· An−i︸ ︷︷ ︸
⊂B

(since Am⊂B for every
nonnegative integer m<n)

⊂
n−1∑
i=1

B ·B ⊂ B

(since B is an algebra), this becomes

(S ? E) (a) = (m ◦ (S ⊗ E)) (u)︸ ︷︷ ︸
=na

+ (m ◦ (S ⊗ E)) (v)︸ ︷︷ ︸
∈B

∈ na+B,

so that

na ∈ (S ? E) (a)︸ ︷︷ ︸
∈B

+B ⊂ B +B ⊂ B.

Since n is positive and Q is a subring of k, we can divide this by n and obtain a ∈ B.
We have thus shown that a ∈ B for every a ∈ An. Hence, An ⊂ B. This completes the induction step.

Thus, we know that An ⊂ B for every n ∈ N. Consequently, A ⊂ B, and the proof of (d) is complete.
This solution of part (d) is not the most generalizable one – for instance, (d) also holds if A is connected

filtered instead of connected graded, and then a different argument is necessary. This is a part of the
Cartier-Milnor-Moore theorem, and appears e.g. in [60, §3.2].

(e) If a ∈ T (V ) is homogeneous of positive degree and p ∈ V , then part (c) yields

(S ? E) (ap) = [(S ? E) (a) , p] + ε (a)︸︷︷︸
=0

E (p) (since p is primitive in T (V ))

= [(S ? E) (a) , p] .

This allows proving (e) by induction over n, with the induction base n = 1 being a consequence of part (b).

13.34. Solution to Exercise 1.6.1. Solution to Exercise 1.6.1. (a) Let u be the map ε∗C ◦ s : k→ C∗. Let
m be the map ∆∗C ◦ ρC,C : C∗ ⊗C∗ → C∗. Our goal is to prove that C∗, endowed with m as the associative
operation and u as the unity map, is a k-algebra. In order to achieve this, we need to prove that the diagrams
(1.2.1) and (1.2.2) with A, m and u replaced by C∗, m and u are commutative.
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Let us first prove that the diagram (1.2.1) with A, m and u replaced by C∗, m and u is commutative. In
other words, let us prove that the diagram

(13.34.1) C∗ ⊗ C∗ ⊗ C∗
m⊗id

ww

id⊗m

''
C∗ ⊗ C∗

m

''

C∗ ⊗ C∗
m

ww
C∗

is commutative.
Indeed, consider the diagram

(13.34.2) C∗ ⊗ C∗ ⊗ C∗
m⊗id

��

ρC,C⊗idvv

id⊗ρC,C

((

id⊗m

��

(C ⊗ C)
∗ ⊗ C∗

∆∗C⊗idww

ρC⊗C,C

((

C∗ ⊗ (C ⊗ C)
∗

id⊗∆∗C ''
ρC,C⊗Cvv

C∗ ⊗ C∗
ρC,C

''

m
66

(C ⊗ C ⊗ C)
∗

(∆C⊗id)∗vv

(id⊗∆C)∗

((

C∗ ⊗ C∗
ρC,C

ww

m

hh

(C ⊗ C)
∗

∆∗C

((

(C ⊗ C)
∗

∆∗Cvv
C∗

.

We are going to show that this diagram is commutative. In order to do so, we will show that its little squares
and triangles are commutative.

The triangle

C∗ ⊗ C∗ ⊗ C∗
m⊗id





ρC,C⊗idvv
(C ⊗ C)

∗ ⊗ C∗

∆∗C⊗idww
C∗ ⊗ C∗

is commutative, since m = ∆∗C ◦ ρC,C . For the same reason, the triangle

C∗ ⊗ C∗ ⊗ C∗
id⊗ρC,C

((

id⊗m

��

C∗ ⊗ (C ⊗ C)
∗

id⊗∆∗C ''
C∗ ⊗ C∗
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is commutative. The commutativity of the triangles

C∗ ⊗ C∗
ρC,C

&&

m
66

(C ⊗ C)
∗

∆∗C

$$
C∗

and C∗ ⊗ C∗
ρC,C

xx

m

hh

(C ⊗ C)
∗

∆∗Czz
C∗

also clearly follows from m = ∆∗C ◦ ρC,C . The commutativity of the square

C∗ ⊗ C∗ ⊗ C∗

ρC,C⊗idvv

id⊗ρC,C

((
(C ⊗ C)

∗ ⊗ C∗
ρC⊗C,C

((

C∗ ⊗ (C ⊗ C)
∗

ρC,C⊗Cvv
(C ⊗ C ⊗ C)

∗

is a basic linear-algebraic fact. The commutativity of the square

(C ⊗ C)
∗ ⊗ C∗

∆∗C⊗idww

ρC⊗C,C

((
C∗ ⊗ C∗

ρC,C

''

(C ⊗ C ⊗ C)
∗

(∆C⊗id)∗vv
(C ⊗ C)

∗

is a particular case of the following linear-algebraic fact: If X, Y and B are three k-modules and f : Y → X
is a k-linear map, then the diagram

X∗ ⊗B∗

f∗⊗idxx

ρX,B

&&
Y ∗ ⊗B∗

ρY,B

&&

(X ⊗B)
∗

(f⊗id)∗xx
(Y ⊗B)

∗

is commutative.451 Similarly, the commutativity of the square

C∗ ⊗ (C ⊗ C)
∗

id⊗∆∗C ''
ρC,C⊗Cvv

(C ⊗ C ⊗ C)
∗

(id⊗∆C)∗

((

C∗ ⊗ C∗
ρC,C

ww
(C ⊗ C)

∗

451This is part of the reason why ρU,V is functorial in U .
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can be shown. Finally, the square

(C ⊗ C ⊗ C)
∗

(∆C⊗id)∗ww

(id⊗∆C)∗

''
(C ⊗ C)

∗

∆∗C

''

(C ⊗ C)
∗

∆∗Cww
C∗

is commutative, because it is obtained by dualizing the commutative diagram (1.2.1).
We thus have shown that every little square and every little triangle of the diagram (13.34.2) is commu-

tative. Hence, the whole diagram (13.34.2) is commutative. In particular, the square formed by the four
long curved arrows in (13.34.2) is commutative. But this square is precisely the diagram (13.34.1). Hence,
we have shown that the diagram (13.34.1) is commutative. In other words, the diagram (1.2.1) with A, m
and u replaced by C∗, m and u is commutative.

It now remains to prove that the diagram (1.2.2) with A, m and u replaced by C∗, m and u is commutative.
In other words, it remains to prove that the diagram

C∗ ⊗ k

id⊗u
��

C∗oo

id

��

// k⊗ C∗

u⊗id

��
C∗ ⊗ C∗ m // C∗ C∗ ⊗ C∗moo

is commutative. We will only prove the commutativity of the left square of this diagram (since the right
square is analogous). That is, we will only prove the commutativity of the square

(13.34.3) C∗ ⊗ k

id⊗u
��

C∗oo

id

��
C∗ ⊗ C∗ m // C∗

.

Indeed, the proof is similar to our proof of (13.34.1), but instead of the big diagram (13.34.2) we now
have the diagram

(13.34.4) C∗ ⊗ k

id⊗s
��

id⊗u

((

C∗∼=
oo

zz
id∗

��

id

uu

C∗ ⊗ k∗
ρC,k //

id⊗ε∗C
��

(C ⊗ k)
∗

(id⊗εC)∗

��
C∗ ⊗ C∗

ρC,C //

m

::(C ⊗ C)
∗ ∆∗C // C∗

in which the arrow C∗ → (C ⊗ k)
∗

is the adjoint map of the canonical isomorphism C ⊗ k → C (and in
which we identify k∗ with k). The commutativity of the little triangles and squares is again easily proven
(the square

C∗

zz
id∗

��

(C ⊗ k)
∗

(id⊗εC)∗

��
(C ⊗ C)

∗ ∆∗C // C∗
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is commutative by virtue of being the dual of the left square in (1.2.2)). The commutativity of the “2-gon”

C∗

id∗

��
id

tt
C∗

simply says that id∗ = id, which is obvious. Thus, everything in (13.34.4) commutes. By following the
“outer quadrilateral” of (13.34.4), we obtain precisely the commutativity of (13.34.3). This completes our
solution of Exercise 1.6.1 (a).

Remark: Our solution was not the simplest one (by far). We could have saved much work by doing certain
abuses of notation (such as identifying s with the identity map). We could also solve part (a) very easily if
we had solved part (b) first. In the above solution, we have avoided all such shortcuts.

(b) Let C be a k-coalgebra. Let us notice that

(13.34.5) ρC,C (f ⊗ g) = mk ◦ (f ⊗ g) for all f ∈ C∗ and g ∈ C∗.
452

Now, we want to prove that the k-algebra structure defined on C∗ in part (a) is precisely the one defined
on Hom (C,k) = C∗ in Definition 1.4.1 applied to A = k. In order to do this, it is clearly enough to show that
the product of any two elements of C∗ with respect to the former k-algebra structure equals their product
with respect to the latter k-algebra structure. In other words, it is enough to prove that for any f ∈ C∗ and
g ∈ C∗, we have

(the product fg with respect to the k-algebra C∗ defined in part (a))

= (the product fg with respect to the k-algebra Hom (C, k) defined in Definition 1.4.1 applied to A = k) .

But this follows from the following computation:

(the product fg with respect to the k-algebra C∗ defined in part (a))

= mC∗︸︷︷︸
=∆∗C◦ρC,C

(f ⊗ g) = (∆∗C ◦ ρC,C) (f ⊗ g) = ∆∗C

ρC,C (f ⊗ g)︸ ︷︷ ︸
=mk◦(f⊗g)

(by (13.34.5))


= ∆∗C (mk ◦ (f ⊗ g)) = mk ◦ (f ⊗ g) ◦∆C (by the definition of ∆∗C)

= f ? g (since f ? g = mk ◦ (f ⊗ g) ◦∆C (by the definition of f ? g))

= (the product fg with respect to the k-algebra Hom (C, k) defined in Definition 1.4.1 applied to A = k) .

Thus, part (b) of the exercise is solved.
(c) Let C be a graded k-coalgebra. Let C =

⊕
n≥0 Cn be its decomposition into homogeneous compo-

nents. Then, for every n ∈ N, we identify (Cn)
∗

with a k-submodule of C∗, namely with the k-submodule
{f ∈ C∗ | f (Cp) = 0 for all p ∈ N satisfying p 6= n}. Thus,

(13.34.6) (Cn)
∗

= {f ∈ C∗ | f (Cp) = 0 for all p ∈ N satisfying p 6= n}
for every n ∈ N.

By the definition of Co, we have Co =
⊕

n≥0 (Cn)
∗

=
∑
n≥0 (Cn)

∗
.

Now let a and b be two nonnegative integers. We shall show that (Ca)
∗

(Cb)
∗ ⊂ (Ca+b)

∗
.

Indeed, let x ∈ (Ca)
∗

and y ∈ (Cb)
∗

be arbitrary. We have

x ∈ (Ca)
∗

= {f ∈ C∗ | f (Cp) = 0 for all p ∈ N satisfying p 6= a}
(by (13.34.6), applied to n = a). In other words, x is an element of C∗ such that

(13.34.7) x (Cp) = 0 for all p ∈ N satisfying p 6= a.

452Proof of (13.34.5): Let f ∈ C∗ and g ∈ C∗. Then, the definition of ρC,C shows that ρC,C (f ⊗ g) is the composition

C⊗C f⊗g−→ k⊗k
mk−→ k of the map f⊗g with the canonical isomorphism k⊗k

mk−→ k. In other words, ρC,C (f ⊗ g) = mk◦(f ⊗ g).
This proves (13.34.5).
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Similarly, y is an element of C∗ such that

(13.34.8) y (Cp) = 0 for all p ∈ N satisfying p 6= b.

Also, (13.34.6) (applied to n = a+ b) yields

(13.34.9) (Ca+b)
∗

= {f ∈ C∗ | f (Cp) = 0 for all p ∈ N satisfying p 6= a+ b} .
Now, part (b) of this exercise yields that the k-algebra structure defined on C∗ in part (a) is precisely the

one defined on Hom (C,k) = C∗ in Definition 1.4.1 applied to A = k. Thus, the product of the k-algebra
C∗ is precisely the convolution product ? on Hom (C,k) = C∗. Hence,

xy = x ? y = mk ◦ (x⊗ y) ◦∆C .

Now, fix p ∈ N such that p 6= a+ b. Then, ∆C (Cp) ⊂
∑p
q=0 Cq ⊗Cp−q (since the coalgebra C is graded).

Now, every q ∈ {0, 1, ..., p} satisfies

(13.34.10) (x⊗ y) (Cq ⊗ Cp−q) = 0.

(Proof of (13.34.10): Let q ∈ {0, 1, ..., p}. Then we must have either q 6= a or p − q 6= b (or both), because
otherwise we would have p = q︸︷︷︸

=a

+ (p− q)︸ ︷︷ ︸
=b

= a + b which would contradict p 6= a + b. If q 6= a, then

x (Cq) = 0 (by (13.34.7)) and therefore (x⊗ y) (Cq ⊗ Cp−q) = x (Cq)︸ ︷︷ ︸
=0

⊗y (Cp−q) = 0. If p − q 6= b, then

(13.34.8) yields y (Cp−q) = 0, and thus (x⊗ y) (Cq ⊗ Cp−q) = x (Cq)⊗ y (Cp−q)︸ ︷︷ ︸
=0

= 0. Hence, in either case,

we have (x⊗ y) (Cq ⊗ Cp−q) = 0, and so (13.34.10) is proven.)
Now, xy︸︷︷︸

=mk◦(x⊗y)◦∆C

 (Cp) = (mk ◦ (x⊗ y) ◦∆C) (Cp) = mk

(x⊗ y)

 ∆C (Cp)︸ ︷︷ ︸
⊂
∑p
q=0 Cq⊗Cp−q




⊂ mk

(
(x⊗ y)

(
p∑
q=0

Cq ⊗ Cp−q

))
=

p∑
q=0

mk

(x⊗ y) (Cq ⊗ Cp−q)︸ ︷︷ ︸
=0

(by (13.34.10))


=

p∑
q=0

mk0 = 0.

In other words, (xy) (Cp) = 0.
Now, forget that we fixed p. We thus have shown that (xy) (Cp) = 0 for all p ∈ N satisfying p 6= a+ b. In

other words,
xy ∈ {f ∈ C∗ | f (Cp) = 0 for all p ∈ N satisfying p 6= a+ b} = (Ca+b)

∗

(by (13.34.9)).
Now, forget that we fixed x and y. We thus have shown that xy ∈ (Ca+b)

∗
for all x ∈ (Ca)

∗
and y ∈ (Cb)

∗
.

This yields (Ca)
∗

(Cb)
∗ ⊂ (Ca+b)

∗
(since (Ca+b)

∗
is a k-module).

But this has been proven for all a ∈ N and b ∈ N. From this, it is easy to conclude that CoCo ⊂ Co

(since Co =
∑
n≥0 (Cn)

∗
). Hence, the k-submodule Co of C∗ is closed under multiplication. Since we also

have 1C∗ ∈ Co (in fact, it is very easy to see that 1C∗ = εC ∈ (C0)
∗ ⊂

∑
n≥0 (Cn)

∗
= Co), this shows that

Co is a k-subalgebra of C∗. This solves part (c) of the exercise.
(d) Let C and D be two k-coalgebras. Let f : C → D be a homomorphism of k-coalgebras. Then, the

two diagrams

(13.34.11) C

∆C

��

f // D

∆D

��
C ⊗ C

f⊗f // D ⊗D

and C

εC ��

f // D

εD
��

k
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are commutative (since f is a homomorphism of k-coalgebras).
We need to prove that f∗ : D∗ → C∗ is a homomorphism of k-algebras. In other words, we need to prove

that the two diagrams

(13.34.12) D∗
f∗ // C∗

D∗ ⊗D∗
mD∗

OO

f∗⊗f∗ // C∗ ⊗ C∗
mC∗

OO and D∗
f∗ // C∗

k

uD∗

``

uC∗

>>

are commutative.
By the definition of the k-algebra D∗, we have mD∗ = ∆∗D ◦ ρD,D. Thus, the left triangle (with two

vertical edges and one curved edge) in the diagram

(13.34.13) D∗
f∗ // C∗

(D ⊗D)
∗

∆∗D

OO

(f⊗f)∗// (C ⊗ C)
∗

∆∗C

OO

D∗ ⊗D∗

ρD,D

OO
mD∗

66

f∗⊗f∗ // C∗ ⊗ C∗

ρC,C

OO
mC∗

hh

commutes. Similarly, the right triangle in (13.34.13) also commutes. The upper rectangle commutes because
it is obtained from the first diagram in (13.34.11) by dualizing. The lower triangle in (13.34.13) commutes
by basic linear algebra. Hence, the whole diagram (13.34.13) commutes. But the outer rim of the diagram
(13.34.13) is exactly the first diagram in (13.34.12). Thus, the first diagram in (13.34.12) commutes. The
(even simpler) task of proving the commutativity of the second diagram in (13.34.12) is left to the reader.
Thus, f∗ is a homomorphism of k-algebras. Part (d) of the exercise is solved.

(e) This is an exercise in linear algebra (it has nothing to do with Hopf algebras). Here is a rough sketch
of how it is solved: Let U =

⊕
n≥0 Un be the decomposition of U into its homogeneous components, and let

V =
⊕

n≥0 Vn be the decomposition of V into its homogeneous components. Notice that every Vn is finite free

(since V is of finite type). Graded k-linear maps U → V can be regarded as elements of
∏
n≥0 Hom (Un, Vn)

(because a graded k-linear map U → V restricts to a k-linear map Un → Vn for every n ∈ N, and is uniquely
determined by the totality of these restrictions). Similarly, graded k-linear maps V o → Uo can be regarded
as elements of

∏
n≥0 Hom

(
(Vn)

∗
, (Un)

∗)
. For every n ∈ N, there is a canonical k-module isomorphism

Hom (Un, Vn) → Hom
(
(Vn)

∗
, (Un)

∗)
which sends every ϕ ∈ Hom (Un, Vn) to ϕ∗ ∈ Hom

(
(Vn)

∗
, (Un)

∗)
(since Vn is finite free). Taking the product of these isomorphisms, we obtain a k-module isomorphism from∏
n≥0 Hom (Un, Vn) to

∏
n≥0 Hom

(
(Vn)

∗
, (Un)

∗)
, that is, a k-module isomorphism from the k-module of

all graded k-linear maps U → V to the k-module of all graded k-linear maps V o → Uo. It is easy to see
that this isomorphism sends every f : U → V to f∗ : V o → Uo. Hence, there is a 1-to-1 correspondence
between graded k-linear maps U → V and graded k-linear maps V o → Uo given by f 7→ f∗ (namely, this
isomorphism). This solves Exercise 1.6.1 (e).

(f) Let f : C → D be a graded k-linear map. We need to prove that f : C → D is a k-coalgebra morphism
if and only if f∗ : Do → Co is a k-algebra morphism. In other words, we need to prove the following two
assertions:

Assertion 1: If f : C → D is a k-coalgebra morphism, then f∗ : Do → Co is a k-algebra
morphism.

Assertion 2: If f∗ : Do → Co is a k-algebra morphism, then f : C → D is a k-coalgebra
morphism.

We start by proving Assertion 1. One way to prove it proceeds by repeating the solution of Exercise 1.6.1
(d), except that D∗, (D ⊗D)

∗
, C∗ and (C ⊗ C)

∗
are replaced by Do, (D ⊗D)

o
, Co and (C ⊗ C)

o
(where,

of course, the map ρD,D : Do → (D ⊗D)
o

has to be interpreted as the restriction of the map ρD,D : D∗ →
(D ⊗D)

∗
to the k-submodule Do of D∗, and similarly for the other maps). This replacement can be done

completely robotically, and thus is left to the reader. Another way to prove Assertion 1 is by realizing that it
follows immediately from Exercise 1.6.1 (d) (since f∗ : Do → Co is a restriction of the map f∗ : D∗ → C∗).
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Either way, we do not end up using the assumption that D is of finite type. However, we will need this
assumption in our proof of Assertion 2.

Now, let us prove Assertion 2. Assume that f∗ : Do → Co is a k-algebra morphism. We want to show that
f : C → D is a k-coalgebra morphism. In other words, we want to show that the two diagrams (13.34.11)
commute. Let us start with the left one of these diagrams.

The graded k-module D is of finite type, and therefore the map ρD,D : Do⊗Do → (D ⊗D)
o

(a restriction

of the map ρD,D : D∗ ⊗ D∗ → (D ⊗D)
∗
) is an isomorphism. Its inverse ρ−1

D,D : (D ⊗D)
o → Do ⊗ Do is

therefore well-defined453. We can thus form the (asymmetric!) diagram

(13.34.14) Do f∗ // Co

Do ⊗Do

mD∗

ii

f∗⊗f∗ // Co ⊗ Co

mC∗

55

ρC,C

))
(D ⊗D)

o

∆∗D

OO

ρ−1
D,D

55

(f⊗f)∗
// (C ⊗ C)

o

∆∗C

OO .

(The arrows labelled mC∗ and mD∗ could just as well have been labelled mCo and mDo , since the multipli-
cation maps mCo and mDo are restrictions of mC∗ and mD∗ .) The two triangles in (13.34.14) commute due
to mD∗ = ∆∗D ◦ρD,D and mC∗ = ∆∗C ◦ρC,C . The upper quadrilateral in (13.34.14) commutes because f∗ is a
k-algebra homomorphism, and the lower quadrilateral in (13.34.14) commutes because of the commutativity
of the diagram

Do ⊗Do

ρD,D

��

f∗⊗f∗ // Co ⊗ Co

ρC,C

��
(D ⊗D)

o

(f⊗f)∗
// (C ⊗ C)

o

(which follows from standard linear algebra). Hence, the whole diagram (13.34.14) commutes. Removing
the two interior nodes of this diagram, we obtain the commutative diagram

(13.34.15) Do f∗ // Co

(D ⊗D)
o

∆∗D

OO

(f⊗f)∗
// (C ⊗ C)

o

∆∗C

OO .

This does not immediately yield the commutativity of the first diagram in (13.34.11) (because we cannot
revert taking dual k-modules), so we are not yet done. But we are close.

We have

(∆D ◦ f)
∗

= f∗ ◦∆∗D = ∆∗C ◦ (f ⊗ f)
∗

(since the diagram (13.34.15) commutes)

= ((f ⊗ f) ◦∆C)
∗

as maps from (D ⊗D)
o

to Co. But a general linear-algebraic fact states that if U and V are two graded
k-modules such that V is of finite type, and if α and β are two graded k-linear maps U → V such that
α∗ = β∗ as maps from V o to Uo, then α = β 454. Applying this to U = C, V = D ⊗ D, α = ∆D ◦ f
and β = (f ⊗ f) ◦ ∆C , we obtain ∆D ◦ f = (f ⊗ f) ◦ ∆C (since D ⊗ D is of finite type455 and since
(∆D ◦ f)

∗
= ((f ⊗ f) ◦∆C)

∗
). In other words, the first diagram in (13.34.11) is commutative. The reader

can verify that so is the second diagram in (13.34.11) (once again, this is the easier part). So we have shown
that both diagrams in (13.34.11) are commutative, and thus f is a k-coalgebra morphism. This proves
Assertion 2.

Now that Assertions 1 and 2 are both proven, part (f) of the exercise is solved.

453Beware: we don’t have an inverse of the non-restricted map ρD,D : D∗ ⊗D∗ → (D ⊗D)∗.
454This follows immediately from Exercise 1.6.1 (e).
455This is because D is of finite type.
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13.35. Solution to Exercise 1.6.4. Solution to Exercise 1.6.4. We have Sym (V ) ∼= k [x]. Thus,
(
xk
)
k∈N is

a basis of the k-module Sym (V ). Therefore,
(
xk ⊗ x`

)
(k,`)∈N2 is a basis of the k-module Sym (V )⊗Sym (V ).

On the other hand,
(
f (k)

)
k∈N is a basis of the k-module (Sym (V ))

o
(namely, the dual basis to the graded

basis
(
xk
)
k∈N of Sym (V )). Hence,

(
f (k) ⊗ f (`)

)
(k,`)∈N2 is a basis of the k-module (Sym (V ))

o⊗ (Sym (V ))
o
.

We denote by m the multiplication map of Sym (V ). We denote by u the unity map of Sym (V ) (that is,
the map k → Sym (V ) which sends 1k to 1Sym(V )). We denote by ∆ the comultiplication of Sym (V ). We
denote by ε the counit of Sym (V ). We denote by S the antipode of Sym (V ).

We denote by m(Sym(V ))o , u(Sym(V ))o , ∆(Sym(V ))o , ε(Sym(V ))o and S(Sym(V ))o the maps analogous to m, u,

∆, ε and S but defined for the Hopf algebra (Sym (V ))
o

instead of Sym (V ).
(a) Clearly, xi · xj = xi+j for all i ∈ N and j ∈ N.
We have ∆T (V ) (x) = 1⊗x+x⊗ 1 in T (V )⊗T (V ) (by the definition of ∆T (V )). Projecting this equality

down onto Sym (V ) ⊗ Sym (V ), we obtain ∆Sym(V ) (x) = x ⊗ 1 + 1 ⊗ x (since Sym (V ) is a quotient Hopf
algebra of T (V )). But we defined ∆ to mean the comultiplication of Sym (V ). We thus have ∆ = ∆Sym(V ),
so that ∆ (x) = ∆Sym(V ) (x) = x⊗ 1 + 1⊗ x. Thus, x is a primitive element of Sym (V ). Proposition 1.4.17
thus yields S (x) = −x.

Proposition 1.4.10 yields that the antipode S of Sym (V ) is an algebra anti-endomorphism of Sym (V ).
Since an algebra anti-endomorphism of Sym (V ) means the same as an algebra endomorphism of Sym (V )
(by Exercise 1.5.8(a), because Sym (V ) is commutative), this yields that S is an algebra endomorphism of
Sym (V ). Consequently, for any n ∈ N, we have

(13.35.1) S (xn) =

S (x)︸ ︷︷ ︸
=−x


n

= (−x)
n

= (−1)
n
xn.

It remains to prove that ∆ (xn) =
∑
i+j=n

(
n

i

)
xi ⊗ xj for every n ∈ N (where the summation sign

“
∑
i+j=n” is shorthand for “

∑
(i,j)∈N2;
i+j=n

”). Let n ∈ N. The k-algebra Sym (V )⊗ Sym (V ) is commutative (since

Sym (V ) is commutative), and thus the binomial formula can be applied in it. We know that Sym (V ) is a
bialgebra, and thus ∆ is a k-algebra homomorphism (by the axioms of a bialgebra). Hence,

∆ (xn) =

 ∆ (x)︸ ︷︷ ︸
=x⊗1+1⊗x


n

= (x⊗ 1 + 1⊗ x)
n

=

n∑
`=0

(
n

`

)
(x⊗ 1)

`︸ ︷︷ ︸
=x`⊗1

(1⊗ x)
n−`︸ ︷︷ ︸

=1⊗xn−`

(by the binomial formula)

=

n∑
`=0

(
n

`

) (
x` ⊗ 1

) (
1⊗ xn−`

)︸ ︷︷ ︸
=(x`1)⊗(1xn−`)=x`⊗xn−`

=

n∑
`=0

(
n

`

)
x` ⊗ xn−` =

∑
i+j=n

(
n

i

)
xi ⊗ xj(13.35.2)

(here, we have substituted (i, j) for (`, n− `) in the sum). This completes the solution of Exercise 1.6.4(a).
(b) The definition of f (i) shows that

(13.35.3) f (i)
(
xj
)

= δi,j for all i ∈ N and j ∈ N.

But the definition of the k-algebra (Sym (V ))
o

shows that the multiplication map m(Sym(V ))o of the k-

algebra (Sym (V ))
o

is adjoint to the comultiplication map ∆ of the k-coalgebra Sym (V ). In other words,
we have

(13.35.4)
(
m(Sym(V ))o (a) , b

)
Sym(V )

= (a,∆ (b))Sym(V )⊗Sym(V )
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for any a ∈ (Sym (V ))
o ⊗ (Sym (V ))

o
and any b ∈ Sym (V ). Thus, any p ∈ (Sym (V ))

o
, q ∈ (Sym (V ))

o
and

b ∈ Sym (V ) satisfy

(13.35.5) (pq, b)Sym(V ) = (p⊗ q,∆ (b))Sym(V )⊗Sym(V ) .

456

On the other hand, the definition of the k-coalgebra (Sym (V ))
o

shows that the comultiplication map
∆(Sym(V ))o of the k-coalgebra (Sym (V ))

o
is adjoint to the multiplication map m of the k-algebra Sym (V ).

In other words, we have

(13.35.6)
(
∆(Sym(V ))o (a) , b

)
Sym(V )⊗Sym(V )

= (a,m (b))Sym(V )

for any a ∈ (Sym (V ))
o

and any b ∈ Sym (V ) ⊗ Sym (V ). Thus, any a ∈ (Sym (V ))
o
, p ∈ Sym (V ) and

q ∈ Sym (V ) satisfy

(13.35.7)
(
∆(Sym(V ))o (a) , p⊗ q

)
Sym(V )⊗Sym(V )

= (a, pq)Sym(V ) .

457

The definition of the k-Hopf algebra (Sym (V ))
o

shows that the antipode S(Sym(V ))o of the k-Hopf algebra

(Sym (V ))
o

is adjoint to the antipode S of the k-Hopf algebra Sym (V ). In other words, we have

(13.35.8)
(
S(Sym(V ))o (a) , b

)
Sym(V )

= (a, S (b))Sym(V )

for any a ∈ (Sym (V ))
o

and b ∈ Sym (V ).
Let us also notice a simple fact about sums: If u, v and n are three nonnegative integers, if A is an additive

abelian group, and if (ti,j)(i,j)∈N2 is a family of elements of A, then

(13.35.9)
∑
i+j=n

ti,jδu,iδv,j = tu,vδu+v,n

(where, again, “
∑
i+j=n” is shorthand for “

∑
(i,j)∈N2;
i+j=n

”). 458

456Proof of (13.35.5): Let p ∈ (Sym (V ))o, q ∈ (Sym (V ))o and b ∈ Sym (V ). Then, m(Sym(V ))o (p⊗ q) = pq (since

m(Sym(V ))o is the multiplication map of the algebra (Sym (V ))o). Thus, pq︸︷︷︸
=m(Sym(V ))o (p⊗q)

, b


Sym(V )

=
(
m(Sym(V ))o (p⊗ q) , b

)
Sym(V )

= (p⊗ q,∆ (b))Sym(V )⊗Sym(V )

(by (13.35.4), applied to a = p⊗ q). This proves (13.35.5).
457Proof of (13.35.7): Let a ∈ (Sym (V ))o, p ∈ Sym (V ) and q ∈ Sym (V ). Then, m (p⊗ q) = pq (since m is the

multiplication map of the algebra Sym (V )). But (13.35.6) (applied to b = p⊗ q) yields

(
∆(Sym(V ))o (a) , p⊗ q

)
Sym(V )⊗Sym(V )

=

a,m (p⊗ q)︸ ︷︷ ︸
=pq


Sym(V )

= (a, pq)Sym(V ) .

This proves (13.35.7).
458Proof of (13.35.9): Let u, v and n be three nonnegative integers. Let A be an additive abelian group. Let (ti,j)(i,j)∈N2

be a family of elements of A.

Let us first assume that u + v 6= n. Each addend of the sum
∑
i+j=n ti,jδu,iδv,j contains the factor δu,iδv,j , which is 0

unless we have both u = i and v = j. Thus, each addend of this sum vanishes unless it satisfies both u = i and v = j at the

same time. Since no addend of this sum can satisfy both u = i and v = j at the same time (because such an addend would
then also satisfy u︸︷︷︸

=i

+ v︸︷︷︸
=j

= i+ j = n, which would contradict u+ v 6= n), this shows that each addend of this sum vanishes.

Consequently, the sum itself must vanish. That is, we have
∑
i+j=n ti,jδu,iδv,j = 0. Compared with tu,v δu+v,n︸ ︷︷ ︸

=0
(since u+v 6=n)

= 0,

this yields
∑
i+j=n ti,jδu,iδv,j = tu,vδu+v,n. Hence, (13.35.9) is proven under the assumption that u+ v 6= n.

Therefore, for the rest of our proof of (13.35.9), we can WLOG assume that we don’t have u + v 6= n. Thus, u + v = n.
Again, each addend of the sum

∑
i+j=n ti,jδu,iδv,j contains the factor δu,iδv,j , which is 0 unless we have both u = i and v = j.

Thus, each addend of this sum vanishes unless it satisfies both u = i and v = j at the same time. But there exists exactly one

addend of the sum
∑
i+j=n ti,jδu,iδv,j which satisfies both u = i and v = j: namely, the addend for (i, j) = (u, v) (and this is
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Now, we have

(13.35.10) f (u)f (v) =

(
u+ v

u

)
f (u+v) for every u ∈ N and v ∈ N.

Proof of (13.35.10): Let u ∈ N and v ∈ N.
Let k ∈ N. Then,

(
f (u)f (v)

) (
xk
)

=
(
f (u)f (v), xk

)
Sym(V )

=


f (u) ⊗ f (v), ∆

(
xk
)︸ ︷︷ ︸

=
∑
i+j=k

(
k

i

)
xi⊗xj

(by (13.35.2), applied to n=k)


Sym(V )⊗Sym(V )(

by (13.35.5), applied to p = f (u), q = f (v) and b = xk
)

=

f (u) ⊗ f (v),
∑
i+j=k

(
k

i

)
xi ⊗ xj


Sym(V )⊗Sym(V )

=
∑
i+j=k

(
k

i

)(
f (u) ⊗ f (v), xi ⊗ xj

)
Sym(V )⊗Sym(V )︸ ︷︷ ︸

=(f(u),xi)
Sym(V )

(f(v),xj)
Sym(V )

(by the definition of the
bilinear form (·,·)Sym(V )⊗Sym(V ))

=
∑
i+j=k

(
k

i

) (
f (u), xi

)
Sym(V )︸ ︷︷ ︸

=f(u)(xi)=δu,i
(by (13.35.3), applied

to u and i instead of i and j)

(
f (v), xj

)
Sym(V )︸ ︷︷ ︸

=f(v)(xj)=δv,j
(by (13.35.3), applied

to v instead of i)

=
∑
i+j=k

(
k

i

)
δu,iδv,j

=

(
k

u

)
δu+v,k

(
by (13.35.9), applied to n = k, A = k and ti,j =

(
k

i

))

=

(
u+ v

u

)
δu+v,k


because the equality

(
k

u

)
δu+v,k =

(
u+ v

u

)
δu+v,k holds

in the case when u+ v = k (obviously) and in the case
when u+ v 6= k (since both sides of this equality are 0 in

this case (due to δu+v,k = 0))

 .

Comparing this with((
u+ v

u

)
f (u+v)

)(
xk
)

=

(
u+ v

u

)
f (u+v)

(
xk
)︸ ︷︷ ︸

=δu+v,k

(by (13.35.3), applied
to u+v and k instead of i and j)

=

(
u+ v

u

)
δu+v,k,

indeed an addend because we have u+ v = n). This addend equals tu,v δu,u︸︷︷︸
=1

δv,v︸︷︷︸
=1

= tu,v . Because of this, and because all other

addends of our sum vanish, we thus conclude that the whole sum must equal tu,v . That is, we have
∑
i+j=n ti,jδu,iδv,j = tu,v .

Compared with tu,v δu+v,n︸ ︷︷ ︸
=1

(since u+v=n)

= tu,v , this yields
∑
i+j=n ti,jδu,iδv,j = tu,vδu+v,n. Hence, (13.35.9) is proven.
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we obtain
(
f (u)f (v)

) (
xk
)

=

((
u+ v

u

)
f (u+v)

)(
xk
)
.

Let us now forget that we fixed k. We thus have shown that
(
f (u)f (v)

) (
xk
)

=

((
u+ v

u

)
f (u+v)

)(
xk
)

for

every k ∈ N. In other words, the two k-linear maps f (u)f (v) and

(
u+ v

u

)
f (u+v) are equal to each other on

the basis
(
xk
)
k∈N of the k-module Sym (V ). Therefore, these two k-linear maps must be identical (because

if two k-linear maps from one and the same domain are equal to each other on a basis of this domain, then

these k-linear maps must be identical). In other words, f (u)f (v) =

(
u+ v

u

)
f (u+v). Thus, (13.35.10) is

proven.
Thus, we have shown that

(13.35.11) f (i)f (j) =

(
i+ j

i

)
f (i+j) for every i ∈ N and j ∈ N.

(In fact, (13.35.11) follows from (13.35.10) by renaming the variables u and v as i and j.)
We shall now show that

(13.35.12) ∆(Sym(V ))o

(
f (n)

)
=
∑
i+j=n

f (i) ⊗ f (j) for every n ∈ N

(where, again, “
∑
i+j=n” is shorthand for “

∑
(i,j)∈N2;
i+j=n

”).

Proof of (13.35.12): Let n ∈ N. We identify (Sym (V ))
o ⊗ (Sym (V ))

o
with (Sym (V )⊗ Sym (V ))

o
(since

Sym (V ) is a graded k-module of finite type); thus, an element of (Sym (V ))
o ⊗ (Sym (V ))

o
can be regarded

as a k-linear map Sym (V ) ⊗ Sym (V ) → k. In particular, ∆(Sym(V ))o
(
f (n)

)
thus becomes a k-linear map

Sym (V )⊗ Sym (V )→ k.
Fix (k, `) ∈ N2. Thus, k ∈ N and ` ∈ N. Then,(

∆(Sym(V ))o

(
f (n)

)) (
xk ⊗ x`

)
=
(

∆(Sym(V ))o

(
f (n)

)
, xk ⊗ x`

)
Sym(V )⊗Sym(V )

=

f (n), xkx`︸︷︷︸
=xk+`


Sym(V )

(
by (13.35.7), applied to a = f (n), p = xk and q = x`

)
=
(
f (n), xk+`

)
Sym(V )

= δn,k+` (by (13.35.3), applied to i = n and j = k + `) .

Compared with ∑
i+j=n

f (i) ⊗ f (j)

(xk ⊗ x`) =
∑
i+j=n

(
f (i) ⊗ f (j)

) (
xk ⊗ x`

)
︸ ︷︷ ︸

=f(i)(xk)f(j)(x`)

=
∑
i+j=n

f (i)
(
xk
)︸ ︷︷ ︸

=δi,k
(by (13.35.3), applied

to k instead of j)

f (j)
(
x`
)︸ ︷︷ ︸

=δj,`
(by (13.35.3), applied to j
and ` instead of i and j)

=
∑
i+j=n

δi,k︸︷︷︸
=δk,i

δj,`︸︷︷︸
=δ`,j

=
∑
i+j=n

δk,iδ`,j =
∑
i+j=n

1δk,iδ`,j = 1δk+`,n

(by (13.35.9), applied to k, `, k and 1 instead of u, v, A and ti,j)

= δk+`,n = δn,k+`,

this yields

(13.35.13)
(

∆(Sym(V ))o

(
f (n)

)) (
xk ⊗ x`

)
=

 ∑
i+j=n

f (i) ⊗ f (j)

(xk ⊗ x`) .
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Let us now forget that we fixed (k, `). We thus have shown that (13.35.13) holds for every (k, `) ∈ N2.
In other words, the two k-linear maps ∆(Sym(V ))o

(
f (n)

)
and

∑
i+j=n f

(i) ⊗ f (j) (from Sym (V ) ⊗ Sym (V )

to k) are equal to each other on the basis
(
xk ⊗ x`

)
(k,`)∈N2 of the k-module Sym (V )⊗ Sym (V ). Therefore,

these two k-linear maps must be identical (because if two k-linear maps from one and the same domain are
equal to each other on a basis of this domain, then these k-linear maps must be identical). In other words,
∆(Sym(V ))o

(
f (n)

)
=
∑
i+j=n f

(i) ⊗ f (j). Thus, (13.35.12) is proven.
Finally, let us show that

(13.35.14) S(Sym(V ))o

(
f (n)

)
= (−1)

n
f (n) for every n ∈ N.

Proof of (13.35.14): Let n ∈ N. Let k ∈ N. Then,

(
S(Sym(V ))o

(
f (n)

)) (
xk
)

=
(
S(Sym(V ))o

(
f (n)

)
, xk
)

Sym(V )
=


f (n), S

(
xk
)︸ ︷︷ ︸

=(−1)kxk

(by (13.35.1), applied
to k instead of n)


Sym(V )(

by (13.35.8), applied to a = f (n) and b = xk
)

=
(
f (n), (−1)

k
xk
)

Sym(V )
= f (n)

(
(−1)

k
xk
)

= (−1)
k

f (n)
(
xk
)︸ ︷︷ ︸

=δn,k
(by (13.35.3), applied to

i=n and j=k)

(
since the map f (n) is k-linear

)

= (−1)
k
δn,k.

Since (−1)
k
δn,k = (−1)

n
δn,k

459, this becomes(
S(Sym(V ))o

(
f (n)

)) (
xk
)

= (−1)
n
δn,k.

Compared with (
(−1)

n
f (n)

) (
xk
)

= (−1)
n

f (n)
(
xk
)︸ ︷︷ ︸

=δn,k
(by (13.35.3), applied to

i=n and j=k)

= (−1)
n
δn,k,

this yields
(
S(Sym(V ))o

(
f (n)

)) (
xk
)

=
(
(−1)

n
f (n)

) (
xk
)
.

Let us now forget that we fixed k. We thus have shown that
(
S(Sym(V ))o

(
f (n)

)) (
xk
)

=
(
(−1)

n
f (n)

) (
xk
)

for every k ∈ N. In other words, the two k-linear maps S(Sym(V ))o
(
f (n)

)
and (−1)

n
f (n) are equal to each

other on the basis
(
xk
)
k∈N of the k-module Sym (V ). Therefore, these two k-linear maps must be identical

(because if two k-linear maps from one and the same domain are equal to each other on a basis of this
domain, then these k-linear maps must be identical). In other words, S(Sym(V ))o

(
f (n)

)
= (−1)

n
f (n). Thus,

(13.35.14) is proven.
Now, all of the identities (13.35.11), (13.35.12) and (13.35.14) are proven; thus, Exercise 1.6.4(b) is solved.
Before we start the solution of Exercise 1.6.4(c), let us make a few more simple observations.
We have

(13.35.15) ε
(
xk
)

= δk,0 for every k ∈ N.

459This equality is obvious when n = k, and elsewise it follows from δn,k = 0.
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460

The definition of the k-algebra (Sym (V ))
o

shows that the unity map u(Sym(V ))o of the k-algebra (Sym (V ))
o

is adjoint to the counit map ε of the k-coalgebra Sym (V ). In other words, we have

(13.35.16)
(
u(Sym(V ))o (a) , b

)
Sym(V )

= (a, ε (b))k

for any a ∈ k and any b ∈ Sym (V ). Thus,

(13.35.17) u(Sym(V ))o (a) = af (0) for every a ∈ k.

461

The definition of the k-coalgebra (Sym (V ))
o

shows that the counit map ε(Sym(V ))o of the k-coalgebra

(Sym (V ))
o

is adjoint to the unity map u of the k-algebra Sym (V ). In other words, we have

(13.35.19)
(
ε(Sym(V ))o (a) , b

)
k

= (a, u (b))Sym(V )

for any a ∈ (Sym (V ))
o

and any b ∈ k. Thus,

(13.35.20) ε(Sym(V ))o

(
f (k)

)
= δk,0 for every k ∈ N.

462

(c) For the time being, let us not assume that Q is a subring of k. Instead, we shall introduce a map and
prove some of its properties which hold for every k.

We define a k-linear map Φ : Sym (V )→ (Sym (V ))
o

by

(13.35.21)
(

Φ
(
xk
)

= k!f (k) for every k ∈ N
)
.

460Proof of (13.35.15): Let k ∈ N. Then, the counit ε of Sym (V ) is a k-algebra homomorphism (by the axioms of a

k-bialgebra (since Sym (V ) is a k-bialgebra)). Hence, ε
(
xk
)

=

ε (x)︸︷︷︸
=0


k

= 0k =

{
1, if k = 0;

0, if k 6= 0
= δk,0. This proves

(13.35.15).
461Proof of (13.35.17): Let a ∈ k. Then, every b ∈ Sym (V ) satisfies(

u(Sym(V ))o (a)
)

(b) =
(
u(Sym(V ))o (a) , b

)
Sym(V )

= (a, ε (b))k (by (13.35.16))

= a · ε (b)
(
by the definition of the form (·, ·)k

)
.(13.35.18)

Now, every k ∈ N satisfies(
u(Sym(V ))o (a)

) (
xk
)

= a · ε
(
xk
)

︸ ︷︷ ︸
=δk,0

(by (13.35.15))

(
by (13.35.18), applied to b = xk

)

= a · δk,0︸︷︷︸
=f(0)

(
xk
)

(since (13.35.3) (applied to

i=0 and j=k) yields f(0)
(
xk
)
=δ0,k=δk,0)

= a · f (0)
(
xk
)

=
(
af (0)

)(
xk
)
.

In other words, the two k-linear maps u(Sym(V ))o (a) and af (0) are equal to each other on the basis
(
xk
)
k∈N of the k-module

Sym (V ). Therefore, these two k-linear maps must be identical (because if two k-linear maps from one and the same domain are

equal to each other on a basis of this domain, then these k-linear maps must be identical). In other words, u(Sym(V ))o (a) = af (0).

Thus, (13.35.17) is proven.
462Proof of (13.35.20): Let k ∈ N. The map u is the unity map of the k-algebra Sym (V ); thus, u (1) = 1Sym(V ) = x0.

The definition of the bilinear form (·, ·)k yields
(
ε(Sym(V ))o

(
f (k)

)
, 1
)
k

= ε(Sym(V ))o
(
f (k)

)
· 1 = ε(Sym(V ))o

(
f (k)

)
, so that

ε(Sym(V ))o

(
f (k)

)
=
(
ε(Sym(V ))o

(
f (k)

)
, 1
)
k

=

f (k), u (1)︸ ︷︷ ︸
=x0


Sym(V )

(
by (13.35.19), applied to a = f (k) and b = 1

)

=
(
f (k), x0

)
Sym(V )

= δk,0 (by (13.35.3), applied to i = k and j = 0) .

This proves (13.35.20).
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(This is well-defined, since
(
xk
)
k∈N is a basis of the k-module Sym (V ).) We can now see that this k-linear

map Φ satisfies Φ ◦m = m(Sym(V ))o ◦ (Φ⊗ Φ) 463 and Φ ◦ u = u(Sym(V ))o
464. Hence, Φ is a k-algebra

463Proof. Fix (k, `) ∈ N2. Recall that m is the multiplication map of the k-algebra Sym (V ). Thus, m
(
xk ⊗ x`

)
= xkx` =

xk+`. Also, m(Sym(V ))o is the multiplication map of the k-algebra (Sym (V ))o. Thus, m(Sym(V ))o
(
f (k) ⊗ f (`)

)
= f (k)f (`) =(k + `

k

)
f (k+`) (by (13.35.10), applied to u = k and v = `). Now,

(Φ ◦m)
(
xk ⊗ x`

)
= Φ

m(xk ⊗ x`)︸ ︷︷ ︸
=xk+`

 = Φ
(
xk+`

)
= (k + `)!f (k+`) (by (13.35.21), applied to k + ` instead of k) .

Compared with

(
m(Sym(V ))o ◦ (Φ⊗ Φ)

) (
xk ⊗ x`

)
= m(Sym(V ))o

(Φ⊗ Φ)
(
xk ⊗ x`

)
︸ ︷︷ ︸

=Φ(xk)⊗Φ(x`)

 = m(Sym(V ))o


Φ
(
xk
)

︸ ︷︷ ︸
=k!f(k)

(by (13.35.21))

⊗ Φ
(
x`
)

︸ ︷︷ ︸
=`!f(`)

(by (13.35.21),
applied to ` instead of k)



= m(Sym(V ))o

(k!f (k)
)
⊗
(
`!f (`)

)
︸ ︷︷ ︸

=k!`!f(k)⊗f(`)

 = m(Sym(V ))o

(
k!`!f (k) ⊗ f (`)

)

= k!`!m(Sym(V ))o

(
f (k) ⊗ f (`)

)
︸ ︷︷ ︸

=

(k + `

k

)
f(k+`)

(
since the map m(Sym(V ))o is k-linear

)

= k!`!
(k + `

k

)
︸ ︷︷ ︸

=(k+`)!

(since

(k + `

k

)
=

(k + `)!

k!`!
)

f (k+`) = (k + `)!f (k+`),

this yields (Φ ◦m)
(
xk ⊗ x`

)
=
(
m(Sym(V ))o ◦ (Φ⊗ Φ)

) (
xk ⊗ x`

)
.

Let us now forget that we fixed (k, `). We thus have shown that (Φ ◦m)
(
xk ⊗ x`

)
=
(
m(Sym(V ))o ◦ (Φ⊗ Φ)

) (
xk ⊗ x`

)
for every (k, `) ∈ N2. In other words, the two k-linear maps Φ ◦ m and m(Sym(V ))o ◦ (Φ⊗ Φ) (from Sym (V ) ⊗ Sym (V ) to

(Sym (V ))o) are equal to each other on the basis
(
xk ⊗ x`

)
(k,`)∈N2 of the k-module Sym (V )⊗ Sym (V ). Therefore, these two

k-linear maps must be identical (because if two k-linear maps from one and the same domain are equal to each other on a basis
of this domain, then these k-linear maps must be identical). In other words, Φ ◦m = m(Sym(V ))o ◦ (Φ⊗ Φ). Qed.

464Proof. The map u is the unity map of the k-algebra Sym (V ); thus, u (1) = 1Sym(V ) = x0. Now, every a ∈ k satisfies

(Φ ◦ u)

 a︸︷︷︸
=a·1

 = (Φ ◦ u) (a · 1) = a · (Φ ◦ u) (1)︸ ︷︷ ︸
=Φ(u(1))

(since the map Φ ◦ u is k-linear)

= a · Φ

u (1)︸ ︷︷ ︸
=x0

 = a · Φ
(
x0
)︸ ︷︷ ︸

=0!f(0)

(by (13.35.21), applied to 0
instead of k)

= a · 0!︸︷︷︸
=1

f (0) = af (0) = u(Sym(V ))o (a) (by (13.35.17)) .

Thus, Φ ◦ u = u(Sym(V ))o , qed.
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homomorphism. Also, the k-linear map Φ satisfies (Φ⊗ Φ) ◦∆ = ∆(Sym(V ))o ◦Φ 465 and ε = ε(Sym(V ))o ◦Φ
466. Hence, Φ is a k-coalgebra homomorphism. Thus, Φ is a k-bialgebra homomorphism (since Φ is both a
k-algebra homomorphism and a k-coalgebra homomorphism), and therefore a Hopf algebra homomorphism
(according to Corollary 1.4.27, applied to H1 = Sym (V ), H2 = (Sym (V ))

o
, S1 = S and S2 = S(Sym(V ))o).

465Proof. Let k ∈ N. We have

((Φ⊗ Φ) ◦∆)
(
xk
)

= (Φ⊗ Φ)


∆
(
xk
)

︸ ︷︷ ︸
=
∑
i+j=k

(k
i

)
xi⊗xj

(by (13.35.2), applied to n=k)


= (Φ⊗ Φ)

 ∑
i+j=k

(k
i

)
xi ⊗ xj



=
∑
i+j=k

(k
i

)
Φ
(
xi
)︸ ︷︷ ︸

=i!f(i)

(by (13.35.21))

⊗ Φ
(
xj
)︸ ︷︷ ︸

=j!f(j)

(by (13.35.21))

(by the definition of Φ⊗ Φ)

=
∑
i+j=k

(k
i

)
i!f (i) ⊗ j!f (j) =

∑
i+j=k

(k
i

)
i! j!︸︷︷︸

=(k−i)!
(since j=k−i

(since i+j=k))

f (i) ⊗ f (j)

=
∑
i+j=k

(k
i

)
i! (k − i)!︸ ︷︷ ︸
=k!

(since

(k
i

)
=

k!

i! (k − i)!
)

f (i) ⊗ f (j) = k!
∑
i+j=k

f (i) ⊗ f (j).

Compared with

(
∆(Sym(V ))o ◦ Φ

) (
xk
)

= ∆(Sym(V ))o

 Φ
(
xk
)

︸ ︷︷ ︸
=k!f(k)

(by (13.35.21))

 = ∆(Sym(V ))o

(
k!f (k)

)
= k! ∆(Sym(V ))o

(
f (k)

)
︸ ︷︷ ︸
=
∑
i+j=k f

(i)⊗f(j)

(by (13.35.12), applied to n=k)(
since the map ∆(Sym(V ))o is k-linear

)
= k!

∑
i+j=k

f (i) ⊗ f (j),

this yields ((Φ⊗ Φ) ◦∆)
(
xk
)

=
(
∆(Sym(V ))o ◦ Φ

) (
xk
)
.

Let us now forget that we fixed k. We thus have shown that ((Φ⊗ Φ) ◦∆)
(
xk
)

=
(
∆(Sym(V ))o ◦ Φ

) (
xk
)

for every k ∈ N.

In other words, the two k-linear maps (Φ⊗ Φ) ◦ ∆ and ∆(Sym(V ))o ◦ Φ are equal to each other on the basis
(
xk
)
k∈N of the

k-module Sym (V ). Therefore, these two k-linear maps must be identical (because if two k-linear maps from one and the
same domain are equal to each other on a basis of this domain, then these k-linear maps must be identical). In other words,

(Φ⊗ Φ) ◦∆ = ∆(Sym(V ))o ◦ Φ. Qed.
466Proof. Let k ∈ N. We have

(
ε(Sym(V ))o ◦ Φ

) (
xk
)

= ε(Sym(V ))o

 Φ
(
xk
)

︸ ︷︷ ︸
=k!f(k)

(by (13.35.21))

 = ε(Sym(V ))o

(
k!f (k)

)
= k! ε(Sym(V ))o

(
f (k)

)
︸ ︷︷ ︸

=δk,0
(by (13.35.20))(

since the map ε(Sym(V ))o is k-linear
)

= k!δk,0.

But it is easy (by treating the cases k = 0 and k 6= 0 separately) to see that k!δk,0 = δk,0. Hence,(
ε(Sym(V ))o ◦ Φ

) (
xk
)

= k!δk,0 = δk,0 = ε
(
xk
)

(by (13.35.15)) .

In other words, ε
(
xk
)

=
(
ε(Sym(V ))o ◦ Φ

) (
xk
)
.
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The map Φ is also graded467. Thus, Φ is a homomorphism of graded k-Hopf algebras (since Φ is graded and
a Hopf algebra homomorphism).

Now, let us assume that Q is a subring of k. We define a k-linear map Ψ : (Sym (V ))
o → Sym (V ) by

(13.35.22)

(
Ψ
(
f (k)

)
=
xk

k!
for every k ∈ N

)
.

(This is well-defined, since
(
f (k)

)
k∈N is a basis of the k-module (Sym (V ))

o
.) It is clear that the maps Φ and

Ψ are mutually inverse468. Thus, the map Φ is invertible, and its inverse is Ψ.
The map Φ is an invertible homomorphism of graded k-Hopf algebras and therefore an isomorphism of

graded k-Hopf algebras (since every invertible homomorphism of graded k-Hopf algebras is an isomorphism
of graded k-Hopf algebras). Hence, the inverse of Φ is also an isomorphism of graded k-Hopf algebras. In
other words, Ψ is an isomorphism of graded k-Hopf algebras (since the inverse of Φ is Ψ).

But every n ∈ N satisfies Ψ
(
f (n)

)
=
xn

n!
(according to (13.35.22), applied to k = n). Hence, Ψ is the

k-linear map (Sym (V ))
o → Sym (V ) sending f (n) 7→ xn

n! . Thus, the k-linear map (Sym (V ))
o → Sym (V )

sending f (n) 7→ xn

n! is an isomorphism of graded k-Hopf algebras (since Ψ is an isomorphism of graded k-Hopf
algebras). This solves Exercise 1.6.4(c).

(d) For the time being, let us not assume that k is a field of characteristic p > 0. Instead, let us first
prove a formula which does not require any restrictions on k.

Namely, let us show that

(13.35.23)
(
f (1)

)m
= m!f (m) for every m ∈ N.

Proof of (13.35.23): Let us consider the k-linear map Φ : Sym (V )→ (Sym (V ))
o

defined in our solution
to Exercise 1.6.4(c) above. Then, Φ is a k-algebra homomorphism. (In fact, this was proven in our solution
to Exercise 1.6.4(c) above.) Applying (13.35.21) to k = 1, we obtain Φ

(
x1
)

= 1!︸︷︷︸
=1

f (1) = f (1), so that

Let us now forget that we fixed k. We thus have shown that ε
(
xk
)

=
(
ε(Sym(V ))o ◦ Φ

) (
xk
)

for every k ∈ N. In other words,

the two k-linear maps ε and ε(Sym(V ))o ◦Φ are equal to each other on the basis
(
xk
)
k∈N of the k-module Sym (V ). Therefore,

these two k-linear maps must be identical (because if two k-linear maps from one and the same domain are equal to each other

on a basis of this domain, then these k-linear maps must be identical). In other words, ε = ε(Sym(V ))o ◦ Φ. Qed.
467Proof. Let n ∈ N. For every graded k-module A, let An denote the n-th homogeneous component of A. We shall show

that Φ
(
(Sym (V ))n

)
⊂ ((Sym (V ))o)n.

Indeed, recall that
(
f (k)

)
k∈N is a graded basis of the k-module (Sym (V ))o. Thus, the one-element family

(
f (n)

)
is a basis

of the n-th homogeneous component ((Sym (V ))o)n. Thus, this family
(
f (n)

)
spans the k-module ((Sym (V ))o)n. In other

words, ((Sym (V ))o)n = k · f (n).

On the other hand, recall that
(
xk
)
k∈N is a graded basis of the k-module Sym (V ). Thus, the one-element family (xn)

is a basis of the n-th homogeneous component (Sym (V ))n. Thus, this family (xn) spans the k-module (Sym (V ))n. In other

words, (Sym (V ))n = k · xn. Hence,

Φ

(Sym (V ))n︸ ︷︷ ︸
=k·xn

 = Φ (k · xn) ⊂ k · Φ (xn)︸ ︷︷ ︸
=n!f(n)

(by (13.35.21),
applied to k=n)

(since the map Φ is k-linear)

= k · n!︸ ︷︷ ︸
⊂k

f (n) ⊂ k · f (n) = ((Sym (V ))o)n

(
since ((Sym (V ))o)n = k · f (n)

)
.

Now, let us forget that we fixed n. We thus have shown that Φ
(
(Sym (V ))n

)
⊂ ((Sym (V ))o)n for every n ∈ N. In other

words, the map Φ is graded, qed.
468Indeed, the map Φ ◦Ψ sends every f (k) to f (k) and thus is the identity map, whereas the map Ψ ◦ Φ sends every xk to

xk and therefore is the identity map as well.
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f (1) = Φ
(
x1
)

= Φ (x). Thus, for every m ∈ N, we have f (1)︸︷︷︸
=Φ(x)


m

= (Φ (x))
m

= Φ (xm) (since Φ is a k-algebra homomorphism)

= m!f (m) (by (13.35.21), applied to k = m) .

This proves (13.35.23).
Now, let us assume that k is a field of characteristic p > 0. Then, p · 1k = 0. But p!︸︷︷︸

=(p−1)!p

·1k =

(p− 1)! p · 1k︸ ︷︷ ︸
=0

= 0. Applying (13.35.23) to m = p, we obtain

(
f (1)

)p
= p!f (p) = p! · 1k︸ ︷︷ ︸

=0

·f (p) = 0.

Now, it remains to show that there can be no Hopf isomorphism (Sym (V ))
o → Sym (V ). In fact, we

can prove something stronger: Namely, there exists no algebra isomorphism (Sym (V ))
o → Sym (V ). This

is because the algebra (Sym (V ))
o

has a nonzero nilpotent element (namely, f (1) is nonzero and satisfies(
f (1)

)p
= 0), whereas the algebra Sym (V ) contains no nonzero nilpotent elements (in fact, Sym (V ) ∼= k [x]

is isomorphic to a polynomial ring over the field k, and therefore is an integral domain, which yields that it
contains no nonzero nilpotent elements). This concludes the solution of Exercise 1.6.4(d).

13.36. Solution to Exercise 1.6.5. Solution to Exercise 1.6.5. (a) Let ∆′ : k [x] → k [x,y] be the map
sending every polynomial f (x1, x2, ..., xn) ∈ k [x] to f (x1 + y1, x2 + y2, ..., xn + yn) ∈ k [x,y]. Our goal is to
prove that ∆′ = ∆Sym(V ), where ∆Sym(V ) is the usual coproduct on Sym (V ) (part of the coalgebra structure
obtained by regarding Sym (V ) as a quotient of T (V ) as in Exercise 1.3.14), and where we are identifying
Sym (V ) with k [x] and Sym (V ) ⊗ Sym (V ) with k [x,y] along the isomorphisms given at the beginning of
the exercise.

Notice first that ∆Sym(V ) is a k-algebra homomorphism Sym (V ) → Sym (V ) ⊗ Sym (V ) (because the
axioms of a k-bialgebra require that the coproduct of any k-bialgebra A is a k-algebra homomorphism
A → A ⊗ A). On the other hand, the map ∆′ is a k-algebra homomorphism469. Hence, the equality that
we are trying to prove, namely ∆′ = ∆Sym(V ), is an equality between two k-algebra homomorphisms. It is
well-known that in order to prove such an equality, it is enough to verify it on a generating set of the domain
of these homomorphisms470; i.e., it is enough to pick out a generating set of its domain, and check that for
every element s of the generating set, the images of s under the two sides of the equality are equal to each
other. In our case, the k-algebra homomorphisms ∆′ and ∆Sym(V ) have domain k [x], and as a generating
set of this k-algebra k [x] we can pick the set {x1, x2, ..., xn}. We then have to check that for every element
s of this generating set, the images of s under ∆′ and ∆Sym(V ) are equal to each other.

So let s ∈ {x1, x2, ..., xn} be arbitrary. Then, s = xi for some i ∈ {1, 2, ..., n}. Consider this i. We
have xi ∈ V , and thus xi is a primitive element of T (V ) (by the definition of the coalgebra structure on
T (V )). This shows that ∆T (V ) (xi) = 1⊗ xi + xi ⊗ 1. Since Sym (V ) is a quotient bialgebra of T (V ), this
shows that ∆Sym(V ) (xi) = 1 ⊗ xi + xi ⊗ 1 as well. Under our identification of Sym (V ) ⊗ Sym (V ) with
k [x,y], the element 1 ⊗ xi of Sym (V ) ⊗ Sym (V ) equals the element yi of k [x,y], and the element xi ⊗ 1
of Sym (V ) ⊗ Sym (V ) equals the element xi of k [x,y]. Hence, ∆Sym(V ) (xi) = 1 ⊗ xi + xi ⊗ 1 rewrites as
∆Sym(V ) (xi) = yi + xi.

But by the definition of ∆′, we have ∆′ (xi) = xi (x1 + y1, x2 + y2, ..., xn + yn) = xi + yi = yi + xi =
∆Sym(V ) (xi). In other words, ∆′ (s) = ∆Sym(V ) (s) (since s = xi). Hence, the images of s under ∆′ and

469In fact, by its very definition, it is an evaluation homomorphism, meaning a map from a polynomial ring to a commutative

k-algebra A which sends every polynomial f to the evaluation f (a1, a2, ..., a`) for some given tuple (a1, a2, ..., a`) of elements

of A. Such maps are always k-algebra homomorphisms.
470In our case, the domain is k [x].
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∆Sym(V ) are equal to each other. This is exactly what we needed to prove, and so the solution to Exercise
1.6.5(a) is complete.

We will solve the remaining parts of the exercise starting with (c), then continuing with (d) and finally
solving (b). This order has the advantage of requiring the least amount of work.

(c) We introduce a few notations. As long as we are using the topologist’s sign convention, an element
a of a graded k-module is said to be odd if a is a sum of homogeneous elements of odd degree, and an
element b of a graded k-module is said to be even if b is a sum of homogeneous elements of even degree. By
assumption, every element of V is odd. Notice that 0 is both even and odd, and a graded k-module can (in
general) contain vectors which are neither even nor odd.

It is easy to see that if P and Q are two graded k-modules, and p ∈ P and q ∈ Q are two elements, then

T (p⊗ q) = q ⊗ p if p is even and q is even;(13.36.1)

T (p⊗ q) = q ⊗ p if p is even and q is odd;(13.36.2)

T (p⊗ q) = q ⊗ p if p is odd and q is even;(13.36.3)

T (p⊗ q) = −q ⊗ p if p is odd and q is odd.(13.36.4)

471

Now, let x ∈ V . Then, x is odd (since every element of V is odd). The definition of ∆ enforces that
∆ is a k-bialgebra homomorphism T (V ) → T (V ) ⊗ T (V ), but the meaning of this depends on the k-
algebra T (V ) ⊗ T (V ), and therefore on the twist map T , because the multiplication map of the k-algebra
T (V )⊗ T (V ) is

mT (V )⊗T (V ) =
(
mT (V ) ⊗mT (V )

)
◦ (id⊗T ⊗ id) .

The fact that we used the topologist’s sign convention (1.3.3) in this definition means that this twist map
T is as in (1.3.3). Thus, (13.36.1), (13.36.2), (13.36.3) and (13.36.4) apply. Since x is odd, we can apply
(13.36.4) to P = T (V ), Q = T (V ), p = x and q = x, and obtain T (x⊗ x) = −x⊗x. Thus, in the k-algebra

471Proof. We will only prove (13.36.4); the other three identities are analogous.
Let P and Q be two graded k-modules. Let p ∈ P and q ∈ Q. Assume that p is odd and q is odd. Since p is odd, we know

that p is a sum of homogeneous elements of P of odd degree; in other words, we can write p as p =
∑
i∈I pi, where I is a finite

set and each i ∈ I has pi ∈ P homogeneous of odd degree. Similarly, we can write q as q =
∑
j∈J qj , where J is a finite set and

each j ∈ J has qj ∈ Q homogeneous of odd degree. Using these pi and qj , we now find

T

 p︸︷︷︸
=
∑
i∈I pi

⊗ q︸︷︷︸
=
∑
j∈J qj

 = T

∑
i∈I

pi

⊗
∑
j∈J

qj

 = T

∑
i∈I

∑
j∈J

pi ⊗ qj


=
∑
i∈I

∑
j∈J

T (pi ⊗ qj)︸ ︷︷ ︸
=(−1)

deg(pi)·deg(qj)qj⊗pi
(by the definition of the

topologist’s twist map T )

=
∑
i∈I

∑
j∈J

(−1)deg(pi)·deg(qj)︸ ︷︷ ︸
=−1

(since deg(pi) and

deg(qj) are odd

(because pi and qj are

homogeneous of odd degree))

qj ⊗ pi

=
∑
i∈I

∑
j∈J

(−1) qj ⊗ pi = −
∑
i∈I

∑
j∈J

qj ⊗ pi = −

∑
j∈J

qj


︸ ︷︷ ︸

=q

⊗

∑
i∈I

pi


︸ ︷︷ ︸

=p

= −q ⊗ p.

This proves (13.36.4).



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 393

T (V )⊗ T (V ), we have

(1⊗ x) · (x⊗ 1)

= mT (V )⊗T (V )︸ ︷︷ ︸
=(mT (V )⊗mT (V ))◦(id⊗T⊗id)

((1⊗ x)⊗ (x⊗ 1))︸ ︷︷ ︸
=1⊗x⊗x⊗1

=
((
mT (V ) ⊗mT (V )

)
◦ (id⊗T ⊗ id)

)
(1⊗ x⊗ x⊗ 1)

=
(
mT (V ) ⊗mT (V )

)
(id⊗T ⊗ id) (1⊗ x⊗ x⊗ 1)︸ ︷︷ ︸

=1⊗T (x⊗x)⊗1
=−1⊗x⊗x⊗1

(since T (x⊗x)=−x⊗x)


=
(
mT (V ) ⊗mT (V )

)
(−1⊗ x⊗ x⊗ 1) = −mT (V ) (1⊗ x)︸ ︷︷ ︸

=1·x=x

⊗mT (V ) (x⊗ 1)︸ ︷︷ ︸
=x·1=x

= −x⊗ x.

Similarly, we can compute

(1⊗ x) · (1⊗ x) = 1⊗ x2,

(x⊗ 1) · (1⊗ x) = x⊗ x,
(x⊗ 1) · (x⊗ 1) = x2 ⊗ 1.

(Since 1 ∈ T (V ) is even, we have to use (13.36.3), (13.36.1) and respectively (13.36.2) instead of (13.36.4)
here; thus, we incur no negative signs.)

Since ∆ is a k-algebra homomorphism, we have

∆
(
x2
)

=

 ∆ (x)︸ ︷︷ ︸
=1⊗x+x⊗1

(since x is primitive in T (V ))


2

= (1⊗ x+ x⊗ 1)
2

= (1⊗ x+ x⊗ 1) · (1⊗ x+ x⊗ 1)

= (1⊗ x) · (1⊗ x)︸ ︷︷ ︸
=1⊗x2

+ (1⊗ x) · (x⊗ 1)︸ ︷︷ ︸
=−x⊗x

+ (x⊗ 1) · (1⊗ x)︸ ︷︷ ︸
=x⊗x

+ (x⊗ 1) · (x⊗ 1)︸ ︷︷ ︸
=x2⊗1

= 1⊗ x2 + (−x⊗ x) + x⊗ x+ x2 ⊗ 1 = 1⊗ x2 + x2 ⊗ 1.

This solves Exercise 1.6.5(c).
(d) Let us first check that the ideal472 J of T (V ) is a graded k-submodule of T (V ). This is not obvious!

We know that

(13.36.5)

(
if an ideal I of a graded k-algebra A is generated by homogeneous

elements, then I is a graded k-submodule of A

)
.

473 So we should concentrate on showing that the ideal J is generated by homogeneous elements.
In fact, we know that J is the ideal of T (V ) generated by

{
x2
}
x∈V . Thus,

(13.36.6) x2 ∈ J for every x ∈ V.

472By “ideal”, we always mean “two-sided ideal”, unless we explicitly say “left ideal” or “right ideal”.
473This is a well-known fact in the case when A is commutative (and the topologist’s sign convention is not used), but it is

proven exactly the same way in the general case.
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Also, any two elements x and y of V satisfy

xy + yx = (x+ y)
2︸ ︷︷ ︸

∈J
(by (13.36.6), applied
to x+y instead of x)

− x2︸︷︷︸
∈J

(by (13.36.6))

− y2︸︷︷︸
∈J

(by (13.36.6), applied
to y instead of x)(

since (x+ y)
2

= x2 + xy + yx+ y2
)

∈ J − J − J ⊂ J (since J is a k-module) .(13.36.7)

Now, define a subset G of T (V ) by

G =
{
x2 | x ∈ V ; x is homogeneous

}
∪ {xy + yx | x ∈ V ; y ∈ V ; x and y are homogeneous} .(13.36.8)

It is clear that all elements of G are homogeneous elements of T (V ). By the definition of G, we have

(13.36.9) x2 ∈ G for every homogeneous x ∈ V,

and for the same reason we have

(13.36.10) xy + yx ∈ G for any two homogeneous elements x and y of V.

We shall now show that the ideal generated by G is J .
Indeed, let g ∈ G be arbitrary. We will now show that g ∈ J . We have

g ∈ G =
{
x2 | x ∈ V ; x is homogeneous

}
∪ {xy + yx | x ∈ V ; y ∈ V ; x and y are homogeneous} .

Hence, either g has the form g = x2 for some homogeneous x ∈ V , or g has the form g = xy + yx for two
homogeneous elements x and y of V . In the first of these two cases, it is clear that g = x2 ∈ J (by (13.36.6)).
In the second of these cases, we have g = xy + yx ∈ J (by (13.36.7)). Hence, we have shown that g ∈ J in
either case. This proves that g ∈ J .

Now, forget that we fixed g. We have thus proven that g ∈ J for every g ∈ G. Thus, G ⊂ J . In other
words, J contains G as a subset. Since J is an ideal of T (V ), we thus have

J ⊃ (the smallest ideal of T (V ) containing G as a subset)

= (the ideal of T (V ) generated by G) .(13.36.11)

Let us now show the reverse inclusion. Let x ∈ V . Then, x is a sum of homogeneous elements of V
(because every element of a graded k-module is a sum of homogeneous elements). In other words, we can

write x in the form x =
∑`
i=1 xi, where ` ∈ N, and where x1, x2, . . . , x` are homogeneous elements of V .

Consider this ` and these x1, x2, . . . , x`. Set I = {1, 2, . . . , `}. Thus, we have the following equality of

summation signs:
∑
i∈I =

∑
i∈{1,2,...,`} =

∑`
i=1. Hence, the equality x =

∑`
i=1 xi rewrites as x =

∑
i∈I xi.
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Squaring both sides of the equality x =
∑
i∈I xi, we obtain

x2 =

(∑
i∈I

xi

)2

=
∑

(i,j)∈I2

xixj =
∑

(i,j)∈I2;
i<j

xixj

︸ ︷︷ ︸
=

∑
(i,j)∈I2;
i>j

xjxi

(here, we substituted (j,i)
for (i,j) in the sum)

+
∑

(i,j)∈I2;
i=j

xixj︸︷︷︸
=x2

j

(since i=j)

+
∑

(i,j)∈I2;
i>j

xixj

=
∑

(i,j)∈I2;
i>j

xjxi +
∑

(i,j)∈I2;
i=j

x2
j +

∑
(i,j)∈I2;
i>j

xixj =
∑

(i,j)∈I2;
i=j

x2
j +

∑
(i,j)∈I2;
i>j

xixj +
∑

(i,j)∈I2;
i>j

xjxi

︸ ︷︷ ︸
=

∑
(i,j)∈I2;
i>j

(xixj+xjxi)

=
∑

(i,j)∈I2;
i=j

x2
j︸︷︷︸
∈G

(by (13.36.9),
applied to xj instead of x)

+
∑

(i,j)∈I2;
i>j

(xixj + xjxi)︸ ︷︷ ︸
∈G

(by (13.36.10), applied
to xi and xj instead of x and y)

∈
∑

(i,j)∈I2;
i=j

G+
∑

(i,j)∈I2;
i>j

G ⊂ (the ideal of T (V ) generated by G) .

Now, forget that we fixed x. We thus have shown that x2 ∈ (the ideal of T (V ) generated by G) for ev-
ery x ∈ V . Hence, (the ideal of T (V ) generated by G) contains the elements x2 for all x ∈ V . Since
(the ideal of T (V ) generated by G) is an ideal, this yields that

(the ideal of T (V ) generated by G)

⊃
(
the smallest ideal of T (V ) containing the elements x2 for all x ∈ V

)
=
(

the ideal generated by
{
x2
}
x∈V

)
= J.

Combined with (13.36.11), this yields

J = (the ideal of T (V ) generated by G) .

The ideal J is thus generated by G. Thus, the ideal J of T (V ) is generated by homogeneous elements of
T (V ) (since all elements of G are homogeneous elements of T (V )). Therefore, (13.36.5) (applied to J and
T (V ) instead of I and A) yields that J is a graded k-submodule of T (V ). Hence, the quotient T (V ) /J is
a graded k-module.

Now, let us show that ∆ (J) ⊂ J ⊗ T (V ) + T (V )⊗ J .
If A and B are two graded k-algebras (in the topologist’s sense) and P and Q are two ideals of A and

B which are graded k-submodules of A and B, then P ⊗ Q is an ideal of A ⊗ B 474. Applying this to
A = T (V ), B = T (V ), P = J and Q = T (V ), we conclude that J ⊗ T (V ) is an ideal of T (V ) ⊗ T (V ).
Similarly, T (V ) ⊗ J is an ideal of T (V ) ⊗ T (V ) as well. The sum J ⊗ T (V ) + T (V ) ⊗ J of these two
ideals therefore is an ideal of T (V ) ⊗ T (V ), too. As a consequence, ∆−1 (J ⊗ T (V ) + T (V )⊗ J) is an

474Proof. Since P is an ideal of A, we see that P is a k-submodule of A satisfying mA (P ⊗A) ⊂ P and mA (A⊗ P ) ⊂ P .

Since Q is an ideal of B, we see that Q is a k-submodule of B satisfying mB (Q⊗B) ⊂ Q and mB (B ⊗Q) ⊂ Q.
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ideal of T (V ) (because ∆ is a k-algebra homomorphism475, and the preimage of an ideal under a k-algebra
homomorphism is always an ideal).

Now, every x ∈ V satisfies

∆
(
x2
)

= 1︸︷︷︸
∈T (V )

⊗ x2︸︷︷︸
∈J

(by (13.36.6))

+ x2︸︷︷︸
∈J

(by (13.36.6))

⊗ 1︸︷︷︸
∈T (V )

(by Exercise 1.6.5(c))

∈ T (V )⊗ J + J ⊗ T (V ) = J ⊗ T (V ) + T (V )⊗ J,

so that x2 ∈ ∆−1 (J ⊗ T (V ) + T (V )⊗ J). So the ideal ∆−1 (J ⊗ T (V ) + T (V )⊗ J) contains the elements
x2 for all x ∈ V . Hence,

∆−1 (J ⊗ T (V ) + T (V )⊗ J) ⊃
(
the smallest ideal which contains the elements x2 for all x ∈ V

)
=
(

the ideal generated by
{
x2
}
x∈V

)
= J.

Thus, ∆ (J) ⊂ J ⊗ T (V ) + T (V )⊗ J .
It remains to prove that ε (J) = 0. This is similar to the above argument but much simpler. Since ε is a

k-algebra homomorphism, its kernel ker ε is an ideal of T (V ). Since ε is a k-algebra homomorphism, every

x ∈ V satisfies ε
(
x2
)

=

ε (x)︸︷︷︸
=0

2

= 0 and thus x2 ∈ ker ε. Thus, the ideal ker ε contains the elements x2 for

all x ∈ V . Hence,

ker ε ⊃
(
the smallest ideal which contains the elements x2 for all x ∈ V

)
=
(

the ideal generated by
{
x2
}
x∈V

)
= J.

This yields ε (J) = 0. Combined with ∆ (J) ⊂ J ⊗ T (V ) + T (V ) ⊗ J , this shows that J is a two-sided
coideal of T (V ). Since J is also a two-sided ideal and a graded k-submodule, this shows that the quotient
T (V ) /J inherits a graded k-bialgebra structure from T (V ). This quotient T (V ) /J is ∧V , and so we
obtain a graded k-bialgebra structure on ∧V . The k-bialgebra ∧V obtained this way is graded (because
it is the quotient of the graded k-bialgebra T (V ) by the graded ideal J) and connected (since its 0-th
graded component is ∧0V = k 476), therefore a Hopf algebra (by Proposition 1.4.16477). Thus, ∧V is a

But since Q is a graded k-submodule of B, there is a topologist’s twist map T : Q⊗A→ A⊗Q, which is the restriction of

the twist map T : B ⊗A→ A⊗B. Thus, T (Q⊗A) ⊂ A⊗Q. Now,

mA⊗B︸ ︷︷ ︸
=(mA⊗mB)◦(id⊗T⊗id)

(P ⊗Q)⊗ (A⊗B)︸ ︷︷ ︸
=P⊗Q⊗A⊗B


= ((mA ⊗mB) ◦ (id⊗T ⊗ id)) (P ⊗Q⊗A⊗B)

= (mA ⊗mB)


(id⊗T ⊗ id) (P ⊗Q⊗A⊗B)︸ ︷︷ ︸

=P⊗T (Q⊗A)⊗B
⊂P⊗A⊗Q⊗B

(since T (Q⊗A)⊂A⊗Q)


⊂ (mA ⊗mB) (P ⊗A⊗Q⊗B) = mA (P ⊗A)︸ ︷︷ ︸

⊂P

⊗mB (Q⊗B)︸ ︷︷ ︸
⊂Q

⊂ P ⊗Q.

Similarly, mA⊗B ((A⊗B)⊗ (P ⊗Q)) ⊂ P ⊗Q (but here, we need to use T (B ⊗ P ) ⊂ P ⊗B instead of T (Q⊗A) ⊂ A⊗Q).

These two inclusions prove that P ⊗Q is an ideal of A⊗B, qed.
We could have also proven this by working with elements, but that way we would have to take care of the fact that the twist

T is the topologist’s one and comes with signs. The way we have done it, we were almost entirely untroubled by this fact.
475by the definition of ∆
476Here we are using the fact that V0 = 0 (which is a consequence of the fact that V is concentrated in odd degrees).
477Here it helps to notice that our use of the topologist’s sign convention does not invalidate the proof of Proposition 1.4.16;

in fact, no changes are necessary to that proof! (This might not be too surprising, given that said proof made no use of the

bialgebra axioms (1.3.4).)
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connected graded Hopf algebra, and therefore the comultiplication ∆∧V of ∧V is part of a connected graded
Hopf algebra structure on ∧V . In other words, the comultiplication ∆∧V makes the k-algebra ∧V into a
connected graded Hopf algebra.

Let us recall that the comultiplication ∆T (V ) of the k-bialgebra T (V ) satisfies

∆T (V ) (x) = 1⊗ x+ x⊗ 1 for every x ∈ V
(by the definition of ∆T (V )). Since the k-bialgebra ∧V was defined as a quotient of T (V ), we can project
this equality down on (∧V )⊗ (∧V ), and thus conclude that the comultiplication ∆∧V of the k-bialgebra ∧V
satisfies

(13.36.12) ∆∧V (x) = 1⊗ x+ x⊗ 1 for every x ∈ V.
Thus, every i ∈ {1, 2, ..., n} satisfies

(13.36.13) ∆∧V (xi) = 1⊗ xi + xi ⊗ 1

(by (13.36.12), applied to x = xi). But our identification of (∧V ) ⊗ (∧V ) with ∧ (V ⊕ V ) equates 1 ⊗ xi
with yi, and equates xi ⊗ 1 with xi for every i ∈ {1, 2, ..., n}. Hence, for every i ∈ {1, 2, ..., n}, the equality
(13.36.13) rewrites as

(13.36.14) ∆∧V (xi) = 1⊗ xi︸ ︷︷ ︸
=yi

+xi ⊗ 1︸ ︷︷ ︸
=xi

= yi + xi = xi + yi

in (∧V )⊗ (∧V ) = ∧ (V ⊕ V ).
Recall that we made ∧V into a k-bialgebra by viewing it as the quotient T (V ) /J . Now, it remains to

prove that the coproduct on ∧V which is part of this k-bialgebra structure on T (V ) is the same as the one
defined in Exercise 1.6.5(b)478. In order to do so, we shall prove the following claim: If ∆∧V denotes the
coproduct on ∧V obtained by regarding ∧V as the quotient k-bialgebra T (V ) /J , then

(13.36.15) ∆∧V

( ∑
i1<···<id

ci1,...,idxi1 ∧ · · · ∧ xid

)
=

∑
i1<···<id

ci1,...,id (xi1 + yi1) ∧ · · · ∧ (xid + yid)

for every family (ci1,...,id)i1<···<id of elements of k indexed by the strictly increasing sequences (i1 < · · · < id)

of elements of {1, 2, ..., n}.
Proof of (13.36.15): Let (ci1,...,id)i1<···<id be a family of elements of k indexed by the strictly increasing

sequences (i1 < · · · < id) of elements of {1, 2, ..., n}. The multiplication in ∧V is given by the wedge product,
so that we have xi1 · · ·xid = xi1 ∧ · · · ∧ xid for every strictly increasing sequence (i1 < · · · < id) of elements
of {1, 2, ..., n}.

But the comultiplication ∆∧V is a k-algebra homomorphism (by the axioms of a k-bialgebra, since ∧V is
a k-bialgebra), and thus we have

∆∧V

( ∑
i1<···<id

ci1,...,idxi1 · · ·xid

)
=

∑
i1<···<id

ci1,...,id ∆∧V (xi1)︸ ︷︷ ︸
=xi1+yi1

(by (13.36.14),
applied to i=i1)

· · · ∆∧V (xid)︸ ︷︷ ︸
=xid+yid

(by (13.36.14),
applied to i=id)

=
∑

i1<···<id

ci1,...,id (xi1 + yi1) · · · (xid + yid)︸ ︷︷ ︸
=(xi1+yi1)∧···∧(xid+yid)

(since multiplication in ∧(V⊕V )
is given by the wedge product)

=
∑

i1<···<id

ci1,...,id (xi1 + yi1) ∧ · · · ∧ (xid + yid) .

Since xi1 · · ·xid = xi1∧· · ·∧xid for every strictly increasing sequence (i1 < · · · < id) of elements of {1, 2, ..., n},
this rewrites as follows:

∆∧V

( ∑
i1<···<id

ci1,...,idxi1 ∧ · · · ∧ xid

)
=

∑
i1<···<id

ci1,...,id (xi1 + yi1) ∧ · · · ∧ (xid + yid) .

478We should be careful because we have not yet proven that the latter coproduct satisfies the axioms for a coproduct (we

have not solved Exercise 1.6.5(b) yet).
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Thus, (13.36.15) is proven.
Now, the equality (13.36.15) shows that the map ∆∧V satisfies the defining property of the map (1.6.6)

(namely, mapping every
∑
i1<···<id ci1,...,idxi1 ∧ · · · ∧ xid to

∑
i1<···<id ci1,...,id (xi1 + yi1) ∧ · · · ∧ (xid + yid)).

Hence, there exists a map satisfying this property. Such a map is furthermore unique (because the defining
property determines its value on every element of the form

∑
i1<···<id ci1,...,idxi1 ∧· · ·∧xid , but every element

of ∧V can be written in this form), and therefore the map (1.6.6) is well-defined. This map is our map ∆∧V
(because our map ∆∧V satisfies the defining property of the map (1.6.6)), and therefore makes ∧V into a
connected graded Hopf algebra (since we know that the comultiplication ∆∧V makes the k-algebra ∧V into
a connected graded Hopf algebra). This solves Exercise 1.6.5(b).

But the coproduct on ∧V inherited from T (V ) is ∆∧V , and as we know, this ∆∧V is exactly the map
(1.6.6), i.e., the coproduct defined in Exercise 1.6.5(b). Hence, the coproduct on ∧V inherited from T (V ) is
the coproduct defined in Exercise 1.6.5(b). Thus, Exercise 1.6.5(d) is also solved. The solution to Exercise
1.6.5 is thus complete.

13.37. Solution to Exercise 1.6.6. Solution to Exercise 1.6.6. Define a k-linear map ρU,V : U∗ ⊗ V ∗ →
(U ⊗ V )

∗
for any two k-modules U and V as in Exercise 1.6.1. Recall that this ρU,V is a k-module isomor-

phism if both U and V are finite free. Hence, ρA,A is a k-module isomorphism.
Also, basic linear algebra shows that if U , V , U ′ and V ′ are four k-modules and if α : U → U ′ and

β : V → V ′ are two k-linear maps, then

ρU,V ◦ (α∗ ⊗ β∗) = (α⊗ β)
∗ ◦ ρU ′,V ′ .

This (applied to U = C, V = C, U ′ = A, V ′ = A, α = f and β = g) yields

ρC,C ◦ (f∗ ⊗ g∗) = (f ⊗ g)
∗ ◦ ρA,A.

The definition of convolution yields both

(13.37.1) f ? g = mA ◦ (f ⊗ g) ◦∆C

and

f∗ ? g∗ = mC∗︸︷︷︸
=∆∗C◦ρC,C

(by the definition of mC∗ )

◦ (f∗ ⊗ g∗) ◦ ∆A∗︸︷︷︸
=ρ−1

A,A◦m
∗
A

(by the definition of ∆A∗ )

= ∆∗C ◦ ρC,C ◦ (f∗ ⊗ g∗)︸ ︷︷ ︸
=(f⊗g)∗◦ρA,A

◦ρ−1
A,A ◦m

∗
A = ∆∗C ◦ (f ⊗ g)

∗ ◦ ρA,A ◦ ρ−1
A,A︸ ︷︷ ︸

=id(A⊗A)∗

◦m∗A

= ∆∗C ◦ (f ⊗ g)
∗ ◦m∗A =

mA ◦ (f ⊗ g) ◦∆C︸ ︷︷ ︸
=f?g

(by (13.37.1))


∗

= (f ? g)
∗
.

This solves Exercise 1.6.6.

13.38. Solution to Exercise 1.6.8. Solution to Exercise 1.6.8. Our goal is to prove Proposition 1.6.7.
Let m� denote the k-linear map T (V )⊗ T (V )→ T (V ) which sends every a⊗ b to a� b. Let u denote

the unit map of T (V ) (that is, the k-linear map k→ T (V ) sending 1k to 1T (V )). Let S denote the antipode
of the Hopf algebra T (V ). Then, the result that we have to prove boils down to the statement that the
k-module T (V ), endowed with the multiplication m�, the unit u, the comultiplication ∆� and the counit
ε, becomes a commutative Hopf algebra with the antipode S. Since we already know that m�, u, ∆�, ε and
S are k-linear, this latter statement will immediately follow once we can show that the following diagrams
commute:

• the diagrams (1.1.1) and (1.1.2), with A and m replaced by T (V ) and m�;
• the diagrams (1.2.1) and (1.2.2), with C and ∆ replaced by T (V ) and ∆�;



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 399

• the diagrams (1.3.4), with A, m and ∆ replaced by T (V ), m� and ∆�;
• the diagram (1.4.3), with A, m and ∆ replaced by T (V ), m� and ∆�;
• the diagram (1.5.1), with A and m replaced by T (V ) and m�.

Out of all these statements, we will only prove the commutativity of the first diagram in (1.3.4), since all
other diagrams are similar but only easier.

So we must prove the commutativity of the first diagram in (1.3.4), with A, m and ∆ replaced by T (V ),
m� and ∆�. In other words, we must show that the diagram

(13.38.1) T (V )⊗ T (V )

∆�⊗∆�

tt

m�

��

T (V )⊗ T (V )⊗ T (V )⊗ T (V )

id⊗T⊗id

��

T (V )

∆�

��

T (V )⊗ T (V )⊗ T (V )⊗ T (V )

m�⊗m� **
T (V )⊗ T (V )

commutes, where T : T (V ) ⊗ T (V ) → T (V ) ⊗ T (V ) is the twist map TT (V ),T (V ) sending every a ⊗ b to
b⊗ a (and being k-linear at that). Let us prove this now.

We need to prove that the diagram (13.38.1) commutes. In other words, we need to prove the identity

(13.38.2) (m� ⊗m�) ◦ (id⊗T ⊗ id) ◦ (∆� ⊗∆�) = ∆� ◦m�.

By linearity, it is clearly enough to verify this identity only on the pure tensors in T (V )⊗ T (V ); that is, it
is enough to check that every a ∈ T (V ) and b ∈ T (V ) satisfy

(13.38.3) ((m� ⊗m�) ◦ (id⊗T ⊗ id) ◦ (∆� ⊗∆�)) (a⊗ b) = (∆� ◦m�) (a⊗ b) .

So let a ∈ T (V ) and b ∈ T (V ) be arbitrary. All we need now is to prove (13.38.3). By linearity again, we
can WLOG assume that a and b have the form a = v1v2 · · · vp and b = vp+1vp+2 · · · vp+q for some p ∈ N,
q ∈ N and v1, v2, . . . , vp+q ∈ V (since T (V ) is spanned as a k-module by pure tensors). Assume this, and
define W to be the free k-module with basis {x1, x2, . . . , xp+q}. Let A be the tensor algebra T (W ) of this
k-module W . Then, W is a finite free k-module, and so we know from Example 1.6.3 (applied to W instead
of V ) that the graded dual Ao of its tensor algebra A = T (W ) is a Hopf algebra whose basis

{
y(i1,i2,...,i`)

}
is indexed by words in the alphabet I := {1, 2, . . . , p+ q}.

Notice that
{
y(i1,i2,...,i`) ⊗ y(j1,j2,...,jm)

}
`∈N, m∈N, (i1,i2,...,i`)∈I`, (j1,j2,...,jm)∈Im is a k-module basis of Ao⊗

Ao (since
{
y(i1,i2,...,i`)

}
is a basis of Ao). Relabelling this basis, we see that

{
y(i1,i2,...,i`) ⊗ y(i`+1,i`+2,...,i`+m)

}
`∈N, m∈N, (i1,i2,...,i`+m)∈I`+m is a k-module basis of Ao ⊗Ao.

We can define a k-linear map φ : Ao → T (V ) by setting

φ
(
y(i1,i2,...,i`)

)
= vi1vi2 · · · vi` for every ` ∈ N and (i1, i2, . . . , i`) ∈ I`

(because
{
y(i1,i2,...,i`)

}
is a basis of Ao). Consider this map φ.
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Notice that the definition of φ yields φ
(
y(1,2,...,p)

)
= v1v2 · · · vp = a, and similarly φ

(
y(p+1,p+2,...,p+q)

)
= b.

Thus,

a︸︷︷︸
=φ(y(1,2,...,p))

⊗ b︸︷︷︸
=φ(y(p+1,p+2,...,p+q))

= φ
(
y(1,2,...,p)

)
⊗ φ

(
y(p+1,p+2,...,p+q)

)

= (φ⊗ φ)

y(1,2,...,p) ⊗ y(p+1,p+2,...,p+q)︸ ︷︷ ︸
∈Ao⊗Ao

 ∈ (φ⊗ φ) (Ao ⊗Ao) .

In other words, a⊗ b lies in the image of the map φ⊗ φ.
Notice that we already know that Ao is a k-bialgebra, and thus it satisfies all the axioms of a bialgebra; in

particular, the diagrams (1.3.4), with A, m and ∆ replaced by Ao, mAo and ∆Ao , commute. In particular,
the first of these diagrams commutes. In other words, the diagram

(13.38.4) Ao ⊗Ao
∆Ao⊗∆Ao

vv
mAo

��

Ao ⊗Ao ⊗Ao ⊗Ao

id⊗T⊗id

��

Ao

∆Ao

��

Ao ⊗Ao ⊗Ao ⊗Ao

mAo⊗mAo ((
Ao ⊗Ao

(with T now denoting the twist map TAo,Ao : Ao ⊗Ao → Ao ⊗Ao) commutes.
Now, we claim that

φ ◦mAo = m� ◦ (φ⊗ φ) ,(13.38.5)

φ ◦ uAo = u,(13.38.6)

(φ⊗ φ) ◦∆Ao = ∆� ◦ φ,(13.38.7)

εAo = ε ◦ φ,(13.38.8)

φ ◦ SAo = S ◦ φ.(13.38.9)

479

We are going to only prove the two equalities (13.38.5) and (13.38.7), leaving the (simpler!) proofs of
the other three equalities (13.38.6), (13.38.8) and (13.38.9) to the reader. (Only the equalities (13.38.5) and
(13.38.7) will be used in the proof of the commutativity of the first diagram in (1.3.4); the other are used
for the other diagrams.)

Proof of (13.38.5): We need to prove the equality (13.38.5). Since both sides of this equality (13.38.5)
are k-linear maps, it is enough to prove this equality on a k-basis of Ao ⊗Ao. Let us pick the basis{
y(i1,i2,...,i`) ⊗ y(i`+1,i`+2,...,i`+m)

}
`∈N, m∈N, (i1,i2,...,i`+m)∈I`+m ; it thus is enough to prove the equality (13.38.5)

on this basis, i.e., to prove that

(φ ◦mAo)
(
y(i1,i2,...,i`) ⊗ y(i`+1,i`+2,...,i`+m)

)
= (m� ◦ (φ⊗ φ))

(
y(i1,i2,...,i`) ⊗ y(i`+1,i`+2,...,i`+m)

)
(13.38.10)

479If we knew that the k-module T (V ), endowed with the multiplication m�, the unit u, the comultiplication ∆� and the
counit ε, becomes a Hopf algebra with the antipode S, then these five equalities would be saying that φ : Ao → T (V ) is a Hopf

algebra homomorphism.
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for every ` ∈ N, m ∈ N and (i1, i2, . . . , i`+m) ∈ I`+m. So let us fix ` ∈ N, m ∈ N and (i1, i2, . . . , i`+m) ∈ I`+m.
Comparing

(φ ◦mAo)
(
y(i1,i2,...,i`) ⊗ y(i`+1,i`+2,...,i`+m)

)

= φ


mAo

(
y(i1,i2,...,i`) ⊗ y(i`+1,i`+2,...,i`+m)

)︸ ︷︷ ︸
=y(i1,i2,...,i`)

y(i`+1,i`+2,...,i`+m)
=

∑
σ∈Sh`,m

y
(iσ(1),iσ(2),...,iσ(`+m))
(by (1.6.4))


= φ

 ∑
σ∈Sh`,m

y(iσ(1),iσ(2),...,iσ(`+m))



=
∑

σ∈Sh`,m

φ
(
y(iσ(1),iσ(2),...,iσ(`+m))

)
︸ ︷︷ ︸

=viσ(1)
viσ(2)

···viσ(`+m)

(by the definition of φ)

=
∑

σ∈Sh`,m

viσ(1)
viσ(2)

· · · viσ(`+m)

with

(m� ◦ (φ⊗ φ))
(
y(i1,i2,...,i`) ⊗ y(i`+1,i`+2,...,i`+m)

)
= m�

(φ⊗ φ)
(
y(i1,i2,...,i`) ⊗ y(i`+1,i`+2,...,i`+m)

)︸ ︷︷ ︸
=φ
(
y(i1,i2,...,i`)

)
⊗φ
(
y(i`+1,i`+2,...,i`+m)

)

 = m�

φ (y(i1,i2,...,i`)

)︸ ︷︷ ︸
=vi1vi2 ···vi`

⊗φ
(
y(i`+1,i`+2,...,i`+m)

)︸ ︷︷ ︸
=vi`+1

vi`+2
···vi`+m


= m�

(
(vi1vi2 · · · vi`)⊗

(
vi`+1

vi`+2
· · · vi`+m

))
= (vi1vi2 · · · vi`)�

(
vi`+1

vi`+2
· · · vi`+m

)
=

∑
σ∈Sh`,m

viσ(1)
viσ(2)

· · · viσ(`+m)
(by the definition of �) ,

we obtain (φ ◦mAo)
(
y(i1,i2,...,i`) ⊗ y(i`+1,i`+2,...,i`+m)

)
= (m� ◦ (φ⊗ φ))

(
y(i1,i2,...,i`) ⊗ y(i`+1,i`+2,...,i`+m)

)
. Thus,

(13.38.10) is proven, and this establishes the equality (13.38.5).
Proof of (13.38.7): Now we must prove the equality (13.38.7). By linearity, it is enough to verify this

equality on a k-basis of Ao. We will use the basis
{
y(i1,i2,...,i`)

}
; then, we need to check the equality

((φ⊗ φ) ◦∆Ao)
(
y(i1,i2,...,i`)

)
= (∆� ◦ φ)

(
y(i1,i2,...,i`)

)
holds for every ` ∈ N and (i1, i2, . . . , i`) ∈ I`. This equality follows by comparing

((φ⊗ φ) ◦∆Ao)
(
y(i1,i2,...,i`)

)
= (φ⊗ φ)

 ∆Ao
(
y(i1,i2,...,i`)

)︸ ︷︷ ︸
=
∑`
j=0 y(i1,...,ij)

⊗y(ij+1,ij+2,...,i`)
(by (1.6.1))


= (φ⊗ φ)

∑̀
j=0

y(i1,...,ij) ⊗ y(ij+1,ij+2,...,i`)


=
∑̀
j=0

φ
(
y(i1,...,ij)

)︸ ︷︷ ︸
=vi1vi2 ···vij

⊗φ
(
y(ij+1,ij+2,...,i`)

)︸ ︷︷ ︸
=vij+1

vij+2
···vi`

=
∑̀
j=0

(
vi1vi2 · · · vij

)
⊗
(
vij+1

vij+2
· · · vi`

)
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with

(∆� ◦ φ)
(
y(i1,i2,...,i`)

)
= ∆�

φ (y(i1,i2,...,i`)

)︸ ︷︷ ︸
=vi1vi2 ···vi`

 = ∆� (vi1vi2 · · · vi`)

=
∑̀
k=0

(vi1vi2 · · · vik)⊗
(
vik+1

vik+2
· · · vi`

)
(by the definition of ∆�)

=
∑̀
j=0

(
vi1vi2 · · · vij

)
⊗
(
vij+1

vij+2
· · · vi`

)
.

Thus, (13.38.7) is proven.
Now, we can derive (13.38.3) in a very straightforward way from the commutativity of (13.38.4) using the

equalities (13.38.7) and (13.38.5): Consider the diagram

Ao ⊗Ao

∆Ao⊗∆Ao

tt

mAo

##

φ⊗φ
��

T ⊗ T
∆�⊗∆�

uu
m�

  

Ao ⊗Ao ⊗Ao ⊗Ao

id⊗T⊗id

��

φ⊗φ⊗φ⊗φ
// T ⊗ T ⊗ T ⊗ T

id⊗T⊗id

��

T

∆�

~~

Ao

∆Ao

{{

φ
oo

Ao ⊗Ao ⊗Ao ⊗Ao

mAo⊗mAo

**

φ⊗φ⊗φ⊗φ // T ⊗ T ⊗ T ⊗ T

m�⊗m� ))
T ⊗ T

Ao ⊗Ao
φ⊗φ

OO

,

where T is shorthand for T (V ). The large pentagon in this diagram is commutative (because it is the diagram
(13.38.4), which is known to commute), and so are all five quadrilaterals480. This does not automatically
yield the commutativity of the small pentagon, but it yields that all paths from the Ao ⊗ Ao at the top of
the diagram to the T ⊗ T one row above the very bottom give the same map; in particular, we have

(m� ⊗m�) ◦ (id⊗T ⊗ id) ◦ (∆� ⊗∆�) ◦ (φ⊗ φ) = (∆� ◦m�) ◦ (φ⊗ φ) .

Thus, the two maps (m� ⊗m�) ◦ (id⊗T ⊗ id) ◦ (∆� ⊗∆�) and ∆� ◦m� are equal to each other on the
image of the map φ⊗ φ. Since a⊗ b lies in the image of the map φ⊗ φ, this yields that these two maps are

480In fact:

• the northeastern quadrilateral commutes because of (13.38.5);

• the southeastern quadrilateral commutes because of (13.38.7);
• the northwestern quadrilateral commutes because

(φ⊗ φ⊗ φ⊗ φ) ◦ (∆Ao ⊗∆Ao ) = ((φ⊗ φ) ◦∆Ao )︸ ︷︷ ︸
=∆�◦φ

(by (13.38.7))

⊗ ((φ⊗ φ) ◦∆Ao )︸ ︷︷ ︸
=∆�◦φ

(by (13.38.7))

= (∆� ◦ φ)⊗ (∆� ◦ φ) = (∆� ⊗∆�) ◦ (φ⊗ φ) ;

• the southwestern quadrilateral commutes for a similar reason (but using (13.38.5) instead of (13.38.7));
• the western quadrilateral commutes as a consequence of simple linear algebra.
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equal to each other on a ⊗ b. In other words, (13.38.3) holds. As we have said above, this completes our
proof of Proposition 1.6.7.

13.39. Solution to Exercise 1.7.9. Solution to Exercise 1.7.9. We shall use the following simple fact:

Fact A.0: Let α and β be two maps in Hom (C,A). Let x ∈ C. Let some k ∈ N, some
elements y1, y2, . . . , yk ∈ C and some elements z1, z2, . . . , zk ∈ C be chosen such that ∆ (x) =∑k
p=1 yp ⊗ zp. Then,

(α ? β) (x) =

k∑
p=1

α (yp)β (zp) .

[Proof of Fact A.0: Let m denote the multiplication map A⊗ A→ A of the k-algebra A. The definition
of convolution yields α ? β = m ◦ (α⊗ β) ◦∆. Hence,

(α ? β) (x) = (m ◦ (α⊗ β) ◦∆) (x) = m

(α⊗ β)

 ∆ (x)︸ ︷︷ ︸
=
∑k
p=1 yp⊗zp




= m

(α⊗ β)

(
k∑
p=1

yp ⊗ zp

)
︸ ︷︷ ︸

=
∑k
p=1 α(yp)⊗β(zp)

 = m

(
k∑
p=1

α (yp)⊗ β (zp)

)

=

k∑
p=1

α (yp)β (zp) (by the definition of the map m) .

This proves Fact A.0.]

Proof of Proposition 1.7.4. Let g be the map
∑
q∈Q fq.

481 Thus, g is a map C → A. Moreover, g =∑
q∈Q fq. Thus, each x ∈ C satisfies

(13.39.1) g (x) =

∑
q∈Q

fq

 (x) =
∑
q∈Q

fq (x)

(by the definition of
∑
q∈Q fq).

Now, let c ∈ C, d ∈ C, λ ∈ k and µ ∈ k be arbitrary. Then, (13.39.1) (applied to x = c) yields

g (c) =
∑
q∈Q

fq (c) .

Moreover, the family (fq)q∈Q ∈ (Hom (C,A))
Q

is pointwise finitely supported. In other words, for each

x ∈ C, the family (fq (x))q∈Q ∈ A
Q of elements of A is finitely supported (by the definition of “pointwise

finitely supported”). Applying this to x = c, we conclude that the family (fq (c))q∈Q ∈ A
Q of elements of A

is finitely supported. In other words, all but finitely many q ∈ Q satisfy fq (c) = 0. Hence, all but finitely
many q ∈ Q satisfy λfq (c) = 0 (since every q ∈ Q that satisfies fq (c) = 0 must also satisfy λ fq (c)︸ ︷︷ ︸

=0

= 0).

In other words, the family (λfq (c))q∈Q ∈ A
Q is finitely supported. The same argument (applied to d and µ

instead of c and λ) shows that the family (µfq (d))q∈Q ∈ A
Q of elements of A is finitely supported.

481This map is well-defined, since the family (fq)q∈Q is pointwise finitely supported.
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Recall that sums of finitely supported families satisfy the same rules as finite sums. Since the families
(λfq (c))q∈Q and (µfq (d))q∈Q are finitely supported, we thus have

(13.39.2)
∑
q∈Q

λfq (c) +
∑
q∈Q

µfq (d) =
∑
q∈Q

(λfq (c) + µfq (d))

(and in particular, the family (λfq (c) + µfq (d))q∈Q is finitely supported). For the same reason, we have

(13.39.3) λ
∑
q∈Q

fq (c) =
∑
q∈Q

λfq (c)

(since the family (fq (c))q∈Q is finitely supported) and

(13.39.4) µ
∑
q∈Q

fq (d) =
∑
q∈Q

µfq (d)

(for similar reasons).
Now, (13.39.1) (applied to x = λc+ µd) yields

g (λc+ µd) =
∑
q∈Q

fq (λc+ µd)︸ ︷︷ ︸
=λfq(c)+µfq(d)

(since fq∈Hom(C,A))

=
∑
q∈Q

(λfq (c) + µfq (d))

=
∑
q∈Q

λfq (c)︸ ︷︷ ︸
=λ
∑
q∈Q fq(c)

(by (13.39.3))

+
∑
q∈Q

µfq (d)︸ ︷︷ ︸
=µ
∑
q∈Q fq(d)

(by (13.39.4))

(by (13.39.2))

= λ
∑
q∈Q

fq (c) + µ
∑
q∈Q

fq (d) .

Comparing this with

λ g (c)︸︷︷︸
=
∑
q∈Q fq(c)

+µ g (d)︸︷︷︸
=
∑
q∈Q fq(d)

(by (13.39.1) (applied to x=d))

= λ
∑
q∈Q

fq (c) + µ
∑
q∈Q

fq (d) ,

we obtain g (λc+ µd) = λg (c) + µg (d).
Now, forget that we fixed c, d, λ and µ. We thus have proven that g (λc+ µd) = λg (c) + µg (d) for every

c ∈ C, d ∈ C, λ ∈ k and µ ∈ k. In other words, the map g is k-linear. In other words, g ∈ Hom (C,A).
Thus,

∑
q∈Q fq = g ∈ Hom (C,A). This proves Proposition 1.7.4. �

Proof of Proposition 1.7.5. Fix x ∈ C. The family (fq (x))q∈Q ∈ A
Q of elements of A is finitely supported

(since the family (fq)q∈Q ∈ (Hom (C,A))
Q

is pointwise finitely supported). In other words, all but finitely

many q ∈ Q satisfy fq (x) = 0. In other words, there exists a finite subset Q1 of Q such that

(13.39.5) every q ∈ Q \Q1 satisfies fq (x) = 0.

Similarly, there exists a finite subset Q2 of Q such that

(13.39.6) every q ∈ Q \Q2 satisfies gq (x) = 0.

Consider these two finite subsets Q1 and Q2.
The set Q1 ∪ Q2 is finite (since it is the union of the two finite sets Q1 and Q2). Thus, all but finitely

many q ∈ Q satisfy q ∈ Q \ (Q1 ∪Q2).
We have Q \ (Q1 ∪Q2)︸ ︷︷ ︸

⊃Q1

⊂ Q \Q1 and Q \ (Q1 ∪Q2)︸ ︷︷ ︸
⊃Q2

⊂ Q \Q2.

Also, Q1 ∪Q2 is a subset of Q (since both Q1 and Q2 are subsets of Q). In other words, Q1 ∪Q2 ⊂ Q.
Every q ∈ Q \ (Q1 ∪Q2) satisfies

(13.39.7) (fq + gq) (x) = fq (x)︸ ︷︷ ︸
=0

(by (13.39.5)
(since q∈Q\(Q1∪Q2)⊂Q\Q1))

+ gq (x)︸ ︷︷ ︸
=0

(by (13.39.6)
(since q∈Q\(Q1∪Q2)⊂Q\Q2))

= 0.
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Hence, all but finitely many q ∈ Q satisfy (fq + gq) (x) = 0 (since all but finitely many q ∈ Q satisfy
q ∈ Q \ (Q1 ∪Q2)). In other words,

(13.39.8) the family ((fq + gq) (x))q∈Q ∈ A
Q is finitely supported.

The set Q is the union of its two disjoint subsets Q1 ∪Q2 and Q \ (Q1 ∪Q2) (since Q1 ∪Q2 ⊂ Q). Thus,
the sum

∑
q∈Q fq (x) can be split as follows:∑

q∈Q
fq (x) =

∑
q∈Q1∪Q2

fq (x) +
∑

q∈Q\(Q1∪Q2)

fq (x)︸ ︷︷ ︸
=0

(by (13.39.5)
(since q∈Q\(Q1∪Q2)⊂Q\Q1))

=
∑

q∈Q1∪Q2

fq (x) +
∑

q∈Q\(Q1∪Q2)

0

︸ ︷︷ ︸
=0

=
∑

q∈Q1∪Q2

fq (x) .(13.39.9)

A similar argument (using (13.39.6) instead of (13.39.5)) yields∑
q∈Q

gq (x) =
∑

q∈Q1∪Q2

gq (x) .

Adding this equality to (13.39.9), we obtain

(13.39.10)
∑
q∈Q

fq (x) +
∑
q∈Q

gq (x) =
∑

q∈Q1∪Q2

fq (x) +
∑

q∈Q1∪Q2

gq (x) .

But recall again that the set Q is the union of its two disjoint subsets Q1 ∪Q2 and Q \ (Q1 ∪Q2). Hence,∑
q∈Q

(fq + gq) (x) =
∑

q∈Q1∪Q2

(fq + gq) (x)︸ ︷︷ ︸
=fq(x)+gq(x)

+
∑

q∈Q\(Q1∪Q2)

(fq + gq) (x)︸ ︷︷ ︸
=0

(by (13.39.7))

=
∑

q∈Q1∪Q2

(fq (x) + gq (x)) +
∑

q∈Q\(Q1∪Q2)

0

︸ ︷︷ ︸
=0

=
∑

q∈Q1∪Q2

(fq (x) + gq (x))

=
∑

q∈Q1∪Q2

fq (x) +
∑

q∈Q1∪Q2

gq (x)

(
here, we have manipulated a finite sum

(since Q1 ∪Q2 is a finite set)

)
=
∑
q∈Q

fq (x) +
∑
q∈Q

gq (x) (by (13.39.10)) .(13.39.11)

Now, let us forget that we fixed x. We thus have proven that every x ∈ C satisfies (13.39.8) and (13.39.11).
In particular, every x ∈ C satisfies (13.39.8). In other words, for each x ∈ C, the family ((fq + gq) (x))q∈Q ∈

AQ of elements of A is finitely supported. In other words, the family (fq + gq)q∈Q ∈ (Hom (C,A))
Q

is point-

wise finitely supported (by the definition of “pointwise finitely supported”).
Hence, the sum

∑
q∈Q (fq + gq) is well-defined. Also, the sum

∑
q∈Q fq is well-defined (since the family

(fq)q∈Q is pointwise finitely supported). Similarly, the sum
∑
q∈Q gq is well-defined.

Moreover, each x ∈ C satisfies∑
q∈Q

(fq + gq)

 (x) =
∑
q∈Q

(fq + gq) (x) =
∑
q∈Q

fq (x)︸ ︷︷ ︸
=(
∑
q∈Q fq)(x)

+
∑
q∈Q

gq (x)︸ ︷︷ ︸
=(
∑
q∈Q gq)(x)

(by (13.39.11))

=

∑
q∈Q

fq

 (x) +

∑
q∈Q

gq

 (x) =

∑
q∈Q

fq +
∑
q∈Q

gq

 (x) .

In other words,
∑
q∈Q (fq + gq) =

∑
q∈Q fq+

∑
q∈Q gq. In other words,

∑
q∈Q fq+

∑
q∈Q gq =

∑
q∈Q (fq + gq).

This completes the proof of Proposition 1.7.5. �
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Proof of Proposition 1.7.6. Let x ∈ C. Write the element ∆ (x) ∈ C ⊗ C in the form ∆ (x) =
∑k
p=1 yp ⊗ zp

for some k ∈ N, some elements y1, y2, . . . , yk ∈ C and some elements z1, z2, . . . , zk ∈ C. (This is possible,
because ∆ (x) can be written as a sum of pure tensors482.)

For each p ∈ {1, 2, . . . , k}, there exists a finite subset Qp of Q such that

(13.39.12) every q ∈ Q \Qp satisfies fq (yp) = 0

483. Consider this Qp.
Define a subset Q′ of Q by Q′ = Q1∪Q2∪· · ·∪Qk. Thus, Q′ is the union of the k finite sets Q1, Q2, . . . , Qk.

Therefore, Q′ itself is a finite set (since a union of k finite sets is always finite).
Every q ∈ Q \Q′ and p ∈ {1, 2, . . . , k} satisfy fq (yp) = 0 484.
We have thus constructed a finite subset Q′ of Q with the property that every q ∈ Q \ Q′ and p ∈

{1, 2, . . . , k} satisfy

(13.39.13) fq (yp) = 0.

Similarly, we can construct a finite subset R′ of R with the property that every r ∈ R\R′ and p ∈ {1, 2, . . . , k}
satisfy

(13.39.14) gr (zp) = 0.

Consider this R′.
The set Q′×R′ is a Cartesian product of two finite sets (since Q′ and R′ are finite sets), and thus is itself

finite. Hence, all but finitely many (q, r) ∈ Q×R satisfy (q, r) ∈ (Q×R) \ (Q′ ×R′).
We shall now show that each (q, r) ∈ (Q×R) \ (Q′ ×R′) satisfies (fq ? gr) (x) = 0.
Indeed, fix (q, r) ∈ (Q×R) \ (Q′ ×R′). Thus, (q, r) ∈ Q×R and (q, r) /∈ Q′ ×R′.
We are in one of the following two cases:
Case 1: We have q ∈ Q′.
Case 2: We have q /∈ Q′.
Let us first consider Case 1. In this case, we have q ∈ Q′. If we had r ∈ R′, we thus would have

(q, r) ∈ Q′ × R′ (since q ∈ Q′ and r ∈ R′), which would contradict (q, r) /∈ Q′ × R′. Hence, we cannot have
r ∈ R′. In other words, we have r /∈ R′. Combining r ∈ R with r /∈ R′, we obtain r ∈ R \R′. Now, Fact A.0
(applied to α = fq and β = gr) yields

(fq ? gr) (x) =

k∑
p=1

fq (yp) gr (zp)︸ ︷︷ ︸
=0

(by (13.39.14))

=

k∑
p=1

fq (yp) 0 = 0.

Thus, (fq ? gr) (x) = 0 is proven in Case 1.
Let us now consider Case 2. In this case, we have q /∈ Q′. Combining q ∈ Q with q /∈ Q′, we obtain

q ∈ Q \Q′. Now, Fact A.0 (applied to α = fq and β = gr) yields

(fq ? gr) (x) =

k∑
p=1

fq (yp)︸ ︷︷ ︸
=0

(by (13.39.13))

gr (zp) =

k∑
p=1

0gr (zp) = 0.

Thus, (fq ? gr) (x) = 0 is proven in Case 2.
We have thus proven (fq ? gr) (x) = 0 in both Cases 1 and 2. Hence, (fq ? gr) (x) = 0 always holds.
Now, forget that we fixed (q, r). We thus have proven that

(13.39.15) each (q, r) ∈ (Q×R) \ (Q′ ×R′) satisfies (fq ? gr) (x) = 0.

482This is because any tensor in C ⊗ C can be written as a sum of pure tensors.
483Proof: Let p ∈ {1, 2, . . . , k}. The family (fq)q∈Q ∈ (Hom (C,A))Q is pointwise finitely supported. Hence, the family

(fq (yp))q∈Q ∈ A
Q is finitely supported. In other words, all but finitely many q ∈ Q satisfy fq (yp) = 0. In other words, there

exists a finite subset Qp of Q such that every q ∈ Q \Qp satisfies fq (yp) = 0. Qed.
484Proof of (13.39.13): Let q ∈ Q \Q′ and p ∈ {1, 2, . . . , k}.
We have Qp ⊂ Q1 ∪Q2 ∪ · · · ∪Qk = Q′ (since Q′ = Q1 ∪Q2 ∪ · · · ∪Qk), so that Q \ Qp︸︷︷︸

⊂Q′

⊃ Q \Q′. Hence, Q \Q′ ⊂ Q \Qp.

Now, (13.39.12) yields fq (yp) = 0 (since q ∈ Q \Q′ ⊂ Q \Qp). This proves (13.39.13).
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Thus, all but finitely many (q, r) ∈ Q×R satisfy (fq ? gr) (x) = 0 (since all but finitely many (q, r) ∈ Q×R
satisfy (q, r) ∈ (Q×R) \ (Q′ ×R′)). In other words,

(13.39.16) the family ((fq ? gr) (x))(q,r)∈Q×R ∈ A
Q×R is finitely supported.

Define a map F : C → A by F =
∑
q∈Q fq. (This is well-defined, since the family (fq)q∈Q ∈ (Hom (C,A))

Q

is pointwise finitely supported.)

Define a map G : C → A by G =
∑
r∈R gr. (This is well-defined, since the family (gr)r∈R ∈ (Hom (C,A))

R

is pointwise finitely supported.)
We have F =

∑
q∈Q fq ∈ Hom (C,A) (by Proposition 1.7.4) and G ∈ Hom (C,A) (for similar reasons).

Hence, the map F ? G ∈ Hom (C,A) is well-defined.
Define a further map F ′ ∈ Hom (C,A) by F ′ =

∑
q∈Q′ fq. Notice that this is a finite sum, since Q′ is a

finite set.
Define a further map G′ ∈ Hom (C,A) by G′ =

∑
r∈R′ gr. Notice that this is a finite sum, since R′ is a

finite set.
From F ′ =

∑
q∈Q′ fq and G′ =

∑
r∈R′ gr, we obtain485

F ′ ? G′ =

∑
q∈Q′

fq

 ?

(∑
r∈R′

gr

)

=
∑
q∈Q′

∑
r∈R′︸ ︷︷ ︸

=
∑

(q,r)∈Q′×R′

(fq ? gr) =
∑

(q,r)∈Q′×R′
(fq ? gr) .(13.39.17)

But every p ∈ {1, 2, . . . , k} satisfies

(13.39.18) F ′ (yp) = F (yp)

486 and

(13.39.19) G′ (zp) = G (zp)

(for similar reasons). Hence,

(13.39.20) (F ′ ? G′) (x) = (F ? G) (x)

485The following manipulations of sums are legitimate, since all the sums involved are finite (because Q′ and R′ are finite

sets).
486Proof of (13.39.18): Let p ∈ {1, 2, . . . , k}. Recall that Q′ ⊂ Q; thus, the set Q is the union of its two disjoint subsets Q′

and Q \Q′.
From F =

∑
q∈Q fq , we obtain

F (yp) =

∑
q∈Q

fq

 (yp) =
∑
q∈Q

fq (yp) =
∑
q∈Q′

fq (yp) +
∑

q∈Q\Q′
fq (yp)︸ ︷︷ ︸

=0
(by (13.39.13))(

since the set Q is the union of its disjoint subsets Q′ and Q \Q′
)

=
∑
q∈Q′

fq (yp) +
∑

q∈Q\Q′
0

︸ ︷︷ ︸
=0

=
∑
q∈Q′

fq (yp) .

Comparing this with F ′︸︷︷︸
=
∑
q∈Q′ fq

(yp) =
(∑

q∈Q′ fq
)

(yp) =
∑
q∈Q′ fq (yp), we obtain F ′ (yp) = F (yp). This proves (13.39.18).
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487. Thus,

(F ? G) (x) = (F ′ ? G′)︸ ︷︷ ︸
=
∑

(q,r)∈Q′×R′ (fq?gr)

(by (13.39.17))

(x) =

 ∑
(q,r)∈Q′×R′

(fq ? gr)

 (x)

=
∑

(q,r)∈Q′×R′
(fq ? gr) (x) .(13.39.22)

On the other hand, Q′︸︷︷︸
⊂Q

× R′︸︷︷︸
⊂R

⊂ Q × R. Hence, the set Q × R is the union of its two disjoint subsets

Q′ ×R′ and (Q×R) \ (Q′ ×R′).
But the sum

∑
(q,r)∈Q×R (fq ? gr) (x) is well-defined (since the family ((fq ? gr) (x))(q,r)∈Q×R ∈ A

Q×R is

finitely supported). Since the set Q×R is the union of its two disjoint subsets Q′×R′ and (Q×R)\(Q′ ×R′),
we can split this sum as follows:∑

(q,r)∈Q×R

(fq ? gr) (x)

=
∑

(q,r)∈Q′×R′
(fq ? gr) (x) +

∑
(q,r)∈(Q×R)\(Q′×R′)

(fq ? gr) (x)︸ ︷︷ ︸
=0

(by (13.39.15))

=
∑

(q,r)∈Q′×R′
(fq ? gr) (x) +

∑
(q,r)∈(Q×R)\(Q′×R′)

0

︸ ︷︷ ︸
=0

=
∑

(q,r)∈Q′×R′
(fq ? gr) (x)

=

 F︸︷︷︸
=
∑
q∈Q fq

? G︸︷︷︸
=
∑
r∈R gr

 (x) (by (13.39.22))

=

∑
q∈Q

fq

 ?

(∑
r∈R

gr

) (x) .(13.39.23)

Now, forget that we fixed x. We thus have shown that each x ∈ C satisfies (13.39.16) and (13.39.23).
In particular, each x ∈ C satisfies (13.39.16). In other words, for each x ∈ C, the family ((fq ? gr) (x))(q,r)∈Q×R ∈

AQ×R is finitely supported. In other words, the family (fq ? gr)(q,r)∈Q×R ∈ (Hom (C,A))
Q×R

is pointwise

finitely supported (by the definition of “pointwise finitely supported”). Hence, the sum
∑

(q,r)∈Q×R (fq ? gr)

is well-defined. For each x ∈ C, we have ∑
(q,r)∈Q×R

(fq ? gr)

 (x) =
∑

(q,r)∈Q×R

(fq ? gr) (x) =

∑
q∈Q

fq

 ?

(∑
r∈R

gr

) (x)

487Proof of (13.39.20): Fact A.0 (applied to α = F and β = G) yields

(13.39.21) (F ? G) (x) =
k∑
p=1

F (yp)G (zp) .

Fact A.0 (applied to α = F ′ and β = G′) yields

(
F ′ ? G′

)
(x) =

k∑
p=1

F ′ (yp)︸ ︷︷ ︸
=F(yp)

(by (13.39.18))

G′ (zp)︸ ︷︷ ︸
=G(zp)

(by (13.39.19))

=

k∑
p=1

F (yp)G (zp) .

Comparing this with (13.39.21), we obtain (F ′ ? G′) (x) = (F ? G) (x).
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(by (13.39.23)). In other words, we have

∑
(q,r)∈Q×R

(fq ? gr) =

∑
q∈Q

fq

 ?

(∑
r∈R

gr

)
.

This completes the proof of Proposition 1.7.6. �

We shall delay the proof of Proposition 1.7.7 until after Proposition 1.7.8 is proven; the reason is that
Proposition 1.7.8 yields a quick shortcut to Proposition 1.7.7.

Proof of Proposition 1.7.8. Let x ∈ C. Write the element ∆ (x) ∈ C ⊗ C in the form ∆ (x) =
∑k
p=1 yp ⊗ zp

for some k ∈ N, some elements y1, y2, . . . , yk ∈ C and some elements z1, z2, . . . , zk ∈ C. (This is possible,
because ∆ (x) can be written as a sum of pure tensors488.)

For each p ∈ {1, 2, . . . , k}, there exists a finite subset Qp of Q such that

(13.39.24) every q ∈ Q \Qp satisfies fq (yp) = 0

489. Consider this Qp.
Define a subset Q′ of Q by Q′ = Q1∪Q2∪· · ·∪Qk. Thus, Q′ is the union of the k finite sets Q1, Q2, . . . , Qk.

Hence, Q′ itself a finite set. Hence, all but finitely many q ∈ Q satisfy q ∈ Q \Q′.
Every q ∈ Q \Q′ and p ∈ {1, 2, . . . , k} satisfy

(13.39.25) fq (yp) = 0

490.
Now, fix q ∈ Q \Q′. Fact A.0 (applied to α = fq and β = gq) yields

(fq ? gq) (x) =

k∑
p=1

fq (yp)︸ ︷︷ ︸
=0

(by (13.39.25))

gq (zp) =

k∑
p=1

0gq (zp) = 0.

Now, forget that we fixed q. We thus have proven that each q ∈ Q \Q′ satisfies (fq ? gq) (x) = 0. Hence,
all but finitely many q ∈ Q satisfy (fq ? gq) (x) = 0 (since all but finitely many q ∈ Q satisfy q ∈ Q \Q′). In
other words, the family ((fq ? gq) (x))q∈Q ∈ A

Q is finitely supported.

Now, forget that we fixed x. We thus have shown that for each x ∈ C, the family ((fq ? gq) (x))q∈Q ∈ A
Q

is finitely supported. In other words, the family (fq ? gq)q∈Q ∈ (Hom (C,A))
Q

is pointwise finitely supported.

This proves Proposition 1.7.8. �

Proof of Proposition 1.7.7. Let i be the unity of the k-algebra (Hom (C,A) , ?). (This i is the map uA ◦ εC :
C → A; but this does not matter to us.)

Applying Proposition 1.7.8 to the family (gq)q∈Q = (λqi)q∈Q, we conclude that the family (fq ? (λqi))q∈Q ∈
(Hom (C,A))

Q
is pointwise finitely supported. Since each q ∈ Q satisfies

fq ? (λqi) = λq · (fq ? i)︸ ︷︷ ︸
=fq

(since i is the unity of
the k-algebra (Hom(C,A),?))

= λqfq,

this rewrites as follows: The family (λqfq)q∈Q ∈ (Hom (C,A))
Q

is pointwise finitely supported. This proves

Proposition 1.7.7. �

We have now proven all five Propositions 1.7.4, 1.7.5, 1.7.6, 1.7.7 and 1.7.8. Thus, Exercise 1.7.9 is solved.

[Remark: We can re-interpret the concept of “pointwise finitely supported” families (fq)q∈Q ∈ (Hom (C,A))
Q

and their sums
∑
q∈Q fq in topological terms. To that end, we shall use the concept of a “net” (see, e.g.,

https://en.wikipedia.org/wiki/Net_(mathematics) or [219, §4] for an introduction).

488This is because any tensor in C ⊗ C can be written as a sum of pure tensors.
489This can be shown in the same way as we did it during the proof of Proposition 1.7.6.
490This can be shown in the same way as we did it during the proof of Proposition 1.7.6.

https://en.wikipedia.org/wiki/Net_(mathematics)
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Recall that a preordered set means a set Z equipped with a preorder relation (i.e., a binary relation on
Z that is both reflexive and transitive491). This preorder relation is commonly denoted by ≤. A nonempty
preordered set Z is said to be a directed set if its preorder relation ≤ has the property that every two elements
x ∈ Z and y ∈ Z have an upper bound (i.e., some z ∈ Z satisfying x ≤ z and y ≤ z). If Z is a preordered
set, and if A (z) is a logical statement for each z ∈ Z, then we say that “A (z) holds for all sufficiently high
z ∈ Z” if and only if there exists a w ∈ Z such that every z ∈ Z satisfying w ≤ z satisfies A (z).

Two important examples of directed sets are the following:

• The set N, equipped with the usual less-or-equal relation ≤, is a directed set. This directed set will
simply be called N.

• If Q is any set, then the set Pfin (Q) of all finite subsets of Q is naturally a directed set: Its preorder
relation ≤ is defined to be the subset relation ⊂. Every two elements x ∈ Pfin (Q) and y ∈ Pfin (Q)
clearly have an upper bound (for example, x ∪ y). This directed set will simply be called Pfin (Q).

A net in a set X is defined to be a family (xz)z∈Z ∈ XZ , where Z is some directed set.

If X is a topological space, if x ∈ X, and if (xz)z∈Z ∈ XZ is a net in X, then the net (xz)z∈Z is said to
converge to x if and only if for each neighborhood U of x, we have

(xz ∈ U for all sufficiently high z ∈ Z) .

Thus, in any topological space, we have defined the notion of a convergent net. This notion generalizes
the notion of a convergent sequence (indeed, convergent sequences are precisely the same as convergent nets
whose indexing set Z is the directed set N). But it is, in a sense, a more natural notion than the latter: Unlike
the latter, it characterizes the topological space. That is, we can define a topological space on a set Y by
specifying which nets in Y converge to which elements of Y (provided that this specification satisfies certain
axioms); but we cannot (in general) define a topological space on a set Y by specifying which sequences in
Y converge to which elements of Y .

If a net (xz)z∈Z ∈ XZ in a topological space X converges to an element x ∈ X, then x is called a limit

of (xz)z∈Z . If X is Hausdorff, then any convergent net (xz)z∈Z ∈ XZ has only one limit, and so we can call
this limit “the limit” of (xz)z∈Z .

If X is a topological space with the discrete topology, then convergence of nets can be described very
simply: A net (xz)z∈Z ∈ XZ in a discrete topological space X converges to an element x ∈ X if and only if we
have (xz = x for all sufficiently high z ∈ Z). This behavior is also called stabilization: i.e., we say that a net
(xz)z∈Z ∈ XZ stabilizes to an element x ∈ X if and only if we have (xz = x for all sufficiently high z ∈ Z).

Let us equip the set A with the discrete topology. Thus, A becomes a topological k-algebra (because
equipping any k-algebra with the discrete topology results in a topological k-algebra).

Now, we equip the set Hom (C,A) with a topology, which can be defined in any of the following two ways:

• It is the unique topology on the set Hom (C,A) that has the following property: A net (fz)z∈Z of
maps fz ∈ Hom (C,A) converges to a map f ∈ Hom (C,A) in this topology if and only if for each
c ∈ C, the net (fz (c))z∈Z in A stabilizes to f (c).

• Alternatively, we can define the topology on Hom (C,A) in the usual way (i.e., via open sets): The
set AC of all maps from C to A is equipped with a product topology (since it is the product

∏
c∈C A).

The set Hom (C,A) thus also gets a topology, being a subset of AC .

These two definitions give rise to the same topology. This topology is called the topology of pointwise
convergence. We consider Hom (C,A) to be equipped with this topology from now on. This topology allows
us to work with limits of nets in Hom (C,A) (as long as these nets converge), since the topological space
Hom (C,A) is Hausdorff.

Proposition 13.39.1. The k-algebra (Hom (C,A) , ?) is a topological k-algebra. That is, the maps

Hom (C,A)×Hom (C,A)→ Hom (C,A) , (f, g) 7→ f + g,

Hom (C,A)→ Hom (C,A) , f 7→ −f,
Hom (C,A)×Hom (C,A)→ Hom (C,A) , (f, g) 7→ f ? g,

k×Hom (C,A)→ Hom (C,A) , (λ, f) 7→ λf

are continuous (where the topology on k is the discrete topology).

491but (unlike a partial order) not necessarily antisymmetric
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We omit the proof of Proposition 13.39.1, since we shall not use it; it is not hard to prove with some
standard techniques from point-set topology. But let us see how it allows us to re-interpret pointwise finitely
supported families:

• Any family (aq)q∈Q ∈ A
Q of elements of A gives rise to a net

(∑
q∈K aq

)
K∈Pfin(Q)

∈ APfin(Q) in A

(which consists of all sums of finite subfamilies of (aq)q∈Q). It is easy to see that the family (aq)q∈Q

is finitely supported if and only if the net
(∑

q∈K aq

)
K∈Pfin(Q)

∈ APfin(Q) converges in the discrete

space A. In this case, the limit of the net is precisely
∑
q∈Q aq.

• Any family (fq)q∈Q ∈ (Hom (C,A))
Q

of elements of Hom (C,A) gives rise to a net
(∑

q∈K fq

)
K∈Pfin(Q)

∈

(Hom (C,A))
Pfin(Q)

in Hom (C,A) (which consists of all sums of finite subfamilies of (fq)q∈Q).

It is easy to see that the family (fq)q∈Q is pointwise finitely supported if and only if the net(∑
q∈K fq

)
K∈Pfin(Q)

∈ (Hom (C,A))
Pfin(Q)

converges in Hom (C,A). In this case, the limit of the

net is precisely
∑
q∈Q fq.

It is clear that this line of reasoning allows us to generalize the notion of “pointwise finitely supported
families” to families in any topological k-module, and to define the sum of any such family.]

13.40. Solution to Exercise 1.7.13. Solution to Exercise 1.7.13. Before we start proving Proposition 1.7.11,
let us prove some facts which will be useful on several occasions:

Fact B.1: If f ∈ Hom (C,A) is a pointwise ?-nilpotent map, and if (λn)n∈N ∈ kN is any family

of scalars, then the family (λnf
?n)n∈N ∈ (Hom (C,A))

N
is pointwise finitely supported.

[Proof of Fact B.1: Fact B.1 has been stated in Definition 1.7.10(b); it was already proven in a footnote.]

Fact B.2: Let f ∈ n (C,A). Let (λn)n∈N ∈ kN be any family of scalars. Then, the fam-

ily (λnf
?n)n∈N ∈ (Hom (C,A))

N
is pointwise finitely supported, and its sum

∑
n≥0 λnf

?n

belongs to Hom (C,A).

[Proof of Fact B.2: We have f ∈ n (C,A). In other words, f is a pointwise ?-nilpotent map in Hom (C,A)
(since n (C,A) is the set of all pointwise ?-nilpotent maps in Hom (C,A)). Thus, Fact B.1 shows that

the family (λnf
?n)n∈N ∈ (Hom (C,A))

N
is pointwise finitely supported. Hence, the sum

∑
n∈N λnf

?n is
well-defined. In other words, the sum

∑
n≥0 λnf

?n is well-defined (since
∑
n≥0 =

∑
n∈N).

Now, Proposition 1.7.4 (applied to N and (λnf
?n)n∈N instead of Q and (fq)q∈Q) shows that the map∑

n∈N λnf
?n belongs to Hom (C,A). In other words, the map

∑
n≥0 λnf

?n belongs to Hom (C,A) (since∑
n≥0 =

∑
n∈N). Thus, Fact B.2 is proven.]

Fact B.3: Let (fq)q∈Q be a pointwise finitely supported family in (Hom (C,A))
Q

. Let λ ∈ k.

Then, the family (λfq)q∈Q ∈ (Hom (C,A))
Q

is also pointwise finitely supported, and satisfies

λ
∑
q∈Q

fq =
∑
q∈Q

λfq.

[Proof of Fact B.3: Fact B.3 is similar to Proposition 1.7.5, and its proof is analogous to the proof of the
latter (but simpler).]

Before we state the next fact, let us recall how the convergence of a (possibly infinite) sum of power series
in k [[T ]] is defined:

Definition: Let us introduce a notation: If u ∈ k [[T ]] is any power series, and if n ∈ N, then
[Tn]u will mean the coefficient of Tn in u. Thus, u =

∑
n≥0 ([Tn]u) ·Tn for each u ∈ k [[T ]].

Let (rq)q∈Q ∈ (k [[T ]])
Q

be a family of power series in k [[T ]]. We say that the sum∑
q∈Q rq converges in k [[T ]] if and only if for each n ∈ N,

all but finitely many q ∈ Q satisfy [Tn] rq = 0.
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492 In this case, the sum
∑
q∈Q rq is defined to be the power series in k [[T ]] whose coefficients

are given by the rule[Tn]

∑
q∈Q

rq

 =
∑
q∈Q

[Tn] rq for all n ∈ N

 .

Now, we can state a useful fact that relates this notion of convergence to manipulations of maps in
Hom (C,A):

Fact B.7: Let (rq)q∈Q ∈ (k [[T ]])
Q

be a family of power series such that the (possibly infinite)

sum
∑
q∈Q rq converges in k [[T ]]. Let f ∈ n (C,A). Then, the family

(
(rq)

?
(f)
)
q∈Q ∈

(Hom (C,A))
Q

is pointwise finitely supported and satisfies∑
q∈Q

rq

?

(f) =
∑
q∈Q

(rq)
?

(f) .

[Proof of Fact B.7: Define a power series s ∈ k [[T ]] by s =
∑
q∈Q rq. (This is well-defined, since the sum∑

q∈Q rq converges.)

Let us introduce a notation: If u ∈ k [[T ]] is any power series, and if n ∈ N, then [Tn]u will mean the
coefficient of Tn in u. Thus, u =

∑
n≥0 ([Tn]u) · Tn for each u ∈ k [[T ]]. Applying this to u = s, we find

s =
∑
n≥0 ([Tn] s) · Tn.

We know that the sum
∑
q∈Q rq converges in k [[T ]]. In other words, for each n ∈ N,

(13.40.1) all but finitely many q ∈ Q satisfy [Tn] rq = 0

(by the definition of convergence for an infinite sum in k [[T ]]). (Of course, what precisely “all but finitely
many q ∈ Q” means here – i.e., which q are excluded – depends on n.)

For every q ∈ Q, we have rq =
∑
n≥0 ([Tn] rq) · Tn (since u =

∑
n≥0 ([Tn]u) · Tn for each u ∈ k [[T ]]) and

therefore

(13.40.2) (rq)
?

(f) =
∑
n≥0

([Tn] rq) f
?n

(by the definition of (rq)
?

(f)).
We have f ∈ n (C,A). In other words, f is a pointwise ?-nilpotent map in Hom (C,A) (since n (C,A)

is the set of all pointwise ?-nilpotent maps in Hom (C,A)). Thus, the family (f?n)n∈N ∈ (Hom (C,A))
N

is
pointwise finitely supported (since f is pointwise ?-nilpotent). In other words, for each x ∈ C,

(13.40.3) the family (f?n (x))n∈N ∈ A
N is finitely supported.

Now, let x ∈ C. Then, there exists an N ∈ N such that

(13.40.4) every n ≥ N satisfies f?n (x) = 0

493. Consider this N .

492Of course, what precisely “all but finitely many q ∈ Q” means here – i.e., which q are excluded – depends on n.
493Proof. The family (f?n (x))n∈N ∈ AN is finitely supported (by (13.40.3)). In other words, all but finitely many n ∈ N

satisfy f?n (x) = 0. In other words, there exists a finite subset Z of N such that

(13.40.5) each n ∈ N \ Z satisfies f?n (x) = 0.

Consider this Z.

The set Z is a finite subset of N, and thus has an upper bound (since any finite subset of N has an upper bound). In other
words, there exists some w ∈ N such that each z ∈ Z satisfies z ≤ w. Consider this w.

Now, let n ∈ N be such that n ≥ w + 1. Assume (for the sake of contradiction) that n ∈ Z. Recall that each z ∈ Z satisfies

z ≤ w. Applying this to z = n, we obtain n ≤ w (since n ∈ Z), so that n ≤ w < w + 1. This contradicts n ≥ w + 1. This
contradiction shows that our assumption (that n ∈ Z) was wrong. Hence, we have n /∈ Z. Combining n ∈ N with n /∈ Z, we

obtain n ∈ N \ Z. Hence, (13.40.5) yields f?n (x) = 0.
Now, forget that we fixed n. We thus have shown that every n ≥ w + 1 satisfies f?n (x) = 0. Hence, there exists an N ∈ N

such that every n ≥ N satisfies f?n (x) = 0 (namely, N = w + 1).
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Every q ∈ Q satisfies

(
(rq)

?
(f)
)︸ ︷︷ ︸

=
∑
n≥0([Tn]rq)f

?n

(by (13.40.2))

(x) =

∑
n≥0

([Tn] rq) f
?n

 (x) =
∑
n≥0

([Tn] rq) f
?n (x)

=
∑
n≥0;
n<N︸︷︷︸

=
∑N−1
n=0

([Tn] rq) f
?n (x) +

∑
n≥0;
n≥N

([Tn] rq) f?n (x)︸ ︷︷ ︸
=0

(by (13.40.4))

=

N−1∑
n=0

([Tn] rq) f
?n (x) +

∑
n≥0;
n≥N

([Tn] rq) 0

︸ ︷︷ ︸
=0

=

N−1∑
n=0

([Tn] rq) f
?n (x) .(13.40.6)

For each n ∈ N, there exists a finite subset Qn of Q such that

(13.40.7) all q ∈ Q \Qn satisfy [Tn] rq = 0

(by (13.40.1)). Consider this Qn.
Let Q′ be the subset Q0∪Q1∪· · ·∪QN−1 of Q. Then, Q′ is the union of the N finite sets Q0, Q1, . . . , QN−1.

Hence, Q′ itself is a finite set. Thus, all but finitely many q ∈ Q satisfy q ∈ Q \Q′. Notice that the set Q is
the union of its two disjoint subsets Q′ and Q \Q′ (since Q′ is a subset of Q).

Moreover, if n ∈ {0, 1, . . . , N − 1}, then

(13.40.8) every q ∈ Q \Q′ satisfies [Tn] rq = 0

494. Hence, every n ∈ {0, 1, . . . , N − 1} satisfies

[Tn] s︸︷︷︸
=
∑
q∈Q rq

= [Tn]

∑
q∈Q

rq

 =
∑
q∈Q

[Tn] rq =
∑
q∈Q′

[Tn] rq +
∑

q∈Q\Q′
[Tn] rq︸ ︷︷ ︸

=0
(by (13.40.8))

(since the set Q is the union of its two disjoint subsets Q′ and Q \Q′)

=
∑
q∈Q′

[Tn] rq +
∑

q∈Q\Q′
0

︸ ︷︷ ︸
=0

=
∑
q∈Q′

[Tn] rq.(13.40.9)

Now, each q ∈ Q \Q′ satisfies

(
(rq)

?
(f)
)

(x) =

N−1∑
n=0

([Tn] rq)︸ ︷︷ ︸
=0

(by (13.40.8))

f?n (x) (by (13.40.6))

=

N−1∑
n=0

0f?n (x) = 0.(13.40.10)

494Proof of (13.40.8): Let n ∈ {0, 1, . . . , N − 1}. Let q ∈ Q \Q′.
From n ∈ {0, 1, . . . , N − 1}, we obtain Qn ⊂ Q0 ∪ Q1 ∪ · · · ∪ QN−1 = Q′ (since Q′ = Q0 ∪ Q1 ∪ · · · ∪ QN−1). Hence,

Q \ Qn︸︷︷︸
⊂Q′

⊃ Q \Q′, so that Q \Q′ ⊂ Q \Qn. Hence, q ∈ Q \Q′ ⊂ Q \Qn. Therefore, (13.40.7) yields [Tn] rq = 0. This proves

(13.40.8).
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Hence, all but finitely many q ∈ Q satisfy
(
(rq)

?
(f)
)

(x) = 0 (since all but finitely many q ∈ Q satisfy
q ∈ Q \Q′). In other words,

(13.40.11) the family
((

(rq)
?

(f)
)

(x)
)
q∈Q ∈ A

Q is finitely supported.

Recall again that the set Q is the union of its two disjoint subsets Q′ and Q \Q′. Hence,∑
q∈Q

(
(rq)

?
(f)
)

(x) =
∑
q∈Q′

(
(rq)

?
(f)
)

(x)︸ ︷︷ ︸
=
∑N−1
n=0 ([Tn]rq)f

?n(x)
(by (13.40.6))

+
∑

q∈Q\Q′

(
(rq)

?
(f)
)

(x)︸ ︷︷ ︸
=0

(by (13.40.10))

=
∑
q∈Q′

N−1∑
n=0︸ ︷︷ ︸

=
∑N−1
n=0

∑
q∈Q′

(here, we are interchanging
two finite sums)

([Tn] rq) f
?n (x) +

∑
q∈Q\Q′

0

︸ ︷︷ ︸
=0

=

N−1∑
n=0

∑
q∈Q′

([Tn] rq) f
?n (x) .(13.40.12)

On the other hand, recall that s =
∑
n≥0 ([Tn] s) · Tn. Therefore,

s? (f) =
∑
n≥0

([Tn] s) f?n (by the definition of s? (f)) .

Applying both sides of this equality to x, we obtain

(s? (f)) (x) =

∑
n≥0

([Tn] s) f?n

 (x) =
∑
n≥0

([Tn] s) f?n (x)

=
∑
n≥0;
n<N︸︷︷︸

=
∑N−1
n=0

([Tn] s) f?n (x) +
∑
n≥0;
n≥N

([Tn] s) f?n (x)︸ ︷︷ ︸
=0

(by (13.40.4))

=

N−1∑
n=0

([Tn] s)︸ ︷︷ ︸
=
∑
q∈Q′ [T

n]rq
(by (13.40.9))

f?n (x) +
∑
n≥0;
n≥N

([Tn] s) 0

︸ ︷︷ ︸
=0

=

N−1∑
n=0

∑
q∈Q′

([Tn] rq)

 f?n (x) =

N−1∑
n=0

∑
q∈Q′

([Tn] rq) f
?n (x)

=
∑
q∈Q

(
(rq)

?
(f)
)

(x) (by (13.40.12)) .(13.40.13)

Now, forget that we fixed x. We thus have shown that each x ∈ C satisfies (13.40.11) and (13.40.13).
In particular, for each x ∈ C, the family

((
(rq)

?
(f)
)

(x)
)
q∈Q ∈ AQ is finitely supported (since each

x ∈ C satisfies (13.40.11)). In other words, the family
(
(rq)

?
(f)
)
q∈Q ∈ (Hom (C,A))

Q
is pointwise finitely

supported. Hence, the sum
∑
q∈Q (rq)

?
(f) is well-defined.

Furthermore, (13.40.13) shows that each x ∈ C satisfies

(s? (f)) (x) =
∑
q∈Q

(
(rq)

?
(f)
)

(x) =

∑
q∈Q

(rq)
?

(f)

 (x) .

In other words, we have s? (f) =
∑
q∈Q (rq)

?
(f). Since s =

∑
q∈Q rq, this rewrites as

(∑
q∈Q rq

)?
(f) =∑

q∈Q (rq)
?

(f). This completes the proof of Fact B.7.]
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Proof of Proposition 1.7.11. (a) Let f ∈ n (C,A) and k ∈ N. The power series T k ∈ k [[T ]] can be written
in the form T k =

∑
n≥0 δn,kT

n (since all addends in the sum
∑
n≥0 δn,kT

n are zero except for the addend

for n = k). Hence, the definition of
(
T k
)?

(f) yields(
T k
)?

(f) =
∑
n≥0

δn,kf
?n = f?k

(since all addends in the sum
∑
n≥0 δn,kf

?n are zero except for the addend for n = k). This proves Propo-

sition 1.7.11(a).
(b) We are going to prove the formulas (1.7.2), (1.7.4), (1.7.3), (1.7.5), and (1.7.6) in this order.
[Proof of (1.7.2): Let f ∈ n (C,A) and u, v ∈ k [[T ]]. We must prove the equality (1.7.2).
Write the power series u in the form u =

∑
n≥0 unT

n with (un)n≥0 ∈ kN. Thus, u? (f) =
∑
n≥0 unf

?n

(by the definition of u? (f)).
Write the power series v in the form v =

∑
n≥0 vnT

n with (vn)n≥0 ∈ kN. Thus, v? (f) =
∑
n≥0 vnf

?n (by

the definition of v? (f)).

Fact B.2 (applied to (λn)n∈N = (un)n∈N) shows that the family (unf
?n)n∈N ∈ (Hom (C,A))

N
is pointwise

finitely supported, and that its sum
∑
n≥0 unf

?n belongs to Hom (C,A).

Fact B.2 (applied to (λn)n∈N = (vn)n∈N) shows that the family (vnf
?n)n∈N ∈ (Hom (C,A))

N
is pointwise

finitely supported, and that its sum
∑
n≥0 vnf

?n belongs to Hom (C,A).

Proposition 1.7.5 (applied to Q = N, (fq)q∈Q = (unf
?n)n∈N and (gq)q∈Q = (vnf

?n)n∈N) now shows that

the family (unf
?n + vnf

?n)n∈N ∈ (Hom (C,A))
N

is also pointwise finitely supported, and satisfies∑
n∈N

unf
?n +

∑
n∈N

vnf
?n =

∑
n∈N

(unf
?n + vnf

?n) .

Since
∑
n∈N =

∑
n≥0, this rewrites as

(13.40.14)
∑
n≥0

unf
?n +

∑
n≥0

vnf
?n =

∑
n≥0

(unf
?n + vnf

?n)︸ ︷︷ ︸
=(un+vn)f?n

=
∑
n≥0

(un + vn) f?n.

Adding the equalities u =
∑
n≥0 unT

n and v =
∑
n≥0 vnT

n, we obtain

u+ v =
∑
n≥0

unT
n +

∑
n≥0

vnT
n =

∑
n≥0

(un + vn)Tn.

Hence, the definition of (u+ v)
?

(f) yields

(u+ v)
?

(f) =
∑
n≥0

(un + vn) f?n =
∑
n≥0

unf
?n

︸ ︷︷ ︸
=u?(f)

+
∑
n≥0

vnf
?n

︸ ︷︷ ︸
=v?(f)

(by (13.40.14))

= u? (f) + v? (f) .

This proves (1.7.2).]
[Proof of (1.7.4): This is similar to the proof of (1.7.2), but this time we need to apply Fact B.3 (instead

of applying Proposition 1.7.5). The straightforward details are left to the reader.]
[Proof of (1.7.3): Let f ∈ n (C,A) and u, v ∈ k [[T ]]. We must prove the equality (1.7.3).
Write the power series u in the form u =

∑
n≥0 unT

n with (un)n≥0 ∈ kN. Thus, u? (f) =
∑
n≥0 unf

?n

(by the definition of u? (f)).
Write the power series v in the form v =

∑
n≥0 vnT

n with (vn)n≥0 ∈ kN. Thus, v? (f) =
∑
n≥0 vnf

?n (by

the definition of v? (f)).

Fact B.2 (applied to (λn)n∈N = (un)n∈N) shows that the family (unf
?n)n∈N ∈ (Hom (C,A))

N
is pointwise

finitely supported, and that its sum
∑
n≥0 unf

?n belongs to Hom (C,A). Renaming the index n as q in this

statement, we obtain the following: The family (uqf
?q)q∈N ∈ (Hom (C,A))

N
is pointwise finitely supported,

and its sum
∑
q≥0 uqf

?q belongs to Hom (C,A).

Similarly, the family (vrf
?r)r∈N ∈ (Hom (C,A))

N
is pointwise finitely supported, and its sum

∑
r≥0 vrf

?r

belongs to Hom (C,A).
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Proposition 1.7.6 (applied to Q = N, R = N, (fq)q∈Q = (uqf
?q)q∈N and (gr)r∈R = (vrf

?r)r∈N) thus shows

that the family ((uqf
?q) ? (vrf

?r))(q,r)∈N×N ∈ (Hom (C,A))
N×N

is pointwise finitely supported, and satisfies

∑
(q,r)∈N×N

((uqf
?q) ? (vrf

?r)) =

∑
q∈N

uqf
?q

 ?

(∑
r∈N

vrf
?r

)
.

Hence, ∑
q∈N

uqf
?q

 ?

(∑
r∈N

vrf
?r

)
=

∑
(q,r)∈N×N

((uqf
?q) ? (vrf

?r))︸ ︷︷ ︸
=uqvrf

?q?f?r

=uqvrf
?(q+r)

=
∑

(q,r)∈N×N

uqvrf
?(q+r).(13.40.15)

Multiplying the equalities

u =
∑
n≥0

unT
n =

∑
n∈N

unT
n =

∑
q∈N

uqT
q (here, we have renamed the summation index n as q)

and

v =
∑
n≥0

vnT
n =

∑
n∈N

vnT
n =

∑
r∈N

vrT
r (here, we have renamed the summation index n as r) ,

we obtain

uv =

∑
q∈N

uqT
q

(∑
r∈N

vrT
r

)
=

∑
q∈N

∑
r∈N︸ ︷︷ ︸

=
∑

(q,r)∈N×N

uqT
qvrT

r︸ ︷︷ ︸
=uqvrT q+r

=
∑

(q,r)∈N×N

uqvrT
q+r.(13.40.16)

Thus, in particular, the sum
∑

(q,r)∈N×N uqvrT
q+r converges in k [[T ]]. Hence, Fact B.7 (applied to N × N

and (uqvrT
q+r)(q,r)∈N×N instead of Q and (rq)q∈Q) shows that the family

(
(uqvrT

q+r)
?

(f)
)

(q,r)∈N×N ∈
(Hom (C,A))

N×N
is pointwise finitely supported and satisfies

(13.40.17)

 ∑
(q,r)∈N×N

uqvrT
q+r

?

(f) =
∑

(q,r)∈N×N

(
uqvrT

q+r
)?

(f) .

In light of (13.40.16), the equality (13.40.17) rewrites as

(uv)
?

(f) =
∑

(q,r)∈N×N

(
uqvrT

q+r
)?

(f)︸ ︷︷ ︸
=uqvr(T q+r)

?
(f)

(by (1.7.4) (applied

to uqvr and T q+r instead of λ and u))

=
∑

(q,r)∈N×N

uqvr
(
T q+r

)?
(f)︸ ︷︷ ︸

=f?(q+r)

(by (1.7.1) (applied to k=q+r))

=
∑

(q,r)∈N×N

uqvrf
?(q+r) =

∑
q∈N

uqf
?q

 ?

(∑
r∈N

vrf
?r

)
(by (13.40.15)) .
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Comparing this with

u? (f)︸ ︷︷ ︸
=
∑
n≥0 unf

?n

? v? (f)︸ ︷︷ ︸
=
∑
n≥0 vnf

?n

=


∑
n≥0︸︷︷︸

=
∑
n∈N

unf
?n

 ?


∑
n≥0︸︷︷︸

=
∑
n∈N

vnf
?n

 =

(∑
n∈N

unf
?n

)
︸ ︷︷ ︸

=
∑
q∈N uqf

?q

?

(∑
n∈N

vnf
?n

)
︸ ︷︷ ︸

=
∑
r∈N vrf

?r

=

∑
q∈N

uqf
?q

 ?

(∑
r∈N

vrf
?r

)
,

we obtain (uv)
?

(f) = u? (f) ? v? (f). This proves (1.7.3).]
[Proof of (1.7.5): Let f ∈ n (C,A). Applying (1.7.4) to u = 0 and λ = 0, we find (0 · 0)

?
(f) = 0·0? (f) = 0.

In other words, 0? (f) = 0. This proves (1.7.5).]
[Proof of (1.7.6): Let f ∈ n (C,A). Applying (1.7.1) to k = 0, we find(

T 0
)?

(f) = f?0 = (the unity of the k-algebra (Hom (C,A) , ?)) = uAεC

(since the unity of the k-algebra (Hom (C,A) , ?) is uAεC). In view of T 0 = 1, this rewrites as 1? (f) = uAεC .
This proves (1.7.6).]

We have now proven all the equalities (1.7.2), (1.7.3), (1.7.4), (1.7.5) and (1.7.6). Thus, Proposi-
tion 1.7.11(b) is proven.

(c) Let f, g ∈ n (C,A) be such that f ? g = g ? f . We must prove that f + g ∈ n (C,A).
From f ? g = g ? f , we conclude that the elements f and g of the k-algebra (Hom (C,A) , ?) commute.
Let G be the k-subalgebra of (Hom (C,A) , ?) generated by the two elements f and g. Thus, the k-algebra

G is generated by commuting elements (because the elements f and g of the k-algebra (Hom (C,A) , ?)
commute), and therefore is commutative (since any k-algebra generated by commuting elements must be
commutative). Hence, the binomial formula holds in this k-algebra G. Thus, we have

(13.40.18) (f + g)
?n

=

n∑
i=0

(
n

i

)
f?i ? g?(n−i) for each n ∈ N

(since the multiplication in the k-algebra G is ?).
We have f ∈ n (C,A). In other words, f is a pointwise ?-nilpotent map in Hom (C,A) (since n (C,A)

is the set of all pointwise ?-nilpotent maps in Hom (C,A)). Thus, the family (f?n)n∈N is pointwise finitely
supported. Renaming the index n as q in this statement, we thus conclude that the family (f?q)q∈N is

pointwise finitely supported. Similarly, the family (g?r)r∈N is pointwise finitely supported.
Thus, Proposition 1.7.6 (applied to Q = N, R = N, (fq)q∈Q = (f?q)q∈N and (gr)r∈R = (g?r)r∈N) shows

that the family (f?q ? g?r)(q,r)∈N×N ∈ (Hom (C,A))
N×N

is pointwise finitely supported, and that it satisfies

∑
(q,r)∈N×N

(f?q ? g?r) =

∑
q∈N

f?q

 ?

(∑
r∈N

g?r

)
.

In particular, the family (f?q ? g?r)(q,r)∈N×N ∈ (Hom (C,A))
N×N

is pointwise finitely supported. In other

words, for each x ∈ C,

(13.40.19) the family ((f?q ? g?r) (x))(q,r)∈N×N ∈ A
N×N is finitely supported.

Let x ∈ C. Then, all but finitely many (q, r) ∈ N × N satisfy (f?q ? g?r) (x) = 0 (because of (13.40.19)).
In other words, there exists a finite subset K of N× N such that

(13.40.20) each (q, r) ∈ (N× N) \K satisfies (f?q ? g?r) (x) = 0.

Consider this K.
Let Q = {u+ v | (u, v) ∈ K}. Thus, Q is a finite set (since K is a finite set). Thus, all but finitely many

n ∈ N satisfy n ∈ N \Q.
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But every n ∈ N \ Q satisfies (f + g)
?n

(x) = 0 495. Hence, all but finitely many n ∈ N satisfy
(f + g)

?n
(x) = 0 (since all but finitely many n ∈ N satisfy n ∈ N \ Q). In other words, the family(

(f + g)
?n

(x)
)
n∈N ∈ A

N is finitely supported.

Now, forget that we fixed x. We thus have shown that for each x ∈ C, the family
(
(f + g)

?n
(x)
)
n∈N ∈

AN is finitely supported. In other words, the family
(
(f + g)

?n)
n∈N ∈ (Hom (C,A))

N
is pointwise finitely

supported. In other words, the map f + g is pointwise ?-nilpotent (by the definition of “pointwise ?-
nilpotent”). In other words, f + g ∈ n (C,A) (since n (C,A) is the set of all pointwise ?-nilpotent maps in
Hom (C,A)). This proves Proposition 1.7.11(c).

(d) Let λ ∈ k and f ∈ n (C,A). We must prove that λf ∈ n (C,A).
We have f ∈ n (C,A). In other words, f is a pointwise ?-nilpotent map in Hom (C,A). Thus, the family

(f?n)n∈N is pointwise finitely supported. Hence, Proposition 1.7.7 (applied to Q = N, (fq)q∈Q = (f?n)n∈N

and (λq)q∈Q = (λn)n∈N) shows that the family (λnf?n)n∈N ∈ (Hom (C,A))
N

is pointwise finitely supported.

In other words, the family
(
(λf)

?n)
n∈N ∈ (Hom (C,A))

N
is pointwise finitely supported (since (λf)

?n
=

λnf?n for each n ∈ N). In other words, the map λf is pointwise ?-nilpotent. In other words, λf ∈ n (C,A).
This proves Proposition 1.7.11(d).

(e) Let f ∈ n (C,A) and g ∈ Hom (C,A) be such that f ? g = g ? f . We must prove that f ? g ∈ n (C,A).
From f ? g = g ? f , we conclude that the elements f and g of the k-algebra (Hom (C,A) , ?) commute.
Let G be the k-subalgebra of (Hom (C,A) , ?) generated by the two elements f and g. Thus, the k-algebra

G is generated by commuting elements (because the elements f and g of the k-algebra (Hom (C,A) , ?)
commute), and therefore is commutative (since any k-algebra generated by commuting elements must be
commutative). Hence, the usual laws for exponentiation hold in this k-algebra G. In particular, we have

(13.40.22) (f ? g)
?n

= f?n ? g?n for each n ∈ N

(since the multiplication in the k-algebra G is the convolution ?).
We have f ∈ n (C,A). In other words, f is a pointwise ?-nilpotent map in Hom (C,A). Thus, the family

(f?n)n∈N is pointwise finitely supported.
Thus, Proposition 1.7.8 (applied to Q = N, (fq)q∈Q = (f?n)n∈N and (gq)q∈Q = (g?n)n∈N) shows that

the family (f?n ? g?n)n∈N ∈ (Hom (C,A))
N

is pointwise finitely supported. In other words, the family(
(f ? g)

?n)
n∈N ∈ (Hom (C,A))

N
is pointwise finitely supported (because of (13.40.22)). In other words, the

map f ? g is pointwise ?-nilpotent. In other words, f ? g ∈ n (C,A). This proves Proposition 1.7.11(e).
(f) Let v ∈ k [[T ]] be a power series whose constant term is 0. Let f ∈ n (C,A). We must show that

v? (f) ∈ n (C,A).
We know that the constant term of v is 0. Thus, the power series v is divisible by T in the ring k [[T ]]. In

other words, there exists a power series u ∈ k [[T ]] such that v = Tu. Consider this u. Define g ∈ Hom (C,A)
by g = u? (f).

495Proof. Let n ∈ N \Q. We must show that (f + g)?n (x) = 0.
We have n ∈ N \Q. In other words, n ∈ N and n /∈ Q.

Let i ∈ {0, 1, . . . , n} be arbitrary. We shall show that
(
f?i ? g?(n−i)

)
(x) = 0 first.

From i ∈ {0, 1, . . . , n}, we obtain i ∈ N and n− i ∈ N. Thus, (i, n− i) ∈ N× N.
If we had (i, n− i) ∈ K, then we would have

i+ (n− i) ∈ {u+ v | (u, v) ∈ K} = Q (since Q = {u+ v | (u, v) ∈ K}) ,

which would contradict i+ (n− i) = n /∈ Q. Thus, we cannot have (i, n− i) ∈ K. In other words, we have (i, n− i) /∈ K.
Combining (i, n− i) ∈ N × N with (i, n− i) /∈ K, we obtain (i, n− i) ∈ (N× N) \ K. Hence, (13.40.20) (applied to

(q, r) = (i, n− i)) yields
(
f?i ? g?(n−i)

)
(x) = 0.

Now, forget that we fixed i. We thus have shown that

(13.40.21)
(
f?i ? g?(n−i)

)
(x) = 0 for each i ∈ {0, 1, . . . , n} .

Now, applying both sides of the equality (13.40.18) to x, we obtain

(f + g)?n (x) =

(
n∑
i=0

(n
i

)
f?i ? g?(n−i)

)
(x) =

n∑
i=0

(n
i

)(
f?i ? g?(n−i)

)
(x)︸ ︷︷ ︸

=0
(by (13.40.21))

=
n∑
i=0

(n
i

)
0 = 0.

Qed.
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Applying (1.7.1) to k = 1, we find
(
T 1
)?

(f) = f?1 = f . Since T 1 = T , this rewrites as T ? (f) = f .
From v = Tu, we obtain

v? (f) = (Tu)
?

(f) = T ? (f)︸ ︷︷ ︸
=f

? u? (f)︸ ︷︷ ︸
=g

(by (1.7.3) (applied to T and u instead of u and v))

= f ? g.(13.40.23)

On the other hand, from v = Tu = u · T , we obtain

v? (f) = (u · T )
?

(f) = u? (f)︸ ︷︷ ︸
=g

? T ? (f)︸ ︷︷ ︸
=f

(by (1.7.3) (applied to T instead of v))

= g ? f.

Comparing this with (13.40.23), we obtain f ? g = g ? f . Hence, Proposition 1.7.11(e) yields f ? g ∈ n (C,A).
In light of (13.40.23), this rewrites as v? (f) ∈ n (C,A). This proves Proposition 1.7.11(f).

(g) Let us first prove the following fact:

Fact G.1: Let v ∈ k [[T ]] be any power series. Let f ∈ n (C,A). Then,

(13.40.24) (vn)
?

(f) = (v? (f))
?n

for each n ∈ N.

[Proof of Fact G.1: We shall prove (13.40.24) by induction over n:

Induction base: We have

 v0︸︷︷︸
=1

?

(f) = 1? (f) = uAεC (by (1.7.6)). Comparing this with

(v? (f))
?0

= (the unity of the k-algebra (Hom (C,A) , ?)) = uAεC ,

we obtain
(
v0
)?

(f) = (v? (f))
?0

. In other words, (13.40.24) holds for n = 0. This completes the induction
base.

Induction step: Let N ∈ N. Assume that (13.40.24) holds for n = N . We must prove that (13.40.24)
holds for n = N + 1.

We have assumed that (13.40.24) holds for n = N . In other words, we have
(
vN
)?

(f) = (v? (f))
?N

.
Now, vN+1︸ ︷︷ ︸

=vNv

?

(f) =
(
vNv

)?
(f) =

(
vN
)?

(f)︸ ︷︷ ︸
=(v?(f))?N

?v? (f)
(
by (1.7.3) (applied to u = vN )

)
= (v? (f))

?N
? v? (f) = (v? (f))

?(N+1)
.

In other words, (13.40.24) holds for n = N + 1. This completes the induction step. Thus, the induction
proof of (13.40.24) is complete. In other words, Fact G.1 is proven.]

Now, let u, v ∈ k [[T ]] be two power series such that the constant term of v is 0. Let f ∈ n (C,A) be
arbitrary. We must prove (1.7.7).

Write the power series u in the form u =
∑
n≥0 unT

n with (un)n≥0 ∈ kN. Thus,

(13.40.25) u? (v? (f)) =
∑
n≥0

un (v? (f))
?n

(by the definition of u? (v? (f))).
But the definition of the composition u [v] yields u [v] =

∑
n∈N unv

n (since u =
∑
n≥0 unT

n =
∑
n∈N unT

n).

In particular, the sum
∑
n∈N unv

n converges in k [[T ]]. Hence, Fact B.7 (applied to Q = N and (rq)q∈Q =

(unv
n)n∈N) shows that the family

(
(unv

n)
?

(f)
)
n∈N ∈ (Hom (C,A))

N
is pointwise finitely supported and

satisfies

(13.40.26)

(∑
n∈N

unv
n

)?
(f) =

∑
n∈N

(unv
n)
?

(f) .



420 DARIJ GRINBERG AND VICTOR REINER

Now, recall that u [v] =
∑
n∈N unv

n. Hence,

(u [v])
?

(f) =

(∑
n∈N

unv
n

)?
(f) =

∑
n∈N

(unv
n)
?

(f)︸ ︷︷ ︸
=un(vn)?(f)

(by (1.7.4) (applied
to un and vn instead of λ and u))

(by (13.40.26))

=
∑
n∈N

un (vn)
?

(f)︸ ︷︷ ︸
=(v?(f))?n

(by Fact G.1)

=
∑
n∈N︸︷︷︸

=
∑
n≥0

un (v? (f))
?n

=
∑
n≥0

un (v? (f))
?n

= u? (v? (f))

(by (13.40.25)). Thus, (1.7.7) is proven. This proves Proposition 1.7.11(g).
(h) Let us first prove a simple fact:

Fact H.1: Let C be a graded k-coalgebra. Let f ∈ Hom (C,A) be such that f (C0) = 0.
Then, for each i ∈ N, we have

(13.40.27) f?i (Cn) = 0 for every n ∈ N satisfying i > n.

[Proof of Fact H.1: We shall prove (13.40.27) by induction over i:
Induction base: There exists no n ∈ N satisfying 0 > n (since each n ∈ N satisfies n ≥ 0). Hence,

(13.40.27) is vacuously true for i = 0. This completes the induction base.
Induction step: Let p ∈ N. Assume that (13.40.27) holds for i = p. We must prove that (13.40.27) holds

for i = p+ 1.
We have assumed that (13.40.27) holds for i = p. In other words, we have

(13.40.28) f?p (Cn) = 0 for every n ∈ N satisfying p > n.

Now, let n ∈ N be such that p+ 1 > n.
It is easy to see that

(13.40.29) (f ⊗ f?p) (Ci ⊗ Cj) = 0

for every (i, j) ∈ N2 satisfying i+ j = n 496.
Recall that the k-coalgebra C is graded. Thus, its comultiplication ∆ is graded. In other words, ∆ (Ck) ⊂

(C ⊗ C)k for each k ∈ N. Applying this to k = n, we obtain

∆ (Cn) ⊂ (C ⊗ C)n =
⊕

(i,j)∈N2;
i+j=n

Ci ⊗ Cj (by the definition of the grading on C ⊗ C)

=
∑

(i,j)∈N2;
i+j=n

Ci ⊗ Cj (since direct sums are sums) .

496Proof of (13.40.29): Let (i, j) ∈ N2 be such that i+ j = n. We must prove (13.40.29).
From (i, j) ∈ N2, we obtain i ∈ N and j ∈ N. If i = 0, then

(f ⊗ f?p) (Ci ⊗ Cj) = f

 Ci︸︷︷︸
=C0

(since i=0)

⊗ f?p (Cj) = f (C0)︸ ︷︷ ︸
=0

⊗f?p (Cj) = 0⊗ f?p (Cj) = 0.

Hence, if i = 0, then (13.40.29) is proven. Thus, for the rest of the proof of (13.40.29), we can WLOG assume that we don’t

have i = 0. Assume this.
We have i 6= 0 (since we don’t have i = 0), and thus i ≥ 1 (since i ∈ N). But i+ j = n, so that j = n− i︸︷︷︸

≥1

≤ n− 1. But

p+ 1 > n; thus, p > n− 1 ≥ j (since j ≤ n− 1). Hence, (13.40.28) (applied to j instead of n) shows that f?p (Cj) = 0. Now,

(f ⊗ f?p) (Ci ⊗ Cj) = f (Ci)⊗ f?p (Cj)︸ ︷︷ ︸
=0

= f (Ci)⊗ 0 = 0.

This proves (13.40.29).
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Applying the map f ⊗ f?p to both sides of this relation, we obtain

(f ⊗ f?p) (∆ (Cn)) ⊂ (f ⊗ f?p)

 ∑
(i,j)∈N2;
i+j=n

Ci ⊗ Cj

 =
∑

(i,j)∈N2;
i+j=n

(f ⊗ f?p) (Ci ⊗ Cj)︸ ︷︷ ︸
=0

(by (13.40.29))

=
∑

(i,j)∈N2;
i+j=n

0 = 0.(13.40.30)

But the definition of convolution yields f ? f?p = m ◦ (f ⊗ f?p) ◦∆ (where m denotes the multiplication
map A⊗A→ A). We have

f?(p+1) = f ? f?p = m ◦ (f ⊗ f?p) ◦∆

and thus

f?(p+1)︸ ︷︷ ︸
=m◦(f⊗f?p)◦∆

(Cn) = (m ◦ (f ⊗ f?p) ◦∆) (Cn) = m

(f ⊗ f?p) (∆ (Cn))︸ ︷︷ ︸
⊂0

(by (13.40.30))


⊂ m (0) = 0.

In other words, f?(p+1) (Cn) = 0.
Now, forget that we fixed n. We thus have proven that

f?(p+1) (Cn) = 0 for every n ∈ N satisfying p+ 1 > n.

In other words, (13.40.27) holds for i = p+ 1. This completes the induction step. Thus, (13.40.27) is proven
by induction. Hence, Fact H.1 is proven.]

Now, let us actually prove Proposition 1.7.11(h).
Assume that C is a graded k-coalgebra. Assume that f ∈ Hom (C,A) satisfies f (C0) = 0. We must show

that f ∈ n (C,A).
Let x ∈ C. Thus, x is a sum of finitely many homogeneous elements of C (since C is graded). In other

words, there exist some k ∈ N and some homogeneous elements x1, x2, . . . , xk ∈ C satisfying x =
∑k
g=1 xg.

Consider this k and these x1, x2, . . . , xk.
For each g ∈ {1, 2, . . . , k}, there exists some ng ∈ N satisfying xg ∈ Cng (since xg is a homogeneous

element of C). Consider this ng. The set {n1, n2, . . . , nk} is a finite subset of N, and thus has an upper
bound (since any finite subset of N has an upper bound). In other words, there exists some N ∈ N such that

(13.40.31) each n ∈ {n1, n2, . . . , nk} satisfies n ≤ N.

Consider this N .
Let Q = {0, 1, . . . , N}. Then, Q is a finite subset of N. Thus, all but finitely many n ∈ N satisfy n ∈ N\Q.
Now, let n ∈ N \Q be arbitrary. Thus, n ∈ N \Q = {N + 1, N + 2, N + 3, . . .} (since Q = {0, 1, . . . , N}).

Hence, n > N .
Thus, each g ∈ {1, 2, . . . , k} satisfies

(13.40.32) f?n (xg) = 0
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497. Applying the map f?n to the equality x =
∑k
g=1 xg, we obtain

f?n (x) = f?n

(
k∑
g=1

xg

)
=

k∑
g=1

f?n (xg)︸ ︷︷ ︸
=0

(by (13.40.32))

=

k∑
g=1

0 = 0.

Now, forget that we fixed n. We thus have shown that each n ∈ N \ Q satisfies f?n (x) = 0. Hence, all
but finitely many n ∈ N satisfy f?n (x) = 0 (since all but finitely many n ∈ N satisfy n ∈ N \ Q). In other
words, the family (f?n (x))n∈N ∈ AN is finitely supported.

Now, forget that we fixed x. We thus have shown that for each x ∈ C, the family (f?n (x))n∈N ∈ AN

is finitely supported. In other words, the family (f?n)n∈N ∈ (Hom (C,A))
N

is pointwise finitely supported.
In other words, the map f is pointwise ?-nilpotent. In other words, f ∈ n (C,A). This proves Proposi-
tion 1.7.11(h).

(i) Before we prove this, let us state a general fact:

Fact H.7: Let V and W be two k-modules. Let ϕ : V →W be a k-linear map. Let (vq)q∈Q ∈
V Q be a finitely supported family of elements of V . Then, the family (ϕ (vq))q∈Q ∈ W

Q is

also finitely supported, and satisfies
∑
q∈Q ϕ (vq) = ϕ

(∑
q∈Q vq

)
.

[Proof of Fact H.7: Fact H.7 is a basic property of linear maps (essentially, it says that any k-linear map
preserves sums in which all but finitely many addends are zero), and we omit its simple proof.]

Now, let us start proving Proposition 1.7.11(i).
Let B be any k-algebra. Let s : A→ B be any k-algebra homomorphism.
Proposition 1.4.3 (applied to A′ = B, C ′ = C, α = s and γ = idC) shows that the map

Hom (C,A)→ Hom (C,B) , f 7→ s ◦ f ◦ idC

is a k-algebra homomorphism from the k-algebra (Hom (C,A) , ?) to the k-algebra (Hom (C,B) , ?). Since
each f ∈ Hom (C,A) satisfies s ◦ f ◦ idC = s ◦ f , this rewrites as follows: The map

Hom (C,A)→ Hom (C,B) , f 7→ s ◦ f
is a k-algebra homomorphism from the k-algebra (Hom (C,A) , ?) to the k-algebra (Hom (C,B) , ?). Let us
denote this k-algebra homomorphism by Φ.

Now, let u ∈ k [[T ]] and f ∈ n (C,A). We must show that

(13.40.33) s ◦ f ∈ n (C,B) and u? (s ◦ f) = s ◦ (u? (f)) .

Write the power series u in the form u =
∑
n≥0 unT

n with (un)n≥0 ∈ kN. Thus, u? (f) =
∑
n≥0 unf

?n

(by the definition of u? (f)).
The definition of Φ yields Φ (f) = s ◦ f . Each n ∈ N satisfies

s ◦ f?n = Φ (f?n) (since Φ (f?n) = s ◦ f?n (by the definition of Φ))

=

Φ (f)︸ ︷︷ ︸
=s◦f


?n

(since Φ is a k-algebra homomorphism)

= (s ◦ f)
?n
.(13.40.34)

Thus, each n ∈ N satisfies

(13.40.35) s (f?n (x)) = (s ◦ f?n)︸ ︷︷ ︸
=(s◦f)?n

(by (13.40.34))

(x) = (s ◦ f)
?n

(x) .

497Proof of (13.40.32): Let g ∈ {1, 2, . . . , k}. Then, ng ∈ {n1, n2, . . . , nk}. Hence, (13.40.31) (applied to n = ng) yields
ng ≤ N . Hence, N ≥ ng , so that n > N ≥ ng . Hence, (13.40.27) (applied to n and ng instead of i and n) yields f?n

(
Cng

)
= 0.

But xg ∈ Cng (by the definition of ng) and thus f?n

 xg︸︷︷︸
∈Cng

 ∈ f?n (Cng ) = 0. In other words, f?n (xg) = 0. This proves

(13.40.32).
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We have f ∈ n (C,A). In other words, f is a pointwise ?-nilpotent map in Hom (C,A). Thus, the family
(f?n)n∈N is pointwise finitely supported. Hence, Proposition 1.7.7 (applied to Q = N, (fq)q∈Q = (f?n)n∈N

and (λq)q∈Q = (un)n∈N) shows that the family (unf
?n)n∈N ∈ (Hom (C,A))

N
is pointwise finitely supported.

In other words, for each x ∈ C, the family ((unf
?n) (x))n∈N ∈ AN is finitely supported. In other words, for

each x ∈ C,

(13.40.36) the family (unf
?n (x))n∈N ∈ A

N is finitely supported

(since each n ∈ N satisfies (unf
?n) (x) = unf

?n (x)).
Also, recall that the family (f?n)n∈N is pointwise finitely supported. In other words, for each x ∈ C,

(13.40.37) the family (f?n (x))n∈N ∈ A
N is finitely supported.

Let x ∈ C. Then, (13.40.37) shows that the family (f?n (x))n∈N ∈ AN is finitely supported. Hence,
Fact H.7 (applied to V = A, W = B, ϕ = s, Q = N and (vq)q∈Q = (f?n (x))n∈N) shows that the family

(s (f?n (x)))n∈N ∈ BN is also finitely supported, and that it satisfies
∑
n∈N s (f?n (x)) = s

(∑
n∈N f

?n (x)
)
.

Thus, in particular, the family (s (f?n (x)))n∈N ∈ BN is finitely supported. Since each n ∈ N satisfies
(13.40.35), this rewrites as follows:

(13.40.38) The family
(
(s ◦ f)

?n
(x)
)
n∈N ∈ B

N is finitely supported.

From (13.40.36), we know that the family (unf
?n (x))n∈N ∈ AN is finitely supported. Hence, Fact

H.7 (applied to V = A, W = B, ϕ = s, Q = N and (vq)q∈Q = (unf
?n (x))n∈N) shows that the family

(s (unf
?n (x)))n∈N ∈ BN is also finitely supported, and that it satisfies

(13.40.39)
∑
n∈N

s (unf
?n (x)) = s

(∑
n∈N

unf
?n (x)

)
.

From (13.40.39), we obtain

s

(∑
n∈N

unf
?n (x)

)
=
∑
n∈N

s (unf
?n (x))︸ ︷︷ ︸

=uns(f
?n(x))

(since the map s is k-linear)

=
∑
n∈N

un s (f?n (x))︸ ︷︷ ︸
=(s◦f)?n(x)

(by (13.40.35))

=
∑
n∈N

un (s ◦ f)
?n

(x) .(13.40.40)

Now, forget that we fixed x. We thus have proven that each x ∈ C satisfies (13.40.40) and (13.40.38).
In particular, each x ∈ C satisfies (13.40.38). In other words, for each x ∈ C, the family

(
(s ◦ f)

?n
(x)
)
n∈N ∈

BN is finitely supported. In other words, the family
(
(s ◦ f)

?n)
n∈N ∈ (Hom (C,B))

N
is pointwise finitely

supported. In other words, the map s ◦ f : C → B is pointwise ?-nilpotent. In other words, s ◦ f ∈ n (C,B).
Hence, u? (s ◦ f) is well-defined.

Recall that u =
∑
n≥0 unT

n. Thus,

u? (s ◦ f) =
∑
n≥0︸︷︷︸

=
∑
n∈N

un (s ◦ f)
?n

=
∑
n∈N

un (s ◦ f)
?n
.

Hence, each x ∈ C satisfies

(u? (s ◦ f)) (x) =

(∑
n∈N

un (s ◦ f)
?n

)
(x) =

∑
n∈N

un (s ◦ f)
?n

(x) = s

(∑
n∈N

unf
?n (x)

)
(by (13.40.40))

= (s ◦ (u? (f))) (x)
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(since

(s ◦ (u? (f))) (x) = s

 (u? (f))︸ ︷︷ ︸
=
∑
n≥0 unf

?n

(x)

 = s


∑
n≥0

unf
?n

 (x)

︸ ︷︷ ︸
=
∑
n≥0 unf

?n(x)



= s


∑
n≥0︸︷︷︸

=
∑
n∈N

unf
?n (x)

 = s

(∑
n∈N

unf
?n (x)

)

). In other words, we have u? (s ◦ f) = s ◦ (u? (f)).
We have now proven that s ◦ f ∈ n (C,B) and u? (s ◦ f) = s ◦ (u? (f)). This proves (13.40.33). Hence,

Proposition 1.7.11(i) is proven.
(j) Let C be a connected graded k-bialgebra. Let F : C → A be a k-algebra homomorphism. We must

prove that F − uAεC ∈ n (C,A).
We have F (1C) = 1A (since F is a k-algebra homomorphism). But the axioms of a k-bialgebra yield

εC (1C) = 1.
The definition of the map uA yields uA (1) = 1 · 1A = 1A. Now,

(F − uAεC) (1C) = F (1C)︸ ︷︷ ︸
=1A

− (uAεC) (1C)︸ ︷︷ ︸
=uA(εC(1C))

= 1A − uA

εC (1C)︸ ︷︷ ︸
=1

 = 1A − uA (1)︸ ︷︷ ︸
=1A

= 1A − 1A = 0.

But Exercise 1.3.20(c) (applied to C instead of A) shows that C0 = k · 1C . Applying the map F − uAεC
to both sides of this relation, we obtain

(F − uAεC) (C0) = (F − uAεC) (k · 1C) = k · (F − uAεC) (1C)︸ ︷︷ ︸
=0

(since the map F − uAεC is k-linear)

= k · 0 = 0.

Hence, Proposition 1.7.11(h) (applied to f = F − uAεC) shows that F − uAεC ∈ n (C,A). Thus, Proposi-
tion 1.7.11(j) is proven. �

Thus, Proposition 1.7.11 is proven, so that Exercise 1.7.13 is solved.

13.41. Solution to Exercise 1.7.20. Solution to Exercise 1.7.20.

Proof of Proposition 1.7.15. Proposition 1.7.15 is a well-known fact that is often used in enumerative com-
binatorics (for computing generating functions). We shall give a purely algebraic proof (somewhat similar
to the one given in [138, Example 7.67]). Other proofs (some combinatorial, some analytic) can be found in
the literature.

The proof will rely on several simple facts about power series. Keep in mind that all of the following facts
assume that k is a commutative Q-algebra.
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First, we notice that

exp = exp︸︷︷︸
=
∑
n≥0

1

n!
Tn

−1 =
∑
n≥0

1

n!
Tn − 1 =

1

0!︸︷︷︸
=

1

1
=1

T 0︸︷︷︸
=1

+
∑
n≥1

1

n!
Tn − 1

(here, we have split off the addend for n = 0 from the sum)

= 1 +
∑
n≥1

1

n!
Tn − 1 =

∑
n≥1

1

n!
Tn.(13.41.1)

Hence, the power series exp has constant term 0. Hence, the power series log [exp] is well-defined.
Also,

(13.41.2) log = log (1 + T ) =
∑
n≥1

(−1)
n−1

n
Tn.

Hence, the power series log has constant term 0. Hence, the power series exp
[
log
]

is well-defined.
For each n ≥ 1, we have

(13.41.3)
(

the constant term of log
n
)

= 0

498.
Substituting log for T on both sides of the equality (13.41.1), we obtain

exp
[
log
]

=
∑
n≥1

1

n!
log

n
.

Hence,

(
the constant term of exp

[
log
])

=

the constant term of
∑
n≥1

1

n!
log

n


=
∑
n≥1

1

n!

(
the constant term of log

n
)

︸ ︷︷ ︸
=0

(by (13.41.3))

=
∑
n≥1

1

n!
0 = 0.

In other words, the power series exp
[
log
]

has constant term 0. A similar argument (with the roles of exp

and log switched) shows that the power series log [exp] has constant term 0.

Fact I.1: Let u ∈ k [[T ]] and v ∈ k [[T ]] be two power series having the same constant term.

Assume that
d

dT
u =

d

dT
v. Then, u = v.

[Proof of Fact I.1: Write the power series u in the form u =
∑
n≥0 unT

n with (un)n≥0 ∈ kN. Thus,
d

dT
u =

∑
n≥1 nunT

n−1 (by the definition of the derivative).

Write the power series v in the form v =
∑
n≥0 vnT

n with (vn)n≥0 ∈ kN. Thus,
d

dT
v =

∑
n≥1 nvnT

n−1

(by the definition of the derivative).
Now, ∑

n≥1

nunT
n−1 =

d

dT
u =

d

dT
v =

∑
n≥1

nvnT
n−1.

Comparing coefficients in front of Tn−1 on both sides of this equality, we obtain

(13.41.4) nun = nvn for each integer n ≥ 1.

498Proof of (13.41.3): Let n ≥ 1. The power series log is divisible by T (since it has constant term 0). Hence, the power

series log
n

is divisible by Tn. Thus, the power series log
n

is also divisible by T (since Tn is divisible by T (since n ≥ 1)), and

therefore has constant term 0. In other words, we have
(

the constant term of log
n
)

= 0. This proves (13.41.3).
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On the other hand, the power series u has constant term u0 (since u =
∑
n≥0 unT

n), and the power

series v has constant term v0 (similarly). Thus, the constant terms of u and v are u0 and v0, respectively.
Therefore, u0 = v0 (since the power series u and v have the same constant term).

Now, each n ∈ N satisfies un = vn
499. Hence,

∑
n≥0 un︸︷︷︸

=vn

Tn =
∑
n≥0 vnT

n. Thus, u =
∑
n≥0 unT

n =∑
n≥0 vnT

n = v. This proves Fact I.1.]

Fact I.2: Let w ∈ k [[T ]] be a power series having constant term 0. Then,

(13.41.5)
d

dT
(exp [w]) =

(
d

dT
w

)
· exp [w]

and

(13.41.6)
d

dT

(
log [w]

)
=

(
d

dT
w

)
· 1

1 + w
.

[Proof of Fact I.2: It is easy to see that each positive integer n satisfies

(13.41.7)
d

dT
(wn) = n

(
d

dT
w

)
wn−1.

(Indeed, (13.41.7) can be proven by a straightforward induction on n, using the Leibniz identity
d

dT
(uv) =(

d

dT
u

)
v + u

d

dT
v.)

Substituting w for T on both sides of the equality (13.41.1), we obtain

exp [w] =
∑
n≥1

1

n!
wn.

Applying the operator
d

dT
to this equality, we find

d

dT
exp [w] =

d

dT

∑
n≥1

1

n!
wn =

∑
n≥1

1

n!
· d

dT
(wn)︸ ︷︷ ︸

=n

 d

dT
w

wn−1

(by (13.41.7))

=
∑
n≥1

1

n!
· n︸ ︷︷ ︸

=
1

(n− 1)!

(
d

dT
w

)
wn−1

=
∑
n≥1

1

(n− 1)!

(
d

dT
w

)
wn−1 =

∑
n≥0

1

n!

(
d

dT
w

)
wn

(here, we have substituted n for n− 1 in the sum) .

Comparing this with(
d

dT
w

)
· exp [w]︸ ︷︷ ︸

=
∑
n≥0

1

n!
wn

(since exp=
∑
n≥0

1

n!
Tn)

=

(
d

dT
w

)
·
∑
n≥0

1

n!
wn =

∑
n≥0

1

n!

(
d

dT
w

)
wn,

we obtain
d

dT
(exp [w]) =

(
d

dT
w

)
· exp [w]. This proves (13.41.5).

499Proof. Let n ∈ N. We must prove that un = vn.
If n = 0, then this follows immediately from u0 = v0. Hence, we WLOG assume that we don’t have n = 0. Thus, n ≥ 1

(since n ∈ N). Therefore, (13.41.4) yields nun = nvn. We can multiply both sides of this equality by
1

n
(since k is a Q-algebra),

and thus obtain un = vn, qed.
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Substituting w for T on both sides of the equality (13.41.2), we obtain

log [w] =
∑
n≥1

(−1)
n−1

n
wn.

Applying the operator
d

dT
to this equality, we find

d

dT
log [w] =

d

dT

∑
n≥1

(−1)
n−1

n
wn =

∑
n≥1

(−1)
n−1

n
· d

dT
(wn)︸ ︷︷ ︸

=n

 d

dT
w

wn−1

(by (13.41.7))

=
∑
n≥1

(−1)
n−1

n
· n
(
d

dT
w

)
wn−1

=
∑
n≥1

(−1)
n−1

(
d

dT
w

)
wn−1 =

∑
n≥0

(−1)
n

(
d

dT
w

)
wn

(here, we have substituted n for n− 1 in the sum) .

Comparing this with(
d

dT
w

)
· 1

1 + w︸ ︷︷ ︸
=
∑
n≥0(−1)nwn

=

(
d

dT
w

)
·
∑
n≥0

(−1)
n
wn =

∑
n≥0

(−1)
n

(
d

dT
w

)
wn,

we obtain
d

dT

(
log [w]

)
=

(
d

dT
w

)
· 1

1 + w
. This proves (13.41.6). Thus, Fact I.2 is proven.]

Fact I.3: Let u ∈ k [[T ]] and v ∈ k [[T ]] be two power series having constant term 1. Assume

that

(
d

dT
u

)
· v =

(
d

dT
v

)
· u. Then, u = v.

[Proof of Fact I.3: The power series v has constant term 1, and thus has a multiplicative inverse v−1.
The Leibniz rule (applied to v and v−1) yields

d

dT

(
v · v−1

)
=

(
d

dT
v

)
v−1 + v

d

dT

(
v−1

)
.

Comparing this with
d

dT

(
v · v−1

)︸ ︷︷ ︸
=1

=
d

dT
1 = 0, we obtain

(
d

dT
v

)
v−1 +v

d

dT

(
v−1

)
= 0. Solving this equality

for
d

dT

(
v−1

)
, we find

d

dT

(
v−1

)
= −1

v

(
d

dT
v

)
v−1 = −v−2

(
d

dT
v

)
.

Now, the Leibniz rule (applied to u and v−1) yields

d

dT

(
uv−1

)
=

(
d

dT
u

)
v−1 + u

d

dT

(
v−1

)
︸ ︷︷ ︸

=−v−2

 d

dT
v


=

(
d

dT
u

)
v−1 + u

(
−v−2

(
d

dT
v

))

= v−2

((
d

dT
u

)
· v −

(
d

dT
v

)
· u
)

︸ ︷︷ ︸
=0

(since

 d

dT
u

·v=

 d

dT
v

·u)

= v−20 = 0 =
d

dT
1.
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Moreover, the power series uv−1 and 1 have the same constant term500. Hence, Fact I.1 (applied to uv−1

and 1 instead of u and v) shows that uv−1 = 1. Thus, u = v. This proves Fact I.3.]

The equality (13.41.6) (applied to w = T ) yields
d

dT

(
log [T ]

)
=

(
d

dT
T

)
︸ ︷︷ ︸

=1

· 1

1 + T
=

1

1 + T
. In other words,

d

dT
log =

1

1 + T
(since log = log [T ]).

Now, (13.41.5) (applied to w = log) shows that

d

dT

(
exp

[
log
])

=

(
d

dT
log

)
︸ ︷︷ ︸

=
1

1 + T

· exp
[
log
]

=
1

1 + T
· exp

[
log
]
.

But exp = exp−1 and thus exp = exp + 1. Substituting log for T in this equality, we find exp
[
log
]

=

exp
[
log
]

+ 1. Hence,

d

dT

(
exp

[
log
])

=
d

dT

(
exp

[
log
]

+ 1
)

=
d

dT
exp

[
log
]

+
d

dT
1︸︷︷︸

=0

=
d

dT
exp

[
log
]

=
1

1 + T
· exp

[
log
]
.

Multiplying this equality by 1 + T , we find(
d

dT

(
exp

[
log
]))
· (1 + T ) = exp

[
log
]
.

Comparing this with

(
d

dT
(1 + T )

)
︸ ︷︷ ︸

=1

· exp
[
log
]

= exp
[
log
]
, we find

(
d

dT

(
exp

[
log
]))
· (1 + T ) =

(
d

dT
(1 + T )

)
· exp

[
log
]
.

Since both power series exp
[
log
]

and 1 + T have constant term 1 501, we can thus apply Fact I.3 to

u = exp
[
log
]

and v = 1 + T . We thus conclude that exp
[
log
]

= 1 + T . Comparing this with exp
[
log
]

=

exp
[
log
]

+ 1, we obtain exp
[
log
]

+ 1 = 1 + T . Subtracting 1 from this equality, we find exp
[
log
]

= T .

The equality (13.41.5) (applied to w = T ) yields
d

dT
(exp [T ]) =

(
d

dT
T

)
︸ ︷︷ ︸

=1

· exp [T ]︸ ︷︷ ︸
=exp

= exp. In other words,

d

dT
exp = exp (since exp = exp [T ]).

On the other hand, (13.41.6) (applied to w = exp) shows that

d

dT

(
log [exp]

)
=

(
d

dT
exp

)
︸ ︷︷ ︸

=exp=exp+1=1+exp

· 1

1 + exp
= (1 + exp) · 1

1 + exp
= 1 =

d

dT
T.

Since the two power series log [exp] and T have the same constant term502, we can thus apply Fact I.1 to
u = log [exp] and v = T . We thus conclude that log [exp] = T . The proof of Proposition 1.7.15 is thus
complete. �

500Proof. The power series v has constant term 1. Hence, its inverse v−1 has constant term 1−1 = 1. Now, both power
series u and v−1 have constant term 1. Hence, their product uv−1 has constant term 1 · 1 = 1. Since the power series 1 also

has constant term 1, this shows that the power series uv−1 and 1 have the same constant term (namely, 1).
501Proof. It is clear that the power series 1+T has constant term 1. Thus, it remain to prove that the power series exp

[
log
]

has constant term 1.

Recall that the power series exp
[
log
]

has constant term 0. Hence, the power series exp
[
log
]

+1 has constant term 0+1 = 1.

In other words, the power series exp
[
log
]

has constant term 1 (since exp
[
log
]

= exp
[
log
]

+ 1). Qed.
502This is because the power series log [exp] has constant term 0, and the power series T also has constant term 0.
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Proof of Lemma 1.7.16. The power series log has constant term 0 (by Proposition 1.7.15). Hence, Propo-

sition 1.7.11(f) (applied to v = log and f = g − uAεC) yields that log
?

(g − uAεC) ∈ n (C,A). This proves
Lemma 1.7.16. �

Proof of Proposition 1.7.18. (a) Let f ∈ n (C,A). We must prove that exp? f − uAεC ∈ n (C,A) and
log? (exp? f) = f .

The power series exp has constant term 0 (by Proposition 1.7.15). Hence, Proposition 1.7.11(f) (applied
to v = exp) yields that exp?f ∈ n (C,A). But exp = exp−1, so that exp = exp + 1. Hence,

exp? (f) = (exp + 1)
?

(f) = exp? (f)︸ ︷︷ ︸
=exp?f

+ 1? (f)︸ ︷︷ ︸
=uAεC

(by (1.7.6))

(by (1.7.2))

= exp?f + uAεC .

Solving this equation for exp?f , we obtain exp?f = exp? (f)−uAεC = exp? f−uAεC . Hence, exp? f−uAεC =
exp?f ∈ n (C,A). It thus remains to prove that log? (exp? f) = f .

The map exp? f satisfies exp? f − uAεC ∈ n (C,A). Hence, the map log? (exp? f) ∈ Hom (C,A) is well-
defined, and satisfies

log? (exp? f) = log
?

exp? f − uAεC︸ ︷︷ ︸
=exp?f

 (by the definition of log? (exp? f))

= log
?

(exp?f) .(13.41.8)

But the power series exp has constant term 0. Thus, (1.7.7) (applied to u = log and v = exp) yields(
log [exp]

)?
(f) = log

?
(exp? (f)) = log

?
(exp?f). Since log [exp] = T (by Proposition 1.7.15), this rewrites

as T ? (f) = log
?

(exp?f).

Applying (1.7.1) to k = 1, we obtain
(
T 1
)?

(f) = f?1 = f . Since T 1 = T , this rewrites as T ? (f) = f .

Compared with T ? (f) = log
?

(exp?f), this yields log
?

(exp?f) = f . Now, (13.41.8) becomes log? (exp? f) =

log
?

(exp?f) = f . This proves Proposition 1.7.18(a).
(b) Let g ∈ Hom (C,A) be such that g − uAεC ∈ n (C,A). We must prove that exp? (log? g) = g.
Set f = g − uAεC . Thus, f = g − uAεC ∈ n (C,A).
The power series log has constant term 0 (by Proposition 1.7.15). Hence, Proposition 1.7.11(f) (applied

to v = log) yields that log
?
f ∈ n (C,A).

The definition of log? g yields log? g = log
?

(g − uAεC)︸ ︷︷ ︸
=f

= log
?
f ∈ n (C,A).

But the power series log has constant term 0. Thus, (1.7.7) (applied to u = exp and v = log) yields(
exp

[
log
])?

(f) = exp?
(

log
?

(f)
)

= exp?
(

log
?
f
)

. Since exp
[
log
]

= T (by Proposition 1.7.15), this rewrites

as T ? (f) = exp?
(

log
?
f
)

.

Applying (1.7.1) to k = 1, we obtain
(
T 1
)?

(f) = f?1 = f . Since T 1 = T , this rewrites as T ? (f) = f .

Compared with T ? (f) = exp?
(

log
?
f
)

, this yields exp?
(

log
?
f
)

= f .

But exp = exp−1, so that exp = exp + 1. Hence,

exp? (log? g) = (exp + 1)
?

log? g︸ ︷︷ ︸
=log

?
f

 = (exp + 1)
?
(

log
?
f
)

= exp?
(

log
?
f
)

︸ ︷︷ ︸
=f=g−uAεC

+ 1?
(

log
?
f
)

︸ ︷︷ ︸
=uAεC

(by (1.7.6))

(by an application of (1.7.2))

= (g − uAεC) + uAεC = g.

This proves Proposition 1.7.18(b).
(c) Let f, g ∈ n (C,A) be such that f ? g = g ? f . Then, Proposition 1.7.11(c) shows that f + g ∈ n (C,A).

Hence, exp? (f + g) is well-defined.
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Let us recall the following facts, which have been proven in the proof of Proposition 1.7.11(c) (during the
solution to Exercise 1.7.13):

• We have

(13.41.9) (f + g)
?n

=

n∑
i=0

(
n

i

)
f?i ? g?(n−i) for each n ∈ N.

• The family (f?n)n∈N is pointwise finitely supported.
• For each x ∈ C,

(13.41.10) the family ((f?q ? g?r) (x))(q,r)∈N×N ∈ A
N×N is finitely supported.

Furthermore, the family

(
f?q

q!

)
q∈N

is pointwise finitely supported503. Similarly, the family

(
g?r

r!

)
r∈N

is

pointwise finitely supported. Hence, Proposition 1.7.6 (applied to Q = N, R = N, (fq)q∈Q =

(
f?q

q!

)
q∈N

and

(gr)r∈R =

(
g?r

r!

)
r∈N

) shows that the family

(
f?q

q!
?
g?r

r!

)
(q,r)∈N×N

∈ (Hom (C,A))
N×N

is pointwise finitely

supported, and that it satisfies

(13.41.11)
∑

(q,r)∈N×N

(
f?q

q!
?
g?r

r!

)
=

∑
q∈N

f?q

q!

 ?

(∑
r∈N

g?r

r!

)
.

Let x ∈ C. Then, the family ((f?q ? g?r) (x))(q,r)∈N×N ∈ AN×N is finitely supported (by (13.41.10)). In

other words, all but finitely many (q, r) ∈ N × N satisfy (f?q ? g?r) (x) = 0. In other words, there exists a
finite subset K of N× N such that

(13.41.12) each (q, r) ∈ (N× N) \K satisfies (f?q ? g?r) (x) = 0.

Consider this K. Then,

(13.41.13) each (q, r) ∈ N× N satisfying (q, r) /∈ K satisfies

(
f?q

q!
?
g?r

r!

)
(x) = 0

504.
Let Q = {u+ v | (u, v) ∈ K}. Thus, Q is a finite set (since K is a finite set). Also, Q ⊂ N (since each

(u, v) ∈ K satisfies (u, v) ∈ K ⊂ N×N and thus u+ v ∈ N). Thus, the set N is the union of its two disjoint
subsets Q and N \Q.

But

(13.41.14) every n ∈ N \Q satisfies (f + g)
?n

(x) = 0

505.

503Proof. We know that the family (f?n)n∈N is pointwise finitely supported. Hence, Proposition 1.7.7 (applied to Q = N,

(fq)q∈Q = (f?n)n∈N and (λq)q∈Q =

(
1

n!

)
n∈N

) shows that the family

(
1

n!
f?n

)
n∈N

is pointwise finitely supported. Since

1

n!
f?n =

f?n

n!
for each n ∈ N, this result rewrites as follows: The family

(
f?n

n!

)
n∈N

is pointwise finitely supported. Renaming

the index n as q in this statement, we obtain the following: The family

(
f?q

q!

)
q∈N

is pointwise finitely supported. Qed.

504Proof of (13.41.13): Let (q, r) ∈ N × N be such that (q, r) /∈ K. Then, (q, r) ∈ (N× N) \ K (since (q, r) ∈ N × N but
(q, r) /∈ K). Thus, (

f?q

q!
?
g?r

r!

)
(x) =

1

q!
·

1

r!
· (f?q ? g?r) (x)︸ ︷︷ ︸

=0
(by (13.41.12))

=
1

q!
·

1

r!
· 0 = 0.

This proves (13.41.13).
505This has already been proven during our proof of Proposition 1.7.11(c).
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Let n ∈ N. Let us first observe that the map

{0, 1, . . . , n} → {(q, r) ∈ N× N | q + r = n} ,
i 7→ (i, n− i)

is a bijection. Hence, we can substitute (i, n− i) for (q, r) in the sum
∑

(q,r)∈N×N;
q+r=n

f?q

q!
?
g?r

r!
. We thus obtain

(13.41.15)
∑

(q,r)∈N×N;
q+r=n

f?q

q!
?
g?r

r!
=

∑
i∈{0,1,...,n}

f?i

i!
?
g?(n−i)

(n− i)!
.

But (13.41.9) yields

(f + g)
?n

=

n∑
i=0︸︷︷︸

=
∑
i∈{0,1,...,n}

(
n

i

)
︸︷︷︸

=
n!

i! (n− i)!

f?i ? g?(n−i)

=
∑

i∈{0,1,...,n}

n!

i! (n− i)!
f?i ? g?(n−i) = n! ·

∑
i∈{0,1,...,n}

f?i

i!
?
g?(n−i)

(n− i)!
.

Multiplying this equality by
1

n!
, we obtain

(13.41.16)
1

n!
(f + g)

?n
=

∑
i∈{0,1,...,n}

f?i

i!
?
g?(n−i)

(n− i)!
=

∑
(q,r)∈N×N;
q+r=n

f?q

q!
?
g?r

r!

(by (13.41.15)). Applying both sides of this equality to x, we find

1

n!
(f + g)

?n
(x) =

∑
(q,r)∈N×N;
q+r=n

(
f?q

q!
?
g?r

r!

)
(x)

=
∑

(q,r)∈N×N;
q+r=n;
(q,r)∈K︸ ︷︷ ︸

=
∑

(q,r)∈K;
q+r=n

(since K⊂N×N)

(
f?q

q!
?
g?r

r!

)
(x) +

∑
(q,r)∈N×N;
q+r=n;
(q,r)/∈K

(
f?q

q!
?
g?r

r!

)
(x)︸ ︷︷ ︸

=0
(by (13.41.13))

=
∑

(q,r)∈K;
q+r=n

(
f?q

q!
?
g?r

r!

)
(x) +

∑
(q,r)∈N×N;
q+r=n;
(q,r)/∈K

0

︸ ︷︷ ︸
=0

=
∑

(q,r)∈K;
q+r=n

(
f?q

q!
?
g?r

r!

)
(x) .(13.41.17)

Now, forget that we fixed n. We thus have proven (13.41.17) for each n ∈ N.

From exp =
∑
n≥0

1

n!
Tn, we obtain

exp? (f + g) =
∑
n≥0︸︷︷︸

=
∑
n∈N

1

n!
(f + g)

?n
(by the definition of exp? (f + g))

=
∑
n∈N

1

n!
(f + g)

?n
.
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Applying both sides of this equality to x, we find

(exp? (f + g)) (x) =

(∑
n∈N

1

n!
(f + g)

?n

)
(x) =

∑
n∈N

1

n!
(f + g)

?n
(x)

=
∑
n∈Q

1

n!
(f + g)

?n
(x) +

∑
n∈N\Q

1

n!
(f + g)

?n
(x)︸ ︷︷ ︸

=0
(by (13.41.14))

(since the set N is the union of its two disjoint subsets Q and N \Q)

=
∑
n∈Q

1

n!
(f + g)

?n
(x) +

∑
n∈N\Q

1

n!
0

︸ ︷︷ ︸
=0

=
∑
n∈Q

1

n!
(f + g)

?n
(x)︸ ︷︷ ︸

=
∑

(q,r)∈K;
q+r=n

f?q
q!

?
g?r

r!

(x)

(by (13.41.17))

=
∑
n∈Q

∑
(q,r)∈K;
q+r=n︸ ︷︷ ︸

=
∑

(q,r)∈K
∑
n∈Q;
q+r=n

(since both sums
∑
n∈Q and

∑
(q,r)∈K;
q+r=n

are finite)

(
f?q

q!
?
g?r

r!

)
(x)

=
∑

(q,r)∈K

∑
n∈Q;
q+r=n

(
f?q

q!
?
g?r

r!

)
(x) .(13.41.18)

But each (q, r) ∈ K satisfies

(13.41.19)
∑
n∈Q;
q+r=n

(
f?q

q!
?
g?r

r!

)
(x) =

(
f?q

q!
?
g?r

r!

)
(x)

506.
Hence, (13.41.18) becomes

(13.41.20) (exp? (f + g)) (x) =
∑

(q,r)∈K

∑
n∈Q;
q+r=n

(
f?q

q!
?
g?r

r!

)
(x)

︸ ︷︷ ︸
=

f?q
q!

?
g?r

r!

(x)

(by (13.41.19))

=
∑

(q,r)∈K

(
f?q

q!
?
g?r

r!

)
(x) .

506Proof of (13.41.19): Let (q, r) ∈ K. Thus, q + r ∈ {u+ v | (u, v) ∈ K} = Q (since Q = {u+ v | (u, v) ∈ K}).
Hence, there exists some n ∈ Q satisfying q + r = n (namely, n = q + r). Furthermore, this n is unique (because the

condition q + r = n clearly determines n uniquely). Thus, there exists a unique n ∈ Q satisfying q + r = n. Therefore, the

sum
∑
n∈Q;
q+r=n

(
f?q

q!
?
g?r

r!

)
(x) has exactly one addend. Consequently, this sum simplifies as follows:

∑
n∈Q;
q+r=n

(
f?q

q!
?
g?r

r!

)
(x) =

(
f?q

q!
?
g?r

r!

)
(x) .

This proves (13.41.19).
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From exp =
∑
n≥0

1

n!
Tn, we obtain

exp? f =
∑
n≥0︸︷︷︸

=
∑
n∈N

1

n!
f?n (by the definition of exp? f)

=
∑
n∈N

1

n!
f?n.

The same argument (applied to g instead of f) shows that exp? g =
∑
n∈N

1

n!
g?n. Now,

(exp? f)︸ ︷︷ ︸
=
∑
n∈N

1

n!
f?n

=
∑
q∈N

1

q!
f?q

? (exp? g)︸ ︷︷ ︸
=
∑
n∈N

1

n!
g?n

=
∑
r∈N

1

r!
g?r

=


∑
q∈N

1

q!
f?q︸ ︷︷ ︸

=
f?q

q!


?


∑
r∈N

1

r!
g?r︸ ︷︷ ︸

=
g?r

r!


=

∑
q∈N

f?q

q!

 ?

(∑
r∈N

g?r

r!

)

=
∑

(q,r)∈N×N

(
f?q

q!
?
g?r

r!

)
(by (13.41.11)) .

Applying both sides of this equality to x, we obtain

((exp? f) ? (exp? g)) (x) =

 ∑
(q,r)∈N×N

(
f?q

q!
?
g?r

r!

) (x) =
∑

(q,r)∈N×N

(
f?q

q!
?
g?r

r!

)
(x)

=
∑

(q,r)∈N×N;
(q,r)∈K︸ ︷︷ ︸

=
∑

(q,r)∈K
(since K⊂N×N)

(
f?q

q!
?
g?r

r!

)
(x) +

∑
(q,r)∈N×N;

(q,r)/∈K

(
f?q

q!
?
g?r

r!

)
(x)︸ ︷︷ ︸

=0
(by (13.41.13))

=
∑

(q,r)∈K

(
f?q

q!
?
g?r

r!

)
(x) +

∑
(q,r)∈N×N;

(q,r)/∈K

0

︸ ︷︷ ︸
=0

=
∑

(q,r)∈K

(
f?q

q!
?
g?r

r!

)
(x)

= (exp? (f + g)) (x) (by (13.41.20)) .

Now, forget that we fixed x. We thus have shown that ((exp? f) ? (exp? g)) (x) = (exp? (f + g)) (x) for each
x ∈ C. In other words, (exp? f) ? (exp? g) = exp? (f + g). In other words, exp? (f + g) = (exp? f) ? (exp? g).
This completes the proof of Proposition 1.7.18(c).

(d) Consider the k-linear map 0 : C → A. It satisfies 0 ∈ n (C,A) 507. It remains to show that
exp? 0 = uAεC .

We have exp =
∑
n≥0

1

n!
Tn. Thus, the definition of exp? 0 yields

exp? 0 =
∑
n≥0

1

n!
0?n =

1

0!︸︷︷︸
=

1

1
=1

0?0 +
∑
n≥1

1

n!
0?n︸︷︷︸
=0

(since n≥1)

= 0?0 +
∑
n≥1

1

n!
0︸ ︷︷ ︸

=0

= 0?0 = (the unity of the k-algebra (Hom (C,A) , ?)) = uAεC .

Thus, Proposition 1.7.18(d) is proven.

507This can easily be checked by the reader (using the fact that 0?n = 0 for every positive integer n).
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(e) Let f ∈ n (C,A). We must prove that each n ∈ N satisfies

(13.41.21) nf ∈ n (C,A) and exp? (nf) = (exp? f)
?n
.

[Proof of (13.41.21): We shall prove (13.41.21) by induction over n:
Induction base: We have 0f ∈ n (C,A) 508. Furthermore,

exp?

 0f︸︷︷︸
=0

 = exp? 0 = uAεC (by Proposition 1.7.18(d))

= (the unity of the k-algebra (Hom (C,A) , ?)) = (exp? f)
?0
.

Thus, we have shown that 0f ∈ n (C,A) and exp? (0f) = (exp? f)
?0

. In other words, (13.41.21) holds for
n = 0. This completes the induction base.

Induction step: Let k ∈ N. Assume that (13.41.21) holds for n = k. We must prove that (13.41.21) holds
for n = k + 1.

We have assumed that (13.41.21) holds for n = k. In other words,

kf ∈ n (C,A) and exp? (kf) = (exp? f)
?k
.

Now, f ? (kf) = kf ? f = (kf) ? f . Hence, Proposition 1.7.18(c) (applied to g = kf) yields that
f + kf ∈ n (C,A) and exp? (f + kf) = (exp? f) ? (exp? (kf)). Now, (k + 1) f = f + kf ∈ n (C,A) and

exp?

(k + 1) f︸ ︷︷ ︸
=f+kf

 = exp? (f + kf) = (exp? f) ? (exp? (kf))︸ ︷︷ ︸
=(exp? f)?k

= (exp? f) ? (exp? f)
?k

= (exp? f)
?(k+1)

.

Thus, we have shown that

(k + 1) f ∈ n (C,A) and exp? ((k + 1) f) = (exp? f)
?(k+1)

.

In other words, (13.41.21) holds for n = k+ 1. This completes the induction step. Thus, the induction proof
of (13.41.21) is finished.]

Now, (13.41.21) is proven. In other words, Proposition 1.7.18(e) is proven.
(f) Let f ∈ n (C,A). Define a map g ∈ Hom (C,A) by g = f + uAεC . Thus, g − uAεC = f ∈ n (C,A).

Hence, log? g is well-defined.

For each n ∈ N, define an element λn ∈ k by λn =

 (−1)
n−1

n
1k, if n ≥ 1;

0, if n = 0
. Then, λ0 = 0, whereas

(13.41.22) every integer n ≥ 1 satisfies λn =
(−1)

n−1

n
1k.

Hence, ∑
n≥0

λnT
n = λ0︸︷︷︸

=0

T 0 +
∑
n≥1

λn︸︷︷︸
=

(−1)
n−1

n
1k

(by (13.41.22))

Tn = 0T 0︸︷︷︸
=0

+
∑
n≥1

(−1)
n−1

n
1kT

n︸ ︷︷ ︸
=Tn

=
∑
n≥1

(−1)
n−1

n
Tn = log (1 + T ) = log.

In other words, log =
∑
n≥0 λnT

n. Hence, the definition of log
?
f yields

log
?
f =

∑
n≥0

λnf
?n = λ0︸︷︷︸

=0

f?0 +
∑
n≥1

λn︸︷︷︸
=

(−1)
n−1

n
1k

(by (13.41.22))

f?n = 0f?0︸︷︷︸
=0

+
∑
n≥1

(−1)
n−1

n
1kf

?n︸ ︷︷ ︸
=f?n

=
∑
n≥1

(−1)
n−1

n
f?n.

508Proof. Proposition 1.7.11(d) (applied to λ = 0 · 1k) yields 0 · 1kf ∈ n (C,A). Thus, 0f = 0 = 0 · 1kf ∈ n (C,A).
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Now, the definition of log? g yields

log? g = log
?
f =

∑
n≥1

(−1)
n−1

n
f?n.

Since g = f+uAεC , this rewrites as log? (f + uAεC) =
∑
n≥1

(−1)
n−1

n
f?n. This proves Proposition 1.7.18(f).

�

Thus, Proposition 1.7.15, Lemma 1.7.16 and Proposition 1.7.18 are proven. Hence, Exercise 1.7.20 is
solved.

13.42. Solution to Exercise 1.7.28. Solution to Exercise 1.7.28.

Proof of Proposition 1.7.21. We know that γ : C → C ′ is a k-coalgebra morphism. In other words, γ : C →
C ′ is a k-linear map satisfying ∆C′ ◦ γ = (γ ⊗ γ) ◦∆C and εC′ ◦ γ = εC .

We know that α : A → A′ is a k-algebra morphism. In other words, α : A → A′ is a k-linear map
satisfying α ◦mA = mA′ ◦ (α⊗ α) and α ◦ uA = uA′ .

(a) Let f ∈ Hom (C,A), g ∈ Hom (C,A), f ′ ∈ Hom (C ′, A′) and g′ ∈ Hom (C ′, A′) be such that f ′◦γ = α◦f
and g′ ◦ γ = α ◦ g. We must prove that (f ′ ? g′) ◦ γ = α ◦ (f ? g).

The definition of convolution yields f ? g = mA ◦ (f ⊗ g) ◦∆C and f ′ ? g′ = mA′ ◦ (f ′ ⊗ g′) ◦∆C′ . Now,

(f ′ ? g′)︸ ︷︷ ︸
=mA′◦(f ′⊗g′)◦∆C′

◦γ = mA′ ◦ (f ′ ⊗ g′) ◦ ∆C′ ◦ γ︸ ︷︷ ︸
=(γ⊗γ)◦∆C

= mA′ ◦ (f ′ ⊗ g′) ◦ (γ ⊗ γ)︸ ︷︷ ︸
=(f ′◦γ)⊗(g′◦γ)

◦∆C

= mA′ ◦

(f ′ ◦ γ)︸ ︷︷ ︸
=α◦f

⊗ (g′ ◦ γ)︸ ︷︷ ︸
=α◦g

 ◦∆C = mA′ ◦ ((α ◦ f)⊗ (α ◦ g))︸ ︷︷ ︸
=(α⊗α)◦(f⊗g)

◦∆C

= mA′ ◦ (α⊗ α)︸ ︷︷ ︸
=α◦mA

◦ (f ⊗ g) ◦∆C = α ◦mA ◦ (f ⊗ g) ◦∆C︸ ︷︷ ︸
=f?g

= α ◦ (f ? g) .

This proves Proposition 1.7.21(a).
(b) Let f ∈ Hom (C,A) and f ′ ∈ Hom (C ′, A′) be such that f ′ ◦ γ = α ◦ f . We must prove that every

n ∈ N satisfies

(13.42.1) (f ′)
?n ◦ γ = α ◦ f?n.

[Proof of (13.42.1): We shall prove (13.42.1) by induction over n:
Induction base: We have f?0 = (the unity of the k-algebra (Hom (C,A) , ?)) = uA ◦ εC and similarly

(f ′)
?0

= uA′ ◦ εC′ . Hence,

(f ′)
?0︸ ︷︷ ︸

=uA′◦εC′

◦γ = uA′︸︷︷︸
=α◦uA

◦ εC′ ◦ γ︸ ︷︷ ︸
=εC

= α ◦ uA ◦ εC︸ ︷︷ ︸
=f?0

= α ◦ f?0.

In other words, (13.42.1) holds for n = 0. This completes the induction base.
Induction step: Fix k ∈ N. Assume that (13.42.1) holds for n = k. We must now prove that (13.42.1)

holds for n = k + 1.
We have assumed that (13.42.1) holds for n = k. In other words, we have (f ′)

?k ◦ γ = α ◦ f?k.
Now,

(f ′)
?(k+1)︸ ︷︷ ︸

=f ′?(f ′)?k

◦γ =
(
f ′ ? (f ′)

?k
)
◦ γ = α ◦

(
f ? f?k

)︸ ︷︷ ︸
=f?(k+1)(

by Proposition 1.7.21(a) (applied to g = f?k and g′ = (f ′)
?k

)
)

= α ◦ f?(k+1).



436 DARIJ GRINBERG AND VICTOR REINER

In other words, (13.42.1) holds for n = k + 1. This completes the induction step. Thus, the induction proof
of (13.42.1) is finished.]

Hence, (13.42.1) is proven. In other words, we have proven Proposition 1.7.21(b). �

Before we move on to the proof of Proposition 1.7.22, let us show a simple lemma (which can also easily
be obtained as a consequence of Exercise 1.4.4(b)):

Lemma 13.42.1. Let C be a k-coalgebra. Let A be a k-algebra. Let F ∈ Hom (C,A) and G ∈ Hom (C,A).
Then, each k ∈ N satisfies

(13.42.2) (F ⊗G)
?k

= F ?k ⊗G?k

(as maps C ⊗ C → A⊗A).

Proof of Lemma 13.42.1. We must prove that (13.42.2) holds for each k ∈ N. We shall prove this by
induction over k:

Induction base: Let s denote the canonical k-algebra isomorphism k→ k⊗ k. We have

(F ⊗G)
?0

= (the unity of the k-algebra (Hom (C ⊗ C,A⊗A) , ?))

= uA⊗A︸ ︷︷ ︸
=(uA⊗uA)◦s

(by the definition of
the k-algebra A⊗A)

◦ εC⊗C︸ ︷︷ ︸
=s−1◦(εC⊗εC)

(by the definition of
the k-coalgebra C⊗C)

= (uA ⊗ uA) ◦ s ◦ s−1︸ ︷︷ ︸
=idk⊗k

◦ (εC ⊗ εC) = (uA ⊗ uA) ◦ (εC ⊗ εC)

= (uA ◦ εC)︸ ︷︷ ︸
=(the unity of the k-algebra (Hom(C,A),?))

=F?0

⊗ (uA ◦ εC)︸ ︷︷ ︸
=(the unity of the k-algebra (Hom(C,A),?))

=G?0

= F ?0 ⊗G?0.

In other words, (13.42.2) holds for k = 0. This completes the induction base.
Induction step: Let ` ∈ N. Assume that (13.42.2) holds for k = `. We must prove that (13.42.2) holds for

k = `+ 1.
We have assumed that (13.42.2) holds for k = `. In other words, we have

(13.42.3) (F ⊗G)
?`

= F ?` ⊗G?`.
Now, Exercise 1.4.4(a) (applied to C, A, F ?`, F , G?` and G instead of D, B, f , f ′, g and g′) shows that(

F ?` ⊗G?`
)
? (F ⊗G) =

(
F ?` ? F

)
⊗
(
G?` ? G

)
in the convolution algebra Hom (C ⊗ C,A⊗A). Thus,(

F ?` ⊗G?`
)
? (F ⊗G) =

(
F ?` ? F

)︸ ︷︷ ︸
=F?(`+1)

⊗
(
G?` ? G

)︸ ︷︷ ︸
=G?(`+1)

= F ?(`+1) ⊗G?(`+1).

Hence,

F ?(`+1) ⊗G?(`+1) =
(
F ?` ⊗G?`

)︸ ︷︷ ︸
=(F⊗G)?`

(by (13.42.3))

? (F ⊗G) = (F ⊗G)
?`
? (F ⊗G) = (F ⊗G)

?(`+1)
.

In other words, (13.42.2) holds for k = `+ 1. This completes the induction step. Hence, (13.42.2) is proven
by induction. Thus, Lemma 13.42.1 is proven. �

Proof of Proposition 1.7.22. Let i be the unity of the k-algebra (Hom (C,A) , ?). Thus,

i = (the unity of the k-algebra (Hom (C,A) , ?)) = uA ◦ εC .
The axioms of a k-bialgebra show that ε (1C) = 1k (since C is a k-bialgebra). In other words, ε (1) = 1.
Let us first show that every x ∈ C and y ∈ C satisfy

(13.42.4) f (xy) = ε (y) f (x) + ε (x) f (y) .

[Proof of (13.42.4): Let x ∈ C and y ∈ C. The map ε is k-linear; thus,

ε (x− ε (x) 1) = ε (x)− ε (x) ε (1)︸︷︷︸
=1

= ε (x)− ε (x) = 0.
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In other words, x−ε (x) 1 ∈ ker ε. The same argument (applied to y instead of x) shows that y−ε (y) 1 ∈ ker ε.
But

(x− ε (x) 1) (y − ε (y) 1) = xy − ε (x) y − ε (y)x+ ε (x) ε (y) 1,

so that

xy − ε (x) y − ε (y)x+ ε (x) ε (y) 1 = (x− ε (x) 1)︸ ︷︷ ︸
∈ker ε

(y − ε (y) 1)︸ ︷︷ ︸
∈ker ε

∈ (ker ε) (ker ε) = (ker ε)
2
.

Applying the map f to both sides of this relation, we find

f (xy − ε (x) y − ε (y)x+ ε (x) ε (y) 1) ∈ f
(

(ker ε)
2
)

= 0,

so that f (xy − ε (x) y − ε (y)x+ ε (x) ε (y) 1) = 0. Hence,

0 = f (xy − ε (x) y − ε (y)x+ ε (x) ε (y) 1)

= f (xy)− ε (x) f (y)− ε (y) f (x) + ε (x) ε (y) f (1)︸︷︷︸
=0

(since the map f is k-linear)

= f (xy)− ε (x) f (y)− ε (y) f (x) .

Solving this equality for f (xy), we obtain f (xy) = ε (y) f (x) + ε (x) f (y). This proves (13.42.4).]
Now, we shall show that

(13.42.5) (f ◦mC) (z) = (mA ◦ (f ⊗ i + i⊗ f)) (z)

for each z ∈ C ⊗ C.
[Proof of (13.42.5): Let z ∈ C ⊗ C. We are going to prove the equality (13.42.5).
Both sides of the equality (13.42.5) are k-linear in z. Hence, for the proof of (13.42.5), we can WLOG

assume that z is a pure tensor (since any z ∈ C⊗C is a k-linear combination of pure tensors). Assume this.
There exist x ∈ C and y ∈ C satisfying z = x⊗ y (since z is a pure tensor). Consider these x and y. We

have

i︸︷︷︸
=uA◦εC

(x) =

uA ◦ εC︸︷︷︸
=ε

 (x) = (uA ◦ ε) (x) = uA (ε (x)) = ε (x) 1A

(by the definition of the map uA). The same argument (applied to y instead of x) shows that i (y) = ε (y) 1A.
From z = x⊗ y, we obtain mC (z) = mC (x⊗ y) = xy (by the definition of mC). Now,

(f ◦mC) (z) = f

mC (z)︸ ︷︷ ︸
=xy

 = f (xy) = ε (y) f (x) + ε (x) f (y) (by (13.42.4)) .

Comparing this with

(mA ◦ (f ⊗ i + i⊗ f)) (z) = mA

(f ⊗ i + i⊗ f)

 z︸︷︷︸
=x⊗y

 = mA

(f ⊗ i + i⊗ f) (x⊗ y)︸ ︷︷ ︸
=(f⊗i)(x⊗y)+(i⊗f)(x⊗y)


= mA

(f ⊗ i) (x⊗ y)︸ ︷︷ ︸
=f(x)⊗i(y)

+ (i⊗ f) (x⊗ y)︸ ︷︷ ︸
=i(x)⊗f(y)

 = mA (f (x)⊗ i (y) + i (x)⊗ f (y))

= f (x) i (y)︸︷︷︸
=ε(y)1A

+ i (x)︸︷︷︸
=ε(x)1A

f (y) (by the definition of mA)

= ε (y) f (x) + ε (x) f (y) ,

we obtain (f ◦mC) (z) = (mA ◦ (f ⊗ i + i⊗ f)) (z). Thus, (13.42.5) is proven.]
Now, we have proven that (13.42.5) holds for each z ∈ C. In other words, we have

(13.42.6) f ◦mC = mA ◦ (f ⊗ i + i⊗ f) .
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The axioms of a k-bialgebra show that the comultiplication ∆C : C → C ⊗ C of the k-coalgebra C is a
k-algebra homomorphism (since C is a k-bialgebra). They also show that the multiplication mC : C⊗C → C
of the k-algebra C is a k-coalgebra homomorphism (since C is a k-bialgebra).

Exercise 1.5.6(b) shows that the k-algebra A is commutative if and only if its multiplication mA : A⊗A→
A is a k-algebra homomorphism. Thus, its multiplication mA : A ⊗ A → A is a k-algebra homomorphism
(since A is commutative).

Thus, Proposition 1.7.21(b) (applied to C ⊗ C, C, A⊗ A, A, mC , mA, f ⊗ i + i⊗ f and f instead of C,
C ′, A, A′, γ, α, f and f ′) shows that each n ∈ N satisfies

(13.42.7) f?n ◦mC = mA ◦ (f ⊗ i + i⊗ f)
?n

(because of (13.42.6)).
The two k-linear maps f ⊗ i and i⊗ f in Hom (C ⊗ C,A⊗A) satisfy

(13.42.8) (f ⊗ i) ? (i⊗ f) = (i⊗ f) ? (f ⊗ i)

509. In other words, the two elements f ⊗ i and i⊗ f of the k-algebra (Hom (C ⊗ C,A⊗A) , ?) commute.
Hence, it is easy to see

(13.42.10) (f ⊗ i + i⊗ f)
?n

=

n∑
i=0

(
n

i

)
f?i ⊗ f?(n−i) for each n ∈ N.

[Proof of (13.42.10): Let n ∈ N. Let G be the k-subalgebra of (Hom (C ⊗ C,A⊗A) , ?) generated by the
two elements f ⊗ i and i ⊗ f . Thus, the k-algebra G is generated by commuting elements (because the
elements f ⊗ i and i⊗ f of the k-algebra (Hom (C ⊗ C,A⊗A) , ?) commute), and therefore is commutative
(since any k-algebra generated by commuting elements must be commutative). Hence, the binomial formula
holds in this k-algebra G. In other words, any α ∈ G and β ∈ G and m ∈ N satisfy

(α+ β)
?m

=

m∑
i=0

(
m

i

)
α?i ? β?(m−i)

509Proof of (13.42.8): Exercise 1.4.4(a) (applied to C, A, f , i, i and f instead of D, B, f , f ′, g and g′) shows that

(13.42.9) (f ⊗ i) ? (i⊗ f) = (f ? i)︸ ︷︷ ︸
=f

⊗ (i ? f)︸ ︷︷ ︸
=f

= f ⊗ f.

But Exercise 1.4.4(a) (applied to C, A, i, f , f and i instead of D, B, f , f ′, g and g′) shows that

(i⊗ f) ? (f ⊗ i) = (i ? f)︸ ︷︷ ︸
=f

⊗ (f ? i)︸ ︷︷ ︸
=f

= f ⊗ f.

Comparing this with (13.42.9), we obtain (f ⊗ i) ? (i⊗ f) = (i⊗ f) ? (f ⊗ i). This proves (13.42.8).
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(since the multiplication in the k-algebra G is the convolution ?). Applying this to α = f ⊗ i, β = i⊗ f and
m = n, we obtain

(f ⊗ i + i⊗ f)
?n

=

n∑
i=0

(
n

i

)
(f ⊗ i)

?i︸ ︷︷ ︸
=f?i⊗i?i

(by (13.42.2) (applied
to f , i and i instead of F , G and k))

? (i⊗ f)
?(n−i)︸ ︷︷ ︸

=i?(n−i)⊗f?(n−i)

(by (13.42.2) (applied
to i, f and n−i instead of F , G and k))

=

n∑
i=0

(
n

i

)
f?i ⊗ i?i︸︷︷︸

=i
(since i is the unity

of the k-algebra (Hom(C,A),?))

 ?

 i?(n−i)︸ ︷︷ ︸
=i

(since i is the unity
of the k-algebra (Hom(C,A),?))

⊗f?(n−i)


=

n∑
i=0

(
n

i

) (
f?i ⊗ i

)
?
(
i⊗ f?(n−i)

)
︸ ︷︷ ︸

=(f?i?i)⊗(i?f?(n−i))
(by Exercise 1.4.4(a) (applied

to C, A, f?i, i, i, f?(n−i)

instead of D, B, f , f ′, g and g′))

=

n∑
i=0

(
n

i

) (
f?i ? i

)︸ ︷︷ ︸
=f?i

(since i is the unity
of the k-algebra (Hom(C,A),?))

⊗
(
i ? f?(n−i)

)
︸ ︷︷ ︸

=f?(n−i)

(since i is the unity
of the k-algebra (Hom(C,A),?))

=

n∑
i=0

(
n

i

)
f?i ⊗ f?(n−i).

This proves (13.42.10).]
Now, let x, y ∈ C and n ∈ N be arbitrary. Then, the definition of mC yields mC (x⊗ y) = xy. Hence,

(f?n ◦mC) (x⊗ y) = f?n

mC (x⊗ y)︸ ︷︷ ︸
=xy

 = f?n (xy) .

Hence,

f?n (xy) = (f?n ◦mC)︸ ︷︷ ︸
=mA◦(f⊗i+i⊗f)?n

(by (13.42.7))

(x⊗ y) =
(
mA ◦ (f ⊗ i + i⊗ f)

?n)
(x⊗ y)

= mA


(f ⊗ i + i⊗ f)

?n︸ ︷︷ ︸
=
∑n
i=0

(
n

i

)
f?i⊗f?(n−i)

(by (13.42.10))

(x⊗ y)


= mA

((
n∑
i=0

(
n

i

)
f?i ⊗ f?(n−i)

)
(x⊗ y)

)

= mA


(

n∑
i=0

(
n

i

)
f?i ⊗ f?(n−i)

)
(x⊗ y)︸ ︷︷ ︸

=
∑n
i=0

(
n

i

)
(f?i⊗f?(n−i))(x⊗y)


= mA

 n∑
i=0

(
n

i

)(
f?i ⊗ f?(n−i)

)
(x⊗ y)︸ ︷︷ ︸

=f?i(x)⊗f?(n−i)(y)



= mA

(
n∑
i=0

(
n

i

)
f?i (x)⊗ f?(n−i) (y)

)
=

n∑
i=0

(
n

i

)
f?i (x) f?(n−i) (y)

(by the definition of mA). This proves Proposition 1.7.22. �
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Before we prove Proposition 1.7.23, let us show two lemmas:510

Lemma 13.42.2. Let C be a k-coalgebra. Let A be a k-algebra. Let f ∈ n (C,A).

(a) If z ∈ C is arbitrary, then the family

(
1

n!
f?n (z)

)
n∈N
∈ AN is finitely supported and satisfies

(exp? f) (z) =
∑
n∈N

1

n!
f?n (z) .

(b) If x ∈ C and y ∈ C are arbitrary, then the family

(∑n
i=0

1

i! · (n− i)!
f?i (x) f?(n−i) (y)

)
n∈N
∈ AN is

finitely supported and satisfies

(exp? f) (x) · (exp? f) (y) =
∑
n∈N

n∑
i=0

1

i! · (n− i)!
f?i (x) f?(n−i) (y) .

Proof of Lemma 13.42.2. We have f ∈ n (C,A). In other words, f is a pointwise ?-nilpotent map in

Hom (C,A). Thus, the family (f?n)n∈N ∈ (Hom (C,A))
N

is pointwise finitely supported. In other words, for
each x ∈ C,

(13.42.11) the family (f?n (x))n∈N ∈ A
N is finitely supported.

(a) Let z ∈ C be arbitrary. Recall that exp =
∑
n≥0

1

n!
Tn. Hence, exp? f =

∑
n≥0

1

n!
f?n (by the

definition of exp? f). Hence,

(exp? f) (z) =

∑
n≥0

1

n!
f?n

 (z) =
∑
n≥0︸︷︷︸

=
∑
n∈N

1

n!
f?n (z) =

∑
n∈N

1

n!
f?n (z) .

In particular, the sum
∑
n∈N

1

n!
f?n (z) is well-defined. Hence, the family

(
1

n!
f?n (z)

)
n∈N
∈ AN is finitely

supported. Thus, the proof of Lemma 13.42.2(a) is complete.
(b) Let x ∈ C and y ∈ C be arbitrary.

Lemma 13.42.2(a) (applied to z = x) shows that the family

(
1

n!
f?n (x)

)
n∈N
∈ AN is finitely supported

and satisfies (exp? f) (x) =
∑
n∈N

1

n!
f?n (x). Renaming the index n as q in this sentence, we obtain the

following: The family

(
1

q!
f?q (x)

)
q∈N
∈ AN is finitely supported.and satisfies

(13.42.12) (exp? f) (x) =
∑
q∈N

1

q!
f?q (x) .

Similarly, the family

(
1

r!
f?r (y)

)
r∈N
∈ AN is finitely supported and satisfies

(13.42.13) (exp? f) (y) =
∑
r∈N

1

r!
f?r (y) .

Recall that sums of the form
∑
q∈Q fq (where (fq)q∈Q is a finitely supported family) satisfy the usual rules

for finite sums, even though their indexing set Q may be infinite. This pertains, in particular, to the sums∑
q∈N

1

q!
f?q (x) and

∑
r∈N

1

r!
f?r (y) (because the families

(
1

q!
f?q (x)

)
q∈N

and

(
1

r!
f?r (y)

)
r∈N

are finitely

510Recall that we are still using the conventions that are in place throughout Section 1.7.
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supported). Thus, the following manipulations make sense:∑
q∈N

1

q!
f?q (x)

(∑
r∈N

1

r!
f?r (y)

)

=
∑
q∈N

∑
r∈N

1

q!
f?q (x)

1

r!
f?r (y) =

∑
q∈N

∑
r∈N

1

q! · r!
f?q (x) f?r (y)︸ ︷︷ ︸

=
∑
n∈N;
n≥q

1

q! · (n− q)!
f?q(x)f?(n−q)(y)

(here, we have substituted n−q for r in the sum)

=
∑
q∈N

∑
n∈N;
n≥q︸ ︷︷ ︸

=
∑
n∈N

∑
q∈N;
n≥q

1

q! · (n− q)!
f?q (x) f?(n−q) (y) =

∑
n∈N

∑
q∈N;
n≥q︸︷︷︸

=
∑
q∈N;
q≤n

=
∑n
q=0

1

q! · (n− q)!
f?q (x) f?(n−q) (y)

=
∑
n∈N

n∑
q=0

1

q! · (n− q)!
f?q (x) f?(n−q) (y) =

∑
n∈N

n∑
i=0

1

i! · (n− i)!
f?i (x) f?(n−i) (y)

(here, we have renamed the summation index q as i). Comparing this with∑
q∈N

1

q!
f?q (x)


︸ ︷︷ ︸

=(exp? f)(x)
(by (13.42.12))

(∑
r∈N

1

r!
f?r (y)

)
︸ ︷︷ ︸

=(exp? f)(y)
(by (13.42.13))

= (exp? f) (x) · (exp? f) (y) ,

we obtain

(exp? f) (x) · (exp? f) (y) =
∑
n∈N

n∑
i=0

1

i! · (n− i)!
f?i (x) f?(n−i) (y) .

In particular, the sum on the right hand side of this equality is well-defined. Thus, the family(∑n
i=0

1

i! · (n− i)!
f?i (x) f?(n−i) (y)

)
n∈N
∈ AN is finitely supported. This completes the proof of Lemma 13.42.2(b).

�

Lemma 13.42.3. Let C be a k-bialgebra. Let A be a k-algebra. Let f ∈ Hom (C,A). Every n ∈ N satisfies

(13.42.14) f?n (1) = (f (1))
n
.

Proof of Lemma 13.42.3. We must prove that (13.42.14) holds for each n ∈ N. We shall prove this by
induction over n:

Induction base: The axioms of a k-bialgebra yield εC (1) = 1 (since C is a k-bialgebra). Now,

f?0 = (the unity of the k-algebra (Hom (C,A) , ?)) = uA ◦ εC .

Thus,

f?0︸︷︷︸
=uA◦εC

(1) = (uA ◦ εC) (1) = uA

εC (1)︸ ︷︷ ︸
=1

 = uA (1) = 1 · 1A = 1A = (f (1))
0
.

In other words, (13.42.14) holds for n = 0. This completes the induction base.
Induction step: Let k ∈ N. Assume that (13.42.14) holds for n = k. We must show that (13.42.14) holds

for n = k + 1.
The axioms of a k-bialgebra yield ∆C (1) = 1⊗ 1 (since C is a k-bialgebra).

We have assumed that (13.42.14) holds for n = k. In other words, we have f?k (1) = (f (1))
k
. Now,

f?(k+1) = f ? f?k = mA ◦
(
f ⊗ f?k

)
◦ ∆C (by the definition of convolution). Applying both sides of this
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equality to 1 ∈ C, we obtain

f?(k+1) (1) =
(
mA ◦

(
f ⊗ f?k

)
◦∆C

)
(1) = mA

(f ⊗ f?k)
∆C (1)︸ ︷︷ ︸

=1⊗1


 = mA

(f ⊗ f?k) (1⊗ 1)︸ ︷︷ ︸
=f(1)⊗f?k(1)


= mA

(
f (1)⊗ f?k (1)

)
= f (1) f?k (1)︸ ︷︷ ︸

=(f(1))k

(by the definition of mA)

= f (1) · (f (1))
k

= (f (1))
k+1

.

In other words, (13.42.14) holds for n = k+1. This completes the induction step. Thus, (13.42.14) is proven
by induction. Hence, Lemma 13.42.3 is proven. �

Proof of Proposition 1.7.23. Let x ∈ C and y ∈ C.

Lemma 13.42.2(a) (applied to z = xy) shows that the family

(
1

n!
f?n (xy)

)
n∈N
∈ AN is finitely supported

and satisfies

(13.42.15) (exp? f) (xy) =
∑
n∈N

1

n!
f?n (xy) .

Lemma 13.42.2(b) shows that the family

(∑n
i=0

1

i! · (n− i)!
f?i (x) f?(n−i) (y)

)
n∈N
∈ AN is finitely supported

and satisfies

(13.42.16) (exp? f) (x) · (exp? f) (y) =
∑
n∈N

n∑
i=0

1

i! · (n− i)!
f?i (x) f?(n−i) (y) .

Comparing (13.42.16) with

(exp? f) (xy) =
∑
n∈N

1

n!
f?n (xy)︸ ︷︷ ︸

=
∑n
i=0

(
n

i

)
f?i(x)f?(n−i)(y)

(by Proposition 1.7.22)

(by (13.42.15))

=
∑
n∈N

1

n!

n∑
i=0

(
n

i

)
f?i (x) f?(n−i) (y) =

∑
n∈N

n∑
i=0

1

n!

(
n

i

)
︸ ︷︷ ︸

=
1

i! · (n− i)!

(since

(
n

i

)
=

n!

i! · (n− i)!
)

f?i (x) f?(n−i) (y)

=
∑
n∈N

n∑
i=0

1

i! · (n− i)!
f?i (x) f?(n−i) (y) ,

we obtain (exp? f) (xy) = (exp? f) (x) · (exp? f) (y).
Now, forget that we fixed x and y. We thus have shown that

(13.42.17) (exp? f) (xy) = (exp? f) (x) · (exp? f) (y) for all x ∈ C and y ∈ C.
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Now, exp =
∑
n≥0

1

n!
Tn. Hence, exp? f =

∑
n≥0

1

n!
f?n (by the definition of exp? f). Hence,

(exp? f) (1) =

∑
n≥0

1

n!
f?n

 (1) =
∑
n≥0

1

n!
f?n (1)︸ ︷︷ ︸
=(f(1))n

(by Lemma 13.42.3)

=
∑
n≥0

1

n!

f (1)︸︷︷︸
=0

n

=
∑
n≥0

1

n!
0n =

1

0!︸︷︷︸
=

1

1
=1

00︸︷︷︸
=1

+
∑
n≥1

1

n!
0n︸︷︷︸
=0

(since n≥1)

= 1 +
∑
n≥1

1

n!
0︸ ︷︷ ︸

=0

= 1.

Thus, we know that exp? f is a k-linear map C → A (since exp? f ∈ Hom (C,A)) satisfying (13.42.17)
and (exp? f) (1) = 1. In other words, exp? f : C → A is a k-algebra homomorphism. This proves Proposi-
tion 1.7.23. �

Proof of Lemma 1.7.24. The matrix
(
iN+1−j)

i,j=1,2,...,N+1
∈ Q(N+1)×(N+1) is invertible (since its determi-

nant is the Vandermonde determinant
∏

1≤i<j≤N+1 (i− j)︸ ︷︷ ︸
6=0

6= 0). Let (si,j)i,j=1,2,...,N+1 ∈ Q(N+1)×(N+1) be

its inverse matrix. Then, (si,j)i,j=1,2,...,N+1 ·
(
iN+1−j)

i,j=1,2,...,N+1
= IN+1 (the (N + 1)× (N + 1) identity

matrix). Comparing the entries on both sides of this equality, we see: For every (u, v) ∈ {1, 2, . . . , N + 1}2,
we have

N+1∑
j=1

su,jj
N+1−v = δu,v

(because
∑N+1
j=1 su,jj

N+1−v is the (u, v)-th entry of the matrix (si,j)i,j=1,2,...,N+1 ·
(
iN+1−j)

i,j=1,2,...,N+1
,

while δu,v is the (u, v)-th entry of the matrix IN+1).
The entries si,j of the matrix (si,j)i,j=1,2,...,N+1 are rational numbers, and therefore there exists a positive

integer M such that every (i, j) ∈ {1, 2, . . . , N + 1}2 satisfies Msi,j ∈ Z (because finitely many rational

numbers always have a common denominator). Consider this M . For every (i, j) ∈ {1, 2, . . . , N + 1}2, define
an element ti,j ∈ Z by ti,j = Msi,j . Then,

(13.42.18)

N+1∑
j=1

tu,j︸︷︷︸
=Msu,j

jN+1−v = M

N+1∑
j=1

su,jj
N+1−v

︸ ︷︷ ︸
=δu,v

= Mδu,v

for every (u, v) ∈ {1, 2, . . . , N + 1}2.
Now, let i ∈ {0, 1, . . . , N}. Then,

N+1∑
j=1

tN+1−i,j

N∑
k=0

wkj
k =

N∑
k=0

N+1∑
j=1

tN+1−i,jj
k


︸ ︷︷ ︸

=MδN+1−i,N+1−k
(by (13.42.18),

applied to u=N+1−i and v=N+1−k)

wk = M

N∑
k=0

δN+1−i,N+1−k︸ ︷︷ ︸
=δi,k

wk

= M

N∑
k=0

δi,kwk︸ ︷︷ ︸
=wi

= Mwi.

Hence,

Mwi =

N+1∑
j=1

tN+1−i,j

N∑
k=0

wkj
k

︸ ︷︷ ︸
=0

(by (1.7.9), applied
to n=j)

=

N+1∑
j=1

tN+1−i,j0 = 0.



444 DARIJ GRINBERG AND VICTOR REINER

Since M is a positive integer, we can cancel M from this equality (because V is torsionfree), and thus obtain
wi = 0.

Now forget that we fixed i. We thus have proven that wi = 0 for every i ∈ {0, 1, . . . , N}. In other words,
wk = 0 for every k ∈ {0, 1, . . . , N}. Lemma 1.7.24 is thus proven. �

Proof of Lemma 1.7.25. The family (wk)k∈N is finitely supported. In other words, all but finitely many
k ∈ N satisfy wk = 0. In other words, there exists a finite subset K of N such that

(13.42.19) each k ∈ N \K satisfies wk = 0.

Consider this K.
The set K is a finite subset of N, and thus has an upper bound (since any finite subset of N has an upper

bound). In other words, there exists some N ∈ N such that

(13.42.20) each n ∈ K satisfies n ≤ N.

Consider this N .
Now,

(13.42.21) each k ∈ N satisfying k > N satisfies wk = 0

511.
We have assumed that

∑
k∈N wkn

k = 0 for all n ∈ N. Thus, for all n ∈ N, we have

0 =
∑
k∈N

wkn
k =

∑
k∈N;
k≤N︸︷︷︸

=
∑N
k=0

wkn
k +

∑
k∈N;
k>N

wk︸︷︷︸
=0

(by (13.42.21))

nk =

N∑
k=0

wkn
k +

∑
k∈N;
k>N

0nk

︸ ︷︷ ︸
=0

=

N∑
k=0

wkn
k.

Hence, for all n ∈ N, we have
∑N
k=0 wkn

k = 0. Thus, Lemma 1.7.24 shows that

(13.42.22) wk = 0 for every k ∈ {0, 1, . . . , N} .

Now, it is easy to see that wk = 0 for every k ∈ N 512. This proves Lemma 1.7.25. �

Before we come to the proof of Proposition 1.7.26, we state another lemma, which is an easy consequence
of Lemma 1.7.25:

Lemma 13.42.4. Let V be a torsionfree abelian group (written additively). Let (ak)k∈N ∈ V N and (bk)k∈N ∈
V N be two finitely supported families of elements of V . Assume that

(13.42.23)
∑
k∈N

akt
k =

∑
k∈N

bkt
k for all t ∈ N.

Then, ak = bk for every k ∈ N.

Proof of Lemma 13.42.4. The families (ak)k∈N and (bk)k∈N are finitely supported. Hence, (by a straightfor-

ward and well-known argument) it follows that the family (ak − bk)k∈N ∈ V N is also finitely supported.

Now, let t ∈ N. Then, the family
(
akt

k
)
k∈N ∈ V

N is finitely supported.513 Similarly, the family
(
bkt

k
)
k∈N ∈

V N is finitely supported.
Recall that sums of the form

∑
q∈Q fq (where (fq)q∈Q is a finitely supported family) satisfy the usual

rules for finite sums, even though their indexing set Q may be infinite. In particular, this pertains to the

511Proof of (13.42.21): Let k ∈ N be such that k > N . We must prove that wk = 0.

If we had k ∈ K, then we would have k ≤ N (by (13.42.20) (applied to n = k)), which would contradict k > N . Hence,
we cannot have k ∈ K. Thus, we have k /∈ K. Combining k ∈ N with k /∈ K, we obtain k ∈ N \K. Hence, (13.42.19) yields
wk = 0. This proves (13.42.21).

512Proof. Let k ∈ N. We must prove that wk = 0.
If k ∈ {0, 1, . . . , N}, then this follows immediately from (13.42.22). Hence, for the rest of this proof, we WLOG assume that

we don’t have k ∈ {0, 1, . . . , N}. Thus, k /∈ {0, 1, . . . , N}. Hence, k ∈ N \ {0, 1, . . . , N} = {N + 1, N + 2, N + 3, . . .}. Therefore,
k ≥ N + 1 > N . Thus, (13.42.21) shows that wk = 0. Qed.

513This is an easy consequence of the fact that the family (ak)k∈N is finitely supported.
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sums
∑
k∈N akt

k and
∑
k∈N bkt

k (since the families
(
akt

k
)
k∈N and

(
bkt

k
)
k∈N are finitely supported). Hence,

the following manipulations are valid:∑
k∈N

akt
k −

∑
k∈N

bkt
k =

∑
k∈N

(
akt

k − bktk
)︸ ︷︷ ︸

=(ak−bk)tk

=
∑
k∈N

(ak − bk) tk.

Hence,

(13.42.24)
∑
k∈N

(ak − bk) tk =
∑
k∈N

akt
k −

∑
k∈N

bkt
k = 0

(by (13.42.23)).
Now, forget that we fixed t. We thus have proven that

∑
k∈N (ak − bk) tk = 0 for all t ∈ N. Renaming the

index t as n in this statement, we conclude that
∑
k∈N (ak − bk)nk = 0 for all n ∈ N. Hence, Lemma 1.7.25

(applied to (wk)k∈N = (ak − bk)k∈N) shows that ak − bk = 0 for every k ∈ N. In other words, ak = bk for
every k ∈ N. This proves Lemma 13.42.4. �

Proof of Proposition 1.7.26. Any k-module naturally becomes a Q-module (since k is a Q-algebra). Thus,
in particular, the k-module A becomes a Q-module. Hence, the k-module A is a torsionfree abelian group
(written additively).

Now, fix x ∈ ker ε and y ∈ ker ε. We shall show that f (xy) = 0.
We have f (C0) = 0. Thus, Proposition 1.7.11(h) yields f ∈ n (C,A).

Lemma 13.42.2(a) (applied to z = xy) shows that the family

(
1

n!
f?n (xy)

)
n∈N
∈ AN is finitely supported

and satisfies

(exp? f) (xy) =
∑
n∈N

1

n!
f?n (xy) .

In particular, the family

(
1

n!
f?n (xy)

)
n∈N
∈ AN is finitely supported. Renaming the index n as k in this

statement, we conclude that the family

(
1

k!
f?k (xy)

)
k∈N
∈ AN is finitely supported.

Lemma 13.42.2(b) yields that the family

(∑n
i=0

1

i! · (n− i)!
f?i (x) f?(n−i) (y)

)
n∈N
∈ AN is finitely sup-

ported. In other words, the family

(∑n
i=0

f?i (x)

i!
· f

?(n−i) (y)

(n− i)!

)
n∈N

∈ AN is finitely supported (since

1

i! · (n− i)!
f?i (x) f?(n−i) (y) =

f?i (x)

i!
· f

?(n−i) (y)

(n− i)!
for every n ∈ N and i ∈ {0, 1, . . . , n}). Renaming the

index n as k in this statement, we obtain the following: The family

(∑k
i=0

f?i (x)

i!
· f

?(k−i) (y)

(k − i)!

)
k∈N
∈ AN

is finitely supported.
On the other hand, let t ∈ N be arbitrary. Then, Proposition 1.7.18(e) (applied to n = t) shows that

tf ∈ n (C,A) and exp? (tf) = (exp? f)
?t

.
Exercise 1.5.11(b) (applied to C, t and exp? f instead of H, k and fi) shows that the map

(exp? f) ? (exp? f) ? · · · ? (exp? f)︸ ︷︷ ︸
t times

is a k-algebra homomorphism C → A. In light of

(exp? f) ? (exp? f) ? · · · ? (exp? f)︸ ︷︷ ︸
t times

= (exp? f)
?t

= exp? (tf)
(

since exp? (tf) = (exp? f)
?t
)
,

this rewrites as follows: The map exp? (tf) is a k-algebra homomorphism C → A.

Lemma 13.42.2(a) (applied to tf and xy instead of f and z) shows that the family

(
1

n!
(tf)

?n
(xy)

)
n∈N
∈

AN is finitely supported and satisfies

(13.42.25) (exp? (tf)) (xy) =
∑
n∈N

1

n!
(tf)

?n
(xy) .
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Lemma 13.42.2(b) (applied to tf instead of f) shows that the family(∑n
i=0

1

i! · (n− i)!
(tf)

?i
(x) (tf)

?(n−i)
(y)

)
n∈N
∈ AN is finitely supported and satisfies

(exp? (tf)) (x) · (exp? (tf)) (y) =
∑
n∈N

n∑
i=0

1

i! · (n− i)!
(tf)

?i
(x) (tf)

?(n−i)
(y) .

Comparing

(exp? (tf)) (x) · (exp? (tf)) (y)

=
∑
n∈N

n∑
i=0

1

i! · (n− i)!
(tf)

?i
(x)︸ ︷︷ ︸

=tif?i(x)

(tf)
?(n−i)

(y)︸ ︷︷ ︸
=tn−if?(n−i)(y)

=
∑
n∈N

n∑
i=0

1

i! · (n− i)!
tif?i (x) tn−if?(n−i) (y)︸ ︷︷ ︸

=
f?i (x)

i!
·
f?(n−i) (y)

(n− i)!
titn−i

=
∑
n∈N

n∑
i=0

f?i (x)

i!
· f

?(n−i) (y)

(n− i)!
titn−i︸ ︷︷ ︸

=ti+(n−i)=tn

=
∑
n∈N

n∑
i=0

f?i (x)

i!
· f

?(n−i) (y)

(n− i)!
tn

=
∑
n∈N

(
n∑
i=0

f?i (x)

i!
· f

?(n−i) (y)

(n− i)!

)
tn =

∑
k∈N

(
k∑
i=0

f?i (x)

i!
· f

?(k−i) (y)

(k − i)!

)
tk

(here, we have renamed the summation index n as k)

with

(exp? (tf)) (x) · (exp? (tf)) (y)

= (exp? (tf)) (xy) (since exp? (tf) is a k-algebra homomorphism)

=
∑
n∈N

1

n!
(tf)

?n
(xy)︸ ︷︷ ︸

=tnf?n(xy)
=f?n(xy)tn

(by (13.42.25))

=
∑
n∈N

1

n!
f?n (xy) tn =

∑
k∈N

1

k!
f?k (xy) tk (here, we have renamed the summation index n as k) ,

we obtain ∑
k∈N

1

k!
f?k (xy) tk =

∑
k∈N

(
k∑
i=0

f?i (x)

i!
· f

?(k−i) (y)

(k − i)!

)
tk.

Now, forget that we fixed t. We thus have shown that

∑
k∈N

1

k!
f?k (xy) tk =

∑
k∈N

(
k∑
i=0

f?i (x)

i!
· f

?(k−i) (y)

(k − i)!

)
tk

for all t ∈ N.

Hence, we can apply Lemma 13.42.4 to V = A, (ak)k∈N =

(
1

k!
f?k (xy)

)
k∈N

and

(bk)k∈N =

(∑k
i=0

f?i (x)

i!
· f

?(k−i) (y)

(k − i)!

)
k∈N

(since A is a torsionfree abelian group (written additively), and

since the families

(
1

k!
f?k (xy)

)
k∈N

and

(∑k
i=0

f?i (x)

i!
· f

?(k−i) (y)

(k − i)!

)
k∈N

are finitely supported). As a result,

we obtain

1

k!
f?k (xy) =

k∑
i=0

f?i (x)

i!
· f

?(k−i) (y)

(k − i)!
for every k ∈ N.
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Applying this to k = 1, we find

1

1!
f?1 (xy) =

1∑
i=0

f?i (x)

i!
· f

?(1−i) (y)

(1− i)!
=
f?0 (x)

0!
· f

?(1−0) (y)

(1− 0)!
+
f?1 (x)

1!
· f

?(1−1) (y)

(1− 1)!

=
f?0 (x)

0!
· f

?1 (y)

1!
+
f?1 (x)

1!
· f

?0 (y)

0!
(13.42.26)

(since 1− 0 = 1 and 1− 1 = 0).
But recall that x ∈ ker ε︸︷︷︸

=εC

= ker (εC) and thus εC (x) = 0. But

f?0 = (the unity of the k-algebra (Hom (C,A) , ?)) = uA ◦ εC ,

and thus f?0 (x) = (uA ◦ εC) (x) = uA

εC (x)︸ ︷︷ ︸
=0

 = uA (0) = 0. Hence,
f?0 (x)

0!
=

0

0!
= 0. Similarly,

f?0 (y)

0!
= 0. Hence, (13.42.26) becomes

1

1!
f?1 (xy) =

f?0 (x)

0!︸ ︷︷ ︸
=0

·f
?1 (y)

1!
+
f?1 (x)

1!
· f

?0 (y)

0!︸ ︷︷ ︸
=0

= 0 · f
?1 (y)

1!
+
f?1 (x)

1!
· 0 = 0.

Comparing this with
1

1!︸︷︷︸
=

1

1
=1

f?1︸︷︷︸
=f

(xy) = f (xy), we obtain f (xy) = 0.

Now, forget that we fixed x and y. We thus have shown that

f (xy) = 0 for every x ∈ ker ε and y ∈ ker ε.

Since the map f is k-linear, this entails that f
(

(ker ε)
2
)

= 0 (because the k-module (ker ε)
2

is spanned

by elements of the form xy with x ∈ ker ε and y ∈ ker ε). This proves Proposition 1.7.26. �

Proof of Proposition 1.7.27. We know that f (C) generates the k-algebra A. Thus, any k-subalgebra of A
that contains f (C) as a subset must be the whole A. In other words,

(13.42.27)

(
if D is a k-subalgebra of A satisfying f (C) ⊂ D,

then D = A

)
.

Define a k-linear map F ∈ Hom (C,A) by F = exp? f . (This is well-defined, since f ∈ n (C,A).)
Proposition 1.7.23 shows that exp? f : C → A is a k-algebra homomorphism. In other words, F : C → A

is a k-algebra homomorphism (since F = exp? f).
Proposition 1.7.18(a) yields that exp? f − uAεC ∈ n (C,A) and log? (exp? f) = f .

Define an element F̃ of n (C,A) by F̃ = F − uAεC . (This is well-defined, since F︸︷︷︸
=exp? f

−uAεC = exp? f −

uAεC ∈ n (C,A).) From log? (exp? f) = f , we obtain

f = log? (exp? f)︸ ︷︷ ︸
=F

= log? F = log
?

(F − uAεC)︸ ︷︷ ︸
=F̃

(by the definition of log? F )

= log
?
F̃ .(13.42.28)

On the other hand, Proposition 1.7.11(j) (applied to C and idC instead ofA and F ) shows that idC −uCεC ∈
n (C,C) (since idC : C → C is a k-algebra homomorphism).
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Define an element ĩd of n (C,C) by ĩd = idC −uCεC . (This is well-defined, since idC −uCεC ∈ n (C,C).)

Then, F ◦ ĩd = F̃ 514. Hence, (13.42.28) becomes

(13.42.29) f = log
?

F̃︸︷︷︸
=F◦ĩd

= log
?
(
F ◦ ĩd

)
.

Proposition 1.7.11(i) (applied to C, A, F , log and ĩd instead of A, B, s, u and f) shows that

F ◦ ĩd ∈ n (C,A) and log
?
(
F ◦ ĩd

)
= F ◦

(
log

?
(

ĩd
))

.

Now, (13.42.29) becomes

f = log
?
(
F ◦ ĩd

)
= F ◦

(
log

?
(

ĩd
))

.

Hence,

f (C) =
(
F ◦

(
log

?
(

ĩd
)))

(C) = F

(log
?
(

ĩd
))

(C)︸ ︷︷ ︸
⊂C

 ⊂ F (C) .

But F (C) is a k-subalgebra of A (since F is a k-algebra homomorphism). Hence, (13.42.27) (applied to
D = F (C)) shows that F (C) = A (since f (C) ⊂ F (C)). In other words, the map F is surjective.

Hence, F is a surjective k-algebra homomorphism. In other words, exp? f is a surjective k-algebra
homomorphism (since F = exp? f). This proves Proposition 1.7.27. �

We have now proven Lemmas 1.7.24 and 1.7.25 and Propositions 1.7.21, 1.7.22, 1.7.23, 1.7.26 and 1.7.27.
Thus, Exercise 1.7.28 is solved.

13.43. Solution to Exercise 1.7.33. Solution to Exercise 1.7.33. We begin by proving some simple lem-
mas:

Lemma 13.43.1. Let C be a k-coalgebra. Let A be a k-algebra. Let f ∈ Hom (C,A). Then, every n ∈ N
satisfies

(13.43.1) f?n (C) ⊂ (f (C))
n
.

(Here, we set V 0 = k · 1A for any k-submodule V of A.)

Proof of Lemma 13.43.1. We must prove the relation (13.43.1). We shall prove it by induction over n:
Induction base: We have f?0 = (the unity of the k-algebra (Hom (C,A) , ?)) = uAεC . Thus, every x ∈ C

satisfies

f?0︸︷︷︸
=uAεC

(x) = (uAεC) (x) = uA (εC (x)) = εC (x)︸ ︷︷ ︸
∈k

·1A (by the definition of uA)

∈ k · 1A = (f (C))
0

(
since (f (C))

0
= k · 1A

)
.

In other words, we have f?0 (C) ⊂ (f (C))
0
. In other words, (13.43.1) holds for n = 0.

Induction step: Let N ∈ N. Assume that (13.43.1) holds for n = N . We must prove that (13.43.1) holds
for n = N + 1.

514Proof. Recall that F is a k-algebra homomorphism. In other words, F is a k-linear map satisfying F ◦mC = mA◦(F ⊗ F )
and F ◦ uC = uA. Now,

F ◦ ĩd︸︷︷︸
=idC −uCεC

= F ◦ (idC −uCεC) = F ◦ idC︸ ︷︷ ︸
=F

−F ◦ (uCεC)︸ ︷︷ ︸
=F◦uC◦εC

(since composition of k-linear maps is k-bilinear)

= F − F ◦ uC︸ ︷︷ ︸
=uA

◦εC = F − uA ◦ εC = F − uAεC = F̃ .
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If X and Y are two k-submodules of A, then the multiplication mA : A ⊗ A → A of the k-algebra A
satisfies

(13.43.2) mA (X ⊗ Y ) = XY.

(This follows easily from the definitions of mA and of XY .)

We have assumed that (13.43.1) holds for n = N . In other words, we have f?N (C) ⊂ (f (C))
N

. But

f?(N+1) = f ? f?N = mA ◦
(
f ⊗ f?N

)
◦∆C (by the definition of convolution) .

Hence,

f?(N+1)︸ ︷︷ ︸
=mA◦(f⊗f?N )◦∆C

(C) =
(
mA ◦

(
f ⊗ f?N

)
◦∆C

)
(C) = mA

(f ⊗ f?N)
∆C (C)︸ ︷︷ ︸
⊂C⊗C




⊂ mA

(f ⊗ f?N) (C ⊗ C)︸ ︷︷ ︸
=f(C)⊗f?N (C)

 = mA

(
f (C)⊗ f?N (C)

)
= f (C) · f?N (C)︸ ︷︷ ︸

⊂(f(C))N

(
by (13.43.2) (applied to X = f (C) and Y = f?N (C) )

)
⊂ f (C) · (f (C))

N
= (f (C))

N+1
.

In other words, (13.43.1) holds for n = N+1. This completes the induction step. Thus, the proof of (13.43.1)
by induction is complete. In other words, Lemma 13.43.1 is proven. �

Lemma 13.43.2. Let A be a k-bialgebra. Let ĩd be the k-linear map idA−uAεA : A→ A. Then:

(a) We have ker ĩd = k · 1A.

(b) We have ĩd (A) ⊂ ker ε.

Proof of Lemma 13.43.2. The axioms of a k-bialgebra yield εA (1A) = 1 (since A is a k-bialgebra). Also, the
definition of uA yields uA (1) = 1 · 1A = 1A.

We have

ĩd︸︷︷︸
=idA−uAεA

(1A) = (idA−uAεA) (1A) = idA (1A)︸ ︷︷ ︸
=1A

− (uAεA) (1A)︸ ︷︷ ︸
=uA(εA(1A))

= 1A − uA

εA (1A)︸ ︷︷ ︸
=1


= 1A − uA (1)︸ ︷︷ ︸

=1A

= 1A − 1A = 0.

Now, the map ĩd = idA−uAεA is k-linear (since all three maps idA, uA and εA are k-linear). Therefore,

ĩd (k · 1A) = k · ĩd (1A)︸ ︷︷ ︸
=0

= k · 0 = 0. Hence, k · 1A ⊂ ker ĩd.

On the other hand, let x ∈ ker ĩd. Thus, ĩd (x) = 0. Comparing this to

ĩd︸︷︷︸
=idA−uAεA

(x) = (idA−uAεA) (x) = idA (x)︸ ︷︷ ︸
=x

− (uAεA) (x)︸ ︷︷ ︸
=uA(εA(x))
=εA(x)·1A

(by the definition of uA)

= x− εA (x) · 1A,

we obtain x− εA (x) · 1A = 0. Thus, x = εA (x)︸ ︷︷ ︸
∈k

·1A ∈ k · 1A.

Now, forget that we fixed x. We thus have proven that x ∈ k · 1A for each x ∈ ker ĩd. In other words,

ker ĩd ⊂ k ·1A. Combining this with k ·1A ⊂ ker ĩd, we obtain ker ĩd = k ·1A. This proves Lemma 13.43.2(a).
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(b) The axioms of a k-bialgebra yield εA ◦ uA = idk (since A is a k-bialgebra). Now,

εA ◦ ĩd︸︷︷︸
=idA−uAεA

= εA ◦ (idA−uAεA) = εA ◦ idA︸ ︷︷ ︸
=εA

− εA ◦ (uAεA)︸ ︷︷ ︸
=εA◦uA◦εA

(since composition of k-linear maps is k-bilinear)

= εA − εA ◦ uA︸ ︷︷ ︸
=idk

◦εA = εA − εA = 0.

Hence, εA

(
ĩd (A)

)
=
(
εA ◦ ĩd

)
︸ ︷︷ ︸

=0

(A) = 0 (A) = 0. Therefore, ĩd (A) ⊂ ker

 εA︸︷︷︸
=ε

 = ker ε. This proves

Lemma 13.43.2(b). �

Lemma 13.43.3. Let A be a k-bialgebra. Then, A/
(
k · 1A + (ker ε)

2
)
∼= (ker ε) / (ker ε)

2
as k-modules.

Proof of Lemma 13.43.3. The axioms of a k-bialgebra show that the counit ε of A is a k-algebra homomor-
phism (since A is a k-bialgebra). Thus, ker ε is an ideal of A. Now, (ker ε)

2
= (ker ε)︸ ︷︷ ︸

⊂A

(ker ε) ⊂ A (ker ε) ⊂ ker ε

(since ker ε is an ideal of A). Hence, the quotient (ker ε) / (ker ε)
2

makes sense.

Let ĩd be the map idA−uAεA : A→ A. Then, Lemma 13.43.2(a) shows that ker ĩd = k · 1A.

Lemma 13.43.2(b) shows that ĩd (A) ⊂ ker ε. Thus, each a ∈ A satisfies ĩd

 a︸︷︷︸
∈A

 ∈ ĩd (A) ⊂ ker ε.

Hence, we can define a map π : A→ ker ε by(
π (a) = ĩd (a) for each a ∈ A

)
.

Consider this map π. This map π differs from ĩd only in its target (namely, its target is ker ε, whereas the

target of ĩd is A); therefore, this map π is k-linear (since the map ĩd is k-linear).
Each a ∈ ker ε satisfies

π (a) = ĩd︸︷︷︸
=idA−uAεA

(a) = (idA−uAεA) (a) = idA (a)︸ ︷︷ ︸
=a

− (uAεA) (a)︸ ︷︷ ︸
=uA(εA(a))

= a− uA

 εA︸︷︷︸
=ε

(a)



= a− uA

 ε (a)︸︷︷︸
=0

(since a∈ker ε)

 = a− uA (0)︸ ︷︷ ︸
=0

(since the map uA is k-linear)

= a.

Hence, each a ∈ ker ε satisfies a = π

 a︸︷︷︸
∈A

 ∈ π (A). In other words, we have ker ε ⊂ π (A). Hence, the

map π is surjective.
Let γ be the canonical projection ker ε → (ker ε) / (ker ε)

2
. Thus, the map γ is surjective and satisfies

ker γ = (ker ε)
2
.

Both maps γ and π are k-linear. Thus, their composition γ ◦ π is k-linear. Hence, its kernel ker (γ ◦ π) is
a k-submodule of A.

The map γ ◦ π : A → (ker ε) / (ker ε)
2

is the composition of two surjective maps (since the two maps γ

and π are surjective), and thus is itself surjective. In other words, (ker ε) / (ker ε)
2

= (γ ◦ π) (A).
It is known that if V and W are two k-modules, and if δ : V →W is a k-linear map, then δ (V ) ∼= V/ ker δ

as k-modules. Applying this to V = A, W = (ker ε) / (ker ε)
2

and δ = γ ◦ π, we conclude that (γ ◦ π) (A) ∼=
A/ ker (γ ◦ π) as k-modules. Thus,

(13.43.3) (ker ε) / (ker ε)
2

= (γ ◦ π) (A) ∼= A/ ker (γ ◦ π)
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as k-modules.
Now, let us show that ker (γ ◦ π) = k · 1A + (ker ε)

2
.

We first observe that k · 1A ⊂ ker (γ ◦ π) 515 and (ker ε)
2 ⊂ ker (γ ◦ π) 516. Hence,

(13.43.4) k · 1A︸ ︷︷ ︸
⊂ker(γ◦π)

+ (ker ε)
2︸ ︷︷ ︸

⊂ker(γ◦π)

⊂ ker (γ ◦ π) + ker (γ ◦ π) ⊂ ker (γ ◦ π)

(since ker (γ ◦ π) is a k-submodule of A).

On the other hand, let z ∈ ker (γ ◦ π) be arbitrary. We shall show that z ∈ k · 1A + (ker ε)
2
.

We have γ (π (z)) = (γ ◦ π) (z) = 0 (since z ∈ ker (γ ◦ π)), so that π (z) ∈ ker γ = (ker ε)
2
. But the

definition of π yields

π (z) = ĩd︸︷︷︸
=idA−uAεA

(z) = (idA−uAεA) (z) = idA (z)︸ ︷︷ ︸
=z

− (uAεA) (z)︸ ︷︷ ︸
=uA(εA(z))
=εA(z)·1A

(by the definition of uA)

= z − εA (z) · 1A.

Hence,

z − εA (z) · 1A = π (z) ∈ (ker ε)
2
.

Therefore,

z ∈ εA (z)︸ ︷︷ ︸
∈k

·1A + (ker ε)
2 ⊂ k · 1A + (ker ε)

2
.

Now, forget that we fixed z. We thus have shown that z ∈ k ·1A+(ker ε)
2

for each z ∈ ker (γ ◦ π). In other

words, ker (γ ◦ π) ⊂ k · 1A + (ker ε)
2
. Combining this with (13.43.4), we obtain ker (γ ◦ π) = k · 1A + (ker ε)

2
.

Thus, (13.43.3) becomes

(ker ε) / (ker ε)
2 ∼= A/ ker (γ ◦ π)︸ ︷︷ ︸

=k·1A+(ker ε)2

= A/
(
k · 1A + (ker ε)

2
)

as k-modules. This proves Lemma 13.43.3. �

Proof of Theorem 1.7.29. Proposition 1.7.11(j) (applied to C = A and F = idA) yields that idA−uAεA ∈
n (A,A) (since idA : A → A is a k-algebra homomorphism). Thus, the map log? (idA) ∈ n (A,A) is well-
defined. This proves Theorem 1.7.29(a).

Define an element ĩd of n (A,A) by ĩd = idA−uAεA. (This is well-defined, since idA−uAεA ∈ n (A,A).)

515Proof. We have 1A = 1︸︷︷︸
∈k

·1A ∈ k · 1A = ker ĩd (since ker ĩd = k · 1A) and thus ĩd (1A) = 0. The definition of π yields

π (1A) = ĩd (1A) = 0. Now, (γ ◦ π) (1A) = γ

π (1A)︸ ︷︷ ︸
=0

 = γ (0) = 0 (since the map γ is k-linear). Since the map γ ◦π is k-linear,

we have (γ ◦ π) (k · 1A) = k · (γ ◦ π) (1A)︸ ︷︷ ︸
=0

= k · 0 = 0. In other words, k · 1A ⊂ ker (γ ◦ π).

516Proof. Let x ∈ (ker ε)2. Thus, x ∈ (ker ε)2 ⊂ ker ε, so that ε (x) = 0.
The definition of π yields

π (x) = ĩd︸︷︷︸
=idA −uAεA

(x) = (idA−uAεA) (x) = idA (x)︸ ︷︷ ︸
=x

− (uAεA) (x)︸ ︷︷ ︸
=uA(εA(x))
=εA(x)·1A

(by the definition of uA)

= x− εA︸︷︷︸
=ε

(x) · 1A

= x− ε (x)︸︷︷︸
=0

·1A = x− 0 · 1A︸ ︷︷ ︸
=0

= x ∈ (ker ε)2 = ker γ

(since ker γ = (ker ε)2). Therefore, γ (π (x)) = 0. Now, (γ ◦ π) (x) = γ (π (x)) = 0, so that x ∈ ker (γ ◦ π).

Now, forget that we fixed x. We thus have shown that x ∈ ker (γ ◦ π) for each x ∈ (ker ε)2. In other words, (ker ε)2 ⊂
ker (γ ◦ π).
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(b) The axioms of a k-bialgebra show that ε : A → k is a k-algebra homomorphism. Thus, ker ε is an
ideal of A. Now, it is easy to see that if n ∈ N and m ∈ N satisfy n ≥ m > 0, then517

(13.43.5) ĩd
?n

(A) ⊂ (ker ε)
m
.

[Proof of (13.43.5): Let n ∈ N and m ∈ N be such that n ≥ m > 0. Then, (ker ε)
m

is an ideal of A (since

ker ε is an ideal of A, and since m > 0). But Lemma 13.43.1 (applied to C = A and f = ĩd) yields

ĩd
?n

(A) ⊂

 ĩd (A)︸ ︷︷ ︸
⊂ker ε

(by Lemma 13.43.2(b))


n

⊂ (ker ε)
n

= (ker ε)
n−m︸ ︷︷ ︸

⊂A

(ker ε)
m

(since n ≥ m)

⊂ A (ker ε)
m ⊂ (ker ε)

m
(since (ker ε)

m
is an ideal of A) .

This proves (13.43.5).]

Proposition 1.7.18(f) (applied to C = A and f = ĩd) yields

log?
(

ĩd + uAεA

)
=
∑
n≥1

(−1)
n−1

n
ĩd
?n
.

Since ĩd + uAεA = idA (because ĩd = idA−uAεA), this rewrites as

log? (idA) =
∑
n≥1

(−1)
n−1

n
ĩd
?n
.

Thus,

e = log? (idA) =
∑
n≥1

(−1)
n−1

n
ĩd
?n

(13.43.6)

=
(−1)

1−1

1︸ ︷︷ ︸
=1

ĩd
?1︸︷︷︸

=ĩd

+
∑
n≥2

(−1)
n−1

n
ĩd
?n

= ĩd +
∑
n≥2

(−1)
n−1

n
ĩd
?n
.(13.43.7)

Furthermore,

(13.43.8) e (1A) = 0.

[Proof of (13.43.8): Lemma 13.42.3 (applied to C = A and f = ĩd) shows that every n ∈ N satisfies

(13.43.9) ĩd
?n

(1A) =
(

ĩd (1A)
)n

.

But Lemma 13.43.2(a) yields ker ĩd = k · 1A. Hence, 1A = 1︸︷︷︸
∈k

·1A ∈ k · 1A = ker ĩd, so that ĩd (1A) = 0.

Now, if n is any positive integer, then

ĩd
?n

(1A) =

ĩd (1A)︸ ︷︷ ︸
=0

n

(by (13.43.9))

= 0n = 0 (since n is a positive integer) .(13.43.10)

Applying both sides of the equality (13.43.6) to 1A, we obtain

e (1A) =

∑
n≥1

(−1)
n−1

n
ĩd
?n

 (1A) =
∑
n≥1

(−1)
n−1

n
ĩd
?n

(1A)︸ ︷︷ ︸
=0

(by (13.43.10))

=
∑
n≥1

(−1)
n−1

n
0 = 0.

This proves (13.43.8).]

517Here, we set V 0 = k · 1A for any k-submodule V of A.
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The map e is k-linear (since e = log? (idA) ∈ n (A,A) ⊂ Hom (A,A)). Thus,

e (k · 1A) = k · e (1A)︸ ︷︷ ︸
=0

(by (13.43.8))

= k · 0 = 0.

But Exercise 1.3.20(c) shows that A0 = k · 1A. Applying the map e to both sides of this equality, we find

(13.43.11) e (A0) = e (k · 1A) = 0.

Furthermore, recall that idA−uAεA ∈ n (A,A). Hence, Proposition 1.7.18(b) (applied to g = idA) yields
exp? (log? (idA)) = idA. Thus,

(13.43.12) exp? e︸︷︷︸
=log?(idA)

= exp? (log? (idA)) = idA .

Thus, exp? e : A → A is a k-algebra homomorphism (since idA : A → A is a k-algebra homomorphism).
Hence, Proposition 1.7.26 (applied to C = A and f = e) shows that

(13.43.13) e
(

(ker ε)
2
)

= 0.

The map e is k-linear. Thus,

e
(
k · 1A + (ker ε)

2
)

= k · e (1A)︸ ︷︷ ︸
=0

(by (13.43.8))

+ e
(

(ker ε)
2
)

︸ ︷︷ ︸
=0

(by (13.43.13))

= k · 0 + 0 = 0.

In other words,

(13.43.14) k · 1A + (ker ε)
2 ⊂ ker e.

On the other hand, let us prove the reverse inclusion. Let us first observe that each x ∈ A satisfies

(13.43.15) ĩd (x)− e (x) ∈ (ker ε)
2
.

[Proof of (13.43.15): Let x ∈ A. Applying both sides of the equality (13.43.7) to x, we find

e (x) =

ĩd +
∑
n≥2

(−1)
n−1

n
ĩd
?n

 (x) = ĩd (x) +
∑
n≥2

(−1)
n−1

n
ĩd
?n

(x) .

Subtracting ĩd (x) from both sides of this equality, we find

e (x)− ĩd (x) =
∑
n≥2

(−1)
n−1

n
ĩd
?n

 x︸︷︷︸
∈A

 ∈∑
n≥2

(−1)
n−1

n
ĩd
?n

(A)︸ ︷︷ ︸
⊂(ker ε)2

(by (13.43.5) (applied to m=2)
(since n≥2>0))

⊂
∑
n≥2

(−1)
n−1

n
(ker ε)

2 ⊂ (ker ε)
2

(
since (ker ε)

2
is a k-submodule of A

)
.

Hence,

ĩd (x)− e (x) = −
(
e (x)− ĩd (x)

)
︸ ︷︷ ︸

∈(ker ε)2

∈ − (ker ε)
2 ⊂ (ker ε)

2
(

since (ker ε)
2

is a k-submodule of A
)
.

This proves (13.43.15).]

Now, let x ∈ ker e. Thus, e (x) = 0. Now, (13.43.15) yields ĩd (x)− e (x) ∈ (ker ε)
2
.

But

ĩd (x)− e (x)︸︷︷︸
=0

= ĩd︸︷︷︸
=idA−uAεA

(x) = (idA−uAεA) (x) = idA (x)︸ ︷︷ ︸
=x

− (uAεA) (x)︸ ︷︷ ︸
=uA(εA(x))
=εA(x)·1A

(by the definition of uA)

= x− εA (x) · 1A.
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Thus,

x− εA (x) · 1A = ĩd (x)− e (x) ∈ (ker ε)
2

(by (13.43.15)) .

Hence,

x ∈ εA (x)︸ ︷︷ ︸
∈k

·1A + (ker ε)
2 ⊂ k · 1A + (ker ε)

2
.

Now, forget that we fixed x. We thus have shown that every x ∈ ker e satisfies x ∈ k · 1A + (ker ε)
2
. In

other words, we have ker e ⊂ k · 1A + (ker ε)
2
. Combining this with (13.43.14), we obtain

(13.43.16) ker e = k · 1A + (ker ε)
2
.

Thus, one part of Theorem 1.7.29(b) is proven. It remains to show that e (A) ∼= (ker ε) / (ker ε)
2

(as k-
modules).

It is known that if V and W are two k-modules, and if δ : V →W is a k-linear map, then δ (V ) ∼= V/ ker δ
as k-modules. Applying this to V = A, W = A and δ = e, we obtain

e (A) ∼= A/ ker e︸︷︷︸
=k·1A+(ker ε)2

(by (13.43.16))

= A/
(
k · 1A + (ker ε)

2
)
∼= (ker ε) / (ker ε)

2
(by Lemma 13.43.3)

as k-modules. This completes the proof of Theorem 1.7.29(b).
(c) The definition of q shows that

(13.43.17) q (x) = ιe(A) (e (x)) for each x ∈ A.

Thus, each x ∈ A0 satisfies

q (x) = ιe(A)

e

 x︸︷︷︸
∈A0

 ∈ ιe(A)

 e (A0)︸ ︷︷ ︸
=0

(by (13.43.11))

 = ιe(A) (0) = 0.

In other words, we have q (A0) = 0. Hence, Proposition 1.7.11(h) (applied to A, Sym (e (A)) and q instead
of C, A and f) shows that q ∈ n (A,Sym (e (A))). This proves Theorem 1.7.29(c).

(d) Theorem 1.7.29(c) yields q ∈ n (A,Sym (e (A))). Hence, exp? q ∈ Hom (A,Sym (e (A))) is well-defined.
Recall that the k-algebra SymV is commutative whenever V is a k-module. Applying this to V = e (A),

we conclude that the k-algebra Sym (e (A)) is commutative.
We have q (A) = Sym1 (e (A)) 518. Thus, q (A) generates the k-algebra Sym (e (A)) 519.

Furthermore, Theorem 1.7.29(b) yields that ker e = k · 1A + (ker ε)
2
. Hence, 1 = 1A = 1︸︷︷︸

∈k

·1A ∈ k · 1A ⊂

k · 1A + (ker ε)
2

= ker e and (ker ε)
2 ⊂ k · 1A + (ker ε)

2
= ker e. Now, (13.43.17) (applied to x = 1) yields

q (1) = ιe(A)

 e (1)︸︷︷︸
=0

(since 1∈ker e)

 = ιe(A) (0) = 0
(
since the map ιe(A) is k-linear

)
.

518Proof. Every k-module V satisfies ιV (V ) = Sym1 V . Applying this to V = e (A), we obtain ιe(A) (e (A)) = Sym1 (e (A)).
Now,

q (A) =


q (x)︸ ︷︷ ︸

=ιe(A)(e(x))

(by (13.43.17))

| x ∈ A


=
{
ιe(A) (e (x)) | x ∈ A

}
= ιe(A)

{e (x) | x ∈ A}︸ ︷︷ ︸
=e(A)

 = ιe(A) (e (A)) = Sym1 (e (A)) .

519Proof. It is known that if V is a k-module, then Sym1 V generates the k-algebra SymV . Applying this to V = e (A),
we conclude that Sym1 (e (A)) generates the k-algebra Sym (e (A)). In other words, q (A) generates the k-algebra Sym (e (A))

(since q (A) = Sym1 (e (A))).
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Also, each x ∈ (ker ε)
2

satisfies

q (x) = ιe(A)

 e (x)︸︷︷︸
=0

(since x∈(ker ε)2⊂ker e)

 (by (13.43.17))

= ιe(A) (0) = 0
(
since the map ιe(A) is k-linear

)
.

In other words, q
(

(ker ε)
2
)
⊂ 0. Hence, q

(
(ker ε)

2
)

= 0.

Thus, Proposition 1.7.27 (applied to A, Sym (e (A)) and q instead of C, A and f) shows that exp? q : A→
Sym (e (A)) is a surjective k-algebra homomorphism.

But let us recall that s is the unique k-algebra homomorphism Φ : Sym (e (A))→ A satisfying i = Φ◦ιe(A).
Hence, s is a k-algebra homomorphism Sym (e (A))→ A and satisfies i = s ◦ ιe(A).

Thus, Proposition 1.7.11(i) (applied to A, Sym (e (A)), A, s, exp and q instead of C, A, B, s, u and f)
shows that

s ◦ q ∈ n (A,A) and exp? (s ◦ q) = s ◦ (exp? q) .

Furthermore,

(13.43.18) s ◦ q = e

(since each x ∈ A satisfies

(s ◦ q) (x) = s

 q (x)︸︷︷︸
=ιe(A)(e(x))

(by (13.43.17))

 = s
(
ιe(A) (e (x))

)

=
(
s ◦ ιe(A)

)︸ ︷︷ ︸
=i

(since i=s◦ιe(A))

(e (x)) = i (e (x)) = e (x) (since i is just an inclusion map)

). Hence, the equality exp? (s ◦ q) = s ◦ (exp? q) rewrites as exp? e = s ◦ (exp? q). Comparing this with
(13.43.12), we obtain s◦(exp? q) = idA. Thus, the map exp? q has a left inverse (with respect to composition),
and hence is injective.

Now, the map exp? q is both injective and surjective. Consequently, exp? q is bijective, i.e., invertible.
Since exp? q is an invertible k-algebra homomorphism, we conclude that exp? q is a k-algebra isomorphism.
Its inverse must be s (since s ◦ (exp? q) = idA). Hence, the maps exp? q : A → Sym (e (A)) and s :
Sym (e (A))→ A are mutually inverse k-algebra isomorphisms. This proves Theorem 1.7.29(d).

(e) Theorem 1.7.29(d) shows that the maps exp? q : A→ Sym (e (A)) and s : Sym (e (A))→ A are mutually
inverse k-algebra isomorphisms. Hence, A ∼= Sym (e (A)) as k-algebras (via these isomorphisms). But Theo-

rem 1.7.29(b) shows that e (A) ∼= (ker ε) / (ker ε)
2

(as k-modules). Hence, Sym (e (A)) ∼= Sym
(

(ker ε) / (ker ε)
2
)

as k-algebras. Thus, A ∼= Sym (e (A)) ∼= Sym
(

(ker ε) / (ker ε)
2
)

as k-algebras. This proves Theorem 1.7.29(e).

(f) Let x ∈ A. We have

ĩd︸︷︷︸
=idA−uAεA

(x) = (idA−uAεA) (x) = idA (x)︸ ︷︷ ︸
=x

− (uAεA) (x)︸ ︷︷ ︸
=uA(εA(x))
=εA(x)·1A

(by the definition of uA)

= x− εA (x) · 1A,

so that x = εA (x) · 1A + ĩd (x). Subtracting e (x) from both sides of this equality, we obtain

x− e (x) = εA (x)︸ ︷︷ ︸
∈k

·1A + ĩd (x)− e (x)︸ ︷︷ ︸
∈(ker ε)2

(by (13.43.15))

∈ k · 1A + (ker ε)
2

= ker e
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(by Theorem 1.7.29(b)). In other words, e (x− e (x)) = 0. Comparing this with

e (x− e (x)) = e (x)− e (e (x))︸ ︷︷ ︸
=(e◦e)(x)

(since the map e is k-linear)

= e (x)− (e ◦ e) (x) ,

we obtain e (x)− (e ◦ e) (x) = 0. In other words, e (x) = (e ◦ e) (x).
Now, forget that we fixed x. We thus have shown that e (x) = (e ◦ e) (x) for each x ∈ A. In other words,

e = e ◦ e. In other words, e ◦ e = e. In other words, the map e : A → A is a projection. This proves
Theorem 1.7.29(f). �

13.44. Solution to Exercise 2.1.2. Solution to Exercise 2.1.2. We have f ∈ R (x). Thus, f is a formal
power series of bounded degree. In other words, f =

∑
α cαxα (with the sum ranging over all weak compo-

sitions α) for some elements cα in k such that there exists a d ∈ N such that every α satisfying deg(xα) > d
must satisfy cα = 0. Consider these cα and this d.

We have written f as the sum
∑
α cαxα. Now, substituting a1, a2, . . . , ak, 0, 0, . . . for x1, x2, x3, . . . in f

maps all but finitely many of the terms cαxα appearing in this sum to 0. In fact:

• all terms cαxα such that the monomial xα contains at least one of the variables xk+1, xk+2, xk+3, . . .
(that is, such that for some integer i > k, the i-th entry of α is nonzero) become 0 under our
substitution (because the substitution takes each of the variables xk+1, xk+2, xk+3, . . . to 0);

• all terms cαxα with deg(xα) > d become 0 under our substitution (because we know that cα = 0 for
every α satisfying deg(xα) > d);

• the remaining terms (that is, the terms cαxα satisfying neither of the preceding two conditions)
might not get sent to 0, but there are only finitely many such terms520.

Hence, our substitution maps all but finitely many of the terms cαxα appearing in the sum
∑
α cαxα to 0.

Since
∑
α cαxα = f , this rewrites as follows: Our substitution maps all but finitely many of the terms of f

to 0. This solves Exercise 2.1.2.

13.45. Solution to Exercise 2.2.9. Solution to Exercise 2.2.9. Let us first make an auxiliary observation.
Namely, let us prove the following lemma:

Lemma 13.45.1. Let ν ∈ Par and k ∈ N. Then,

(13.45.1)
(
νt
)

1
+
(
νt
)

2
+ · · ·+

(
νt
)
k

=

∞∑
j=1

min {νj , k} .

(Note that the right hand side of (13.45.1) is well-defined, because every sufficiently high j satisfies min {νj , k} =
0 (since every sufficiently high j satisfies νj = 0)).

Proof of Lemma 13.45.1. This is best seen by double-counting boxes in a Ferrers diagram. The left hand
side of (13.45.1) counts the boxes in the first k rows of the Ferrers diagram of νt. Since the Ferrers diagram
of νt is obtained from that of ν by exchanging rows for columns (i.e., reflecting the diagram across its main
diagonal), it is clear that this is the same as counting the boxes in the first k columns of the Ferrers diagram
of ν. But these latter boxes can also be counted row-by-row: For every j ∈ {1, 2, 3, . . .}, the number of boxes
in the first k columns of the Ferrers diagram of ν that lie in row j is min {νj , k}. Thus, the total amount
of boxes in the first k columns of the Ferrers diagram of ν is

∑∞
j=1 min {νj , k}, which is precisely the right

hand side of (13.45.1). Hence, the left hand side of (13.45.1) and the right hand side of (13.45.1) are equal
(since they both count the same boxes). This proves (13.45.1), and thus Lemma 13.45.1 follows. �

520In fact, these are the terms for which xα is a monomial which has degree ≤ d and contains no other variables than

x1, x2, . . . , xk. Clearly, there are only finitely many such monomials, and thus only finitely many such terms.
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Let us now come to the solution of the exercise. We need to prove that

(13.45.2)
(
if λ . µ, then µt . λt

)
and

(13.45.3)
(
if µt . λt, then λ . µ

)
.

Proof of (13.45.3): Assume that µt . λt. By the definition of the dominance order, this means that

(13.45.4)
(
µt
)

1
+
(
µt
)

2
+ ...+

(
µt
)
k
≥
(
λt
)

1
+
(
λt
)

2
+ ...+

(
λt
)
k

for all k ∈ {1, 2, ..., n} .

This inequality holds for k = 0 as well (because both sides are 0 when k = 0), and thus it holds for all
k ∈ {0, 1, ..., n}. We can further rewrite this inequality by applying (13.45.1): The left hand side becomes∑∞
j=1 min {µj , k}, and the right hand side becomes

∑∞
j=1 min {λj , k}. As a result, we obtain

(13.45.5)

∞∑
j=1

min {µj , k} ≥
∞∑
j=1

min {λj , k} for all k ∈ {0, 1, ..., n} .

Now, let k ∈ {1, 2, ..., n} be arbitrary. We are going to show that λ1 + λ2 + ...+ λk ≥ µ1 + µ2 + ...+ µk.
First of all, λ ∈ Parn, so that n = |λ| ≥ λk. Thus, λk ∈ {0, 1, ..., n}. Therefore, (13.45.5) (applied to λk

instead of k) yields that

(13.45.6)

∞∑
j=1

min {µj , λk} ≥
∞∑
j=1

min {λj , λk} .

But the right hand side of this inequality can be rewritten as follows:

∞∑
j=1

min {λj , λk} =

k∑
j=1

min {λj , λk}︸ ︷︷ ︸
=λk

(since j≤k and thus λj≥λk
(because λ is a partition))

+

∞∑
j=k+1

min {λj , λk}︸ ︷︷ ︸
=λj

(since j>k and thus λj≤λk
(because λ is a partition))

=

k∑
j=1

λk︸ ︷︷ ︸
=kλk

+

∞∑
j=k+1

λj︸ ︷︷ ︸
=λk+1+λk+2+λk+3+...
=|λ|−(λ1+λ2+...+λk)

= kλk + |λ|︸︷︷︸
=n

− (λ1 + λ2 + ...+ λk)

= kλk + n− (λ1 + λ2 + ...+ λk) .(13.45.7)

Meanwhile, the left hand side can be bounded from above:

∞∑
j=1

min {µj , λk} =
k∑
j=1

min {µj , λk}︸ ︷︷ ︸
≤λk

+

∞∑
j=k+1

min {µj , λk}︸ ︷︷ ︸
≤µj

≤
k∑
j=1

λk︸ ︷︷ ︸
=kλk

+

∞∑
j=k+1

µj︸ ︷︷ ︸
=µk+1+µk+2+µk+3+...
=|µ|−(µ1+µ2+...+µk)

= kλk + |µ|︸︷︷︸
=n

− (µ1 + µ2 + ...+ µk)

= kλk + n− (µ1 + µ2 + ...+ µk) .(13.45.8)

Now, (13.45.6) yields

0 ≤
∞∑
j=1

min {µj , λk}︸ ︷︷ ︸
≤kλk+n−(µ1+µ2+...+µk)

(by (13.45.8))

−
∞∑
j=1

min {λj , λk}︸ ︷︷ ︸
=kλk+n−(λ1+λ2+...+λk)

(by (13.45.7))

≤ (kλk + n− (µ1 + µ2 + ...+ µk))− (kλk + n− (λ1 + λ2 + ...+ λk))

= (λ1 + λ2 + ...+ λk)− (µ1 + µ2 + ...+ µk) .
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In other words, λ1 + λ2 + ...+ λk ≥ µ1 + µ2 + ...+ µk.
Now, forget that we fixed k. We thus have shown that

λ1 + λ2 + ...+ λk ≥ µ1 + µ2 + ...+ µk for all k ∈ {1, 2, ..., n} .

In other words, λ . µ. This proves (13.45.3).

Proof of (13.45.2): Assume that λ . µ. We have (λt)
t

= λ . µ = (µt)
t
. Thus, we can apply (13.45.3) to

µt and λt instead of λ and µ. As a result, we obtain µt . λt. This proves (13.45.2).
Combining (13.45.2) and (13.45.3), we obtain the equivalence of the two assertions λ.µ and µt .λt. This

solves Exercise 2.2.9.

13.46. Solution to Exercise 2.2.13. Solution to Exercise 2.2.13. Let us first introduce some terminology.

Definition 13.46.1. If α ∈ N∞ is any sequence, and if i is any positive integer, then αi shall denote the
i-th entry of α. (This generalizes the notation λi for the i-th entry of a partition λ.) Thus, any sequence
α ∈ N∞ satisfies α = (α1, α2, α3, . . .).

Definition 13.46.2. Let WC denote the set of all weak compositions. For every f ∈ k [[x]] and µ ∈ WC,
we let [xµ] f denote the coefficient of the monomial xµ in the power series f . (This generalizes the notation
[xµ] f introduced in Exercise 2.2.13(a).)

We observe the following obvious facts:

• For any α ∈WC and µ ∈WC, we have

(13.46.1) [xµ] (xα) = δµ,α.

• If a power series f ∈ k [[x]] is written in the form f =
∑
α∈WC cαxα for some family (cα)α∈WC ∈ kWC

of scalars, then

(13.46.2) every α ∈WC satisfies [xα] f = cα.

(a) Let f ∈ Λn. Thus,

f ∈ Λn ⊂ Λ =

{ ∑
α∈WC

cαxα ∈ R (x) | cα = cβ if α, β lie in the same S(∞)-orbit

}
(by the definition of Λ). In other words, f can be written in the form f =

∑
α∈WC cαxα for some family

(cα)α∈WC ∈ kWC of scalars having the property that

(13.46.3)
(
cα = cβ if α, β lie in the same S(∞)-orbit

)
.

Consider this family (cα)α∈WC. From (13.46.2), we conclude that every α ∈WC satisfies

(13.46.4) [xα] f = cα.

Now, fix α ∈WC. Thus, α is a weak composition (since WC is the set of all weak compositions). Hence,
there exists a unique partition λ that is a permutation of α 521. Thus, the sum

∑
λ is a partition;

λ is a permutation of α

xα

has only one addend. Therefore, this sum simplifies as follows:

(13.46.5)
∑

λ is a partition;
λ is a permutation of α

xα = xα.

521Namely, this partition λ is the result of sorting the entries of α into decreasing order (or, more precisely: moving
the positive entries of α to the left of all zero entries, and then sorting the former into decreasing order). For example, if

α = (0, 2, 5, 0, 3, 1, 0, 0, 1, 0, 0, . . .), then this partition λ is (5, 3, 2, 1, 1, 0, 0, . . .).
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Thus,

(13.46.6) xα =
∑

λ is a partition;
λ is a permutation of α︸ ︷︷ ︸

=
∑

λ is a partition;
α is a permutation of λ

=
∑

λ is a partition;
α∈S(∞)λ

=
∑

λ∈Par;
α∈S(∞)λ

xα =
∑
λ∈Par;
α∈S(∞)λ

xα.

Now, forget that we fixed α. We thus have proven that (13.46.6) holds for each α ∈WC.
Recall that each λ ∈ Par satisfies

(13.46.7) mλ =
∑

α∈WC;
α∈S(∞)λ

xα

(by (2.1.1)).
Now,

f =
∑
α∈WC

cα xα︸︷︷︸
=

∑
λ∈Par;
α∈S(∞)λ

xα

(by (13.46.6))

=
∑
α∈WC

cα
∑
λ∈Par;
α∈S(∞)λ

xα

=
∑
α∈WC

∑
λ∈Par;
α∈S(∞)λ︸ ︷︷ ︸

=
∑
λ∈Par

∑
α∈WC;
α∈S(∞)λ

cα︸︷︷︸
=cλ

(by (13.46.3), applied to β=λ
(since α,λ lie in the same S(∞)-orbit

(since α∈S(∞)λ)))

xα

=
∑
λ∈Par

∑
α∈WC;
α∈S(∞)λ

cλx
α =

∑
λ∈Par

cλ
∑

α∈WC;
α∈S(∞)λ

xα

︸ ︷︷ ︸
=mλ

(by (13.46.7))

=
∑
λ∈Par

cλmλ.(13.46.8)

Now, let πn : k [[x]] → k [[x]] be the projection that maps each power series g ∈ k [[x]] to its n-th
homogeneous component. Then, the definition of πn shows that the following holds:

• If g ∈ k [[x]] is a homogeneous power series of degree n, then

(13.46.9) πn (g) = g.

• If g ∈ k [[x]] is a homogeneous power series of degree 6= n, then

(13.46.10) πn (g) = 0.

We can now use this to compute πn (mλ) for each λ ∈ Par.
First, let us notice that

(13.46.11) mλ is a homogeneous power series of degree |λ|

for each λ ∈ Par. (This is clear, because each of the addends xα on the right hand side of (13.46.7) is a
monomial of degree |α| = |λ|.)

Now, we conclude the following:

• If λ ∈ Par satisfies |λ| = n, then

(13.46.12) πn (mλ) = mλ

522.

522Proof of (13.46.12): Let λ ∈ Par be such that |λ| = n. Then, (13.46.11) shows that mλ is a homogeneous power series

of degree |λ| = n. Hence, (13.46.9) (applied to g = mλ) shows that πn (mλ) = mλ. This proves (13.46.12).
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• If λ ∈ Par satisfies |λ| 6= n, then

(13.46.13) πn (mλ) = 0
523.

Finally, let us apply the map πn to both sides of the equality (13.46.8). We thus obtain

πn (f) = πn

( ∑
λ∈Par

cλmλ

)
=
∑
λ∈Par

cλπn (mλ)(
since the map πn respects infinite k-linear combinations

(because πn is k-linear and continuous)

)
=

∑
λ∈Par;
|λ|=n︸ ︷︷ ︸

=
∑
λ∈Parn

(since {λ∈Par | |λ|=n}=Parn )

cλ πn (mλ)︸ ︷︷ ︸
=mλ

(by (13.46.12))

+
∑
λ∈Par;
|λ|6=n

cλ πn (mλ)︸ ︷︷ ︸
=0

(by (13.46.13))

=
∑

λ∈Parn

cλmλ +
∑
λ∈Par;
|λ|6=n

cλ0

︸ ︷︷ ︸
=0

=
∑

λ∈Parn

cλmλ.

But f is a homogeneous power series of degree n (since f ∈ Λn). Thus, (13.46.9) (applied to g = f) yields
πn (f) = f . Hence,

f = πn (f) =
∑

λ∈Parn

cλmλ =
∑

µ∈Parn

cµmµ

(here, we have renamed the summation index λ as µ). Comparing this with∑
µ∈Parn

([xµ] f)︸ ︷︷ ︸
=cµ

(by (13.46.4) (applied to α=µ))

mµ =
∑

µ∈Parn

cµmµ,

we obtain f =
∑
µ∈Parn

([xµ] f)mµ. This solves Exercise 2.2.13(a).

(b) Let λ be a partition. Let µ be a weak composition. We must prove that the number Kλ,µ is well-
defined. In other words, we must prove that there are only finitely many column-strict tableaux T of shape
λ having cont (T ) = µ.

Let F be the Ferrers diagram of λ (as a set of cells). Thus, F is a finite subset of {1, 2, 3, . . .}2.
Any column-strict tableau of shape λ is an assignment of entries in {1, 2, 3, . . .} to the cells of the Ferrers

diagram of λ. In other words, any column-strict tableau of shape λ is map F → {1, 2, 3, . . .} (since F is the
set of all cells of the Ferrers diagram of λ).

The sequence µ is a weak composition, and thus has a finite support. In other words, the support of µ is
finite. Let W be this support. Thus, W is a finite set, and satisfies

W = (the support of µ)

= (the set of all positive integers i for which µi 6= 0)(13.46.14)

(by the definition of the support of µ). Thus, W ⊂ {1, 2, 3, . . .}.
It is well-known that if X, Y and Z are three sets such that X ⊂ Y , then

XZ ∼=
{
f ∈ Y Z | f (Z) ⊂ X

}
as sets.

Applying this to X = W , Y = {1, 2, 3, . . .} and Z = F , we conclude that

(13.46.15) WF ∼=
{
f ∈ {1, 2, 3, . . .}F | f (F ) ⊂W

}
as sets.

But F and W are finite sets. Hence, WF is also a finite set. Thus,
{
f ∈ {1, 2, 3, . . .}F | f (F ) ⊂W

}
is a

finite set (because of (13.46.15)).

523Proof of (13.46.13): Let λ ∈ Par be such that |λ| 6= n. Then, (13.46.11) shows that mλ is a homogeneous power series

of degree |λ| 6= n. Hence, (13.46.10) (applied to g = mλ) shows that πn (mλ) = 0. This proves (13.46.13).
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Now, let T be a column-strict tableau of shape λ having cont (T ) = µ. We shall prove that T ∈{
f ∈ {1, 2, 3, . . .}F | f (F ) ⊂W

}
.

Indeed, T is a map F → {1, 2, 3, . . .} (since any column-strict tableau of shape λ is a map F →
{1, 2, 3, . . .}), hence an element of {1, 2, 3, . . .}F .

Furthermore, T (F ) ⊂ W 524. Hence, T is an f ∈ {1, 2, 3, . . .}F satisfying f (F ) ⊂ W (since T is an

element of {1, 2, 3, . . .}F and satisfies T (F ) ⊂W ). In other words,

T ∈
{
f ∈ {1, 2, 3, . . .}F | f (F ) ⊂W

}
.

Now, forget that we fixed T . We thus have shown that every column-strict tableau T of shape λ having

cont (T ) = µ satisfies T ∈
{
f ∈ {1, 2, 3, . . .}F | f (F ) ⊂W

}
. In other words,

{column-strict tableaux T of shape λ having cont (T ) = µ} ⊂
{
f ∈ {1, 2, 3, . . .}F | f (F ) ⊂W

}
.

Hence, {column-strict tableaux T of shape λ having cont (T ) = µ} is a finite set (since{
f ∈ {1, 2, 3, . . .}F | f (F ) ⊂W

}
is a finite set). In other words, there are only finitely many column-strict

tableaux T of shape λ having cont (T ) = µ. This solves Exercise 2.2.13(b).
(c) Let λ ∈ Parn. The definition of sλ yields

sλ =
∑
T

xcont(T ),

where T runs through all column-strict tableaux of shape λ. In other words,

sλ =
∑

T is a column-strict
tableau of shape λ

xcont(T ).

524Proof. Let j ∈ T (F ). Then, j ∈ {1, 2, 3, . . .}. Furthermore, there exists some c ∈ F satisfying j = T (c) (since j ∈ T (F )).

Consider this c. From j = T (c), we obtain c ∈ T−1 (j). Hence, the set T−1 (j) contains at least one element (namely, c).

Therefore,
∣∣T−1 (j)

∣∣ ≥ 1.

But µ = cont (T ) =
(∣∣T−1 (1)

∣∣ , ∣∣T−1 (2)
∣∣ , ∣∣T−1 (3)

∣∣ , . . .) (by the definition of cont (T )). Hence, µj =
∣∣T−1 (j)

∣∣ ≥
1 > 0. Hence, µj 6= 0. Thus, j belongs to the set of all positive integers i for which µi 6= 0. In other words,
j ∈ (the set of all positive integers i for which µi 6= 0). In light of (13.46.14), this rewrites as j ∈W .

Now, forget that we fixed j. We thus have shown that j ∈W for each j ∈ T (F ). In other words, T (F ) ⊂W .
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Now, every µ ∈ Parn satisfies

[xµ]

 sλ︸︷︷︸
=

∑
T is a column-strict
tableau of shape λ

xcont(T )


= [xµ]

 ∑
T is a column-strict
tableau of shape λ

xcont(T )

 =
∑

T is a column-strict
tableau of shape λ

[xµ]
(
xcont(T )

)
︸ ︷︷ ︸

=δµ,cont(T )

(by (13.46.1) (applied to α=cont(T )))

=
∑

T is a column-strict
tableau of shape λ

δµ,cont(T ) =
∑

T is a column-strict
tableau of shape λ;

µ=cont(T )

δµ,cont(T )︸ ︷︷ ︸
=1

(since µ=cont(T ))

+
∑

T is a column-strict
tableau of shape λ;

µ6=cont(T )

δµ,cont(T )︸ ︷︷ ︸
=0

(since µ6=cont(T ))

=
∑

T is a column-strict
tableau of shape λ;

µ=cont(T )

1 +
∑

T is a column-strict
tableau of shape λ;

µ6=cont(T )

0

︸ ︷︷ ︸
=0

=
∑

T is a column-strict
tableau of shape λ;

µ=cont(T )

1

= (the number of all column-strict tableaux T of shape λ having µ = cont (T )) · 1
= (the number of all column-strict tableaux T of shape λ having µ = cont (T ))

= (the number of all column-strict tableaux T of shape λ having cont (T ) = µ)

= Kλ,µ

(13.46.16)

(since Kλ,µ is defined as the number of all column-strict tableaux T of shape λ having cont (T ) = µ).
But λ ∈ Parn. Hence, |λ| = n. Recall that the power series sλ is a symmetric function (by Proposition

2.2.4), and is homogeneous of degree |λ|. Thus, sλ ∈ Λ|λ| = Λn (since |λ| = n). Hence, Exercise 2.2.13(a)
(applied to f = sλ) yields

sλ =
∑

µ∈Parn

([xµ] (sλ))︸ ︷︷ ︸
=Kλ,µ

(by (13.46.16))

mµ =
∑

µ∈Parn

Kλ,µmµ.

This solves Exercise 2.2.13(c).
Before we solve Exercise 2.2.13(d), let us show a lemma:

Lemma 13.46.3. Let n ∈ N. Let λ ∈ Parn and µ ∈ Parn. Let T be a column-strict tableau of shape λ
satisfying cont (T ) = µ. Let F be the Ferrers diagram of λ (as a set of cells). For each positive integer i, we
let Fi be the i-th row of F (that is, the set of all cells of F that have the form (i, j) for some j ≥ 1).

(a) We have T (i, j) ≥ i for each (i, j) ∈ F .
(b) We have T−1 (1) ∪ T−1 (2) ∪ · · · ∪ T−1 (k) ⊂ F1 ∪ F2 ∪ · · · ∪ Fk for each k ∈ N.
(c) We have |F1 ∪ F2 ∪ · · · ∪ Fk| = λ1 + λ2 + · · ·+ λk for each k ∈ N.
(d) We have

∣∣T−1 (1) ∪ T−1 (2) ∪ · · · ∪ T−1 (k)
∣∣ = µ1 + µ2 + · · ·+ µk for each k ∈ N.

(e) We have λ . µ.
(f) If µ = λ, then each (i, j) ∈ F satisfies T (i, j) = i.

Proof of Lemma 13.46.3. Recall that F is the Ferrers diagram of λ. In other words, F is the set of all pairs
(i, j) ∈ {1, 2, 3, . . .}2 satisfying j ≤ λi (by the definition of a Ferrers diagram). In other words,

F =
{

(i, j) ∈ {1, 2, 3, . . .}2 | j ≤ λi
}
.

Hence, every (p, q) ∈ F satisfies

(13.46.17) (p′, q) ∈ F for each p′ ∈ {1, 2, . . . , p}
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525.
Any column-strict tableau of shape λ is an assignment of entries in {1, 2, 3, . . .} to the cells of the Ferrers

diagram of λ. In other words, any column-strict tableau of shape λ is a map F → {1, 2, 3, . . .} (since F is
the Ferrers diagram of λ). Hence, T is a map F → {1, 2, 3, . . .} (since T is a column-strict tableau of shape
λ).

Recall that T is a column-strict tableau. Thus, the entries of T are strictly increasing top-to-bottom down
columns (by the definition of a column-strict tableau).

(a) Let (i, j) ∈ F . We must prove that T (i, j) ≥ i.
Assume the contrary. Thus, T (i, j) < i, so that T (i, j) ≤ i− 1 (since T (i, j) and i are integers).
We have (p′, j) ∈ F for each p′ ∈ {1, 2, . . . , i} (by (13.46.17) (applied to (p, q) = (i, j))). In other words,

all of the cells (1, j) , (2, j) , . . . , (i, j) belong to F . These cells therefore all lie in the j-th column of F ; more
precisely, they are the first i cells of the j-th column of F . Hence, we have

(13.46.18) T (1, j) < T (2, j) < · · · < T (i, j)

(since the entries of T are strictly increasing top-to-bottom down columns). Hence, T (1, j) < T (2, j) < · · · <
T (i, j) ≤ i−1. Thus, all of the i numbers T (1, j) , T (2, j) , . . . , T (i, j) are elements of the set {1, 2, . . . , i− 1}
(since these numbers all belong to {1, 2, 3, . . .} and are ≤ i−1). By the pigeonhole principle, we thus conclude
that two of these i numbers are equal (since the set {1, 2, . . . , i− 1} has size i− 1 < i). This contradicts the
fact that these i numbers are distinct (because of (13.46.18)).This contradiction proves that our assumption
was wrong; hence, we must have T (i, j) ≥ i. This proves Lemma 13.46.3(a).

(b) Let k ∈ N. Each p ∈ {1, 2, . . . , k} satisfies

(13.46.19) T−1 (p) ⊂ F1 ∪ F2 ∪ · · · ∪ Fk.

[Proof of (13.46.19): Let p ∈ {1, 2, . . . , k}. Let c ∈ T−1 (p). Then, c ∈ F (since T is a map F →
{1, 2, 3, . . .}). Also, T (c) = p (since c ∈ T−1 (p)).

Write the cell c in the form c = (i, j) for some (i, j) ∈ {1, 2, 3, . . .}2. Then, (i, j) = c ∈ F and T

 c︸︷︷︸
=(i,j)

 =

T (i, j), so that T (i, j) = T (c) = p. Hence, p = T (i, j) ≥ i (by Lemma 13.46.3(a)). Hence, i ≤ p ≤ k (since
p ∈ {1, 2, . . . , k}), so that i ∈ {1, 2, . . . , k}. Therefore, Fi ⊂ F1 ∪ F2 ∪ · · · ∪ Fk.

But the cell (i, j) belongs to the i-th row (since its first coordinate is i) and also belongs to F (since
(i, j) ∈ F ). Hence, the cell (i, j) belongs to Fi (since Fi is the i-th row of F ). In other words, (i, j) ∈ Fi.
Hence, c = (i, j) ∈ Fi ⊂ F1 ∪ F2 ∪ · · · ∪ Fk.

Now, forget that we fixed c. We thus have proven that c ∈ F1 ∪ F2 ∪ · · · ∪ Fk for each c ∈ T−1 (p). In
other words, T−1 (p) ⊂ F1 ∪ F2 ∪ · · · ∪ Fk. This proves (13.46.19).]

Now,

T−1 (1) ∪ T−1 (2) ∪ · · · ∪ T−1 (k) =
⋃

p∈{1,2,...,k}

T−1 (p)︸ ︷︷ ︸
⊂F1∪F2∪···∪Fk
(by (13.46.19))

⊂
⋃

p∈{1,2,...,k}

(F1 ∪ F2 ∪ · · · ∪ Fk) ⊂ F1 ∪ F2 ∪ · · · ∪ Fk.

This proves Lemma 13.46.3(b).

525Proof of (13.46.17): Let (p, q) ∈ F . Thus, (p, q) ∈ F =
{

(i, j) ∈ {1, 2, 3, . . .}2 | j ≤ λi
}

. In other words, (p, q) is an

element of {1, 2, 3, . . .}2 and satisfies q ≤ λp.

Now, let p′ ∈ {1, 2, . . . , p}. We must prove that (p′, q) ∈ F .

From p′ ∈ {1, 2, . . . , p} ⊂ {1, 2, 3, . . .} and q ∈ {1, 2, 3, . . .}, we conclude that (p′, q) is an element of {1, 2, 3, . . .}2. Also,
p′ ≤ p (since p′ ∈ {1, 2, . . . , p}).

But λ is a partition. Hence, λ1 ≥ λ2 ≥ λ3 ≥ · · · . Therefore, from p′ ≤ p, we obtain λp′ ≥ λp. Hence, q ≤ λp ≤ λp′ (since

λp′ ≥ λp).

Now, (p′, q) is an element of {1, 2, 3, . . .}2 and satisfies q ≤ λp′ . In other words, (p′, q) ∈
{

(i, j) ∈ {1, 2, 3, . . .}2 | j ≤ λi
}

.

In other words, (p′, q) ∈ F (since F =
{

(i, j) ∈ {1, 2, 3, . . .}2 | j ≤ λi
}

). This completes the proof of (13.46.17).
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(c) Every positive integer i satisfies

|Fi| = (the size of Fi) = (the size of the i-th row of F )

(since Fi is the i-th row of F )

= (the size of the i-th row of the Ferrers diagram of λ)

(since F is the Ferrers diagram of λ)

= λi.(13.46.20)

Let k ∈ N. The sets F1, F2, . . . , Fk are disjoint (since they are different rows of F ). Hence, the size of
their union equals the sum of their sizes. In other words, |F1 ∪ F2 ∪ · · · ∪ Fk| = |F1|+ |F2|+ · · ·+ |Fk|. Thus,

|F1 ∪ F2 ∪ · · · ∪ Fk| = |F1|+ |F2|+ · · ·+ |Fk| =
k∑
i=1

|Fi|︸︷︷︸
=λi

(by (13.46.20))

=

k∑
i=1

λi

= λ1 + λ2 + · · ·+ λk.

This proves Lemma 13.46.3(c).
(d) We have µ = cont (T ) =

(∣∣T−1 (1)
∣∣ , ∣∣T−1 (2)

∣∣ , ∣∣T−1 (3)
∣∣ , . . .) (by the definition of cont (T )). Hence,

(13.46.21) µi =
∣∣T−1 (i)

∣∣
for every positive integer i.

Let k ∈ N. The sets T−1 (1) , T−1 (2) , . . . , T−1 (k) are disjoint (since they are different fibers of the map T ).
Hence, the size of their union equals the sum of their sizes. In other words,

∣∣T−1 (1) ∪ T−1 (2) ∪ · · · ∪ T−1 (k)
∣∣ =∣∣T−1 (1)

∣∣+
∣∣T−1 (2)

∣∣+ · · ·+
∣∣T−1 (k)

∣∣. Thus,

∣∣T−1 (1) ∪ T−1 (2) ∪ · · · ∪ T−1 (k)
∣∣ =

∣∣T−1 (1)
∣∣+
∣∣T−1 (2)

∣∣+ · · ·+
∣∣T−1 (k)

∣∣ =

k∑
i=1

∣∣T−1 (i)
∣∣︸ ︷︷ ︸

=µi
(by (13.46.21))

=

k∑
i=1

µi

= µ1 + µ2 + · · ·+ µk.

This proves Lemma 13.46.3(d).
(e) Let k ∈ {1, 2, . . . , n}. Then, Lemma 13.46.3(b) yields T−1 (1)∪T−1 (2)∪· · ·∪T−1 (k) ⊂ F1∪F2∪· · ·∪Fk.

Thus, ∣∣T−1 (1) ∪ T−1 (2) ∪ · · · ∪ T−1 (k)
∣∣ ≤ |F1 ∪ F2 ∪ · · · ∪ Fk| .

But Lemma 13.46.3(d) yields
∣∣T−1 (1) ∪ T−1 (2) ∪ · · · ∪ T−1 (k)

∣∣ = µ1 + µ2 + · · ·+ µk. Hence,

µ1 + µ2 + · · ·+ µk =
∣∣T−1 (1) ∪ T−1 (2) ∪ · · · ∪ T−1 (k)

∣∣
≤ |F1 ∪ F2 ∪ · · · ∪ Fk| = λ1 + λ2 + · · ·+ λk

(by Lemma 13.46.3(c)). In other words, λ1 + λ2 + · · ·+ λk ≥ µ1 + µ2 + · · ·+ µk.
Now, forget that we fixed k. We thus have shown that

(13.46.22) λ1 + λ2 + · · ·+ λk ≥ µ1 + µ2 + · · ·+ µk for each k ∈ {1, 2, . . . , n} .

In other words, λ . µ (by the definition of the dominance order). This proves Lemma 13.46.3(e).
(f) Assume that µ = λ. We must prove that each (i, j) ∈ F satisfies T (i, j) = i.
Indeed, let (i, j) ∈ F be arbitrary. We must prove that T (i, j) = i.
Define two sets A and B by A = T−1 (1) ∪ T−1 (2) ∪ · · · ∪ T−1 (i) and B = F1 ∪ F2 ∪ · · · ∪ Fi. Then,

A = T−1 (1) ∪ T−1 (2) ∪ · · · ∪ T−1 (i)

⊂ F1 ∪ F2 ∪ · · · ∪ Fi (by Lemma 13.46.3(b) (applied to k = i))

= B.

In other words, A is a subset of B.
Applying Lemma 13.46.3(c) to k = i, we find

(13.46.23) |F1 ∪ F2 ∪ · · · ∪ Fi| = λ1 + λ2 + · · ·+ λi.
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Moreover, from A = T−1 (1) ∪ T−1 (2) ∪ · · · ∪ T−1 (i), we obtain

|A| =
∣∣T−1 (1) ∪ T−1 (2) ∪ · · · ∪ T−1 (i)

∣∣ = µ1 + µ2 + · · ·+ µi

(by Lemma 13.46.3(d) (applied to k = i))

= λ1 + λ2 + · · ·+ λi (since µ = λ)

=

∣∣∣∣∣∣F1 ∪ F2 ∪ · · · ∪ Fi︸ ︷︷ ︸
=B

∣∣∣∣∣∣ (by (13.46.23))

= |B| .

Moreover, B is a finite set (since |B| = λ1 + λ2 + · · ·+ λi ∈ N).
It is well-known that if Y is a finite set, and if X is a subset of Y satisfying |X| = |Y |, then X = Y .

Applying this to X = A and Y = B, we obtain A = B (since A is a subset of B and satisfies |A| = |B|).
Now, the cell (i, j) belongs to the i-th row of F (since it belongs to F , and since its first coordinate is i).

In other words, (i, j) ∈ Fi (since Fi is the i-th row of F ). Hence,

(i, j) ∈ Fi ⊂ F1 ∪ F2 ∪ · · · ∪ Fi = B = A (since A = B)

= T−1 (1) ∪ T−1 (2) ∪ · · · ∪ T−1 (i) .

In other words, (i, j) ∈ T−1 (p) for some p ∈ {1, 2, . . . , i}. Consider this p.
From (i, j) ∈ T−1 (p), we obtain T (i, j) = p. Thus, T (i, j) = p ≤ i (since p ∈ {1, 2, . . . , i}). But Lemma

13.46.3(a) yields T (i, j) ≥ i. Combining this with T (i, j) ≤ i, we obtain T (i, j) = i.
Now, forget that we fixed (i, j). We thus have proven that each (i, j) ∈ F satisfies T (i, j) = i. This proves

Lemma 13.46.3(f). �

Now, let us resume the solution of Exercise 2.2.13.
(d) Let λ ∈ Parn and µ ∈ Parn be two partitions that don’t satisfy λ . µ. We must prove that Kλ,µ = 0.
Indeed, there exists no column-strict tableau T of shape λ having cont (T ) = µ 526. Thus, the number

of all column-strict tableaux T of shape λ having cont (T ) = µ equals 0. In other words, Kλ,µ equals 0 (since
Kλ,µ is the number of all column-strict tableaux T of shape λ having cont (T ) = µ). This solves Exercise
2.2.13(d).

Before we solve Exercise 2.2.13(e), let us state another simple lemma:

Lemma 13.46.4. Let n ∈ N. Let λ ∈ Parn. Let F be the Ferrers diagram of λ (as a set of cells). Let
T0 : F → {1, 2, 3, . . .} be the map that sends each (i, j) ∈ F to i. Then, T0 is a column-strict tableau of
shape λ and satisfies cont (T0) = λ.

Example 13.46.5. Let n = 8 and λ = (3, 2, 2, 1) ∈ Par8. Then, the column-strict tableau T0 defined in
Lemma 13.46.4 looks as follows:

T0 =

1 1 1
2 2
3 3
4

.

Proof of Lemma 13.46.4. Every (i, j) ∈ F satisfies i ∈ {1, 2, 3, . . .} (since F ⊂ {1, 2, 3, . . .}2). Hence, the
map T0 is well-defined.

The map T0 is a map from F to {1, 2, 3, . . .}. In other words, T0 is an assignment of entries in {1, 2, 3, . . .}
to the cells of the Ferrers diagram of λ (since F is the Ferrers diagram of λ). We shall now show that T0 is
a column-strict tableau of shape λ.

The definition of T0 shows that for each i ∈ {1, 2, 3, . . .}, all entries in the i-th row of T0 equal i. Therefore,
the entries of T0 are weakly increasing left-to-right in rows (because they are all equal in a given row) and
strictly increasing top-to-bottom in columns (since the topmost entry is a 1, the next entry is a 2, and so

526Proof. Assume the contrary. Thus, there exists a column-strict tableau T of shape λ having cont (T ) = µ. Consider this

T .
Lemma 13.46.3(e) yields λ . µ. This contradicts the fact that we don’t have λ . µ. This contradiction proves that our

assumption was wrong. Qed.
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on). Thus, T0 is a column-strict tableau of shape λ (by the definition of a “column-strict tableau of shape
λ”).

It remains to prove that cont (T0) = λ.

The definition of cont (T0) shows that cont (T0) =
(∣∣∣(T0)

−1
(1)
∣∣∣ , ∣∣∣(T0)

−1
(2)
∣∣∣ , ∣∣∣(T0)

−1
(3)
∣∣∣ , . . .). In other

words,

(13.46.24) (cont (T0))i =
∣∣∣(T0)

−1
(i)
∣∣∣ for every positive integer i.

Let k be a positive integer. Then,

(T0)
−1

(k) =

(i, j) ∈ F | T0 (i, j)︸ ︷︷ ︸
=i

(by the definition of T0)

= k

 =

(i, j) ∈ F | i = k︸ ︷︷ ︸
⇐⇒ ((i,j) lies in the k-th row)


= {(i, j) ∈ F | (i, j) lies in the k-th row} = (the set of all cells of F that lie in the k-th row)

= (the k-th row of F ) .

Hence, ∣∣∣(T0)
−1

(k)
∣∣∣ = |(the k-th row of F )| = (the size of the k-th row of F ) = λk

(since F is the Ferrers diagram of λ). But now, (13.46.24) (applied to i = k) yields (cont (T0))k =∣∣∣(T0)
−1

(k)
∣∣∣ = λk.

Now, forget that we fixed k. We thus have proven that (cont (T0))k = λk for each positive integer k. In
other words, cont (T0) = λ. This completes the proof of Lemma 13.46.4. �

Now, let us resume the solution of Exercise 2.2.13.
(e) Let λ ∈ Parn. We must prove that Kλ,λ = 1.
Define F and T0 as in Lemma 13.46.4. Then, Lemma 13.46.4 shows that T0 is a column-strict tableau of

shape λ and satisfies cont (T0) = λ. Hence, there exists at least one column-strict tableau T of shape λ
having cont (T ) = λ (namely, T = T0).

On the other hand, using Lemma 13.46.3(f), it is easy to see that every column-strict tableau T of shape
λ having cont (T ) = λ must be equal to T0

527. Hence, there exists at most one column-strict tableau T
of shape λ having cont (T ) = λ.

We know that Kλ,λ is the number of all column-strict tableaux T of shape λ having cont (T ) = λ (by the
definition of Kλ,λ). Since there exists exactly one such tableau T (because we have shown that there exists
at least one such tableau T , and we have also shown that there exists at most one such tableau T ), we
thus conclude that Kλ,λ = 1. This solves Exercise 2.2.13(e).

(f) Let λ and µ be two partitions. We must prove that the number aλ,µ is well-defined. In other words,
we must prove that there are only finitely many {0, 1}-matrices of size ` (λ)× ` (µ) having row sums λ and
column sums µ.

But this is easy: Any {0, 1}-matrix of size ` (λ)×` (µ) is a map from the set {1, 2, . . . , ` (λ)}×{1, 2, . . . , ` (µ)}
to the set {0, 1}. Thus,

{{0, 1} -matrices of size ` (λ)× ` (µ)}
= {maps from the set {1, 2, . . . , ` (λ)} × {1, 2, . . . , ` (µ)} to the set {0, 1}}

= {0, 1}{1,2,...,`(λ)}×{1,2,...,`(µ)}

527Proof. Let T be a column-strict tableau of shape λ having cont (T ) = λ. We must prove that T is equal to T0.

Lemma 13.46.3(f) (applied to µ = λ) shows that each (i, j) ∈ F satisfies T (i, j) = i (since λ = λ). Thus, each (i, j) ∈ F
satisfies

T (i, j) = i = T0 (i, j) (since T0 (i, j) is defined to be i) .

Recall that any column-strict tableau of shape λ is a map F → {1, 2, 3, . . .}. Hence, T and T0 are maps F → {1, 2, 3, . . .}
(since T and T0 are column-strict tableaux of shape λ). Therefore, we conclude that T = T0 (since each (i, j) ∈ F satisfies

T (i, j) = T0 (i, j)). In other words, T is equal to T0. Qed.
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is a finite set (since both {1, 2, . . . , ` (λ)} × {1, 2, . . . , ` (µ)} and {0, 1} are finite sets). In other words, there
are only finitely many {0, 1}-matrices of size ` (λ)×` (µ). Hence, there are only finitely many {0, 1}-matrices
of size ` (λ)× ` (µ) having row sums λ and column sums µ. This solves Exercise 2.2.13(f).

[Remark: We can prove a slightly stronger claim: Namely, there are only finitely many matrices in
N`(λ)×`(µ) having row sums λ and column sums µ.

Let us sketch the proof of this claim. Indeed, let N = |λ|. Then, if A is any matrix in N`(λ)×`(µ) having
row sums λ and column sums µ, then the sum of all entries of A must equal |λ| = N , and therefore each
entry of A must be ≤ N (since a sum of nonnegative integers is always ≥ to each of its addends); but this
entails that each entry of A belongs to the finite set {0, 1, . . . , N}, and therefore there are only finitely many
choices for each entry, which leads to only finitely many possible matrices A.]

(g) Exercise 2.2.13(g) is truly not a deep fact, but its proof requires some bookkeeping. In order to make
this bookkeeping more palatable, we are going to introduce various auxiliary notations.

Definition 13.46.6. Let q ∈ N. Let xq denote the q-tuple (x1, x2, . . . , xq) of indeterminates. Let k [xq]
denote the polynomial ring k [x1, x2, . . . , xq]. Let ηq : R (x) → k [xq] be the map that sends every power
series f ∈ R (x) to the polynomial f (x1, x2, . . . , xq, 0, 0, 0, . . .). (This is well-defined, because Exercise 2.1.2
(applied to A = k [xq] and k = q) shows that substituting x1, x2, . . . , xq, 0, 0, 0, . . . for x1, x2, x3, . . . in f
yields an infinite sum in which all but finitely many addends are zero.)

The map ηq is an evaluation homomorphism (in an appropriate sense528); thus, it is a k-algebra homo-
morphism.

If β = (β1, β2, . . . , βq) ∈ Nq is a q-tuple of nonnegative integers, then xβq shall denote the monomial

xβ1

1 xβ2

2 · · ·x
βq
q . This is a monomial in the polynomial ring k [xq].

For every f ∈ k [[xq]] and β ∈ Nq, we let
[
xβq
]
f denote the coefficient of the monomial xβq in the power

series f .

Let us make the following simple observations:

• Every q ∈ N and i ∈ {1, 2, . . . , q} satisfy

ηq (xi) = xi (x1, x2, . . . , xq, 0, 0, 0, . . .) (by the definition of ηq)

= xi (since i ∈ {1, 2, . . . , q}) .(13.46.25)

• Every q ∈ N and i ∈ {q + 1, q + 2, q + 3, . . .} satisfy

ηq (xi) = xi (x1, x2, . . . , xq, 0, 0, 0, . . .) (by the definition of ηq)

= 0 (since i ∈ {q + 1, q + 2, q + 3, . . .}) .(13.46.26)

• Any two q-tuples φ ∈ Nq and ψ ∈ Nq satisfy

(13.46.27)
[
xφq
] (

xψq
)

= δφ,ψ.

(Indeed, xψq and xφq are two distinct monomials if φ 6= ψ, and are two identical monomials if φ = ψ.)

Lemma 13.46.7. Let q ∈ N. Let β be a weak composition. Assume that βi = 0 for every integer i > q.
Let f ∈ R (x). Then, [

xβ
]
f =

[
x(β1,β2,...,βq)
q

]
(ηq (f)) .

Proof of Lemma 13.46.7. Let us prove that every weak composition α satisfies

(13.46.28)
[
xβ
]

(xα) =
[
x(β1,β2,...,βq)
q

]
(ηq (xα)) .

[Proof of (13.46.28): Let α be a weak composition. We must prove the equality (13.46.28).
We distinguish between two cases:
Case 1: We have (αi = 0 for every integer i > q).
Case 2: We don’t have (αi = 0 for every integer i > q).
Let us first consider Case 1. In this case, we have

(13.46.29) (αi = 0 for every integer i > q) .

528i.e., it acts on a power series f ∈ R (x) by substituting certain values for the indeterminates x1, x2, x3, . . .
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Thus,

(13.46.30)

∞∏
i=q+1

xαii︸︷︷︸
=x0

i

(since αi=0 (by (13.46.29)))

=

∞∏
i=q+1

x0
i︸︷︷︸

=1

= 1.

Now,

(13.46.31) δ(β1,β2,...,βq),(α1,α2,...,αq) = δβ,α

529.
Now, the definition of xα yields

xα =
∏
i≥1

xαii =

(
q∏
i=1

xαii

) ∞∏
i=q+1

xαii


︸ ︷︷ ︸

=1
(by (13.46.30))

=

q∏
i=1

xαii .

Applying the map ηq to both sides of this equality, we obtain

ηq (xα) = ηq

(
q∏
i=1

xαii

)
=

q∏
i=1

 ηq (xi)︸ ︷︷ ︸
=xi

(by (13.46.25))


αi

(since ηq is a k-algebra homomorphism)

=

q∏
i=1

xαii = xα1
1 xα2

2 · · ·xαqq = x(α1,α2,...,αq)
q(13.46.32)

(since x
(α1,α2,...,αq)
q is defined to be xα1

1 xα2
2 · · ·x

αq
q ).

Now,

[
x(β1,β2,...,βq)
q

]
 ηq (xα)︸ ︷︷ ︸

=x
(α1,α2,...,αq)
q

(by (13.46.32))


=
[
x(β1,β2,...,βq)
q

] (
x(α1,α2,...,αq)
q

)
= δ(β1,β2,...,βq),(α1,α2,...,αq)

(by (13.46.27) (applied to φ = (β1, β2, . . . , βq) and ψ = (α1, α2, . . . , αq) ))

= δβ,α (by (13.46.31)) .

529Proof of (13.46.31): We are in one of the following two subcases:

Subcase 1.1: We have β 6= α.
Subcase 1.2: We have β = α.
Let us first consider Subcase 1.1. In this subcase, we have β 6= α. In other words, α 6= β. Hence, there exists some

k ∈ {1, 2, 3, . . .} satisfying αk 6= βk. Consider this k.

We claim that k ≤ q. Indeed, assume the contrary (for the sake of contradiction). Then, k > q. Hence, (13.46.29) (applied
to i = k) yields αk = 0. But let us recall that βi = 0 for every integer i > q. Applying this to i = k, we find βk = 0. Hence,

αk = 0 = βk. This contradicts αk 6= βk.
This contradiction completes the proof of k ≤ q. Hence, k ∈ {1, 2, . . . , q}. Hence, there exists some i ∈ {1, 2, . . . , q} satisfying

αi 6= βi (namely, i = k). Therefore, (α1, α2, . . . , αq) 6= (β1, β2, . . . , βq). In other words, (β1, β2, . . . , βq) 6= (α1, α2, . . . , αq).
Thus, δ(β1,β2,...,βq),(α1,α2,...,αq) = 0. Comparing this with δβ,α = 0 (since β 6= α), we obtain δ(β1,β2,...,βq),(α1,α2,...,αq) =

δβ,α. Thus, (13.46.31) is proven in Subcase 1.1.

Let us now consider Subcase 1.2. In this subcase, we have β = α. Hence, (β1, β2, . . . , βq) = (α1, α2, . . . , αq). Thus,

δ(β1,β2,...,βq),(α1,α2,...,αq) = 1. Comparing this with δβ,α = 1 (since β = α), we obtain δ(β1,β2,...,βq),(α1,α2,...,αq) = δβ,α.

Thus, (13.46.31) is proven in Subcase 1.2.

We have now proven (13.46.31) in each of the two Subcases 1.1 and 1.2. Hence, (13.46.31) always holds.
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Comparing this with [
xβ
]

(xα) = δβ,α (by (13.46.1) (applied to µ = β)) ,

we obtain
[
xβ
]

(xα) =
[
x

(β1,β2,...,βq)
q

]
(ηq (xα)). Hence, (13.46.28) is proven in Case 1.

Let us now consider Case 2. In this case, we don’t have (αi = 0 for every integer i > q). In other words,
there exists some integer i > q such that αi 6= 0. Consider this i, and denote it by k. Thus, k is an integer
such that k > q and αk 6= 0.

Recall that βi = 0 for every integer i > q. Applying this to i = k, we obtain βk = 0 6= αk (since αk 6= 0).
Thus, β 6= α, so that δβ,α = 0.

On the other hand, αk 6= 0 and thus αk > 0 (since αk ∈ N). Hence, the monomial xα is divisible by xk.
In other words, there exists a monomial g ∈ k [[x]] such that xα = gxk. Consider this g. From k > q, we
obtain k ∈ {q + 1, q + 2, q + 3, . . .}. Thus, (13.46.26) (applied to i = k) yields ηq (xk) = 0. Now,

ηq

 xα︸︷︷︸
=gxk

 = ηq (gxk) = ηq (g) ηq (xk)︸ ︷︷ ︸
=0

(since ηq is a k-algebra homomorphism)

= 0.

Hence, [
x(β1,β2,...,βq)
q

]ηq (xα)︸ ︷︷ ︸
=0

 =
[
x(β1,β2,...,βq)
q

]
(0) = 0.

Comparing this with [
xβ
]

(xα) = δβ,α (by (13.46.1) (applied to µ = β))

= 0,

we obtain
[
xβ
]

(xα) =
[
x

(β1,β2,...,βq)
q

]
(ηq (xα)). Hence, (13.46.28) is proven in Case 2.

We have now proven (13.46.28) in each of the two Cases 1 and 2. Hence, (13.46.28) always holds.]
Now, let us notice that every power series g ∈ k [[x]] satisfies

(13.46.33) g =
∑
α∈WC

[xα] (g) · xα

(since the family of the coefficients of g is ([xα] (g))α∈WC). Applying this to g = f , we obtain

f =
∑
α∈WC

[xα] (f) · xα.

Substituting x1, x2, . . . , xq, 0, 0, 0, . . . for the variables x1, x2, x3, . . . in this equality, we obtain

f (x1, x2, . . . , xq, 0, 0, 0, . . .) =
∑
α∈WC

[xα] (f) · xα (x1, x2, . . . , xq, 0, 0, 0, . . .)︸ ︷︷ ︸
=ηq(x

α)
(since ηq(x

α) is defined to be xα(x1,x2,...,xq,0,0,0,...))

=
∑
α∈WC

[xα] (f) · ηq (xα) .(13.46.34)

Now, the definition of ηq yields

ηq (f) = f (x1, x2, . . . , xq, 0, 0, 0, . . .)

=
∑
α∈WC

[xα] (f) · ηq (xα) (by (13.46.34)) .
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Hence,

[
x(β1,β2,...,βq)
q

] ηq (f)︸ ︷︷ ︸
=
∑
α∈WC[xα](f)·ηq(xα)


=
[
x(β1,β2,...,βq)
q

]( ∑
α∈WC

[xα] (f) · ηq (xα)

)
=
∑
α∈WC

[xα] (f) ·
[
x(β1,β2,...,βq)
q

]
(ηq (xα))︸ ︷︷ ︸

=[xβ](xα)

(by (13.46.28))

=
∑
α∈WC

[xα] (f) ·
[
xβ
]

(xα) .

Comparing this with[
xβ
]

f︸︷︷︸
=
∑
α∈WC[xα](f)·xα

=
[
xβ
]( ∑

α∈WC

[xα] (f) · xα
)

=
∑
α∈WC

[xα] (f) ·
[
xβ
]

(xα) ,

we obtain
[
xβ
]
f =

[
x

(β1,β2,...,βq)
q

]
(ηq (f)). This proves Lemma 13.46.7. �

We now need to introduce some more notations.

Definition 13.46.8. If q ∈ N, and if β = (β1, β2, . . . , βq) ∈ Nq is a q-tuple of nonnegative integers, then |β|
shall denote the sum β1 + β2 + · · ·+ βq ∈ N.

Definition 13.46.9. We shall use the so-called Iverson bracket notation: For every assertion A, we let [A]

denote the integer

{
1, if A is true;

0, if A is false
.

Let us state a fundamental fact in combinatorics:

Lemma 13.46.10. Let q ∈ N. Let m ∈ N. Define a set I by

I = {(i1, i2, . . . , im) ∈ {1, 2, . . . , q}m | i1 < i2 < · · · < im} .

Let P be the set of all m-element subsets of {1, 2, . . . , q}. Define a set K by

K = {β ∈ {0, 1}q | |β| = m} .

(a) The map I→ P, (j1, j2, . . . , jm) 7→ {j1, j2, . . . , jm} is well-defined and bijective.
(b) The map P→ K, T 7→ ([1 ∈ T ] , [2 ∈ T ] , . . . , [q ∈ T ]) is well-defined and bijective.
(c) There exists a bijection Ψ : I → K with the property that every (i1, i2, . . . , im) ∈ I satisfies

xΨ(i1,i2,...,im)
q = xi1xi2 · · ·xim .

Proof of Lemma 13.46.10. (a) The set I is the set of all strictly increasing lists of m elements of {1, 2, . . . , q}.
Meanwhile, the set P is the set of allm-element subsets of {1, 2, . . . , q}. Hence, there are well-known bijections
between these two sets: The maps

I→ P, (j1, j2, . . . , jm) 7→ {j1, j2, . . . , jm}

and

P→ I, T 7→ (the increasing list of T )
530 are mutually inverse bijections. In particular, the map I → P, (j1, j2, . . . , jm) 7→ {j1, j2, . . . , jm} is
well-defined and bijective. This proves Lemma 13.46.10(a).

530Here, the increasing list of a subset T of {1, 2, . . . , q} is defined to be the list of all elements of T in increasing order

(with no repetitions).
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(b) It is well-known that the map

Φ : {subsets T of {1, 2, . . . , q}} → {0, 1}q , T 7→ ([1 ∈ T ] , [2 ∈ T ] , . . . , [q ∈ T ])

is a bijection531. Furthermore, this bijection Φ has the property that each subset T of {1, 2, . . . , q} satisfies
|Φ (T )| = |T |. Thus, in particular, a subset T of {1, 2, . . . , q} satisfies |Φ (T )| = m if and only if it satisfies
|T | = m. Hence, Φ restricts to a bijection

{subsets T of {1, 2, . . . , q} | |T | = m} → {β ∈ {0, 1}q | |β| = m} ,
T 7→ ([1 ∈ T ] , [2 ∈ T ] , . . . , [q ∈ T ]) .(13.46.35)

Thus, the map (13.46.35) is well-defined and bijective. Since {subsets T of {1, 2, . . . , q} | |T | = m} = P and
{β ∈ {0, 1}q | |β| = m} = K, this rewrites as follows: The map P→ K, T 7→ ([1 ∈ T ] , [2 ∈ T ] , . . . , [q ∈ T ])
is well-defined and bijective. This proves Lemma 13.46.10(b).

(c) Let A be the map I→ P, (j1, j2, . . . , jm) 7→ {j1, j2, . . . , jm}. Lemma 13.46.10(a) shows that this map
A is well-defined and bijective.

Let B be the map P→ K, T 7→ ([1 ∈ T ] , [2 ∈ T ] , . . . , [q ∈ T ]). Lemma 13.46.10(b) shows that this map
B is well-defined and bijective.

So the maps B and A are bijective. Hence, their composition B ◦A is also bijective. Thus, B ◦A : I→ K
is a bijection. It has the property that every (i1, i2, . . . , im) ∈ I satisfies x(B◦A)(i1,i2,...,im)

q = xi1xi2 · · ·xim
532. Hence, there exists a bijection Ψ : I → K with the property that every (i1, i2, . . . , im) ∈ I satisfies

xΨ(i1,i2,...,im)
q = xi1xi2 · · ·xim (namely, Ψ = B ◦A). This proves Lemma 13.46.10(c). �

531Indeed, its inverse is the map that sends any (β1, β2, . . . , βq) ∈ {0, 1}q to the subset {i ∈ {1, 2, . . . , q} | βi = 1} of

{1, 2, . . . , q}.
532Proof. Let (i1, i2, . . . , im) ∈ I. We must prove that x

(B◦A)(i1,i2,...,im)
q = xi1xi2 · · ·xim .

From (i1, i2, . . . , im) ∈ I, we conclude that (i1, i2, . . . , im) is an element of {1, 2, . . . , q}m satisfying i1 < i2 < · · · < im (by

the definition of I).

Define T ∈ P by T = A (i1, i2, . . . , im). Then, T = A (i1, i2, . . . , im) = {i1, i2, . . . , im} (by the definition of A). Hence,
(i1, i2, . . . , im) is a list of all elements of T . Furthermore, this list has no repetitions (since i1, i2, . . . , im are distinct (since

i1 < i2 < · · · < im)). Hence, (i1, i2, . . . , im) is a list of all elements of T with no repetitions. Therefore,∏
i∈T

xi = xi1xi2 · · ·xim .

Also, T is a subset of {1, 2, . . . , q} (since T ∈ P). Now,

(B ◦A) (i1, i2, . . . , im) = B

A (i1, i2, . . . , im)︸ ︷︷ ︸
=T

 = B (T ) = ([1 ∈ T ] , [2 ∈ T ] , . . . , [q ∈ T ])

(by the definition of B). Hence,

x
(B◦A)(i1,i2,...,im)
q

= x
([1∈T ],[2∈T ],...,[q∈T ])
q = x

[1∈T ]
1 x

[2∈T ]
2 · · ·x[q∈T ]

q

(
by the definition of x

([1∈T ],[2∈T ],...,[q∈T ])
q

)

=
∏

i∈{1,2,...,q}
x

[i∈T ]
i =


∏

i∈{1,2,...,q};
i∈T

x
[i∈T ]
i︸ ︷︷ ︸
=x1

i
(since [i∈T ]=1
(since i∈T ))




∏

i∈{1,2,...,q};
not i∈T

x
[i∈T ]
i︸ ︷︷ ︸
=x0

i
(since [i∈T ]=0

(since we don’t have i∈T ))



=

 ∏
i∈{1,2,...,q};

i∈T

x1
i︸︷︷︸

=xi


 ∏
i∈{1,2,...,q};

not i∈T

x0
i︸︷︷︸

=1

 =

 ∏
i∈{1,2,...,q};

i∈T

xi


 ∏
i∈{1,2,...,q};

not i∈T

1


︸ ︷︷ ︸

=1

=
∏

i∈{1,2,...,q};
i∈T︸ ︷︷ ︸

=
∏
i∈T

(since T is a subset of {1,2,...,q})

xi =
∏
i∈T

xi = xi1xi2 · · ·xim .
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Lemma 13.46.11. Let q ∈ N. Let m ∈ N. Then,

ηq (em) =
∑

β∈{0,1}q ;
|β|=m

xβq .

Proof of Lemma 13.46.11. The definition of em yields

em =
∑

i1<i2<···<im︸ ︷︷ ︸
=

∑
(i1,i2,...,im)∈{1,2,3,...}m;

i1<i2<···<im

xi1xi2 · · ·xim =
∑

(i1,i2,...,im)∈{1,2,3,...}m;
i1<i2<···<im

xi1xi2 · · ·xim .

Substituting x1, x2, . . . , xq, 0, 0, 0, . . . for the variables x1, x2, x3, . . . in this equality, we obtain

em (x1, x2, . . . , xq, 0, 0, 0, . . .)

=
∑

(i1,i2,...,im)∈{1,2,3,...}m;
i1<i2<···<im

(xi1xi2 · · ·xim) (x1, x2, . . . , xq, 0, 0, 0, . . .) .(13.46.36)

Note that {1, 2, . . . , q}m is a subset of {1, 2, 3, . . .}m. Moreover, the following holds:

• If (i1, i2, . . . , im) ∈ {1, 2, 3, . . .}m is an m-tuple that does not satisfy (i1, i2, . . . , im) ∈ {1, 2, . . . , q}m,
then

(13.46.37) (xi1xi2 · · ·xim) (x1, x2, . . . , xq, 0, 0, 0, . . .) = 0

533.
• If (i1, i2, . . . , im) ∈ {1, 2, . . . , q}m, then

(13.46.38) (xi1xi2 · · ·xim) (x1, x2, . . . , xq, 0, 0, 0, . . .) = xi1xi2 · · ·xim
534.

533Proof of (13.46.37): Let (i1, i2, . . . , im) ∈ {1, 2, 3, . . .}m be an m-tuple that does not satisfy (i1, i2, . . . , im) ∈
{1, 2, . . . , q}m.

If every k ∈ {1, 2, . . . ,m} would satisfy ik ∈ {1, 2, . . . , q}, then we would have (i1, i2, . . . , im) ∈ {1, 2, . . . , q}m, which

would contradict the fact that we do not have (i1, i2, . . . , im) ∈ {1, 2, . . . , q}m. Hence, not every k ∈ {1, 2, . . . ,m} satisfies
ik ∈ {1, 2, . . . , q}. In other words, there exists some k ∈ {1, 2, . . . ,m} satisfying ik /∈ {1, 2, . . . , q}. Consider this k.

The element ik belongs to {1, 2, 3, . . .} but not to {1, 2, . . . , q} (since ik /∈ {1, 2, . . . , q}). Thus, ik ∈ {1, 2, 3, . . .} \
{1, 2, . . . , q} = {q + 1, q + 2, q + 3, . . .}. Hence, (13.46.26) (applied to i = ik) yields ηq

(
xik
)

= 0.
Now,

(xi1xi2 · · ·xim )︸ ︷︷ ︸
=
∏
j∈{1,2,...,m} xij

(x1, x2, . . . , xq , 0, 0, 0, . . .)

=

 ∏
j∈{1,2,...,m}

xij

 (x1, x2, . . . , xq , 0, 0, 0, . . .) =
∏

j∈{1,2,...,m}
xij (x1, x2, . . . , xq , 0, 0, 0, . . .)︸ ︷︷ ︸

=ηq

(
xij

)
(since ηq

(
xij

)
is defined to be xij (x1,x2,...,xq,0,0,0,...))

=
∏

j∈{1,2,...,m}
ηq
(
xij

)
= ηq

(
xik
)︸ ︷︷ ︸

=0

·
∏

j∈{1,2,...,m};
j 6=k

ηq
(
xij

)
(here, we have split off the factor for j = k from the product)

= 0 ·
∏

j∈{1,2,...,m};
j 6=k

ηq
(
xij

)
= 0.

This proves (13.46.37).
534Proof of (13.46.38): Let (i1, i2, . . . , im) ∈ {1, 2, . . . , q}m.
Let k ∈ {1, 2, . . . ,m}. From (i1, i2, . . . , im) ∈ {1, 2, . . . , q}m, we obtain ik ∈ {1, 2, . . . , q}. Hence, (13.46.25) (applied to

i = ik) yields ηq
(
xik
)

= xik .
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Now, (13.46.36) becomes

em (x1, x2, . . . , xq, 0, 0, 0, . . .)

=
∑

(i1,i2,...,im)∈{1,2,3,...}m;
i1<i2<···<im

(xi1xi2 · · ·xim) (x1, x2, . . . , xq, 0, 0, 0, . . .)

=
∑

(i1,i2,...,im)∈{1,2,3,...}m;
i1<i2<···<im;

(i1,i2,...,im)∈{1,2,...,q}m︸ ︷︷ ︸
=

∑
(i1,i2,...,im)∈{1,2,...,q}m;

i1<i2<···<im
(since {1,2,...,q}m is a subset of {1,2,3,...}m)

(xi1xi2 · · ·xim) (x1, x2, . . . , xq, 0, 0, 0, . . .)︸ ︷︷ ︸
=xi1xi2 ···xim
(by (13.46.38))

+
∑

(i1,i2,...,im)∈{1,2,3,...}m;
i1<i2<···<im;

not (i1,i2,...,im)∈{1,2,...,q}m

(xi1xi2 · · ·xim) (x1, x2, . . . , xq, 0, 0, 0, . . .)︸ ︷︷ ︸
=0

(by (13.46.37))

=
∑

(i1,i2,...,im)∈{1,2,...,q}m;
i1<i2<···<im

xi1xi2 · · ·xim +
∑

(i1,i2,...,im)∈{1,2,3,...}m;
i1<i2<···<im;

not (i1,i2,...,im)∈{1,2,...,q}m

0

︸ ︷︷ ︸
=0

=
∑

(i1,i2,...,im)∈{1,2,...,q}m;
i1<i2<···<im

xi1xi2 · · ·xim .(13.46.39)

Now, let us define the sets I, P and K as in Lemma 13.46.10. Then, Lemma 13.46.10(c) shows that there
exists a bijection Ψ : I→ K with the property that every (i1, i2, . . . , im) ∈ I satisfies

(13.46.40) xΨ(i1,i2,...,im)
q = xi1xi2 · · ·xim .

Consider this Ψ.

Let us forget that we fixed k. We thus have shown that ηq
(
xik
)

= xik for each k ∈ {1, 2, . . . ,m}. Hence,
∏m
k=1 ηq

(
xik
)︸ ︷︷ ︸

=xik

=

∏m
k=1 xik . Now,

(xi1xi2 · · ·xim )︸ ︷︷ ︸
=
∏m
k=1

xik

(x1, x2, . . . , xq , 0, 0, 0, . . .)

=

(
m∏
k=1

xik

)
(x1, x2, . . . , xq , 0, 0, 0, . . .) =

m∏
k=1

xik (x1, x2, . . . , xq , 0, 0, 0, . . .)︸ ︷︷ ︸
=ηq

(
xik

)
(since ηq

(
xik

)
is defined to be xik (x1,x2,...,xq,0,0,0,...))

=

m∏
k=1

ηq
(
xik
)

=

m∏
k=1

xik = xi1xi2 · · ·xim .

This proves (13.46.38).
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Now, (13.46.39) becomes

em (x1, x2, . . . , xq, 0, 0, 0, . . .)

=
∑

(i1,i2,...,im)∈{1,2,...,q}m;
i1<i2<···<im︸ ︷︷ ︸

=
∑

(i1,i2,...,im)∈I
(since I={(i1,i2,...,im)∈{1,2,...,q}m | i1<i2<···<im})

xi1xi2 · · ·xim =
∑

(i1,i2,...,im)∈I

xi1xi2 · · ·xim︸ ︷︷ ︸
=xΨ(i1,i2,...,im)

q

(by (13.46.40))

=
∑

(i1,i2,...,im)∈I

xΨ(i1,i2,...,im)
q =

∑
β∈K︸︷︷︸

=
∑

β∈{0,1}q ;
|β|=m

(since K={β∈{0,1}q | |β|=m})

xβq

(
here, we have substituted β for Ψ (i1, i2, . . . , im) in the sum,

since the map Ψ : I→ K is a bijection

)
=

∑
β∈{0,1}q ;
|β|=m

xβq .

Now, the definition of ηq yields

ηq (em) = em (x1, x2, . . . , xq, 0, 0, 0, . . .) =
∑

β∈{0,1}q ;
|β|=m

xβq .

This proves Lemma 13.46.11. �

Lemma 13.46.12. Let X and Y be two sets. Let φ : X → Y be a bijection. Let Z be a subset of X. Then,
the map Z → φ (Z) , A 7→ φ (A) is well-defined and is a bijection.

Proof of Lemma 13.46.12. Lemma 13.46.12 is a fundamental and trivial fact of set theory. �

Lemma 13.46.13. Let q ∈ N. Let p ∈ N. Let α = (α1, α2, . . . , αp) ∈ Np be a p-tuple of nonnegative
integers. Then,

ηq
(
eα1

eα2
· · · eαp

)
=

∑
A∈{0,1}p×q is a {0,1}-matrix

having row sums α

xcolsumsA
q .

Here, colsumsA denotes the column sums of A.

Proof of Lemma 13.46.13. For each matrix A ∈ {0, 1}p×q and each i ∈ {1, 2, . . . , p}, we let rowiA denote
the i-th row of A. This rowiA is an element of {0, 1}q.

Let Φ : {0, 1}p×q → ({0, 1}q)p be the map that sends each matrix A ∈ {0, 1}p×q to the list
(row1A, row2A, . . . , rowpA) of all the rows of A. Then, the map Φ is a bijection (because a matrix can be
viewed as a list of rows).

For each matrix A ∈ {0, 1}p×q, we let rowsumsA denote the row sums of A. (This is a p-tuple in Np.)
Furthermore, for each matrix A ∈ {0, 1}p×q, we let colsumsA denote the column sums of A. (This is a
q-tuple in Nq.)

Every matrix A ∈ {0, 1}p×q satisfies

(13.46.41)

p∏
i=1

xrowi A
q = xcolsumsA

q

535.

535Proof of (13.46.41): Let A ∈ {0, 1}p×q be a matrix.

Write the p× q-matrix A in the form A = (ai,j)1≤i≤p, 1≤j≤q .
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Thus, every (β1, β2, . . . , βp) ∈ ({0, 1}q)p satisfies

(13.46.44)

p∏
i=1

xβiq = x
colsums(Φ−1(β1,β2,...,βp))
q

536.

Let i ∈ {1, 2, . . . , p}. The definition of rowi A yields

rowi A = (the i-th row of A) = (ai,1, a1,2, . . . , ai,q)
(

since A = (ai,j)1≤i≤p, 1≤j≤q

)
.

Hence,

xrowi A
q = x

(ai,1,a1,2,...,ai,q)
q = x

ai,1
1 x

ai,2
2 · · ·xai,qq

(
by the definition of x

(ai,1,a1,2,...,ai,q)
q

)
=

q∏
j=1

x
ai,j
j .

Now, forget that we fixed i. We thus have proven x
rowi A
q =

∏q
j=1 x

ai,j
j for each i ∈ {1, 2, . . . , p}. Hence,

(13.46.42)

p∏
i=1

xrowi A
q︸ ︷︷ ︸

=
∏q
j=1 x

ai,j
j

=

p∏
i=1

q∏
j=1︸ ︷︷ ︸

=
∏q
j=1

∏p
i=1

x
ai,j
j =

q∏
j=1

p∏
i=1

x
ai,j
j .

Now, for each j ∈ {1, 2, . . . , q}, we let cj be the sum of all entries in the j-th column of A. Then, the definition of colsumsA

yields

colsumsA = (the column sums of A) = (c1, c2, . . . , cq)

(by the definition of the column sums of A). Thus,

xcolsumsA
q = x

(c1,c2,...,cq)
q = xc11 xc22 · · ·x

cq
q

(
by the definition of x

(c1,c2,...,cq)
q

)
=

q∏
j=1

x
cj
j .(13.46.43)

But each j ∈ {1, 2, . . . , q} satisfies

cj =


the sum of all entries in the j-th column of A︸ ︷︷ ︸

=(a1,j ,a2,j ,...,ap,j)
T

(since A=(ai,j)1≤i≤p, 1≤j≤q)


(by the definition of cj)

=
(

the sum of all entries in (a1,j , a2,j , . . . , ap,j)
T
)

= a1,j + a2,j + · · ·+ ap,j =

p∑
i=1

ai,j ,

and thus x
cj
j = x

∑p
i=1 ai,j

j =
∏p
i=1 x

ai,j
j . Hence,

q∏
j=1

x
cj
j︸︷︷︸

=
∏p
i=1 x

ai,j
j

=

q∏
j=1

p∏
i=1

x
ai,j
j =

p∏
i=1

xrowi A
q (by (13.46.42)) .

Thus,
p∏
i=1

xrowi A
q =

q∏
j=1

x
cj
j = xcolsumsA

q (by (13.46.43)) .

This proves (13.46.41).
536Proof of (13.46.44): Let (β1, β2, . . . , βp) ∈ ({0, 1}q)p. Define A ∈ {0, 1}p×q by A = Φ−1 (β1, β2, . . . , βp). Thus,

Φ (A) = (β1, β2, . . . , βp). Hence, (β1, β2, . . . , βp) = Φ (A) = (row1 A, row2 A, . . . , rowp A) (by the definition of Φ). In other

words, βi = rowi A for each i ∈ {1, 2, . . . , p}. Thus, x
βi
q = x

rowi A
q for each i ∈ {1, 2, . . . , p}. Hence,

p∏
i=1

xβiq︸︷︷︸
=x

rowi A
q

=

p∏
i=1

xrowi A
q = xcolsumsA

q (by (13.46.41))

= x
colsums(Φ−1(β1,β2,...,βp))
q

(
since A = Φ−1 (β1, β2, . . . , βp)

)
.

This proves (13.46.44).
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Furthermore, every matrix A ∈ {0, 1}p×q satisfies

(13.46.45) rowsumsA = (the row sums of A) = (|row1A| , |row2A| , . . . , |rowpA|)

(because for each i ∈ {1, 2, . . . , p}, the sum of the entries of the i-th row of A is precisely |rowiA|).
Let Mα be the set of all matrices A ∈ {0, 1}p×q satisfying rowsumsA = α. Thus,

Mα =
{
A ∈ {0, 1}p×q | rowsumsA = α

}
(13.46.46)

=
{
A ∈ {0, 1}p×q | A is a {0, 1} -matrix having row sums α

}
(13.46.47)

⊂ {0, 1}p×q .

For each m ∈ N, we define a subset Km of {0, 1}q by

Km = {β ∈ {0, 1}q | |β| = m} .

This set Km is finite (since it is a subset of the finite set {0, 1}q).
We have Kαi ⊂ {0, 1}

q
for each i ∈ {1, 2, . . . , p}. Hence,

∏p
i=1 Kαi ⊂

∏p
i=1 ({0, 1}q) = ({0, 1}q)p. Thus,

Kα1 × Kα2 × · · · × Kαp =
∏p
i=1 Kαi ⊂ ({0, 1}q)p.

It is easy to see that for each matrix A ∈ {0, 1}p×q, we have the following logical equivalence:

(13.46.48)
(
Φ (A) ∈ Kα1

× Kα2
× · · · × Kαp

)
⇐⇒ (rowsumsA = α)
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537. Now, applying the map Φ to the equality (13.46.46), we find

Φ (Mα) = Φ
({
A ∈ {0, 1}p×q | rowsumsA = α

})

=

Φ (A) | A ∈ {0, 1}p×q ; rowsumsA = α︸ ︷︷ ︸
⇐⇒ (Φ(A)∈Kα1

×Kα2
×···×Kαp)

(by (13.46.48))


=
{

Φ (A) | A ∈ {0, 1}p×q ; Φ (A) ∈ Kα1
× Kα2

× · · · × Kαp

}
=
{
β | β ∈ ({0, 1}q)p ; β ∈ Kα1 × Kα2 × · · · × Kαp

}(
here, we have substituted β for Φ (A) , since the map

Φ : {0, 1}p×q → ({0, 1}q)p is a bijection

)
=
{
β ∈ ({0, 1}q)p | β ∈ Kα1 × Kα2 × · · · × Kαp

}
= Kα1 × Kα2 × · · · × Kαp(13.46.50)

(since Kα1 × Kα2 × · · · × Kαp ⊂ ({0, 1}q)p).
Now, Mα is a subset of {0, 1}p×q (since Mα ⊂ {0, 1}p×q). Hence, Lemma 13.46.12 (applied to X =

{0, 1}p×q, Y = ({0, 1}q)p, φ = Φ and Z = Mα) yields that the map Mα → Φ (Mα) , A 7→ Φ (A) is
well-defined and is a bijection.

537Proof of (13.46.48): Let A ∈ {0, 1}p×q be a matrix.

Let i ∈ {1, 2, . . . , p}. Recall that rowi A denotes the i-th row of A; this i-th row is an element of {0, 1}q . Thus, rowi A ∈
{0, 1}q . Now, we have the following chain of equivalences:rowi A ∈ Kαi︸︷︷︸

={β∈{0,1}q | |β|=αi}
(by the definition of Kαi )

 ⇐⇒ (rowi A ∈ {β ∈ {0, 1}q | |β| = αi})

⇐⇒

 rowi A ∈ {0, 1}q︸ ︷︷ ︸
This is always true

(since we know that rowi A∈{0,1}q)

and |rowi A| = αi


⇐⇒ (|rowi A| = αi) .(13.46.49)

Now, forget that we fixed i. We thus have proven the equivalence (13.46.49) for each i ∈ {1, 2, . . . , p}.
The definition of Φ yields Φ (A) = (row1 A, row2 A, . . . , rowp A). Now, we have the following chain of logical equivalences: Φ (A)︸ ︷︷ ︸

=(row1 A,row2 A,...,rowp A)

∈ Kα1 × Kα2 × · · · × Kαp


⇐⇒

(
(row1 A, row2 A, . . . , rowp A) ∈ Kα1 × Kα2 × · · · × Kαp

)

⇐⇒

 rowi A ∈ Kαi︸ ︷︷ ︸
⇐⇒ (|rowi A|=αi)

(by (13.46.49))

for each i ∈ {1, 2, . . . , p}


⇐⇒ (|rowi A| = αi for each i ∈ {1, 2, . . . , p})

⇐⇒

(|row1 A| , |row2 A| , . . . , |rowp A|)︸ ︷︷ ︸
=rowsumsA

(by (13.46.45))

= (α1, α2, . . . , αp)︸ ︷︷ ︸
=α


⇐⇒ (rowsumsA = α) .

This proves (13.46.48).
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Lemma 13.46.11 yields that

(13.46.51) ηq (em) =
∑

β∈{0,1}q ;
|β|=m︸ ︷︷ ︸

=
∑
β∈Km

(since Km={β∈{0,1}q | |β|=m})

xβq =
∑
β∈Km

xβq

for every m ∈ N.
But applying the map ηq to the equality eα1

eα2
· · · eαp =

∏p
i=1 eαi , we obtain

ηq
(
eα1

eα2
· · · eαp

)
= ηq

(
p∏
i=1

eαi

)
=

p∏
i=1

ηq (eαi)︸ ︷︷ ︸
=
∑
β∈Kαi

xβq

(by (13.46.51) (applied to m=αi))

(since ηq is a k-algebra homomorphism)

=

p∏
i=1

∑
β∈Kαi

xβq =
∑

(β1,β2,...,βp)∈Kα1
×Kα2

×···×Kαp

p∏
i=1

xβiq︸ ︷︷ ︸
=x

colsums(Φ−1(β1,β2,...,βp))
q

(by (13.46.44)
(since (β1,β2,...,βp)∈Kα1

×Kα2
×···×Kαp⊂({0,1}q)p))

(by the product rule)

=
∑

(β1,β2,...,βp)∈Kα1
×Kα2

×···×Kαp

x
colsums(Φ−1(β1,β2,...,βp))
q =

∑
C∈Kα1

×Kα2
×···×Kαp

x
colsums(Φ−1(C))
q

(here, we have renamed the summation index (β1, β2, . . . , βp) as C)

=
∑

C∈Φ(Mα)

x
colsums(Φ−1(C))
q

(
since Kα1

× Kα2
× · · · × Kαp = Φ (Mα) (by (13.46.50))

)
=

∑
A∈Mα︸ ︷︷ ︸

=
∑

A∈{0,1}p×q is a {0,1}-matrix
having row sums α

(because of (13.46.47))

x
colsums(Φ−1(Φ(A)))
q︸ ︷︷ ︸

=xcolsumsA
q

(since Φ−1(Φ(A))=A)

(
here, we have substituted Φ (A) for C in the sum, since

the map Mα → Φ (Mα) , A 7→ Φ (A) is a bijection

)
=

∑
A∈{0,1}p×q is a {0,1}-matrix

having row sums α

xcolsumsA
q .

This proves Lemma 13.46.13. �

Lemma 13.46.14. Let λ ∈ Par and µ ∈ Par. Then, [xµ] (eλ) = aλ,µ.

Proof of Lemma 13.46.14. Let p = ` (λ). Thus, λ = (λ1, λ2, . . . , λp) with λ1 ≥ λ2 ≥ · · · ≥ λp > 0. Hence,
eλ = eλ1

eλ2
· · · eλp (by the definition of eλ). Hence, eλ ∈ Λ (since ei ∈ Λ for each i ∈ N).

Let q = ` (µ). Thus, µq+1 = µq+2 = µq+3 = · · · = 0. Therefore, µ = (µ1, µ2, . . . , µq) with µ1 ≥ µ2 ≥ · · · ≥
µq > 0.

For any matrix A ∈ {0, 1}p×q, we let colsumsA denote the column sums of A.
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The definition of aλ,µ yields

aλ,µ

=

the number of all {0, 1} -matrices of size ` (λ)︸︷︷︸
=p

× ` (µ)︸︷︷︸
=q

having row sums λ and column sums µ


= (the number of all {0, 1} -matrices of size p× q having row sums λ and column sums µ)

=
(

the number of all matrices A ∈ {0, 1}p×q having row sums λ and column sums µ
)

=

∣∣∣∣∣∣∣∣∣

A ∈ {0, 1}
p×q | the row sums of A are λ, and the column sums of A are µ︸ ︷︷ ︸

⇐⇒ (colsumsA=µ)
(since the column sums of A is colsumsA)


∣∣∣∣∣∣∣∣∣

=
∣∣∣{A ∈ {0, 1}p×q | the row sums of A are λ, and colsumsA = µ

}∣∣∣ .(13.46.52)

But λ = (λ1, λ2, . . . , λp) ∈ Np is a p-tuple of nonnegative integers. Hence, Lemma 13.46.13 (applied to λ
and λi instead of α and αi) yields

ηq
(
eλ1

eλ2
· · · eλp

)
=

∑
A∈{0,1}p×q is a {0,1}-matrix

having row sums λ

xcolsumsA
q .
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But eλ ∈ Λ ⊂ R (x). Also, µi = 0 for every integer i > q (since q = ` (µ)). Hence, Lemma 13.46.7 (applied
to β = µ and f = eλ) yields

[xµ] (eλ)

=
[
x(µ1,µ2,...,µq)
q

]ηq
 eλ︸︷︷︸

=eλ1
eλ2
···eλp


 =

[
x(µ1,µ2,...,µq)
q

]


ηq
(
eλ1

eλ2
· · · eλp

)︸ ︷︷ ︸
=

∑
A∈{0,1}p×q is a {0,1}-matrix

having row sums λ

xcolsumsA
q



=
[
x(µ1,µ2,...,µq)
q

] ∑
A∈{0,1}p×q is a {0,1}-matrix

having row sums λ

xcolsumsA
q


=

∑
A∈{0,1}p×q is a {0,1}-matrix

having row sums λ

[
x(µ1,µ2,...,µq)
q

] (
xcolsumsA
q

)
︸ ︷︷ ︸

=δ(µ1,µ2,...,µq),colsumsA

(by (13.46.27) (applied to φ=(µ1,µ2,...,µq)
and ψ=colsumsA))

=
∑

A∈{0,1}p×q is a {0,1}-matrix
having row sums λ

δ(µ1,µ2,...,µq),colsumsA︸ ︷︷ ︸
=δµ,colsumsA

(since (µ1,µ2,...,µq)=µ)

=
∑

A∈{0,1}p×q is a {0,1}-matrix
having row sums λ

δµ,colsumsA

=
∑

A∈{0,1}p×q is a {0,1}-matrix
having row sums λ;

colsumsA=µ︸ ︷︷ ︸
=

∑
A∈{0,1}p×q ;

the row sums of A are λ;
colsumsA=µ

δµ,colsumsA︸ ︷︷ ︸
=1

(since colsumsA=µ)

+
∑

A∈{0,1}p×q is a {0,1}-matrix
having row sums λ;

colsumsA6=µ

δµ,colsumsA︸ ︷︷ ︸
=0

(since colsumsA 6=µ)

=
∑

A∈{0,1}p×q ;
the row sums of A are λ;

colsumsA=µ

1 +
∑

A∈{0,1}p×q is a {0,1}-matrix
having row sums λ;

colsumsA 6=µ

0

︸ ︷︷ ︸
=0

=
∑

A∈{0,1}p×q ;
the row sums of A are λ;

colsumsA=µ

1

=
∣∣∣{A ∈ {0, 1}p×q | the row sums of A are λ, and colsumsA = µ

}∣∣∣ · 1
=
∣∣∣{A ∈ {0, 1}p×q | the row sums of A are λ, and colsumsA = µ

}∣∣∣ .
Comparing this with (13.46.52), we obtain [xµ] (eλ) = aλ,µ. This proves Lemma 13.46.14. �

Now, let λ ∈ Parn. Let p = ` (λ). We have λ = (λ1, λ2, . . . , λp) with λ1 ≥ λ2 ≥ · · · ≥ λp > 0 (since
p = ` (λ)). Hence, eλ = eλ1eλ2 · · · eλp (by the definition of eλ).

Moreover, λ ∈ Parn, so that |λ| = n. Hence, n =

∣∣∣∣∣∣ λ︸︷︷︸
=(λ1,λ2,...,λp)

∣∣∣∣∣∣ = |(λ1, λ2, . . . , λp)| = λ1 + λ2 + · · ·+ λp.

Let i ∈ {1, 2, . . . , p}. Then, eλi is a homogeneous element of Λ having degree λi (because for each m ∈ N,
the element em is a homogeneous element of Λ having degree m).

Now, forget that we fixed i. We thus have shown that for each i ∈ {1, 2, . . . , p}, the element eλi is a
homogeneous element of Λ having degree λi. In other words, eλ1 , eλ2 , . . . , eλp are homogeneous elements
of Λ having degrees λ1, λ2, . . . , λp, respectively. Hence, the product eλ1

eλ2
· · · eλp of these elements is a

homogeneous element of Λ having degree λ1 + λ2 + · · · + λp. In light of eλ = eλ1
eλ2
· · · eλp and n =

λ1 + λ2 + · · ·+ λp, this rewrites as follows: The element eλ is a homogeneous element of Λ having degree n.
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In other words, eλ ∈ Λn. Thus, Exercise 2.2.13(a) (applied to f = eλ) yields

eλ =
∑

µ∈Parn

([xµ] (eλ))︸ ︷︷ ︸
=aλ,µ

(by Lemma 13.46.14)

mµ =
∑

µ∈Parn

aλ,µmµ.

This solves Exercise 2.2.13(g).
Before we solve Exercise 2.2.13(h), let us show a few lemmas:

Lemma 13.46.15. Let p ∈ N. Let a1, a2, . . . , ap be p integers. Let b1, b2, . . . , bp be p integers. Assume that

(13.46.53) ai ≥ bi for each i ∈ {1, 2, . . . , p} .
Assume furthermore that

∑p
i=1 ai ≤

∑p
i=1 bi. Then, ai = bi for each i ∈ {1, 2, . . . , p}.

Proof of Lemma 13.46.15. Let j ∈ {1, 2, . . . , p}. Then, (13.46.53) (applied to i = j) shows that aj ≥ bj . But
p∑
i=1︸︷︷︸

=
∑
i∈{1,2,...,p}

ai =
∑

i∈{1,2,...,p}

ai = aj +
∑

i∈{1,2,...,p};
i 6=j

ai︸︷︷︸
≥bi

(by (13.46.53))

(here, we have split off the addend for i = j from the sum)

≥ aj +
∑

i∈{1,2,...,p};
i6=j

bi.

Hence,

aj +
∑

i∈{1,2,...,p};
i6=j

bi ≤
p∑
i=1

ai ≤
p∑
i=1︸︷︷︸

=
∑
i∈{1,2,...,p}

bi =
∑

i∈{1,2,...,p}

bi = bj +
∑

i∈{1,2,...,p};
i6=j

bi

(here, we have split off the addend for i = j from the sum) .

Subtracting
∑

i∈{1,2,...,p};
i 6=j

bi from both sides of this inequality, we obtain aj ≤ bj . Combining this with aj ≥ bj ,

we obtain aj = bj .
Now, forget that we fixed j. We thus have shown that aj = bj for each j ∈ {1, 2, . . . , p}. Renaming the

variable j as i in this statement, we conclude that ai = bi for each i ∈ {1, 2, . . . , p}. This proves Lemma
13.46.15. �

Lemma 13.46.16. Let k ∈ N. Let a1, a2, . . . , ak be k integers. Let b1, b2, . . . , bk be k integers. Assume that

aj ≥ bj for each j ∈ {1, 2, . . . , k} .

Assume furthermore that
∑k
j=1 aj ≤

∑k
j=1 bj . Then, aj = bj for each j ∈ {1, 2, . . . , k}.

Proof of Lemma 13.46.16. Lemma 13.46.16 is obtained from Lemma 13.46.15 upon renaming the variables
p and i as k and j. Thus, Lemma 13.46.16 follows from Lemma 13.46.15. �

The next few lemmas use the so-called Iverson bracket notation:

Definition 13.46.17. For every assertion A, we let [A] denote the integer

{
1, if A is true;

0, if A is false
.

Lemma 13.46.18. Let q ∈ N and r ∈ N be such that r ≤ q. Then,
∑q
j=1 [j ≤ r] = r.

Proof of Lemma 13.46.18. We have 0 ≤ r ≤ q. Hence,
q∑
j=1

[j ≤ r] =

r∑
j=1

[j ≤ r]︸ ︷︷ ︸
=1

(since j≤r)

+

q∑
j=r+1

[j ≤ r]︸ ︷︷ ︸
=0

(since we don’t have j≤r
(since j≥r+1>r))

=

r∑
j=1

1 +

q∑
j=r+1

0︸ ︷︷ ︸
=0

=

r∑
j=1

1 = r · 1 = r.

This proves Lemma 13.46.18. �
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Lemma 13.46.19. Let p ∈ N and q ∈ N. Let A = (ai,j)1≤i≤p, 1≤j≤q ∈ {0, 1}
p×q

be a {0, 1}-matrix. Let

(λ1, λ2, . . . , λp) be the row sums of A. Let (µ1, µ2, . . . , µq) be the column sums of A. Then:

(a) We have λi =
∑q
j=1 ai,j for each i ∈ {1, 2, . . . , p}.

(b) We have µj =
∑p
i=1 ai,j for each j ∈ {1, 2, . . . , q}.

(c) We have
∑p
i=1 λi =

∑q
j=1 µj .

(d) We have min {λi, k} ≥
∑k
j=1 ai,j for each k ∈ {0, 1, . . . , q} and i ∈ {1, 2, . . . , p}.

(e) We have
∑p
i=1 min {λi, k} ≥

∑k
j=1 µj for each k ∈ {0, 1, . . . , q}.

(f) If
(∑p

i=1 min {λi, k} =
∑k
j=1 µj for each k ∈ {1, 2, . . . , q}

)
, then A = ([j ≤ λi])1≤i≤p, 1≤j≤q.

Proof of Lemma 13.46.19. We have (ai,j)1≤i≤p, 1≤j≤q = A ∈ {0, 1}p×q. Thus, ai,j ∈ {0, 1} for each i ∈
{1, 2, . . . , p} and j ∈ {1, 2, . . . , q}. Hence, for each i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}, we have

(13.46.54) ai,j ≥ 0 (since ai,j ∈ {0, 1})

and

(13.46.55) ai,j ≤ 1 (since ai,j ∈ {0, 1}) .

(a) Recall that (λ1, λ2, . . . , λp) is the row sums of A. By the definition of “row sums”, this means that
for each i ∈ {1, 2, . . . , p}, the number λi is the sum of all entries in the i-th row of A. Thus, for each
i ∈ {1, 2, . . . , p}, we have

λi =

the sum of all entries in the i-th row of A︸ ︷︷ ︸
=(ai,1,ai,2,...,ai,q)

(since A=(ai,j)1≤i≤p, 1≤j≤q)


= (the sum of all entries in (ai,1, ai,2, . . . , ai,q)) = ai,1 + ai,2 + · · ·+ ai,q =

q∑
j=1

ai,j .

This proves Lemma 13.46.19(a).
(b) The proof of Lemma 13.46.19(a) can easily be adapted (mutatis mutandis) to yield a proof of Lemma

13.46.19(b).
(c) Comparing

p∑
i=1

λi︸︷︷︸
=
∑q
j=1 ai,j

(by Lemma 13.46.19(a))

=

p∑
i=1

q∑
j=1︸ ︷︷ ︸

=
∑q
j=1

∑p
i=1

ai,j =

q∑
j=1

p∑
i=1

ai,j

with
q∑
j=1

µj︸︷︷︸
=
∑p
i=1 ai,j

(by Lemma 13.46.19(b))

=

q∑
j=1

p∑
i=1

ai,j ,

we obtain
∑p
i=1 λi =

∑q
j=1 µj . This proves Lemma 13.46.19(c).

(d) Let k ∈ {0, 1, . . . , q} and i ∈ {1, 2, . . . , p}. Lemma 13.46.19(a) yields λi =
∑q
j=1 ai,j . But

k∑
j=1

ai,j︸︷︷︸
≤1

(by (13.46.55))

≤
k∑
j=1

1 = k · 1 = k.

Furthermore, k ∈ {0, 1, . . . , q}, so that 0 ≤ k ≤ q. Hence,

q∑
j=1

ai,j =

k∑
j=1

ai,j +

q∑
j=k+1

ai,j︸︷︷︸
≥0

(by (13.46.54))

≥
k∑
j=1

ai,j +

q∑
j=k+1

0︸ ︷︷ ︸
=0

=

k∑
j=1

ai,j ,
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so that
k∑
j=1

ai,j ≤
q∑
j=1

ai,j = λi.

But let us recall the following basic fact about integers: If three integers α, β, γ satisfy α ≤ β and

α ≤ γ, then α ≤ min {β, γ}. Applying this fact to α =
∑k
j=1 ai,j , β = λi and γ = k, we conclude that∑k

j=1 ai,j ≤ min {λi, k} (since
∑k
j=1 ai,j ≤ λi and

∑k
j=1 ai,j ≤ k). In other words, min {λi, k} ≥

∑k
j=1 ai,j .

This proves Lemma 13.46.19(d).
(e) Let k ∈ {0, 1, . . . , q}. Now,

p∑
i=1

min {λi, k}︸ ︷︷ ︸
≥
∑k
j=1 ai,j

(by Lemma 13.46.19(d))

≥
p∑
i=1

k∑
j=1︸ ︷︷ ︸

=
∑k
j=1

∑p
i=1

ai,j =

k∑
j=1

p∑
i=1

ai,j︸ ︷︷ ︸
=µj

(by Lemma 13.46.19(b))

=

k∑
j=1

µj .

This proves Lemma 13.46.19(e).
(f) Assume that

(13.46.56)

 p∑
i=1

min {λi, k} =

k∑
j=1

µj for each k ∈ {1, 2, . . . , q}

 .

We want to show that A = ([j ≤ λi])1≤i≤p, 1≤j≤q.

Let k ∈ {1, 2, . . . , q}. Thus, k ∈ {1, 2, . . . , q} ⊂ {0, 1, . . . , q}. But (13.46.56) yields

p∑
i=1

min {λi, k} =

k∑
j=1

µj︸︷︷︸
=
∑p
i=1 ai,j

(by Lemma 13.46.19(b))

=

k∑
j=1

p∑
i=1︸ ︷︷ ︸

=
∑p
i=1

∑k
j=1

ai,j =

p∑
i=1

k∑
j=1

ai,j ≤
p∑
i=1

k∑
j=1

ai,j .

Furthermore, we know that min {λi, k} ≥
∑k
j=1 ai,j for each i ∈ {1, 2, . . . , p} (by Lemma 13.46.19(d)).

Hence, Lemma 13.46.15 (applied to min {λi, k} and
∑k
j=1 ai,j instead of ai and bi) shows that

(13.46.57) min {λi, k} =

k∑
j=1

ai,j for each i ∈ {1, 2, . . . , p} .

Now, forget that we fixed k. We thus have proven (13.46.57) for each k ∈ {1, 2, . . . , q}.
Now, pick i ∈ {1, 2, . . . , p}. We shall show that

(13.46.58) ai,k ≥ [k ≤ λi] for each k ∈ {1, 2, . . . , q} .

[Proof of (13.46.58): Let k ∈ {1, 2, . . . , q}. We must prove the inequality ai,k ≥ [k ≤ λi].
Indeed, we are in one of the following two cases:
Case 1: We have k ≤ λi.
Case 2: We don’t have k ≤ λi.
Let us first consider Case 1. In this case, we have k ≤ λi. Thus, [k ≤ λi] = 1. Also, k ≥ 1 (since

k ∈ {1, 2, . . . , q}), so that k ∈ {1, 2, . . . , k}. But from k ≤ λi, we also obtain min {λi, k} = k. Thus,

k∑
j=1

1 = k · 1 = k ≤ k = min {λi, k} =

k∑
j=1

ai,j

(by (13.46.57)). Furthermore, 1 ≥ ai,j for each j ∈ {1, 2, . . . , k} 538. Hence, Lemma 13.46.16 (applied
to 1 and ai,j instead of aj and bj) shows that 1 = ai,j for each j ∈ {1, 2, . . . , k}. Applying this to j = k,
we obtain 1 = ai,k (since k ∈ {1, 2, . . . , k}). Hence, ai,k = 1 = [k ≤ λi], so that ai,k ≥ [k ≤ λi]. Thus, the
inequality ai,k ≥ [k ≤ λi] is proven in Case 1.

538Proof. Let j ∈ {1, 2, . . . , k}. Then, j ∈ {1, 2, . . . , k} ⊂ {1, 2, . . . , q} (since k ∈ {1, 2, . . . , q}). Hence, (13.46.55) yields

ai,j ≤ 1. In other words, 1 ≥ ai,j . Qed.
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Next, let us consider Case 2. In this case, we don’t have k ≤ λi. Thus, [k ≤ λi] = 0. But (13.46.54)
(applied to j = k) yields ai,k ≥ 0. Thus, ai,k ≥ 0 = [k ≤ λi]. Hence, the inequality ai,k ≥ [k ≤ λi] is proven
in Case 2.

We have now proven the inequality ai,k ≥ [k ≤ λi] in each of the two Cases 1 and 2. Thus, the inequality
ai,k ≥ [k ≤ λi] always holds. This proves (13.46.58).]

Lemma 13.46.19(a) yields λi =
∑q
j=1 ai,j . But Lemma 13.46.19(d) (applied to k = q) yields min {λi, q} ≥∑q

j=1 ai,j . Hence,
∑q
j=1 ai,j ≤ min {λi, q}, so that λi =

∑q
j=1 ai,j ≤ min {λi, q}. If we had λi > q, then we

would have min {λi, q} = q < λi ≤ min {λi, q}, which would be absurd. Thus, we cannot have λi > q. We
therefore must have λi ≤ q. Hence, Lemma 13.46.18 (applied to r = λi) yields

q∑
j=1

[j ≤ λi] = λi =

q∑
j=1

ai,j .

Thus,
q∑
j=1

ai,j =

q∑
j=1

[j ≤ λi] ≤
q∑
j=1

[j ≤ λi] .

Also,

ai,j ≥ [j ≤ λi] for each j ∈ {1, 2, . . . , q}
(by (13.46.58), applied to k = j). Hence, Lemma 13.46.16 (applied to q, ai,j and [j ≤ λi] instead of k, aj
and bj) shows that

(13.46.59) ai,j = [j ≤ λi] for each j ∈ {1, 2, . . . , q} .
Now, forget that we fixed i. We thus have proven (13.46.59) for each i ∈ {1, 2, . . . , p}.
Now,

A =

 ai,j︸︷︷︸
=[j≤λi]

(by (13.46.59))


1≤i≤p, 1≤j≤q

= ([j ≤ λi])1≤i≤p, 1≤j≤q .

This proves Lemma 13.46.19(f). �

Lemma 13.46.20. Let n ∈ N and q ∈ N. Let λ ∈ Parn and µ ∈ Parn be such that ` (µ) ≤ q. Assume that

λ1 + λ2 + · · ·+ λk ≥ µ1 + µ2 + · · ·+ µk for each k ∈ {1, 2, . . . , q} .
Then, λ . µ.

Proof of Lemma 13.46.20. We have assumed that

(13.46.60) λ1 + λ2 + · · ·+ λk ≥ µ1 + µ2 + · · ·+ µk for each k ∈ {1, 2, . . . , q} .
Hence,

(13.46.61) λ1 + λ2 + · · ·+ λq ≥ µ1 + µ2 + · · ·+ µq
539.

Both λ and µ are partitions of n (since λ ∈ Parn and µ ∈ Parn). Thus, we have λ . µ if and only if

(13.46.62) λ1 + λ2 + · · ·+ λk ≥ µ1 + µ2 + · · ·+ µk for all k ∈ {1, 2, . . . , n}
(by the definition of the dominance order).

Now, we are going to prove (13.46.62).
[Proof of (13.46.62): Let k ∈ {1, 2, . . . , n}. We must prove that λ1 + λ2 + · · ·+ λk ≥ µ1 + µ2 + · · ·+ µk.
If k ∈ {1, 2, . . . , q}, then this follows immediately from (13.46.60). Hence, for the rest of this proof, we

WLOG assume that k /∈ {1, 2, . . . , q}. Combining k ∈ {1, 2, . . . , n} ⊂ {1, 2, 3, . . .} with k /∈ {1, 2, . . . , q}, we

539Proof of (13.46.61): If q = 0, then the inequality (13.46.61) holds because both of its sides equal 0 (in fact, an empty
sum is 0). Hence, for the rest of this proof, we WLOG assume that q 6= 0. Thus, q is a positive integer (since q ∈ N). Thus,

q ∈ {1, 2, . . . , q}. Therefore, (13.46.60) (applied to k = q) yields λ1 +λ2 + · · ·+λq ≥ µ1 +µ2 + · · ·+µq . This proves (13.46.61).
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obtain k ∈ {1, 2, 3, . . .} \ {1, 2, . . . , q} = {q + 1, q + 2, q + 3, . . .}. Thus, k ≥ q + 1 > q. Hence, q < k. Recall
also that ` (µ) ≤ q, hence q ≥ ` (µ). Now,

µ1 + µ2 + · · ·+ µk =

k∑
i=1

µi =

q∑
i=1

µi +

k∑
i=q+1

µi︸︷︷︸
=0

(since i≥q+1>q≥`(µ))

(since 0 ≤ q < k)

=

q∑
i=1

µi +

k∑
i=q+1

0︸ ︷︷ ︸
=0

=

q∑
i=1

µi = µ1 + µ2 + · · ·+ µq.(13.46.63)

On the other hand,

λ1 + λ2 + · · ·+ λk =

k∑
i=1

λi =

q∑
i=1

λi +

k∑
i=q+1

λi︸︷︷︸
≥0

(since 0 ≤ q < k)

≥
q∑
i=1

λi +

k∑
i=q+1

0︸ ︷︷ ︸
=0

=

q∑
i=1

λi = λ1 + λ2 + · · ·+ λq

≥ µ1 + µ2 + · · ·+ µq (by (13.46.61))

= µ1 + µ2 + · · ·+ µk (by (13.46.63)) .

This proves λ1 + λ2 + · · ·+ λk ≥ µ1 + µ2 + · · ·+ µk. Thus, (13.46.62) is proven.]
Recall that we have λ . µ if and only if (13.46.62) holds. Thus, we have λ . µ (since (13.46.62) holds).

This proves Lemma 13.46.20. �

Lemma 13.46.21. Let n ∈ N and q ∈ N. Let λ ∈ Parn and µ ∈ Parn be such that ` (λ) ≤ q. Assume that

λ1 + λ2 + · · ·+ λk ≥ µ1 + µ2 + · · ·+ µk for each k ∈ {1, 2, . . . , q} .

Then, λ . µ.

Proof of Lemma 13.46.21. We have assumed that

(13.46.64) λ1 + λ2 + · · ·+ λk ≥ µ1 + µ2 + · · ·+ µk for each k ∈ {1, 2, . . . , q} .

Both λ and µ are partitions of n (since λ ∈ Parn and µ ∈ Parn). Thus, we have λ . µ if and only if

(13.46.65) λ1 + λ2 + · · ·+ λk ≥ µ1 + µ2 + · · ·+ µk for all k ∈ {1, 2, . . . , n}

(by the definition of the dominance order).
Now, we are going to prove (13.46.65).
[Proof of (13.46.65): Let k ∈ {1, 2, . . . , n}. We must prove that λ1 + λ2 + · · ·+ λk ≥ µ1 + µ2 + · · ·+ µk.
If k ∈ {1, 2, . . . , q}, then this follows immediately from (13.46.64). Hence, for the rest of this proof of

λ1+λ2+· · ·+λk ≥ µ1+µ2+· · ·+µk, we WLOG assume that k /∈ {1, 2, . . . , q}. Combining k ∈ {1, 2, . . . , n} ⊂
{1, 2, 3, . . .} with k /∈ {1, 2, . . . , q}, we obtain k ∈ {1, 2, 3, . . .} \ {1, 2, . . . , q} = {q + 1, q + 2, q + 3, . . .}. Thus,
k ≥ q + 1 > q ≥ ` (λ) (since ` (λ) ≤ q).

From µ ∈ Parn, we obtain |µ| = n. Hence, n = |µ| = µ1 + µ2 + µ3 + · · · (by the definition of |µ|).
But the definition of |λ| yields

|λ| = λ1 + λ2 + λ3 + · · · =
∞∑
i=1

λi =

k∑
i=1

λi +

∞∑
i=k+1

λi︸︷︷︸
=0

(since i≥k+1>k>`(λ))

=

k∑
i=1

λi +

∞∑
i=k+1

0︸ ︷︷ ︸
=0

=

k∑
i=1

λi = λ1 + λ2 + · · ·+ λk.
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Thus,

λ1 + λ2 + · · ·+ λk = |λ| = n (since λ ∈ Parn)

= µ1 + µ2 + µ3 + · · · =
∞∑
i=1

µi =

k∑
i=1

µi +

∞∑
i=k+1

µi︸︷︷︸
≥0

≥
k∑
i=1

µi +

∞∑
i=k+1

0︸ ︷︷ ︸
=0

=

k∑
i=1

µi = µ1 + µ2 + · · ·+ µk.

This proves λ1 + λ2 + · · ·+ λk ≥ µ1 + µ2 + · · ·+ µk. Thus, (13.46.65) is proven.]
Recall that we have λ . µ if and only if (13.46.65) holds. Thus, we have λ . µ (since (13.46.65) holds).

This proves Lemma 13.46.21. �

Lemma 13.46.22. Let n ∈ N, p ∈ N and q ∈ N. Let λ ∈ Parn and µ ∈ Parn. Let A ∈ {0, 1}p×q be a
{0, 1}-matrix having row sums λ and column sums µ. Then:

(a) We have λt . µ.
(b) If µ = λt, then A = ([j ≤ λi])1≤i≤p, 1≤j≤q.

Proof of Lemma 13.46.22. The row sums of A is λ (since A has row sums λ). Thus, λ is a p-tuple (since
the row sums of A is a p-tuple). Therefore, λ = (λ1, λ2, . . . , λp). Thus, (λ1, λ2, . . . , λp) is the row sums of A
(since λ is the row sums of A).

The column sums of A is µ (since A has column sums µ). Thus, µ is a q-tuple (since the column sums of
A is a q-tuple). Therefore, µ = (µ1, µ2, . . . , µq). Thus, (µ1, µ2, . . . , µq) is the column sums of A (since µ is
the column sums of A). From µ = (µ1, µ2, . . . , µq), we obtain ` (µ) ≤ q.

We have |λt| = |λ| (since the transpose of a partition always has the same size as the partition itself).
But |λ| = n (since λ ∈ Parn). Hence, |λt| = |λ| = n, so that λt ∈ Parn.

Write the p × q-matrix A in the form A = (ai,j)1≤i≤p, 1≤j≤q. Hence, Lemma 13.46.19(e) shows that we

have

(13.46.66)

p∑
i=1

min {λi, k} ≥
k∑
j=1

µj

for each k ∈ {0, 1, . . . , q}.
But λ ∈ Parn ⊂ Par. Hence, Lemma 13.45.1 (applied to ν = λ) shows that

(13.46.67)
(
λt
)

1
+
(
λt
)

2
+ · · ·+

(
λt
)
k

=

∞∑
j=1

min {λj , k}
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for every k ∈ N. Hence, every k ∈ {1, 2, . . . , q} satisfies(
λt
)

1
+
(
λt
)

2
+ · · ·+

(
λt
)
k

=

∞∑
j=1

min {λj , k} (by (13.46.67))

=

p∑
j=1

min {λj , k}+

∞∑
j=p+1

min {λj , k}︸ ︷︷ ︸
≥0

≥
p∑
j=1

min {λj , k}+

∞∑
j=p+1

0︸ ︷︷ ︸
=0

=

p∑
j=1

min {λj , k}

=

p∑
i=1

min {λi, k}(13.46.68)

(here, we have renamed the summation index j as i)

≥
k∑
j=1

µj (by (13.46.66))

= µ1 + µ2 + · · ·+ µk.

Hence, Lemma 13.46.20 (applied to λt instead of λ) shows that λt . µ. This proves Lemma 13.46.22(a).
(b) Assume that µ = λt.
Let k ∈ {1, 2, . . . , q}. Then, (13.46.68) shows that(

λt
)

1
+
(
λt
)

2
+ · · ·+

(
λt
)
k
≥

p∑
i=1

min {λi, k} .

Hence,
p∑
i=1

min {λi, k} ≤
(
λt
)

1
+
(
λt
)

2
+ · · ·+

(
λt
)
k

=

k∑
j=1

 λt︸︷︷︸
=µ


j

=

k∑
j=1

µj .

Combining this with (13.46.66), we obtain
∑p
i=1 min {λi, k} =

∑k
j=1 µj .

Now, forget that we fixed k. We thus have proven that
(∑p

i=1 min {λi, k} =
∑k
j=1 µj for each k ∈ {1, 2, . . . , q}

)
.

Hence, Lemma 13.46.19(f) shows that A = ([j ≤ λi])1≤i≤p, 1≤j≤q. This proves Lemma 13.46.22(b). �

Lemma 13.46.23. Let p ∈ N and q ∈ N. Let λ be a partition satisfying ` (λ) ≤ p and λ1 ≤ q.
Let B be the p× q-matrix ([j ≤ λi])1≤i≤p, 1≤j≤q.

Then, B is a {0, 1}-matrix having row sums λ and column sums λt.

Proof of Lemma 13.46.23. We have [j ≤ λi] ∈ {0, 1} for each i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q} (since

[A] ∈ {0, 1} for any logical statement A). Hence, ([j ≤ λi])1≤i≤p, 1≤j≤q ∈ {0, 1}
p×q

.

Thus, B = ([j ≤ λi])1≤i≤p, 1≤j≤q ∈ {0, 1}
p×q

. Therefore, B is a {0, 1}-matrix.

From ` (λ) ≤ p, we obtain λ = (λ1, λ2, . . . , λp).

Let
(
λ̃1, λ̃2, . . . , λ̃p

)
be the row sums of B. Let (µ̃1, µ̃2, . . . , µ̃q) be the column sums of B.

Lemma 13.46.19(a) (applied to B, λ̃i, µ̃j and [j ≤ λi] instead of A, λi, µj and ai,j) shows that we have

(13.46.69) λ̃i =

q∑
j=1

[j ≤ λi] for each i ∈ {1, 2, . . . , p}

(since B = ([j ≤ λi])1≤i≤p, 1≤j≤q).

Lemma 13.46.19(b) (applied to B, λ̃i, µ̃j and [j ≤ λi] instead of A, λi, µj and ai,j) shows that we have

(13.46.70) µ̃j =

p∑
i=1

[j ≤ λi] for each j ∈ {1, 2, . . . , q}
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(since B = ([j ≤ λi])1≤i≤p, 1≤j≤q).
We have

(13.46.71) λi ≤ q

for each i ∈ {1, 2, 3, . . .} 540.
Let i ∈ {1, 2, . . . , p}. Then, λi ≤ q (by (13.46.71)). Hence, Lemma 13.46.18 (applied to r = λi) yields∑q
j=1 [j ≤ λi] = λi. Hence, (13.46.69) becomes λ̃i =

∑q
j=1 [j ≤ λi] = λi.

Now, forget that we fixed i. We thus have shown that λ̃i = λi for each i ∈ {1, 2, . . . , p}. In other words,(
λ̃1, λ̃2, . . . , λ̃p

)
= (λ1, λ2, . . . , λp) = λ (since λ = (λ1, λ2, . . . , λp)). Thus, the row sums of B is λ (since the

row sums of B is
(
λ̃1, λ̃2, . . . , λ̃p

)
). In other words, the matrix B has row sums λ.

On the other hand, the definition (2.2.7) of the conjugate partition λt of λ shows that

(13.46.72)
(
λt
)
i

= |{j ∈ {1, 2, 3, . . .} | λj ≥ i}|

for every positive integer i.
Now, let k ∈ {1, 2, . . . , q}. Applying (13.46.72) to i = k, we obtain

(13.46.73)
(
λt
)
k

= |{j ∈ {1, 2, 3, . . .} | λj ≥ k}| .

But (13.46.70) (applied to j = k) shows that

µ̃k =

p∑
i=1︸︷︷︸

=
∑
i∈{1,2,...,p}

 k ≤ λi︸ ︷︷ ︸
⇐⇒ (λi≥k)

 =
∑

i∈{1,2,...,p}

[λi ≥ k]

=
∑

i∈{1,2,...,p};
λi≥k

[λi ≥ k]︸ ︷︷ ︸
=1

(since λi≥k)

+
∑

i∈{1,2,...,p};
not λi≥k

[λi ≥ k]︸ ︷︷ ︸
=0

(since we don’t have λi≥k)

=
∑

i∈{1,2,...,p};
λi≥k

1 +
∑

i∈{1,2,...,p};
not λi≥k

0

︸ ︷︷ ︸
=0

=
∑

i∈{1,2,...,p};
λi≥k

1

= |{i ∈ {1, 2, . . . , p} | λi ≥ k}| · 1 = |{i ∈ {1, 2, . . . , p} | λi ≥ k}|
= |{j ∈ {1, 2, . . . , p} | λj ≥ k}|(13.46.74)

(here, we have renamed the index i as j). But

(13.46.75) {j ∈ {1, 2, 3, . . .} | λj ≥ k} = {j ∈ {1, 2, . . . , p} | λj ≥ k}

540Proof of (13.46.71): Let i ∈ {1, 2, 3, . . .}. Thus, i ≥ 1, so that 1 ≤ i.
The sequence λ is a partition, and thus is weakly decreasing. In other words, λ1 ≥ λ2 ≥ λ3 ≥ · · · . Hence, λ1 ≥ λi (since

1 ≤ i). Thus, λi ≤ λ1 ≤ q. This proves (13.46.71).
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541. Hence, (13.46.73) becomes

(
λt
)
k

=

∣∣∣∣∣∣∣∣∣∣
{j ∈ {1, 2, 3, . . .} | λj ≥ k}︸ ︷︷ ︸

={j∈{1,2,...,p} | λj≥k}
(by (13.46.75))

∣∣∣∣∣∣∣∣∣∣
= |{j ∈ {1, 2, . . . , p} | λj ≥ k}| = µ̃k

(by (13.46.74)).
Now, forget that we fixed k. We thus have shown that (λt)k = µ̃k for each k ∈ {1, 2, . . . , q}. In other

words, ((
λt
)

1
,
(
λt
)

2
, . . . ,

(
λt
)
q

)
= (µ̃1, µ̃2, . . . , µ̃q) .

But (λt)i = 0 for each integer i > q 542. In other words, (λt)q+1 = (λt)q+2 = (λt)q+3 = · · · = 0. Hence,

λt =
(

(λt)1 , (λ
t)2 , . . . , (λ

t)q

)
(since we omit trailing zeroes from a partition). Thus,

λt =
((
λt
)

1
,
(
λt
)

2
, . . . ,

(
λt
)
q

)
= (µ̃1, µ̃2, . . . , µ̃q) = (the column sums of B)

(since (µ̃1, µ̃2, . . . , µ̃q) is the column sums of B). In other words, the matrix B has column sums λt.
Hence, we know that the matrix B has row sums λ and column sums λt. Thus, B is a {0, 1}-matrix

having row sums λ and column sums λt (since B is a {0, 1}-matrix). This proves Lemma 13.46.23. �

Lemma 13.46.24. Let λ be a partition. Then:

(a) We have (λt)1 = ` (λ).
(b) We have λ1 = ` (λt).

Proof of Lemma 13.46.24. (a) Write the partition λ in the form λ = (λ1, λ2, . . . , λk, 0, 0, 0, . . .) with λ1 ≥
λ2 ≥ · · · ≥ λk > 0. Then, ` (λ) = k (by the definition of ` (λ)). Thus, we have

(13.46.76) λi = 0 for each integer i > ` (λ)

(by the definition of ` (λ)). Thus,

(13.46.77) {j ∈ {1, 2, 3, . . .} | λj ≥ 1} = {1, 2, . . . , k}
543.

541Proof of (13.46.75): Let i ∈ {j ∈ {1, 2, 3, . . .} | λj ≥ k}. Thus, i is an element of {1, 2, 3, . . .} and satisfies λi ≥ k.

We have λi ≥ k > 0 (since k ∈ {1, 2, . . . , q}). Hence, λi 6= 0.
Assume (for the sake of contradiction) that i > p. Hence, i > p ≥ ` (λ) (since ` (λ) ≤ p). But each integer j > ` (λ) satisfies

λj = 0 (by the definition of ` (λ)). Applying this to j = i, we obtain λi = 0 (since i > ` (λ)). This contradicts λi 6= 0. This

contradiction shows that our assumption (that i > p) was wrong. Hence, we must have i ≤ p. Thus, i ∈ {1, 2, . . . , p}.
Now, forget that we fixed i. We thus have shown that each i ∈ {j ∈ {1, 2, 3, . . .} | λj ≥ k} satisfies i ∈ {1, 2, . . . , p}. In

other words, {j ∈ {1, 2, 3, . . .} | λj ≥ k} ⊂ {1, 2, . . . , p}. Hence,

{j ∈ {1, 2, 3, . . .} | λj ≥ k} = {1, 2, . . . , p} ∩ {j ∈ {1, 2, 3, . . .} | λj ≥ k}

=

j ∈ {1, 2, . . . , p} ∩ {1, 2, 3, . . .}︸ ︷︷ ︸
={1,2,...,p}

| λj ≥ k

 = {j ∈ {1, 2, . . . , p} | λj ≥ k} .

This proves (13.46.75).
542Proof. Let i > q be an integer. Then, q < i. But each j ∈ {1, 2, 3, . . .} satisfies λj ≤ q (by (13.46.71), applied to j instead

of i). Hence, each j ∈ {1, 2, 3, . . .} satisfies λj < i (since λj ≤ q < i). In other words, no j ∈ {1, 2, 3, . . .} satisfies λj ≥ i. In

other words, {j ∈ {1, 2, 3, . . .} | λj ≥ i} = ∅. Hence, (13.46.72) becomes
(
λt
)
i

=

∣∣∣∣∣∣∣{j ∈ {1, 2, 3, . . .} | λj ≥ i}︸ ︷︷ ︸
=∅

∣∣∣∣∣∣∣ = |∅| = 0.

543Proof of (13.46.77): Let i ∈ {j ∈ {1, 2, 3, . . .} | λj ≥ 1}. Thus, i is an element of {1, 2, 3, . . .} and satisfies λi ≥ 1. Thus,
λi ≥ 1 > 0, so that λi 6= 0.

If we had i > ` (λ), then we would have λi = 0 (by (13.46.76)), which would contradict λi 6= 0. Hence, we cannot have
i > ` (λ). Thus, we must have i ≤ ` (λ). Hence, i ≤ ` (λ) = k, so that i ∈ {1, 2, . . . , k}.

Now, forget that we fixed i. We thus have shown that i ∈ {1, 2, . . . , k} for each i ∈ {j ∈ {1, 2, 3, . . .} | λj ≥ 1}. In other

words, {j ∈ {1, 2, 3, . . .} | λj ≥ 1} ⊂ {1, 2, . . . , k}.
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The definition (2.2.7) of the conjugate partition λt of λ shows that (λt)i = |{j ∈ {1, 2, 3, . . .} | λj ≥ i}|
for each positive integer i. Applying this to i = 1, we obtain

(
λt
)

1
=

∣∣∣∣∣∣∣∣∣∣
{j ∈ {1, 2, 3, . . .} | λj ≥ 1}︸ ︷︷ ︸

={1,2,...,k}
(by (13.46.77))

∣∣∣∣∣∣∣∣∣∣
= |{1, 2, . . . , k}| = k = ` (λ) .

This proves Lemma 13.46.24(a).

(b) It is known that (λt)
t

= λ. But Lemma 13.46.24(a) (applied to λt instead of λ) yields
(

(λt)
t
)

1
= ` (λt).

In light of (λt)
t

= λ, this rewrites as λ1 = ` (λt). This proves Lemma 13.46.24(b). �

Now, let us resume the solution of Exercise 2.2.13.
(h) Let λ ∈ Parn and µ ∈ Parn be two partitions that don’t satisfy λt . µ. We must prove that aλ,µ = 0.
Indeed, there exists no {0, 1}-matrix of size ` (λ) × ` (µ) having row sums λ and column sums µ 544.

Thus, the number of all {0, 1}-matrices of size ` (λ)× ` (µ) having row sums λ and column sums µ equals 0.
In other words, aλ,µ equals 0 (since aλ,µ is the number of all {0, 1}-matrices of size ` (λ)× ` (µ) having row
sums λ and column sums µ). In other words, aλ,µ = 0. This solves Exercise 2.2.13(h).

(i) Let λ ∈ Parn. We shall prove that aλ,λt = 1.
Let p = ` (λ) and q = λ1. Then, ` (λ) = p ≤ p and λ1 = q ≤ q. Also, q = λ1 = ` (λt) (by Lemma

13.46.24(b)).
Define the p× q-matrix B as in Lemma 13.46.23. Then, Lemma 13.46.23 shows that B is a {0, 1}-matrix

having row sums λ and column sums λt. Furthermore, B is a {0, 1}-matrix of size p × q. In other words,
B is a {0, 1}-matrix of size ` (λ) × ` (λt) (since p = ` (λ) and q = ` (λt)). Hence, there exists at least one
{0, 1}-matrix of size ` (λ)× ` (λt) having row sums λ and column sums λt (namely, B).

On the other hand, using Lemma 13.46.22(b), it is easy to see that every {0, 1}-matrix of size ` (λ)×` (λt)
having row sums λ and column sums λt must be equal to B 545. Hence, there exists at most one
{0, 1}-matrix of size ` (λ)× ` (λt) having row sums λ and column sums λt.

We know that aλ,λt is the number of all {0, 1}-matrices of size ` (λ)×` (λt) having row sums λ and column
sums λt (by the definition of aλ,λt). Since there exists exactly one such matrix (because we have shown
that there exists at least one such matrix, and we have also shown that there exists at most one such
matrix), we thus conclude that aλ,λt = 1.

Now, forget that we fixed λ. We thus have shown that

(13.46.78) aλ,λt = 1 for every λ ∈ Parn .

Now, let λ ∈ Parn. We shall show that aλt,λ = 1.

It is known that (λt)
t

= λ. But |λt| = |λ| (since the transpose of a partition always has the same size
as the partition itself). But |λ| = n (since λ ∈ Parn). Hence, |λt| = |λ| = n, so that λt ∈ Parn. Thus,

On the other hand, let h ∈ {1, 2, . . . , k}. Then, λh > 0 (since λ1 ≥ λ2 ≥ · · · ≥ λk > 0). Hence, λh ≥ 1 (since λh is an

integer). Hence, h is an element of {1, 2, 3, . . .} and satisfies λh ≥ 1. In other words, h ∈ {j ∈ {1, 2, 3, . . .} | λj ≥ 1}.
Now, forget that we fixed h. We thus have shown that h ∈ {j ∈ {1, 2, 3, . . .} | λj ≥ 1} for each h ∈ {1, 2, . . . , k}. In other

words, {1, 2, . . . , k} ⊂ {j ∈ {1, 2, 3, . . .} | λj ≥ 1}. Combining this with {j ∈ {1, 2, 3, . . .} | λj ≥ 1} ⊂ {1, 2, . . . , k}, we obtain

{j ∈ {1, 2, 3, . . .} | λj ≥ 1} = {1, 2, . . . , k}. This proves (13.46.77).
544Proof. Let A be a {0, 1}-matrix of size ` (λ)×` (µ) having row sums λ and column sums µ. We shall derive a contradiction.

We have A ∈ {0, 1}`(λ)×`(µ) (since A is a {0, 1}-matrix of size ` (λ) × ` (µ)). Thus, Lemma 13.46.22(a) shows that λt . µ.
This contradicts the fact that we don’t have λt . µ.

Now, forget that we fixed A. We thus have found a contradiction for each {0, 1}-matrix A of size ` (λ) × ` (µ) having row
sums λ and column sums µ. Thus, there exists no {0, 1}-matrix of size ` (λ) × ` (µ) having row sums λ and column sums µ.
Qed.

545Proof. Let A be a {0, 1}-matrix of size ` (λ)×`
(
λt
)

having row sums λ and column sums λt. We must prove that A = B.

We know that A is a {0, 1}-matrix of size ` (λ) × `
(
λt
)
. In other words, A is a {0, 1}-matrix of size p × q (since ` (λ) = p

and `
(
λt
)

= q). In other words, A ∈ {0, 1}p×q .
We have

∣∣λt∣∣ = |λ| (since the transpose of a partition always has the same size as the partition itself). But |λ| = n

(since λ ∈ Parn). Hence,
∣∣λt∣∣ = |λ| = n, so that λt ∈ Parn. Hence, Lemma 13.46.22(b) (applied to µ = λt) shows

that A = ([j ≤ λi])1≤i≤p, 1≤j≤q . But the definition of B yields B = ([j ≤ λi])1≤i≤p, 1≤j≤q . Comparing this with A =

([j ≤ λi])1≤i≤p, 1≤j≤q , we obtain A = B. This proves A = B, qed.
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(13.46.78) (applied to λt instead of λ) yields aλt,(λt)t = 1. In light of (λt)
t

= λ, this rewrites as aλt,λ = 1.

This solves Exercise 2.2.13(i).
Before we solve Exercise 2.2.13(j), let us introduce some terminology and prove some lemmas.

Definition 13.46.25. Let m ∈ N. Then, [m] shall denote the subset {1, 2, . . . ,m} of {1, 2, 3, . . .}. Notice
that |[m]| = m for each m ∈ N.

Definition 13.46.26. Let p ∈ N and q ∈ N. Let ϕ : [p] → [q] be any map. Let α = (α1, α2, . . . , αp) ∈ Np
be a p-tuple. Then, we define a q-tuple ϕ∗α ∈ Nq by

ϕ∗α =

 ∑
i∈ϕ−1{1}

αi,
∑

i∈ϕ−1{2}

αi, . . . ,
∑

i∈ϕ−1{q}

αi

 .

(Recall that if U is any subset of [q], then ϕ−1U denotes the subset {i ∈ [p] | ϕ (i) ∈ U} of [p].)

Example 13.46.27. Let p = 5 and q = 4, and let ϕ : [p] → [q] be the map that sends 1, 2, 3, 4, 5 to
1, 4, 4, 2, 2, respectively. Let α = (α1, α2, α3, α4, α5) ∈ N5 be a 5-tuple. Then, the 4-tuple ϕ∗α ∈ N4 is

ϕ∗α =

 ∑
i∈ϕ−1{1}

αi,
∑

i∈ϕ−1{2}

αi,
∑

i∈ϕ−1{3}

αi,
∑

i∈ϕ−1{4}

αi

 = (α1, α4 + α5, 0, α2 + α3)

(since ϕ−1 {1} = {1}, ϕ−1 {2} = {4, 5}, ϕ−1 {3} = ∅ and ϕ−1 {4} = {2, 3}).

Proposition 13.46.28. Let p, q and r be three elements of N. Let ϕ : [p] → [q] and ψ : [q] → [r] be any
maps. Let α ∈ Np. Then, (ψ ◦ ϕ)∗ α = ψ∗ (ϕ∗α).

Proof of Proposition 13.46.28. Write the p-tuple α ∈ Np in the form α = (α1, α2, . . . , αp) for some elements
α1, α2, . . . , αp of N. Thus,

(13.46.79) (ψ ◦ ϕ)∗ α =

 ∑
i∈(ψ◦ϕ)−1{1}

αi,
∑

i∈(ψ◦ϕ)−1{2}

αi, . . . ,
∑

i∈(ψ◦ϕ)−1{r}

αi


(by the definition of (ψ ◦ ϕ)∗ α).

Write the q-tuple ϕ∗α ∈ Nq in the form ϕ∗α = (β1, β2, . . . , βq) for some elements β1, β2, . . . , βq of N.
Then,

(β1, β2, . . . , βq) = ϕ∗α =

 ∑
i∈ϕ−1{1}

αi,
∑

i∈ϕ−1{2}

αi, . . . ,
∑

i∈ϕ−1{q}

αi


(by the definition of ϕ∗α, because α = (α1, α2, . . . , αp)). Thus,

(13.46.80) βj =
∑

i∈ϕ−1{j}

αi for each j ∈ [q] .

Write the r-tuple ψ∗ (ϕ∗α) ∈ Nr in the form ψ∗ (ϕ∗α) = (γ1, γ2, . . . , γr) for some elements γ1, γ2, . . . , γr
of N. Then,

(γ1, γ2, . . . , γr) = ψ∗ (ϕ∗α) =

 ∑
i∈ψ−1{1}

βi,
∑

i∈ψ−1{2}

βi, . . . ,
∑

i∈ψ−1{r}

βi
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(by the definition of ψ∗ (ϕ∗α), because ϕ∗α = (β1, β2, . . . , βq)). Thus, for each m ∈ [r], we have

γm =
∑

i∈ψ−1{m}︸ ︷︷ ︸
=

∑
i∈[q];
ψ(i)=m

βi =
∑
i∈[q];
ψ(i)=m

βi =
∑
j∈[q];
ψ(j)=m

βj︸︷︷︸
=
∑
i∈ϕ−1{j} αi

(by (13.46.80))

(
here, we have renamed the

summation index i as j

)

=
∑
j∈[q];
ψ(j)=m

∑
i∈ϕ−1{j}︸ ︷︷ ︸
=

∑
i∈[p];
ϕ(i)=j

αi =
∑
j∈[q];
ψ(j)=m

∑
i∈[p];
ϕ(i)=j︸ ︷︷ ︸

=
∑
j∈[q]

∑
i∈[p];

ψ(j)=m;
ϕ(i)=j

αi

=
∑
j∈[q]

∑
i∈[p];

ψ(j)=m;
ϕ(i)=j︸ ︷︷ ︸

=
∑

i∈[p];
ϕ(i)=j;
ψ(j)=m

=
∑

i∈[p];
ϕ(i)=j;

ψ(ϕ(i))=m

(because for any i∈[p] satisfying ϕ(i)=j,
the condition (ψ(j)=m) is equivalent to (ψ(ϕ(i))=m)

(since j=ϕ(i)))

αi =
∑
j∈[q]

∑
i∈[p];
ϕ(i)=j;

ψ(ϕ(i))=m︸ ︷︷ ︸
=
∑
i∈[p]

∑
j∈[q];
ϕ(i)=j;

ψ(ϕ(i))=m

=
∑

i∈[p];
ψ(ϕ(i))=m

∑
j∈[q];
ϕ(i)=j

αi

=
∑
i∈[p];

ψ(ϕ(i))=m︸ ︷︷ ︸
=

∑
i∈[p];

(ψ◦ϕ)(i)=m

=
∑
i∈(ψ◦ϕ)−1{m}

∑
j∈[q];
ϕ(i)=j

αi

︸ ︷︷ ︸
=αi

(since there is a
unique j∈[q] satisfying ϕ(i)=j)

=
∑

i∈(ψ◦ϕ)−1{m}

αi.

In other words, we have

(γ1, γ2, . . . , γr) =

 ∑
i∈(ψ◦ϕ)−1{1}

αi,
∑

i∈(ψ◦ϕ)−1{2}

αi, . . . ,
∑

i∈(ψ◦ϕ)−1{r}

αi

 .

Comparing this with (13.46.79), we obtain

(ψ ◦ ϕ)∗ α = (γ1, γ2, . . . , γr) = ψ∗ (ϕ∗α)

(since ψ∗ (ϕ∗α) = (γ1, γ2, . . . , γr)). This proves Proposition 13.46.28. �

Proposition 13.46.29. Let p ∈ N. Let α = (α1, α2, . . . , αp) ∈ Np. Let σ ∈ Sp. Then:

(a) The p-tuple σ∗α is well-defined and satisfies σ∗α =
(
ασ−1(1), ασ−1(2), . . . , ασ−1(p)

)
.

(b) We have σ∗α = α if and only if
(
ασ(i) = αi for all i ∈ [p]

)
.

Proof of Proposition 13.46.29. We have σ ∈ Sp. In other words, σ is a permutation of [p] (since Sp is the
set of all permutations of [p] (because [p] = {1, 2, . . . , p})). In other words, σ is a bijection [p]→ [p]. Thus,
the p-tuple σ∗α is well-defined (since α ∈ Np). The definition of σ∗α yields

(13.46.81) σ∗α =

 ∑
i∈σ−1{1}

αi,
∑

i∈σ−1{2}

αi, . . . ,
∑

i∈σ−1{p}

αi

 .

But each j ∈ [p] satisfies∑
i∈σ−1{j}

αi =
∑

i∈{σ−1(j)}

αi
(
since σ−1 {j} =

{
σ−1 (j)

}
(because σ is a bijection)

)
= ασ−1(j).
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In other words,  ∑
i∈σ−1{1}

αi,
∑

i∈σ−1{2}

αi, . . . ,
∑

i∈σ−1{p}

αi

 =
(
ασ−1(1), ασ−1(2), . . . , ασ−1(p)

)
.

Hence, (13.46.81) becomes

σ∗α =

 ∑
i∈σ−1{1}

αi,
∑

i∈σ−1{2}

αi, . . . ,
∑

i∈σ−1{p}

αi

 =
(
ασ−1(1), ασ−1(2), . . . , ασ−1(p)

)
.

This completes the proof of Proposition 13.46.29(a).
(b) We have the following chain of logical equivalences: σ∗α︸︷︷︸

=(ασ−1(1),ασ−1(2),...,ασ−1(p))

= α︸︷︷︸
=(α1,α2,...,αp)


⇐⇒

((
ασ−1(1), ασ−1(2), . . . , ασ−1(p)

)
= (α1, α2, . . . , αp)

)
⇐⇒

(
ασ−1(j) = αj for all j ∈ [p]

)
⇐⇒

 ασ−1(σ(i))︸ ︷︷ ︸
=αi

(since σ−1(σ(i))=i)

= ασ(i) for all i ∈ [p]


(here, we have substituted σ (i) for j, since the map σ : [p]→ [p] is a bijection)

⇐⇒
(
αi = ασ(i) for all i ∈ [p]

)
⇐⇒

(
ασ(i) = αi for all i ∈ [p]

)
.

This proves Proposition 13.46.29(b). �

Proposition 13.46.30. Let p ∈ N. Let α ∈ Np. Then,
(
id[p]

)
∗ α = α.

Proof of Proposition 13.46.30. Clearly, id[p] ∈ Sp. Write the p-tuple α ∈ Np in the form α = (α1, α2, . . . , αp)
for some elements α1, α2, . . . , αp of N. Thus, Proposition 13.46.29(a) (applied to σ = id[p]) shows that the

p-tuple
(
id[p]

)
∗ α is well-defined and satisfies

(
id[p]

)
∗ α =

(
α(id[p])

−1
(1)
, α(id[p])

−1
(2)
, . . . , α(id[p])

−1
(p)

)
. Hence,(

id[p]

)
∗ α =

(
α(id[p])

−1
(1)
, α(id[p])

−1
(2)
, . . . , α(id[p])

−1
(p)

)
= (α1, α2, . . . , αp)

(
since

(
id[p]

)−1
(i) = i for all i ∈ [p]

)
= α.

This proves Proposition 13.46.30. �

Lemma 13.46.31. Let p ∈ N and q ∈ N. Let ϕ : [p] → [q] be any map. Let α = (α1, α2, . . . , αp) ∈ Np be
a p-tuple. Let β = (β1, β2, . . . , βq) ∈ Nq be a q-tuple such that (βi > 0 for each i ∈ [q]) and β = ϕ∗α. Then,
the map ϕ is surjective.

Proof of Lemma 13.46.31. We have

(β1, β2, . . . , βq) = β = ϕ∗α =

 ∑
i∈ϕ−1{1}

αi,
∑

i∈ϕ−1{2}

αi, . . . ,
∑

i∈ϕ−1{q}

αi


(by the definition of ϕ∗α, since α = (α1, α2, . . . , αp)). In other words,

(13.46.82) βj =
∑

i∈ϕ−1{j}

αi for each j ∈ [q] .
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Let j ∈ [q]. Assume (for the sake of contradiction) that ϕ−1 {j} = ∅. Thus,
∑
i∈ϕ−1{j} αi =

∑
i∈∅ αi =

(empty sum) = 0. Thus, (13.46.82) becomes βj =
∑
i∈ϕ−1{j} αi = 0. But recall that (βi > 0 for each i ∈ [q]).

Applying this to i = j, we obtain βj > 0. This contradicts βj = 0.
This contradiction shows that our assumption (that ϕ−1 {j} = ∅) was wrong. Hence, we have ϕ−1 {j} 6=

∅. Hence, there exists some k ∈ ϕ−1 {j}. Consider this k.

From k ∈ ϕ−1 {j}, we obtain ϕ (k) ∈ {j}, so that ϕ (k) = j. Hence, j = ϕ

 k︸︷︷︸
∈ϕ−1{j}⊂[p]

 ∈ ϕ ([p]).

Now, forget that we fixed j. We thus have shown that j ∈ ϕ ([p]) for each j ∈ [q]. In other words,
[q] ⊂ ϕ ([p]). In other words, the map ϕ is surjective. This proves Lemma 13.46.31. �

Lemma 13.46.32. Let (β1, β2, β3, . . .) ∈ N∞ be such that β1 ≥ β2 ≥ β3 ≥ · · · . Let k ∈ N. Let R be a finite
subset of {1, 2, 3, . . .} such that |R| ≤ k. Then,∑

r∈R
βr ≤ β1 + β2 + · · ·+ βk.

Proof of Lemma 13.46.32. We have β1 ≥ β2 ≥ β3 ≥ · · · . In other words, if u and v are two elements of
{1, 2, 3, . . .} satisfying u ≤ v, then

(13.46.83) βu ≥ βv.

Let (r1, r2, . . . , rp) be a list of all elements of R in increasing order (with no repetitions). Thus,
∑
r∈R βr =

βr1 + βr2 + · · ·+ βrp and R = {r1, r2, . . . , rp} and |R| = p and r1 < r2 < · · · < rp.
Hence, p = |R| ≤ k, so that 0 ≤ p ≤ k. Furthermore, {r1, r2, . . . , rp} = R ⊂ {1, 2, 3, . . .}.
But each j ∈ {1, 2, . . . , p− 1} satisfies

(13.46.84) rj+1 − rj ≥ 1

546. Thus, each i ∈ {1, 2, . . . , p} satisfies

(13.46.85) ri ≥ i
547. Hence, each i ∈ {1, 2, . . . , p} satisfies

(13.46.86) βri ≤ βi
548.

Now,

(13.46.87)
∑
r∈R

βr = βr1 + βr2 + · · ·+ βrp =

p∑
i=1

βri︸︷︷︸
≤βi

(by (13.46.86))

≤
p∑
i=1

βi.

546Proof of (13.46.84): Let j ∈ {1, 2, . . . , p− 1}. Then, rj < rj+1 (since r1 < r2 < · · · < rp). Hence, rj ≤ rj+1 − 1 (since

rj and rj+1 are integers). In other words, rj+1 − rj ≥ 1. This proves (13.46.84).
547Proof of (13.46.85): Let i ∈ {1, 2, . . . , p}. Then,

∑i−1
j=1 (rj+1 − rj) = ri − r1 (by the telescope principle). Hence,

ri − r1 =

i−1∑
j=1

(rj+1 − rj)︸ ︷︷ ︸
≥1

(by (13.46.84))

≥
i−1∑
j=1

1 = i− 1.

Hence, ri ≥ (i− 1) + r1. But r1 ≥ 1 (since r1 ∈ {r1, r2, . . . , rp} ⊂ {1, 2, 3, . . .}). Thus, ri ≥ (i− 1) + r1︸︷︷︸
≥1

≥ (i− 1) + 1 = i.

This proves (13.46.85).
548Proof of (13.46.86): Let i ∈ {1, 2, . . . , p}. From (13.46.85), we obtain ri ≥ i. Thus, i ≤ ri. Hence, (13.46.83) (applied to

ri and i instead of u and v) shows that βi ≥ βri . In other words, βri ≤ βi. This proves (13.46.86).
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But

β1 + β2 + · · ·+ βk =

k∑
i=1

βi =

p∑
i=1

βi +

k∑
i=p+1

βi︸︷︷︸
≥0

(since βi∈N)

(here, we have split the sum into two at i = p (since 0 ≤ p ≤ k))

≥
p∑
i=1

βi +

k∑
i=p+1

0︸ ︷︷ ︸
=0

=

p∑
i=1

βi ≥
∑
r∈R

βr (by (13.46.87)) .

In other words,
∑
r∈R βr ≤ β1 + β2 + · · ·+ βk. This proves Lemma 13.46.32. �

We now introduce some notations:

Definition 13.46.33. Let p ∈ N and q ∈ N. Let α ∈ Np and β ∈ Nq. Then, we define a set Bα,β,p,q by

Bα,β,p,q = {ϕ : [p]→ [q] | β = ϕ∗α} .

Note that this set Bα,β,p,q is a subset of {ϕ : [p]→ [q]} = [q]
[p]

, and therefore is a finite set (since [q]
[p]

is a
finite set).

Example 13.46.34. Let p = 3, q = 4, α = (2, 1, 2) and β = (3, 0, 2, 0). Then, Bα,β,p,q = {ϕ1, ϕ2}, where
ϕ1 and ϕ2 are the two maps [3]→ [4] defined by

ϕ1 (1) = 1, ϕ1 (2) = 1, ϕ1 (3) = 3;

ϕ2 (1) = 3, ϕ2 (2) = 1, ϕ2 (3) = 1.

Notice that Bα,β,p,q depends nontrivially on p and q. Indeed, recall that we are identifying any k-tuple
(a1, a2, . . . , ak) ∈ Nk with the weak composition (a1, a2, . . . , ak, 0, 0, 0, . . .); therefore, any two tuples of
nonnegative integers that differ only in trailing zeroes are equated with each other (for example, (2, 3) is
equated with (2, 3, 0)), because they are being identified with one and the same weak composition. Thus, for
example, the 3-tuple α = (2, 1, 2) is equated with the 4-tuple α′ = (2, 1, 2, 0). But the set Bα,β,p,q = Bα,β,3,4

cannot be equated with Bα′,β,4,4; indeed, the set Bα′,β,4,4 has more than two elements (due to the extra
choice in picking the image of 4 under the map ϕ ∈ Bα′,β,4,4), and so we have |Bα,β,3,4| 6= |Bα′,β,4,4|.

Remark 13.46.35. We recall that every k-tuple (a1, a2, . . . , ak) ∈ Nk is identified with the weak composi-
tion (a1, a2, . . . , ak, 0, 0, 0, . . .). Thus, conversely, any weak composition α = (α1, α2, α3, . . .) is identified
with any k-tuple that is obtained from it by removing trailing zeroes. For example, the weak composition
(2, 0, 3, 0, 0, 0, . . .) is identified with the 3-tuple (2, 0, 3), with the 4-tuple (2, 0, 3, 0), and so on.

These identifications have an important consequence: If λ and µ are two weak compositions, then there
exist nonnegative integers p and q for which λ can be identified with a p-tuple (namely, with (λ1, λ2, . . . , λp))
and µ can be identified with a q-tuple (namely, with (µ1, µ2, . . . , µq)). Any two such integers p and q give
rise to a well-defined set Bλ,µ,p,q, defined by regarding λ as a p-tuple and regarding µ as a q-tuple.

Definition 13.46.36. Let λ ∈ Par and µ ∈ N∞. Let ` = ` (λ). Then, we define a set B′λ,µ by

B′λ,µ =

ϕ : [`]→ {1, 2, 3, . . .} | µj =
∑
i∈[`];
ϕ(i)=j

λi for all j ∈ {1, 2, 3, . . .}

 .

Definition 13.46.37. Let X, Y and Z be three sets such that X ⊂ Y . Let g : Z → X be any map. Then,
we define a map g |Y : Z → Y by((

g |Y
)

(z) = g (z) for each z ∈ Z
)
.

(This is well-defined, since each z ∈ Z satisfies g (z) ∈ X ⊂ Y .)
The map g |Y is identical to the map g except for the fact that its target is Y rather than X.
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If X, Y and Z are three sets such that X ⊂ Y , then the maps of the form g |Y (with g being a map
Z → X) are exactly those maps Z → Y whose image is contained in X. More precisely, the following lemma
holds:

Lemma 13.46.38. Let X, Y and Z be three sets such that X ⊂ Y . Then, the map

XZ →
{
f ∈ Y Z | f (Z) ⊂ X

}
,

g 7→ g |Y

is a bijection.

Proof of Lemma 13.46.38. Lemma 13.46.38 is a fundamental fact about sets. We thus omit its proof. �

Proposition 13.46.39. Let λ ∈ Par and µ ∈ WC. Let p = ` (λ). From p = ` (λ), we obtain λ =
(λ1, λ2, . . . , λp); thus, λ is a p-tuple in Np. Let q ∈ N be such that µ = (µ1, µ2, . . . , µq) (that is, µi = 0 for all
integers i > q). Thus, µ is a q-tuple in Nq. Hence, the set Bλ,µ,p,q is well-defined (since λ ∈ Np and µ ∈ Nq).

Now, B′λ,µ
∼= Bλ,µ,p,q as sets.

Proof of Proposition 13.46.39. We have µ = (µ1, µ2, . . . , µq). In other words,

(13.46.88) µj = 0 for each j ∈ {q + 1, q + 2, q + 3, . . .} .
We have p = ` (λ). Hence, λ1 ≥ λ2 ≥ · · · ≥ λp > 0 (by the definition of ` (λ)). Therefore,

(13.46.89) λk > 0 for each k ∈ [p] .

The definition of Bλ,µ,p,q shows that

Bλ,µ,p,q = {ϕ : [p]→ [q] | µ = ϕ∗λ}
(where, of course, λ and µ are regarded as the tuples (λ1, λ2, . . . , λp) ∈ Np and (µ1, µ2, . . . , µq) ∈ Nq). Thus,

(13.46.90) Bλ,µ,p,q = {ϕ : [p]→ [q] | µ = ϕ∗λ} = {ζ : [p]→ [q] | µ = ζ∗λ}
(here, we have renamed the index ϕ as ζ).

On the other hand, p = ` (λ). Hence, the definition of B′λ,µ yields

B′λ,µ =

ϕ : [p]→ {1, 2, 3, . . .} | µj =
∑
i∈[p];
ϕ(i)=j

λi for all j ∈ {1, 2, 3, . . .}


=

ζ : [p]→ {1, 2, 3, . . .} | µj =
∑
i∈[p];
ζ(i)=j

λi for all j ∈ {1, 2, 3, . . .}

(13.46.91)

(here, we have renamed the index ϕ as ζ).
But [q] = {1, 2, . . . , q} ⊂ {1, 2, 3, . . .}. Thus, Lemma 13.46.38 (applied to X = [q], Y = {1, 2, 3, . . .} and

Z = [p]) shows that the map

[q]
[p] →

{
f ∈ {1, 2, 3, . . .}[p] | f ([p]) ⊂ [q]

}
,

g 7→ g |{1,2,3,...}

is a bijection. Denote this bijection by Φ.

We have Bλ,µ,p,q = {ϕ : [p]→ [q] | µ = ϕ∗λ} ⊂ {ϕ : [p]→ [q]} = [q]
[p]

. In other words, Bλ,µ,p,q is a

subset of [q]
[p]

. Thus, the image Φ (Bλ,µ,p,q) is well-defined.
The map Φ is bijective (since it is a bijection), and therefore injective.
If U and V are two finite sets, and if T is a subset of U , and if Ψ : U → V is an injective map, then

Ψ (T ) ∼= T as sets.549 Applying this to U = [q]
[p]

, V =
{
f ∈ {1, 2, 3, . . .}[p] | f ([p]) ⊂ [q]

}
, T = Bλ,µ,p,q

and Ψ = Φ, we conclude that

(13.46.92) Φ (Bλ,µ,p,q) ∼= Bλ,µ,p,q as sets

549This is a basic fact about sets.
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(since Φ is injective).
On the other hand, let ϕ : [p]→ [q] be any map. Then,

(13.46.93) µj =
∑
i∈[p];
ϕ(i)=j

λi for all j ∈ {q + 1, q + 2, q + 3, . . .}

550.
Recall that λ = (λ1, λ2, . . . , λp). Hence, the definition of ϕ∗λ shows that

ϕ∗λ =

 ∑
i∈ϕ−1{1}

λi,
∑

i∈ϕ−1{2}

λi, . . . ,
∑

i∈ϕ−1{q}

λi

 .

Thus, we have the following chain of logical equivalences: µ︸︷︷︸
=(µ1,µ2,...,µq)

= ϕ∗λ︸︷︷︸
=(
∑
i∈ϕ−1{1} λi,

∑
i∈ϕ−1{2} λi,...,

∑
i∈ϕ−1{q} λi)


⇐⇒

(µ1, µ2, . . . , µq) =

 ∑
i∈ϕ−1{1}

λi,
∑

i∈ϕ−1{2}

λi, . . . ,
∑

i∈ϕ−1{q}

λi



⇐⇒


µj =

∑
i∈ϕ−1{j}︸ ︷︷ ︸
=

∑
i∈[p];
ϕ(i)=j

λi for all j ∈ {1, 2, . . . , q}



⇐⇒

µj =
∑
i∈[p];
ϕ(i)=j

λi for all j ∈ {1, 2, . . . , q}

 .(13.46.94)

Now, we have the following logical implication:

(13.46.95) (µ = ϕ∗λ) =⇒

µj =
∑
i∈[p];
ϕ(i)=j

λi for all j ∈ {1, 2, 3, . . .}


551.

Now, forget that we fixed ϕ. We thus have proven the implication (13.46.95) for each map ϕ : [p]→ [q].

550Proof of (13.46.93): Let j ∈ {q + 1, q + 2, q + 3, . . .}. Thus, j ≥ q + 1 and µj = 0 (by (13.46.88)).

Let i ∈ [p] be such that ϕ (i) = j. Thus, j = ϕ (i) ∈ [q] = {1, 2, . . . , q}, so that j ≤ q. This contradicts j ≥ q + 1 > q.
Now, forget that we fixed i. We thus have found a contradiction for each i ∈ [p] satisfying ϕ (i) = j. Hence, there exists

no i ∈ [p] satisfying ϕ (i) = j. Thus, the sum
∑
i∈[p];
ϕ(i)=j

λi is empty. Hence,
∑
i∈[p];
ϕ(i)=j

λi = (empty sum) = 0. Comparing this with

µj = 0, we obtain µj =
∑
i∈[p];
ϕ(i)=j

λi. This proves (13.46.93).

551Proof of (13.46.95): Assume that (µ = ϕ∗λ) holds. We must show that

µj =
∑
i∈[p];
ϕ(i)=j

λi for all j ∈ {1, 2, 3, . . .}

 holds.
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From the equivalence (13.46.94), we conclude that

(13.46.96)

µj =
∑
i∈[p];
ϕ(i)=j

λi for all j ∈ {1, 2, . . . , q}



holds (because (µ = ϕ∗λ) holds).
Now, let j ∈ {1, 2, 3, . . .}. Then, we want to prove that µj =

∑
i∈[p];
ϕ(i)=j

λi. If j ∈ {q + 1, q + 2, q + 3, . . .}, then this follows

immediately from (13.46.93). Hence, for the rest of this proof, we WLOG assume that j /∈ {q + 1, q + 2, q + 3, . . .}. Combining
this with j ∈ {1, 2, 3, . . .}, we obtain j ∈ {1, 2, 3, . . .}\{q + 1, q + 2, q + 3, . . .} = {1, 2, . . . , q}. Hence, from (13.46.96), we obtain

µj =
∑
i∈[p];
ϕ(i)=j

λi.

Now, forget that we fixed j. We thus have shown that

µj =
∑
i∈[p];
ϕ(i)=j

λi for all j ∈ {1, 2, 3, . . .}

 holds. This concludes the

proof of the implication (13.46.95).
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Now, it is easy to see that Φ (Bλ,µ,p,q) ⊂ B′λ,µ
552 and B′λ,µ ⊂ Φ (Bλ,µ,p,q)

553. Combining these two

inclusions, we obtain Φ (Bλ,µ,p,q) = B′λ,µ. Hence,

B′λ,µ = Φ (Bλ,µ,p,q) ∼= Bλ,µ,p,q as sets

(by (13.46.92)). This proves Proposition 13.46.39. �

552Proof. Let ψ ∈ Φ
(
Bλ,µ,p,q

)
. Thus, ψ ∈ Φ

(
Bλ,µ,p,q

)
⊂
{
f ∈ {1, 2, 3, . . .}[p] | f ([p]) ⊂ [q]

}
. In other words, ψ is an

element of {1, 2, 3, . . .}[p] and satisfies ψ ([p]) ⊂ [q].
But ψ ∈ Φ

(
Bλ,µ,p,q

)
. In other words, there exists some ϕ ∈ Bλ,µ,p,q such that ψ = Φ (ϕ). Consider this ϕ. We have

ψ = Φ (ϕ) = ϕ |{1,2,3,...} (by the definition of Φ).

We have ϕ ∈ Bλ,µ,p,q = {ζ : [p]→ [q] | µ = ζ∗λ} (by (13.46.90)). In other words, ϕ is a map [p]→ [q] and satisfies µ = ϕ∗λ.
Each i ∈ [p] satisfies

(13.46.97) ψ︸︷︷︸
=ϕ|{1,2,3,...}

(i) =
(
ϕ |{1,2,3,...}

)
(i) = ϕ (i)

(by the definition of ϕ |{1,2,3,...}).
We have (µ = ϕ∗λ). Hence, from the implication (13.46.95), we conclude that

(13.46.98)

µj =
∑
i∈[p];
ϕ(i)=j

λi for all j ∈ {1, 2, 3, . . .}

 .

Now, each j ∈ {1, 2, 3, . . .} satisfies

µj =
∑
i∈[p];
ϕ(i)=j︸ ︷︷ ︸

=
∑

i∈[p];
ψ(i)=j

(because every i∈[p] satisfies ϕ(i)=ψ(i)
(by (13.46.97)))

λi (by (13.46.98))

=
∑
i∈[p];
ψ(i)=j

λi.

In other words, we have

µj =
∑
i∈[p];
ψ(i)=j

λi for all j ∈ {1, 2, 3, . . .}

.

Now, ψ is a map [p] → {1, 2, 3, . . .} (since ψ is an element of {1, 2, 3, . . .}[p]) and satisfiesµj =
∑
i∈[p];
ψ(i)=j

λi for all j ∈ {1, 2, 3, . . .}

. In other words,

ψ ∈

ζ : [p]→ {1, 2, 3, . . .} | µj =
∑
i∈[p];
ζ(i)=j

λi for all j ∈ {1, 2, 3, . . .}

 .

In light of (13.46.91), this rewrites as ψ ∈ B′λ,µ.

Now, forget that we fixed ψ. We thus have proven that ψ ∈ B′λ,µ for each ψ ∈ Φ
(
Bλ,µ,p,q

)
. In other words, Φ

(
Bλ,µ,p,q

)
⊂

B′λ,µ. Qed.

553Proof. Let ψ ∈ B′λ,µ. Thus, ψ ∈ B′λ,µ =

ζ : [p]→ {1, 2, 3, . . .} | µj =
∑
i∈[p];
ζ(i)=j

λi for all j ∈ {1, 2, 3, . . .}

 (by

(13.46.91)). In other words, ψ is a map [p]→ {1, 2, 3, . . .} and satisfies

(13.46.99)

µj =
∑
i∈[p];
ψ(i)=j

λi for all j ∈ {1, 2, 3, . . .}

 .

Now, let k ∈ [p]. We shall show that ψ (k) ∈ [q].
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Proposition 13.46.40. Let n ∈ N. Let λ ∈ Parn and µ ∈ Parn. Assume that B′λ,µ 6= ∅. Then, µ . λ.

Proof of Proposition 13.46.40. Let ` = ` (λ). We have B′λ,µ 6= ∅. In other words, there exists some ψ ∈ B′λ,µ.
Consider this ψ. We have

ψ = B′λ,µ =

ϕ : [`]→ {1, 2, 3, . . .} | µj =
∑
i∈[`];
ϕ(i)=j

λi for all j ∈ {1, 2, 3, . . .}


Indeed, assume the contrary. Thus, ψ (k) /∈ [q]. Set j = ψ (k). Combining j = ψ (k) ∈ {1, 2, 3, . . .} with j = ψ (k) /∈ [q] =

{1, 2, . . . , q}, we obtain j ∈ {1, 2, 3, . . .} \ {1, 2, . . . , q} = {q + 1, q + 2, q + 3, . . .}. Hence, j ≥ q + 1 and µj = 0 (by (13.46.88)).
But k is an element of [p] and satisfies ψ (k) = j (since j = ψ (k)). Hence, the sum

∑
i∈[p];
ψ(i)=j

λi has an addend for i = k. If we

split off this addend from this sum, then we obtain∑
i∈[p];
ψ(i)=j

λi = λk +
∑
i∈[p];
ψ(i)=j;
i 6=k

λi︸︷︷︸
≥0

(since λi∈N)

≥ λk +
∑
i∈[p];
ψ(i)=j;
i 6=k

0

︸ ︷︷ ︸
=0

= λk > 0 (by (13.46.89)) .

Hence, (13.46.99) yields µj =
∑
i∈[p];
ψ(i)=j

λi > 0. This contradicts µj = 0.

This contradiction completes our proof of ψ (k) ∈ [q].

Now, forget that we fixed k. We thus have proven that ψ (k) ∈ [q] for each k ∈ [p]. In other words, ψ ([p]) ⊂ [q].

Altogether, we know that ψ is an element of {1, 2, 3, . . .}[p] (since ψ is a map [p]→ {1, 2, 3, . . .}) and satisfies ψ ([p]) ⊂ [q]. In

other words, ψ ∈
{
f ∈ {1, 2, 3, . . .}[p] | f ([p]) ⊂ [q]

}
. Hence, an element Φ−1 (ψ) ∈ [q][p] is well-defined (since Φ is a bijection

[q][p] →
{
f ∈ {1, 2, 3, . . .}[p] | f ([p]) ⊂ [q]

}
). Let us denote this element Φ−1 (ψ) by ϕ. Thus, ϕ = Φ−1 (ψ) ∈ [q][p]. In other

words, ϕ is a map [p]→ [q].

From ϕ = Φ−1 (ψ), we obtain ψ = Φ (ϕ) = ϕ |{1,2,3,...} (by the definition of Φ).
Each i ∈ [p] satisfies

(13.46.100) ψ︸︷︷︸
=ϕ|{1,2,3,...}

(i) =
(
ϕ |{1,2,3,...}

)
(i) = ϕ (i)

(by the definition of ϕ |{1,2,3,...}).
Now, each j ∈ {1, 2, . . . , q} satisfies

µj =
∑
i∈[p];
ψ(i)=j︸ ︷︷ ︸

=
∑

i∈[p];
ϕ(i)=j

(because every i∈[p] satisfies ψ(i)=ϕ(i)
(by (13.46.100)))

λi (by (13.46.99))

=
∑
i∈[p];
ϕ(i)=j

λi.

In other words, we have

µj =
∑
i∈[p];
ϕ(i)=j

λi for all j ∈ {1, 2, . . . , q}

. Hence, the equivalence (13.46.94) shows that (µ = ϕ∗λ).

Altogether, we now know that ϕ is a map [p]→ [q] and satisfies µ = ϕ∗λ. In other words, ϕ ∈ {ζ : [p]→ [q] | µ = ζ∗λ}. In

light of (13.46.90), this rewrites as ϕ ∈ Bλ,µ,p,q . Hence, ψ = Φ

 ϕ︸︷︷︸
∈Bλ,µ,p,q

 ∈ Φ
(
Bλ,µ,p,q

)
.

Now, forget that we fixed ψ. We thus have proven that ψ ∈ Φ
(
Bλ,µ,p,q

)
for each ψ ∈ B′λ,µ. In other words, B′λ,µ ⊂

Φ
(
Bλ,µ,p,q

)
. Qed.
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(by the definition of B′λ,µ (since ` = ` (λ))). In other words, ψ is a map [`]→ {1, 2, 3, . . .} and satisfies

(13.46.101)

µj =
∑
i∈[`];
ψ(i)=j

λi for all j ∈ {1, 2, 3, . . .}

 .

Let k ∈ {1, 2, . . . , `}. Then, 1 ≤ k ≤ `. Hence, [k] is a subset of [`].
Define a subset R of {1, 2, 3, . . .} by R = ψ ([k]). This set R = ψ ([k]) is finite (since [k] is finite).
Each i ∈ {1, 2, . . . , k} satisfies

(13.46.102)
∑
j∈R;
ψ(i)=j

λi = λi

554.
It is well-known that if X and Y are two sets, if f : X → Y is any map, and if T is a finite subset of

X, then |f (T )| ≤ |T |. Applying this to X = [`], Y = {1, 2, 3, . . .}, f = ψ and T = [k], we conclude that
|ψ ([k])| ≤ |[k]| = k. In light of R = ψ ([k]), this rewrites as |R| ≤ k.

We know that µ is a partition; thus, µ1 ≥ µ2 ≥ µ3 ≥ · · · . Moreover, µ ∈ Par ⊂ N∞. Hence,
(µ1, µ2, µ3, . . .) = µ ∈ N∞. Thus, Lemma 13.46.32 (applied to βi = µi) yields

∑
r∈R µr ≤ µ1 +µ2 + · · ·+µk.

Hence,

µ1 + µ2 + · · ·+ µk ≥
∑
r∈R

µr

=
∑
j∈R

µj︸︷︷︸
=

∑
i∈[`];
ψ(i)=j

λi

(by (13.46.101))

(here, we have renamed the summation index r as j)

=
∑
j∈R

∑
i∈[`];
ψ(i)=j︸ ︷︷ ︸

=
∑
i∈[`]

∑
j∈R;
ψ(i)=j

λi =
∑
i∈[`]︸︷︷︸

=
∑`
i=1

∑
j∈R;
ψ(i)=j

λi

=
∑̀
i=1

∑
j∈R;
ψ(i)=j

λi =

k∑
i=1

∑
j∈R;
ψ(i)=j

λi

︸ ︷︷ ︸
=λi

(by (13.46.102))

+
∑̀
i=k+1

∑
j∈R;
ψ(i)=j

λi︸︷︷︸
≥0

(since λi∈N)

(here, we have split the outer sum at i = k, because 1 ≤ k ≤ `)

≥
k∑
i=1

λi +
∑̀
i=k+1

∑
j∈R;
ψ(i)=j

0

︸ ︷︷ ︸
=0

=

k∑
i=1

λi = λ1 + λ2 + · · ·+ λk.

554Proof of (13.46.102): Let i ∈ {1, 2, . . . , k}. Thus, i ∈ {1, 2, . . . , k} = [k]. Hence, ψ

 i︸︷︷︸
∈[k]

 ∈ ψ ([k]) = R. Thus, there

exists a j ∈ R satisfying j = ψ (i) (namely, j = ψ (i)). This j is furthermore unique (since the condition j = ψ (i) determines j
uniquely). Thus, there exists exactly one j ∈ R satisfying ψ (i) = j (namely, j = ψ (i)). Hence, the sum

∑
j∈R;
ψ(i)=j

λi has exactly

one addend (namely, the addend for j = ψ (i)). Thus, this sum simplifies as follows:
∑
j∈R;
ψ(i)=j

λi = λi. This proves (13.46.102).
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Now, let us forget that we fixed k. We thus have shown that µ1 + µ2 + · · ·+ µk ≥ λ1 + λ2 + · · ·+ λk for
each k ∈ {1, 2, . . . , `}. Therefore, Lemma 13.46.20 (applied to `, λ and µ instead of q, µ and λ) yields µ . λ
(since ` (λ) = ` ≤ `). This proves Proposition 13.46.40. �

Proposition 13.46.41. Let µ ∈ Par. Let k = ` (µ). Then:

(a) We have Bµ,µ,k,k =
{
σ ∈ Sk | µσ(i) = µi for each i ∈ [k]

}
.

(b) The set Bµ,µ,k,k is a subgroup of Sk.

Proof of Proposition 13.46.41. We know that Sk is the set of all permutations of {1, 2, . . . , k}. In other
words, Sk is the set of all permutations of [k] (since [k] = {1, 2, . . . , k}).

Recall that ` (µ) = k. Thus, µ = (µ1, µ2, . . . , µk) ∈ Nk. Also, from ` (µ) = k, we obtain µ1 ≥ µ2 ≥ · · · ≥
µk > 0 (by the definition of ` (µ)). Hence,

(13.46.103) µi > 0 for each i ∈ [k] .

The definition of Bµ,µ,k,k yields

(13.46.104) Bµ,µ,k,k = {ϕ : [k]→ [k] | µ = ϕ∗µ} ,
where µ is regarded as the k-tuple (µ1, µ2, . . . , µk) ∈ Nk.

We have Bµ,µ,k,k ⊂ Sk
555. Hence, we have the two inclusions Bµ,µ,k,k ⊂ {σ ∈ Sk | σ∗µ = µ} 556

and {σ ∈ Sk | σ∗µ = µ} ⊂ Bµ,µ,k,k
557. Combining these two inclusions, we obtain

(13.46.105) Bµ,µ,k,k = {σ ∈ Sk | σ∗µ = µ} .
But let σ ∈ Sk be arbitrary. Then, Proposition 13.46.29(b) (applied to p = k, α = µ and αi = µi) shows

that we have σ∗µ = µ if and only if
(
µσ(i) = µi for all i ∈ [k]

)
. In other words, we have the following logical

equivalence:

(13.46.106) (σ∗µ = µ)⇐⇒
(
µσ(i) = µi for all i ∈ [k]

)
.

Now, forget that we fixed σ. We thus have proven the equivalence (13.46.106) for each σ ∈ Sk.
Now, the equality (13.46.105) becomes

Bµ,µ,k,k =

σ ∈ Sk | σ∗µ = µ︸ ︷︷ ︸
⇐⇒ (µσ(i)=µi for all i∈[k])

(by (13.46.106))

 =
{
σ ∈ Sk | µσ(i) = µi for each i ∈ [k]

}
.

This proves Proposition 13.46.41(a).
(b) The neutral element of the group Sk is id{1,2,...,k} = id[k] (since {1, 2, . . . , k} = [k]).
The following four observations hold:

555Proof. Let ψ ∈ Bµ,µ,k,k. Thus, ψ ∈ Bµ,µ,k,k = {ϕ : [k]→ [k] | µ = ϕ∗µ}. In other words, ψ is a map [k] → [k] and

satisfies µ = ψ∗µ. Thus, ψ∗µ = µ.
But Lemma 13.46.31 (applied to p = k, q = k, ϕ = ψ, α = µ, αi = µi, β = µ and βi = µi) shows that the map ψ is

surjective (because (13.46.103) shows that (µi > 0 for each i ∈ [k])). Hence, ψ is a surjective map [k]→ [k].
Now, recall the following known fact about finite sets: If T is a finite set, then each surjective map T → T is bijective.

Applying this fact to T = [k], we conclude that each surjective map [k] → [k] is bijective (since [k] is a finite set). Thus, the
map ψ is bijective (since ψ is a surjective map [k]→ [k]). Thus, ψ is a bijection [k]→ [k]. In other words, ψ is a permutation

of [k]. In other words, ψ ∈ Sk (since Sk is the set of all permutations of [k]).
Now, forget that we fixed ψ. We thus have shown that ψ ∈ Sk for each ψ ∈ Bµ,µ,k,k. In other words, Bµ,µ,k,k ⊂ Sk. Qed.
556Proof. Let ψ ∈ Bµ,µ,k,k. Thus, ψ ∈ Bµ,µ,k,k = {ϕ : [k]→ [k] | µ = ϕ∗µ}. In other words, ψ is a map [k] → [k] and

satisfies µ = ψ∗µ. Thus, ψ∗µ = µ. Also, ψ ∈ Bµ,µ,k,k ⊂ Sk. Hence, ψ is an element of Sk and satisfies ψ∗µ = µ. In other
words, ψ ∈ {σ ∈ Sk | σ∗µ = µ}.

Now, forget that we fixed ψ. We thus have shown that ψ ∈ {σ ∈ Sk | σ∗µ = µ} for each ψ ∈ Bµ,µ,k,k. In other words,

Bµ,µ,k,k ⊂ {σ ∈ Sk | σ∗µ = µ}. Qed.
557Proof. Let ψ ∈ {σ ∈ Sk | σ∗µ = µ}. Thus, ψ is an element of Sk and satisfies ψ∗µ = µ.
We know that ψ is an element of Sk. In other words, ψ is a permutation of [k] (since Sk is the set of all permutations of

[k]). In other words, ψ is a bijection [k]→ [k].

Thus, ψ is a map [k]→ [k] and satisfies µ = ψ∗µ (since ψ∗µ = µ). In other words, ψ ∈ {ϕ : [k]→ [k] | µ = ϕ∗µ}. In light
of (13.46.104), this rewrites as ψ ∈ Bµ,µ,k,k.

Now, forget that we fixed ψ. We thus have proven that ψ ∈ Bµ,µ,k,k for each ψ ∈ {σ ∈ Sk | σ∗µ = µ}. In other words,

{σ ∈ Sk | σ∗µ = µ} ⊂ Bµ,µ,k,k. Qed.
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• The set Bµ,µ,k,k is a subset of Sk (since Bµ,µ,k,k ⊂ Sk).
• If γ and δ are two elements of Bµ,µ,k,k, then γ ◦ δ ∈ Bµ,µ,k,k

558.
• We have id[k] ∈ Bµ,µ,k,k

559.

• If γ ∈ Bµ,µ,k,k, then γ−1 ∈ Bµ,µ,k,k
560.

Combining these four observations, we conclude that Bµ,µ,k,k is a subgroup of Sk (since the neutral element
of the group Sk is id[k]). This proves Proposition 13.46.41(b). �

Proposition 13.46.42. Let p ∈ N. Let ϕ : [p] → {1, 2, 3, . . .} be any map. Let α = (α1, α2, . . . , αp) ∈ Np
be a p-tuple. Then,  ∑

i∈ϕ−1{1}

αi,
∑

i∈ϕ−1{2}

αi,
∑

i∈ϕ−1{3}

αi, . . .


is a weak composition.

Proof of Proposition 13.46.42. For each j ∈ {1, 2, 3, . . .}, the sum
∑
i∈ϕ−1{j} αi is a well-defined element of

N 561. Hence, the sequence  ∑
i∈ϕ−1{1}

αi,
∑

i∈ϕ−1{2}

αi,
∑

i∈ϕ−1{3}

αi, . . .


is a well-defined element of N∞. Denote this sequence by β. We shall now show that this sequence β is a
weak composition.

Write the sequence β in the form β = (β1, β2, β3, . . .). Thus,

(β1, β2, β3, . . .) = β =

 ∑
i∈ϕ−1{1}

αi,
∑

i∈ϕ−1{2}

αi,
∑

i∈ϕ−1{3}

αi, . . .

 .

In other words,

(13.46.107) βj =
∑

i∈ϕ−1{j}

αi for each j ∈ {1, 2, 3, . . .} .

558Proof. Let γ and δ be two elements of Bµ,µ,k,k. We must prove that γ ◦ δ ∈ Bµ,µ,k,k.
We have γ ∈ Bµ,µ,k,k = {ϕ : [k]→ [k] | µ = ϕ∗µ} (by (13.46.104)). In other words, γ is a map [k] → [k] and satisfies

µ = γ∗µ. The same argument (applied to δ instead of γ) shows that δ is a map [k]→ [k] and satisfies µ = δ∗µ. Now, Proposition

13.46.28 (applied to p = k, q = k, r = k, ψ = γ, ϕ = δ and α = µ) yields (γ ◦ δ)∗ µ = γ∗

δ∗µ︸︷︷︸
=µ

 = γ∗µ = µ. In other words,

µ = (γ ◦ δ)∗ µ. Hence, γ ◦ δ is a map [k] → [k] (since γ and δ are maps [k] → [k]) and satisfies µ = (γ ◦ δ)∗ µ. In other words,

γ ◦ δ ∈ {ϕ : [k]→ [k] | µ = ϕ∗µ}. In light of (13.46.104), this rewrites as γ ◦ δ ∈ Bµ,µ,k,k. Qed.
559Proof. Proposition 13.46.30 (applied to p = k and α = µ) yields

(
id[k]

)
∗ µ = µ. Hence, µ =

(
id[k]

)
∗ µ.

Thus, id[k] is a map [k] → [k] and satisfies µ =
(
id[k]

)
∗ µ. In other words, id[k] ∈ {ϕ : [k]→ [k] | µ = ϕ∗µ}. In light of

(13.46.104), this rewrites as id[k] ∈ Bµ,µ,k,k. Qed.
560Proof. Let γ ∈ Bµ,µ,k,k. We must prove that γ−1 ∈ Bµ,µ,k,k.
We have γ ∈ Bµ,µ,k,k = {ϕ : [k]→ [k] | µ = ϕ∗µ} (by (13.46.104)). In other words, γ is a map [k] → [k] and satisfies

µ = γ∗µ. Also, γ ∈ Bµ,µ,k,k ⊂ Sk; therefore, γ has an inverse γ−1 (since Sk is a group). Proposition 13.46.28 (applied to

p = k, q = k, r = k, ψ = γ−1, ϕ = γ and α = µ) yields
(
γ−1 ◦ γ

)
∗ µ =

(
γ−1

)
∗

γ∗µ︸︷︷︸
=µ

 =
(
γ−1

)
∗ µ. Hence,

(
γ−1

)
∗ µ =

γ−1 ◦ γ︸ ︷︷ ︸
=id[k]


∗

µ =
(
id[k]

)
∗ µ.

But Proposition 13.46.30 (applied to p = k and α = µ) yields
(
id[k]

)
∗ µ = µ. Hence, µ =

(
id[k]

)
∗ µ. Comparing this with(

γ−1
)
∗ µ =

(
id[k]

)
∗ µ, we obtain µ =

(
γ−1

)
∗ µ. Hence, γ−1 is a map [k] → [k] (since γ is a map [k] → [k]) and satisfies

µ =
(
γ−1

)
∗ µ. In other words, γ−1 ∈ {ϕ : [k]→ [k] | µ = ϕ∗µ}. In light of (13.46.104), this rewrites as γ−1 ∈ Bµ,µ,k,k. Qed.

561Proof. Let j ∈ {1, 2, 3, . . .}. Then, ϕ−1 {j} is a subset of [p], and thus a finite set (since [p] is a finite set). Hence, the
sum

∑
i∈ϕ−1{j} αi is well-defined. Moreover, this sum belongs to N (since each of its addends αi belongs to N). Thus, the sum∑

i∈ϕ−1{j} αi is a well-defined element of N. Qed.
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Let Z be the support of the sequence β. Then,

Z = (the support of the sequence β)

= (the set of all positive integers i for which βi 6= 0)

(by the definition of the support of a sequence)

= {i ∈ {1, 2, 3, . . .} | βi 6= 0} .

Every j ∈ Z satisfies j ∈ ϕ ([p]) 562. In other words, we have Z ⊂ ϕ ([p]). Hence, the set Z is finite
(since the set ϕ ([p]) is finite (since the set [p] is finite)). In other words, the support of the sequence β is
finite (since Z is the support of the sequence β).

Hence, we know that β is a sequence in N∞ having finite support. In other words, β is a weak composition
(since a weak composition is defined as a sequence in N∞ having finite support). In other words, ∑

i∈ϕ−1{1}

αi,
∑

i∈ϕ−1{2}

αi,
∑

i∈ϕ−1{3}

αi, . . .


is a weak composition (since β =

(∑
i∈ϕ−1{1} αi,

∑
i∈ϕ−1{2} αi,

∑
i∈ϕ−1{3} αi, . . .

)
). This proves Proposition

13.46.42. �

Proposition 13.46.42 allows us to make the following definition (which is similar to Definition 13.46.26,
but uses the infinite set {1, 2, 3, . . .} instead of [q]):

Definition 13.46.43. Let p ∈ N. Let ϕ : [p]→ {1, 2, 3, . . .} be any map. Let α = (α1, α2, . . . , αp) ∈ Np be
a p-tuple. Then, we define a weak composition ϕ∗α ∈WC by

ϕ∗α =

 ∑
i∈ϕ−1{1}

αi,
∑

i∈ϕ−1{2}

αi,
∑

i∈ϕ−1{3}

αi, . . .

 .

(This is indeed a weak composition, because of Proposition 13.46.42.)

Proposition 13.46.44. Let p ∈ N. Let ϕ : [p] → {1, 2, 3, . . .} be any map. Let α = (α1, α2, . . . , αp) ∈ Np
be a p-tuple. Then, xϕ∗α = xα1

ϕ(1)x
α2

ϕ(2) · · ·x
αp
ϕ(p).

Proof of Proposition 13.46.44. The definition of ϕ∗α yields

ϕ∗α =

 ∑
i∈ϕ−1{1}

αi,
∑

i∈ϕ−1{2}

αi,
∑

i∈ϕ−1{3}

αi, . . .

 .

562Proof. Let j ∈ Z. We must show that j ∈ ϕ ([p]).
We have j ∈ Z = {i ∈ {1, 2, 3, . . .} | βi 6= 0}. In other words, j is an element of {1, 2, 3, . . .} and satisfies βj 6= 0.

Assume (for the sake of contradiction) that ϕ−1 {j} = ∅. Thus,
∑
i∈ϕ−1{j} αi =

∑
i∈∅ αi = (empty sum) = 0. Hence,

(13.46.107) yields βj =
∑
i∈ϕ−1{j} αi = 0. This contradicts βj 6= 0.

This contradiction shows that our assumption (that ϕ−1 {j} = ∅) was false. Hence, we must have ϕ−1 {j} 6= ∅. In other
words, there exists some k ∈ ϕ−1 {j}. Consider this k.

From k ∈ ϕ−1 {j}, we obtain ϕ (k) ∈ {j}. Hence, ϕ (k) = j. Therefore, j = ϕ

 k︸︷︷︸
∈ϕ−1{j}⊂[p]

 ∈ ϕ ([p]). This completes our

proof.
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Hence, the definition of xϕ∗α shows that

xϕ∗α = x
∑
i∈ϕ−1{1} αi

1 x
∑
i∈ϕ−1{2} αi

2 x
∑
i∈ϕ−1{3} αi

3 · · · =
∞∏
j=1︸︷︷︸

=
∏
j∈{1,2,3,...}

x
∑
i∈ϕ−1{j} αi

j︸ ︷︷ ︸
=
∏
i∈ϕ−1{j} x

αi
j

=
∏

j∈{1,2,3,...}

∏
i∈ϕ−1{j}︸ ︷︷ ︸
=

∏
i∈[p];
ϕ(i)=j

xαij =
∏

j∈{1,2,3,...}

∏
i∈[p];
ϕ(i)=j

xαij .

Comparing this with

xα1

ϕ(1)x
α2

ϕ(2) · · ·x
αp
ϕ(p) =

∏
i∈[p]︸︷︷︸

=
∏
j∈{1,2,3,...}

∏
i∈[p];
ϕ(i)=j

(since ϕ(i)∈{1,2,3,...} for each i∈[p])

xαiϕ(i) =
∏

j∈{1,2,3,...}

∏
i∈[p];
ϕ(i)=j

xαiϕ(i)︸︷︷︸
=x

αi
j

(since ϕ(i)=j)

=
∏

j∈{1,2,3,...}

∏
i∈[p];
ϕ(i)=j

xαij ,

we obtain xϕ∗α = xα1

ϕ(1)x
α2

ϕ(2) · · ·x
αp
ϕ(p). This proves Proposition 13.46.44. �

Lemma 13.46.45. Let ` ∈ N. Let X be a set. Then, the map

X{1,2,...,`} → X`, ϕ 7→ (ϕ (1) , ϕ (2) , . . . , ϕ (`))

is a bijection.

Proof of Lemma 13.46.45. It is well-known that the `-tuples of elements of X are in bijection with the maps
{1, 2, . . . , `} → X 563. Lemma 13.46.45 is merely a way to precisely formulate this bijection. Thus, we
omit its proof. �

Proposition 13.46.46. Let ` ∈ N. Let α = (α1, α2, . . . , α`) ∈ N` be such that (αi > 0 for each i ∈ [`]).
Then,

pα1pα2 · · · pα` =
∑

ϕ:[`]→{1,2,3,...}

xϕ∗α

in k [[x]].

Proof of Proposition 13.46.46. We assumed that (αi > 0 for each i ∈ [`]). Thus, each i ∈ [`] satisfies αi > 0
and therefore

pαi = xαi1 + xαi2 + xαi3 + · · · (by the definition of pαi)

=
∑

j∈{1,2,3,...}

xαij .(13.46.108)

Lemma 13.46.45 (applied to X = {1, 2, 3, . . .}) shows that the map

{1, 2, 3, . . .}{1,2,...,`} → {1, 2, 3, . . .}` , ϕ 7→ (ϕ (1) , ϕ (2) , . . . , ϕ (`))

is a bijection. In view of [`] = {1, 2, . . . , `}, this rewrites as follows: The map

(13.46.109) {1, 2, 3, . . .}[`] → {1, 2, 3, . . .}` , ϕ 7→ (ϕ (1) , ϕ (2) , . . . , ϕ (`))

is a bijection.

563In fact, depending on your definition of an “`-tuple”, you might even consider the `-tuples of elements of X to be exactly

the maps {1, 2, . . . , `} → X.
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Now,

pα1
pα2
· · · pα` =

∏̀
i=1

pαi︸︷︷︸
=
∑
j∈{1,2,3,...} x

αi
j

(by (13.46.108))

=
∏̀
i=1

∑
j∈{1,2,3,...}

xαij

=
∑

(j1,j2,...,j`)∈{1,2,3,...}`

∏̀
i=1

xαiji (by the product rule)

=
∑

ϕ∈{1,2,3,...}[`]︸ ︷︷ ︸
=
∑
ϕ:[`]→{1,2,3,...}

∏̀
i=1

xαiϕ(i)︸ ︷︷ ︸
=x

α1
ϕ(1)

x
α2
ϕ(2)
···xα`

ϕ(`)(
here, we have substituted (ϕ (1) , ϕ (2) , . . . , ϕ (`)) for (j1, j2, . . . , j`)

in the sum, since the map (13.46.109) is a bijection

)
=

∑
ϕ:[`]→{1,2,3,...}

xα1

ϕ(1)x
α2

ϕ(2) · · ·x
α`
ϕ(`).

Comparing this with

∑
ϕ:[`]→{1,2,3,...}

xϕ∗α︸ ︷︷ ︸
=x

α1
ϕ(1)

x
α2
ϕ(2)
···xα`

ϕ(`)

(by Proposition 13.46.44 (applied to p=`))

=
∑

ϕ:[`]→{1,2,3,...}

xα1

ϕ(1)x
α2

ϕ(2) · · ·x
α`
ϕ(`),

we obtain pα1pα2 · · · pα` =
∑
ϕ:[`]→{1,2,3,...} xϕ∗α. This proves Proposition 13.46.46. �

Finally, let us state a proposition that follows immediately from the definition of a weak composition:

Proposition 13.46.47. Let µ be a weak composition. Then, there exists a q ∈ N such that µ =
(µ1, µ2, . . . , µq).

564

Now, let us resume the solution of Exercise 2.2.13.
(j) Let λ be a partition. Let µ be a weak composition. Let ` = ` (λ). We must prove that the number

bλ,µ is well-defined. In other words, we must prove that there are only finitely many maps ϕ : {1, 2, . . . , `} →

{1, 2, 3, . . .} satisfying

µj =
∑

i∈{1,2,...,`};
ϕ(i)=j

λi for all j ≥ 1

.

We have ` = ` (λ); thus, λ = (λ1, λ2, . . . , λ`). Hence, λ is an `-tuple in N`.

564Keep in mind that we are identifying any k-tuple (a1, a2, . . . , ak) ∈ Nk with the weak composition

(a1, a2, . . . , ak, 0, 0, 0, . . .). Thus, the q-tuple (µ1, µ2, . . . , µq) is identified with the weak composition (µ1, µ2, . . . , µq , 0, 0, 0, . . .).
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We have ` = ` (λ). Hence, the definition of B′λ,µ yields

B′λ,µ =



ϕ : [`]→ {1, 2, 3, . . .} | µj =
∑
i∈[`];
ϕ(i)=j

λi for all j ∈ {1, 2, 3, . . .}

︸ ︷︷ ︸
⇐⇒

µj= ∑
i∈[`];
ϕ(i)=j

λi for all j≥1


(since the j∈{1,2,3,...} are precisely the integers j≥1)


=

ϕ : [`]→ {1, 2, 3, . . .} | µj =
∑
i∈[`];
ϕ(i)=j

λi for all j ≥ 1


=

ϕ : {1, 2, . . . , `} → {1, 2, 3, . . .} | µj =
∑

i∈{1,2,...,`};
ϕ(i)=j

λi for all j ≥ 1

(13.46.110)

(since [`] = {1, 2, . . . , `}).
Proposition 13.46.47 shows that there exists some q ∈ N such that µ = (µ1, µ2, . . . , µq). Consider this q.

Thus, µ is a q-tuple in Nq (since µ = (µ1, µ2, . . . , µq)). Hence, the set Bλ,µ,`,q is well-defined (since λ ∈ N`
and µ ∈ Nq). Also, µ ∈WC (since µ is a weak composition). Thus, Proposition 13.46.39 (applied to p = `)
shows that B′λ,µ

∼= Bλ,µ,`,q as sets. But the definition of Bλ,µ,`,q yields

Bλ,µ,`,q = {ϕ : [`]→ [q] | µ = ϕ∗λ} ⊂ {ϕ : [`]→ [q]} = [q]
[`]
.

Hence, Bλ,µ,`,q is a finite set (since [q]
[`]

is a finite set). Therefore, the set B′λ,µ is a finite set as well (since

B′λ,µ
∼= Bλ,µ,`,q as sets). In view of (13.46.110), this rewrites as follows: The setϕ : {1, 2, . . . , `} → {1, 2, 3, . . .} | µj =

∑
i∈{1,2,...,`};
ϕ(i)=j

λi for all j ≥ 1


is a finite set. In other words, there are only finitely many maps ϕ : {1, 2, . . . , `} → {1, 2, 3, . . .} satisfyingµj =

∑
i∈{1,2,...,`};
ϕ(i)=j

λi for all j ≥ 1

. This solves Exercise 2.2.13(j).

(k) Let λ ∈ Parn. Let ` = ` (λ). Thus, λ = (λ1, λ2, . . . , λ`) (by the definition of ` (λ)). Thus, λ =
(λ1, λ2, . . . , λ`) ∈ N`. Therefore, for every map ϕ : [`] → {1, 2, 3, . . .}, a weak composition ϕ∗λ ∈ WC is
defined (according to Definition 13.46.43, applied to p = `, α = λ and αi = λi). The definition of this weak
composition ϕ∗λ yields

(13.46.111) ϕ∗λ =

 ∑
i∈ϕ−1{1}

λi,
∑

i∈ϕ−1{2}

λi,
∑

i∈ϕ−1{3}

λi, . . .
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for any map ϕ : [`] → {1, 2, 3, . . .}. Hence, for each map ϕ : [`] → {1, 2, 3, . . .}, we have the following chain
of logical equivalences:

 µ︸︷︷︸
=(µ1,µ2,µ3,...)

= ϕ∗λ︸︷︷︸
=(
∑
i∈ϕ−1{1} λi,

∑
i∈ϕ−1{2} λi,

∑
i∈ϕ−1{3} λi,...)

(by (13.46.111))


⇐⇒

(µ1, µ2, µ3, . . .) =

 ∑
i∈ϕ−1{1}

λi,
∑

i∈ϕ−1{2}

λi,
∑

i∈ϕ−1{3}

λi, . . .



⇐⇒


µj =

∑
i∈ϕ−1{j}︸ ︷︷ ︸
=

∑
i∈[`];
ϕ(i)=j

λi for all j ≥ 1



⇐⇒

µj =
∑
i∈[`];
ϕ(i)=j

λi for all j ≥ 1

 .

Thus,

{ϕ : [`]→ {1, 2, 3, . . .} | µ = ϕ∗λ}

=

ϕ : [`]→ {1, 2, 3, . . .} | µj =
∑
i∈[`];
ϕ(i)=j

λi for all j ≥ 1

 .(13.46.112)

We have λ = (λ1, λ2, . . . , λ`) with λ1 ≥ λ2 ≥ · · · ≥ λ` > 0 (since ` = ` (λ)). Hence, pλ = pλ1
pλ2
· · · pλ`

(by the definition of pλ).
From λ1 ≥ λ2 ≥ · · · ≥ λ` > 0, we also obtain (λi > 0 for each i ∈ [`]). Hence, Proposition 13.46.46

(applied to α = λ and αi = λi) yields

pλ1
pλ2
· · · pλ` =

∑
ϕ:[`]→{1,2,3,...}

xϕ∗λ

in k [[x]].
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Now, let µ ∈ Parn. Thus, µ ∈ Parn ⊂ Par ⊂ WC. From pλ = pλ1pλ2 · · · pλ` =
∑
ϕ:[`]→{1,2,3,...} xϕ∗λ, we

obtain

[xµ] (pλ)

= [xµ]

 ∑
ϕ:[`]→{1,2,3,...}

xϕ∗λ

 =
∑

ϕ:[`]→{1,2,3,...}

[xµ]
(
xϕ∗λ

)︸ ︷︷ ︸
=δµ,ϕ∗λ

(by (13.46.1) (applied to α=ϕ∗λ))

=
∑

ϕ:[`]→{1,2,3,...}

δµ,ϕ∗λ

=
∑

ϕ:[`]→{1,2,3,...};
µ=ϕ∗λ

δµ,ϕ∗λ︸ ︷︷ ︸
=1

(since µ=ϕ∗λ)

+
∑

ϕ:[`]→{1,2,3,...};
µ6=ϕ∗λ

δµ,ϕ∗λ︸ ︷︷ ︸
=0

(since µ6=ϕ∗λ)

=
∑

ϕ:[`]→{1,2,3,...};
µ=ϕ∗λ

1 +
∑

ϕ:[`]→{1,2,3,...};
µ6=ϕ∗λ

0

︸ ︷︷ ︸
=0

=
∑

ϕ:[`]→{1,2,3,...};
µ=ϕ∗λ

1

= |{ϕ : [`]→ {1, 2, 3, . . .} | µ = ϕ∗λ}| · 1
= |{ϕ : [`]→ {1, 2, 3, . . .} | µ = ϕ∗λ}|

=

∣∣∣∣∣∣∣∣
ϕ : [`]→ {1, 2, 3, . . .} | µj =

∑
i∈[`];
ϕ(i)=j

λi for all j ≥ 1


∣∣∣∣∣∣∣∣(13.46.113)

(by (13.46.112)).
On the other hand, the definition of bλ,µ shows that bλ,µ is the number of all maps ϕ : {1, 2, . . . , `} →

{1, 2, 3, . . .} satisfying

µj =
∑

i∈{1,2,...,`};
ϕ(i)=j

λi for all j ≥ 1

 (since ` = ` (λ)). In light of {1, 2, . . . , `} = [`], this

rewrites as follows: bλ,µ is the number of all maps ϕ : [`]→ {1, 2, 3, . . .} satisfying

µj =
∑
i∈[`];
ϕ(i)=j

λi for all j ≥ 1

.

In other words,

bλ,µ =

∣∣∣∣∣∣∣∣
ϕ : [`]→ {1, 2, 3, . . .} | µj =

∑
i∈[`];
ϕ(i)=j

λi for all j ≥ 1


∣∣∣∣∣∣∣∣ .

Comparing this with (13.46.113), we obtain

(13.46.114) [xµ] (pλ) = bλ,µ.

Now, forget that we fixed µ. We thus have proven the equality (13.46.114) for every µ ∈ Parn.

But λ ∈ Parn, so that |λ| = n. Hence, n =

∣∣∣∣∣∣ λ︸︷︷︸
=(λ1,λ2,...,λ`)

∣∣∣∣∣∣ = |(λ1, λ2, . . . , λ`)| = λ1 + λ2 + · · ·+ λ`.

Let i ∈ {1, 2, . . . , `}. Then, pλi is a homogeneous element of Λ having degree λi (because for each positive
integer m, the element pm is a homogeneous element of Λ having degree m).

Now, forget that we fixed i. We thus have shown that for each i ∈ {1, 2, . . . , `}, the element pλi is a
homogeneous element of Λ having degree λi. In other words, pλ1 , pλ2 , . . . , pλ` are homogeneous elements
of Λ having degrees λ1, λ2, . . . , λ`, respectively. Hence, the product pλ1pλ2 · · · pλ` of these elements is a
homogeneous element of Λ having degree λ1 + λ2 + · · · + λ`. In light of pλ = pλ1

pλ2
· · · pλ` and n =
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λ1 + λ2 + · · ·+ λ`, this rewrites as follows: The element pλ is a homogeneous element of Λ having degree n.
In other words, pλ ∈ Λn. Thus, Exercise 2.2.13(a) (applied to f = pλ) yields

pλ =
∑

µ∈Parn

([xµ] (pλ))︸ ︷︷ ︸
=bλ,µ

(by (13.46.114))

mµ =
∑

µ∈Parn

bλ,µmµ.

This solves Exercise 2.2.13(k).
Before we come to the solution of Exercise 2.2.13(l), let us state a simple lemma:

Lemma 13.46.48. Let λ be a partition. Let µ be a weak composition. Then:

(a) We have bλ,µ =
∣∣∣B′λ,µ∣∣∣.

(b) Let p = ` (λ). Let q ∈ N be such that µ = (µ1, µ2, . . . , µq) (that is, µi = 0 for all integers i > q).
Then, the set Bλ,µ,p,q is well-defined and satisfies bλ,µ = |Bλ,µ,p,q|.

Proof of Lemma 13.46.48. We know that λ is a partition.
We have p = ` (λ). Hence, the definition of B′λ,µ yields

B′λ,µ =



ϕ : [p]→ {1, 2, 3, . . .} | µj =
∑
i∈[p];
ϕ(i)=j

λi for all j ∈ {1, 2, 3, . . .}

︸ ︷︷ ︸
⇐⇒

µj= ∑
i∈[p];
ϕ(i)=j

λi for all j≥1


(since the j∈{1,2,3,...} are precisely the integers j≥1)


=

ϕ : [p]→ {1, 2, 3, . . .} | µj =
∑
i∈[p];
ϕ(i)=j

λi for all j ≥ 1

 .(13.46.115)

On the other hand, the definition of bλ,µ shows that bλ,µ is the number of all maps ϕ : {1, 2, . . . , p} →

{1, 2, 3, . . .} satisfying

µj =
∑

i∈{1,2,...,p};
ϕ(i)=j

λi for all j ≥ 1

 (since p = p (λ)). In view of {1, 2, . . . , p} = [p], this

rewrites as follows: bλ,µ is the number of all maps ϕ : [p]→ {1, 2, 3, . . .} satisfying

µj =
∑
i∈[p];
ϕ(i)=j

λi for all j ≥ 1

.

In other words,

bλ,µ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ : [p]→ {1, 2, 3, . . .} | µj =
∑
i∈[p];
ϕ(i)=j

λi for all j ≥ 1

︸ ︷︷ ︸
=B′λ,µ

(by (13.46.115))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
∣∣B′λ,µ∣∣ .

This proves Lemma 13.46.48(a).
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(b) From p = ` (λ), we obtain λ = (λ1, λ2, . . . , λp); thus, λ is a p-tuple in Np. Also, µ = (µ1, µ2, . . . , µq) ∈
Nq. Thus, µ is a q-tuple in Nq. Hence, the set Bλ,µ,p,q is well-defined (since λ ∈ Np and µ ∈ Nq). Proposition

13.46.39 yields that B′λ,µ
∼= Bλ,µ,p,q as sets. But Lemma 13.46.48(a) shows that bλ,µ =

∣∣∣B′λ,µ∣∣∣ = |Bλ,µ,p,q|
(since B′λ,µ

∼= Bλ,µ,p,q as sets). Thus, Lemma 13.46.48(b) is proven. �

We now resume the solution of Exercise 2.2.13.
(l) Let λ ∈ Parn and µ ∈ Parn be any partitions that don’t satisfy µ . λ. We must prove that bλ,µ = 0.

Indeed, assume the contrary. Thus, bλ,µ 6= 0. But Lemma 13.46.48(a) yields bλ,µ =
∣∣∣B′λ,µ∣∣∣ (since µ is a

weak composition (since µ is a partition)). Hence,
∣∣∣B′λ,µ∣∣∣ = bλ,µ 6= 0. In other words, B′λ,µ 6= ∅. Thus,

Proposition 13.46.40 shows that µ . λ. This contradicts the fact that we don’t have µ . λ.
This contradiction proves that our assumption was wrong. Hence, bλ,µ = 0 is proven. This solves Exercise

2.2.13(l).
(m) Let λ ∈ Parn. We must prove that bλ,λ is a positive integer.
Let k = ` (λ). Thus, λ = (λ1, λ2, . . . , λk) (by the definition of ` (λ)). Clearly, λ is a weak composition

(since λ is a partition). Hence, Lemma 13.46.48(b) (applied to µ = λ, p = k and q = k) shows that the set
Bλ,λ,k,k is well-defined and satisfies bλ,λ = |Bλ,λ,k,k|. But λ ∈ Parn ⊂ Par. Hence, Proposition 13.46.41(b)
(applied to µ = λ) shows that Bλ,λ,k,k is a subgroup of Sk. Thus, the set Bλ,λ,k,k contains the neutral
element of Sk. Thus, the set Bλ,λ,k,k contains at least one element, and therefore is nonempty. Thus,
|Bλ,λ,k,k| > 0.

Hence, bλ,λ = |Bλ,λ,k,k| > 0. Since bλ,λ is an integer, we can therefore conclude that bλ,λ is a positive
integer. This solves Exercise 2.2.13(m).

(n) Let µ = (µ1, µ2, . . . , µk) ∈ Parn be a partition. Let k = ` (µ). We must show that the integer bµ,µ is
the size of the subgroup of Sk consisting of all permutations σ ∈ Sk having each i satisfy µσ(i) = µi. In
particular, we must show that this subgroup is indeed a subgroup.

Clearly, µ is a weak composition (since µ is a partition). Hence, Lemma 13.46.48(b) (applied to λ = µ,
p = k and q = k) shows that the set Bµ,µ,k,k is well-defined and satisfies bµ,µ = |Bµ,µ,k,k|.

We have µ ∈ Parn ⊂ Par. Hence, Proposition 13.46.41(a) shows that

(13.46.116) Bµ,µ,k,k =
{
σ ∈ Sk | µσ(i) = µi for each i ∈ [k]

}
.

Furthermore, Proposition 13.46.41(b) shows that Bµ,µ,k,k is a subgroup of Sk.
Now, (

the set of all permutations σ ∈ Sk having each i satisfy µσ(i) = µi
)

=
{
σ ∈ Sk | each i satisfies µσ(i) = µi

}
=

σ ∈ Sk | each i ∈ {1, 2, . . . , k}︸ ︷︷ ︸
=[k]

satisfies µσ(i) = µi


=
{
σ ∈ Sk | each i ∈ [k] satisfies µσ(i) = µi

}
=
{
σ ∈ Sk | µσ(i) = µi for each i ∈ [k]

}
= Bµ,µ,k,k (by (13.46.116)) .(13.46.117)

But recall that Bµ,µ,k,k is a subgroup of Sk. In view of (13.46.117), this rewrites as follows: The set of
all permutations σ ∈ Sk having each i satisfy µσ(i) = µi is a subgroup of Sk. This subgroup thus is the
subgroup of Sk consisting of all permutations σ ∈ Sk having each i satisfy µσ(i) = µi. The size of this
subgroup is clearly∣∣∣∣∣∣∣

{
σ ∈ Sk | each i satisfies µσ(i) = µi

}︸ ︷︷ ︸
=Bµ,µ,k,k

∣∣∣∣∣∣∣ = |Bµ,µ,k,k| = bµ,µ (since bµ,µ = |Bµ,µ,k,k|) .

Thus, bµ,µ is the size of the subgroup of Sk consisting of all permutations σ ∈ Sk having each i satisfy
µσ(i) = µi. (In particular, we have shown that this subgroup is indeed a subgroup.) This solves Exercise
2.2.13(n).
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Before we come to the solution of Exercise 2.2.13(o), let us prove some further auxiliary results.

Proposition 13.46.49. Let µ ∈ Par. Let k = ` (µ). Proposition 13.46.41(b) shows that the set Bµ,µ,k,k is
a subgroup of Sk. Thus, Bµ,µ,k,k is a group.

Let p ∈ N. Let λ ∈ Np. Then, the set Bλ,µ,p,k can be made into a left Bµ,µ,k,k-set (i.e., it can be equipped
with an action of the group Bµ,µ,k,k from the left) in such a way that the group Bµ,µ,k,k acts freely on
Bλ,µ,p,k.

Proof of Proposition 13.46.49. For any α ∈ Bµ,µ,k,k and β ∈ Bλ,µ,p,k, we have α ◦ β ∈ Bλ,µ,p,k
565. Thus,

we can try to define an action of the group Bµ,µ,k,k on the set Bλ,µ,p,k from the left by setting

(13.46.118) (αβ = α ◦ β for all α ∈ Bµ,µ,k,k and β ∈ Bλ,µ,p,k) .

In order to show that this definition actually defines an action of the group Bµ,µ,k,k on the set Bλ,µ,p,k, we
need to prove the following two observations:

Observation 1: We have id{1,2,...,k} ◦γ = γ for all γ ∈ Bλ,µ,p,k.

Observation 2: We have (α ◦ β) ◦ γ = α ◦ (β ◦ γ) for all α ∈ Bµ,µ,k,k, β ∈ Bµ,µ,k,k and
γ ∈ Bλ,µ,p,k.

However, both Observation 1 and Observation 2 are obvious. Thus, we have shown that (13.46.118)
actually defines an action of the group Bµ,µ,k,k on the set Bλ,µ,p,k. Consider this action. Thus, the set
Bλ,µ,p,k has been made into a left Bµ,µ,k,k-set.

We shall now prove that the group Bµ,µ,k,k acts freely on Bλ,µ,p,k. In order to do so, we must prove the
following observation:

Observation 3: If α ∈ Bµ,µ,k,k, β ∈ Bµ,µ,k,k and γ ∈ Bλ,µ,p,k are such that α ◦ γ = β ◦ γ,
then α = β.

[Proof of Observation 3: Let α ∈ Bµ,µ,k,k, β ∈ Bµ,µ,k,k and γ ∈ Bλ,µ,p,k be such that α ◦ γ = β ◦ γ. We
must prove that α = β.

We have α ∈ Bµ,µ,k,k = {ϕ : [k]→ [k] | µ = ϕ∗µ} (by the definition of Bµ,µ,k,k). In other words, α is a
map [k]→ [k] and satisfies µ = α∗µ. The same argument (applied to β instead of α) shows that β is a map
[k]→ [k] and satisfies µ = β∗µ.

We have γ ∈ Bλ,µ,p,k = {ϕ : [p]→ [k] | µ = ϕ∗λ} (by the definition of Bλ,µ,p,k). In other words, γ is a
map [p]→ [k] and satisfies µ = γ∗λ.

Write the p-tuple λ in the form λ = (λ1, λ2, . . . , λp).
Also, ` (µ) = k. Hence, µ = (µ1, µ2, . . . , µk) ∈ Nk and µ1 ≥ µ2 ≥ · · · ≥ µk > 0. From µ1 ≥ µ2 ≥

· · · ≥ µk > 0, we obtain (µi > 0 for each i ∈ [k]). Hence, Lemma 13.46.31 (applied to q = k, ϕ = γ, α = λ,
αi = λi, β = µ and βi = µi) shows that the map γ is surjective. Hence, we can cancel γ from the equality
α ◦ γ = β ◦ γ. Thus, we obtain α = β. This proves Observation 3.]

Observation 3 shows that the group Bµ,µ,k,k acts freely on Bλ,µ,p,k (by the definition of “acting freely”).
Thus, the set Bλ,µ,p,k can be made into a left Bµ,µ,k,k-set in such a way that the group Bµ,µ,k,k acts freely
on Bλ,µ,p,k (namely, by using the above-defined left action of Bµ,µ,k,k on Bλ,µ,p,k). This proves Proposition
13.46.49. �

Let us now recall a basic fact from abstract algebra:

Proposition 13.46.50. Let G be a finite group. Let X be a finite left G-set. Assume that G acts freely on
X. Then, |G| | |X|.

565Proof. Let α ∈ Bµ,µ,k,k and β ∈ Bλ,µ,p,k. We must show that α ◦ β ∈ Bλ,µ,p,k.
We have α ∈ Bµ,µ,k,k = {ϕ : [k]→ [k] | µ = ϕ∗µ} (by the definition of Bµ,µ,k,k). In other words, α is a map [k]→ [k] and

satisfies µ = α∗µ.

We have β ∈ Bλ,µ,p,k = {ϕ : [p]→ [k] | µ = ϕ∗λ} (by the definition of Bλ,µ,p,k). In other words, β is a map [p]→ [k] and

satisfies µ = β∗λ.

Now, Proposition 13.46.28 (applied to k, k, β, α and λ instead of q, r, ϕ, ψ and α) yields (α ◦ β)∗ λ = α∗

β∗λ︸︷︷︸
=µ

 = α∗µ = µ.

In other words, µ = (α ◦ β)∗ λ. Hence, α ◦ β is a map [p] → [k] (since α is a map [k] → [k], and since β is a map [p] → [k]),

and satisfies µ = (α ◦ β)∗ λ. In other words, α ◦ β ∈ {ϕ : [p]→ [k] | µ = ϕ∗λ}. This rewrites as α ◦ β ∈ Bλ,µ,p,k (since

Bλ,µ,p,k = {ϕ : [p]→ [k] | µ = ϕ∗λ}). Qed.
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Proof of Proposition 13.46.50. This fact is well-known, so let us merely sketch the proof: The G-set X is
a disjoint union of orbits (since every G-set is a disjoint union of orbits). Thus, the G-set X is a disjoint
union of finitely many orbits (since X is finite). In other words, we have X = O1 ∪ O2 ∪ · · · ∪ Ok for some
list (O1, O2, . . . , Ok) of disjoint orbits of G on X. Consider this list (O1, O2, . . . , Ok).

Every i ∈ {1, 2, . . . , k} satisfies |Oi| = |G| 566. Hence,
∑k
i=1 |Oi|︸︷︷︸

=|G|

=
∑k
i=1 |G| = k |G|.

From X = O1 ∪O2 ∪ · · · ∪Ok, we obtain

|X| = |O1 ∪O2 ∪ · · · ∪Ok| = |O1|+ |O2|+ · · ·+ |Ok| (since the orbits O1, O2, . . . , Ok are disjoint)

=

k∑
i=1

|Oi| = k |G| .

Thus, |G| | k |G| = |X|. This proves Proposition 13.46.50. �

We now resume the solution of Exercise 2.2.13.
(o) Let λ ∈ Parn and µ ∈ Parn. We must prove that bµ,µ | bλ,µ.
Let p = ` (λ). Thus, λ = (λ1, λ2, . . . , λp) (by the definition of ` (λ)). Hence, λ = (λ1, λ2, . . . , λp) ∈ Np.
We have µ ∈ Parn ⊂ Par. Let k = ` (µ). Proposition 13.46.41(b) shows that the set Bµ,µ,k,k is a subgroup

of Sk. Thus, Bµ,µ,k,k is a finite group (since Sk is a finite group).
But λ is a partition (since λ ∈ Parn ⊂ Par). Also, µ is a partition (since µ ∈ Par), thus a weak

composition. Furthermore, k = ` (µ); thus, µ = (µ1, µ2, . . . , µk) (by the definition of ` (µ)). Hence, Lemma
13.46.48(b) (applied to q = k) shows that the set Bλ,µ,p,k is well-defined and satisfies bλ,µ = |Bλ,µ,p,k|.

Furthermore, Lemma 13.46.48(b) (applied to k, k and µ instead of p, q and λ) shows that the set Bµ,µ,k,k

is well-defined and satisfies bµ,µ = |Bµ,µ,k,k|.
The definition of Bλ,µ,p,k yields Bλ,µ,p,k = {ϕ : [p]→ [k] | µ = ϕ∗λ} ⊂ {ϕ : [p]→ [k]} = [k]

[p]
. Thus,

Bλ,µ,p,k is a finite set (since [k]
[p]

is a finite set).
Proposition 13.46.49 shows that the set Bλ,µ,p,k can be made into a left Bµ,µ,k,k-set (i.e., it can be

equipped with an action of the group Bµ,µ,k,k from the left) in such a way that the group Bµ,µ,k,k acts freely
on Bλ,µ,p,k. Consider this action. Proposition 13.46.50 (applied to G = Bµ,µ,k,k and X = Bλ,µ,p,k) now
yields |Bµ,µ,k,k| | |Bλ,µ,p,k|. Thus, bµ,µ = |Bµ,µ,k,k| | |Bλ,µ,p,k| = bλ,µ (since bλ,µ = |Bλ,µ,p,k|). This solves
Exercise 2.2.13(o).

13.47. Solution to Exercise 2.2.14. Solution to Exercise 2.2.14. Let us first consider the polynomial ring
k [x1, x2, x3, . . .] in countably many indeterminates x1, x2, x3, . . ..

Let f : k [x1, x2, x3, . . .] → A be the k-algebra homomorphism that sends x1, x2, x3, . . . to v1, v2, v3, . . .,
respectively. This is well-defined by the universal property of the polynomial ring k [x1, x2, x3, . . .] (since A
is commutative). The k-algebra homomorphism f is an instance of an evaluation homomorphism; it sends
each polynomial P ∈ k [x1, x2, x3, . . .] to P (v1, v2, v3, . . .) ∈ A. In other words,

(13.47.1) f (P ) = P (v1, v2, v3, . . .) for each P ∈ k [x1, x2, x3, . . .] .

The map f is a k-algebra homomorphism, and thus is k-linear.
For each partition λ ∈ Par, we define a monomial xλ ∈ k [x1, x2, x3, . . .] by

xλ = xλ1xλ2 · · ·xλ`(λ)
.

(This is well-defined, since λ1, λ2, . . . , λ`(λ) are positive integers whenever λ ∈ Par.)
If λ is a partition and i is a positive integer, then mi (λ) shall denote the multiplicity of i in λ (that is,

the number of parts of λ equal to i).
Let WC denote the set of all weak compositions.

566Proof. Let i ∈ {1, 2, . . . , k}. Thus, Oi is an orbit of G on X. In other words, Oi = Gy for some y ∈ X. Consider this y.

The elements gy for g ∈ G are all distinct (because if gy = hy for two elements g, h ∈ G, then we must have g = h (because
G acts freely on X)). Thus, the number of these elements is precisely |G|. In other words, |{gy | g ∈ G}| = |G|. In view of

{gy | g ∈ G} = Gy = Oi, this rewrites as |Oi| = |G|. Qed.
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Every partition λ can be uniquely written in the form λ = (1m12m23m3 · · · ) for some weak composition
(m1,m2,m3, . . .). Thus, the map

part : WC→ Par,

(m1,m2,m3, . . .) 7→ (1m12m23m3 · · · )

is a bijection. The inverse of this bijection is the map

mults : Par→WC,

λ 7→ (m1 (λ) ,m2 (λ) ,m3 (λ) , . . .) .

Thus, this map mults is a bijection, too (since it is the inverse of a bijection).
It is easy to see that

(13.47.2) xλ = xmults(λ) for any λ ∈ Par

567. In other words, (xλ)λ∈Par =
(
xmults(λ)

)
λ∈Par

.

The monomials in k [x1, x2, x3, . . .] have the form xα for α ∈WC. It is well-known that these monomials
form a basis of the k-module k [x1, x2, x3, . . .] (since any polynomial ring has a basis consisting of the
monomials). In other words, the family (xα)α∈WC is a basis of the k-module k [x1, x2, x3, . . .]. The family(
xmults(λ)

)
λ∈Par

is a reindexing of this basis (xα)α∈WC (since mults : Par → WC is a bijection), and thus

must also be a basis of the k-module k [x1, x2, x3, . . .] (since a reindexing of a basis of a k-module is always
a basis itself). In view of (xλ)λ∈Par =

(
xmults(λ)

)
λ∈Par

, we can rewrite this as follows: The family (xλ)λ∈Par

is a basis of the k-module k [x1, x2, x3, . . .]. Hence, this family (xλ)λ∈Par is k-linearly independent and spans
the k-module k [x1, x2, x3, . . .].

Let us now step to the solution of Exercise 2.2.14:
(a) Let us use the following notation: If U is any k-module, and if (ui)i∈I is any family of elements of U ,

then 〈ui | i ∈ I〉k shall denote the k-submodule of U spanned by this family (ui)i∈I .
We know that the family (xλ)λ∈Par spans the k-module k [x1, x2, x3, . . .]. In other words,

k [x1, x2, x3, . . .] = 〈xλ | λ ∈ Par〉k .

567Proof of (13.47.2): Let λ ∈ Par. Then, λp is a positive integer for each p ∈ {1, 2, . . . , ` (λ)}.
We have λ =

(
λ1, λ2, . . . , λ`(λ)

)
, and the entries λ1, λ2, . . . , λ`(λ) of λ are positive integers, whereas each integer p > ` (λ)

satisfies λp = 0. Thus, the parts of λ are λ1, λ2, . . . , λ`(λ) (since a part of a partition means a nonzero entry of the partition).

For each i ∈ {1, 2, 3, . . .}, we have

mi (λ) = (the multiplicity of i in λ) (by the definition of mi (λ))

= (the number of parts of λ equal to i)

= (the number of p ∈ {1, 2, . . . , ` (λ)} satisfying λp = i)

(since the parts of λ are λ1, λ2, . . . , λ`(λ)). Hence, for each i ∈ {1, 2, 3, . . .}, we have

(13.47.3) (the number of p ∈ {1, 2, . . . , ` (λ)} satisfying λp = i) = mi (λ) .

The definition of mults yields mults (λ) = (m1 (λ) ,m2 (λ) ,m3 (λ) , . . .). Thus, the definition of xmults(λ) yields

(13.47.4) xmults(λ) = x
m1(λ)
1 x

m2(λ)
2 x

m3(λ)
3 · · · =

∞∏
i=1

x
mi(λ)
i .

But the definition of xλ yields

xλ = xλ1
xλ2
· · ·xλ`(λ)

=
∏

p∈{1,2,...,`(λ)}
xλp =

∞∏
i=1

∏
p∈{1,2,...,`(λ)};

λp=i

xλp

(here, we have split the product according to the value of λp, since λp is a positive integer for each p ∈ {1, 2, . . . , ` (λ)}). Hence,

xλ =

∞∏
i=1

∏
p∈{1,2,...,`(λ)};

λp=i

xλp︸︷︷︸
=xi

(since λp=i)

=

∞∏
i=1

∏
p∈{1,2,...,`(λ)};

λp=i

xi

︸ ︷︷ ︸
=x

(the number of p∈{1,2,...,`(λ)} satisfying λp=i)
i =x

mi(λ)
i

(by (13.47.3))

=

∞∏
i=1

x
mi(λ)
i .

Comparing this with (13.47.4), we obtain xλ = xmults(λ). This proves (13.47.2).



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 515

We have

(13.47.5) f (xλ) = vλ for any λ ∈ Par

568.
But A is commutative; hence,

(the k-subalgebra of A generated by v1, v2, v3, . . .)

=

P (v1, v2, v3, . . .)︸ ︷︷ ︸
=f(P )

(by (13.47.1))

| P ∈ k [x1, x2, x3, . . .]


= {f (P ) | P ∈ k [x1, x2, x3, . . .]} = f

k [x1, x2, x3, . . .]︸ ︷︷ ︸
=〈xλ | λ∈Par〉k


= f (〈xλ | λ ∈ Par〉k) =

〈
f (xλ)︸ ︷︷ ︸

=vλ
(by (13.47.5))

| λ ∈ Par

〉
k

(since the map f is k-linear)

= 〈vλ | λ ∈ Par〉k =
(
the k-submodule of A spanned by the family (vλ)λ∈Par

)
.

This solves Exercise 2.2.14(a).
(b) We have the following chain of logical equivalences:

(the elements v1, v2, v3, . . . generate the k-algebra A)

⇐⇒ (the k-subalgebra of A generated by v1, v2, v3, . . . is A)

⇐⇒
(
the k-submodule of A spanned by the family (vλ)λ∈Par is A

) since Exercise 2.2.14(a) shows that
the k-subalgebra of A generated by v1, v2, v3, . . .

is the k-submodule of A spanned by the family (vλ)λ∈Par


⇐⇒

(
the family (vλ)λ∈Par spans the k-module A

)
.

This solves Exercise 2.2.14(b).
(c) We shall prove the “=⇒” and the “⇐=” directions of Exercise 2.2.14(c) separately:
=⇒: Assume that the elements v1, v2, v3, . . . are algebraically independent over k. We must show that the

family (vλ)λ∈Par is k-linearly independent.

Let (aλ)λ∈Par ∈ kPar be a family of scalars such that (all but finitely many λ ∈ Par satisfy aλ = 0) and∑
λ∈Par aλvλ = 0. We shall show that (aλ)λ∈Par = (0)λ∈Par.

568Proof of (13.47.5): Let λ ∈ Par. Then, the definition of xλ yields xλ = xλ1
xλ2
· · ·xλ`(λ)

. Applying the map f to both

sides of this equality, we obtain

f (xλ) = f
(
xλ1

xλ2
· · ·xλ`(λ)

)
= f

(
xλ1

)
f
(
xλ2

)
· · · f

(
xλ`(λ)

)
(since f is a k-algebra homomorphism)

=

`(λ)∏
i=1

f
(
xλi
)︸ ︷︷ ︸

=vλi
(by the definition of f)

=

`(λ)∏
i=1

vλi = vλ1
vλ2
· · · vλ`(λ)

.

Comparing this with

vλ = vλ1
vλ2
· · · vλ`(λ)

(by the definition of vλ) ,

we obtain f (xλ) = vλ. This proves (13.47.5).
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Define a polynomial P ∈ k [x1, x2, x3, . . .] by P =
∑
λ∈Par aλxλ. Then,

f

 P︸︷︷︸
=
∑
λ∈Par aλxλ

 = f

( ∑
λ∈Par

aλxλ

)
=
∑
λ∈Par

aλ f (xλ)︸ ︷︷ ︸
=vλ

(by (13.47.5))

(since the map f is k-linear)

=
∑
λ∈Par

aλvλ = 0.

Comparing this with (13.47.1), we obtain P (v1, v2, v3, . . .) = 0. This entails P = 0, because the el-
ements v1, v2, v3, . . . are algebraically independent. Comparing this with P =

∑
λ∈Par aλxλ, we obtain∑

λ∈Par aλxλ = 0. But since the family (xλ)λ∈Par is k-linearly independent, this entails that (aλ)λ∈Par =
(0)λ∈Par.

Forget that we fixed (aλ)λ∈Par. We thus have proved that if (aλ)λ∈Par ∈ kPar is a family of scalars such
that (all but finitely many λ ∈ Par satisfy aλ = 0) and

∑
λ∈Par aλvλ = 0, then (aλ)λ∈Par = (0)λ∈Par. In

other words, the family (vλ)λ∈Par is k-linearly independent. This proves the “=⇒” direction of Exercise
2.2.14(c).
⇐=: Assume that the family (vλ)λ∈Par is k-linearly independent. We shall show that the elements

v1, v2, v3, . . . are algebraically independent over k.
Indeed, let P ∈ k [x1, x2, x3, . . .] be a polynomial that satisfies P (v1, v2, v3, . . .) = 0. We shall show that

P = 0.
Recall that the family (xλ)λ∈Par spans the k-module k [x1, x2, x3, . . .]. Hence, we can write the polynomial

P ∈ k [x1, x2, x3, . . .] as a k-linear combination of this family. In other words, there exists a family (aλ)λ∈Par ∈
kPar of scalars such that (all but finitely many λ ∈ Par satisfy aλ = 0) and P =

∑
λ∈Par aλxλ. Consider this

(aλ)λ∈Par.
Applying the map f to both sides of the equality P =

∑
λ∈Par aλxλ, we obtain

f (P ) = f

( ∑
λ∈Par

aλxλ

)
=
∑
λ∈Par

aλ f (xλ)︸ ︷︷ ︸
=vλ

(by (13.47.5))

(since the map f is k-linear)

=
∑
λ∈Par

aλvλ.

But (13.47.1) yields
f (P ) = P (v1, v2, v3, . . .) = 0.

Comparing these two equalities, we obtain
∑
λ∈Par aλvλ = 0. This entails that (aλ)λ∈Par = (0)λ∈Par (since

the family (vλ)λ∈Par is k-linearly independent). In other words, aλ = 0 for each λ ∈ Par. Hence, P =∑
λ∈Par aλ︸︷︷︸

=0

xλ =
∑
λ∈Par 0xλ = 0.

Now, forget that we fixed P . We thus have showed that every polynomial P ∈ k [x1, x2, x3, . . .] satisfying
P (v1, v2, v3, . . .) = 0 must satisfy P = 0. In other words, the elements v1, v2, v3, . . . are algebraically
independent over k. This proves the “⇐=” direction of Exercise 2.2.14(c).

Thus, both “=⇒” and “⇐=” directions of Exercise 2.2.14(c) are solved.

13.48. Solution to Exercise 2.2.15. Solution to Exercise 2.2.15. Before we start solving the exercise, let
us recall our notion of a “monomial”. For us, a pure monomial is (formally speaking) just a symbol xα

indexed by a weak composition α. (Thus, pure monomials are combinatorial objects; in particular, they
have nothing to do with the ground ring k 569, and do not “come with coefficients”.)

We let Mon be the set of all pure monomials. We define the product of two pure monomials xα and xβ by
xαxβ = xα+β , where α+β denotes the entrywise sum of the two weak compositions α and β (in other words,
if α = (α1, α2, α3, . . .) and β = (β1, β2, β3, . . .), then α + β = (α1 + β1, α2 + β2, α3 + β3, . . .)). This notion

569In particular, the pure monomials xα for different weak compositions α are distinct, although their images in the

polynomial ring k [x] are equal when k = 0.
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of product makes the set Mon of all pure monomials into a monoid. The neutral element of this monoid
Mon is the pure monomial x(0,0,0,...), which we denote by 1. Whenever i is a positive integer, we write xi

for the pure monomial xti , where ti is the weak composition (δ1,i, δ2,i, δ3,i, . . .) =

0, 0, . . . , 0︸ ︷︷ ︸
i−1 zeroes

, 1, 0, 0, 0, . . .

.

This notation allows us to rewrite any pure monomial xα in the form xα1
1 xα2

2 xα3
3 · · · =

∏
i≥1 x

αi
i , where α is

written in the form α = (α1, α2, α3, . . .).
So far we have only discussed pure monomials, but not the actual monomials we encounter in polynomial

rings or rings of power series. In practice, however, most authors (including us) identify pure monomials
with actual monomials. Let us now introduce this identification.

For each weak composition α, we identify the pure monomial xα ∈ Mon with the monomial xα in the
polynomial ring k [x]. This identification is mostly harmless, because the map

Mon→ k [x] ,

xα 7→ xα

is a monoid homomorphism (from Mon to the multiplicative monoid of k [x]). 570 Using this injectivity,
we thus can consider every monomial xα ∈ Mon as an element of k [x], and thus also as an element of k [[x]].
Whenever we write sums of monomials (such as xα + xβ or

∑
m∈Mon m), we always mean these sums to be

computed in k [x] or k [[x]].
For any pure monomial xα, we let deg (xα) denote the nonnegative integer α1 +α2 +α3 + · · · . This integer

is called the degree of the monomial xα.
Now, we notice that every pure monomial m ∈ Mon can be uniquely represented in the form xα for a

weak composition α. Hence, we can substitute xα for m in the sum
∑

m∈Mon mt
deg m. We thus obtain∑

m∈Mon

mtdeg m =
∑

α is a weak
composition

xαtdeg(xα) =
∑

(α1,α2,α3,...) is a weak
composition

x(α1,α2,α3,...)︸ ︷︷ ︸
=
∏
i≥1 x

αi
i

tdeg(x(α1,α2,α3,...))︸ ︷︷ ︸
=tα1+α2+α3+···

(since deg(x(α1,α2,α3,...))=α1+α2+α3+···)

(here, we renamed the summation index α as (α1, α2, α3, . . .))

=
∑

(α1,α2,α3,...) is a weak
composition

∏
i≥1

xαii

 tα1+α2+α3+···︸ ︷︷ ︸
=t

∑
i≥1 αi=

∏
i≥1 t

αi

=
∑

(α1,α2,α3,...) is a weak
composition

∏
i≥1

xαii

∏
i≥1

tαi


︸ ︷︷ ︸

=
∏
i≥1(x

αi
i tαi)

=
∑

(α1,α2,α3,...) is a weak
composition

∏
i≥1

(xαii t
αi)︸ ︷︷ ︸

=(xit)
αi

=
∑

(α1,α2,α3,...) is a weak
composition

∏
i≥1

(xit)
αi

=
∑

(k1,k2,k3,...) is a weak
composition

∏
i≥1

(xit)
ki

(here, we renamed the summation index (α1, α2, α3, . . .) as (k1, k2, k3, . . .)). Compared with

∞∏
i=1︸︷︷︸

=
∏
i≥1

(1− xit)−1︸ ︷︷ ︸
=
∑
k∈N(xit)

k

(by the formula for the
geometric series)

=
∏
i≥1

∑
k∈N

(xit)
k

=
∑

(k1,k2,k3,...) is a weak
composition

∏
i≥1

(xit)
ki

(by the product rule) ,

this yields

(13.48.1)
∑

m∈Mon

mtdeg m =

∞∏
i=1

(1− xit)−1
.

570Also, this map is injective unless k = 0. However, we do not need the injectivity of this map, because we will not derive

any equalities between pure monomials from equalities between monomials in k [x].
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On the other hand, every pure monomial m ∈ Mon can be uniquely represented in the form xi1xi2 · · ·xin
for some n ∈ N and some weakly increasing n-tuple (i1, i2, . . . , in) of positive integers.571 Hence, we can
substitute xi1xi2 · · ·xin for m in the sum

∑
m∈Mon mt

deg m. We thus obtain

∑
m∈Mon

mtdeg m =
∑
n∈N

∑
(i1,i2,...,in) is a

weakly increasing
n-tuple of positive integers︸ ︷︷ ︸

=
∑
i1≤i2≤···≤in

(xi1xi2 · · ·xin) tdeg(xi1xi2 ···xin)︸ ︷︷ ︸
=tn

(since deg(xi1xi2 ···xin)=n)

=
∑
n∈N

∑
i1≤i2≤···≤in

(xi1xi2 · · ·xin) tn =
∑
n∈N

 ∑
i1≤i2≤···≤in

xi1xi2 · · ·xin


︸ ︷︷ ︸

=hn
(since (2.2.3) yields

hn=
∑
i1≤i2≤···≤in

xi1xi2 ···xin )

tn

=
∑
n∈N

hn︸︷︷︸
=hn(x)

tn =
∑
n≥0

hn (x) tn = h0 (x)︸ ︷︷ ︸
=h0=1

+h1 (x) t+ h2 (x) t2 + · · ·

= 1 + h1 (x) t+ h2 (x) t2 + · · · .

Compared with (13.48.1), this yields

∞∏
i=1

(1− xit)−1
= 1 + h1 (x) t+ h2 (x) t2 + · · · =

∑
n≥0

hn (x) tn.

Thus, the first of the two identities that we need to prove is proven.
Next, let us define the notion of a squarefree monomial. Indeed, let us say that a pure monomial xα ∈ Mon

is squarefree if and only if every entry of the weak composition α belongs to {0, 1}. Thus, of course, every
squarefree monomial m ∈ Mon can be uniquely represented in the form xα for a weak composition α whose
every entry belongs to {0, 1}. Hence, we can substitute xα for m in the sum

∑
m∈Mon;

m is squarefree

mtdeg m. We thus

571Indeed, this n-tuple (i1, i2, . . . , in) can be found by writing m as a product of xj ’s, and sorting those xj ’s in weakly

increasing order.
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obtain ∑
m∈Mon;

m is squarefree

mtdeg m

=
∑

α is a weak
composition;

every entry of α
belongs to {0,1}︸ ︷︷ ︸

=
∑

α∈{0,1}∞ is a weak
composition

(because if α is a weak
composition, then the statement

(every entry of α belongs to {0,1})
is equivalent to (α∈{0,1}∞))

xαtdeg(xα) =
∑

α∈{0,1}∞ is a weak
composition

xαtdeg(xα)

=
∑

(α1,α2,α3,...)∈{0,1}∞ is a
weak composition

x(α1,α2,α3,...)︸ ︷︷ ︸
=
∏
i≥1 x

αi
i

tdeg(x(α1,α2,α3,...))︸ ︷︷ ︸
=tα1+α2+α3+···

(since deg(x(α1,α2,α3,...))=α1+α2+α3+···)

(here, we renamed the summation index α as (α1, α2, α3, . . .))

=
∑

(α1,α2,α3,...)∈{0,1}∞ is a
weak composition

∏
i≥1

xαii

 tα1+α2+α3+···︸ ︷︷ ︸
=t

∑
i≥1 αi=

∏
i≥1 t

αi

=
∑

(α1,α2,α3,...)∈{0,1}∞ is a
weak composition

∏
i≥1

xαii

∏
i≥1

tαi


︸ ︷︷ ︸

=
∏
i≥1(x

αi
i tαi)

=
∑

(α1,α2,α3,...)∈{0,1}∞ is a
weak composition

∏
i≥1

(xαii t
αi)︸ ︷︷ ︸

=(xit)
αi

=
∑

(α1,α2,α3,...)∈{0,1}∞ is a
weak composition

∏
i≥1

(xit)
αi

=
∑

(k1,k2,k3,...)∈{0,1}∞ is a
weak composition

∏
i≥1

(xit)
ki

(here, we renamed the summation index (α1, α2, α3, . . .) as (k1, k2, k3, . . .)). Compared with

∞∏
i=1︸︷︷︸

=
∏
i≥1

(1 + xit)︸ ︷︷ ︸
=
∑
k∈{0,1}(xit)

k

(since
∑
k∈{0,1}(xit)

k

=(xit)
0+(xit)

1=1+xit

(since (xit)
0=1 and (xit)

1=xit))

=
∏
i≥1

∑
k∈{0,1}

(xit)
k

=
∑

(k1,k2,k3,...)∈{0,1}∞ is a
weak composition

∏
i≥1

(xit)
ki

(by the product rule) ,

this yields

(13.48.2)
∑

m∈Mon;
m is squarefree

mtdeg m =

∞∏
i=1

(1 + xit) .

On the other hand, every squarefree monomial m ∈ Mon can be uniquely represented in the form
xi1xi2 · · ·xin for some n ∈ N and some strictly increasing n-tuple (i1, i2, . . . , in) of positive integers.572

572Proof. This follows from the following observations:

• If m ∈ Mon is a squarefree monomial, then m can be represented in the form xi1xi2 · · ·xin for some n ∈ N and some
strictly increasing n-tuple (i1, i2, . . . , in) of positive integers. (Indeed, we know already that every pure monomial

m ∈ Mon can be uniquely represented in the form xi1xi2 · · ·xin for some n ∈ N and some weakly increasing n-tuple

(i1, i2, . . . , in) of positive integers. If m is squarefree, then this n-tuple (i1, i2, . . . , in) must consist of n distinct
integers (because otherwise, the product xi1xi2 · · ·xin would fail to be squarefree, which would contradict the fact

that xi1xi2 · · ·xin = m is squarefree), and therefore is strictly increasing (because it is weakly increasing). Hence,
every squarefree monomial m can be be represented in the form xi1xi2 · · ·xin for some n ∈ N and some strictly
increasing n-tuple (i1, i2, . . . , in) of positive integers.)
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Hence, we can substitute xi1xi2 · · ·xin for m in the sum
∑

m∈Mon;
m is squarefree

mtdeg m. We thus obtain

∑
m∈Mon;

m is squarefree

mtdeg m =
∑
n∈N

∑
(i1,i2,...,in) is a

strictly increasing
n-tuple of positive integers︸ ︷︷ ︸

=
∑
i1<i2<···<in

(xi1xi2 · · ·xin) tdeg(xi1xi2 ···xin)︸ ︷︷ ︸
=tn

(since deg(xi1xi2 ···xin)=n)

=
∑
n∈N

∑
i1<i2<···<in

(xi1xi2 · · ·xin) tn =
∑
n∈N

( ∑
i1<i2<···<in

xi1xi2 · · ·xin

)
︸ ︷︷ ︸

=en
(since (2.2.2) yields

en=
∑
i1<i2<···<in

xi1xi2 ···xin )

tn

=
∑
n∈N

en︸︷︷︸
=en(x)

tn =
∑
n≥0

en (x) tn = e0 (x)︸ ︷︷ ︸
=e0=1

+e1 (x) t+ e2 (x) t2 + · · ·

= 1 + e1 (x) t+ e2 (x) t2 + · · · .
Compared with (13.48.2), this yields

∞∏
i=1

(1 + xit) = 1 + e1 (x) t+ e2 (x) t2 + · · · =
∑
n≥0

en (x) tn.

This completes the solution to Exercise 2.2.15.

13.49. Solution to Exercise 2.3.4. Solution to Exercise 2.3.4. (a) This is straightforward. If λ and µ
are two partitions such that µ ⊆ λ, and if L is any total order on the positive integers, then we say that
an assignment T of entries in {1, 2, 3, . . .} to the cells of the Ferrers diagram of λ/µ is an L-column-strict
tableau if it is weakly L-increasing left-to-right in rows, and strictly L-increasing top-to-bottom in columns.
(This definition of L-column-strict tableaux clearly extends the definition given in Remark 2.2.5 for tableaux
of shape λ.) Now, the analogue of Proposition 2.2.6 is the following statement:

Proposition 13.49.1. Let λ and µ be two partitions such that µ ⊆ λ. Then, for any total order L on the
positive integers,

sλ/µ =
∑
T

xcont(T )

as T runs through all L-column-strict tableaux of shape λ/µ.

The proof of Proposition 13.49.1 is completely analogous to the proof of Proposition 2.2.6.
(b) If α and β are two partitions such that β ⊆ α, then let Y (α/β) denote the skew Ferrers diagram α/β.

This is a finite set of cells in {1, 2, 3, ...}2.
We know that the skew Ferrers diagram λ′/µ′ can be obtained from the skew Ferrers diagram λ/µ by a

180◦ rotation. In other words, there exists a 180◦ rotation r such that r (Y (λ/µ)) = Y (λ′/µ′). Consider
this r.

Let L be the total order on the set of all positive integers which is defined by · · · <L 3 <L 2 <L 1 (in other
words, let L be the reverse of the usual total order on the set of all positive integers). Recall the definition

• If m ∈ Mon is a squarefree monomial, then the representation of m in the form xi1xi2 · · ·xin for some n ∈ N and some
strictly increasing n-tuple (i1, i2, . . . , in) of positive integers is unique. (Indeed, even if we only require (i1, i2, . . . , in)
to be weakly increasing rather than strictly increasing, then the representation is unique (because we know already

that every pure monomial m ∈ Mon can be uniquely represented in the form xi1xi2 · · ·xin for some n ∈ N and some

weakly increasing n-tuple (i1, i2, . . . , in) of positive integers).)
• Every product of the form xi1xi2 · · ·xin for some n ∈ N and some strictly increasing n-tuple (i1, i2, . . . , in) of positive

integers is a squarefree monomial. (This is obvious, because the elements i1, i2, . . . , in of a strictly increasing n-tuple
(i1, i2, . . . , in) are distinct.)
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of L-column-strict tableaux that we gave in the solution of part (a) of this exercise. According to this
definition, an L-column-strict tableau of shape λ′/µ′ is an assignment of entries in {1, 2, 3, . . .} to the cells
of the Ferrers diagram of λ′/µ′ which is weakly L-increasing left-to-right in rows, and strictly L-increasing
top-to-bottom in columns. Since “weakly L-increasing” is the same as “weakly decreasing” (because L is
the reverse of the usual total order on the set of all positive integers), and since “strictly L-increasing” is
the same as “strictly decreasing” (for the same reason), this rewrites as follows: An L-column-strict tableau
of shape λ′/µ′ is an assignment of entries in {1, 2, 3, . . .} to the cells of the Ferrers diagram of λ′/µ′ which is
weakly decreasing left-to-right in rows, and strictly decreasing top-to-bottom in columns. Hence, if T is an
L-column-strict tableau of shape λ′/µ′, then T ◦ r (this composition is well-defined573) is an assignment of
entries in {1, 2, 3, . . .} to the cells of the Ferrers diagram of λ/µ which is weakly decreasing right-to-left in
rows, and strictly decreasing bottom-to-top in columns574. In other words, if T is an L-column-strict tableau
of shape λ′/µ′, then T ◦ r is an assignment of entries in {1, 2, 3, . . .} to the cells of the Ferrers diagram of λ/µ
which is weakly increasing left-to-right in rows, and strictly increasing top-to-bottom in columns. In other
words, if T is an L-column-strict tableau of shape λ′/µ′, then T ◦ r is a column-strict tableau (in the usual
sense) of shape λ/µ. Hence, we have constructed a map

{L-column-strict tableaux of shape λ′/µ′} → {column-strict tableaux of shape λ/µ} ,

which sends every T to T ◦ r. This map is easily seen to be a bijection. Therefore, we can substitute T ◦ r
for T in the sum

∑
T is a column-strict
tableau of shape λ/µ

xcont(T ). We thus obtain

∑
T is a column-strict
tableau of shape λ/µ

xcont(T ) =
∑

T is an L-column-strict
tableau of shape λ′/µ′

xcont(T◦r)︸ ︷︷ ︸
=xcont(T )

(since the multiset of entries
of T◦r is the multiset

of entries of T )

=
∑

T is an L-column-strict
tableau of shape λ′/µ′

xcont(T ).(13.49.1)

But Proposition 13.49.1 (applied to λ′ and µ′ instead of λ and µ) yields

sλ′/µ′ =
∑
T

xcont(T )

as T runs through all L-column-strict tableaux of shape λ′/µ′. In other words,

(13.49.2) sλ′/µ′ =
∑

T is an L-column-strict
tableau of shape λ′/µ′

xcont(T ) =
∑

T is a column-strict
tableau of shape λ/µ

xcont(T )

(by (13.49.1)).
But the definition of sλ/µ yields sλ/µ =

∑
T xcont(T ), where the sum ranges over all column-strict tableaux

T of shape λ/µ. In other words,

sλ/µ =
∑

T is a column-strict
tableau of shape λ/µ

xcont(T ).

Compared with (13.49.2), this yields sλ/µ = sλ′/µ′ . This solves part (b) of the exercise.

573because T is an assignment of entries in {1, 2, 3, . . .} to the cells of the Ferrers diagram of λ′/µ′, that is, a map Y (λ′/µ′)→
{1, 2, 3, . . .}, whereas r is a map sending Y (λ/µ) to Y (λ′/µ′)

574because r is a 180◦ rotation, and thus interchanges “left-to-right” with “right-to-left” and interchanges “top-to-bottom”

with “bottom-to-top”
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13.50. Solution to Exercise 2.3.5. Solution to Exercise 2.3.5. If ϕ and ψ are two partitions such that
ψ ⊆ ϕ, then let Y (ϕ/ψ) denote the skew Ferrers diagram ϕ/ψ (this is a subset of {1, 2, 3, ...}2).

Whenever Z is a subset of Z2, we define a column-strict Z-tableau to be an assignment of entries in
{1, 2, 3, ...} to the elements of Z which is weakly increasing left-to-right in rows and strictly increasing top-
to-bottom in columns. It is clear that if ϕ and ψ are two partitions such that ψ ⊆ ϕ, then a column-strict
tableau of shape ϕ/ψ is the same as a column-strict Y (ϕ/ψ)-tableau. We define the notation cont (T ) (and
therefore, xcont(T )) for a column-strict Z-tableau T in the same way as it is defined for a column-strict
tableau of shape λ/µ (for some partitions λ and µ).

The following is now more or less obvious:

Lemma 13.50.1. Let ϕ and ψ be two partitions such that ψ ⊆ ϕ. Let Z be a subset of Z2. Assume that
the skew Ferrers diagram ϕ/ψ can be obtained from Z by parallel translation. Then,

sϕ/ψ =
∑

T is a column-strict
Z-tableau

xcont(T ).

Proof of Lemma 13.50.1. Let R be the parallel translation which sends the set Z to Y (ϕ/ψ).
The definition of sϕ/ψ yields sϕ/ψ =

∑
T is a column-strict

tableau of shape ϕ/ψ

xcont(T ). It remains to prove that the right hand

side of this equality equals
∑

T is a column-strict
Z-tableau

xcont(T ). To achieve this, it is clearly enough to find a bijection

Γ : (the set of all column-strict tableaux of shape ϕ/ψ)→ (the set of all column-strict Z-tableaux)

which satisfies

(
xcont(Γ(T )) = xcont(T ) for every column-strict tableau T of shape ϕ/ψ

)
.

But this is very easy: The bijection Γ sends every column-strict tableau T of shape ϕ/ψ to the column-
strict Z-tableau T ◦R. (The notation T ◦R makes sense because T , being a column-strict tableau of shape
ϕ/ψ, is an assignment of entries in {1, 2, 3, ...} to the cells of the skew Ferrers diagram ϕ/ψ, that is, a map
Y (ϕ/ψ) → {1, 2, 3, ...}. Visually speaking, T ◦ R is the result of moving the tableau T so that it takes up
the cells of Z rather than the cells of ϕ/ψ.) Lemma 13.50.1 is proven. �

Now, let us return to the solution of the exercise. Clearly, the subsets Frows≤k and Frows>k of F are
disjoint, and their union is F .

Lemma 13.50.1 (applied to α, β and Frows≤k instead of ϕ, ψ and Z) yields

(13.50.1) sα/β =
∑

T is a column-strict
Frows≤k-tableau

xcont(T ) =
∑

P is a column-strict
Frows≤k-tableau

xcont(P )

(here, we renamed the summation index T as P ). Also, Lemma 13.50.1 (applied to γ, δ and Frows>k instead
of ϕ, ψ and Z) yields

(13.50.2) sγ/δ =
∑

T is a column-strict
Frows>k-tableau

xcont(T ) =
∑

Q is a column-strict
Frows>k-tableau

xcont(Q)
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(here, we renamed the summation index T as Q). Multiplying the identities (13.50.1) and (13.50.2), we
obtain

sα/βsγ/δ =

 ∑
P is a column-strict
Frows≤k-tableau

xcont(P )


 ∑
Q is a column-strict
Frows>k-tableau

xcont(Q)


=

∑
P is a column-strict
Frows≤k-tableau

∑
Q is a column-strict
Frows>k-tableau

xcont(P )xcont(Q)

=
∑

(P,Q)∈
(the set of all column-strict Frows≤k-tableaux)
×(the set of all column-strict Frows>k-tableaux)

xcont(P )xcont(Q).(13.50.3)

On the other hand, the definition of sλ/µ yields

(13.50.4) sλ/µ =
∑

T is a column-strict
tableau of shape λ/µ

xcont(T ).

Our goal is to prove that the left-hand side of (13.50.4) equals the left-hand side of (13.50.3). For this, it is
clearly enough to show that the right-hand side of (13.50.4) equals the right-hand side of (13.50.3). But to
achieve this, it clearly suffices to exhibit a bijection

Φ : (the set of all column-strict tableaux of shape λ/µ)

→ (the set of all column-strict Frows≤k-tableaux)× (the set of all column-strict Frows>k-tableaux)

which has the property that
(13.50.5)

if (P,Q) = Φ (T ) for some column-strict tableau T of shape λ/µ, then xcont(P )xcont(Q) = xcont(T ).

We claim that such a bijection Φ can be defined by

(13.50.6)
(
Φ (T ) =

(
T |Frows≤k , T |Frows>k

)
for every column-strict tableau T of shape λ/µ

)
.

Indeed, it is clear that we can define a map

Φ : (the set of all column-strict tableaux of shape λ/µ)

→ (the set of all column-strict Frows≤k-tableaux)× (the set of all column-strict Frows>k-tableaux)

by (13.50.6), and that this map Φ satisfies (13.50.5). All that remains to be proven is that this map Φ is a
bijection. It is clear that Φ is injective, so we only need to prove that Φ is surjective.

Let (P,Q) ∈ (the set of all column-strict Frows≤k-tableaux)×(the set of all column-strict Frows>k-tableaux)
be arbitrary. We are going to prove that (P,Q) lies in the image of Φ.

Define a map T : F → {1, 2, 3, ...} by setting(
T (p) =

{
P (p) , if p ∈ Frows≤k;

Q (p) , if p ∈ Frows>k

for all p ∈ F

)
.

This map T is clearly well-defined (since the subsets Frows≤k and Frows>k of F are disjoint, and their union
is F ), and thus is an assignment of entries in {1, 2, 3, ...} to the cells of the skew Ferrers diagram λ/µ (since
F is the set of those cells). It furthermore satisfies T |Frows≤k= P and T |Frows>k

= Q. We shall now show
that this assignment T is a column-strict tableau of shape λ/µ.

This rests on the following observation:

Assertion A: Let c and d be two cells lying in F . Assume that the cells c and d either lie in
one and the same row, or lie in one and the same column. Then, either both c and d belong
to Frows≤k, or both c and d belong to Frows>k.



524 DARIJ GRINBERG AND VICTOR REINER

Assertion A is an easy consequence of our assumption that µk ≥ λk+1. 575 Now, we want to prove
that T is a column-strict tableau of shape λ/µ. To do so, we need to check that T is weakly increasing
left-to-right in rows, and strictly increasing top-to-bottom in columns. We will only prove the latter part
of this statement, as the former part is proven analogously. So we are going to show that T is strictly
increasing top-to-bottom in columns. In other words, we are going to show that if c and d are two cells of
λ/µ lying in one and the same column, with d lying strictly further south than c, then T (c) < T (d). Indeed,
consider two such cells c and d. Assertion A shows that either both c and d belong to Frows≤k, or both c
and d belong to Frows>k. Let us WLOG assume that we are in the first of these two cases (the other case
is exactly analogous). Then, both c and d belong to Frows≤k, so that we have T (c) =

(
T |Frows≤k

)
(c) and

T (d) =
(
T |Frows≤k

)
(d). Since T |Frows≤k= P , these two equalities rewrite as T (c) = P (c) and T (d) = P (d).

But since P is strictly increasing top-to-bottom in columns (because P is a column-strict tableau), we have
P (c) < P (d), and thus T (c) = P (c) < P (d) = T (d). Thus, we have proven that T (c) < T (d). This
completes the proof that T is a column-strict tableau of shape λ/µ. Hence, Φ (T ) is well-defined, and the

definition of Φ (T ) shows that Φ (T ) =

T |Frows≤k︸ ︷︷ ︸
=P

, T |Frows>k︸ ︷︷ ︸
=Q

 = (P,Q). Thus, (P,Q) lies in the image of

Φ.
Now, let us forget that we fixed (P,Q). We thus have shown that every

(P,Q) ∈ (the set of all column-strict Frows≤k-tableaux)× (the set of all column-strict Frows>k-tableaux) lies
in the image of Φ. In other words, the map Φ is surjective, which (as we know that Φ is injective) yields
that Φ is a bijection. As explained above, this completes the solution of Exercise 2.3.5.

13.51. Solution to Exercise 2.3.7. Solution to Exercise 2.3.7. As usual, let T denote the twist map
Λ ⊗ Λ → Λ ⊗ Λ (that is, the k-linear map sending every c ⊗ d ∈ Λ ⊗ Λ to d ⊗ c). By the definition of
“cocommutative”, we know that the Hopf algebra Λ is cocommutative if and only if the diagram

(13.51.1) Λ⊗ Λ
T // Λ⊗ Λ

Λ

∆

<<

∆

bb

commutes. Hence, in order to solve Exercise 2.3.7(a), it is enough to check that the diagram (13.51.1)
commutes.

The set {hn}n=1,2,... generates the k-algebra Λ (due to Proposition 2.4.1). In other words, the set
{h1, h2, h3, ...} is a generating set of the k-algebra Λ.

By the axioms of a bialgebra, the comultiplication ∆ of Λ is a k-algebra homomorphism (since Λ is a
bialgebra). Hence, T ◦∆ also is a k-algebra homomorphism (since T and ∆ are k-algebra homomorphisms).

575Proof of Assertion A: Assume the contrary. Then, one of the cells c and d belongs to Frows≤k, whereas the other belongs
to Frows>k. We WLOG assume that c belongs to Frows≤k, whereas d belongs to Frows>k (since otherwise, we can simply switch

c with d).

Write the cell c in the form (a, b), so that c lies in row a and column b. Write the cell d in the form (a′, b′), so that d lies in
row a′ and column b′.

We have (a, b) = c ∈ Frows≤k, so that a ≤ k (by the definition of Frows≤k). We have (a′, b′) = d ∈ Frows>k, so that a′ > k

(by the definition of Frows>k).
We have a ≤ k < a′ (since a′ > k), hence a 6= a′. Thus, the cells c and d lie in different rows (since the cell c lies in row a,

whereas the cell d lies in row a′). As a consequence, the cells c and d must lie in one and the same column (since we assumed

that the cells c and d either lie in one and the same row, or lie in one and the same column). In other words, b = b′ (since the
cell c lies in column b, while the cell d lies in column b′).

Now, (a, b) = c ∈ F = Y (λ/µ). By the definition of Y (λ/µ), this shows that µa < b ≤ λa. Similarly, µa′ < b′ ≤ λa′ .
We have a′ > k, hence a′ ≥ k + 1 (since a′ and k are integers), thus k + 1 ≤ a′.
Since µ is a partition, we have µ1 ≥ µ2 ≥ µ3 ≥ .... Hence, µa ≥ µk (since a ≤ k). Thus, µa ≥ µk ≥ λk+1.

Since λ is a partition, we have λ1 ≥ λ2 ≥ λ3 ≥ .... Thus, λk+1 ≥ λa′ (since k + 1 ≤ a′). Thus, µa ≥ λk+1 ≥ λa′ , so that

λa′ ≤ µa and thus b′ ≤ λa′ ≤ µa < b = b′, which is absurd. This contradiction proves that our assumption was wrong, and
thus Assertion A is proven.
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Every positive integer n satisfies

(T ◦∆) (hn) = T

 ∆hn︸︷︷︸
=
∑
i+j=n hi⊗hj

(by Proposition 2.3.6(iii))


(

here, we are using the notation
∑
i+j=n hi ⊗ hj

in the same way as explained in Proposition 2.3.6

)

= T

 ∑
i+j=n

hi ⊗ hj

 =
∑
i+j=n

hj ⊗ hi (by the definition of the twist map T )

=
∑
j+i=n︸ ︷︷ ︸

=
∑
i+j=n

hi ⊗ hj (here, we renamed the summation index (i, j) as (j, i))

=
∑
i+j=n

hi ⊗ hj = ∆hn (by Proposition 2.3.6(iii))

= ∆ (hn) .

In other words, for every positive integer n, the two maps T ◦ ∆ and ∆ are equal to each other on the
element hn. In other words, the two maps T ◦∆ and ∆ are equal to each other on the set {h1, h2, h3, ...}.
Hence, the two maps T ◦∆ and ∆ are equal to each other on a generating set of the k-algebra Λ (since the
set {h1, h2, h3, ...} is a generating set of the k-algebra Λ). Since these two maps T ◦∆ and ∆ are k-algebra
homomorphisms, this shows that the two maps T ◦ ∆ and ∆ must be identical (because if two k-algebra
homomorphisms with the same domain and the same target are equal to each other on a generating set of
their domain, then these two homomorphisms must be identical). In other words, T ◦∆ = ∆. Hence, the
diagram (13.51.1) commutes. As we know, this shows that the Hopf algebra Λ is cocommutative. This solves
Exercise 2.3.7(a).

(b) Let λ and ν be two partitions. We have shown above that T ◦∆ = ∆. Hence, ∆ = T ◦∆. Applying
both sides of this equality to sλ/ν , we obtain

∆sλ/ν = (T ◦∆)
(
sλ/ν

)
= T


∆sλ/ν︸ ︷︷ ︸

=
∑

µ∈Par:
ν⊆µ⊆λ

sµ/ν⊗sλ/µ

(by Proposition 2.3.6(v))


= T

 ∑
µ∈Par:
ν⊆µ⊆λ

sµ/ν ⊗ sλ/µ



=
∑
µ∈Par:
ν⊆µ⊆λ

sλ/µ ⊗ sµ/ν (by the definition of the twist map T ) .

This solves Exercise 2.3.7(b).

13.52. Solution to Exercise 2.3.8. Solution to Exercise 2.3.8. (a) Whenever α = (α1, α2, α3, ...) is a weak
composition satisfying (αi = 0 for every i > n), the monomial xα is a monomial in k [x1, x2, ..., xn]. This
will be often used in the following.

Recall that sλ/µ is defined as
∑

T is a column-strict
tableau of shape λ/µ

xcont(T ). Now, sλ/µ (x1, x2, . . . , xn) is the result of substi-

tuting x1, x2, ..., xn, 0, 0, 0, ... for x1, x2, x3, ... in sλ/µ. This substitution has the following effect on any given
monomial xα:
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• if none of the indeterminates xn+1, xn+2, xn+3, ... occur in this monomial xα, then the monomial xα

stays fixed;
• otherwise, the monomial xα goes to 0.

Hence, the effect of this substitution on the power series sλ/µ =
∑

T is a column-strict
tableau of shape λ/µ

xcont(T ) is that:

• every addend in the sum
∑

T is a column-strict
tableau of shape λ/µ

xcont(T ) for which none of the indeterminates xn+1, xn+2, xn+3, ...

occur in the monomial xcont(T ) stays fixed;
• all other addends go to 0.

The result of the substitution is therefore
∑

T is a column-strict
tableau of shape λ/µ;

none of the indeterminates xn+1,xn+2,xn+3,...

occur in the monomial xcont(T )

xcont(T ). We thus have

sλ/µ (x1, x2, . . . , xn) =
∑

T is a column-strict
tableau of shape λ/µ;

none of the indeterminates xn+1,xn+2,xn+3,...

occur in the monomial xcont(T )

xcont(T ).

But this rewrites as

sλ/µ (x1, x2, . . . , xn) =
∑

T is a column-strict
tableau of shape λ/µ;
all entries of T belong

to {1,2,...,n}

xcont(T )

(because for a column-strict tableau T , saying that none of the indeterminates xn+1, xn+2, xn+3, ... occur in
the monomial xcont(T ) is equivalent to saying that all entries of T belong to {1, 2, ..., n}). This solves Exercise
2.3.8(a).

(b) Let λ be a partition having more than n parts. We have to prove that sλ (x1, x2, . . . , xn) = 0. Since

sλ︸︷︷︸
=sλ/∅

(x1, x2, . . . , xn) = sλ/∅ (x1, x2, . . . , xn) =
∑

T is a column-strict
tableau of shape λ/∅;
all entries of T belong

to {1,2,...,n}

xcont(T )

(by Exercise 2.3.8(a), applied to µ = ∅), this goal will clearly be achieved if we can show that the sum∑
T is a column-strict

tableau of shape λ/∅;
all entries of T belong

to {1,2,...,n}

xcont(T ) is empty, i.e., that there exists no column-strict tableau T of shape λ/∅ such that

all entries of T belong to {1, 2, ..., n}.
Assume the contrary. Thus, there exists a column-strict tableau T of shape λ/∅ such that all entries of

T belong to {1, 2, ..., n}. This tableau has more than n rows (since the partition λ has more than n parts),
and thus the first column of this tableau must have more than n entries. These entries must be strictly
increasing top-to-bottom (since the entries of a column-strict tableau strictly increase top-to-bottom along
columns) and hence be distinct, but at the same time (like all entries of T ) they must belong to {1, 2, ..., n}.
So we have found more than n entries which are distinct and belong to {1, 2, ..., n}. This contradicts the
fact that the set {1, 2, ..., n} does not have more than n distinct elements. This contradiction concludes our
proof, and Exercise 2.3.8(b) is solved.

13.53. Solution to Exercise 2.4.4. Solution to Exercise 2.4.4.

Proof of Proposition 2.4.3. The map ω is precisely the k-algebra homomorphism ω defined in the proof of
Proposition 2.4.1. Thus, in particular, ω is a k-algebra homomorphism; hence, ω (1) = 1 and ω (0) = 0.

(a) Let n ∈ Z. We must prove that ω (en) = hn.
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If n is a positive integer, then this follows immediately from the definition of ω. Thus, for the rest of the
proof of ω (en) = hn, we can WLOG assume that n is not a positive integer. Assume this.

From e0 = 1, we obtain ω (e0) = ω (1) = 1 = h0 (since h0 = 1). Hence, ω (en) = hn holds for n = 0. Thus,
for the rest of the proof of ω (en) = hn, we can WLOG assume that we don’t have n = 0. Assume this.

Now, n is a negative integer (since n is not a positive integer, and since we don’t have n = 0). This yields

hn = 0 and en = 0. Now, ω

 en︸︷︷︸
=0

 = ω (0) = 0 = hn. This proves ω (en) = hn. This proves Proposition

2.4.3(a).
(b) The proof of Proposition 2.4.3(b) is completely analogous to the proof of Proposition 2.4.3(a) given

above, except that en and hn trade places (and that we need to use (2.4.9) instead of the definition of ω).
(d) In the proof of Proposition 2.4.1, we have shown that ω is an involution and a k-algebra automorphism

of Λ. This proves Proposition 2.4.3(d).
(e) Proposition 1.4.10 (applied to A = Λ) shows that the antipode S of Λ is a k-algebra anti-endomorphism.

In other words, S is a k-algebra anti-homomorphism from Λ to Λ. But Exercise 1.5.8(a) (applied to A = Λ
and B = Λ) shows that the k-algebra anti-homomorphisms from Λ to Λ are the same as the k-algebra
homomorphisms from Λ to Λ (since the k-algebra Λ is commutative). Hence, S is a k-algebra homomorphism
from Λ to Λ (since S is a k-algebra anti-homomorphism from Λ to Λ).

Recall that Λ is a graded k-bialgebra. Let q = −1 ∈ k. Consider the k-linear map Dq : Λ→ Λ constructed
in Exercise 1.3.24 (applied to A = Λ). From Exercise 1.3.24 (applied to A = Λ), we know that this map Dq

is a k-bialgebra homomorphism; thus, in particular, Dq is a k-algebra homomorphism. The definition of Dq

shows that

(13.53.1) Dq (a) = qna for each n ∈ N and each a ∈ Λn.

Now, the map ω ◦ Dq : Λ → Λ is a k-algebra homomorphism (since it is the composition of the two
k-algebra homomorphisms ω and Dq).

Let n be a positive integer. Then, ω (en) = hn (by the definition of ω). But en ∈ Λn; hence, (13.53.1)
(applied to a = en) yields Dq (en) = qnen = (−1)

n
en (since q = −1). Now,

(ω ◦Dq) (en) = ω

Dq (en)︸ ︷︷ ︸
=(−1)nen

 = ω ((−1)
n
en) = (−1)

n
ω (en)︸ ︷︷ ︸

=hn

(since the map ω is k-linear)

= (−1)
n
hn.

Comparing this with

S (en) = (−1)
n
hn (by Proposition 2.4.1(ii)) ,

we obtain (ω ◦Dq) (en) = S (en).
Now, forget that we fixed n. We thus have shown that (ω ◦Dq) (en) = S (en) for each positive integer n.

In other words, the two k-algebra homomorphisms ω ◦Dq and S (from Λ to Λ) agree on each element of the
family {en}n≥1 of elements of Λ.

But Proposition 2.4.1 tells us that the family {en}n≥1 generates the k-algebra Λ. Thus, if two k-algebra

homomorphisms from Λ agree on each element of this family {en}n≥1, then these two homomorphisms must

be equal. Hence, the two k-algebra homomorphisms ω ◦Dq and S must be equal (since they agree on each
element of this family {en}n≥1). In other words, we have ω ◦Dq = S.
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Now, let n ∈ N and let f ∈ Λn. We must show that S (f) = (−1)
n
ω (f). And indeed, we have

(ω ◦Dq)︸ ︷︷ ︸
=S

(f) = S (f), so that

S (f) = (ω ◦Dq) (f) = ω

 Dq (f)︸ ︷︷ ︸
=qnf

(by (13.53.1), applied to a=f)

 = ω (qnf)

= qnω (f) (since the map ω is k-linear)

= (−1)
n
ω (f) (since q = −1) .

This proves Proposition 2.4.3(e).
(c) Let n be a positive integer. Proposition 2.4.1(i) yields S (pn) = −pn. But (2.4.11) (applied to f = pn)

yields S (pn) = (−1)
n
ω (pn) (since pn ∈ Λn). Comparing these two equalities yields (−1)

n
ω (pn) = −pn,

and this quickly rewrites as ω (pn) = (−1)
n−1

pn. This proves Proposition 2.4.3(c).
(f) To show that ω is a coalgebra homomorphism, it suffices to check that (ω ⊗ ω) ◦ ∆ = ∆ ◦ ω and

ε = ε ◦ ω.
Let us first prove that (ω ⊗ ω) ◦∆ = ∆ ◦ω. Indeed, both sides of this equality being k-algebra homomor-

phisms, it only needs to be checked on the algebra generators hn of Λ (indeed, we know from Proposition 2.4.1
that the family {hn}n≥1 generates the k-algebra Λ). On these generators this is easy to check: Comparing

((ω ⊗ ω) ◦∆) (hn) = (ω ⊗ ω) (∆ (hn)) = (ω ⊗ ω)

 ∑
i+j=n

hi ⊗ hj

 (by Proposition 2.3.6(iii))

=
∑
i+j=n

ω (hi)︸ ︷︷ ︸
=ei

(by Proposition 2.4.3(b))

⊗ ω (hj)︸ ︷︷ ︸
=ej

(by Proposition 2.4.3(b))

=
∑
i+j=n

ei ⊗ ej

and

(∆ ◦ ω) (hn) = ∆

 ω (hn)︸ ︷︷ ︸
=en

(by Proposition 2.4.3(b))

 = ∆ (en) =
∑
i+j=n

ei ⊗ ej (by Proposition 2.3.6(ii))

shows that ((ω ⊗ ω) ◦∆) (hn) = (∆ ◦ ω) (hn) for all n ≥ 1. So we obtain (ω ⊗ ω) ◦∆ = ∆ ◦ ω. The equality
ε = ε ◦ω is even easier to check. Thus, ω is an algebra and coalgebra morphism, thus a bialgebra morphism,
thus a Hopf morphism by Corollary 1.4.27. Since ω is invertible (by part (d)), we conclude that ω is a Hopf
algebra automorphism. This proves Proposition 2.4.3(f).

(g) Part (g) of Proposition 2.4.3 can be proved in the same way as we proved part (f) above, with the
following three differences:

• We need to know that S is a k-algebra homomorphism. (This was shown during the proof of
Proposition 2.4.3(e) above.)

• We need to know that S is invertible. (This can be concluded from Corollary 1.4.12, or from the
fact that ω is invertible using Proposition 2.4.3(e).)

• Instead of the formula ω (hn) = en we now need to use the formula S (hn) = (−1)
n
en (which is

Proposition 2.4.1(iii)), and thus we incur some signs in the computation.

[Remark: Let us sketch alternative approaches to proving parts (f) and (g) of Proposition 2.4.3:
Alternative proof of Proposition 2.4.3(g) (sketched): We have already seen (during the proof of Proposition

2.4.3(e) above) that S is a k-algebra homomorphism. Corollary 1.4.12 (applied to S = Λ) yields that S is
an involution; thus, S is invertible. Moreover, the Hopf algebra Λ is cocommutative (by Exercise 2.3.7(a)).
But Exercise 1.4.28 (applied to A = Λ) yields that the antipode S of Λ is a k-coalgebra anti-endomorphism
of Λ. In other words, S is a k-coalgebra anti-homomorphism from Λ to Λ. But Exercise 1.5.8(b) (applied
to A = Λ and B = Λ) shows that the k-coalgebra anti-homomorphisms from Λ to Λ are the same as the
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k-coalgebra homomorphisms from Λ to Λ (since the k-coalgebra Λ is cocommutative). Hence, S is a k-
coalgebra homomorphism from Λ to Λ (since S is a k-coalgebra anti-homomorphism from Λ to Λ). We now
know that S is a k-algebra homomorphism and a k-coalgebra homomorphism at the same time. Hence, S
is a k-bialgebra homomorphism, therefore a Hopf morphism (by Corollary 1.4.27), and thus a Hopf algebra
automorphism (since S is invertible). This proves Proposition 2.4.3(g) again.

Alternative proof of Proposition 2.4.3(f) (sketched): Proposition 2.4.3(g) shows that S is a Hopf algebra
automorphism. Define q and Dq as in the proof of Proposition 2.4.3(e) above. It is easy to see that Dq

is an involution; thus, Dq is invertible. But Dq is a k-bialgebra homomorphism (as we have seen in the
proof of Proposition 2.4.3(e) above), therefore a Hopf morphism (by Corollary 1.4.27), and thus a Hopf
algebra automorphism (since Dq is invertible). Now, recall that ω ◦Dq = S (as we have seen in the proof

of Proposition 2.4.3(e) above). Hence, ω = S ◦ (Dq)
−1

(since Dq is invertible). This shows that ω is a Hopf
algebra automorphism (since both S and Dq are Hopf algebra automorphisms). This proves Proposition
2.4.3(f) again.]

(h) Let λ be a partition.
We can easily obtain (2.4.14) by multiplicativity:
[Proof of (2.4.14): Let ` be the length ` (λ) of the partition λ. Then, pλ is defined as pλ1

pλ2
· · · pλ` , and

thus we have

ω (pλ) = ω (pλ1pλ2 · · · pλ`) = ω (pλ1)ω (pλ2) · · ·ω (pλ`) (since ω is a k-algebra homomorphism)

= (−1)
λ1−1

pλ1 · (−1)
λ2−1

pλ2 · · · (−1)
λ`−1

pλ` (by Proposition 2.4.3(c))

= (−1)
(λ1+λ2+···+λ`)−`︸ ︷︷ ︸
=(−1)|λ|−`(λ)

(since λ1+λ2+···+λ`=|λ|
and `=`(λ))

pλ1pλ2 · · · pλ`︸ ︷︷ ︸
=pλ

= (−1)
|λ|−`(λ)

pλ.

This proves (2.4.14).]
A similar argument (but using Proposition 2.4.3(b) instead of Proposition 2.4.3(c)) proves (2.4.12). Fi-

nally, a similar argument (but using Proposition 2.4.3(a) instead of Proposition 2.4.3(c)) proves (2.4.13).
We have now proved all three equalities (2.4.12), (2.4.13) and (2.4.14). Thus, Proposition 2.4.3(h) is

proved.
(i) Proposition 2.4.3(d) yields that the map ω is a k-algebra automorphism of Λ and an involution. Thus,

ω is an involution. In other words, ω is invertible, and the inverse of ω is ω itself.
We know that Λ is a connected graded bialgebra. Thus, Proposition 1.4.16 (applied to A = Λ) yields that

Λ has a unique antipode S, which is a graded map Λ
S−→ Λ, endowing it with a Hopf structure. Thus, in

particular, the antipode S of Λ is a graded map. In other words,

(13.53.2) S (Λn) ⊂ Λn for each n ∈ N.

Now, let n ∈ N. Let f ∈ Λn. Then, Proposition 2.4.3(e) yields S (f) = (−1)
n
ω (f). Hence,

(−1)
n

S (f)︸ ︷︷ ︸
=(−1)nω(f)

= (−1)
n

(−1)
n︸ ︷︷ ︸

=(−1)n+n=(−1)2n=1
(since 2n is even)

ω (f) = ω (f) ,

so that ω (f) = (−1)
n
S

 f︸︷︷︸
∈Λn

 ∈ (−1)
n

S (Λn)︸ ︷︷ ︸
⊂Λn

(by (13.53.2))

⊂ (−1)
n

Λn ⊂ Λn (since Λn is a k-module).

Forget that we fixed f . We thus have proved that ω (f) ∈ Λn for each f ∈ Λn. In other words, ω (Λn) ⊂ Λn.
Forget that we fixed n. We thus have shown that ω (Λn) ⊂ Λn for each n ∈ N. Hence, the k-linear map

ω : Λ→ Λ is graded. In other words, the inverse of ω is graded (since the inverse of ω is ω itself).
Now, we know that the k-linear map ω is graded, and its inverse is also graded. In other words, the

k-linear map ω is an isomorphism of graded k-modules. This proves Proposition 2.4.3(i).
(j) From (2.4.13), we know that ω (eλ) = hλ for each partition λ. In other words, ω (eλ) = hλ for each

λ ∈ Par. In other words, (ω (eλ))λ∈Par = (hλ)λ∈Par.
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Proposition 2.2.10 says (among other things) that the family {eλ}, as λ runs through all partitions, is a
graded basis of the graded k-module Λ. In other words, the family (eλ)λ∈Par is a graded basis of the graded
k-module Λ. On the other hand, Proposition 2.4.3(i) shows that the map ω is an isomorphism of graded
k-modules.

Now, recall the following well-known fact: If V and W are two graded k-modules, and if f : V → W is
an isomorphism of graded k-modules, then f sends any graded basis of V to a graded basis of W . In other
words, if V and W are two graded k-modules, and if f : V → W is an isomorphism of graded k-modules,
and if (vi)i∈I is a graded basis of V , then (f (vi))i∈I is a graded basis of W .

We can apply this fact to V = Λ, W = Λ, f = ω, I = Par and (vi)i∈I = (eλ)λ∈Par (since we know that
ω : Λ→ Λ is an isomorphism of graded k-modules, and since we know that the family (eλ)λ∈Par is a graded
basis of Λ). We thus conclude that (ω (eλ))λ∈Par is a graded basis of Λ. In other words, the family (hλ)λ∈Par

is a graded basis of Λ (since (ω (eλ))λ∈Par = (hλ)λ∈Par). This proves Proposition 2.4.3(j). �

We have now proved Proposition 2.4.3; thus, Exercise 2.4.4 is solved.

13.54. Solution to Exercise 2.5.5. Solution to Exercise 2.5.5. Recall that for each partition λ,

(13.54.1) the element qλ ∈ Λ is homogeneous of degree |λ| .

(a) Let (aλ)λ∈Par ∈ kPar and (bλ)λ∈Par ∈ kPar be two families satisfying (2.5.3) in k [[x]]. We must prove
that (aλ)λ∈Par = (bλ)λ∈Par.

Fix n ∈ N. Consider the k-linear map πn : k [[x]] → k [[x]] that sends each power series f ∈ k [[x]] to its
homogeneous component of degree n. Thus, πn has the following properties:

• If f ∈ k [[x]] is a power series that is homogeneous of degree n, then

(13.54.2) πn (f) = f.

• If f ∈ k [[x]] is a power series that is homogeneous of degree 6= n, then

(13.54.3) πn (f) = 0.

• The map πn is k-linear and continuous (with respect to the topology on k [[x]]).

Hence, each λ ∈ Par satisfying |λ| = n satisfies

(13.54.4) πn (qλ (x)) = qλ (x)

576. Furthermore, each λ ∈ Par satisfying |λ| 6= n satisfies

(13.54.5) πn (qλ (x)) = 0

577.
But the map πn is k-linear and continuous. Thus, it respects infinite sums. Hence,

πn

( ∑
λ∈Par

aλqλ (x)

)
=
∑
λ∈Par

aλπn (qλ (x)) =
∑
λ∈Par;
|λ|=n

aλ πλ (qλ (x))︸ ︷︷ ︸
=qλ(x)

(by (13.54.4))

+
∑
λ∈Par;
|λ|6=n

aλ πλ (qλ (x))︸ ︷︷ ︸
=0

(by (13.54.5))

=
∑
λ∈Par;
|λ|=n

aλqλ (x) +
∑
λ∈Par;
|λ|6=n

aλ0

︸ ︷︷ ︸
=0

=
∑
λ∈Par;
|λ|=n

aλqλ (x) .(13.54.6)

576Proof of (13.54.4): Let λ ∈ Par be such that |λ| = n. From (13.54.1), we know that the element qλ ∈ Λ is homogeneous

of degree |λ|. Thus, the power series qλ (x) is homogeneous of degree |λ| = n. Hence, (13.54.2) (applied to f = qλ (x)) yields
πn (qλ (x)) = qλ (x). This proves (13.54.4).

577Proof of (13.54.5): Let λ ∈ Par be such that |λ| 6= n. From (13.54.1), we know that the element qλ ∈ Λ is homogeneous
of degree |λ|. Thus, the power series qλ (x) is homogeneous of degree |λ| 6= n. Hence, (13.54.3) (applied to f = qλ (x)) yields

πn (qλ (x)) = 0. This proves (13.54.5).
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The same argument (applied to the family (bλ)λ∈Par instead of (aλ)λ∈Par) yields

(13.54.7) πn

( ∑
λ∈Par

bλqλ (x)

)
=
∑
λ∈Par;
|λ|=n

bλqλ (x) .

Now, applying the map πn to both sides of the equality (2.5.3), we obtain

πn

( ∑
λ∈Par

aλqλ (x)

)
= πn

( ∑
λ∈Par

bλqλ (x)

)
=
∑
λ∈Par;
|λ|=n

bλqλ (x) .

Comparing this with (13.54.6), we obtain

(13.54.8)
∑
λ∈Par;
|λ|=n

aλqλ (x) =
∑
λ∈Par;
|λ|=n

bλqλ (x) .

Notice that both sums appearing in this equality are finite (since there are only finitely many λ ∈ Par
satisfying |λ| = n). Since the family (qλ (x))λ∈Par; |λ|=n is k-linearly independent578, we can thus conclude

from (13.54.8) that

(13.54.9) aλ = bλ for each λ ∈ Par satisfying |λ| = n.

Now, forget that we fixed n. We thus have proven (13.54.9) for each n ∈ N.
Now, let λ ∈ Par be arbitrary. Then, |λ| ∈ N. Hence, (13.54.9) (applied to n = |λ|) yields aλ = bλ.
Now, forget that we fixed λ. We thus have proven that aλ = bλ for each λ ∈ Par. In other words,

(aλ)λ∈Par = (bλ)λ∈Par. This solves Exercise 2.5.5 (a).
(c) We first go afield. Recall that (mλ)λ∈Par is a basis of the k-module Λ. Hence, the family

(mµ ⊗mν ⊗mλ)(µ,ν,λ)∈Par3 is a basis of the k-module Λ⊗ Λ⊗ Λ.

On the other hand, (qλ)λ∈Par is a basis of the k-module Λ. Hence, the family (qµ ⊗ qν ⊗ qλ)(µ,ν,λ)∈Par3 is

a basis of the k-module Λ⊗ Λ⊗ Λ.
We shall now show that the family (mµ (x)mν (y)mλ (z))(µ,ν,λ)∈Par3 of elements of k [[x,y, z]] is k-linearly

independent.
If m is a monomial, and if f is a power series, then we let [m] f denote the coefficient of m in f .
Any τ ∈ Par and λ ∈ Par satisfy

(13.54.10) [xτ ] (mλ (x)) = δτ,λ
579.

For any three partitions α, β, γ ∈ Par and any three partitions µ, ν, λ ∈ Par, we have

(13.54.12)
[
xαyβzγ

]
(mµ (x)mν (y)mλ (z)) = δ(α,β,γ),(µ,ν,λ)

578Proof. The family

qλ (x)︸ ︷︷ ︸
=qλ


λ∈Par

= (qλ)λ∈Par is a basis of the k-module Λ, and thus is k-linearly independent. Hence,

the family (qλ (x))λ∈Par; |λ|=n is k-linearly independent as well (since it is a subfamily of this family (qλ (x))λ∈Par).
579Proof of (13.54.10): Let τ ∈ Par and λ ∈ Par. The set S(∞)λ clearly contains λ, since λ = id︸︷︷︸

∈S(∞)

·λ ∈ S(∞)λ. Moreover,

each α ∈ S(∞)λ satisfying α 6= λ must satisfy

(13.54.11) δτ,α = 0.

[Proof of (13.54.11): Let α ∈ S(∞)λ be such that α 6= λ.

Assume (for the sake of contradiction) that τ = α. Then, α = τ ∈ Par. Hence, the sequence α is nonincreasing. But the
sequence λ is also nonincreasing (since λ ∈ Par).

From α ∈ S(∞)λ, we conclude that α is a rearrangement of the partition λ. But λ is also a rearrangement of λ. However,
there is only one nonincreasing rearrangement of λ. In other words, if µ and ν are two nonincreasing rearrangements of λ, then
µ = ν. Applying this to µ = α and ν = λ, we conclude that α = λ (since both α and λ are nonincreasing rearrangements of λ).
This contradicts α 6= λ.

This contradiction shows that our assumption (that τ = α) was false. Hence, we have τ 6= α. Thus, δτ,α = 0. This proves

(13.54.11).]
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580.
Hence, if (cµ,ν,λ)(µ,ν,λ)∈Par3 ∈ kPar3

is a family of elements of k satisfying

(13.54.13)
∑

(µ,ν,λ)∈Par3

cµ,ν,λmµ (x)mν (y)mλ (z) = 0,

then (cµ,ν,λ)(µ,ν,λ)∈Par3 = (0)(µ,ν,λ)∈Par3
581. Thus, the family (mµ (x)mν (y)mλ (z))(µ,ν,λ)∈Par3 of elements

of k [[x,y, z]] is k-linearly independent.
Hence, the k-linear map

Λ⊗ Λ⊗ Λ→ k [[x,y, z]] , f ⊗ g ⊗ h 7→ f (x) g (y)h (z)

We have mλ (x) = mλ =
∑
α∈S(∞)λ

xα (by (2.1.1)). Thus,

[xτ ]

 mλ (x)︸ ︷︷ ︸
=
∑
α∈S(∞)λ

xα

 = [xτ ]

 ∑
α∈S(∞)λ

xα

 =
∑

α∈S(∞)λ

[xτ ] (xα)︸ ︷︷ ︸
=δτ,α

=
∑

α∈S(∞)λ

δτ,α

= δτ,λ +
∑

α∈S(∞)λ;

α6=λ

δτ,α︸︷︷︸
=0

(by (13.54.11))(
here, we have split off the addend for α = λ from

the sum (since λ ∈ S(∞)λ)

)
= δτ,λ +

∑
α∈S(∞)λ;

α6=λ

0

︸ ︷︷ ︸
=0

= δτ,λ.

This proves (13.54.10).
580Proof of (13.54.12): Let α, β, γ ∈ Par be three partitions. Let µ, ν, λ ∈ Par be three partitions. Then, (13.54.10) (applied

to α and µ instead of τ and λ) yields [xα] (mµ (x)) = δα,µ. Also, (13.54.10) (applied to β and ν instead of τ and λ) yields[
xβ
]

(mν (x)) = δβ,ν . Renaming the indeterminates x as y in this fact, we obtain
[
yβ
]

(mν (y)) = δβ,ν . Finally, (13.54.10)
(applied to γ and λ instead of τ and λ) yields [xγ ] (mλ (x)) = δγ,λ. Renaming the indeterminates x as z in this fact, we obtain

[zγ ] (mλ (z)) = δγ,λ. Now,[
xαyβzγ

]
(mµ (x)mν (y)mλ (z)) = ([xα] (mµ (x)))︸ ︷︷ ︸

=δα,µ

·
([

yβ
]

(mν (y))
)

︸ ︷︷ ︸
=δβ,ν

· ([zγ ] (mλ (z)))︸ ︷︷ ︸
=δγ,λ

= δα,µ · δβ,ν · δγ,λ = δ(α,β,γ),(µ,ν,λ).

This proves (13.54.12).
581Proof. Let

(
cµ,ν,λ

)
(µ,ν,λ)∈Par3

∈ kPar3 be a family of elements of k satisfying (13.54.13). We must show that(
cµ,ν,λ

)
(µ,ν,λ)∈Par3

= (0)(µ,ν,λ)∈Par3 .

Fix any (α, β, γ) ∈ Par3. Then,[
xαyβzγ

] ∑
(µ,ν,λ)∈Par3

cµ,ν,λmµ (x)mν (y)mλ (z)


=

∑
(µ,ν,λ)∈Par3

cµ,ν,λ

[
xαyβzγ

]
(mµ (x)mν (y)mλ (z))︸ ︷︷ ︸

=δ(α,β,γ),(µ,ν,λ)

(by (13.54.12))

=
∑

(µ,ν,λ)∈Par3

cµ,ν,λδ(α,β,γ),(µ,ν,λ)

= cα,β,γ δ(α,β,γ),(α,β,γ)︸ ︷︷ ︸
=1

+
∑

(µ,ν,λ)∈Par3;
(µ,ν,λ)6=(α,β,γ)

cµ,ν,λ δ(α,β,γ),(µ,ν,λ)︸ ︷︷ ︸
=0

(since (α,β,γ)6=(µ,ν,λ))

(here, we have split off the addend for (µ, ν, λ) = (α, β, γ) from the sum)

= cα,β,γ +
∑

(µ,ν,λ)∈Par3;
(µ,ν,λ)6=(α,β,γ)

cµ,ν,λ0

︸ ︷︷ ︸
=0

= cα,β,γ ,
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maps the basis (mµ ⊗mν ⊗mλ)(µ,ν,λ)∈Par3 of Λ⊗ Λ⊗ Λ to the linearly independent family

(mµ (x)mν (y)mλ (z))(µ,ν,λ)∈Par3 . Consequently, this map is injective582. Therefore, the family

(qµ (x) qν (y) qλ (z))(µ,ν,λ)∈Par3 of elements of k [[x,y, z]] is also linearly independent (because it is the image

of the basis (qµ ⊗ qν ⊗ qλ)(µ,ν,λ)∈Par3 of Λ ⊗ Λ ⊗ Λ under this injective map583). If the sums appearing in

(2.5.5) were finite, then this observation would already yield Exercise 2.5.5 (c). However, these sums are
infinite (and linear independence makes no claims about infinite sums being 0), so the solution of Exercise
2.5.5 (c) takes some more work:

Let (aλ,µ,ν)(µ,ν,λ)∈Par3 ∈ kPar3

and (bλ,µ,ν)(µ,ν,λ)∈Par3 ∈ kPar3

be two families satisfying (2.5.5) in k [[x,y, z]].

We must prove that (aλ,µ,ν)(µ,ν,λ)∈Par3 = (bλ,µ,ν)(µ,ν,λ)∈Par3 .

For each (µ, ν, λ) ∈ Par3,

(13.54.14) the power series qµ (x) qν (y) qλ (z) is homogeneous of degree |µ|+ |ν|+ |λ|
584.

Fix n ∈ N. Note that there are only finitely many (µ, ν, λ) ∈ Par3 satisfying |µ|+ |ν|+ |λ| = n 585.
Consider the k-linear map πn : k [[x,y, z]] → k [[x,y, z]] that sends each power series f ∈ k [[x,y, z]] to

its homogeneous component of degree n. Thus, πn has the following properties:

• If f ∈ k [[x,y, z]] is a power series that is homogeneous of degree n, then

(13.54.15) πn (f) = f.

• If f ∈ k [[x,y, z]] is a power series that is homogeneous of degree 6= n, then

(13.54.16) πn (f) = 0.

• The map πn is k-linear and continuous (with respect to the topology on k [[x,y, z]]).

Hence, each (µ, ν, λ) ∈ Par3 satisfying |µ|+ |ν|+ |λ| = n satisfies

(13.54.17) πn (qµ (x) qν (y) qλ (z)) = qµ (x) qν (y) qλ (z)

586. Furthermore, each (µ, ν, λ) ∈ Par3 satisfying |µ|+ |ν|+ |λ| 6= n satisfies

(13.54.18) πn (qµ (x) qν (y) qλ (z)) = 0

587.

so that

cα,β,γ =
[
xαyβzγ

]


∑
(µ,ν,λ)∈Par3

cµ,ν,λmµ (x)mν (y)mλ (z)

︸ ︷︷ ︸
=0

 =
[
xαyβzγ

]
0 = 0.

Now, forget that we fixed (α, β, γ). We thus have shown that cα,β,γ = 0 for each (α, β, γ) ∈ Par3. In other

words,
(
cα,β,γ

)
(α,β,γ)∈Par3

= (0)(α,β,γ)∈Par3 . Renaming the index (α, β, γ) as (µ, ν, λ) in this equality, we obtain(
cµ,ν,λ

)
(µ,ν,λ)∈Par3

= (0)(µ,ν,λ)∈Par3 . Qed.
582because any k-linear map that maps a basis of its domain to a linearly independent family must be injective
583Here, we are using the fact that the image of a basis under an injective k-linear map is always linearly independent.
584Proof of (13.54.14): Let (µ, ν, λ) ∈ Par3.
The power series qλ (x) = qλ is homogeneous of degree |λ| (by (13.54.1)). Renaming the indeterminates x as z in this fact,

we conclude that the power series qλ (z) is homogeneous of degree |λ|. Similarly, the power series qµ (x) is homogeneous of

degree |µ|. Similarly, the power series qν (y) is homogeneous of degree |ν|.
Now, we know that the three power series qµ (x) , qν (y) , qλ (z) are homogeneous of degrees |µ| , |ν| , |λ|, respectively. Hence,

their product qµ (x) qν (y) qλ (z) is homogeneous of degree |µ|+ |ν|+ |λ|. This proves (13.54.14).
585Proof. If (µ, ν, λ) ∈ Par3 satisfies |µ|+ |ν|+ |λ| = n, then each of the three partitions µ, ν, λ has to have size ≤ n (because

|µ| ≤ |µ| + |ν| + |λ| = n, and similarly |ν| ≤ n and |λ| ≤ n). This leaves only finitely many possibilities for each of these

partitions µ, ν, λ. Thus, there are only finitely many (µ, ν, λ) ∈ Par3 satisfying |µ|+ |ν|+ |λ| = n.
586Proof of (13.54.17): Let (µ, ν, λ) ∈ Par3 be such that |µ|+ |ν|+ |λ| = n. From (13.54.14), we know that the power series

qµ (x) qν (y) qλ (z) is homogeneous of degree |µ| + |ν| + |λ| = n. Hence, (13.54.15) (applied to f = qµ (x) qν (y) qλ (z)) yields

πn (qµ (x) qν (y) qλ (z)) = qµ (x) qν (y) qλ (z). This proves (13.54.17).
587Proof of (13.54.18): Let (µ, ν, λ) ∈ Par3 be such that |µ|+ |ν|+ |λ| 6= n. From (13.54.14), we know that the power series

qµ (x) qν (y) qλ (z) is homogeneous of degree |µ| + |ν| + |λ| 6= n. Hence, (13.54.16) (applied to f = qµ (x) qν (y) qλ (z)) yields

πn (qµ (x) qν (y) qλ (z)) = 0. This proves (13.54.18).
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But the map πn is k-linear and continuous. Thus, it respects infinite sums. Hence,

πn

 ∑
(µ,ν,λ)∈Par3

aλ,µ,νqµ (x) qν (y) qλ (z)


=

∑
(µ,ν,λ)∈Par3

aλ,µ,νπn (qµ (x) qν (y) qλ (z))

=
∑

(µ,ν,λ)∈Par3;
|µ|+|ν|+|λ|=n

aλ,µ,ν πn (qµ (x) qν (y) qλ (z))︸ ︷︷ ︸
=qµ(x)qν(y)qλ(z)

(by (13.54.17))

+
∑

(µ,ν,λ)∈Par3;
|µ|+|ν|+|λ|6=n

aλ,µ,ν πn (qµ (x) qν (y) qλ (z))︸ ︷︷ ︸
=0

(by (13.54.18))

=
∑

(µ,ν,λ)∈Par3;
|µ|+|ν|+|λ|=n

aλ,µ,νqµ (x) qν (y) qλ (z) +
∑

(µ,ν,λ)∈Par3;
|µ|+|ν|+|λ|6=n

aλ,µ,ν0

︸ ︷︷ ︸
=0

=
∑

(µ,ν,λ)∈Par3;
|µ|+|ν|+|λ|=n

aλ,µ,νqµ (x) qν (y) qλ (z) .(13.54.19)

The same argument (applied to the family (bλ,µ,ν)(µ,ν,λ)∈Par3 instead of (aλ,µ,ν)(µ,ν,λ)∈Par3) yields

(13.54.20) πn

 ∑
(µ,ν,λ)∈Par3

bλ,µ,νqµ (x) qν (y) qλ (z)

 =
∑

(µ,ν,λ)∈Par3;
|µ|+|ν|+|λ|=n

bλ,µ,νqµ (x) qν (y) qλ (z) .

Now, applying the map πn to both sides of the equality (2.5.5), we obtain

πn

 ∑
(µ,ν,λ)∈Par3

aλ,µ,νqµ (x) qν (y) qλ (z)


= πn

 ∑
(µ,ν,λ)∈Par3

bλ,µ,νqµ (x) qν (y) qλ (z)

 =
∑

(µ,ν,λ)∈Par3;
|µ|+|ν|+|λ|=n

bλ,µ,νqµ (x) qν (y) qλ (z) .

Comparing this with (13.54.19), we obtain

(13.54.21)
∑

(µ,ν,λ)∈Par3;
|µ|+|ν|+|λ|=n

aλ,µ,νqµ (x) qν (y) qλ (z) =
∑

(µ,ν,λ)∈Par3;
|µ|+|ν|+|λ|=n

bλ,µ,νqµ (x) qν (y) qλ (z) .

Notice that both sums appearing in this equality are finite (since there are only finitely many (µ, ν, λ) ∈ Par3

satisfying |µ| + |ν| + |λ| = n). Since the family (qµ (x) qν (y) qλ (z))(µ,ν,λ)∈Par3; |µ|+|ν|+|λ|=n is k-linearly

independent588, we can thus conclude from (13.54.21) that

(13.54.22) aλ,µ,ν = bλ,µ,ν for each (µ, ν, λ) ∈ Par3 satisfying |µ|+ |ν|+ |λ| = n.

Now, forget that we fixed n. We thus have proven (13.54.22) for each n ∈ N.
Now, let (µ, ν, λ) ∈ Par3 be arbitrary. Then, |µ| + |ν| + |λ| ∈ N. Hence, (13.54.22) (applied to n =

|µ|+ |ν|+ |λ|) yields aλ,µ,ν = bλ,µ,ν .

Now, forget that we fixed (µ, ν, λ). We thus have proven that aλ,µ,ν = bλ,µ,ν for each (µ, ν, λ) ∈ Par3. In
other words, (aλ,µ,ν)(µ,ν,λ)∈Par3 = (bλ,µ,ν)(µ,ν,λ)∈Par3 . This solves Exercise 2.5.5 (c).

(b) The solution to Exercise 2.5.5 (b) is analogous to that of Exercise 2.5.5 (c) (the difference being that
there are now just two families x and y of indeterminates, rather than three families x, y and z).

588Proof. We know that the family (qµ (x) qν (y) qλ (z))(µ,ν,λ)∈Par3 is k-linearly independent. Hence, the family

(qµ (x) qν (y) qλ (z))(µ,ν,λ)∈Par3; |µ|+|ν|+|λ|=n (being a subfamily of it) must also be k-linearly independent.
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13.55. Solution to Exercise 2.5.10. Solution to Exercise 2.5.10. Recall that (sκ)κ∈Par is a basis of the
k-module Λ. Hence, (sκ ⊗ sλ)(κ,λ)∈Par×Par is a basis of the k-module Λ ⊗ Λ. We will refer to this basis as

the “Schur basis” of Λ⊗ Λ.
Now, the first diagram in (1.3.4) commutes when A is set to Λ (since Λ is a bialgebra). In other words,

(13.55.1) ∆ ◦m = (m⊗m) ◦ (id⊗T ⊗ id) ◦ (∆⊗∆) : Λ⊗ Λ→ Λ⊗ Λ.

Fix four partitions ϕ, ψ, κ and λ. Applying both sides of the equality (13.55.1) to sϕ ⊗ sψ, we obtain

(∆ ◦m) (sϕ ⊗ sψ) = ((m⊗m) ◦ (id⊗T ⊗ id) ◦ (∆⊗∆)) (sϕ ⊗ sψ) .

Comparing the coefficients before sκ ⊗ sλ in this equality, we obtain∑
ρ∈Par

cρκ,λc
ρ
ϕ,ψ =

∑
(α,β,γ,δ)∈Par4

cκα,γc
λ
β,δc

ϕ
α,βc

ψ
γ,δ

(after a straightforward computation using (2.5.6), (2.5.7) and Corollary 2.5.7). This solves the exercise.

13.56. Solution to Exercise 2.5.11. Solution to Exercise 2.5.11. Before we step to the solution of this
problem, let us make some general observations.

• Every two partitions λ and µ satisfy sλ/µ =
∑
ν c

λ
µ,νsν , where the sum ranges over all partitions ν

(according to Remark 2.5.9). In other words, every two partitions λ and µ satisfy

(13.56.1) sλ/µ =
∑
ν∈Par

cλµ,νsν .

• On the other hand, (2.5.6) yields

(13.56.2) sµsν =
∑
λ∈Par

cλµ,νsλ for any two partitions µ and ν.

(a) Let µ be a partition. We have

(13.56.3)
∑
λ∈Par

sλ (x) sλ/µ (y)︸ ︷︷ ︸
=
∑
ν∈Par c

λ
µ,νsν(y)

(by (13.56.1), evaluated
at the variable set y)

=
∑
λ∈Par

sλ (x)
∑
ν∈Par

cλµ,νsν (y) .

On the other hand, (2.5.1) yields

∞∏
i,j=1

(1− xiyj)−1
=
∑
λ∈Par

sλ (x) sλ (y) =
∑
ν∈Par

sν (x) sν (y)

(here, we renamed the summation index λ as ν). Multiplying this equality with sµ (x), we obtain

sµ (x) ·
∞∏

i,j=1

(1− xiyj)−1
= sµ (x) ·

∑
ν∈Par

sν (x) sν (y) =
∑
ν∈Par

sµ (x) sν (x)︸ ︷︷ ︸
=
∑
λ∈Par c

λ
µ,νsλ(x)

(by (13.56.2))

sν (y)

=
∑
ν∈Par

( ∑
λ∈Par

cλµ,νsλ (x)

)
sν (y) =

∑
λ∈Par

cλµ,νsλ (x)
∑
ν∈Par

sν (y)

=
∑
λ∈Par

sλ (x)
∑
ν∈Par

cλµ,νsν (y) .

Compared with (13.56.3), this yields∑
λ∈Par

sλ (x) sλ/µ (y) = sµ (x) ·
∞∏

i,j=1

(1− xiyj)−1
.

This solves Exercise 2.5.11(a).
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(b) Let k [[x,y, z,w]] denote the ring

k [[x1, x2, x3, ..., y1, y2, y3, ..., z1, z2, z3, ..., w1, w2, w3, ...]] .

This ring clearly contains k [[x,y]] as a subring. We will use the obvious abbreviations for variable sets:
x = (x1, x2, x3, ...), (x, z) = (x1, x2, x3, ..., z1, z2, z3, ...), etc.

Every partition λ satisfies

sλ (y,x) = sλ (x,y) =
∑
µ⊆λ

sµ (x) sλ/µ (y) (by (2.3.3))

=
∑
µ∈Par

sµ (x) sλ/µ (y)−
∑
µ∈Par;
µ*λ

sµ (x) sλ/µ (y)︸ ︷︷ ︸
=0

(since µ*λ)

=
∑
µ∈Par

sµ (x) sλ/µ (y)−
∑
µ∈Par;
µ*λ

sµ (x) 0

︸ ︷︷ ︸
=0

=
∑
µ∈Par

sµ (x) sλ/µ (y) .

Applying this equality to the variables z and x instead of x and y, we obtain

(13.56.4) sλ (x, z) =
∑
µ∈Par

sµ (z) sλ/µ (x) .

Applying this equality to the variables y and w instead of x and z, we obtain

(13.56.5) sλ (y,w) =
∑
µ∈Par

sµ (w) sλ/µ (y) =
∑
ν∈Par

sν (w) sλ/ν (y)

(here, we renamed the summation index µ as ν) for any partition λ.
Now,

∞∏
i,j=1

(1− xiyj)−1
∞∏

i,j=1

(1− xiwj)−1
∞∏

i,j=1

(1− ziyj)−1
∞∏

i,j=1

(1− ziwj)−1

=
∏

a∈(x,z);
b∈(y,w)

(1− ab)−1
=
∑
λ∈Par

sλ (x, z)︸ ︷︷ ︸
=
∑
µ∈Par sµ(z)sλ/µ(x)

(by (13.56.4))

sλ (y,w)︸ ︷︷ ︸
=
∑
ν∈Par sν(w)sλ/ν(y)

(by (13.56.5))

(by (2.5.1), applied to the variable sets (x, z) and (y,w) instead of x and y)

=
∑
λ∈Par

 ∑
µ∈Par

sµ (z) sλ/µ (x)

( ∑
ν∈Par

sν (w) sλ/ν (y)

)

=
∑
µ∈Par

∑
ν∈Par

sµ (z) sν (w)

( ∑
λ∈Par

sλ/µ (x) sλ/ν (y)

)
.(13.56.6)

On the other hand, every partition κ satisfies

(13.56.7)
∑
λ∈Par

sλ (x) sλ/κ (y) = sκ (x) ·
∞∏

i,j=1

(1− xiyj)−1
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(by Exercise 2.5.11(a), applied to κ instead of µ). Applying this to the variable sets w and x instead of x
and y, we obtain

∑
λ∈Par

sλ (w) sλ/κ (x) = sκ (w) ·
∞∏

i,j=1

(1− wixj)−1

︸ ︷︷ ︸
=
∏∞
i,j=1(1−xjwi)−1

=
∏∞
j,i=1(1−xiwj)−1

(here, we renamed the index (i,j) as (j,i))

= sκ (w) ·
∞∏

j,i=1︸︷︷︸
=
∏∞
i,j=1

(1− xiwj)−1
= sκ (w) ·

∞∏
i,j=1

(1− xiwj)−1
(13.56.8)

for every partition κ. But applying both sides of the identity (13.56.7) to the variable set z instead of x, and
renaming the summation index λ as µ on the left hand side of this equality, we obtain

(13.56.9)
∑
µ∈Par

sµ (z) sµ/κ (y) = sκ (z) ·
∞∏

i,j=1

(1− ziyj)−1
.

Now, applying (2.5.1) to the variable sets z and w instead of x and y, we obtain

∞∏
i,j=1

(1− ziwj)−1
=
∑
λ∈Par

sλ (z) sλ (w) =
∑
κ∈Par

sκ (z) sκ (w) .

Hence,

∞∏
i,j=1

(1− xiyj)−1
∞∏

i,j=1

(1− xiwj)−1
∞∏

i,j=1

(1− ziyj)−1
∞∏

i,j=1

(1− ziwj)−1

︸ ︷︷ ︸
=
∑
κ∈Par sκ(z)sκ(w)

=

∞∏
i,j=1

(1− xiyj)−1
∞∏

i,j=1

(1− xiwj)−1
∞∏

i,j=1

(1− ziyj)−1 ·
∑
κ∈Par

sκ (z) sκ (w)

=

∞∏
i,j=1

(1− xiyj)−1 ·
∑
κ∈Par

sκ (w) ·
∞∏

i,j=1

(1− xiwj)−1


︸ ︷︷ ︸

=
∑
λ∈Par sλ(w)sλ/κ(x)

(by (13.56.8))

sκ (z) ·
∞∏

i,j=1

(1− ziyj)−1


︸ ︷︷ ︸

=
∑
µ∈Par sµ(z)sµ/κ(y)

(by (13.56.9))

=

∞∏
i,j=1

(1− xiyj)−1 ·
∑
κ∈Par

( ∑
λ∈Par

sλ (w) sλ/κ (x)

) ∑
µ∈Par

sµ (z) sµ/κ (y)


=
∑
µ∈Par

∑
λ∈Par

sµ (z) sλ (w)

( ∑
κ∈Par

sλ/κ (x) sµ/κ (y)

)
·
∞∏

i,j=1

(1− xiyj)−1

=
∑
µ∈Par

∑
ν∈Par

sµ (z) sν (w)

 ∑
ρ∈Par

sν/ρ (x) sµ/ρ (y)

 · ∞∏
i,j=1

(1− xiyj)−1
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(here, we renamed the summation indices λ and κ as ν and ρ, respectively). Comparing this with (13.56.6),
we obtain ∑

µ∈Par

∑
ν∈Par

sµ (z) sν (w)

( ∑
λ∈Par

sλ/µ (x) sλ/ν (y)

)

=
∑
µ∈Par

∑
ν∈Par

sµ (z) sν (w)

 ∑
ρ∈Par

sν/ρ (x) sµ/ρ (y)

 · ∞∏
i,j=1

(1− xiyj)−1
.

We can regard this as an identity in the ring (k [[x,y]]) [[z,w]] of formal power series in the variables (z,w) =
(z1, z2, z3, ..., w1, w2, w3, ...) over the ring k [[x,y]]. Extracting the coefficients in front of sα (z) sβ (w) in this
identity589, we obtain

∑
λ∈Par

sλ/α (x) sλ/β (y) =

 ∑
ρ∈Par

sβ/ρ (x) sα/ρ (y)

 · ∞∏
i,j=1

(1− xiyj)−1
.

This solves Exercise 2.5.11(b).

13.57. Solution to Exercise 2.5.13. Solution to Exercise 2.5.13. We know that (sλ)λ∈Par is a basis of the
k-module Λ, but we can also say something more specific: For every n ∈ N, the family (sλ)λ∈Parn

is a basis

of the k-module Λn
590.

The basis (sλ)λ∈Par of Λ is orthonormal with respect to the Hall inner product. In other words,

(13.57.1) (sλ, sµ) = δλ,µ for any partitions λ and µ.

(a) Let n and m be two distinct nonnegative integers. Let f ∈ Λn and g ∈ Λm.
We need to prove that (f, g) = 0. Since this equality is k-linear in f , we can WLOG assume that f is an

element of the basis (sλ)λ∈Parn
of Λn. In other words, we can WLOG assume that f = sλ for some λ ∈ Parn.

Assume this, and similarly assume that g = sµ for some µ ∈ Parm. These two partitions λ and µ must be

589This notion of “extracting the coefficients” relies on the fact that if two families (aµ,ν)(µ,ν)∈Par2 ∈ k [[x,y]]Par2 and

(bµ,ν)(µ,ν)∈Par2 ∈ k [[x,y]]Par2 satisfy ∑
(µ,ν)∈Par2

aµ,νsµ(z)sν(w) =
∑

(µ,ν)∈Par2

bµ,νsµ(z)sν(w)

in (k [[x,y]]) [[z,w]], then (aµ,ν)(µ,ν)∈Par2 = (bµ,ν)(µ,ν)∈Par2 . This fact is a consequence of Exercise 2.5.5(b), applied to

qλ = sλ (with the base ring k replaced by k [[x,y]], and with the families x and y renamed as z and w).
590Proof. We have sλ ∈ Λ|λ| = Λn for every λ ∈ Parn. Thus, (sλ)λ∈Parn

is a family of elements of Λn. This family is

k-linearly independent (because it is part of the basis (sλ)λ∈Par of Λ). It remains to prove that this family spans the k-module

Λn.
Let f ∈ Λn. We can write f in the form f =

∑
λ∈Par aλsλ for some family (aλ)λ∈Par ∈ kPar of scalars. Consider this

(aλ)λ∈Par and notice that

f =
∑
λ∈Par

aλsλ =
∑

λ∈Parn

aλsλ +
∑

λ∈Par;
λ/∈Parn

aλsλ,

so that f −
∑
λ∈Parn

aλsλ =
∑

λ∈Par;
λ/∈Parn

aλsλ. The left hand side of this latter equality is homogeneous of degree n (since f and

all the sλ with λ ∈ Parn are homogeneous of degree n), while the right hand side is a sum of homogeneous elements of degrees
different from n. So the only way these two sides can be equal is if they both are 0. In particular, this shows that the left hand
side is 0. In other words, f −

∑
λ∈Parn

aλsλ = 0, so that f =
∑
λ∈Parn

aλsλ. Hence, f is a k-linear combination of the sλ for

λ ∈ Parn.

Since we have proven this for every f ∈ Λn, we thus conclude that the family (sλ)λ∈Parn
spans the k-module Λn, qed.
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distinct (because their sizes differ: |λ| = n 6= m = |µ|), and so they satisfy δλ,µ = 0. Now, f︸︷︷︸
=sλ

, g︸︷︷︸
=sµ

 = (sλ, sµ) = δλ,µ (by (13.57.1))

= 0.

This solves Exercise 2.5.13(a).
(b) Let n ∈ N and f ∈ Λn.
We need to prove that (hn, f) = f (1). Since this equality is k-linear in f , we can WLOG assume that f

is an element of the basis (sλ)λ∈Parn
of Λn. In other words, we can WLOG assume that f = sλ for some

λ ∈ Parn. Assume this.
We must be in one of the two cases:
Case 1: We have ` (λ) ≤ 1.
Case 2: We have ` (λ) > 1.
Let us consider Case 1 first. In this case, ` (λ) ≤ 1. Hence, λ = (n) (since λ ∈ Parn), so that sλ = s(n).

Hence, f = sλ = s(n) = hn and thus f (1) = hn (1) = 1. Compared with hn︸︷︷︸
=s(n)

, f︸︷︷︸
=s(n)

 =
(
s(n), s(n)

)
= δ(n),(n) (by (13.57.1))

= 1,

this yields (hn, f) = f (1). Hence, (hn, f) = f (1) is proven in Case 1.
Let us now consider Case 2. In this case, ` (λ) > 1, so the partition λ has more than 1 part. Exercise

2.3.8(b) (applied to 1 instead of n) thus yields sλ (x1) = 0. But sλ (1) can be seen as the result of substituting
1 for x1 in sλ (x1), and therefore must be 0 as well (since sλ (x1) = 0). Thus, we have sλ (1) = 0. Since
f = sλ, we now have f (1) = sλ (1) = 0. Compared with hn︸︷︷︸

=s(n)

, f︸︷︷︸
=sλ

 =
(
s(n), sλ

)
= δ(n),λ (by (13.57.1))

= 0 (since (n) 6= λ (because ` ((n)) = 1 < ` (λ) )) ,

this yields (hn, f) = f (1). Hence, (hn, f) = f (1) is proven in Case 2.
Now, (hn, f) = f (1) is proven in both Cases, which solves Exercise 2.5.13(b).
(c) We know that the Hall inner product has an orthonormal basis (namely, (sλ)λ∈Par). Thus, the Hall

inner product is symmetric (since any bilinear form that has an orthonormal basis must be symmetric). In
other words, (f, g) = (g, f) for all f ∈ Λ and g ∈ Λ. This solves Exercise 2.5.13(c).

13.58. Solution to Exercise 2.5.18. Solution to Exercise 2.5.18. (a) This is a well-known fact; for a proof,
see Theorem 5.3 in Keith Conrad, Universal Identities I, http://www.math.uconn.edu/~kconrad/blurbs/.
Another proof (more complicated, but with the advantage of proving a more general result) can be found in
[86, proof of Corollary 0.2].

(b) Consider the endomorphism of the k-module A defined by sending γi to βi for every i ∈ I. This
endomorphism is well-defined (since (γi)i∈I is a basis of A) and surjective (since the family (βi)i∈I spans A),
therefore is a k-module isomorphism (according to Exercise 2.5.18(a)). As a consequence, it must send the
basis (γi)i∈I of A to a basis of A (because a k-module isomorphism sends any basis to a basis). Since it sends
the basis (γi)i∈I to (βi)i∈I , this yields that (βi)i∈I must be a basis of A. This solves Exercise 2.5.18(b).

http://www.math.uconn.edu/~kconrad/blurbs/
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13.59. Solution to Exercise 2.5.19. Solution to Exercise 2.5.19. Fix n ∈ N. Recall that vλ ∈ Λ|λ| for
each partition λ. Hence, for each λ ∈ Parn, we have vλ ∈ Λ|λ| = Λn (since |λ| = n (because λ ∈ Parn)).
Thus, (vλ)λ∈Parn

is a family of elements of Λn.

But we have assumed that the family (vλ)λ∈Par spans the k-module Λ. Since everything is graded, this

yields that the family (vλ)λ∈Parn
spans the k-module Λn

591.
Recall that vλ ∈ Λn for each λ ∈ Parn. Hence, we can define the k-linear map

β : Λn → Λn,

mλ 7→ vλ for every λ ∈ Parn

(since (mλ)λ∈Parn
is a basis of the k-module Λn). Consider this map β. This map β is surjective (since the

family (vλ)λ∈Parn
spans the k-module Λn) 592.

But Λn is a finitely generated k-module (since it has a finite basis (mλ)λ∈Parn
). The map β is an

endomorphism of this k-module (since β : Λn → Λn is k-linear), and is surjective. Thus, Exercise 2.5.18(a)
(applied to this endomorphism) yields that β is a k-module isomorphism.

Now, the map β satisfies β (mλ) = vλ for each λ ∈ Parn (by the definition of β). In other words,
(β (mλ))λ∈Parn

= (vλ)λ∈Parn
.

But the family (mλ)λ∈Parn
is a basis of the k-module Λn. Hence, the image of this family (mλ)λ∈Parn

under β is also a basis of the k-module Λn (since β is a k-module isomorphism). In other words, the

591Proof. Here is this argument in more detail:

Let f ∈ Λn. We shall prove that f is a k-linear combination of the family (vλ)λ∈Parn
.

We have f ∈ Λn ⊂ Λ. Thus, f is a k-linear combination of the family (vλ)λ∈Par (since the family (vλ)λ∈Par spans the

k-module Λ). In other words, there exists a family (cλ)λ∈Par ∈ kPar such that (all but finitely many λ ∈ Par satisfy cλ = 0)

and f =
∑
λ∈Par cλvλ. Consider this (cλ)λ∈Par.

Let πn : Λ → Λn be the projection from the graded k-module Λ onto its n-th graded component. Then, πn is a k-linear

map with the properties that

(13.59.1) πn (g) = g for each g ∈ Λn,

and

(13.59.2) πn (g) = 0 for each g ∈ Λm for each m ∈ N satisfying m 6= n.

If λ ∈ Par satisfies |λ| = n, then vλ ∈ Λ|λ| = Λn (since |λ| = n) and thus

(13.59.3) πn (vλ) = vλ

(by (13.59.1), applied to g = vλ).
If λ ∈ Par satisfies |λ| 6= n, then vλ ∈ Λ|λ| and thus

(13.59.4) πn (vλ) = 0

(by (13.59.2), applied to g = vλ and m = |λ|).
Applying (13.59.1) to g = f , we obtain πn (f) = f , so that

f = πn

 f︸︷︷︸
=
∑
λ∈Par cλvλ

 = πn

 ∑
λ∈Par

cλvλ

 =
∑
λ∈Par

cλπn (vλ) (since πn is a k-linear map)

=
∑

λ∈Par;
|λ|=n

cλ πn (vλ)︸ ︷︷ ︸
=vλ

(by (13.59.3))

+
∑

λ∈Par;
|λ|6=n

cλ πn (vλ)︸ ︷︷ ︸
=0

(by (13.59.4))

(since each λ ∈ Par satisfies either |λ| = n or |λ| 6= n (but not both))

=
∑

λ∈Par;
|λ|=n

cλvλ +
∑

λ∈Par;
|λ|6=n

cλ0

︸ ︷︷ ︸
=0

=
∑

λ∈Par;
|λ|=n︸ ︷︷ ︸

=
∑
λ∈Parn

cλvλ =
∑

λ∈Parn

cλvλ.

This shows that f is a k-linear combination of the family (vλ)λ∈Parn
.

Now, forget that we fixed f . We thus have proven that every f ∈ Λn is a k-linear combination of the family (vλ)λ∈Parn
.

Therefore, the family (vλ)λ∈Parn
spans the k-module Λn.

592Proof. In slightly more detail: The map β is k-linear; thus, its image β (Λn) is a k-submodule of Λn. This k-submodule
β (Λn) clearly contains vλ for each λ ∈ Parn (since the definition of β yields vλ = β (mλ)). Hence, β (Λn) is a k-submodule of
Λn that contains vλ for each λ ∈ Parn. But the only such k-submodule is the whole module Λn (since the family (vλ)λ∈Parn

spans the k-module Λn). Thus, we conclude that β (Λn) must be the whole module Λn. In other words, β is surjective.



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 541

family (vλ)λ∈Parn
is a basis of the k-module Λn (since the image of the family (mλ)λ∈Parn

under β is

(β (mλ))λ∈Parn
= (vλ)λ∈Parn

).

Forget that we fixed n. We thus have proved that (vλ)λ∈Parn
is a basis of the k-module Λn for each

n ∈ N. Hence, the family (vλ)λ∈Par is a graded basis of the k-module
⊕

n∈N Λn (since Par0,Par1,Par2, . . . is
a partition of the set Par). In other words, the family (vλ)λ∈Par is a graded basis of the k-module Λ (since
Λ =

⊕
n∈N Λn). This solves Exercise 2.5.19.

13.60. Solution to Exercise 2.5.20. Solution to Exercise 2.5.20. (a) This can be solved by following the
proof of Corollary 2.5.17, but in doing so one has to be careful about how one obtains the invertibility of A:
it is no longer a consequence of A being a transition matrix between two bases (because we do not know in
advance that (uλ)λ∈Par is a basis). Instead, one has to argue as in the footnote: The matrices A and Bt are

block-diagonal, with each diagonal block corresponding to the partitions of size n for a given n ∈ N 593.
In particular, they are block-diagonal matrices with each block being a square matrix of finite size. It is
known that if such a matrix is right-invertible, then it is left-invertible594; therefore, since A is right-invertible
(because ABt = I), we conclude that A is invertible.

(b) We know that for every partition λ, the symmetric functions hλ and mλ are two homogeneous elements
of Λ, both of degree |λ|. We also know (from Proposition 2.5.15) that

∞∏
i,j=1

(1− xiyj)−1 =
∑
λ∈Par

hλ(x)mλ(y).

Compared with (2.5.1), this yields
∑
λ∈Par sλ (x) sλ (y) =

∑
λ∈Par hλ (x)mλ (y). Thus, Exercise 2.5.20(a)

(applied to uλ = hλ and vλ = mλ) yields that (hλ)λ∈Par and (mλ)λ∈Par are k-bases of Λ, and actually are
dual bases with respect to the Hall inner product on Λ. In particular, (hλ)λ∈Par is a k-basis of Λ. This
solves Exercise 2.5.20(b).

Remark. We can use Exercise 2.5.20(b) to prove that (eλ)λ∈Par is a k-basis of Λ as well (in a different
way than we have done in the proof of Proposition 2.2.10). In fact, let us sketch this proof. We are going
to proceed similarly to the above proof of Proposition 2.4.1, but with the roles of the families (en)n≥1 and

(hn)n≥1 switched.

We know (from Exercise 2.5.20(b)) that (hλ)λ∈Par is a k-basis of Λ. In other words, the family (hn)n≥1

is algebraically independent and generates the k-algebra Λ (by parts (b) and (c) of Exercise 2.2.14, applied
to vn = hn and vλ = hλ). Thus, we can define a k-algebra homomorphism ω′ : Λ→ Λ by setting

(13.60.1) ω′ (hn) = en for every n ≥ 1.

595 The identical form of the two recursions (2.4.6) and (2.4.7) shows that this ω′ also satisfies

ω′ (en) = hn for each n ≥ 0.(13.60.2)

596 Combining this with (13.60.1), we conclude that (ω′ ◦ ω′) (hn) = hn for each n ≥ 1. Therefore, the two
k-algebra homomorphisms ω′ ◦ ω′ : Λ → Λ and id : Λ → Λ agree on each element of the generating set
{hn} of Λ. Hence, they are equal, i.e., we have ω′ ◦ ω′ = id. Hence, ω′ is an involution, and therefore an
automorphism of the k-algebra Λ. In particular, ω′ is a k-module isomorphism Λ→ Λ. By multiplicativity
and (13.60.1), we obtain

(13.60.3) ω′ (hλ) = eλ for every partition λ.

593It is here that we are using the assumption that uλ and vλ are homogeneous of degree |λ|.
594In fact, it is clearly enough to prove this statement for square matrices of finite size (because block-diagonal matrices

can be inverted block-by-block). However, for square matrices, this follows from the fact that a surjective endomorphism of a

finitely-generated k-module is an isomorphism (Exercise 2.5.18(a)).
595This ω′ is, of course, precisely the ω constructed in the proof of Proposition 2.4.1. But we cannot use the ω constructed

in the proof of Proposition 2.4.1 at this point, because its construction made use of the fact that (eλ)λ∈Par is a k-basis of Λ

(and we want to prove this fact).
596The details of this proof proceed just like the proof of (2.4.9), except for the fact that the en have traded places with the

hn.
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Thus, the image of the basis (hλ)λ∈Par of Λ under the k-module isomorphism ω′ is the family (eλ)λ∈Par.
Therefore, this latter family (eλ)λ∈Par must be a basis of Λ (being the image of a basis under a k-module
isomorphism).

13.61. Solution to Exercise 2.5.21. Solution to Exercise 2.5.21. When Q is a subring of k, the statement
of Exercise 2.5.21 has been proven in (2.5.13). However, there is no immediate way to reuse the proof of
(2.5.13) in the general case (because this proof made use of logarithms, and these are only defined when
Q is a subring of k). Nevertheless, it is possible to imitate that proof by defining a notion of “logarithmic
derivative” even in the absence of a logarithm. Let us elaborate on this.

Let A be any commutative ring. Whenever Q ∈ A [[t]] is a formal power series with constant term

1, we define the logarithmic derivative of Q to be the power series
Q′

Q
∈ A [[t]] (where Q′ denotes the

derivative of Q, as usual). We denote this logarithmic derivative by lderQ. When Q is a subring of A, we

have lderQ =
d

dt
(logQ), but the concept of lderQ is defined even when log is not. Some authors find it

instructive to write
d

dt
(logQ) for lderQ, but we prefer not to do so, since this might tempt us to write things

which make no sense.
It is easy to see that the map

{Q ∈ A [[t]] | Q has constant term 1} → A [[t]] ,

Q 7→ lderQ

is continuous (where we equip A [[t]] with the usual topology – i.e., the product topology obtained by
regarding the set A [[t]] as a direct product of infinitely many copies of A). Moreover, whenever I is a set and

(Qi)i∈I ∈ (A [[t]])
I

is a family of formal power series with constant term 1 such that the product
∏
i∈I Qi

converges (with respect to our topology on A [[t]]), then

(13.61.1) lder

(∏
i∈I

Qi

)
=
∑
i∈I

lder (Qi) .

597 This equality can be used as a substitute for the famous property of the logarithm to take products into
sums in situations where the logarithm is not defined. Furthermore, we have

(13.61.2) lder
(
Q−1

)
= − lderQ

597Proof of (13.61.1): Let I be a set, and let (Qi)i∈I ∈ (A [[t]])I be a family of formal power series with constant term 1

such that the product
∏
i∈I Qi converges (with respect to our topology on A [[t]]). We need to prove (13.61.1). Since the map

{Q ∈ A [[t]] | Q has constant term 1} → A [[t]] ,

Q 7→ lderQ

is continuous (and since infinite products are limits of finite products, and infinite sums are limits of finite sums), we can WLOG

assume that the set I is finite. Assuming this, we recall that the product rule for differentiating a product of several power
series yields ∏

i∈I
Qi

′ =
∑
j∈I

Q′j

 ∏
i∈I\{j}

Qi

 .
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whenever Q ∈ A [[t]] is a formal power series with constant term 1 (where Q−1 means the multiplicative
inverse of Q) 598.

Now, set A = Λ. We have

H (t) =

∞∏
i=1

(1− xit)−1
=

∏
i∈{1,2,3,...}

(1− xit)−1
,

Now, by the definition of lder
(∏

i∈I Qi
)
, we have

lder

∏
i∈I

Qi

 =

(∏
i∈I Qi

)′∏
i∈I Qi

=
1∏

i∈I Qi

∏
i∈I

Qi

′
︸ ︷︷ ︸

=
∑
j∈I Q

′
j

(∏
i∈I\{j} Qi

)
=

1∏
i∈I Qi

∑
j∈I

Q′j

 ∏
i∈I\{j}

Qi



=
∑
j∈I

Q′j ·
∏
i∈I\{j}Qi∏
i∈I Qi

=
∑
j∈I

Q′j ·
∏
i∈I\{j}Qi

Qj
∏
i∈I\{j}Qi︸ ︷︷ ︸
=

1

Qj

since
∏
i∈I

Qi = Qj
∏

i∈I\{j}
Qi for every j ∈ I



=
∑
j∈I

Q′j ·
1

Qj
=
∑
j∈I

Q′j

Qj︸︷︷︸
=lder(Qj)

(since lder(Qj) is

defined as
Q′j

Qj
)

=
∑
j∈I

lder (Qj) =
∑
i∈I

lder (Qi) .

This proves (13.61.1).
598Proof of (13.61.2): Let Q ∈ A [[t]] be a formal power series with constant term 1. Then, the product rule for the derivative

of a product of two power series yields
(
QQ−1

)′
= Q′Q−1 + Q

(
Q−1

)′
, so that Q′Q−1 + Q

(
Q−1

)′
=

QQ−1︸ ︷︷ ︸
=1


′

= 1′ = 0

and thus Q
(
Q−1

)′
= −Q′Q−1, so that

(
Q−1

)′
Q−1

= −
Q′

Q
. But the definition of lder

(
Q−1

)
yields lder

(
Q−1

)
=

(
Q−1

)′
Q−1

=

−
Q′

Q︸︷︷︸
=lderQ

= − lderQ. This proves (13.61.2).
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so that

lder (H (t)) = lder

 ∏
i∈{1,2,3,...}

(1− xit)−1

 =
∑

i∈{1,2,3,...}

lder
(

(1− xit)−1
)

︸ ︷︷ ︸
=− lder(1−xit)

(by (13.61.2), applied to Q=1−xit)(
by (13.61.1), applied to I = {1, 2, 3, ...} and Qi = (1− xit)−1

)

=
∑

i∈{1,2,3,...}


− lder (1− xit)︸ ︷︷ ︸

=
(1− xit)′

1− xit
(by the definition of lder(1−xit))


=

∑
i∈{1,2,3,...}

(
− (1− xit)′

1− xit

)
︸ ︷︷ ︸

=−
−xi

1− xi
t

(since (1−xit)′=−xi)

=
∑

i∈{1,2,3,...}

(
− −xi

1− xit

)
︸ ︷︷ ︸
=xi·

1

1− xit

=
∑

i∈{1,2,3,...}

xi ·
1

1− xit︸ ︷︷ ︸
=
∑
m≥0(xit)

m=
∑
m≥0 x

m
i t

m

=
∑

i∈{1,2,3,...}

xi ·
∑
m≥0

xmi t
m =

∑
m≥0

 ∑
i∈{1,2,3,...}

xi · xmi︸ ︷︷ ︸
=xm+1

i

 tm

=
∑
m≥0

 ∑
i∈{1,2,3,...}

xm+1
i


︸ ︷︷ ︸

=pm+1

tm =
∑
m≥0

pm+1t
m.

Thus, ∑
m≥0

pm+1t
m = lder (H (t)) =

(H (t))
′

H (t)
(by the definition of lder (H (t)))

=
H ′ (t)

H (t)
.

This solves the exercise.
Remark: Another solution of Exercise 2.5.21 proceeds by noticing that the statement of this exercise can

be rewritten in the form
(∑

m≥0 pm+1t
m
)
·H (t) = H ′ (t), which (by comparison of coefficients) is equivalent

to saying that

(13.61.3) every m ∈ N satisfies

m∑
i=0

pi+1hm−i = (m+ 1)hm+1.

But it is clear that once (13.61.3) is proven for k = Z, it immediately follows that (13.61.3) also holds for
all k (since Λk = k⊗Z ΛZ). Proving (13.61.3) for k = Z, in turn, boils down to proving (13.61.3) for k = Q,
which we already know how to do (from the proof of (2.5.13)).

13.62. Solution to Exercise 2.5.22. Solution to Exercise 2.5.22. For every partition λ, define an element
vλ ∈ Λ by vλ = vλ1

vλ2
· · · vλ`(λ)

. (This is well-defined, since λ1, λ2, . . . , λ`(λ) are positive integers whenever

λ is a partition.) Thus, Exercise 2.2.14(b) (applied to A = Λ) shows that the elements v1, v2, v3, . . . generate
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the k-algebra Λ if and only if the family (vλ)λ∈Par spans the k-module Λ. Hence, the family (vλ)λ∈Par spans
the k-module Λ (since the elements v1, v2, v3, . . . generate the k-algebra Λ).

Furthermore, vλ is an element of Λ|λ| for each partition λ 599. Hence, Exercise 2.5.19 yields that the
family (vλ)λ∈Par is a graded basis of the graded k-module Λ (where the indexing set Par is partitioned into
Par0,Par1,Par2, . . .). This solves Exercise 2.5.22(b).

(a) The family (vλ)λ∈Par is a basis of the k-module Λ (since it is a graded basis of the graded k-module
Λ). Hence, in particular, this family (vλ)λ∈Par is k-linearly independent.

But Exercise 2.2.14(c) (applied to A = Λ) yields that the elements v1, v2, v3, . . . are algebraically indepen-
dent over k if and only if the family (vλ)λ∈Par is k-linearly independent. Hence, the elements v1, v2, v3, . . . are
algebraically independent over k (since the family (vλ)λ∈Par is k-linearly independent). This solves Exercise
2.5.22(a).

13.63. Solution to Exercise 2.5.23. Solution to Exercise 2.5.23. Let V denote the k-subalgebra of Λ
generated by v1, v2, v3, . . .. Thus, V is a k-submodule of Λ.

We shall now show that

(13.63.1) hn ∈ V for each positive integer n.

[Proof of (13.63.1): We shall prove (13.63.1) by strong induction on n:
Induction step: Let m be a positive integer. Assume that (13.63.1) holds for all n < m. We must prove

that (13.63.1) holds for n = m. In other words, we must prove that hm ∈ V .
We have assumed that (13.63.1) holds for all n < m. In other words, we have

(13.63.2) hn ∈ V for each positive integer n < m.

We have assumed that the element a(n) ∈ k is invertible for each positive integer n. Applying this to

n = m, we conclude that the element a(m) ∈ k is invertible. Hence, its inverse a−1
(m) ∈ k is well-defined.

But we have also assumed that each positive integer n satisfies vn =
∑
λ∈Parn

aλhλ. Applying this to
n = m, we find

vm =
∑

λ∈Parm

aλhλ = a(m)h(m) +
∑

λ∈Parm;
λ6=(m)

aλhλ

(here, we have split off the addend for λ = (m) from the sum, since (m) ∈ Parm). Hence,

(13.63.3) a(m)h(m) = vm −
∑

λ∈Parm;
λ 6=(m)

aλhλ.

599Proof. Let λ be a partition. Thus, λ =
(
λ1, λ2, . . . , λ`(λ)

)
, so that |λ| = λ1 + λ2 + · · ·+ λ`(λ).

Let i ∈ {1, 2, . . . , ` (λ)}. Then, the number λi is a positive integer (by the definition of ` (λ)). But recall that vn ∈ Λn for
each positive integer n. Applying this to n = λi, we obtain vλi ∈ Λλi (since λi is a positive integer). In other words, the
symmetric function vλi is homogeneous of degree λi.

Forget that we fixed i. We thus have showed that the symmetric function vλi is homogeneous of degree λi for each

i ∈ {1, 2, . . . , ` (λ)}. Hence, the product vλ1
vλ2
· · · vλ`(λ)

of these ` (λ) symmetric functions is homogeneous of degree

λ1 + λ2 + · · ·+ λ`(λ) (since Λ is a graded k-algebra)

= |λ|
(
since |λ| = λ1 + λ2 + · · ·+ λ`(λ)

)
.

In other words, vλ1
vλ2
· · · vλ`(λ)

∈ Λ|λ|. But our definition of vλ yields vλ = vλ1
vλ2
· · · vλ`(λ)

∈ Λ|λ|. In other words, vλ is an

element of Λ|λ|. Qed.
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But each λ ∈ Parm satisfying λ 6= (m) satisfies aλhλ ∈ V 600. Hence,∑
λ∈Parm;
λ6=(m)

aλhλ︸ ︷︷ ︸
∈V

∈
∑

λ∈Parm;
λ6=(m)

V ⊂ V (since V is a k-module) .

Furthermore, V contains v1, v2, v3, . . . (since V is the k-subalgebra of Λ generated by v1, v2, v3, . . .). Thus,
in particular, V contains vm (since m is a positive integer). In other words, vm ∈ V .

Now, (13.63.3) becomes

a(m)h(m) = vm︸︷︷︸
∈V

−
∑

λ∈Parm;
λ6=(m)

aλhλ

︸ ︷︷ ︸
∈V

∈ V − V ⊂ V (since V is a k-module) .

Now, since a−1
(m) is well-defined, we have

h(m) = a−1
(m) a(m)h(m)︸ ︷︷ ︸

∈V

∈ a−1
(m)V ⊂ V (since V is a k-module) .

In view of h(m) = hm, this rewrites as hm ∈ V . In other words, (13.63.1) holds for n = m. This completes
the induction step. Thus, (13.63.1) is proved by strong induction.]

Let us now draw some conclusions. We can restate (13.63.1) as follows: The elements h1, h2, h3, . . . all
belong to V . In other words, V contains h1, h2, h3, . . ..

Proposition 2.4.1 shows that the family (hn)n=1,2,... generates the k-algebra Λk. In other words, the

family (hn)n=1,2,... generates the k-algebra Λ (since Λk = Λ). In other words, the elements h1, h2, h3, . . .
generate the k-algebra Λ. Thus, the only k-subalgebra of Λ that contains these elements h1, h2, h3, . . . is the
whole algebra Λ. In other words,

(if B is any k-subalgebra of Λ that contains h1, h2, h3, . . . , then B = Λ) .

We can apply this to B = V (since V is a k-subalgebra of Λ that contains h1, h2, h3, . . .), and thus conclude
that V = Λ. In other words, the k-subalgebra of Λ generated by v1, v2, v3, . . . is Λ (since V was defined to
be the k-subalgebra of Λ generated by v1, v2, v3, . . .). In other words, the elements v1, v2, v3, . . . generate the

600Proof. Let λ ∈ Parm satisfy λ 6= (m). We must show that aλhλ ∈ V .

Write the partition λ in the form λ = (λ1, λ2, . . . , λ`) with ` = ` (λ). Then, the definition of hλ yields hλ = hλ1
hλ2
· · ·hλ` .

From λ ∈ Parm, we conclude that m = |λ| = λ1 + λ2 + · · ·+ λ` (since λ = (λ1, λ2, . . . , λ`)).

Assume (for the sake of contradiction) that ` = 1. Then, we have m = λ1 +λ2 + · · ·+λ` = λ1 (since ` = 1), so that λ1 = m.

Moreover, from ` = 1, we obtain (λ1, λ2, . . . , λ`) = (λ1) = (m) (since λ1 = m), and therefore λ = (λ1, λ2, . . . , λ`) = (m). This
contradicts λ 6= (m).

This contradiction shows that our assumption was wrong. Hence, we must have ` 6= 1.

Now, let i ∈ {1, 2, . . . , `} be arbitrary. Then, i ≤ ` = ` (λ). Hence, λi is a positive integer.
Also, from i ∈ {1, 2, . . . , `}, we obtain 1 ≤ i ≤ `, so that ` ≥ 1. Combining this with ` 6= 1, we obtain ` > 1, so that ` ≥ 2.

Hence, 2 ≤ ` = ` (λ), so that λ2 > 0 (by the definition of ` (λ)).

But λ is a partition; thus, λ1 ≥ λ2 ≥ · · · ≥ λ`. Hence, λ1 ≥ λi (since 1 ≤ i ≤ `), so that λi ≤ λ1. Also,

m = |λ| = λ1 + λ2 + λ3 + · · · = λ1 + λ2︸︷︷︸
>0

+ (λ3 + λ4 + λ5 + · · · )︸ ︷︷ ︸
≥0

> λ1.

In other words, λ1 < m. Thus, λi ≤ λ1 < m. Hence, (13.63.2) (applied to n = λi) yields hλi ∈ V (since λi is a positive
integer).

Forget that we fixed i. We thus have shown that hλi ∈ V for each i ∈ {1, 2, . . . , `}. In other words, hλ1
, hλ2

, . . . , hλ` are
elements of V . Thus, hλ1

hλ2
· · ·hλ` is a product of elements of V , and therefore must itself be an element of V (since V is a

k-subalgebra of Λ). In other words, hλ1
hλ2
· · ·hλ` ∈ V . Now, hλ = hλ1

hλ2
· · ·hλ` ∈ V . Hence, aλ hλ︸︷︷︸

∈V

∈ aλV ⊂ V (since V

is a k-module). Qed.
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k-algebra Λ. Moreover, we have vn ∈ Λn for each positive integer n 601. Thus, Exercise 2.5.22(a) shows
that v1, v2, v3, . . . are algebraically independent over k. This completes the solution to Exercise 2.5.23.

13.64. Solution to Exercise 2.5.24. Solution to Exercise 2.5.24. Corollary 2.5.17(a) says that the bases
(hλ)λ∈Par and (mλ)λ∈Par of Λ are dual with respect to the Hall inner product on Λ. In other words,

(13.64.1) (hλ,mµ) = δλ,µ for any λ ∈ Par and µ ∈ Par .

Proposition 2.4.1 shows that the family (hn)n=1,2,... generates the k-algebra Λk. In other words, the family

(hn)n=1,2,... generates the k-algebra Λ (since Λk = Λ). In other words, h1, h2, h3, . . . generate the k-algebra
Λ. Furthermore, hn ∈ Λn for each positive integer n. Finally, for every partition λ, the symmetric function
hλ ∈ Λ is defined by hλ = hλ1

hλ2
· · ·hλ`(λ)

. Hence, Exercise 2.5.22(b) (applied to hn and hλ instead of vn
and vλ) shows that the family (hλ)λ∈Par is a graded basis of the graded k-module Λ. In other words, for
each n ∈ N,

(13.64.2) the family (hλ)λ∈Parn
is a basis of the k-module Λn.

Now, let n be a positive integer. Then, vn ∈ Λn (by assumption) and (n) ∈ Parn (since (n) is a partition
of n). But (13.64.2) shows that the family (hλ)λ∈Parn

is a basis of the k-module Λn. Hence, this family

spans Λn. Thus, vn is a k-linear combination of the family (hλ)λ∈Parn
(since vn ∈ Λn). In other words,

there exists some family (bλ)λ∈Parn
∈ kParn of scalars such that vn =

∑
λ∈Parn

bλhλ. Consider this family

(bλ)λ∈Parn
.

Now, recall that the Hall inner product has an orthonormal basis (namely, (sλ)λ∈Par), and thus is sym-
metric. Therefore, every µ ∈ Parn satisfies

(mµ, vn) =

 vn︸︷︷︸
=
∑
λ∈Parn

bλhλ

,mµ

 =

( ∑
λ∈Parn

bλhλ,mµ

)
=

∑
λ∈Parn

bλ (hλ,mµ)︸ ︷︷ ︸
=δλ,µ

(by (13.64.1))

(since the Hall inner product is k-bilinear)

=
∑

λ∈Parn

bλδλ,µ = bµ δµ,µ︸︷︷︸
=1

(since µ=µ)

+
∑

λ∈Parn;
λ 6=µ

bλ δλ,µ︸︷︷︸
=0

(since λ 6=µ)

(here, we have split off the addend for λ = µ from the sum, since µ ∈ Parn)

= bµ +
∑

λ∈Parn;
λ6=µ

bλ0

︸ ︷︷ ︸
=0

= bµ.

601Proof. We know that hn ∈ Λn for each positive integer n. Furthermore, we know that the family (hn)n=1,2,... generates

the k-algebra Λ; in other words, h1, h2, h3, . . . generate the k-algebra Λ. Finally, for every partition λ, the symmetric function
hλ ∈ Λ is defined by hλ = hλ1

hλ2
· · ·hλ`(λ)

. Hence, Exercise 2.5.22(b) (applied to hn and hλ instead of vn and vλ) shows that

the family (hλ)λ∈Par is a graded basis of the graded k-module Λ. In other words, for each n ∈ N,

(13.63.4) the family (hλ)λ∈Parn
is a basis of the k-module Λn.

Now, let n be a positive integer. Then, (13.63.4) shows that the family (hλ)λ∈Parn
is a basis of the k-module Λn. Hence,

(13.63.5) hλ ∈ Λn for each λ ∈ Parn .

But by assumption, we have

vn =
∑

λ∈Parn

aλ hλ︸︷︷︸
∈Λn

(by (13.63.5))

∈
∑

λ∈Parn

aλΛn ⊂ Λn (since Λn is a k-module) .

Qed.
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Renaming µ as λ in this statement, we obtain the following: Every λ ∈ Parn satisfies (mλ, vn) = bλ. Hence,
every λ ∈ Parn satisfies

(13.64.3) bλ = (mλ, vn) =
(
mλ, v|λ|

)
(since n = |λ| (because λ ∈ Parn and thus |λ| = n)). Now,

vn =
∑

λ∈Parn

bλ︸︷︷︸
=(mλ,v|λ|)

(by (13.64.3))

hλ =
∑

λ∈Parn

(
mλ, v|λ|

)
hλ.

Forget that we fixed n. Thus, we have showed that each positive integer n satisfies vn =
∑
λ∈Parn

(
mλ, v|λ|

)
hλ.

Moreover, the element
(
m(n), v|(n)|

)
∈ k is invertible for each positive integer n 602. Hence, Exercise 2.5.23

(applied to aλ =
(
mλ, v|λ|

)
) yields that the elements v1, v2, v3, . . . generate the k-algebra Λ and are alge-

braically independent over k. This solves Exercise 2.5.24.

13.65. Solution to Exercise 2.5.25. Solution to Exercise 2.5.25. Corollary 2.5.17(a) yields that (hλ)λ∈Par

and (mλ)λ∈Par are dual bases with respect to the Hall inner product on Λ.
Recall the following fundamental fact from linear algebra: If k is a commutative ring, if A is a k-module,

if (·, ·) : A × A → k is a symmetric k-bilinear form on A, and if (uλ)λ∈L and (vλ)λ∈L are two k-bases of A
which are dual to each other with respect to the form (·, ·) (where L is some indexing set), then every a ∈ A
satisfies

a =
∑
λ∈L

(uλ, a) vλ.

We can apply this fact to A = Λ, L = Par, (uλ)λ∈L = (hλ)λ∈Par and (vλ)λ∈L = (mλ)λ∈Par (since the bases
(hλ)λ∈Par and (mλ)λ∈Par of Λ are dual to each other with respect to the Hall inner product (·, ·)). As a
result, we obtain that every a ∈ Λ satisfies

(13.65.1) a =
∑
λ∈Par

(hλ, a)mλ.

Now, let WC denote the set of all weak compositions. Thus, β ∈ WC. Recall (from Section 2.1) the
finitary symmetric group S(∞) and its action on the set WC of all weak compositions. Applying the equality
(13.65.1) to a = f , we obtain

f =
∑
λ∈Par

(hλ, f) mλ︸︷︷︸
=

∑
α∈S(∞)λ

xα

(by (2.1.1))

=
∑
λ∈Par

(hλ, f)
∑

α∈S(∞)λ

xα

=
∑
λ∈Par

∑
α∈S(∞)λ︸ ︷︷ ︸

=
∑

α∈WC

∑
λ∈Par;
α∈S(∞)λ

(hλ, f) xα =
∑
α∈WC

∑
λ∈Par;
α∈S(∞)λ

(hλ, f) xα.

Hence,

(
the coefficient of xβ in f

)
=

the coefficient of xβ in
∑
α∈WC

∑
λ∈Par;
α∈S(∞)λ

(hλ, f) xα


=

∑
λ∈Par;
β∈S(∞)λ

(hλ, f) .(13.65.2)

602Proof. We have assumed that (pn, vn) ∈ k is invertible for each positive integer n. In other words,
(
m(n), v|(n)|

)
∈ k is

invertible for each positive integer n (since each positive integer n satisfies m(n) = pn and |(n)| = n).
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Recall that µ is the partition consisting of the nonzero entries of β (sorted in decreasing order). Hence,
the partition µ has the same nonzero entries as the weak composition β (just possibly in a different order).
Thus, the partition β can be obtained by rearranging the entries of the weak composition µ. More precisely,
we can transform µ into β by rearranging finitely many entries of µ 603. In other words, there exists a
permutation σ ∈ S(∞) such that β = σ (µ) (because rearranging finitely many entries of a weak composition
is tantamount to applying a permutation in S(∞) to it). In other words, β ∈ S(∞)µ. Hence, µ is a λ ∈ Par
such that β ∈ S(∞)λ.

On the other hand, recall that every weak composition α lies in the S(∞)-orbit of a unique partition λ.
In other words, for every weak composition α, there is a unique partition λ such that α ∈ S(∞)λ. Applying
this to α = β, we conclude that there is a unique partition λ such that β ∈ S(∞)λ. In other words, there is a
unique λ ∈ Par such that β ∈ S(∞)λ. This unique λ must be µ (since µ is a λ ∈ Par such that β ∈ S(∞)λ).

So we know that there is a unique λ ∈ Par such that β ∈ S(∞)λ, and this unique λ is µ. Hence, the sum∑
λ∈Par;
β∈S(∞)λ

(hλ, f) has exactly one addend, namely the addend for λ = µ. Thus, this sum simplifies as follows:

∑
λ∈Par;
β∈S(∞)λ

(hλ, f) = (hµ, f).

Hence, (13.65.2) becomes(
the coefficient of xβ in f

)
=

∑
λ∈Par;
β∈S(∞)λ

(hλ, f) = (hµ, f) .

Combining this with

(f, hµ) = (hµ, f) (by Exercise 2.5.13(c), applied to g = hµ) ,

we obtain
(f, hµ) = (hµ, f) =

(
the coefficient of xβ in f

)
.

This solves Exercise 2.5.25.

13.66. Solution to Exercise 2.5.26. Solution to Exercise 2.5.26. Let us first prove three simple claims:

Claim 1: For every λ ∈ Par, we have pλ ∈ Λ|λ|.

[Proof of Claim 1: Let n = |λ|. Thus, λ ∈ Parn (since λ ∈ Par). Hence, we can show (just as in the
solution to Exercise 2.2.13(k)) that pλ ∈ Λn. In view of n = |λ|, this rewrites as pλ ∈ Λ|λ|. This proves
Claim 1.]

Claim 2: Let n ∈ N and λ ∈ Parn. Then, (pλ, hn) = 1.

[Proof of Claim 2: We have |λ| = n (since λ ∈ Parn). Claim 1 yields pλ ∈ Λ|λ| = Λn (since |λ| = n). Hence,
Exercise 2.5.13(b) (applied to f = pλ) yields (hn, pλ) = pλ (1) (where pλ (1) is defined as in Exercise 2.1.2).

Recall that pλ (1) is defined to be the result of substituting 1, 0, 0, 0, . . . for x1, x2, x3, . . . in pλ. In other
words, pλ (1) = pλ (1, 0, 0, 0, . . .).

Now, write the partition λ as λ = (λ1, λ2, . . . , λ`), where ` = ` (λ). Then, the definition of pλ yields

pλ = pλ1
pλ2
· · · pλ` =

∏`
i=1 pλi . Substituting 1, 0, 0, 0, . . . for x1, x2, x3, . . . on both sides of this equality, we

obtain

pλ (1, 0, 0, 0, . . .) =
∏̀
i=1

pλi (1, 0, 0, 0, . . .)︸ ︷︷ ︸
=1λi+0λi+0λi+0λi+···

(since pλi=x
λi
1 +x

λi
2 +x

λi
3 +···)

=
∏̀
i=1

(
1λi + 0λi + 0λi + 0λi + · · ·

)︸ ︷︷ ︸
=1+0+0+0+···

(since 1λi=1 and 0λi=0
(because λi is positive (since i≤`=`(λ))))

=
∏̀
i=1

(1 + 0 + 0 + 0 + · · · )︸ ︷︷ ︸
=1

= 1.

603Indeed, there is an i ∈ {1, 2, 3, . . .} such that βi+1 = βi+2 = βi+3 = · · · = 0 and µi+1 = µi+2 = µi+3 = · · · = 0 (since β

and µ are weak compositions). We only need to rearrange the first i entries in order to transform µ into β.
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Summarizing what we have proved so far, we obtain

(hn, pλ) = pλ (1) = pλ (1, 0, 0, 0, . . .) = 1.

But Exercise 2.5.13(c) (applied to f = pλ and g = hn) yields (pλ, hn) = (hn, pλ) = 1. This proves Claim 2.]

Claim 3: Let n ∈ N and λ ∈ Par be such that λ /∈ Parn. Then, (pλ, hn) = 0.

[Proof of Claim 3: We have |λ| 6= n (since λ ∈ Par but λ /∈ Parn). Therefore, |λ| and n are two distinct
nonnegative integers. Moreover, pλ ∈ Λ|λ| (by Claim 1) and hn ∈ Λn. Hence, Exercise 2.5.13(a) (applied to
|λ|, n, pλ and hn instead of n, m, f and g) yields (pλ, hn) = 0. This proves Claim 3.]

Corollary 2.5.17(b) yields that (pλ)λ∈Par and
(
z−1
λ pλ

)
λ∈Par

are dual bases with respect to the Hall inner
product on Λ. Recall the following fundamental fact from linear algebra: If k is a commutative ring, if A is
a k-module, if (·, ·) : A × A → k is a symmetric k-bilinear form on A, and if (uλ)λ∈L and (vλ)λ∈L are two
k-bases of A which are dual to each other with respect to the form (·, ·) (where L is some indexing set), then
every a ∈ A satisfies

a =
∑
λ∈L

(uλ, a) vλ.

We can apply this fact to A = Λ, L = Par, (uλ)λ∈L = (pλ)λ∈Par and (vλ)λ∈L =
(
z−1
λ pλ

)
λ∈Par

(since the

bases (pλ)λ∈Par and
(
z−1
λ pλ

)
λ∈Par

of Λ are dual to each other with respect to the Hall inner product (·, ·)).
As a result, we obtain that every a ∈ Λ satisfies

(13.66.1) a =
∑
λ∈Par

(pλ, a) z−1
λ pλ.

Now, let n ∈ N. Applying (13.66.1) to a = hn, we find

hn =
∑
λ∈Par

(pλ, hn) z−1
λ pλ =

∑
λ∈Par;
λ∈Parn︸ ︷︷ ︸

=
∑
λ∈Parn

(since Parn⊂Par )

(pλ, hn)︸ ︷︷ ︸
=1

(by Claim 2)

z−1
λ pλ +

∑
λ∈Par;
λ/∈Parn

(pλ, hn)︸ ︷︷ ︸
=0

(by Claim 3)

z−1
λ pλ

(
since each λ ∈ Par satisfies either λ ∈ Parn or λ /∈ Parn

(but not both at the same time)

)
=

∑
λ∈Parn

z−1
λ pλ +

∑
λ∈Par;
λ/∈Parn

0z−1
λ pλ

︸ ︷︷ ︸
=0

=
∑

λ∈Parn

z−1
λ pλ.

This proves (2.5.17).
Recall the map ω : Λ → Λ introduced in Definition 2.4.2. Applying this map ω to both sides of the

equality (2.5.17), we obtain

ω (hn) = ω

( ∑
λ∈Parn

z−1
λ pλ

)
=

∑
λ∈Parn

z−1
λ ω (pλ)︸ ︷︷ ︸

=(−1)|λ|−`(λ)pλ
(by (2.4.14))

(since the map ω is k-linear)

=
∑

λ∈Parn

z−1
λ (−1)

|λ|−`(λ)︸ ︷︷ ︸
=(−1)|λ|−`(λ)z−1

λ

pλ =
∑

λ∈Parn

(−1)
|λ|−`(λ)

z−1
λ pλ.

But Proposition 2.4.3(b) yields ω (hn) = en. Comparing these two equalities, we obtain

en =
∑

λ∈Parn

(−1)
|λ|−`(λ)

z−1
λ pλ.

This proves (2.5.18). Thus, the solution to Exercise 2.5.26 is complete.
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13.67. Solution to Exercise 2.7.5. Solution to Exercise 2.7.5. We recall that the cells of λ/µ are the cells

(p, q) ∈ {1, 2, 3, ...}2 satisfying µp < q ≤ λp.
(a) In order to solve Exercise 2.7.5(a), we need to prove the following two claims:

(13.67.1) (if λ/µ is a horizontal strip, then every i ∈ {1, 2, 3, ...} satisfies µi ≥ λi+1)

and

(13.67.2) (if every i ∈ {1, 2, 3, ...} satisfies µi ≥ λi+1, then λ/µ is a horizontal strip) .

Proof of (13.67.1): Assume that λ/µ is a horizontal strip. In other words, no two cells of λ/µ lie in the
same column.

Let i ∈ {1, 2, 3, ...}. Assume (for the sake of contradiction) that µi < λi+1. Hence, λi+1 > µi ≥ 0. Also,
µ ⊆ λ yields µi ≤ λi. Hence, µi+1 ≤ µi < λi+1. Now, (i, λi+1) is a cell of λ/µ (since µi < λi+1 ≤ λi). Also,
(i+ 1, λi+1) is a cell of λ/µ (since µi+1 < λi+1 ≤ λi+1). Thus, (i, λi+1) and (i+ 1, λi+1) are two cells of
λ/µ lying in the same column. This contradicts the fact that no two cells of λ/µ lie in the same column.
This contradiction shows that our assumption (that µi < λi+1) was wrong. Hence, µi ≥ λi+1. This proves
(13.67.1).

Proof of (13.67.2): Assume that every i ∈ {1, 2, 3, ...} satisfies µi ≥ λi+1.
Now, let us (for the sake of contradiction) assume that there exist two distinct cells of λ/µ which lie in

the same column. Let c and d be two such cells. Thus, c and d are two distinct cells of λ/µ which lie in the
same column.

Write c and d in the forms c = (pc, qc) and d = (pd, qd) for some positive integers pc, qc, pd, qd. We have
µpc < qc ≤ λpc (since (pc, qc) = c is a cell of λ/µ) and µpd < qd ≤ λpd (similarly). The cells c and d lie in the
same column; in other words, qc = qd (because the cell c = (pc, qc) lies in column qc, and the cell d = (pd, qd)
lies in column qd).

Our situation so far is symmetric with respect to interchanging c with d. Hence, we can WLOG assume
that pc ≤ pd (because otherwise, we can switch c with d). Assume this.

If we had pc = pd, then we would have c =

 pc︸︷︷︸
=pd

, qc︸︷︷︸
=qd

 = (pd, qd) = d, which would contradict the fact

that c and d are distinct. Hence, we cannot have pc = pd. Thus, we have pc 6= pd. Combined with pc ≤ pd,
this yields pc < pd. Thus, pc ≤ pd − 1 (since pc and pd are integers), so that pc + 1 ≤ pd.

Since λ is a partition, we have λu ≥ λv for any positive integers u and v satisfying u ≤ v. Applying this
to u = pc + 1 and v = pd, we obtain λpc+1 ≥ λpd (since pc + 1 ≤ pd). But recall that every i ∈ {1, 2, 3, ...}
satisfies µi ≥ λi+1. Applying this to i = pc, we obtain µpc ≥ λpc+1. Now, recall that µpc < qc, so that
qc > µpc ≥ λpc+1 ≥ λpd ≥ qd (since qd ≤ λpd). This contradicts qc = qd. This contradiction shows that our
assumption (that there exist two distinct cells of λ/µ which lie in the same column) was wrong. Hence, no
two cells of λ/µ lie in the same column. In other words, λ/µ is a horizontal strip. This proves (13.67.2).

Now, both (13.67.1) and (13.67.2) are proven. Thus, Exercise 2.7.5(a) is solved.
(b) We have the following equivalence of statements:

(λ/µ is a vertical strip)

⇐⇒ (no two cells of λ/µ lie in the same row) (by the definition of a “vertical strip”)

⇐⇒ (for every i ∈ {1, 2, 3, . . .} , no two cells of λ/µ lie in row i)

⇐⇒

for every i ∈ {1, 2, 3, . . .} , the number of cells of λ/µ in row i︸ ︷︷ ︸
=λi−µi

is ≤ 1


⇐⇒ (for every i ∈ {1, 2, 3, . . .} , we have λi − µi ≤ 1)

⇐⇒ (for every i ∈ {1, 2, 3, . . .} , we have λi ≤ µi + 1) .

This solves Exercise 2.7.5(b).
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13.68. Solution to Exercise 2.7.6. Solution to Exercise 2.7.6. (a) We use the notation f (a1, a2, . . . , ak)
defined in Exercise 2.1.2 whenever a1, a2, . . . , ak are elements of a commutative k-algebra A and f ∈ R (x).
In particular, f (1) is a well-defined element of k for every f ∈ R (x). Every f ∈ R (x) satisfies

(13.68.1) f (1) = (the result of substituting 1, 0, 0, 0, ... for x1, x2, x3, ... in f) .

We have sλ/µ =
∑
T xcont(T ), where T runs through all column-strict tableaux of shape λ/µ. In other

words, sλ/µ =
∑

T is a column-strict
tableau of shape λ/µ

xcont(T ). Hence,

sλ/µ (1) =

 ∑
T is a column-strict
tableau of shape λ/µ

xcont(T )

 (1)

=

the result of substituting 1, 0, 0, 0, ... for x1, x2, x3, ... in
∑

T is a column-strict
tableau of shape λ/µ

xcont(T )

(13.68.2)

(by (13.68.1)).
But the substitution 1, 0, 0, 0, ... for x1, x2, x3, ... has the following effect on any given monomial xα:

• if none of the indeterminates x2, x3, x4, ... occur in this monomial xα, then the monomial xα goes to
1;

• otherwise, the monomial xα goes to 0.

Hence, applying this substitution to
∑

T is a column-strict
tableau of shape λ/µ

xcont(T ) yields a sum of 1’s over all column-strict

tableaux T of shape λ/µ having the property that none of the indeterminates x2, x3, x4, ... occur in this
monomial xcont(T ). In other words,the result of substituting 1, 0, 0, 0, ... for x1, x2, x3, ... in

∑
T is a column-strict
tableau of shape λ/µ

xcont(T )


=

∑
T is a column-strict tableau of shape λ/µ;

none of the indeterminates x2,x3,x4,...

occur in the monomial xcont(T )

1.

Therefore, (13.68.2) rewrites as

sλ/µ (1) =
∑

T is a column-strict tableau of shape λ/µ;
none of the indeterminates x2,x3,x4,...

occur in the monomial xcont(T )

1.

This rewrites as

(13.68.3) sλ/µ (1) =
∑

T is a column-strict tableau of shape λ/µ;
all entries of T are 1

1

(because for a column-strict tableau T , saying that none of the indeterminates x2, x3, x4, ... occur in the
monomial xcont(T ) is equivalent to saying that all entries of T are 1).

In order to solve Exercise 2.7.6(a), we need to prove the following two statements:

(13.68.4)
(
if λ/µ is a horizontal n-strip, then

(
hn, sλ/µ

)
= 1
)

and

(13.68.5)
(
if λ/µ is not a horizontal n-strip, then

(
hn, sλ/µ

)
= 0
)
.
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Proof of (13.68.4): Assume that λ/µ is a horizontal n-strip. Thus, in particular, we have |λ/µ| = n.
Hence, sλ/µ ∈ Λ|λ/µ| = Λn (since |λ/µ| = n). Thus, Exercise 2.5.13(b) (applied to f = sλ/µ) yields

(13.68.6)
(
hn, sλ/µ

)
= sλ/µ (1) =

∑
T is a column-strict tableau of shape λ/µ;

all entries of T are 1

1 (by (13.68.3)) .

Recall that λ/µ is a horizontal n-strip, therefore a horizontal strip. In other words, no two cells of λ/µ
lie in the same column. Hence, if we fill every cell of the Ferrers diagram of λ/µ with a 1, we obtain a
column-strict tableau T of shape λ/µ having the property that all entries of T are 1. Therefore, such a
tableau exists. It is also clearly unique (because requiring that all entries be 1 does not leave any freedom
in choosing the entries). Therefore, there exists exactly one such tableau. This shows that the sum on the
right hand side of (13.68.6) has exactly one addend, and therefore equals 1 (since the addend is 1). Hence,
(13.68.6) rewrites as

(
hn, sλ/µ

)
= 1, and thus (13.68.4) is proven.

Proof of (13.68.5): Assume that λ/µ is not a horizontal n-strip. We need to show that
(
hn, sλ/µ

)
= 0.

If |λ/µ| 6= n, then Exercise 2.5.13(a) (applied to m = |λ/µ|, f = hn and g = sλ/µ) yields
(
hn, sλ/µ

)
= 0

(since hn ∈ Λn and sλ/µ ∈ Λ|λ/µ|). Thus,
(
hn, sλ/µ

)
= 0 is proven if |λ/µ| 6= n. Hence, for the rest of the

proof of
(
hn, sλ/µ

)
= 0, we WLOG assume that we don’t have |λ/µ| 6= n. Thus, |λ/µ| = n. We can thus

prove (13.68.6) just as we did before (in the proof of (13.68.4)).
But if λ/µ were a horizontal strip, then λ/µ would be a horizontal n-strip (since |λ/µ| = n), which would

contradict our assumption that λ/µ is not a horizontal n-strip. Hence, λ/µ cannot be a horizontal strip.
As a consequence, there must be two cells of λ/µ which lie in the same column. If T is a column-strict
tableau of shape λ/µ, then these two cells must be filled with two different entries in T (because the entries
of a column-strict tableau are strictly increasing top-to-bottom down columns, and hence all entries in any
given column must be distinct), which is impossible if all entries of T are to be 1. Therefore, there exists
no column-strict tableau T of shape λ/µ such that all entries of T are 1. Hence, the sum on the right hand
side of (13.68.6) is empty, and therefore equals 0. So (13.68.6) rewrites as

(
hn, sλ/µ

)
= 0, and thus (13.68.5)

is proven.
Now that both (13.68.4) and (13.68.5) are proven, Exercise 2.7.6(a) is solved.
(b) Notice first that

(13.68.7)
(
hn, sλ/µ

)
= cλµ,(n) for every n ∈ N, λ ∈ Par and µ ∈ Par .

604

Recall that any two partitions µ and ν satisfy

(13.68.8) sµsν =
∑
λ∈Par

cλµ,νsλ =
∑
τ∈Par

cτµ,νsτ

(here, we renamed the summation index λ as τ).

604Proof. Let n ∈ N, λ ∈ Par and µ ∈ Par. From Remark 2.5.9, we know that sλ/µ =
∑
ν c
λ
µ,νsν , where the sum is over

all ν ∈ Par. Thus, for every given partition τ , the sτ -coordinate of sλ/µ in the basis (sν)ν∈Par of Λ equals cλµ,τ . But since

(sν)ν∈Par is an orthonormal basis of the k-module Λ with respect to the Hall inner product, this sτ -coordinate also equals(
sτ , sλ/µ

)
. Comparing these two expressions for this sτ -coordinate, we obtain cλµ,τ =

(
sτ , sλ/µ

)
. Applying this to τ = (n), we

obtain cλ
µ,(n)

=

s(n)︸︷︷︸
=hn

, sλ/µ

 =
(
hn, sλ/µ

)
, which proves (13.68.7).
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Let n ∈ N. Let λ be a partition. We have s(n) = hn, so that hn = s(n). Now,

sλ hn︸︷︷︸
=s(n)

= sλs(n) =
∑
τ∈Par

cτλ,(n)︸ ︷︷ ︸
=(hn,sτ/λ)

(because (13.68.7) (applied to τ
and λ instead of λ and µ) yields

(hn,sτ/λ)=cτλ,(n))

sτ (by (13.68.8), applied to µ = λ and ν = (n))

=
∑
τ∈Par

(
hn, sτ/λ

)
sτ =

∑
τ∈Par;
λ⊆τ

(
hn, sτ/λ

)
sτ


here, we have ridden the sum of all its addends in which λ * τ ;

these addends were zero (because if λ * τ , then

hn, sτ/λ︸︷︷︸
=0

 sτ = 0)


=

∑
τ∈Par;
λ⊆τ ;

τ/λ is a horizontal n-strip

(
hn, sτ/λ

)︸ ︷︷ ︸
=1

(by (13.68.4), applied
to τ and λ instead of λ and µ)

sτ +
∑
τ∈Par;
λ⊆τ ;

τ/λ is not a horizontal n-strip

(
hn, sτ/λ

)︸ ︷︷ ︸
=0

(by (13.68.5), applied
to τ and λ instead of λ and µ)

sτ

=
∑
τ∈Par;
λ⊆τ ;

τ/λ is a horizontal n-strip

sτ +
∑
τ∈Par;
λ⊆τ ;

τ/λ is not a horizontal n-strip

0sτ

︸ ︷︷ ︸
=0

=
∑
τ∈Par;
λ⊆τ ;

τ/λ is a horizontal n-strip

sτ =
∑

λ+∈Par;
λ⊆λ+;

λ+/λ is a horizontal n-strip

sλ+

(
here, we renamed the summation index τ as λ+

)
=

∑
λ+:λ+/λ is a

horizontal n-strip

sλ+ .

This proves (2.7.1). Thus, Exercise 2.7.6(b) is solved.

13.69. Solution to Exercise 2.7.7. Solution to Exercise 2.7.7. Let us use the notations introduced in the
proof of Theorem 2.5.1. In particular, we use the words “letter” and “positive integer” as synonyms.

We shall use the following lemma:

Lemma 13.69.1. Let P be a column-strict tableau, and let j and j′ be two letters. Applying RS-insertion
to the tableau P and the letter j yields a new column-strict tableau P ′ and a corner cell c. Applying
RS-insertion to the tableau P ′ and the letter j′ yields a new column-strict tableau P ′′ and a corner cell c′.

(a) Assume that j ≤ j′. Then, the cell c′ is in the same row as the cell c or in a row further up; it is
also in a column further right than c.

(b) Assume instead that j > j′. Then, the cell c′ is in a row further down than the cell c; it is also in
the same column as c or in a column further left.

Lemma 13.69.1 is part of the Row bumping lemma that appeared in our proof of Theorem 2.5.1.
We shall first concentrate on proving (2.7.1).

Alternative proof of (2.7.1). Let λ be a partition, and let n ∈ N. The definition of sλ yields

sλ =
∑

T is a column-strict
tableau of shape λ

xcont(T ).
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The definition of hn yields

(13.69.1) hn =
∑

i1≤i2≤···≤in

xi1xi2 · · ·xin .

Multiplying these two identities, we obtain

sλhn =
∑

T is a column-strict
tableau of shape λ

xcont(T )
∑

i1≤i2≤···≤in

xi1xi2 · · ·xin

=
∑

(T,(i1,i2,...,in))∈A

xcont(T )xi1xi2 · · ·xin ,(13.69.2)

where A is the set of all pairs (T, (i1, i2, . . . , in)) of a column-strict tableau T of shape λ and an n-tuple
(i1, i2, . . . , in) of positive integers satisfying i1 ≤ i2 ≤ · · · ≤ in. Consider this set A.

On the other hand, every partition λ+ satisfies

sλ+ =
∑

T is a column-strict
tableau of shape λ+

xcont(T ) (by the definition of sλ+)

=
∑

S is a column-strict
tableau of shape λ+

xcont(S) (here, we renamed the summation index T as S) .(13.69.3)

Hence, ∑
λ+:λ+/λ is a

horizontal n-strip

sλ+︸︷︷︸
=

∑
S is a column-strict
tableau of shape λ+

xcont(S)

(by (13.69.3))

=
∑

λ+:λ+/λ is a
horizontal n-strip

∑
S is a column-strict
tableau of shape λ+

xcont(S)

=
∑

(λ+,S)∈B

xcont(S),(13.69.4)

where B is the set of all pairs (λ+, S) of a partition λ+ and a column-strict tableau S of shape λ+ such that
λ+/λ is a horizontal n-strip. Consider this set B.

We shall now prove that there exists a bijection i : A→ B which has the property that

(13.69.5) xcont(T )xi1xi2 · · ·xin = xcont(S)

whenever some (T, (i1, i2, . . . , in)) ∈ A and (λ+, S) ∈ B satisfy i ((T, (i1, i2, . . . , in))) = (λ+, S). Once this
will be proven, it will immediately follow that

∑
(T,(i1,i2,...,in))∈A xcont(T )xi1xi2 · · ·xin =

∑
(λ+,S)∈B xcont(S),

and therefore (13.69.2) will become

sλhn =
∑

(T,(i1,i2,...,in))∈A

xcont(T )xi1xi2 · · ·xin =
∑

(λ+,S)∈B

xcont(S) =
∑

λ+:λ+/λ is a
horizontal n-strip

sλ+ (by (13.69.4)) ,

and thus (2.7.1) will be proven. Hence, in order to complete the proof of (2.7.1), it is enough to prove that
there exists a bijection i : A→ B which has the property (13.69.5).

We construct such a bijection i : A → B explicitly. Namely, for every (T, (i1, i2, . . . , in)) ∈ A, we define
i ((T, (i1, i2, . . . , in))) as follows: Construct a sequence (T0, T1, . . . , Tn) of column-strict tableaux recursively:
We set T0 = T . For every k ∈ {1, 2, . . . , n}, if Tk−1 is already defined, we let Tk be the column-strict tableau
obtained by applying RS-insertion to the tableau Tk−1 and the letter ik. (This RS-insertion also returns a
corner cell, but we do not care about it.) Thus, a sequence (T0, T1, . . . , Tn) is defined. We now set S = Tn,
and let λ+ be the shape of S. It is easy to see that λ+/λ is a horizontal n-strip605. Thus, (λ+, S) ∈ B. Now,

605Proof. Notice that i1 ≤ i2 ≤ · · · ≤ in (since (T, (i1, i2, . . . , in)) ∈ A). The tableau S has been obtained from T by

applying RS-insertion n times, using the letters i1, i2, . . . , in in this order. Each time that we have applied RS-insertion, the
shape of our tableau has grown by a new cell. According to Lemma 13.69.1(a), each of these cells (except for the first one) lies

in a column further right than the previous one (because the letters i1, i2, . . . , in that we inserted satisfy i1 ≤ i2 ≤ · · · ≤ in).
Therefore, no two of these cells lie in the same column. Since these cells are precisely the cells of λ+/λ (because λ+ is the
shape of S, while λ is the shape of T ), this means that no two cells of λ+/λ lie in the same column. In other words, λ+/λ is a
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set i ((T, (i1, i2, . . . , in))) = (λ+, S). We have therefore defined a map i : A → B. It remains to prove that
this map i is a bijection and satisfies (13.69.5).

Proving that the map i satisfies (13.69.5) is easy606. It remains to show that i is a bijection. We will
achieve this by constructing an inverse map.

Indeed, let us define a map r : B → A. For every (λ+, S) ∈ B, we define r ((λ+, S)) as follows: We
know that λ+/λ is a horizontal n-strip (since (λ+, S) ∈ B). We can thus uniquely label the n cells of λ+/λ
by c1, c2, . . . , cn from right to left. Consider these cells c1, c2, . . . , cn. Construct a sequence (S0, S1, . . . , Sn)
of column-strict tableaux and a sequence (j1, j2, . . . , jn) of positive integers recursively: We set S0 = S.
For every k ∈ {1, 2, . . . , n}, if Sk−1 is already defined, we apply reverse bumping to the tableau Sk−1 and
its corner cell ck. We denote the resulting tableau by Sk, and the resulting letter by jk. 607 Thus,
two sequences (S0, S1, . . . , Sn) and (j1, j2, . . . , jn) are defined. We now set T = Sn and (i1, i2, . . . , in) =
(jn, jn−1, . . . , j1). So the tableau T is obtained from S by successively applying reverse bumping using

horizontal strip. Since λ+/λ has precisely n cells (because we have applied RS-insertion exactly n times, gaining precisely one

cell every time), this yields that λ+/λ is a horizontal n-strip, qed.
606Proof. Assume that some (T, (i1, i2, . . . , in)) ∈ A and

(
λ+, S

)
∈ B satisfy i ((T, (i1, i2, . . . , in))) =

(
λ+, S

)
. We need to

show that (13.69.5) holds.
According to the definition of i ((T, (i1, i2, . . . , in))), the tableau S is obtained by successively applying RS-insertion to the

tableau T using the letters i1, i2, . . . , in. But whenever a tableau V results from applying RS-insertion to a column-strict tableau

U and a letter j, the multiset of entries of V is obtained from the multiset of entries of U by tossing in the letter j. Thus, the
multiset of entries of S is obtained from the multiset of entries of T by tossing in the n letters i1, i2, . . . , in (because S is obtained

by successively applying RS-insertion to the tableau T using the letters i1, i2, . . . , in). Hence, xcont(S) = xcont(T )xi1xi2 · · ·xin .

Thus, (13.69.5) is proven.
607In order to verify that this definition makes sense, we need to check that ck is a corner cell of Sk−1 for each k ∈ {1, 2, . . . , n}.

Let us sketch a proof of this fact.
In fact, we shall show a stronger claim:

Claim CC: For each k ∈ {1, 2, . . . , n}, the shape of the tableau Sk−1 is obtained from λ+ by removing the
corner cells c1, c2, . . . , ck−1, and the cell ck is a corner cell of Sk−1.

Proof. We use induction over k.
Induction base: The shape of the tableau S0 is λ+ (since S0 = S has shape λ+), which is clearly the shape obtained from

λ+ by removing the corner cells c1, c2, . . . , c0. Moreover, the cell c1 is the rightmost cell of λ+/λ (since we labelled the cells of

λ+/λ by c1, c2, . . . , cn from right to left), and thus has no cells of λ+ to its right in its row; but it also has no cells of λ+ below
it in its column (since any such cell would have to belong to λ+/λ, but λ+/λ is a horizontal strip and therefore cannot have

two cells in the same column). Thus, c1 is a corner cell of S = S0. Therefore, Claim CC is proven for k = 1. This completes

the induction base.
Induction step: Fix some K ∈ {1, 2, . . . , n− 1}. Assume that Claim CC is proven for k = K. We need to show that Claim

CC holds for k = K + 1.

We know that Claim CC is proven for k = K. In other words, the shape of the tableau SK−1 is obtained from λ+ by
removing the corner cells c1, c2, . . . , cK−1, and the cell cK is a corner cell of SK−1. Now, the shape of the tableau SK is

obtained from the shape of SK−1 by removing the corner cell cK (because SK is obtained by applying reverse bumping to the

tableau SK−1 and its corner cell cK), and thus is obtained from λ+ by removing the corner cells c1, c2, . . . , cK (since the shape
of the tableau SK−1 is obtained from λ+ by removing the corner cells c1, c2, . . . , cK−1). Hence, c1, c2, . . . , cK are not cells of

SK , but cK+1 is a cell of SK (since cK+1 is a cell of λ+/λ, therefore is a cell of λ+, and is not among the K cells c1, c2, . . . , cK
that were removed). We shall now show that the cell cK+1 is a corner cell of SK .

Indeed, assume the contrary. Thus, cK+1 is a cell of SK , but not a corner cell. Hence, there exists a cell d of SK that

is either the bottom neighbor or the right neighbor of cK+1 (that is, it either lies in the same column as cK+1 but one step
further down, or lies in the same row as cK+1 but one step further right). Consider this cell d.

Recall that the cells of λ+/λ have been labelled c1, c2, . . . , cn from right to left. Therefore, the cell cK+1 belongs to λ+/λ.

Hence, cK+1 is not a cell of λ. Therefore, d is not a cell of λ either (since d is either the bottom neighbor or the right neighbor of
cK+1). But d is a cell of SK , thus a cell of λ+ (since the shape of the tableau SK is obtained from λ+ by removing some cells).

Hence, the cell d must also belong to λ+/λ (since d is not a cell of λ). If d was the bottom neighbor of cK+1, we would thus

conclude that cK+1 and d are two cells of λ+/λ that lie in the same column; but this is impossible (since λ+/λ is a horizontal
strip and thus cannot have two cells in the same column). Hence, d cannot be the bottom neighbor of cK+1. Thus, d must

be the right neighbor of cK+1 (since d is either the bottom neighbor or the right neighbor of cK+1). Thus, d lies further right

than cK+1. But all cells of λ+/λ that lie further right than cK+1 are c1, c2, . . . , cK (since the cells of λ+/λ have been labelled
c1, c2, . . . , cn from right to left). Hence, any cell of λ+/λ that lies further right than cK+1 must be one of c1, c2, . . . , cK . Thus,

d must be one of c1, c2, . . . , cK (since d is a cell of λ+/λ that lies further right than cK+1). Hence, d cannot be a cell of SK
(since c1, c2, . . . , cK are not cells of SK). This contradicts the fact that d is a cell of SK .

This contradiction shows that our assumption was wrong. Hence, the cell cK+1 is a corner cell of SK .

Thus we have shown that the shape of the tableau SK is obtained from λ+ by removing the corner cells c1, c2, . . . , cK , and

the cell cK+1 is a corner cell of SK . This proves Claim CC for k = K + 1. Thus, the induction step is finished. Claim CC is

thus proven. We hence conclude that our definition makes sense.
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the corner cells c1, c2, . . . , cn (in this order), and j1, j2, . . . , jn are the letters that are obtained from the
reverse-bumping procedure. Since reverse bumping is the inverse map to RS-insertion, this yields that we
can obtain S back from T by successively applying RS-insertion using the letters jn, jn−1, . . . , j1 (that is,
the letters i1, i2, . . . , in), and that these successive RS-insertion steps recover the corner cells cn, cn−1, . . . , c1
in this order. Now, it is easy to see that the tableau T has shape λ (because in passing from S to T , we
lost the corner cells cn, cn−1, . . . , c1, which are exactly the cells of λ+/λ) and the letters i1, i2, . . . , in satisfy
i1 ≤ i2 ≤ · · · ≤ in

608. Hence, (T, (i1, i2, . . . , in)) ∈ A. We set r ((λ+, S)) = (T, (i1, i2, . . . , in)). The
map r : B → A is thus defined. It is now easy to prove that the maps i and r are mutually inverse (since
RS-insertion and reverse bumping are inverse maps), and thus i is a bijection. Thus, there exists a bijection
i : A→ B which has the property (13.69.5). This completes our proof of (2.7.1). �

The proof of (2.7.2) is almost entirely analogous. We give it for the sake of completeness (but most of it
is copypasted material from the proof above).

Alternative proof of (2.7.2). Let λ be a partition, and let n ∈ N. The definition of sλ yields

sλ =
∑

T is a column-strict
tableau of shape λ

xcont(T ).

The definition of hn yields

(13.69.6) en =
∑

i1<i2<···<in

xi1xi2 · · ·xin =
∑

in>in−1>···>i1

xinxin−1
· · ·xi1 =

∑
i1>i2>···>in

xi1xi2 · · ·xin

(here, we substituted (i1, i2, . . . , in) for (in, in−1, . . . , i1) in the sum). Multiplying these two identities, we
obtain

sλen =
∑

T is a column-strict
tableau of shape λ

xcont(T )
∑

i1>i2>···>in

xi1xi2 · · ·xin

=
∑

(T,(i1,i2,...,in))∈A

xcont(T )xi1xi2 · · ·xin ,(13.69.7)

where A is the set of all pairs (T, (i1, i2, . . . , in)) of a column-strict tableau T of shape λ and an n-tuple
(i1, i2, . . . , in) of positive integers satisfying i1 > i2 > · · · > in. Consider this set A.

On the other hand, every partition λ+ satisfies

sλ+ =
∑

T is a column-strict
tableau of shape λ+

xcont(T ) (by the definition of sλ+)

=
∑

S is a column-strict
tableau of shape λ+

xcont(S) (here, we renamed the summation index T as S) .(13.69.8)

608Proof. Assume the contrary. Then, we don’t have i1 ≤ i2 ≤ · · · ≤ in. In other words, we don’t have jn ≤ jn−1 ≤ · · · ≤ j1
(since (i1, i2, . . . , in) = (jn, jn−1, . . . , j1)). Hence, there exists a k ∈ {2, 3, . . . , n} such that jk > jk−1. Consider this k. Recall

that the tableau Sk and the letter jk were obtained by applying reverse bumping to the tableau Sk−1 and its corner cell ck,
while the tableau Sk−1 and the letter jk−1 were obtained by applying reverse bumping to the tableau Sk−2 and its corner cell
ck−1. Since reverse bumping is the inverse map to RS-insertion, this entails that conversely, the tableau Sk−1 and its corner

cell ck are obtained by applying RS-insertion to the tableau Sk and the letter jk, and the tableau Sk−2 and its corner cell ck−1

are obtained by applying RS-insertion to the tableau Sk−1 and the letter jk−1. Hence, Lemma 13.69.1(b) (applied to Sk, jk,
jk−1, Sk−1, ck, Sk−2 and ck−1 instead of P , j, j′, P ′, c, P ′′ and c′) yields that the cell ck−1 is in the same column as ck or
in a column further left. But this contradicts the fact that ck−1 lies in a column further right than ck (since the cells of λ+/λ

were labelled by c1, c2, . . . , cn from right to left, and lie in different columns). This contradiction completes our proof.
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Hence, ∑
λ+:λ+/λ is a
vertical n-strip

sλ+︸︷︷︸
=

∑
S is a column-strict
tableau of shape λ+

xcont(S)

(by (13.69.8))

=
∑

λ+:λ+/λ is a
vertical n-strip

∑
S is a column-strict
tableau of shape λ+

xcont(S)

=
∑

(λ+,S)∈B

xcont(S),(13.69.9)

where B is the set of all pairs (λ+, S) of a partition λ+ and a column-strict tableau S of shape λ+ such that
λ+/λ is a vertical n-strip. Consider this set B.

We shall now prove that there exists a bijection i : A→ B which has the property that

(13.69.10) xcont(T )xi1xi2 · · ·xin = xcont(S)

whenever some (T, (i1, i2, . . . , in)) ∈ A and (λ+, S) ∈ B satisfy i ((T, (i1, i2, . . . , in))) = (λ+, S). Once this
will be proven, it will immediately follow that

∑
(T,(i1,i2,...,in))∈A xcont(T )xi1xi2 · · ·xin =

∑
(λ+,S)∈B xcont(S),

and therefore (13.69.7) will become

sλen =
∑

(T,(i1,i2,...,in))∈A

xcont(T )xi1xi2 · · ·xin =
∑

(λ+,S)∈B

xcont(S) =
∑

λ+:λ+/λ is a
vertical n-strip

sλ+ (by (13.69.9)) ,

and thus (2.7.2) will be proven. Hence, in order to complete the proof of (2.7.2), it is enough to prove that
there exists a bijection i : A→ B which has the property (13.69.10).

We construct such a bijection i : A → B explicitly. Namely, for every (T, (i1, i2, . . . , in)) ∈ A, we define
i ((T, (i1, i2, . . . , in))) as follows: Construct a sequence (T0, T1, . . . , Tn) of column-strict tableaux recursively:
We set T0 = T . For every k ∈ {1, 2, . . . , n}, if Tk−1 is already defined, we let Tk be the column-strict tableau
obtained by applying RS-insertion to the tableau Tk−1 and the letter ik. (This RS-insertion also returns a
corner cell, but we do not care about it.) Thus, a sequence (T0, T1, . . . , Tn) is defined. We now set S = Tn,
and let λ+ be the shape of S. It is easy to see that λ+/λ is a vertical n-strip609. Thus, (λ+, S) ∈ B. Now,
set i ((T, (i1, i2, . . . , in))) = (λ+, S). We have therefore defined a map i : A → B. It remains to prove that
this map i is a bijection and satisfies (13.69.10).

Proving that the map i satisfies (13.69.10) is easy610. It remains to show that i is a bijection. We will
achieve this by constructing an inverse map.

Indeed, let us define a map r : B → A. For every (λ+, S) ∈ B, we define r ((λ+, S)) as follows: We
know that λ+/λ is a vertical n-strip (since (λ+, S) ∈ B). We can thus uniquely label the n cells of λ+/λ by
c1, c2, . . . , cn from bottom to top. Consider these cells c1, c2, . . . , cn. Construct a sequence (S0, S1, . . . , Sn)
of column-strict tableaux and a sequence (j1, j2, . . . , jn) of positive integers recursively: We set S0 = S.
For every k ∈ {1, 2, . . . , n}, if Sk−1 is already defined, we apply reverse bumping to the tableau Sk−1 and
its corner cell ck. We denote the resulting tableau by Sk, and the resulting letter by jk. 611 Thus,

609Proof. Notice that i1 > i2 > · · · > in (since (T, (i1, i2, . . . , in)) ∈ A). The tableau S has been obtained from T by
applying RS-insertion n times, using the letters i1, i2, . . . , in in this order. Each time that we have applied RS-insertion, the
shape of our tableau has grown by a new cell. According to Lemma 13.69.1(b), each of these cells (except for the first one)

lies in a row further down than the previous one (because the letters i1, i2, . . . , in that we inserted satisfy i1 > i2 > · · · > in).
Therefore, no two of these cells lie in the same row. Since these cells are precisely the cells of λ+/λ (because λ+ is the shape

of S, while λ is the shape of T ), this means that no two cells of λ+/λ lie in the same row. In other words, λ+/λ is a vertical
strip. Since λ+/λ has precisely n cells (because we have applied RS-insertion exactly n times, gaining precisely one cell every
time), this yields that λ+/λ is a vertical n-strip, qed.

610Proof. Assume that some (T, (i1, i2, . . . , in)) ∈ A and
(
λ+, S

)
∈ B satisfy i ((T, (i1, i2, . . . , in))) =

(
λ+, S

)
. We need to

show that (13.69.10) holds.
According to the definition of i ((T, (i1, i2, . . . , in))), the tableau S is obtained by successively applying RS-insertion to the

tableau T using the letters i1, i2, . . . , in. But whenever a tableau V results from applying RS-insertion to a column-strict tableau
U and a letter j, the multiset of entries of V is obtained from the multiset of entries of U by tossing in the letter j. Thus, the

multiset of entries of S is obtained from the multiset of entries of T by tossing in the n letters i1, i2, . . . , in (because S is obtained

by successively applying RS-insertion to the tableau T using the letters i1, i2, . . . , in). Hence, xcont(S) = xcont(T )xi1xi2 · · ·xin .

Thus, (13.69.10) is proven.
611One again has to check that this is well-defined. The proof is very similar to the analogous argument in our proof of

(2.7.1), and is left to the reader.
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two sequences (S0, S1, . . . , Sn) and (j1, j2, . . . , jn) are defined. We now set T = Sn and (i1, i2, . . . , in) =
(jn, jn−1, . . . , j1). So the tableau T is obtained from S by successively applying reverse bumping using
the corner cells c1, c2, . . . , cn (in this order), and j1, j2, . . . , jn are the letters that are obtained from the
reverse-bumping procedure. Since reverse bumping is the inverse map to RS-insertion, this yields that we
can obtain S back from T by successively applying RS-insertion using the letters jn, jn−1, . . . , j1 (that is,
the letters i1, i2, . . . , in), and that these successive RS-insertion steps recover the corner cells cn, cn−1, . . . , c1
in this order. Now, it is easy to see that the tableau T has shape λ (because in passing from S to T , we
lost the corner cells cn, cn−1, . . . , c1, which are exactly the cells of λ+/λ) and the letters i1, i2, . . . , in satisfy
i1 > i2 > · · · > in

612. Hence, (T, (i1, i2, . . . , in)) ∈ A. We set r ((λ+, S)) = (T, (i1, i2, . . . , in)). The
map r : B → A is thus defined. It is now easy to prove that the maps i and r are mutually inverse (since
RS-insertion and reverse bumping are inverse maps), and thus i is a bijection. Thus, there exists a bijection
i : A→ B which has the property (13.69.10). This completes our proof of (2.7.2). �

Now, both (2.7.1) and (2.7.2) are proven. Hence, Theorem 2.7.1 is proven again.

13.70. Solution to Exercise 2.7.8. Solution to Exercise 2.7.8. Before we start solving any specific part
of this exercise, let us state some general properties of determinants (and prove some of them):

• Every m ∈ N and every matrix (αi,j)i,j=1,2,...,m ∈ A
m×m satisfy

(13.70.1) det
(

(αi,j)i,j=1,2,...,m

)
=
∑
σ∈Sm

(−1)
σ
m∏
i=1

αi,σ(i).

(This is simply the explicit formula for the determinant of a matrix as a sum over permutations.)
• If a positive integer m and a matrix (αi,j)i,j=1,2,...,m ∈ A

m×m are such that every j ∈ {1, 2, ...,m− 1}
satisfies αm,j = 0, then

(13.70.2) det
(

(αi,j)i,j=1,2,...,m

)
= αm,m · det

(
(αi,j)i,j=1,2,...,m−1

)
.

613

• Every positive integer m and every matrix (αi,j)i,j=1,2,...,m ∈ A
m×m satisfy

(13.70.3) det
(

(αi,jαm,m − αi,mαm,j)i,j=1,2,...,m−1

)
= αm−2

m,m · det
(

(αi,j)i,j=1,2,...,m

)
if αm,m is an invertible element of A.

Proof of (13.70.3): Let m be a positive integer. Let (αi,j)i,j=1,2,...,m ∈ A
m×m be a matrix such

that αm,m is an invertible element of A.

612Proof. Assume the contrary. Then, we don’t have i1 > i2 > · · · > in. In other words, we don’t have jn > jn−1 > · · · > j1
(since (i1, i2, . . . , in) = (jn, jn−1, . . . , j1)). Hence, there exists a k ∈ {2, 3, . . . , n} such that jk ≤ jk−1. Consider this k. Recall

that the tableau Sk and the letter jk were obtained by applying reverse bumping to the tableau Sk−1 and its corner cell ck,
while the tableau Sk−1 and the letter jk−1 were obtained by applying reverse bumping to the tableau Sk−2 and its corner cell
ck−1. Since reverse bumping is the inverse map to RS-insertion, this entails that conversely, the tableau Sk−1 and its corner

cell ck are obtained by applying RS-insertion to the tableau Sk and the letter jk, and the tableau Sk−2 and its corner cell ck−1

are obtained by applying RS-insertion to the tableau Sk−1 and the letter jk−1. Hence, Lemma 13.69.1(a) (applied to Sk, jk,

jk−1, Sk−1, ck, Sk−2 and ck−1 instead of P , j, j′, P ′, c, P ′′ and c′) yields that the cell ck−1 is in the same row as ck or in a

row further up. But this contradicts the fact that ck−1 lies in a row further down than ck (since the cells of λ+/λ were labelled

by c1, c2, . . . , cn from bottom to top, and lie in different rows). This contradiction completes our proof.
613In fact, the condition that every j ∈ {1, 2, ...,m− 1} satisfies αm,j = 0 means that all entries of the m-th row of the

m × m-matrix (αi,j)i,j=1,2,...,m are zeroes apart from (possibly) the last entry. Hence, applying Laplace expansion to the

determinant det
(

(αi,j)i,j=1,2,...,m

)
of this matrix yields a sum of products, all of which are zero apart from

αm,m ·
(

the (m,m) -th cofactor of the matrix (αi,j)i,j=1,2,...,m

)
︸ ︷︷ ︸

=(−1)m+m·det
(
(αi,j)i,j=1,2,...,m−1

)
=det

(
(αi,j)i,j=1,2,...,m−1

)
= αm,m · det

(
(αi,j)i,j=1,2,...,m−1

)
.
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For every (i, j) ∈ {1, 2, ...,m}2, define an element βi,j of A by

(13.70.4) βi,j =

{
αm,m, if i = j;

−αm,j , if i = m and j 6= m
.

Then, the matrix (βi,j)i,j=1,2,...,m is lower-triangular. Since the determinant of a lower-triangular

matrix equals the product of its diagonal entries, we thus have

(13.70.5) det
(

(βi,j)i,j=1,2,...,m

)
=

m∏
i=1

βi,i︸︷︷︸
=αm,m
(this is

easily seen)

=

m∏
i=1

αm,m = αmm,m.

But since the determinant of a product of two square matrices equals the product of their deter-
minants, we have

det
(

(αi,j)i,j=1,2,...,m · (βi,j)i,j=1,2,...,m

)
= det

(
(αi,j)i,j=1,2,...,m

)
· det

(
(βi,j)i,j=1,2,...,m

)
︸ ︷︷ ︸

=αmm,m
(by (13.70.5))

= det
(

(αi,j)i,j=1,2,...,m

)
· αmm,m.

Since (αi,j)i,j=1,2,...,m · (βi,j)i,j=1,2,...,m = (
∑m
k=1 αi,kβk,j)i,j=1,2,...,m

, this rewrites as

(13.70.6) det

( m∑
k=1

αi,kβk,j

)
i,j=1,2,...,m

 = det
(

(αi,j)i,j=1,2,...,m

)
· αmm,m.

Now, for every (i, j) ∈ {1, 2, ...,m}2, define an element γi,j of A by

(13.70.7) γi,j =

m∑
k=1

αi,kβk,j .

Then,

(13.70.8) det
(

(γi,j)i,j=1,2,...,m

)
= det

( m∑
k=1

αi,kβk,j

)
i,j=1,2,...,m

 = det
(

(αi,j)i,j=1,2,...,m

)
· αmm,m

(by (13.70.6)).
However, for every (i, j), we can simplify the expression for γi,j given by (13.70.7) by plugging

in the definition of βk,j (which guarantees that no more than two of the terms of the sum will be
nonzero). We obtain

(13.70.9) γi,j =


αi,jαm,m − αi,mαm,j , if i 6= m and j 6= m;

0, if i = m and j 6= m;

αi,mαm,m, if j = m

.

In particular, this shows that every j ∈ {1, 2, ...,m− 1} satisfies γm,j = 0. Hence, (13.70.2) (applied
to γi,j instead of αi,j) yields

det
(

(γi,j)i,j=1,2,...,m

)
= γm,m︸ ︷︷ ︸

=αm,mαm,m
(by (13.70.9), since m=m)

·det


 γi,j︸︷︷︸

=αi,jαm,m−αi,mαm,j
(by (13.70.9), since i 6=m and j 6=m)


i,j=1,2,...,m−1


= αm,mαm,m · det

(
(αi,jαm,m − αi,mαm,j)i,j=1,2,...,m−1

)
= α2

m,m · det
(

(αi,jαm,m − αi,mαm,j)i,j=1,2,...,m−1

)
.
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Compared with (13.70.8), this yields

α2
m,m · det

(
(αi,jαm,m − αi,mαm,j)i,j=1,2,...,m−1

)
= det

(
(αi,j)i,j=1,2,...,m

)
· αmm,m.

We can divide both sides of this equality by α2
m,m (since αm,m is invertible in A), and thus obtain

det
(

(αi,jαm,m − αi,mαm,j)i,j=1,2,...,m−1

)
= αm−2

m,m · det
(

(αi,j)i,j=1,2,...,m

)
.

This proves (13.70.3).
[Remark: The equality (13.70.3) holds even without requiring that αm,m be invertible, if we have

m ≥ 2 (of course, if m is not ≥ 2, then the αm−2
m,m on the right hand side of (13.70.3) does not

make sense unless αm,m is invertible). There are several ways to see why this is so. One of these
ways proceeds as follows: First of all, one should notice that our above proof of (13.70.3) works
without requiring that αm,m be invertible, as long as αm,m is a non-zero-divisor614 in A and we have
m ≥ 2. However, for any fixed m ≥ 2, the equality (13.70.3) is a polynomial identity in the elements
αi,j of A; thus, it suffices to prove it when αi,j are distinct indeterminates Xi,j in the polynomial

ring Z
[
Xi,j | (i, j) ∈ {1, 2, ...,m}2

]
. But in this case, αm,m is clearly a non-zero-divisor, and so

our above proof applies. (An alternative approach would be to replace αm,m by X + αm,m in the
polynomial ring A [X]; again, X + αm,m is a non-zero-divisor even if αm,m is not.)]

Now, rather than solve parts (a) and (b) of the exercise separately, we are going to prove a result from
which both of these parts will easily follow:

Proposition 13.70.1. Let A be a commutative ring. Let n ∈ N. For every i ∈ {1, 2, ..., n}, let ai, bi, ci and
di be four elements of A. Assume that aidj − bicj is an invertible element of A for every i ∈ {1, 2, ..., n} and
j ∈ {1, 2, ..., n}. Then,

det

((
1

aidj − bicj

)
i,j=1,2,...,n

)
=

∏
1≤j<i≤n ((aibj − ajbi) (cjdi − cidj))∏

(i,j)∈{1,2,...,n}2 (aidj − bicj)

Proof of Proposition 13.70.1. We prove this by induction over n. The base case (n = 0) is obvious, as it
claims an equality between the determinant of a 0× 0-matrix (defined to be 1) and the ratio of two empty

products (thus
1

1
= 1). For the induction step, we fix some positive integer m, and we set out to prove the

equality

(13.70.10) det

((
1

aidj − bicj

)
i,j=1,2,...,m

)
=

∏
1≤j<i≤m ((aibj − ajbi) (cjdi − cidj))∏

(i,j)∈{1,2,...,m}2 (aidj − bicj)
,

assuming that we already know

(13.70.11) det

((
1

aidj − bicj

)
i,j=1,2,...,m−1

)
=

∏
1≤j<i≤m−1 ((aibj − ajbi) (cjdi − cidj))∏

(i,j)∈{1,2,...,m−1}2 (aidj − bicj)

to be true.

Now, we know that
1

amdm − bmcm
is an invertible element of A (because it is the inverse of amdm−bmcm).

Thus, (13.70.3) (applied to αi,j =
1

aidj − bicj
) yields

det

((
1

aidj − bicj
· 1

amdm − bmcm
− 1

aidm − bicm
· 1

amdj − bmcj

)
i,j=1,2,...,m−1

)

=

(
1

amdm − bmcm

)m−2

· det

((
1

aidj − bicj

)
i,j=1,2,...,m

)
.

614A non-zero-divisor in a commutative ring B means an element b ∈ B such that every element c ∈ B satisfying bc = 0

must satisfy c = 0.
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Solving this for det

((
1

aidj − bicj

)
i,j=1,2,...,m

)
, we obtain

det

((
1

aidj − bicj

)
i,j=1,2,...,m

)

= (amdm − bmcm)
m−2 · det

((
1

aidj − bicj
· 1

amdm − bmcm
− 1

aidm − bicm
· 1

amdj − bmcj

)
i,j=1,2,...,m−1

)
.

(13.70.12)

But straightforward computations show that every (i, j) ∈ {1, 2, ...,m}2 satisfy

1

aidj − bicj
· 1

amdm − bmcm
− 1

aidm − bicm
· 1

amdj − bmcj

=
cjdm − cmdj

(amdm − bmcm) (amdj − bmcj)
· ambi − aibm
aidm − bicm

· 1

aidj − bicj
.

Hence, the matrix(
1

aidj − bicj
· 1

amdm − bmcm
− 1

aidm − bicm
· 1

amdj − bmcj

)
i,j=1,2,...,m−1

can be rewritten as(
cjdm − cmdj

(amdm − bmcm) (amdj − bmcj)
· ambi − aibm
aidm − bicm

· 1

aidj − bicj

)
i,j=1,2,...,m−1

.

This means that this matrix can be obtained from the matrix

(
1

aidj − bicj

)
i,j=1,2,...,m−1

by multiplying

every row with
ambi − aibm
aidm − bicm

, where i is the index of this row, and then multiplying every column with

cjdm − cmdj
(amdm − bmcm) (amdj − bmcj)

, where j is the index of the column. As a consequence, the determinant of

this matrix ism−1∏
j=1

cjdm − cmdj
(amdm − bmcm) (amdj − bmcj)

 ·(m−1∏
i=1

ambi − aibm
aidm − bicm

)
· det

((
1

aidj − bicj

)
i,j=1,2,...,m−1

)
(because when a row of a matrix is multiplied by a scalar, the determinant of the matrix gets multiplied by
the same scalar, and the same rule holds for columns). Hence, we have shown that

det

((
1

aidj − bicj
· 1

amdm − bmcm
− 1

aidm − bicm
· 1

amdj − bmcj

)
i,j=1,2,...,m−1

)

=

m−1∏
j=1

cjdm − cmdj
(amdm − bmcm) (amdj − bmcj)

 ·(m−1∏
i=1

ambi − aibm
aidm − bicm

)
· det

((
1

aidj − bicj

)
i,j=1,2,...,m−1

)
︸ ︷︷ ︸

=

∏
1≤j<i≤m−1 ((aibj − ajbi) (cjdi − cidj))∏

(i,j)∈{1,2,...,m−1}2 (aidj − bicj)
(by (13.70.11))

=

m−1∏
j=1

cjdm − cmdj
(amdm − bmcm) (amdj − bmcj)

 ·(m−1∏
i=1

ambi − aibm
aidm − bicm

)
·
∏

1≤j<i≤m−1 ((aibj − ajbi) (cjdi − cidj))∏
(i,j)∈{1,2,...,m−1}2 (aidj − bicj)

.

We can now plug this into (13.70.12) and make straightforward simplifications (splitting apart and pulling
together products), and obtain (13.70.10). Thus, the induction step is complete, and Proposition 13.70.1 is
proven.

Now, let us solve the exercise.



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 563

(a) First solution of Exercise 2.7.8(a): Exercise 2.7.8(a) follows from Proposition 13.70.1 (applied to ai,
1, bi and 1 instead of ai, bi, ci and di).

Second solution of Exercise 2.7.8(a) (sketched): The statement of Exercise 2.7.8(a) is an identity between
two rational functions in the variables a1, a2, ..., an, b1, b2, ..., bn, and is easily seen to be equivalent to a
polynomial identity in these variables (by multiplying both sides through with the common denominator∏

(i,j)∈{1,2,...,n}2 (ai − bj)). It is well-known that such identities need only be checked on complex numbers

to ensure that they hold for any elements of any ring. So we only need to prove the statement of Exercise
2.7.8(a) in the case when A = C. But the statement is well-known in this case (see, e.g., [69, Lemma 5.15.3
(Lemma 4.48 in the arXiv version)] and various other sources for the proof).

(b) First solution of Exercise 2.7.8(b): Exercise 2.7.8(b) follows from Proposition 13.70.1 (applied to 1,
ai, bi and 1 instead of ai, bi, ci and di).

Second solution of Exercise 2.7.8(b): Just as in the Second solution of Exercise 2.7.8(a), we can see that
it is enough to solve Exercise 2.7.8(b) in the case when A = C. But in this case, the statement of this
exercise is well-known, and proven, e.g., in [69, Corollary 5.15.4 (Corollary 4.49 in the arXiv version)] and
[44, Cauchy’s lemma, p. 18].

Remark: One could also derive the statement of Exercise 2.7.8(b) from Exercise 2.7.8(a) by applying the
latter to 1/ai instead of ai, after first WLOG assuming that the ai are invertible (but one needs to justify
this WLOG assumption).

(c) Alternative proof of Theorem 2.5.1. We are going to show that, for every n ∈ N, we have

(13.70.13)

n∏
i,j=1

(1− xiyj)−1
=
∑
λ∈Par

sλ (x1, x2, ..., xn) sλ (y1, y2, ..., yn)

in the ring k [[x1, x2, ..., xn, y1, y2, ..., yn]]. Once this is proven, Theorem 2.5.1 will easily follow.615

So let n ∈ N. For every i ∈ {1, 2, ..., n} and j ∈ {1, 2, ..., n}, the element 1− xiyj of the ring
k [[x1, x2, ..., xn, y1, y2, ..., yn]] is invertible. Hence, Exercise 2.7.8(b) (applied toA = k [[x1, x2, ..., xn, y1, y2, ..., yn]],
ai = xi and bj = yj) yields

det

((
1

1− xiyj

)
i,j=1,2,...,n

)
=

∏
1≤j<i≤n ((xi − xj) (yi − yj))∏

(i,j)∈{1,2,...,n}2 (1− xiyj)
=

∏
1≤i<j≤n ((xi − xj) (yi − yj))∏

(i,j)∈{1,2,...,n}2 (1− xiyj)

=

 ∏
1≤i<j≤n

(xi − xj)

 ·
 ∏

1≤i<j≤n

(yi − yj)

 · n∏
i,j=1

1

1− xiyj
(13.70.14)

in the ring k [[x1, x2, ..., xn, y1, y2, ..., yn]].
We will use the notations of Definition 2.6.2 and Proposition 2.6.4 (but we do not require k to be Z or a

field of characteristic not equal to 2 as was done in Proposition 2.6.4). We have aρ =
∏

1≤i<j≤n
(xi − xj) (as

615Proof. Assume that (13.70.13) is proven for all n ∈ N. We need to show that

∞∏
i,j=1

(1− xiyj)−1 =
∑
λ∈Par

sλ (x) sλ (y)

in the ring k [[x,y]] = k [[x1, x2, x3, ..., y1, y2, y3, ...]]. In order to do so, it is clearly enough to prove that for any two weak

compositions α and β, the coefficient of xαyβ in
∞∏

i,j=1
(1− xiyj)−1 equals the coefficient of xαyβ in

∑
λ∈Par

sλ (x) sλ (y). So fix

two weak compositions α and β. Write α and β as α = (α1, α2, α3, ...) and β = (β1, β2, β3, ...). Choose some n ∈ N such that

every integer m > n satisfies αm = βm = 0. (Such an m clearly exists, since α and β are finitely supported.) Then, the coefficient

of xαyβ in
∞∏

i,j=1
(1− xiyj)−1 equals the coefficient of xα1

1 xα2
2 ...xαnn yβ1

1 yβ2
2 ...yβnn in

n∏
i,j=1

(1− xiyj)−1, whereas the coefficient

of xαyβ in
∑

λ∈Par
sλ (x) sλ (y) equals the coefficient of xα1

1 xα2
2 ...xαnn yβ1

1 yβ2
2 ...yβnn in

∑
λ∈Par

sλ (x1, x2, ..., xn) sλ (y1, y2, ..., yn).

Since the coefficients of xα1
1 xα2

2 ...xαnn yβ1
1 yβ2

2 ...yβnn in
n∏

i,j=1
(1− xiyj)−1 and in

∑
λ∈Par

sλ (x1, x2, ..., xn) sλ (y1, y2, ..., yn) are

equal (because of (13.70.13)), this shows that the coefficients of xαyβ in
∞∏

i,j=1
(1− xiyj)−1 and in

∑
λ∈Par

sλ (x) sλ (y) are equal;

but this is exactly what we need to prove. Thus, Theorem 2.5.1 follows if (13.70.13) is proven.
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proven in the proof of Proposition 2.6.4). Thus, aρ (x1, x2, ..., xn) =
∏

1≤i<j≤n
(xi − xj) and aρ (y1, y2, ..., yn) =∏

1≤i<j≤n
(yi − yj). Thus, (13.70.14) becomes

det

((
1

1− xiyj

)
i,j=1,2,...,n

)

=

 ∏
1≤i<j≤n

(xi − xj)


︸ ︷︷ ︸

=aρ(x1,x2,...,xn)

·

 ∏
1≤i<j≤n

(yi − yj)


︸ ︷︷ ︸

=aρ(y1,y2,...,yn)

·
n∏

i,j=1

1

1− xiyj︸ ︷︷ ︸
=(1−xiyj)−1

= aρ (x1, x2, ..., xn) · aρ (y1, y2, ..., yn) ·
n∏

i,j=1

(1− xiyj)−1
.(13.70.15)

On the other hand, (13.70.1) (applied to m = n and αi,j =
1

1− xiyj
) yields

det

((
1

1− xiyj

)
i,j=1,2,...,n

)
=
∑
σ∈Sn

(−1)
σ

n∏
i=1

1

1− xiyσ(i)︸ ︷︷ ︸
=
∑
k∈N

(xiyσ(i))
k

(by the formula for the geometric series)

=
∑
σ∈Sn

(−1)
σ

n∏
i=1

∑
k∈N

(
xiyσ(i)

)k
︸ ︷︷ ︸

=
∑

(k1,k2,...,kn)∈Nn
(x1yσ(1))

k1(x2yσ(2))
k2 ...(xnyσ(n))

kn

(by the product rule)

=
∑
σ∈Sn

(−1)
σ

∑
(k1,k2,...,kn)∈Nn

(
x1yσ(1)

)k1
(
x2yσ(2)

)k2
...
(
xnyσ(n)

)kn︸ ︷︷ ︸
=
(
x
k1
1 y

k1
σ(1)

)(
x
k2
2 y

k2
σ(2)

)
...
(
xknn ykn

σ(n)

)
=
(
x
k1
1 x

k2
2 ...xknn

)(
y
k1
σ(1)

y
k2
σ(2)

...ykn
σ(n)

)
=
∑
σ∈Sn

(−1)
σ

∑
(k1,k2,...,kn)∈Nn

(
xk1

1 x
k2
2 ...x

kn
n

)(
yk1

σ(1)y
k2

σ(2)...y
kn
σ(n)

)
=

∑
(k1,k2,...,kn)∈Nn

xk1
1 x

k2
2 ...x

kn
n

∑
σ∈Sn

(−1)
σ
yk1

σ(1)y
k2

σ(2)...y
kn
σ(n).(13.70.16)

But every (k1, k2, ..., kn) ∈ Nn satisfies

det

((
ykij

)
i,j=1,2,...,n

)
=
∑
σ∈Sn

(−1)
σ

n∏
i=1

ykiσ(i)︸ ︷︷ ︸
=y

k1
σ(1)

y
k2
σ(2)

...ykn
σ(n)

(
by (13.70.1), applied to m = n and αi,j = ykij

)

=
∑
σ∈Sn

(−1)
σ
yk1

σ(1)y
k2

σ(2)...y
kn
σ(n).(13.70.17)
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Hence, (13.70.16) becomes

det

((
1

1− xiyj

)
i,j=1,2,...,n

)
=

∑
(k1,k2,...,kn)∈Nn

xk1
1 x

k2
2 ...x

kn
n

∑
σ∈Sn

(−1)
σ
yk1

σ(1)y
k2

σ(2)...y
kn
σ(n)︸ ︷︷ ︸

=det

((
y
ki
j

)
i,j=1,2,...,n

)
(by (13.70.17))

=
∑

(k1,k2,...,kn)∈Nn
xk1

1 x
k2
2 ...x

kn
n det

((
ykij

)
i,j=1,2,...,n

)

=
∑

(k1,k2,...,kn)∈Nn;
the integers k1, k2, ..., kn

are distinct

xk1
1 x

k2
2 ...x

kn
n det

((
ykij

)
i,j=1,2,...,n

)
.(13.70.18)

(Here, we have removed from our sum all addends in which the integers k1, k2, ..., kn are not distinct. This
did not change the value of the sum, because all these addends are zero616.)

On the other hand, every (k1, k2, ..., kn) ∈ Nn satisfies

det

((
xkij

)
i,j=1,2,...,n

)
=
∑
σ∈Sn

(−1)
σ

n∏
i=1

xkiσ(i)︸ ︷︷ ︸
=x

k1
σ(1)

x
k2
σ(2)

...xkn
σ(n)

(
by (13.70.1), applied to m = n and αi,j = xkij

)

=
∑
σ∈Sn

(−1)
σ
xk1

σ(1)x
k2

σ(2)...x
kn
σ(n).

616In fact, if (k1, k2, ..., kn) ∈ Nn is such that the integers k1, k2, ..., kn are not distinct, then the matrix
(
y
ki
j

)
i,j=1,2,...,n

has two equal rows, which causes its determinant det

((
y
ki
j

)
i,j=1,2,...,n

)
to be 0, and thus the addend corresponding to this

(k1, k2, ..., kn) ∈ Nn is

xk1
1 xk2

2 ...xknn det

((
y
ki
j

)
i,j=1,2,...,n

)
︸ ︷︷ ︸

=0

= 0.
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Thus, ∑
(k1,k2,...,kn)∈Nn;
k1>k2>...>kn

det

((
xkij

)
i,j=1,2,...,n

)
︸ ︷︷ ︸

=
∑

σ∈Sn
(−1)σx

k1
σ(1)

x
k2
σ(2)

...xkn
σ(n)

det

((
ykij

)
i,j=1,2,...,n

)

=
∑

(k1,k2,...,kn)∈Nn;
k1>k2>...>kn

∑
σ∈Sn

(−1)
σ
xk1

σ(1)x
k2

σ(2)...x
kn
σ(n) det

((
ykij

)
i,j=1,2,...,n

)

=
∑
σ∈Sn

(−1)
σ

∑
(k1,k2,...,kn)∈Nn;
k1>k2>...>kn

xk1

σ(1)x
k2

σ(2)...x
kn
σ(n) det

((
ykij

)
i,j=1,2,...,n

)
︸ ︷︷ ︸

=
∑

(k1,k2,...,kn)∈Nn;
kσ(1)>kσ(2)>...>kσ(n)

x
kσ(1)

σ(1)
x
kσ(2)

σ(2)
...x

kσ(n)

σ(n)
det

((
y
kσ(i)
j

)
i,j=1,2,...,n

)

(here, we substituted (kσ(1),kσ(2),...,kσ(n)) for (k1,k2,...,kn) in the sum

(this is allowed, since σ is a permutation))

=
∑
σ∈Sn

(−1)
σ

∑
(k1,k2,...,kn)∈Nn;

kσ(1)>kσ(2)>...>kσ(n)

x
kσ(1)

σ(1) x
kσ(2)

σ(2) ...x
kσ(n)

σ(n)︸ ︷︷ ︸
=x

k1
1 x

k2
2 ...xknn

(since σ is a permutation)

det

((
y
kσ(i)

j

)
i,j=1,2,...,n

)
︸ ︷︷ ︸
=(−1)σ det

((
y
ki
j

)
i,j=1,2,...,n

)
(since permuting the rows of a matrix
multiplies its determinant by the sign

of the permutation)

=
∑
σ∈Sn

(−1)
σ

∑
(k1,k2,...,kn)∈Nn;

kσ(1)>kσ(2)>...>kσ(n)

xk1
1 x

k2
2 ...x

kn
n (−1)

σ
det

((
ykij

)
i,j=1,2,...,n

)

=
∑
σ∈Sn

(−1)
σ

(−1)
σ︸ ︷︷ ︸

=((−1)σ)2=1

∑
(k1,k2,...,kn)∈Nn;

kσ(1)>kσ(2)>...>kσ(n)

xk1
1 x

k2
2 ...x

kn
n det

((
ykij

)
i,j=1,2,...,n

)

=
∑
σ∈Sn

∑
(k1,k2,...,kn)∈Nn;

kσ(1)>kσ(2)>...>kσ(n)︸ ︷︷ ︸
=

∑
(k1,k2,...,kn)∈Nn

∑
σ∈Sn;

kσ(1)>kσ(2)>...>kσ(n)

xk1
1 x

k2
2 ...x

kn
n det

((
ykij

)
i,j=1,2,...,n

)

=
∑

(k1,k2,...,kn)∈Nn

∑
σ∈Sn;

kσ(1)>kσ(2)>...>kσ(n)

xk1
1 x

k2
2 ...x

kn
n det

((
ykij

)
i,j=1,2,...,n

)

=
∑

(k1,k2,...,kn)∈Nn;
the integers k1, k2, ..., kn

are distinct

∑
σ∈Sn;

kσ(1)>kσ(2)>...>kσ(n)

xk1
1 x

k2
2 ...x

kn
n det

((
ykij

)
i,j=1,2,...,n

)
︸ ︷︷ ︸

=x
k1
1 x

k2
2 ...xknn det

((
y
ki
j

)
i,j=1,2,...,n

)
(because there exists exactly one σ∈Sn such that kσ(1)>kσ(2)>...>kσ(n)

(since the integers k1, k2, ..., kn are distinct, and thus
there is exactly one permutation which arranges these integers

in decreasing order))

+
∑

(k1,k2,...,kn)∈Nn;
the integers k1, k2, ..., kn

are not distinct

∑
σ∈Sn;

kσ(1)>kσ(2)>...>kσ(n)

xk1
1 x

k2
2 ...x

kn
n det

((
ykij

)
i,j=1,2,...,n

)
︸ ︷︷ ︸

=0

(because the matrix
(
y
ki
j

)
i,j=1,2,...,n

has two equal rows (since the integers
k1, k2, ..., kn are not distinct,

i. e., there are two equal among them))
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=
∑

(k1,k2,...,kn)∈Nn;
the integers k1, k2, ..., kn

are distinct

xk1
1 x

k2
2 ...x

kn
n det

((
ykij

)
i,j=1,2,...,n

)

+
∑

(k1,k2,...,kn)∈Nn;
the integers k1, k2, ..., kn

are not distinct

∑
σ∈Sn;

kσ(1)>kσ(2)>...>kσ(n)

xk1
1 x

k2
2 ...x

kn
n 0

︸ ︷︷ ︸
=0

=
∑

(k1,k2,...,kn)∈Nn;
the integers k1, k2, ..., kn

are distinct

xk1
1 x

k2
2 ...x

kn
n det

((
ykij

)
i,j=1,2,...,n

)
.

Compared with (13.70.18), this yields

det

((
1

1− xiyj

)
i,j=1,2,...,n

)

=
∑

(k1,k2,...,kn)∈Nn;
k1>k2>...>kn

det

((
xkij

)
i,j=1,2,...,n

)
det

((
ykij

)
i,j=1,2,...,n

)

=
∑

(λ1,λ2,...,λn)∈Nn;
λ1≥λ2≥...≥λn︸ ︷︷ ︸

=
∑

λ=(λ1,λ2,...,λn)∈Nn
is a partition with at most n parts

det

((
xλi+n−ij

)
i,j=1,2,...,n

)
det

((
yλi+n−ij

)
i,j=1,2,...,n

)


here, we substituted (λ1 + n− 1, λ2 + n− 2, ..., λn + n− n) for (k1, k2, ..., kn)

in the sum (since the map
{(λ1, λ2, ..., λn) ∈ Nn | λ1 ≥ λ2 ≥ ... ≥ λn} → {(k1, k2, ..., kn) ∈ Nn | k1 > k2 > ... > kn} ,

(λ1, λ2, ..., λn) 7→ (λ1 + n− 1, λ2 + n− 2, ..., λn + n− n)
is a bijection)



=
∑

λ=(λ1,λ2,...,λn)∈Nn
is a partition with at most n parts

det

((
xλi+n−ij

)
i,j=1,2,...,n

)
det

((
yλi+n−ij

)
i,j=1,2,...,n

)
.

(13.70.19)

But whenever λ = (λ1, λ2, ..., λn) is a partition with at most n parts, we have

λ︸︷︷︸
=(λ1,λ2,...,λn)

+ ρ︸︷︷︸
=(n−1,n−2,...,0)

= (λ1, λ2, ..., λn) + (n− 1, n− 2, ..., 0)

= (λ1 + n− 1, λ2 + n− 2, ..., λn + n− n)
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and thus

aλ+ρ = a(λ1+n−1,λ2+n−2,...,λn+n−n) = det


(
x
λj+n−j
i

)
i,j=1,2,...,n︸ ︷︷ ︸

=

((
x
λi+n−i
j

)
i,j=1,2,...,n

)T


(
by the definition of a(α1,α2,...,αn)

)
= det

(((
xλi+n−ij

)
i,j=1,2,...,n

)T)
= det

((
xλi+n−ij

)
i,j=1,2,...,n

)
(since the determinant of a matrix is preserved under transposition) .

Hence, we get the two equalities aλ+ρ (x1, x2, ..., xn) = det

((
xλi+n−ij

)
i,j=1,2,...,n

)
and aλ+ρ (y1, y2, ..., yn) =

det

((
yλi+n−ij

)
i,j=1,2,...,n

)
for any partition λ = (λ1, λ2, ..., λn) with at most n parts. Thus, (13.70.19)

becomes

det

((
1

1− xiyj

)
i,j=1,2,...,n

)

=
∑

λ=(λ1,λ2,...,λn)∈Nn
is a partition with at most n parts

det

((
xλi+n−ij

)
i,j=1,2,...,n

)
︸ ︷︷ ︸

=aλ+ρ(x1,x2,...,xn)

det

((
yλi+n−ij

)
i,j=1,2,...,n

)
︸ ︷︷ ︸

=aλ+ρ(y1,y2,...,yn)

=
∑

λ=(λ1,λ2,...,λn)∈Nn
is a partition with at most n parts

aλ+ρ (x1, x2, ..., xn) aλ+ρ (y1, y2, ..., yn)

=
∑

λ is a partition with at most n parts

aλ+ρ (x1, x2, ..., xn) aλ+ρ (y1, y2, ..., yn) .

Compared to (13.70.14), this yields

∑
λ is a partition with at most n parts

aλ+ρ (x1, x2, ..., xn) aλ+ρ (y1, y2, ..., yn)

=

 ∏
1≤i<j≤n

(xi − xj)


︸ ︷︷ ︸

=aρ(x1,x2,...,xn)

·

 ∏
1≤i<j≤n

(yi − yj)


︸ ︷︷ ︸

=aρ(y1,y2,...,yn)

·
n∏

i,j=1

1

1− xiyj︸ ︷︷ ︸
=(1−xiyj)−1

= aρ (x1, x2, ..., xn) · aρ (y1, y2, ..., yn) ·
n∏

i,j=1

(1− xiyj)−1
.(13.70.20)

Now, Corollary 2.6.7 says that sλ (x1, x2, ..., xn) =
aλ+ρ

aρ
for every partition λ with at most n parts. Thus,

sλ (x1, x2, ..., xn) =
aλ+ρ (x1, x2, ..., xn)

aρ (x1, x2, ..., xn)
and sλ (y1, y2, ..., yn) =

aλ+ρ (y1, y2, ..., yn)

aρ (y1, y2, ..., yn)
for every partition λ
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with at most n parts. Hence,∑
λ is a partition with at most n parts

sλ (x1, x2, ..., xn)︸ ︷︷ ︸
=
aλ+ρ (x1, x2, ..., xn)

aρ (x1, x2, ..., xn)

sλ (y1, y2, ..., yn)︸ ︷︷ ︸
=
aλ+ρ (y1, y2, ..., yn)

aρ (y1, y2, ..., yn)

=
∑

λ is a partition with at most n parts

aλ+ρ (x1, x2, ..., xn)

aρ (x1, x2, ..., xn)
· aλ+ρ (y1, y2, ..., yn)

aρ (y1, y2, ..., yn)

=
1

aρ (x1, x2, ..., xn) · aρ (y1, y2, ..., yn)

∑
λ is a partition with at most n parts

aλ+ρ (x1, x2, ..., xn) aλ+ρ (y1, y2, ..., yn)︸ ︷︷ ︸
=aρ(x1,x2,...,xn)·aρ(y1,y2,...,yn)·

n∏
i,j=1

(1−xiyj)−1

(by (13.70.20))

=
1

aρ (x1, x2, ..., xn) · aρ (y1, y2, ..., yn)
· aρ (x1, x2, ..., xn) · aρ (y1, y2, ..., yn) ·

n∏
i,j=1

(1− xiyj)−1

=

n∏
i,j=1

(1− xiyj)−1
.

(13.70.21)

We are almost done. Let us now notice that every partition λ with more than n parts satisfies

(13.70.22) sλ (x1, x2, ..., xn) = 0

(according to Exercise 2.3.8(b)). Thus, in the sum
∑

λ∈Par

sλ (x1, x2, ..., xn) sλ (y1, y2, ..., yn), all addends cor-

responding to partitions λ having more than n parts are 0. We can therefore remove these addends from the
sum. Hence, ∑

λ∈Par

sλ (x1, x2, ..., xn) sλ (y1, y2, ..., yn)

=
∑

λ is a partition with at most n parts

sλ (x1, x2, ..., xn) sλ (y1, y2, ..., yn)

=

n∏
i,j=1

(1− xiyj)−1
(by (13.70.21)) .

Thus, we have proven that (13.70.13) holds for every n ∈ N. As we explained above, this yields that Theorem
2.5.1 is true.

Remark: In our above solution, we solved Exercise 2.7.8(b) first, and then used it to prove Theorem
2.5.1. It is also possible (more or less by treading the above proof backwards) to conversely derive the
statement of Exercise 2.7.8(b) from Theorem 2.5.1 instead (though Exercise 2.7.8(b) is usually considered a
more elementary fact than Theorem 2.5.1).

13.71. Solution to Exercise 2.7.9. Solution to Exercise 2.7.9. Let us first check that we have

(13.71.1) huhv =

v∑
i=0

s(u+i,v−i)

for any two nonnegative integers u and v satisfying u ≥ v.
Proof of (13.71.1): Let u and v be nonnegative integers satisfying u ≥ v. We WLOG assume that u > 0

(otherwise, u = 0, and u ≥ v forces v = 0, so that (13.71.1) can be checked immediately). We have hu = s(u)
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and thus

(13.71.2) huhv = s(u)hv =
∑

λ+ : λ+/(u) is a
horizontal v-strip

sλ+

(by (2.7.1), applied to n = v and λ = (u)).
Now, fix a partition λ+ such that λ+/ (u) is a horizontal v-strip. Then, the skew diagram λ+/ (u) has at

most one cell in column 1 (since λ+/ (u) is a horizontal v-strip and thus contains no two cells in the same
column). Hence, the partition λ+ has at most 2 rows (because otherwise, the skew diagram λ+/ (u) would
contain at least two cells in column 1, which would contradict the fact that the skew diagram λ+/ (u) has
at most one cell in column 1). Thus, the partition λ+ has the form (p, q) for two nonnegative integers p
and q satisfying p ≥ q. Consider these two integers p and q. Since λ+/ (u) is a horizontal v-strip, we have

|λ+/ (u)| = v and thus v = |λ+/ (u)| =

∣∣∣∣∣∣ λ+︸︷︷︸
=(p,q)

∣∣∣∣∣∣ − |(u)|︸︷︷︸
=u

= |(p, q)|︸ ︷︷ ︸
=p+q

−u = p + q − u. Moreover, λ+/ (u) is a

horizontal v-strip, so that (u) ⊆ λ+ = (p, q). Thus, u ≤ p. Hence, there exists an i ∈ N such that p = u+ i.
Consider this i. Now, v = p︸︷︷︸

=u+i

+q − u = u+ i+ q − u = q + i, so that q = v − i and thus v − i = q ≥ 0, so

that i ≤ v and thus i ∈ {0, 1, ..., v} (since i ∈ N). Hence, λ+ =

 p︸︷︷︸
=u+i

, q︸︷︷︸
=v−i

 = (u+ i, v − i). We have thus

shown that the partition λ+ has the form λ+ = (u+ i, v − i) for some i ∈ {0, 1, ..., v}.
Now forget that we fixed λ+. We thus have proven that every partition λ+ such that λ+/ (u) is a

horizontal v-strip has the form λ+ = (u+ i, v − i) for some i ∈ {0, 1, ..., v}. Conversely, it is clear that for
every i ∈ {0, 1, ..., v}, the weak composition (u+ i, v − i) is a partition λ+ such that λ+/ (u) is a horizontal
v-strip. Combining the previous two sentences, we conclude that the partitions λ+ such that λ+/ (u) is a
horizontal v-strip are precisely the weak compositions of the form (u+ i, v − i) for i ∈ {0, 1, ..., v}. Therefore,∑
λ+ : λ+/(u) is a
horizontal v-strip

sλ+ =
∑

i∈{0,1,...,v}
s(u+i,v−i) =

v∑
i=0

s(u+i,v−i). Now, (13.71.2) becomes

huhv =
∑

λ+ : λ+/(u) is a
horizontal v-strip

sλ+ =

v∑
i=0

s(u+i,v−i).

This proves (13.71.1).
Now, fix two integers a and b satisfying a ≥ b ≥ 0. We need to prove that s(a,b) = hahb − ha+1hb−1.

If b = 0, then proving s(a,b) = hahb − ha+1hb−1 is very easy617. Hence, for the rest of the proof of
s(a,b) = hahb − ha+1hb−1, we assume WLOG that we don’t have b = 0. Thus, b ≥ 1, so that b − 1 ≥ 0.
Clearly, a ≥ b shows that a+ 1 ≥ b+ 1 ≥ b− 1, so that we can apply (13.71.1) to u = a+ 1 and v = b− 1.

617In fact, assume that b = 0. Then,

s(a,b) = s(a,0) = s(a) = ha

and

ha hb︸︷︷︸
=h0=1

−ha+1 hb−1︸ ︷︷ ︸
=h−1=0

= ha1− ha+10 = ha.

Hence, s(a,b) = ha = hahb − ha+1hb−1, qed.
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Now,

hahb︸︷︷︸
=
∑b
i=0 s(a+i,b−i)

(by (13.71.1), applied
to u=a and v=b)

− ha+1hb−1︸ ︷︷ ︸
=
∑b−1
i=0 s(a+1+i,b−1−i)

(by (13.71.1), applied
to u=a+1 and v=b−1)

=

b∑
i=0

s(a+i,b−i)︸ ︷︷ ︸
=s(a+0,b−0)+

∑b
i=1 s(a+i,b−i)

−
b−1∑
i=0

s(a+1+i,b−1−i)︸ ︷︷ ︸
=s(a+(i+1),b−(i+1))

= s(a+0,b−0) +

b∑
i=1

s(a+i,b−i) −
b−1∑
i=0

s(a+(i+1),b−(i+1))

= s(a+0,b−0) +

b∑
i=1

s(a+i,b−i) −
b∑
i=1

s(a+i,b−i)

(here, we have substituted i for i+ 1 in the second sum)

= s(a+0,b−0) = s(a,b).

We thus have proven s(a,b) = hahb − ha+1hb−1. The exercise is solved.

13.72. Solution to Exercise 2.7.10. Solution to Exercise 2.7.10. (a) We shall prove the statement of
Exercise 2.7.10(a) by induction over the length ` (µ) of µ.

The induction base (i.e., the case ` (µ) = 0) is trivial. For the induction step, we fix a positive integer
L and assume (as the induction hypothesis) that Exercise 2.7.10(a) has been solved for all µ satisfying
` (µ) = L− 1. We now have to solve Exercise 2.7.10(a) for every partition µ satisfying ` (µ) = L.

So let µ be a partition satisfying ` (µ) = L. Write µ in the form (µ1, µ2, . . . , µL). Let µ be the partition
(µ1, µ2, . . . , µL−1) (this is well-defined since L is positive). Then, ` (µ) = L− 1, and hence (by the induction
hypothesis) we can apply Exercise 2.7.10(a) to µ instead of µ. As a result, we obtain hµ =

∑
λKλ,µsλ,

where the sum ranges over all partitions λ.
But the definition of hµ yields hµ = hµ1

hµ2
. . . hµL ; similarly, hµ = hµ1

hµ2
. . . hµL−1

. Hence,

hµ = hµ1hµ2 . . . hµL = hµ1hµ2 . . . hµL−1︸ ︷︷ ︸
=hµ=

∑
λKλ,µsλ

hµL =

(∑
λ

Kλ,µsλ

)
hµL

=
∑
λ

Kλ,µ sλhµL︸ ︷︷ ︸
=

∑
λ+ : λ+/λ is a horizontal

µL-strip

sλ+

(by (2.7.1), applied to n=µL)

=
∑
λ

Kλ,µ

∑
λ+ : λ+/λ is a horizontal

µL-strip

sλ+

=
∑
λ

∑
λ+ : λ+/λ is a horizontal

µL-strip︸ ︷︷ ︸
=
∑
λ+

∑
λ : λ+/λ is a horizontal

µL-strip

Kλ,µsλ+ =
∑
λ+

∑
λ : λ+/λ is a horizontal

µL-strip

Kλ,µsλ+

=
∑
λ

∑
λ− : λ/λ− is a horizontal

µL-strip

Kλ−,µsλ(13.72.1)

(
here, we renamed the summation indices λ+ and λ as λ and λ−

)
,

where all summation indices are supposed to be partitions.
Now, let us fix a partition λ. We shall show that

(13.72.2)
∑

λ− : λ/λ− is a horizontal
µL-strip

Kλ−,µ = Kλ,µ.
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Proof of (13.72.2): For every partition λ−, the number Kλ−,µ is the number of column-strict tableaux
S of shape λ− having cont (S) = µ. Hence, the sum

∑
λ− : λ/λ− is a horizontal

µL-strip

Kλ−,µ is the number of all pairs

(λ−, S), where:

• λ− is a partition such that λ/λ− is a horizontal µL-strip;
• S is a column-strict tableau of shape λ− having cont (S) = µ.

We will refer to such pairs (λ−, S) as (λ, µ)-last-step pairs. So the sum
∑

λ− : λ/λ− is a horizontal
µL-strip

Kλ−,µ is the

number of (λ, µ)-last-step pairs. On the other hand, Kλ,µ is the number of all column-strict tableaux T of
shape λ having cont (T ) = µ. We now will construct a bijection between the (λ, µ)-last-step pairs and the
column-strict tableaux T of shape λ having cont (T ) = µ.

Indeed, let us first define a map Φ from the set of all (λ, µ)-last-step pairs to the set of all column-strict
tableaux T of shape λ having cont (T ) = µ. Namely, let (λ−, S) be a (λ, µ)-last-step pair. Then, λ− is a
partition such that λ/λ− is a horizontal µL-strip, whereas S is a column-strict tableau of shape λ− having
cont (S) = µ. In particular, all entries of S are < L (since cont (S) = µ = (µ1, µ2, . . . , µL−1)). Now, we can
extend the column-strict tableau S of shape λ− to a tableau of shape λ by filling the number L into all cells
of the skew shape λ/λ−. The resulting tableau is a column-strict tableau T of shape λ having cont (T ) = µ
(indeed, its column-strictness follows from the fact that λ/λ− is a horizontal µL-strip whereas all entries of
S are < L; and the property cont (T ) = µ follows from the facts that cont (S) = µ and |λ/λ−| = µL). We
define Φ (λ−, S) to be this tableau. Thus we have defined a map Φ.

Conversely, let us define a map Ψ from the set of all column-strict tableaux T of shape λ having cont (T ) =
µ to the set of all (λ, µ)-last-step pairs. Namely, let T be a column-strict tableau of shape λ having cont (T ) =
µ. Then, all entries of T are ≤ L (since cont (T ) = µ = (µ1, µ2, . . . , µL)), and the cells containing the entries
L form a horizontal strip (since T is column-strict). Hence, if we remove all entries L from T (along with
their cells), the result will be a column-strict tableau S of some shape λ− such that λ− is a partition (because
all entries of T were ≤ L, so the entries we removed were maximal), λ/λ− is a horizontal µL-strip (since we
removed a total of µL entries and they formed a horizontal strip), and cont (S) = µ. Consider these S and
λ−, and define Ψ (T ) to be the pair (λ−, S); it is clear that this Ψ (T ) is a (λ, µ)-last-step pair. Hence, we
have defined a map Ψ.

It is fairly obvious that the maps Φ and Ψ are mutually inverse. Hence, they are bijections; in particular,
Φ is a bijection. Thus, we have a bijection between the set of all (λ, µ)-last-step pairs and the set of all
column-strict tableaux T of shape λ having cont (T ) = µ. As a consequence, the number of all (λ, µ)-last-step
pairs equals the number of all column-strict tableaux T of shape λ having cont (T ) = µ. In other words,∑
λ− : λ/λ− is a horizontal

µL-strip

Kλ−,µ equals Kλ,µ (because
∑

λ− : λ/λ− is a horizontal
µL-strip

Kλ−,µ is the number of (λ, µ)-last-

step pairs, whereas Kλ,µ is the number of all column-strict tableaux T of shape λ having cont (T ) = µ).
This proves (13.72.2).

Now, (13.72.1) becomes

hµ =
∑
λ

∑
λ− : λ/λ− is a horizontal

µL-strip

Kλ−,µ

︸ ︷︷ ︸
=Kλ,µ

(by (13.72.2))

sλ =
∑
λ

Kλ,µsλ.

Hence, Exercise 2.7.10(a) is solved for our partition µ. Thus, Exercise 2.7.10(a) is solved for every partition
µ satisfying ` (µ) = L. This completes the induction step, and thus Exercise 2.7.10(a) is solved by induction.

(b) Let us work in the power series ring k [[x,y]] := k [[x1, x2, . . . , y1, y2, . . .]]. Every partition µ satisfies
hµ (x) =

∑
λKλ,µsλ (x), where the sum ranges over all partitions λ (because Exercise 2.7.10(a) yields

hµ =
∑
λKλ,µsλ in Λ). In other words, every partition µ satisfies hµ (x) =

∑
λ∈ParKλ,µsλ (x). On the

other hand, every partition λ satisfies sλ =
∑
µKλ,µmµ, where the sum ranges over all partitions µ (this was

shown in the proof of Proposition 2.2.10). In other words, every partition λ satisfies sλ =
∑
µ∈ParKλ,µmµ,
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so that

(13.72.3) sλ (y) =
∑
µ∈Par

Kλ,µmµ (y) .

Now,
∞∏

i,j=1

(1− xiyj)−1
=
∑
λ∈Par

hλ (x)mλ (y) (by (2.5.11))

=
∑
µ∈Par

hµ (x)︸ ︷︷ ︸
=
∑
λ∈Par Kλ,µsλ(x)

mµ (y) (here, we renamed the summation index λ as µ)

=
∑
µ∈Par

∑
λ∈Par︸ ︷︷ ︸

=
∑
λ∈Par

∑
µ∈Par

Kλ,µsλ (x)mµ (y)

=
∑
λ∈Par

∑
µ∈Par

Kλ,µsλ (x)mµ (y) =
∑
λ∈Par

sλ (x)
∑
µ∈Par

Kλ,µmµ (y)︸ ︷︷ ︸
=sλ(y)

(by (13.72.3))

=
∑
λ∈Par

sλ (x) sλ (y) .

This proves Theorem 2.5.1. Thus, Exercise 2.7.10(b) is solved.
(c) We start out just as in the proof of Proposition 2.2.10: We fix an n ∈ N, and we restrict our attention to

a given homogeneous component Λn and partitions of n. Regard the set Parn as a poset with smaller-or-equal
relation .. We will check that the family (hλ)λ∈Parn

expands unitriangularly618 in the basis (sλ)λ∈Parn
.

If λ and µ are two partitions satisfying |λ| 6= |µ|, then

(13.72.4) Kλ,µ = 0

(because Kλ,µ counts the column-strict tableaux T of shape λ having cont (T ) = µ; but no such tableaux
exist when |λ| 6= |µ|).

In Exercise 2.7.10(a), we have shown that hµ =
∑
λ∈ParKλ,µsλ for every µ ∈ Par. Thus, for every

µ ∈ Parn, we have

hµ =
∑
λ∈Par

Kλ,µsλ =
∑
λ∈Par;
|λ|=n︸ ︷︷ ︸

=
∑
λ∈Parn

Kλ,µsλ +
∑
λ∈Par;
|λ|6=n

Kλ,µ︸ ︷︷ ︸
=0

(by (13.72.4), since |λ|6=n=|µ|)

sλ

=
∑

λ∈Parn

Kλ,µsλ +
∑
λ∈Par;
|λ|6=n

0sλ

︸ ︷︷ ︸
=0

=
∑

λ∈Parn

Kλ,µsλ.(13.72.5)

In the proof of Proposition 2.2.10, we showed that any two partitions λ and µ in Parn satisfy Kλ,µ = 0
unless λ . µ. Hence, the Parn×Parn-matrix (Kλ,µ)(µ,λ)∈Parn×Parn

is triangular619. This matrix is further-

more unitriangular (since Kλ,λ = 1 for every partition λ, as shown in the proof of Proposition 2.2.10), and
therefore invertibly triangular. But the family (hλ)λ∈Parn

expands in the family (sλ)λ∈Parn
through this

matrix (Kλ,µ)(µ,λ)∈Parn×Parn
(because of (13.72.5)). Therefore, the family (hλ)λ∈Parn

expands invertibly

triangularly in the family (sλ)λ∈Parn
(since our matrix is invertibly triangular). Hence, Corollary 11.1.19(e)

(applied to Λn, Parn, (hλ)λ∈Parn
and (sλ)λ∈Parn

instead of M , S, (es)s∈S and (fs)s∈S) shows that the family

(hλ)λ∈Parn
is a basis of the k-module Λn if and only if the family (sλ)λ∈Parn

is a basis of the k-module Λn.

Therefore, the family (hλ)λ∈Parn
is a basis of the k-module Λn (since the family (sλ)λ∈Parn

is a basis of the

618See Definition 11.1.16(c) for what this means.
619See Definition 11.1.7 for the meaning of this.
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k-module Λn). Since this has been proven for all n ∈ N, we can combine this to conclude that the family
(hλ)λ∈Par is a graded basis of the graded k-module Λ. This solves Exercise 2.7.10(c).

Remark. Just as in the Remark after the solution of Exercise 2.5.20(b), we can use our solution of
Exercise 2.7.10(c) to further prove that (eλ)λ∈Par is a k-basis of Λ (in a different way than we have done in
the proof of Proposition 2.2.10).

13.73. Solution to Exercise 2.7.11. Solution to Exercise 2.7.11. Let us first observe that

(13.73.1) Z (hn) = en for every positive integer n.

(In fact, hn = s(n), and so the map Z maps hn to s(n)t = s(1n) = en.)

(a) Fix n ∈ N. We need to prove that

(13.73.2) Z (fhn) = Z (f) · Z (hn) for every f ∈ Λ.

Since this equality is linear in f , it is clearly enough to prove it when f is of the form sλ for some λ ∈ Par
(because (sλ)λ∈Par is a k-basis of Λ). In other words, it is enough to show that every λ ∈ Par satisfies

(13.73.3) Z (sλhn) = Z (sλ) · Z (hn) .

Thus, we will focus on proving (13.73.3) now.
We WLOG assume that n 6= 0, since otherwise (13.73.3) is obvious. Let λ ∈ Par. The equality (2.7.1)

yields

sλhn =
∑

λ+ : λ+/λ is a
horizontal n-strip

sλ+ .

Applying the map Z to both sides of this equality, we obtain

(13.73.4) Z (sλhn) = Z

 ∑
λ+ : λ+/λ is a

horizontal n-strip

sλ+

 =
∑

λ+ : λ+/λ is a
horizontal n-strip

Z (sλ+)︸ ︷︷ ︸
=s(λ+)t

=
∑

λ+ : λ+/λ is a
horizontal n-strip

s(λ+)t .

However, for any given partition λ+, the assertion that λ+/λ be a horizontal n-strip is equivalent to the

assertion that (λ+)
t
/λt be a vertical n-strip620. Hence, we can replace the summation sign “

∑
λ+ : λ+/λ is a

horizontal n-strip

”

in (13.73.4) by a “
∑

λ+ : (λ+)
t
/λt is a

vertical n-strip

” sign. Thus, we obtain

∑
λ+ : λ+/λ is a

horizontal n-strip

s(λ+)t =
∑

λ+ : (λ+)
t
/λt is a

vertical n-strip

s(λ+)t =
∑

λ+ : λ+/λt is a
vertical n-strip

sλ+

(
here, we substituted λ+ for (λ+)

t
in the sum, because

the map Par→ Par, µ 7→ µt is a bijection

)
.

Thus, (13.73.4) becomes

(13.73.5) Z (sλhn) =
∑

λ+ : λ+/λ is a
horizontal n-strip

s(λ+)t =
∑

λ+ : λ+/λt is a
vertical n-strip

sλ+ .

On the other hand, the equality (2.7.2) yields

sλen =
∑

λ+ : λ+/λ is a
vertical n-strip

sλ+ .

620This is because the notion of a vertical n-strip is obtained from the notion of a horizontal n-strip by interchanging the
roles of rows and columns, and the operation which sends a partition µ to its transpose partition µt interchanges the roles of

rows and columns as well.
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Applying this to λt instead of λ, we obtain

sλten =
∑

λ+ : λ+/λt is a
vertical n-strip

sλ+ .

Now,

Z (sλ)︸ ︷︷ ︸
=sλt

·Z (hn)︸ ︷︷ ︸
=en

= sλten =
∑

λ+ : λ+/λt is a
vertical n-strip

sλ+ .

Compared with (13.73.5), this yields Z (sλhn) = Z (sλ) · Z (hn). This proves (13.73.3). This concludes the
solution of Exercise 2.7.11(a).

(b) We shall show that

(13.73.6) Z (hλ) = ω (hλ) for every partition λ.

Proof of (13.73.6): We will prove (13.73.6) by induction over ` (λ). The induction base is the case
` (λ) = 0, which is utterly obvious. For the induction step, we fix a positive integer L and assume (as the
induction hypothesis) that the equality (13.73.6) holds if ` (λ) = L− 1. We need to prove that the equality
(13.73.6) holds if ` (λ) = L.

Let λ be a partition satisfying ` (λ) = L. Write λ in the form λ = (λ1, λ2, ..., λL) with all of λ1, λ2, ...,
λL being positive integers. Let λ be the partition (λ1, λ2, ..., λL−1) (this is obviously well-defined); then,
`
(
λ
)

= L− 1.
Recall that en = ω (hn) for every n ≥ 1 (by Proposition 2.4.3(b)).
Recall that λ = (λ1, λ2, ..., λL). Hence, by the definition of hλ, we have

hλ = hλ1
hλ2

...hλL = hλ1
hλ2

...hλL−1︸ ︷︷ ︸
=hλ

(since λ=(λ1,λ2,...,λL−1))

hλL = hλhλL .

Applying the map Z to both sides of this equality, we obtain

Z (hλ) = Z
(
hλhλL

)
= Z

(
hλ
)︸ ︷︷ ︸

=ω(hλ)
(by the induction

hypothesis,

since `(λ)=L−1)

· Z (hλL)︸ ︷︷ ︸
=eλL

(by (13.73.1))

(
by Exercise 2.7.11(a), applied to hλ and λL instead of f and n

)
= ω

(
hλ
)
· eλL︸︷︷︸

=ω(hλL)
(since en=ω(hn)
for every n≥1)

= ω
(
hλ
)
· ω (hλL) = ω

hλhλL︸ ︷︷ ︸
=hλ

 (since ω is a k-algebra morphism)

= ω (hλ) .

In other words, the equality (13.73.6) holds if ` (λ) = L. This completes the induction step. The induction
proof of (13.73.6) is therefore complete.

The equality (13.73.6) shows that the k-linear maps Z : Λ→ Λ and ω : Λ→ Λ are equal to each other on
every element of the basis (hλ)λ∈Par of the k-module Λ. Hence, Z = ω. This solves Exercise 2.7.11(b).

(c) Fix two partitions µ and ν. Then, (2.5.6) yields

(13.73.7) sµsν =
∑
λ∈Par

cλµ,νsλ.

Applying this to µt and νt instead of µ and ν, we obtain

(13.73.8) sµtsνt =
∑
λ∈Par

cλµt,νtsλ.
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Applying the map Z to the identity (13.73.7), we obtain

Z (sµsν) = Z

( ∑
λ∈Par

cλµ,νsλ

)
=
∑
λ∈Par

cλµ,ν Z (sλ)︸ ︷︷ ︸
=sλt

=
∑
λ∈Par

cλµ,ν︸︷︷︸
=c

(λt)t
µ,ν

(since λ=(λt)
t
)

sλt =
∑
λ∈Par

c
(λt)

t

µ,ν sλt =
∑
λ∈Par

cλ
t

µ,νsλ(13.73.9)

(
here, we substituted λ for λt in the sum, since

the map Par→ Par, λ 7→ λt is a bijection

)
.

But recall that ω is a k-algebra homomorphism. Since Z = ω (by Exercise 2.7.11(b)), this shows that Z is a
k-algebra homomorphism. Hence,

Z (sµsν) = Z (sµ)︸ ︷︷ ︸
=sµt

·Z (sν)︸ ︷︷ ︸
=sνt

= sµtsνt =
∑
λ∈Par

cλµt,νtsλ (by (13.73.8)) .

Compared with (13.73.9), this yields
∑
λ∈Par c

λt

µ,νsλ =
∑
λ∈Par c

λ
µt,νtsλ. Since (sλ)λ∈Par is a basis of the

k-module Λ, we can compare coefficients in this equality, and obtain

(13.73.10) cλ
t

µ,ν = cλµt,νt for every λ ∈ Par .

We can substitute λt for λ in this result, and conclude that c
(λt)

t

µ,ν = cλ
t

µt,νt for every λ ∈ Par. Since (λt)
t

= λ,

this rewrites as cλµ,ν = cλ
t

µt,νt . This solves Exercise 2.7.11(c).

(d) Let µ and λ be two partitions such that µ ⊆ λ. In Remark 2.5.9, it has been shown that sλ/µ =∑
ν c

λ
µ,νsν , where the sum ranges over all partitions ν. In other words,

(13.73.11) sλ/µ =
∑
ν∈Par

cλµ,νsν .

Applying this to λt and µt instead of λ and µ, we obtain

(13.73.12) sλt/µt =
∑
ν∈Par

cλ
t

µt,νsν .

Applying the map Z to both sides of the identity (13.73.11), we obtain

Z
(
sλ/µ

)
= Z

( ∑
ν∈Par

cλµ,νsν

)
=
∑
ν∈Par

cλµ,ν︸︷︷︸
=cλ

t

µt,νt

(by Exercise 2.7.11(c))

Z (sν)︸ ︷︷ ︸
=sνt

=
∑
ν∈Par

cλ
t

µt,νtsνt =
∑
ν∈Par

cλ
t

µt,νsν

(
here, we substituted ν for νt in the sum, since

the map Par→ Par, ν 7→ νt is a bijection

)
= sλt/µt (by (13.73.12)) .

Since Z = ω (by Exercise 2.7.11(b)), this rewrites as ω
(
sλ/µ

)
= sλt/µt . This proves the first identity of

(2.4.15).
It is clear that the skew Schur function sλ/µ is homogeneous of degree |λ/µ|. In other words, sλ/µ ∈ Λ|λ/µ|.

Hence, (2.4.11) (applied to f = sλ/µ and n = |λ/µ|) yields

S
(
sλ/µ

)
= (−1)

|λ/µ|
ω
(
sλ/µ

)︸ ︷︷ ︸
=sλt/µt

= (−1)
|λ/µ|

sλt/µt .

This proves the second identity of (2.4.15). The proof of (2.4.15) is thus complete.
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13.74. Solution to Exercise 2.7.12. Solution to Exercise 2.7.12. (a)
First solution to Exercise 2.7.12(a): Let us first show that

∏∞
i,j=1 (1 + xiyj) =

∑
λ∈Par eλ (x)mλ (y).

In fact, in the proof of Proposition 2.5.15, we showed that
∏∞
j=1

∑
n≥0 hn (x) ynj =

∑
λ∈Par hλ (x)mλ (y).

The same argument (with all appearances of the letter “h” replaced by the letter “e”) shows that

(13.74.1)

∞∏
j=1

∑
n≥0

en (x) ynj =
∑
λ∈Par

eλ (x)mλ (y) .

But (2.2.19) yields

(13.74.2)

∞∏
i=1

(1 + xit) =
∑
n≥0

en (x) tn

in the ring (k [[x]]) [[t]]. For every j ∈ {1, 2, 3, ...}, we have

(13.74.3)

∞∏
i=1

(1 + xiyj) =
∑
n≥0

en (x) ynj

in the ring (k [[x]]) [[y]] (in fact, this results from (13.74.2) by substituting yj for t). Thus, (13.74.3) holds
in k [[x,y]] (since (k [[x]]) [[y]] = k [[x,y]] as rings). Now,

∞∏
i,j=1︸︷︷︸

=
∏∞
j=1

∏∞
i=1

(1 + xiyj) =

∞∏
j=1

∞∏
i=1

(1 + xiyj)︸ ︷︷ ︸
=
∑
n≥0 en(x)ynj

(by (13.74.3))

=

∞∏
j=1

∑
n≥0

en (x) ynj

=
∑
λ∈Par

eλ (x)mλ (y) (by (13.74.1)) .(13.74.4)

Next, we shall show that
∑
λ∈Par sλ (x) sλt (y) =

∑
λ∈Par eλ (x)mλ (y).

In fact, consider the k-algebra (k [[x]]) [[y]] = k [[x,y]]. This k-algebra (k [[x]]) [[y]] is a k [[y]]-algebra,
and contains Λ [[y]] as a k [[y]]-subalgebra.

The equality (2.5.1) yields

(13.74.5)
∑
λ∈Par

sλ (x) sλ (y) =

∞∏
i,j=1

(1− xiyj)−1
=
∑
λ∈Par

hλ (x)mλ (y) (by (2.5.11)) .

This is an equality in Λ [[y]] (because sλ (x) and hλ (x) belong to Λ for every λ ∈ Par).
Recall that ω : Λ → Λ is a k-algebra homomorphism. It thus induces a k [[y]]-algebra homomorphism

ω [[y]] : Λ [[y]] → Λ [[y]] which sends every q ∈ Λ to ω (q), and is continuous with respect to the usual
topology621 on Λ [[y]]. Applying this homomorphism ω [[y]] to both sides of (13.74.5), we obtain

(13.74.6)
∑
λ∈Par

ω (sλ (x)) sλ (y) =
∑
λ∈Par

ω (hλ (x))mλ (y)

(because ω [[y]], being a k [[y]]-algebra homomorphism, leaves the sλ (y) and mλ (y) terms unchanged, while
the sλ (x) and hλ (x) terms are elements of Λ and thus are transformed as by ω).

But we know that

(13.74.7) ω (sλ) = sλt for every partition λ.

(This follows from the first equality in (2.4.15) by setting µ = ∅.) Using (2.4.12) and (13.74.7), we can
rewrite (13.74.6) as ∑

λ∈Par

sλt (x) sλ (y) =
∑
λ∈Par

eλ (x)mλ (y) .

621The usual topology on a power series ring Z [[y]] (where Z is a commutative ring) is the direct-product topology obtained

by viewing the set Z [[y]] as a direct product of many copies of Z (this is done by identifying every power series with the

family of its coefficients), each of which is endowed with the discrete topology. In this topology, a sequence (or, more generally,
a net) (fi)i of power series converges to a power series f if and only if for every monomial m, the sequence (resp. net)

(the coefficient of m in fi)i converges to (the coefficient of m in f) with respect to the discrete topology. (The notion of a net

is a generalization of the notion of a sequence; it is useful in topology. See [219] for an introduction to it.)
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Hence, ∑
λ∈Par

eλ (x)mλ (y) =
∑
λ∈Par

sλt (x) sλ (y) =
∑
λ∈Par

s(λt)t (x)︸ ︷︷ ︸
=sλ(x)

(since (λt)
t
=λ)

sλt (y)

(
here, we substituted λt for λ in the sum, since the map

Par→ Par, λ 7→ λt is a bijection

)
=
∑
λ∈Par

sλ (x) sλt (y) .(13.74.8)

Combined with (13.74.4), this yields

(13.74.9)

∞∏
i,j=1

(1 + xiyj) =
∑
λ∈Par

eλ (x)mλ (y) =
∑
λ∈Par

sλ (x) sλt (y) .

This solves Exercise 2.7.12(a).
Second solution to Exercise 2.7.12(a): We can prove (13.74.4) as in the First solution to Exercise 2.7.12(a).

Thus, in order to solve Exercise 2.7.12(a), it remains to verify

(13.74.10)

∞∏
i,j=1

(1 + xiyj) =
∑
λ∈Par

sλ (x) sλt (y) .

Instead of proving (13.74.10), we will verify the identity

(13.74.11)

∞∏
i,j=1

(1 + txiyj) =
∑
λ∈Par

t|λ|sλ (x) sλt (y)

in the ring R (x,y) [[t]]. This identity will clearly yield (13.74.10) (by substituting t = 1), and thus conclude
the solution of Exercise 2.7.12(a).

We shall prove (13.74.11) in a similar way to how we proved (2.5.2), but using a variation on the RSK
correspondence. This is not in itself a new idea; indeed, this is how the equivalent identity (13.74.10) is
proven in [206, Theorem 7.14.3], in [111, §7] and in [186, Theorem 4.8.6]. However, instead of using the dual
RSK algorithm (also known as the RSK∗ algorithm; see [206, §7.14], [111, §5] and [186, Theorem 4.8.5] for
it) like these proofs do, we introduce a variation of the RSK algorithm that relies on the same RS-insertion
operation but changes the order in which the biletters are processed. (We will reprove (13.74.11) using the
dual RSK algorithm in the Third solution further below.)

For a given partition λ, let us define a row-strict tableau of shape λ to be an assignment T of entries in
{1, 2, 3, . . .} to the cells of the Ferrers diagram for λ which is strictly increasing left-to-right in rows, and
weakly increasing top-to-bottom in columns. It is clear that if λ is a partition, then the row-strict tableaux
of shape λ are in 1-to-1 correspondence with the column-strict tableaux of shape λt, and the correspondence
is given by transposing the tableau (i.e., taking whatever entry was assigned to a cell (i, j) in the input
tableau, and reassigning it to the cell (j, i) in the output tableau). Hence, for every partition λ, we have∑

Q is a row-strict
tableau of shape λ

xcont(Q) =
∑

T is a column-strict
tableau of shape λt

xcont(T )

= sλt (since this is how sλt is defined)(13.74.12)

(where xcont(Q) is defined for a row-strict tableau Q in the same way as it is defined for a column-strict
tableau Q). Substituting y for x in this equality, we obtain

(13.74.13)
∑

Q is a row-strict
tableau of shape λ

ycont(Q) = sλt (y) .

We also have

(13.74.14)
∑

P is a column-strict
tableau of shape λ

xcont(P ) = sλ (x)
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(because this is how sλ = sλ (x) is defined) for every partition λ.
A tableau-cotableau pair will mean a pair (P,Q) such that P is a column-strict tableau, Q is a row-strict

tableau, and P and Q both have shape λ for one and the same partition λ. Multiplying the identities
(13.74.14) and (13.74.13) and multiplying the result with t|λ|, we obtain

t|λ|
∑

(P,Q) is a pair with
P being a column-strict tableau

of shape λ, and Q being
a row-strict tableau of shape λ

xcont(P )ycont(Q) = t|λ|sλ (x) sλt (y)

for every partition λ. Summing this equality over all partitions λ, we obtain

(13.74.15)
∑

t|λ|xcont(P )ycont(Q) =
∑
λ∈Par

t|λ|sλ (x) sλt (y) ,

where the sum on the left hand side is over all tableau-cotableau pairs (P,Q) and where λ denotes the
common shape of P and Q.

We shall use all notations introduced in the proof of Theorem 2.5.1. Define the antilexicographic order
≤alex to be the total order on the set of all biletters which is given by(

i1
j1

)
≤alex

(
i2
j2

)
⇐⇒ (we have i1 ≤ i2, and if i1 = i2, then j1 ≥ j2) .

We denote by <alex the (strict) smaller relation of this order. A strict cobiword will mean an array
(
i
j

)
=(

i1...i`
j1...j`

)
in which the biletters satisfy

(
i1
j1

)
<alex · · · <alex

(
i`
j`

)
(that is, the biletters are distinct and ordered).

Strict cobiwords are clearly in 1-to-1 correspondence with sets (not multisets!) of biletters. Now, the left
hand side of (13.74.11) is

∏∞
i,j=1 (1 + txiyj) =

∏∞
i,j=1 (1 + txjyi) (here, we substituted (j, i) for the index

(i, j) in the product), and thus can be rewritten as the sum of t` (xj1yi1) (xj2yi2) · · · (xj`yi`) over all sets{(
i1
j1

)
, . . . ,

(
i`
j`

)}
of biletters. Thus, the left hand side of (13.74.11) is the sum

∑
t`xcont(j)ycont(i) over all

strict cobiwords
(
i
j

)
, where ` stands for the number of biletters in the strict cobiword. Meanwhile, we know

that the right hand side of (13.74.11) is the sum
∑
t|λ|xcont(P )ycont(Q) over all tableau-cotableau pairs (P,Q)

(because of (13.74.15)). Thus, in order to prove (13.74.11), we only need to construct a bijection between

the strict cobiwords
(
i
j

)
and the tableau-cotableau pairs (P,Q), which has the property that

cont (i) = cont (Q) ;

cont (j) = cont (P ) .

622

This bijection is the coRSK algorithm, which we shall now define.623

Let
(
i
j

)
be a strict cobiword. Starting with the pair (P0, Q0) = (∅,∅) and m = 0, the algorithm applies

the following steps (see Example 13.74.1 below):

• If im+1 does not exist (that is, m is the length of i), stop.

• Apply RS-insertion to the column-strict tableau Pm and the letter jm+1 (the bottom letter of
(
im+1

jm+1

)
).

Let Pm+1 be the resulting column-strict tableau, and let cm+1 be the resulting corner cell.
• Create Qm+1 from Qm by adding the top letter im+1 of

(
im+1

jm+1

)
to Qm in the cell cm+1 (which, as we

recall, is the extra corner cell of Pm+1 not present in Pm).
• Set m to m+ 1.

After all of the biletters have been thus processed, the result of the coRSK algorithm is (P`, Q`) =: (P,Q).

Example 13.74.1. The term in the expansion of the left side of (13.74.10) corresponding to

(x4y1)(x2y1)(x1y2)(x3y4)(x1y4)(x2y5)

622Such a bijection will then automatically satisfy |λ| = `, where λ is the (common) shape of P and Q, and where ` is the

length of the strict cobiword
(i
j

)
. This is because |λ| = |cont (Q)| and ` = |cont (i)|.

623This algorithm appears in Fulton’s [73, §A.4] as construction (1d).
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is the strict cobiword
(
i
j

)
=
(

112445
421312

)
, and the coRSK algorithm applied to this cobiword proceeds as follows:

P0 = ∅ Q0 = ∅

P1 = 4 Q1 = 1

P2 =
2
4

Q2 =
1
1

P3 =
1
2
4

Q3 =
1
1
3

P4 =
1 3
2
4

Q4 =
1 4
1
2

P5 =
1 1
2 3
4

Q5 =
1 4
1 4
2

P := P6 =
1 1 2
2 3
4

Q := Q6 =
1 4 5
1 4
2

It is clear that Pm remains a column-strict tableau of some Ferrers shape throughout the execution of
the coRSK algorithm, and that Qm remains a filling of the same shape as Pm which is (at least) weakly
increasing left-to-right along rows and weakly increasing top-to-bottom in columns. But we can also see
that Qm is strictly increasing left-to-right along rows624, so that Qm is a row-strict tableau. Thus, the result
(P,Q) of the coRSK algorithm is a tableau-cotableau pair.

To see that the coRSK algorithm is a bijection, we show how to recover
(
i
j

)
from (P,Q). This is done by

reverse bumping in the same way as for the usual RSK algorithm, with the only difference that now Qm is
obtained by removing the bottommost (rather than the rightmost) occurrence of the letter im+1 from Qm+1.
625

Finally, to see that the coRSK map is surjective, one needs to show that the reverse bumping procedure
can be applied to any tableau-cotableau pair (P,Q), and will result in a strict cobiword

(
i
j

)
. We leave this

verification to the reader.626

624Indeed, this follows from the observation that when one has a string of equal letters im = im+1 = · · · = im+r on top of

the strict cobiword, then the bottom letters bumped in are jm > jm+1 > · · · > jm+r, and therefore (as a consequence of the

last claim of part (b) of the row bumping lemma) the new cells form a vertical strip, that is, no two of these cells lie in the same
row. Actually, more can be said: Each of these new cells (except for the first one) is in a row further down than the previous
one. We will use this stronger fact further below.

625It necessarily has to be the bottommost occurrence, since (according to the previous footnote) the cell into which im+1

was filled at the step from Qm to Qm+1 lies further down than any existing cell of Qm containing the letter im+1.
626It is easy to see that repeatedly applying reverse bumping to (P,Q) will result in a sequence

(i`
j`

)
,
(i`−1
j`−1

)
, . . . ,

(i1
j1

)
of

biletters such that applying the coRSK algorithm to
(i1···i`
j1···j`

)
gives back (P,Q). The question is why we have

(i1
j1

)
<alex

· · · <alex
(i`
j`

)
. Since the chain of inequalities i1 ≤ i2 ≤ · · · ≤ i` is clear from the choice of entry to reverse-bump, it only

remains to show that for every string im = im+1 = · · · = im+r of equal top letters, the corresponding bottom letters strictly
decrease (that is, jm > jm+1 > · · · > jm+r). One way to see this is the following:

Assume the contrary; i.e., assume that the bottom letters corresponding to some string im = im+1 = · · · = im+r of equal

top letters do not strictly decrease. Thus, jm+p ≤ jm+p+1 for some p ∈ {0, 1, . . . , r − 1}. Consider this p.
Let us consider the cells containing the equal letters im = im+1 = · · · = im+r in the tableau Qm+r. Label these cells as

cm, cm+1, . . . , cm+r from top to bottom (noticing that no two of them lie in the same row, since Qm+r is row-strict). By the

definition of reverse bumping, the first entry to be reverse bumped from Pm+r is the entry in position cm+r (since this is the
bottommost occurrence of the letter im+r in Qm+r); then, the next entry to be reverse bumped is the one in position cm+r−1,
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So the coRSK map is a bijection having the required properties. As we have said, this proves (13.74.11).
This solves Exercise 2.7.12(a) again.

[Remark: By combining the two solutions of Exercise 2.7.12(a) given above, one can obtain a new proof of
the equality (13.74.7) (a proof which does not use (2.4.15)). Indeed, using (2.4.12), we can rewrite (13.74.6)
as ∑

λ∈Par

ω (sλ (x)) sλ (y) =
∑
λ∈Par

eλ (x)mλ (y) .

Compared with (13.74.4), this yields∑
λ∈Par

ω (sλ (x)) sλ (y)

=

∞∏
i,j=1

(1 + xiyj) =

∞∏
i,j=1

(1 + xjyi) (here, we substituted (j, i) for (i, j) in the sum)

=

∞∏
i,j=1

(1 + yixj) =
∑
λ∈Par

sλ (y) sλt (x) (by (13.74.10), with x and y substituted for y and x)

=
∑
λ∈Par

sλt (x) sλ (y) .

Since the sλ (y) for λ ∈ Par are linearly independent over k [[x]], we can compare coefficients before sλ (y) in
this equality. As a result, we obtain ω (sλ (x)) = sλt (x) for every λ ∈ Par. Thus, (13.74.7) is proven again.]

Third solution to Exercise 2.7.12(a): In order to solve Exercise 2.7.12(a), it suffices to verify the identity
(13.74.11). (This can be proven by the same argument as in the Second solution to Exercise 2.7.12(a).)

We shall now verify the identity (13.74.11) using the so-called dual RSK algorithm (also known as RSK∗

algorithm)627. This will be fairly similar to the Second solution to Exercise 2.7.12(a) given above, but not
identical to it; in particular, the dual RSK algorithm that we will introduce below will (unlike the coRSK
algorithm from the Second solution) not rely on the same row bumping operation as the usual RSK algorithm,
but on a somewhat modified version of it.

For a given partition λ, let us define a row-strict tableau of shape λ to be an assignment T of entries in
{1, 2, 3, . . .} to the cells of the Ferrers diagram for λ which is strictly increasing left-to-right in rows, and
weakly increasing top-to-bottom in columns. The equality (13.74.12) holds628; thus, we have∑

P is a row-strict
tableau of shape λ

xcont(P ) =
∑

Q is a row-strict
tableau of shape λ

xcont(Q) = sλt (by (13.74.12))

= sλt (x) .(13.74.16)

We also have ∑
Q is a column-strict
tableau of shape λ

xcont(Q) =
∑

P is a column-strict
tableau of shape λ

xcont(P ) = sλ (x)

(because this is how sλ = sλ (x) is defined) for every partition λ. Substituting y for x in this equality, we
obtain

(13.74.17)
∑

Q is a column-strict
tableau of shape λ

ycont(Q) = sλ (y) .

etc., moving further and further up. Thus, for each q ∈ {0, 1, . . . , r}, the tableau Pm+q−1 is obtained from Pm+q by reverse

bumping the entry in position cm+q . Hence, conversely, the tableau Pm+q is obtained from Pm+q−1 by RS-inserting the entry
jm+q , which creates the corner cell cm+q .

But recall that jm+p ≤ jm+p+1. Hence, part (a) of the row bumping lemma (applied to Pm+p−1, jm+p, jm+p+1, Pm+p,

cm+p, Pm+p+1 and cm+p+1 instead of P , j, j′, P ′, c, P ′′ and c′) shows that the cell cm+p+1 is in the same row as the cell
cm+p or in a row further up. But this contradicts the fact that the cell cm+p+1 is in a row further down than the cell cm+p

(since we have labeled our cells as cm, cm+1, . . . , cm+r from top to bottom, and no two of them lied in the same row). This

contradiction completes our proof.
627We will define this algorithm further below. It also frequently appears in literature: see, e.g., [206, §7.14], [111, §5], [186,

Theorem 4.8.5] and (with different conventions) [73, §A.4.3, Prop. 3].
628Indeed, it can be proven as in the Second solution to Exercise 2.7.12(a).
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A cotableau-tableau pair will mean a pair (P,Q) such that P is a row-strict tableau, Q is a column-strict
tableau, and P and Q both have shape λ for one and the same partition λ. Multiplying the identities
(13.74.16) and (13.74.17) and multiplying the result with t|λ|, we obtain

t|λ|
∑

(P,Q) is a pair with
P being a row-strict tableau

of shape λ, and Q being
a column-strict tableau of shape λ

xcont(P )ycont(Q) = t|λ|sλt (x) sλ (y)

for every partition λ. Summing this equality over all partitions λ, we obtain∑
t|λ|xcont(P )ycont(Q) =

∑
λ∈Par

t|λ|sλt (x) sλ (y) ,

where the sum on the left hand side is over all cotableau-tableau pairs (P,Q) and where λ denotes the
common shape of P and Q. This becomes∑

t|λ|xcont(P )ycont(Q) =
∑
λ∈Par

t|λ|sλt (x) sλ (y) =
∑
λ∈Par

t|λ
t|︸︷︷︸

=t|λ|

(since |λt|=|λ|)

s(λt)t (x)︸ ︷︷ ︸
=sλ(x)

(since (λt)
t
=λ)

sλt (y)

(
here, we substituted λt for λ in the sum, since the map

Par→ Par, λ 7→ λt is a bijection

)
=
∑
λ∈Par

t|λ|sλ (x) sλt (y) .(13.74.18)

We shall use all notations introduced in the proof of Theorem 2.5.1. A strict biword will mean an array(
i
j

)
=
(
i1...i`
j1...j`

)
in which the biletters satisfy

(
i1
j1

)
<lex · · · <lex

(
i`
j`

)
(that is, the biletters are distinct and ordered

with respect to the lexicographic order). Strict biwords are clearly in 1-to-1 correspondence with sets (not
multisets!) of biletters. Now, the left hand side of (13.74.11) is

∏∞
i,j=1 (1 + txiyj) =

∏∞
i,j=1 (1 + txjyi)

(here, we substituted (j, i) for the index (i, j) in the product), and thus can be rewritten as the sum of

t` (xj1yi1) (xj2yi2) · · · (xj`yi`) over all sets
{(

i1
j1

)
, . . . ,

(
i`
j`

)}
of biletters. Thus, the left hand side of (13.74.11)

is the sum
∑
t`xcont(j)ycont(i) over all strict biwords

(
i
j

)
, where ` stands for the number of biletters in the

biword. Meanwhile, we know that the right hand side of (13.74.11) is the sum
∑
t|λ|xcont(P )ycont(Q) over all

cotableau-tableau pairs (P,Q) (because of (13.74.18)). Thus, in order to prove (13.74.11), we only need to

construct a bijection between the strict biwords
(
i
j

)
and the cotableau-tableau pairs (P,Q), which has the

property that

cont (i) = cont (Q) ;

cont (j) = cont (P ) .

629

This bijection is the dual RSK algorithm, which we shall define below.
First, we shall introduce a simpler operation which we call dual RS-insertion (and which is similar to

RS-insertion, but not identical with it630).
Dual RS-insertion takes as input a row-strict tableau P and a letter j, and returns a new row-strict

tableau P ′ along with a corner cell c of P ′, which is constructed as follows: Start out by setting P ′ = P .
The letter j tries to insert itself into the first row of P ′ by either bumping out the leftmost letter in the
first row larger or equal to j, or else placing itself at the right end of the row if no such letter (larger
or equal to j) exists. If a letter was bumped from the first row, this letter follows the same rules to insert
itself into the second row, and so on. This series of bumps must eventually come to an end. At the end of
the bumping, the tableau P ′ created has an extra corner cell not present in P . If we call this corner cell c,
then P ′ (in its final form) and c are what the dual RS-insertion operation returns. One says that P ′ is the

629Such a bijection will then automatically satisfy |λ| = `, where λ is the (common) shape of P and Q, and where ` is the

length of the strict biword
(i
j

)
. This is because |λ| = |cont (Q)| and ` = |cont (i)|.

630We will leave many of its properties unproven, because their proofs are analogous (or at least very similar) to the proofs

of the corresponding properties of RS-insertion, and thus can be easily reconstructed by the reader.
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result of dually inserting j into the tableau P . It is straightforward to see that this resulting filling P ′ is a
row-strict tableau631.

Example 13.74.2. To give an example of this operation, let us dually insert the letter j = 3 into the

row-strict tableau

1 2 3 5
1 2 4
3 4 7
3 6
4

(we are showing all intermediate states of P ′; the underlined letter is always

the one that is going to be bumped out at the next step):

1 2 3 5
1 2 4
3 4 7
3 6
4

7−→
insert 3;

bump out 3

1 2 3 5
1 2 4
3 4 7
3 6
4

7−→
insert 3;

bump out 4

1 2 3 5
1 2 3
3 4 7
3 6
4

7−→
insert 4;

bump out 4

1 2 3 5
1 2 3
3 4 7
3 6
4

7−→
insert 4;

bump out 6

1 2 3 5
1 2 3
3 4 7
3 4
4

7−→
insert 6;

done

1 2 3 5
1 2 3
3 4 7
3 4
4 6

.

The last tableau in this sequence is the row-strict tableau that is returned. The corner cell that is returned
is the second cell of the fifth row (the one containing 6).

Dual RS-insertion will be used as a step in the dual RSK algorithm; the construction will rely on a simple
fact known as the dual row bumping lemma. Let us first define the notion of a dual bumping path (or dual
bumping route): If P is a row-strict tableau, and j is a letter, then some letters are inserted into some cells
when dual RS-insertion is applied to P and j. The sequence of these cells (in the order in which they see
letters inserted into them)632 is called the dual bumping path for P and j. This dual bumping path always
ends with the corner cell c which is returned by dual RS-insertion. As an example, when j = 3 is dually
inserted into the tableau P shown below, the result P ′ is shown with all entries on the dual bumping path
underlined:

P =

1 2 3 4
1 2 4 6
2 4 5 6
2 4
3

dually insert7−→
j=3

P ′ =

1 2 3 4
1 2 3 6
2 4 5 6
2 4
3 4

A first simple observation about dual bumping paths is that dual bumping paths trend weakly left (just as
bumping paths for regular RS-insertion do). A subtler property of bumping paths is the following dual row
bumping lemma633:

Dual row bumping lemma: Let P be a row-strict tableau, and let j and j′ be two letters.
Applying dual RS-insertion to the tableau P and the letter j yields a new row-strict tableau
P ′ and a corner cell c. Applying dual RS-insertion to the tableau P ′ and the letter j′ yields
a new row-strict tableau P ′′ and a corner cell c′.
(a) Assume that j < j′. Then, the dual bumping path for P ′ and j′ stays strictly to the

right, within each row, of the dual bumping path for P and j. The cell c′ (in which
the dual bumping path for P ′ and j′ ends) is in the same row as the cell c (in which
the dual bumping path for P and j ends) or in a row further up; it is also in a column
further right than c.

631Indeed, the reader can check that P ′ remains a row-strict tableau throughout the algorithm that defines dual RS-insertion.
632In particular, this includes those cells whose entries did not change under the insertion (because the entry inserted was

the same as the entry they contained before the insertion).
633This lemma is equivalent to the “column bumping lemma” in Fulton [73, p. 187].



584 DARIJ GRINBERG AND VICTOR REINER

(b) Assume instead that j ≥ j′. Then, the dual bumping path for P ′ and j′ stays weakly to
the left, within each row, of the dual bumping path for P and j. The cell c′ (in which
the dual bumping path for P ′ and j′ ends) is in a row further down than the cell c (in
which the dual bumping path for P and j ends); it is also in the same column as c or
in a column further left.

This lemma can be easily proven by induction over the row (similarly to the usual row bumping lemma).

We will now define the dual RSK algorithm. Let
(
i
j

)
be a strict biword. Starting with the pair (P0, Q0) =

(∅,∅) and m = 0, the algorithm applies the following steps (see Example 13.74.3 below):

• If im+1 does not exist (that is, m is the length of i), stop.
• Apply dual RS-insertion to the row-strict tableau Pm and the letter jm+1 (the bottom letter of(

im+1

jm+1

)
). Let Pm+1 be the resulting row-strict tableau, and let cm+1 be the resulting corner cell.

• Create Qm+1 from Qm by adding the top letter im+1 of
(
im+1

jm+1

)
to Qm in the cell cm+1 (which, as we

recall, is the extra corner cell of Pm+1 not present in Pm).
• Set m to m+ 1.

After all of the biletters have been thus processed, the result of the dual RSK algorithm is (P`, Q`) =: (P,Q).

Example 13.74.3. The term in the expansion of the left side of (13.74.10) corresponding to

(x2y1)(x4y1)(x1y2)(x1y4)(x3y4)(x2y5)

is the strict biword
(
i
j

)
=
(

112445
241132

)
, and the dual RSK algorithm applied to this biword proceeds as follows:

P0 = ∅ Q0 = ∅

P1 = 2 Q1 = 1

P2 = 2 4 Q2 = 1 1

P3 =
1 4
2

Q3 =
1 1
2

P4 =
1 4
1
2

Q4 =
1 1
2
4

P5 =
1 3
1 4
2

Q5 =
1 1
2 4
4

P := P6 =
1 2
1 3
2 4

Q := Q6 =
1 1
2 4
4 5

It is clear that Pm remains a row-strict tableau of some Ferrers shape throughout the execution of the
dual RSK algorithm, and that Qm remains a filling of the same shape as Pm which is (at least) weakly
increasing left-to-right along rows and weakly increasing top-to-bottom in columns. But we can also see that
Qm is strictly increasing top-to-bottom along columns634, so that Qm is a column-strict tableau. Thus, the
result (P,Q) of the dual RSK algorithm is a cotableau-tableau pair.

634Indeed, this follows from the observation that when one has a string of equal letters im = im+1 = · · · = im+r on top

of the strict biword, then the bottom letters bumped in are jm < jm+1 < · · · < jm+r, and therefore (as a consequence of the

second-to-last claim of part (a) of the dual row bumping lemma) the new cells form a horizontal strip, that is, no two of these
cells lie in the same column. Actually, more can be said: Each of these new cells (except for the first one) is in a column further

right than the previous one. We will use this stronger fact further below.
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To see that the dual RSK algorithm is a bijection, we show how to recover
(
i
j

)
from (P,Q). This is done by

dually reverse bumping from (Pm+1, Qm+1) to recover both the biletter
(
im+1

jm+1

)
and the tableaux (Pm, Qm),

as follows. Firstly, im+1 is the maximum entry of Qm+1, and Qm is obtained by removing the rightmost
occurrence of this letter im+1 from Qm+1. 635 To produce Pm and jm+1, find the position of the rightmost
occurrence of im+1 in Qm+1, and start dually reverse bumping in Pm+1 from the entry in this same position,
where dually reverse bumping an entry means inserting it into one row higher by having it bump out the
rightmost entry which is smaller or equal to it.636 The entry bumped out of the first row is jm+1, and the
resulting tableau is Pm.

Finally, to see that the dual RSK map is surjective, one needs to show that the dually reverse bumping
procedure can be applied to any cotableau-tableau pair (P,Q), and will result in a strict biword

(
i
j

)
. We

leave this verification to the reader.637

So the dual RSK map is a bijection having the required properties. As we have said, this proves (13.74.11).
This solves Exercise 2.7.12(a) again.

(b) Let us consider the map ω [[y]] : Λ [[y]]→ Λ [[y]] defined as in the solution of Exercise 2.7.12(a).
Now, the equality (2.5.1) yields

(13.74.19)
∑
λ∈Par

sλ (x) sλ (y) =

∞∏
i,j=1

(1− xiyj)−1
=
∑
λ∈Par

z−1
λ pλ (x) pλ (y) (by (2.5.11)) .

This is an equality in Λ [[y]] (because sλ (x) and pλ (x) belong to Λ for every λ ∈ Par). Hence, we can apply
the map ω [[y]] : Λ [[y]]→ Λ [[y]] to both sides of this equality. As a result, we obtain∑

λ∈Par

ω (sλ (x)) sλ (y) =
∑
λ∈Par

z−1
λ ω (pλ (x)) pλ (y)

(because ω [[y]], being a k [[y]]-algebra homomorphism, leaves the sλ (y) and pλ (y) terms unchanged, while
the sλ (x) and pλ (x) terms are elements of Λ and thus are transformed as by ω). Due to (2.4.14) and

635It necessarily has to be the rightmost occurrence, since (according to the previous footnote) the cell into which im+1 was

filled at the step from Qm to Qm+1 lies further right than any existing cell of Qm containing the letter im+1.
636Let us give a few more details on this “dually reverse bumping” procedure. Dually reverse bumping (also known as dual

RS-deletion or reverse dual RS-insertion) is an operation which takes a row-strict tableau P ′ and a corner cell c of P ′, and
constructs a row-strict tableau P and a letter j such that dual RS-insertion for P and j yields P ′ and c. It starts by setting

P = P ′, and removing the entry in the cell c from P . This removed entry is then denoted by k, and is inserted into the row of

P above c, bumping out the rightmost entry which is smaller or equal to k. The letter which is bumped out – say, ` –, in turn,
is inserted into the row above it, bumping out the rightmost entry which is smaller or equal to `. This procedure continues

in the same way until an entry is bumped out of the first row (which will eventually happen). The dually reverse bumping

operation returns the resulting tableau P and the entry which is bumped out of the first row.
It is straightforward to check that the dually reverse bumping operation is well-defined (i.e., P does stay a row-strict tableau

throughout the procedure) and is the inverse of the dual RS-insertion operation. (In fact, these two operations undo each other
step by step.)

637It is easy to see that repeatedly applying dually reverse bumping to (P,Q) will result in a sequence
(i`
j`

)
,
(i`−1
j`−1

)
, . . . ,

(i1
j1

)
of biletters such that applying the dual RSK algorithm to

(i1···i`
j1···j`

)
gives back (P,Q). The question is why we have

(i1
j1

)
<lex

· · · <lex
(i`
j`

)
. Since the chain of inequalities i1 ≤ i2 ≤ · · · ≤ i` is clear from the choice of entry to dually reverse-bump, it only

remains to show that for every string im = im+1 = · · · = im+r of equal top letters, the corresponding bottom letters strictly
increase (that is, jm < jm+1 < · · · < jm+r). One way to see this is the following:

Assume the contrary; i.e., assume that the bottom letters corresponding to some string im = im+1 = · · · = im+r of equal

top letters do not strictly increase. Thus, jm+p ≥ jm+p+1 for some p ∈ {0, 1, . . . , r − 1}. Consider this p.

Let us consider the cells containing the equal letters im = im+1 = · · · = im+r in the tableau Qm+r. Label these cells as
cm, cm+1, . . . , cm+r from left to right (noticing that no two of them lie in the same column, since Qm+r is column-strict). By

the definition of dually reverse bumping, the first entry to be dually reverse bumped from Pm+r is the entry in position cm+r

(since this is the rightmost occurrence of the letter im+r in Qm+r); then, the next entry to be dually reverse bumped is the one
in position cm+r−1, etc., moving further and further left. Thus, for each q ∈ {0, 1, . . . , r}, the tableau Pm+q−1 is obtained from

Pm+q by dually reverse bumping the entry in position cm+q . Hence, conversely, the tableau Pm+q is obtained from Pm+q−1

by dually RS-inserting the entry jm+q , which creates the corner cell cm+q .
But recall that jm+p ≥ jm+p+1. Hence, part (b) of the dual row bumping lemma (applied to Pm+p−1, jm+p, jm+p+1,

Pm+p, cm+p, Pm+p+1 and cm+p+1 instead of P , j, j′, P ′, c, P ′′ and c′) shows that the cell cm+p+1 is in the same column as
the cell cm+p or in a column further left. But this contradicts the fact that the cell cm+p+1 is in a column further right than

the cell cm+p (since we have labeled our cells as cm, cm+1, . . . , cm+r from left to right, and no two of them lied in the same

column). This contradiction completes our proof.
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(13.74.7), this rewrites as ∑
λ∈Par

sλt (x) sλ (y) =
∑
λ∈Par

z−1
λ (−1)

|λ|−`(λ)
pλ (x) pλ (y) .

Since
∑
λ∈Par sλt (x) sλ (y) =

∑
λ∈Par sλ (x) sλt (y) (this can be proven just as in (13.74.8)), this rewrites as∑

λ∈Par

sλ (x) sλt (y) =
∑
λ∈Par

z−1
λ (−1)

|λ|−`(λ)
pλ (x) pλ (y) =

∑
λ∈Par

(−1)
|λ|−`(λ)

z−1
λ pλ (x) pλ (y) .

Hence, ∑
λ∈Par

(−1)
|λ|−`(λ)

z−1
λ pλ (x) pλ (y) =

∑
λ∈Par

sλ (x) sλt (y) =

∞∏
i,j=1

(1 + xiyj)

(by (13.74.9)). This solves Exercise 2.7.12(b).

13.75. Solution to Exercise 2.7.13. Solution to Exercise 2.7.13. Proof of Theorem 2.4.6.
Let n ∈ N. Let µ be a partition having at most n parts. Exercise 2.5.11(a) yields∑

λ∈Par

sλ (x) sλ/µ (y) = sµ (x) ·
∞∏

i,j=1

(1− xiyj)−1

in the ring k [[x,y]] = k [[x1, x2, x3, ..., y1, y2, y3, ...]]. Switching the roles of the variables x and y in this
equality, we obtain ∑

λ∈Par

sλ (y) sλ/µ (x) = sµ (y) ·
∞∏

i,j=1

(1− yixj)−1
.

We can now substitute (y1, y2, ..., yn, 0, 0, 0, ...) for (y1, y2, y3, ...) on both sides of this, and obtain the equality∑
λ∈Par

sλ (y1, y2, ..., yn) sλ/µ (x) = sµ (y1, y2, ..., yn) ·
n∏
i=1

∞∏
j=1

(1− yixj)−1

in the subring (k [[x]]) [[y1, y2, ..., yn]] of k [[x,y]] (notice that the
∏∞
i,j=1 (1− yixj)−1

on the right hand side

became
∏n
i=1

∏∞
j=1 (1− yixj)−1

because all factors 1− yixj with i > n got sent to 1− 0xj = 1). In the sum
on the left hand side of this equality, all addends corresponding to partitions λ having more than n parts are
0 (because Exercise 2.3.8(b) yields that all such λ satisfy sλ (x1, x2, . . . , xn) = 0, hence sλ (y1, y2, ..., yn) = 0).
Thus, we can remove all these addends, and the equality thus becomes

(13.75.1)
∑
λ∈Par;

λ has at most n parts

sλ (y1, y2, ..., yn) sλ/µ (x) = sµ (y1, y2, ..., yn) ·
n∏
i=1

∞∏
j=1

(1− yixj)−1
.

Let ρ be the n-tuple (n− 1, n− 2, ..., 2, 1, 0) ∈ Nn. We can regard ρ as a weak composition by padding it
with zeroes at the end (i.e., identifying ρ with the weak composition (n− 1, n− 2, ..., 2, 1, 0, 0, 0, 0, ...)).

For every n-tuple α = (α1, α2, . . . , αn) ∈ Nn, we define the alternant aα ∈ k [x1, x2, . . . , xn] as in Defini-
tion 2.6.2. (But other than this, we are not adapting the notations of Section 2.6.)

Now, Corollary 2.6.7 states that sλ (x1, x2, ..., xn) =
aλ+ρ

aρ
in k [x1, x2, ..., xn] whenever λ is a partition

having at most n parts. Applied to the variables y1, y2, ..., yn instead of x1, x2, ..., xn, this yields that

sλ (y1, y2, ..., yn) =
aλ+ρ (y1, y2, ..., yn)

aρ (y1, y2, ..., yn)
whenever λ is a partition having at most n parts. This equality,

applied to λ = µ, yields sµ (y1, y2, ..., yn) =
aµ+ρ (y1, y2, ..., yn)

aρ (y1, y2, ..., yn)
. Substituting the last two equalities into

(13.75.1), we obtain∑
λ∈Par;

λ has at most n parts

aλ+ρ (y1, y2, ..., yn)

aρ (y1, y2, ..., yn)
sλ/µ (x) =

aµ+ρ (y1, y2, ..., yn)

aρ (y1, y2, ..., yn)
·
n∏
i=1

∞∏
j=1

(1− yixj)−1
.
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Multiplied with aρ (y1, y2, ..., yn), this becomes∑
λ∈Par;

λ has at most n parts

aλ+ρ (y1, y2, ..., yn) sλ/µ (x) = aµ+ρ (y1, y2, ..., yn) ·
n∏
i=1

∞∏
j=1

(1− yixj)−1
.

Renaming λ as ν on the left hand side of this equality, we obtain

(13.75.2)
∑
ν∈Par;

ν has at most n parts

aν+ρ (y1, y2, ..., yn) sν/µ (x) = aµ+ρ (y1, y2, ..., yn) ·
n∏
i=1

∞∏
j=1

(1− yixj)−1
.

Now, let λ be a partition having at most n parts. We want to find the coefficient of yλ1+n−1
1 yλ2+n−2

2 ...yλn+n−n
n

on the left and the right hand sides of (13.75.2). Here, we regard (13.75.2) as an equality in the ring
(k [[x]]) [[y1, y2, ..., yn]], so that we consider the variables x1, x2, x3, ... as constants, and thus (for example)
the coefficient of y1 in (1 + x1) (1 + y1) is 1 + x1 rather than 1.

We first notice that

(13.75.3)

n∏
i=1

∞∏
j=1

(1− yixj)−1
=

∑
(q1,q2,...,qn)∈Nn

 n∏
j=1

hqj (x)

 ·
 n∏
j=1

y
qj
j


638.

Let us recall a basic fact from linear algebra, namely the explicit formula for the determinant of a matrix
as a sum over permutations: Any matrix (αi,j)i,j=1,2,...,` over a commutative ring satisfies

(13.75.5) det
(

(αi,j)i,j=1,2,...,`

)
=
∑
σ∈S`

(−1)
σ
∏̀
i=1

αi,σ(i).

Applying this to ` = n and αi,j = y
(µ+ρ)j
i , we obtain

(13.75.6) det

((
y

(µ+ρ)j
i

)
i,j=1,2,...,n

)
=
∑
σ∈Sn

(−1)
σ

n∏
i=1

y
(µ+ρ)σ(i)

i =
∑
σ∈Sn

(−1)
σ

n∏
j=1

y
(µ+ρ)σ(j)

j

638Proof: The equality (2.2.18) (with the indices i and n renamed as j and q) yields

(13.75.4)

∞∏
j=1

(1− xjt)−1 = 1 + h1 (x) t+ h2 (x) t2 + ... =
∑
q≥0

hq (x) tq in (k [[x]]) [[t]] .

For every i ∈ {1, 2, ..., n}, we have
∞∏
j=1

(1− yixj)−1 =
∑
q≥0

hq (x) yqi

(this follows by substituting yi for t on both sides of (13.75.4)). Thus,

n∏
i=1

∞∏
j=1

(1− yixj)−1

︸ ︷︷ ︸
=
∑
q≥0 hq(x)y

q
i

=

n∏
i=1

∑
q≥0

hq (x) yqi =

n∏
j=1

∑
q≥0

hq (x) yqj

=
∑

(q1,q2,...,qn)∈Nn

n∏
j=1

(
hqj (x) · yqjj

)
︸ ︷︷ ︸

=
(∏n

j=1 hqj (x)
)
·
(∏n

j=1 y
qj
j

)
(by the product rule)

=
∑

(q1,q2,...,qn)∈Nn

 n∏
j=1

hqj (x)

 ·
 n∏
j=1

y
qj
j

 ,

qed.
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(here, we renamed the index i as j in the product). Now, the right hand side of (13.75.2) becomes

aµ+ρ (y1, y2, ..., yn)︸ ︷︷ ︸
=det

((
y

(µ+ρ)j
i

)
i,j=1,2,...,n

)
(by the definition of the alternant aµ+ρ)

·
n∏
i=1

∞∏
j=1

(1− yixj)−1

︸ ︷︷ ︸
=
∑

(q1,q2,...,qn)∈Nn(
∏n
j=1 hqj (x))·(

∏n
j=1 y

qj
j )

(by (13.75.3))

= det

((
y

(µ+ρ)j
i

)
i,j=1,2,...,n

)
︸ ︷︷ ︸
=
∑
σ∈Sn (−1)σ

∏n
j=1 y

(µ+ρ)σ(j)
j

(by (13.75.6))

·
∑

(q1,q2,...,qn)∈Nn

 n∏
j=1

hqj (x)

 ·
 n∏
j=1

y
qj
j



=

 ∑
σ∈Sn

(−1)
σ

n∏
j=1

y
(µ+ρ)σ(j)

j

 · ∑
(q1,q2,...,qn)∈Nn

 n∏
j=1

hqj (x)

 ·
 n∏
j=1

y
qj
j


=
∑
σ∈Sn

(−1)
σ

∑
(q1,q2,...,qn)∈Nn

 n∏
j=1

hqj (x)

 ·
 n∏
j=1

y
qj
j

 n∏
j=1

y
(µ+ρ)σ(j)

j


︸ ︷︷ ︸

=
∏n
j=1

(
y
qj
j y

(µ+ρ)σ(j)
j

)
=
∏n
j=1 y

qj+(µ+ρ)σ(j)
j

=
∑
σ∈Sn

(−1)
σ

∑
(q1,q2,...,qn)∈Nn

 n∏
j=1

hqj (x)

 ·
 n∏
j=1

y
qj+(µ+ρ)σ(j)

j

 .

Hence, the coefficient of yλ1+n−1
1 yλ2+n−2

2 ...yλn+n−n
n on the right hand side of (13.75.2) equals

(13.75.7)
∑
σ∈Sn

(−1)
σ

∑
(q1,q2,...,qn)∈Nn;

qj+(µ+ρ)σ(j)=λj+n−j for every j∈{1,2,...,n}

n∏
j=1

hqj (x) .

However, for every σ ∈ Sn, it is easy to see that

(13.75.8)
∑

(q1,q2,...,qn)∈Nn;
qj+(µ+ρ)σ(j)=λj+n−j for every j∈{1,2,...,n}

n∏
j=1

hqj (x) =

n∏
j=1

hλj+n−j−(µ+ρ)σ(j)
(x) .
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639 Hence, the coefficient of yλ1+n−1
1 yλ2+n−2

2 ...yλn+n−n
n on the right hand side of (13.75.2) equals

∑
σ∈Sn

(−1)
σ

∑
(q1,q2,...,qn)∈Nn;

qj+(µ+ρ)σ(j)=λj+n−j for every j∈{1,2,...,n}

n∏
j=1

hqj (x)

︸ ︷︷ ︸
=
∏n
j=1 hλj+n−j−(µ+ρ)σ(j)

(x)

(by (13.75.8))

(by (13.75.7))

=
∑
σ∈Sn

(−1)
σ

n∏
j=1

hλj+n−j−(µ+ρ)σ(j)︸ ︷︷ ︸
=hλj−µσ(j)−j+σ(j)

(since it is easy to see that
λj+n−j−(µ+ρ)σ(j)=λj−µσ(j)−j+σ(j))

(x)

=
∑
σ∈Sn

(−1)
σ

n∏
j=1

hλj−µσ(j)−j+σ(j) (x)

=
∑
σ∈Sn

(−1)
σ

n∏
i=1

hλi−µσ(i)−i+σ(i) (x) = det
((
hλi−µj−i+j (x)

)
i,j=1,2,...,n

)
(13.75.11)

(because applying (13.75.5) to ` = n and αi,j = hλi−µj−i+j (x) yields det
((
hλi−µj−i+j (x)

)
i,j=1,2,...,n

)
=∑

σ∈Sn (−1)
σ∏n

i=1 hλi−µσ(i)−i+σ(i) (x)).

On the other hand, let us study the left hand side of (13.75.2). Every partition ν having at most n parts
satisfies

aν+ρ (y1, y2, ..., yn) = det

((
y

(ν+ρ)j
i

)
i,j=1,2,...,n

)
(by the definition of the alternant aν+ρ)

=
∑
σ∈Sn

(−1)
σ

n∏
i=1

y
(ν+ρ)σ(i)

i

(
by (13.75.5), applied to ` = n and αi,j = y

(ν+ρ)j
i

)
.

639Proof. Let σ ∈ Sn. It is clear that the sum

(13.75.9)
∑

(q1,q2,...,qn)∈Nn;
qj+(µ+ρ)σ(j)=λj+n−j for every j∈{1,2,...,n}

n∏
j=1

hqj (x)

has at most one addend: namely, the one corresponding to the n-tuple (q1, q2, ..., qn) ∈ Zn defined by

(13.75.10) qj = λj + n− j − (µ+ ρ)σ(j) for every j ∈ {1, 2, ..., n} .

If this n-tuple (q1, q2, ..., qn) belongs to Nn, then the sum (13.75.9) does have this summand. Thus, if the n-tuple (q1, q2, ..., qn)
belongs to Nn, we have

∑
(q1,q2,...,qn)∈Nn;

qj+(µ+ρ)σ(j)=λj+n−j for every j∈{1,2,...,n}

n∏
j=1

hqj (x) =

n∏
j=1

hλj+n−j−(µ+ρ)σ(j)
(x) .

Thus, if the n-tuple (q1, q2, ..., qn) defined by (13.75.10) belongs to Nn, the equality (13.75.8) is proven. It remains to consider
the case when the n-tuple (q1, q2, ..., qn) defined by (13.75.10) does not belong to Nn. In this case, the sum (13.75.9) is empty

(because the only addend it can have corresponds to the n-tuple (q1, q2, ..., qn) defined by (13.75.10), but this n-tuple does

not belong to Nn and therefore does not appear in the sum), hence equals 0. But since the n-tuple (q1, q2, ..., qn) defined by
(13.75.10) does not belong to Nn, there must be a j ∈ {1, 2, ..., n} satisfying λj + n− j − (µ+ ρ)σ(j) /∈ N. For this j, we have

hλj+n−j−(µ+ρ)σ(j)
= 0. Hence, the product

∏n
j=1 hλj+n−j−(µ+ρ)σ(j)

(x) has a factor equal to 0; consequently, the product∏n
j=1 hλj+n−j−(µ+ρ)σ(j)

(x) must be 0. Thus, both the sum (13.75.9) and the product
∏n
j=1 hλj+n−j−(µ+ρ)σ(j)

(x) are 0,

and thus (13.75.8) is proven.
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Hence, the left hand side of (13.75.2) is∑
ν∈Par;

ν has at most n parts

aν+ρ (y1, y2, ..., yn)︸ ︷︷ ︸
=
∑
σ∈Sn (−1)σ

∏n
i=1 y

(ν+ρ)σ(i)
i

sν/µ (x)

=
∑
ν∈Par;

ν has at most n parts

( ∑
σ∈Sn

(−1)
σ

n∏
i=1

y
(ν+ρ)σ(i)

i

)
sν/µ (x)

=
∑
σ∈Sn

(−1)
σ

∑
ν∈Par;

ν has at most n parts

(
n∏
i=1

y
(ν+ρ)σ(i)

i

)
sν/µ (x) .

Thus, the coefficient of yλ1+n−1
1 yλ2+n−2

2 ...yλn+n−n
n on the left hand side of (13.75.2) equals

(13.75.12)
∑
σ∈Sn

(−1)
σ

∑
ν∈Par;

ν has at most n parts;
(ν+ρ)σ(j)=λj+n−j for every j∈{1,2,...,n}

sν/µ (x) .

Now let us simplify this. First, we claim that every permutation σ ∈ Sn satisfying σ 6= id satisfies

(13.75.13)
∑
ν∈Par;

ν has at most n parts;
(ν+ρ)σ(j)=λj+n−j for every j∈{1,2,...,n}

sν/µ (x) = 0.

640 Thus, in the outer sum in (13.75.12), all addends which correspond to permutations σ ∈ Sn satisfying
σ 6= id are 0. We can therefore remove all these addends, leaving only the addend corresponding to σ = id.
Thus, the sum simplifies as follows:∑
σ∈Sn

(−1)
σ

∑
ν∈Par;

ν has at most n parts;
(ν+ρ)σ(j)=λj+n−j for every j∈{1,2,...,n}

sν/µ (x) = (−1)
id︸ ︷︷ ︸

=1

∑
ν∈Par;

ν has at most n parts;
(ν+ρ)id(j)=λj+n−j for every j∈{1,2,...,n}︸ ︷︷ ︸
=

∑
ν∈Par;

ν has at most n parts;
νj+n−j=λj+n−j for every j∈{1,2,...,n}

(since (ν+ρ)id(j)=(ν+ρ)j=νj+n−j for all j)

sν/µ (x)

=
∑
ν∈Par;

ν has at most n parts;
νj+n−j=λj+n−j for every j∈{1,2,...,n}

sν/µ (x) = sλ/µ (x)

(because there is only one ν ∈ Par such that ν has at most n parts and satisfies νj + n− j = λj + n− j for

every j ∈ {1, 2, ..., n}; namely, this ν is λ). Hence, the coefficient of yλ1+n−1
1 yλ2+n−2

2 ...yλn+n−n
n on the left

640Proof of (13.75.13): Let σ ∈ Sn be a permutation satisfying σ 6= id. We need to prove (13.75.13). Of course, it is enough

to show that the sum on the left hand side of (13.75.13) is empty, i.e., that there exists no ν ∈ Par such that ν has at most

n parts and satisfies (ν + ρ)σ(j) = λj + n − j for every j ∈ {1, 2, ..., n}. Assume the contrary. Then, there exists a ν ∈ Par

such that ν has at most n parts and satisfies (ν + ρ)σ(j) = λj + n − j for every j ∈ {1, 2, ..., n}. Consider this ν. Since ν is a

partition, ν+ ρ is a strict partition, i.e., we have (ν + ρ)1 > (ν + ρ)2 > ... > (ν + ρ)n. In other words, the entries of the n-tuple
ν + ρ are in strictly decreasing order. Since σ 6= id, the permutation σ must mess up the order of the entries of ν + ρ; thus,

we cannot have (ν + ρ)σ(1) > (ν + ρ)σ(2) > ... > (ν + ρ)σ(n). Since (ν + ρ)σ(j) = λj + n − j for every j ∈ {1, 2, ..., n}, this

rewrites as follows: We cannot have λ1 + n− 1 > λ2 + n− 2 > ... > λn + n− n.
But since λ is a partition, we have λ1 ≥ λ2 ≥ ... ≥ λn, thus λ1 + n − 1 > λ2 + n − 2 > ... > λn + n − n. This contradicts

the fact that we cannot have λ1 + n− 1 > λ2 + n− 2 > ... > λn + n− n. This contradiction finishes the proof.
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hand side of (13.75.2) equals∑
σ∈Sn

(−1)
σ

∑
ν∈Par;

ν has at most n parts;
(ν+ρ)σ(j)=λj+n−j for every j∈{1,2,...,n}

sν/µ (x) (by (13.75.12))

= sλ/µ (x) .(13.75.14)

But the coefficients of yλ1+n−1
1 yλ2+n−2

2 ...yλn+n−n
n on the left hand side of (13.75.2) and on the right hand side

of (13.75.2) must be equal. Since the former coefficient is sλ/µ (x) (by (13.75.14)), and the latter coefficient

is det
((
hλi−µj−i+j (x)

)
i,j=1,2,...,n

)
(by (13.75.11)), this shows that

sλ/µ (x) = det
((
hλi−µj−i+j (x)

)
i,j=1,2,...,n

)
.

In other words, sλ/µ = det
((
hλi−µj−i+j

)
i,j=1,2,...,n

)
.

Now, forget that we fixed n, λ and µ. We thus have proven that if n ∈ N, and if λ and µ are two partitions

having at most n parts (each), then sλ/µ = det
((
hλi−µj−i+j

)
i,j=1,2,...,n

)
. Renaming n as ` in this claim,

we obtain: If ` ∈ N, and if λ and µ are two partitions having at most ` parts (each), then

(13.75.15) sλ/µ = det
((
hλi−µj−i+j

)
i,j=1,2,...,`

)
.

This proves (2.4.16).
Now it remains to prove (2.4.17). Let ` ∈ N, and let λ and µ be two partitions having at most ` parts

(each).
Let us first notice that every m ∈ Z satisfies

(13.75.16) ω (hm) = em.

(Indeed, this follows from Proposition 2.4.3(b), applied to m instead of n.) But using (2.4.15), it is easy to
see that

(13.75.17) ω
(
sλ/µ

)
= sλt/µt .

641 Thus,

sλt/µt = ω
(
sλ/µ

)
= ω

(
det
((
hλi−µj−i+j

)
i,j=1,2,...,`

))
(by (13.75.15))

= det


ω (hλi−µj−i+j)︸ ︷︷ ︸

=eλi−µj−i+j

(by (13.75.16))


i,j=1,2,...,`


(

since ω is a k-algebra homomorphism, and thus
commutes with taking determinants

)
= det

((
eλi−µj−i+j

)
i,j=1,2,...,`

)
.

This proves (2.4.17). Therefore, the proof of Theorem 2.4.6 is complete.

641In fact, (13.75.17) follows immediately from (2.4.15) in the case when µ ⊆ λ; but otherwise it follows from sλ/µ = 0 and

sλt/µt = 0.
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13.76. Solution to Exercise 2.7.14. Solution to Exercise 2.7.14. (a) The second identity of (2.4.15) shows
that

(13.76.1) S
(
sλ/µ

)
= (−1)

|λ/µ|
sλt/µt

whenever λ and µ are partitions satisfying µ ⊆ λ. Hence,

(13.76.2) S (sλ) = (−1)
|λ|
sλt for any partition λ.

[Proof of (13.76.2): Let λ be any partition. Then, the empty partition ∅ clearly satisfies ∅ ⊆ λ. Hence,

(13.76.1) (applied to µ = ∅) yields S
(
sλ/∅

)
= (−1)

|λ/∅|
sλt/∅t . In view of sλ/∅ = sλ and ∅t = ∅, this

rewrites as S (sλ) = (−1)
|λ/∅|

sλt/∅. In view of |λ/∅| = |λ| and sλt/∅ = sλt , this rewrites as S (sλ) =

(−1)
|λ|
sλt . This proves (13.76.2).]

On the other hand, the definition of the Hall inner product (·, ·) shows that

(13.76.3) (sλ, sν) = δλ,ν for any two partitions λ and ν.

Now, let f ∈ Λ and g ∈ Λ.
Proposition 2.2.10 shows that the family (sλ)λ∈Par is a basis of the k-module Λ. Hence, f can be written

in the form f =
∑
λ∈Par aλsλ for some family (aλ)λ∈Par ∈ kPar of elements of k such that all but finitely

many λ ∈ Par satisfy aλ = 0. Consider this family (aλ)λ∈Par.
Proposition 2.2.10 shows that the family (sλ)λ∈Par is a basis of the k-module Λ. Hence, g can be written

in the form g =
∑
λ∈Par bλsλ for some family (bλ)λ∈Par ∈ kPar of elements of k such that all but finitely

many λ ∈ Par satisfy bλ = 0. Consider this family (bλ)λ∈Par.
The map Par → Par, λ 7→ λt is a bijection. (Indeed, this map is inverse to itself, since each partition λ

satisfies (λt)
t

= λ).
Applying the map S to both sides of the equality f =

∑
λ∈Par aλsλ, we obtain

S (f) = S

( ∑
λ∈Par

aλsλ

)
=
∑
λ∈Par

aλ S (sλ)︸ ︷︷ ︸
=(−1)|λ|sλt
(by (13.76.2))

(since the map S is k-linear)

=
∑
λ∈Par

aλ (−1)
|λ|
sλt =

∑
λ∈Par

aλt (−1)|λ
t|︸ ︷︷ ︸

=(−1)|λ|

(since |λt|=|λ|)

s(λt)t︸ ︷︷ ︸
=sλ

(since (λt)
t
=λ)(

here, we have substituted λt for λ in the sum, since
the map Par→ Par, λ 7→ λt is a bijection

)
=
∑
λ∈Par

aλt (−1)
|λ|
sλ.

The same argument (applied to g and bλ instead of f and aλ) yields

S (g) =
∑
λ∈Par

bλt (−1)
|λ|
sλ

(
since g =

∑
λ∈Par

bλsλ

)
=
∑
µ∈Par

bµt (−1)
|µ|
sµ

(here, we have renamed the summation index λ as µ in the sum). Also,

g =
∑
λ∈Par

bλsλ =
∑
µ∈Par

bµsµ

(here, we have renamed the summation index λ as µ in the sum).
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Now,

 S (f)︸ ︷︷ ︸
=
∑
λ∈Par aλt (−1)|λ|sλ

, S (g)︸ ︷︷ ︸
=
∑
µ∈Par bµt (−1)|µ|sµ


=

 ∑
λ∈Par

aλt (−1)
|λ|
sλ,

∑
µ∈Par

bµt (−1)
|µ|
sµ


=
∑
λ∈Par

aλt (−1)
|λ| ∑

µ∈Par

bµt (−1)
|µ|

(sλ, sµ)︸ ︷︷ ︸
=δλ,µ

(by (13.76.3),
applied to ν=µ)

(since the Hall inner product (·, ·) is k-bilinear)

=
∑
λ∈Par

aλt (−1)
|λ| ∑

µ∈Par

bµt (−1)
|µ|
δλ,µ︸ ︷︷ ︸

=bλt (−1)|λ|δλ,λ+
∑

µ∈Par;
µ6=λ

bµt (−1)|µ|δλ,µ

(here, we have split off the addend for µ=λ from the sum)

=
∑
λ∈Par

aλt (−1)
|λ|

bλt (−1)
|λ|
δλ,λ︸︷︷︸
=1

+
∑
µ∈Par;
µ 6=λ

bµt (−1)
|µ|

δλ,µ︸︷︷︸
=0

(since λ6=µ
(since µ 6=λ))



=
∑
λ∈Par

aλt (−1)
|λ|

bλt (−1)
|λ|

+
∑
µ∈Par;
µ6=λ

bµt (−1)
|µ|

0

︸ ︷︷ ︸
=0


=
∑
λ∈Par

aλt (−1)
|λ|
bλt︸ ︷︷ ︸

=bλt (−1)|λ|

(−1)
|λ|

=
∑
λ∈Par

aλtbλt (−1)
|λ|

(−1)
|λ|︸ ︷︷ ︸

=(−1)|λ|+|λ|=1
(since |λ|+|λ|=2|λ| is even)

=
∑
λ∈Par

aλtbλt =
∑
λ∈Par

aλbλ
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(here, we have substituted λt for λ in the sum, since the map Par→ Par, λ 7→ λt is a bijection). Comparing
this with  f︸︷︷︸

=
∑
λ∈Par aλsλ

, g︸︷︷︸
=
∑
µ∈Par bµsµ


=

 ∑
λ∈Par

aλsλ,
∑
µ∈Par

bµsµ

 =
∑
λ∈Par

aλ
∑
µ∈Par

bµ (sλ, sµ)︸ ︷︷ ︸
=δλ,µ

(by (13.76.3),
applied to ν=µ)

(since the Hall inner product (·, ·) is k-bilinear)

=
∑
λ∈Par

aλ
∑
µ∈Par

bµδλ,µ︸ ︷︷ ︸
=bλδλ,λ+

∑
µ∈Par;
µ6=λ

bµδλ,µ

(here, we have split off the addend for µ=λ from the sum)

=
∑
λ∈Par

aλ

bλ δλ,λ︸︷︷︸
=1

+
∑
µ∈Par;
µ6=λ

bµ δλ,µ︸︷︷︸
=0

(since λ 6=µ
(since µ6=λ))

 =
∑
λ∈Par

aλ

bλ +
∑
µ∈Par;
µ6=λ

bµ0

︸ ︷︷ ︸
=0

 =
∑
λ∈Par

aλbλ,

we obtain (S (f) , S (g)) = (f, g). This solves Exercise 2.7.14(a).
(b) Let n ∈ N and f ∈ Λn. We know that the Hopf algebra Λ is graded; thus, its antipode S is a

graded k-linear map. Hence, S (Λn) ⊂ Λn. Now, from f ∈ Λn, we obtain S (f) ∈ S (Λn) ⊂ Λn. Hence,
Exercise 2.5.13(b) (applied to S (f) instead of f) yields (hn, S (f)) = (S (f)) (1).

But Proposition 2.4.1(ii) yields S (en) = (−1)
n
hn. Hence, S (en)︸ ︷︷ ︸

=(−1)nhn

, S (f)


= ((−1)

n
hn, S (f)) = (−1)

n · (hn, S (f))︸ ︷︷ ︸
=(S(f))(1)

(since the Hall inner product (·, ·) is k-bilinear)

= (−1)
n · (S (f)) (1) .

But Exercise 2.7.14(a) (applied to en and f instead of f and g) yields (S (en) , S (f)) = (en, f). Comparing
these two equalities, we obtain (en, f) = (−1)

n · (S (f)) (1). This solves Exercise 2.7.14(b).

13.77. Solution to Exercise 2.8.4. Solution to Exercise 2.8.4. Let us first prove two lemmas:

Lemma 13.77.1. Let f ∈ Λ and g ∈ Λ. Assume that

(13.77.1) (sλ, f) = (sλ, g) for each λ ∈ Par .

Then, f = g.

Proof of Lemma 13.77.1. The basis (sλ)λ∈Par of Λ is orthonormal with respect to the Hall inner product
(·, ·) (by Definition 2.5.12). In other words, the two (identical) bases (sλ)λ∈Par and (sλ)λ∈Par of Λ are dual
to each other with respect to the Hall inner product (·, ·).

Recall the following fundamental fact from linear algebra: If k is a commutative ring, if A is a k-module,
if (·, ·) : A × A → k is a symmetric k-bilinear form on A, and if (uλ)λ∈L and (vλ)λ∈L are two k-bases of A
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which are dual to each other with respect to the form (·, ·) (where L is some indexing set), then every a ∈ A
satisfies

(13.77.2) a =
∑
λ∈L

(uλ, a) vλ.

We can apply this fact to A = Λ, L = Par, (uλ)λ∈L = (sλ)λ∈Par and (vλ)λ∈L = (sλ)λ∈Par (since the bases
(sλ)λ∈Par and (sλ)λ∈Par of Λ are dual to each other with respect to the Hall inner product (·, ·)). We thus
conclude that every a ∈ Λ satisfies

(13.77.3) a =
∑
λ∈Par

(sλ, a) sλ.

Applying this to a = f , we obtain

f =
∑
λ∈Par

(sλ, f)︸ ︷︷ ︸
=(sλ,g)

(by (13.77.1))

sλ =
∑
λ∈Par

(sλ, g) sλ.

Comparing this with

g =
∑
λ∈Par

(sλ, g) sλ (by (13.77.3), applied to a = g) ,

we obtain f = g. This proves Lemma 13.77.1. �

Lemma 13.77.2. Let γ ∈ Par and k ∈ N.

(a) We have

(13.77.4) h⊥k sγ =
∑
ν∈Par;
γ/ν is a

horizontal k-strip

sν .

(b) We have

(13.77.5) e⊥k sγ =
∑
ν∈Par;
γ/ν is a

vertical k-strip

sν .

Proof of Lemma 13.77.2. We know that every f ∈ Λ, g ∈ Λ and a ∈ Λ satisfy

(13.77.6)
(
g, f⊥ (a)

)
= (fg, a) .

Indeed, this follows from Proposition 2.8.2(i) (applied to A = Λ), after we make the standard identification
of Λo with Λ via the Hall inner product.

Recall that the basis (sλ)λ∈Par of Λ is orthonormal with respect to the Hall inner product (·, ·) (by
Definition 2.5.12). In other words,

(13.77.7) (sα, sβ) = δα,β for every (α, β) ∈ Par×Par .

(b) We claim that

(13.77.8)
(
sλ, e

⊥
k sγ

)
=

sλ,
∑
ν∈Par;
γ/ν is a

vertical k-strip

sν


for every λ ∈ Par.

Proof of (13.77.8): Let λ ∈ Par. We have

(13.77.9) eksλ = sλek =
∑

λ+:λ+/λ is a
vertical k-strip

sλ+
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(by (2.7.2), applied to n = k). But (13.77.6) (applied to f = ek, a = sγ and g = sλ) yields

(
sλ, e

⊥
k sγ

)
= (eksλ, sγ) =

 ∑
λ+:λ+/λ is a
vertical k-strip

sλ+ , sγ

 (by (13.77.9))

=
∑

λ+:λ+/λ is a
vertical k-strip

(sλ+ , sγ)︸ ︷︷ ︸
=δλ+,γ

(by (13.77.7), applied

to (α,β)=(λ+,γ))

(since the Hall inner product is k-bilinear)

=
∑

λ+:λ+/λ is a
vertical k-strip

δλ+,γ =

{
1, if γ/λ is a vertical k-strip;

0, otherwise
.(13.77.10)

On the other hand, the Hall inner product is k-bilinear. Thus,sλ,
∑
ν∈Par;
γ/ν is a

vertical k-strip

sν

 =
∑
ν∈Par;
γ/ν is a

vertical k-strip

(sλ, sν)︸ ︷︷ ︸
=δλ,ν

(by (13.77.7), applied
to (α,β)=(λ,ν))

=
∑
ν∈Par;
γ/ν is a

vertical k-strip

δλ,ν =

{
1, if γ/λ is a vertical k-strip;

0, otherwise
.

Comparing this with (13.77.10), we obtain

(
sλ, e

⊥
k sγ

)
=

sλ,
∑
ν∈Par;
γ/ν is a

vertical k-strip

sν

 .

Thus, (13.77.8) is proven.
Now, we have proven (13.77.8) for all λ ∈ Par. Hence, Lemma 13.77.1 (applied to f = e⊥k sγ and

g =
∑

ν∈Par;
γ/ν is a

vertical k-strip

sν) yields e⊥k sγ =
∑

ν∈Par;
γ/ν is a

vertical k-strip

sν . This proves Lemma 13.77.2(b).

(a) We claim that

(13.77.11)
(
sλ, h

⊥
k sγ

)
=

sλ,
∑
ν∈Par;
γ/ν is a

horizontal k-strip

sν


for every λ ∈ Par.

Proof of (13.77.11): Let λ ∈ Par. Then,

(13.77.12) hksλ = sλhk =
∑

λ+:λ+/λ is a
horizontal k-strip

sλ+
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(by (2.7.1), applied to n = k). But (13.77.6) (applied to f = hk, a = sγ and g = sλ) yields

(
sλ, h

⊥
k sγ

)
= (hksλ, sγ) =

 ∑
λ+:λ+/λ is a

horizontal k-strip

sλ+ , sγ

 (by (13.77.12))

=
∑

λ+:λ+/λ is a
horizontal k-strip

(sλ+ , sγ)︸ ︷︷ ︸
=δλ+,γ

(by (13.77.7), applied

to (α,β)=(λ+,γ))

(since the Hall inner product is k-bilinear)

=
∑

λ+:λ+/λ is a
horizontal k-strip

δλ+,γ =

{
1, if γ/λ is a horizontal k-strip;

0, otherwise
.(13.77.13)

On the other hand, the Hall inner product is k-bilinear. Thus,sλ,
∑
ν∈Par;
γ/ν is a

horizontal k-strip

sν

 =
∑
ν∈Par;
γ/ν is a

horizontal k-strip

(sλ, sν)︸ ︷︷ ︸
=δλ,ν

(by (13.77.7), applied
to (α,β)=(λ,ν))

=
∑
ν∈Par;
γ/ν is a

horizontal k-strip

δλ,ν =

{
1, if γ/λ is a horizontal k-strip;

0, otherwise
.

Comparing this with (13.77.13), we obtain

(
sλ, h

⊥
k sγ

)
=

sλ,
∑
ν∈Par;
γ/ν is a

horizontal k-strip

sν

 .

Thus, (13.77.11) is proven.
Now, we have proven (13.77.11) for all λ ∈ Par. Hence, Lemma 13.77.1 (applied to f = h⊥k sγ and

g =
∑

ν∈Par;
γ/ν is a

horizontal k-strip

sν) yields h⊥k (sγ) =
∑

ν∈Par;
γ/ν is a

horizontal k-strip

sν . This proves Lemma 13.77.2(a). �

Now, proving Proposition 2.8.3 is just a matter of renaming symbols in Lemma 13.77.2:

Proof of Proposition 2.8.3. Let λ be a partition. Let n ∈ N. Then, Lemma 13.77.2(a) (applied to γ = λ and
k = n) yields

h⊥n sλ =
∑
ν∈Par;
λ/ν is a

horizontal n-strip

sν =
∑

λ−∈Par;
λ/λ− is a

horizontal n-strip

sλ−

(here, we have renamed the summation index ν as λ−). This is precisely the equality (2.8.3). Thus, (2.8.3)
is proven.

Lemma 13.77.2(b) (applied to γ = λ and k = n) yields

e⊥n sλ =
∑
ν∈Par;
λ/ν is a

vertical n-strip

sν =
∑

λ−∈Par;
λ/λ− is a

vertical n-strip

sλ−
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(here, we have renamed the summation index ν as λ−). This is precisely the equality (2.8.4). Thus, (2.8.4)
is proven. This completes the proof of Proposition 2.8.3. �

Thus, Exercise 2.8.4 is solved.

13.78. Solution to Exercise 2.8.6. Solution to Exercise 2.8.6.
Let (ΛQ)n denote the n-th graded component of the Q-vector space ΛQ. We are going to work in ΛQ in

this solution, making use of the fact that both (sλ)λ∈Parn
and (pλ)λ∈Parn

are bases of the Q-vector space

(ΛQ)n (due to Proposition 2.2.10). Of course, notions such as comultiplication, the antipode, skewing etc.
are defined in ΛQ just in the same way as they have been defined in Λ, and their properties are proven
analogously.

Our solutions for both parts of the exercise rely on the fact that the trace of an endomorphism of a
finite-dimensional vector space can be computed using any basis of the vector space. Specifically, we will be
applying this fact to certain endomorphisms of (ΛQ)n, and as bases we will use (pλ)λ∈Parn

and (sλ)λ∈Parn
.

(a) The antipode S of ΛQ is a graded map, and thus it restricts to an endomorphism of the Q-vector
space (ΛQ)n. Denote this endomorphism by Sn. We want to compute trace (Sn). (This is well-defined since
(ΛQ)n is a finite-dimensional Q-vector space.)

From (2.4.15), we see that S
(
sλ/µ

)
= (−1)

|λ/µ|
sλt/µt for any partitions λ and µ satisfying µ ⊆ λ. In

particular, S (sλ) = (−1)
|λ|
sλt for any partition λ. For any partition λ ∈ Parn, we now have Sn (sλ) =

S (sλ) = (−1)
|λ|
sλt = (−1)

n
sλt . Thus, the matrix which represents the endomorphism Sn of (ΛQ)n with

respect to the basis (sλ)λ∈Parn
of (ΛQ)n is the matrix whose (λ, µ)-th entry (for any λ ∈ Parn and µ ∈ Parn)

is (−1)
n

whenever µ = λt, and otherwise 0. But the trace trace (Sn) of Sn (by its definition) is the sum of
the diagonal entries of this matrix; hence, this trace equals

trace (Sn) =
∑

λ∈Parn;
λ=λt

(−1)
n

= (−1)
n (

number of all λ ∈ Parn satisfying λ = λt
)︸ ︷︷ ︸

=c(n)

= (−1)
n
c (n) .

On the other hand, every partition λ satisfies S (pλ) = (−1)
`(λ)

pλ (this follows from Proposition 2.4.1(i),
after recalling that S is an algebra morphism and that p(λ1,λ2,...,λ`) = pλ1

pλ2
...pλ`). Hence, the matrix which

represents the endomorphism Sn of (ΛQ)n with respect to the basis (pλ)λ∈Parn
of (ΛQ)n is a diagonal matrix,

whose λ-th diagonal entry (for any λ ∈ Parn) is (−1)
`(λ)

. But the trace trace (Sn) of Sn (by its definition)
is the sum of the diagonal entries of this matrix; hence, this trace equals

trace (Sn) =
∑

λ∈Parn

(−1)
`(λ)

=

n∑
k=0

∑
λ∈Parn;
`(λ)=k

(−1)
k

︸ ︷︷ ︸
=(−1)k(number of all λ∈Parn satisfying `(λ)=k)

(since ` (λ) ∈ {0, 1, ..., n} for every λ ∈ Parn)

=

n∑
k=0

(−1)
k

(number of all λ ∈ Parn satisfying ` (λ) = k)︸ ︷︷ ︸
=p(n,k)

=

n∑
k=0

(−1)
k
p (n, k) .

Compared with trace (Sn) = (−1)
n
c (n), this yields (−1)

n
c (n) =

∑n
k=0 (−1)

k
p (n, k). This solves part (a)

of the exercise.
(b) Consider the map s1s

⊥
1 : Λ→ Λ which sends every f ∈ Λ to s1s

⊥
1 f . This map s1s

⊥
1 is graded (because

the map s⊥1 : Λ→ Λ lowers the degree of any homogeneous element by 1, while the map s1 raises it back by
1) and thus restricts to an endomorphism of the Q-vector space (ΛQ)n. Denote this endomorphism by Pn.
We want to compute trace (Pn). (This is well-defined since (ΛQ)n is a finite-dimensional Q-vector space.)

In the following, if A is any statement, then [A] will denote the truth value of A (that is, 1 if A holds,
and 0 if it doesn’t).
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We know that the basis (sλ)λ∈Parn
of (ΛQ)n is orthonormal with respect to the Hall inner product

(restricted to (ΛQ)n). Hence, for any λ ∈ Parn, we have

(the sλ-coordinate of Pnsλ with respect to this basis)

=

 Pnsλ︸ ︷︷ ︸
=s1s⊥1 sλ

, sλ

 =
(
s1s
⊥
1 sλ, sλ

)
=
(
s⊥1 sλ, s

⊥
1 sλ

)

=
∑

µ∈Parn−1

(s⊥1 sλ, sµ)︸ ︷︷ ︸
=(sλ,s1sµ)


2

 since s⊥1 sλ ∈ (ΛQ)n−1 , and since the basis (sµ)µ∈Parn−1

of (ΛQ)n−1 is orthonormal with respect to the Hall
inner product (restricted to (ΛQ)n−1 )


=

∑
µ∈Parn−1

(sλ, s1sµ)
2
.(13.78.1)

Now, every µ ∈ Parn−1 satisfies

s1︸︷︷︸
=h1

sµ = h1sµ
(2.7.1)

=
∑

µ+ : µ+/µ is a
horizontal 1-strip

sµ+ =
∑

µ+ : |µ+/µ|=1

sµ+ =
∑

µ+∈Parn;
µ⊆µ+

sµ+ .

Hence, every λ ∈ Parn and µ ∈ Parn−1 satisfy

(sλ, s1sµ) =

sλ, ∑
µ+∈Parn;
µ⊆µ+

sµ+

 =
∑

µ+∈Parn;
µ⊆µ+

(
sλ, sµ+

)︸ ︷︷ ︸
=[λ=µ+]

(since the Schur functions
are orthonormal with respect

to the Hall inner product)

=
∑

µ+∈Parn;
µ⊆µ+

[
λ = µ+

]

= [µ ⊆ λ] .

Now, consider again the basis (sλ)λ∈Parn
of (ΛQ)n. For every λ ∈ Parn, we have

(the sλ-coordinate of Pnsλ with respect to this basis)

=
∑

µ∈Parn−1

(sλ, s1sµ)︸ ︷︷ ︸
=[µ⊆λ]


2

(by (13.78.1))

=
∑

µ∈Parn−1

[µ ⊆ λ]
2︸ ︷︷ ︸

=[µ⊆λ]

=
∑

µ∈Parn−1

[µ ⊆ λ]

= (the number of all µ ∈ Parn−1 such that µ ⊆ λ)

= (the number of all ways to remove a single cell from λ to obtain a partition)

= (the number of all corners of the Ferrers diagram of λ)

= C (λ) .(13.78.2)

Now, consider the matrix which represents the endomorphism Pn of (ΛQ)n with respect to the basis (sλ)λ∈Parn
of (ΛQ)n. For any λ ∈ Parn and µ ∈ Parn, the (λ, µ)-th entry of this matrix is

(the sλ-coordinate of Pnsµ with respect to this basis) .
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The trace trace (Pn) of Pn (by its definition) is the sum of the diagonal entries of this matrix; hence, this
trace equals

trace (Pn) =
∑

λ∈Parn

(the sλ-coordinate of Pnsλ with respect to this basis)︸ ︷︷ ︸
=C(λ)

(by (13.78.2))

=
∑

λ∈Parn

C (λ) .

On the other hand, it is easy to see that

(13.78.3) s⊥1 (pn) = [n = 1] for every positive integer n

(in fact, recall that pn is primitive, so that ∆ (pn) = pn⊗1+1⊗pn and thus s⊥1 (pn) = (s1, pn)︸ ︷︷ ︸
=[n=1]

1+(s1, 1)︸ ︷︷ ︸
=0

pn =

[n = 1]). But the map s⊥1 : Λ → Λ is a derivation (by Proposition 2.8.2(iv), since s1 is primitive). Hence,
every partition λ = (λ1, λ2, ..., λ`) with ` = ` (λ) satisfies

s⊥1 (pλ1
pλ2

...pλ`) =
∑̀
k=1

pλ1
pλ2

...pλk−1
s⊥1 (pλk)︸ ︷︷ ︸
=[λk=1]

(by (13.78.3))

pλk+1
pλk+2

...pλ`

=
∑̀
k=1

pλ1pλ2 ...pλk−1
[λk = 1] pλk+1

pλk+2
...pλ`(13.78.4)

and

Pnpλ = s1s
⊥
1 pλ︸︷︷︸

=pλ1
pλ2

...pλ`

= s1︸︷︷︸
=p1

s⊥1 (pλ1
pλ2

...pλ`)︸ ︷︷ ︸
=
∑`
k=1 pλ1

pλ2
...pλk−1

[λk=1]pλk+1
pλk+2

...pλ`
(by (13.78.4))

= p1

∑̀
k=1

pλ1
pλ2

...pλk−1
[λk = 1] pλk+1

pλk+2
...pλ`

=
∑̀
k=1

pλ1pλ2 ...pλk−1
[λk = 1] p1︸ ︷︷ ︸
=[λk=1]pλk

(because if λk 6=1, then both sides
of this are 0, and otherwise they

are clearly equal)

pλk+1
pλk+2

...pλ`

=
∑̀
k=1

pλ1pλ2 ...pλk−1
[λk = 1] pλkpλk+1

pλk+2
...pλ` =

∑̀
k=1

[λk = 1] pλ1pλ2 ...pλ`

=

(∑̀
k=1

[λk = 1]

)
︸ ︷︷ ︸

=(the number of k∈{1,2,...,`} such that λk=1)
=(the number of parts of λ equal to 1)

=µ1(λ)

pλ1pλ2 ...pλ`︸ ︷︷ ︸
=pλ

= µ1 (λ) pλ.

Hence, the matrix which represents the endomorphism Pn of (ΛQ)n with respect to the basis (pλ)λ∈Parn
of

(ΛQ)n is a diagonal matrix, whose λ-th diagonal entry (for any λ ∈ Parn) is µ1 (λ). But the trace trace (Pn)
of Pn (by its definition) is the sum of the diagonal entries of this matrix; hence, this trace equals

trace (Pn) =
∑

λ∈Parn

µ1 (λ) .

Compared with trace (Pn) =
∑
λ∈Parn

C (λ), this yields
∑
λ∈Parn

C (λ) =
∑
λ∈Parn

µ1 (λ). This solves part

(b) of the exercise.
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13.79. Solution to Exercise 2.8.7. Solution to Exercise 2.8.7. We assume WLOG that k = Z, since it is
enough to prove what we want over Z.

(a) This is exactly the equality (2.4.14), and has already been proved. Here is a slightly different way to
prove it:

Use the primitivity of pn and Proposition 1.4.17 to obtain S (pn) = −pn for every n ≥ 1.
But the antipode S of Λ is an algebra anti-endomorphism (by Proposition 1.4.10), therefore an algebra

endomorphism (by Exercise 1.5.8(a), since Λ is commutative). Hence, from the fact that S (pn) = −pn for

every n ≥ 1, we can deduce by multiplicativity that S (pλ) = (−1)
`(λ)

pλ for every partition λ. Now recall
(2.4.11), and the claim of part (a) follows.

(b) For this part of the exercise, we shall work in ΛR and prove that the endomorphism ω of ΛR is an
isometry. This will clearly yield the analogous statement over Z.

Recall that

{
pλ√
zλ

}
is an orthonormal basis of ΛR (by Corollary 2.5.17(c)). Hence, in order to prove that

the endomorphism ω of ΛR is an isometry, it is enough to show that(
ω

(
pλ√
zλ

)
, ω

(
pµ√
zµ

))
=

(
pλ√
zλ
,
pµ√
zµ

)

for any two partitions λ and µ. But this follows from part (a) and the fact that the basis

{
pλ√
zλ

}
is

orthonormal. Hence, we have shown that the endomorphism ω of ΛR is an isometry. The same holds
therefore for the endomorphism ω of Λ, and thus part (b) of the exercise is solved.

(c) Part (c) of the exercise is precisely the statement of Proposition 2.4.3(f), which was proved in the
solution to Exercise 2.4.4. Thus, we need not prove it again.

(d) follows from (b) and (c): Indeed, ω is a coalgebra morphism (by part (c) of the exercise). Now,
Definition 2.8.1 yields

(ω (a))
⊥
ω (b) =

∑
(ω(b))

(ω (a) , (ω (b))1) (ω (b))2 =
∑
(b)

(ω (a) , ω (b1))ω (b2)

(since ω is a coalgebra morphism and thus we have
∑

(ω(b)) (ω (b))1 ⊗ (ω (b))2 =
∑

(b) ω (b1)⊗ ω (b2)). Since

ω is an isometry, this further simplifies to

(ω (a))
⊥
ω (b) =

∑
(b)

(a, b1)ω (b2) = ω


∑
(b)

(a, b1) b2︸ ︷︷ ︸
=a⊥b

 = ω
(
a⊥b

)
,

whence part (d) of the exercise is solved.
(e) and (f) follow from the fact that s⊥µ (sλ) = sλ/µ (applied, respectively, to µ =

(
1`
)

and to µ = (λ1)),
and the fact that a parallel translation of a skew Ferrers shape doesn’t change the corresponding skew Schur
function.

(g) It should be clear that S
(
sλ/µ

)
= (−1)

|λ/µ|
sλt/µt follows from ω

(
sλ/µ

)
= sλt/µt , and this, in turn,

follows from (d) if one knows that ω (sλ) = sλt for every partition λ.
So it remains to prove that ω (sλ) = sλt for every partition λ. To do so, we use induction over |λ|, and fix

λ. Part (b) yields that (ω (sλ) , ω (sλ)) = 1. Since ω (sλ) ∈ Λ, this shows that ω (sλ) = ±sν for some partition
ν (since a length-1 integral vector cannot have more than one nonzero coordinate). Hence, ω (sν) = ±sλ
(since ω is an involution). Writing λ as (λ1, λ2, . . . , λ`) with all of λ1, λ2, . . ., λ` being positive, and writing
ν as (ν1, ν2, ν3, . . .), we easily see (using (d) and (f)) that ω

(
e⊥ν1

sλ
)

= ±h⊥ν1
(sν) = ±s(ν2,ν3,ν4,...) 6= 0,

so that e⊥ν1
sλ 6= 0, and therefore ` ≥ ν1. On the other hand, (d) and (e) yield ω

(
h⊥` sν

)
= ±e⊥` (sλ) =

±s(λ1−1,λ2−1,...,λ`−1) 6= 0, thus h⊥` sν 6= 0, so that ` ≤ ν1. Combined with ` ≥ ν1, this yields ` = ν1. Hence,

h⊥` sν = h⊥ν1
sν1 = s(ν2,ν3,ν4,...) (by (f)), so that

ω
(
h⊥` sν

)
= ω

(
s(ν2,ν3,ν4,...)

)
= s(ν2,ν3,ν4,...)

t
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by the induction assumption. Compared with

ω
(
h⊥` sν

)
= ±e⊥` (sλ) = ±s(λ1−1,λ2−1,...,λ`−1)

(a consequence of (d) and (e)), this yields s(ν2,ν3,ν4,...)
t = ±s(λ1−1,λ2−1,...,λ`−1), from which it directly follows

that ± = + and (ν2, ν3, ν4, . . .)
t

= (λ1 − 1, λ2 − 1, . . . , λ` − 1). This quickly yields ν = λt, so that ω (sλ) =
±sν becomes ω (sλ) = sλt (the ± in ω (sλ) = ±sν is the same as in s(ν2,ν3,ν4,...)

t = ±s(λ1−1,λ2−1,...,λ`−1)), so
we are done.

13.80. Solution to Exercise 2.8.8. Solution to Exercise 2.8.8. Proposition 2.3.6(i) yields ∆pn = 1⊗ pn +
pn ⊗ 1. Comparing this with ∆pn =

∑
(pn) (pn)1 ⊗ (pn)2 (here, we are using the Sweedler notation), we

obtain

(13.80.1)
∑
(pn)

(pn)1 ⊗ (pn)2 = 1⊗ pn + pn ⊗ 1.

(a) Proposition 2.4.1(i) yields S (pn) = −pn.
But pn ∈ Λn. Hence, Exercise 2.7.14(b) (applied to f = pn) yields

(en, pn) = (−1)
n · (S (pn))︸ ︷︷ ︸

=−pn

(1) = (−1)
n · (−pn) (1)︸ ︷︷ ︸

=−pn(1)

= (−1)
n · (−pn (1)) = − (−1)

n︸ ︷︷ ︸
=(−1)n+1=(−1)n−1

(since n+1≡n−1 mod 2)

· pn (1)︸ ︷︷ ︸
=1n

(by the definition of pn)

= (−1)
n−1 · 1n︸︷︷︸

=1

= (−1)
n−1

.

This solves Exercise 2.8.8(a).
(b) Let m ∈ N satisfy m 6= n. Then, em ∈ Λm and pn ∈ Λn. But m and n are two distinct nonnegative

integers (since m 6= n). Hence, Exercise 2.5.13(a) (applied to m, n, em and pn instead of n, m, f and g)
yields (em, pn) = 0. This solves Exercise 2.8.8(b).

(c) We have n 6= 0 (since n is positive). Thus, n and 0 are two distinct nonnegative integers. Hence,
Exercise 2.5.13(a) (applied to m = 0, f = en and g = 1) yields (en, 1) = 0 (since en ∈ Λn and 1 ∈ Λ0).

By the definition of e⊥n pn, we have

e⊥n pn =
∑
(pn)

(en, (pn)1) · (pn)2 = (en, 1)︸ ︷︷ ︸
=0

·pn + (en, pn)︸ ︷︷ ︸
=(−1)n−1

(by Exercise 2.8.8(a))

·1

since
∑
(pn)

(pn)1 ⊗ (pn)2 = 1⊗ pn + pn ⊗ 1 (by (13.80.1))


= 0 · pn︸ ︷︷ ︸

=0

+ (−1)
n−1

= (−1)
n−1

.

This solves Exercise 2.8.8(c).
(d) Let m be a positive integer satisfying m 6= n. Then, Exercise 2.8.8(b) yields (em, pn) = 0.
We have m 6= 0 (since m is positive). Thus, m and 0 are two distinct nonnegative integers. Hence,

Exercise 2.5.13(a) (applied to m, 0, em and 1 instead of n, m, f and g) yields (em, 1) = 0 (since em ∈ Λm
and 1 ∈ Λ0).
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By the definition of e⊥mpn, we have

e⊥mpn =
∑
(pn)

(em, (pn)1) · (pn)2 = (em, 1)︸ ︷︷ ︸
=0

·pn + (em, pn)︸ ︷︷ ︸
=0

·1

since
∑
(pn)

(pn)1 ⊗ (pn)2 = 1⊗ pn + pn ⊗ 1 (by (13.80.1))


= 0 · pn︸ ︷︷ ︸

=0

+ 0 · 1︸︷︷︸
=0

= 0.

This solves Exercise 2.8.8(d).

13.81. Solution to Exercise 2.9.1. Solution to Exercise 2.9.1. (a) The claim that the sum
∑
i∈N (−1)

i
hm+ie

⊥
i f

is convergent is very easy to see: Any given f ∈ Λ =
⊕

n∈N Λn lives in a finite direct sum
⊕m

n=0 Λn ⊂ Λ; if

we take i ∈ N higher than m, then e⊥i f = 0 for degree reasons642 and therefore (−1)
i
hm+ie

⊥
i f = 0.

The claim that the map Bm is k-linear is obvious. Exercise 2.9.1(a) is solved.
(c) Exercise 2.9.1(c) makes three claims. Let us first prove the first of them: the identity (2.9.1).
Proof of (2.9.1): Let λ = (λ1, λ2, λ3, ...) be a partition having at most n parts. Then,

sλ = sλ/∅
(2.4.16)

= det
((
hλi−∅j−i+j

)
i,j=1,2,...,n

)
= det

(
(hλi−i+j)i,j=1,2,...,n

)
(since ∅j = 0)

= s(λ1,λ2,...,λn)

(
by the definition of s(λ1,λ2,...,λn)

)
.

This proves (2.9.1).
Next, we will show that for every n-tuple (α1, α2, . . . , αn) ∈ Zn, the symmetric function s(α1,α2,...,αn)

either is 0 or equals ±sν for some partition ν having at most n parts.
Proof. Let (α1, α2, . . . , αn) ∈ Zn be any n-tuple. The definition of s(α1,α2,...,αn) yields

s(α1,α2,...,αn) = det
(

(hαi−i+j)i,j=1,2,...,n

)
.

If the n integers α1 − 1, α2 − 2, ..., αn − n are not distinct, then the matrix (hαi−i+j)i,j=1,2,...,n has two

equal rows and thus its determinant is 0, so that s(α1,α2,...,αn) = det
(

(hαi−i+j)i,j=1,2,...,n

)
= 0 in this case.

So the claim is proven in this case, and this is a case we do not need to address anymore. Thus, assume
WLOG that the n integers α1−1, α2−2, ..., αn−n are distinct. Hence, there exists a (unique) permutation
τ ∈ Sn satisfying ατ(1) − τ (1) > ατ(2) − τ (2) > ... > ατ(n) − τ (n). Consider this τ .

Define an n-tuple (γ1, γ2, ..., γn) ∈ Zn by setting

γi = ατ(i) − τ (i) + i for every i ∈ {1, 2, ..., n} .

Then, it is easy to see that γ1 ≥ γ2 ≥ ... ≥ γn. 643 Moreover, every i ∈ {1, 2, ..., n} satisfies γi − i =
ατ(i) − τ (i) (by the definition of γi), and so the matrix (hγi−i+j)i,j=1,2,...,n is obtained from the matrix

(hαi−i+j)i,j=1,2,...,n by permuting its rows according to the permutation τ . Since permuting the rows of a

matrix multiplies the determinant of the matrix by the sign of the permutation, we thus see

det
(

(hγi−i+j)i,j=1,2,...,n

)
= (−1)

τ
det
(

(hαi−i+j)i,j=1,2,...,n

)
︸ ︷︷ ︸

=s(α1,α2,...,αn)

= (−1)
τ
s(α1,α2,...,αn),

so that

(13.81.1) s(α1,α2,...,αn) = (−1)
τ

det
(

(hγi−i+j)i,j=1,2,...,n

)
.

If γn < 0, then the matrix (hγi−i+j)i,j=1,2,...,n on the right hand side of this equality has its n-th row

consist of zeroes only, which implies that the determinant of this matrix is 0, and thus (13.81.1) becomes

642In fact, the map e⊥i lowers degree by i, and thus annihilates
⊕m
n=0 Λn when i > m.

643To prove this, it is enough to show that γi ≥ γi+1 for every i ∈ {1, 2, ..., n− 1}. But this simplifies to ατ(i) − τ (i) ≥
ατ(i+1) − τ (i+ 1) + 1 (upon adding i), and this follows from ατ(i) − τ (i) > ατ(i+1) − τ (i+ 1).
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s(α1,α2,...,αn) = 0. Hence, we are done in the case γn < 0. So assume WLOG that we don’t have γn < 0.
Thus, γn ≥ 0. Combined with γ1 ≥ γ2 ≥ ... ≥ γn, this yields that (γ1, γ2, ..., γn) is a partition. This partition
satisfies

s(γ1,γ2,...,γn) = s(γ1,γ2,...,γn)/∅
(2.4.16)

= det
((
hγi−∅j−i+j

)
i,j=1,2,...,n

)
= det

(
(hγi−i+j)i,j=1,2,...,n

)
(since ∅j = 0 for all j). Thus, (13.81.1) becomes

s(α1,α2,...,αn) = (−1)
τ

det
(

(hγi−i+j)i,j=1,2,...,n

)
︸ ︷︷ ︸

=s(γ1,γ2,...,γn)

= (−1)
τ
s(γ1,γ2,...,γn),

and therefore the symmetric function s(α1,α2,...,αn) equals ±sν for some partition ν having at most n parts

(namely, the partition ν is (γ1, γ2, ..., γn), and the ± sign is (−1)
τ
).

We thus have shown that for every n-tuple (α1, α2, . . . , αn) ∈ Zn, the symmetric function s(α1,α2,...,αn)

either is 0 or equals ±sν for some partition ν having at most n parts.
In order to complete the solution of Exercise 2.9.1(c), it now remains to prove (2.9.2).
Proof of (2.9.2): Let (α1, α2, . . . , αn) ∈ Zn and (β1, β2, . . . , βn) ∈ Nn be two n-tuples. We need to prove

that (2.9.2) holds.
The definition of s(α1,α2,...,αn) yields

s(α1,α2,...,αn) = det
(

(hαi−i+j)i,j=1,2,...,n

)
.

If the n integers α1 − 1, α2 − 2, ..., αn − n are not distinct, then (2.9.2) holds (because in this case, the
matrices (hαi−i+j)i,j=1,2,...,n and

(
hαi−βj−i+j

)
i,j=1,2,...,n

have two equal rows each, so their determinants

vanish, rendering both sides of (2.9.2) equal to zero644). Thus, we WLOG assume that the n integers
α1 − 1, α2 − 2, ..., αn − n are distinct. Thus, there exists a (unique) permutation τ ∈ Sn satisfying
ατ(1) − τ (1) > ατ(2) − τ (2) > ... > ατ(n) − τ (n). Consider this τ , and define an n-tuple (γ1, γ2, ..., γn) ∈ Zn
by setting

γi = ατ(i) − τ (i) + i for every i ∈ {1, 2, ..., n} .
Then, it is easy to see that γ1 ≥ γ2 ≥ ... ≥ γn. Moreover, the matrix (hγi−i+j)i,j=1,2,...,n is obtained

from the matrix (hαi−i+j)i,j=1,2,...,n by permuting its rows according to the permutation τ (because every

i ∈ {1, 2, ..., n} satisfies γi − i = ατ(i) − τ (i)). This leads to (13.81.1) again (as in the previous proof), so
that

s(α1,α2,...,αn) = (−1)
τ

det
(

(hγi−i+j)i,j=1,2,...,n

)
︸ ︷︷ ︸

=s(γ1,γ2,...,γn)

= (−1)
τ
s(γ1,γ2,...,γn).

This equality, along with

det
((
hαi−βj−i+j

)
i,j=1,2,...,n

)
= (−1)

τ
det
((
hγi−βj−i+j

)
i,j=1,2,...,n

)
(which, again, follows from the fact that the matrix on the right hand side is obtained from the matrix on
the left hand side by permuting the rows according to τ), shows that in order to prove (2.9.2), it is enough
to show that

s⊥(β1,β2,...,βn)s(γ1,γ2,...,γn) = det
((
hγi−βj−i+j

)
i,j=1,2,...,n

)
.

But this is the same equality as (2.9.2), except with (α1, α2, . . . , αn) replaced by (γ1, γ2, . . . , γn). The
advantage of (γ1, γ2, . . . , γn) over (α1, α2, . . . , αn) is that we know that γ1 ≥ γ2 ≥ ... ≥ γn (while the
analogous chain of inequalities α1 ≥ α2 ≥ ... ≥ αn does not necessarily hold). So, we can WLOG assume
that α1 ≥ α2 ≥ ... ≥ αn (because otherwise, we can replace (α1, α2, . . . , αn) by (γ1, γ2, . . . , γn)). Assume
this.

If αn < 0, then both matrices (hαi−i+j)i,j=1,2,...,n and
(
hαi−βj−i+j

)
i,j=1,2,...,n

have their n-th row con-

sisting of only zeroes, and so their determinants both vanish, which shows that both sides of the equality
(2.9.2) are zero645. So this is a case in which (2.9.2) trivially holds. We thus assume WLOG that we are

644The left hand side is affected because of s(α1,α2,...,αn) = det
((
hαi−i+j

)
i,j=1,2,...,n

)
.

645For the left hand side, this is because of s(α1,α2,...,αn) = det
((
hαi−i+j

)
i,j=1,2,...,n

)
.
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not in this case; hence, we don’t have αn < 0, so we have αn ≥ 0. Combined with α1 ≥ α2 ≥ ... ≥ αn, this
yields that (α1, α2, ..., αn) is a partition.

We have

s(β1,β2,...,βn) = det
(

(hβi−i+j)i,j=1,2,...,n

)
.

If the n integers β1−1, β2−2, ..., βn−n are not distinct, then (2.9.2) holds (because in this case, the matrix
(hβi−i+j)i,j=1,2,...,n has two equal rows while the matrix

(
hαi−βj−i+j

)
i,j=1,2,...,n

has two equal columns; thus,

both of these matrices have determinant 0, so that both sides of (2.9.2) equal to zero646). Thus, we WLOG
assume that the n integers β1 − 1, β2 − 2, ..., βn − n are distinct. Thus, there exists a (unique) permutation
ζ ∈ Sn satisfying βζ(1) − ζ (1) > βζ(2) − ζ (2) > ... > βζ(n) − ζ (n). Consider this ζ.

Define an n-tuple (δ1, δ2, ..., δn) ∈ Zn by setting

δj = βζ(j) − ζ (j) + j for every j ∈ {1, 2, ..., n} .

Then, it is easy to see that δ1 ≥ δ2 ≥ ... ≥ δn ≥ 0 647. Thus, (δ1, δ2, ..., δn) is a partition.
The matrix (hδi−i+j)i,j=1,2,...,n is obtained from the matrix (hβi−i+j)i,j=1,2,...,n by permuting its rows

according to the permutation ζ (since the definition of δi yields δi = βζ(i)− ζ (i) + i, thus δi− i = βζ(i)− ζ (i)

for every i ∈ {1, 2, ..., n}). This leads to det
(

(hδi−i+j)i,j=1,2,...,n

)
= (−1)

ζ
det
(

(hβi−i+j)i,j=1,2,...,n

)
︸ ︷︷ ︸

=s(β1,β2,...,βn)

=

(−1)
ζ
s(β1,β2,...,βn) and thus

s(β1,β2,...,βn) = (−1)
ζ

det
(

(hδi−i+j)i,j=1,2,...,n

)
︸ ︷︷ ︸

=s(δ1,δ2,...,δn)

= (−1)
ζ
s(δ1,δ2,...,δn).

This equality, and the equality

det
((
hαi−βj−i+j

)
i,j=1,2,...,n

)
= (−1)

ζ
det
((
hαi−δj−i+j

)
i,j=1,2,...,n

)
(this time because the matrix on the right hand side is obtained from that on the left hand side by permuting
its columns according to ζ) show that in order to prove (2.9.2), it is enough to show that

s⊥(δ1,δ2,...,δn)s(α1,α2,...,αn) = det
((
hαi−δj−i+j

)
i,j=1,2,...,n

)
.

This is, of course, the same equality as (2.9.2), except with (β1, β2, . . . , βn) replaced by (δ1, δ2, ..., δn). The
advantage of (δ1, δ2, ..., δn) over (β1, β2, . . . , βn) is that we know that (δ1, δ2, ..., δn) is a partition. So, we can
WLOG assume that (β1, β2, ..., βn) is a partition (because otherwise, we can replace (β1, β2, . . . , βn) by
(δ1, δ2, ..., δn)). Assume this.

Through a series of WLOG assumptions, we have now ensured that both (α1, α2, . . . , αn) and (β1, β2, . . . , βn)
are partitions. Thus,

s(α1,α2,...,αn) = s(α1,α2,...,αn)/∅
(2.4.16)

= det
((
hαi−∅j−i+j

)
i,j=1,2,...,n

)
= det

(
(hαi−i+j)i,j=1,2,...,n

)
(since ∅j = 0)

= s(α1,α2,...,αn),

so that s(α1,α2,...,αn) = s(α1,α2,...,αn). Similarly s(β1,β2,...,βn) = s(β1,β2,...,βn). Hence,

s⊥(β1,β2,...,βn)s(α1,α2,...,αn) = s⊥(β1,β2,...,βn)s(α1,α2,...,αn) = s(α1,α2,...,αn)/(β1,β2,...,βn)

(2.4.16)
= det

((
hαi−βj−i+j

)
i,j=1,2,...,n

)
.

646This time, the reason why this causes the left hand side to be zero is the identity s(β1,β2,...,βn) =

det
((
hβi−i+j

)
i,j=1,2,...,n

)
.

647The δ1 ≥ δ2 ≥ ... ≥ δn part here is proven like the similar inequalities γ1 ≥ γ2 ≥ ... ≥ γn shown above; but the δn ≥ 0

part might require explanation. It stems from the fact that δn = βζ(n) − ζ (n)︸ ︷︷ ︸
≤n

+n ≥ βζ(n) − n + n = βζ(n) ≥ 0 (because we

have assumed (β1, β2, ..., βn) ∈ Nn).
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This proves (2.9.2) and thus completes the proof of Exercise 2.9.1(c).
(d) In the following, we use the so-called Iverson bracket notation: For every assertion A, we let [A]

denote the integer

{
1, if A is true;

0, if A is false
. (This integer is called the truth value of A.)

Before we come to the solution of Exercise 2.9.1(d), let us recall a general fact about determinants:

• Every commutative ring A, every positive integer N and every matrix (βi,j)i,j=1,2,...,N ∈ AN×N

satisfy

(13.81.2) det
(

(βi,j)i,j=1,2,...,N

)
=

N∑
k=1

(−1)
k−1

β1,k det
((
βi+1,j+[j≥k]

)
i,j=1,2,...,N−1

)
.

(This is just one possible way to write the Laplace expansion formula for the expansion of the
determinant of a matrix with respect to its first row.)

Let us now solve Exercise 2.9.1(d). Let n ∈ N, let m ∈ Z and let (α1, α2, . . . , αn) ∈ Zn. We must prove
(2.9.3).

Define an (n+ 1)-tuple (γ1, γ2, ..., γn+1) ∈ Zn+1 by (γ1, γ2, ..., γn+1) = (m,α1, α2, ..., αn). Then, γ1 = m,
whereas every i ∈ {1, 2, ..., n} satisfies γi+1 = αi. Since (m,α1, α2, ..., αn) = (γ1, γ2, ..., γn+1), we have

s(m,α1,α2,...,αn) = s(γ1,γ2,...,γn+1) = det
(

(hγi−i+j)i,j=1,2,...,n+1

) (
by the definition of s(γ1,γ2,...,γn+1)

)
=

n+1∑
k=1

(−1)
k−1

hγ1−1+k det
((
hγi+1−(i+1)+(j+[j≥k])

)
i,j=1,2,...,n

)
(by (13.81.2), applied to A = Λ, N = n+ 1 and βi,j = hγi−i+j)

=

n∑
k=0

(−1)
(k+1)−1︸ ︷︷ ︸

=(−1)k

hγ1−1+(k+1)︸ ︷︷ ︸
=hm+k

(since γ1−1+(k+1)=γ1+k=m+k
(because γ1=m))

det


hγi+1−(i+1)+(j+[j≥k+1])︸ ︷︷ ︸

=hαi−(i+1)+(j+[j≥k+1])

(since γi+1=αi)


i,j=1,2,...,n


(here, we have substituted k + 1 for k in the sum)

=

n∑
k=0

(−1)
k
hm+k det

((
hαi−(i+1)+(j+[j≥k+1])

)
i,j=1,2,...,n

)
.(13.81.3)

Now, let us check that

(13.81.4) det
((
hαi−(i+1)+(j+[j≥k+1])

)
i,j=1,2,...,n

)
= e⊥k s(α1,α2,...,αn) for every k ∈ {0, 1, ..., n} .

Proof of (13.81.4): Let k ∈ {0, 1, ..., n}. The partition
(
1k
)

has length k ≤ n, and thus can be identified

with the n-tuple

1, 1, ..., 1︸ ︷︷ ︸
k times

, 0, 0, ..., 0︸ ︷︷ ︸
n−k times

 = (β1, β2, . . . , βn), where we set βj =

{
1, if j ≤ k;

0, if j > k
= [j ≤ k] =

1 − [j ≥ k + 1] for every j ∈ {1, 2, ..., n}. Thus, s(1k) = s(β1,β2,...,βn) = s(β1,β2,...,βn) (by (2.9.1), applied to
λ = (β1, β2, . . . , βn)). Hence, ek = s(1k) = s(β1,β2,...,βn), so that

e⊥k s(α1,α2,...,αn) = s⊥(β1,β2,...,βn)s(α1,α2,...,αn) = det
((
hαi−βj−i+j

)
i,j=1,2,...,n

)
(by (2.9.2))

= det
((
hαi−(1−[j≥k+1])−i+j

)
i,j=1,2,...,n

)
(since βj = 1− [j ≥ k + 1] for every j ∈ {1, 2, ..., n})

= det
((
hαi−(i+1)+(j+[j≥k+1])

)
i,j=1,2,...,n

)
(since αi− (1− [j ≥ k + 1])− i+ j = αi− (i+ 1) + (j + [j ≥ k + 1]) for all (i, j) ∈ {1, 2, ..., n}2). This proves
(13.81.4).
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Now, (13.81.3) becomes

s(m,α1,α2,...,αn) =

n∑
k=0

(−1)
k
hm+k det

((
hαi−(i+1)+(j+[j≥k+1])

)
i,j=1,2,...,n

)
︸ ︷︷ ︸

=e⊥k s(α1,α2,...,αn)

(by (13.81.4))

=

n∑
k=0

(−1)
k
hm+ke

⊥
k s(α1,α2,...,αn) =

n∑
i=0

(−1)
i
hm+ie

⊥
i s(α1,α2,...,αn)(13.81.5)

(here, we renamed the summation index k as i) .

But in order to solve Exercise 2.9.1(d), we need to prove a very similar yet different formula:

(13.81.6) s(m,α1,α2,...,αn) =
∑
i∈N

(−1)
i
hm+ie

⊥
i s(α1,α2,...,αn).

These two formulas differ in a minor detail: The sum on the right hand side of (13.81.6) runs over all i ∈ N,
whereas the sum on the right hand side of (13.81.5) only runs over i ∈ {0, 1, ..., n}. If we can show that
these two sums are equal, then it will follow that the equality (13.81.6) that we are proving and the equality
(13.81.5) that we have proven are equivalent, and so the former equality must hold, and Exercise 2.9.1(d)
will be solved.

So we need to prove that the sum on the right hand side of (13.81.6) and the sum on the right hand side
of (13.81.5) are equal. To achieve this, it clearly suffices to show that all addends in which these sums differ

are 0. But these addends are the (−1)
i
hm+ie

⊥
i s(α1,α2,...,αn) for i ∈ N satisfying i > n. So we need to prove

that (−1)
i
hm+ie

⊥
i s(α1,α2,...,αn) = 0 for all i ∈ N satisfying i > n. Let us do this now.

Let i ∈ N be such that i > n. We need to show that (−1)
i
hm+ie

⊥
i s(α1,α2,...,αn) = 0.

The second statement of Exercise 2.9.1(c) says that the symmetric function s(α1,α2,...,αn) either is 0 or

equals ±sν for some partition ν having at most n parts. If it is 0, then (−1)
i
hm+ie

⊥
i s(α1,α2,...,αn)︸ ︷︷ ︸

=0

= 0 is

obvious, and so we are done. Thus, we can WLOG assume that we are in the other case, i.e., the function
s(α1,α2,...,αn) equals ±sν for some partition ν having at most n parts. Assume that we are in this case, and

consider this ν. Since ν has at most n parts, we have ` (ν) ≤ n. Now, `
((

1i
))

= i > n ≥ ` (ν), and therefore(
1i
)
* ν. But ei = s(1i) and thus e⊥i sν = s⊥(1i)sν = sν/(1i) = 0 (because

(
1i
)
* ν). Now,

(−1)
i
hm+ie

⊥
i s(α1,α2,...,αn)︸ ︷︷ ︸

=±sν

= ± (−1)
i
hm+i e

⊥
i sν︸ ︷︷ ︸
=0

= 0,

which concludes our proof. Exercise 2.9.1(d) is thus solved.
(b) Let n = ` (λ). Then, λ = (λ1, λ2, ..., λn), and the equality (2.9.1) yields sλ = s(λ1,λ2,...,λn).
Also, ` ((m,λ1, λ2, λ3, ...)) = n + 1, and thus (2.9.1) (applied to n + 1 and (m,λ1, λ2, λ3, ...) instead of n

and λ = (λ1, λ2, λ3, ...)) yields

s(m,λ1,λ2,λ3,...) = s(m,λ1,λ2,...,λn).

Compared with∑
i∈N

(−1)
i
hm+ie

⊥
i sλ︸︷︷︸

=s(λ1,λ2,...,λn)

=
∑
i∈N

(−1)
i
hm+ie

⊥
i s(λ1,λ2,...,λn)

= s(m,λ1,λ2,...,λn) (by (2.9.3), applied to αj = λj) ,

this yields
∑
i∈N (−1)

i
hm+ie

⊥
i sλ = s(m,λ1,λ2,λ3,...). This solves Exercise 2.9.1(b).

(e) This follows by induction over n from Exercise 2.9.1(d). The induction base (the n = 0 case) is trivial.
For the induction step, we need to prove that

s(α1,α2,...,αn+1) =
(
Bα1

◦Bα2
◦ · · · ◦Bαn+1

)
(1) ,

assuming that

(13.81.7) s(α2,α3,...,αn+1) =
(
Bα2

◦Bα3
◦ · · · ◦Bαn+1

)
(1) .
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But this is fairly straightforward: Applying the map Bα1 to (13.81.7), we obtain

Bα1

(
s(α2,α3,...,αn+1)

)
= Bα1

((
Bα2

◦Bα3
◦ · · · ◦Bαn+1

)
(1)
)

=
(
Bα1

◦Bα2
◦ · · · ◦Bαn+1

)
(1) .

Compared with

Bα1

(
s(α2,α3,...,αn+1)

)
=
∑
i∈N

(−1)
i
hα1+ie

⊥
i s(α2,α3,...,αn+1) (by the definition of the map Bα1

)

= s(α1,α2,α3,...,αn+1)

(
by Exercise 2.9.1(d), applied to α1 and

(α2, α3, . . . , αn+1) instead of m and (α1, α2, . . . , αn)

)
= s(α1,α2,...,αn+1),

this yields
s(α1,α2,...,αn+1) =

(
Bα1

◦Bα2
◦ · · · ◦Bαn+1

)
(1) ,

which completes the induction step and thus the proof.
(f) Let m ∈ Z. Let n be a positive integer. We have e0 = 1 and thus e⊥0 = 1⊥ = id (by Proposition

2.8.2(iii), applied to A = Λ). Hence, e⊥0 pn = id (pn) = pn.
If i is a positive integer satisfying i 6= n, then

(13.81.8) e⊥i pn = 0

(by Exercise 2.8.8(d), applied to m = i).
The definition of Bm yields

Bm (pn) =
∑
i∈N

(−1)
i
hm+ie

⊥
i pn

= (−1)
0︸ ︷︷ ︸

=1

hm+0︸ ︷︷ ︸
=hm

e⊥0 pn︸ ︷︷ ︸
=pn

+
∑
i>0

(−1)
i
hm+ie

⊥
i pn

(here, we have split off the addend for i = 0 from the sum)

= hmpn +
∑
i>0

(−1)
i
hm+ie

⊥
i pn.

In view of∑
i>0

(−1)
i
hm+ie

⊥
i pn

= (−1)
n
hm+n e⊥n pn︸ ︷︷ ︸

=(−1)n−1

(by Exercise 2.8.8(c))

+
∑
i>0;
i 6=n

(−1)
i
hm+i e⊥i pn︸ ︷︷ ︸

=0
(by (13.81.8))(

here, we have split off the addend for i = n from the sum,
since n is a positive integer

)
= (−1)

n
hm+n (−1)

n−1
+
∑
i>0;
i6=n

(−1)
i
hm+i0

︸ ︷︷ ︸
=0

= (−1)
n
hm+n (−1)

n−1
= (−1)

n
(−1)

n−1︸ ︷︷ ︸
=(−1)n+(n−1)=−1

(since n+(n−1)=2n−1
is odd)

hm+n = −hm+n,

this becomes

Bm (pn) = hmpn +
∑
i>0

(−1)
i
hm+ie

⊥
i pn︸ ︷︷ ︸

=−hm+n

= hmpn + (−hm+n) = hmpn − hm+n.

This solves Exercise 2.9.1(f).
Remark: Our solution to Exercise 2.9.1(d) was modelled after the rough sketch of a solution to Exer-

cise 2.9.1(b) given in [227, §4.20]; but it involved many technicalities which are not necessary if one is only
interested in a solution to Exercise 2.9.1(b). (Specifically, if one only wants to solve Exercise 2.9.1(b), one
can avoid the use of Exercise 2.9.1(c).)

We solved Exercise 2.9.1(e) using Exercise 2.9.1(d), but of course one can just as well turn this around and
solve Exercise 2.9.1(d) using Exercise 2.9.1(e) if one has an independent solution to Exercise 2.9.1(e). Such
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an independent solution can be extracted from [17, Corollary 3.30] (using the realization that the immaculate
creation operators Bm of [17] are lifts of our Bernstein operators Bm to NSym).

13.82. Solution to Exercise 2.9.3. Solution to Exercise 2.9.3. (a) We shall prove a more general result:

Claim 1: Let A be any commutative ring. Let f ∈ A [[t]] be a power series with constant
term 1. Then, there is a unique family (xn)n≥1 of elements of A such that

(13.82.1) f =

∞∏
n=1

(1− xntn)
−1
.

[Proof of Claim 1: This family is constructed recursively: If x1, x2, . . . , xk−1 have been determined (for some
k ≥ 1), then xk is obtained by comparing coefficients before tk in the equation (13.82.1) (the coefficient before
tk on the left hand side is a known constant, whereas the coefficient before tk on the right hand side can
be written in the form xk + (some polynomial in x1, x2, ..., xk−1), and thus the equality of these coefficients
gives a linear equation in xk which can be uniquely solved for xk). The family (xn)n≥1 thus constructed

satisfies (13.82.1) (because the constant terms on both sides of (13.82.1) are 1, whereas for every k ≥ 1,
the coefficients before tk on both sides of (13.82.1) are equal due to the construction of xk). Moreover, it is
the only family that satisfies (13.82.1) (since its construction was dictated by (13.82.1)). Thus, Claim 1 is
proven.]

Exercise 2.9.3(a) follows by applying Claim 1 to A = Λ and f = H (t).
(b) Again, this generalizes: Let us say that a power series f ∈ A [[t]] over a graded commutative ring A is

equigraded if, for every n ∈ N, the coefficient of f before tn is homogeneous of degree n. Then, if f ∈ A [[t]]
is an equigraded power series with constant term 1, then the unique family (xn)n≥1 satisfying (13.82.1) has
the property that xn is homogeneous of degree n for every positive n. This is rather easy to see by induction.

(c) By the definition of the wn, we haveH (t) =
∏∞
n=1 (1− wntn)

−1
. Expanding and comparing coefficients

yields precisely
∑
λ∈Parn

wλ = hn. 648

648Here are some more details of this argument. From (2.4.1), we have H (t) =
∑
n≥0 hn (x) tn =

∑
n≥0 hnt

n. Thus,∑
n≥0

hnt
n = H (t) =

∞∏
n=1

(1− wntn)−1︸ ︷︷ ︸
=
∑
m∈N(wntn)m

=
∞∏
n=1

∑
m∈N

(wnt
n)m︸ ︷︷ ︸

=wmn t
nm

=

∞∏
n=1

∑
m∈N

wmn t
nm =

∑
(m1,m2,m3,...)

weak composition

∞∏
n=1

wmnn tnmn︸ ︷︷ ︸
=(
∏∞
n=1 w

mn
n )t1m1+2m2+3m3+···

(by the product rule)

=
∑

(m1,m2,m3,...)
weak composition

( ∞∏
n=1

wmnn

)
t1m1+2m2+3m3+···.(13.82.2)

But every partition λ can be uniquely written in the form λ = (1m12m23m3 · · · ) for some weak composition (m1,m2,m3, . . .).

Thus, we can substitute (1m12m23m3 · · · ) for λ in the sum
∑
λ∈Par wλt

|λ|. As a result, we obtain∑
λ∈Par

wλt
|λ| =

∑
(m1,m2,m3,...)

weak composition

w(1m12m23m3 ··· )︸ ︷︷ ︸
=w

m1
1 w

m2
2 w

m3
3 ···

(by the definition of w(1m12m23m3 ··· ))

t|(1
m12m23m3 ··· )|︸ ︷︷ ︸

=t1m1+2m2+3m3+···
(since |(1m12m23m3 ··· )|=1m1+2m2+3m3+···)

=
∑

(m1,m2,m3,...)
weak composition

(
wm1

1 wm2
2 wm3

3 · · ·
)︸ ︷︷ ︸

=
∏∞
n=1 w

mn
n

t1m1+2m2+3m3+··· =
∑

(m1,m2,m3,...)
weak composition

( ∞∏
n=1

wmnn

)
t1m1+2m2+3m3+···.

Compared with (13.82.2), this yields∑
n≥0

hnt
n =

∑
λ∈Par

wλt
|λ| =

∑
n≥0

∑
λ∈Par;
|λ|=n︸ ︷︷ ︸

=
∑
λ∈Parn

wλ t|λ|︸︷︷︸
=tn

(since |λ|=n)

=
∑
n≥0

∑
λ∈Parn

wλt
n.

Comparing coefficients before tn in this equality of power series, we conclude that hn =
∑
λ∈Parn

wλ for every n ∈ N, qed.
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(d) First solution to Exercise 2.9.3(d) (sketched). If λ(1), λ(2), . . . , λ(`) are finitely many partitions, then
we let λ(1) ∪ λ(2) ∪ · · · ∪ λ(`) denote the partition obtained by sorting all the parts of λ(1), λ(2), ..., λ(`) in
decreasing order. For instance, (3, 2, 1) ∪ (4, 2) ∪ (5, 1) = (5, 4, 3, 2, 2, 1, 1). Clearly, if λ(1), λ(2), ..., λ(`) are
finitely many partitions, then

(13.82.3) wλ(1)wλ(2) · · ·wλ(`) = wλ(1)∪λ(2)∪···∪λ(`)

(due to the definition of wλ for a partition λ).
From (c), we know that hn =

∑
λ∈Parn

wλ for every n ∈ N. In other words,

(13.82.4) hn =
∑
λ`n

wλ for every n ∈ N,

where we are using the notation λ ` n for λ ∈ Parn.
Every partition µ = (µ1, µ2, ..., µ`) with ` = ` (µ) satisfies

hµ = hµ1
hµ2
· · ·hµ` =

∏̀
i=1

hµi︸︷︷︸
=
∑
λ`|µi| wλ

(by (13.82.4), applied to n=µi)

=
∏̀
i=1

 ∑
λ`|µi|

wλ

 =
∑

(λ(1),λ(2),...,λ(`))∈Par`;

λ(i)`µi for every i

wλ(1)wλ(2) · · ·wλ(`)︸ ︷︷ ︸
=w

λ(1)∪λ(2)∪···∪λ(`)

(by (13.82.3))

=
∑

(λ(1),λ(2),...,λ(`))∈Par`;

λ(i)`µi for every i

wλ(1)∪λ(2)∪···∪λ(`) .(13.82.5)

Now, let us fix n ∈ N. We shall prove that (wλ)λ∈Parn
is a basis of the k-module Λn. First of all, we know

that this family (wλ)λ∈Parn
is a family of elements of Λn (since for each λ ∈ Parn, the symmetric function

wλ is homogeneous of degree |λ| = n).
Now, we define a binary relation ≤

ref
on the set Parn as follows: If λ ∈ Parn and µ ∈ Parn, then we let

λ ≤
ref
µ if and only if there exists a tuple

(
λ(1), λ(2), . . . , λ(`)

)
∈ Par` satisfying ` = ` (µ),

(
λ(i) ` µi for every i

)
and λ(1) ∪ λ(2) ∪ · · · ∪ λ(`) = λ. The intuitive meaning behind this is the following: We have λ ≤

ref
µ if we can

obtain the partition λ by splitting each part µi of µ into several smaller parts649 (which are positive integers
summing up to µi) and sorting the resulting list into decreasing order. For instance, (5, 3, 2, 2, 2, 1) ≤

ref
(6, 5, 4)

(because the tuple
(
λ(1), λ(2), λ(3)

)
= ((3, 2, 1) , (5) , (2, 2)) satisfies (3, 2, 1) ` 6, (5) ` 5 and (2, 2) ` 4 and

(3, 2, 1) ∪ (5) ∪ (2, 2) = (5, 3, 2, 2, 2, 1)).
It is easy to see that the relation ≤

ref
is transitive, antisymmetric and reflexive650. Hence, ≤

ref
is the smaller-

or-equal relation of a partial order on the set Parn. Consider Parn as a poset, equipped with this partial
order. (This partial order is called the refinement order on partitions651.)

Now, for any two partitions λ and µ, let bµ,λ denote the number of tuples
(
λ(1), λ(2), . . . , λ(`)

)
∈ Par`

satisfying ` = ` (µ),
(
λ(i) ` µi for every i

)
and λ(1)∪λ(2)∪· · ·∪λ(`) = λ. Then, the formula (13.82.5) rewrites

as

hµ =
∑
λ∈Par

bµ,λwλ.

649We allow the “several smaller parts” to be one single part (namely, µi).
650In proving these properties (specifically, antisymmetry), it helps to observe the following fact: If λ ∈ Parn and µ ∈ Parn

satisfy λ ≤
ref

µ, then either λ = µ or ` (λ) > ` (µ).

651Caution: This order is not a restriction of the refinement order on compositions.
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Thus, for every µ ∈ Parn, we have

hµ =
∑
λ∈Par

bµ,λwλ =
∑
λ∈Par;
|λ|=n︸ ︷︷ ︸

=
∑
λ∈Parn

bµ,λwλ +
∑
λ∈Par;
|λ|6=n

bµ,λ︸︷︷︸
=0

(this easily follows
from |λ|6=n=|µ|)

wλ

=
∑

λ∈Parn

bµ,λwλ +
∑
λ∈Par;
|λ|6=n

0wλ

︸ ︷︷ ︸
=0

=
∑

λ∈Parn

bµ,λwλ.

Hence, the family (hλ)λ∈Parn
expands652 in the family (wλ)λ∈Parn

through the matrix (bµ,λ)(µ,λ)∈Parn×Parn
.

But this matrix (bµ,λ)(µ,λ)∈Parn×Parn
is easily seen to be unitriangular (indeed, bµ,λ = 0 for any (µ, λ) ∈ Parn

which do not satisfy λ ≤
ref

µ, and furthermore, every λ ∈ Parn satisfies bλ,λ = 1) and therefore invertibly

triangular. Hence, the family (hλ)λ∈Parn
expands invertibly triangularly in the family (wλ)λ∈Parn

. Corollary

11.1.19(e) (applied to Λn, Parn, (hλ)λ∈Parn
and (wλ)λ∈Parn

) thus shows that the family (hλ)λ∈Parn
is a

basis of the k-module Λn if and only if the family (wλ)λ∈Parn
is a basis of the k-module Λn. Hence, the

family (wλ)λ∈Parn
is a basis of the k-module Λn (since we know that the family (hλ)λ∈Parn

is a basis of the

k-module Λn).
Now, forget that we fixed n. We thus have shown that, for every n ∈ N, the family (wλ)λ∈Parn

is a basis

of the k-module Λn. Hence, the disjoint union of the families (wλ)λ∈Parn
over all n ∈ N is a basis of the

direct sum
⊕

n∈N Λn. Since the former disjoint union is the family (wλ)λ∈Par, whereas the latter direct sum
is
⊕

n∈N Λn = Λ, this result rewrites as follows: The family (wλ)λ∈Par is a basis of the k-module Λ. This
solves Exercise 2.9.3(d).

[Remark: We could have slightly simplified this argument by using a coarser partial order instead of ≤
ref

.

Namely, we can define a binary relation ≤
len

on the set Parn as follows: If λ ∈ Parn and µ ∈ Parn, then

we let λ ≤
len

µ if and only if either ` (λ) > ` (µ) or λ = µ. Then, clearly, ≤
len

is the smaller-or-equal relation

of a partial order on the set Parn. If we consider Parn as a poset equipped with this partial order, then
the matrix (bµ,λ)(µ,λ)∈Parn×Parn

is still unitriangular, and thus our argument above still works, but we save

ourselves the trouble of proving that ≤
ref

is a partial order.]

Second solution to Exercise 2.9.3(d) (sketched). From part (c), we see that hn can be written as a
polynomial in the w1, w2, w3, . . . for each n ∈ N. Therefore, w1, w2, w3, . . . generate Λ as a k-algebra (because
h1, h2, h3, . . . generate Λ as a k-algebra). In other words, the family (wλ)λ∈Par spans the k-module Λ 653.
Recall that wλ ∈ Λ|λ| for each λ ∈ Par. In other words, wλ is an element of Λ|λ| for each partition λ. Hence,
Exercise 2.5.19 (applied to vλ = wλ) yields that the family (wλ)λ∈Par is a graded basis of the graded k-module
Λ. Thus, in particular, this family (wλ)λ∈Par is a basis of the k-module Λ. This solves Exercise 2.9.3(d)
again.

652Here, we are using the terminology of Section 11.1.
653We have used Exercise 2.2.14(b) (applied to wm and wλ instead of vm and vλ) here. Alternatively, this can also be seen

using (13.82.5).
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(e) By the definition of the wn, we have H (t) =
∏∞
n=1 (1− wntn)

−1
. Hence,654

d

dt
(logH (t)) =

d

dt

(
log

∞∏
n=1

(1− wntn)
−1

)
=

d

dt

∞∑
n=1

log
(

(1− wntn)
−1
)

=

∞∑
n=1

d

dt
log
(

(1− wntn)
−1
)

︸ ︷︷ ︸
=
nwnt

n−1

1− wntn

=

∞∑
n=1

nwnt
n−1

1− wntn
.

Compared with

d

dt
(logH (t)) =

H ′ (t)

H (t)
=
∑
m≥0

pm+1t
m (by Exercise 2.5.21) ,

this yields

∑
m≥0

pm+1t
m =

∞∑
n=1

nwnt
n−1

1− wntn
.

Multiplying this by t, we obtain

∑
m≥0

pm+1t
m+1 =

∞∑
n=1

nwnt
n

1− wntn︸ ︷︷ ︸
=n
∑∞
k=1 w

k
nt
nk

=

∞∑
n=1

∞∑
k=1

nwknt
nk

=

∞∑
m=1

∑
d|m

dw
m/d
d tm =

∞∑
n=1

∑
d|n

dw
n/d
d tn,

so that
∑∞
n=1

∑
d|n dw

n/d
d tn =

∑
m≥0 pm+1t

m+1 =
∑
n≥1 pnt

n. Comparing coefficients yields the claim of

part (e).

654We will be using logarithms here, so prima facie our argument only works when the base ring k is a Q-algebra. However,
it is easy to see that our argument can easily be adapted to work in the general case as well. For example, one can argue

that even if the power series log t is not defined if k is not a Q-algebra, the notion of the logarithmic derivative d
dt

(logQ) is

well-defined for every k whenever Q ∈ k [[t]] is a power series with constant term 1 (for example, one could use the formula
d
dt

(logQ) =
Q′(t)
Q(t)

as the definition of the logarithmic derivative) and still has the familiar property of turning products into

sums in this generality. See the solution to Exercise 2.5.21 for details about this.
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(f) This is done in [55]. For the sake of completeness: First, let n ≥ k ≥ 2. Then, every i ∈ {2, 3, ..., k − 1}
satisfies fi,i =

∑
λ∈Pari,
minλ≥i

wλ = w(i) = wi. Thus,

k−1∑
i=2

fi,i︸︷︷︸
=wi

fn−i,i︸ ︷︷ ︸
=

∑
λ∈Parn−i,

minλ≥i

wλ

=

k−1∑
i=2

wi
∑

λ∈Parn−i,
minλ≥i

wλ

︸ ︷︷ ︸
=

∑
λ∈Parn−i,

minλ≥i

wλwi=
∑

λ∈Parn,
minλ=i

wλ

=

k−1∑
i=2

∑
λ∈Parn,
minλ=i

wλ

=
∑

λ∈Parn,
2≤minλ<k

wλ =
∑

λ∈Parn

wλ︸ ︷︷ ︸
=hn

(by part (c))

−
∑

λ∈Parn,
minλ=1

wλ

︸ ︷︷ ︸
=w1

∑
λ∈Parn−1

wλ

−
∑

λ∈Parn,
minλ≥k

wλ

︸ ︷︷ ︸
=fn,k

= hn − w1︸︷︷︸
=h1

∑
λ∈Parn−1

wλ︸ ︷︷ ︸
=hn−1

(by part (c))

−fn,k

= hn︸︷︷︸
=s(n)

−h1 hn−1︸ ︷︷ ︸
=s(n−1)

−fn,k

= s(n) − h1s(n−1)︸ ︷︷ ︸
=s(n)+s(n−1,1)

(by the Pieri rule)

−fn,k

= −s(n−1,1) − fn,k;

in other words,

−fn,k = s(n−1,1) +

k−1∑
i=2

fi,ifn−i,i.

From this, we can conclude inductively that −fn,k is a sum of Schur functions for every n ∈ N and k ≥ 2 (in
fact, the trivial cases with n < 2 have to be taken as induction base). Since fn,n =

∑
λ∈Parn,
minλ≥n

wλ = w(n) = wn,

this yields that −wn is a sum of Schur functions for every n ≥ 2.
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(g) Every partition λ can be uniquely written in the form λ = (1m12m23m3 · · · ) for some weak composition
(m1,m2,m3, . . .). Thus,∑

λ∈Par

wλ (x) rλ (y) =
∑

(m1,m2,m3,...)
weak composition

w(1m12m23m3 ··· ) (x)︸ ︷︷ ︸
=
∏
i≥1(wi(x))mi

(by the definition of wλ)

r(1m12m23m3 ··· ) (y)︸ ︷︷ ︸
=
∏
i≥1 hmi(y

i
1,y

i
2,y

i
3,...)

(by the definition of rλ)

=
∑

(m1,m2,m3,...)
weak composition

∏
i≥1

(wi (x))
mi

∏
i≥1

hmi
(
yi1, y

i
2, y

i
3, . . .

)
=

∑
(m1,m2,m3,...)

weak composition

∏
i≥1

(wi (x))
mi hmi

(
yi1, y

i
2, y

i
3, . . .

)
=

∑
(m1,m2,m3,...)

weak composition

∏
i≥1

hmi
(
yi1, y

i
2, y

i
3, . . .

)
(wi (x))

mi

=
∏
i≥1

∑
m∈N

hm
(
yi1, y

i
2, y

i
3, . . .

)
(wi (x))

m

︸ ︷︷ ︸
=
∏
j≥1(1−yijwi(x))

−1

(by (2.2.18), upon substitution of (y1,y2,y3,...) and wi(x) for x and t)

=
∏
i≥1

∏
j≥1

(
1− yijwi (x)

)−1
=
∏
j≥1

∏
i≥1

(
1− yijwi (x)

)−1

︸ ︷︷ ︸
=
∏
n≥1(1−ynj wn(x))

−1

=
∏∞
n=1(1−wn(x)ynj )

−1

=H(yj)

(since
∏∞
n=1(1−wntn)−1=H(t))

=
∏
j≥1

H (yj)︸ ︷︷ ︸
=
∏∞
i=1(1−xiyj)−1

=

∞∏
i,j=1

(1− xiyj)−1
.

This proves (g).
(h) For every partition λ, both symmetric functions wλ and rλ are homogeneous of degree |λ|. (In fact,

for wλ this follows from Exercise 2.9.3(c), whereas for rλ this is easily derived from the definition.)

From Exercise 2.9.3(g), we obtain
∑
λ∈Par wλ (x) rλ (y) =

∏∞
i,j=1 (1− xiyj)−1

=
∑
λ∈Par sλ(x)sλ(y) (by

(2.5.1)). Thus, we can apply Exercise 2.5.20(a) to uλ = wλ and vλ = rλ. As a result, we obtain that
(wλ)λ∈Par and (rλ)λ∈Par are k-bases of Λ, and actually are dual bases with respect to the Hall inner product
on Λ. Thus we have solved Exercise 2.9.3(h), but also given another proof of Exercise 2.9.3(d) in the process
(because we have shown once again that (wλ)λ∈Par is a k-basis of Λ).

13.83. Solution to Exercise 2.9.4. Solution to Exercise 2.9.4. (a) Let f ∈ Λ.
Recall the following fundamental fact from linear algebra: If k is a commutative ring, if A is a k-module,

if (·, ·) : A × A → k is a symmetric k-bilinear form on A, and if (uλ)λ∈L and (vλ)λ∈L are two k-bases of A
which are dual to each other with respect to the form (·, ·) (where L is some indexing set), then every a ∈ A
satisfies

(13.83.1) a =
∑
λ∈L

(uλ, a) vλ.

We can apply this fact to k = Q, A = ΛQ, L = Par, (uλ)λ∈L = (pλ)λ∈Par, (vλ)λ∈L =
(
z−1
λ pλ

)
λ∈Par

and

a = f (because the bases (pλ)λ∈Par and
(
z−1
λ pλ

)
λ∈Par

of ΛQ are dual to each other with respect to the Hall
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inner product (·, ·), as Corollary 2.5.17(b) shows). As a result, we obtain

f =
∑
λ∈Par

(pλ, f) z−1
λ pλ.

Hence,

Z (f) = Z

( ∑
λ∈Par

(pλ, f) z−1
λ pλ

)
=
∑
λ∈Par

(pλ, f) z−1
λ Z (pλ)︸ ︷︷ ︸

=zλpλ

=
∑
λ∈Par

(pλ, f) z−1
λ zλpλ

=
∑
λ∈Par

(pλ, f)︸ ︷︷ ︸
∈Z

(since f∈Λ and pλ∈Λ)

pλ ∈
∑
λ∈Par

Zpλ ⊂ Λ.

Since we have proven this for every f ∈ Λ, we thus have shown that Z (Λ) ⊂ Λ. This solves Exercise 2.9.4(a).
(b) First solution of Exercise 2.9.4(b): Consider two variable sets x = (x1, x2, x3, ...) and y = (y1, y2, y3, ...).

Let xy denote the variable set

(xiyj)(i,j)∈{1,2,3,...}2 = (x1y1, x1y2, x1y3, ...,

x2y1, x2y2, x2y3, ...,

x3y1, x3y2, x3y3, ...,

...) .

Now, we claim that for every f ∈ ΛQ,

(13.83.2) there is a well-defined element f (xy) := f
(

(xiyj)(i,j)∈{1,2,3,...}2
)

of Q [[x,y]] .

This claim (13.83.2) is not obvious! For example, there is generally no well-defined element

f
(

(xi + yj)(i,j)∈{1,2,3,...}2
)

, because e.g. in the case of f = e1 we would have e1

(
(xi + yj)(i,j)∈{1,2,3,...}2

)
=∑

(i,j)∈{1,2,3,...}2 (xi + yj), which is a sum containing infinitely many x1’s. So there is some subtlety which

allows us to make sense of f
(

(xiyj)(i,j)∈{1,2,3,...}2
)

but not of f
(

(xi + yj)(i,j)∈{1,2,3,...}2
)

.

Here is a sketch of a proof of (13.83.2): Consider a new variable set s := (si,j)(i,j)∈{1,2,3,...}2 whose

variables are indexed by pairs of positive integers. This variable set s is still countably infinite, and so
there is an isomorphism ΛQ = ΛQ (x) → ΛQ (s). On the other hand, we can consider the ring Q [[s]] of
formal power series in the variables from the set s, and then we have ΛQ (s) ⊂ Q [[s]]. It is easy to see

that g
(

(xiyj)(i,j)∈{1,2,3,...}2
)

is a well-defined element of Q [[x,y]] for every g ∈ Q [[s]] 655. Hence, for

every f ∈ ΛQ, there is a well-defined element f (xy) := f
(

(xiyj)(i,j)∈{1,2,3,...}2
)

of Q [[x,y]] (because we can

regard f as an element of ΛQ (s) ⊂ Q [[s]] by means of the isomorphism ΛQ = ΛQ (x)→ ΛQ (s)). This proves
(13.83.2).

655Proof. Let g ∈ Q [[s]]. When (xiyj)(i,j)∈{1,2,3,...}2 is substituted for (si,j)(i,j)∈{1,2,3,...}2 in the power series g ∈ Q [[s]],

every monomial in the variables s turns into a monomial in the variables (x,y), and any given monomial in (x,y) can

only be obtained (this way) from finitely many monomials in s (indeed, a given monomial xαyβ in (x,y) can only be

obtained from monomials
∏
i,j=1,2,3,... s

γi,j
i,j whose exponents γi,j satisfy the equations

∞∑
i=1

γi,j = βj for all j ∈ {1, 2, 3, ...} ;

∞∑
j=1

γi,j = αi for all i ∈ {1, 2, 3, ...} ;

but it is easy to see that these equations leave only finitely many possibilities for the monomial
∏
i,j=1,2,3,... s

γi,j
i,j ). Hence,

the substitution yields an infinite sum of monomials in which every monomial occurs only finitely often; therefore, this sum

converges. This shows that g
(

(xiyj)(i,j)∈{1,2,3,...}2
)

is a well-defined element of Q [[x,y]].
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Due to (13.83.2), we can define a map

∆̃× : ΛQ → Q [[x,y]] ,

f 7→ f (xy) = f
(

(xiyj)(i,j)∈{1,2,3,...}2
)
.

This map ∆̃× is an evaluation map (in an appropriate sense), and thus a Q-algebra homomorphism. It is

also clear that ∆̃× (Λ) ⊂ Z [[x,y]] (where Z [[x,y]] is regarded as a subring of Q [[x,y]] in the obvious way).

Now, recall the Q-algebra isomorphism ΛQ ⊗Q ΛQ → RQ (x,y)
S(∞)×S(∞) constructed in (2.1.3) (applied

to k = Q). This entails a Q-algebra injection ΛQ⊗QΛQ → Q [[x,y]] (since RQ (x,y)
S(∞)×S(∞) ⊂ RQ (x,y) ⊂

Q [[x,y]]). Denote this injection by ι.
We shall now show that

(13.83.3) ι ◦∆× = ∆̃×.

Proof of (13.83.3): Indeed, (13.83.3) is an equality between Q-algebra homomorphisms (since ∆̃×, ι and
∆× are Q-algebra homomorphisms), and thus, in order to prove it, we only need to check that it holds on a
generating set of the Q-algebra ΛQ. We do this on the generating set (pn)n≥1, by noticing that every n ≥ 1
satisfies

(ι ◦∆×) (pn) = ι

∆× (pn)︸ ︷︷ ︸
=pn⊗pn

 = ι (pn ⊗ pn) = pn (x)︸ ︷︷ ︸
=
∑
i≥1 x

n
i

pn (y)︸ ︷︷ ︸
=
∑
j≥1 y

n
j

(by the definition of ι)

=

∑
i≥1

xni

∑
j≥1

ynj

 =
∑
i≥1

∑
j≥1︸ ︷︷ ︸

=
∑

(i,j)∈{1,2,3,...}2

xni y
n
j︸ ︷︷ ︸

=(xiyj)
n

=
∑

(i,j)∈{1,2,3,...}2
(xiyj)

n

= pn

(xiyj)(i,j)∈{1,2,3,...}2︸ ︷︷ ︸
=xy

 = pn (xy) = ∆̃× (pn)

(
since ∆̃× (pn) = pn (xy) (by the definition of ∆̃× (pn) )

)
.

So (13.83.3) is proven.

From (13.83.3), we obtain (ι ◦∆×)︸ ︷︷ ︸
=∆̃×

(Λ) = ∆̃× (Λ) ⊂ Z [[x,y]], so that ι (∆× (Λ)) = (ι ◦∆×) (Λ) ⊂ Z [[x,y]]

and thus ∆× (Λ) ⊂ ι−1 (Z [[x,y]]).
But it so happens that ι−1 (Z [[x,y]]) = Λ ⊗Z Λ 656. Hence, ∆× (Λ) ⊂ ι−1 (Z [[x,y]]) = Λ ⊗Z Λ. This

solves Exercise 2.9.4(b).

656Proof. It is clear that ι (Λ⊗Z Λ) ⊂ Z [[x,y]], so that Λ ⊗Z Λ ⊂ ι−1 (Z [[x,y]]). We are now going to prove the reverse
inclusion ι−1 (Z [[x,y]]) ⊂ Λ⊗Z Λ.

Indeed, let p ∈ ι−1 (Z [[x,y]]). Then, p is an element of ΛQ ⊗Q ΛQ satisfying ι (p) ∈ Z [[x,y]]. All coefficients of the power
series ι (p) are integers (since ι (p) ∈ Z [[x,y]]).

We can write p in the form p =
∑

(λ,µ)∈Par×Par ρλ,µmλ ⊗ mµ with ρλ,µ being elements of Q (because

(mλ ⊗mµ)(λ,µ)∈Par×Par is a Q-basis of ΛQ ⊗Q ΛQ (since (mλ)λ∈Par is a Q-basis of ΛQ)). Consider these elements ρλ,µ.

Since p =
∑

(λ,µ)∈Par×Par ρλ,µmλ ⊗mµ, we have ι (p) =
∑

(λ,µ)∈Par×Par ρλ,µmλ (x)mµ (y) (by the definition of ι). There-

fore, for every (α, β) ∈ Par×Par, the rational number ρα,β is the coefficient of the power series ι (p) before the monomial xαyβ

(since there is clearly only one term in the sum
∑

(λ,µ)∈Par×Par ρλ,µmλ (x)mµ (y) contributing to this coefficient, namely

the term for (λ, µ) = (α, β), and this term contributes ρα,β). In particular, this number ρα,β must be an integer (since all
coefficients of the power series ι (p) are integers). So we have shown that ρα,β is an integer for every (α, β) ∈ Par×Par. In
other words, ρλ,µ is an integer for every (λ, µ) ∈ Par×Par. Now, p =

∑
(λ,µ)∈Par×Par ρλ,µ︸︷︷︸

an integer

mλ ⊗mµ ∈ Λ⊗Z Λ.

Forget now that we fixed p. We thus have shown that p ∈ Λ⊗ZΛ for every p ∈ ι−1 (Z [[x,y]]). In other words, ι−1 (Z [[x,y]]) ⊂
Λ⊗Z Λ. Combined with Λ⊗Z Λ ⊂ ι−1 (Z [[x,y]]), this yields ι−1 (Z [[x,y]]) = Λ⊗Z Λ, qed.



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 617

Second solution of Exercise 2.9.4(b): The following solution of Exercise 2.9.4(b) is a variation on the First
one given above. It avoids the use of (13.83.2) in favor of working with finite variable sets. (This has the
advantage that we no longer need to bother about technicalities; but more importantly, this approach will
be very useful in solving Exercise 2.9.4(f) later on.)

Let N ∈ N be arbitrary. We define a Q-linear map

EN : ΛQ ⊗Q ΛQ → Q [x1, x2, ..., xN , y1, y2, ..., yN ] ,

f ⊗ g 7→ f (x1, x2, ..., xN ) g (y1, y2, ..., yN ) .

This is well-defined because f (x1, x2, ..., xN ) ∈ Q [x1, x2, ..., xN ] and g (y1, y2, ..., yN ) ∈ Q [y1, y2, ..., yN ] are
well-defined polynomials for every f ∈ ΛQ and g ∈ ΛQ (by Exercise 2.1.2) and depend linearly on f and g,
respectively. It is easy to see that the map EN is a Q-algebra homomorphism.

Next, we define a map

KN : ΛQ → Q [x1, x2, ..., xN , y1, y2, ..., yN ] ,

f 7→ f
(

(xiyj)(i,j)∈{1,2,...,N}2
)
.

Here, f
(

(xiyj)(i,j)∈{1,2,...,N}2
)

is defined as follows: Let (u1, u2, ..., uN2) be a list of all N2 elements of the

family (xiyj)(i,j)∈{1,2,...,N}2 in any arbitrary order, and set f
(

(xiyj)(i,j)∈{1,2,...,N}2
)

= f (u1, u2, ..., uN2).

(The result does not depend on the order chosen, because f is symmetric.)
Again, KN is a Q-algebra homomorphism (since KN is an evaluation map in an appropriate sense).
We now claim that

(13.83.4) EN ◦∆× = KN .

Proof of (13.83.4): The equality (13.83.4) is an equality between Q-algebra homomorphisms (since KN ,
EN and ∆× are Q-algebra homomorphisms), and thus, in order to prove it, we only need to check that it
holds on a generating set of the Q-algebra ΛQ. We do this on the generating set (pn)n≥1, by noticing that
every n ≥ 1 satisfies

(EN ◦∆×) (pn) = EN

∆× (pn)︸ ︷︷ ︸
=pn⊗pn

 = EN (pn ⊗ pn)

= pn (x1, x2, ..., xN )︸ ︷︷ ︸
=
∑N
i=1 x

n
i

pn (y1, y2, ..., yN )︸ ︷︷ ︸
=
∑N
j=1 y

n
j

(by the definition of EN )

=

(
N∑
i=1

xni

) N∑
j=1

ynj

 =
N∑
i=1

N∑
j=1︸ ︷︷ ︸

=
∑

(i,j)∈{1,2,...,N}2

xni y
n
j︸ ︷︷ ︸

=(xiyj)
n

=
∑

(i,j)∈{1,2,...,N}2
(xiyj)

n

= pn

(
(xiyj)(i,j)∈{1,2,...,N}2

)
= KN (pn)(

since KN (pn) = pn

(
(xiyj)(i,j)∈{1,2,...,N}2

)
(by the definition of KN (pn) )

)
.

This proves (13.83.4).
Now,

EN (∆× (Λ)) =

 EN ◦∆×︸ ︷︷ ︸
=KN

(by (13.83.4))

 (Λ) = KN (Λ) ⊂ Z [x1, x2, ..., xN , y1, y2, ..., yN ]

(the latter inclusion is evident from the definition of KN ). Hence, every p ∈ ∆× (Λ) satisfies

(13.83.5) EN (p) ∈ EN (∆× (Λ)) = Z [x1, x2, ..., xN , y1, y2, ..., yN ] .



618 DARIJ GRINBERG AND VICTOR REINER

Now, forget that we fixed N . We thus have defined a Q-algebra homomorphism EN : ΛQ ⊗Q ΛQ →
Q [x1, x2, ..., xN , y1, y2, ..., yN ] for every N ∈ N, and we have shown that every p ∈ ∆× (Λ) satisfies (13.83.5)
for every N ∈ N.

Now, we are going to show that

(13.83.6)

 if some p ∈ ΛQ ⊗Q ΛQ satisfies
(EN (p) ∈ Z [x1, x2, ..., xN , y1, y2, ..., yN ] for every N ∈ N) ,

then p ∈ Λ⊗Z Λ


Proof of (13.83.6): Let p ∈ ΛQ ⊗Q ΛQ be such that

(13.83.7) (EN (p) ∈ Z [x1, x2, ..., xN , y1, y2, ..., yN ] for every N ∈ N) .

We can write p in the form p =
∑

(λ,µ)∈Par×Par ρλ,µmλ ⊗ mµ with ρλ,µ being elements of Q (because

(mλ ⊗mµ)(λ,µ)∈Par×Par is a Q-basis of ΛQ ⊗Q ΛQ (since (mλ)λ∈Par is a Q-basis of ΛQ)). Consider these

elements ρλ,µ.
Now, let (α, β) ∈ Par×Par be arbitrary. Choose some N ∈ N satisfying N ≥ ` (α) and N ≥ ` (β) (such an

N clearly exists). Then, α = (α1, α2, ..., αN ) and β = (β1, β2, ..., βN ). Since p =
∑

(λ,µ)∈Par×Par ρλ,µmλ⊗mµ,

we have

(13.83.8) EN (p) =
∑

(λ,µ)∈Par×Par

ρλ,µmλ (x1, x2, ..., xN )mµ (y1, y2, ..., yN ) .

The only addend on the right hand side of this equality which has a nonzero coefficient before xα1
1 xα2

2 ...xαNN yβ1

1 yβ2

2 ...yβNN
is the addend for (λ, µ) = (α, β) (since α and β are partitions, so the only partition λ such that the mono-
mial xα1

1 xα2
2 ...xαNN appears in mλ (x1, x2, ..., xN ) is α, and the only partition µ such that the monomial

yβ1

1 yβ2

2 ...yβNN appears in mµ (y1, y2, ..., yN ) is β). This coefficient is ρα,β . Hence, (13.83.8) shows that the

coefficient before xα1
1 xα2

2 ...xαNN yβ1

1 yβ2

2 ...yβNN in the power series EN (p) is ρα,β . But this coefficient must be
an integer (in fact, (13.83.7) shows that every coefficient of the power series EN (p) is an integer). Thus, ρα,β
is an integer.

So we have shown that ρα,β is an integer for every (α, β) ∈ Par×Par. In other words, ρλ,µ is an integer
for every (λ, µ) ∈ Par×Par. Now, p =

∑
(λ,µ)∈Par×Par ρλ,µ︸︷︷︸

an integer

mλ ⊗mµ ∈ Λ⊗Z Λ. This proves (13.83.6).

Now, we are almost done. Let p ∈ ∆× (Λ). We know that EN (p) ∈ Z [x1, x2, ..., xN , y1, y2, ..., yN ] for every
N ∈ N (according to (13.83.5)). Hence, (13.83.6) yields that p ∈ Λ⊗Z Λ. Since we have proven this for every
p ∈ ∆× (Λ), we thus obtain ∆× (Λ) ⊂ Λ⊗Z Λ. This solves Exercise 2.9.4(b).

Third solution of Exercise 2.9.4(b): Here is another solution of Exercise 2.9.4(b), which entirely gets by
without using substitutions. We are going to prove that

(13.83.9) ∆× (hn) =
∑
λ`n

sλ ⊗ sλ for every n ∈ N.

657 Once this is proven, it will follow that ∆× (hn) ∈ Λ⊗Z Λ for every n ∈ N, and therefore

∆×

 hλ︸︷︷︸
=hλ1

hλ2
hλ3

...

 = ∆× (hλ1hλ2hλ3 ...)

= ∆× (hλ1
)︸ ︷︷ ︸

∈Λ⊗ZΛ

·∆× (hλ2)︸ ︷︷ ︸
∈Λ⊗ZΛ

·∆× (hλ3)︸ ︷︷ ︸
∈Λ⊗ZΛ

·... (since ∆× is a Q-algebra homomorphism)

∈ (Λ⊗Z Λ) · (Λ⊗Z Λ) · (Λ⊗Z Λ) · ...
⊂ Λ⊗Z Λ

for every partition λ; and this will immediately yield that ∆× (Λ) ⊂ Λ ⊗Z Λ (because ∆× is Z-linear, and
because (hλ)λ∈Par is a basis of the Z-module Λ), which will solve Exercise 2.9.4(b). Hence, in order to solve
Exercise 2.9.4(b), it is enough to prove (13.83.9).

657The notation “λ ` n” here is a synonym for “λ ∈ Parn”.
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We need to prove (13.83.9). In order to do so, it is clearly enough to show that

(13.83.10)
∑
n≥0

∆× (hn) tn =
∑
n≥0

(∑
λ`n

sλ ⊗ sλ

)
tn in (ΛQ ⊗Q ΛQ) [[t]]

(because comparing coefficients in (13.83.10) immediately yields (13.83.9)).
Recall that for any two Q-algebras A and B, every Q-algebra homomorphism ϕ : A → B induces a

continuous658 Q [[t]]-algebra homomorphism ϕ [[t]] : A [[t]]→ B [[t]] which is given by

(ϕ [[t]])

∑
k≥0

akt
k

 =
∑
k≥0

ϕ (ak) tk for every (ak)k≥0 ∈ A
N.

In particular, the Q-algebra homomorphism ∆× : ΛQ → ΛQ ⊗Q ΛQ induces a Q [[t]]-algebra homomorphism
∆× [[t]] : ΛQ [[t]] → (ΛQ ⊗Q ΛQ) [[t]]. Recall the power series H (t) ∈ Λ [[t]] defined in (2.4.1); it satisfies
H (t) =

∑
n≥0 hnt

n. Applying the map ∆× [[t]] to both sides of this equality, we obtain

(13.83.11) (∆× [[t]]) (H (t)) = (∆× [[t]])

∑
n≥0

hnt
n

 =
∑
n≥0

∆× (hn) tn

(by the definition of ∆× [[t]]).

On the other hand, recall the Q-algebra isomorphism ΛQ ⊗Q ΛQ → RQ (x,y)
S(∞)×S(∞) constructed in

(2.1.3) (applied to k = Q). This entails a Q-algebra injection ΛQ⊗QΛQ → Q [[x,y]] (sinceRQ (x,y)
S(∞)×S(∞) ⊂

RQ (x,y) ⊂ Q [[x,y]]). Denote this injection by ι. Then, the Q-algebra homomorphism ι : ΛQ ⊗Q ΛQ →
Q [[x,y]] induces a Q [[t]]-algebra homomorphism ι [[t]] : (ΛQ ⊗Q ΛQ) [[t]] → Q [[x,y]] [[t]]. This homomor-
phism ι [[t]] is injective (since ι is injective).

We need to prove (13.83.10). For this, it is enough to prove

(13.83.12) (ι [[t]])

∑
n≥0

∆× (hn) tn

 = (ι [[t]])

∑
n≥0

(∑
λ`n

sλ ⊗ sλ

)
tn


(because the injectivity of ι [[t]] ensures that (13.83.12) implies (13.83.10)).

In Q [[x,y]] [[t]], we have

(ι [[t]])

∑
n≥0

(∑
λ`n

sλ ⊗ sλ

)
tn

 =
∑
n≥0

ι

(∑
λ`n

sλ ⊗ sλ

)
︸ ︷︷ ︸
=
∑
λ`n sλ(x)sλ(y)

(by the definition of ι)

tn

=
∑
n≥0

∑
λ`n

sλ (x) sλ (y) tn =
∑
λ∈Par

sλ (x) sλ (y) t|λ|︸ ︷︷ ︸
=sλ(ty1,ty2,ty3,...)

(since sλ is homogeneous of degree |λ|)

=
∑
λ∈Par

sλ (x) sλ (ty1, ty2, ty3, ...) =

∞∏
i,j=1

(1− xi · tyj)−1
(13.83.13)

(
since (2.5.1) (applied to (ty1, ty2, ty3, ...) instead of y)

yields
∏∞
i,j=1 (1− xi · tyj)−1

=
∑
λ∈Par sλ (x) sλ (ty1, ty2, ty3, ...)

)
.

Meanwhile, exponentiating both sides of the equality (2.5.12) yields

H (t) = exp

( ∞∑
m=1

1

m
pm (x) tm

)
,

658The word “continuous” refers to the usual topologies on the power series rings A [[t]] and B [[t]].
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so that

(∆× [[t]]) (H (t)) = (∆× [[t]])

(
exp

( ∞∑
m=1

1

m
pm (x) tm

))
= exp

(∆× [[t]])

( ∞∑
m=1

1

m
pm (x) tm

)
︸ ︷︷ ︸

=
∑∞
m=1 ∆×( 1

mpm(x))tm


(

since ∆× [[t]] is a continuous Q-algebra homomorphism,
and thus commutes with exp

)

= exp


∞∑
m=1

∆×

(
1

m
pm (x)

)
︸ ︷︷ ︸

=
1

m
∆×(pm(x))

tm


= exp


∞∑
m=1

1

m
∆× (pm (x))︸ ︷︷ ︸

=∆×(pm)=pm⊗pm
(by the definition of ∆×)

tm



= exp

( ∞∑
m=1

1

m
pm ⊗ pmtm

)
.

Compared with (13.83.11), this yields∑
n≥0

∆× (hn) tn = exp

( ∞∑
m=1

1

m
pm ⊗ pmtm

)
.

Applying the map ι [[t]] to both sides of this equality, we obtain

(ι [[t]])

∑
n≥0

∆× (hn) tn

 = (ι [[t]])

(
exp

( ∞∑
m=1

1

m
pm ⊗ pmtm

))
= exp

(ι [[t]])

( ∞∑
m=1

1

m
pm ⊗ pmtm

)
︸ ︷︷ ︸

=
∑∞
m=1 ι( 1

mpm⊗pm)tm


(

since ι [[t]] is a continuous Q-algebra homomorphism,
and thus commutes with exp

)

= exp


∞∑
m=1

ι

(
1

m
pm ⊗ pm

)
︸ ︷︷ ︸
=

1

m
pm(x)pm(y)

(by the definition of ι)

tm


= exp


∞∑
m=1

1

m
pm (x) pm (y) tm︸ ︷︷ ︸

=pm(ty1,ty2,ty3,...)
(since pm is homogeneous of

degree m)



= exp

( ∞∑
m=1

1

m
pm (x) pm (ty1, ty2, ty3, ...)

)
.(13.83.14)

But exponentiating both sides of the equality (2.5.14) yields

∞∏
i,j=1

(1− xiyj)−1
= exp

( ∞∑
m=1

1

m
pm (x) pm (y)

)
.

Substituting (ty1, ty2, ty3, ...) for y in this equality, we obtain

∞∏
i,j=1

(1− xi · tyj)−1
= exp

( ∞∑
m=1

1

m
pm (x) pm (ty1, ty2, ty3, ...)

)
.
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Compared with (13.83.14), this yields

(ι [[t]])

∑
n≥0

∆× (hn) tn

 =

∞∏
i,j=1

(1− xi · tyj)−1
.

Compared with (13.83.13), this yields

(ι [[t]])

∑
n≥0

∆× (hn) tn

 = (ι [[t]])

∑
n≥0

(∑
λ`n

sλ ⊗ sλ

)
tn

 .

This proves (13.83.12). Thus, Exercise 2.9.4(b) is solved.
Remark: The three solutions we gave for Exercise 2.9.4(b) are not that different. The Second solution is

a variation on the First solution which trades the use of a substitution of infinitely many variables (with the
technical troubles that come along with it) for the inconvenience of having to consider a “sufficiently high
N ∈ N”. The Third solution looks like a different beast, but its main idea – the equality (13.83.9) – is really
just an afterthought of the First solution. Indeed, knowing the equality (13.83.3) in the First solution, we
can easily prove (13.83.9) as follows: Using the notations of the First solution, we have

∑
n≥0

hn

(
(xiyj)(i,j)∈{1,2,3,...}2

)
tn =

∞∏
i,j=1

(1− txiyj)−1
(by (2.2.18), evaluated on the variable set xy)

=
∑
λ∈Par

t|λ|sλ (x) sλ (y) (by (2.5.2))

=
∑
n∈N

(∑
λ`n

sλ (x) sλ (y)

)
tn

in Q [[x,y]] [[t]]. Comparing coefficients before tn in this equality, we obtain

hn

(
(xiyj)(i,j)∈{1,2,3,...}2

)
=
∑
λ`n

sλ (x) sλ (y) for every n ∈ N.

Thus, for every n ∈ N, we have

ι (∆× (hn)) = (ι ◦∆×)︸ ︷︷ ︸
=∆̃×

(by (13.83.3))

(hn) = ∆̃× (hn) = hn

(
(xiyj)(i,j)∈{1,2,3,...}2

)
=
∑
λ`n

sλ (x) sλ (y)

= ι

(∑
λ`n

sλ ⊗ sλ

)
,

which (by the injectivity of ι) yields ∆× (hn) =
∑
λ`n sλ ⊗ sλ. Thus, (13.83.9) is proven again.

In a similar vein, one can show that

∆× (en) =
∑
λ`n

sλ ⊗ sλt for every n ∈ N.

(One would need to use the dual Cauchy identity, i.e., Exercise 2.7.12(a), instead of (2.5.2) this time.)
(c) We are going to show that

(13.83.15) εr (hn) = (−1)
n

(
−r
n

)
for every n ∈ N.

This will yield the statement of Exercise 2.9.4(c) in the same way as (13.83.9) yielded the statement of
Exercise 2.9.4(b) in the Third solution of Exercise 2.9.4(b) above. Hence, we only need to prove (13.83.15)
in order to be done with Exercise 2.9.4(c).
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Recall that for any two Q-algebras A and B, every Q-algebra homomorphism ϕ : A → B induces a
continuous659 Q [[t]]-algebra homomorphism ϕ [[t]] : A [[t]]→ B [[t]] which is given by

(ϕ [[t]])

∑
k≥0

akt
k

 =
∑
k≥0

ϕ (ak) tk for every (ak)k≥0 ∈ A
N.

Hence, the Q-algebra homomorphism εr : ΛQ → Q induces a continuous Q [[t]]-algebra homomorphism
εr [[t]] : ΛQ [[t]]→ Q [[t]].

Recall the power series H (t) ∈ Λ [[t]] defined in (2.4.1); it satisfies H (t) =
∑
n≥0 hnt

n. Applying the

homomorphism εr [[t]] to both sides of this equality, we obtain

(13.83.16) (εr [[t]]) (H (t)) = (εr [[t]])

∑
n≥0

hnt
n

 =
∑
n≥0

εr (hn) tn.

On the other hand, exponentiating both sides of the equality (2.5.12) yields

H (t) = exp

( ∞∑
m=1

1

m
pm (x) tm

)
.

Applying the map εr [[t]] to both sides of this equality, we obtain

(εr [[t]]) (H (t)) = (εr [[t]])

(
exp

( ∞∑
m=1

1

m
pm (x) tm

))
= exp

(εr [[t]])

( ∞∑
m=1

1

m
pm (x) tm

)
︸ ︷︷ ︸

=
∑∞
m=1 εr( 1

mpm(x))tm


(

since εr [[t]] is a continuous Q-algebra homomorphism,
and thus commutes with exp

)

= exp


∞∑
m=1

εr

(
1

m
pm (x)

)
︸ ︷︷ ︸

=εr

(
1

m
pm

)
=

1

m
εr(pm)

tm


= exp

 ∞∑
m=1

1

m
εr (pm)︸ ︷︷ ︸

=r
(by the definition of εr)

tm



= exp

( ∞∑
m=1

1

m
rtm

)
= exp

r ·
∞∑
m=1

1

m
tm︸ ︷︷ ︸

=− log(1−t)

 = exp (r · (− log (1− t)))

=

exp (− log (1− t))︸ ︷︷ ︸
=(1−t)−1


r

=
(

(1− t)−1
)r

= (1− t)−r =
∑
n≥0

(−1)
n

(
−r
n

)
tn

(by Newton’s binomial formula). Comparing this with (13.83.16), we obtain∑
n≥0

εr (hn) tn =
∑
n≥0

(−1)
n

(
−r
n

)
tn.

Comparing coefficients in this equality of power series, we see that εr (hn) = (−1)
n

(
−r
n

)
for every n ∈ N.

Thus, (13.83.15) is proven, and so Exercise 2.9.4(c) is solved.

659The word “continuous” refers to the usual topologies on the power series rings A [[t]] and B [[t]].
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(d) Consider the Q-algebra homomorphism εr defined in Exercise 2.9.4(c), and the Q-algebra homomor-
phism ∆× defined in Exercise 2.9.4(b). We know that both of these maps εr and ∆× are Q-algebra homo-
morphisms. In particular, id : ΛQ → ΛQ and εr : ΛQ → Q are Q-algebra homomorphisms. Thus, id⊗εr :
ΛQ ⊗Q ΛQ → ΛQ ⊗Q Q is a Q-algebra homomorphism (by Exercise 1.3.6(a)). Also, let can : ΛQ ⊗Q Q→ ΛQ
be the canonical Q-vector space isomorphism sending every f ⊗ α ∈ ΛQ ⊗Q Q to αf ∈ ΛQ.

Now, we claim that

(13.83.17) can ◦ (id⊗εr) ◦∆× = ir.

Proof of (13.83.17): The equality (13.83.17) is an equality between Q-algebra homomorphisms (since can,
id⊗εr, ∆× and ir are Q-algebra homomorphisms). Consequently, in order to prove it, we only need to check
that it holds on a generating set of the Q-algebra ΛQ. We do this on the generating set (pn)n≥1, by noticing
that every n ≥ 1 satisfies

(can ◦ (id⊗εr) ◦∆×) (pn) = can

(id⊗εr)

∆× (pn)︸ ︷︷ ︸
=pn⊗pn


 = can

(id⊗εr) (pn ⊗ pn)︸ ︷︷ ︸
=pn⊗εr(pn)


= can (pn ⊗ εr (pn)) = εr (pn)︸ ︷︷ ︸

=r

pn = rpn = ir (pn) .

This proves (13.83.17).
Now, (can ◦ (id⊗εr) ◦∆×)︸ ︷︷ ︸

=ir

(Λ) = ir (Λ), so that

ir (Λ) = (can ◦ (id⊗εr) ◦∆×) (Λ) = can

(id⊗εr) (∆× (Λ))︸ ︷︷ ︸
⊂Λ⊗ZΛ

(by Exercise 2.9.4(b))

 ⊂ can

(id⊗εr) (Λ⊗Z Λ)︸ ︷︷ ︸
=Λ⊗Zεr(Λ)



= can

Λ⊗Z εr (Λ)︸ ︷︷ ︸
⊂Z

(by Exercise 2.9.4(c))

 ⊂ can (Λ⊗ Z) = Z · Λ (by the definition of can)

= Λ.

This solves Exercise 2.9.4(d).
(e) Consider the Q-algebra homomorphism ∆× defined in Exercise 2.9.4(b). We have ∆× (pn) = pn ⊗ pn

for every positive integer n. Now, it is easy to see that

(13.83.18) ∆× (pλ) = pλ ⊗ pλ for every partition λ.

660

Now, consider the multiplication map mΛQ : ΛQ ⊗Q ΛQ → ΛQ of the Q-algebra ΛQ. We claim that

Sq = mΛQ ◦∆×.

660Proof of (13.83.18): Let λ be a partition. Write λ in the form λ = (λ1, λ2, ..., λ`) with ` = ` (λ). Then, the definition of
pλ yields pλ = pλ1

pλ2
...pλ` . Applying the map ∆× to both sides of this equality, we obtain

∆× (pλ) = ∆×
(
pλ1

pλ2
...pλ`

)
= ∆×

(
pλ1

)
·∆×

(
pλ2

)
· ... ·∆×

(
pλ`
)

(since ∆× is a Q-algebra homomorphism)

=
(
pλ1
⊗ pλ1

)
·
(
pλ2
⊗ pλ2

)
· ... ·

(
pλ` ⊗ pλ`

)
(since ∆× (pn) = pn ⊗ pn for every positive integer n)

=
(
pλ1

pλ2
...pλ`

)︸ ︷︷ ︸
=pλ

⊗
(
pλ1

pλ2
...pλ`

)︸ ︷︷ ︸
=pλ

= pλ ⊗ pλ,

which proves (13.83.18).
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Indeed, every partition λ satisfies

Sq (pλ) = p2
λ = pλpλ = mΛQ

 pλ ⊗ pλ︸ ︷︷ ︸
=∆×(pλ)

(by (13.83.18))

 = mΛQ (∆× (pλ)) =
(
mΛQ ◦∆×

)
(pλ) .

Since (pλ)λ∈Par is a Q-basis of ΛQ (and since Sq and mΛQ ◦ ∆× are Q-linear maps), this shows that Sq =
mΛQ ◦∆×. Hence,

Sq (Λ) =
(
mΛQ ◦∆×

)
(Λ) = mΛQ (∆× (Λ))︸ ︷︷ ︸

⊂Λ⊗ZΛ
(by Exercise 2.9.4(b))

⊂ mΛQ (Λ⊗Z Λ)

= Λ · Λ
(
by the definition of mΛQ

)
= Λ.

This solves Exercise 2.9.4(e).
(f) For everyN ∈ N, we define a Q-algebra homomorphism EN : ΛQ⊗QΛQ → Q [x1, x2, ..., xN , y1, y2, ..., yN ]

as it was done in our Second solution of Exercise 2.9.4(b).
Recall the definition of the maps ir in Exercise 2.9.4(d). We are first going to show that every a ∈ Z and

b ∈ Z satisfy

(13.83.19) ∆a = ∆b ?
(
∆ΛQ ◦ ia−b

)
in Hom (ΛQ,ΛQ ⊗Q ΛQ)

(where ∆ΛQ : ΛQ → ΛQ ⊗Q ΛQ is the usual comultiplication of ΛQ).
Proof of (13.83.19): Let a ∈ Z and b ∈ Z. We know that ∆a and ∆b are Q-algebra homomorphisms.

Also, ∆ΛQ is a Q-algebra homomorphism (by the axioms of a bialgebra, which we know are satisfied for ΛQ),
and ia−b is a Q-algebra homomorphism. Hence, the composition ∆ΛQ ◦ ia−b is a Q-algebra homomorphism.

Thus, the convolution ∆b ?
(
∆ΛQ ◦ ia−b

)
is a Q-algebra homomorphism (by Exercise 1.5.11(a), applied to Q,

ΛQ, ΛQ⊗Q ΛQ, ∆b and ∆ΛQ ◦ ia−b instead of k, H, A, f and g). Hence, (13.83.19) is an equality between Q-
algebra homomorphisms. Therefore, in order to prove it, we only need to check that it holds on a generating
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set of the Q-algebra ΛQ. We do this on the generating set (pn)n≥1, by noticing that every n ≥ 1 satisfies(
∆b ?

(
∆ΛQ ◦ ia−b

))︸ ︷︷ ︸
=mΛQ◦(∆b⊗(∆ΛQ◦ia−b))◦∆ΛQ
(by the definition of convolution)

(pn)

=
(
mΛQ ◦

(
∆b ⊗

(
∆ΛQ ◦ ia−b

))
◦∆ΛQ

)
(pn)

= mΛQ

(∆b ⊗
(
∆ΛQ ◦ ia−b

))
 ∆ΛQ (pn)︸ ︷︷ ︸

=1⊗pn+pn⊗1
(since pn is primitive)




= mΛQ

 (
∆b ⊗

(
∆ΛQ ◦ ia−b

))
(1⊗ pn + pn ⊗ 1)︸ ︷︷ ︸

=∆b(1)⊗(∆ΛQ◦ia−b)(pn)+∆b(pn)⊗(∆ΛQ◦ia−b)(1)


= mΛQ

(
∆b (1)⊗

(
∆ΛQ ◦ ia−b

)
(pn) + ∆b (pn)⊗

(
∆ΛQ ◦ ia−b

)
(1)
)

= ∆b (1)︸ ︷︷ ︸
=1⊗1

·
(
∆ΛQ ◦ ia−b

)
(pn)︸ ︷︷ ︸

=∆ΛQ (ia−b(pn))

+∆b (pn) ·
(
∆ΛQ ◦ ia−b

)
(1)︸ ︷︷ ︸

=1⊗1
(since ∆ΛQ◦ia−b is a Q-algebra

homomorphism)

= (1⊗ 1) ·
(
∆ΛQ (ia−b (pn))

)
+ ∆b (pn) · (1⊗ 1) = ∆ΛQ

 ia−b (pn)︸ ︷︷ ︸
=(a−b)pn

(by the definition of ia−b)

+ ∆b (pn)︸ ︷︷ ︸
=
∑n−1
i=1

(
n

i

)
pi⊗pn−i+b⊗pn+pn⊗b

(by the definition of ∆b)

= ∆ΛQ ((a− b) pn) +

n−1∑
i=1

(
n

i

)
pi ⊗ pn−i + b⊗ pn + pn ⊗ b

= (a− b) ∆ΛQ (pn)︸ ︷︷ ︸
=1⊗pn+pn⊗1

(since pn is primitive)

+

n−1∑
i=1

(
n

i

)
pi ⊗ pn−i + b⊗ pn + pn ⊗ b

= (a− b) (1⊗ pn + pn ⊗ 1) +
n−1∑
i=1

(
n

i

)
pi ⊗ pn−i + b⊗ pn + pn ⊗ b

=

n−1∑
i=1

(
n

i

)
pi ⊗ pn−i + b⊗ pn + pn ⊗ b+ (a− b) (1⊗ pn + pn ⊗ 1)︸ ︷︷ ︸

=a⊗pn+pn⊗a

=

n−1∑
i=1

(
n

i

)
pi ⊗ pn−i + a⊗ pn + pn ⊗ a = ∆a (pn)(

since the definition of ∆a yields ∆a (pn) =

n−1∑
i=1

(
n

i

)
pi ⊗ pn−i + a⊗ pn + pn ⊗ a

)
.

This proves (13.83.19).
Before we move on, let us record a simple fact about convolution of maps. Namely, if k is a commutative

ring, and C is a k-coalgebra, and A and A′ are two k-algebras, and f and g are two k-linear maps C → A,
and α : A→ A′ is a k-algebra homomorphism, then

(13.83.20) α ◦ (f ? g) = (α ◦ f) ? (α ◦ g) .
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This is merely the particular case of (1.4.2) when C ′ = C and γ = id, and so requires no proof anymore.
Now, let N ∈ N. Our next goal is to show that

(13.83.21) (EN ◦∆N ) (Λ) ⊂ Z [x1, x2, ..., xN , y1, y2, ..., yN ] .

Proof of (13.83.21): Let us define a map

LN : ΛQ → Q [x1, x2, ..., xN , y1, y2, ..., yN ] ,

f 7→ f
(

(xi + yj)(i,j)∈{1,2,...,N}2
)
.

Here, f
(

(xi + yj)(i,j)∈{1,2,...,N}2
)

is defined as follows: Let (u1, u2, ..., uN2) be a list of all N2 elements of the

family (xi + yj)(i,j)∈{1,2,...,N}2 in any arbitrary order, and set f
(

(xi + yj)(i,j)∈{1,2,...,N}2
)

= f (u1, u2, ..., uN2).

(The result does not depend on the order chosen, because f is symmetric.)
The map LN is a Q-algebra homomorphism (since LN is an evaluation map in an appropriate sense).
For every positive integer n, we have

∆N (pn) =

n−1∑
i=1

(
n

i

)
pi ⊗ pn−i +N ⊗ pn + pn ⊗N (by the definition of ∆N (pn))

=

n−1∑
k=1

(
n

k

)
pk ⊗ pn−k +N ⊗ pn + pn ⊗N

and thus

(EN ◦∆N ) (pn)

= EN

 ∆N (pn)︸ ︷︷ ︸
=
∑n−1
k=1 (nk)pk⊗pn−k+N⊗pn+pn⊗N

 = EN

(
n−1∑
k=1

(
n

k

)
pk ⊗ pn−k +N ⊗ pn + pn ⊗N

)

=

n−1∑
k=1

(
n

k

)
pk (x1, x2, ..., xN )︸ ︷︷ ︸

=
∑N
i=1 x

k
i

pn−k (y1, y2, ..., yN )︸ ︷︷ ︸
=
∑N
j=1 y

n−k
j

+N pn (y1, y2, ..., yN )︸ ︷︷ ︸
=
∑N
j=1 y

n
j

+ pn (x1, x2, ..., xN )︸ ︷︷ ︸
=
∑N
i=1 x

n
i

N

(by the definition of EN )

=

n−1∑
k=1

(
n

k

)( N∑
i=1

xki

) N∑
j=1

yn−kj

+N

 N∑
j=1

ynj

+

(
N∑
i=1

xni

)
N,(13.83.22)
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while at the same time

LN (pn) = pn

(
(xi + yj)(i,j)∈{1,2,...,N}2

)
(by the definition of LN (pn))

=
∑

(i,j)∈{1,2,...,N}2
(xi + yj)

n︸ ︷︷ ︸
=
∑n
k=0

(
n

k

)
xki y

n−k
j

=
∑

(i,j)∈{1,2,...,N}2

n∑
k=0

(
n

k

)
xki y

n−k
j

=

n∑
k=0

(
n

k

) ∑
(i,j)∈{1,2,...,N}2

xki y
n−k
j︸ ︷︷ ︸

=(
∑N
i=1 x

k
i )(
∑N
j=1 y

n−k
j )

=

n∑
k=0

(
n

k

)( N∑
i=1

xki

) N∑
j=1

yn−kj



=

n−1∑
k=1

(
n

k

)( N∑
i=1

xki

) N∑
j=1

yn−kj

+

(
n

0

)
︸︷︷︸

=1

(
N∑
i=1

x0
i

)
︸ ︷︷ ︸

=N

 N∑
j=1

ynj

+

(
n

n

)
︸︷︷︸

=1

(
N∑
i=1

xni

) N∑
j=1

y0
j


︸ ︷︷ ︸

=N

=

n−1∑
k=1

(
n

k

)( N∑
i=1

xki

) N∑
j=1

yn−kj

+N

 N∑
j=1

ynj

+

(
N∑
i=1

xni

)
N.(13.83.23)

Comparing (13.83.22) with (13.83.23) reveals that (EN ◦∆N ) (pn) = LN (pn) for every positive integer n.
In other words, the two maps EN ◦ ∆N and LN are equal to each other on the generating set (pn)n≥1 of

the Q-algebra ΛQ. Since these two maps EN ◦ ∆N and LN are Q-algebra homomorphisms (since EN , ∆N

and LN are Q-algebra homomorphisms), this yields that these two maps must be identical, i.e., we have
EN ◦∆N = LN . Hence,

(EN ◦∆N )︸ ︷︷ ︸
=LN

(Λ) = LN (Λ) ⊂ Z [x1, x2, ..., xN , y1, y2, ..., yN ]

(because the definition of LN immediately shows that LN (f) ∈ Z [x1, x2, ..., xN , y1, y2, ..., yN ] for every
f ∈ Λ). This proves (13.83.21).

Next, we are going to show that

(13.83.24) (EN ◦∆r) (Λ) ⊂ Z [x1, x2, ..., xN , y1, y2, ..., yN ] .

Proof of (13.83.24): Applying (13.83.19) to a = r and b = N , we obtain

∆r = ∆N ?
(
∆ΛQ ◦ ir−N

)
.

Thus,

EN ◦ ∆r︸︷︷︸
=∆N?(∆ΛQ◦ir−N)

= EN ◦
(
∆N ?

(
∆ΛQ ◦ ir−N

))
= (EN ◦∆N ) ?

(
EN ◦∆ΛQ ◦ ir−N

)

(by (13.83.20), applied to Q, ΛQ, ΛQ ⊗Q ΛQ, Q [x1, x2, ..., xN , y1, y2, ..., yN ], ∆N , ∆ΛQ ◦ ir−N and EN instead
of k, C, A, A′, f , g and α). Thus,

EN◦∆r = (EN ◦∆N )?
(
EN ◦∆ΛQ ◦ ir−N

)
= mQ[x1,x2,...,xN ,y1,y2,...,yN ]◦

(
(EN ◦∆N )⊗

(
EN ◦∆ΛQ ◦ ir−N

))
◦∆ΛQ
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(by the definition of convolution), so that

(EN ◦∆r)︸ ︷︷ ︸
=mQ[x1,x2,...,xN ,y1,y2,...,yN ]◦((EN◦∆N )⊗(EN◦∆ΛQ◦ir−N))◦∆ΛQ

(Λ)

=
(
mQ[x1,x2,...,xN ,y1,y2,...,yN ] ◦

(
(EN ◦∆N )⊗

(
EN ◦∆ΛQ ◦ ir−N

))
◦∆ΛQ

)
(Λ)

= mQ[x1,x2,...,xN ,y1,y2,...,yN ]

((EN ◦∆N )⊗
(
EN ◦∆ΛQ ◦ ir−N

)) (
∆ΛQ (Λ)

)︸ ︷︷ ︸
=∆Λ(Λ)⊂Λ⊗ZΛ



⊂ mQ[x1,x2,...,xN ,y1,y2,...,yN ]

((EN ◦∆N )⊗
(
EN ◦∆ΛQ ◦ ir−N

))
(Λ⊗Z Λ)︸ ︷︷ ︸

=(EN◦∆N )(Λ)⊗Z(EN◦∆ΛQ◦ir−N)(Λ)


= mQ[x1,x2,...,xN ,y1,y2,...,yN ]

(
(EN ◦∆N ) (Λ)⊗Z

(
EN ◦∆ΛQ ◦ ir−N

)
(Λ)
)

= (EN ◦∆N ) (Λ) ·
(
EN ◦∆ΛQ ◦ ir−N

)
(Λ)︸ ︷︷ ︸

=EN(∆ΛQ (ir−N (Λ)))

(
since mQ[x1,x2,...,xN ,y1,y2,...,yN ] is the multiplication map

)

= (EN ◦∆N ) (Λ) · EN

∆ΛQ

 ir−N (Λ)︸ ︷︷ ︸
⊂Λ

(by Exercise 2.9.4(d),
applied to r−N instead of r)




⊂ (EN ◦∆N ) (Λ)︸ ︷︷ ︸
⊂Z[x1,x2,...,xN ,y1,y2,...,yN ]

(by (13.83.21))

·EN
(
∆ΛQ (Λ)

)︸ ︷︷ ︸
=∆Λ(Λ)⊂Λ⊗ZΛ

⊂ Z [x1, x2, ..., xN , y1, y2, ..., yN ] · EN (Λ⊗Z Λ)︸ ︷︷ ︸
⊂Z[x1,x2,...,xN ,y1,y2,...,yN ]

(because the definition of EN immediately yields
EN (f⊗g)∈Z[x1,x2,...,xN ,y1,y2,...,yN ] for any f∈Λ and g∈Λ)

⊂ Z [x1, x2, ..., xN , y1, y2, ..., yN ] · Z [x1, x2, ..., xN , y1, y2, ..., yN ] = Z [x1, x2, ..., xN , y1, y2, ..., yN ] .

This proves (13.83.24).
Now, forget that we fixed N . We thus have proven (13.83.24) to hold for every N ∈ N.
Now, let p ∈ ∆r (Λ). Then,

EN

 p︸︷︷︸
∈∆r(Λ)

 ∈ EN (∆r (Λ)) = (EN ◦∆r) (Λ) ∈ Z [x1, x2, ..., xN , y1, y2, ..., yN ] (by (13.83.24))

for every N ∈ N. Hence, (13.83.6) yields that p ∈ Λ ⊗Z Λ. Since we have shown this for every p ∈ ∆r (Λ),
we thus conclude that ∆r (Λ) ⊂ Λ⊗Z Λ. This solves Exercise 2.9.4(f).

Remark. Here is a rough sketch of an alternative way to conclude this solution of Exercise 2.9.4(f) after
proving (13.83.21). This is closer to Richard Stanley’s suggested solution than the above.

The family (mλ ⊗mµ)(λ,µ)∈Par×Par is a Q-basis of ΛQ ⊗Q ΛQ (since (mλ)λ∈Par is a Q-basis of ΛQ). Let

us refer to this basis as the monomial basis of ΛQ⊗Q ΛQ. Then, Λ⊗Z Λ is the subset of ΛQ⊗Q ΛQ consisting
of all elements whose coordinates with respect to the monomial basis all are integers.

We want to prove that ∆r (Λ) ⊂ Λ ⊗Z Λ for every r ∈ Z. In other words, we want to prove that
∆r (f) ∈ Λ ⊗Z Λ for every r ∈ Z and f ∈ Λ. Let us fix f ∈ Λ, but not fix r. We need to show that
∆r (f) ∈ Λ⊗Z Λ for every r ∈ Z; in other words, we need to show that for every (α, β) ∈ Par, the mα⊗mβ-
coordinate of ∆r (f) with respect to the monomial basis is an integer for every r ∈ Z.
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So let us fix (α, β) ∈ Par. It is not hard to see that the mα ⊗mβ-coordinate of ∆r (f) with respect to
the monomial basis is a polynomial in r with rational coefficients.661 We want to prove that this polynomial
is integer-valued (i.e., all its values at integer inputs are integers662). To do so, it suffices to show that its
values are integers at all sufficiently high r ∈ Z (because for a polynomial with rational coefficients, the
non-integer values appear periodically663, and therefore if no non-integer values appear from a given integer
onwards, then the polynomial is integer-valued). In other words, it suffices to show that the mα ⊗ mβ-
coordinate of ∆r (f) with respect to the monomial basis is an integer for all sufficiently high r ∈ Z.

Let us prove this now. Our interpretation of “sufficiently high” will be that r ≥ ` (α) and r ≥ ` (β). So
what we need to prove is that the mα ⊗mβ-coordinate of ∆r (f) with respect to the monomial basis is an
integer whenever r is an integer satisfying r ≥ ` (α) and r ≥ ` (β).

Consider such an r. Set N = r and p = ∆r (f). Then, N = r ≥ ` (α) and N = r ≥ ` (β) and
∆N (f) = ∆r (f) = p. Then,

EN

 p︸︷︷︸
=∆N (f)

 = EN (∆N (f)) = (EN ◦∆N )

 f︸︷︷︸
∈Λ

 ∈ (EN ◦∆N ) (Λ) ⊂ Z [x1, x2, ..., xN , y1, y2, ..., yN ]

(by (13.83.21)). Therefore, arguing precisely as in the proof of (13.83.6) (but using our specific α and β
rather than arbitrary α and β as in that proof), we can show that ρα,β is an integer, where p is written in the
form p =

∑
(λ,µ)∈Par×Par ρλ,µmλ ⊗mµ with ρλ,µ being elements of Q. But ρα,β is precisely the mα ⊗mβ-

coordinate of ∆r (f) with respect to the monomial basis. Thus, we have shown that the mα⊗mβ-coordinate
of ∆r (f) with respect to the monomial basis is an integer (for r ∈ Z satisfying r ≥ ` (α) and r ≥ ` (β)). As
we know, this completes our solution of Exercise 2.9.4(f) again.

(g) Let us first show that the Q-module ΛQ, endowed with the comultiplication ∆× and the counit ε1,
becomes a Q-coalgebra. In order to do so, we must verifying that the diagrams (1.2.1) and (1.2.2), with C,
∆ and ε replaced by ΛQ, ∆× and ε1, commute. We will only do this for the diagram (1.2.1), while leaving
the diagram (1.2.2) to the reader.

So we must check that the diagram (1.2.1), with C, ∆ and ε replaced by ΛQ, ∆× and ε1, commutes. In
other words, we must prove the identity

(13.83.25) (∆× ⊗ id) ◦∆× = (id⊗∆×) ◦∆×.

Proof of (13.83.17): The equality (13.83.25) is an equality between Q-algebra homomorphisms (since ∆×,
id⊗∆× and ∆×⊗ id are Q-algebra homomorphisms664). Consequently, in order to prove it, we only need to
check that it holds on a generating set of the Q-algebra ΛQ. But every n ≥ 1 satisfies

((∆× ⊗ id) ◦∆×) (pn) = (∆× ⊗ id)

∆× (pn)︸ ︷︷ ︸
=pn⊗pn

 = (∆× ⊗ id) (pn ⊗ pn) = ∆× (pn)︸ ︷︷ ︸
=pn⊗pn

⊗pn = pn ⊗ pn ⊗ pn

and similarly ((id⊗∆×) ◦∆×) (pn) = pn ⊗ pn ⊗ pn. Hence, every n ≥ 1 satisfies ((∆× ⊗ id) ◦∆×) (pn) =
pn ⊗ pn ⊗ pn = ((id⊗∆×) ◦∆×) (pn). Thus, we have checked that the equality (13.83.25) holds on a
generating set of the Q-algebra ΛQ (namely, on the generating set (pn)n≥1). As a consequence, the proof of

(13.83.25) is complete.
We have thus shown that the Q-module ΛQ, endowed with the comultiplication ∆× and the counit ε1,

becomes a Q-coalgebra. This Q-coalgebra becomes a Q-bialgebra when combined with the existing Q-
algebra structure on ΛQ (this is because ∆× and ε1 are Q-algebra homomorphisms), and this Q-bialgebra is
cocommutative (this follows from the equality T ◦∆× = ∆×, where T : ΛQ ⊗Q ΛQ → ΛQ ⊗Q ΛQ is the twist
map; and this equality can be proven in the same way as we have showed (13.83.25)). This solves Exercise
2.9.4(g).

661This can be proven by noticing that it holds whenever f = pn for some n ≥ 1 (by inspection of the definition of ∆r),
and if it holds for two given values of f then it holds for any of their Q-linear combinations and also for their product.

662This is a weaker statement than saying that it has integer coefficients. (Actually, it does not in general have integer

coefficients.)
663To see this, just work modulo the common denominator of the coefficients of the polynomial.
664Here, we are using Exercise 1.3.6(a) to see that id⊗∆× and ∆× ⊗ id are Q-algebra homomorphisms.
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(h) Corollary 2.5.17(b) yields that (pλ)λ∈Par and
(
z−1
λ pλ

)
λ∈Par

are dual bases with respect to the Hall
inner product on Λ. In other words,(

pλ, z
−1
µ pµ

)
= δλ,µ for any partitions λ and µ.

Hence,

(13.83.26)

pλ, pµ︸︷︷︸
=zµz

−1
µ pµ

 =
(
pλ, zµz

−1
µ pµ

)
= zµ

(
pλ, z

−1
µ pµ

)︸ ︷︷ ︸
=δλ,µ

= zµδλ,µ

for any partitions λ and µ.
The Hall inner product (·, ·) : ΛQ × ΛQ → Q is a bilinear form on ΛQ. Hence, according to Defini-

tion 3.1.1(b) (below), this inner product induces a Q-bilinear form (·, ·)ΛQ⊗QΛQ
: (ΛQ ⊗Q ΛQ)×(ΛQ ⊗Q ΛQ)→

Q. Similarly, the Hall inner product (·, ·) : Λ × Λ → Z induces a Z-bilinear form (·, ·)Λ⊗ZΛ : (Λ⊗Z Λ) ×
(Λ⊗Z Λ)→ Z, and this latter Z-bilinear form is clearly the restriction of the Q-bilinear form (·, ·)ΛQ⊗QΛQ

to

Λ⊗Z Λ.
We shall now show that

(13.83.27) (a ∗ b, c) = (a⊗ b,∆× (c))ΛQ⊗QΛQ
for all a ∈ ΛQ, b ∈ ΛQ and c ∈ ΛQ.

Proof of (13.83.27): Let a ∈ ΛQ, b ∈ ΛQ and c ∈ ΛQ. The equality (13.83.27) is clearly Q-linear in each of
a, b and c. Hence, in proving this equality, we can WLOG assume that a, b and c are elements of the basis
(pλ)λ∈Par of the Q-module ΛQ. Assume this. Thus, a = pλ, b = pµ and c = pν for some partitions λ, µ and
ν; consider these partitions.

We have δλ,µzλ = δλ,µzµ (in fact, the two sides of this equality are equal when λ = µ, and both vanish
otherwise). Hence, a︸︷︷︸

=pλ

∗ b︸︷︷︸
=pµ

= pλ ∗ pµ = δλ,µzλ︸ ︷︷ ︸
=δλ,µzµ

pλ = δλ,µzµpλ, so that

 a ∗ b︸︷︷︸
=δλ,µzµpλ

, c︸︷︷︸
=pν

 = (δλ,µzµpλ, pν) = δλ,µzλ (pλ, pν)︸ ︷︷ ︸
=zνδλ,ν

(by (13.83.26), applied
to ν instead of µ)

= δλ,µzλzνδλ,ν .

On the other hand, c = pν , so that

∆× (c) = ∆× (pν) = pν ⊗ pν (by (13.83.18), applied to ν instead of λ) ,

and thus a︸︷︷︸
=pλ

⊗ b︸︷︷︸
=pµ

,∆× (c)︸ ︷︷ ︸
=pν⊗pν


ΛQ⊗QΛQ

= (pλ ⊗ pµ, pν ⊗ pν)ΛQ⊗QΛQ
= (pλ, pν)︸ ︷︷ ︸

=zνδλ,ν
(by (13.83.26), applied

to ν instead of µ)

(pµ, pν)︸ ︷︷ ︸
=zνδµ,ν

(by (13.83.26), applied
to µ and ν instead of λ and µ)(

by the definition of the bilinear form (·, ·)ΛQ⊗QΛQ

)
= zνδλ,νzνδµ,ν .

The equality in question, (13.83.27), thus rewrites as δλ,µzλzνδλ,ν = zνδλ,νzνδµ,ν (because (a ∗ b, c) =
δλ,µzλzνδλ,ν and (a⊗ b,∆× (c))ΛQ⊗QΛQ

= zνδλ,νzνδµ,ν). But the latter equality is obvious (because both

of its sides are z2
ν if λ = µ = ν, and vanish otherwise). Hence, (13.83.27) must hold as well.

Now that (13.83.27) is proven, let f ∈ Λ and g ∈ Λ be arbitrary. We can apply (13.83.1) to k = Q,
A = ΛQ, L = Par, (uλ)λ∈L = (sλ)λ∈Par, (vλ)λ∈L = (sλ)λ∈Par and a = f ∗ g (because the basis (sλ)λ∈Par of
ΛQ is orthonormal with respect to the Hall inner product (·, ·), and thus dual to itself with respect to this
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product). As a result, we obtain

f ∗ g =
∑
λ∈Par

(sλ, f ∗ g)︸ ︷︷ ︸
=(f∗g,sλ)

(since the Hall inner product
is symmetric)

sλ =
∑
λ∈Par

(f ∗ g, sλ)︸ ︷︷ ︸
=(f⊗g,∆×(sλ))ΛQ⊗QΛQ

(by (13.83.27))

sλ =
∑
λ∈Par

(f ⊗ g,∆× (sλ))ΛQ⊗QΛQ
sλ.

But every λ ∈ Par satisfies ∆×

 sλ︸︷︷︸
∈Λ

 ∈ ∆× (Λ) ⊂ Λ⊗Z Λ (by Exercise 2.9.4(b)) and thus

(f ⊗ g,∆× (sλ))ΛQ⊗QΛQ
= (f ⊗ g,∆× (sλ))Λ⊗ZΛ ∈ Z.

Hence,

f ∗ g =
∑
λ∈Par

(f ⊗ g,∆× (sλ))ΛQ⊗QΛQ︸ ︷︷ ︸
∈Z

sλ ∈
∑
λ∈Par

Zsλ ⊂ Λ.

This solves Exercise 2.9.4(h).
(i) Define a map U : ΛQ → Q by

U (f) = f (1) for all f ∈ ΛQ.

Notice that U (f) = f (1) is the result of substituting 1, 0, 0, 0, . . . for x1, x2, x3, . . . in f . Hence, U is a
Q-algebra homomorphism.

We shall now show that ε1 = U .
For every integer n ≥ 1, we have

U (pn) = pn (1) (by the definition of U)

= (the result of substituting 1, 0, 0, 0, . . . for x1, x2, x3, . . . in pn)

(by the definition of pn (1))

= (the result of substituting 1, 0, 0, 0, . . . for x1, x2, x3, . . . in xn1 + xn2 + xn3 + xn4 + · · · )
(since pn = xn1 + xn2 + xn3 + xn4 + · · · )

= 1n + 0n + 0n + 0n + · · · = 1 + 0 + 0 + 0 + · · · = 1

= ε1 (pn) (since ε1 (pn) = 1 (by the definition of ε1)) .

In other words, the two Q-algebra homomorphisms U and ε1 are equal to each other on each element of
the family (pn)n≥1. But since this family (pn)n≥1 is a generating set of the Q-algebra ΛQ, this yields that

the two Q-algebra homomorphisms U and ε1 must be identical (because if two Q-algebra homomorphisms
are equal to each other on each element of a generating set of their domain, then they must be identical).
That is, ε1 = U . Hence, every f ∈ ΛQ satisfies ε1 (f) = U (f) = f (1) (by the definition of U). This solves
Exercise 2.9.4(i).

13.84. Solution to Exercise 2.9.6. Solution to Exercise 2.9.6. We are going to be brief; more detailed
proofs for everything except of the (very easy) equivalence D ⇐⇒ J can be found at http://www.cip.

ifi.lmu.de/~grinberg/algebra/witt5f.pdf (along with generalizations and additional equivalences in
the case of A = Z).

As suggested by the hint, we first prove some elementary facts of number theory:

• Every positive integer n satisfies

(13.84.1)
∑
d|n

φ (d) = n.

Proof: Let n be a positive integer. For every positive divisor d of n, there is a bijection

{i ∈ {1, 2, . . . , n} | gcd (i, n) = d} →
{
j ∈

{
1, 2, . . . ,

n

d

}
| j is coprime to

n

d

}
,

i 7→ i

d
.

http://www.cip.ifi.lmu.de/~grinberg/algebra/witt5f.pdf
http://www.cip.ifi.lmu.de/~grinberg/algebra/witt5f.pdf
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Hence, for every positive divisor d of n, we have

|{i ∈ {1, 2, . . . , n} | gcd (i, n) = d}| =
∣∣∣{j ∈ {1, 2, . . . ,

n

d

}
| j is coprime to

n

d

}∣∣∣
= φ

(n
d

) (
because this is how φ

(n
d

)
was defined

)
.(13.84.2)

Now,

n = |{1, 2, . . . , n}| =
∑
d|n

|{i ∈ {1, 2, . . . , n} | gcd (i, n) = d}|︸ ︷︷ ︸
=φ

(n
d

) =
∑
d|n

φ
(n
d

)
=
∑
d|n

φ (d)

(here, we have substituted d for
n

d
in the sum). This proves (13.84.1).

• Every positive integer n satisfies

(13.84.3)
∑
d|n

µ (d) = δn,1.

Proof: Let n be a positive integer. Let n = pa1
1 pa2

2 · · · p
ak
k be the prime factorization of n, with

all of a1, a2, . . . , ak being positive integers (and with p1, p2, . . . , pk being distinct primes). Then, the
squarefree positive divisors of n all have the form

∏
i∈I pi for some subset I of {1, 2, . . . , k}. More

precisely, there exists a bijection

{I ⊂ {1, 2, . . . , k}} → (the set of all squarefree positive divisors of n) ,

I 7→
∏
i∈I

pi.(13.84.4)

Now, each positive divisor d of n is either squarefree or not. Hence,∑
d|n

µ (d) =
∑
d|n;

d is squarefree

µ (d) +
∑
d|n;

d is not squarefree

µ (d)︸︷︷︸
=0

(by the definition
of µ)

=
∑
d|n;

d is squarefree

µ (d)

=
∑

I⊂{1,2,...,k}

µ

(∏
i∈I

pi

)
︸ ︷︷ ︸

=(−1)|I|

(since
∏
i∈I pi is squarefree

and has |I| prime factors)(
here, we have substituted

∏
i∈I pi for d

due to the bijection (13.84.4)

)
=

∑
I⊂{1,2,...,k}

(−1)
|I|

=

{
1, if {1, 2, . . . , k} = ∅;

0, otherwise
=

{
1, if k = 0;

0, otherwise

=

{
1, if n = 1;

0, otherwise

(
since k is the number of distinct prime factors of n,

and thus we have k = 0 if and only if n = 1

)
= δn,1,

which proves (13.84.3).
• Every positive integer n satisfies

(13.84.5)
∑
d|n

µ (d)
n

d
= φ (n) .

Proof: This is an elementary fact, but we have a hammer at our disposal, and this looks con-
spicuously like a nail. Let us define a Z-coalgebra. Namely, let T be the free Z-module with basis
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(tn)n≥1. We define a Z-coalgebra structure on T by setting

∆ (tn) =
∑

d,e∈{1,2,3,...};
de=n

td ⊗ te =
∑
d|n

td ⊗ tn/d and ε (tn) = δn,1

for every n ∈ {1, 2, 3, . . .}. It is straightforward to check that this makes T into a cocommutative
coalgebra. Hence, (HomZ (T,Z) , ?) is a Z-algebra with unity ε. 665 This algebra (HomZ (T,Z) , ?)
is commutative666. We define four elements of HomZ (T,Z):

– a Z-linear map φ̃ : T→ Z which sends tn to φ (n) for every n ≥ 1;
– a Z-linear map µ̃ : T→ Z which sends tn to µ (n) for every n ≥ 1;

– a Z-linear map ĩd : T→ Z which sends tn to n for every n ≥ 1;
– a Z-linear map 1̃ : T→ Z which sends tn to 1 for every n ≥ 1.
Then, the identity that we want to prove – i.e., the identity (13.84.5) – is equivalent to the claim

that µ̃ ? ĩd = φ̃. 667 Similarly, the (already proven) identity (13.84.1) is equivalent to φ̃ ? 1̃ = ĩd,

and the (already proven) identity (13.84.3) is equivalent to µ̃ ? 1̃ = ε. Thus,

µ̃ ? ĩd︸︷︷︸
=φ̃?1̃

= µ̃ ? φ̃ ? 1̃ = µ̃ ? 1̃︸ ︷︷ ︸
=ε

?φ̃ (since (HomZ (T,Z) , ?) is commutative)

= ε ? φ̃ = φ̃.

As we know, this is equivalent to (13.84.5), so that (13.84.5) is proven.
It was not really necessary to phrase this argument in terms of coalgebras; this was only done

to illustrate a use of the latter. Our proof can just as well be rewritten as a manipulation of
sums, or (as a compromise between concreteness and structure) it can be paraphrased by using the
Dirichlet convolution, which is the operation taking two maps f, g : {1, 2, 3, . . .} → Z to a third map

h : {1, 2, 3, . . .} → Z defined by h (n) =
∑
d|n f (d) g

(n
d

)
. Of course, this Dirichlet convolution is

the same as our convolution ? on HomZ (T,Z), with the only difference that Z-linear maps T → Z
are replaced by arbitrary maps {1, 2, 3, . . .} → Z.

• Every positive integer n satisfies

(13.84.6)
∑
d|n

dµ (d)φ
(n
d

)
= µ (n) .

Proof: We use the setup we prepared in the proof of (13.84.5). Additionally, we define µ̃′ : T→ Z
as the Z-linear map which sends tn to nµ (n) for every n ≥ 1. Then, µ̃′ ? ĩd = ε, because every
positive integer n satisfies(

µ̃′ ? ĩd
)

(tn) =
∑
d|n

dµ (d)
n

d
=
∑
d|n

nµ (d) = n
∑
d|n

µ (d)

︸ ︷︷ ︸
=δn,1

(by (13.84.3))

= nδn,1 = δn,1 = ε (tn) .

But recall that φ̃ = µ̃ ? ĩd = ĩd ? µ̃ (since (HomZ (T,Z) , ?) is commutative), and thus

µ̃′ ? φ̃︸︷︷︸
=ĩd?µ̃

= µ̃′ ? ĩd︸ ︷︷ ︸
=ε

?µ̃ = ε ? µ̃ = µ̃.

665Number theorists will recognize this Z-algebra as an isomorphic version of the so-called algebra of formal Dirichlet

series over Z. The isomorphism from (HomZ (T,Z) , ?) to the algebra of formal Dirichlet series over Z takes an element
f ∈ (HomZ (T,Z) , ?) to the formal Dirichlet series

∑∞
n=1 f (n)n−s.

666This follows from Exercise 1.5.5 (applied to Z, T and Z instead of k, C and A).

667This is because the left hand side of (13.84.5) equals
∑
d|n µ̃ (td) ĩd

(
tn/d

)
= m


(
µ̃⊗ ĩd

)∑
d|n

td ⊗ tn/d


︸ ︷︷ ︸

=∆(tn)

 =

m
((
µ̃⊗ ĩd

)
(∆ (tn))

)
=
(
µ̃ ? ĩd

)
(tn), whereas the right hand side equals φ̃ (tn).
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This is easily seen to be equivalent to (13.84.6), and so (13.84.6) is proven.
• If k is a positive integer, and if p ∈ N, a ∈ A and b ∈ A are such that a ≡ bmod pkA, then

(13.84.7) ap
`

≡ bp
`

mod pk+`A for every ` ∈ N.

Proof: Let k be a positive integer. Let p ∈ N, a ∈ A and b ∈ A be such that a ≡ bmod pkA. We
need to prove (13.84.7). It is clearly enough to show that ap ≡ bp mod pk+1A, because then (13.84.7)
will follow by induction over `. But we have a ≡ bmod pA (since a ≡ bmod pkA and since k is
positive) and therefore

ap−1 + ap−2b+ · · ·+ bp−1 ≡ bp−1 + bp−2b+ · · ·+ bp−1

= bp−1 + bp−1 + · · ·+ bp−1︸ ︷︷ ︸
p terms

= pbp−1 ≡ 0 mod pA,

so that ap−1 + ap−2b+ · · ·+ bp−1 ∈ pA. Thus,

ap − bp = (a− b)︸ ︷︷ ︸
∈pkA

(since a≡bmod pkA)

(
ap−1 + ap−2b+ · · ·+ bp−1

)︸ ︷︷ ︸
∈pA

∈
(
pkA

)
(pA) = pk+1A,

so that ap ≡ bp mod pk+1A. This proves (13.84.7).
• Here is a slightly more useful corollary of (13.84.7): If a prime number p and two elements a and b

of A are such that a ≡ bmod pA, then

(13.84.8) aN ≡ bN mod pvp(N)+1A for every N ∈ {1, 2, 3, . . .} .

Proof: Let p be a prime number, and let a and b be two elements of A such that a ≡ bmod pA.
Let N ∈ {1, 2, 3, . . .}. Write N in the form N = pvp(N)M for some positive integer M . Then,

(13.84.7) (applied to ` = vp (N) and k = 1) yields ap
vp(N) ≡ bp

vp(N)

mod pvp(N)+1A, and because of

N = pvp(N)M we have

aN = ap
vp(N)M =

(
ap

vp(N)
)M
≡
(
bp
vp(N)

)M (
since ap

vp(N)

≡ bp
vp(N)

mod pvp(N)+1A
)

= bp
vp(N)M = bN mod pvp(N)+1A

(
since pvp(N)M = N

)
.

This proves (13.84.8).

We shall also use a fact from commutative algebra – namely, one of the versions of the Chinese Remainder
Theorem of ring theory:

Theorem 13.84.1. Let A be a commutative ring. Let S be a finite set. For every s ∈ S, let Is be an ideal
of A. Assume that the ideals Is of A are comaximal668; this means that every two distinct elements s and t
of S satisfy Is + It = A. Then:

(a) We have ⋂
s∈S

Is =
∏
s∈S

Is.

(b) The canonical ring homomorphism

A/

(⋂
s∈S

Is

)
→
∏
s∈S

(A/Is) , a+
⋂
s∈S

Is 7→ (a+ Is)s∈S

is well-defined and a ring isomorphism.

See http://stacks.math.columbia.edu/tag/00DT (Lemma 10.14.4 (1) in the Stacks Project, as of 4
April 2020) or many other sources for a proof of Theorem 13.84.1. We shall only use part (a) of this
theorem.

As a consequence of Theorem 13.84.1(a), we have the following:

668Some authors use the word “coprime” instead of “comaximal” here.

http://stacks.math.columbia.edu/tag/00DT
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• If n is a positive integer and if A is a commutative ring, then

(13.84.9)
⋂

p is a prime
factor of n

pvp(n)A =
∏

p is a prime
factor of n

(
pvp(n)A

)
.

Indeed, this follows from Theorem 13.84.1(a), since the ideals pvp(n)A of A (for varying p) are
comaximal (because for any two distinct primes p and q, we can find integers x and y satisfying
pvp(n)x+ qvq(n)y = 1, and therefore we have pvp(n)A+ qvq(n)A = A).

Now, we can step to proving the actual equivalences.
Proof of the implication D =⇒ J : Assume that Assertion D holds. That is, there exists a family

(αn)n≥1 ∈ A{1,2,3,...} of elements of A such that every positive integer n satisfies bn =
∑
d|n dα

n/d
d . Consider

this family (αn)n≥1. Consider also the family (wn)n≥1 ∈ Λ
{1,2,3,...}
Z defined in Exercise 2.9.3(a). This family

(wn)n≥1 is an algebraically independent generating set of ΛZ (indeed, this is a restatement of Exercise

2.9.3(d)). Hence, there exists a unique Z-algebra homomorphism f : ΛZ → A which satisfies

f (wn) = αn for every n ∈ {1, 2, 3, . . .} .

Consider this f . We have pn =
∑
d|n dw

n/d
d for every positive integer n (by Exercise 2.9.3(e)). Thus, for

every positive integer n, we have

f (pn) = f

∑
d|n

dw
n/d
d

 =
∑
d|n

d

f (wd)︸ ︷︷ ︸
=αd


n/d

(since f is a Z-algebra homomorphism)

=
∑
d|n

dα
n/d
d = bn.

Hence, there exists a ring homomorphism ΛZ → A which, for every positive integer n, sends pn to bn (namely,
f). That is, Assertion J holds, and the implication D =⇒ J is proven.

Proof of the implication J =⇒ D: Assume that Assertion J holds. That is, there exists a ring homo-
morphism ΛZ → A which, for every positive integer n, sends pn to bn. Let f be such a homomorphism.

Consider the family (wn)n≥1 ∈ Λ
{1,2,3,...}
Z defined in Exercise 2.9.3(a). For every positive integer n, we have

pn =
∑
d|n dw

n/d
d (by Exercise 2.9.3(e)) and thus

f (pn) = f

∑
d|n

dw
n/d
d

 =
∑
d|n

d (f (wd))
n/d

(since f is a ring homomorphism) .

Since f (pn) = bn (by the definition of f), this rewrites as bn =
∑
d|n d (f (wd))

n/d
. Thus, there exists a

family (αn)n≥1 ∈ A{1,2,3,...} of elements of A such that every positive integer n satisfies bn =
∑
d|n dα

n/d
d

(namely, such a family can be defined by αn = f (wn)). Assertion D thus holds. We have now proven the
implication J =⇒ D.

Proof of the implication D =⇒ C: Assume that Assertion D holds. That is, there exists a family (αn)n≥1 ∈
A{1,2,3,...} of elements of A such that every positive integer n satisfies bn =

∑
d|n dα

n/d
d . Consider this family

(αn)n≥1.
We need to prove that Assertion C holds, i.e., that we have

(13.84.10) ϕp
(
bn/p

)
≡ bn mod pvp(n)A

for every positive integer n and every prime factor p of n. So let us fix a positive integer n and a prime
factor p of n. We need to prove (13.84.10).

The definition of the family (αn)n≥1 shows that bn/p =
∑
d|n/p dα

(n/p)/d
d , so that

ϕp
(
bn/p

)
= ϕp

∑
d|n/p

dα
(n/p)/d
d

 =
∑
d|n/p

d (ϕp (αd))
(n/p)/d

(since ϕp is a ring endomorphism) .
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On the other hand,

(13.84.11)
∑
d|n

dα
n/d
d =

∑
d|n/p

dα
n/d
d +

∑
d|n;
d-n/p

d︸︷︷︸
≡0 mod pvp(n)A

(since d|n and d-n/p
yield pvp(n)|d)

α
n/d
d ≡

∑
d|n/p

dα
n/d
d mod pvp(n)A.

Thus, if we succeed to prove that

(13.84.12) d (ϕp (αd))
(n/p)/d ≡ dαn/dd mod pvp(n)A for every d | n/p,

then we will obtain

ϕp
(
bn/p

)
=
∑
d|n/p

d (ϕp (αd))
(n/p)/d︸ ︷︷ ︸

≡dαn/dd mod pvp(n)A

≡
∑
d|n/p

dα
n/d
d ≡

∑
d|n

dα
n/d
d (by (13.84.11))

= bn mod pvp(n)A

since bn =
∑
d|n

dα
n/d
d

 ,

and thus our goal (proving (13.84.10)) will be achieved. Hence, it remains to prove (13.84.12).
So let d be any positive divisor of n/p. Then, ϕp (αd) ≡ αpd mod pA (because of the axiom ϕp (a) ≡

ap mod pA for every a ∈ A). Thus, (13.84.8) (applied to a = ϕp (αd), b = αdp and N = (n/p) /d) yields

(ϕp (αd))
(n/p)/d ≡ (αpd)

(n/p)/d
mod pvp((n/p)/d)+1A. Since (αpd)

(n/p)/d
= α

n/d
d and vp ((n/p) /d)+1 = vp (n/d),

this rewrites as (ϕp (αd))
(n/p)/d ≡ α

n/d
d mod pvp(n/d)A. Multiplying this by d results in d (ϕp (αd))

(n/p)/d ≡
dα

n/d
d mod dpvp(n/d)A. Since dpvp(n/d) is divisible by pvp(n), this yields (13.84.12). This completes the proof

of (13.84.12), and thus also that of the implication D =⇒ C.
Proof of the implication C =⇒ D: Assume that Assertion C holds. Thus, for every positive integer n and

every prime factor p of n, we have

(13.84.13) ϕp
(
bn/p

)
≡ bn mod pvp(n)A.

We now need to prove that Assertion D holds as well. In other words, we need to show that there exists a

family (αn)n≥1 ∈ A{1,2,3,...} of elements of A such that every positive integer n satisfies bn =
∑
d|n dα

n/d
d . In

other words (renaming n as m), we need to show that there exists a family (αm)m≥1 ∈ A{1,2,3,...} of elements

of A such that every positive integer m satisfies bm =
∑
d|m dα

m/d
d .

We construct this family (αm)m≥1 recursively. So we fix some n ≥ 1, and assume that αm is already
constructed for every positive integer m < n in such a way that

(13.84.14) the equality bm =
∑
d|m

dα
m/d
d is satisfied for every positive integer m < n.

We now need to construct an αn ∈ A such that bm =
∑
d|m dα

m/d
d is satisfied for m = n. In other words, we

need to construct an αn ∈ A satisfying bn =
∑
d|n dα

n/d
d .

Let us first choose αn arbitrarily (with the intention to tweak it later). Let p be any prime factor of

n. Then, applying (13.84.14) to m = n/p, we obtain bn/p =
∑
d|n/p dα

(n/p)/d
d . This allows us to prove that

ϕp
(
bn/p

)
≡
∑
d|n dα

n/d
d mod pvp(n)A holds (just as in the proof of the implication D =⇒ C). Compared with

(13.84.13), this yields bn ≡
∑
d|n dα

n/d
d mod pvp(n)A. That is, bn −

∑
d|n dα

n/d
d ∈ pvp(n)A.
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Now, let us forget that we fixed p. We thus have shown that (with our arbitrary choice of αn) we have

bn −
∑
d|n dα

n/d
d ∈ pvp(n)A for every prime factor p of n. As a consequence,

bn −
∑
d|n

dα
n/d
d ∈

⋂
p is a prime
factor of n

pvp(n)A =
∏

p is a prime
factor of n

(
pvp(n)A

)
(by (13.84.9))

=

 ∏
p is a prime
factor of n

pvp(n)


︸ ︷︷ ︸

=n

A = nA.

In other words, there exists a γ ∈ A such that bn −
∑
d|n dα

n/d
d = nγ. Consider this γ. Now, if we replace

αn by αn + γ, then the sum
∑
d|n dα

n/d
d increases by nγ = bn−

∑
d|n dα

n/d
d , and therefore becomes precisely

bn. Hence, by replacing αn by αn + γ, we achieve that bn =
∑
d|n dα

n/d
d holds. Thus, we have found the

αn we were searching for, and the recursive construction of the family (αm)m≥1 has proceeded by one more
step. The proof of the implication C =⇒ D is thus complete.

Proof of the implication E =⇒ C: The proof of the implication E =⇒ C proceeds exactly as our above
proof of the implication D =⇒ C, with the following changes:

• Every appearance of αi for some i ≥ 1 must be replaced by the corresponding βi.
• Every time an element of A was taken to the k-th power (for some k ∈ {1, 2, 3, . . .}) in our proof of

the implication D =⇒ C, it needs now to be subjected to the ring endomorphism ϕk instead. So, for

example, α
n/d
d is replaced by ϕn/d (βd) everywhere (remember that αd becomes βd). Note that this

concerns only elements of A. We don’t replace the power pvp(n) by anything.
• The equality

ϕp

∑
d|n/p

dα
(n/p)/d
d

 =
∑
d|n/p

d (ϕp (αd))
(n/p)/d

is replaced by

ϕp

∑
d|n/p

dϕ(n/p)/d (βd)

 =
∑
d|n/p

dϕ(n/p)/d (ϕp (βd)) ,

whose proof uses the Z-linearity of ϕp and the fact that ϕp ◦ ϕ(n/p)/d = ϕn/d = ϕ(n/p)/d ◦ ϕp.
• The proof of (13.84.12) needs to be replaced by a proof of the congruence

(13.84.15) dϕ(n/p)/d (ϕp (βd)) ≡ dϕn/d (βd) mod pvp(n)A for every d | n/p.

Fortunately, the latter congruence is obvious, since ϕ(n/p)/d ◦ ϕp = ϕn/d.

Proof of the implication C =⇒ E: The proof of the implication C =⇒ E can be obtained from the proof of
the implication C =⇒ D using the same changes that were made to transform the proof of the implication
D =⇒ C into a proof of the implication E =⇒ C. The only new “idea” is to use the fact that ϕ1 = id (in
showing that if we replace βn by βn + γ, then the sum

∑
d|n dϕn/d (βd) increases by nγ).

Proof of the implication E =⇒ F : Assume that Assertion E holds. That is, there exists a family (βn)n≥1 ∈
A{1,2,3,...} of elements of A such that every positive integer n satisfies

(13.84.16) bn =
∑
d|n

dϕn/d (βd) .

Consider this family (βn)n≥1. We need to prove that Assertion F holds, i.e., that every positive integer n
satisfies ∑

d|n

µ (d)ϕd
(
bn/d

)
∈ nA.
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We fix a positive integer n. Then, every positive divisor d of n satisfies bn/d =
∑
e|n/d eϕ(n/d)/e (βe) (by

(13.84.16), applied to n/d instead of n, and with the summation index d renamed as e). Hence,

∑
d|n

µ (d)ϕd

 bn/d︸︷︷︸
=
∑
e|n/d eϕ(n/d)/e(βe)

 =
∑
d|n

µ (d)ϕd

∑
e|n/d

eϕ(n/d)/e (βe)


=
∑
d|n

µ (d)
∑
e|n/d

eϕd
(
ϕ(n/d)/e (βe)

)
(since ϕd is linear)

=
∑
d|n

∑
e|n/d︸ ︷︷ ︸

=
∑
e|n
∑
d|n/e

µ (d) eϕd
(
ϕ(n/d)/e (βe)

)︸ ︷︷ ︸
=(ϕd◦ϕ(n/d)/e)(βe)

=ϕn/e(βe)

=
∑
e|n

∑
d|n/e

µ (d)

︸ ︷︷ ︸
=δn/e,1

(by (13.84.3), applied
to n/e instead of n)

eϕn/e (βe) =
∑
e|n

δn/e,1︸ ︷︷ ︸
=δe,n

eϕn/e (βe)

=
∑
e|n

δe,neϕn/e (βe) = n ϕn/n︸ ︷︷ ︸
=ϕ1=id

(βn) = nβn ∈ nA.

Thus, Assertion F holds, so that we have proven the implication E =⇒ F .
Proof of the implication F =⇒ E: Assume that Assertion F holds. That is, every positive integer n

satisfies

(13.84.17)
∑
d|n

µ (d)ϕd
(
bn/d

)
∈ nA.

Now we need to prove that Assertion E holds, i.e., that there exists a family (βn)n≥1 ∈ A{1,2,3,...} of
elements of A such that every positive integer n satisfies

(13.84.18) bn =
∑
d|n

dϕn/d (βd) .

We shall construct such a family (βn)n≥1 recursively. That is, we fix some N ∈ {1, 2, 3, . . .}, and we assume

that we already have constructed a βn ∈ A for every positive integer n < N in such a way that (13.84.18) is
satisfied for every positive integer n < N . We now need to find a βN ∈ A such that (13.84.18) is satisfied
for n = N as well.
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From (13.84.17) (applied to n = N), we have
∑
d|N µ (d)ϕd

(
bN/d

)
∈ nA. Thus, there exists a t ∈ A such

that
∑
d|N µ (d)ϕd

(
bN/d

)
= Nt. Set Consider this t. Set βN = t. We have

Nt =
∑
d|N

µ (d)ϕd
(
bN/d

)
=
∑
e|N

µ (e)ϕe
(
bN/e

)
=
∑
e|N ;
e>1

µ (e)ϕe


bN/e︸︷︷︸

=
∑
d|N/e dϕ(N/e)/d(βd)

(by (13.84.18), applied
to n=N/e, because N/e<n)


+ µ (1)︸︷︷︸

=1

ϕ1︸︷︷︸
=id

bN/1︸︷︷︸
=bN



=
∑
e|N ;
e>1

µ (e)ϕe

∑
d|N/e

dϕ(N/e)/d (βd)

+ bN

=
∑
e|N ;
e>1

µ (e)
∑
d|N/e

dϕe
(
ϕ(N/e)/d (βd)

)︸ ︷︷ ︸
=(ϕe◦ϕ(N/e)/d)(βd)

=ϕN/d(βd)

+bN (since ϕe is linear)

=
∑
e|N ;
e>1

µ (e)
∑
d|N/e

dϕN/d (βd) + bN =
∑
e|N ;
e>1

∑
d|N/e︸ ︷︷ ︸

=
∑
d|N ;
d<N

∑
e|N/d;
e>1

µ (e) dϕN/d (βd) + bN

=
∑
d|N ;
d<N

∑
e|N/d;
e>1

µ (e)

︸ ︷︷ ︸
=
∑
e|N/d µ(e)−µ(1)

(since 1|N/d)

dϕN/d (βd) + bN =
∑
d|N ;
d<N


∑
e|N/d

µ (e)

︸ ︷︷ ︸
=δN/d,1

(by (13.84.3), applied
to N/d instead of n)

−µ (1)︸︷︷︸
=1


dϕN/d (βd) + bN

=
∑
d|N ;
d<N

 δN/d,1︸ ︷︷ ︸
=0

(since N/d>1)

−1

 dϕN/d (βd) + bN =
∑
d|N ;
d<N

(−1) dϕN/d (βd) + bN

= −
∑
d|N ;
d<N

dϕN/d (βd) + bN .

(13.84.19)

Now,

∑
d|N

dϕN/d (βd) =
∑
d|N ;
d<N

dϕN/d (βd) +N ϕN/N︸ ︷︷ ︸
=ϕ1=id

 βN︸︷︷︸
=t

 =
∑
d|N ;
d<N

dϕN/d (βd) + Nt︸︷︷︸
=−

∑
d|N ;
d<N

dϕN/d(βd)+bN

(by (13.84.19))

=
∑
d|N ;
d<N

dϕN/d (βd) +

−∑
d|N ;
d<N

dϕN/d (βd) + bN

 = bN .

Thus, (13.84.18) is satisfied for n = N . We have thus completed a step of our recursive construction of the
family (βn)n≥1; this family therefore exists, and the implication F =⇒ E is proven.
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Proof of the implication F =⇒ G: Assume that Assertion F holds. That is, every positive integer n
satisfies

(13.84.20)
∑
d|n

µ (d)ϕd
(
bn/d

)
∈ nA.

On the other hand, every positive integer e satisfies

(13.84.21)
∑
d|e

µ (d)
e

d
= φ (e)

(by (13.84.3), applied to n = e). Now, every positive integer n satisfies∑
d|n

φ (d)ϕd
(
bn/d

)
=
∑
e|n

φ (e)︸︷︷︸
=
∑
d|e µ(d)

e

d
(by (13.84.21))

ϕe
(
bn/e

)

=
∑
e|n

∑
d|e︸ ︷︷ ︸

=
∑
d|n

∑
e|n;
d|e

µ (d)
e

d
ϕe

 bn/e︸︷︷︸
=b(n/d)/(e/d)

 =
∑
d|n

∑
e|n;
d|e

µ (d)
e

d
ϕe
(
b(n/d)/(e/d)

)

=
∑
d|n

∑
e|n/d︸ ︷︷ ︸

=
∑
e|n
∑
d|n/e

µ (d) e ϕed︸︷︷︸
=ϕe◦ϕd

b(n/d)/e︸ ︷︷ ︸
=b(n/e)/d

 (here, we have substituted ed for e in the second sum)

=
∑
e|n

∑
d|n/e

µ (d) e (ϕe ◦ ϕd)
(
b(n/e)/d

)
=
∑
e|n

∑
d|n/e

µ (d) eϕe
(
ϕd
(
b(n/e)/d

))

=
∑
e|n

e
∑
d|n/e

µ (d)ϕe
(
ϕd
(
b(n/e)/d

))
=
∑
e|n

eϕe

∑
d|n/e

µ (d)ϕd
(
b(n/e)/d

)
︸ ︷︷ ︸

∈(n/e)A
(by (13.84.20), applied
to n/e instead of n)

(since ϕe is Z-linear)

∈
∑
e|n

e ϕe ((n/e)A)︸ ︷︷ ︸
⊂(n/e)A

(since ϕe is Z-linear)

⊂
∑
e|n

e (n/e)︸ ︷︷ ︸
=n

A =
∑
e|n

nA ⊂ nA.

Thus, Assertion G holds. We have thus proven the implication F =⇒ G.
Proof of the implication G =⇒ F : Assume that Assertion G holds. That is, every positive integer n

satisfies

(13.84.22)
∑
d|n

φ (d)ϕd
(
bn/d

)
∈ nA.

On the other hand, every positive integer e satisfies
∑
d|e dµ (d)φ

( e
d

)
= µ (e) (by (13.84.6), applied to

n = e). In other words, every positive integer e satisfies

(13.84.23) µ (e) =
∑
d|e

dµ (d)φ
( e
d

)
=
∑
d|e

e

d
µ
( e
d

)
φ (d)
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(here, we have substituted e/d for d in the sum). Now, every positive integer n satisfies∑
d|n

µ (d)ϕd
(
bn/d

)
=
∑
e|n

µ (e)︸︷︷︸
=
∑
d|e

e

d
µ

( e
d

)
φ(d)

(by (13.84.23))

ϕe
(
bn/e

)

=
∑
e|n

∑
d|e︸ ︷︷ ︸

=
∑
d|n

∑
e|n;
d|e

e

d
µ
( e
d

)
φ (d)ϕe

 bn/e︸︷︷︸
=b(n/d)/(e/d)



=
∑
d|n

∑
e|n;
d|e

e

d
µ
( e
d

)
φ (d)ϕe

(
b(n/d)/(e/d)

)
=

∑
d|n

∑
e|n/d︸ ︷︷ ︸

=
∑
e|n
∑
d|n/e

eµ (e)φ (d) ϕed︸︷︷︸
=ϕe◦ϕd

b(n/d)/e︸ ︷︷ ︸
=b(n/e)/d


(here, we have substituted ed for e in the second sum)

=
∑
e|n

∑
d|n/e

eµ (e)φ (d) (ϕe ◦ ϕd)
(
b(n/e)/d

)
=
∑
e|n

∑
d|n/e

eµ (e)φ (d)ϕe
(
ϕd
(
b(n/e)/d

))

=
∑
e|n

eµ (e)
∑
d|n/e

φ (d)ϕe
(
ϕd
(
b(n/e)/d

))
=
∑
e|n

eµ (e)ϕe

∑
d|n/e

φ (d)ϕd
(
b(n/e)/d

)
︸ ︷︷ ︸

∈(n/e)A
(by (13.84.22), applied
to n/e instead of n)

(since ϕe is Z-linear)

∈
∑
e|n

eµ (e) ϕe ((n/e)A)︸ ︷︷ ︸
⊂(n/e)A

(since ϕe is Z-linear)

⊂
∑
e|n

eµ (e) (n/e)︸ ︷︷ ︸
=nµ(e)

A =
∑
e|n

nµ (e)A ⊂ nA.

Thus, Assertion F holds. We have thus proven the implication G =⇒ F .
Proof of the equivalence G ⇐⇒ H: For every positive integer n, we have

n∑
i=1

ϕn/ gcd(i,n)

(
bgcd(i,n)

)
=
∑
d|n

∑
i∈{1,2,...,n};
gcd(i,n)=d

ϕn/d (bd)

︸ ︷︷ ︸
=φ

(n
d

)
ϕn/d(bd)

(by (13.84.2))

=
∑
d|n

φ
(n
d

)
ϕn/d (bd) =

∑
d|n

φ (d)ϕd
(
bn/d

)
(here, we have substituted n/d for d in the sum). This makes it clear that Assertions G and H are equivalent.

The implications and equivalences that we have proven, combined, yield the equivalence of all seven
assertions C, D, E , F , G, H and J . This solves Exercise 2.9.6.

13.85. Solution to Exercise 2.9.8. Solution to Exercise 2.9.8. We know that the seven assertions C, D,
E , F , G, H and J are equivalent; hence, for each of our families, it suffices to prove one of these assertions.
We choose the assertion C, as it is the easiest to prove.

• Proof of Assertion C for the family (bn)n≥1 = (qn)n≥1, where q is a given integer: Let q be an

integer. We need to prove Assertion C for the family (bn)n≥1 = (qn)n≥1. This means proving that
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for every positive integer n and every prime factor p of n, we have

(13.85.1) ϕp

(
qn/p

)
≡ qn mod pvp(n)Z.

So let us prove this. Let n be a positive integer, and let p be a prime factor of n. Fermat’s little
theorem yields qp ≡ qmod pZ. Hence, (13.84.8) (applied to A = Z, a = qp, b = q and N = n/p)

yields (qp)
n/p ≡ qn/p mod pvp(n/p)+1Z. Since (qp)

n/p
= qn and vp (n/p) + 1 = vp (n), this rewrites as

qn ≡ qn/p mod pvp(n)Z. Now, ϕp = id, so that ϕp
(
qn/p

)
= qn/p ≡ qn mod pvp(n)Z. Thus, (13.85.1) is

proven, and we are done with the family (bn)n≥1 = (qn)n≥1.

• Proof of Assertion C for the family (bn)n≥1 = (q)n≥1, where q is a given integer: Let q be an integer.

We need to prove Assertion C for the family (bn)n≥1 = (q)n≥1. This means proving that for every
positive integer n and every prime factor p of n, we have

ϕp (q) ≡ qmod pvp(n)Z.

But this is obvious, since ϕp = id. Thus, the family (bn)n≥1 = (q)n≥1 satisfies Assertion C.

• Proof of Assertion C for the family (bn)n≥1 =

((
qn

rn

))
n≥1

, where r ∈ Q and q ∈ Z are given: Let

r ∈ Q and q ∈ Z. We need to prove Assertion C for the family (bn)n≥1 =

((
qn

rn

))
n≥1

. This means

proving that for every positive integer n and every prime factor p of n, we have

(13.85.2) ϕp

((
qn/p

rn/p

))
≡
(
qn

rn

)
mod pvp(n)Z.

So let us prove this. Let n be a positive integer, and p be a prime factor of n. We need to prove
(13.85.2). In other words, we need to prove that

(13.85.3)

(
qn/p

rn/p

)
≡
(
qn

rn

)
mod pvp(n)Z

(since ϕp = id). We WLOG assume that rn ∈ Z (since otherwise, both sides of this congruence
(13.85.3) are 0).

It is well-known that (1 +X)
p ≡ 1 + Xp mod pZ [X] in the polynomial ring Z [X]. Hence,

((1 +X)
p
)
n/p ≡ (1 +Xp)

n/p
mod pvp(n/p)+1Z [X] (by (13.84.8), applied to Z [X], (1 +X)

p
, 1 + Xp

and n/p instead of A, a, b and N). Since ((1 +X)
p
)
n/p

= (1 +X)
n

and vp (n/p) + 1 = vp (n), this
rewrites as

(1 +X)
n ≡ (1 +Xp)

n/p
mod pvp(n)Z [X] .

Hence,

(1 +X)
n ≡ (1 +Xp)

n/p
mod pvp(n)Z [[X]]

(since Z [X] is a subring of Z [[X]]). We can take both sides of this congruence to the q-th power669,
and thus obtain

((1 +X)
n
)
q ≡

(
(1 +Xp)

n/p
)q

mod pvp(n)Z [[X]] .

In other words,

(1 +X)
qn ≡ (1 +Xp)

qn/p
mod pvp(n)Z [[X]] .

Comparing the coefficients before Xrn on both sides of this congruence, we obtain(
qn

rn

)
≡
(
qn/p

rn/p

)
mod pvp(n)Z.

This proves (13.85.3) and thus (13.85.2). Hence, we are done with the family (bn)n≥1 =

((
qn

rn

))
n≥1

.

[Remark: There is an alternative, combinatorial approach to proving (13.85.3) when q is nonneg-
ative. This approach proceeds by counting the (rn)-element subsets of the set Z/ (qn). On the one

669This works even if q is negative, since (1 +X)n and (1 +Xp)n/p are invertible in Z [[X]] /
(
pvp(n)Z [[X]]

)
.



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 643

hand, the number of such subsets is clearly

(
qn

rn

)
. On the other hand, these subsets fall into two

classes:
– the subsets which are invariant under the permutation

Z/ (qn)→ Z/ (qn) ,

i 7→ i+ qn/p

of Z/ (qn);
– the subsets which are not invariant under this permutation.

It is easy to see that the number of all subsets in the first class is

(
qn/p

rn/p

)
(indeed, the inter-

section of such a subset with {0, 1, . . . , qn/p− 1} ⊂ Z/ (qn) must have rn/p elements, and uniquely
determines the whole subset by “replication”), whereas the number of all subsets in the second class
is divisible by pvp(n) (because the permutation Z/ (qn)→ Z/ (qn) , i 7→ i+ 1 acts on these subsets,
and thus splits them into orbits, each of which has size divisible by pvp(n) 670). Hence, the number

of all subsets in both classes together is ≡
(
qn/p

rn/p

)
mod pvp(n)Z. Comparing these two answers, we

obtain

(
qn

rn

)
≡
(
qn/p

rn/p

)
mod pvp(n)Z.

The downside of this nice approach is that it requires a modification in the case when q is negative.

Here, the upper negation formula

(
−a
k

)
= (−1)

k

(
a+ k − 1

k

)
needs to be used, along with the

“stars-and-bars” formula

(
a+ k − 1

k

)
for the number of k-element multisets whose elements belong

to {1, 2, . . . , a}. We leave the details to the reader.]

• Proof of Assertion C for the family (bn)n≥1 =

((
qn− 1

rn− 1

))
n≥1

, where r ∈ Z and q ∈ Z are given:

Let r ∈ Z and q ∈ Z. We need to prove Assertion C for the family (bn)n≥1 =

((
qn− 1

rn− 1

))
n≥1

. This

means proving that for every positive integer n and every prime factor p of n, we have

(13.85.4) ϕp

((
qn/p− 1

rn/p− 1

))
≡
(
qn− 1

rn− 1

)
mod pvp(n)Z.

670Here is why: Let O be an orbit under the action of the permutation Z/ (qn)→ Z/ (qn) , i 7→ i+ 1 on the subsets in the

second class. We must prove that O has size divisible by pvp(n).
Note that qn 6= 0, since otherwise there would be no subsets in the second class.

Let ξ be the permutation

Z/ (qn)→ Z/ (qn) ,

i 7→ i+ 1

of Z/ (qn). Then, O is an orbit under the action of ξ on the subsets in the second class. Note that ξqn = id, since ξ is a cyclic
permutation of a qn-element set.

Fix an element L ∈ O. Thus, L is a subset in the second class. In other words, L is a subset of Z/ (qn) that is not invariant
under the permutation

Z/ (qn)→ Z/ (qn) ,

i 7→ i+ qn/p

of Z/ (qn). Since this permutation is ξqn/p, we can restate this as follows: L is a subset of Z/ (qn) that is not invariant under

the action of the permutation ξqn/p on the subsets of Z/ (qn). That is, ξqn/p (L) 6= L. But ξqn (L) = L (since ξqn = id).
Now, O is the orbit of L under the action of ξ. Hence, the size of this orbit O is a divisor of qn (since ξqn (L) = L) but not a

divisor of qn/p (since ξqn/p (L) 6= L). Thus, this size must be divisible by pvp(qn) (because a divisor of qn that is not divisor

of qn/p must necessarily be divisible by pvp(qn)). Hence, it is also divisible by pvp(n) (since vp (qn) = vp (q)︸ ︷︷ ︸
≥0

+vp (n) ≥ vp (n)

and therefore pvp(n) | pvp(qn)). Qed.
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So let us prove this. Let n be a positive integer, and p be a prime factor of n. We need to prove
(13.85.4). In other words, we need to prove that

(13.85.5)

(
qn/p− 1

rn/p− 1

)
≡
(
qn− 1

rn− 1

)
mod pvp(n)Z

(since ϕp = id). By the recurrence of the binomial coefficients, we have

(
qn/p− 1

rn/p− 1

)
=

(
qn/p

rn/p

)
−(

qn/p− 1

rn/p

)
and

(
qn− 1

rn− 1

)
=

(
qn

rn

)
−
(
qn− 1

rn

)
. Hence, we can obtain the desired congruence

(13.85.5) by subtracting the congruence

(13.85.6)

(
qn/p− 1

rn/p

)
≡
(
qn− 1

rn

)
mod pvp(n)Z

from the congruence (13.85.3). It therefore remains to prove the congruence (13.85.6) (since (13.85.3)
has already been proven).

We recall the (easy-to-check) formula

(
a− 1

k

)
= (−1)

k

(
k − a
k

)
for every a ∈ Z and k ∈ N. This

formula allows us to rewrite both sides of (13.85.6), and thus (13.85.6) becomes

(13.85.7) (−1)
rn/p

(
rn/p− qn/p

rn/p

)
≡ (−1)

rn

(
rn− qn
rn

)
mod pvp(n)Z.

So it remains to prove (13.85.7). We have (−1)
rn/p ≡ (−1)

rn
mod pvp(n)Z 671. Thus, we can

cancel the (−1)
rn/p

on the left hand side of (13.85.7) against the (−1)
rn

on the right hand side, and
therefore (13.85.7) takes the equivalent form(

rn/p− qn/p
rn/p

)
≡
(
rn− qn
rn

)
mod pvp(n)Z.

This further rewrites as (
(r − q)n/p

rn/p

)
≡
(

(r − q)n
rn

)
mod pvp(n)Z.

But this follows from (13.85.3), applied to r − q instead of q. Hence, (13.85.7) is proven, and

consequently Assertion C holds for the family (bn)n≥1 =

((
qn− 1

rn− 1

))
n≥1

.

Exercise 2.9.8 is thus solved.

13.86. Solution to Exercise 2.9.9. Solution to Exercise 2.9.9. (a) This is obvious since fn is an evaluation
homomorphism (in an appropriate sense).672

(b) Let n and m be positive integers. Then,

(fn ◦ fm) (a) = fn

 fm (a)︸ ︷︷ ︸
=a(xm1 ,xm2 ,xm3 ,...)

 = fn (a (xm1 , x
m
2 , x

m
3 , . . .)) = (a (xm1 , x

m
2 , x

m
3 , . . .)) (xn1 , x

n
2 , x

n
3 , . . .)

= a ((xn1 )
m
, (xn2 )

m
, (xn3 )

m
, . . .) = a (xnm1 , xnm2 , xnm3 , . . .) = fnm (a)

for all a ∈ Λ. Thus, fn ◦ fm = fnm, so that Exercise 2.9.9(b) is solved.

671Proof. The only situation in which this is not obvious is when one of the integers rn/p and rn is even and the other is

odd. This means, of course, that rn/p is odd and rn is even (since rn/p | rn). Hence, in this situation, we have p = 2 and

vp (n) ≤ 1, and therefore pvp(n) = 2, so that (−1)rn/p ≡ (−1)rn mod pvp(n)Z follows immediately from the fact that any two

integer powers of −1 are congruent to each other modulo 2Z.
672Or, in a more down-to-earth fashion, this is obvious because (for example) multiplying two power series and then replacing

all variables in the product by their n-th powers gives the same result as first replacing all variables by their n-th powers and

then multiplying the resulting two power series.
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(c) For every a ∈ Λ, we have f1 (a) = a
(
x1

1, x
1
2, x

1
3, . . .

)
= a. Thus, f1 = id, so that Exercise 2.9.9(c) is

solved.
(d) There are several ways to solve Exercise 2.9.9(d):

• One can check ∆ ◦ fn = (fn ⊗ fn) ◦∆ rather directly on the basis (mλ)λ∈Par of Λ, using (2.1.4) and
the definition of fn.

• One can check ∆◦fn = (fn ⊗ fn)◦∆ very easily on the elements p1, p2, p3, . . . of Λ, and then “pretend”
that these elements generate Λ (in fact, they do generate Λ when k = Q, so this solves Exercise
2.9.9(d) in the case of k = Q; but this easily entails that Exercise 2.9.9(d) holds in the case of k = Z
673, and this, in turn, can be used to solve Exercise 2.9.9(d) for arbitrary k 674).

• One can derive Exercise 2.9.9(d) from Exercise 2.9.10(e) using the self-duality of Λ and Exercise
2.9.10(f). This is somewhat complicated by the fact that vn and fn (generally) are not graded
maps675, but with the correct arguments, one can completely avoid any use of gradedness676.

Probably the following solution of Exercise 2.9.9(d) is the shortest:

673Getting from k = Q to k = Z requires a standard functoriality argument. See Step 2 of the solution of Exercise 2.9.10(g)
further below for an example of such an argument.

674Getting from k = Z to arbitrary k requires a standard functoriality argument. See Step 3 of the solution of Exercise
2.9.10(g) further below for an example of such an argument.

675They nevertheless have a property close to being graded. Namely, let us say that a k-linear map ϕ between two graded

k-modules V =
⊕
n≥0 Vn and W =

⊕
n≥0 Wn scales the degree by q (where q is some fixed rational number) if it has the

property that ϕ (Vn) ⊂ Wqn for all n ∈ N (where Wqn is understood to be 0 when qn is not an integer). Then, vn scales the

degree by 1/n, whereas fn scales the degree by n. When a k-linear map ϕ between two graded k-modules V and W scales the
degree by a nonzero rational number q, the adjoint map ϕ∗ : W ∗ → V ∗ restricts to a k-linear map W o → V o, which scales the

degree by 1/q; thus a large part of the theory of adjoint maps which is usually formulated for graded maps can be carried over

to the case of maps scaling the degree by q.
676Here is a sketch of how these correct arguments look like.

The Hall inner product (·, ·)Λ on Λ gives rise to a symmetric bilinear form (·, ·)Λ⊗Λ on Λ⊗Λ (according to Definition 3.1.2(b)).
It is easy to see that every three elements a, b and c of Λ satisfy

(13.86.1) (a,m (b⊗ c))Λ = (∆ (a) , b⊗ c)Λ⊗Λ .

[Proof of (13.86.1): Let a, b and c be three elements of Λ. We need to prove the equality (13.86.1). Since this equality is

k-linear in each of a, b and c, we can WLOG assume that each of a, b and c belongs to the basis (sλ)λ∈Par of the k-module Λ.
Assume this. Then, there exist three elements α, β and γ of Par such that a = sα, b = sβ and c = sγ . Consider these α, β and

γ. Now, let us use the notations of Corollary 2.5.7. Applying Corollary 2.5.7 to λ = α, µ = β and ν = γ yields cαβ,γ = ĉαβ,γ .

But the definition of the map m yields

m (b⊗ c) = b︸︷︷︸
=sβ

c︸︷︷︸
=sγ

= sβsγ =
∑
λ∈Par

cλβ,γsλ

(by (2.5.6), applied to µ = β and ν = γ). Hence, a︸︷︷︸
=sα

, m (b⊗ c)︸ ︷︷ ︸
=
∑
λ∈Par c

λ
β,γ

sλ


Λ

=

sα, ∑
λ∈Par

cλβ,γsλ


Λ

=
∑
λ∈Par

cλβ,γ (sα, sλ)Λ︸ ︷︷ ︸
=δα,λ

=
∑
λ∈Par

cλβ,γδα,λ = cαβ,γ = ĉαβ,γ .

On the other hand, applying the map ∆ to both sides of the equality a = sα, we obtain

∆a = ∆sα =
∑

µ∈Par; ν∈Par

ĉαµ,νsµ ⊗ sν

(by (2.5.7), applied to λ = α). Hence, ∆a︸︷︷︸
=
∑
µ∈Par; ν∈Par ĉ

α
µ,νsµ⊗sν

, b︸︷︷︸
=sβ

⊗ c︸︷︷︸
=sγ


Λ⊗Λ

=

 ∑
µ∈Par; ν∈Par

ĉαµ,νsµ ⊗ sν , sβ ⊗ sγ


Λ⊗Λ

=
∑

µ∈Par; ν∈Par

ĉαµ,ν
(
sµ ⊗ sν , sβ ⊗ sγ

)
Λ⊗Λ︸ ︷︷ ︸

=(sµ,sβ)
Λ

(sν ,sγ)
Λ

=
∑

µ∈Par; ν∈Par

ĉαµ,ν
(
sµ, sβ

)
Λ︸ ︷︷ ︸

=δµ,β

(sν , sγ)Λ︸ ︷︷ ︸
=δν,γ

=
∑

µ∈Par; ν∈Par

ĉαµ,νδµ,βδν,γ =
∑
µ∈Par

δµ,β
∑
ν∈Par

ĉαµ,νδν,γ︸ ︷︷ ︸
=ĉαµ,γ

=
∑
µ∈Par

δµ,β ĉ
α
µ,γ = ĉαβ,γ .

Compared with (a,m (b⊗ c))Λ = ĉαβ,γ , this yields (a,m (b⊗ c))Λ = (∆ (a) , b⊗ c)Λ⊗Λ. Thus, (13.86.1) is proven.]



646 DARIJ GRINBERG AND VICTOR REINER

Fix n ∈ {1, 2, 3, . . .}. We need to prove that fn : Λ→ Λ is a Hopf algebra homomorphism. We already know
that fn is a k-algebra homomorphism. Therefore, if we can show that fn is a k-coalgebra homomorphism, then
it will immediately follow that fn is a k-bialgebra homomorphism and thus a Hopf algebra homomorphism
(due to Corollary 1.4.27). Therefore, it remains to show that fn is a k-coalgebra homomorphism. To do so,
we need to check that ε ◦ fn = ε and ∆ ◦ fn = (fn ⊗ fn) ◦∆. We shall only prove ∆ ◦ fn = (fn ⊗ fn) ◦∆, while
the easy proof of ε ◦ fn = ε is left to the reader.

Let us first notice that Λ is a bialgebra, and therefore ∆ is a k-algebra homomorphism (by the axioms
of a bialgebra). Also, fn is a k-algebra homomorphism. Thus, ∆ ◦ fn and (fn ⊗ fn) ◦ ∆ are k-algebra
homomorphisms.

For every m ∈ N, let us define an element h̃m ∈ k [[x]] by h̃m =
∑
i1≤i2≤···≤im x

n
i1
xni2 · · ·x

n
im

. Then, it is
easy to see that

(13.86.6) fn (hm) = h̃m for every m ∈ N.

Now, we can show that every a ∈ Λ and B ∈ Λ⊗ Λ satisfy

(13.86.2) (a,m (B))Λ = (∆ (a) , B)Λ⊗Λ .

[Proof of (13.86.2): Let a ∈ Λ and B ∈ Λ ⊗ Λ. We need to prove the equality (13.86.2). Since this equality is k-linear in
B, we can WLOG assume that B is a pure tensor (because the pure tensors span the k-module Λ ⊗ Λ). Assume this. Then,

B = b⊗ c for two elements b and c of Λ. Consider these b and c. Then,a,m
 B︸︷︷︸

=b⊗c




Λ

= (a,m (b⊗ c))Λ =

∆ (a) , b⊗ c︸ ︷︷ ︸
=B


Λ⊗Λ

(by (13.86.1))

= (∆ (a) , B)Λ⊗Λ .

This proves (13.86.2).]

Exercise 2.9.10(f) yields that the maps fn : Λ→ Λ and vn : Λ→ Λ are adjoint with respect to the Hall inner product on Λ.
Thus,

(13.86.3) (fna, b)Λ = (a,vnb)Λ for every a ∈ Λ and b ∈ Λ.

From this, it is easy to see that

(13.86.4) ((fn ⊗ fn)A,B)Λ⊗Λ = (A, (vn ⊗ vn)B)Λ⊗Λ for every A ∈ Λ⊗ Λ and B ∈ Λ⊗ Λ.

[Proof of (13.86.4): Let A ∈ Λ⊗ Λ and B ∈ Λ⊗ Λ. We have to prove the equality (13.86.4). Since this equality is k-linear

in each of A and B, we can WLOG assume that A and B are pure tensors (since pure tensors span Λ ⊗ Λ as a k-module).
Assume this. Then, we can write A and B in the forms A = a1 ⊗ a2 and B = b1 ⊗ b2 for some a1, a2 ∈ Λ and b1, b2 ∈ Λ.

Consider these a1, a2 and b1, b2. Now,(fn ⊗ fn) A︸︷︷︸
=a1⊗a2

, B︸︷︷︸
=b1⊗b2


Λ⊗Λ

=

(fn ⊗ fn) (a1 ⊗ a2)︸ ︷︷ ︸
=(fna1)⊗(fna2)

, b1 ⊗ b2


Λ⊗Λ

= ((fna1)⊗ (fna2) , b1 ⊗ b2)Λ⊗Λ

= (fna1, b1)Λ︸ ︷︷ ︸
=(a1,vnb1)Λ

(by (13.86.3), applied to
a=a1 and b=b1)

(fna2, b2)Λ︸ ︷︷ ︸
=(a2,vnb2)Λ

(by (13.86.3), applied to
a=a2 and b=b2)

= (a1,vnb1)Λ (a2,vnb2)Λ .

Compared with A︸︷︷︸
=a1⊗a2

, (vn ⊗ vn) B︸︷︷︸
=b1⊗b2


Λ⊗Λ

=

a1 ⊗ a2, (vn ⊗ vn) (b1 ⊗ b2)︸ ︷︷ ︸
=vn(b1)⊗vn(b2)


Λ⊗Λ

= (a1 ⊗ a2,vn (b1)⊗ vn (b2))Λ⊗Λ = (a1,vnb1)Λ (a2,vnb2)Λ ,

this yields ((fn ⊗ fn)A,B)Λ⊗Λ = (A, (vn ⊗ vn)B)Λ⊗Λ. This proves (13.86.4).]

Let us now show that (fn ⊗ fn) ◦∆ = ∆ ◦ fn (this is one of the axioms that need to be checked in order to show that fn is
a Hopf algebra homomorphism).

Indeed, vn is a k-algebra homomorphism. Hence, m ◦ (vn ⊗ vn) = vn ◦m.
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677 As a consequence, h̃m = fn (hm) ∈ Λ for every m ∈ N. (Of course, this was obvious anyway.)
Fix a positive integer r. Proposition 2.3.6(iii) (applied to r instead of n) states that ∆hr =

∑
i+j=r hi⊗hj .

The proof of this proposition (which proceeded by observing that hr (x,y) =
∑
i+j=r hi (x)hj (y) in k [[x,y]])

can be easily modified to obtain a proof of the equality ∆h̃r =
∑
i+j=r h̃i ⊗ h̃j . Thus, we have

(13.86.7) ∆h̃r =
∑
i+j=r

h̃i ⊗ h̃j .

Now,

(∆ ◦ fn) (hr) = ∆

 fn (hr)︸ ︷︷ ︸
=h̃r

(by (13.86.6), applied to m=r)

 = ∆h̃r =
∑
i+j=r

h̃i ⊗ h̃j (by (13.86.7)) .

Now, let a ∈ Λ. Every B ∈ Λ⊗ Λ satisfies

((fn ⊗ fn) ◦∆) (a)︸ ︷︷ ︸
=(fn⊗fn)(∆a)

, B


Λ⊗Λ

= ((fn ⊗ fn) (∆a) , B)Λ⊗Λ = (∆a, (vn ⊗ vn)B)Λ⊗Λ

(by (13.86.4), applied to A = ∆a)

= (∆a, (vn ⊗ vn)B)Λ⊗Λ =

a, m ((vn ⊗ vn)B)︸ ︷︷ ︸
=(m◦(vn⊗vn))(B)


Λ(

because (a,m ((vn ⊗ vn)B))Λ = (∆a, (vn ⊗ vn)B)Λ⊗Λ

(by (13.86.2), applied to (vn ⊗ vn)B instead of B)

)

=

a, (m ◦ (vn ⊗ vn))︸ ︷︷ ︸
=vn◦m

(B)


Λ

=

a, (vn ◦m) (B)︸ ︷︷ ︸
=vn(mB)


Λ

= (a,vn (mB))Λ = (fna,mB)Λ

(
because (fna,mB)Λ = (a,vn (mB))Λ

(by (13.86.3), applied to mB instead of b)

)

=

 ∆ (fna)︸ ︷︷ ︸
=(∆◦fn)(a)

, B


Λ⊗Λ

(by (13.86.2), applied to fna instead of a)

= ((∆ ◦ fn) (a) , B)Λ⊗Λ .(13.86.5)

Now, the bilinear form (·, ·)Λ⊗Λ is nondegenerate (in fact, (sµ ⊗ sν)(µ,ν)∈Par×Par is an orthonormal basis with respect to

this bilinear form). Hence, if U and V are two elements of Λ⊗ Λ such that every B ∈ Λ⊗ Λ satisfies (U,B)Λ⊗Λ = (V,B)Λ⊗Λ,

then U = V . Applying this to U = ((fn ⊗ fn) ◦∆) a and V = (∆ ◦ fn) a, we obtain ((fn ⊗ fn) ◦∆) a = (∆ ◦ fn) a (because of
(13.86.5)). Since we have proven this for every a ∈ Λ, this yields that (fn ⊗ fn) ◦∆ = ∆ ◦ fn. Thus, (fn ⊗ fn) ◦∆ = ∆ ◦ fn is

proven.
677Proof of (13.86.6): Let m ∈ N. Then, (2.2.3) (applied to m instead of n) yields hm =

∑
i1≤i2≤···≤im xi1xi2 · · ·xim .

Thus,

hm (xn1 , x
n
2 , x

n
3 , . . .) =

 ∑
i1≤i2≤···≤im

xi1xi2 · · ·xim

 (xn1 , x
n
2 , x

n
3 , . . .) =

∑
i1≤i2≤···≤im

xni1x
n
i2
· · ·xnim .

But the definition of fn yields fn (hm) = hm
(
xn1 , x

n
2 , x

n
3 , . . .

)
=
∑
i1≤i2≤···≤im xni1x

n
i2
· · ·xnim . This proves (13.86.6).
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Compared with

((fn ⊗ fn) ◦∆) (hr) = (fn ⊗ fn)

 ∆hr︸︷︷︸
=
∑
i+j=r hi⊗hj

 = (fn ⊗ fn)

 ∑
i+j=r

hi ⊗ hj


=
∑
i+j=r

fn (hi)︸ ︷︷ ︸
=h̃i

(by (13.86.6), applied to m=i)

⊗ fn (hj)︸ ︷︷ ︸
=h̃j

(by (13.86.6), applied to m=j)

=
∑
i+j=r

h̃i ⊗ h̃j ,

this yields (∆ ◦ fn) (hr) = ((fn ⊗ fn) ◦∆) (hr).
Now, let us forget that we fixed r. We thus have proven that

(13.86.8) (∆ ◦ fn) (hr) = ((fn ⊗ fn) ◦∆) (hr) for every positive integer r.

Now, recall that the family (hr)r≥1 generates the k-algebra Λ (according to Proposition 2.4.1). In other

words, (hr)r≥1 is a generating set of the k-algebra Λ. The two k-algebra homomorphisms ∆ ◦ fn and

(fn ⊗ fn) ◦ ∆ are equal to each other on this generating set (according to (13.86.8)), and therefore must
be identical (because if two k-algebra homomorphisms from the same domain are equal to each other on
a generating set of their domain, then these two homomorphisms must be identical). In other words,
∆ ◦ fn = (fn ⊗ fn) ◦∆. This completes the solution of Exercise 2.9.9(d).

(e) Let m ∈ N. From (2.2.18), we have
∏∞
i=1 (1− xit)−1

=
∑
n≥0 hn (x) tn in the ring Λ [[t]]. Substituting

x2
i for xi and t2 for t in this equality, we obtain

(13.86.9)

∞∏
i=1

(
1− x2

i t
2
)−1

=
∑
n≥0

hn
(
x2

1, x
2
2, x

2
3, . . .

) (
t2
)n
.

But

(13.86.10)

∞∏
i=1

(1− xit)−1
=
∑
n≥0

hn (x)︸ ︷︷ ︸
=hn

tn =
∑
n≥0

hnt
n.

Substituting −t for t in this equality, we obtain
∏∞
i=1 (1− xi (−t))−1

=
∑
n≥0 hn (−t)n =

∑
n≥0 (−1)

n
hnt

n.
Thus,

(13.86.11)
∑
n≥0

(−1)
n
hnt

n =

∞∏
i=1

1− xi (−t)︸ ︷︷ ︸
=1+xit


−1

=

∞∏
i=1

(1 + xit)
−1
.

Now,

∑
n≥0

f2 (hn)︸ ︷︷ ︸
=hn(x2

1,x
2
2,x

2
3,...)

(by the definition of f2)

t2n︸︷︷︸
=(t2)n

=
∑
n≥0

hn
(
x2

1, x
2
2, x

2
3, . . .

) (
t2
)n

=

∞∏
i=1

 1− x2
i t

2︸ ︷︷ ︸
=(1−xit)(1+xit)


−1

(by (13.86.9))

=

∞∏
i=1

((1− xit) (1 + xit))
−1

=

( ∞∏
i=1

(1− xit)−1

)
︸ ︷︷ ︸

=
∑
n≥0 hnt

n

(by (13.86.10))

( ∞∏
i=1

(1 + xit)
−1

)
︸ ︷︷ ︸

=
∑
n≥0(−1)nhnt

n

(by (13.86.11))

=

∑
n≥0

hnt
n

∑
n≥0

(−1)
n
hnt

n

 =
∑
n≥0

(
n∑
i=0

hi · (−1)
n−i

hn−i

)
tn

(by the definition of the product of two formal power series) .
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Comparing coefficients before t2m on both sides of this equality, we obtain

f2 (hm) =

2m∑
i=0

hi · (−1)
2m−i︸ ︷︷ ︸

=(−1)i

(since 2m−i≡imod 2)

h2m−i =

2m∑
i=0

hi · (−1)
i
h2m−i =

2m∑
i=0

(−1)
i
hih2m−i.

Exercise 2.9.9(e) is thus solved.
(f) Let p be a prime number, and let a ∈ Λ. We need to prove that fp (a) ≡ ap mod pΛ.
Indeed, let us first check that fp (a) ≡ ap mod pZ [[x]]. Since fp (a) = a (xp1, x

p
2, x

p
3, . . .), this is equiv-

alent to showing that a (xp1, x
p
2, x

p
3, . . .) ≡ ap mod pZ [[x]]. This, in turn, is equivalent to proving that

a (xp1, x
p
2, x

p
3, . . .) = ap, where a denotes the projection of the power series a ∈ Z [[x]] onto the ring (Z/pZ) [[x]]

(by reducing every coefficient modulo p). So let us prove a (xp1, x
p
2, x

p
3, . . .) = ap now.

Write the power series a in the form a =
∑
β κβxβ , where the sum ranges over all weak compositions β,

and where κβ is an element of Z/pZ for every weak composition β. Taking both sides of this equality to the
p-th power, we obtain

(13.86.12) ap =

∑
β

κβxβ

p

.

In the commutative ring (Z/pZ) [[x]], we have p · 1(Z/pZ)[[x]] = 0. Thus, taking the p-th power is a
ring endomorphism of (Z/pZ) [[x]]. This ring endomorphism is moreover continuous (with respect to the
usual topology on (Z/pZ) [[x]]) and (Z/pZ)-linear (by virtue of being a ring endomorphism). Thus, this
endomorphism respects infinite (Z/pZ)-linear combinations; hence,

(13.86.13)

∑
β

κβxβ

p

=
∑
β

κβ
(
xβ
)p
.

But a =
∑
β κβxβ , so that a (xp1, x

p
2, x

p
3, . . .) =

∑
β κβ

(
xβ
)p

(because replacing all variables x1, x2, x3, . . . by

their p-th powers transforms every monomial xβ into
(
xβ
)p

). Thus,

a (xp1, x
p
2, x

p
3, . . .) =

∑
β

κβ
(
xβ
)p

=

∑
β

κβxβ

p

(by (13.86.13))

= ap (by (13.86.12)) .

We thus have proven that a (xp1, x
p
2, x

p
3, . . .) = ap. As explained above, this yields fp (a) ≡ ap mod pZ [[x]]. In

other words, the power series
fp (a)− ap

p
(this is, a priori, an element of Q [[x]]) belongs to Z [[x]]. Since this

power series is also of bounded degree and symmetric (because so are fp (a) and ap), it follows that it lies

in Λ. So we have
fp (a)− ap

p
∈ Λ, thus fp (a)− ap ∈ pΛ and hence fp (a) ≡ ap mod pΛ. This solves Exercise

2.9.9(f).
(g) Set k = Z. Thus, the sign ⊗ will mean ⊗Z in the remainder of this solution. Also, Λ = ΛZ. We define

the notation vp (n) as in Exercise 2.9.6.
Let us introduce a notion from commutative algebra:

In the following, a special Ψ-ring will mean a pair
(
A, (ϕn)n∈{1,2,3,...}

)
, where A is a commutative ring

and (ϕn)n∈{1,2,3,...} is a family of ring endomorphisms ϕn : A→ A of A satisfying the following properties:

• We have ϕn ◦ ϕm = ϕnm for any two positive integers n and m.
• We have ϕ1 = id.
• We have ϕp (a) ≡ ap mod pA for every a ∈ A and every prime number p.

The tensor product of two special Ψ-rings
(
A, (ϕn)n∈{1,2,3,...}

)
and

(
B, (ψn)n∈{1,2,3,...}

)
is defined to be

the pair
(
A⊗B, (ϕn ⊗ ψn)n∈{1,2,3,...}

)
. This pair

(
A⊗B, (ϕn ⊗ ψn)n∈{1,2,3,...}

)
is a special Ψ-ring again678.

678Proof. We need to prove the following five statements:
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Here are three examples of special Ψ-rings which we will need:

• The pair
(
Z, (id)n∈{1,2,3,...}

)
is a special Ψ-ring. (The proof of this relies on Fermat’s little theorem.)

• The pair
(

Λ, (fn)n∈{1,2,3,...}

)
is a special Ψ-ring. (This follows from parts (a), (b), (c) and (f) of

Exercise 2.9.9.)

• The pair
(

Λ⊗ Λ, (fn ⊗ fn)n∈{1,2,3,...}

)
is a special Ψ-ring. (Indeed, this pair is the tensor product of

the special Ψ-ring
(

Λ, (fn)n∈{1,2,3,...}

)
with itself.)

Statement 1: The ring A⊗B is a commutative ring.

Statement 2: The family (ϕn ⊗ ψn)n∈{1,2,3,...} is a family of ring endomorphisms ϕn⊗ψn : A⊗B → A⊗B
of A⊗B.

Statement 3: We have (ϕn ⊗ ψn) ◦ (ϕm ⊗ ψn) = ϕnm ⊗ ψnm for any two positive integers n and m.

Statement 4: We have ϕ1 ⊗ ψ1 = id.

Statement 5: We have (ϕp ⊗ ψp) (a) ≡ ap mod p (A⊗B) for every a ∈ A⊗B and every prime number p.

Proof of Statement 1: This is obvious.

Proof of Statement 2: The family (ϕn)n∈{1,2,3,...} is a family of ring endomorphisms of A (since
(
A, (ϕn)n∈{1,2,3,...}

)
is a

special Ψ-ring). Thus, ϕn is a ring endomorphism of A for every positive integer n. Similarly, ψn is a ring endomorphism of

B for every positive integer n. Thus, ϕn ⊗ ψn is a ring endomorphism of A ⊗ B for every positive integer n. In other words,
Statement 2 holds.

Proof of Statement 3: Let n and m be positive integers. Then, ϕn ◦ ϕm = ϕnm (since
(
A, (ϕn)n∈{1,2,3,...}

)
is a special

Ψ-ring) and ψn ◦ ψm = ψnm (similarly). Now, (ϕn ⊗ ψn) ◦ (ϕm ⊗ ψn) = (ϕn ◦ ϕm)︸ ︷︷ ︸
=ϕnm

⊗ (ψn ◦ ψm)︸ ︷︷ ︸
=ψnm

= ϕnm ⊗ ψnm, and thus

Statement 3 is proven.

Proof of Statement 4: Since
(
A, (ϕn)n∈{1,2,3,...}

)
is a special Ψ-ring, we have ϕ1 = id. Similarly, ψ1 = id. Thus,

ϕ1 ⊗ ψ1 = id⊗ id = id. This proves Statement 4.

Proof of Statement 5: Fix a prime number p. For every commutative ring R, we introduce three pieces of notation:

• We let R denote the commutative ring R/pR.
• We let πR denote the canonical projection R→ R/pR.

• We let powR denote the map R → R which sends every r ∈ R to rp. This is not a linear map in general, but when

p · 1R = 0, the map powR is a ring endomorphism of R.

Now,
(
A, (ϕn)n∈{1,2,3,...}

)
is a special Ψ-ring. Hence, ϕp (a) ≡ ap mod pA for every a ∈ A. In other words, πA (ϕp (a)) =

πA

 ap︸︷︷︸
=powA a

 = πA (powA a) for every a ∈ A. In other words, πA ◦ ϕp = πA ◦ powA. But πA ◦ powA = powA ◦πA (this is

just saying that taking the p-th power commutes with the projection πA). Hence,

πA ◦ ϕp = πA ◦ powA = powA ◦πA.

Similarly,

πB ◦ ψp = πB ◦ powB = powB ◦πB .

For every commutative ring R, the ring R satisfies p · 1R = 0, and thus powR is a ring endomorphism of R. Hence, powA,
powB and powA⊗B are ring endomorphisms, thus Z-algebra endomorphisms; consequently, the tensor product powA⊗ powB
makes sense. Moreover, we have powA⊗ powB = powA⊗B (because both powA⊗ powB and powA⊗B are ring endomorphisms

of A⊗B sending pure tensors α⊗ β to αp ⊗ βp = (α⊗ β)p, and this characterizes them uniquely).

There is a canonical isomorphism A⊗B → A⊗B (because tensoring is right-exact). We identify A⊗B with A⊗B along
this isomorphism. Then, πA⊗B = πA ⊗ πB . Thus,

πA⊗B︸ ︷︷ ︸
=πA⊗πB

◦ (ϕp ⊗ ψp) = (πA ⊗ πB) ◦ (ϕp ⊗ ψp) = (πA ◦ ϕp)︸ ︷︷ ︸
=pow

A
◦πA

⊗ (πB ◦ ψp)︸ ︷︷ ︸
=pow

B
◦πB

=
(
powA ◦πA

)
⊗
(
powB ◦πB

)
=
(
powA⊗ powB

)︸ ︷︷ ︸
=pow

A⊗B

◦ (πA ⊗ πB)︸ ︷︷ ︸
=πA⊗B

= powA⊗B ◦πA⊗B = πA⊗B ◦ powA⊗B

(since taking the p-th power commutes with the projection πA⊗B) .

Hence, every a ∈ A ⊗ B satisfies πA⊗B ((ϕp ⊗ ψp) (a)) = πA⊗B
(
powA⊗B (a)

)
. In other words, every a ∈ A ⊗ B satisfies

(ϕp ⊗ ψp) (a) ≡ powA⊗B (a) = ap mod p (A⊗B). Thus, Statement 5 is proven.

It thus follows that
(
A⊗B, (ϕn ⊗ ψn)n∈{1,2,3,...}

)
is a special Ψ-ring, qed.
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Now, we will establish a pattern which we will follow in our new solutions to parts (b), (c), (d), (e) and

(f) of Exercise 2.9.4. Namely, let
(
A, (ϕn)n∈{1,2,3,...}

)
be a special Ψ-ring such that the Z-module A is free.

Then, A canonically injects into A ⊗ Q. Identify A with a subring of A ⊗ Q using this injection. Also,
consider Λ = ΛZ as a subring of ΛQ as in Exercise 2.9.4. Let f : ΛQ → A⊗Q be a Q-algebra homomorphism
such that every n ∈ {1, 2, 3, . . .} satisfies f (pn) ∈ A. We can then ask for a criterion for f (Λ) ⊂ A. Using
Exercise 2.9.6, we can obtain such an answer:

(13.86.14)

(
We have f (Λ) ⊂ A if every positive integer n and every

prime factor p of n satisfy ϕp
(
f
(
pn/p

))
≡ f (pn) mod pvp(n)A

)
.

679 (The “if” here can be extended to “if and only if”, but we do not need the “only if” part.)
Let us now give alternative solutions to parts (b), (c), (d), (e) and (f) of Exercise 2.9.4:
Alternative solution to part (b) of Exercise 2.9.4: The Z-module Λ⊗Λ is free, and thus canonically injects

into (Λ⊗ Λ)⊗Q. We use this identification to regard Λ⊗ Λ as a subring of (Λ⊗ Λ)⊗Q. We also identify
ΛQ ⊗Q ΛQ with (Λ⊗ Λ)⊗Q. Notice that every n ∈ {1, 2, 3, . . .} satisfies ∆× (pn) = pn ⊗ pn ∈ Λ⊗ Λ.

We need to prove that ∆× (Λ) ⊂ Λ ⊗Z Λ. In other words, we need to prove that ∆× (Λ) ⊂ Λ ⊗ Λ. This

will follow from (13.86.14) (applied to
(
A, (ϕn)n∈{1,2,3,...}

)
=
(

Λ⊗ Λ, (fn ⊗ fn)n∈{1,2,3,...}

)
and f = ∆×)

once we have showed that every positive integer n and every prime factor p of n satisfy

(13.86.15) (fp ⊗ fp)
(
∆×

(
pn/p

))
≡ ∆× (pn) mod pvp(n) (Λ⊗ Λ) .

Thus, it remains to prove (13.86.15).
Let n be a positive integer, and let p be a prime factor of n. The definition of fp

(
pn/p

)
yields

fp
(
pn/p

)
= pn/p (xp1, x

p
2, x

p
3, . . .) =

(
x
n/p
1

)p
+
(
x
n/p
2

)p
+
(
x
n/p
3

)p
+ · · ·

= xn1 + xn2 + xn3 + · · · = pn.(13.86.16)

Now,

(fp ⊗ fp)

 ∆×
(
pn/p

)︸ ︷︷ ︸
=pn/p⊗pn/p

(by the definition of ∆×)

 = (fp ⊗ fp)
(
pn/p ⊗ pn/p

)
= fp

(
pn/p

)︸ ︷︷ ︸
=pn

⊗ fp
(
pn/p

)︸ ︷︷ ︸
=pn

= pn ⊗ pn = ∆× (pn) (by the definition of ∆×) .

Hence, (13.86.15) holds. Thus, Exercise 2.9.4(b) is solved again.
Alternative solution to part (c) of Exercise 2.9.4: We identify Z ⊗ Q with Q. Every n ∈ {1, 2, 3, . . .}

satisfies εr (pn) = r ∈ Z.

679Proof of (13.86.14): Exercise 2.9.6 can be applied to the family (bn)n≥1 = (f (pn))n≥1 (indeed, the conditions of Exercise

2.9.6 are satisfied because
(
A, (ϕn)n∈{1,2,3,...}

)
is a special Ψ-ring). As a result, we see that the Assertions C, D, E, F , G, H

and J for (bn)n≥1 = (f (pn))n≥1 are equivalent.

Assume that every positive integer n and every prime factor p of n satisfy ϕp
(
f
(
pn/p

))
≡ f (pn) mod pvp(n)A. Then, the

family (f (pn))n≥1 ∈ A{1,2,3,...} satisfies the Assertion C of Exercise 2.9.6. But since Assertion C is equivalent to Assertion

J , this yields that the family (f (pn))n≥1 ∈ A{1,2,3,...} satisfies the Assertion J as well. In other words, there exists a ring

homomorphism ΛZ → A which, for every positive integer n, sends pn to f (pn). Let g be such a ring homomorphism. Then,
g (pn) = f (pn) for every positive integer n.

The Z-algebra homomorphism g : ΛZ → A can be extended to a Q-algebra homomorphism ΛZ ⊗ Q → A ⊗ Q (by base

change). Since ΛZ ⊗ Q ∼= ΛQ canonically, we can regard this latter Q-algebra homomorphism as a Q-algebra homomorphism
ΛQ → A⊗ Q. Let us denote this Q-algebra homomorphism ΛQ → A⊗ Q by g̃. Thus, g̃ |Λ= g.

Now, both f and g̃ are Q-algebra homomorphisms ΛQ → A⊗Q. These homomorphisms f and g̃ are equal to each other on

the elements p1, p2, p3, . . . of ΛQ (because for every positive integer n, we have g̃ (pn) = (g̃ |Λ)︸ ︷︷ ︸
=g

(pn) = g (pn) = f (pn)). Since

the elements p1, p2, p3, . . . generate the Q-algebra ΛQ, this forces said homomorphisms f and g̃ to be identical. That is, we have

f = g̃. Hence, f (Λ) = g̃ (Λ) = (g̃ |Λ)︸ ︷︷ ︸
=g

(Λ) = g (Λ) ⊂ A (since the target of g is A). This proves (13.86.14).



652 DARIJ GRINBERG AND VICTOR REINER

We need to prove that εr (Λ) ⊂ Z. This will follow from (13.86.14) (applied to
(
A, (ϕn)n∈{1,2,3,...}

)
=(

Z, (id)n∈{1,2,3,...}

)
and f = εr) once we have showed that every positive integer n and every prime factor p

of n satisfy

id
(
εr
(
pn/p

))
≡ εr (pn) mod pvp(n)Z.

But this congruence follows immediately from

id
(
εr
(
pn/p

))
= εr

(
pn/p

)
= r (by the definition of εr)

= εr (pn) (by the definition of εr) .

Thus, Exercise 2.9.4(c) is solved again.
Alternative solution to part (d) of Exercise 2.9.4: The Z-module Λ is free, and thus canonically injects

into Λ⊗Q. We use this identification to regard Λ as a subring of Λ⊗Q. We also identify ΛQ with Λ⊗Q.
Notice that every n ∈ {1, 2, 3, . . .} satisfies ir (pn) = rpn ∈ Λ.

We need to prove that ir (Λ) ⊂ Λ. This will follow from (13.86.14) (applied to
(
A, (ϕn)n∈{1,2,3,...}

)
=(

Λ, (fn)n∈{1,2,3,...}

)
and f = ir) once we have showed that every positive integer n and every prime factor p

of n satisfy

fp
(
ir
(
pn/p

))
≡ ir (pn) mod pvp(n)Λ.

But this congruence follows from

fp

 ir
(
pn/p

)︸ ︷︷ ︸
=rpn/p

(by the definition of ir)

 = fp
(
rpn/p

)
= r fp

(
pn/p

)︸ ︷︷ ︸
=pn

(by (13.86.16))

= rpn = ir (pn) (by the definition of ir) .

This solves Exercise 2.9.4(d) again.
Alternative solution to part (e) of Exercise 2.9.4: The Z-module Λ is free, and thus canonically injects

into Λ⊗Q. We use this identification to regard Λ as a subring of Λ⊗Q. We also identify ΛQ with Λ⊗Q.
It is easy to see that the map Sq is a Q-algebra homomorphism680. Every n ∈ {1, 2, 3, . . .} satisfies

Sq (pn) = p2
n ∈ Λ.

We need to prove that Sq (Λ) ⊂ Λ. This will follow from (13.86.14) (applied to
(
A, (ϕn)n∈{1,2,3,...}

)
=(

Λ, (fn)n∈{1,2,3,...}

)
and f = Sq) once we have showed that every positive integer n and every prime factor

p of n satisfy

fp
(
Sq
(
pn/p

))
≡ Sq (pn) mod pvp(n)Λ.

680Proof. We need to check that Sq (ab) = (Sq a) (Sq b) for any a ∈ ΛQ and b ∈ ΛQ. Since Sq is Q-linear, this only needs to be

checked on a basis of the Q-module ΛQ. For this we use the basis (pλ)λ∈Par of ΛQ. Checking the identity Sq (ab) = (Sq a) (Sq b)

on this basis amounts to proving that Sq (pλpµ) = (Sq (pλ)) (Sq (pµ)) for any two partitions λ and µ. So let λ and µ be two

partitions. It is clear that there exists a partition ν such that pλpµ = pν (indeed, this ν is the partition obtained by sorting
the list

(
λ1, λ2, . . . , λ`(λ), µ1, µ2, . . . , µ`(µ)

)
in decreasing order). Consider this ν. We have

Sq

pλpµ︸ ︷︷ ︸
=pν

 = Sq (pν) = p2
ν (by the definition of Sq)

= (pλpµ)2 (since pν = pλpµ)

= p2
λ︸︷︷︸

=Sq(pλ)
(by the definition of Sq )

p2
µ︸︷︷︸

=Sq(pµ)
(by the definition of Sq )

= (Sq (pλ)) (Sq (pµ)) ,

which is what we wanted to prove. Thus we have checked that Sq (ab) = (Sq a) (Sq b) for any a ∈ ΛQ and b ∈ ΛQ. Hence, Sq is

a Q-algebra homomorphism (since Sq (1) = 1), qed.
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But this congruence follows from

fp

 Sq
(
pn/p

)︸ ︷︷ ︸
=p2

n/p

(by the definition of Sq )

 = fp

(
p2
n/p

)
=

 fp
(
pn/p

)︸ ︷︷ ︸
=pn

(by (13.86.16))


2

(since fp is a ring homomorphism)

= p2
n = Sq (pn) .

This solves Exercise 2.9.4(e) again.
Alternative solution to part (f) of Exercise 2.9.4: The Z-module Λ⊗Λ is free, and thus canonically injects

into (Λ⊗ Λ)⊗Q. We use this identification to regard Λ⊗ Λ as a subring of (Λ⊗ Λ)⊗Q. We also identify

ΛQ ⊗Q ΛQ with (Λ⊗ Λ)⊗Q. Notice that every n ∈ {1, 2, 3, . . .} satisfies ∆r (pn) =
∑n−1
i=1

(
n
i

)
pi ⊗ pn−i + r⊗

pn + pn ⊗ r ∈ Λ⊗ Λ.
We need to prove that ∆r (Λ) ⊂ Λ⊗Z Λ. In other words, we need to prove that ∆r (Λ) ⊂ Λ⊗Λ. This will

follow from (13.86.14) (applied to
(
A, (ϕn)n∈{1,2,3,...}

)
=
(

Λ⊗ Λ, (fn ⊗ fn)n∈{1,2,3,...}

)
and f = ∆r) once

we have showed that every positive integer n and every prime factor p of n satisfy

(13.86.17) (fp ⊗ fp)
(
∆r

(
pn/p

))
≡ ∆r (pn) mod pvp(n) (Λ⊗ Λ) .

Thus, it remains to prove (13.86.17).
Let n be a positive integer, and let p be a prime factor of n. For the sake of brevity, we denote r by p0.

Then,

∆r (pn) =

n−1∑
i=1

(
n

i

)
pi ⊗ pn−i + r︸︷︷︸

=p0

⊗pn + pn ⊗ r︸︷︷︸
=p0

=

n−1∑
i=1

(
n

i

)
pi ⊗ pn−i + p0 ⊗ pn + pn ⊗ p0 =

n∑
i=0

(
n

i

)
pi ⊗ pn−i.(13.86.18)

Applying this to n/p instead of n, we obtain

(13.86.19) ∆r

(
pn/p

)
=

n/p∑
i=0

(
n/p

i

)
pi ⊗ pn/p−i.

Now, we will need two elementary congruences for binomial coefficients:

• For any i ∈ N satisfying p | i, we have

(13.86.20)

(
n/p

i/p

)
≡
(
n

i

)
mod pvp(n).

(This follows from (13.85.3), applied to q = 1 and r = i/n.)
• For any i ∈ N satisfying p - i, we have

(13.86.21) 0 ≡
(
n

i

)
mod pvp(n).

(This follows from (13.85.3), applied to q = 1 and r = i/n, keeping in mind that

(
a

b

)
= 0 if b /∈ N.)
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Now, applying the map fp ⊗ fp to both sides of the equality (13.86.19), we obtain

(fp ⊗ fp)
(
∆r

(
pn/p

))
= (fp ⊗ fp)

n/p∑
i=0

(
n/p

i

)
pi ⊗ pn/p−i


=

n/p∑
i=0

(
n/p

i

)
fp (pi)︸ ︷︷ ︸

=fp(ppi/p)=ppi
(by (13.86.16), applied to

pi instead of n)

⊗ fp
(
pn/p−i

)︸ ︷︷ ︸
=fp(p(n−pi)/p)=pn−pi

(by (13.86.16), applied to
n−pi instead of n)

=

n/p∑
i=0

(
n/p

i

)
ppi ⊗ pn−pi =

∑
i∈{0,1,...,n/p}

(
n/p

i

)
ppi ⊗ pn−pi =

∑
i∈{0,1,...,n};

p|i

(
n/p

i/p

)
pi ⊗ pn−i

(here, we have substituted i/p for i in the sum). Comparing this with

∆r (pn) =

n∑
i=0

(
n

i

)
pi ⊗ pn−i (by (13.86.18))

=
∑

i∈{0,1,...,n};
p|i

(
n

i

)
︸︷︷︸

≡

(
n/p

i/p

)
mod pvp(n)(Λ⊗Λ)

(by (13.86.20))

pi ⊗ pn−i +
∑

i∈{0,1,...,n};
p-i

(
n

i

)
︸︷︷︸

≡0 mod pvp(n)(Λ⊗Λ)
(by (13.86.21))

pi ⊗ pn−i

≡
∑

i∈{0,1,...,n};
p|i

(
n/p

i/p

)
pi ⊗ pn−i +

∑
i∈{0,1,...,n};

p-i

0pi ⊗ pn−i

︸ ︷︷ ︸
=0

=
∑

i∈{0,1,...,n};
p|i

(
n/p

i/p

)
pi ⊗ pn−i mod pvp(n) (Λ⊗ Λ) ,

we obtain
(fp ⊗ fp)

(
∆r

(
pn/p

))
≡ ∆r (pn) mod pvp(n) (Λ⊗ Λ) .

Hence, (13.86.17) holds. Thus, Exercise 2.9.4(f) is solved again.

13.87. Solution to Exercise 2.9.10. Solution to Exercise 2.9.10. Let us first notice that every positive
integer n satisfies

(13.87.1) vn (hm) =

{
hm/n, if n | m;

0, if n - m
for every m ∈ N

681.
(b) Let n be a positive integer. Recall that a ring of formal power series R [[t]] over a commutative ring

R has a canonical topology which makes it into a topological R-algebra. Thus, in particular, Λ [[t]] becomes
a topological Λ-algebra. We shall be considering this topology when we speak of continuity.

681Proof of (13.87.1): Let n be a positive integer. Let m ∈ N. We need to prove that (13.87.1) holds.

If m 6= 0, then m is a positive integer. Hence, if m 6= 0, then (13.87.1) follows immediately from the definition of vn (hm).

Thus, for the rest of this proof of (13.87.1), we can WLOG assume that we don’t have m 6= 0. Assume this.

We don’t have m 6= 0. Thus, we have m = 0, so that hm = h0 = 1 and therefore vn

hm︸︷︷︸
=1

 = vn (1) = 1 (since vn is a

k-algebra homomorphism).
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The k-algebra homomorphism vn : Λ → Λ induces a continuous k-algebra homomorphism vn [[t]] :
Λ [[t]]→ Λ [[t]] given by

(vn [[t]])

(∑
i∈N

ait
i

)
=
∑
i∈N

vn (ai) t
i for all (ai)i∈N ∈ ΛN.

Consider the power series H (t) ∈ Λ [[t]] and E (t) ∈ Λ [[t]] defined in the proof of Proposition 2.4.1. We have

H (t) = 1 + h1 (x) t+ h2 (x) t2 + · · · =
∑
i≥0

hi (x) ti =
∑
i≥0

hit
i

and similarly E (t) =
∑
i≥0 eit

i.

Substituting tn for t in the equality H (t) =
∑
i≥0 hit

i, we obtain H (tn) =
∑
i≥0 hi (tn)

i
. Substituting −t

for t in the equality E (t) =
∑
i≥0 eit

i, we obtain E (−t) =
∑
i≥0 ei (−t)i︸ ︷︷ ︸

=(−1)iti

=
∑
i≥0 (−1)

i
eit

i. Substituting

−tn for t in the equality E (t) =
∑
i≥0 eit

i, we obtain E (−tn) =
∑
i≥0 ei (−tn)

i
.

Applying the map vn [[t]] to both sides of the equality H (t) =
∑
i≥0 hit

i, we obtain

(vn [[t]]) (H (t))

= (vn [[t]])

∑
i≥0

hit
i

 =
∑
i≥0

vn (hi)︸ ︷︷ ︸
=

hi/n, if n | i;
0, if n - i

(by (13.87.1), applied to m=i)

ti (by the definition of vn [[t]])

=
∑
i≥0

{
hi/n, if n | i;
0, if n - i

· ti =
∑
i≥0;
n|i

{
hi/n, if n | i;
0, if n - i︸ ︷︷ ︸

=hi/n
(since n|i)

·ti +
∑
i≥0;
n-i

{
hi/n, if n | i;
0, if n - i︸ ︷︷ ︸

=0
(since n-i)

·ti

=
∑
i≥0;
n|i

hi/nt
i +

∑
i≥0;
n-i

0ti

︸ ︷︷ ︸
=0

=
∑
i≥0;
n|i

hi/nt
i =

∑
i≥0

hi tni︸︷︷︸
=(tn)i

(here, we substituted ni for i in the sum)

=
∑
i≥0

hi (tn)
i

= H (tn) .

(13.87.2)

Also,

{
hm/n, if n | m;

0, if n - m
= hm/n (since n | 0 = m). Now,

vn (hm) = 1 = h0 = hm/n

since hm/n = h0 (since m︸︷︷︸
=0

/n = 0/n = 0)


=

{
hm/n, if n | m;

0, if n - m
.

This proves (13.87.1).
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But (2.4.3) yields 1 = E (−t)H (t), so that E (−t) =
1

H (t)
. Applying the map vn [[t]] to both sides of this

equality, we obtain

(vn [[t]]) (E (−t)) = (vn [[t]])

(
1

H (t)

)
=

1

(vn [[t]]) (H (t))
(since vn [[t]] is a k-algebra homomorphism)

=
1

H (tn)
(by (13.87.2))

= E (−tn)

 because E (−tn) =
1

H (tn)
(this follows by substituting tn

for t in the equality E (−t) =
1

H (t)
)


=
∑
i≥0

ei (−tn)
i︸ ︷︷ ︸

=(−1)itni

=
∑
i≥0

(−1)
i
eit

ni.(13.87.3)

Now,

∑
i≥0

{
(−1)

i/n
ei/n, if n | i;

0, if n - i
· ti

=
∑
i≥0;
n|i

{
(−1)

i/n
ei/n, if n | i;

0, if n - i︸ ︷︷ ︸
=(−1)i/nei/n

(since n|i)

·ti +
∑
i≥0;
n-i

{
(−1)

i/n
ei/n, if n | i;

0, if n - i︸ ︷︷ ︸
=0

(since n-i)

·ti

=
∑
i≥0;
n|i

(−1)
i/n

ei/nt
i +

∑
i≥0;
n-i

0ti

︸ ︷︷ ︸
=0

=
∑
i≥0;
n|i

(−1)
i/n

ei/nt
i

=
∑
i≥0

(−1)
i
eit

ni (here, we substituted ni for i in the sum)

= (vn [[t]]) (E (−t)) (by (13.87.3)) .(13.87.4)

But applying the map vn [[t]] to both sides of the equality E (−t) =
∑
i≥0 (−1)

i
eit

i, we obtain

(vn [[t]]) (E (−t)) = (vn [[t]])

∑
i≥0

(−1)
i
eit

i

 =
∑
i≥0

vn

(
(−1)

i
ei

)
︸ ︷︷ ︸

=(−1)ivn(ei)
(since vn is k-linear)

ti (by the definition of vn [[t]])

=
∑
i≥0

(−1)
i
vn (ei) t

i.

Hence,

(13.87.5)
∑
i≥0

(−1)
i
vn (ei) t

i = (vn [[t]]) (E (−t)) =
∑
i≥0

{
(−1)

i/n
ei/n, if n | i;

0, if n - i
· ti

(by (13.87.4)).
Now, let m be a positive integer. Comparing coefficients before tm in the equality (13.87.5), we obtain

(−1)
m

vn (em) =

{
(−1)

m/n
em/n, if n | m;

0, if n - m
.
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Dividing this by (−1)
m

, we obtain

vn (em) =
1

(−1)
m

{
(−1)

m/n
em/n, if n | m;

0, if n - m
=


1

(−1)
m (−1)

m/n
em/n, if n | m;

0, if n - m

=

{
(−1)

m−m/n
em/n, if n | m;

0, if n - m

(because if n | m, then
1

(−1)
m (−1)

m/n
= (−1)

m/n−m
= (−1)

m−m/n
). This solves Exercise 2.9.10(b).

(a) Let n be a positive integer. We define the continuous k-algebra homomorphism vn [[t]] : Λ [[t]]→ [[t]]
as in the solution of Exercise 2.9.10(a).

Consider the power series H (t) ∈ Λ [[t]] defined in the proof of Proposition 2.4.1. We have H (t) =∑
i≥0 hit

i (this can be proven just as in the solution of Exercise 2.9.10(a)), so that H ′ (t) =
∑
i≥1 ihit

i−1

(by the definition of the derivative of a power series). We can also see that the equality (13.87.2) holds (this
can be proven just as in the solution of Exercise 2.9.10(a)). The power series H (t) is invertible (since its
constant term is h0 = 1).

Exercise 2.5.21 yields
∑
m≥0 pm+1t

m =
H ′ (t)

H (t)
, so that

H ′ (t)

H (t)
=
∑
m≥0

pm+1t
m =

∑
i≥1

pit
i−1 (here, we substituted i for m+ 1 in the sum) .

Multiplying this equality with t, we obtain

t · H
′ (t)

H (t)
= t ·

∑
i≥1

pit
i−1 =

∑
i≥1

pi tt
i−1︸ ︷︷ ︸

=ti

=
∑
i≥1

pit
i.

Multiplying this equality with H (t), we obtain

t ·H ′ (t) = H (t) ·
∑
i≥1

pit
i.

Hence,

(13.87.6) H (t) ·
∑
i≥1

pit
i = t · H ′ (t)︸ ︷︷ ︸

=
∑
i≥1 ihit

i−1

= t ·
∑
i≥1

ihit
i−1 =

∑
i≥1

ihi tt
i−1︸ ︷︷ ︸

=ti

=
∑
i≥1

ihit
i.

Substituting tn for t in this equality, we obtain

(13.87.7) H (tn) ·
∑
i≥1

pi (tn)
i

=
∑
i≥0

ihi (tn)
i
.
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Applying the map vn [[t]] to both sides of the equality (13.87.6), we obtain

(vn [[t]])

H (t) ·
∑
i≥1

pit
i


= (vn [[t]])

∑
i≥1

ihit
i

 =
∑
i≥1

i (vn [[t]]) (hi)︸ ︷︷ ︸
=vn(hi)

(by the definition of vn[[t]])

(vn [[t]])
(
ti
)︸ ︷︷ ︸

=ti

(by the definition of vn[[t]])

(since vn [[t]] is a continuous k-algebra homomorphism)

=
∑
i≥1

i vn (hi)︸ ︷︷ ︸
=

hi/n, if n | i;
0, if n - i

(by the definition of vn)

ti

=
∑
i≥1

i

{
hi/n, if n | i;
0, if n - i

· ti =
∑
i≥1;
n|i

i

{
hi/n, if n | i;
0, if n - i︸ ︷︷ ︸

=hi/n
(since n|i)

·ti +
∑
i≥1;
n-i

i

{
hi/n, if n | i;
0, if n - i︸ ︷︷ ︸

=0
(since n-i)

·ti

=
∑
i≥1;
n|i

ihi/nt
i +

∑
i≥1;
n-i

0ti

︸ ︷︷ ︸
=0

=
∑
i≥1;
n|i

ihi/nt
i =

∑
i≥0;
n|i

ihi/nt
i

since
∑
i≥0;
n|i

ihi/nt
i =

∑
i≥1;
n|i

ihi/nt
i + 0h0/nt

0︸ ︷︷ ︸
=0

=
∑
i≥1;
n|i

ihi/nt
i


=
∑
i≥0

nihi tni︸︷︷︸
=(tn)i

(here, we substituted ni for i in the sum)

=
∑
i≥0

nihi (tn)
i

= n
∑
i≥0

ihi (tn)
i

︸ ︷︷ ︸
=H(tn)·

∑
i≥1 pi(t

n)i

(by (13.87.7))

= n ·H (tn) ·
∑
i≥1

pi (tn)
i

= H (tn) · n ·
∑
i≥1

pi (tn)
i
.

Compared with

(vn [[t]])

H (t) ·
∑
i≥1

pit
i


= (vn [[t]]) (H (t))︸ ︷︷ ︸

=H(tn)
(by (13.87.2))

· (vn [[t]])

∑
i≥1

pit
i

 (since vn [[t]] is a k-algebra homomorphism)

= H (tn) · (vn [[t]])

∑
i≥1

pit
i

 ,

this becomes

H (tn) · n ·
∑
i≥1

pi (tn)
i

= H (tn) · (vn [[t]])

∑
i≥1

pit
i

 .
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We can divide both sides of this equality by H (tn) (since H (tn) is invertible682). As a result, we obtain

n ·
∑
i≥1

pi (tn)
i

= (vn [[t]])

∑
i≥1

pit
i

 =
∑
i≥1

(vn [[t]]) (pi)︸ ︷︷ ︸
=vn(pi)

(by the definition of vn[[t]])

(vn [[t]])
(
ti
)︸ ︷︷ ︸

=ti

(by the definition of vn[[t]])

(since vn [[t]] is a continuous k-algebra homomorphism)

=
∑
i≥1

vn (pi) t
i.(13.87.8)

On the other hand,

∑
i≥1

{
npi/n, if n | i;
0, if n - i

· ti

=
∑
i≥1;
n|i

{
npi/n, if n | i;
0, if n - i︸ ︷︷ ︸

=npi/n
(since n|i)

·ti +
∑
i≥1;
n-i

{
npi/n, if n | i;
0, if n - i︸ ︷︷ ︸

=0
(since n-i)

·ti

=
∑
i≥1;
n|i

npi/nt
i +

∑
i≥1;
n-i

0ti

︸ ︷︷ ︸
=0

=
∑
i≥1;
n|i

npi/nt
i

=
∑
i≥1

npi tni︸︷︷︸
=(tn)i

(here, we have substituted ni for i in the sum)

=
∑
i≥1

npi (tn)
i

= n ·
∑
i≥1

pi (tn)
i

=
∑
i≥1

vn (pi) t
i (by (13.87.8)) .(13.87.9)

Now, let m be a positive integer. Comparing coefficients before tm in the equality (13.87.9), we obtain

{
npm/n, if n | m;

0, if n - m
= vn (pm) .

This solves Exercise 2.9.10(a).
(c) Fix two positive integers n and m. We need to prove that vn ◦vm = vnm. But both vn ◦vm and vnm

are k-algebra homomorphisms (since vn, vm and vnm are k-algebra homomorphisms).
Let us now show that

(13.87.10) (vn ◦ vm) (hr) = vnm (hr) for every positive integer r.

682Proof. We know that the power series H (t) is invertible. That is, there exists a power series A (t) ∈ Λ [[t]] such that
A (t) ·H (t) = 1. Consider this A. Substituting tn for t in the equality A (t) ·H (t) = 1, we obtain A (tn) ·H (tn) = 1. Hence,

the power series H (tn) is invertible (and its inverse is A (tn)), qed.
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Proof of (13.87.10): Let r be a positive integer. If m - r, then (13.87.10) holds683. Thus, for the rest of
this proof, we can WLOG assume that we don’t have m - r. Assume this.

We have m | r (since we don’t have m - r). Thus, r/m is a positive integer. By the definition of vm, we

have vm (hr) =

{
hr/m, if m | r;
0, if m - r

= hr/m (since m | r). Now,

(vn ◦ vm) (hr) = vn

vm (hr)︸ ︷︷ ︸
=hr/m

 = vn
(
hr/m

)

=

{
h(r/m)/n, if n | r/m;

0, if n - r/m
(by the definition of vn)

=

{
h(r/m)/n, if nm | r;
0, if nm - r(

since the condition n | r/m is equivalent to the condition nm | r,
and since the condition n - r/m is equivalent to the condition nm - r

)
=

{
hr/(nm), if nm | r;
0, if nm - r

(since (r/m) /n = r/ (nm)) .

Compared with

vnm (hr) =

{
hr/(nm), if nm | r;
0, if nm - r

(by the definition of vnm) ,

this yields (vn ◦ vm) (hr) = vnm (hr). This proves (13.87.10).
Now, recall that the family (hr)r≥1 generates the k-algebra Λ (according to Proposition 2.4.1). In other

words, (hr)r≥1 is a generating set of the k-algebra Λ. The two k-algebra homomorphisms vn ◦ vm and vnm
are equal to each other on this generating set (according to (13.87.10)), and therefore must be identical
(because if two k-algebra homomorphisms from the same domain are equal to each other on a generating set
of their domain, then these two homomorphisms must be identical). In other words, vn ◦ vm = vnm. This
solves Exercise 2.9.10(c).

(d) For every positive integer r, we have

v1 (hr) =

{
hr/1, if 1 | r;
0, if 1 - r

(by the definition of v1)

= hr/1 (since 1 | r)
= hr = id (hr) .(13.87.11)

Now, recall that the family (hr)r≥1 generates the k-algebra Λ (according to Proposition 2.4.1). In other

words, (hr)r≥1 is a generating set of the k-algebra Λ. The two k-algebra homomorphisms v1 and id are equal

to each other on this generating set (according to (13.87.11)), and therefore must be identical (because if two
k-algebra homomorphisms from the same domain are equal to each other on a generating set of their domain,
then these two homomorphisms must be identical). In other words, v1 = id. This solves Exercise 2.9.10(d).

(e) Fix a positive integer n. We need to show that vn : Λ→ Λ is a Hopf algebra homomorphism.

683Proof. Assume that m - r. Then, nm - r (because otherwise, we would have nm | r, and therefore m | nm | r, which

would contradict m - r).

By the definition of vm, we have vm (hr) =

{
hr/m, if m | r;
0, if m - r

= 0 (since m - r). By the definition of vnm, we have

vnm (hr) =

{
hr/(nm), if nm | r;
0, if nm - r

= 0 (since nm - r). Now, (vn ◦ vm) (hr) = vn

vm (hr)︸ ︷︷ ︸
=0

 = vn (0) = 0 (since vn is

k-linear). Compared with vnm (hr) = 0, this yields (vn ◦ vm) (hr) = vnm (hr). Hence, (13.87.10) holds is proven under the

assumption that m - r. Qed.
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We know that vn : Λ→ Λ is a k-algebra homomorphism. Thus, vn ⊗ vn : Λ⊗ Λ→ Λ⊗ Λ is a k-algebra
homomorphism. Also, ∆ : Λ→ Λ⊗Λ is a k-algebra homomorphism (due to the axioms of a bialgebra, since
Λ is a bialgebra). Hence, ∆ ◦ vn and (vn ⊗ vn) ◦∆ are k-algebra homomorphisms.

For every q ∈ N, we have

(13.87.12) ∆ (hq) =
∑

i∈{0,1,...,q}

hi ⊗ hq−i.

684. Furthermore, for every q ∈ N, we have

(13.87.13) vn (hnq) = hq

685.
Now, we shall prove that

(13.87.14) (∆ ◦ vn) (hr) = ((vn ⊗ vn) ◦∆) (hr) for every positive integer r.

Proof of (13.87.14): Let r be a positive integer. We need to prove (13.87.14).
Let us first notice that

(13.87.15)
(vn ⊗ vn) (hi ⊗ hr−i) = 0 for every i ∈ {0, 1, . . . , r} which does not satisfy (n | i and n | r − i)

686. In particular,

(13.87.16) (vn ⊗ vn) (hi ⊗ hr−i) = 0 for every i ∈ {0, 1, . . . , r} satisfying n - i
687.

684Proof of (13.87.12): Let q ∈ N. Then, Proposition 2.3.6(iii) (applied to q instead of n) yields

∆ (hq) =
∑
i+j=q

hi ⊗ hj =
∑

i∈{0,1,...,q}
hi ⊗ hq−i

(here, we have substituted (i, q − i) for (i, j) in the sum), qed.
685Proof of (13.87.13): Let q ∈ N. Applying (13.87.1) to nq instead of m, we obtain

vn (hnq) =

{
h(nq)/n, if n | nq;
0, if n - nq

= h(nq)/n (since n | nq)

= hq ,

qed.
686Proof of (13.87.15): Let i ∈ {0, 1, . . . , r} be such that we don’t have (n | i and n | r − i). If n - i, then

(vn ⊗ vn) (hi ⊗ hr−i) = vn (hi)︸ ︷︷ ︸
=

hi/n, if n | i;
0, if n - i

(by (13.87.1), applied to m=i)

⊗vn (hr−i) =

{
hi/n, if n | i;
0, if n - i︸ ︷︷ ︸

=0
(since n-i)

⊗vn (hr−i)

= 0⊗ vn (hr−i) = 0.

Hence, if n - i, then (13.87.15) is proven. Thus, for the rest of this proof of (13.87.15), we can WLOG assume that we don’t

have n - i. Assume this.
We have n | i (since we don’t have n - i). Hence, we don’t have n | r−i (because otherwise, we would have (n | i and n | r − i),

which would contradict the fact that we don’t have (n | i and n | r − i)). In other words, we have n - r − i. Now,

(vn ⊗ vn) (hi ⊗ hr−i) = vn (hi)⊗ vn (hr−i)︸ ︷︷ ︸
=

h(r−i)/n, if n | r − i;
0, if n - r − i

(by (13.87.1), applied to m=r−i)

= vn (hi)⊗
{
h(r−i)/n, if n | r − i;
0, if n - r − i︸ ︷︷ ︸

=0
(since n-r−i)

= vn (hi)⊗ 0 = 0.

This proves (13.87.15).
687Proof of (13.87.16): Let i ∈ {0, 1, . . . , r} be such that n - i. Then, we don’t have n | i. Hence, we don’t have

(n | i and n | r − i). Thus, (13.87.16) follows from (13.87.15), qed.
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Let us now assume that n - r. Then, (13.87.1) (applied to m = r) yields vn (hr) =

{
hr/n, if n | r;
0, if n - r

= 0

(since n - r), so that (∆ ◦ vn) (hr) = ∆

vn (hr)︸ ︷︷ ︸
=0

 = ∆ (0) = 0. Also,

(13.87.17) (vn ⊗ vn) (hi ⊗ hr−i) = 0 for every i ∈ {0, 1, . . . , r}

688. Now,

((vn ⊗ vn) ◦∆) (hr) = (vn ⊗ vn)

 ∆ (hr)︸ ︷︷ ︸
=
∑
i∈{0,1,...,r} hi⊗hr−i

(by (13.87.12), applied to q=r)

 = (vn ⊗ vn)

 ∑
i∈{0,1,...,r}

hi ⊗ hr−i


=

∑
i∈{0,1,...,r}

(vn ⊗ vn) (hi ⊗ hr−i)︸ ︷︷ ︸
=0

(by (13.87.17))

(since the map vn ⊗ vn is k-linear)

=
∑

i∈{0,1,...,r}

0 = 0.

Compared to (∆ ◦ vn) (hr) = 0, this yields (∆ ◦ vn) (hr) = ((vn ⊗ vn) ◦∆) (hr). In other words, (13.87.14)
holds.

Now, let us forget that we assumed that n - r. We thus have proven that (13.87.14) holds under the
assumption that n - r. Hence, for the rest of the proof of (13.87.14), we can WLOG assume that we don’t
have n - r. Assume this.

We have n | r (since we don’t have n - r). Hence, r/n is a positive integer. Denote this positive
integer r/n by s. Then, s = r/n, so that r = ns. The equality (13.87.1) (applied to m = r) yields

vn (hr) =

{
hr/n, if n | r;
0, if n - r

= hr/n (since n | r), and we have

(13.87.18) (∆ ◦ vn) (hr) = ∆

 vn (hr)︸ ︷︷ ︸
=hr/n=hs

(since r/n=s)

 = ∆ (hs) =
∑

i∈{0,1,...,s}

hi ⊗ hs−i

(by (13.87.12), applied to q = s).

688Proof of (13.87.17): Let i ∈ {0, 1, . . . , r}.
Assume (for the sake of contradiction) that (n | i and n | r − i). Then, i ≡ 0 modn (since n | i) and r ≡ imodn (since

n | r − i). Hence, r ≡ i ≡ 0 modn, so that n | r. This contradicts n - r. This contradiction shows that our assumption (that

(n | i and n | r − i)) was wrong. Hence, we do not have (n | i and n | r − i). Thus, (13.87.17) follows from (13.87.15), qed.
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On the other hand,

((vn ⊗ vn) ◦∆) (hr) = (vn ⊗ vn)

 ∆ (hr)︸ ︷︷ ︸
=
∑
i∈{0,1,...,r} hi⊗hr−i

(by (13.87.12), applied to q=r)

 = (vn ⊗ vn)

 ∑
i∈{0,1,...,r}

hi ⊗ hr−i


=

∑
i∈{0,1,...,r}

(vn ⊗ vn) (hi ⊗ hr−i) (since the map vn ⊗ vn is k-linear)

=
∑

i∈{0,1,...,r};
n|i

(vn ⊗ vn) (hi ⊗ hr−i)︸ ︷︷ ︸
=vn(hi)⊗vn(hr−i)

+
∑

i∈{0,1,...,r};
n-i

(vn ⊗ vn) (hi ⊗ hr−i)︸ ︷︷ ︸
=0

(by (13.87.16))

=
∑

i∈{0,1,...,r};
n|i

vn (hi)⊗ vn (hr−i) +
∑

i∈{0,1,...,r};
n-i

0

︸ ︷︷ ︸
=0

=
∑

i∈{0,1,...,r};
n|i

vn (hi)⊗ vn (hr−i)

=
∑

i∈{0,1,...,r/n}︸ ︷︷ ︸
=
∑
i∈{0,1,...,s}

(since r/n=s)

vn (hni)⊗ vn

 hr−ni︸ ︷︷ ︸
=hn(s−i)

(since r−ni=n(s−i)
(because r=ns=ni+n(s−i)))


(here, we have substituted ni for i in the sum)

=
∑

i∈{0,1,...,s}

vn (hni)︸ ︷︷ ︸
=hi

(by (13.87.13), applied
to q=i)

⊗ vn
(
hn(s−i)

)︸ ︷︷ ︸
=hs−i

(by (13.87.13), applied
to q=s−i)

=
∑

i∈{0,1,...,s}

hi ⊗ hs−i.

Compared with (13.87.18), this yields (∆ ◦ vn) (hr) = ((vn ⊗ vn) ◦∆) (hr). Thus, (13.87.14) is proven.
Now, recall that the family (hr)r≥1 generates the k-algebra Λ (according to Proposition 2.4.1). In other

words, (hr)r≥1 is a generating set of the k-algebra Λ. The two k-algebra homomorphisms ∆ ◦ vn and

(vn ⊗ vn) ◦∆ are equal to each other on this generating set (according to (13.87.14)), and therefore must
be identical (because if two k-algebra homomorphisms from the same domain are equal to each other on
a generating set of their domain, then these two homomorphisms must be identical). In other words,
∆ ◦ vn = (vn ⊗ vn) ◦∆.

One can similarly check that ε ◦ vn = ε. We can now conclude that the map vn is a k-coalgebra
homomorphism (since it is k-linear and satisfies ∆◦vn = (vn ⊗ vn)◦∆ and ε◦vn = ε), therefore a k-bialgebra
homomorphism (since it also is a k-algebra homomorphism), and therefore a Hopf algebra homomorphism
(by Corollary 1.4.27). This solves Exercise 2.9.10(e).

(f) Recall first that (hλ)λ∈Par and (mλ)λ∈Par are mutually dual bases with respect to the Hall inner
product on Λ (according to Corollary 2.5.17(a)). Thus,

(13.87.19) (mλ, hµ) = δλ,µ for any two partitions λ and µ.

Let us introduce a notation: For every weak composition λ and every positive integer s, let λ {s} denote
the weak composition (sλ1, sλ2, sλ3, . . .), where λ is written in the form (λ1, λ2, λ3, . . .). Notice that if λ is
a partition and s is a positive integer, then λ {s} is a partition as well, and satisfies

(13.87.20) ` (λ {s}) = ` (λ) .

We have

(13.87.21) fnmλ = mλ{n} for every partition λ
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689.
We need to prove that the maps fn : Λ → Λ and vn : Λ → Λ are adjoint with respect to the Hall inner

product on Λ. In other words, we need to prove that

(13.87.28) (fna, b) = (a,vnb) for any a ∈ Λ and b ∈ Λ.

Proof of (13.87.28): Fix a ∈ Λ and b ∈ Λ.

689Proof of (13.87.21): Let λ be a partition. Write λ in the form λ = (λ1, λ2, λ3, . . .). By the definition of mλ, we have

mλ =
∑
α∈S(∞)λ

xα. But the definition of fn yields

(13.87.22) fnmλ = mλ︸︷︷︸
=
∑
α∈S(∞)λ

xα

(xn1 , x
n
2 , x

n
3 , . . .) =

 ∑
α∈S(∞)λ

xα

 (xn1 , x
n
2 , x

n
3 , . . .) =

∑
α∈S(∞)λ

xα (xn1 , x
n
2 , x

n
3 , . . .) .

But every weak composition α satisfies

(13.87.23) xα (xn1 , x
n
2 , x

n
3 , . . .) = xα{n}.

(Proof of (13.87.23): Let α be a weak composition. Write α as (α1, α2, α3, . . .). Then, α {n} = (nα1, nα2, nα3, . . .) (by the

definition of α {n}). Thus, xα{n} = xnα1
1 xnα2

2 xnα3
3 · · · (by the definition of xα{n}). On the other hand, xα = xα1

1 xα2
2 xα3

3 · · ·
(by the definition of xα), so that

xα︸︷︷︸
=x

α1
1 x

α2
2 x

α3
3 ···

(xn1 , x
n
2 , x

n
3 , . . .) =

(
xα1

1 xα2
2 xα3

3 · · ·
)

(xn1 , x
n
2 , x

n
3 , . . .) = (xn1 )α1 (xn2 )α2 (xn3 )α3 · · · = xnα1

1 xnα2
2 xnα3

3 · · · = xα{n}.

Thus, (13.87.23) is proven.)
Now, (13.87.22) becomes

(13.87.24) fnmλ =
∑

α∈S(∞)λ

xα (xn1 , x
n
2 , x

n
3 , . . .)︸ ︷︷ ︸

=xα{n}
(by (13.87.23))

=
∑

α∈S(∞)λ

xα{n}.

On the other hand, for every weak composition α and every permutation σ ∈ S(∞), we have

(13.87.25) σ (α {n}) = (σα) {n} .
(Proof of (13.87.25): Let α be a weak composition. Let σ ∈ S(∞). Write α as (α1, α2, α3, . . .). Then, α {n} =

(nα1, nα2, nα3, . . .) (by the definition of α {n}), so that σ (α {n}) =
(
nασ−1(1), nασ−1(2), nασ−1(3), . . .

)
. But σα =(

ασ−1(1), ασ−1(2), ασ−1(3), . . .
)

(since α = (α1, α2, α3, . . .)) and thus (σα) {n} =
(
nασ−1(1), nασ−1(2), nασ−1(3), . . .

)
(by

the definition of (σα) {n}). Compared with σ (α {n}) =
(
nασ−1(1), nασ−1(2), nασ−1(3), . . .

)
, this yields σ (α {n}) = (σα) {n}.

This proves (13.87.25).)
Now,

(13.87.26) α {n} ∈ S(∞) (λ {n}) for every α ∈ S(∞)λ.

(Proof of (13.87.26): Let α ∈ S(∞)λ. Then, there exists a σ ∈ S(∞) such that α = σλ. Consider this σ. Then,

(13.87.25) (applied to λ instead of α) yields that σ (λ {n}) = (σλ) {n}. Compared with α︸︷︷︸
=σλ

{n} = (σλ) {n}, this yields

α {n} = σ︸︷︷︸
∈S(∞)

(λ {n}) ∈ S(∞) (λ {n}). Thus, (13.87.26) is proven.)

Also,

(13.87.27) every element of S(∞) (λ {n}) has the form α {n} for some α ∈ S(∞)λ.

(Proof of (13.87.27): Let β be an element of S(∞) (λ {n}). Then, there exists a σ ∈ S(∞) such that β = σ (λ {n}).
Consider this σ. Now, σ︸︷︷︸

∈S(∞)

λ ∈ S(∞)λ. Also, (13.87.25) (applied to λ instead of α) yields that σ (λ {n}) = (σλ) {n}. Hence,

β = σ (λ {n}) = (σλ) {n}. Therefore, β has the form α {n} for some α ∈ S(∞)λ (namely, for α = σλ). Let us now forget that

we fixed β. We thus have shown that every element β of S(∞) (λ {n}) has the form α {n} for some α ∈ S(∞)λ. In other words,

we have proven (13.87.27).)

Now, the map

S(∞)λ→ S(∞) (λ {n}) ,
α 7→ α {n}

is well-defined (according to (13.87.26)). This map is injective (because any weak composition α can be uniquely reconstructed
from α {n}) and surjective (due to (13.87.27)); therefore, this map is bijective.

Now, (13.87.24) becomes

fnmλ =
∑

α∈S(∞)λ

xα{n} =
∑

α∈S(∞)(λ{n})
xα
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Recall that (mλ)λ∈Par is a basis of the k-module Λ. Hence, in proving (13.87.28), we can WLOG assume
that a is an element of this basis (mλ)λ∈Par (because the equality (13.87.28) is k-linear in a). Assume this.
Thus, a is an element of the basis (mλ)λ∈Par. In other words, there exists a µ ∈ Par such that a = mµ.
Consider this µ. We have fn a︸︷︷︸

=mµ

= fnmµ = mµ{n} (by (13.87.21), applied to λ = µ).

Recall that (hλ)λ∈Par is a basis of the k-module Λ. Hence, in proving (13.87.28), we can WLOG assume
that b is an element of this basis (hλ)λ∈Par (because the equality (13.87.28) is k-linear in b). Assume this.
Thus, b is an element of the basis (hλ)λ∈Par. In other words, there exists a ν ∈ Par such that b = hν .
Consider this ν. We have

(13.87.29)

 fna︸︷︷︸
=mµ{n}

, b︸︷︷︸
=hν

 =
(
mµ{n}, hν

)
= δµ{n},ν

(by (13.87.19), applied to µ {n} and ν instead of λ and µ).
Let us write the partition ν in the form (ν1, ν2, ν3, . . .). Then, ν =

(
ν1, ν2, . . . , ν`(ν)

)
, so that hν =

hν1hν2 · · ·hν`(ν)
(by the definition of hν).

Let us first assume that

(13.87.30) (there exists an i ∈ {1, 2, 3, . . .} such that n - νi) .

Then, vn (hν) = 0 690. Also, µ {n} 6= ν 691, so that δµ{n},ν = 0. Thus, (13.87.29) becomes (fna, b) =

δµ{n},ν = 0. Compared with

a,vn b︸︷︷︸
=hν

 =

a,vn (hν)︸ ︷︷ ︸
=0

 = (a, 0) = 0 (since the Hall inner product is

k-bilinear), this yields (fna, b) = (a,vnb). Thus, (13.87.28) holds.
Now, let us forget that we assumed that (13.87.30) holds. We thus have proven (13.87.28) under the

assumption that (13.87.30) holds. Hence, for the rest of our proof of (13.87.28), we can WLOG assume that
(13.87.30) does not hold. Assume this.

(here, we substituted α for α {n} in the sum, since the map

S(∞)λ→ S(∞) (λ {n}) ,
α 7→ α {n}

is bijective). Compared with

mλ{n} =
∑

α∈S(∞)(λ{n})
xα

(
by the definition of mλ{n}

)
,

this yields fnmλ = mλ{n}. Thus, (13.87.21) is proven.
690Proof. There exists an i ∈ {1, 2, 3, . . .} such that n - νi. Consider this i. We have n - νi, thus νi 6= 0, and therefore νi is a

positive integer. Hence, i ≤ ` (ν), so that i ∈ {1, 2, . . . , ` (ν)}. Also, the definition of vn yields vn (hνi ) =

{
hνi/n, if n | νi;
0, if n - νi

=

0 (since n - νi). But

hν = hν1hν2 · · ·hν`(ν)
=
(
hν1hν2 · · ·hνi−1

)
hνi

(
hνi+1hνi+2 · · ·hν`(ν)

)
(since i ∈ {1, 2, . . . , ` (ν)}) .

Applying the map vn to both sides of this equality, we obtain

vn (hν) = vn
((
hν1hν2 · · ·hνi−1

)
hνi

(
hνi+1hνi+2 · · ·hν`(ν)

))
= vn

(
hν1hν2 · · ·hνi−1

)
· vn (hνi )︸ ︷︷ ︸

=0

·vn
(
hνi+1hνi+2 · · ·hν`(ν)

)
(since vn is a k-algebra homomorphism)

= 0,

qed.
691Proof. Assume the contrary. Thus, µ {n} = ν. Let us write the partition µ in the form (µ1, µ2, µ3, . . .). Then,

µ {n} = (nµ1, nµ2, nµ3, . . .) (by the definition of µ {n}). Hence, (ν1, ν2, ν3, . . .) = ν = µ {n} = (nµ1, nµ2, nµ3, . . .). Thus, every
positive integer j satisfies νj = nµj .

But (13.87.30) yields that there exists an i ∈ {1, 2, 3, . . .} such that n - νi. Consider this i. Now, recall that every positive

integer j satisfies νj = nµj . Applied to j = i, this yields νi = nµi, so that n | νi. This contradicts n - νi. This contradiction

proves that our assumption was wrong, qed.
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We have assumed that (13.87.30) does not hold. In other words, there exists no i ∈ {1, 2, 3, . . .} such that
n - νi. In other words,

(13.87.31) every i ∈ {1, 2, 3, . . .} satisfies n | νi.

Thus, νi/n is a nonnegative integer for every i ∈ {1, 2, 3, . . .}. These nonnegative integers satisfy ν1/n ≥
ν2/n ≥ ν3/n ≥ · · · (since ν1 ≥ ν2 ≥ ν3 ≥ · · · (since (ν1, ν2, ν3, . . .) = ν is a partition)) and
(νi/n = 0 for all sufficiently high i) (since (νi = 0 for all sufficiently high i) (since (ν1, ν2, ν3, . . .) = ν is a
partition)). Hence, (ν1/n, ν2/n, ν3/n, . . .) is a partition. Let us denote this partition by κ. We have κ {n} = ν
692 and thus ` (κ) = ` (ν) 693. We have vn (hν) = hκ

694 and thus

(13.87.32)

 a︸︷︷︸
=mµ

,vn b︸︷︷︸
=hν

 =

mµ,vn (hν)︸ ︷︷ ︸
=hκ

 = (mµ, hκ) = δµ,κ

(by (13.87.19), applied to µ and κ instead of λ and µ).
Now, let us write the partition µ in the form (µ1, µ2, µ3, . . .). Then, µ {n} = (nµ1, nµ2, nµ3, . . .) (by the

definition of µ {n}).
Now, we have the following equivalence of assertions:

(µ {n} = ν)

⇐⇒ ((nµ1, nµ2, nµ3, . . .) = (ν1, ν2, ν3, . . .))

(since µ {n} = (nµ1, nµ2, nµ3, . . .) and ν = (ν1, ν2, ν3, . . .))

⇐⇒ (every i ∈ {1, 2, 3, . . .} satisfies nµi = νi)

⇐⇒ (every i ∈ {1, 2, 3, . . .} satisfies µi = νi/n)

⇐⇒ ((µ1, µ2, µ3, . . .) = (ν1/n, ν2/n, ν3/n, . . .))

⇐⇒ (µ = κ) (since (µ1, µ2, µ3, . . .) = µ and (ν1/n, ν2/n, ν3/n, . . .) = κ) .(13.87.33)

692Proof. We have κ = (ν1/n, ν2/n, ν3/n, . . .). Hence, the definition of κ {n} yields κ {n} =

(n (ν1/n) , n (ν2/n) , n (ν3/n) , . . .) = (ν1, ν2, ν3, . . .) = ν, qed.
693Proof. Applying (13.87.20) to κ and n instead of λ and s, we obtain ` (κ {n}) = ` (κ). Since κ {n} = ν, this rewrites as

` (ν) = ` (κ), qed.
694Proof. We have κ = (ν1/n, ν2/n, ν3/n, . . .) and therefore κ =

(
ν1/n, ν2/n, . . . , ν`(κ)/n

)
. Since ` (κ) = ` (ν), this rewrites

as κ =
(
ν1/n, ν2/n, . . . , ν`(ν)/n

)
. Hence, the definition of hκ yields hκ = hν1/nhν2/n · · ·hν`(ν)/n

=
∏`(ν)
i=1 hνi/n.

On the other hand, ν =
(
ν1, ν2, . . . , ν`(ν)

)
, so that the definition of hν yields hν = hν1hν2 · · ·hν`(ν)

=
∏`(ν)
i=1 hνi . Applying

the map vn to both sides of this equality, we obtain

vn (hν) = vn

`(ν)∏
i=1

hνi

 =

`(ν)∏
i=1

vn (hνi )︸ ︷︷ ︸
=

hνi/n, if n | νi;
0, if n - νi

(by (13.87.1), applied to m=νi)

(since vn is a k-algebra homomorphism)

=

`(ν)∏
i=1

{
hνi/n, if n | νi;
0, if n - νi︸ ︷︷ ︸

=hνi/n
(since n|νi (by (13.87.31)))

=

`(ν)∏
i=1

hνi/n = hκ

(since hκ =
∏`(ν)
i=1 hνi/n), qed.
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But (13.87.29) becomes

(fna, b) = δµ{n},ν =

{
1, if µ {n} = ν;

0, otherwise

(
by the definition of δµ{n},ν

)
=

{
1, if µ = κ;

0, otherwise
(since µ {n} = ν is equivalent to µ = κ (by (13.87.33)))

= δµ,κ

(
since δµ,κ =

{
1, if µ = κ;

0, otherwise
(by the definition of δµ,κ)

)
= (a,vnb) (by (13.87.32)) .

Thus, (13.87.28) is proven. As we know, this completes the solution of Exercise 2.9.10(f).
(g) Our solution to Exercise 2.9.10(g) shall proceed in three steps:

• Step 1: proving that Exercise 2.9.10(g) holds if k = Q.
• Step 2: proving that Exercise 2.9.10(g) holds if k = Z.
• Step 3: proving that Exercise 2.9.10(g) holds in the general case.

Let us now get to the details of these three steps:
Step 1: We shall prove that Exercise 2.9.10(g) holds if k = Q.
Indeed, assume that k = Q. We know that fn is a k-algebra homomorphism (due to Exercise 2.9.9(a)), and

that vn is a k-algebra homomorphism. Hence, vn◦fn is a k-algebra homomorphism. Also, idΛ ? idΛ ? · · · ? idΛ︸ ︷︷ ︸
n times

is a k-algebra homomorphism (due to Exercise 1.5.11(b), applied to H = Λ, A = Λ, k = n and fi = idΛ). In
other words, id?nΛ is a k-algebra homomorphism.

Let r be a positive integer. We shall now show that (vn ◦ fn) (pr) = id?nΛ (pr).
Indeed, it is easy to see that

(13.87.34) id?aΛ (pr) = apr for every a ∈ N
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695. Applied to a = n, this yields id?nΛ (pr) = npr. But the definition of fn (pr) yields

fn (pr) = pr (xn1 , x
n
2 , x

n
3 , . . .)

= (xn1 )
r

+ (xn2 )
r

+ (xn3 )
r

+ · · · (since pr = xr1 + xr2 + xr3 + · · · )
= xrn1 + xrn2 + xrn3 + . . . = prn.(13.87.35)

Hence,

(vn ◦ fn) (pr) = vn

fn (pr)︸ ︷︷ ︸
=prn

 = vn (prn)

=

{
nprn/n, if n | rn;

0, if n - rn
(by Exercise 2.9.10(a), applied to m = rn)

= nprn/n (since n | rn)

= npr = id?nΛ (pr)

(since id?nΛ (pr) = npr).
Now, let us forget that we fixed r. We thus have proven that

(13.87.36) (vn ◦ fn) (pr) = id?nΛ (pr) for every positive integer r.

We have assumed that k = Q. Thus, Q is a subring of k. Hence, the elements p1, p2, p3, . . . of Λ generate
the k-algebra Λ (due to Proposition 2.4.1). But vn ◦ fn and id?nΛ are two k-algebra homomorphisms from
Λ. These two homomorphisms vn ◦ fn and id?nΛ are equal to each other on each of the elements p1, p2, p3, . . .
(due to (13.87.36)), and therefore are identical (because if two k-algebra homomorphisms with one and the
same domain are equal to each other on a generating set of the domain, then these homomorphisms must
be identical). In other words, vn ◦ fn = id?nΛ . Thus, Exercise 2.9.10(g) is solved under the assumption that
k = Q. Our Step 1 is complete.

Step 2: We shall prove that Exercise 2.9.10(g) holds if k = Z.
Indeed, let us first consider the general case, without any assumptions on k.

695Proof of (13.87.34): We shall prove (13.87.34) by induction over a:

Induction base: We have ε (pr) = 0 (since r is positive). Now, id?0Λ︸︷︷︸
=u◦ε

(pr) = (u ◦ ε) (pr) = u

ε (pr)︸ ︷︷ ︸
=0

 = u (0) = 0, so that

id?0Λ (pr) = 0 = 0pr. In other words, (13.87.34) holds for a = 0. This completes the induction base.

Induction step: Let A be a positive integer. Assume that (13.87.34) holds for a = A − 1. We now need to show that
(13.87.34) holds for a = A.

We know that (13.87.34) holds for a = A−1. In other words, id
?(A−1)
Λ (pr) = (A− 1) pr. Now, recall that ∆pr = 1⊗pr+pr⊗1

(by Proposition 2.3.6(i), applied to r instead of n). On the other hand, id
?(A−1)
Λ is a k-algebra homomorphism (in fact, this

is shown in the same way as we have shown that id?nΛ is a k-algebra homomorphism), so that we have id
?(A−1)
Λ (1) = 1. Now,

id?AΛ = id
?(A−1)
Λ ? idΛ = m ◦

(
id
?(A−1)
Λ ⊗ idΛ

)
◦∆ (by the definition of convolution). Applying both sides of this equality to

pr, we obtain

id?AΛ (pr) =
(
m ◦

(
id
?(A−1)
Λ ⊗ idΛ

)
◦∆
)

(pr) = m

(id
?(A−1)
Λ ⊗ idΛ

)
(∆pr)︸ ︷︷ ︸

=1⊗pr+pr⊗1



= m


(

id
?(A−1)
Λ ⊗ idΛ

)
(1⊗ pr + pr ⊗ 1)︸ ︷︷ ︸

=id
?(A−1)
Λ (1)⊗idΛ(pr)+id

?(A−1)
Λ (pr)⊗idΛ(1)


= m

(
id
?(A−1)
Λ (1)⊗ idΛ (pr) + id

?(A−1)
Λ (pr)⊗ idΛ (1)

)
= id

?(A−1)
Λ (1)︸ ︷︷ ︸

=1

· idΛ (pr)︸ ︷︷ ︸
=pr

+ id
?(A−1)
Λ (pr)︸ ︷︷ ︸
=(A−1)pr

· idΛ (1)︸ ︷︷ ︸
=1

= pr + (A− 1) pr = Apr.

Thus, (13.87.34) holds for a = A. This completes the induction step, so that (13.87.34) is proven.
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We shall now formalize the intuitive concept that the constructions relevant to Exercise 2.9.10(g) (the
Hopf algebra Λ, its elements mλ, pλ, eλ etc., and the maps vn, fn and id?nΛ ) are “functorial” with respect to
the base ring k. This is chiefly a matter of introducing notations:

• We denote the k-algebra Λ = Λk by Λ[k]. (This is just a minor change of notation that serves to

make it more similar to the notations f
[k]
n , v

[k]
n and m

[k]
λ further below.)

• If m and n are two commutative rings, and ϕ : m→ n is a ring homomorphism, then ϕ canonically
induces a ring homomorphism Λ[m] → Λ[n]. 696 We denote this latter homomorphism by Λ[ϕ].

Notice that while Λ[k] denotes a ring, Λ[ϕ] denotes a map. This might look confusing, but it makes
sense from the viewpoint of category theory: There is a functor from the category of commutative
rings to itself, which sends every commutative ring k to Λ[k], and every morphism ϕ : m → n of
commutative rings to Λ[ϕ]. Unsurprisingly, this functor is denoted by Λ.

• A ring homomorphism ϕ : m→ n also induces a ring homomorphism Λ[m] ⊗m Λ[m] → Λ[n] ⊗n Λ[n]

697. This makes Λ⊗ Λ into a functor of k.
• For every partition λ, we shall denote the monomial symmetric function mλ ∈ Λ by m

[k]
λ . This

notation makes the dependency of mλ on the base ring k more explicit, and thus allows us to talk
about these elements defined over several different base rings at the same time (without the danger
of confusing them). Of course, the element mλ does not “really” depend on k, in the sense that it is
defined in the same way for every k. This entails that for any two commutative rings m and n and
any ring homomorphism ϕ : m→ n, we have

(13.87.37) m
[n]
λ = Λ[ϕ]

(
m

[m]
λ

)
for every partition λ.

• We shall denote the homomorphism fn : Λ → Λ by f
[k]
n . This notation makes the dependency of fn

on the base ring k more explicit.
The definition of fn was functorial in k. Thus, for any two commutative rings m and n and any

ring homomorphism ϕ : m→ n, we have

(13.87.38) f [n]
n ◦ Λ[ϕ] = Λ[ϕ] ◦ f [m]

n

as maps from Λ[m] to Λ[n].

• Similarly, we shall denote the homomorphism vn : Λ → Λ by v
[k]
n . This homomorphism is again

defined in a way that is functorial in k. Thus, for any two commutative rings m and n and any ring
homomorphism ϕ : m→ n, we have

(13.87.39) v[n]
n ◦ Λ[ϕ] = Λ[ϕ] ◦ v[m]

n

as maps from Λ[m] to Λ[n].
• Notice that the Hopf algebra structure on Λ is functorial in k. 698 As a consequence, for any two

commutative rings m and n and any ring homomorphism ϕ : m→ n, we have

(13.87.40) id?nΛn
◦Λ[ϕ] = Λ[ϕ] ◦ id?nΛm

as maps from Λ[m] to Λ[n].
• For every commutative ring k, there exists a canonical (and unique) ring homomorphism Z → k.

Denote this homomorphism by ρk.

696In fact, this ring homomorphism Λ[m] → Λ[n] can be defined by taking the ring homomorphism ϕ [[x]] : m [[x]]→ n [[x]]

canonically induced by ϕ and restricting it to the subring Λ[m] of m [[x]].
697There are several ways to define this homomorphism. One of them is to define it as the m-module homomorphism

Λ[m] ⊗m Λ[m] → Λ[n] ⊗n Λ[n] canonically induced by the m-bilinear map

Λ[m] × Λ[m] → Λ[n] ⊗n Λ[n],

(a, b) 7→
(

Λ[ϕ] (a)
)
⊗n

(
Λ[ϕ] (b)

)
.

(Here, Λ[n] ⊗n Λ[n] is an m-module because the ring homomorphism ϕ : m→ n makes n into an m-algebra.)
698To make sense of this statement, we need to recall that Λ⊗ Λ has been made into a functor of k.
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In Step 1, we have shown that Exercise 2.9.10(g) holds if k = Q. In other words, we have vn ◦ fn = id?nΛ
if k = Q. In other words,

(13.87.41) v[Q]
n ◦ f [Q]

n = id?nΛQ
.

Recall that
(
m

[k]
λ

)
λ∈Par

= (mλ)λ∈Par is a basis of the k-module Λk for every commutative ring k.

Applying this to k = Z, we conclude that
(
m

[Z]
λ

)
λ∈Par

is a basis of the Z-module ΛZ.

The ring homomorphism ρQ : Z → Q is just the canonical inclusion of Z into Q, and thus is injective.

Hence, the map Λ[ρQ] is injective (because Λ[ϕ] is injective for every injective ring homomorphism ϕ).
Now, let us recall that our goal (in Step 2) is to show that Exercise 2.9.10(g) holds if k = Z. In other

words, our goal is to show that

v[Z]
n ◦ f [Z]

n = id?nΛZ
.

This is an equality between Z-module homomorphisms (indeed, it is clear that both v
[Z]
n ◦ f

[Z]
n and id?nΛZ

are

Z-module homomorphisms). Hence, in order to prove it, it is sufficient to verify it on the basis
(
m

[Z]
λ

)
λ∈Par

of the Z-module ΛZ. In other words, it is sufficient to prove that

(13.87.42)
(
v[Z]
n ◦ f [Z]

n

)(
m

[Z]
λ

)
= id?nΛZ

(
m

[Z]
λ

)
for every λ ∈ Par .

So let us prove (13.87.42) now:
Proof of (13.87.42): Let λ ∈ Par. We have

Λ[ρQ]
((

v[Z]
n ◦ f [Z]

n

)(
m

[Z]
λ

))

=


Λ[ρQ] ◦ v[Z]

n︸ ︷︷ ︸
=v[Q]

n ◦Λ
[ρQ]

(because of v[Q]
n ◦Λ

[ρQ]=Λ[ρQ]◦v[Z]
n

(by (13.87.39), applied
to m=Z, n=Q and ϕ=ρQ))

◦f [Z]
n


(
m

[Z]
λ

)
=


v[Q]
n ◦ Λ[ρQ] ◦ f [Z]

n︸ ︷︷ ︸
=f [Q]
n ◦Λ

[ρQ]

(because of f [Q]
n ◦Λ

[ρQ]=Λ[ρQ]◦f [Z]
n

(by (13.87.38), applied
to m=Z, n=Q and ϕ=ρQ))


(
m

[Z]
λ

)

=

 v[Q]
n ◦ f [Q]

n︸ ︷︷ ︸
=id?nΛQ

(by (13.87.41))

◦Λ[ρQ]


(
m

[Z]
λ

)
=

(
id?nΛQ

◦Λ[ρQ]
)

︸ ︷︷ ︸
=Λ[ρQ]◦id?nΛZ

(by (13.87.40), applied
to m=Z, n=Q and ϕ=ρQ)

(
m

[Z]
λ

)

=
(

Λ[ρQ] ◦ id?nΛZ

)(
m

[Z]
λ

)
= Λ[ρQ]

(
id?nΛZ

(
m

[Z]
λ

))
.

Since the map Λ[ρQ] is injective, this yields
(
v

[Z]
n ◦ f

[Z]
n

)(
m

[Z]
λ

)
= id?nΛZ

(
m

[Z]
λ

)
. Thus, (13.87.42) is proven.

As we said, proving (13.87.42) is sufficient to showing that v
[Z]
n ◦ f

[Z]
n = id?nΛZ

. Hence, v
[Z]
n ◦ f

[Z]
n = id?nΛZ

is
shown (since (13.87.42) is proven). In other words, Exercise 2.9.10(g) holds if k = Z. This completes Step 2.

Step 3: We shall now prove that Exercise 2.9.10(g) holds in the general case.
Let us use all the notations that we introduced in Step 2.
In Step 2, we have shown that Exercise 2.9.10(g) holds if k = Z. In other words, we have vn ◦ fn = id?nΛ

if k = Z. In other words,

(13.87.43) v[Z]
n ◦ f [Z]

n = id?nΛZ
.

Recall that (mλ)λ∈Par is a basis of the k-module Λk.
Now, let us recall that our goal (in Step 3) is to show that Exercise 2.9.10(g) holds. In other words, our

goal is to show that

vn ◦ fn = id?n .
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This is an equality between k-module homomorphisms (indeed, it is clear that both vn ◦ fn and id?n are
k-module homomorphisms). Hence, in order to prove it, it is sufficient to verify it on the basis (mλ)λ∈Par of
the k-module Λk. In other words, it is sufficient to prove that

(13.87.44) (vn ◦ fn) (mλ) = id?n (mλ) for every λ ∈ Par .

So let us prove (13.87.44) now:
Proof of (13.87.44): Let λ ∈ Par. Then,

(13.87.45) mλ = m
[k]
λ = Λ[ρk]

(
m

[Z]
λ

)
(by (13.87.37) (applied to m = Z, n = k and ϕ = ρk)) .

Hence,

 vn︸︷︷︸
=v

[k]
n

◦ fn︸︷︷︸
=f

[k]
n


 mλ︸︷︷︸

=Λ[ρk]
(
m

[Z]
λ

)

 =
(
v[k]
n ◦ f [k]

n

)(
Λ[ρk]

(
m

[Z]
λ

))
=


v[k]
n ◦ f [k]

n ◦ Λ[ρk]︸ ︷︷ ︸
=Λ[ρk]◦f [Z]

n

(by (13.87.38), applied
to m=Z, n=k and ϕ=ρk)


(
m

[Z]
λ

)

=


v[k]
n ◦ Λ[ρk]︸ ︷︷ ︸

=Λ[ρk]◦v[Z]
n

(by (13.87.39), applied
to m=Z, n=k and ϕ=ρk)

◦f [Z]
n


(
m

[Z]
λ

)

=

Λ[ρk] ◦ v[Z]
n ◦ f [Z]

n︸ ︷︷ ︸
=id?nΛZ

(by (13.87.43))


(
m

[Z]
λ

)
=

(
Λ[ρk] ◦ id?nΛZ

)
︸ ︷︷ ︸

=id?nΛk
◦Λ[ρk]

(because of id?nΛk
◦Λ[ρk]=Λ[ρk]◦id?nΛZ

(by (13.87.40), applied
to m=Z, n=k and ϕ=ρk))

(
m

[Z]
λ

)

=
(

id?nΛk
◦Λ[ρk]

)(
m

[Z]
λ

)
= id?nΛk︸︷︷︸

=id?n

Λ[ρk]
(
m

[Z]
λ

)
︸ ︷︷ ︸

=mλ
(by (13.87.45))

 = id?n (mλ) .

Thus, (13.87.44) is proven.
As we said, proving (13.87.44) is sufficient to showing that vn ◦ fn = id?n. Hence, vn ◦ fn = id?n is shown

(since (13.87.44) is proven). In other words, Exercise 2.9.10(g) holds in the general case. This completes
Step 3 and, with it, the solution of Exercise 2.9.10(g).

(h) The structure of our solution of Exercise 2.9.10(h) is similar to that of our solution of Exercise 2.9.10(g)
above. It proceeds in three steps:

• Step 1: proving that Exercise 2.9.10(h) holds if k = Q.
• Step 2: proving that Exercise 2.9.10(h) holds if k = Z.
• Step 3: proving that Exercise 2.9.10(h) holds in the general case.

The details of Steps 2 and 3 are very similar to the details of the corresponding steps in the solution of
Exercise 2.9.10(g), and so we will not dwell on these details. However, we need to give the details of Step 1:

Step 1: We shall prove that Exercise 2.9.10(h) holds if k = Q.
Indeed, assume that k = Q. We know that fn is a k-algebra homomorphism (due to Exercise 2.9.9(a)),

and that vm is a k-algebra homomorphism. Hence, fn ◦ vm and vm ◦ fn are k-algebra homomorphisms.
Let r be a positive integer. We shall show that (fn ◦ vm) (pr) = (vm ◦ fn) (pr).
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Indeed, we first notice that

(13.87.46) fn (pr) = prn.

(This can be proven just as in (13.87.35).)
Now, let us first assume that m - r. Then, Exercise 2.9.10(a) (applied to m and r instead of n and m)

yields

vm (pr) =

{
mpr/m, if m | r;
0, if m - r

= 0 (since m - r) ,

so that (fn ◦ vm) (pr) = fn

vm (pr)︸ ︷︷ ︸
=0

 = fn (0) = 0 (since the map fn is k-linear). On the other hand, if we

had m | rn, then we would have m | r (since m is coprime to n), which would contradict m - r. Hence, we
cannot have m | rn. Thus, we have m - rn. Now,

(vm ◦ fn) (pr) = vm

 fn (pr)︸ ︷︷ ︸
=prn

(by (13.87.46))

 = vm (prn) =

{
mprn/m, if m | rn;

0, if m - rn

(by Exercise 2.9.10(a), applied to m and rn instead of n and m)

= 0 (since m - rn) .

Compared with (fn ◦ vm) (pr) = 0, this yields (fn ◦ vm) (pr) = (vm ◦ fn) (pr).
Now, let us forget our assumption that m - r. Hence, we have proven that (fn ◦ vm) (pr) = (vm ◦ fn) (pr)

under the assumption that m - r. As a consequence, for the rest of the proof of (fn ◦ vm) (pr) = (vm ◦ fn) (pr),
we can WLOG assume that we don’t have m - r. Assume this.

We have m | r (since we don’t have m - r). Now, Exercise 2.9.10(a) (applied to m and r instead of n and
m) yields

vm (pr) =

{
mpr/m, if m | r;
0, if m - r

= mpr/m (since m | r) ,

so that

(fn ◦ vm) (pr) = fn

vm (pr)︸ ︷︷ ︸
=mpr/m

 = fn
(
mpr/m

)
= m fn

(
pr/m

)︸ ︷︷ ︸
=p(r/m)n

(by (13.87.46), applied to
r/m instead of r)

(since the map fn is k-linear)

= mp(r/m)n = mprn/m (since (r/m)n = rn/m) .

Compared with

(vm ◦ fn) (pr) = vm

 fn (pr)︸ ︷︷ ︸
=prn

(by (13.87.46))

 = vm (prn) =

{
mprn/m, if m | rn;

0, if m - rn

(by Exercise 2.9.10(a), applied to m and rn instead of n and m)

= mprn/m (since m | rn (since m | r | rn)) ,

this yields (fn ◦ vm) (pr) = (vm ◦ fn) (pr). Hence, (fn ◦ vm) (pr) = (vm ◦ fn) (pr) is proven.
Now, let us forget that we fixed r. We thus have proven that

(13.87.47) (fn ◦ vm) (pr) = (vm ◦ fn) (pr) for every positive integer r.

We have assumed that k = Q. Thus, Q is a subring of k. Hence, the elements p1, p2, p3, . . . of Λ generate
the k-algebra Λ (due to Proposition 2.4.1). But fn ◦vm and vm ◦ fn are two k-algebra homomorphisms from
Λ. These two homomorphisms fn◦vm and vm◦fn are equal to each other on each of the elements p1, p2, p3, . . .
(due to (13.87.47)), and therefore are identical (because if two k-algebra homomorphisms with one and the
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same domain are equal to each other on a generating set of the domain, then these homomorphisms must
be identical). In other words, fn ◦ vm = vm ◦ fn. Thus, Exercise 2.9.10(h) is solved under the assumption
that k = Q. Our Step 1 is complete.

As already mentioned, Steps 2 and Steps 3 are very similar to the corresponding steps in our above
solution of Exercise 2.9.10(g). Thus, we forego showing these steps. Exercise 2.9.10(h) is thus solved.

(i) Our solution of Exercise 2.9.10(i) will be somewhat similar to that of Exercise 2.9.10(g), but simpler.
We will only need two steps:

• Step 1: proving that Exercise 2.9.10(i) holds if k = Z.
• Step 2: proving that Exercise 2.9.10(i) holds in the general case.

Let us go through the details of each step:
Step 1: We shall prove that Exercise 2.9.10(i) holds if k = Z.
Indeed, assume that k = Z. Every positive integer r satisfies

(13.87.48) pr =
∑
d|r

dw
r/d
d

(according to Exercise 2.9.3(e), applied to r instead of n).
Now, for every positive integer m, we define an element w̃m of Λ by

(13.87.49) w̃m =

{
wm/n, if n | m;

0, if n - m
.

It is now easy to see that every positive integer r satisfies

(13.87.50) vn (pr) =
∑
d|r

dw̃
r/d
d .

699

We shall now prove that every positive integer m satisfies

(13.87.52) vn (wm) = w̃m.

699Proof of (13.87.50): Let r be a positive integer. Let us first assume that n - r. Then, every positive divisor d of r satisfies

w̃d =

{
wd/n, if n | d;

0, if n - d
(by the definition of w̃d)

= 0

(
since n - d (because otherwise, we would have n | d

and thus n | d | r, which would contradict n - r)

)
.(13.87.51)

But Exercise 2.9.10(a) (applied to r instead of m) yields

vn (pr) =

{
npr/n, if n | r;
0, if n - r

= 0 (since n - r) .

Compared with

∑
d|r

dw̃
r/d
d =

∑
d|r

d

 w̃d︸︷︷︸
=0

(by (13.87.51))


r/d

=
∑
d|r

d 0r/d︸︷︷︸
=0

(since r/d>0)

=
∑
d|r

d0 = 0,

this yields vn (pr) =
∑
d|r dw̃

r/d
d . Thus, (13.87.50) holds.

Let us now forget that we assumed that n - r. We thus have proven (13.87.50) under the assumption that n - r. Hence, for

the rest of the proof of (13.87.50), we can WLOG assume that we don’t have n - r. Assume this.
We have n | r (since we don’t have n - r). Hence, r/n is a positive integer. Exercise 2.9.10(a) (applied to r instead of m)

yields

vn (pr) =

{
npr/n, if n | r;
0, if n - r

= n pr/n︸ ︷︷ ︸
=
∑
d|r/n dw

(r/n)/d
d

(by (13.87.48), applied to
r/n instead of r)

(since n | r)

= n
∑
d|r/n

dw
(r/n)/d
d =

∑
d|r/n

nd w
(r/n)/d
d︸ ︷︷ ︸

=w
r/(nd)
d

(since (r/n)/d=r/(nd))

=
∑
d|r/n

ndw
r/(nd)
d .
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Proof of (13.87.52): We proceed by strong induction over m:
Induction step: Fix a positive integer M . Assume that (13.87.52) holds for every positive integer m < M .

We now must show that (13.87.52) holds for m = M .
The k-module Λ is free, and thus torsionfree. Hence,

(13.87.53) every element a of Λ satisfying Ma = 0 satisfies a = 0

(since k = Z).
We have assumed that (13.87.52) holds for every positive integer m < M . In other words,

(13.87.54) vn (wm) = w̃m for every positive integer m < M .

Compared with

∑
d|r

dw̃
r/d
d =

∑
d|r

d


w̃d︸︷︷︸

=

wd/n, if n | d;

0, if n - d
(by the definition of w̃d)



r/d

=
∑
d|r

d

({
wd/n, if n | d;

0, if n - d

)r/d

=
∑
d|r;
n|d

d


{
wd/n, if n | d;

0, if n - d︸ ︷︷ ︸
=wd/n

(since n|d)



r/d

+
∑
d|r;
n-d

d


{
wd/n, if n | d;

0, if n - d︸ ︷︷ ︸
=0

(since n-d)



r/d

=
∑
d|r;
n|d

dw
r/d
d/n

+
∑
d|r;
n-d

d 0r/d︸︷︷︸
=0

(since r/d>0)

=
∑
d|r;
n|d

dw
r/d
d/n

+
∑
d|r;
n-d

d0

︸ ︷︷ ︸
=0

=
∑
d|r;
n|d

dw
r/d
d/n

=
∑
d|r/n

nd w
r/(nd)
nd/n︸ ︷︷ ︸

=w
r/(nd)
d

(since nd/n=d)

(here, we have substituted nd for d in the sum)

=
∑
d|r/n

ndw
r/(nd)
d ,

this yields vn (pr) =
∑
d|r dw̃

r/d
d . Thus, (13.87.50) is proven.
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Applying (13.87.48) to r = M , we obtain pM =
∑
d|M dw

M/d
d . Applying the map vn to both sides of this

equality, we obtain

vn (pM ) = vn

∑
d|M

dw
M/d
d

 =
∑
d|M

d (vn (wd))
M/d

(since vn is a k-algebra homomorphism)

= M (vn (wM ))
M/M︸ ︷︷ ︸

=(vn(wM ))1=vn(wM )

+
∑
d|M ;
d 6=M︸︷︷︸

=
∑
d|M ;
d<M

d (vn (wd))
M/d

(here, we have split off the addend for d = M from the sum)

= Mvn (wM ) +
∑
d|M ;
d<M

d

 vn (wd)︸ ︷︷ ︸
=w̃d

(by (13.87.54), applied
to m=d)



M/d

= Mvn (wM ) +
∑
d|M ;
d<M

dw̃
M/d
d .

Compared with

vn (pM ) =
∑
d|M

dw̃
M/d
d (by (13.87.50), applied to r = M)

= M w̃
M/M
M︸ ︷︷ ︸

=w̃1
M=w̃M

+
∑
d|M ;
d6=M︸︷︷︸

=
∑
d|M ;
d<M

dw̃
M/d
d (here, we have split off the addend for d = M from the sum)

= Mw̃M +
∑
d|M ;
d<M

dw̃
M/d
d ,

this yields

Mvn (wM ) +
∑
d|M ;
d<M

dw̃
M/d
d = Mw̃M +

∑
d|M ;
d<M

dw̃
M/d
d .

Subtracting
∑
d|M ;
d<M

dw̃
M/d
d from both sides of this equality, we obtain Mvn (wM ) = Mw̃M . Hence,

M (vn (wM )− w̃M ) = Mvn (wM )︸ ︷︷ ︸
=Mw̃M

−Mw̃M = Mw̃M −Mw̃M = 0.

Thus, (13.87.53) (applied to a = vn (wM )− w̃M ) yields vn (wM )− w̃M = 0, so that vn (wM ) = w̃M . In other
words, (13.87.52) holds for m = M . This completes the induction step. Thus, (13.87.52) is proven.

Now, every positive integer m satisfies

vn (wm) = w̃m (by (13.87.52))

=

{
wm/n, if n | m;

0, if n - m
(by the definition of w̃m) .

Thus, Exercise 2.9.10(i) is solved in the case when k = Z. In other words, Step 1 is finished.
Step 2: We shall now show that Exercise 2.9.10(i) holds in the general case.
Indeed, let us use all the notations that we introduced in Step 2 of the solution of Exercise 2.9.10(g). Let

us furthermore introduce one more notation:
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• For every positive integer m, we shall denote the element wm of Λ by w
[k]
m . This notation makes the

dependency of wm on the base ring k more explicit. Of course, the element wm does not “really”
depend on k, in the sense that it is defined in the same way for every k. This entails that for any
two commutative rings m and n and any ring homomorphism ϕ : m→ n, we have

(13.87.55) w[n]
m = Λ[ϕ]

(
w[m]
m

)
for every positive integer m.

Now, fix a positive integer m. In Step 1, we have shown that Exercise 2.9.10(i) holds if k = Z. In other
words, we have

vn (wm) =

{
wm/n, if n | m;

0, if n - m
if k = Z.

In other words,

(13.87.56) v[Z]
n

(
w[Z]
m

)
=

{
w

[Z]
m/n, if n | m;

0, if n - m
.

Now,

(13.87.57) wm = w[k]
m = Λ[ρk]

(
w[Z]
m

)
(by (13.87.55) (applied to m = Z, n = k and ϕ = ρk)). Thus,

vn︸︷︷︸
=v

[k]
n

 wm︸︷︷︸
=Λ[ρk]

(
w

[Z]
m

)

 = v[k]
n

(
Λ[ρk]

(
w[Z]
m

))
=

(
v[k]
n ◦ Λ[ρk]

)
︸ ︷︷ ︸

=Λ[ρk]◦v[Z]
n

(by (13.87.39), applied to
m=Z, n=k and ϕ=ρk)

(
w[Z]
m

)

=
(

Λ[ρk] ◦ v[Z]
n

)(
w[Z]
m

)
= Λ[ρk]


v[Z]
n

(
w[Z]
m

)
︸ ︷︷ ︸

=

w
[Z]
m/n, if n | m;

0, if n - m
(by (13.87.56))


= Λ[ρk]

({
w

[Z]
m/n, if n | m;

0, if n - m

)
=

{
Λ[ρk]

(
w

[Z]
m/n

)
, if n | m;

Λ[ρk] (0) , if n - m

=

{
Λ[ρk]

(
w

[Z]
m/n

)
, if n | m;

0, if n - m
(13.87.58) (

since Λ[ρk] (0) = 0 (because Λ[ρk] is a ring homomorphism)
in the case when n - m

)
.

On the other hand, we have

(13.87.59) Λ[ρk]
(
w

[Z]
m/n

)
= wm/n in the case when n | m
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700. Now, (13.87.58) becomes

vn (wm) =

{
Λ[ρk]

(
w

[Z]
m/n

)
, if n | m;

0, if n - m
=

{
wm/n, if n | m;

0, if n - m(
since Λ[ρk]

(
w

[Z]
m/n

)
= wm/n (according to (13.87.59))

in the case when n | m

)
.

Thus, Exercise 2.9.10(i) holds. This completes Step 2, and thus Exercise 2.9.10(i) is solved.

13.88. Solution to Exercise 2.9.11. Solution to Exercise 2.9.11. (b) Let us first notice that

(13.88.1) Xn,d,s =
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des(w)|=d; |Stag(w)|=s

xw1
xw2
· · ·xwn for all d ∈ N and s ∈ N.

(This is just the definition of Xn,d,s, written as a formula.)
Let us first show that if n is a positive integer, then any d ∈ N and s ∈ N satisfy

(d+ 1)Xn,d+1,s + (s+ 1)Xn,d,s+1 + (n− 1− d− s)Xn,d,s

=

n−1∑
i=1

d∑
e=0

s∑
t=0

Xi,e,tXn−i,d−e,s−t.(13.88.2)

Proof of (13.88.2): Let n be a positive integer. Let d ∈ N and s ∈ N. Let i ∈ {1, 2, ..., n− 1} be arbitrary.
We make some more definitions:

• Define a power series Di ∈ k [[x]] as the sum of the monomials xw1
xw2
· · ·xwn over all n-tuples

w = (w1, w2, ..., wn) ∈ {1, 2, 3, . . .}n satisfying |Des (w)| = d+ 1, |Stag (w)| = s and wi > wi+1.
• Define a power series Si ∈ k [[x]] as the sum of the monomials xw1

xw2
· · ·xwn over all n-tuples

w = (w1, w2, ..., wn) ∈ {1, 2, 3, . . .}n satisfying |Des (w)| = d, |Stag (w)| = s+ 1 and wi = wi+1.
• Define a power series Ai ∈ k [[x]] as the sum of the monomials xw1xw2 · · ·xwn over all n-tuples
w = (w1, w2, ..., wn) ∈ {1, 2, 3, . . .}n satisfying |Des (w)| = d, |Stag (w)| = s and wi < wi+1.

These three power series Di, Si and Ai are not necessarily symmetric (but will nevertheless come useful).
Let us notice that the definitions of Di, Si and Ai can be rewritten as follows:

• The power series Di ∈ k [[x]] is the sum of the monomials xw1
xw2
· · ·xwn over all n-tuples w =

(w1, w2, ..., wn) ∈ {1, 2, 3, . . .}n satisfying |(Des (w)) \ {i}| = d, |(Stag (w)) \ {i}| = s and wi > wi+1.
• The power series Si ∈ k [[x]] is the sum of the monomials xw1

xw2
· · ·xwn over all n-tuples w =

(w1, w2, ..., wn) ∈ {1, 2, 3, . . .}n satisfying |(Des (w)) \ {i}| = d, |(Stag (w)) \ {i}| = s and wi = wi+1.
• The power series Ai ∈ k [[x]] is the sum of the monomials xw1

xw2
· · ·xwn over all n-tuples w =

(w1, w2, ..., wn) ∈ {1, 2, 3, . . .}n satisfying |(Des (w)) \ {i}| = d, |(Stag (w)) \ {i}| = s and wi < wi+1.

These reformulations make it obvious that the sum Di + Si + Ai is precisely the sum of the monomials
xw1xw2 · · ·xwn over all n-tuples w = (w1, w2, ..., wn) ∈ {1, 2, 3, . . .}n satisfying |(Des (w)) \ {i}| = d and
|(Stag (w)) \ {i}| = s. In other words,

(13.88.3) Di + Si +Ai =
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|(Des(w))\{i}|=d; |(Stag(w))\{i}|=s

xw1
xw2
· · ·xwn .

But the sum on the right hand side of (13.88.3) can be rewritten in terms of more familiar sums. In
fact, the n-tuples w ∈ {1, 2, 3, . . .}n are in bijection with the pairs (u, v) consisting of an i-tuple u ∈
{1, 2, 3, . . .}i and an (n− i)-tuple v ∈ {1, 2, 3, . . .}n−i. This bijection sends an n-tuple (w1, w2, ..., wn) to the

700Proof of (13.87.59): Assume that n | m. Then, m/n is a positive integer. Hence, wm/n = Λ[ρk]
(
w

[Z]
m/n

)
(in fact,

this follows from the same argument that was used to prove (13.87.57), but with m replaced by m/n). In other words,

Λ[ρk]
(
w

[Z]
m/n

)
= wm/n. This proves (13.87.59).
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pair ((w1, w2, ..., wi) , (wi+1, wi+2, ..., wn)), and has the property that |(Des (w)) \ {i}| = |Des (u)|+ |Des (v)|
701 and |(Stag (w)) \ {i}| = |Stag (u)|+ |Stag (v)| 702. Hence,∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|(Des(w))\{i}|=d; |(Stag(w))\{i}|=s

xw1xw2 · · ·xwn

=
∑

u=(u1,u2,...,ui)∈{1,2,3,...}i;
v=(v1,v2,...,vn−i)∈{1,2,3,...}n−i;

|Des(u)|+|Des(v)|=d;
|Stag(u)|+|Stag(v)|=s︸ ︷︷ ︸

=
∑d
e=0

∑s
t=0

∑
u=(u1,u2,...,ui)∈{1,2,3,...}i;
|Des(u)|=e; |Stag(u)|=t

∑
v=(v1,v2,...,vn−i)∈{1,2,3,...}n−i;
|Des(v)|=d−e; |Stag(v)|=s−t

xu1xu2 · · ·xuixv1xv2 · · ·xvn−i

=

d∑
e=0

s∑
t=0

∑
u=(u1,u2,...,ui)∈{1,2,3,...}i;
|Des(u)|=e; |Stag(u)|=t

∑
v=(v1,v2,...,vn−i)∈{1,2,3,...}n−i;
|Des(v)|=d−e; |Stag(v)|=s−t

xu1xu2 · · ·xuixv1xv2 · · ·xvn−i

=

d∑
e=0

s∑
t=0

 ∑
u=(u1,u2,...,ui)∈{1,2,3,...}i;
|Des(u)|=e; |Stag(u)|=t

xu1
xu2
· · ·xui


 ∑
v=(v1,v2,...,vn−i)∈{1,2,3,...}n−i;
|Des(v)|=d−e; |Stag(v)|=s−t

xv1xv2 · · ·xvn−i

 .

(13.88.4)

However, for every e ∈ {0, 1, ..., d} and t ∈ {0, 1, ..., s}, the equality (13.88.1) (applied to i, e and t instead
of n, d and s) yields

(13.88.5) Xi,e,t =
∑

w=(w1,w2,...,wi)∈{1,2,3,...}i;
|Des(w)|=e; |Stag(w)|=t

xw1
xw2
· · ·xwi =

∑
u=(u1,u2,...,ui)∈{1,2,3,...}i;
|Des(u)|=e; |Stag(u)|=t

xu1
xu2
· · ·xui .

Also, for every e ∈ {0, 1, ..., d} and t ∈ {0, 1, ..., s}, the equality (13.88.1) (applied to n − i, d − e and s − t
instead of n, d and s) yields
(13.88.6)

Xn−i,d−e,s−t =
∑

w=(w1,w2,...,wn−i)∈{1,2,3,...}n−i;
|Des(w)|=d−e; |Stag(w)|=s−t

xw1
xw2
· · ·xwn−i =

∑
v=(v1,v2,...,vn−i)∈{1,2,3,...}n−i;
|Des(v)|=d−e; |Stag(v)|=s−t

xv1
xv2
· · ·xvn−i .

Now, (13.88.4) becomes∑
w=(w1,w2,...,wn)∈{1,2,3,...}n;

|(Des(w))\{i}|=d; |(Stag(w))\{i}|=s

xw1xw2 · · ·xwn

=

d∑
e=0

s∑
t=0

 ∑
u=(u1,u2,...,ui)∈{1,2,3,...}i;
|Des(u)|=e; |Stag(u)|=t

xu1xu2 · · ·xui


︸ ︷︷ ︸

=Xi,e,t
(by (13.88.5))

 ∑
v=(v1,v2,...,vn−i)∈{1,2,3,...}n−i;
|Des(v)|=d−e; |Stag(v)|=s−t

xv1xv2 · · ·xvn−i


︸ ︷︷ ︸

=Xn−i,d−e,s−t
(by (13.88.6))

=

d∑
e=0

s∑
t=0

Xi,e,tXn−i,d−e,s−t.

701In fact, (Des (w))\{i} is the union of the set Des (u) with the set Des (v) shifted by i (that is, the set {p+ i | p ∈ Des (v)}).
This is a disjoint union, and thus we find |(Des (w)) \ {i}| = |Des (u)|+ |Des (v)| (since the set Des (v) shifted by i has cardinality

|Des (v)|).
702for similar reasons
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Hence, (13.88.3) becomes

Di + Si +Ai =
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|(Des(w))\{i}|=d; |(Stag(w))\{i}|=s

xw1xw2 · · ·xwn

=

d∑
e=0

s∑
t=0

Xi,e,tXn−i,d−e,s−t.(13.88.7)

Now, let us forget that we fixed i. We thus have defined Di, Si and Ai and proven the equality (13.88.7)
for all i ∈ {1, 2, ..., n− 1}.

Now, let us take a closer look at the sums
∑n−1
i=1 Di,

∑n−1
i=1 Si and

∑n−1
i=1 Ai:

• The definition of Di can be rewritten as follows:

Di =
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des(w)|=d+1; |Stag(w)|=s; wi>wi+1

xw1xw2 · · ·xwn for every i ∈ {1, 2, ..., n− 1} .

Summing up these equations over all i ∈ {1, 2, ..., n− 1}, we obtain

n−1∑
i=1

Di =

n−1∑
i=1

∑
w=(w1,w2,...,wn)∈{1,2,3,...}n;

|Des(w)|=d+1; |Stag(w)|=s; wi>wi+1

xw1
xw2
· · ·xwn

=
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des(w)|=d+1; |Stag(w)|=s

∑
i∈{1,2,...,n−1};

wi>wi+1

xw1
xw2
· · ·xwn

︸ ︷︷ ︸
=|{i∈{1,2,...,n−1} | wi>wi+1}|xw1xw2 ···xwn

=
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des(w)|=d+1; |Stag(w)|=s

|{i ∈ {1, 2, ..., n− 1} | wi > wi+1}|︸ ︷︷ ︸
=|Desw|=d+1

xw1
xw2
· · ·xwn

= (d+ 1)
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des(w)|=d+1; |Stag(w)|=s

xw1
xw2
· · ·xwn

︸ ︷︷ ︸
=Xn,d+1,s

(by (13.88.1), applied to d+1 instead of d)

= (d+ 1)Xn,d+1,s.(13.88.8)

• Similarly, we can see that

(13.88.9)

n−1∑
i=1

Si = (s+ 1)Xn,d,s+1.

• Similarly, we can see that

(13.88.10)

n−1∑
i=1

Ai = (n− 1− d− s)Xn,d,s.

703

Now, summing the equality (13.88.7) over all i ∈ {1, 2, ..., n− 1} yields

n−1∑
i=1

(Di + Si +Ai) =

n−1∑
i=1

d∑
e=0

s∑
t=0

Xi,e,tXn−i,d−e,s−t.

703In proving this, we have to observe that |{i ∈ {1, 2, ..., n− 1} | wi < wi+1}| = n − 1 − |Desw| − |Stagw| for every

w = (w1, w2, . . . , wn) ∈ {1, 2, 3, ...}n. This is clear from realizing that the sets {i ∈ {1, 2, ..., n− 1} | wi < wi+1}, Desw and

Stagw are disjoint and their union is {1, 2, ..., n− 1}.
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Hence,

n−1∑
i=1

d∑
e=0

s∑
t=0

Xi,e,tXn−i,d−e,s−t

=

n−1∑
i=1

(Di + Si +Ai) =

n−1∑
i=1

Di︸ ︷︷ ︸
=(d+1)Xn,d+1,s

(by (13.88.8))

+

n−1∑
i=1

Si︸ ︷︷ ︸
=(s+1)Xn,d,s+1

(by (13.88.9))

+

n−1∑
i=1

Ai︸ ︷︷ ︸
=(n−1−d−s)Xn,d,s

(by (13.88.10))

= (d+ 1)Xn,d+1,s + (s+ 1)Xn,d,s+1 + (n− 1− d− s)Xn,d,s.

This proves (13.88.2).
In solving Exercise 2.9.11(b), we shall use the following trick to simplify our life. Recall that there is a

canonical ring homomorphism ϕ : Z → k. This homomorphism gives rise to a ring homomorphism ϕ [[x]] :
Z [[x]] → k [[x]], and this latter homomorphism ϕ [[x]] sends ΛZ to Λk; that is, we have (ϕ [[x]]) (ΛZ) ⊂ Λk.
Moreover, it is clear that (for any nonnegative integers d and s) the ring homomorphism ϕ [[x]] sends the
elementXn,d,s of Z [[x]] to the elementXn,d,s of k [[x]] (because the definition ofXn,d,s is functorial in the base
ring k). Therefore, if we can prove (for given nonnegative integers d and s) that the element Xn,d,s of Z [[x]]
belongs to ΛZ, then it will automatically follow that the element Xn,d,s of k [[x]] belongs to (ϕ [[x]]) (ΛZ) ⊂
Λk; this will complete the solution to Exercise 2.9.11(b). Hence, in order to solve Exercise 2.9.11(b), it
only remains to prove (for any nonnegative integers d and s) that the element Xn,d,s of Z [[x]] belongs to
ΛZ. In other words, it only remains to solve Exercise 2.9.11(b) in the case of k = Z. Hence, in solving
Exercise 2.9.11(b), we can WLOG assume that k = Z. Assume this.

Now, we are going to solve Exercise 2.9.11(b) by strong induction over n+ d. So (for the induction step)
we need to show that Xn,d,s ∈ Λ, and we can assume (as the induction hypothesis) that Xn′,d′,s′ ∈ Λ is
already known to hold for any nonnegative integers n′, d′ and s′ satisfying n′ + d′ < n+ d.

We must be in one of the following two cases:
Case 1: We have d > 0.
Case 2: We have d = 0.
Let us first consider Case 1. In this case, we have d > 0. Hence, d− 1 ∈ N. We also WLOG assume that

n is positive (otherwise, Xn,d,s is a constant and thus lies in Λ for sure). Applying (13.88.2) to d− 1 instead
of d, we obtain

dXn,d,s + (s+ 1)Xn,d−1,s+1 + (n− d− s)Xn,d−1,s =

n−1∑
i=1

d−1∑
e=0

s∑
t=0

Xi,e,tXn−i,d−1−e,s−t.

Thus,

(13.88.11) dXn,d,s =

n−1∑
i=1

d−1∑
e=0

s∑
t=0

Xi,e,tXn−i,d−1−e,s−t − (s+ 1)Xn,d−1,s+1 + (n− d− s)Xn,d−1,s.

Each of the power series Xi,e,t, Xn−i,d−1−e,s−t, Xn,d−1,s+1 and Xn,d−1,s on the right hand side of this equality
is already known to lie in Λ (by the induction hypothesis). Hence, the right hand side of (13.88.11) lies in Λ
(since Λ is a ring), and thus (13.88.11) shows that dXn,d,s ∈ Λ. Since d > 0, this yields Xn,d,s ∈ Λ (because
if a power series Q ∈ Z [[x]] satisfies dQ ∈ Λ, then Q must belong to Λ itself704). Hence, the induction step
is complete in Case 1.

Let us now consider Case 2. In this case, we have d = 0. Hence, Xn,d,s = Xn,0,s.
We shall now show that

(13.88.12) Xn,0,s =
∑

λ∈Parn;
`(λ)=n−s

mλ.

704It is here that we are using our assumption that k = Z.
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Proof of (13.88.12): Summing up the equality (2.1.1) over all λ ∈ Parn satisfying ` (λ) = n− s, we obtain

(13.88.13)
∑

λ∈Parn;
`(λ)=n−s

mλ =
∑

λ∈Parn;
`(λ)=n−s

∑
α∈S(∞)λ

xα.

On the other hand, the equality (13.88.1) (applied to 0 instead of d) yields

(13.88.14) Xn,0,s =
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des(w)|=0; |Stag(w)|=s

xw1xw2 · · ·xwn .

The condition |Des (w)| = 0 on an n-tuple w = (w1, w2, . . . , wn) ∈ {1, 2, 3, ...}n is equivalent to w1 ≤ w2 ≤
... ≤ wn, and therefore (13.88.14) rewrites as

(13.88.15) Xn,0,s =
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
w1≤w2≤...≤wn; |Stag(w)|=s

xw1
xw2
· · ·xwn .

For an n-tuple w = (w1, w2, . . . , wn) ∈ {1, 2, 3, ...}n satisfying w1 ≤ w2 ≤ ... ≤ wn, the condition |Stag (w)| =
s is equivalent to the condition that |{w1, w2, ..., wn}| = n− s. Hence, (13.88.15) rewrites as

(13.88.16) Xn,0,s =
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
w1≤w2≤...≤wn; |{w1,w2,...,wn}|=n−s

xw1
xw2
· · ·xwn .

For any fixed weak composition α = (α1, α2, α3, ...), the monomial xα occurs at most once on the right
hand side of (13.88.16) (because there is at most one way to write xα in the form xw1xw2 · · ·xwn for a
w = (w1, w2, . . . , wn) ∈ {1, 2, 3, ...}n satisfying w1 ≤ w2 ≤ ... ≤ wn). We can easily tell whether it occurs
or not by looking at the size |α| of α and the number of positive integers i satisfying αi 6= 0: Namely, the
monomial xα for a fixed weak composition α = (α1, α2, α3, ...) occurs on the right hand side of (13.88.16) if
and only if it satisfies the following two properties:

• We have |α| = n.
• There are precisely n− s positive integers i satisfying αi 6= 0.

Thus, the monomials satisfying these two properties occur exactly once on the right hand side of (13.88.16),
while all other monomials don’t occur there at all. But the same conclusion can be reached for the right
hand side of (13.88.13). Hence, for any fixed weak composition α = (α1, α2, α3, ...), the monomial xα occurs
on the right hand side of (13.88.16) precisely as often as it occurs on the right hand side of (13.88.13). Hence,
the right hand side of (13.88.16) equals the right hand side of (13.88.13). Therefore, the left hand side of
(13.88.16) also equals the left hand side of (13.88.13). In other words, Xn,0,s =

∑
λ∈Parn;
`(λ)=n−s

mλ. This proves

(13.88.12).
Now, (13.88.12) yields Xn,0,s =

∑
λ∈Parn;
`(λ)=n−s

mλ︸︷︷︸
∈Λ

∈ Λ, so that Xn,d,s = Xn,0,s ∈ Λ. This completes the

induction step in Case 2.
Thus, the induction step is complete in both Cases 1 and 2. This finally completes the induction step.

Exercise 2.9.11(b) is thus solved.
(a) First solution of Exercise 2.9.11(a): Recall the power series Xn,d,s defined in Exercise 2.9.11(b) for

any d ∈ N and s ∈ N. Exercise 2.9.11(b) yields that Xn,k,0 ∈ Λ. But an n-tuple w is Smirnov if and only
if its stagnation set Stag (w) is empty, i.e., if and only if |Stag (w)| = 0. Hence, Xn,k,0 is the sum of the
monomials xw1

xw2
· · ·xwn over all Smirnov n-tuples w ∈ {1, 2, 3, . . .}n satisfying |Des (w)| = k. This shows

that Xn,k,0 = Xn,k. Thus, Xn,k = Xn,k,0 ∈ Λ, so that Exercise 2.9.11(a) is solved.
Second solution of Exercise 2.9.11(a): Here is an alternative solution to Exercise 2.9.11(a), which avoids

using part (b). It is an application of [199, proof of Theorem 4.5] to our special setting.
We proceed similarly to the proof of Proposition 2.2.4: It suffices to show that for every positive integer p,

the power series Xn,k is invariant under swapping the variables xp and xp+1. So let us fix a positive integer
p.
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Let Sn,k denote the set of all Smirnov n-tuples w ∈ {1, 2, 3, . . .}n satisfying |Des (w)| = k. Then, the
definition of Xn,k rewrites as follows:

(13.88.17) Xn,k =
∑

w=(w1,w2,...,wn)∈Sn,k

xw1
xw2

...xwn .

For every w ∈ Sn,k, let xw denote the monomial xw1
xw2

. . . xwn , where w is written in the form w =
(w1, w2, ..., wn). Then, (13.88.17) rewrites as

(13.88.18) Xn,k =
∑

w∈Sn,k

xw.

We need to show that this power series Xn,k is invariant under swapping the variables xp and xp+1. In
order to do so, it is clearly enough to provide an involution J : Sn,k → Sn,k which has the property that for
every w ∈ Sn,k, the monomial xJ(w) is obtained from the monomial xw by swapping the variables xp and
xp+1.

To define the involution J , we introduce some notations. If w = (w1, w2, ..., wn) ∈ {1, 2, 3, ...}n is any
n-tuple, then a nonempty interval I of {1, 2, ..., n} will be called a (p, p+ 1)-interval of w if every i ∈ I
satisfies wi ∈ {p, p+ 1}. A (p, p+ 1)-run of w will mean a (p, p+ 1)-interval of w maximal with respect to
inclusion. For instance, if n = 9, w = (3, 1, 2, 5, 4, 2, 3, 2, 4) and p = 2, then the (p, p+ 1)-intervals of w are
{1}, {3}, {6}, {7}, {8}, {6, 7}, {7, 8} and {6, 7, 8} (since the letters of w belonging to {p, p+ 1} are the 1-st,
3-rd, the 6-th, the 7-th and the 8-th letter), while only {1}, {3} and {6, 7, 8} are (p, p+ 1)-runs of w.

An interval of {1, 2, ..., n} is said to be even if it has even size, and odd if it has odd size.
It is easy to see that if w = (w1, w2, ..., wn) ∈ {1, 2, 3, ...}n is any Smirnov n-tuple, and {a+ 1, a+ 2, ..., b}

is any (p, p+ 1)-interval of w, then the (b− a)-tuple (wa+1, wa+2, ..., wb) alternates between p’s and (p+ 1)’s,
that is, has one of the forms

(p, p+ 1, p, p+ 1, p, ..., p+ 1) and (p+ 1, p, p+ 1, p, p+ 1, ..., p)

(if b− a is even) or one of the forms

(p, p+ 1, p, p+ 1, p, ..., p) and (p+ 1, p, p+ 1, p, p+ 1, ..., p+ 1)

(if b− a is odd).
Now, we define a map J : Sn,k → Sn,k as follows: Let w = (w1, w2, ..., wn) ∈ Sn,k. We know that w is

Smirnov and satisfies |Des (w)| = k. It is clear that the (p, p+ 1)-runs of w are disjoint and even separated
from each other by at least 1 (this means that if α and β are elements of two distinct (p, p+ 1)-runs of w,
then |α− β| > 1). For every i ∈ {1, 2, ..., n}, define a positive integer w′i as follows:

• If i belongs to an odd (p, p+ 1)-run of w, then set w′i =

{
p+ 1, if wi = p;

p, if wi = p+ 1
.

• Otherwise, set w′i = wi.

Thus, we have defined an n-tuple (w′1, w
′
2, ..., w

′
n) of positive integers.705 Denote this n-tuple (w′1, w

′
2, ..., w

′
n)

by w′. The reader can easily check that this new n-tuple w′ is again Smirnov and satisfies |Des (w′)| = k.
In other words, w′ ∈ Sn,k. Now, set J (w) = w′. We have thus defined a map J : Sn,k → Sn,k. It is easy to
see that, for every w ∈ Sn,k, the (p, p+ 1)-runs of J (w) are exactly the (p, p+ 1)-runs of w, and applying
the map J to J (w) precisely reverts the changes made by the map J to w. In other words, J ◦ J = id, so
that the map J is an involution. Finally, it is straightforward to see that for every w ∈ Sn,k, we have the
following facts:

(1) The number of entries equal to p+ 1 in J (w) equals the number of entries equal to p in w.
(2) The number of entries equal to p in J (w) equals the number of entries equal to p+ 1 in w.
(3) For every j ∈ {1, 2, 3, ...} \ {p, p+ 1}, the number of entries equal to j in J (w) equals the number of

entries equal to j in w.

705Informally speaking,
(
w′1, w

′
2, ..., w

′
n

)
is simply obtained by changing those p’s and p+ 1’s in w whose positions belong to

odd (p, p+ 1)-runs of w into p+ 1’s and p’s, respectively, while leaving all other entries of w intact. For instance, in our above

example of n = 9, w = (3, 1, 2, 5, 4, 2, 3, 2, 4) and p = 2, we would have
(
w′1, w

′
2, ..., w

′
n

)
= (2, 1, 3, 5, 4, 3, 2, 3, 4). (All letters 2

and 3 have been changed here because all (p, p+ 1)-runs of this w were odd.) For another example, if n = 5, w = (2, 3, 1, 5, 2)

and p = 2, then
(
w′1, w

′
2, ..., w

′
n

)
= (2, 3, 1, 5, 3) (the first two letters are unchanged since the (p, p+ 1)-run {1, 2} is even).
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706 These three statements, combined, show that for every w ∈ Sn,k, the monomial xJ(w) is obtained from
the monomial xw by swapping the variables xp and xp+1. This concludes our solution of Exercise 2.9.11(a).

Remark: We could have given an alternative solution to Exercise 2.9.11(b) that would still rely on
(13.88.2), but proceed by induction on n + s (rather than n + d) and handle the case s = 0 separately
(rather than the case d = 0 as we did). In the case s = 0, the assertion of Exercise 2.9.11(b) follows from
Exercise 2.9.11(a). (But this only works combined with a solution to Exercise 2.9.11(a) that does not rely
on Exercise 2.9.11(b).)

(c) For every d ∈ N, s ∈ N and i ∈ {1, 2, ..., n− 1}, we define the power series Di, Si and Ai as in the
solution to Exercise 2.9.11(b) above.

Let us first show that if n is a positive integer, then any d ∈ N and s ∈ N satisfy

(13.88.19) (d+ 1)Un,d+1,s + (s+ 1)Un,d,s+1 + (n− 1− d− s)Un,d,s = (d+ 1)Xn,d+1,s.

Proof of (13.88.19): Let n be a positive integer. Let d ∈ N and s ∈ N. Let i ∈ {1, 2, ..., n− 1} be arbitrary.
Before we make any new definitions, let us recall a statement that we have shown during our proof of

(13.88.2) (back when we were solving Exercise 2.9.11(b)): The power series Di ∈ k [[x]] is the sum of the
monomials xw1

xw2
· · ·xwn over all n-tuples w = (w1, w2, ..., wn) ∈ {1, 2, 3, . . .}n satisfying |(Des (w)) \ {i}| =

d, |(Stag (w)) \ {i}| = s and wi > wi+1. Written as a formula, this yields

Di =
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|(Des(w))\{i}|=d; |(Stag(w))\{i}|=s;

wi>wi+1

xw1xw2 · · ·xwn .

Applying this to n− i instead of i, we obtain

(13.88.20) Dn−i =
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|(Des(w))\{n−i}|=d; |(Stag(w))\{n−i}|=s;

wn−i>wn−i+1

xw1xw2 · · ·xwn .

Now, let us make some more definitions:

• Define a power series D′i ∈ k [[x]] as the sum of the monomials xw1
xw2
· · ·xwn over all n-tuples

w = (w1, w2, ..., wn) ∈ {1, 2, 3, . . .}n satisfying |Des (w)| = d + 1, |Stag (w)| = s, w1 < wn and
wi > wi+1.

• Define a power series S ′i ∈ k [[x]] as the sum of the monomials xw1
xw2
· · ·xwn over all n-tuples

w = (w1, w2, ..., wn) ∈ {1, 2, 3, . . .}n satisfying |Des (w)| = d, |Stag (w)| = s + 1, w1 < wn and
wi = wi+1.

• Define a power series A′i ∈ k [[x]] as the sum of the monomials xw1
xw2
· · ·xwn over all n-tuples

w = (w1, w2, ..., wn) ∈ {1, 2, 3, . . .}n satisfying |Des (w)| = d, |Stag (w)| = s, w1 < wn and wi < wi+1.

These three power series D′i, S ′i and A′i were defined in obvious analogy to the power series Di, Si and
Ai defined in our solution to Exercise 2.9.11(b) above. In the same way as we have proved (13.88.3) back
there, we can see that

(13.88.21) D′i + S ′i +A′i =
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|(Des(w))\{i}|=d; |(Stag(w))\{i}|=s;

w1<wn

xw1xw2 · · ·xwn .

But the sum on the right hand side of (13.88.21) can be rewritten in terms of more familiar sums. In
fact, the n-tuples w = (w1, w2, ..., wn) ∈ {1, 2, 3, . . .}n are in bijection with the pairs (u, v) consisting of

an i-tuple u = (u1, u2, ..., ui) ∈ {1, 2, 3, . . .}i and an (n− i)-tuple v = (v1, v2, ..., vn−i) ∈ {1, 2, 3, . . .}n−i.
This bijection sends an n-tuple (w1, w2, ..., wn) to the pair ((w1, w2, ..., wi) , (wi+1, wi+2, ..., wn)), and has the
property that |(Des (w)) \ {i}| = |Des (u)|+ |Des (v)| 707, |(Stag (w)) \ {i}| = |Stag (u)|+ |Stag (v)| 708,

706The idea is that the map J switches the number of p’s with the number of (p+ 1)’s in any odd (p, p+ 1)-run, while the

numbers in an even (p, p+ 1)-run are already equal to begin with.
707In fact, (Des (w))\{i} is the union of the set Des (u) with the set Des (v) shifted by i (that is, the set {p+ i | p ∈ Des (v)}).

This is a disjoint union, and thus we find that |(Des (w)) \ {i}| = |Des (u)| + |Des (v)| (since the set Des (v) shifted by i has
cardinality |Des (v)|).

708for similar reasons
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xw1xw2 · · ·xwn = xu1xu2 · · ·xuixv1xv2 · · ·xvn−i , w1 = u1 and wn = vn−i. Hence,

∑
w=(w1,w2,...,wn)∈{1,2,3,...}n;

|(Des(w))\{i}|=d; |(Stag(w))\{i}|=s;
w1<wn

xw1
xw2
· · ·xwn

=
∑

u=(u1,u2,...,ui)∈{1,2,3,...}i;
v=(v1,v2,...,vn−i)∈{1,2,3,...}n−i;

|Des(u)|+|Des(v)|=d;
|Stag(u)|+|Stag(v)|=s;

u1<vn−i︸ ︷︷ ︸
=

∑
v=(v1,v2,...,vn−i)∈{1,2,3,...}n−i;
u=(u1,u2,...,ui)∈{1,2,3,...}i;
|Des(u)|+|Des(v)|=d;
|Stag(u)|+|Stag(v)|=s;

u1<vn−i

xu1
xu2
· · ·xuixv1

xv2
· · ·xvn−i︸ ︷︷ ︸

=xv1xv2 ···xvn−ixu1xu2 ···xui

=
∑

v=(v1,v2,...,vn−i)∈{1,2,3,...}n−i;
u=(u1,u2,...,ui)∈{1,2,3,...}i;
|Des(u)|+|Des(v)|=d;
|Stag(u)|+|Stag(v)|=s;

u1<vn−i

xv1
xv2
· · ·xvn−ixu1

xu2
· · ·xui .(13.88.22)

On the other hand, the pairs (v, u) consisting of an (n− i)-tuple v = (v1, v2, ..., vn−i) ∈ {1, 2, 3, . . .}n−i

and an i-tuple u = (u1, u2, ..., ui) ∈ {1, 2, 3, . . .}i are in bijection with the n-tuples w = (w1, w2, ..., wn) ∈
{1, 2, 3, . . .}n. This bijection sends a pair (v, u) with v = (v1, v2, ..., vn−i) and u = (u1, u2, ..., ui) to the n-tuple
(v1, v2, ..., vn−i, u1, u2, ..., ui) ∈ {1, 2, 3, . . .}n, and has the property that |(Des (w)) \ {n− i}| = |Des (u)| +
|Des (v)| 709, |(Stag (w)) \ {n− i}| = |Stag (u)|+|Stag (v)| 710, xw1

xw2
· · ·xwn = xv1

xv2
· · ·xvn−ixu1

xu2
· · ·xui ,

wn−i+1 = u1 and wn−i = vn−i. We can use this bijection to transform the sum on the right hand side of
(13.88.22), and obtain

∑
v=(v1,v2,...,vn−i)∈{1,2,3,...}n−i;
u=(u1,u2,...,ui)∈{1,2,3,...}i;
|Des(u)|+|Des(v)|=d;
|Stag(u)|+|Stag(v)|=s;

u1<vn−i

xu1
xu2
· · ·xuixv1

xv2
· · ·xvn−i

=
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|(Des(w))\{n−i}|=d; |(Stag(w))\{n−i}|=s;

wn−i+1<wn−i

xw1
xw2
· · ·xwn

=
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|(Des(w))\{n−i}|=d; |(Stag(w))\{n−i}|=s;

wn−i>wn−i+1

xw1xw2 · · ·xwn = Dn−i (by (13.88.20)) .(13.88.23)

709In fact, (Des (w)) \ {n− i} is the union of the set Des (v) with the set Des (u) shifted by n − i (that is, the set

{p+ (n− i) | p ∈ Des (u)}). This is a disjoint union; thus, we find |(Des (w)) \ {n− i}| = |Des (u)| + |Des (v)| (since the

set Des (u) shifted by n− i has cardinality |Des (u)|).
710for similar reasons
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Now, (13.88.21) becomes

D′i + S ′i +A′i =
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|(Des(w))\{i}|=d; |(Stag(w))\{i}|=s;

w1<wn

xw1
xw2
· · ·xwn

=
∑

v=(v1,v2,...,vn−i)∈{1,2,3,...}n−i;
u=(u1,u2,...,ui)∈{1,2,3,...}i;
|Des(u)|+|Des(v)|=d;
|Stag(u)|+|Stag(v)|=s;

u1<vn−i

xv1
xv2
· · ·xvn−ixu1

xu2
· · ·xui (by (13.88.22))

= Dn−i.(13.88.24)

Now, let us forget that we fixed i. We thus have defined D′i, S ′i and A′i and proven the equality (13.88.24)
for all i ∈ {1, 2, ..., n− 1}.

Now, let us take a closer look at the sums
∑n−1
i=1 D′i,

∑n−1
i=1 S ′i and

∑n−1
i=1 A′i:

• Similarly to how we proved (13.88.8), we can show that

(13.88.25)

n−1∑
i=1

D′i = (d+ 1)Un,d+1,s.

• Similarly to how we proved (13.88.9), we can see that

(13.88.26)

n−1∑
i=1

S ′i = (s+ 1)Un,d,s+1.

• Similarly to how we proved (13.88.10), we can see that

(13.88.27)

n−1∑
i=1

A′i = (n− 1− d− s)Un,d,s.

Now, summing the equality (13.88.24) over all i ∈ {1, 2, ..., n− 1} yields

n−1∑
i=1

(D′i + S ′i +A′i) =

n−1∑
i=1

Dn−i =

n−1∑
i=1

Di = (d+ 1)Xn,d+1,s (by (13.88.8)) .

Hence,

(d+ 1)Xn,d+1,s =

n−1∑
i=1

(D′i + S ′i +A′i) =

n−1∑
i=1

D′i︸ ︷︷ ︸
=(d+1)Un,d+1,s

(by (13.88.25))

+

n−1∑
i=1

S ′i︸ ︷︷ ︸
=(s+1)Un,d,s+1

(by (13.88.26))

+

n−1∑
i=1

A′i︸ ︷︷ ︸
=(n−1−d−s)Un,d,s

(by (13.88.27))

= (d+ 1)Un,d+1,s + (s+ 1)Un,d,s+1 + (n− 1− d− s)Un,d,s.

This proves (13.88.19).
In solving Exercise 2.9.11(c), we WLOG assume that k = Z (for the same reason why we could assume

k = Z in solving Exercise 2.9.11(b)).
Now, we are going to prove Un,d,s ∈ Λ by strong induction over n + d. So (for the induction step) we

need to show that Un,d,s ∈ Λ, and we can assume (as the induction hypothesis) that Un′,d′,s′ ∈ Λ is already
known to hold for any nonnegative integers n′, d′ and s′ satisfying n′ + d′ < n+ d.

We must be in one of the following two cases:
Case 1: We have d > 0.
Case 2: We have d = 0.
In Case 1, we can proceed in the same way as in the corresponding case of the solution of Exercise

2.9.11(b) (with the only difference that we now have to use Xn,d,s ∈ Λ, but this follows from the already
solved Exercise 2.9.11(b)).

Let us now consider Case 2. In this case, we have d = 0. We now distinguish between two subcases:
Subcase 2.1: We have s = n− 1.
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Subcase 2.2: We have s 6= n− 1.
Let us consider Subcase 2.1 first. In this subcase, we have s = n− 1. We will show that Un,d,s = 0 in this

subcase.
Indeed, let w = (w1, w2, . . . , wn) ∈ {1, 2, 3, . . .}n be such that |Des (w)| = d, |Stag (w)| = s and w1 < wn.

Then, Stag (w) is a subset of {1, 2, ..., n− 1} whose cardinality is |Stag (w)| = s = n− 1 = |{1, 2, ..., n− 1}|.
Obviously, the only such subset is {1, 2, ..., n− 1} itself, and so Stag (w) must be {1, 2, ..., n− 1}. Hence,
every j ∈ {1, 2, ..., n− 1} satisfies j ∈ {1, 2, ..., n− 1} = Stag (w) = {i ∈ {1, 2, . . . , n− 1} : wi = wi+1} and
thus wj = wj+1. In other words, w1 = w2 = ... = wn. This contradicts w1 < wn.

Now, forget that we fixed w. We thus have obtained a contradiction for every w = (w1, w2, . . . , wn) ∈
{1, 2, 3, . . .}n satisfying |Des (w)| = d, |Stag (w)| = s and w1 < wn. Therefore, there exists no such w.
Hence, the sum on the right hand side of (2.9.10) is empty and thus equals 0. Thus, (2.9.10) rewrites as
Un,d,s = 0 ∈ Λ. Hence, the induction step is complete in Subcase 2.1.

Let us now consider Subcase 2.2. In this case, s 6= n − 1. We will show that Un,d,s = Xn,d,s in this
subcase.

Indeed, let w = (w1, w2, . . . , wn) ∈ {1, 2, 3, . . .}n be such that |Des (w)| = d and |Stag (w)| = s. We will
show that w1 < wn.

We have |Des (w)| = d = 0, so that the set Des (w) is empty. In other words, every j ∈ {1, 2, ..., n− 1}
satisfies wj ≤ wj+1. Hence, we have the chain of inequalities w1 ≤ w2 ≤ ... ≤ wn. At least one inequality
in this chain must be strict (because otherwise, we would have w1 = w2 = ... = wn, thus wj = wj+1 for
every j ∈ {1, 2, ..., n− 1}, thus j ∈ Stag (w) for every j ∈ {1, 2, ..., n− 1}, which would lead to Stag (w) =
{1, 2, ..., n− 1} and thus |Stag (w)| = |{1, 2, ..., n− 1}| = n − 1, in contradiction to Stag (w) = s 6= n − 1),
and thus we have w1 < wn.

Now, let us forget that we fixed w. We thus have proven that every w = (w1, w2, . . . , wn) ∈ {1, 2, 3, . . .}n
satisfying |Des (w)| = d and |Stag (w)| = s automatically satisfies w1 < wn. Hence, the condition w1 < wn
under the summation sign “

∑
w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des(w)|=d; |Stag(w)|=s;

w1<wn

” is redundant (i.e., can be removed without changing

the range of the summation). Thus,

∑
w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des(w)|=d; |Stag(w)|=s;

w1<wn

xw1xw2 · · ·xwn =
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des(w)|=d; |Stag(w)|=s

xw1xw2 · · ·xwn = Xn,d,s

(by (13.88.1)). Now, (2.9.10) becomes

Un,d,s =
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des(w)|=d; |Stag(w)|=s;

w1<wn

xw1xw2 · · ·xwn = Xn,d,s ∈ Λ

(by Exercise 2.9.11(b)). Hence, the induction step is complete in Subcase 2.2.
The induction step is thus complete in Case 1 and in each of the two Subcases 2.1 and 2.2. These are all

cases, and so the induction step is finally complete. We have thus proven that

(13.88.28) Un,d,s ∈ Λ for all positive integers n, all d ∈ N and all s ∈ N.

In order to complete the solution of Exercise 2.9.11(c), we still need to prove that Vn,d,s and Wn,d,s belong
to Λ for all positive integers n, all d ∈ N and all s ∈ N.



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 687

Let n be a positive integer, let d ∈ N and let s ∈ N. The equality (2.9.12) becomes

Wn,d,s =
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des(w)|=d; |Stag(w)|=s;

w1>wn

xw1
xw2
· · ·xwn

=
∑

(w1,w2,...,wn)∈{1,2,3,...}n;
|Des((wn,wn−1,...,w1))|=d; |Stag((wn,wn−1,...,w1))|=s;

wn>w1

xwnxwn−1
· · ·xw1︸ ︷︷ ︸

=xw1
xw2
···xwn

(here, we substituted (wn, wn−1, . . . , w1) for w = (w1, w2, . . . , wn) in the sum)

=
∑

(w1,w2,...,wn)∈{1,2,3,...}n;
|Des((wn,wn−1,...,w1))|=d; |Stag((wn,wn−1,...,w1))|=s;

wn>w1

xw1xw2 · · ·xwn

=
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des((wn,wn−1,...,w1))|=d; |Stag((wn,wn−1,...,w1))|=s;

wn>w1

xw1xw2 · · ·xwn

=
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
n−1−|Des(w)|−|Stag(w)|=d; |Stag(w)|=s;

wn>w1

xw1xw2 · · ·xwn


since every w = (w1, w2, . . . , wn) ∈ {1, 2, 3, . . .}n satisfies
|Des ((wn, wn−1, . . . , w1))| = n− 1− |Des (w)| − |Stag (w)|

and |Stag ((wn, wn−1, . . . , w1))| = |Stag (w)|
(this is easily shown by observing that the set {1, 2, ..., n− 1}

is the union of its three disjoint subsets
{i ∈ {1, 2, ..., n− 1} | wi < wi+1} , Desw and Stagw)


=

∑
w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des(w)|=n−1−d−s; |Stag(w)|=s;

w1<wn

xw1
xw2
· · ·xwn

 because for a w = (w1, w2, . . . , wn) ∈ {1, 2, 3, . . .}n satisfying
|Stag (w)| = s, the assertions n− 1− |Des (w)| − |Stag (w)| = d

and wn > w1 are equivalent to |Des (w)| = n− 1− d− s and w1 < wn


= Un,n−1−d−s,s (by (2.9.10), applied to n− 1− d− s instead of d)

∈ Λ (by (13.88.28), applied to n− 1− d− s instead of d) .

Finally, (13.88.1) becomes

Xn,d,s =
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des(w)|=d; |Stag(w)|=s

xw1
xw2
· · ·xwn

=
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des(w)|=d; |Stag(w)|=s;

w1<wn

xw1
xw2
· · ·xwn

︸ ︷︷ ︸
=Un,d,s

(by (2.9.10))

+
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des(w)|=d; |Stag(w)|=s;

w1=wn

xw1
xw2
· · ·xwn

︸ ︷︷ ︸
=Vn,d,s

(by (2.9.11))

+
∑

w=(w1,w2,...,wn)∈{1,2,3,...}n;
|Des(w)|=d; |Stag(w)|=s;

w1>wn

xw1
xw2
· · ·xwn

︸ ︷︷ ︸
=Wn,d,s

(by (2.9.12))

= Un,d,s + Vn,d,s +Wn,d,s,
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so that Vn,d,s = Xn,d,s︸ ︷︷ ︸
∈Λ

(by Exercise 2.9.11(b))

−Un,d,s︸ ︷︷ ︸
∈Λ

−Wn,d,s︸ ︷︷ ︸
∈Λ

∈ Λ− Λ− Λ ⊂ Λ.

We have thus shown that Vn,d,s ∈ Λ and Wn,d,s ∈ Λ. Combined with Un,d,s ∈ Λ (this follows from
(13.88.28)), this completes the solution of Exercise 2.9.11(c).

13.89. Solution to Exercise 2.9.13. Solution to Exercise 2.9.13. We start out with two definitions:

• If m and q are integers satisfying 0 ≤ q ≤ m, and if U = (ui,j)i,j=1,2,...,m ∈ km×m is an m×m-matrix,

then NWsmq U will mean the matrix (ui,j)i,j=1,2,...,q ∈ kq×q. This is the submatrix of U obtained

by removing all rows other than the first q rows and then removing all columns other than the first
q columns.711

• A square matrix (ui,j)i,j=1,2,...,m ∈ km×m is said to be nearly lower-triangular if we have(
ui,j = 0 for every (i, j) ∈ {1, 2, ...,m}2 satisfying j > i+ 1

)
.

(Thus, informally, a square matrix is nearly lower-triangular if and only if all its entries above the
superdiagonal are 0, where the superdiagonal is the set of all cells which lie just one step north of a
cell on the diagonal.)

We will now show a lemma:

Lemma 13.89.1. Let m ∈ N. Let U = (ui,j)i,j=1,2,...,m ∈ km×m be a nearly lower-triangular m×m-matrix.

Then,

detU =

m∑
r=1

(−1)
m−r

um,r det (NWsmr−1 U) ·
m−1∏
k=r

uk,k+1.

Proof of Lemma 13.89.1. Fix some r ∈ {1, 2, ...,m}. We define the following four matrices:

• the (r − 1)×(r − 1)-matrix P = (ui,j)i,j=1,2,...,r−1, which is obtained from the matrix U by removing

all rows other than the first r − 1 rows and then removing all columns other than the first r − 1
columns;

• the (r − 1)× (m− r)-matrix Q = (ui,r+j)i=1,2,...,r−1; j=1,2,...,m−r, which is obtained from the matrix

U by removing all rows other than the first r − 1 rows and then removing all columns other than
the last m− r columns;

• the (m− r) × (r − 1)-matrix R = (ur−1+i,j)i=1,2,...,m−r; j=1,2,...,r−1, which is obtained from the

matrix U by removing all rows other than the r-th, the (r + 1)-st, etc., the (m− 1)-st row, and then
removing all columns other than the first r − 1 columns;

• the (m− r) × (m− r)-matrix S = (ur−1+i,r+j)i,j=1,2,...,m−r, which is obtained from the matrix U

by removing all rows other than the r-th, the (r + 1)-st, etc., the (m− 1)-st row, and then removing
all columns other than the last m− r columns.

Now, the matrix U can be written as a block matrix as follows: U =

 P v Q
R w S
x y z

, where

 v
w
y

 is

the r-th column of U , and where
(
x y z

)
is the m-th row of U . 712 Hence,

(the matrix obtained from U by removing the m-th row and the r-th column)

=

(
P Q
R S

)
.(13.89.1)

711The notation NWsmq U stands short for “q-th northwest submatrix of U”. It is the kind of submatrices whose determi-

nants usually figure in the Sylvester criterion for the positive definiteness of a matrix.
712Despite being labelled with lowercase letters, v, w, x, y and z are still blocks, although each has (at least) one of its

dimensions equal to 1 (and y is a 1× 1-block).
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But the matrix Q = (ui,r+j)i=1,2,...,r−1; j=1,2,...,m−r is the zero matrix (since U is nearly lower-triangular),

and the matrices P and S are square matrices. Hence,

(
P Q
R S

)
is a block lower-triangular matrix with

diagonal blocks P and S. Thus, its determinant is

(13.89.2) det

(
P Q
R S

)
= detP · detS

(since the determinant of a block lower-triangular matrix is known to equal the product of the determinants
of its diagonal blocks).

But the matrix S = (ur−1+i,r+j)i,j=1,2,...,m−r is lower-triangular (since U is nearly lower-triangular).

Since it is well-known that the determinant of a lower-triangular matrix equals the product of its diagonal
entries, we can therefore compute the determinant detS of S as follows:
(13.89.3)

detS =

m−r∏
i=1

ur−1+i,r+i =

m−1∏
k=r

uk,k+1 (here, we have substituted k for r − 1 + i in the product) .

Moreover, P = NWsmr−1 U (since comparing the definitions of P and of NWsmr−1 U shows that these
two matrices are the same). Now, applying the map det to both sides of (13.89.1), we obtain

det (the matrix obtained from U by removing the m-th row and the r-th column)

= det

(
P Q
R S

)
= det P︸︷︷︸

=NWsmr−1 U

· detS︸ ︷︷ ︸
=
∏m−1
k=r uk,k+1

(by (13.89.3))

(by (13.89.2))

= det (NWsmr−1 U) ·
m−1∏
k=r

uk,k+1.(13.89.4)

Now, forget that we fixed r. We can compute the determinant detU by Laplace expansion along the m-th
row, thus obtaining

detU

=

m∑
r=1

um,r · (the (m, r) -th cofactor of the matrix U)︸ ︷︷ ︸
=(−1)m+r det(the matrix obtained from U by removing the m-th row and the r-th column)

=

m∑
r=1

um,r · (−1)
m+r︸ ︷︷ ︸

=(−1)m−r

det (the matrix obtained from U by removing the m-th row and the r-th column)︸ ︷︷ ︸
=det(NWsmr−1 U)·

∏m−1
k=r uk,k+1

(by (13.89.4))

=

m∑
r=1

um,r · (−1)
m−r · det (NWsmr−1 U) ·

m−1∏
k=r

uk,k+1 =

m∑
r=1

(−1)
m−r

um,r det (NWsmr−1 U) ·
m−1∏
k=r

uk,k+1.

This proves Lemma 13.89.1. �

Before we solve the actual exercise, we record one further identity that we will be using twice. Namely,
we claim that

(13.89.5) mem =

m∑
i=1

(−1)
i−1

em−ipi for every m ∈ N.

Proof of (13.89.5): Recall the power series H (t) defined in (2.4.1), and the power series E (t) defined in
(2.4.2). From (2.4.3), we know that E (−t)H (t) = 1. Differentiating both sides of this equation with respect
to t, we obtain (E (−t)H (t))

′
= 1′ = 0, so that

0 = (E (−t)H (t))
′

= (E (−t))′︸ ︷︷ ︸
=−E′(−t)

H (t) + E (−t)H ′ (t) (by the Leibniz rule)

= −E′ (−t)H (t) + E (−t)H ′ (t) ,



690 DARIJ GRINBERG AND VICTOR REINER

and thus E′ (−t)H (t) = E (−t)H ′ (t). Hence,
E′ (−t)
E (−t)

=
H ′ (t)

H (t)
.

But Exercise 2.5.21 yields
∑
m≥0 pm+1t

m =
H ′ (t)

H (t)
. Compared with

E′ (−t)
E (−t)

=
H ′ (t)

H (t)
, this yields

E′ (−t)
E (−t)

=
∑
m≥0 pm+1t

m. Substituting −t for t in this equality, we obtain

E′ (t)

E (t)
=
∑
m≥0

pm+1 (−t)m =
∑
m≥0

pm+1 (−1)
m
tm.

Thus,

E′ (t) = E (t)︸ ︷︷ ︸
=
∑
m≥0 emt

m

(by the definition of E(t))

·

∑
m≥0

pm+1 (−1)
m
tm

 =

∑
m≥0

emt
m

∑
m≥0

pm+1 (−1)
m
tm



=

∑
m≥0

pm+1 (−1)
m
tm

∑
m≥0

emt
m


=
∑
m≥0

(
m∑
i=0

pi+1 (−1)
i
em−i

)
tm (by the definition of the product of two power series)

=
∑
m≥1

(
m−1∑
i=0

pi+1 (−1)
i
em−1−i

)
tm−1 (here, we substituted m− 1 for m in the first sum)

=
∑
m≥0

(
m−1∑
i=0

pi+1 (−1)
i
em−1−i

)
︸ ︷︷ ︸

=
∑m
i=1 pi(−1)i−1em−i

(here we substituted i−1 for i in the sum)

tm−1

(
here, we have added an m = 0 addend to the first sum;

this did not change the sum since this addend is 0

)
=
∑
m≥0

(
m∑
i=1

pi (−1)
i−1

em−i

)
tm−1 =

∑
m≥0

(
m∑
i=1

(−1)
i−1

em−ipi

)
tm−1.

Compared with

E′ (t) =

∑
m≥0

emt
m

′ since E (t) =
∑
m≥0

emt
m


=
∑
m≥0

em ·mtm−1 =
∑
m≥0

memt
m−1,

this yields ∑
m≥0

memt
m−1 =

∑
m≥0

(
m∑
i=1

(−1)
i−1

em−ipi

)
tm−1.

Multiplying both sides of this equality by t, we obtain∑
m≥0

memt
m =

∑
m≥0

(
m∑
i=1

(−1)
i−1

em−ipi

)
tm.

Comparing coefficients in this equality of power series, we conclude that every m ∈ N satisfies

mem =

m∑
i=1

(−1)
i−1

em−ipi.
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This proves (13.89.5).
Now, let us solve the exercise.
(a) We will solve Exercise 2.9.13(a) by strong induction over n. Thus, we assume (as the induction

hypothesis) that

(13.89.6) det (Ak) = k!ek for all k ∈ N satisfying k < n.

We now need to prove that det (An) = n!en.
The matrix An = (ai,j)i,j=1,2,...,n is nearly lower-triangular713. Hence, Lemma 13.89.1 (applied to m = n,

U = An and ui,j = ai,j) yields

det (An) =

n∑
r=1

(−1)
n−r

an,r︸︷︷︸
=pn−r+1

(by the definition of an,r,
since n≥r)

det (NWsmr−1 (An))︸ ︷︷ ︸
=Ar−1

(this is easy to see by
the definitions of An and Ar−1)

·
n−1∏
k=r

ak,k+1︸ ︷︷ ︸
=k

(by the definition of ak,k+1,
since k=(k+1)−1)

=

n∑
r=1

(−1)
n−r

pn−r+1 det (Ar−1)︸ ︷︷ ︸
=(r−1)!er−1

(by (13.89.6), applied to k=r−1)

·
n−1∏
k=r

k

=

n∑
r=1

(−1)
n−r

pn−r+1 (r − 1)!er−1

n−1∏
k=r

k =

n∑
r=1

(−1)
n−r

(r − 1)!

(
n−1∏
k=r

k

)
︸ ︷︷ ︸

=(n−1)!

pn−r+1er−1

= (n− 1)!

n∑
r=1

(−1)
n−r

pn−r+1er−1 = (n− 1)!

n∑
i=1

(−1)
i−1

pien−i︸ ︷︷ ︸
=
∑n
i=1(−1)i−1en−ipi=nen

(because (13.89.5) (applied to m=n)

yields nen=
∑n
i=1(−1)i−1en−ipi)

(here, we have substituted n− i+ 1 for r in the sum)

= (n− 1)!n︸ ︷︷ ︸
=n!

en = n!en.

This completes the induction step, and so Exercise 2.9.13(a) is solved.
(b) We will solve Exercise 2.9.13(b) by strong induction over n. Thus, we assume (as the induction

hypothesis) that

(13.89.7) det (Bk) = pk for all positive integers k satisfying k < n.

We now need to prove that det (Bn) = pn.

713because for every (i, j) ∈ {1, 2, ..., n}2 satisfying j > i+ 1, we have

ai,j =


pi−j+1, if i ≥ j;
i, if i = j − 1;

0, if i < j − 1

= 0 (since i < j − 1 (because j > i+ 1)) .
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The matrix Bn = (bi,j)i,j=1,2,...,n is nearly lower-triangular714. Hence, Lemma 13.89.1 (applied to m = n,

U = Bn and ui,j = bi,j) yields

det (Bn) =

n∑
r=1

(−1)
n−r

bn,r det (NWsmr−1 (Bn))︸ ︷︷ ︸
=Br−1

(this is easy to see by
the definitions of Bn and Br−1)

·
n−1∏
k=r

bk,k+1︸ ︷︷ ︸
=ek−(k+1)+1

(by the definition of bk,k+1,
since k+1>k≥r≥1)

=

n∑
r=1

(−1)
n−r

bn,r det (Br−1) ·
n−1∏
k=r

ek−(k+1)+1︸ ︷︷ ︸
=e0=1

=

n∑
r=1

(−1)
n−r

bn,r det (Br−1) ·
n−1∏
k=r

1︸ ︷︷ ︸
=1

=

n∑
r=1

(−1)
n−r

bn,r det (Br−1)

= (−1)
n−1

bn,1︸︷︷︸
=nen

(by the definition
of bn,1)

det (B1−1)︸ ︷︷ ︸
=1

(since B1−1 is a
0×0-matrix)

+

n∑
r=2

(−1)
n−r

bn,r︸︷︷︸
=en−r+1

(by the definition of bn,r,
since r>1)

det (Br−1)︸ ︷︷ ︸
=pr−1

(by (13.89.7),
applied to k=r−1)

= (−1)
n−1

nen︸︷︷︸
=
∑n
i=1(−1)i−1en−ipi

(by (13.89.5), applied
to m=n)

+

n∑
r=2

(−1)
n−r

en−r+1pr−1︸ ︷︷ ︸
=
∑n−1
i=1 (−1)n−(i+1)en−ipi

(here, we substituted i+1 for r in the sum)

= (−1)
n−1

n∑
i=1

(−1)
i−1

en−ipi +

n−1∑
i=1

(−1)
n−(i+1)

en−ipi

=

n∑
i=1

(−1)
n−1

(−1)
i−1︸ ︷︷ ︸

=(−1)n−i

en−ipi +

n−1∑
i=1

(−1)
n−(i+1)︸ ︷︷ ︸

=−(−1)n−i

en−ipi

=

n∑
i=1

(−1)
n−i

en−ipi︸ ︷︷ ︸
=
∑n−1
i=1 (−1)n−ien−ipi+(−1)n−nen−npn

−
n−1∑
i=1

(−1)
n−i

en−ipi

=

n−1∑
i=1

(−1)
n−i

en−ipi + (−1)
n−n

en−npn −
n−1∑
i=1

(−1)
n−i

en−ipi = (−1)
n−n︸ ︷︷ ︸

=1

en−n︸ ︷︷ ︸
=e0=1

pn = pn.

This completes the induction step, and so Exercise 2.9.13(b) is solved.
Remark: The above solution follows closely the solution of Exercise 9.3 in the first author’s “λ-rings:

Definitions and basic properties” ( https://github.com/darijgr/lambda , version 0.0.21), which is more
or less a restatement of this exercise (since the elements of ΛZ are in a 1-to-1 correspondence with unary
functorial operations defined on every λ-ring).

Whenever ` ∈ N and two partitions λ and µ of length ≤ ` have the property that the transpose of the
matrix

(
hλi−µj−i+j

)
i,j=1,2,...,`

is nearly lower-triangular, we can use Lemma 13.89.1 to obtain a recursive

formula for the determinant of this matrix, which is sλ/µ according to (2.4.16). This does not seem to be of
much use, however.

714because for every (i, j) ∈ {1, 2, ..., n}2 satisfying j > i+ 1, we have

bi,j =

{
iei, if j = 1;

ei−j+1, if j > 1
= ei−j+1 (since j > 1 (because j > i+ 1 ≥ 1))

= 0 (since i− j + 1 < 0 (since j > i+ 1))

https://github.com/darijgr/lambda
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13.90. Solution to Exercise 2.9.14. Solution to Exercise 2.9.14. For any integers a and b, we define an
element s (a, b) of Λ by

s (a, b) =


s(a+1,1b), if a ≥ 0 and b ≥ 0;

(−1)
b
δa+b,−1, if a < 0 and b ≥ 0;

0, if b < 0

.

(We are introducing this s (a, b) chiefly for reasons of convenience: it will allow us to unify parts (b) and (c)
of the exercise.)

Using the definition of s (a, b) and straightforward case analysis, we can see that:

(13.90.1) s (a, b) = s(a+1,1b) for any a ∈ N and b ∈ N;

(13.90.2) s (a, b) = (−1)
b
δa+b,−1 for every negative integer a and every b ∈ Z;

(13.90.3) s (a, 0) = ha+1 for every a ∈ Z;

(13.90.4) s (a, b) = 0 for any a ∈ Z and any negative b ∈ Z.

Let us now show that

(13.90.5) enhm = s (m,n− 1) + s (m− 1, n) for every n ∈ Z and every m ∈ Z.

Proof of (13.90.5): Let n ∈ Z and m ∈ Z. It is easy to prove (13.90.5) in the case n < 0 (since both sides
of (13.90.5) vanish in this case) and in the case n = 0 (here, it follows from (13.90.3)). We can therefore
WLOG assume that n > 0. Assume this.

It is easy to prove (13.90.5) in the case m < 0 (in which case both sides of (13.90.5) vanish) and in the
case m = 0 (in which case both sides of (13.90.5) equal en). Thus, we can WLOG assume that m > 0.
Assume this. Since m > 0, we have hm = s(m), so that

(13.90.6) en hm︸︷︷︸
=s(m)

= ens(m) = s(m)en =
∑

λ+:λ+/(m) is a
vertical n-strip

sλ+ (by (2.7.2), applied to λ = (m)) .

It is easy to see that there are exactly two partitions λ+ for which λ+/ (m) is a vertical n-strip, namely
the partitions (m, 1n) and

(
m+ 1, 1n−1

)
. Hence, the sum

∑
λ+:λ+/(m) is a
vertical n-strip

sλ+ has exactly two addends: that

for λ+ = (m, 1n) and that for λ+ =
(
m+ 1, 1n−1

)
. Thus, this sum simplifies to s(m,1n) +s(m+1,1n−1). Hence,

(13.90.6) rewrites as

(13.90.7) enhm = s(m,1n) + s(m+1,1n−1).

But (13.90.1) (applied to a = m − 1 and b = n) yields s (m− 1, n) = s(m,1n). Also, (13.90.1) (applied to
a = m and b = n− 1) yields s (m,n− 1) = s(m+1,1n−1). Thus,

enhm = s(m,1n)︸ ︷︷ ︸
=s(m−1,n)

+ s(m+1,1n−1)︸ ︷︷ ︸
=s(m,n−1)

= s (m− 1, n) + s (m,n− 1) = s (m,n− 1) + s (m− 1, n) .

This proves (13.90.5).
Let us now prove a statement which encompasses both parts (b) and (c) of Exercise 2.9.14. Namely, we

are going to prove that

(13.90.8)

b∑
i=0

(−1)
i
ha+i+1eb−i = s (a, b) for any a ∈ Z and b ∈ Z.
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Proof of (13.90.8): Let a ∈ Z and b ∈ Z. We WLOG assume that b ∈ N (since otherwise, the left hand
side of (13.90.8) is an empty sum, and the right hand side is 0 by definition). For every i ∈ {0, 1, ..., b}, we
have

ha+i+1eb−i = eb−iha+i+1 = s

a+ i+ 1︸ ︷︷ ︸
=a+(i+1)

, b− i− 1︸ ︷︷ ︸
=b−(i+1)

+ s

(a+ i+ 1)− 1︸ ︷︷ ︸
=a+i

, b− i


(by (13.90.5), applied to n = b− i and m = a+ i+ 1)

= s (a+ (i+ 1) , b− (i+ 1)) + s (a+ i, b− i) .(13.90.9)

Now,

b∑
i=0

(−1)
i

ha+i+1eb−i︸ ︷︷ ︸
=s(a+(i+1),b−(i+1))+s(a+i,b−i)

(by (13.90.9))

=

b∑
i=0

(−1)
i
(s (a+ (i+ 1) , b− (i+ 1)) + s (a+ i, b− i))︸ ︷︷ ︸
=(−1)is(a+(i+1),b−(i+1))+(−1)is(a+i,b−i)

=(−1)is(a+(i+1),b−(i+1))−(−1)i−1s(a+i,b−i)

=

b∑
i=0

(
(−1)

i
s (a+ (i+ 1) , b− (i+ 1))− (−1)

i−1
s (a+ i, b− i)

)

= (−1)
b
s

a+ (b+ 1) , b− (b+ 1)︸ ︷︷ ︸
=−1

− (−1)
0−1︸ ︷︷ ︸

=−1

s

a+ 0︸ ︷︷ ︸
=a

, b− 0︸ ︷︷ ︸
=b


(by the telescope principle)

= (−1)
b

s (a,−1)︸ ︷︷ ︸
=0

(by (13.90.4))

− (−1) s (a, b) = − (−1) s (a, b) = s (a, b) .

This proves (13.90.8).
Here is a modified version of (13.90.8) which will be used in our solution of Exercise 2.9.14(d) further

below: For any a ∈ Z, b ∈ Z and c ∈ Z satisfying c ≥ b, we have

(13.90.10)

c∑
k=0

(−1)
k
ha+k+1eb−k = s (a, b) .

715

Now, the first three parts of Exercise 2.9.14 are as good as solved: The claim of Exercise 2.9.14(a) has
already been proven in (13.90.7), and the claims of Exercise 2.9.14(b) and Exercise 2.9.14(c) follow from
(13.90.8).

Before we come to the solution of Exercise 2.9.14(d), we simplify our life by introducing another definition.
Namely, let us define a k-module endomorphism id of Λ by id = idΛ−uε. Then, it is easy to see that

715Proof of (13.90.10): Let a ∈ Z, b ∈ Z and c ∈ Z be such that c ≥ b. We WLOG assume that b ≥ 0 (since otherwise, both

sides of (13.90.10) vanish). Then,

c∑
k=0

(−1)k ha+k+1eb−k =
b∑

k=0

(−1)k ha+k+1eb−k +
c∑

k=b+1

(−1)k ha+k+1 eb−k︸ ︷︷ ︸
=0

(since b−k<0
(since k>b))

=

b∑
k=0

(−1)k ha+k+1eb−k +

c∑
k=b+1

(−1)k ha+k+10

︸ ︷︷ ︸
=0

=
b∑

k=0

(−1)k ha+k+1eb−k =
b∑
i=0

(−1)i ha+i+1eb−i = s (a, b) (by (13.90.8)) .

This proves (13.90.10).
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id (sλ) = sλ for every nonempty partition λ, whereas id (c) = 0 for every c ∈ k. Now, straightforward
computation shows that

(13.90.11) id (s (a, b)) = s(a+1,1b) for all a ∈ N and b ∈ N;

(13.90.12) id (s (a, b)) = 0 for every (a, b) ∈ Z2 satisfying (a, b) /∈ N2.

But every x ∈ Λ satisfies

(13.90.13) ∆x− 1⊗ x− x⊗ 1 =
(
id⊗ id

)
(∆x)− ε (x) · 1⊗ 1 in Λ⊗ Λ.

(This is an identity which holds not only in Λ but in every k-bialgebra, and which is proven by applying the
bialgebra axioms.)

(d) Recall that Λ is a k-bialgebra. Hence, ∆ : Λ→ Λ⊗ Λ is a k-algebra homomorphism.
We can rewrite Proposition 2.3.6(ii) as follows: Every n ∈ N satisfies

(13.90.14) ∆en =

n∑
i=0

ei ⊗ en−i.

Thus, every n ∈ N satisfies

(13.90.15) ∆en =
∑
i∈N

ei ⊗ en−i.

716 Similarly, every n ∈ N satisfies

(13.90.16) ∆hn =
∑
i∈N

hi ⊗ hn−i.

Let a ∈ N and b ∈ N. Exercise 2.9.14(b) yields
∑b
i=0 (−1)

i
ha+i+1eb−i = s(a+1,1b), so that

s(a+1,1b) =

b∑
i=0

(−1)
i
ha+i+1eb−i =

b∑
k=0

(−1)
k
ha+k+1eb−k

716Indeed, (13.90.15) follows from (13.90.14), because

∑
i∈N

ei ⊗ en−i =

n∑
i=0

ei ⊗ en−i +

∞∑
i=n+1

ei ⊗ en−i︸ ︷︷ ︸
=0

(since n−i<0)

=

n∑
i=0

ei ⊗ en−i +

∞∑
i=n+1

ei ⊗ 0

︸ ︷︷ ︸
=0

=

n∑
i=0

ei ⊗ en−i.



696 DARIJ GRINBERG AND VICTOR REINER

(here, we have renamed the summation index i as k). Applying the map ∆ to both sides of this equality, we
obtain

∆s(a+1,1b) = ∆

(
b∑

k=0

(−1)
k
ha+k+1eb−k

)

=

b∑
k=0

(−1)
k

∆ (ha+k+1)︸ ︷︷ ︸
=
∑
i∈N hi⊗ha+k+1−i

(by (13.90.16), applied to n=a+k+1)

· ∆ (eb−k)︸ ︷︷ ︸
=
∑
i∈N ei⊗eb−k−i

(by (13.90.15), applied to n=b−k)

(since ∆ is a k-algebra homomorphism)

=

b∑
k=0

(−1)
k

(∑
i∈N

hi ⊗ ha+k+1−i

)(∑
i∈N

ei ⊗ eb−k−i

)

=

b∑
k=0

(−1)
k

(∑
i∈N

hi ⊗ ha+k+1−i

)∑
j∈N

ej ⊗ eb−k−j


(here, we renamed the summation index i as j in the third sum)

=

b∑
k=0

(−1)
k
∑
i∈N

∑
j∈N

(hi ⊗ ha+k+1−i) (ej ⊗ eb−k−j)︸ ︷︷ ︸
=hiej⊗ha+k+1−ieb−k−j

=

b∑
k=0

(−1)
k
∑
i∈N

∑
j∈N

hiej ⊗ ha+k+1−ieb−k−j

=
∑
i∈N

∑
j∈N︸ ︷︷ ︸

=
∑

(i,j)∈N2

hiej︸︷︷︸
=ejhi

=s(i,j−1)+s(i−1,j)
(by (13.90.5), applied to j and i

instead of n and m)

⊗

(
b∑

k=0

(−1)
k
ha−i+k+1eb−j−k

)
︸ ︷︷ ︸

=s(a−i,b−j)
(by (13.90.10), applied to a−i, b−j and b

instead of a, b and c (since b≥b−j))

=
∑

(i,j)∈N2

(s (i, j − 1) + s (i− 1, j))⊗ s (a− i, b− j) .(13.90.17)

Now, applying (13.90.13) to x = s(a+1,1b), we obtain

∆s(a+1,1b) − 1⊗ s(a+1,1b) − s(a+1,1b) ⊗ 1

=
(
id⊗ id

) (
∆s(a+1,1b)

)︸ ︷︷ ︸
=
∑

(i,j)∈N2 (s(i,j−1)+s(i−1,j))⊗s(a−i,b−j)
(by (13.90.17))

− ε
(
s(a+1,1b)

)︸ ︷︷ ︸
=0

(since (a+1,1b) is a

nonempty partition)

1⊗ 1

=
(
id⊗ id

) ∑
(i,j)∈N2

(s (i, j − 1) + s (i− 1, j))⊗ s (a− i, b− j)

− 0 · 1⊗ 1︸ ︷︷ ︸
=0

=
(
id⊗ id

) ∑
(i,j)∈N2

(s (i, j − 1) + s (i− 1, j))⊗ s (a− i, b− j)


=

∑
(i,j)∈N2

id (s (i, j − 1) + s (i− 1, j))⊗ id (s (a− i, b− j))

=
∑

(i,j)∈N2

id (s (i− 1, j))⊗ id (s (a− i, b− j)) +
∑

(i,j)∈N2

id (s (i, j − 1))⊗ id (s (a− i, b− j)) .(13.90.18)
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We can now observe that

(13.90.19)
∑

(i,j)∈N2

id (s (i− 1, j))⊗ id (s (a− i, b− j)) =
∑

(c,d,e,f)∈N4;
c+e=a−1;
d+f=b

s(c+1,1d) ⊗ s(e+1,1f ).

717 Similarly,

(13.90.21)
∑

(i,j)∈N2

id (s (i, j − 1))⊗ id (s (a− i, b− j)) =
∑

(c,d,e,f)∈N4;
c+e=a;
d+f=b−1

s(c+1,1d) ⊗ s(e+1,1f ).

Now, (13.90.18) becomes

∆s(a+1,1b) − 1⊗ s(a+1,1b) − s(a+1,1b) ⊗ 1

=
∑

(i,j)∈N2

id (s (i− 1, j))⊗ id (s (a− i, b− j))

︸ ︷︷ ︸
=

∑
(c,d,e,f)∈N4;
c+e=a−1;
d+f=b

s(c+1,1d)⊗s(e+1,1f )

(by (13.90.19))

+
∑

(i,j)∈N2

id (s (i, j − 1))⊗ id (s (a− i, b− j))

︸ ︷︷ ︸
=

∑
(c,d,e,f)∈N4;
c+e=a;
d+f=b−1

s(c+1,1d)⊗s(e+1,1f )

(by (13.90.21))

=
∑

(c,d,e,f)∈N4;
c+e=a−1;
d+f=b

s(c+1,1d) ⊗ s(e+1,1f ) +
∑

(c,d,e,f)∈N4;
c+e=a;
d+f=b−1

s(c+1,1d) ⊗ s(e+1,1f ).

Adding 1⊗ s(a+1,1b) + s(a+1,1b) ⊗ 1 to both sides of this equality, we obtain the claim of Exercise 2.9.14(d).

717Proof of (13.90.19): Let N = {−1, 0, 1, 2, ...} = {−1} ∪ N. We have

(13.90.20)
∑

(c,d,e,f)∈N×N×Z×Z;
c+e=a−1;
d+f=b

id (s (c, d))⊗ id (s (e, f)) =
∑

(c,d,e,f)∈N4;
c+e=a−1;
d+f=b

id (s (c, d))⊗ id (s (e, f)) .

(In fact, the sum on the left hand side of (13.90.20) differs from that on the right hand side of (13.90.20) only by the presence

of addends of the form id (s (c, d)) ⊗ id (s (e, f)) for certain quadruples (c, d, e, f) ∈ N × N × Z × Z which don’t belong to N4.

But all such addends are 0 (as can be easily seen using (13.90.12)), and so the two sums have the same value, and (13.90.20) is

proven.)
The map

N2 →
{

(c, d, e, f) ∈ N× N× Z× Z | c+ e = a− 1; d+ f = b
}
,

(i, j) 7→ (i− 1, j, a− i, b− j)

is a bijection. Hence, we can substitute (i− 1, j, a− i, b− j) for (c, d, e, f) in the sum
∑

(c,d,e,f)∈N×N×Z×Z;
c+e=a−1;
d+f=b

id (s (c, d))⊗id (s (e, f)),

and thus obtain ∑
(c,d,e,f)∈N×N×Z×Z;

c+e=a−1;
d+f=b

id (s (c, d))⊗ id (s (e, f)) =
∑

(i,j)∈N2

id (s (i− 1, j))⊗ id (s (a− i, b− j)) .

Comparing this with (13.90.20), we obtain∑
(i,j)∈N2

id (s (i− 1, j))⊗ id (s (a− i, b− j))

=
∑

(c,d,e,f)∈N4;
c+e=a−1;
d+f=b

id (s (c, d))︸ ︷︷ ︸
=s(c+1,1d)

(by (13.90.11), applied to
c and d instead of a and b)

⊗ id (s (e, f))︸ ︷︷ ︸
=s(e+1,1f )

(by (13.90.11), applied to
e and f instead of a and b)

=
∑

(c,d,e,f)∈N4;
c+e=a−1;
d+f=b

s(c+1,1d) ⊗ s(e+1,1f ).

This proves (13.90.19).
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Remark: In our above solution, we have first proved (13.90.5) and then used it to derive (13.90.8). There
is also an alternative way to prove these two identities, which proceeds the other way round. The main idea
is to obtain (13.90.8) by applying Exercise 2.9.1(b) to λ =

(
1b
)

and m = a + 1. (This works in the case of
a ∈ N and b ∈ N only. The remaining cases, however, are easy to either check directly or reduce to (2.4.4).)
Once this is done, (13.90.5) can be verified by rewriting both s (m,n− 1) and s (m− 1, n) using (13.90.8).

13.91. Solution to Exercise 2.9.15. Solution to Exercise 2.9.15. Consider the partition
(
mk
)

=

m,m, . . . ,m︸ ︷︷ ︸
k times

.

(a) The fact that λ∨ and µ∨ are partitions is easy to check. It remains to show that sλ/µ = sµ∨/λ∨ .
It is easy to show that if µ ⊆ λ does not hold, then λ∨ ⊆ µ∨ does not hold either (because if some positive

integer i fails to satisfy µi ≤ λi, then this i belongs to {1, 2, . . . , k} and fails to satisfy m−λi ≤ m−µi as well).
Hence, if µ ⊆ λ does not hold, then both sλ/µ and sµ∨/λ∨ are 0, and therefore the equality sλ/µ = sµ∨/λ∨ is
obvious. Hence, for the rest of the proof of sλ/µ = sµ∨/λ∨ , we WLOG assume that µ ⊆ λ does hold. Then,
it is easy to see that λ∨ ⊆ µ∨ holds, too.

Now, let Z denote the 180◦ rotation around the center of the Ferrers diagram of
(
mk
)
. Let Y (ρ) denote

the Ferrers diagram of ρ whenever ρ is a partition or a skew partition. It is straightforward to see that
Z
(
Y
((
mk
))
\ Y (µ)

)
= Y (µ∨) and Z

(
Y
((
mk
))
\ Y (λ)

)
= Y (λ∨). Now,

Y (µ∨/λ∨) = Y (µ∨)︸ ︷︷ ︸
=Z(Y ((mk))\Y (µ))

\ Y (λ∨)︸ ︷︷ ︸
=Z(Y ((mk))\Y (λ))

= Z
(
Y
((
mk
))
\ Y (µ)

)
\ Z

(
Y
((
mk
))
\ Y (λ)

)

= Z


(
Y
((
mk
))
\ Y (µ)

)
\
(
Y
((
mk
))
\ Y (λ)

)︸ ︷︷ ︸
=Y (λ)\Y (µ)

(since one can easily see that both Y (λ) and Y (µ)

are subsets of Y ((mk)))


= Z

Y (λ) \ Y (µ)︸ ︷︷ ︸
=Y (λ/µ)

 = Z (Y (λ/µ)) .

Hence, the skew Ferrers diagram µ∨/λ∨ can be obtained from the skew Ferrers diagram λ/µ by a 180◦

rotation (namely, by the 180◦ rotation Z). Thus, Exercise 2.3.4(b) (applied to λ′ = µ∨ and µ′ = λ∨) yields
sλ/µ = sµ∨/λ∨ . This completes the solution of Exercise 2.9.15(a).

(b) According to Remark 2.5.9, we have sλ/µ =
∑
ν c

λ
µ,νsν , where the sum ranges over all partitions ν. In

other words, we have

(13.91.1) sλ/µ =
∑
ν∈Par

cλµ,νsν .

Exercise 2.9.15(b) yields that λ∨ and µ∨ are partitions, and that sλ/µ = sµ∨/λ∨ . Applying (13.91.1) to
µ∨ and λ∨ instead of λ and µ, we obtain

sµ∨/λ∨ =
∑
ν∈Par

cµ
∨

λ∨,νsν .

Now, (13.91.1) yields ∑
ν∈Par

cλµ,νsν = sλ/µ = sµ∨/λ∨ =
∑
ν∈Par

cµ
∨

λ∨,νsν .

Comparing coefficients before sν in this equality, we conclude that cλµ,ν = cµ
∨

λ∨,ν for every ν ∈ Par (since

(sν)ν∈Par is a basis of the k-module Λ). This solves Exercise 2.9.15(b).
(c) Exercise 2.9.15(a) (applied to ν instead of µ) yields that λ∨ and ν∨ are partitions and that sλ/ν =

sν∨/λ∨ .
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From (2.5.8), we obtain

cλµ,ν = cλν,µ = cν
∨

λ∨,µ (by Exercise 2.9.15(b) (applied to ν and µ instead of µ and ν))

= cν
∨

µ,λ∨ (by (2.5.8) (applied to ν∨, λ∨ and µ instead of λ, µ and ν)) .

On the other hand, Exercise 2.9.15(b) yields cλµ,ν = cµ
∨

λ∨,ν = cµ
∨

ν,λ∨ (by (2.5.8) (applied to µ∨, λ∨ and ν instead

of λ, µ and ν)). Thus, cµ
∨

ν,λ∨ = cµ
∨

λ∨,ν = cλµ,ν = cλν,µ = cν
∨

λ∨,µ = cν
∨

µ,λ∨ . This solves Exercise 2.9.15(c).

(d) First solution to Exercise 2.9.15(d): Notice that λ∨ = (m− λk,m− λk−1, . . . ,m− λ1). Thus,
` (λ∨) ≤ k.

Let n = k. We shall use the notations of Section 2.6; in particular, we set x = (x1, x2, . . . , xn) and
ρ = (n− 1, n− 2, . . . , 2, 1, 0). Clearly, x = (x1, x2, . . . , xn) = (x1, x2, . . . , xk) (since n = k). Notice that
` (λ) ≤ k = n. Hence, we can regard λ as an element of Nn; therefore, λ+ ρ is a well-defined element of Nn,

and the alternant aλ+ρ is well-defined. Corollary 2.6.7 yields that sλ (x) =
aλ+ρ

aρ
, so that

(13.91.2) aρ · sλ (x) = aλ+ρ.

Applying this equality to λ∨ instead of λ, we obtain

(13.91.3) aρ · sλ∨ (x) = aλ∨+ρ

(since λ∨ is also a partition satisfying ` (λ∨) ≤ k = n).
Substituting the variables x−1

1 , x−1
2 , . . . , x−1

n for x1, x2, . . . , xn in the equality (13.91.2), we obtain

(13.91.4) aρ
(
x−1

1 , x−1
2 , . . . , x−1

n

)
· sλ

(
x−1

1 , x−1
2 , . . . , x−1

n

)
= aλ+ρ

(
x−1

1 , x−1
2 , . . . , x−1

n

)
.

Let w◦ : {1, 2, . . . , n} → {1, 2, . . . , n} be the map which sends every i ∈ {1, 2, . . . , n} to n + 1 − i. Then,
w◦ is a permutation of {1, 2, . . . , n}, thus an element of Sn. For every i ∈ {1, 2, . . . , n}, we have

(13.91.5) (w ◦ w◦) (i) = w (n+ 1− i) .

The map Sn → Sn, w 7→ w ◦ w◦ is a bijection (since Sn is a group, and since w◦ ∈ Sn).
But every α = (α1, α2, . . . , αn) ∈ Nn satisfies

aα =
∑
w∈Sn

sgn (w) w (xα)︸ ︷︷ ︸
=
∏n
i=1 x

αi
w(i)

(by the definition of w(xα))

(by the definition of aα)

=
∑
w∈Sn

sgn (w)

n∏
i=1

xαiw(i).(13.91.6)

But λ = (λ1, λ2, λ3, . . .), thus λ = (λ1, λ2, . . . , λn) (since ` (λ) ≤ k = n). Hence,

λ︸︷︷︸
=(λ1,λ2,...,λn)

+ ρ︸︷︷︸
=(n−1,n−2,...,2,1,0)
=(n−1,n−2,...,n−n)

= (λ1, λ2, . . . , λn) + (n− 1, n− 2, . . . , n− n)

= (λ1 + n− 1, λ2 + n− 2, . . . , λn + n− n) .

Thus, (13.91.6) (applied to λ+ρ and (λ1 + n− 1, λ2 + n− 2, . . . , λn + n− n) instead of α and (α1, α2, . . . , αn))
yields

(13.91.7) aλ+ρ =
∑
w∈Sn

sgn (w)

n∏
i=1

xλi+n−iw(i) .
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Substituting x−1
1 , x−1

2 , . . ., x−1
n for x1, x2, . . ., xn on both sides of this equality, we obtain

aλ+ρ

(
x−1

1 , x−1
2 , . . . , x−1

n

)
=
∑
w∈Sn

sgn (w)

n∏
i=1

(
x−1
w(i)

)λi+n−i
︸ ︷︷ ︸

=x
−(λi+n−i)
w(i)

=
∑
w∈Sn

sgn (w)

n∏
i=1

x
−(λi+n−i)
w(i)︸ ︷︷ ︸

=
∏n
i=1 x

−(λn+1−i+n−(n+1−i))
w(n+1−i)

(here, we have substituted
n+1−i for i in the product)

=
∑
w∈Sn

sgn (w)︸ ︷︷ ︸
=

1

sgn (w◦)
sgn(w) sgn(w◦)

n∏
i=1

x
−(λn+1−i+n−(n+1−i))
w(n+1−i)︸ ︷︷ ︸

=x
−(λn+1−i+i−1)
w(n+1−i)

(since n−(n+1−i)=i−1)

=
∑
w∈Sn

1

sgn (w◦)
sgn (w) sgn (w◦)︸ ︷︷ ︸

=sgn(w◦w◦)

n∏
i=1

x
−(λn+1−i+i−1)
w(n+1−i)︸ ︷︷ ︸

=x
−(λn+1−i+i−1)
(w◦w◦)(i)

(since w(n+1−i)=(w◦w◦)(i)
(by (13.91.5)))

=
∑
w∈Sn

1

sgn (w◦)
sgn (w ◦ w◦)

n∏
i=1

x
−(λn+1−i+i−1)
(w◦w◦)(i) =

∑
w∈Sn

1

sgn (w◦)
sgn (w)

n∏
i=1

x
−(λn+1−i+i−1)
w(i)(

here, we substituted w for w ◦ w◦ in the sum
(since the map Sn → Sn, w 7→ w ◦ w◦ is a bijection)

)
=

1

sgn (w◦)

∑
w∈Sn

sgn (w)

n∏
i=1

x
−(λn+1−i+i−1)
w(i) .

Multiplying both sides of this equality by sgn (w◦), we obtain

(13.91.8) sgn (w◦) · aλ+ρ

(
x−1

1 , x−1
2 , . . . , x−1

n

)
=
∑
w∈Sn

sgn (w)

n∏
i=1

x
−(λn+1−i+i−1)
w(i) .

But λ∨ = (m− λk,m− λk−1, . . . ,m− λ1) = (m− λn,m− λn−1, . . . ,m− λ1) (since k = n), so that

λ∨︸︷︷︸
=(m−λn,m−λn−1,...,m−λ1)

=(m−λ(n+1)−1,m−λ(n+1)−2,...,m−λ(n+1)−n)

+ ρ︸︷︷︸
=(n−1,n−2,...,2,1,0)
=(n−1,n−2,...,n−n)

=
(
m− λ(n+1)−1,m− λ(n+1)−2, . . . ,m− λ(n+1)−n

)
+ (n− 1, n− 2, . . . , n− n)

=
((
m− λ(n+1)−1

)
+ (n− 1) ,

(
m− λ(n+1)−2

)
+ (n− 2) , . . . ,

(
m− λ(n+1)−n

)
+ (n− n)

)
.

Hence, (13.91.6) (applied to λ∨ + ρ and((
m− λ(n+1)−1

)
+ (n− 1) ,

(
m− λ(n+1)−2

)
+ (n− 2) , . . . ,

(
m− λ(n+1)−n

)
+ (n− n)

)
instead of α and
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(α1, α2, . . . , αn)) yields

aλ∨+ρ =
∑
w∈Sn

sgn (w)

n∏
i=1

x
(m−λ(n+1)−i)+(n−i)
w(i)︸ ︷︷ ︸

=x
−(λn+1−i+i−1)+(n+m−1)

w(i)

=x
−(λn+1−i+i−1)
w(i)

xn+m−1
w(i)

=
∑
w∈Sn

sgn (w)

n∏
i=1

(
x
−(λn+1−i+i−1)
w(i) xn+m−1

w(i)

)
︸ ︷︷ ︸

=

(∏n
i=1 x

−(λn+1−i+i−1)
w(i)

)(∏n
i=1 x

n+m−1
w(i)

)

=
∑
w∈Sn

sgn (w)

(
n∏
i=1

x
−(λn+1−i+i−1)
w(i)

) (
n∏
i=1

xn+m−1
w(i)

)
︸ ︷︷ ︸
=
∏n
i=1 x

n+m−1
i

(here, we have substituted i for w(i) in the product
(since w is a permutation of {1,2,...,n}))

=
∑
w∈Sn

sgn (w)

(
n∏
i=1

x
−(λn+1−i+i−1)
w(i)

)(
n∏
i=1

xn+m−1
i

)

=

(
n∏
i=1

xn+m−1
i

)
︸ ︷︷ ︸
=(
∏n
i=1 xi)

n+m−1

∑
w∈Sn

sgn (w)

n∏
i=1

x
−(λn+1−i+i−1)
w(i)︸ ︷︷ ︸

=sgn(w◦)·aλ+ρ(x−1
1 ,x−1

2 ,...,x−1
n )

(by (13.91.8))

=

(
n∏
i=1

xi

)n+m−1

· sgn (w◦) · aλ+ρ

(
x−1

1 , x−1
2 , . . . , x−1

n

)
.(13.91.9)

Finally, ρ = (n− 1, n− 2, . . . , 2, 1, 0) = (n− 1, n− 2, . . . , n− n). Thus, (13.91.6) (applied to ρ and
(n− 1, n− 2, . . . , n− n) instead of α and (α1, α2, . . . , αn)) yields

(13.91.10) aρ =
∑
w∈Sn

sgn (w)

n∏
i=1

xn−iw(i).
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Substituting x−1
1 , x−1

2 , . . ., x−1
n for x1, x2, . . ., xn on both sides of this equality, we obtain

aρ
(
x−1

1 , x−1
2 , . . . , x−1

n

)
=
∑
w∈Sn

sgn (w)

n∏
i=1

(
x−1
w(i)

)n−i
︸ ︷︷ ︸

=x
−(n−i)
w(i)

=xi−n
w(i)

=
∑
w∈Sn

sgn (w)

n∏
i=1

xi−nw(i)︸ ︷︷ ︸
=
∏n
i=1 x

(n+1−i)−n
w(n+1−i)

(here, we have substituted
n+1−i for i in the product)

=
∑
w∈Sn

sgn (w)︸ ︷︷ ︸
=

1

sgn (w◦)
sgn(w) sgn(w◦)

n∏
i=1

x
(n+1−i)−n
w(n+1−i)︸ ︷︷ ︸

=x−i+1
w(n+1−i)

=
∑
w∈Sn

1

sgn (w◦)
sgn (w) sgn (w◦)︸ ︷︷ ︸

=sgn(w◦w◦)

n∏
i=1

x−i+1
w(n+1−i)︸ ︷︷ ︸

=x−i+1
(w◦w◦)(i)

(since w(n+1−i)=(w◦w◦)(i)
(by (13.91.5)))

=
∑
w∈Sn

1

sgn (w◦)
sgn (w ◦ w◦)

n∏
i=1

x−i+1
(w◦w◦)(i) =

∑
w∈Sn

1

sgn (w◦)
sgn (w)

n∏
i=1

x−i+1
w(i)(

here, we substituted w for w ◦ w◦ in the sum
(since the map Sn → Sn, w 7→ w ◦ w◦ is a bijection)

)
=

1

sgn (w◦)

∑
w∈Sn

sgn (w)

n∏
i=1

x−i+1
w(i)︸ ︷︷ ︸

=x
(n−i)+(1−n)

w(i)

=xn−i
w(i)

x1−n
w(i)

=
1

sgn (w◦)

∑
w∈Sn

sgn (w)

n∏
i=1

(
xn−iw(i)x

1−n
w(i)

)
︸ ︷︷ ︸

=
(∏n

i=1 x
n−i
w(i)

)(∏n
i=1 x

1−n
w(i)

)

=
1

sgn (w◦)

∑
w∈Sn

sgn (w)

(
n∏
i=1

xn−iw(i)

) (
n∏
i=1

x1−n
w(i)

)
︸ ︷︷ ︸
=
∏n
i=1 x

1−n
i

(here, we have substituted i for w(i) in the product
(since w is a permutation of {1,2,...,n}))

=
1

sgn (w◦)

∑
w∈Sn

sgn (w)

(
n∏
i=1

xn−iw(i)

)(
n∏
i=1

x1−n
i

)
=

1

sgn (w◦)

(
n∏
i=1

x1−n
i

)
︸ ︷︷ ︸
=(
∏n
i=1 xi)

1−n

∑
w∈Sn

sgn (w)

n∏
i=1

xn−iw(i)︸ ︷︷ ︸
=aρ

(by (13.91.10))

=
1

sgn (w◦)

(
n∏
i=1

xi

)1−n

aρ.

Multiplying both sides of this equality by sgn (w◦), we obtain

(13.91.11) sgn (w◦) · aρ
(
x−1

1 , x−1
2 , . . . , x−1

n

)
=

(
n∏
i=1

xi

)1−n

aρ.
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Now, (13.91.3) becomes

aρ · sλ∨ (x) = aλ∨+ρ

=

(
n∏
i=1

xi

)n+m−1

· sgn (w◦) · aλ+ρ

(
x−1

1 , x−1
2 , . . . , x−1

n

)︸ ︷︷ ︸
=aρ(x−1

1 ,x−1
2 ,...,x−1

n )·sλ(x−1
1 ,x−1

2 ,...,x−1
n )

(by (13.91.4))

(by (13.91.9))

=

(
n∏
i=1

xi

)n+m−1

· sgn (w◦) · aρ
(
x−1

1 , x−1
2 , . . . , x−1

n

)︸ ︷︷ ︸
=(
∏n
i=1 xi)

1−n
aρ

(by (13.91.11))

·sλ
(
x−1

1 , x−1
2 , . . . , x−1

n

)

=

(
n∏
i=1

xi

)n+m−1

·

(
n∏
i=1

xi

)1−n

︸ ︷︷ ︸
=(
∏n
i=1 xi)

(n+m−1)+(1−n)
=(
∏n
i=1 xi)

m

aρ · sλ
(
x−1

1 , x−1
2 , . . . , x−1

n

)

=


n∏
i=1

xi︸ ︷︷ ︸
=x1x2···xn


m

aρ · sλ
(
x−1

1 , x−1
2 , . . . , x−1

n

)

= (x1x2 · · ·xn)
m
aρ · sλ

(
x−1

1 , x−1
2 , . . . , x−1

n

)
= aρ · (x1x2 · · ·xn)

m · sλ
(
x−1

1 , x−1
2 , . . . , x−1

n

)
.(13.91.12)

But718

(13.91.13) aρ is a non-zero-divisor in the ring k
[
x1, x2, . . . , xn, x

−1
1 , x−1

2 , . . . , x−1
n

]
.

718In the following, a non-zero-divisor in a commutative ring B means an element b ∈ B such that every element c ∈ B
satisfying bc = 0 must satisfy c = 0.
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719 Hence, we can cancel the factor aρ from the equality (13.91.12). As a result, we obtain sλ∨ (x) =

(x1x2 · · ·xn)
m·sλ

(
x−1

1 , x−1
2 , . . . , x−1

n

)
. Compared with sλ∨ (x) = sλ∨ (x1, x2, . . . , xk) (since x = (x1, x2, . . . , xk)),

this yields

sλ∨ (x1, x2, . . . , xk) = (x1x2 · · ·xn)
m · sλ

(
x−1

1 , x−1
2 , . . . , x−1

n

)
= (x1x2 · · ·xk)

m · sλ
(
x−1

1 , x−1
2 , . . . , x−1

k

)
(since n = k). This solves Exercise 2.9.15(d).

Second solution to Exercise 2.9.15(d) (sketched): Let us give a more combinatorial solution now. In the
following, if α is a partition, then an (α, k)-CST will mean a column-strict tableau T of shape α such that
all entries of T belong to {1, 2, . . . , k}.

We have

sλ∨︸︷︷︸
=sλ∨/∅

(x1, x2, . . . , xk) = sλ∨/∅ (x1, x2, . . . , xk) =
∑

T is a column-strict
tableau of shape λ∨/∅;
all entries of T belong

to {1,2,...,k}

xcont(T )

(by Exercise 2.3.8(a), applied to k, λ∨ and ∅ instead of n, λ and µ). This rewrites as

(13.91.14) sλ∨ (x1, x2, . . . , xk) =
∑

T is a (λ∨,k)-CST

xcont(T )

(because the column-strict tableaux T of shape λ∨/∅ such that all entries of T belong to {1, 2, . . . , k} are
precisely the (λ∨, k)-CSTs).

On the other hand,

sλ︸︷︷︸
=sλ/∅

(x1, x2, . . . , xk) = sλ/∅ (x1, x2, . . . , xk) =
∑

T is a column-strict
tableau of shape λ/∅;
all entries of T belong

to {1,2,...,k}

xcont(T )

719Proof. We know (from a footnote in Corollary 2.6.7) that aρ is not a zero-divisor in the ring k [x1, x2, . . . , xn]. In other

words, aρ is a non-zero-divisor in the ring k [x1, x2, . . . , xn].
Now, let b be any element of the ring k [x1, x2, . . . , xn] such that b is a non-zero-divisor in the ring k [x1, x2, . . . , xn]. We

shall show that b is a non-zero-divisor in the ring k
[
x1, x2, . . . , xn, x

−1
1 , x−1

2 , . . . , x−1
n

]
as well.

Indeed, let c ∈ k
[
x1, x2, . . . , xn, x

−1
1 , x−1

2 , . . . , x−1
n

]
be such that bc = 0. It is known that every element of

k
[
x1, x2, . . . , xn, x

−1
1 , x−1

2 , . . . , x−1
n

]
has the form

p

xg11 xg22 · · ·x
gn
n

for some p ∈ k [x1, x2, . . . , xn] and some (g1, g2, . . . , gn) ∈ Nn.

So let us write c in this form, and consider the corresponding p and (g1, g2, . . . , gn). We thus have c =
p

xg11 xg22 · · ·x
gn
n

. Now,

bc = 0. This rewrites as b ·
p

xg11 xg22 · · ·x
gn
n

= 0 (since c =
p

xg11 xg22 · · ·x
gn
n

). Multiplying both sides of this equality by

xg11 xg22 · · ·x
gn
n , we obtain bp = 0. This equality holds in the ring k

[
x1, x2, . . . , xn, x

−1
1 , x−1

2 , . . . , x−1
n

]
, and thus also in the

ring k [x1, x2, . . . , xn] (since k [x1, x2, . . . , xn] is a subring of k
[
x1, x2, . . . , xn, x

−1
1 , x−1

2 , . . . , x−1
n

]
). Thus, p = 0 (since b is a

non-zero-divisor in the ring k [x1, x2, . . . , xn], and since p ∈ k [x1, x2, . . . , xn]). Hence,

c =
p

xg11 xg22 · · ·x
gn
n

=
0

xg11 xg22 · · ·x
gn
n

(since p = 0)

= 0.

Now, let us forget that we fixed c. We thus have proven that every element c ∈ k
[
x1, x2, . . . , xn, x

−1
1 , x−1

2 , . . . , x−1
n

]
satisfying bc = 0 must satisfy c = 0. In other words, b is a non-zero-divisor in the ring k

[
x1, x2, . . . , xn, x

−1
1 , x−1

2 , . . . , x−1
n

]
.

Now, let us forget that we fixed b. We thus have proven that if b is any element of the ring k [x1, x2, . . . , xn] such that b is

a non-zero-divisor in the ring k [x1, x2, . . . , xn], then b is a non-zero-divisor in the ring k
[
x1, x2, . . . , xn, x

−1
1 , x−1

2 , . . . , x−1
n

]
as

well. Applying this to b = aρ, we conclude that aρ is a non-zero-divisor in the ring k
[
x1, x2, . . . , xn, x

−1
1 , x−1

2 , . . . , x−1
n

]
(since

we know that aρ is a non-zero-divisor in the ring k [x1, x2, . . . , xn]). This proves (13.91.13).
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(by Exercise 2.3.8(a), applied to k and ∅ instead of n and µ). Substituting x−1
1 , x−1

2 , . . ., x−1
k for x1, x2,

. . ., xk on both sides of this equality, we obtain

(13.91.15) sλ
(
x−1

1 , x−1
2 , . . . , x−1

k

)
=

∑
T is a column-strict

tableau of shape λ/∅;
all entries of T belong

to {1,2,...,k}

(
x−1

)cont(T )
,

where
(
x−1

)cont(T )
is defined as

∏
i≥1

(
x−1
i

)|T−1(i)|
for any column-strict tableau T . The equality (13.91.15)

rewrites as

sλ
(
x−1

1 , x−1
2 , . . . , x−1

k

)
=

∑
T is a (λ,k)-CST

(
x−1

)cont(T )

(since the column-strict tableaux T of shape λ/∅ such that all entries of T belong to {1, 2, . . . , k} are precisely
the (λ, k)-CSTs). Hence,

(x1x2 · · ·xk)
m · sλ

(
x−1

1 , x−1
2 , . . . , x−1

k

)
= (x1x2 · · ·xk)

m ·
∑

T is a (λ,k)-CST

(
x−1

)cont(T )

=
∑

T is a (λ,k)-CST

(x1x2 · · ·xk)
m ·
(
x−1

)cont(T )
.(13.91.16)

We need to prove that

sλ∨ (x1, x2, . . . , xk) = (x1x2 · · ·xk)
m · sλ

(
x−1

1 , x−1
2 , . . . , x−1

k

)
.

Due to (13.91.14) and (13.91.16), this rewrites as

(13.91.17)
∑

T is a (λ∨,k)-CST

xcont(T ) =
∑

T is a (λ,k)-CST

(x1x2 · · ·xk)
m ·
(
x−1

)cont(T )
.

So it remains to prove (13.91.17).
In order to prove (13.91.17), it is clearly sufficient to construct a bijection

Ω : (the set of all (λ, k) -CSTs)→ (the set of all (λ∨, k) -CSTs)

with the property that every (λ, k)-CST T satisfies

(13.91.18) xcont(Ω(T )) = (x1x2 · · ·xk)
m ·
(
x−1

)cont(T )
.

Let us construct such a Ω now. We begin by doing some elementary combinatorics.
We define a relation ≤# on the set of all subsets of {1, 2, . . . , k} as follows:

Definition 13.91.1. Let k be a nonnegative integer. Let [k] = {1, 2, . . . , k}. Let I and J be two subsets of
[k]. We say that I ≤# J if the following two properties hold:

– We have |I| ≥ |J |.
– For every r ∈ {1, 2, . . . , |J |}, the r-th smallest element of I is ≤ to the r-th smallest element of J .

We notice that this relation ≤# is the less-or-equal relation of a partial order (as follows easily from the
definition); but we will not have any use for this fact. Instead, we need a symmetry property:

Proposition 13.91.2. Let k be a nonnegative integer. Let [k] = {1, 2, . . . , k}. Let I and J be two subsets
of [k].

(a) We have I ≤# J if and only if [k] \ J ≤# [k] \ I.
(b) For every ` ∈ [k] and S ⊂ [k], let αS (`) denote the number |{s ∈ S | s ≤ `}|. Then,

(13.91.19) I ≤# J holds if and only if every ` ∈ [k] satisfies αI (`) ≥ αJ (`) .

Proof of Proposition 13.91.2. (b) Proof of (13.91.19): =⇒: Assume that I ≤# J . In other words, the
following two properties hold:

Property α: We have |I| ≥ |J |.
Property β: For every r ∈ {1, 2, . . . , |J |}, the r-th smallest element of I is ≤ to the r-th smallest element

of J .
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Now, let ` ∈ [k]. Then, we need to show that αI (`) ≥ αJ (`). Since this is obvious if αJ (`) = 0
(because αI (`) ≥ 0), we can WLOG assume that αJ (`) 6= 0. Assume this. Thus, αJ (`) ≥ 1. Also,

αJ (`) =

∣∣∣∣∣∣∣{s ∈ J | s ≤ `}︸ ︷︷ ︸
⊂J

∣∣∣∣∣∣∣ ≤ |J | ≤ |I| (since |I| ≥ |J |). Hence, both the αJ (`)-th smallest element of J and

the αJ (`)-th smallest element of I are well-defined.
Since αJ (`) = |{s ∈ J | s ≤ `}|, we know that the elements of J which are ≤ ` are precisely the αJ (`)

smallest elements of J . Thus,

(the αJ (`) -th smallest element of J) = (the largest element of J which is ≤ `) .

But by Property β (applied to r = αJ (`)), we have

(the αJ (`) -th smallest element of I) ≤ (the αJ (`) -th smallest element of J)

= (the largest element of J which is ≤ `) ≤ `.

Hence, there are at least αJ (`) elements of I which are ≤ ` (namely, the αJ (`) smallest ones). In other
words, |{s ∈ I | s ≤ `}| ≥ αJ (`). Now, αI (`) = |{s ∈ I | s ≤ `}| ≥ αJ (`). We thus have proven the =⇒
direction of (13.91.19).
⇐=: Assume that every ` ∈ [k] satisfies αI (`) ≥ αJ (`). We need to prove that I ≤# J . In other words,

we need to prove that the following two properties hold:
Property α: We have |I| ≥ |J |.
Property β: For every r ∈ {1, 2, . . . , |J |}, the r-th smallest element of I is ≤ to the r-th smallest element

of J .
First of all, {s ∈ I | s ≤ k} = I (since every s ∈ I satisfies s ≤ k), and the definition of αI (k) yields

αI (k) =

∣∣∣∣∣∣{s ∈ I | s ≤ k}︸ ︷︷ ︸
=I

∣∣∣∣∣∣ = |I|. Similarly, αJ (k) = |J |. Applying αI (`) ≥ αJ (`) to ` = k, we obtain

αI (k) ≥ αJ (k), so that |I| = αI (k) ≥ αJ (k) = |J |, and thus Property α is proven.
Now, let r ∈ {1, 2, . . . , |J |}. The r-th smallest element of I and the r-th smallest element of J are then well-

defined (because of r ≤ |J | ≤ |I|). Let ` be the r-th smallest element of J . Then, {s ∈ J | s ≤ `} is the set
consisting of the r smallest elements of J , so that |{s ∈ J | s ≤ `}| = r. Now, αJ (`) = |{s ∈ J | s ≤ `}| =
r.

But αI (`) = |{s ∈ I | s ≤ `}|, so that

|{s ∈ I | s ≤ `}| = αI (`) ≥ αJ (`) = r.

In other words, there exist at least r elements of I which are ≤ `. Hence, the r-th smallest element of I
must be ≤ `. Since ` is the r-th smallest element of J , this rewrites as follows: The r-th smallest element of
I is ≤ to the r-th smallest element of J . Thus, Property β holds. Now we know that both Properties α and
β hold. Hence, I ≤# J holds (which, as we know, is equivalent to the conjunction of said properties). This
proves the ⇐= direction of (13.91.19). Thus, (13.91.19) is proven. In other words, Proposition 13.91.2(b) is
proven.

(a) For every ` ∈ [k] and S ⊂ [k], let αS (`) denote the number |{s ∈ S | s ≤ `}|. Thus, every ` ∈ [k]
satisfies

αI (`) + α[k]\I (`) = |{s ∈ I | s ≤ `}|+ |{s ∈ [k] \ I | s ≤ `}|

=

∣∣∣∣∣∣∣
s ∈ I ∪ ([k] \ I)︸ ︷︷ ︸

=[k]

| s ≤ `


∣∣∣∣∣∣∣ (since I and [k] \ I are disjoint)

= |{s ∈ [k] | s ≤ `}| = `,

so that α[k]\I (`) = `− αI (`). Similarly, every ` ∈ [k] satisfies α[k]\J (`) = `− αJ (`).
Applying (13.91.19) to [k] \ J and [k] \ I in lieu of I and J , we obtain that

(13.91.20) [k] \ J ≤# [k] \ I holds if and only if every ` ∈ [k] satisfies α[k]\J (`) ≥ α[k]\I (`) .
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Now, we have the following equivalence of assertions:

([k] \ J ≤# [k] \ I)

⇐⇒

every ` ∈ [k] satisfies α[k]\J (`)︸ ︷︷ ︸
=`−αJ (`)

≥ α[k]\I (`)︸ ︷︷ ︸
=`−αI(`)

 (by (13.91.20))

⇐⇒ (every ` ∈ [k] satisfies `− αJ (`) ≥ `− αI (`))

⇐⇒ (every ` ∈ [k] satisfies αI (`) ≥ αJ (`))

⇐⇒ (I ≤# J) (by (13.91.19)) .

This proves Proposition 13.91.2(a).
Returning to the solution of Exercise 2.9.15(d), we now define some more notations.
If T is a column-strict tableau and i is an integer, then the i-th set column of T will mean the set of the

entries in the i-th column of T . Notice that the cardinality of the i-th set column of T is the length of the
i-th column of the shape of T (since every column of a column-strict tableau has all its entries distinct), and
that the i-th column of T can be uniquely reconstructed from the i-th set column of T (because the order
of the entries in a column can only be increasing).

For every subset S of [k], we define xS to be the monomial
∏
s∈S xs in k [x1, x2, . . . , xk]. If (S1, S2, . . . , Sm)

is an m-tuple of subsets of [k], then we set x(S1,S2,...,Sm) =
∏m
i=1 xSi .

Let λt denote the conjugate of the partition λ. Then, (λt)i is the length of the i-th column of the Ferrers
diagram of λ for every i ∈ {1, 2, . . . ,m}.

Let A (λ) denote the set of all m-tuples (I1, I2, . . . , Im) of subsets of [k] satisfying I1 ≤# I2 ≤# · · · ≤# Im
and (|Ii| = (λt)i for every i ∈ {1, 2, . . . ,m}). Note that we denote it by A (λ) to stress its dependency on λ.

Let (λ∨)
t

denote the conjugate of the partition λ∨. It is easy to see that

(13.91.21)
(

(λ∨)
t
)
i

= k −
(
λt
)
m+1−i for every i ∈ {1, 2, . . . ,m} .

720

720Proof of (13.91.21): Fix i ∈ {1, 2, . . . ,m}. We recall that λ∨ = (m− λk,m− λk−1, . . . ,m− λ1). Hence,

(13.91.22)
(
λ∨
)
j

= m− λk+1−j for every j ∈ {1, 2, . . . , k} .

Also, ` (λ∨) ≤ k (since λ∨ = (m− λk,m− λk−1, . . . ,m− λ1)), so that every positive integer j > k satisfies (λ∨)j = 0. Thus,

every positive integer j satisfying (λ∨)j ≥ i must belong to {1, 2, . . . , k} (since otherwise, this j would satisfy j > k, and thus

(λ∨)j = 0, which would contradict (λ∨)j ≥ i > 0). Hence,

{
j |

(
λ∨
)
j
≥ i
}

=


j ∈ {1, 2, . . . , k} |

(
λ∨
)
j︸ ︷︷ ︸

=m−λk+1−j
(by (13.91.22))

≥ i


=


j ∈ {1, 2, . . . , k} | m− λk+1−j ≥ i︸ ︷︷ ︸

this is equivalent to λk+1−j≤m−i, and thus
also equivalent to λk+1−j<m−i+1

(since λk+1−j and m−i are integers)


=
{
j ∈ {1, 2, . . . , k} | λk+1−j < m− i+ 1

}
= {1, 2, . . . , k} \

{
j ∈ {1, 2, . . . , k} | λk+1−j ≥ m− i+ 1

}
.

But applying (2.2.7) to λ∨ instead of λ, we obtain

((
λ∨
)t)

i
=

∣∣∣∣∣∣∣∣∣∣
{
j |

(
λ∨
)
j
≥ i
}

︸ ︷︷ ︸
={1,2,...,k}\{j∈{1,2,...,k} | λk+1−j≥m−i+1}

∣∣∣∣∣∣∣∣∣∣
=
∣∣{1, 2, . . . , k} \ {j ∈ {1, 2, . . . , k} | λk+1−j ≥ m− i+ 1

}∣∣
= |{1, 2, . . . , k}|︸ ︷︷ ︸

=k

−
∣∣{j ∈ {1, 2, . . . , k} | λk+1−j ≥ m− i+ 1

}∣∣︸ ︷︷ ︸
=|{j∈{1,2,...,k} | λj≥m−i+1}|

(here, we have substituted j for k+1−j)

= k − |{j ∈ {1, 2, . . . , k} | λj ≥ m− i+ 1}| .(13.91.23)

But ` (λ) ≤ k, so that every positive integer j > k satisfies λj = 0. Thus, every positive integer j satisfying λj ≥ m−i+1 must

belong to {1, 2, . . . , k} (since otherwise, this j would satisfy j > k, and thus λj = 0, which would contradict λj ≥ m− i+1 > 0).
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It is easy to see (from the definition of λ∨) that λ∨ is a partition satisfying ` (λ∨) ≤ k, and all parts of
λ∨ are ≤ m. Hence, we can define a set A (λ∨) in the same way as we defined the set A (λ) (but with every
λ replaced by λ∨). Explicitly, A (λ∨) is the set of all m-tuples (I1, I2, . . . , Im) of subsets of [k] satisfying

I1 ≤# I2 ≤# · · · ≤# Im and
(
|Ii| =

(
(λ∨)

t
)
i

for every i ∈ {1, 2, . . . ,m}
)

.

Define a map
ϕ (λ) : (the set of all (λ, k) -CSTs)→ A (λ)

by sending every (λ, k)-CST T to the m-tuple whose i-th entry is the i-th set column of T . This map is
well-defined721, injective722 and surjective723. Hence, ϕ (λ) is a bijection. This bijection ϕ (λ) furthermore
satisfies

(13.91.25) x(ϕ(λ))(T ) = xcont(T ) for every (λ, k) -CST T

724. Substituting x−1
1 , x−1

2 , . . ., x−1
k for x1, x2, . . ., xk on both sides of this equality, we obtain

(13.91.26)
(
x(ϕ(λ))(T )

)−1
=
(
x−1

)cont(T )
for every (λ, k) -CST T

(in fact, x(ϕ(λ))(T ) is a monomial, so that substituting x−1
1 , x−1

2 , . . ., x−1
k for x1, x2, . . ., xk transforms it

into its inverse
(
x(ϕ(λ))(T )

)−1
).

Recall that λ∨ is a partition satisfying ` (λ∨) ≤ k, and all parts of λ∨ are ≤ m. Hence, we can define a
bijection

ϕ (λ∨) : (the set of all (λ∨, k) -CSTs)→ A (λ∨)

in the same way as we defined the bijection ϕ (λ) : (the set of all (λ, k) -CSTs)→ A (λ) (but with λ∨ instead
of λ). This bijection satisfies

(13.91.27) x(ϕ(λ∨))(T ) = xcont(T ) for every (λ∨, k) -CST T

Hence,

{j | λj ≥ m− i+ 1} = {j ∈ {1, 2, . . . , k} | λj ≥ m− i+ 1} .
Now, (2.2.7) (applied to m− i+ 1 instead of i) yields

(13.91.24)
(
λt
)
m−i+1

=

∣∣∣∣∣∣∣∣∣ {j | λj ≥ m− i+ 1}︸ ︷︷ ︸
={j∈{1,2,...,k} | λj≥m−i+1}

∣∣∣∣∣∣∣∣∣ = |{j ∈ {1, 2, . . . , k} | λj ≥ m− i+ 1}| .

Thus, (13.91.23) becomes((
λ∨
)t)

i
= k − |{j ∈ {1, 2, . . . , k} | λj ≥ m− i+ 1}|︸ ︷︷ ︸

=(λt)
m−i+1

(by (13.91.24))

= k −
(
λt
)
m−i+1

= k −
(
λt
)
m+1−i .

This proves (13.91.21).
721Indeed, if T is an (λ, k)-CST, then the m-tuple whose i-th entry is the i-th set column of T belongs to A (λ) (because if

we denote this m-tuple by (I1, I2, . . . , Im), then

|Ii| = |(the i-th set column of T )| = (the length of the i-th column of T )

= (the length of the i-th column of the Ferrers diagram of λ)

(since T is a (λ, k) -CST, thus a column-strict tableau of shape λ)

=
(
λt
)
i
,

and the fact that the entries of T increase weakly along rows (because T is a column-strict tableau) translates precisely into

the inequality chain I1 ≤# I2 ≤# · · · ≤# Im).
722This is because the i-th column of a (λ, k)-CST T can be uniquely reconstructed from the i-th set column of T (indeed,

the entries of the i-th column of T must be strictly increasing down the column, and therefore the knowledge of the set of these
entries is sufficient to recover the i-th column). Here, we are using the fact that T has at most m columns (since every part of
λ is ≤ m).

723Indeed, given any (I1, I2, . . . , Im) ∈ A (λ). Then, (I1, I2, . . . , Im) is an m-tuple of subsets of [k] satisfying I1 ≤# I2 ≤#

· · · ≤# Im and
(
|Ii| =

(
λt
)
i

for every i ∈ {1, 2, . . . ,m}
)
. Now, we can fill in each column of the Ferrers diagram of λ with the

entries of the corresponding set Ii in increasing order, and then the resulting filling is a column-strict tableau (indeed, its entries
increase weakly along its rows (due to I1 ≤# I2 ≤# · · · ≤# Im)), and more precisely a (λ, k)-CST. Our m-tuple (I1, I2, . . . , Im)
is the image of this (λ, k)-CST under ϕ (λ); therefore, (I1, I2, . . . , Im) lies in the image of ϕ (λ). Hence, we have shown that
every (I1, I2, . . . , Im) ∈ A (λ) lies in the image of ϕ (λ). The map ϕ (λ) is thus surjective, qed.

724Indeed, it is easy to check that both x(ϕ(λ))(T ) and xcont(T ) are equal to the product
∏
c is a cell of T x(entry of T in c).
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(this can be shown in analogy to (13.91.25)).
Finally, we define a map ψ (λ) : A (λ)→ A (λ∨) as follows: For every (I1, I2, . . . , Im) ∈ A (λ), let

(ψ (λ)) (I1, I2, . . . , Im) = ([k] \ Im, [k] \ Im−1, . . . , [k] \ I1) .

This map ψ (λ) is well-defined725 and bijective726. This bijective map ψ (λ) has the property that

(13.91.28) x(ψ(λ))(S) = (x1x2 · · ·xk)
m · (xS)

−1
for every S ∈ A (λ)

727.
Using the three bijective maps

ϕ (λ) : (the set of all (λ, k) -CSTs)→ A (λ) ,

ψ (λ) : A (λ)→ A (λ∨) ,

ϕ (λ∨) : (the set of all (λ∨, k) -CSTs)→ A (λ∨) ,

we can define a map

Ω : (the set of all (λ, k) -CSTs)→ (the set of all (λ∨, k) -CSTs)

by Ω = (ϕ (λ∨))
−1 ◦ (ψ (λ)) ◦ (ϕ (λ)). Clearly, this Ω is a bijection. If we can show that every (λ, k)-CST T

satisfies (13.91.18), then (13.91.17) will be proven, and thus Exercise 2.9.15(d) will be solved again. Hence,
all that remains to prove now is that every (λ, k)-CST T satisfies (13.91.18).

725Proof. Let (I1, I2, . . . , Im) ∈ A (λ). Then, (I1, I2, . . . , Im) is an m-tuple of subsets of [k] satisfying I1 ≤# I2 ≤# · · · ≤#

Im and
(
|Ii| =

(
λt
)
i

for every i ∈ {1, 2, . . . ,m}
)
.

In order to prove the well-definedness of ψ (λ), we need to show that ([k] \ Im, [k] \ Im−1, . . . , [k] \ I1) ∈ A (λ∨). In other
words, we need to prove that ([k] \ Im, [k] \ Im−1, . . . , [k] \ I1) is an m-tuple of subsets of [k] satisfying [k]\Im ≤# [k]\Im−1 ≤#

· · · ≤# [k] \ I1 and
(
|[k] \ Im+1−i| =

(
(λ∨)t

)
i

for every i ∈ {1, 2, . . . ,m}
)

.

First of all, it is clear that ([k] \ Im, [k] \ Im−1, . . . , [k] \ I1) is an m-tuple of subsets of [k]. Furthermore, [k] \ Im ≤#

[k] \ Im−1 ≤# · · · ≤# [k] \ I1 follows from I1 ≤# I2 ≤# · · · ≤# Im (according to Proposition 13.91.2(a)). Thus, it remains to

prove that |[k] \ Im+1−i| =
(

(λ∨)t
)
i

for every i ∈ {1, 2, . . . ,m}.
So fix some i ∈ {1, 2, . . . ,m}. Then, |Im+1−i| =

(
λt
)
m+1−i (this follows from the |Ii| =

(
λt
)
i

formula, but applied to

m+ 1− i instead of i). Since Im+1−i ⊂ [k], we have

|[k] \ Im+1−i| = |[k]|︸︷︷︸
=k

− |Im+1−i|︸ ︷︷ ︸
=(λt)

m+1−i

= k −
(
λt
)
m+1−i =

((
λ∨
)t)

i
(by (13.91.21)) ,

qed.
726Indeed, we can define a map ψ (λ∨) in the same way as we have defined ψ (λ) (but with λ∨ instead of λ). It is then easy

to see that the maps ψ (λ) and ψ (λ∨) are mutually inverse, so that ψ (λ) is bijective, qed.
727Proof of (13.91.28): Let S ∈ A (λ). Then, S is an m-tuple of subsets of [k]. Write S as S = (I1, I2, . . . , Im). The

definition of xS then yields

xS =

m∏
i=1

xIi .

Hence,

(13.91.29) (x1x2 · · ·xk)m · (xS)−1 = (x1x2 · · ·xk)m ·
(
m∏
i=1

xIi

)−1

=
m∏
i=1

x1x2 · · ·xk
xIi

.

On the other hand, the definition of ψ (λ) yields (ψ (λ)) (S) = ([k] \ Im, [k] \ Im−1, . . . , [k] \ I1), and thus (by the definition of

x(ψ(λ))(S)) we have

(13.91.30) x(ψ(λ))(S) =

m∏
i=1

x[k]\Im+1−i =

m∏
i=1

x[k]\Ii (here, we substituted m+ 1− i for i in the product) .

But we need to prove (13.91.28). In view of (13.91.29) and (13.91.30), this boils down to proving that
∏m
i=1 x[k]\Ii =∏m

i=1

x1x2 · · ·xk
xIi

. But this will immediately follow if we can prove the identity x[k]\Ii =
x1x2 · · ·xk

xIi
for every i ∈ {1, 2, . . . ,m}.

But the latter identity follows from the (obvious) fact that x[k]\S =
x1x2 · · ·xk

xS
for every S ⊂ [k]. Thus, (13.91.28) is proven.
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Let T be a (λ, k)-CST. We have Ω = (ϕ (λ∨))
−1 ◦ (ψ (λ)) ◦ (ϕ (λ)), thus (ϕ (λ∨)) ◦ Ω = (ψ (λ)) ◦ (ϕ (λ)).

Applying (13.91.27) to Ω (T ) instead of T , we obtain x(ϕ(λ∨))(Ω(T )) = xcont(Ω(T )), whence

xcont(Ω(T )) = x(ϕ(λ∨))(Ω(T )) = x(ψ(λ))((ϕ(λ))(T ))since (ϕ (λ∨)) (Ω (T )) = ((ϕ (λ∨)) ◦ Ω)︸ ︷︷ ︸
=(ψ(λ))◦(ϕ(λ))

(T ) = ((ψ (λ)) ◦ (ϕ (λ))) (T ) = (ψ (λ)) ((ϕ (λ)) (T ))


= (x1x2 · · ·xk)

m ·
(
x(ϕ(λ))(T )

)−1︸ ︷︷ ︸
=(x−1)

cont(T )

(by (13.91.26))

(by (13.91.28), applied to S = (ϕ (λ)) (T ))

= (x1x2 · · ·xk)
m ·
(
x−1

)cont(T )
.

Thus, (13.91.18) holds. We thus have proven that every (λ, k)-CST T satisfies (13.91.18). Exercise 2.9.15(d)
is thus solved.

(e) First solution to Exercise 2.9.15(e): Obviously, the k-tuple (r + λ1, r + λ2, . . . , r + λk) is a partition.
Let us denote this partition by λ[r]. Then, λ[r] = (r + λ1, r + λ2, . . . , r + λk) and `

(
λ[r]
)
≤ k.

Let n = k. We shall use the notations of Section 2.6; in particular, we set x = (x1, x2, . . . , xn) and
ρ = (n− 1, n− 2, . . . , 2, 1, 0). Clearly, x = (x1, x2, . . . , xn) = (x1, x2, . . . , xk) (since n = k). Notice that
` (λ) ≤ k = n. Hence, we can regard λ as an element of Nn; therefore, λ+ ρ is a well-defined element of Nn,

and the alternant aλ+ρ is well-defined. Corollary 2.6.7 yields that sλ (x) =
aλ+ρ

aρ
, so that

(13.91.31) aρ · sλ (x) = aλ+ρ.

Applying this equality to λ[r] instead of λ, we obtain

(13.91.32) aρ · sλ[r] (x) = aλ[r]+ρ

(since λ[r] is also a partition satisfying `
(
λ[r]
)
≤ k = n).

We have (13.91.7), and every α = (α1, α2, . . . , αn) ∈ Nn satisfies (13.91.6). (This can be proven just as in
the First solution to Exercise 2.9.15(d).)

We have λ[r] = (r + λ1, r + λ2, . . . , r + λk) = (r + λ1, r + λ2, . . . , r + λn) (since k = n), so that

λ[r]︸︷︷︸
=(r+λ1,r+λ2,...,r+λn)

+ ρ︸︷︷︸
=(n−1,n−2,...,2,1,0)
=(n−1,n−2,...,n−n)

= (r + λ1, r + λ2, . . . , r + λn) + (n− 1, n− 2, . . . , n− n)

= ((r + λ1) + (n− 1) , (r + λ2) + (n− 2) , . . . , (r + λn) + (n− n)) .
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Hence, (13.91.6) (applied to λ[r] + ρ and
((r + λ1) + (n− 1) , (r + λ2) + (n− 2) , . . . , (r + λn) + (n− n)) instead of α and (α1, α2, . . . , αn)) yields

aλ[r]+ρ

=
∑
w∈Sn

sgn (w)

n∏
i=1

x
(r+λi)+(n−i)
w(i)︸ ︷︷ ︸

=x
r+(λi+n−i)
w(i)

=xr
w(i)

x
λi+n−i
w(i)

=
∑
w∈Sn

sgn (w)

n∏
i=1

(
xrw(i)x

λi+n−i
w(i)

)
︸ ︷︷ ︸

=
(∏n

i=1 x
r
w(i)

)(∏n
i=1 x

λi+n−i
w(i)

)
=
∑
w∈Sn

sgn (w)

(
n∏
i=1

xrw(i)

)
︸ ︷︷ ︸

=
∏n
i=1 x

r
i

(here, we have substituted i for
w(i) in the product (since w is
a permutation of {1,2,...,n}))

(
n∏
i=1

xλi+n−iw(i)

)

=
∑
w∈Sn

sgn (w)

(
n∏
i=1

xri

)(
n∏
i=1

xλi+n−iw(i)

)
=

(
n∏
i=1

xri

)
︸ ︷︷ ︸

=xr1x
r
2···xrn=(x1x2···xn)r

·
∑
w∈Sn

sgn (w)

n∏
i=1

xλi+n−iw(i)︸ ︷︷ ︸
=aλ+ρ

(by (13.91.7))

= (x1x2 · · ·xn)
r · aλ+ρ︸ ︷︷ ︸

=aρ·sλ(x)
(by (13.91.31))

= (x1x2 · · ·xn)
r · aρ · sλ (x) = aρ · (x1x2 · · ·xn)

r · sλ (x) .

Hence, aρ · (x1x2 · · ·xn)
r · sλ (x) = aλ[r]+ρ = aρ · sλ[r] (x) (by (13.91.31)).

But we know (from a footnote in Corollary 2.6.7) that aρ is not a zero-divisor in the ring k [x1, x2, . . . , xn].
In other words, aρ is a non-zero-divisor in the ring k [x1, x2, . . . , xn]. Hence, we can cancel the factor aρ
from the equality aρ · (x1x2 · · ·xn)

r · sλ (x) = aρ · sλ[r] (x). As a result, we obtain (x1x2 · · ·xn)
r · sλ (x) =

sλ[r] (x) = sλ[r] (x1, x2, . . . , xk) (since x = (x1, x2, . . . , xk)), so that

sλ[r] (x1, x2, . . . , xk) =

x1x2 · · ·xn︸ ︷︷ ︸
=x1x2···xk
(since n=k)


r

· sλ (x)︸ ︷︷ ︸
=sλ(x1,x2,...,xk)

(since x=(x1,x2,...,xk))

= (x1x2 · · ·xk)
r · sλ (x1, x2, . . . , xk) .

Since λ[r] = s(r+λ1,r+λ2,...,r+λk), this rewrites as

s(r+λ1,r+λ2,...,r+λk) (x1, x2, . . . , xk) = (x1x2 · · ·xk)
r · sλ (x1, x2, . . . , xk) .

This solves Exercise 2.9.15(e).
Second solution to Exercise 2.9.15(e) (sketched): Obviously, the k-tuple (r + λ1, r + λ2, . . . , r + λk) is a

partition. Let us denote this partition by λ[r]. Then, λ[r] = (r + λ1, r + λ2, . . . , r + λk) and `
(
λ[r]
)
≤ k.

We have (r + λ1, r + λ2, . . . , r + λk) = λ[r], thus s(r+λ1,r+λ2,...,r+λk) = sλ[r] = sλ[r]/∅, hence

s(r+λ1,r+λ2,...,r+λk)︸ ︷︷ ︸
=s

λ[r]/∅

(x1, x2, . . . , xk)

= sλ[r]/∅ (x1, x2, . . . , xk) =
∑

T is a column-strict
tableau of shape λ[r]/∅;
all entries of T belong

to {1,2,...,k}

xcont(T )

(
by Exercise 2.3.8(a), applied to k, λ[r] and ∅ instead of n, λ and µ

)
=

∑
T is a column-strict

tableau of shape λ[r];
all entries of T belong

to {1,2,...,k}

xcont(T )(13.91.33)



712 DARIJ GRINBERG AND VICTOR REINER

(since column-strict tableaux of shape λ[r]/∅ are the same as column-strict tableaux of shape λ[r]).
But an argument analogous to the one we just used to prove (13.91.33) (but with λ in place of λ[r]) shows

that
sλ (x1, x2, . . . , xk) =

∑
T is a column-strict
tableau of shape λ;

all entries of T belong
to {1,2,...,k}

xcont(T ).

Multiplied by (x1x2 · · ·xk)
r
, this equality becomes

(x1x2 · · ·xk)
r · sλ (x1, x2, . . . , xk) = (x1x2 · · ·xk)

r ·
∑

T is a column-strict
tableau of shape λ;

all entries of T belong
to {1,2,...,k}

xcont(T )

=
∑

T is a column-strict
tableau of shape λ;

all entries of T belong
to {1,2,...,k}

(x1x2 · · ·xk)
r · xcont(T ).(13.91.34)

We need to prove that

s(r+λ1,r+λ2,...,r+λk) (x1, x2, . . . , xk) = (x1x2 · · ·xk)
r · sλ (x1, x2, . . . , xk) .

Due to (13.91.33) and (13.91.34), this rewrites as

(13.91.35)
∑

T is a column-strict
tableau of shape λ[r];
all entries of T belong

to {1,2,...,k}

xcont(T ) =
∑

T is a column-strict
tableau of shape λ;

all entries of T belong
to {1,2,...,k}

(x1x2 · · ·xk)
r · xcont(T ).

So it remains to prove (13.91.35).
In order to prove (13.91.35), it is clearly sufficient to construct a bijection

Ω :
(

the set of all column-strict tableaux T of shape λ[r] such that all entries of T belong to {1, 2, . . . , k}
)

→ (the set of all column-strict tableaux T of shape λ such that all entries of T belong to {1, 2, . . . , k})

with the property that every column-strict tableau T of shape λ[r] such that all entries of T belong to
{1, 2, . . . , k} satisfies

(13.91.36) (x1x2 · · ·xk)
r · xcont(Ω(T )) = xcont(T ).

Constructing such an Ω is easy: The map Ω just maps every column-strict tableau T of shape λ[r] to the
tableau of shape λ obtained by removing the first r entries of each row of T , and moving all other entries
to the left by r cells. To prove that Ω is bijective, we need to construct a map inverse to Ω; this latter map
sends every column-strict tableau T of shape λ to the tableau of shape λ[r] obtained by moving all entries
of T to the right by r cells, and filling the now-vacant first r columns as follows:

1 1 · · · 1
2 2 · · · 2
...

...
. . .

...
k k · · · k

.

Proving that this map is well-defined and really inverse to Ω is left to the reader728. Anyway, we now know
that Ω is bijective, and it is easy to check that (13.91.36) holds. This completes the second solution of
Exercise 2.9.15(e).

728The main ingredient of this proof is the observation that if T is a column-strict tableau of shape λ[r] such that all entries

of T belong to {1, 2, . . . , k}, then the first r columns of T must look like this:

1 1 · · · 1

2 2 · · · 2
...

...
. . .

...
k k · · · k

.
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13.92. Solution to Exercise 2.9.16. Solution to Exercise 2.9.16. (a) We can apply Exercise 2.9.15(a) to
µ, µ, µ∨{m} and µ∨{m} instead of λ, µ, λ∨ and µ∨. As a consequence, we conclude that µ∨{m} and µ∨{m}

are partitions, and that sµ/µ = sµ∨{m}/µ∨{m} . Thus, µ∨{m} is a partition. The same argument (but with m,

µ and µ∨{m} replaced by n, ν and ν∨{n}) yields that ν∨{n} is a partition. This solves Exercise 2.9.16(a).
(b) Assume that not all parts of λ are ≤ m + n. Then, some part of λ is > m + n; hence, the greatest

part of λ is > m+ n. Thus, λ1 > m+ n (since λ1 is the greatest part of λ). As a consequence, λ1 − µ1 > ν1
729.

Now, we shall show that

(13.92.1)

(
there exists no column-strict tableau T of shape λ/µ with cont (T ) = ν

having the property that each cont (T |cols≥j) is a partition

)
.

Proof of (13.92.1): Assume the contrary. Thus, there exists a column-strict tableau T of shape λ/µ with
cont (T ) = ν having the property that each cont (T |cols≥j) is a partition. Consider this T .

The column-strict tableau T has shape λ/µ, and thus its 1-st row has λ1 − µ1 entries. In other words,

(the number of entries in the 1-st row of T )

= λ1 − µ1 > ν1 = (cont (T ))1 (since ν = cont (T ))

=
∣∣T−1 (1)

∣∣ (by the definition of cont (T ))

= (the number of entries of T equal to 1) .

Hence, the tableau T has more entries in its 1-st row than it has entries equal to 1. Consequently, not every
entry in the 1-st row is equal to 1. Thus, there exists an entry in the 1-st row of T which is > 1. Let k be
this entry, and let c be the cell it occupies. Then, c is a cell in the 1-st row of T , and thus can be written
in the form (1, j) for some positive integer j. Consider this j. The cell c lies in column j, and thus is a
cell of the skew tableau T |cols≥j ; its entry is (T |cols≥j) (c) = T (c) = k (since we know that k is the entry

of T occupying cell c). Hence, c ∈ (T |cols≥j)
−1

(k), so that the set (T |cols≥j)
−1

(k) is nonempty. Thus,∣∣∣(T |cols≥j)
−1

(k)
∣∣∣ > 0.

Recalling the definition of cont (T |cols≥j), we see that (cont (T |cols≥j))k =
∣∣∣(T |cols≥j)

−1
(k)
∣∣∣ > 0.

But we know that cont (T |cols≥j) is a partition. Thus,

(cont (T |cols≥j))1 ≥ (cont (T |cols≥j))2 ≥ (cont (T |cols≥j))3 ≥ · · · ,

so that (cont (T |cols≥j))1 ≥ (cont (T |cols≥j))k > 0. But the definition of cont (T |cols≥j) yields

(cont (T |cols≥j))1 =
∣∣∣(T |cols≥j)

−1
(1)
∣∣∣ = (the number of entries of T |cols≥j equal to 1) .

Hence, (the number of entries of T |cols≥j equal to 1) = (cont (T |cols≥j))1 > 0. Hence, the skew tableau
T |cols≥j must have at least one entry equal to 1.

But each cell of the skew tableau T |cols≥j lies in one of the columns j, j + 1, j + 2, . . . (by the definition
of T |cols≥j) and in one of the rows 1, 2, 3, . . . (obviously). Hence, each cell of the skew tableau T |cols≥j
lies (weakly) southeast of the cell (1, j) = c. As a consequence, each entry of the skew tableau T |cols≥j

(This is because each of the first r columns of T has length k, but the entries in this column must be strictly increasing from
top to bottom, and knowing that these entries belong to {1, 2, . . . , k}, we see that this is only possible if the column has the

form

1
2
...

k

.)

729Proof. All parts of µ are ≤ m. Thus, µ1 ≤ m (since µ1 is either a part of µ and therefore ≤ m, or is zero and therefore
≤ m as well). Hence, m ≥ µ1. Similarly, n ≥ ν1. Now, λ1 > m︸︷︷︸

≥µ1

+ n︸︷︷︸
≥ν1

≥ µ1 + ν1, so that λ1 − µ1 > ν1, qed.
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is greater or equal to the entry of T |cols≥j in the cell c 730. Since the entry of T |cols≥j in the cell c
is (T |cols≥j) (c) = k, this yields that each entry of the skew tableau T |cols≥j is greater or equal to k, and
thus greater than 1 (since k > 1). As a consequence, no entry of the skew tableau T |cols≥j can be equal to
1. This contradicts the fact that the skew tableau T |cols≥j must have at least one entry equal to 1. This
contradiction proves that our assumption was wrong. Hence, (13.92.1) is proven.

Now, Corollary 2.6.12 yields that cλµ,ν counts column-strict tableaux T of shape λ/µ with cont (T ) = ν
having the property that each cont (T |cols≥j) is a partition. Since there exists no such T (according to
(13.92.1)), this yields that cλµ,ν = 0. This solves Exercise 2.9.16(b).

Remark: An alternative solution of Exercise 2.9.16(b) can be obtained easily from Exercise 2.9.17(c).
(c) Let us forget that λ is fixed.
If λ ∈ Par is such that ` (λ) > k, then

(13.92.2) sλ (x1, x2, . . . , xk) = 0.

731

We first notice that

(13.92.3) sµ (x1, x2, . . . , xk) · sν (x1, x2, . . . , xk) =
∑

λ∈Par; `(λ)≤k

cλµ,νsλ (x1, x2, . . . , xk) .

732 Hence,

(13.92.4) sµ (x1, x2, . . . , xk) · sν (x1, x2, . . . , xk) =
∑

λ∈Par; `(λ)≤k;
all parts of λ are ≤m+n

cλµ,νsλ (x1, x2, . . . , xk) .

730Indeed, T is a column-strict tableau, and thus the entries of T increase weakly left-to-right along rows, and increase

strictly top-to-bottom in columns. Consequently, the entries of T increase weakly as one moves to the southeast. The same
holds for the entries of T |cols≥j (since T |cols≥j is a restriction of T ), and thus each entry of T |cols≥j is greater or equal to

the entry of T |cols≥j in the cell c (because each cell of T |cols≥j lies (weakly) southeast of the cell c). Qed.
731Proof of (13.92.2): Let λ ∈ Par be such that ` (λ) > k. Then, the number of parts of λ is ` (λ) > k. Hence, Exercise

2.3.8(b) (applied to k instead of n) yields sλ (x1, x2, . . . , xk) = 0, qed.
732Proof of (13.92.3): We have sµsν =

∑
λ c

λ
µ,νsλ, where the sum ranges over all partitions λ (according to the definition

of the coefficients cλµ,ν). In other words, sµsν =
∑
λ∈Par c

λ
µ,νsλ. Evaluating both sides of this equality at (x1, x2, . . . , xk), we

obtain

sµ (x1, x2, . . . , xk) · sν (x1, x2, . . . , xk)

=
∑
λ∈Par

cλµ,νsλ (x1, x2, . . . , xk)

=
∑

λ∈Par; `(λ)≤k
cλµ,νsλ (x1, x2, . . . , xk) +

∑
λ∈Par; `(λ)>k

cλµ,ν sλ (x1, x2, . . . , xk)︸ ︷︷ ︸
=0

(by (13.92.2))

=
∑

λ∈Par; `(λ)≤k
cλµ,νsλ (x1, x2, . . . , xk) +

∑
λ∈Par; `(λ)>k

cλµ,ν0

︸ ︷︷ ︸
=0

=
∑

λ∈Par; `(λ)≤k
cλµ,νsλ (x1, x2, . . . , xk) ,

qed.
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733

Define a set A by

(13.92.5) A = {α ∈ Par | ` (α) ≤ k; all parts of α are ≤ m+ n} .

For every partition λ, let λ∨{m+n} denote the k-tuple (m+ n− λk,m+ n− λk−1, . . . ,m+ n− λ1). It is
straightforward to see that for every λ ∈ A, we have

(13.92.6) λ∨{m+n} ∈ A.

Thus, the map

A→ A, λ 7→ λ∨{m+n}

is well-defined. It is easy to see that this map is an involution (i.e., every λ ∈ A satisfies
(
λ∨{m+n})∨{m+n}

=
λ), thus a bijection.

Now, the summation sign “
∑

λ∈Par; `(λ)≤k;
all parts of λ are ≤m+n

” in (13.92.4) rewrites as “
∑
λ∈A” (because of how we

defined A). Hence, (13.92.4) rewrites as

(13.92.7) sµ (x1, x2, . . . , xk) · sν (x1, x2, . . . , xk) =
∑
λ∈A

cλµ,νsλ (x1, x2, . . . , xk) .

Hence, in the Laurent polynomial ring k
[
x1, x2, . . . , xk, x

−1
1 , x−1

2 , . . . , x−1
k

]
, we have

(13.92.8) sµ
(
x−1

1 , x−1
2 , . . . , x−1

k

)
· sν

(
x−1

1 , x−1
2 , . . . , x−1

k

)
=
∑
λ∈A

cλµ,νsλ
(
x−1

1 , x−1
2 , . . . , x−1

k

)
.

734

Now, it is straightforward to see that µ∨{m} and ν∨{n} are partitions satisfying `
(
µ∨{m}

)
≤ k and

`
(
ν∨{n}

)
≤ k; also, all parts of the partition µ∨{m} are ≤ m, and all parts of the partition ν∨{n} are ≤ n.

Moreover,

(13.92.9) µ =

(
m−

(
µ∨{m}

)
k
,m−

(
µ∨{m}

)
k−1

, . . . ,m−
(
µ∨{m}

)
1

)
and

(13.92.10) ν =

(
n−

(
ν∨{n}

)
k
, n−

(
ν∨{n}

)
k−1

, . . . , n−
(
ν∨{n}

)
1

)

733Proof of (13.92.4): From (13.92.3), we obtain

sµ (x1, x2, . . . , xk) · sν (x1, x2, . . . , xk)

=
∑

λ∈Par; `(λ)≤k
cλµ,νsλ (x1, x2, . . . , xk)

=
∑

λ∈Par; `(λ)≤k;
all parts of λ are ≤m+n

cλµ,νsλ (x1, x2, . . . , xk) +
∑

λ∈Par; `(λ)≤k;
not all parts of λ are ≤m+n

cλµ,ν︸︷︷︸
=0

(by Exercise 2.9.16(b))

sλ (x1, x2, . . . , xk)

=
∑

λ∈Par; `(λ)≤k;
all parts of λ are ≤m+n

cλµ,νsλ (x1, x2, . . . , xk) +
∑

λ∈Par; `(λ)≤k;
not all parts of λ are ≤m+n

0sλ (x1, x2, . . . , xk)

︸ ︷︷ ︸
=0

=
∑

λ∈Par; `(λ)≤k;
all parts of λ are ≤m+n

cλµ,νsλ (x1, x2, . . . , xk) .

This proves (13.92.4).
734This follows by substituting the variables x−1

1 , x−1
2 , . . . , x−1

k for x1, x2, . . . , xk in the equality (13.92.7).
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(this is still easy to verify). These observations lead us to the conclusion that we can apply (13.92.8) to
µ∨{m}, µ, ν∨{n} and ν instead of µ, µ∨{m}, ν and ν∨{n}. As a result, we obtain

sµ∨{m}
(
x−1

1 , x−1
2 , . . . , x−1

k

)
· sν∨{n}

(
x−1

1 , x−1
2 , . . . , x−1

k

)
=
∑
λ∈A

cλµ∨{m},ν∨{n}sλ
(
x−1

1 , x−1
2 , . . . , x−1

k

)
=
∑
λ∈A

cλ
∨{m+n}

µ∨{m},ν∨{n}sλ∨{m+n}
(
x−1

1 , x−1
2 , . . . , x−1

k

)
(13.92.11)

(here, we have substituted λ∨{m+n} for the summation index λ (since the map A → A, λ 7→ λ∨{m+n} is a
bijection)).

Now, we can apply Exercise 2.9.15(d) to µ∨{m}, µ∨{m}, µ and µ instead of λ, µ, λ∨ and µ∨ (because of
(13.92.9)). As a result, we obtain

(13.92.12) sµ (x1, x2, . . . , xk) = (x1x2 · · ·xk)
m · sµ∨{m}

(
x−1

1 , x−1
2 , . . . , x−1

k

)
.

Also, we can apply Exercise 2.9.15(d) to n, ν∨{n}, ν∨{n}, ν and ν instead of m, λ, µ, λ∨ and µ∨ (because
of (13.92.10)). As a result, we obtain

(13.92.13) sν (x1, x2, . . . , xk) = (x1x2 · · ·xk)
n · sν∨{n}

(
x−1

1 , x−1
2 , . . . , x−1

k

)
.

Furthermore, every λ ∈ A satisfies

(13.92.14) sλ (x1, x2, . . . , xk) = (x1x2 · · ·xk)
m+n · sλ∨{m+n}

(
x−1

1 , x−1
2 , . . . , x−1

k

)
.

735

Now, (13.92.7) yields∑
λ∈A

cλµ,νsλ (x1, x2, . . . , xk)

= sµ (x1, x2, . . . , xk)︸ ︷︷ ︸
=(x1x2···xk)m·s

µ∨{m}(x
−1
1 ,x−1

2 ,...,x−1
k )

(by (13.92.12))

· sν (x1, x2, . . . , xk)︸ ︷︷ ︸
=(x1x2···xk)n·s

ν∨{n}(x
−1
1 ,x−1

2 ,...,x−1
k )

(by (13.92.13))

= (x1x2 · · ·xk)
m · sµ∨{m}

(
x−1

1 , x−1
2 , . . . , x−1

k

)
· (x1x2 · · ·xk)

n · sν∨{n}
(
x−1

1 , x−1
2 , . . . , x−1

k

)
= (x1x2 · · ·xk)

m
(x1x2 · · ·xk)

n︸ ︷︷ ︸
=(x1x2···xk)m+n

· sµ∨{m}
(
x−1

1 , x−1
2 , . . . , x−1

k

)
· sν∨{n}

(
x−1

1 , x−1
2 , . . . , x−1

k

)︸ ︷︷ ︸
=
∑
λ∈A c

λ∨{m+n}

µ∨{m},ν∨{n}
s
λ∨{m+n}(x−1

1 ,x−1
2 ,...,x−1

k )
(by (13.92.11))

= (x1x2 · · ·xk)
m+n ·

∑
λ∈A

cλ
∨{m+n}

µ∨{m},ν∨{n}sλ∨{m+n}
(
x−1

1 , x−1
2 , . . . , x−1

k

)
=
∑
λ∈A

cλ
∨{m+n}

µ∨{m},ν∨{n} (x1x2 · · ·xk)
m+n · sλ∨{m+n}

(
x−1

1 , x−1
2 , . . . , x−1

k

)︸ ︷︷ ︸
=sλ(x1,x2,...,xk)
(by (13.92.14))

=
∑
λ∈A

cλ
∨{m+n}

µ∨{m},ν∨{n}sλ (x1, x2, . . . , xk) .(13.92.15)

735Proof of (13.92.14): Let λ ∈ A. Then, λ ∈ A = {α ∈ Par | ` (α) ≤ k; all parts of α are ≤ m+ n}. In other words, λ is

an element of Par such that ` (λ) ≤ k and such that all parts of λ are ≤ m + n. Now, (13.92.6) yields that λ∨{m+n} ∈ A =

{α ∈ Par | ` (α) ≤ k; all parts of α are ≤ m+ n}. In other words, λ∨{m+n} is an element of Par such that `
(
λ∨{m+n}) ≤ k

and such that all parts of λ∨{m+n} are ≤ m+ n.

Recall that
(
λ∨{m+n})∨{m+n}

= λ (as we said, this follows easily from the definitions). Thus,

λ =
(
λ∨{m+n}

)∨{m+n}
=

(
m+ n−

(
λ∨{m+n}

)
k
,m+ n−

(
λ∨{m+n}

)
k−1

, . . . ,m+ n−
(
λ∨{m+n}

)
1

)
(by the definition of

(
λ∨{m+n})∨{m+n}

). Hence, we can apply Exercise 2.9.15(d) to m + n, λ∨{m+n}, λ∨{m+n}, λ and λ

instead of m, λ, µ, λ∨ and µ∨. As a result, we obtain

sλ (x1, x2, . . . , xk) = (x1x2 · · ·xk)m+n · sλ∨{m+n}

(
x−1

1 , x−1
2 , . . . , x−1

k

)
.

This proves (13.92.14).
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But Remark 2.3.9(d) (applied to N = k) yields that the set {sλ (x1, x2, . . . , xk)}, as λ runs through
all partitions having length ≤ k, is a basis of the k-module Λ (x1, x2, . . . , xk). In other words, the fam-
ily (sλ (x1, x2, . . . , xk))λ∈Par; `(λ)≤k is a basis of the k-module Λ (x1, x2, . . . , xk). In particular, the family

(sλ (x1, x2, . . . , xk))λ∈Par; `(λ)≤k is k-linearly independent.

But the set A is a subset of {α ∈ Par | ` (α) ≤ k}. Hence, the family (sλ (x1, x2, . . . , xk))λ∈A is a subfam-
ily of the family (sλ (x1, x2, . . . , xk))λ∈{α∈Par | `(α)≤k} = (sλ (x1, x2, . . . , xk))λ∈Par; `(λ)≤k. Since the family

(sλ (x1, x2, . . . , xk))λ∈Par; `(λ)≤k is k-linearly independent, we thus conclude that its subfamily (sλ (x1, x2, . . . , xk))λ∈A
is also k-linearly independent. As a consequence, if two k-linear combinations of the family (sλ (x1, x2, . . . , xk))λ∈A
are equal, then their respective coefficients must be equal. Thus, from (13.92.16), we conclude that

(13.92.16) cλµ,ν = cλ
∨{m+n}

µ∨{m},ν∨{n} for every λ ∈ A.

Now, let λ be a partition such that ` (λ) ≤ k. Assume that all parts of λ are ≤ m + n. Then, λ is an
element of Par such that ` (λ) ≤ k and such that all parts of λ are ≤ m+ n. In other words, λ ∈ A (by the

definition of A). Hence, (13.92.16) yields cλµ,ν = cλ
∨{m+n}

µ∨{m},ν∨{n}
. This solves Exercise 2.9.16(c).

13.93. Solution to Exercise 2.9.17. Solution to Exercise 2.9.17. (a) We notice that every partition λ and
every positive integer i satisfy(

λt
)
i

= |{j ∈ {1, 2, 3, ...} | λj ≥ i}| (by (2.2.7))

= |{j ∈ {1, 2, ..., ` (λ)} | λj ≥ i}|(13.93.1)

(because λj ≥ i can happen only when j ∈ {1, 2, ..., ` (λ)} (since i is positive)).
Let µ and ν be two partitions. For every positive integer i, we have(

(µ t ν)
t
)
i

=
∣∣∣{j ∈ {1, 2, ..., ` (µ t ν)} | (µ t ν)j ≥ i

}∣∣∣ (by (13.93.1), applied to λ = µ t ν)

= (the number of entries of µ t ν which are ≥ i)
=
(
the number of entries of the list

(
µ1, µ2, . . . , µ`(µ), ν1, ν2, . . . , ν`(ν)

)
which are ≥ i

) since µ t ν is the result of sorting the list
(
µ1, µ2, . . . , µ`(µ), ν1, ν2, . . . , ν`(ν)

)
in decreasing order, and clearly the procedure of sorting does not change

the number of entries of the list which are ≥ i


=
(
the number of entries of the list

(
µ1, µ2, . . . , µ`(µ)

)
which are ≥ i

)︸ ︷︷ ︸
=|{j∈{1,2,...,`(µ)} | µj≥i}|=(µt)

i

(by (13.93.1), applied to λ=µ)

+
(
the number of entries of the list

(
ν1, ν2, . . . , ν`(ν)

)
which are ≥ i

)︸ ︷︷ ︸
=|{j∈{1,2,...,`(ν)} | νj≥i}|=(νt)

i

(by (13.93.1), applied to λ=ν)

=
(
µt
)
i
+
(
νt
)
i

=
(
µt + νt

)
i

(since the definition of µt + νt yields (µt + νt)i = (µt)i + (νt)i). In other words,

(13.93.2) (µ t ν)
t

= µt + νt.

Applying this to µt and νt instead of µ and ν, we obtain (µt t νt)t =
(
µt
)t︸ ︷︷ ︸

=µ

+
(
νt
)t︸ ︷︷ ︸

=ν

= µ + ν, so that

µ+ ν = (µt t νt)t and thus  µ+ ν︸ ︷︷ ︸
=(µttνt)t


t

=
((
µt t νt

)t)t
= µt t νt.

This solves Exercise 2.9.17(a).
(b) Let µ and ν be two partitions. We are going to prove that cµ+ν

µ,ν = 1.
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A (µ+ ν, µ, ν)-LR-tableau will mean a column-strict tableau T of shape (µ+ ν) /µ with cont (T ) = ν
having the property that each cont (T |cols≥j) is a partition (where we are using the notations of Corollary
2.6.12). Corollary 2.6.12 shows that cµ+ν

µ,ν is the number of (µ+ ν, µ, ν)-LR-tableaux. Hence, in order to

prove that cµ+ν
µ,ν = 1, it will be enough to show that there exists one and only one (µ+ ν, µ, ν)-LR-tableau.

First of all, let T0 be the filling of the skew shape (µ+ ν) /µ which assigns to every cell in row i the number
i, for all i ∈ {1, 2, 3, ...}. This T0 is clearly a column-strict tableau, and satisfies cont (T0) = ν (because for
every positive integer i, the i-th row of the skew shape (µ+ ν) /µ has (µ+ ν)i︸ ︷︷ ︸

=µi+νi

−µi = (µi + νi) − µi = νi

cells). Moreover, for every j ∈ {1, 2, 3, ...}, the weak composition cont (T0|cols≥j) is a partition736. Therefore,
T0 is a (µ+ ν, µ, ν)-LR-tableau. It remains to prove that it is the only (µ+ ν, µ, ν)-LR-tableau.

So fix any (µ+ ν, µ, ν)-LR-tableau T . Thus, T is a column-strict tableau of shape (µ+ ν) /µ with
cont (T ) = ν having the property that each cont (T |cols≥j) is a partition.

We shall show that

(13.93.3) for every i ∈ {1, 2, 3, ...} , all entries in the i-th row of T are ≤ i.
Proof of (13.93.3): Assume the contrary. Then, there exists an i ∈ {1, 2, 3, ...} such that not all entries in

the i-th row of T are ≤ i. Let p be the smallest such i (this is clearly well-defined). Hence, not all entries
in the p-th row of T are ≤ p. But since p is minimal, we know that (13.93.3) holds for every i < p.

Not all entries in the p-th row of T are ≤ p. In other words, at least one entry of the p-th row of T must
be > p. Since the entries of T weakly increase along rows, this yields that the rightmost entry of the p-th
row of T is > p. Let q be this entry, and let j be the column in which the rightmost cell of the p-th row of
T lies. Thus, q is the entry in cell (p, j) of T . Therefore, the entry q appears in the tableau T |cols≥j . Hence,
cont (T |cols≥j)q ≥ 1. Note that q > p (by the definition of q).

We know that cont (T |cols≥j) is a partition, so that

(cont (T |cols≥j))p ≥ cont (T |cols≥j)q (since p < q)

≥ 1.

In other words, the entry p appears somewhere in the tableau T |cols≥j . Where can it appear? It cannot
appear in any of the first p− 1 rows, because all entries in these rows are < p (since (13.93.3) holds for every
i < p). Hence, it must appear in the p-th row or further down. In other words, this entry p appears in a cell
(u, v) of T with u ≥ p and v ≥ j. As a consequence, this entry p is ≥ to the entry in cell (p, j) of T (since
T is column-strict). Since the entry in cell (p, j) of T is q, this yields p ≥ q, which contradicts q > p. This
contradiction shows that our assumption was wrong, and (13.93.3) is proven.

We furthermore claim that

(13.93.4) for every i ∈ {1, 2, 3, ...} , all entries in the i-th row of T are i.

Proof of (13.93.4): Assume the contrary. Then, there exists an i ∈ {1, 2, 3, ...} such that not all entries
in the i-th row of T are i. Let p be the smallest such i (this is clearly well-defined). Hence, not all entries
in the p-th row of T are p. But since p is minimal, we know that (13.93.4) holds for every i < p.

All entries in the p-th row of T are ≤ p (by (13.93.3)), but not all of them are p. Hence, the p-th row of
T has an entry < p. Let k be this entry. Thus, k < p. We can apply (13.93.4) to i = k (since (13.93.4) holds
for every i < p), and conclude that all entries in the k-th row of T are k. Thus, in the tableau T , the entry
k appears νk times in row k (since the length of the k-th row of T is (µ+ ν)k︸ ︷︷ ︸

=µk+νk

−µk = (µk + νk) − µk = νk)

and at least 1 time in row p (by the definition of k). In total, k must thus appear at least νk + 1 times
in T , which contradicts the fact that cont (T ) = ν. This contradiction disproves our assumption, and thus
(13.93.4) is proven.

736Proof. In fact, fix j ∈ {1, 2, 3, ...}. Then, both νi and µi decrease with i ∈ {1, 2, 3, ...} (since ν and µ are partitions), and

thus min {µi, j} also decreases with i ∈ {1, 2, 3, ...}.
Now, for every i ∈ {1, 2, 3, ...}, the i-th entry of cont

(
T0|cols≥j

)
is the number of boxes in columns j, j+1, j+2, ... of the i-th

row of the skew shape (µ+ ν) /µ. This number is easily seen to be (µ+ ν)i︸ ︷︷ ︸
=µi+νi

− max {µi, j}︸ ︷︷ ︸
=µi+j−min{µi,j}

= µi+νi−(µi + j −min {µi, j}) =

νi − j + min {µi, j}, and therefore decreases with i (because both νi and min {µi, j} decrease with i). Hence, cont
(
T0|cols≥j

)
is a partition, qed.
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Now that (13.93.4) is proven, we immediately conclude that T = T0. Now, forget that we fixed T .
We thus have shown that every (µ+ ν, µ, ν)-LR-tableau T equals T0. Hence, there exists one and only one
(µ+ ν, µ, ν)-LR-tableau, namely T = T0 (because we have already seen that T0 is a (µ+ ν, µ, ν)-LR-tableau).
As we said above, this proves that

(13.93.5) cµ+ν
µ,ν = 1.

It remains to show that cµtνµ,ν = 1. Exercise 2.7.11(c) (applied to λ = µ t ν) shows that

cµtνµ,ν = c
(µtν)t

µt,νt = cµ
t+νt

µt,νt

(
since (µ t ν)

t
= µt + νt (by Exercise 2.9.17(a))

)
= 1

(
by (13.93.5), applied to µt and νt instead of µ and ν

)
.

This solves Exercise 2.9.17(b).
(c) Let k ∈ N and n ∈ N satisfy k ≤ n, and let µ ∈ Park, ν ∈ Parn−k and λ ∈ Parn be such that cλµ,ν 6= 0.

We need to prove that µ+ ν . λ . µ t ν.
We have |λ| = n, |µ| = k and |ν| = n− k, so that |λ| = n = k︸︷︷︸

=|µ|

+ (n− k)︸ ︷︷ ︸
=|ν|

= |µ|+ |ν|. We will first show

that

(13.93.6) µ+ ν . λ.

A (λ, µ, ν)-LR-tableau will mean a column-strict tableau T of shape λ/µ with cont (T ) = ν having the
property that each cont (T |cols≥j) is a partition (where we are using the notations of Corollary 2.6.12).
Corollary 2.6.12 shows that cλµ,ν is the number of (λ, µ, ν)-LR-tableaux. Since cλµ,ν 6= 0, we thus see that
there exists at least one (λ, µ, ν)-LR-tableau. Let this (λ, µ, ν)-LR-tableau be T .

Just as in the solution of Exercise 2.9.17(b), we can prove that (13.93.3) holds. Let k be a positive integer.
Applying (13.93.3) to all i ∈ {1, 2, ..., k}, we see that all entries in the first k rows of T (meaning the 1-st
row, the 2-nd row, etc., the k-th row) are ≤ k. Hence,

(the number of all entries in the first k rows of T )

≤ (the number of all entries ≤ k in T ) =

k∑
i=1

(the number of all entries i in T )︸ ︷︷ ︸
=(contT )i=νi

(since contT=ν)

=

k∑
i=1

νi.

Since

(the number of all entries in the first k rows of T )

=

k∑
i=1

(the number of all entries in the i-th row of T )︸ ︷︷ ︸
=λi−µi

=

k∑
i=1

(λi − µi) =

k∑
i=1

λi −
k∑
i=1

µi,

this rewrites as
∑k
i=1 λi −

∑k
i=1 µi ≤

∑k
i=1 νi. Hence,

k∑
i=1

λi ≤
k∑
i=1

µi +

k∑
i=1

νi =

k∑
i=1

(µi + νi)︸ ︷︷ ︸
=(µ+ν)i

=

k∑
i=1

(µ+ ν)i ,

so that
∑k
i=1 (µ+ ν)i ≥

∑k
i=1 λi. In other words, (µ+ ν)1 + (µ+ ν)2 + · · ·+ (µ+ ν)k ≥ λ1 + λ2 + · · ·+ λk.

Now, let us forget that we fixed k. We have shown that (µ+ ν)1 + (µ+ ν)2 + · · ·+ (µ+ ν)k ≥ λ1 + λ2 +
· · ·+λk for every positive integer k. Combined with |λ| = |µ|+ |ν| = |µ+ ν|, this yields that µ+ ν . λ. This
proves (13.93.6).

It now remains to prove that λ . µt ν. To do so, we notice that Exercise 2.7.11(c) yields cλµ,ν = cλ
t

µt,νt , so

that cλ
t

µt,νt = cλµ,ν 6= 0. Hence, we can apply (13.93.6) to λt, µt and νt instead of λ, µ and ν. As a result,

we obtain µt + νt . λt. Since (µ t ν)
t

= µt + νt (by Exercise 2.9.17(a)), this rewrites as (µ t ν)
t
. λt. But

Exercise 2.2.9 (applied to µ t ν instead of µ) yields that λ . µ t ν if and only if (µ t ν)
t
. λt. Since we

already know that (µ t ν)
t
. λt, we can thus conclude that λ . µ t ν. Combined with (13.93.6), this yields

µ+ ν . λ . µ t ν. This solves Exercise 2.9.17(c).
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(d) Let n ∈ N and m ∈ N and α, β ∈ Parn and γ, δ ∈ Parm be such that α . β and γ . δ. It is completely
straightforward to check that

(13.93.7) α+ γ . β + δ

737. It remains to prove that α t γ . β t δ.
Exercise 2.2.9 (applied to λ = α and µ = β) yields that α . β if and only if βt . αt. Since α . β, we thus

have βt . αt. Similarly, δt . γt. Hence, we can apply (13.93.7) to βt, αt, δt and γt instead of α, β, γ and δ.

As a result, we obtain βt+δt .αt+γt. Now, (13.93.2) (applied to µ = β and ν = δ) yields (β t δ)t = βt+δt.

Similarly, (α t γ)
t

= αt + γt. Thus, (β t δ)t = βt + δt . αt + γt = (α t γ)
t
.

Finally, Exercise 2.2.9 (applied to n+m, αt γ and β t δ instead of n, λ and µ) yields that αt γ . β t δ if

and only if (β t δ)t . (α t γ)
t
. Since we have (β t δ)t . (α t γ)

t
, we thus obtain αt γ . β t δ. This completes

the solution of Exercise 2.9.17(d).
(e) The Ferrers diagram of the partition λ =

(
mk
)

is a rectangle. Let C denote the center of this rectangle.
For every partition µ satisfying µ ⊆ λ, let us define a partition µc by µc = (m− µk,m− µk−1, ...,m− µ1)
738. The Ferrers diagram of this partition µc is obtained from the skew Ferrers diagram of the skew partition
739 λ/µ by the 180◦ rotation around C. In other words, the skew Ferrers diagram of µc/∅ is obtained from
the skew Ferrers diagram of the skew partition λ/µ by the 180◦ rotation around C. Hence, Exercise 2.3.4(b)
(applied to λ′ = µc and µ′ = ∅) yields that

(13.93.8) sλ/µ = sµc/∅ = sµc .

Now, Proposition 2.3.6(iv) yields

∆sλ =
∑
µ⊆λ

sµ ⊗ sλ/µ︸︷︷︸
=sµc

(by (13.93.8))

=
∑
µ⊆λ

sµ ⊗ sµc .

Compared with

∆sλ =
∑
µ,ν

ĉλµ,ν︸︷︷︸
=cλµ,ν

sµ ⊗ sν (by (2.5.7))

=
∑
µ,ν

cλµ,νsµ ⊗ sν ,

this yields
∑
µ,ν c

λ
µ,νsµ ⊗ sν =

∑
µ⊆λ sµ ⊗ sµc . Comparing the coefficients in front of sµ ⊗ sν on both sides

of this equality, we obtain: Any two partitions µ and ν satisfy

cλµ,ν =

{
1, if µ ⊆ λ and ν = µc;

0, otherwise
∈ {0, 1} .

This solves Exercise 2.9.17(e).
(f) We know that (sµ)µ∈Par is a basis of the k-module Λ. Hence, (sµ ⊗ sν)µ,ν∈Par is a basis of the k-module

Λ⊗ Λ. We will refer to this basis as the Schur basis of Λ⊗ Λ.
The equality (2.5.7) yields

∆sλ =
∑
µ,ν

ĉλµ,ν︸︷︷︸
=cλµ,ν

sµ ⊗ sν =
∑
µ,ν

cλµ,νsµ ⊗ sν .

Thus, for every µ, ν ∈ Par, the sµ ⊗ sν-coefficient of ∆sλ with respect to the Schur basis of Λ⊗ Λ is cλµ,ν .

But λ =
(
a+ 1, 1b

)
. Hence, Exercise 2.9.14(d) gives a formula for ∆sλ = ∆s(a+1,1b) as a sum of pure

tensors of the form sµ ⊗ sν with µ, ν ∈ Par. Every such pure tensor occurs at most once in this formula
(as can be easily verified). In other words, for every µ, ν ∈ Par, the sµ ⊗ sν-coefficient of ∆sλ with respect

737To prove this, just recall how α+ γ and β + δ are defined, and recall that two partitions λ, µ ∈ Parn satisfy λ . µ if and

only if we have (λ1 + λ2 + · · ·+ λk ≥ µ1 + µ2 + · · ·+ µk for every positive integer k).
738This is well-defined, since every i ∈ {1, 2, ..., k} satisfies µi ≤ m (because µ ⊆ λ =

(
mk
)
).

739A skew partition shall mean a pair (α, β) of partitions satisfying β ⊆ α. We write such a skew partition (α, β) as α/β.
For every skew partition α/β, we define the skew Ferrers diagram Y (α/β) of α/β by Y (α/β) = Y (α) \ Y (β), where Y (κ)

means the Ferrers diagram of a partition κ.
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to the Schur basis of Λ ⊗ Λ is either 0 or 1. Since the sµ ⊗ sν-coefficient of ∆sλ with respect to the Schur
basis of Λ ⊗ Λ is cλµ,ν , this rewrites as follows: For every µ, ν ∈ Par, the scalar cλµ,ν is either 0 or 1. This
solves Exercise 2.9.17(f).

(g) The following solution is inspired by [211, proof of Thm. 2.1(iv)].
Before we start with the solution, we recall two formulas. Firstly, any two partitions µ and ν satisfy

sµsν =
∑
λ∈Par

cλµ,νsλ (this is just a restatement of (2.5.6))

=
∑
τ∈Par

cτµ,νsτ (here, we renamed the summation index λ as τ) .(13.93.9)

Secondly, any two partitions λ and µ satisfy

sλ/µ =
∑
ν∈Par

cλµ,νsν (this is one of the identities in Remark 2.5.9)

=
∑
τ∈Par

cλµ,τsτ (here, we renamed the summation index ν as τ) .(13.93.10)

Now, let λ be any partition, and let µ and ν be two rectangular partitions. We need to show that
cλµ,ν ∈ {0, 1}.

Assume the contrary. Thus, cλµ,ν /∈ {0, 1}, so that cλµ,ν 6= 0.

We have cλµ,ν = cλν,µ. Hence, we can WLOG assume that ` (µ) ≥ ` (ν) (since otherwise, we can just switch
µ and ν). Assume this. Assume WLOG that µ 6= ∅ (since otherwise, µ = ∅ and thus ν = ∅ (because
` (µ) ≥ ` (ν)), which makes the claim cλµ,ν ∈ {0, 1} a rather obvious fact).

The partition µ is rectangular, i.e., has the form
(
mk
)

=

m,m, . . . ,m︸ ︷︷ ︸
k times

 for some m ∈ N and k ∈ N.

Consider these m and k. Both m and k are positive (since
(
mk
)

= µ 6= ∅). Thus, k = ` (µ) (since µ =
(
mk
)
),

so that k = ` (µ) ≥ ` (ν), thus ` (ν) ≤ k.
Corollary 2.6.12 shows that cλµ,ν counts column-strict tableaux T of shape λ/µ with cont (T ) = ν having

the property that each cont (T |cols≥j) is a partition (where we are using the notations of Corollary 2.6.12).
Since cλµ,ν 6= 0, we see that there exists at least one such tableau T . Consider this T . All entries of the

tableau T are ≤ ` (ν) (because cont (T ) = ν). This quickly yields that µk ≥ λk+1
740. Of course, we also

have µ ⊆ λ (since T is a tableau of shape λ/µ), and thus λi ≥ µi for every i ∈ {1, 2, 3, ...}. In particular,
every i ∈ {1, 2, ..., k} satisfies λi ≥ µi = m (since µ =

(
mk
)
).

Now, define F , Frows≤k and Frows>k as in Exercise 2.3.5. Define four partitions α, β, γ and δ by

α = (λ1 −m,λ2 −m, ..., λk −m) , β = ∅,
γ = (λk+1, λk+2, λk+3, ...) , δ = ∅

(notice that α is well-defined because every i ∈ {1, 2, ..., k} satisfies λi ≥ m). It is now easy to see that
the skew Ferrers diagram α/β can be obtained from Frows≤k by parallel translation (namely, the translation
by m steps to the west), and that the skew Ferrers diagram γ/δ can be obtained from Frows>k by parallel

740Proof. Assume the contrary. Thus, µk < λk+1. Since µ =
(
mk
)
, we have µk = m, so that m = µk < λk+1. Thus,

m ≤ λk+1 − 1 (since m and λk+1 are integers), so that m+ 1 ≤ λk+1. Now, for every i ∈ {1, 2, ..., k + 1}, we have

µi ≤ m
(

since µ =
(
mk
))

< m+ 1 ≤ λk+1 ≤ λi (since k + 1 ≥ i) .

Hence, (i,m+ 1) is a cell of the skew Ferrers diagram λ/µ for every i ∈ {1, 2, ..., k + 1}. Altogether, the (m+ 1)-th column of
the skew Ferrers diagram λ/µ contains at least k + 1 different cells (namely, the cells (i,m+ 1) for all i ∈ {1, 2, ..., k + 1}). In

the tableau T , these k+ 1 different cells must be filled with k+ 1 distinct values (because the entries of T are strictly decreasing
top-to-bottom in columns). As a consequence, there must be at least k + 1 distinct values among the entries of T ; but this is

impossible, because all entries of T are ≤ ` (ν) ≤ k. This contradiction proves that our assumption was wrong, qed.
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translation (namely, the translation by k steps to the north). Hence, Exercise 2.3.5 yields

sλ/µ = sα/βsγ/δ = sα/∅︸ ︷︷ ︸
=sα

sγ/∅︸︷︷︸
=sγ

(since β = ∅ and δ = ∅)

= sαsγ =
∑
τ∈Par

cτα,γsτ (by (13.93.9)) .

Compared with (13.93.10), this yields
∑
τ∈Par c

λ
µ,τsτ =

∑
τ∈Par c

τ
α,γsτ . Since (sτ )τ∈Par is a k-basis of Λ,

we can compare coefficients before sν in this equality, and thus obtain cλµ,ν = cνα,γ . But ν is a rectangular

partition, and thus has the form
(
m̃k̃
)

for some m̃ ∈ N and k̃ ∈ N. Hence, cνα,γ ∈ {0, 1} (by Exercise

2.9.17(e), applied to m̃, k̃, ν, α and γ instead of m, k, λ, µ and ν). Thus, cλµ,ν = cνα,γ ∈ {0, 1}, which

contradicts cλµ,ν /∈ {0, 1}. This contradiction proves that our assumption was wrong, and Exercise 2.9.17(g)
is solved.

13.94. Solution to Exercise 2.9.18. Solution to Exercise 2.9.18. (a) We shall prove the implications
A =⇒ B and B =⇒ A.

Proof of the implication A =⇒ B: Assume that Assertion A holds. That is, there exist a partition λ and
a column-strict tableau T of shape λ/µ such that all (i, j) ∈ {1, 2, 3, . . .}2 satisfy (2.9.13). Consider this λ
and this T . Since T is column-strict, the entries of T increase weakly left-to-right along rows, and increase
strictly top-to-bottom along columns.

For every u ∈ N and j ∈ {1, 2, 3, ...}, we have

(the number of all entries ≤ u in the j-th row of T )

=

u∑
i=1

(the number of all entries i in the j-th row of T )︸ ︷︷ ︸
=bi,j

(by (2.9.13))

=

u∑
i=1

bi,j

= b1,j + b2,j + · · ·+ bu,j .(13.94.1)

Let (i, j) ∈ N× {1, 2, 3, . . .}. We are going to prove that

(13.94.2) µj+1 + (b1,j+1 + b2,j+1 + · · ·+ bi+1,j+1) ≤ µj + (b1,j + b2,j + · · ·+ bi,j) .

Indeed, assume the contrary. Then,

(13.94.3) µj+1 + (b1,j+1 + b2,j+1 + · · ·+ bi+1,j+1) > µj + (b1,j + b2,j + · · ·+ bi,j) .

Hence,

µj+1 + (the number of all entries ≤ i+ 1 in the (j + 1) -th row of T )︸ ︷︷ ︸
=b1,j+1+b2,j+1+···+bi+1,j+1

(by (13.94.1), applied to i+1 and j+1 instead of u and j)

= µj+1 + (b1,j+1 + b2,j+1 + · · ·+ bi+1,j+1)

> µj + (b1,j + b2,j + · · ·+ bi,j)︸ ︷︷ ︸
≥0

> µj ≥ µj+1 (since µ is a partition) .

Subtracting µj+1 from both sides of this inequality, we obtain

(the number of all entries ≤ i+ 1 in the (j + 1) -th row of T ) > 0.

In other words, there exists at least one entry ≤ i+ 1 in the (j + 1)-th row of T . Let c be the rightmost cell
of the (j + 1)-th row of T which contains such an entry. That is, c is the rightmost cell of the (j + 1)-th row
of T which contains an entry ≤ i+ 1.

The cell c lies in the (j + 1)-th row of T . Hence, we can write the cell c in the form c = (j + 1, y) for
some positive integer y. Consider this y.

The entries of T increase weakly left-to-right along rows. Thus, the cells of the (j + 1)-th row of T which
contain entries ≤ i + 1 form a contiguous segment of the (j + 1)-th row of T . This segment begins in cell
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(j + 1, µj+1 + 1) (since the entries of the (j + 1)-th row of T begin in cell (j + 1, µj+1 + 1) (because T has
shape λ/µ)), and ends in cell (j + 1, y) (since (j + 1, y) = c is the rightmost cell of the (j + 1)-th row of T
which contains an entry ≤ i + 1). Hence, this segment contains precisely y − µj+1 cells. In other words,
there exist exactly y − µj+1 cells of the (j + 1)-th row of T which contain entries ≤ i + 1. In other words,
the number of all cells of the (j + 1)-th row of T which contain entries ≤ i+ 1 is y − µj+1. In other words,

(the number of all entries ≤ i+ 1 in the (j + 1) -th row of T ) = y − µj+1.

Solving this for y, we obtain

y = µj+1 + (the number of all entries ≤ i+ 1 in the (j + 1) -th row of T ) .

Since c is a cell of the tableau T , it is clear that the cell c lies inside the Ferrers diagram of λ, and therefore
(due to j ∈ {1, 2, 3, ...}) the cell (j, y) must also lie inside the Ferrers diagram of λ (because the cell (j, y) is
the northern neighbor of the cell (j + 1, y) = c).

We have

y = µj+1 + (the number of all entries ≤ i+ 1 in the (j + 1) -th row of T )

= µj+1 + (b1,j+1 + b2,j+1 + · · ·+ bi+1,j+1) > µj .

Therefore, the cell (j, y) lies outside the Ferrers diagram of µ. Since (j, y) lies inside the Ferrers diagram of
λ but outside the Ferrers diagram of µ, we see that (j, y) is a cell of T .

But recall that the entries of T increase strictly top-to-bottom along columns. Hence, the entry of T in
the cell (j, y) must be strictly smaller than the entry of T in the cell c (since the cell (j, y) is the northern
neighbor of the cell (j + 1, y) = c). Since the latter entry is ≤ i+ 1 (by the definition of c), this shows that
the entry of T in the cell (j, y) must be strictly smaller than i + 1. Hence, this entry must be ≤ i. As a
consequence, all cells in the j-th row of T which lie weakly to the left of the cell (j, y) must also have entries
≤ i (because the entries of T increase weakly left-to-right along rows). The number of such cells is y − µj
(because the entries in the j-th row of T begin in cell (j, µj + 1) (since T has shape λ/µ)). Thus, there are
at least y − µj cells in the j-th row of T which have entries ≤ i; in other words, the number of all entries
≤ i in the j-th row of T is at least y − µj . In other words,

(the number of all entries ≤ i in the j-th row of T ) ≥ y − µj .

Since

(the number of all entries ≤ i in the j-th row of T ) = b1,j + b2,j + · · ·+ bi,j

(by (13.94.1), applied to u = i), this rewrites as follows:

b1,j + b2,j + · · ·+ bi,j ≥ y − µj .

Now, (13.94.3) becomes

µj+1 + (b1,j+1 + b2,j+1 + · · ·+ bi+1,j+1) > µj + (b1,j + b2,j + · · ·+ bi,j)︸ ︷︷ ︸
≥y−µj

≥ µj + (y − µj)

= y = µj+1 + (b1,j+1 + b2,j+1 + · · ·+ bi+1,j+1) .

This is absurd. This contradiction proves that our assumption was wrong. Hence, (13.94.2) holds.
Now, forget that we have fixed (i, j). We thus have proven that the inequality (13.94.2) holds for all

(i, j) ∈ N× {1, 2, 3, . . .}. In other words, Assertion B holds. We thus have proven the implication A =⇒ B.
Proof of the implication B =⇒ A: Assume that Assertion B holds. That is, the inequality (2.9.14) holds

for all (i, j) ∈ N× {1, 2, 3, . . .}.
For every j ∈ {1, 2, 3, ...}, the sum b1,j + b2,j + b3,j + · · · has only finitely many nonzero addends (since

bi,j = 0 for all but finitely many pairs (i, j)), and can be computed as the following limit with respect to the
discrete topology:

(13.94.4) b1,j + b2,j + b3,j + · · · = lim
i→∞

(b1,j + b2,j + · · ·+ bi,j) .

For every j ∈ {1, 2, 3, ...}, we have

(13.94.5) µj + (b1,j + b2,j + b3,j + · · · ) ≥ µj+1 + (b1,j+1 + b2,j+1 + b3,j+1 + · · · )
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741. Hence, we can define a partition λ by

(13.94.6) (λj = µj + (b1,j + b2,j + b3,j + · · · ) for every j ∈ {1, 2, 3, ...})
742. Consider this partition λ.

We have µ ⊆ λ (since every j ∈ {1, 2, 3, ...} satisfies λj = µj + (b1,j + b2,j + b3,j + · · · )︸ ︷︷ ︸
≥0

≥ µj). We also

have

λj − µj = b1,j + b2,j + b3,j + · · · for every j ∈ {1, 2, 3, ...}
(because of (13.94.6)).

Now, we construct a filling T of the Ferrers diagram of λ/µ with positive integers as follows: For every
j ∈ {1, 2, 3, ...}, the j-th row of this Ferrers diagram of λ/µ has λj −µj = b1,j + b2,j + b3,j + · · · cells. We fill
in the leftmost b1,j of these cells with 1’s, the leftmost b2,j of the remaining cells with 2’s, the leftmost b3,j
of the still remaining cells with 3’s, and so on. Once this has been done for all positive integers j (of course,
for all sufficiently high j, the j-th row of the Ferrers diagram of λ/µ has no cells, and therefore nothing has
to be filled), we are left with a filling of the Ferrers diagram of λ/µ with positive integers. Denote this filling
by T . It is clear that the entries of T increase weakly left-to-right in rows (by the construction of T ). We
shall soon show that the entries of T increase strictly top-to-bottom in columns.

First, however, let us observe that (2.9.13) holds for all (i, j) ∈ {1, 2, 3, . . .}2 (by the construction of T ).
Hence, every u ∈ N and j ∈ {1, 2, 3, ...} satisfy (13.94.1) (this is proven just as in our proof of the implication
A =⇒ B).

Now, we are going to prove that the entries of T increase strictly top-to-bottom in columns.
Indeed, assume the contrary. Then, there exists at least one column of T in which the entries don’t

increase strictly top-to-bottom. Let this be the k-th column. So the entries in the k-th column of T don’t
increase strictly top-to-bottom. As a consequence, there exist two cells c and d in the k-th column of T such
that d is the northern neighbor of c, but the entry of T in cell d is not smaller than the entry of T in cell
c. Consider these cells c and d.

Write the cell c as c = (x, y). Then, d = (x− 1, y) (since d is the northern neighbor of c), so that
x− 1 ≥ 1.

Let p be the entry of T in cell c. Then, the entry of T in cell d is not smaller than p (since the entry of T
in cell d is not smaller than the entry of T in cell c). In other words, the entry of T in cell (x− 1, y) is not

741Proof. Let j ∈ {1, 2, 3, ...}. Then,

µj+1 + (b1,j+1 + b2,j+1 + b3,j+1 + · · · )︸ ︷︷ ︸
= lim
i→∞

(b1,j+1+b2,j+1+···+bi,j+1)

(by (13.94.4), applied to j+1 instead of j)

= µj+1 + lim
i→∞

(b1,j+1 + b2,j+1 + · · ·+ bi,j+1)︸ ︷︷ ︸
= lim
i→∞

(b1,j+1+b2,j+1+···+bi+1,j+1)

(here, we substituted i+1 for i in the limit)

= µj+1 + lim
i→∞

(b1,j+1 + b2,j+1 + · · ·+ bi+1,j+1) = lim
i→∞

µj+1 + (b1,j+1 + b2,j+1 + · · ·+ bi+1,j+1)︸ ︷︷ ︸
≤µj+(b1,j+b2,j+···+bi,j)

(by (2.9.14))


≤ lim
i→∞

(µj + (b1,j + b2,j + · · ·+ bi,j)) = µj + lim
i→∞

(b1,j + b2,j + · · ·+ bi,j)︸ ︷︷ ︸
=b1,j+b2,j+b3,j+···

(by (13.94.4))

= µj + (b1,j + b2,j + b3,j + · · · ) ,

and this proves (13.94.5).
742Here, we are using the fact that µj +(b1,j + b2,j + b3,j + · · · ) = 0 for all sufficiently high positive integers j. The proof of

this is easy: We have µj = 0 for all sufficiently high positive integers j (since µ is a partition), and we also have b1,j+b2,j+b3,j+

· · · = 0 for all sufficiently high positive integers j (since bi,j = 0 for all but finitely many pairs (i, j)). Thus, if a positive integer
j is sufficiently high, we have both µj = 0 and b1,j+b2,j+b3,j+ · · · = 0, and therefore µj+(b1,j + b2,j + b3,j + · · · ) = 0+0 = 0,

qed.
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smaller than p (since d = (x− 1, y)). In other words,

(13.94.7) (the entry of T in cell (x− 1, y)) ≥ p.

But let i = p − 1. Then, i + 1 = p is the entry of T in cell c = (x, y). Thus, the cell (x, y) of T has the
entry i + 1. Hence, all cells in the x-th row of T which lie weakly to the left of the cell (x, y) must have
entries ≤ i + 1 (since the entries of T increase weakly left-to-right in rows). The number of such cells is
y− µx (since the entries in the x-th row of T begin in cell (x, µx + 1) (since T has shape λ/µ)). Thus, there
are at least y − µx cells in the x-th row of T which have entries ≤ i + 1; in other words, the number of all
entries ≤ i+ 1 in the x-th row of T is at least y − µx. In other words,

(the number of all entries ≤ i+ 1 in the x-th row of T ) ≥ y − µx.

Since (the number of all entries ≤ i+ 1 in the x-th row of T ) = b1,x + b2,x + · · · + bi+1,x (by (13.94.1),
applied to u = i+ 1 and j = x), this rewrites as follows:

b1,x + b2,x + · · ·+ bi+1,x ≥ y − µx.

Now, recall that x− 1 ≥ 1, so that x− 1 ∈ {1, 2, 3, ...}. Hence, (2.9.14) (applied to j = x− 1) yields

µ(x−1)+1 +
(
b1,(x−1)+1 + b2,(x−1)+1 + · · ·+ bi+1,(x−1)+1

)
≤ µx−1 + (b1,x−1 + b2,x−1 + · · ·+ bi,x−1) ,

so that

µx−1 + (b1,x−1 + b2,x−1 + · · ·+ bi,x−1) ≥ µ(x−1)+1︸ ︷︷ ︸
=µx

+
(
b1,(x−1)+1 + b2,(x−1)+1 + · · ·+ bi+1,(x−1)+1

)︸ ︷︷ ︸
=b1,x+b2,x+···+bi+1,x≥y−µx

≥ µx + y − µx = y.(13.94.8)

But every entry ≤ i in the (x− 1)-st row of T must lie in a cell strictly left of the cell (x− 1, y) 743.
Since the number of such cells744 is y− 1− µx−1 (because the entries in the (x− 1)-st row of T begin in cell
(x− 1, µx−1 + 1) (since T has shape λ/µ)), this yields that there are at most y − 1 − µx−1 entries ≤ i in
the (x− 1)-st row of T . In other words, the number of all entries ≤ i in the (x− 1)-st row of T is at most
y − 1− µx−1. In other words,

(the number of all entries ≤ i in the (x− 1) -st row of T ) ≤ y − 1− µx−1.

Since (the number of all entries ≤ i in the (x− 1) -st row of T ) = b1,x−1 +b2,x−1 +· · ·+bi,x−1 (by (13.94.1),
applied to u = i and j = x− 1), this rewrites as follows:

b1,x−1 + b2,x−1 + · · ·+ bi,x−1 ≤ y − 1︸︷︷︸
>0

−µx−1 < y − µx−1.

Hence, µx−1 +(b1,x−1 + b2,x−1 + · · ·+ bi,x−1) < y. This contradicts (13.94.8). This contradiction shows that
our assumption was wrong. Hence, the entries of T increase strictly top-to-bottom in columns. Since we
also know that the entries of T increase weakly left-to-right in rows, and that T is a filling of the Ferrers
diagram of λ/µ, this yields that T is a column-strict tableau of shape λ/µ. Besides, we already know that all

(i, j) ∈ {1, 2, 3, . . .}2 satisfy (2.9.13). Hence, Assertion A holds (with the λ and T that we have constructed
above). We thus have proven the implication B =⇒ A.

Now that both implications A =⇒ B and B =⇒ A are proven, we conclude that Assertions A and B are
equivalent. Exercise 2.9.18(a) is solved.

743Proof. Assume the contrary. Then, there exists an entry ≤ i in the (x− 1)-st row of T which lies in a cell not strictly
left of the cell (x− 1, y). Let c be this entry. Since c lies in a cell not strictly left of the cell (x− 1, y), the entry c must lie in a
cell weakly to the right of the cell (x− 1, y), and therefore this entry c must be ≥ to the entry of T in cell (x− 1, y) (because
the entries of T increase weakly left-to-right in rows). Hence,

c ≥ (the entry of T in cell (x− 1, y)) ≥ p (by (13.94.7))

> i (since i = p− 1 < p) ,

which contradicts the fact that c ≤ i (by definition of c). This contradiction shows that our assumption was wrong, qed.
744Here, “such cells” means cells of the (x− 1)-st row of T which lie strictly left of the cell (x− 1, y).
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(b) Since T is a column-strict tableau, we know that the entries of T increase weakly left-to-right in rows
and increase strictly top-to-bottom along columns. Hence, if c and d are two cells of T such that the cell c
lies southeast745 of the cell d, then

(13.94.9) (the entry of T in cell c) ≥ (the entry of T in cell d) .

For the same reason, if c and d are two cells of T such that the cell c lies southeast of the cell d but not on
the same row as d, then

(13.94.10) (the entry of T in cell c) > (the entry of T in cell d) .

We shall first prove the equivalence of Assertions D and G:
Proof of the equivalence D ⇐⇒ G: For every (i, j) ∈ {1, 2, 3, ...}2, let bi,j be the number of all entries j in

the i-th row of T . (This is not a typo; we don’t want the number of all entries i in the j-th row of T .)
It is clear that bi,j = 0 for all but finitely many pairs (i, j). Hence, we can apply Exercise 2.9.18(a) to ∅

instead of µ. We conclude that the following two assertions A′ and B′ are equivalent746:

• Assertion A′: There exist a partition ν and a column-strict tableau S of shape ν/∅ such that all

(i, j) ∈ {1, 2, 3, . . .}2 satisfy

bi,j = (the number of all entries i in the j-th row of S) .

• Assertion B′: The inequality

∅j+1 + (b1,j+1 + b2,j+1 + · · ·+ bi+1,j+1) ≤ ∅j + (b1,j + b2,j + · · ·+ bi,j)

holds for all (i, j) ∈ N× {1, 2, 3, . . .}.
Now, it is easy to see that Assertion A′ is equivalent to Assertion G 747. Also, Assertion B′ is equivalent

to Assertion D 748. Altogether, we have obtained the chain of equivalences D ⇐⇒ B′ ⇐⇒ A′ ⇐⇒ G.

745A cell (r, c) is said to lie southeast of a cell (r′, c′) if and only if we have r ≥ r′ and c ≥ c′.
746Note that we denote by ν and S the variables that have been called λ and T in Exercise 2.9.18(a), since in our current

situation the letters λ and T already have different meanings.
747Proof. Assertion A′ is equivalent to the following Assertion A′′:
• Assertion A′′: There exists a column-strict tableau S whose shape is a partition such that all (i, j) ∈ {1, 2, 3, . . .}2

satisfy

bi,j = (the number of all entries i in the j-th row of S) .

(Indeed, Assertion A′ is equivalent to Assertion A′′ because a column-strict tableau whose shape is a partition is the same

thing as a column-strict tableau of shape ν/∅ with ν being a partition.)

Recall that bi,j = (the number of all entries j in the i-th row of T ) for all (i, j) ∈ {1, 2, 3, ...}2 (by the definition of bi,j).

Hence, Assertion A′′ is equivalent to the following Assertion A′′′:
• Assertion A′′′: There exists a column-strict tableau S whose shape is a partition such that all (i, j) ∈ {1, 2, 3, . . .}2

satisfy

(the number of all entries j in the i-th row of T ) = (the number of all entries i in the j-th row of S) .

Assertion A′′′ is equivalent to the following Assertion A′′′′:
• Assertion A′′′′: There exists a column-strict tableau S whose shape is a partition such that all (i, j) ∈ {1, 2, 3, . . .}2

satisfy

(the number of all entries i in the j-th row of T ) = (the number of all entries j in the i-th row of S) .

(Indeed, Assertion A′′′′ is obtained from Assertion A′′′ by substituting (j, i) for the index (i, j).)
Assertion A′′′′ is obviously equivalent to Assertion G.
Altogether, we have obtained the chain of equivalences A′ ⇐⇒ A′′ ⇐⇒ A′′′ ⇐⇒ A′′′′ ⇐⇒ G. Thus, we know that Assertion

A′ is equivalent to Assertion G, qed.
748Proof. Every (i, j) ∈ N× {1, 2, 3, . . .} satisfies

∅j︸︷︷︸
=0

+ (b1,j + b2,j + · · ·+ bi,j) = b1,j + b2,j + · · ·+ bi,j =

i∑
u=1

bu,j︸︷︷︸
=(the number of all entries j in the u-th row of T )

(by the definition of bu,j)

=

i∑
u=1

(the number of all entries j in the u-th row of T )

= (the number of all entries j in the first i rows of T )(13.94.11)

and

(13.94.12) ∅j+1 + (b1,j+1 + b2,j+1 + · · ·+ bi+1,j+1) = (the number of all entries j + 1 in the first i+ 1 rows of T )
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Hence, we have proven the equivalence D ⇐⇒ G. In order to complete the solution of Exercise 2.9.18(b), it
thus remains to prove the equivalence C ⇐⇒ D ⇐⇒ E ⇐⇒ F .

We will achieve this by splitting each of the assertions C, D, E and F into many sub-assertions. Namely,
for every i ∈ {1, 2, 3, ...}, let us define four assertions Ci, Di, Ei and Fi as follows:

• Assertion Ci: For every positive integer j, we have (cont (T |cols≥j))i ≥ (cont (T |cols≥j))i+1.
• Assertion Di: For every positive integer j, the number of entries i + 1 in the first j rows of T is ≤

to the number of entries i in the first j − 1 rows of T .
• Assertion Ei: For every NE-set S of T , we have (cont (T |S))i ≥ (cont (T |S))i+1.
• Assertion Fi: For every prefix v of the Semitic reading word of T , there are at least as many i’s

among the letters of v as there are (i+ 1)’s among them.

We have the following equivalences:

C ⇐⇒ (Ci holds for every i ∈ {1, 2, 3, ...})
(since cont (T |cols≥j) is a partition if and only if every i ∈ {1, 2, 3, ...} satisfies (cont (T |cols≥j))i ≥ (cont (T |cols≥j))i+1),
and

D ⇐⇒ (Di holds for every i ∈ {1, 2, 3, ...})
(obviously), and

E ⇐⇒ (Ei holds for every i ∈ {1, 2, 3, ...})
(since cont (T |S) is a partition if and only if every i ∈ {1, 2, 3, ...} satisfies (cont (T |S))i ≥ (cont (T |S))i+1),
and

F ⇐⇒ (Fi holds for every i ∈ {1, 2, 3, ...})
(by the definition of a Yamanouchi word). Hence, in order to prove the equivalence C ⇐⇒ D ⇐⇒ E ⇐⇒ F ,
it is enough to show that for every i ∈ {1, 2, 3, ...}, we have an equivalence Ci ⇐⇒ Di ⇐⇒ Ei ⇐⇒ Fi. So let
us do this now.

Let i ∈ {1, 2, 3, ...}. We need to prove the equivalence Ci ⇐⇒ Di ⇐⇒ Ei ⇐⇒ Fi. We shall achieve this by
proving the implications Ci =⇒ Ei, Ei =⇒ Fi, Fi =⇒ Di and Di =⇒ Ci.

Proof of the implication Ci =⇒ Ei: Assume that Assertion Ci holds. Let S be an NE-set of T . We will
prove that (cont (T |S))i ≥ (cont (T |S))i+1.

Assume the contrary. Thus, (cont (T |S))i < (cont (T |S))i+1. In other words, (cont (T |S))i+1 > (cont (T |S))i.
Recall that

(cont (T |S))i =
∣∣∣(T |S)

−1
(i)
∣∣∣ = (the number of entries i in T |S)

and

(cont (T |S))i+1 =
∣∣∣(T |S)

−1
(i+ 1)

∣∣∣ = (the number of entries i+ 1 in T |S) .

Hence,

(the number of entries i+ 1 in T |S) = (cont (T |S))i+1 > (cont (T |S))i

= (the number of entries i in T |S) ≥ 0.

Hence, there exists at least one entry i+ 1 in T |S . In other words, there exists at least one cell c ∈ S such
that the entry of T in c equals i+ 1. Let d be the leftmost such cell c (or one of the leftmost, if there are

(by (13.94.11), applied to (i+ 1, j + 1) instead of (i, j)). Hence, Assertion B′ is equivalent to the following Assertion B′′:
• Assertion B′′: The inequality

(the number of all entries j + 1 in the first i+ 1 rows of T ) ≤ (the number of all entries j in the first i rows of T )

holds for all (i, j) ∈ N× {1, 2, 3, . . .}.
This Assertion B′′, in turn, is equivalent to the following Assertion B′′′:
• Assertion B′′′: The inequality

(the number of all entries i+ 1 in the first j rows of T ) ≤ (the number of all entries i in the first j − 1 rows of T )

holds for all (i, j) ∈ {1, 2, 3, . . .} × {1, 2, 3, . . .}.
(Indeed, Assertion B′′′ is obtained from Assertion B′′ by substituting (j − 1, i) for the index (i, j).) But Assertion B′′′ is

clearly equivalent to Assertion D.
We thus have found the chain of equivalences B′ ⇐⇒ B′′ ⇐⇒ B′′′ ⇐⇒ D. Thus, Assertion B′ is equivalent to Assertion D,

qed.
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several of them749). Thus, we have d ∈ S, and the entry of T in d equals i + 1. Let j be the column in
which this cell d lies. Assertion Ci then yields (cont (T |cols≥j))i ≥ (cont (T |cols≥j))i+1. It is rather clear that

(cont (T |cols≥j))i+1 ≥ (cont (T |S))i+1
750.

We shall now show that (cont (T |S))i ≥ (cont (T |cols≥j))i. Indeed, let c be a cell of T |cols≥j such that the
entry of T in c equals i. We shall show that c ∈ S.

Write the cell d as d = (x, j) for some positive integer x (this is possible, since d lies in column j). Write
the cell c as c = (x′, y′) for two positive integers x′ and y′. Then, y′ is the column in which the cell c lies.
Since this column is one of the columns j, j + 1, j + 2, ... (because c is a cell of T |cols≥j), this yields that
y′ ∈ {j, j + 1, j + 2, ...}, so that y′ ≥ j.

If x′ ≥ x, then the cell (x′, y′) lies southeast of the cell (x, j) (since x′ ≥ x and y′ ≥ j). Since (x′, y′) = c
and (x, j) = d, this rewrites as follows: If x′ ≥ x, then the cell c lies southeast of the cell d. Hence, if x′ ≥ x,
then (13.94.9) yields

(the entry of T in cell c) ≥ (the entry of T in cell d) = i+ 1,

which contradicts (the entry of T in cell c) = i < i + 1. Therefore, we cannot have x′ ≥ x. We thus have
x′ < x.

Since x′ < x and y′ ≥ j, the cell (x′, y′) lies northeast of the cell (x, j). In other words, the cell c lies
northeast of the cell d (since (x′, y′) = c and (x, j) = d). Since c is a cell of T and since d ∈ S, this yields
that c ∈ S as well (since S is an NE-set).

Now, forget that we fixed c. We thus have shown that if c is a cell of T |cols≥j such that the entry of T in
c equals i, then c ∈ S. Hence, the set

{c is a cell of T |cols≥j | the entry of T in c equals i}
is a subset of the set

{c ∈ S | the entry of T in c equals i} .
As a consequence,

|{c is a cell of T |cols≥j | the entry of T in c equals i}|
≤ |{c ∈ S | the entry of T in c equals i}|
= (the number of entries i in T |S) = (cont (T |S))i .

Since

|{c is a cell of T |cols≥j | the entry of T in c equals i}|

= (the number of entries i in T |cols≥j) =
∣∣∣(T |cols≥j)

−1
(i)
∣∣∣ = (cont (T |cols≥j))i

749A moment’s thought reveals that there cannot be several of them, but we don’t actually need to think about this.
750Proof. We have defined d as the leftmost cell c ∈ S such that the entry of T in c equals i+ 1. Hence, if c ∈ S is any cell

such that the entry of T in c equals i+ 1, then c lies in the same column as d or in some column further right. Since d lies in

column j, this rewrites as follows: If c ∈ S is any cell such that the entry of T in c equals i + 1, then c lies in column j or in
some column further right. In other words, if c ∈ S is any cell such that the entry of T in c equals i+ 1, then c lies in one of

the columns j, j + 1, j + 2, .... In other words, if c ∈ S is any cell such that the entry of T in c equals i+ 1, then c is a cell of

T |cols≥j . Thus, the set

{c ∈ S | the entry of T in c equals i+ 1}
is a subset of the set {

c is a cell of T |cols≥j | the entry of T in c equals i+ 1
}
.

As a consequence,

|{c ∈ S | the entry of T in c equals i+ 1}|

≤
∣∣{c is a cell of T |cols≥j | the entry of T in c equals i+ 1

}∣∣
=
(
the number of entries i+ 1 in T |cols≥j

)
=
∣∣∣(T |cols≥j

)−1
(i+ 1)

∣∣∣ =
(
cont

(
T |cols≥j

))
i+1

(because
(
cont

(
T |cols≥j

))
i+1

=
∣∣∣(T |cols≥j

)−1
(i+ 1)

∣∣∣ (by the definition of cont
(
T |cols≥j

)
)). Since

|{c ∈ S | the entry of T in c equals i+ 1}|
= (the number of entries i+ 1 in T |S) = (cont (T |S))i+1 ,

this rewrites as (cont (T |S))i+1 ≤
(
cont

(
T |cols≥j

))
i+1

. Hence,
(
cont

(
T |cols≥j

))
i+1
≥ (cont (T |S))i+1, qed.
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(because the definition of cont (T |cols≥j) shows that (cont (T |cols≥j))i =
∣∣∣(T |cols≥j)

−1
(i)
∣∣∣), this rewrites as

(cont (T |cols≥j))i ≤ (cont (T |S))i. In other words, (cont (T |S))i ≥ (cont (T |cols≥j))i. Altogether,

(cont (T |S))i ≥ (cont (T |cols≥j))i ≥ (cont (T |cols≥j))i+1 ≥ (cont (T |S))i+1 ,

which contradicts (cont (T |S))i < (cont (T |S))i+1. This contradiction shows that our assumption was wrong.
Hence, (cont (T |S))i ≥ (cont (T |S))i+1.

Now, forget that we fixed S. We thus have proven that for every NE-set S of T , we have (cont (T |S))i ≥
(cont (T |S))i+1. Thus, Assertion Ei holds. This proves the implication Ci =⇒ Ei.

Proof of the implication Ei =⇒ Fi: Assume that Assertion Ei holds. Let v be a prefix of the Semitic
reading word of T . We shall prove that there are at least as many i’s among the letters of v as there are
(i+ 1)’s among them.

For every i ∈ {1, 2, 3, ...}, let ri be the word obtained by reading the i-th row of T from right to left.
Then, the Semitic reading word of T is the concatenation r1r2r3 · · · (according to its definition). Hence,
every prefix of this Semitic reading word must have the form r1r2 · · · rks for some k ∈ {0, 1, 2, ...} and some
prefix s of rk+1. In particular, v must have this form (since v is a prefix of the Semitic reading word of
T ). In other words, there exists some k ∈ {0, 1, 2, ...} and some prefix s of rk+1 such that v = r1r2 · · · rks.
Consider this k and this s.

Let ` be the length of s. Since s is a prefix of rk+1 and has length `, it is evident that the word s consists
of the first ` letters of rk+1. These first ` letters of rk+1 are the rightmost ` entries of the (k + 1)-st row of
T (since rk+1 is the word obtained by reading the (k + 1)-st row of T from right to left). Thus, the word
s consists of the rightmost ` entries of the (k + 1)-st row of T . Hence, the word r1r2 · · · rks consists of all
entries of the first k rows of T and the rightmost ` entries of the (k + 1)-st row of T . In other words, the
letters of the word r1r2 · · · rks are precisely all entries of the first k rows of T and the rightmost ` entries of
the (k + 1)-st row of T .

Let S be the set which consists of all cells of the first k rows of T and the rightmost ` cells of the (k + 1)-st
row of T . Then, S is an NE-set of T , and therefore we have (cont (T |S))i ≥ (cont (T |S))i+1 (by Assertion
Ei).

Now, (cont (T |S))i =
∣∣∣(T |S)

−1
(i)
∣∣∣ (by the definition of cont (T |S)), so that (cont (T |S))i is the number of

entries i in T |S . In other words, (cont (T |S))i is the number of i’s among the entries of T |S . But since the
entries of T |S are precisely the letters of v 751, this rewrites as follows: (cont (T |S))i is the number of i’s
among the letters of v. So we have

(cont (T |S))i = (the number of i’s among the letters of v) .

The same argument, with i+ 1 in place of i, shows that

(cont (T |S))i+1 = (the number of (i+ 1) ’s among the letters of v) .

Hence,

(the number of i’s among the letters of v) = (cont (T |S))i ≥ (cont (T |S))i+1

= (the number of (i+ 1) ’s among the letters of v) .

In other words, there are at least as many i’s among the letters of v as there are (i+ 1)’s among them.
Now, forget that we fixed v. We thus have shown that for every prefix v of the Semitic reading word of

T , there are at least as many i’s among the letters of v as there are (i+ 1)’s among them. In other words,
Assertion Fi holds. We thus have shown the implication Ei =⇒ Fi.

Proof of the implication Fi =⇒ Di: Assume that Assertion Fi holds.
For every i ∈ {1, 2, 3, ...}, let ri be the word obtained by reading the i-th row of T from right to left.

Then, the Semitic reading word of T is the concatenation r1r2r3 · · · (according to its definition).
Now, let j be a positive integer. The word rj is the word obtained by reading the j-th row of T from right

to left. Hence, the letters of this word rj are in (weakly) decreasing order (since the entries of T increase

751Proof. The set S consists of all cells of the first k rows of T and the rightmost ` cells of the (k + 1)-st row of T . Hence, the

entries of T |S are precisely all entries of the first k rows of T and the rightmost ` entries of the (k + 1)-st row of T . Comparing

this with the fact that the letters of the word r1r2 · · · rks are precisely all entries of the first k rows of T and the rightmost `
entries of the (k + 1)-st row of T , we conclude the following: The entries of T |S are precisely the letters of r1r2 · · · rks. In other

words, the entries of T |S are precisely the letters of v (since v = r1r2 · · · rks), qed.
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weakly left-to-right in rows). Thus, the subword of rj consisting of all letters > i in rj is a prefix of rj .
Denote this prefix by s. By the definition of s, all letters of s are > i, so that

(the number of i’s among the letters of s) = 0.

Also, by the definition of s, the word s consists of all letters > i in rj . As a consequence,

(the number of (i+ 1) ’s among the letters of s) = (the number of (i+ 1) ’s among the letters of rj) .

Since s is a prefix of rj , it is clear that the word r1r2 · · · rj−1s is a prefix of the word r1r2r3 · · · . In other
words, the word r1r2 · · · rj−1s is a prefix of the Semitic reading word of T (since the Semitic reading word of
T is the concatenation r1r2r3 · · · ). Hence, there are at least as many i’s among the letters of r1r2 · · · rj−1s
as there are (i+ 1)’s among them (by Assertion Fi, applied to v = r1r2 · · · rj−1s). In other words,

(the number of i’s among the letters of r1r2 · · · rj−1s)

≥ (the number of (i+ 1) ’s among the letters of r1r2 · · · rj−1s) .

Since

(the number of i’s among the letters of r1r2 · · · rj−1s)

=

j−1∑
k=1

(the number of i’s among the letters of rk) + (the number of i’s among the letters of s)︸ ︷︷ ︸
=0

=

j−1∑
k=1

(the number of i’s among the letters of rk)︸ ︷︷ ︸
=(the number of entries i in the k-th row of T )

(since rk is the word obtained by reading the k-th row of T from right to left)

=

j−1∑
k=1

(the number of entries i in the k-th row of T )

= (the number of entries i in the first j − 1 rows of T )

and

(the number of (i+ 1) ’s among the letters of r1r2 · · · rj−1s)

=

j−1∑
k=1

(the number of (i+ 1) ’s among the letters of rk) + (the number of (i+ 1) ’s among the letters of s)︸ ︷︷ ︸
=(the number of (i+1)’s among the letters of rj)

=

j−1∑
k=1

(the number of (i+ 1) ’s among the letters of rk) + (the number of (i+ 1) ’s among the letters of rj)

=

j∑
k=1

(the number of (i+ 1) ’s among the letters of rk)︸ ︷︷ ︸
=(the number of entries i+1 in the k-th row of T )

(since rk is the word obtained by reading the k-th row of T from right to left)

=

j∑
k=1

(the number of entries i+ 1 in the k-th row of T )

= (the number of entries i+ 1 in the first j rows of T ) ,

this rewrites as follows:

(the number of entries i in the first j − 1 rows of T )

≥ (the number of entries i+ 1 in the first j rows of T ) .

In other words, the number of entries i+ 1 in the first j rows of T is ≤ to the number of entries i in the first
j − 1 rows of T .
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Now, forget that we fixed j. We thus have shown that for every positive integer j, the number of entries
i + 1 in the first j rows of T is ≤ to the number of entries i in the first j − 1 rows of T . In other words,
Assertion Di holds. Thus, we have shown the implication Fi =⇒ Di.

Proof of the implication Di =⇒ Ci: Assume that Assertion Di holds. We want to prove that Assertion
Ci holds. In other words, we want to prove that, for every positive integer j, we have (cont (T |cols≥j))i ≥
(cont (T |cols≥j))i+1.

In order to prove this, we assume the contrary. That is, there exists a positive integer j such that we
don’t have (cont (T |cols≥j))i ≥ (cont (T |cols≥j))i+1. Consider the minimal such j. Then, we don’t have

(cont (T |cols≥j))i ≥ (cont (T |cols≥j))i+1; but

(13.94.13) for every k ∈ {1, 2, ..., j − 1} , we do have (cont (T |cols≥k))i ≥ (cont (T |cols≥k))i+1 .

Applying (13.94.13) to k = j − 1, we obtain:

(13.94.14) if j − 1 is positive, then we do have (cont (T |cols≥j−1))i ≥ (cont (T |cols≥j−1))i+1 .

We don’t have (cont (T |cols≥j))i ≥ (cont (T |cols≥j))i+1. Thus,

(13.94.15) (cont (T |cols≥j))i < (cont (T |cols≥j))i+1 .

In other words, (cont (T |cols≥j))i+1 > (cont (T |cols≥j))i. Recall that

(13.94.16) (cont (T |cols≥j))i = (the number of entries i in T |cols≥j)

and

(cont (T |cols≥j))i+1 = (the number of entries i+ 1 in T |cols≥j) .

Hence,

(the number of entries i+ 1 in T |cols≥j) = (cont (T |cols≥j))i+1 > (cont (T |cols≥j))i
= (the number of entries i in T |cols≥j) ≥ 0.

Hence, there exists at least one entry i + 1 in T |cols≥j . In other words, there exists at least one cell c of
T |cols≥j such that the entry of T |cols≥j in c equals i + 1. In other words, there exists at least one cell c of
T |cols≥j such that the entry of T in c equals i+ 1 (since the entry of T |cols≥j in c, when it is defined, equals
the entry of T in c). Let r be the bottommost row which contains such a cell c, and let (x, y) be the
leftmost such cell c on this row. Thus, (x, y) is a cell of T |cols≥j such that the entry of T in (x, y) equals
i+ 1. Also, the cell (x, y) lies in the r-th row; that is, r = x.

The cell (x, y) must lie in one of the columns j, j + 1, j + 2, ... (since it is a cell of T |cols≥j), so that we
have y ≥ j. Also, (x, y) is a cell of T (since it is a cell of T |cols≥j).

Applying Assertion Di to x instead of j, we see that the number of entries i + 1 in the first x rows of T
is ≤ to the number of entries i in the first x− 1 rows of T . In other words,

(the number of entries i+ 1 in the first x rows of T )

≤ (the number of entries i in the first x− 1 rows of T ) .(13.94.17)

It is easy to see that

(13.94.18) (cont (T |cols≥j))i+1 ≤ (the number of entries i+ 1 in the first x rows of T )

752.
We shall now show that

(13.94.19) (the number of entries i in the first x− 1 rows of T ) ≤ (cont (T |cols≥j))i .

752Proof. Let c be a cell of T |cols≥j such that the entry of T in c equals i+1. Since r is the bottommost row which contains

such a cell c, it is clear that the cell c must be in the r-th row or in a row further north. In other words, the cell c must lie in
one of the first r rows of T . Since r = x, this rewrites as follows: The cell c must lie in one of the first x rows of T .

Now, let us forget that we fixed c. We thus have proven that if c is a cell of T |cols≥j such that the entry of T in c equals

i+ 1, then the cell c must lie in one of the first x rows of T . Hence, the set{
c is a cell of T |cols≥j | the entry of T in c equals i+ 1

}
is a subset of the set

{c is a cell of T | the entry of T in c equals i+ 1; the cell c lies in one of the first x rows of T} .



732 DARIJ GRINBERG AND VICTOR REINER

Indeed, let c be a cell of T such that the entry of T in c equals i and such that c lies in one of the first
x− 1 rows of T . We shall show that c is a cell of T |cols≥j .

Assume the contrary. Thus, c is not a cell of T |cols≥j .
Let us write the cell c as c = (x′, y′) for some integers x′ and y′. Then, the cell c lies in row x′, and thus

this row x′ must be one of the first x− 1 rows of T (since we know that c lies in one of the first x− 1 rows
of T ). In other words, x′ ≤ x− 1. Hence, x′ ≤ x− 1 < x and thus x > x′ and x 6= x′ and x ≥ x′.

The cell c lies in the y′-th column (since c = (x′, y′)). Hence, if y′ ≥ j, then the cell c lies in one of the
columns j, j + 1, j + 2, ... and therefore is a cell of T |cols≥j , which contradicts our assumption that c is not a
cell of T |cols≥j . Thus, we cannot have y′ ≥ j. We therefore have y′ < j. That is, y′ ≤ j − 1 (since y′ and j
are integers), so that j − 1 ≥ y′.

Now, the cell (x, y) lies southeast of the cell (x, j − 1) (since x ≥ x and y ≥ j ≥ j − 1), which in turn lies
southeast of the cell (x′, y′) (since x ≥ x′ and j − 1 ≥ y′). Since both cells (x, y) and (x′, y′) are cells of T
(indeed, (x, y) is known to be a cell of T , and (x′, y′) = c also is a cell of T ), this yields that the intermediate
cell (x, j − 1) is also a cell of T 753. Thus, j − 1 is a positive integer. Moreover, since the cell (x, y) lies
southeast of the cell (x, j − 1), we can apply (13.94.9) to (x, y) and (x, j − 1) instead of c and d. We thus
obtain

(the entry of T in cell (x, y)) ≥ (the entry of T in cell (x, j − 1)) .

Since (the entry of T in cell (x, y)) = i+ 1, this rewrites as

(13.94.20) i+ 1 ≥ (the entry of T in cell (x, j − 1)) .

But the cell (x, j − 1) lies southeast of the cell (x′, y′) and not on the same row as (x′, y′) (since x 6= x′).
Since (x′, y′) = c, this rewrites as follows: The cell (x, j − 1) lies southeast of the cell c and not on the same
row as c. Hence, (13.94.10) (applied to (x, j − 1) and c instead of c and d) yields

(the entry of T in cell (x, j − 1)) > (the entry of T in cell c) = i,

so that

(the entry of T in cell (x, j − 1)) ≥ i+ 1

(since the entry of T in cell (x, j − 1) and the number i are integers). Combined with (13.94.20), this yields

(the entry of T in cell (x, j − 1)) = i+ 1.

Thus, the number i+ 1 appears in the (j − 1)-th column of T (since the cell (x, j − 1) lies in the (j − 1)-th
column of T ). In other words,

(13.94.21) (the number of entries i+ 1 in the (j − 1) -th column of T ) ≥ 1.

On the other hand, the entries of T increase strictly top-to-bottom along columns. In particular, in every
given column of T , the entries are distinct. Applied to the (j − 1)-th column, this shows that the entries of
the (j − 1)-th column of T are distinct. In particular, for every k ∈ {1, 2, 3, ...}, the number k appears at
most once in the (j − 1)-th column of T . Applying this to k = i, we conclude that the number i appears at
most once in the (j − 1)-th column of T . That is,

(13.94.22) (the number of entries i in the (j − 1) -th column of T ) ≤ 1.

Hence, ∣∣{c is a cell of T |cols≥j | the entry of T in c equals i+ 1
}∣∣

≤ |{c is a cell of T | the entry of T in c equals i+ 1; the cell c lies in one of the first x rows of T}|
= (the number of entries i+ 1 in the first x rows of T ) .

But (
cont

(
T |cols≥j

))
i+1

=
(
the number of entries i+ 1 in T |cols≥j

)
=
∣∣{c is a cell of T |cols≥j | the entry of T in c equals i+ 1

}∣∣
≤ (the number of entries i+ 1 in the first x rows of T ) ,

qed.
753Here, we are using the following fact: If α, β and γ are three cells such that α lies southeast of the cell β, which in turn

lies southeast of the cell γ, and if α and γ are cells of T , then β is also a cell of T . This can be easily derived from the fact that

T has shape λ/µ.
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Now, for every k ∈ {1, 2, 3, ...} and h ∈ {1, 2, 3, ...}, we have

(cont (T |cols≥k))h =
∣∣∣(T |cols≥k)

−1
(h)
∣∣∣ = (the number of entries h in T |cols≥k)

= (the number of entries h in the columns k, k + 1, k + 2, ... of T ) .(13.94.23)

Applying this to k = j and h = i, we obtain

(13.94.24) (cont (T |cols≥j))i = (the number of entries i in the columns j, j + 1, j + 2, ... of T ) .

But applying (13.94.23) to k = j − 1 and h = i, we obtain

(cont (T |cols≥j−1))i = (the number of entries i in the columns j − 1, j, j + 1, ... of T )

= (the number of entries i in the (j − 1) -th column of T )︸ ︷︷ ︸
≤1

(by (13.94.22))

+ (the number of entries i in the columns j, j + 1, j + 2, ... of T )︸ ︷︷ ︸
=(cont(T |cols≥j))

i

(by (13.94.24))

≤ 1 + (cont (T |cols≥j))i︸ ︷︷ ︸
<(cont(T |cols≥j))

i+1

(by (13.94.15))

< 1 + (cont (T |cols≥j))i+1 .

Since (cont (T |cols≥j−1))i and 1 + (cont (T |cols≥j))i+1 are integers, this yields

(cont (T |cols≥j−1))i ≤
(

1 + (cont (T |cols≥j))i+1

)
− 1 = (cont (T |cols≥j))i+1 ,

so that

(cont (T |cols≥j))i+1 ≥ (cont (T |cols≥j−1))i ≥ (cont (T |cols≥j−1))i+1 (by (13.94.14))

= (the number of entries i+ 1 in the columns j − 1, j, j + 1, ... of T )

(by (13.94.23), applied to k = j − 1 and h = i+ 1)

= (the number of entries i+ 1 in the (j − 1) -th column of T )︸ ︷︷ ︸
≥1

(by (13.94.21))

+ (the number of entries i+ 1 in the columns j, j + 1, j + 2, ... of T )︸ ︷︷ ︸
=(cont(T |cols≥j))

i+1

(since (cont(T |cols≥j))
i+1

=(the number of entries i+1 in the columns j,j+1,j+2,... of T )

(by (13.94.23), applied to k=j and h=i+1))

≥ 1 + (cont (T |cols≥j))i+1 > (cont (T |cols≥j))i+1 ,

which is absurd. This contradiction proves that our assumption was wrong, and thus we have proven that c
is a cell of T |cols≥j .

Now, let us forget that we fixed c. We thus have proven that if c is a cell of T such that the entry of T in
c equals i and such that c lies in one of the first x− 1 rows of T , then c is a cell of T |cols≥j . Hence, the set

{c is a cell of T | the entry of T in c equals i; the cell c lies in one of the first x− 1 rows of T}

is a subset of the set

{c is a cell of T |cols≥j | the entry of T in c equals i} .
Hence,

|{c is a cell of T | the entry of T in c equals i; the cell c lies in one of the first x− 1 rows of T}|
≤ |{c is a cell of T |cols≥j | the entry of T in c equals i}|
= (the number of entries i in T |cols≥j) = (cont (T |cols≥j))i (by (13.94.16)) .
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Since

|{c is a cell of T | the entry of T in c equals i; the cell c lies in one of the first x− 1 rows of T}|
= (the number of entries i in the first x− 1 rows of T ) ,

this rewrites as

(the number of entries i in the first x− 1 rows of T ) ≤ (cont (T |cols≥j))i .

Thus, (13.94.19) is proven. Now, (13.94.19) becomes

(the number of entries i in the first x− 1 rows of T )

≤ (cont (T |cols≥j))i < (cont (T |cols≥j))i+1 (by (13.94.15))

≤ (the number of entries i+ 1 in the first x rows of T ) (by (13.94.18)) ,

which contradicts (13.94.17). This contradiction proves that our assumption was wrong. Hence, Assertion
Ci must hold. We thus have proven the implication Di =⇒ Ci.

We have now proven the four implications Ci =⇒ Ei, Ei =⇒ Fi, Fi =⇒ Di and Di =⇒ Ci. Combining
them, we obtain the equivalence Ci ⇐⇒ Di ⇐⇒ Ei ⇐⇒ Fi.

Now, let us forget that we fixed i. We thus have proven the equivalence Ci ⇐⇒ Di ⇐⇒ Ei ⇐⇒ Fi for
every i ∈ {1, 2, 3, ...}. As we know, this shows that we have the equivalence C ⇐⇒ D ⇐⇒ E ⇐⇒ F , and this
finishes the solution of Exercise 2.9.18(b).

13.95. Solution to Exercise 2.9.20. Solution to Exercise 2.9.20. (a) The solution to Exercise 2.9.20(a) is
a rather straightforward adaptation of the solution of Exercise 2.9.18(b) that we gave above. We leave the
details to the reader (who can also look them up in the LaTeX source code of this file, where they appear in
a “commentedout” environment starting after this sentence).

(b) Exercise 2.9.20(a) yields the equivalence C(κ) ⇐⇒ D(κ) ⇐⇒ E(κ) ⇐⇒ F (κ) ⇐⇒ G(κ). It thus remains
to prove the equivalence G(κ) ⇐⇒ H(κ). In order to do so, we must prove the implications G(κ) =⇒ H(κ)

and H(κ) =⇒ G(κ).
The implication H(κ) =⇒ G(κ) is obvious (since we can just take the S whose existence is guaranteed by

Assertion H(κ), and set ζ = τ). It thus remains to prove the implication G(κ) =⇒ H(κ).
Proof of the implication G(κ) =⇒ H(κ): Assume that Assertion G(κ) holds. We want to prove that

Assertion H(κ) holds.
We have assumed that Assertion G(κ) holds. In other words, there exist a partition ζ and a column-strict

tableau S of shape ζ/κ which satisfies the following property: For any positive integers i and j,

(13.95.1)

(
the number of entries i in the j-th row of T equals

the number of entries j in the i-th row of S

)
.

Consider this ζ and this S.
For every i ∈ {1, 2, 3, . . .}, we have

(contT )i =
∣∣T−1 (i)

∣∣ (by the definition of contT )

= (the number of entries i in T )

=

∞∑
j=1

(the number of entries i in the j-th row of T )︸ ︷︷ ︸
=(the number of entries j in the i-th row of S)

(by (13.95.1))

=

∞∑
j=1

(the number of entries j in the i-th row of S)

= (the number of entries in the i-th row of S)

= (the length of the i-th row of the skew partition ζ/κ) (since the tableau S has shape ζ/κ)

= ζi − κi.
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Hence, for every i ∈ {1, 2, 3, . . .}, we have

(κ+ contT )i = κi + (contT )i︸ ︷︷ ︸
=ζi−κi

= κi + (ζi − κi) = ζi.

In other words, κ+ contT = ζ, so that ζ = κ+ contT = τ . But S is a column-strict tableau of shape ζ/κ.
In other words, S is a column-strict tableau of shape τ/κ (since ζ = τ).

We thus have constructed a column-strict tableau S of shape τ/κ such that for any positive integers i
and j, the property (13.95.1) holds. Therefore, Assertion H(κ) holds. We thus have proven the implication
G(κ) =⇒ H(κ). As we have said, this finishes the solution of Exercise 2.9.20(b).

13.96. Solution to Exercise 2.9.21. Solution to Exercise 2.9.21. (a) If T is a column-strict tableau of
shape λ/µ, then we have the following chain of logical equivalences:

(for all j ∈ {1, 2, 3, . . .} , the weak composition κ+ cont (T |cols≥j) is a partition)

⇐⇒
(

Assertion C(κ) holds
) (

because this is how we defined Assertion C(κ)
)

⇐⇒
(

the five equivalent assertions C(κ), D(κ), E(κ), F (κ) and G(κ) hold
)

(13.96.1)

(because the five assertions C(κ), D(κ), E(κ), F (κ) and G(κ) are equivalent (by Exercise 2.9.20(a))).
We can apply (2.6.3) to ν = κ. As a result, we see that

sκsλ/µ =
∑
T

sκ+contT ,

where T runs through all column-strict tableaux of shape λ/µ with the property that for each j = 1, 2, 3, . . .,
the weak composition κ+ cont (T |cols≥j) is a partition. In other words,

sκsλ/µ =
∑

T is a column-strict tableau
of shape λ/µ;

for all j∈{1,2,3,...}, the weak

composition κ+cont(T |cols≥j)
is a partition︸ ︷︷ ︸

=
∑

T is a column-strict tableau
of shape λ/µ;

the five equivalent assertions

C(κ), D(κ), E(κ), F(κ) and G(κ) hold
(because of the equivalence (13.96.1))

sκ+contT(13.96.2)

=
∑

T is a column-strict tableau
of shape λ/µ;

the five equivalent assertions

C(κ), D(κ), E(κ), F(κ) and G(κ) hold

sκ+contT .(13.96.3)

In other words,

sκsλ/µ =
∑
T

sκ+contT ,

where the sum ranges over all column-strict tableaux T of shape λ/µ satisfying the five equivalent assertions
C(κ), D(κ), E(κ), F (κ) and G(κ) introduced in Exercise 2.9.20(a). This solves Exercise 2.9.21(a).

(b) If T is a column-strict tableau of shape λ/µ such that the five equivalent assertions C(κ), D(κ), E(κ),
F (κ) and G(κ) hold, then we have

(13.96.4) (sκ+contT , sτ )Λ = δτ,κ+contT

754.

754Proof of (13.96.4): We know that the basis (sλ)λ∈Par of Λ is orthonormal with respect to the Hall inner product. In
other words, we have

(13.96.5)
(
sα, sβ

)
Λ

= δα,β
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But if T is a column-strict tableau of shape λ/µ satisfying τ = κ + contT , then we have the following
chain of logical equivalences:

(
the five equivalent assertions C(κ), D(κ), E(κ), F (κ) and G(κ) hold

)
⇐⇒

(
the six equivalent assertions C(κ), D(κ), E(κ), F (κ), G(κ) and H(κ) hold

)
(13.96.6)

(because the six assertions C(κ), D(κ), E(κ), F (κ), G(κ) and H(κ) are equivalent (by Exercise 2.9.20(b))).
Now, recall that s⊥µ (sλ) = sλ/µ. Applying this to κ and τ instead of µ and λ, we obtain s⊥κ (sτ ) = sτ/κ.
Now, Proposition 2.8.2(i) (applied to A = Λ) shows that every a ∈ Λ, f ∈ Λ and g ∈ Λ satisfy(

g, f⊥ (a)
)

Λ
= (fg, a)Λ. We can apply this to f = sκ, g = sλ/µ and a = sτ . As a result, we obtain(

sλ/µ, s
⊥
κ (sτ )

)
Λ

=
(
sκsλ/µ, sτ

)
Λ

. Since s⊥κ (sτ ) = sτ/κ, this rewrites as follows:

(13.96.7)
(
sλ/µ, sτ/κ

)
Λ

=
(
sκsλ/µ, sτ

)
Λ
.

for any α ∈ Par and β ∈ Par.
Now, let T be a column-strict tableau of shape λ/µ such that the five equivalent assertions C(κ), D(κ), E(κ), F(κ) and G(κ)

hold. Then, Assertion C(κ) holds (since the five equivalent assertions C(κ), D(κ), E(κ), F(κ) and G(κ) hold). In other words, for
every positive integer j, the weak composition κ+ cont

(
T |cols≥j

)
is a partition. Applying this to j = 1, we conclude that the

weak composition κ+ cont
(
T |cols≥1

)
is a partition.

But T |cols≥1 is the subtableau which is the restriction of T to the union of its columns 1, 2, 3, . . .. In other words, T |cols≥1

is the whole tableau T . In other words, T |cols≥1 = T .

Now, recall that κ+ cont
(
T |cols≥1

)
is a partition. In other words, κ+ contT is a partition (since T |cols≥1 = T ). In other

words, κ + contT ∈ Par. Also, τ ∈ Par (since τ is a partition). Thus, (13.96.5) (applied to α = κ + contT and β = τ) shows

that (sκ+contT , sτ )Λ = δκ+contT,τ = δτ,κ+contT . This proves (13.96.4).
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Thus,

(
sλ/µ, sτ/κ

)
Λ

=
(
sκsλ/µ, sτ

)
Λ

=


∑

T is a column-strict tableau
of shape λ/µ;

the five equivalent assertions

C(κ), D(κ), E(κ), F(κ) and G(κ) hold

sκ+contT , sτ


Λ

(by (13.96.3))

=
∑

T is a column-strict tableau
of shape λ/µ;

the five equivalent assertions

C(κ), D(κ), E(κ), F(κ) and G(κ) hold

(sκ+contT , sτ )Λ︸ ︷︷ ︸
=δτ,κ+contT

(by (13.96.4))

(since the Hall inner product is k-bilinear)

=
∑

T is a column-strict tableau
of shape λ/µ;

the five equivalent assertions

C(κ), D(κ), E(κ), F(κ) and G(κ) hold

δτ,κ+contT

=
∑

T is a column-strict tableau
of shape λ/µ;

the five equivalent assertions

C(κ), D(κ), E(κ), F(κ) and G(κ) hold;
τ=κ+contT

δτ,κ+contT︸ ︷︷ ︸
=1

(since τ=κ+contT )

+
∑

T is a column-strict tableau
of shape λ/µ;

the five equivalent assertions

C(κ), D(κ), E(κ), F(κ) and G(κ) hold;
τ 6=κ+contT

δτ,κ+contT︸ ︷︷ ︸
=0

(since τ 6=κ+contT )

=
∑

T is a column-strict tableau
of shape λ/µ;

the five equivalent assertions

C(κ), D(κ), E(κ), F(κ) and G(κ) hold;
τ=κ+contT

1 +
∑

T is a column-strict tableau
of shape λ/µ;

the five equivalent assertions

C(κ), D(κ), E(κ), F(κ) and G(κ) hold;
τ 6=κ+contT

0

︸ ︷︷ ︸
=0

=
∑

T is a column-strict tableau
of shape λ/µ;

the five equivalent assertions

C(κ), D(κ), E(κ), F(κ) and G(κ) hold;
τ=κ+contT︸ ︷︷ ︸

=
∑

T is a column-strict tableau
of shape λ/µ;
τ=κ+contT ;

the five equivalent assertions

C(κ), D(κ), E(κ), F(κ) and G(κ) hold

=
∑

T is a column-strict tableau
of shape λ/µ;
τ=κ+contT ;

the six equivalent assertions

C(κ), D(κ), E(κ), F(κ), G(κ) and H(κ) hold
(by the equivalence (13.96.6))

1

=
∑

T is a column-strict tableau
of shape λ/µ;
τ=κ+contT ;

the six equivalent assertions

C(κ), D(κ), E(κ), F(κ), G(κ) and H(κ) hold

1

= (the number of all column-strict tableaux T of shape λ/µ such that

τ = κ+ contT and such that the six equivalent

assertions C(κ), D(κ), E(κ), F (κ), G(κ) and H(κ) hold
)

= (the number of all column-strict tableaux T of shape λ/µ satisfying

τ = κ+ contT and also satisfying the six equivalent

assertions C(κ), D(κ), E(κ), F (κ), G(κ) and H(κ)
)
.

This solves Exercise 2.9.21(b).
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13.97. Solution to Exercise 2.9.22. Solution to Exercise 2.9.22. (a) We shall first prove that

(13.97.1) if N has Jordan type λ, then every k ∈ N satisfies dim
(
ker
(
Nk
))

=
(
λt
)

1
+
(
λt
)

2
+ · · ·+

(
λt
)
k
.

Proof of (13.97.1): Assume that N has Jordan type λ. Let k ∈ N.

For each m ∈ N, let Jm be m×m-matrix


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 ∈ Km×m. This is a Jordan block of size

m corresponding to the eigenvalue 0 (when m is positive). For future use, we record the following simple
fact:

(13.97.2) dim
(
ker
(
Jkm
))

= min {m, k}

for all m ∈ N. 755.
Since N has Jordan type λ, the Jordan normal form of N has Jordan blocks of sizes λ1, λ2, λ3, . . ..

Since the only eigenvalue of N is 0, this shows that the Jordan blocks of N are Jλ1
, Jλ2

, Jλ3
, . . . (or, more

precisely, the nonempty matrices among Jλ1
, Jλ2

, Jλ3
, . . .). In other words, N is similar to the block-diagonal

matrix Jλ :=


Jλ1 0 0 · · ·
0 Jλ2

0 · · ·
0 0 Jλ3

· · ·
...

...
...

. . .

. (This block-diagonal matrix Jλ is finite, since only finitely many

λp are nonzero.) We can thus WLOG assume that N is this matrix Jλ (because replacing N by a matrix
similar to N changes neither the dimension dim

(
ker
(
Nk
))

nor the Jordan type of N). Assume this. Thus,

N = Jλ =


Jλ1

0 0 · · ·
0 Jλ2 0 · · ·
0 0 Jλ3 · · ·
...

...
...

. . .

, so that

Nk =


Jλ1 0 0 · · ·
0 Jλ2

0 · · ·
0 0 Jλ3

· · ·
...

...
...

. . .


k

=


Jkλ1

0 0 · · ·
0 Jkλ2

0 · · ·
0 0 Jkλ3

· · ·
...

...
...

. . .


and therefore

ker
(
Nk
)

= ker


Jkλ1

0 0 · · ·
0 Jkλ2

0 · · ·
0 0 Jkλ3

· · ·
...

...
...

. . .

 ∼= ⊕
p≥1

ker
(
Jkλp

)
,

whence

(13.97.3) dim
(
ker
(
Nk
))

= dim

⊕
p≥1

ker
(
Jkλp

) =
∑
p≥1

dim
(

ker
(
Jkλp

))
︸ ︷︷ ︸

=min{λp,k}
(by (13.97.2) (applied to m=λp))

=
∑
p≥1

min {λp, k} .

755Proof sketch. Let m ∈ N. Let (e1, e2, . . . , em) be the standard basis of the K-vector space Km. Now, it is easy to check

that Jkm is the m ×m-matrix whose (i, j)-th entry is

{
1, if j = i+ k;

0, if j 6= i+ k
for all (i, j) ∈ {1, 2, . . . ,m}2. Hence, it is easy to see

that ker
(
Jkm
)

is the K-linear span of the basis vectors ej with j ≤ k. These basis vectors are linearly independent and their

number is min {m, k}; therefore, (13.97.2) follows.
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We are now going to prove that the right hand side of this equality is (λt)1 +(λt)2 + · · ·+(λt)k. Indeed, let

us use the Iverson bracket notation: For every assertion A, we let [A] denote the integer

{
1, if A is true;

0, if A is false
.

(This integer is called the truth value of A.)

Any two nonnegative integers u and v satisfy min {u, v} =
∑v
i=1 [i ≤ u]. Thus, min {λp, k} =

∑k
i=1 [i ≤ λp]

for every p ∈ {1, 2, 3, . . .}. Hence, (13.97.3) becomes

dim
(
ker
(
Nk
))

=
∑
p≥1

min {λp, k}︸ ︷︷ ︸
=
∑k
i=1[i≤λp]

=
∑
p≥1

k∑
i=1

[i ≤ λp] =

k∑
i=1

∑
p≥1

[i ≤ λp]︸ ︷︷ ︸
=|{p≥1 | i≤λp}|
=|{p≥1 | λp≥i}|

=|{j≥1 | λj≥i}|=(λt)
i

(by (2.2.7))

=

k∑
i=1

(
λt
)
i

=
(
λt
)

1
+
(
λt
)

2
+ · · ·+

(
λt
)
k
.

This proves (13.97.1).
With (13.97.1), we have proven one direction of the equivalence that Exercise 2.9.22(a) requires us to

prove. To prove the other direction, we need to show that

(13.97.4) if every k ∈ N satisfies dim
(
ker
(
Nk
))

=
(
λt
)

1
+
(
λt
)

2
+ · · ·+

(
λt
)
k

, then N has Jordan type λ.

Proof of (13.97.4): Assume that every k ∈ N satisfies dim
(
ker
(
Nk
))

= (λt)1 + (λt)2 + · · · + (λt)k. Let
µ be the Jordan type of N . Then, (13.97.1) (applied to µ instead of λ) shows that every k ∈ N satisfies
dim

(
ker
(
Nk
))

= (µt)1 + (µt)2 + · · ·+ (µt)k. Hence, every k ∈ N satisfies

(13.97.5)
(
µt
)

1
+
(
µt
)

2
+ · · ·+

(
µt
)
k

= dim
(
ker
(
Nk
))

=
(
λt
)

1
+
(
λt
)

2
+ · · ·+

(
λt
)
k
.

Applying (13.97.5) to k − 1 instead of k, and subtracting the result from (13.97.5), we obtain(
µt
)
k

=
(
λt
)
k

for every positive integer k.

Hence, µt = λt, so that µ = λ. Thus, N has Jordan type µ = λ. This proves (13.97.4), and thus the solution
of Exercise 2.9.22(a) is complete.

Before we come to the solution of Exercise 2.9.22(b), let us show a linear-algebraic lemma:

Lemma 13.97.1. Let W be a finite-dimensional K-vector space. Let A and B be K-vector subspaces of
W . Let f ∈ EndW be such that f (A) ⊂ A and f (B) ⊂ B. For any (i, j) ∈ N2, let us define a nonnegative

integer wi,j by wi,j = dim
((
f i
)−1

(A) ∩
(
f j
)−1

(B)
)

.

(a) For any (i, j) ∈ {1, 2, 3, . . .}2, we have wi,j + wi−1,j−1 ≥ wi,j−1 + wi−1,j .
(b) For any (i, j) ∈ N× {1, 2, 3, . . .}, we have wi+1,j+1 − wi+1,j ≤ wi,j − wi,j−1.
(c) For any (i, j) ∈ {1, 2, 3, . . .} × N, we have wi+1,j+1 − wi,j+1 ≤ wi,j − wi−1,j .
(d) If i ∈ {1, 2, 3, . . .} and j ∈ N are such that i > dimW , then wi,j = wi−1,j .
(e) If j ∈ {1, 2, 3, . . .} and i ∈ N are such that j > dimW , then wi,j = wi,j−1.

(f) Assume that f is nilpotent. For every j ∈ N, we have
∑∞
i=1 (wi,j − wi−1,j) = dim

((
f j
)−1

(B)
)
−

dim
(
A ∩

(
f j
)−1

(B)
)

. (In particular, the sum
∑∞
i=1 (wi,j − wi−1,j) converges with respect to the discrete

topology, i.e., all but finitely many of its terms are 0.)

(g) Assume that f is nilpotent. For every i ∈ N, we have
∑∞
j=1 (wi,j − wi,j−1) = dim

((
f i
)−1

(A)
)
−

dim
((
f i
)−1

(A) ∩B
)

. (In particular, the sum
∑∞
j=1 (wi,j − wi,j−1) converges with respect to the discrete

topology, i.e., all but finitely many of its terms are 0.)

Proof of Lemma 13.97.1. Notice first that

 f0︸︷︷︸
=id

−1

(A) = id−1 (A) = A andA =
(
f0
)−1

(A) ⊂
(
f1
)−1

(A) ⊂

(
f2
)−1

(A) ⊂ · · · (since f (A) ⊂ A) and B =
(
f0
)−1

(B) ⊂
(
f1
)−1

(B) ⊂
(
f2
)−1

(B) ⊂ · · · (similarly).
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(a) Let (i, j) ∈ {1, 2, 3, . . .}2. We need to prove that wi,j + wi−1,j−1 ≥ wi,j−1 + wi−1,j . In other words,
we need to prove that wi,j − wi,j−1 ≥ wi−1,j − wi−1,j−1. Since

wi,j − wi,j−1 = dim
((
f i
)−1

(A) ∩
(
f j
)−1

(B)
)
− dim

((
f i
)−1

(A) ∩
(
f j−1

)−1
(B)

)
(by the definitions of wi,j and wi,j−1)

= dim
(((

f i
)−1

(A) ∩
(
f j
)−1

(B)
)
/
((
f i
)−1

(A) ∩
(
f j−1

)−1
(B)

))
(13.97.6) (

since
(
f i
)−1

(A) ∩
(
f j−1

)−1
(B) ⊂

(
f i
)−1

(A) ∩
(
f j
)−1

(B)
)

and

wi−1,j − wi−1,j−1 = dim
(((

f i−1
)−1

(A) ∩
(
f j
)−1

(B)
)
/
((
f i−1

)−1
(A) ∩

(
f j−1

)−1
(B)

))
(by the same argument as (13.97.6), only with i− 1 instead of i), this is equivalent to showing that

dim
(((

f i
)−1

(A) ∩
(
f j
)−1

(B)
)
/
((
f i
)−1

(A) ∩
(
f j−1

)−1
(B)

))
≥ dim

(((
f i−1

)−1
(A) ∩

(
f j
)−1

(B)
)
/
((
f i−1

)−1
(A) ∩

(
f j−1

)−1
(B)

))
.

This will clearly be achieved if we can construct a K-linear injection((
f i−1

)−1
(A) ∩

(
f j
)−1

(B)
)
/
((
f i−1

)−1
(A) ∩

(
f j−1

)−1
(B)

)
→
((
f i
)−1

(A) ∩
(
f j
)−1

(B)
)
/
((
f i
)−1

(A) ∩
(
f j−1

)−1
(B)

)
.

Here is how to construct it: Let ι denote the canonical inclusion
(
f i−1

)−1
(A) ∩

(
f j
)−1

(B)→
(
f i
)−1

(A) ∩(
f j
)−1

(B). Then, ι restricts to an inclusion
(
f i−1

)−1
(A)∩

(
f j−1

)−1
(B)→

(
f i
)−1

(A)∩
(
f j−1

)−1
(B), and

so gives rise to a map ((
f i−1

)−1
(A) ∩

(
f j
)−1

(B)
)
/
((
f i−1

)−1
(A) ∩

(
f j−1

)−1
(B)

)
→
((
f i
)−1

(A) ∩
(
f j
)−1

(B)
)
/
((
f i
)−1

(A) ∩
(
f j−1

)−1
(B)

)
.

This map is injective because ι−1
((
f i
)−1

(A) ∩
(
f j−1

)−1
(B)

)
=
(
f i−1

)−1
(A)∩

(
f j−1

)−1
(B), and thus we

have found our K-linear injection. Lemma 13.97.1(a) is proven.
(b) Let (i, j) ∈ N×{1, 2, 3, . . .}. We need to prove that wi+1,j+1−wi+1,j ≤ wi,j−wi,j−1. Due to (13.97.6)

and due to

wi+1,j+1 − wi+1,j = dim
(((

f i+1
)−1

(A) ∩
(
f j+1

)−1
(B)

)
/
((
f i+1

)−1
(A) ∩

(
f j
)−1

(B)
))

(this follows by the same arguments as (13.97.6), only with i and j replaced by i + 1 and j + 1), this is
equivalent to showing that

dim
(((

f i+1
)−1

(A) ∩
(
f j+1

)−1
(B)

)
/
((
f i+1

)−1
(A) ∩

(
f j
)−1

(B)
))

≤ dim
(((

f i
)−1

(A) ∩
(
f j
)−1

(B)
)
/
((
f i
)−1

(A) ∩
(
f j−1

)−1
(B)

))
.

This will clearly be achieved if we can construct a K-linear injection((
f i+1

)−1
(A) ∩

(
f j+1

)−1
(B)

)
/
((
f i+1

)−1
(A) ∩

(
f j
)−1

(B)
)

→
((
f i
)−1

(A) ∩
(
f j
)−1

(B)
)
/
((
f i
)−1

(A) ∩
(
f j−1

)−1
(B)

)
.

Here is how this can be done: The map f restricts to a map ϕ :
(
f i+1

)−1
(A)∩

(
f j+1

)−1
(B)→

(
f i
)−1

(A)∩(
f j
)−1

(B), which further restricts to a map
(
f i+1

)−1
(A)∩

(
f j
)−1

(B)→
(
f i
)−1

(A)∩
(
f j−1

)−1
(B). Hence,

ϕ gives rise to a map ((
f i+1

)−1
(A) ∩

(
f j+1

)−1
(B)

)
/
((
f i+1

)−1
(A) ∩

(
f j
)−1

(B)
)

→
((
f i
)−1

(A) ∩
(
f j
)−1

(B)
)
/
((
f i
)−1

(A) ∩
(
f j−1

)−1
(B)

)
,



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 741

which is injective because

ϕ−1
((
f i
)−1

(A) ∩
(
f j−1

)−1
(B)

)
= f−1

((
f i
)−1

(A) ∩
(
f j−1

)−1
(B)

)
= f−1

((
f i
)−1

(A)
)

︸ ︷︷ ︸
=(fi+1)−1(A)

∩ f−1
((
f j−1

)−1
(B)

)
︸ ︷︷ ︸

=(fj)−1(B)

=
(
f i+1

)−1
(A) ∩

(
f j
)−1

(B) .

Thus, we have found our K-linear injection. Lemma 13.97.1(b) is proven.
(c) The proof of Lemma 13.97.1(c) is analogous to our above proof of Lemma 13.97.1(b) (one merely has

to interchange A with B and i with j).
(d) We have (

f0
)−1

(A) ⊂
(
f1
)−1

(A) ⊂ · · · ⊂
(
fdimW+1

)−1
(A)

and therefore

dim
((
f0
)−1

(A)
)
≤ dim

((
f1
)−1

(A)
)
≤ · · · ≤ dim

((
fdimW+1

)−1
(A)
)
.

This latter chain of inequalities contains dimW + 1 inequality signs, but only at most dimW of them can

be strict (because each dim
((
fk
)−1

(A)
)

is an integer between 0 and dimW inclusive756, and a sequence

of dimW + 2 integers between 0 and dimW cannot strictly increase). Thus, at least one of the inequality

signs is an equality. That is, there exists an I ∈ {1, 2, . . . ,dimW + 1} such that dim
((
f I−1

)−1
(A)
)

=

dim
((
f I
)−1

(A)
)

. Consider this I.

Since dim
((
f I−1

)−1
(A)
)

= dim
((
f I
)−1

(A)
)

and
(
f I−1

)−1
(A) ⊂

(
f I
)−1

(A), we must have

(13.97.7)
(
f I−1

)−1
(A) =

(
f I
)−1

(A) .

From here, it is easy to see that(
f i−1

)−1
(A) =

(
f i
)−1

(A) for every i ∈ {1, 2, 3, . . .} satisfying i > dimW.

757

Thus, for every i ∈ {1, 2, 3, . . .} satisfying i > dimW , we have

wi−1,j = dim

(f i−1
)−1

(A)︸ ︷︷ ︸
=(fi)−1(A)

∩
(
f j
)−1

(B)

 (by the definition of wi−1,j)

= dim
((
f i
)−1

(A) ∩
(
f j
)−1

(B)
)

= wi,j for all j ∈ N.

Thus, if i ∈ {1, 2, 3, . . .} and j ∈ N are such that i > dimW , then wi−1,j = wi−1,j . This proves Lemma
13.97.1(d).

(e) The proof of Lemma 13.97.1(e) is analogous to our above proof of Lemma 13.97.1(d) (one merely has
to interchange A with B and i with j).

756since
(
fk
)−1

(A) is a subspace of the finite-dimensional K-vector space W
757Proof. Let i ∈ {1, 2, 3, . . .} be such that i > dimW . Thus, i ≥ dimW + 1. But I ≤ dimW + 1 (since

I ∈ {1, 2, . . . , dimW + 1}) and thus i ≥ dimW + 1 ≥ I. Hence, there exists some k ∈ N such that i = I + k. Con-

sider this k. Since i = I + k, we have i − 1 = I + k − 1 = (I − 1) + k, so that f i−1 = f (I−1)+k = fI−1 ◦ fk and thus(
f i−1

)−1
(A) =

(
fI−1 ◦ fk

)−1
(A) =

(
fk
)−1

((
fI−1

)−1
(A)
)

. Similarly,
(
f i
)−1

(A) =
(
fk
)−1

((
fI
)−1

(A)
)

. Now,

(
f i−1

)−1
(A) =

(
fk
)−1


(
fI−1

)−1
(A)︸ ︷︷ ︸

=(fI)−1
(A)

(by (13.97.7))


=
(
fk
)−1

((
fI
)−1

(A)

)
=
(
f i
)−1

(A) ,

qed.
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(f) Let j ∈ N. We have

∞∑
i=1

(wi,j − wi−1,j) =

dimW∑
i=1

(wi,j − wi−1,j) +

∞∑
i=dimW+1

 wi,j︸︷︷︸
=wi−1,j

(by Lemma 13.97.1(d),
since i>dimW )

−wi−1,j


=

dimW∑
i=1

(wi,j − wi−1,j) +

∞∑
i=dimW+1

(wi−1,j − wi−1,j)︸ ︷︷ ︸
=0

=

dimW∑
i=1

(wi,j − wi−1,j) +

∞∑
i=dimW+1

0︸ ︷︷ ︸
=0

=

dimW∑
i=1

(wi,j − wi−1,j) = wdimW,j − w0,j (by the telescope principle) .(13.97.8)

Now, we are going to prove that wdimW,j = dim
((
f j
)−1

(B)
)

and w0,j = dim
(
A ∩

(
f j
)−1

(B)
)

.

Indeed, it is well-known that if g is any nilpotent endomorphism of a finite-dimensional vector space V ,
then gdimV = 0. Applied to g = f and V = W , this yields fdimW = 0, and thus fdimW (W ) = 0 (W ) = 0 ⊂
A, whence W ⊂

(
fdimW

)−1
(A), so that

(
fdimW

)−1
(A) = W . Hence,(

fdimW
)−1

(A)︸ ︷︷ ︸
=W

∩
(
f j
)−1

(B) = W ∩
(
f j
)−1

(B) =
(
f j
)−1

(B)

(since
(
f j
)−1

(B) ⊂W ). Now, the definition of wdimW,j yields

wdimW,j = dim

(fdimW
)−1

(A) ∩
(
f j
)−1

(B)︸ ︷︷ ︸
=(fj)−1(B)

 = dim
((
f j
)−1

(B)
)
.

Also, the definition of w0,j yields

w0,j = dim


 f0︸︷︷︸

=id

−1

(A) ∩
(
f j
)−1

(B)

 = dim

id−1 (A)︸ ︷︷ ︸
=A

∩
(
f j
)−1

(B)

 = dim
(
A ∩

(
f j
)−1

(B)
)
.

Hence, (13.97.8) becomes

∞∑
i=1

(wi,j − wi−1,j) = wdimW,j︸ ︷︷ ︸
=dim((fj)−1(B))

− w0,j︸︷︷︸
=dim(A∩(fj)−1(B))

= dim
((
f j
)−1

(B)
)
− dim

(
A ∩

(
f j
)−1

(B)
)
.

This proves Lemma 13.97.1(f).
(g) The proof of Lemma 13.97.1(g) is analogous to our above proof of Lemma 13.97.1(f) (one merely has

to interchange A with B and i with j). �

(b) Assume that Z is a subring of k.
For any (i, j) ∈ N2, let us define a nonnegative integer ai,j by

ai,j = dim
((
f i
)−1

(U) ∩ ker
(
f j
))
.

Furthermore, for every (i, j) ∈ {1, 2, 3, . . .}2, let us define an integer bi,j by

bi,j = ai,j − ai,j−1 − ai−1,j + ai−1,j−1.

We first observe that

(13.97.9) ai,0 = 0 for every i ∈ N.
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758 Furthermore,

(13.97.10) a0,j =
(
µt
)

1
+
(
µt
)

2
+ · · ·+

(
µt
)
j

for every j ∈ N.

759 Thus,

(13.97.11) a0,j − a0,j−1 =
(
µt
)
j

for every j ∈ {1, 2, 3, . . .} .

760 Moreover, every (i, j) ∈ N2 satisfies

ai,j = dim

(f i)−1
(U) ∩ ker

(
f j
)︸ ︷︷ ︸

=(fj)−1(0)

 = dim
((
f i
)−1

(U) ∩
(
f j
)−1

(0)
)
.

Hence, Lemma 13.97.1(a) (applied to W = V , A = U , B = 0 and wi,j = ai,j) shows that for any (i, j) ∈
{1, 2, 3, . . .}2, we have ai,j + ai−1,j−1 ≥ ai,j−1 + ai−1,j . In other words, for any (i, j) ∈ {1, 2, 3, . . .}2, we have

ai,j − ai,j−1 − ai−1,j + ai−1,j−1 ≥ 0. In other words, for any (i, j) ∈ {1, 2, 3, . . .}2, we have

(13.97.12) bi,j ≥ 0

(since bi,j = ai,j − ai,j−1 − ai−1,j + ai−1,j−1). Thus, bi,j is a nonnegative integer for every two positive
integers i and j. Moreover,

(13.97.13) bi,j = 0 for all but finitely many pairs (i, j) .

758Proof of (13.97.9): For every i ∈ N, the definition of ai,0 yields ai,0 = dim

(f i)−1
(U) ∩ ker

(
f0
)︸ ︷︷ ︸

=ker(id)=0

 =

dim
((
f i
)−1

(U) ∩ 0
)

︸ ︷︷ ︸
=0

= dim 0 = 0, qed.

759Proof of (13.97.10): Let j ∈ N. We can represent the endomorphism f | U of U as a k×k-matrix G ∈ Kk×k for k = dimU .

This k× k-matrix G is nilpotent (since f | U is nilpotent) and has Jordan type µ (since f | U has Jordan type µ). But Exercise

2.9.22(a) (applied to k, G and µ instead of n, N and λ) shows that G has Jordan type µ if and only if every k ∈ N satisfies
dim

(
ker
(
Gk
))

=
(
µt
)
1

+
(
µt
)
2

+ · · · +
(
µt
)
k
. Since we know that G has Jordan type µ, we thus conclude that every k ∈ N

satisfies dim
(
ker
(
Gk
))

=
(
µt
)
1

+
(
µt
)
2

+ · · ·+
(
µt
)
k
. Applied to k = j, this yields dim

(
ker
(
Gj
))

=
(
µt
)
1

+
(
µt
)
2

+ · · ·+
(
µt
)
j
.

Since the matrix G represents the endomorphism f | U , we have

dim
(
ker
(
Gj
))

= dim

ker
(

(f | U)j
)

︸ ︷︷ ︸
=U∩ker(fj)

 = dim
(
U ∩ ker

(
fj
))
.

Compared with dim
(
ker
(
Gj
))

=
(
µt
)
1

+
(
µt
)
2

+ · · ·+
(
µt
)
j
, this yields

dim
(
U ∩ ker

(
fj
))

=
(
µt
)
1

+
(
µt
)
2

+ · · ·+
(
µt
)
j
.

Now, the definition of a0,j yields

a0,j = dim


 f0︸︷︷︸

=id


−1

(U) ∩ ker
(
fj
) = dim

id−1 (U)︸ ︷︷ ︸
=U

∩ ker
(
fj
) = dim

(
U ∩ ker

(
fj
))

=
(
µt
)
1

+
(
µt
)
2

+ · · ·+
(
µt
)
j
.

This proves (13.97.10).
760Proof of (13.97.11): For every j ∈ {1, 2, 3, . . .}, we have

a0,j︸︷︷︸
=(µt)1

+(µt)2
+···+(µt)j

(by (13.97.10))

− a0,j−1︸ ︷︷ ︸
=(µt)1

+(µt)2
+···+(µt)j−1

(by (13.97.10), applied to
j−1 instead of j)

=
((
µt
)
1

+
(
µt
)
2

+ · · ·+
(
µt
)
j

)
−
((
µt
)
1

+
(
µt
)
2

+ · · ·+
(
µt
)
j−1

)
=
(
µt
)
j
,

qed.
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761 Also,

(13.97.15)
(
µt
)
j

+ (b1,j + b2,j + · · ·+ bi,j) = ai,j − ai,j−1 for every (i, j) ∈ N× {1, 2, 3, . . .} .
762

Now, Exercise 2.9.18(a) (applied to µt instead of µ) yields that the following two assertions are equiva-
lent763:

• Assertion A′: There exist a partition γ and a column-strict tableau T of shape γ/µt such that all

(i, j) ∈ {1, 2, 3, . . .}2 satisfy

(13.97.16) bi,j = (the number of all entries i in the j-th row of T ) .

• Assertion B′: The inequality

(13.97.17)
(
µt
)
j+1

+ (b1,j+1 + b2,j+1 + · · ·+ bi+1,j+1) ≤
(
µt
)
j

+ (b1,j + b2,j + · · ·+ bi,j)

holds for all (i, j) ∈ N× {1, 2, 3, . . .}.
We shall now prove that Assertion B′ holds. Indeed, any (i, j) ∈ N× {1, 2, 3, . . .} satisfies(

µt
)
j+1

+ (b1,j+1 + b2,j+1 + · · ·+ bi+1,j+1)

= ai+1,j+1 − ai+1,j (by (13.97.15), applied to i+ 1 and j + 1 instead of i and j)

≤ ai,j − ai,j−1 (by Lemma 13.97.1(b) (applied to W = V , A = U , B = 0 and wi,j = ai,j))

=
(
µt
)
j

+ (b1,j + b2,j + · · ·+ bi,j) (by (13.97.15)) .

Thus, Assertion B′ holds. Since Assertions A′ and B′ are equivalent, this yields that Assertion A′ also
holds. In other words, there exist a partition γ and a column-strict tableau T of shape γ/µt such that all

(i, j) ∈ {1, 2, 3, . . .}2 satisfy (13.97.16). Let us consider this γ and this T .
We shall soon see that γ = λt and contT = νt. Let us first prepare for this. We have

(13.97.18) dim
((
f j
)−1

(0)
)

=
(
λt
)

1
+
(
λt
)

2
+ · · ·+

(
λt
)
j

for every j ∈ N.

761Proof of (13.97.13): Lemma 13.97.1(d) (applied to W = V , A = U , B = 0 and wi,j = ai,j) shows that if i ∈ {1, 2, 3, . . .}
and j ∈ N are such that i > dimV , then

(13.97.14) ai,j = ai−1,j .

Lemma 13.97.1(e) (applied to W = V , A = U , B = 0 and wi,j = ai,j) shows that if j ∈ {1, 2, 3, . . .} and i ∈ N satisfy

j > dimV , then ai,j = ai,j−1.

Now, let (i, j) ∈ {1, 2, 3, . . .}2. If i > dimV , then

bi,j = ai,j︸︷︷︸
=ai−1,j

(by (13.97.14),
since i>dimV )

− ai,j−1︸ ︷︷ ︸
=ai−1,j−1

(by (13.97.14) (applied to
j−1 instead of j),

since i>dimV )

−ai−1,j + ai−1,j−1 = ai−1,j − ai−1,j−1 − ai−1,j + ai−1,j−1 = 0.

Similarly, bi,j = 0 if j > dimV . Hence, we see that bi,j = 0 if we have i > dimV or j > dimV (or both). Thus, bi,j = 0 for all

but finitely many pairs (i, j) (because all but finitely many pairs (i, j) satisfy i > dimV or j > dimV ). This proves (13.97.13).
762Proof of (13.97.15): Let (i, j) ∈ N× {1, 2, 3, . . .}. Then,

b1,j + b2,j + · · ·+ bi,j =
i∑

k=1

bk,j︸︷︷︸
=ak,j−ak,j−1−ak−1,j+ak−1,j−1

(by the definition of bk,j)

=
i∑

k=1

(
ak,j − ak,j−1 − ak−1,j + ak−1,j−1

)︸ ︷︷ ︸
=(ak,j−ak,j−1)−(ak−1,j−ak−1,j−1)

=
i∑

k=1

((
ak,j − ak,j−1

)
−
(
ak−1,j − ak−1,j−1

))
= (ai,j − ai,j−1)− (a0,j − a0,j−1)︸ ︷︷ ︸

=(µt)
j

(by (13.97.11))

(by the telescope principle)

= (ai,j − ai,j−1)−
(
µt
)
j
,

and thus
(
µt
)
j

+ (b1,j + b2,j + · · ·+ bi,j) = ai,j − ai,j−1, qed.
763The partition that we call γ in Assertion A′ is the partition that was called λ in Assertion A.
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764 From here, it is easy to see that

(13.97.19) dim
((
f j
)−1

(0)
)
− dim

((
f j−1

)−1
(0)
)

=
(
λt
)
j

for every j ∈ {1, 2, 3, . . .} .

765 Now, for every j ∈ {1, 2, 3, . . .}, we have

(the number of all entries in the j-th row of T ) = γj −
(
µt
)
j

(since T has shape γ/µt), so that

γj −
(
µt
)
j

= (the number of all entries in the j-th row of T )

=

∞∑
i=1

(the number of all entries i in the j-th row of T )︸ ︷︷ ︸
=bi,j

(by (13.97.16))

=

∞∑
i=1

bi,j︸︷︷︸
=ai,j−ai,j−1−ai−1,j+ai−1,j−1

=

∞∑
i=1

(ai,j − ai,j−1 − ai−1,j + ai−1,j−1)︸ ︷︷ ︸
=(ai,j−ai−1,j)−(ai,j−1−ai−1,j−1)

=

∞∑
i=1

((ai,j − ai−1,j)− (ai,j−1 − ai−1,j−1))

=

∞∑
i=1

(ai,j − ai−1,j)︸ ︷︷ ︸
=dim

(
(fj)

−1
(0)
)
−dim

(
U∩(fj)

−1
(0)
)

(by Lemma 13.97.1(f), applied to
W=V , A=U , B=0 and wi,j=ai,j)

−
∞∑
i=1

(ai,j−1 − ai−1,j−1)︸ ︷︷ ︸
=dim

(
(fj−1)

−1
(0)
)
−dim

(
U∩(fj−1)

−1
(0)
)

(by Lemma 13.97.1(f), applied to
V , U , 0, ai,j and j−1 instead of W , A, B, wi,j and j)

=
(

dim
((
f j
)−1

(0)
)
− dim

(
U ∩

(
f j
)−1

(0)
))
−
(

dim
((
f j−1

)−1
(0)
)
− dim

(
U ∩

(
f j−1

)−1
(0)
))

=
(

dim
((
f j
)−1

(0)
)
− dim

((
f j−1

)−1
(0)
))

︸ ︷︷ ︸
=(λt)

j

(by (13.97.19))

−
(

dim
(
U ∩

(
f j
)−1

(0)
)
− dim

(
U ∩

(
f j−1

)−1
(0)
))

=
(
λt
)
j
−
(

dim
(
U ∩

(
f j
)−1

(0)
)
− dim

(
U ∩

(
f j−1

)−1
(0)
))

.

764Proof of (13.97.18): Let j ∈ N. We can represent the endomorphism f of V as an n×n-matrix F ∈ Kn×n for n = dimV .

This n×n-matrix F is nilpotent (since f is nilpotent) and has Jordan type λ (since f has Jordan type λ). But Exercise 2.9.22(a)
(applied toN = F ) shows that F has Jordan type λ if and only if every k ∈ N satisfies dim

(
ker
(
Fk
))

=
(
λt
)
1
+
(
λt
)
2
+· · ·+

(
λt
)
k
.

Since we know that F has Jordan type λ, we thus conclude that every k ∈ N satisfies dim
(
ker
(
Fk
))

=
(
λt
)
1
+
(
λt
)
2
+· · ·+

(
λt
)
k
.

Applied to k = j, this yields dim
(
ker
(
F j
))

=
(
λt
)
1

+
(
λt
)
2

+ · · ·+
(
λt
)
j
.

Since the matrix F represents the endomorphism f , we have

dim
(
ker
(
F j
))

= dim

 ker
(
fj
)︸ ︷︷ ︸

=(fj)−1
(0)

 = dim
((
fj
)−1

(0)
)
.

Compared with dim
(
ker
(
F j
))

=
(
λt
)
1

+
(
λt
)
2

+ · · ·+
(
λt
)
j
, this yields

dim
((
fj
)−1

(0)
)

=
(
λt
)
1

+
(
λt
)
2

+ · · ·+
(
λt
)
j
,

and thus (13.97.18) is proven.
765Proof of (13.97.19): Let j ∈ {1, 2, 3, . . .}. Then,

dim
((
fj
)−1

(0)
)

︸ ︷︷ ︸
=(λt)

1
+(λt)

2
+···+(λt)

j

(by (13.97.18))

− dim
((
fj−1

)−1
(0)
)

︸ ︷︷ ︸
=(λt)

1
+(λt)

2
+···+(λt)

j−1

(by (13.97.18), applied
to j−1 instead of j)

=
((
λt
)
1

+
(
λt
)
2

+ · · ·+
(
λt
)
j

)
−
((
λt
)
1

+
(
λt
)
2

+ · · ·+
(
λt
)
j−1

)
=
(
λt
)
j
,

so that (13.97.19) is proven.
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Adding this equality to the equality(
µt
)
j

= a0,j︸︷︷︸
=dim

(
(f0)

−1
(U)∩ker(fj)

)
(by the definition of a0,j)

− a0,j−1︸ ︷︷ ︸
=dim

(
(f0)

−1
(U)∩ker(fj−1)

)
(by the definition of a0,j−1)

(by (13.97.11))

= dim


 f0︸︷︷︸

=id

−1

(U) ∩ ker
(
f j
)− dim


 f0︸︷︷︸

=id

−1

(U) ∩ ker
(
f j−1

)

= dim

(id)
−1

(U)︸ ︷︷ ︸
=U

∩ ker
(
f j
)︸ ︷︷ ︸

=(fj)−1(0)

− dim

(id)
−1

(U)︸ ︷︷ ︸
=U

∩ ker
(
f j−1

)︸ ︷︷ ︸
=(fj−1)−1(0)


= dim

(
U ∩

(
f j
)−1

(0)
)
− dim

(
U ∩

(
f j−1

)−1
(0)
)
,

we obtain γj = (λt)j for every j ∈ {1, 2, 3, . . .}. Thus, γ = λt. Hence, T is a column-strict tableau of shape

λt/µt (since T is a column-strict tableau of shape γ/µt).
Next, let us prove that contT = νt. Indeed, we first notice that

(13.97.20) dim
((
f i
)−1

(U)
)

= (dimU) +
(
νt
)

1
+
(
νt
)

2
+ · · ·+

(
νt
)
i

for every i ∈ N.

766 As a consequence of this, we have

(13.97.21) dim
((
f i
)−1

(U)
)
− dim

((
f i−1

)−1
(U)
)

=
(
νt
)
i

for every i ∈ {1, 2, 3, . . .} .

767

766Proof of (13.97.20): Let i ∈ N. Recall that the nilpotent endomorphism f of the quotient space V/U (induced by

f ∈ EndV ) has Jordan type ν. We can represent this nilpotent endomorphism f of V/U as an ` × `-matrix H ∈ K`×` for

` = dim (V/U). This `× `-matrix H is nilpotent (since f is nilpotent) and has Jordan type ν (since f has Jordan type ν). But

Exercise 2.9.22(a) (applied to `, H and ν instead of n, N and λ) shows that H has Jordan type ν if and only if every k ∈ N satisfies

dim
(
ker
(
Hk
))

=
(
νt
)
1

+
(
νt
)
2

+ · · · +
(
νt
)
k
. Since we know that H has Jordan type ν, we thus conclude that every k ∈ N

satisfies dim
(
ker
(
Hk
))

=
(
νt
)
1

+
(
νt
)
2

+ · · ·+
(
νt
)
k
. Applied to k = i, this yields dim

(
ker
(
Hi
))

=
(
νt
)
1

+
(
νt
)
2

+ · · ·+
(
νt
)
i
.

Since the matrix H represents the endomorphism f , we have

dim
(

ker
(
f
i
))

= dim
(
ker
(
Hi
))

=
(
νt
)
1

+
(
νt
)
2

+ · · ·+
(
νt
)
i
.

But
(
f i
)−1

(U) is a K-vector subspace of V containing U . Thus,
(
f i
)−1

(U) /U is canonically a K-vector subspace of V/U .

Moreover, this subspace
(
f i
)−1

(U) /U is precisely the kernel ker
(
f
i
)

(this is straightforward to check). Hence,

dim
((
f i
)−1

(U) /U
)

= dim
(

ker
(
f
i
))

=
(
νt
)
1

+
(
νt
)
2

+ · · ·+
(
νt
)
i
.

Since

dim
((
f i
)−1

(U) /U
)

= dim
((
f i
)−1

(U)
)
− dimU,

this rewrites as

dim
((
f i
)−1

(U)
)
− dimU =

(
νt
)
1

+
(
νt
)
2

+ · · ·+
(
νt
)
i
.

Adding dimU to both sides of this equality yields (13.97.20).
767Proof of (13.97.21): Let i ∈ {1, 2, 3, . . .}. Then,

dim
((
f i
)−1

(U)
)

︸ ︷︷ ︸
=(dimU)+(νt)1

+(νt)2
+···+(νt)i

(by (13.97.20))

− dim
((
f i−1

)−1
(U)
)

︸ ︷︷ ︸
=(dimU)+(νt)1

+(νt)2
+···+(νt)i−1

(by (13.97.20), applied
to i−1 instead of i)

=
(
(dimU) +

(
νt
)
1

+
(
νt
)
2

+ · · ·+
(
νt
)
i

)
−
(

(dimU) +
(
νt
)
1

+
(
νt
)
2

+ · · ·+
(
νt
)
i−1

)
=
(
νt
)
i
.

Thus, (13.97.21) is proven.
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Now, for every i ∈ {1, 2, 3, . . .}, we have

(contT )i =
∣∣T−1 (i)

∣∣ = (the number of entries i in T )

=

∞∑
j=1

(the number of all entries i in the j-th row of T )︸ ︷︷ ︸
=bi,j

(by (13.97.16))

=

∞∑
j=1

bi,j︸︷︷︸
=ai,j−ai,j−1−ai−1,j+ai−1,j−1

=

∞∑
j=1

(ai,j − ai,j−1 − ai−1,j + ai−1,j−1)︸ ︷︷ ︸
=(ai,j−ai,j−1)−(ai−1,j−ai−1,j−1)

=

∞∑
j=1

((ai,j − ai,j−1)− (ai−1,j − ai−1,j−1))

=

∞∑
j=1

(ai,j − ai,j−1)︸ ︷︷ ︸
=dim

(
(fi)

−1
(U)
)
−dim

(
(fi)

−1
(U)∩0

)
(by Lemma 13.97.1(g), applied to
W=V , A=U , B=0 and wi,j=ai,j)

−
∞∑
j=1

(ai−1,j − ai−1,j−1)︸ ︷︷ ︸
=dim

(
(fi−1)

−1
(U)
)
−dim

(
(fi−1)

−1
(U)∩0

)
(by Lemma 13.97.1(f), applied to

V , U , 0, ai,j and i−1 instead of W , A, B, wi,j and i)

=

dim
((
f i
)−1

(U)
)
− dim

((
f i
)−1

(U) ∩ 0
)

︸ ︷︷ ︸
=0

−
dim

((
f i−1

)−1
(U)
)
− dim

((
f i−1

)−1
(U) ∩ 0

)
︸ ︷︷ ︸

=0


=

dim
((
f i
)−1

(U)
)
− dim 0︸ ︷︷ ︸

=0

−
dim

((
f i−1

)−1
(U)
)
− dim 0︸ ︷︷ ︸

=0


= dim

((
f i
)−1

(U)
)
− dim

((
f i−1

)−1
(U)
)

=
(
νt
)
i

(by (13.97.21)) .

Hence, contT = νt.
We shall next see that for every positive integer j, the weak composition cont(T |cols≥j) is a partition.

Here, and in the following, we are using the notations of Exercise 2.9.18.
We first notice that every i ∈ {1, 2, 3, . . .} and j ∈ N satisfy

(13.97.22) (the number of entries i in the first j rows of T ) = ai,j − ai−1,j .
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768 Now, for every positive integers j and i, we have

(the number of entries i+ 1 in the first j rows of T )

= ai+1,j − ai,j (by (13.97.22), applied to i+ 1 instead of i)

≤ ai,j−1 − ai−1,j−1

(
by Lemma 13.97.1(c), applied to

V , U , 0, ai,j and j − 1 instead of W , A, B, wi,j and j

)
= (the number of entries i in the first j − 1 rows of T )

(since (13.97.22) (applied to j−1 instead of j) yields (the number of entries i in the first j − 1 rows of T ) =
ai,j−1−ai−1,j−1). In other words, for every positive integers j and i, the number of entries i+1 in the first j
rows of T is ≤ to the number of entries i in the first j− 1 rows of T . In other words, Assertion D of Exercise
2.9.18(b) (with λ and µ replaced by λt and µt) is satisfied. Hence, Assertion C of Exercise 2.9.18(b) (with λ
and µ replaced by λt and µt) is satisfied as well (because Exercise 2.9.18(b) yields that these Assertions C
and D are equivalent). In other words, for every positive integer j, the weak composition cont (T |cols≥j) is
a partition.

Now, let us forget that we defined ν and T . We thus have found a column-strict tableau T of shape
λt/µt with contT = νt which has the property that for every positive integer j, the weak composition

cont (T |cols≥j) is a partition. But we know that the number of such tableaux is cλ
t

µt,νt (by Corollary 2.6.12,

applied to λt, µt and νt instead of λ, µ and ν). Hence, this number cλ
t

µt,νt must be 6= 0 (because we have

found such a tableau T ). So we have proven that cλ
t

µt,νt 6= 0. Now, Exercise 2.7.11(c) yields cλµ,ν = cλ
t

µt,νt 6= 0,

so that Exercise 2.9.22(b) is solved.

13.98. Solution to Exercise 2.9.24. Solution to Exercise 2.9.24. Define a set D by

(13.98.1) D =
{
g ∈ Λ | g⊥a = (ω (g))

⊥
a
}
.

We shall show that D is a k-subalgebra of Λ.
Define a map κ : Λ→ Λ by(

κ (g) = g⊥a− (ω (g))
⊥
a for every g ∈ Λ

)
.

768Proof of (13.97.22): Let i ∈ {1, 2, 3, . . .} and j ∈ N. We have

(the number of entries i in the first j rows of T )

=

j∑
k=1

(the number of all entries i in the k-th row of T )︸ ︷︷ ︸
=bi,k

(since (13.97.16) (applied to (i,k) instead of (i,j)) yields
bi,k=(the number of all entries i in the k-th row of T ))

=

j∑
k=1

bi,k︸︷︷︸
=ai,k−ai,k−1−ai−1,k+ai−1,k−1

(by the definition of bi,k)

=

j∑
k=1

(
ai,k − ai,k−1 − ai−1,k + ai−1,k−1

)︸ ︷︷ ︸
=(ai,k−ai−1,k)−(ai,k−1−ai−1,k−1)

=

j∑
k=1

((
ai,k − ai−1,k

)
−
(
ai,k−1 − ai−1,k−1

))

= (ai,j − ai−1,j)−


ai,0︸︷︷︸
=0

(by (13.97.9))

− ai−1,0︸ ︷︷ ︸
=0

(by (13.97.9), applied
to i−1 instead of i)


(by the telescope principle)

= (ai,j − ai−1,j)− (0− 0) = ai,j − ai−1,j .

This proves (13.97.22).
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This map κ is k-linear769. Hence, its kernel kerκ is a k-submodule of Λ. Since

kerκ =

g ∈ Λ | κ (g)︸︷︷︸
=g⊥a−(ω(g))⊥a

(by the definition of κ)

= 0

 =

g ∈ Λ | g⊥a− (ω (g))
⊥
a = 0︸ ︷︷ ︸

⇐⇒ (g⊥a=(ω(g))⊥a)


=
{
g ∈ Λ | g⊥a = (ω (g))

⊥
a
}

= D (by (13.98.1)) ,

this rewrites as follows: The set D is a k-submodule of Λ.
Furthermore, we have the following two observations:

• We have 1 ∈ D 770.
• We have xy ∈ D for each x ∈ D and y ∈ D 771.

769Proof. For each g ∈ Λ, we have g⊥a =
∑

(g, a1) a2 (by the definition of g⊥). Hence, the element g⊥a of Λ depends

k-linearly on g (because the Hall inner product (·, ·) is k-bilinear). Thus, the element (ω (g))⊥ a also depends k-linearly on g

(since the map ω is k-linear). Hence, the difference g⊥a − (ω (g))⊥ a of these two elements also depends k-linearly on g. In

other words, κ (g) depends k-linearly on g (since κ (g) = g⊥a− (ω (g))⊥ a). In other words, the map κ is k-linear.

770Proof. Recall that ω is a k-algebra endomorphism of Λ. Hence, ω (1) = 1. Thus,

ω (1)︸ ︷︷ ︸
=1


⊥

a = 1⊥a, so that 1⊥a =

(ω (1))⊥ a. Hence, 1 is an element of Λ and satisfies 1⊥a = (ω (1))⊥ a. Thus,

1 ∈
{
g ∈ Λ | g⊥a = (ω (g))⊥ a

}
= D (by (13.98.1)) ,

qed.
771Proof. Let x ∈ D and y ∈ D.

We have x ∈ D =
{
g ∈ Λ | g⊥a = (ω (g))⊥ a

}
. In other words, x is an element of Λ and satisfies x⊥a = (ω (x))⊥ a.

We have y ∈ D =
{
g ∈ Λ | g⊥a = (ω (g))⊥ a

}
. In other words, y is an element of Λ and satisfies y⊥a = (ω (y))⊥ a.

Proposition 2.8.2(ii) (applied to f = ω (y) and g = ω (x)) yields

(13.98.2) (ω (y)ω (x))⊥ a = (ω (x))⊥
(

(ω (y))⊥ a
)
.

But ω (xy) = ω (x)ω (y) (since ω is an endomorphism of the k-algebra Λ). Hence,

(13.98.3)

 ω (xy)︸ ︷︷ ︸
=ω(x)ω(y)
=ω(y)ω(x)


⊥

a = (ω (y)ω (x))⊥ a = (ω (x))⊥
(

(ω (y))⊥ a
)

(by (13.98.2)).
On the other hand, Proposition 2.8.2(ii) (applied to f = x and g = y) yields

(xy)⊥ a = y⊥

 x⊥a︸︷︷︸
=(ω(x))⊥a

 = y⊥
(

(ω (x))⊥ a
)
.

Comparing this with

(ω (x) y)⊥ a = y⊥
(

(ω (x))⊥ a
)

(by Proposition 2.8.2(ii) (applied to f = ω (x) and g = y)) ,

we obtain

(xy)⊥ a =

ω (x) y︸ ︷︷ ︸
=yω(x)


⊥

a = (yω (x))⊥ a = (ω (x))⊥

 y⊥a︸︷︷︸
=(ω(y))⊥a


(by Proposition 2.8.2(ii) (applied to f = y and g = ω (x) ))

= (ω (x))⊥
(

(ω (y))⊥ a
)

= (ω (xy))⊥ a (by (13.98.3)) .

Thus, xy is an element of Λ and satisfies (xy)⊥ a = (ω (xy))⊥ a. Hence,

xy ∈
{
g ∈ Λ | g⊥a = (ω (g))⊥ a

}
= D (by (13.98.1)) ,

qed.



750 DARIJ GRINBERG AND VICTOR REINER

Combining these two observations, we conclude that the set D is a k-subalgebra of Λ (since we al-
ready know that D is a k-submodule of Λ). In view of (13.98.1), this rewrites as follows: The set{
g ∈ Λ | g⊥a = (ω (g))

⊥
a
}

is a k-subalgebra of Λ. This solves Exercise 2.9.24(a).

(b) We have

(13.98.4) e⊥k a = h⊥k a for each positive integer k

(by assumption). Thus,

(13.98.5) en ∈ D for each n ∈ {1, 2, 3, . . .}
772.

But Proposition 2.4.1 shows that the family (en)n∈{1,2,3,...} generates Λ as a k-algebra. Thus, the smallest

k-subalgebra of Λ that contains all elements of the family (en)n∈{1,2,3,...} is Λ itself. In other words, if B is

a k-subalgebra of Λ satisfying

(en ∈ B for each n ∈ {1, 2, 3, . . .}) ,
then B = Λ. Applying this to B = D, we conclude that D = Λ (because D is a k-subalgebra of Λ, and
because it satisfies (13.98.5)).

Now, let f ∈ Λ. Then, f ∈ Λ = D =
{
g ∈ Λ | g⊥a = (ω (g))

⊥
a
}

(by (13.98.1)). In other words, f is an

element of Λ and satisfies f⊥a = (ω (f))
⊥
a.

Now, forget that we fixed f . We thus have proven that f⊥a = (ω (f))
⊥
a for each f ∈ Λ. Renaming f as g

in this statement, we conclude the following: g⊥a = (ω (g))
⊥
a for each g ∈ Λ. This solves Exercise 2.9.24(b).

13.99. Solution to Exercise 2.9.25. Solution to Exercise 2.9.25. Let us begin by proving a few simple
lemmas:

Lemma 13.99.1. Let n ∈ N. Let ρ be the partition (n− 1, n− 2, . . . , 1). Let µ ∈ Par. Then, ρ/µ is a
horizontal strip if and only if ρ/µ is a vertical strip.

Lemma 13.99.1 becomes visually obvious if one draws in one’s mind the Ferrers diagram of the staircase
partition ρ and attempts to cut off either a horizontal strip or a vertical strip from it (in either case, the
only possibilities are to remove some of its corners). But let us give a rigorous proof:

Proof of Lemma 13.99.1. Write the partition µ in the form µ = (µ1, µ2, µ3, . . .). Write the partition ρ in the
form ρ = (ρ1, ρ2, ρ3, . . .). Then,

(ρ1, ρ2, ρ3, . . .) = ρ = (n− 1, n− 2, . . . , 1) = (n− 1, n− 2, . . . , 1, 0, 0, 0, . . .) .

Hence,

(13.99.1) ρi =

{
n− i, if i < n;

0, if i ≥ n
for each positive integer i.

Now, we are going to prove the following two claims:

Claim 1: If ρ/µ is a horizontal strip, then ρ/µ is a vertical strip.

Claim 2: If ρ/µ is a vertical strip, then ρ/µ is a horizontal strip.

772Proof of (13.98.5): Let n ∈ {1, 2, 3, . . .}. Thus, n is a positive integer. Hence, ω (en) = hn (by the definition of ω). Thus,ω (en)︸ ︷︷ ︸
=hn


⊥

a = h⊥n a. But (13.98.4) (applied to k = n) yields e⊥n a = h⊥n a. Comparing this with (ω (en))⊥ a = h⊥n a, we find

e⊥n a = (ω (en))⊥ a. Hence, en is an element of Λ and satisfies e⊥n a = (ω (en))⊥ a. Therefore,

en ∈
{
g ∈ Λ | g⊥a = (ω (g))⊥ a

}
= D (by (13.98.1)) ,

qed.
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Proof of Claim 1: Assume that ρ/µ is a horizontal strip. We must then prove that ρ/µ is a vertical strip.
We have µ ⊆ ρ (since ρ/µ is a horizontal strip). Exercise 2.7.5(a) (applied to λ = ρ and λi = ρi) yields

that ρ/µ is a horizontal strip if and only if every i ∈ {1, 2, 3, . . .} satisfies µi ≥ ρi+1. Thus,

(13.99.2) every i ∈ {1, 2, 3, . . .} satisfies µi ≥ ρi+1

(since ρ/µ is a horizontal strip).
Now, every i ∈ {1, 2, 3, . . .} satisfies ρi ≤ µi+1 773. But Exercise 2.7.5(b) (applied to λ = ρ and λi = ρi)

yields that ρ/µ is a vertical strip if and only if every i ∈ {1, 2, 3, . . .} satisfies ρi ≤ µi + 1. Thus, ρ/µ is a
vertical strip (since every i ∈ {1, 2, 3, . . .} satisfies ρi ≤ µi + 1). This proves Claim 1.

Proof of Claim 2: Assume that ρ/µ is a vertical strip. We must then prove that ρ/µ is a horizontal strip.
We know that ρ/µ is a vertical strip. In particular, µ ⊆ ρ.
Exercise 2.7.5(b) (applied to λ = ρ and λi = ρi) yields that ρ/µ is a vertical strip if and only if every

i ∈ {1, 2, 3, . . .} satisfies ρi ≤ µi + 1. Thus,

(13.99.3) every i ∈ {1, 2, 3, . . .} satisfies ρi ≤ µi + 1

(since ρ/µ is a vertical strip).
Now, every i ∈ {1, 2, 3, . . .} satisfies µi ≥ ρi+1

774. But Exercise 2.7.5(a) (applied to λ = ρ and λi = ρi)
yields that ρ/µ is a horizontal strip if and only if every i ∈ {1, 2, 3, . . .} satisfies µi ≥ ρi+1. Thus, ρ/µ is a
horizontal strip (since every i ∈ {1, 2, 3, . . .} satisfies µi ≥ ρi+1). This proves Claim 2.

773Proof. Let i ∈ {1, 2, 3, . . .}. We must show that ρi ≤ µi + 1.

If i ≥ n− 1, then

ρi =

{
n− i, if i < n;

0, if i ≥ n
(by (13.99.1))

≤
{

1, if i < n;

0, if i ≥ n
(since n− i ≤ 1 (because i ≥ n− 1))

≤
{

1, if i < n;

1, if i ≥ n
(since 0 ≤ 1)

= 1 = 0︸︷︷︸
≤µi

+1 ≤ µi + 1.

Hence, if i ≥ n − 1, then ρi ≤ µi + 1 holds. Thus, for the rest of this proof of ρi ≤ µi + 1, we WLOG assume that we don’t

have i ≥ n− 1.

We have i < n−1 (since we don’t have i ≥ n−1). But (13.99.1) yields ρi =

{
n− i, if i < n;

0, if i ≥ n
= n−i (since i < n−1 < n).

But from i < n − 1, we obtain i + 1 < n. Now, (13.99.1) (applied to i + 1 instead of i) yields ρi+1 ={
n− (i+ 1) , if i+ 1 < n;

0, if i+ 1 ≥ n
= n− (i+ 1) (since i+ 1 < n).

But (13.99.2) yields µi ≥ ρi+1 = n−(i+ 1) = n−i−1. Adding 1 to both sides of this inequality, we obtain µi+1 ≥ n−i = ρi
(since ρi = n− i). Hence, ρi ≤ µi + 1. This completes our proof of ρi ≤ µi + 1.

774Proof. Let i ∈ {1, 2, 3, . . .}. We must show that µi ≥ ρi+1.

Applying (13.99.1) to i+ 1 instead of i, we obtain ρi+1 =

{
n− (i+ 1) , if i+ 1 < n;

0, if i+ 1 ≥ n
.

If i+ 1 ≥ n, then

ρi+1 =

{
n− (i+ 1) , if i+ 1 < n;

0, if i+ 1 ≥ n
= 0 (since i+ 1 ≥ n)

≤ µi.

In other words, if i + 1 ≥ n, then µi ≥ ρi+1. Thus, for the rest of this proof of µi ≥ ρi+1, we WLOG assume that we don’t
have i+ 1 ≥ n.

We have i + 1 < n (since we don’t have i + 1 ≥ n). Thus, ρi+1 =

{
n− (i+ 1) , if i+ 1 < n;

0, if i+ 1 ≥ n
= n − (i+ 1) (since

i+ 1 < n).

But (13.99.1) yields ρi =

{
n− i, if i < n;

0, if i ≥ n
= n− i (since i < i+ 1 < n).

From (13.99.3), we obtain ρi ≤ µi + 1, so that µi + 1 ≥ ρi = n− i. Subtracting 1 from both sides of this inequality, we find
µi ≥ n− i− 1 = n− (i+ 1) = ρi+1 (since ρi+1 = n− (i+ 1)). This completes our proof of µi ≥ ρi+1.
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Combining Claim 1 with Claim 2, we conclude that ρ/µ is a horizontal strip if and only if ρ/µ is a vertical
strip. Lemma 13.99.1 is thus proven. �

Lemma 13.99.2. Let n ∈ N. Let ρ be the partition (n− 1, n− 2, . . . , 1). Let k be a positive integer. Then,
e⊥k sρ = h⊥k sρ.

Proof of Lemma 13.99.2. Fix ν ∈ Par. We have the following logical equivalence:

(ρ/ν is a horizontal k-strip)

⇐⇒ (ρ/ν is a horizontal strip and has size k)

(by the definition of a “horizontal k-strip”)

⇐⇒ (ρ/ν is a horizontal strip and satisfies |ρ/ν| = k) .(13.99.4)

Similarly, we also have the following logical equivalence:

(ρ/ν is a vertical k-strip)

⇐⇒ (ρ/ν is a vertical strip and satisfies |ρ/ν| = k) .(13.99.5)

But Lemma 13.99.1 (applied to µ = ν) shows that ρ/ν is a horizontal strip if and only if ρ/ν is a vertical
strip. In other words, we have the following logical equivalence:

(13.99.6) (ρ/ν is a horizontal strip) ⇐⇒ (ρ/ν is a vertical strip) .

Now, we have the following chain of logical equivalences:

(ρ/ν is a horizontal k-strip)

⇐⇒

ρ/ν is a horizontal strip︸ ︷︷ ︸
⇐⇒ (ρ/ν is a vertical strip)

(by (13.99.6))

and satisfies |ρ/ν| = k

 (by (13.99.4))

⇐⇒ (ρ/ν is a vertical strip and satisfies |ρ/ν| = k)

⇐⇒ (ρ/ν is a vertical k-strip) (by (13.99.5)) .(13.99.7)

Now, forget that we fixed ν. We thus have proven the equivalence (13.99.7) for each ν ∈ Par.
Lemma 13.77.2(a) (applied to γ = ρ) yields

h⊥k sρ =
∑
ν∈Par;
ρ/ν is a

horizontal k-strip︸ ︷︷ ︸
=

∑
ν∈Par;
ρ/ν is a

vertical k-strip
(by the equivalence (13.99.7))

sν =
∑
ν∈Par;
ρ/ν is a

vertical k-strip

sν .

Comparing this with

e⊥k sρ =
∑
ν∈Par;
ρ/ν is a

vertical k-strip

sν (by Lemma 13.77.2(b) (applied to γ = ρ)) ,

we obtain e⊥k sρ = h⊥k sρ. This proves Lemma 13.99.2. �

Lemma 13.99.3. Let λ ∈ Par. Then, ω (sλ) = sλt .

Proof of Lemma 13.99.3. We have ∅ ⊆ λ. Hence, the first equation of (2.4.15) (applied to µ = ∅) yields
ω
(
sλ/∅

)
= sλt/∅t = sλt/∅ (since ∅t = ∅).
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But recall that sλ = sλ/∅. The same argument (but applied to λt instead of λ) shows that sλt = sλt/∅.

Comparing this with ω

 sλ︸︷︷︸
=sλ/∅

 = ω
(
sλ/∅

)
= sλt/∅, we obtain ω (sλ) = sλt . This proves Lemma 13.99.3.

�

We can now solve Exercise 2.9.25 easily:
Solution to Exercise 2.9.25. Lemma 13.99.2 shows that e⊥k sρ = h⊥k sρ for each positive integer k. Hence,

Exercise 2.9.24(b) (applied to a = sρ) yields that

(13.99.8) g⊥sρ = (ω (g))
⊥
sρ for each g ∈ Λ.

Recall that

(13.99.9) s⊥µ (sλ) = sλ/µ for every λ ∈ Par and µ ∈ Par .

Fix µ ∈ Par. Then, Lemma 13.99.3 (applied to µ instead of λ) shows that ω (sµ) = sµt . Now, (13.99.8)
(applied to g = sµ) yields

s⊥µ sρ =

ω (sµ)︸ ︷︷ ︸
=sµt


⊥

sρ = (sµt)
⊥
sρ = (sµt)

⊥
(sρ) = sρ/µt

(by (13.99.9) (applied to ρ and µt instead of λ and µ)). Comparing this with

s⊥µ sρ = s⊥µ (sρ) = sρ/µ (by (13.99.9) (applied to λ = ρ)) ,

this yields sρ/µ = sρ/µt . This solves Exercise 2.9.25.

13.100. Solution to Exercise 3.1.6. Solution to Exercise 3.1.6. Let A be as in Proposition 3.1.2, and
assume that k = Q. We have p ∩ I2 = 0 (by Proposition 3.1.2 (b)). Thus, Lemma 3.1.4 yields that A is
commutative. Since A is self-dual, this yields that A is cocommutative. Hence, Exercise 1.5.14 (d) shows that
the k-algebra A is generated by the k-submodule p. In other words, A is the k-subalgebra of A generated
by the k-submodule p. Since the k-subalgebra of A generated by the k-submodule p is

∑
n≥0 p

n (this is
because generally, if B is a k-algebra, and U is a k-submodule of B, then the k-subalgebra of B generated
by the k-submodule U is

∑
n≥0 U

n), this rewrites as follows: A is
∑
n≥0 p

n. Hence,

A =
∑
n≥0

pn = p0︸︷︷︸
=k·1A

+ p1︸︷︷︸
=p

+
∑
n≥2

pn︸︷︷︸
=p·p·pn−2

= k · 1A + p +
∑
n≥2

p︸︷︷︸
⊂I

· p︸︷︷︸
⊂I

·pn−2

⊂ k · 1A + p +
∑
n≥2

I · I · pn−2︸ ︷︷ ︸
⊂I

(since I is an ideal of A)

⊂ k · 1A + p +
∑
n≥2

I · I︸ ︷︷ ︸
⊂I·I=I2

⊂ k · 1A + p + I2.

Now, let a ∈ I. Then, ε (a) = 0 (by the definition of I). But we know that a ∈ I ⊂ A ⊂ k · 1A + p + I2.
Hence, there exist some λ ∈ k and some a′ ∈ p+ I2 such that a = λ · 1A + a′. Since a′ ∈ p+ I2 ⊂ I, we have
ε (a′) = 0. Now, ε (a) = 0, so that

0 = ε

 a︸︷︷︸
=λ·1A+a′

 = ε (λ · 1A + a′) = λ ε (1A)︸ ︷︷ ︸
=1

+ ε (a′)︸ ︷︷ ︸
=0

= λ,

so that λ = 0 and thus a = λ︸︷︷︸
=0

·1A + a′ = a′ ∈ p + I2. We thus have shown that every a ∈ I satisfies

a ∈ p + I2. Hence, I ⊂ p + I2. Combined with p + I2 ⊂ I, this yields I = p + I2, and thus I = p⊕ I2 (since
p ∩ I2 = 0). This proves Proposition 3.1.2(c).
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13.101. Solution to Exercise 3.1.9. Solution to Exercise 3.1.9. Corollary 2.5.17(a) yields that (hλ)λ∈Par

and (mλ)λ∈Par are dual bases with respect to the Hall inner product on Λ. In other words,

(hλ,mµ) = δλ,µ for any partitions λ and µ.

Thus, every nonempty partition λ satisfies (hλ,m∅) = δλ,∅ = 0. Hence, every nonempty partition λ satisfies

(13.101.1)

hλ, 1︸︷︷︸
=m∅

 = (hλ,m∅) = 0.

Recall the following fundamental fact from linear algebra: If k is a commutative ring, if A is a k-module,
if (·, ·) : A × A → k is a symmetric k-bilinear form on A, and if (uλ)λ∈L and (vλ)λ∈L are two k-bases of A
which are dual to each other with respect to the form (·, ·) (where L is some indexing set), then every a ∈ A
satisfies

(13.101.2) a =
∑
λ∈L

(uλ, a) vλ.

We can apply this fact to A = Λ, L = Par, (uλ)λ∈L = (hλ)λ∈Par and (vλ)λ∈L = (mλ)λ∈Par (since the bases
(hλ)λ∈Par and (mλ)λ∈Par of Λ are dual to each other with respect to the Hall inner product (·, ·)). As a
result, we obtain that every a ∈ Λ satisfies

(13.101.3) a =
∑
λ∈Par

(hλ, a)mλ.

Now, let us solve the exercise. We need to show that for every a ∈ Λ, the element a of Λ is primitive if and
only if a lies in the k-linear span of p1, p2, p3, .... The “if” direction of this statement is obvious775. Hence,
we only need to prove the “only if” statement. In other words, we need to prove that if a is primitive, then
a lies in the k-linear span of p1, p2, p3, .... So let us assume that a is primitive. That is, ∆ (a) = 1⊗a+a⊗1.

For every x ∈ Λ and y ∈ Λ, we have (using the Sweedler notation)

x⊥ (a) =
∑
(a)

(x, a1) a2 = (x, 1) a+ (x, a) 1

since
∑
(a)

a1 ⊗ a2 = ∆ (a) = 1⊗ a+ a⊗ 1


and therefore

(xy, a) =

y, x⊥ (a)︸ ︷︷ ︸
=(x,1)a+(x,a)1

 (by Proposition 2.8.2(i))

= (y, (x, 1) a+ (x, a) 1) = (x, 1) (y, a) + (x, a) (y, 1) = (x, 1) (y, a) + (y, 1) (x, a) .(13.101.4)

Using this, we can easily obtain (1, a) = 0 776.
Now, using (13.101.4), it is easy to see that

(13.101.5) (hλ, a) = 0 for every partition λ satisfying ` (λ) ≥ 2.

775because Proposition 2.3.6(i) shows that each of p1, p2, p3, ... is primitive, and therefore every element of their k-linear
span is also primitive

776Indeed, applying (13.101.4) to x = 1 and y = 1, we obtain (1, a) = (1, 1)︸ ︷︷ ︸
=1

(1, a) + (1, 1)︸ ︷︷ ︸
=1

(1, a) = (1, a) + (1, a) = 2 (1, a), so

that (1, a) = 0, qed.
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777 Now, (13.101.3) becomes

a =
∑
λ∈Par

(hλ, a)mλ =
∑
λ∈Par;
`(λ)=0

(hλ, a)mλ

︸ ︷︷ ︸
=(h∅,a)m∅

+
∑
λ∈Par;
`(λ)=1

(hλ, a)mλ

︸ ︷︷ ︸
=
∑
n≥1(h(n),a)m(n)

+
∑
λ∈Par;
`(λ)≥2

(hλ, a)︸ ︷︷ ︸
=0

(by (13.101.5))

mλ

=

 h∅︸︷︷︸
=1

, a

m∅ +
∑
n≥1

(
h(n), a

)
m(n)︸︷︷︸
=pn

+
∑
λ∈Par;
`(λ)≥2

0mλ

︸ ︷︷ ︸
=0

= (1, a)︸ ︷︷ ︸
=0

m∅ +
∑
n≥1

(
h(n), a

)
pn

=
∑
n≥1

(
h(n), a

)
pn.

Thus, a lies in the k-linear span of p1, p2, p3, .... This completes the solution to Exercise 3.1.9.

13.102. Solution to Exercise 4.1.1. Solution to Exercise 4.1.1.
(a) This is straightforward: Let g1 and g2 be two elements of G belonging to the same conjugacy class.

Thus, g1 and g2 are conjugate. In other words, there exists some x ∈ G such that g1 = xg2x
−1. Consider

this x.
By the definition of IndGH f , we have(
IndGH f

)
(g1) =

1

|H|
∑
k∈G:

kg1k
−1∈H

f
(
kg1k

−1
)

=
1

|H|
∑
k∈G:

kxg2x
−1k−1∈H

f
(
kxg2x

−1k−1
) (

since g1 = xg2x
−1
)

=
1

|H|
∑
k∈G:

kxg2(kx)−1∈H

f
(
kxg2 (kx)

−1
) (

since x−1k−1 = (kx)
−1
)

=
1

|H|
∑
k∈G:

kg2k
−1∈H

f
(
kg2k

−1
)

(here, we have substituted k for kx in the sum, because the map G→ G, k → kx is a bijection). Compared
with (

IndGH f
)

(g2) =
1

|H|
∑
k∈G:

kg2k
−1∈H

f
(
kg2k

−1
)

(this follows from the definition of IndGH f), this yields
(

IndGH f
)

(g1) =
(

IndGH f
)

(g2).

Now, forget that we fixed g1 and g2. We thus have proven that if g1 and g2 are two elements of G belonging

to the same conjugacy class, then
(

IndGH f
)

(g1) =
(

IndGH f
)

(g2). In other words, the map IndGH f is constant

777Proof of (13.101.5): Let λ be a partition satisfying ` (λ) ≥ 2. Write the partition λ in the form λ = (λ1, λ2, ..., λ`)
with ` = ` (λ). Then, λ1, λ2, ..., λ` are positive integers. Let ν be the partition (λ2, λ3, ..., λ`); then, ν is nonempty (since
` = ` (λ) ≥ 2), so that (hν , 1) = 0 (by (13.101.1), applied to ν instead of λ). Also,

(
h(λ1), 1

)
= 0 (by (13.101.1), applied to (λ1)

instead of λ).
By the definition of hλ, we have hλ = hλ1

hλ2
...hλ` = hλ1︸︷︷︸

=h(λ1)

(
hλ2

hλ3
...hλ`

)︸ ︷︷ ︸
=hν

(since ν=(λ2,λ3,...,λ`))

= h(λ1)hν . Thus,

 hλ︸︷︷︸
=h(λ1)hν

, a

 =
(
h(λ1)hν , a

)
=
(
h(λ1), 1

)︸ ︷︷ ︸
=0

(hν , a) + (hν , 1)︸ ︷︷ ︸
=0

(
h(λ1), a

) (
by (13.101.4), applied to x = h(λ1) and y = hν

)
= 0 + 0 = 0.

This proves (13.101.5).
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on conjugacy classes. Hence, IndGH f is a class function on G. In other words, IndGH f ∈ RC (G). This solves
part (a) of the exercise.

(b) We have G =
⊔
j∈J Hj. Thus, every k ∈ G can be uniquely written in the form hj for some j ∈ J

and h ∈ H. Hence,

∑
k∈G:

kgk−1∈H

f
(
kgk−1

)
=

∑
j∈J; h∈H:

(hj)g(hj)−1∈H︸ ︷︷ ︸
=

∑
j∈J; h∈H:

hjgj−1h−1∈H

=
∑

j∈J; h∈H:
jgj−1∈H

(because under the condition that h∈H,

the relation hjgj−1h−1∈H is equivalent
to the relation jgj−1∈H)

f

(hj) g (hj)
−1︸ ︷︷ ︸

=hjgj−1h−1



=
∑

j∈J; h∈H:
jgj−1∈H︸ ︷︷ ︸

=
∑
j∈J:

jgj−1∈H

∑
h∈H

f
(
hjgj−1h−1

)︸ ︷︷ ︸
=f(jgj−1)

(since f is a class function on H,

and hjgj−1h−1 is H-conjugate to jgj−1)

=
∑
j∈J:

jgj−1∈H

∑
h∈H

f
(
jgj−1

)
︸ ︷︷ ︸

=|H|f(jgj−1)

= |H|
∑
j∈J:

jgj−1∈H

f
(
jgj−1

)
.(13.102.1)

Now, the definition of IndGH f yields(
IndGH f

)
(g) =

1

|H|
∑
k∈G:

kgk−1∈H

f
(
kgk−1

)
︸ ︷︷ ︸

=|H|
∑
j∈J:

jgj−1∈H

f(jgj−1)

=
∑
j∈J:

jgj−1∈H

f
(
jgj−1

)
.

This solves part (b) of the exercise.

13.103. Solution to Exercise 4.1.2. Solution to Exercise 4.1.2. We have CG⊗CHCH ∼= CG as (CG,CH)-
bimodules, and thus also as (CG,CI)-bimodules778.

By the definition of induction, we have IndHI U = CH ⊗CI U . But by the definition of induction, we also
have

IndGH IndHI U = CG⊗CH IndHI U︸ ︷︷ ︸
=CH⊗CIU

= CG⊗CH (CH ⊗CI U)

∼= (CG⊗CH CH)︸ ︷︷ ︸
∼=CG

(as (CG,CI)-bimodules)

⊗CIU (by the associativity of the tensor product)

∼= CG⊗CI U = IndGI U

(since IndGI U = CG⊗CI U (by the definition of induction)). This solves Exercise 4.1.2.

778since the right CI-module structures on CG ⊗CH CH and on CG are obtained from the respective right CH-module

structures by restriction
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13.104. Solution to Exercise 4.1.3. Solution to Exercise 4.1.3. The solution rests upon the following
general fact:

Proposition 13.104.1. Let k be a commutative ring. Let A, B, C, A′, B′ and C ′ be six k-algebras. Let
P be an (A,B)-bimodule779. Let Q be a (B,C)-bimodule. Let P ′ be an (A′, B′)-bimodule. Let Q′ be a
(B′, C ′)-bimodule. Then,

(P ⊗ P ′)⊗B⊗B′ (Q⊗Q′) ∼= (P ⊗B Q)⊗ (P ′ ⊗B′ Q′)
as (A⊗A′, C ⊗ C ′)-bimodules. Here, all ⊗ signs without subscript stand for ⊗k.

This proposition is proven by straightforward (repeated) application of the universal property of the tensor
product. (Of course, the (A⊗A′, C ⊗ C ′)-bimodule isomorphism (P ⊗ P ′)⊗B⊗B′ (Q⊗Q′)→ (P ⊗B Q)⊗
(P ′ ⊗B′ Q′) sends every (p⊗ p′)⊗B⊗B′ (q ⊗ q′) to (p⊗B q)⊗ (p′ ⊗B q′).) We leave all details to the reader.

Now, let us come to the solution of Exercise 4.1.3.780 We want to prove the isomorphism

IndG1×G2

H1×H2
(U1 ⊗ U2) ∼=

(
IndG1

H1
U1

)
⊗
(

IndG2

H2
U2

)
of C [G1 ×G2]-modules. Recalling the definition of Ind, we rewrite this as

(13.104.1) C [G1 ×G2]⊗C[H1×H2] (U1 ⊗ U2) ∼= (CG1 ⊗CH1
U1)⊗ (CG2 ⊗CH2

U2) .

But Proposition 13.104.1 (applied to k = C, A = CG1, B = CH1, C = C, A′ = CG2, B′ = CH2, C ′ = C,
P = CG1, Q = U1, P ′ = CG2 and Q′ = U2) yields

(CG1 ⊗ CG2)⊗CH1⊗CH2
(U1 ⊗ U2) ∼= (CG1 ⊗CH1

U1)⊗ (CG2 ⊗CH2
U2)

as (CG1 ⊗ CG2,C⊗ C)-bimodules (thus, as left CG1 ⊗ CG2-modules). In order to derive (13.104.1) from
this isomorphism, we need to realize that:

• there exist algebra isomorphisms C [G1 ×G2]→ CG1 ⊗CG2 and C [H1 ×H2]→ CH1 ⊗CH2 which
commute with the canonical inclusion maps C [H1 ×H2]→ C [G1 ×G2] and CH1 ⊗ CH2 → CG1 ⊗
CG2;

• when we identify C [H1 ×H2] with CH1 ⊗CH2 along the isomorphism C [H1 ×H2]→ CH1 ⊗CH2,
the CH1 ⊗ CH2-module U1 ⊗ U2 becomes exactly the C [H1 ×H2]-module U1 ⊗ U2;

• when we identify C [G1 ×G2] with CG1 ⊗ CG2 along the isomorphism C [G1 ×G2] → CG1 ⊗ CG2,
the CG1 ⊗ CG2-module (CG1 ⊗CH1

U1)⊗ (CG2 ⊗CH2
U2) becomes exactly the C [G1 ×G2]-module

(CG1 ⊗CH1
U1)⊗ (CG2 ⊗CH2

U2).

These facts are all trivial to verify (of course, the isomorphism C [G1 ×G2]→ CG1⊗CG2 is given by sending
every t(g1,g2) to tg1

⊗ tg2
, and similarly for the other isomorphism). Thus, (13.104.1) holds, and the exercise

is solved.

13.105. Solution to Exercise 4.1.4. Solution to Exercise 4.1.4. In the following, we will write g for the
element tg of CG whenever g is an element of G. This is a relatively common abuse of notation, and it is
harmless because the map G → CG, g 7→ tg is an injective homomorphism of multiplicative monoids (so
tgh = tgth and t1 = 1, which means that we won’t run into ambiguities denoting tg by g) and because every
CG-module M , every m ∈M and every g ∈ G satisfy gm = tgm.

Recall that IndGH U is defined as the CG-module CG⊗CHU , where CG is regarded as a (CG,CH)-bimodule.
The C-vector space CG is endowed with both a (CG,CH)-bimodule structure (this is the structure used in

the definition of IndGH U) and a (CH,CG)-bimodule structure (this is the structure used in the statement of
Exercise 4.1.4). Thus, CG has a left CG-module structure, a right CH-module structure, a left CH-module
structure, and a right CG-module structure. All four of these structures are simply given by multiplication
inside CG (since CH is a C-subalgebra of CG). Therefore, notations like xy with x and y being two elements

779As usual, we understand the notion of a bimodule to be defined over k; that is, the left A-module structure and the right
B-module structure of an (A,B)-bimodule must restrict to one and the same k-module structure.

780The following solution involves some handwaving: We are going to use certain isomorphisms to identify C [G1 ×G2] with
CG1 ⊗ CG2 and to identify C [H1 ×H2] with CH1 ⊗ CH2. See the solution of Exercise 4.1.15 for an example of how to avoid

this kind of handwaving. (Actually, Exercise 4.1.14(b) shows that Exercise 4.1.15 is a generalization of Exercise 4.1.3.)
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of CG or CH will never be ambiguous: While they might be interpreted in different ways, all of the possible
interpretations will produce identical results.

We recall that HomCH (CG,U) is the left CG-module consisting of all left CH-module homomorphisms
from CG to U . This uses only the (CH,CG)-bimodule structure on CG that was used in the statement of

Exercise 4.1.4 (but not the (CG,CH)-bimodule structure that was used in the definition of IndGH U).
Let J be a system of distinct representatives for the right H-cosets in G. Then, G =

⊔
j∈J Hj.

We now define a map α : HomCH (CG,U)→ CG⊗CH U by setting

α (f) =
∑
j∈J

j−1 ⊗CH f (j) for all f ∈ HomCH (CG,U) .

This α is a map HomCH (CG,U) → IndGH U (since IndGH U = CG ⊗CH U). It is easy to see that this map
α does not depend on the choice of J . (In fact, if j1 and j2 are two elements of G lying in the same right
H-coset, and if f ∈ HomCH (CG,U), then it is easy to see that j−1

1 ⊗CH f (j1) = j−1
2 ⊗CH f (j2).) In other

words, if J ′ is any system of distinct representatives for the right H-cosets in G (which may and may not
be equal to J), then

(13.105.1) α (f) =
∑
j∈J′

j−1 ⊗CH f (j) for all f ∈ HomCH (CG,U) .

Notice that if g ∈ G is arbitrary, then Jg = {jg | j ∈ J} is also a system of distinct representatives for the
right H-cosets in G.

We will show that α is a CG-module isomorphism.
First, let us prove that α is a left CG-module homomorphism. In fact, any f ∈ HomCH (CG,U) and

g ∈ G satisfy

α (gf) =
∑
j∈J

j−1︸︷︷︸
=g(jg)−1

⊗CH (gf) (j)︸ ︷︷ ︸
=f(jg)

(by the definition of gf)

=
∑
j∈J

g (jg)
−1 ⊗CH f (jg)

=
∑
j∈Jg

gj−1 ⊗CH f (j) (here, we substituted j for jg in the sum)

= g ·

∑
j∈Jg

j−1 ⊗CH f (j)


︸ ︷︷ ︸

=α(f)
(by (13.105.1), applied to J′=Jg)

= g · α (f) .

The map α is thus a homomorphism of left G-sets. Since α is furthermore C-linear, this yields that α is a
left CG-module homomorphism.

We now are going to construct an inverse for α. This will be more cumbersome.
For every g ∈ G and every p ∈ CG, we denote by εg (p) the g-coordinate of p with respect to the basis G

of the C-vector space CG. By the definition of “coordinate”, we have

(13.105.2) q =
∑
g∈G

εg (q) g for every q ∈ CG.

For every g ∈ G, we have defined a map εg : CG → C (because we have defined an element εg (p) for every
p ∈ CG). This map εg is C-linear. Here are some simple properties of this map:

• For every g ∈ G and h ∈ G, we have

(13.105.3) εg (h) = δg,h.

781

• We have

(13.105.4) ε1 (pq) = ε1 (qp) for all p ∈ CG and q ∈ CG.

781Proof. Let g ∈ G and h ∈ G. Then, εg (h) is defined as the g-coordinate of h with respect to the basis G of the C-vector

space CG. This g-coordinate is precisely 1 (since h is an element of this basis G). Thus, εg (h) = 1, qed.
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782

• Moreover,

(13.105.5) ε1
(
g−1q

)
= εg (q) for every g ∈ G and q ∈ CG.

783

Now, fix q ∈ CG and u ∈ U . We let fq,u be the map CG→ U defined by

(13.105.6) fq,u (p) =
∑
h∈H

ε1 (hpq)h−1u for every p ∈ CG.

It is obvious that this map fq,u is C-linear. We will show that fq,u is a left CH-module homomorphism.
The map fq,u is a homomorphism of left H-sets784. Since fq,u is furthermore C-linear, this yields that

fq,u is a left CH-module homomorphism. Hence, fq,u ∈ HomCH (CG,U).
Now, forget that we fixed q and u. We thus have defined a map fq,u ∈ HomCH (CG,U) for every q ∈ CG

and u ∈ U . It is easy to see that this map fq,u depends C-linearly on each of q and u. Now, define a map

β̃ : CG× U → HomCH (CG,U) by

β̃ (q, u) = fq,u for every (q, u) ∈ CG× U.

Then, β̃ is a C-bilinear map (because β̃ (q, u) = fq,u depends C-linearly on each of q and u). We are now

going to prove that the map β̃ is CH-bilinear with respect to the right CH-module structure on CG and the
left CH-module structure on U .

In fact, every h′ ∈ H, q ∈ CG and u ∈ U satisfy

(13.105.7) β̃ (q, h′u) = β̃ (qh′, u) .

782Proof. Let p ∈ CG and q ∈ CG. We need to prove the equality (13.105.4). This equality is C-linear in each of p and
q, and thus we can WLOG assume that both p and q belong to the basis G of the C-vector space CG. Assume this. Then,

pq and qp belong to G as well. Hence, (13.105.3) yields ε1 (pq) = δ1,pq and ε1 (qp) = δ1,qp. But p and q are elements of the

group G. Hence, we have 1 = pq if and only if 1 = qp (because both of these statements are equivalent to q = p−1). Therefore,
δ1,pq = δ1,qp, so that ε1 (pq) = δ1,pq = δ1,qp = ε1 (qp). This proves (13.105.4).

783Proof. Let g ∈ G and q ∈ CG. We need to prove the equality (13.105.5). This equality is C-linear in q, and thus we
can WLOG assume that q belongs to the basis G of the C-vector space CG. Assume this. Then, g−1q ∈ G as well. Hence,

(13.105.3) yields ε1
(
g−1q

)
= δ1,g−1q and εg (q) = δg,q . But g and q are elements of the group G. Hence, we have 1 = g−1q if

and only if g = q. Therefore, δ1,g−1q = δg,q , so that ε1
(
g−1q

)
= δ1,g−1q = δg,q = εg (q). This proves (13.105.5).

784Proof. In fact, for every h′ ∈ H and every p ∈ CG, we have

fq,u
(
h′p
)

=
∑
h∈H

ε1
(
hh′pq

)
h−1u (by the definition of fq,u)

=
∑
h∈H

ε1

h (h′)−1
h′︸ ︷︷ ︸

=1

pq

 (
h
(
h′
)−1

)−1

︸ ︷︷ ︸
=((h′)−1)−1

h−1=h′h−1

u

 here, we have substituted h (h′)−1 for h in the sum,

because the map H → H, h 7→ h (h′)−1 is a bijection
(since H is a group and since h′ ∈ H)


=
∑
h∈H

ε1 (hpq)h′h−1u = h′ ·
∑
h∈H

ε1 (hpq)h−1u

︸ ︷︷ ︸
=fq,u(p)

(by (13.105.6))

= h′ · fq,u (p) .

In other words, fq,u is a homomorphism of left H-sets, qed.
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785 As a consequence of this, every r ∈ CH, q ∈ CG and u ∈ U satisfy

(13.105.9) β̃ (q, ru) = β̃ (qr, u)

(by C-bilinearity of β̃). In other words, the map β̃ is CH-bilinear with respect to the right CH-module
structure on CG and the left CH-module structure on U . Hence, by the universal property of the tensor
product, we conclude that there exists a unique C-linear map β : CG ⊗CH U → HomCH (CG,U) such that
every (q, u) ∈ CG× U satisfies

(13.105.10) β (q ⊗CH u) = β̃ (q, u) .

Consider this map β. Clearly, every q ∈ CG and u ∈ U satisfy

β (q ⊗CH u) = β̃ (q, u) = fq,u

(
by the definition of β̃

)
.

Hence, every q ∈ CG, u ∈ U and p ∈ CG satisfy

(13.105.11)

β (q ⊗CH u)︸ ︷︷ ︸
=fq,u

 (p) = fq,u (p) =
∑
h∈H

ε1 (hpq)h−1u

(by (13.105.6)).
We shall now show that the maps α and β are mutually inverse. To do so, we will show that α ◦ β = id

and β ◦ α = id.

785Proof of (13.105.7): Let h′ ∈ H, q ∈ CG and u ∈ U . Then, the map H → H, h 7→ h′h is a bijection (since H is a group).

Now, let p ∈ CG. The definition of β̃ yields β̃ (q, h′u) = fq,h′u. Hence,β̃ (q, h′u)︸ ︷︷ ︸
=fq,h′u

 (p) = fq,h′u (p) =
∑
h∈H

ε1 (hpq)h−1h′u
(
by the definition of fq,h′u

)

=
∑
h∈H

ε1
(
h′hpq

) (
h′h
)−1︸ ︷︷ ︸

=h−1(h′)−1

h′u

(
here, we substituted h′h for h in the sum,

since the map H → H, h 7→ h′h is a bijection

)
=
∑
h∈H

ε1
(
h′hpq

)︸ ︷︷ ︸
=ε1(hpqh′)

(by (13.105.4), applied to

h′ and hpq instead of p and q)

h−1
(
h′
)−1

h′︸ ︷︷ ︸
=1

u

=
∑
h∈H

ε1
(
hpqh′

)
h−1u.(13.105.8)

But the definition of β̃ also yields β̃ (qh′, u) = fqh′,u. Hence,(
β̃
(
qh′, u

))
(p) = fqh′,u (p) =

∑
h∈H

ε1
(
hpqh′

)
h−1u

(
by the definition of fqh′,u

)
=
(
β̃
(
q, h′u

))
(p) (by (13.105.8)) .

Now, forget that we fixed p. We have thus proven that
(
β̃ (qh′, u)

)
(p) =

(
β̃ (q, h′u)

)
(p) for every p ∈ CG. In other words,

β̃ (qh′, u) = β̃ (q, h′u), so that β̃ (q, h′u) = β̃ (qh′, u). This proves (13.105.7).
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Let us first show that α ◦ β = id. In fact, every q ∈ CG and u ∈ U satisfy

(α ◦ β) (q ⊗CH u) = α (β (q ⊗CH u)) =
∑
j∈J

j−1 ⊗CH (β (q ⊗CH u)) (j)︸ ︷︷ ︸
=
∑
h∈H

ε1(hjq)h−1u

(by (13.105.11), applied to p=j)

(by the definition of α)

=
∑
j∈J

j−1 ⊗CH

(∑
h∈H

ε1 (hjq)h−1u

)
=
∑
j∈J

∑
h∈H

ε1 (hjq) j−1 ⊗CH h−1u︸ ︷︷ ︸
=j−1h−1⊗CHu

(since h−1∈H (since h∈H))

=
∑
j∈J

∑
h∈H

ε1 (hjq) j−1h−1︸ ︷︷ ︸
=(hj)−1

⊗CHu =
∑
j∈J

∑
h∈H

ε1 (hjq) (hj)
−1 ⊗CH u

=
∑
j∈J

∑
g∈Hj︸ ︷︷ ︸

=
∑
g∈G

(since
⊔
j∈J Hj=G)

ε1 (gq) g−1 ⊗CH u

(
here, we substituted g for hj in the second sum, since the map

H → Hj, h 7→ hj is a bijection (because G is a group)

)
=
∑
g∈G

ε1 (gq) g−1 ⊗CH u =
∑
g∈G

ε1
(
g−1q

)︸ ︷︷ ︸
=εg(q)

(by (13.105.5))

(
g−1

)−1︸ ︷︷ ︸
=g

⊗CHu

(
here, we substituted g−1 for g in the sum, since the map
G→ G, g 7→ g−1 is a bijection (since G is a group)

)

=
∑
g∈G

εg (q) g ⊗CH u =

∑
g∈G

εg (q) g


︸ ︷︷ ︸

=q
(by (13.105.2))

⊗CHu

= q ⊗CH u = id (q ⊗CH u) .

Thus, the two maps α ◦ β and id are equal on every pure tensor. Since these two maps are C-linear, this
yields that α ◦ β = id.

Next, we are going to show that β ◦ α = id.
Let f ∈ HomCH (CG,U). Let p ∈ CG. The map f is left CH-linear (since f ∈ HomCH (CG,U)), hence

C-linear. We have α (f) =
∑
j∈J j

−1⊗CH f (j) (by the definition of α). Applying the map β to this equality,
we obtain

β (α (f)) = β

∑
j∈J

j−1 ⊗CH f (j)

 =
∑
j∈J

β
(
j−1 ⊗CH f (j)

)
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(since β is a C-linear map). Thus,

(β (α (f)))︸ ︷︷ ︸
=
∑
j∈J β(j−1⊗CHf(j))

(p)

=

∑
j∈J

β
(
j−1 ⊗CH f (j)

) (p) =
∑
j∈J

(
β
(
j−1 ⊗CH f (j)

))
(p)︸ ︷︷ ︸

=
∑
h∈H

ε1(hpj−1)h−1f(j)

(by (13.105.11), applied to

q=j−1 and u=f(j))

=
∑
j∈J

∑
h∈H

ε1
(
hpj−1

)
h−1f (j) =

∑
j∈J

∑
h∈H

ε1
(
h−1pj−1

)︸ ︷︷ ︸
=ε1(j−1h−1p)

(by (13.105.4), applied to

h−1p and j−1 instead of p and q)

(
h−1

)−1︸ ︷︷ ︸
=h

f (j)

 here, we substituted h−1 for h in the second sum,
since the map H → H, h 7→ h−1 is a bijection

(because H is a group)


=
∑
j∈J

∑
h∈H

ε1

j−1h−1︸ ︷︷ ︸
=(hj)−1

p

 hf (j)︸ ︷︷ ︸
=f(hj)

(since f is left CH-linear and since h∈H⊂CH)

=
∑
j∈J

∑
h∈H

ε1

(
(hj)

−1
p
)
f (hj) =

∑
j∈J

∑
g∈Hj︸ ︷︷ ︸

=
∑
g∈G

(since
⊔
j∈J Hj=G)

ε1
(
g−1p

)
f (g)

(
here, we substituted g for hj in the second sum, since the map

H → Hj, h 7→ hj is a bijection (because G is a group)

)
=
∑
g∈G

ε1
(
g−1p

)︸ ︷︷ ︸
=εg(p)

(by (13.105.5), applied to q=p)

f (g) =
∑
g∈G

εg (p) f (g)

= f


∑
g∈G

εg (p) g︸ ︷︷ ︸
=p

(by (13.105.2))


(since f is C-linear)

= f (p) .

Now, forget that we fixed p. We thus have proven that (β (α (f))) (p) = f (p) for every p ∈ CG. In other
words, β (α (f)) = f . Hence, (β ◦ α) (f) = β (α (f)) = f = id (f).

Since we have shown this for every f , we can thus conclude that β ◦α = id. Combined with α◦β = id, this
yields that the maps α and β are mutually inverse. Hence, the map α is invertible, and thus a left CG-module
isomorphism (as we already know that α is a left CG-module homomorphism). Hence, HomCH (CG,U) ∼=
CG⊗CH U = IndGH U as left CG-modules. This solves Exercise 4.1.4.

Remark: In our solution, we explicitly constructed a CG-module isomorphism α : HomCH (CG,U) →
IndGH U . This isomorphism is functorial with respect to U . It is also independent on the choice of J (this
is not immediately clear from its definition, but it can be shown very easily, by observing that the tensor
j−1 ⊗CH f (j) for j ∈ G depends only on the coset Hj and not on j itself). One might ask whether this
isomorphism is functorial in G and H; but to make sense of this question, one has to define the category
with respect to which this functoriality is to be understood. I don’t know a good answer.
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It is also worth noting that in our solution, C could be replaced by any commutative ring. We used neither
that C is a field, nor that C has characteristic 0.

13.106. Solution to Exercise 4.1.6. Solution to Exercise 4.1.6. Consider the CG-module HomCH (CG,V )
defined as in Exercise 4.1.4. Then, Exercise 4.1.4 (applied to V instead of U) yields that this module

HomCH (CG,V ) is isomorphic to IndGH V . That is, IndGH V
∼= HomCH (CG,V ). Hence,

HomCG

(
U, IndGH V

)
∼= HomCG (U,HomCH (CG,V )). But (4.1.8) (applied to R = CG, S = CH, A = CG,

B = U and C = V ) yields HomCH (CG⊗CG U, V ) ∼= HomCG (U,HomCH (CG,V )). Altogether, we thus have

HomCG

(
U, IndGH V

)
∼= HomCG (U,HomCH (CG,V )) ∼= HomCH (CG⊗CG U, V ) .

It remains to see what the CH-module CG ⊗CG U is. By the basic properties of tensor products, the
CH-module CG ⊗CG U is isomorphic to the CH-module obtained by restricting the action of CG on the
CG-module U to the subalgebra CH. Since this latter CH-module is precisely ResGH U (in fact, this is how

ResGH U was defined!), this rewrites as follows: The CH-module CG ⊗CG U is isomorphic to ResGH U . In

other words, CG⊗CG U ∼= ResGH U . Now,

HomCG

(
U, IndGH V

)
∼= HomCH

CG⊗CG U︸ ︷︷ ︸
∼=ResGH U

, V

 ∼= HomCH
(
ResGH U, V

)
.

This solves the exercise.

13.107. Solution to Exercise 4.1.9. Solution to Exercise 4.1.9. In the following, a “Hom” symbol without
a subscript means “HomC” (rather than “HomCG” or whatever other meaning this symbol could possibly
have in the context).

If G is a group and if M and N are two CG-modules, then Hom (M,N) becomes a CG-module, with G
acting as follows: If g ∈ G and f ∈ Hom (M,N), then tgf is the C-linear map M → N sending every m ∈M
to tgf

(
tg−1m

)
. This CG-module structure is precisely the one we know from Remark 1.4.11.

Now, it is well-known (and straightforward to verify) that every two CG-modules M and N satisfy

(13.107.1) HomCG (M,N) = (Hom (M,N))
G

(where we regard HomCG (M,N) as a C-vector subspace of Hom (M,N) because every CG-linear map
M → N is a C-linear map M → N).

Let us now come to the solution of the exercise.
(a) Let ψ denote the C-linear map

Hom (V1,W1)⊗Hom (V2,W2)→ Hom (V1 ⊗ V2,W1 ⊗W2)

sending each tensor f ⊗ g to the tensor product f ⊗ g of homomorphisms. This map ψ is completely
independent of G1 and G2 (it is defined whenever V1, V2, W1 and W2 are four C-vector spaces) and is a
vector space isomorphism (this is a basic fact from linear algebra, relying only on the finite-dimensionality of
V1, V2, W1 and W2). But we can regard Hom (V1,W1) as a CG1-module, Hom (V2,W2) as a CG2-module and
Hom (V1 ⊗ V2,W1 ⊗W2) as a C [G1 ×G2]-module. Then, the map ψ is a homomorphism of C [G1 ×G2]-
modules786. Hence, this map ψ must be an isomorphism of C [G1 ×G2]-modules (being a vector space
isomorphism). As a consequence, it sends the G1 ×G2-fixed space of its domain to the G1 ×G2-fixed space
of its target:

ψ
(

(Hom (V1,W1)⊗Hom (V2,W2))
G1×G2

)
= (Hom (V1 ⊗ V2,W1 ⊗W2))

G1×G2 .

786This is easy to verify by checking that t(h1,h2) (ψ (f ⊗ g)) = ψ
(
th1

f ⊗ th2
g
)

for all (h1, h2) ∈ G1×G2, f ∈ Hom (V1,W1)

and g ∈ Hom (V2,W2).



764 DARIJ GRINBERG AND VICTOR REINER

Since

(Hom (V1,W1)⊗Hom (V2,W2))
G1×G2

= (Hom (V1,W1))
G1︸ ︷︷ ︸

=HomCG1
(V1,W1)

(by (13.107.1),
applied to G=G1, M=V1 and N=W1)

⊗ (Hom (V2,W2))
G2︸ ︷︷ ︸

=HomCG2
(V2,W2)

(by (13.107.1),
applied to G=G2, M=V2 and N=W2)(

by (4.1.15), applied to K1 = G1, K2 = G2,
U1 = Hom (V1,W1) and U2 = Hom (V2,W2)

)
= HomCG1

(V1,W1)⊗HomCG2
(V2,W2) ,

this rewrites as

ψ (HomCG1
(V1,W1)⊗HomCG2

(V2,W2)) = (Hom (V1 ⊗ V2,W1 ⊗W2))
G1×G2 .

Hence, the isomorphism ψ restricts to an isomorphism from HomCG1
(V1,W1)⊗HomCG2

(V2,W2) to

(Hom (V1 ⊗ V2,W1 ⊗W2))
G1×G2 . This restriction is precisely the C-linear map

HomCG1 (V1,W1)⊗HomCG2 (V2,W2)→ HomC[G1×G2] (V1 ⊗ V2,W1 ⊗W2)

sending each tensor f ⊗ g to the tensor product f ⊗ g of homomorphisms (i.e., the map alleged to be an
isomorphism in the statement of the exercise). So we know now that this map is an isomorphism. This
solves Exercise 4.1.9(a).

(b) Let G1 and G2 be two groups. Let Vi and Wi be finite-dimensional CGi-modules for every i ∈
{1, 2}. Exercise 4.1.9(a) provides a vector space isomorphism from HomCG1

(V1,W1)⊗ HomCG2
(V2,W2) to

HomC[G1×G2] (V1 ⊗ V2,W1 ⊗W2). As a consequence,

dimC (HomCG1 (V1,W1)⊗HomCG2 (V2,W2))

= dimC
(
HomC[G1×G2] (V1 ⊗ V2,W1 ⊗W2)

)
.(13.107.2)

Applying (4.1.1) to G1, V1 and W1 instead of G, V1 and V2, we obtain

(13.107.3) (χV1
, χW1

)G1
= dimC (HomCG1

(V1,W1)) .

Applying (4.1.1) to G2, V2 and W2 instead of G, V1 and V2, we obtain

(13.107.4) (χV2
, χW2

)G2
= dimC (HomCG2

(V2,W2)) .

Applying (4.1.1) to G1 ×G2, V1 ⊗ V2 and W1 ⊗W2 instead of G, V1 and V2, we obtain

(χV1⊗V2
, χW1⊗W2

)G1×G2
= dimC

(
HomC[G1×G2] (V1 ⊗ V2,W1 ⊗W2)

)
= dimC (HomCG1 (V1,W1)⊗HomCG2 (V2,W2)) (by (13.107.2))

= dimC (HomCG1 (V1,W1))︸ ︷︷ ︸
=(χV1

,χW1)
G1

(by (13.107.3))

·dimC (HomCG2
(V2,W2))︸ ︷︷ ︸

=(χV2
,χW2)

G2

(by (13.107.4))

= (χV1
, χW1

)G1
(χV2

, χW2
)G2

.

This proves (4.1.2). Thus, Exercise 4.1.9(b) is solved.

13.108. Solution to Exercise 4.1.10. Solution to Exercise 4.1.10. If A and B are two algebras, P
is a (B,A)-bimodule and Q is a left B-module, then HomB (P,Q) is a left A-module. Consequently,
HomCH (CG,U) is a left CG-module, and HomC[H/(H∩K)]

(
C [G/K] , UH∩K

)
is a left C [G/K]-module. Ex-

ercise 4.1.4 yields that the CG-module HomCH (CG,U) is isomorphic to IndGH U . In other words,

(13.108.1) HomCH (CG,U) ∼= IndGH U as CG-modules.

Also, Exercise 4.1.4 (applied to G/K, H/ (H ∩K) and UH∩K instead of G, H and U) yields that the

C [G/K]-module HomC[H/(H∩K)]

(
C [G/K] , UH∩K

)
is isomorphic to Ind

G/K
H/(H∩K)

(
UH∩K

)
. In other words,

(13.108.2) HomC[H/(H∩K)]

(
C [G/K] , UH∩K

) ∼= Ind
G/K
H/(H∩K)

(
UH∩K

)
as C [G/K] -modules.
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But we also have

(13.108.3) (HomCH (CG,U))
K ∼= HomC[H/(H∩K)]

(
C [G/K] , UH∩K

)
as C [G/K] -modules.

Here is just a brief sketch of the proof of (13.108.3): Let π be the canonical projection G→ G/K, and let
C [π] be the C-linear map CG → C [G/K] obtained by C-linearly extending π. Clearly, C [π] is a surjective
CG-linear C-algebra homomorphism, and we have

ker (C [π]) = 〈g − g′ | g ∈ G, g′ ∈ G, gK = g′K〉(13.108.4)

= 〈g − gk | g ∈ G, k ∈ K〉(13.108.5)

= 〈g − g′ | g ∈ G, g′ ∈ G, Kg = Kg′〉(13.108.6)

= 〈g − kg | g ∈ G, k ∈ K〉(13.108.7)

(where the 〈·〉 brackets stand for “C-span”).

Let f be an element of (HomCH (CG,U))
K

. Then, f ∈ (HomCH (CG,U))
K ⊂ HomCH (CG,U) is CH-

linear, and it can easily be shown that ker (C [π]) ⊂ ker f 787. Hence, the map f factors through the
surjective map C [π]. The resulting map C [G/K] → U is a CH-module homomorphism (since C [π] and f
were both CH-linear), and it is easy to see that its image (i.e., the image of f) is contained in UH∩K 788.
Hence, this map factors through the canonical inclusion UH∩K → U , leaving behind a map C [G/K]→ UH∩K

which we denote by Φ (f). This resulting map Φ (f) turns out to be C [H/ (H ∩K)]-linear789, thus belongs
to HomC[H/(H∩K)]

(
C [G/K] , UH∩K

)
. Since this holds for every f , we thus obtain a C-linear map

(HomCH (CG,U))
K → HomC[H/(H∩K)]

(
C [G/K] , UH∩K

)
,

f 7→ Φ (f) .

This map is invertible790 and C [G/K]-linear791, therefore an isomorphism of C [G/K]-modules. This proves
(13.108.3). All steps that were left to the reader are straightforward.

Now, IndGH U︸ ︷︷ ︸
∼=HomCH(CG,U) as CG-modules

(by (13.108.1))


K

∼= (HomCH (CG,U))
K

∼= HomC[H/(H∩K)]

(
C [G/K] , UH∩K

)
(by (13.108.3))

∼= Ind
G/K
H/(H∩K)

(
UH∩K

)
(by (13.108.2))

as C [G/K]-modules. This solves Exercise 4.1.10.

787Indeed, f ∈ (HomCH (CG,U))K . Hence, every k ∈ K satisfies kf = f . Thus, every g ∈ G and k ∈ K satisfy (kf) (g) =

f (g). But since (kf) (g) = f (gk) (by the definition of the action of G on HomCH (CG,U)), this becomes f (gk) = f (g), so that
f (g − gk) = 0. The map f therefore annihilates g−gk for all g ∈ G and k ∈ K. Due to (13.108.5), this yields f (ker (C [π])) = 0,

so that ker (C [π]) ⊂ ker f , qed.
788Proof. We want to show that the image of f is contained in UH∩K .

For this, it clearly suffices to prove that f (g) ∈ UH∩K for every g ∈ G. So fix g ∈ G. Let k ∈ H∩K. Then, k ·f (g) = f (kg)

(since f is CH-linear and k ∈ H) and f (g) = f (kg) (since k ∈ K, so that (13.108.7) yields g− kg ∈ ker (C [π]) ⊂ ker f and thus
f (g − kg) = 0). Hence, k · f (g) = f (kg) = f (g). Since this has been proven for all k ∈ H ∩K, we thus have f (g) ∈ UH∩K ,

qed.
789This is straightforward to see (everything in sight is CH-linear).
790In fact, defining the inverse is very easy (just send every map g ∈ HomC[H/(H∩K)]

(
C [G/K] , UH∩K

)
to the composition

CG
C[π]−→ C [G/K]

g−→ UH∩K
inclusion−→ U). Checking that these maps are mutually inverse is also straightforward.

791Indeed, it is easier to check that its inverse is C [G/K]-linear (this can be proven by straightforward computations).
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13.109. Solution to Exercise 4.1.11. Solution to Exercise 4.1.11. In the following, we will write g for the
element tg of CG whenever g is an element of G. This is a relatively common abuse of notation, and it is
harmless because the map G → CG, g 7→ tg is an injective homomorphism of multiplicative monoids (so
tgh = tgth and t1 = 1, which means that we won’t run into ambiguities denoting tg by g) and because every
CG-module M , every m ∈M and every g ∈ G satisfy gm = tgm. We will do the same abuse of notation for
elements of H and of K.

Inflation does not change the underlying C-vector space of a representation. Thus, InflGG/K Ind
G/K
H/K V =

Ind
G/K
H/K V as C-vector spaces. For the same reason, InflHH/K V = V as C-vector spaces.

Let πG be the canonical projection map G → G/K. This gives rise to a surjective C-algebra homomor-
phism C [πG] : CG→ C [G/K] (which sends every g ∈ G to πG (g)). We now define a C-linear map

β : CG⊗CH InflHH/K V → C [G/K]⊗C[H/K] V,

s⊗CH v 7→ (C [πG]) (s)⊗C[H/K] v.

This is easily seen to be well-defined (using the universal property of the tensor product and the observation
that every t ∈ CH satisfies (C [πG]) (t) ∈ C [H/K]).

We also want to define a map α in the opposite direction, but this will require some more work. First,
for every g ∈ G, we define a C-linear map

ag : V → CG⊗CH InflHH/K V,

v 7→ g ⊗CH v.

It is easily seen that if g1 and g2 are two elements of G satisfying πG (g1) = πG (g2), then ag1 = ag2

792.
In other words, the map ag depends only on πG (g) rather than on g itself. Thus, we can define a C-linear

map ãp : V → CG⊗CH InflHH/K V for every p ∈ G/K by choosing any g ∈ G satisfying πG (g) = p, and then

setting ãp = ag; the resulting map ãp does not depend on the choice of g.

Hence, we have defined a C-linear map ãp : V → CG⊗CH InflHH/K V for every p ∈ G/K. In other words,

we have defined an element ãp of HomC

(
V,CG⊗CH InflHH/K V

)
for every p ∈ G/K. Hence, we can define

a C-linear map

A : C [G/K]→ HomC

(
V,CG⊗CH InflHH/K V

)
,

p 7→ ãp for every p ∈ G/K

(because in order to define a C-linear map from the C-vector space C [G/K], it is enough to assign its values
on the basis G/K). Using this map A, we can now define a C-linear map

α : C [G/K]⊗C[H/K] V → CG⊗CH InflHH/K V,

s⊗C[H/K] v 7→ (A (s)) (v) .

792Indeed, let g1 and g2 be two elements of G satisfying πG (g1) = πG (g2). Then, g1 ∈ g2K, so that there exists some

k ∈ K such that g1 = g2k. Consider this k. Then, every v ∈ V satisfies

ag1 (v) = g1︸︷︷︸
=g2k

⊗CHv (by the definition of ag1 )

= g2k ⊗CH v = g2 ⊗CH kv︸︷︷︸
=v

(since k∈K acts trivially

on InflHH/K V )

(since k lies in K ⊂ H, and thus can be moved past the ⊗CH sign)

= g2 ⊗CH v = ag2 (v) (by the definition of ag2 ) .

Thus, ag1 = ag2 , qed.



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 767

It is again easy to check that this is well-defined793. It is straightforward to show that α ◦ β = id (indeed,

this only needs to be proven on tensors of the form g ⊗CH v for g ∈ G and v ∈ InflHH/K V , because the

C-vector space CG⊗CH InflHH/K V is spanned by such tensors; but on such tensors it is very easy to check)

and β ◦α = id (using a similar argument). Thus, the maps α and β are mutually inverse, and therefore β is

invertible. But we can regard β as a map from IndGH InflHH/K V to InflGG/K Ind
G/K
H/K V (since IndGH InflHH/K V =

CG⊗CH InflHH/K V and InflGG/K Ind
G/K
H/K V = Ind

G/K
H/K V = C [G/K]⊗C[H/K] V as C-vector spaces), and it is

easy to verify that β becomes a CG-module homomorphism when regarded this way. Thus, β is an invertible

CG-module homomorphism from IndGH InflHH/K V to InflGG/K Ind
G/K
H/K V , hence a CG-module isomorphism.

Thus, such an isomorphism exists, i.e., we have InflGG/K Ind
G/K
H/K V

∼= IndGH InflHH/K V as CG-modules. This

solves Exercise 4.1.11.

13.110. Solution to Exercise 4.1.12. Solution to Exercise 4.1.12. (a) It is clearly enough to show that
g (v − kv) ∈ IV,K for all g ∈ G, k ∈ K and v ∈ V . But if g ∈ G, k ∈ K and v ∈ V , then gk has the form
gk = k′g for some k′ ∈ K (since K / G), and thus we have g (v − kv) = gv − gk︸︷︷︸

=k′g

v = gv − k′gv ∈ IV,K (by

the definition of IV,K , since k′ ∈ K and gv ∈ V ). Hence, part (a) of the exercise is solved.
(b) For every v ∈ V , let v denote the projection of v onto the quotient space V/IV,K = VK .
We can define a map Φ : V K → VK by sending every v ∈ V K to v ∈ VK . This map Φ is easily seen

to be a CG-module homomorphism InflGG/K
(
V K
)
→ VK . If we can show that Φ is also bijective, then it

will follow that Φ is a CG-module isomorphism InflGG/K
(
V K
)
→ VK , whence part (b) of the exercise will be

solved. Hence, all that remains to be done is proving that Φ is bijective.
Let us construct an inverse map to Φ. First, let us notice that every v ∈ V satisfies

1

|K|
∑
j∈K

jv ∈ V K .

794 Thus, we can define a map ψ : V → V K by sending every v ∈ V to 1
|K|
∑
j∈K jv. This map ψ is C-linear

and vanishes on IV,K
795. Hence, the map ψ factors through the quotient V/IV,K = VK . Let us denote

793Proof. In order to prove this well-definedness, we have to check that (A (s)) (v) depends C [H/K]-bilinearly on (s, v). It is

very easy to see that (A (s)) (v) depends C-bilinearly on (s, v); therefore, it only remains to prove that (A (st)) (v) = (A (s)) (tv)
for all s ∈ C [G/K], t ∈ C [H/K] and v ∈ V . So let s ∈ C [G/K], t ∈ C [H/K] and v ∈ V be arbitrary. We want to prove that

(A (st)) (v) = (A (s)) (tv). Since both sides of this equality are C-linear in s, we can WLOG assume that s belongs to the basis

G/K of C [G/K]. Assume this, and pick g ∈ G such that s = πG (g). (This g exists since πG is surjective.)
Similarly, we can WLOG assume that t belongs to the basis H/K of C [H/K]. Assume this and pick h ∈ H such that

t = πG (h). (This t exists since H/K = πG (H).) Since s = πG (g) and t = πG (h), we have st = πG (g) · πG (h) = πG (gh) (as

πG is a group homomorphism). Notice that t︸︷︷︸
=πG(h)

v = πG (h) v = hv (because the action of H on InflHH/K V factors through

πG).
Now, the definition of A (st) yields A (st) = ãst = agh (by the definition of ãst, since st = πG (gh)). Similarly, A (s) = ag .

Now, comparing (A (st))︸ ︷︷ ︸
=agh

(v) = agh (v) = gh⊗CH v = g ⊗CH hv (since h belongs to CH and thus can be moved past the ⊗CH

sign) with (A (s))︸ ︷︷ ︸
=ag

 tv︸︷︷︸
=hv

 = ag (hv) = g ⊗CH hv, we obtain (A (st)) (v) = (A (s)) (tv), which is precisely what we needed to

prove.
794Proof. Let v ∈ V . Let j ∈ K. Then, the map K → K, s 7→ js is a bijection (since j ∈ K and since K is a group). Now,

j ·

 1

|K|
∑
s∈K

sv

 =
1

|K|
∑
s∈K

jsv =
1

|K|
∑
s∈K

sv

(here, we have substituted s for js in the sum, because the map K → K, s 7→ js is a bijection). Now, forget that we fixed j.

We thus have shown that j ·
(

1
|K|

∑
s∈K sv

)
= 1
|K|

∑
s∈K sv for every j ∈ K. Hence, 1

|K|
∑
s∈K sv ∈ V K , qed.

795Proof. We want to show that ψ vanishes on IV,K . In order to do so, we only need to check that ψ (v − kv) = 0 for all
k ∈ K and v ∈ V (since IV,K is spanned by all v − kv with k ∈ K and v ∈ V ). But this follows from the fact that all k ∈ K
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the resulting C-linear map VK → V K by Ψ. We are now going to show that the maps Φ and Ψ are mutually
inverse.

We have Φ ◦Ψ = id 796 and Ψ ◦Φ = id 797. Hence, the maps Φ and Ψ are mutually inverse. It follows
that Φ is bijective, and so the solution is complete.

13.111. Solution to Exercise 4.1.14. Solution to Exercise 4.1.14. In the following, we will use the fol-
lowing convention: Whenever K is a group, and k is an element of K, we shall write k for the element tk of
CK. This is a relatively common abuse of notation, and it is harmless because the map K → CK, k 7→ tk is
an injective homomorphism of multiplicative monoids (so tgh = tgth and t1 = 1, which means that we won’t
run into ambiguities denoting tk by k) and because every CK-module M , every m ∈ M and every k ∈ K
satisfy km = tkm.

and v ∈ V satisfy

ψ (v − kv) =
1

|K|
∑
j∈K

j (v − kv)︸ ︷︷ ︸
=jv−jkv

(by the definition of ψ)

=
1

|K|
∑
j∈K

(jv − jkv) =
1

|K|
∑
j∈K

jv −
1

|K|
∑
j∈K

jkv =
1

|K|
∑
j∈K

jv −
1

|K|
∑
j∈K

jv

(
here, we have substituted j for jk in the second sum, since the map K → K, j 7→ jk

is a bijection (because k ∈ K and because K is a group)

)
= 0.

796Proof. Let w ∈ VK . Then, there exists some v ∈ V such that w = v. Consider this v.

Since Ψ was defined as a quotient of the map ψ, we have Ψ (v) = ψ (v). Now,

(Φ ◦Ψ)

 w︸︷︷︸
=v

 = (Φ ◦Ψ) (v) = Φ

Ψ (v)︸ ︷︷ ︸
=ψ(v)

 = Φ

 ψ (v)︸ ︷︷ ︸
= 1
|K|

∑
j∈K jv

(by the definition of ψ)

 = Φ

 1

|K|
∑
j∈K

jv



=
1

|K|
∑
j∈K

jv (by the definition of Φ)

=
1

|K|
∑
j∈K

jv︸︷︷︸
=v

(since v−jv∈IV,K
(because j∈K))

=
1

|K|
∑
j∈K

v

︸ ︷︷ ︸
=|K|·v

=
1

|K|
|K| · v = v = w.

Thus we have shown that (Φ ◦Ψ) (w) = w for every w ∈ VK . In other words, Φ ◦Ψ = id, qed.
797Proof. For every v ∈ V K , we have

(Ψ ◦ Φ) (v) = Ψ

 Φ (v)︸ ︷︷ ︸
=v

(by the definition of Φ)

 = Ψ (v) = ψ (v)

(since Ψ was defined as the quotient of the map ψ)

=
1

|K|
∑
j∈K

jv︸︷︷︸
=v

(since v∈VK and j∈K)

(by the definition of ψ)

=
1

|K|
∑
j∈K

v

︸ ︷︷ ︸
=|K|·v

=
1

|K|
|K| · v = v.

Thus, Ψ ◦ Φ = id, qed.
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Let us first notice a trivial fact: If K is a finite group, and if f : K → C is any function, then we have
the following equivalence:

(f ∈ RC (K))

⇐⇒ (f is a class function on K)(
since RC (K) is defined to be

the set of all class functions on K

)
⇐⇒ (f is constant on K-conjugacy classes)(

since a class function on K is defined to mean a function
K → C which is constant on K-conjugacy classes

)
⇐⇒ (any two conjugate elements k and k′ of K satisfy f (k) = f (k′)) .(13.111.1)

(a) Let f ∈ RC (H).
We can apply (13.111.1) to K = H. As a consequence, we obtain the following equivalence:

(f ∈ RC (H))

⇐⇒ (any two conjugate elements k and k′ of H satisfy f (k) = f (k′)) .

Hence,

(13.111.2) any two conjugate elements k and k′ of H satisfy f (k) = f (k′)

(because we know that f ∈ RC (H)).
Now, let g and g′ be two conjugate elements of G. Then, there exists a p ∈ G such that g′ = pgp−1 (since

g and g′ are conjugate). Consider this p.
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Applying the map Indρ f to both sides of the equality g′ = pgp−1, we obtain

(Indρ f) (g′) = (Indρ f)
(
pgp−1

)
=

1

|H|
∑

(h,k)∈H×G;

kρ(h)k−1=pgp−1︸ ︷︷ ︸
=
∑
h∈H

∑
k∈G;

kρ(h)k−1=pgp−1

f (h)

(by the definition of Indρ f)

=
1

|H|
∑
h∈H

∑
k∈G;

kρ(h)k−1=pgp−1

f (h)

︸ ︷︷ ︸
=

∑
k∈G;

pkρ(h)(pk)−1=pgp−1

f(h)

(here, we have substituted pk for k in the sum,
since the map G→G, k 7→pk is a bijection)

=
1

|H|
∑
h∈H

∑
k∈G;

pkρ(h)(pk)−1=pgp−1︸ ︷︷ ︸
=

∑
k∈G;

pkρ(h)k−1p−1=pgp−1

(since (pk)−1=k−1p−1)

f (h) =
1

|H|
∑
h∈H

∑
k∈G;

pkρ(h)k−1p−1=pgp−1︸ ︷︷ ︸
=

∑
k∈G;

pkρ(h)k−1=pg

(since pkρ(h)k−1p−1=pgp−1 is

equivalent to pkρ(h)k−1=pg)

f (h)

=
1

|H|
∑
h∈H

∑
k∈G;

pkρ(h)k−1=pg︸ ︷︷ ︸
=

∑
k∈G;

kρ(h)k−1=g

(since pkρ(h)k−1=pg is

equivalent to kρ(h)k−1=g)

f (h) =
1

|H|
∑
h∈H

∑
k∈G;

kρ(h)k−1=g︸ ︷︷ ︸
=

∑
(h,k)∈H×G;

kρ(h)k−1=g

f (h)

=
1

|H|
∑

(h,k)∈H×G;

kρ(h)k−1=g

f (h) = (Indρ f) (g)

(since the definition of Indρ f yields (Indρ f) (g) =
1

|H|
∑

(h,k)∈H×G;

kρ(h)k−1=g

f (h)).

Let us now forget that we fixed g and g′. We thus have shown that any two conjugate elements g and
g′ of G satisfy (Indρ f) (g) = (Indρ f) (g′). Renaming g and g′ as k and k′ in this statement, we obtain the
following: Any two conjugate elements k and k′ of G satisfy (Indρ f) (k) = (Indρ f) (k′).

But (13.111.1) (applied to G and Indρ f instead of K and f) yields the following equivalence:

(Indρ f ∈ RC (G))

⇐⇒ (any two conjugate elements k and k′ of G satisfy (Indρ f) (k) = (Indρ f) (k′)) .

Thus, Indρ f ∈ RC (G) (because we know that any two conjugate elements k and k′ of G satisfy (Indρ f) (k) =
(Indρ f) (k′)). This solves Exercise 4.1.14(a).

(b) Let us first introduce an elementary (but apocryphal) notion from linear algebra: the notion of finite
dual generating systems.

Definition 13.111.1. Let K be a commutative ring. Let V be a K-module. A finite dual generating system
for V means a triple

(
I, (ai)i∈I , (fi)i∈I

)
, where

• I is a finite set;
• (ai)i∈I is a family of elements of V ;
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• (fi)i∈I is a family of elements of V ∗ (where V ∗ means HomK (V,K))

such that every v ∈ V satisfies v =
∑
i∈I

fi (v) ai.

In the following, we shall only use finite dual generating systems in the case when K is a field; nevertheless,
they are more useful in the general case.

The first question one might ask about finite dual generating systems for V is when they exist. The
answer is very simple when K is a field:

Proposition 13.111.2. Let K be a field. Let V be a K-vector space. Then, a finite dual generating system
for V exists if and only if the vector space V is finite-dimensional.

Proof of Proposition 13.111.2. Proposition 13.111.2 is an “if and only if” statement. Hence, in order to
prove Proposition 13.111.2, it is sufficient to verify the following two claims:

Claim 1: If a finite dual generating system for V exists, then the vector space V is finite-
dimensional.

Claim 2: If the vector space V is finite-dimensional, then a finite dual generating system for
V exists.

Let us now prove these two claims.
Proof of Claim 1. Assume that a finite dual generating system for V exists. Let

(
I, (ai)i∈I , (fi)i∈I

)
be

such a finite dual generating system for V .
We know that I is a finite set, that (ai)i∈I is a family of elements of V , and that every v ∈ V satisfies

v =
∑
i∈I

fi (v) ai. (Indeed, this is part of what it means for
(
I, (ai)i∈I , (fi)i∈I

)
to be a finite dual generating

system for V .)
Now, every v ∈ V satisfies v =

∑
i∈I

fi (v)︸ ︷︷ ︸
∈K

ai ∈
∑
i∈I

Kai. Thus, V ⊂
∑
i∈I

Kai. Combined with the (obvious)

inclusion
∑
i∈I

Kai ⊂ V , this yields V =
∑
i∈I

Kai. But the vector space
∑
i∈I

Kai is finite-dimensional (since I is

a finite set). In other words, the vector space V is finite-dimensional (since V =
∑
i∈I

Kai). This proves Claim

1.
Proof of Claim 2. Assume that V is a finite-dimensional vector space. Then, V has a finite basis. Let

(ei)i∈I be such a basis. Thus, I is a finite set, and (ei)i∈I is a basis of the K-vector space V . Let (e∗i )i∈I be
the basis of V ∗ dual to the basis (ei)i∈I of V . (This is well-defined, since V is finite-dimensional.)

We know that (e∗i )i∈I is the basis of V ∗ dual to the basis (ei)i∈I of V . Thus,

(13.111.3) e∗i

∑
j∈I

λjej

 = λi for all i ∈ I and (λj)j∈I ∈ KI .

(Indeed, this is one of the ways to define a dual basis.)
Now, every v ∈ V satisfies v =

∑
i∈I

e∗i (v) ei
798.

So we know that
(
I, (ei)i∈I , (e

∗
i )i∈I

)
is a triple such that

• I is a finite set;
• (ei)i∈I is a family of elements of V ;

798Proof. Let v ∈ V . Then, we can write v in the form v =
∑
i∈I

λiei for some family (λi)i∈I ∈ KI (since (ei)i∈I is a basis

of V ). Consider this family (λi)i∈I . Now, v =
∑
i∈I

λiei =
∑
j∈I

λjej (here, we have renamed the summation index i as j in the

sum). For each i ∈ I, we now have

e∗i

 v︸︷︷︸
=
∑
j∈I

λjej

 = e∗i

∑
j∈I

λjej

 = λi (by (13.111.3)) .

Thus,
∑
i∈I

e∗i (v)︸ ︷︷ ︸
=λi

ei =
∑
i∈I

λiei. Compared with v =
∑
i∈I

λiei, this yields v =
∑
i∈I

e∗i (v) ei, qed.
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• (e∗i )i∈I is a family of elements of V ∗ (where V ∗ means HomK (V,K))

such that every v ∈ V satisfies v =
∑
i∈I

e∗i (v) ei. In other words,
(
I, (ei)i∈I , (e

∗
i )i∈I

)
is a finite dual generating

system for V (by the definition of a “finite dual generating system”). Thus, a finite dual generating system
for V exists (namely,

(
I, (ei)i∈I , (e

∗
i )i∈I

)
). This proves Claim 2.

Now, both Claim 1 and Claim 2 are proven. Hence, the proof of Proposition 13.111.2 is complete. �

[Remark: The notion of finite dual generating system for V is more versatile than the notion of a finite
basis of V . One difference between these notions is that all bases of V have the same size, while the set
I in a finite dual generating system

(
I, (ai)i∈I , (fi)i∈I

)
of V can have any (finite) size ≥ dimV . Another

difference manifests itself in the general setting when K is a commutative ring, not necessarily a field. In this
generality, a finite basis of V exists if and only if V is a finite free K-module (this is the definition of a finite
free K-module), whereas a finite dual generating system for V exists if and only if V is a finitely generated
projective K-module. Projective K-modules are a more frequent occurrence in commutative algebra than
free K-modules, and in the absence of a finite basis, a finite dual generating system is the thing that comes
closest to allowing “computing in a basis”.]

One significant application of finite dual generating systems is computing traces of endomorphisms:

Proposition 13.111.3. Let K be a field. Let V be a finite-dimensional K-vector space. Let
(
I, (ai)i∈I , (fi)i∈I

)
be a finite dual generating system for V . Let T : V → V be a K-linear map. Then,

traceT =
∑
i∈I

fi (Tai) .

Proposition 13.111.3 can be easily proven directly, but let us take a slight detour and derive it from the
following more general fact:

Proposition 13.111.4. Let K be a commutative ring. Let V be a K-module. Let
(
I, (ai)i∈I , (fi)i∈I

)
be a

finite dual generating system for V . Let
(
J, (bj)j∈J , (gj)j∈J

)
be a further finite dual generating system for

V . Let T : V → V be a K-linear map. Then,∑
i∈I

fi (Tai) =
∑
j∈J

gj (Tbj) .

Proof of Proposition 13.111.4. We know that
(
I, (ai)i∈I , (fi)i∈I

)
is a finite dual generating system for V .

In other words,
(
I, (ai)i∈I , (fi)i∈I

)
is a triple such that

• I is a finite set;
• (ai)i∈I is a family of elements of V ;
• (fi)i∈I is a family of elements of V ∗ (where V ∗ means HomK (V,K))

such that every v ∈ V satisfies

(13.111.4) v =
∑
i∈I

fi (v) ai.

We know that
(
J, (bj)j∈J , (gj)j∈J

)
is a finite dual generating system for V . In other words,

(
J, (bj)j∈J , (gj)j∈J

)
is a triple such that

• J is a finite set;
• (bj)j∈J is a family of elements of V ;

• (gj)j∈J is a family of elements of V ∗ (where V ∗ means HomK (V,K))

such that every v ∈ V satisfies

(13.111.5) v =
∑
j∈J

gj (v) bj .
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Now,

∑
i∈I

fi


Tai︸︷︷︸

=
∑
j∈J

gj(Tai)bj

(by (13.111.5), applied
to v=Tai)


=
∑
i∈I

fi

∑
j∈J

gj (Tai) bj


︸ ︷︷ ︸

=
∑
j∈J

gj(Tai)fi(bj)

(since the map fi is K-linear)

=
∑
i∈I

∑
j∈J︸ ︷︷ ︸

=
∑
j∈J

∑
i∈I

gj (Tai) fi (bj)︸ ︷︷ ︸
=fi(bj)gj(Tai)

=
∑
j∈J

∑
i∈I

fi (bj) gj (Tai) .

Compared with

∑
j∈J

gj


T bj︸︷︷︸

=
∑
i∈I

fi(bj)ai

(by (13.111.4), applied
to v=bj)


=
∑
j∈J

gj


T
∑
i∈I

fi (bj) ai︸ ︷︷ ︸
=
∑
i∈I fi(bj)Tai

(since the map T is K-linear)


=
∑
j∈J

gj

(∑
i∈I

fi (bj)Tai

)
︸ ︷︷ ︸

=
∑
i∈I

fi(bj)gj(Tai)

(since the map gj is K-linear)

=
∑
j∈J

∑
i∈I

fi (bj) gj (Tai) ,

this yields
∑
i∈I fi (Tai) =

∑
j∈J gj (Tbj). This proves Proposition 13.111.4. �

Proof of Proposition 13.111.3. The vector space V has a finite basis (since it is finite-dimensional). Let
(e1, e2, . . . , en) be such a basis. Let (mi,j)1≤i,j≤n ∈ Kn×n be the matrix which represents the map T : V → V

with respect to this basis (e1, e2, . . . , en) of V . Then,

(13.111.6) Tej =

n∑
i=1

mi,jei for every j ∈ {1, 2, . . . , n}

(due to the definition of “the matrix which represents the map T : V → V with respect to this basis
(e1, e2, . . . , en) of V ”).

Let (e∗1, e
∗
2, . . . , e

∗
n) be the basis of V ∗ dual to the basis (e1, e2, . . . , en) of V . (This is well-defined, since

V is finite-dimensional.) Thus,

(13.111.7) e∗k

(
n∑
i=1

λiei

)
= λk for all k ∈ {1, 2, . . . , n} and (λ1, λ2, . . . , λn) ∈ Kn.

(This follows immediately from the definition of a “dual basis”.) Now, every k ∈ {1, 2, . . . , n} and j ∈
{1, 2, . . . , n} satisfy

(13.111.8) e∗k (Tej) = mk,j .

799 Now, every v ∈ V satisfies v =
∑

i∈{1,2,...,n}
e∗i (v) ei

800.

So we know that
(
{1, 2, . . . , n} , (ei)i∈{1,2,...,n} , (e∗i )i∈{1,2,...,n}

)
is a triple such that

799Proof of (13.111.8): Fix k ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n}. Applying the map e∗k to both sides of (13.111.6), we
obtain

e∗k (Tej) = e∗k

(
n∑
i=1

mi,jei

)
= mk,j (by (13.111.7), applied to λi = mi,j) .

This proves (13.111.8).

800Proof. Let v ∈ V . Then, we can write v in the form v =
n∑
i=1

λiei for some n-tuple (λ1, λ2, . . . , λn) ∈ Kn (since

(e1, e2, . . . , en) is a basis of V ). Consider this n-tuple (λ1, λ2, . . . , λn). Now, v =
n∑
i=1

λiei. Hence, for each k ∈ {1, 2, . . . , n}, we
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• {1, 2, . . . , n} is a finite set;
• (ei)i∈{1,2,...,n} is a family of elements of V ;

• (e∗i )i∈{1,2,...,n} is a family of elements of V ∗ (where V ∗ means HomK (V,K))

such that every v ∈ V satisfies v =
∑

i∈{1,2,...,n}
e∗i (v) ei. In other words,(

{1, 2, . . . , n} , (ei)i∈{1,2,...,n} , (e∗i )i∈{1,2,...,n}
)

is a finite dual generating system for V . Therefore, Proposition

13.111.4 (applied to
(
J, (bj)j∈J , (gj)j∈J

)
=
(
{1, 2, . . . , n} , (ei)i∈{1,2,...,n} , (e∗i )i∈{1,2,...,n}

)
) yields

∑
i∈I

fi (Tai) =
∑

j∈{1,2,...,n}︸ ︷︷ ︸
=
∑n
j=1

e∗j (Tej)︸ ︷︷ ︸
=mj,j

(by (13.111.8), applied
to k=j)

=

n∑
j=1

mj,j

=

n∑
i=1

mi,i (here, we renamed the summation index j as i) .(13.111.9)

But recall that if G is any endomorphism of the K-vector space V , then the trace of G equals the trace of
any matrix which represents G with respect to a basis of V 801. Applying this to G = T , we conclude that
the trace of T equals the trace of any matrix which represents T with respect to a basis of V . In particular,
the trace of T equals the trace of the matrix (mi,j)1≤i,j≤n (since (mi,j)1≤i,j≤n is a matrix which represents T

with respect to the basis (e1, e2, . . . , en) of V ). In other words, traceT = trace
(

(mi,j)1≤i,j≤n

)
=
∑n
i=1mi,i

(by the definition of trace
(

(mi,j)1≤i,j≤n

)
). Compared with (13.111.9), this yields traceT =

∑
i∈I fi (Tai).

This proves Proposition 13.111.3. �

[Remark: Proposition 13.111.4 can be used to define the trace of an endomorphism of a finitely generated
projective K-module when K is a commutative ring. Indeed, if K is a commutative ring and if V is a finitely
generated projective K-module, and if T : V → V is a K-linear map, then the trace trace (T ) of T can be
defined as

∑
i∈I fi (Tai), where

(
I, (ai)i∈I , (fi)i∈I

)
is a finite dual generating system for V . This notion

of trace is well-defined802 and generalizes the classical notion from linear algebra (which is defined only for
finitely generated free K-modules)803. But we will not concern ourselves with these generalizations, since
our exercise deals only with representations of groups over a field.]

After all these preparations, we finally come to the actual solution of Exercise 4.1.14(b). Let U be any
finite-dimensional CH-module. We want to prove χIndρ U = Indρ χU .

For every g ∈ G, we define a C-linear map g∗ : CG→ C by

(13.111.10) (g∗ (k) = δg,k for all k ∈ G) .

(This is well-defined, since (k)k∈G is a basis of the C-vector space CG.) Then,

(13.111.11)
∑
g∈G

g∗ (γ) · g = γ for every γ ∈ CG.

have

e∗k

 v︸︷︷︸
=
n∑
i=1

λiei

 = e∗k

(
n∑
i=1

λiei

)
= λk (by (13.111.7)) .

Renaming k as i in this statement, we obtain the following: For each i ∈ {1, 2, . . . , n}, we have e∗i (v) = λi. Thus,∑
i∈{1,2,...,n}︸ ︷︷ ︸

=
∑n
i=1

e∗i (v)︸ ︷︷ ︸
=λi

ei =
n∑
i=1

λiei. Compared with v =
n∑
i=1

λiei, this yields v =
∑

i∈{1,2,...,n}
e∗i (v) ei, qed.

801Indeed, this is how the trace of G is defined.
802because Proposition 13.111.4 shows that

∑
i∈I fi (Tai) does not depend on the choice of

(
I, (ai)i∈I , (fi)i∈I

)
803because Proposition 13.111.3 (or, more precisely, its straightforward generalization to free K-modules over commutative

rings) shows that these two notions give the same result when V is a free K-module
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804 Also,

(13.111.12) (gr)
∗

(γr) = g∗ (γ) for all g ∈ G, r ∈ G and γ ∈ CG
805.

Proposition 13.111.2 (applied to K = C and V = U) yields that a finite dual generating system for U
exists if and only if the vector space U is finite-dimensional. Thus, a finite dual generating system for U
exists (since the vector space U is finite-dimensional). Let us fix such a finite dual generating system for U ,

and denote it by
(
J, (bj)j∈J , (gj)j∈J

)
.

Hence,
(
J, (bj)j∈J , (gj)j∈J

)
is a finite dual generating system for U . In other words,

(
J, (bj)j∈J , (gj)j∈J

)
is a triple such that

• J is a finite set;
• (bj)j∈J is a family of elements of U ;

• (gj)j∈J is a family of elements of U∗ (where U∗ means HomC (U,C))

such that every v ∈ U satisfies

(13.111.13) v =
∑
j∈J

gj (v) bj .

We now endow CG with the (CG,CH)-bimodule structure that was used to define Indρ U . We recall that
Indρ U = CG⊗CH U (by the definition of Indρ U).

Let us fix g ∈ G. We define a map F̃g : CG× U → U by setting(
F̃g (γ, u) =

1

|H|
∑
h∈H

(gρ (h))
∗

(γ)hu for all (γ, u) ∈ CG× U

)
.

The map F̃g is CH-bilinear with respect to the right CH-module structure on CG and the left CH-module
structure on U 806. According to the universal property of the tensor product, this yields that there exists

804Proof of (13.111.11): Let γ ∈ CG. We need to prove the equality (13.111.11). We notice that this equality is C-linear in

γ. Hence, we can WLOG assume that γ ∈ G (since G is a basis of the C-vector space CG). Assume this. Now,∑
g∈G

g∗ (γ) · g =
∑
g∈G

g∗ (γ)︸ ︷︷ ︸
=δg,γ

(by (13.111.10), applied
to k=γ (since γ∈G))

·g =
∑
g∈G

δg,γ · g

=
∑
g∈G;
g=γ

δg,γ︸︷︷︸
=1

(since g=γ)

·g +
∑
g∈G;
g 6=γ

δg,γ︸︷︷︸
=0

(since g 6=γ)

·g =
∑
g∈G;
g=γ

1 · g +
∑
g∈G;
g 6=γ

0 · g

︸ ︷︷ ︸
=0

=
∑
g∈G;
g=γ

1 · g︸︷︷︸
=g

=
∑
g∈G;
g=γ

g = γ (since γ ∈ G) .

This proves (13.111.11).
805Proof of (13.111.12): Let g ∈ G, r ∈ G and γ ∈ CG. We need to prove the equality (13.111.12). Since this equality

is C-linear in γ (because the maps (gr)∗ and g∗ are C-linear), we can WLOG assume that γ ∈ G (since G is a basis of the

C-vector space CG). Assume this.
We have γ ∈ G, and thus we can apply (13.111.10) to k = γ. We thus obtain g∗ (γ) = δg,γ . Also, γ︸︷︷︸

∈G

r︸︷︷︸
∈G

∈ GG ⊂ G.

Hence, (13.111.10) (applied to gr and γr instead of g and k) yields (gr)∗ (γr) = δgr,γr.

Now, we have g = γ if and only if gr = γr (because G is a group). Now,

g∗ (γ) = δg,γ =

{
1, if g = γ;

0, if g 6= γ
=

{
1, if gr = γr;

0, if gr 6= γr
(since g = γ if and only if gr = γr)

= δgr,γr = (gr)∗ (γr) .

This proves (13.111.12).

806Proof. We notice that F̃g (γ, u) =
1

|H|
∑
h∈H

(gρ (h))∗ (γ)hu depends C-linearly on each of γ and u (for obvious reasons).

In other words, the map F̃g is C-bilinear.

Now, let us fix γ ∈ CG, u ∈ U and κ ∈ CH. We are going to prove the equality F̃g (γκ, u) = F̃g (γ, κu).
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a unique C-linear map Fg : CG⊗CH U → U such that

(
Fg (γ ⊗CH u) = F̃g (γ, u) for all (γ, u) ∈ CG× U

)
.

Consider this map Fg.
So we know that any (γ, u) ∈ CG× U satisfies

(13.111.14) Fg (γ ⊗CH u) = F̃g (γ, u) =
1

|H|
∑
h∈H

(gρ (h))
∗

(γ)hu.

Let us now forget that we fixed g. We thus have constructed a C-linear map Fg : CG ⊗CH U → U for
each g ∈ G. We have shown that this map satisfies (13.111.14) for any (γ, u) ∈ CG× U .

The set G× J is finite (since the sets G and J are finite). Now, we define a family (ai)i∈G×J of elements
of CG⊗CH U by (

a(k,j) = k ⊗CH bj for all (k, j) ∈ G× J
)
.

Furthermore, we define a family (fi)i∈G×J of elements of (CG⊗CH U)
∗

by

(
f(k,j) = gj ◦ Fk for all (k, j) ∈ G× J

)
.

(This is well-defined because, for any (k, j) ∈ G × J , the composition gj ◦ Fk of the C-linear maps Fk :
CG⊗CH U → U and gj : U → C is a C-linear map CG⊗CH U → C.)

Our goal is now to prove that
(
G× J, (ai)i∈G×J , (fi)i∈G×J

)
is a finite dual generating system for CG⊗CH

U .

Since this equality is C-linear in κ (because the map F̃g is C-bilinear), we can WLOG assume that κ ∈ H (since H is a basis

of the C-vector space CH). Assume this.
We have κ ∈ H. Thus, the map H → H, h 7→ hκ is a bijection (since H is a group). Hence, we can substitute hκ for h in

the sum
∑
h∈H

(gρ (h))∗ (γρ (κ))hu. As a result, we obtain
∑
h∈H

(gρ (h))∗ (γρ (κ))hu =
∑
h∈H

(gρ (hκ))∗ (γρ (κ)) (hκ)u.

Now, the definition of F̃g (γκ, u) yields

F̃g (γκ, u) =
1

|H|
∑
h∈H

(gρ (h))∗ (γρ (κ))hu

︸ ︷︷ ︸
=
∑
h∈H

(gρ(hκ))∗(γρ(κ))(hκ)u

=
1

|H|
∑
h∈H


g ρ (hκ)︸ ︷︷ ︸

=ρ(h)ρ(κ)
(since ρ is a group
homomorphism)



∗

(γρ (κ)) (hκ)u

=
1

|H|
∑
h∈H

(gρ (h) ρ (κ))∗ (γρ (κ))︸ ︷︷ ︸
=(gρ(h))∗(γ)

(by (13.111.12), applied to
gρ(h) and ρ(κ) instead of g and r)

hκu =
1

|H|
∑
h∈H

(gρ (h))∗ (γ)hκu.

Compared with

F̃g (γ, κu) =
1

|H|
∑
h∈H

(gρ (h))∗ (γ)hκu
(

by the definition of F̃g (γ, κu)
)
,

this yields F̃g (γκ, u) = F̃g (γ, κu).

Now let us forget that we fixed γ, u and κ. Thus, we have shown that F̃g (γκ, u) = F̃g (γ, κu) for all γ ∈ CG, u ∈ U

and κ ∈ CH. This yields that the map F̃g is CH-bilinear with respect to the right CH-module structure on CG and the left

CH-module structure on U (since we already know that this map F̃g is C-bilinear). Qed.
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Indeed, every v ∈ CG⊗CHU satisfies v =
∑

i∈G×J
fi (v) ai

807. Thus, we know that
(
G× J, (ai)i∈G×J , (fi)i∈G×J

)
is a triple such that

• G× J is a finite set;
• (ai)i∈G×J is a family of elements of CG⊗CH U ;

• (fi)i∈G×J is a family of elements of (CG⊗CH U)
∗

(where (CG⊗CH U)
∗

means HomC (CG⊗CH U,C))

807Proof. Let v ∈ CG ⊗CH U . We need to prove the equality v =
∑

i∈G×J
fi (v) ai. Since this equality is C-linear in v, we

can WLOG assume that v is a pure tensor (since the pure tensors in CG ⊗CH U span the whole C-vector space CG ⊗CH U).

Assume this. Thus, v is a pure tensor. In other words, v = γ ⊗CH u for some γ ∈ CG and u ∈ U . Consider these γ and u.

We notice that for any w ∈ G, the map G→ G, k 7→ kw is a bijection (since G is a group). Hence, for any w ∈ G, we have∑
k∈G

(kw)∗ (γ) kw =
∑
k∈G

k∗ (γ) k

(
here, we substituted k for kw in the sum,

since the map G→ G, k 7→ kw is a bijection

)
=
∑
g∈G

g∗ (γ) g (here, we renamed the summation index k as g)

=
∑
g∈G

g∗ (γ) · g = γ (by (13.111.11)) .(13.111.15)

Now, every h ∈ H satisfies∑
k∈G

(kρ (h))∗ (γ) kh︸︷︷︸
=k·(C[ρ])(h)

(by the definition of the
right CH-module
structure on CG)

=
∑
k∈G

(kρ (h))∗ (γ) k · (C [ρ]) (h)︸ ︷︷ ︸
=ρ(h)

(since h∈H)

=
∑
k∈G

(kρ (h))∗ (γ) kρ (h)

= γ (by (13.111.15), applied to w = ρ (h)) .(13.111.16)

Now,∑
i∈G×J

fi (v) ai =
∑

(k,j)∈G×J︸ ︷︷ ︸
=
∑
k∈G

∑
j∈J

f(k,j)︸ ︷︷ ︸
=gj◦Fk

(v) a(k,j)︸ ︷︷ ︸
=k⊗CHbj

(here, we substituted (k, j) for the summation index i)

=
∑
k∈G

∑
j∈J

(gj ◦ Fk) (v) k ⊗CH bj︸ ︷︷ ︸
=k⊗CH

(∑
j∈J(gj◦Fk)(v)bj

)
(since the tensor product is C-bilinear)

=
∑
k∈G

k ⊗CH

∑
j∈J

(gj ◦ Fk) (v)︸ ︷︷ ︸
=gj(Fk(v))

bj



=
∑
k∈G

k ⊗CH

∑
j∈J

gj (Fk (v)) bj


︸ ︷︷ ︸

=Fk(v)
(because Fk(v)=

∑
j∈J gj(Fk(v))bj

(by (13.111.13), applied to Fk(v) instead of v))

=
∑
k∈G

k ⊗CH Fk

 v︸︷︷︸
=γ⊗CHu



=
∑
k∈G

k ⊗CH Fk (γ ⊗CH u)︸ ︷︷ ︸
=

1

|H|
∑
h∈H

(kρ(h))∗(γ)hu

(by (13.111.14), applied to g=k)

=
∑
k∈G

k ⊗CH

 1

|H|
∑
h∈H

(kρ (h))∗ (γ)hu



=
1

|H|
∑
k∈G

∑
h∈H︸ ︷︷ ︸

=
∑
h∈H

∑
k∈G

(kρ (h))∗ (γ) k ⊗CH hu (since the tensor product is C-bilinear)

=
1

|H|
∑
h∈H

∑
k∈G

(kρ (h))∗ (γ) k ⊗CH hu︸ ︷︷ ︸
=kh⊗CHu

(since h can be moved past
the ⊗CH sign (since h∈H⊂CH))

=
1

|H|
∑
h∈H

∑
k∈G

(kρ (h))∗ (γ) kh⊗CH u

=
1

|H|
∑
h∈H

∑
k∈G

(kρ (h))∗ (γ) kh


︸ ︷︷ ︸

=γ
(by (13.111.16))

⊗CHu =
1

|H|
∑
h∈H

γ ⊗CH u︸ ︷︷ ︸
=v

=
1

|H|
∑
h∈H

v

︸ ︷︷ ︸
=|H|·v

=
1

|H|
|H| · v = v.
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such that every v ∈ CG ⊗CH U satisfies v =
∑

i∈G×J
fi (v) ai. In other words,

(
G× J, (ai)i∈G×J , (fi)i∈G×J

)
is a finite dual generating system for CG ⊗CH U (because this is precisely how a “finite dual generating
system” was defined). In other words,

(
G× J, (ai)i∈G×J , (fi)i∈G×J

)
is a finite dual generating system for

Indρ U (since Indρ U = CG⊗CH U).
Let us now notice that

(13.111.17)
∑
j∈J

gj (hbj) = χU (h) for every h ∈ H

808.
Now, let us fix g ∈ G. We want to compute χIndρ U (g). The definition of χIndρ U (g) yields χIndρ U (g) =

trace (g : Indρ U → Indρ U). But Proposition 13.111.3 (applied to K = C, V = Indρ U , I = G × J and
T = (g : Indρ U → Indρ U)) yields

trace (g : Indρ U → Indρ U)

=
∑

i∈G×J
fi

(g : Indρ U → Indρ U) ai︸ ︷︷ ︸
=gai

 =
∑

i∈G×J
fi (gai)

=
∑

(k,j)∈G×J

f(k,j)︸ ︷︷ ︸
=gj◦Fk

g a(k,j)︸ ︷︷ ︸
=k⊗CHbj

 (here, we substituted (k, j) for the summation index i)

=
∑

(k,j)∈G×J

(gj ◦ Fk) (g (k ⊗CH bj))︸ ︷︷ ︸
=gk⊗CHbj

=
∑

(k,j)∈G×J

(gj ◦ Fk) (gk ⊗CH bj)︸ ︷︷ ︸
=gj(Fk(gk⊗CHbj))

=
∑

(k,j)∈G×J

gj


Fk (gk ⊗CH bj)︸ ︷︷ ︸

=
1

|H|
∑
h∈H

(kρ(h))∗(gk)hbj

(by (13.111.14), applied to k, gk and bj
instead of g, γ and u)


=

∑
(k,j)∈G×J︸ ︷︷ ︸

=
∑
k∈G

∑
j∈J

gj

(
1

|H|
∑
h∈H

(kρ (h))
∗

(gk)hbj

)
︸ ︷︷ ︸

=
1

|H|
∑
h∈H

(kρ(h))∗(gk)gj(hbj)

(since the map gj is C-linear)

=
∑
k∈G

∑
j∈J

1

|H|
∑
h∈H

(kρ (h))
∗

(gk) gj (hbj)

=
∑
k∈G

1

|H|
∑
h∈H

(kρ (h))
∗

(gk)
∑
j∈J

gj (hbj) .

(13.111.18)

Thus, v =
∑

i∈G×J
fi (v) ai is proven, qed.

808Proof of (13.111.17): Let h ∈ H. The definition of χU (h) yields χU (h) = trace (h : U → U). But Proposition 13.111.3

(applied to C, U ,
(
J, (bj)j∈J , (gj)j∈J

)
and (h : U → U) instead of C, U ,

(
I, (ai)i∈I , (fi)i∈I

)
and T ) yields

trace (h : U → U) =
∑
j∈J

gj

(h : U → U) bj︸ ︷︷ ︸
=hbj

 =
∑
j∈J

gj (hbj) .

Thus, χU (h) = trace (h : U → U) =
∑
j∈J gj (hbj). This proves (13.111.17).
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But every k ∈ G satisfies∑
h∈H

(kρ (h))
∗

(gk)︸ ︷︷ ︸
=δkρ(h),gk

(by (13.111.10), applied to kρ(h)
and gk instead of g and k)

∑
j∈J

gj (hbj)︸ ︷︷ ︸
=χU (h)

(by (13.111.17))

=
∑
h∈H

δkρ(h),gkχU (h)

=
∑
h∈H;

kρ(h)=gk︸ ︷︷ ︸
=

∑
h∈H;

kρ(h)k−1=g

(because for every h∈H,
the statement (kρ(h)=gk)

is equivalent

to (kρ(h)k−1=g))

δkρ(h),gk︸ ︷︷ ︸
=1

(since kρ(h)=gk)

χU (h) +
∑
h∈H;

kρ(h)6=gk

δkρ(h),gk︸ ︷︷ ︸
=0

(since kρ(h) 6=gk)

χU (h)

=
∑
h∈H;

kρ(h)k−1=g

1χU (h) +
∑
h∈H;

kρ(h)6=gk

0χU (h)

︸ ︷︷ ︸
=0

=
∑
h∈H;

kρ(h)k−1=g

1χU (h)

=
∑
h∈H;

kρ(h)k−1=g

χU (h) .(13.111.19)

Now, recall that

χIndρ U (g) = trace (g : Indρ U → Indρ U)

=
∑
k∈G

1

|H|
∑
h∈H

(kρ (h))
∗

(gk)
∑
j∈J

gj (hbj)︸ ︷︷ ︸
=

∑
h∈H;

kρ(h)k−1=g

χU (h)

(by (13.111.19))

(by (13.111.18))

=
∑
k∈G

1

|H|
∑
h∈H;

kρ(h)k−1=g

χU (h) =
1

|H|
∑
h∈H;

kρ(h)k−1=g

∑
k∈G︸ ︷︷ ︸

=
∑

(h,k)∈H×G;

kρ(h)k−1=g

χU (h) =
1

|H|
∑

(h,k)∈H×G;

kρ(h)k−1=g

χU (h) .

Compared with

(Indρ χU ) (g) =
1

|H|
∑

(h,k)∈H×G;

kρ(h)k−1=g

χU (h) (by the definition of (Indρ χU ) (g)) ,

this yields χIndρ U (g) = (Indρ χU ) (g).
Now, let us forget that we fixed g. We thus have proven that χIndρ U (g) = (Indρ χU ) (g) for every g ∈ G.

In other words, χIndρ U = Indρ χU . This solves Exercise 4.1.14(b).
(c) Assume that H is a subgroup of G, and that ρ : H → G is the inclusion map. We need to show that

Indρ f = IndGH f for every f ∈ RC (H).
We notice that the map G→ G, k 7→ k−1 is a bijection (since G is a group).
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Let f ∈ RC (H). Let g ∈ G. Then, the definition of (Indρ f) (g) yields

(Indρ f) (g) =
1

|H|
∑

(h,k)∈H×G;

kρ(h)k−1=g︸ ︷︷ ︸
=

∑
(h,k)∈H×G;

khk−1=g
(since ρ(h)=h for every h∈H

(since ρ:H→G is the inclusion map))

f (h) =
1

|H|
∑

(h,k)∈H×G;

khk−1=g︸ ︷︷ ︸
=
∑
k∈G

∑
h∈H;

khk−1=g

f (h)

=
1

|H|
∑
k∈G

∑
h∈H;

khk−1=g︸ ︷︷ ︸
=

∑
h∈H;

h=k−1gk
(because for every h∈H,

the statement (khk−1=g) is

equivalent to (h=k−1gk))

f (h)

=
1

|H|
∑
k∈G

∑
h∈H;

h=k−1gk

f (h)

︸ ︷︷ ︸
=

∑
k∈G;

k−1gk∈H

∑
h∈H;

h=k−1gk

f(h)+
∑
k∈G;

k−1gk/∈H

∑
h∈H;

h=k−1gk

f(h)

(since every k∈G satisfies either k−1gk∈H or k−1gk/∈H (but never both))

=
1

|H|



∑
k∈G;

k−1gk∈H

∑
h∈H;

h=k−1gk

f (h)

︸ ︷︷ ︸
=f(k−1gk)

(since k−1gk∈H)

+
∑
k∈G;

k−1gk/∈H

∑
h∈H;

h=k−1gk

f (h)

︸ ︷︷ ︸
=(empty sum)

(since there is no h∈H satisfying h=k−1gk

(because k−1gk/∈H))



=
1

|H|

 ∑
k∈G;

k−1gk∈H

f
(
k−1gk

)
+

∑
k∈G;

k−1gk/∈H

(empty sum)︸ ︷︷ ︸
=0

 =
1

|H|


∑
k∈G;

k−1gk∈H

f
(
k−1gk

)
+

∑
k∈G;

k−1gk/∈H

0

︸ ︷︷ ︸
=0


=

1

|H|
∑
k∈G;

k−1gk∈H

f
(
k−1gk

)
=

1

|H|
∑
k∈G;

(k−1)
−1
gk−1∈H︸ ︷︷ ︸

=
∑
k∈G;

kgk−1∈H
(since (k−1)

−1
=k for every k∈G)

f

(k−1
)−1︸ ︷︷ ︸

=k

gk−1



(
here, we substituted k−1 for k in the sum, since

the map G→ G, k 7→ k−1 is a bijection

)
=

1

|H|
∑
k∈G;

kgk−1∈H

f
(
kgk−1

)
=
(

IndGH f
)

(g)
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(since (4.1.4) yields
(

IndGH f
)

(g) =
1

|H|
∑
k∈G;

kgk−1∈H

f
(
kgk−1

)
).

Let us now forget that we fixed g. We thus have proven that (Indρ f) (g) =
(

IndGH f
)

(g) for every g ∈ G.

In other words, Indρ f = IndGH f . This solves Exercise 4.1.14(c).
(d) Assume that H is a subgroup of G, and that ρ : H → G is the inclusion map. We need to show that

Indρ U = IndGH U for every CH-module U .
We notice that ρ : H → G is the inclusion map. Hence, C [ρ] : CH → CG is also the inclusion map (since

we identify CH with a C-subalgebra of CG along this map C [ρ]). Thus,

(13.111.20) (C [ρ]) η = η for every η ∈ CH.

Let U be a CH-module. Both IndGH U and Indρ U are defined as CG⊗CH U for some (CG,CH)-bimodule
structure on CG; however, their definitions differ at how this (CG,CH)-bimodule structure is defined. We
are now going to prove that these two (CG,CH)-bimodule structures on CG are identical.

The definition of Indρ U shows that we have

(13.111.21) Indρ U = CG⊗CH U,

where CG is regarded as a (CG,CH)-bimodule according to the following rule: The left CG-module structure
on CG is plain multiplication inside CG; the right CH-module structure on CG is induced by the C-algebra
homomorphism C [ρ] : CH → CG (thus, it is explicitly given by γη = γ ·(C [ρ]) η for all γ ∈ CG and η ∈ CH).
We denote this (CG,CH)-bimodule structure on CG as the first structure.

On the other hand, the definition of IndGH U shows that we have

(13.111.22) IndGH U = CG⊗CH U,

where CG is regarded as a (CG,CH)-bimodule in the usual way (i.e., the left CG-module structure on CG is
plain multiplication inside CG, and the right CH-module structure on CG is also plain multiplication inside
CG because CH ⊂ CG). We denote this (CG,CH)-bimodule structure on CG as the second structure.

The right hand sides of the equalities (13.111.21) and (13.111.22) appear identical, but so far we do not
know if they actually mean the same thing, because the meanings of “CG” possibly differ. Namely, we
have two (CG,CH)-bimodule structures on the C-vector space CG: the first structure (used in (13.111.21))
and the second structure (used in (13.111.22)). These two structures clearly have the same left CG-module
structure. But they also have the same right CH-module structure, because every γ ∈ CG and η ∈ CH
satisfy

(the result of the right action of η on γ according to the first structure)

= γ · (C [ρ]) η︸ ︷︷ ︸
=η

(by (13.111.20))

= γ · η

= (the result of the right action of η on γ according to the second structure) .

Hence, the first structure and the second structure are identical. Thus, the right hand sides of the equalities
(13.111.21) and (13.111.22) really mean the same thing. Thus, comparing the equalities (13.111.21) and

(13.111.22), we obtain Indρ U = IndGH U as left CG-modules. This solves Exercise 4.1.14(d).
(e) Assume that G = H/K for some normal subgroup K of H. Let ρ : H → G be the projection map.

We want to prove that Indρ f = fK for every f ∈ RC (H).
Let f ∈ RC (H). Applying (13.111.1) to H instead of K, we obtain the following equivalence:

(f ∈ RC (H))

⇐⇒ (any two conjugate elements k and k′ of H satisfy f (k) = f (k′)) .

Hence,

(13.111.23) (any two conjugate elements k and k′ of H satisfy f (k) = f (k′))

(since we know that f ∈ RC (H)). Thus,

(13.111.24) f
(
y−1zy

)
= f (z) for all z ∈ H and y ∈ H

(because if z ∈ H and y ∈ H, then y−1zy and z are two conjugate elements of H).
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Let g ∈ G. Then, g ∈ G = H/K. Hence, there exists an x ∈ H such that g = xK. Consider this x.
The map ρ : H → G is the projection map from H to G = H/K, and thus sends every h ∈ H to the coset
hK ∈ G. In other words, ρ (h) = hK for every h ∈ H. Applied to h = x, this yields ρ (x) = xK = g. Of
course, ker ρ = K (since ρ is the projection map from H to H/K).

We have |G| = |H/K| = [H : K] = |H| / |K|.
We make another simple observation: If h ∈ H and y ∈ H, then we have the following logical equivalence:

(13.111.25)
(
ρ (h) = (ρ (y))

−1
gρ (y)

)
⇐⇒

(
h ∈ y−1xKy

)
.

809

The definition of fK yields fK (xK) =
1

|K|
∑
k∈K

f (xk). Hence,

(13.111.26) fK

 g︸︷︷︸
=xK

 = fK (xK) =
1

|K|
∑
k∈K

f (xk) .

But the definition of (Indρ f) (g) yields

(Indρ f) (g) =
1

|H|
∑

(h,k)∈H×G;

kρ(h)k−1=g︸ ︷︷ ︸
=

∑
(h,k)∈H×G;

ρ(h)=k−1gk

(because for any (h,k)∈H×G,

the statement (kρ(h)k−1=g)
is equivalent to (ρ(h)=k−1gk))

f (h) =
1

|H|
∑

(h,k)∈H×G;

ρ(h)=k−1gk︸ ︷︷ ︸
=
∑
k∈G

∑
h∈H;

ρ(h)=k−1gk

f (h)

=
1

|H|
∑
k∈G

∑
h∈H;

ρ(h)=k−1gk

f (h) =
1

|H|
∑
p∈G

∑
h∈H;

ρ(h)=p−1gp

f (h)(13.111.27)

809Proof of (13.111.25): Let h ∈ H and y ∈ H. Recall that the map ρ : H → G is the projection map from H to G = H/K.
Thus, ρ (w) = wK for every w ∈ H.

We have the following chain of equivalences:

(
ρ (h) = (ρ (y))−1 gρ (y)

)

⇐⇒ (ρ (y) ρ (h) = gρ (y)) ⇐⇒


ρ (y) ρ (h) (ρ (y))−1︸ ︷︷ ︸

=ρ(yhy−1)
(since ρ is a group
homomorphism)

= g︸︷︷︸
=ρ(x)



⇐⇒

 ρ
(
yhy−1

)︸ ︷︷ ︸
=yhy−1K

(since ρ(w)=wK for every w∈H)

= ρ (x)︸ ︷︷ ︸
=xK

(since ρ(w)=wK for every w∈H)

 ⇐⇒
(
yhy−1K = xK

)

⇐⇒
(
yhy−1 ∈ xK

)
⇐⇒ (yh ∈ xKy) ⇐⇒

(
h ∈ y−1xKy

)
.

This proves (13.111.25).
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(here, we renamed the index k as p in the first sum). But every p ∈ G satisfies
∑
h∈H;

ρ(h)=p−1gp

f (h) =
∑
k∈K

f (xk)

810. Hence, (13.111.27) becomes

(Indρ f) (g) =
1

|H|
∑
p∈G

∑
h∈H;

ρ(h)=p−1gp

f (h)

︸ ︷︷ ︸
=
∑
k∈K

f(xk)

=
1

|H|
∑
p∈G

∑
k∈K

f (xk)︸ ︷︷ ︸
=|G|·

∑
k∈K

f(xk)

=
1

|H|
|G|︸︷︷︸

=|H|/|K|

·
∑
k∈K

f (xk)

=
1

|H|
· |H| / |K|︸ ︷︷ ︸
=

1

|K|

·
∑
k∈K

f (xk) =
1

|K|
∑
k∈K

f (xk) = fK (g)

(by (13.111.26)).
Let us now forget that we fixed g. We thus have shown that (Indρ f) (g) = fK (g) for every g ∈ G. In

other words, Indρ f = fK . This solves Exercise 4.1.14(e).
(f) Assume that G = H/K for some normal subgroup K of H. Let ρ : H → G be the projection map.

We want to prove that Indρ U ∼= UK for every CH-module U .
The map ρ is the projection map from H to G = H/K. Thus, the map ρ is surjective and has kernel

ker ρ = K. Furthermore,

(13.111.29)
∣∣ρ−1 (g)

∣∣ = |K| for every g ∈ G.
811

Let U be a CH-module. Recall that UK is a C [H/K]-module, thus a CG-module (since H/K = G).
Recall that Indρ U is defined as the CG-module CG⊗CHU , where CG is regarded as a (CG,CH)-bimodule

according to the following rule: The left CG-module structure on CG is plain multiplication inside CG; the
right CH-module structure on CG is induced by the C-algebra homomorphism C [ρ] : CH → CG (thus, it is
explicitly given by γη = γ · (C [ρ]) η for all γ ∈ CG and η ∈ CH). From now on, we regard CG as endowed
with this (CG,CH)-bimodule structure.

810Proof. Let p ∈ G. Then, p ∈ G = H/K. Hence, there exists a y ∈ H such that p = yK. Consider this y.
Recall that ρ (h) = hK for every h ∈ H. Applying this to h = y, we obtain ρ (y) = yK = p.

We notice that the map K → y−1xKy, k 7→ y−1xky is a bijection (since H is a group).

Now, for every h ∈ H, we have the following equivalence:(
ρ (h) = p−1gp

)
⇐⇒

(
ρ (h) = (ρ (y))−1 gρ (y)

)
(since p = ρ (y))

⇐⇒
(
h ∈ y−1xKy

)
(according to (13.111.25)) .(13.111.28)

Now, ∑
h∈H;

ρ(h)=p−1gp︸ ︷︷ ︸
=

∑
h∈H;

h∈y−1xKy
(because for every h∈H, the statement

(ρ(h)=p−1gp) is equivalent to (h∈y−1xKy)
(because of (13.111.28)))

f (h) =
∑
h∈H;

h∈y−1xKy︸ ︷︷ ︸
=

∑
h∈y−1xKy

(since y−1xKy⊂H)

f (h) =
∑

h∈y−1xKy

f (h) =
∑
k∈K

f
(
y−1xky

)

(here, we substituted y−1xky for h in the sum, since the map K → y−1xKy, k 7→ y−1xky is a bijection). Thus,∑
h∈H;

ρ(h)=p−1gp

f (h) =
∑
k∈K

f
(
y−1xky

)︸ ︷︷ ︸
=f(xk)

(by (13.111.24), applied to z=xk)

=
∑
k∈K

f (xk) ,

qed.
811Proof of (13.111.29): Let g ∈ G. The map ρ is surjective. Hence, ρ (H) = G. Thus, g ∈ G = ρ (H). Therefore, there

exists some x ∈ H such that g = ρ (x). Let us fix such an x.
We know that H is a group. Hence, the map K → xK, k 7→ xk is a bijection. Thus, the sets K and xK are in bijection.

Therefore, |xK| = |K|.
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We define a map α : UK → CG⊗CH U by setting

α (u) = 1⊗CH u for every u ∈ UK .
This α is a map UK → Indρ U (since Indρ U = CG⊗CH U) and is C-linear (since α (u) = 1⊗CH u depends
C-linearly on u).

We will show that α is a CG-module isomorphism.
The CG-module structure on UK has the property that

(13.111.30) ρ (h) · v = hv for any h ∈ H and v ∈ UK .
812

Now, α is a CG-module homomorphism813. We will eventually construct an inverse to α; but first we
need to prepare.

For every g ∈ G and every p ∈ CG, we denote by εg (p) the g-coordinate of p with respect to the basis G
of the C-vector space CG. By the definition of “coordinate”, we have

(13.111.32) q =
∑
g∈G

εg (q) g for every q ∈ CG.

However, for every y ∈ H, we have the following logical equivalence:

(
y ∈ ρ−1 (g)

)
⇐⇒

ρ (y) = g︸︷︷︸
=ρ(x)

 ⇐⇒ (ρ (y) = ρ (x)) ⇐⇒


ρ (y) · (ρ (x))−1︸ ︷︷ ︸

=ρ(yx−1)
(since ρ is a group
homomorphism)

= 1



⇐⇒
(
ρ
(
yx−1

)
= 1
)
⇐⇒

yx−1 ∈ ker ρ︸ ︷︷ ︸
=K

 ⇐⇒
(
yx−1 ∈ K

)
⇐⇒ (y ∈ xK) .

Hence, ρ−1 (g) = xK, so that
∣∣ρ−1 (g)

∣∣ = |xK| = |K|. This proves (13.111.29).
812Proof of (13.111.30): The map ρ is the projection map from H to H/K. Thus, the map ρ sends every h ∈ H to the

coset hK ∈ H/K. In other words,

(13.111.31) ρ (h) = hK for every h ∈ H,

where hK means the coset hK ∈ H/K. But by the definition of the C [H/K]-module structure on UK , we have

(hK) · v = hv for any h ∈ H and v ∈ UK ,

where hK means the coset hK ∈ H/K. Thus, any h ∈ H and v ∈ UK satisfy

ρ (h)︸ ︷︷ ︸
=hK

(by (13.111.31))

·v = (hK) · v = hv,

where hK means the coset hK ∈ H/K. This proves (13.111.30).
813Proof. Let u ∈ UK and g ∈ G. We have g ∈ G = ρ (H) (since the map ρ : H → G is surjective). Thus, g = ρ (y) for

some y ∈ H. Let us consider this y.
Applying (13.111.30) to h = y and v = u, we obtain ρ (y) · u = yu. Thus, g︸︷︷︸

=ρ(y)

u = ρ (y) · u = yu.

Now, the definition of α (gu) yields

α (gu) = 1⊗CH gu︸︷︷︸
=yu

= 1⊗CH yu = 1y ⊗CH u

(here, we moved the y past the tensor sign; this is allowed because y ∈ H ⊂ CH).

By the definition of the left CG-module structure on CG, we have g · 1 = g1 = g.
By the definition of the right CH-module structure on CG, we have γη = γ · (C [ρ]) η for all γ ∈ CG and η ∈ CH.

Applying this to γ = 1 and η = y, we obtain 1y = 1 · (C [ρ]) y. But y ∈ H and thus (C [ρ]) y = ρ (y) = g. Therefore,

1y = 1 · (C [ρ]) y︸ ︷︷ ︸
=g

= 1 · g = g = g · 1.

Now, α (gu) = 1y︸︷︷︸
=g·1

⊗CHu = g ·1⊗CH u. Compared with g · α (u)︸ ︷︷ ︸
=1⊗CHu

= g ·(1⊗CH u) = g ·1⊗CH u, this yields α (gu) = g ·α (u).

Now, let us forget that we fixed u and g. We thus have shown that α (gu) = g · α (u) for all u ∈ UK and g ∈ G. Thus, the

map α is a homomorphism of G-sets. Since the map α is also C-linear, this yields that α is a CG-module homomorphism. Qed.
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For every g ∈ G, we have defined a map εg : CG → C (because we have defined an element εg (p) for every
p ∈ CG). This map εg is C-linear. We notice some basic properties of these maps:

• For every g ∈ G and h ∈ G, we have

(13.111.33) εg (h) = δg,h.

814

• We have

(13.111.34) ε1 (pq) = ε1 (qp) for all p ∈ CG and q ∈ CG.
815

• We have

(13.111.35) ε1
(
g−1q

)
= εg (q) for every g ∈ G and q ∈ CG.

816

Now, for every (q, u) ∈ CG × U , we have
∑
h∈H

ε1 (ρ (h) q)h−1u ∈ UK 817. Hence, we can define a map

β̃ : CG× U → UK by setting

β̃ (q, u) =
∑
h∈H

ε1 (ρ (h) q)h−1u for every (q, u) ∈ CG× U.

Consider this map β̃. Then, β̃ is a C-bilinear map (because β̃ (q, u) =
∑
h∈H ε1 (ρ (h) q)h−1u depends C-

linearly on each of q and u). We are now going to prove that the map β̃ is CH-bilinear with respect to the
right CH-module structure on CG and the left CH-module structure on U .

In fact, every h′ ∈ H, q ∈ CG and u ∈ U satisfy

(13.111.36) β̃ (q, h′u) = β̃ (qh′, u) .

814This equality has been proven in our solution of Exercise 4.1.4. (Namely, it appeared there as (13.105.3).)
815This equality has been proven in our solution of Exercise 4.1.4. (Namely, it appeared there as (13.105.4).)
816This equality has been proven in our solution of Exercise 4.1.4. (Namely, it appeared there as (13.105.5).)
817Proof. Let (q, u) ∈ CG× U . Let x =

∑
h∈H

ε1 (ρ (h) q)h−1u. We shall show that x ∈ UK .

Let k ∈ K. Then, the map H → H, h 7→ hk is a bijection (since H is a group). Now, multiplying both sides of the equality

x =
∑
h∈H

ε1 (ρ (h) q)h−1u with k from the left, we obtain

kx = k
∑
h∈H

ε1 (ρ (h) q)h−1u =
∑
h∈H

ε1 (ρ (h) q) kh−1u

=
∑
h∈H

ε1


ρ (hk)︸ ︷︷ ︸

=ρ(h)ρ(k)
(since ρ is a group
homomorphism)

q


k (hk)−1︸ ︷︷ ︸

=k−1h−1

u

(
here, we substituted hk for h in the sum,

since the map H → H, h 7→ hk is a bijection

)

=
∑
h∈H

ε1

ρ (h) ρ (k)︸ ︷︷ ︸
=1

(since k∈K=ker ρ)

q

 kk−1︸ ︷︷ ︸
=1

h−1u =
∑
h∈H

ε1 (ρ (h) q)h−1u = x.

Let us now forget that we fixed k. We thus have shown that kx = x for every k ∈ K. In other words, x is an element y ∈ U
satisfying ky = y for every k ∈ K. Hence,

x ∈ {y ∈ U | ky = y for every k ∈ K} = UK .

Thus,
∑
h∈H

ε1 (ρ (h) q)h−1u = x ∈ UK , qed.
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818 As a consequence of this, we can see that every r ∈ CH, q ∈ CG and u ∈ U satisfy

(13.111.38) β̃ (q, ru) = β̃ (qr, u) .

819 In other words, the map β̃ is CH-bilinear with respect to the right CH-module structure on CG and

the left CH-module structure on U (since we already know that β̃ is C-bilinear). Hence, by the universal
property of the tensor product, we conclude that there exists a unique C-linear map β : CG ⊗CH U → UK

such that every (q, u) ∈ CG× U satisfies

(13.111.39) β (q ⊗CH u) = β̃ (q, u) .

Consider this map β. Clearly, every q ∈ CG and u ∈ U satisfy

(13.111.40) β (q ⊗CH u) = β̃ (q, u) =
∑
h∈H

ε1 (ρ (h) q)h−1u
(

by the definition of β̃
)
.

We shall now show that the maps α and
1

|K|
β are mutually inverse. To do so, we will show that

α ◦ β = |K| id and β ◦ α = |K| id.
Let us first notice that

(13.111.41) 1⊗CH h−1u = (ρ (h))
−1 ⊗CH u for any h ∈ H and u ∈ U.

820

818Proof of (13.111.36): Let h′ ∈ H, q ∈ CG and u ∈ U . Then, the map H → H, h 7→ h′h is a bijection (since H is a

group). The definition of β̃ yields

β̃
(
q, h′u

)
=
∑
h∈H

ε1 (ρ (h) q)h−1h′u =
∑
h∈H

ε1


ρ
(
h′h
)︸ ︷︷ ︸

=ρ(h′)ρ(h)

(since ρ is a group
homomorphism)

q


(
h′h
)−1︸ ︷︷ ︸

=h−1(h′)−1

h′u

(
here, we substituted h′h for h in the sum,

since the map H → H, h 7→ h′h is a bijection

)
=
∑
h∈H

ε1
(
ρ
(
h′
)
ρ (h) q

)︸ ︷︷ ︸
=ε1(ρ(h)qρ(h′))

(by (13.111.34), applied to

ρ(h′) and ρ(h)q instead of p and q)

h−1
(
h′
)−1

h′︸ ︷︷ ︸
=1

u

=
∑
h∈H

ε1
(
ρ (h) qρ

(
h′
))
h−1u.(13.111.37)

But the definition of the right CH-module structure on CG yields γη = γ·(C [ρ]) η for all γ ∈ CG and η ∈ CH. Applying this to

γ = q and η = h′, we obtain qh′ = q ·(C [ρ]) (h′). But h′ ∈ H and thus (C [ρ]) (h′) = ρ (h′). Hence, qh′ = q ·(C [ρ])
(
h′
)︸ ︷︷ ︸

=ρ(h′)

= qρ (h′).

But the definition of β̃ also yields

β̃
(
qh′, u

)
=
∑
h∈H

ε1

ρ (h) qh′︸︷︷︸
=qρ(h′)

h−1u =
∑
h∈H

ε1
(
ρ (h) qρ

(
h′
))
h−1u

= β̃
(
q, h′u

)
(by (13.111.37)) .

In other words, β̃ (q, h′u) = β̃ (qh′, u). This proves (13.111.36).
819Proof of (13.111.38): Let r ∈ CH, q ∈ CG and u ∈ U . We need to prove the equality (13.111.38). But this equality

is C-linear in r. Hence, we can WLOG assume that r belongs to the basis H of the C-vector space CH. Assume this. Then,

(13.111.38) follows from (13.111.36) (applied to h′ = r).
820Proof of (13.111.41): Let h ∈ H and u ∈ U . We have h ∈ H. Since H is a group, this yields h−1 ∈ H ⊂ CH. Hence, we

can move the h−1 past the tensor sign in 1⊗CH h−1u. We thus obtain 1⊗CH h−1u = 1h−1 ⊗CH u.
But the definition of the right CH-module structure on CG yields γη = γ ·(C [ρ]) η for all γ ∈ CG and η ∈ CH. Applying this

to γ = 1 and η = h−1, we obtain 1h−1 = 1 · (C [ρ])
(
h−1

)
. But h−1 ∈ H and thus (C [ρ])

(
h−1

)
= ρ

(
h−1

)
= (ρ (h))−1 (since ρ
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Now, we are going to show that α ◦ β = |K| id. In fact, let q ∈ CG and u ∈ U be arbitrary. Then,

(α ◦ β) (q ⊗CH u) = α (β (q ⊗CH u)) = 1⊗CH β (q ⊗CH u)︸ ︷︷ ︸
=
∑
h∈H ε1(ρ(h)q)h−1u

(by (13.111.40))

(by the definition of α)

= 1⊗CH

(∑
h∈H

ε1 (ρ (h) q)h−1u

)
=

∑
h∈H︸︷︷︸

=
∑
g∈G

∑
h∈H;
ρ(h)=g

ε1 (ρ (h) q) 1⊗CH h−1u︸ ︷︷ ︸
=(ρ(h))−1⊗CHu
(by (13.111.41))

=
∑
g∈G

∑
h∈H;
ρ(h)=g︸ ︷︷ ︸

=
∑
h∈ρ−1(g)

ε1

ρ (h)︸︷︷︸
=g

q


ρ (h)︸︷︷︸

=g


−1

⊗CH u =
∑
g∈G

∑
h∈ρ−1(g)

ε1 (gq) g−1 ⊗CH u

︸ ︷︷ ︸
=|ρ−1(g)|ε1(gq)g−1⊗CHu

=
∑
g∈G

∣∣ρ−1 (g)
∣∣︸ ︷︷ ︸

=|K|
(by (13.111.29))

ε1 (gq) g−1 ⊗CH u =
∑
g∈G
|K| ε1 (gq) g−1 ⊗CH u

= |K|

∑
g∈G

ε1 (gq) g−1

⊗CH u = |K|

∑
g∈G

ε1
(
g−1q

) (
g−1

)−1︸ ︷︷ ︸
=g

⊗CH u

(
here, we substituted g−1 for g in the sum, since the map
G→ G, g 7→ g−1 is a bijection (since G is a group)

)

= |K|


∑
g∈G

ε1
(
g−1q

)︸ ︷︷ ︸
=εg(q)

(by (13.111.35))

g

⊗CH u = |K|

∑
g∈G

εg (q) g


︸ ︷︷ ︸

=q
(by (13.111.32))

⊗CHu

= |K| q ⊗CH u︸ ︷︷ ︸
=id(q⊗CHu)

= |K| id (q ⊗CH u) .

Now, let us forget that we fixed q and u. We thus have shown that (α ◦ β) (q ⊗CH u) = |K| id (q ⊗CH u)
for all q ∈ CG and u ∈ U . In other words, the two maps α ◦ β : CG ⊗CH U → CG ⊗CH U and |K| id :
CG ⊗CH U → CG ⊗CH U are equal to each other on each pure tensor. Since these two maps are C-linear,
this yields that these two maps α ◦ β : CG⊗CH U → CG⊗CH U and |K| id : CG⊗CH U → CG⊗CH U must
be identical. In other words, α ◦ β = |K| id.

Next, we are going to show that β ◦ α = |K| id.
We first notice that

(13.111.42) h−1u = (ρ (h))
−1
u for every h ∈ H and u ∈ UK .

821

is a group homomorphism). Hence, 1h−1 = 1 · (C [ρ])
(
h−1

)︸ ︷︷ ︸
=(ρ(h))−1

= 1 · (ρ (h))−1 = (ρ (h))−1. Now, 1⊗CH h−1u = 1h−1︸ ︷︷ ︸
=(ρ(h))−1

⊗CHu =

(ρ (h))−1 ⊗CH u. This proves (13.111.41).
821Proof of (13.111.42): Let h ∈ H and u ∈ UK . Applying (13.111.30) to h−1 and u instead of h and v, we obtain

ρ
(
h−1

)
· u = h−1u. But ρ is a group homomorphism, and thus we have (ρ (h))−1 = ρ

(
h−1

)
. Hence, (ρ (h))−1︸ ︷︷ ︸

=ρ(h−1)

u = ρ
(
h−1

)
u =

ρ
(
h−1

)
· u = h−1u. This proves (13.111.42).
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Let u ∈ UK . The definition of α (u) yields α (u) = 1 ⊗CH u. Applying the map β to this equality, we
obtain

β (α (u)) = β (1⊗CH u) =
∑
h∈H︸︷︷︸

=
∑
g∈G

∑
h∈H;
ρ(h)=g

ε1 (ρ (h) 1) h−1u︸ ︷︷ ︸
=(ρ(h))−1u

(by (13.111.42))

(by (13.111.40), applied to q = 1)

=
∑
g∈G

∑
h∈H;
ρ(h)=g︸ ︷︷ ︸

=
∑
h∈ρ−1(g)

ε1

ρ (h)︸︷︷︸
=g

1


ρ (h)︸︷︷︸

=g


−1

u =
∑
g∈G

∑
h∈ρ−1(g)

ε1 (g1) g−1u

︸ ︷︷ ︸
=|ρ−1(g)|ε1(g1)g−1u

=
∑
g∈G

∣∣ρ−1 (g)
∣∣︸ ︷︷ ︸

=|K|
(by (13.111.29))

ε1 (g1) g−1u =
∑
g∈G
|K| ε1 (g1) g−1u

= |K|
∑
g∈G

ε1 (g1) g−1u = |K|
∑
g∈G

ε1
(
g−11

) (
g−1

)−1︸ ︷︷ ︸
=g

u

(
here, we substituted g−1 for g in the sum, since the map
G→ G, g 7→ g−1 is a bijection (since G is a group)

)

= |K|
∑
g∈G

ε1
(
g−11

)︸ ︷︷ ︸
=εg(1)

(by (13.111.35), applied to q=1)

gu = |K|
∑
g∈G

εg (1) gu = |K|

∑
g∈G

εg (1) g


︸ ︷︷ ︸

=1
(because 1=

∑
g∈G εg(1)g

(by (13.111.32), applied to q=1))

u

= |K| u︸︷︷︸
=id(u)

= |K| id (u) .

In other words, (β ◦ α) (u) = |K| id (u) (since (β ◦ α) (u) = β (α (u))).
Now, forget that we fixed u. We thus have shown that (β ◦ α) (u) = |K| id (u) for every u ∈ UK . In other

words, β ◦ α = |K| id.

The equalities α◦
(

1

|K|
β

)
=

1

|K|
α ◦ β︸ ︷︷ ︸
=|K| id

=
1

|K|
· |K| id = id and

(
1

|K|
β

)
◦α =

1

|K|
β ◦ α︸ ︷︷ ︸
=|K| id

=
1

|K|
· |K| id =

id show that the maps α and
1

|K|
β are mutually inverse. Hence, the map α is invertible.

Now, we know that the map α is an invertible CG-module homomorphism. Hence, α is a CG-module
isomorphism. Therefore, there exists a CG-module isomorphism UK → CG⊗CH U (namely, α). Therefore,
UK ∼= CG⊗CH U = Indρ U as CG-modules. This solves Exercise 4.1.14(f).

[Remark: There is another solution of Exercise 4.1.14(f), which uses the result of Exercise 4.1.12(b). Yet
another solution of Exercise 4.1.14(f) relies on Exercise 4.1.14(i), and will be given after the solution of the
latter.]

(g) Let α ∈ RC (H) and β ∈ RC (G). We notice that

(13.111.43) any two conjugate elements k and k′ of G satisfy β (k) = β (k′)

822.

822Proof of (13.111.43): We can apply (13.111.1) to K = G and f = β. As a consequence, we obtain the following

equivalence:

(β ∈ RC (G))

⇐⇒
(
any two conjugate elements k and k′ of G satisfy β (k) = β

(
k′
))
.

Hence, any two conjugate elements k and k′ of G satisfy β (k) = β (k′) (because we know that β ∈ RC (G)).
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Let us first prove (4.1.17). The definition of 〈Indρ α, β〉G yields

〈Indρ α, β〉G =
1

|G|
∑
g∈G

(Indρ α) (g)︸ ︷︷ ︸
=

1

|H|
∑

(h,k)∈H×G;

kρ(h)k−1=g

α(h)

(by the definition of Indρ α)

β
(
g−1

)
=

1

|G|
∑
g∈G

 1

|H|
∑

(h,k)∈H×G;

kρ(h)k−1=g

α (h)

β
(
g−1

)

=
1

|G|
1

|H|
∑
g∈G

∑
(h,k)∈H×G;

kρ(h)k−1=g︸ ︷︷ ︸
=
∑

(h,k)∈H×G
∑
g∈G;

kρ(h)k−1=g

α (h)β


g−1︸︷︷︸

=(kρ(h)k−1)
−1

(since g=kρ(h)k−1

(since kρ(h)k−1=g))



=
1

|G|
1

|H|
∑

(h,k)∈H×G

∑
g∈G;

kρ(h)k−1=g

α (h)β
((
kρ (h) k−1

)−1
)
.(13.111.44)

However, for every (h, k) ∈ H ×G, we have

(13.111.45)
∑
g∈G;

kρ(h)k−1=g

α (h)β
((
kρ (h) k−1

)−1
)

= α (h) (Resρ β)
(
h−1

)
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823. Thus, (13.111.44) becomes

〈Indρ α, β〉G =
1

|G|
1

|H|
∑

(h,k)∈H×G︸ ︷︷ ︸
=
∑
h∈H

∑
k∈G

∑
g∈G;

kρ(h)k−1=g

α (h)β
((
kρ (h) k−1

)−1
)

︸ ︷︷ ︸
=α(h)(Resρ β)(h−1)

=
1

|G|
1

|H|
∑
h∈H

∑
k∈G

α (h) (Resρ β)
(
h−1

)
︸ ︷︷ ︸

=|G|·α(h)(Resρ β)(h−1)

=
1

|G|
1

|H|
∑
h∈H

|G| · α (h) (Resρ β)
(
h−1

)

=
1

|H|
∑
h∈H

α (h) (Resρ β)
(
h−1

)
.

Compared with

〈α,Resρ β〉H =
1

|H|
∑
g∈H

α (g) (Resρ β)
(
g−1

) (
by the definition of 〈α,Resρ β〉H

)
=

1

|H|
∑
h∈H

α (h) (Resρ β)
(
h−1

)
(here, we renamed the summation index g as h) ,

this yields 〈Indρ α, β〉G = 〈α,Resρ β〉H . Thus, (4.1.17) is proven.

823Proof of (13.111.45): Fix a (h, k) ∈ H × G. Thus, h ∈ H and k ∈ G. Now, there exists only one g ∈ G such that

kρ (h) k−1 = g (namely, g = kρ (h) k−1). Hence, the sum
∑
g∈G;

kρ(h)k−1=g

α (h)β
((
kρ (h) k−1

)−1
)

has only one addend. Hence,

this sum simplifies as follows:

∑
g∈G;

kρ(h)k−1=g

α (h)β
((
kρ (h) k−1

)−1
)

= α (h)β

 (
kρ (h) k−1

)−1︸ ︷︷ ︸
=(k−1)−1

(ρ(h))−1k−1

 = α (h)β


(
k−1

)−1︸ ︷︷ ︸
=k

(ρ (h))−1︸ ︷︷ ︸
=ρ(h−1)

(since ρ is a group
homomorphism)

k−1


= α (h)β

(
kρ
(
h−1

)
k−1

)
.(13.111.46)

But ρ
(
h−1

)
and kρ

(
h−1

)
k−1 are two conjugate elements of G. Hence, (13.111.43) (applied to ρ

(
h−1

)
and kρ

(
h−1

)
k−1

instead of k and k′) yields β
(
ρ
(
h−1

))
= β

(
kρ
(
h−1

)
k−1

)
. Thus,

β
((
kρ (h) k−1

)−1
)

= β
(
ρ
(
h−1

))
= (β ◦ ρ)︸ ︷︷ ︸

=Resρ β
(since Resρ β is defined as β◦ρ)

(
h−1

)
= (Resρ β)

(
h−1

)
.

Hence, (13.111.46) becomes

∑
g∈G;

kρ(h)k−1=g

α (h)β
((
kρ (h) k−1

)−1
)

= α (h)β
(
kρ
(
h−1

)
k−1

)︸ ︷︷ ︸
=(Resρ β)(h−1)

= α (h) (Resρ β)
(
h−1

)
.

This proves (13.111.45).
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Let us now prove (4.1.16). (This proof will be very much similar to the proof of (4.1.17) above, but in a
few places even easier.) The definition of (Indρ α, β)G yields

(Indρ α, β)G =
1

|G|
∑
g∈G

(Indρ α) (g)︸ ︷︷ ︸
=

1

|H|
∑

(h,k)∈H×G;

kρ(h)k−1=g

α(h)

(by the definition of Indρ α)

β (g) =
1

|G|
∑
g∈G

 1

|H|
∑

(h,k)∈H×G;

kρ(h)k−1=g

α (h)

β (g)

=
1

|G|
1

|H|
∑
g∈G

∑
(h,k)∈H×G;

kρ(h)k−1=g︸ ︷︷ ︸
=
∑

(h,k)∈H×G
∑
g∈G;

kρ(h)k−1=g

α (h)β

 g︸︷︷︸
=kρ(h)k−1

(since kρ(h)k−1=g)



=
1

|G|
1

|H|
∑

(h,k)∈H×G

∑
g∈G;

kρ(h)k−1=g

α (h)β (kρ (h) k−1).(13.111.47)

However, for every (h, k) ∈ H ×G, we have

(13.111.48)
∑
g∈G;

kρ(h)k−1=g

α (h)β (kρ (h) k−1) = α (h) (Resρ β) (h)
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824. Thus, (13.111.47) becomes

(Indρ α, β)G =
1

|G|
1

|H|
∑

(h,k)∈H×G︸ ︷︷ ︸
=
∑
h∈H

∑
k∈G

∑
g∈G;

kρ(h)k−1=g

α (h)β (kρ (h) k−1)

︸ ︷︷ ︸
=α(h)(Resρ β)(h)

=
1

|G|
1

|H|
∑
h∈H

∑
k∈G

α (h) (Resρ β) (h)︸ ︷︷ ︸
=|G|·α(h)(Resρ β)(h)

=
1

|G|
1

|H|
∑
h∈H

|G| · α (h) (Resρ β) (h)

=
1

|H|
∑
h∈H

α (h) (Resρ β) (h).

Compared with

(α,Resρ β)H =
1

|H|
∑
g∈H

α (g) (Resρ β) (g)
(
by the definition of (α,Resρ β)H

)
=

1

|H|
∑
h∈H

α (h) (Resρ β) (h)

(here, we renamed the summation index g as h) ,

this yields (Indρ α, β)G = (α,Resρ β)H . Thus, (4.1.16) is proven. The solution of Exercise 4.1.14(g) is thus
complete.

(h) Let U be a CH-module, and let V be a CG-module.
Recall that Indρ U is defined as the CG-module CG⊗CHU , where CG is regarded as a (CG,CH)-bimodule

according to the following rule: The left CG-module structure on CG is plain multiplication inside CG; the
right CH-module structure on CG is induced by the C-algebra homomorphism C [ρ] : CH → CG (thus, it is
explicitly given by γη = γ · (C [ρ]) η for all γ ∈ CG and η ∈ CH). From now on, we regard CG as endowed
with this (CG,CH)-bimodule structure.

Now, (4.1.8) (applied to R = CH, S = CG, A = CG, B = U and C = V ) yields

(13.111.50) HomCG (CG⊗CH U, V ) ∼= HomCH (U,HomCG (CG,V )) .

We shall now prove that HomCG (CG,V ) ∼= Resρ V as left CH-modules.
Indeed, a fundamental fact in abstract algebra says the following: If A is a C-algebra, and if M is

a left A-module, then there exists a C-vector space isomorphism Ξ : HomA (A,M) → M which satisfies
(Ξ (f) = f (1) for every f ∈ HomA (A,M)). Applying this fact to A = CG and M = V , we conclude that

824Proof of (13.111.48): Fix a (h, k) ∈ H × G. Thus, h ∈ H and k ∈ G. Now, there exists only one g ∈ G such that

kρ (h) k−1 = g (namely, g = kρ (h) k−1). Hence, the sum
∑
g∈G;

kρ(h)k−1=g

α (h)β (kρ (h) k−1) has only one addend. Hence, this sum

simplifies as follows:

(13.111.49)
∑
g∈G;

kρ(h)k−1=g

α (h)β (kρ (h) k−1) = α (h)β (kρ (h) k−1).

But ρ (h) and kρ (h) k−1 are two conjugate elements of G. Hence, (13.111.43) (applied to ρ (h) and kρ (h) k−1 instead of k

and k′) yields β (ρ (h)) = β
(
kρ (h) k−1

)
. Thus,

β
(
kρ (h) k−1

)
= β (ρ (h)) = (β ◦ ρ)︸ ︷︷ ︸

=Resρ β
(since Resρ β is defined as β◦ρ)

(h) = (Resρ β) (h) .

Hence, (13.111.49) becomes∑
g∈G;

kρ(h)k−1=g

α (h)β (kρ (h) k−1) = α (h) β (kρ (h) k−1)︸ ︷︷ ︸
=(Resρ β)(h)

(since β(kρ(h)k−1)=(Resρ β)(h))

= α (h) (Resρ β) (h).

This proves (13.111.48).
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there exists a C-vector space isomorphism Ξ : HomCG (CG,V )→ V which satisfies
(Ξ (f) = f (1) for every f ∈ HomCG (CG,V )). Consider this Ξ.

The map Ξ is a homomorphism of H-sets from HomCG (CG,V ) to Resρ V
825. Therefore, Ξ is a

CH-module homomorphism from HomCG (CG,V ) to Resρ V (since Ξ is a C-linear map). Consequently, Ξ
is a CH-module isomorphism from HomCG (CG,V ) to Resρ V (since Ξ is a C-vector space isomorphism).
Therefore, HomCG (CG,V ) ∼= Resρ V as CH-modules. Now,

HomCG

 Indρ U︸ ︷︷ ︸
=CG⊗CHU

, V

 = HomCG (CG⊗CH U, V )

∼= HomCH

U, HomCG (CG,V )︸ ︷︷ ︸
∼=Resρ V as CH-modules

 (by (13.111.50))

∼= HomCH (U,Resρ V ) .

This solves Exercise 4.1.14(h).
(i) The following solution will mostly be an imitation of the solution of Exercise 4.1.4.
Let U be any CH-module. Recall that Indρ U is defined as the CG-module CG ⊗CH U , where CG

is regarded as a (CG,CH)-bimodule according to the following rule: The left CG-module structure on
CG is plain multiplication inside CG; the right CH-module structure on CG is induced by the C-algebra
homomorphism C [ρ] : CH → CG (thus, it is explicitly given by γη = γ · (C [ρ]) η for all γ ∈ CG and
η ∈ CH). From now on, we regard CG as endowed with this (CG,CH)-bimodule structure (besides the
(CH,CG)-bimodule structure that was introduced in the statement of Exercise 4.1.14(i)).

The C-vector space CG is thus endowed with a left CH-module structure (which is part of the (CG,CH)-
bimodule structure) and with a right CH-module structure (which is part of the (CH,CG)-bimodule struc-
ture). These two structures, combined, form a (CH,CH)-bimodule structure826. This allows us to write
expressions like xyz with x ∈ CH, y ∈ CG and z ∈ CH, without having to disambiguate whether they mean
(xy) z or x (yz).

We recall that HomCH (CG,U) is the left CG-module consisting of all left CH-module homomorphisms
from CG to U . This uses only the (CH,CG)-bimodule structure on CG that was introduced in the statement
of Exercise 4.1.14(i) (but not the (CG,CH)-bimodule structure on CG that was introduced in the definition
of Indρ U).

825Proof. The map Ξ is clearly a map from HomCG (CG,V ) to V , therefore a map from HomCG (CG,V ) to Resρ V (since
Resρ V = V as sets).

Recall that the CH-module structure on Resρ V is given by

(13.111.51) h · v = ρ (h) · v for every h ∈ H and v ∈ V.

Now, let f ∈ HomCG (CG,V ) and h ∈ H. We are going to prove that Ξ (h · f) = h ·Ξ (f), where h ·Ξ (f) is computed in the
CH-module Resρ V .

Indeed, the definition of the left CH-module structure on HomCG (CG,V ) yields (η · α) (p) = α (pη) for every η ∈ CH,

α ∈ HomCG (CG,V ) and p ∈ CG. Applying this to η = h, α = f and p = 1, we obtain (h · f) (1) = f (1h) (since h ∈ H ⊂ CH).
But the definition of Ξ yields Ξ (h · f) = (h · f) (1) = f (1h).

Recall that the right CH-module structure on CG is given by the equality γη = γ · (C [ρ]) η for all γ ∈ CG and η ∈ CH.

Applying this equality to γ = 1 and η = h, we obtain 1h = 1 · (C [ρ]) (h) (since h ∈ H ⊂ CH). But h ∈ H and thus (C [ρ]) (h) =

ρ (h). Thus, 1h = 1 · (C [ρ]) (h) = (C [ρ]) (h) = ρ (h) = ρ (h) · 1. Now, Ξ (h · f) = f

 1h︸︷︷︸
=ρ(h)·1

 = f (ρ (h) · 1) = ρ (h) · f (1) (since

f is a CG-module homomorphism (because f ∈ HomCG (CG,V )) and since ρ (h) ∈ G ⊂ CG).
On the other hand, (13.111.51) (applied to v = f (1)) yields h · f (1) = ρ (h) · f (1). Compared with Ξ (h · f) = ρ (h) · f (1),

this yields Ξ (h · f) = h · f (1).

But the definition of Ξ yields Ξ (f) = f (1). Thus, f (1) = Ξ (f), so that Ξ (h · f) = h · f (1)︸ ︷︷ ︸
=Ξ(f)

= h · Ξ (f).

Now, let us forget that we fixed f and h. We thus have shown that Ξ (h · f) = h · Ξ (f) for every f ∈ HomCG (CG,V ) and

h ∈ H. In other words, Ξ is a homomorphism of H-sets from HomCG (CG,V ) to Resρ V , qed.
826This is easy to check (we leave the details of this verification to the reader).
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Recall that the right CH-module structure on CG is given by

(13.111.52) γη = γ · (C [ρ]) η for all γ ∈ CG and η ∈ CH.

For every γ ∈ CG and η ∈ H, we have

γη = γ · (C [ρ]) η︸ ︷︷ ︸
=ρ(η)

(since η∈H)

(by (13.111.52) (since η ∈ H ⊂ CH))

= γ · ρ (η) .(13.111.53)

On the other hand, the left CH-module structure on CG is induced by the C-algebra homomorphism C [ρ] :
CH → CG. In other words, this structure is given by

(13.111.54) ηγ = (C [ρ]) η · γ for all γ ∈ CG and η ∈ CH.

For every γ ∈ CG and η ∈ H, we have

ηγ = (C [ρ]) η︸ ︷︷ ︸
=ρ(η)

(since η∈H)

·γ (by (13.111.54) (since η ∈ H ⊂ CH))

= ρ (η) · γ.(13.111.55)

The map ρ is a group homomorphism. Hence, ρ (H) is a subgroup of G. Let us denote this subgroup by
H. Thus, H = ρ (H).

Let J be a system of distinct representatives for the right H-cosets in G. Then, G =
⊔
j∈J Hj.

For every g ∈ G, define a map Rg : J → J as follows: Let i ∈ J . Then, ig ∈ G =
⊔
j∈J Hj. Thus, there

exists a unique j ∈ J such that ig ∈ Hj. Define Rg (i) to be this j. Hence, we have defined Rg (i) for every
i ∈ J . Thus, we have defined a map Rg : J → J .

For every g ∈ G and i ∈ J , we have

(13.111.56) ig ∈ H ·Rg (i)

(because Rg (i) is defined as the j ∈ J satisfying ig ∈ Hj).
It is easy to see that for every g ∈ G, the map Rg : J → J is a bijection.827 We have

(13.111.58) j−1 ⊗CH f (jg) = g · (Rg (j))
−1 ⊗CH f (Rg (j)) in CG⊗CH U

827Proof. Fix g ∈ G.
The sets Hj for all j ∈ J are disjoint (since

⊔
j∈J Hj is well-defined). In other words, if i and i′ are two elements of J such

that Hi and Hi′ are not disjoint, then

(13.111.57) i = i′.

Let us now prove that Rg is injective.
Let i and i′ be two elements of J . Assume that Rg (i) = Rg (i′). We will show that i = i′.

From (13.111.56), we have ig ∈ H · Rg (i). Hence, there exists some h ∈ H such that ig = h · Rg (i). Consider this h. We
have

H ig︸︷︷︸
=h·Rg(i)

= Hh︸︷︷︸
=H

(since h∈H and since

H is a group)

·Rg (i) = H ·Rg (i) .

The same argument (but for i′ instead of i) yields Hi′g = H · Rg (i′). Hence, Hig = H · Rg (i)︸ ︷︷ ︸
=Rg(i′)

= H · Rg (i′) = Hi′g.

Thus, Hig︸︷︷︸
=Hi′g

g−1 = Hi′gg−1 = Hi′, so that Hi′ = Higg−1 = Hi. Thus, the sets Hi and Hi′ are not disjoint (because

(
Hi
)
∩
(
Hi′
)︸ ︷︷ ︸

=Hi

=
(
Hi
)
∩
(
Hi
)

= Hi 6= ∅). Therefore, i = i′ (by (13.111.57)).

Now, forget that we fixed i and i′. We thus have shown that if i and i′ are two elements of J such that Rg (i) = Rg (i′),
then i = i′. In other words, the map Rg is injective. But the set J is finite (since it is a subset of the finite set G). Hence, Rg
is a map from a finite set (namely, J) to itself. Since we know that Rg is injective, this yields that Rg is surjective (because
any injective map from a finite set to itself must be surjective). Hence, Rg is bijective (since Rg is injective and surjective),

that is, a bijection, qed.
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for every g ∈ G, every j ∈ J and every f ∈ HomCH (CG,U). 828

We now define a map α : HomCH (CG,U)→ CG⊗CH U by setting

α (f) =
∑
j∈J

j−1 ⊗CH f (j) for all f ∈ HomCH (CG,U) .

This α is a map HomCH (CG,U)→ Indρ U (since Indρ U = CG⊗CH U).
We will show that α is a CG-module isomorphism.
First, let us prove that α is a left CG-module homomorphism. In fact, any f ∈ HomCH (CG,U) and

g ∈ G satisfy

α (gf) =
∑
j∈J

j−1 ⊗CH (gf) (j)︸ ︷︷ ︸
=f(jg)

(by the definition of gf)

(by the definition of α (gf))

=
∑
j∈J

j−1 ⊗CH f (jg)︸ ︷︷ ︸
=g·(Rg(j))−1⊗CHf(Rg(j))

(by (13.111.58))

=
∑
j∈J

g · (Rg (j))
−1 ⊗CH f (Rg (j)) =

∑
j∈J

g · j−1 ⊗CH f (j)

(
here, we have substituted j for Rg (j) in the sum, since

the map Rg : J → J is a bijection

)
= g ·

∑
j∈J

j−1 ⊗CH f (j)︸ ︷︷ ︸
=α(f)

= g · α (f) .

The map α is thus a homomorphism of left G-sets. Since α is furthermore C-linear, this yields that α is a
left CG-module homomorphism.

We now are going to construct an inverse for α. This will be more cumbersome.
For every g ∈ G and every p ∈ CG, we denote by εg (p) the g-coordinate of p with respect to the basis G

of the C-vector space CG. By the definition of “coordinate”, we have

(13.111.60) q =
∑
g∈G

εg (q) g for every q ∈ CG.

For every g ∈ G, we have defined a map εg : CG → C (because we have defined an element εg (p) for every
p ∈ CG). This map εg is C-linear. We record some properties of these maps:

828Proof of (13.111.58): Let g ∈ G, j ∈ J and f ∈ HomCH (CG,U). Applying (13.111.56) to i = j, we obtain jg ∈ H ·Rg (j).

In other words, there exists an h ∈ H such that jg = h ·Rg (j). Consider this h. We have

j−1 jg︸︷︷︸
=h·Rg(j)

· (Rg (j))−1 = j−1h ·Rg (j) · (Rg (j))−1︸ ︷︷ ︸
=1

= j−1h,

hence

j−1h = j−1jg · (Rg (j))−1 = g · (Rg (j))−1 .

But h ∈ H = ρ (H). Hence, there exists a h′ ∈ H such that h = ρ (h′). Consider this h′.
Applying (13.111.55) to η = h′ and γ = Rg (j), we obtain h′ ·Rg (j) = ρ

(
h′
)︸ ︷︷ ︸

=h

·Rg (j) = h ·Rg (j) = jg (since jg = h ·Rg (j)).

But the map f is left CH-linear (since f ∈ HomCH (CG,U)). Thus, f (h′ ·Rg (j)) = h′ · f (Rg (j)) (since h′ ∈ H ⊂ CH).

Since h′ ·Rg (j) = jg, this rewrites as f (jg) = h′ · f (Rg (j)). Hence,

(13.111.59) j−1 ⊗CH f (jg)︸ ︷︷ ︸
=h′·f(Rg(j))

= j−1 ⊗CH h′ · f (Rg (j)) = j−1h′ ⊗CH f (Rg (j))

(here, we have moved h′ past the ⊗CH sign, since h′ ∈ H ⊂ CH).

On the other hand, applying (13.111.53) to γ = j−1 and η = h′, we obtain j−1h′ = j−1 · ρ
(
h′
)︸ ︷︷ ︸

=h

= j−1h = g · (Rg (j))−1.

Hence, (13.111.59) becomes

j−1 ⊗CH f (jg) = j−1h′︸ ︷︷ ︸
=g·(Rg(j))−1

⊗CHf (Rg (j)) = g · (Rg (j))−1 ⊗CH f (Rg (j)) .

This proves (13.111.58).
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• For every g ∈ G and h ∈ G, we have

(13.111.61) εg (h) = δg,h.

829

• We have

(13.111.62) ε1 (pq) = ε1 (qp) for all p ∈ CG and q ∈ CG.
830

• We have

(13.111.63) ε1
(
g−1q

)
= εg (q) for every g ∈ G and q ∈ CG.

831

Now, fix q ∈ CG and u ∈ U . We let fq,u be the map CG→ U defined by

(13.111.64) fq,u (p) =
∑
h∈H

ε1 (ρ (h) pq)h−1u for every p ∈ CG.

It is obvious that this map fq,u is C-linear. We will show that fq,u is a left CH-module homomorphism.
The map fq,u is a homomorphism of left H-sets832. Since fq,u is furthermore C-linear, this yields that

fq,u is a left CH-module homomorphism. Hence, fq,u ∈ HomCH (CG,U).
Now, forget that we fixed q and u. We thus have defined a map fq,u ∈ HomCH (CG,U) for every q ∈ CG

and u ∈ U . It is easy to see that this map fq,u depends C-linearly on each of q and u. Now, define a map

β̃ : CG× U → HomCH (CG,U) by

β̃ (q, u) = fq,u for every (q, u) ∈ CG× U.

829This equality has been proven in our solution of Exercise 4.1.4. (Namely, it appeared there as (13.105.3).)
830This equality has been proven in our solution of Exercise 4.1.4. (Namely, it appeared there as (13.105.4).)
831This equality has been proven in our solution of Exercise 4.1.4. (Namely, it appeared there as (13.105.5).)
832Proof. In fact, for every h′ ∈ H and every p ∈ CG, we have

fq,u
(
h′p
)

=
∑
h∈H

ε1


ρ (h)

(
h′p
)︸ ︷︷ ︸

=ρ(h′)·p
(by (13.111.55), applied

to γ=p and η=h′)

q


h−1u (by the definition of fq,u)

=
∑
h∈H

ε1
(
ρ (h) ρ

(
h′
)
· pq
)
h−1u =

∑
h∈H

ε1


ρ
(
h
(
h′
)−1

)
︸ ︷︷ ︸

=ρ(h)(ρ(h′))−1

(since ρ is a group
homomorphism)

ρ
(
h′
)
· pq


(
h
(
h′
)−1

)−1

︸ ︷︷ ︸
=((h′)−1)−1

h−1=h′h−1

u

 here, we have substituted h (h′)−1 for h in the sum,

because the map H → H, h 7→ h (h′)−1 is a bijection

(since H is a group and since h′ ∈ H)



=
∑
h∈H

ε1

ρ (h)
(
ρ
(
h′
))−1

ρ
(
h′
)︸ ︷︷ ︸

=1

·pq

h′h−1u

=
∑
h∈H

ε1 (ρ (h) pq)h′h−1u = h′ ·
∑
h∈H

ε1 (ρ (h) pq)h−1u

︸ ︷︷ ︸
=fq,u(p)

(by (13.111.64))

= h′ · fq,u (p) .

In other words, fq,u is a homomorphism of left H-sets, qed.
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Then, β̃ is a C-bilinear map (because β̃ (q, u) = fq,u depends C-linearly on each of q and u). We are now

going to prove that the map β̃ is CH-bilinear with respect to the right CH-module structure on CG and the
left CH-module structure on U .

In fact, every h′ ∈ H, q ∈ CG and u ∈ U satisfy

(13.111.65) β̃ (q, h′u) = β̃ (qh′, u) .

833 As a consequence of this, we can see that every r ∈ CH, q ∈ CG and u ∈ U satisfy

(13.111.67) β̃ (q, ru) = β̃ (qr, u) .

834 In other words, the map β̃ is CH-bilinear with respect to the right CH-module structure on CG and the

left CH-module structure on U (since we already know that β̃ is C-bilinear). Hence, by the universal property
of the tensor product, we conclude that there exists a unique C-linear map β : CG⊗CH U → HomCH (CG,U)
such that every (q, u) ∈ CG× U satisfies

(13.111.68) β (q ⊗CH u) = β̃ (q, u) .

Consider this map β. Clearly, every q ∈ CG and u ∈ U satisfy

β (q ⊗CH u) = β̃ (q, u) = fq,u

(
by the definition of β̃

)
.

833Proof of (13.111.65): Let h′ ∈ H, q ∈ CG and u ∈ U . Then, the map H → H, h 7→ h′h is a bijection (since H is a

group). Now, let p ∈ CG. The definition of β̃ yields β̃ (q, h′u) = fq,h′u. Hence,β̃ (q, h′u)︸ ︷︷ ︸
=fq,h′u

 (p) = fq,h′u (p) =
∑
h∈H

ε1 (ρ (h) pq)h−1h′u
(
by the definition of fq,h′u

)

=
∑
h∈H

ε1


ρ
(
h′h
)︸ ︷︷ ︸

=ρ(h′)ρ(h)

(since ρ is a group
homomorphism)

pq


(
h′h
)−1︸ ︷︷ ︸

=h−1(h′)−1

h′u

(
here, we substituted h′h for h in the sum,

since the map H → H, h 7→ h′h is a bijection

)
=
∑
h∈H

ε1
(
ρ
(
h′
)
ρ (h) pq

)︸ ︷︷ ︸
=ε1(ρ(h)pqρ(h′))

(by (13.111.62), applied to

ρ(h′) and ρ(h)pq instead of p and q)

h−1
(
h′
)−1

h′︸ ︷︷ ︸
=1

u

=
∑
h∈H

ε1
(
ρ (h) pqρ

(
h′
))
h−1u.(13.111.66)

But the definition of β̃ also yields β̃ (qh′, u) = fqh′,u. Hence,

(
β̃
(
qh′, u

))
(p) = fqh′,u (p) =

∑
h∈H

ε1


ρ (h) p

(
qh′
)︸ ︷︷ ︸

=q·ρ(h′)
(by (13.111.53), applied to

γ=q and η=h′)


h−1u

(
by the definition of fqh′,u

)

=
∑
h∈H

ε1
(
ρ (h) pq · ρ

(
h′
))
h−1u =

∑
h∈H

ε1
(
ρ (h) pqρ

(
h′
))
h−1u =

(
β̃
(
q, h′u

))
(p) (by (13.111.66)) .

Now, forget that we fixed p. We have thus proven that
(
β̃ (qh′, u)

)
(p) =

(
β̃ (q, h′u)

)
(p) for every p ∈ CG. In other words,

β̃ (qh′, u) = β̃ (q, h′u), so that β̃ (q, h′u) = β̃ (qh′, u). This proves (13.111.65).
834Proof of (13.111.67): Let r ∈ CH, q ∈ CG and u ∈ U . We need to prove the equality (13.111.67). But this equality

is C-linear in r. Hence, we can WLOG assume that r belongs to the basis H of the C-vector space CH. Assume this. Then,

(13.111.67) follows from (13.111.65) (applied to h′ = r).
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Hence, every q ∈ CG, u ∈ U and p ∈ CG satisfy

(13.111.69)

β (q ⊗CH u)︸ ︷︷ ︸
=fq,u

 (p) = fq,u (p) =
∑
h∈H

ε1 (ρ (h) pq)h−1u

(by (13.111.64)).
LetK = ker ρ. Thus, K is the kernel of a group homomorphism out ofH (since ρ is a group homomorphism

out of H), and therefore a normal subgroup of H.
We notice that

(13.111.70)
∣∣ρ−1 (g)

∣∣ = |K| for every g ∈ H.

835

We shall now show that the maps α and
1

|K|
β are mutually inverse. To do so, we will show that

α ◦ β = |K| id and β ◦ α = |K| id.

835Proof of (13.111.70): Let g ∈ H. Then, g ∈ H = ρ (H). Hence, g = ρ (x) for some x ∈ H. Let us fix such a x.
We know that H is a group. Hence, the map K → xK, k 7→ xk is a bijection. Thus, the sets K and xK are in bijection.

Therefore, |xK| = |K|.
However, for every y ∈ H, we have the following logical equivalence:

(
y ∈ ρ−1 (g)

)
⇐⇒

ρ (y) = g︸︷︷︸
=ρ(x)

 ⇐⇒ (ρ (y) = ρ (x)) ⇐⇒


ρ (y) · (ρ (x))−1︸ ︷︷ ︸

=ρ(yx−1)
(since ρ is a group
homomorphism)

= 1



⇐⇒
(
ρ
(
yx−1

)
= 1
)
⇐⇒

yx−1 ∈ ker ρ︸ ︷︷ ︸
=K

 ⇐⇒
(
yx−1 ∈ K

)
⇐⇒ (y ∈ xK) .

Hence, ρ−1 (g) = xK, so that
∣∣ρ−1 (g)

∣∣ = |xK| = |K|. This proves (13.111.70).
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Let us first show that α ◦ β = id. In fact, let q ∈ CG and u ∈ U be arbitrary. Then,

(α ◦ β) (q ⊗CH u) = α (β (q ⊗CH u)) =
∑
j∈J

j−1 ⊗CH (β (q ⊗CH u)) (j)︸ ︷︷ ︸
=
∑
h∈H

ε1(ρ(h)jq)h−1u

(by (13.111.69), applied to p=j)

(by the definition of α)

=
∑
j∈J

j−1 ⊗CH

(∑
h∈H

ε1 (ρ (h) jq)h−1u

)
=
∑
j∈J

∑
h∈H

ε1 (ρ (h) jq) j−1 ⊗CH h−1u︸ ︷︷ ︸
=j−1h−1⊗CHu

(since h−1∈CH (since h∈H
and thus h−1∈H⊂CH))

=
∑
j∈J

∑
h∈H

ε1 (ρ (h) jq) j−1h−1︸ ︷︷ ︸
=j−1·ρ(h−1)

(by (13.111.53), applied to γ=j−1

and η=h−1 (since h−1∈H (since h∈H)))

⊗CHu

=
∑
j∈J

∑
h∈H︸︷︷︸

=
∑
g∈H

∑
h∈H;
ρ(h)=g

(since every h∈H satisfies

ρ(h)∈ρ(H)=H)

ε1 (ρ (h) jq) j−1 · ρ
(
h−1

)︸ ︷︷ ︸
=(ρ(h))−1

(since ρ is a group
homomorphism)

⊗CHu

=
∑
j∈J

∑
g∈H

∑
h∈H;
ρ(h)=g︸ ︷︷ ︸

=
∑
h∈ρ−1(g)

ε1

ρ (h)︸︷︷︸
=g

jq

 j−1 ·

ρ (h)︸︷︷︸
=g


−1

⊗CH u

=
∑
j∈J

∑
g∈H

∑
h∈ρ−1(g)

ε1 (gjq) j−1 · g−1 ⊗CH u

︸ ︷︷ ︸
=|ρ−1(g)|·ε1(gjq)j−1·g−1⊗CHu

=
∑
j∈J

∑
g∈H

∣∣ρ−1 (g)
∣∣︸ ︷︷ ︸

=|K|
(by (13.111.70))

·ε1 (gjq) j−1 · g−1︸ ︷︷ ︸
=(gj)−1

⊗CHu
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=
∑
j∈J

∑
g∈H

|K| · ε1 (gjq) (gj)
−1 ⊗CH u = |K| ·

∑
j∈J

∑
g∈H

ε1 (gjq) (gj)
−1 ⊗CH u

= |K| ·
∑
j∈J

∑
g∈Hj︸ ︷︷ ︸

=
∑
g∈G

(since
⊔
j∈J Hj=G)

ε1 (gq) g−1 ⊗CH u

(
here, we substituted g for gj in the second sum, since the map

H → Hj, g 7→ gj is a bijection (because G is a group)

)
= |K| ·

∑
g∈G

ε1 (gq) g−1 ⊗CH u = |K| ·
∑
g∈G

ε1
(
g−1q

)︸ ︷︷ ︸
=εg(q)

(by (13.111.63))

(
g−1

)−1︸ ︷︷ ︸
=g

⊗CHu

(
here, we substituted g−1 for g in the sum, since the map
G→ G, g 7→ g−1 is a bijection (since G is a group)

)

= |K| ·
∑
g∈G

εg (q) g ⊗CH u = |K| ·

∑
g∈G

εg (q) g


︸ ︷︷ ︸

=q
(by (13.111.60))

⊗CHu

= |K| · q ⊗CH u︸ ︷︷ ︸
=id(q⊗CHu)

= |K| · id (q ⊗CH u) = (|K| id) (q ⊗CH u) .

Now, let us forget that we fixed q and u. We thus have shown that (α ◦ β) (q ⊗CH u) = (|K| id) (q ⊗CH u)
for all q ∈ CG and u ∈ U . In other words, the two maps α ◦ β : CG ⊗CH U → CG ⊗CH U and |K| id :
CG ⊗CH U → CG ⊗CH U are equal to each other on each pure tensor. Since these two maps are C-linear,
this yields that these two maps α ◦ β : CG⊗CH U → CG⊗CH U and |K| id : CG⊗CH U → CG⊗CH U must
be identical. In other words, α ◦ β = |K| id.

Next, we are going to show that β ◦ α = |K| id.
Let f ∈ HomCH (CG,U). Let p ∈ CG. The map f is left CH-linear (since f ∈ HomCH (CG,U)), hence

C-linear. We have α (f) =
∑
j∈J j

−1⊗CH f (j) (by the definition of α). Applying the map β to this equality,
we obtain

β (α (f)) = β

∑
j∈J

j−1 ⊗CH f (j)

 =
∑
j∈J

β
(
j−1 ⊗CH f (j)

)
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(since β is a C-linear map). Thus,

(β (α (f)))︸ ︷︷ ︸
=
∑
j∈J β(j−1⊗CHf(j))

(p)

=

∑
j∈J

β
(
j−1 ⊗CH f (j)

) (p) =
∑
j∈J

(
β
(
j−1 ⊗CH f (j)

))
(p)︸ ︷︷ ︸

=
∑
h∈H

ε1(ρ(h)pj−1)h−1f(j)

(by (13.111.69), applied to

q=j−1 and u=f(j))

=
∑
j∈J

∑
h∈H

ε1
(
ρ (h) pj−1

)
h−1f (j) =

∑
j∈J

∑
h∈H

ε1
(
ρ
(
h−1

)
pj−1

)︸ ︷︷ ︸
=ε1(j−1ρ(h−1)p)

(by (13.111.62), applied to

ρ(h−1)p and j−1 instead of p and q)

(
h−1

)−1︸ ︷︷ ︸
=h

f (j)

 here, we substituted h−1 for h in the second sum,
since the map H → H, h 7→ h−1 is a bijection

(because H is a group)



=
∑
j∈J

∑
h∈H

ε1


j−1 ρ

(
h−1

)︸ ︷︷ ︸
=(ρ(h))−1

(since ρ is a group
homomorphism)

p


hf (j)︸ ︷︷ ︸
=f(hj)

(since f is left CH-linear and since h∈H⊂CH)

=
∑
j∈J

∑
h∈H

ε1

j−1 (ρ (h))
−1︸ ︷︷ ︸

=(ρ(h)j)−1

p

 f

 hj︸︷︷︸
=ρ(h)·j

(by (13.111.55), applied to
η=h and γ=j)


=
∑
j∈J

∑
h∈H︸︷︷︸

=
∑
g∈H

∑
h∈H;
ρ(h)=g

(since every h∈H satisfies

ρ(h)∈ρ(H)=H)

ε1

(
(ρ (h) j)

−1
p
)
f (ρ (h) j)

=
∑
j∈J

∑
g∈H

∑
h∈H;
ρ(h)=g︸ ︷︷ ︸

=
∑
h∈ρ−1(g)

ε1


ρ (h)︸︷︷︸

=g

j


−1

p

 f

ρ (h)︸︷︷︸
=g

j

 =
∑
j∈J

∑
g∈H

∑
h∈ρ−1(g)

ε1

(
(gj)

−1
p
)
f (gj)

︸ ︷︷ ︸
=|ρ−1(g)|·ε1((gj)−1p)f(gj)

=
∑
j∈J

∑
g∈H

∣∣ρ−1 (g)
∣∣︸ ︷︷ ︸

=|K|
(by (13.111.70))

·ε1
(

(gj)
−1
p
)
f (gj) =

∑
j∈J

∑
g∈H

|K| · ε1
(

(gj)
−1
p
)
f (gj)
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= |K| ·
∑
j∈J

∑
g∈H

ε1

(
(gj)

−1
p
)
f (gj) = |K| ·

∑
j∈J

∑
g∈Hj︸ ︷︷ ︸

=
∑
g∈G

(since
⊔
j∈J Hj=G)

ε1
(
g−1p

)
f (g)

(
here, we substituted g for gj in the second sum, since the map

H → Hj, g 7→ gj is a bijection (because G is a group)

)

= |K| ·
∑
g∈G

ε1
(
g−1p

)︸ ︷︷ ︸
=εg(p)

(by (13.111.63), applied to q=p)

f (g) = |K| ·
∑
g∈G

εg (p) f (g)︸ ︷︷ ︸
=f

( ∑
g∈G

εg(p)g

)
(since f is C-linear)

= |K| · f

∑
g∈G

εg (p) g

 .

Compared with

(|K| f) (p) = |K| · f

 p︸︷︷︸
=
∑
g∈G

εg(p)g

(by (13.111.60), applied to q=p)

 = |K| · f

∑
g∈G

εg (p) g

 ,

this yields (β (α (f))) (p) = (|K| f) (p).
Now, forget that we fixed p. We thus have proven that (β (α (f))) (p) = (|K| f) (p) for every p ∈ CG. In

other words, β (α (f)) = |K| f . Hence, (β ◦ α) (f) = β (α (f)) = |K| f = (|K| id) (f).
Now, forget that we fixed f . We thus have shown that (β ◦ α) (f) = (|K| id) (f) for every f ∈ HomCH (CG,U).

In other words, β ◦ α = |K| id.

We now have β ◦ α = |K| id and thus

(
1

|K|
β

)
◦ α =

1

|K|
(β ◦ α)︸ ︷︷ ︸
=|K| id

=
1

|K|
|K| id = id.

On the other hand, recall that α ◦ β = |K| id. Hence, α ◦
(

1

|K|
β

)
=

1

|K|
(α ◦ β)︸ ︷︷ ︸
=|K| id

=
1

|K|
|K| id = id.

Combining the equalities

(
1

|K|
β

)
◦α = id and α◦

(
1

|K|
β

)
= id, we conclude that the maps α and

1

|K|
β

are mutually inverse. Hence, the map α is invertible.
Now, we know that the map α is an invertible left CG-module homomorphism. Hence, α is a left CG-

module isomorphism. Therefore, there exists a left CG-module isomorphism HomCH (CG,U) → CG ⊗CH
U (namely, α). Therefore, HomCH (CG,U) ∼= CG ⊗CH U = Indρ U as left CG-modules. This solves
Exercise 4.1.14(i).

[Remark: In our above solution of Exercise 4.1.14(i), we explicitly constructed a CG-module isomorphism
α : HomCH (CG,U) → Indρ U . This isomorphism is functorial with respect to U . It is also independent on
the choice of J (this is not immediately clear from its definition, but it can be shown very easily, by observing
that the tensor j−1 ⊗CH f (j) for j ∈ G depends only on the coset Hj and not on j itself).]

[Remark: Exercise 4.1.14(i) allows us to give yet another solution to Exercise 4.1.14(f):
Second solution to Exercise 4.1.14(f): Assume that G = H/K for some normal subgroup K of H. Let

ρ : H → G be the projection map. We want to prove that Indρ U ∼= UK for every CH-module U .
We know that ρ is the projection map from H to H/K. Hence, ρ is a surjective group homomorphism

and has kernel ker ρ = K.
Let U be a CH-module. Recall that UK is a C [H/K]-module, thus a CG-module (since H/K = G). This

CG-module structure has the property that

(13.111.71) ρ (h) · v = hv for any h ∈ H and v ∈ UK .
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836

Let us make CG into a (CH,CG)-bimodule as in Exercise 4.1.14(i). From now on, we regard CG as
endowed with this (CH,CG)-bimodule structure. Then, the CG-module HomCH (CG,U) (defined as in
Exercise 4.1.4 using the (CH,CG)-bimodule structure on CG) is isomorphic to Indρ U (because of Exercise
4.1.14(i)). In other words, HomCH (CG,U) ∼= Indρ U as left CG-modules.

We recall that HomCH (CG,U) is the left CG-module consisting of all left CH-module homomorphisms
from CG to U . This uses only the (CH,CG)-bimodule structure on CG that was introduced in the statement
of Exercise 4.1.14(i) (but not the (CG,CH)-bimodule structure on CG that was introduced in the definition
of Indρ U).

We have f (1) ∈ UK for every f ∈ HomCH (CG,U) 837. Thus, we can define a map φ : HomCH (CG,U)→
UK by

(φ (f) = f (1) for all f ∈ HomCH (CG,U)) .

836Proof of (13.111.71): The proof of (13.111.71) is identical with the proof of (13.111.30) in the First solution to Exercise
4.1.14(f).

837Proof. Let f ∈ HomCH (CG,U). Let k ∈ K. Thus, k ∈ K = ker ρ, so that ρ (k) = 1G.
But k ∈ K ⊂ H. Thus, (13.111.55) (applied to γ = 1CG and η = k) yields k1CG = ρ (k)︸ ︷︷ ︸

=1G

1CG = 1G1CG = 1G.

But f ∈ HomCH (CG,U). Hence, the map f is left CH-linear. Thus, f (k1CG) = kf (1CG) (since k ∈ H ⊂ CH). Since

k1CG = 1G, this rewrites as f (1G) = kf

1CG︸︷︷︸
=1

 = kf (1), so that kf (1) = f

 1G︸︷︷︸
=1

 = f (1).

Now, let us forget that we fixed k. We thus have shown that kf (1) = f (1) for every k ∈ K. In other words, f (1) is an

element y of U which satisfies ky = y for every k ∈ K. In other words,

f (1) ∈ {y ∈ U | ky = y for every k ∈ K} = UK ,

qed.



804 DARIJ GRINBERG AND VICTOR REINER

Consider this φ. This map φ is clearly C-linear (since f (1) depends C-linearly on f). Also, the map φ is
surjective838 and injective839. Hence, the map φ is bijective. Thus, φ is a C-vector space isomorphism (since
φ is C-linear).

Moreover, φ is a homomorphism of left G-sets840, and therefore a left CG-module homomorphism (since
f is C-linear). Thus, φ is a left CG-module isomorphism (since φ is a C-vector space isomorphism). We
thus have found a left CG-module isomorphism from HomCH (CG,U) to UK (namely, φ). Hence, UK ∼=
HomCH (CG,U) as left CG-modules. Hence, UK ∼= HomCH (CG,U) ∼= Indρ U as left CG-modules. This
solves Exercise 4.1.14(f) again.]

(j) Let U be a CG-module, and let V be a CH-module.

838Proof. Let u ∈ UK . We are going to construct a map f ∈ HomCH (CG,U) which satisfies φ (f) = u.

Indeed, let us define a map f : CG→ U by

(13.111.72) (f (γ) = γu for every γ ∈ CG) .

(This is well-defined, since UK is a CG-module.) This map f is C-linear (since γu depends C-linearly on γ). We shall now
check that the map f is a homomorphism of left H-sets.

Indeed, let h ∈ H and γ ∈ CG. We have f (hγ) = (hγ)u (by the definition of f).

On the other hand, (13.111.55) (applied to η = h) yields hγ = ρ (h) · γ.
But u ∈ UK and therefore γu ∈ UK (since γ ∈ CG and since UK is a CG-module). Thus, (13.111.71) (applied to γu instead

of v) yields ρ (h) · (γu) = h (γu). Now,

f (hγ) = (hγ)︸︷︷︸
=ρ(h)·γ

u = (ρ (h) · γ)u = ρ (h) · (γu) = h (γu)︸︷︷︸
=f(γ)

(by (13.111.72))

= hf (γ) .

Now, let us forget that we fixed h and γ. We thus have proven that f (hγ) = hf (γ) for all h ∈ H and γ ∈ CG. In other

words, f is a homomorphism of left H-sets. Hence, f is a left CH-module homomorphism (since f is C-linear). In other words,
f ∈ HomCH (CG,U). Now, the definition of φ yields

φ (f) = f (1) = 1u (by (13.111.72), applied to γ = 1)

= u.

Thus, u = φ

 f︸︷︷︸
∈HomCH (CG,U)

 ∈ φ (HomCH (CG,U)).

Let us now forget that we fixed u. We thus have shown that u ∈ φ (HomCH (CG,U)) for every u ∈ UK . In other words,

UK ⊂ φ (HomCH (CG,U)). This proves that the map φ is surjective. Qed.
839Proof. Let f ∈ kerφ. Then, f ∈ HomCH (CG,U) and φ (f) = 0 (since f ∈ kerφ). The definition of φ yields φ (f) =

f

 1︸︷︷︸
=1CG

 = f (1CG), so that f (1CG) = φ (f) = 0.

Now, let g ∈ G be arbitrary. Then, there exists some h ∈ H such that g = ρ (h) (since ρ is surjective). Consider this h.
Applying (13.111.55) to γ = 1CG and η = h, we obtain h1CG = ρ (h) · 1CG = ρ (h) = g. But the map f is left CH-linear (since

f ∈ HomCH (CG,U)). Thus, f (h1CG) = hf (1CG) (since h ∈ H ⊂ CH), so that f (h1CG) = h f (1CG)︸ ︷︷ ︸
=0

= 0. Compared with

f

h1CG︸ ︷︷ ︸
=g

 = f (g), this yields f (g) = 0.

Now, let us forget that we fixed g. Thus, we have shown that f (g) = 0 for every g ∈ G. In other words, the map f sends

every element of the basis G of the C-vector space CG to 0. Hence, f = 0 (since the map f is C-linear).

Now, let us forget that we fixed f . We thus have shown that f = 0 for every f ∈ kerφ. In other words, kerφ = 0. Since φ
is a C-linear map, this shows that φ is injective. Qed.

840Proof. Let g ∈ G and f ∈ HomCH (CG,U). The definition of the left CG-module structure on HomCH (CG,U) yields

(gf) (1) = f

 1g︸︷︷︸
=g

 = f (g) .

Now, the definition of φ yields φ (gf) = (gf) (1) = f (g).
But there exists some h ∈ H such that g = ρ (h) (since ρ is surjective). Consider this h. The map f is left CH-linear

(since f ∈ HomCH (CG,U)). Thus, we have f (h1CG) = hf (1CG). But (13.111.55) (applied to γ = 1CG and η = h) yields

h1CG = ρ (h)︸ ︷︷ ︸
=g

·1CG = g · 1CG = g, so that g = h1CG. Hence, f

 g︸︷︷︸
=h1CG

 = f (h1CG) = hf (1CG).
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Let us make CG into a (CH,CG)-bimodule as in Exercise 4.1.14(i). From now on, we regard CG as
endowed with this (CH,CG)-bimodule structure. Then, the CG-module HomCH (CG,V ) (defined as in
Exercise 4.1.4 using the (CH,CG)-bimodule structure on CG) is isomorphic to Indρ V (because of Exercise
4.1.14(i), applied to V instead of U). In other words,

(13.111.73) HomCH (CG,V ) ∼= Indρ V as left CG-modules.

Now, (4.1.8) (applied to R = CG, S = CH, A = CG, B = U and C = V ) yields

(13.111.74) HomCH (CG⊗CG U, V ) ∼= HomCG (U,HomCH (CG,V )) .

We shall now prove that CG⊗CG U ∼= Resρ U as left CH-modules.
Indeed, a fundamental fact in abstract algebra says the following: If A is a C-algebra, and if M is

a left A-module, then there exists a C-vector space isomorphism Ξ : A ⊗A M → M which satisfies
(Ξ (a⊗A m) = am for every a ∈ A and m ∈M). Applying this fact to A = CG and M = U , we conclude
that there exists a C-vector space isomorphism Ξ : CG⊗CG U → U which satisfies
(Ξ (a⊗CG m) = am for every a ∈ CG and m ∈ U). Consider this Ξ.

The map Ξ is a C-vector space isomorphism. Hence, its inverse Ξ−1 exists and also is a C-vector space
isomorphism, and therefore a C-linear map. It furthermore satisfies

(13.111.75) Ξ−1 (u) = 1⊗CG u for every u ∈ U.
841

The map Ξ−1 is a homomorphism of H-sets from Resρ U to CG ⊗CG U
842. Therefore, Ξ−1 is a CH-

module homomorphism from Resρ U to CG ⊗CG U (since Ξ−1 is a C-linear map). Consequently, Ξ−1 is a

The definition of φ yields φ (f) = f

 1︸︷︷︸
=1CG

 = f (1CG), so that f (1CG) = φ (f). Now, f (g) = h f (1CG)︸ ︷︷ ︸
=φ(f)

= hφ (f). Hence,

φ (gf) = f (g) = hφ (f) .

The equality (13.111.71) (applied to φ (f) instead of v) yields ρ (h) · φ (f) = hφ (f). Thus, hφ (f) = ρ (h)︸ ︷︷ ︸
=g

·φ (f) = g · φ (f) =

gφ (f). Hence, φ (gf) = hφ (f) = gφ (f).
Now, let us forget that we fixed g and f . We thus have proven that φ (gf) = gφ (f) for all g ∈ G and f ∈ HomCH (CG,U).

In other words, the map φ is a homomorphism of left G-sets. Qed.
841Proof of (13.111.75): Let u ∈ U . Recall that Ξ (a⊗CG m) = am for every a ∈ CG and m ∈ U . Applying this to a = 1

and m = u, we obtain Ξ (1⊗CG u) = 1u = u. Hence, 1⊗CG u = Ξ−1 (u) (since Ξ is invertible). This proves (13.111.75).
842Proof. The map Ξ−1 is a map from U to CG⊗CG U , therefore a map from Resρ U to CG⊗CG U (since Resρ U = U as

sets).

Recall that the CH-module structure on Resρ U is given by

(13.111.76) h · v = ρ (h) · v for every h ∈ H and v ∈ U.

Now, let v ∈ Resρ U and h ∈ H. We are going to prove that Ξ−1 (h · v) = h · Ξ−1 (v), where h · Ξ−1 (v) is computed in the

CH-module CG⊗CG U .

Indeed, recall that the left CH-module structure on CG is induced by the C-algebra homomorphism C [ρ] : CH → CG. Thus,
it is explicitly given by

ηγ = (C [ρ]) η · γ for all γ ∈ CG and η ∈ CH.
Applying this to η = h and γ = 1CG, we obtain h1CG = (C [ρ]) (h) · 1CG (since h ∈ H ⊂ CH). But h ∈ H and thus
(C [ρ]) (h) = ρ (h). Hence, h1CG = (C [ρ]) (h)︸ ︷︷ ︸

=ρ(h)

·1CG = ρ (h) · 1CG = ρ (h) = 1CG · ρ (h). Now, v ∈ Resρ U = U . Hence, (13.111.75)

(applied to u = v) yields Ξ−1 (v) = 1⊗CG v. Thus,

h · Ξ−1 (v)︸ ︷︷ ︸
=1⊗CGv

= h · (1⊗CG v) = h 1︸︷︷︸
=1CG

⊗CGv = h1CG︸ ︷︷ ︸
=1CG·ρ(h)

⊗CGv = 1CG · ρ (h)⊗CG v

= 1CG︸︷︷︸
=1

⊗CG ρ (h) · v︸ ︷︷ ︸
=h·v

(by (13.111.76))

(
here, we have moved ρ (h) past the tensor sign

(this is allowed since ρ (h) ∈ G ⊂ CG)

)

= 1⊗CG h · v.

Compared with Ξ−1 (h · v) = 1⊗CG h · v (by (13.111.75), applied to u = h · v), this yields Ξ−1 (h · v) = h · Ξ−1 (v).
Now, let us forget that we fixed v and h. We thus have shown that Ξ−1 (h · v) = h ·Ξ−1 (v) for every v ∈ Resρ U and h ∈ H.

In other words, Ξ−1 is a homomorphism of H-sets from Resρ U to CG⊗CG U , qed.
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CH-module isomorphism from Resρ U to CG⊗CGU (since Ξ−1 is a C-vector space isomorphism). Therefore,
CG⊗CG U ∼= Resρ U as CH-modules. Now, (4.1.8) (applied to CG, CH, CG, U and V instead of R, S, A,
B and C) yields

HomCH (CG⊗CG U, V ) ∼= HomCG (U,HomCH (CG,V )) .

Thus,

HomCG (U,HomCH (CG,V )) ∼= HomCH

 CG⊗CG U︸ ︷︷ ︸
∼=Resρ U as CH-modules

, V


∼= HomCH (Resρ U, V ) .

Thus,

HomCH (Resρ U, V ) ∼= HomCG

U, HomCH (CG,V )︸ ︷︷ ︸
∼=Indρ V as left CG-modules

(by (13.111.73))

 ∼= HomCG (U, Indρ V ) .

This solves Exercise 4.1.14(j).
(k) Alternative proof of (4.1.3): Let G be a finite group, and let H be a subgroup of G. Let U be a

finite-dimensional CH-module. We need to prove the identity (4.1.3).
Let ρ denote the inclusion map H → G. Clearly, ρ is a group homomorphism. But Exercise 4.1.14(d) yields

Indρ U = IndGH U . Hence, χIndρ U = χIndGH U , so that χIndGH U = χIndρ U = Indρ χU (by Exercise 4.1.14(b)).

But Exercise 4.1.14(c) (applied to f = χU ) yields Indρ χU = IndGH χU . Thus, χIndGH U = Indρ χU = IndGH χU .

Thus, every g ∈ G satisfies

χIndGH U︸ ︷︷ ︸
=IndGH χU

(g) =
(

IndGH χU

)
(g) =

1

|H|
∑
k∈G:

kgk−1∈H

χU
(
kgk−1

) (
by the definition of IndGH χU

)
.

This proves (4.1.3). Thus, Exercise 4.1.14(k) is solved.
(l) Alternative proof of (4.1.12): Let G be a finite group, and let K be a normal subgroup of G. Let V

be a finite-dimensional CG-module. We need to prove the identity (4.1.12).
Let ρ denote the projection map G→ G/K. Exercise 4.1.14(f) (applied to G/K, G and V instead of G, H

and U) yields Indρ V ∼= V K as C [G/K]-modules. Hence, χIndρ V = χV K (since isomorphic C [G/K]-modules
have equal characters). Thus, χV K = χIndρ V = Indρ χV (by Exercise 4.1.14(b), applied to G/K, G and V
instead of G, H and U). But Exercise 4.1.14(e) (applied to G/K, G, V and χV instead of G, H, U and f)

yields Indρ χV = (χV )
K

. Hence, χV K = Indρ χV = (χV )
K

. Thus, every g ∈ G satisfies

χV K︸︷︷︸
=(χV )K

(gK) = (χV )
K

(gK) =
1

|K|
∑
k∈K

χV (gk)

(by the definition of (χV )
K

). This proves (4.1.12). Thus, Exercise 4.1.14(l) is solved.
[Remark: Most parts of Exercise 4.1.14 work in a far greater generality than they are stated in. Let

us briefly survey the straightforward generalizations. We begin with the generalizations of the notions of
induction, restriction, inflation and fixed point constructions defined in Chapter 4.1:

• Recall that if G is a finite group and H is a subgroup of G, then we have defined a CG-module IndGH U

for every CH-module U , and we have also defined a CH-module ResGH V for every CG-module V .
Both of these definitions are also valid when C is replaced by any commutative ring. Basic properties
of induction and restriction (such as the equality (4.1.7), the statement of Exercise 4.1.2 and the
statement of Exercise 4.1.3) are still true in this generality (and the proofs that we gave can be
transferred to this generality with almost no changes). However, more advanced properties might
fail in this generality, and some can not even be stated over a general commutative ring C 843.

843For instance, any properties of characters of modules can only be stated when these characters are well-defined. Since

characters are defined as traces of certain endomorphisms of C-vector spaces, they are not automatically well-defined when C
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• Recall that if G is a finite group and K is a normal subgroup of G, then we have defined a CG-module
InflGG/K U for every C [G/K]-module U , and we have also defined a C [G/K]-module V K for every
CG-module V . Both of these definitions are also valid when C is replaced by any commutative ring.
Some basic properties of inflation and fixed points (such as the isomorphisms (4.1.10) and (4.1.11))
are still correct in this generality (again, they can be proven in the same way as above), but some
others are not (e.g., Exercise 4.1.12(b) is generally false844).

• If G is a finite group, then we defined RC (G) as the C-vector space of all class functions G → C.
This definition still applies when C is replaced by any commutative ring. (Of course, in this case,
“C-vector space” will have to be replaced by “C-module”.)

• Recall that if G is a finite group and H is a subgroup of G, then we have defined a class function
IndGH f ∈ RC (G) for every f ∈ RC (H), and we have also defined a class function ResGH f ∈ RC (H) for

every f ∈ RC (G). The definition of ResGH f still works when C is replaced by any commutative ring.

Our definition of IndGH f cannot be reasonably interpreted in this generality (due to the denominator

|H| in (4.1.4)); however, Exercise 4.1.1(b) can be used as an alternative definition of IndGH f when
C is replaced by any commutative ring. (Of course, the necessity of using Exercise 4.1.1(b) as a

definition of IndGH f entails that most of our proofs concerning IndGH f no longer are valid in this

generality, because they use the equality (4.1.4) as the definition of IndGH f . Even the fact that

IndGH f is well-defined needs to be proven anew, since it is not immediately obvious that the sum∑
j∈J:

jgj−1∈H

f
(
jgj−1

)
in Exercise 4.1.1(b) is independent on J .)

Now, let us move on to generalizing Remark 4.1.13 and Exercise 4.1.14. Let G and H be two finite groups,
and let ρ : H → G be a group homomorphism.

• Remark 4.1.13 still holds if C is replaced by any commutative ring.
• In Exercise 4.1.14, we defined a map Indρ f : G → C for every f ∈ RC (H). This definition still

works when C is replaced by any commutative ring in which |H| is invertible. There is an alternative
definition which works in even greater generality: Namely, as long as |ker ρ| is invertible845, we can
define Indρ f : G→ C by the equality

(13.111.77) (Indρ f) (g) =
1

|ker ρ|
∑

(h,k)∈H×J;

kρ(h)k−1=g

f (h) ,

where J is a system of left coset representatives for G/ρ (H) (so that G =
⊔
j∈J jρ (H)). We leave it

to the reader to show that this definition is still well-defined (i.e., that
∑

(h,k)∈H×J;

kρ(h)k−1=g

f (h) is independent

of the choice of J), and that it defines the same function Indρ f as the definition made in Exercise
4.1.14 when |H| is invertible in the base ring. To my knowledge, there exists no reasonable definition
of Indρ f that completely avoids making any requirements on the base ring.

• In Exercise 4.1.14, we defined a CG-module Indρ U for every CH-module U . This definition is
still valid when C is replaced by a commutative ring. (Notice the slightly surprising fact that if
C is replaced by a commutative ring, then the ρ-induction of a CH-module is always well-defined,
whereas the ρ-induction of a class function might not be.)

• Exercise 4.1.14(a) is still valid when C is replaced by any commutative ring in which |H| is invertible.
And the solution that we gave still applies in this generality. More generally, if we define Indρ f by
(13.111.77), then Exercise 4.1.14(a) is still valid when C is replaced by any commutative ring in
which |ker ρ| is invertible. However, this can no longer be proven by blindly copying our solution.

is replaced by a commutative ring. They are, however, well-defined if our modules are projective modules over this base ring;
see the Remark after the proof of Proposition 13.111.3 for details.

844However, Exercise 4.1.12(b) holds if we additionally assume that |K| is invertible in the ring that replaces C. Again, this

can be proven by repeating our solution of Exercise 4.1.12(b).
845This is a weaker condition than |H| being invertible.
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• Exercise 4.1.14(b) is still valid when C is replaced by any field in which |H| is invertible. Again, our
solution is still valid in this generality.846 More generally, Exercise 4.1.14(b) is still valid when C is
replaced by any field in which |ker ρ| is invertible (as long as Indρ f is defined through (13.111.77));
but our solution is not sufficient to prove this847. Even more generally, Exercise 4.1.14(b) holds
whenever C is replaced by any commutative ring A in which |ker ρ| is invertible, as long as U is
assumed to be a finitely generated projective A-module. However, in order to make sense of this
statement, one needs to know that Indρ U is a finitely generated projective A-module as well, and
one needs to know how the trace of an endomorphism of a finitely generated projective A-module is
defined. We essentially did most of this in our solution above848.

• Exercise 4.1.14(c) is still valid when C is replaced by any commutative ring in which |H| is invertible.
Again, our solution is still valid in this generality. Again, if we define Indρ f by (13.111.77) and define

IndGH f by Exercise 4.1.1(b), then Exercise 4.1.14(c) even holds when C is replaced by any arbitrary
commutative ring. (The definition of Indρ f requires |ker ρ| to be invertible, but this is automatically
satisfied since ρ is injective.)

• Exercise 4.1.14(d) is still valid when C is replaced by any commutative ring whatsoever. Again, our
solution is still valid in this generality.

• Exercise 4.1.14(e) is still valid when C is replaced by any commutative ring in which |H| is invertible.
Again, our solution is still valid in this generality. Again, it is possible to prove Exercise 4.1.14(e)
also when C is replaced by any commutative ring in which |ker ρ| is invertible (as long as Indρ f
is defined using (13.111.77)). (This is actually very easy to check – arguably even easier than our
above solution of Exercise 4.1.14(e).)

• Exercise 4.1.14(f) is still valid when C is replaced by any commutative ring in which |K| is invertible.
Both solutions of Exercise 4.1.14(f) given above still remain valid in this generality.

• The second claim of Exercise 4.1.14(g) (that is, the equality (4.1.17)) is still valid when C is replaced
by any commutative ring in which |G| and |H| are invertible. The first claim, a priori, makes no
sense when C is replaced by an arbitrary commutative ring, because the definition of the Hermitian
forms (·, ·)G and (·, ·)H involves complex conjugation (which is only defined on C). However, it turns
out that this complex conjugation can be replaced by any map from the base ring to itself and
Exercise 4.1.14(g) remains valid849.

846We can also replace C by a commutative ring A rather than by a field; but then we need to replace “finite-dimensional
CH-module U” by “AH-module U which is a finitely generated projective A-module” in the statement of the exercise. The

“finitely generated projective A-module” condition is needed in order to make sure that χU and χIndρ U are well-defined. (See

the Remark after the proof of Proposition 13.111.3 for details.)
847However, a certain modification of this solution does the trick. Namely, we replace the definition of F̃g byF̃g (γ, u) =

1

|ker ρ|
∑
h∈H

(gρ (h))∗ (γ)hu for all (γ, u) ∈ CG× U

 .

Then, we should pick a system J ′ of left coset representatives for G/ρ (H) (so that G =
⊔
j∈J′ jρ (H)). (Notice that we do not

call it J because the letter J already has a different meaning in this solution.) Then, we define a family (ai)i∈J′×J of elements

of CG⊗CH U by (
a(k,j) = k ⊗CH bj for all (k, j) ∈ J ′ × J

)
,

and a family (fi)i∈J′×J of elements of (CG⊗CH U)∗ by(
f(k,j) = gj ◦ Fk for all (k, j) ∈ J ′ × J

)
.

(Notice that these families (ai)i∈J′×J and (fi)i∈J′×J are subfamilies of the families (ai)i∈G×J and (fi)i∈G×J from the original

solution to Exercise 4.1.14(b).) It can then be shown that
(
J ′ × J, (ai)i∈J′×J , (fi)i∈J′×J

)
is a finite dual generating system

for Indρ U (though the proof is somewhat different from the way this was shown in the solution to Exercise 4.1.14(b)). This

allows us to use Proposition 13.111.3 to derive χIndρ U = Indρ χU . All details are left to the reader.
848The only missing link is the fact that an A-module is finitely generated and projective if and only if it has a finite dual

generating system; this fact is easy to prove.
849More precisely: Let A be any commutative ring in which |G| and |H| are invertible. Fix an arbitrary map conj : A→ A

(not necessarily linear). For every a ∈ A, let a denote the image conj (a) of a under this map. For any f1 ∈ RA (G) and

f2 ∈ RA (G), define (f1, f2)G ∈ A by (f1, f2)G =
1

|G|
∑
g∈G f1 (g) f2 (g) (using the notation a that we just introduced).

Similarly, define (f1, f2)H ∈ A for any f1 ∈ RA (H) and f2 ∈ RA (H). Then, Exercise 4.1.14(g) is still valid when C is replaced

by A. (And our solution to this exercise still applies.)
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• Exercise 4.1.14(h) is still valid when C is replaced by any commutative ring whatsoever. Again, our
solution is still valid in this generality.

• Exercise 4.1.14(i) is still valid when C is replaced by any commutative ring in which |ker ρ| is invert-
ible. Again, our solution is still valid in this generality (because if we set K = ker ρ as we did in our

solution, then

∣∣∣∣∣∣ K︸︷︷︸
=ker ρ

∣∣∣∣∣∣ = |ker ρ| is invertible).

• Exercise 4.1.14(j) is still valid when C is replaced by any commutative ring in which |ker ρ| is invert-
ible.

• Exercise 4.1.14(k) still gives a proof of the formula (4.1.3) when C is replaced by any field in which
|H| is invertible.

• Exercise 4.1.14(l) still gives a proof of the formula (4.1.12) when C is replaced by any field in which
|G| and |K| are invertible.

We actually tailored our above solutions to apply in a reasonably high generality (although we did not
state Exercise 4.1.14 in this generality). Had we contented ourselves with solving no more and no less than
what Exercise 4.1.14 demanded of us, we could have obtained much shorter solutions of some parts of it:

• Exercise 4.1.14(b) can be obtained by combining parts (g) and (h) of Exercise 4.1.14 with the
following two observations850:

– Every CG-module V satisfies χResρ V = Resρ χV . (This is obvious.)
– If α and β are two elements of RC (G) such that every finite-dimensional CG-module V satisfies

(α, χV )G = (β, χV )G, then α = β. (This follows from the fact that R (G) spans the C-vector
space RC (G) and from the fact that the Hermitian form (·, ·)G is nondegenerate.)

However, this quick argument only works when the base ring is C. It cannot be easily generalized
to the case when C is replaced by any field in which |H| is invertible.

• Part (e) (at least in the case when U is finite-dimensional) and part (f) of Exercise 4.1.14 can be
derived from each other using the correspondence between irreducible representations and irreducible
characters. Again, this argument is quick but hard to generalize.

]

13.112. Solution to Exercise 4.1.15. Solution to Exercise 4.1.15. We shall use the following fact:

Proposition 13.112.1. Let k be a commutative ring. Let A, B, C, A′, B′ and C ′ be six k-algebras. Let
P be an (A,B)-bimodule851. Let Q be a (B,C)-bimodule. Let P ′ be an (A′, B′)-bimodule. Let Q′ be a
(B′, C ′)-bimodule. Then,

(P ⊗ P ′)⊗B⊗B′ (Q⊗Q′) ∼= (P ⊗B Q)⊗ (P ′ ⊗B′ Q′)
as (A⊗A′, C ⊗ C ′)-bimodules. Here, all ⊗ signs without subscript stand for ⊗k.

Proposition 13.112.1 is identical with the Proposition 13.104.1 that appeared in our solution to Exercise
4.1.3. It is proven by straightforward (repeated) use of the universal property of the tensor product.

We have a canonical C-algebra isomorphism

H : C [H1 ×H2]→ CH1 ⊗ CH2

which satisfies
H
(
t(h1,h2)

)
= th1 ⊗ th2 for every (h1, h2) ∈ H1 ×H2.

We also have a canonical C-algebra isomorphism

G : C [G1 ×G2]→ CG1 ⊗ CG2

which satisfies
G
(
t(g1,g2)

)
= tg1

⊗ tg2
for every (g1, g2) ∈ G1 ×G2.

850We only sketch this argument; the details are left to the reader.
851As usual, we understand the notion of a bimodule to be defined over k; that is, the left A-module structure and the right

B-module structure of an (A,B)-bimodule must restrict to one and the same k-module structure.
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Recall how the left C [H1 ×H2]-module U1⊗U2 is defined: Its left C [H1 ×H2]-module structure is given
by (

t(h1,h2) (u1 ⊗ u2) = th1
u1 ⊗ th2

u2 for all (h1, h2) ∈ H1 ×H2 and (u1, u2) ∈ U1 × U2

)
.

We shall now recall the definitions of Indρ1 U1, Indρ2 U2 and Indρ1×ρ2 (U1 ⊗ U2):

• We defined Indρ1
(U1) as the CG1-module CG1 ⊗CH1

U1, where CG1 is regarded as a (CG1,CH1)-
bimodule according to the following rule: The left CG1-module structure on CG1 is plain multiplica-
tion inside CG1; the right CH1-module structure on CG1 is induced by the C-algebra homomorphism
C [ρ1] : CH1 → CG1 (thus, it is explicitly given by γη = γ · (C [ρ1]) η for all γ ∈ CG1 and η ∈ CH1).

• We defined Indρ2
(U2) as the CG2-module CG2 ⊗CH2

U2, where CG2 is regarded as a (CG2,CH2)-
bimodule in a similar fashion.

• We defined Indρ1×ρ2
(U1 ⊗ U2) as the C [G1 ×G2]-module C [G1 ×G2] ⊗C[H1×H2] (U1 ⊗ U2), where

C [G1 ×G2] is regarded as a (C [G1 ×G2] ,C [H1 ×H2])-bimodule in a similar fashion.

Proposition 13.104.1 (applied to k = C, A = CG1, B = CH1, C = C, A′ = CG2, B′ = CH2, C ′ = C,
P = CG1, Q = U1, P ′ = CG2 and Q′ = U2) yields

(CG1 ⊗ CG2)⊗CH1⊗CH2
(U1 ⊗ U2) ∼= (CG1 ⊗CH1

U1)⊗ (CG2 ⊗CH2
U2)

as (CG1 ⊗ CG2,C⊗ C)-bimodules, hence also as left CG1 ⊗ CG2-modules. Thus,

(CG1 ⊗ CG2)⊗CH1⊗CH2
(U1 ⊗ U2)

∼= (CG1 ⊗CH1 U1)︸ ︷︷ ︸
=Indρ1 U1

⊗ (CG2 ⊗CH2 U2)︸ ︷︷ ︸
=Indρ2 U2

= (Indρ1 U1)⊗ (Indρ2 U2)(13.112.1)

as left CG1 ⊗ CG2-modules.
At this point, there is a quick way to finish the solution using handwaving: We use the C-algebra isomor-

phism H : C [H1 ×H2]→ CH1⊗CH2 to identify the C-algebra C [H1 ×H2] with the C-algebra CH1⊗CH2,
and we use the C-algebra isomorphism G : C [G1 ×G2]→ CG1⊗CG2 to identify the C-algebra C [G1 ×G2]
with the C-algebra CG1⊗CG2. It is “easy to see” that these two identifications “play nicely with each other
and with the module structures on U1 ⊗ U2” (this is the part where we wave our hands). Now, (13.112.1)
yields that (CG1 ⊗ CG2) ⊗CH1⊗CH2

(U1 ⊗ U2) ∼= (Indρ1
U1) ⊗ (Indρ2

U2) as left CG1 ⊗ CG2-modules, and
therefore also as left C [G1 ×G2]-modules (since C [G1 ×G2] = CG1 ⊗ CG2). Now,

Indρ1×ρ2
(U1 ⊗ U2) = C [G1 ×G2]⊗C[H1×H2] (U1 ⊗ U2)

= (CG1 ⊗ CG2)⊗CH1⊗CH2 (U1 ⊗ U2)

(since C [G1 ×G2] = CG1 ⊗ CG2 and C [H1 ×H2] = CH1 ⊗ CH2)

∼= (Indρ1
U1)⊗ (Indρ2

U2)

as left C [G1 ×G2]-modules. This solves Exercise 4.1.15 if you believe the handwaving I have done above.
The handwaving we have done is slightly questionable, since we have made two identifications which

turned two isomorphisms into identities. In reality, they are merely isomorphisms, not identities, and it is
not immediately clear that regarding them as identities will not lead to contradictions. (Indeed, this is the
meaning of our vague claim that the two identifications “play nicely with each other”.)

Let us now show a way to formalize the above questionable argument. We shall focus on explaining how
to do this proof in a clean fashion (in particular, we shall avoid identifying any things that are not already
identical; instead, we will work with the isomorphisms G and H explicitly); we will leave straightforward
computations and arguments to the reader.

We first state a general fact:

Proposition 13.112.2. Let k be a commutative ring. In the following, all ⊗ signs without subscript stand
for ⊗k.

Let A, B, C, A′, B′ and C ′ be six k-algebras. Let M be an (A,B)-bimodule852. Let N be a (B,C)-
bimodule. Let M ′ be an (A′, B′)-bimodule. Let N ′ be a (B′, C ′)-bimodule. Let β : B → B′, µ : M → M ′

852As usual, we understand the notion of a bimodule to be defined over k; that is, the left A-module structure and the right

B-module structure of an (A,B)-bimodule must restrict to one and the same k-module structure.
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and ν : N → N ′ be three k-module homomorphisms. Assume that we have

(13.112.2) (µ (mb) = µ (m)β (b) for all b ∈ B and m ∈M)

and

(13.112.3) (ν (bn) = β (b) ν (n) for all b ∈ B and n ∈ N) .

Then:

(a) There exists a unique k-module homomorphism

Ω : M ⊗B N →M ′ ⊗B′ N ′

which satisfies

(Ω (m⊗B n) = µ (m)⊗B′ ν (n) for all (m,n) ∈M ×N) .

We shall denote this homomorphism Ω by Ωβ,µ,ν .
(b) If the maps β, µ and ν are invertible, then Ωβ,µ,ν is a k-module isomorphism.
(c) Let α : A→ A′ be a k-module homomorphism. Assume that

(13.112.4) µ (am) = α (a)µ (m) for all a ∈ A and m ∈M.

Assume also that the k-module M ′ is endowed with a left A-module structure. Assume that this
left A-module structure on M ′ and the right B′-module structure on M ′ together form an (A,B′)-
bimodule structure on M ′. Thus, M ′ ⊗B′ N ′ becomes a left A-module. Assume furthermore that

(13.112.5) am = α (a)m for every a ∈ A and m ∈M ′
853. Then, Ωβ,µ,ν is a left A-module homomorphism.

The proof of Proposition 13.112.2 is straightforward854 and is left to the reader. We could also add a part
(d) to Proposition 13.112.2, which would give a criterion for Ωβ,µ,ν to be a right C-module homomorphism
given an appropriate right C-module structure on N ′.

Let us now return to solving Exercise 4.1.15. We have four bimodules:

• The C-vector space CG1 ⊗ CG2 is a (CG1 ⊗ CG2,CH1 ⊗ CH2)-bimodule (because it is the tensor
product of the (CG1,CH1)-bimodule CG1 with the (CG2,CH2)-bimodule CG2). As a left CG1 ⊗
CG2-module, it is thus the tensor product of the left CG1-module CG1 with the left CG2-module
CG2. Hence, its left CG1⊗CG2-module structure is given by plain multiplication inside CG1⊗CG2
855. (This is straightforward to check.)

• The C-vector space U1⊗U2 is a left CH1⊗CH2-module (because it is the tensor product of the left
CH1-module U1 with the left CH2-module U2), and thus a (CH1 ⊗ CH2,C)-bimodule.

• The C-vector space C [G1 ×G2] is a (C [G1 ×G2] ,C [H1 ×H2])-bimodule (as we already know).
• The C-vector space U1 ⊗ U2 is a left C [H1 ×H2]-module (since it is the tensor product of the left

CH1-module U1 with the left CH2-module U2), and thus a (C [H1 ×H2] ,C)-bimodule.

We have

(13.112.6) (G (mb) = G (m)H (b) for all b ∈ C [H1 ×H2] and m ∈ C [G1 ×G2])

and

(13.112.7) (id (bn) = H (b) id (n) for all b ∈ C [H1 ×H2] and n ∈ U1 ⊗ U2) .

(In fact, both of these equalities are easily checked on basis elements and pure tensors.) Hence, we can
apply Proposition 13.112.2(a) to k = C, A = C [G1 ×G2], B = C [H1 ×H2], C = C, A′ = CG1 ⊗ CG2,
B′ = CH1⊗CH2, C ′ = C, M = C [G1 ×G2], N = U1⊗U2, M ′ = CG1⊗CG2, N ′ = U1⊗U2, β = H, µ = G
and ν = id. As a consequence, we conclude that there exists a unique C-module homomorphism

Ω : C [G1 ×G2]⊗C[H1×H2] (U1 ⊗ U2)→ (CG1 ⊗ CG2)⊗CH1⊗CH2 (U1 ⊗ U2)

853Here the α (a)m on the right hand side is defined using the action of A′ on the left A′-module M ′, whereas the am on

the left hand side is defined using the action of A on the left A-module M ′.
854For part (b), the inverse of Ωβ,µ,ν is Ωβ−1,µ−1,ν−1 , of course.
855That is, the action of any a ∈ CG1 ⊗ CG2 on any element m of the left CG1 ⊗ CG2-module CG1 ⊗ CG2 equals the

product of a with m in the C-algebra CG1 ⊗ CG2.
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which satisfies(
Ω
(
m⊗C[H1×H2] n

)
= G (m)⊗CH1⊗CH2

id (n) for all (m,n) ∈ C [G1 ×G2]× (U1 ⊗ U2)
)
.

According to Proposition 13.112.2(a), this homomorphism Ω is denoted by ΩH,G,id.
The maps H, G and id are C-algebra isomorphisms, and therefore invertible. Hence, Proposition 13.112.2(b)

(applied to k = C, A = C [G1 ×G2], B = C [H1 ×H2], C = C, A′ = CG1⊗CG2, B′ = CH1⊗CH2, C ′ = C,
M = C [G1 ×G2], N = U1 ⊗ U2, M ′ = CG1 ⊗ CG2, N ′ = U1 ⊗ U2, β = H, µ = G and ν = id) yields that
ΩH,G,id is a C-module isomorphism.

Next, we notice that the C-vector space CG1 ⊗ CG2 is a left C [G1 ×G2]-module (since it is the tensor
product of the left CG1-module CG1 with the left CG2-module CG2). This left C [G1 ×G2]-module structure
is defined by the rule

(13.112.8) t(g1,g2) (u1 ⊗ u2) = tg1
u1 ⊗ tg2

u2 for all (g1, g2) ∈ G1 ×G2 and (u1, u2) ∈ CG1 × CG2.

This left C [G1 ×G2]-module structure on CG1 ⊗ CG2 and the right CH1 ⊗ CH2-module structure on
CG1 ⊗ CG2 are connected by the equality

(13.112.9) ((gm)h = g (mh) for all g ∈ C [G1 ×G2] , m ∈ CG1 ⊗ CG2 and h ∈ CH1 ⊗ CH2)

(which is easily checked). Hence, these two structures together form an (C [G1 ×G2] ,CH1 ⊗ CH2)-bimodule
structure on CG1 ⊗ CG2 (because both of these structures are C-bilinear). Thus, the tensor product
(CG1 ⊗ CG2)⊗CH1⊗CH2

(U1 ⊗ U2) becomes a left C [G1 ×G2]-module.
Next, it is easy to check that

(13.112.10) G (am) = G (a)G (m) for all a ∈ C [G1 ×G2] and m ∈ C [G1 ×G2] .

It is also easy to see that

(13.112.11) am = G (a)m for every a ∈ C [G1 ×G2] and m ∈ CG1 ⊗ CG2.

Thus, we can apply Proposition 13.112.2(c) to k = C, A = C [G1 ×G2], B = C [H1 ×H2], C = C,
A′ = CG1 ⊗ CG2, B′ = CH1 ⊗ CH2, C ′ = C, M = C [G1 ×G2], N = U1 ⊗ U2, M ′ = CG1 ⊗ CG2,
N ′ = U1 ⊗ U2, β = H, µ = G, ν = id and α = G. As a result, we obtain that ΩH,G,id is a left C [G1 ×G2]-
module homomorphism. Hence, ΩH,G,id is a left C [G1 ×G2]-module isomorphism (since ΩH,G,id is invertible).
Thus,

(13.112.12) C [G1 ×G2]⊗C[H1×H2] (U1 ⊗ U2) ∼= (CG1 ⊗ CG2)⊗CH1⊗CH2
(U1 ⊗ U2)

as left C [G1 ×G2]-modules.
Now, let us recall the isomorphism (13.112.1). It is an isomorphism of left CG1 ⊗ CG2-modules, and

thus cannot be immediately combined with (13.112.12). However, it is easy to see that the corresponding
isomorphism of left C [G1 ×G2]-modules holds as well: Namely, we have

(13.112.13) (CG1 ⊗ CG2)⊗CH1⊗CH2 (U1 ⊗ U2) ∼= (Indρ1 U1)⊗ (Indρ2 U2)

as left C [G1 ×G2]-modules. Before we prove this, let us make three auxiliary observations which connect the
left C [G1 ×G2]-module structures on the modules appearing in (13.112.13) with the left CG1⊗CG2-module
structures on the same modules:

• We have

(13.112.14) t(g1,g2)m = (tg1 ⊗ tg2)m for every (g1, g2) ∈ G1 ×G2 and m ∈ CG1 ⊗ CG2

(where the expression t(g1,g2)m on the left hand side is defined using the left C [G1 ×G2]-module
structure on CG1⊗CG2, whereas the expression (tg1

⊗ tg2
)m on the right hand side is defined using

the left CG1 ⊗ CG2-module structure on CG1 ⊗ CG2). This is easy to prove.
• We have

(13.112.15)
t(g1,g2)n = (tg1 ⊗ tg2)n for every (g1, g2) ∈ G1 ×G2 and n ∈ (CG1 ⊗ CG2)⊗CH1⊗CH2 (U1 ⊗ U2)

(where the expression t(g1,g2)n on the left hand side is defined using the left C [G1 ×G2]-module
structure on (CG1 ⊗ CG2)⊗CH1⊗CH2(U1 ⊗ U2), whereas the expression (tg1 ⊗ tg2)n on the right hand
side is defined using the left CG1 ⊗ CG2-module structure on (CG1 ⊗ CG2) ⊗CH1⊗CH2

(U1 ⊗ U2)).
This is easy to prove using (13.112.14).
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• Finally, we have

(13.112.16) t(g1,g2)m = (tg1 ⊗ tg2)m for every (g1, g2) ∈ G1 ×G2 and m ∈ (Indρ1 U1)⊗ (Indρ2 U2)

(where the expression t(g1,g2)m on the left hand side is defined using the left C [G1 ×G2]-module
structure on (Indρ1 U1) ⊗ (Indρ2 U2), whereas the expression (tg1 ⊗ tg2)m on the right hand side is
defined using the left CG1 ⊗ CG2-module structure on (Indρ1 U1)⊗ (Indρ2 U2)). Again, this is easy
to check.

Now, it is easy to see that (13.112.13) holds856.
Now, (13.112.12) becomes

C [G1 ×G2]⊗C[H1×H2] (U1 ⊗ U2)

∼= (CG1 ⊗ CG2)⊗CH1⊗CH2
(U1 ⊗ U2) ∼= (Indρ1

U1)⊗ (Indρ2
U2) (by (13.112.13))

as left C [G1 ×G2]-modules. Therefore,

Indρ1×ρ2 (U1 ⊗ U2) = C [G1 ×G2]⊗C[H1×H2] (U1 ⊗ U2) ∼= (Indρ1 U1)⊗ (Indρ2 U2)

as left C [G1 ×G2]-modules. This finishes the solution of Exercise 4.1.15.

13.113. Solution to Exercise 4.1.16. Solution to Exercise 4.1.16. In the following, we will use the fol-
lowing convention: Whenever K is a group, and k is an element of K, we shall write k for the element tk of
CK. This is a relatively common abuse of notation, and it is harmless because the map K → CK, k 7→ tk is
an injective homomorphism of multiplicative monoids (so tgh = tgth and t1 = 1, which means that we won’t
run into ambiguities denoting tk by k) and because every CK-module M , every m ∈ M and every k ∈ K
satisfy km = tkm.

We solve the four parts of Exercise 4.1.16 in the following order: first, part (c); then, part (d); then, part
(a); finally, part (b).

(c) The definition of Resρ V yields Resρ V = V as C-vector spaces. Similarly, Resτ Resρ V = Resρ V as
C-vector spaces, and Resρ◦τ V = V as C-vector spaces. Thus, Resτ Resρ V = Resρ V = V = Resρ◦τ V as
C-vector spaces. But our goal is to show that Resτ Resρ V = Resρ◦τ V as CI-modules. Thus, it suffices
to prove that the left CI-module structures on Resτ Resρ V and Resρ◦τ V are identical. In other words, it

856Proof of (13.112.13): From (13.112.1), we conclude that there exists an isomorphism

T : (CG1 ⊗ CG2)⊗CH1⊗CH2
(U1 ⊗ U2)→ (Indρ1 U1)⊗ (Indρ2 U2)

of left CG1 ⊗ CG2-modules. We shall now show that this map T is an isomorphism of left C [G1 ×G2]-modules as well. In
order to do so, it is sufficient to show that the map T is a homomorphism of left C [G1 ×G2]-modules (because we already

know that T is invertible). In other words, it is sufficient to show that

(13.112.17) T (an) = aT (n)

for every a ∈ C [G1 ×G2] and n ∈ (CG1 ⊗ CG2)⊗CH1⊗CH2
(U1 ⊗ U2) (since we already know that the map T is C-linear).

Proof of (13.112.17): Let a ∈ C [G1 ×G2] and n ∈ (CG1 ⊗ CG2) ⊗CH1⊗CH2
(U1 ⊗ U2). We need to prove the equality

T (an) = aT (n). This equality is C-linear in a. Hence, we can WLOG assume that a belongs to the basis
(
t(g1,g2)

)
(g1,g2)∈G1×G2

of the C-vector space C [G1 ×G2]. Assume this. Thus, a = t(g1,g2) for some (g1, g2) ∈ G1 × G2. Consider this (g1, g2). We

have a︸︷︷︸
=t(g1,g2)

n = t(g1,g2)n = (tg1 ⊗ tg2 )n (by (13.112.15)). Applying the map T to both sides of this equality, we obtain

T (an) = T ((tg1 ⊗ tg2 )n) = (tg1 ⊗ tg2 ) T (n) (since T is a homomorphism of left CG1 ⊗ CG2-modules) .

Compared with

a︸︷︷︸
=t(g1,g2)

T (n) = t(g1,g2)T (n) = (tg1 ⊗ tg2 ) T (n) (by (13.112.16), applied to m = T (n)) ,

this yields T (an) = aT (n). This proves (13.112.17).
Now, (13.112.17) shows that T is a homomorphism of left C [G1 ×G2]-modules (since T is C-linear), and therefore an

isomorphism of left C [G1 ×G2]-modules (since T is invertible). Thus, (CG1 ⊗ CG2) ⊗CH1⊗CH2
(U1 ⊗ U2) ∼= (Indρ1 U1) ⊗

(Indρ2 U2) as left C [G1 ×G2]-modules. This proves (13.112.13).
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suffices to show that every i ∈ CI and v ∈ V satisfy the equality

(the action of i ∈ CI on the element v of the left CI-module Resτ Resρ V )

= (the action of i ∈ CI on the element v of the left CI-module Resρ◦τ V ) .(13.113.1)

(Of course, both sides of the equality (13.113.1) could be rewritten as iv, but this notation is ambiguous,
because i simultaneously belongs to two CI-modules Resτ Resρ V and Resρ◦τ V which are not yet known to
be identical.)

Proof of (13.113.1): Let i ∈ CI and v ∈ V . We need to prove the equality (13.113.1). Since this equality
is C-linear in i, we can WLOG assume that i belongs to the basis I of the C-vector space CI. Assume this.
Now, the definition of the left CI-module Resτ Resρ V yields

(the action of i ∈ CI on the element v of the left CI-module Resτ Resρ V )

= (the action of τ (i) ∈ CH on the element v of the left CH-module Resρ V )

=

the action of ρ (τ (i))︸ ︷︷ ︸
=(ρ◦τ)(i)

∈ CG on the element v of the left CG-module V


(by the definition of the left CH-module Resρ V )

= (the action of (ρ ◦ τ) (i) ∈ CG on the element v of the left CG-module V ) .

Compared with

(the action of i ∈ CI on the element v of the left CI-module Resρ◦τ V )

= (the action of (ρ ◦ τ) (i) ∈ CG on the element v of the left CG-module V )

(by the definition of the left CI-module Resρ◦τ V ) ,

this yields

(the action of i ∈ CI on the element v of the left CI-module Resτ Resρ V )

= (the action of i ∈ CI on the element v of the left CI-module Resρ◦τ V ) .

This proves (13.113.1).
Now, we know that Resτ Resρ V = Resρ◦τ V as C-vector spaces. Thus, (13.113.1) shows that Resτ Resρ V =

Resρ◦τ V as left CI-modules as well. Exercise 4.1.16(c) is thus solved.
(d) Let f ∈ RC (G). The definition of Resρ◦τ f yields Resρ◦τ f = f ◦ (ρ ◦ τ). But the definition of Resρ f

yields Resρ f = f ◦ ρ. The definition of Resτ Resρ f yields

Resτ Resρ f = (Resρ f)︸ ︷︷ ︸
=f◦ρ

◦τ = (f ◦ ρ) ◦ τ = f ◦ (ρ ◦ τ) = Resρ◦τ f.

This solves Exercise 4.1.16(d).
(a) Let U be any CI-module.
Recall that Indτ U is defined as the CH-module CH⊗CIU , where CH is regarded as a (CH,CI)-bimodule

according to the following rule: The left CH-module structure on CH is plain multiplication inside CH; the
right CI-module structure on CH is induced by the C-algebra homomorphism C [τ ] : CI → CH (thus, it is
explicitly given by γη = γ · (C [τ ]) η for all γ ∈ CH and η ∈ CI).

Furthermore, Indρ (Indτ U) is defined as the CG-module CG ⊗CH (Indτ U), where CG is regarded as a
(CG,CH)-bimodule according to the following rule: The left CG-module structure on CG is plain mul-
tiplication inside CG; the right CH-module structure on CG is induced by the C-algebra homomorphism
C [ρ] : CH → CG (thus, it is explicitly given by γη = γ · (C [ρ]) η for all γ ∈ CG and η ∈ CH).

Finally, Indρ◦τ U is defined as the CG-module CG⊗CI U , where CG is regarded as a (CG,CI)-bimodule
according to the following rule: The left CG-module structure on CG is plain multiplication inside CG; the
right CI-module structure on CG is induced by the C-algebra homomorphism C [ρ ◦ τ ] : CI → CG (thus, it
is explicitly given by γη = γ · (C [ρ ◦ τ ]) η for all γ ∈ CG and η ∈ CI).
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Thus, we have introduced a (CH,CI)-bimodule structure on CH, a (CG,CH)-bimodule structure on CG
and a (CG,CI)-bimodule structure on CG. The left CG-module structure that underlies the (CG,CH)-
bimodule structure on CG is identical with the left CG-module structure that underlies the (CG,CI)-
bimodule structure on CG (because both of these left CG-module structures are defined to be plain multipli-
cation inside CG). Therefore, we will not run into ambiguities if we write expressions such as ab for a ∈ CG
and b ∈ CG.

We shall now show that

(13.113.2) CG⊗CH CH ∼= CG as (CG,CI) -bimodules.

(Here, on the left hand side, CG is regarded as a (CG,CH)-bimodule and CH is regarded as (CH,CI)-
bimodule, whereas on the right hand side, CG is regarded as a (CG,CI)-bimodule.)

Proof of (13.113.2): There is clearly a unique C-vector space isomorphism Φ : CG→ CG⊗CH CH which
satisfies

(13.113.3) (Φ (m) = m⊗CH 1CH for all m ∈ CG) .

857 Consider this Φ. It is straightforward to see that Φ is a homomorphism of left G-sets and a homo-
morphism of right I-sets. Hence, Φ is a homomorphism of (CG,CI)-bimodules (since Φ is C-linear), thus
an isomorphism of (CG,CI)-bimodules (since Φ is invertible). Therefore, there exists an isomorphism of
(CG,CI)-bimodules from CG to CG⊗CH CH (namely, Φ). In other words, CG⊗CH CH ∼= CG as (CG,CI)-
bimodules. This proves (13.113.2).

Now,

Indρ (Indτ U) = CG⊗CH (Indτ U)︸ ︷︷ ︸
=CH⊗CIU

= CG⊗CH (CH ⊗CI U)

∼= (CG⊗CH CH)︸ ︷︷ ︸
∼=CG as (CG,CI)-bimodules

(by (13.113.2))

⊗CIU (by the associativity of the tensor product)

∼= CG⊗CI U = Indρ◦τ U (since Indρ◦τ U = CG⊗CI U as left CG-modules)

as left CG-modules. This solves Exercise 4.1.16(a).
(b) First solution to Exercise 4.1.16(b). Let f ∈ RC (I). Every r ∈ H satisfies

(Indτ f) (r) =
1

|I|
∑

(h,k)∈I×H;

kτ(h)k−1=r

f (h) (by the definition of Indτ f)

=
1

|I|
∑

(i,v)∈I×H;

vτ(i)v−1=r︸ ︷︷ ︸
=
∑
i∈I

∑
v∈H;

vτ(i)v−1=r

f (i) (here, we renamed the summation index (h, k) as (i, v))

=
1

|I|
∑
i∈I

∑
v∈H;

vτ(i)v−1=r

f (i) .(13.113.4)

857Indeed, this is a particular case of the following fundamental fact from linear algebra: If A is a C-algebra, and if M is a

right A-module, then there is a unique C-vector space isomorphism Φ : M →M ⊗A A which satisfies

(Φ (m) = m⊗A 1A for all m ∈M) .
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Now, let g ∈ G. Then, the definition of Indρ (Indτ f) yields

(Indρ (Indτ f)) (g) =
1

|H|
∑

(h,k)∈H×G;

kρ(h)k−1=g

(Indτ f) (h) =
1

|H|
∑

(r,k)∈H×G;

kρ(r)k−1=g︸ ︷︷ ︸
=
∑
k∈G

∑
r∈H;

kρ(r)k−1=g

(Indτ f) (r)︸ ︷︷ ︸
=

1

|I|
∑
i∈I

∑
v∈H;

vτ(i)v−1=r

f(i)

(by (13.113.4))

(here, we renamed the summation index (h, k) as (r, k))

=
1

|H|
∑
k∈G

∑
r∈H;

kρ(r)k−1=g

1

|I|
∑
i∈I

∑
v∈H;

vτ(i)v−1=r

f (i)

=
1

|I|
1

|H|
∑
k∈G

∑
r∈H;

kρ(r)k−1=g

∑
i∈I︸ ︷︷ ︸

=
∑
i∈I

∑
r∈H;

kρ(r)k−1=g

∑
v∈H;

vτ(i)v−1=r

f (i)

=
1

|I|
1

|H|
∑
k∈G

∑
i∈I

∑
r∈H;

kρ(r)k−1=g

∑
v∈H;

vτ(i)v−1=r

f (i) .(13.113.5)

But every k ∈ G and i ∈ I satisfy

(13.113.6)
∑
r∈H;

kρ(r)k−1=g

∑
v∈H;

vτ(i)v−1=r

f (i) =
∑
v∈H;

kρ(v)·ρ(τ(i))·(kρ(v))−1=g

f (i)

858.

858Proof of (13.113.6): Let k ∈ G and i ∈ I. We must prove (13.113.6). We have∑
r∈H;

kρ(r)k−1=g

∑
v∈H;

vτ(i)v−1=r︸ ︷︷ ︸
=
∑
v∈H

∑
r∈H;

kρ(r)k−1=g;

vτ(i)v−1=r

f (i)

=
∑
v∈H

∑
r∈H;

kρ(r)k−1=g;

vτ(i)v−1=r

f (i) =
∑
v∈H;

kρ(v)·ρ(τ(i))·(kρ(v))−1=g

∑
r∈H;

kρ(r)k−1=g;

vτ(i)v−1=r

f (i) +
∑
v∈H;

kρ(v)·ρ(τ(i))·(kρ(v))−1 6=g

∑
r∈H;

kρ(r)k−1=g;

vτ(i)v−1=r

f (i)(13.113.7)

(because every v ∈ H satisfies either kρ (v) · ρ (τ (i)) · (kρ (v))−1 = g or kρ (v) · ρ (τ (i)) · (kρ (v))−1 6= g, but never both).

Now, we shall show that

(13.113.8)
∑
r∈H;

kρ(r)k−1=g;

vτ(i)v−1=r

f (i) = 0

for every v ∈ H which satisfies kρ (v) · ρ (τ (i)) · (kρ (v))−1 6= g.

Proof of (13.113.8): Let v ∈ H be such that kρ (v) · ρ (τ (i)) · (kρ (v))−1 6= g. If some r ∈ H satisfies kρ (r) k−1 = g and

vτ (i) v−1 = r, then this r must satisfy

kρ (v) · ρ (τ (i)) · (kρ (v))−1︸ ︷︷ ︸
=(ρ(v))−1k−1

= k ρ (v) · ρ (τ (i)) · (ρ (v))−1︸ ︷︷ ︸
=ρ(vτ(i)v−1)

(since ρ is a group
homomorphism)

k−1

= kρ

vτ (i) v−1︸ ︷︷ ︸
=r

 k−1 = kρ (r) k−1 = g,
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which contradicts kρ (v) · ρ (τ (i)) · (kρ (v))−1 6= g. Hence, we have obtained a contradiction for every r ∈ H which satisfies

kρ (r) k−1 = g and vτ (i) v−1 = r. Thus, there exists no r ∈ H which satisfies kρ (r) k−1 = g and vτ (i) v−1 = r. Therefore,

the sum
∑
r∈H;

kρ(r)k−1=g;

vτ(i)v−1=r

f (i) is an empty sum, and thus its value is 0. This proves (13.113.8).

On the other hand, let us show that

(13.113.9)
∑
r∈H;

kρ(r)k−1=g;

vτ(i)v−1=r

f (i) = f (i)

for every v ∈ H which satisfies kρ (v) · ρ (τ (i)) · (kρ (v))−1 = g.

Proof of (13.113.9): Let v ∈ H be such that kρ (v) · ρ (τ (i)) · (kρ (v))−1 = g. If some r ∈ H satisfies kρ (r) k−1 = g and
vτ (i) v−1 = r, then this r must equal vτ (i) v−1 (because vτ (i) v−1 = r). Hence, there exists at most one r ∈ H which

satisfies kρ (r) k−1 = g and vτ (i) v−1 = r.

On the other hand, the element vτ (i) v−1 of H satisfies

k ρ
(
vτ (i) v−1

)︸ ︷︷ ︸
=ρ(v)·ρ(τ(i))·ρ(v)−1

(since ρ is a group
homomorphism)

k−1 = kρ (v) · ρ (τ (i)) · ρ (v)−1 k−1︸ ︷︷ ︸
=(kρ(v))−1

= kρ (v) · ρ (τ (i)) · (kρ (v))−1 = g

and vτ (i) v−1 = vτ (i) v−1. In other words, vτ (i) v−1 is an element r ∈ H which satisfies kρ (r) k−1 = g and vτ (i) v−1 = r.

Hence, there exists at least one r ∈ H which satisfies kρ (r) k−1 = g and vτ (i) v−1 = r (namely, vτ (i) v−1). Since we also
have shown that there exists at most one such r ∈ H, we can thus conclude that there exists exactly one r ∈ H which

satisfies kρ (r) k−1 = g and vτ (i) v−1 = r. In other words, the sum
∑
r∈H;

kρ(r)k−1=g;

vτ(i)v−1=r

f (i) has precisely one addend. Hence, this sum

rewrites as follows:
∑
r∈H;

kρ(r)k−1=g;

vτ(i)v−1=r

f (i) = f (i). This proves (13.113.9).

Now, (13.113.7) becomes

∑
r∈H;

kρ(r)k−1=g

∑
v∈H;

vτ(i)v−1=r

f (i)

=
∑
v∈H;

kρ(v)·ρ(τ(i))·(kρ(v))−1=g

∑
r∈H;

kρ(r)k−1=g;

vτ(i)v−1=r

f (i)

︸ ︷︷ ︸
=f(i)

(by (13.113.9))

+
∑
v∈H;

kρ(v)·ρ(τ(i))·(kρ(v))−1 6=g

∑
r∈H;

kρ(r)k−1=g;

vτ(i)v−1=r

f (i)

︸ ︷︷ ︸
=0

(by (13.113.8))

=
∑
v∈H;

kρ(v)·ρ(τ(i))·(kρ(v))−1=g

f (i) +
∑
v∈H;

kρ(v)·ρ(τ(i))·(kρ(v))−1 6=g

0

︸ ︷︷ ︸
=0

=
∑
v∈H;

kρ(v)·ρ(τ(i))·(kρ(v))−1=g

f (i) .

This proves (13.113.6).



818 DARIJ GRINBERG AND VICTOR REINER

Thus, (13.113.5) becomes

(Indρ (Indτ f)) (g)

=
1

|I|
1

|H|
∑
k∈G

∑
i∈I︸ ︷︷ ︸

=
∑
i∈I

∑
k∈G

∑
r∈H;

kρ(r)k−1=g

∑
v∈H;

vτ(i)v−1=r

f (i)

︸ ︷︷ ︸
=

∑
v∈H;

kρ(v)·ρ(τ(i))·(kρ(v))−1=g

f(i)

(by (13.113.6))

=
1

|I|
1

|H|
∑
i∈I

∑
k∈G

∑
v∈H;

kρ(v)·ρ(τ(i))·(kρ(v))−1=g︸ ︷︷ ︸
=
∑
v∈H

∑
k∈G;

kρ(v)·ρ(τ(i))·(kρ(v))−1=g

f (i)

=
1

|I|
1

|H|
∑
i∈I

∑
v∈H

∑
k∈G;

kρ(v)·ρ(τ(i))·(kρ(v))−1=g

f (i) .(13.113.10)

However, for every i ∈ I and v ∈ H, we have

(13.113.11)
∑
k∈G;

kρ(v)·ρ(τ(i))·(kρ(v))−1=g

f (i) =
∑
k∈G;

kρ(τ(i))k−1=g

f (i)

859.
Thus, (13.113.10) becomes

(Indρ (Indτ f)) (g)

=
1

|I|
1

|H|
∑
i∈I

∑
v∈H

∑
k∈G;

kρ(v)·ρ(τ(i))·(kρ(v))−1=g

f (i)

︸ ︷︷ ︸
=

∑
k∈G;

kρ(τ(i))k−1=g

f(i)

(by (13.113.11))

=
1

|I|
1

|H|
∑
i∈I

∑
v∈H

∑
k∈G;

kρ(τ(i))k−1=g

f (i)

︸ ︷︷ ︸
=|H|

∑
k∈G;

kρ(τ(i))k−1=g

f(i)

=
1

|I|
1

|H|
∑
i∈I
|H|

∑
k∈G;

kρ(τ(i))k−1=g

f (i) =
1

|I|
1

|H|
|H|︸ ︷︷ ︸

=1

∑
i∈I

∑
k∈G;

kρ(τ(i))k−1=g︸ ︷︷ ︸
=

∑
(i,k)∈I×G;

kρ(τ(i))k−1=g

=
∑

(i,k)∈I×G;

k(ρ◦τ)(i)k−1=g

(since ρ(τ(i))=(ρ◦τ)(i))

f (i)

=
1

|I|
∑

(i,k)∈I×G;

k(ρ◦τ)(i)k−1=g

f (i) =
1

|I|
∑

(h,k)∈I×G;

k(ρ◦τ)(h)k−1=g

f (h)

(here, we renamed the summation index (i, k) as (h, k)) .

859Proof of (13.113.11): Let i ∈ I and v ∈ H. We have ρ (v) ∈ G. Therefore, the map G → G, k 7→ kρ (v) is a bijection
(since G is a group). Therefore, we can substitute kρ (v) for k in the sum

∑
k∈G;

kρ(τ(i))k−1=g

f (i). We thus obtain

∑
k∈G;

kρ(τ(i))k−1=g

f (i) =
∑
k∈G;

kρ(v)ρ(τ(i))(kρ(v))−1=g

f (i) =
∑
k∈G;

kρ(v)·ρ(τ(i))·(kρ(v))−1=g

f (i) .

This proves (13.113.11).
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Compared with

(Indρ◦τ f) (g) =
1

|I|
∑

(h,k)∈I×G;

k(ρ◦τ)(h)k−1=g

f (h) (by the definition of (Indρ◦τ f) (g)) ,

this yields (Indρ (Indτ f)) (g) = (Indρ◦τ f) (g).
Let us now forget that we fixed g. We thus have shown that (Indρ (Indτ f)) (g) = (Indρ◦τ f) (g) for every

g ∈ G. In other words, Indρ Indτ f = Indρ◦τ f . This solves Exercise 4.1.16(b).
Second solution to Exercise 4.1.16(b). We shall now give an alternative solution of Exercise 4.1.16(b)

which relies on Exercise 4.1.16(d) and a certain fact about class functions:

Lemma 13.113.1. Let G be a finite group. Let u ∈ RC (G). Assume that every v ∈ RC (G) satisfies
〈u, v〉G = 0. Then, u = 0.

Proof of Lemma 13.113.1. Let us use the Iverson bracket notation; that is, for any statement A, we define

[A] to be the integer

{
1, if A is true;

0, if A is false
.

Fix an element h ∈ G. We define a map αh : G→ C by

(
αh (g) =

∑
k∈G

[
khk−1 = g

]
for every g ∈ G

)
.

(Notice that this map αh is identical with the map αG,h defined in Exercise 4.4.3, but we will not use
this.) Then, αh ∈ RC (G) 860. Hence, 〈u, αh〉G is well-defined. But recall that every v ∈ RC (G) satisfies

860Proof. Let p and q be two conjugate elements of G. Then, there exists some r ∈ G such that p = rqr−1 (since p and q
are conjugate). Consider this r. The definition of αh yields

αh (p) =
∑
k∈G

khk−1 = p︸︷︷︸
=rqr−1

 =
∑
k∈G

 khk−1 = rqr−1︸ ︷︷ ︸
this is equivalent to

(r−1khk−1r=q)

 =
∑
k∈G

[
r−1khk−1r = q

]
.

Now, recall that r ∈ G. Hence, the map G→ G, k 7→ rk is a bijection (since G is a group). Hence, we can substitute rk for
k in the sum

∑
k∈G

[
r−1khk−1r = q

]
. We thus obtain

∑
k∈G

[
r−1khk−1r = q

]
=
∑
k∈G

r−1rkh (rk)−1︸ ︷︷ ︸
=k−1r−1

r = q

 =
∑
k∈G

r−1r︸ ︷︷ ︸
=1

khk−1 r−1r︸ ︷︷ ︸
=1

= q


=
∑
k∈G

[
khk−1 = q

]
= αh (q)

(since αh (q) =
∑
k∈G

[
khk−1 = q

]
(by the definition of αh)). Hence, αh (p) =

∑
k∈G

[
r−1khk−1r = q

]
= αh (q).

Let us now forget that we fixed p and q. We thus have shown that αh (p) = αh (q) whenever p and q are two conjugate

elements of G. In other words, the function αh is constant on G-conjugacy classes. In other words, αh is a class function on G

(because the class functions on G are defined to be the functions G→ C which are constant on G-conjugacy classes). In other
words, αh ∈ RC (G) (since RC (G) is the set of all class functions on G). Qed.
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〈u, v〉G = 0. Applying this to v = αh, we obtain 〈u, αh〉G = 0. Thus,

0 = 〈u, αh〉G =
1

|G|
∑
g∈G

u (g) αh
(
g−1

)︸ ︷︷ ︸
=
∑
k∈G[khk−1=g−1]

(by the definition of αh)

(by the definition of the bilinear form 〈·, ·〉G)

=
1

|G|
∑
g∈G

u (g)
∑
k∈G

[
khk−1 = g−1

]
=

1

|G|
∑
k∈G

∑
g∈G

u (g)

 khk−1 = g−1︸ ︷︷ ︸
this is equivalent to (g=(khk−1)−1)



=
1

|G|
∑
k∈G

∑
g∈G

u (g)
[
g =

(
khk−1

)−1
]
.

(13.113.12)

But every k ∈ G satisfies

(13.113.13)
∑
g∈G

u (g)
[
g =

(
khk−1

)−1
]

= u
(
h−1

)
861. Hence, (13.113.12) becomes

0 =
1

|G|
∑
k∈G

∑
g∈G

u (g)
[
g =

(
khk−1

)−1
]

︸ ︷︷ ︸
=u(h−1)

(by (13.113.13))

=
1

|G|
∑
k∈G

u
(
h−1

)
︸ ︷︷ ︸
=|G|u(h−1)

=
1

|G|
|G|u

(
h−1

)
= u

(
h−1

)
.

Thus, u
(
h−1

)
= 0.

Let us now forget that we fixed h. We thus have shown that

(13.113.15) u
(
h−1

)
= 0 for every h ∈ G.

Let us now fix h ∈ G. Then, (13.113.15) (applied to h−1 instead of h) yields u
((
h−1

)−1
)

= 0. In other

words, u (h) = 0 (since
(
h−1

)−1
= h).

Let us now forget that we fixed h. We thus have shown that u (h) = 0 for every h ∈ G. In other words,
u = 0. This proves Lemma 13.113.1. �

861Proof of (13.113.13): Let us first recall that u belongs to the set RC (G). In other words, u is a class function on G
(since RC (G) is the set of all class functions on G). In other words, the function u is constant on G-conjugacy classes (because

the class functions on G are defined to be the functions G→ C which are constant on G-conjugacy classes). In other words,

(13.113.14) u (p) = u (q)

whenever p and q are two conjugate elements of G.

Now, let k ∈ G. Then, the elements kh−1k−1 and h−1 of G are conjugate. Hence, u
(
kh−1k−1

)
= u

(
h−1

)
(by (13.113.14),

applied to p = kh−1k−1 and q = h−1).

All addends of the sum
∑
g∈G u (g)

[
g =

(
khk−1

)−1
]

are zero except for the addend for g =
(
khk−1

)−1
(because the factor[

g =
(
khk−1

)−1
]

is zero unless g =
(
khk−1

)−1
). Hence, this sum simplifies as follows:

∑
g∈G

u (g)
[
g =

(
khk−1

)−1
]

= u

(khk−1
)−1︸ ︷︷ ︸

=kh−1k−1

[(khk−1
)−1

=
(
khk−1

)−1
]

︸ ︷︷ ︸
=1

= u
(
kh−1k−1

)
= u

(
h−1

)
.

This proves (13.113.13).
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Now, let us return to solving Exercise 4.1.16(b). Let f ∈ RC (I). Let v ∈ RC (G). Then,

〈Indρ Indτ f, v〉G = 〈Indτ f,Resρ v〉H (by (4.1.17), applied to α = Indτ f and β = v)

=

〈
f, Resτ Resρ v︸ ︷︷ ︸

=Resρ◦τ v
(by Exercise 4.1.16(d),

applied to v instead of f)

〉

I

(by (4.1.17), applied to H, I, τ , f and Resρ v instead of G, H, ρ, α and β)

= 〈f,Resρ◦τ v〉I .

Compared with

〈Indρ◦τ f, v〉G = 〈f,Resρ◦τ v〉I (by (4.1.17), applied to I, ρ ◦ τ , f and v instead of H, ρ, α and β) ,

this yields 〈Indρ Indτ f, v〉G = 〈Indρ◦τ f, v〉G. Now, the form 〈·, ·〉G is C-bilinear, and therefore we have

〈Indρ Indτ f − Indρ◦τ f, v〉G = 〈Indρ Indτ f, v〉G︸ ︷︷ ︸
=〈Indρ◦τ f,v〉G

−〈Indρ◦τ f, v〉G = 〈Indρ◦τ f, v〉G − 〈Indρ◦τ f, v〉G = 0.

Now, let us forget that we fixed v. We thus have shown that every v ∈ RC (G) satisfies 〈Indρ Indτ f − Indρ◦τ f, v〉G =
0. Hence, Lemma 13.113.1 (applied to u = Indρ Indτ f − Indρ◦τ f) yields Indρ Indτ f − Indρ◦τ f = 0. Thus,
Indρ Indτ f = Indρ◦τ f . This solves Exercise 4.1.16(b) again.

[Remark: Recall that Exercise 4.1.14 (specifically, its parts (c), (d), (e) and (f)) shows that ρ-induction
(of modules and of class functions) generalizes both the usual notion of induction and the fixed point
construction. More precisely, ρ-induction becomes usual induction (at least up to isomorphism) when ρ is
injective, and becomes fixed point construction when ρ is surjective. Exercise 4.1.16 (specifically, its parts
(a) and (b)), on the other hand, shows that in the general case, ρ-induction can be reduced to a composition
of usual induction and fixed point construction, because every group homomorphism ρ : H → G can be
factored as a composition α ◦ β of a surjective group homomorphism β : H → H with an injective group
homomorphism α : H → G. This allows some alternative proofs of some parts of Exercise 4.1.14, which the
interested reader can find.]

13.114. Solution to Exercise 4.2.3. Solution to Exercise 4.2.3. We need to prove that

(13.114.1) Ind
Si+j+k
Si+j×Sk

(
Ind

Si+j
Si×Sj (U ⊗ V )⊗W

)
∼= Ind

Si+j+k
Si×Sj×Sk (U ⊗ V ⊗W )

and

(13.114.2) Ind
Si+j+k
Si×Sj+k

(
U ⊗ Ind

Sj+k
Sj×Sk (V ⊗W )

)
∼= Ind

Si+j+k
Si×Sj×Sk (U ⊗ V ⊗W )

as C [Si ×Sj ×Sk]-modules. We will only prove (13.114.1), since (13.114.2) is analogous.

It is easy to see that every finite group G and every CG-module P satisfy IndGG P
∼= P . Applied to G = Sk

and P = W , this yields IndSk
Sk

W ∼= W .

Now, Exercise 4.1.2 (applied to Si+j+k, Si+j ×Sk, Si ×Sj ×Sk and U ⊗ V ⊗W instead of G, H, I
and U) yields

Ind
Si+j+k
Si+j×Sk

(
Ind

Si+j×Sk
Si×Sj×Sk (U ⊗ V ⊗W )

)
∼= Ind

Si+j+k
Si×Sj×Sk (U ⊗ V ⊗W ) .
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Hence,

Ind
Si+j+k
Si×Sj×Sk (U ⊗ V ⊗W ) ∼= Ind

Si+j+k
Si+j×Sk


Ind

Si+j×Sk
Si×Sj×Sk (U ⊗ V ⊗W )︸ ︷︷ ︸

∼=
(

Ind
Si+j
Si×Sj

(U⊗V )
)
⊗
(

Ind
Sk
Sk

W
)

(by (4.1.6), applied to G1=Si+j , G2=Sk,
H1=Si×Sj , H2=Sk, U1=U⊗V and U2=W )



∼= Ind
Si+j+k
Si+j×Sk

(Ind
Si+j
Si×Sj (U ⊗ V )

)
⊗
(

IndSk
Sk

W
)

︸ ︷︷ ︸
∼=W


∼= Ind

Si+j+k
Si+j×Sk

(
Ind

Si+j
Si×Sj (U ⊗ V )⊗W

)
.

This proves (13.114.1). Thus, the solution of Exercise 4.2.3 is complete.

13.115. Solution to Exercise 4.3.9. Solution to Exercise 4.3.9. (a) Let n ∈ N. Let B denote the subgroup
of GLn(F) consisting of all upper-triangular matrices. Then, GLn(F) =

⊔
w∈Sn BwB. (Indeed, this can

be proven in the same way as we have shown the equality GLn =
⊔
w∈Sn BwB in our above proof of

Proposition 4.3.7(c), with the only difference that we are now working over F instead of Fq.)
Let w0 denote the permutation in Sn which sends every i ∈ {1, 2, . . . , n} to n+ 1− i; then, w2

0 = id. (The
permutation w0 is written as (n, n− 1, . . . , 1) in one-line notation.)

Let A ∈ GLn(F). We have w0A ∈ GLn(F) =
⊔
w∈Sn BwB. Thus, there exists some w ∈ Sn such that

w0A ∈ BwB. Consider this w. There exist two upper-triangular invertible matrices L′ and U such that
w0A = L′wU (since w0A ∈ BwB). Consider these L′ and U . The matrix w0L

′w0 is lower-triangular (since L′

is upper-triangular, and since w0 is what it is). Set L = w0L
′w0. Then, L︸︷︷︸

=w0L′w0

w0wU = w0L
′ w0w0︸ ︷︷ ︸
=w2

0=id

wU =

w0 L
′wU︸ ︷︷ ︸

=w0A

= w0w0︸ ︷︷ ︸
=w2

0=id

A = A. In other words, LPU = A with P = w0w. Since P is clearly a permutation

matrix (being the product of the permutation matrices w0 and w), we thus have shown that A = LPU for
a lower-triangular matrix L ∈ GLn(F), an upper-triangular matrix U ∈ GLn(F) and a permutation matrix
P ∈ Sn ⊂ GLn(F). This solves Exercise 4.3.9(a).

(b) In the proof that follows, we shall essentially mimic the arguments used to prove GLn =
⊔
w∈Sn BwB

in our proof of Proposition 4.3.7(c) (but we will add some details in a few places).
We recall that Bn is a subgroup of GLn(F). Hence, every element of Bn is invertible in Bn. Likewise,

every element of Bm is invertible in Bm.
Let us first show that the disjoint union

⊔
f∈Fn,m BnfBm is well-defined. This means proving that the

sets BnfBm for f ∈ Fn,m are disjoint.
For every A ∈ Fn×m, every i ∈ {1, 2, . . . , n+ 1} and every j ∈ {0, 1, . . . ,m}, let ri,j (A) denote the rank of

the matrix obtained by restricting A to the rows i, i+1, . . . , n and columns 1, 2, . . . , j. This rank ri,j (A) does
not change when we replace A by XA for some X ∈ Bn (because replacing A by XA for some X ∈ Bn means
that we add to each row of A a linear combination of the rows further below; but this row transformation
does not change ri,j (A)); neither does it change when we replace A by AY for some Y ∈ Bm (for a similar
reason). Hence, for every f ∈ Fn,m, X ∈ Bn, Y ∈ Bm, i ∈ {1, 2, . . . , n+ 1} and j ∈ {0, 1, . . . ,m}, we have

(13.115.1) ri,j (f) = ri,j (Xf) = ri,j (XfY ) .

Now, we claim that if f ∈ Fn,m and A ∈ BnfBm, then we can reconstruct f from A. Indeed, let f ∈ Fn,m
and A ∈ BnfBm. Then, there exist X ∈ Bn and Y ∈ Bm such that A = XfY (since A ∈ BnfBm). Consider
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these X and Y . Then, (13.115.1) yields ri,j (f) = ri,j

XfY︸ ︷︷ ︸
=A

 = ri,j (A) for every i ∈ {1, 2, . . . , n+ 1} and

j ∈ {0, 1, . . . ,m}. Thus, from A we can reconstruct the ranks ri,j (f) for all i ∈ {1, 2, . . . , n+ 1} and
j ∈ {0, 1, . . . ,m}.

Notice that f ∈ Fn,m. Thus, f is a matrix in {0, 1}n×m such that each row of f contains at most one 1
and each column of f contains at most one 1.

Now, fix i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}. Let fi,j be the entry of f in row i and column j. We will
now show that

(13.115.2) fi,j = ri,j (f)− ri,j−1 (f)− ri+1,j (f) + ri+1,j−1 (f) .

Proof of (13.115.2). First of all, if the first j entries of the i-th row of f are all 0, then (13.115.2) holds for
obvious reasons (in fact, in this case, it is clear that fi,j = 0, ri,j (f) = ri+1,j (f) and ri,j−1 (f) = ri+1,j−1 (f)).
We thus WLOG assume that the first j entries of the i-th row of f are not all 0. Then, there must be a 1
among these entries. It must lie in a different column than the 1’s appearing in all other rows of f (because
each column of f contains at most one 1). Therefore, the first row of the matrix obtained by restricting f
to the rows i, i+ 1, . . . , n and columns 1, 2, . . . , j is linearly independent from its other rows. Thus,

ri,j (f) = ri+1,j (f) + 1.

If fi,j = 0, then the same argument yields ri,j−1 (f) = ri+1,j−1 (f) + 1 (because if fi,j = 0, then the 1 among
the first j entries of the i-th row of f must not be the last of these entries, and so it is one of the first j − 1
entries of the i-th row of f). On the other hand, if fi,j = 1, then we have ri,j−1 (f) = ri+1,j−1 (f) (because
if fi,j = 1, then the first j − 1 entries of the i-th row of f must be all 0 (since the j-th entry of this row is a
1, but each row of f contains at most one 1)). We can subsume both of these statements in one equation,
which holds both if fi,j = 0 and if fi,j = 1: namely, we have

ri,j−1 (f) =

{
ri+1,j−1 (f) + 1 if fi,j = 0;

ri+1,j−1 (f) if fi,j = 1
= ri+1,j−1 (f) + (1− fi,j) .

Subtracting this equality from ri,j (f) = ri+1,j (f) + 1, we obtain

ri,j (f)− ri,j−1 (f) = (ri+1,j (f) + 1)− (ri+1,j−1 (f) + (1− fi,j)) = ri+1,j (f)− ri+1,j−1 (f) + fi,j .

This is easily seen to be equivalent to (13.115.2). Thus, (13.115.2) is proven.
Now, we can reconstruct the ranks ri,j (f), ri,j−1 (f), ri+1,j (f) and ri+1,j−1 (f) from A (since from A

we can reconstruct the ranks ri,j (f) for all i ∈ {1, 2, . . . , n+ 1} and j ∈ {0, 1, . . . ,m}). Hence, we can
reconstruct fi,j from A (due to (13.115.2)).

Let us now forget that we fixed i and j. We thus have seen that we can reconstruct fi,j from A for every
i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}. In other words, we can reconstruct f from A.

Thus we have proven that if f ∈ Fn,m and A ∈ BnfBm, then we can reconstruct f from A. In other
words, the sets BnfBm for f ∈ Fn,m are disjoint. Thus, the disjoint union

⊔
f∈Fn,m BnfBm is well-defined.

It remains to prove that this disjoint union
⊔
f∈Fn,m BnfBm is Fn×m. In order to do so, it is clearly

enough to show that every g ∈ Fn×m belongs to
⊔
f∈Fn,m BnfBm.

Let g ∈ Fn×m. We need to show that g ∈
⊔
f∈Fn,m BnfBm. In other words, we need to find some f ∈ Fn,m

such that g ∈ BnfBm. In order to do so, we shall find a matrix f ∈ Fn,m which lies in BngBm. Once this
is done, it will follow that g ∈ BnfBm (since every element of Bn is invertible in Bn, and every element of
Bm is invertible in Bm), and we will be done.

We refer to gBm and Bng as cosets, despite the fact that they are not subsets of a group.
The freedom to alter g within the coset gBm allows one to scale columns and add scalar multiples of earlier

columns to later columns. We claim that using such column operations, one can always find a representative
g′ for coset gBm in which

• the bottommost nonzero entry of each nonzero column is 1 (call this entry a pivot),
• the entries to right of each pivot within its row are all 0, and
• there is at most one pivot in each row and at most one pivot in each column (so that their positions

are the positions of the 1’s in some matrix f ∈ Fn,m).
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In fact, we will see below that BngBm = BnfBm in this case. The algorithm which produces g′ from g is
simple: starting with the leftmost nonzero column, find its bottommost nonzero entry, and scale the column
to make this entry a 1, creating the pivot in this column. Now use this pivot to clear out all entries in its
row to its right, using column operations that subtract multiples of this column from later columns. Having
done this, move on to the next nonzero column to the right, and repeat, scaling to create a pivot, and using
it to eliminate entries to its right.862

Having found this g′ in gBm, a similar algorithm using left multiplication by Bn shows that f lies in
Bng

′ ⊂ Bng
′Bm = BngBm. This time no scalings are required to create the pivot entries: starting with

the bottommost nonzero row, one uses its pivot to eliminate all the entries above it in the same column by
adding multiples of this row to higher rows. Then do the same using the pivot in the next-to-bottom nonzero
row, etc.863 The result is the matrix f .

13.116. Solution to Exercise 4.3.11. Solution to Exercise 4.3.11. (a) Let us begin this solution by stating
some trivialities. It is easy to see that every finite group G and every CG-module P satisfy

(13.116.1) IndGG P
∼= P

and

(13.116.2) InflGG P
∼= P.

862To see that this works, we need to check three facts:

(a) We will find a nonzero entry in every nonzero column during our algorithm.
(b) Our column operations preserve the zeroes lying to the right of already existing pivots.

(c) Every row contains at most one pivot at the end of the algorithm.

But fact (a) is a tautology. Fact (b) holds because all our operations either scale columns (which clearly preserves zero entries)

or subtract a multiple of the column c containing the current pivot from a later column d (which will preserve every zero lying
to the right of an already existing pivot, because any already existing pivot must lie in a column b < c and therefore both

columns c and d have zeroes in its row). Fact (c) follows from noticing that the entries to the right of a pivot in its row are 0.
863One thing that requires verification is the fact that these row operations preserve the following three properties of g′:

• the bottommost nonzero entry of each nonzero column is 1 (call this entry a pivot),
• the entries to right of each pivot within its row are all 0, and

• there is at most one pivot in each row and at most one pivot in each column (so that their positions are the positions

of the 1’s in some matrix f ∈ Fn,m).

Let us show this, and also show that the positions of the pivots are preserved. Indeed, it is clear that the positions of the pivots

are preserved (because zero columns stay zero, nonzero columns stay nonzero, and the bottommost entries of nonzero columns
do not move); therefore it is enough to prove the following fact:

(d) Consider an elimination step, by which we mean a step in which a pivot in some position a is used to eliminate all the

entries above it in the same column. Assume that, before the elimination step, the entries to the right of a within its

row were all 0. Let b be the position of another pivot that existed before this elimination step. Assume that, before
the elimination step, the pivot at b equalled 1, and the entries to the right of b within its row were all 0. Then, after

the elimination step, b is still a position of a pivot and this pivot still equals 1, and the entries to the right of b within
its row are still 0.

So let us prove fact (d). We prove it by contradiction: Assume that it is not the case. Then, the elimination step must have

changed at least one of the entries weakly to the right of b within its row (because we already know that b is still a position of a
pivot after the elimination step). In particular, the elimination step must have changed at least one entry in the row of b. Thus,

b must lie in a row strictly above a (since otherwise, the elimination step would have not changed any entry in the row of b).
Let c be the position in the same row as b and in the same column as a. Then, the entry at c before the elimination step must

not have been 0 (since otherwise, the elimination step would not have changed any entry in the row of b). As a consequence,

c must not lie to the right of b within its row (because before the elimination step, the entries to the right of b within its row
were all 0). Thus, c lies weakly to the left of b within its row. In other words, the column containing b lies weakly right of the

column containing c. In other words, the column containing b lies weakly right of the column containing a (since the column

containing c is the column containing a). Hence, the column containing b must lie strictly right of the column containing a
(since otherwise, a and b would lie in the same column, which is absurd because a and b are two distinct pivots). But let us

recall that, before the elimination step, the entries to the right of a within its row were all 0. Let us call these entries the silent

entries. Now, what did the elimination step do to the entries weakly to the right of b within its row? It changed them by
adding multiples of the corresponding entries of the row containing a. But all these corresponding entries were silent entries

(because the column containing b lies strictly right of the column containing a) and thus were 0. Hence, the elimination step

did not change the entries weakly to the right of b within its row. This contradicts the fact that the elimination step must have
changed at least one of the entries weakly to the right of b within its row. This contradiction finishes the proof of fact (d).
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Furthermore, if G1 and G2 be two groups, if K1 /G1 and K2 /G2 are normal subgroups, if U1 is a C [G1/K1]-
module, and if U2 is a C [G2/K2]-module, then

(13.116.3) InflG1×G2

(G1/K1)×(G2/K2) (U1 ⊗ U2) ∼=
(

InflG1

G1/K1
U1

)
⊗
(

InflG2

G2/K2
U2

)
as C [G1 × G2]-modules. (This is an analogue of (4.1.6), but is trivial to prove.) Also, if G, H and I are three
groups such that I < H < G, and if U is a CI-module, then

(13.116.4) InflGH InflHI U = InflGI U .

(This is an analogue of Exercise 4.1.2, and is again trivial864.)
Let α = (α1, α2, . . . , α`) be an almost-composition of an n ∈ N satisfying ` ≥ 1. Let Vi be a CGi-module

for every i ∈ {1, 2, . . . , `}. We need to prove the two isomorphisms

indnα1+α2+···+α`−1,α`

(
ind

α1+α2+···+α`−1

(α1,α2,...,α`−1) (V1 ⊗ V2 ⊗ · · · ⊗ V`−1)⊗ V`
)

∼= indnα (V1 ⊗ V2 ⊗ · · · ⊗ V`)(13.116.5)

and

indnα1,α2+α3+···+α`

(
V1 ⊗ indα2+α3+···+α`

(α2,α3,...,α`)
(V2 ⊗ V3 ⊗ · · · ⊗ V`)

)
∼= indnα (V1 ⊗ V2 ⊗ · · · ⊗ V`) .(13.116.6)

We will only prove (13.116.5), since the proof of (13.116.6) is analogous.
Let m be the nonnegative integer α1 +α2 + · · ·+α`−1. Then, (α1, α2, . . . , α`−1) is an almost-composition

of m, and we have α1 + α2 + · · ·+ α`−1 = m.
Let W denote the C [G1 ×G2 × · · · ×G`−1]-module V1⊗V2⊗· · ·⊗V`−1. Then, V1⊗V2⊗· · ·⊗V`−1 = W

and V1 ⊗ V2 ⊗ · · · ⊗ V` = (V1 ⊗ V2 ⊗ · · · ⊗ V`−1)︸ ︷︷ ︸
=W

⊗V` = W ⊗ V` and α1 + α2 + · · · + α`−1 = m. Hence, the

relation (13.116.5) (which we want to prove) rewrites as

(13.116.7) indnm,α`

(
indm(α1,α2,...,α`−1)W ⊗ V`

)
∼= indnα (W ⊗ V`) .

It thus remains to prove (13.116.7).
We distinguish between two cases:
Case 1: We have G∗ = S∗ or G∗ = S∗ [Γ].
Case 2: We have G∗ = GL∗.
Let us consider Case 1 first. In this case, we have G∗ = S∗ or G∗ = S∗ [Γ]. Thus, indNβ = IndGNGβ for

every N ∈ N and every almost-composition β of N (by the definition of indNβ ), and indNi,j = IndGNGi×Gj for

every N ∈ N and every i, j ∈ N satisfying i+ j = N (by the definition of indNi,j).

864Note that the equality sign in (13.116.4) is a honest equality, not just a canonical isomorphism.
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Since indNβ = IndGNGβ for every N ∈ N and every almost-composition β of N , we have indm(α1,α2,...,α`−1) =

IndGmG(α1,α2,...,α`−1)
. Thus,

indm(α1,α2,...,α`−1)W ⊗ V`
= IndGmG(α1,α2,...,α`−1)

W︸ ︷︷ ︸
=IndGmGα1×Gα2×···×Gα`−1

W

(since G(α1,α2,...,α`−1)=Gα1
×Gα2

×···×Gα`−1
)

⊗ V`︸︷︷︸
∼=Ind

Gα`
Gα`

V`

(because (13.116.1) (applied

to G=Gα` and P=V`) yields Ind
Gα`
Gα`

V`∼=V`)

∼=
(

IndGmGα1
×Gα2

×···×Gα`−1
W
)
⊗
(

Ind
Gα`
Gα`

V`

)
∼= Ind

Gm×Gα`
Gα1×Gα2×···×Gα`−1

×Gα`
(W ⊗ V`)

since Exercise 4.1.3 (applied to Gm, Gα` , Gα1
×Gα2

× · · · ×Gα`−1
, Gα` ,

W and V` instead of G1, G2, H1, H2, U1 and U2) yields

Ind
Gα1+α2+···+α`−1

×Gα`
Gα1
×Gα2

×···×Gα`−1
×Gα`

(W ⊗ V`)
∼=
(

Ind
Gα1+α2+···+α`−1

Gα1
×Gα2

×···×Gα`−1
W
)
⊗
(

Ind
Gα`
Gα`

V`

)


= Ind
Gm×Gα`
Gα1
×Gα2

×···×Gα`
(W ⊗ V`) .(13.116.8)

But from m = α1 +α2 + · · ·+α`−1, we obtain m+α` = (α1 + α2 + · · ·+ α`−1)+α` = α1 +α2 + · · ·+α` = n

(since (α1, α2, . . . , α`) is an almost-composition of n). Thus, since indNi,j = IndGNGi×Gj for every N ∈ N and

every i, j ∈ N satisfying i+ j = N , we have indnm,α` = IndGnGm×Gα`
. Thus,

indnm,α`

(
indm(α1,α2,...,α`−1)W ⊗ V`

)

= IndGnGm×Gα`

 indm(α1,α2,...,α`−1)W ⊗ V`︸ ︷︷ ︸
∼=Ind

Gm×Gα`
Gα1×Gα2×···×Gα`

(W⊗V`)
(by (13.116.8))

 ∼= IndGnGm×Gα`
Ind

Gm×Gα`
Gα1
×Gα2

×···×Gα`
(W ⊗ V`)

∼= IndGnGα1×Gα2×···×Gα`
(W ⊗ V`)

(
by Exercise 4.1.2, applied to G = Gn, H = Gm ×Gα` ,

I = Gα1 ×Gα2 × · · · ×Gα` and U = W ⊗ V`

)
= indnα (W ⊗ V`)

(
since IndGnGα1×Gα2×···×Gα`

= indnα (by the definition of indnα )
)
.

This proves (13.116.5). Hence, (13.116.5) is proven in Case 1.

Let us now consider Case 2. In this case, we have G∗ = GL∗. Hence, indNβ = IndGNPβ Infl
Pβ
Gβ

for every

N ∈ N and every almost-composition β of N (by the definition of indNβ ), and indNi,j = IndGNPi,j Infl
Pi,j
Gi×Gj for

every N ∈ N and every i, j ∈ N satisfying i+ j = N (by the definition of indNi,j).

Since indNβ = IndGNPβ Infl
Pβ
Gβ

for every N ∈ N and every almost-composition β of N , we have

indm(α1,α2,...,α`−1) = IndGmP(α1,α2,...,α`−1)
Infl

P(α1,α2,...,α`−1)
G(α1,α2,...,α`−1)

= IndGmP(α1,α2,...,α`−1)
Infl

P(α1,α2,...,α`−1)
Gα1×Gα2×···×Gα`−1



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 827

(since G(α1,α2,...,α`−1) = Gα1 ×Gα2 × · · · ×Gα`−1
). Therefore,

indm(α1,α2,...,α`−1)W ⊗ V`

= IndGmP(α1,α2,...,α`−1)
Infl

P(α1,α2,...,α`−1)
Gα1
×Gα2

×···×Gα`−1
W ⊗ V`︸︷︷︸

∼=Ind
Gα`
Gα`

V`

(because (13.116.1) (applied

to G=Gα` and P=V`) yields Ind
Gα`
Gα`

V`∼=V`)

∼=
(

IndGmP(α1,α2,...,α`−1)
Infl

P(α1,α2,...,α`−1)
Gα1
×Gα2

×···×Gα`−1
W

)
⊗
(

Ind
Gα`
Gα`

V`

)

∼= Ind
Gm×Gα`
P(α1,α2,...,α`−1)×Gα`


Infl

P(α1,α2,...,α`−1)
Gα1
×Gα2

×···×Gα`−1
W ⊗ V`︸︷︷︸

∼=Infl
Gα`
Gα`

V`

(because (13.116.1) (applied

to G=Gα` and P=V`) yields Infl
Gα`
Gα`

V`∼=V`)




since Exercise 4.1.3 (applied to Gm, Gα` , P(α1,α2,...,α`−1), Gα` ,

Infl
P(α1,α2,...,α`−1)
Gα1
×Gα2

×···×Gα`−1
W and V` instead of G1, G2, H1, H2, U1 and U2) yields

Ind
Gm×Gα`
P(α1,α2,...,α`−1)×Gα`

(
Infl

P(α1,α2,...,α`−1)
Gα1
×Gα2

×···×Gα`−1
W ⊗ V`

)
=

(
IndGmP(α1,α2,...,α`−1)

Infl
P(α1,α2,...,α`−1)
Gα1
×Gα2

×···×Gα`−1
W

)
⊗
(

Ind
Gα`
Gα`

V`

)


∼= Ind

Gm×Gα`
P(α1,α2,...,α`−1)×Gα`

(
Infl

P(α1,α2,...,α`−1)
Gα1
×Gα2

×···×Gα`−1
W ⊗ Infl

Gα`
Gα`

V`

)
︸ ︷︷ ︸

∼=Infl
P
(α1,α2,...,α`−1)

×Gα`
Gα1

×Gα2
×···×Gα`−1

×Gα`
(W⊗V`)

(by (13.116.3), applied to
G1=P(α1,α2,...,α`−1), G2=Gα` , K1=K(α1,α2,...,α`−1),

K2=Gα` , U1=W and U2=V`
(because K(α1,α2,...,α`−1) is a normal subgroup

of P(α1,α2,...,α`−1) and the quotient is

P(α1,α2,...,α`−1)/K(α1,α2,...,α`−1)=Gα1
×Gα2

×···×Gα`−1
))

∼= Ind
Gm×Gα`
P(α1,α2,...,α`−1)×Gα`

Infl
P(α1,α2,...,α`−1)×Gα`
Gα1
×Gα2

×···×Gα`−1
×Gα`

(W ⊗ V`) .(13.116.9)

But from m = α1 +α2 + · · ·+α`−1, we obtain m+α` = (α1 + α2 + · · ·+ α`−1)+α` = α1 +α2 + · · ·+α` = n

(since (α1, α2, . . . , α`) is an almost-composition of n). Thus, since indNi,j = IndGNPi,j Infl
Pi,j
Gi×Gj for every N ∈ N

and every i, j ∈ N satisfying i+ j = N , we have indnm,α` = IndGnPm,α`
Infl

Pm,α`
Gm×Gα`

, so that

indnm,α`

(
indm(α1,α2,...,α`−1)W ⊗ V`

)

= IndGnPm,α`
Infl

Pm,α`
Gm×Gα`


indm(α1,α2,...,α`−1)W ⊗ V`︸ ︷︷ ︸

∼=Ind
Gm×Gα`
P
(α1,α2,...,α`−1)

×Gα`
Infl

P
(α1,α2,...,α`−1)

×Gα`
Gα1

×Gα2
×···×Gα`−1

×Gα`
(W⊗V`)

(by (13.116.9))


∼= IndGnPm,α`

Infl
Pm,α`
Gm×Gα`

Ind
Gm×Gα`
P(α1,α2,...,α`−1)×Gα`

Infl
P(α1,α2,...,α`−1)×Gα`
Gα1
×Gα2

×···×Gα`−1
×Gα`

(W ⊗ V`)(13.116.10)
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Now, we are going to prove that

(13.116.11) Infl
Pm,α`
Gm×Gα`

Ind
Gm×Gα`
P(α1,α2,...,α`−1)×Gα`

Z ∼= Ind
Pm,α`
Pα

InflPαP(α1,α2,...,α`−1)×Gα`
Z

for every C
[
P(α1,α2,...,α`−1) ×Gα`

]
-module Z. In order to do so, we try to apply Exercise 4.1.11 to G = Pm,α` ,

H = Pα, K = Km,α` and V = Z. This yields (13.116.11) if we can prove the following two statements:

(1) We have Km,α` < Pα < Pm,α` and Km,α` / Pm,α` .
(2) The quotient Pm,α`/Km,α` is canonically identified with Gm ×Gα` in such a way that its subgroup

Pα/Km,α` is canonically identified with P(α1,α2,...,α`−1) ×Gα` .

The first of these two statements is clear (using m = α1 + α2 + · · · + α`−1 and α = (α1, α2, ..., α`)). It
remains to prove the second statement. We know how Pm,α`/Km,α` is identified with Gm × Gα` already.
The thing that we need to prove is that the subgroup Pα/Km,α` of Pm,α`/Km,α` is canonically identified
with P(α1,α2,...,α`−1) × Gα` . In other words, we need to prove that the projection of the subgroup Pα of
Pm,α` onto Gm × Gα` is precisely P(α1,α2,...,α`−1) × Gα` . But this is obvious. Hence, the second statement
is proven, and so we are able to apply Exercise 4.1.11 and therefore obtain (13.116.11).

Now, (13.116.10) becomes

indnm,α`

(
indm(α1,α2,...,α`−1)W ⊗ V`

)
∼= IndGnPm,α`

Infl
Pm,α`
Gm×Gα`

Ind
Gm×Gα`
P(α1,α2,...,α`−1)×Gα`

Infl
P(α1,α2,...,α`−1)×Gα`
Gα1
×Gα2

×···×Gα`−1
×Gα`

(W ⊗ V`)︸ ︷︷ ︸
∼=Ind

Pm,α`
Pα

InflPαP
(α1,α2,...,α`−1)

×Gα`
Infl

P
(α1,α2,...,α`−1)

×Gα`
Gα1

×Gα2
×···×Gα`−1

×Gα`
(W⊗V`)

(by (13.116.11), applied to Z=Infl
P
(α1,α2,...,α`−1)

×Gα`
Gα1

×Gα2
×···×Gα`−1

×Gα`
(W⊗V`))

∼= IndGnPm,α`
Ind

Pm,α`
Pα

InflPαP(α1,α2,...,α`−1)×Gα`
Infl

P(α1,α2,...,α`−1)×Gα`
Gα1
×Gα2

×···×Gα`−1
×Gα`

(W ⊗ V`)

∼= IndGnPα InflPαP(α1,α2,...,α`−1)×Gα`
Infl

P(α1,α2,...,α`−1)×Gα`
Gα1
×Gα2

×···×Gα`−1
×Gα`

(W ⊗ V`)︸ ︷︷ ︸
=InflPαGα1×Gα2×···×Gα`−1

×Gα`
(W⊗V`)

(by (13.116.4), applied to G=P(α1,α2,...,α`)
,

H=P(α1,α2,...,α`−1)×Gα` , I=Gα1
×Gα2

×···×Gα`−1
×Gα` and U=W⊗V`)(

by Exercise 4.1.2, applied to G = Gn, H = Pm,α` ,

I = Pα and U = InflPαP(α1,α2,...,α`−1)×Gα`
Infl

P(α1,α2,...,α`−1)×Gα`
Gα1×Gα2×···×Gα`−1

×Gα`
(W ⊗ V`)

)
= IndGnPα InflPαGα1

×Gα2
×···×Gα`−1

×Gα`
(W ⊗ V`)

= IndGnPα InflPαGα (W ⊗ V`)
(
since Gα1

×Gα2
× · · · ×Gα`−1

×Gα` = Gα1
×Gα2

× · · · ×Gα` = Gα
)

= indnα (W ⊗ V`)
(

since IndGnPα InflPαGα = indnα (by the definition of indnα )
)
.

This proves (13.116.5). Hence, (13.116.5) is proven in Case 2.
Now, (13.116.5) is proven in both Cases 1 and 2. Hence, (13.116.5) always holds. This completes the

solution to Exercise 4.3.11(a).
(b) Alternative solution to Exercise 4.2.3: Let G∗ be the tower S∗ of groups. We can then apply Exercise

4.3.11(a) to ` = 3, n = i+ j + k, α = (i, j, k), V1 = U , V2 = V and V3 = W . As the result, we obtain

indi+j+ki+j,k

(
indi+j(i,j) (U ⊗ V )⊗W

)
∼= indi+j+k(i,j,k) (U ⊗ V ⊗W )

∼= indi+j+ki,j+k

(
U ⊗ indj+k(j,k) (V ⊗W )

)
.
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Since indi+j+ki+j,k = Ind
Si+j+k
Si+j×Sk , indi+j(i,j) = indi+ji,j = Ind

Si+j
Si×Sj , indi+j+k(i,j,k) = Ind

Si+j+k
Gi,j,k

= Ind
Si+j+k
Si×Sj×Sk (because

Gi,j,k = Si ×Sj ×Sk), indi+j+ki,j+k = Ind
Si+j+k
Si×Sj+k and indj+k(j,k) = indj+kj,k = Ind

Sj+k
Sj×Sk , this rewrites as follows:

Ind
Si+j+k
Si+j×Sk

(
Ind

Si+j
Si×Sj (U ⊗ V )⊗W

)
∼= Ind

Si+j+k
Si×Sj×Sk (U ⊗ V ⊗W )

∼= Ind
Si+j+k
Si×Sj+k

(
U ⊗ Ind

Sj+k
Sj×Sk (V ⊗W )

)
.

Thus, Exercise 4.2.3 is solved again. Hence, we have solved Exercise 4.3.11(b).
(c) Let Σ =

⊔
n≥0 Irr (Gn). We have to prove that the map m is associative. In other words, we have

to prove that m (m (α⊗ β)⊗ γ) = m (α⊗m (β ⊗ γ)) for any three elements α, β and γ of A. In order to
do so, it is clearly enough to show that m (m (α⊗ β)⊗ γ) = m (α⊗m (β ⊗ γ)) for any three elements α, β
and γ of Σ (because Σ is a Z-module basis of A, and the equality m (m (α⊗ β)⊗ γ) = m (α⊗m (β ⊗ γ)) is
Z-linear in each of α, β and γ). So let α, β and γ be three elements of Σ. Then, there exists i ∈ N, j ∈ N and
k ∈ N satisfying α ∈ Irr (Gi), β ∈ Irr (Gj) and γ ∈ Irr (Gk) (since α, β and γ belong to Σ =

⊔
n≥0 Irr (Gn)).

Consider these i, j and k.
There exists an irreducible CGi-module U satisfying α = χU (since α ∈ Irr (Gi)). Similarly, there exists

an irreducible CGj-module V satisfying β = χV , and an irreducible CGk-module W satisfying γ = χW .
Consider these U , V and W .

We can apply Exercise 4.3.11(a) to ` = 3, n = i + j + k, α = (i, j, k), V1 = U , V2 = V and V3 = W . As
the result, we obtain

indi+j+ki+j,k

(
indi+j(i,j) (U ⊗ V )⊗W

)
∼= indi+j+k(i,j,k) (U ⊗ V ⊗W )

∼= indi+j+ki,j+k

(
U ⊗ indj+k(j,k) (V ⊗W )

)
.

Thus,

indi+j+ki+j,k

(
indi+j(i,j) (U ⊗ V )⊗W

)
∼= indi+j+ki,j+k

(
U ⊗ indj+k(j,k) (V ⊗W )

)
.

Since isomorphic representations have equal characters, this yields

(13.116.12) χ
indi+j+ki+j,k

(
indi+j

(i,j)
(U⊗V )⊗W

) = χ
indi+j+ki,j+k

(
U⊗indj+k

(j,k)
(V⊗W )

).
Since α = χU and β = χV , we have

m (α⊗ β) = m (χU ⊗ χV ) = indi+ji,j (χU ⊗ χV ) (since U is a CGi-module and V is a CGj-module)

= χindi+ji,j (U⊗V ) = χindi+j
(i,j)

(U⊗V )

(
since indi+ji,j = indi+j(i,j)

)
.

Thus,

m

 m (α⊗ β)︸ ︷︷ ︸
=χ

ind
i+j
(i,j)

(U⊗V )

⊗ γ︸︷︷︸
=χW


= m

(
χindi+j

(i,j)
(U⊗V ) ⊗ χW

)
= indi+j+ki+j,k

(
χindi+j

(i,j)
(U⊗V ) ⊗ χW

)
(

since indi+j(i,j) (U ⊗ V ) is a C [Gi+j ] -module and W is a CGk-module
)

= χ
indi+j+ki+j,k

(
indi+j

(i,j)
(U⊗V )⊗W

).(13.116.13)

Similarly,

(13.116.14) m (α⊗m (β ⊗ γ)) = χ
indi+j+ki,j+k

(
U⊗indj+k

(j,k)
(V⊗W )

).
Now, (13.116.13) becomes

m (m (α⊗ β)⊗ γ) = χ
indi+j+ki+j,k

(
indi+j

(i,j)
(U⊗V )⊗W

) = χ
indi+j+ki,j+k

(
U⊗indj+k

(j,k)
(V⊗W )

) (by (13.116.12))

= m (α⊗m (β ⊗ γ)) (by (13.116.14)) .

This is what we wanted to prove. Thus, Exercise 4.3.11(c) is solved.



830 DARIJ GRINBERG AND VICTOR REINER

(d) Let Σ =
⊔
n≥0 Irr (Gn).

We will solve Exercise 4.3.11(d) by induction over `. The induction base (the case ` = 0) is trivial, so we
come to the induction step. Fix a positive integer `. We assume that Exercise 4.3.11(d) is already solved for
`− 1 instead of `. We now need to solve Exercise 4.3.11(d) for our `.

Let α = (α1, α2, . . . , α`) be an almost-composition of an n ∈ N. Let χi ∈ R (Gαi) for every i ∈ {1, 2, . . . , `}.
We will show that

χ1χ2 · · ·χ` = indnα (χ1 ⊗ χ2 ⊗ · · · ⊗ χ`) .
Since this equality is Z-linear in each of χ1, χ2, ..., χ`, we can WLOG assume that χ1, χ2, ..., χ` all lie in Σ
(since Σ is a basis of A). Assume this. Then, χi ∈ Σ ∩R (Gαi) = Irr (Gαi) for every i ∈ {1, 2, ..., `}. Hence,
for every i ∈ {1, 2, ..., `}, there exists an irreducible CGαi-module Vi such that χi = χVi . Consider this Vi.

Let m = α1 + α2 + · · · + α`−1. By the induction hypothesis, we can apply Exercise 4.3.11(d) to the
almost-composition (α1, α2, ..., α`−1) of m. As a result, we obtain

χ1χ2 · · ·χ`−1 = indm(α1,α2,...,α`−1)

 χ1︸︷︷︸
=χV1

⊗ χ2︸︷︷︸
=χV2

⊗ · · · ⊗ χ`−1︸︷︷︸
=χV`−1


= indm(α1,α2,...,α`−1)

(
χV1 ⊗ χV2 ⊗ · · · ⊗ χV`−1

)︸ ︷︷ ︸
=χV1⊗V2⊗···⊗V`−1

= indm(α1,α2,...,α`−1)

(
χV1⊗V2⊗···⊗V`−1

)
= χindm

(α1,α2,...,α`−1)
(V1⊗V2⊗···⊗V`−1).

Now,

χ1χ2 · · ·χ` = (χ1χ2 · · ·χ`−1)︸ ︷︷ ︸
=χindm

(α1,α2,...,α`−1)
(V1⊗V2⊗···⊗V`−1)

χ`︸︷︷︸
=χV`

= χindm
(α1,α2,...,α`−1)

(V1⊗V2⊗···⊗V`−1)χV` = indnm,α`

(
χindm

(α1,α2,...,α`−1)
(V1⊗V2⊗···⊗V`−1) ⊗ χV`

)
(

since indm(α1,α2,...,α`−1) (V1 ⊗ V2 ⊗ · · · ⊗ V`−1) is a CGm-module, and

V` is a CGα` -module

)
= χ

indnm,α`

(
indm

(α1,α2,...,α`−1)
(V1⊗V2⊗···⊗V`−1)⊗V`

)
= χ

indnα1+α2+···+α`−1,α`

(
ind

α1+α2+···+α`−1

(α1,α2,...,α`−1)
(V1⊗V2⊗···⊗V`−1)⊗V`

) (since m = α1 + α2 + · · ·+ α`−1)

= χindnα(V1⊗V2⊗···⊗V`)

(since Exercise 4.3.11(a) yields

indnα1+α2+···+α`−1,α`

(
ind

α1+α2+···+α`−1

(α1,α2,...,α`−1) (V1 ⊗ V2 ⊗ · · · ⊗ V`−1)⊗ V`
)
∼= indnα (V1 ⊗ V2 ⊗ · · · ⊗ V`)). Compared

with

indnα

 χ1︸︷︷︸
=χV1

⊗ χ2︸︷︷︸
=χV2

⊗ · · · ⊗ χ`︸︷︷︸
=χV`

 = indnα (χV1
⊗ χV2

⊗ · · · ⊗ χV`) = χindnα(V1⊗V2⊗···⊗V`),

this yields χ1χ2 · · ·χ` = indnα (χ1 ⊗ χ2 ⊗ · · · ⊗ χ`). Thus, Exercise 4.3.11(d) is solved for our `. This com-
pletes the induction step, and so Exercise 4.3.11(d) is solved.

(e) Let n ∈ N, ` ∈ N and χ ∈ R (Gn). We need to prove that ∆(`−1)χ =
∑

resnα χ. Since this equality
is Z-linear in χ, we can WLOG assume that χ ∈ Irr (Gn) (since Irr (Gn) is a Z-module basis of R (Gn)).
Assume this. Then, χ = χP for some irreducible CGn-module P . Consider this P .

Similarly to how we showed (4.2.1), we can prove that

(13.116.15) HomCGn (indnα U, V ) ∼= HomCGα (U, resnα V )

for every almost-composition α of n, every CGα-module U and every CGn-module V . Thus,

(13.116.16) (indnα ϕ,ψ)R(Gn) = (ϕ, resnα ψ)R(Gα)
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for every almost-composition α of n, every ϕ ∈ R (Gα) and every ψ ∈ R (Gn) 865.
The bilinear form (·, ·)A on A induces a bilinear form (·, ·)A⊗` on A⊗`. It is easy to see that the maps

m(`−1) and ∆(`−1) are adjoint with respect to the forms (·, ·)A and (·, ·)A⊗` .
866 Hence, any ϕ ∈ A and

ρ ∈ A⊗` satisfy

(13.116.17)
(

∆(`−1)ϕ, ρ
)
A⊗`

=
(
ϕ,m(`−1)ρ

)
A
.

Since A =
⊕

n≥0R (Gn), we have

A⊗` =

⊕
n≥0

R (Gn)

⊗` =
⊕

n1,n2,...,n`≥0

R (Gn1
)⊗R (Gn2

)⊗ · · · ⊗R (Gn`)︸ ︷︷ ︸
=R(Gn1×Gn2×···×Gn`)

=
⊕

n1,n2,...,n`≥0

R (Gn1 ×Gn2 × · · · ×Gn`)

=
⊕

α=(α1,α2,...,α`) is an
almost-composition of length `

R

Gα1 ×Gα2 × · · · ×Gα`︸ ︷︷ ︸
=Gα


=

⊕
α is an almost-composition

of length `

R (Gα) .(13.116.18)

This direct sum decomposition of A⊗` is orthogonal with respect to the bilinear form (·, ·)A⊗` ; that is, if α
and β are two distinct almost-compositions of length `, then

(13.116.19) (R (Gα) , R (Gβ))A⊗` = 0.

867 Moreover, for every almost-composition α of length `, we have

(13.116.20) (ϕ,ψ)A⊗` = (ϕ,ψ)R(Gα) for every ϕ ∈ R (Gα) and ψ ∈ R (Gα) .

868

865Proof of (13.116.16): Let α be an almost-composition of n. Let ϕ ∈ R (Gα) and ψ ∈ R (Gn). We need to prove

the equality (13.116.16). Since this equality is Z-linear in each of ϕ and ψ, we can WLOG assume that ϕ ∈ Irr (Gα) and
ψ ∈ Irr (Gn) (since Irr (Gα) and Irr (Gn) are Z-module bases of R (Gα) and R (Gn), respectively). Assume this. Thus, there

exist an irreducible CGα-module U and an irreducible CGn-module V such that ϕ = χU and ψ = χV . Consider these U and

V . We haveindnα ϕ︸︷︷︸
=χU

, ψ︸︷︷︸
=χV


R(Gn)

=

 indnα χU︸ ︷︷ ︸
=χindnα U

, χV


R(Gn)

=
(
χindnα U

, χV

)
R(Gn)

= dimC HomCGn (indnα U, V ) = dimC HomCGα (U, resnα V ) (by (13.116.15)) .

Compared with ϕ︸︷︷︸
=χU

, resnα ψ︸︷︷︸
=χV


R(Gα)

=

χU , resnα χV︸ ︷︷ ︸
=χresnα V


R(Gα)

=
(
χU , χresnα V

)
R(Gα)

= dimC HomCGα (U, resnα V ) ,

this yields (indnα ϕ,ψ)R(Gn) = (ϕ, resnα ψ)R(Gα). This proves (13.116.16).
866Indeed, this follows from the inductive definitions of m(`−1) and ∆(`−1), if one recalls that the maps m and ∆ are adjoint

with respect to the forms (·, ·)A and (·, ·)A⊗A.
867This follows from the definition of (·, ·)A⊗` and the fact that the direct sum decomposition A =

⊕
n≥0R (Gn) is

orthogonal with respect to the bilinear form (·, ·)A.
868Proof of (13.116.20): Let α be an almost-composition of length `. Let ϕ ∈ R (Gα) and ψ ∈ R (Gα). We need to prove

the equality (13.116.20). Since this equality is Z-linear in each of ϕ and ψ, we can WLOG assume that ϕ ∈ Irr (Gα) and

ψ ∈ Irr (Gα) (since Irr (Gα) is a Z-module basis of R (Gα)). Assume this. Thus, there exist an irreducible CGα-module V and
an irreducible CGα-module W such that ϕ = χV and ψ = χW . Consider these V and W .

Write the almost-composition α in the form (α1, α2, ..., α`). Since V is an irreducible representation of Gα = Gα1 ×Gα2 ×
· · · ×Gα` , we can write V in the form V = V1 ⊗ V2 ⊗ · · · ⊗ V`, where each Vi is an irreducible representation of Gαi . Similarly,
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We need to show that ∆(`−1)χ =
∑

resnα χ (where the sum ranges over all almost-compositions α of n
having length `). In order to do so, it is clearly enough to prove that

(13.116.21)
(

∆(`−1)χ, ρ
)
A⊗`

=
(∑

resnα χ, ρ
)
A⊗`

for every ρ ∈ A⊗`

(since the bilinear form (·, ·)A⊗` is nondegenerate). So, let ρ ∈ A⊗`. It remains to prove (13.116.21).
The equality (13.116.21) is Z-linear in ρ. Since

⊔
α is an almost-composition

of length `
Irr (Gα) is a Z-module basis of A⊗`

(this follows from (13.116.18) and the fact that each R (Gα) has Z-module basis Irr (Gα)), we can therefore
WLOG assume that ρ ∈

⊔
α is an almost-composition

of length `
Irr (Gα). Assume this. Then, there exists an almost-

composition β of length ` such that ρ ∈ Irr (Gβ). Consider this β, and notice that ρ ∈ Irr (Gβ) ⊂ R (Gβ).
For every almost-composition α of n having length ` satisfying α 6= β, we have

(13.116.22) (resnα χ, ρ)A⊗` = 0

we can write W in the form W = W1 ⊗W2 ⊗ · · · ⊗W`, where each Wi is an irreducible representation of Gαi . Consider these

Vi and Wi.
Now, there exists a C-vector space isomorphism

HomCGα1
(V1,W1)⊗HomCGα2

(V2,W2)⊗ · · · ⊗HomCGα` (V`,W`)

→ HomC[Gα1
×Gα2

×···×Gα` ]
(V1 ⊗ V2 ⊗ · · · ⊗ V`,W1 ⊗W2 ⊗ · · · ⊗W`) .

(In fact, when ` = 2, the existence of such an isomorphism follows from Exercise 4.1.9(a); otherwise it follows by induction over

` using Exercise 4.1.9(a).) The existence of this isomorphism yields

dimC
(

HomC[Gα1×Gα2×···×Gα` ]
(V1 ⊗ V2 ⊗ · · · ⊗ V`,W1 ⊗W2 ⊗ · · · ⊗W`)

)
= dimC

(
HomCGα1

(V1,W1)⊗HomCGα2
(V2,W2)⊗ · · · ⊗HomCGα` (V`,W`)

)
=
∏̀
i=1

dimC HomCGαi (Vi,Wi)︸ ︷︷ ︸
=
(
χVi ,χWi

)
R(Gαi )

=
(
χVi ,χWi

)
A

=
∏̀
i=1

(
χVi , χWi

)
A

=

χV1 ⊗ χV2 ⊗ · · · ⊗ χV`︸ ︷︷ ︸
=χV1⊗V2⊗···⊗V`=χV

(since V1⊗V2⊗···⊗V`=V )

, χW1 ⊗ χW2 ⊗ · · · ⊗ χW`︸ ︷︷ ︸
=χW1⊗W2⊗···⊗W`=χW

(since W1⊗W2⊗···⊗W`=W )


A⊗`

=

χV︸︷︷︸
=ϕ

, χW︸︷︷︸
=ψ


A⊗`

= (ϕ,ψ)A⊗` .

Thus,

(ϕ,ψ)A⊗`

= dimC
(

HomC[Gα1×Gα2×···×Gα` ]
(V1 ⊗ V2 ⊗ · · · ⊗ V`,W1 ⊗W2 ⊗ · · · ⊗W`)

)
= dimC (HomCGα (V1 ⊗ V2 ⊗ · · · ⊗ V`,W1 ⊗W2 ⊗ · · · ⊗W`)) (since Gα1 ×Gα2 × · · · ×Gα` = Gα)

=

 χV1⊗V2⊗···⊗V`︸ ︷︷ ︸
=χV

(since V1⊗V2⊗···⊗V`=V )

, χW1⊗W2⊗···⊗W`︸ ︷︷ ︸
=χW

(since W1⊗W2⊗···⊗W`=W )


R(Gα)

=

χV︸︷︷︸
=ϕ

, χW︸︷︷︸
=ψ


R(Gα)

= (ϕ,ψ)R(Gα) .

This proves (13.116.20).



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 833

869. Now,(∑
resnα χ, ρ

)
A⊗`

=
∑

(resnα χ, ρ)A⊗` =
(
resnβ χ, ρ

)
A⊗`

+
∑
α 6=β

(resnα χ, ρ)A⊗`︸ ︷︷ ︸
=0

(by (13.116.22))

=
(
resnβ χ, ρ

)
A⊗`

=
(
resnβ χ, ρ

)
R(Gβ)

(
by (13.116.20), applied to ϕ = resnβ χ, ψ = ρ and α = β

)
=
(
ρ, resnβ χ

)
R(Gβ)

=
(
indnβ ρ, χ

)
R(Gn)

(
since (13.116.16) (applied ϕ = ρ, ψ = χ and α = β)

yields
(
indnβ ρ, χ

)
R(Gn)

=
(
ρ, resnβ χ

)
R(Gβ)

)
.(13.116.23)

But let us write the almost-composition β as (β1, β2, ..., β`). Then, ρ ∈ Irr (Gβ) is an irreducible character
of Gβ = Gβ1

×Gβ2
× · · · ×Gβ` , and thus has the form ρ = ρ1⊗ ρ2⊗ · · · ⊗ ρ`, where each ρi is an irreducible

character of Gβi . Consider these ρi. We have

m(`−1) ρ︸︷︷︸
=ρ1⊗ρ2⊗···⊗ρ`

= m(`−1) (ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρ`) = ρ1ρ2 · · · ρ` = indnβ

ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρ`︸ ︷︷ ︸
=ρ


(by Exercise 4.3.11(d), applied to β and ρi instead of α and χi)

= indnβ ρ.

Now,

(
∆(`−1)χ, ρ

)
A⊗`

=

χ,m(`−1)ρ︸ ︷︷ ︸
=indnβ ρ


A

(by (13.116.17), applied to ϕ = χ)

=
(
χ, indnβ ρ

)
A

=
(
χ, indnβ ρ

)
R(Gn)

=
(
indnβ ρ, χ

)
R(Gn)

=
(∑

resnα χ, ρ
)
A⊗`

(by (13.116.23)) .

Thus, (13.116.21) is proven. This completes our solution of Exercise 4.3.11(e).

13.117. Solution to Exercise 4.4.3. Solution to Exercise 4.4.3. Define the Iverson bracket notation as in
Exercise 4.4.3(a).

(a) Let G be a finite group. For every subset P of G, the definition of 1P yields

(13.117.1) 1P (g) = [g ∈ P ] for every g ∈ G.
Also, for every subset P of G, we have

(13.117.2) |P | =
∑
k∈G

[k ∈ P ] .

Let h ∈ G and g ∈ G. Then, (13.117.2) (applied to P = ZG (h)) yields

|ZG (h)| =
∑
k∈G

 k ∈ ZG (h)︸ ︷︷ ︸
this is equivalent to khk−1=h
(by the definition of ZG(h))

 =
∑
k∈G

[
khk−1 = h

]
.

869since  resnα χ︸ ︷︷ ︸
∈R(Gα)

, ρ︸︷︷︸
∈Irr(Gβ)⊂R(Gβ)


A⊗`

∈
(
R (Gα) , R

(
Gβ
))
A⊗` = 0 (by (13.116.19))
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Applying both sides of the identity αG,h = |ZG (h)| 1ConjG(h) to g, we obtain

(13.117.3) αG,h (g) = |ZG (h)|︸ ︷︷ ︸
=
∑
k∈G[khk−1=h]

1ConjG(h) (g)︸ ︷︷ ︸
=[g∈ConjG(h)]

(by (13.117.1), applied
to P=ConjG(h))

=

(∑
k∈G

[
khk−1 = h

])
[g ∈ ConjG (h)] .

We need to prove that αG,h (g) =
∑
k∈G

[
khk−1 = g

]
. We must be in one of the following two cases:

Case 1: We have g ∈ ConjG (h).
Case 2: We don’t have g ∈ ConjG (h).
Let us first consider Case 1. In this case, we have g ∈ ConjG (h). Thus, there exists a p ∈ G satisfying

g = php−1. Consider this p. Since g = php−1, we have h = p−1gp. Hence, (13.117.3) becomes

αG,h (g) =

(∑
k∈G

[
khk−1 = h

])
[g ∈ ConjG (h)]︸ ︷︷ ︸

=1
(since g∈ConjG(h))

=
∑
k∈G

k h︸︷︷︸
=p−1gp

k−1 = h



=
∑
k∈G

 kp−1︸ ︷︷ ︸
=(pk−1)−1

gpk−1 = h

 =
∑
k∈G

[(
pk−1

)−1
g
(
kp−1

)−1
= h

]

=
∑
k∈G

 k−1gk = h︸ ︷︷ ︸
this is equivalent to

khk−1=g


(

here, we have substituted k for pk−1 in the sum
(since the map G→ G, k 7→ pk−1 is a bijection)

)

=
∑
k∈G

[
khk−1 = g

]
.

Thus, αG,h (g) =
∑
k∈G

[
khk−1 = g

]
is proven in Case 1.

Let us now consider Case 2. In this case, we don’t have g ∈ ConjG (h). In other words, g is not in the
conjugacy class of h. In other words, g is not conjugate to h. In other words, there exists no k ∈ G satisfying
khk−1 = g. In other words, for every k ∈ G, we do not have khk−1 = g. Hence, for every k ∈ G, we have[
khk−1 = g

]
= 0. Thus,

∑
k∈G

[
khk−1 = g

]︸ ︷︷ ︸
=0

=
∑
k∈G 0 = 0. Comparing this with

αG,h (g) =

(∑
k∈G

[
khk−1 = h

])
[g ∈ ConjG (h)]︸ ︷︷ ︸

=0
(since we don’t have g∈ConjG(h))

= 0,

we obtain αG,h (g) =
∑
k∈G

[
khk−1 = g

]
. Thus, αG,h (g) =

∑
k∈G

[
khk−1 = g

]
is proven in Case 2.

Thus, αG,h (g) =
∑
k∈G

[
khk−1 = g

]
is proven in both Cases 1 and 2. Hence, Exercise 4.4.3(a) is solved.
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(b) Let H be a subgroup of a finite group G. Let h ∈ H. Let g ∈ G. Then, the definition of IndGH αH,h
given in Exercise 4.1.1 yields(

IndGH αH,h

)
(g) =

1

|H|
∑
k∈G:

kgk−1∈H

αH,h
(
kgk−1

)
=

1

|H|
∑
p∈G:

pgp−1∈H

αH,h
(
pgp−1

)︸ ︷︷ ︸
=
∑
k∈H [khk−1=pgp−1]

(by Exercise 4.4.3(a), applied

to H and pgp−1 instead of G and g)

(here, we renamed the summation index k as p)

=
1

|H|
∑
p∈G:

pgp−1∈H

∑
k∈H︸ ︷︷ ︸

=
∑
k∈H

∑
p∈G:

pgp−1∈H

[
khk−1 = pgp−1

]
=

1

|H|
∑
k∈H

∑
p∈G:

pgp−1∈H

[
khk−1 = pgp−1

]
.(13.117.4)

But every k ∈ H satisfies

(13.117.5)
∑
p∈G:

pgp−1∈H

[
khk−1 = pgp−1

]
=
∑
p∈G

[
khk−1 = pgp−1

]
870. Now, (13.117.4) becomes

(
IndGH αH,h

)
(g) =

1

|H|
∑
k∈H

∑
p∈G:

pgp−1∈H

[
khk−1 = pgp−1

]
︸ ︷︷ ︸

=
∑
p∈G[khk−1=pgp−1]
(by (13.117.5))

=
1

|H|
∑
k∈H

∑
p∈G

khk−1 = pgp−1︸ ︷︷ ︸
this is equivalent to
p−1khk−1p=g



=
1

|H|
∑
k∈H

∑
p∈G

p−1kh k−1p︸ ︷︷ ︸
=(p−1k)−1

= g

 =
1

|H|
∑
k∈H

∑
p∈G

[
p−1kh

(
p−1k

)−1
= g
]

=
1

|H|
∑
k∈H

∑
p∈G

[
php−1 = g

]
︸ ︷︷ ︸

=|H|
∑
p∈G[php−1=g]

(
here, we substituted p for p−1k in the inner sum
(since the map G→ G, p 7→ p−1k is a bijection)

)

=
1

|H|
|H|

∑
p∈G

[
php−1 = g

]
=
∑
p∈G

[
php−1 = g

]
=
∑
k∈G

[
khk−1 = g

]
(here, we have substituted k for p in the sum)

= αG,h (g) (by Exercise 4.4.3(a)) .

Let us now forget that we fixed g. We thus have proven that
(

IndGH αH,h

)
(g) = αG,h (g) for every g ∈ G.

Hence, IndGH αH,h = αG,h. This solves Exercise 4.4.3(b).

870Proof of (13.117.5): Let k ∈ H. Then,∑
p∈G

[
khk−1 = pgp−1

]
=

∑
p∈G:

pgp−1∈H

[
khk−1 = pgp−1

]
+

∑
p∈G:

pgp−1 /∈H

[
khk−1 = pgp−1

]︸ ︷︷ ︸
=0

(since we don’t have khk−1=pgp−1

(since khk−1∈H (since k∈H and h∈H) and pgp−1 /∈H))

=
∑
p∈G:

pgp−1∈H

[
khk−1 = pgp−1

]
+

∑
p∈G:

pgp−1 /∈H

0

︸ ︷︷ ︸
=0

=
∑
p∈G:

pgp−1∈H

[
khk−1 = pgp−1

]
.

This proves (13.117.5).
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(c) Let G1 and G2 be two finite groups. Let h1 ∈ G1 and h2 ∈ G2. Let I denote the canonical isomorphism
RC (G1)⊗RC (G2)→ RC (G1 ×G2). We need to prove that

(13.117.6) I (αG1,h1 ⊗ αG2,h2) = αG1×G2,(h1,h2).

Let g ∈ G1 ×G2. Let us write g in the form g = (g1, g2). Then, Exercise 4.4.3(a) (applied to G1, h1 and
g1 instead of G, h and g) yields

αG1,h1
(g1) =

∑
k∈G1

[
kh1k

−1 = g1

]
=
∑
k1∈G1

[
k1h1k

−1
1 = g1

]
(here, we have renamed the summation index k as k1). Similarly,

αG2,h2
(g2) =

∑
k2∈G2

[
k2h2k

−2
2 = g2

]
.

Now,

(I (αG1,h1
⊗ αG2,h2

))

 g︸︷︷︸
=(g1,g2)


= (I (αG1,h1 ⊗ αG2,h2)) ((g1, g2)) = αG1,h1 (g1)︸ ︷︷ ︸

=
∑
k1∈G1

[k1h1k
−1
1 =g1]

αG2,h2
(g2)︸ ︷︷ ︸

=
∑
k2∈G2

[k2h2k
−2
2 =g2]

(by the definition of I)

=

( ∑
k1∈G1

[
k1h1k

−1
1 = g1

])( ∑
k2∈G2

[
k2h2k

−2
2 = g2

])
=

∑
(k1,k2)∈G1×G2

[
k1h1k

−1
1 = g1

] [
k2h2k

−2
2 = g2

]︸ ︷︷ ︸
=[k1h1k

−1
1 =g1 and k2h2k

−2
2 =g2]

=
∑

(k1,k2)∈G1×G2

k1h1k
−1
1 = g1 and k2h2k

−2
2 = g2︸ ︷︷ ︸

this is equivalent to

(k1h1k
−1
1 ,k2h2k

−1
2 )=(g1,g2)

 =
∑

(k1,k2)∈G1×G2

 (k1h1k
−1
1 , k2h2k

−1
2

)︸ ︷︷ ︸
=(k1,k2)(h1,h2)(k1,k2)−1

= (g1, g2)︸ ︷︷ ︸
=g


=

∑
(k1,k2)∈G1×G2

[
(k1, k2) (h1, h2) (k1, k2)

−1
= g
]

=
∑

k∈G1×G2

[
k (h1, h2) k−1 = g

]
(here, we have renamed the summation index (k1, k2) as k). Compared with

αG1×G2,(h1,h2) (g) =
∑

k∈G1×G2

[
k (h1, h2) k−1 = g

]
(by Exercise 4.4.3(a), applied to G1 ×G2 and (h1, h2) instead of G and h) ,

this yields (I (αG1,h1
⊗ αG2,h2

)) (g) = αG1×G2,(h1,h2) (g).
Now, let us forget that we fixed g. We thus have proven that (I (αG1,h1 ⊗ αG2,h2)) (g) = αG1×G2,(h1,h2) (g)

for every g ∈ G1×G2. In other words, I (αG1,h1
⊗ αG2,h2

) = αG1×G2,(h1,h2). This proves (13.117.6). Exercise
4.4.3(c) is thus solved.

(d) For every partition λ, let us define z̃λ as the size of the centralizer of a permutation in S|λ| having
cycle type λ. Note that this does not depend on the choice of said permutation, since all permutations
in S|λ| having cycle type λ are mutually conjugate (and thus their centralizers are of the same size). It
is well-known that z̃λ = zλ (see Remark 2.5.16), but we shall avoid using this fact, as we can obtain an
alternative proof of it from the following argument.

We shall use the same notations as in the proof of Theorem 4.4.1. In particular, AC =
⊕

n≥0RC (Sn);
this C-vector space AC becomes a C-algebra as explained in the proof of Theorem 4.4.1. Its multiplication
is given by indi+ji,j ; more precisely, every n ∈ N and m ∈ N, and every β ∈ RC (Sn) and γ ∈ RC (Sm) satisfy

(13.117.7) βγ = indn+m
n,m︸ ︷︷ ︸

=Ind
Sn+m
Sn×Sm

(β ⊗ γ) = Ind
Sn+m

Sn×Sm (β ⊗ γ) .
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We define a C-linear map Φ : ΛC → AC by setting

Φ (pλ) = z̃λ1λ for every λ ∈ Par .

(This is well-defined, since (pλ)λ∈Par is a basis of the C-vector space ΛC.) We notice that if λ is a partition
of a nonnegative integer n, and if g ∈ Sn is a permutation having cycle type λ, then

(13.117.8) Φ (pλ) = αSn,g.

871 Also, if λ is a partition of a nonnegative integer n, then

(13.117.9) |{h ∈ Sn | h has cycle type λ}| = n!/z̃λ.

872

We shall now prove that Φ is a C-algebra homomorphism. Since Φ (1) = 1 is true873, we only need to
verify that Φ (uv) = Φ (u) Φ (v) for any u ∈ ΛC and v ∈ ΛC. Let us prove this now. Fix u ∈ ΛC and v ∈ ΛC.
Since the equality Φ (uv) = Φ (u) Φ (v) is C-linear in each of u and v, we can WLOG assume that u and v
are elements of the basis (pλ)λ∈Par of the C-vector space ΛC. Assume this, and set u = pµ and v = pν for
two partitions µ and ν. Let n = |µ| and m = |ν|. Let g be a permutation in Sn having cycle type µ. (Such

871Proof of (13.117.8): Let λ be a partition of a nonnegative integer n. Let g ∈ Sn be a permutation having cycle type λ.
Then, g is a permutation in S|λ| having cycle type λ. Thus, z̃λ is the size of the centralizer of g (by the definition of z̃λ). In

other words, z̃λ = |ZSn (g)|.
But any two permutations in Sn having the same cycle type are mutually conjugate. Hence, if h is any permutation in

Sn having cycle type λ, then h and g are conjugate (since h and g are permutations in Sn having the same cycle type).
Conversely, if h is a permutation in Sn such that h and g are conjugate, then h has cycle type λ (because h and g are conjugate

permutations and thus have the same cycle type, but the cycle type of g is λ). Combining these two statements, we conclude

that if h is a permutation in Sn, then h has cycle type λ if and only if h and g are conjugate. Hence,h ∈ Sn | h has cycle type λ︸ ︷︷ ︸
this is equivalent to

(h and g are conjugate)

 =

h ∈ Sn | h and g are conjugate︸ ︷︷ ︸
this is equivalent to h∈ConjSn (g)

 =
{
h ∈ Sn | h ∈ ConjSn (g)

}

= ConjSn (g) .

On the other hand, 1λ is defined as the characteristic function for the Sn-conjugacy class of permutations of cycle type λ. In

other words, 1λ is the indicator function of the subset {h ∈ Sn | h has cycle type λ} of Sn. In other words, 1λ is the indicator
function of the subset ConjSn (g) (since {h ∈ Sn | h has cycle type λ} = ConjSn (g)). In other words, 1λ = 1ConjSn (g).

Now, Φ (pλ) = z̃λ︸︷︷︸
=|ZSn (g)|

1λ︸︷︷︸
=1ConjSn

(g)

= |ZSn (g)| 1ConjSn (g). Compared with αSn,g = |ZSn (g)| 1ConjSn (g) (by the

definition of αSn,g), this yields Φ (pλ) = αSn,g . This proves (13.117.8).
872Proof of (13.117.9): Let λ be a partition of a nonnegative integer n. Fix a permutation g ∈ Sn having cycle type λ.

(Such a g clearly exists.) In the proof of (13.117.8), we have seen that z̃λ = |ZSn (g)| and that {h ∈ Sn | h has cycle type λ} =

ConjSn (g).

Now, it is well-known that for every finite group G and every element f ∈ G, we have |G/ZG (f)| = |ConjG (f)| (in fact,
there is a canonical bijection from the G-set G/ZG (f) to ConjG (f), which sends the equivalence class [γ] ∈ G/ZG (f) of

every γ ∈ G to γfγ−1 ∈ ConjG (f)). Applying this to G = Sn and f = g, we obtain |Sn/ZSn (g)| =
∣∣ConjSn (g)

∣∣. Thus,∣∣ConjSn (g)
∣∣ = |Sn/ZSn (g)| = |Sn|︸︷︷︸

=n!

/ |ZSn (g)|︸ ︷︷ ︸
=z̃λ

= n!/z̃λ, so that

n!/z̃λ =

∣∣∣∣∣∣∣∣ ConjSn (g)︸ ︷︷ ︸
={h∈Sn | h has cycle type λ}

∣∣∣∣∣∣∣∣ = |{h ∈ Sn | h has cycle type λ}| .

This proves (13.117.9).
873This is because

Φ

 1︸︷︷︸
=p∅

 = Φ (p∅) = z̃∅︸︷︷︸
=1

1∅︸︷︷︸
=1

(by the definition of Φ (p∅))

= 1.
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a g clearly exists.) Let h be a permutation in Sm having cycle type ν. (Such an h clearly exists.) Applying
(13.117.8) to µ instead of λ, we obtain Φ (pµ) = αSn,g. Thus,

(13.117.10) Φ

 u︸︷︷︸
=pµ

 = Φ (pµ) = αSn,g.

Applying (13.117.8) to ν, m and h instead of λ, n and g, we obtain Φ (pν) = αSm,h. Thus,

(13.117.11) Φ

 v︸︷︷︸
=pν

 = Φ (pν) = αSm,h.

The canonical isomorphism RC (Sn)⊗RC (Sm)→ RC (Sn ×Sm) sends αSn,g ⊗ αSm,h to αSn×Sm,(g,h)

(according to Exercise 4.4.3(c), applied to G1 = Sn, G2 = Sm, h1 = g and h2 = h). Let us identify
RC (Sn)⊗RC (Sm) with RC (Sn ×Sm) along this isomorphism. Then, the statement we just made rewrites
as follows:

(13.117.12) αSn,g ⊗ αSm,h = αSn×Sm,(g,h).

Now, multiplying the equalities (13.117.10) and (13.117.11), we obtain

Φ (u) Φ (v) = αSn,gαSm,h

= Ind
Sn+m

Sn×Sm (αSn,g ⊗ αSm,h)︸ ︷︷ ︸
=αSn×Sm,(g,h)

(by (13.117.12))

(by (13.117.7), applied to β = αSn,g and γ = αSm,h)

= Ind
Sn+m

Sn×Sm αSn×Sm,(g,h) = αSn+m,(g,h)(13.117.13)

(by Exercise 4.4.3(b), applied to Sn+m, Sn ×Sm and (g, h) instead of G, H and h).
Let λ be the partition whose parts are µ1, µ2, . . ., µ`(µ), ν1, ν2, . . ., ν`(ν). Then,

(
λ1, λ2, . . . , λ`(λ)

)
is a

permutation of the list
(
µ1, µ2, . . . , µ`(µ), ν1, ν2, . . . , ν`(ν)

)
, and the partition λ has size

|λ| = µ1 + µ2 + · · ·+ µ`(µ)︸ ︷︷ ︸
=|µ|=n

+ ν1 + ν2 + · · ·+ ν`(ν)︸ ︷︷ ︸
=|ν|=m

= n+m.

We also have pλ = pµpν
874. Since pµ = u and pν = v, this rewrites as pλ = uv.

Recall that the permutation g has cycle type µ. In other words, the cycles of g have lengths µ1, µ2,
. . ., µ`(µ). Similarly, the cycles of h have lengths ν1, ν2, . . ., ν`(ν). Hence, the cycles of the permuta-

tion (g, h) ∈ Sn+m (which, as we recall, sends every i ∈ {1, 2, . . . , n+m} to

{
g (i) , if i ≤ n;

n+ h (i− n) , if i > n
)

have lengths µ1, µ2, . . ., µ`(µ), ν1, ν2, . . ., ν`(ν) (in fact, on the subset {1, 2, . . . , n} of {1, 2, . . . , n+m},
the permutation (g, h) acts as g and thus has cycles of lengths µ1, µ2, . . ., µ`(µ), whereas on the com-
plementary subset {n+ 1, n+ 2, . . . , n+m} of {1, 2, . . . , n+m}, the permutation (g, h) acts as (a shifted
version of) h and thus has cycles of lengths ν1, ν2, . . ., ν`(ν)). In other words, the cycles of the permu-

tation (g, h) ∈ Sn+m have lengths λ1, λ2, . . ., λ`(λ) (since
(
λ1, λ2, . . . , λ`(λ)

)
is a permutation of the list(

µ1, µ2, . . . , µ`(µ), ν1, ν2, . . . , ν`(ν)

)
). In other words, the permutation (g, h) ∈ Sn+m has cycle type λ. Thus,

(13.117.8) (applied to n + m and (g, h) instead of n and g) yields Φ (pλ) = αSn+m,(g,h). Compared with
(13.117.13), this yields Φ (u) Φ (v) = Φ (pλ). Since pλ = uv, this rewrites as Φ (u) Φ (v) = Φ (uv). Thus,

874Proof. By the definition of pµ, we have pµ = pµ1pµ2 · · · pµ`(µ)
. Similarly, pν = pν1pν2 · · · pν`(ν)

. Multiplying these two

equalities, we obtain pµpν =
(
pµ1pµ2 · · · pµ`(µ)

)(
pν1pν2 · · · pν`(ν)

)
.

But the definition of pλ yields pλ = pλ1
pλ2
· · · pλ`(λ)

. The product pλ1
pλ2
· · · pλ`(λ)

has the same factors as the prod-

uct pµ1pµ2 · · · pµ`(µ)
pν1pν2 · · · pν`(ν)

but possibly in a different order (since
(
λ1, λ2, . . . , λ`(λ)

)
is a permutation of the list(

µ1, µ2, . . . , µ`(µ), ν1, ν2, . . . , ν`(ν)

)
). Hence, pλ1

pλ2
· · · pλ`(λ)

= pµ1pµ2 · · · pµ`(µ)
pν1pν2 · · · pν`(ν)

, so that

pλ = pλ1
pλ2
· · · pλ`(λ)

= pµ1pµ2 · · · pµ`(µ)
pν1pν2 · · · pν`(ν)

=
(
pµ1pµ2 · · · pµ`(µ)

)(
pν1pν2 · · · pν`(ν)

)
= pµpν ,

qed.
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Φ (uv) = Φ (u) Φ (v) is proven. As explained, this completes the proof of the fact that Φ is a C-algebra
homomorphism.

But we know that ch : A→ Λ is a Z-Hopf algebra isomorphism, and thus the extension of ch to a C-linear
map AC → ΛC is a C-Hopf algebra isomorphism. We shall denote this extension by chC.

We now shall show that chC ◦Φ = idΛC . Indeed, let n be a positive integer. Then, z̃(n) = n 875. Now,

the definition of Φ
(
p(n)

)
yields Φ

(
p(n)

)
= z̃(n)︸︷︷︸

=n

1(n) = n1(n), so that

(chC ◦Φ) (pn) = chC

Φ

 pn︸︷︷︸
=p(n)


 = chC

Φ
(
p(n)

)︸ ︷︷ ︸
=n1(n)

 = chC

(
n1(n)

)
= n chC

(
1(n)

)
︸ ︷︷ ︸

=
pn
n

(by a part of Theorem 4.4.1
that is already proven)

= n · pn
n

= pn = idΛC (pn) .

Now, let us forget that we fixed n. We thus have shown that (chC ◦Φ) (pn) = idΛC (pn) for every positive
integer n. Thus, the C-algebra homomorphisms chC ◦Φ and idΛC are equal to each other on pn for every
positive integer n. Since (pn)n≥1 is a generating set of the C-algebra ΛC, this yields that these homomor-
phisms are equal to each other on a generating set of the C-algebra ΛC. Hence, these homomorphisms must
be identical. That is, we have chC ◦Φ = idΛC .

Since chC is an isomorphism, this yields that Φ is the inverse of chC. That is, Φ = (chC)
−1

.
Corollary 2.5.17(b) (applied to k = C) yields that {pλ} and

{
z−1
λ pλ

}
are dual bases of ΛC with respect

to the Hall inner product on Λ. Thus,

(13.117.15)
(
pλ, z

−1
µ pµ

)
ΛC

= δλ,µ for any partitions λ and µ.

875Proof. Let g denote the n-cycle (1, 2, . . . , n) in Sn. Then, g is a permutation in Sn having cycle type (n). But z̃(n) is

defined as the size of the centralizer of a permutation in S|(n)| having cycle type (n). Hence, z̃(n) is the size of the centralizer

of g in Sn (since g is a permutation in Sn = S|(n)| having cycle type (n)). In other words, z̃(n) = |ZSn (g)|.
It is clear that the subgroup 〈g〉 of Sn generated by g satisfies 〈g〉 ⊂ ZSn (g) (since every power of g centralizes g). We shall

now show that 〈g〉 = ZSn (g).

Indeed, let z ∈ ZSn (g). Then, z must centralize g. That is, we have zgz−1 = g. Hence, zg = gz, so that the elements g
and z of Sn commute. Hence, these elements z and g generate a commutative subgroup of Sn. Denote this subgroup by T .

Now, every i ∈ {1, 2, . . . , n} satisfies

(13.117.14) gi−1 (1) = i

(since g is the n-cycle (1, 2, . . . , n)). Now, let j = z (1). Then, gj−1 (1) = j (by (13.117.14), applied to i = j). On the other

hand, let i ∈ {1, 2, . . . , n}. Then, gi−1 commutes with z (since g commutes with z); in other words, gi−1z = zgi−1. Now,

z

 i︸︷︷︸
=gi−1(1)

(by (13.117.14))

 = z
(
gi−1 (1)

)
=
(
zgi−1

)︸ ︷︷ ︸
=gi−1z

(1) =
(
gi−1z

)
(1) = gi−1

 z (1)︸ ︷︷ ︸
=j=gj−1(1)



= gi−1
(
gj−1 (1)

)
=

(
gi−1gj−1

)︸ ︷︷ ︸
=g(i−1)+(j−1)=gj−1gi−1

(1) =
(
gj−1gi−1

)
(1) = gj−1

 gi−1 (1)︸ ︷︷ ︸
=i

(by (13.117.14))

 = gj−1 (i) .

Let us now forget that we fixed i. We thus have shown that z (i) = gj−1 (i) for every i ∈ {1, 2, . . . , n}. Hence, z = gj−1 ∈ 〈g〉.
Now, let us forget that we fixed z. We thus have proven that z ∈ 〈g〉 for every z ∈ ZSn (g). Hence, ZSn (g) ⊂ 〈g〉.

Combined with 〈g〉 ⊂ ZSn (g), this yields 〈g〉 = ZSn (g). Hence, |〈g〉| = |ZSn (g)|. Compared with z̃(n) = |ZSn (g)|, this yields

z̃(n) = |〈g〉| = (the order of g in Sn) = n (since g is an n-cycle), qed.
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Hence, every partition λ satisfies

(13.117.16)

pλ, pλ︸︷︷︸
=zλz

−1
λ pλ


ΛC

=
(
pλ, zλz

−1
λ pλ

)
ΛC

= zλ
(
pλ, z

−1
λ pλ

)
ΛC︸ ︷︷ ︸

=δλ,λ
(by (13.117.15), applied

to µ=λ)

= zλ δλ,λ︸︷︷︸
=1

= zλ.

Our goal is to prove that chC (1λ) =
pλ
zλ

for every partition λ.

Let λ be a partition. Let n be the size of λ. Then, λ ∈ Parn ⊂ Par and 1λ ∈ RC (Sn). We know that z̃λ
is a positive integer (since z̃λ is defined as the size of a centralizer, and centralizers are subgroups). Hence,
we can divide by z̃λ, and we have

Φ
(
z̃−1
λ pλ

)
= z̃−1

λ Φ (pλ)︸ ︷︷ ︸
=z̃λ1λ

(by the definition of Φ(pλ))

= z̃−1
λ z̃λ1λ = 1λ.

Since Φ = (chC)
−1

, this rewrites as (chC)
−1 (

z̃−1
λ pλ

)
= 1λ. Hence,

(13.117.17) chC (1λ) = z̃−1
λ pλ.

Recall that we want to prove that chC (1λ) =
pλ
zλ

. If we can show that z̃λ = zλ, then (13.117.17) becomes

chC (1λ) =

 z̃λ︸︷︷︸
=zλ

−1

pλ = z−1
λ pλ =

pλ
zλ

, and thus chC (1λ) =
pλ
zλ

will be proven. Hence, all that remains to

be done is proving z̃λ = zλ.
But ch is a PSH-isomorphism, thus an isometry. Hence, chC (being the extension of ch to a C-linear map)

must also be an isometry, i.e., we must have

(chC β, chC γ)ΛC
= (β, γ)AC

for all β ∈ AC and γ ∈ AC.

Applying this to β = 1λ and γ = 1λ, we obtain

(chC (1λ) , chC (1λ))ΛC

= (1λ, 1λ)AC
= 〈1λ, 1λ〉Sn

(
since 1λ ∈ RC (Sn) , and since the bilinear form

(·, ·)AC
on AC extends the bilinear form 〈·, ·〉Sn on RC (Sn)

)
=

1

|Sn|︸ ︷︷ ︸
=

1

n!

∑
g∈Sn

1λ (g)︸ ︷︷ ︸
=[g has cycle type λ]

(by the definition of 1λ)

1λ
(
g−1

)︸ ︷︷ ︸
=[g−1 has cycle type λ]
(by the definition of 1λ)

(
by the definition of the bilinear form 〈·, ·〉Sn

)

=
1

n!

∑
g∈Sn

[g has cycle type λ]


g−1 has cycle type λ︸ ︷︷ ︸

this is equivalent to
(g has cycle type λ)

(since the cycle type of g−1

equals the cycle type of g)


=

1

n!

∑
g∈Sn

[g has cycle type λ] [g has cycle type λ]︸ ︷︷ ︸
=[(g has cycle type λ) and (g has cycle type λ)]

=[g has cycle type λ]

=
1

n!

∑
g∈Sn

[g has cycle type λ]︸ ︷︷ ︸
=|{h∈Sn | h has cycle type λ}|=n!/z̃λ

(by (13.117.9))

=
1

n!
· n!

z̃λ
=

1

z̃λ
.
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Hence,

1

z̃λ
=

 chC (1λ)︸ ︷︷ ︸
=z̃−1

λ pλ
(by (13.117.17))

, chC (1λ)︸ ︷︷ ︸
=z̃−1

λ pλ
(by (13.117.17))


ΛC

=
(
z̃−1
λ pλ, z̃

−1
λ pλ

)
ΛC

=
(
z̃−1
λ

)2
(pλ, pλ)ΛC

.

Multiplying this equality with z̃2
λ, we obtain

z̃λ = (pλ, pλ)ΛC
= zλ (by (13.117.16)) .

Thus, z̃λ = zλ is proven. As we have explained, this concludes the proof of chC (1λ) =
pλ
zλ

, and thus Exercise

4.4.3(d) is solved.
(e) Let λ be a partition. Let us work with the notations of the solution of Exercise 4.4.3(d) above. In the

latter solution, we have shown that z̃λ = zλ. Thus,

zλ = z̃λ =
(
the size of the centralizer of a permutation in S|λ| having cycle type λ

)
(by the definition of z̃λ)

= (the size of the centralizer in Sn of a permutation having cycle type λ, where n = |λ|) .

This proves Remark 2.5.16. Thus, Exercise 4.4.3(e) is solved.
(f) Let G and H be two finite groups. Let ρ : H → G be a group homomorphism. Let y ∈ H. We shall

show that Indρ αH,y = αG,ρ(y).
Let u ∈ G. Then, the definition of Indρ αH,y yields

(Indρ αH,y) (u) =
1

|H|
∑

(h,k)∈H×G;

kρ(h)k−1=u

αH,y (h) =
1

|H|
∑

(h,x)∈H×G;

xρ(h)x−1=u

αH,y (h)︸ ︷︷ ︸
=
∑
k∈H [kyk−1=h]

(by Exercise 4.4.3(a), applied to
H, y and h instead of G, h and g)

(here, we renamed the summation index (h, k) as (h, x))

=
1

|H|
∑

(h,x)∈H×G;

xρ(h)x−1=u︸ ︷︷ ︸
=
∑
x∈G

∑
h∈H;

xρ(h)x−1=u

∑
k∈H

[
kyk−1 = h

]

=
1

|H|
∑
x∈G

∑
h∈H;

xρ(h)x−1=u

∑
k∈H︸ ︷︷ ︸

=
∑
k∈H

∑
h∈H;

xρ(h)x−1=u

[
kyk−1 = h

]

=
1

|H|
∑
x∈G

∑
k∈H

∑
h∈H;

xρ(h)x−1=u

[
kyk−1 = h

]
.(13.117.18)

But every x ∈ G and k ∈ H satisfy

(13.117.19)
∑
h∈H;

xρ(h)x−1=u

[
kyk−1 = h

]
=
[
xρ (k) ρ (y) (xρ (k))

−1
= u

]
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876. Hence, (13.117.18) becomes

(Indρ αH,y) (u) =
1

|H|
∑
x∈G

∑
k∈H︸ ︷︷ ︸

=
∑
k∈H

∑
x∈G

∑
h∈H;

xρ(h)x−1=u

[
kyk−1 = h

]
︸ ︷︷ ︸
=[xρ(k)ρ(y)(xρ(k))−1=u]

(by (13.117.19))

=
1

|H|
∑
k∈H

∑
x∈G

[
xρ (k) ρ (y) (xρ (k))

−1
= u

]
︸ ︷︷ ︸

=
∑
x∈G[xρ(y)x−1=u]

(here, we have substituted x for xρ(k) in the sum
(because the map G→G, x 7→xρ(k) is a bijection

(since G is a group, and since ρ(k)∈G)))

=
1

|H|
∑
k∈H

∑
x∈G

[
xρ (y)x−1 = u

]
︸ ︷︷ ︸

=|H|·
∑
x∈G[xρ(y)x−1=u]

=
1

|H|
|H| ·

∑
x∈G

[
xρ (y)x−1 = u

]
=
∑
x∈G

[
xρ (y)x−1 = u

]
=
∑
k∈G

[
kρ (y) k−1 = u

]
(here, we renamed the summation index x as k) .

Compared with

αG,ρ(y) (u) =
∑
k∈G

[
kρ (y) k−1 = u

]
(by Exercise 4.4.3(a), applied to ρ (y) and u instead of h and g) ,

876Proof of (13.117.19): Let x ∈ G and k ∈ H. We have∑
h∈H

[
xρ (h)x−1 = u

] [
kyk−1 = h

]
=

∑
h∈H;

xρ(h)x−1=u

[
xρ (h)x−1 = u

]︸ ︷︷ ︸
=1

(since we have xρ(h)x−1=u)

[
kyk−1 = h

]
+

∑
h∈H;

xρ(h)x−1 6=u

[
xρ (h)x−1 = u

]︸ ︷︷ ︸
=0

(since we don’t have xρ(h)x−1=u

(since xρ(h)x−1 6=u))

[
kyk−1 = h

]

=
∑
h∈H;

xρ(h)x−1=u

[
kyk−1 = h

]
+

∑
h∈H;

xρ(h)x−1 6=u

0
[
kyk−1 = h

]
︸ ︷︷ ︸

=0

=
∑
h∈H;

xρ(h)x−1=u

[
kyk−1 = h

]
,

so that∑
h∈H;

xρ(h)x−1=u

[
kyk−1 = h

]
=
∑
h∈H

[
xρ (h)x−1 = u

] [
kyk−1 = h

]

=
∑
h∈H;

h=kyk−1

[
xρ (h)x−1 = u

] [
kyk−1 = h

]︸ ︷︷ ︸
=1

(since we have kyk−1=h

(since h=kyk−1))

+
∑
h∈H;

h 6=kyk−1

[
xρ (h)x−1 = u

] [
kyk−1 = h

]︸ ︷︷ ︸
=0

(since we don’t have kyk−1=h

(since kyk−1 6=h (since h 6=kyk−1)))

=
∑
h∈H;

h=kyk−1

[
xρ (h)x−1 = u

]
+

∑
h∈H;

h 6=kyk−1

[
xρ (h)x−1 = u

]
0

︸ ︷︷ ︸
=0

=
∑
h∈H;

h=kyk−1

[
xρ (h)x−1 = u

]

=


x ρ

(
kyk−1

)︸ ︷︷ ︸
=ρ(k)ρ(y)(ρ(k))−1

(since ρ is a group
homomorphism)

x−1 = u


(
since kyk−1 ∈ H (since k ∈ H and y ∈ H)

)

=

xρ (k) ρ (y) (ρ (k))−1 x−1︸ ︷︷ ︸
=(xρ(k))−1

= u

 =
[
xρ (k) ρ (y) (xρ (k))−1 = u

]
.

This proves (13.117.19).
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this yields (Indρ αH,y) (u) = αG,ρ(y) (u).
Let us now forget that we fixed u. We thus have shown that (Indρ αH,y) (u) = αG,ρ(y) (u) for every u ∈ G.

In other words, Indρ αH,y = αG,ρ(y).
Let us now forget that we fixed y. We thus have shown that Indρ αH,y = αG,ρ(y) for every y ∈ H.

Renaming y as h in this statement, we obtain that Indρ αH,h = αG,ρ(h) for every h ∈ H. This solves Exercise
4.4.3(f).

13.118. Solution to Exercise 4.4.4. Solution to Exercise 4.4.4.
Step 1: Study of inner tensor products.
The well-definedness of the inner tensor product is clear (since the inclusion map G→ G×G, g 7→ (g, g)

is a group homomorphism). We notice that if G is a group and U1 and U2 are two CG-modules, then the
character χU1⊗U2 of the inner tensor product U1 ⊗ U2 of U1 and U2 is given by

(13.118.1) χU1⊗U2
(g) = χU1

(g)χU2
(g) for all g ∈ G.

877

Step 2: The involutions ω̃n.
Now let n ≥ 0. For every f ∈ RC (Sn), it is easy to see that the map Sn → C which sends every g ∈ Sn

to sgn (g) f (g) is a class function (because both sgn (g) and f (g) are uniquely determined by the conjugacy
class of g). This class function Sn → C is denoted by sgnSn ∗f and belongs to RC (Sn) (being a class
function). We can thus define a map ω̃n : RC (Sn)→ RC (Sn) as follows:

ω̃n (f) = sgnSn ∗f for all f ∈ RC (Sn) .

Consider this map ω̃n. It is C-linear (obviously) and an involution878. Hence, ω̃n is precisely the involution
on class functions f : Sn → C sending f 7→ sgnSn ∗f .

Now, let V be any finite-dimensional CSn-module. Then, every g ∈ Sn satisfies

(ω̃n (χV ))︸ ︷︷ ︸
=sgnSn

∗χV
(by the definition of ω̃n)

(g) =
(
sgnSn ∗χV

)
(g) = sgn (g)χV (g)

and

χsgnSn
⊗V (g) = χsgnSn

(g)︸ ︷︷ ︸
=sgn(g)

χV (g) (by (13.118.1))

= sgn (g)χV (g) .

Hence, every g ∈ Sn satisfies (ω̃n (χV )) (g) = sgn (g)χV (g) = χsgnSn
⊗V (g). In other words, ω̃n (χV ) =

χsgnSn
⊗V .

Forget that we fixed V . We thus have proven that ω̃n (χV ) = χsgnSn
⊗V for every finite-dimensional CSn-

module V . In particular, for every irreducible CSn-module V , we have ω̃n (χV ) = χsgnSn
⊗V ∈ R (Sn).

Since the χV span R (Sn) as a Z-module as V ranges through (a set of representatives of the isomorphism
classes of) the irreducible CSn-modules V , this entails that the involution ω̃n preserves the Z-lattice R (Sn).
Since ω̃n is the involution on class functions f : Sn → C sending f 7→ sgnSn ∗f , this rewrites as follows:

877This is because every g ∈ G satisfies

χU1⊗U2 (g) = trace (g : U1 ⊗ U2 → U1 ⊗ U2)︸ ︷︷ ︸
=(g,g):U1⊗U2→U1⊗U2

(by the definition of the inner tensor product)

= trace ((g, g) : U1 ⊗ U2 → U1 ⊗ U2)︸ ︷︷ ︸
=(g:U1→U1)⊗(g:U2→U2)

= trace ((g : U1 → U1)⊗ (g : U2 → U2))

= trace (g : U1 → U1)︸ ︷︷ ︸
=χU1

(g)

· trace (g : U2 → U2)︸ ︷︷ ︸
=χU2

(g)

= χU1
(g) · χU2

(g) .

878This is because multiplying a scalar by sgn (g) twice (for fixed g ∈ Sn) does nothing (since (sgn (g))2 = 1).
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The involution on class functions f : Sn → C sending f 7→ sgnSn ∗f preserves the Z-lattice R (Sn). This
proves one claim of Theorem 4.4.1(b).

Recall that the involution ω̃n preserves the Z-lattice R (Sn). Thus, ω̃n restricts to a Z-linear involution
R (Sn)→ R (Sn). Denote this involution by ω̃′n. It clearly satisfies

ω̃′n (f) = ω̃n (f) (by the definition of ω̃′n)(13.118.2)

= sgnSn ∗f for all f ∈ R (Sn) .(13.118.3)

Step 3: The involution ω̃Z.
Now, forget that we fixed n. We thus have constructed a Z-linear involution ω̃′n : R (Sn) → R (Sn) for

every n ≥ 0. The direct sum of these involutions over all n ≥ 0 is a graded Z-linear involution
⊕

n≥0 ω̃
′
n :⊕

n≥0R (Sn) →
⊕

n≥0R (Sn). Denote this involution
⊕

n≥0 ω̃
′
n by ω̃Z. Then, ω̃Z is a graded Z-linear

involution A (S)→ A (S) (since
⊕

n≥0R (Sn) = A (S)), and is precisely the involution on A (S) defined in

Theorem 4.4.1(b).
We have ω̃Z =

⊕
n≥0 ω̃

′
n. Hence, for every n ∈ N and f ∈ RC (Sn), we have

ω̃Z (f) = ω̃′n (f) = ω̃n (f) (since ω̃′n is defined as a restriction of ω̃n)(13.118.4)

= sgnSn ∗f.(13.118.5)

For every n ∈ N and every finite-dimensional CSn-module V , we have

ω̃Z (χV ) = ω̃n (χV ) (by (13.118.4), applied to f = χV )

= χsgnSn
⊗V .(13.118.6)

In other words, the involution ω̃Z sends χV to χsgnSn
⊗V for every n ∈ N and every finite-dimensional CSn-

module V . In other words, the involution on A (S) defined in Theorem 4.4.1(b) sends χV to χsgnSn
⊗V

for every n ∈ N and every finite-dimensional CSn-module V (since ω̃Z is precisely the involution on A (S)
defined in Theorem 4.4.1(b)). This proves one of the claims of Exercise 4.4.4.

Step 4: Properties of ω̃Z.
We are now going to prove that ch ◦ω̃Z = ω ◦ ch as maps A (S)→ Λ.

Indeed, let λ be a partition. Let n = |λ|. Then, λ ∈ Parn. Theorem 4.4.1(a) yields ch
(

IndSn
Sλ

1Sλ

)
=

hλ and ch
(

IndSn
Sλ

sgnSλ

)
= eλ. Since ch

(
IndSn

Sλ
1Sλ

)
= hλ, we have ch−1 (hλ) = IndSn

Sλ
1Sλ . Since

ch
(

IndSn
Sλ

sgnSλ

)
= eλ, we have ch−1 (eλ) = IndSn

Sλ
sgnSλ

.

On the other hand, ω (hλ) = eλ
879.

But it is easy to see that ω̃Z

(
IndSn

Sλ
1Sλ

)
= IndSn

Sλ
sgnSλ

. 880

879This follows from the fact that ω is an algebra homomorphism and that ω (hm) = em for every m ∈ N.
880Proof. Let g ∈ Sn. We have ω̃Z

(
IndSn

Sλ
1Sλ

)
= sgnSn

∗
(

IndSn
Sλ

1Sλ

)
(by (13.118.4), applied to f = IndSn

Sλ
1Sλ ).

Hence, (
ω̃Z
(

IndSn
Sλ

1Sλ

))
(g) =

(
sgnSn

∗
(

IndSn
Sλ

1Sλ

))
(g) = sgn (g) ·

(
IndSn

Sλ
1Sλ

)
(g)

(by the definition of sgnSn
∗
(

IndSn
Sλ

1Sλ

)
). Since (by the definition of IndSn

Sλ
1Sλ ) we have

(
IndSn

Sλ
1Sλ

)
(g) =

1

|Sλ|
∑
k∈Sn:

kgk−1∈Sλ

1Sλ

(
kgk−1

)︸ ︷︷ ︸
=1

=
1

|Sλ|
∑
k∈Sn:

kgk−1∈Sλ

1,

this rewrites as (
ω̃Z
(

IndSn
Sλ

1Sλ

))
(g) = sgn (g) ·

(
IndSn

Sλ
1Sλ

)
(g)︸ ︷︷ ︸

=
1

|Sλ|
∑

k∈Sn:

kgk−1∈Sλ

1

= sgn (g) ·
1

|Sλ|
∑
k∈Sn:

kgk−1∈Sλ

1.
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Now, comparing

(
ω̃Z ◦ ch−1

)
(hλ) = ω̃Z

 ch−1 (hλ)︸ ︷︷ ︸
=IndSn

Sλ
1Sλ

 = ω̃Z

(
IndSn

Sλ
1Sλ

)
= IndSn

Sλ
sgnSλ

with (
ch−1 ◦ω

)
(hλ) = ch−1

ω (hλ)︸ ︷︷ ︸
=eλ

 = ch−1 (eλ) = IndSn
Sλ

sgnSλ
,

we obtain
(
ω̃Z ◦ ch−1

)
(hλ) =

(
ch−1 ◦ω

)
(hλ).

So we have shown that
(
ω̃Z ◦ ch−1

)
(hλ) =

(
ch−1 ◦ω

)
(hλ) for every partition λ. Thus, ω̃Z◦ch−1 = ch−1 ◦ω

(since the hλ form a Z-module basis of Λ). Hence, ch−1 ◦ω = ω̃Z ◦ ch−1 so that ch−1 ◦ω ◦ ch = ω̃Z and
ω ◦ ch = ch ◦ω̃Z.

We thus have ch ◦ω̃Z = ω ◦ ch as maps A (S) → Λ. In other words, the map ω̃Z corresponds under ch
to the involution ω on Λ. In other words, the involution on A (S) defined in Theorem 4.4.1(b) corresponds
under ch to the involution ω on Λ (since ω̃Z is precisely the involution on A (S) defined in Theorem 4.4.1(b)).
This completes the proof of Theorem 4.4.1(b).

Step 5: The structure-preserving properties of ω̃Z.
Now, it only remains to show that the involution on A (S) defined in Theorem 4.4.1(b) is a nontrivial

PSH-automorphism of A (S).
Recall that ch is a PSH-isomorphism. Hence, its inverse ch−1 also is a PSH-isomorphism.
Proposition 2.4.3(f) shows that ω : Λ → Λ is a Hopf automorphism. Moreover, the map ω is clearly

graded. Let Σ denote the PSH-basis {sλ | λ ∈ Par} of Λ. Then, ω restricts to a bijection Σ→ Σ 881. As
a consequence, ω (Σ) ⊂ Σ, so that ω (NΣ) = Nω (Σ)︸ ︷︷ ︸

⊂Σ

⊂ NΣ. Hence, ω is a PSH-morphism Λ → Λ (since ω

is a graded Hopf algebra morphism), and thus a PSH-isomorphism Λ → Λ (since ω is an isomorphism and
restricts to a bijection Σ→ Σ).

Now, ch−1 ◦ω ◦ ch is the composition of three PSH-isomorphisms (since ch−1, ω and ch are PSH-
isomorphisms), therefore a PSH-isomorphism itself. In other words, ω̃Z is a PSH-isomorphism (because
ω̃Z = ch−1 ◦ω ◦ ch). Thus, ω̃Z is a PSH-automorphism.

Since ω (h2) = e2 6= h2, we have ω 6= id and therefore ω̃Z 6= id (since ω̃Z = ch−1 ◦ω ◦ ch). In other words,
ω̃Z is nontrivial.

So we know that ω̃Z is a nontrivial PSH-automorphism of A (S). In other words, the involution on A (S)
defined in Theorem 4.4.1(b) is a nontrivial PSH-automorphism of A (S) (since ω̃Z is precisely the involution
on A (S) defined in Theorem 4.4.1(b)). This completes the solution of Exercise 4.4.4.

Remark. There are some alternative ways to solve parts of this exercise.
For example, in order to prove that ω̃Z◦ch−1 = ch−1 ◦ω, we showed that

(
ω̃Z ◦ ch−1

)
(hλ) =

(
ch−1 ◦ω

)
(hλ)

for every partition λ. Instead of doing this, it is possible to prove that ω̃Z ◦ ch−1 = ch−1 ◦ω by showing that

Compared with(
IndSn

Sλ
sgnSλ

)
(g) =

1

|Sλ|
∑
k∈Sn:

kgk−1∈Sλ

sgnSλ

(
kgk−1

)︸ ︷︷ ︸
=sgn(kgk−1)

(
by the definition of IndSn

Sλ
sgnSλ

)

=
1

|Sλ|
∑
k∈Sn:

kgk−1∈Sλ

sgn
(
kgk−1

)︸ ︷︷ ︸
=sgn(k)·sgn(g)·(sgn(k))−1

=sgn(g)=sgn(g)·1

=
1

|Sλ|
∑
k∈Sn:

kgk−1∈Sλ

sgn (g) · 1 = sgn (g) ·
1

|Sλ|
∑
k∈Sn:

kgk−1∈Sλ

1,

this yields
(
ω̃Z
(

IndSn
Sλ

1Sλ

))
(g) =

(
IndSn

Sλ
sgnSλ

)
(g).

Now, forget that we fixed g. We thus have shown that
(
ω̃Z
(

IndSn
Sλ

1Sλ

))
(g) =

(
IndSn

Sλ
sgnSλ

)
(g) for every g ∈ Sn. In

other words, ω̃Z
(

IndSn
Sλ

1Sλ

)
= IndSn

Sλ
sgnSλ

, qed.
881This follows from Lemma 13.99.3.
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ω̃Z ◦ ch−1

)
(pλ) =

(
ch−1 ◦ω

)
(pλ) for every partition λ. This, however, requires a little technicality (the pλ

do not span Λ as a Z-module, only as a Q-module).
We showed that ω̃Z ◦ ch−1 = ch−1 ◦ω and used this to conclude that ω̃Z is a PSH-automorphism of A (S).

An alternative argument proceeds the other way round: The map ω̃Z is Z-linear and graded and is easily
seen to be self-adjoint with respect to the inner product on A(S). It also is a coalgebra morphism, as

ResSnSi×Sj ωn (f) = (ωi ⊗ ωj)
(

ResSnSi×Sj f
)

for all n = i+ j and all f ∈ R(Sn). Hence, this map ω̃Z also is

an algebra morphism (since it is self-adjoint, and A(S) is self-dual), hence a bialgebra morphism and thus
a Hopf morphism (by Corollary 1.4.27). It also sends irreducible characters to irreducible characters (by
(13.118.6)), and thus restricts to a bijection

{
χλ
}
→
{
χλ
}

. Hence, ω̃Z is a PSH-automorphism of A (S).
Every n ≥ 0 satisfies

(
ω̃Z ◦ ch−1

)
(hn) = ω̃Z

ch−1 (hn)︸ ︷︷ ︸
=1Sn

 = ω̃Z
(
1Sn

)
= ωn

(
1Sn

)
= sgnSn = ch−1 (en)

= ch−1 (ω (hn)) (since Proposition 2.4.3(b) yields en = ω (hn))

=
(
ch−1 ◦ω

)
(hn) .

Since ω̃Z◦ch−1 and ch−1 ◦ω are algebra morphisms whereas the hn generate Λ, this yields ω̃Z◦ch−1 = ch−1 ◦ω.

13.119. Solution to Exercise 4.4.5. Solution to Exercise 4.4.5. It is known that two permutations in Sn

have the same cycle type if and only if they are conjugate. In other words, if g and h are two permutations
in Sn, then we have the following logical equivalence:

(13.119.1) (g and h have the same cycle type) ⇐⇒ (g and h are conjugate) .

(a) Let f ∈ RC (Sn).
If σ ∈ Sn, then the cycle type of σ is a partition of n. In other words, we have typeσ ∈ Parn for each

σ ∈ Sn (since typeσ denotes the cycle type of σ, while Parn denotes the set of all partitions of n).
For each partition λ, we define a positive integer zλ as in Proposition 2.5.15.
Recall the following fact from finite group theory:

Claim 1: Let G be any finite group. Let g ∈ G be any element. Let Cg denote the conjugacy
class of g. Let Zg denote the centralizer of g. Then,

(13.119.2) |Cg| =
|G|
|Zg|

.

Applying Claim 1 to the symmetric group Sn, we quickly arrive at the following:

Claim 2: For each λ ∈ Parn, we have

(the number of all σ ∈ Sn satisfying typeσ = λ) =
n!

zλ
.

[Proof of Claim 2: Let λ ∈ Parn. Thus, λ is a partition of n. Hence, there exists a permutation in Sn

that has cycle type λ. 882 Choose such a permutation, and denote it by g.
Let Cg denote the conjugacy class of g in Sn. Let Zg denote the centralizer of g in Sn.
We have |λ| = n (since λ is a partition of n). Hence, from Remark 2.5.16, we know that zλ is the size of

the Sn-centralizer subgroup for a permutation having cycle type λ. Thus, zλ is the size of the Sn-centralizer
subgroup of g (since g ∈ Sn is a permutation having cycle type λ). In other words, zλ = |Zg| (since Zg is
the Sn-centralizer subgroup of g).

882Indeed, we can obtain such a permutation as follows: Let ` = ` (λ), so that λ1 + λ2 + · · · + λ` = |λ| = n. Partition the

n-element set {1, 2, . . . , n} into ` disjoint subsets K1,K2, . . . ,K` of sizes λ1, λ2, . . . , λ`, respectively. For each i ∈ {1, 2, . . . , `},
pick an arbitrary permutation in Sn that fixes each element of {1, 2, . . . , n} \ Ki while consisting of a single λi-cycle on the
set Ki. (Thus, ci cycles through the λi elements of Ki in some order while leaving all remaining elements of {1, 2, . . . , n}
unchanged.) Then, the composition c1c2 · · · c` of these cycles is a permutation in Sn that has cycle type λ.
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On the other hand, the definition of Cg yields

Cg = (the conjugacy class of g)

=


h ∈ Sn | h is conjugate to g︸ ︷︷ ︸

⇐⇒ (g and h are conjugate)
⇐⇒ (g and h have the same cycle type)

(by the equivalence (13.119.1))


=

h ∈ Sn | g and h have the same cycle type︸ ︷︷ ︸
⇐⇒ (h has cycle type λ)
(since g has cycle type λ)



=

h ∈ Sn | h has cycle type λ︸ ︷︷ ︸
⇐⇒ (typeh=λ)

 = {h ∈ Sn | typeh = λ} = {σ ∈ Sn | typeσ = λ}

(here, we have renamed the index h as σ). Thus,

|Cg| = |{σ ∈ Sn | typeσ = λ}| = (the number of all σ ∈ Sn satisfying typeσ = λ) .

Comparing this with

|Cg| =
|Sn|
|Zg|

(by Claim 1, applied to G = Sn)

=
n!

zλ
(since |Sn| = n! and |Zg| = zλ) ,

we obtain

(the number of all σ ∈ Sn satisfying typeσ = λ) =
n!

zλ
.

This proves Claim 2.]
For each partition λ of n, there exists a permutation in Sn that has cycle type λ. Choose such a

permutation, and denote it by gλ. Every h ∈ Sn satisfies

(13.119.3) f (h) = f (gtypeh) .

[Proof of (13.119.3): Let h ∈ Sn. Hence, typeh ∈ Parn (since typeσ ∈ Parn for each σ ∈ Sn). Therefore,
the permutation gtypeh ∈ Sn is well-defined.

The definition of typeh shows that the permutation h has cycle type typeh. On the other hand, the
permutation gtypeh also has cycle type typeh (by the definition of gtypeh). Hence, the two permutations
gtypeh and h in Sn have the same cycle type (namely, typeh). But (13.119.1) (applied to gtypeh instead of
g) shows that we have the equivalence

(gtypeh and h have the same cycle type) ⇐⇒ (gtypeh and h are conjugate) .

Hence, gtypeh and h are conjugate (since gtypeh and h have the same cycle type).
But we have f ∈ RC (Sn). In other words, f is a class function of Sn (since RC (Sn) is the space of

all class functions Sn → C of Sn). In other words, f is a map Sn → C that is constant on Sn-conjugacy
classes (because this is what it means to be a class function of Sn). Thus, in particular, f is constant on
Sn-conjugacy classes. In other words, if x and y are two conjugate elements of Sn, then f (x) = f (y).
Applying this to x = gtypeh and y = h, we obtain f (gtypeh) = f (h) (since the elements gtypeh and h of Sn

are conjugate). This proves (13.119.3).]
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Recall that typeσ ∈ Parn for each σ ∈ Sn. Thus, we can split the sum
∑
σ∈Sn f (σ) ptypeσ according to

the value of typeσ. We thus obtain∑
σ∈Sn︸ ︷︷ ︸

=
∑

λ∈Parn

∑
σ∈Sn;

typeσ=λ
(since typeσ∈Parn

for each σ∈Sn)

f (σ) ptypeσ =
∑

λ∈Parn

∑
σ∈Sn;

typeσ=λ

f (σ)︸ ︷︷ ︸
=f(gtype σ)

(by (13.119.3), applied to h=σ)

ptypeσ

=
∑

λ∈Parn

∑
σ∈Sn;

typeσ=λ

f (gtypeσ)︸ ︷︷ ︸
=f(gλ)

(since typeσ=λ)

ptypeσ︸ ︷︷ ︸
=pλ

(since typeσ=λ)

=
∑

λ∈Parn

∑
σ∈Sn;

typeσ=λ

f (gλ) pλ

︸ ︷︷ ︸
=(the number of all σ∈Sn satisfying typeσ=λ)·f(gλ)pλ

=
∑

λ∈Parn

(the number of all σ ∈ Sn satisfying typeσ = λ)︸ ︷︷ ︸
=
n!

zλ
(by Claim 2)

·f (gλ) pλ

=
∑

λ∈Parn

n!

zλ
· f (gλ) pλ.

Multiplying both sides of this equality by
1

n!
, we obtain

1

n!

∑
σ∈Sn

f (σ) ptypeσ =
1

n!
·
∑

λ∈Parn

n!

zλ
· f (gλ) pλ =

∑
λ∈Parn

1

n!
· n!

zλ
· f (gλ) pλ︸ ︷︷ ︸

=f(gλ)·
pλ
zλ

=
∑

λ∈Parn

f (gλ) · pλ
zλ
.(13.119.4)

We shall now show that

(13.119.5) f =
∑

λ∈Parn

f (gλ) 1λ.

[Proof of (13.119.5): Let h ∈ Sn. Then, typeh is the cycle type of h (by the definition of typeh). In
other words, h has cycle type typeh.

Recall that typeσ ∈ Parn for each σ ∈ Sn. Applying this to σ = h, we obtain typeh ∈ Parn.
For each partition λ ∈ Parn, we have

(13.119.6) 1λ (h) =

{
1, if h has cycle type λ;

0, otherwise

(since 1λ was defined as the characteristic function for the Sn-conjugacy class of permutations of cycle type
λ). Applying this to λ = typeh, we obtain

(13.119.7) 1typeh (h) =

{
1, if h has cycle type typeh;

0, otherwise
= 1
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(since h has cycle type typeh). On the other hand, if λ ∈ Parn is a partition such that λ 6= typeh, then h
does not have cycle type λ 883, and therefore we have

1λ (h) =

{
1, if h has cycle type λ;

0, otherwise
(by (13.119.6))

= 0 (since h does not have cycle type λ) .(13.119.8)

Now,( ∑
λ∈Parn

f (gλ) 1λ

)
(h) =

∑
λ∈Parn

f (gλ) 1λ (h)

= f (gtypeh) 1typeh (h)︸ ︷︷ ︸
=1

(by (13.119.7))

+
∑

λ∈Parn;
λ 6=typeh

f (gλ) 1λ (h)︸ ︷︷ ︸
=0

(by (13.119.8))(
here, we have split off the addend for λ = typeh from the sum,

since typeh ∈ Parn

)
= f (gtypeh) +

∑
λ∈Parn;
λ 6=typeh

f (gλ) 0

︸ ︷︷ ︸
=0

= f (gtypeh) = f (h) (by (13.119.3)) .

Forget that we fixed h. We thus have shown that
(∑

λ∈Parn
f (gλ) 1λ

)
(h) = f (h) for each h ∈ Sn. In

other words,
∑
λ∈Parn

f (gλ) 1λ = f (since both
∑
λ∈Parn

f (gλ) 1λ and f are maps from Sn to C). This

proves (13.119.5).]
One of the claims of Theorem 4.4.1(a) is the formula

(13.119.9) ch (1λ) =
pλ
zλ

for every λ ∈ Parn .

Now, applying the map ch : AC → ΛC to both sides of the equality (13.119.5), we find

ch (f) = ch

( ∑
λ∈Parn

f (gλ) 1λ

)
=

∑
λ∈Parn

f (gλ) ch (1λ)︸ ︷︷ ︸
=
pλ
zλ

(by (13.119.9))

(since the map ch : AC → ΛC is C-linear)

=
∑

λ∈Parn

f (gλ) · pλ
zλ

=
1

n!

∑
σ∈Sn

f (σ) ptypeσ

(by (13.119.4)). This solves Exercise 4.4.5(a).
(b) It is easy to see that every k ∈ Sn and σ ∈ Sn satisfy

(13.119.10) ptypeσ = ptype(kσk−1).

[Proof of (13.119.10): Let k ∈ Sn and σ ∈ Sn. Then, (13.119.1) (applied to g = σ and h = kσk−1)
yields the equivalence(

σ and kσk−1 have the same cycle type
)
⇐⇒

(
σ and kσk−1 are conjugate

)
.

Hence, σ and kσk−1 have the same cycle type (since σ and kσk−1 are conjugate). In other words, typeσ =
type

(
kσk−1

)
. Hence, ptypeσ = ptype(kσk−1). This proves (13.119.10).]

883Proof. Assume the contrary. Thus, h has cycle type λ. In other words, the cycle type of h is λ. In other words, typeh is
λ (since typeh is the cycle type of h). In other words, typeh = λ. But this contradicts λ 6= typeh. This contradiction shows

that our assumption was false. Qed.



850 DARIJ GRINBERG AND VICTOR REINER

Let f ∈ RC (H). Applying (4.1.4) to G = Sn, we obtain

(13.119.11)
(

IndSn
H f

)
(g) =

1

|H|
∑
k∈Sn:

kgk−1∈H

f
(
kgk−1

)

for all g ∈ Sn. Furthermore, Exercise 4.1.1(a) (applied to G = Sn) shows that IndSn
H f is a class function

on Sn, hence belongs to RC (Sn). Hence, Exercise 4.4.5(a) (applied to IndSn
H f instead of f) yields

ch
(

IndSn
H f

)
=

1

n!

∑
σ∈Sn

(
IndSn

H f
)

(σ)︸ ︷︷ ︸
=

1

|H|
∑

k∈Sn:
kσk−1∈H

f(kσk−1)

(by (13.119.11), applied to g=σ)

ptypeσ

=
1

n!

∑
σ∈Sn

1

|H|
∑
k∈Sn:

kσk−1∈H

f
(
kσk−1

)
ptypeσ︸ ︷︷ ︸

=ptype(kσk−1)
(by (13.119.10))

=
1

n!

∑
σ∈Sn

1

|H|
∑
k∈Sn:

kσk−1∈H

f
(
kσk−1

)
ptype(kσk−1)

=
1

n!

∑
σ∈Sn

∑
k∈Sn:

kσk−1∈H︸ ︷︷ ︸
=
∑

k∈Sn

∑
σ∈Sn:

kσk−1∈H

1

|H|
f
(
kσk−1

)
ptype(kσk−1)

=
1

n!

∑
k∈Sn

∑
σ∈Sn:

kσk−1∈H

1

|H|
f
(
kσk−1

)
ptype(kσk−1)

︸ ︷︷ ︸
=

∑
h∈Sn:
h∈H

1

|H|
f(h)ptypeh

(here, we have substituted h for kσk−1 in the sum,

since the map Sn→Sn, σ 7→kσk−1 is a bijection)

=
1

n!

∑
k∈Sn

∑
h∈Sn:
h∈H︸ ︷︷ ︸

=
∑
h∈H

(since H⊂Sn)

1

|H|
f (h) ptypeh =

1

n!

∑
k∈Sn

∑
h∈H

1

|H|
f (h) ptypeh︸ ︷︷ ︸

=|Sn|·
∑
h∈H

1

|H|
f(h)ptypeh

=
1

n!
· |Sn|︸︷︷︸

=n!

·
∑
h∈H

1

|H|
f (h) ptypeh =

1

n!
· n!︸ ︷︷ ︸

=1

·
∑
h∈H

1

|H|
f (h) ptypeh

=
∑
h∈H

1

|H|
f (h) ptypeh =

1

|H|
∑
h∈H

f (h) ptypeh.

This solves Exercise 4.4.5(b).

13.120. Solution to Exercise 4.4.6. Solution to Exercise 4.4.6. We need an auxiliary observation first.
If G is a finite group, then a class function χ ∈ RC (G) of G will be called integral if every g ∈ G satisfies
χ (g) ∈ Z. Then, if G and H are two groups and if φ and ψ are two integral class functions of G and H,
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respectively, then

(13.120.1) φ⊗ ψ is an integral class function of G×H.

(This is a consequence of the fact that (φ⊗ ψ) (g, h) = φ (g)ψ (h) for all (g, h) ∈ G×H.) Moreover, if H is
a subgroup of a group G and if χ is an integral class function of H, then

(13.120.2) IndGH χ is an integral class function of G.

(Proof of (13.120.2): Let J be a system of coset representatives for H\G, so that G =
⊔
j∈J Hj. Then,

Exercise 4.1.1(a) (applied to f = χ) shows that IndGH χ is a class function on G. Also, Exercise 4.1.1(b)
(applied to f = χ) yields(

IndGH χ
)

(g) =
∑
j∈J:

jgj−1∈H

χ
(
jgj−1

)︸ ︷︷ ︸
∈Z

(since χ is an integral
class function)

∈ Z for all g ∈ G.

In other words, IndGH χ is an integral class function on G. This proves (13.120.2).)
Now let A = A (S). For every a ∈ A, every n ≥ 0 and every g ∈ Sn, we define a (g) to mean the value at

g of the n-th homogeneous component of a. Let Ã denote the subset of A formed by all a ∈ A such that:

(13.120.3) (for every n ≥ 0 and every g ∈ Sn, we have a (g) ∈ Z) .

It is clear that Ã is a graded Z-submodule of A and contains 1 = 1S0
.

We are now going to show that Ã is closed under multiplication. In order to do so, it is clearly enough

to prove that if a ∈ Ã is homogeneous of degree n and b ∈ Ã is homogeneous of degree m, then ab ∈ Ã. But

this is now easy: Since a ∈ Ã, we know that a is an integral class function on Sn. Similarly, b is an integral
class function on Sm. Hence, (13.120.1) shows that a ⊗ b is an integral class function on Sn ×Sm. Thus,

Ind
Sn+m

Sn×Sm (a⊗ b) is an integral class function on Sn+m (by (13.120.2)). In other words, ab is an integral

class function on Sn+m (since ab = indn+m
n,m (a⊗ b) = Ind

Sn+m

Sn×Sm (a⊗ b)). In other words, ab ∈ Ã. This

proves that Ã is closed under multiplication. Hence, Ã is a subring of A (since Ã is a Z-submodule of A

and contains 1 = 1S0
). Thus, ch

(
Ã
)

(where ch is defined as in Theorem 4.4.1) is a subring of Λ. For every

n ≥ 1, we have 1Sn ∈ Ã (by the definitions), so that ch
(
1Sn

)
∈ ch

(
Ã
)

. Since ch
(
1Sn

)
= hn, this rewrites

as hn ∈ ch
(
Ã
)

. Thus, the subring ch
(
Ã
)

of Λ contains hn for all n ≥ 1. Hence, ch
(
Ã
)

= Λ (because the

hn generate Λ as a ring). Therefore, Ã = A (since ch is an isomorphism). If we recall how Ã was defined,
we thus see that every a ∈ A satisfies (13.120.3).

Now, fix n ≥ 0 and g ∈ Sn and a finite-dimensional CSn-module V . Then, χV ∈ R (Sn) ⊂ A. Thus,
(13.120.3) (which holds for every a ∈ A, as we now know) yields that χV (g) ∈ Z, which solves part (a) of
the problem.

Note that a different way to solve part (a) would be by showing that Λ is contained in the Z-submodule

of ΛQ spanned by the
pλ
zλ

for all partitions λ. This yields (by taking preimages under ch) that A is contained

in the Z-submodule of RC (S) generated by the 1λ. This way, we wouldn’t have to show that Ã is closed

under multiplication; instead, we would obtain Ã = A by noticing that all 1λ are integral class functions.
(b) This can be done using the Noether-Deuring theorem (in fact, it is easy to show that there are two

CSn-modules U and U ′ defined over Q satisfying U ′⊕V ∼= U , and then the Noether-Deuring theorem allows
to “pull back” V to a QSn-module as well, showing that V is also defined over Q). We are omitting this
argument because it is somewhat technical and not very enlightening. (The “right” approach, in my opinion,
is to construct the required QSn-module W explicitly; this is done, e.g., in [73, §7, between Proposition 1
and Lemma 3] or in [115, Corollaire 2.2.26]. Of course, this does not have much to do with what we are
doing in our notes.)
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13.121. Solution to Exercise 4.4.8. Solution to Exercise 4.4.8. (a) Let G be any group. If U1 and U2 are
two CG-modules, then the character χU1�U2

of the inner tensor product U1 � U2 of U1 and U2 is given by

(13.121.1) χU1�U2
(g) = χU1 (g)χU2 (g) for all g ∈ G.

(This is just a restatement of (13.118.1) using our notation U1 � U2 for what, in (13.118.1), was called
U1 ⊗ U2.)

Define a map ∗ : RC (G)×RC (G)→ RC (G), which will be written in infix notation (that is, we will write
a ∗ b instead of ∗ (a, b)), by setting

(a ∗ b) (g) = a (g) b (g) for any a ∈ RC (G) , b ∈ RC (G) and g ∈ G.

(This notation a∗b generalizes the notation sgnSn ∗f used in Theorem 4.4.1.) The map ∗ is clearly C-bilinear.
Notice that

(13.121.2) χU1
∗ χU2

= χU1�U2
for any two CG-modules U1 and U2

884

Let RQ (G) denote the set of class functions G → Q. This is clearly a subset of RC (G). In general, it is
not true that R (G) ⊂ RQ (G), but we will see that this holds for G = Sn for any n ∈ N.

It is clear that a ∗ b ∈ RQ (G) for any a ∈ RQ (G) and b ∈ RQ (G).
Now, forget that we fixed G. We have thus introduced a map ∗ : RC (G) × RC (G) → RC (G) for every

group G, and we have proved some properties of this map.
Let now n ∈ N. Exercise 4.4.6(a) yields that χV (g) ∈ Z ⊂ Q for every g ∈ Sn and every finite-dimensional

CSn-module V . Hence, χV is a map from Sn to Q for every finite-dimensional CSn-module V . In other
words, χV ∈ RQ (Sn) for every finite-dimensional CSn-module V . Thus, R (Sn) ⊂ RQ (Sn) (since R (Sn)
is the Z-module generated by the χV for V ranging over the irreducible CSn-modules).

Every element of RQ (Sn) is a class function Sn → Q, and thus a Q-linear combination of the 1λ for
λ ∈ Parn (because these functions 1λ are the indicator functions for the conjugacy classes of Sn). Thus, the
Q-module RQ (Sn) is spanned by the 1λ for λ ∈ Parn.

As in Theorem 4.4.1, we extend the PSH-isomorphism ch : A → Λ to a C-Hopf algebra isomorphism
AC → ΛC; we shall denote the latter isomorphism by ch as well. Now, let us notice that

(13.121.3) ch (RQ (Sn)) ⊂ ΛQ.

885 Furthermore,

(13.121.4) ch (a ∗ b) = (ch a) ∗ (ch b) for any a ∈ RQ (Sn) and b ∈ RQ (Sn) .

886

884Proof of (13.121.2): Let U1 and U2 be two CG-modules. Then, every g ∈ G satisfies(
χU1
∗ χU2

)
(g) = χU1

(g)χU2
(g) (by the definition of ∗)

= χU1�U2
(g) (by (13.121.1)) .

In other words, χU1 ∗ χU2 = χU1�U2
. This proves (13.121.2).

885Proof of (13.121.3): It is clearly enough to show that ch (1λ) ∈ ΛQ for every λ ∈ Parn (because the Q-module RQ (Sn)

is spanned by the 1λ for λ ∈ Parn). But this follows from the fact that ch (1λ) = pλ
zλ

for every λ ∈ Parn (this is part of

Theorem 4.4.1(a)). Thus, (13.121.3) is proven.
886Proof of (13.121.4): Let a ∈ RQ (Sn) and b ∈ RQ (Sn). The equality (13.121.4) is clearly Q-linear in each of a and b.

Hence, in proving this equality, we can WLOG assume that a and b are two of the functions 1λ for λ ∈ Parn (because the

Q-module RQ (Sn) is spanned by the 1λ for λ ∈ Parn). In other words, we can WLOG assume that a = 1λ and b = 1µ for

some λ ∈ Parn and µ ∈ Parn. Assume this, and consider these λ and µ.
Recall that 1λ is the indicator function for the set of all permutations in Sn having cycle type λ, and that 1µ is the indicator

function for the set of all permutations in Sn having cycle type µ. Hence, every g ∈ Sn satisfies

1λ (g) · 1µ (g) = δλ,µ · 1λ (g)

(because both sides of this equality vanish if g does not have cycle type λ, and also vanish if λ 6= µ, but in the remaining case
are both equal to 1). Thus, every g ∈ Sn satisfies(

1λ ∗ 1µ

)
(g) = 1λ (g) · 1µ (g)

(
by the definition of 1λ ∗ 1µ

)
= δλ,µ · 1λ (g) =

(
δλ,µ1λ

)
(g) .
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Now, let U1 and U2 be two CSn-modules. Then, χU1 ∈ R (Sn) ⊂ RQ (Sn) and similarly χU2 ∈ RQ (Sn),
so that (13.121.4) (applied to a = χU1 and b = χU2) yields ch (χU1 ∗ χU2) = ch (χU1) ∗ ch (χU2). Due to
(13.121.2), this rewrites as ch (χU1�U2

) = ch (χU1
) ∗ ch (χU2

). This solves Exercise 4.4.8(a).
(c) Let us first recall that pλ ∗ pµ = δλ,µzλpλ for any two partitions λ and µ. Thus, pλ ∗ pµ = 0 whenever

λ 6= µ. This yields, in particular, that pλ ∗ pµ = 0 whenever |λ| 6= |µ|. In other words, for any two distinct
integers n and m, we have pλ ∗ pµ = 0 for every λ ∈ Parn and every µ ∈ Parm. This yields that, for any
two distinct integers n and m, we have a ∗ b = 0 for every a ∈ Λn and b ∈ Λm (because a is a Q-linear
combination of the pλ with λ ∈ Parn, whereas b is a Q-linear combination of the pµ with µ ∈ Parm). In
particular, for any two distinct integers n and m, we have

sµ ∗ sν = 0 for any ν ∈ Parn and µ ∈ Parm

(because sµ ∈ Λm and sν ∈ Λn). In other words,

(13.121.5) sµ ∗ sν = 0 for any partitions µ and ν satisfying |µ| 6= |ν| .

Now, let µ and ν be two partitions. We need to prove that sµ ∗sν ∈
∑
λ∈Par Nsλ. This is obvious (because

of (13.121.5)) in the case when |µ| 6= |ν|, so we can WLOG assume that |µ| = |ν|. Assume this, and let
n = |µ| = |ν|. Consider the two irreducible characters χµ and χν of CSn defined as in Theorem 4.4.1(a).
Then, χµ = χU1

and χν = χU2
for two CSn-modules U1 and U2. Consider these U1 and U2. We have

ch

χU1︸︷︷︸
=χµ

 = ch (χµ) = sµ (by Theorem 4.4.1(a)) and similarly ch (χU2
) = sν . But U1 � U2 (being a CSn-

module) must be a direct sum of finitely many irreducible CSn-modules, and thus the character χU1�U2
is

the sum of finitely many irreducible characters of CSn. Since the irreducible characters of CSn are the χλ

for λ ∈ Parn, this shows that χU1�U2
is the sum of finitely many χλ. In other words, χU1�U2

∈
∑
λ∈Par Nχλ.

Applying the map ch to both sides of this relation, we obtain

ch (χU1�U2
) ∈ ch

( ∑
λ∈Par

Nχλ
)

=
∑
λ∈Par

N ch
(
χλ
)︸ ︷︷ ︸

=sλ
(by Theorem 4.4.1(a))

(since ch is Z-linear)

=
∑
λ∈Par

Nsλ.

Hence, 1λ ∗ 1µ = δλ,µ1λ. Applying the map ch to this equality, we obtain

ch
(

1λ ∗ 1µ

)
= ch

(
δλ,µ1λ

)
= δλ,µ ch (1λ)︸ ︷︷ ︸

=
pλ

zλ
(by Theorem 4.4.1(a))

= δλ,µ
pλ

zλ
= δλ,µz

−1
λ pλ.

Compared with

(ch (1λ))︸ ︷︷ ︸
=
pλ

zλ
(by Theorem 4.4.1(a))

∗
(

ch
(

1µ

))
︸ ︷︷ ︸

=
pµ

zµ
(by Theorem 4.4.1(a))

=
pλ

zλ
∗
pµ

zµ
= z−1

λ z−1
µ pλ ∗ pµ︸ ︷︷ ︸

=δλ,µzλpλ
(by the definition of ∗)

= z−1
λ z−1

µ δλ,µzλpλ = δλ,µz
−1
µ︸ ︷︷ ︸

=δλ,µz
−1
λ

(because the two sides of this
equality are equal if λ=µ, and

vanish otherwise)

pλ = δλ,µz
−1
λ pλ,

this yields ch
(

1λ ∗ 1µ

)
= (ch (1λ)) ∗

(
ch
(

1µ

))
. This rewrites as ch (a ∗ b) = (ch a) ∗ (ch b) (since a = 1λ and b = 1µ). Thus,

(13.121.4) is proven.
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Since

ch (χU1�U2
) = ch (χU1

)︸ ︷︷ ︸
=sµ

∗ ch (χU2
)︸ ︷︷ ︸

=sν

(by Exercise 4.4.8(a))

= sµ ∗ sν ,
this rewrites as sµ ∗ sν ∈

∑
λ∈Par Nsλ. This solves Exercise 4.4.8(c).

(b) Alternative solution of Exercise 2.9.4(h). We need to prove that f ∗ g ∈ Λ for any f ∈ Λ and g ∈ Λ.
Since the binary operation ∗ is Z-bilinear, it is clearly enough to prove that sµ ∗ sν ∈ Λ for any partitions µ
and ν (since (sλ)λ∈Par is a Z-basis of Λ). But this follows from the fact that

sµ ∗ sν ∈
∑
λ∈Par

Nsλ (by Exercise 4.4.8(c))

⊂ Λ

for any partitions µ and ν. Thus, Exercise 2.9.4 (h) is solved again.

13.122. Solution to Exercise 4.4.9. Solution to Exercise 4.4.9. Let us introduce a fundamental construc-
tion. If X is any set, then we let SX denote the symmetric group on X (that is, the group of all permutations
of X). For any two sets X and Y and any permutations σ ∈ SX and τ ∈ SY , we define a permutation σ× τ
of X × Y by setting

(σ × τ) ((x, y)) = (σ (x) , τ (y)) for every x ∈ X and y ∈ Y.
Thus, for any two sets X and Y , we can define a map

cross : SX ×SY → SX×Y ,

(σ, τ) 7→ σ × τ.
We notice a few properties of this map (whose simple proof we leave to the reader):

Lemma 13.122.1. Let X and Y be two sets.

(a) The map cross : SX ×SY → SX×Y is a group homomorphism.
(b) If the sets X and Y are nonempty, then the map cross : SX ×SY → SX×Y is injective.

The following deeper fact provides the first hint of a combinatorial interpretation of �:

Lemma 13.122.2. Let X and Y be two finite sets. Let σ ∈ SX and τ ∈ SY be two permutations. Let λ,
µ and κ be the cycle types of the permutations σ ∈ SX , τ ∈ SY and σ × τ ∈ SX×Y . Then,

pλ � pµ = pκ.

Proof of Lemma 13.122.2. The partition λ is the cycle type of the permutation σ. In other words, λ1, λ2, . . . , λ`(λ)

are the lengths of the cycles of the permutation σ. Let C1, C2, . . . , C`(λ) denote these cycles, labelled in such a

way that each Ci has length λi. Clearly,
(
C1, C2, . . . , C`(λ)

)
is a set partition of the set X; thus, X =

⊔`(λ)
i=1 Ci.

The partition µ is the cycle type of the permutation τ . In other words, µ1, µ2, . . . , µ`(µ) are the lengths of
the cycles of the permutation τ . Let D1, D2, . . . , D`(µ) denote these cycles, labelled in such a way that each

Dj has length µj . Clearly,
(
D1, D2, . . . , D`(µ)

)
is a set partition of the set Y ; thus, Y =

⊔`(µ)
j=1 Dj .

Since X =
⊔`(λ)
i=1 Ci and Y =

⊔`(µ)
j=1 Dj , we have

X × Y =

`(λ)⊔
i=1

Ci

×
`(µ)⊔
j=1

Dj

 =

`(λ)⊔
i=1

`(µ)⊔
j=1

(Ci ×Dj) .

In particular, the sets Ci×Dj for (i, j) ranging over all (i, j) ∈ {1, 2, . . . , ` (λ)}×{1, 2, . . . , ` (µ)} are disjoint.
We now make the following claim:

Claim A: Let i ∈ {1, 2, . . . , ` (λ)} and j ∈ {1, 2, . . . , ` (µ)}. Then, the subset Ci × Dj of
X ×Y is the union of gcd (λi, µj) disjoint cycles of the permutation σ× τ , and each of these
cycles has length lcm (λi, µj).
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Proof of Claim A: We know that Ci is a cycle of σ; thus, σ (Ci) ⊂ Ci. Similarly, τ (Dj) ⊂ Dj . Now,
(σ × τ) (Ci ×Dj) = σ (Ci)︸ ︷︷ ︸

⊂Ci

× τ (Dj)︸ ︷︷ ︸
⊂Dj

⊂ Ci ×Dj . Hence, the permutation σ × τ restricts to a permutation of

the subset Ci ×Dj of X × Y .
Let us first show that, for every h ∈ Ci ×Dj , the cycle of σ × τ containing h is a subset of Ci ×Dj and

has length lcm (λi, µj).

Indeed, fix h ∈ Ci ×Dj . Then, all of the elements h, (σ × τ) (h) , (σ × τ)
2

(h) , (σ × τ)
3

(h) , . . . belong to
Ci × Dj

887. Hence, the cycle of σ × τ containing h is a subset of Ci × Dj (because this cycle consists

of these very elements h, (σ × τ) (h) , (σ × τ)
2

(h) , (σ × τ)
3

(h) , . . .). The length of this cycle is the smallest

positive integer N such that (σ × τ)
N

(h) = h. We shall now prove that this smallest positive integer is
lcm (λi, µj).

Indeed, let us write h in the form h = (c, d) for some c ∈ Ci and d ∈ Dj . Then, the element c belongs to a
cycle of σ which has length λi (namely, Ci). Hence, the sequence c, σ (c) , σ2 (c) , σ3 (c) , . . . repeats every λi
elements (and not more frequently). Thus, for any N ∈ N, we have the following equivalence of statements:(

σN (c) = c
)
⇐⇒ (λi | N) .

Similarly, for any N ∈ N, we have the following equivalence of statements:(
τN (d) = d

)
⇐⇒ (µj | N) .

Now, for any N ∈ N, we have the following equivalence of statements:

(
(σ × τ)

N
(h) = h

)
⇐⇒

(σ × τ)
N

((c, d))︸ ︷︷ ︸
=(σN (c),τN (d))

= (c, d)

 (since h = (c, d))

⇐⇒
((
σN (c) , τN (d)

)
= (c, d)

)
⇐⇒

(σN (c) = c
)︸ ︷︷ ︸

⇐⇒(λi|N)

and
(
τN (d) = d

)︸ ︷︷ ︸
⇐⇒(µj |N)


⇐⇒ (λi | N and µj | N) ⇐⇒ (lcm (λi, µj) | N) .

Thus, the smallest positive integer N such that (σ × τ)
N

(h) = h is lcm (λi, µj). In other words, the length
of the cycle of σ × τ containing h is lcm (λi, µj) (since the length of the cycle of σ × τ containing h is the

smallest positive integer N such that (σ × τ)
N

(h) = h).
Now, let us forget that we fixed h. We thus have proven that, for every h ∈ Ci ×Dj ,

(13.122.1) the cycle of σ × τ containing h is a subset of Ci ×Dj and has length lcm (λi, µj) .

These cycles (for h ranging over all Ci × Dj) clearly cover the set Ci × Dj (because each h ∈ Ci × Dj is
contained in its corresponding cycle). Thus, Ci×Dj is the union of several cycles of the permutation σ× τ ,
and each of these cycles has length lcm (λi, µj). Since any two cycles of σ× τ are either disjoint or identical,
we can get rid of redundant cycles in this union, and thus obtain the following conclusion: Ci ×Dj is the
union of several disjoint cycles of the permutation σ × τ , and each of these cycles has length lcm (λi, µj).
In order to complete the proof of Claim A, it thus remains only to show that the number of these cycles is
gcd (λi, µj). But this is easy: These cycles are all disjoint, and cover a set of size λiµj (in fact, they cover
the set Ci×Dj , which has size |Ci ×Dj | = |Ci|︸︷︷︸

=λi

· |Dj |︸︷︷︸
=µj

= λiµj); since they have length lcm (λi, µj) each, their

number must be
λiµj

lcm (λi, µj)
= gcd (λi, µj). Thus, the proof of Claim A is complete.

We shall now continue our proof of Lemma 13.122.2.

887since the permutation σ × τ restricts to a permutation of the subset Ci ×Dj of X × Y
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The partition κ is the cycle type of the permutation σ×τ . In other words, κ1, κ2, . . . , κ`(κ) are the lengths
of the cycles of the permutation σ × τ . Hence,

`(κ)∏
u=1

pκu =
∏

E is a cycle of σ×τ

p|E|,

where |E| denotes the length of any cycle E. But every cycle E of σ × τ must satisfy E ⊂ Ci ×Dj (where
we regard E as a set) for precisely one (i, j) ∈ {1, 2, . . . , ` (λ)} × {1, 2, . . . , ` (µ)} 888. Hence,∏

E is a cycle of σ×τ

p|E| =

`(λ)∏
i=1

`(µ)∏
j=1

∏
E is a cycle of σ×τ ;

E⊂Ci×Dj

p|E|.

But every (i, j) ∈ {1, 2, . . . , ` (λ)} × {1, 2, . . . , ` (µ)} satisfies∏
E is a cycle of σ×τ ;

E⊂Ci×Dj

p|E| = p
gcd(λi,µj)

lcm(λi,µj)

889. Now, the definition of pκ yields

pκ = pκ1
pκ2
· · · pκ`(κ)

=

`(κ)∏
u=1

pκu =
∏

E is a cycle of σ×τ

p|E| =

`(λ)∏
i=1

`(µ)∏
j=1

∏
E is a cycle of σ×τ ;

E⊂Ci×Dj

p|E|

︸ ︷︷ ︸
=p

gcd(λi,µj)
lcm(λi,µj)

=

`(λ)∏
i=1

`(µ)∏
j=1

p
gcd(λi,µj)

lcm(λi,µj)
= pλ � pµ

since pλ � pµ is defined to be

`(λ)∏
i=1

`(µ)∏
j=1

p
gcd(λi,µj)

lcm(λi,µj)

 .

This proves Lemma 13.122.2. �

(a) We already know that the operation � is Q-bilinear. Thus, we only need to prove that the binary
operation � is commutative and associative and has unity p1.

We shall only prove the associativity of � (since the other two properties can be proven similarly). In
other words, we shall prove that (u� v)� w = u� (v � w) for any three elements u, v and w of ΛQ.

So let u, v and w be three elements of ΛQ. We need to prove the equality (u� v) � w = u � (v � w).
Since this equality is Q-linear in each of u, v and w (this is because the operation � is Q-bilinear), we can
WLOG assume that u, v and w belong to the basis (pλ)λ∈Par of the Q-vector space ΛQ. Assume this. Then,
there exist three partitions λ, µ and ν such that u = pλ, v = pµ and w = pν . Consider these λ, µ and ν.

There exist a finite set A and a permutation α ∈ SA such that λ is the cycle type of α. Consider these
A and α.

888Proof. Let E be a cycle of σ × τ . Then, E is nonempty, so that there exists an element h of E. Fix such an h. We

have h ∈ E ⊂ X × Y =
⊔`(λ)
i=1

⊔`(µ)
j=1 (Ci ×Dj). Hence, there exists some (i, j) ∈ {1, 2, . . . , ` (λ)} × {1, 2, . . . , ` (µ)} such that

h ∈ Ci × Dj . Consider this (i, j). Then, E is the cycle of σ × τ containing h. Hence, (13.122.1) shows that E is a subset of

Ci ×Dj and has length lcm (λi, µj). So we know that E ⊂ Ci ×Dj .
So we have found a pair (i, j) ∈ {1, 2, . . . , ` (λ)} × {1, 2, . . . , ` (µ)} such that E ⊂ Ci × Dj . There clearly cannot be two

distinct such pairs (i, j) (since the sets Ci ×Dj for (i, j) ranging over all (i, j) ∈ {1, 2, . . . , ` (λ)}× {1, 2, . . . , ` (µ)} are disjoint),

and so this pair (i, j) is unique.
889Proof. Let (i, j) ∈ {1, 2, . . . , ` (λ)} × {1, 2, . . . , ` (µ)}. Claim A yields that the subset Ci × Dj of X × Y is the union

of gcd (λi, µj) disjoint cycles of the permutation σ × τ , and each of these cycles has length lcm (λi, µj). Obviously, these

gcd (λi, µj) disjoint cycles are exactly all the cycles E of σ× τ which satisfy E ⊂ Ci×Dj . Thus, there are precisely gcd (λi, µj)
cycles E of σ × τ which satisfy E ⊂ Ci ×Dj , and each of these cycles E has length lcm (λi, µj). Hence,∏

E is a cycle of σ×τ ;
E⊂Ci×Dj

p|E|︸︷︷︸
=p

lcm(λi,µj)
(since E has length lcm(λi,µj),

that is, we have |E|=lcm(λi,µj))

=
∏

E is a cycle of σ×τ ;
E⊂Ci×Dj

plcm(λi,µj)
= p

gcd(λi,µj)
lcm(λi,µj)

(since there are precisely gcd (λi, µj) cycles E of σ × τ which satisfy E ⊂ Ci ×Dj), qed.
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There exist a finite set B and a permutation β ∈ SB such that µ is the cycle type of β. Consider these
B and β.

There exist a finite set C and a permutation γ ∈ SC such that ν is the cycle type of γ. Consider these
C and γ.

For every permutation π of any finite set X, we let typeπ denote the cycle type of π. Lemma 13.122.2
(applied to X = A, Y = B, σ = α, τ = β and κ = type (α× β)) yields pλ � pµ = ptype(α×β). Lemma
13.122.2 (applied to A×B, C, α× β, γ, type (α× β), ν and type ((α× β)× γ) instead of X, Y , σ, τ , λ, µ
and κ) yields ptype(α×β) � pν = ptype((α×β)×γ). Thus, u︸︷︷︸

=pλ

� v︸︷︷︸
=pµ

� w︸︷︷︸
=pν

= (pλ � pµ)︸ ︷︷ ︸
=ptype(α×β)

�pν = ptype(α×β) � pν = ptype((α×β)×γ).

A similar argument shows that u� (v � w) = ptype(α×(β×γ)).
Let us now say that if U and V are two finite sets, and if σ ∈ SU and τ ∈ SV are two permutations,

then the permutations σ and τ are isomorphic if and only if there exists a bijection ϕ : U → V such that
ϕ ◦ σ = τ ◦ϕ. The intuition behind this meaning of “isomorphism” is that two permutations are isomorphic
if one of them becomes the other after a relabelling of its ground set. It is clear that two isomorphic
permutations of finite sets must have the same cycle type.

But the permutations (α× β)×γ ∈ S(A×B)×C and α×(β × γ) ∈ SA×(B×C) are isomorphic (as witnessed
by the bijection ϕ : (A×B)×C → A×(B × C) sending every ((a, b) , c) ∈ (A×B)×C to (a, (b, c))). Hence,
type ((α× β)× γ) = type (α× (β × γ)) (since two isomorphic permutations of finite sets must have the same
cycle type). Thus,

(u� v)� w = ptype((α×β)×γ) = ptype(α×(β×γ)) (since type ((α× β)× γ) = type (α× (β × γ)))

= u� (v � w) .

This finishes the proof of the equality (u� v)� w = u� (v � w), and thus Exercise 4.4.9(a) is solved.
(b) Let f ∈ ΛQ. We need to prove the equality 1 � f = ε1 (f) 1. Since this equality is Q-linear in f

(because the operation � is Q-bilinear and the map ε1 is Q-linear), we can WLOG assume that f belongs
to the basis (pλ)λ∈Par of the Q-vector space ΛQ. Assume this. Then, there exists a partition λ such that
f = pλ. Consider this λ. The definition of p∅ � pλ yields

p∅ � pλ =

`(∅)∏
i=1

`(λ)∏
j=1

p
gcd(∅i,λj)
lcm(∅i,λj) =

0∏
i=1

`(λ)∏
j=1

p
gcd(∅i,λj)
lcm(∅i,λj) (since ` (∅) = 0)

= (empty product) = 1.

Hence, 1︸︷︷︸
=p∅

� f︸︷︷︸
=pλ

= p∅ � pλ = 1.

On the other hand, ε1 (pλ) = 1 890. Thus, ε1

 f︸︷︷︸
=pλ

 = ε1 (pλ) = 1. Hence, 1�f = 1 = ε1 (f) = ε1 (f) 1.

This solves Exercise 4.4.9(b).
(c) For every finite group G and every h ∈ G, we define a class function αG,h ∈ RC (G) as in Exercise

4.4.3.

890Proof. We have λ =
(
λ1, λ2, . . . , λ`(λ)

)
. Thus, the definition of pλ yields pλ = pλ1

pλ2
· · · pλ`(λ)

=
∏`(λ)
i=1 pλi . Applying

the map ε1 to both sides of this equality, we conclude

ε1 (pλ) = ε1

`(λ)∏
i=1

pλi

 =

`(λ)∏
i=1

ε1
(
pλi
)︸ ︷︷ ︸

=1
(by the definition

of ε1)

(since ε1 is a Q-algebra homomorphism)

=

`(λ)∏
i=1

1 = 1,

qed.
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We next recall the notation Uτ defined in Definition 4.3.3. We state a few properties of this notation:

Lemma 13.122.3. Let K and H be two finite groups. Let τ : K → H be a group homomorphism.

(a) For every f ∈ RC (H), the map f ◦ τ : K → C belongs to RC (K). We can thus define a C-linear
map τ∗ : RC (H)→ RC (K) by

(τ∗ (f) = f ◦ τ for every f ∈ RC (H)) .

(b) For every (finite-dimensional) CH-module U , we have χUτ = τ∗ (χU ).
(c) We have τ∗ (R (H)) ⊂ R (K).
(d) Assume that τ : K → H is a group isomorphism. Then, τ∗

(
αH,τ(g)

)
= αK,g for every g ∈ K.

The proof of Lemma 13.122.3 is straightforward and left to the reader. (We will not use its part (c).)
Finally, here come two more simple facts whose proofs we leave to the reader:

Lemma 13.122.4. Let G and H be two groups. Let Ω : G → H be an injective group homomorphism.
Define a map Ω : G→ Ω (G) by (

Ω (g) = Ω (g) for every g ∈ G
)
.

Then, Ω is a well-defined group isomorphism.

Lemma 13.122.5. Let U and V be two finite sets. Let ϕ : U → V be a bijection. Define a map ϕ∗ : SU →
SV by (

ϕ∗ (π) = ϕ ◦ π ◦ ϕ−1 for every π ∈ SU

)
.

(a) This map ϕ∗ is well-defined and a group isomorphism.
(b) Let π ∈ SU . Then, the cycle type of ϕ∗ (π) equals the cycle type of π.

Recall that � is a Q-bilinear map ΛQ × ΛQ → ΛQ. Let us extend � to a C-bilinear map ΛC × ΛC → ΛC;
we will still denote this extended map by �.

Recall that ch : A → Λ is a Z-Hopf algebra isomorphism. Hence, the extension of ch to a C-linear map
AC → ΛC is a C-Hopf algebra isomorphism. We shall denote this extension by chC.

We are going to repeatedly use the following fact (which is easy to obtain from the solution of Exercise
4.4.3): If λ is a partition of a nonnegative integer n, and if g ∈ Sn is a permutation having cycle type λ,
then

(13.122.2) chC (αSn,g) = pλ.

891

Theorem 4.4.1(a) yields ch
(
χλ
)

= sλ for every partition λ (where χλ is defined as in Theorem 4.4.1(a)).
Since chC is the extension of ch to a C-linear map AC → ΛC, we have

(13.122.3) chC
(
χλ
)

= ch
(
χλ
)

= sλ for every partition λ.

Let us now come back to solving Exercise 4.4.9(c). Let µ and ν be two partitions. We need to show that
sµ � sν ∈

∑
λ∈Par Nsλ.

Let m = |µ| and n = |ν|. Then, µ ∈ Parm and ν ∈ Parn. If min {m,n} = 0, then sµ � sν ∈
∑
λ∈Par Nsλ

is easily seen to hold892. Hence, for the rest of this proof, we can WLOG assume that we don’t have
min {m,n} = 0. Assume this. Thus, min {m,n} ≥ 1. Hence, m ≥ 1 and n ≥ 1.

891Proof of (13.122.2): Let λ be a partition of a nonnegative integer n. Let g ∈ Sn be a permutation having cycle

type λ. Define a map Φ : ΛC → AC as in the solution of Exercise 4.4.3(d). Then, (13.117.8) yields Φ (pλ) = αSn,g , so that

αSn,g = Φ (pλ). But chC ◦Φ = idΛC (this was shown in the solution of Exercise 4.4.3(d)). Now, chC

αSn,g︸ ︷︷ ︸
=Φ(pλ)

 = chC (Φ (pλ)) =

(chC ◦Φ)︸ ︷︷ ︸
=idΛC

(pλ) = idΛC (pλ) = pλ. This proves (13.122.2).

892Proof. Assume that min {m,n} = 0.
Recall that ΛQ, equipped with the binary operation �, becomes a commutative Q-algebra with unity p1 (according to

Exercise 4.4.9(a)). Thus, the operation � is commutative. Hence, sµ � sν = sν � sµ.
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We notice that

(13.122.4) chC (χP ) ∈
∑
λ∈Par

Nsλ for every finite-dimensional CSnm-module P .

893

We have Sn = S{1,2,...,n} (by the definition of Sn) and Sm = S{1,2,...,m} (by the definition of Sm) and
Snm = S{1,2,...,nm} (by the definition of Snm). Recall that we have defined a map cross : SX×SY → SX×Y
for any two sets X and Y . Now, set X = {1, 2, . . . , n} and Y = {1, 2, . . . ,m}, and consider the map
cross : SX ×SY → SX×Y . In the following, when we speak of cross, we will always mean this map.

We have

∣∣∣∣∣∣ X︸︷︷︸
={1,2,...,n}

∣∣∣∣∣∣ = |{1, 2, . . . , n}| = n and

∣∣∣∣∣∣ Y︸︷︷︸
={1,2,...,m}

∣∣∣∣∣∣ = |{1, 2, . . . ,m}| = m. Also, since X =

{1, 2, . . . , n}, we have SX = S{1,2,...,n} = Sn. Similarly, SY = Sm.
The set X is nonempty (since |X| = n ≥ 1), and the set Y is nonempty (similarly). Hence, Lemma

13.122.1(b) yields that the map cross : SX ×SY → SX×Y is injective. Lemma 13.122.1(a) yields that the
map cross : SX ×SY → SX×Y is a group homomorphism. Thus, the map cross is a group homomorphism
from SX ×SY to SX×Y . Since SX = Sn and SY = Sm, this rewrites as follows: The map cross is a group
homomorphism from Sn ×Sm to SX×Y .

The set X × Y has cardinality |X × Y | = |X|︸︷︷︸
=n

· |Y |︸︷︷︸
=m

= nm, and thus is in bijection with the set

{1, 2, . . . , nm}. In other words, there exists a bijection ϕ : X × Y → {1, 2, . . . , nm}. Fix such a bijec-
tion ϕ. Define a map ϕ∗ : SX×Y → S{1,2,...,nm} as in Lemma 13.122.5 (applied to U = X × Y and
V = {1, 2, . . . , nm}). Then, Lemma 13.122.5(a) (applied to U = X × Y and V = {1, 2, . . . , nm}) yields that
this map ϕ∗ is well-defined and a group isomorphism. In particular, ϕ∗ is an injective group homomorphism.

We can WLOG assume that m ≤ n (since otherwise, we can just interchange µ and m with ν and n (because sµ � sν =

sν � sµ)). Assume this. Then, min {m,n} = m, so that m = min {m,n} = 0. Hence, µ ∈ Parm = Par0 (since m = 0), so that
µ = ∅ and thus sµ = s∅ = 1.

Let us use the notations of Exercise 4.4.9(b). We have sµ︸︷︷︸
=1

�sν = 1 � sν = ε1 (sν) 1 (by Exercise 4.4.9(b), applied to

f = sν). But ε1 (sν) = sν (1) (by Exercise 2.9.4(i), applied to f = sν) and sν (1) ∈ N (since sν is a sum of monomials). Hence,
sµ � sν = ε1 (sν)︸ ︷︷ ︸

∈N

1︸︷︷︸
=s∅

∈ Ns∅ ⊂
∑
λ∈Par Nsλ, qed.

893Proof of (13.122.4): Let P be a finite-dimensional CSnm-module. Then, P must be a direct sum of finitely many simple
CSnm-modules. In other words, there exist some simple CSnm-modules V1, V2, . . . , Vj such that P ∼= V1 ⊕ V2 ⊕ · · · ⊕ Vj as

CSnm-modules. Consider these V1, V2, . . . , Vj . We shall now show that χVi ∈
∑
λ∈Par Nχλ for every i ∈ {1, 2, . . . , j}.

Indeed, let i ∈ {1, 2, . . . , j}. Then, Vi is a simple CSnm-module. Hence, χVi is an irreducible character of CSnm. But (a part

of) Theorem 4.4.1(a) (applied to nm instead of n) says that all irreducible characters of Snm have the form χλ with λ ∈ Parnm.

Thus, χVi has the form χVi = χλ for some λ ∈ Parnm. In other words, χVi ∈

χλ | λ ∈ Parnm︸ ︷︷ ︸
⊂Par

 ⊂ {χλ | λ ∈ Par
}
⊂

∑
λ∈Par Nχλ.

Now, let us forget that we fixed i. We thus have shown that χVi ∈
∑
λ∈Par Nχλ for every i ∈ {1, 2, . . . , j}. Thus,∑j

i=1 χVi︸︷︷︸
∈
∑
λ∈Par Nχλ

∈
∑j
i=1

∑
λ∈Par Nχλ ⊂

∑
λ∈Par Nχλ (since

∑
λ∈Par Nχλ is closed under addition).

But isomorphic CSnm-modules have equal characters. Hence, since P ∼= V1 ⊕ V2 ⊕ · · · ⊕ Vj , we have

χP = χV1⊕V2⊕···⊕Vj = χV1
+ χV2

+ · · ·+ χVj =

j∑
i=1

χVi ∈
∑
λ∈Par

Nχλ.

Applying the map chC to both sides of this relation, we obtain

chC (χP ) ∈ chC

 ∑
λ∈Par

Nχλ
 ⊂ ∑

λ∈Par

N chC
(
χλ
)

︸ ︷︷ ︸
=sλ

(by (13.122.3))

(since the map chC is Z-linear)

=
∑
λ∈Par

Nsλ.

This proves (13.122.4).



860 DARIJ GRINBERG AND VICTOR REINER

Also, ϕ∗ is a group homomorphism from SX×Y to S{1,2,...,nm}, therefore a group homomorphism from
SX×Y to Snm (since Snm = S{1,2,...,nm}).

Hence, ϕ∗ ◦ cross is a group homomorphism from Sn ×Sm to Snm (since ϕ∗ is a group homomorphism
from SX×Y to Snm, and since cross is a group homomorphism from Sn×Sm to SX×Y ). Also, ϕ∗ ◦ cross is
injective (since ϕ∗ and cross are injective). Let Ω = ϕ∗ ◦ cross. Then, Ω is an injective group homomorphism
from Sn ×Sm to Snm (since ϕ∗ ◦ cross is an injective group homomorphism from Sn ×Sm to Snm). We
can define a map Ω : Sn ×Sm → Ω (Sn ×Sm) by(

Ω (g) = Ω (g) for every g ∈ Sn ×Sm

)
(since Ω (g) ∈ Ω (Sn ×Sm) for every g ∈ Sn×Sm). Consider this Ω. Lemma 13.122.4 (applied to Sn×Sm

and Snm instead of G and H) yields that Ω is a well-defined group isomorphism. Hence, the inverse Ω
−1

of

Ω is well-defined and also a group isomorphism. Let τ denote this inverse Ω
−1

. Thus,

τ = Ω
−1

is a group isomorphism Ω (Sn ×Sm)→ Sn ×Sm.

Hence, a C-linear map τ∗ : RC (Sn ×Sm)→ RC (Ω (Sn ×Sm)) is defined (according to Lemma 13.122.3(a),
applied to Ω (Sn ×Sm) and Sn ×Sm instead of K and H).

The following commutative diagram illustrates the group homomorphisms we have just introduced:

Sn ×Sm
� � cross //

Ω

!!

Ω
∼= **

SX×Y
ϕ∗

∼=
// Snm

Ω (Sn ×Sm)

τ

∼=

OO

+ � inclusion

88

(where the cycle formed by the Ω and τ arrows is not a mistake: these two maps are mutually inverse!).
In the following, for every k ∈ N, we let (ΛC)k denote the k-th homogeneous component of the graded

C-algebra ΛC. Note that (pλ)λ∈Park
is a basis of this C-vector space (ΛC)k.

Let us now claim that every a ∈ (ΛC)n and b ∈ (ΛC)m satisfy

(13.122.5) a� b = chC

(
IndSnm

Ω(Sn×Sm)

(
τ∗
(

(chC)
−1

(a)⊗ (chC)
−1

(b)
)))

(where we identify RC (Sn) ⊗ RC (Sm) with RC (Sn ×Sm) along the canonical isomorphism RC (Sn) ⊗
RC (Sm)→ RC (Sn ×Sm)) 894.

Proof of (13.122.5): Let a ∈ (ΛC)n and b ∈ (ΛC)m. We need to prove the equality (13.122.5). Since
this equality is C-linear in each of a and b (because the operations � and ⊗ are C-bilinear, and the maps

chC (chC)
−1

, IndSnm
Ω(Sn×Sm) and τ∗ are C-linear), we can WLOG assume that a is an element of the basis

(pλ)λ∈Parn
of the C-vector space (ΛC)n, and that b is an element of the basis (pλ)λ∈Parm

of the C-vector

space (ΛC)m. Assume this. Then, we can write a and b as a = pγ and b = pη for some γ ∈ Parn and some
η ∈ Parm. Consider these γ and η.

Choose some permutation g ∈ Sn which has cycle type γ. (Such a g clearly exists.) Then, chC (αSn,g) = pγ

(according to (13.122.2)). Hence, (chC)
−1

(pγ) = αSn,g, so that (chC)
−1

 a︸︷︷︸
=pγ

 = (chC)
−1

(pγ) = αSn,g.

894Notice that the term τ∗
(

(chC)−1 (a)⊗ (chC)−1 (b)
)

on the right hand side of (13.122.5) is well-defined. (This is because

(chC)−1

 a︸︷︷︸
∈(ΛC)n

⊗ (chC)−1

 b︸︷︷︸
∈(ΛC)m

 ∈ (chC)−1 ((ΛC)n
)︸ ︷︷ ︸

=RC(Sn)

⊗ (chC)−1 ((ΛC)m
)︸ ︷︷ ︸

=RC(Sm)

= RC (Sn)⊗RC (Sm) = RC (Sn ×Sm) .

)
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Choose some permutation h ∈ Sm which has cycle type η. (Such an h clearly exists.) Then, chC (αSm,h) =

pη (according to (13.122.2), applied to m, h and η instead of n, g and λ). Hence, (chC)
−1

(pη) = αSm,h, so

that (chC)
−1

 b︸︷︷︸
=pη

 = (chC)
−1

(pη) = αSm,h. Thus,

(13.122.6) (chC)
−1

(a)︸ ︷︷ ︸
=αSn,g

⊗ (chC)
−1

(b)︸ ︷︷ ︸
=αSm,h

= αSn,g ⊗ αSm,h.

Exercise 4.4.3(c) (applied to G1 = Sn, G2 = Sm, h1 = g and h2 = h) yields that the canonical
isomorphism RC (Sn) ⊗ RC (Sm) → RC (Sn ×Sm) sends αSn,g ⊗ αSm,h to αSn×Sm,(g,h). Since we are
regarding this isomorphism as an identity (because we have identified RC (Sn)⊗RC (Sm) with RC (Sn ×Sm)
along this isomorphism), this yields αSn,g ⊗ αSm,h = αSn×Sm,(g,h). Thus, (13.122.6) becomes

(chC)
−1

(a)⊗ (chC)
−1

(b) = αSn,g ⊗ αSm,h = αSn×Sm,(g,h).

Applying the map τ∗ to both sides of this equality, we obtain

(13.122.7) τ∗
(

(chC)
−1

(a)⊗ (chC)
−1

(b)
)

= τ∗
(
αSn×Sm,(g,h)

)
.

But Ω ((g, h)) = Ω ((g, h)) (by the definition of Ω ((g, h))), and so (g, h) = Ω
−1︸︷︷︸

=τ

(Ω ((g, h))) = τ (Ω ((g, h))).

Thus,

τ∗
(
αSn×Sm,(g,h)

)
= τ∗

(
αSn×Sm,τ(Ω((g,h)))

)
= αΩ(Sn×Sm),Ω((g,h))

(by Lemma 13.122.3(d), applied to Ω (Sn ×Sm), Sn × Sm and Ω ((g, h)) instead of K, H and g). Thus,
(13.122.7) becomes

τ∗
(

(chC)
−1

(a)⊗ (chC)
−1

(b)
)

= τ∗
(
αSn×Sm,(g,h)

)
= αΩ(Sn×Sm),Ω((g,h)).

Applying the map IndSnm
Ω(Sn×Sm) to both sides of this equality, we obtain

IndSnm
Ω(Sn×Sm)

(
τ∗
(

(chC)
−1

(a)⊗ (chC)
−1

(b)
))

= IndSnm
Ω(Sn×Sm)

(
αΩ(Sn×Sm),Ω((g,h))

)
= αSnm,Ω((g,h))(13.122.8)

(by Exercise 4.4.3(b), applied to Snm, Ω (Sn ×Sm) and Ω ((g, h)) instead of G, H and h).
Now, Ω ((g, h)) ∈ Snm, so that Ω ((g, h)) is a permutation of {1, 2, . . . , nm}. Let κ be the cycle type of

this permutation Ω ((g, h)). Then, (13.122.2) (applied to nm, κ and Ω ((g, h)) instead of n, λ and g) yields
chC

(
αSnm,Ω((g,h))

)
= pκ. But applying the map chC to both sides of the identity (13.122.8), we obtain

chC

(
IndSnm

Ω(Sn×Sm)

(
τ∗
(

(chC)
−1

(a)⊗ (chC)
−1

(b)
)))

= chC
(
αSnm,Ω((g,h))

)
= pκ.(13.122.9)

Let us now show that a� b = pκ.

In fact, Ω︸︷︷︸
=ϕ∗◦cross

((g, h)) = (ϕ∗ ◦ cross) ((g, h)) = ϕ∗

 cross ((g, h))︸ ︷︷ ︸
=g×h

(by the definition
of cross )

 = ϕ∗ (g × h). But Lemma 13.122.5(b)

(applied to U = X × Y , V = {1, 2, . . . , nm} and π = g × h) yields that the cycle type of ϕ∗ (g × h) equals
the cycle type of g × h. In other words, the cycle type of Ω ((g, h)) equals the cycle type of g × h (since
Ω ((g, h)) = ϕ∗ (g × h)). In other words, κ equals the cycle type of g × h (since κ is the cycle type of
Ω ((g, h))).

So we know that g ∈ Sn = SX and h ∈ Sm = SY are permutations, and that γ, η and κ are the cycle
types of the permutations g, h and g × h. Thus, Lemma 13.122.2 (applied to γ and η instead of λ and µ)
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yields pγ � pη = pκ. Now,

a︸︷︷︸
=pγ

� b︸︷︷︸
=pη

= pγ � pη = pκ = chC

(
IndSnm

Ω(Sn×Sm)

(
τ∗
(

(chC)
−1

(a)⊗ (chC)
−1

(b)
)))

(by (13.122.9)). This proves (13.122.5).
Now that (13.122.5) is proven, it is easy to complete the solution of Exercise 4.4.9(c). Recall that µ

and ν are two partitions such that µ ∈ Parm, ν ∈ Parn, m ≥ 1 and n ≥ 1. We need to show that
sµ � sν ∈

∑
λ∈Par Nsλ.

Applying (13.122.3) to λ = µ, we obtain chC (χµ) = sµ, so that (chC)
−1

(sµ) = χµ. The same argument

(but with µ replaced by ν) shows that (chC)
−1

(sν) = χν .
We know that χµ is an irreducible complex character of CSm. In other words, there exists a simple

CSm-module M such that χµ = χM . Consider this M . Then, (chC)
−1

(sµ) = χµ = χM .
We know that χν is an irreducible complex character of CSn. In other words, there exists a simple

CSn-module N such that χν = χN . Consider this N . Then, (chC)
−1

(sν) = χν = χN .
Recall that we are identifying RC (Sn)⊗RC (Sm) with RC (Sn ×Sm) along the canonical isomorphism

RC (Sn) ⊗ RC (Sm) → RC (Sn ×Sm). Thus, for any finite-dimensional CSn-module U and any finite-
dimensional CSm-module V , we have χU⊗V = χU ⊗ χV (since this isomorphism sends χU ⊗ χV to χU⊗V ).
Applying this to U = N and V = M , we obtain χN⊗M = χN ⊗ χM . Thus, χN ⊗ χM = χN⊗M .

Lemma 13.122.3(b) (applied to Ω (Sn ×Sm), Sn × Sm and N ⊗ M instead of K, H and U) yields
χ(N⊗M)τ = τ∗ (χN⊗M ). Thus, τ∗ (χN⊗M ) = χ(N⊗M)τ . Hence,

(13.122.10) τ∗

χN ⊗ χM︸ ︷︷ ︸
=χN⊗M

 = τ∗ (χN⊗M ) = χ(N⊗M)τ .

But (4.1.5) (applied to Snm, Ω (Sn ×Sm) and (N ⊗M)
τ

instead ofG, H and U) yields χIndSnm
Ω(Sn×Sm)

((N⊗M)τ ) =

IndSnm
Ω(Sn×Sm)

(
χ(N⊗M)τ

)
. Let P denote the finite-dimensional CSnm-module IndSnm

Ω(Sn×Sm) ((N ⊗M)
τ
).

Then, P = IndSnm
Ω(Sn×Sm) ((N ⊗M)

τ
), so that

χP = χIndSnm
Ω(Sn×Sm)

((N⊗M)τ ) = IndSnm
Ω(Sn×Sm)

 χ(N⊗M)τ︸ ︷︷ ︸
=τ∗(χN⊗χM )

(by (13.122.10))

 = IndSnm
Ω(Sn×Sm) (τ∗ (χN ⊗ χM )) .

Hence,

(13.122.11) IndSnm
Ω(Sn×Sm) (τ∗ (χN ⊗ χM )) = χP .

We have sµ ∈ (ΛC)m (since µ ∈ Parm) and sν ∈ (ΛC)n (since ν ∈ Parn). Thus, we can apply (13.122.5)
to a = sν and b = sµ.

Exercise 4.4.9(a) yields that ΛQ, equipped with the binary operation �, becomes a commutative Q-algebra
with unity p1. Thus, the operation � is commutative. Hence,

sµ � sν = sν � sµ = chC

IndSnm
Ω(Sn×Sm)

τ∗
(chC)

−1
(sν)︸ ︷︷ ︸

=χN

⊗ (chC)
−1

(sµ)︸ ︷︷ ︸
=χM





(by (13.122.5), applied to a = sν and b = sµ)

= chC

IndSnm
Ω(Sn×Sm) (τ∗ (χN ⊗ χM ))︸ ︷︷ ︸

=χP
(by (13.122.11))

 = chC (χP ) ∈
∑
λ∈Par

Nsλ (by (13.122.4)) .

This solves Exercise 4.4.9(c).
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[Remark: The above solution can be simplified using the results of Exercise 4.1.14. We leave the details of
this simplification to the reader, and only mention some highlights. Let us use the notations of Exercise 4.1.14.
Then, the awkward equality (13.122.5) can be replaced by the simpler equality

(13.122.12) a� b = chC

(
IndΩ

(
(chC)

−1
(a)⊗ (chC)

−1
(b)
))

.

This makes the definition of the maps Ω and τ unnecessary. The WLOG assumption that we don’t have
min {m,n} = 0 becomes unnecessary as well; the injectivity of the map cross can no longer be guaran-
teed without this assumption, but we do not need this map to be injective anymore. We no longer need
Lemma 13.122.1(b), Lemma 13.122.3 and Lemma 13.122.4. However, we need to use Exercise 4.1.14(b)
instead of (4.1.5), and we have to use Exercise 4.4.3(f) instead of Exercise 4.4.3(b).]

(d) We need to prove that f � g ∈ Λ for any f ∈ Λ and g ∈ Λ. Since the binary operation � is Z-bilinear
(because it is Q-bilinear), it is clearly enough to prove that sµ � sν ∈ Λ for any partitions µ and ν (since
(sλ)λ∈Par is a Z-basis of Λ). But this follows from the fact that

sµ � sν ∈
∑
λ∈Par

Nsλ (by Exercise 4.4.9(c))

⊂ Λ

for any partitions µ and ν. Thus, Exercise 4.4.9(d) is solved.

13.123. Solution to Exercise 4.6.4. Solution to Exercise 4.6.4. (a) We shall prove the following fact:

Lemma 13.123.1. Let q be a prime power. For every positive integer n, we have

(the number of all irreducible monic degree-n polynomials in Fq [x]) =
1

n

∑
d|n

µ
(n
d

)
qd.

Proof of Lemma 13.123.1. We first recall that every positive integer n satisfies

(13.123.1)
∑
d|n

µ (d) = δn,1.

(This is precisely the equality (13.84.3), which was proven in the solution of Exercise 2.9.6.)
For every positive integer n, define a nonnegative integer irrn by

(13.123.2) irrn = (the number of all irreducible monic degree-n polynomials in Fq [x]) .

Let P denote the set of all irreducible monic polynomials in Fq [x]. Then, every p ∈ P is an irreducible
polynomial and thus satisfies deg p ≥ 1. Also, the irreducible monic polynomials in Fq [x] are exactly the
elements of P (since P is the set of all irreducible monic polynomials in Fq [x]). Hence, for every positive
integer n, we have

irrn = (the number of all irreducible monic degree-n polynomials in Fq [x])

= (the number of all irreducible monic polynomials p in Fq [x] such that deg p = n)

= (the number of all p ∈ P such that deg p = n)

(since the irreducible monic polynomials in Fq [x] are exactly the elements of P) .

In other words, for every positive integer n, we have

(the number of all p ∈ P such that deg p = n) = irrn.(13.123.3)

Let N be the set of all families (kp)p∈P ∈ NP of nonnegative integers (indexed by the polynomials

belonging to P) such that all but finitely many p ∈ P satisfy kp = 0. Every monic polynomial P ∈ Fq [x] has
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a unique factorization into irreducible monic polynomials. In other words, every monic polynomial P ∈ Fq [x]
can be written in the form P =

∏
p∈P p

kp for a unique family (kp)p∈P ∈ N. Thus, the map

N→ {P ∈ Fq [x] | P is monic} ,

(kp)p∈P 7→
∏
p∈P

pkp

is bijective. Thus, in the ring Q [[t]] of formal power series, we have

(13.123.4)
∑

P∈Fq [x];
P is monic

tdegP =
∑

(kp)p∈P∈N

tdeg(
∏
p∈P pkp).

But every (kp)p∈P ∈ N satisfies

tdeg(
∏
p∈P pkp) = t

∑
p∈P kp deg p

since deg

∏
p∈P

pkp

 =
∑
p∈P

kp deg p


=
∏
p∈P

tkp deg p =
∏
p∈P

(
tdeg p

)kp
.

Thus, (13.123.4) becomes

∑
P∈Fq [x];
P is monic

tdegP =
∑

(kp)p∈P∈N

tdeg(
∏
p∈P pkp)︸ ︷︷ ︸

=
∏
p∈P(tdeg p)kp

=
∑

(kp)p∈P∈N

∏
p∈P

(
tdeg p

)kp
=
∏
p∈P

∑
k∈N

(
tdeg p

)k
(by the product rule)

=
∏
n≥1

∏
p∈P;

deg p=n

∑
k∈N

 tdeg p︸ ︷︷ ︸
=tn

(since deg p=n)


k

(since deg p ≥ 1 for every p ∈ P)

=
∏
n≥1

∏
p∈P;

deg p=n

∑
k∈N

(tn)
k

︸ ︷︷ ︸
=

1

1− tn

=
∏
n≥1

∏
p∈P;

deg p=n

1

1− tn

︸ ︷︷ ︸
=

(
1

1− tn
)(the number of all p∈P such that deg p=n)

=

(
1

1− tn
)irrn

(by (13.123.3))

=
∏
n≥1

(
1

1− tn

)irrn

.
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Compared with∑
P∈Fq [x];
P is monic

tdegP =
∑
n∈N

∑
P∈Fq [x];
P is monic;

degP=n

tdegP︸ ︷︷ ︸
=tn

(since degP=n)

=
∑
n∈N

∑
P∈Fq [x];
P is monic;

degP=n

tn

︸ ︷︷ ︸
=(the number of all monic P∈Fq [x] such that degP=n)·tn

=
∑
n∈N

(the number of all monic P ∈ Fq [x] such that degP = n)︸ ︷︷ ︸
=qn

(because specifying a monic P∈Fq [x] such that degP=n

is equivalent to specifying its coefficients before x0, x1, ..., xn−1,
and each of these coefficients can be chosen freely from q

possible values)

·tn

=
∑
n∈N

qntn =
∑
n∈N

(qt)
n

=
1

1− qt
,

this yields

1

1− qt
=
∏
n≥1

(
1

1− tn

)irrn

.

Taking the logarithm of both sides of this identity, we obtain

log
1

1− qt
= log

∏
n≥1

(
1

1− tn

)irrn
 =

∑
n≥1

(irrn) · log

(
1

1− tn

)
︸ ︷︷ ︸

=− log(1−tn)=
∑
u≥1

1

u
(tn)u

(by the Mercator series for the logarithm)

=
∑
n≥1

(irrn) ·
∑
u≥1

1

u
(tn)

u
=
∑
n≥1

∑
u≥1

(irrn)
1

u
(tn)

u︸ ︷︷ ︸
=tnu

=
∑
n≥1

∑
u≥1

(irrn)
1

u
tnu

=
∑
n≥1

∑
v≥1;
n|v︸ ︷︷ ︸

=
∑
v≥1

∑
n|v

(irrn)
1

v/n︸︷︷︸
=
n

v

tv (here, we substituted v/n for u in the second sum)

=
∑
v≥1

∑
n|v

(irrn)
n

v
tv =

∑
n≥1

∑
d|n

(irr d)
d

n
tn

(here, we renamed the summation indices v and n as n and d). Since

log
1

1− qt
= − log (1− qt) =

∑
n≥1

1

n
(qt)

n
(by the Mercator series for the logarithm)

=
∑
n≥1

1

n
qntn,

this rewrites as ∑
n≥1

1

n
qntn =

∑
n≥1

∑
d|n

(irr d)
d

n
tn.

Comparing coefficients, we conclude that every positive integer n satisfies

1

n
qn =

∑
d|n

(irr d)
d

n
.

Multiplying this with n, we obtain

(13.123.5) qn =
∑
d|n

(irr d) d.
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Now, every positive integer n satisfies∑
d|n

µ (d) qn/d =
∑
e|n

µ (e) qn/e︸︷︷︸
=
∑
d|n/e(irr d)d

(by (13.123.5), applied
to n/e instead of n)

=
∑
e|n

µ (e)
∑
d|n/e

(irr d) d

=
∑
e|n

∑
d|n/e︸ ︷︷ ︸

=
∑
d|n
∑
e|n/d

µ (e) (irr d) d =
∑
d|n

∑
e|n/d

µ (e)

︸ ︷︷ ︸
=δn/d,1

(by (13.123.1), applied
to n/d instead of n)

(irr d) d

=
∑
d|n

δn/d,1︸ ︷︷ ︸
=δn,d

(irr d) d =
∑
d|n

δn,d (irr d) d = (irrn)n.

Dividing this by n, we obtain
1

n

∑
d|n

µ (d) qn/d = irrn. Now, (13.123.2) yields

(the number of all irreducible monic degree-n polynomials in Fq [x]) = irrn =
1

n

∑
d|n

µ (d) qn/d.

This proves Lemma 13.123.1. �

Now, let us solve Exercise 4.6.4(a). Let n ≥ 2 be an integer. We know that |Fn| is the number of
irreducible monic degree-n polynomials f(x) 6= x in Fq [x] with nonzero constant term. Since the irreducible
monic degree-n polynomials f(x) 6= x in Fq [x] with nonzero constant term are precisely the irreducible monic
degree-n polynomials in Fq [x] 895, this statement rewrites as follows: |Fn| is the number of irreducible
monic degree-n polynomials in Fq [x]. In other words,

|Fn| = (the number of all irreducible monic degree-n polynomials in Fq [x])

=
1

n

∑
d|n

µ
(n
d

)
qd (by Lemma 13.123.1) .

This solves Exercise 4.6.4(a).
(b) We shall use the results of Exercise 6.1.34 (which provides a more systematic introduction to necklaces).
Let A be the set Fq. Consider the notion of an n-necklace defined in Exercise 6.1.34. The “n-necklaces”

(as defined in Exercise 6.1.34) are precisely the “necklaces with n beads of q colors” (as defined in Exercise
4.6.4(b))896. Moreover, it is easy to see that the “aperiodic n-necklaces” (as defined in Exercise 6.1.34) are

895Proof. Let f be an irreducible polynomial monic degree-n polynomial in Fq [x]. We will now show that f (x) 6= x and

that f has nonzero constant term.
Since f is a degree-n polynomial, we have deg f = n ≥ 2 > 1 = deg x, thus deg f 6= deg x and therefore f 6= x. In other

words, f (x) 6= x.
Now, let us assume (for the sake of contradiction) that the constant term of f is zero. Then, the polynomial x divides f

in Fq [x]. But since f is irreducible, the polynomial f is a scalar multiple of every non-constant polynomial which divides f .
In particular, f is a scalar multiple of x (since x is a non-constant polynomial which divides f). Consequently, deg f = deg x,

which contradicts deg f 6= deg x. This contradiction proves that our assumption (that the constant term of f is zero) was
wrong. Hence, the constant term of f is nonzero. In other words, f has nonzero constant term.

Now, let us forget that we fixed f . We thus have proven that every irreducible monic degree-n polynomial f in Fq [x]
satisfies f (x) 6= x and has nonzero constant term. Thus, all irreducible monic degree-n polynomials in Fq [x] are irreducible
monic degree-n polynomials f(x) 6= x in Fq [x] with nonzero constant term. Combining this statement with the (obvious)

converse statement (which states that all irreducible monic degree-n polynomials f(x) 6= x in Fq [x] with nonzero constant term

are irreducible monic degree-n polynomials in Fq [x]), we conclude that the irreducible monic degree-n polynomials f(x) 6= x in

Fq [x] with nonzero constant term are precisely the irreducible monic degree-n polynomials in Fq [x]. Qed.
896Proof. Consider the group C, its generator c and the action of C on An which are defined in Exercise 6.1.34. Then, the

“n-necklaces” (as defined in Exercise 6.1.34) are the orbits of the C-action on An. In other words, the “n-necklaces” (as defined
in Exercise 6.1.34) are the equivalence classes of n-tuples (a1, a2, ..., an) ∈ An with respect to cyclic rotation (because C acts
on An by cyclic rotation). But the same can be said about the “necklaces with n beads of q colors” (as defined in Exercise
4.6.4(b)). Thus, the “n-necklaces” (as defined in Exercise 6.1.34) are precisely the “necklaces with n beads of q colors” (as
defined in Exercise 4.6.4(b)), qed.
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precisely the “primitive necklaces with n beads of q colors” (as defined in Exercise 4.6.4(b))897. Hence,

(the number of all aperiodic n-necklaces)

= (the number of all primitive necklaces with n beads of q colors) ,

so that

(the number of all primitive necklaces with n beads of q colors)

= (the number of all aperiodic n-necklaces) =
1

n

∑
d|n

µ (d) |A|n/d︸ ︷︷ ︸
=qn/d

(since |A|=q)

(by Exercise 6.1.34(f))

=
1

n

∑
d|n

µ (d) qn/d.

This solves Exercise 4.6.4(b).

13.124. Solution to Exercise 4.9.6. Solution to Exercise 4.9.6. Let us first notice that any k ∈ N and
any k partitions λ(1), λ(2), . . . , λ(k) satisfy

(13.124.1) 1J
λ(1)

1J
λ(2)
· · · 1J

λ(k)
=
∑
λ∈Par

gλλ(1),λ(2),...,λ(k) (q) 1Jλ =
∑
µ∈Par

gµ
λ(1),λ(2),...,λ(k) (q) 1Jµ

(here, we renamed the summation index λ as µ). Any two partitions µ and ν satisfy

(13.124.2) 1Jµ1Jν =
∑
λ∈Par

gλµ,ν (q) 1Jλ =
∑
τ∈Par

gτµ,ν (q) 1Jτ

(here, we renamed the summation index λ as τ).
(a) We shall prove the statement of Exercise 4.9.6(a) by induction over k. The base cases (k = 0 and

k = 1) are left to the reader. We will now handle the induction step. So let us solve Exercise 4.9.6(a) for
some positive integer k > 1, assuming (as the induction hypothesis) that Exercise 4.9.6(a) is already solved
for k − 1 instead of k.

From (13.124.1), we obtain∑
µ∈Par

gµ
λ(1),λ(2),...,λ(k) (q) 1Jµ

= 1J
λ(1)

1J
λ(2)
· · · 1J

λ(k)
= 1J

λ(1)
1J

λ(2)
· · · 1J

λ(k−1)︸ ︷︷ ︸
=
∑
µ∈Par g

µ

λ(1),λ(2),...,λ(k−1)
(q)1Jµ

(by (13.124.1), applied to k−1 instead of k)

·1J
λ(k)

=

 ∑
µ∈Par

gµ
λ(1),λ(2),...,λ(k−1) (q) 1Jµ

 · 1J
λ(k)

=
∑
µ∈Par

gµ
λ(1),λ(2),...,λ(k−1) (q) 1Jµ1J

λ(k)︸ ︷︷ ︸
=
∑
τ∈Par g

τ

µ,λ(k) (q)1Jτ

(by (13.124.2), applied to ν=λ(k))

=
∑
µ∈Par

gµ
λ(1),λ(2),...,λ(k−1) (q)

∑
τ∈Par

gτµ,λ(k) (q) 1Jτ =
∑
τ∈Par

∑
µ∈Par

gµ
λ(1),λ(2),...,λ(k−1) (q) gτµ,λ(k) (q) 1Jτ .

Comparing coefficients in front of 1Jλ on both sides of this equality, we obtain

(13.124.3) gλλ(1),λ(2),...,λ(k) (q) =
∑
µ∈Par

gµ
λ(1),λ(2),...,λ(k−1) (q) gλµ,λ(k) (q) .

Our Fq-vector space V is n-dimensional. Hence, we can WLOG assume that V = Fnq (because nothing
changes if we map V isomorphically to Fnq and change g accordingly). Assume this.

897This follows from Exercise 6.1.34(b) (because for an n-tuple (w1, w2, ..., wn) ∈ An, the statement that no
nontrivial rotation (in Z/nZ) fixes w is equivalent to the statement that every k ∈ {1, 2, . . . , n− 1} satisfies

(wk+1, wk+2, . . . , wn, w1, w2, . . . , wk) 6= w).
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In the following, an ender will mean a g-stable Fq-vector subspace W ⊂ Fnq for which the induced

map ḡ on the quotient space Fnq /W has Jordan type λ(k). Notice that if 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂
Vk = V is a

(
λ(1), λ(2), . . . , λ(k)

)
-compatible g-flag, then Vk−1 is an ender (because the definition of a(

λ(1), λ(2), . . . , λ(k)
)
-compatible g-flag shows that the endomorphism of Fnq︸︷︷︸

=V=Vk

/Vk−1 = Vk/Vk−1 induced

by g has Jordan type λ(k)). (This is why we have chosen the name “ender” – an ender is the last proper
subspace in a

(
λ(1), λ(2), . . . , λ(k)

)
-compatible g-flag.)

Whenever h is a unipotent endomorphism of a finite-dimensional vector space, we let typeh denote the
Jordan type of h.

Proposition 4.9.4 (applied to ν = λ(k)) yields that for every µ ∈ Par, the number gλ
µ,λ(k) (q) counts the

g-stable Fq-subspaces W ⊂ Fnq for which the restriction g|W acts with Jordan type µ, and the induced map

ḡ on the quotient space Fnq /W has Jordan type λ(k) 898. In other words, for every µ ∈ Par, the number

gλ
µ,λ(k) (q) counts the enders W for which the restriction g|W acts with Jordan type µ. In other words, for

every µ ∈ Par, the number gλ
µ,λ(k) (q) counts the enders W for which type (g|W ) = µ. In other words, for

every µ ∈ Par, we have

gλµ,λ(k) (q) =
∑

W is an ender;
type(g|W )=µ

1.

Hence, (13.124.3) becomes

gλλ(1),λ(2),...,λ(k) (q) =
∑
µ∈Par

gµ
λ(1),λ(2),...,λ(k−1) (q) gλµ,λ(k) (q)︸ ︷︷ ︸

=
∑

W is an ender;
type(g|W )=µ

1

=
∑
µ∈Par

gµ
λ(1),λ(2),...,λ(k−1) (q)

∑
W is an ender;
type(g|W )=µ

1

=
∑
µ∈Par

∑
W is an ender;
type(g|W )=µ

gµ
λ(1),λ(2),...,λ(k−1) (q) =

∑
W is an ender

g
type(g|W )

λ(1),λ(2),...,λ(k−1) (q) .(13.124.4)

Now, let us fix an ender W . By the definition of an ender, this W is a g-stable Fq-subspace of Fnq for

which the induced map ḡ on the quotient space Fnq /W has Jordan type λ(k). Let m = dimW .
By the induction hypothesis, we can apply Exercise 4.9.6(a) to type (g|W ), m, W , g|W , k − 1 and(

λ(1), λ(2), . . . , λ(k−1)
)

instead of λ, n, V , g, k and
(
λ(1), λ(2), . . . , λ(k)

)
. As a result, we conclude that

(13.124.5) g
type(g|W )

λ(1),λ(2),...,λ(k−1) (q) is the number of
(
λ(1), λ(2), . . . , λ(k−1)

)
-compatible g|W -flags.

Now, forget that we fixed W . Combining (13.124.4) with (13.124.5), we see that gλ
λ(1),λ(2),...,λ(k) (q) is

the number of all pairs (W,F), where W is an ender and F is a
(
λ(1), λ(2), . . . , λ(k−1)

)
-compatible g|W -

flag. But (in order to complete the induction step) we have to prove that gλ
λ(1),λ(2),...,λ(k) (q) is the num-

ber of
(
λ(1), λ(2), . . . , λ(k)

)
-compatible g-flags. So an obvious way to prove this would be to find a bi-

jection between
(
λ(1), λ(2), . . . , λ(k)

)
-compatible g-flags and pairs (W,F), where W is an ender and F is a(

λ(1), λ(2), . . . , λ(k−1)
)
-compatible g|W -flag. This bijection is very easy to define: It sends a

(
λ(1), λ(2), . . . , λ(k)

)
-

compatible g-flag 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk = V to the pair (Vk−1,F), where F is the
(
λ(1), λ(2), . . . , λ(k−1)

)
-

compatible g|Vk−1-flag 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk−1 = Vk−1. Showing that this bijection is well-defined
and bijective is completely straightforward899; thus, the induction step is complete, and the solution of
Exercise 4.9.6(a) is finished.

(b) We shall prove the statement of Exercise 4.9.6(b) by induction over k. The base cases (k = 0 and
k = 1) are left to the reader. We will now handle the induction step. So let us solve Exercise 4.9.6(b) for
some positive integer k > 1, assuming (as the induction hypothesis) that Exercise 4.9.6(b) is already solved
for k − 1 instead of k.

898Note that the variable that I am calling W here has been denoted by V in Proposition 4.9.4.
899The inverse map takes a pair (W,F), where W is an ender and F is a

(
λ(1), λ(2), . . . , λ(k−1)

)
-compatible g|W -flag

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vk−1 = W , and maps it to the
(
λ(1), λ(2), . . . , λ(k)

)
-compatible g-flag 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂

Vk−1 ⊂ V = V .
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We need to prove that gλ
λ(1),λ(2),...,λ(k) (q) = 0 unless

∣∣λ(1)
∣∣ +

∣∣λ(2)
∣∣ + · · · +

∣∣λ(k)
∣∣ = |λ| and λ(1) + λ(2) +

· · ·+ λ(k) . λ. In other words, we need to prove that if gλ
λ(1),λ(2),...,λ(k) (q) 6= 0, then

(13.124.6)
∣∣∣λ(1)

∣∣∣+
∣∣∣λ(2)

∣∣∣+ · · ·+
∣∣∣λ(k)

∣∣∣ = |λ| and λ(1) + λ(2) + · · ·+ λ(k) . λ.

So let us assume that gλ
λ(1),λ(2),...,λ(k) (q) 6= 0. Due to (13.124.3), this rewrites as∑

µ∈Par

gµ
λ(1),λ(2),...,λ(k−1) (q) gλµ,λ(k) (q) 6= 0.

Hence, there exists a µ ∈ Par satisfying gµ
λ(1),λ(2),...,λ(k−1) (q) 6= 0 and gλ

µ,λ(k) (q) 6= 0. Consider this µ.

By the induction hypothesis, we can apply Exercise 4.9.6(b) to µ, k− 1 and
(
λ(1), λ(2), ..., λ(k−1)

)
instead

of λ, k and
(
λ(1), λ(2), . . . , λ(k)

)
. Thus, we conclude that gµ

λ(1),λ(2),...,λ(k−1) (q) = 0 unless
∣∣λ(1)

∣∣+ ∣∣λ(2)
∣∣+ · · ·+∣∣λ(k−1)

∣∣ = |µ| and λ(1) + λ(2) + · · · + λ(k−1) . µ. Since we have gµ
λ(1),λ(2),...,λ(k−1) (q) 6= 0, we therefore must

have
∣∣λ(1)

∣∣+
∣∣λ(2)

∣∣+ · · ·+
∣∣λ(k−1)

∣∣ = |µ| and λ(1) + λ(2) + · · ·+ λ(k−1) . µ.
But let n = |λ|. Fix a unipotent endomorphism g of Fnq having Jordan type λ (such a g clearly exists).

The number gλ
µ,λ(k) (q) counts the g-stable Fq-subspaces W ⊂ Fnq for which the restriction g|W acts with

Jordan type µ, and the induced map ḡ on the quotient space Fnq /W has Jordan type λ(k) (by Proposition

4.9.4, applied to ν = λ(k)). Since gλ
µ,λ(k) (q) 6= 0, this yields that there exists such a subspace W . If we define

a nilpotent endomorphism f of Fnq by f = g − idFnq (this is indeed nilpotent because g is unipotent), then

this W is also an f -stable Fq-subspace of Fnq (because any g-stable subspace of Fnq is f -stable) for which the

restriction f |W acts with Jordan type µ (since f |W = g|W − idW ), and the induced map f on the quotient
space Fnq /W has Jordan type λ(k) (since f = g− idFnq /W ). Therefore, Exercise 2.9.22(b) (applied to K = Fq,
V = Fnq , U = W and ν = λ(k)) yields cλ

µ,λ(k) 6= 0. Consequently, |λ| = |µ|+
∣∣λ(k)

∣∣. Exercise 2.9.17(c) (applied

to |λ|, |µ| and λ(k) instead of n, k and ν) thus yields µ+ λ(k) . λ . µ t λ(k).
Exercise 2.9.17(d) (applied to |µ|,

∣∣λ(k)
∣∣, λ(1) + λ(2) + · · ·+ λ(k−1), µ, λ(k) and λ(k) instead of n, m, α, β,

γ and δ) yields (
λ(1) + λ(2) + · · ·+ λ(k−1)

)
+ λ(k) . µ+ λ(k)

(since λ(1) + λ(2) + · · ·+ λ(k−1) . µ and λ(k) . λ(k)).
Now, ∣∣∣λ(1)

∣∣∣+
∣∣∣λ(2)

∣∣∣+ · · ·+
∣∣∣λ(k)

∣∣∣ =
∣∣∣λ(1)

∣∣∣+
∣∣∣λ(2)

∣∣∣+ · · ·+
∣∣∣λ(k−1)

∣∣∣︸ ︷︷ ︸
=|µ|

+
∣∣∣λ(k)

∣∣∣ = |µ|+
∣∣∣λ(k)

∣∣∣ = |λ|

and

λ(1) + λ(2) + · · ·+ λ(k) =
(
λ(1) + λ(2) + · · ·+ λ(k−1)

)
+ λ(k) . µ+ λ(k) . λ.

Thus, we have proven (13.124.6), and so the induction step is complete. We thus have solved Exercise 4.9.6(b).
(c) Let n = |λ|. Fix a unipotent endomorphism g of Fnq having Jordan type λ (such a g clearly exists).

Exercise 4.9.6(a) (applied to V = Fnq , k = ` and λ(i) =
(

1(λt)
i

)
) shows that gλ(

1(λt)1

)
,
(

1(λt)2

)
,...,
(

1(λt)`
) (q)

is the number of
((

1(λt)
1

)
,
(

1(λt)
2

)
, . . . ,

(
1(λt)

`

))
-compatible g-flags. Hence, in order to prove

gλ(
1(λt)1

)
,
(

1(λt)2

)
,...,
(

1(λt)`
) (q) 6= 0 (and thus, to solve Exercise 4.9.6(c)), it will be enough to prove that there

exists at least one
((

1(λt)
1

)
,
(

1(λt)
2

)
, . . . ,

(
1(λt)

`

))
-compatible g-flag.

Let f = g− idFnq . Then, f is a nilpotent endomorphism of Fnq having Jordan type λ (since g is a unipotent

endomorphism of Fnq having Jordan type λ). Also, g = f + idFnq (since f = g − idFnq ).
Let us define a sequence V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V` of Fq-vector subspaces of Fnq by setting

Vi = ker
(
f i
)

for every i ∈ {0, 1, ..., `} .
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Then, V0 = ker

 f0︸︷︷︸
=id

 = ker id = 0. Also, it follows readily from Exercise 2.9.22(a) that

(13.124.7) dim
(
ker
(
fk
))

=
(
λt
)

1
+
(
λt
)

2
+ . . .+

(
λt
)
k

for every k ∈ N.

900 Applying this to k = `, we obtain

dim
(
ker
(
f `
))

=
(
λt
)

1
+
(
λt
)

2
+ . . .+

(
λt
)
`

=
∣∣λt∣∣ (

since λt =
((
λt
)

1
,
(
λt
)

2
, . . . ,

(
λt
)
`

))
= |λ| = n = dim

(
Fnq
)

which yields ker
(
f `
)

= Fnq (since ker
(
f `
)
⊂ Fnq ). Thus, V` = ker

(
f `
)

= Fnq . Since V0 = 0 and V` = Fnq , our
sequence V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V` thus can be written as 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V` = Fnq .

For every i ∈ {0, 1, ..., `}, the Fq-vector subspace Vi of Fnq is g-invariant (since Vi = ker
(
f i
)

is f -invariant

and thus g-invariant). Also, for every i ∈ {1, 2, ..., `}, we have Vi︸︷︷︸
=ker(fi)

/ Vi−1︸︷︷︸
=ker(fi−1)

= ker
(
f i
)
/ ker

(
f i−1

)
;

thus, the endomorphism of Vi/Vi−1 induced by f is the zero map, and therefore the endomorphism of
Vi/Vi−1 induced by g is the identity map (since g = f + idFnq ). Hence, for every i ∈ {1, 2, ..., `}, this latter

endomorphism has Jordan type
(
1dim(Vi/Vi−1)

)
. But since every i ∈ {1, 2, ..., `} satisfies

dim

 Vi/Vi−1︸ ︷︷ ︸
=ker(fi)/ ker(fi−1)

 = dim
(
ker
(
f i
)
/ ker

(
f i−1

))
= dim

(
ker
(
f i
))︸ ︷︷ ︸

=(λt)
1
+(λt)

2
+...+(λt)

i

(by (13.124.7),
applied to k=i)

− dim
(
ker
(
f i−1

))︸ ︷︷ ︸
=(λt)

1
+(λt)

2
+...+(λt)

i−1

(by (13.124.7),
applied to k=i−1)

=
((
λt
)

1
+
(
λt
)

2
+ . . .+

(
λt
)
i

)
−
((
λt
)

1
+
(
λt
)

2
+ . . .+

(
λt
)
i−1

)
=
(
λt
)
i
,

this rewrites as follows: For every i ∈ {1, 2, ..., `}, the endomorphism of Vi/Vi−1 induced by g has Jordan

type
(

1(λt)
i

)
.

Altogether, we now know that 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V` = Fnq is a sequence of g-invariant Fq-vector
subspaces Vi of Fnq such that for every i ∈ {1, 2, . . . , `}, the endomorphism of Vi/Vi−1 induced by g has Jordan

type
(

1(λt)
i

)
. In other words, 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ V` = Fnq is a

((
1(λt)

1

)
,
(

1(λt)
2

)
, . . . ,

(
1(λt)

`

))
-

compatible g-flag (according the definition of the latter notion). Hence, there exists at least one((
1(λt)

1

)
,
(

1(λt)
2

)
, . . . ,

(
1(λt)

`

))
-compatible g-flag. Exercise 4.9.6(c) is solved.

(d) Write the partition λ as λ = (λ1, λ2, ..., λ`) with ` = ` (λ). Then, (λt)
t

= λ = (λ1, λ2, ..., λ`). Hence,
Exercise 4.9.6(c) (applied to λt instead of λ) yields

(13.124.8) gλ
t

(1λ1),(1λ2),...,(1λ`) (q) 6= 0.

900Proof of (13.124.7): Let k ∈ N. LetN ∈ Fn×nq be the matrix representing the endomorphism f of Fnq . Then, N is nilpotent

(since f is nilpotent) and has Jordan type λ (since f has Jordan type λ), and thus satisfies dim
(
ker
(
Nk
))

=
(
λt
)
1

+
(
λt
)
2

+

. . .+
(
λt
)
k

(by Exercise 2.9.22(a)). But since N is a matrix representing the map f , we have dim
(
ker
(
Nk
))

= dim
(
ker
(
fk
))

,

so that dim
(
ker
(
fk
))

= dim
(
ker
(
Nk
))

=
(
λt
)
1

+
(
λt
)
2

+ . . .+
(
λt
)
k
. This proves (13.124.7).
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But since λ = (λ1, λ2, ..., λ`), we have eλ = eλ1eλ2 · · · eλ` and thus

ϕ (eλ) = ϕ (eλ1
eλ2
· · · eλ`)

= ϕ (eλ1
)ϕ (eλ2

) · · ·ϕ (eλ`) (since ϕ is a C-algebra homomorphism)

=
∏̀
i=1

ϕ (eλi)︸ ︷︷ ︸
=q

(
λi
2

)
1J

(1λi )

(since Theorem 4.9.5 yields

ϕ(ep)=q

(
p

2

)
1J(1p)

for every p∈N)

=
∏̀
i=1

q
(
λi
2

)
1J

(1λi )



=

∏̀
i=1

q

(
λi
2

) ∏̀
i=1

1J
(1λi )︸ ︷︷ ︸

=1J
(1λ1 )

1J
(1λ2 )

···1J
(1λ` )

=
∑
µ∈Par g

µ

(1λ1),(1λ2),...,(1λ`)
(q)1Jµ

(by (13.124.1), applied to k=` and λ(i)=(1λi))

=

∏̀
i=1

q

(
λi
2

) ∑
µ∈Par

gµ
(1λ1),(1λ2),...,(1λ`)

(q) 1Jµ .(13.124.9)

Now, we notice that

(13.124.10) λt =
(
1λ1
)

+
(
1λ2
)

+ · · ·+
(
1λ`
)

901. Now, for every partition µ, we have gµ
(1λ1),(1λ2),...,(1λ`)

(q) = 0 unless µ ∈ Parn and λt . µ 902. Hence,

we can replace the summation sign “
∑
µ∈Par” on the right hand side of (13.124.9) by a more restricted

901Proof of (13.124.10): In the following, we use the so-called Iverson bracket notation: For every assertion A, we let [A]

denote the integer

{
1, if A is true;

0, if A is false
. (This integer is called the truth value of A.)

For every p ∈ N and i ∈ {1, 2, 3, ...}, we have

(13.124.11) (1p)i = [p ≥ i] .
Now, every i ∈ {1, 2, 3, ...} satisfies((

1λ1

)
+
(

1λ2

)
+ · · ·+

(
1λ`
))

i
=
(

1λ1

)
i

+
(

1λ2

)
i

+ · · ·+
(

1λ`
)
i

(by the definition of µ+ ν for two partitions µ and ν)

=
∑̀
k=1

(
1λk

)
i︸ ︷︷ ︸

=[λk≥i]
(by (13.124.11))

=
∑̀
k=1

[λk ≥ i]

= |{j ∈ {1, 2, ..., `} | λj ≥ i}| =
(
λt
)
i

(by (2.2.7)) .

Hence,
(
1λ1
)

+
(
1λ2
)

+ · · ·+
(
1λ`
)

= λt, qed.
902Proof. Let µ be a partition. Exercise 4.9.6(b) (applied to `,

(
1λi
)

and µ instead of k, λ(i) and λ) shows that we

have gµ
(1λ1 ),(1λ2 ),...,(1λ` )

(q) = 0 unless
∣∣(1λ1

)∣∣ +
∣∣(1λ2

)∣∣ + · · · +
∣∣(1λ`)∣∣ = |µ| and

(
1λ1
)

+
(
1λ2
)

+ · · · +
(
1λ`
)
. µ. Since

∣∣(1λ1
)∣∣+

∣∣(1λ2
)∣∣+ · · ·+

∣∣(1λ`)∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣
(

1λ1

)
+
(

1λ2

)
+ · · ·+

(
1λ`
)

︸ ︷︷ ︸
=λt

(by (13.124.10))

∣∣∣∣∣∣∣∣∣∣∣∣
=
∣∣λt∣∣ = |λ| = n and

(
1λ1
)

+
(
1λ2
)

+ · · ·+
(
1λ`
)

= λt (by

(13.124.10)), this rewrites as follows: We have gµ
(1λ1 ),(1λ2 ),...,(1λ` )

(q) = 0 unless n = |µ| and λt . µ. In other words, we have

gµ
(1λ1 ),(1λ2 ),...,(1λ` )

(q) = 0 unless µ ∈ Parn and λt . µ, qed.
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summation “
∑
µ∈Parn; λt.µ” without changing the value of the sum (since all addends that we lose are 0).

Thus, (13.124.9) rewrites as

ϕ (eλ) =

∏̀
i=1

q

(
λi
2

) ∑
µ∈Parn; λt.µ

gµ
(1λ1),(1λ2),...,(1λ`)

(q) 1Jµ

=
∑

µ∈Parn; λt.µ

∏̀
i=1

q

(
λi
2

) gµ
(1λ1),(1λ2),...,(1λ`)

(q) 1Jµ .

Setting αλ,µ =

∏`
i=1 q

(
λi
2

) gµ
(1λ1),(1λ2),...,(1λ`)

(q), we can rewrite this as ϕ (eλ) =
∑
µ∈Parn; λt.µ αλ,µ1Jµ .

Thus, we will be done solving Exercise 4.9.6(d) as soon as we can prove the inequality∏̀
i=1

q

(
λi
2

) gλ
t

(1λ1),(1λ2),...,(1λ`) (q) 6= 0.

But the latter inequality follows from q 6= 0 and (13.124.8). Thus, Exercise 4.9.6(d) is solved.
(e) The map ϕ : ΛC → H is graded, and thus, in order to prove that ϕ is injective, it is enough to show

that the restriction ϕ |(ΛC)n
of ϕ to (ΛC)n is injective for every n ∈ N. So let us fix n ∈ N.

We know that (eλ)λ∈Parn
is a basis of the C-vector space (ΛC)n. 903 Hence, (eλt)λ∈Parn

also is a basis

of the C-vector space (ΛC)n. Every λ ∈ Parn satisfies

ϕ (eλt) =
∑

µ∈Parn; (λt)t.µ

αλt,µ1Jµ

for some coefficients αλt,µ ∈ C satisfying αλt,(λt)t 6= 0 (according to Exercise 4.9.6(d)). In other words, every
λ ∈ Parn satisfies

(13.124.12) ϕ (eλt) =
∑

µ∈Parn; λ.µ

αλt,µ1Jµ

for some coefficients αλt,µ ∈ C satisfying αλt,λ 6= 0 (since (λt)
t

= λ).
Now, regard the set Parn as a poset with the smaller-or-equal relation ..
The C-vector space basis (eλt)λ∈Parn

of (ΛC)n and the C-vector space basis
(
1Jλ
)
λ∈Parn

of Hn are both

indexed by the poset Parn, and the Parn×Parn-matrix that represents the map ϕ |(ΛC)n
with respect to

these bases904 is triangular905 (by (13.124.12)). Furthermore, the diagonal entries of this triangular matrix
are nonzero (due to αλt,λ 6= 0), and therefore invertible (in C). Hence, this matrix is invertibly triangular,
and thus invertible906. Therefore, the map ϕ |(ΛC)n

(which is represented by this matrix) is invertible (as a

linear map (ΛC)n → Hn) and thus injective. This completes the solution to Exercise 4.9.6(e).

13.125. Solution to Exercise 5.2.13. Solution to Exercise 5.2.13.

Alternative proof of Theorem 5.2.11. Let P be a labelled poset.
First of all, let f be any map P → {1, 2, 3, . . .}. We define a binary relation ≺f on the set P by letting

i ≺f j hold if and only if
(f (i) < f (j) or (f (i) = f (j) and i <Z j)) .

903This has been proven in the proof of Proposition 2.2.10. (Alternatively, this can be easily concluded from Proposition

2.2.10.)
904i.e., the Parn×Parn-matrix whose (µ, λ)-th entry is the 1Jµ -coordinate of ϕ (eλt )
905See Definition 11.1.7 for the notation we are using here.
906by Proposition 11.1.10(d)
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It is straightforward to see that this binary relation ≺f is the smaller relation of a total order on P . Let us
define w (f) to be the set P endowed with this total order. Thus, w (f) = P as sets, but the smaller relation
<w(f) of the totally ordered set w (f) is the relation ≺f .

Let us now forget that we fixed f . Thus, for every map f : P → {1, 2, 3, . . .}, we have constructed a
binary relation ≺f on the set P and a totally ordered poset w (f). It is easy to see that, for every f ∈ A (P ),
we have

(13.125.1) w (f) ∈ L (P )

907.
Now, fix w ∈ L (P ). Thus, w is a linear extension of P . That is, w is a totally ordered set with ground

set P , and extends the poset P .
Let us first show that

(13.125.2) {g ∈ A (P ) | w (g) = w} ⊂ A (w) .

[Proof of (13.125.2): Let f ∈ {g ∈ A (P ) | w (g) = w}. Hence, f is an element of A (P ) and satisfies
w (f) = w. Therefore, w = w (f) = P as sets.

Our next goal is to prove f ∈ A (w). In other words, we want to prove that f is a w-partition.
Indeed, we claim that

(13.125.3) (if i ∈ w and j ∈ w satisfy i <w j and i <Z j, then f (i) ≤ f (j))

and

(13.125.4) (if i ∈ w and j ∈ w satisfy i <w j and i >Z j, then f (i) < f (j)) .

Let us prove (13.125.3) first. So let i and j be two elements of w satisfying i <w j and i <Z j. We have
i <w j, thus i <w(f) j (since w = w (f)), and thus i ≺f j (since the relation <w(f) is the relation ≺f ). By
the definition of ≺f , this means that we have (f (i) < f (j) or (f (i) = f (j) and i <Z j)). From this, we
immediately obtain f (i) ≤ f (j). Thus, (13.125.3) is proven.

The proof of (13.125.4) is similar to the proof that we just gave for (13.125.3), but with a minor twist:
In order to derive f (i) < f (j) from (f (i) < f (j) or (f (i) = f (j) and i <Z j)), we need to recall the
assumption i >Z j (which rules out the possibility (f (i) = f (j) and i <Z j)).

Thus, both (13.125.3) and (13.125.4) are proven. In other words, f is a w-partition. In yet other words,
f ∈ A (w).

Let us now forget that we fixed f . We thus have proven that every f ∈ {g ∈ A (P ) | w (g) = w} satisfies
f ∈ A (w). In other words, (13.125.2) is proven.]

Let us next show that

(13.125.5) A (w) ⊂ {g ∈ A (P ) | w (g) = w} .
[Proof of (13.125.5): Let f ∈ A (w). Thus, f is a w-partition. We shall next prove that

f ∈ {g ∈ A (P ) | w (g) = w}.
Indeed, let us first make a general and trivial observation: If Q and R are two labelled posets such that

Q = R as sets, and if every two elements i and j of Q satisfying i <Q j satisfy i <R j (that is, the poset R is

907Proof of (13.125.1): Let f ∈ A (P ). We need to show that w (f) ∈ L (P ). In other words, we need to show that w (f)

is a linear extension of P . In order to show this, it clearly suffices to prove that every two elements i and j of P satisfying
i <P j satisfy i <w(f) j (because we already know that w (f) is a totally ordered set). So, let us fix two elements i and j of P

satisfying i <P j. We need to prove that i <w(f) j.
We have i <P j and thus i 6= j. Hence, either i <Z j or i >Z j. In other words, we are in one of the following two Cases:

Case 1: We have i <Z j.
Case 2: We have i >Z j.
Let us first consider Case 1. In this case, i <Z j. But f is a P -partition (since f ∈ A (P )), and thus, by the definition of

a P -partition, we conclude that f (i) ≤ f (j) (since i <P j and i <Z j). In other words, either f (i) < f (j) or f (i) = f (j).

Therefore, either f (i) < f (j) or (f (i) = f (j) and i <Z j) (because we have i <Z j by assumption). In other words, i ≺f j.
This rewrites as i <w(f) j (since the relation <w(f) is the relation ≺f ). Thus, i <w(f) j is proven in Case 1.

Let us now consider Case 2. In this case, i >Z j. But f is a P -partition (since f ∈ A (P )), and thus, by the definition of a P -

partition, we conclude that f (i) < f (j) (since i <P j and i >Z j). Therefore, either f (i) < f (j) or (f (i) = f (j) and i <Z j).
In other words, i ≺f j. This rewrites as i <w(f) j (since the relation <w(f) is the relation ≺f ). Thus, i <w(f) j is proven in
Case 2.

We have now proven i <w(f) j in both Cases 1 and 2; thus, i <w(f) j always holds. This completes the proof of (13.125.1).
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an extension of the poset Q), then every R-partition is a Q-partition.908 Applying this to Q = P and R = w,
we conclude that every w-partition is a P -partition. Thus, f is a P -partition (since f is a w-partition). In
other words, f ∈ A (P ).

Next, we want to check that w (f) = w.
It is easy to check that every two elements i and j of w satisfying i <w j satisfy

(13.125.6) i <w(f) j

909. Now, let us again state a triviality: If Q and R are two totally ordered sets such that Q = R as sets, and
if every two elements i and j of Q satisfying i <Q j satisfy i <R j, then Q = R as totally ordered sets.910

Applying this to Q = w and R = w (f), we conclude that w = w (f) as totally ordered sets (since every two
elements i and j of w satisfying i <w j satisfy i <w(f) j). In other words, w (f) = w.

Now, we know that f ∈ A (P ) and w (f) = w. In other words, f ∈ {g ∈ A (P ) | w (g) = w}.
Let us now forget that we fixed f . We thus have shown that f ∈ {g ∈ A (P ) | w (g) = w} for every

f ∈ A (w). This proves (13.125.5).]
Combining (13.125.2) with (13.125.5), we obtain

(13.125.7) {g ∈ A (P ) | w (g) = w} = A (w) .

Let us now forget that we fixed w. We thus have proven (13.125.7) for every w ∈ L (P ).
Now, the definition of FP (x) yields

FP (x) =
∑

f∈A(P )

xf =
∑

w∈L(P )

∑
f∈A(P );
w(f)=w︸ ︷︷ ︸

=
∑
f∈{g∈A(P ) | w(g)=w}

=
∑
f∈A(w)

(by (13.125.7))

xf

(since w (f) ∈ L (P ) for every f ∈ A (P ) (by (13.125.1)))

=
∑

w∈L(P )

∑
f∈A(w)

xf︸ ︷︷ ︸
=Fw(x)

(since Fw(x)=
∑
f∈A(w) xf

(by the definition of Fw(x)))

=
∑

w∈L(P )

Fw (x) .

This completes our proof of Theorem 5.2.11. �

13.126. Solution to Exercise 5.3.7. Solution to Exercise 5.3.7. Let us first state a basic fact about totally
ordered sets:

Lemma 13.126.1. Let T be a totally ordered set, and let<T be the smaller relation of T . Let (a1, a2, . . . , an)
be a finite list of distinct elements of T . Then, there is a unique permutation σ ∈ Sn such that aσ(1) <T
aσ(2) <T · · · <T aσ(n).

908This is clear, because the requirements for an R-partition are at least as strong as the requirements for a Q-partition.
909Proof of (13.125.6): Let i and j be two elements of w satisfying i <w j. We must prove that i <w(f) j.
We have i <w j and thus i 6= j. Hence, either i <Z j or i >Z j. In other words, we are in one of the following two Cases:

Case 1: We have i <Z j.
Case 2: We have i >Z j.
Let us consider Case 1 first. In this case, we have i <Z j. Since f is a w-partition, we have f (i) ≤ f (j) (because i <w j and

i <Z j). In other words, (f (i) < f (j) or f (i) = f (j)). Hence, (f (i) < f (j) or (f (i) = f (j) and i <Z j)) (because we have
assumed that i <Z j). Therefore, i ≺f j (because of the definition of “i ≺f j”). In other words, i <w(f) j (since the relation

<w(f) is the relation ≺f ). Thus, i <w(f) j is proven in Case 1.

We can similarly prove i <w(f) j in Case 2 (but now we obtain f (i) < f (j) instead of f (i) ≤ f (j)).

We have now shown that i <w(f) j in both Cases 1 and 2. Thus, (13.125.6) is proven.
910In other words: If a totally ordered set R is an extension of a totally ordered set Q, then Q = R.
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Lemma 13.126.1 is well-known (it essentially says that a finite list of distinct elements of a totally ordered
set can be sorted into increasing order by a unique permutation). We shall use it to prove Proposition 5.3.2
later.

Next, we state an elementary property of permutations:

Proposition 13.126.2. Let n ∈ N. Let ϕ and ψ be two elements of Sn. Assume that for every two elements
a ∈ {1, 2, . . . , n} and b ∈ {1, 2, . . . , n} satisfying a < b, we have

(13.126.1) (ϕ (a) < ϕ (b) if and only if ψ (a) < ψ (b)) .

Then, ϕ = ψ.

Proof of Proposition 13.126.2. If a and b are two elements of {1, 2, . . . , n} satisfying a < b, then we have the
logical equivalence

(13.126.2) (ϕ (a) < ϕ (b)) ⇐⇒ (ψ (a) < ψ (b))

(by (13.126.1)). We next will show that this equivalence holds even if we don’t require a < b:

Observation 1: Let p ∈ {1, 2, . . . , n} and q ∈ {1, 2, . . . , n}. Then, we have the logical
equivalence

(ϕ (p) < ϕ (q)) ⇐⇒ (ψ (p) < ψ (q)) .

[Proof of Observation 1: Let us first prove the logical implication

(13.126.3) (ϕ (p) < ϕ (q)) =⇒ (ψ (p) < ψ (q)) .

[Proof of (13.126.3): Assume that ϕ (p) < ϕ (q). We want to show that ψ (p) < ψ (q).
If p < q, then (13.126.2) (applied to a = p and b = q) yields the equivalence (ϕ (p) < ϕ (q)) ⇐⇒

(ψ (p) < ψ (q)), and thus ψ (p) < ψ (q) follows (since ϕ (p) < ϕ (q)). Hence, for the rest of the proof of
ψ (p) < ψ (q), we WLOG assume that we don’t have p < q. Hence, we have p ≥ q.

From ϕ (p) < ϕ (q), we also obtain ϕ (p) 6= ϕ (q), so that p 6= q. Combining this with p ≥ q, we
obtain p > q. Hence, q < p. Thus, (13.126.2) (applied to a = q and b = p) yields the logical equivalence
(ϕ (q) < ϕ (p)) ⇐⇒ (ψ (q) < ψ (p)). Since we don’t have ϕ (q) < ϕ (p) (because ϕ (p) < ϕ (q)), we thus
conclude that we don’t have ψ (q) < ψ (p). Therefore, we have ψ (p) ≤ ψ (q). But the map ψ is injective
(since ψ ∈ Sn); therefore, from p 6= q, we obtain ψ (p) 6= ψ (q). Combining this with ψ (p) ≤ ψ (q), we obtain
ψ (p) < ψ (q). This completes the proof of (13.126.3).]

So we have proven (13.126.3). The same argument (but with the roles of ϕ and ψ interchanged) yields
the logical implication

(ψ (p) < ψ (q)) =⇒ (ϕ (p) < ϕ (q)) .

Combining this with (13.126.3), we obtain the equivalence (ϕ (p) < ϕ (q)) ⇐⇒ (ψ (p) < ψ (q)). This proves
Observation 1.]

Now, let q ∈ {1, 2, . . . , n}. Then, the map ϕ is a bijection {1, 2, . . . , n} → {1, 2, . . . , n} (since ϕ ∈ Sn).
Thus, we can substitute i for ϕ (p) in the sum

∑
p∈{1,2,...,n};
ϕ(p)<ϕ(q)

1. We thus obtain

(13.126.4)
∑

p∈{1,2,...,n};
ϕ(p)<ϕ(q)

1 =
∑

i∈{1,2,...,n};
i<ϕ(q)

1 =
∑

i∈{1,2,...,ϕ(q)−1}

1 = (ϕ (q)− 1) · 1 = ϕ (q)− 1.

The same argument (applied to ψ instead of ϕ) yields∑
p∈{1,2,...,n};
ψ(p)<ψ(q)

1 = ψ (q)− 1.

However, Observation 1 shows that the sums
∑

p∈{1,2,...,n};
ϕ(p)<ϕ(q)

1 and
∑

p∈{1,2,...,n};
ψ(p)<ψ(q)

1 range over the same values of p.

Thus, ∑
p∈{1,2,...,n};
ϕ(p)<ϕ(q)

1 =
∑

p∈{1,2,...,n};
ψ(p)<ψ(q)

1 = ψ (q)− 1.
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Comparing this with (13.126.4), we obtain ϕ (q)− 1 = ψ (q)− 1. Hence, ϕ (q) = ψ (q).
Now, forget that we fixed q. We thus have shown that ϕ (q) = ψ (q) for each q ∈ {1, 2, . . . , n}. In other

words, ϕ = ψ. This proves Proposition 13.126.2. �

For later use (in a different solution further below), let us derive another proposition from Proposition
13.126.2. It relies on the following notation:

Definition 13.126.3. Let n ∈ N. Let ϕ ∈ Sn. Define the inversion set Invϕ of ϕ to be the set{
(i, j) ∈ {1, 2, . . . , n}2 | i < j; ϕ (i) > ϕ (j)

}
.

(Note that this notation is not completely standard. Some authors, instead, define Invϕ to be{
(ϕ (i) , ϕ (j)) | (i, j) ∈ {1, 2, . . . , n}2 ; i < j; ϕ (i) > ϕ (j)

}
. This is a different set, although of the same

size.)

Proposition 13.126.4. Let n ∈ N. Let ϕ and ψ be two elements of Sn satisfying Invϕ = Invψ. Then,
ϕ = ψ.

(Proposition 13.126.4 can be restated as follows: If n ∈ N, then a permutation in Sn is uniquely determined
by its inversion set.)

Proposition 13.126.4 is a known fact in elementary combinatorics; let us quickly derive it from Proposition
13.126.2:

Proof of Proposition 13.126.4. Let a ∈ {1, 2, . . . , n} and b ∈ {1, 2, . . . , n} be such that a < b. We shall prove
that ϕ (a) < ϕ (b) if and only if ψ (a) < ψ (b).

The pair (a, b) is an element of {1, 2, . . . , n}2 satisfying a < b. Thus, (a, b) belongs to Invϕ if and only if it
satisfies ϕ (a) > ϕ (b) (by the definition of Invϕ). In other words, we have the following logical equivalence:

(13.126.5) ((a, b) ∈ Invϕ) ⇐⇒ (ϕ (a) > ϕ (b)) .

But the map ϕ is injective (since ϕ ∈ Sn). Thus, from a 6= b (which follows from a < b), we obtain
ϕ (a) 6= ϕ (b). Hence, ϕ (a) < ϕ (b) holds if and only if ϕ (a) ≤ ϕ (b). Hence, we have the following chain of
equivalences:

(ϕ (a) < ϕ (b)) ⇐⇒ (ϕ (a) ≤ ϕ (b)) ⇐⇒

not (ϕ (a) > ϕ (b))︸ ︷︷ ︸
⇐⇒ (a,b)∈Invϕ
(by (13.126.5))


⇐⇒ (not ((a, b) ∈ Invϕ)) .(13.126.6)

The same argument (applied to ψ instead of ϕ) yields the equivalence

(13.126.7) (ψ (a) < ψ (b)) ⇐⇒ (not ((a, b) ∈ Invψ)) .

Now, due to (13.126.6), we have the following chain of equivalences:

(ϕ (a) < ϕ (b)) ⇐⇒ (not ((a, b) ∈ Invϕ)) ⇐⇒ (not ((a, b) ∈ Invψ)) (since Invϕ = Invψ)

⇐⇒ (ψ (a) < ψ (b))

(by (13.126.7)). In other words, we have ϕ (a) < ϕ (b) if and only if ψ (a) < ψ (b).
Now, forget that we fixed a and b. We thus have shown that for every two elements a ∈ {1, 2, . . . , n} and

b ∈ {1, 2, . . . , n} satisfying a < b, we have

(ϕ (a) < ϕ (b) if and only if ψ (a) < ψ (b)) .

Thus, Proposition 13.126.2 yields ϕ = ψ. This proves Proposition 13.126.4. �

We are now ready to prove Proposition 5.3.2:
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Proof of Proposition 5.3.2. Define a binary relation ≺ on the set {1, 2, . . . , n} by letting i ≺ j hold if and
only if

(wi < wj or (wi = wj and i <Z j)) .

It is easy to see that this relation ≺ is the smaller relation of a total order. Let T denote the set {1, 2, . . . , n}
endowed with this total order. Thus, T = {1, 2, . . . , n} as sets, but the smaller relation <T of the poset T is
the relation ≺.

Clearly, (1, 2, . . . , n) is a finite list of distinct elements of this totally ordered set T . Hence, Lemma
13.126.1 (applied to ai = i) yields that there is a unique permutation σ ∈ Sn such that σ (1) <T σ (2) <T
· · · <T σ (n). Consider this σ, and denote it by γ. Thus, γ is a permutation in Sn and satisfies γ (1) <T
γ (2) <T · · · <T γ (n). Hence, γ−1 ∈ Sn as well.

We have γ (1) <T γ (2) <T · · · <T γ (n). In other words, if i and j are two elements of {1, 2, . . . , n}
satisfying i < j, then

(13.126.8) γ (i) <T γ (j) .

Thus, for every two elements a and b of {1, 2, . . . , n} satisfying a < b, we have

(13.126.9)
(
γ−1 (a) < γ−1 (b) if and only if wa ≤ wb

)
.

[Proof of (13.126.9): Let a and b be two elements of {1, 2, . . . , n} satisfying a < b. Set i = γ−1 (a) and
j = γ−1 (b). Thus, i and j are two elements of {1, 2, . . . , n} (since γ−1 ∈ Sn). Also, from i = γ−1 (a), we
obtain γ (i) = a. From j = γ−1 (b), we obtain γ (j) = b.

We are in one of the following two cases:
Case 1: We have i < j.
Case 2: We have i ≥ j.
Let us first consider Case 1. In this case, we have i < j. This rewrites as γ−1 (a) < γ−1 (b) (since

i = γ−1 (a) and j = γ−1 (b)). On the other hand, from i < j, we obtain γ (i) <T γ (j) (by (13.126.8)). This
rewrites as a <T b (since γ (i) = a and γ (j) = b). This rewrites as a ≺ b (since the relation <T is the relation
≺). In other words, (f (a) < f (b) or (f (a) = f (b) and a <Z b)) (by the definition of the relation ≺). Thus,
f (a) ≤ f (b). But the definition of f yields f (a) = wa and f (b) = wb. Thus, wa = f (a) ≤ f (b) = wb.
Now, we have shown that both statements

(
γ−1 (a) < γ−1 (b)

)
and (wa ≤ wb) are true. Hence, we have(

γ−1 (a) < γ−1 (b) if and only if wa ≤ wb
)
. This proves (13.126.9) in Case 1.

Let us now consider Case 2. In this case, we have i ≥ j. This rewrites as γ−1 (a) ≥ γ−1 (b) (since
i = γ−1 (a) and j = γ−1 (b)). Hence, the statement

(
γ−1 (a) < γ−1 (b)

)
is false.

We have a < b. Thus, we cannot have b < a. In other words, we cannot have b <Z a. Thus, we cannot
have (f (b) = f (a) and b <Z a).

If we had i = j, then we would have a = γ

 i︸︷︷︸
=j

 = γ (j) = b, which would contradict a < b. Hence,

we cannot have i = j. Thus, we have i 6= j. Combining this with i ≥ j, we obtain i > j. Therefore,
j < i. Therefore, (13.126.8) (applied to j and i instead of i and j) yields γ (j) <T γ (i). This rewrites as
b <T a (since γ (i) = a and γ (j) = b). This rewrites as b ≺ a (since the relation <T is the relation ≺). In
other words, (f (b) < f (a) or (f (b) = f (a) and b <Z a)) (by the definition of the relation ≺). Hence, we
must have f (b) < f (a) (since we cannot have (f (b) = f (a) and b <Z a)). But the definition of f yields
f (a) = wa and f (b) = wb. Thus, wb = f (b) < f (a) = wa. Hence, the statement (wa ≤ wb) is false.
Now, we have shown that both statements

(
γ−1 (a) < γ−1 (b)

)
and (wa ≤ wb) are false. Hence, we have(

γ−1 (a) < γ−1 (b) if and only if wa ≤ wb
)
. This proves (13.126.9) in Case 2.

We have now proven (13.126.9) in each of the two Cases 1 and 2. Hence, (13.126.9) is always proven.]
So we know that γ−1 is a permutation in Sn, and that for every two elements a and b of {1, 2, . . . , n}

satisfying a < b, we have
(
γ−1 (a) < γ−1 (b) if and only if wa ≤ wb

)
(by (13.126.9)). Thus, there exists at

least one permutation σ ∈ Sn such that for every two elements a and b of {1, 2, . . . , n} satisfying a < b, we
have (σ (a) < σ (b) if and only if wa ≤ wb) (namely, σ = γ−1).

It remains to prove that there exists at most one such permutation σ. In other words, it remains to
prove that any two such permutations σ are equal. In other words, it remains to prove the following claim:
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Claim 1: Let ϕ and ψ be two permutations σ ∈ Sn such that for every two elements a
and b of {1, 2, . . . , n} satisfying a < b, we have (σ (a) < σ (b) if and only if wa ≤ wb). Then,
ϕ = ψ.

[Proof of Claim 1: We know that ϕ is a permutation σ ∈ Sn such that for every two elements a and
b of {1, 2, . . . , n} satisfying a < b, we have (σ (a) < σ (b) if and only if wa ≤ wb). In other words, ϕ is a
permutation in Sn, and has the property that for every two elements a and b of {1, 2, . . . , n} satisfying
a < b, we have

(13.126.10) (ϕ (a) < ϕ (b) if and only if wa ≤ wb) .

Now, let a and b be two elements of {1, 2, . . . , n} satisfying a < b. Then, from (13.126.10), we obtain the
logical equivalence (ϕ (a) < ϕ (b))⇐⇒ (wa ≤ wb). The same argument (applied to ψ instead of ϕ) yields the
logical equivalence (ψ (a) < ψ (b))⇐⇒ (wa ≤ wb). Hence, we have the following chain of logical equivalences:

(ϕ (a) < ϕ (b)) ⇐⇒ (wa ≤ wb) ⇐⇒ (ψ (a) < ψ (b))

(because of the equivalence (ψ (a) < ψ (b))⇐⇒ (wa ≤ wb)). In other words, we have

(ϕ (a) < ϕ (b) if and only if ψ (a) < ψ (b)) .

Now, forget that we fixed a and b. We thus have proven that for every two elements a ∈ {1, 2, . . . , n} and
b ∈ {1, 2, . . . , n} satisfying a < b, we have

(ϕ (a) < ϕ (b) if and only if ψ (a) < ψ (b)) .

Thus, Proposition 13.126.2 yields that ϕ = ψ. This proves Claim 1.]
Hence, Proposition 5.3.2 is proven. �

Next, we shall show a lemma that will be crucial in our proof of Lemma 5.3.6:

Lemma 13.126.5. Let n ∈ N. Let τ ∈ Sn. Let P be the labelled poset whose underlying set is {1, 2, . . . , n}
and which (as a poset) is the total order (τ (1) < τ (2) < · · · < τ (n)) (that is, the order <P is given by
τ (1) <P τ (2) <P · · · <P τ (n)).

Let A denote the totally ordered set {1 < 2 < 3 < · · · } of positive integers. Let f : P → A be any map.
Then, we have the following logical equivalence:

(f ∈ A (P )) ⇐⇒
(
std (f (1) , f (2) , . . . , f (n)) = τ−1

)
(where we treat (f (1) , f (2) , . . . , f (n)) as a word in An).

Proof of Lemma 13.126.5. We have P = {1, 2, . . . , n} as sets. Also, the definition of the order <P yields

τ (1) <P τ (2) <P · · · <P τ (n) .

Hence, for any two elements i and j of {1, 2, . . . , n}, we have

(13.126.11) (τ (i) <P τ (j) if and only if i < j)

(where the “<” sign in “i < j” refers to the usual smaller relation <Z of the totally ordered set Z).
The map f is a map from P to A. In other words, the map f is a map from P to {1, 2, 3, . . .} (since

A = {1, 2, 3, . . .}).
Also, (f (1) , f (2) , . . . , f (n)) is a word in An. Denote this word by w. Thus,

w = (f (1) , f (2) , . . . , f (n)) ∈ An.

For each i ∈ {1, 2, . . . , n}, the i-th letter of the word w has been denoted by wi. Thus, w = (w1, w2, . . . , wn),
so that (w1, w2, . . . , wn) = w = (f (1) , f (2) , . . . , f (n)). In other words,

(13.126.12) wi = f (i) for each i ∈ {1, 2, . . . , n} .

The definition of the standardization stdw shows that stdw is the unique permutation σ ∈ Sn such that for
every two elements a and b of {1, 2, . . . , n} satisfying a < b, we have (σ (a) < σ (b) if and only if wa ≤ wb).
In particular, stdw is such a permutation. In other words, stdw is a permutation in Sn and has the property
that for every two elements a and b of {1, 2, . . . , n} satisfying a < b, we have

(13.126.13) ((stdw) (a) < (stdw) (b) if and only if wa ≤ wb) .
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Hence, for every two elements a and b of {1, 2, . . . , n} satisfying a < b, we have

(13.126.14) ((stdw) (a) < (stdw) (b) if and only if f (a) ≤ f (b)) .

(Indeed, this just a restatement of (13.126.13), since (13.126.12) yields wa = f (a) and wb = f (b).)
We shall next prove the following two claims:

Claim 1: If f ∈ A (P ), then stdw = τ−1.

Claim 2: If stdw = τ−1, then f ∈ A (P ).

[Proof of Claim 1: Assume that f ∈ A (P ). Thus, f is a P -partition (since A (P ) is the set of all
P -partitions). In other words, f is a map P → {1, 2, 3, . . .} with the properties

(13.126.15) (if i ∈ P and j ∈ P satisfy i <P j and i <Z j, then f (i) ≤ f (j))

and

(13.126.16) (if i ∈ P and j ∈ P satisfy i <P j and i >Z j, then f (i) < f (j))

(because this is how a P -partition is defined).
For every two elements a ∈ {1, 2, . . . , n} and b ∈ {1, 2, . . . , n} satisfying a < b, we have

(13.126.17)
(
(stdw) (a) < (stdw) (b) if and only if τ−1 (a) < τ−1 (b)

)
911. Hence, Proposition 13.126.2 (applied to ϕ = stdw and ψ = τ−1) yields stdw = τ−1. Thus, Claim 1 is
proven.]

[Proof of Claim 2: Assume that stdw = τ−1. The map f : P → {1, 2, 3, . . .} has the following properties:

(13.126.18) (if i ∈ P and j ∈ P satisfy i <P j and i <Z j, then f (i) ≤ f (j))

912 and

(13.126.19) (if i ∈ P and j ∈ P satisfy i <P j and i >Z j, then f (i) < f (j))

911Proof of (13.126.17): Let a ∈ {1, 2, . . . , n} and b ∈ {1, 2, . . . , n} be such that a < b. We must prove (13.126.17).
We have a ∈ {1, 2, . . . , n} = P and b ∈ {1, 2, . . . , n} = P .

Note that a < b. In other words, a <Z b. In other words, b >Z a.
Let i = τ−1 (a) and j = τ−1 (b). Thus, i and j belong to {1, 2, . . . , n}. From i = τ−1 (a), we obtain a = τ (i). From

j = τ−1 (b), we obtain b = τ (j). If we had i = j, then we would have a = τ

 i︸︷︷︸
=j

 = τ (j) = b, which would contradict a < b.

Thus, i 6= j. Hence, we are in one of the following two cases:

Case 1: We have i < j.
Case 2: We have i > j.

Let us first consider Case 1. In this case, we have i < j. Hence, (13.126.11) shows that τ (i) <P τ (j). In view

of τ (i) = a and τ (j) = b, this rewrites as a <P b. Also, a <Z b. Hence, (13.126.15) (applied to a and b instead
of i and j) yields f (a) ≤ f (b). Because of (13.126.14), this shows that (stdw) (a) < (stdw) (b). Also, τ−1 (a) =

i < j = τ−1 (b). Thus, both statements ((stdw) (a) < (stdw) (b)) and
(
τ−1 (a) < τ−1 (b)

)
are true. Hence, we have(

(stdw) (a) < (stdw) (b) if and only if τ−1 (a) < τ−1 (b)
)
. Thus, (13.126.17) is proven in Case 1.

Let us now consider Case 2. In this case, we have i > j. Hence, j < i. But (13.126.11) (applied to j and i instead of i and

j) shows that τ (j) <P τ (i) if and only if j < i. Hence, we have τ (j) <P τ (i) (since we have j < i). In view of τ (i) = a and
τ (j) = b, this rewrites as b <P a. Also, b >Z a. Hence, (13.126.16) (applied to b and a instead of i and j) yields f (b) < f (a).

In other words, we don’t have f (a) ≤ f (b). Because of (13.126.14), this shows that we don’t have (stdw) (a) < (stdw) (b).
Also, τ−1 (a) = i > j = τ−1 (b). Hence, we don’t have τ−1 (a) < τ−1 (b). Thus, both statements ((stdw) (a) < (stdw) (b)) and(
τ−1 (a) < τ−1 (b)

)
are false. Hence, we have

(
(stdw) (a) < (stdw) (b) if and only if τ−1 (a) < τ−1 (b)

)
. Thus, (13.126.17) is

proven in Case 2.

We have now proven (13.126.17) in both Cases 1 and 2. Thus, (13.126.17) always holds.
912Proof of (13.126.18): Let i ∈ P and j ∈ P be such that i <P j and i <Z j. We must prove that f (i) ≤ f (j).
Let a = τ−1 (i) and b = τ−1 (j). Thus, a = τ−1 (i) ∈ {1, 2, . . . , n} = P and b = τ−1 (j) ∈ {1, 2, . . . , n} = P . From

a = τ−1 (i), we obtain τ (a) = i. From b = τ−1 (j), we obtain τ (b) = j.
We have i <P j. In view of i = τ (a) and j = τ (b), this rewrites as τ (a) <P τ (b).

But (13.126.11) (applied to a and b instead of i and j) shows that (τ (a) <P τ (b) if and only if a < b). Hence, we have a < b

(since we have τ (a) <P τ (b)). Because of stdw = τ−1, we now have (stdw)︸ ︷︷ ︸
=τ−1

(i) = τ−1 (i) = a < b = τ−1︸︷︷︸
=stdw

(j) = (stdw) (j).

But i <Z j. In other words, i < j. Thus, (13.126.14) (applied to i and j instead of a and b) shows that
((stdw) (i) < (stdw) (j) if and only if f (i) ≤ f (j)). Thus, f (i) ≤ f (j) (since (stdw) (i) < (stdw) (j)). This proves

(13.126.18).
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913. Thus, f is a P -partition (because this is how a P -partition is defined). In other words, f ∈ A (P ) (since
A (P ) is the set of all P -partitions). This proves Claim 2.]

Combining Claim 1 with Claim 2, we obtain the logical equivalence (f ∈ A (P )) ⇐⇒
(
stdw = τ−1

)
. In

view of w = (f (1) , f (2) , . . . , f (n)), this rewrites as

(f ∈ A (P )) ⇐⇒
(
std (f (1) , f (2) , . . . , f (n)) = τ−1

)
.

This proves Lemma 13.126.5. �

Next, we will use a trivial consequence of Proposition 5.2.10:

Lemma 13.126.6. Let n ∈ N. Let σ ∈ Sn. Let P be the labelled poset whose underlying set is {1, 2, . . . , n}
and which (as a poset) is the total order (σ (1) < σ (2) < · · · < σ (n)) (that is, the order <P is given by
σ (1) <P σ (2) <P · · · <P σ (n)). Then, FP (x) = Lγ(σ).

Proof of Lemma 13.126.6. In Proposition 5.2.10, we have defined Desw for any labelled poset w that is a
total order. Applying this definition to w = P , we obtain

DesP = {i ∈ {1, 2, . . . , n− 1} | σ (i) >Z σ (i+ 1)}

(since P is the total order (σ (1) < σ (2) < · · · < σ (n))). Comparing this with

Desσ = {i ∈ {1, 2, . . . , n− 1} | σ (i) > σ (i+ 1)} (by the definition of Desσ)

= {i ∈ {1, 2, . . . , n− 1} | σ (i) >Z σ (i+ 1)}
(since the greater relation > of Z is the relation >Z) ,

we obtain Desσ = DesP .
Recall that γ (σ) is the unique composition α of n satisfying D(α) = Desσ (by the definition of γ (σ)). In

other words, γ (σ) is the unique composition α ∈ Compn having partial sums D(α) = Desσ. In other words,
γ (σ) is the unique composition α ∈ Compn having partial sums D(α) = DesP (since Desσ = DesP ).

Hence, Proposition 5.2.10 (applied to P , σ (i) and γ (σ) instead of w, wi and α) yields that the generating
function FP (x) equals the fundamental quasisymmetric function Lγ(σ). Thus, FP (x) = Lγ(σ). This proves
Lemma 13.126.6. �

Proof of Lemma 5.3.6. We have A = {1 < 2 < 3 < · · · }; thus, A = {1, 2, 3, . . .} as sets.
Let P be the labelled poset whose underlying set is {1, 2, . . . , n} and which (as a poset) is the total order

(σ (1) < σ (2) < · · · < σ (n)) (that is, the order <P is given by σ (1) <P σ (2) <P · · · <P σ (n)). Lemma
13.126.5 (applied to τ = σ) yields that if f : P → A is any map, then we have the following logical
equivalence:

(f ∈ A (P )) ⇐⇒
(
std (f (1) , f (2) , . . . , f (n)) = σ−1

)
(where we treat (f (1) , f (2) , . . . , f (n)) as a word in An). Hence, we have the following equality of summation
signs:

(13.126.20)
∑

f :P→A;
f∈A(P )

=
∑

f :P→A;
std(f(1),f(2),...,f(n))=σ−1

.

913Proof of (13.126.19): Let i ∈ P and j ∈ P be such that i <P j and i >Z j. We must prove that f (i) < f (j).
Assume the contrary. Thus, f (i) ≥ f (j). In other words, f (j) ≤ f (i).

Let a = τ−1 (i) and b = τ−1 (j). Thus, a = τ−1 (i) ∈ {1, 2, . . . , n} = P and b = τ−1 (j) ∈ {1, 2, . . . , n} = P . From

a = τ−1 (i), we obtain τ (a) = i. From b = τ−1 (j), we obtain τ (b) = j.
We have i <P j. In view of i = τ (a) and j = τ (b), this rewrites as τ (a) <P τ (b).

But (13.126.11) (applied to a and b instead of i and j) shows that (τ (a) <P τ (b) if and only if a < b). Hence, we have

a < b (since we have τ (a) <P τ (b)).
We have i >Z j. In other words, i > j. In other words, j < i. Hence, (13.126.14) (applied to j and i instead of a and b)

shows that ((stdw) (j) < (stdw) (i) if and only if f (j) ≤ f (i)). Thus, (stdw) (j) < (stdw) (i) (since f (j) ≤ f (i)). In view of
stdw = τ−1, this rewrites as τ−1 (j) < τ−1 (i). Thus, b = τ−1 (j) < τ−1 (i) = a. This contradicts a < b. This contradiction

shows that our assumption was wrong. Hence, f (i) < f (j). This proves (13.126.19).
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But every P -partition is a function P → {1, 2, 3, . . .}. In other words, every P -partition is a function
P → A (since {1, 2, 3, . . .} = A). In other words, every f ∈ A (P ) is a function P → A (since A (P ) is the
set of all P -partitions). Hence, we have the following equality of summation sums:∑

f∈A(P )

=
∑

f :P→A;
f∈A(P )

=
∑

f :P→A;
std(f(1),f(2),...,f(n))=σ−1

(by (13.126.20)). But Lemma 13.126.6 yields FP (x) = Lγ(σ). Hence,

Lγ(σ) = FP (x) =
∑

f∈A(P )︸ ︷︷ ︸
=

∑
f :P→A;

std(f(1),f(2),...,f(n))=σ−1

xf︸︷︷︸
=
∏
i∈P xf(i)

(by the definition of xf )

(by the definition of FP (x))

=
∑

f :P→A;
std(f(1),f(2),...,f(n))=σ−1︸ ︷︷ ︸

=
∑

f :{1,2,...,n}→A;

std(f(1),f(2),...,f(n))=σ−1

(since P={1,2,...,n})

∏
i∈P

xf(i)︸ ︷︷ ︸
=xf(1)xf(2)···xf(n)

(since P={1,2,...,n})

=
∑

f :{1,2,...,n}→A;

std(f(1),f(2),...,f(n))=σ−1

xf(1)xf(2) · · ·xf(n).(13.126.21)

But the map

{functions {1, 2, . . . , n} → A} → An,

f 7→ (f (1) , f (2) , . . . , f (n))

is a bijection (indeed, this is just the standard bijection between the functions {1, 2, . . . , n} → A and the
n-tuples of elements of A). Hence, we can substitute (w1, w2, . . . , wn) for (f (1) , f (2) , . . . , f (n)) in the sum
on the right hand side of (13.126.21). We thus obtain∑

f :{1,2,...,n}→A;

std(f(1),f(2),...,f(n))=σ−1

xf(1)xf(2) · · ·xf(n) =
∑

(w1,w2,...,wn)∈An;

std(w1,w2,...,wn)=σ−1

xw1xw2 · · ·xwn .

Hence, (13.126.21) becomes

Lγ(σ) =
∑

f :{1,2,...,n}→A;

std(f(1),f(2),...,f(n))=σ−1

xf(1)xf(2) · · ·xf(n) =
∑

(w1,w2,...,wn)∈An;

std(w1,w2,...,wn)=σ−1

xw1xw2 · · ·xwn .

Comparing this with∑
w∈An;

stdw=σ−1

xw =
∑

(w1,w2,...,wn)∈An;

std(w1,w2,...,wn)=σ−1

x(w1,w2,...,wn)︸ ︷︷ ︸
=xw1xw2 ···xwn

(by the definition of x(w1,w2,...,wn))

(here, we have renamed the summation index w as (w1, w2, . . . , wn))

=
∑

(w1,w2,...,wn)∈An;

std(w1,w2,...,wn)=σ−1

xw1
xw2
· · ·xwn ,

we obtain Lγ(σ) =
∑

w∈An;
stdw=σ−1

xw. This proves Lemma 5.3.6. �
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Proposition 5.3.2 and Lemma 5.3.6 have now been proven. Thus, Exercise 5.3.7 is solved.

13.127. Solution to Exercise 5.4.5. Solution to Exercise 5.4.5. Consider the power series H̃ (t) and ξ (t)
defined in (5.4.6). From (5.4.6), we know that

(13.127.1)
∑
n≥1

ξnt
n = log H̃ (t) = log

∑
n≥0

Hnt
n

 .

(a) The fact that ξn is primitive was proven for k = Q in Remark 5.4.4, and can be proven in the same
way for general k. It remains to show that ξn is homogeneous of degree n for each n ≥ 1. This can be done
as follows:

Let us say that a power series f ∈ A [[t]] over a graded k-algebra A is equigraded if, for every n ∈ N,
the coefficient of f before tn is homogeneous of degree n. Then, the set of all equigraded power series in
A [[t]] is a k-subalgebra of A [[t]] which is closed under the usual topology on A [[t]]. In particular, if g is an
equigraded power series in A [[t]] having constant term 1, then log g is equigraded. Applied to A = NSym

and g =
∑
n≥0Hnt

n, this yields that the power series log
(∑

n≥0Hnt
n
)

is equigraded. Due to (13.127.1),

this rewrites as follows: The power series
∑
n≥1 ξnt

n is equigraded. In other words, ξn is homogeneous of

degree n for each n ≥ 1. This completes the solution of Exercise 5.4.5(a).
For an alternative proof of Exercise 5.4.5(a), one can simply notice that it follows immediately from

Exercise 5.4.5(c).
(b) The ring homomorphism π : NSym → Λ induces a ring homomorphism NSym [[t]] → Λ [[t]] which is

continuous with respect to the usual topology on power series. Applying this latter homomorphism to the
equality (13.127.1), we obtain

∑
n≥1

π (ξn) tn = log

∑
n≥0

π (Hn) tn

 = log

∑
n≥0

hnt
n

 =

∞∑
m=1

1

m
pmt

m

(where in the last step, we have used the equality (2.5.12)). Comparing coefficients, we obtain π (ξn) = 1
npn

for all n ≥ 1. Multiplying this by n, we obtain π (nξn) = pn for all n ≥ 1. This solves part (b) of the exercise.
Remark: Another way to solve Exercise 5.4.5(b) proceeds as follows: We know that π (nξn) is a primitive

homogeneous element of Λ of degree n (by Exercise 5.4.5(a) and since π is a graded homomorphism of Hopf
algebras). But Exercise 3.1.9 shows that all such elements are scalar multiples of pn. Thus, π (nξn) is a
scalar multiple of pn. Finding the scalar is easy (e.g., it can be obtained by specializing at (1)).
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(c) From (13.127.1), we have

∑
n≥1

ξnt
n = log


∑
n≥0

Hnt
n

︸ ︷︷ ︸
=1+

∑
n≥1 Hnt

n

 = log

1 +
∑
n≥1

Hnt
n



=
∑
i≥1

(−1)
i−1

i

∑
n≥1

Hnt
n

i

︸ ︷︷ ︸
=
∑
n1,n2,...,ni≥1(Hn1 t

n1)(Hn2 t
n2)···(Hni tni)

(by the Mercator series for the logarithm)

=
∑
i≥1

(−1)
i−1

i

∑
n1,n2,...,ni≥1︸ ︷︷ ︸

=
∑

(n1,n2,...,ni) is a composition
of length i

(Hn1
tn1) (Hn2

tn2) · · · (Hnit
ni)︸ ︷︷ ︸

=Hn1Hn2 ···Hni t
n1+n2+...+ni

=
∑
i≥1

(−1)
i−1

i

∑
(n1,n2,...,ni) is a composition

of length i

Hn1
Hn2
· · ·Hni︸ ︷︷ ︸

=H(n1,n2,...,ni)

tn1+n2+...+ni︸ ︷︷ ︸
=t|(n1,n2,...,ni)|

=
∑
i≥1

(−1)
i−1

i

∑
(n1,n2,...,ni) is a composition

of length i

H(n1,n2,...,ni)t
|(n1,n2,...,ni)|

=
∑
i≥1

(−1)
i−1

i

∑
α is a composition

of length i

Hαt
|α|

(here, we renamed the summation index (n1, n2, ..., ni) as α in the inner sum)

=
∑
i≥1

∑
α is a composition

of length i

(−1)
i−1

i︸ ︷︷ ︸
=

(−1)
`(α)−1

` (α)
(since i=`(α))

Hαt
|α| =

∑
i≥1

∑
α is a composition

of length i︸ ︷︷ ︸
=

∑
α is a nonempty

composition
=
∑
n≥1

∑
α∈Compn

(−1)
`(α)−1

` (α)
Hαt

|α|

=
∑
n≥1

∑
α∈Compn

(−1)
`(α)−1

` (α)
Hα t|α|︸︷︷︸

=tn

(since α∈Compn )

=
∑
n≥1

∑
α∈Compn

(−1)
`(α)−1

` (α)
Hαt

n

=
∑
n≥1

 ∑
α∈Compn

(−1)
`(α)−1

` (α)
Hα

 tn.

Comparing coefficients in this identity, we conclude that every n ≥ 1 satisfies

ξn =
∑

α∈Compn

(−1)
`(α)−1

` (α)
Hα =

∑
α∈Compn

(−1)
`(α)−1 1

` (α)
Hα.

This solves part (c) of the exercise.
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(d) Applying the exponential to
∑
n≥1 ξnt

n = logH (t), we obtain exp
(∑

n≥1 ξnt
n
)

= H (t). Thus,

H (t) = exp

∑
n≥1

ξnt
n

 =
∑
i≥0

1

i!

∑
n≥1

ξnt
n

i

︸ ︷︷ ︸
=
∑
n1,n2,...,ni≥1(ξn1 t

n1)(ξn2 t
n2)···(ξni tni)

=
∑
i≥0

1

i!

∑
n1,n2,...,ni≥1︸ ︷︷ ︸

=
∑

(n1,n2,...,ni) is a composition
of length i

(ξn1
tn1) (ξn2

tn2) · · · (ξnitni)︸ ︷︷ ︸
=ξn1

ξn2
···ξni t

n1+n2+...+ni

=
∑
i≥0

1

i!

∑
(n1,n2,...,ni) is a composition

of length i

ξn1
ξn2
· · · ξni︸ ︷︷ ︸

=ξ(n1,n2,...,ni)
(because we defined ξ(n1,n2,...,ni)

in such a way that this holds)

tn1+n2+...+ni︸ ︷︷ ︸
=t|(n1,n2,...,ni)|

=
∑
i≥0

1

i!

∑
(n1,n2,...,ni) is a composition

of length i

ξ(n1,n2,...,ni)t
|(n1,n2,...,ni)| =

∑
i≥0

1

i!

∑
α is a composition

of length i

ξαt
|α|

(here, we renamed the summation index (n1, n2, ..., ni) as α in the inner sum)

=
∑
i≥0

∑
α is a composition

of length i

1

i!︸︷︷︸
=

1

` (α)!
(since i=`(α))

ξαt
|α| =

∑
i≥0

∑
α is a composition

of length i︸ ︷︷ ︸
=
∑
α is a composition

=
∑
n≥0

∑
α∈Compn

1

` (α)!
ξαt
|α|

=
∑
n≥0

∑
α∈Compn

1

` (α)!
ξα t|α|︸︷︷︸

=tn

(since α∈Compn )

=
∑
n≥0

∑
α∈Compn

1

` (α)!
ξαt

n =
∑
n≥0

 ∑
α∈Compn

1

` (α)!
ξα

 tn.

Comparing coefficients in this identity, we conclude that every n ≥ 0 satisfies

Hn =
∑

α∈Compn

1

` (α)!
ξα

(since the coefficient of tn in H (t) is Hn). This proves (5.4.8).
Notice that, for every n ≥ 1, the element ξn of NSym is homogeneous of degree n (by Exercise 5.4.5(a)).

Hence, for every composition α, the element ξα of NSym is homogeneous of degree |α|. In particular, for
every n ∈ N, it is clear that (ξα)α∈Compn

is a family of elements of NSymn. We now need to prove that this

family is a k-basis of NSymn for every n ∈ N.
Let A be the k-subalgebra of NSym generated by the elements ξ1, ξ2, ξ3, .... Then, A contains ξα for every

composition α (by the definition of ξα). Therefore, A contains Hn for every n ≥ 1 (by (5.4.7)). Consequently,
A = NSym (because NSym is generated as a k-algebra by H1, H2, H3, ...). In other words, the k-algebra
NSym is generated by the elements ξ1, ξ2, ξ3, ... (since we defined A as the k-subalgebra of NSym generated
by the elements ξ1, ξ2, ξ3, ...). In other words, the k-module NSym is spanned by all possible products of the
elements ξ1, ξ2, ξ3, .... In other words, the k-module NSym is spanned by the elements ξα with α ∈ Comp
(because the elements ξα with α ∈ Comp are precisely all possible products of the elements ξ1, ξ2, ξ3, ...).
In yet other words, the family (ξα)α∈Comp spans the k-module NSym.

Now, fix n ∈ N. Every element of NSymn can be written as a k-linear combination of the elements ξα with
α ∈ Comp (since the family (ξα)α∈Comp spans the k-module NSym). In this k-linear combination, we can

remove all terms ξα with α /∈ Compn without changing the result (by gradedness, because ξα is homogeneous
of degree |α|), and so we conclude that every element of NSymn can be written as a k-linear combination of
the elements ξα with α ∈ Compn. In other words, the family (ξα)α∈Compn

spans the k-module NSymn.
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Now, we can apply Exercise 2.5.18(b) to A = NSymn, I = Compn, (γi)i∈I = (Hα)α∈Compn
and (βi)i∈I =

(ξα)α∈Compn
(since we know that (Hα)α∈Compn

is a k-basis of NSymn, whereas (ξα)α∈Compn
spans the

k-module NSymn). We conclude that (ξα)α∈Compn
is a k-basis of NSymn. Thus, Exercise 5.4.5(d) is solved.

13.128. Solution to Exercise 5.4.6. Solution to Exercise 5.4.6. We follow the hint.
Let f be the endomorphism idA−uε of A. Then, f =

∑
n≥1 πn (because the definition of the πn yields that

idA =
∑
n≥0 πn = π0︸︷︷︸

=uε

+
∑
n≥1 πn = uε+

∑
n≥1 πn and thus idA−uε =

∑
n≥1 πn). Notice that f = idA−uε,

so that idA = f + uε. Now, e = log?

 idA︸︷︷︸
=f+uε

 = log? (f + uε) =
∑
n≥1 (−1)

n−1 1
nf

?n.

We let EndgrA be the k-submodule of EndA consisting of all graded k-linear maps A → A. Then, it
is easy to see that this k-submodule EndgrA is closed under convolution (i.e., if g1 and g2 are two graded
k-linear maps A → A, then g1 ? g2 is also a graded k-linear map A → A) and contains the unity uε of
the algebra (EndA, ?) (since uε : A → A is a graded k-linear map). Hence, (EndgrA, ?) is a k-subalgebra
of (EndA, ?). Moreover, (EndgrA, ?) contains πn for every n ≥ 1. Hence, the k-algebra homomorphism
W : NSym → (EndA, ?) maps the generators Hn of NSym to elements of (EndgrA, ?). Thus, the image of
W is contained in (EndgrA, ?). In other words,

(13.128.1) W (x) ∈ EndgrA for every x ∈ NSym .

It is immediate to check that the k-subalgebra (EndgrA, ?) of (EndA, ?) is closed under the topology of
pointwise convergence. Hence, it is closed under taking logarithms. In other words, log? g ∈ EndgrA for
every g ∈ EndgrA for which log? g makes sense. Applied to g = idA, this yields that log? (idA) ∈ EndgrA
(since idA ∈ EndgrA). Since log? (idA) = e, this yields that e ∈ EndgrA. In other words, e is a graded
k-linear map. The definition of en is legitimate because the gradedness of e yields πn ◦ e = e◦πn. This solves
Exercise 5.4.6(a).

We notice for future use the fact that e0 = 0 914.
We also record the fact that

(13.128.2) ∆A ◦ πn =

(
n∑
k=0

πk ⊗ πn−k

)
◦∆A for all n ∈ N.

(This follows by checking that both sides of (13.128.2) are equal to ∆A on the n-th homogeneous component
An, while vanishing on all other components915.)

914Proof. The definition of e0 yields e0 = π0◦e = e◦π0. Thus, e0 (A) = (e ◦ π0) (A) = e

π0 (A)︸ ︷︷ ︸
=k·1A

 = e (k · 1A) = k·e (1A). But

every n ≥ 1 satisfies f?n (1A) = 0 (since ∆(n−1) (1A) = 1A ⊗ 1A ⊗ ...⊗ 1A︸ ︷︷ ︸
n times

and f (1A) = 0). Since e =
∑
n≥1 (−1)n−1 1

n
f?n,

we have

e (1A) =

∑
n≥1

(−1)n−1 1

n
f?n

 (1A) =
∑
n≥1

(−1)n−1 1

n
f?n (1A)︸ ︷︷ ︸

=0

=
∑
n≥1

(−1)n−1 1

n
0 = 0.

Now, e0 (A) = k · e (1A)︸ ︷︷ ︸
=0

= 0, so that e0 = 0, qed.

915And this is because ∆A is graded.
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(b) From (13.127.1), we have

∑
n≥1

ξnt
n = log

∑
n≥0

Hnt
n

 = log

1 +
∑
n≥1

Hnt
n


=
∑
i≥1

(−1)
i−1 1

i

∑
n≥1

Hnt
n

i

︸ ︷︷ ︸
=
∑
n1,n2,...,ni≥1 Hn1

Hn2
...Hni t

n1+n2+...+ni

(by the Mercator series for the logarithm)

=
∑
i≥1

(−1)
i−1 1

i

∑
n1,n2,...,ni≥1

Hn1Hn2 ...Hnit
n1+n2+...+ni

=
∑
n≥1

∑
i≥1

(−1)
i−1 1

i

∑
n1,n2,...,ni≥1;
n1+n2+...+ni=n

Hn1
Hn2

...Hnit
n

in the power series ring NSym [[t]]. Comparing coefficients in this equality, we obtain

(13.128.3) ξn =
∑
i≥1

(−1)
i−1 1

i

∑
n1,n2,...,ni≥1;
n1+n2+...+ni=n

Hn1Hn2 ...Hni

for every n ≥ 1. Hence, every n ≥ 1 satisfies

W (ξn) = W

∑
i≥1

(−1)
i−1 1

i

∑
n1,n2,...,ni≥1;
n1+n2+...+ni=n

Hn1
Hn2

...Hni


=
∑
i≥1

(−1)
i−1 1

i

∑
n1,n2,...,ni≥1;
n1+n2+...+ni=n

W (Hn1) ?W (Hn2) ? ... ?W (Hni)

(since W is a k-algebra homomorphism)

=
∑
i≥1

(−1)
i−1 1

i

∑
n1,n2,...,ni≥1;
n1+n2+...+ni=n

πn1 ? πn2 ? ... ? πni(13.128.4)

(since W maps every Hm to πm).
On the other hand, f =

∑
n≥1 πn. Thus,

f?i =

∑
n≥1

πn

?i

=
∑

n1,n2,...,ni≥1

πn1 ? πn2 ? ... ? πni

for every i ∈ N. Now,

e =
∑
n≥1

(−1)
n−1 1

n
f?n =

∑
i≥1

(−1)
i−1 1

i
f?i︸︷︷︸

=
∑
n1,n2,...,ni≥1 πn1

?πn2
?...?πni

=
∑
i≥1

(−1)
i−1 1

i

∑
n1,n2,...,ni≥1

πn1
? πn2

? ... ? πni .(13.128.5)
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Now,

en = πn ◦ e

= πn ◦

∑
i≥1

(−1)
i−1 1

i

∑
n1,n2,...,ni≥1

πn1
? πn2

? ... ? πni

 (by (13.128.5))

=
∑
i≥1

(−1)
i−1 1

i

∑
n1,n2,...,ni≥1

πn ◦ (πn1 ? πn2 ? ... ? πni)

=
∑
i≥1

(−1)
i−1 1

i

∑
n1,n2,...,ni≥1;
n1+n2+...+ni=n

πn ◦ (πn1
? πn2

? ... ? πni)

︸ ︷︷ ︸
=W(ξn)

(by (13.128.4))

+
∑
i≥1

(−1)
i−1 1

i

∑
n1,n2,...,ni≥1;
n1+n2+...+ni 6=n

πn ◦ (πn1
? πn2

? ... ? πni)︸ ︷︷ ︸
=0

(because the image of

πn1
?πn2

?...?πni=m
(i−1)◦(πn1

⊗πn2
⊗...⊗πni)◦∆

(i−1)

is contained in
m(i−1)((πn1

⊗πn2
⊗...⊗πni)(A

⊗i))=An1
An2

...Ani⊂An1+n2+...+ni
,

which is a different homogeneous component of A than An)

= W (ξn) +
∑
i≥1

(−1)
i−1 1

i

∑
n1,n2,...,ni≥1;
n1+n2+...+ni 6=n

0

︸ ︷︷ ︸
=0

= W (ξn) .

This solves Exercise 5.4.6(b).
(c) Exercise 1.5.6(a) (applied to C = A) yields that the comultiplication ∆A : A → A ⊗ A is a k-

coalgebra homomorphism (since A is cocommutative). Also, the comultiplications ∆A and ∆NSym are k-
algebra homomorphisms (as is the comultiplication of any k-bialgebra).

Let R be the k-linear map (EndA, ?)⊗ (EndA, ?)→ (End (A⊗A) , ?) which sends every tensor f ⊗ g ∈
(EndA, ?)⊗ (EndA, ?) to the map f ⊗ g : A⊗A→ A⊗A. This map R is a k-algebra homomorphism916.

Let Ω1 be the composition

NSym
W−→ (EndA, ?)

post(∆A)−→ (Hom (A,A⊗A) , ?) ,

where post (∆A) denotes the k-linear map sending every γ ∈ (EndA, ?) to ∆A ◦ γ ∈ (Hom (A,A⊗A) , ?).
Since the map W is a k-algebra homomorphism, and since the map post (∆A) is a k-algebra homomor-
phism917, their composition Ω1 also is a k-algebra homomorphism.

Let Ω2 be the composition

NSym
∆NSym−→ NSym⊗NSym

W⊗W−→ (EndA, ?)⊗(EndA, ?)
R−→ (End (A⊗A) , ?)

pre(∆A)−→ (Hom (A,A⊗A) , ?) ,

where pre (∆A) denotes the k-linear map sending every γ ∈ (End (A⊗A) , ?) to γ◦∆A ∈ (Hom (A,A⊗A) , ?).
Since the maps ∆NSym, W ⊗W and R are k-algebra homomorphisms, and since the map pre (∆A) is a k-
algebra homomorphism918, their composition Ω2 also is a k-algebra homomorphism.

In order to solve Exercise 5.4.6(c), we need to show that every w ∈ NSym satisfies ∆ ◦ (W (w)) =(∑
(w) W (w1)⊗W (w2)

)
◦∆. Since

∆ ◦ (W (w)) = ∆A ◦ (W (w)) = (post (∆A)) (W (w)) = (post (∆A) ◦W)︸ ︷︷ ︸
=Ω1

(w) = Ω1 (w)

916In fact, this is a particular case of Exercise 1.4.4(b).
917This follows from Proposition 1.4.3 (applied to A, A, A, A⊗A, idA and ∆A instead of C, C′, A, A′, γ and α) (because

we know that ∆A is a k-algebra homomorphism).
918This follows from Proposition 1.4.3 (applied to A, A⊗A, A⊗A, A⊗A, ∆A and idA⊗A instead of C, C′, A, A′, γ and

α) (because we know that ∆A is a k-coalgebra homomorphism).
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and ∑
(w)

W (w1)⊗W (w2)


︸ ︷︷ ︸

=R((W⊗W)(∆NSym(w)))

◦ ∆︸︷︷︸
=∆A

= (R ((W⊗W) (∆NSym (w)))) ◦∆A

= (pre (∆A)) (R ((W⊗W) (∆NSym (w))))

= (pre (∆A) ◦R ◦ (W⊗W) ◦∆NSym)︸ ︷︷ ︸
=Ω2

(w) = Ω2 (w) ,

this is equivalent to showing that every w ∈ NSym satisfies Ω1 (w) = Ω2 (w). In other words, we need to
prove that Ω1 = Ω2. Since Ω1 and Ω2 are k-algebra homomorphisms, it will be enough to verify this on the
generators H1, H2, H3, ... of the k-algebra NSym. But on said generators, this is easily seen to hold, because
every n ≥ 1 satisfies

Ω1 (Hn) = (post (∆A) ◦W) (Hn) = (post (∆A))

W (Hn)︸ ︷︷ ︸
=πn


= (post (∆A)) (πn) = ∆A ◦ πn =

(
n∑
k=0

πk ⊗ πn−k

)
◦∆A (by (13.128.2))

and

Ω2 (Hn) = (pre (∆A) ◦R ◦ (W⊗W) ◦∆NSym) (Hn)

= (pre (∆A) ◦R ◦ (W⊗W))

 ∆NSym (Hn)︸ ︷︷ ︸
=
∑n
k=0 Hk⊗Hn−k


= (pre (∆A) ◦R ◦ (W⊗W))

(
n∑
k=0

Hk ⊗Hn−k

)

= (pre (∆A) ◦R)

(
(W⊗W)

(
n∑
k=0

Hk ⊗Hn−k

))

= (pre (∆A) ◦R)

 n∑
k=0

W (Hk)︸ ︷︷ ︸
=πk

⊗W (Hn−k)︸ ︷︷ ︸
=πn−k


= (pre (∆A) ◦R)

(
n∑
k=0

πk ⊗ πn−k

)

= (pre (∆A))

(
R

(
n∑
k=0

πk ⊗ πn−k

))
= R

(
n∑
k=0

πk ⊗ πn−k

)
︸ ︷︷ ︸

=
∑n
k=0 πk⊗πn−k

◦∆A

=

(
n∑
k=0

πk ⊗ πn−k

)
◦∆A.

Exercise 5.4.6(c) is proven.
(d) Let n ≥ 0. We need to prove that en (A) ⊂ p. If n = 0, then this is clear because e0 = 0. Hence, we

assume WLOG that we don’t have n = 0. Thus, n ≥ 1. Hence, Exercise 5.4.5(a) yields that ξn is primitive,
so that ∆ (ξn) = ξn ⊗ 1 + 1⊗ ξn.
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Applying Exercise 5.4.6(c) to w = ξn, we obtain

∆ ◦ (W (ξn)) =

∑
(ξn)

W ((ξn)1)⊗W ((ξn)2)

 ◦∆

= (W (ξn)⊗W (1) + W (1)⊗W (ξn)) ◦∆since
∑
(ξn)

(ξn)1 ⊗ (ξn)2 = ∆ (ξn) = ξn ⊗ 1 + 1⊗ ξn

 .

Since W (1) = uε and W (ξn) = en, this rewrites as

∆ ◦ en = (en ⊗ (uε) + (uε)⊗ en) ◦∆.

Now, let x ∈ A. Then,

∆ (en (x)) = (∆ ◦ en)︸ ︷︷ ︸
=(en⊗(uε)+(uε)⊗en)◦∆

(x) = ((en ⊗ (uε) + (uε)⊗ en) ◦∆) (x)

= (en ⊗ (uε)) (∆ (x)) + ((uε)⊗ en) (∆ (x))

=
∑
(x)

en (x1)⊗ (uε) (x2)︸ ︷︷ ︸
=1Aε(x2)

+
∑
(x)

(uε) (x1)︸ ︷︷ ︸
=1Aε(x1)

⊗en (x2)

=
∑
(x)

en (x1)⊗ 1Aε (x2) +
∑
(x)

1Aε (x1)⊗ en (x2)

= en


∑
(x)

x1ε (x2)

︸ ︷︷ ︸
=x

⊗ 1A + 1A ⊗ en


∑
(x)

ε (x1)x2︸ ︷︷ ︸
=x


= en (x)⊗ 1A + 1A ⊗ en (x) .

Hence, en (x) is a primitive element of A; thus, en (x) ∈ p. Forget now that we fixed x. We thus have seen
that every x ∈ A satisfies en (x) ∈ p. In other words, en (A) ⊂ p. This solves Exercise 5.4.6(d).

(e) Every n ≥ 0 satisfies en (A) ⊂ p (by Exercise 5.4.6(d)).
We have idA =

∑
n≥0 πn (by the definition of πn), and

e = idA︸︷︷︸
=
∑
n≥0 πn

◦e =
∑
n≥0

πn ◦ e︸ ︷︷ ︸
=en

(since the definition of en
yields en=πn◦e)

=
∑
n≥0

en.

Hence, e (A) =
(∑

n≥0 en

)
(A) ⊂

∑
n≥0 en (A)︸ ︷︷ ︸

⊂p

⊂
∑
n≥0 p ⊂ p. This proves part (e) of the exercise.

(f) Let x ∈ p. Then, ∆ (x) = x⊗ 1A + 1A ⊗ x.
Let g (A,A) denote the k-submodule of EndA which consists of all g ∈ EndA satisfying g (1A) = 0. Then,

it is easy to see that g (A,A) is an ideal of the algebra (EndA, ?) (indeed, any g1 ∈ EndA and g2 ∈ g (A,A)
satisfy g1?g2 ∈ g (A,A) and g2?g1 ∈ g (A,A)). We have f ∈ g (A,A). Since g (A,A) is an ideal of (EndA, ?),

this yields that every n ≥ 2 satisfies f?n ∈ (g (A,A))
?2

(where I?2 denotes the square of the ideal I for any
ideal I of the k-algebra (EndA, ?)). But it is easy to see that

(13.128.6) g (x) = 0 for every g ∈ (g (A,A))
?2
.
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919 In particular, this yields that

(13.128.7) f?n (x) = 0 for every n ≥ 2

(since f?n ∈ (g (A,A))
?2

for every n ≥ 2). Now, e =
∑
n≥1 (−1)

n−1 1
nf

?n, so that

e (x) =

∑
n≥1

(−1)
n−1 1

n
f?n

 (x) =
∑
n≥1

(−1)
n−1 1

n
f?n (x)

= (−1)
1−1 1

1︸ ︷︷ ︸
=1

f?1︸︷︷︸
=f=idA−uε

(x) +
∑
n≥2

(−1)
n−1 1

n
f?n (x)︸ ︷︷ ︸

=0
(by (13.128.7))

= (idA−uε) (x) +
∑
n≥2

(−1)
n−1 1

n
0︸ ︷︷ ︸

=0

= (idA−uε) (x) = x− u

 ε (x)︸︷︷︸
=0

(by Proposition 1.4.17)

 = x− u (0)︸︷︷︸
=0

= x.

Now, forget that we fixed x. We thus have shown that e (x) = x for every x ∈ p. In other words, the map
e fixes any element of p. This solves Exercise 5.4.6(f).

Combining the results of parts (e) and (f) of Exercise 5.4.6, we conclude that e is a projection from A to
the k-submodule p. This completes the solution of the exercise.

13.129. Solution to Exercise 5.4.8. Solution to Exercise 5.4.8. Let us first show the following two lemmas,
which have nothing to do with Hopf algebras:

Lemma 13.129.1. Let V be any torsionfree abelian group (written additively). Let N ∈ N. For every
k ∈ {0, 1, ..., N}, let wk be an element of V . Assume that

(13.129.1)

N∑
k=0

wkn
k = 0 for all n ∈ N.

Then, wk = 0 for every k ∈ {0, 1, ..., N}.

Lemma 13.129.2. Let V be any torsionfree abelian group (written additively). Let N ∈ N. For every

(k, `) ∈ {0, 1, ..., N}2, let vk,` be an element of V . Assume that

(13.129.2)

N∑
k=0

N∑
`=0

vk,`n
km` = 0 for all n ∈ N and m ∈ N.

Then, vk,` = 0 for every (k, `) ∈ {0, 1, ..., N}2.

Proof of Lemma 13.129.1. Lemma 13.129.1 has already appeared above (namely, as Lemma 1.7.24), and has
already been proven (in the solution to Exercise 1.7.28). �

Proof of Lemma 13.129.2. Fix m ∈ N. Every n ∈ N satisfies

N∑
k=0

(
N∑
`=0

vk,`m
`

)
nk =

N∑
k=0

N∑
`=0

vk,`n
km` = 0.

Thus, Lemma 13.129.1 (applied to wk =
∑N
`=0 vk,`m

`) yields that
∑N
`=0 vk,`m

` = 0 for every k ∈ {0, 1, ..., N}.

919Proof of (13.128.6): It is clearly enough to check that (g1 ? g2) (x) = 0 for every g1 ∈ g (A,A) and g2 ∈ g (A,A). But
this is easy: If g1 ∈ g (A,A) and g2 ∈ g (A,A), then g1 (1A) = 0 and g2 (1A) = 0, so that

(g1 ? g2) (x) = g1 (x) g2 (1A)︸ ︷︷ ︸
=0

+ g1 (1A)︸ ︷︷ ︸
=0

g2 (x) (since ∆ (x) = x⊗ 1A + 1A ⊗ x)

= 0 + 0 = 0.

This proves (13.128.6).
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Now, forget that we fixed m. We thus have proven that

(13.129.3)

N∑
`=0

vk,`m
` = 0 for every m ∈ N and k ∈ {0, 1, ..., N} .

Now, fix g ∈ {0, 1, ..., N}. For every n ∈ N, we have

N∑
k=0

vg,kn
k =

N∑
`=0

vg,`n
` (here, we renamed the summation index k as `)

= 0 (by (13.129.3), applied to k = g and m = n) .

Hence, Lemma 13.129.1 (applied to wk = vg,k) yields that vg,k = 0 for every k ∈ {0, 1, ..., N}.
Now, forget that we fixed g. We thus have shown that vg,k = 0 for every g ∈ {0, 1, ..., N} and k ∈

{0, 1, ..., N}. Renaming the indices g and k as k and ` in this statement, we obtain the following: We
have vk,` = 0 for every k ∈ {0, 1, ..., N} and ` ∈ {0, 1, ..., N}. In other words, vk,` = 0 for every (k, `) ∈
{0, 1, ..., N}2. This proves Lemma 13.129.2. �

Now, let us come to the solution of Exercise 5.4.8.
Define EndgrA as in the solution of Exercise 5.4.6. We can prove (just as in the solution of Exercise 5.4.6)

that (EndgrA, ?) is a k-subalgebra of (EndA, ?). Since idA ∈ EndgrA, we thus have id?`A ∈ EndgrA for every
` ∈ N. In other words,

(13.129.4) id?`A is a graded k-linear map for every ` ∈ N.

We have e (1A) = 0 (as was proven in a footnote in the solution of Exercise 5.4.6). Hence, e

 A0︸︷︷︸
=k·1A

 =

e (k · 1A) = k · e (1A)︸ ︷︷ ︸
=0

= 0.

Notice that A is a k-module, hence a Q-module (since Q is a subring of k), thus a torsionfree abelian
group.

(a) For every k-linear map f : A → A which annihilates A0, we can define an endomorphism exp? f

of A by setting exp? f =
∑
`≥0

1

`!
f?`. (This follows from the same argument as the well-definedness of

log? (f + uε). 920) The usual rules for exponentials and logarithms apply:

• We have exp? (log? (f + uε)) = f +uε for every k-linear map f : A→ A which annihilates A0. 921

• We have log? (exp? f) = f for every k-linear map f : A→ A which annihilates A0. 922

• We have exp? (f + g) = (exp? f) ? (exp? g) for any two k-linear maps f : A → A and g : A → A
which annihilate A0 and satisfy f ? g = g ? f . 923

920This definition of exp? f is actually a particular case of Definition 1.7.10(d). This can be shown as follows: If f : A→ A
is a k-linear map which annihilates A0, then Proposition 1.7.11(h) (applied to C = A) yields f ∈ n (A,A). Therefore,

Definition 1.7.10(d) defines a map exp? f ∈ n (A,A). This map is identical to the map exp? f :=
∑
`≥0

1

`!
f?` we have just

defined, because the map exp? f defined using Definition 1.7.10(d) satisfies

exp? f =
∑
n≥0

1

n!
f?n

since exp =
∑
n≥0

1

n!
Tn


=
∑
`≥0

1

`!
f?`.

921Indeed, this follows from Proposition 1.7.18(b) (applied to C = A and g = f + uε), after first observing that f ∈ n (A,A)

(by Proposition 1.7.11(h), applied to C = A).
922Indeed, this follows from Proposition 1.7.18(a) (applied to C = A), after first observing that f ∈ n (A,A) (by Proposition

1.7.11(h), applied to C = A).
923Indeed, this follows from Proposition 1.7.18(c) (applied to C = A), after first observing that f ∈ n (A,A) (by Proposition

1.7.11(h), applied to C = A) and g ∈ n (A,A) (for similar reasons).
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• We have exp? (nf) = (exp? f)
?n

for every n ∈ N and any k-linear map f : A→ A which annihilates
A0. 924

The map e annihilates A0 (since e (A0) = 0), and thus an endomorphism exp? e of A is well-defined. We
have e = log? (idA), so that exp? e = exp? (log? (idA)) = idA (since exp? (log? (f + uε)) = f + uε for every
k-linear map f : A→ A which annihilates A0).

Let us recall that any f annihilating A0 has the property that for each n one has that An is annihilated
by f?m for every m > n (we saw this in the proof of Proposition 1.4.24). Applying this to f = e (which, as
we know, annihilates A0), and renaming m and n as n and N , we obtain

(13.129.5) e?n (AN ) = 0 for every N ∈ N and every n ∈ N satisfying n > N.

Recall that exp? (nf) = (exp? f)
?n

for every n ∈ N and any k-linear map f : A → A which annihilates
A0. Applying this to f = e, we see that every n ∈ N satisfies

(13.129.6) exp? (ne) =

exp? e︸ ︷︷ ︸
=idA


?n

= id?nA .

Now, let us fix M ∈ N. Let also N be any integer satisfying N ≥M . It is easy to see that

(13.129.7) id?mA (v) =

N∑
`=0

1

`!
m`e?` (v) for every v ∈ AM and every m ∈ N.

925

Now, let v ∈ AM , n ∈ N and m ∈ N be arbitrary. Since id?mA is a graded map (by (13.129.4), applied to
` = m), we have id?mA (v) ∈ AM (since v ∈ AM ). Hence, (13.129.7) (applied to n and id?mA (v) instead of m

924Indeed, this follows from Proposition 1.7.18(e) (applied to C = A), after first observing that f ∈ n (A,A) (by Proposition

1.7.11(h), applied to C = A).

925Proof of (13.129.7): Let v ∈ AM and m ∈ N. Every integer ` satisfying ` > M satisfies e?`

 v︸︷︷︸
∈AM

 ∈ e?` (AM ) = 0 (by

(13.129.5), applied to ` and M instead of n and N). In other words,

(13.129.8) every integer ` satisfying ` > M satisfies e?` (v) = 0.

From (13.129.6) (applied to m instead of n), we obtain exp? (me) = id?mA , so that

id?mA = exp? (me) =
∞∑
`=0

1

`!
(me)?` =

∞∑
`=0

1

`!
m`e?`

and thus

id?mA (v) =

∞∑
`=0

1

`!
m`e?` (v) =

N∑
`=0

1

`!
m`e?` (v) +

∞∑
`=N+1

1

`!
m` e?` (v)︸ ︷︷ ︸

=0
(by (13.129.8),
since `>N≥M)

=

N∑
`=0

1

`!
m`e?` (v) +

∞∑
`=N+1

1

`!
m`0

︸ ︷︷ ︸
=0

=

N∑
`=0

1

`!
m`e?` (v) .

This proves (13.129.7).
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and v) yields

id?nA (id?mA (v)) =

N∑
`=0

1

`!
n`e?` (id?mA (v)) =

N∑
k=0

1

k!
nke?k


id?mA (v)︸ ︷︷ ︸

=
∑N
`=0

1

`!
m`e?`(v)

(by (13.129.7))


(here, we have renamed the summation index ` as k)

=

N∑
k=0

1

k!
nk e?k

(
N∑
`=0

1

`!
m`e?` (v)

)
︸ ︷︷ ︸
=
∑N
`=0

1

`!
m`e?k(e?`(v))

(since e?k is a k-linear map)

=

N∑
k=0

1

k!
nk

N∑
`=0

1

`!
m` e?k

(
e?` (v)

)︸ ︷︷ ︸
=(e?k◦e?`)(v)

=

N∑
k=0

1

k!
nk

N∑
`=0

1

`!
m`
(
e?k ◦ e?`

)
(v) =

N∑
k=0

N∑
`=0

(
e?k ◦ e?`

)
(v)

k!`!
nkm`.(13.129.9)

But

id?nA (id?mA (v)) = (id?nA ◦ id?mA )︸ ︷︷ ︸
=id

?(nm)
A

(by the dual of Exercise 1.5.11(f),
applied to k=m and `=n)

(v) = id
?(nm)
A (v)

=

N∑
`=0

1

`!
(nm)

`
e?` (v) (by (13.129.7), applied to nm instead of m) ,(13.129.10)

Now,

N∑
k=0

N∑
`=0

((
e?k ◦ e?`

)
(v)

k!`!
− δk,`e

?k (v)

k!

)
nkm` =

N∑
k=0

N∑
`=0

(
e?k ◦ e?`

)
(v)

k!`!
nkm`

︸ ︷︷ ︸
=id?nA (id?mA (v))
(by (13.129.9))

−
N∑
k=0

N∑
`=0

δk,`e
?k (v)

k!
nkm`

︸ ︷︷ ︸
=
∑N
`=0

e?` (v)

`!
n`m`

=
∑N
`=0

1

`!
(nm)`e?`(v)

=id?nA (id?mA (v))
(by (13.129.10))

= id?nA (id?mA (v))− id?nA (id?mA (v)) = 0.

Now, let us forget that we fixed n and m. We thus have proven that

N∑
k=0

N∑
`=0

((
e?k ◦ e?`

)
(v)

k!`!
− δk,`e

?k (v)

k!

)
nkm` = 0

for all n ∈ N and m ∈ N. Hence, we can apply Lemma 13.129.2 to V = A and vk,` =

(
e?k ◦ e?`

)
(v)

k!`!
−

δk,`e
?k (v)

k!
(because A is a torsionfree abelian group). As a result, we obtain

(
e?k ◦ e?`

)
(v)

k!`!
− δk,`e

?k (v)

k!
= 0

for every (k, `) ∈ {0, 1, ..., N}2. In other words,

(13.129.11)

(
e?k ◦ e?`

)
(v)

k!`!
=
δk,`e

?k (v)

k!
for every (k, `) ∈ {0, 1, ..., N}2 .

Now, forget that we fixed v, M and N . We thus have proven that every M ∈ N, every integer N satisfying
N ≥M , and every v ∈ AM satisfy (13.129.11).
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Now, let us fix two elements n ∈ N andm ∈ N. In order to finish the solution of Exercise 5.4.8(a), it remains
to show that e?n ◦ e?m = n!δn,me?n. In order to show this, it is clearly enough to prove that (e?n ◦ e?m) (v) =
n!δn,me?n (v) for every v ∈ A. So let us fix some v ∈ A, and let us show that (e?n ◦ e?m) (v) = n!δn,me?n (v).

Since both sides of the identity (e?n ◦ e?m) (v) = n!δn,me?n (v) are k-linear in v, we can WLOG assume
that v is a homogeneous element of A (because every element of A is a k-linear combination of homogeneous
elements). Assume this. Thus, v ∈ AM for some M ∈ N. Consider this M . Choose some N ∈ N satisfying

N ≥ M , N ≥ n and N ≥ m. (Such an N clearly exists.) Then, N ≥ M and (n,m) ∈ {0, 1, ..., N}2, and

therefore we can apply (13.129.11) to k = n and ` = m. As a result, we obtain
(e?n ◦ e?m) (v)

n!m!
=
δn,me?n (v)

n!
.

Multiplying this identity with n!m!, we obtain

(e?n ◦ e?m) (v) = m!δn,m︸ ︷︷ ︸
=n!δn,m

(indeed, this is clear if n=m,
and otherwise follows from δn,m=0)

e?n (v) = n!δn,me?n (v) .

So we have proven (e?n ◦ e?m) (v) = n!δn,me?n (v). As we have seen, this completes the solution of Exercise
5.4.8(a).

(b) Let n ∈ N and m ∈ N. From (13.129.6) (applied to m instead of n), we obtain exp? (me) = id?mA , so
that

id?mA = exp? (me) =

∞∑
`=0

1

`!
(me)

?`
=

∞∑
`=0

1

`!
m`e?`.

Thus,

e?n ◦ id?mA︸︷︷︸
=
∑∞
`=0

1

`!
m`e?`

= e?n ◦

( ∞∑
`=0

1

`!
m`e?`

)
=

∞∑
`=0︸︷︷︸

=
∑
`∈N

1

`!
m` e?n ◦ e?`︸ ︷︷ ︸

=n!δn,`e
?n

(by Exercise 5.4.8(a),
applied to ` instead of m)

=
∑
`∈N

1

`!
m`n!δn,`e

?n =
1

n!
mnn!e?n = mne?n

and similarly id?mA ◦e?n = mne?n. This solves Exercise 5.4.8(b).

13.130. Solution to Exercise 5.4.12. Solution to Exercise 5.4.12. (a) This is proven by induction over i.
The induction step relies on the observation that R(1i,n−i) +R(1i−1,n−i+1) = R(1i)Hn−i (where R(1−1,n+1) is
to be understood to mean 0 in the i = 0 case). Let us prove this observation. We assume WLOG that i > 0
(the proof in the i = 0 case is analogous but simpler). The equality (5.4.9) yields Hn−i = R(n−i) (since only
(n− i) coarsens (n− i)), so that

R(1i)Hn−i = R(1i)R(n−i) = R(1i)·(n−i) +R(1i)�(n−i) (by (5.4.11))

= R(1i,n−i) +R(1i−1,n−i+1),

qed.
(b) Part (a) yields

(−1)
i
R(1i,n−i) = (−1)

i
i∑

j=0

(−1)
i−j

R(1j)Hn−j =

i∑
j=0

(−1)
j
R(1j)︸ ︷︷ ︸

=S(R(j))
(by (5.4.12), since ω((j))=(1j))

Hn−j

=

i∑
j=0

S

 R(j)︸︷︷︸
=Hj

(by (5.4.9))

Hn−j =

i∑
j=0

S (Hj)Hn−j .

This proves (b).
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(c) We have

Ψn =

n−1∑
i=0

(−1)
i
R(1i,n−i)︸ ︷︷ ︸

=
∑i
j=0 S(Hj)Hn−j
(by part (b))

=

n−1∑
i=0

i∑
j=0

S (Hj)Hn−j =

n∑
j=0

n−1∑
i=j

S (Hj)Hn−j

=

n∑
j=0

(n− j)S (Hj)Hn−j =

n∑
j=0

S (Hj) (n− j)Hn−j︸ ︷︷ ︸
=deg(Hn−j)Hn−j=E(Hn−j)

=

n∑
j=0

S (Hj)E (Hn−j) =
∑
(Hn)

S ((Hn)1)E ((Hn)2)

using Sweedler notation, since ∆ (Hn) =

n∑
j=0

Hj ⊗Hn−j


= (S ? E) (Hn) ,

and thus Ψn is primitive (by Exercise 1.5.14 (a)). (That said, there are other ways to prove the primitivity
of Ψn.)

(d) Let n ∈ N. Then,

n−1∑
k=0

Hk Ψn−k︸ ︷︷ ︸
=(S?E)(Hn−k)

(by part (c))

=

n−1∑
k=0

Hk (S ? E) (Hn−k) =

n∑
k=0

Hk (S ? E) (Hn−k)

(we added a k = n term, which does not matter since it vanishes)

=
∑
(Hn)

(Hn)1 (S ? E) ((Hn)2)

(
using Sweedler notation, since ∆ (Hn) =

n∑
k=0

Hk ⊗Hn−k

)

=

id ?S︸ ︷︷ ︸
=uε

?E

 (Hn) = (uε ? E)︸ ︷︷ ︸
=E

(Hn) = E (Hn) = nHn,

qed.
(e) Comparing coefficients reduces this to part (d).
(f) The ring homomorphism π : NSym→ Λ induces a ring homomorphism NSym [[t]]→ Λ [[t]]. Applying

this latter homomorphism to the equality
d

dt
H̃ (t) = H̃ (t) ·ψ (t) of part (e), we obtain

d

dt
H (t) = H (t) ·ψ (t),

where H (t) is defined as in (2.4.1), whereas ψ (t) ∈ Λ [[t]] is defined by

ψ (t) =
∑
n≥1

π (Ψn) tn−1.

Hence,

ψ (t) =

d

dt
H (t)

H (t)
=
H ′ (t)

H (t)
=
∑
m≥0

pm+1t
m (by (2.5.13))

=
∑
n≥1

pnt
n−1.

Comparing coefficients in this equality yields π (Ψn) = pn for every positive integer n. This solves part (f).
Remark: Another way to solve Exercise 5.4.12(f) proceeds as follows: We know that Ψn is a primitive

homogeneous element of NSym of degree n (by Exercise 5.4.12(c)). Thus, π (Ψn) is a primitive homogeneous
element of Λ of degree n (since π is a graded homomorphism of Hopf algebras). But Exercise 3.1.9 shows
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that all such elements are scalar multiples of pn. Thus, π (Ψn) is a scalar multiple of pn. Finding the scalar
is easy (e.g., it can be obtained by specializing at (1)).

(g) Let n be a positive integer. We know that Ψn =
n−1∑
i=0

(−1)
i
R(1i,n−i). Applying π to this equa-

tion, we obtain π (Ψn) =
n−1∑
i=0

(−1)
i
π
(
R(1i,n−i)

)
. Since π (Ψn) = pn (by part (f)), this rewrites as pn =

n−1∑
i=0

(−1)
i
π
(
R(1i,n−i)

)
. But we need to show that pn =

n−1∑
i=0

(−1)
i
s(n−i,1i). Hence, it is enough to prove that

every i ∈ {0, 1, . . . , n− 1} satisfies π
(
R(1i,n−i)

)
= s(n−i,1i).

So let i ∈ {0, 1, . . . , n− 1} be arbitrary. Theorem 5.4.10(b) (applied to α =
(
1i, n− i

)
) shows that

π
(
R(1i,n−i)

)
= sα, where α is the ribbon diagram of the composition

(
1i, n− i

)
. But since the ribbon

diagram of the composition
(
1i, n− i

)
is the Ferrers diagram for the partition

(
n− i, 1i

)
(because its row

lengths are 1, 1, . . . , 1︸ ︷︷ ︸
i times

, n−i going from bottom to top, with an overlap of 1 between every two adjacent rows),

we have sα = s(n−i,1i). Hence, π
(
R(1i,n−i)

)
= sα = s(n−i,1i). As we have seen, this completes the solution

of part (g).
(h) We will prove (5.4.13) by strong induction over n. So let N be an arbitrary positive integer, and let

us assume that (5.4.13) has been proven for every n < N . We now need to prove (5.4.13) for n = N .
We notice that the family (Hα)α∈NSym is multiplicative, in the sense that any two compositions β and γ

satisfy Hβ·γ = Hβ ·Hγ (where, as we recall, β · γ denotes the concatenation of the compositions β and γ).
This follows from the definition of the Hα.

We have N > 0. Hence, every α ∈ CompN can be written uniquely in the form α = (q) · β for some
q ∈ {1, 2, ..., N} and some β ∈ CompN−q (indeed, the q is just the first entry of the composition α, and β is
the composition obtained by erasing this first entry). Hence,

∑
α∈CompN

(−1)
`(α)−1

lp (α)Hα

=
∑

q∈{1,2,...,N};
β∈CompN−q︸ ︷︷ ︸

=
∑N
q=1

∑
β∈CompN−q

(−1)
`((q)·β)−1︸ ︷︷ ︸

=(−1)`(β)

(since it is easy to see that
`((q)·β)−1=`(β))

lp ((q) · β) H(q)·β︸ ︷︷ ︸
=H(q)·Hβ

(since the family
(Hα)α∈NSym is

multiplicative)

=

N∑
q=1

∑
β∈CompN−q

(−1)
`(β)

lp ((q) · β) ·H(q) ·Hβ

=

N−1∑
q=1

∑
β∈CompN−q

(−1)
`(β)

lp ((q) · β)︸ ︷︷ ︸
=lp(β)

(since β is
nonempty)

·H(q) ·Hβ +
∑

β∈CompN−N

(−1)
`(β)

lp ((N) · β) ·H(N) ·Hβ︸ ︷︷ ︸
=(−1)`(∅) lp((N)·∅)·H(N)·H∅

(since the only element of CompN−N
is the empty composition ∅)

=

N−1∑
q=1

∑
β∈CompN−q

(−1)
`(β)

lp (β) ·H(q) ·Hβ︸ ︷︷ ︸
=H(q)·

(∑
β∈CompN−q

(−1)`(β) lp(β)Hβ

)
+ (−1)

`(∅)︸ ︷︷ ︸
=1

lp ((N) ·∅)︸ ︷︷ ︸
=lp((N))=N

·H(N)︸ ︷︷ ︸
=HN

· H∅︸︷︷︸
=1

=

N−1∑
q=1

H(q) ·

 ∑
β∈CompN−q

(−1)
`(β)

lp (β)Hβ

+NHN .(13.130.1)
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However, for every q ∈ {1, 2, ..., N − 1}, we can apply (5.4.13) to n = N − q (because N − q < N , and
because (5.4.13) has been proven for every n < N). Thus, for every q ∈ {1, 2, ..., N − 1}, we obtain

ΨN−q =
∑

α∈CompN−q

(−1)
`(α)−1︸ ︷︷ ︸

=−(−1)`(α)

lp (α)Hα = −
∑

α∈CompN−q

(−1)
`(α)

lp (α)Hα = −
∑

β∈CompN−q

(−1)
`(β)

lp (β)Hβ

(here, we renamed the summation index α as β), so that

(13.130.2) −ΨN−q =
∑

β∈CompN−q

(−1)
`(β)

lp (β)Hβ .

Thus, (13.130.1) becomes

∑
α∈CompN

(−1)
`(α)−1

lp (α)Hα =

N−1∑
q=1

H(q)︸︷︷︸
=Hq

·

 ∑
β∈CompN−q

(−1)
`(β)

lp (β)Hβ


︸ ︷︷ ︸

=−ΨN−q
(this follows from (13.130.2))

+NHN

=

N−1∑
q=1

Hq · (−ΨN−q) +NHN = −
N−1∑
q=1

HqΨN−q +NHN .(13.130.3)

However, Exercise 5.4.12(d) (applied to n = N) yields
∑N−1
k=0 HkΨN−k = NHN , so that

NHN =

N−1∑
k=0

HkΨN−k =

N−1∑
q=0

HqΨN−q = H0︸︷︷︸
=1

ΨN−0︸ ︷︷ ︸
=ΨN

+

N−1∑
q=1

HqΨN−q = ΨN +

N−1∑
q=1

HqΨN−q.

Now, (13.130.3) becomes∑
α∈CompN

(−1)
`(α)−1

lp (α)Hα

= −
N−1∑
q=1

HqΨN−q + NHN︸ ︷︷ ︸
=ΨN+

∑N−1
q=1 HqΨN−q

= −
N−1∑
q=1

HqΨN−q + ΨN +

N−1∑
q=1

HqΨN−q = ΨN .

In other words, ΨN =
∑
α∈CompN

(−1)
`(α)−1

lp (α)Hα. Thus, (5.4.13) is proven for n = N . This com-

pletes the induction step, and therefore the proof of (5.4.13) is complete. That is, part (h) of the exercise is
solved.

(i) First of all, for every positive integer n, the element Ψn of NSym is homogeneous of degree n (this
follows from the definition of Ψn or, alternatively, from Exercise 5.4.12(h)). Hence, for every composition α,
the element Ψα of NSym is homogeneous of degree |α|.

We notice that the family (Ψα)α∈NSym is multiplicative, in the sense that any two compositions β and γ

satisfy Ψβ·γ = Ψβ · Ψγ (where, as we recall, β · γ denotes the concatenation of the compositions β and γ).
This follows from the definition of the Ψα.

Let us now prove (5.4.14). Indeed, we will show (5.4.14) by strong induction over n. So let N ∈ N be
arbitrary, and let us assume that (5.4.14) has been proven for every n < N . We now need to prove (5.4.14)
for n = N .

If N = 0, then (5.4.14) obviously holds for n = N (because both sides of (5.4.14) are 1NSym in this case).
We thus WLOG assume that N 6= 0. Thus, every α ∈ CompN can be written uniquely in the form α = β ·(q)
for some q ∈ {1, 2, ..., N} and some β ∈ CompN−q (indeed, the q is just the last entry of the composition α,
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and β is the composition obtained by erasing this last entry). Hence,∑
α∈CompN

1

πu (α)
Ψα =

∑
q∈{1,2,...,N};
β∈CompN−q︸ ︷︷ ︸

=
∑N
q=1

∑
β∈CompN−q

1

πu (β · (q))︸ ︷︷ ︸
=

1

πu (β) ·N
(since it is easy to see that

πu(β·(q))=πu(β)·N)

Ψβ·(q)︸ ︷︷ ︸
=Ψβ ·Ψ(q)

(since the family
(Ψα)α∈NSym is

multiplicative)

=

N∑
q=1

∑
β∈CompN−q

1

πu (β) ·N︸ ︷︷ ︸
=

1

N
·

1

πu (β)

Ψβ ·Ψ(q)︸︷︷︸
=Ψq

=

N∑
q=1

∑
β∈CompN−q

1

N
· 1

πu (β)
Ψβ ·Ψq

=
1

N

N∑
q=1

 ∑
β∈CompN−q

1

πu (β)
Ψβ

 ·Ψq.(13.130.4)

However, for every q ∈ {1, 2, ..., N}, we can apply (5.4.14) to n = N − q (because N − q < N , and because
(5.4.14) has been proven for every n < N). Thus, for every q ∈ {1, 2, ..., N}, we obtain

(13.130.5) HN−q =
∑

α∈CompN−q

1

πu (α)
Ψα =

∑
β∈CompN−q

1

πu (β)
Ψβ

(here, we renamed the summation index α as β). Thus, (13.130.4) becomes

∑
α∈CompN

1

πu (α)
Ψα =

1

N

N∑
q=1

 ∑
β∈CompN−q

1

πu (β)
Ψβ


︸ ︷︷ ︸

=HN−q
(by (13.130.5))

·Ψq

=
1

N

N∑
q=1

HN−qΨq =
1

N

N−1∑
k=0

HkΨN−k︸ ︷︷ ︸
=NHN

(by Exercise 5.4.12(d),
applied to n=N)

(here, we substituted N − k for q in the sum)

=
1

N
NHN = HN .

In other words, HN =
∑
α∈CompN

1
πu(α)Ψα. Thus, (5.4.14) is proven for n = N . This completes the induction

step, and therefore the proof of (5.4.14) is complete.
We now need to prove that (Ψα)α∈Compn

is a k-basis of NSymn for every n ∈ N. It is clear that

(Ψα)α∈Compn
is a family of elements of NSymn (because for every composition α, the element Ψα of NSym

is homogeneous of degree |α|).
Let A be the k-subalgebra of NSym generated by the elements Ψ1, Ψ2, Ψ3, .... Then, A contains Ψα

for every composition α (by the definition of Ψα). Therefore, A contains Hn for every n ≥ 1 (by (5.4.14)).
Consequently, A = NSym (because NSym is generated as a k-algebra by H1, H2, H3, ...). In other words,
the k-algebra NSym is generated by the elements Ψ1, Ψ2, Ψ3, ... (since we defined A as the k-subalgebra
of NSym generated by the elements Ψ1, Ψ2, Ψ3, ...). In other words, the k-module NSym is spanned by all
possible products of the elements Ψ1, Ψ2, Ψ3, .... In other words, the k-module NSym is spanned by the
elements Ψα with α ∈ Comp (because the elements Ψα with α ∈ Comp are precisely all possible products of
the elements Ψ1, Ψ2, Ψ3, ...). In yet other words, the family (Ψα)α∈Comp spans the k-module NSym.
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Now, fix n ∈ N. Every element of NSymn can be written as a k-linear combination of the elements Ψα

with α ∈ Comp (since the family (Ψα)α∈Comp spans the k-module NSym). In this k-linear combination,

we can remove all terms Ψα with α /∈ Compn without changing its value (by gradedness, because Ψα is
homogeneous of degree |α|), and so we conclude that every element of NSymn can be written as a k-linear
combination of the elements Ψα with α ∈ Compn. In other words, the family (Ψα)α∈Compn

spans the

k-module NSymn.
Now, we can apply Exercise 2.5.18(b) to A = NSymn, I = Compn, (γi)i∈I = (Hα)α∈Compn

and (βi)i∈I =

(Ψα)α∈Compn
(since we know that (Hα)α∈Compn

is a k-basis of NSymn, whereas (Ψα)α∈Compn
spans the

k-module NSymn). We conclude that (Ψα)α∈Compn
is a k-basis of NSymn. This completes the solution of

part (i).
(j) For every composition α, define an element bα of T (V ) by bα = bα1bα2 · · · bα` , where α is written

in the form α = (α1, α2, . . . , α`) with ` = ` (α). Then, (bα)α∈Comp is a k-module basis of T (V ) (by the

basic properties of tensor algebras, since (bn)n∈{1,2,3,...} is a k-module basis of V ). Notice that the family

(bn)n∈{1,2,3,...} generates the k-algebra T (V ) (since it is a basis of V ).

For every composition α, define an element Ψα of NSym as in Exercise 5.4.12(i). We know from Exercise
5.4.12(i) that (Ψα)α∈Compn

is a k-basis of NSymn for every n ∈ N. Hence, (Ψα)α∈Comp is a k-basis of NSym.

Every α ∈ Comp satisfies F (bα) = Ψα
926. The map F thus maps the basis (bα)α∈Comp of the k-module

T (V ) to the basis (Ψα)α∈Comp of the k-module NSym. Hence, F is a k-module isomorphism (since any

k-linear map mapping a basis to a basis is a k-module isomorphism).
Next, we are going to show the equality ∆NSym ◦ F = (F ⊗ F ) ◦ ∆T (V ). Indeed, this is an equality

between k-algebra homomorphisms, and thus needs only to be verified on a generating set of the k-algebra
T (V ). Picking (bn)n∈{1,2,3,...} as this generating set, we thus only need to check that (∆NSym ◦ F ) (bn) =(
(F ⊗ F ) ◦∆T (V )

)
(bn) for every positive integer n. This is straightforward: If n is any positive integer, then

comparing the equalities

(∆NSym ◦ F ) (bn) = ∆NSym

 F (bn)︸ ︷︷ ︸
=f(bn)

(since F is induced by f)

 = ∆NSym

 f (bn)︸ ︷︷ ︸
=Ψn

(by the definition of f)

 = ∆NSym (Ψn)

= 1⊗Ψn + Ψn ⊗ 1 (since Exercise 5.4.12(c) shows that Ψn is primitive)

and

(
(F ⊗ F ) ◦∆T (V )

)
(bn) = (F ⊗ F )

 ∆T (V ) (bn)︸ ︷︷ ︸
=1⊗bn+bn⊗1

(by the definition of the
comultiplication on T (V ))

 = (F ⊗ F ) (1⊗ bn + bn ⊗ 1)

= F (1)︸ ︷︷ ︸
=1

(since F is a k-algebra
homomorphism)

⊗ F (bn)︸ ︷︷ ︸
=f(bn)

(since F is induced by f)

+ F (bn)︸ ︷︷ ︸
=f(bn)

(since F is induced by f)

⊗ F (1)︸ ︷︷ ︸
=1

(since F is a k-algebra
homomorphism)

= 1⊗ f (bn)︸ ︷︷ ︸
=Ψn

(by the definition of f)

+ f (bn)︸ ︷︷ ︸
=Ψn

(by the definition of f)

⊗1 = 1⊗Ψn + Ψn ⊗ 1

926Proof. Let α ∈ Comp. Write α in the form α = (α1, α2, . . . , α`) with ` = ` (α). Then, bα = bα1bα2 · · · bα` , so that

F (bα) = F (bα1bα2 · · · bα` ) = f (bα1 )︸ ︷︷ ︸
=Ψα1

(by the definition of f)

f (bα2 )︸ ︷︷ ︸
=Ψα2

(by the definition of f)

· · · f (bα` )︸ ︷︷ ︸
=Ψα`

(by the definition of f)

(by the definition of F )

= Ψα1Ψα2 · · ·Ψα` = Ψα (since Ψα was defined to be Ψα1Ψα2 · · ·Ψα` ) ,

qed.
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yields (∆NSym ◦ F ) (bn) =
(
(F ⊗ F ) ◦∆T (V )

)
(bn). We thus have shown that ∆NSym ◦ F = (F ⊗ F ) ◦

∆T (V ). Combining this with the equality εNSym ◦ F = εT (V ) (whose proof is similar but yet simpler),
we conclude that F is a k-coalgebra homomorphism, thus a k-bialgebra homomorphism, hence a k-Hopf
algebra homomorphism (by Corollary 1.4.27), therefore a k-Hopf algebra isomorphism (since it is a k-module
isomorphism). This solves Exercise 5.4.12(j).

(k) Define the map F as in Exercise 5.4.12(j). Then, Exercise 5.4.12(j) shows that F is a Hopf algebra
isomorphism, hence a k-module isomorphism.

We can endow the k-module V with a grading by assigning to each basis vector bn the degree n. Then,
V is of finite type and satisfies V0 = 0, and thus T (V ) is a connected graded k-Hopf algebra.

The element Ψn of NSym is homogeneous of degree n for every positive integer n. (This follows from the
definition of Ψn.)

The map f is graded (since it sends every basis vector bn of V to the vector Ψn ∈ NSym, which is
homogeneous of the same degree n as bn). Hence, the map F (being the k-algebra homomorphism T (V )→
NSym induced by f) is also graded. It is well-known that if a k-module isomorphism is graded, then it
is an isomorphism of graded k-modules. Thus, F is an isomorphism of graded k-modules (since F is a
k-module isomorphism and is graded), hence an isomorphism of graded Hopf algebras (since F is a Hopf
algebra isomorphism). Thus, T (V ) ∼= NSym as graded Hopf algebras. Therefore, T (V )

o ∼= NSymo ∼= QSym
(since NSym = QSymo) as graded Hopf algebras. Hence, QSym ∼= T (V )

o
as graded Hopf algebras.

Remark 1.6.9(b) shows that the Hopf algebra T (V )
o

is naturally isomorphic to the shuffle algebra Sh (V o)
as Hopf algebras. But V o ∼= V as k-modules (since V is of finite type), and thus Sh (V o) ∼= Sh (V ) as
Hopf algebras. Altogether, we obtain QSym ∼= T (V )

o ∼= Sh (V o) ∼= Sh (V ) as Hopf algebras. This solves
Exercise 5.4.12(k).

(l) We recall that

(13.130.6) π
(
R(1i,n−i)

)
= s(n−i,1i) for every positive integer n and every i ∈ {0, 1, ..., n− 1} .

(This has been proven during the solution to Exercise 5.4.12(g).) Also, Theorem 5.4.10(b) (applied to
α =

(
1i
)
) yields that

(13.130.7) π
(
R(1i)

)
= s(1i) = ei for every i ∈ N.

In our solution to Exercise 5.4.12(a), we have shown that
(13.130.8)
R(1i)Hn−i = R(1i,n−i) +R(1i−1,n−i+1) for every positive integer n and every i ∈ {1, 2, ..., n− 1} .

Now, we are ready to solve parts (a) and (b) of Exercise 2.9.14 anew.
Alternative solution to Exercise 2.9.14(a): Let n and m be positive integers. We need to prove that

enhm = s(m+1,1n−1) + s(m,1n).
Applying (13.130.8) to n + m and n instead of n and i, we obtain R(1n)H(n+m)−n = R(1n,(n+m)−n) +

R(1n−1,(n+m)−n+1) = R(1n,(n+m)−n) + R(1n−1,(n+m)−(n−1)) (since (n+m) − n + 1 = (n+m) − (n− 1)).
Applying the map π to both sides of this equality, we obtain

π
(
R(1n)H(n+m)−n

)
= π

(
R(1n,(n+m)−n) +R(1n−1,(n+m)−(n−1))

)
= π

(
R(1n,(n+m)−n)

)︸ ︷︷ ︸
=s((n+m)−n,1n)

(by (13.130.6), applied to
n+m and n instead of n and i)

+ π
(
R(1n−1,(n+m)−(n−1))

)︸ ︷︷ ︸
=s((n+m)−(n−1),1n−1)

(by (13.130.6), applied to
n+m and n−1 instead of n and i)

= s((n+m)−n,1n) + s((n+m)−(n−1),1n−1)

= s(m,1n) + s(m+1,1n−1) (since (n+m)− n = m and (n+m)− (n− 1) = m+ 1)

= s(m+1,1n−1) + s(m,1n).
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Compared with

π
(
R(1n)H(n+m)−n

)
= π

(
R(1n)

)︸ ︷︷ ︸
=en

(by (13.130.7), applied to
n instead of i)

·π

H(n+m)−n︸ ︷︷ ︸
=Hm

 (since π is a k-algebra morphism)

= en · π (Hm)︸ ︷︷ ︸
=hm

(by the definition of π)

= enhm,

this yields enhm = s(m+1,1n−1) + s(m,1n). Thus, Exercise 2.9.14(a) is solved again.
Alternative solution to Exercise 2.9.14(b): Let a ∈ N and b ∈ N. Applying Exercise 5.4.12(b) to n =

a+ b+ 1 and i = b, we obtain

(−1)
b
R(1b,(a+b+1)−b) =

b∑
j=0

S (Hj)H(a+b+1)−j =

b∑
j=0

S (Hb−j)H(a+b+1)−(b−j)

(here, we substituted b− j for j in the sum). Multiplying both sides of this equality by (−1)
b
, we obtain

R(1b,(a+b+1)−b) = (−1)
b

b∑
j=0

S (Hb−j) H(a+b+1)−(b−j)︸ ︷︷ ︸
=Ha+j+1

(since (a+b+1)−(b−j)=a+j+1)

= (−1)
b

b∑
j=0

S (Hb−j)Ha+j+1

= (−1)
b

b∑
i=0

S (Hb−i)Ha+i+1 (here, we renamed the summation index j as i) .

Applying the map π to both sides of this equality, we obtain

π
(
R(1b,(a+b+1)−b)

)
= π

(
(−1)

b
b∑
i=0

S (Hb−i)Ha+i+1

)
= (−1)

b
b∑
i=0

S

 π (Hb−i)︸ ︷︷ ︸
=hb−i

(by the definition of π)

 π (Ha+i+1)︸ ︷︷ ︸
=ha+i+1

(by the definition of π)

(since π is a Hopf algebra homomorphism)

= (−1)
b

b∑
i=0

S (hb−i)︸ ︷︷ ︸
=(−1)b−ieb−i

(by Proposition 2.4.1(iii),
applied to n=b−i)

ha+i+1

= (−1)
b

b∑
i=0

(−1)
b−i

eb−iha+i+1 =

b∑
i=0

(−1)
i
ha+i+1eb−i.

Thus,

b∑
i=0

(−1)
i
ha+i+1eb−i = π

(
R(1b,(a+b+1)−b)

)
= s((a+b+1)−b,1b)

(by (13.130.6), applied to n = a+ b+ 1 and i = b)

= s(a+1,1b).

Thus, Exercise 2.9.14(b) is once again solved.
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13.131. Solution to Exercise 5.4.13. Solution to Exercise 5.4.13.
(a) The solution of Exercise 5.4.13(a) can be obtained from the solution of Exercise 2.9.9(a) upon replacing

fn by Fn.
(b) The solution of Exercise 5.4.13(b) can be obtained from the solution of Exercise 2.9.9(b) upon replacing

fn, fm, fnm and Λ by Fn, Fm, Fnm and QSym.
(c) The solution of Exercise 5.4.13(c) can be obtained from the solution of Exercise 2.9.9(c) upon replacing

f1 and Λ by F1 and QSym.
(d) Let n ∈ {1, 2, 3, . . .} and (β1, β2, . . . , βs) ∈ Comp. The definition ofM(β1,β2,...,βs) yields thatM(β1,β2,...,βs) =∑
i1<i2<···<is x

β1

i1
xβ2

i2
· · ·xβsis (where the sum is over all s-tuples (i1, i2, . . . , is) of positive integers satisfying

i1 < i2 < · · · < is). Applying the map Fn to both sides of this equality, we obtain

Fn
(
M(β1,β2,...,βs)

)
= Fn

( ∑
i1<i2<···<is

xβ1

i1
xβ2

i2
· · ·xβsis

)

=

( ∑
i1<i2<···<is

xβ1

i1
xβ2

i2
· · ·xβsis

)
(xn1 , x

n
2 , x

n
3 , . . .) (by the definition of Fn)

=
∑

i1<i2<···<is

(
xni1
)β1
(
xni2
)β2 · · ·

(
xnis
)βs

=
∑

i1<i2<···<is

xnβ1

i1
xnβ2

i2
· · ·xnβsis

.

Compared with

M(nβ1,nβ2,...,nβs) =
∑

i1<i2<···<is

xnβ1

i1
xnβ2

i2
· · ·xnβsis

(
by the definition of M(nβ1,nβ2,...,nβs)

)
,

this yields Fn
(
M(β1,β2,...,βs)

)
= M(nβ1,nβ2,...,nβs). This solves Exercise 5.4.13(d).

(e) Fix n ∈ {1, 2, 3, . . .}. We now know that Fn is a k-algebra homomorphism (due to Exercise 5.4.13(a)),
thus a k-linear map.

Let α ∈ Comp. Write α in the form (α1, α2, . . . , α`). Then,

(13.131.1) ∆Mα =
∑̀
k=0

M(α1,α2,...,αk) ⊗M(αk+1,αk+2,...,α`)

(according to Proposition 5.1.7). Applying the map Fn ⊗ Fn to both sides of this equality, we obtain

(Fn ⊗ Fn) (∆Mα) = (Fn ⊗ Fn)

(∑̀
k=0

M(α1,α2,...,αk) ⊗M(αk+1,αk+2,...,α`)

)

=
∑̀
k=0

Fn
(
M(α1,α2,...,αk)

)︸ ︷︷ ︸
=M(nα1,nα2,...,nαk)

(by Exercise 5.4.13(d), applied to
(α1,α2,...,αk) instead of (β1,β2,...,βs))

⊗ Fn
(
M(αk+1,αk+2,...,α`)

)︸ ︷︷ ︸
=M(nαk+1,nαk+2,...,nα`)

(by Exercise 5.4.13(d), applied to
(αk+1,αk+2,...,α`) instead of (β1,β2,...,βs))

=
∑̀
k=0

M(nα1,nα2,...,nαk) ⊗M(nαk+1,nαk+2,...,nα`).(13.131.2)
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But

(∆ ◦ Fn) (Mα) = ∆

Fn

 Mα︸︷︷︸
=M(α1,α2,...,α`)

(since α=(α1,α2,...,α`))


 = ∆


Fn
(
M(α1,α2,...,α`)

)︸ ︷︷ ︸
=M(nα1,nα2,...,nα`)

(by Exercise 5.4.13(d), applied to
(α1,α2,...,α`) instead of (β1,β2,...,βs))


= ∆M(nα1,nα2,...,nα`) =

∑̀
k=0

M(nα1,nα2,...,nαk) ⊗M(nαk+1,nαk+2,...,nα`)(
by (13.131.1), applied to (nα1, nα2, . . . , nα`) and

(nα1, nα2, . . . , nα`) instead of α and (α1, α2, . . . , α`)

)
= (Fn ⊗ Fn) (∆Mα) (by (13.131.2))

= ((Fn ⊗ Fn) ◦∆) (Mα) .

Let us now forget that we fixed α. We thus have shown that

(13.131.3) (∆ ◦ Fn) (Mα) = ((Fn ⊗ Fn) ◦∆) (Mα) for every α ∈ Comp .

Now, let us recall that the family (Mα)α∈Comp is a basis of the k-module QSym. The two k-linear maps

∆◦Fn and (Fn ⊗ Fn)◦∆ are equal to each other on this basis (according to (13.131.3)), and therefore must
be identical (because if two k-linear maps from the same domain are equal to each other on a basis of their
domain, then these two maps must be identical). In other words, ∆ ◦ Fn = (Fn ⊗ Fn) ◦∆. We can prove
(using a similar but simpler argument) that ε ◦ Fn = ε. Thus, the map Fn is a k-coalgebra homomorphism
(since it is k-linear and satisfies ∆ ◦ Fn = (Fn ⊗ Fn) ◦∆ and ε ◦ Fn = ε).

We now know that Fn is a k-algebra homomorphism and a k-coalgebra homomorphism. Hence, Fn is
a k-bialgebra homomorphism, thus a Hopf algebra homomorphism (due to Corollary 1.4.27). This solves
Exercise 5.4.13(e).

(f) Let n ∈ {1, 2, 3, . . .}. For every a ∈ Λ, we have

(Fn |Λ) (a) = Fn (a) = a (xn1 , x
n
2 , x

n
3 , . . .) (by the definition of Fn)

= fn (a) (since fn (a) = a (xn1 , x
n
2 , x

n
3 , . . .) (by the definition of fn)) .

Thus, Fn |Λ= fn. This solves Exercise 5.4.13(f).
(g) The solution of Exercise 5.4.13(g) can be obtained from the solution of Exercise 2.9.9(f) upon replacing

fp and Λ by Fp and QSym, and replacing the word “symmetric” by “quasisymmetric”.
(h) Alternative solution of Exercise 2.9.9(d). Fix n ∈ {1, 2, 3, . . .}. Exercise 5.4.13(f) yields that Fn |Λ=

fn. Hence, fn = Fn |Λ is the restriction of Fn to the Hopf subalgebra Λ of QSym. Thus, fn is the restriction of
a Hopf algebra homomorphism to the Hopf subalgebra Λ of QSym (since Fn is a Hopf algebra homomorphism
(by Exercise 5.4.13(e))). Consequently, fn is a Hopf algebra homomorphism itself (since the restriction of a
Hopf algebra homomorphism to a Hopf subalgebra must always be a Hopf algebra homomorphism). This
gives a new solution to Exercise 2.9.9(d). Thus, Exercise 5.4.13(h) is solved.

13.132. Solution to Exercise 5.4.14. Solution to Exercise 5.4.14. Let us first notice that every positive
integer n satisfies

(13.132.1) Vn (Hm) =

{
Hm/n, if n | m;

0, if n - m
for every m ∈ N

927.

927Proof. To obtain a proof of (13.132.1), it is enough to repeat the proof of (13.87.1), making just the following changes:

• replacing every hi by Hi;
• replacing vn by Vn.
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Recall that NSym is (isomorphic to) the free associative algebra with generators H1, H2, H3, . . . (according
to (5.4.1)). Hence, the elements H1, H2, H3, . . . generate the k-algebra NSym. In other words,

(13.132.2) the family (Hr)r≥1 generates the k-algebra NSym .

(e) A solution to Exercise 5.4.14(e) can be obtained by copying the solution of Exercise 2.9.10(e) and
making the following changes:

• Replace every appearance of vn by Vn.
• Replace every appearance of Λ by NSym.
• Replace every appearance of hj (for some j ∈ N) by Hj .
• Replace the reference to Proposition 2.3.6(iii) by a reference to (5.4.2).
• Replace the reference to Proposition 2.4.1 by a reference to (13.132.2).
• Replace every reference to (13.87.1) by a reference to (13.132.1).

(c) A solution to Exercise 5.4.14(c) can be obtained by copying the solution of Exercise 2.9.10(c) and
making the following changes:

• Replace every appearance of vj (for some positive integer j) by Vj .
• Replace every appearance of Λ by NSym.
• Replace every appearance of hj (for some j ∈ N) by Hj .
• Replace the reference to Proposition 2.4.1 by a reference to (13.132.2).

(d) A solution to Exercise 5.4.14(d) can be obtained by copying the solution of Exercise 2.9.10(d) and
making the following changes:

• Replace every appearance of v1 by V1.
• Replace every appearance of Λ by NSym.
• Replace every appearance of hj (for some j ∈ N) by Hj .
• Replace the reference to Proposition 2.4.1 by a reference to (13.132.2).

(a) Here is one of several possible solutions of Exercise 5.4.14(a):928 Define a k-linear map E : NSym →
NSym as in Exercise 1.5.14 (but with NSym instead of A). Every positive integer n satisfies

(13.132.3) Ψn = (S ? E) (Hn)

(according to Exercise 5.4.12(c)).
Fix a positive integer n. Let us make some auxiliary observations first:

• Every composition (α1, α2, . . . , α`) satisfies

(13.132.4) H(α1,α2,...,α`) = Hα1
Hα2
· · ·Hα` .

929

• If (α1, α2, . . . , α`) is a composition such that (not every i ∈ {1, 2, . . . , `} satisfies n | αi), then

(13.132.5) Vn

(
H(α1,α2,...,α`)

)
= 0.

930

928Another solution (which the reader can easily find) proceeds by making some relatively straightforward modifications

to the solution of Exercise 2.9.10(a). (One needs to keep in mind that NSym, unlike Λ, is not commutative – but this does
not prevent us from doing things such as substituting tn for t in a power series over NSym (since tn is a central element of

NSym [[t]]).)
929This is precisely the equality (5.4.3), and has been proven before.
930Proof of (13.132.5): Let (α1, α2, . . . , α`) be a composition such that (not every i ∈ {1, 2, . . . , `} satisfies n | αi). Then,

there exists an i ∈ {1, 2, . . . , `} satisfying n - αi (since not every i ∈ {1, 2, . . . , `} satisfies n | αi). Consider this i. We have

Vn (Hαi ) =

{
Hαi/n, if n | αi;
0, if n - αi

(by the definition of Vn (Hαi ))

= 0 (since n - αi) .

But (13.132.4) yields H(α1,α2,...,α`)
= Hα1Hα2 · · ·Hα` . Applying Vn to both sides of this equality, we obtain

Vn
(
H(α1,α2,...,α`)

)
= Vn (Hα1Hα2 · · ·Hα` ) = Vn (Hα1 ) Vn (Hα2 ) · · ·Vn (Hα` )

(since Vn is a k-algebra homomorphism)

= 0

(
since at least one factor of the product

Vn (Hα1 ) Vn (Hα2 ) · · ·Vn (Hα` ) is 0 (namely, the factor Vn (Hαi ) )

)
.
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• If (α1, α2, . . . , α`) is a composition such that (every i ∈ {1, 2, . . . , `} satisfies n | αi), then

(13.132.6) Vn

(
H(α1,α2,...,α`)

)
= H(α1/n,α2/n,...,α`/n).

931

• We have

(13.132.7) Vn ◦ E = n · (E ◦Vn)

(as endomorphisms of NSym). 932

• We have

(13.132.10) Vn ◦ (S ? E) = n · ((S ? E) ◦Vn)

This proves (13.132.5).
931Proof of (13.132.6): Let (α1, α2, . . . , α`) be a composition such that (every i ∈ {1, 2, . . . , `} satisfies n | αi). Then,

(α1/n, α2/n, . . . , α`/n) is a composition. Therefore, (13.132.4) (applied to (α1/n, α2/n, . . . , α`/n) instead of (α1, α2, . . . , α`))

yields H(α1/n,α2/n,...,α`/n) = Hα1/nHα2/n · · ·Hα`/n.

But every i ∈ {1, 2, . . . , `} satisfies

Vn (Hαi ) =

{
Hαi/n, if n | αi;
0, if n - αi

(by the definition of Vn (Hαi ))

= Hαi/n (since n | αi) .

Multiplying these equalities for all i ∈ {1, 2, . . . , `}, we obtain

Vn (Hα1 ) Vn (Hα2 ) · · ·Vn (Hα` ) = Hα1/nHα2/n · · ·Hα`/n.

But (13.132.4) yields H(α1,α2,...,α`)
= Hα1Hα2 · · ·Hα` . Applying Vn to both sides of this equality, we obtain

Vn
(
H(α1,α2,...,α`)

)
= Vn (Hα1Hα2 · · ·Hα` ) = Vn (Hα1 ) Vn (Hα2 ) · · ·Vn (Hα` )

(since Vn is a k-algebra homomorphism)

= Hα1/nHα2/n · · ·Hα`/n = H(α1/n,α2/n,...,α`/n).

This proves (13.132.6).
932Proof of (13.132.7): Let us show that

(13.132.8) (Vn ◦ E) (Hα) = (n · (E ◦Vn)) (Hα) for every α ∈ Comp .

Proof of (13.132.8): Let α ∈ Comp. Then, Hα is a homogeneous element of NSym of degree deg (Hα) = |α|. Thus, the

definition of E (Hα) yields E (Hα) = (deg (Hα))︸ ︷︷ ︸
=|α|

·Hα = |α| ·Hα. Now,

(Vn ◦ E) (Hα) = Vn

E (Hα)︸ ︷︷ ︸
=|α|·Hα

 = Vn (|α| ·Hα) = |α| ·Vn (Hα) (since the map Vn is k-linear) .

Now, let us write the composition α in the form (α1, α2, . . . , α`). We distinguish between two cases:
Case 1: Not every i ∈ {1, 2, . . . , `} satisfies n | αi.
Case 2: Every i ∈ {1, 2, . . . , `} satisfies n | αi.
Let us first consider Case 1. In this case, not every i ∈ {1, 2, . . . , `} satisfies n | αi. Thus, (13.132.5) yields

Vn
(
H(α1,α2,...,α`)

)
= 0. Since (α1, α2, . . . , α`) = α, this rewrites as Vn (Hα) = 0. Thus, (Vn ◦ E) (Hα) = |α| ·Vn (Hα)︸ ︷︷ ︸

=0

= 0.

Compared with

(n · (E ◦Vn)) (Hα) = n · (E ◦Vn) (Hα)︸ ︷︷ ︸
=E(Vn(Hα))

= n · E

Vn (Hα)︸ ︷︷ ︸
=0

 = n · E (0)︸ ︷︷ ︸
=0

(since E is k-linear)

= 0,

this yields (Vn ◦ E) (Hα) = (n · (E ◦Vn)) (Hα). Hence, (13.132.8) is proven in Case 1.

Let us now consider Case 2. In this case, every i ∈ {1, 2, . . . , `} satisfies n | αi. Thus, (13.132.6) yields Vn
(
H(α1,α2,...,α`)

)
=

H(α1/n,α2/n,...,α`/n). Since (α1, α2, . . . , α`) = α, this rewrites as Vn (Hα) = H(α1/n,α2/n,...,α`/n). Thus,

(13.132.9) (Vn ◦ E) (Hα) = |α| · Vn (Hα)︸ ︷︷ ︸
=H(α1/n,α2/n,...,α`/n)

= |α| ·H(α1/n,α2/n,...,α`/n).

On the other hand, H(α1/n,α2/n,...,α`/n) is a homogeneous element of NSym of degree deg
(
H(α1/n,α2/n,...,α`/n)

)
=

|(α1/n, α2/n, . . . , α`/n)| =

∣∣∣∣∣∣∣(α1, α2, . . . , α`)︸ ︷︷ ︸
=α

∣∣∣∣∣∣∣ /n = |α| /n. Hence, the definition of E
(
H(α1/n,α2/n,...,α`/n)

)
yields
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(where S, as usual, denotes the antipode of NSym). 933

E
(
H(α1/n,α2/n,...,α`/n)

)
=
(
deg

(
H(α1/n,α2/n,...,α`/n)

))︸ ︷︷ ︸
=|α|/n

·H(α1/n,α2/n,...,α`/n) = (|α| /n) ·H(α1/n,α2/n,...,α`/n). Now,

(n · (E ◦Vn)) (Hα) = n · (E ◦Vn) (Hα)︸ ︷︷ ︸
=E(Vn(Hα))

= n · E

 Vn (Hα)︸ ︷︷ ︸
=H(α1/n,α2/n,...,α`/n)


= n · E

(
H(α1/n,α2/n,...,α`/n)

)︸ ︷︷ ︸
=(|α|/n)·H(α1/n,α2/n,...,α`/n)

= n · (|α| /n) ·H(α1/n,α2/n,...,α`/n)

= |α| ·H(α1/n,α2/n,...,α`/n).

Compared with (13.132.9), this yields (Vn ◦ E) (Hα) = (n · (E ◦Vn)) (Hα). Hence, (13.132.8) is proven in Case 2.
Thus, (13.132.8) is proven in both Cases 1 and 2. Since these two Cases cover all possibilities, this shows that (13.132.8)

always holds.

Now, (Hα)α∈Comp is a basis of the k-module NSym. The equality (13.132.8) shows that the two k-linear maps Vn ◦E and

n · (E ◦Vn) are equal to each other on every element of this basis. Hence, these two maps Vn ◦E and n · (E ◦Vn) are identical
(because if two k-linear maps having the same domain are equal to each other on every element of some basis of this domain,

then these two maps must be identical). In other words, Vn ◦ E = n · (E ◦Vn). This proves (13.132.7).
933Proof of (13.132.10): We have S ? E = m ◦ (S ⊗ E) ◦∆ (by the definition of convolution). But we know (from Exercise

5.4.14(e)) that Vn is a Hopf algebra homomorphism; thus, Vn ◦ S = S ◦Vn. Also, Vn is a k-coalgebra homomorphism (since

Vn is a Hopf algebra homomorphism); therefore, (Vn ⊗Vn) ◦∆ = ∆ ◦Vn. Finally, Vn is a k-algebra homomorphism; thus,
Vn ◦m = m ◦ (Vn ⊗Vn). Now,

Vn ◦

 S ? E︸ ︷︷ ︸
=m◦(S⊗E)◦∆

 = Vn ◦m︸ ︷︷ ︸
=m◦(Vn⊗Vn)

◦ (S ⊗ E) ◦∆ = m ◦ (Vn ⊗Vn) ◦ (S ⊗ E)︸ ︷︷ ︸
=(Vn◦S)⊗(Vn◦E)

◦∆

= m ◦

(Vn ◦ S)︸ ︷︷ ︸
=S◦Vn

⊗ (Vn ◦ E)︸ ︷︷ ︸
=n·(E◦Vn)

(by (13.132.7))

 ◦∆ = m ◦ ((S ◦Vn)⊗ (n · (E ◦Vn))) ◦∆

= n ·

m ◦ ((S ◦Vn)⊗ (E ◦Vn))︸ ︷︷ ︸
=(S⊗E)◦(Vn⊗Vn)

◦∆

 (since n is just a scalar factor)

= n ·

m ◦ (S ⊗ E) ◦ (Vn ⊗Vn) ◦∆︸ ︷︷ ︸
=∆◦Vn

 = n ·

 m ◦ (S ⊗ E) ◦∆︸ ︷︷ ︸
=S?E

(since S?E=m◦(S⊗E)◦∆)

◦Vn

 = n · ((S ? E) ◦Vn) .

This proves (13.132.10).
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But fix a positive integer m. We have Ψm = (S ? E) (Hm) (by (13.132.3), applied to m instead of n) and
thus

Vn

 Ψm︸︷︷︸
=(S?E)(Hm)

 = Vn ((S ? E) (Hm)) = (Vn ◦ (S ? E))︸ ︷︷ ︸
=n·((S?E)◦Vn)
(by (13.132.10))

(Hm)

= (n · ((S ? E) ◦Vn)) (Hm) = n · ((S ? E) ◦Vn) (Hm)︸ ︷︷ ︸
=(S?E)(Vn(Hm))

= n · (S ? E)


Vn (Hm)︸ ︷︷ ︸

=

Hm/n, if n | m;

0, if n - m
(by (13.132.1))


= n · (S ? E)

({
Hm/n, if n | m;

0, if n - m

)

=

{
n · (S ? E)

(
Hm/n

)
, if n | m;

n · (S ? E) (0) , if n - m

=

{
n · (S ? E)

(
Hm/n

)
, if n | m;

0, if n - m

since n · (S ? E) (0)︸ ︷︷ ︸
=0

= 0


=

{
nΨm/n, if n | m;

0, if n - m

(because if n | m, then (S ? E)
(
Hm/n

)
= Ψm/n

934). This solves Exercise 5.4.14(a).
(b) Recall that a ring of formal power series R [[t]] over a (not necessarily commutative) k-algebra R has

a canonical topology which makes it into a topological k-algebra935. Thus, in particular, NSym [[t]] becomes
a topological k-algebra. We shall be considering this topology when we speak of continuity.

Assume that Q is a subring of k.

Define two power series H̃ (t) and ξ (t) in NSym [[t]] by

H̃ (t) =
∑
n≥0

Hnt
n;

ξ (t) =
∑
n≥1

ξnt
n = log

(
H̃ (t)

)
.

(Here, the equality
∑
n≥1 ξnt

n = log
(
H̃ (t)

)
follows from (5.4.6).)

We have H̃ (t) =
∑
n≥0Hnt

n =
∑
i≥0Hit

i (here, we renamed the summation index n as i) and ξ (t) =∑
n≥1 ξnt

n =
∑
i≥1 ξit

i (here, we renamed the summation index n as i).
Now, let n be a positive integer. The k-algebra homomorphism Vn : NSym→ NSym induces a continuous

k-algebra homomorphism Vn [[t]] : NSym [[t]]→ NSym [[t]] given by

(Vn [[t]])

(∑
i∈N

ait
i

)
=
∑
i∈N

Vn (ai) t
i for all (ai)i∈N ∈ NSymN .

934Proof. Assume that n | m. Then, m/n is a positive integer. Hence, (13.132.3) (applied to m/n instead of n) yields

Ψm/n = (S ? E)
(
Hm/n

)
, so that (S ? E)

(
Hm/n

)
= Ψm/n, qed.

935This is proven just as in the case when R is commutative.
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This k-algebra homomorphism Vn [[t]] commutes with taking logarithms (since it is continuous and a k-
algebra homomorphism) – i.e., we have

(13.132.11) (Vn [[t]]) (logQ) = log ((Vn [[t]]) (Q))

for every Q ∈ NSym [[t]] having constant coefficient 1.
We have ξ (t) =

∑
i≥1 ξit

i, thus

∑
i≥1

ξit
i = ξ (t) = log

 H̃ (t)︸ ︷︷ ︸
=
∑
i≥0 Hit

i

 = log

∑
i≥0

Hit
i

 .

We can substitute tn for t on both sides of this equality936. As a result, we obtain

(13.132.12)
∑
i≥1

ξi (tn)
i

= log

∑
i≥0

Hi (tn)
i

 .

But H̃ (t) =
∑
i≥0Hit

i. Applying the map Vn [[t]] to both sides of this equality, we obtain

(Vn [[t]])
(
H̃ (t)

)
= (Vn [[t]])

∑
i≥0

Hit
i

 =
∑
i≥0

Vn (Hi)︸ ︷︷ ︸
=

Hi/n, if n | i;
0, if n - i

(by (13.132.1), applied to m=i)

ti

=
∑
i≥0

{
Hi/n, if n | i;
0, if n - i

· ti

=
∑
i≥0;
n|i

{
Hi/n, if n | i;
0, if n - i︸ ︷︷ ︸

=Hi/n
(since n|i)

·ti +
∑
i≥0;
n-i

{
Hi/n, if n | i;
0, if n - i︸ ︷︷ ︸

=0
(since n-i)

·ti

=
∑
i≥0;
n|i

Hi/nt
i +

∑
i≥0;
n-i

0ti

︸ ︷︷ ︸
=0

=
∑
i≥0;
n|i

Hi/nt
i

=
∑
i≥0

Hni/n︸ ︷︷ ︸
=Hi

tni︸︷︷︸
=(tn)i

(here, we have substituted ni for i in the sum)

=
∑
i≥0

Hi (tn)
i
.(13.132.13)

936This is allowed because the element tn of NSym [[t]] is central. (Generally, if R is a ring (possibly not commutative)

and Q ∈ R [[t]] is a power series, then every central element z of R [[t]] can be substituted for t in Q as long as the constant
coefficient of z is 0. The result of this substitution is denoted by Q (z). The map R [[t]]→ R [[t]] which sends every Q to Q (z)

(for a fixed z) is a ring homomorphism R [[t]]→ R [[t]].)
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Now,

(Vn [[t]])

 ξ (t)︸︷︷︸
=log(H̃(t))

 = (Vn [[t]])
(

log
(
H̃ (t)

))
= log

(Vn [[t]])
(
H̃ (t)

)
︸ ︷︷ ︸

=
∑
i≥0 Hi(t

n)i

(by (13.132.13))


(

by (13.132.11), applied to Q = H̃ (t)
)

= log

∑
i≥0

Hi (tn)
i

 =
∑
i≥1

ξi (tn)
i︸︷︷︸

=tni

(by (13.132.12))

=
∑
i≥1

ξit
ni.(13.132.14)

Comparing this with

(Vn [[t]])

 ξ (t)︸︷︷︸
=
∑
i≥1 ξit

i

 = (Vn [[t]])

∑
i≥1

ξit
i

 =
∑
i≥1

Vn (ξi) t
i

(by the definition of Vn [[t]]) ,

we obtain

(13.132.15)
∑
i≥1

Vn (ξi) t
i =

∑
i≥1

ξit
ni.

Now, let m be a positive integer. Comparing coefficients before tm in the equality (13.132.15), we obtain

Vn (ξm) =

{
ξm/n, if n | m;

0, if n - m
.

This solves Exercise 5.4.14(b).
(f) Recall first that (Hα)α∈Comp and (Mα)α∈Comp are mutually dual bases with respect to the dual pairing

NSym⊗QSym
(·,·)−→ k. 937 Thus,

(13.132.16) (Hα,Mβ) = δα,β for any two compositions α and β.

Let us introduce a notation: For every composition α and every positive integer s, let α {s} denote the
`-tuple (sα1, sα2, . . . , sα`), where α is written in the form (α1, α2, . . . , α`). Notice that if α is a composition
and s is a positive integer, then α {s} is a composition again.

We have

(13.132.17) FnMα = Mα{n} for every composition α.

938.

937This follows from the definition of (Hα)α∈Comp.
938Proof of (13.132.17): Let α be a composition. Write α in the form α = (α1, α2, . . . , α`). By the definition of Mα,

we have Mα =
∑
i1<i2<···<i` x

α1
i1
xα2
i2
· · ·xα`i` (where the sum is over all `-tuples (i1, i2, . . . , i`) of positive integers satisfying

i1 < i2 < · · · < i`).
On the other hand, the definition of α {n} yields α {n} = (nα1, nα2, . . . , nα`) (since α = (α1, α2, . . . , α`)). Hence, the

definition of Mα{n} yields

(13.132.18) Mα{n} =
∑

i1<i2<···<i`

xnα1
i1

xnα2
i2
· · ·xnα`i`

(where the sum is over all `-tuples (i1, i2, . . . , i`) of positive integers satisfying i1 < i2 < · · · < i`).
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We need to prove that the maps Fn : QSym→ QSym and Vn : NSym→ NSym are adjoint with respect

to the dual pairing NSym⊗QSym
(·,·)−→ k. In other words, we need to prove that

(13.132.19) (b,Fna) = (Vnb, a) for any a ∈ QSym and b ∈ NSym .

Proof of (13.132.19): Fix a ∈ QSym and b ∈ NSym.
Recall that (Mα)α∈Comp is a basis of the k-module NSym. Hence, in proving (13.132.19), we can WLOG

assume that a is an element of this basis (Mα)α∈Comp (because the equality (13.132.19) is k-linear in a).

Assume this. Thus, a is an element of the basis (Mα)α∈Comp. In other words, there exists a β ∈ Comp such

that a = Mβ . Consider this β. We have Fn a︸︷︷︸
=Mβ

= FnMβ = Mβ{n} (by (13.132.17), applied to α = β).

Recall that (Hα)α∈Comp is a basis of the k-module Λ. Hence, in proving (13.132.19), we can WLOG

assume that b is an element of this basis (Hα)α∈Comp (because the equality (13.132.19) is k-linear in b).

Assume this. Thus, b is an element of the basis (Hα)α∈Comp. In other words, there exists a γ ∈ Comp such
that b = Hγ . Consider this γ. We have

(13.132.20)

 b︸︷︷︸
=Hγ

, Fna︸︷︷︸
=Mβ{n}

 =
(
Hγ ,Mβ{n}

)
= δγ,β{n}

(by (13.132.16), applied to γ and β {n} instead of α and β).
Let us write the composition γ in the form (γ1, γ2, . . . , γ`). Then, γ = (γ1, γ2, . . . , γ`), so that Hγ =

H(γ1,γ2,...,γ`) = Hγ1Hγ2 · · ·Hγ` (by (13.132.4), applied to (γ1, γ2, . . . , γ`) instead of (α1, α2, . . . , α`)).
Let us first assume that

(13.132.21) (not every i ∈ {1, 2, . . . , `} satisfies n | γi) .

Then, Vn

 Hγ︸︷︷︸
=H(γ1,γ2,...,γ`)

 = Vn

(
H(γ1,γ2,...,γ`)

)
= 0 (by (13.132.5), applied to (γ1, γ2, . . . , γ`) instead of

(α1, α2, . . . , α`)). Also, β {n} 6= γ 939, so that δγ,β{n} = 0. Thus, (13.132.20) becomes (b,Fna) = δγ,β{n} =

0. Compared with

Vn b︸︷︷︸
=Hγ

, a

 =

Vn (Hγ)︸ ︷︷ ︸
=0

, a

 = (0, a) = 0 (since the dual pairing NSym⊗QSym
(·,·)−→ k

is k-bilinear), this yields (b,Fna) = (Vnb, a). Thus, (13.132.19) holds.
Now, let us forget that we assumed that (13.132.21) holds. We thus have proven (13.132.19) under the

assumption that (13.132.21) holds. Hence, for the rest of our proof of (13.132.19), we can WLOG assume
that (13.132.21) does not hold. Assume this.

We have assumed that (13.132.21) does not hold. In other words,

(13.132.22) every i ∈ {1, 2, . . . , `} satisfies n | γi.
Thus, γi/n is a positive integer for every i ∈ {1, 2, . . . , `} (since γi is a positive integer for every i ∈
{1, 2, . . . , `}). Thus, (γ1/n, γ2/n, . . . , γ`/n) is a composition. Let us denote this composition by ζ. We have

Now, the definition of Fn yields

FnMα = Mα︸︷︷︸
=
∑
i1<i2<···<i`

x
α1
i1
x
α2
i2
···xα`i`

(xn1 , x
n
2 , x

n
3 , . . .) =

 ∑
i1<i2<···<i`

xα1
i1
xα2
i2
· · ·xα`i`

 (xn1 , x
n
2 , x

n
3 , . . .)

=
∑

i1<i2<···<i`

xnα1
i1

xnα2
i2
· · ·xnα`i`

= Mα{n} (by (13.132.18)) .

This proves (13.132.17).
939Proof. Assume the contrary. Thus, β {n} = γ. Let us write the composition β in the form (β1, β2, . . . , βq). Then, β {n} =

(nβ1, nβ2, . . . , nβq) (by the definition of β {n}). Hence, (γ1, γ2, . . . , γ`) = γ = β {n} = (nβ1, nβ2, . . . , nβq). As a consequence,

` = q, so that q = ` and thus (nβ1, nβ2, . . . , nβq) = (nβ1, nβ2, . . . , nβ`). Hence, (γ1, γ2, . . . , γ`) = (nβ1, nβ2, . . . , nβq) =
(nβ1, nβ2, . . . , nβ`). Consequently, every i ∈ {1, 2, . . . , `} satisfies γi = nβi. Thus, every i ∈ {1, 2, . . . , `} satisfies n | γi. This
contradicts (13.132.21). This contradiction proves that our assumption was wrong, qed.
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ζ {n} = γ 940 and Vn (Hγ) = Hζ
941 and thus

(13.132.23)

Vn b︸︷︷︸
=Hγ

, a︸︷︷︸
=Mβ

 =

Vn (Hγ)︸ ︷︷ ︸
=Hζ

,Mβ

 = (Hζ ,Mβ) = δζ,β

(by (13.132.16), applied to ζ instead of α).
Now, let us write the composition β in the form (β1, β2, . . . , βs). Then, β {n} = (nβ1, nβ2, . . . , nβs) (by

the definition of β {n}).
Now, we have the following equivalence of assertions:

(γ = β {n})
⇐⇒ ((γ1, γ2, . . . , γ`) = (nβ1, nβ2, . . . , nβs))

(since γ = (γ1, γ2, . . . , γ`) and β {n} = (nβ1, nβ2, . . . , nβs))

⇐⇒

we have ` = s, and every i ∈ {1, 2, . . . , `} satisfies γi = nβi︸ ︷︷ ︸
this is equivalent to

γi/n=βi


⇐⇒ (we have ` = s, and every i ∈ {1, 2, . . . , `} satisfies γi/n = βi)

⇐⇒ ((γ1/n, γ2/n, . . . , γ`/n) = (β1, β2, . . . , βs))

⇐⇒ (ζ = β) (since (γ1/n, γ2/n, . . . , γ`/n) = ζ and (β1, β2, . . . , βs) = β) .(13.132.24)

This equivalence shows that δγ,β{n} = δζ,β . But (13.132.20) becomes

(b,Fna) = δγ,β{n} = δζ,β = (Vnb, a) (by (13.132.23)) .

Thus, (13.132.19) is proven. As we know, this completes the solution of Exercise 5.4.14(f).
(g) We know that π : NSym→ Λ is a k-algebra homomorphism. Thus, π (0) = 0. Also, we know that

(13.132.25) π (Hn) = hn for every positive integer n.

Now, let n be a positive integer. The maps vn ◦ π and π ◦Vn are k-algebra homomorphisms (since π and
vn are k-algebra homomorphisms).

Let r be a positive integer. Applying (13.132.25) to r instead of n, we obtain π (Hr) = hr.
If n | r, then r/n is a positive integer. Hence,

(13.132.26) if n | r, then π
(
Hr/n

)
= hr/n.

Now,

(vn ◦ π) (Hr) = vn

π (Hr)︸ ︷︷ ︸
=hr

 = vn (hr) =

{
hr/n, if n | r;
0, if n - r

(by the definition of vn) .

940Proof. We have ζ = (γ1/n, γ2/n, . . . , γ`/n). Hence, the definition of ζ {n} yields ζ {n} = (nγ1/n, nγ2/n, . . . , nγ`/n) =

(γ1, γ2, . . . , γ`) = γ, qed.
941Proof. We have γ = (γ1, γ2, . . . , γ`), so that

Vn (Hγ) = Vn
(
H(γ1,γ2,...,γ`)

)
= H(γ1/n,γ2/n,...,γ`/n) (by (13.132.6), applied to (γ1, γ2, . . . , γ`) instead of (α1, α2, . . . , α`))

= Hζ (since (γ1/n, γ2/n, . . . , γ`/n) = ζ) ,

qed.
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Compared with

(π ◦Vn) (Hr) = π


Vn (Hr)︸ ︷︷ ︸

=

Hr/n, if n | r;
0, if n - r

(by the definition of Vn)


= π

({
Hr/n, if n | r;
0, if n - r

)

=

{
π
(
Hr/n

)
, if n | r;

π (0) , if n - r
=

{
π
(
Hr/n

)
, if n | r;

0, if n - r
(since π (0) = 0 in the case when n - r)

=

{
hr/n, if n | r;
0, if n - r(

since π
(
Hr/n

)
= hr/n in the case when n | r (according to (13.132.26))

)
,

this yields (vn ◦ π) (Hr) = (π ◦Vn) (Hr).
Let us now forget that we fixed r. We thus have proven that

(13.132.27) (vn ◦ π) (Hr) = (π ◦Vn) (Hr) for every positive integer r.

Now, recall that the family (Hr)r≥1 generates the k-algebra NSym (according to (13.132.2)). In other

words, (Hr)r≥1 is a generating set of the k-algebra NSym. The two k-algebra homomorphisms vn ◦ π and

π◦Vn are equal to each other on this generating set (according to (13.86.8)), and therefore must be identical
(because if two k-algebra homomorphisms from the same domain are equal to each other on a generating
set of their domain, then these two homomorphisms must be identical). In other words, vn ◦ π = π ◦Vn.
This completes the solution of Exercise 5.4.14(g).

(h) Alternative solution of Exercise 2.9.10(f). Let i denote the inclusion map Λ→ QSym. Then, Corollary

5.4.3 yields that the map π is adjoint to the map i with respect to the dual pairing NSym⊗QSym
(·,·)−→ k.

In other words,

(13.132.28) (π (b) , a) = (b, i (a)) for every b ∈ NSym and a ∈ Λ.

But Exercise 5.4.14(f) yields that the maps Fn : QSym → QSym and Vn : NSym → NSym are adjoint

with respect to the dual pairing NSym⊗QSym
(·,·)−→ k. In other words,

(13.132.29) (b,Fna) = (Vnb, a) for any a ∈ QSym and b ∈ NSym .

Now, fix a positive integer n. Let a ∈ Λ and b ∈ Λ be arbitrary. Then, a ∈ Λ ⊂ QSym. Exercise 5.4.13(f)
yields Fn |Λ= fn. Thus, fn = Fn |Λ, so that fna = (Fn |Λ) a = Fna.

On the other hand, the projection π : NSym → Λ is surjective. Hence, there exists some b′ ∈ NSym
satisfying b = π (b′). Consider this b′.

Since the Hall inner product on Λ is symmetric, we have

(fna, b) =

 b︸︷︷︸
=π(b′)

, fna

 = (π (b′) , fna) =

b′, i (fna)︸ ︷︷ ︸
=fna

(since i is an inclusion map)


(by (13.132.28), applied to b′ and fna instead of b and a)

=

b′, fna︸︷︷︸
=Fna

 = (b′,Fna) = (Vnb
′, a) (by (13.132.29), applied to b′ instead of b) .
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Comparing this with

(a,vnb) =

vn b︸︷︷︸
=π(b′)

, a

 (since the Hall inner product on Λ is symmetric)

=

vn (π (b′))︸ ︷︷ ︸
=(vn◦π)(b′)

, a

 =

 (vn ◦ π)︸ ︷︷ ︸
=π◦Vn

(by Exercise 5.4.14(g))

(b′) , a

 =

(π ◦Vn) (b′)︸ ︷︷ ︸
=π(Vnb′)

, a



= (π (Vnb
′) , a) =

Vnb
′, i (a)︸︷︷︸

=a
(since i is an inclusion map)

 (by (13.132.28), applied to Vnb
′ instead of b)

= (Vnb
′, a) ,

we obtain (fna, b) = (a,vnb).
Let us now forget that we fixed a and b. We have thus shown that (fna, b) = (a,vnb) for every a ∈ Λ

and b ∈ Λ. In other words, the maps fn : Λ→ Λ and vn : Λ→ Λ are adjoint with respect to the Hall inner
product on Λ. Thus, Exercise 2.9.10(f) is solved once again. Hence, Exercise 5.4.14(h) is solved.

13.133. Solution to Exercise 6.1.3. Solution to Exercise 6.1.3.

Proof of Proposition 6.1.2. (a) This can be easily verified by hand, but here is a slicker way to see it: Let
B be the set A t {−∞}, where −∞ is a symbol. We define a total order on B by extending the given total
order on A in such a way that every a ∈ A satisfies −∞ < a. Consider the set B∞ of all infinite sequences of
elements of B. Then, A∗ embeds into B∞ by identifying every word (a1, a2, . . . , an) ∈ A∗ with the sequence
(a1, a2, . . . , an,−∞,−∞,−∞, . . .) ∈ B∞. It is easy to check that our order relation ≤ on A∗ thus becomes
the restriction to A∗ of the smaller-or-equal relation of the lexicographic order on B∞. Consequently, it is
a total order. Proposition 6.1.2(a) is thus proven.

(h) follows immediately from the definition of ≤.
(i) follows from common sense.
(k) Let a ∈ A∗ and b ∈ A∗ be such that b is nonempty. Then, a is a prefix of ab. Thus, a ≤ ab (by

Proposition 6.1.2(h), applied to ab instead of b). But a 6= ab 942. Combined with a ≤ ab, this yields a < ab.
Proposition 6.1.2(k) is thus proven.

(b) Proposition 6.1.2(b) is an almost immediate consequence of the definition of ≤; its proof is thus left
to the reader.

(c) Let a, c, d ∈ A∗ satisfy ac ≤ ad. We have ac =
(
a1, a2, . . . , a`(a), c1, c2, . . . , c`(c)

)
and

ad =
(
a1, a2, . . . , a`(a), d1, d2, . . . , d`(d)

)
, and we have ac ≤ ad. Due to the definition of ≤, this means that

we must be in one of the following two situations:

• There exists an i ∈ {1, 2, . . . ,min {` (a) + ` (c) , ` (a) + ` (d)}} such that

(13.133.1)
(

(ac)i < (ad)i , and every j ∈ {1, 2, . . . , i− 1} satisfies (ac)j = (ad)j

)
.

• The word ac is a prefix of ad.

If we are in the first of these two situations, then we clearly must have i > ` (a) (since otherwise,
both (ac)i and (ad)i would equal ai, and then (ac)i < (ad)i would contradict (ac)i = ai = (ad)i), and
therefore i has the form i = ` (a) + i′ for some i′ ∈ {1, 2, . . . ,min {` (c) , ` (d)}}. Then, (13.133.1) yields
(ci′ < di′ , and every j ∈ {1, 2, . . . , i′ − 1} satisfies cj = dj). But this shows that c ≤ d, and so we are done

942Proof. Assume the contrary. Then, a = ab. Hence, a∅ = a = ab. Cancelling a from this equality, we obtain ∅ = b, so
that the word b is empty. This contradicts the fact that b is nonempty. This contradiction proves that our assumption was

wrong, qed.
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in the first situation. In the second situation, we also have c ≤ d 943, and again we are done. Thus,
Proposition 6.1.2(c) is proven.

(d) Let a, b, c, d ∈ A∗ satisfy a ≤ c. We have a =
(
a1, a2, . . . , a`(a)

)
and c =

(
c1, c2, . . . , c`(c)

)
, and we have

a ≤ c. Due to the definition of ≤, this means that we must be in one of the following two situations:

• There exists an i ∈ {1, 2, . . . ,min {` (a) , ` (c)}} such that

(ai < ci, and every j ∈ {1, 2, . . . , i− 1} satisfies aj = cj) .

• The word a is a prefix of c.

The first of these situations entails ab ≤ cd (because every k ∈ {1, 2, . . . ,min {` (a) , ` (c)}} satisfies
(ab)k = ak and (cd)k = ck). Hence, in both situations, Proposition 6.1.2(d) is proven.

(e) Let a, b, c, d ∈ A∗ satisfy ab ≤ cd. We have a =
(
a1, a2, . . . , a`(a)

)
, b =

(
b1, b2, . . . , b`(b)

)
, c =(

c1, c2, . . . , c`(c)
)

and d =
(
d1, d2, . . . , d`(d)

)
, and we have ab ≤ cd. Due to the definition of ≤, this means

that we must be in one of the following two situations:

• There exists an i ∈ {1, 2, . . . ,min {` (a) + ` (b) , ` (c) + ` (d)}} such that

(13.133.2)
(

(ab)i < (cd)i , and every j ∈ {1, 2, . . . , i− 1} satisfies (ab)j = (cd)j

)
.

• The word ab is a prefix of cd.

It is easy to see that if we are in the second situation, then either we have a ≤ c or the word c is a prefix of
a 944. We are therefore done in the second situation. We can thus WLOG assume that we are in the first
situation. Assume this. We thus have an i ∈ {1, 2, . . . ,min {` (a) + ` (b) , ` (c) + ` (d)}} satisfying (13.133.2).
If i ≤ min {` (a) , ` (c)}, then this yields a ≤ c (because every k ∈ {1, 2, . . . ,min {` (a) , ` (c)}} satisfies (ab)k =
ak and (cd)k = ck), and we are done. If i > min {` (a) , ` (c)}, then every j ∈ {1, 2, . . . ,min {` (a) , ` (c)}}
satisfies aj = cj (because every j ∈ {1, 2, . . . ,min {` (a) , ` (c)}} satisfies j ∈ {1, 2, . . . , i− 1} and thus

aj = (ab)j = (cd)j (by (13.133.2))

= cj

), and thus we conclude that either a is a prefix of c, or c is a prefix of a. Again, this means that we are
done. Thus, Proposition 6.1.2(e) is proven.

(f) follows from (e), because if c is a prefix of a satisfying ` (a) ≤ ` (c), then c = a.
(g) Let a, b, c ∈ A∗ satisfy a ≤ b ≤ ac. Then, b∅ = b ≤ ac. Hence, Proposition 6.1.2(e) (applied to

b,∅, a, c instead of a, b, c, d) yields that either we have b ≤ a or the word a is a prefix of b. Since b ≤ a leads
to a = b (in view of a ≤ b), we get in both of these cases that a is a prefix of b. This proves Proposition
6.1.2(g).

(j) Let a, b, c ∈ A∗ satisfy a ≤ b and ` (a) ≥ ` (b). Proposition 6.1.2(d) (applied to a, c, b and c) yields that
either we have ac ≤ bc or the word a is a prefix of b. In the first of these two cases, we are obviously done.
Hence, we WLOG assume that we are in the second of these two cases. Thus, the word a is a prefix of b.
Since the word a is at least as long as b (in fact, ` (a) ≥ ` (b)), this yields that a = b, so that a︸︷︷︸

=b

c = bc ≤ bc.

This proves Proposition 6.1.2(j). �

943Proof. Let us consider the second situation. In this situation, the word ac is a prefix of ad. In other words, there exists
a word z such that ad = acz. Consider this z. Cancelling a from the equality ad = acz, we obtain d = cz. Hence, the word c is

a prefix of d. Thus, c ≤ d, qed.
944Proof. Assume that we are in the second situation. Then, the word ab is a prefix of cd. In other words, there exists a

word z ∈ A∗ such that cd = abz. Consider this z.

Now, a is a prefix of the word cd (since cd = abz = a (bz)). Also, c is a prefix of the word cd. Hence, a and c are two prefixes
of the word cd. Thus, Proposition 6.1.2(i) (applied to c and cd instead of b and c) yields that either a is a prefix of c, or c is a

prefix of a. Hence, either we have a ≤ c or c is a prefix of a (because if a is a prefix of c, then a ≤ c). Qed.
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13.134. Solution to Exercise 6.1.7. Solution to Exercise 6.1.7.

Alternative proof of Corollary 6.1.6. We shall prove Corollary 6.1.6 by strong induction on ` (u)+` (v)+` (w).
That is, we fix an N ∈ N, and we assume (as the induction hypothesis) that Corollary 6.1.6 holds in the
case when ` (u) + ` (v) + ` (w) < N . We then need to prove that Corollary 6.1.6 holds in the case when
` (u) + ` (v) + ` (w) = N .

So let u, v and w be words satisfying uv ≥ vu and vw ≥ wv and ` (u) + ` (v) + ` (w) = N . Assume that
v is nonempty. We want to prove that uw ≥ wu.

If u = ∅, then uw ≥ wu holds obviously (because if u = ∅, then u︸︷︷︸
=∅

w = w = w ∅︸︷︷︸
=u

= wu). Hence, for

the rest of this proof, we can WLOG assume that u 6= ∅. Assume this. For a similar reason, we WLOG
assume that w 6= ∅. Recall also that v is nonempty; that is, v 6= ∅.

We have ` (u) > 0 (since u 6= ∅) and ` (v) > 0 (since v 6= ∅) and ` (w) > 0 (since w 6= ∅).
Notice that

(13.134.1) uvc ≥ vuc for every c ∈ A∗.

945 Also,

(13.134.2) vwc ≥ wvc for every c ∈ A∗.

946

Let us first assume that u is a prefix of w. Then, there exists a w′ ∈ A∗ satisfying w = uw′ (since u is a
prefix of w). Consider this w′. Applying (13.134.1) to c = w′, we obtain uvw′ ≥ v uw′︸︷︷︸

=w

= vw ≥ w︸︷︷︸
=uw′

v = uw′v.

That is, uw′v ≤ uvw′. Hence, Proposition 6.1.2(c) (applied to a = u, c = w′v and d = vw′) yields w′v ≤ vw′,

so that vw′ ≥ w′v. Furthermore, `

 w︸︷︷︸
=uw′

 = ` (u)︸︷︷︸
>0

+` (w′) > ` (w′), thus ` (w′) < ` (w) and therefore

` (u) + ` (v) + ` (w′)︸ ︷︷ ︸
<`(w)

< ` (u) + ` (v) + ` (w) = N . Hence, Corollary 6.1.6 holds for w′ instead of w (by the

induction hypothesis). Consequently, we obtain uw′ ≥ w′u (since vw′ ≥ w′v). Thus, w′u ≤ uw′, so that
uw′u ≤ uuw′ (by Proposition 6.1.2(b), applied to a = u, c = w′u and d = uw′). Thus, uuw′ ≥ uw′︸︷︷︸

=w

u = wu,

so that u w︸︷︷︸
=uw′

= uuw′ ≥ wu.

Now, let us forget that we assumed that u is a prefix of w. We thus have proven that uw ≥ wu under the
assumption that u is a prefix of w. Hence, for the rest of this proof of uw ≥ wu, we can WLOG assume that

u is not a prefix of w.

Assume this.
Let us next assume that v is a prefix of w. Then, there exists a w′ ∈ A∗ satisfying w = vw′ (since v

is a prefix of w). Consider this w′. We have v vw′︸︷︷︸
=w

= vw ≥ w︸︷︷︸
=vw′

v = vw′v, thus vw′v ≤ vvw′. Thus,

Proposition 6.1.2(c) (applied to a = v, c = w′v and d = vw′) yields w′v ≤ vw′, so that vw′ ≥ w′v.

Furthermore, `

 w︸︷︷︸
=vw′

 = ` (v)︸︷︷︸
>0

+` (w′) > ` (w′), thus ` (w′) < ` (w) and therefore ` (u) + ` (v) + ` (w′)︸ ︷︷ ︸
<`(w)

<

` (u) + ` (v) + ` (w) = N . Hence, Corollary 6.1.6 holds for w′ instead of w (by the induction hypothesis).
Consequently, we obtain uw′ ≥ w′u (since vw′ ≥ w′v). Thus, w′u ≤ uw′, so that vw′u ≤ vuw′ (by

945Proof of (13.134.1): Let c ∈ A∗. We have uv ≥ vu and thus vu ≤ uv. Also, ` (vu) = ` (v) + ` (u) = ` (u) + ` (v) = ` (uv).

Hence, Proposition 6.1.2(j) (applied to a = vu and b = uv) yields vuc ≤ uvc, so that uvc ≥ vuc. This proves (13.134.1).
946Proof of (13.134.2): Let c ∈ A∗. We have vw ≥ wv and thus wv ≤ vw. Also, ` (wv) = ` (w)+` (v) = ` (v)+` (w) = ` (vw).

Hence, Proposition 6.1.2(j) (applied to a = wv and b = vw) yields wvc ≤ vwc, so that vwc ≥ wvc. This proves (13.134.2).



916 DARIJ GRINBERG AND VICTOR REINER

Proposition 6.1.2(b), applied to a = v, c = w′u and d = uw′). Thus, vuw′ ≥ vw′︸︷︷︸
=w

u = wu. But (13.134.1)

(applied to c = w′) yields uvw′ ≥ vuw′ ≥ wu, thus u w︸︷︷︸
=vw′

= uvw′ ≥ wu.

Now, let us forget that we assumed that v is a prefix of w. We thus have proven that uw ≥ wu under the
assumption that v is a prefix of w. Hence, for the rest of this proof of uw ≥ wu, we can WLOG assume that

v is not a prefix of w.

Assume this.
We have vw ≥ wv, thus wv ≤ vw. Hence, Proposition 6.1.2(e) (applied to a = w, b = v, c = v and d = w)

yields that either we have w ≤ v or the word v is a prefix of w. Since the word v is not a prefix of w, this
yields that we have w ≤ v. Thus,

v ≥ w.
Let us next assume that w is a prefix of u. Then, there exists a u′ ∈ A∗ satisfying u = wu′ (since w

is a prefix of u). Consider this u′. We have uv ≥ vu and thus wu′︸︷︷︸
=u

v = uv ≥ v u︸︷︷︸
=wu′

= vwu′ ≥ wvu′ (by

(13.134.2), applied to c = u′). In other words, wvu′ ≤ wu′v. Hence, Proposition 6.1.2(c) (applied to a = w,

c = vu′ and d = u′v) yields vu′ ≤ u′v, so that u′v ≥ vu′. Furthermore, `

 u︸︷︷︸
=wu′

 = ` (w)︸ ︷︷ ︸
>0

+` (u′) > ` (u′),

thus ` (u′) < ` (u) and therefore ` (u′)︸ ︷︷ ︸
<`(u)

+` (v) + ` (w) < ` (u) + ` (v) + ` (w) = N . Hence, Corollary 6.1.6 holds

for u′ instead of u (by the induction hypothesis). Consequently, we obtain u′w ≥ wu′ (since u′v ≥ vu′).
Thus, wu′ ≤ u′w, so that wwu′ ≤ wu′w (by Proposition 6.1.2(b), applied to a = w, c = wu′ and d = u′w).
Thus, wu′w ≥ w wu′︸︷︷︸

=u

= wu, so that u︸︷︷︸
=wu′

w = wu′w ≥ wu.

Now, let us forget that we assumed that w is a prefix of u. We thus have proven that uw ≥ wu under the
assumption that w is a prefix of u. Hence, for the rest of this proof of uw ≥ wu, we can WLOG assume that

w is not a prefix of u.

Assume this.
Let us now assume that u is a prefix of v. Then, there exists a v′ ∈ A∗ satisfying v = uv′ (since u is a

prefix of v). Consider this v′. We have uv′ = v ≥ w = w∅. Hence, w∅ ≤ uv′. Thus, Proposition 6.1.2(e)
(applied to a = w, b = ∅, c = u and d = v′) yields that either we have w ≤ u or the word u is a prefix of
w. Since the word u is not a prefix of w, we can conclude from this that w ≤ u. Thus, Proposition 6.1.2(d)
(applied to a = w, b = u, c = u and d = w) shows that either we have wu ≤ uw or the word w is a prefix of
u. Since the word w is not a prefix of u, this yields that wu ≤ uw, so that uw ≥ wu.

Now, let us forget that we assumed that u is a prefix of v. We thus have proven that uw ≥ wu under the
assumption that u is a prefix of v. Hence, for the rest of this proof of uw ≥ wu, we can WLOG assume that

u is not a prefix of v.

Assume this.
We have uv ≥ vu, thus vu ≤ uv. Hence, Proposition 6.1.2(e) (applied to a = v, b = u, c = u and d = v)

yields that either we have v ≤ u or the word u is a prefix of v. Since the word u is not a prefix of v, this
yields that we have v ≤ u. Thus, u ≥ v. Combined with v ≥ w, this yields u ≥ w, so that w ≤ u. Thus,
Proposition 6.1.2(d) (applied to a = w, b = u, c = u and d = w) shows that either we have wu ≤ uw or the
word w is a prefix of u. Since the word w is not a prefix of u, this yields that wu ≤ uw, so that uw ≥ wu.
Our proof of uw ≥ wu is thus complete.

Now, let us forget that we fixed u, v and w. We have thus shown that if u, v and w are words satisfying
uv ≥ vu and vw ≥ wv and ` (u) + ` (v) + ` (w) = N , and if v is nonempty, then uw ≥ wu. In other words,
Corollary 6.1.6 holds in the case when ` (u) + ` (v) + ` (w) = N . This completes the induction step. We thus
have proven Corollary 6.1.6 (again). �
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13.135. Solution to Exercise 6.1.9. Solution to Exercise 6.1.9. If the word u is empty, then Exercise 6.1.9
is easy to solve947. Hence, for the rest of this solution, we can WLOG assume that the word u is nonempty.
Assume this. The word un is nonempty (since u is nonempty and n is a positive integer). In other words,
the word vm is nonempty (since un = vm). Thus, v is nonempty.

We have u vm︸︷︷︸
=un

= uun = un+1 = un︸︷︷︸
=vm

u = vmu and vmv = vm+1 = vvm. Hence, Corollary 6.1.6 (applied

to u, vm and v instead of u, v and w) yields uv ≥ vu (since vm is nonempty).
But we also have vvm = vmv (since vmv = vvm) and vmu = uvm (since uvm = vmu). Thus, Corollary

6.1.6 (applied to v, vm and u instead of u, v and w) yields vu ≥ uv (since vm is nonempty). Combined with
uv ≥ vu, this yields uv = vu. Hence, Proposition 6.1.4 yields that there exist a t ∈ A∗ and two nonnegative
integers i and j such that u = ti and v = tj 948. Consider this t and these i and j. We have i 6= 0 (since
ti = u is nonempty), so that i is a positive integer. Also, j 6= 0 (since tj = v is nonempty), and therefore j
is a positive integer.

We have thus shown that there exists a word t and positive integers i and j such that u = ti and v = tj .
Exercise 6.1.9 is thus solved.

13.136. Solution to Exercise 6.1.10. Solution to Exercise 6.1.10. We WLOG assume that u is nonempty
(because otherwise, both uv ≥ vu and unvm ≥ vmun hold for trivial reasons). Similarly, we WLOG assume
that v is nonempty.

The exercise asks us to prove the equivalence (uv ≥ vu)⇐⇒ (unvm ≥ vmun). We shall verify its =⇒ and
⇐= parts separately:

=⇒: Assume that uv ≥ vu holds. Then, Corollary 6.1.6 (applied to w = vm) yields uvm ≥ vmu (since
vvm = vm+1 = vmv). Thus, Corollary 6.1.6 (applied to un, u and vm instead of u, v and w) yields
unvm ≥ vmun (since unu = un+1 = uun). This proves the =⇒ part of the equivalence (uv ≥ vu) ⇐⇒
(unvm ≥ vmun).
⇐=: Assume that unvm ≥ vmun holds. Then, Corollary 6.1.6 (applied to u, un and vm instead of u, v and

w) yields uvm ≥ vmu (since uun = un+1 = unu, and since the word un is nonempty949). Hence, Corollary
6.1.6 (applied to u, vm and v instead of u, v and w) yields uv ≥ vu (since vmv = vm+1 = vvm, and since
the word vm is nonempty950). This proves the ⇐= part of the equivalence (uv ≥ vu)⇐⇒ (unvm ≥ vmun).

Thus, both the =⇒ and the ⇐= part of the equivalence (uv ≥ vu) ⇐⇒ (unvm ≥ vmun) are proven, and
Exercise 6.1.10 is solved.

13.137. Solution to Exercise 6.1.11. Solution to Exercise 6.1.11.
Notice that ` (un) = n` (u) = m` (v) = ` (vm) (since ` (vm) = m` (v)), thus ` (vm) = ` (un). Now, we have

the following two logical implications:

(unvm ≥ vmun) =⇒ (un ≥ vm)

951 and

(un ≥ vm) =⇒ (unvm ≥ vmun)

947Proof. Assume that the word u is empty. Thus, u = ∅. Hence, un = ∅n = ∅, so that ∅ = un = vm and thus vm = ∅.
Consequently, v = ∅ (since m is positive). Thus, there exists a word t and positive integers i and j such that u = ti and v = tj

(namely, we can take t = ∅ and i = 1 and j = 1). In other words, Exercise 6.1.9 is solved.
948The i and j here are the variables called n and m in Proposition 6.1.4.
949because u is nonempty and n is positive
950because v is nonempty and m is positive
951Proof. Assume that unvm ≥ vmun. We need to prove that un ≥ vm.
We have vmun ≤ unvm (since unvm ≥ vmun) and ` (vm) ≤ ` (un) (since ` (vm) = ` (un)). Hence, vm ≤ un (by Proposition

6.1.2(f), applied to a = vm, b = un, c = un and d = vm). Thus, un ≥ vm, qed.
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952. Combining these two implications, we obtain the equivalence (unvm ≥ vmun) ⇐⇒ (un ≥ vm). But
Exercise 6.1.10 shows that we have the equivalence (uv ≥ vu) ⇐⇒ (unvm ≥ vmun). Altogether, we thus
obtain the following chain of equivalences:

(uv ≥ vu)⇐⇒ (unvm ≥ vmun)⇐⇒ (un ≥ vm) .

This solves Exercise 6.1.11.

13.138. Solution to Exercise 6.1.12. Solution to Exercise 6.1.12. If w is a nonempty word, then let us
denote by rad (w) the shortest word p such that w is a power of p. (This is clearly well-defined because w
is a power of itself, and because for every given integer λ there exists at most one word v of length λ such
that w is a power of v.)

Every nonempty word w and every positive integer n satisfy

(13.138.1) rad (wn) = rad (w) .

Proof of (13.138.1): Let w be a nonempty word, and let n be a positive integer. Let q = rad (wn). Thus,
q is the shortest word p such that wn is a power of p. Consequently, wn is a power of q, so that there exists
a positive integer N such that wn = qN . Consider this N .

The word wn is nonempty (since w is nonempty and n is positive). That is, the word qN is nonempty
(since wn = qN ). Hence, the word q is nonempty, so that ` (q) is nonzero.

Exercise 6.1.9 (applied to w, q, n and N instead of u, v, n and m) yields that there exists a word t and
positive integers i and j such that w = ti and q = tj . Consider these t, i and j. We have q = tj and thus

qN =
(
tj
)N

= tjN , so that tjN = qN = wn. Hence, wn is a power of t. The word t thus cannot be shorter
than q (since q is the shortest word p such that wn is a power of p). Consequently, j = 1 (because otherwise,
t would be shorter than tj = q). Hence, q = tj = t (since j = 1) and w = ti = qi (since t = q). Thus, w is a
power of q. Consequently, ` (q) ≥ ` (rad (w)) (since rad (w) is the shortest word p such that w is a power of
p).

On the other hand, rad (w) is the shortest word p such that w is a power of p. Thus, w is a power

of rad (w). That is, there exists a P ∈ N such that w = (rad (w))
P

. Consider this P . We have P > 0

(since (rad (w))
P

= w is nonempty), so that Pn > 0 (since n > 0). Also, taking both sides of the equality

w = (rad (w))
P

to the n-th power, we obtain wn =
(

(rad (w))
P
)n

= (rad (w))
Pn

, so that wn is a power of

rad (w).
Recall that q is the shortest word p such that wn is a power of p. Since wn is a power of rad (w), this

yields that ` (rad (w)) ≥ ` (q). Combined with ` (q) ≥ ` (rad (w)), this yields ` (rad (w)) = ` (q). Now,

`

 wn︸︷︷︸
=(rad(w))Pn

 = `
(

(rad (w))
Pn
)

= Pn · ` (rad (w))︸ ︷︷ ︸
=`(q)

= Pn · ` (q) .

Compared with `

 wn︸︷︷︸
=qN

 = `
(
qN
)

= N · ` (q), this yields Pn · ` (q) = N · ` (q). Division by ` (q) (which is

nonzero) yields Pn = N . Thus,

qPn = qN = wn = (rad (w))
Pn

.

952Proof. Assume that un ≥ vm. We need to prove that unvm ≥ vmun.
If vmun ≤ unvm, then unvm ≥ vmun is obviously true. Hence, for the rest of this proof of unvm ≥ vmun, we can WLOG

assume that we don’t have vmun ≤ unvm. Assume this.

We have vm ≤ un (since un ≥ vm). Hence, Proposition 6.1.2(d) (applied to a = vm, b = un, c = un and d = vm) yields
that either we have vmun ≤ unvm or the word vm is a prefix of un. Since we don’t have vmun ≤ unvm, we therefore conclude

that the word vm is a prefix of un. In other words, there exists a t ∈ A∗ such that un = vmt. Consider this t.

We have ` (vm) = `

 un︸︷︷︸
=vmt

 = ` (vmt) = ` (vm) + ` (t), thus 0 = ` (t). Hence, the word t is empty, i.e., we have t = ∅.

Thus, un = vm t︸︷︷︸
=∅

= vm, so that un︸︷︷︸
=vm

vm = vm vm︸︷︷︸
=un

= vmun ≥ vmun, qed.
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Since taking the Pn-th root of a word is unambiguous (when said root exists)953, this yields q = rad (w).
Because of q = rad (wn), this rewrites as rad (wn) = rad (w). This proves (13.138.1).

Next, we notice that

(13.138.2) any two nonempty words u and v satisfying uv = vu satisfy rad (u) = rad (v) .

Proof of (13.138.2): Let u and v be two nonempty words satisfying uv = vu. Proposition 6.1.4 yields
that there exist a t ∈ A∗ and two nonnegative integers n and m such that u = tn and v = tm. Consider this
t and these n and m. Since u = tn, we have rad (u) = rad (tn) = rad (t) (by (13.138.1), applied to t instead
of w). Similarly, rad (v) = rad (t). Thus, rad (u) = rad (t) = rad (v), and this proves (13.138.2).

Now, we can finally solve the exercise. Let us show that

(13.138.3) u1ui ≥ uiu1 for every i ∈ {1, 2, . . . , k} .

Indeed, (13.138.3) can be proven by induction over i: The base case (i = 1) is obvious, whereas the
induction step (proving u1ui+1 ≥ ui+1u1 using u1ui ≥ uiu1) results from applying Corollary 6.1.6 to u = u1,
v = ui and w = ui+1 (because we have uiui+1 ≥ ui+1ui by assumption). We thus have shown (13.138.3).

Now, we can apply (13.138.3) to i = k, and obtain u1uk ≥ uku1. But on the other hand, we can apply
uiui+1 ≥ ui+1ui to i = k, and obtain ukuk+1 ≥ uk+1uk. Since uk+1 = u1, this rewrites as uku1 ≥ u1uk.
Contrasting this with u1uk ≥ uku1, we obtain u1uk = uku1. Hence, (13.138.2) (applied to u = u1 and v = uk)
yields rad (u1) = rad (uk). Similarly, we can show that rad (ui) = rad (ui−1) for every i ∈ {1, 2, . . . , k}, where
u0 means uk (in fact, our situation is invariant under cyclically shifting the k-tuple (u1, u2, . . . , uk)). Hence,
rad (uk) = rad (uk−1) = · · · = rad (u1). Denote this common value rad (uk) = rad (uk−1) = · · · = rad (u1)
by t. Then, for every i ∈ {1, 2, . . . , k}, we have t = rad (ui), whence ui is a power of t (because rad (ui) is
defined as the shortest word p such that ui is a power of p). This solves Exercise 6.1.12.

13.139. Solution to Exercise 6.1.21. Solution to Exercise 6.1.21. (a) We shall solve Exercise 6.1.21(a)
by strong induction on ` (u) + ` (v).

Induction step: LetN ∈ N. Assume that Exercise 6.1.21(a) is already solved in the case when ` (u)+` (v) <
N . We now need to solve Exercise 6.1.21(a) in the case when ` (u) + ` (v) = N .

We have assumed that Exercise 6.1.21(a) is already solved in the case when ` (u) + ` (v) < N . In other
words, we know that

(13.139.1)

(
if u ∈ A∗ and v ∈ A∗ are two words satisfying uv < vu and ` (u) + ` (v) < N ,

then there exists a nonempty suffix s of u satisfying sv < v

)
.

So let u ∈ A∗ and v ∈ A∗ be two words satisfying uv < vu and ` (u) + ` (v) = N . We are going to prove
that there exists a nonempty suffix s of u satisfying sv < v.

Indeed, let us assume the contrary. Thus, there exists no nonempty suffix s of u satisfying sv < v. Hence,

(13.139.2) whenever s is a nonempty suffix of u, we do not have sv < v.

We have u 6= ∅ (since otherwise, we would have u = ∅ and thus u︸︷︷︸
=∅

v = v = v ∅︸︷︷︸
=u

= vu, which would

contradict uv < vu). In other words, the word u is nonempty. Similarly, the word v is nonempty. We have
` (u) > 0 (since u is nonempty) and ` (v) > 0 (since v is nonempty).

We have ` (uv) = ` (u)︸︷︷︸
>0

+` (v) > ` (v), thus ` (uv) 6= ` (v), hence uv 6= v.

Since u is a nonempty suffix of u, we can apply (13.139.2) to s = u. As a result, we conclude that we do
not have uv < v. Hence, we do not have uv ≤ v 954. In other words, we do not have uv ≤ v∅ (since
v∅ = v).

But uv∅ = uv < vu. Thus, Proposition 6.1.2(e) (applied to a = uv, b = ∅, c = v and d = u) yields
that either we have uv ≤ v or the word v is a prefix of uv. Since we do not have uv ≤ v, we can therefore

953because Pn > 0
954Proof. Assume the contrary. Then, uv ≤ v. Since uv 6= v, this yields uv < v. This contradicts the fact that we do not

have uv < v. This contradiction proves that our assumption was wrong, qed.
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conclude that the word v is a prefix of the word uv. In other words, there exists a word g ∈ A∗ such that
uv = vg. Consider this g.

Since u is a prefix of uv, we have u ≤ uv < vu. Thus, u∅ = u < vu. Hence, Proposition 6.1.2(e) (applied
to a = u, b = ∅, c = v and d = u) yields that either we have u ≤ v or the word v is a prefix of u. In other
words, we are in one of the following two cases:

Case 1: We have u ≤ v.
Case 2: The word v is a prefix of u.
Let us consider Case 1 first. In this case, we have u ≤ v. Thus, Proposition 6.1.2(d) (applied to a = u,

b = v, c = v and d = ∅) yields that either we have uv ≤ v∅ or the word u is a prefix of v. Since we do not
have uv ≤ v∅, this yields that the word u is a prefix of v. In other words, there exists a word q ∈ A∗ such

that v = uq. Consider this q. We have `

 v︸︷︷︸
=uq

 = ` (uq) = ` (u)︸︷︷︸
>0

+` (q) > ` (q), so that ` (q) < ` (v). Also,

u uq︸︷︷︸
=v

= uv < v︸︷︷︸
=uq

u = uqu. Hence, Proposition 6.1.2(c) (applied to a = u, c = uq and d = qu) yields that

uq ≤ qu. Hence, uq < qu 955. Since ` (u) + ` (q)︸︷︷︸
<`(v)

< ` (u) + ` (v) = N , we can therefore apply (13.139.1)

to q instead of v. As a result, we obtain that there exists a nonempty suffix s of u satisfying sq < q. Let us
denote this s by t. Thus, t is a nonempty suffix of u satisfying tq < q. Thus, Proposition 6.1.2(j) (applied to
a = tq, b = q and c = g) yields that tqg ≤ qg (because ` (tq) = ` (t)︸︷︷︸

>0
(since t is nonempty)

+` (q) > ` (q)).

But uq︸︷︷︸
=v

g = vg = uv (since uv = vg). Cancelling u from this equality, we obtain qg = v. Hence,

t v︸︷︷︸
=qg

= tqg ≤ qg = v. But we have ` (tv) = ` (t)︸︷︷︸
>0

(since t is nonempty)

+` (v) > ` (v), thus ` (tv) 6= ` (v), hence

tv 6= v. Combined with tv ≤ v, this yields tv < v.
On the other hand, t is a nonempty suffix of u. Hence, (13.139.2) (applied to s = t) yields that we do

not have tv < v. This contradicts the fact that tv < v. Hence, we have obtained a contradiction in Case 1.
Let us now consider Case 2. In this case, the word v is a prefix of u. Hence, there exists a word r ∈ A∗

satisfying u = vr. Consider this r. Clearly, r is a suffix of u (since u = vr).
We have vr︸︷︷︸

=u

v = uv < v u︸︷︷︸
=vr

= vvr. Thus, Proposition 6.1.2(c) (applied to a = v, c = rv and d = vr)

yields rv ≤ vr. Hence, rv < vr 956. Also, `

 u︸︷︷︸
=vr

 = ` (vr) = ` (v)︸︷︷︸
>0

+` (r) > ` (r), so that ` (r) < ` (u)

and thus ` (r)︸︷︷︸
<`(u)

+` (v) < ` (u) + ` (v) = N . Therefore, (13.139.1) can be applied to r instead of u. As a result,

we obtain that there exists a nonempty suffix s of r satisfying sv < v. Let us denote this by t. Thus, t is a
nonempty suffix of r satisfying tv < v.

We know that t is a suffix of the word r, which (in turn) is a suffix of u. Hence, t is a suffix of u. Thus,
(13.139.2) (applied to s = t) yields that we do not have tv < v. This contradicts the fact that tv < v.
Hence, we have obtained a contradiction in Case 2.

We thus have obtained a contradiction in each of the two Cases 1 and 2. Since these two Cases cover all
possibilities, this yields that we always have a contradiction. Therefore, our assumption was wrong. So we
have proven that there exists a nonempty suffix s of u satisfying sv < v.

955Proof. If we had uq = qu, then we would have u uq︸︷︷︸
=qu

= uqu, which would contradict uuq < uqu. Hence, we cannot have

uq = qu. Thus, we have uq 6= qu. Combined with uq ≤ qu, this yields uq < qu, qed.
956Proof. If we had rv = vr, then we would have v rv︸︷︷︸

=vr

= vvr, which would contradict vrv < vvr. Hence, we cannot have

rv = vr. Thus, we have rv 6= vr. Combined with rv ≤ vr, this yields rv < vr, qed.
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Now, let us forget that we fixed u and v. We thus have proven that if u ∈ A∗ and v ∈ A∗ are two words
satisfying uv < vu and ` (u)+` (v) = N , then there exists a nonempty suffix s of u satisfying sv < v. In other
words, we have solved Exercise 6.1.21(a) in the case when ` (u) + ` (v) = N . This completes the induction
step. Hence, Exercise 6.1.21(a) is solved by strong induction.

(b)

Alternative proof of Theorem 6.1.20. Proof of the implication A =⇒ B: Assume that Assertion A holds.
Thus, the word w is Lyndon. Hence, every nonempty proper suffix of w is > w (by the definition of a
Lyndon word). Now, let u and v be any nonempty words satisfying w = uv. Then, v is a nonempty proper
suffix of w, and therefore > w (since every nonempty proper suffix of w is > w). That is, we have v > w.

Now, let us forget that we fixed u and v. We thus have shown that any nonempty words u and v satisfying
w = uv satisfy v > w. In other words, Assertion B holds. Thus, the implication A =⇒ B is proven.

Proof of the implication A =⇒ C: This implication follows from Proposition 6.1.14(b).
Proof of the implication A =⇒ D: This implication follows from Proposition 6.1.14(c).
Proof of the implication B =⇒ A: Assume that Assertion B holds. Let v be a nonempty proper suffix of

w. Then, there exists a nonempty u ∈ A∗ satisfying w = uv (since v is a proper suffix of w). Consider this
u. Assertion B yields v > w.

Now, let us forget that we fixed v. We thus have shown that every nonempty proper suffix v of w satisfies
v > w. By the definition of a Lyndon word, this yields that w is Lyndon (since w is nonempty), so that
Assertion A holds. Hence, the implication B =⇒ A is proven.

Proof of the implication C =⇒ B: Assume that Assertion C holds. Let us prove that Assertion B holds.
Indeed, let u and v be two nonempty words satisfying w = uv. We will show that v > w.
Let us first notice that Assertion C yields v > u.
Let K be the set

{
k ∈ N | uk is a prefix of v

}
. The integer 0 belongs to this set K (since u0 = ∅ is a

prefix of v), and therefore K is nonempty. Also, this set K is finite957. Hence, the set K has a maximum
element (since it is nonempty and finite). Let m be this maximum element. Then, m ∈ K but m+ 1 /∈ K.

We have m ∈ K =
{
k ∈ N | uk is a prefix of v

}
. Thus, m is an element of N such that um is a prefix of

v. In other words, there exists a word v′ ∈ A∗ such that v = umv′. Consider this v′. Using m+ 1 /∈ K, it is
easy to see that u is not a prefix of v′ 958.

It is easy to see that the word v′ is nonempty959. Also, the word uum is nonempty (since u is nonempty).
We have w = u v︸︷︷︸

=umv′

= uumv′. Therefore, Assertion C (applied to uum and v′ instead of u and v) yields

v′ > uum ≥ u. Thus, u ≤ v′. Hence, Proposition 6.1.2(d) (applied to a = u, b = v′, c = v′ and d = ∅) yields
that either we have uv′ ≤ v′∅ or the word u is a prefix of v′. Since we know that the word u is not a prefix
of v′, we can thus conclude that uv′ ≤ v′∅. Thus, uv′ ≤ v′∅ = v′. Hence, Proposition 6.1.2(b) (applied

957Proof. Let i be an element of K. Thus, i ∈ K =
{
k ∈ N | uk is a prefix of v

}
. In other words i is an element of N such

that ui is a prefix of v. The word ui is not longer than v (since it is a prefix of v); thus `
(
ui
)
≤ ` (v). But u is nonempty, and

thus ` (u) ≥ 1. Hence, `
(
ui
)

= i ` (u)︸︷︷︸
≥1

≥ i, so that i ≤ `
(
ui
)
≤ ` (v).

Now, let us forget that we fixed i. We thus have proven that every element i of K satisfies i ≤ ` (v). Thus, there are only
finitely many elements of K (since there are only finitely many i ∈ N satisfying i ≤ ` (v)). In other words, the set K is finite.

958Proof. Assume the contrary. Thus, u is a prefix of v′. In other words, there exists a word t ∈ A∗ such that v′ = ut.
Consider this t. We have v = um v′︸︷︷︸

=ut

= umu︸ ︷︷ ︸
=um+1

t = um+1t, and thus the word um+1 is a prefix of v. Hence, m + 1 is an

element of N such that um+1 is a prefix of v. In other words, m+ 1 ∈
{
k ∈ N | uk is a prefix of v

}
= K. But this contradicts

m+ 1 /∈ K. This contradiction proves that our assumption was wrong, qed.
959Proof. Assume the contrary. Thus, the word v′ is empty; that is, we have v′ = ∅. Now, v = um v′︸︷︷︸

=∅

= um and

w = u v︸︷︷︸
=um

= uum = um+1 = um︸︷︷︸
=v

u = vu. Hence, Assertion C (applied to v and u instead of u and v) yields u > v. This

contradicts v > u. This contradiction proves that our assumption was wrong, qed.
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to a = um, c = uv′ and d = v′) yields umuv′ ≤ umv′. Thus, umv′ ≥ umu︸︷︷︸
=um+1=uum

v′ = uumv′ = w. Since

umv′ = v, this rewrites as v ≥ w. Hence, v > w 960.
Now, let us forget that we fixed u and v. We thus have proven that any nonempty words u and v satisfying

w = uv satisfy v > w. In other words, Assertion B holds. Hence, the implication C =⇒ B is proven.
Proof of the implication D =⇒ B: Assume that Assertion D holds. Let us prove that Assertion B holds.
We shall prove Assertion B by strong induction over ` (u):
Induction step: Let N ∈ N. Assume that Assertion B holds in the case when ` (u) < N . We now need to

prove Assertion B in the case when ` (u) = N .
We have assumed that Assertion B holds in the case when ` (u) < N . In other words,

(13.139.3) any nonempty words u and v satisfying w = uv and ` (u) < N satisfy v > w.

Now, let u and v be two nonempty words satisfying w = uv and ` (u) = N . We shall prove that v > w.
From Assertion D, we obtain vu > uv. Thus, uv < vu. Hence, Exercise 6.1.21(a) yields that there exists

a nonempty suffix s of u satisfying sv < v. Consider this s. There exists a p ∈ A∗ such that u = ps (since

s is a suffix of u). Consider this p. Since s is nonempty, we have ` (s) > 0. Now, `

 u︸︷︷︸
=ps

 = ` (ps) =

` (p) + ` (s)︸︷︷︸
>0

> ` (p), so that ` (p) < ` (u) = N . Also, w = u︸︷︷︸
=ps

v = psv. Furthermore, if p = ∅, then v > w is

true961. Hence, for the rest of our proof of v > w, we can WLOG assume that we don’t have p = ∅. Assume
this. Thus, p 6= ∅, so that the word p is nonempty. Also, the word sv is nonempty (since v is nonempty).

Now, the words p and sv are nonempty and satisfy w = psv and ` (p) < N . Hence, we can apply (13.139.3)
to p and sv instead of u and v. As a result, we obtain sv > w. But sv < v, so that v > sv > w. Hence, we
have proven that v > w.

Now, let us forget that we fixed u and v. We thus have proven that any nonempty words u and v satisfying
w = uv and ` (u) = N satisfy v > w. In other words, we have proven Assertion B in the case when ` (u) = N .
Hence, the induction step is complete. Assertion B is thus proven by strong induction. And so, we have
established the implication D =⇒ B.

Combining the implications A =⇒ B, A =⇒ C, A =⇒ D, B =⇒ A, C =⇒ B and D =⇒ B that we have
proven, we obtain the equivalence A ⇐⇒ B ⇐⇒ C ⇐⇒ D. Hence, Theorem 6.1.20 is proven again. �

13.140. Solution to Exercise 6.1.22. Solution to Exercise 6.1.22. Let us first assume that w is Lyndon.
We shall prove that

(13.140.1) (every nonempty word t and every positive integer n satisfy (if w ≤ tn, then w ≤ t)) .

Let t be a nonempty word, and let n be a positive integer. Assume that w ≤ tn. We need to prove that
w ≤ t.

Assume the contrary. Thus, we don’t have w ≤ t. In other words, we don’t have w ≤ t1.
Let m be the minimal i ∈ {1, 2, . . . , n} satisfying w ≤ ti. 962 Then, w ≤ tm. Hence, m 6= 1 (because

w ≤ tm, but we don’t have w ≤ t1). Thus, m ≥ 2, so that m − 1 is also an element of {1, 2, . . . , n}. If we
had w ≤ tm−1, then m− 1 would be an i ∈ {1, 2, . . . , n} satisfying w ≤ ti, which would contradict the fact
that m is the minimal such i. Thus, we cannot have w ≤ tm−1.

960Proof. We have `

 w︸︷︷︸
=uv

 = ` (uv) = ` (u)︸︷︷︸
>0

(since u is nonempty)

+` (v) > ` (v), so that ` (w) 6= ` (v) and thus w 6= v. Combined

with v ≥ w, this yields v > w, qed.
961Proof. Assume that p = ∅. Then, u = p︸︷︷︸

=∅

s = s, so that s = u. Then, s︸︷︷︸
=u

v = uv = w, so that w = sv < v and thus

v > w, qed.
962Such an i exists, because n ∈ {1, 2, . . . , n} satisfies w ≤ tn.
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But w∅ = w ≤ tm−1t. Hence, Proposition 6.1.2(e) (applied to a = w, b = ∅, c = tm−1 and d = t) yields
that either we have w ≤ tm−1 or the word tm−1 is a prefix of w. Since we cannot have w ≤ tm−1, this shows
that the word tm−1 is a prefix of w. In other words, there exists a v ∈ A∗ such that w = tm−1v. Consider
this v. We have v 6= ∅ (because otherwise, we would have v = ∅ and thus w = tm−1 v︸︷︷︸

=∅

= tm−1 ≤ tm−1,

contradicting the fact that we cannot have w ≤ tm−1), so that v is nonempty. Hence, Proposition 6.1.14(b)
(applied to u = tm−1) now yields v > tm−1. Hence, tm−1 < v. Thus, Proposition 6.1.2(b) (applied to
a = tm−1, c = tm−1 and d = v) yields tm−1tm−1 ≤ tm−1v = w. Hence,

w ≥ tm−1tm−1 = t2(m−1).

Combined with

w ≤ tm ≤ tmtm−2 (this makes sense since m ≥ 2)

= tm+(m−2) = t2(m−1),

this yields w = t2(m−1) = tm−1tm−1, so that tm−1tm−1 = w = tm−1v. Cancelling tm−1 in this, we obtain
tm−1 = v, which contradicts tm−1 < v. This contradiction shows that our assumption (that we don’t have
w ≤ t) was false. Hence, w ≤ t.

Forget now that we assumed that w ≤ tn. We thus have proven that if w ≤ tn, then w ≤ t.
Now, forget that we fixed t and assumed that w is Lyndon. We thus have shown that

(13.140.2) (if w is Lyndon, then (13.140.1) holds) .

Now, conversely, assume that (13.140.1) holds. We will prove that w is Lyndon.
In fact, assume the contrary. Then, w is not Lyndon. Let v be the (lexicographically) smallest nonempty

suffix of w. Proposition 6.1.19(b) yields that there exists a nonempty u ∈ A∗ such that w = uv, u ≥ v and
uv ≥ vu. Consider this u. We have u ≥ v, thus v ≤ u, and therefore Proposition 6.1.2(b) (applied to a = u,
c = v and d = u) yields uv ≤ uu. Now, w = uv ≤ uu = u2. Thus, (13.140.1) (applied to t = u and n = 2)
yields w ≤ u. But this contradicts the fact that w = uv > u (since v is nonempty). As this contradiction
shows, our assumption was wrong. Thus, we have shown that w is Lyndon.

Now, forget that we fixed w. We thus have proven that

(if (13.140.1) holds, then w is Lyndon) .

Combined with (13.140.2), this yields that w is Lyndon if and only if (13.140.1) holds. This solves the
exercise.

13.141. Solution to Exercise 6.1.23. Solution to Exercise 6.1.23. We will solve Exercise 6.1.23 by induc-
tion over n:

The induction base is the case n = 1; this case is vacuously true (since w1 < wn is impossible for n = 1).
For the induction step, we fix a positive integer N > 1, and we assume that Exercise 6.1.23 has been

solved for n = N − 1. We now must solve Exercise 6.1.23 for n = N .
So let w1, w2, . . ., wN be N Lyndon words. Assume that w1 ≤ w2 ≤ · · · ≤ wN and w1 < wN . We need

to show that w1w2 · · ·wN is a Lyndon word.
Proposition 6.1.16(a) (applied to u = w1 and v = wN ) yields that the word w1wN is Lyndon. If N = 2,

then this yields that w1w2 · · ·wN is Lyndon (because w1w2 · · ·wN = w1wN if N = 2). Thus, if N = 2, then
we are done. We therefore WLOG assume that we don’t have N = 2. Hence, N ≥ 3. Thus, w3w4 · · ·wN is a
nonempty product. More precisely, w3w4 · · ·wN is a nonempty product of nonempty words (since the words
w3, w4, . . ., wN are nonempty (because they are Lyndon)), and therefore a nonempty word itself. Hence,
w2 < w2 (w3w4 · · ·wN ) = w2w3 · · ·wN .

We have w1 ≤ w2 ≤ · · · ≤ wN . Hence, w2 ≤ w3 ≤ · · · ≤ wN and, in particular, w2 ≤ wN . We distinguish
between two cases:

Case 1: We have w2 = wN .
Case 2: We have w2 6= wN .
Let us first consider Case 1. In this case, we have w2 = wN . Hence, w1 < wN = w2. Thus, Proposition

6.1.16(a) (applied to u = w1 and v = w2) yields that the word w1w2 is Lyndon. Moreover, w1w2 < w2 (by
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Proposition 6.1.16(b), applied to u = w1 and v = w2). Hence, w1w2 ≤ w3 ≤ w4 ≤ · · · ≤ wN (this follows
by combining w1w2 < w2 and w2 ≤ w3 ≤ · · · ≤ wN ) and w1w2 < w2 = wN . Thus, we can apply Exercise
6.1.23 to N−1 and (w1w2, w3, w4, . . . , wN ) instead of n and (w1, w2, . . . , wn) (because we have assumed that
Exercise 6.1.23 has been solved for n = N − 1). We thus obtain that w1w2w3w4 · · ·wN is a Lyndon word. In
other words, w1w2 · · ·wN is a Lyndon word. So we have shown that w1w2 · · ·wN is a Lyndon word in Case
1.

Let us now consider Case 2. In this case, we have w2 6= wN . Since w2 ≤ wN , this yields w2 < wN . Thus,
we can apply Exercise 6.1.23 to N−1 and (w2, w3, . . . , wN ) instead of n and (w1, w2, . . . , wn) (because we have
assumed that Exercise 6.1.23 has been solved for n = N − 1). We thus obtain that w2w3 · · ·wN is a Lyndon
word. Now, w1 and w2w3 · · ·wN are two Lyndon words satisfying w1 ≤ w2 < w2w3 · · ·wN . Therefore,
Proposition 6.1.16(a) (applied to u = w1 and v = w2w3 · · ·wN ) yields that the word w1w2w3 · · ·wN is
Lyndon. In other words, the word w1w2 · · ·wN is Lyndon. So we have shown that w1w2 · · ·wN is a Lyndon
word in Case 2.

Now, we have proven that w1w2 · · ·wN is a Lyndon word in both possible Cases 1 and 2. Hence,
w1w2 · · ·wN always is a Lyndon word. In other words, Exercise 6.1.23 is solved for n = N . This com-
pletes the induction, and therefore Exercise 6.1.23 is solved.

13.142. Solution to Exercise 6.1.24. Solution to Exercise 6.1.24. We have assumed that

(13.142.1) wiwi+1 · · ·wn ≥ w1w2 · · ·wn for every i ∈ {1, 2, . . . , n} .
As a consequence,

(13.142.2) wiwi+1 · · ·wn > w1w2 · · ·wn for every i ∈ {2, 3, . . . , n} .
963

Now, we claim that if j is any element of {0, 1, . . . , n}, then

(13.142.3) every nonempty proper suffix v of wn−j+1wn−j+2 · · ·wn satisfies v > w1w2 · · ·wn.
Proof of (13.142.3): We will prove (13.142.3) by induction over j:
Induction base: For j = 0, we have wn−j+1wn−j+2 · · ·wn = wn−0+1wn−0+2 · · ·wn = (empty product) =

∅. Hence, for j = 0, the word wn−j+1wn−j+2 · · ·wn has no nonempty proper suffix. Thus, (13.142.3) is
vacuously true for j = 0. The induction base is thus complete.

Induction step: Let J ∈ {0, 1, . . . , n− 1}. We assume that (13.142.3) holds for j = J . We now need to
prove that (13.142.3) holds for j = J + 1.

From J ∈ {0, 1, . . . , n− 1}, we obtain n− J ∈ {1, 2, . . . , n}.
Let g = wn−J+1wn−J+2 · · ·wn. We have assumed that (13.142.3) holds for j = J . In other words, every

nonempty proper suffix v of wn−J+1wn−J+2 · · ·wn satisfies v > w1w2 · · ·wn. Since wn−J+1wn−J+2 · · ·wn =
g, this rewrites as follows:

(13.142.4) Every nonempty proper suffix v of g satisfies v > w1w2 · · ·wn.

Now, let us notice that

wn−(J+1)+1wn−(J+1)+2 · · ·wn = wn−Jwn−J+1 · · ·wn = wn−J (wn−J+1wn−J+2 · · ·wn)︸ ︷︷ ︸
=g

= wn−Jg.(13.142.5)

Let now v be a nonempty proper suffix of wn−Jg. We are going to prove that v > w1w2 · · ·wn.
We have v 6= ∅ (since v is nonempty). Since v is a nonempty suffix of wn−Jg, we must be in one of

the following two cases (depending on whether this suffix begins before the suffix g of wn−Jg begins or
afterwards):

963Proof of (13.142.2): Let i ∈ {2, 3, . . . , n}. Then, i − 1 ≥ 1. The words w1, w2, . . ., wi−1 are Lyndon (since the

words w1, w2, . . ., wn are Lyndon), and thus nonempty. Now, i − 1 ≥ 1 > 0. Hence, the product w1w2 · · ·wi−1 is a
nonempty product of nonempty words (since w1, w2, . . ., wi−1 are nonempty words), and thus a nonempty word itself. Since

w1w2 · · ·wn = (w1w2 · · ·wi−1) (wiwi+1 · · ·wn), this yields that wiwi+1 · · ·wn is a proper suffix of the word w1w2 · · ·wn. As
a consequence, wiwi+1 · · ·wn 6= w1w2 · · ·wn. Combining this with wiwi+1 · · ·wn ≥ w1w2 · · ·wn (by (13.142.1)), we obtain

wiwi+1 · · ·wn > w1w2 · · ·wn. This proves (13.142.2).
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Case 1: The word v is a nonempty suffix of g. (Note that v is allowed to be g.)
Case 2: The word v has the form hg where h is a nonempty suffix of wn−J .
Let us first consider Case 1. In this case, the word v is a nonempty suffix of g. If v is a proper suffix

of g, then we immediately obtain v > w1w2 · · ·wn (from (13.142.4)). Thus, for the rest of the proof of
v > w1w2 · · ·wn in Case 1, we can WLOG assume that v is not a proper suffix of g. Assume this.

So we know that v is a suffix of g, but not a proper suffix of g. Hence, v must be g itself. That
is, we have v = g. Hence, v = g = wn−J+1wn−J+2 · · ·wn. Consequently, J 6= 0 964. Combined with
J ∈ {0, 1, . . . , n− 1}, this yields J ∈ {0, 1, . . . , n− 1}\{0} = {1, 2, . . . , n− 1}, so that n−J+1 ∈ {2, 3, . . . , n}.
Now,

v = g = wn−J+1wn−J+2 · · ·wn = wn−J+1w(n−J+1)+1 · · ·wn > w1w2 · · ·wn
(by (13.142.2), applied to i = n− J + 1). Thus, v > w1w2 · · ·wn is proven in Case 1.

Let us now consider Case 2. In this case, the word v has the form hg where h is a nonempty suffix of
wn−J . Consider this h. Since h is a suffix of wn−J , we have ` (h) ≤ ` (wn−J), so that ` (wn−J) ≥ ` (h).
But wn−J is a Lyndon word (since w1, w2, . . ., wn are Lyndon words), and thus h ≥ wn−J (by Corollary
6.1.15, applied to wn−J and h instead of w and v). Thus, wn−J ≤ h. Thus, Proposition 6.1.2(j) (applied to
a = wn−J , b = h and c = g) yields wn−Jg ≤ hg = v. Thus, v ≥ wn−Jg.

But we also have v 6= wn−Jg (since v is a proper suffix of wn−Jg). Combined with v ≥ wn−Jg, this yields
v > wn−Jg, so that

v > wn−Jg = wn−(J+1)+1wn−(J+1)+2 · · ·wn (by (13.142.5))

= wn−Jwn−J+1 · · ·wn ≥ w1w2 · · ·wn (by (13.142.1), applied to i = n− J) .

Thus, v > w1w2 · · ·wn is proven in Case 2.
Now, v > w1w2 · · ·wn is proven in each of the two Cases 1 and 2. Since these two Cases cover all

possibilities, this yields that v > w1w2 · · ·wn always holds.
Now, let us forget that we fixed v. We thus have proven that every nonempty proper suffix v of wn−Jg

satisfies v > w1w2 · · ·wn. Since wn−Jg = wn−(J+1)+1wn−(J+1)+2 · · ·wn (by (13.142.5)), this rewrites as
follows: Every nonempty proper suffix v of wn−(J+1)+1wn−(J+1)+2 · · ·wn satisfies v > w1w2 · · ·wn. In other
words, (13.142.3) holds for j = J + 1. This completes the induction step. Thus, (13.142.3) is proven by
induction.

Now, we can apply (13.142.3) to j = n. As a result, we obtain that every nonempty proper suf-
fix v of wn−n+1wn−n+2 · · ·wn satisfies v > w1w2 · · ·wn. In other words, every nonempty proper suffix
v of w1w2 · · ·wn satisfies v > w1w2 · · ·wn (since wn−n+1wn−n+2 · · ·wn = w1w2 · · ·wn). Since the word
w1w2 · · ·wn is also nonempty965, this shows that the word w1w2 · · ·wn is Lyndon (by the definition of a
Lyndon word). This solves Exercise 6.1.24.

13.143. Solution to Exercise 6.1.29. Solution to Exercise 6.1.29. Let us first forget about the setting of
Exercise 6.1.29 (so A can be any alphabet, not necessarily finite).

Our solution to Exercise 6.1.29 will rely on two basic propositions:

Proposition 13.143.1. Let M denote the set of all finite multisets of Lyndon words.
Define a map m : M→ A∗ as follows: Given an M ∈M, we set m (M) = a1a2 · · · ak, where a1, a2, . . . , ak

denote the elements of M listed in decreasing order966. Thus, a map m : M→ A∗ is defined.

964Proof. Assume the contrary. Then, J = 0, so that

v = wn−J+1wn−J+2 · · ·wn = wn−0+1wn−0+2 · · ·wn (since J = 0)

= (empty product) = ∅,

contradicting the fact that v 6= ∅. This contradiction shows that our assumption was wrong, qed.
965Proof. The product w1w2 · · ·wn is nonempty (since n is a positive integer), and the words w1, w2, . . ., wn are nonempty

(since they are Lyndon words). Hence, w1w2 · · ·wn is a nonempty product of nonempty words. Thus, w1w2 · · ·wn is a nonempty

word, qed.
966When we say “the elements of M listed in decreasing order”, we mean that (a1, a2, . . . , ak) should be the unique tuple

satisfying a1 ≥ a2 ≥ · · · ≥ ak and M = {a1, a2, . . . , ak}multiset. (The existence and the uniqueness of this tuple follow from
basic properties of finite multisets, since ≥ is a total order.) Note that each element appears in the tuple (a1, a2, . . . , ak) with

the same multiplicity with which it appears in the multiset M .
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Let n : A∗ → M be the map that sends each word w ∈ A∗ to the multiset {a1, a2, . . . , ak}multiset, where
(a1, a2, . . . , ak) is the CFL factorization of w.

Then, these two maps m and n are mutually inverse bijections.

Note that A is not assumed to be finite in Proposition 13.143.1.

Proof of Proposition 13.143.1. This follows from the definition of the CFL factorization (and from the fact
that it exists and is unique).967 �

Proposition 13.143.2. Let S be any set.
Let M be the set of all finite multisets of elements of S.
Let N be the set of all families (kw)w∈S ∈ NS of nonnegative integers (indexed by the elements of S) such

that all but finitely many w ∈ S satisfy kw = 0.
Then, the map mult : M→ N that sends each multiset M ∈M to the family

((multiplicity of w in the multiset M))w∈S ∈ N

is well-defined and is a bijection.

Example 13.143.3. If S = N, then the map mult defined in Proposition 13.143.2 sends the finite multiset
{1, 4, 4, 5}multiset ∈M to the family (kw)w∈S ∈ NS , where

k1 = 1, k4 = 2, k5 = 1, and kw = 0 for all w /∈ {1, 4, 5} .

Proof of Proposition 13.143.2. It is straightforward to see that the map mult is well-defined. On the other
hand, the map

N→M,

(kw)w∈S 7→ (the multiset that contains each w ∈ S with multiplicity kw)

is also well-defined. These two maps are clearly mutually inverse. Thus, the map mult is invertible, i.e., is a
bijection. This proves Proposition 13.143.2. �

Let us now solve Exercise 6.1.29. Let A and q be as in Exercise 6.1.29.
For every positive integer n, let lynn denote the number of Lyndon words of length n. We need to prove

that

(13.143.1) lynn =
1

n

∑
d|n

µ (d) qn/d for every positive integer n.

Let M denote the set of all finite multisets of Lyndon words. Define two maps m : M → A∗ and
n : A∗ →M as in Proposition 13.143.1. Then, Proposition 13.143.1 shows that these two maps m and n are
mutually inverse bijections. Hence, the map m is a bijection.

On the other hand, let L be the set of all Lyndon words. Thus, the Lyndon words are precisely the
elements of L. But the definition of M says that M is the set of all finite multisets of Lyndon words. In
other words, M is the set of all finite multisets of elements of L (since the Lyndon words are precisely the
elements of L).

The definition of lynn now rewrites as

(13.143.2) lynn = |{w ∈ L | ` (w) = n}| for every positive integer n

For example, if M = {2, 2, 3536, 24}multiset, then (a1, a2, . . . , ak) = (3536, 24, 2, 2).
967Here are a few details:

• The equality m ◦ n = id follows immediately from the definition of the CFL factorization.

• In order to prove the equality n ◦m = id, we fix some M ∈ M; our goal is thus to show that (n ◦m) (M) = M .
Let a1, a2, . . . , ak denote the elements of M listed in decreasing order (so that M = {a1, a2, . . . , ak}multiset and
a1 ≥ a2 ≥ · · · ≥ ak). The definition of m then yields m (M) = a1a2 · · · ak. Hence, a1, a2, . . . , ak are the elements

of M , and thus are Lyndon words (since M is a multiset of Lyndon words). Therefore, (a1, a2, . . . , ak) is a tuple

of Lyndon words satisfying m (M) = a1a2 · · · ak and a1 ≥ a2 ≥ · · · ≥ ak. In other words, (a1, a2, . . . , ak) is
a CFL factorization of m (M) (by the definition of a CFL factorization). Since the CFL factorization of a word

is unique, this shows that (a1, a2, . . . , ak) is the CFL factorization of m (M). Hence, the definition of n yields
n (m (M)) = {a1, a2, . . . , ak}multiset = M . In other words, (n ◦m) (M) = M . This concludes the proof of n ◦m = id.

Combining the equalities m◦n = id and n◦m = id, we conclude that the maps m and n are mutually inverse, hence bijections.
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(since the Lyndon words are precisely the elements of L).
Let N be the set of all families (kw)w∈L ∈ NL of nonnegative integers (indexed by the Lyndon words)

such that all but finitely many w ∈ L satisfy kw = 0. Proposition 13.143.2 (applied to S = L) shows that
the map mult : M→ N that sends each multiset M ∈M to the family

((multiplicity of w in the multiset M))w∈S ∈ N

is well-defined and is a bijection. Consider this map mult.
The composition m ◦mult−1 : N→ A∗ of the bijections m and mult−1 is clearly a bijection. It can easily

be seen to satisfy

(13.143.3) `
((

m ◦mult−1
) (

(kw)w∈L
))

=
∑
w∈L

kw · ` (w) for every (kw)w∈L ∈ N.

968 Now, in the ring Q [[t]] of formal power series, we have

∑
w∈A∗

t`(w) =
∑
n∈N
|{w ∈ A∗ | ` (w) = n}|︸ ︷︷ ︸

=|An|=|A|n=qn

(since |A|=q)

tn =
∑
n∈N

qntn =
1

1− qt
.

968Proof of (13.143.3): Let (kw)w∈L ∈ N. Let M = mult−1
(
(kw)w∈L

)
. Then, M is a multiset of elements of L and satisfies

(kw)w∈L = multM = ((multiplicity of w in the multiset M))w∈L. In other words, every w ∈ L satisfies

(13.143.4) kw = (multiplicity of w in the multiset M) .

Let a1, a2, . . ., ak denote the elements of this multiset M listed in decreasing order. Then, the definition of m yields

m (M) = a1a2 · · · ak, so that

` (m (M)) = ` (a1a2 · · · ak) =
∑

i∈{1,2,...,k}
` (ai) =

∑
w∈L

∑
i∈{1,2,...,k};

ai=w

`

 ai︸︷︷︸
=w

(since ai=w)

 (since every ai belongs to L)

=
∑
w∈L

∑
i∈{1,2,...,k};

ai=w

` (w)

︸ ︷︷ ︸
=(number of i∈{1,2,...,k} satisfying ai=w)·`(w)

=
∑
w∈L

(number of i ∈ {1, 2, . . . , k} satisfying ai = w)︸ ︷︷ ︸
=(multiplicity of w in the multiset M)=kw

(by (13.143.4))

·` (w)

=
∑
w∈L

kw · ` (w) .

Now,

`
((

m ◦mult−1
) (

(kw)w∈L
))

= `

m

mult−1
(
(kw)w∈L

)︸ ︷︷ ︸
=M


 = ` (m (M)) =

∑
w∈L

kw · ` (w) ,

which proves (13.143.3).
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Hence,

1

1− qt
=
∑
w∈A∗

t`(w) =
∑

(kw)w∈L∈N

t`((m◦mult−1)((kw)w∈L))

(
here, we substituted

(
m ◦mult−1

) (
(kw)w∈L

)
for w in the sum,

since the map m ◦mult−1 : N→ A∗ is a bijection

)
=

∑
(kw)w∈L∈N

t

∑
w∈L

kw·`(w)

(by (13.143.3))

=
∑

(kw)w∈L∈N

∏
w∈L

tkw·`(w) =
∏
w∈L

∑
k∈N

tk·`(w)

︸ ︷︷ ︸
=

1

1− t`(w)

(by the product rule)

=
∏
w∈L

1

1− t`(w)
=
∏
n≥1

∏
w∈L;
`(w)=n

1

1− t`(w)︸ ︷︷ ︸
=

1

1− tn
(since `(w)=n)

(since ` (w) ≥ 1 for every w ∈ L)

=
∏
n≥1

∏
w∈L;
`(w)=n

1

1− tn

︸ ︷︷ ︸
=

(
1

1− tn
)lynn

(by (13.143.2))

=
∏
n≥1

(
1

1− tn

)lynn

.

Taking the logarithm of both sides of this identity, we obtain

log
1

1− qt
= log

∏
n≥1

(
1

1− tn

)lynn
 =

∑
n≥1

(lynn) · log

(
1

1− tn

)
︸ ︷︷ ︸

=− log(1−tn)=
∑
u≥1

1

u
(tn)u

(by the Mercator series for the logarithm)

=
∑
n≥1

(lynn) ·
∑
u≥1

1

u
(tn)

u
=
∑
n≥1

∑
u≥1

(lynn)
1

u
(tn)

u︸ ︷︷ ︸
=tnu

=
∑
n≥1

∑
u≥1

(lynn)
1

u
tnu

=
∑
n≥1

∑
v≥1;
n|v︸ ︷︷ ︸

=
∑
v≥1

∑
n|v

(lynn)
1

v/n︸︷︷︸
=
n

v

tv (here, we substituted v/n for u in the second sum)

=
∑
v≥1

∑
n|v

(lynn)
n

v
tv =

∑
n≥1

∑
d|n

(lyn d)
d

n
tn

(here, we renamed the summation indices v and n as n and d). Since

log
1

1− qt
= − log (1− qt) =

∑
n≥1

1

n
(qt)

n
(by the Mercator series for the logarithm)

=
∑
n≥1

1

n
qntn,

this rewrites as ∑
n≥1

1

n
qntn =

∑
n≥1

∑
d|n

(lyn d)
d

n
tn.



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 929

Comparing coefficients, we conclude that every positive integer n satisfies

1

n
qn =

∑
d|n

(lyn d)
d

n
.

Multiplying this with n, we obtain

(13.143.5) qn =
∑
d|n

(lyn d) d.

Now, recall that every positive integer N satisfies

(13.143.6)
∑
d|N

µ (d) = δN,1.

969 Now, every positive integer n satisfies∑
d|n

µ (d) qn/d =
∑
e|n

µ (e) qn/e︸︷︷︸
=
∑
d|n/e(lyn d)d

(by (13.143.5), applied
to n/e instead of n)

=
∑
e|n

µ (e)
∑
d|n/e

(lyn d) d

=
∑
e|n

∑
d|n/e︸ ︷︷ ︸

=
∑
d|n
∑
e|n/d

µ (e) (lyn d) d =
∑
d|n

∑
e|n/d

µ (e)

︸ ︷︷ ︸
=δn/d,1

(by (13.143.6), applied
to N=n/d)

(lyn d) d

=
∑
d|n

δn/d,1︸ ︷︷ ︸
=δn,d

(lyn d) d =
∑
d|n

δn,d (lyn d) d = (lynn)n.

Dividing this by n, we obtain
1

n

∑
d|n

µ (d) qn/d = lynn. This proves (13.143.1). Thus, Exercise 6.1.29 is solved.

13.144. Solution to Exercise 6.1.31. Solution to Exercise 6.1.31. The word v is nonempty (since it is
Lyndon). Thus, u 6= w 970. Combined with u ≤ uv = w, this yields u < w.

(b) We have w = uv; thus, v is a proper suffix of w (since u is nonempty). Also, the word w is Lyndon,
and therefore

(13.144.1) every nonempty proper suffix of w is > w

(by the definition of a Lyndon word). Applying (13.144.1) to the nonempty proper suffix v of w, we obtain
v > w. Thus, w < v. Hence, u < w < v, and this solves Exercise 6.1.31(b).

(a) The word v is Lyndon (by its definition). It remains to prove that the word u is Lyndon.
Recall that a word x is Lyndon if and only if it is nonempty and satisfies the property that every nonempty

proper suffix y of x satisfies y > x. 971 Applied to x = u, this shows that the word u is Lyndon if and only
if it is nonempty and satisfies the property that every nonempty proper suffix y of u satisfies y > u. Let us
now prove that

(13.144.2) every nonempty proper suffix y of u satisfies y > u.

Proof of (13.144.2): Assume the contrary. Then, there exists a nonempty proper suffix y of u which does
not satisfy y > u. Let p be the shortest such suffix. Thus, p is a nonempty proper suffix of u which does
not satisfy p > u.

Notice that p 6= u (since p is a proper suffix of u).

969This is one of the most fundamental properties of the number-theoretic Möbius function. For a proof of (13.143.6), see

the solution of Exercise 2.9.6. (More precisely, the equality (13.143.6) is obtained from (13.84.3) by renaming n as N .)
970Proof. Assume the contrary. Then, u = w. Hence, u∅ = w = uv. Cancelling u from this equality, we obtain ∅ = v.

Thus, the word v is empty; this contradicts the fact that v is nonempty. This contradiction proves that our assumption was
wrong, qed.

971This is just a restatement of the definition of a Lyndon word.
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There exists a nonempty t ∈ A∗ such that u = tp (since p is a proper suffix of u). Consider this t. We have
w = u︸︷︷︸

=tp

v = tpv = t (pv), and thus the word pv is a proper suffix of w (since t is nonempty). Also, the word

pv is nonempty (since v is nonempty). Hence, pv is a nonempty proper suffix of w. But applying (13.144.1)
to the nonempty proper suffix pv of w, we obtain pv > w = uv. Thus, uv < pv. Hence, Proposition 6.1.2(e)
(applied to a = u, b = v, c = p and d = v) yields that either we have u ≤ p or the word p is a prefix of
u. Since we don’t have u ≤ p 972, we therefore conclude that the word p is a prefix of u. Hence, p ≤ u.
Combined with p 6= u, this yields p < u. Combined with u < v (by Exercise 6.1.31(b)), this yields p < u < v.

Let us now show that the word p is Lyndon. Indeed, let r be a nonempty proper suffix of p. Then,
r is shorter than p (being a proper suffix of p); in other words, ` (r) < ` (p). On the other hand, there
exists some nonempty q ∈ A∗ satisfying p = qr (since r is a proper suffix of p). Consider this q. We have
u = t p︸︷︷︸

=qr

= tqr = (tq) r. Thus, r is a proper suffix of u (since tq is nonempty (because q is nonempty)).

Hence, r > u 973. Hence, r > u > p (since p < u). Now, let us forget that we fixed r. We thus have shown
that

every nonempty proper suffix r of p satisfies r > p.

But recall that the word p is Lyndon if and only if it is nonempty and satisfies the property that every
nonempty proper suffix r of p satisfies r > p. 974 Hence, we conclude that the word p is Lyndon (since we
have shown that p is nonempty and satisfies the property that every nonempty proper suffix r of p satisfies
r > p).

Now, the words p and v are Lyndon and satisfy p < v. Thus, Proposition 6.1.16(a) (applied to p instead
of u) yields that the word pv is Lyndon. Notice also that w = u︸︷︷︸

=tp

v = tpv = t (pv), and thus pv is a proper

suffix of w (since t is nonempty). Hence, pv is a proper suffix of w such that pv is Lyndon. In other words,
pv is a proper suffix z of w such that z is Lyndon. Since v is the longest such suffix975, this yields that pv is
not longer than v. In other words, ` (pv) ≤ ` (v). This contradicts ` (pv) = ` (p)︸︷︷︸

>0
(since p is nonempty)

+` (v) > ` (v).

This contradiction proves that our assumption was wrong. Hence, (13.144.2) is proven.
Now, recall that the word u is Lyndon if and only if it is nonempty and satisfies the property that every

nonempty proper suffix y of u satisfies y > u. Hence, the word u is Lyndon (because we have shown that u is
nonempty and satisfies the property that every nonempty proper suffix y of u satisfies y > u). The solution
of Exercise 6.1.31(a) is thus complete.

(c) Let us denote by u′ and v′ the words u and v constructed in Theorem 6.1.30 (to avoid confusing them
with the words u and v defined in Exercise 6.1.31). We must then show that u = u′ and v = v′.

From Theorem 6.1.30, we see that v′ is the (lexicographically) smallest nonempty proper suffix of w, and
that u′ is a nonempty word such that w = u′v′.

The word v is a nonempty proper suffix of w. Since v′ is the smallest such suffix, we thus conclude that
v′ ≤ v. We shall now prove that v′ = v.

Indeed, v is a proper suffix of w. In other words, v is a proper suffix of u′v′ (since w = u′v′). Hence, we
must be in one of the following two cases (depending on whether this suffix begins before the suffix v′ of u′v′

begins or afterwards):
Case 1: The word v is a proper suffix of v′.
Case 2: The word v has the form qv′ where q is a proper suffix of u′. (This suffix q may be empty.)

972Proof. Assume the contrary. Then, u ≤ p. Thus, p ≥ u. Combined with p 6= u, this yields p > u. This contradicts the

fact that p does not satisfy p > u. This contradiction proves that our assumption was wrong, qed.
973Proof. Assume the contrary. Then, we don’t have r > u. Thus, r is a nonempty proper suffix of u which does not satisfy

r > u. In other words, r is a nonempty proper suffix y of u which does not satisfy y > u. Since the shortest such suffix is

p (by the definition of p), this yields that r is not shorter than p. That is, ` (r) ≥ ` (p). This contradicts ` (r) < ` (p). This
contradiction proves that our assumption was wrong, qed.

974This is just a restatement of the definition of a Lyndon word (applied to p).
975Proof. We defined v as the longest proper suffix of w such that v is Lyndon. In other words, v is the longest proper suffix

z of w such that z is Lyndon, qed.
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Let us first consider Case 1. In this case, the word v is a proper suffix of v′. Now, every nonempty proper
suffix s of v′ satisfies s > v′ 976. Thus, the word v′ is nonempty and satisfies the property that every
nonempty proper suffix s of v′ satisfies s > v′. In other words, the word v′ is Lyndon (according to the
definition of a Lyndon word).

Now, v is the longest proper suffix of w such that v is Lyndon. In other words, v is the longest proper
suffix z of w such that z is Lyndon. But v′ also is a proper suffix z of w such that z is Lyndon (since
v′ is Lyndon). Since v is the longest such suffix, this yields that v′ is not longer than v. In other words,
` (v′) ≤ ` (v). But since v is a proper suffix of v′, we have ` (v) < ` (v′) ≤ ` (v). This is absurd. Hence, v′ = v
(since ex falso quodlibet). Thus, v′ = v is proven in Case 1.

Let us now consider Case 2. In this case, the word v has the form qv′ where q is a proper suffix of u′.
Consider this q.

We need to prove that v′ = v. If q = ∅, then this is obvious (because if q = ∅, then v = q︸︷︷︸
=∅

v′ = v′ and

thus v′ = v). Hence, for the rest of this proof, we can WLOG assume that we don’t have q = ∅. Assume
this. The word q is nonempty (since we don’t have q = ∅), and thus v′ is a proper suffix of v (since v = qv′).

The word v is Lyndon. Hence, every nonempty proper suffix of v is > v (by the definition of a Lyndon
word). Applying this to the nonempty proper suffix v′ of v, we conclude that v′ > v. This contradicts v′ ≤ v.
This contradiction shows that we have v′ = v (since ex falso quodlibet). Thus, v′ = v is proven in Case 2.

Now, v′ = v is proven in each of the two Cases 1 and 2. Since these two Cases cover all possibilities, this
yields that v′ = v always holds.

Now we have proven that v′ = v. Cancelling v from the equality uv = w = u′ v′︸︷︷︸
=v

= u′v, we obtain

u = u′. Thus, we have u = u′ and v = v′. This solves Exercise 6.1.31(c).
[Remark: We have not used any statement of Theorem 6.1.30 in our above solution. Thus, parts (a) and

(b) of Exercise 6.1.31 provide an alternative proof of Theorem 6.1.30 (because Exercise 6.1.31(c) shows that
the words u and v defined in Exercise 6.1.31 are precisely the words u and v constructed in Theorem 6.1.30).]

13.145. Solution to Exercise 6.1.32. Solution to Exercise 6.1.32. (a) Let us prove the implications
A′ =⇒ D′ and D′ =⇒ A′.

Proof of the implication A′ =⇒ D′: Assume that Assertion A′ holds. Thus, w is a power of a Lyndon
word. Let said Lyndon word be t. Thus, w = tn for some n ∈ N. Consider this n. Since w is nonempty, we
have n ≥ 1. Hence, tn−1 is well-defined.

We will first show the following simple lemma:
Lemma A: Let u′, v′ and p be three words, and N ∈ N be such that u′v′ = pN . Assume that p is not a

prefix of u′, and that p is not a suffix of v′. Then, N ≤ 1.
Proof of Lemma A: Assume the contrary. Thus, N > 1, so that N ≥ 2. The word v′ is a suffix of pN−1p

(since u′v′ = pN = pN−1p). Thus, we must be in one of the following two cases (depending on whether this
suffix begins before the suffix p of pN−1p begins, or afterwards):

Case 1: The word v′ has the form rp where r is a suffix of pN−1.
Case 2: The word v′ is a suffix of p.
Let us first consider Case 1. In this case, the word v′ has the form rp where r is a suffix of pN−1. Hence,

p is a suffix of v′, contradicting the fact that p is not a suffix of v′. Hence, Case 1 leads to a contradiction.
Let us now consider Case 2. In this case, the word v′ is a suffix of p. In other words, there exists a q ∈ A∗

such that p = qv′. Consider this q. We have u′v′ = pN = pN−1 p︸︷︷︸
=qv′

= pN−1qv′. Cancelling v′ from this

equality, we obtain u′ = pN−1q. Since pN−1 = ppN−2 (this is well-defined because N ≥ 2), this further
becomes u′ = pN−1︸ ︷︷ ︸

=ppN−2

q = ppN−2q = p
(
pN−2q

)
. Hence, p is a prefix of u′, contradicting the fact that p is not

a prefix of u′. We have thus obtained a contradiction in Case 2.

976Proof. Let s be a nonempty proper suffix of v′. The word s is a proper suffix of v′, which (in turn) is a suffix of w.
Hence, s is a proper suffix of w. Thus, s is a nonempty proper suffix of w. Since the smallest such suffix is v′ (by the definition

of v′), this yields s ≥ v′. Since s 6= v′ (because s is a proper suffix of v′), this yields s > v′, qed.
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We have thus obtained a contradiction in each of the two Cases 1 and 2. Since these two Cases cover all
possibilities, this shows that we always get a contradiction. This completes the proof of Lemma A.

Now, let us return to the proof of the implication A′ =⇒ D′. Let u and v be nonempty words satisfying
w = uv. We want to show that vu ≥ uv.

The word t is nonempty (since it is Lyndon); thus, ` (t) ≥ 1. Hence, for every sufficiently large a ∈ N, we
have that the word ta is not a prefix of u 977. Similarly, for every sufficiently large b ∈ N, we have that
the word tb is not a suffix of v.

Let A be the largest nonnegative integer a such that ta is a prefix of u 978. Thus, tA is a prefix of u,
but tA+1 is not a prefix of u. Let B be the largest nonnegative integer b such that tb is a suffix of v 979.
Thus, tB is a suffix of v, but tB+1 is not a suffix of v.

There exists a u′ ∈ A∗ such that u = tAu′ (since tA is a prefix of u). Consider this u′. Recall that tA+1

is not a prefix of u. In other words, tAt is not a prefix of tAu′ (since tA+1 = tAt and u = tAu′).
There exists a v′ ∈ A∗ such that v = v′tB (since tB is a suffix of v). Consider this v′. Recall that tB+1 is

not a suffix of v. In other words, ttB is not a suffix of v′tB (since tB+1 = ttB and v = v′tB).
If the word t was a prefix of u′, then tAt would be a prefix of tAu′, which would contradict the fact that

tAt is not a prefix of tAu′. Thus, t is not a prefix of u′. In particular, t 6= u′.
If the word t was a suffix of v′, then ttB would be a suffix of v′tB , which would contradict the fact that

ttB is not a suffix of v′tB . Thus, t is not a suffix of v′. In particular, t 6= v′.
But we have tn = w = u︸︷︷︸

=tAu′

v︸︷︷︸
=v′tB

= tAu′v′tB = tA
(
u′v′tB

)
. Hence, tA is a prefix of tn; therefore,

A ≤ n and thus n − A ≥ 0. Hence, tAtn−A = tn = tA
(
u′v′tB

)
. Cancelling tA in this equality, we obtain

tn−A = u′v′tB = (u′v′) tB , which shows that tB is a suffix of tn−A. Thus, B ≤ n − A and therefore
n − A − B ≥ 0. Hence, tn−A−BtB = tn−A = (u′v′) tB . Cancelling tB in this yields tn−A−B = u′v′. Now,
Lemma A (applied to p = t and N = n − A − B) yields n − A − B ≤ 1. Since n − A − B ≥ 0, this shows
that we have either n−A−B = 0 or n−A−B = 1. We thus must be in one of the following two cases:

Case 1: We have n−A−B = 0.
Case 2: We have n−A−B = 1.
Let us first consider Case 1. In this case, we have n−A−B = 0. Thus, tn−A−B = u′v′ rewrites as t0 = u′v′,

so that u′v′ = t0 = ∅. Consequently, u′ = ∅ and v′ = ∅. Now, u = tA u′︸︷︷︸
=∅

= tA and v = v′︸︷︷︸
=∅

tB = tB , so

that v︸︷︷︸
=tB

u︸︷︷︸
=tA

= tBtA = tB+A = tA+B = tA︸︷︷︸
=u

tB︸︷︷︸
=v

= uv ≥ uv. Hence, vu ≥ uv is proven in Case 1.

Let us now consider Case 2. In this case, we have n−A−B = 1. Thus, tn−A−B = u′v′ rewrites as t1 = u′v′,
so that u′v′ = t1 = t. As a consequence, u′ is nonempty (because if u′ was empty, then we would have u′v′ = v′

and thus v′ = u′v′ = t, contradicting t 6= v′), so that ` (u′) > 0. Now, `

 t︸︷︷︸
=u′v′

 = ` (u′)︸ ︷︷ ︸
>0

+` (v′) > ` (v′), and

therefore t is not a prefix of v′. Also, v′ is nonempty (because if v′ was empty, then we would have u′v′ = u′

and thus u′ = u′v′ = t, contradicting t 6= u′). But t is Lyndon, and therefore Proposition 6.1.14(a) (applied
to t, u′ and v′ instead of w, u and v) yields v′ ≥ t. That is, t ≤ v′. Thus, Proposition 6.1.2(d) (applied to
a = t, b = tn−1, c = v′ and d = tBu) yields that either we have ttn−1 ≤ v′tBu or the word t is a prefix of

977Proof. Let a ∈ N be such that a > ` (u). Then, ` (ta) = a︸︷︷︸
>`(u)

` (t)︸︷︷︸
≥1

> ` (u), so that the word ta is longer than u. Hence,

the word ta is not a prefix of u.

Now, let us forget that we have fixed a. We thus have shown that for every a ∈ N satisfying a > ` (u), we have that the
word ta is not a prefix of u. Consequently, for every sufficiently large a ∈ N, we have that the word ta is not a prefix of u, qed.

978This is well-defined because of the following two facts:

• There exists an a ∈ N such that the word ta is a prefix of u (namely, a = 0).

• For every sufficiently large a ∈ N, we have that the word ta is not a prefix of u.

979This is well-defined because of the following two facts:

• There exists a b ∈ N such that the word tb is a suffix of v (namely, b = 0).
• For every sufficiently large b ∈ N, we have that the word tb is not a suffix of v.
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v′. Since t is not a prefix of v′, this yields ttn−1 ≤ v′tBu. Since ttn−1 = tn = w = uv and v′tB︸︷︷︸
=v

u = vu, this

rewrites as uv ≤ vu. Hence, vu ≥ uv is proven in Case 2.
We thus have shown that vu ≥ uv in each of the two Cases 1 and 2. Since these two Cases cover all

possibilities, this yields that we always have vu ≥ uv. Thus, Assertion D′ is satisfied, so we have proven the
implication A′ =⇒ D′.

Proof of the implication D′ =⇒ A′: Assume that Assertion D′ holds. Thus, if u and v are nonempty
words satisfying w = uv, then we have vu ≥ uv.

We need to prove that Assertion A′ holds, i.e., that w is a power of a Lyndon word. Assume the contrary.
Thus, w is not a power of a Lyndon word; hence, w is not a Lyndon word itself. Consequently, there exist
nonempty words u and v such that w = uv and vu ≤ uv 980. Consider such a pair of nonempty words u
and v with minimum ` (u). The minimality of ` (u) shows that

(13.145.1) (if u′ and v′ are nonempty words such that w = u′v′ and v′u′ ≤ u′v′, then ` (u′) ≥ ` (u)) .

We have vu ≤ uv. In combination with vu ≥ uv (which follows from Assertion D′), this yields vu = uv.
Therefore, Proposition 6.1.4 yields that there exist a t ∈ A∗ and two nonnegative integers n and m such that
u = tn and v = tm. Consider this t and these n and m. We have n 6= 0 (since tn = u is nonempty) and
m 6= 0 (since tm = v is nonempty), and the word t is nonempty (since tn = u is nonempty). Moreover, we
have n = 1 981. Hence, tn = t1 = t, so that u = tn = t and w = u︸︷︷︸

=t

v︸︷︷︸
=tm

= ttm = tm+1. We shall now

prove that the word t is Lyndon.
Assume the contrary. Then, t is not Lyndon. Let q be the (lexicographically) smallest nonempty suffix of

t. Then, Proposition 6.1.19(b) (applied to t and q instead of w and v) yields that there exists a nonempty
p ∈ A∗ such that t = pq, p ≥ q and pq ≥ qp 982. Consider this p. Since q is nonempty, we have

` (pq) > ` (p), so that `

 u︸︷︷︸
=t=pq

 = ` (pq) > ` (p). From pq ≥ qp, we obtain qp ≤ pq. Thus, it is easy to see

that (qp)
m+1 ≤ (pq)

m+1 983.
We have v = tm. Since t = pq, this rewrites as v = (pq)

m
. Now,

q v︸︷︷︸
=(pq)m

p = q (pq)
m︸ ︷︷ ︸

=(qp)mq

p = (qp)
m
qp = (qp)

m+1 ≤ (pq)
m+1

= (pq)

 pq︸︷︷︸
=t

m

= (pq) tm︸︷︷︸
=v

= (pq) v = pqv.

980Proof. Assume the contrary. Hence, any nonempty words u and v satisfying w = uv satisfy vu > uv. In other words,

w satisfies Assertion D of Theorem 6.1.20. Hence, w also satisfies Assertion A of Theorem 6.1.20 (since Theorem 6.1.20 yields

the equivalence of these two assertions D and A). In other words, w is a Lyndon word. This contradicts the knowledge that w
is not a Lyndon word, qed.

981Proof. Assume the contrary. Hence, n 6= 1. Combined with n 6= 0, this leads to n ≥ 2. As a consequence, u = tn can be
rewritten as u = ttn−1. The word tn−1+m is nonempty (since t is nonempty and since n︸︷︷︸

≥2

−1 + m︸︷︷︸
≥0

≥ 2− 1 + 0 = 1). Now,

w = u︸︷︷︸
=ttn−1

v︸︷︷︸
=tm

= ttn−1tm = ttn−1+m. Also, tn−1+mt = tn−1+m+1 = ttn−1+m. Hence, (13.145.1) (applied to u′ = t and

v′ = tn−1+m) yields ` (t) ≥ ` (u) (since t and tn−1+m are nonempty). Since u = tn, this rewrites as ` (t) ≥ ` (tn) = n︸︷︷︸
≥2

` (t) ≥

2` (t), whence ` (t) = 0, which contradicts the fact that t is nonempty. This contradiction shows that our assumption was
wrong, qed.

982Notice that the variable p here is what has been called u in Proposition 6.1.19(b). (We had to rename it since the letter
u is already in use.)

983Proof. We have qp ≤ pq. Hence, Proposition 6.1.2(d) (applied to qp, (qp)m, pq and (pq)m instead of a, b, c and d) yields

that either we have (qp) (qp)m ≤ (pq) (pq)m or the word qp is a prefix of pq. In the first of these two cases, we are done (because

in the first of these two cases, we have (qp) (qp)m ≤ (pq) (pq)m and thus (qp)m+1 = (qp) (qp)m ≤ (pq) (pq)m = (pq)m+1).

Hence, we can WLOG assume that we are in the second of these two cases. Assume this. Then, the word qp is a prefix of pq.
Since the word qp has the same length as pq (in fact, ` (qp) = ` (q) + ` (p) = ` (p) + ` (q) = ` (pq)), this yields that qp = pq, so

that

 qp︸︷︷︸
=pq


m+1

= (pq)m+1 ≤ (pq)m+1, qed.
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Since w = u︸︷︷︸
=t=pq

v = pqv, we can thus apply (13.145.1) to u′ = p and v′ = qv. As a result, we obtain

` (p) ≥ ` (u). This contradicts ` (u) > ` (p). This contradiction shows that our assumption (that t is not
Lyndon) was wrong. Hence, t is Lyndon. Thus, w is a power of a Lyndon word (since w = tm+1 is a power
of t). Thus, Assertion A′ is satisfied, so we have proven the implication D′ =⇒ A′.

Now we have proven both implications A′ =⇒ D′ and D′ =⇒ A′. Therefore, the equivalence A′ ⇐⇒ D′
follows. Thus, Exercise 6.1.32(a) is solved.

(b) Consider the letter m and the alphabet A ∪ {m} defined in Assertion F ′′. We notice that the
lexicographic order on A∗ is the restriction of the lexicographic order on (A ∪ {m})∗ to A∗. Therefore, when
we have two words p and q in A∗, statements like “p < q” do not depend on whether we are regarding p and
q as elements of A∗ or as elements of (A ∪ {m})∗. It is easy to see that the one-letter word m satisfies

(13.145.2) m > p for every p ∈ A∗.

984

We shall prove the implications B′ =⇒ E ′, C′ =⇒ E ′, G′ =⇒ H′, E ′ =⇒ F ′′, F ′′ =⇒ B′, F ′ =⇒ C′,
B′ =⇒ G′ and H′ =⇒ B′.

First of all, the implication B′ =⇒ E ′ holds for obvious reasons (in fact, if two words u and v satisfying w =
uv satisfy v ≥ w, then v ≥ u (because v ≥ w = uv ≥ u)). Also, the implication C′ =⇒ E ′ holds for obvious
reasons (in fact, if two words u and v satisfying w = uv satisfy (v is a prefix of u), then (v is a prefix of w)
(because v is a prefix of u, and u in turn is a prefix of uv = w)). The implication G′ =⇒ H′ is also trivially
true.

Proof of the implication E ′ =⇒ F ′′: Assume that Assertion E ′ holds.
Assume (for the sake of contradiction) that the word wm ∈ (A ∪ {m})∗ is not a Lyndon word. Clearly,

this word wm is nonempty. Let v′ be the (lexicographically) smallest nonempty suffix of this word wm ∈
(A ∪ {m})∗. Since wm is not a Lyndon word, we can apply Proposition 6.1.19(b) to A ∪ {m}, wm and v′

instead of A, w and v. As a result, we conclude that there exists a nonempty u ∈ (A ∪ {m})∗ such that
wm = uv′, u ≥ v′ and uv′ ≥ v′u. Consider this u.

We know that v′ is a suffix of wm. Thus, we must be in one of the following two cases (depending on
whether this suffix begins before the suffix m of wm begins or afterwards):

Case 1: The word v′ is a nonempty suffix of m. (Note that v′ = m is allowed.)
Case 2: The word v′ has the form vm where v is a nonempty suffix of w.
Let us consider Case 1 first. In this case, the word v′ is a nonempty suffix of m. Since the only nonempty

suffix of m is m itself (because m is a one-letter word), this yields v′ = m. Now, wm = u v′︸︷︷︸
=m

= um.

Cancelling m from this equality, we obtain w = u, so that u = w ∈ A∗. Hence, m > u (by (13.145.2), applied
to p = u). This contradicts u ≥ v′ = m. Thus, we have obtained a contradiction in Case 1.

Let us now consider Case 2. In this case, the word v′ has the form vm where v is a nonempty suffix of w.
Consider this v. We have wm = u v′︸︷︷︸

=vm

= uvm. By cancelling m from this equality, we obtain w = uv. Thus,

u and v are subwords of w, and therefore belong to A∗ (since w ∈ A∗). Moreover, u and v are nonempty.
Hence, Assertion E ′ yields that either we have v ≥ u or the word v is a prefix of w. Since we cannot have
v ≥ u (because if we had v ≥ u, then we would have v′ = vm > v ≥ u ≥ v′, which is absurd), we therefore
must have that v is a prefix of w. In other words, there exists a q ∈ A∗ such that w = vq. Consider this
q. We have m > q (by (13.145.2), applied to p = q). Thus, q ≤ m. Hence, Proposition 6.1.2(b) (applied to
A ∪ {m}, v, q and m instead of A, a, c and d) yields vq ≤ vm. Therefore, vm ≥ vq = w (since w = vq),
so that v′ = vm ≥ w = uv > u (since v is nonempty). This contradicts u ≥ v′. Thus, we have found a
contradiction in Case 2.

984Proof of (13.145.2): Let p ∈ A∗. If p is empty, then (13.145.2) is obviously satisfied. Hence, for the rest of the proof of

(13.145.2), we WLOG assume that p is nonempty. Then, p has a first letter, and we have (the first letter of the word p) ∈ A

(since p ∈ A∗). Thus,

(the first letter of the word p) < m (since a < m for every a ∈ A)

= (the first letter of the word m) .

Hence, p < m (by the definition of the lexicographic order), that is, m > p. This proves (13.145.2).
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We have therefore obtained a contradiction in each of the two Cases 1 and 2. Since these two Cases
cover all possibilities, this shows that we always get a contradiction. Hence, our assumption (that the word
wm ∈ (A ∪ {m})∗ is not a Lyndon word) was false. Hence, the word wm ∈ (A ∪ {m})∗ is a Lyndon word.
That is, Assertion F ′′ holds. Hence, we have proven the implication E ′ =⇒ F ′′.

Proof of the implication F ′′ =⇒ B′: Assume that Assertion F ′′ holds. Thus, the word wm ∈ (A ∪ {m})∗
is a Lyndon word.

Let u and v be nonempty words satisfying w = uv. We shall prove that either we have v ≥ w or the word
v is a prefix of w.

Indeed, v is a suffix of w (since w = uv), so that vm is a suffix of wm. Clearly, vm is nonempty. Thus,
Corollary 6.1.15 (applied to A ∪ {m}, wm and vm instead of A, w and v) yields vm ≥ wm. In other words,
wm ≤ vm. Hence, Proposition 6.1.2(e) (applied to A ∪ {m}, w, m, v and m instead of A, a, b, c and d)
yields that either we have w ≤ v or the word v is a prefix of w. In other words, either we have v ≥ w or the
word v is a prefix of w.

Now, let us forget that we fixed u and v. We thus have proven that if u and v are nonempty words
satisfying w = uv, then either we have v ≥ w or the word v is a prefix of w. In other words, Assertion B′
holds. Hence, we have proven the implication F ′′ =⇒ B′.

Proof of the implication F ′′ =⇒ C′: Assume that Assertion F ′′ holds. Thus, the word wm ∈ (A ∪ {m})∗
is a Lyndon word.

Let u and v be nonempty words satisfying w = uv. We shall prove that either we have v ≥ u or the word
v is a prefix of u.

Indeed, Proposition 6.1.14(b) (applied to A∪{m}, wm and vm instead of A, w and v) yields vm > u (since
w︸︷︷︸

=uv

m = uvm, and since vm is nonempty). Hence, vm ≥ u = u∅, so that u∅ ≤ vm. Thus, Proposition

6.1.2(e) (applied to A ∪ {m}, u, ∅, v and m instead of A, a, b, c and d) yields that either we have u ≤ v or
the word v is a prefix of u. In other words, either we have v ≥ u or the word v is a prefix of u.

Now, let us forget that we fixed u and v. We thus have proven that if u and v are nonempty words
satisfying w = uv, then either we have v ≥ u or the word v is a prefix of u. In other words, Assertion C′
holds. Hence, we have proven the implication F ′′ =⇒ C′.

Proof of the implication B′ =⇒ G′: Assume that Assertion B′ holds.
Let s be the longest suffix v of w satisfying v < w. (This is well-defined, because there exists a suffix v

of w satisfying v < w – namely, the empty word.) So we know that s is a suffix v of w satisfying v < w.
In other words, s is a suffix of w and satisfies s < w. As a consequence, s is a proper suffix of w (because
otherwise, s would be w, and this would contradict s < w). Hence, there exists a nonempty word h ∈ A∗

satisfying w = hs. Consider this h. Using Assertion B′, it is easy to see that s is a prefix of w 985. In
other words, there exists a g ∈ A∗ such that w = sg. Consider this g.

We know that s is the longest suffix v of w satisfying v < w. Hence,

(13.145.3) (if v is a suffix of w satisfying v < w, then ` (v) ≤ ` (s)) .

There exists a nonnegative integer m such that hm is a prefix of s (for example, the nonnegative integer
m = 0). Consider the maximal such integer m 986. Then, hm is a prefix of s, but hm+1 is not a prefix
of s. Since hm is a prefix of s, there exists a word q ∈ A∗ such that s = hmq. Consider this q. Clearly,
w = h s︸︷︷︸

=hmq

= hhm︸︷︷︸
=hm+1

q = hm+1︸ ︷︷ ︸
=hmh

q = hmhq. Hence, hmhq = w = s︸︷︷︸
=hmq

g = hmqg. Cancelling hm from this

985Proof. Assume the contrary. Thus, s is not a prefix of w. Hence, s is nonempty. Therefore, Assertion B′ (applied to
u = h and v = s) yields that either we have s ≥ w or the word s is a prefix of w. Since s is not a prefix of w, we must thus

have s ≥ w. But this contradicts s < w. This contradiction shows that our assumption was wrong, qed.
986This is well-defined, because of the following reason:
We have ` (h) ≥ 1 (since the word h is nonempty). Thus, for every m ∈ N satisfying m > ` (s), we have ` (hm) = m` (h)︸︷︷︸

≥1

≥

m > ` (s). In other words, for every m ∈ N satisfying m > ` (s), the word hm is longer than s. Hence, for every m ∈ N satisfying
m > ` (s), the word hm cannot be a prefix of s. Thus, for every sufficiently high m ∈ N, the word hm cannot be a prefix of s.

We thus know the following:

• There exists a nonnegative integer m such that hm is a prefix of s.

• For every sufficiently high m ∈ N, the word hm cannot be a prefix of s.

Consequently, there exists a maximal nonnegative integer m such that hm is a prefix of s, qed.
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equality, we obtain hq = qg. It is now easy to see that h > q 987. Hence, q ≤ h ≤ hq = qg. Thus,
Proposition 6.1.2(g) (applied to q, h and g instead of a, b and c) yields that q is a prefix of h.

Next, we shall prove that the word h is Lyndon.
In fact, assume the contrary. Then, h is not Lyndon. Let v be the (lexicographically) smallest nonempty

suffix of h. Then, Proposition 6.1.19(b) (applied to h instead of w) yields that there exists a nonempty
u ∈ A∗ such that h = uv, u ≥ v and uv ≥ vu. Consider this u. Since w = h︸︷︷︸

=uv

s = uvs, it is clear that

the word vs is a suffix of w. If we had vs < w, then we could therefore obtain ` (vs) ≤ ` (s) (by (13.145.3),
applied to vs instead of v), which would contradict ` (vs) = ` (v)︸︷︷︸

>0
(since v is nonempty)

+` (s) > ` (s). Thus, we cannot

have vs < w. We thus have vs ≥ w = hs ≥ h = uv, so that uv ≤ vs.
Recall that s < w. Hence, vs ≤ vw (by Proposition 6.1.2(b), applied to v, s and w instead of a, c and

d). Now, uv ≥ vu, so that vu ≤ uv ≤ vs ≤ v w︸︷︷︸
=hs

= v h︸︷︷︸
=uv

s = vuvs. Hence, Proposition 6.1.2(g) (applied

to vu, uv and vs instead of a, b and c) yields that vu is a prefix of uv. Since vu has the same length as uv
(because ` (vu) = ` (v) + ` (u) = ` (u) + ` (v) = ` (uv)), this yields that vu = uv. Thus, the elements u and v
of the monoid A∗ commute. Thus, the submonoid of A∗ generated by u and v is commutative. Since h = uv,
the element h lies in this submonoid, and therefore the element hm lies in it as well. Thus, hm commutes
with v (since this submonoid is commutative), i.e., we have vhm = hmv. Thus, v s︸︷︷︸

=hmq

= vhm︸︷︷︸
=hmv

q = hmvq.

Thus, hmvq = vs ≥ w = h s︸︷︷︸
=hmq

= hhm︸︷︷︸
=hm+1=hmh

q = hmhq, so that hmhq ≤ hmvq. Hence, Proposition 6.1.2(c)

(applied to hm, hq and vq instead of a, c and d) yields hq ≤ vq. But since q is a prefix of h, there exists a
word z ∈ A∗ such that h = qz. Consider this z. We have

v qz︸︷︷︸
=h=uv

= vu︸︷︷︸
=uv=h

v = hv ≤ h vu︸︷︷︸
=uv=h=qz

(since hv is a prefix of hvu)

= hqz.

Also, `

 h︸︷︷︸
=uv

q

 = ` (uvq) = ` (u (vq)) = ` (u)︸︷︷︸
>0

(since u is nonempty)

+` (vq) > ` (vq), so that ` (vq) ≤ ` (hq).

Hence, Proposition 6.1.2(f) (applied to vq, z, hq and z instead of a, b, c and d) yields vq ≤ hq. Combined

with hq ≤ vq, this yields vq = hq. Hence, `

 vq︸︷︷︸
=hq

 = ` (hq) > ` (vq), which is absurd. This contradiction

proves that our assumption is wrong. Thus, we have shown that the word h is Lyndon.
We now know that h ∈ A∗ is a Lyndon word, m + 1 is a positive integer, and q is a prefix of h, and we

have w = hm+1q. Hence, there exists a Lyndon word t ∈ A∗, a positive integer ` and a prefix p of t (possibly
empty) such that w = t`p (namely, t = h, ` = m + 1 and p = q). In other words, Assertion G′ holds. This
proves the implication B′ =⇒ G′.

We are now going to prove the implication F ′ =⇒ B′; this implication will later be used in the proof of
the implication H′ =⇒ B′.

Proof of the implication F ′ =⇒ B′: Assume that Assertion F ′ holds. In other words, the word w is a
prefix of a Lyndon word in A∗. Let z be this Lyndon word. Thus, w is a prefix of z. In other words, there
exists a word q ∈ A∗ such that z = wq. Consider this q.

Let u and v be nonempty words satisfying w = uv. We are going to prove that either we have v ≥ w or
the word v is a prefix of w.

987Proof. Assume the contrary. Then, h ≤ q. Hence, h ≤ q ≤ qg = hq (since hq = qg). Therefore, Proposition 6.1.2(g)
(applied to h, q and q instead of a, b and c) yields that h is a prefix of q. In other words, there exists a word r ∈ A∗ such that
q = hr. Consider this r. Now, s = hm q︸︷︷︸

=hr

= hmh︸ ︷︷ ︸
=hm+1

r = hm+1r, so that hm+1 is a prefix of s. This contradicts the fact that

hm+1 is not a prefix of s. This contradiction proves that our assumption was wrong, qed.
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We have z = w︸︷︷︸
=uv

q = uvq. Thus, Proposition 6.1.14(a) (applied to z and vq instead of w and v) yields

vq ≥ z (since vq is nonempty (since v is nonempty)). Hence, vq ≥ z = wq. In other words, wq ≤ vq. Thus,
Proposition 6.1.2(e) (applied to w, q, v and q instead of a, b, c and d) yields that either we have w ≤ v or
the word v is a prefix of w. In other words, either we have v ≥ w or the word v is a prefix of w.

Now, forget that we fixed u and v. We thus have shown that if u and v are nonempty words satisfying
w = uv, then either we have v ≥ w or the word v is a prefix of w. In other words, Assertion B′ holds. Thus,
the implication F ′ =⇒ B′ is proven.

Proof of the implication H′ =⇒ B′: Assume that AssertionH′ holds. In other words, there exists a Lyndon
word t ∈ A∗, a nonnegative integer ` and a prefix p of t (possibly empty) such that w = t`p. Consider this
t, this ` and this p.

We are going to prove that for every m ∈ N,

(13.145.4) (every suffix s of tmp satisfies either s ≥ tmp or (the word s is a prefix of tmp)) .

Proof of (13.145.4): We will prove (13.145.4) by induction over m:
Induction base: Using the implication F ′ =⇒ B′, it is easy to see that (13.145.4) holds for m = 0 988.

This completes the induction base.
Induction step: Let M be a positive integer. Assume that (13.145.4) is proven for m = M − 1. We will

now show that (13.145.4) holds for m = M .
Let r denote the word tM−1p. It is easy to see that r is a prefix of tMp 989. In other words, there exists

a word g ∈ A∗ such that tMp = rg. Consider this g.
Let s be a suffix of tMp. We shall show that either s ≥ tMp or

(
the word s is a prefix of tMp

)
.

In order to prove this, let us assume the contrary (for the sake of contradiction). Then, neither s ≥ tMp
nor

(
the word s is a prefix of tMp

)
. In other words, we have s < tMp, and the word s is not a prefix of tMp.

If the word s was a prefix of r, then the word s would be a prefix of tMp (since r is a prefix of tMp), which
would contradict the fact that the word s is not a prefix of tMp. Hence, the word s cannot be a prefix of r.
In other words, the word s cannot be a prefix of tM−1p (since r = tM−1p).

The word s is a suffix of tM︸︷︷︸
=ttM−1

p = t tM−1p︸ ︷︷ ︸
=r

= tr. Therefore, we must be in one of the following two cases

(depending on whether this suffix begins before the suffix r of tr begins or afterwards):
Case 1: The word s is a suffix of r. (Note that s = r is allowed.)
Case 2: The word s has the form s′r where s′ is a nonempty suffix of t.
Let us consider Case 1 first. In this case, the word s is a suffix of r. In other words, the word s is a

suffix of tM−1p (since r = tM−1p). Hence, (13.145.4) (applied to m = M − 1) yields that either s ≥ tM−1p

988Proof. Assume that m = 0. Then, tmp = t0︸︷︷︸
=∅

p = ∅p = p.

Let s be a suffix of tmp. Then, s is a suffix of tmp = p. In other words, there exists a word g ∈ A∗ satisfying p = gs.

Consider this g.

We are going to prove that either s ≥ tmp or (the word s is a prefix of tmp). If the word s is empty, then this is obvious
(because if the word s is empty, then the word s is a prefix of tmp). Hence, we WLOG assume that the word s is nonempty. If

the word g is empty, then it is also clear that either s ≥ tmp or (the word s is a prefix of tmp) (because if the word g is empty,

then g = ∅ and thus tmp = p = g︸︷︷︸
=∅

s = s, so that the word s is a prefix of tmp). Hence, we WLOG assume that the word g is

nonempty.

But the word p is a prefix of a Lyndon word in A∗ (since p is a prefix of t, and since t is a Lyndon word in A∗). In other

words, Assertion F ′ with w replaced by p is satisfied. Hence, Assertion B′ with w replaced by p is satisfied as well (since we
have already proven the implication F ′ =⇒ B′). In other words,

(13.145.5)

(
if u and v are nonempty words satisfying p = uv, then

either we have v ≥ p or the word v is a prefix of p

)
.

Since the words g and s are nonempty, we can apply (13.145.5) to u = g and v = s. As a result, we obtain that either we have

s ≥ p or the word s is a prefix of p. In other words, either s ≥ p or (the word s is a prefix of p). In other words, either s ≥ tmp
or (the word s is a prefix of tmp) (since tmp = p). This proves (13.145.4).

989Proof. There exists a word q ∈ A∗ such that t = pq (since p is a prefix of t). Consider this q. We have tM︸︷︷︸
=tM−1t

p =

tM−1 t︸︷︷︸
=pq

p = tM−1p︸ ︷︷ ︸
=r

qp = rqp = r (qp). Hence, r is a prefix of tMp, qed.
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or
(
the word s is a prefix of tM−1p

)
(since (13.145.4) holds for m = M − 1). Since the word s cannot be a

prefix of tM−1p, we thus must have s ≥ tM−1p. Thus, tM−1p ≤ s < tMp = rg. Hence, r = tM−1p ≤ s < rg.
Therefore, Proposition 6.1.2(g) (applied to r, s and g instead of a, b and c) yields that r is a prefix of s.
Since ` (r) ≥ ` (s) (because s is a suffix of r), this can only hold if r = s. We thus have r = s. Thus, s = r,
so that s is a prefix of s = r. This contradicts the fact that the word s cannot be a prefix of r. Thus, we
have found a contradiction in Case 1.

Let us now consider Case 2. In this case, the word s has the form s′r where s′ is a nonempty suffix of t.
Consider this s′. Corollary 6.1.15 (applied to t and s′ instead of w and v) yields s′ ≥ t. But s′ is a suffix of
t, so that ` (s′) ≤ ` (t). Also, s = s′r, so that s′r = s < tMp = tr. Hence, Proposition 6.1.2(f) (applied to
s′, r, t and r instead of a, b, c and d) yields that s′ ≤ t. Combined with s′ ≥ t, this yields s′ = t. Hence,
s = s′︸︷︷︸

=t

r = tMp (since tMp = tr), which contradicts the fact that the word s is not a prefix of tMp. Thus,

we have found a contradiction in Case 2.
We have thus obtained a contradiction in each of the two Cases 1 and 2. Since these two Cases cover all

possibilities, this shows that we always get a contradiction. This completes the proof that either s ≥ tMp or(
the word s is a prefix of tMp

)
.

Now, forget that we fixed s. We thus have shown that every suffix s of tMp satisfies either s ≥ tMp or(
the word s is a prefix of tMp

)
. In other words, (13.145.4) holds for m = M . This completes the induction

step, and thus (13.145.4) is proven by induction.
Now, let u and v be nonempty words satisfying w = uv. Then, v is a suffix of w = t`p. Hence, (13.145.4)

(applied to m = ` and s = v) yields that either v ≥ t`p or
(
the word v is a prefix of t`p

)
. In other words,

either v ≥ w or (the word v is a prefix of w) (since w = t`p). In other words, either we have v ≥ w or the
word v is a prefix of w.

Now, forget that we fixed u and v. We thus have shown that if u and v are nonempty words satisfying
w = uv, then either we have v ≥ w or the word v is a prefix of w. In other words, Assertion B′ holds. Thus,
the implication H′ =⇒ B′ is proven.

We have thus proven the implications B′ =⇒ E ′, C′ =⇒ E ′, G′ =⇒ H′, E ′ =⇒ F ′′, F ′′ =⇒ B′, F ′ =⇒ C′,
B′ =⇒ G′ and H′ =⇒ B′. Combined, these yield the equivalence B′ ⇐⇒ C′ ⇐⇒ E ′ ⇐⇒ F ′′ ⇐⇒ G′ ⇐⇒ H′.
This solves Exercise 6.1.32(b).

(c) The implication F ′ =⇒ B′ has already been proven in our solution of Exercise 6.1.32(b). Hence,
Exercise 6.1.32(c) is solved.

(d) Assume that Assertion D′ holds. Then, Assertion A′ holds as well (because of the equivalence A′ ⇐⇒
D′). In other words, the word w is a power of a Lyndon word. In other words, there exist a Lyndon word
z ∈ A∗ and a nonnegative integer m such that w = zm. Consider these z and m. There exists a Lyndon
word t ∈ A∗, a nonnegative integer ` and a prefix p of t (possibly empty) such that w = t`p (namely, t = z,
` = m and p = ∅). In other words, Assertion H′ holds. Since Assertion H′ is equivalent to Assertion B′
(because of the equivalence B′ ⇐⇒ C′ ⇐⇒ E ′ ⇐⇒ F ′′ ⇐⇒ G′ ⇐⇒ H′), this yields that Assertion B′ holds.
Thus, the implication D′ =⇒ B′ is proven.

(e) Assume that there exists a letter µ ∈ A such that (µ > a for every letter a of w). Consider this µ. We
need to prove that the equivalence F ′ ⇐⇒ F ′′ holds.

Combining the implication F ′ =⇒ B′ (which has already been proven) and the implication B′ =⇒ F ′′
(which follows from the equivalence B′ ⇐⇒ C′ ⇐⇒ E ′ ⇐⇒ F ′′ ⇐⇒ G′ ⇐⇒ H′ proven above), we obtain
the implication F ′ =⇒ F ′′. Thus, in order to prove the equivalence F ′ ⇐⇒ F ′′, it is enough to verify the
implication F ′′ =⇒ F ′. Let us do this now.

Assume that Assertion F ′′ holds. Let B denote the alphabet consisting of all letters that appear in w.
Clearly, B is a subalphabet of A, and we have w ∈ B∗. Moreover, we have µ > a for every letter a of w.
Therefore, µ > a for every a ∈ B (because the elements of B are precisely the letters of w). In other words,
a < µ for every a ∈ B. As a consequence, µ /∈ B; that is, µ is an object not in the alphabet B.

We know that Assertion F ′′ holds. Due to the implication F ′′ =⇒ B′ (which follows from the equivalence
B′ ⇐⇒ C′ ⇐⇒ E ′ ⇐⇒ F ′′ ⇐⇒ G′ ⇐⇒ H′ proven above), this yields that Assertion B′ holds. Thus, Assertion
B′ with A replaced by B holds as well (since the Assertion B′ does not change if we extend our alphabet). Due
to the implication B′ =⇒ F ′′ (which follows from the equivalence B′ ⇐⇒ C′ ⇐⇒ E ′ ⇐⇒ F ′′ ⇐⇒ G′ ⇐⇒ H′
proven above), this yields that Assertion F ′′ with A replaced by B holds as well. Thus, we can apply
Assertion F ′′ with A replaced by B to m = µ (because µ is an object not in the alphabet B, and the total
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order on A satisfies (a < µ for every a ∈ B)). As a result, we conclude that the word wµ ∈ (B ∪ {µ})∗ is

a Lyndon word. Since B ∪ {µ} ⊂ A (because B ⊂ A and µ ∈ A), we have wµ ∈

B ∪ {µ}︸ ︷︷ ︸
⊂A


∗

⊂ A∗, and

thus wµ ∈ A∗ is a Lyndon word. Of course, the word w is a prefix of wµ. As a consequence, the word w is
a prefix of a Lyndon word in A∗ (namely, of the word wµ). In other words, Assertion F ′ holds. This proves
the implication F ′′ =⇒ F ′. Thus, the solution of Exercise 6.1.32(e) is complete.

(f) Assume that there exists a letter µ ∈ A such that (µ > a for some letter a of w). Consider this µ. We
need to prove that the equivalence F ′ ⇐⇒ F ′′ holds.

Just as in our solution of Exercise 6.1.32(e) above, we can see that it is enough to verify the implication
F ′′ =⇒ F ′. Let us do this now.

Assume that Assertion F ′′ holds. Due to the implication F ′′ =⇒ B′ (which follows from the equivalence
B′ ⇐⇒ C′ ⇐⇒ E ′ ⇐⇒ F ′′ ⇐⇒ G′ ⇐⇒ H′ proven above), this yields that Assertion B′ holds.

Let β be the highest letter of the word wµ ∈ A∗ (the concatenation of the word w with the one-letter
word µ). The word wβ`(w) is clearly nonempty (since w is nonempty). We shall now prove that the word
wβ`(w) is Lyndon.

Indeed, assume the contrary. Thus, wβ`(w) is not Lyndon. Let v denote the (lexicographically) smallest
nonempty suffix of wβ`(w). Then, Proposition 6.1.19(b) (applied to wβ`(w) instead of w) yields that there
exists a nonempty u ∈ A∗ such that wβ`(w) = uv, u ≥ v and uv ≥ vu.

Let f be the first letter of the word w (this is well-defined since w is nonempty). Then, we can write w
in the form w = fs for some word s ∈ A∗. Consider this s.

We know that µ > a for some letter a of w. Consider this a. We also know that β is the highest letter
of the word wµ. Thus, β is ≥ to every letter of the word wµ. In particular, this yields that β ≥ µ (since µ
is a letter of the word wµ), so that β ≥ µ > a. But it is fairly easy to see (using the fact that Assertion B′
holds) that a ≥ f 990. Hence, β > a ≥ f .

The word v is a proper suffix of wβ`(w) (since wβ`(w) = uv and since u is nonempty) and is nonempty.
Hence, v is a nonempty proper suffix of wβ`(w). Therefore, we must be in one of the following two cases
(depending on whether this suffix begins before the suffix β`(w) of wβ`(w) begins or afterwards):

Case 1: The word v is a nonempty suffix of β`(w). (Note that v = β`(w) is allowed.)
Case 2: The word v has the form qβ`(w) where q is a nonempty proper suffix of w.
Let us first consider Case 1. In this case, the word v is a nonempty suffix of β`(w). Thus, v has the form

βi for some i ∈ {0, 1, . . . , ` (w)}. Consider this i. We have v = βi. Thus, i 6= 0 (since v is nonempty). Hence,
(the first letter of v) = β. But since the word w is nonempty, we have(

the first letter of wβ`(w)
)

= (the first letter of w) = f

(since f was defined to be the first letter of w). Now,

(the first letter of v) = β > f =
(

the first letter of wβ`(w)
)
.

By the definition of lexicographic order, this shows that v > wβ`(w). But this contradicts wβ`(w) = uv ≥
vu ≥ v. Hence, we have found a contradiction in Case 1.

990Proof. Assume the contrary. Thus, a < f .
Since a is a letter of w, the word w must have a suffix which begins with the letter a. Let p be this suffix. Then, there exists

a word q ∈ A∗ such that w = qp (since p is a suffix of w). Consider this q. The word p is nonempty (since it begins with a).

Since the word p begins with the letter a, we have

(13.145.6) (the first letter of p) = a < f = (the first letter of w) .

By the definition of the lexicographic order, this shows that p < w. Hence, p 6= w. Now, the word q is nonempty (since
otherwise, we would have q = ∅ and thus w = q︸︷︷︸

=∅

p = p, contradicting p 6= w). Hence, applying Assertion B′ to q and p instead

of u and v, we conclude that either we have p ≥ w or the word p is a prefix of w. Since p ≥ w is impossible (because p < w),
this yields that the word p is a prefix of w. Since p is nonempty, this shows that p is a nonempty prefix of w. But this yields

that

(the first letter of p) = (the first letter of w) ;

this contradicts (13.145.6). This contradiction proves that our assumption was wrong, qed.
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Let us now consider Case 2. In this case, the word v has the form qβ`(w) where q is a nonempty proper
suffix of w. Consider this q. Notice that ` (q) < ` (w) (since q is a proper suffix of w), so that ` (w) > ` (q).

Since q is a proper suffix of w, there exists a nonempty word u ∈ A∗ such that w = uq. Consider this
u. Recall that Assertion B′ holds. Applying this Assertion B′ to q instead of v, we conclude that either we
have q ≥ w or the word q is a prefix of w. If the word q is not a prefix of w, then it is very easy to derive
a contradiction991. Hence, the word q must be a prefix of w. In other words, there exists a word g ∈ A∗

such that w = qg. Consider this g. Notice that `

 w︸︷︷︸
=qg

 = ` (qg) = ` (q)︸︷︷︸
>0

(since q is nonempty)

+` (g) > ` (g), so that

`
(
β`(w)

)
= ` (w) > ` (g). In other words, the word β`(w) is longer than g. It is now easy to see that β`(w) ≥ g

992. In other words, g ≤ β`(w). Hence, Proposition 6.1.2(b) (applied to q, g and β`(w) instead of a, c and d)
yields qg ≤ qβ`(w), so that w = qg ≤ qβ`(w) = v (since v = qβ`(w)). Thus, v ≥ w, so that u ≥ v ≥ w.

But v = qβ`(w), so that wβ`(w) = u v︸︷︷︸
=qβ`(w)

= uqβ`(w). Cancelling β`(w) from this equation, we obtain

w = uq. Thus, u ≤ uq = w. Since u 6= w 993, this becomes u < w. This contradicts u ≥ w. Hence, we
have found a contradiction in Case 2.

We have now obtained a contradiction in each of our two Cases 1 and 2. Since these two Cases cover
all possibilities, this yields that we always obtain a contradiction. Thus, our assumption was wrong, and
we conclude that the word wβ`(w) is Lyndon. Hence, w is a prefix of a Lyndon word in A∗ (because w is
a prefix of the word wβ`(w)). In other words, Assertion F ′ holds. This proves the implication F ′′ =⇒ F ′.
This solves Exercise 6.1.32(f).

Remark: Of course, for a letter µ ∈ A, if we have (µ > a for every letter a of w), then we also have
(µ > a for some letter a of w) (since w is nonempty and thus has at least one letter). Hence, Exercise
6.1.32(e) is a particular case of Exercise 6.1.32(f).

13.146. Solution to Exercise 6.1.33. Solution to Exercise 6.1.33.
(a) If we replace the word “total” by “partial” throughout the proof of Proposition 6.1.2, then the resulting

argument can be used in the partial-order setting to prove Proposition 6.1.2 with “a total order” replaced
by “a partial order”. Hence, Proposition 6.1.2 holds in the partial-order setting, as long as one replaces “a
total order” by “a partial order” in part (a) of this Proposition. This solves Exercise 6.1.33(a).

991Proof. Assume that the word q is not a prefix of w. Then, we have q ≥ w (since we know that either we have q ≥ w or the

word q is a prefix of w). In other words, w ≤ q. Hence, Proposition 6.1.2(d) (applied to w, β`(w), q and β`(w) instead of a, b, c

and d) yields that either we have wβ`(w) ≤ qβ`(w) or the word w is a prefix of q. Since the word w is not a prefix of q (because

` (w) > ` (q)), this yields that we have wβ`(w) ≤ qβ`(w). Since `
(
wβ`(w)

)
= ` (w)︸ ︷︷ ︸
>`(q)

+`
(
β`(w)

)
> ` (q) + `

(
β`(w)

)
= `

(
qβ`(w)

)
,

this shows that wβ`(w) < qβ`(w) = v (because v = qβ`(w)). Hence, v > wβ`(w) = uv ≥ vu ≥ v, which is a contradiction, qed.
992Proof. Assume the contrary. Then, β`(w) < g. By the definition of the lexicographic order, this yields that

either there exists an i ∈
{

1, 2, . . . ,min
{
`
(
β`(w)

)
, ` (g)

}}
such that

((
β`(w)

)
i
< gi, and every j ∈ {1, 2, . . . , i− 1} satisfies

(
β`(w)

)
j

= gj

)
,

or the word β`(w) is a prefix of g.

Since the word β`(w) cannot be a prefix of g (because the word β`(w) is longer than g), this yields that there exists an i ∈{
1, 2, . . . ,min

{
`
(
β`(w)

)
, ` (g)

}}
such that

((
β`(w)

)
i
< gi, and every j ∈ {1, 2, . . . , i− 1} satisfies

(
β`(w)

)
j

= gj

)
. Consider

this i. We have
(
β`(w)

)
i

= β, so that β =
(
β`(w)

)
i
< gi.

But g is a suffix of w (since w = qg), and thus every letter of g is a letter of w. In particular, gi is a letter of w. Hence, gi
is a letter of wµ as well (since every letter of w is a letter of wµ (because w is a prefix of wµ)). Since β is the highest letter of

wµ, this yields β ≥ gi. But this contradicts β < gi. This contradiction proves that our assumption was false, qed.
993Proof. Assume the contrary. Then, u = w. Hence, u∅ = u = w = uq. Cancelling u from this equation, we obtain ∅ = q.

Hence, the word q is empty. This contradicts the fact that q is nonempty. This contradiction shows that our assumption was
wrong, qed.
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(b) Let us work in the partial-order setting. Let a, b, c, d ∈ A∗ be four words such that the words ab and
cd are comparable. We need to prove that the words a and c are comparable.

The words ab and cd are comparable. In other words, we have either ab ≤ cd or ab ≥ cd. In other words,
we have either ab ≤ cd or cd ≤ ab. We can WLOG assume that ab ≤ cd (since otherwise, we can achieve
ab ≤ cd by switching a and b with c and d, respectively). Assume this. We know (from Exercise 6.1.33(a))
that Proposition 6.1.2 holds in the partial-order setting, as long as one replaces “a total order” by “a partial
order” in part (a) of this Proposition. In particular, Proposition 6.1.2(e) holds in the partial-order setting.
Applying Proposition 6.1.2(e), we thus conclude that either we have a ≤ c or the word c is a prefix of a.
Thus, either we have a ≤ c or we have c ≤ a (because if c is a prefix of a, then c ≤ a). In other words, either
we have a ≤ c or we have a ≥ c. In other words, the words a and c are comparable. This solves Exercise
6.1.33(b).

(c) Recall (from Exercise 6.1.33(a)) that Proposition 6.1.2 holds in the partial-order setting, as long as
one replaces “a total order” by “a partial order” in part (a) of this Proposition.

Proposition 6.1.4 holds in the partial-order setting, because its proof applies verbatim in this setting.
Proposition 6.1.5 holds in the partial-order setting, because its proof applies verbatim in this setting.
The proof of Corollary 6.1.6 given above is no longer applicable in the partial-order setting. However,

the alternative proof of Corollary 6.1.6 given in the solution to Exercise 6.1.7 does apply verbatim in the
partial-order setting. Thus, Corollary 6.1.6 holds in the partial-order setting.

Corollary 6.1.8 holds in the partial-order setting, because its proof applies verbatim in this setting.
Exercise 6.1.9 and Exercise 6.1.10 hold in the partial-order setting, because their solutions apply verbatim

in this setting.
Exercise 6.1.11 and Exercise 6.1.12 hold in the partial-order setting, because their solutions apply verbatim

in this setting.
Proposition 6.1.14 holds in the partial-order setting, because its proof applies verbatim in this setting.
Corollary 6.1.15 holds in the partial-order setting, because its proof applies verbatim in this setting.
Proposition 6.1.16 holds in the partial-order setting, because its proof applies verbatim in this setting.
Corollary 6.1.17 holds in the partial-order setting, because its proof applies verbatim in this setting.
Our proof of Proposition 6.1.18 does not directly apply in the partial-order setting; however, it can be

tweaked so that it does:

Proof of Proposition 6.1.18 in the partial-order setting. If the words u and v are incomparable, then Propo-
sition 6.1.18 is easily seen to hold994. Hence, for the rest of this proof, we can WLOG assume that the words
u and v are comparable. Assume this.

The words u and v are comparable. In other words, we have either u < v or u = v or u > v. From here,
we can proceed as in our proof of Proposition 6.1.18 in the total-order setting. Proposition 6.1.18 is thus
proven in the partial-order setting. �

Exercise 6.1.21(a) holds in the partial-order setting, because its solution applies verbatim in this setting.
The proof of Theorem 6.1.20 we gave (using Proposition 6.1.19) does not work in the partial-order set-

ting995. However, the alternative proof of Theorem 6.1.20 given in Exercise 6.1.21(b) does apply verbatim
in the partial-order setting. Thus, Theorem 6.1.20 holds in the partial-order setting.

Exercise 6.1.23 and Exercise 6.1.24 hold in the partial-order setting, because their solutions apply verbatim
in this setting.

Exercise 6.1.31(a) and Exercise 6.1.31(b) hold in the partial-order setting, because their solutions apply
verbatim in this setting.

Exercise 6.1.33(c) is thus solved.

994Proof. Assume that u and v are incomparable. If the words uv and vu were comparable, then the words u and v would

also be comparable (by Exercise 6.1.33(b), applied to a = u, b = v, c = v and d = u), which would contradict the fact that u

and v are incomparable. Hence, the words uv and vu are incomparable. Thus, we cannot have uv ≥ vu. But we cannot have
u ≥ v either (since u and v are incomparable). Thus, neither u ≥ v nor uv ≥ vu holds. Hence, u ≥ v if and only if uv ≥ vu;

therefore, Proposition 6.1.18 holds, qed.
995One might try tweaking Proposition 6.1.19 for the partial-order setting by replacing “the (lexicographically) smallest

nonempty suffix” by “a nonempty suffix which is (lexicographically) minimal among the nonempty suffices”, and by replacing

“u ≥ v and uv ≥ vu” by “neither u < v nor uv < vu”. But this still would not hold. For example, if w is the word XX12 over
the partially ordered alphabet {X, 1, 2} with relation 1 < 2, then the nonempty suffix X12 is lexicographically minimal among

such suffixes, but we do have X < X12. (At least uv < vu does not hold indeed.)
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[Remark: In the above solution of Exercise 6.1.33(c), we have used the results of Exercise 6.1.21(b) and
Exercise 6.1.7. This is the main reason why the latter two exercises have been written. However, there is a
way to avoid them and still prove that Theorem 6.1.20 and Corollary 6.1.6 hold in the partial-order setting.
This uses a trick, which we shall now explain.

First, a definition:

Definition 13.146.1. Let P be a poset.

(a) A poset Q is said to be an extension of P if and only if the following two statements hold:
• We have Q = P as sets.
• Any two elements a and b of P satisfying a ≤ b in P satisfy a ≤ b in Q.

(b) An extension Q of P is called a linear extension of P if and only if the poset Q is totally ordered.996

The following fact about extensions of posets is well-known:

Proposition 13.146.2. Let P be a finite poset.

(a) If a and b are two incomparable elements of P , then there exists an extension Q of P such that we
have a < b in Q.

(b) If a and b are two elements of P which don’t satisfy a ≥ b, then there exists an extension Q of P
such that we have a < b in Q.

(c) There exists a linear extension of P .
(d) If a and b are two elements of P which don’t satisfy a ≥ b, then there exists a linear extension Q of

P such that we have a < b in Q.

(Actually, the requirement that P be finite in Proposition 13.146.2 can be dropped if you accept Zorn’s
lemma, but we do not need this generality.)

We can now apply this all to alphabets. In the partial-order setting, alphabets are posets, and so it makes
sense to speak of an extension of an alphabet. We notice the following fact:

Proposition 13.146.3. Let A be a finite poset.

(a) If B is an extension of the poset A, then B∗ is an extension of the poset A∗.
(b) Let u ∈ A∗ and v ∈ A∗ be two words. Then, u < v holds in A∗ if and only if we have

(u < v in B∗ for every linear extension B of A) .

Proof of Proposition 13.146.3. (a) Let B be an extension of the poset A. Then, by the definition of an
“extension”, we see that:

• We have B = A as sets.
• Any two elements a and b of A satisfying a ≤ b in A satisfy a ≤ b in B.

Now, it is clear that B∗ = A∗ as sets (since B = A as sets). Also, any two elements a and b of A∗

satisfying a ≤ b in A∗ satisfy a ≤ b in B∗ 997. Consequently, B∗ is an extension of the poset A∗. This
proves Proposition 13.146.3(a).

996This notion of a linear extension is identical to the one used in Theorem 5.2.11, except that we don’t require P to be

finite here.
997Proof. Let u and v be two elements of A∗ satisfying u ≤ v in A∗. We are going to prove that u ≤ v in B∗.
According to the definition of the relation ≤ on A∗, we have that

either there exists an i ∈ {1, 2, . . . ,min {` (u) , ` (v)}}
such that (ui < vi in A, and every j ∈ {1, 2, . . . , i− 1} satisfies uj = vj) ,

or the word u is a prefix of v

(because u ≤ v in A). In other words, we must be in one of the following two cases:

Case 1: There exists an i ∈ {1, 2, . . . ,min {` (u) , ` (v)}} such that (ui < vi in A, and every j ∈ {1, 2, . . . , i− 1} satisfies uj = vj).
Case 2: The word u is a prefix of v.
Let us first consider Case 1. In this case, there exists an i ∈ {1, 2, . . . ,min {` (u) , ` (v)}} such that

(ui < vi in A, and every j ∈ {1, 2, . . . , i− 1} satisfies uj = vj). Let i′ be this i. Thus, i′ ∈ {1, 2, . . . ,min {` (u) , ` (v)}} sat-

isfies (ui′ < vi′ in A, and every j ∈ {1, 2, . . . , i′ − 1} satisfies uj = vj).
We have ui′ < vi′ in A; thus, ui′ ≤ vi′ in A and ui′ 6= vi′ .

Recall that any two elements a and b of A satisfying a ≤ b in A satisfy a ≤ b in B. Applied to a = ui′ and b = vi′ ,

this yields that ui′ ≤ vi′ in B (since ui′ ≤ vi′ in A). Combined with ui′ 6= vi′ , this yields ui′ < vi′ in B. Thus, we have
(ui′ < vi′ in B, and every j ∈ {1, 2, . . . , i′ − 1} satisfies uj = vj). Consequently, there exists an i ∈ {1, 2, . . . ,min {` (u) , ` (v)}}
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(b) It is easy to prove the logical implication

(13.146.1) (u < v in A∗) =⇒ (u < v in B∗ for every linear extension B of A)

998. We shall now focus on proving the implication

(13.146.2) (u < v in B∗ for every linear extension B of A) =⇒ (u < v in A∗) .

Proof of (13.146.1): Assume that

(13.146.3) u < v in B∗ for every linear extension B of A.

We need to show that u < v in A∗.
First of all, it is impossible that u ≥ v in A∗ 999. Consequently, we have u 6= v (because otherwise, we

would have u = v and thus u ≥ v in A∗, which would contradict the fact that it is impossible that u ≥ v in
A∗).

Let m = min {` (u) , ` (v)}. Then, m ≤ ` (u) and m ≤ ` (v). Recall that u =
(
u1, u2, . . . , u`(u)

)
and

v =
(
v1, v2, . . . , v`(v)

)
. If every i ∈ {1, 2, . . . ,m} satisfies ui = vi, then it is easy to see that u < v in A∗

1000. Hence, for the rest of the proof of (13.146.1), we can WLOG assume that not every i ∈ {1, 2, . . . ,m}
satisfies ui = vi. Assume this.

Not every i ∈ {1, 2, . . . ,m} satisfies ui = vi. In other words, there exists an i ∈ {1, 2, . . . ,m} which does
not satisfy ui = vi. Let k be the smallest such i. Thus, k ∈ {1, 2, . . . ,m} does not satisfy uk = vk, whereas

(13.146.4) every i ∈ {1, 2, . . . ,m} satisfying i < k satisfies ui = vi.

such that (ui < vi in B, and every j ∈ {1, 2, . . . , i− 1} satisfies uj = vj) (namely, i = i′). Thus,

either there exists an i ∈ {1, 2, . . . ,min {` (u) , ` (v)}}
such that (ui < vi in B, and every j ∈ {1, 2, . . . , i− 1} satisfies uj = vj) ,

or the word u is a prefix of v.

In other words, u ≤ v in B∗. Thus, u ≤ v in B∗ is proven in Case 1.

Let us now consider Case 2. In this case, the word u is a prefix of v. Hence, u ≤ v in B∗. Thus, u ≤ v in B∗ is proven in
Case 2.

Now, u ≤ v in B∗ is proven in each of the two Cases 1 and 2. Since these two Cases cover all possibilities, this yields that

u ≤ v in B∗ always holds.
Now, let us forget that we fixed u and v. We have thus shown that any two elements u and v of A∗ satisfying u ≤ v in A∗

satisfy u ≤ v in B∗. Renaming the variables u and v as a and b in this statement, we conclude the following: Any two elements

a and b of A∗ satisfying a ≤ b in A∗ satisfy a ≤ b in B∗. Qed.
998Proof of (13.146.1): Assume that u < v in A∗. Thus, u 6= v and u ≤ v in A∗. Let B be a linear extension of A. Then,

B∗ is an extension of the poset A∗ (by Proposition 13.146.3(a)). Hence, u ≤ v in B∗ (since u ≤ v in A∗). Combined with
u 6= v, this yields u < v in B∗.

Now, let us forget that we fixed B. We thus have proven that u < v in B∗ for every linear extension B of A. This proves

(13.146.1).
999Proof. Assume the contrary. Thus, u ≥ v in A∗. Hence, v ≤ u in A∗.
Proposition 13.146.2(c) (applied to P = A∗) yields that there exists a linear extension of A. Let B be such a linear extension.

Then, u < v in B∗ (by (13.146.3)). But B∗ is an extension of the poset A∗ (by Proposition 13.146.2(a)). Thus, v ≤ u in B∗

(since v ≤ u in A∗). This contradicts u < v in B∗. This contradiction proves that our assumption was wrong, qed.
1000Proof. Assume that every i ∈ {1, 2, . . . ,m} satisfies ui = vi. Thus, (u1, u2, . . . , um) = (v1, v2, . . . , vm).
Let us first assume (for the sake of contradiction) that ` (u) ≥ ` (v). Then, m = min {` (u) , ` (v)} = ` (v) (since ` (u) ≥ ` (v)).

Now,

v =
(
v1, v2, . . . , v`(v)

)
= (v1, v2, . . . , vm) (since ` (v) = m)

= (u1, u2, . . . , um) .

But the word (u1, u2, . . . , um) is clearly a prefix of
(
u1, u2, . . . , u`(u)

)
(since m ≤ ` (u)). In other words, the word v is a prefix

of u (since v = (u1, u2, . . . , um) and u =
(
u1, u2, . . . , u`(u)

)
). Hence, v ≤ u in A∗. In other words, u ≥ v in A∗. This contradicts

the fact that it is impossible that u ≥ v in A∗.
This contradiction proves that our assumption (that ` (u) ≥ ` (v)) was wrong. Hence, we cannot have ` (u) ≥ ` (v). We thus

have ` (u) < ` (v). Thus, m = min {` (u) , ` (v)} = ` (u) (since ` (u) < ` (v)). Now,

u =
(
u1, u2, . . . , u`(v)

)
= (u1, u2, . . . , um) (since ` (u) = m)

= (v1, v2, . . . , vm) .

But the word (v1, v2, . . . , vm) is clearly a prefix of
(
v1, v2, . . . , v`(v)

)
(since m ≤ ` (v)). In other words, the word u is a prefix

of v (since u = (v1, v2, . . . , vm) and v =
(
v1, v2, . . . , v`(v)

)
). Hence, u ≤ v in A∗. Combined with u 6= v, this yields that u < v

in A∗, qed.
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We have uk 6= vk (since k does not satisfy uk = vk). We must have vk ≥ uk in A 1001. That is, uk ≤ vk
in A. Combined with uk 6= vk, this yields that uk < vk in A.

Every j ∈ {1, 2, . . . , k − 1} satisfies uj = vj (by (13.146.4), applied to i = j). Also, we have k ∈
{1, 2, . . . ,m} = {1, 2, . . . ,min {` (u) , ` (v)}} (since m = min {` (u) , ` (v)}). Altogether, we thus have shown
that k ∈ {1, 2, . . . ,min {` (u) , ` (v)}} satisfies (uk < vk in A, and every j ∈ {1, 2, . . . , k − 1} satisfies uj = vj).
Thus, there exists an i ∈ {1, 2, . . . ,min {` (u) , ` (v)}} such that
(ui < vi in A, and every j ∈ {1, 2, . . . , i− 1} satisfies uj = vj) (namely, i = k). Hence,

either there exists an i ∈ {1, 2, . . . ,min {` (u) , ` (v)}}
such that (ui < vi in A, and every j ∈ {1, 2, . . . , i− 1} satisfies uj = vj) ,

or the word u is a prefix of v.

In other words, u < v in A∗ (by the definition of the relation < on A∗). This proves (13.146.2).
Combining the implications (13.146.1) and (13.146.2), we obtain the following equivalence of statements:

(u < v in A∗)⇐⇒ (u < v in B∗ for every linear extension B of A) .

Thus, Proposition 13.146.3(b) is proven. �

Let us now give a new proof of the fact that Corollary 6.1.6 holds in the partial-order setting:

Alternative proof of Corollary 6.1.6 in the partial-order setting. We need to prove that uw ≥ wu. If uw =
wu, then this is obvious. Hence, for the rest of this proof, we can WLOG assume that uw 6= wu. Assume
this.

Let B be any linear extension of the alphabet A. Then, B∗ is an extension of A∗ (according to Proposition
13.146.3(a)). Hence, uv ≥ vu in B∗ (since uv ≥ vu in A∗) and vw ≥ wv in B∗ (since vw ≥ wv in A∗). But
the alphabet B is totally ordered, and thus Corollary 6.1.6 (applied to B instead of A) yields that uw ≥ wu
in B∗ (since we know that Corollary 6.1.6 holds in the total-order setting). Thus, uw > wu in B∗ (since
uw 6= wu). In other words, wu < uw in B∗.

Now, let us forget that we fixed B. We thus have shown that wu < uw in B∗ for every linear extension
B of A. But Proposition 13.146.3(b) (applied to wu and uw instead of u and v) yields that wu < uw holds
in A∗ if and only if

(wu < uw in B∗ for every linear extension B of A) .

Thus, we conclude that wu < uw holds in A∗ (since we already know that wu < uw in B∗ for every linear
extension B of A). Thus, uw > wu in A∗; hence, uw ≥ wu in A∗. This proves Corollary 6.1.6 in the
partial-order setting. �

Next, let us give a new proof of the fact that Theorem 6.1.20 holds in the partial-order setting:

Alternative proof of Theorem 6.1.20 in the partial-order setting. We need to prove the equivalence A ⇐⇒
B ⇐⇒ C ⇐⇒ D. We can prove the implications A =⇒ B, A =⇒ C, A =⇒ D and B =⇒ A in the same way
as we did in the total-order setting. Hence, in order to prove Theorem 6.1.20, it will be enough to prove the
implications C =⇒ B and D =⇒ B.

Proof of the implication C =⇒ B: Assume that Assertion C holds.

1001Proof. Assume the contrary. Thus, we don’t have vk ≥ uk in A. Hence, Proposition 13.146.2(d) (applied to P = A∗,
a = vk and b = uk) yields that there exists a linear extension Q of A such that we have vk < uk in Q. Let B be such a linear

extension. Thus, B is a linear extension of A such that we have vk < uk in B. We have u < v in B∗ (by (13.146.3)).
Every j ∈ {1, 2, . . . , k − 1} satisfies uj = vj (by (13.146.4), applied to i = j). In other words, every j ∈

{1, 2, . . . , k − 1} satisfies vj = uj . Also, we have k ∈ {1, 2, . . . ,m} = {1, 2, . . . ,min {` (v) , ` (u)}} (since m =
min {` (u) , ` (v)} = min {` (v) , ` (u)}). Altogether, we thus have shown that k ∈ {1, 2, . . . ,min {` (v) , ` (u)}} satisfies
(vk < uk in B, and every j ∈ {1, 2, . . . , k − 1} satisfies vj = uj). Thus, there exists an i ∈ {1, 2, . . . ,min {` (v) , ` (u)}} such

that
(vi < ui in B, and every j ∈ {1, 2, . . . , i− 1} satisfies vj = uj) (namely, i = k). Hence,

either there exists an i ∈ {1, 2, . . . ,min {` (v) , ` (u)}}
such that (vi < ui in B, and every j ∈ {1, 2, . . . , i− 1} satisfies vj = uj) ,

or the word v is a prefix of u.

In other words, v < u in B∗ (by the definition of the relation < on B∗). This contradicts the fact that u < v in B∗. This

contradiction proves that our assumption was wrong, qed.
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Let B be any linear extension of the alphabet A. Then, B∗ is an extension of A∗ (according to Proposition
13.146.3(a)). It is easy to see that Assertion C (with A replaced by B) holds1002. But we can apply Theorem
6.1.20 to B instead of A (since B is totally ordered). As a consequence, we see that the four assertions A,
B, C and D (all with A replaced by B) are equivalent. In particular, Assertion C (with A replaced by B) is
equivalent to Assertion B (with A replaced by B). Since Assertion C (with A replaced by B) holds, we thus
conclude that Assertion B (with A replaced by B) holds. In other words,

(13.146.5) any two nonempty words u ∈ B∗ and v ∈ B∗ satisfying w = uv satisfy v > w in B∗.

Now, let u ∈ A∗ and v ∈ A∗ be two nonempty words satisfying w = uv. It is easy to see that

(13.146.6) (w < v in B∗ for every linear extension B of A)

1003.
But Proposition 13.146.3(b) (applied to w instead of u) yields that w < v holds in A∗ if and only if we

have
(w < v in B∗ for every linear extension B of A) .

Consequently, we conclude that w < v holds in A∗ (since we know that we have
(w < v in B∗ for every linear extension B of A)). In other words, v > w in A∗.

Now, let us forget that we fixed u and v. We have thus shown that any nonempty words u ∈ A∗ and
v ∈ A∗ satisfying w = uv satisfy v > w in A∗. In other words, Assertion B holds. Thus, we have proven the
implication C =⇒ B.

Proof of the implication D =⇒ B: The proof of the implication D =⇒ B is analogous to our above proof
of the implication C =⇒ B, and thus left to the reader.

The proof of Theorem 6.1.20 in the partial-order setting is complete. �

The examples of Theorem 6.1.20 and Corollary 6.1.6 should have illustrated how Proposition 13.146.3
allows deriving certain facts about the partial-order setting from the corresponding facts about the total-
order setting. This trick, however, has its limits. For example, in the total-order setting, the fact that any
Lyndon word w of length > 1 can be written in the form w = uv for two Lyndon words u and v satisfying
u < w < v is a consequence of Theorem 6.1.30. But in the partial-order setting, it is not clear how to derive
it from the total-order setting, although it is true in the partial-order setting (and follows from Exercise
6.1.31).]

(d) If A is the partially ordered alphabet {1, 2} with no relations whatsoever (i.e., a 2-element antichain),
and w is the word 12, then w does satisfy (if w ≤ tn, then w ≤ t) for every nonempty word t and every
positive integer n, but w is not Lyndon.

[Remark: One direction of Exercise 6.1.22 does hold in the partial-order setting: Namely, if w is Lyndon,
then every nonempty word t and every positive integer n satisfy (if w ≤ tn, then w ≤ t). The proof of this
is the same as in the total-order setting.]

(e) The following statement is clearly equivalent to Exercise 6.1.22 in the total-order setting, while still
being valid in the partial-order setting:

Proposition 13.146.4. Let w be a nonempty word. Then, w is Lyndon if and only if every nonempty word
t and every positive integer n satisfy (if w > t, then w > tn).

Proof of Proposition 13.146.4 in the partial-order setting. Let us first assume that w is Lyndon. We shall
prove that

(13.146.7) (every nonempty word t and every positive integer n satisfy (if w > t, then w > tn)) .

1002Proof. Let u ∈ B∗ and v ∈ B∗ be two nonempty words satisfying w = uv. We have u ∈ B∗ = A∗ and v ∈ B∗ = A∗,
and thus u ∈ A∗ and v ∈ A∗ are two nonempty words satisfying w = uv. Hence, we have v > u in A∗ (since we assumed that

Assertion C holds). Thus, u < v in A∗, so that u 6= v and u ≤ v in A∗.
So we have u ≤ v in A∗. Hence, u ≤ v in B∗ (since B∗ is an extension of A∗). Since u 6= v, this becomes u < v in B∗. In

other words, v > u in B∗.
Now, let us forget that we fixed u and v. We thus have shown that any nonempty words u ∈ B∗ and v ∈ B∗ satisfying

w = uv satisfy v > u in B∗. In other words, Assertion C (with A replaced by B) holds
1003Proof. Let B be a linear extension of A. Then, B∗ is an extension of A∗ (according to Proposition 13.146.3(a)). Thus,

B∗ = A∗ as sets, so that u ∈ A∗ = B∗ and v ∈ A∗ = B∗. Now, (13.146.5) yields v > w in B∗. In other words, w < v in B∗.
This proves (13.146.6).



946 DARIJ GRINBERG AND VICTOR REINER

Let t be a nonempty word, and let n be a positive integer. Assume that w > t. We need to prove that
w > tn.

Assume the contrary. Thus, we don’t have w > tn. Thus, there exists an i ∈ {1, 2, . . . , n} such that we
don’t have w > ti (namely, i = n). Let m be the minimal such i. Thus, m ∈ {1, 2, . . . , n}, and we don’t
have w > tm. Hence, m 6= 1 (since we don’t have w > tm, but we do have w > t = t1). Thus, m ≥ 2, so that
m − 1 is also an element of {1, 2, . . . , n}. If we did not have w > tm−1, then m − 1 would therefore be an
i ∈ {1, 2, . . . , n} such that we don’t have w > ti. But this would contradict the fact that m is the minimal
such i. Thus, we must have w > tm−1. In other words, tm−1 < w.

Notice that m− 1 ≥ 1 (since m ≥ 2). Hence, the word tm−1 is nonempty (since t is nonempty). In other
words, tm−1 6= ∅.

Recall that we don’t have w > tm. It is now easy to see that we don’t have tm ≤ w 1004. In other
words, we don’t have tm−1t ≤ w∅ (since tm = tm−1t and w = w∅).

But recall that tm−1 < w. Hence, Proposition 6.1.2(d) (applied to a = tm−1, b = t, c = w and d = ∅)
yields that either we have tm−1t ≤ w∅ or the word tm−1 is a prefix of w. Thus, the word tm−1 is a prefix of w
(since we don’t have tm−1t ≤ w∅). In other words, there exists a v ∈ A∗ such that w = tm−1v. Consider this
v. We have v 6= ∅ (because otherwise, we would have v = ∅ and thus w = tm−1 v︸︷︷︸

=∅

= tm−1, contradicting

the fact that w > tm−1), so that v is nonempty. Hence, Proposition 6.1.14(b) (applied to u = tm−1) now
yields v > tm−1. Hence, tm−1 < v. Thus, Proposition 6.1.2(b) (applied to a = tm−1, c = tm−1 and d = v)
yields tm−1tm−1 ≤ tm−1v = w. Hence,

w ≥ tm−1tm−1 = t2(m−1) = tm+(m−2) = tmtm−2 (this makes sense since m ≥ 2)

≥ tm
(
since tm is a prefix of tmtm−2

)
.

Hence, tm ≤ w. This contradicts the fact that we don’t have tm ≤ w. This contradiction proves that our
assumption (that we don’t have w > tn) was false. Hence, w > tn.

Forget now that we assumed that w > t. We thus have proven that if w > t, then w > tn.
Now, forget that we fixed t and assumed that w is Lyndon. We thus have shown that

(13.146.8) (if w is Lyndon, then (13.146.7) holds) .

Now, conversely, assume that (13.146.7) holds. We will prove that w is Lyndon.
Let u and v be any nonempty words satisfying w = uv. We have w 6= u 1005. Combined with w = uv ≥ u

(since u is a prefix of uv), this yields w > u. But (13.146.7) (applied to t = u and n = 2) yields that if w > u,
then w > u2. Hence, w > u2 (since we know that w > u). Thus, uv = w > u2 = uu, so that uu < uv. Thus,
Proposition 6.1.2(c) (applied to a = u, c = u and d = v) yields u ≤ v. Since u 6= v 1006, this becomes
u < v, so that v > u.

Now, let us forget that we fixed u and v. We thus have proven that any nonempty words u and v satisfying
w = uv satisfy v > u. In other words, Assertion C of Theorem 6.1.20 holds. Hence, Assertion A of Theorem
6.1.20 holds as well (since Theorem 6.1.20 yields that these Assertions C and A are equivalent). In other
words, the word w is Lyndon.

Now, forget that we fixed w. We thus have proven that

(if (13.146.7) holds, then w is Lyndon) .

Combined with (13.146.8), this yields that w is Lyndon if and only if (13.146.7) holds. This proves Proposition
13.146.4. �

1004Proof. Assume the contrary. Thus, we have tm ≤ w. Hence, w ≥ tm, so that w = tm (since we don’t have w > tm).

Thus, w = tm = tm−1t. Thus, t is a suffix of w. Thus, Corollary 6.1.15 (applied to t instead of v) yields t ≥ w. Thus,
t ≥ w = tm = ttm−1. Combined with ttm−1 ≥ t (since t is a prefix of ttm−1), this yields t = ttm−1. Thus, ttm−1 = t = t∅.
Cancelling t from this equality, we obtain tm−1 = ∅. This contradicts tm−1 6= ∅. This contradiction proves that our assumption
was wrong, qed.

1005Proof. Assume the contrary. Then, w = u. Hence, uv = w = u = u∅. Cancelling u from this equality, we obtain v = ∅,

so that v is empty. This contradicts the fact that v is nonempty. This contradiction proves that our assumption was wrong,
qed.

1006Proof. Assume the contrary. Then, u = v. Hence, w = u v︸︷︷︸
=u

= uu = u2. This contradicts w > u2. This contradiction

proves that our assumption was wrong, qed.
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Thus, we have salvaged Exercise 6.1.22 in the partial-order setting. (And, as a side effect, we have obtained
an alternative solution for Exercise 6.1.22 in the total-order setting.)

[Remark: Speaking of salvaging, there is a little piece of Proposition 6.1.19 which can be salvaged for the
partial-order case:

Proposition 13.146.5. Let w be a nonempty word. Let v be a (lexicographically) minimal nonempty suffix
of w 1007. Then, there exists a u ∈ A∗ such that w = uv but we don’t have uv < vu.

Proof of Proposition 13.146.5 in the partial-order case. We know that v is a suffix of w. Hence, there exists
a u ∈ A∗ such that w = uv. Consider this u. It will clearly be enough to show that we don’t have uv < vu.

So let us prove that we don’t have uv < vu. Indeed, assume the contrary. Then, uv < vu. Thus, there
exists at least one suffix t of u such that tv < vt (namely, t = u). Let p be the minimum-length such
suffix. Then, pv < vp. Thus, p is nonempty. In other words, p 6= ∅.

Since p is a suffix of u, it is clear that pv is a suffix of uv = w. So we know that pv is a nonempty suffix
of w. Since v is a minimal such suffix, this yields that we don’t have pv < v. Hence, we don’t have pv ≤ v
1008.

But pv∅ = pv < vp. Hence, Proposition 6.1.2(e) (applied to a = pv, b = ∅, c = v and d = p) yields
that either we have pv ≤ v or the word v is a prefix of pv. Thus, the word v is a prefix of pv (since we
don’t have pv ≤ v). In other words, there exists a q ∈ A∗ such that pv = vq. Consider this q. This q is
nonempty (because otherwise we would have pv = v q︸︷︷︸

=∅

= v, contradicting the fact that p is nonempty).

From vq = pv < vp, we obtain q ≤ p (by Proposition 6.1.2(c), applied to a = v, c = q and d = p).
We know that q is a suffix of pv (since vq = pv), whereas pv is a suffix of w. Thus, q is a suffix of w.

So q is a nonempty suffix of w. Since v is a minimal such suffix, this yields that we don’t have q < v. But
we have p∅ = p ≤ pv < vp. Hence, Proposition 6.1.2(e) (applied to a = p, b = ∅, c = v and d = p) yields
that either we have p ≤ v or the word v is a prefix of p. From this, it is easy to obtain that v is a prefix of
p 1009. In other words, there exists an r ∈ A∗ such that p = vr. Consider this r. Clearly, r is a suffix of
p, while p is a suffix of u; therefore, r is a suffix of u. Also, pv < vp rewrites as vrv < vvr (because p = vr).
Thus, Proposition 6.1.2(c) (applied to a = v, c = rv and d = vr) yields rv ≤ vr. Since rv 6= vr (because
otherwise, we would have rv = vr, thus v rv︸︷︷︸

=vr

= vvr, contradicting vrv < vvr), this becomes rv < vr.

The word v is nonempty; thus, ` (v) > 0.
Now, r is a suffix of u such that rv < vr. Since p is the minimum-length such suffix, this yields ` (r) ≥ ` (p).

But this contradicts the fact that `

 p︸︷︷︸
=vr

 = ` (vr) = ` (v)︸︷︷︸
>0

+` (r) > ` (r). This contradiction proves our

assumption wrong. Thus, we have proven that we don’t have uv < vu. This completes the proof of
Proposition 13.146.5 in the partial-order case. �

]
(f) Let us first establish a lemma which plays a role similar to that of Lemma 6.1.28 in the total-order

setting:

Lemma 13.146.6. Let (a1, a2, . . . , ak) be a Hazewinkel-CFL factorization of a nonempty word w (in the
partial-order setting). Let p be a suffix of w such that p is Lyndon. Then, p ≥ ak.

1007By this, we mean that:

• v is a nonempty suffix of w;

• no nonempty suffix s of w satisfies s < v.

Such a v always exists (since w is nonempty), but is not always unique.
1008Proof. Assume the contrary. Thus, pv ≤ v. This yields that pv = v (since we don’t have pv < v). Thus, pv = v = ∅v.

Cancelling v from this equation, we obtain p = ∅. This contradicts p 6= ∅. This contradiction proves that our assumption was

wrong, qed.
1009Proof. Assume the contrary. Thus, v is not a prefix of p. Hence, p ≤ v (since either we have p ≤ v or the word v is a

prefix of p). Now, q ≤ p ≤ v. Now, q = v (since q ≤ v but not q < v). Hence, v = q ≤ p. Combined with p ≤ v, this yields

v = p. Hence, p v︸︷︷︸
=p

= p︸︷︷︸
=v

p = vp, which contradicts pv < vp. This contradiction proves that our assumption was wrong, qed.
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Proof of Lemma 13.146.6. We will prove Lemma 13.146.6 by induction over the (obviously) positive integer
k.

Induction base: Assume that k = 1. By the definition of a Hazewinkel-CFL factorization, (a1, a2, . . . , ak)
is a tuple of Lyndon words satisfying w = a1a2 · · · ak (since (a1, a2, . . . , ak) is a Hazewinkel-CFL factorization
of w). Thus, w = a1a2 · · · ak = a1 (since k = 1), so that w is a Lyndon word (since a1 is a Lyndon word).
But p is nonempty (since p is Lyndon). Thus, Corollary 6.1.15 (applied to v = p) yields p ≥ w = a1 = ak
(since 1 = k). Thus, Lemma 13.146.6 is proven in the case k = 1. The induction base is complete.

Induction step: Let K be a positive integer. Assume (as the induction hypothesis) that Lemma 13.146.6
is proven for k = K. We now need to show that Lemma 13.146.6 holds for k = K + 1.

So let (a1, a2, . . . , aK+1) be a Hazewinkel-CFL factorization of a nonempty word w. Let p be a nonempty
suffix of w such that p is Lyndon. We need to prove that p ≥ aK+1.

The tuple (a1, a2, . . . , aK+1) is a Hazewinkel-CFL factorization of w. By the definition of a Hazewinkel-
CFL factorization, this yields that (a1, a2, . . . , aK+1) is a tuple of Lyndon words such that w = a1a2 · · · aK+1

and such that no i ∈ {1, 2, . . . ,K} satisfies ai < ai+1.
Let w′ = a2a3 · · · aK+1; then, w = a1a2 · · · aK+1 = a1 (a2a3 · · · aK+1)︸ ︷︷ ︸

=w′

= a1w
′. Hence, every nonempty

suffix of w is either a nonempty suffix of w′, or has the form qw′ for a nonempty suffix q of a1. Since p is a
nonempty suffix of w, we thus must be in one of the following two cases:

Case 1: The word p is a nonempty suffix of w′.
Case 2: The word p has the form qw′ for a nonempty suffix q of a1.
Let us first consider Case 1. In this case, p is a nonempty suffix of w′. The K-tuple (a2, a3, . . . , aK+1)

of Lyndon words satisfies w′ = a2a3 · · · aK+1 and has the property that no i ∈ {1, 2, . . . ,K − 1} satisfies
ai+1 < a(i+1)+1

1010. Therefore, (a2, a3, . . . , aK+1) is a Hazewinkel-CFL factorization of w′. We can
thus apply Lemma 13.146.6 to K, w′ and (a2, a3, . . . , aK+1) instead of k, w and (a1, a2, . . . , ak) (because we
assumed that Lemma 13.146.6 is proven for k = K). As a result, we obtain that p ≥ aK+1. Thus, p ≥ aK+1

is proven in Case 1.
Let us now consider Case 2. In this case, p has the form qw′ for a nonempty suffix q of a1. Consider this

q. Since a1 is a Lyndon word, we have q ≥ a1 (by Corollary 6.1.15, applied to a1 and q instead of w and v).
Our goal, however, is to prove that q ≥ aK+1.

We will show that

(13.146.9) q ≥ ai for every i ∈ {1, 2, . . . ,K + 1} .

Proof of (13.146.9): We will prove (13.146.9) by induction over i:
Induction base: We know that q ≥ a1. In other words, (13.146.9) holds for i = 1. This completes the

induction base.
Induction step: Let j ∈ {1, 2, . . . ,K}. Assume that (13.146.9) holds for i = j. We must prove that

(13.146.9) holds for i = j + 1.
We have j ≤ K. Hence, the product aj+1aj+2 · · · aK+1 contains at least one factor. Also, the factors

of this product are nonempty words (because the words aj+1, aj+2, . . ., aK+1 are nonempty (since these
words are Lyndon)). Hence, aj+1aj+2 · · · aK+1 is a nonempty product of nonempty words. Consequently,
aj+1aj+2 · · · aK+1 is a nonempty word.

The product aj+2aj+3 · · · aK+1 is well-defined (because j ≤ K). Denote this product by g. Thus, g =
aj+2aj+3 · · · aK+1.

We have q ≥ aj (since (13.146.9) holds for i = j). But

p = q w′︸︷︷︸
=a2a3···aK+1

=(a2a3···aj)(aj+1aj+2···aK+1)

= q (a2a3 · · · aj) (aj+1aj+2 · · · aK+1) = (q (a2a3 · · · aj)) (aj+1aj+2 · · · aK+1) .

1010Proof. We already know that w′ = a2a3 · · · aK+1. It remains to show that no i ∈ {1, 2, . . . ,K − 1} satisfies ai+1 <
a(i+1)+1.

To prove this, let us assume this contrary. Thus, there exists an i ∈ {1, 2, . . . ,K − 1} satisfying ai+1 < a(i+1)+1. Let j be

such an i. Then, j ∈ {1, 2, . . . ,K − 1} satisfies aj+1 < a(j+1)+1. Hence, we have ai < ai+1 for i = j + 1. This contradicts the

fact that no i ∈ {1, 2, . . . ,K} satisfies ai < ai+1. This contradiction shows that our assumption was wrong, qed.
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Consequently, aj+1aj+2 · · · aK+1 is a suffix of p. Thus, Corollary 6.1.15 (applied to p and aj+1aj+2 · · · aK+1

instead of w and v) yields aj+1aj+2 · · · aK+1 ≥ p (since p is Lyndon). Thus,

aj+1aj+2 · · · aK+1 ≥ p = qw′ ≥ q ≥ aj .
In other words,

aj ≤ aj+1aj+2 · · · aK+1 = aj+1 (aj+2aj+3 · · · aK+1)︸ ︷︷ ︸
=g

= aj+1g.

Hence, aj∅ = aj ≤ aj+1g. Proposition 6.1.2(e) (applied to aj , ∅, aj+1 and g instead of a, b, c and d) thus
yields that either we have aj ≤ aj+1 or the word aj+1 is a prefix of aj . From this, it is easy to conclude that
the word aj+1 is a prefix of aj

1011. Consequently, aj+1 ≤ aj , so that aj ≥ aj+1 and q ≥ aj ≥ aj+1. In
other words, (13.146.9) holds for i = j + 1. This completes the induction step. Thus, (13.146.9) is proven
by induction.

Now, (13.146.9) (applied to i = K + 1) yields q ≥ aK+1. Hence, p = qw′ ≥ q ≥ aK+1. Thus, p ≥ aK+1 is
proven in Case 2.

We have now proven p ≥ aK+1 in all cases. This proves that Lemma 13.146.6 holds for k = K + 1. The
induction step is thus finished, and with it the proof of Lemma 13.146.6. �

We can now conclude the solution of Exercise 6.1.33(f) by proving the following proposition:

Proposition 13.146.7. Let w be a word (in the partial-order setting). Then, there exists a unique
Hazewinkel-CFL factorization of w.

The proof is an almost literal adaptation of the proof of Theorem 6.1.27:

Proof of Proposition 13.146.7. Let us first prove that there exists a Hazewinkel-CFL factorization of w.
Indeed, there clearly exists a tuple (a1, a2, . . . , ak) of Lyndon words satisfying w = a1a2 · · · ak 1012. Fix

such a tuple with minimum k. We claim that no i ∈ {1, 2, . . . , k − 1} satisfies ai < ai+1.
Indeed, if some i ∈ {1, 2, . . . , k − 1} would satisfy ai < ai+1, then the word aiai+1 would be Lyndon (by

Proposition 6.1.16(a), applied to u = ai and v = ai+1), whence (a1, a2, . . . , ai−1, aiai+1, ai+2, ai+3, . . . , ak)
would also be a tuple of Lyndon words satisfying w = a1a2 · · · ai−1 (aiai+1) ai+2ai+3 · · · ak but having length
k−1 < k, contradicting the fact that k is the minimum length of such a tuple. Hence, no i ∈ {1, 2, . . . , k − 1}
can satisfy ai < ai+1. Thus, (a1, a2, . . . , ak) is a Hazewinkel-CFL factorization of w, so we have shown that
such a Hazewinkel-CFL factorization exists.

It remains to show that there exists at most one Hazewinkel-CFL factorization of w. We shall prove this
by induction over ` (w). Thus, we fix a word w and assume that
(13.146.10)

for every word v with ` (v) < ` (w) , there exists at most one Hazewinkel-CFL factorization of v.

We now have to prove that there exists at most one Hazewinkel-CFL factorization of w.
Indeed, let (a1, a2, . . . , ak) and (b1, b2, . . . , bm) be two Hazewinkel-CFL factorizations of w. We need to

prove that (a1, a2, . . . , ak) = (b1, b2, . . . , bm). If w is empty, then this is obvious, so we WLOG assume that
it is not; thus, k > 0 and m > 0.

The tuple (a1, a2, . . . , ak) is a Hazewinkel-CFL factorization of w. Thus, (a1, a2, . . . , ak) is a tuple of
Lyndon words satisfying w = a1a2 · · · ak and such that no i ∈ {1, 2, . . . , k − 1} satisfies ai < ai+1.

The tuple (b1, b2, . . . , bm) is a Hazewinkel-CFL factorization of w. Thus, (b1, b2, . . . , bm) is a tuple of
Lyndon words satisfying w = b1b2 · · · bm and such that no i ∈ {1, 2, . . . ,m− 1} satisfies bi < bi+1. Now, bm
is a suffix of w (since w = b1b2 · · · bm). Also, bm is Lyndon. Thus, Lemma 13.146.6 (applied to p = bm) yields
bm ≥ ak. The same argument (but with the roles of (a1, a2, . . . , ak) and (b1, b2, . . . , bm) switched) shows that
ak ≥ bm. Combined with bm ≥ ak, this yields ak = bm. Now let v = a1a2 · · · ak−1. Then, (a1, a2, . . . , ak−1)
is a tuple of Lyndon words satisfying v = a1a2 · · · ak−1 and such that no i ∈ {1, 2, . . . , (k − 1)− 1} satisfies

1011Proof. Assume the contrary. Thus, the word aj+1 is not a prefix of aj . Hence, we have aj ≤ aj+1 (because we know

that either we have aj ≤ aj+1 or the word aj+1 is a prefix of aj). Since we cannot have aj < aj+1 (because no i ∈ {1, 2, . . . ,K}
satisfies ai < ai+1), this yields that we have aj = aj+1. Therefore, aj+1 is a prefix of aj ; this contradicts our assumption that

the word aj+1 is not a prefix of aj . This contradiction proves that our assumption was wrong, qed.
1012For instance, the tuple

(
w1, w2, . . . , w`(w)

)
of one-letter words is a valid example (recall that one-letter words are always

Lyndon).
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ai < ai+1 (because no i ∈ {1, 2, . . . , k − 1} satisfies ai < ai+1). In other words, (a1, a2, . . . , ak−1) is a
Hazewinkel-CFL factorization of v.

But w = a1a2 · · · ak = a1a2 · · · ak−1︸ ︷︷ ︸
=v

ak︸︷︷︸
=bm

= vbm, so that

vbm = w = b1b2 · · · bm = b1b2 · · · bm−1bm.

Cancelling bm from this equality yields v = b1b2 · · · bm−1. Thus, (b1, b2, . . . , bm−1) is a tuple of Lyndon
words satisfying v = b1b2 · · · bm−1 and such that no i ∈ {1, 2, . . . , (m− 1)− 1} satisfies bi < bi+1 (since no
i ∈ {1, 2, . . . ,m− 1} satisfies bi < bi+1). In other words, (b1, b2, . . . , bm−1) is a Hazewinkel-CFL factorization
of v. Since ` (v) < ` (w) (because v = a1a2 · · · ak−1 is shorter than w = a1a2 · · · ak), we can apply (13.146.10)
to obtain that there exists at most one Hazewinkel-CFL factorization of v. But we already know two
such Hazewinkel-CFL factorizations: (a1, a2, . . . , ak−1) and (b1, b2, . . . , bm−1). Thus, (a1, a2, . . . , ak−1) =
(b1, b2, . . . , bm−1). Combining this with ak = bm, we obtain (a1, a2, . . . , ak) = (b1, b2, . . . , bm). This is exactly
what we needed to prove. So we have shown (by induction) that there exists at most one Hazewinkel-CFL
factorization of w. This completes the proof of Proposition 13.146.7. �

(g) Solution to Exercise 6.1.32 in the partial-order setting. Let us first observe the following fact (in the
partial-order setting): If h is a nonempty word which is not a Lyndon word, then

(13.146.11) there exist nonempty words u and v such that h = uv and not vu > uv.

1013 Renaming u and v as p and q in this result, we obtain the following: If h is a nonempty word which is
not a Lyndon word, then

(13.146.12) there exist nonempty words p and q such that h = pq and not qp > pq.

Furthermore, if h is a nonempty word which is not a Lyndon word, then

(13.146.13) there exist nonempty words u and v such that h = uv and not v > u.

1014

Now, let us come to the solution of Exercise 6.1.32 in the partial-order setting.
Solution to Exercise 6.1.32(a) in the partial-order setting. The implication A′ =⇒ D′ can be proven in

the same way as it was proven in the total-order setting.
Let us now prove the implication D′ =⇒ A′:
Proof of the implication D′ =⇒ A′: Assume that Assertion D′ holds. Thus, if u and v are nonempty

words satisfying w = uv, then we have vu ≥ uv.
We need to prove that Assertion A′ holds, i.e., that w is a power of a Lyndon word. Assume the contrary.

Thus, w is not a power of a Lyndon word; hence, w is not a Lyndon word itself. Consequently, (13.146.11)
(applied to h = w) shows that there exist nonempty words u and v such that w = uv and not vu > uv.

1013Proof of (13.146.11): Let h be a nonempty word which is not a Lyndon word. We need to prove that (13.146.11) holds.

In fact, assume the contrary. Then, there exist no nonempty words u and v such that h = uv and not vu > uv. In other

words, any nonempty words u and v satisfying h = uv must satisfy vu > uv. In other words, Assertion D of Theorem 6.1.20
(with h instead of w) holds.

But we know (from Exercise 6.1.33(c)) that Theorem 6.1.20 holds in the partial-order setting. Hence, we can apply Theorem
6.1.20 to h instead of w. We thus conclude that Assertions A, B, C and D of Theorem 6.1.20 (with h instead of w) are equivalent.
Hence, Assertion A of Theorem 6.1.20 (with h instead of w) holds (since Assertion D of Theorem 6.1.20 (with h instead of w)

holds). In other words, the word h is Lyndon. This contradicts the fact that the word h is not Lyndon. This contradiction
shows that our assumption was wrong. Hence, (13.146.11) is proven, qed.

1014Proof of (13.146.13): Let h be a nonempty word which is not a Lyndon word. We need to prove that (13.146.13) holds.
In fact, assume the contrary. Then, there exist no nonempty words u and v such that h = uv and not v > u. In other

words, any nonempty words u and v satisfying h = uv must satisfy v > u. In other words, Assertion C of Theorem 6.1.20 (with

h instead of w) holds.

But we know (from Exercise 6.1.33(c)) that Theorem 6.1.20 holds in the partial-order setting. Hence, we can apply Theorem
6.1.20 to h instead of w. We thus conclude that Assertions A, B, C and D of Theorem 6.1.20 (with h instead of w) are equivalent.

Hence, Assertion A of Theorem 6.1.20 (with h instead of w) holds (since Assertion C of Theorem 6.1.20 (with h instead of w)
holds). In other words, the word h is Lyndon. This contradicts the fact that the word h is not Lyndon. This contradiction

shows that our assumption was wrong. Hence, (13.146.13) is proven, qed.
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Consider such a pair of nonempty words u and v with minimum ` (u). The minimality of ` (u) shows that

(13.146.14)

(
if u′ and v′ are nonempty words such that w = u′v′ and not v′u′ > u′v′,

then ` (u′) ≥ ` (u)

)
.

We have vu ≥ uv (according to Assertion D′) but not vu > uv. Thus, vu = uv. Therefore, Proposition
6.1.4 yields that there exist a t ∈ A∗ and two nonnegative integers n and m such that u = tn and v = tm.
Consider this t and these n and m. We have n 6= 0 (since tn = u is nonempty) and m 6= 0 (since tm = v
is nonempty), and the word t is nonempty (since tn = u is nonempty). Moreover, we have n = 1 1015.
Hence, tn = t1 = t, so that u = tn = t and w = u︸︷︷︸

=t

v︸︷︷︸
=tm

= ttm = tm+1. We shall now prove that the word t

is Lyndon.
Assume the contrary. Then, t is not Lyndon. Hence, (13.146.12) (applied to h = t) shows that there exist

nonempty words p and q such that t = pq and not qp > pq. Consider these p and q. Since q is nonempty, we

have ` (q) > 0, so that `

 u︸︷︷︸
=t=pq

 = ` (pq) = ` (p) + ` (q)︸︷︷︸
>0

> ` (p).

We have w = u︸︷︷︸
=t=pq

v = pqv, and the words p and qv are nonempty1016. Now, using (13.146.14), it is easy

to see that qvp > pqv 1017.

Notice that q (pq)
i

= (qp)
i
q for every i ∈ N 1018. Applied to i = m, this yields q (pq)

m
= (qp)

m
q.

But v = tm. Since t = pq, this rewrites as v = (pq)
m

. Hence,

q v︸︷︷︸
=(pq)m

p = q (pq)
m︸ ︷︷ ︸

=(qp)mq

p = (qp)
m
qp = (qp)

m
(qp) = (qp)

m+1
,

so that (qp)
m+1

= qvp > pqv. But

(pq)
m+1

= (pq)

 pq︸︷︷︸
=t

m

= (pq) tm︸︷︷︸
=v

= (pq) v = pqv < (qp)
m+1

1015Proof. Assume the contrary. Hence, n 6= 1. Combined with n 6= 0, this leads to n ≥ 2. As a consequence, u = tn can be
rewritten as u = ttn−1. The word tn−1+m is nonempty (since t is nonempty and since n︸︷︷︸

≥2

−1 + m︸︷︷︸
≥0

≥ 2− 1 + 0 = 1). Now,

w = u︸︷︷︸
=ttn−1

v︸︷︷︸
=tm

= ttn−1tm = ttn−1+m. Also, tn−1+mt = tn−1+m+1 = ttn−1+m. Thus, we do not have tn−1+mt > ttn−1+m.

Hence, (13.146.14) (applied to u′ = t and v′ = tn−1+m) yields ` (t) ≥ ` (u) (since t and tn−1+m are nonempty). Since u = tn,
this rewrites as ` (t) ≥ ` (tn) = n︸︷︷︸

≥2

` (t) ≥ 2` (t), whence ` (t) = 0, which contradicts the fact that t is nonempty. This

contradiction shows that our assumption was wrong, qed.
1016For qv, this follows from the nonemptiness of q.
1017Proof. Assume the contrary. Then, we do not have qvp > pqv. We can thus apply (13.146.14) to u′ = p and v′ = qv.

As a result, we obtain ` (p) ≥ ` (u). This contradicts ` (u) > ` (p). This contradiction shows that our assumption was wrong,

qed.
1018Proof. We shall prove the equality q (pq)i = (qp)i q by induction over i:

Induction base: We have q (pq)0︸ ︷︷ ︸
=∅

= q∅ = q = ∅︸︷︷︸
=(qp)0

q = (qp)0 q. In other words, the equality q (pq)i = (qp)i q holds for

i = 0. This completes the induction base.

Induction step: Let I ∈ N be such that the equality q (pq)i = (qp)i q holds for i = I. We need to show that the equality

q (pq)i = (qp)i q also holds for i = I + 1.

We have q (pq)I = (qp)I q (since the equality q (pq)i = (qp)i q holds for i = I). Thus,

q (pq)I+1︸ ︷︷ ︸
=(pq)I (pq)

= q (pq)I︸ ︷︷ ︸
=(qp)Iq

(pq) = (qp)I q (pq)︸ ︷︷ ︸
=(qp)q

= (qp)I (qp)︸ ︷︷ ︸
=(qp)I+1

q = (qp)I+1 q.

In other words, the equality q (pq)i = (qp)i q holds for i = I + 1. This completes the induction step. The induction proof of the

equality q (pq)i = (qp)i q is thus complete.
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(since (qp)
m+1

> pqv). From this, it is easy to see that pq < qp 1019, so that qp > pq. This contradicts the
fact that we do not have qp > pq. This contradiction shows that our assumption (that t is not Lyndon) was
wrong. Hence, t is Lyndon. Thus, w is a power of a Lyndon word (since w = tm+1 is a power of t). Thus,
Assertion A′ is satisfied, so we have proven the implication D′ =⇒ A′.

Now we have proven both implications A′ =⇒ D′ and D′ =⇒ A′. Therefore, the equivalence A′ ⇐⇒ D′
follows. Thus, Exercise 6.1.32(a) is solved in the partial-order case.

Solution to Exercise 6.1.32(b) in the partial-order setting. Consider the letter m and the alphabet A∪{m}
defined in Assertion F ′′. We notice that the lexicographic order on A∗ is the restriction of the lexicographic
order on (A ∪ {m})∗ to A∗. Therefore, when we have two words p and q in A∗, statements like “p < q” do
not depend on whether we are regarding p and q as elements of A∗ or as elements of (A ∪ {m})∗. It is easy
to see that the one-letter word m satisfies

(13.146.15) m > p for every p ∈ A∗.

1020

The implications B′ =⇒ E ′, C′ =⇒ E ′, G′ =⇒ H′, F ′′ =⇒ B′, F ′′ =⇒ C′ and F ′ =⇒ B′ can be proven in
the same way as they were proven in the total-order setting. We shall now prove some further implications.

Proof of the implication E ′ =⇒ F ′′: Assume that Assertion E ′ holds.
Assume (for the sake of contradiction) that the word wm ∈ (A ∪ {m})∗ is not a Lyndon word. Clearly,

this word wm is nonempty. Thus, (13.146.13) (applied to h = wm) shows that there exist nonempty words
u and v in (A ∪ {m})∗ such that wm = uv and not v > u. Denote these two nonempty words u and v by u
and v′. Then, u and v′ are nonempty words in (A ∪ {m})∗ such that wm = uv′ and not v′ > u.

The word v′ is a proper suffix of wm (since wm = uv′ and since w is nonempty). Hence, v′ is a nonempty
suffix of wm. Thus, we must be in one of the following two cases (depending on whether this suffix begins
before the suffix m of wm begins or afterwards):

Case 1: The word v′ is a nonempty suffix of m. (Note that v′ = m is allowed.)
Case 2: The word v′ has the form vm where v is a nonempty proper suffix of w.
Let us consider Case 1 first. In this case, the word v′ is a nonempty suffix of m. Since the only nonempty

suffix of m is m itself (because m is a one-letter word), this yields v′ = m. Now, wm = u v′︸︷︷︸
=m

= um.

Cancelling m from this equality, we obtain w = u. But v′ = m > w (by (13.146.15), applied to p = w), thus
v′ > w = u. This contradicts the fact that we don’t have v′ > u. Thus, we have obtained a contradiction in
Case 1.

Let us now consider Case 2. In this case, the word v′ has the form vm where v is a nonempty proper
suffix of w. Consider this v. We have wm = u v′︸︷︷︸

=vm

= uvm. By cancelling m from this equality, we obtain

w = uv. Thus, u and v are subwords of w, and therefore belong to A∗ (since w ∈ A∗). Moreover, u and v
are nonempty. Hence, Assertion E ′ yields that either we have v ≥ u or the word v is a prefix of w. Since we
cannot have v ≥ u (because if we had v ≥ u, then we would have v′ = vm > v ≥ u, which would contradict
the fact that we don’t have v′ > u), we therefore must have that v is a prefix of w. In other words, there
exists a q ∈ A∗ such that w = vq. Consider this q. We have m > q (by (13.146.15), applied to p = q).
Thus, q ≤ m. Hence, Proposition 6.1.2(b) (applied to A ∪ {m}, v, q and m instead of A, a, c and d) yields
vq ≤ vm. Therefore, vm ≥ vq = w (since w = vq), so that v′ = vm ≥ w = uv > u (since v is nonempty).
This contradicts the fact that we don’t have v′ > u. Thus, we have found a contradiction in Case 2.

We have therefore obtained a contradiction in each of the two Cases 1 and 2. Since these two Cases
cover all possibilities, this shows that we always get a contradiction. Hence, our assumption (that the word
wm ∈ (A ∪ {m})∗ is not a Lyndon word) was false. Hence, the word wm ∈ (A ∪ {m})∗ is a Lyndon word.
That is, Assertion F ′′ holds. Hence, we have proven the implication E ′ =⇒ F ′′.

Proof of the implication B′ =⇒ G′: Assume that Assertion B′ holds.

1019Proof. Assume the contrary. Thus, we don’t have pq < qp. But (pq) (pq)m = (pq)m+1 < (qp)m+1 = (qp) (qp)m+1 and

` (pq) = ` (p) + ` (q) = ` (q) + ` (p) = ` (qp). Hence, Proposition 6.1.2(f) (applied to a = pq, b = (pq)m, c = qp and d = (qp)m)
yields pq ≤ qp. Thus, pq = qp (since we don’t have pq < qp). Taking both sides of this equality to the (m+ 1)-th power, we

obtain (pq)m+1 = (qp)m+1, which contradicts (pq)m+1 < (qp)m+1. This contradiction proves that our assumption was wrong,

qed.
1020This can be proven in the same way as it was proven in the total-order setting.
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Let s be the longest suffix v of w which does not satisfy v ≥ w. (This is well-defined, because there exists
a suffix v of w which does not satisfy v ≥ w – namely, the empty word.) So we know that s is a suffix v of
w which does not satisfy v ≥ w. In other words, s is a suffix of w and does not satisfy s ≥ w. Hence, s 6= w
(because otherwise, we would have s = w and thus s ≥ w; but this would contradict the fact that s does not
satisfy s ≥ w). Thus, s is a proper suffix of w (because s is a suffix of w and satisfies s 6= w). Hence, there
exists a nonempty word h ∈ A∗ satisfying w = hs. Consider this h. Using Assertion B′, it is easy to see that
s is a prefix of w 1021. In other words, there exists a g ∈ A∗ such that w = sg. Consider this g. We have
g 6= ∅ (because otherwise, we would have g = ∅ and thus w = s g︸︷︷︸

=∅

= s 6= w, which would be absurd). In

other words, the word g is nonempty. Thus, s < sg = w.
We know that s is the longest suffix v of w which does not satisfy v ≥ w. Hence,

(13.146.16) (if v is a suffix of w which does not satisfy v ≥ w, then ` (v) ≤ ` (s)) .

There exists a nonnegative integer m such that hm is a prefix of s (for example, the nonnegative integer
m = 0). Consider the maximal such integer m 1022. Then, hm is a prefix of s, but hm+1 is not a prefix
of s. Since hm is a prefix of s, there exists a word q ∈ A∗ such that s = hmq. Consider this q. Clearly,
w = h s︸︷︷︸

=hmq

= hhm︸︷︷︸
=hm+1

q = hm+1︸ ︷︷ ︸
=hmh

q = hmhq. Hence, hmhq = w = s︸︷︷︸
=hmq

g = hmqg. Cancelling hm from this

equality, we obtain hq = qg. It is now easy to see that we don’t have h ≤ q 1023. But h∅ = h ≤ hq = qg.
Thus, Proposition 6.1.2(e) (applied to h, ∅, q and g instead of a, b, c and d) yields that either we have h ≤ q
or the word q is a prefix of h. Thus, the word q is a prefix of h (since we don’t have h ≤ q).

Next, we shall prove that the word h is Lyndon.
In fact, assume the contrary. Then, h is not Lyndon. Hence, (13.146.11) shows that there exist nonempty

words u and v such that h = uv and not vu > uv. Consider these u and v. Since w = h︸︷︷︸
=uv

s = uvs =

u (vs), it is clear that the word vs is a suffix of w. If this suffix vs would not satisfy vs ≥ w, then we
could therefore obtain ` (vs) ≤ ` (s) (by (13.146.16), applied to vs instead of v), which would contradict
` (vs) = ` (v)︸︷︷︸

>0
(since v is nonempty)

+` (s) > ` (s). Thus, the suffix vs must satisfy vs ≥ w. We thus have vs ≥ w =

hs ≥ h = uv, so that uv ≤ vs.
Recall that s < w. Hence, vs ≤ vw (by Proposition 6.1.2(b), applied to v, s and w instead of a, c and d).

Now, uv∅ = uv ≤ vs ≤ v w︸︷︷︸
=hs

= v h︸︷︷︸
=uv

s = vuvs and ` (uv) = ` (u) + ` (v) = ` (v) + ` (u) = ` (vu) ≤ ` (vu).

Hence, Proposition 6.1.2(f) (applied to uv, ∅, vu and vs instead of a, b, c and d) yields that uv ≤ vu. In other
words, vu ≥ uv. Since we don’t have vu > uv, we therefore must have vu = uv. Thus, the elements u and v
of the monoid A∗ commute. Thus, the submonoid of A∗ generated by u and v is commutative. Since h = uv,
the element h lies in this submonoid, and therefore the element hm lies in it as well. Thus, hm commutes

1021Proof. Assume the contrary. Thus, s is not a prefix of w. Hence, s is nonempty. Therefore, Assertion B′ (applied to

u = h and v = s) yields that either we have s ≥ w or the word s is a prefix of w. Since s is not a prefix of w, we must thus have
s ≥ w. But this contradicts the fact that s does not satisfy s ≥ w. This contradiction shows that our assumption was wrong,
qed.

1022This is well-defined, because of the following reason:

We have ` (h) ≥ 1 (since the word h is nonempty). Thus, for every m ∈ N satisfying m > ` (s), we have ` (hm) = m` (h)︸︷︷︸
≥1

≥

m > ` (s). In other words, for every m ∈ N satisfying m > ` (s), the word hm is longer than s. Hence, for every m ∈ N satisfying

m > ` (s), the word hm cannot be a prefix of s. Thus, for every sufficiently high m ∈ N, the word hm cannot be a prefix of s.
We thus know the following:

• There exists a nonnegative integer m such that hm is a prefix of s.
• For every sufficiently high m ∈ N, the word hm cannot be a prefix of s.

Consequently, there exists a maximal nonnegative integer m such that hm is a prefix of s, qed.
1023Proof. Assume the contrary. Then, h ≤ q. Hence, h ≤ q ≤ qg = hq (since hq = qg). Therefore, Proposition 6.1.2(g)

(applied to h, q and q instead of a, b and c) yields that h is a prefix of q. In other words, there exists a word r ∈ A∗ such that

q = hr. Consider this r. Now, s = hm q︸︷︷︸
=hr

= hmh︸ ︷︷ ︸
=hm+1

r = hm+1r, so that hm+1 is a prefix of s. This contradicts the fact that

hm+1 is not a prefix of s. This contradiction proves that our assumption was wrong, qed.
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with v (since this submonoid is commutative), i.e., we have vhm = hmv. Thus, v s︸︷︷︸
=hmq

= vhm︸︷︷︸
=hmv

q = hmvq.

Thus, hmvq = vs ≥ w = h s︸︷︷︸
=hmq

= hhm︸︷︷︸
=hm+1=hmh

q = hmhq, so that hmhq ≤ hmvq. Hence, Proposition 6.1.2(c)

(applied to hm, hq and vq instead of a, c and d) yields hq ≤ vq. But since q is a prefix of h, there exists a
word z ∈ A∗ such that h = qz. Consider this z. We have

v qz︸︷︷︸
=h=uv

= vu︸︷︷︸
=uv=h

v = hv ≤ h vu︸︷︷︸
=uv=h=qz

(since hv is a prefix of hvu)

= hqz.

Also, `

 h︸︷︷︸
=uv

q

 = ` (uvq) = ` (u (vq)) = ` (u)︸︷︷︸
>0

(since u is nonempty)

+` (vq) > ` (vq), so that ` (vq) ≤ ` (hq).

Hence, Proposition 6.1.2(f) (applied to vq, z, hq and z instead of a, b, c and d) yields vq ≤ hq. Combined

with hq ≤ vq, this yields vq = hq. Hence, `

 vq︸︷︷︸
=hq

 = ` (hq) > ` (vq), which is absurd. This contradiction

proves that our assumption is wrong. Thus, we have shown that the word h is Lyndon.
We now know that h ∈ A∗ is a Lyndon word, m + 1 is a positive integer, and q is a prefix of h, and we

have w = hm+1q. Hence, there exists a Lyndon word t ∈ A∗, a positive integer ` and a prefix p of t (possibly
empty) such that w = t`p (namely, t = h, ` = m + 1 and p = q). In other words, Assertion G′ holds. This
proves the implication B′ =⇒ G′.

Furthermore, the implication F ′ =⇒ B′ holds. (In fact, it can be proven in the same way as it was proven
in the total-order setting.)

Proof of the implication H′ =⇒ B′: Assume that AssertionH′ holds. In other words, there exists a Lyndon
word t ∈ A∗, a nonnegative integer ` and a prefix p of t (possibly empty) such that w = t`p. Consider this
t, this ` and this p.

We are going to prove that for every m ∈ N,

(13.146.17) (every suffix s of tmp satisfies either s ≥ tmp or (the word s is a prefix of tmp)) .

Proof of (13.146.17): We will prove (13.146.17) by induction over m:
Induction base: Using the implication F ′ =⇒ B′, it is easy to see that (13.146.17) holds for m = 0 1024.

This completes the induction base.
Induction step: Let M be a positive integer. Assume that (13.146.17) is proven for m = M − 1. We will

now show that (13.146.17) holds for m = M .

1024Proof. Assume that m = 0. Then, tmp = t0︸︷︷︸
=∅

p = ∅p = p.

Let s be a suffix of tmp. Then, s is a suffix of tmp = p. In other words, there exists a word g ∈ A∗ satisfying p = gs.
Consider this g.

We are going to prove that either s ≥ tmp or (the word s is a prefix of tmp). If the word s is empty, then this is obvious
(because if the word s is empty, then the word s is a prefix of tmp). Hence, we WLOG assume that the word s is nonempty. If
the word g is empty, then it is also clear that either s ≥ tmp or (the word s is a prefix of tmp) (because if the word g is empty,

then g = ∅ and thus tmp = p = g︸︷︷︸
=∅

s = s, so that the word s is a prefix of tmp). Hence, we WLOG assume that the word g is

nonempty.
But the word p is a prefix of a Lyndon word in A∗ (since p is a prefix of t, and since t is a Lyndon word in A∗). In other

words, Assertion F ′ with w replaced by p is satisfied. Hence, Assertion B′ with w replaced by p is satisfied as well (since we
have already proven the implication F ′ =⇒ B′). In other words,

(13.146.18)

(
if u and v are nonempty words satisfying p = uv, then

either we have v ≥ p or the word v is a prefix of p

)
.

Since the words g and s are nonempty, we can apply (13.146.18) to u = g and v = s. As a result, we obtain that either we have

s ≥ p or the word s is a prefix of p. In other words, either s ≥ p or (the word s is a prefix of p). In other words, either s ≥ tmp
or (the word s is a prefix of tmp) (since tmp = p). This proves (13.146.17).



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 955

Let r denote the word tM−1p. It is easy to see that r is a prefix of tMp 1025. In other words, there
exists a word g ∈ A∗ such that tMp = rg. Consider this g.

Let s be a suffix of tMp. We shall show that either s ≥ tMp or
(
the word s is a prefix of tMp

)
.

In order to prove this, let us assume the contrary (for the sake of contradiction). Then, neither s ≥ tMp
nor

(
the word s is a prefix of tMp

)
. In other words, we don’t have s ≥ tMp, and the word s is not a prefix

of tMp. If the word s was a prefix of r, then the word s would be a prefix of tMp (since r is a prefix of tMp),
which would contradict the fact that the word s is not a prefix of tMp. Hence, the word s cannot be a prefix
of r. In other words, the word s cannot be a prefix of tM−1p (since r = tM−1p).

We don’t have s ≥ tMp. Since s = s∅ and tMp = rg, this rewrites as follows: We don’t have s∅ ≥ rg. In
other words, we don’t have rg ≤ s∅.

The word s is a suffix of tM︸︷︷︸
=ttM−1

p = t tM−1p︸ ︷︷ ︸
=r

= tr. Therefore, we must be in one of the following two cases

(depending on whether this suffix begins before the suffix r of tr begins or afterwards):
Case 1: The word s is a suffix of r. (Note that s = r is allowed.)
Case 2: The word s has the form s′r where s′ is a nonempty suffix of t.
Let us consider Case 1 first. In this case, the word s is a suffix of r. In other words, the word s is a

suffix of tM−1p (since r = tM−1p). Hence, (13.146.17) (applied to m = M − 1) yields that either s ≥ tM−1p
or
(
the word s is a prefix of tM−1p

)
(since (13.146.17) holds for m = M − 1). Since the word s cannot be

a prefix of tM−1p, we thus must have s ≥ tM−1p. Thus, tM−1p ≤ s, so that r = tM−1p ≤ s. Therefore,
Proposition 6.1.2(d) (applied to r, g, s and ∅ instead of a, b, c and d) yields that either we have rg ≤ s∅ or
the word r is a prefix of s. Thus, the word r is a prefix of s (since we don’t have rg ≤ s∅). But ` (r) ≥ ` (s)
(since s is a suffix of r). Hence, r is a prefix of s which is at least as long as s itself. Consequently, r = s.
Hence, s = r, so that s is a prefix of s = r. This contradicts the fact that the word s cannot be a prefix of
r. Thus, we have found a contradiction in Case 1.

Let us now consider Case 2. In this case, the word s has the form s′r where s′ is a nonempty suffix of t.
Consider this s′. Corollary 6.1.15 (applied to t and s′ instead of w and v) yields s′ ≥ t. That is, t ≤ s′. But
s′ is a suffix of t, so that ` (s′) ≤ ` (t). Hence, ` (t) ≥ ` (s′). Thus, Proposition 6.1.2(j) (applied to t, s′ and r
instead of a, b and c) yields tr ≤ s′r. Hence, s′r ≥ tr, so that s = s′r ≥ tr = tMp. This contradicts the fact
that we don’t have s ≥ tMp. Thus, we have found a contradiction in Case 2.

We have thus obtained a contradiction in each of the two Cases 1 and 2. Since these two Cases cover all
possibilities, this shows that we always get a contradiction. This completes the proof that either s ≥ tMp or(
the word s is a prefix of tMp

)
.

Now, forget that we fixed s. We thus have shown that every suffix s of tMp satisfies either s ≥ tMp or(
the word s is a prefix of tMp

)
. In other words, (13.146.17) holds for m = M . This completes the induction

step, and thus (13.146.17) is proven by induction.
Now, let u and v be nonempty words satisfying w = uv. Then, v is a suffix of w = t`p. Hence, (13.146.17)

(applied to m = ` and s = v) yields that either v ≥ t`p or
(
the word v is a prefix of t`p

)
. In other words,

either v ≥ w or (the word v is a prefix of w) (since w = t`p). In other words, either we have v ≥ w or the
word v is a prefix of w.

Now, forget that we fixed u and v. We thus have shown that if u and v are nonempty words satisfying
w = uv, then either we have v ≥ w or the word v is a prefix of w. In other words, Assertion B′ holds. Thus,
the implication H′ =⇒ B′ is proven.

We have thus proven the implications B′ =⇒ E ′, C′ =⇒ E ′, G′ =⇒ H′, E ′ =⇒ F ′′, F ′′ =⇒ B′, F ′ =⇒ C′,
B′ =⇒ G′ and H′ =⇒ B′. Combined, these yield the equivalence B′ ⇐⇒ C′ ⇐⇒ E ′ ⇐⇒ F ′′ ⇐⇒ G′ ⇐⇒ H′.
This solves Exercise 6.1.32(b) in the partial-order setting.

Solution to Exercise 6.1.32(c) in the partial-order setting. The implication F ′ =⇒ B′ has already been
proven in our solution of Exercise 6.1.32(b). Hence, Exercise 6.1.32(c) is solved in the partial-order setting.

Solution to Exercise 6.1.32(d) in the partial-order setting. The solution of Exercise 6.1.32(d) in the
partial-order setting proceeds precisely as in the total-order setting.

1025Proof. There exists a word q ∈ A∗ such that t = pq (since p is a prefix of t). Consider this q. We have tM︸︷︷︸
=tM−1t

p =

tM−1 t︸︷︷︸
=pq

p = tM−1p︸ ︷︷ ︸
=r

qp = rqp = r (qp). Hence, r is a prefix of tMp, qed.
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Solution to Exercise 6.1.32(e) in the partial-order setting. The solution of Exercise 6.1.32(e) in the partial-
order setting proceeds precisely as in the total-order setting.

Solution to Exercise 6.1.32(f) in the partial-order setting. Assume that there exists a letter µ ∈ A such
that (µ > a for some letter a of w). Consider this µ. We need to prove that the equivalence F ′ ⇐⇒ F ′′
holds.

Combining the implication F ′ =⇒ B′ (which has already been proven) and the implication B′ =⇒ F ′′
(which follows from the equivalence B′ ⇐⇒ C′ ⇐⇒ E ′ ⇐⇒ F ′′ ⇐⇒ G′ ⇐⇒ H′ proven above), we obtain
the implication F ′ =⇒ F ′′. Thus, in order to prove the equivalence F ′ ⇐⇒ F ′′, it is enough to verify the
implication F ′′ =⇒ F ′. Let us do this now.

Assume that Assertion F ′′ holds. Due to the implication F ′′ =⇒ G′ (which follows from the equivalence
B′ ⇐⇒ C′ ⇐⇒ E ′ ⇐⇒ F ′′ ⇐⇒ G′ ⇐⇒ H′ proven above), this yields that Assertion G′ holds. In other
words, there exists a Lyndon word t ∈ A∗, a positive integer ` and a prefix p of t (possibly empty) such that
w = t`p. Consider these t, ` and p.

We shall first prove that

(13.146.19) there exists a letter z ∈ A such that z > t.

Proof of (13.146.19): The word t is Lyndon and thus nonempty. Hence, ` (t) ≥ 1. We thus are in one of
the following two cases:

Case 1: We have ` (t) = 1.
Case 2: We have ` (t) > 1.
Let us consider Case 1 first. In this case, we have ` (t) = 1. Thus, t is a one-letter word. In other words,

t = b for some letter b. Let us consider this b.
Recall that µ > a for some letter a of w. Consider this letter a.
The word t`p is a prefix of t`t (since p is a prefix of t). In other words, the word w is a prefix of t`+1

(since w = t`p and t`+1 = t`t). Hence, each letter of w is a letter of t`+1. Since each letter of t`+1 is a letter
of t, this shows that each letter of w is a letter of t. Applying this to the letter a, we conclude that a is a
letter of t (since a is a letter of w).

Now, both a and b are letters of t. Since the word t has only one letter (because ` (t) = 1), this yields
that a = b. Hence, µ > a = b = t (since t = b). Hence, there exists a letter z ∈ A such that z > t (namely,
z = µ). Thus, (13.146.19) is proven in Case 1.

Let us now consider Case 2. In this case, we have ` (t) > 1. Let g be the last letter of the word t (this is
well-defined since t is nonempty). Then, the one-letter word g is a suffix of the word t, and therefore there
exists a word t′ ∈ A∗ such that t = t′g. Consider this t′. Since g is a one-letter word, we have ` (g) = 1.

Thus, `

 t︸︷︷︸
=t′g

 = ` (t′) + ` (g)︸︷︷︸
=1

= ` (t′) + 1, so that ` (t′) = ` (t)︸︷︷︸
>1

−1 > 1 − 1 = 0. Hence, the word t′ is

nonempty. Thus, g is a proper suffix of t (since t = t′g). Also, g is nonempty (since ` (g) = 1). But recall
that the word t is Lyndon. By the definition of a Lyndon word, this yields that every nonempty proper
suffix v of t satisfies v > t. Applying this to v = g, we obtain g > t. Thus, there exists a letter z ∈ A such
that z > t (namely, z = g). Thus, (13.146.19) is proven in Case 2.

We have thus proven (13.146.19) in each of the two Cases 1 and 2. Since these two Cases cover all
possibilities, this yields that (13.146.19) always holds.

Now, (13.146.19) shows that there exists a letter z ∈ A such that z > t. Consider this letter z. We have
z > t, thus t < z, hence t ≤ z. The one-letter word z is Lyndon (since every one-letter word is Lyndon).
Thus, t, t, . . . , t︸ ︷︷ ︸

`+1 times t

, z are ` + 2 Lyndon words (since both t and z are Lyndon) satisfying t ≤ t ≤ · · · ≤ t ≤ z

(since t ≤ z) and t < z. Hence, Exercise 6.1.23 (applied to ` + 2 and

 t, t, . . . , t︸ ︷︷ ︸
`+1 times t

, z

 instead of n and

(w1, w2, . . . , wn)) yields that tt · · · t︸ ︷︷ ︸
`+1 times t

z is a Lyndon word. In other words, t`+1z is a Lyndon word (since

tt · · · t︸ ︷︷ ︸
`+1 times t

= t`+1).
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But p is a prefix of t. In other words, there exists a q ∈ A∗ such that t = pq. Consider this q. We then
have t`+1︸︷︷︸

=t`t

z = t` t︸︷︷︸
=pq

z = t`p︸︷︷︸
=w

qz = wqz = w (qz). Hence, w is a prefix of the word t`+1z. Thus, w is a prefix

of a Lyndon word in A∗ (because t`+1z is a Lyndon word in A∗). In other words, Assertion F ′ holds. This
proves the implication F ′′ =⇒ F ′. This solves Exercise 6.1.32(f) in the partial-order case.

Remark: Of course, for a letter µ ∈ A, if we have (µ > a for every letter a of w), then we also have
(µ > a for some letter a of w) (since w is nonempty and thus has at least one letter). Hence, Exercise
6.1.32(e) is a particular case of Exercise 6.1.32(f).

Altogether, we have now solved all parts of Exercise 6.1.32 in the partial-order case. Exercise 6.1.33(g) is
thus solved.

[Remark: The validity of some parts of Exercise 6.1.32 in the partial-order case can also be deduced from
their validity in the total-order case using Proposition 13.146.3. For example, the equivalence B′ ⇐⇒ C′ ⇐⇒
E ′ can be treated this way. We shall not give any details of this alternative approach, however.]

13.147. Solution to Exercise 6.1.34. Solution to Exercise 6.1.34. In the following, whenever G is a group
and P is a (left) G-set, we denote by Gu the stabilizer of u in G, that is, the subgroup {g ∈ G | gu = u} of
G.

Let C(n) denote the subgroup 〈cn〉 of the infinite cyclic group C. Then, C/C(n) is a cyclic group with n
elements. Hence,

∣∣C/C(n)
∣∣ = n.

Also, recall that c acts on An by cyclically rotating n-tuples one step to the left (c · (a1, a2, . . . , an) =
(a2, a3, . . . , an, a1)). Thus, cn acts trivially on An (since cyclically rotating an n-tuple n steps to the left
does nothing). Therefore, the whole subgroup C(n) acts trivially on An (since C(n) = 〈cn〉).

The word “divisor” shall mean “positive divisor” throughout this solution.
(a) Let N be any n-necklace. Then, N is an orbit of the C-action, thus a nonempty set. Fix an element

w of N (such a w exists since N is nonempty).
Recall that the subgroup C(n) acts trivially on An. In particular, C(n) stabilizes w. Hence, C(n) ⊂ Cw.

Thus,
[
C : C(n)

]
= [C : Cw] ·

[
Cw : C(n)

]
. As a consequence, [C : Cw] | [C : Cw] ·

[
Cw : C(n)

]
=
[
C : C(n)

]
=∣∣C/C(n)

∣∣ = n, so that [C : Cw] <∞.
But N is an orbit of the C-action containing w. Hence, N is the C-orbit of w. Thus, by the orbit-stabilizer

theorem, we have |N | = [C : Cw]. This yields |N | = [C : Cw] <∞, so that N is a finite set.
Also, |N | = [C : Cw] | n. This solves Exercise 6.1.34(a).
(b) Let w = (w1, w2, . . . , wn) ∈ An be an n-tuple. We need to prove the equivalence between the following

two assertions:

Assertion A: The n-necklace [w] is aperiodic.

Assertion B: Every k ∈ {1, 2, . . . , n− 1} satisfies (wk+1, wk+2, . . . , wn, w1, w2, . . . , wk) 6= w.

We will achieve this by proving the implications A =⇒ B and B =⇒ A. But let us first do some
preparatory work.

Let N denote the n-necklace [w]. Thus, w ∈ N and therefore (as we have shown in the solution of Exercise
6.1.34(a)) we have C(n) ⊂ Cw and |N | = [C : Cw].

We are now ready to prove implications A =⇒ B and B =⇒ A.
Proof of the implication A =⇒ B: Assume that Assertion A holds. In other words, the n-necklace [w] is

aperiodic.
In other words, N is aperiodic (since N = [w]). In other words, the period of N is n (by the definition of

“aperiodic”). In other words, |N | is n (since the period of N is defined as |N |). In other words, |N | = n.
Thus, n = |N | = [C : Cw]. But

n =
[
C : C(n)

]
= [C : Cw]︸ ︷︷ ︸

=n

·
[
Cw : C(n)

] (
since C(n) ⊂ Cw

)
= n ·

[
Cw : C(n)

]
.

Solving this for
[
Cw : C(n)

]
, we obtain

[
Cw : C(n)

]
= 1, so that C(n) = Cw.
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Let now k ∈ {1, 2, . . . , n− 1}. We are going to prove that (wk+1, wk+2, . . . , wn, w1, w2, . . . , wk) 6= w.
Indeed, assume the contrary. Thus, (wk+1, wk+2, . . . , wn, w1, w2, . . . , wk) = w.

Recall that c acts on An by cyclically rotating n-tuples one step to the left. Hence, ck acts on An by
cyclically rotating n-tuples k steps to the left. Hence,

ckw = (wk+1, wk+2, . . . , wn, w1, w2, . . . , wk) = w.

Thus, ck ∈ Cw = C(n) = 〈cn〉. But if an integer a ∈ Z satisfies ca ∈ 〈cn〉, then we must have n | a (this
follows from the structure of the infinite cyclic group C). Applied to a = k, this yields n | k. But this is
absurd, since k ∈ {1, 2, . . . , n− 1}. This contradiction proves that our assumption was wrong. Hence, we
have proven (wk+1, wk+2, . . . , wn, w1, w2, . . . , wk) 6= w.

Now, let us forget that we fixed k. We thus have shown that every k ∈ {1, 2, . . . , n− 1} satisfies
(wk+1, wk+2, . . . , wn, w1, w2, . . . , wk) 6= w. In other words, Assertion B holds. This proves the implication
A =⇒ B.

Proof of the implication B =⇒ A: Assume that Assertion B holds. In other words, every k ∈ {1, 2, . . . , n− 1}
satisfies (wk+1, wk+2, . . . , wn, w1, w2, . . . , wk) 6= w.

We will prove that C(n) = Cw. Indeed, assume the contrary. Thus, C(n) 6= Cw. Since C(n) ⊂ Cw, this
yields that C(n) is a proper subset of Cw. Hence, there exists some d ∈ Cw such that d /∈ C(n). Consider
this d. Write d in the form d = ch for some h ∈ Z (this is possible since c generates C). Let k denote
the remainder of h modulo n. Then, h − k is divisible by n, and thus ch−k ∈ 〈cn〉 = C(n) ⊂ Cw, so that
ch−kw = w. But also, chw = w (since ch = d ∈ Cw). Hence, w = ch︸︷︷︸

=ckch−k

w = ck ch−kw︸ ︷︷ ︸
=w

= ckw.

But k ∈ {0, 1, . . . , n− 1} (since k is a remainder modulo n). We have ch−k 6= ch (since ch−k ∈ C(n)

whereas ch = d /∈ C(n)). Hence, h−k 6= h, so that k 6= 0. Combined with k ∈ {0, 1, . . . , n− 1}, this yields k ∈
{0, 1, . . . , n− 1}\{0} = {1, 2, . . . , n− 1}. Thus, Assertion B yields that (wk+1, wk+2, . . . , wn, w1, w2, . . . , wk) 6=
w.

Recall that c acts on An by cyclically rotating n-tuples one step to the left. Hence, ck acts on An by
cyclically rotating n-tuples k steps to the left. Hence,

ckw = (wk+1, wk+2, . . . , wn, w1, w2, . . . , wk) 6= w = ckw.

This is absurd. This contradiction shows that our assumption was wrong. Hence, we have shown that

C(n) = Cw. Now, |N | =

C : Cw︸︷︷︸
=C(n)

 =
[
C : C(n)

]
= n. In other words, the period of N is n (since the

period of N is defined as |N |). In other words, N is aperiodic (by the definition of “aperiodic”). In other
words, [w] is aperiodic (since N = [w]). In other words, Assertion A holds. This proves the implication
B =⇒ A.

Now we have proven both implications A =⇒ B and B =⇒ A. Hence, the Assertions A and B are
equivalent. Exercise 6.1.34(b) is solved.

Before we come to the solution of Exercise 6.1.34(c), let us state a simple lemma:

Lemma 13.147.1. Let n be a positive integer. Assume that the set A is totally ordered. Let w ∈ An be a
Lyndon word. Let k ∈ {1, 2, . . . , n− 1}. Then, ckw > w in the lexicographic order.

Proof of Lemma 13.147.1. We have w = (w1, w2, . . . , wn) (since w ∈ An). Let u = (w1, w2, . . . , wk) and
v = (wk+1, wk+2, . . . , wn). These words u and v are well-defined and nonempty (since k ∈ {1, 2, . . . , n− 1})
and satisfy

uv = (w1, w2, . . . , wk) (wk+1, wk+2, . . . , wn) = (w1, w2, . . . , wk, wk+1, wk+2, . . . , wn)

= (w1, w2, . . . , wn) = w.
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But the n-tuple ckw is obtained from w by k-fold cyclic rotation to the left (since c acts on An by cyclically
rotating n-tuples one step to the left). In other words,

ckw = (wk+1, wk+2, . . . , wn, w1, w2, . . . , wk) (since w = (w1, w2, . . . , wn) and k ∈ {1, 2, . . . , n− 1})
= (wk+1, wk+2, . . . , wn)︸ ︷︷ ︸

=v

(w1, w2, . . . , wk)︸ ︷︷ ︸
=u

= vu > uv (by Proposition 6.1.14(c))

= w.

This proves Lemma 13.147.1. �

(c) Let N be any aperiodic n-necklace. We need to show that N contains exactly one Lyndon word.
Since the necklace N is aperiodic, we know that the period of N is n. In other words, |N | = n.
Let w be the lexicographically smallest word contained inN . The word w has n letters (since w ∈ N ⊂ An),

and thus is nonempty. We will prove that the word w is Lyndon.
Clearly, N is a C-orbit (since N is an n-necklace), and thus N is the orbit of the word w (since w ∈ N).

In other words, N = Cw.
We can see (as in the solution of Exercise 6.1.34(a)) that C(n) ⊂ Cw and |N | = [C : Cw]. Now, n =[

C : C(n)
]

= [C : Cw]︸ ︷︷ ︸
=|N |=n

·
[
Cw : C(n)

]
= n ·

[
Cw : C(n)

]
. Thus,

[
Cw : C(n)

]
= 1, so that Cw = C(n).

Now, let u and v be two nonempty words satisfying w = uv. We will prove that vu > uv.
Assume the contrary. Thus, vu ≤ uv.
We have w = (w1, w2, . . . , wn) (since w ∈ N ⊂ An). Thus, there exists some k ∈ {0, 1, . . . , n} such that

u = (w1, w2, . . . , wk) and v = (wk+1, wk+2, . . . , wn) (since w = uv). Consider this k. We have 0 < k < n
(since u and v are nonempty). Since v = (wk+1, wk+2, . . . , wn) and u = (w1, w2, . . . , wk), we have vu =
(wk+1, wk+2, . . . , wn, w1, w2, . . . , wk). In other words, the n-tuple vu is obtained from w by k-fold cyclic
rotation to the left. In yet other words, vu = ckw (since c acts on An by cyclically rotating n-tuples one
step to the left). Hence, vu = ck︸︷︷︸

∈C

w ∈ Cw = N . Thus, vu ≥ w (since w is the lexicographically smallest

word contained in N). Combined with vu ≤ uv = w, this yields vu = w. Hence, ckw = vu = w, so that ck

stabilizes w. In other words, ck ∈ Cw = C(n). But this is impossible, since 0 < k < n (and since C(n) is the
subgroup 〈cn〉 of C). This contradiction proves that our assumption was wrong. Thus, we have proven that
vu > uv.

Let us now forget that we fixed u and v. We thus have proven that any nonempty words u and v satisfying
w = uv satisfy vu > uv. In other words, the word w satisfies Assertion D of Theorem 6.1.20. Consequently,
the word w satisfies Assertion A of Theorem 6.1.20 as well (since Theorem 6.1.20 yields that these two
assertions are equivalent); in other words, w is Lyndon. The orbit N thus contains at least one Lyndon word
(namely, w).

We shall next prove that w is the only Lyndon word in N . Indeed, let p be any Lyndon word in N distinct
from w. We will derive a contradiction.

It is easy to see that there exists a k ∈ {1, 2, . . . , n− 1} satisfying p = ckw 1026. Consider this k. Then,
w = cn−kp 1027. Notice that n−k ∈ {1, 2, . . . , n− 1} (since k ∈ {1, 2, . . . , n− 1}) and p ∈ N ⊂ An. Hence,
Lemma 13.147.1 (applied to p and n− k instead of w and k) yields that cn−kp > p. Hence, p < cn−kp = w.

1026Proof. We have p ∈ N = Cw. Hence, there exists some e ∈ C satisfying p = ew. Consider this e.
We know that C(n) acts trivially on An, and thus stabilizes w. Hence, C(n)w = {w}.
By the well-known properties of the infinite cyclic group, we know that the elements c0, c1, . . ., cn−1 of C form a system of

unique representatives for the cosets of C(n) in C. Hence, every d ∈ C belongs to the coset c`C(n) for some ` ∈ {0, 1, . . . , n− 1}.
Applied to d = e, this yields that e belongs to the coset c`C(n) for some ` ∈ {0, 1, . . . , n− 1}. Consider this `. We have

e ∈ c`C(n), thus p = e︸︷︷︸
∈c`C(n)

w ∈ c` C(n)w︸ ︷︷ ︸
={w}

= c` {w} =
{
c`w

}
, so that p = c`w.

If ` = 0, then p = c`︸︷︷︸
=c0=1C

w = 1Cw = w, which contradicts the fact that p is distinct from w. Hence, we cannot have ` = 0.

Thus, ` ∈ {0, 1, . . . , n− 1} \ {0} = {1, 2, . . . , n− 1}. Hence, there exists a k ∈ {1, 2, . . . , n− 1} satisfying p = ckw (namely,
k = `), qed.

1027Proof. We know that cn acts trivially on An. Thus, cnw = w. Hence, w = cn︸︷︷︸
=cn−kck

w = cn−k ckw︸︷︷︸
=p

= cn−kp, qed.
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Since p ∈ N , this shows that there exists an element of N which is lexicographically smaller than w (namely,
p). This contradicts the fact that w is the lexicographically smallest word contained in N .

Now, let us forget that we fixed w. We thus have obtained a contradiction for every Lyndon word p in N
distinct from w. Thus, there exists no Lyndon word p in N distinct from w. Hence, w is the only Lyndon
word in N . Since we already know that w is a Lyndon word in N , this yields that N contains exactly one
Lyndon word (namely, w). This solves Exercise 6.1.34(c).

(d) Let N be an n-necklace which is not aperiodic. We shall prove that N contains no Lyndon word.
Indeed, assume the contrary. Then, N contains a Lyndon word. Let w be this Lyndon word.
But the n-necklace N is not aperiodic. Thus, |N | 6= n (since N is aperiodic if and only if |N | = n). We

can see (as in the solution of Exercise 6.1.34(a)) that |N | = [C : Cw]. Thus, [C : Cw] = |N | 6= n =
[
C : C(n)

]
,

so that Cw 6= C(n). But C(n) ⊂ Cw (this can be proven just as in the solution of Exercise 6.1.34(a)). Hence,
C(n) is a proper subset of Cw. Hence, there exists some e ∈ Cw such that e /∈ C(n). Consider this e.

We have ew = w (since e ∈ Cw). It is now easy to see that there exists a k ∈ {1, 2, . . . , n− 1} such that
ckw = w 1028. Consider this k. Lemma 13.147.1 yields ckw > w (since w ∈ N ⊂ An), which contradicts
ckw = w. This contradiction proves that our assumption was false. Thus, N contains no Lyndon word. This
solves Exercise 6.1.34(d).

(e) If w is a Lyndon word of length n, then [w] is an aperiodic n-necklace1029. Hence, the map

(the set of all Lyndon words of length n)→ (the set of all aperiodic n-necklaces) ,

w 7→ [w]

is well-defined. Denote this map by Φ. This map Φ is injective1030 and surjective1031. Hence, Φ is bijective.
In other words, Φ is a bijection between the set of all Lyndon words of length n and the set of all aperiodic
n-necklaces. Thus, the aperiodic n-necklaces are in bijection with Lyndon words of length n. This solves
Exercise 6.1.34(e).

Before we start solving Exercise 6.1.34(f), we state a lemma about words:

Lemma 13.147.2. Let N be a positive integer, and let w ∈ AN . Let p be a positive divisor of N . Assume
that cpw = w. Then, there exists a word q ∈ Ap such that w = qN/p.

Proof of Lemma 13.147.2. (The following proof is overkill, but it is the simplest proof to formalize.)
Notice that N/p is a positive integer (since p is a positive divisor of N), so that N/p− 1 ∈ N.

1028Proof. We know that C(n) acts trivially on An, and thus stabilizes w. Hence, C(n)w = {w}.
By the well-known properties of the infinite cyclic group, we know that the elements c0, c1, . . ., cn−1 of C form a system of

unique representatives for the cosets of C(n) in C. Hence, every d ∈ C belongs to the coset c`C(n) for some ` ∈ {0, 1, . . . , n− 1}.
Applied to d = e, this yields that e belongs to the coset c`C(n) for some ` ∈ {0, 1, . . . , n− 1}. Consider this `. We have

e ∈ c`C(n), thus w = e︸︷︷︸
∈c`C(n)

w ∈ c` C(n)w︸ ︷︷ ︸
={w}

= c` {w} =
{
c`w

}
, so that w = c`w. Thus, c`w = w.

If ` = 0, then e ∈ c`︸︷︷︸
=c0=1C

C(n) = 1CC(n) = C(n), which contradicts e /∈ C(n). Hence, we cannot have ` = 0. Thus,

` ∈ {0, 1, . . . , n− 1} \ {0} = {1, 2, . . . , n− 1}. Hence, there exists a k ∈ {1, 2, . . . , n− 1} satisfying ckw = w (namely, k = `),

qed.
1029Proof. Let w be a Lyndon word of length n. Then, [w] is an n-necklace. If [w] was not aperiodic, then the necklace [w]

would contain no Lyndon word (by Exercise 6.1.34(d), applied to N = [w]), which would contradict the fact that this necklace

[w] contains the Lyndon word w. Hence, [w] must be aperiodic, qed.
1030Proof. Let w and w′ be two Lyndon words of length n such that Φ (w) = Φ (w′). We shall prove that w = w′.
We have Φ (w) = [w] (by the definition of Φ) and Φ (w′) = [w′] (similarly). Thus, [w′] = Φ (w′) = Φ (w) = [w].
The word w is contained in [w] (obviously), and the word w′ is contained in [w′] = [w]. Thus, both w and w′ are contained

in [w].

We know that [w] is an aperiodic n-necklace. Hence, [w] contains exactly one Lyndon word (by Exercise 6.1.34(c)). Hence,
any two Lyndon words contained in [w] must be identical. Applying this to the two Lyndon words w and w′ both contained in

[w], we obtain that w and w′ are identical, i.e., we have w = w′.
Let us now forget that we fixed w and w′. We have thus proven that any two Lyndon words w and w′ of length n satisfying

Φ (w) = Φ (w′) must satisfy w = w′. In other words, the map Φ is injective, qed.
1031Proof. Let N be an aperiodic n-necklace. Hence, N contains exactly one Lyndon word (by Exercise 6.1.34(c)). Let w

be this Lyndon word. The definition of Φ yields Φ (w) = [w] = N (since N is the aperiodic n-necklace containing w). Thus,

N = Φ (w) ∈ Im Φ.

Now, let us forget that we fixed N . We have thus shown that N ∈ Im Φ for every aperiodic n-necklace N . In other words,
the map Φ is surjective, qed.
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We have w = (w1, w2, . . . , wN ) (since w ∈ AN ). Let u = (w1, w2, . . . , wp) and v = (wp+1, wp+2, . . . , wN ).
(These u and v are well-defined since p ∈ {0, 1, . . . , N}.) Then,

u︸︷︷︸
=(w1,w2,...,wp)

v︸︷︷︸
=(wp+1,wp+2,...,wN )

= (w1, w2, . . . , wp) (wp+1, wp+2, . . . , wN )

= (w1, w2, . . . , wp, wp+1, wp+2, . . . , wN )

= (w1, w2, . . . , wN ) = w.

On the other hand, c acts on AN by cyclically rotating N -tuples one step to the left. Hence, cpw is the result
of cyclically rotating the N -tuple w to the left p times. In other words,

cpw = (wp+1, wp+2, . . . , wN , w1, w2, . . . , wp) = (wp+1, wp+2, . . . , wN )︸ ︷︷ ︸
=v

(w1, w2, . . . , wp)︸ ︷︷ ︸
=u

= vu.

Compared with cpw = w = uv, this yields uv = vu. Hence, Proposition 6.1.4 yields that there exist a t ∈ A∗

and two nonnegative integers n and m such that u = tn and v = tm. Consider this t and these n and m.

We have u = (w1, w2, . . . , wp), so that u ∈ Ap and thus ` (u) = p. Hence, p = `

 u︸︷︷︸
=tn

 = ` (tn) = n` (t),

so that n` (t) = p. On the other hand, v = (wp+1, wp+2, . . . , wN ), so that ` (v) = N − p and thus N − p =

`

 v︸︷︷︸
=tm

 = ` (tm) = m` (t) and thus m` (t) = N − p. Now, n` (t) = p 6= 0. Hence, n 6= 0 and ` (t) 6= 0. Now,

m

n
=
m` (t)

n` (t)
=
N − p
p

(since m` (t) = N − p and n` (t) = p)

= N/p− 1,

so that m = n · (N/p− 1). Hence, tm = tn·(N/p−1) =

 tn︸︷︷︸
=u

N/p−1

= uN/p−1. Now, w = u v︸︷︷︸
=tm=uN/p−1

=

uuN/p−1 = uN/p. Hence, there exists a word q ∈ Ap such that w = qN/p (namely, q = u). Lemma 13.147.2
is proven. �

We also recall a lemma about the functions µ and φ:

Lemma 13.147.3. Every positive integer n satisfies∑
d|n

µ (d) = δn,1;(13.147.1)

∑
d|n

µ (d)
n

d
= φ (n) .(13.147.2)

Proof of Lemma 13.147.3. Both equalities (13.147.1) and (13.147.2) have been proven in the solution of
Exercise 2.9.6. (Indeed, (13.147.1) is (13.84.3), and (13.147.2) is (13.84.5).) �

In Exercise 6.1.34, an action of the cyclic group C on An was defined. In the same way, we define an
action of the cyclic group C on Am for any positive integer m. The orbits of this latter C-action will be called
the m-necklaces. (The notion of “n-necklaces” defined in Exercise 6.1.34 is clearly a particular case of this.)
We define the notions of “period” and “aperiodic” for m-necklaces in the same way as they were defined for
n-necklaces in Exercise 6.1.34. We will use the same notations for m-necklaces as we do for n-necklaces (i.e.,
the m-necklace containing a given w ∈ Am will be denoted by [w]).

Let us now state a few lemmas about the actions of C on words:

Lemma 13.147.4. Let m be a positive integer. Let u ∈ A be a letter. Let v ∈ Am−1 be a word. Then,

c (uv) = vu

(where we identify the letter u with the one-letter word (u)).
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Proof of Lemma 13.147.4. From v ∈ Am−1, we obtain v = (v1, v2, . . . , vm−1), so that

u︸︷︷︸
=(u)

v︸︷︷︸
=(v1,v2,...,vm−1)

= (u) (v1, v2, . . . , vm−1) = (u, v1, v2, . . . , vm−1) .

But recall that c acts on Am by cyclically rotating m-tuples one step to the left. Thus,

c (u, v1, v2, . . . , vm−1) = (v1, v2, . . . , vm−1, u) = (v1, v2, . . . , vm−1)︸ ︷︷ ︸
=v

(u)︸︷︷︸
=u

= vu.

Hence,
c (uv)︸︷︷︸

=(u,v1,v2,...,vm−1)

= c (u, v1, v2, . . . , vm−1) = vu,

and thus Lemma 13.147.4 is proven. �

Lemma 13.147.5. Let n be a positive integer. Let d be a positive divisor of n. Thus, n/d is a positive
integer.

Define a map

∆ : An/d → An,

w 7→ wd

(where, as we recall, wd means the d-fold concatenation ww · · ·w︸ ︷︷ ︸
d times

of w with itself).

Then:

(a) This map ∆ is well-defined.
(b) The map ∆ is C-equivariant (meaning that ∆ (gw) = g ·∆ (w) for every g ∈ C and w ∈ An/d).
(c) The map ∆ is injective.

Proof of Lemma 13.147.5. (a) If w ∈ An/d, then the word wd has length

`
(
wd
)

= d ` (w)︸ ︷︷ ︸
=n/d

(since w ∈ An/d)

= d (n/d) = n

and thus satisfies wd ∈ An. Hence, the map ∆ is well-defined. This proves Lemma 13.147.5(a).
(b) We need to show that ∆ is C-equivariant. Clearly, it is enough to prove that ∆ (cw) = c ·∆ (w) for

every w ∈ An/d (since c generates the group C). So let us prove this.
Let w ∈ An/d. Thus, w =

(
w1, w2, . . . , wn/d

)
. Let w denote the word

(
w2, w3, . . . , wn/d

)
. Then, (identi-

fying the letter w1 with the one-letter word (w1)) we have

w1︸︷︷︸
=(w1)

w︸︷︷︸
=(w2,w3,...,wn/d)

= (w1)
(
w2, w3, . . . , wn/d

)
=
(
w1, w2, w3, . . . , wn/d

)
=
(
w1, w2, . . . , wn/d

)
= w.

Thus, w = w1w, so that

cw = c (w1w) = ww1 (by Lemma 13.147.4, applied to m = n/d, u = w1 and v = w) .

Also, it is easy to see that

(pq)
d

= p (qp)
d−1

q for any p ∈ A∗ and q ∈ A∗.(13.147.3)

1032.
Taking both sides of the equality w = w1w to the d-th power, we obtain

wd = (w1w)
d

= w1 (ww1)
d−1

w (by (13.147.3), applied to p = w1 and q = w) .

1032Proof. Let p ∈ A∗ and q ∈ A∗. Then,

(pq)d = (pq) (pq) · · · (pq)︸ ︷︷ ︸
d times

= p (qp) (qp) · · · (qp)︸ ︷︷ ︸
d−1 times︸ ︷︷ ︸
=(qp)d−1

q = p (qp)d−1 q,

qed.
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The definition of ∆ yields ∆ (w) = wd = w1 (ww1)
d−1

w. Applying c to both sides of this identity, we obtain

c ·∆ (w) = c ·
(
w1 (ww1)

d−1
w
)

= (ww1)
d−1

ww1(
by Lemma 13.147.4, applied to m = n, u = w1 and v = (ww1)

d−1
w
)

= (ww1)
d−1

(ww1) =

ww1︸︷︷︸
=cw

d

= (cw)
d
.

Compared with ∆ (cw) = (cw)
d

(by the definition of ∆), this yields ∆ (cw) = c ·∆ (w). We thus have shown
that ∆ is C-equivariant. This proves Lemma 13.147.5(b).

(c) We need to prove that ∆ is injective. In other words, we need to prove that every w ∈ An/d can be
reconstructed from ∆ (w). But this is easy: Since ∆ (w) = wd (by the definition of ∆), the word w can be
obtained from ∆ (w) by taking the first n/d letters of ∆ (w). Hence, w can be reconstructed from ∆ (w).
This proves Lemma 13.147.5(c).

�

We now step to the solution of Exercise 6.1.34(f):
(f) Exercise 6.1.34(a) yields that for any n-necklace N , we have |N | | n. Hence, for any n-necklace N ,

the cardinality |N | is a divisor of n (since |N | ∈ N). Now, recall that the n-necklaces are the orbits of the
C-action on An, and therefore form a set partition of the set An. Hence,

|An| =
∑

N is an n-necklace

|N | =
∑
d|n

∑
N is an n-necklace;

|N |=d

d

(because for any n-necklace N , the cardinality |N | is a divisor of n). Hence,

(13.147.4) |A|n = |An| =
∑
d|n

∑
N is an n-necklace;

|N |=d

d

︸ ︷︷ ︸
=d|{N is an n-necklace | |N |=d}|

=
∑
d|n

d |{N is an n-necklace | |N | = d}| .

Now, for every positive integer e, let Aper (e) denote the set of all aperiodic e-necklaces. We shall now
prove that

(13.147.5) |{N is an n-necklace | |N | = n/d}| = |Aper (n/d)|

for every divisor d of n.
Proof of (13.147.5): Let d be a divisor of n. Then, n/d is a positive integer. We can thus define a map

∆ : An/d → An,

w 7→ wd

(where, as we recall, wd means the d-fold concatenation ww · · ·w︸ ︷︷ ︸
d times

of w with itself). Lemma 13.147.5(a) shows

that this map ∆ is well-defined. Lemma 13.147.5(b) shows that this map ∆ is C-equivariant (meaning that
∆ (gw) = g ·∆ (w) for every g ∈ C and w ∈ An/d). Lemma 13.147.5(c) shows that this map ∆ is injective.

Since the map ∆ is C-equivariant, it gives rise to a map

∆ :
(

the set of all C-orbits on An/d
)
→ (the set of all C-orbits on An) ,

N 7→ ∆ (N) .

Consider this map ∆. The map ∆ is injective1033. Furthermore, ∆ is a map from the set of all C-orbits on
An/d to the set of all C-orbits on An. In other words, ∆ is a map from the set of all (n/d)-necklaces to the

1033Proof. Let P and Q be two C-orbits on An/d such that ∆ (P ) = ∆ (Q). We want to show that P = Q.

By the definition of ∆, we have ∆ (P ) = ∆ (P ) and ∆ (Q) = ∆ (Q). Thus, ∆ (P ) = ∆ (P ) = ∆ (Q) = ∆ (Q).

The orbit P is nonempty, and thus contains an element. Let p be such an element.
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set of all n-necklaces (since the C-orbits on An/d are the (n/d)-necklaces, and the C-orbits on An are the
n-necklaces). It is now easy to see that

(13.147.6) ∆ (Aper (n/d)) ⊂ {N is an n-necklace | |N | = n/d} .
1034 But we also have

(13.147.7) {N is an n-necklace | |N | = n/d} ⊂ ∆ (Aper (n/d)) .

Proof of (13.147.7): Let P ∈ {N is an n-necklace | |N | = n/d}. Thus, P is an n-necklace such that
|P | = n/d. We shall now prove that P ∈ ∆ (Aper (n/d)).

The set P is an n-necklace, thus a C-orbit on An, thus nonempty. Pick some w ∈ P (this clearly
exists since P is nonempty). Then P is the C-orbit of w. Hence, by the orbit-stabilizer theorem, we have
|P | = [C : Cw]. Hence, [C : Cw] = |P | = n/d. Hence, Cw is a subgroup of C having index n/d. Since the
only subgroup of C having index n/d is

〈
cn/d

〉
1035, this yields that Cw is

〈
cn/d

〉
. Hence, Cw =

〈
cn/d

〉
,

so that cn/d ∈
〈
cn/d

〉
= Cw, and thus cn/dw = w. Now, Lemma 13.147.2 (applied to N = n and p = n/d)

yields that there exists a word q ∈ An/d such that w = qn/(n/d). Consider this q. We have w = qn/(n/d) = qd,

whereas the definition of ∆ yields ∆ (q) = qd. Thus, w = qd = ∆

 q︸︷︷︸
∈[q]

 ∈ ∆ ([q]). The definition of ∆

yields ∆ ([q]) = ∆ ([q]). Hence, w ∈ ∆ ([q]) = ∆ ([q]). Thus, ∆ ([q]) is the C-orbit on An containing w (since
∆ ([q]) is a C-orbit on An (since ∆ ([q]) is an n-necklace)). In other words, ∆ ([q]) is the C-orbit of w. Hence,
∆ ([q]) = P (since P is the C-orbit of w).

But P = ∆ ([q]) = ∆ ([q]) and thus |P | = |∆ ([q])| = |[q]| (since ∆ is injective), so that |[q]| = |P | = n/d.
By the definition of the period of an (n/d)-necklace, we see that the period of the (n/d)-necklace [q] is
|[q]| = n/d. In other words, the (n/d)-necklace [q] is aperiodic (by the definition of “aperiodic”). In
other words, [q] ∈ Aper (n/d) (since Aper (n/d) is the set of all aperiodic (n/d)-necklaces). Now, P =

∆

 [q]︸︷︷︸
∈Aper(n/d)

 ∈ ∆ (Aper (n/d)).

Let us now forget that we fixed P . We thus have proven that every P ∈ {N is an n-necklace | |N | = n/d}
satisfies P ∈ ∆ (Aper (n/d)). In other words, {N is an n-necklace | |N | = n/d} ⊂ ∆ (Aper (n/d)). This
proves (13.147.7).

Combining (13.147.6) with (13.147.7), we obtain

∆ (Aper (n/d)) = {N is an n-necklace | |N | = n/d} .

We have ∆

 p︸︷︷︸
∈P

 ∈ ∆ (P ) = ∆ (Q). Hence, there exists some q ∈ Q such that ∆ (p) = ∆ (q). Consider this q. We have

∆ (p) = ∆ (q), and thus p = q (since ∆ is injective). The element p belongs to P ∩ Q (since p ∈ P and p = q ∈ Q), and thus
the two orbits P and Q have an element in common (namely, p). But any two orbits which have an element in common must

be identical. Thus, P and Q are identical, i.e., we have P = Q.

Let us forget that we fixed P andQ. We thus have shown that any two C-orbits P andQ on An/d which satisfy ∆ (P ) = ∆ (Q)

must satisfy P = Q. In other words, the map ∆ is injective.
1034Proof. Let M ∈ Aper (n/d). Then, M is an aperiodic (n/d)-necklace (since Aper (n/d) is the set of all aperiodic

(n/d)-necklaces). In other words, M is an (n/d)-necklace whose period is n/d.
The period of M is defined to be |M |. Thus, |M | is n/d (since the period of M is n/d). In other words, |M | = n/d. But the

definition of ∆ yields ∆ (M) = ∆ (M), thus∣∣∆ (M)
∣∣ = |∆ (M)| = |M | (since ∆ is injective)

= n/d.

Hence, ∆ (M) ∈ {N is an n-necklace | |N | = n/d} (since ∆ (M) is an n-necklace (because ∆ is a map from the set of all
(n/d)-necklaces to the set of all n-necklaces)).

Now, let us forget that we fixed M . We thus have proven that ∆ (M) ∈ {N is an n-necklace | |N | = n/d} for every

M ∈ Aper (n/d). In other words, ∆ (Aper (n/d)) ⊂ {N is an n-necklace | |N | = n/d}. This proves (13.147.6).
1035This is a particular case of the following elementary fact: If e is a positive integer, then the only subgroup of C having

index e is 〈ce〉. (This is because C ∼= (Z,+), and because the only subgroup of (Z,+) having index e is eZ.)
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Hence, ∣∣∆ (Aper (n/d))
∣∣ = |{N is an n-necklace | |N | = n/d}| ,

so that

|{N is an n-necklace | |N | = n/d}| =
∣∣∆ (Aper (n/d))

∣∣ = |Aper (n/d)|

(since ∆ is injective). This proves (13.147.5).
Now, every divisor d of n satisfies∣∣∣∣∣∣

N is an n-necklace | |N | = d︸︷︷︸
=n/(n/d)


∣∣∣∣∣∣ = |{N is an n-necklace | |N | = n/ (n/d)}|

=

∣∣∣∣∣∣Aper

n/ (n/d)︸ ︷︷ ︸
=d

∣∣∣∣∣∣
(by (13.147.5), applied to n/d instead of d)

= |Aper (d)| .(13.147.8)

Now, (13.147.4) becomes

(13.147.9) |A|n =
∑
d|n

d |{N is an n-necklace | |N | = d}|︸ ︷︷ ︸
=|Aper(d)|

(by (13.147.8))

=
∑
d|n

d |Aper (d)| =
∑
e|n

e |Aper (e)|

(here, we renamed the summation index d as e). Now,∑
d|n

µ (d) |A|n/d︸ ︷︷ ︸
=
∑
e|n/d e|Aper(e)|

(by (13.147.9), applied to
n/d instead of n)

=
∑
d|n

µ (d)
∑
e|n/d

e |Aper (e)| =
∑
d|n

∑
e|n/d︸ ︷︷ ︸

=
∑
e|n
∑
d|n/e

µ (d) e |Aper (e)|

=
∑
e|n

∑
d|n/e

µ (d) e |Aper (e)| =
∑
e|n

∑
d|n/e

µ (d)


︸ ︷︷ ︸

=δn/e,1
(by (13.147.1), applied
to n/e instead of n)

e |Aper (e)|

=
∑
e|n

δn/e,1︸ ︷︷ ︸
=δn,e

e |Aper (e)| =
∑
e|n

δn,ee |Aper (e)| = n |Aper (n)| .

Solving this for |Aper (n)|, we obtain

(13.147.10) |Aper (n)| = 1

n

∑
d|n

µ (d) |A|n/d .

Now, let us recall that Aper (n) is the set of all aperiodic n-necklaces. Thus,

|Aper (n)| = (the number of all aperiodic n-necklaces) .

Hence,

(the number of all aperiodic n-necklaces) = |Aper (n)| = 1

n

∑
d|n

µ (d) |A|n/d .

This solves Exercise 6.1.34(f).
(g) We shall use the notations we introduced in the solution of Exercise 6.1.34(f).
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We have seen (in the solution of Exercise 6.1.34(f)) that for any n-necklace N , the cardinality |N | is a
divisor of n. Hence,

(the number of all n-necklaces)

=
∑
d|n

(the number of all n-necklaces N such that |N | = d)︸ ︷︷ ︸
=|{N is an n-necklace | |N |=d}|=|Aper(d)|

(by (13.147.8))

=
∑
d|n

|Aper (d)| =
∑
e|n

|Aper (e)|︸ ︷︷ ︸
=

1

e
∑
d|e µ(d)|A|e/d

(by (13.147.10), applied to e
instead of n)

(here, we renamed the summation index d as e)

=
∑
e|n

1

e

∑
d|e

µ (d) |A|e/d =
∑
e|n

∑
d|e︸ ︷︷ ︸

=
∑
d|n

∑
e|n;
d|e

1

e
µ (d) |A|e/d =

∑
d|n

∑
e|n;
d|e

1

e
µ (d) |A|e/d

=
∑
d|n

∑
e|n/d︸ ︷︷ ︸

=
∑
e|n
∑
d|n/e

1

de
µ (d) |A|e (here, we have substituted de for e in the inner sum)

=
∑
e|n

∑
d|n/e

1

de
µ (d) |A|e .

(13.147.11)

From (13.147.2), we have

(13.147.12) φ (n) =
∑
d|n

µ (d)
n

d
.

Now,

1

n

∑
d|n

φ (d) |A|n/d =
1

n

∑
d|n

φ (n/d) |A|d (here, we have substituted n/d for d in the sum)

=
1

n

∑
e|n

φ (n/e)︸ ︷︷ ︸
=
∑
d|n/e µ(d)

n/e

d
(by (13.147.12), applied to n/e

instead of n)

|A|e

(here, we have renamed the summation index d as e)

=
1

n

∑
e|n

∑
d|n/e

µ (d)
n/e

d

 |A|e =
1

n

∑
e|n

∑
d|n/e

µ (d)
n/e

d
|A|e =

1

n

∑
e|n

∑
d|n/e

µ (d)
n

de
|A|e

=
∑
e|n

∑
d|n/e

1

de
µ (d) |A|e .

Compared with (13.147.11), this yields

(the number of all n-necklaces) =
1

n

∑
d|n

φ (d) |A|n/d .

This solves Exercise 6.1.34(g).
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(h) Alternative solution of Exercise 6.1.29: Let n be a positive integer. Exercise 6.1.34(e) yields that the
aperiodic n-necklaces are in bijection with Lyndon words of length n. Hence,

(the number of all aperiodic n-necklaces) = (the number of all Lyndon words of length n) ,

so that

(the number of all Lyndon words of length n)

= (the number of all aperiodic n-necklaces) =
1

n

∑
d|n

µ (d) |A|n/d

(by Exercise 6.1.34(f)). Thus,

(the number of all Lyndon words of length n) =
1

n

∑
d|n

µ (d) |A|n/d︸ ︷︷ ︸
=qn/d

(since |A|=q)

=
1

n

∑
d|n

µ (d) qn/d.

This solves Exercise 6.1.29 again. Thus, Exercise 6.1.34(h) is solved.
(i) First solution of Exercise 6.1.34(i): Let q ∈ Z. We need to show that n |

∑
d|n µ (d) qn/d and

n |
∑
d|n φ (d) qn/d.

Let r be the remainder of q modulo n. Then, r ∈ {0, 1, . . . , n− 1} ⊂ N. Fix a finite totally ordered set A
containing r elements. (Such an A exists, since r ∈ N. For example, we can set A = {1, 2, . . . , r}.) Exercise

6.1.34(f) shows that the number of all aperiodic n-necklaces is
1

n

∑
d|n µ (d) |A|n/d. Hence,

1

n

∑
d|n µ (d) |A|n/d

is an integer (since the number of all aperiodic n-necklaces is an integer). In other words, n |
∑
d|n µ (d) |A|n/d,

so that
∑
d|n µ (d) |A|n/d ≡ 0 modn. But r is the remainder of q modulo n. Thus, r ≡ qmodn, so that

q ≡ r = |A|modn (since the set A has r elements). Now,
∑
d|n µ (d) qn/d︸︷︷︸

≡|A|n/d modn
(since q≡|A|modn)

≡
∑
d|n µ (d) |A|n/d ≡

0 modn, so that n |
∑
d|n µ (d) qn/d.

Also, Exercise 6.1.34(g) shows that the number of all n-necklaces is
1

n

∑
d|n φ (d) |A|n/d. Hence,

1

n

∑
d|n φ (d) |A|n/d is an integer (since the number of all n-necklaces is an integer). In other words, n |∑

d|n φ (d) |A|n/d, so that
∑
d|n φ (d) |A|n/d ≡ 0 modn. Now,

∑
d|n φ (d) qn/d︸︷︷︸

≡|A|n/d modn
(since q≡|A|modn)

≡
∑
d|n φ (d) |A|n/d ≡

0 modn, so that n |
∑
d|n φ (d) qn/d. The solution of Exercise 6.1.34(i) is thus complete.

Second solution of Exercise 6.1.34(i): Forget that we fixed n. Let q ∈ Z. Let A denote the ring Z.
For every n ∈ {1, 2, 3, . . .}, let ϕn denote the identity endomorphism id of A. Exercise 2.9.8 yields (among
other things) that the seven equivalent assertions C, D, E , F , G, H and J of Exercise 2.9.6 are satisfied
for the family (bn)n≥1 = (qn)n≥1. In particular, Assertion F of Exercise 2.9.6 is satisfied for the family

(bn)n≥1 = (qn)n≥1. In other words, every positive integer n satisfies

(13.147.13)
∑
d|n

µ (d)ϕd

(
qn/d

)
∈ nZ.

Also, Assertion G of Exercise 2.9.6 is satisfied for the family (bn)n≥1 = (qn)n≥1 (since the seven equivalent

assertions C, D, E , F , G, H and J of Exercise 2.9.6 are satisfied for the family (bn)n≥1 = (qn)n≥1). In other
words, every positive integer n satisfies

(13.147.14)
∑
d|n

φ (d)ϕd

(
qn/d

)
∈ nZ.
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Now, fix a positive integer n. We can rewrite (13.147.13) as n |
∑
d|n µ (d)ϕd

(
qn/d

)
. Since∑

d|n

µ (d) ϕd︸︷︷︸
=id

(
qn/d

)
=
∑
d|n

µ (d) qn/d,

this simplifies to n |
∑
d|n µ (d) qn/d. Also, we can rewrite (13.147.14) as n |

∑
d|n φ (d)ϕd

(
qn/d

)
. Since∑

d|n

φ (d) ϕd︸︷︷︸
=id

(
qn/d

)
=
∑
d|n

φ (d) qn/d,

this simplifies to n |
∑
d|n φ (d) qn/d. Exercise 6.1.34(i) is thus solved again.

13.148. Solution to Exercise 6.1.35. Solution to Exercise 6.1.35. There exists a u ∈ A∗ such that w = uv
(since v is a suffix of w). Consider this u.

The word v is Lyndon and thus nonempty. Hence, ` (v) > 0.
The exercise asks us to prove the logical equivalence

(13.148.1) (t is the longest Lyndon suffix of wt) ⇐⇒ (we do not have v < t) .

We shall prove the =⇒ and ⇐= parts of this equivalence separately:
=⇒: Assume that t is the longest Lyndon suffix of wt. We need to prove that we do not have v < t.
Assume the contrary. Thus, v < t. Now, both v and t are Lyndon words. Hence, Proposition 6.1.16(a)

(applied to v and t instead of u and v) yields that the word vt is Lyndon. But vt is a suffix of wt (since
v is a suffix of w). Hence, vt is a Lyndon suffix of wt. This Lyndon suffix is clearly longer than t (since
` (vt) = ` (v)︸︷︷︸

>0

+` (t) > ` (t)), which flies in the face of the fact that t is the longest Lyndon suffix of wt. This

contradiction shows that our assumption was wrong. Hence, we have proven that we do not have v < t.
This proves the =⇒ part of the equivalence (13.148.1).
⇐=: Assume that we do not have v < t. We must show that t is the longest Lyndon suffix of wt.
Assume the contrary. Then, t is not the longest Lyndon suffix of wt. Since t is a Lyndon suffix of wt, this

means that there exists a Lyndon suffix r of wt which satisfies ` (r) > ` (t). Let q be the shortest such suffix.
Thus, q is a Lyndon suffix of wt and satisfies ` (q) > ` (t). Moreover, q is the shortest such Lyndon suffix.

Hence, if r is a Lyndon suffix of wt which satisfies ` (r) > ` (t), then

(13.148.2) ` (r) ≥ ` (q) .

Both q and t are suffixes of wt, and the suffix q begins earlier (since ` (q) > ` (t)). Thus, there exists a
nonempty suffix g of w such that q = gt. Consider this g.

The word t is nonempty (since it is Lyndon) and a suffix of q (since q = gt). Thus, Corollary 6.1.15
(applied to q and t instead of w and v) yields t ≥ q (since q is Lyndon).

The word t is Lyndon (by assumption) and a proper suffix of q (since q = gt and since g is nonempty).
In other words, t is a Lyndon proper suffix1036 of q. Moreover, the word t is the longest Lyndon proper
suffix of q 1037. In other words, the word t is the longest proper suffix of q such that t is Lyndon. Also,
` (q) > ` (t) ≥ 1 (since t is nonempty). Thus, q is a Lyndon word of length > 1. Hence, Exercise 6.1.31(a)
(applied to q, g and t instead of w, u and v) shows that the words g and t are Lyndon. In particular, g is
a Lyndon suffix of w (since g is Lyndon and a suffix of w). Since v is the longest Lyndon suffix of w, this
shows that g is at most as long as v. In other words, ` (g) ≤ ` (v).

Since t is nonempty, we have g < gt.

1036Of course, a Lyndon proper suffix of q just means a proper suffix z of q such that z is Lyndon.
1037Proof. Let r be a Lyndon proper suffix of q. We shall prove that ` (r) ≤ ` (t).
Indeed, assume the contrary (for the sake of contradiction). Thus, ` (r) > ` (t). Now, since r is a suffix of q, and since q (in

turn) is a suffix of wt, we see that r is a suffix of wt. Thus, r is a Lyndon suffix of wt (since r is Lyndon). Thus, (13.148.2) shows
that ` (r) ≥ ` (q). But since r is a proper suffix of q, we have ` (r) < ` (q). This contradicts ` (r) ≥ ` (q). This contradiction

proves that our assumption was wrong. Hence, we have shown that ` (r) ≤ ` (t).

Now, let us forget that we fixed r. We thus have shown that any Lyndon proper suffix r of q satisfies ` (r) ≤ ` (t). In other
words, any Lyndon proper suffix of q is at most as long as t. Since t is a Lyndon proper suffix of q, this shows that the word t

is the longest Lyndon proper suffix of q. Qed.
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Both g and v are suffixes of w, and the suffix g begins no earlier than v (since ` (g) ≤ ` (v)). Therefore,
g is a suffix of v. Hence, Corollary 6.1.15 (applied to v and g instead of w and v) yields g ≥ v. Hence,
v ≤ g < gt = q ≤ t (since t ≥ q). This contradicts the fact that we do not have v < t. Thus, we have
obtained a contradiction. Our assumption was therefore wrong, and we have shown that t is the longest
Lyndon suffix of wt. This proves the ⇐= part of the equivalence (13.148.1).

We have now proven both parts of the equivalence (13.148.1), and thus solved Exercise 6.1.35.
[Remark: Exercise 6.1.35 still holds in the partial-order setting1038. In fact, the solution we have given

above still applies in this setting.]

13.149. Solution to Exercise 6.1.36. Solution to Exercise 6.1.36. Let a be the first letter of the word
w. (This is well-defined, since w has length > 1 > 0.) We consider a as a one-letter word; thus, ` (a) = 1.
Clearly, a is a prefix of w (since a is the first letter of w). Hence, there exists a word w′ such that w = aw′.
Consider this w′. The word w′ is nonempty (since w has length > 1).

Now, if h is any word, then

(13.149.1) the suffixes of h are precisely the proper suffixes of ah

(since a is a single letter). Applying this to h = w′, we see that the suffixes of w′ are precisely the proper
suffixes of aw′. In other words, the suffixes of w′ are precisely the proper suffixes of w (since aw′ = w).
Thus, v is the longest Lyndon suffix of w′ (since v is the longest Lyndon proper suffix of w).

On the other hand, applying (13.149.1) to h = w′t, we see that the suffixes of w′t are precisely the proper
suffixes of aw′t. In other words, the suffixes of w′t are precisely the proper suffixes of wt (since aw′ = w).

But Exercise 6.1.35 (applied to w′ instead of w) shows that

(t is the longest Lyndon suffix of w′t if and only if we do not have v < t) .

Since the suffixes of w′t are precisely the proper suffixes of wt, this result rewrites as follows:

(t is the longest Lyndon proper suffix of wt if and only if we do not have v < t) .

This solves Exercise 6.1.36.
[Remark: Exercise 6.1.36 still holds in the partial-order setting1039. In fact, the solution we have given

above still applies in this setting.]

13.150. Solution to Exercise 6.1.39. Solution to Exercise 6.1.39. Recall the definition of stf w. It says
that stf w = (u, v), where u and v are defined as follows:

• The word v is defined as the longest proper suffix of w such that v is Lyndon.
• The word u is defined as the nonempty word such that w = uv.

Consider these u and v. Thus, (u, v) = stf w = (g, h). In other words, u = g and v = h.
We know that v is the longest proper suffix of w such that v is Lyndon. In other words, v is the longest

Lyndon proper suffix of w. In other words, h is the longest Lyndon proper suffix of w (since v = h). This
solves Exercise 6.1.39(a).

We have w = u︸︷︷︸
=g

v︸︷︷︸
=h

= gh. This solves Exercise 6.1.39(b).

From Exercise 6.1.31(b), we conclude that u < w < v. Since u = g, w = gh and v = h, this rewrites as
g < gh < h. This solves Exercise 6.1.39(c).

From Exercise 6.1.31(a), we conclude that the words u and v are Lyndon. Thus, the word u is Lyndon.
In other words, the word g is Lyndon (since u = g). This solves solves Exercise 6.1.39(d).

The word v is the longest proper suffix of w such that v is Lyndon. In particular, the word v is Lyndon.
In other words, v ∈ L.

We have g ∈ L (since the word g is Lyndon) and h = v ∈ L. Also, the word g is nonempty (since g is
Lyndon), and thus we have ` (g) ≥ 1. Furthermore, the word h is Lyndon (since h ∈ L) and thus nonempty.

1038See Exercise 6.1.33 for an explanation of what the partial-order setting is.
1039See Exercise 6.1.33 for an explanation of what the partial-order setting is.
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Hence, ` (h) ≥ 1. Now, `

 w︸︷︷︸
=gh

 = ` (gh) = ` (g) + ` (h)︸︷︷︸
≥1

≥ ` (g) + 1 > ` (g), so that ` (g) < ` (w). Also,

`

 w︸︷︷︸
=gh

 = ` (gh) = ` (g)︸︷︷︸
≥1

+` (h) ≥ 1 + ` (h) > ` (h), so that ` (g) < ` (w). Thus, Exercise 6.1.39(e) is solved.

(f) Exercise 6.1.36 (applied to v = h) shows that t is the longest Lyndon proper suffix of wt if and only if
we do not have h < t (since h is the longest Lyndon proper suffix of w). This solves Exercise 6.1.39(f).

13.151. Solution to Exercise 6.1.40. Solution to Exercise 6.1.40. We define a binary relation ∼ on the
set A∗ as follows: If w and w′ are two words, then we write w ∼ w′ if and only if w′ is a permutation of the
word w (that is, if and only if there exists a permutation σ ∈ Sk satisfying w′ =

(
wσ(1), wσ(2), . . . , wσ(k)

)
,

where k = ` (w)). We notice the following properties of the relation ∼:

• The relation ∼ is an equivalence relation; in other words, it is reflexive, symmetric and transitive.
• If w and w′ are two words satisfying w ∼ w′, then ` (w) = ` (w′).
• If u, v, u′ and v′ are four words satisfying u ∼ u′ and v ∼ v′, then uv ∼ u′v′. We shall refer to this

fact as the monoidality of the relation ∼.
• If u and v are any two words, then uv ∼ vu.

We also recall a fundamental property of Lie algebras (one of the forms of the Jacobi identity):

• Every three elements x, y and z of a Lie algebra k satisfy

(13.151.1) [[x, y] , z] = [[x, z] , y]− [[y, z] , x] .

We can now finally come to the solution of Exercise 6.1.40.
For every h ∈ A∗ and s ∈ A∗, we define a subset Lh,s of L by

Lh,s = {w ∈ L | w ∼ h and w < s} .
For every h ∈ A∗ and s ∈ A∗, we define a k-submodule Bh,s of B by

Bh,s =
∑

w∈Lh,s

kbw.

(In other words, for every h ∈ A∗ and s ∈ A∗, we define Bh,s as the k-linear span of the elements bw with
w ∈ Lh,s.) If h, s, g and t are four words satisfying h ∼ g and s < t, then

(13.151.2) Bh,s ⊂ Bg,t
1040.

(a) We claim that

(13.151.3) [bp, bq] ∈ Bpq,q for every (p, q) ∈ L× L satisfying p < q.

Proof of (13.151.3): We can WLOG assume that the alphabet A is finite1041. Assume this.

1040Proof of (13.151.2): Let h, s, g and t be four words satisfying h ∼ g and s < t.

Let v ∈ Lh,s. Thus, v ∈ Lh,s = {w ∈ L | w ∼ h and w < s} (by the definition of Lh,s). In other words, v is an element of

L and satisfies v ∼ h and v < s. From v ∼ h and h ∼ g, we obtain v ∼ g (since the relation ∼ is transitive). Also, v < s < t.
Thus, v is an element of L and satisfies v ∼ g and v < t. In other words, v ∈ {w ∈ L | w ∼ g and w < t} = Lg,t (since Lg,t is

defined to be {w ∈ L | w ∼ g and w < t}).
Now, let us forget that we fixed v. We thus have proven that every v ∈ Lh,s satisfies v ∈ Lg,t. In other words, Lh,s ⊂ Lg,t.

Now, the definition of Bh,s yields Bh,s =
∑
w∈Lh,s kbw ⊂

∑
w∈Lg,t kbw (since Lh,s ⊂ Lg,t). Since Bg,t =

∑
w∈Lg,t kbw (by

the definition of Bg,t), this rewrites as Bh,s ⊂ Bg,t. This proves (13.151.2).
1041In fact, assume that (13.151.3) is proven in the case when the alphabet A is finite. Now, let A be arbitrary. We must

prove (13.151.3) for this A.
Fix (p, q) ∈ L× L satisfying p < q. We need to prove that [bp, bq ] ∈ Bpq,q . Let B denote the set of all letters that appear in

(at least) one of the words p and q. Then, B is a finite subset of A, and the words p and q belong to B∗.
Let L′ denote the set of all Lyndon words over the alphabet B. Clearly, a word w ∈ B∗ is Lyndon as a word over the

alphabet B if and only if it is Lyndon as a word over the alphabet A. Thus, L′ = L ∩B∗, so that p and q belong to L′. Also,

for every given w ∈ L′ of length > 1, the pair stf w does not depend on whether w is considered as a Lyndon word over the
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We shall prove (13.151.3) by strong induction over ` (pq):
Induction step: Let N be a nonnegative integer. Assume that (13.151.3) holds in the case when ` (pq) < N .

We need to prove that (13.151.3) holds in the case when ` (pq) = N .
We have assumed that (13.151.3) holds in the case when ` (pq) < N . In other words, we have

(13.151.4) [bp, bq] ∈ Bpq,q for every (p, q) ∈ L× L satisfying p < q and ` (pq) < N.

We now must prove that (13.151.3) holds in the case when ` (pq) = N . In other words, we must prove
that

(13.151.5) [bp, bq] ∈ Bpq,q for every (p, q) ∈ L× L satisfying p < q and ` (pq) = N.

Let G be the set
⋃N
i=0 A

i. This set G is finite (since the set A is finite) and totally ordered (by the
lexicographic order). Thus, for every w ∈ G, we can define a nonnegative integer ρ (w) by

ρ (w) = |{g ∈ G | g < w}| .
In other words, for every w ∈ G, we define ρ (w) to be the number of all g ∈ G which are smaller than w. It
is clear that if w and w′ are two elements of G satisfying w < w′, then

(13.151.6) ρ (w) < ρ (w′)
1042.

For every (p, q) ∈ L × L satisfying p < q and ` (pq) = N , we have q ∈ G 1043, and thus ρ (q) is
well-defined. We are thus going to prove (13.151.5) by strong induction over ρ (q) 1044:

Induction step: Let K be a nonnegative integer. Assume that (13.151.5) holds in the case when ρ (q) < K.
We need to prove that (13.151.5) holds in the case when ρ (q) = K.

We have assumed that (13.151.5) holds in the case when ρ (q) < K. In other words, we have

(13.151.7) [bp, bq] ∈ Bpq,q for every (p, q) ∈ L× L satisfying p < q and ` (pq) = N and ρ (q) < K.

Now, let (p, q) ∈ L × L be such that p < q and ` (pq) = N and ρ (q) = K. We are going to prove that
[bp, bq] ∈ Bpq,q.

We have (p, q) ∈ L× L. In other words, the words p and q are Lyndon. Proposition 6.1.16(a) (applied to
u = p and v = q) thus shows that the word pq is Lyndon. In other words, pq ∈ L.

Furthermore, Proposition 6.1.16(b) (applied to u = p and v = q) shows that pq < q.
The definition of Lpq,q yields Lpq,q = {w ∈ L | w ∼ pq and w < q}. The definition of Bpq,q yields Bpq,q =∑
w∈Lpq,q kbw.

The words p and q are nonempty (since they are Lyndon), and thus have length ≥ 1 each. Hence, the
word pq has length ≥ 1 + 1 > 1. Hence, pq is a Lyndon word of length > 1 (since pq is Lyndon and since
pq has length ` (pq) > 1). Therefore, stf (pq) is well-defined. If stf (pq) = (p, q), then it is easy to see that

alphabet A or as a Lyndon word over the alphabet B (because the definition of stf w involves only suffixes of w, and all of these
suffixes belong to B∗).

For every h ∈ B∗ and s ∈ B∗, let us define the set L′h,s, the k-module B′ and the k-module B′h,s in the same way as we

have defined the set Lh,s, the k-module B and the k-module Bh,s, but using the alphabet B instead of A. (Thus, L′h,s =

{w ∈ L′ | w ∼ h and w < s}, B′ =
(
the k-submodule of g spanned by the family (bw)w∈L′

)
and B′h,s =

∑
w∈L′

h,s
kbw.)

Now, whenever w is a Lyndon word over B of length > 1, we must have w ∈ L′ = L∩B∗ ⊂ L and thus bw = [bu, bv ], where

(u, v) = stf w (according to (6.1.2)). Here, when we speak of stf w, we are regarding w as a Lyndon word over A, but as we
have already explained, the result is the same if we regard w as a Lyndon word over B instead. Thus, we can apply (13.151.3)

to B and L′ instead of A and L (since we assumed that (13.151.3) is proven in the case when the alphabet A is finite), and
obtain [bp, bq ] ∈ B′pq,q .

But we have L′ = L ∩ B∗ ⊂ L, thus L′pq,q ⊂ Lpq,q and therefore B′pq,q ⊂ Bpq,q (actually, a little thought shows that

B′pq,q = Bpq,q), so that we have [bp, bq ] ∈ B′pq,q ⊂ Bpq,q , and thus (13.151.3) is proven.
1042Proof. Let w and w′ be two elements of G satisfying w < w′. Then, {g ∈ G | g < w} is a proper subset of

{g ∈ G | g < w′} (proper because w belongs to the latter set but not to the former set). Hence, |{g ∈ G | g < w}| <
|{g ∈ G | g < w′}|. Since ρ (w) = |{g ∈ G | g < w}| and ρ (w′) = |{g ∈ G | g < w′}| (similarly), this rewrites as ρ (w) <

ρ (w′), qed.
1043Proof. Let (p, q) ∈ L× L be such that p < q and ` (pq) = N . Then, N = ` (pq) = ` (p)︸︷︷︸

≥0

+` (q) ≥ ` (q), so that ` (q) ≤ N

and thus q ∈
⋃N
i=0 Ai = G, qed.

1044Of course, this will be an induction within our current induction step, so the reader should try not to confuse the two

inductions going on.
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[bp, bq] ∈ Bpq,q 1045. Hence, for the rest of the proof of [bp, bq] ∈ Bpq,q, we WLOG assume that we don’t
have stf (pq) = (p, q). Thus, q is not the longest Lyndon proper suffix of pq 1046. In other words, the
statement that q is the longest Lyndon proper suffix of pq is false.

We have ` (p) > 1 1047. Thus, p is a Lyndon word of length > 1 (since p is Lyndon and since p has
length ` (p) > 1). Therefore, stf p is well-defined. Set (u, v) = stf p. Then, Exercise 6.1.39(a) (applied to
w = p, g = u and h = v) says that v is the longest Lyndon proper suffix of p. In particular, v is a Lyndon
proper suffix of p. Moreover, Exercise 6.1.39(b) (applied to w = p, g = u and h = v) says that we have
p = uv. Also, Exercise 6.1.39(c) (applied to w = p, g = u and h = v) says that we have u < uv < v. Finally,
Exercise 6.1.39(d) (applied to w = p, g = u and h = v) says that the word u is Lyndon. In other words,
u ∈ L. The words u and v are nonempty (since they are Lyndon).

Exercise 6.1.36 (applied to w = p and t = q) now shows that q is the longest Lyndon proper suffix of pq
if and only if we do not have v < q. Thus, the statement that we do not have v < q is false (because the
statement that q is the longest Lyndon proper suffix of pq is false). Thus, we have v < q. Thus, u < v < q.

Recall that (u, v) = stf p. Thus, (6.1.2) (applied to w = p) shows that bp = [bu, bv]. Thus,

(13.151.8)

 bp︸︷︷︸
=[bu,bv ]

, bq

 = [[bu, bv] , bq] = [[bu, bq] , bv]− [[bv, bq] , bu]

(by (13.151.1), applied to k = g, x = bu, y = bv and z = bq).
Now,

(13.151.9) [bu, bq] ∈ Buq,q
1048 and

(13.151.10) [bv, bq] ∈ Bvq,q

1045Proof. Assume that stf (pq) = (p, q). Thus, (6.1.2) (applied to w = pq, u = p and v = q) shows that bpq = [bp, bq ].

But pq is an element of L and satisfies pq ∼ pq (since the relation ∼ is reflexive) and pq < q. In other words,

pq ∈ {w ∈ L | w ∼ pq and w < q} = Lpq,q . Thus, kbpq ⊂
∑
w∈Lpq,q kbw.

Now, from bpq = [bp, bq ], we obtain

[bp, bq ] = bpq ∈ kbpq ⊂
∑

w∈Lpq,q

kbw = Bpq,q

(since Bpq,q =
∑
w∈Lpq,q kbw), qed.

1046Proof. Assume the contrary. Thus, q is the longest Lyndon proper suffix of pq.
Let w = pq. Recall that q is the longest Lyndon proper suffix of pq. In other words, q is the longest Lyndon proper suffix

of w (since w = pq).

Let (g, h) = stf (pq). Then, (g, h) = stf

 pq︸︷︷︸
=w

 = stf w. Thus, h is the longest Lyndon proper suffix of w (by Exercise

6.1.39(a)). Comparing this with the fact that q is the longest Lyndon proper suffix of w, we obtain that h = q.

But Exercise 6.1.39(b) shows that w = g h︸︷︷︸
=q

= gq. Thus, gq = w = pq. Cancelling q from this equality, we obtain

g = p. Now, from (g, h) = stf (pq), we obtain stf (pq) =

 g︸︷︷︸
=p

, h︸︷︷︸
=q

 = (p, q). This contradicts the fact that we don’t have

stf (pq) = (p, q). This contradiction proves that our assumption was wrong, qed.
1047Proof. Assume the contrary. Thus, ` (p) ≤ 1. Since p is nonempty, this shows that ` (p) = 1. Therefore, q is the longest

proper suffix of pq. Thus, q is the longest Lyndon proper suffix of pq (since q is Lyndon). This contradicts the fact that q is
not the longest Lyndon proper suffix of pq. This contradiction shows that our assumption was wrong, qed.

1048Proof of (13.151.9): We have (u, q) ∈ L × L (since u ∈ L and q ∈ L) and u < q. Also, `

 p︸︷︷︸
=uv

 = ` (uv) =

` (u) + ` (v)︸︷︷︸
>0

(since v is nonempty)

> ` (u). But ` (pq) = N , so that N = ` (pq) = ` (p)︸︷︷︸
>`(u)

+` (q) > ` (u) + ` (q) = ` (uq). Thus, ` (uq) < N .

Therefore, (13.151.4) (applied to (u, q) instead of (p, q)) yields [bu, bq ] ∈ Buq,q . This proves (13.151.9).
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1049. Hence, (13.151.8) becomes

(13.151.11) [bp, bq] =

 [bu, bq]︸ ︷︷ ︸
∈Buq,q

(by (13.151.9))

, bv

−
 [bv, bq]︸ ︷︷ ︸

∈Bvq,q
(by (13.151.10))

, bu

 ∈ [Buq,q, bv]− [Bvq,q, bu] .

On the other hand, if g and h are two Lyndon words satisfying g < q, h < q and gh ∼ p, then

(13.151.12) (every r ∈ Lgq,q satisfies [br, bh] ∈ Bpq,q)
1050 and therefore

(13.151.13) [Bgq,q, bh] ⊂ Bpq,q

1049Proof of (13.151.10): We have (v, q) ∈ L × L (since v ∈ L and q ∈ L) and v < q. Also, `

 p︸︷︷︸
=uv

 = ` (uv) =

` (u)︸︷︷︸
>0

(since u is nonempty)

+` (v) > ` (v). But ` (pq) = N , so that N = ` (pq) = ` (p)︸︷︷︸
>`(v)

+` (q) > ` (v) + ` (q) = ` (vq). Thus, ` (vq) < N .

Therefore, (13.151.4) (applied to (v, q) instead of (p, q)) yields [bv , bq ] ∈ Bvq,q . This proves (13.151.10).
1050Proof of (13.151.12): Let g and h be two Lyndon words satisfying g < q, h < q and gh ∼ p. Let r ∈ Lgq,q . We must

prove that [br, bh] ∈ Bpq,q .
The words g and h are Lyndon. In other words, g ∈ L and h ∈ L.
We have gh ∼ p and thus ` (gh) = ` (p). Hence, ` (p) = ` (gh) = ` (g) + ` (h).

We have gh ∼ p and q ∼ q (since the relation ∼ is reflexive). Hence, ghq ∼ pq (by the monoidality of the relation ∼).

We have N = ` (pq) = ` (p)︸︷︷︸
≥0

+` (q) ≥ ` (q), whence ` (q) ≤ N and thus q ∈
⋃N
i=0 Ai = G.

We have r ∈ Lgq,q = {w ∈ L | w ∼ gq and w < q} (by the definition of Lgq,q). In other words, r is an element of L and
satisfies r ∼ gq and r < q. From r ∼ gq, we obtain ` (r) = ` (gq) = ` (g) + ` (q).

If r = h, then

 br︸︷︷︸
=bh

(since r=h)

, bh

 = [bh, bh] = 0 ∈ Bpq,q (since Bpq,q is a k-module). Hence, for the rest of the proof of

[br, bh] ∈ Bpq,q , we WLOG assume that we don’t have r = h.

Thus, we have r 6= h. Hence, we have either r < h or r > h (since the lexicographic order on A∗ is a total order). In other

words, we are in one of the following two Cases:
Case 1: We have r < h.

Case 2: We have r > h.

Let us first consider Case 1. In this case, we have r < h. We have ` (rh) = ` (r)︸︷︷︸
=`(g)+`(q)

+` (h) = ` (g) + ` (q) + ` (h) =

` (g) + ` (h) + ` (q). Comparing this with ` (pq) = ` (p)︸︷︷︸
=`(g)+`(h)

+` (q) = ` (g) + ` (h) + ` (q), we obtain ` (rh) = ` (pq) = N .

We have r ∼ gq and h ∼ h (since the relation ∼ is reflexive). Thus, rh ∼ gqh (by the monoidality of the relation ∼).
But gqh ∼ ghq (by the monoidality of the relation ∼ again, since g ∼ g and qh ∼ hq). From rh ∼ gqh and gqh ∼ ghq, we

obtain rh ∼ ghq (since the relation ∼ is transitive). From rh ∼ ghq and ghq ∼ pq, we obtain rh ∼ pq (since the relation ∼ is
transitive). Now, (13.151.2) (applied to rh, h, pq and q instead of h, s, g and t) yields Brh,h ⊂ Bpq,q (since h < q).

On the other hand, N = ` (rh) = ` (r)︸︷︷︸
≥0

+` (h) ≥ ` (h), whence ` (h) ≤ N and thus h ∈
⋃N
i=0 Ai = G. Since h < q, we have

ρ (h) < ρ (q) (by (13.151.6), applied to h and q instead of w and w′), so that ρ (h) < ρ (q) = K.
Now, we have (r, h) ∈ L×L (since r ∈ L and h ∈ L) and r < h and ` (rh) = N and ρ (h) < K. Therefore, (13.151.7) (applied

to r and h instead of p and q) shows that [br, bh] ∈ Brh,h ⊂ Bpq,q . Thus, [br, bh] ∈ Bpq,q is proven in Case 1.

Let us now consider Case 2. In this case, we have h < r. We have ` (hr) = ` (h) + ` (r)︸︷︷︸
=`(g)+`(q)

= ` (h) + ` (g) + ` (q) =

` (g) + ` (h) + ` (q). Comparing this with ` (pq) = ` (p)︸︷︷︸
=`(g)+`(h)

+` (q) = ` (g) + ` (h) + ` (q), we obtain ` (hr) = ` (pq) = N .

We have h ∼ h (since the relation ∼ is reflexive) and r ∼ gq. Thus, hr ∼ hgq (by the monoidality of the relation ∼). But

hgq ∼ ghq (by the monoidality of the relation ∼, since hg ∼ gh and q ∼ q). From hr ∼ hgq and hgq ∼ ghq, we obtain hr ∼ ghq
(since the relation ∼ is transitive). From hr ∼ ghq and ghq ∼ pq, we obtain hr ∼ pq (since the relation ∼ is transitive). Now,

(13.151.2) (applied to hr, r, pq and q instead of h, s, g and t) yields Bhr,r ⊂ Bpq,q (since r < q).
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1051.
We have p ∼ p (since the relation ∼ is reflexive). In other words, uv ∼ p (since p = uv). Also, vu ∼ uv.

Since p = uv, this rewrites as vu ∼ p.
Now, the words u and v are Lyndon and satisfy u < q, v < q and uv ∼ p. Thus, we can apply (13.151.13)

to g = u and h = v. As a result, we obtain [Buq,q, bv] ⊂ Bpq,q.
Furthermore, the words v and u are Lyndon and satisfy v < q, u < q and vu ∼ p. Thus, we can apply

(13.151.13) to g = v and h = u. As a result, we obtain [Bvq,q, bu] ⊂ Bpq,q.
Now, (13.151.11) becomes

[bp, bq] ∈ [Buq,q, bv]︸ ︷︷ ︸
⊂Bpq,q

− [Bvq,q, bu]︸ ︷︷ ︸
⊂Bpq,q

⊂ Bpq,q −Bpq,q ⊂ Bpq,q

(since Bpq,q is a k-module).
Let us now forget that we fixed (p, q). We thus have proven that

[bp, bq] ∈ Bpq,q for every (p, q) ∈ L× L satisfying p < q and ` (pq) = N and ρ (q) = K.

In other words, (13.151.5) holds in the case when ρ (q) = K. This completes the induction step (in the
induction proof of (13.151.5)). The induction proof of (13.151.5) is thus finished.

We thus have proven (13.151.5). In other words, (13.151.3) holds in the case when ` (pq) = N . This
completes the induction step (in the induction proof of (13.151.3)). The induction proof of (13.151.3) is thus
complete.

Now, we recall that B is the k-submodule of g spanned by the family (bw)w∈L. In other words,

(13.151.14) B =
∑
w∈L

kbw.

Thus,

(13.151.15) Bh,s ⊂ B for every h ∈ A∗ and s ∈ A∗

1052.
Now, using (13.151.3), we can easily see the following fact: For any p ∈ L and q ∈ L, we have

(13.151.16) [bp, bq] ∈ B

On the other hand, N = ` (hr) = ` (h)︸︷︷︸
≥0

+` (r) ≥ ` (r), whence ` (r) ≤ N and thus r ∈
⋃N
i=0 Ai = G. Since r < q, we have

ρ (r) < ρ (q) (by (13.151.6), applied to r and q instead of w and w′), so that ρ (r) < ρ (q) = K.
Now, we have (h, r) ∈ L×L (since h ∈ L and r ∈ L) and h < r and ` (hr) = N and ρ (r) < K. Therefore, (13.151.7) (applied

to h and r instead of p and q) shows that [bh, br] ∈ Bhr,r ⊂ Bpq,q . Thus, [br, bh] = − [bh, br]︸ ︷︷ ︸
∈Bpq,q

∈ −Bpq,q ⊂ Bpq,q (since Bpq,q is

a k-module). Hence, [br, bh] ∈ Bpq,q is proven in Case 2.

Thus, [br, bh] ∈ Bpq,q is proven in each of the two Cases 1 and 2. This completes the proof of (13.151.12).
1051Proof of (13.151.13): Let g and h be two Lyndon words satisfying g < q, h < q and gh ∼ p. The definition of Bgq,q

shows that Bgq,q =
∑
w∈Lgq,q kbw. In other words, Bgq,q is the k-linear span of the elements bw with w ∈ Lgq,q . Hence, in

order to prove the relation (13.151.13), it suffices to show that [bw, bh] ∈ Bpq,q for every w ∈ Lgq,q . But this follows from

(13.151.12) (applied to r = w). This proves (13.151.13).
1052Proof of (13.151.15): Let h ∈ A∗ and s ∈ A∗.
Clearly, Lh,s ⊂ L. Thus,

∑
w∈Lh,s kbw ⊂

∑
w∈L kbw. Since Bh,s =

∑
w∈Lh,s kbw and B =

∑
w∈L kbw (by (13.151.14)),

this rewrites as Bh,s ⊂ B. This proves (13.151.15).
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1053. Now, (13.151.14) yields B =
∑
w∈L kbw =

∑
p∈L kbp (here, we renamed the summation index w as p)

and B =
∑
w∈L kbw =

∑
q∈L kbq (here, we renamed the summation index w as q). Thus, B︸︷︷︸

=
∑
p∈L kbp

, B︸︷︷︸
=
∑
q∈L kbq


=

∑
p∈L

kbp,
∑
q∈L

kbq

 =
∑
p∈L

∑
q∈L

kk︸︷︷︸
⊂k

[bp, bq]︸ ︷︷ ︸
∈B

(by (13.151.16))

(since the Lie bracket on g is k-bilinear)

⊂
∑
p∈L

∑
q∈L

kB ⊂ B (since B is a k-module) .

In other words, B is a Lie subalgebra of g. This solves Exercise 6.1.40(a).
(b) We shall first prove that

(13.151.17) f ([bp, bq]) = [f (bp) , f (bq)] for every (p, q) ∈ L× L satisfying p < q.

The proof of (13.151.17) is very similar to our above proof of (13.151.3); it proceeds using the same kind
of double induction, with almost the same computations. Here are the details of this proof:

Proof of (13.151.17): We can WLOG assume that the alphabet A is finite1054. Assume this.
We shall prove (13.151.17) by strong induction over ` (pq):
Induction step: Let N be a nonnegative integer. Assume that (13.151.17) holds in the case when ` (pq) <

N . We need to prove that (13.151.17) holds in the case when ` (pq) = N .
We have assumed that (13.151.17) holds in the case when ` (pq) < N . In other words, we have

(13.151.18) f ([bp, bq]) = [f (bp) , f (bq)] for every (p, q) ∈ L× L satisfying p < q and ` (pq) < N.

We now must prove that (13.151.17) holds in the case when ` (pq) = N . In other words, we must prove
that

(13.151.19) f ([bp, bq]) = [f (bp) , f (bq)] for every (p, q) ∈ L× L satisfying p < q and ` (pq) = N.

We define a set G in the same fashion as in our proof of (13.151.3). Likewise, we define a nonnegative
integer ρ (w) for every w ∈ G in the same way as we did in our proof of (13.151.3).

For every (p, q) ∈ L × L satisfying p < q and ` (pq) = N , we have q ∈ G 1055, and thus ρ (q) is
well-defined. We are thus going to prove (13.151.19) by strong induction over ρ (q) 1056:

1053Proof of (13.151.16): Let p ∈ L and q ∈ L. We need to prove that [bp, bq ] ∈ B. If p = q, then this is clear (because if

p = q, then

 bp︸︷︷︸
=bq

(since p=q)

, bq

 = [bq , bq ] = 0 ∈ B (since B is a k-module)). Thus, for the rest of this proof, we WLOG assume

that we don’t have p = q.

We have (p, q) ∈ L× L (since p ∈ L and q ∈ L) and (q, p) ∈ L× L (since q ∈ L and p ∈ L). We have p 6= q (since we don’t

have p = q). Thus, we have either p < q or p > q (since the lexicographic order on A∗ is a total order). In other words, we are
in one of the following two Cases:

Case 1: We have p < q.
Case 2: We have p > q.

Let us first consider Case 1. In this case, we have p < q. Thus, from (13.151.3), we obtain [bp, bq ] ∈ Bpq,q ⊂ B (by

(13.151.15) (applied to h = pq and s = q)). Thus, [bp, bq ] ∈ B is proven in Case 1.
Let us now consider Case 2. In this case, we have p > q. In other words, q < p. Thus, (13.151.3) (applied to (q, p) instead

of (p, q)) shows that [bq , bp] ∈ Bqp,p ⊂ B (by (13.151.15) (applied to h = qp and s = p)). Now, [bp, bq ] = − [bq , bp]︸ ︷︷ ︸
∈B

∈ −B ⊂ B

(since B is a k-module). Thus, [bp, bq ] ∈ B is proven in Case 2.

Now, [bp, bq ] ∈ B is proven in each of the two Cases 1 and 2. Thus, (13.151.16) is proven.
1054The reasons why this is legitimate are similar to the analogous reasons in the proof of (13.151.3).
1055This can be proven in the same way as in our proof of (13.151.3).
1056Of course, this will be an induction within our current induction step, so the reader should try not to confuse the two

inductions going on.



976 DARIJ GRINBERG AND VICTOR REINER

Induction step: LetK be a nonnegative integer. Assume that (13.151.19) holds in the case when ρ (q) < K.
We need to prove that (13.151.19) holds in the case when ρ (q) = K.

We have assumed that (13.151.19) holds in the case when ρ (q) < K. In other words, we have
(13.151.20)
f ([bp, bq]) = [f (bp) , f (bq)] for every (p, q) ∈ L× L satisfying p < q and ` (pq) = N and ρ (q) < K.

Now, let (p, q) ∈ L × L be such that p < q and ` (pq) = N and ρ (q) = K. We are going to prove that
f ([bp, bq]) = [f (bp) , f (bq)].

As in our proof of (13.151.5), we can prove the following facts:

• The words p and q are Lyndon.
• The word pq is Lyndon. In other words, pq ∈ L.
• We have pq < q.
• The word pq is a Lyndon word of length > 1. Therefore, stf (pq) is well-defined.

If stf (pq) = (p, q), then it is easy to see that f ([bp, bq]) = [f (bp) , f (bq)]
1057. Hence, for the rest of

the proof of f ([bp, bq]) = [f (bp) , f (bq)], we WLOG assume that we don’t have stf (pq) = (p, q). As in our
proof of (13.151.5), we can see that p is a Lyndon word of length > 1. Therefore, stf p is well-defined. Set
(u, v) = stf p.

As in our proof of (13.151.5), we can see the following facts:

• The word v is a Lyndon proper suffix of p.
• We have p = uv.
• We have u < uv < v.
• The word u is Lyndon. In other words, u ∈ L.
• The words u and v are nonempty.
• We have u < v < q.
• We have bp = [bu, bv].
• The equality (13.151.8) holds.

On the other hand, (6.1.3) (applied to w = p) shows that f ([bu, bv]) = [f (bu) , f (bv)] (since p is a Lyndon
word of length > 1, and since (u, v) = stf p). Now, applying the map f to both sides of the equality
bp = [bu, bv], we obtain

(13.151.21) f (bp) = f ([bu, bv]) = [f (bu) , f (bv)] .

Now,

(13.151.22) f ([bu, bq]) = [f (bu) , f (bq)]

1058 and

(13.151.23) f ([bv, bq]) = [f (bv) , f (bq)]

1059.
On the other hand, if g and h are two Lyndon words satisfying g < q, h < q and gh ∼ p, then

(13.151.24) (every r ∈ Lgq,q satisfies f ([br, bh]) = [f (br) , f (bh)])

1057Proof. Assume that stf (pq) = (p, q). Thus, (p, q) = stf (pq). Hence, (6.1.3) (applied to w = pq, u = p and v = q) shows
that f ([bp, bq ]) = [f (bp) , f (bq)], qed.

1058Proof of (13.151.22): We have (u, q) ∈ L × L (since u ∈ L and q ∈ L) and u < q. Also, `

 p︸︷︷︸
=uv

 = ` (uv) =

` (u) + ` (v)︸︷︷︸
>0

(since v is nonempty)

> ` (u). But ` (pq) = N , so that N = ` (pq) = ` (p)︸︷︷︸
>`(u)

+` (q) > ` (u) + ` (q) = ` (uq). Thus, ` (uq) < N .

Therefore, (13.151.18) (applied to (u, q) instead of (p, q)) yields f ([bu, bq ]) = [f (bu) , f (bq)]. This proves (13.151.22).

1059Proof of (13.151.23): We have (v, q) ∈ L × L (since v ∈ L and q ∈ L) and v < q. Also, `

 p︸︷︷︸
=uv

 = ` (uv) =

` (u)︸︷︷︸
>0

(since u is nonempty)

+` (v) > ` (v). But ` (pq) = N , so that N = ` (pq) = ` (p)︸︷︷︸
>`(v)

+` (q) > ` (v) + ` (q) = ` (vq). Thus, ` (vq) < N .

Therefore, (13.151.18) (applied to (v, q) instead of (p, q)) yields f ([bv , bq ]) = [f (bv) , f (bq)]. This proves (13.151.23).
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1060 and therefore

(13.151.25) (every x ∈ Bgq,q satisfies f ([x, bh]) = [f (x) , f (bh)])

1061.
Recall that (13.151.3) holds. (This was proven in our solution to Exercise 6.1.40(a).) Now, (u, q) ∈ L×L

(since u ∈ L and q ∈ L) and u < q. Thus, (13.151.3) (applied to (u, q) instead of (p, q)) shows that
[bu, bq] ∈ Buq,q. Also, (v, q) ∈ L × L (since v ∈ L and q ∈ L) and v < q. Thus, (13.151.3) (applied to (v, q)
instead of (p, q)) shows that [bv, bq] ∈ Bvq,q.

As in our proof of (13.151.5), we can show that uv ∼ p and vu ∼ p.
Now, the words u and v are Lyndon and satisfy u < q, v < q, uv ∼ p and [bu, bq] ∈ Buq,q. Thus, we can

apply (13.151.25) to g = u, h = v and x = [bu, bq]. As a result, we obtain

(13.151.26) f ([[bu, bq] , bv]) =

 f ([bu, bq])︸ ︷︷ ︸
=[f(bu),f(bq)]

(by (13.151.22))

, f (bv)

 = [[f (bu) , f (bq)] , f (bv)] .

Furthermore, the words v and u are Lyndon and satisfy v < q, u < q, vu ∼ p and [bv, bq] ∈ Bvq,q. Thus,
we can apply (13.151.25) to g = v, h = u and x = [bv, bq]. As a result, we obtain

(13.151.27) f ([[bv, bq] , bu]) =

 f ([bv, bq])︸ ︷︷ ︸
=[f(bv),f(bq)]

(by (13.151.23))

, f (bu)

 = [[f (bv) , f (bq)] , f (bu)] .

Now, applying the map f to both sides of the equality (13.151.8), we obtain

f ([bp, bq]) = f ([[bu, bq] , bv]− [[bv, bq] , bu])

= f ([[bu, bq] , bv])︸ ︷︷ ︸
=[[f(bu),f(bq)],f(bv)]

(by (13.151.26))

− f ([[bv, bq] , bu])︸ ︷︷ ︸
=[[f(bv),f(bq)],f(bu)]

(by (13.151.27))

(since the map f is k-linear)

= [[f (bu) , f (bq)] , f (bv)]− [[f (bv) , f (bq)] , f (bu)] .

Comparing this with f (bp)︸ ︷︷ ︸
=[f(bu),f(bv)]

(by (13.151.21))

, f (bq)

 = [[f (bu) , f (bv)] , f (bq)]

= [[f (bu) , f (bq)] , f (bv)]− [[f (bv) , f (bq)] , f (bu)] .

(by (13.151.1), applied to k = h, x = f (bu) , y = f (bv) and z = f (bq)) ,

we obtain f ([bp, bq]) = [f (bp) , f (bq)].
Let us now forget that we fixed (p, q). We thus have proven that

f ([bp, bq]) = [f (bp) , f (bq)] for every (p, q) ∈ L× L satisfying p < q and ` (pq) = N and ρ (q) = K.

In other words, (13.151.19) holds in the case when ρ (q) = K. This completes the induction step (in the
induction proof of (13.151.19)). The induction proof of (13.151.19) is thus finished.

1060The proof of (13.151.24) can be obtained by modifying our proof of (13.151.12) in a straightforward way. (We now must

use (13.151.20) instead of (13.151.7).)
1061Proof of (13.151.25): Let g and h be two Lyndon words satisfying g < q, h < q and gh ∼ p. The definition of Bgq,q

shows that Bgq,q =
∑
w∈Lgq,q kbw. In other words, Bgq,q is the k-linear span of the elements bw with w ∈ Lgq,q . Hence,

in order to prove the relation (13.151.25), it suffices to show that f ([bw, bh]) = [f (bw) , f (bh)] for every w ∈ Lgq,q . But this

follows from (13.151.24) (applied to r = w). This proves (13.151.25).
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We thus have proven (13.151.19). In other words, (13.151.17) holds in the case when ` (pq) = N . This
completes the induction step (in the induction proof of (13.151.17)). The induction proof of (13.151.17) is
thus complete.

Using (13.151.17), we can easily see the following fact: For any p ∈ L and q ∈ L, we have

(13.151.28) f ([bp, bq]) = [f (bp) , f (bq)]

1062.
Now, we recall that B is the k-submodule of g spanned by the family (bw)w∈L. Thus, the family (bw)w∈L

spans the k-module B.
Now, we have

(13.151.29) f ([x, y]) = [f (x) , f (y)] for every x ∈ B and y ∈ B
1063. In other words, the map f : B → h is a Lie algebra homomorphism. This solves Exercise 6.1.40(b).

13.152. Solution to Exercise 6.1.41. Solution to Exercise 6.1.41. The definition of g shows that g =
g1 + g2 + g3 + · · · =

∑
i≥1 gi. Thus, for every positive integer k, we have

(13.152.1) gk ⊂ g.

Notice that g1 = V , so that

(13.152.2) V = g1 ⊂ g (by (13.152.1), applied to k = 1) .

We also recall a fundamental property of Lie algebras (one of the forms of the Jacobi identity):

• Every three elements x, y and z of a Lie algebra k satisfy

(13.152.3) [[x, y] , z] = [[x, z] , y]− [[y, z] , x] .

1062Proof of (13.151.28): Let p ∈ L and q ∈ L. We need to prove that f ([bp, bq ]) = [f (bp) , f (bq)]. If p = q, then this is clear

(because if p = q, then f



 bp︸︷︷︸
=bq

(since p=q)

, bq



 = f

[bq , bq ]︸ ︷︷ ︸
=0

 = f (0) = 0 and

f
 bp︸︷︷︸

=bq
(since p=q)

 , f (bq)

 = [f (bq) , f (bq)] = 0,

so that both sides of the equality f ([bp, bq ]) = [f (bp) , f (bq)] vanish). Thus, for the rest of this proof, we WLOG assume that
we don’t have p = q.

We have (p, q) ∈ L× L (since p ∈ L and q ∈ L) and (q, p) ∈ L× L (since q ∈ L and p ∈ L). We have p 6= q (since we don’t
have p = q). Thus, we have either p < q or p > q (since the lexicographic order on A∗ is a total order). In other words, we are
in one of the following two Cases:

Case 1: We have p < q.

Case 2: We have p > q.
Let us first consider Case 1. In this case, we have p < q. Thus, from (13.151.17), we obtain f ([bp, bq ]) = [f (bp) , f (bq)].

Thus, f ([bp, bq ]) = [f (bp) , f (bq)] is proven in Case 1.

Let us now consider Case 2. In this case, we have p > q. In other words, q < p. Thus, (13.151.17) (applied to (q, p) instead
of (p, q)) shows that f ([bq , bp]) = [f (bq) , f (bp)]. Now,

f

 [bp, bq ]︸ ︷︷ ︸
=−[bq,bp]

 = f (− [bq , bp]) = − f ([bq , bp])︸ ︷︷ ︸
=[f(bq),f(bp)]

= − [f (bq) , f (bp)] = [f (bp) , f (bq)] .

Thus, f ([bp, bq ]) = [f (bp) , f (bq)] is proven in Case 2.

Now, f ([bp, bq ]) = [f (bp) , f (bq)] is proven in each of the two Cases 1 and 2. This completes the proof of (13.151.28).
1063Proof of (13.151.29): Let x ∈ B and y ∈ B. We must prove the equality f ([x, y]) = [f (x) , f (y)]. Both sides of this

equality are k-linear in each of x and y. Hence, we can WLOG assume that both x and y belong to the family (bw)w∈L (since

the family (bw)w∈L spans the k-module B). In other words, we can WLOG assume that there exist p ∈ L and q ∈ L satisfying

x = bp and y = bq . Assume this, and consider these p and q.
From (13.151.28), we obtain f ([bp, bq ]) = [f (bp) , f (bq)]. This rewrites as f ([x, y]) = [f (x) , f (y)] (since x = bp and y = bq).

This proves (13.151.29).
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(a) For every two positive integers i and j, we have

(13.152.4) [gi, gj ] ⊂ gi+j .

Proof of (13.152.4): We shall prove (13.152.4) by induction over i:
Induction base: For every positive integer j, we have [g1, gj ] ⊂ g1+j

1064. In other words, (13.152.4)
holds for i = 1. This completes the induction base.

Induction step: Let I be a positive integer. Assume that (13.152.4) holds for i = I. We must prove that
(13.152.4) holds for i = I + 1.

We have assumed that (13.152.4) holds for i = I. In other words, for every positive integer j, we have

(13.152.5) [gI , gj ] ⊂ gI+j .

Now, let j be a positive integer. Thus, the recursive definition of gj+1 yields gj+1 =

V, g(j+1)−1︸ ︷︷ ︸
=gj

 =

[V, gj ]. The same argument (applied to I instead of j) shows that gI+1 = [V, gI ].

Also, the recursive definition of gI+j+1 yields gI+j+1 =

V, g(I+j+1)−1︸ ︷︷ ︸
=gI+j

 = [V, gI+j ].

Now, let z ∈ gj . Then, z ∈ gj ⊂ g (by (13.152.1), applied to k = j).
Also, let p ∈ gI+1. We are going to prove that [p, z] ∈ gI+1+j .
Recall that [V, gI ] is the k-linear span of all elements of the form [x, y] with (x, y) ∈ V × gI (indeed, this

is how [V, gI ] is defined). Thus, p is a k-linear combination of elements of the form [x, y] with (x, y) ∈ V ×gI
(since p ∈ gI+1 = [V, gI ]).

Now, we must prove the relation [p, z] ∈ gI+1+j . But this relation is k-linear in p. Thus, we WLOG
assume that p is an element of the form [x, y] for with (x, y) ∈ V × gI (since p is a k-linear combination of
elements of the form [x, y] with (x, y) ∈ V × gI). In other words, there exists an (x, y) ∈ V × gI such that
p = [x, y]. Consider this (x, y).

1064Proof. Let j be a positive integer. Thus, the recursive definition of g1+j yields g1+j =

V, g(1+j)−1︸ ︷︷ ︸
=gj

 = [V, gj ], so that

[V, gj ] = g1+j . Now,

 g1︸︷︷︸
=V

, gj

 = [V, gj ] = g1+j ⊂ g1+j , qed.
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We have (x, y) ∈ V × gI . In other words, x ∈ V and y ∈ gI . Thus, y ∈ gI ⊂ g (by (13.152.1), applied to
k = I). Also, x ∈ V ⊂ g (by (13.152.2)). Now, p︸︷︷︸

=[x,y]

, z

 = [[x, y] , z] = [[x, z] , y]︸ ︷︷ ︸
=−[y,[x,z]]

− [[y, z] , x]︸ ︷︷ ︸
=−[x,[y,z]]

(by (13.152.3))

= − [y, [x, z]]− (− [x, [y, z]]) =

 x︸︷︷︸
∈V

,

 y︸︷︷︸
∈gI

, z︸︷︷︸
∈gj

−
 y︸︷︷︸
∈gI

,

 x︸︷︷︸
∈V

, z︸︷︷︸
∈gj



∈

V, [gI , gj ]︸ ︷︷ ︸
⊂gI+j

(by (13.152.5))

−
gI , [V, gj ]︸ ︷︷ ︸

=gj+1

(since gj+1=[V,gj ])


⊂ [V, gI+j ]︸ ︷︷ ︸

=gI+j+1

(since gI+j+1=[V,gI+j ])

− [gI , gj+1]︸ ︷︷ ︸
⊂gI+j+1

(by (13.152.5), applied to j+1 instead of j)

⊂ gI+j+1 − gI+j+1 ⊂ gI+j+1 (since gI+j+1 is a k-module)

= gI+1+j .

Now, let us forget that we fixed z and p. We thus have proven that [p, z] ∈ gI+1+j for any p ∈ gI+1 and
z ∈ gj . Thus, [gI+1, gj ] ⊂ gI+1+j (since gI+1+j is a k-module).

Let us now forget that we fixed j. We thus have proven that, for every positive integer j, we have
[gI+1, gj ] ⊂ gI+1+j . In other words, (13.152.4) holds for i = I + 1. This completes the induction step. The
induction proof of (13.152.4) is thus complete.

Now, for every two positive integers i and j, we have

[gi, gj ] ⊂ gi+j (by (13.152.4))

⊂ g (by (13.152.1), applied to k = i+ j) .(13.152.6)

But g =
∑
i≥1 gi =

∑
j≥1 gj (here, we have renamed the summation index i as j). Thus, g︸︷︷︸

=
∑
i≥1 gi

, g︸︷︷︸
=
∑
j≥1 gj

 =

∑
i≥1

gi,
∑
j≥1

gj


⊂
∑
i≥1

∑
j≥1

[gi, gj ]︸ ︷︷ ︸
⊂g

(by (13.152.6))

(since the Lie bracket on T (V ) is k-bilinear)

⊂
∑
i≥1

∑
j≥1

g ⊂ g (since g is a k-module) .

Thus, g is a Lie subalgebra of T (V ). This solves Exercise 6.1.41(a).
(b) Let k be any Lie subalgebra of T (V ) satisfying V ⊂ k. We must prove that g ⊂ k.
We claim that

(13.152.7) gk ⊂ k for every positive integer k.

Proof of (13.152.7): We shall prove (13.152.7) by induction over k:
Induction base: We have g1 = V ⊂ k. In other words, (13.152.7) holds for i = 1. This completes the

induction base.
Induction step: Let K be a positive integer. Assume that (13.152.7) holds for k = K. We must prove

that (13.152.7) holds for k = K + 1.
We have assumed that (13.152.7) holds for k = K. In other words, we have gK ⊂ k.
But k is a Lie subalgebra of T (V ). Hence, [k, k] ⊂ k.
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Now, the recursive definition of gK+1 yields gK+1 =

 V︸︷︷︸
⊂k

, g(K+1)−1︸ ︷︷ ︸
=gK⊂k

 ⊂ [k, k] ⊂ k. In other words,

(13.152.7) holds for k = K + 1. This completes the induction step. The induction proof of (13.152.7) is thus
complete.

Now,

g =
∑
i≥1

gi︸︷︷︸
⊂k

(by (13.152.7), applied to k=i)

⊂
∑
i≥1

k ⊂ k

(since k is a k-module (since k is a Lie algebra)). This solves Exercise 6.1.41(b).
Before we step to the solution of Exercise 6.1.41(c), we record a simple fact: If u ∈ A∗ and v ∈ A∗, then

(13.152.8) xuxv = xuv

in the k-algebra T (V ) 1065.
(c) We shall solve Exercise 6.1.41(c) by strong induction on ` (w):
Induction step: Let N ∈ N. Assume that Exercise 6.1.41(c) holds under the condition that ` (w) < N .

We need to show that Exercise 6.1.41(c) also holds under the condition that ` (w) = N .
We have assumed that Exercise 6.1.41(c) holds under the condition that ` (w) < N . In other words, we

have

(13.152.10) bw ∈ xw +
∑

v∈A`(w);
v>w

kxv for every w ∈ L satisfying ` (w) < N.

For every w ∈ L satisfying ` (w) < N , we have

bw ∈ xw +
∑

v∈A`(w);
v>w

kxv

= xw +
∑

p∈A`(w);
p>w

kxp (here, we renamed the summation index v as p)(13.152.11)

= xw +
∑

q∈A`(w);
q>w

kxq (here, we renamed the summation index p as q) .(13.152.12)

1065Proof of (13.152.8): Let u ∈ A∗ and v ∈ A∗. We have uv =
(

(uv)1 , (uv)2 , . . . , (uv)`(uv)

)
and thus(

(uv)1 , (uv)2 , . . . , (uv)`(uv)

)
= u︸︷︷︸

=(u1,u2,...,u`(u))

v︸︷︷︸
=(v1,v2,...,v`(v))

=
(
u1, u2, . . . , u`(u)

) (
v1, v2, . . . , v`(v)

)
=
(
u1, u2, . . . , u`(u), v1, v2, . . . , v`(v)

)
and therefore

x(uv)1
⊗ x(uv)2

⊗ · · · ⊗ x(uv)`(uv)
= xu1 ⊗ xu2 ⊗ · · · ⊗ xu`(u)

⊗ xv1 ⊗ xv2 ⊗ · · · ⊗ xv`(v)
.

The definition of xuv now yields

(13.152.9) xuv = x(uv)1
⊗ x(uv)2

⊗ · · · ⊗ x(uv)`(uv)
= xu1 ⊗ xu2 ⊗ · · · ⊗ xu`(u)

⊗ xv1 ⊗ xv2 ⊗ · · · ⊗ xv`(v)
.

But the definition of xu yields xu = xu1 ⊗ xu2 ⊗ · · · ⊗ xu`(u)
, and the definition of xv yields xv = xv1 ⊗ xv2 ⊗ · · · ⊗ xv`(v)

.

Thus,

xu︸︷︷︸
=xu1

⊗xu2
⊗···⊗xu`(u)

xv︸︷︷︸
=xv1⊗xv2⊗···⊗xv`(v)

=
(
xu1 ⊗ xu2 ⊗ · · · ⊗ xu`(u)

)(
xv1 ⊗ xv2 ⊗ · · · ⊗ xv`(v)

)
= xu1 ⊗ xu2 ⊗ · · · ⊗ xu`(u)

⊗ xv1 ⊗ xv2 ⊗ · · · ⊗ xv`(v)

= xuv (by (13.152.9)) .

This proves (13.152.8).
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From this, it is easy to conclude the following: For every w ∈ L satisfying ` (w) < N , we have

(13.152.13) bw ∈
∑

q∈A`(w);
q≥w

kxq

1066.
Now, let w ∈ L be such that ` (w) = N . We shall prove that bw ∈ xw +

∑
r∈A`(w);
r>w

kxr.

If ` (w) ≤ 1, then bw ∈ xw+
∑

r∈A`(w);
r>w

kxr holds1067. Hence, for the rest of this proof, we can WLOG assume

that we don’t have ` (w) ≤ 1. Assume this.
The word w is Lyndon (since w ∈ L) and satisfies ` (w) > 1 (since we don’t have ` (w) ≤ 1). Thus, w is a

Lyndon word of length > 1. Therefore, stf w is well-defined. Let (u, v) = stf w. The recursive definition of
bw yields bw = [bu, bv] (since ` (w) > 1 and (u, v) = stf w).

From Exercise 6.1.39(a) (applied to (g, h) = (u, v)), we see that v is the longest Lyndon proper suffix of
w. In particular, v is a Lyndon proper suffix of w. Also, Exercise 6.1.39(d) (applied to (g, h) = (u, v)) shows
that the word u is Lyndon. From Exercise 6.1.39(c) (applied to (g, h) = (u, v)), we obtain u < uv < v.
Finally, Exercise 6.1.39(b) (applied to (g, h) = (u, v)) shows that w = uv. Exercise 6.1.39(e) (applied to
(g, h) = (u, v)) shows that u ∈ L, v ∈ L, ` (u) < ` (w) and ` (v) < ` (w).

The word u is Lyndon and thus nonempty. Hence, ` (u) ≥ 1. Also, the word v is Lyndon and thus
nonempty. Thus, ` (v) ≥ 1.

Now, ` (u) < ` (w) = N . Thus, (13.152.11) (applied to u instead of w) shows that

(13.152.14) bu ∈ xu +
∑

p∈A`(u);
p>u

kxp.

1066Proof of (13.152.13): Let w ∈ L be such that ` (w) < N .

Every q ∈ A`(w) satisfying q > w must also satisfy q ≥ w. Thus,
∑

q∈A`(w);
q>w

kxq ⊂
∑

q∈A`(w);
q≥w

kxq .

On the other hand, w is an element of A`(w) (since ` (w) = ` (w)) and satisfies w ≥ w. In other words, w is a q ∈ A`(w)

satisfying q ≥ w. Thus, kxw is an addend of the sum
∑

q∈A`(w);
q≥w

kxq . Hence, kxw ⊂
∑

q∈A`(w);
q≥w

kxq .

Now, xw ∈ kxw ⊂
∑

q∈A`(w);
q≥w

kxq . But (13.152.12) becomes

bw ∈ xw︸︷︷︸
∈

∑
q∈A`(w);
q≥w

kxq

+
∑

q∈A`(w);
q>w

kxq

︸ ︷︷ ︸
⊂

∑
q∈A`(w);
q≥w

kxq

⊂
∑

q∈A`(w);
q≥w

kxq +
∑

q∈A`(w);
q≥w

kxq ⊂
∑

q∈A`(w);
q≥w

kxq

(since
∑

q∈A`(w);
q≥w

kxq is a k-module). This proves (13.152.13).

1067Proof. Assume that ` (w) ≤ 1. The word w is Lyndon (since w ∈ L) and thus nonempty. Hence, ` (w) ≥ 1. Combined

with ` (w) ≤ 1, this yields ` (w) = 1. In other words, the word w consists of a single letter. In other words, w = (a) for some

a ∈ A. Consider this a. The definition of bw then yields bw = xa (since ` (w) = 1 and w = (a)).
On the other hand, the definition of xw yields xw = xa (since w = (a)). Compared with bw = xa, this yields

bw = xw = xw + 0︸︷︷︸
∈

∑
r∈A`(w);
r>w

kxr

(since
∑

r∈A`(w);
r>w

kxr is a k-module)

∈ xw +
∑

r∈A`(w);
r>w

kxr,

qed.
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Also, (13.152.13) (applied to u instead of w) shows that

(13.152.15) bu ∈
∑

q∈A`(u);
q≥u

kxq =
∑

p∈A`(u);
p≥u

kxp

(here, we renamed the summation index q as p).
Also, ` (v) < ` (w) = N . Thus, (13.152.12) (applied to v instead of w) shows that

(13.152.16) bv ∈ xv +
∑

q∈A`(v);
q>v

kxq.

Also, (13.152.13) (applied to v instead of w) shows that

(13.152.17) bv ∈
∑

q∈A`(v);
q≥v

kxq.

Now, let G =
∑

r∈A`(w);
r>w

kxr. Thus, G =
∑

r∈A`(w);
r>w

kxr is a k-submodule of T (V ).

If p ∈ A`(u) and q ∈ A`(v) are such that q ≥ v, then

(13.152.18) xqxp ∈ G

1068. Hence,

(13.152.19) bvbu ∈ G

1069.
Furthermore, if p ∈ A`(u) and q ∈ A`(v) are such that p > u, then

(13.152.20) xpxq ∈ G

1068Proof of (13.152.18): Let p ∈ A`(u) and q ∈ A`(v) be such that q ≥ v.
We have ` (qp) = ` (q)︸︷︷︸

=`(v)

(since q∈A`(v))

+ ` (p)︸︷︷︸
=`(u)

(since p∈A`(u))

= ` (v)+` (u) = ` (u)+` (v). Compared with ` (w) = ` (u)+` (v), this yields

` (qp) = ` (w). In other words, qp ∈ A`(w).
But the word w is Lyndon and satisfies w = uv. Thus, Proposition 6.1.14(a) shows that v ≥ w (since v is nonempty). Since

` (v) 6= ` (w) (because ` (v) < ` (w)), we have v 6= w. Combined with v ≥ w, this yields v > w. Now, qp ≥ q ≥ v > w.

So we know that qp ∈ A`(w) and qp > w. In other words, qp is an r ∈ A`(w) satisfying r > w. Thus, kxqp is an addend of
the sum

∑
r∈A`(w);
r>w

kxr. Therefore, kxqp ⊂
∑

r∈A`(w);
r>w

kxr = G (since G =
∑

r∈A`(w);
r>w

kxr).

But (13.152.8) (applied to q and p instead of u and v) shows that xqxp = xqp ∈ kxqp ⊂ G. This proves (13.152.18).
1069Proof of (13.152.19): We have

bv︸︷︷︸
∈

∑
q∈A`(v);
q≥v

kxq

(by (13.152.17))

bu︸︷︷︸
∈

∑
p∈A`(u);
p≥u

kxp

(by (13.152.15))

=

 ∑
q∈A`(v);
q≥v

kxq


 ∑
p∈A`(u);
p≥u

kxp

 ⊂ ∑
q∈A`(v);
q≥v

∑
p∈A`(u);
p≥u

kk︸︷︷︸
⊂k

xqxp︸ ︷︷ ︸
∈G

(by (13.152.18))

⊂
∑

q∈A`(v);
q≥v

∑
p∈A`(u);
p≥u

kG ⊂ G

(since G is a k-module). This proves (13.152.19).
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1070. Hence,

(13.152.21) (bu − xu) bv ∈ G
1071.

Furthermore, if q ∈ A`(v) is such that q > v, then

(13.152.22) xuxq ∈ G
1072. Hence,

(13.152.23) xu (bv − xv) ∈ G

1070Proof of (13.152.20): Let p ∈ A`(u) and q ∈ A`(v) be such that p > u.

We have ` (pq) = ` (p)︸︷︷︸
=`(u)

(since p∈A`(u))

+ ` (q)︸︷︷︸
=`(v)

(since q∈A`(v))

= ` (u)+` (v). Compared with ` (w) = ` (u)+` (v), this yields ` (pq) = ` (w).

In other words, pq ∈ A`(w).

We have ` (p) = ` (u) (since p ∈ A`(u)), so that ` (u) = ` (p).
Assume (for the sake of contradiction) that the word u is a prefix of p. Since the word u has the same length as p (since

` (u) = ` (p)), this shows that u = p. Thus, u = p > u, which is absurd. This contradiction shows that our assumption (that

the word u is a prefix of p) was false. In other words, the word u is not a prefix of p.
We have u < p (since p > u), thus u ≤ p. Thus, Proposition 6.1.2(d) (applied to u, v, p and ∅ instead of a, b, c and d)

shows that either we have uv ≤ p∅ or the word u is a prefix of p. Since the word u is not a prefix of p, we thus conclude that

uv ≤ p∅. Hence, w = uv ≤ p∅ = p.
Now, q ∈ A`(v), so that ` (q) = ` (v) ≥ 1. The word q is thus nonempty. Hence, p < pq. Thus, w ≤ p < pq, so that pq > w.

So we know that pq ∈ A`(w) and pq > w. In other words, pq is an r ∈ A`(w) satisfying r > w. Thus, kxpq is an addend of

the sum
∑

r∈A`(w);
r>w

kxr. Therefore, kxpq ⊂
∑

r∈A`(w);
r>w

kxr = G (since G =
∑

r∈A`(w);
r>w

kxr).

But (13.152.8) (applied to p and q instead of u and v) shows that xpxq = xpq ∈ kxpq ⊂ G. This proves (13.152.20).
1071Proof of (13.152.21): Subtracting xu from both sides of the relation (13.152.14), we obtain

bu − xu ∈
∑

p∈A`(u);
p>u

kxp.

Now,

(bu − xu)︸ ︷︷ ︸
∈

∑
p∈A`(u);
p>u

kxp

bv︸︷︷︸
∈

∑
q∈A`(v);
q≥v

kxq

(by (13.152.17))

∈

 ∑
p∈A`(u);
p>u

kxp


 ∑
q∈A`(v);
q≥v

kxq

 ⊂ ∑
p∈A`(u);
p>u

∑
q∈A`(v);
q≥v

kk︸︷︷︸
⊂k

xpxq︸ ︷︷ ︸
∈G

(by (13.152.20))

⊂
∑

p∈A`(u);
p>u

∑
q∈A`(v);
q≥v

kG ⊂ G

(since G is a k-module). This proves (13.152.21).
1072Proof of (13.152.22): Let q ∈ A`(v) be such that q > v.

We have ` (uq) = ` (u) + ` (q)︸︷︷︸
=`(v)

(since q∈A`(v))

= ` (u) + ` (v). Compared with ` (w) = ` (u) + ` (v), this yields ` (uq) = ` (w). In

other words, uq ∈ A`(w).
We have q > v, thus v < q, thus v ≤ q. Hence, Proposition 6.1.2(b) (applied to u, v and q instead of a, c and d) shows

that uv ≤ uq. If we had uv = uq, then we would have v = q (since we could cancel u from the equality uv = uq), which would
contradict v < q. Thus, we cannot have uv = uq. Hence, we have uv 6= uq. Combined with uv ≤ uq, this shows that uv < uq.

In other words, uq > uv = w (since w = uv).

So we know that uq ∈ A`(w) and uq > w. In other words, uq is an r ∈ A`(w) satisfying r > w. Thus, kxuq is an addend of
the sum

∑
r∈A`(w);
r>w

kxr. Therefore, kxuq ⊂
∑

r∈A`(w);
r>w

kxr = G (since G =
∑

r∈A`(w);
r>w

kxr).

But (13.152.8) (applied to u and q instead of u and v) shows that xuxq = xuq ∈ kxuq ⊂ G. This proves (13.152.22).
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1073.
Now,

bw = [bu, bv] = bubv − bvbu (by the definition of the Lie bracket on T (V ))

= (bu − xu) bv︸ ︷︷ ︸
∈G

(by (13.152.21))

+ xu (bv − xv)︸ ︷︷ ︸
∈G

(by (13.152.23))

+xuxv − bvbu︸︷︷︸
∈G

(by (13.152.19))

(by straightforward computation)

∈ G+G+ xuxv −G = xuxv︸ ︷︷ ︸
=xuv

(by (13.152.8))

+ G+G−G︸ ︷︷ ︸
⊂G

(since G is a k-module)

⊂ xuv︸︷︷︸
=xw

(since uv=w)

+ G︸︷︷︸
=

∑
r∈A`(w);
r>w

kxr

= xw +
∑

r∈A`(w);
r>w

kxr.

Thus, bw ∈ xw +
∑

r∈A`(w);
r>w

kxr is proven.

Let us now forget that we defined (u, v). We have

bw ∈ xw +
∑

r∈A`(w);
r>w

kxr = xw +
∑

v∈A`(w);
v>w

kxv

(here, we have renamed the summation index r as v).
Now, let us forget that we fixed w. We thus have proven that

bw ∈ xw +
∑

v∈A`(w);
v>w

kxv for every w ∈ L satisfying ` (w) = N.

In other words, we have proven that Exercise 6.1.41(c) holds under the condition that ` (w) = N . Thus, our
induction is complete, and Exercise 6.1.41(c) is solved.

(d) We know that g is a Lie subalgebra of T (V ) (by Exercise 6.1.41(a)). Thus, [g, g] ⊂ g.
We first notice that

(13.152.24) bw ∈ g for every w ∈ L.

Proof of (13.152.24): We shall prove (13.152.24) by strong induction on ` (w):
Induction step: Let N ∈ N. Assume that (13.152.24) holds under the condition that ` (w) < N . We need

to show that (13.152.24) also holds under the condition that ` (w) = N .
We have assumed that (13.152.24) holds under the condition that ` (w) < N . In other words, we have

(13.152.25) bw ∈ g for every w ∈ L satisfying ` (w) < N.

Now, let w ∈ L be such that ` (w) = N . We shall prove that bw ∈ g.

1073Proof of (13.152.23): Subtracting xv from both sides of the relation (13.152.16), we obtain

bv − xv ∈
∑

q∈A`(v);
q>v

kxq .

Now,

xu (bv − xv)︸ ︷︷ ︸
∈

∑
q∈A`(v);
q>v

kxq

∈ xu

 ∑
q∈A`(v);
q>v

kxq

 ⊂ ∑
q∈A`(v);
q>v

k xuxq︸ ︷︷ ︸
∈G

(by (13.152.22))

⊂
∑

q∈A`(v);
q>v

kG ⊂ G

(since G is a k-module). This proves (13.152.23).
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If ` (w) ≤ 1, then bw ∈ g holds1074. Hence, for the rest of this proof, we can WLOG assume that we don’t
have ` (w) ≤ 1. Assume this.

The word w is Lyndon (since w ∈ L) and satisfies ` (w) > 1 (since we don’t have ` (w) ≤ 1). Thus, w is a
Lyndon word of length > 1. Therefore, stf w is well-defined. Let (u, v) = stf w. The recursive definition of
bw yields bw = [bu, bv] (since ` (w) > 1 and (u, v) = stf w).

Exercise 6.1.39(e) (applied to (g, h) = (u, v)) shows that u ∈ L, v ∈ L, ` (u) < ` (w) and ` (v) < ` (w).
Now, ` (u) < ` (w) = N . Thus, (13.152.25) (applied to u instead of w) shows that bu ∈ g.
Also, ` (v) < ` (w) = N . Thus, (13.152.25) (applied to v instead of w) shows that bv ∈ g.

Now, bw =

 bu︸︷︷︸
∈g

, bv︸︷︷︸
∈g

 ∈ [g, g] ⊂ g.

Let us now forget that we fixed w. We thus have shown that bw ∈ g for every w ∈ L satisfying ` (w) = N .
In other words, (13.152.24) holds under the condition that ` (w) = N . This completes the induction step.
The induction proof of (13.152.24) is thus complete.

Now, (13.152.24) shows that (bw)w∈L is a family of elements of g. Using Exercise 6.1.40(a), it is easy to

conclude that this family (bw)w∈L spans the k-module g 1075.
We shall now show that the family (bw)w∈L is k-linearly independent. In order to do so, we will prove a

more general result:

Proposition 13.152.1. Let V be a k-module, and let W be a totally ordered set. Let (pw)w∈W be a k-
linearly independent family of elements of V. Let L be a subset of W . Let (sw)w∈L be a family of elements
of V. Assume that every w ∈ L satisfies

(13.152.28) sw ∈ pw +
∑
v∈W ;
v>w

kpv.

(Here, the “>” sign under the sum refers to the total order on W .) Then, the family (sw)w∈L is k-linearly
independent.

Proposition 13.152.1 is actually a standard criterion for linear independence. It is often summarized by
the motto “vectors with distinct leading coordinates are linearly independent”. For the sake of completeness,
we shall nevertheless prove it. First, let us state an obvious lemma:

1074Proof. Assume that ` (w) ≤ 1. The word w is Lyndon (since w ∈ L) and thus nonempty. Hence, ` (w) ≥ 1. Combined

with ` (w) ≤ 1, this yields ` (w) = 1. In other words, the word w consists of a single letter. In other words, w = (a) for some

a ∈ A. Consider this a. The definition of bw then yields bw = xa (since ` (w) = 1 and w = (a)).
Now, bw = xa ∈ V ⊂ g, qed.
1075Proof. Let B be the k-submodule of g spanned by the family (bw)w∈L (this is well-defined since (bw)w∈L is a family of

elements of g). Then, clearly,

(13.152.26) bw ∈ B for every w ∈ L.

Whenever w is a Lyndon word of length > 1, we have

bw = [bu, bv ] , where (u, v) = stf w

(due to the recursive definition of bw). Thus, Exercise 6.1.40(a) shows that B is a Lie subalgebra of g. Hence, B is a Lie

subalgebra of T (V ).
Recall that (xa)a∈A is a basis of the k-module V . Hence,

(13.152.27)
(
the k-linear span of the family (xa)a∈A

)
= V.

Now, let a ∈ A. We shall show that xa ∈ B.

Indeed, let w be the one-letter word (a). Then, w is Lyndon (since w is a one-letter word) and has length 1. Thus, bw = xa
(by the definition of bw, since w = (a)). Hence, xa = bw ∈ B (by (13.152.26)).

Now, let us forget that we fixed a. We thus have shown that xa ∈ B for every a ∈ A. Since B is a k-module, this entails

that
(
the k-linear span of the family (xa)a∈A

)
⊂ B. Because of (13.152.27), this rewrites as V ⊂ B.

Now, we know that B is a Lie subalgebra of T (V ) satisfying V ⊂ B. Thus, g ⊂ B (by Exercise 6.1.41(b), applied to k = B).

Combined with B ⊂ g (since B is a k-submodule of g), this yields g = B. But the family (bw)w∈L spans the k-module B (since

B is the k-submodule of g spanned by the family (bw)w∈L). Since g = B, this rewrites as follows: The family (bw)w∈L spans

the k-module g. Qed.
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Lemma 13.152.2. Let V be a k-module, and let W be a set. Let (pw)w∈W be a k-linearly independent
family of elements of V. Let x ∈W and λ ∈ k be such that

(13.152.29) 0 ∈ λpx +
∑

v∈W\{x}

kpv.

Then, λ = 0.

Proof of Lemma 13.152.2. The equality (13.152.29) shows that we can write 0 as a k-linear combination of
the elements pv with v ∈ W in such a way that the coefficient in front of px is λ. But since (pw)w∈W is
k-linearly independent, the only such linear combination which gives 0 is the trivial one (i.e., the one where
all the coefficients are 0). Hence, all coefficients in our linear combination are 0. In particular, the coefficient
in front of px is 0. Since this coefficient is λ, this means that λ = 0. This proves Lemma 13.152.2. �

Proof of Proposition 13.152.1. Let us first prove the following fact: If S is a finite subset of L, then

(13.152.30) the family (sw)w∈S is k-linearly independent.

Proof of (13.152.30): We shall prove (13.152.30) by induction over |S|:
Induction base: If S is a finite subset of L satisfying |S| = 0, then the family (sw)w∈S is k-linearly

independent (because |S| = 0 entails S = ∅, and thus the family (sw)w∈S is empty). In other words,
(13.152.30) holds in the case when |S| = 0. This completes the induction base.

Induction step: Let K be a positive integer. Assume that (13.152.30) is proven in the case when |S| =
K − 1. We must prove that (13.152.30) holds in the case when |S| = K.

We have assumed that (13.152.30) is proven in the case when |S| = K − 1. In other words, if S is a finite
subset of L satisfying |S| = K − 1, then

(13.152.31) the family (sw)w∈S is k-linearly independent.

Now, let S be a finite subset of L satisfying |S| = K. Let (λw)w∈S ∈ kS be a family of elements of k such
that

∑
w∈S λwsw = 0. We shall prove that (λw)w∈S = (0)w∈S .

We have |S| = K > 0. Thus, the set S is nonempty. Also, S ⊂ L ⊂ W , and thus the set S is totally
ordered (since it is a subset of the totally ordered set W ). Therefore, this set S has a smallest element (since
every nonempty finite totally ordered set has a smallest element). Let x be this smallest element. Thus,

(13.152.32) x ≤ w for every w ∈ S
(by the definition of the smallest element). Also, x ∈ S (since x is the smallest element of S), and thus
|S \ {x}| = |S|︸︷︷︸

=K

−1 = K − 1. Hence, we can apply (13.152.31) to S \ {x} instead of S. As a result, we see

that the family (sw)w∈S\{x} is k-linearly independent. In other words, if (µw)w∈S\{x} ∈ kS\{x} is a family

of elements of k such that
∑
w∈S\{x} µwsw = 0, then

(13.152.33) (µw)w∈S\{x} = (0)w∈S\{x} .

On the other hand, every w ∈ S \ {x} satisfies

(13.152.34) sw ∈
∑

v∈W\{x}

kpv

1076. Also,

(13.152.35) sx − px ∈
∑

v∈W\{x}

kpv

1076Proof of (13.152.34): Let w ∈ S \ {x}. Thus, w ∈ S and w 6= x.
Let v ∈ {q ∈W | q > w}. We shall show that v ∈W \ {x}.
Indeed, we have v ∈ {q ∈W | q > w}. In other words, v is an element of W and satisfies v > w. But w ∈ S \ {x} ⊂ S, so

that (13.152.32) shows that x ≤ w. Hence, w ≥ x, so that v > w ≥ x. Thus, v 6= x. Combining v ∈ W with v 6= x, we obtain

v ∈W \ {x}.
Let us now forget that we fixed v. We thus have proven that every v ∈ {q ∈W | q > w} satisfies v ∈ W \ {x}. In other

words, {q ∈W | q > w} ⊂W \ {x}. Therefore,
∑
v∈{q∈W | q>w} kpv ⊂

∑
v∈W\{x} kpv .

Also, combining w ∈ W with w 6= x, we obtain w ∈ W \ {x}. Hence, kpw is an addend of the sum
∑
v∈W\{x} kpv . Thus,

kpw ⊂
∑
v∈W\{x} kpv . Now, pw ∈ kpw ⊂

∑
v∈W\{x} kpv .
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1077. Now,
∑
w∈S λwsw = 0, so that

0 =
∑
w∈S

λwsw = λx sx︸︷︷︸
=px+(sx−px)

+
∑
w∈S;
w 6=x︸︷︷︸

=
∑
w∈S\{x}

λwsw (since x ∈ S)

= λx (px + (sx − px))︸ ︷︷ ︸
=λxpx+λx(sx−px)

+
∑

w∈S\{x}

λw sw︸︷︷︸
∈
∑
v∈W\{x} kpv

(by (13.152.34))

∈ λxpx + λx (sx − px)︸ ︷︷ ︸
∈
∑
v∈W\{x} kpv

(by (13.152.35))

+
∑

w∈S\{x}

λw
∑

v∈W\{x}

kpv︸ ︷︷ ︸
⊂
∑
v∈W\{x} kpv

(since
∑
v∈W\{x} kpv is a k-module)

⊂ λxpx + λx
∑

v∈W\{x}

kpv +
∑

v∈W\{x}

kpv︸ ︷︷ ︸
⊂
∑
v∈W\{x} kpv

(since
∑
v∈W\{x} kpv is a k-module)

⊂ λxpx +
∑

v∈W\{x}

kpv.

Lemma 13.152.2 (applied to λ = λx) thus shows that λx = 0. Thus,

0 = λx︸︷︷︸
=0

sx +
∑
w∈S;
w 6=x︸︷︷︸

=
∑
w∈S\{x}

λwsw = 0sx︸︷︷︸
=0

+
∑

w∈S\{x}

λwsw =
∑

w∈S\{x}

λwsw.

Thus, the family (λw)w∈S\{x} ∈ kS\{x} satisfies
∑
w∈S\{x} λwsw = 0. Hence, (λw)w∈S\{x} = (0)w∈S\{x}

(according to (13.152.33), applied to (µw)w∈S\{x} = (λw)w∈S\{x}). In other words,

(13.152.36) λw = 0 for every w ∈ S \ {x} .
Combining this with the fact that λx = 0, we conclude that λw = 0 for every w ∈ S. In other words,
(λw)w∈S = (0)w∈S .

Now, w ∈ S ⊂ L ⊂W . Hence, (13.152.28) yields

sw ∈ pw︸︷︷︸
∈
∑
v∈W\{x} kpv

+
∑
v∈W ;
v>w︸ ︷︷ ︸

=
∑
v∈{q∈W | q>w}

kpv ⊂
∑

v∈W\{x}
kpv +

∑
v∈{q∈W | q>w}

kpv

︸ ︷︷ ︸
⊂
∑
v∈W\{x} kpv

⊂
∑

v∈W\{x}
kpv +

∑
v∈W\{x}

kpv ⊂
∑

v∈W\{x}
kpv

(since
∑
v∈W\{x} kpv is a k-module). This proves (13.152.34).

1077Proof of (13.152.35): Let v ∈ {q ∈W | q > x}. We shall show that v ∈W \ {x}.
Indeed, we have v ∈ {q ∈W | q > x}. In other words, v is an element of W and satisfies v > x. Hence, v 6= x (since v > x).

Combining v ∈W with v 6= x, we obtain v ∈W \ {x}.
Let us now forget that we fixed v. We thus have proven that every v ∈ {q ∈W | q > x} satisfies v ∈ W \ {x}. In other

words, {q ∈W | q > x} ⊂W \ {x}. Therefore,
∑
v∈{q∈W | q>x} kpv ⊂

∑
v∈W\{x} kpv .

Now, x ∈ S ⊂ L ⊂W . Hence, (13.152.28) (applied to w = x) yields

sx ∈ px +
∑
v∈W ;
v>x

kpv .

Subtracting px from both sides of this relation, we obtain

sx − px ∈
∑
v∈W ;
v>x︸ ︷︷ ︸

=
∑
v∈{q∈W | q>x}

kpv =
∑

v∈{q∈W | q>x}
kpv ⊂

∑
v∈W\{x}

kpv .

This proves (13.152.35).
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Now, let us forget that we fixed (λw)w∈S . We thus have shown that if (λw)w∈S ∈ kS is a family of
elements of k such that

∑
w∈S λwsw = 0, then (λw)w∈S = (0)w∈S . In other words, the family (sw)w∈S is

k-linearly independent.
Let us now forget that we fixed S. We thus have proven that if S is a finite subset of L satisfying

|S| = K, then the family (sw)w∈S is k-linearly independent. In other words, (13.152.30) holds in the case
when |S| = K. This completes the induction step. Thus, we have proven (13.152.30) by induction.

Now, a family f of vectors in a k-module is k-linearly independent if every finite subfamily of f is k-linearly
independent (because every linear dependence relation for f has only finitely many nonzero coefficients, and
thus can be recast as a linear dependence relation for some finite subfamily of f). Now, (13.152.30) shows
that every finite subfamily of the family (sw)w∈L is k-linearly independent; therefore, the previous sentence
shows that the family (sw)w∈L is k-linearly independent. This proves Proposition 13.152.1. �

Let us now return to the solution of Exercise 6.1.41(d). The set A∗ is totally ordered (by the lexicographic
order), and the set L is a subset of A∗. The family (xw)w∈A∗ is a basis of the k-module T (V ), and thus is
a k-linearly independent family of elements of this k-module. The family (bw)w∈L is a family of elements of
T (V ). Every w ∈ L satisfies

bw ∈ xw +
∑

v∈A`(w);
v>w

kxv

︸ ︷︷ ︸
⊂

∑
v∈A∗;
v>w

kxv

(since A`(w)⊂A∗)

(by Exercise 6.1.41(c))

⊂ xw +
∑
v∈A∗;
v>w

kxv.

Hence, Proposition 13.152.1 (applied to V = T (V ), W = A∗, (pw)w∈A∗ = (xw)w∈A∗ , L = L and (sw)w∈L =
(bw)w∈L) shows that the family (bw)w∈L is k-linearly independent. Combining this with the fact that this
family (bw)w∈L spans the k-module g, we therefore conclude that the family (bw)w∈L is a basis of the
k-module g. This solves Exercise 6.1.41(d).

(e) Let us first show a simple lemma:

Lemma 13.152.3. Let a and b be two k-Lie algebras. Let p : a → b and q : a → b be two Lie algebra
homomorphisms. Then, ker (p− q) is a Lie subalgebra of a.

Proof of Lemma 13.152.3. Let x ∈ ker (p− q) and y ∈ ker (p− q). Then, (p− q) (x) = 0 (since x ∈
ker (p− q)), so that 0 = (p− q) (x) = p (x) − q (x), and thus p (x) = q (x). The same argument (applied to
y instead of x) shows that p (y) = q (y).

But p is a Lie algebra homomorphism, and thus satisfies p ([x, y]) =

p (x)︸︷︷︸
=q(x)

, p (y)︸︷︷︸
=q(y)

 = [q (x) , q (y)] =

q ([x, y]) (since q is a Lie algebra homomorphism). Now, (p− q) ([x, y]) = p ([x, y])︸ ︷︷ ︸
=q([x,y])

−q ([x, y]) = q ([x, y]) −

q ([x, y]) = 0. In other words, [x, y] ∈ ker (p− q).
Let us now forget that we fixed x and y. We thus have proven that [x, y] ∈ ker (p− q) whenever x ∈

ker (p− q) and y ∈ ker (p− q). In other words, the set ker (p− q) is closed under the Lie bracket. Also,
clearly, p− q is a k-linear map (since both maps p and q are k-linear), and therefore its kernel ker (p− q) is
a k-submodule of a. Thus, ker (p− q) is a k-submodule of a which is closed under the Lie bracket. In other
words, ker (p− q) is a Lie subalgebra of a. This proves Lemma 13.152.3. �

Now, it is easy to see that if Ξ1 and Ξ2 are two Lie algebra homomorphisms Ξ : g → h such that every
a ∈ A satisfies Ξ (xa) = ξ (a), then Ξ1 = Ξ2

1078. In other words, there exists at most one Lie algebra

1078Proof. Let Ξ1 and Ξ2 be two Lie algebra homomorphisms Ξ : g→ h such that every a ∈ A satisfies Ξ (xa) = ξ (a). We

must prove that Ξ1 = Ξ2.
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homomorphism Ξ : g → h such that every a ∈ A satisfies Ξ (xa) = ξ (a). We shall now show that there
actually exists such a homomorphism.

For every w ∈ L, we define an element zw of h as follows: We define zw by recursion on the length of w.
If the length of w is 1 1079, then we have w = (a) for some letter a ∈ A, and we set zw = ξ (a) for this
letter a. If the length of w is > 1, then we set zw = [zu, zv], where (u, v) = stf w 1080.

Thus, we have defined a zw ∈ h for every w ∈ L. Now, Exercise 6.1.41(d) shows that the family (bw)w∈L
is a basis of the k-module g. Thus, we can define a k-module homomorphism f : g→ h by requiring that

(13.152.37) (f (bw) = zw for every w ∈ L) .

Consider this f . Whenever w is a Lyndon word of length > 1, we have

(13.152.38) f ([bu, bv]) = [f (bu) , f (bv)] , where (u, v) = stf w

1081. But recall that the family (bw)w∈L is a basis of the k-module g. Thus, this family spans the k-module g.
In other words, g is the k-submodule of g spanned by the family (bw)w∈L. Thus, Exercise 6.1.40(b) (applied
to B = g) shows that f is a Lie algebra homomorphism.

We notice that
every a ∈ A satisfies f (xa) = ξ (a)

1082. Thus, f is a Lie algebra homomorphism g → h having the property that every a ∈ A satisfies
f (xa) = ξ (a). Therefore, there exists at least one Lie algebra homomorphism Ξ : g → h such that every
a ∈ A satisfies Ξ (xa) = ξ (a) (namely, Ξ = f). Combining this with the fact that there exists at most one

Both Ξ1 and Ξ2 are k-linear maps, and therefore Ξ1 − Ξ2 is a k-linear map as well. Hence, its kernel ker (Ξ1 − Ξ2) is a

k-submodule of g.
We know that Ξ1 is a Lie algebra homomorphism Ξ : g → h such that every a ∈ A satisfies Ξ (xa) = ξ (a). Thus, every

a ∈ A satisfies Ξ1 (xa) = ξ (a). Similarly, every a ∈ A satisfies Ξ2 (xa) = ξ (a). Hence, every a ∈ A satisfies (Ξ1 − Ξ2) (xa) =

Ξ1 (xa)︸ ︷︷ ︸
=ξ(a)

−Ξ2 (xa)︸ ︷︷ ︸
=ξ(a)

= ξ (a) − ξ (a) = 0, so that xa ∈ ker (Ξ1 − Ξ2). In other words, the set ker (Ξ1 − Ξ2) contains xa for every

a ∈ A. Since ker (Ξ1 − Ξ2) is a k-submodule of g, this shows that

ker (Ξ1 − Ξ2) ⊃
(
the k-linear span of the family (xa)a∈A

)
.

Since
(
the k-linear span of the family (xa)a∈A

)
= V (because the family (xa)a∈A is a basis of the k-module V ), this rewrites

as ker (Ξ1 − Ξ2) ⊃ V . In other words, V ⊂ ker (Ξ1 − Ξ2).

From Lemma 13.152.3 (applied to a = g, b = h, p = Ξ1 and q = Ξ2), we see that ker (Ξ1 − Ξ2) is a Lie subalgebra of g.
Since g (in turn) is a Lie subalgebra of T (V ), this shows that ker (Ξ1 − Ξ2) is a Lie subalgebra of T (V ).

Thus, we know that ker (Ξ1 − Ξ2) is a Lie subalgebra of T (V ) satisfying V ⊂ ker (Ξ1 − Ξ2). Exercise 6.1.41(b) (applied to

k = ker (Ξ1 − Ξ2)) thus shows that g ⊂ ker (Ξ1 − Ξ2). Hence, Ξ1 − Ξ2 = 0, so that Ξ1 = Ξ2. Qed.
1079The length of any w ∈ L must be at least 1. (Indeed, if w ∈ L, then the word w is Lyndon and thus nonempty, and

hence its length must be at least 1.)
1080This is well-defined, because zu and zv have already been defined. [Proof. Let (u, v) = stf w. Then, Exercise 6.1.39(e)

(applied to (g, h) = (u, v)) shows that u ∈ L, v ∈ L, ` (u) < ` (w) and ` (v) < ` (w). Recall that we are defining zw by recursion

on the length of w. Hence, zp is already defined for every p ∈ L satisfying ` (p) < ` (w). Applying this to p = u, we see that zu
is already defined (since u ∈ L and ` (u) < ` (w)). The same argument (but applied to v instead of u) shows that zv is already

defined. Hence, zu and zv have already been defined. Thus, zw is well-defined by zw = [zu, zv ], qed.]
1081Proof of (13.152.38): Let w be a Lyndon word of length > 1. Let (u, v) = stf w. Thus, (u, v) = stf w ∈ L× L.
The recursive definition of zw shows that zw = [zu, zv ] (since w is a Lyndon word of length > 1, and since (u, v) = stf w).

The recursive definition of bw shows that bw = [bu, bv ] (for the same reasons). Thus, [bu, bv ] = bw, so that

f

[bu, bv ]︸ ︷︷ ︸
=bw

 = f (bw) = zw (by (13.152.37))

= [zu, zv ] .

Comparing this with f (bu)︸ ︷︷ ︸
=zu

(by (13.152.37), applied to u instead of w)

, f (bv)︸ ︷︷ ︸
=zv

(by (13.152.37), applied to v instead of w)

 = [zu, zv ] ,

we obtain f ([bu, bv ]) = [f (bu) , f (bv)]. This proves (13.152.38).
1082Proof. Let a ∈ A. Let w be the one-letter word (a). Then, w is a Lyndon word (since w is a one-letter word) and has

length 1. Thus, the definition of zw shows that zw = ξ (a) (since w = (a)).
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Lie algebra homomorphism Ξ : g→ h such that every a ∈ A satisfies Ξ (xa) = ξ (a), we conclude that there
exists a unique Lie algebra homomorphism Ξ : g → h such that every a ∈ A satisfies Ξ (xa) = ξ (a). This
solves Exercise 6.1.41(e).

13.153. Solution to Exercise 6.2.7. Solution to Exercise 6.2.7.

Proof of Remark 6.2.6. (a) Let I and J be two nonempty intervals of Z satisfying I < J . Then,

(13.153.1) every i ∈ I and j ∈ J satisfy i < j

(by the definition of I < J), since I < J .
Let p ∈ I ∩ J . Then, p ∈ I ∩ J ⊂ I and p ∈ I ∩ J ⊂ J . Hence, p < p (by (13.153.1)), which is absurd.

Now, let us forget that we fixed p. Thus, we have obtained a contradiction for every p ∈ I ∩ J . Hence, there
exists no p ∈ I ∩ J . In other words, I ∩ J = ∅, so that the sets I and J are disjoint. This proves Remark
6.2.6(a).

(b) Let I and J be two disjoint nonempty intervals of Z. We need to prove that I < J or J < I.
Let i0 be the smallest element of I (this exists, since I is nonempty), and let j0 be the smallest element

of J (this exists, since J is nonempty). We WLOG assume that i0 ≤ j0 (since otherwise, we can simply
interchange I with J).

The intervals I and J are disjoint, and thus I ∩ J = ∅.
Now, let i ∈ I and j ∈ J be arbitrary. Assume (for the sake of contradiction) that i ≥ j. Notice that

j ≥ j0 (since j is an element of J , whereas j0 is the smallest element of J), so that i ≥ j ≥ j0, so that j0 ≤ i.
Write the interval I in the form [p : q]

+
for some p ∈ Z and q ∈ Z. Since i ∈ I = [p : q]

+
=

{p+ 1, p+ 2, . . . , q}, we have p < i ≤ q. Since i0 ∈ I = [p : q]
+

= {p+ 1, p+ 2, . . . , q}, we have p < i0 ≤ q.

Now, p < i0 ≤ j0 and j0 ≤ i ≤ q. Hence, p < j0 ≤ q and thus j0 ∈ {p+ 1, p+ 2, . . . , q} = [p : q]
+

= I.
Combined with j0 ∈ J (since j0 is the smallest element of J), this yields j0 ∈ I ∩ J = ∅, which is absurd.
Hence, our assumption (that i ≥ j) was wrong. We thus have i < j.

Now, forget that we have fixed i and j. We thus have shown that every i ∈ I and j ∈ J satisfy i < j. In
other words, I < J (by the definition of I < J). Hence, I < J or J < I. This proves Remark 6.2.6(b).

(c) For any `-tuple (I1, I2, . . . , I`) of nonempty intervals of Z, we can state the following three properties
(which might and might not be satisfied):

• Property C1: The intervals I1, I2, . . ., I` form a set partition of the set [0 : n]
+

, where n = |α|.
• Property C2: We have I1 < I2 < · · · < I`.
• Property C3: We have |Ii| = αi for every i ∈ {1, 2, . . . , `}.

We have to prove that the interval system intsysα is the unique `-tuple (I1, I2, . . . , I`) of nonempty
intervals of Z satisfying these three properties C1, C2 and C3.

But the definition of bw yields bw = xa (since ` (w) = 1 and w = (a)). Hence, f

 bw︸︷︷︸
=xa

 = f (xa), so that f (xa) = f (bw) =

zw (by (13.152.37)) and thus f (xa) = zw = ξ (a), qed.
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First, it is easy to check that the interval system intsysα is an `-tuple (I1, I2, . . . , I`) of nonempty intervals
of Z satisfying these three properties C1, C2 and C3.1083 It remains to prove that it is the only such `-tuple.

So, let us fix any `-tuple (I1, I2, . . . , I`) of nonempty intervals of Z satisfying the three properties C1, C2
and C3. We need to prove that this `-tuple (I1, I2, . . . , I`) is intsysα. In order to prove this, it is enough to
show that

(13.153.3) Ii =

[
i−1∑
k=1

αk :

i∑
k=1

αk

]+

for every i ∈ {1, 2, . . . , `}

(according to the definition of intsysα). So it remains to prove (13.153.3).

Set n = |α|. The intervals I1, I2, . . ., I` form a set partition of the set [0 : n]
+

(according to Property

C1). Thus, the intervals I1, I2, . . ., I` are disjoint, and satisfy I1 ∪ I2 ∪ · · · ∪ I` = [0 : n]
+

.
Now, let us show that

(13.153.4) I1 ∪ I2 ∪ · · · ∪ Iu =

[
0 :

u∑
k=1

αk

]+

for every u ∈ {0, 1, . . . , `} .

Proof of (13.153.4): We will prove (13.153.4) by induction over u.

1083Proof. Let (I1, I2, . . . , I`) denote the interval system intsysα. We need to prove that the Properties C1, C2 and C3 are

satisfied.
Let us first recall that

(13.153.2) Ii =

[
i−1∑
k=1

αk :
i∑

k=1

αk

]+

for every i ∈ {1, 2, . . . , `}

(by the definition of intsysα).

Proof that Property C1 is satisfied: Let n = |α|. Then,
∑`
k=1 αk = |α| = n. Clearly, Ii ⊂ [0 : n]+ for every i ∈ {1, 2, . . . , `}.

We have

0 =
0∑
k=1

αk ≤
1∑
k=1

αk ≤ · · · ≤
∑̀
k=1

αk = n

(since α1, α2, . . ., α` are positive integers). Hence, for every x ∈ [0 : n]+, there exists precisely one i ∈ {1, 2, . . . , `} satisfying∑i−1
k=1 αk < x ≤

∑i
k=1 αk. In other words, for every x ∈ [0 : n]+, there exists precisely one i ∈ {1, 2, . . . , `} satisfying

x ∈
[∑i−1

k=1 αk :
∑i
k=1 αk

]+
(since x ∈

[∑i−1
k=1 αk :

∑i
k=1 αk

]+
is equivalent to

∑i−1
k=1 αk < x ≤

∑i
k=1 αk). In other words,

for every x ∈ [0 : n]+, there exists precisely one i ∈ {1, 2, . . . , `} satisfying x ∈ Ii (since Ii =
[∑i−1

k=1 αk :
∑i
k=1 αk

]+
). In other

words, the subsets I1, I2, . . ., I` of [0 : n]+ are disjoint, and their union is [0 : n]+. In other words, the subsets I1, I2, . . ., I` of

[0 : n]+ form a set partition of the set [0 : n]+. This proves that Property C1 is satisfied.

Proof that Property C2 is satisfied: Let u ∈ {1, 2, . . . , `− 1}. Let i ∈ Iu and j ∈ Iu+1. Since i ∈ Iu =[∑u−1
k=1 αk :

∑u
k=1 αk

]+
(by (13.153.2), applied to u instead of i), we have

∑u−1
k=1 αk < i ≤

∑u
k=1 αk. Since j ∈ Iu+1 =[∑(u+1)−1

k=1 αk :
∑u+1
k=1 αk

]+
(by (13.153.2), applied to u + 1 instead of i), we have

∑(u+1)−1
k=1 αk < j ≤

∑u+1
k=1 αk. Now,

i ≤
∑u
k=1 αk =

∑(u+1)−1
k=1 αk < j.

Now, let us forget that we fixed i and j. We thus have proven that every i ∈ Iu and j ∈ Iu+1 satisfy i < j. In other words,
Iu < Iu+1 (by the definition of Iu < Iu+1).

Now, let us forget that we fixed u. We thus have shown that Iu < Iu+1 for every u ∈ {1, 2, . . . , `− 1}. In other words,

I1 < I2 < · · · < I`. This proves that Property C2 is satisfied.

Proof that Property C3 is satisfied: Let i ∈ {1, 2, . . . , `}. We have
∑i
k=1 αk =

∑i−1
k=1 αk + αi︸︷︷︸

>0

>
∑i−1
k=1 αk. Now, (13.153.2)

yields

|Ii| =

∣∣∣∣∣∣
[
i−1∑
k=1

αk :
i∑

k=1

αk

]+
∣∣∣∣∣∣ =

i∑
k=1

αk −
i−1∑
k=1

αk

(
since

i∑
k=1

αk >

i−1∑
k=1

αk

)
= αi.

This proves that Property C3 is satisfied.
We thus have shown that the Properties C1, C2 and C3 are satisfied, qed.
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Induction base: For u = 0, we have I1 ∪ I2 ∪ · · · ∪ Iu = I1 ∪ I2 ∪ · · · ∪ I0 = (empty union) = ∅ and

[0 :
∑u
k=1 αk]

+
=

0 :

0∑
k=1

αk︸ ︷︷ ︸
=0


+

= [0 : 0]
+

= ∅. Hence, for u = 0, both sides of the equality (13.153.4) are

∅. Thus, for u = 0, the equality (13.153.4) holds. This completes the induction base.
Induction step: Let U ∈ {1, 2, . . . , `}. Assume that (13.153.4) holds for u = U − 1. We now need to prove

that (13.153.4) holds for u = U as well.
We have assumed that (13.153.4) holds for u = U − 1. In other words,

(13.153.5) I1 ∪ I2 ∪ · · · ∪ IU−1 =

[
0 :

U−1∑
k=1

αk

]+

.

Let ξ =
∑U−1
k=1 αk. Then, ξ ≥ 0, so that ξ + 1 ≥ 1. Then,

n = |α| =
∑̀
k=1

αk =

U−1∑
k=1

αk +
∑̀
k=U

αk︸ ︷︷ ︸
>0

(since all αk are >0,
and since U≤`)

>

U−1∑
k=1

αk = ξ.

Hence, n ≥ ξ + 1 (since ξ and n are integers), so that 1 ≤ ξ + 1 ≤ n. In other words, ξ + 1 ∈ {1, 2, . . . , n} =

[0 : n]
+

= I1∪I2∪· · ·∪I` (since I1∪I2∪· · ·∪I` = [0 : n]
+

). In other words, there exists some v ∈ {1, 2, . . . , `}
such that ξ + 1 ∈ Iv. Consider this v. If we had v < U , then we would have

ξ + 1 ∈ Iv ⊂ I1 ∪ I2 ∪ · · · ∪ IU−1 (since v ∈ {1, 2, . . . , U − 1} (because v < U))

=

0 :

U−1∑
k=1

αk︸ ︷︷ ︸
=ξ


+

= [0 : ξ]
+

= {1, 2, . . . , ξ} ,

which is absurd. Hence, we cannot have v < U . Thus, we have v ≥ U .
Recall that

(13.153.6)

0 : ξ︸︷︷︸
=
∑U−1
k=1 αk


+

=

[
0 :

U−1∑
k=1

αk

]+

= I1 ∪ I2 ∪ · · · ∪ IU−1

(by (13.153.5)). Using this, it is easy to see that

(13.153.7) every p ∈ IU satisfies p ≥ ξ + 1.

1084

We now assume (for the sake of contradiction) that v 6= U . Then, v > U (since v ≥ U and v 6= U),
whence IU < Iv (since Property C2 yields I1 < I2 < · · · < I`).

The interval IU is nonempty, and thus there exists some p ∈ IU . Consider such a p. Recall that IU < Iv.
Thus, every i ∈ IU and j ∈ Iv satisfy i < j (by the definition of IU < Iv). Applying this to i = p and
j = ξ+1, we obtain p < ξ+1. But (13.153.7) yields p ≥ ξ+1, which contradicts p < ξ+1. This contradiction
proves that our assumption (that v 6= U) was wrong. Hence, we have v = U .

1084Proof of (13.153.7): Let p ∈ IU . Assume (for the sake of contradiction) that p ≤ ξ. But p ∈ IU ⊂ I1 ∪ I2 ∪ · · · ∪ I` =

[0 : n]+ = {1, 2, . . . , n}, so that 0 < p ≤ n. Since 0 < p ≤ ξ, we have p ∈ {1, 2, . . . , ξ} = [0 : ξ]+ = I1 ∪ I2 ∪ · · · ∪ IU−1, which

shows that there exists some r ∈ {1, 2, . . . , U − 1} such that p ∈ Ir. Consider this r. Since r 6= U (because r ∈ {1, 2, . . . , U − 1}),
the intervals Ir and IU are disjoint (since the intervals I1, I2, . . ., I` are disjoint). In other words, Ir ∩ IU = ∅. But combining
p ∈ Ir with p ∈ IU , we obtain p ∈ Ir ∩ IU = ∅, which is absurd. This contradiction proves that our assumption (that p ≤ ξ)

was wrong. Hence, we have p > ξ. Thus, p ≥ ξ + 1 (since p and ξ are integers). This proves (13.153.7).
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Now, ξ + 1 ∈ Iv = IU (since v = U). Hence, ξ + 1 is an element of IU . Due to (13.153.7), this element
ξ + 1 is the smallest element of IU .

But since property C3 is satisfied, we have |IU | = αU (by Property C3, applied to i = U). So we know that

the interval IU has length αU (since |IU | = αU ) and smallest element ξ + 1. Therefore, IU = [ξ : ξ + αU ]
+

(because the only interval having length αU and smallest element ξ + 1 is the interval [ξ : ξ + αU ]
+

). Now,

I1 ∪ I2 ∪ · · · ∪ IU = (I1 ∪ I2 ∪ · · · ∪ IU−1)︸ ︷︷ ︸
=[0:ξ]+

(by (13.153.6))

∪ IU︸︷︷︸
=[ξ:ξ+αU ]+

= [0 : ξ]
+ ∪ [ξ : ξ + αU ]

+
= [0 : ξ + αU ]

+

(since 0 ≤ ξ ≤ ξ + αU (since ξ ≥ 0 and αU ≥ 0)). Since

ξ︸︷︷︸
=
∑U−1
k=1 αk

+αU =

U−1∑
k=1

αk + αU =

U∑
k=1

αk,

this rewrites as I1 ∪ I2 ∪ · · · ∪ IU =
[
0 :
∑U
k=1 αk

]+
. In other words, (13.153.4) holds for u = U . This

completes the induction step. The induction proof of (13.153.4) is thus complete.

Proof of (13.153.3): Let i ∈ {1, 2, . . . , `}. Notice that
∑i−1
k=1 αk ≥ 0 (since αk > 0 for every k) and∑i

k=1 αk =
∑i−1
k=1 αk + αi︸︷︷︸

>0

>
∑i−1
k=1 αk. Hence, 0 ≤

∑i−1
k=1 αk ≤

∑i
k=1 αk.

The intervals I1, I2, . . ., I` are disjoint. Hence, Ii is disjoint from I1 ∪ I2 ∪ · · · ∪ Ii−1. Thus,

Ii = ((I1 ∪ I2 ∪ · · · ∪ Ii−1) ∪ Ii)︸ ︷︷ ︸
=I1∪I2∪···∪Ii

\ (I1 ∪ I2 ∪ · · · ∪ Ii−1)

= (I1 ∪ I2 ∪ · · · ∪ Ii)︸ ︷︷ ︸
=[0:

∑i
k=1 αk]

+

(by (13.153.4), applied to u=i)

\ (I1 ∪ I2 ∪ · · · ∪ Ii−1)︸ ︷︷ ︸
=[0:

∑i−1
k=1 αk]

+

(by (13.153.4), applied to u=i−1)

=

[
0 :

i∑
k=1

αk

]+

\

[
0 :

i−1∑
k=1

αk

]+

=

[
i−1∑
k=1

αk :

i∑
k=1

αk

]+

(since 0 ≤
∑i−1
k=1 αk ≤

∑i
k=1 αk). This proves (13.153.3). As explained above, this completes our proof of

Remark 6.2.6(c). �

13.154. Solution to Exercise 6.2.9. Solution to Exercise 6.2.9.

Proof of Lemma 6.2.8. We have σ ∈ Shn,m, so that σ−1 (1) < σ−1 (2) < · · · < σ−1 (n) and σ−1 (n+ 1) <

σ−1 (n+ 2) < · · · < σ−1 (n+m). In other words, the restriction of the map σ−1 to the interval [0 : n]
+

is

strictly increasing, and so is the restriction of the map σ−1 to the interval [n : n+m]
+

.

(a) Let I be an interval of Z such that I ⊂ [0 : n+m]
+

. We will only show that σ (I) ∩ [0 : n]
+

is an

interval; the proof that σ (I) ∩ [n : n+m]
+

is an interval is completely analogous.
It is known that

(13.154.1)

(
if R is a finite subset of Z such that every α ∈ R, γ ∈ R and β ∈ Z

satisfying α < β < γ satisfy β ∈ R, then R is an interval of Z

)
.

(Indeed, it is clear that R = [minR− 1 : maxR]
+

in this case, unless R is empty in which case the statement
is obvious anyway.)

We now denote R = σ (I) ∩ [0 : n]
+

. Our next goal is to use (13.154.1) to show that R is an interval.

Indeed, let α ∈ R, γ ∈ R and β ∈ Z be such that α < β < γ. Then, α ∈ R = σ (I) ∩ [0 : n]
+ ⊂ [0 : n]

+

and similarly γ ∈ [0 : n]
+

. Combined with α < β < γ, these yield β ∈ [0 : n]
+

. But recall that the

restriction of the map σ−1 to the interval [0 : n]
+

is strictly increasing. Hence, from α < β < γ, we obtain
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σ−1 (α) < σ−1 (β) < σ−1 (γ) (since α, β and γ belong to [0 : n]
+

). In other words, the integer σ−1 (β) lies

strictly between the integers σ−1 (α) and σ−1 (γ). Since σ−1 (α) ∈ I (because α ∈ σ (I) ∩ [0 : n]
+ ⊂ σ (I))

and σ−1 (γ) ∈ I (for similar reasons), this entails σ−1 (β) ∈ I (because I is an interval, and thus any integer

lying between two elements of I must also belong to I). Hence, β ∈ σ (I). Combined with β ∈ [0 : n]
+

, this

yields β ∈ σ (I) ∩ [0 : n]
+

= R.
Now, forget that we fixed α, γ and β. We thus have shown that every α ∈ R, γ ∈ R and β ∈ Z satisfying

α < β < γ satisfy β ∈ R. Thus, (13.154.1) shows that R is an interval of Z. In other words, σ (I) ∩ [0 : n]
+

is an interval of Z (since R = σ (I) ∩ [0 : n]
+

). This completes the proof of Lemma 6.2.8(a).

(b) The intervals K and L both are subsets of [0 : n]
+

. Therefore, from K < L, we obtain σ−1 (K) <

σ−1 (L) (because the restriction of the map σ−1 to the interval [0 : n]
+

is strictly increasing).
Set K = σ−1 (K) and L = σ−1 (L). Then, K is a nonempty interval1085, and thus can be written in the

form K = [xK : yK]
+

for two elements xK and yK of [0 : n+m]
+

satisfying xK < yK. Consider these xK and

yK. Also, L is a nonempty interval1086, and thus can be written in the form L = [xL : yL]
+

for two elements

xL and yL of [0 : n+m]
+

satisfying xL < yL. Consider these xL and yL. Since [xK : yK]
+

= K = σ−1 (K) <

σ−1 (L) = L = [xL : yL]
+

, we have yK ≤ xL.
Notice that σ (K) = K (since K = σ−1 (K)) and σ (L) = L (since L = σ−1 (L)).

If we had yK = xL, then σ−1 (K)︸ ︷︷ ︸
=K=[xK:yK]+=[xK:xL]+

(since yK=xL)

∪ σ−1 (L)︸ ︷︷ ︸
=L=[xL:yL]+

= [xK : xL]
+ ∪ [xL : yL]

+
= [xK : yL]

+
would

be an interval, which would contradict the assumption that σ−1 (K) ∪ σ−1 (L) is not an interval. Hence,
we cannot have yK = xL. Thus, yK 6= xL. Therefore, yK < xL (since yK ≤ xL). Hence, we can define a

nonempty interval P ⊂ [0 : n+m]
+

by P = [yK : xL]
+

. Consider this P. It satisfies |P| 6= 0 (since it is

nonempty) and K < P < L (since K = [xK : yK]
+

, P = [yK : xL]
+

and L = [xL : yL]
+

), so that the sets K,
P and L are disjoint. As a consequence, the sets σ (K), σ (P) and σ (L) are disjoint. In other words, the
sets K, σ (P) and L are disjoint (since σ (K) = K and σ (L) = L).

It is easy to see that σ (P) ⊂ [n : n+m]
+ 1087. Thus, σ (P)∩ [n : n+m]

+
= σ (P). But Lemma 6.2.8(a)

(applied to P instead of I) shows that σ (P) ∩ [0 : n]
+

and σ (P) ∩ [n : n+m]
+

are intervals. In particular,

σ (P) ∩ [n : n+m]
+

is an interval. In other words, σ (P) is an interval (since σ (P) ∩ [n : n+m]
+

= σ (P)).

1085because K = σ−1 (K) and because we know that σ−1 (K) is an interval and K is nonempty
1086because L = σ−1 (L) and because we know that σ−1 (L) is an interval and L is nonempty
1087Proof. Assume the contrary. Then, there exists some q ∈ σ (P) such that q /∈ [n : n+m]+. Consider this q. Since

q /∈ [n : n+m]+, we must have q ∈ [0 : n]+.

Notice that q ∈ σ (P), so that σ−1 (q) ∈ P.
The elements maxK and minL of K and L are well-defined, since K and L are nonempty.

Now, maxK ≤ q − 1. (To prove this, assume the contrary. Thus, maxK > q − 1, so that maxK ≥ q. But maxK ∈ K ⊂
[0 : n]+ and q ∈ [0 : n]+. Therefore, σ−1 (maxK) ≥ σ−1 (q) (because maxK ≥ q, and since the restriction of the map σ−1 to the

interval [0 : n]+ is strictly increasing). But since K < P, we have σ−1 (maxK) < σ−1 (q) (since σ−1

maxK︸ ︷︷ ︸
∈K

 ∈ σ−1 (K) = K

and σ−1 (q) ∈ P), which contradicts σ−1 (maxK) ≥ σ−1 (q). This contradiction shows that our assumption was wrong, and
we have shown that maxK ≤ q − 1.)

Furthermore, q ≤ minL − 1. (To prove this, assume the contrary. Thus, q > minL − 1. Hence, q ≥ minL. We have

minL ∈ L ⊂ [0 : n]+ and q ∈ [0 : n]+. Therefore, σ−1 (q) ≥ σ−1 (minL) (because q ≥ minL, and since the restriction of the

map σ−1 to the interval [0 : n]+ is strictly increasing). But since P < L, we have σ−1 (q) < σ−1 (minL) (since σ−1 (q) ∈ P

and σ−1

minL︸ ︷︷ ︸
∈L

 ∈ σ−1 (L) = L), which contradicts σ−1 (q) ≥ σ−1 (minL). This contradiction shows that our assumption

was wrong, and we have shown that q ≤ minL− 1.)
So we have maxK ≤ q︸︷︷︸

≤minL−1

−1 ≤ minL − 2. But K and L are disjoint nonempty intervals satisfying K < L, and

their union is an interval again (because K ∪ L is an interval). Hence, the interval L must begin immediately after the end of
the interval K; in other words, we must have maxK = minL − 1 > minL − 2. This contradicts maxK ≤ minL − 2. This

contradiction completes our proof.
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So we know that σ (P) ⊂ [n : n+m]
+

is a nonempty interval1088, and σ−1 (σ (P)) is also an interval (since
σ−1 (σ (P)) = P). Moreover, we have σ−1 (K) < σ−1 (σ (P)) (since σ−1 (K) = K < P = σ−1 (σ (P))). Also,

σ−1 (K)︸ ︷︷ ︸
=K=[xK:yK]+

∪ σ−1 (σ (P))︸ ︷︷ ︸
=P=[yK:xL]+

= [xK : yK]
+ ∪ [yK : xL]

+
= [xK : xL]

+
is an interval. Furthermore, σ−1 (σ (P)) <

σ−1 (L) (since σ−1 (σ (P)) = P < L = σ−1 (L)), and the set σ−1 (σ (P))︸ ︷︷ ︸
=P=[yK:xL]+

∪ σ−1 (L)︸ ︷︷ ︸
=L=[xL:yL]+

= [yK : xL]
+ ∪

[xL : yL]
+

= [yK : yL]
+

is an interval.

Altogether, we now know that σ (P) ⊂ [n : n+m]
+

is a nonempty interval such that σ−1 (σ (P)),
σ−1 (K) ∪ σ−1 (σ (P)) and σ−1 (σ (P)) ∪ σ−1 (L) are intervals and such that σ−1 (K) < σ−1 (σ (P)) <

σ−1 (L). Thus, there exists a nonempty interval P ⊂ [n : n+m]
+

such that σ−1 (P ), σ−1 (K) ∪ σ−1 (P )
and σ−1 (P ) ∪ σ−1 (L) are intervals and such that σ−1 (K) < σ−1 (P ) < σ−1 (L) (namely, P = σ (P)). This
proves Lemma 6.2.8(b).

(c) The proof of Lemma 6.2.8(c) is analogous to the proof of Lemma 6.2.8(b). �

13.155. Solution to Exercise 6.2.11. Solution to Exercise 6.2.11.

Proof of Lemma 6.2.10. We have σ ∈ Shn,m, so that σ−1 (1) < σ−1 (2) < · · · < σ−1 (n) and σ−1 (n+ 1) <

σ−1 (n+ 2) < · · · < σ−1 (n+m). In other words, the restriction of the map σ−1 to the interval [0 : n]
+

is

strictly increasing, and so is the restriction of the map σ−1 to the interval [n : n+m]
+

.

(a) Let I be an interval of Z satisfying either I ⊂ [0 : n]
+

or I ⊂ [n : n+m]
+

. Assume that σ−1 (I) is an
interval.

Recall that the restriction of the map σ−1 to the interval [0 : n]
+

is strictly increasing, and so is the

restriction of the map σ−1 to the interval [n : n+m]
+

. Hence, the restriction of the map σ−1 to the interval

I is strictly increasing (since either I ⊂ [0 : n]
+

or I ⊂ [n : n+m]
+

).

Write the interval I in the form I = [α : β]
+

where 0 ≤ α ≤ β ≤ n+m. Write the interval σ−1 (I) in the

form σ−1 (I) = [a : b]
+

where 0 ≤ a ≤ b ≤ n+m. Since σ is bijective, we have
∣∣σ−1 (I)

∣∣ = |I| = β−α (since

I = [α : β]
+

). Compared with
∣∣σ−1 (I)

∣∣ = b− a (since σ−1 (I) = [a : b]
+

), this yields β − α = b− a.

The restriction of the map σ−1 to the interval I is injective; hence, it can be viewed as a bijection
I → σ−1 (I). This bijection must be strictly increasing (since the restriction of the map σ−1 to the interval

I is strictly increasing), and thus is a strictly increasing bijection [α : β]
+ → [a : b]

+
(since it goes from

I = [α : β]
+

to σ−1 (I) = [a : b]
+

). But the only such bijection is the one sending every x ∈ [α : β]
+

to

x−α+ a. Hence, our bijection I → σ−1 (I) must be the map sending every x ∈ [α : β]
+

to x−α+ a. Since

our bijection comes from restricting the map σ−1, it thus follows that the map σ−1 sends every x ∈ [α : β]
+

to x− α+ a. Thus, σ−1 (x) = x− α+ a for every x ∈ [α : β]
+

. Substituting y for x− α+ a in this fact, we

conclude that σ−1 (y + α− a) = y for every y ∈ [a : β − α+ a]
+

. In other words, σ−1 (y + α− a) = y for

every y ∈ [a : b]
+

(since β − α+ a = b (because β − α = b− a)). In other words, σ (y) = y + α− a for every

y ∈ [a : b]
+

. Thus,

(σ (a+ 1) , σ (a+ 2) , . . . , σ (b)) =

α+ 1, α+ 2, . . . , b+ α− a︸ ︷︷ ︸
=β

(since β−α=b−a)

 = (α+ 1, α+ 2, . . . , β) .

1088nonempty because P is nonempty
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But let w = (w1, w2, . . . , wn+m) denote the word uv. The definition of u�
σ
v then yields

u�
σ
v =

(
wσ(1), wσ(2), . . . , wσ(n+m)

)
, so that

(
u�
σ
v
)

︸ ︷︷ ︸
=(wσ(1),wσ(2),...,wσ(n+m))

σ−1 (I)︸ ︷︷ ︸
=[a:b]+


=
(
wσ(1), wσ(2), . . . , wσ(n+m)

) [
[a : b]

+
]

=
(
wσ(a+1), wσ(a+2), . . . , wσ(b)

)
= (wα+1, wα+2, . . . , wβ) (since (σ (a+ 1) , σ (a+ 2) , . . . , σ (b)) = (α+ 1, α+ 2, . . . , β))

= w︸︷︷︸
=uv

[α : β]
+︸ ︷︷ ︸

=I

 = (uv) [I] .

This proves Lemma 6.2.10(a).
(b) Notice that σ−1 (I) is a nonempty interval (since I is nonempty and σ−1 (I) is an interval). Hence,

we can write the interval σ−1 (I) in the form [a : b]
+

for some elements a and b of [0 : n+m]
+

satisfying

a < b. Consider these a and b. Similarly, write σ−1 (J) in the form [c : d]
+

for some elements c and d of

[0 : n+m]
+

satisfying c < d. We have b ≤ c (since σ−1 (I) < σ−1 (J)), but we cannot have b < c (because

[a : b]
+︸ ︷︷ ︸

=σ−1(I)

∪ [c : d]
+︸ ︷︷ ︸

=σ−1(J)

= σ−1 (I)∪σ−1 (J) is an interval). Thus, we have b = c. Hence, [b : d]
+

= [c : d]
+

= σ−1 (J)

and b = c < d.
Now, let A = [0 : a]

+
and Z = [d : n+m]

+
. Then, the interval [0 : n+m]

+
is the union of the disjoint

intervals A, σ−1 (I), σ−1 (J) and Z (because

[0 : n+m]
+

= [0 : a]
+︸ ︷︷ ︸

=A

t [a : b]
+︸ ︷︷ ︸

=σ−1(I)

t [b : d]
+︸ ︷︷ ︸

=σ−1(J)

t [d : n+m]
+︸ ︷︷ ︸

=Z

= A t σ−1 (I) t σ−1 (J) t Z

), and these intervals satisfy A < σ−1 (I) < σ−1 (J) < Z (since A = [0 : a]
+

, σ−1 (I) = [a : b]
+

, σ−1 (J) =

[b : d]
+

and Z = [d : n+m]
+

). Therefore,

(13.155.1) p = p [A] · p
[
σ−1 (I)

]
· p
[
σ−1 (J)

]
· p [Z] for every word p ∈ Bn+m

for any alphabet B. Applying this to p = σ and B = {1, 2, . . . , n+m}, we obtain

(13.155.2) σ = σ [A] · σ
[
σ−1 (I)

]
· σ
[
σ−1 (J)

]
· σ [Z]

(where we consider the permutation σ as a word in {1, 2, . . . , n+m}n+m
by writing it in one-line notation).

Now, define a word τ by

(13.155.3) τ = σ [A] · σ
[
σ−1 (J)

]
· σ
[
σ−1 (I)

]
· σ [Z] .

This word τ is obtained from the word σ by switching the two factors σ
[
σ−1 (I)

]
and σ

[
σ−1 (J)

]
(this

is clear by comparing (13.155.3) with (13.155.2)), and thus is a permutation written in one-line notation
(because σ is a permutation). In other words, τ ∈ Sn+m.
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From (13.155.3), we have

τ = σ

 A︸︷︷︸
=[0:a]+

 · σ
σ−1 (J)︸ ︷︷ ︸

=[b:d]+

 · σ
σ−1 (I)︸ ︷︷ ︸

=[a:b]+

 · σ
 Z︸︷︷︸

=[d:n+m]+


= σ

[
[0 : a]

+
]

︸ ︷︷ ︸
=(σ(1),σ(2),...,σ(a))

· σ
[
[b : d]

+
]

︸ ︷︷ ︸
=(σ(b+1),σ(b+2),...,σ(d))

· σ
[
[a : b]

+
]

︸ ︷︷ ︸
=(σ(a+1),σ(a+2),...,σ(b))

· σ
[
[d : n+m]

+
]

︸ ︷︷ ︸
=(σ(d+1),σ(d+2),...,σ(n+m))

= (σ (1) , σ (2) , . . . , σ (a)) · (σ (b+ 1) , σ (b+ 2) , . . . , σ (d))

· (σ (a+ 1) , σ (a+ 2) , . . . , σ (b)) · (σ (d+ 1) , σ (d+ 2) , . . . , σ (n+m))

= (σ (1) , σ (2) , . . . , σ (a) , σ (b+ 1) , σ (b+ 2) , . . . , σ (d) ,

σ (a+ 1) , σ (a+ 2) , . . . , σ (b) , σ (d+ 1) , σ (d+ 2) , . . . , σ (n+m)) .

Thus,

(τ (1) , τ (2) , . . . , τ (a)) = (σ (1) , σ (2) , . . . , σ (a)) ;(13.155.4)

(τ (a+ 1) , τ (a+ 2) , . . . , τ (a+ d− b)) = (σ (b+ 1) , σ (b+ 2) , . . . , σ (d)) ;(13.155.5)

(τ (a+ d− b+ 1) , τ (a+ d− b+ 2) , . . . , τ (d)) = (σ (a+ 1) , σ (a+ 2) , . . . , σ (b)) ;(13.155.6)

(τ (d+ 1) , τ (d+ 2) , . . . , τ (n+m)) = (σ (d+ 1) , σ (d+ 2) , . . . , σ (n+m)) .(13.155.7)

From this, it is easy to see that τ−1 (J) = [a : a+ d− b]+ 1089 and τ−1 (I) = [a+ d− b : d]
+ 1090.

In particular, τ−1 (J) and τ−1 (I) are intervals. Now, obviously, the intervals [0 : a]
+

, [a : a+ d− b]+,

[a+ d− b : d]
+

and [d : n+m]
+

are disjoint intervals having union [0 : n+m]
+

and satisfying [0 : a]
+
<

[a : a+ d− b]+ < [a+ d− b : d]
+
< [d : n+m]

+
. Since A = [0 : a]

+
, τ−1 (J) = [a : a+ d− b]+, τ−1 (I) =

[a+ d− b : d]
+

and Z = [d : n+m]
+

, this rewrites as follows: The intervals A, τ−1 (J), τ−1 (I) and Z are

disjoint intervals having union [0 : n+m]
+

and satisfying A < τ−1 (J) < τ−1 (I) < Z. Therefore,

(13.155.8) p = p [A] · p
[
τ−1 (J)

]
· p
[
τ−1 (I)

]
· p [Z] for every word p ∈ Bn+m

for every alphabet B.
Next, we claim that τ belongs to Shn,m. In fact, let i and j be two elements of {1, 2, . . . , n} such that

i < j. Our next goal is to prove that τ−1 (i) < τ−1 (j).
Indeed, assume the contrary. Thus, τ−1 (i) ≥ τ−1 (j), so that τ−1 (i) > τ−1 (j) (since τ is a permutation).

In other words, the letter i lies further right than the letter j in the word τ . But we also have σ−1 (i) < σ−1 (j)
(since σ−1 (1) < σ−1 (2) < · · · < σ−1 (n) and i < j and since i, j ∈ {1, 2, . . . , n}), which means that the letter
i lies further left than the letter j in the word σ.

So the order in which the letters i and j appear in the word τ is different from that in σ. Since the word
τ is obtained from the word σ by switching the two adjacent factors σ

[
σ−1 (I)

]
and σ

[
σ−1 (J)

]
, this is only

possible if one of the letters i and j is contained in one of these two factors and the other is contained in
the other factor. Hence, this is what must be happening. In particular, one of the letters i and j must be
contained in the factor σ

[
σ−1 (J)

]
. Since all letters of σ

[
σ−1 (J)

]
belong to the set [n : n+m]

+
(because

the letters of σ
[
σ−1 (J)

]
are precisely the elements of J , but we have J ⊂ [n : n+m]

+
), this yields that

1089In fact, this follows from

τ

 [a : a+ d− b]+︸ ︷︷ ︸
={a+1,a+2,...,a+d−b}

 = τ ({a+ 1, a+ 2, . . . , a+ d− b}) = {τ (a+ 1) , τ (a+ 2) , . . . , τ (a+ d− b)}

= {σ (b+ 1) , σ (b+ 2) , . . . , σ (d)} (by (13.155.5))

= σ

{b+ 1, b+ 2, . . . , d}︸ ︷︷ ︸
=[b:d]+=σ−1(J)

 = σ
(
σ−1 (J)

)
= J.

1090The proof of this is similar to that of τ−1 (J) = [a : a+ d− b]+, but we have to use (13.155.6) this time.
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one of the letters i and j must belong to the set [n : n+m]
+

. But this is impossible, since the letters i and

j belong to {1, 2, . . . , n} and thus neither of them can be an element of [n : n+m]
+

(because [n : n+m]
+

is disjoint with {1, 2, . . . , n}). This contradiction shows that our assumption was wrong, and so we do have
τ−1 (i) < τ−1 (j).

Now, forget that we fixed i and j. We have shown that any two elements i and j of {1, 2, . . . , n} such
that i < j must satisfy τ−1 (i) < τ−1 (j). Thus, τ−1 (1) < τ−1 (2) < · · · < τ−1 (n). Similarly, τ−1 (n+ 1) <
τ−1 (n+ 2) < · · · < τ−1 (n+m). These two chains of inequalities, together, yield that τ ∈ Shn,m. Hence,
u�
τ
v is a well-defined element of the multiset u� v. Since u�

σ
v is the lexicographically highest element of

this multiset, this shows that

(13.155.9) u�
σ
v ≥ u�

τ
v.

Let a denote the word
(
u�
τ
v
)

[A], and let z denote the word
(
u�
τ
v
)

[Z].

We can now apply (13.155.1) to p = u�
σ
v and B = A. As a result, we obtain

(13.155.10) u�
σ
v =

(
u�
σ
v
)

[A] ·
(
u�
σ
v
) [
σ−1 (I)

]
·
(
u�
σ
v
) [
σ−1 (J)

]
·
(
u�
σ
v
)

[Z] .

Let now (w1, w2, . . . , wn+m) denote the word uv. The definition of u�
σ
v then yields

u�
σ
v =

(
wσ(1), wσ(2), . . . , wσ(n+m)

)
. Now, it is easy to see that(

u�
σ
v
)

[A] = a

1091 and (
u�
σ
v
)

[Z] = z

1092. Thus, (13.155.10) becomes

u�
σ
v =

(
u�
σ
v
)

[A]︸ ︷︷ ︸
=a

·
(
u�
σ
v
) [
σ−1 (I)

]
︸ ︷︷ ︸

=(uv)[I]
(by (6.2.1))

·
(
u�
σ
v
) [
σ−1 (J)

]
︸ ︷︷ ︸

=(uv)[J]
(by (6.2.1), applied to J

instead of I)

·
(
u�
σ
v
)

[Z]︸ ︷︷ ︸
=z

= a · (uv) [I] · (uv) [J ] · z.

1091Proof. We have

(
u�
σ
v
)

︸ ︷︷ ︸
=(wσ(1),wσ(2),...,wσ(n+m))

 A︸︷︷︸
=[0:a]+

 =
(
wσ(1), wσ(2), . . . , wσ(n+m)

) [
[0 : a]+

]
=
(
wσ(1), wσ(2), . . . , wσ(a)

)
.

The same argument, applied to τ instead of σ, shows that
(
u�
τ
v
)

[A] =
(
wτ(1), wτ(2), . . . , wτ(a)

)
. But (13.155.4) yields(

wτ(1), wτ(2), . . . , wτ(a)

)
=
(
wσ(1), wσ(2), . . . , wσ(a)

)
, so that(

u�
σ
v
)

[A] =
(
wσ(1), wσ(2), . . . , wσ(a)

)
=
(
wτ(1), wτ(2), . . . , wτ(a)

)
=
(
u�
τ
v
)

[A] = a,

qed.
1092Proof. We have

(
u�
σ
v
)

︸ ︷︷ ︸
=(wσ(1),wσ(2),...,wσ(n+m))

 Z︸︷︷︸
=[d:n+m]+

 =
(
wσ(1), wσ(2), . . . , wσ(n+m)

) [
[d : n+m]+

]
=
(
wσ(d+1), wσ(d+2), . . . , wσ(n+m)

)
.

The same argument, applied to τ instead of σ, shows that
(
u�
τ
v
)

[Z] =
(
wτ(d+1), wτ(d+2), . . . , wτ(n+m)

)
. But (13.155.7)

yields
(
wτ(d+1), wτ(d+2), . . . , wτ(n+m)

)
=
(
wσ(d+1), wσ(d+2), . . . , wσ(n+m)

)
, so that(

u�
σ
v
)

[Z] =
(
wσ(d+1), wσ(d+2), . . . , wσ(n+m)

)
=
(
wτ(d+1), wτ(d+2), . . . , wτ(n+m)

)
=
(
u�
τ
v
)

[Z] = z,

qed.
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Thus,

a · (uv) [I] · (uv) [J ] · z
= u�

σ
v ≥ u�

τ
v (by (13.155.9))

=
(
u�
τ
v
)

[A]︸ ︷︷ ︸
=a

·
(
u�
τ
v
) [
τ−1 (J)

]
︸ ︷︷ ︸

=(uv)[J]
(by (6.2.1), applied to τ and J

instead of σ and I)

·
(
u�
τ
v
) [
τ−1 (I)

]
︸ ︷︷ ︸

=(uv)[I]
(by (6.2.1), applied to τ

instead of σ)

·
(
u�
τ
v
)

[Z]︸ ︷︷ ︸
=z

(
by (13.155.8), applied to p = u�

τ
v and B = A

)
= a · (uv) [J ] · (uv) [I] · z.

In other words, a · (uv) [J ] · (uv) [I] · z ≤ a · (uv) [I] · (uv) [J ] · z. Hence, Proposition 6.1.2(c) (applied to a,
(uv) [J ] ·(uv) [I] ·z and (uv) [I] ·(uv) [J ] ·z instead of a, c and d) yields (uv) [J ] ·(uv) [I] ·z ≤ (uv) [I] ·(uv) [J ] ·z.
Thus, Proposition 6.1.2(d) (applied to (uv) [J ] · (uv) [I], z, (uv) [I] · (uv) [J ] and z instead of a, b, c and d)
yields (uv) [J ]·(uv) [I] ≤ (uv) [I]·(uv) [J ] (since ` ((uv) [J ] · (uv) [I]) = ` ((uv) [J ])+` ((uv) [I]) = ` ((uv) [I])+
` ((uv) [J ]) = ` ((uv) [I] · (uv) [J ])). In other words, (uv) [I] · (uv) [J ] ≥ (uv) [J ] · (uv) [I]. This proves Lemma
6.2.10(b).

(c) The proof of Lemma 6.2.10(c) is analogous to that of Lemma 6.2.10(b). �

13.156. Solution to Exercise 6.2.15. Solution to Exercise 6.2.15.

Proof of Proposition 6.2.14. (a) Let j ∈ {1, 2, . . . , `}. We have σ = iper (α, τ) =
−−→
Iτ(1)
−−→
Iτ(2) · · ·

−−→
Iτ(`) (in one-

line notation). Therefore, the word
−−→
Iτ(j) appears as a factor in this word σ, starting at position

∑j−1
k=1 ατ(k)+1

and ending at position
∑j
k=1 ατ(k). In other words, the letters of the word

−−→
Iτ(j) are the letters σj of σ for

j ∈
[∑j−1

k=1 ατ(k) :
∑j
k=1 ατ(k)

]+
. Since the letters of the word

−−→
Iτ(j) are precisely the elements of Iτ(j), this

rewrites as follows: The elements of Iτ(j) are the letters σj of σ for j ∈
[∑j−1

k=1 ατ(k) :
∑j
k=1 ατ(k)

]+
. In

other words,

Iτ(j) =

σj | j ∈
[
j−1∑
k=1

ατ(k) :

j∑
k=1

ατ(k)

]+
 = σ

[j−1∑
k=1

ατ(k) :

j∑
k=1

ατ(k)

]+
 .

Hence, σ−1
(
Iτ(j)

)
=
[∑j−1

k=1 ατ(k) :
∑j
k=1 ατ(k)

]+
, so that Proposition 6.2.14(a) is proven.

(b) Let j ∈ {1, 2, . . . , `}. We need to show that the restriction of the map σ−1 to the interval Iτ(j) is
increasing. In other words, we need to prove that the elements of Iτ(j) occur in increasing order in the word

σ. But this is clear, because these elements all occur in the factor
−−→
Iτ(j) of the word σ, and this factor has

them in increasing order (by its definition). This proves Proposition 6.2.14(b).

(c) Let i ∈ {1, 2, . . . , `}. Then, σ−1 (Ii) = σ−1
(
Iτ(τ−1(i))

)
=
[∑τ−1(i)−1

k=1 ατ(k),
∑τ−1(i)
k=1 ατ(k)

]+
(according

to Proposition 6.2.14(a), applied to j = τ−1 (i)). Hence, σ−1 (Ii) is an interval. Furthermore, the restriction
of the map σ−1 to the interval Ii = Iτ(τ−1(i)) is increasing (according to Proposition 6.2.14(b), applied to

j = τ−1 (i)).
Now, forget that we fixed i. We thus have proven that every i ∈ {1, 2, . . . , `} has the two properties that:

• the set σ−1 (Ii) is an interval;
• the restriction of the map σ−1 to the interval Ii is increasing.

In other words, the permutation σ is α-clumping. Since σ = iper (α, τ), this shows that iper (α, τ) is
α-clumping. Proposition 6.2.14(c) is proven.
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(d) Let i ∈ {1, 2, . . . , `− 1}. Then,

(13.156.1) σ−1
(
Iτ(i)

)
=

[
i−1∑
k=1

ατ(k) :

i∑
k=1

ατ(k)

]+

(by Proposition 6.2.14(a), applied to j = i), so that σ−1
(
Iτ(i)

)
is an interval. Thus, σ−1

(
Iτ(i)

)
is a nonempty

interval (nonempty because Iτ(i) is nonempty). Similarly, σ−1
(
Iτ(i+1)

)
is a nonempty interval.

Also, Proposition 6.2.14(a) (applied to j = i+ 1) yields

(13.156.2) σ−1
(
Iτ(i+1)

)
=

[
i∑

k=1

ατ(k) :

i+1∑
k=1

ατ(k)

]+

.

Now,

σ−1
(
Iτ(i)

)
=

[
i−1∑
k=1

ατ(k) :
i∑

k=1

ατ(k)

]+

<

[
i∑

k=1

ατ(k) :
i+1∑
k=1

ατ(k)

]+

= σ−1
(
Iτ(i+1)

)
.

Also,

σ−1
(
Iτ(i)

)︸ ︷︷ ︸
=[
∑i−1
k=1 ατ(k):

∑i
k=1 ατ(k)]

+

(by (13.156.1))

∪ σ−1
(
Iτ(i+1)

)︸ ︷︷ ︸
=[
∑i
k=1 ατ(k):

∑i+1
k=1 ατ(k)]

+

(by (13.156.2))

=

[
i−1∑
k=1

ατ(k) :

i∑
k=1

ατ(k)

]+

∪

[
i∑

k=1

ατ(k) :

i+1∑
k=1

ατ(k)

]+

=

[
i−1∑
k=1

ατ(k) :

i+1∑
k=1

ατ(k)

]+

,

which is obviously an interval. Proposition 6.2.14(d) is proven. �

13.157. Solution to Exercise 6.2.17. Solution to Exercise 6.2.17.

Proof of Proposition 6.2.16. We shall use Definition 13.126.3 and Proposition 13.126.4.
(a) The interval system corresponding to α is an `-tuple of intervals (since ` (α) = `); denote this `-tuple

by (I1, I2, . . . , I`). Then, the intervals I1, I2, . . ., I` form a set partition of [0 : n]
+

(according to Remark
6.2.6(c)) and are nonempty (also according to Remark 6.2.6(c)).

We define a map iper′α : {ω ∈ Sn | ω is α-clumping} → S` as follows: Let ω be an α-clumping element
of Sn. Then, every i ∈ {1, 2, . . . , `} has the property that ω−1 (Ii) is an interval (since ω is α-clumping).

These intervals ω−1 (I1), ω−1 (I2), . . ., ω−1 (I`) form a set partition of [0 : n]
+

(since the intervals I1, I2,

. . ., I` form a set partition of [0 : n]
+

), and thus are disjoint (and nonempty1093). Hence, these intervals
form a totally ordered set with respect to the relation < (by Remark 6.2.6(b)). Thus, there exists a unique
permutation τ ∈ S` such that ω−1

(
Iτ(1)

)
< ω−1

(
Iτ(2)

)
< · · · < ω−1

(
Iτ(`)

)
. We define iper′α (ω) to be this

permutation τ .

1093Their nonemptiness follows from the fact that the intervals I1, I2, . . ., I` are nonempty.
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Thus, we have defined a map iper′α : {ω ∈ Sn | ω is α-clumping} → S`. It is easy to see that iperα ◦ iper′α =
id 1094 and that iper′α ◦ iperα = id 1095. Hence, the maps iperα and iper′α are mutually inverse, and thus
the map iperα is bijective. This completes the proof of Proposition 6.2.16(a).

1094Proof. Let ω ∈ Sn be α-clumping. We are going to prove that (iperα ◦ iper′α) (ω) = id (ω).

Indeed, let us recall how iper′α (ω) was defined: Every i ∈ {1, 2, . . . , `} has the property that ω−1 (Ii) is an interval. These

intervals ω−1 (I1), ω−1 (I2), . . ., ω−1 (I`) form a totally ordered set with respect to the relation <. Then, iper′α (ω) is defined
as the unique permutation τ ∈ S` such that ω−1

(
Iτ(1)

)
< ω−1

(
Iτ(2)

)
< · · · < ω−1

(
Iτ(`)

)
. Thus, we have iper′α (ω) ∈ S` and

(13.157.1) ω−1
(
I(iper′α(ω))(1)

)
< ω−1

(
I(iper′α(ω))(2)

)
< · · · < ω−1

(
I(iper′α(ω))(`)

)
.

Denote the permutation iper′α (ω) ∈ S` by τ . Then, (13.157.1) rewrites as

(13.157.2) ω−1
(
Iτ(1)

)
< ω−1

(
Iτ(2)

)
< · · · < ω−1

(
Iτ(`)

)
(since τ = iper′α (ω)). The definition of iper (α, τ) shows that iper (α, τ) is the permutation in Sn which (in one-line notation)

is the word
−−→
Iτ(1)

−−→
Iτ(2) · · ·

−−→
Iτ(`) (a concatenation of ` words). In other words, iper (α, τ) =

−−→
Iτ(1)

−−→
Iτ(2) · · ·

−−→
Iτ(`). Denote this

permutation iper (α, τ) by η. Then, η = iper (α, τ) =
−−→
Iτ(1)

−−→
Iτ(2) · · ·

−−→
Iτ(`) and

(
iperα ◦ iper′α

)
(ω) = iperα

iper′α (ω)︸ ︷︷ ︸
=τ

 = iperα τ = iper (α, τ) (by the definition of iperα τ)

= η.(13.157.3)

Our next goal is to prove that η = ω.
We know that ω is α-clumping. In other words, every i ∈ {1, 2, . . . , `} has the two properties that:

(13.157.4) the set ω−1 (Ii) is an interval,

and

(13.157.5) the restriction of the map ω−1 to the interval Ii is increasing

(by the definition of “α-clumping”).

We shall now prove that Inv
(
η−1

)
⊂ Inv

(
ω−1

)
.

Indeed, let (i, j) be some element of Inv
(
η−1

)
. We want to prove that (i, j) ∈ Inv

(
ω−1

)
.

We have (i, j) ∈ Inv
(
η−1

)
. By the definition of Inv

(
η−1

)
, this yields that (i, j) is an element of {1, 2, . . . , n}2 satisfying

i < j and η−1 (i) > η−1 (j). In particular, η−1 (i) > η−1 (j). In other words, the letter i must appear after the letter j in the

word η (where our use of the word “after” does not imply “immediately after”). Since η =
−−→
Iτ(1)

−−→
Iτ(2) · · ·

−−→
Iτ(`), this rewrites as

follows: The letter i must appear after the letter j in the word
−−→
Iτ(1)

−−→
Iτ(2) · · ·

−−→
Iτ(`). Thus, we must be in one of the following two

cases:
Case 1: There exist some elements i and j of {1, 2, . . . , `} such that i > j and such that the letter i appears in the word

−−→
Iτ(i), whereas the letter j appears in the word

−−→
Iτ(j).

Case 2: There exists some element i of {1, 2, . . . , `} such that both letters i and j appear in the word
−−→
Iτ(i), and the letter i

appears after the letter j in this word.

Let us first consider Case 1. In this case, there exist some elements i and j of {1, 2, . . . , `} such that i > j and such that the

letter i appears in the word
−−→
Iτ(i), whereas the letter j appears in the word

−−→
Iτ(j). Consider these i and j. The letter i appears

in the word
−−→
Iτ(i), and thus is an element of Iτ(i) (since the letters of the word

−−→
Iτ(i) are precisely the elements of Iτ(i)). In

other words, i ∈ Iτ(i). Hence, ω−1 (i) ∈ ω−1
(
Iτ(i)

)
. Similarly, ω−1 (j) ∈ ω−1

(
Iτ(j)

)
. Now, i > j, so that j < i and thus

ω−1
(
Iτ(j)

)
< ω−1

(
Iτ(i)

)
(due to (13.157.2)). In other words, every j′ ∈ ω−1

(
Iτ(j)

)
and i′ ∈ ω−1

(
Iτ(i)

)
satisfy j′ < i′ (by the

definition of ω−1
(
Iτ(j)

)
< ω−1

(
Iτ(i)

)
). Applying this to j′ = ω−1 (j) and i′ = ω−1 (i), we obtain ω−1 (j) < ω−1 (i), so that

ω−1 (i) > ω−1 (j).

Now, we know that (i, j) is an element of {1, 2, . . . , n}2 satisfying i < j and ω−1 (i) > ω−1 (j). In other words, (i, j) ∈
Inv

(
ω−1

)
(by the definition of Inv

(
ω−1

)
). Hence, (i, j) ∈ Inv

(
ω−1

)
is proven in Case 1.

Let us now consider Case 2. In this case, there exists some element i of {1, 2, . . . , `} such that both letters i and j appear

in the word
−−→
Iτ(i), and the letter i appears after the letter j in this word. Consider this i. The letters of the word

−−→
Iτ(i) are in

increasing order (since
−−→
Iτ(i) is defined as the list of all elements of Iτ(i) in increasing order). Since the letter i appears after the

letter j in this word, we must therefore have i > j. But this contradicts i < j. This contradiction shows that Case 2 cannot

occur. Hence, the only possible case is Case 1. Since we have proven (i, j) ∈ Inv
(
ω−1

)
in this case, we therefore conclude that

(i, j) ∈ Inv
(
ω−1

)
always holds.

Now, let us forget that we fixed (i, j). We thus have proven that (i, j) ∈ Inv
(
ω−1

)
for every (i, j) ∈ Inv

(
η−1

)
. In other

words,

(13.157.6) Inv
(
η−1

)
⊂ Inv

(
ω−1

)
.
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(b) Consider the map iperα defined in Proposition 6.2.16(a). Since σ is α-clumping, we have
σ ∈ {ω ∈ Sn | ω is α-clumping}. In other words, σ belongs to the target of the map iperα. Thus, σ has a
unique preimage under the map iperα (since the map iperα is bijective (by Proposition 6.2.16(a))). In other
words, there exists a unique τ ∈ S` satisfying σ = iperα τ . Since iperα τ = iper (α, τ) for every τ ∈ Sp+q

Next, let us prove that Inv
(
ω−1

)
⊂ Inv

(
η−1

)
.

Indeed, let (i, j) be some element of Inv
(
ω−1

)
. We want to prove that (i, j) ∈ Inv

(
η−1

)
.

We have (i, j) ∈ Inv
(
ω−1

)
. By the definition of Inv

(
ω−1

)
, this yields that (i, j) is an element of {1, 2, . . . , n}2 satisfying

i < j and ω−1 (i) > ω−1 (j).

The intervals I1, I2, . . ., I` form a set partition of [0 : n]+ (according to Remark 6.2.6(c)). Hence, there exists some

u ∈ {1, 2, . . . , `} such that i ∈ Iu (because i ∈ {1, 2, . . . , n} = [0 : n]+). Similarly, there exists some v ∈ {1, 2, . . . , `} such that
j ∈ Iv . Consider these u and v.

First, let us assume (for the sake of contradiction) that u = v. Then, i ∈ Iu = Iv (since u = v) and j ∈ Iv . But (13.157.5)

(applied to v instead of i) yields that the restriction of the map ω−1 to the interval Iv is increasing. Hence, ω−1 (i) ≤ ω−1 (j)
(since the elements i and j both lie in the interval Iv and satisfy i < j), which contradicts ω−1 (i) > ω−1 (j). This contradiction

shows that our assumption (that u = v) was wrong. Hence, we have u 6= v. Thus, τ−1 (u) 6= τ−1 (v) (since τ is a permutation).

Define two elements i and j of {1, 2, . . . , `} by i = τ−1 (u) and j = τ−1 (v). Then, τ (i) = u (since i = τ−1 (u)), so that
Iτ(i) = Iu and thus i ∈ Iu = Iτ(i) (since Iτ(i) = Iu). Similarly, j ∈ Iτ(j). We have i = τ−1 (u) 6= τ−1 (v) = j.

Now, let us assume (for the sake of contradiction) that i ≤ j. Combined with i 6= j, this yields i < j. Hence,

ω−1
(
Iτ(i)

)
< ω−1

(
Iτ(j)

)
(due to (13.157.2)). Thus, every i′ ∈ ω−1

(
Iτ(i)

)
and j′ ∈ ω−1

(
Iτ(j)

)
satisfy i′ < j′ (by the

definition of ω−1
(
Iτ(i)

)
< ω−1

(
Iτ(j)

)
). Applying this to i′ = ω−1 (i) and j′ = ω−1 (j), we obtain ω−1 (i) < ω−1 (j) (since

ω−1

 i︸︷︷︸
∈Iτ(i)

 ∈ ω−1
(
Iτ(i)

)
and ω−1

 j︸︷︷︸
∈Iτ(j)

 ∈ ω−1
(
Iτ(j)

)
), which contradicts ω−1 (i) > ω−1 (j). This contradiction proves

that our assumption (that i ≤ j) was wrong. Hence, we have i > j.

Now, recall that the word
−−→
Iτ(i) is defined as the list of all elements of Iτ(i) in increasing order. Hence, i is a letter of the

word
−−→
Iτ(i) (since i is an element of Iτ(i)). Similarly, j is a letter of the word

−−→
Iτ(j). Both words

−−→
Iτ(i) and

−−→
Iτ(j) are factors of

the concatenation
−−→
Iτ(1)

−−→
Iτ(2) · · ·

−−→
Iτ(`), with the factor

−−→
Iτ(i) appearing after the factor

−−→
Iτ(j) (since i > j). Thus, if i0 is any letter

of the word
−−→
Iτ(i), and if j0 is any letter of the word

−−→
Iτ(j), then the letter i0 appears after the letter j0 in the concatenation

−−→
Iτ(1)

−−→
Iτ(2) · · ·

−−→
Iτ(`). Applying this to i0 = i and j0 = j, we conclude that the letter i appears after the letter j in the concatenation

−−→
Iτ(1)

−−→
Iτ(2) · · ·

−−→
Iτ(`) (since i is a letter of the word

−−→
Iτ(i), and since j is a letter of the word

−−→
Iτ(j)). In other words, the letter i

appears after the letter j in the word η (since η =
−−→
Iτ(1)

−−→
Iτ(2) · · ·

−−→
Iτ(`)). In other words, η−1 (i) > η−1 (j).

So (i, j) is an element of {1, 2, . . . , n}2 satisfying i < j and η−1 (i) > η−1 (j). In other words, (i, j) ∈ Inv
(
η−1

)
(by the

definition of Inv
(
η−1

)
).

Now, let us forget that we fixed (i, j). We thus have proven that (i, j) ∈ Inv
(
η−1

)
for every (i, j) ∈ Inv

(
ω−1

)
. In other

words,

Inv
(
ω−1

)
⊂ Inv

(
η−1

)
.

Combined with (13.157.6), this yields Inv
(
ω−1

)
= Inv

(
η−1

)
. Thus, Proposition 13.126.4 (applied to ϕ = ω−1 and ψ = η−1)

yields ω−1 = η−1, whence ω = η = (iperα ◦ iper′α) (ω) (by (13.157.3)), so that (iperα ◦ iper′α) (ω) = ω = id (ω).
Now, let us forget that we fixed ω. We thus have proven that (iperα ◦ iper′α) (ω) = id (ω) for every α-clumping permutation

ω ∈ Sn. In other words, iperα ◦ iper′α = id, qed.
1095Proof. Let π ∈ S`. We shall show that that (iper′α ◦ iperα) (π) = id (π).
Indeed, let ω = iperα π. Then, ω = iperα π = iper (α, π) (by the definition of iperα π). The permutation ω = iper (α, π) is

α-clumping (according to Proposition 6.2.14(c), applied to τ = π).
Let us now recall how iper′α (ω) was defined: Every i ∈ {1, 2, . . . , `} has the property that ω−1 (Ii) is an interval. These

intervals ω−1 (I1), ω−1 (I2), . . ., ω−1 (I`) form a totally ordered set with respect to the relation <. Then, iper′α (ω) is defined

as the unique permutation τ ∈ S` such that ω−1
(
Iτ(1)

)
< ω−1

(
Iτ(2)

)
< · · · < ω−1

(
Iτ(`)

)
. Hence, if τ ∈ S` is a permutation

satisfying ω−1
(
Iτ(1)

)
< ω−1

(
Iτ(2)

)
< · · · < ω−1

(
Iτ(`)

)
, then

(13.157.7) τ = iper′α (ω) .

We shall now use this to prove that π = iper′α (ω).

We have ω = iper (α, π) =
−−−→
Iπ(1)

−−−→
Iπ(2) · · ·

−−→
Iπ(`) (in one-line notation), according to the definition of iper (α, π).

The intervals ω−1 (I1), ω−1 (I2), . . ., ω−1 (I`) form a set partition of [0 : n]+ (since the intervals I1, I2, . . ., I` form a set

partition of [0 : n]+), and thus are disjoint. These intervals ω−1 (I1), ω−1 (I2), . . ., ω−1 (I`) are also nonempty (since the
intervals I1, I2, . . ., I` are nonempty).

Now, let u ∈ {1, 2, . . . , `− 1}. The intervals ω−1
(
Iπ(u)

)
and ω−1

(
Iπ(u+1)

)
are nonempty (since the intervals ω−1 (I1),

ω−1 (I2), . . ., ω−1 (I`) are nonempty). We will show that ω−1
(
Iπ(u)

)
< ω−1

(
Iπ(u+1)

)
.

Indeed, let i ∈ ω−1
(
Iπ(u)

)
and j ∈ ω−1

(
Iπ(u+1)

)
be arbitrary. We shall prove that i < j.



1004 DARIJ GRINBERG AND VICTOR REINER

(by the definition of iperα), this rewrites as follows: There exists a unique τ ∈ S` satisfying σ = iper (α, τ).
This proves Proposition 6.2.16(b). �

13.158. Solution to Exercise 6.2.19. Solution to Exercise 6.2.19.

Proof of Proposition 6.2.18. We know that αβ is a composition of n + m having length ` (αβ) = ` (α) +
` (β) = p + q. Hence, the interval system corresponding to αβ is a (p+ q)-tuple of intervals which covers

[0 : n+m]
+

. Denote this (p+ q)-tuple by (I1, I2, . . . , Ip+q). It is clear that I1 ∪ I2 ∪ · · · ∪ Ip = [0 : n]
+

and

Ip+1 ∪ Ip+2 ∪ · · · ∪ Ip+q = [n : n+m]
+

(since the first p parts of the composition αβ form the composition α
of n). Moreover, I1 < I2 < · · · < Ip+q (since (I1, I2, . . . , Ip+q) is the interval system corresponding to αβ).

The definition of iper (αβ, τ) yields that iper (αβ, τ) =
−−→
Iτ(1)
−−→
Iτ(2) · · ·

−−−−→
Iτ(p+q) (in one-line notation). De-

note the permutation iper (αβ, τ) by ω; then, this becomes ω =
−−→
Iτ(1)
−−→
Iτ(2) · · ·

−−−−→
Iτ(p+q). For every j ∈

{1, 2, . . . , p+ q}, the restriction of the map ω−1 to the interval Iτ(j) is increasing (by Proposition 6.2.14(b),
applied to n+m, αβ, p+q and ω instead of n, α, ` and σ). Substituting k for τ (j) here, we obtain: For every
k ∈ {1, 2, . . . , p+ q}, the restriction of the map ω−1 to the interval Ik is increasing. Of course, this yields
that for every k ∈ {1, 2, . . . , p+ q}, the restriction of the map ω−1 to the interval Ik is strictly increasing
(because ω−1 is injective).

Now, we need to prove that τ ∈ Shp,q if and only if iper (αβ, τ) ∈ Shn,m. In other words, we need to prove
that τ ∈ Shp,q if and only if ω ∈ Shn,m (since ω = iper (αβ, τ)). We shall prove the =⇒ and ⇐= directions
of this statement separately:

=⇒: Assume that τ ∈ Shp,q. We need to show that ω ∈ Shn,m.
We have τ ∈ Shp,q. Thus, τ−1 (1) < τ−1 (2) < · · · < τ−1 (p) and τ−1 (p+ 1) < τ−1 (p+ 2) < · · · <

τ−1 (p+ q).
Now, let i and j be two elements of {1, 2, . . . , n} such that i < j. We are going to prove that ω−1 (i) <

ω−1 (j).

Indeed, we have i ∈ {1, 2, . . . , n} = [0 : n]
+

= I1 ∪ I2 ∪ · · · ∪ Ip, so that i ∈ Ii′ for some i′ ∈ {1, 2, . . . , p}.
Similarly, j ∈ Ij′ for some j′ ∈ {1, 2, . . . , p}. Consider these i′ and j′. We cannot have j′ < i′ (because this
would entail Ij′ < Ii′ (due to I1 < I2 < · · · < Ip+q), which would lead to j < i (since j ∈ Ij′ and i ∈ Ii′),
contradicting i < j). Hence, we must have either j′ = i′ or j′ > i′. If j′ = i′, then i and j lie in one and the
same Ik (namely, the one with k = j′ = i′), and so ω−1 (i) < ω−1 (j) follows from the fact that the map ω−1

restricted to Ik is strictly increasing (and from the inequality i < j). Hence, it only remains to consider the
case when j′ > i′. Assume WLOG that we are in this case. Then, i′ < j′, and so τ−1 (i′) < τ−1 (j′) (since

τ−1 (1) < τ−1 (2) < · · · < τ−1 (p) and since i′ and j′ belong to {1, 2, . . . , p}), and thus the word
−→
Ii′ appears

before the word
−→
Ij′ in the concatenation

−−→
Iτ(1)
−−→
Iτ(2) · · ·

−−−−→
Iτ(p+q). Hence, the letter i appears before the letter

We have i ∈ ω−1
(
Iπ(u)

)
, so that ω (i) ∈ Iπ(u). Hence, ω (i) is a letter of the word

−−−→
Iπ(u) (since the word

−−−→
Iπ(u) is defined as

the list of all elements of Iπ(u) in increasing order). Similarly, ω (j) is a letter of the word
−−−−−→
Iπ(u+1) (since j ∈ ω−1

(
Iπ(u+1)

)
).

Both words
−−−→
Iπ(u) and

−−−−−→
Iπ(u+1) are factors of the concatenation

−−−→
Iπ(1)

−−−→
Iπ(2) · · ·

−−→
Iπ(`), with the factor

−−−−−→
Iπ(u+1) appearing after

the factor
−−−→
Iπ(u). Thus, if i0 is any letter of the word

−−−→
Iπ(u), and if j0 is any letter of the word

−−−−−→
Iπ(u+1), then the letter j0 appears

after the letter i0 in the concatenation
−−−→
Iπ(1)

−−−→
Iπ(2) · · ·

−−→
Iπ(`). Applying this to i0 = ω (i) and j0 = ω (j), we conclude that the

letter ω (j) appears after the letter ω (i) in the concatenation
−−−→
Iπ(1)

−−−→
Iπ(2) · · ·

−−→
Iπ(`) (since ω (i) is a letter of the word

−−−→
Iπ(u), and

since ω (j) is a letter of the word
−−−−−→
Iπ(u+1)). In other words, the letter ω (j) appears after the letter ω (i) in the word ω (since

ω =
−−−→
Iπ(1)

−−−→
Iπ(2) · · ·

−−→
Iπ(`)). In other words, ω−1 (ω (j)) > ω−1 (ω (i)). In other words, j > i, so that i < j.

Now, let us forget that we fixed i and j. We thus have proven that every i ∈ ω−1
(
Iπ(u)

)
and j ∈ ω−1

(
Iπ(u+1)

)
satisfy

i < j. In other words, ω−1
(
Iπ(u)

)
< ω−1

(
Iπ(u+1)

)
(by the definition of ω−1

(
Iπ(u)

)
< ω−1

(
Iπ(u+1)

)
).

Now, let us forget that we fixed u. We thus have proven that ω−1
(
Iπ(u)

)
< ω−1

(
Iπ(u+1)

)
for every u ∈ {1, 2, . . . , `− 1}.

In other words, ω−1
(
Iπ(1)

)
< ω−1

(
Iπ(2)

)
< · · · < ω−1

(
Iπ(`)

)
. Therefore, (13.157.7) (applied to τ = π) yields

π = iper′α

 ω︸︷︷︸
=iperα π

 = iper′α (iperα π) = (iper′α ◦ iperα) (π). Hence, (iper′α ◦ iperα) (π) = π = id (π).

Now, let us forget that we fixed π. We thus have proven that (iper′α ◦ iperα) (π) = id (π) for every π ∈ S`. In other words,

iper′α ◦ iperα = id, qed.
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j in the concatenation
−−→
Iτ(1)
−−→
Iτ(2) · · ·

−−−−→
Iτ(p+q) (because the letter i appears in

−→
Ii′ , while the letter j appears in

−→
Ij′). Since

−−→
Iτ(1)
−−→
Iτ(2) · · ·

−−−−→
Iτ(p+q) = ω, this shows that the letter i appears before the letter j in the word ω.

In other words, ω−1 (i) < ω−1 (j).
So we have shown that if two elements i and j of {1, 2, . . . , n} satisfy i < j, then ω−1 (i) < ω−1 (j). In

other words, ω−1 (1) < ω−1 (2) < · · · < ω−1 (n). Similarly, ω−1 (n+ 1) < ω−1 (n+ 2) < · · · < ω−1 (n+m).
Combining these two chains of inequalities, we conclude that ω ∈ Shn,m. This proves the =⇒ direction.
⇐=: Assume that ω ∈ Shn,m. We need to prove that τ ∈ Shp,q.
We have ω ∈ Shn,m. Thus, ω−1 (1) < ω−1 (2) < · · · < ω−1 (n) and ω−1 (n+ 1) < ω−1 (n+ 2) < · · · <

ω−1 (n+m).
Let i′ and j′ be two elements of {1, 2, . . . , p} such that i′ < j′. We are going to prove that τ−1 (i′) <

τ−1 (j′).
Indeed, assume the contrary. Then, τ−1 (i′) ≥ τ−1 (j′), thus τ−1 (i′) > τ−1 (j′) (since τ is a permutation).

Hence, the word
−→
Ii′ appears after1096 the word

−→
Ij′ in the concatenation

−−→
Iτ(1)
−−→
Iτ(2) · · ·

−−−−→
Iτ(p+q).

Now, fix any i ∈ Ii′ (such an i exists since Ii′ is nonempty) and fix any j ∈ Ij′ (this exists for similar
reasons). We have Ii′ < Ij′ (since I1 < I2 < · · · < Ip+q and i′ < j′), so that i < j (since i ∈ Ii′ and j ∈ Ij′).

But the letter i appears after the letter j in the concatenation
−−→
Iτ(1)
−−→
Iτ(2) · · ·

−−−−→
Iτ(p+q) (because the letter i

appears in the word
−→
Ii′ , whereas the letter j appears in the word

−→
Ij′ , and we know that the word

−→
Ii′ appears

after the word
−→
Ij′ in the concatenation

−−→
Iτ(1)
−−→
Iτ(2) · · ·

−−−−→
Iτ(p+q)). In other words, the letter i appears after the

letter j in the word ω (since
−−→
Iτ(1)
−−→
Iτ(2) · · ·

−−−−→
Iτ(p+q) = ω). In other words, ω−1 (i) > ω−1 (j).

But i′ ∈ {1, 2, . . . , p}, so that Ii′ ⊂ I1 ∪ I2 ∪ · · · ∪ Ip = [0 : n]
+

and thus i ∈ Ii′ ⊂ [0 : n]
+

. Similarly,

j ∈ [0 : n]
+

. Since the map ω−1 restricted to [0 : n]
+

is strictly increasing (since ω−1 (1) < ω−1 (2) < · · · <
ω−1 (n)), we thus have ω−1 (i) < ω−1 (j) (since i < j), contradicting ω−1 (i) > ω−1 (j). This contradiction
shows that our assumption was wrong, and so we have shown that τ−1 (i′) < τ−1 (j′).

Thus, we have proven that if two elements i′ and j′ of {1, 2, . . . , p} satisfy i′ < j′, then τ−1 (i′) < τ−1 (j′).
In other words, τ−1 (1) < τ−1 (2) < · · · < τ−1 (p). Similarly, we can show that τ−1 (p+ 1) < τ−1 (p+ 2) <
· · · < τ−1 (p+ q). The combination of these two chains of inequalities shows that τ ∈ Shp,q. Thus, the ⇐=
direction is proven. The proof of Proposition 6.2.18 is thus complete. �

13.159. Solution to Exercise 6.2.21. Solution to Exercise 6.2.21.

Proof of Lemma 6.2.20. We have τ ∈ Shp,q if and only if iper (αβ, τ) ∈ Shn,m (by Proposition 6.2.18). Since
we know that τ ∈ Shp,q, we thus conclude that iper (αβ, τ) ∈ Shn,m. In other words, σ ∈ Shn,m (since
σ = iper (αβ, τ)).

Write the composition αβ in the form (γ1, γ2, . . . , γp+q). For every j ∈ {0, 1, . . . , p+ q}, let sj denote the

integer
∑j
k=1 γτ(k). Then, 0 = s0 < s1 < s2 < · · · < sp+q = n+m.

Let w denote the word u�
σ
v.

The first p parts of the composition αβ form the composition α of n. Hence, the interval system
(I1, I2, . . . , Ip+q) corresponding to αβ satisfies I1 ∪ I2 ∪ · · · ∪ Ip = [0 : n]

+
and Ip+1 ∪ Ip+2 ∪ · · · ∪ Ip+q =

[n : n+m]
+

.

Let i ∈ {1, 2, . . . , p+ q}. We know that Iτ(i) is an interval of Z satisfying either Iτ(i) ⊂ [0 : n]
+

or

Iτ(i) ⊂ [n : n+m]
+

(in fact, if τ (i) ≤ p, then Iτ(i) ⊂ I1 ∪ I2 ∪ · · · ∪ Ip = [0 : n]
+

, whereas otherwise, Iτ(i) ⊂
Ip+1∪Ip+2∪· · ·∪Ip+q = [n : n+m]

+
). Also, Proposition 6.2.14(a) (applied to n+m, αβ, (γ1, γ2, . . . , γp+q),

1096“after” does not imply “immediately after”.
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p+ q and i instead of n, α, (α1, α2, . . . , α`), ` and j) yields

(13.159.1) σ−1
(
Iτ(i)

)
=


i−1∑
k=1

γτ(k)︸ ︷︷ ︸
=si−1

(by the definition of si−1)

:

i∑
k=1

γτ(k)︸ ︷︷ ︸
=si

(by the definition of si)



+

= [si−1 : si]
+
.

Consequently, σ−1
(
Iτ(i)

)
is an interval. Therefore, we can apply Lemma 6.2.10(a) to Iτ(i) instead of I. As

a result, we obtain (
u�
σ
v
) [
σ−1

(
Iτ(i)

)]
= (uv)

[
Iτ(i)

]
.

Hence,

(13.159.2) (uv)
[
Iτ(i)

]
=
(
u�
σ
v
)

︸ ︷︷ ︸
=w

 σ−1
(
Iτ(i)

)︸ ︷︷ ︸
=[si−1:si]

+

(by (13.159.1))

 = w
[
[si−1 : si]

+
]
.

Now, forget that we fixed i. We thus have proven (13.159.2) for every i ∈ {1, 2, . . . , p+ q}. Now,

(uv)
[
Iτ(1)

]︸ ︷︷ ︸
=w[[s0:s1]+]

(by (13.159.2))

· (uv)
[
Iτ(2)

]︸ ︷︷ ︸
=w[[s1:s2]+]

(by (13.159.2))

· · · · · (uv)
[
Iτ(p+q)

]︸ ︷︷ ︸
=w[[sp+q−1:sp+q ]

+]
(by (13.159.2))

= w
[
[s0 : s1]

+
]
· w
[
[s1 : s2]

+
]
· · · · · w

[
[sp+q−1 : sp+q]

+
]

= w
[
[s0 : sp+q]

+
]

= w
[
[0 : n+m]

+
]

(since s0 = 0 and sp+q = n+m)

= w
(

since the word w = u�
σ
v has length n+m

)
= u�

σ
v.

This proves Lemma 6.2.20. �

13.160. Solution to Exercise 6.2.24. Solution to Exercise 6.2.24.

Proof of Proposition 6.2.23. We have h (1) ≥ h (2) ≥ · · · ≥ h (p). Hence, for every w ∈W, the set
{i ∈ {1, 2, . . . , p} | h (i) = w} is a (possibly empty) interval of {1, 2, . . . , p}, and will be denoted by Pw.
Similarly, for every w ∈W, the set {i ∈ {p+ 1, p+ 2, . . . , p+ q} | h (i) = w} is a (possibly empty) interval
of {p+ 1, p+ 2, . . . , p+ q}, and will be denoted by Qw. Every w ∈W satisfies h−1 (w) = Pw tQw. Notice
that |Pw| = a (w) and |Qw| = b (w) for all w ∈W.

Let (g1, g2, . . . , gp+q) be the result of sorting the list (h (1) , h (2) , . . . , h (p+ q)) in decreasing order. Then,
g1 ≥ g2 ≥ · · · ≥ gp+q. Hence, for every w ∈W, the set {j ∈ {1, 2, . . . , p+ q} | gj = w} is a (possibly empty)
interval of {1, 2, . . . , p+ q}. Denote this interval by Iw. The size of this interval is

|Iw| = |{j ∈ {1, 2, . . . , p+ q} | gj = w}| (since Iw = {j ∈ {1, 2, . . . , p+ q} | gj = w})

=

∣∣∣∣∣∣∣{j ∈ {1, 2, . . . , p+ q} | h (j) = w}︸ ︷︷ ︸
=h−1(w)=PwtQw

∣∣∣∣∣∣∣
(

since (g1, g2, . . . , gp+q) is the result of
sorting the list (h (1) , h (2) , . . . , h (p+ q))

)
= |Pw tQw| = |Pw|+ |Qw| .

Notice that {1, 2, . . . , p+ q} =
⊔
w∈W Iw (by the definition of the Iw).

Fix w ∈ W. Let us define an (Iw, Pw, Qw)-shuffle to mean a bijection κ : Iw → Pw t Qw having the
property that the maps κ−1 |Pw : Pw → Iw and κ−1 |Qw : Qw → Iw are strictly increasing. It is easy to see
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that such a (Iw, Pw, Qw)-shuffle κ is uniquely determined by the subset κ−1 (Pw) of Iw, and that for a given
subset U of Iw, such a (Iw, Pw, Qw)-shuffle κ satisfying κ−1 (Pw) = U exists if and only if |U | = |Pw|. Hence,
there are as many (Iw, Pw, Qw)-shuffles as there are subsets U of Iw satisfying |U | = |Pw|. In other words,

(the number of (Iw, Pw, Qw) -shuffles)

= (the number of subsets U of Iw satisfying |U | = |Pw|)

=

(
|Iw|
|Pw|

)
=

(
a (w) + b (w)

a (w)

)
(13.160.1)

(since |Iw| = |Pw|︸︷︷︸
=a(w)

+ |Qw|︸︷︷︸
=b(w)

= a (w) + b (w) and |Pw| = a (w)).

Now, forget that we fixed w.
Consider any τ ∈ Shp,q satisfying h (τ (1)) ≥ h (τ (2)) ≥ · · · ≥ h (τ (p+ q)). Then,

(h (τ (1)) , h (τ (2)) , . . . , h (τ (p+ q))) = (g1, g2, . . . , gp+q)
1097. In other words, h (τ (j)) = gj for every

j ∈ {1, 2, . . . , p+ q}. Thus,

(13.160.2) τ (Iw) = Pw tQw for every w ∈W
1098. As a consequence, for every w ∈ W, the bijection τ : {1, 2, . . . , p+ q} → {1, 2, . . . , p+ q} restricts to
a bijection τw : Iw → Pw t Qw. This bijection τw is an (Iw, Pw, Qw)-shuffle1099. Thus, we have obtained a
family (τw)w∈W of (Iw, Pw, Qw)-shuffles parametrized over all w ∈W.

Now, let us forget that we fixed τ . We thus have constructed, for every τ ∈ Shp,q satisfying h (τ (1)) ≥
h (τ (2)) ≥ · · · ≥ h (τ (p+ q)), a family (τw)w∈W of (Iw, Pw, Qw)-shuffles parametrized over all w ∈ W. We
thus obtain a map

{τ ∈ Shp,q | h (τ (1)) ≥ h (τ (2)) ≥ · · · ≥ h (τ (p+ q))} →
∏
w∈W

(the set of all (Iw, Pw, Qw) -shuffles) ,

τ 7→ (τw)w∈W .

This map is injective1100 and surjective1101. Hence, it is bijective, and this yields that the sets

{τ ∈ Shp,q | h (τ (1)) ≥ h (τ (2)) ≥ · · · ≥ h (τ (p+ q))}

1097Proof. The list (h (τ (1)) , h (τ (2)) , . . . , h (τ (p+ q))) is a permutation of the list (h (1) , h (2) , . . . , h (p+ q))
(since τ ∈ Sp+q), but is weakly decreasing (since h (τ (1)) ≥ h (τ (2)) ≥ · · · ≥ h (τ (p+ q))). Hence, the list

(h (τ (1)) , h (τ (2)) , . . . , h (τ (p+ q))) is the result of sorting the list (h (1) , h (2) , . . . , h (p+ q)) in decreasing order. But this

yields that (h (τ (1)) , h (τ (2)) , . . . , h (τ (p+ q))) = (g1, g2, . . . , gp+q) (since (g1, g2, . . . , gp+q), too, is the result of sorting the

list (h (1) , h (2) , . . . , h (p+ q)) in decreasing order), qed.
1098Proof of (13.160.2): Let w ∈W. Then,

Iw =


j ∈ {1, 2, . . . , p+ q} | gj︸︷︷︸

=h(τ(j))
=(h◦τ)(j)

= w


= {j ∈ {1, 2, . . . , p+ q} | (h ◦ τ) (j) = w}

= (h ◦ τ)−1 (w) = τ−1
(
h−1 (w)

)
.

Since τ is a permutation, this yields τ (Iw) = h−1 (w) = Pw tQw, and thus (13.160.2) is proven.
1099Proof. We have τ ∈ Shp,q , so that τ−1 (1) < τ−1 (2) < · · · < τ−1 (p) and τ−1 (p+ 1) < τ−1 (p+ 2) < · · · < τ−1 (p+ q).

In other words, the restriction of τ−1 to {1, 2, . . . , p} is strictly increasing, and the restriction of τ−1 to {p+ 1, p+ 2, . . . , p+ q}
is strictly increasing. Since the restriction of τ−1 to {1, 2, . . . , p} is strictly increasing, the restriction of τ−1 to Pw must also

be strictly increasing (because Pw ⊂ {1, 2, . . . , p}). But this restriction is τ−1
w |Pw : Pw → Iw. Hence, τ−1

w |Pw : Pw → Iw
is strictly increasing. Similarly, the same can be said about τ−1

w |Qw : Qw → Iw. Since the maps τ−1
w |Pw : Pw → Iw and

τ−1
w |Qw : Qw → Iw are strictly increasing, we conclude that τw is an (Iw, Pw, Qw)-shuffle (by the definition of a (Iw, Pw, Qw)-

shuffle), qed.
1100In fact, any τ ∈ Shp,q is uniquely determined by (τw)w∈W (because τw is the restriction of τ to Iw (with a restricted

codomain, but this doesn’t matter right now), and so knowing (τw)w∈W means knowing the values τ on each of the intervals

Iw; but this means knowing all values of τ , because {1, 2, . . . , p+ q} =
⊔
w∈W Iw).

1101Proof. We need to show that for every

(σw)w∈W ∈
∏
w∈W

(the set of all (Iw, Pw, Qw) -shuffles) ,

there exists a τ ∈ Shp,q satisfying h (τ (1)) ≥ h (τ (2)) ≥ · · · ≥ h (τ (p+ q)) and (τw)w∈W = (σw)w∈W.
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and ∏
w∈W

(the set of all (Iw, Pw, Qw) -shuffles)

are in bijection. Thus,

|{τ ∈ Shp,q | h (τ (1)) ≥ h (τ (2)) ≥ · · · ≥ h (τ (p+ q))}|

=

∣∣∣∣∣ ∏
w∈W

(the set of all (Iw, Pw, Qw) -shuffles)

∣∣∣∣∣
=
∏
w∈W

|(the set of all (Iw, Pw, Qw) -shuffles)|︸ ︷︷ ︸
=(the number of (Iw,Pw,Qw)-shuffles)=

(
a (w) + b (w)

a (w)

)
(by (13.160.1))

=
∏
w∈W

(
a (w) + b (w)

a (w)

)
.

This is precisely the statement of Proposition 6.2.23. �

So fix some (σw)w∈W ∈
∏
w∈W (the set of all (Iw, Pw, Qw) -shuffles). For every w ∈ W, the map σw is an (Iw, Pw, Qw)-

shuffle, hence a bijection from Iw to Pw tQw. Since
⊔
w∈W Iw = {1, 2, . . . , p+ q} and

⊔
w∈W (Pw tQw)︸ ︷︷ ︸

=h−1(w)

=
⊔
w∈W h−1 (w) =

{1, 2, . . . , p+ q}, we can piece these bijections σw together to a bijection⊔
w∈W

σw : {1, 2, . . . , p+ q} → {1, 2, . . . , p+ q} ,

whose restriction to each interval Iw coincides with the respective σw (except that the codomains of the maps are different). Let

τ be this bijection
⊔
w∈W σw. Clearly, τ ∈ Sp+q . We will now show that τ ∈ Shp,q , h (τ (1)) ≥ h (τ (2)) ≥ · · · ≥ h (τ (p+ q))

and (τw)w∈W = (σw)w∈W. Once this is done, the required surjectivity will clearly follow.

Since τ =
⊔
w∈W σw, we have τ |Iw= σw for every w ∈ W (up to the fact that the maps τ |Iw and σw have different

codomains). More precisely, τw = σw for every w ∈ W. Hence, for every w ∈ W, the map σw is a restriction of τ (with

appropriately restricted codomain).
The map τ =

⊔
w∈W σw is pieced together from bijections σw : Iw → Pw tQw. Thus, τ (Iw) = Pw tQw for every w ∈W.

In other words, τ (Iw) = h−1 (w) for every w ∈W (since every w ∈W satisfies h−1 (w) = Pw tQw). Hence,

(13.160.3) every i ∈ {1, 2, . . . , p+ q} satisfies h (τ (i)) = gi.

[Proof of (13.160.3): Let i ∈ {1, 2, . . . , p+ q}. Set w = h (τ (i)). Then, τ (i) ∈ h−1 (w) = τ (Iw) (since τ (Iw) = h−1 (w))
and thus i ∈ Iw (since τ is a bijection), so that i ∈ Iw = {j ∈ {1, 2, . . . , p+ q} | gj = w} and thus gi = w = h (τ (i)). This

proves (13.160.3).]

We have g1 ≥ g2 ≥ · · · ≥ gp+q . Due to (13.160.3), this rewrites as h (τ (1)) ≥ h (τ (2)) ≥ · · · ≥ h (τ (p+ q)).
We now are going to prove that τ ∈ Shp,q . In order to prove this, it is enough to show that τ−1 (1) < τ−1 (2) < · · · < τ−1 (p)

and τ−1 (p+ 1) < τ−1 (p+ 2) < · · · < τ−1 (p+ q). We shall only verify τ−1 (1) < τ−1 (2) < · · · < τ−1 (p) (the proof of
τ−1 (p+ 1) < τ−1 (p+ 2) < · · · < τ−1 (p+ q) being analogous).

So let i and j be elements of {1, 2, . . . , p} such that i < j. We will prove that τ−1 (i) < τ−1 (j). Indeed, assume the

contrary. Then, τ−1 (i) ≥ τ−1 (j). In other words, τ−1 (j) ≤ τ−1 (i). Thus, h
(
τ
(
τ−1 (j)

))
≥ h

(
τ
(
τ−1 (i)

))
(since h (τ (1)) ≥

h (τ (2)) ≥ · · · ≥ h (τ (p+ q))). In other words, h (j) ≥ h (i). Combined with h (i) ≥ h (j) (since h (1) ≥ h (2) ≥ · · · ≥ h (p)
and i < j), this yields h (i) = h (j). So we can define a w ∈ W by w = h (i) = h (j). Consider this w. We have h (i) = w, so

that i ∈ h−1 (w) = Pw tQw. But we cannot have i ∈ Qw (because i lies in the set {1, 2, . . . , p}, which is disjoint to Qw (since
Qw ⊂ {p+ 1, p+ 2, . . . , p+ q})). Since we have i ∈ Pw t Qw but not i ∈ Qw, we must have i ∈ Pw. Similarly, j ∈ Pw. But
recall that σw is a (Iw, Pw, Qw)-shuffle. In other words, σw : Iw → Pw tQw is a bijection having the property that the maps

σ−1
w |Pw : Pw → Iw and σ−1

w |Qw : Qw → Iw are strictly increasing. Since σ−1
w |Pw : Pw → Iw is strictly increasing, we have(

σ−1
w |Pw

)
(i) <

(
σ−1
w |Pw

)
(j) (since i < j and i ∈ Pw and j ∈ Pw). Since

(
σ−1
w |Pw

)
(i) = σ−1

w (i) = τ−1 (i) (because σw is a

restriction of τ) and
(
σ−1
w |Pw

)
(j) = τ−1 (j) (similarly), this rewrites as τ−1 (i) < τ−1 (j), which contradicts τ−1 (i) ≥ τ−1 (j).

This contradiction proves our assumption wrong, and so we have τ−1 (i) < τ−1 (j).

Let us forget that we fixed i and j. We thus have seen that τ−1 (i) < τ−1 (j) for any elements i and j of {1, 2, . . . , p} such

that i < j. In other words, τ−1 (1) < τ−1 (2) < · · · < τ−1 (p). Similarly, τ−1 (p+ 1) < τ−1 (p+ 2) < · · · < τ−1 (p+ q). Thus,
τ ∈ Shp,q .

We now know that τ ∈ Shp,q and h (τ (1)) ≥ h (τ (2)) ≥ · · · ≥ h (τ (p+ q)). Finally, (τw)w∈W = (σw)w∈W follows from the

very definition of τw (since τw = σw for every w ∈W). This completes the proof.
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13.161. Solution to Exercise 6.2.25. Solution to Exercise 6.2.25. =⇒: Assume that w is Lyndon. We
need to prove that for any two nonempty words u ∈ A∗ and v ∈ A∗ satisfying w = uv, there exists at least
one s ∈ u� v satisfying s > w.

Let u ∈ A∗ and v ∈ A∗ be two nonempty words satisfying w = uv. Then, vu is an element of u � v
1102 and satisfies vu > uv (by Proposition 6.1.14(c)). Thus, vu > uv = w. Hence, there exists at least one
s ∈ u� v satisfying s > w (namely, s = vu). Thus, the =⇒ direction of Exercise 6.2.25 is solved.
⇐=: Assume that for any two nonempty words u ∈ A∗ and v ∈ A∗ satisfying w = uv,

(13.161.1) there exists at least one s ∈ u� v satisfying s > w.

We need to prove that w is Lyndon.
In fact, assume the contrary. Thus, w is not Lyndon. Let (a1, a2, . . . , ap) be the CFL factorization of w;

then, a1 ≥ a2 ≥ · · · ≥ ap and a1a2 · · · ap = w. Also, p 6= 0 (since a1a2 · · · ap = w is nonempty). Since a1 is
Lyndon but w is not, we have a1 6= w. Thus, p 6= 1 (because otherwise, we would have a1 = a1a2 · · · ap = w,
contradicting a1 6= w). Combined with p 6= 0, this yields p ≥ 2.

Let u = a1 and v = a2a3 · · · ap. Then, u is Lyndon (since u = a1), thus nonempty. Also, v is a nonempty
product of Lyndon words (nonempty because p ≥ 2), and hence nonempty itself (since Lyndon words are
nonempty). Clearly, u︸︷︷︸

=a1

v︸︷︷︸
=a2a3···ap

= a1 (a2a3 · · · ap) = a1a2 · · · ap = w. Thus, (13.161.1) yields that there

exists at least one s ∈ u� v satisfying s > w. Thus, w is not the lexicographically highest element of the
multiset u� v.

Now, notice that a2, a3, . . ., ap are Lyndon words satisfying a2 ≥ a3 ≥ · · · ≥ ap (since a1 ≥ a2 ≥ · · · ≥ ap)
and a2a3 · · · ap = v. Hence, (a2, a3, . . . , ap) is the CFL factorization of v. We have u = a1 ≥ aj+1 for every
j ∈ {1, 2, . . . , p− 1} (since a1 ≥ a2 ≥ · · · ≥ ap). Thus, Theorem 6.2.2(e) (applied to p−1 and (a2, a3, . . . , ap)
instead of q and (b1, b2, . . . , bq)) yields that the lexicographically highest element of the multiset u� v is uv,
and the multiplicity with which this word uv appears in the multiset u� v is multu v + 1.

Now, we know that the lexicographically highest element of the multiset u�v is uv = w. This contradicts
the fact that w is not the lexicographically highest element of the multiset u� v. This contradiction shows
that our assumption was wrong. Thus, w is Lyndon. This completes the solution of the ⇐= direction of
Exercise 6.2.25.

Thus, both the =⇒ and ⇐= directions of Exercise 6.2.25 are proven. Exercise 6.2.25 is thus solved.
[Remark: Exercise 6.2.25 still holds in the partial-order setting1103. To prove this, we can use Proposition

13.146.3 along with the fact that Exercise 6.2.25 holds in the total-order setting. Here are the details:

Solution to Exercise 6.2.25 in the partial-order setting. =⇒: In the partial-order setting, the =⇒ direction
of Exercise 6.2.25 can be proved in the same way as it was proven in the total-order setting.
⇐=: Assume that for any two nonempty words u ∈ A∗ and v ∈ A∗ satisfying w = uv,

(13.161.2) there exists at least one s ∈ u� v satisfying s > w.

We need to prove that w is Lyndon.
Let B be any linear extension of the alphabet A. Then, B∗ is an extension of A∗ (according to Proposition

13.146.3(a)). Thus, B∗ = A∗ as sets. It is easy to see that for any two nonempty words u ∈ B∗ and v ∈ B∗

satisfying w = uv,

(13.161.3) there exists at least one s ∈ u� v satisfying s > w in B∗.

1104

1102Proof. Let n = ` (u) and m = ` (v). Then, the permutation in Sn+m which is written as

(n+ 1, n+ 2, . . . , n+m, 1, 2, . . . , n) in one-line notation belongs to Shn,m. If we denote this permutation by σ, then

vu = u�
σ
v ∈ u� v, qed.

1103See Exercise 6.1.33 for an explanation of what the partial-order setting is.
1104Proof of (13.161.3): Let u ∈ B∗ and v ∈ B∗. Then, u ∈ B∗ = A∗ and v ∈ B∗ = A∗. Hence, (13.161.2) shows that

there exists at least one s ∈ u� v satisfying s > w in A∗. Let t be such an s. Then, t is an element of u� v satisfying t > w in

A∗. Hence, w < t in A∗ (since t > w in A∗), so that w ≤ t in A∗.
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Now, we can apply Exercise 6.2.25 to B instead of A (since B is totally ordered). As a consequence,
we see that w is Lyndon as a word in B∗ if and only if for any two nonempty words u ∈ B∗ and v ∈ B∗

satisfying w = uv, there exists at least one s ∈ u�v satisfying s > w in B∗. Thus, w is Lyndon as a word in
B∗ (because we know that for any two nonempty words u ∈ B∗ and v ∈ B∗ satisfying w = uv, there exists
at least one s ∈ u� v satisfying s > w in B∗).

Now, the definition of a Lyndon word shows the following: The word w (as a word in B∗) is Lyndon if
and only if it is nonempty and satisfies the following property:

(13.161.4) Every nonempty proper suffix v of w satisfies v > w in B∗.

Since the word w is Lyndon, this shows that the word w is nonempty and satisfies the property (13.161.4).
Let now v be a nonempty proper suffix of w (as a word in A∗). Then, v is a nonempty proper suffix of w

(as a word in B∗). Thus, (13.161.4) shows that v satisfies v > w in B∗.
Now, let us forget that we fixed B and v. We thus have shown that if v is any nonempty proper suffix of

w and if B is any linear extension of the alphabet A, then

(13.161.5) v > w in B∗.

But the definition of a Lyndon word shows the following: The word w (as a word in A∗) is Lyndon if and
only if it is nonempty and satisfies the following property:

(13.161.6) Every nonempty proper suffix v of w satisfies v > w (in A∗).

We already know that w is nonempty. We are now going to prove (13.161.6):
Let v be a nonempty proper suffix of w. We have v > w in B∗ for every linear extension B of A (according

to (13.161.5)). In other words, w < v in B∗ for every linear extension B of A.
But Proposition 13.146.3(b) (applied to w instead of u) yields that w < v holds in A∗ if and only if we

have
(w < v in B∗ for every linear extension B of A) .

We thus conclude that w < v holds in A∗ (since we know that w < v in B∗ for every linear extension B of
A). In other words, v > w in A∗. This proves (13.161.6).

So we know that the word w is nonempty and satisfies the property (13.161.6). Thus, the word w (as
a word in A∗) is Lyndon (since the word w (as a word in A∗) is Lyndon if and only if it is nonempty and
satisfies the property (13.161.6)). Thus, the ⇐= direction of Exercise 6.2.25 is proven in the partial-order
setting.

Thus, both the =⇒ and ⇐= directions of Exercise 6.2.25 are proven in the partial-order setting. Hence,
Exercise 6.2.25 is solved in the partial-order setting. �

]

13.162. Solution to Exercise 6.3.3. Solution to Exercise 6.3.3.

Proof of Remark 6.3.2. Let (w1, w2, . . . , wn+m) denote the concatenation u·v = (u1, u2, . . . , un, v1, v2, . . . , vm).
Then, (u1, u2, . . . , un, v1, v2, . . . , vm) = (w1, w2, . . . , wn+m), so that (u1, u2, . . . , un) = (w1, w2, . . . , wn) and
(v1, v2, . . . , vm) = (wn+1, wn+2, . . . , wn+m).

By the definition of bu, we have bu = bu1
bu2
· · · bun = bw1

bw2
· · · bwn (since (u1, u2, . . . , un) = (w1, w2, . . . , wn)).

By the definition of bv, we have bv = bv1
bv2
· · · bvm = bwn+1

bwn+2
· · · bwn+m

(since
(v1, v2, . . . , vm) = (wn+1, wn+2, . . . , wn+m)). Now,

bu︸︷︷︸
=bw1

bw2
···bwn

� bv︸︷︷︸
=bwn+1

bwn+2
···bwn+m

= (bw1
bw2
· · · bwn)�

(
bwn+1

bwn+2
· · · bwn+m

)
=

∑
σ∈Shn,m

bwσ(1)
bwσ(2)

· · · bwσ(n+m)
(13.162.1)

We know that B∗ is an extension of A∗. Thus, any two elements a and b of A∗ satisfying a ≤ b in A∗ satisfy a ≤ b in B∗

(according to the definition of an “extension”). Applying this to a = w and b = t, we obtain w ≤ t in B∗. Combined with
w 6= t (since w < t in A∗), this yields w < t in B∗. In other words, t > w in B∗.

Hence, there exists at least one s ∈ u� v satisfying s > w in B∗ (namely, s = t). This proves (13.161.3).
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(by the definition of �).
However, for every σ ∈ Shn,m, we have u�

σ
v =

(
wσ(1), wσ(2), . . . , wσ(n+m)

)
(by the definition of u�

σ
v), and

therefore bu�
σ
v = bwσ(1)

bwσ(2)
· · · bwσ(n+m)

(by the definition of bu�
σ
v). Hence,

∑
σ∈Shn,m

bu�
σ
v︸ ︷︷ ︸

=bwσ(1)
bwσ(2)

···bwσ(n+m)

=

∑
σ∈Shn,m

bwσ(1)
bwσ(2)

· · · bwσ(n+m)
. Compared with (13.162.1), this yields bu � bv =

∑
σ∈Shn,m

bu�
σ
v. This

proves Remark 6.3.2. �

13.163. Solution to Exercise 6.3.8. Solution to Exercise 6.3.8.

Proof of Lemma 6.3.7. (a) Let M denote the set of all finite multisets of Lyndon words over A. In other
words, M is the set of all finite multisets of elements of L (since the elements of L are the Lyndon words over
A). Define two maps m : M→ A∗ and n : A∗ →M as in Proposition 13.143.1. Then, Proposition 13.143.1
shows that these two maps m and n are mutually inverse bijections. Hence, the map m is a bijection.

On the other hand, for every M ∈ M, let us define an element bM of A by setting bM = ba1
ba2
· · · bak ,

where a1, a2, . . ., ak denote the elements of M listed in decreasing order. Then, (bw)w∈L is an algebraically

independent generating set of the k-algebra A if and only if (bM )M∈M is a basis of the k-module A 1105.

1105Proof. Let N be the set of all families (kw)w∈L ∈ NL of nonnegative integers (indexed by the Lyndon words) such that

all but finitely many w ∈ L satisfy kw = 0. Proposition 13.143.2 (applied to S = L) shows that the map mult : M → N that

sends each multiset M ∈M to the family

((multiplicity of w in the multiset M))w∈S ∈ N

is well-defined and is a bijection. Consider this map mult.

For every family f = (kw)w∈L ∈ N, we can define an element bf of A by bf =
∏
w∈L (bw)kw . (This is well-defined, since A

is commutative and since all but finitely many w ∈ L satisfy kw = 0). Then,
(
bf
)
f∈N is the family of all possible monomials

in the “variables” bw (that is, of all possible finite products of elements of the family (bw)w∈L, with multiplicities allowed).

Hence,

(13.163.1)

(
(bw)w∈L is an algebraically independent generating set of the k-algebra A

if and only if
(
bf
)
f∈N is a basis of the k-module A

)
.

Now, we claim that the family
(
bf
)
f∈N is a reindexing of the family (bM )M∈M. Indeed, since mult is a bijection, it is

clear that the family
(
bf
)
f∈N is a reindexing of the family (bmultM )M∈M. We now will prove that every M ∈ M satisfies

bmultM = bM .

Indeed, let M ∈M. Let a1, a2, . . ., ak denote the elements of M listed in decreasing order. Then, every w ∈ L satisfies

(13.163.2) (multiplicity of w in the multiset M) = (the number of i ∈ {1, 2, . . . , k} satisfying ai = w) .

But by the definition of multM , we have

multM =

 (multiplicity of w in the multiset M)︸ ︷︷ ︸
=(the number of i∈{1,2,...,k} satisfying ai=w)

(by (13.163.2))


w∈L

= ((the number of i ∈ {1, 2, . . . , k} satisfying ai = w))w∈L ,

so that the definition of bmultM becomes

bmultM =
∏
w∈L

(bw)(the number of i∈{1,2,...,k} satisfying ai=w)︸ ︷︷ ︸
=

∏
i∈{1,2,...,k};

ai=w

bw

=
∏
w∈L

∏
i∈{1,2,...,k};

ai=w

bw︸︷︷︸
=bai

(since w=ai)

=
∏
w∈L

∏
i∈{1,2,...,k};

ai=w

bai

=
∏

i∈{1,2,...,k}
bai = ba1ba2 · · · bak = bM

(since bM was defined as ba1ba2 · · · bak ).

Forget now that we fixed M . We thus have shown that every M ∈ M satisfies bmultM = bM . Hence, (bmultM )M∈M =

(bM )M∈M. But we know that the family
(
bf
)
f∈N is a reindexing of the family (bmultM )M∈M. Since (bmultM )M∈M =

(bM )M∈M, this rewrites as follows: The family
(
bf
)
f∈N is a reindexing of the family (bM )M∈M. Hence,

(
bf
)
f∈N is a basis
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Hence, in order to prove Lemma 6.3.7(a), it remains to prove that (bM )M∈M is a basis of the k-module A
if and only if (bu)u∈A∗ is a basis of the k-module A.

Let us show that

(13.163.3) bm(M) = bM for every M ∈M.

Proof of (13.163.3): Let M ∈ M. Let a1, a2, . . ., ak denote the elements of M listed in decreasing
order. Then, m (M) = a1a2 · · · ak (by the definition of m (M)). Combining this with the fact that a1,
a2, . . ., ak are Lyndon words (since they are elements of M , which is a multiset of Lyndon words) and
satisfy a1 ≥ a2 ≥ · · · ≥ ak (since a1, a2, . . ., ak are the elements of M listed in decreasing order), we thus
conclude that (a1, a2, . . . , ak) is the CFL factorization of m (M). Hence, the definition of bm(M) says that
bm(M) = ba1

ba2
· · · bak . Compared with bM = ba1

ba2
· · · bak (which is just the definition of bM ), this yields

bm(M) = bM . This proves (13.163.3).

Now, the family
(
bm(M)

)
M∈M is a reindexing of the family (bu)u∈A∗ (since m is a bijection). Since(

bm(M)

)
M∈M = (bM )M∈M (by (13.163.3)), this rewrites as follows: The family (bM )M∈M is a reindexing

of the family (bu)u∈A∗ . Hence, (bM )M∈M is a basis of the k-module A if and only if (bu)u∈A∗ is a basis of
the k-module A. As we said above, this completes our proof of Lemma 6.3.7(a).

(b) The proof of Lemma 6.3.7(b) is analogous to the above proof of Lemma 6.3.7(a).
(c) We assumed that the family (bw)w∈L generates the k-algebra A. By Lemma 6.3.7(b), this yields that

the family (bu)u∈A∗ spans the k-module A. Recall also that the family (gu)u∈A∗ is a basis of the k-module
A, and thus spans this k-module.

We need to prove that the family (bw)w∈L is an algebraically independent generating set of the k-algebra
A. According to Lemma 6.3.7(a), this is equivalent to proving that the family (bu)u∈A∗ is a basis of the
k-module A. We are going to prove the latter statement.

Let us first notice that bu is a homogeneous element of A of degree Wt (u) for every u ∈ A∗ 1106.
Now, let n ∈ N. It is easy to see that the family (bu)u∈Wt−1(n) spans the k-module An (that is, the

n-th homogeneous component of the k-module A) 1107. The same argument (but with bu replaced by
gu) shows that the family (gu)u∈Wt−1(n) spans the k-module An. Since this family (gu)u∈Wt−1(n) is linearly

of the k-module A if and only if (bM )M∈M is a basis of the k-module A. Combined with (13.163.1), this yields that (bw)w∈L
is an algebraically independent generating set of the k-algebra A if and only if (bM )M∈M is a basis of the k-module A, qed.

1106Proof. Let u ∈ A∗. Let (a1, a2, . . . , ap) be the CFL factorization of u. Then, a1, a2, . . ., ap are Lyndon words and

satisfy u = a1a2 · · · ap.
The definition of Wt easily yields that

Wt (s1s2 · · · sk) = Wt (s1) + Wt (s2) + · · ·+ Wt (sk) for any k ∈ N and any k words s1, s2, . . . , sk in A∗.

Applying this to k = p and si = ai, we obtain Wt (a1a2 · · · ap) = Wt (a1) + Wt (a2) + · · ·+ Wt (ap), so that

Wt (a1) + Wt (a2) + · · ·+ Wt (ap) = Wt

a1a2 · · · ap︸ ︷︷ ︸
=u

 = Wt (u) .

But the definition of bu yields bu = ba1ba2 · · · bap . Thus, the element bu is homogeneous of degree Wt (a1) + Wt (a2) + · · ·+
Wt (ap) (since for every w ∈ L, the element bw of A is homogeneous of degree Wt (w)). Since Wt (a1)+Wt (a2)+· · ·+Wt (ap) =

Wt (u), this rewrites as follows: The element bu is homogeneous of degree Wt (u), qed.
1107Proof. For every u ∈ Wt−1 (n), the element bu is a homogeneous element of A of degree Wt (u) = n (since u ∈

Wt−1 (n)). In other words, for every u ∈Wt−1 (n), we have bu ∈ An.
Let ξ ∈ An. Then, ξ ∈ An ⊂ A, so that ξ is a k-linear combination of the elements bu for u ∈ A∗ (since the family (bu)u∈A∗

spans the k-module A). In other words, ξ =
∑
u∈A∗ λubu for some family (λu)u∈A∗ ∈ kA∗ of elements of k such that all but

finitely many u ∈ A∗ satisfy λu = 0. Consider this (λu)u∈A∗ .

What happens if we apply the canonical projection A → An (which projects A onto its n-th homogeneous component An,

annihilating all other components) to both sides of the equality ξ =
∑
u∈A∗ λubu ? The left hand side remains ξ (since ξ ∈ An).

On the right hand side, all addends of the sum in which the u satisfies Wt (u) = n stay fixed (because we know that for each

such u, the element bu is a homogeneous element of A of degree Wt (u) = n), whereas all other addends become 0 (for a similar

reason); therefore, the sum on the right hand side becomes
∑

u∈A∗;
Wt(u)=n

λubu. Thus, the equality becomes ξ =
∑

u∈A∗;
Wt(u)=n

λubu.

Thus,

ξ =
∑
u∈A∗;

Wt(u)=n

λubu =
∑

u∈Wt−1(n)

λubu.

Hence, ξ is a k-linear combination of the elements bu with u ∈Wt−1 (n).
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independent (because it is a subfamily of the basis (gu)u∈A∗ of A), this shows that the family (gu)u∈Wt−1(n)

is a basis of the k-module An.
But the set Wt−1 (n) is finite1108. Hence, An is a finite free k-module (since (gu)u∈Wt−1(n) is a basis of

the k-module An), and Exercise 2.5.18(b) (applied to An, Wt−1 (n), u, gu and bu instead of A, I, i, γi and
βi) yields that (bu)u∈Wt−1(n) is a k-basis of An.

Now, let us forget that we fixed n. We thus have shown that for every n ∈ N, the family (bu)u∈Wt−1(n)

is a k-basis of An. Hence, the family (bu)u∈A∗ (being the disjoint union of the families (bu)u∈Wt−1(n) over

all n ∈ N) is a k-basis of
⊕

n∈NAn = A. In other words, the family (bu)u∈A∗ is a basis of the k-module A.
As we know, this completes the proof of Lemma 6.3.7(c). �

13.164. Solution to Exercise 6.3.11. Solution to Exercise 6.3.11.

Proof of Lemma 6.3.10. (a) Let u, v and v′ be three words satisfying ` (u) = n, ` (v) = m, ` (v′) = m and
v′ < v. We must show that u�

σ
v′ < u�

σ
v.

We have v′ < v, thus v′ ≤ v. By the definition of the relation ≤, this means that

either there exists an i ∈ {1, 2, . . . ,min {` (v′) , ` (v)}}

such that
(

(v′)i < vi, and every j ∈ {1, 2, . . . , i− 1} satisfies (v′)j = vj

)
,

or the word v′ is a prefix of v.

Since the word v′ cannot be a prefix of v (because this would entail that v′ = v (because ` (v′) = m = ` (v),
so that v′ has the same length as v), which would contradict v′ < v), this shows that there exists an

i ∈ {1, 2, . . . ,min {` (v′) , ` (v)}} such that
(

(v′)i < vi, and every j ∈ {1, 2, . . . , i− 1} satisfies (v′)j = vj

)
.

Denote this i by k. Thus, k ∈ {1, 2, . . . ,min {` (v′) , ` (v)}} has the property that (v′)k < vk, and

(13.164.1) every j ∈ {1, 2, . . . , k − 1} satisfies (v′)j = vj .

Now, let us forget that we fixed ξ. We thus have shown that every ξ ∈ An is a k-linear combination of the elements bu with
u ∈Wt−1 (n). Since all these elements bu belong to An (because for every u ∈Wt−1 (n), we have bu ∈ An), this shows that

the family (bu)u∈Wt−1(n) spans the k-module An, qed.
1108Proof. We have

Wt−1 (n) = {w ∈ A∗ | Wt (w) = n}

=
⋃
k∈N

(w1, w2, . . . , wk) ∈ A∗ | Wt ((w1, w2, . . . , wk))︸ ︷︷ ︸
=wt(w1)+wt(w2)+···+wt(wk)

(by the definition of Wt((w1,w2,...,wk)))

= n


(since every word w ∈ A∗ has the form (w1, w2, . . . , wk) for some k ∈ N)

=
⋃
k∈N

{(w1, w2, . . . , wk) ∈ A∗ | wt (w1) + wt (w2) + · · ·+ wt (wk) = n}︸ ︷︷ ︸
=

⋃
(i1,i2,...,ik)∈{1,2,3,...}k;

i1+i2+···+ik=n

{(w1,w2,...,wk)∈A∗ | wt(w1)=i1, wt(w2)=i2, ..., wt(wk)=ik}

=
⋃
k∈N

⋃
(i1,i2,...,ik)∈{1,2,3,...}k;

i1+i2+···+ik=n︸ ︷︷ ︸
=
⋃

(i1,i2,...,ik)∈Compn

{(w1, w2, . . . , wk) ∈ A∗ | wt (w1) = i1, wt (w2) = i2, . . . , wt (wk) = ik}︸ ︷︷ ︸
=wt−1(i1)×wt−1(i2)×···×wt−1(ik)

=
⋃

(i1,i2,...,ik)∈Compn

wt−1 (i1)× wt−1 (i2)× · · · × wt−1 (ik)︸ ︷︷ ︸
a finite set

(since for every N∈{1,2,3,...}, the set wt−1(N) is finite)

.

Hence, Wt−1 (n) is a union of finitely many finite sets, and thus itself finite, qed.
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We have k ∈

1, 2, . . . ,min

` (v′)︸ ︷︷ ︸
=m

, ` (v)︸︷︷︸
=m


 =

1, 2, . . . ,min {m,m}︸ ︷︷ ︸
=m

 = {1, 2, . . . ,m}.

Now, let (w1, w2, . . . , wn+m) denote the concatenation u · v = (u1, u2, . . . , un, v1, v2, . . . , vm), and let(
w′1, w

′
2, . . . , w

′
n+m

)
denote the concatenation u·v′ = (u1, u2, . . . , un, (v

′)1 , (v
′)2 , . . . , (v

′)m). We have u�
σ
v =(

wσ(1), wσ(2), . . . , wσ(n+m)

)
(by the definition of u�

σ
v) and u�

σ
v′ =

(
w′σ(1), w

′
σ(2), . . . , w

′
σ(n+m)

)
(by the

definition of u�
σ
v′). Hence, we have u�

σ
v′ 6= u�

σ
v 1109. But our goal is to prove that u�

σ
v′ < u�

σ
v.

Hence, it remains to prove that u �
σ
v′ ≤ u �

σ
v (since we have shown that u �

σ
v′ 6= u �

σ
v). Due to the

definition of the relation ≤, this amounts to proving that

either there exists an i ∈
{

1, 2, . . . ,min
{
`
(
u�
σ
v′
)
, `
(
u�
σ
v
)}}

such that((
u�
σ
v′
)
i
<
(
u�
σ
v
)
i
, and every j ∈ {1, 2, . . . , i− 1} satisfies

(
u�
σ
v′
)
j

=
(
u�
σ
v
)
j

)
,

or the word u�
σ
v′ is a prefix of u�

σ
v.

We shall prove that the first of these two alternatives holds, i.e., that there exists an

i ∈
{

1, 2, . . . ,min
{
`
(
u�
σ
v′
)
, `
(
u�
σ
v
)}}

such that((
u�
σ
v′
)
i
<
(
u�
σ
v
)
i
, and every j ∈ {1, 2, . . . , i− 1} satisfies

(
u�
σ
v′
)
j

=
(
u�
σ
v
)
j

)
.

Indeed, we claim that σ−1 (n+ k) is such an i. In order to conclude the proof, we then need to show that

(13.164.2) σ−1 (n+ k) ∈
{

1, 2, . . . ,min
{
`
(
u�
σ
v′
)
, `
(
u�
σ
v
)}}

,

that we have

(13.164.3)
(
u�
σ
v′
)
σ−1(n+k)

<
(
u�
σ
v
)
σ−1(n+k)

,

and that

(13.164.4) every j ∈
{

1, 2, . . . , σ−1 (n+ k)− 1
}

satisfies
(
u�
σ
v′
)
j

=
(
u�
σ
v
)
j

.

Proof of (13.164.2): We have `
(
u�
σ
v
)

= ` (u)︸︷︷︸
=n

+ ` (v)︸︷︷︸
=m

= n+m and similarly `
(
u�
σ
v′
)

= n+m. Thus,

min

`
(
u�
σ
v′
)

︸ ︷︷ ︸
=n+m

, `
(
u�
σ
v
)

︸ ︷︷ ︸
=n+m

 = min {n+m,n+m} = n + m. But since σ ∈ Shn,m ⊂ Sn+m, we have

σ−1 (n+ k) ∈ {1, 2, . . . , n+m}. In other words, σ−1 (n+ k) ∈
{

1, 2, . . . ,min
{
`
(
u�
σ
v′
)
, `
(
u�
σ
v
)}}

(since min
{
`
(
u�
σ
v′
)
, `
(
u�
σ
v
)}

= n+m). This proves (13.164.2).

Proof of (13.164.3): Since u �
σ
v =

(
wσ(1), wσ(2), . . . , wσ(n+m)

)
, we have

(
u�
σ
v
)
j

= wσ(j) for every

j ∈ {1, 2, . . . , n+m}. Applying this to j = σ−1 (n+ k), we obtain
(
u�
σ
v
)
σ−1(n+k)

= wσ(σ−1(n+k)) =

wn+k = vk (since k ∈ {1, 2, . . . ,m} and (w1, w2, . . . , wn+m) = (u1, u2, . . . , un, v1, v2, . . . , vm)). Similarly,

1109Proof. Assume the contrary. Then, u �
σ
v′ = u �

σ
v, thus

(
w′
σ(1)

, w′
σ(2)

, . . . , w′
σ(n+m)

)
= u �

σ
v′ = u �

σ
v =(

wσ(1), wσ(2), . . . , wσ(n+m)

)
. Hence,

(
w′1, w

′
2, . . . , w

′
n+m

)
= (w1, w2, . . . , wn+m) (since σ is a permutation), and thus

u · v′ =
(
w′1, w

′
2, . . . , w

′
n+m

)
= (w1, w2, . . . , wn+m) = u · v, so that v′ = v (since u can be cancelled from the equality

u · v′ = u · v). But this contradicts v′ < v. This contradiction shows that our assumption was wrong, qed.
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u�
σ
v′
)
σ−1(n+k)

= (v′)k. Recalling that (v′)k < vk, we now see that
(
u�
σ
v′
)
σ−1(n+k)

= (v′)k < vk =(
u�
σ
v
)
σ−1(n+k)

. This proves (13.164.3).

Proof of (13.164.4): Let j ∈
{

1, 2, . . . , σ−1 (n+ k)− 1
}

. We need to prove that
(
u�
σ
v′
)
j

=
(
u�
σ
v
)
j
.

Assume the contrary. Then,
(
u�
σ
v′
)
j
6=
(
u�
σ
v
)
j
.

We have j ∈ {1, 2, . . . , n+m} and j < σ−1 (n+ k) (since j ∈
{

1, 2, . . . , σ−1 (n+ k)− 1
}

).

Since u �
σ
v =

(
wσ(1), wσ(2), . . . , wσ(n+m)

)
, we have

(
u�
σ
v
)
j

= wσ(j). Similarly,
(
u�
σ
v′
)
j

= w′σ(j).

Hence, w′σ(j) =
(
u�
σ
v′
)
j
6=
(
u�
σ
v
)
j

= wσ(j).

If we had σ (j) ≤ n, then we would have wσ(j) = uσ(j) (since
(w1, w2, . . . , wn+m) = (u1, u2, . . . , un, v1, v2, . . . , vm)) and w′σ(j) = uσ(j) (for similar reasons), which would

yield that w′σ(j) = uσ(j) = wσ(j), which would contradict w′σ(j) 6= wσ(j). Hence, we cannot have σ (j) ≤ n.

We thus must have σ (j) > n, whence σ (j) ∈ {n+ 1, n+ 2, . . . , n+m}. Consequently, wσ(j) = vσ(j)−n
(because (w1, w2, . . . , wn+m) = (u1, u2, . . . , un, v1, v2, . . . , vm)) and (w′)σ(j) = (v′)σ(j)−n (similarly).

If we had σ (j) − n ∈ {1, 2, . . . , k − 1}, then we would have (v′)σ(j)−n = vσ(j)−n (by (13.164.1), applied

to σ (j) − n instead of j). Hence, if we had σ (j) − n ∈ {1, 2, . . . , k − 1}, then we would have (w′)σ(j) =

(v′)σ(j)−n = vσ(j)−n = wσ(j), which would contradict w′σ(j) 6= wσ(j). Hence, we cannot have σ (j) − n ∈
{1, 2, . . . , k − 1}. In other words, we have σ (j) − n /∈ {1, 2, . . . , k − 1}, so that σ (j) − n ≥ k. Hence,
σ (j) ≥ n+ k.

We have σ ∈ Shn,m, so that σ−1 (1) < σ−1 (2) < · · · < σ−1 (n) and σ−1 (n+ 1) < σ−1 (n+ 2) < · · · <
σ−1 (n+m). In particular, the restriction of the map σ−1 to the set {n+ 1, n+ 2, . . . , n+m} is strictly
increasing (since σ−1 (n+ 1) < σ−1 (n+ 2) < · · · < σ−1 (n+m)). Since σ (j) and n + k both lie in this
set {n+ 1, n+ 2, . . . , n+m}, we thus have σ−1 (σ (j)) ≥ σ−1 (n+ k) (because σ (j) ≥ n + k). Hence,
j = σ−1 (σ (j)) ≥ σ−1 (n+ k), which contradicts j < σ−1 (n+ k). This contradiction shows that our
assumption was wrong. Hence, (13.164.4) is proven.

Now that (13.164.2), (13.164.3) and (13.164.4) are all proven, we conclude that there exists an

i ∈
{

1, 2, . . . ,min
{
`
(
u�
σ
v′
)
, `
(
u�
σ
v
)}}

such that((
u�
σ
v′
)
i
<
(
u�
σ
v
)
i
, and every j ∈ {1, 2, . . . , i− 1} satisfies

(
u�
σ
v′
)
j

=
(
u�
σ
v
)
j

)
(namely, i = σ−1 (n+ k)). This concludes the proof of Lemma 6.3.10(a).

(b) The proof of Lemma 6.3.10(b) is similar to the proof of Lemma 6.3.10(a) above. (One of the changes
necessary is to replace σ−1 (n+ k) by σ−1 (k).)

(Alternatively, it is not hard to derive Lemma 6.3.10(b) from Lemma 6.3.10(a), because if τ ∈ Sn+m

denotes the permutation which is written (m+ 1,m+ 2, . . . , n+m, 1, 2, . . . ,m) in one-line notation, then
the permutation τ ◦ σ belongs to Shm,n and satisfies u�

σ
v = v �

τ◦σ
u and u′�

σ
v = v �

τ◦σ
u′, and therefore we

can obtain Lemma 6.3.10(b) by applying Lemma 6.3.10(a) to m, n, v, u, u′ and τ ◦ σ instead of n, m, u, v,
v′ and σ.)

(c) Let u, v and v′ be three words satisfying ` (u) = n, ` (v) = m, ` (v′) = m and v′ ≤ v. We must show
that u�

σ
v′ ≤ u�

σ
v. This is obvious if v′ = v (in fact, if v′ = v, then u�

σ
v′ = u�

σ
v ≤ u�

σ
v). Hence, we can

WLOG assume that v′ 6= v. Assuming this, we immediately obtain v′ < v (since v′ 6= v and v′ ≤ v), so that
u�
σ
v′ < u�

σ
v (by Lemma 6.3.10(a)). Thus, of course, u�

σ
v′ ≤ u�

σ
v, and Lemma 6.3.10(c) is proven. �

13.165. Solution to Exercise 6.3.12. Solution to Exercise 6.3.12.

Proof of Proposition 6.3.9. We shall prove Proposition 6.3.9 by strong induction over `. So we fix some
L ∈ N, and we assume that Proposition 6.3.9 holds whenever ` < L. We now need to prove that Proposition
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6.3.9 holds for ` = L. In other words, we need to prove that for every word x ∈ AL, there is a family

(ηx,y)y∈AL ∈ NAL of elements of N satisfying

(13.165.1) bx =
∑
y∈AL;
y≤x

ηx,yby

and ηx,x 6= 0 (in N).

Let x ∈ AL be a word. We need to prove that there is a family (ηx,y)y∈AL ∈ NAL of elements of N
satisfying (13.165.1) and ηx,x 6= 0.

Let (a1, a2, . . . , ap) be the CFL factorization of x. Then, a1, a2, . . ., ap are Lyndon words satisfying
x = a1a2 · · · ap and a1 ≥ a2 ≥ · · · ≥ ap.

If x is the empty word, then our claim is trivial (in fact, we can just set ηx,x = 1 in this case, and
(13.165.1) holds obviously). Hence, for the rest of this proof, we WLOG assume that x is not the empty
word. Thus, p 6= 0 (because otherwise, x = a1a2 · · · ap would be an empty product and thus the empty word,
contradicting the assumption that x is not the empty word). Hence, we can define two words u ∈ A∗ and
v ∈ A∗ by u = a1 and v = a2a3 · · · ap. The word u is Lyndon (since u = a1 and since a1 is Lyndon), and thus
has (u) as its CFL factorization. The CFL factorization of the word v is (a2, a3, . . . , ap) (since the words a2,
a3, . . ., ap are Lyndon and satisfy v = a2a3 · · · ap and a2 ≥ a3 ≥ · · · ≥ ap (because a1 ≥ a2 ≥ · · · ≥ ap)).
Also, u = a1 ≥ aj+1 for every i ∈ {1, 2, . . . , 1} and j ∈ {1, 2, . . . , p− 1} (because a1 ≥ a2 ≥ · · · ≥ ap).
Hence, we can apply Theorem 6.2.2(c) to 1, (u), p−1 and (a2, a3, . . . , ap) instead of p, (a1, a2, . . . , ap), q and
(b1, b2, . . . , bq). As a result, we conclude that the lexicographically highest element of the multiset u� v is
u︸︷︷︸

=a1

v︸︷︷︸
=a2a3···ap

= a1 (a2a3 · · · ap) = a1a2 · · · ap = x.

But bu = bu (by the definition of bu, since u has CFL factorization (u)), and bx = bu � bv
1110.

The word u is Lyndon and thus nonempty, so that ` (u) > 0. Now, `

 x︸︷︷︸
=uv

 = ` (uv) = ` (u)︸︷︷︸
>0

+` (v) >

` (v), so that ` (v) < ` (x) = L (since x ∈ AL). Hence, the induction hypothesis tells us that we can apply
Proposition 6.3.9 to ` (v) and v instead of ` and x (since v ∈ A`(v)). As a result, we see that there is a family

(ηv,y)y∈A`(v) ∈ NA`(v)

of elements of N satisfying

bv =
∑

y∈A`(v);
y≤v

ηv,yby

and ηv,v 6= 0 (in N). Consider this family (ηv,y)y∈A`(v) .

Now,

bx = bu︸︷︷︸
=bu

� bv︸︷︷︸
=

∑
y∈A`(v);
y≤v

ηv,yby

= bu �

 ∑
y∈A`(v);
y≤v

ηv,yby

 =
∑

y∈A`(v);
y≤v

ηv,y bu � by︸ ︷︷ ︸
=
∑
σ∈Sh`(u),`(v)

bu�
σ
y

(by Remark 6.3.2, applied to
y, `(u) and `(v)

instead of v, n and m)

=
∑

y∈A`(v);
y≤v

ηv,y
∑

σ∈Sh`(u),`(v)

bu�
σ
y =

∑
z∈A`(v);
z≤v

ηv,z
∑

σ∈Sh`(u),`(v)

bu�
σ
z(13.165.2)

1110Proof. Since the CFL factorization of v is (a2, a3, . . . , ap), we have bv = ba2 � ba3 � · · ·� bap (by the definition of bv).

But since the CFL factorization of x is (a1, a2, . . . , ap), we have

bx = ba1 � ba2 � · · ·� bap (by the definition of bx)

= ba1︸︷︷︸
=bu

(since a1=u)

�

(
ba2 � ba3 � · · ·� bap

)︸ ︷︷ ︸
=bv

= bu︸︷︷︸
=bu

(since bu=bu)

�bv = bu � bv ,

qed.
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(here, we renamed the summation index y as z).
Now, let z ∈ A`(v) and σ ∈ Sh`(u),`(v) be such that z ≤ v. We will prove that u�

σ
z ∈ AL and u�

σ
z ≤ x.

First of all, it is clear that `
(
u�
σ
z
)

= ` (u) + ` (z)︸︷︷︸
=`(v)

(since z∈A`(v))

= ` (u) + ` (v) = `

 uv︸︷︷︸
=x

 = ` (x) = L, so that

u�
σ
z ∈ AL. Applying Lemma 6.3.10(c) to ` (u), ` (v) and z instead of n, m and v′, we obtain u�

σ
z ≤ u�

σ
v.

But u�
σ
v is an element of the multiset u� v, and thus is ≤ x (since the lexicographically highest element

of the multiset u� v is x). Thus, u�
σ
v ≤ x, so that u�

σ
z ≤ u�

σ
v ≤ x.

Now, let us forget that we fixed z and σ. We thus have shown that

(13.165.3) any z ∈ A`(v) and σ ∈ Sh`(u),`(v) satisfying z ≤ v satisfy u�
σ
z ∈ AL and u�

σ
z ≤ x.

A similar argument (but with some of the ≤ signs replaced by < signs, and with a reference to Lemma
6.3.10(a) instead of a reference to Lemma 6.3.10(c)) shows that

(13.165.4) any z ∈ A`(v) and σ ∈ Sh`(u),`(v) satisfying z < v satisfy u�
σ
z ∈ AL and u�

σ
z < x.

Now, (13.165.2) becomes

bx =
∑

z∈A`(v);
z≤v

ηv,z
∑

σ∈Sh`(u),`(v)

bu�
σ
z︸ ︷︷ ︸

=
∑

y∈AL;
y≤x

∑
σ∈Sh`(u),`(v);

u�
σ
z=y

bu�
σ
z

(due to (13.165.3))

=
∑

z∈A`(v);
z≤v

ηv,z
∑
y∈AL;
y≤x

∑
σ∈Sh`(u),`(v);

u�
σ
z=y

bu�
σ
z

=
∑
y∈AL;
y≤x

∑
z∈A`(v);
z≤v

ηv,z
∑

σ∈Sh`(u),`(v);
u�
σ
z=y

bu�
σ
z︸ ︷︷ ︸

=by
(since u�

σ
z=y)

=
∑
y∈AL;
y≤x

∑
z∈A`(v);
z≤v

ηv,z
∑

σ∈Sh`(u),`(v);
u�
σ
z=y

by

︸ ︷︷ ︸
=

∣∣∣∣{σ∈Sh`(u),`(v) | u�
σ
z=y

}∣∣∣∣·by
=
∑
y∈AL;
y≤x

∑
z∈A`(v);
z≤v

ηv,z

∣∣∣{σ ∈ Sh`(u),`(v) | u�
σ
z = y

}∣∣∣ · by.(13.165.5)

Recall that we must prove that there is a family (ηx,y)y∈AL ∈ NAL of elements of N satisfying (13.165.1)

and ηx,x 6= 0 (in N). In order to prove this, we define such a family (ηx,y)y∈AL ∈ NAL by setting

ηx,y =
∑

z∈A`(v);
z≤v

ηv,z

∣∣∣{σ ∈ Sh`(u),`(v) | u�
σ
z = y

}∣∣∣ for every y ∈ AL

 .

Then, (13.165.5) shows that this family satisfies (13.165.1). All that remains to be proven is now to show
that ηx,x 6= 0 (in N).
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Indeed, the definition of ηx,x yields

ηx,x =
∑

z∈A`(v);
z≤v

ηv,z

∣∣∣{σ ∈ Sh`(u),`(v) | u�
σ
z = x

}∣∣∣

=
∑

z∈A`(v);
z<v

ηv,z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{
σ ∈ Sh`(u),`(v) | u�

σ
z = x

}
︸ ︷︷ ︸

=∅
(since every σ∈Sh`(u),`(v) satisfies u�

σ
z<x

(by (13.165.4)), so that it cannot satisfy u�
σ
z=x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ ηv,v

∣∣∣{σ ∈ Sh`(u),`(v) | u�
σ
v = x

}∣∣∣

(here, we have split off the addend for z = v from the sum)

=
∑

z∈A`(v);
z<v

ηv,z |∅|︸︷︷︸
=0

+ηv,v

∣∣∣{σ ∈ Sh`(u),`(v) | u�
σ
v = x

}∣∣∣
=

∑
z∈A`(v);
z<v

ηv,z0

︸ ︷︷ ︸
=0

+ηv,v

∣∣∣{σ ∈ Sh`(u),`(v) | u�
σ
v = x

}∣∣∣

= ηv,v︸︷︷︸
6=0 (in N)

∣∣∣{σ ∈ Sh`(u),`(v) | u�
σ
v = x

}∣∣∣︸ ︷︷ ︸
6=0 (in N)

(since there exists some σ∈Sh`(u),`(v) satisfying u�
σ
v=x

(because x=uv∈u�v))

6= 0 (in N).

This completes the proof that there is a family (ηx,y)y∈AL ∈ NAL of elements of N satisfying (13.165.1) and

ηx,x 6= 0 (in N). The induction step is thus complete, and Proposition 6.3.9 is proven by induction. �

13.166. Solution to Exercise 6.3.13. Solution to Exercise 6.3.13.

Proof of Theorem 6.3.4. It is clearly enough to prove that (bw)w∈L is an algebraically independent generating
set of the k-algebra Sh (V ).

For every word u ∈ A∗, define an element bu by bu = ba1
� ba2

� · · ·� bap , where (a1, a2, . . . , ap) is the

CFL factorization of u. According to Lemma 6.3.7(a) (applied to A = Sh (V )) 1111, the family (bw)w∈L
is an algebraically independent generating set of the k-algebra Sh (V ) if and only if the family (bu)u∈A∗ is
a basis of the k-module Sh (V ). In order to prove the former statement (which is our goal), it is therefore
enough to prove the latter statement.

So we must prove the family (bu)u∈A∗ is a basis of the k-module Sh (V ). We shall first prove a particular
case of this statement:

Assertion A: If the set A is finite, then the family (bu)u∈A∗ is a basis of the k-module Sh (V ).

Proof of Assertion A: Assume that the set A is finite. Fix ` ∈ N. Regard V ⊗` as a k-submodule of T (V ).
Then, (bu1 ⊗ bu2 ⊗ · · · ⊗ bu`)u∈A` is a basis of the k-module V ⊗` (since (ba)a∈A is a basis of the k-module
V ). In other words,

(13.166.1) (bu)u∈A` is a basis of the k-module V ⊗`

(since bu = bu1
bu2
· · · bu` = bu1

⊗ bu2
⊗ · · · ⊗ bu` for every u ∈ A`).

1111Don’t be confused by the fact that the multiplication of the k-algebra Sh (V ) is denoted by �, but the multiplication

of the k-algebra A is denoted by · in Lemma 6.3.7(a).
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We know that Q is a subring of k. Hence, every nonzero element of N is an invertible element of k.
Now, consider the set A` as a poset, whose smaller relation is ≤. (This poset is actually totally ordered,

though we will not need this.) The notion of an invertibly-triangular A`×A`-matrix is thus defined (according
to Definition 11.1.7(c)).

The set A` is finite (since A is finite); thus, it is a finite poset.
According to Proposition 6.3.9, the family (bu)u∈A` expands invertibly triangularly in the basis (bu)u∈A`

1112. Hence, Corollary 11.1.19(e) (applied to V ⊗`, A`, (bu)u∈A` and (bu)u∈A` instead of M , S, (es)s∈S and

(fs)s∈S) yields that the family (bu)u∈A` is a basis of the k-module V ⊗` if and only if the family (bu)u∈A` is

a basis of the k-module V ⊗` 1113. Hence, the family (bu)u∈A` is a basis of the k-module V ⊗` (since the

family (bu)u∈A` is a basis of the k-module V ⊗`).
Now, let us forget that we fixed `. We thus have shown that, for every ` ∈ N, the family (bu)u∈A` is a

basis of the k-module V ⊗`. Hence, the disjoint union of the families (bu)u∈A` over all ` ∈ N is a basis of the

direct sum
⊕

`∈N V
⊗`. Since the former disjoint union is the family (bu)u∈A∗ , while the latter direct sum is

the k-module
⊕

`∈N V
⊗` = T (V ) = Sh (V ), this rewrites as follows: The family (bu)u∈A∗ is a basis of the

k-module Sh (V ). This proves Assertion A.
Now, we need to prove that (bu)u∈A∗ is a basis of the k-module Sh (V ), without the assumption that A

be finite. We will reduce this to Assertion A. First, we need some preparations:
Let B be any subset of A. Then, B canonically becomes a totally ordered set (since A is totally ordered),

so that the notion of a Lyndon word over B is well-defined. We view B∗ as a subset of A∗, and so the
Lyndon words over B are precisely the Lyndon words over A which lie in B∗.

We define a k-submodule VB of V as the k-linear span of the family (ba)a∈B. Notice that the family
(ba)a∈B is k-linearly independent (being a subfamily of the basis (ba)a∈A of V ), and thus is a basis of the
k-submodule VB.

The inclusion VB → V gives rise to an injective k-algebra homomorphism Sh (VB)→ Sh (V ), which sends
every bw and every bu (for w ∈ B∗ and u ∈ B∗, respectively) to the corresponding elements bw and bu of
Sh (V ), respectively. We regard this homomorphism as an inclusion, so that Sh (VB) is a k-subalgebra of
Sh (V ).

1112Proof. Proposition 6.3.9 shows that, for every x ∈ A`, there exists a family (ηx,y)y∈A` ∈ NA` of elements of N such that

(13.166.2) bx =
∑
y∈A`;
y≤x

ηx,yby

and

(13.166.3) ηx,x 6= 0 (in N).

Consider such a family (ηx,y)y∈A` ∈ NA` for each x ∈ A`. Thus, an integer ηx,y ∈ N ⊂ Q ⊂ k is defined for each (x, y) ∈ A`×A`.

We observe that the only elements ηs,t (with (s, t) ∈ A` × A`) appearing in the statements (13.166.2) and (13.166.3) are

those which satisfy t ≤ s. Hence, if some (s, t) ∈ A` × A` does not satisfy t ≤ s, then the corresponding element ηs,t does not
appear in any of the statements (13.166.2) and (13.166.3); as a consequence, we can arbitrarily change the value of this ηs,t
without running the risk of invalidating (13.166.2) and (13.166.3). Hence, we can WLOG assume that

(13.166.4) every (s, t) ∈ A` × A` which does not satisfy t ≤ s must satisfy ηs,t = 0

(otherwise, we can just set all such ηs,t to 0). Assume this. Thus, the matrix (ηx,y)(x,y)∈A`×A` is triangular. The diagonal

entries ηx,x of this matrix are nonzero elements of N (because of (13.166.3)) and therefore invertible elements of k (since every

nonzero element of N is an invertible element of k). Thus, the matrix (ηx,y)(x,y)∈A`×A` (regarded as a matrix in kA`×A` ) is

invertibly triangular.
Now, every x ∈ A` satisfies∑

y∈A`
ηx,yby =

∑
y∈A`;
y≤x

ηx,yby

︸ ︷︷ ︸
=bx

(by (13.166.2))

+
∑
y∈A`;

not y≤x

ηx,y︸︷︷︸
=0

(by (13.166.4), applied to (s,t)=(x,y))

by = bx +
∑
y∈A`;

not y≤x

0by

︸ ︷︷ ︸
=0

= bx.

In other words, every x ∈ A` satisfies bx =
∑
y∈A` ηx,yby . In other words, the family (bu)u∈A` expands in the family

(bu)u∈A` through the matrix (ηx,y)(x,y)∈A`×A` . Since the latter matrix is invertibly triangular, we thus conclude that the

family (bu)u∈A` expands invertibly triangularly in the family (bu)u∈A` .
1113Here, we have used the fact that the set A` is finite.
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If B is finite, then Assertion A (applied to B instead of A) yields that the family (bu)u∈B∗ is a basis of
the k-module Sh (VB).

Now, let us forget that we fixed B. We thus have shown that for every finite subset B of A,

(13.166.5) the family (bu)u∈B∗ is a basis of the k-module Sh (VB) .

Let us introduce one more notation: A family of elements of a k-module is said to be finitely supported if
all but finitely many elements of this family are 0.

Now, let us show that the family (bu)u∈A∗ is k-linearly independent and spans the k-module Sh (V ).

Proof that the family (bu)u∈A∗ is k-linearly independent: Let (λu)u∈A∗ ∈ kA∗ be a finitely supported
family of elements of k satisfying

∑
u∈A∗ λubu = 0. We are going to prove that all u ∈ A∗ satisfy λu = 0.

Indeed, the family (λu)u∈A∗ is finitely supported, so that there exists a finite subset Z of A∗ such that all
u ∈ A∗ \ Z satisfy λu = 0. Consider this Z. Since Z is finite, there exists a finite subset B of A satisfying
Z ⊂ B∗ (in fact, we can take B to be the set of all letters occurring in the words lying in Z). Consider this
B. The family (bu)u∈B∗ is a basis of the k-module Sh (VB) (by (13.166.5)), and thus k-linearly independent.
We have A∗ \B∗ ⊂ A∗ \Z (since Z ⊂ B∗), and therefore all u ∈ A∗ \B∗ satisfy λu = 0 (since all u ∈ A∗ \Z
satisfy λu = 0). Hence,

∑
u∈A∗\B∗ λu︸︷︷︸

=0

bu =
∑
u∈A∗\B∗ 0bu = 0. Now,

0 =
∑
u∈A∗

λubu =
∑
u∈B∗

λubu +
∑

u∈A∗\B∗
λubu︸ ︷︷ ︸

=0

(since B∗ is a subset of A∗)

=
∑
u∈B∗

λubu.

So we have
∑
u∈B∗ λubu = 0. Thus, all u ∈ B∗ satisfy λu = 0 (since the family (bu)u∈B∗ is k-linearly

independent). Combining this with the fact that all u ∈ A∗ \B∗ satisfy λu = 0, we conclude that all u ∈ A∗

satisfy λu = 0.
Now forget that we fixed (λu)u∈A∗ . We thus have shown that if (λu)u∈A∗ ∈ kA∗ is a finitely supported

family of elements of k satisfying
∑
u∈A∗ λubu = 0, then all u ∈ A∗ satisfy λu = 0. In other words, the

family (bu)u∈A∗ is k-linearly independent.
Proof that the family (bu)u∈A∗ spans the k-module Sh (V ): We are going to show that the family (bu)u∈A∗

spans the k-module Sh (V ). In order to prove this, it is enough to show that bw lies in the k-linear span
of the family (bu)u∈A∗ for every w ∈ A∗ (because the family (bw)w∈A∗ is a basis of the k-module Sh (V )
1114). So let us show this now.

Let w ∈ A∗. Then, there exists a finite subset B of A such that w ∈ B∗ (namely, we can take B to be
the set of all letters of w). Consider this B. The family (bu)u∈B∗ is a basis of the k-module Sh (VB) (by
(13.166.5)), and thus spans this k-module. But bw ∈ Sh (VB) (since w ∈ B∗), and thus bw lies in the k-linear
span of the family (bu)u∈B∗ (since this family is a basis of the k-module Sh (VB)). Hence, bw lies in the
k-linear span of the family (bu)u∈A∗ as well (since this family (bu)u∈A∗ includes the family (bu)u∈B∗ as a
subfamily). Thus, we have proven that bw lies in the k-linear span of the family (bu)u∈A∗ for every w ∈ A∗.
This completes the proof that the family (bu)u∈A∗ spans the k-module Sh (V ).

Altogether, we now know that the family (bu)u∈A∗ is k-linearly independent and spans the k-module
Sh (V ). In other words, (bu)u∈A∗ is a basis of the k-module Sh (V ). This completes our proof of Theorem
6.3.4. �

13.167. Solution to Exercise 6.4.2. Solution to Exercise 6.4.2. We shall give two solutions to this exercise;
but they both rest on the following lemmas:

1114Proof. For every ` ∈ N, the family (bu)u∈A` is a basis of the k-module V ⊗` (by (13.166.1)). Hence, the disjoint union

of the families (bu)u∈A` over all ` ∈ N is a basis of the direct sum
⊕
`∈N V

⊗`. Since the former disjoint union is the family

(bu)u∈A∗ = (bw)w∈A∗ , whereas the latter direct sum is the k-module
⊕
`∈N V

⊗` = T (V ) = Sh (V ), this rewrites as follows:

The family (bw)w∈A∗ is a basis of the k-module Sh (V ), qed.
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Lemma 13.167.1. For every positive integer N , we have

(13.167.1)
∑
d|N

µ (d) = δN,1.

Lemma 13.167.1 is one of the most fundamental properties of the number-theoretic Möbius function; it
will not be proven here.1115

Lemma 13.167.2. Every positive integer n satisfies

1

n

∑
d|n

µ (d)
(

2n/d − 1
)

=
1

n

∑
d|n

µ (d) 2n/d − δn,1.

Proof of Lemma 13.167.2. Let n be a positive integer. Then,

1

n

∑
d|n

µ (d)
(

2n/d − 1
)

︸ ︷︷ ︸
=
∑
d|n

µ(d)2n/d−
∑
d|n

µ(d)1

=
1

n

∑
d|n

µ (d) 2n/d −
∑
d|n

µ (d) 1

 =
1

n

∑
d|n

µ (d) 2n/d −
∑
d|n

µ (d)


=

1

n

∑
d|n

µ (d) 2n/d − 1

n

∑
d|n

µ (d)

︸ ︷︷ ︸
=δn,1

(by (13.167.1),
applied to N=n)

=
1

n

∑
d|n

µ (d) 2n/d − 1

n
δn,1︸ ︷︷ ︸

=δn,1

=
1

n

∑
d|n

µ (d) 2n/d − δn,1.

This proves Lemma 13.167.2. �

First solution to Exercise 6.4.2. [The following solution is similar to the solution of Exercise 6.1.29.]
For every positive integer n, let lyncn denote the number of Lyndon compositions of size n. We need to

prove that

(13.167.2) lyncn =
1

n

∑
d|n

µ (d)
(

2n/d − 1
)

=
1

n

∑
d|n

µ (d) 2n/d − δn,1

for every positive integer n.
We recall that A∗ = Comp; that is, the elements of A∗ are the compositions. Hence, the notation |w|

makes sense for any w ∈ A∗; it denotes the size of the composition w.
For every n ∈ N, we have

|Compn| =

{
2n−1, if n ≥ 1;

1, if n = 0

1115For a proof of Lemma 13.167.1, see the solution of Exercise 2.9.6. (More precisely, Lemma 13.167.1 is obtained from

(13.84.3) by renaming n as N .)
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1116. Thus, for every n ∈ N, we have

∣∣∣∣∣∣
w ∈ A∗︸︷︷︸

=Comp

| |w| = n


∣∣∣∣∣∣ =

∣∣∣∣∣∣∣{w ∈ Comp | |w| = n}︸ ︷︷ ︸
=Compn

∣∣∣∣∣∣∣ = |Compn|

=

{
2n−1, if n ≥ 1;

1, if n = 0
.(13.167.3)

Let M denote the set of all finite multisets of Lyndon compositions. Define two maps m : M → A∗ and
n : A∗ → M as in Proposition 13.143.1. Then, Proposition 13.143.1 shows that these two maps m and n
are mutually inverse bijections (since a Lyndon composition is the same thing as a Lyndon word over the
alphabet A). Hence, the map m is a bijection.

On the other hand, let L be the set of all Lyndon compositions. Thus, the definition of M says that M
is the set of all finite multisets of elements of L. Also, the definition of lyncn now rewrites as

(13.167.4) lyncn = |{w ∈ L | |w| = n}| for every positive integer n.

Let N be the set of all families (kw)w∈L ∈ NL of nonnegative integers (indexed by the Lyndon composi-
tions) such that all but finitely many w ∈ L satisfy kw = 0. Proposition 13.143.2 (applied to S = L) shows
that the map mult : M→ N that sends each multiset M ∈M to the family

((multiplicity of w in the multiset M))w∈S ∈ N

is well-defined and is a bijection. Consider this map mult.
The composition m ◦mult−1 : N→ A∗ of the bijections m and mult−1 is clearly a bijection. It can easily

be seen to satisfy

(13.167.5)
∣∣(m ◦mult−1

) (
(kw)w∈L

)∣∣ =
∑
w∈L

kw · |w| for every (kw)w∈L ∈ N.

1116Proof. Let n ∈ N. Recall that we have a bijection Compn → 2[n−1], where [n− 1] = {1, 2, . . . , n− 1}. Thus,

|Compn| =
∣∣∣2[n−1]

∣∣∣ = 2|[n−1]| =

{
2n−1, if n ≥ 1;

20, if n = 0

(
since |[n− 1]| =

{
n− 1, if n ≥ 1;

0, if n = 0

)

=

{
2n−1, if n ≥ 1;

1, if n = 0
,

qed.
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1117 Now, in the ring Q [[t]] of formal power series, we have

∑
w∈A∗

t|w| =
∑
n∈N
|{w ∈ A∗ | |w| = n}|︸ ︷︷ ︸

=

2n−1, if n ≥ 1;

1, if n = 0
(by (13.167.3))

tn =
∑
n∈N

{
2n−1, if n ≥ 1;

1, if n = 0
· tn

= 1t0︸︷︷︸
=1

+
∑
n∈N;
n≥1

2n−1tn

︸ ︷︷ ︸
=
∑
n∈N 2ntn+1

(here, we have substituted
n+1 for n in the sum)

= 1 +
∑
n∈N

2ntn+1︸ ︷︷ ︸
=(2t)nt

= 1 +
∑
n∈N

(2t)
n

︸ ︷︷ ︸
=

1

1− 2t

t = 1 +
1

1− 2t
t =

1− t
1− 2t

.

1117Proof of (13.167.5): Let (kw)w∈L ∈ N. Let M = mult−1
(
(kw)w∈L

)
. Then, M is a multiset of elements of L and

satisfies (kw)w∈L = multM = ((multiplicity of w in the multiset M))w∈L. In other words, every w ∈ L satisfies

(13.167.6) kw = (multiplicity of w in the multiset M) .

Let a1, a2, . . ., ak denote the elements of this multiset M listed in decreasing order. Then, the definition of m yields
m (M) = a1a2 · · · ak, so that

|m (M)| = |a1a2 · · · ak| =
∑

i∈{1,2,...,k}
|ai| =

∑
w∈L

∑
i∈{1,2,...,k};

ai=w

∣∣∣∣∣∣∣∣∣ ai︸︷︷︸
=w

(since ai=w)

∣∣∣∣∣∣∣∣∣ (since every ai belongs to L)

=
∑
w∈L

∑
i∈{1,2,...,k};

ai=w

|w|

︸ ︷︷ ︸
=(number of i∈{1,2,...,k} satisfying ai=w)·|w|

=
∑
w∈L

(number of i ∈ {1, 2, . . . , k} satisfying ai = w)︸ ︷︷ ︸
=(multiplicity of w in the multiset M)=kw

(by (13.167.6))

· |w|

=
∑
w∈L

kw · |w| .

Now,

∣∣(m ◦mult−1
) (

(kw)w∈L
)∣∣ =

∣∣∣∣∣∣∣m
mult−1

(
(kw)w∈L

)︸ ︷︷ ︸
=M


∣∣∣∣∣∣∣ = |m (M)| =

∑
w∈L

kw · |w| ,

which proves (13.167.5).
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Hence,

1− t
1− 2t

=
∑
w∈A∗

t|w| =
∑

(kw)w∈L∈N

t|(m◦mult−1)((kw)w∈L)|

(
here, we substituted

(
m ◦mult−1

) (
(kw)w∈L

)
for w in the sum,

since the map m ◦mult−1 : N→ A∗ is a bijection

)
=

∑
(kw)w∈L∈N

t

∑
w∈L

kw·|w|
(by (13.167.5))

=
∑

(kw)w∈L∈N

∏
w∈L

tkw·|w| =
∏
w∈L

∑
k∈N

tk·|w|︸ ︷︷ ︸
=

1

1− t|w|

(by the product rule)

=
∏
w∈L

1

1− t|w|
=
∏
n≥1

∏
w∈L;
|w|=n

1

1− t|w|︸ ︷︷ ︸
=

1

1− tn
(since |w|=n)

(since |w| ≥ 1 for every w ∈ L)

=
∏
n≥1

∏
w∈L;
|w|=n

1

1− tn

︸ ︷︷ ︸
=

(
1

1− tn
)lyncn

(by (13.167.4))

=
∏
n≥1

(
1

1− tn

)lyncn

.

Taking the logarithm of both sides of this identity, we obtain

log
1− t
1− 2t

= log

∏
n≥1

(
1

1− tn

)lyncn
 =

∑
n≥1

(lyncn) · log

(
1

1− tn

)
︸ ︷︷ ︸

=− log(1−tn)=
∑
u≥1

1

u
(tn)u

(by the Mercator series for the logarithm)

=
∑
n≥1

(lyncn) ·
∑
u≥1

1

u
(tn)

u
=
∑
n≥1

∑
u≥1

(lyncn)
1

u
(tn)

u︸ ︷︷ ︸
=tnu

=
∑
n≥1

∑
u≥1

(lyncn)
1

u
tnu

=
∑
n≥1

∑
v≥1;
n|v︸ ︷︷ ︸

=
∑
v≥1

∑
n|v

(lyncn)
1

v/n︸︷︷︸
=
n

v

tv (here, we substituted v/n for u in the second sum)

=
∑
v≥1

∑
n|v

(lyncn)
n

v
tv =

∑
n≥1

∑
d|n

(lync d)
d

n
tn
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(here, we renamed the summation indices v and n as n and d). Since

log
1− t
1− 2t

= log (1− t)− log (1− 2t)

= (− log (1− 2t))︸ ︷︷ ︸
=
∑
n≥1

1

n
(2t)n

(by the Mercator series for the logarithm)

− (− log (1− t))︸ ︷︷ ︸
=
∑
n≥1

1

n
tn

(by the Mercator series for the logarithm)

=
∑
n≥1

1

n
(2t)

n −
∑
n≥1

1

n
tn =

∑
n≥1

1

n
((2t)

n − tn)︸ ︷︷ ︸
=(2n−1)tn

=
∑
n≥1

1

n
(2n − 1) tn,

this rewrites as ∑
n≥1

1

n
(2n − 1) tn =

∑
n≥1

∑
d|n

(lync d)
d

n
tn.

Comparing coefficients, we conclude that every positive integer n satisfies

1

n
(2n − 1) =

∑
d|n

(lync d)
d

n
.

Multiplying this with n, we obtain

(13.167.7) 2n − 1 =
∑
d|n

(lync d) d.

Now, every positive integer n satisfies∑
d|n

µ (d)
(

2n/d − 1
)

=
∑
e|n

µ (e)
(

2n/e − 1
)

︸ ︷︷ ︸
=
∑
d|n/e(lync d)d

(by (13.167.7), applied
to n/e instead of n)

=
∑
e|n

µ (e)
∑
d|n/e

(lync d) d

=
∑
e|n

∑
d|n/e︸ ︷︷ ︸

=
∑
d|n
∑
e|n/d

µ (e) (lync d) d =
∑
d|n

∑
e|n/d

µ (e)

︸ ︷︷ ︸
=δn/d,1

(by (13.167.1), applied
to N=n/d)

(lync d) d

=
∑
d|n

δn/d,1︸ ︷︷ ︸
=δn,d

(lync d) d =
∑
d|n

δn,d (lync d) d = (lyncn)n.

Dividing this by n, we obtain
1

n

∑
d|n

µ (d)
(
2n/d − 1

)
= lyncn. Hence,

lyncn =
1

n

∑
d|n

µ (d)
(

2n/d − 1
)

=
1

n

∑
d|n

µ (d) 2n/d − δn,1

(by Lemma 13.167.2). This proves (13.167.2). Thus, Exercise 6.4.2 is solved.
Second solution to Exercise 6.4.2. Let B denote the two-element set {0,1}, where 0 and 1 are two new

objects. We make B into a totally ordered set by setting 0 < 1. In the following, we will study not only
words over the alphabet A = {1, 2, 3, . . .}, but also words over the alphabet B. The latter words form the
set B∗. Let LB denote the set of all Lyndon words over the alphabet B.



1026 DARIJ GRINBERG AND VICTOR REINER

For every k ∈ A, define an element k̃ of B∗ by k̃ =

0,1,1, . . . ,1︸ ︷︷ ︸
k−1 times

. (This is well-defined, since

A = {1, 2, 3, . . .}.) We can rewrite the definition of k̃ as follows: We have1118

(13.167.8) k̃ = 01k−1 for every positive integer k

(where “0” and “1” are regarded as one-letter words). Thus,

(13.167.9) `
(
k̃
)

= k for every positive integer k

1119. Also,

(13.167.10) k̃ + 1 = k̃1 for every positive integer k

(where “k̃1” means the concatenation of k̃ with the one-letter word 1). 1120 As a consequence, k̃ is a prefix

of k̃ + 1 for every positive integer k. Thus, k̃ < k̃ + 1 (in the lexicographic order on B∗) for every positive
integer k 1121. In other words,

1̃ < 2̃ < 3̃ < · · · in the lexicographic order on B∗.

We notice a slightly stronger property: For any a ∈ A and b ∈ A satisfying a < b, we have

(13.167.11) ã (c̃1c̃2 · · · c̃s) < b̃w

for any s ∈ N, any c1, c2, . . . , cs ∈ A and any w ∈ B∗. 1122

1118Here and in the following, expressions like 01n (for n ∈ N) have to be understood as 0 (1n) rather than as (01)n. (The

objects 0 and 1 are not actually numbers; they don’t form digital expansions.)
1119Proof. Let k be a positive integer. Then, (13.167.8) yields k̃ = 01k−1. Now,

`

 k̃︸︷︷︸
=01k−1

 = `
(
01k−1

)
= ` (0)︸︷︷︸

=1

+ `
(
1k−1

)
︸ ︷︷ ︸
=(k−1)`(1)

= 1 + (k − 1) ` (1)︸︷︷︸
=1

= 1 + (k − 1) = k,

qed.
1120Proof. Let k be a positive integer. Then, k ≥ 1, so that k− 1 ≥ 0. But (13.167.8) (applied to k + 1 instead of k) yields

k̃ + 1 = 0 1(k+1)−1︸ ︷︷ ︸
=1k=1(k−1)+1=1k−11

(since k−1≥0)

= 01k−1︸ ︷︷ ︸
=k̃

(by (13.167.8))

1 = k̃1,

qed.
1121Proof. Let k be a positive integer. Then, k̃ ≤ k̃ + 1 (since k̃ is a prefix of k̃ + 1). Also, (13.167.9) (applied to k + 1

instead of k) yields `
(
k̃ + 1

)
= k + 1. Now, (13.167.9) yields `

(
k̃
)

= k < k + 1 = `
(
k̃ + 1

)
, so that `

(
k̃
)
6= `

(
k̃ + 1

)
and

thus k̃ 6= k̃ + 1. Combined with k̃ ≤ k̃ + 1, this yields k̃ < k̃ + 1, qed.
1122Proof of (13.167.11): Let a ∈ A and b ∈ A be such that a < b. Let s ∈ N, let c1, c2, . . . , cs ∈ A and let w ∈ B∗. We

need to prove that (13.167.11) holds.

Assume the contrary. Thus, ã (c̃1c̃2 · · · c̃s) < b̃w does not hold. We thus have ã (c̃1c̃2 · · · c̃s) ≥ b̃w. Hence, ã (c̃1c̃2 · · · c̃s) ≥
b̃w ≥ b̃.

We notice that b− a > 0 (since a < b), so that the word 1b−a is nonempty. Also, b− a > 0, so that b− a ≥ 1 (since b− a is

an integer) and thus (b− a)− 1 ≥ 0. Hence, the word 1(b−a)−1 is well-defined, and we have 1b−a = 11(b−a)−1.

Applying (13.167.8) to k = a, we obtain ã = 01a−1. But b−1 = (a− 1)+(b− a), so that 1b−1 = 1(a−1)+(b−a) = 1a−11b−a

(since b− a > 0). Now, (13.167.8) (applied to k = b) yields

b̃ = 0 1b−1︸ ︷︷ ︸
=1a−11b−a

= 01a−1︸ ︷︷ ︸
=ã

1b−a = ã1b−a > ã

(since 1b−a is a nonempty word). Hence, ã < b̃. Now, if we had s = 0, then we would have ã (c̃1c̃2 · · · c̃s)︸ ︷︷ ︸
=(empty product)=∅

= ã < b̃, which

would contradict ã (c̃1c̃2 · · · c̃s) ≥ b̃. Hence, we cannot have s = 0. We thus have s ≥ 1. Consequently, c1 is well-defined. From
(13.167.8) (applied to k = c1), we have c̃1 = 01c1−1. Thus, 0 is a prefix of c̃1. Since c̃1 is, in turn, a prefix of c̃1c̃2 · · · c̃s, this

yields that 0 is a prefix of c̃1c̃2 · · · c̃s. In other words, there exists a t ∈ B∗ such that c̃1c̃2 · · · c̃s = 0t. Consider this t. Now,

ã 0t︸︷︷︸
=c̃1c̃2···c̃s

= ã (c̃1c̃2 · · · c̃s) ≥ b̃ = ã1b−a.
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Also,

(13.167.12) k̃ is a Lyndon word over the alphabet B for every positive integer k.

1123

We can now define a map Φ : A∗ → B∗ by setting

(Φ ((w1, w2, . . . , wk)) = w̃1w̃2 · · · w̃k for every word (w1, w2, . . . , wk) ∈ A∗) .

In other words, ã1b−a ≤ ã0t. Thus, Proposition 6.1.2(c) (applied to B, ã, 1b−a and 0t instead of A, a, c and d) yields

1b−a ≤ 0t. Now, 11(b−a)−1 = 1b−a ≤ 0t. Therefore, Proposition 6.1.2(e) (applied to B, 1, 1(b−a)−1, 0 and t instead of A, a,
b, c and d) yields that either we have 1 ≤ 0 or the word 0 is a prefix of 1. Since the word 0 is not a prefix of 1, this shows that

1 ≤ 0. But this contradicts 0 < 1. This contradiction proves that our assumption was wrong, qed.
1123Proof. Let k be a positive integer. From (13.167.8), we obtain k̃ = 01k−1.

From (13.167.9), we have `
(
k̃
)

= k ≥ 1. Thus, the word k̃ is nonempty.

Let v be a nonempty proper suffix of k̃. We will show that v > k̃.

Indeed, there exists a nonempty u ∈ B∗ satisfying k̃ = uv (since v is a proper suffix of k̃). Consider this u. Since u is
nonempty, the first letter of u is well-defined. We have

(the first letter of u) =

the first letter of k̃︸︷︷︸
=01k−1

 (
since u is a prefix of k̃ (since k̃ = uv)

)
=
(

the first letter of 01k−1
)

= 0.

Thus, 0 is a prefix of u. In other words, there exists a word u′ ∈ B∗ satisfying u = 0u′. Consider this u′. We have

0u′︸︷︷︸
=u

v = uv = k̃ = 01k−1. Cancelling 0 from this equality, we obtain u′v = 1k−1. Hence, v is a suffix of the word 1k−1. Thus,

v has the form 1p for some p ∈ N (since every suffix of the word 1k−1 has this form). Consider this p. The word v is nonempty;
thus, v 6= ∅. We have p 6= 0 (since otherwise, we would have

v = 1p = 10 (since p = 0)

= ∅,

contradicting v 6= ∅). Hence, p ≥ 1, so that p− 1 ≥ 0 and thus 1p = 11p−1. Now, 0 < 1. Hence, Proposition 6.1.2(d) (applied

to B, 0, 1k−1, 1 and 1p−1 instead of A, a, b, c and d) yields that either we have 01k−1 ≤ 11p−1 or the word 0 is a prefix of

1. Since the word 0 is not a prefix of 1, we thus obtain 01k−1 ≤ 11p−1, so that k̃ = 01k−1 ≤ 11p−1 = 1p = v. Hence, v ≥ k̃.

Since v 6= k̃ (because v is a proper suffix of k̃), this yields v > k̃.

Now, let us forget that we fixed v. We thus have proven that every nonempty proper suffix v of k̃ satisfies v > k̃. Since the

word k̃ is nonempty, this shows that the word k̃ is Lyndon (by the definition of a Lyndon word), qed.
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This map Φ is clearly a monoid homomorphism1124. Hence, Φ (∅) = ∅. Also, the map Φ is strictly order-
preserving (with respect to the lexicographical orders on A∗ and B∗) 1125. Consequently, the map Φ is
injective1126.

1124Indeed, we could just as well have defined Φ as the unique monoid homomorphism A∗ → B∗ which sends every k ∈ A

to k̃ ∈ B∗. This definition makes sense since A∗ is the free monoid on A.
1125Proof. Let u and v be two words in A∗ satisfying u < v. We are going to prove that Φ (u) < Φ (v) in B∗.
We have u < v. Thus, u ≤ v. By the definition of the relation ≤, this means that

either there exists an i ∈ {1, 2, . . . ,min {` (u) , ` (v)}}
such that (ui < vi, and every j ∈ {1, 2, . . . , i− 1} satisfies uj = vj) ,

or the word u is a prefix of v.

We thus must be in one of the following two cases:
Case 1: There exists an i ∈ {1, 2, . . . ,min {` (u) , ` (v)}} such that (ui < vi, and every j ∈ {1, 2, . . . , i− 1} satisfies uj = vj).

Case 2: The word u is a prefix of v.
Let us first consider Case 1. In this case, there exists an i ∈ {1, 2, . . . ,min {` (u) , ` (v)}} such that

(ui < vi, and every j ∈ {1, 2, . . . , i− 1} satisfies uj = vj). Consider this i. We have ã < b̃ for any two elements a and b of

A satisfying a < b (because 1̃ < 2̃ < 3̃ < · · · ). Applying this to a = ui and b = vi, we obtain ũi < ṽi.

But let g = ũ1ũ2 · · · ũi−1. Every j ∈ {1, 2, . . . , i− 1} satisfies uj = vj . Thus, every j ∈ {1, 2, . . . , i− 1} satisfies ũj = ṽj .

Taking the product of these equalities over all j ∈ {1, 2, . . . , i− 1}, we obtain ũ1ũ2 · · · ũi−1 = ṽ1ṽ2 · · · ṽi−1, so that g =
ũ1ũ2 · · · ũi−1 = ṽ1ṽ2 · · · ṽi−1.

We have ui < vi. Thus, ũi
(
ũi+1ũi+2 · · · ũ`(u)

)
< ṽi

(
ṽi+1ṽi+2 · · · ṽ`(v)

)
(by (13.167.11), applied to a = ui, b = vi,

s = ` (u)− i, ck = ui+k and w = ṽi+1ṽi+2 · · · ṽ`(v)). Thus,

ũiũi+1 · · · ũ`(u) = ũi
(
ũi+1ũi+2 · · · ũ`(u)

)
< ṽi

(
ṽi+1ṽi+1 · · · ṽ`(v)

)
= ṽiṽi+1 · · · ṽ`(v).

Hence, Proposition 6.1.2(b) (applied to B, g, ũiũi+1 · · · ũ`(u) and ṽiṽi+1 · · · ṽ`(v) instead of A, a, c and d) yields

g
(
ũiũi+1 · · · ũ`(u)

)
≤ g

(
ṽiṽi+1 · · · ṽ`(v)

)
.

Moreover, g
(
ũiũi+1 · · · ũ`(u)

)
6= g

(
ṽiṽi+1 · · · ṽ`(v)

)
(because otherwise, we would have g

(
ũiũi+1 · · · ũ`(u)

)
= g

(
ṽiṽi+1 · · · ṽ`(v)

)
,

and thus (by cancelling g from the equality g
(
ũiũi+1 · · · ũ`(u)

)
= g

(
ṽiṽi+1 · · · ṽ`(v)

)
) we would obtain ũiũi+1 · · · ũ`(u) =

ṽiṽi+1 · · · ṽ`(v), which would contradict ũiũi+1 · · · ũ`(u) < ṽiṽi+1 · · · ṽ`(v)). Combining this with g
(
ũiũi+1 · · · ũ`(u)

)
≤

g
(
ṽiṽi+1 · · · ṽ`(v)

)
, we obtain g

(
ũiũi+1 · · · ũ`(u)

)
< g

(
ṽiṽi+1 · · · ṽ`(v)

)
.

But u =
(
u1, u2, . . . , u`(u)

)
, so that

Φ (u) = Φ
((
u1, u2, . . . , u`(u)

))
(by the definition of Φ (u))

= ũ1ũ2 · · · ũ`(u) =
(
ũ1ũ2 · · · ũi−1

)︸ ︷︷ ︸
=g

(
ũiũi+1 · · · ũ`(u)

)
= g

(
ũiũi+1 · · · ũ`(u)

)
< g︸︷︷︸

=ṽ1ṽ2···ṽi−1

(
ṽiṽi+1 · · · ṽ`(v)

)
= (ṽ1ṽ2 · · · ṽi−1)

(
ṽiṽi+1 · · · ṽ`(v)

)
= ṽ1ṽ2 · · · ṽ`(v) = Φ (v)

(since Φ (v) = ṽ1ṽ2 · · · ṽ`(v) (by the definition of Φ (v))). Thus, Φ (u) < Φ (v) is proven in Case 1.

Let us now consider Case 2. In this case, the word u is a prefix of v. That is, there exists a word r ∈ A∗ such that v = ur.

Consider this r. We have Φ

 v︸︷︷︸
=ur

 = Φ (ur) = Φ (u) Φ (r) (since Φ is a monoid homomorphism). If we had r = ∅, then we

would have v = u r︸︷︷︸
=∅

= u < v, which is absurd. Hence, we cannot have r = ∅. In other words, r is nonempty, so that ` (r) ≥ 1.

Now, let us check that Φ (r) is nonempty. In fact, r =
(
r1, r2, . . . , r`(r)

)
, so that Φ (r) = r̃1r̃2 · · · r̃`(r) (by the definition of

Φ (r)). Notice that r1 is well-defined, since ` (r) ≥ 1. From (13.167.8) (applied to k = r1), we obtain r̃1 = 01r1−1, so that

0 is a prefix of the word r̃1. Since r̃1 (in turn) is a prefix of the word r̃1r̃2 · · · r̃`(r), this yields that 0 is a prefix of the word

r̃1r̃2 · · · r̃`(r). In other words, 0 is a prefix of the word Φ (r) (since Φ (r) = r̃1r̃2 · · · r̃`(r)). Hence, the word Φ (r) has a nonempty

prefix (namely, 0). Thus, the word Φ (r) is nonempty. In other words, Φ (r) 6= ∅. That is, ∅ 6= Φ (r).
Since Φ (v) = Φ (u) Φ (r), we now see that the word Φ (u) is a prefix of Φ (v) (since Φ (r) is nonempty). Hence, Φ (u) ≤ Φ (v).

On the other hand, if we had Φ (u) = Φ (v), then we would have Φ (u)∅ = Φ (u) = Φ (v) = Φ (u) Φ (r), and therefore we would
have ∅ = Φ (r) (as a result of cancelling Φ (u) from the equality Φ (u)∅ = Φ (u) Φ (r)), which would contradict ∅ 6= Φ (r).

Hence, we cannot have Φ (u) = Φ (v). We therefore must have Φ (u) 6= Φ (v). Hence, Φ (u) ≤ Φ (v) becomes Φ (u) < Φ (v). We
thus have proven Φ (u) < Φ (v) in Case 2.

Now, we have proven that Φ (u) < Φ (v) in each of the two Cases 1 and 2. Since these two Cases cover all possibilities, this

shows that Φ (u) < Φ (v) always holds.
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For every w ∈ B∗, we denote by wB∗ the set {wu | u ∈ B∗} (that is, the set of all words in B∗ which
have w as a prefix). Every nonempty word in B∗ starts with either the letter 0 or the letter 1, but not both.
In other words, every nonempty word in B∗ belongs to either 0B∗ or 1B∗ (where 0 and 1 are regarded
as one-letter words), but not both. In other words, B∗ \ {∅} = 0B∗ ∪ 1B∗ and 0B∗ ∩ 1B∗ = ∅. Thus,
B∗ \ 1B∗ = {∅} ∪ 0B∗ 1127.

Now, let us forget that we fixed u and v. We thus have proven that if u and v are two words in A∗ satisfying u < v, then

Φ (u) < Φ (v) in B∗. In other words, the map Φ is strictly order-preserving, qed.
1126because any strictly order-preserving map from a totally ordered set to a poset must be injective
1127Proof. We have B∗ \ {∅} = 0B∗ ∪ 1B∗ and 0B∗ ∩ 1B∗ = ∅. Thus, the sets 0B∗ and 1B∗ are disjoint and have union

B∗ \ {∅}. In other words, the sets 0B∗ and 1B∗ are complementary subsets of B∗ \ {∅}. Hence, (0B∗ ∪ 1B∗) \ 1B∗ = 0B∗.
Now,

B∗︸︷︷︸
={∅}∪(B∗\{∅})

\1B∗ = ({∅} ∪ (B∗ \ {∅})) \ 1B∗ = ({∅} \ 1B∗)︸ ︷︷ ︸
={∅}

∪

 (B∗ \ {∅})︸ ︷︷ ︸
=(0B∗∪1B∗)

\1B∗


= {∅} ∪ ((0B∗ ∪ 1B∗) \ 1B∗)︸ ︷︷ ︸

=0B∗

= {∅} ∪ 0B∗,

qed.
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Furthermore, Φ (A∗) ⊂ B∗ \ 1B∗ 1128 and B∗ \ 1B∗ ⊂ Φ (A∗) 1129. Combining these two relations,
we obtain

(13.167.15) Φ (A∗) = B∗ \ 1B∗.

1128Proof. Let u ∈ Φ (A∗). We will prove that u ∈ B∗ \ 1B∗.

Indeed, there exists some w ∈ A∗ satisfying u = Φ (w) (since u ∈ Φ (A∗)). Consider this w. If w = ∅, then u = Φ

 w︸︷︷︸
=∅

 =

Φ (∅) = ∅ ∈ B∗ \1B∗ (since clearly, ∅ /∈ 1B∗). Hence, if w = ∅, then u ∈ B∗ \1B∗ is proven. Thus, for the rest of this proof,
we can WLOG assume that we don’t have w = ∅. Assume this.

The word w is nonempty (since w 6= ∅), so that ` (w) ≥ 1. Hence, the letter w1 is well-defined. We have w =(
w1, w2, . . . , w`(w)

)
and thus

Φ (w) = w̃1w̃2 · · · w̃`(w) (by the definition of Φ)

= w̃1︸︷︷︸
=01w1−1

(by (13.167.8), applied
to k=w1)

(
w̃2w̃3 · · · w̃`(w)

)
= 0 1w1−1

(
w̃2w̃3 · · · w̃`(w)

)︸ ︷︷ ︸
∈B∗

∈ 0B∗ ⊂ {∅} ∪ 0B∗ = B∗ \ 1B∗.

Hence, u = Φ (w) ∈ B∗ \ 1B∗.
Now, let us forget that we fixed u. We thus have proven that u ∈ B∗ \ 1B∗ for every u ∈ Φ (A∗). In other words,

Φ (A∗) ⊂ B∗ \ 1B∗, qed.
1129Proof. We are going to show that

(13.167.13) every u ∈ B∗ \ 1B∗ satisfies u ∈ Φ (A∗) .

Proof of (13.167.13): We will prove (13.167.13) by strong induction over ` (u):

Induction step: Let N ∈ N. Assume that (13.167.13) holds whenever ` (u) < N . We now will prove that (13.167.13) holds
whenever ` (u) = N .

We know that (13.167.13) holds whenever ` (u) < N . In other words,

(13.167.14) every u ∈ B∗ \ 1B∗ satisfying ` (u) < N satisfies u ∈ Φ (A∗) .

Now, fix an u ∈ B∗ \ 1B∗ satisfying ` (u) = N . We shall show that u ∈ Φ (A∗).
If u = ∅, then u = ∅ = Φ (∅) ∈ Φ (A∗). Hence, for the rest of our proof of u ∈ Φ (A∗), we can WLOG assume that we don’t

have u = ∅. Assume this.

We have u 6= ∅ (since we don’t have u = ∅), thus u /∈ {∅}. We have u ∈ B∗ \ 1B∗ = {∅} ∪ 0B∗ but u /∈ {∅}. Hence,
u ∈ ({∅} ∪ 0B∗) \ {∅} ⊂ 0B∗. In other words, there exists a p ∈ B∗ such that u = 0p. Consider this p. The one-letter word

0 is a prefix of u (since u = 0p).

Applying (13.167.8) to k = 1, we obtain 1̃ = 0 11−1︸ ︷︷ ︸
=10=∅

= 0, so that 1̃ is a prefix of u (since 0 is a prefix of u). Hence, there

exists a k ∈ A such that k̃ is a prefix of u (namely, k = 1).

On the other hand, if k ∈ A is such that k̃ is a prefix of u, then `
(
k̃
)
≤ ` (u). Hence, if k ∈ A is such that k̃ is a prefix of u,

then ` (u) ≥ `
(
k̃
)

= k (by (13.167.9)). Hence, if k ∈ A is such that k̃ is a prefix of u, then k ≤ ` (u). Hence, only finitely many

k ∈ A have the property that k̃ is a prefix of u (because only finitely many k ∈ A have the property that k ≤ ` (u)).
We now have made the following two observations:

• There exists a k ∈ A such that k̃ is a prefix of u.

• Only finitely many k ∈ A have the property that k̃ is a prefix of u.

Combining these two observations, we conclude that there exists a largest k ∈ A such that k̃ is a prefix of u. Consider this

largest k. Then, k̃ is a prefix of u, but k̃ + 1 is not a prefix of u.

There exists a v ∈ B∗ such that u = k̃v (since k̃ is a prefix of u). Consider this v. We have `

 u︸︷︷︸
=k̃v

 = `
(
k̃v
)

=

`
(
k̃
)

︸ ︷︷ ︸
=k

(by (13.167.9))

+` (v) = k︸︷︷︸
≥1

(since k∈A)

+` (v) ≥ 1 + ` (v) > ` (v), so that ` (v) < ` (u) = N .

Let us now assume that v ∈ B∗ \ 1B∗. Then, v ∈ Φ (A∗) (by (13.167.14), applied to v instead of u). In other words, there

exists a v′ ∈ A∗ such that v = Φ (v′). Consider this v′. The definition of Φ (k) (where k stands for the one-letter word (k) ∈ A∗)
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Next, we recall that LB is the set of all Lyndon words over the alphabet B. We notice that Φ (L) ⊂ LB\{1}
1130 and LB \ {1} ⊂ Φ (L) 1131. Combining the latter two relations, we obtain

(13.167.16) Φ (L) = LB \ {1} .
Hence, the map Φ restricts to a bijection L→ LB \ {1}.

Next, we notice that

(13.167.17) ` (Φ (w)) = |w| for every w ∈ A∗

yields Φ (k) = k̃. Hence,

u = k̃︸︷︷︸
=Φ(k)

v︸︷︷︸
=Φ(v′)

= Φ (k) Φ
(
v′
)

= Φ
(
kv′
)

(since Φ is a monoid homomorphism)

∈ Φ (A∗) .

Now, let us forget that we have assumed that v ∈ B∗ \ 1B∗. We have thus proven that u ∈ Φ (A∗) under the assumption

that v ∈ B∗ \ 1B∗. Thus, for the rest of the proof of u ∈ Φ (A∗), we can WLOG assume that we don’t have v ∈ B∗ \ 1B∗.
Assume this.

We have v ∈ 1B∗ (since we don’t have v ∈ B∗ \ 1B∗). Thus, there exists a v′ ∈ B∗ such that v = 1v′. Consider this v′.
We have

u = k̃ v︸︷︷︸
=1v′

= k̃1︸︷︷︸
=k̃+1

(by (13.167.10))

v′ =
(
k̃ + 1

)
v′.

Hence, k̃ + 1 is a prefix of u. This contradicts the fact that k̃ + 1 is not a prefix of u. From this contradiction, we conclude that

u ∈ Φ (A∗) (since ex falso quodlibet). Thus, u ∈ Φ (A∗) is proven.

Now, let us forget that we fixed u. We thus have shown that every u ∈ B∗ \ 1B∗ satisfying ` (u) = N satisfies u ∈ Φ (A∗).
In other words, (13.167.13) holds whenever ` (u) = N . This completes the induction step. Thus, (13.167.13) is proven by

induction.

But from (13.167.13), we immediately obtain B∗ \ 1B∗ ⊂ Φ (A∗), qed.
1130Proof. Let u ∈ Φ (L). We are going to prove that u ∈ LB \ {1}.
There exists a w ∈ L such that u = Φ (w) (since u ∈ Φ (L)). Consider this w. The word w is Lyndon (since w ∈ L), and

thus nonempty. Hence, ` (w) ≥ 1.
Let n = ` (w). Thus, n = ` (w) ≥ 1. We have w =

(
w1, w2, . . . , w`(w)

)
= (w1, w2, . . . , wn) (since ` (w) = n).

We have w = (w1, w2, . . . , wn), so that Φ (w) = w̃1w̃2 · · · w̃n (by the definition of Φ (w)). For every i ∈ {1, 2, . . . , n}, the

word w̃i is a Lyndon word over the alphabet B (by (13.167.12), applied to k = wi). Thus, w̃1, w̃2, . . ., w̃n are Lyndon words
over the alphabet B.

Let now i ∈ {1, 2, . . . , n}. Then, (wi, wi+1, . . . , wn) is a nonempty suffix of w (since w = (w1, w2, . . . , wn)).

Recall that w is Lyndon. Hence, Corollary 6.1.15 (applied to v = (wi, wi+1, . . . , wn)) yields that (wi, wi+1, . . . , wn) ≥ w
(since (wi, wi+1, . . . , wn) is a nonempty suffix of w). Hence, Φ ((wi, wi+1, . . . , wn)) ≥ Φ (w) (since the map Φ is strictly

order-preserving). But the definition of the map Φ yields Φ ((wi, wi+1, . . . , wn)) = w̃iw̃i+1 · · · w̃n. Thus, w̃iw̃i+1 · · · w̃n =

Φ ((wi, wi+1, . . . , wn)) ≥ Φ (w) = w̃1w̃2 · · · w̃n.
Now, let us forget that we fixed i. We thus have shown that w̃iw̃i+1 · · · w̃n ≥ w̃1w̃2 · · · w̃n for every i ∈ {1, 2, . . . , n}. Hence,

Exercise 6.1.24 (applied to B and w̃i instead of A and wi) yields that w̃1w̃2 · · · w̃n is a Lyndon word. In other words, u is

a Lyndon word (since u = Φ (w) = w̃1w̃2 · · · w̃n). More precisely, u is a Lyndon word over the alphabet B. In other words,
u ∈ LB (since LB is the set of all Lyndon words over the alphabet B).

On the other hand, u ∈ Φ

 L︸︷︷︸
⊂A∗

 ⊂ Φ (A∗) = B∗ \ 1B∗ (by (13.167.15)), so that u /∈ 1B∗. Hence, we cannot have u = 1

(because if we had u = 1, we would have u = 1 = 1 ∅︸︷︷︸
∈B∗

∈ 1B∗, which would contradict u /∈ 1B∗). Thus, we have u 6= 1, so

that u /∈ {1}. Combined with u ∈ LB, this yields u ∈ LB \ {1}.
Now, let us forget that we fixed u. We thus have proven that u ∈ LB \ {1} for every u ∈ Φ (L). In other words,

Φ (L) ⊂ LB \ {1}, qed.
1131Proof. Let u ∈ LB \ {1}. We are going to prove that u ∈ Φ (L).
We have u ∈ LB \ {1} ⊂ LB. Thus, u is a Lyndon word over the alphabet B (since LB is the set of all Lyndon words over

the alphabet B). Also, u /∈ {1} (since u ∈ LB \ {1}), so that u 6= 1.
Let us now assume (for the sake of contradiction) that u ∈ 1B∗. Then, there exists a u′ ∈ B∗ such that u = 1u′. Consider

this u′.
The word u is nonempty (since it is Lyndon), and thus the last letter of u is well-defined. Let g be this last letter of u. Then,

g is a suffix of u. Clearly, g is nonempty (when regarded as a word). Thus, Corollary 6.1.15 (applied to B, u and g instead of
A, w and v) yields g ≥ u = 1u′, so that 1u′ ≤ g = g∅. Also, ` (g) ≥ 1 (since g is nonempty), whence ` (g) ≥ 1 = ` (1) and thus

` (1) ≤ ` (g). Now, Proposition 6.1.2(f) (applied to B, 1, u′, g and ∅ instead of A, a, b, c and d) yields 1 ≤ g. Thus, g ≥ 1.
Since g is a single letter, this yields that g = 1 (because the only letter of B which is ≥ 1 is 1 itself). Thus, 1u′ ≤ g = 1 = 1∅.

Now, Proposition 6.1.2(f) (applied to B, 1, u′ and ∅ instead of A, a, c and d) yields u′ ≤ ∅. This yields u′ = ∅ (since the only
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(where the notation |w| makes sense because every w ∈ A∗ is a composition and thus has a size)1132.
[Incidentally, here is a similar identity which will not use:

(13.167.18) (the number of letters 0 in Φ (w)) = ` (w) for every w ∈ A∗

1133.]
Now, fix a positive integer n. The alphabet B is finite and satisfies 2 = |B|. Hence, Exercise 6.1.29

(applied to B and 2 instead of A and q) yields that the number of Lyndon words of length n over the

alphabet B equals
1

n

∑
d|n

µ (d) 2n/d. That is,

(13.167.20) (the number of all Lyndon words of length n over the alphabet B) =
1

n

∑
d|n

µ (d) 2n/d.

word which is ≤ ∅ is ∅ itself). Hence, u = 1 u′︸︷︷︸
=∅

= 1, which contradicts u 6= 1. This contradiction shows that our assumption

(that u ∈ 1B∗) was wrong. Hence, we have u /∈ 1B∗.
Since u ∈ B∗ and u /∈ 1B∗, we must have u ∈ B∗ \ 1B∗ = Φ (A∗) (by (13.167.15)). In other words, there exists a w ∈ A∗

such that u = Φ (w). Consider this w.

We have u 6= ∅ (since u is nonempty) and thus w 6= ∅ (because otherwise, we would have w = ∅ and thus u = Φ

 w︸︷︷︸
=∅

 =

Φ (∅) = ∅, contradicting u 6= ∅). Hence, the word w is nonempty.

Let now v be a nonempty proper suffix of w. We assume (for the sake of contradiction) that v ≤ w. Since v 6= w (because v

is a proper suffix of w) and v ≤ w, we have v < w. Thus, Φ (v) < Φ (w) (since the map Φ is strictly order-preserving). Hence,
Φ (v) < Φ (w) = u.

Also, v 6= ∅ (since v is nonempty). Thus, Φ (v) 6= Φ (∅) (because otherwise, we would have Φ (v) = Φ (∅), so that v = ∅
(since the map Φ is injective), which would contradict v 6= ∅). Hence, Φ (v) 6= Φ (∅) = ∅, so that the word Φ (v) is nonempty.

But there exists a p ∈ A∗ such that w = pv (since v is a suffix of w). Consider this p. We have u = Φ

 w︸︷︷︸
=pv

 = Φ (pv) =

Φ (p) Φ (v) (since Φ is a monoid homomorphism). Thus, Φ (v) is a suffix of u. Now, Corollary 6.1.15 (applied to B, u and Φ (v)

instead of A, w and v) yields Φ (v) ≥ u. This contradicts Φ (v) < u. This contradiction shows that our assumption (that v ≤ w)
was wrong. Hence, we cannot have v ≤ w. We thus have v > w.

Now, let us forget that we fixed v. We thus have proven that every nonempty proper suffix v of w satisfies v > w. Since the

word w is nonempty, this yields that the word w is Lyndon (by the definition of a Lyndon word). In other words, w ∈ L (since

L is the set of all Lyndon words over the alphabet A). Now, u = Φ

 w︸︷︷︸
∈L

 ∈ Φ (L).

Now, let us forget that we fixed u. We thus have shown that u ∈ Φ (L) for every u ∈ LB \ {1}. In other words,

LB \ {1} ⊂ Φ (L), qed.
1132Proof. Let w ∈ A∗. Then, w =

(
w1, w2, . . . , w`(w)

)
, so that Φ (w) = w̃1w̃2 · · · w̃`(w) (by the definition of Φ (w)). Hence,

`

 Φ (w)︸ ︷︷ ︸
=w̃1w̃2···w̃`(w)

 = `
(
w̃1w̃2 · · · w̃`(w)

)
= ` (w̃1) + ` (w̃2) + · · ·+ `

(
w̃`(w)

)
=

`(w)∑
i=1

` (w̃i)︸ ︷︷ ︸
=wi

(by (13.167.9), applied to k=wi)

=

`(w)∑
i=1

wi = w1 + w2 + · · ·+ w`(w) = |w|

(since |w| = w1 + w2 + · · ·+ w`(w) (since w =
(
w1, w2, . . . , w`(w)

)
)), qed.

1133Proof. Let w ∈ A∗.
We notice that

(13.167.19)

the number of letters 0 in k̃︸︷︷︸
=01k−1

(by (13.167.8))

 =
(

the number of letters 0 in 01k−1
)

= 1

for every k ∈ A.
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Now, let lyncn denote the number of Lyndon compositions of size n. We need to prove that

(13.167.21) lyncn =
1

n

∑
d|n

µ (d)
(

2n/d − 1
)

=
1

n

∑
d|n

µ (d) 2n/d − δn,1.

By the definition of lyncn, we have

lyncn = (the number of Lyndon compositions of size n)

= (the number of all w ∈ L such that |w| = n)

(since the set of all Lyndon compositions is L)

=

∣∣∣∣∣∣∣∣∣∣

w ∈ L | |w|︸︷︷︸
=`(Φ(w))

(by (13.167.17))

= n



∣∣∣∣∣∣∣∣∣∣
= |{w ∈ L | ` (Φ (w)) = n}| =

∣∣∣∣∣∣∣ {w ∈ LB \ {1} | ` (w) = n}︸ ︷︷ ︸
={w∈LB | `(w)=n}\{w∈{1} | `(w)=n}

∣∣∣∣∣∣∣(
here, we have substituted w for Φ (w) , since the map

Φ restricts to a bijection L→ LB \ {1}

)
= |{w ∈ LB | ` (w) = n} \ {w ∈ {1} | ` (w) = n}|
= |{w ∈ LB | ` (w) = n}|︸ ︷︷ ︸

=(the number of all w∈LB such that `(w)=n)
=(the number of all Lyndon words of length n over the alphabet B)

(since LB is the set of all Lyndon words over the alphabet B)

− |{w ∈ {1} | ` (w) = n}|︸ ︷︷ ︸
=δn,1

(since `(1)=1)since

w ∈ {1}︸︷︷︸
⊂LB

| ` (w) = n

 ⊂ {w ∈ LB | ` (w) = n}


= (the number of all Lyndon words of length n over the alphabet B)︸ ︷︷ ︸

=
1

n
∑
d|n

µ(d)2n/d

(by (13.167.20))

−δn,1

=
1

n

∑
d|n

µ (d) 2n/d − δn,1 =
1

n

∑
d|n

µ (d)
(

2n/d − 1
)

(by Lemma 13.167.2). This solves Exercise 6.4.2 again.

We have w =
(
w1, w2, . . . , w`(w)

)
, so that Φ (w) = w̃1w̃2 · · · w̃`(w) (by the definition of Φ (w)). Hence,the number of letters 0 in Φ (w)︸ ︷︷ ︸

=w̃1w̃2···w̃`(w)


=
(
the number of letters 0 in w̃1w̃2 · · · w̃`(w)

)
= (the number of letters 0 in w̃1) + (the number of letters 0 in w̃2)

+ · · ·+
(
the number of letters 0 in w̃`(w)

)
=

`(w)∑
i=1

(the number of letters 0 in w̃i)︸ ︷︷ ︸
=1

(by (13.167.19), applied to k=wi)

=

`(w)∑
i=1

1 = ` (w) ,

qed.
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13.168. Solution to Exercise 6.4.6. Solution to Exercise 6.4.6.

Proof of Proposition 6.4.5. Write α and β as α = (α1, α2, . . . , α`) and β = (β1, β2, . . . , βm), respectively;
then ` (α) = ` and ` (β) = m.

Fix three disjoint chain posets (i1 < i2 < · · · < i`), (j1 < j2 < · · · < jm) and (k1 < k2 < k3 < · · · ). For
any p ∈ N, we define a p-shuffling map to mean a map f from the disjoint union of two chains to a chain

(i1 < i2 < · · · < i`) t (j1 < j2 < · · · < jm)
f−→ (k1 < k2 < · · · < kp)

which is both surjective and strictly order-preserving (that is, if x and y are two elements in the domain of f
satisfying x < y, then f (x) < f (y)). For every p ∈ N and every p-shuffling map f , we define a composition
wt (f) := (wt1 (f) ,wt2 (f) , . . . ,wtp (f)) by wts (f) :=

∑
iu∈f−1(ks)

αu +
∑
jv∈f−1(ks)

βv. Then, Proposition

5.1.3 yields

MαMβ =
∑
f

Mwt(f),

where the sum is over all p ∈ N and all p-shuffling maps f . In other words,

MαMβ =
∑

(p,f);
p∈N;

f is a p-shuffling map

Mwt(f) =
∑
p∈N

∑
f is a p-shuffling map

Mwt(f)

=
∑
p∈N;
p≤`+m

∑
f is a p-shuffling map

Mwt(f) +
∑
p∈N;
p>`+m

∑
f is a p-shuffling map

Mwt(f)︸ ︷︷ ︸
=(empty sum)

(because there exist no p-shuffling maps if p>`+m
(since a p-shuffling map has to be a surjective map

from an (`+m)-element set to a p-element set,
and such maps don’t exist if p>`+m))

=
∑
p∈N;
p≤`+m

∑
f is a p-shuffling map

Mwt(f) +
∑
p∈N;
p>`+m

(empty sum)︸ ︷︷ ︸
=0

=
∑
p∈N;
p≤`+m

∑
f is a p-shuffling map

Mwt(f) +
∑
p∈N;
p>`+m

0

︸ ︷︷ ︸
=0

=
∑
p∈N;
p≤`+m

∑
f is a p-shuffling map

Mwt(f)(13.168.1)

=
∑

f is an (`+m)-shuffling map

Mwt(f) +
∑
p∈N;
p<`+m

∑
f is a p-shuffling map

Mwt(f)(13.168.2)

(here, we have split off the addend for p = `+m from the sum).
We now notice that∑

p∈N;
p<`+m

∑
f is a p-shuffling map

Mwt(f)

= (a sum of terms of the form Mδ with δ ∈ A∗ satisfying ` (δ) < ` (α) + ` (β))(13.168.3)

1134. Our next goal is to prove

(13.168.4)
∑

f is an (`+m)-shuffling map

Mwt(f) =
∑

σ∈Sh`,m

Mα�
σ
β .

1134Proof of (13.168.3): If p ∈ N is such that p < `+m, and if f is a p-shuffling map, then wt (f) = (wt1 (f) , . . . ,wtp (f))

is a composition of length p < `︸︷︷︸
=`(α)

+ m︸︷︷︸
=`(β)

= ` (α) + ` (β). Hence, if p ∈ N is such that p < `+m, and if f is a p-shuffling map,

then Mwt(f) is a term of the form Mδ with δ ∈ A∗ satisfying ` (δ) < ` (α)+` (β). Therefore,
∑
p∈N;
p<`+m

∑
f is a p-shuffling map Mwt(f)

is a sum of terms of the form Mδ with δ ∈ A∗ satisfying ` (δ) < ` (α) + ` (β). This proves (13.168.3).
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Once (13.168.4) is proven, we will immediately conclude that∑
f is an (`+m)-shuffling map

Mwt(f) =
∑

σ∈Sh`,m

Mα�
σ
β =

∑
γ∈α�β

Mγ

(since the multiset α� β is defined as
{
α�

σ
β : σ ∈ Sh`,m

}
multiset

), and therefore we will obtain

MαMβ =
∑

f is an (`+m)-shuffling map

Mwt(f)︸ ︷︷ ︸
=
∑
γ∈α�βMγ

+
∑
p∈N;
p<`+m

∑
f is a p-shuffling map

Mwt(f)

︸ ︷︷ ︸
=(a sum of terms of the form Mδ with δ∈A∗ satisfying `(δ)<`(α)+`(β))

(by (13.168.3))

=
∑

γ∈α�β

Mγ + (a sum of terms of the form Mδ with δ ∈ A∗ satisfying ` (δ) < ` (α) + ` (β)) ,

which will complete the proof of Proposition 6.4.5. Hence, it only remains to prove (13.168.4).
We letD be the poset (i1 < i2 < · · · < i`)t(j1 < j2 < · · · < jm), and we letR be the poset (k1 < k2 < · · · < k`+m).

Note that |D| = ` + m = |R|. Hence, D and R are two finite sets of the same cardinality. Consequently, a
given map from D to R is surjective if and only if it is bijective.1135

Recall that an (`+m)-shuffling map means a map f from (i1 < i2 < · · · < i`) t (j1 < j2 < · · · < jm)
to (k1 < k2 < · · · < k`+m) which is both surjective and strictly order-preserving (by the definition of an
“(`+m)-shuffling map”). In other words, an (`+m)-shuffling map means a map f from D to R which is
both surjective and strictly order-preserving1136. In other words, an (`+m)-shuffling map means a map f
from D to R which is both bijective and strictly order-preserving1137.

Let us now define a bijection d : {1, 2, . . . , `+m} → D by

d (u) =

{
iu, if u ≤ `;
ju−`, if u > `

for every u ∈ {1, 2, . . . , `+m} .

Let us further define a bijection r : {1, 2, . . . , `+m} → R by

r (u) = ku for every u ∈ {1, 2, . . . , `+m} .
Notice that r is an isomorphism of posets, where we endow the set {1, 2, . . . , `+m} with its natural total
order (i.e., the order 1 < 2 < · · · < `+m).

We can then define a bijection

Φ : (the set of all bijective maps from {1, 2, . . . , `+m} to {1, 2, . . . , `+m})
→ (the set of all bijective maps from D to R)

by setting

Φ (σ) = r ◦ σ ◦ d−1 for every bijective map σ : {1, 2, . . . , `+m} → {1, 2, . . . , `+m} .
1138 Consider this bijection Φ. Then, Φ is a bijection from S`+m to (the set of all bijective maps from D to R)
(because (the set of all bijective maps from {1, 2, . . . , `+m} to {1, 2, . . . , `+m}) = S`+m). It is now easy
to see that if σ ∈ S`+m, then we have the following equivalence of assertions:

(13.168.5) (σ ∈ Sh`,m)⇐⇒
(
the map Φ

(
σ−1

)
: D → R is strictly order-preserving

)
.

1139 Moreover, every σ ∈ Sh`,m satisfies

(13.168.9) wt
(
Φ
(
σ−1

))
= α�

σ
β.

1135Of course, the letters D and R have been chosen to remind of “domain” and “range”.
1136since D = (i1 < i2 < · · · < i`) t (j1 < j2 < · · · < jm) and R = (k1 < k2 < · · · < k`+m)
1137This is because a given map from D to R is surjective if and only if it is bijective.
1138This is a bijection since both d and r are bijections.
1139Proof of (13.168.5): Let σ ∈ S`+m. The poset D is the disjoint union of the totally ordered posets (i1 < i2 < · · · < i`)

and (j1 < j2 < · · · < jm). Hence, if P is any other poset, and f : D → P is any map, then the map f : D → P is strictly

order-preserving if and only if it satisfies

(f (i1) < f (i2) < · · · < f (i`) and f (j1) < f (j2) < · · · < f (jm)) .
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1140

Now, recall that an (`+m)-shuffling map means a map f from D to R which is both bijective and strictly
order-preserving. In other words, an (`+m)-shuffling map means a bijective map from D to R which is

Applying this to P = R and f = Φ
(
σ−1

)
, we conclude that the map Φ

(
σ−1

)
: D → R is strictly order-preserving if and only

if it satisfies ((
Φ
(
σ−1

))
(i1) <

(
Φ
(
σ−1

))
(i2) < · · · <

(
Φ
(
σ−1

))
(i`)

and
(
Φ
(
σ−1

))
(j1) <

(
Φ
(
σ−1

))
(j2) < · · · <

(
Φ
(
σ−1

))
(jm)

)
.

In other words, we have the following equivalence of assertions:(
the map Φ

(
σ−1

)
: D → R is strictly order-preserving

)
⇐⇒

((
Φ
(
σ−1

))
(i1) <

(
Φ
(
σ−1

))
(i2) < · · · <

(
Φ
(
σ−1

))
(i`)

and
(
Φ
(
σ−1

))
(j1) <

(
Φ
(
σ−1

))
(j2) < · · · <

(
Φ
(
σ−1

))
(jm)

)
.(13.168.6)

Now, recall that Φ
(
σ−1

)
= r ◦ σ−1 ◦ d−1 (by the definition of Φ). Hence, every u ∈ {1, 2, . . . , `} satisfies

(
Φ
(
σ−1

))
(iu) =

(
r ◦ σ−1 ◦ d−1

)
(iu) = r

σ
−1

 d−1 (iu)︸ ︷︷ ︸
=u

(since d(u)=iu
(by the definition of d))



 = r
(
σ−1 (u)

)
.

Hence, we have the following equivalence of assertions:((
Φ
(
σ−1

))
(i1) <

(
Φ
(
σ−1

))
(i2) < · · · <

(
Φ
(
σ−1

))
(i`)
)

⇐⇒
(
r
(
σ−1 (1)

)
< r

(
σ−1 (2)

)
< · · · < r

(
σ−1 (`)

))
⇐⇒

(
σ−1 (1) < σ−1 (2) < · · · < σ−1 (`)

)
(since r is an isomorphism of posets) .(13.168.7)

Similarly, we have the following equivalence of assertions:((
Φ
(
σ−1

))
(j1) <

(
Φ
(
σ−1

))
(j2) < · · · <

(
Φ
(
σ−1

))
(jm)

)
⇐⇒

(
σ−1 (`+ 1) < σ−1 (`+ 2) < · · · < σ−1 (`+m)

)
.(13.168.8)

Now, the equivalence (13.168.6) becomes(
the map Φ

(
σ−1

)
: D → R is strictly order-preserving

)

⇐⇒


(
Φ
(
σ−1

))
(i1) <

(
Φ
(
σ−1

))
(i2) < · · · <

(
Φ
(
σ−1

))
(i`)︸ ︷︷ ︸

this is equivalent to

(σ−1(1)<σ−1(2)<···<σ−1(`))
(by (13.168.7))

and
(
Φ
(
σ−1

))
(j1) <

(
Φ
(
σ−1

))
(j2) < · · · <

(
Φ
(
σ−1

))
(jm)︸ ︷︷ ︸

this is equivalent to

(σ−1(`+1)<σ−1(`+2)<···<σ−1(`+m))
(by (13.168.8))


⇐⇒

(
σ−1 (1) < σ−1 (2) < · · · < σ−1 (`) and σ−1 (`+ 1) < σ−1 (`+ 2) < · · · < σ−1 (`+m)

)
⇐⇒

(
σ ∈ Sh`,m

) (
by the definition of Sh`,m

)
.

This proves (13.168.5).
1140Proof of (13.168.9): Let σ ∈ Sh`,m. Set f = Φ

(
σ−1

)
. Then, f is a bijective map from D to R (because the domain of

Φ is (the set of all bijective maps from D to R)).
By the definition of wt (f), we have wt (f) = (wt1 (f) ,wt2 (f) , . . . ,wt`+m (f)), where we set wts (f) :=

∑
iu∈f−1(ks) αu +∑

jv∈f−1(ks) βv for every s ∈ {1, 2, . . . , `+m}.
On the other hand, let (γ1, γ2, . . . , γ`+m) be the concatenation α · β = (α1, α2, . . . , α`, β1, β2, . . . , βm). Then, α �

σ
β =(

γσ(1), γσ(2), . . . , γσ(`+m)

)
.

Let s ∈ {1, 2, . . . , `+m}. We are going to prove that γσ(s) = wts (f).

We must be in one of the following two cases:
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strictly order-preserving. Hence,∑
f is an (`+m)-shuffling map

Mwt(f)

=
∑

f is a bijective map from D to R;
f is strictly order-preserving

Mwt(f) =
∑

σ∈S`+m;
Φ(σ) is strictly order-preserving

Mwt(Φ(σ))

 here, we have substituted Φ (σ) for f in the sum,
since Φ : S`+m → (the set of all bijective maps from D to R)

is a bijection


=

∑
σ∈S`+m;

Φ(σ−1) is strictly order-preserving︸ ︷︷ ︸
=

∑
σ∈S`+m;
σ∈Sh`,m

(because Φ(σ−1) is strictly order-preserving if and only if σ∈Sh`,m
(according to (13.168.5)))

Mwt(Φ(σ−1))

(
here, we have substituted σ−1 for σ in the sum,

since the map S`+m → S`+m, σ 7→ σ−1 is a bijection

)
=

∑
σ∈S`+m;
σ∈Sh`,m︸ ︷︷ ︸

=
∑
σ∈Sh`,m

Mwt(Φ(σ−1))︸ ︷︷ ︸
=Mα�

σ
β

(by (13.168.9))

=
∑

σ∈Sh`,m

Mα�
σ
β .

This proves (13.168.4). The proof of Proposition 6.4.5 is thus complete. �

Case 1: We have σ (s) ≤ `.
Case 2: We have σ (s) > `.

Let us consider Case 1 first. In this case, we have σ (s) ≤ `. Thus, σ (s) ∈ {1, 2, . . . , `}, so that iσ(s) is well-defined. We

have d (σ (s)) = iσ(s) (by the definition of d, since σ (s) ≤ `), so that d−1
(
iσ(s)

)
= σ (s). Now, f = Φ

(
σ−1

)
= r ◦ σ−1 ◦ d−1

(by the definition of Φ), so that

f
(
iσ(s)

)
=
(
r ◦ σ−1 ◦ d−1

) (
iσ(s)

)
= r

σ−1

d−1
(
iσ(s)

)︸ ︷︷ ︸
=σ(s)


 = r

σ−1 (σ (s))︸ ︷︷ ︸
=s

 = r (s) = ks

(by the definition of r). Since the map f is a bijection, this yields that the set f−1 (ks) equals
{
iσ(s)

}
. Hence, the sum∑

iu∈f−1(ks) αu contains precisely one addend, namely the one for u = σ (s); as a consequence, this sum simplifies to∑
iu∈f−1(ks) αu = ασ(s). On the other hand, the sum

∑
jv∈f−1(ks) βv is empty (since the set f−1 (ks) equals

{
iσ(s)

}
,

and thus contains no elements of the form jv), and thus vanishes, i.e., we have
∑
jv∈f−1(ks) βv = 0. Now,

wts (f) =
∑

iu∈f−1(ks)

αu

︸ ︷︷ ︸
=ασ(s)

+
∑

jv∈f−1(ks)

βv

︸ ︷︷ ︸
=0

= ασ(s) = γσ(s)

(because γσ(s) = ασ(s) (since (γ1, γ2, . . . , γ`+m) = (α1, α2, . . . , α`, β1, β2, . . . , βm) and σ (s) ≤ `)). In other words, γσ(s) =

wts (f).

We have thus shown that γσ(s) = wts (f) holds in Case 1. A similar argument (but relying on d (σ (s)) = jσ(s)−` instead of

d (σ (s)) = iσ(s)) shows that γσ(s) = wts (f) holds in Case 2.

Thus, γσ(s) = wts (f) holds in both Cases 1 and 2. Since these two Cases cover all possibilities, this yields that γσ(s) = wts (f)

always holds.
Hence, γσ(s) = wts (f) for every s ∈ {1, 2, . . . , `+m}. Thus,

(
γσ(1), γσ(2), . . . , γσ(`+m)

)
=

(wt1 (f) ,wt2 (f) , . . . ,wt`+m (f)). Hence,

α�
σ
β =

(
γσ(1), γσ(2), . . . , γσ(`+m)

)
= (wt1 (f) ,wt2 (f) , . . . ,wt`+m (f)) = wt

 f︸︷︷︸
=Φ(σ−1)

 = wt
(
Φ
(
σ−1

))
.

This proves (13.168.9).
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13.169. Solution to Exercise 6.4.8. Solution to Exercise 6.4.8.

Proof of Corollary 6.4.7. Write α and β as α = (α1, α2, . . . , α`) and β = (β1, β2, . . . , βm), respectively; then
` (α) = ` and ` (β) = m.

Fix three disjoint chain posets (i1 < i2 < · · · < i`), (j1 < j2 < · · · < jm) and (k1 < k2 < k3 < · · · ). We
have ∑

p∈N;
p≤`+m

∑
f is a p-shuffling map

Mwt(f)

= (a sum of terms of the form Mδ with δ ∈ A∗ satisfying ` (δ) ≤ ` (α) + ` (β))(13.169.1)

1141. Now, (13.168.1) becomes

MαMβ =
∑
p∈N;
p≤`+m

∑
f is a p-shuffling map

Mwt(f)

= (a sum of terms of the form Mδ with δ ∈ A∗ satisfying ` (δ) ≤ ` (α) + ` (β))

(by (13.169.1)). This proves Corollary 6.4.7. �

13.170. Solution to Exercise 6.4.12. Solution to Exercise 6.4.12.

Proof of Lemma 6.4.11. (a) Let γ ∈ u� v be arbitrary. Then, the multiset of all letters of γ is the disjoint
union of the multiset of all letters of u with the multiset of all letters of v. Hence, the sum of all letters of
γ equals the sum of all letters of u plus the sum of all letters of v. In other words, |γ| = |u| + |v| (because
|γ| is the sum of all letters of γ, because |u| is the sum of all letters of u, and because |v| is the sum of all
letters of v). Since u ∈ Compn, we have |u| = n. Similarly, |v| = m. Thus, |γ| = |u|︸︷︷︸

=n

+ |v|︸︷︷︸
=m

= n + m, so

that γ ∈ Compn+m.
Now, let us forget that we fixed γ. We thus have proven that

(13.170.1) γ ∈ Compn+m for every γ ∈ u� v.

Applying (13.170.1) to γ = z, we obtain z ∈ Compn+m. This proves Lemma 6.4.11(a).
(b) Since z ∈ u� v, we have ` (z) = ` (u) + ` (v).
We have u ∈ Compn ⊂ Comp = A∗ and similarly v ∈ A∗. Thus, Proposition 6.4.5 (applied to α = u and

β = v) yields

MuMv

=
∑

γ∈u�v
Mγ + (a sum of terms of the form Mδ with δ ∈ A∗ satisfying ` (δ) < ` (u) + ` (v)) ,

so that

MuMv −
∑

γ∈u�v
Mγ

=

a sum of terms of the form Mδ with δ ∈ A∗︸︷︷︸
=Comp

satisfying ` (δ) < ` (u) + ` (v)︸ ︷︷ ︸
=`(z)


= (a sum of terms of the form Mδ with δ ∈ Comp satisfying ` (δ) < ` (z)) .(13.170.2)

1141Proof of (13.169.1): The proof of this is analogous to the proof of (13.168.3), with the only difference that some < signs

are replaced by ≤ signs.
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Now, let π denote the projection from the direct sum QSym =
⊕

k∈N QSymk onto its (n+m)-th homo-
geneous component QSymn+m. Notice that Mu︸︷︷︸

∈QSymn

(since u∈Compn )

Mv︸︷︷︸
∈QSymm

(since v∈Compm )

∈ QSymn ·QSymm ⊂ QSymn+m,

so that π (MuMv) = MuMv. Also, for every γ ∈ u� v, we have Mγ ∈ QSymn+m (because (13.170.1) shows
that γ ∈ Compn+m) and therefore π (Mγ) = Mγ . Hence, the k-linearity of π yields

π

(
MuMv −

∑
γ∈u�v

Mγ

)
= π (MuMv)︸ ︷︷ ︸

=MuMv

−
∑

γ∈u�v
π (Mγ)︸ ︷︷ ︸

=Mγ

= MuMv −
∑

γ∈u�v
Mγ .(13.170.3)

On the other hand,

(13.170.4) π (Mδ) = 0 for every δ ∈ Comp \Compn+m

1142.
But applying the projection π to the equality (13.170.2), we obtain

π

(
MuMv −

∑
γ∈u�v

Mγ

)
= π (a sum of terms of the form Mδ with δ ∈ Comp satisfying ` (δ) < ` (z))

= (a sum of terms of the form π (Mδ) with δ ∈ Comp satisfying ` (δ) < ` (z))

=


a sum of terms of the form π (Mδ)︸ ︷︷ ︸

=Mδ

(since Mδ∈QSymn+m

(since δ∈Compn+m ))

with δ ∈ Compn+m satisfying ` (δ) < ` (z)



+

a sum of terms of the form π (Mδ)︸ ︷︷ ︸
=0

(by (13.170.4))

with δ ∈ Comp \Compn+m satisfying ` (δ) < ` (z)


(
since every δ ∈ Comp satisfies either δ ∈ Compn+m or δ ∈ Comp \Compn+m

)
=
(
a sum of terms of the form Mδ with δ ∈ Compn+m satisfying ` (δ) < ` (z)

)
+
(
a sum of terms of the form 0 with δ ∈ Comp \Compn+m satisfying ` (δ) < ` (z)

)︸ ︷︷ ︸
=0

=
(
a sum of terms of the form Mδ with δ ∈ Compn+m satisfying ` (δ) < ` (z)

)
=
(
a sum of terms of the form Mw with w ∈ Compn+m satisfying ` (w) < ` (z)

)
(here, we renamed the index δ as w)

=

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
z

)

1142Proof of (13.170.4): Let δ ∈ Comp \Compn+m. Then, δ ∈ Comp but δ /∈ Compn+m. In other words, δ is a composition

with size |δ| 6= n+m. As a consequence, Mδ is a homogeneous element of QSym of degree |δ| 6= n+m. Therefore, π (Mδ) = 0
(since π is the projection from the direct sum QSym =

⊕
k∈N QSymk onto its (n+m)-th homogeneous component QSymn+m).

This proves (13.170.4).
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(since every w ∈ Compn+m satisfying ` (w) < ` (z) must satisfy w <
wll

z). Compared with (13.170.3), this

yields

MuMv −
∑

γ∈u�v
Mγ

=

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
z

)
.

Adding
∑
γ∈u�vMγ to both sides of this equality, we obtain

MuMv

=
∑

γ∈u�v
Mγ +

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
z

)
.(13.170.5)

But every γ ∈ u�v satisfying γ 6= z must satisfy γ ∈ Compn+m (by (13.170.1)) and γ <
wll
z 1143. Hence,

(13.170.6)
∑

γ∈u�v;
γ 6=z

Mγ =

(
a sum of terms of the form Mγ with γ ∈ Compn+m satisfying γ <

wll
z

)
.

But let h be the multiplicity with which the word z appears in the multiset u� v. Then, h is a positive
integer (since z is an element of the multiset u� v), and satisfies

∑
γ∈u�v;
γ=z

Mz = hMz. Now,

∑
γ∈u�v

Mγ =
∑

γ∈u�v;
γ=z

Mγ︸︷︷︸
=Mz

(since γ=z)

+
∑

γ∈u�v;
γ 6=z

Mγ

=
∑

γ∈u�v;
γ=z

Mz

︸ ︷︷ ︸
=hMz

+
∑

γ∈u�v;
γ 6=z

Mγ

︸ ︷︷ ︸
=

(
a sum of terms of the form Mγ with γ∈Compn+m satisfying γ <

wll
z

)
(by (13.170.6))

= hMz +

(
a sum of terms of the form Mγ with γ ∈ Compn+m satisfying γ <

wll
z

)
︸ ︷︷ ︸

=

(
a sum of terms of the form Mw with w∈Compn+m satisfying w<

wll
z

)
(here, we have renamed the index γ as w)

= hMz +

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
z

)
.

1143Proof. Let γ ∈ u� v be such that γ 6= z. Since γ ∈ u� v, we must have ` (γ) = ` (u) + ` (v) = ` (z). Also, γ and z both

belong to Compn+m. Now, γ is an element of the multiset u � v, whereas z is the lexicographically highest element of this
multiset. Hence, γ ≤ z with respect to the lexicographic order. Since the elements γ and z of Compn+m satisfy ` (γ) = ` (z)

and γ ≤ z with respect to the lexicographic order, we must have γ ≤
wll

z, and thus γ <
wll

z (since γ 6= z), qed.



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 1041

Hence, (13.170.5) becomes

MuMv

=
∑

γ∈u�v
Mγ︸ ︷︷ ︸

=hMz+

(
a sum of terms of the form Mw with w∈Compn+m satisfying w<

wll
z

)

+

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
z

)
= hMz +

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
z

)
+

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
z

)
= hMz +

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
z

)
.

This proves Lemma 6.4.11(b).
(c) Since z ∈ u� v, we have ` (z) = ` (u) + ` (v). Since v′ <

wll
v, we have v′ 6= v.

Let z′ be the lexicographically highest element of the multiset u� v′. Lemma 6.4.11(a) (applied to v′

and z′ instead of v and z) yields z′ ∈ Compn+m. Since z′ is an element of the multiset u � v′, we have
` (z′) = ` (u) + ` (v′).

Now, it is easy to see (using Lemma 6.3.10) that z′ <
wll

z 1144. Hence, every w ∈ Compn+m satisfying

w <
wll

z′ also satisfies w <
wll

z (because it satisfies w <
wll

z′ <
wll

z). Applying Lemma 6.4.11(b) to v′ and z′

instead of v and z, we conclude that there exists a positive integer h such that

MuMv′ = hMz′ +

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
z′
)
.

1144Proof. We have v′ <
wll

v, thus v′ ≤
wll

v. According to the definition of the relation ≤
wll

, this means that we are in one of

the following two cases:

Case 1: We have ` (v′) < ` (v).

Case 2: We have ` (v′) = ` (v) and v′ ≤ v in lexicographic order.
Let us first consider Case 1. In this case, we have ` (v′) < ` (v). Now, ` (z′) = ` (u) + `

(
v′
)︸ ︷︷ ︸

<`(v)

< ` (u) + ` (v) = ` (z). But

any two elements α and β of Compn+m satisfying ` (α) < ` (β) must satisfy α ≤
wll

β (by the definition of ≤
wll

). Applying this to

α = z′ and β = z, we obtain z′ ≤
wll

z. Combined with z′ 6= z (since ` (z′) < ` (z)), this yields z′ <
wll

z. Thus, z′ <
wll

z is proven in

Case 1.
Let us now consider Case 2. In this case, we have ` (v′) = ` (v) and v′ ≤ v in lexicographic order. Now, ` (z′) = ` (u)+`

(
v′
)︸ ︷︷ ︸

=`(v)

=

` (u) + ` (v) = ` (z).

We know that z′ is an element of the multiset u � v′; in other words, z′ can be written in the form z′ = u �
σ
v′ for

some σ ∈ Sh`(u),`(v′) (because every element of the multiset u � v′ can be written in this form). Consider this σ. We have

σ ∈ Sh`(u),`(v′) = Sh`(u),`(v) (since ` (v′) = ` (v)), and thus u�
σ
v is a well-defined element of the multiset u� v. Therefore,

u�
σ
v ≤ z (because z is the lexicographically highest element of this multiset u� v).

But we have v′ ≤ v with respect to the relation ≤ on A∗ defined in Definition 6.1.1 (since v′ ≤ v in lexicographic order).

Thus, v′ < v with respect to this relation (since v′ 6= v). Hence, Lemma 6.3.10(a) (applied to ` (u) and ` (v) instead of n and m)

yields u�
σ
v′ < u�

σ
v ≤ z. Thus, z′ = u�

σ
v′ < z with respect to the relation ≤ on A∗. In other words, z′ < z in lexicographic

order (since ` (z′) = ` (z)), thus z′ ≤ z.
Now, the two elements z′ and z of Compn+m satisfy ` (z′) = ` (z) and z′ ≤ z in lexicographic order. But any two elements

α and β of Compn+m satisfying (` (α) = ` (β) and α ≤ β in lexicographic order) must satisfy α ≤
wll

β (by the definition of ≤
wll

).

Applying this to α = z′ and β = z, we obtain z′ ≤
wll

z. Since z′ 6= z, this yields z′ <
wll

z. Hence, z′ <
wll

z is proven in Case 2.

Now, we have proved z′ <
wll

z in each of the two Cases 1 and 2. Since these two Cases cover all possibilities, this yields that

z′ <
wll

z always holds, qed.
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Consider this h. We have

MuMv′ = hMz′︸ ︷︷ ︸
=
∑h
i=1 Mz′=

(
a sum of terms of the form Mw with w∈Compn+m satisfying w<

wll
z

)
(since z′∈Compn+m satisfies z′<

wll
z)

+

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
z′
)

︸ ︷︷ ︸
=

(
a sum of terms of the form Mw with w∈Compn+m satisfying w<

wll
z

)
(since every w∈Compn+m satisfying w<

wll
z′ also satisfies w<

wll
z)

=

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
z

)
+

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
z

)
=

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
z

)
.

This proves Lemma 6.4.11(c). �

13.171. Solution to Exercise 6.4.13. Solution to Exercise 6.4.13.

Proof of Proposition 6.4.10. We shall prove Proposition 6.4.10 by strong induction over n. So we fix some
N ∈ N, and we assume that Proposition 6.4.10 holds whenever n < N . We now need to prove that
Proposition 6.4.10 holds for n = N . In other words, we need to prove that for every x ∈ CompN , there is a
family (ηx,y)y∈CompN

∈ NCompN of elements of N satisfying

(13.171.1) Mx =
∑

y∈CompN ;
y≤

wll
x

ηx,yMy

and ηx,x 6= 0 (in N).
Let x ∈ CompN be arbitrary. We need to prove that there is a family (ηx,y)y∈CompN

∈ NCompN of elements

of N satisfying (13.171.1) and ηx,x 6= 0.
Let (a1, a2, . . . , ap) be the CFL factorization of x. Then, a1, a2, . . ., ap are Lyndon words satisfying

x = a1a2 · · · ap and a1 ≥ a2 ≥ · · · ≥ ap.
If x is the empty word, then our claim is trivial (in fact, we can just set ηx,x = 1 in this case, and

(13.171.1) holds obviously). Hence, for the rest of this proof, we WLOG assume that x is not the empty
word. Thus, p 6= 0 (because otherwise, x = a1a2 · · · ap would be an empty product and thus the empty word,
contradicting the assumption that x is not the empty word). Hence, we can define two words u ∈ A∗ and
v ∈ A∗ by u = a1 and v = a2a3 · · · ap. The word u is Lyndon (since u = a1 and since a1 is Lyndon), and thus
has (u) as its CFL factorization. The CFL factorization of the word v is (a2, a3, . . . , ap) (since the words a2,
a3, . . ., ap are Lyndon and satisfy v = a2a3 · · · ap and a2 ≥ a3 ≥ · · · ≥ ap (because a1 ≥ a2 ≥ · · · ≥ ap)).
Also, u = a1 ≥ aj+1 for every i ∈ {1, 2, . . . , 1} and j ∈ {1, 2, . . . , p− 1} (because a1 ≥ a2 ≥ · · · ≥ ap).
Hence, we can apply Theorem 6.2.2(c) to 1, (u), p−1 and (a2, a3, . . . , ap) instead of p, (a1, a2, . . . , ap), q and
(b1, b2, . . . , bq). As a result, we conclude that the lexicographically highest element of the multiset u� v is
u︸︷︷︸

=a1

v︸︷︷︸
=a2a3···ap

= a1 (a2a3 · · · ap) = a1a2 · · · ap = x.
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But Mu = Mu (by the definition of Mu, since u has CFL factorization (u)), and Mx = MuMv
1145.

The word u is Lyndon and thus nonempty, so that |u| > 0. Now,

∣∣∣∣∣∣ x︸︷︷︸
=uv

∣∣∣∣∣∣ = |uv| = |u| + |v|, so that

|u| + |v| = |x| = N (since x ∈ CompN ). Thus, N = |u|︸︷︷︸
>0

+ |v| > |v|, so that |v| < N . Hence, the induction

hypothesis tells us that we can apply Proposition 6.4.10 to |v| and v instead of n and x (since v ∈ Comp|v|).

As a result, we see that there is a family (ηv,y)y∈Comp|v|
∈ NComp|v| of elements of N satisfying

Mv =
∑

y∈Comp|v|;

y≤
wll
v

ηv,yMy

and ηv,v 6= 0 (in N). Consider this family (ηv,y)y∈Comp|v|
.

We have u ∈ Comp|u| and v ∈ Comp|v|. Hence, Lemma 6.4.11(b) (applied to x, |u| and |v| instead of z,

u and v) yields that there exists a positive integer h such that

MuMv = hMx +

a sum of terms of the form Mw with w ∈ Comp|u|+|v|︸ ︷︷ ︸
=CompN

(since |u|+|v|=N)

satisfying w <
wll
x


= hMx +

(
a sum of terms of the form Mw with w ∈ CompN satisfying w <

wll
x

)
.(13.171.2)

Consider this h. Then, h ∈ N and h 6= 0 (since h is a positive integer).

1145Proof. Since the CFL factorization of v is (a2, a3, . . . , ap), we have Mv = Ma2Ma3 · · ·Map (by the definition of Mv).
But since the CFL factorization of x is (a1, a2, . . . , ap), we have

Mx = Ma1Ma2 · · ·Map = Ma1︸ ︷︷ ︸
=Mu

(since a1=u)

(
Ma2Ma3 · · ·Map

)︸ ︷︷ ︸
=Mv

= Mu︸︷︷︸
=Mu

(since Mu=Mu)

Mv = MuMv ,

qed.
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Now,

Mx = Mu︸︷︷︸
=Mu

Mv︸︷︷︸
=

∑
y∈Comp|v|;

y≤
wll
v

ηv,yMy

= Mu


∑

y∈Comp|v|;

y≤
wll
v

ηv,yMy

 =
∑

y∈Comp|v|;

y≤
wll
v

ηv,yMuMy

= ηv,v MuMv︸ ︷︷ ︸
=hMx+

(
a sum of terms of the form Mw with w∈CompN satisfying w<

wll
x

)
(by (13.171.2))

+
∑

y∈Comp|v|;
y<

wll
v

ηv,y MuMy︸ ︷︷ ︸
=

(
a sum of terms of the form Mw with w∈Comp|u|+|v| satisfying w<

wll
x

)
(by Lemma 6.4.11(c), applied to n=|u|, m=|v|, v′=y and z=x)

(here, we have split off the addend for y = v from the sum)

= ηv,v

(
hMx +

(
a sum of terms of the form Mw with w ∈ CompN satisfying w <

wll
x

))
︸ ︷︷ ︸

=ηv,vhMx+ηv,v

(
a sum of terms of the form Mw with w∈CompN satisfying w<

wll
x

)

+
∑

y∈Comp|v|;
y<

wll
v

ηv,y

a sum of terms of the form Mw with w ∈ Comp|u|+|v|︸ ︷︷ ︸
=CompN

(since |u|+|v|=N)

satisfying w <
wll
x


= ηv,vhMx + ηv,v

(
a sum of terms of the form Mw with w ∈ CompN satisfying w <

wll
x

)
+

∑
y∈Comp|v|;

y<
wll
v

ηv,y

(
a sum of terms of the form Mw with w ∈ CompN satisfying w <

wll
x

)
︸ ︷︷ ︸

=

(
an N-linear combination of terms of the form Mw with w∈CompN satisfying w<

wll
x

)
(since ηv,y∈N for every y∈Comp|v| satisfying y<

wll
v)

= ηv,vhMx + ηv,v

(
a sum of terms of the form Mw with w ∈ CompN satisfying w <

wll
x

)
︸ ︷︷ ︸

=

(
an N-linear combination of terms of the form Mw with w∈CompN satisfying w<

wll
x

)
(since ηv,v∈N)

+

(
an N-linear combination of terms of the form Mw with w ∈ CompN satisfying w <

wll
x

)
= ηv,vhMx +

(
an N-linear combination of terms of the form Mw with w ∈ CompN satisfying w <

wll
x

)
+

(
an N-linear combination of terms of the form Mw with w ∈ CompN satisfying w <

wll
x

)
= ηv,vhMx +

(
an N-linear combination of terms of the form Mw with w ∈ CompN satisfying w <

wll
x

)
.

In other words, we can write Mx in the form

(13.171.3) Mx = ηv,vhMx + c,
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where c is an N-linear combination of terms of the form Mw with w ∈ CompN satisfying w <
wll

x. Consider

this c.
Write c in the form

(13.171.4) c =
∑

y∈CompN ;
y<

wll
x

ηx,yMy,

where ηx,y is an element of N for every y ∈ CompN satisfying y <
wll
x. (This is possible since c is an N-linear

combination of terms of the form Mw with w ∈ CompN satisfying w <
wll

x.) Thus, we have defined a family

(ηx,y)y∈CompN ;
y<

wll
x

of elements of N. Extend this family to a family (ηx,y)y∈CompN
∈ NCompN of elements of N

by defining
ηx,y = δx,yηv,vh for every y ∈ CompN which does not satisfy y <

wll
x.

Notice that the definition of ηx,x yields ηx,x = δx,xηv,vh (since x does not satisfy x <
wll

x), and thus ηx,x =

δx,x︸︷︷︸
=1

ηv,vh = ηv,v︸︷︷︸
6=0

h︸︷︷︸
6=0

6= 0.

Now, ∑
y∈CompN ;

y≤
wll
x

ηx,yMy = ηx,x︸︷︷︸
=ηv,vh

Mx +
∑

y∈CompN ;
y<

wll
x

ηx,yMy

︸ ︷︷ ︸
=c

(by (13.171.4))

(here, we have split off the addend for y = x from the sum)

= ηv,vhMx + c = Mx (by (13.171.3)) ,

and thus Mx =
∑

y∈CompN ;
y≤

wll
x

ηx,yMy. In other words, (13.171.1) is satisfied.

Hence, we have constructed a family (ηx,y)y∈CompN
∈ NCompN of elements of N satisfying (13.171.1) and

ηx,x 6= 0. Thus, we have shown the existence of such a family. The induction step is thus complete, and
Proposition 6.4.10 is proven by induction. �

13.172. Solution to Exercise 6.4.15. Solution to Exercise 6.4.15.

Proof of Proposition 6.4.14. We know that Q is a subring of k. Hence, every nonzero element of N is an
invertible element of k.

For every composition u ∈ Comp = A∗, define an element Mu ∈ QSym by Mu = Ma1Ma2 · · ·Map , where
(a1, a2, . . . , ap) is the CFL factorization of the word u.

Fix n ∈ N. Consider the set Compn as a poset whose smaller relation is the relation ≤
wll

. We shall use the

notations introduced in Section 11.1.
It is easy to see that (Mu)u∈Compn

is a basis of the k-module QSymn. According to Proposition 6.4.10,

the family (Mu)u∈Compn
expands invertibly triangularly in the basis (Mu)u∈Compn

1146. Hence, Corol-

lary 11.1.19(e) (applied to QSymn, Compn, (Mu)u∈Compn
and (Mu)u∈Compn

instead of M , S, (es)s∈S and

1146Proof. Proposition 6.4.10 shows that, for every x ∈ Compn, there exists a family (ηx,y)y∈Compn
∈ NCompn of elements

of N such that

(13.172.1) Mx =
∑

y∈Compn;
y ≤
wll
x

ηx,yMy

and

(13.172.2) ηx,x 6= 0 (in N).
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(fs)s∈S) yields that the family (Mu)u∈Compn
is a basis of the k-module QSymn if and only if the family

(Mu)u∈Compn
is a basis of the k-module QSymn

1147. Hence, the family (Mu)u∈Compn
is a basis of the

k-module QSymn (since the family (Mu)u∈Compn
is a basis of the k-module QSymn).

Now, let us forget that we fixed n. We thus have proven that the family (Mu)u∈Compn
is a basis of QSymn

for every n ∈ N. Hence, the disjoint union of the families (Mu)u∈Compn
over all n ∈ N is a basis of the direct

sum
⊕

n∈N QSymn. Since the former disjoint union is the family (Mu)u∈Comp, while the latter direct sum

is the k-module
⊕

n∈N QSymn = QSym, this rewrites as follows: The family (Mu)u∈Comp is a basis of the

k-module QSym. In other words, the family (Mu)u∈A∗ is a basis of the k-module QSym (since A∗ = Comp).
But Lemma 6.3.7(a) (applied to A = QSym, bw = Mw and bu = Mu) yields that the family (Mw)w∈L

is an algebraically independent generating set of the k-algebra QSym if and only if the family (Mu)u∈A∗ is
a basis of the k-module QSym. Hence, the family (Mw)w∈L is an algebraically independent generating set
of the k-algebra QSym (since we know that the family (Mu)u∈A∗ is a basis of the k-module QSym). This
proves Proposition 6.4.14. �

13.173. Solution to Exercise 6.5.4. Solution to Exercise 6.5.4. We first notice that every s ∈ {1, 2, 3, . . .}
and i ∈ SIS (`) satisfy

(13.173.1) (xαi )
s

= x
α{s}
i

1148.

Consider such a family (ηx,y)y∈Compn
∈ NCompn for each x ∈ Compn. Thus, an integer ηx,y ∈ N ⊂ Q ⊂ k is defined for each

(x, y) ∈ Compn×Compn.

We observe that the only elements ηs,t (with (s, t) ∈ Compn×Compn) appearing in the statements (13.172.1) and (13.172.2)

are those which satisfy t ≤
wll

s. Hence, if some (s, t) ∈ Compn×Compn does not satisfy t ≤
wll

s, then the corresponding element

ηs,t does not appear in any of the statements (13.172.1) and (13.172.2); as a consequence, we can arbitrarily change the value

of this ηs,t without running the risk of invalidating (13.172.1) and (13.172.2). Hence, we can WLOG assume that

(13.172.3) every (s, t) ∈ Compn×Compn which does not satisfy t ≤
wll

s must satisfy ηs,t = 0

(otherwise, we can just set all such ηs,t to 0). Assume this. Thus, the matrix (ηx,y)(x,y)∈Compn ×Compn
is triangular. The

diagonal entries ηx,x of this matrix are nonzero elements of N (because of (13.172.2)) and therefore invertible elements of k

(since every nonzero element of N is an invertible element of k). Thus, the matrix (ηx,y)(x,y)∈Compn ×Compn
(regarded as a

matrix in kCompn ×Compn ) is invertibly triangular.
Now, every x ∈ Compn satisfies∑

y∈Compn

ηx,yMy =
∑

y∈Compn;
y ≤
wll
x

ηx,yMy

︸ ︷︷ ︸
=Mx

(by (13.172.1))

+
∑

y∈Compn;
not y ≤

wll
x

ηx,y︸︷︷︸
=0

(by (13.172.3), applied to (s,t)=(x,y))

My

= Mx +
∑

y∈Compn;
not y ≤

wll
x

0My

︸ ︷︷ ︸
=0

= Mx.

In other words, every x ∈ Compn satisfies Mx =
∑
y∈Compn

ηx,yMy . In other words, the family (Mu)u∈Compn
expands in the

family (Mu)u∈Compn
through the matrix (ηx,y)(x,y)∈Compn ×Compn

. Since the latter matrix is invertibly triangular, we thus

conclude that the family (Mu)u∈Compn
expands invertibly triangularly in the family (Mu)u∈Compn

.
1147Here, we have used the fact that the set Compn is finite.
1148Proof of (13.173.1): Let s ∈ {1, 2, 3, . . .} and i ∈ SIS (`). Then, i is an `-tuple of positive integers. Write i in the

form i = (i1, i2, . . . , i`). Then, xαi = xα1
i1
xα2
i2
· · ·xα`i` (by the definition of xαi ). Also, by the definition of x

α{s}
i , we have

x
α{s}
i = xsα1

i1
xsα2
i2
· · ·xsα`i`

(since α {s} = (sα1, sα2, . . . , sα`)). Now, taking both sides of the equality xαi = xα1
i1
xα2
i2
· · ·xα`i` to

the s-th power, we obtain

(xαi )s =
(
xα1
i1
xα2
i2
· · ·xα`i`

)s
=
(
xα1
i1

)s (
xα2
i2

)s
· · ·
(
x
α`
i`

)s
= xsα1

i1
xsα2
i2
· · ·xsα`i`

= x
α{s}
i .

This proves (13.173.1).
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(a) Let s be a positive integer.
We begin with the following general observation:
If R is a topological commutative k-algebra, if I is a countable (finite or not) set, and if (si)i∈I ∈ RI is a

power-summable family of elements of R, then

(13.173.2) ps
(
(si)i∈I

)
=
∑
i∈I

ssi .

1149 Applying this to R = k [[x]], I = SIS (`) and si = xαi , we obtain

ps

(
(xαi )i∈SIS(`)

)
=

∑
i∈SIS(`)

(xαi )
s︸ ︷︷ ︸

=x
α{s}
i

(by (13.173.1))

=
∑

i∈SIS(`)

x
α{s}
i .

1149Proof of (13.173.2): Let R be a topological commutative k-algebra. Let I be a countable set. Let (si)i∈I ∈ RI be a

power-summable family of elements of R. We need to prove that (13.173.2) holds.

We must be in one of the following two cases:

Case 1: The set I is infinite.
Case 2: The set I is finite.

Let us first consider Case 1. In this case, the set I is infinite, and therefore countably infinite (since it is countable). Fix a

bijection j : {1, 2, 3, . . .} → I (such a bijection clearly exists). Then, ps
(
(si)i∈I

)
is the result of substituting sj(1), sj(2), sj(3),

. . . for the variables x1, x2, x3, . . . in ps (by the definition of ps
(
(si)i∈I

)
). Thus,

ps
(
(si)i∈I

)
=

the result of substituting sj(1), sj(2), sj(3), . . . for the variables x1, x2, x3, . . . in ps︸︷︷︸
=
∑
i∈{1,2,3,...} x

s
i


=

the result of substituting sj(1), sj(2), sj(3), . . . for the variables x1, x2, x3, . . . in
∑

i∈{1,2,3,...}
xsi


=

∑
i∈{1,2,3,...}

ssj(i) =
∑
i∈I

ssi

(here, we have substituted i for j (i) in the sum, since the map j : {1, 2, 3, . . .} → I is a bijection). Thus, (13.173.2) is proven in

Case 1.
Let us now consider Case 2. In this case, the set I is finite. Fix a bijection j : {1, 2, . . . , |I|} → I (such a bijection clearly

exists). Then, ps
(
(si)i∈I

)
is the result of substituting sj(1), sj(2), . . ., sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . in ps

(by the definition of ps
(
(si)i∈I

)
). Thus,

ps
(
(si)i∈I

)

=

the result of substituting sj(1), sj(2), . . . , sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . in ps︸︷︷︸
=
∑∞
i=1 x

s
i

=
∑|I|
i=1 x

s
i+
∑∞
i=|I|+1 x

s
i


=

the result of substituting sj(1), sj(2), . . . , sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . in

|I|∑
i=1

xsi +

∞∑
i=|I|+1

xsi


=

|I|∑
i=1︸︷︷︸

=
∑
i∈{1,2,...,|I|}

ssj(i) +

∞∑
i=j(|I|)+1

0s︸︷︷︸
=0

(since s>0)

=
∑

i∈{1,2,...,|I|}
ssj(i) +

∞∑
i=j(|I|)+1

0

︸ ︷︷ ︸
=0

=
∑

i∈{1,2,...,|I|}
ssj(i)

=
∑
i∈I

ssi

(here, we have substituted i for j (i) in the sum, since the map j : {1, 2, . . . , |I|} → I is a bijection). Thus, (13.173.2) is proven
in Case 2.

We have thus proven (13.173.2) in each of the Cases 1 and 2. Since these two Cases are the only cases that can occur, we

thus conclude that (13.173.2) holds, qed.
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Compared withMα{s} =
∑

i∈SIS(`) x
α{s}
i (by (6.5.1), applied to α {s} instead of α), this yields ps

(
(xαi )i∈SIS(`)

)
=

Mα{s}. Exercise 6.5.4(a) is now solved.
(b) Let s ∈ N. We shall first make some general statements.

• If R is a topological commutative k-algebra, if I is a countable (finite or not) totally ordered set,
and if (si)i∈I ∈ RI is a power-summable family of elements of R, then

(13.173.3)
∑

(i1,i2,...,is)∈Is;
i1<i2<···<is

si1si2 · · · sis =
∑
K⊂I;
|K|=s

∏
i∈K

si.

1150

• If R is a commutative k-algebra, if I and J are two sets, if j : J→ I is a bijection, and if (si)i∈I ∈ RI

is a family of elements of R, then

(13.173.4)
∏

i∈j(K)

si =
∏
i∈K

sj(i) for every finite subset K of J.

1151

• If R is a topological commutative k-algebra, if I and J are two countable totally ordered sets, if
j : J → I is a (not necessarily order-preserving!) bijection, and if (si)i∈I ∈ RI is a power-summable
family of elements of R, then

(13.173.5)
∑

(i1,i2,...,is)∈Is;
i1<i2<···<is

si1si2 · · · sis =
∑

(j1,j2,...,js)∈Js;
j1<j2<···<js

sj(j1)sj(j2) · · · sj(js).

1152

1150Proof of (13.173.3): Let R be a topological commutative k-algebra. Let I be a countable totally ordered set. Let

(si)i∈I ∈ RI be a power-summable family of elements of R. We need to prove that (13.173.3) holds.
The order on I is total. Hence, the map

{(i1, i2, . . . , is) ∈ Is | i1 < i2 < · · · < is} → {K ⊂ I | |K| = s} ,
(i1, i2, . . . , is) 7→ {i1, i2, . . . , is}

is a bijection (because every subset K of I satisfying |K| = s can be written in the form K = {i1, i2, . . . , is} for a unique s-tuple
(i1, i2, . . . , is) ∈ Is satisfying i1 < i2 < · · · < is).

Now, let (i1, i2, . . . , is) ∈ Is be such that i1 < i2 < · · · < is. Then, the s-tuple (i1, i2, . . . , is) is a list of all elements of the

set {i1, i2, . . . , is}, each occurring exactly once (since the elements i1, i2, . . ., is are distinct (since i1 < i2 < · · · < is)). Hence,∏
i∈{i1,i2,...,is} si = si1si2 · · · sis , so that si1si2 · · · sis =

∏
i∈{i1,i2,...,is} si.

Now, let us forget that we fixed (i1, i2, . . . , is) ∈ Is. We thus have shown that si1si2 · · · sis =
∏

i∈{i1,i2,...,is} si for every

(i1, i2, . . . , is) ∈ Is be such that i1 < i2 < · · · < is. Hence,∑
(i1,i2,...,is)∈Is;
i1<i2<···<is

si1si2 · · · sis︸ ︷︷ ︸
=
∏

i∈{i1,i2,...,is}
si

=
∑

(i1,i2,...,is)∈Is;
i1<i2<···<is

∏
i∈{i1,i2,...,is}

si =
∑
K⊂I;
|K|=s

∏
i∈K

si

(here, we have substituted K for {i1, i2, . . . , is} in the sum, since the map

{(i1, i2, . . . , is) ∈ Is | i1 < i2 < · · · < is} → {K ⊂ I | |K| = s} ,
(i1, i2, . . . , is) 7→ {i1, i2, . . . , is}

is a bijection). This proves (13.173.3).
1151Proof of (13.173.4): Let R be a commutative k-algebra. Let I and J be two sets. Let j : J → I be a bijection. Let

(si)i∈I ∈ RI be a family of elements of R. Let K be a finite subset of J. The map j is a bijection, and thus injective. Hence, the

map K → j (K) , i 7→ j (i) is a bijection. Hence, we can substitute j (i) for i in the product
∏

i∈j(K) si. As a result, we obtain∏
i∈j(K) si =

∏
i∈K sj(i). This proves (13.173.4).

1152Proof of (13.173.5): Let R be a topological commutative k-algebra. Let I and J be two countable totally ordered sets.
Let j : J→ I be a bijection. Let (si)i∈I ∈ RI be a power-summable family of elements of R.

Notice that
(
sj(i)

)
i∈J ∈ R

J is a reindexing of the family (si)i∈I ∈ RI (since j : J → I is a bijection), and thus a power-

summable family of elements of R (since (si)i∈I is a power-summable family of elements of R).
The map

{K ⊂ J | |K| = s} → {K ⊂ I | |K| = s} ,
K 7→ j (K)
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• If R is a topological commutative k-algebra, if I is a countable (finite or not) totally ordered set,
and if (si)i∈I ∈ RI is a power-summable family of elements of R, then

(13.173.7) es
(
(si)i∈I

)
=

∑
(i1,i2,...,is)∈Is;
i1<i2<···<is

si1si2 · · · sis .

1153

Now, let us return to our proof. Applying (13.173.7) to R = k [[x]], I = SIS (`) and si = xαi , we obtain

es

(
(xαi )i∈SIS(`)

)
=

∑
(i1,i2,...,is)∈(SIS(`))s;

i1<i2<···<is

xαi1x
α
i2 · · ·x

α
is .

Thus,

M 〈s〉α = es

(
(xαi )i∈SIS(`)

)
=

∑
(i1,i2,...,is)∈(SIS(`))s;

i1<i2<···<is

xαi1x
α
i2 · · ·x

α
is .

This solves Exercise 6.5.4(b).

is a bijection (since j is a bijection from J to I). Hence, we can substitute j (K) for K in the sum
∑

K⊂I;
|K|=s

∏
i∈K si, and as a result

we obtain ∑
K⊂I;
|K|=s

∏
i∈K

si =
∑

K⊂J;
|K|=s

∏
i∈j(K)

si

︸ ︷︷ ︸
=
∏

i∈K sj(i)
(by (13.173.4))

=
∑

K⊂J;
|K|=s

∏
i∈K

sj(i).

Thus, (13.173.3) becomes

(13.173.6)
∑

(i1,i2,...,is)∈Is;
i1<i2<···<is

si1si2 · · · sis =
∑
K⊂I;
|K|=s

∏
i∈K

si =
∑

K⊂J;
|K|=s

∏
i∈K

sj(i).

But ∑
(j1,j2,...,js)∈Js;
j1<j2<···<js

sj(j1)sj(j2) · · · sj(js) =
∑

(i1,i2,...,is)∈Js;
i1<i2<···<is

sj(i1)sj(i2) · · · sj(is)

(here, we renamed the summation index (j1, j2, . . . , js) as (i1, i2, . . . , is))

=
∑

K⊂J;
|K|=s

∏
i∈K

sj(i)

(by (13.173.3), applied to J and sj(i) instead of I and si). Compared with (13.173.6), this yields∑
(i1,i2,...,is)∈Is;
i1<i2<···<is

si1si2 · · · sis =
∑

(j1,j2,...,js)∈Js;
j1<j2<···<js

sj(j1)sj(j2) · · · sj(js).

This proves (13.173.5).
1153Proof of (13.173.7): Let R be a topological commutative k-algebra. Let I be a countable totally ordered set. Let

(si)i∈I ∈ RI be a power-summable family of elements of R. We need to prove that (13.173.7) holds.
The definition of es yields

(13.173.8) es =
∑

(i1,i2,...,is)∈{1,2,3,...}s;
i1<i2<···<is

xi1xi2 · · ·xis =
∑

(j1,j2,...,js)∈{1,2,3,...}s;
j1<j2<···<js

xj1xj2 · · ·xjs

(here, we renamed the summation index (i1, i2, . . . , is) as (j1, j2, . . . , js)).

We must be in one of the following two cases:
Case 1: The set I is infinite.

Case 2: The set I is finite.

Let us first consider Case 1. In this case, the set I is infinite, and therefore countably infinite (since it is countable). Let J
denote the totally ordered set {1, 2, 3, . . .}. Then, (13.173.8) rewrites as

(13.173.9) es =
∑

(j1,j2,...,js)∈{1,2,3,...}s;
j1<j2<···<js

xj1xj2 · · ·xjs =
∑

(j1,j2,...,js)∈Js;
j1<j2<···<js

xj1xj2 · · ·xjs

(since {1, 2, 3, . . .} = J).
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Fix a bijection j : {1, 2, 3, . . .} → I (such a bijection clearly exists, since I is countably infinite). Then, es
(
(si)i∈I

)
is the

result of substituting sj(1), sj(2), sj(3), . . . for the variables x1, x2, x3, . . . in es (by the definition of es
(
(si)i∈I

)
). Thus,

es
(
(si)i∈I

)

=


the result of substituting sj(1), sj(2), sj(3), . . . for the variables x1, x2, x3, . . . in es︸︷︷︸

=
∑

(j1,j2,...,js)∈Js;
j1<j2<···<js

xj1xj2 ···xjs

(by (13.173.9))



=

the result of substituting sj(1), sj(2), sj(3), . . . for the variables x1, x2, x3, . . . in
∑

(j1,j2,...,js)∈Js;
j1<j2<···<js

xj1xj2 · · ·xjs



=
∑

(j1,j2,...,js)∈Js;
j1<j2<···<js

sj(j1)sj(j2) · · · sj(js).

(13.173.10)

But J is a countable totally ordered set (since J = {1, 2, 3, . . .}). Also, j is a bijection {1, 2, 3, . . .} → I. In other words, j is

a bijection J→ I (since J = {1, 2, 3, . . .}). Now, (13.173.10) becomes

es
(
(si)i∈I

)
=

∑
(j1,j2,...,js)∈Js;
j1<j2<···<js

sj(j1)sj(j2) · · · sj(js) =
∑

(i1,i2,...,is)∈Is;
i1<i2<···<is

si1si2 · · · sis

(by (13.173.5)). Thus, (13.173.7) is proven in Case 1.

Let us now consider Case 2. In this case, the set I is finite. Let J denote the totally ordered set {1, 2, . . . , |I|}. Then,
J = {1, 2, . . . , |I|} ⊂ {1, 2, 3, . . .} and {1, 2, 3, . . .} \ J︸︷︷︸

={1,2,...,|I|}

= {1, 2, 3, . . .} \ {1, 2, . . . , |I|} = {|I|+ 1, |I|+ 2, |I|+ 3, . . .}.

Fix a bijection j : {1, 2, . . . , |I|} → I (such a bijection clearly exists, since I is finite). Then, es
(
(si)i∈I

)
is the result of

substituting sj(1), sj(2), . . ., sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . in es (by the definition of es
(
(si)i∈I

)
). Thus,

es
(
(si)i∈I

)

=


the result of substituting sj(1), sj(2), . . . , sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . in es︸︷︷︸

=
∑

(j1,j2,...,js)∈{1,2,3,...}s;
j1<j2<···<js

xj1xj2 ···xjs

(by (13.173.8))



=

the result of substituting sj(1), sj(2), . . . , sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . in
∑

(j1,j2,...,js)∈{1,2,3,...}s;
j1<j2<···<js

xj1xj2 · · ·xjs



=
∑

(j1,j2,...,js)∈{1,2,3,...}s;
j1<j2<···<js

(
the result of substituting sj(1), sj(2), . . . , sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . in xj1xj2 · · ·xjs

)
.

(13.173.11)

Now, let us fix some (j1, j2, . . . , js) ∈ Js. Then, every k ∈ {1, 2, . . . , s} satisfies jk ∈ J = {1, 2, . . . , |I|}. Hence, for
every k ∈ {1, 2, . . . , s}, the substitution of sj(1), sj(2), . . ., sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . transforms the

indeterminate xjk into sj(jk). Consequently, the substitution of sj(1), sj(2), . . ., sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3,
. . . transforms the product xj1xj2 · · ·xjs into sj(j1)sj(j2) · · · sj(js). In other words,(

the result of substituting sj(1), sj(2), . . . , sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . in xj1xj2 · · ·xjs
)

= sj(j1)sj(j2) · · · sj(js).(13.173.12)
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(c) Every i ∈ SIS (`) satisfies (xαi )
n

= x
α{n}
i (by (13.173.1), applied to n instead of s). In other words,

every i ∈ SIS (`) satisfies x
α{n}
i = (xαi )

n
. Now, by the definition of M

〈s〉
α{n}, we have

(13.173.15) M
〈s〉
α{n} = es


 x

α{n}
i︸ ︷︷ ︸

=(xαi )
n


i∈SIS(`)

 = es

(
((xαi )

n
)i∈SIS(`)

)
.

We now notice that if R is a topological commutative k-algebra, if I is a countable set, and if (si)i∈I ∈ RI

is a power-summable family of elements of R, then

(13.173.16) e〈n〉s
(
(si)i∈I

)
= es

(
(sni )i∈I

)
.

Now, let us forget that we fixed (j1, j2, . . . , js) ∈ Js. We thus have shown that (13.173.12) holds for every (j1, j2, . . . , js) ∈ Js.
On the other hand, let us fix some (j1, j2, . . . , js) ∈ {1, 2, 3, . . .}s \ Js. Since (j1, j2, . . . , js) ∈ {1, 2, 3, . . .}s \ Js, we must

have (j1, j2, . . . , js) ∈ {1, 2, 3, . . .}s but (j1, j2, . . . , js) /∈ Js. Since (j1, j2, . . . , js) /∈ Js, there exists some k ∈ {1, 2, . . . , s} such

that jk /∈ J. Fix this k. We have jk ∈ {1, 2, 3, . . .} but jk /∈ J; therefore, jk ∈ {1, 2, 3, . . .} \ J = {|I|+ 1, |I|+ 2, |I|+ 3, . . .}. In
other words, jk > |I|. Hence, the substitution of sj(1), sj(2), . . ., sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . transforms

the indeterminate xjk into 0. In other words,

(
the result of substituting sj(1), sj(2), . . . , sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . in xjk

)
= 0.

Now,

the result of substituting sj(1), sj(2), . . . , sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . in xj1xj2 · · ·xjs︸ ︷︷ ︸
=
∏
z∈{1,2,...,s} xjz


=

the result of substituting sj(1), sj(2), . . . , sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . in
∏

z∈{1,2,...,s}
xjz


=

∏
z∈{1,2,...,s}

(
the result of substituting sj(1), sj(2), . . . , sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . in xjz

)
=
(
the result of substituting sj(1), sj(2), . . . , sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . in xjk

)︸ ︷︷ ︸
=0

·
∏

z∈{1,2,...,s};
z 6=k

(
the result of substituting sj(1), sj(2), . . . , sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . in xjz

)
(here, we have split off the factor for z = k from the product)

= 0.

(13.173.13)

Now, let us forget that we fixed (j1, j2, . . . , js) ∈ {1, 2, 3, . . .}s \ Js. We thus have shown that (13.173.13) holds for every

(j1, j2, . . . , js) ∈ {1, 2, 3, . . .}s \ Js.
But Js ⊂ {1, 2, 3, . . .}s (since J ⊂ {1, 2, 3, . . .}). Hence, the set {1, 2, 3, . . .}s is the union of its two disjoint subsets Js and

{1, 2, 3, . . .}s \ Js. Now, (13.173.11) becomes
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1154 Applying this to R = k [[x]], I = SIS (`) and si = xαi , we obtain

e〈n〉s

(
(xαi )i∈SIS(`)

)
= es

(
((xαi )

n
)i∈SIS(`)

)
.

Compared with (13.173.15), this yields M
〈s〉
α{n} = e

〈n〉
s

(
(xαi )i∈SIS(`)

)
. This solves Exercise 6.5.4(c).

(d) The first sentence of Proposition 2.4.1 yields that the family (e1, e2, e3, . . .) generates the k-algebra
Λ. Thus, every element of Λ can be written as a polynomial in the elements e1, e2, e3, . . .. Applying this to

es
(
(si)i∈I

)
=

∑
(j1,j2,...,js)∈{1,2,3,...}s;

j1<j2<···<js

(
the result of substituting sj(1), sj(2), . . . , sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . in xj1xj2 · · ·xjs

)

=
∑

(j1,j2,...,js)∈Js;
j1<j2<···<js

(
the result of substituting sj(1), sj(2), . . . , sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . in xj1xj2 · · ·xjs

)︸ ︷︷ ︸
=sj(j1)sj(j2)···sj(js)

(by (13.173.12))

+
∑

(j1,j2,...,js)∈{1,2,3,...}s\Js;
j1<j2<···<js(
the result of substituting sj(1), sj(2), . . . , sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . in xj1xj2 · · ·xjs

)︸ ︷︷ ︸
=0

(by (13.173.13))

(since the set {1, 2, 3, . . .}s is the union of its two disjoint subsets Js and {1, 2, 3, . . .}s \ Js)

=
∑

(j1,j2,...,js)∈Js;
j1<j2<···<js

sj(j1)sj(j2) · · · sj(js) +
∑

(j1,j2,...,js)∈{1,2,3,...}s\Js;
j1<j2<···<js

0

︸ ︷︷ ︸
=0

=
∑

(j1,j2,...,js)∈Js;
j1<j2<···<js

sj(j1)sj(j2) · · · sj(js).

(13.173.14)

But J is a countable totally ordered set (since J = {1, 2, . . . , |I|}). Also, j is a bijection {1, 2, . . . , |I|} → I. In other words, j

is a bijection J→ I (since J = {1, 2, . . . , |I|}). Now, (13.173.14) becomes

es
(
(si)i∈I

)
=

∑
(j1,j2,...,js)∈Js;
j1<j2<···<js

sj(j1)sj(j2) · · · sj(js) =
∑

(i1,i2,...,is)∈Is;
i1<i2<···<is

si1si2 · · · sis

(by (13.173.5)). Thus, (13.173.7) is proven in Case 2.

We have thus proven (13.173.7) in each of the Cases 1 and 2. Since these two Cases are the only cases that can occur, we

thus conclude that (13.173.7) holds, qed.
1154Proof of (13.173.16): Let R be a topological commutative k-algebra. Let I be a countable set. Let (si)i∈I ∈ RI be a

power-summable family of elements of R.
We must be in one of the following two cases:

Case 1: The set I is infinite.

Case 2: The set I is finite.
Let us first consider Case 1. In this case, the set I is infinite, and therefore countably infinite (since it is countable). Fix a

bijection j : {1, 2, 3, . . .} → I (such a bijection clearly exists, since I is countably infinite). Then, e
〈n〉
s

(
(si)i∈I

)
is the result of

substituting sj(1), sj(2), sj(3), . . . for the variables x1, x2, x3, . . . in e
〈n〉
s (by the definition of e

〈n〉
s

(
(si)i∈I

)
). Thus,

e
〈n〉
s

(
(si)i∈I

)
=

the result of substituting sj(1), sj(2), sj(3), . . . for the variables x1, x2, x3, . . . in e
〈n〉
s︸︷︷︸

=
∑
i1<i2<···<is

xni1
xni2
···xnis


=

the result of substituting sj(1), sj(2), sj(3), . . . for the variables x1, x2, x3, . . . in
∑

i1<i2<···<is

xni1x
n
i2
· · ·xnis


=

∑
i1<i2<···<is

snj(j1)s
n
j(j2) · · · s

n
j(js).

(13.173.17)
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the element e
〈n〉
s of Λ, we conclude that e

〈n〉
s can be written as a polynomial in the elements e1, e2, e3, . . .. In

other words, there exists a polynomial Q ∈ k [z1, z2, z3, . . .] such that e
〈n〉
s = Q (e1, e2, e3, . . .). Consider this

polynomial Q.
Let us now define a map Φ : Λ→ k [[x]] by

Φ (f) = f
(

(xαi )i∈SIS(`)

)
for every f ∈ Λ

(where f
(

(xαi )i∈SIS(`)

)
is defined as in Definition 6.5.1(b)). This map Φ is a k-algebra homomorphism (since

it amounts to a substitution of certain elements for the variables in a power series). Therefore, it commutes
with polynomials, i.e., it satisfies

Φ (R (f1, f2, f3, . . .)) = R (Φ (f1) ,Φ (f2) ,Φ (f3) , . . .)

On the other hand, es
((

sni
)
i∈I

)
is the result of substituting sn

j(1)
, sn

j(2)
, sn

j(3)
, . . . for the variables x1, x2, x3, . . . in es (by the

definition of es
((
sni
)
i∈I

)
). Thus,

es
(
(sni )i∈I

)
=

the result of substituting snj(1), s
n
j(2), s

n
j(3), . . . for the variables x1, x2, x3, . . . in es︸︷︷︸

=
∑
i1<i2<···<is

xi1xi2 ···xis


=

the result of substituting snj(1), s
n
j(2), s

n
j(3), . . . for the variables x1, x2, x3, . . . in

∑
i1<i2<···<is

xi1xi2 · · ·xis


=

∑
i1<i2<···<is

snj(j1)s
n
j(j2) · · · s

n
j(js).

Compared with (13.173.17), this yields e
〈n〉
s

(
(si)i∈I

)
= es

((
sni
)
i∈I

)
. Thus, (13.173.16) is proven in Case 1.

Let us now consider Case 2. In this case, the set I is finite. Fix a bijection j : {1, 2, . . . , |I|} → I (such a bijection clearly
exists, since I is finite).

Define an infinite sequence (t1, t2, t3, . . .) of elements of R by

(13.173.18) (t1, t2, t3, . . .) =
(
sj(1), sj(2), . . . , sj(|I|), 0, 0, 0, . . .

)
.

Then,

(13.173.19) (tn1 , t
n
2 , t

n
3 , . . .) =

snj(1), s
n
j(2), . . . , s

n
j(|I|), 0n, 0n, 0n, . . .︸ ︷︷ ︸

=(0,0,0,...)
(since 0n=0 (since n is positive))

 =
(
snj(1), s

n
j(2), . . . , s

n
j(|I|), 0, 0, 0, . . .

)
.

Recall that e
〈n〉
s

(
(si)i∈I

)
is the result of substituting sj(1), sj(2), . . ., sj(|I|), 0, 0, 0, . . . for the variables x1, x2, x3, . . . in

e
〈n〉
s (by the definition of e

〈n〉
s

(
(si)i∈I

)
). Thus,

e
〈n〉
s

(
(si)i∈I

)

=

the result of substituting sj(1), sj(2), . . . , sj(|I|), 0, 0, 0, . . .︸ ︷︷ ︸
=(t1,t2,t3,...)

(by (13.173.18))

for the variables x1, x2, x3, . . . in e
〈n〉
s



=

the result of substituting t1, t2, t3, . . . for the variables x1, x2, x3, . . . in e
〈n〉
s︸︷︷︸

=
∑
i1<i2<···<is

xni1
xni2
···xnis


=

the result of substituting t1, t2, t3, . . . for the variables x1, x2, x3, . . . in
∑

i1<i2<···<is

xni1x
n
i2
· · ·xnis


=

∑
i1<i2<···<is

tni1 t
n
i2
· · · tnis .(13.173.20)
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for every f1, f2, f3, . . . ∈ Λ and every polynomial R ∈ k [z1, z2, z3, . . .]. Applying this to fi = ei and R = Q,
we obtain

(13.173.21) Φ (Q (e1, e2, e3, . . .)) = Q (Φ (e1) ,Φ (e2) ,Φ (e3) , . . .) .

However, for every j ∈ {1, 2, 3, . . .}, we have

Φ (ej) = ej

(
(xαi )i∈SIS(`)

)
(by the definition of Φ (ej))

= M 〈j〉α

(
since M 〈j〉α = ej

(
(xαi )i∈SIS(`)

)
(by the definition of M 〈j〉α )

)
.

Thus, (Φ (e1) ,Φ (e2) ,Φ (e3) , . . .) =
(
M
〈1〉
α ,M

〈2〉
α ,M

〈3〉
α , . . .

)
, so that

Q (Φ (e1) ,Φ (e2) ,Φ (e3) , . . .) = Q
(
M 〈1〉α ,M 〈2〉α ,M 〈3〉α , . . .

)
.

Hence, (13.173.21) becomes

Φ (Q (e1, e2, e3, . . .)) = Q (Φ (e1) ,Φ (e2) ,Φ (e3) , . . .) = Q
(
M 〈1〉α ,M 〈2〉α ,M 〈3〉α , . . .

)
.

Compared with

Φ

 Q (e1, e2, e3, . . .)︸ ︷︷ ︸
=e〈n〉s

(since e〈n〉s =Q(e1,e2,e3,...))

 = Φ
(
e〈n〉s

)
= e〈n〉s

(
(xαi )i∈SIS(`)

) (
by the definition of Φ

(
e〈n〉s

))

= M
〈s〉
α{n} (by Exercise 6.5.4(c)) ,

this yields M
〈s〉
α{n} = Q

(
M
〈1〉
α ,M

〈2〉
α ,M

〈3〉
α , . . .

)
. Thus, there exists a polynomial P ∈ k [z1, z2, z3, . . .] such

that M
〈s〉
α{n} = P

(
M
〈1〉
α ,M

〈2〉
α ,M

〈3〉
α , . . .

)
(namely, P = Q). This solves Exercise 6.5.4(d).

On the other hand, es
((

sni
)
i∈I

)
is the result of substituting sn

j(1)
, sn

j(2)
, . . ., sn

j(|I|), 0, 0, 0, . . . for the variables x1, x2, x3,

. . . in es (by the definition of es
((
sni
)
i∈I

)
). Thus,

es
(
(sni )i∈I

)

=

the result of substituting snj(1), s
n
j(2), . . . , s

n
j(|I|), 0, 0, 0, . . .︸ ︷︷ ︸

=(tn1 ,t
n
2 ,t

n
3 ,...)

(by (13.173.19))

for the variables x1, x2, x3, . . . in es



=

the result of substituting tn1 , tn2 , tn3 , . . . for the variables x1, x2, x3, . . . in es︸︷︷︸
=
∑
i1<i2<···<is

xi1xi2 ···xis


=

the result of substituting tn1 , tn2 , tn3 , . . . for the variables x1, x2, x3, . . . in
∑

i1<i2<···<is

xi1xi2 · · ·xis


=

∑
i1<i2<···<is

tni1 t
n
i2
· · · tnis .

Compared with (13.173.20), this yields e
〈n〉
s

(
(si)i∈I

)
= es

((
sni
)
i∈I

)
. Thus, (13.173.16) is proven in Case 2.

We have thus proven (13.173.16) in each of the Cases 1 and 2. Since these two Cases are the only cases that can occur, we
thus conclude that (13.173.16) holds, qed.
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13.174. Solution to Exercise 6.5.5. Solution to Exercise 6.5.5. The definition of M
〈s〉
(1) yields M

〈s〉
(1) =

es

((
x

(1)
i

)
i∈SIS(1)

)
.

But SIS (1) is defined as the set of all strictly increasing 1-tuples of positive integers. Clearly, such 1-tuples
are in bijection with positive integers; the bijection sends a positive integer i to the strictly increasing 1-tuple

(i). This bijection shows that the family
(
x

(1)
i

)
i∈SIS(1)

is a reparametrization of the family
(
x

(1)
(i)

)
i∈{1,2,3,...}

.

Thus, es

((
x

(1)
i

)
i∈SIS(1)

)
= es

((
x

(1)
(i)

)
i∈{1,2,3,...}

)
. Thus,

M
〈s〉
(1) = es

((
x

(1)
i

)
i∈SIS(1)

)
= es




x

(1)
(i)︸︷︷︸

=x1
i

(by the definition

of x
(1)

(i)
)


i∈{1,2,3,...}


= es


 x1

i︸︷︷︸
=xi


i∈{1,2,3,...}



= es

(
(xi)i∈{1,2,3,...}

)
= es.

This solves Exercise 6.5.5.

13.175. Solution to Exercise 6.5.7. Solution to Exercise 6.5.7.

Proof of Proposition 6.5.6. We first recall a general fact from algebra. Namely, if C and D are two com-
mutative rings, if ϕ : C → D is a ring homomorphism, and if u and v are two nonnegative integers,
then we can define a homomorphism ϕu×v : Cu×v → Du×v of additive groups by sending every matrix
(ci,j)i=1,2,...,u; j=1,2,...,v ∈ Cu×v to the matrix (ϕ (ci,j))i=1,2,...,u; j=1,2,...,v ∈ Du×v. This homomorphism

ϕu×v is the map from Cu×v to Du×v canonically induced by ϕ, and it has many structure-preserving proper-
ties (for instance, it respects the multiplication of matrices, in the sense that we have ϕu×v (X) ·ϕv×w (Y ) =
ϕu×w (XY ) whenever X ∈ Cu×v and Y ∈ Cv×w). We furthermore have

(13.175.1) det
(
ϕu×u (X)

)
= ϕ (detX)

for any two commutative rings C and D, any ring homomorphism ϕ : C → D, any nonnegative integer u
and any matrix X ∈ Cu×u. (This is because the determinant of a matrix is a polynomial in its entries, and
polynomials commute with ring homomorphisms.)

We shall now construct a particular k-algebra homomorphism Λ→ k [[x]] which will help us in our proof.
Namely, we define a map Φ : Λ→ k [[x]] by

Φ (f) = f
(

(xαi )i∈SIS(`)

)
for every f ∈ Λ

(where f
(

(xαi )i∈SIS(`)

)
is defined as in Definition 6.5.1(b)). This map Φ is a k-algebra homomorphism (since

it amounts to a substitution of certain elements for the variables in a power series). Every s ∈ N satisfies

Φ (es) = es

(
(xαi )i∈SIS(`)

)
(by the definition of Φ (es))

= M 〈s〉α

(
since M 〈s〉α was defined as es

(
(xαi )i∈SIS(`)

))
.(13.175.2)

Every positive integer s satisfies

Φ (ps) = ps

(
(xαi )i∈SIS(`)

)
(by the definition of Φ (ps))

= Mα{s} (by Exercise 6.5.4(a)) .(13.175.3)
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(a) Define a matrix An = (ai,j)i,j=1,2,...,n as in Exercise 2.9.13(a). Then, Exercise 2.9.13(a) yields

det (An) = n!en. Applying the map Φ to both sides of this equality, we obtain

Φ (det (An)) = Φ (n!en) = n! Φ (en)︸ ︷︷ ︸
=M〈n〉α

(by (13.175.2), applied
to s=n)

= n!M 〈n〉α .

But (13.175.1) (applied to C = Λ, D = k [[x]], ϕ = Φ, u = n and X = An) yields

(13.175.4) det
(
Φn×n (An)

)
= Φ (det (An)) = n!M 〈n〉α .

But

(13.175.5) Φn×n

 An︸︷︷︸
=(ai,j)i,j=1,2,...,n

 = Φn×n
(

(ai,j)i,j=1,2,...,n

)
= (Φ (ai,j))i,j=1,2,...,n

(by the definition of Φn×n
(

(ai,j)i,j=1,2,...,n

)
). But every (i, j) ∈ {1, 2, . . . , n}2 satisfies

Φ (ai,j) = Φ



pi−j+1, if i ≥ j;
i, if i = j − 1;

0, if i < j − 1


since ai,j =


pi−j+1, if i ≥ j;
i, if i = j − 1;

0, if i < j − 1


=


Φ (pi−j+1) , if i ≥ j;
Φ (i) , if i = j − 1;

Φ (0) , if i < j − 1

=


Φ (pi−j+1) , if i ≥ j;
i, if i = j − 1;

0, if i < j − 1 since Φ (i) = i in the case when i = j − 1 (because Φ is a
k-algebra homomorphism), and because Φ (0) = 0 in the

case when i < j − 1 (for the same reason)


=


Mα{i−j+1}, if i ≥ j;
i, if i = j − 1;

0, if i < j − 1(
since Φ (pi−j+1) = Mα{i−j+1} in the case when i ≥ j

(by (13.175.3), applied to s = i− j + 1)

)

= a
〈α〉
i,j

since a
〈α〉
i,j =


Mα{i−j+1}, if i ≥ j;
i, if i = j − 1;

0, if i < j − 1

 .

Hence,

Φ (ai,j)︸ ︷︷ ︸
=a
〈α〉
i,j


i,j=1,2,...,n

=
(
a
〈α〉
i,j

)
i,j=1,2,...,n

= A
〈α〉
n . Thus, (13.175.5) becomes

Φn×n (An) = (Φ (ai,j))i,j=1,2,...,n = A〈α〉n .

Thus, (13.175.4) rewrites as det
(
A
〈α〉
n

)
= n!M

〈n〉
α . This proves Proposition 6.5.6(a).

(b) The proof of Proposition 6.5.6(b) proceeds similarly to our proof of Proposition 6.5.6(a) above, as

long as the obvious changes are made (one needs to consider Bn, bi,j , B
〈α〉
n and b

〈α〉
i,j instead of An, ai,j , A

〈α〉
n

and a
〈α〉
i,j ). �
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13.176. Solution to Exercise 6.5.9. Solution to Exercise 6.5.9.

Proof of Corollary 6.5.8. (a) We WLOG assume that s ∈ N (because otherwise, s is negative and thus

satisfies M
〈s〉
α = 0 ∈ QSym).

Define a matrix A
〈α〉
s =

(
a
〈α〉
i,j

)
i,j=1,2,...,s

as in Proposition 6.5.6(a) (but for s instead of n). Then,

A
〈α〉
s ∈ QSyms×s (since every (i, j) ∈ {1, 2, . . . , s}2 satisfies a

〈α〉
i,j ∈ QSym (as follows from the definition of

a
〈α〉
i,j )). Hence, det

(
A
〈α〉
s

)
∈ QSym. But Proposition 6.5.6(a) (applied to n = s) yields det

(
A
〈α〉
s

)
= s!M

〈s〉
α .

Hence, s!M
〈s〉
α = det

(
A
〈α〉
s

)
∈ QSym.

Now, let us recall that there is a canonical ring homomorphism ϕ : Z → k. This homomorphism gives
rise to a ring homomorphism ϕ [[x]] : Z [[x]] → k [[x]], and this latter homomorphism ϕ [[x]] sends QSymZ
to QSymk; that is, we have (ϕ [[x]]) (QSymZ) ⊂ QSymk. Moreover, it is clear that the ring homomorphism

ϕ [[x]] sends the element M
〈s〉
α of Z [[x]] to the element M

〈s〉
α of k [[x]] (because the definition of M

〈s〉
α is

functorial in the base ring k). Therefore, if we can prove that the element M
〈s〉
α of Z [[x]] belongs to QSymZ,

then it will automatically follow that the element M
〈s〉
α of k [[x]] belongs to (ϕ [[x]]) (QSymZ) ⊂ QSymk; this

will complete the proof of Corollary 6.5.8(a). Hence, in order to prove Corollary 6.5.8(a), it only remains to

prove that the element M
〈s〉
α of Z [[x]] belongs to QSymZ. In other words, it only remains to prove Corollary

6.5.8(a) in the case of k = Z. Hence, in proving Corollary 6.5.8(a), we can WLOG assume that k = Z.
Assume this. Since k = Z, we have QSym = QSymZ.

If a positive integer N and an element f of Z [[x]] satisfy Nf ∈ QSymZ, then f also lies in QSymZ
(because N is not a zero-divisor in k = Z, and therefore f is obtained from the power series Nf by

dividing all coefficients by N). Applying this to N = s! and f = M
〈s〉
α , we obtain M

〈s〉
α ∈ QSymZ (since

s!M
〈s〉
α ∈ QSym = QSymZ). In other words, M

〈s〉
α ∈ QSym (since k = Z). This completes the proof of

Corollary 6.5.8(a).

(b) Recall that M
〈s〉
α = es

(
(xαi )i∈SIS(`)

)
. Thus, M

〈s〉
α is a homogeneous power series of degree s |α| (since

each xαi is a monomial of degree |α|, and since es is a power series of degree s). Combined with M
〈s〉
α ∈ QSym

(which follows from Corollary 6.5.8(a)), this yields M
〈s〉
α ∈ QSyms|α|. This proves Corollary 6.5.8(b). �

13.177. Solution to Exercise 6.5.12. Solution to Exercise 6.5.12.

Proof of Remark 6.5.11. (a) Write the composition α in the form (α1, α2, . . . , α`). Then,

redα =

(
α1

gcdα
,
α2

gcdα
, . . . ,

α`
gcdα

)
(by the definition of redα). Hence, the definition of (redα) {gcdα}

yields

(redα) {gcdα} =

(
(gcdα) · α1

gcdα
, (gcdα) · α2

gcdα
, . . . , (gcdα) · α`

gcdα

)
= (α1, α2, . . . , α`) = α,

so that Remark 6.5.11(a) is proven.

(c) Write the composition α in the form (α1, α2, . . . , α`). Then, redα =

(
α1

gcdα
,
α2

gcdα
, . . . ,

α`
gcdα

)
(by

the definition of redα). Hence, the definition of gcd (redα) yields

gcd (redα) = gcd

(
α1

gcdα
,
α2

gcdα
, . . . ,

α`
gcdα

)
=

gcd (α1, α2, . . . , α`)

gcdα
=

gcd (α1, α2, . . . , α`)

gcd (α1, α2, . . . , α`)

(since gcdα = gcd (α1, α2, . . . , α`) (by the definition of gcdα))

= 1.

In other words, the composition redα is reduced. This proves Remark 6.5.11(c).
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(d) Assume that α is reduced. Write the composition α in the form (α1, α2, . . . , α`). Then, redα =(
α1

gcdα
,
α2

gcdα
, . . . ,

α`
gcdα

)
(by the definition of redα). But gcdα = 1 (since α is reduced). Now,

redα =

(
α1

gcdα
,
α2

gcdα
, . . . ,

α`
gcdα

)
=
(α1

1
,
α2

1
, . . . ,

α`
1

)
(since gcdα = 1)

= (α1, α2, . . . , α`) = α.

This proves Remark 6.5.11(d).
(e) Let s ∈ {1, 2, 3, . . .}. Write the composition α in the form (α1, α2, . . . , α`). Then,

redα =

(
α1

gcdα
,
α2

gcdα
, . . . ,

α`
gcdα

)
(by the definition of redα). Also, α {s} = (sα1, sα2, . . . , sα`) (by the

definition of α {s}). Now, α = (α1, α2, . . . , α`), so that ` (α) = `. Hence, ` = ` (α) > 0 (since α is nonempty).
Since α {s} = (sα1, sα2, . . . , sα`), we have ` (α {s}) = ` > 0, so that the composition α {s} is nonempty.

By the definition of gcdα, we have gcdα = gcd (α1, α2, . . . , α`). By the definition of gcd (α {s}), we have

gcd (α {s}) = gcd (sα1, sα2, . . . , sα`) (since α {s} = (sα1, sα2, . . . , sα`))

= s gcd (α1, α2, . . . , α`)︸ ︷︷ ︸
=gcdα

= s gcdα.

Now, recall that α {s} = (sα1, sα2, . . . , sα`). Hence, the definition of red (α {s}) yields

red (α {s}) =

(
sα1

gcd (α {s})
,

sα2

gcd (α {s})
, . . . ,

sα`
gcd (α {s})

)
=

(
sα1

s gcdα
,
sα2

s gcdα
, . . . ,

sα`
s gcdα

)
(since gcd (α {s}) = s gcdα)

=

(
α1

gcdα
,
α2

gcdα
, . . . ,

α`
gcdα

)
= redα.

This proves Remark 6.5.11(e).

(f) Write the composition α in the form (α1, α2, . . . , α`). Then, redα =

(
α1

gcdα
,
α2

gcdα
, . . . ,

α`
gcdα

)
(by

the definition of redα). Thus,

|redα| = α1

gcdα
+

α2

gcdα
+ · · ·+ α`

gcdα
=
α1 + α2 + · · ·+ α`

gcdα
,

so that (gcdα) |redα| = α1 +α2 +· · ·+α` = |α| (since |α| = α1 +α2 +· · ·+α` (because α = (α1, α2, . . . , α`))).
This proves Remark 6.5.11(f).

(b) We have (redα) {gcdα} = α (by Remark 6.5.11(a)).
The property of a composition to be Lyndon does not change if all entries of the composition are multiplied

by a fixed positive integer m (because this property only depends on the relative order of the parts of the
composition). In other words, if β is a composition and m is a positive integer, then β is Lyndon if and
only if β {m} is Lyndon. Applying this to β = redα and m = gcdα, we conclude that redα is Lyndon if
and only if (redα) {gcdα} is Lyndon. In other words, redα is Lyndon if and only if α is Lyndon (because
(redα) {gcdα} = α). This proves Remark 6.5.11(b). �

13.178. Solution to Exercise 6.5.15. Solution to Exercise 6.5.15.
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Proof of Lemma 6.5.14. For every α ∈ L, the pair (redα, gcdα) is a well-defined element of RL×{1, 2, 3, . . .}
1155. Hence, we can define a map R : L→ RL× {1, 2, 3, . . .} by

(R (α) = (redα, gcdα) for every α ∈ L) .

Consider this R.
For every (w, s) ∈ RL× {1, 2, 3, . . .}, the element w {s} is a well-defined element of L 1156. Hence, we

can define a map M : RL× {1, 2, 3, . . .} → L by

(M (w, s) = w {s} for every (w, s) ∈ RL× {1, 2, 3, . . .}) .

Consider this M.
It is now easy to see that R ◦M = id 1157 and M ◦R = id 1158. Therefore, the maps M and R are

mutually inverse. Hence, the map M is a bijection. Hence, the family
(
M
〈gcd(M(w,s))〉
red(M(w,s))

)
(w,s)∈RL×{1,2,3,...}

is

a reindexing of the family
(
M
〈gcdα〉
redα

)
α∈L

. Since every (w, s) ∈ RL× {1, 2, 3, . . .} satisfies

gcd (M (w, s)) = s and red (M (w, s)) = w

1155Proof. Let α ∈ L. Then, α is a Lyndon word (since L is the set of all Lyndon words), and thus nonempty. Hence, α

is a nonempty composition, so that redα is a well-defined composition, and gcdα is a well-defined positive integer. Remark
6.5.11(b) yields that the composition α is Lyndon if and only if the composition redα is Lyndon. Since α is Lyndon, this yields

that redα is Lyndon. Also, redα is reduced (by Remark 6.5.11(c)). Thus, redα is a reduced Lyndon composition. In other

words, redα ∈ RL (since RL is the set of all reduced Lyndon compositions). Combined with gcdα ∈ {1, 2, 3, . . .} (since gcdα
is a well-defined positive integer), this yields (redα, gcdα) ∈ RL× {1, 2, 3, . . .}, qed.

1156Proof. Let (w, s) ∈ RL × {1, 2, 3, . . .}. Then, w ∈ RL and s ∈ {1, 2, 3, . . .}. Since RL is the set of all reduced Lyndon
compositions, we see that w is a reduced Lyndon composition (since w ∈ RL). Thus, w is nonempty (since w is Lyndon).

We shall now show that w {s} ∈ L.

Remark 6.5.11(e) (applied to α = w) yields that the composition w {s} is nonempty and satisfies red (w {s}) = redw and
gcd (w {s}) = s gcdw. We have red (w {s}) = redw = w (by Remark 6.5.11(d), applied to α = w). Now, recall that the

composition w is Lyndon. Hence, the composition red (w {s}) is Lyndon (since red (w {s}) = w).

Remark 6.5.11(b) (applied to α = w {s}) yields that the composition w {s} is Lyndon if and only if the composition
red (w {s}) is Lyndon. Since the composition red (w {s}) is Lyndon, this yields that the composition w {s} is Lyndon. In other

words, w {s} ∈ L (since L is the set of all Lyndon words), qed.
1157Proof. Let (w, s) ∈ RL × {1, 2, 3, . . .}. Thus, w ∈ RL and s ∈ {1, 2, 3, . . .}. Since RL is the set of all reduced Lyndon

compositions, we see that w is a reduced Lyndon composition (since w ∈ RL). Thus, w is nonempty (since w is Lyndon).

Remark 6.5.11(e) (applied to α = w) yields that the composition w {s} is nonempty and satisfies red (w {s}) = redw and
gcd (w {s}) = s gcdw. But gcdw = 1 (since w is reduced), so that gcd (w {s}) = s gcdw︸ ︷︷ ︸

=1

= s. Also, red (w {s}) = redw = w

(by Remark 6.5.11(d), applied to α = w). Now,

(R ◦M) (w, s) = R

 M (w, s)︸ ︷︷ ︸
=w{s}

(by the definition of M(w,s))

 = R (w {s}) =

red (w {s})︸ ︷︷ ︸
=w

, gcd (w {s})︸ ︷︷ ︸
=s


(by the definition of R (w {s}))

= (w, s) = id (w, s) .

Now, let us forget that we fixed (w, s). We thus have shown that (R ◦M) (w, s) = id (w, s) for every (w, s) ∈ RL×{1, 2, 3, . . .}.
In other words, R ◦M = id, qed.

1158Proof. Let α ∈ L. Then, α is a Lyndon word (since L is the set of all Lyndon words), and thus nonempty. Hence, α is
a nonempty composition. Now,

(M ◦R) (α) = M

 R (α)︸ ︷︷ ︸
=(redα,gcdα)

(by the definition of R(α))

 = M (redα, gcdα) = (redα) {gcdα} (by the definition of M (redα, gcdα))

= α (by Remark 6.5.11(a))

= id (α) .

Now, let us forget that we fixed α. We thus have proven that (M ◦R) (α) = id (α) for every α ∈ L. Thus, M ◦R = id, qed.
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1159, this rewrites as follows: The family
(
M
〈s〉
w

)
(w,s)∈RL×{1,2,3,...}

is a reindexing of the family
(
M
〈gcdα〉
redα

)
α∈L

.

This proves Lemma 6.5.14. �

13.179. Solution to Exercise 6.5.17. Solution to Exercise 6.5.17. We shall give two proofs of Lemma
6.5.16.

First proof of Lemma 6.5.16. We first introduce some notation.
For every m ∈ Z, let Fm denote the k-submodule of QSym spanned by (Mβ)β∈Comp; `(β)≤m. Then, 1 ∈ F0

1160. Furthermore,

(13.179.1) FuFv ⊂ Fu+v for every u ∈ Z and v ∈ Z
1161. It is now easy to see that

(13.179.2) (Fm)
k ⊂ Fkm for every m ∈ Z and k ∈ N

(where (Fm)
k

means FmFm · · · Fm︸ ︷︷ ︸
k times

) 1162.

Write the composition α in the form α = (α1, α2, . . . , α`); then, ` = ` (α).

1159Proof. We have R ◦M = id, thus (R ◦M)︸ ︷︷ ︸
=id

(w, s) = id (w, s) = (w, s) and therefore

(w, s) = (R ◦M) (w, s) = R (M (w, s)) = (red (M (w, s)) , gcd (M (w, s))) (by the definition of R (M (w, s))) .

Hence, (red (M (w, s)) , gcd (M (w, s))) = (w, s). In other words, red (M (w, s)) = w and gcd (M (w, s)) = s, qed.
1160Proof. We know that F0 is the k-submodule of QSym spanned by

(
Mβ

)
β∈Comp; `(β)≤0

(by the definition of F0). Hence,

in particular, Mβ ∈ F0 for every β ∈ Comp satisfying ` (β) ≤ 0. Applying this to β = ∅, we obtain M∅ ∈ F0 (since ` (∅) = 0).

Since M∅ = 1, this rewrites as 1 ∈ F0, qed.
1161Proof of (13.179.1): Let u ∈ Z and v ∈ Z. Let p ∈ Fu and q ∈ Fv . We are going to prove that pq ∈ Fu+v .
Notice that Fu+v is a k-submodule of QSym. Hence, the claim that pq ∈ Fu+v is k-linear in p.

We know that p belongs to Fu. In other words, p is a k-linear combination of the elements
(
Mβ

)
β∈Comp; `(β)≤u (since Fu

is the k-submodule of QSym spanned by
(
Mβ

)
β∈Comp; `(β)≤u). Hence, we can WLOG assume that p is one of the elements(

Mβ

)
β∈Comp; `(β)≤u (because the claim that we are proving – namely, the claim that pq ∈ Fu+v – is k-linear in p). Assume

this. Similarly, assume that q is one of the elements
(
Mβ

)
β∈Comp; `(β)≤v .

There exists a ϕ ∈ Comp satisfying ` (ϕ) ≤ u and p = Mϕ (since p is one of the elements
(
Mβ

)
β∈Comp; `(β)≤u). Similarly,

there exists a ψ ∈ Comp satisfying ` (ψ) ≤ v and q = Mψ . Consider these ϕ and ψ. Corollary 6.4.7 (applied to ϕ and ψ instead

of α and β) shows that MϕMψ is a sum of terms of the form Mδ with δ ∈ A∗ satisfying ` (δ) ≤ ` (ϕ) + ` (ψ). Since every δ ∈ A∗

satisfying ` (δ) ≤ ` (ϕ)+` (ψ) also satisfies ` (δ) ≤ u+v (because ` (ϕ)︸ ︷︷ ︸
≤u

+ ` (ψ)︸ ︷︷ ︸
≤v

≤ u+v), this yields that MϕMψ is a sum of terms

of the form Mδ with δ ∈ A∗ satisfying ` (δ) ≤ u + v. In particular, MϕMψ is a k-linear combination of (Mδ)δ∈A∗; `(δ)≤u+v .

In other words, MϕMψ is a k-linear combination of (Mδ)δ∈Comp; `(δ)≤u+v (since A∗ = Comp). In other words, MϕMψ is a

k-linear combination of
(
Mβ

)
β∈Comp; `(β)≤u+v

(here, we renamed the index δ as β). In other words, MϕMψ belongs to the

k-submodule of QSym spanned by
(
Mβ

)
β∈Comp; `(β)≤u+v

. In other words, MϕMψ belongs to Fu+v (since Fu+v was defined as

the k-submodule of QSym spanned by
(
Mβ

)
β∈Comp; `(β)≤u+v

). Hence, MϕMψ ∈ Fu+v , so that p︸︷︷︸
=Mϕ

q︸︷︷︸
=Mψ

= MϕMψ ∈ Fu+v .

Now, let us forget that we fixed p and q. We thus have proven that pq ∈ Fu+v for any p ∈ Fu and q ∈ Fv . Since Fu+v is a
k-submodule of QSym, this yields that FuFv ⊂ Fu+v .

1162Proof of (13.179.2): Let m ∈ Z. We shall prove that (13.179.2) holds for every k ∈ N. Indeed, we shall prove this by
induction over k:

Induction base: We have

(Fm)0 = k · 1︸︷︷︸
∈F0

⊂ k · F0 ⊂ F0 (since F0 is a k-module)

= F0m (since 0 = 0m) .

In other words, (13.179.2) holds for k = 0. This completes the induction base.
Induction step: Let K ∈ N. Assume that (13.179.2) holds for k = K. We must then show that (13.179.2) holds for k = K+1.
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Define A
〈α〉
s and a

〈α〉
i,j as in Proposition 6.5.6(a) (but with s instead of n). Then,

a
〈α〉
i,j =


Mα{i−j+1}, if i ≥ j;
i, if i = j − 1;

0, if i < j − 1

for all (i, j) ∈ {1, 2, . . . , s}2 ,

and we have A
〈α〉
s =

(
a
〈α〉
i,j

)
i,j=1,2,...,s

. Proposition 6.5.6(a) (applied to s instead of n) yields det
(
A
〈α〉
s

)
=

s!M
〈s〉
α . Since A

〈α〉
s =

(
a
〈α〉
i,j

)
i,j=1,2,...,s

, this rewrites as

(13.179.3) det

((
a
〈α〉
i,j

)
i,j=1,2,...,s

)
= s!M 〈s〉α .

On the other hand, it is easy to see that

(13.179.4) a
〈α〉
i,j ∈ k · 1 for every (i, j) ∈ {1, 2, . . . , s}2 satisfying i < j.

1163 Furthermore,

(13.179.5) a
〈α〉
i,j ∈ F` for every (i, j) ∈ {1, 2, . . . , s}2 .

We have (Fm)K ⊂ FKm (since (13.179.2) holds for k = K). Thus,

(Fm)K+1 = (Fm)K︸ ︷︷ ︸
⊂FKm

·Fm ⊂ FKm · Fm ⊂ FKm+m (by (13.179.1), applied to u = Km and v = m)

= F(K+1)m (since Km+m = (K + 1)m) .

In other words, (13.179.2) holds for k = K + 1. This completes the induction step. The proof of (13.179.2) is thus complete.
1163Proof of (13.179.4): Let (i, j) ∈ {1, 2, . . . , s}2 be such that i < j. We need to prove that a

〈α〉
i,j ∈ k · 1. This is clear in

the case when i = j − 1 (because in this case, we have

a
〈α〉
i,j =


Mα{i−j+1}, if i ≥ j;
i, if i = j − 1;

0, if i < j − 1

= i (since i = j − 1)

∈ k · 1

). Hence, for the rest of this proof, we can WLOG assume that i = j − 1. Assume this. Thus, i 6= j − 1.
We have i < j. Thus, i ≤ j − 1 (since i and j are integers), so that i < j − 1 (since i 6= j − 1). Now,

a
〈α〉
i,j =


Mα{i−j+1}, if i ≥ j;
i, if i = j − 1;

0, if i < j − 1

= 0 (since i < j − 1)

∈ k · 1,

and thus (13.179.4) is proven.
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1164 Finally,

(13.179.6) a
〈α〉
i,i = Mα for every i ∈ {1, 2, . . . , s} .

1165

But recall that every commutative ring A, every m ∈ N and every matrix (ui,j)i,j=1,2,...,m ∈ A
m×m satisfy

det
(

(ui,j)i,j=1,2,...,m

)
=
∑
σ∈Sm

(−1)
σ
m∏
i=1

ui,σ(i).

1166 Applying this equality to A = QSym, m = s and ui,j = a
〈α〉
i,j , we obtain

det

((
a
〈α〉
i,j

)
i,j=1,2,...,s

)
=
∑
σ∈Ss

(−1)
σ

s∏
i=1

a
〈α〉
i,σ(i)

= (−1)
id︸ ︷︷ ︸

=1

s∏
i=1

a
〈α〉
i,id(i)︸ ︷︷ ︸

=a
〈α〉
i,i =Mα

(by (13.179.6))

+
∑
σ∈Ss;
σ 6=id

(−1)
σ

s∏
i=1

a
〈α〉
i,σ(i)

(here, we have split off the addend for σ = id from the sum)

=

s∏
i=1

Mα︸ ︷︷ ︸
=Ms

α

+
∑
σ∈Ss;
σ 6=id

(−1)
σ

s∏
i=1

a
〈α〉
i,σ(i) = Ms

α +
∑
σ∈Ss;
σ 6=id

(−1)
σ

s∏
i=1

a
〈α〉
i,σ(i).

Compared with (13.179.3), this yields

s!M 〈s〉α = Ms
α +

∑
σ∈Ss;
σ 6=id

(−1)
σ

s∏
i=1

a
〈α〉
i,σ(i).

1164Proof of (13.179.5): Let (i, j) ∈ {1, 2, . . . , s}2. We need to show that a
〈α〉
i,j ∈ F`.

First, recall that F` is the k-submodule of QSym spanned by
(
Mβ

)
β∈Comp; `(β)≤` (by the definition of F`). In particular,

Mβ ∈ F` for every β ∈ Comp satisfying ` (β) ≤ `. Applied to β = ∅, this yields that M∅ ∈ F` (since ∅ ∈ Comp satisfies

` (∅) = 0 ≤ ` (α) = `). Since M∅ = 1, this rewrites as 1 ∈ F`, whence k · 1︸︷︷︸
∈F`

⊂ k · F` ⊂ F` (since F` is a k-module).

Now, if i < j, then (13.179.4) yields a
〈α〉
i,j ∈ k · 1 ⊂ F`. Hence, (13.179.5) is proven in the case when i < j. For the rest of

our proof of (13.179.5), we can thus WLOG assume that we don’t have i < j. Assume this.
We have i ≥ j (since we don’t have i < j) and ` (α {i− j + 1}) = ` (α) (since ` (α {k}) = ` (α) for every positive integer

k). Now, recall that Mβ ∈ F` for every β ∈ Comp satisfying ` (β) ≤ `. Applied to β = α {i− j + 1}, this yields that

Mα{i−j+1} ∈ F` (since ` (α {i− j + 1}) = ` (α) = `). Now,

a
〈α〉
i,j =


Mα{i−j+1}, if i ≥ j;
i, if i = j − 1;

0, if i < j − 1

= Mα{i−j+1} (since i ≥ j)

∈ F`,

and this proves (13.179.5).
1165Proof of (13.179.6): Let i ∈ {1, 2, . . . , s}. Then, the definition of a

〈α〉
i,i yields

a
〈α〉
i,i =


Mα{i−i+1}, if i ≥ i;
i, if i = i− 1;

0, if i < i− 1

= Mα{i−i+1} (since i ≥ i)

= Mα

since α

i− i+ 1︸ ︷︷ ︸
=1

 = α {1} = α

 ,

qed.
1166This is simply the explicit formula for the determinant of a matrix as a sum over permutations.
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Subtracting Ms
α from both sides of this equality, we obtain

(13.179.7) s!M 〈s〉α −Ms
α =

∑
σ∈Ss;
σ 6=id

(−1)
σ

s∏
i=1

a
〈α〉
i,σ(i).

But it is easy to see that

(13.179.8)

s∏
i=1

a
〈α〉
i,σ(i) ∈ F(s−1)` for every σ ∈ Ss satisfying σ 6= id

1167. Hence, (13.179.7) becomes

(13.179.9) s!M 〈s〉α −Ms
α =

∑
σ∈Ss;
σ 6=id

(−1)
σ

s∏
i=1

a
〈α〉
i,σ(i)︸ ︷︷ ︸

∈F(s−1)`

(by (13.179.8))

∈
∑
σ∈Ss;
σ 6=id

(−1)
σ F(s−1)` ⊂ F(s−1)`

(since F(s−1)` is a k-module).
But F(s−1)` is the k-submodule of QSym spanned by (Mβ)β∈Comp; `(β)≤(s−1)` (because this is how F(s−1)`

was defined). In other words,

F(s−1)` =
∑

β∈Comp;
`(β)≤(s−1)`

kMβ .

Hence, (13.179.9) becomes

(13.179.10) s!M 〈s〉α −Ms
α ∈ F(s−1)` =

∑
β∈Comp;

`(β)≤(s−1)`

kMβ .

Also, s!M
〈s〉
α −Ms

α ∈ F(s−1)` ⊂ QSym, so that s!M
〈s〉
α ∈ Ms

α︸︷︷︸
∈QSym

+ QSym ⊂ QSym + QSym ⊂ QSym.

Recall that M
〈s〉
α = es

(
(xαi )i∈SIS(`)

)
. Thus, M

〈s〉
α is a homogeneous power series of degree s |α| (since each

xαi is a monomial of degree |α|, and since es is a power series of degree s). Hence, s!M
〈s〉
α is a homogeneous

power series of degree s |α| as well. Thus, s!M
〈s〉
α ∈ QSyms|α| (since s!M

〈s〉
α ∈ QSym). Also, Ms

α ∈ QSyms|α|

(since Mα ∈ QSym|α|). Thus, s!M 〈s〉α︸ ︷︷ ︸
∈QSyms|α|

− Ms
α︸︷︷︸

∈QSyms|α|

∈ QSyms|α|−QSyms|α| ⊂ QSyms|α| (since QSyms|α| is

a k-module).
Now, let π denote the projection from the direct sum QSym =

⊕
k∈N QSymk onto its (s |α|)-th homoge-

neous component QSyms|α|. Notice that π
(
s!M

〈s〉
α −Ms

α

)
= s!M

〈s〉
α −Ms

α (since s!M
〈s〉
α −Ms

α ∈ QSyms|α|).

1167Proof of (13.179.8): Let σ ∈ Ss be such that σ 6= id. Then, there exists a k ∈ {1, 2, . . . , s} such that σ (k) > k. Consider
this k.

We have k < σ (k) (since σ (k) > k) and thus a
〈α〉
k,σ(k)

∈ k · 1 (by (13.179.4), applied to i = k and j = σ (k)). But

s∏
i=1︸︷︷︸

=
∏
i∈{1,2,...,s}

a
〈α〉
i,σ(i)

=
∏

i∈{1,2,...,s}
a
〈α〉
i,σ(i)

= a
〈α〉
k,σ(k)︸ ︷︷ ︸
∈k·1

·
∏

i∈{1,2,...,s};
i 6=k

a
〈α〉
i,σ(i)︸ ︷︷ ︸
∈F`

(by (13.179.5), applied to j=σ(i))

(here, we have split off the factor for i = k from the product)

∈ k · 1 ·
∏

i∈{1,2,...,s};
i 6=k

F`

︸ ︷︷ ︸
=(F`)s−1⊂F(s−1)`

(by (13.179.2), applied to
` and s−1 instead of m and k)

⊂ k · 1 · F(s−1)`︸ ︷︷ ︸
=F(s−1)`

= k · F(s−1)` ⊂ F(s−1)`

(since F(s−1)` is a k-module). This proves (13.179.8).



1064 DARIJ GRINBERG AND VICTOR REINER

We have

(13.179.11) π (Mβ) = 0 for every β ∈ Comp \Comps|α|

1168.
Now, applying the map π to both sides of the relation (13.179.10), we obtain

π
(
s!M 〈s〉α −Ms

α

)
∈ π

 ∑
β∈Comp;

`(β)≤(s−1)`

kMβ

 =
∑

β∈Comp;
`(β)≤(s−1)`

kπ (Mβ) (since the map π is k-linear)

=
∑

β∈Comps|α|;

`(β)≤(s−1)`

k π (Mβ)︸ ︷︷ ︸
=Mβ

(since Mβ∈QSyms|α|
(because β∈Comps|α| ),

whereas π is a projection
onto QSyms|α| )

+
∑

β∈Comp \Comps|α|;

`(β)≤(s−1)`

k π (Mβ)︸ ︷︷ ︸
=0

(by (13.179.11))

(
since the set Comp is the union of its two

disjoint subsets Comps|α| and Comp \Comps|α|

)
=

∑
β∈Comps|α|;

`(β)≤(s−1)`

kMβ +
∑

β∈Comp \Comps|α|;

`(β)≤(s−1)`

k0

︸ ︷︷ ︸
=0

=
∑

β∈Comps|α|;

`(β)≤(s−1)`

kMβ =
∑

β∈Comps|α|;

`(β)≤(s−1)`(α)

kMβ

(since ` = ` (α)). Since π
(
s!M

〈s〉
α −Ms

α

)
= s!M

〈s〉
α −Ms

α, this rewrites as s!M
〈s〉
α −Ms

α ∈
∑

β∈Comps|α|;

`(β)≤(s−1)`(α)

kMβ .

This proves Lemma 6.5.16. �

Second proof of Lemma 6.5.16. Let us first notice that if γ and β are two compositions, then

(13.179.12) (the coefficient of the monomial xγ in Mβ) = δγ,β .

(This follows from the definition of Mβ .)
Write the composition α in the form α = (α1, α2, . . . , α`); then, ` = ` (α). Let us now fix a total order on

the set SIS (`) (for example, the lexicographic order). Exercise 6.5.4(b) yields

(13.179.13) M 〈s〉α =
∑

(i1,i2,...,is)∈(SIS(`))s;
i1<i2<···<is

xαi1x
α
i2 · · ·x

α
is .

Now, for every (i1, i2, . . . , is) ∈ (SIS (`))
s

such that i1, i2, . . ., is are distinct, there exists a unique σ ∈ Ss

satisfying iσ(1) < iσ(2) < · · · < iσ(s) (because there is exactly one way to sort the `-tuple (i1, i2, . . . , is) into

increasing order1169). Hence, we can split the sum
∑

(i1,i2,...,is)∈(SIS(`))s;
i1, i2, ..., is are distinct

xαi1x
α
i2
· · ·xαis into several subsums,

1168Proof of (13.179.11): Let β ∈ Comp \Comps|α|. Then, β ∈ Comp but β /∈ Comps|α|. In other words, β is a composition

with size |β| 6= s |α|. As a consequence, Mβ is a homogeneous element of QSym of degree |β| 6= s |α|. Therefore, π
(
Mβ

)
= 0

(since π is the projection from the direct sum QSym =
⊕
k∈N QSymk onto its (s |α|)-th homogeneous component QSyms|α|).

This proves (13.179.11).
1169Here, we are using that the order on SIS (`) is total.
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one for each σ ∈ Ss, as follows:

∑
(i1,i2,...,is)∈(SIS(`))s;
i1, i2, ..., is are distinct

xαi1x
α
i2 · · ·x

α
is

=
∑
σ∈Ss

∑
(i1,i2,...,is)∈(SIS(`))s;

i1, i2, ..., is are distinct;
iσ(1)<iσ(2)<···<iσ(s)︸ ︷︷ ︸

=
∑

(i1,i2,...,is)∈(SIS(`))s;
iσ(1)<iσ(2)<···<iσ(s)

(since the condition that i1, i2, ..., is are distinct
follows from the condition that iσ(1)<iσ(2)<···<iσ(s)

(because if iσ(1)<iσ(2)<···<iσ(s), then iσ(1), iσ(2), ..., iσ(s) are
distinct, and thus i1, i2, ..., is are distinct
(since σ is a permutation of {1,2,...,s})))

xαi1x
α
i2 · · ·x

α
is

=
∑
σ∈Ss

∑
(i1,i2,...,is)∈(SIS(`))s;
iσ(1)<iσ(2)<···<iσ(s)

xαi1x
α
i2 · · ·x

α
is .(13.179.14)

But every σ ∈ Ss and every (i1, i2, . . . , is) ∈ (SIS (`))
s

satisfy

(13.179.15) xαi1x
α
i2 · · ·x

α
is = xαiσ(1)

xαiσ(2)
· · ·xαiσ(s)

1170. Now, (13.179.14) becomes

∑
(i1,i2,...,is)∈(SIS(`))s;
i1, i2, ..., is are distinct

xαi1x
α
i2 · · ·x

α
is

=
∑
σ∈Ss

∑
(i1,i2,...,is)∈(SIS(`))s;
iσ(1)<iσ(2)<···<iσ(s)

xαi1x
α
i2 · · ·x

α
is︸ ︷︷ ︸

=xαiσ(1)
xαiσ(2)

···xαiσ(s)

(by (13.179.15))

=
∑
σ∈Ss

∑
(i1,i2,...,is)∈(SIS(`))s;
iσ(1)<iσ(2)<···<iσ(s)

xαiσ(1)
xαiσ(2)

· · ·xαiσ(s)

︸ ︷︷ ︸
=

∑
(i1,i2,...,is)∈(SIS(`))s;

i1<i2<···<is

xαi1xαi2 ···x
α
is

(here, we have substituted (i1,i2,...,is)

for (iσ(1),iσ(2),...,iσ(s)) in the sum

(since σ is a permutation of {1,2,...,s}))

=
∑
σ∈Ss

∑
(i1,i2,...,is)∈(SIS(`))s;

i1<i2<···<is

xαi1x
α
i2 · · ·x

α
is

︸ ︷︷ ︸
=M〈s〉α

(by (13.179.13))

=
∑
σ∈Ss

M 〈s〉α = |Ss|︸︷︷︸
=s!

M 〈s〉α = s!M 〈s〉α .(13.179.16)

1170Proof of (13.179.15): Let σ ∈ Ss and (i1, i2, . . . , is) ∈ (SIS (`))s. Then, the product xαiσ(1)
xαiσ(2)

· · ·xαiσ(s)
is obtained

from the product xαi1xαi2 · · ·x
α
is

by rearranging the factors according to the permutation σ. Since rearranging the factors of

a product in QSym does not change the value of the product (because the algebra QSym is commutative), this yields that

xαiσ(1)
xαiσ(2)

· · ·xαiσ(s)
= xαi1xαi2 · · ·x

α
is

. This proves (13.179.15).
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On the other hand, taking both sides of the identity (6.5.1) to the s-th power, we obtain

Ms
α =

 ∑
i∈SIS(`)

xαi

s

=
∑

(i1,i2,...,is)∈(SIS(`))s

xαi1x
α
i2 · · ·x

α
is (by the product rule)

=
∑

(i1,i2,...,is)∈(SIS(`))s;
i1, i2, ..., is are distinct

xαi1x
α
i2 · · ·x

α
is

︸ ︷︷ ︸
=s!M〈s〉α

(by (13.179.16))

+
∑

(i1,i2,...,is)∈(SIS(`))s;
i1, i2, ..., is are not distinct

xαi1x
α
i2 · · ·x

α
is

= s!M 〈s〉α +
∑

(i1,i2,...,is)∈(SIS(`))s;
i1, i2, ..., is are not distinct

xαi1x
α
i2 · · ·x

α
is .

Hence,

(13.179.17) Ms
α − s!M 〈s〉α =

∑
(i1,i2,...,is)∈(SIS(`))s;

i1, i2, ..., is are not distinct

xαi1x
α
i2 · · ·x

α
is .

But M
〈s〉
α ∈ QSym (by Corollary 6.5.8(a)), so that Ms

α︸︷︷︸
∈QSym

−s! M 〈s〉α︸ ︷︷ ︸
∈QSym

∈ QSym−s! QSym ⊂ QSym. Hence,

Ms
α− s!M

〈s〉
α is a k-linear combination of the family (Mβ)β∈Comp (since this family (Mβ)β∈Comp is a basis of

the k-module QSym). In other words, there exists a family (cβ)β∈Comp ∈ kComp of elements of k such that

(all but finitely many β ∈ Comp satisfy cβ = 0) and

(13.179.18) s!M 〈s〉α −Ms
α =

∑
β∈Comp

cβMβ .

Consider this family (cβ)β∈Comp ∈ kComp. Every composition γ satisfies

the coefficient of the monomial xγ in s!M 〈s〉α −Ms
α︸ ︷︷ ︸

=
∑
β∈Comp cβMβ

(by (13.179.18))


=

the coefficient of the monomial xγ in
∑

β∈Comp

cβMβ


=

∑
β∈Comp

cβ (the coefficient of the monomial xγ in Mβ)︸ ︷︷ ︸
=δγ,β

(by (13.179.12))

=
∑

β∈Comp

cβδγ,β = cγ .

Hence, every composition γ satisfies

cγ =
(

the coefficient of the monomial xγ in s!M 〈s〉α −Ms
α

)
.
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Thus, every composition γ satisfies

−cγ = −
(

the coefficient of the monomial xγ in s!M 〈s〉α −Ms
α

)

=


the coefficient of the monomial xγ in −

(
s!M 〈s〉α −Ms

α

)
︸ ︷︷ ︸

=Ms
α−s!M

〈s〉
α

=
∑

(i1,i2,...,is)∈(SIS(`))s;
i1, i2, ..., is are not distinct

xαi1xαi2 ···x
α
is

(by (13.179.17))



=

the coefficient of the monomial xγ in
∑

(i1,i2,...,is)∈(SIS(`))s;
i1, i2, ..., is are not distinct

xαi1x
α
i2 · · ·x

α
is


=

∑
(i1,i2,...,is)∈(SIS(`))s;

i1, i2, ..., is are not distinct

(
the coefficient of the monomial xγ in xαi1x

α
i2 · · ·x

α
is

)
.(13.179.19)

We now notice that if γ is a composition satisfying |γ| 6= s |α|, then

(13.179.20)
(
the coefficient of the monomial xγ in xαi1x

α
i2 · · ·x

α
is

)
= 0

for every (i1, i2, . . . , is) ∈ (SIS (`))
s 1171. Also, if γ is a composition satisfying ` (γ) > (s− 1) ` (α), then

(13.179.22)
(
the coefficient of the monomial xγ in xαi1x

α
i2 · · ·x

α
is

)
= 0

1171Proof of (13.179.20): Let γ be a composition satisfying |γ| 6= s |α|. Let (i1, i2, . . . , is) ∈ (SIS (`))s. Then, the monomial

xαi1xαi2 · · ·x
α
is

has degree

deg
(
xαi1xαi2 · · ·x

α
is

)
= deg

(
xαi1

)
+ deg

(
xαi2

)
+ · · ·+ deg

(
xαis
)
.

However, for every i ∈ SIS (`), the monomial xαi is a monomial of degree |α|. Thus, for every i ∈ SIS (`), we have

(13.179.21) deg (xαi ) = |α| .

Hence, for every k ∈ {1, 2, . . . , s}, we have deg
(
xαik

)
= |α| (by (13.179.21), applied to i = ik). Adding up these equalities over

all k ∈ {1, 2, . . . , s}, we obtain deg
(
xαi1

)
+ deg

(
xαi2

)
+ · · ·+ deg

(
xαis

)
= |α|+ |α|+ · · ·+ |α|︸ ︷︷ ︸

s times

= s |α|. Hence,

deg
(
xαi1xαi2 · · ·x

α
is

)
= deg

(
xαi1

)
+ deg

(
xαi2

)
+ · · ·+ deg

(
xαis
)

= s |α| ,

so that s |α| = deg
(
xαi1xαi2 · · ·x

α
is

)
. But deg (xγ) = |γ| 6= s |α| = deg

(
xαi1xαi2 · · ·x

α
is

)
. In other words,

the monomials xγ and xαi1xαi2 · · ·x
α
is

have different degrees; thus, these monomials are distinct. Therefore,(
the coefficient of the monomial xγ in xαi1xαi2 · · ·x

α
is

)
= 0. This proves (13.179.20).
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for every (i1, i2, . . . , is) ∈ (SIS (`))
s

satisfying (i1, i2, . . . , is are not distinct) 1172. Now, if γ is a composi-
tion satisfying |γ| 6= s |α|, then

−cγ =
∑

(i1,i2,...,is)∈(SIS(`))s;
i1, i2, ..., is are not distinct

(
the coefficient of the monomial xγ in xαi1x

α
i2 · · ·x

α
is

)︸ ︷︷ ︸
=0

(by (13.179.20))

(by (13.179.19))

=
∑

(i1,i2,...,is)∈(SIS(`))s;
i1, i2, ..., is are not distinct

0 = 0.

1172Proof of (13.179.22): Let γ be a composition satisfying ` (γ) > (s− 1) ` (α). Let (i1, i2, . . . , is) ∈ (SIS (`))s be such that

(i1, i2, . . . , is are not distinct).

For every monomial m in the variables x1, x2, x3, . . ., we denote by Supp m the set of all variables which occur in the
monomial m (where we say that a variable occurs in m if and only if its exponent in m is positive). For instance, Supp 1 = ∅

and Supp
(
x3

2x3x4
5

)
= {x2, x3, x5} and Supp

x3x
0
4︸ ︷︷ ︸

=x3

 = Supp (x3) = {x3}. It is very easy to see that Supp (mn) = (Supp m)∪

(Supp n) for any two monomials m and n. More generally, if k ∈ N, and if m1, m2, . . ., mk are k monomials, then

(13.179.23) Supp (m1m2 · · ·mk) = (Supp (m1)) ∪ (Supp (m2)) ∪ · · · ∪ (Supp (mk)) .

On the other hand,

(13.179.24)
∣∣∣Supp

(
xβ
)∣∣∣ = ` (β) for every composition β.

[Proof of (13.179.24): Let β be a composition. Write β in the form β =
(
β1, β2, . . . , β`(β)

)
. Then, xβ = xβ1

1 xβ2
2 · · ·x

β`(β)

`(β)
.

Hence, the variables x1, x2, . . ., x`(β) all occur in the monomial xβ (since their exponents β1, β2, . . ., β`(β) are positive), and

no other variables do. In other words, the set of all variables which occur in the monomial xβ is
{
x1, x2, . . . , x`(β)

}
. In other

words, Supp
(
xβ
)

is
{
x1, x2, . . . , x`(β)

}
(since Supp

(
xβ
)

is the set of all variables which occur in the monomial xβ (by the

definition of Supp
(
xβ
)
)). In other words, Supp

(
xβ
)

=
{
x1, x2, . . . , x`(β)

}
, so that

∣∣Supp
(
xβ
)∣∣ =

∣∣{x1, x2, . . . , x`(β)

}∣∣ = ` (β).

This proves (13.179.24).]

Also,

(13.179.25) |Supp (xαi )| = ` for every i ∈ SIS (`) .

[Proof of (13.179.25): Let i ∈ SIS (`). Then, i is a strictly increasing `-tuple of positive integers. In other words, we can

write i in the form i = (i1, i2, . . . , i`) for some positive integers i1, i2, . . ., i` satisfying i1 < i2 < · · · < i`. Consider these i1, i2,

. . ., i`. Notice that i1, i2, . . ., i` are distinct (since i1 < i2 < · · · < i`), so that the variables xi1 , xi2 , . . ., xi` are distinct.

The definition of xαi yields xαi = xα1
i1
xα2
i2
· · ·xα`i` . Thus, the variables xi1 , xi2 , . . ., xi` all occur in the monomial xαi (since

their exponents α1, α2, . . ., α` are positive), and no other variables do. In other words, the set of all variables which occur
in the monomial xαi is

{
xi1 , xi2 , . . . , xi`

}
. In other words, Supp

(
xαi
)

is
{
xi1 , xi2 , . . . , xi`

}
(since Supp

(
xαi
)

is the set of all

variables which occur in the monomial xαi (by the definition of Supp
(
xαi
)
)). In other words, Supp

(
xαi
)

=
{
xi1 , xi2 , . . . , xi`

}
,

so that
∣∣Supp

(
xαi
)∣∣ =

∣∣{xi1 , xi2 , . . . , xi`}∣∣ = ` (since the variables xi1 , xi2 , . . ., xi` are distinct). This proves (13.179.25).]

We know that i1, i2, . . ., is are not distinct. In other words, (at least) two of the elements i1, i2, . . ., is are equal. In

other words, there exist two distinct elements u and v of {1, 2, . . . , s} such that iu = iv . Consider these u and v. Notice that
u ∈ {1, 2, . . . , s}, so that 1 ≤ u ≤ s and thus s ≥ 1.

Since u and v are distinct, we have u ∈ {1, 2, . . . , s} \ {v}; thus, Supp
(
xαiu

)
is an addend of the union⋃

j∈{1,2,...,s}\{v} Supp
(
xαij

)
. Consequently, Supp

(
xαiu

)
⊂
⋃
j∈{1,2,...,s}\{v} Supp

(
xαij

)
. Since iu = iv , this rewrites as

(13.179.26) Supp
(
xαiv
)
⊂

⋃
j∈{1,2,...,s}\{v}

Supp
(
xαij

)
.

Now, (13.179.23) (applied to k = s and mj = xαij
) yields

Supp
(
xαi1xαi2 · · ·x

α
is

)
=
(

Supp
(
xαi1

))
∪
(

Supp
(
xαi2

))
∪ · · · ∪

(
Supp

(
xαis
))

=
⋃

j∈{1,2,...,s}
Supp

(
xαij

)
=

 ⋃
j∈{1,2,...,s}\{v}

Supp
(
xαij

) ∪ Supp
(
xαiv
)︸ ︷︷ ︸

⊂
⋃
j∈{1,2,...,s}\{v} Supp

(
xαij

)
(by (13.179.26))

(here, we have split off the addend for j = v from the union)

⊂

 ⋃
j∈{1,2,...,s}\{v}

Supp
(
xαij

) ∪
 ⋃
j∈{1,2,...,s}\{v}

Supp
(
xαij

)
=

⋃
j∈{1,2,...,s}\{v}

Supp
(
xαij

)
.
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Hence, if γ is a composition satisfying |γ| 6= s |α|, then

(13.179.28) cγ = 0.

Also, if γ is a composition satisfying ` (γ) > (s− 1) ` (α), then

−cγ =
∑

(i1,i2,...,is)∈(SIS(`))s;
i1, i2, ..., is are not distinct

(
the coefficient of the monomial xγ in xαi1x

α
i2 · · ·x

α
is

)︸ ︷︷ ︸
=0

(by (13.179.22))

(by (13.179.19))

=
∑

(i1,i2,...,is)∈(SIS(`))s;
i1, i2, ..., is are not distinct

0 = 0.

Hence, if γ is a composition satisfying ` (γ) > (s− 1) ` (α), then

(13.179.29) cγ = 0.

Now, (13.179.18) becomes

s!M 〈s〉α −Ms
α =

∑
β∈Comp

cβMβ =
∑

β∈Comp;
|β|=s|α|︸ ︷︷ ︸

=
∑

β∈Comps|α|
(since the elements β∈Comp

satisfying |β|=s|α| are exactly
the elements of Comps|α| )

cβMβ +
∑

β∈Comp;
|β|6=s|α|

cβ︸︷︷︸
=0

(by (13.179.28),
applied to γ=β)

Mβ

(
since every β ∈ Comp satisfies exactly one of the two

statements |β| = s |α| and |β| 6= s |α|

)
=

∑
β∈Comps|α|

cβMβ +
∑

β∈Comp;
|β|6=s|α|

0Mβ

︸ ︷︷ ︸
=0

=
∑

β∈Comps|α|

cβMβ

=
∑

β∈Comps|α|;

`(β)≤(s−1)`(α)

cβMβ +
∑

β∈Comps|α|;

`(β)>(s−1)`(α)

cβ︸︷︷︸
=0

(by (13.179.29),
applied to γ=β)

Mβ

(
since every β ∈ Comps|α| satisfies exactly one of the two

statements ` (β) ≤ (s− 1) ` (α) and ` (β) > (s− 1) ` (α)

)
=

∑
β∈Comps|α|;

`(β)≤(s−1)`(α)

cβMβ +
∑

β∈Comps|α|;

`(β)>(s−1)`(α)

0Mβ

︸ ︷︷ ︸
=0

=
∑

β∈Comps|α|;

`(β)≤(s−1)`(α)

cβ︸︷︷︸
∈k

Mβ ∈
∑

β∈Comps|α|;

`(β)≤(s−1)`(α)

kMβ .

Thus, ∣∣∣Supp
(
xαi1xαi2 · · ·x

α
is

)∣∣∣ ≤
∣∣∣∣∣∣

⋃
j∈{1,2,...,s}\{v}

Supp
(
xαij

)∣∣∣∣∣∣ ≤
∑

j∈{1,2,...,s}\{v}

∣∣∣Supp
(
xαij

)∣∣∣︸ ︷︷ ︸
=`

(by (13.179.25), applied to i=ij)

=
∑

j∈{1,2,...,s}\{v}
` = |{1, 2, . . . , s} \ {v}|︸ ︷︷ ︸

=s−1

`︸︷︷︸
=`(α)

= (s− 1) ` (α) .

Thus,

(13.179.27) (s− 1) ` (α) ≥
∣∣∣Supp

(
xαi1xαi2 · · ·x

α
is

)∣∣∣ .
But (13.179.24) (applied to β = γ) yields |Supp (xγ)| = ` (γ) > (s− 1) ` (α) ≥

∣∣∣Supp
(
xαi1xαi2 · · ·x

α
is

)∣∣∣ (by (13.179.27)).

Hence, |Supp (xγ)| 6=
∣∣∣Supp

(
xαi1xαi2 · · ·x

α
is

)∣∣∣, so that xγ 6= xαi1xαi2 · · ·x
α
is

. Hence, xγ and xαi1xαi2 · · ·x
α
is

are two distinct

monomials. Therefore,
(

the coefficient of the monomial xγ in xαi1xαi2 · · ·x
α
is

)
= 0. This proves (13.179.22).
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This proves Lemma 6.5.16 once again. �

13.180. Solution to Exercise 6.5.20. Solution to Exercise 6.5.20.

Proof of Corollary 6.5.19. We know that u is a Lyndon word and satisfies u = u. Hence, (u) is the CFL
factorization of the word u.

Define the notion multw z (for any Lyndon word w and any word z) as in Theorem 6.2.2(b).
Theorem 6.2.2(e) yields that the lexicographically highest element of the multiset u� v is uv, and the

multiplicity with which this word uv appears in the multiset u� v is multu v + 1.
Recall that multu v is the number of terms in the CFL factorization of v which are equal to u (by the

definition of multu v). In other words,

multu v =

the number of terms in the CFL factorization of v︸ ︷︷ ︸
=(b1,b2,...,bq)

which are equal to u


= (the number of terms in (b1, b2, . . . , bq) which are equal to u)

= (the number of j ∈ {1, 2, . . . , q} satisfying bj = u) = |{j ∈ {1, 2, . . . , q} | bj = u}| .

Now, the multiplicity with which the word uv appears in the multiset u� v is

multu v︸ ︷︷ ︸
=|{j∈{1,2,...,q} | bj=u}|

+1 = |{j ∈ {1, 2, . . . , q} | bj = u}|+ 1

= 1 + |{j ∈ {1, 2, . . . , q} | bj = u}| = h.

Hence, we can apply Lemma 6.5.18 to z = uv. As a result, we conclude that

MuMv = hMuv +

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
uv

)
.

This proves Corollary 6.5.19. �

13.181. Solution to Exercise 6.5.22. Solution to Exercise 6.5.22.

Proof of Corollary 6.5.21. Notice that |x| = k (since x ∈ Compk), thus |xs| = s |x|︸︷︷︸
=k

= sk and thus xs ∈

Compsk.

Clearly, (x) is the CFL factorization of the word x (since x is Lyndon). On the other hand,

x, x, . . . , x︸ ︷︷ ︸
s times


is the CFL factorization of the word xs (since

x, x, . . . , x︸ ︷︷ ︸
s times

 is a tuple of Lyndon words (since x is Lyndon)

satisfying xs = xx · · ·x︸ ︷︷ ︸
s times

and x ≥ x ≥ · · · ≥ x). Hence, Theorem 6.2.2(c) (applied to u = x, v = xs, p = 1,

q = s, (a1, a2, . . . , ap) = (x) and (b1, b2, . . . , bq) =

x, x, . . . , x︸ ︷︷ ︸
s times

) yields that the lexicographically highest

element of the multiset x� xs is xxs (since x ≥ x for every i ∈ {1, 2, . . . , 1} and j ∈ {1, 2, . . . , s}). In other
words, the lexicographically highest element of the multiset x� xs is xs+1 (since xxs = xs+1). This proves
Corollary 6.5.21(a).
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(c) Let t ∈ Compsk be such that t <
wll

xs. Then, Lemma 6.4.11(c) (applied to n = k, m = sk, u = x,

v = xs, z = xs+1 and v′ = t) yields

MxMt =

a sum of terms of the form Mw with w ∈ Compk+sk︸ ︷︷ ︸
=Comp(s+1)k

(since k+sk=(s+1)k)

satisfying w <
wll
xs+1


=

(
a sum of terms of the form Mw with w ∈ Comp(s+1)k satisfying w <

wll
xs+1

)
.

This proves Corollary 6.5.21(c).
(b) Let h = 1 + |{j ∈ {1, 2, . . . , s} | x = x}|. Of course, h = s + 1 1173. Recall that x is a Lyndon

word, and that

x, x, . . . , x︸ ︷︷ ︸
s times

 is the CFL factorization of the word xs. Notice also that x ≥ x for every

j ∈ {1, 2, . . . , s}. Thus, Corollary 6.5.19 (applied to n = k, m = sk, u = x, v = xs, q = s and (b1, b2, . . . , bq) =x, x, . . . , x︸ ︷︷ ︸
s times

) yields that

MxMxs = h︸︷︷︸
=s+1

Mxxs︸ ︷︷ ︸
=Mxs+1

(since xxs=xs+1)

+

a sum of terms of the form Mw with w ∈ Compk+sk︸ ︷︷ ︸
=Comp(s+1)k

(since k+sk=(s+1)k)

satisfying w <
wll

xxs︸︷︷︸
=xs+1


= (s+ 1)Mxs+1 +

(
a sum of terms of the form Mw with w ∈ Comp(s+1)k satisfying w <

wll
xs+1

)
.

This proves Corollary 6.5.21(b). �

13.182. Solution to Exercise 6.5.24. Solution to Exercise 6.5.24.

Proof of Corollary 6.5.23. We assumed that ai > bj for every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}. Thus,
ai ≥ bj for every i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}. Hence, the lexicographically highest element of the
multiset u� v is uv (by Theorem 6.2.2(c)). Also, the multiplicity with which the word uv appears in the
multiset u� v is 1 (by Theorem 6.2.2(d)). Hence, Lemma 6.5.18 (applied to z = uv and h = 1) yields

MuMv = 1Muv︸ ︷︷ ︸
=Muv

+

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
uv

)

= Muv +

(
a sum of terms of the form Mw with w ∈ Compn+m satisfying w <

wll
uv

)
.

This proves Corollary 6.5.23. �

1173Proof. Every j ∈ {1, 2, . . . , s} satisfies x = x. Hence, the set {j ∈ {1, 2, . . . , s} | x = x} equals the whole {1, 2, . . . , s}.

In other words, {j ∈ {1, 2, . . . , s} | x = x} = {1, 2, . . . , s}. Now, h = 1 +

∣∣∣∣∣∣∣∣{j ∈ {1, 2, . . . , s} | x = x}︸ ︷︷ ︸
={1,2,...,s}

∣∣∣∣∣∣∣∣ = 1 + |{1, 2, . . . , s}|︸ ︷︷ ︸
=s

=

1 + s = s+ 1, qed.
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13.183. Solution to Exercise 6.5.26. Solution to Exercise 6.5.26.

Proof of Corollary 6.5.25. The tuple (a1, a2, . . . , ap) is the CFL factorization of u. Thus, (a1, a2, . . . , ap) is
a tuple of Lyndon words satisfying u = a1a2 · · · ap and a1 ≥ a2 ≥ · · · ≥ ap.

Now, (a1, a2, . . . , ak) is a tuple of Lyndon words (since (a1, a2, . . . , ap) is a tuple of Lyndon words) satisfying
x = a1a2 · · · ak and a1 ≥ a2 ≥ · · · ≥ ak (since a1 ≥ a2 ≥ · · · ≥ ap). In other words, (a1, a2, . . . , ak) is the
CFL factorization of x (by the definition of a CFL factorization).

Also, (ak+1, ak+2, . . . , ap) is a tuple of Lyndon words (since (a1, a2, . . . , ap) is a tuple of Lyndon words)
satisfying y = ak+1ak+2 · · · ap and ak+1 ≥ ak+2 ≥ · · · ≥ ap (since a1 ≥ a2 ≥ · · · ≥ ap). In other words,
(ak+1, ak+2, . . . , ap) is the CFL factorization of y (by the definition of a CFL factorization).

We have x ∈ Comp|x| and y ∈ Comp|y|. Also, multiplying the equalities x = a1a2 · · · ak and y =

ak+1ak+2 · · · ap, we obtain xy = (a1a2 · · · ak) (ak+1ak+2 · · · ap) = a1a2 · · · ap = u. Thus, |x| + |y| =

∣∣∣∣∣∣ xy︸︷︷︸
=u

∣∣∣∣∣∣ =

|u| = n (since u ∈ Compn).
We have ai > ak+j for every i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , p− k} 1174. Hence, Corollary 6.5.23

(applied to x, y, |x|, |y|, k, p − k, (a1, a2, . . . , ak) and (ak+1, ak+2, . . . , ap) instead of u, v, n, m, p, q,
(a1, a2, . . . , ap) and (b1, b2, . . . , bq)) yields

MxMy = Mxy︸︷︷︸
=Mu

(since xy=u)

+

a sum of terms of the form Mw with w ∈ Comp|x|+|y|︸ ︷︷ ︸
=Compn

(since |x|+|y|=n)

satisfying w <
wll

xy︸︷︷︸
=u


= Mu +

(
a sum of terms of the form Mw with w ∈ Compn satisfying w <

wll
u

)
.

Thus,

Mu = MxMy −
(

a sum of terms of the form Mw with w ∈ Compn satisfying w <
wll
u

)
.

This proves Corollary 6.5.25. �

13.184. Solution to Exercise 6.5.28. Solution to Exercise 6.5.28.

Proof of Corollary 6.5.27. We shall prove Corollary 6.5.27 by induction over s:
Induction base: We have x0 = ∅ and therefore Mx0 = M∅ = 1. Now, M0

x︸︷︷︸
=1

− 0!︸︷︷︸
=1

Mx0︸︷︷︸
=1

= 1 − 1 = 0 ∈∑
w∈Comp0k;

w<
wll
x0

kMw. In other words, Corollary 6.5.27 holds for s = 0. This completes the induction base.

Induction step: Let S be a nonnegative integer. Assume that Corollary 6.5.27 holds for s = S. We need
to prove that Corollary 6.5.27 holds for s = S + 1.

Notice that x ∈ Compk, thus |x| = k, and thus
∣∣xS
∣∣ = S |x|︸︷︷︸

=k

= Sk, so that xS ∈ CompSk.

1174Proof. Recall that a1 ≥ a2 ≥ · · · ≥ ap. Thus,

(13.183.1) as ≥ at for any s ∈ {1, 2, . . . , p} and t ∈ {1, 2, . . . , p} satisfying s ≤ t.
Let i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , p− k}. Then, i ≤ k (since i ∈ {1, 2, . . . , k}) and thus ai ≥ ak (by (13.183.1), applied

to s = i and t = k). Also, j ≥ 1 (since j ∈ {1, 2, . . . , p− k}), and thus k + j︸︷︷︸
≥1

≥ k + 1, so that k + 1 ≤ k + j. Hence,

ak+1 ≥ ak+j (by (13.183.1), applied to s = k + 1 and t = k + j). Now, ai ≥ ak > ak+1 ≥ ak+j , qed.



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 1073

We know that Corollary 6.5.27 holds for s = S. In other words,

(13.184.1) MS
x − S!MxS ∈

∑
w∈CompSk;

w<
wll
xS

kMw =
∑

t∈CompSk;

t<
wll
xS

kMt

(here, we renamed the summation index w as t).
Using Corollary 6.5.21(c), it is easy to see that

(13.184.2) MxMt ∈
∑

w∈Comp(S+1)k;

w<
wll
xS+1

kMw for every t ∈ CompSk satisfying t <
wll
xS.

1175 Now,

Mx

(
MS
x − S!MxS

)
= MxM

S
x︸ ︷︷ ︸

=MS+1
x

−S!MxMxS = MS+1
x − S!MxMxS ,

so that

MS+1
x − S!MxMxS = Mx

(
MS
x − S!MxS

)︸ ︷︷ ︸
∈

∑
t∈CompSk;

t<
wll
xS

kMt

(by (13.184.1))

∈Mx


∑

t∈CompSk;

t<
wll
xS

kMt



=
∑

t∈CompSk;

t<
wll
xS

k MxMt︸ ︷︷ ︸
∈

∑
w∈Comp(S+1)k;

w<
wll
xS+1

kMw

(by (13.184.2))

⊂
∑

t∈CompSk;

t<
wll
xS

k


∑

w∈Comp(S+1)k;

w<
wll
xS+1

kMw



⊂
∑

w∈Comp(S+1)k;

w<
wll
xS+1

kMw

since
∑

w∈Comp(S+1)k;

w<
wll
xS+1

kMw is a k-module

 .(13.184.3)

Now, Corollary 6.5.21(b) (applied to s = S) yields

MxMxS = (S + 1)MxS+1 +

(
a sum of terms of the form Mw with w ∈ Comp(S+1)k satisfying w <

wll
xS+1

)
.

1175Proof of (13.184.2): Let t ∈ CompSk be such that t <
wll

xS. Then, Corollary 6.5.21(c) (applied to s = S) yields

MxMt =

(
a sum of terms of the form Mw with w ∈ Comp(S+1)k satisfying w <

wll
xS+1

)
∈

∑
w∈Comp(S+1)k;

w <
wll
xS+1

kMw.

This proves (13.184.2).
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Thus,

MxMxS − (S + 1)MxS+1

=

(
a sum of terms of the form Mw with w ∈ Comp(S+1)k satisfying w <

wll
xS+1

)
∈

∑
w∈Comp(S+1)k;

w<
wll
xS+1

kMw.(13.184.4)

Now,

MS+1
x − (S + 1)!MxS+1 =

(
MS+1
x − S!MxMxS

)
+

S!MxMxS − (S + 1)!︸ ︷︷ ︸
=S!·(S+1)

MxS+1


=
(
MS+1
x − S!MxMxS

)
+ (S!MxMxS − S! · (S + 1)MxS+1)︸ ︷︷ ︸

=S!·(MxMxS−(S+1)MxS+1)

=
(
MS+1
x − S!MxMxS

)︸ ︷︷ ︸
∈

∑
w∈Comp(S+1)k;

w<
wll
xS+1

kMw

(by (13.184.3))

+S! · (MxMxS − (S + 1)MxS+1)︸ ︷︷ ︸
∈

∑
w∈Comp(S+1)k;

w<
wll
xS+1

kMw

(by (13.184.4))

∈
∑

w∈Comp(S+1)k;

w<
wll
xS+1

kMw + S! ·
∑

w∈Comp(S+1)k;

w<
wll
xS+1

kMw ⊂
∑

w∈Comp(S+1)k;

w<
wll
xS+1

kMw

(since
∑

w∈Comp(S+1)k;

w<
wll
xS+1

kMw is a k-module). In other words, Corollary 6.5.27 holds for s = S+1. This completes

the induction step. Thus, Corollary 6.5.27 is proven by induction. �

13.185. Solution to Exercise 6.5.30. Solution to Exercise 6.5.30.

Proof of Corollary 6.5.29. We first assume that k = Z.

Notice that |x| = k (since x ∈ Compk). Also, M
〈s〉
x ∈ QSym (by Corollary 6.5.8(a), applied to α = x) and

thus M 〈s〉x︸ ︷︷ ︸
∈QSym

− Mxs︸︷︷︸
∈QSym

∈ QSym−QSym ⊂ QSym.

Corollary 6.5.27 yields

(13.185.1) Ms
x − s!Mxs ∈

∑
w∈Compsk;
w<

wll
xs

kMw.

On the other hand, the composition x is Lyndon and therefore nonempty. Hence, (6.5.2) (applied to α = x)
yields

s!M 〈s〉x −Ms
x ∈

∑
β∈Comps|x|;

`(β)≤(s−1)`(x)︸ ︷︷ ︸
=

∑
β∈Compsk;

`(β)≤(s−1)`(x)

(since |x|=k)

kMβ =
∑

β∈Compsk;
`(β)≤(s−1)`(x)

kMβ =
∑

w∈Compsk;
`(w)≤(s−1)`(x)

kMw
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(here, we renamed the summation index β as w). But every w ∈ Compsk satisfying ` (w) ≤ (s− 1) ` (x)
must also satisfy w <

wll
xs 1176. Hence, the sum

∑
w∈Compsk;

`(w)≤(s−1)`(x)

kMw is a subsum of the sum
∑

w∈Compsk;
w<

wll
xs

kMw.

Thus,
∑

w∈Compsk;
`(w)≤(s−1)`(x)

kMw ⊂
∑

w∈Compsk;
w<

wll
xs

kMw. Thus,

(13.185.2) s!M 〈s〉x −Ms
x ∈

∑
w∈Compsk;

`(w)≤(s−1)`(x)

kMw ⊂
∑

w∈Compsk;
w<

wll
xs

kMw.

Now,

s!
(
M 〈s〉x −Mxs

)
= s!M 〈s〉x − s!Mxs =

(
s!M 〈s〉x −Ms

x

)
︸ ︷︷ ︸
∈

∑
w∈Compsk;
w<

wll
xs

kMw

(by (13.185.2))

+ (Ms
x − s!Mxs)︸ ︷︷ ︸

∈
∑

w∈Compsk;
w<

wll
xs

kMw

(by (13.185.1))

∈
∑

w∈Compsk;
w<

wll
xs

kMw +
∑

w∈Compsk;
w<

wll
xs

kMw ⊂
∑

w∈Compsk;
w<

wll
xs

kMw(13.185.3)

(since
∑

w∈Compsk;
w<

wll
xs

kMw is a k-module).

But recall that we assumed that k = Z. Hence, if N is a positive integer and if f is an element of
QSym satisfying Nf ∈

∑
w∈Compsk;
w<

wll
xs

kMw, then f ∈
∑

w∈Compsk;
w<

wll
xs

kMw
1177. Applying this to N = s! and

1176Proof. Let w ∈ Compsk. Notice that |xs| = s |x|︸︷︷︸
=k

= sk, so that xs ∈ Compsk. Now, we have ` (x) > 0 (since x is

nonempty), and

` (xs) = s` (x) = (s− 1) ` (x) + ` (x)︸︷︷︸
>0

> (s− 1) ` (x) .

Thus, (s− 1) ` (x) < ` (xs), so that ` (w) ≤ (s− 1) ` (x) < ` (xs).
But the definition of the wll-order shows that if n ∈ N, and if α and β are two elements of Compn satisfying ` (α) < ` (β),

then α <
wll

β. Applying this to α = w and β = xs, we obtain w <
wll

xs (since ` (w) < ` (xs)), qed.

1177Proof. Let N be a positive integer. Let f be an element of QSym satisfying Nf ∈
∑

w∈Compsk;
w <

wll
xs

kMw.

We know that (Mα)α∈Comp is a basis of the k-module QSym. In the following, whenever g ∈ QSym and β ∈ Comp, we will

let coordMβ g denote the Mβ-coordinate of g with respect to the basis (Mα)α∈Comp of QSym. Then, every g ∈ QSym satisfies

(13.185.4) g =
∑

β∈Comp

(
coordMβ g

)
Mβ

(by the definition of coordinates). Notice also that

(13.185.5) coordMβ (Mγ) = δβ,γ for every compositions β and γ.

Now, Nf ∈
∑

w∈Compsk;
w <

wll
xs

kMw. Thus, there exists a family (λw)w∈Compsk;
w <

wll
xs

∈ k

{
w∈Compsk | w <

wll
xs
}

of elements of k satisfying

Nf =
∑

w∈Compsk;
w <

wll
xs

λwMw. Consider this family (λw)w∈Compsk;
w <

wll
xs

.

Let β be a composition such that we don’t have

(
β ∈ Compsk and β <

wll
xs
)

. Then,

(13.185.6) every composition w ∈ Compsk satisfying w <
wll

xs satisfies β 6= w
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f = M
〈s〉
x −Mxs , we obtain M

〈s〉
x −Mxs ∈

∑
w∈Compsk;
w<

wll
xs

kMw (because of (13.185.3)). In other words, Corollary

6.5.29 holds under the assumption that k = Z.
Now, let us forget that we have assumed that k = Z. We thus have shown that Corollary 6.5.29 holds

under the assumption that k = Z. In other words, we have shown that the relation

(13.185.8) M 〈s〉x −Mxs ∈
∑

w∈Compsk;
w<

wll
xs

ZMw

holds in Z [[x]].
Now, recall that there is a canonical ring homomorphism ϕ : Z→ k. This homomorphism gives rise to a

ring homomorphism ϕ [[x]] : Z [[x]]→ k [[x]], and this latter homomorphism ϕ [[x]] has the properties that:

• it is Z-linear;
• it sends the element Mα of Z [[x]] to the element Mα of k [[x]] for every composition α;

(since every such w satisfies

(
w ∈ Compsk and w <

wll
xs
)

, whereas β does not satisfy

(
β ∈ Compsk and β <

wll
xs
)

). Now,

coordMβ


Nf︸︷︷︸

=
∑

w∈Compsk;
w <

wll
xs

λwMw


= coordMβ


∑

w∈Compsk;
w <

wll
xs

λwMw

 =
∑

w∈Compsk;
w <

wll
xs

λw coordMβ (Mw)︸ ︷︷ ︸
=δβ,w

(by (13.185.5), applied
to γ=w)

=
∑

w∈Compsk;
w <

wll
xs

λw δβ,w︸︷︷︸
=0

(since β 6=w
(by (13.185.6)))

=
∑

w∈Compsk;
w <

wll
xs

λw0 = 0.

Compared with coordMβ (Nf) = N coordMβ f , this yields N coordMβ f = 0.

But N is a positive integer. Thus, if an element ρ of Z satisfies Nρ = 0, then ρ = 0. Applying this to ρ = coordMβ f , we

obtain coordMβ f = 0 (since coordMβ f ∈ k = Z and N coordMβ f = 0).

Now, let us forget that we fixed β. We thus have shown that if β is a composition such that we don’t have(
β ∈ Compsk and β <

wll
xs
)

, then

(13.185.7) coordMβ f = 0.

Now, (13.185.4) (applied to g = f) yields

f =
∑

β∈Comp

(
coordMβ f

)
Mβ =

∑
β∈Comp;

β∈Compsk and β <
wll
xs︸ ︷︷ ︸

=
∑

β∈Compsk;
β <

wll
xs

(since every β∈Compsk
satisfies β∈Comp )

(
coordMβ f

)
Mβ +

∑
β∈Comp;

we don’t have

(
β∈Compsk and β <

wll
xs
)
(

coordMβ f
)

︸ ︷︷ ︸
=0

(by (13.185.7))

Mβ

=
∑

β∈Compsk;
β <

wll
xs

(
coordMβ f

)
Mβ +

∑
β∈Comp;

we don’t have

(
β∈Compsk and β <

wll
xs
)

0Mβ

︸ ︷︷ ︸
=0

=
∑

β∈Compsk;
β <

wll
xs

(
coordMβ f

)
Mβ

=
∑

w∈Compsk;
w <

wll
xs

(coordMw f)︸ ︷︷ ︸
∈k

Mw (here, we renamed the summation index β as w)

∈
∑

w∈Compsk;
w <

wll
xs

kMw,

qed.
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• it sends the element M
〈s〉
α of Z [[x]] to the element M

〈s〉
α of k [[x]] for every composition α and every

nonnegative integer s.

Hence, by applying the homomorphism ϕ [[x]] to both sides of (13.185.8), we obtain

M 〈s〉x −Mxs ∈
∑

w∈Compsk;
w<

wll
xs

ZMw︸ ︷︷ ︸
⊂kMw

(due to the canonical
ring homomorphism Z→k)

⊂
∑

w∈Compsk;
w<

wll
xs

kMw.

This proves Corollary 6.5.29. �

13.186. Solution to Exercise 6.5.31. Solution to Exercise 6.5.31.

Proof of Theorem 6.5.13. The family
(
M
〈s〉
w

)
(w,s)∈RL×{1,2,3,...}

is a reindexing of the family
(
M
〈gcdα〉
redα

)
α∈L

(according to Lemma 6.5.14). In other words, the family
(
M
〈s〉
w

)
(w,s)∈RL×{1,2,3,...}

is a reindexing of the

family
(
M
〈gcdw〉
redw

)
w∈L

(here, we renamed the index α as w).

We need to show that the family
(
M
〈s〉
w

)
(w,s)∈RL×{1,2,3,...}

is an algebraically independent generating set

of the k-algebra QSym. It is enough to prove that the family
(
M
〈gcdw〉
redw

)
w∈L

is an algebraically independent

generating set of the k-algebra QSym (since the family
(
M
〈s〉
w

)
(w,s)∈RL×{1,2,3,...}

is a reindexing of the family(
M
〈gcdw〉
redw

)
w∈L

). We shall prove the latter claim.

Indeed, the main difficulty is to show that

(13.186.1) the family
(
M
〈gcdw〉
redw

)
w∈L

generates the k-algebra QSym .

Once (13.186.1) is proven, we will be able to complete the proof of Theorem 6.5.13 as follows:

For every w ∈ L, we have M
〈gcdw〉
redw ∈ QSym 1178.

Let wt : A→ {1, 2, 3, . . .} be the identity map (this is well-defined since A = {1, 2, 3, . . .}). Obviously, for
every N ∈ {1, 2, 3, . . .}, the set wt−1 (N) is finite.

For every word w ∈ A∗, define an element Wt (w) ∈ N by Wt (w) = wt (w1) + wt (w2) + · · · + wt (wk),
where k is the length of w. Then,

(13.186.2) every w ∈ A∗ satisfies Wt (w) = |w|
1179.

For every w ∈ L, the element M
〈gcdw〉
redw of QSym is homogeneous of degree Wt (w) 1180.

The k-module QSym has a basis (gu)u∈A∗ having the property that for every u ∈ A∗, the element gu of

QSym is homogeneous of degree Wt (u) 1181.

1178Proof. Let w ∈ L. Then, Corollary 6.5.8(a) (applied to gcdw and redw instead of s and w) yields M
〈gcdw〉
redw ∈ QSym,

qed.
1179Proof of (13.186.2): Let w ∈ A∗. Let k be the length of w. Then, w = (w1, w2, . . . , wk), so that |w| = w1 +w2 +· · ·+wk.

Recall that wt is the identity map. In other words, wt = id. Now, the definition of Wt (w) yields

Wt (w) = wt (w1) + wt (w2) + · · ·+ wt (wk) = id (w1) + id (w2) + · · ·+ id (wk) (since wt = id)

= w1 + w2 + · · ·+ wk = |w| ,

and thus (13.186.2) is proven.
1180Proof. Let w ∈ L. Then, w is a Lyndon word (since L is the set of all Lyndon words), hence nonempty. Remark 6.5.11(f)

(applied to α = w) now yields (gcdw) |redw| = |w| = Wt (w) (by (13.186.2)). But Corollary 6.5.8(b) (applied to gcdw and

redw instead of s and w) yields M
〈gcdw〉
redw ∈ QSym(gcdw)|redw| = QSymWt(w) (since (gcdw) |redw| = Wt (w)). In other words,

the element M
〈gcdw〉
redw of QSym is homogeneous of degree Wt (w), qed.

1181Proof. We shall show that (Mu)u∈A∗ is such a basis.
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Once (13.186.1) is proven, it thus follows that we can apply Lemma 6.3.7(c) to A = QSym and bw =

M
〈gcdw〉
redw . From this, we can conclude that the family

(
M
〈gcdw〉
redw

)
w∈L

is an algebraically independent gen-

erating set of the k-algebra QSym (provided that (13.186.1) is proven); this is precisely what we need to
prove.

Hence, in order to complete the proof of Theorem 6.5.13, it is sufficient to prove (13.186.1). So we shall
now prove (13.186.1).

Let U denote the k-subalgebra of QSym generated by the family
(
M
〈gcdw〉
redw

)
w∈L

. Then, U is a k-

submodule of QSym. It is clear that

(13.186.3) M
〈s〉
β ∈ U for every reduced Lyndon composition β and every s ∈ {1, 2, 3, . . .} .

1182 Using this and using Exercise 6.5.4(d), it is now easy to see that

(13.186.4) M
〈s〉
β ∈ U for every Lyndon composition β and every s ∈ {1, 2, 3, . . .} .

1183

We shall now prove that

(13.186.5) Mβ ∈ U for every composition β.

Proof of (13.186.5): We will prove (13.186.5) by strong induction over |β|:

Indeed, A∗ = Comp, so that (Mu)u∈A∗ = (Mu)u∈Comp is clearly a basis of the k-module QSym. Furthermore, for every

u ∈ A∗, the element Mu of QSym is homogeneous of degree |u|. Since Wt (u) = |u| for every u ∈ A∗ (by (13.186.2), applied to
w = u), this rewrites as follows: For every u ∈ A∗, the element Mu of QSym is homogeneous of degree Wt (u).

Thus, (Mu)u∈A∗ is a basis of the k-module QSym having the property that for every u ∈ A∗, the element Mu of QSym is

homogeneous of degree Wt (u). Hence, the k-module QSym has a basis (gu)u∈A∗ having the property that for every u ∈ A∗,

the element gu of QSym is homogeneous of degree Wt (u) (namely, (Mu)u∈A∗ is such a basis), qed.
1182Proof of (13.186.3): Let β be a reduced Lyndon composition. Let s ∈ {1, 2, 3, . . .}.
The composition β is Lyndon and thus nonempty. Remark 6.5.11(e) (applied to α = β) yields that the composition β {s}

is nonempty and satisfies red (β {s}) = redβ and gcd (β {s}) = s gcdβ. But β is reduced; thus, gcdβ = 1 (by the definition
of “reduced”). Hence, gcd (β {s}) = s gcdβ︸ ︷︷ ︸

=1

= s. Also, Remark 6.5.11(d) (applied to α = β) yields redβ = β, so that

red (β {s}) = redβ = β.

Remark 6.5.11(b) (applied to α = β {s}) shows that the composition β {s} is Lyndon if and only if the composition red (β {s})
is Lyndon. Since the composition red (β {s}) = β is Lyndon, this yields that the composition β {s} is Lyndon. In other words,

β {s} ∈ L (since L is the set of all Lyndon words). Hence, M
〈gcd(β{s})〉
red(β{s}) is an element of the family

(
M
〈gcdw〉
redw

)
w∈L

(namely,

the element for w = β {s}). In other words, M
〈s〉
β is an element of the family

(
M
〈gcdw〉
redw

)
w∈L

(since red (β {s}) = β and

gcd (β {s}) = s). Hence, M
〈s〉
β belongs to the k-subalgebra of QSym generated by this family

(
M
〈gcdw〉
redw

)
w∈L

. Since the

k-subalgebra of QSym generated by the family
(
M
〈gcdw〉
redw

)
w∈L

is U , this rewrites as follows: M
〈s〉
β belongs to U . In other

words, M
〈s〉
β ∈ U . This proves (13.186.3).

1183Proof. Let β be a Lyndon composition, and let s ∈ {1, 2, 3, . . .}. The composition β is Lyndon and thus nonempty;
hence, gcdβ and redβ are well-defined.

Remark 6.5.11(b) (applied to α = β) yields that the composition β is Lyndon if and only if the composition redβ is Lyndon.
Since the composition β is Lyndon, we therefore conclude that the composition redβ is Lyndon. Also, the composition redβ

is reduced (by Remark 6.5.11(c)). Thus, redβ is a reduced Lyndon composition. Remark 6.5.11(a) (applied to α = β) yields

β = (redβ) {gcdβ}, so that (redβ) {gcdβ} = β.
Let α = redβ. Recall that redβ is a reduced Lyndon composition. In other words, α is a reduced Lyndon composition

(since α = redβ).

Exercise 6.5.4(d) (applied to n = gcdβ) yields that there exists a polynomial P ∈ k [z1, z2, z3, . . .] such that M
〈s〉
α{gcd β} =

P
(
M
〈1〉
α ,M

〈2〉
α ,M

〈3〉
α , . . .

)
. Consider this P . We have α︸︷︷︸

=red β

{gcdβ} = (redβ) {gcdβ} = β. Hence, M
〈s〉
α{gcd β} =

P
(
M
〈1〉
α ,M

〈2〉
α ,M

〈3〉
α , . . .

)
rewrites as M

〈s〉
β = P

(
M
〈1〉
α ,M

〈2〉
α ,M

〈3〉
α , . . .

)
.

However, for every j ∈ {1, 2, 3, . . .}, we have M
〈j〉
α ∈ U (by (13.186.3), applied to α and j instead of β and s). In other

words, M
〈1〉
α , M

〈2〉
α , M

〈3〉
α , . . . are elements of U . Therefore, Q

(
M
〈1〉
α ,M

〈2〉
α ,M

〈3〉
α , . . .

)
∈ U for every Q ∈ k [z1, z2, z3, . . .]

(since U is a k-subalgebra of QSym). Applied to Q = P , this yields P
(
M
〈1〉
α ,M

〈2〉
α ,M

〈3〉
α , . . .

)
∈ U . Thus, M

〈s〉
β =

P
(
M
〈1〉
α ,M

〈2〉
α ,M

〈3〉
α , . . .

)
∈ U . This proves (13.186.4).
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Induction step: Let N ∈ N. We assume that (13.186.5) holds for all compositions β satisfying |β| < N .
We need to show that (13.186.5) also holds for all compositions β satisfying |β| = N . In other words, we
need to prove that Mβ ∈ U for every composition β satisfying |β| = N . In other words, we need to prove
that

(13.186.6) Mβ ∈ U for every β ∈ CompN .

Proof of (13.186.6): We will prove (13.186.6) by strong induction over β with respect to the wll-order on
CompN . In other words, we fix some α ∈ CompN , and we assume that (13.186.6) holds for all β ∈ CompN
satisfying β <

wll
α. We now need to prove that (13.186.6) holds for β = α. In other words, we need to prove

that Mα ∈ U .
If α = ∅, then Mα ∈ U is obvious1184. Hence, for the rest of this proof of Mα ∈ U , we can WLOG assume

that α 6= ∅. Assume this. The composition α is nonempty (since α 6= ∅), so that it satisfies |α| 6= 0. Since
|α| = N (because α ∈ CompN ), we have N = |α| 6= 0. Thus, N is a positive integer.

We have assumed that (13.186.6) holds for all β ∈ CompN satisfying β <
wll
α. In other words,

(13.186.7) Mβ ∈ U for all β ∈ CompN satisfying β <
wll
α.

Also, we have assumed that (13.186.5) holds for all compositions β satisfying |β| < N . In other words,

(13.186.8) Mβ ∈ U for all compositions β satisfying |β| < N.

Let (a1, a2, . . . , ap) be the CFL factorization of the word α. Then, (a1, a2, . . . , ap) is a tuple of Lyndon
words satisfying α = a1a2 · · · ap and a1 ≥ a2 ≥ · · · ≥ ap (according to the definition of a CFL factorization).
We have p 6= 0 (since otherwise, we would have p = 0 and thus α = a1a2 · · · ap = (empty product) = ∅,
contradicting α 6= ∅). Thus, p ∈ {1, 2, 3, . . .}. Hence, the word a1 is well-defined. Clearly, a1 is a Lyndon
word (since (a1, a2, . . . , ap) is a tuple of Lyndon words).

We distinguish between two cases:
Case 1: All of the words a1, a2, . . ., ap are equal.
Case 2: Not all of the words a1, a2, . . ., ap are equal.
Let us consider Case 1 first. In this case, all of the words a1, a2, . . ., ap are equal. In other words,

a1 = a2 = · · · = ap. Thus, a1 = ai for every i ∈ {1, 2, . . . , p}.
Let x = a1. Then, x = a1 = ai for every i ∈ {1, 2, . . . , p}. Multiplying these identities for all i ∈

{1, 2, . . . , p}, we obtain xx · · ·x︸ ︷︷ ︸
p times

= a1a2 · · · ap = α, so that α = xx · · ·x︸ ︷︷ ︸
p times

= xp, thus xp = α. Also, x = a1 is

a Lyndon word. Let k = |x|. Then, x ∈ Compk. Also, N =

∣∣∣∣∣∣ α︸︷︷︸
=xp

∣∣∣∣∣∣ = |xp| = p |x|, so that p |x| = N . Thus,

p k︸︷︷︸
=|x|

= p |x| = N .

Now, Corollary 6.5.29 (applied to s = p) yields

M 〈p〉x −Mxp ∈
∑

w∈Comppk;

w<
wll
xp

kMw =
∑

w∈CompN ;
w<

wll
α

k Mw︸︷︷︸
∈U

(by (13.186.7), applied
to β=w)

(since pk = N and xp = α)

⊂
∑

w∈CompN ;
w<

wll
α

kU ⊂ U (since U is a k-submodule of QSym) .

Hence,

Mxp −M 〈p〉x = −
(
M 〈p〉x −Mxp

)
︸ ︷︷ ︸

∈U

∈ −U ⊂ U (since U is a k-submodule of QSym) ,

1184Proof. Assume that α = ∅. Then, Mα = M∅ = 1 ∈ U (since U is a k-subalgebra of QSym), qed.
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so that
Mxp ∈ M 〈p〉x︸ ︷︷ ︸

∈U
(by (13.186.4), applied

to x and p instead of β and s)

+U ∈ U + U ⊂ U

(since U is a k-submodule of QSym). Since xp = α, this rewrites as Mα ∈ U . Thus, we have proven Mα ∈ U
in Case 1.

Let us now consider Case 2. In this case, not all of the words a1, a2, . . ., ap are equal. Hence, there exists
some k ∈ {1, 2, . . . , p− 1} such that ak 6= ak+1. Consider this k.

We have ak ≥ ak+1 (since a1 ≥ a2 ≥ · · · ≥ ap). Combined with ak 6= ak+1, this yields ak > ak+1. Let
x be the word a1a2 · · · ak, and let y be the word ak+1ak+2 · · · ap. Then, Corollary 6.5.25 (applied to u = α
and n = N) yields

Mα = MxMy −
(

a sum of terms of the form Mw with w ∈ CompN satisfying w <
wll
α

)
.

Thus,

MxMy −Mα =

(
a sum of terms of the form Mw with w ∈ CompN satisfying w <

wll
α

)
∈

∑
w∈CompN ;
w<

wll
α

k Mw︸︷︷︸
∈U

(by (13.186.7), applied
to β=w)

⊂
∑

w∈CompN ;
w<

wll
α

kU ⊂ U

(since U is a k-submodule of QSym). Hence,

(13.186.9) Mα ∈MxMy − U.
Now, it is easy to see that N = |x| + |y| 1185. But |x| > 0 1186 and |y| > 0 1187. Hence,

N = |x| + |y|︸︷︷︸
>0

> |x|, which yields |x| < N . Hence, (13.186.8) (applied to β = x) yields Mx ∈ U . Also,

N = |x|︸︷︷︸
>0

+ |y| > |y|, and thus |y| < N , so that (13.186.8) (applied to β = y) yields My ∈ U . Now, (13.186.9)

becomes Mα ∈ Mx︸︷︷︸
∈U

My︸︷︷︸
∈U

−U ⊂ UU − U ⊂ U (since U is a k-subalgebra of QSym). Thus, we have proven

Mα ∈ U in Case 2.
Now, we have proven Mα ∈ U in each of the two Cases 1 and 2. Since these two Cases cover all possibilities,

this yields that we always have Mα ∈ U . In other words, (13.186.6) holds for β = α.
Thus, we have completed the induction step of our induction over β. Therefore, we have proven (13.186.6)

by induction. So we now know that Mβ ∈ U for every β ∈ CompN . In other words, Mβ ∈ U for every
composition β satisfying |β| = N . In other words, (13.186.5) holds for all compositions β satisfying |β| = N .

Thus, we have completed the induction step of our induction over N . Hence, (13.186.5) is proven by
induction over N .

1185Proof. Multiplying the equalities x = a1a2 · · · ak and y = ak+1ak+2 · · · ap, we obtain

xy = (a1a2 · · · ak) (ak+1ak+2 · · · ap) = a1a2 · · · ap = α,

so that α = xy and thus |α| = |xy| = |x|+ |y|, so that |x|+ |y| = |α| = N , qed.
1186Proof. Notice that ak is a Lyndon word (since (a1, a2, . . . , ap) is a tuple of Lyndon words), and thus nonempty.

But ak is a suffix of the word a1a2 · · · ak. Hence, ` (ak) ≤ ` (a1a2 · · · ak), so that ` (a1a2 · · · ak) ≥ ` (ak) > 0 (since the word

ak is nonempty). Now, `

 x︸︷︷︸
=a1a2···ak

 = ` (a1a2 · · · ak) > 0, so that the word x is nonempty, and therefore |x| > 0, qed.

1187Proof. Notice that ak+1 is a Lyndon word (since (a1, a2, . . . , ap) is a tuple of Lyndon words), and thus nonempty.

But ak+1 is a prefix of the word ak+1ak+2 · · · ap. Hence, ` (ak+1) ≤ ` (ak+1ak+2 · · · ap), so that ` (ak+1ak+2 · · · ap) ≥

` (ak+1) > 0 (since the word ak+1 is nonempty). Now, `

 y︸︷︷︸
=ak+1ak+2···ap

 = ` (ak+1ak+2 · · · ap) > 0, so that the word y is

nonempty, and therefore |y| > 0, qed.
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Now, recall that the family (Mβ)β∈Comp is a basis of the k-module QSym, and thus generates this k-

module. Hence,

QSym =
∑

β∈Comp

k Mβ︸︷︷︸
∈U

(by (13.186.5))

⊂
∑

β∈Comp

kU ⊂ U

(since U is a k-submodule of QSym). Combined with U ⊂ QSym, this yields U = QSym. Since U is

the k-subalgebra of QSym generated by the family
(
M
〈gcdw〉
redw

)
w∈L

, this shows that the k-subalgebra of

QSym generated by the family
(
M
〈gcdw〉
redw

)
w∈L

is QSym itself. In other words, the family
(
M
〈gcdw〉
redw

)
w∈L

generates the k-algebra QSym. Thus, (13.186.1) is proven. As we know, this completes the proof of Theorem
6.5.13. �

13.187. Solution to Exercise 6.5.32. Solution to Exercise 6.5.32.

Proof of Theorem 6.4.3. We know (from the proof of Theorem 6.5.13) that the family
(
M
〈gcdw〉
redw

)
w∈L

is an

algebraically independent generating set of the k-algebra QSym.

Now, define a grading on the k-algebra k [xw | w ∈ L] by setting deg (xw) =
∑`(w)
i=1 wi for every w ∈ L. By

the universal property of the polynomial algebra k [xw | w ∈ L], we can define a k-algebra homomorphism
Φ : k [xw | w ∈ L]→ QSym by setting

Φ (xw) = M
〈gcdw〉
redw for every w ∈ L.

1188 This homomorphism Φ is a k-algebra isomorphism (since
(
M
〈gcdw〉
redw

)
w∈L

is an algebraically independent

generating set of the k-algebra QSym) and is graded (because for every w ∈ L, the element M
〈gcdw〉
redw of

QSym is homogeneous of degree deg (xw) 1189). Thus, Φ is an isomorphism of graded k-algebras. Hence,
QSym ∼= k [xw | w ∈ L] as graded k-algebras. Thus, QSym is a polynomial algebra. This proves Theorem
6.4.3. �

13.188. Solution to Exercise 6.5.34. Solution to Exercise 6.5.34.

Proof of Corollary 6.5.33. Theorem 6.5.13 yields that the family
(
M
〈s〉
w

)
(w,s)∈RL×{1,2,3,...}

is an algebraically

independent generating set of the k-algebra QSym.
Notice that (1) is a reduced Lyndon composition; that is, (1) ∈ RL (since RL is the set of all reduced

Lyndon compositions). Hence, {(1)} ⊂ RL, whence {(1)} × {1, 2, 3, . . .} ⊂ RL× {1, 2, 3, . . .}.
The following fact is straightforward to check: If A is a commutative k-algebra, and if (ai)i∈I is an

algebraically independent generating set of the k-algebra A, and if J is a subset of I, then (ai)i∈I\J is an

algebraically independent generating set of the k [ai | i ∈ J ]-algebra A. 1190 We can apply this fact to A =

QSym, I = RL×{1, 2, 3, . . .}, (ai)i∈I =
(
M
〈s〉
w

)
(w,s)∈RL×{1,2,3,...}

and J = {(1)}× {1, 2, 3, . . .}. As a result,

we conclude that
(
M
〈s〉
w

)
(w,s)∈(RL×{1,2,3,...})\({(1)}×{1,2,3,...})

is an algebraically independent generating set of

1188This is well-defined since M
〈gcdw〉
redw ∈ QSym (by Corollary 6.5.8(a), applied to α = redw and s = gcdw).

1189Proof. Let w ∈ L. Then, w is a Lyndon word (since L is the set of all Lyndon words), and thus nonempty. Hence,

Remark 6.5.11(f) (applied to α = w) yields (gcdw) |redw| = |w| =
∑`(w)
i=1 wi = deg (xw). Now, Corollary 6.5.8(b) (applied to

α = redw and s = gcdw) yields M
〈gcdw〉
redw ∈ QSym(gcdw)|redw| = QSymdeg(xw) (since (gcdw) |redw| = deg (xw)). In other

words, the element M
〈gcdw〉
redw of QSym is homogeneous of degree deg (xw), qed.

1190The idea behind this fact is that a polynomial ring in the indeterminates (xi)i∈I can be regarded as a polynomial ring

in the indeterminates (xi)i∈I\J over the polynomial ring in the indeterminates (xi)i∈J .
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the k
[
M
〈s〉
w | (w, s) ∈ {(1)} × {1, 2, 3, . . .}

]
-algebra QSym. Hence, the k

[
M
〈s〉
w | (w, s) ∈ {(1)} × {1, 2, 3, . . .}

]
-

algebra QSym has an algebraically independent generating set; it is therefore a polynomial algebra over

k
[
M
〈s〉
w | (w, s) ∈ {(1)} × {1, 2, 3, . . .}

]
. Since k

[
M
〈s〉
w | (w, s) ∈ {(1)} × {1, 2, 3, . . .}

]
= Λ 1191, this

rewrites as follows: The Λ-algebra QSym is a polynomial algebra over Λ. This proves Corollary 6.5.33. �

13.189. Solution to Exercise 6.6.8. Solution to Exercise 6.6.8. Before we step to the proofs of Proposition
6.6.5, Lemma 6.6.6 and Proposition 6.6.7, let us state a basic fact about cycles of permutations:

Lemma 13.189.1. Let n ∈ N. Let τ ∈ Sn be a permutation. Let z be a cycle of τ . Let k be the size of z.
Let p ∈ z. For each u ∈ N, we set

pu := τu (p) .

Then:

(a) We have z = {p0, p1, p2, . . .}.
(b) We have τk (p) = p.
(c) We have z = {p0, p1, . . . , pk−1}.
(d) We have τ i (pu) = pu+i for each u ∈ N and i ∈ N.
(e) We have pu+k = pu for each u ∈ N.
(f) We have pu ∈ z for each u ∈ N.
(g) The k elements p0, p1, . . . , pk−1 are distinct.
(h) We have z = {pu, pu+1, . . . , pu+k−1} for each u ∈ N.
(i) We have ordτ (p) = k.

Proof of Lemma 13.189.1. All of these are well-known properties of cycles in permutations. �

We record a simple corollary of Lemma 13.189.1:

Lemma 13.189.2. Let n ∈ N. Let τ ∈ Sn be a permutation. Let p ∈ {1, 2, . . . , n}. Let j = ordτ (p). Then:

(a) We have τ j (p) = p.
(b) We have j = ordτ (τ (p)).

Proof of Lemma 13.189.2. Let z be the cycle of τ that contains p. Thus, p ∈ z. Let k be the size of z. For
each u ∈ N, we set pu := τu (p).

Lemma 13.189.1(i) yields ordτ (p) = k. Hence, j = ordτ (p) = k. But Lemma 13.189.1(b) yields τk (p) = p.
But from j = k, we obtain τ j (p) = τk (p) = p. This proves Lemma 13.189.2(a).

(b) Lemma 13.189.1(f) (applied to u = 1) yields p1 ∈ z. But the definition of p1 yields p1 = τ1︸︷︷︸
=τ

(p) =

τ (p). Hence, τ (p) = p1 ∈ z.
Set q = τ (p). Thus, q = τ (p) ∈ z. For each u ∈ N, we set qu := τu (q). Then, Lemma 13.189.1(i)

(applied to q and qu instead of p and pu) yields ordτ (q) = k. Comparing this with j = k, we obtain

j = ordτ

 q︸︷︷︸
=τ(p)

 = ordτ (τ (p)). This proves Lemma 13.189.2(b). �

1191Proof. The first sentence of Proposition 2.4.1 yields that the family (e1, e2, e3, . . .) generates the k-algebra Λ. In other

words, Λ = k [e1, e2, e3, . . .] = k [es | s ∈ {1, 2, 3, . . .}].
But

k
[
M
〈s〉
w | (w, s) ∈ {(1)} × {1, 2, 3, . . .}

]

= k

 M
〈s〉
(1)︸ ︷︷ ︸

=es
(by Exercise 6.5.5)

| s ∈ {1, 2, 3, . . .}


(

since the elements of {(1)} × {1, 2, 3, . . .} are precisely
the pairs of the form ((1) , s) for s ∈ {1, 2, 3, . . .}

)

= k [es | s ∈ {1, 2, 3, . . .}] = Λ

(since Λ = k [es | s ∈ {1, 2, 3, . . .}]), qed.
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Proof of Proposition 6.6.5. Let k = ordτ (h). Thus, k is the smallest positive integer i such that τ i (h) = h
(by the definition of ordτ (h)). Hence, k is a positive integer, and we have τk (h) = h. Furthermore,

τk+1 (h) = τ︸︷︷︸
=τ1

τk (h)︸ ︷︷ ︸
=h

 = τ1 (h), so that τ1 (h) = τk+1 (h).

The definition of wτ,h yields

wτ,h = wτ1(h)wτ2(h) · · ·wτk(h) (since k = ordτ (h))

=
(
wτ1(h), wτ2(h), . . . , wτk(h)

)
.(13.189.1)

Hence, the word wτ,h has length k. In other words, the word wτ,h has length ordτ (h) (since k = ordτ (h)).
Moreover, the word wτ,h is nonempty (since it has length k, but k is a positive integer). This proves
Proposition 6.6.5(a).

(b) The first letter of the word wτ,h exists (since the word wτ,h is nonempty). This first letter is wτ1(h)

(since wτ,h =
(
wτ1(h), wτ2(h), . . . , wτk(h)

)
). In other words, this first letter is wτ(h) (since τ1 = τ). This

proves Proposition 6.6.5(b).
(c) The last letter of the word wτ,h exists (since the word wτ,h is nonempty). This last letter is wτk(h)

(since wτ,h =
(
wτ1(h), wτ2(h), . . . , wτk(h)

)
). In other words, this last letter is wh (since τk (h) = h). This

proves Proposition 6.6.5(c).
(d) From (13.189.1), we obtain

c · wτ,h = c ·
(
wτ1(h), wτ2(h), . . . , wτk(h)

)
=
(
wτ2(h), wτ3(h), . . . , wτk(h), wτ1(h)

)(
by the definition of the action of C on Ak

)
=
(
wτ2(h), wτ3(h), . . . , wτk(h), wτk+1(h)

) (
since τ1 (h) = τk+1 (h)

)
=
(
wτ2(h), wτ3(h), . . . , wτk+1(h)

)
.(13.189.2)

On the other hand, we have k = ordτ (h) and therefore k = ordτ (τ (h)) (by Lemma 13.189.2(b), applied
to j = k and p = h). Hence, the definition of wτ,τ(h) yields

wτ,τ(h) = wτ1(τ(h))wτ2(τ(h)) · · ·wτk(τ(h)) =
(
wτ1(τ(h)), wτ2(τ(h)), . . . , wτk(τ(h))

)(
since wτ1(τ(h)), wτ2(τ(h)), . . . , wτk(τ(h)) are single letters

)
=
(
wτ2(h), wτ3(h), . . . , wτk+1(h)

)(
since each i ∈ {1, 2, . . . , k} satisfies wτ i(τ(h)) = wτ i+1(h)

(because τ i (τ (h)) = τ i+1 (h) )

)
.

Comparing this with (13.189.2), we obtain wτ,τ(h) = c · wτ,h. This proves Proposition 6.6.5(d).
(e) Let us first show that

(13.189.3) wτ,τ i(h) = ci · wτ,h for each i ∈ N.
[Proof of (13.189.3): We shall prove (13.189.3) by induction on i:

Induction base: We have wτ,τ0(h) = wτ,h (since τ0︸︷︷︸
=id

(h) = h). Comparing this with c0︸︷︷︸
=id

·wτ,h = wτ,h, we

obtain wτ,τ0(h) = c0 · wτ,h. In other words, (13.189.3) holds for i = 0. This completes the induction base.
Induction step: Let j ∈ N. Assume that (13.189.3) holds for i = j. We must prove that (13.189.3) holds

for i = j + 1.
We have assumed that (13.189.3) holds for i = j. In other words, we have wτ,τj(h) = cj · wτ,h. Now,

wτ,τj+1(h) = wτ,τ(τj(h))

(
since τ j+1 (h) = τ

(
τ j (h)

))
= c · wτ,τj(h)︸ ︷︷ ︸

=cj ·wτ,h

(
by Proposition 6.6.5(d), applied to τ j (h) instead of h

)
= c · cj︸︷︷︸

=cj+1

·wτ,h = cj+1 · wτ,h.

In other words, (13.189.3) holds for i = j+ 1. This completes the induction step. Thus, (13.189.3) is proved
by induction.]
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Now, forget that we fixed h. We thus have proved (13.189.3) for each h ∈ {1, 2, . . . , n}.
Now, let h ∈ {1, 2, . . . , n}. We want to prove Proposition 6.6.5(e); in other words, we must prove that

wτ,τ i(h) = ci ·wτ,h for each i ∈ Z. So let us fix i ∈ Z. We must then prove that wτ,τ i(h) = ci ·wτ,h. If i ∈ N,
then this follows immediately from (13.189.3). Thus, we WLOG assume that i /∈ N. Hence, i is a negative
integer (since i ∈ Z but i /∈ N), so that −i ∈ {1, 2, 3, . . .} ⊂ N. Thus, we can apply (13.189.3) to τ i (h) and
−i instead of h and i (since we have proved (13.189.3) for every value of h, not just for the h that we are
currently considering). We thus obtain

wτ,τ−i(τ i(h)) = c−i · wτ,τ i(h).

In view of τ−i
(
τ i (h)

)
=
(
τ−i ◦ τ i

)︸ ︷︷ ︸
=id

(h) = h, this rewrites as

wτ,h = c−i · wτ,τ i(h).

Hence,

ci · wτ,h︸︷︷︸
=c−i·wτ,τi(h)

= ci · c−i︸ ︷︷ ︸
=id

·wτ,τ i(h) = wτ,τ i(h).

In other words, wτ,τ i(h) = ci · wτ,h. This proves Proposition 6.6.5(e). �

Proof of Lemma 6.6.6. Definition 5.3.3 says that stdw is the unique permutation σ ∈ Sn defined in Propo-
sition 5.3.2. In other words, stdw is the unique permutation σ ∈ Sn such that for every two elements a
and b of {1, 2, . . . , n} satisfying a < b, we have (σ (a) < σ (b) if and only if wa ≤ wb). Hence, stdw is such
a permutation σ. In other words, stdw is a permutation in Sn and has the property that for every two
elements a and b of {1, 2, . . . , n} satisfying a < b, we have

(13.189.4) ((stdw) (a) < (stdw) (b) if and only if wa ≤ wb) .

But τ = (stdw)
−1

, so that τ−1 = stdw. Note that τ is a permutation (since τ ∈ Sn). Hence, τ is a
bijective map. Thus, in particular, τ is an injective map.

(a) Assume that τ−1 (α) < τ−1 (β). In view of τ−1 = stdw, this rewrites as (stdw) (α) < (stdw) (β).
But (13.189.4) (applied to a = α and b = β) shows that we have

((stdw) (α) < (stdw) (β) if and only if wα ≤ wβ) .

Hence, we have wα ≤ wβ (since we have (stdw) (α) < (stdw) (β)). This proves Lemma 6.6.6(a).
(b) Assume that τ−1 (α) ≥ τ−1 (β). In view of τ−1 = stdw, this rewrites as (stdw) (α) ≥ (stdw) (β).

Hence, (stdw) (α) < (stdw) (β) does not hold. But (13.189.4) (applied to a = α and b = β) shows that we
have

((stdw) (α) < (stdw) (β) if and only if wα ≤ wβ) .

Hence, wα ≤ wβ does not hold (since (stdw) (α) < (stdw) (β) does not hold). In other words, we have
wα > wβ . This proves Lemma 6.6.6(b).

(d) Assume that τ (α) ≥ τ (β). But α 6= β (since α < β) and thus τ (α) 6= τ (β) (since τ is injective).
Combining this with τ (α) ≥ τ (β), we obtain τ (α) > τ (β). In other words, τ (β) < τ (α). Also, β ≥ α
(since α < β), so that τ−1 (τ (β)) = β ≥ α = τ−1 (τ (α)). Hence, Lemma 6.6.6(b) (applied to τ (β) and τ (α)
instead of α and β) yields wτ(β) > wτ(α). In other words, wτ(α) < wτ(β). This proves Lemma 6.6.6(d).

(c) We are in one of the following two cases:
Case 1: We have τ (α) < τ (β).
Case 2: We have τ (α) ≥ τ (β).
Let us first consider Case 1. In this case, we have τ (α) < τ (β). Also, τ−1 (τ (α)) = α < β = τ−1 (τ (β)).

Hence, Lemma 6.6.6(a) (applied to τ (α) and τ (β) instead of α and β) yields wτ(α) ≤ wτ(β). Thus, Lemma
6.6.6(c) is proven in Case 1.

Let us next consider Case 2. In this case, we have τ (α) ≥ τ (β). Hence, Lemma 6.6.6(d) yields wτ(α) <
wτ(β). Hence, wτ(α) ≤ wτ(β). Thus, Lemma 6.6.6(c) is proven in Case 2.

We have thus proved Lemma 6.6.6(c) in each of the two Cases 1 and 2. Hence, Lemma 6.6.6(c) always
holds.

(e) Assume that wτ(α) = wτ(β). We must prove that τ (α) < τ (β).
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Assume the contrary. Thus, τ (α) ≥ τ (β). Hence, Lemma 6.6.6(d) yields wτ(α) < wτ(β). This contradicts
wτ(α) = wτ(β). This contradiction shows that our assumption was false. Hence, Lemma 6.6.6(e) is proven.

(f) Assume that wτ,α = wτ,β .
Now, Proposition 6.6.5(b) (applied to h = α) yields that the first letter of the word wτ,α is wτ(α). Likewise,

the first letter of the word wτ,β is wτ(β). Hence, the first letters of the two words wτ,α and wτ,β are wτ(α)

and wτ(β). Thus, from wτ,α = wτ,β , we obtain wτ(α) = wτ(β). Hence, Lemma 6.6.6(e) yields τ (α) < τ (β).
It remains to show that wτ,τ(α) = wτ,τ(β).

Proposition 6.6.5(d) (applied to h = α) yields wτ,τ(α) = c · wτ,α. Proposition 6.6.5(d) (applied to h = β)
yields wτ,τ(β) = c · wτ,β . Thus,

wτ,τ(α) = c · wτ,α︸︷︷︸
=wτ,β

= c · wτ,β = wτ,τ(β).

Thus, the proof of Lemma 6.6.6(f) is complete (since we already have shown that τ (α) < τ (β)).
(g) Assume that wτ,α = wτ,β . We must show that

(13.189.5) τ i (α) < τ i (β) for each i ∈ N.

[Proof of (13.189.5): We shall prove (13.189.5) by induction on i:
Induction base: We have α < β. In view of τ0︸︷︷︸

=id

(α) = α and τ0︸︷︷︸
=id

(β) = β, this rewrites as τ0 (α) < τ0 (β).

In other words, (13.189.5) holds for i = 0. This completes the induction base.
Induction step: Let j ∈ N. Assume that (13.189.5) holds for i = j. We must prove that (13.189.5) holds

for i = j + 1.
We have assumed that (13.189.5) holds for i = j. In other words, we have τ j (α) < τ j (β).
Proposition 6.6.5(e) (applied to i = j and h = α) yields wτ,τj(α) = cj ·wτ,α. The same argument (applied

to β instead of α) yields wτ,τj(β) = cj · wτ,β . Thus,

wτ,τj(α) = cj · wτ,α︸︷︷︸
=wτ,β

= cj · wτ,β = wτ,τj(β).

Hence, Lemma 6.6.6(f) (applied to τ j (α) and τ j (β) instead of α and β) yields τ
(
τ j (α)

)
< τ

(
τ j (β)

)
and

wτ,τ(τj(α)) = wτ,τ(τj(β)). Now,

τ j+1︸︷︷︸
=τ◦τj

(α) =
(
τ ◦ τ j

)
(α) = τ

(
τ j (α)

)
< τ

(
τ j (β)

)
=
(
τ ◦ τ j

)︸ ︷︷ ︸
=τj+1

(β) = τ j+1 (β) .

In other words, (13.189.5) holds for i = j+ 1. This completes the induction step. Thus, (13.189.5) is proved
by induction.]

Hence, Lemma 6.6.6(g) is proved.
(h) We have assumed that

(13.189.6) every i ∈ {0, 1, . . . , j − 1} satisfies wτ i+1(α) = wτ i+1(β).

Now, we claim that

(13.189.7) τ i (α) < τ i (β) for every i ∈ {0, 1, . . . , j} .

[Proof of (13.189.7): We shall prove (13.189.7) by induction on i:
Induction base: We have α < β. In view of τ0︸︷︷︸

=id

(α) = α and τ0︸︷︷︸
=id

(β) = β, this rewrites as τ0 (α) < τ0 (β).

In other words, (13.189.7) holds for i = 0. This completes the induction base.
Induction step: Let s ∈ {0, 1, . . . , j − 1}. Assume that (13.189.7) holds for i = s. We must prove that

(13.189.7) holds for i = s+ 1.
We have assumed that (13.189.7) holds for i = s. In other words, we have τs (α) < τs (β). Moreover,

(13.189.6) (applied to i = s) yields wτs+1(α) = wτs+1(β). In view of τs+1 (α) = τ (τs (α)) and τs+1 (β) =
τ (τs (β)), this rewrites as wτ(τs(α)) = wτ(τs(β)). Hence, Lemma 6.6.6(e) (applied to τs (α) and τs (β)

instead of α and β) yields τ (τs (α)) < τ (τs (β)) (since τs (α) < τs (β)). In view of τs+1 (α) = τ (τs (α)) and
τs+1 (β) = τ (τs (β)), this rewrites as τs+1 (α) < τ s+1 (β). In other words, (13.189.7) holds for i = s + 1.
This completes the induction step. Thus, (13.189.7) is proved by induction.]
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Now, j ∈ {0, 1, . . . , j}. Hence, (13.189.7) (applied to i = j) yields τ j (α) < τ j (β). Thus, Lemma 6.6.6(c)
(applied to τ j (α) and τ j (β) instead of α and β) yields wτ(τj(α)) ≤ wτ(τj(β)). In view of τ

(
τ j (α)

)
=(

τ ◦ τ j
)︸ ︷︷ ︸

=τj+1

(α) = τ j+1 (α) and τ
(
τ j (β)

)
=
(
τ ◦ τ j

)︸ ︷︷ ︸
=τj+1

(β) = τ j+1 (β), this rewrites as wτj+1(α) ≤ wτj+1(β). Thus,

Lemma 6.6.6(h) is proved. �

Proof of Proposition 6.6.7. We have w = (w1, w2, . . . , wn) (since w ∈ An).
Let k be the size of z. Thus, k = |z|.
(a) Let h ∈ z. We must prove that [wτ,h] = {wτ,i | i ∈ z}.
For each u ∈ N, we set hu := τu (h). Lemma 13.189.1(i) (applied to p = h and pu = hu) yields ordτ (h) = k.
Proposition 6.6.5(a) yields that the word wτ,h is nonempty and has length ordτ (h). In other words, the

word wτ,h is nonempty and has length k (since ordτ (h) = k). Thus, [wτ,h] is the k-necklace that contains
wτ,h (by the definition of [wτ,h]). In other words, [wτ,h] is the orbit of the C-action on Ak that contains wτ,h
(since a k-necklace is the same thing as an orbit of the C-action on Ak). In other words, [wτ,h] = C · wτ,h.

But C =
{
ci | i ∈ Z

}
(since c is a generator of the cyclic group C). Hence,

[wτ,h] = C︸︷︷︸
={ci | i∈Z}

·wτ,h =
{
ci | i ∈ Z

}
· wτ,h

=
{
ci · wτ,h | i ∈ Z

}
.(13.189.8)

On the other hand, z is the cycle of τ that contains h (since z is a cycle of τ , and since h ∈ z). Hence,
z =

{
τ i (h) | i ∈ Z

}
, and thus

{wτ,u | u ∈ z} =
{
wτ,u | u ∈

{
τ i (h) | i ∈ Z

}}

=

 wτ,τ i(h)︸ ︷︷ ︸
=ci·wτ,h

(by Proposition 6.6.5(e))

| i ∈ Z

 =
{
ci · wτ,h | i ∈ Z

}
.

Comparing this with (13.189.8), we obtain [wτ,h] = {wτ,u | u ∈ z} = {wτ,i | i ∈ z} (here, we have renamed
the index u as i). This proves Proposition 6.6.7(a).

(b) Let α and β be two distinct elements of z. We must prove that wτ,α 6= wτ,β .
We have α 6= β (since α and β are distinct). Thus, either α < β or α > β. We WLOG assume that α < β

(since otherwise, it suffices to swap α with β).
We must prove that wτ,α 6= wτ,β . Assume the contrary. Thus, wτ,α = wτ,β . Lemma 6.6.6(g) thus shows

that

(13.189.9) τ i (α) < τ i (β) for each i ∈ N.

On the other hand, we have

(13.189.10) z =
{
τ0 (γ) , τ1 (γ) , . . . , τk−1 (γ)

}
for each γ ∈ z.

[Proof of (13.189.10): Let γ ∈ z. For each u ∈ N, we set γu := τu (γ). Then, Lemma 13.189.1(c) (applied
to p = γ and pu = γu) yields

z = {γ0, γ1, . . . , γk−1} =
{
τ0 (γ) , τ1 (γ) , . . . , τk−1 (γ)

}
(since each u ∈ {0, 1, . . . , k − 1} satisfies γu = τu (γ) (by the definition of γu)). This proves (13.189.10).]

Applying (13.189.10) to γ = β, we obtain z =
{
τ0 (β) , τ1 (β) , . . . , τk−1 (β)

}
.

Now, let m be the smallest element of z. Then, m ∈ z =
{
τ0 (β) , τ1 (β) , . . . , τk−1 (β)

}
. Hence, there

exists some i ∈ {0, 1, . . . , k − 1} such that m = τ i (β). Consider this i.
But (13.189.10) (applied to γ = α) yields z =

{
τ0 (α) , τ1 (α) , . . . , τk−1 (α)

}
. From i ∈ {0, 1, . . . , k − 1},

we obtain τ i (α) ∈
{
τ0 (α) , τ1 (α) , . . . , τk−1 (α)

}
. In other words, τ i (α) ∈ z (since z =

{
τ0 (α) , τ1 (α) , . . . , τk−1 (α)

}
).

But m is the smallest element of z. Thus, p ≥ m for each p ∈ z. We can apply this to p = τ i (α)
(since τ i (α) ∈ z), and thus obtain τ i (α) ≥ m = τ i (β). But (13.189.9) yields τ i (α) < τ i (β). These two
inequalities clearly contradict one another.
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This contradiction shows that our assumption was false. Hence, wτ,α 6= wτ,β is proved. Thus, Proposition
6.6.7(b) follows.

(c) There are k many elements i ∈ z (since k is the size of z). The words wτ,i corresponding to these k many
elements i are all distinct (by Proposition 6.6.7(b)). Thus, the set {wτ,i | i ∈ z} (consisting of these words)
has size k. In other words, |{wτ,i | i ∈ z}| = k. But recall that k = |z|. Hence, |{wτ,i | i ∈ z}| = k = |z|.
This proves Proposition 6.6.7(c).

(d) The set z is a cycle of τ , and thus is nonempty (since any cycle of a permutation is nonempty). Hence,
there exists some h ∈ z. Consider this h. Proposition 6.6.7(a) yields [wτ,h] = {wτ,i | i ∈ z}.

But [wτ,h] is the k-necklace that contains wτ,h (as we have showed in the proof of Proposition 6.6.7(a)
above). Hence, [wτ,h] is a k-necklace.

Proposition 6.6.7(c) yields |{wτ,i | i ∈ z}| = |z| = k (since k = |z|). In view of [wτ,h] = {wτ,i | i ∈ z},
this rewrites as |[wτ,h]| = k.

The period of the necklace [wτ,h] is |[wτ,h]| (by the definition of the period of a necklace). In other words,
the period of the necklace [wτ,h] is k (since |[wτ,h]| = k).

But [wτ,h] is a k-necklace. Hence, this k-necklace [wτ,h] is aperiodic if and only if its period is k (by
the definition of “aperiodic”). Thus, this k-necklace [wτ,h] is aperiodic (since its period is k). In view of
[wτ,h] = {wτ,i | i ∈ z}, this rewrites as follows: The k-necklace {wτ,i | i ∈ z} is aperiodic. Hence, the set
{wτ,i | i ∈ z} is an aperiodic necklace. This proves Proposition 6.6.7(d). �

We have now proved Proposition 6.6.5, Lemma 6.6.6 and Proposition 6.6.7. This solves Exercise 6.6.8.

13.190. Solution to Exercise 6.6.23. Solution to Exercise 6.6.23. In preparation for solving Exercise
6.6.23, we first show a few simple lemmas about necklaces:

Lemma 13.190.1. Let u ∈ A∗ be a nonempty word. Then, u ∈ [u].

Proof of Lemma 13.190.1. The word u is nonempty. In other words, u ∈ An for some positive integer n.
Consider this n. Thus, [u] is the n-necklace containing u (by the definition of [u]). Hence, [u] contains u. In
other words, u ∈ [u]. This proves Lemma 13.190.1. �

Lemma 13.190.2. Let N be a necklace. Let u ∈ N . Then, N = [u].

Proof of Lemma 13.190.2. We know that N is a necklace. In other words, N is an n-necklace for some
positive integer n (by the definition of a necklace). Consider this n. We now know that N is an n-necklace;
in other words, N is an orbit of the C-action on An (by the definition of an n-necklace). Hence, N is a set
of words of length n. Thus, u is a word of length n (since u ∈ N).

Recall that N is an orbit of the C-action on An. Since N contains u (because u ∈ N), we thus conclude
that N is the orbit of the C-action on An that contains u. In other words, N is the n-necklace that contains
u (because an n-necklace is the same thing as an orbit of the C-action on An). In other words, N = [u]
(since the n-necklace that contains u has been denoted by [u]). This proves Lemma 13.190.2. �

Lemma 13.190.3. Let u ∈ A∗ be a Lyndon word. Then, the necklace [u] is aperiodic.

Proof of Lemma 13.190.3. The word u is Lyndon, and thus is nonempty (since any Lyndon word is nonempty
by definition). Hence, Lemma 13.190.1 yields u ∈ [u]. In other words, the necklace [u] contains u.

Thus, the necklace [u] contains the word u, which is a Lyndon word. Hence, the necklace [u] contains a
Lyndon word (namely, u). If the necklace [u] was not aperiodic, then Exercise 6.1.34(d) (applied to N = [u])
would show that [u] contains no Lyndon word; but this would contradict the previous sentence. Hence, the
necklace [u] must be aperiodic. This proves Lemma 13.190.3. �

Lemma 13.190.4. Let u ∈ A∗ be a nonempty word such that the necklace [u] is aperiodic. Then, |[u]| =
` (u).

Proof of Lemma 13.190.4. The word u ∈ A∗ is nonempty. Thus, there exists a positive integer p such that
u ∈ Ap. Consider this p. Hence, [u] is a p-necklace. Also, from u ∈ Ap, we obtain ` (u) = p.
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The p-necklace [u] is aperiodic. In other words, its period is p (by the definition of an aperiodic p-necklace).
Thus,

p = (period of the p-necklace [u]) = |[u]|
(by the definition of the period of a p-necklace). Therefore, |[u]| = p = ` (u) (since ` (u) = p). This proves
Lemma 13.190.4. �

Lemma 13.190.5. Let k be a positive integer. Let v ∈ Ak be such that the necklace [v] is not aperiodic.
Then, there exists some h ∈ {1, 2, . . . , k − 1} such that ch · v = v.

Proof of Lemma 13.190.5. We have v ∈ Ak. Thus, [v] is a k-necklace. Hence, Exercise 6.1.34(a) (applied to
k and [v] instead of n and N) yields that [v] is a finite nonempty set and satisfies |[v]| | k. From |[v]| | k, we
obtain |[v]| ≤ k (since k is a positive integer).

Next, we claim the following:

Claim 1: The k elements c0 · v, c1 · v, . . . , ck−1 · v are not distinct.

[Proof of Claim 1: Assume the contrary. Thus, the k elements c0 · v, c1 · v, . . . , ck−1 · v are distinct.
The necklace [v] is defined to be the k-necklace containing v (since v ∈ Ak). In other words, the necklace

[v] is the C-orbit on Ak containing v (since a k-necklace is the same thing as a C-orbit on Ak). In other
words, the necklace [v] is the C-orbit of v ∈ Ak. In other words, the necklace [v] is the set C · v (since the
C-orbit of v ∈ Ak is the set C · v). In other words, [v] = C · v. Hence, |[v]| = |C · v|.

The k elements c0 · v, c1 · v, . . . , ck−1 · v all belong to C · v (since c0, c1, . . . , ck−1 all belong to C) and
are distinct (by our assumption). Hence, the set C · v contains (at least) k distinct elements (namely,
c0 ·v, c1 ·v, . . . , ck−1 ·v). Thus, |C · v| ≥ k. Thus, |[v]| = |C · v| ≥ k. Combining this with |[v]| ≤ k, we obtain
|[v]| = k. In other words, the period of [v] is k (since the period of [v] is defined as the integer |[v]|). But
[v] is a k-necklace. Hence, the necklace [v] is aperiodic if and only if its period is k (by the definition of an
aperiodic necklace). Thus, the necklace [v] is aperiodic (since its period is k). This contradicts the fact that
the necklace [v] is not aperiodic. This contradiction shows that our assumption was wrong. This completes
our proof of Claim 1.]

Claim 1 shows that the k elements c0 · v, c1 · v, . . . , ck−1 · v are not distinct. In other words, there exist
two elements x and y of {0, 1, . . . , k − 1} such that x < y and cx · v = cy · v. Consider these x and y.
From x ∈ {0, 1, . . . , k − 1} and y ∈ {0, 1, . . . , k − 1} and x < y, we obtain 0 ≤ x < y ≤ k − 1, so that
y − x ∈ {1, 2, . . . , k − 1}. Furthermore,

cy−x︸︷︷︸
=c−xcy

·v =
(
c−xcy

)
· v = c−x · (cy · v)︸ ︷︷ ︸

=cx·v

= c−x · (cx · v) =
(
c−xcx

)︸ ︷︷ ︸
=id

·v = v.

Hence, there exists some h ∈ {1, 2, . . . , k − 1} such that ch · v = v (namely, h = y − x). This proves Lemma
13.190.5. �

Lemma 13.190.6. Let n be a positive integer. Let d be a positive divisor of n. Thus, n/d is a positive
integer.

Let q ∈ An/d. Then, the n/d-necklace [q] and the n-necklace
[
qd
]

satisfy
∣∣[qd]∣∣ = |[q]| ≤ n/d.

Proof of Lemma 13.190.6. Exercise 6.1.34(a) (applied to n/d instead of n) shows that every n/d-necklace
N is a finite nonempty set and satisfies |N | | n/d. Applying this to N = [q], we conclude that [q] is a finite
nonempty set and satisfies |[q]| | n/d. From |[q]| | n/d, we obtain |[q]| ≤ n/d (since |[q]| ∈ N and since n/d is
a positive integer).

Now, consider the map ∆ : An/d → An defined in Lemma 13.147.5. The definition of ∆ yields ∆ (q) = qd.
Hence, qd = ∆ (q) ∈ An.

The necklace [q] is defined to be the n/d-necklace containing q (since q ∈ An/d). In other words, the
necklace [q] is the C-orbit on An/d containing q (since an n/d-necklace is the same thing as a C-orbit on
An/d). In other words, the necklace [q] is the C-orbit of q ∈ An/d. In other words, the necklace [q] is the set
C · q (since the C-orbit of q ∈ An/d is the set C · q). In other words, [q] = C · q. The same argument (applied
to n and qd instead of n/d and q) yields

[
qd
]

= C · qd.
But Lemma 13.147.5(c) shows that the map ∆ is injective. Hence, |∆ (S)| = |S| for any finite subset S of

An/d. Applying this to S = [q], we obtain |∆ ([q])| = |[q]| (since [q] is a finite subset of An/d).
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On the other hand, Lemma 13.147.5(b) shows that the map ∆ is C-equivariant. Therefore, ∆ (C · q) =
C ·∆ (q)︸ ︷︷ ︸

=qd

= C ·qd. This rewrites as ∆ ([q]) =
[
qd
]

(since [q] = C ·q and
[
qd
]

= C ·qd). Hence, |∆ ([q])| =
∣∣[qd]∣∣.

Therefore,
∣∣[qd]∣∣ = |∆ ([q])| = |[q]| ≤ n/d. This proves Lemma 13.190.6. �

We can now start proving the results required in Exercise 6.6.23:

Proof of Proposition 6.6.15. Define n ∈ N by n = ` (w). Then, n = ` (w) > 0 (since w is nonempty), so that
n is a positive integer. Also, w ∈ An (since ` (w) = n).

We must show that the word w is aperiodic if and only if the necklace [w] is aperiodic. In other words,
we must prove the following two claims:

Claim 1: If the word w is aperiodic, then the necklace [w] is aperiodic.

Claim 2: If the necklace [w] is aperiodic, then the word w is aperiodic.

[Proof of Claim 1: Assume that the word w is aperiodic. In other words, there exist no m ≥ 2 and u ∈ A∗

satisfying w = um (by the definition of aperiodic words).
We must prove that the necklace [w] is aperiodic. Indeed, assume the contrary. Then, the necklace

[w] is not aperiodic. Hence, Lemma 13.190.5 (applied to v = w and k = n) yields that there exists some
h ∈ {1, 2, . . . , n− 1} such that ch · w = w. Consider this h.

From h ∈ {1, 2, . . . , n− 1}, we obtain 1 ≤ h ≤ n−1, so that h ≥ 1 > 0 and n− h︸︷︷︸
≤n−1

≥ n−(n− 1) = 1 > 0.

We have w = (w1, w2, . . . , wn) (since w ∈ An). Define two words p and q by p = (w1, w2, . . . , wh) and
q = (wh+1, wh+2, . . . , wn). Then, these words p and q have lengths ` (p) = h and ` (q) = n− h, and thus are
nonempty (since ` (p) = h > 0 and ` (q) = n− h > 0). They further satisfy

w = (w1, w2, . . . , wn) = (w1, w2, . . . , wh, wh+1, wh+2, . . . , wn)

= (w1, w2, . . . , wh)︸ ︷︷ ︸
=p

(wh+1, wh+2, . . . , wn)︸ ︷︷ ︸
=q

= pq.

Recall that c acts on An by cyclically rotating n-tuples one step to the left (that is, we have c ·
(a1, a2, . . . , an) = (a2, a3, . . . , an, a1) for each (a1, a2, . . . , an) ∈ An). Thus, ch acts on An by cyclically
rotating n-tuples h steps to the left. In other words,

ch · (a1, a2, . . . , an) = (ah+1, ah+2, . . . , an, a1, a2, . . . , ah)

for each (a1, a2, . . . , an) ∈ An (since h ∈ {1, 2, . . . , n− 1} ⊂ {0, 1, . . . , n}). Applying this to (a1, a2, . . . , an) =
(w1, w2, . . . , wn), we obtain

ch · (w1, w2, . . . , wn) = (wh+1, wh+2, . . . , wn, w1, w2, . . . , wh)

= (wh+1, wh+2, . . . , wn)︸ ︷︷ ︸
=q

(w1, w2, . . . , wh)︸ ︷︷ ︸
=p

= qp.

Comparing this with
ch · (w1, w2, . . . , wn)︸ ︷︷ ︸

=w

= ch · w = w = pq,

we obtain pq = qp. Hence, Proposition 6.1.4 (applied to u = p and v = q) yields that there exist a t ∈ A∗

and two nonnegative integers N and M 1192 such that p = tN and q = tM . Consider these t, N and M .
From p = tN , we obtain ` (p) = `

(
tN
)

= N` (t), so that N` (t) = ` (p) = h 6= 0 (since h > 0). Hence, N 6= 0,

so that N ≥ 1 (because N is a nonnegative integer). Also, from q = tM , we obtain ` (q) = `
(
tM
)

= M` (t),
so that M` (t) = ` (q) = n−h 6= 0 (since n−h > 0). Hence, M 6= 0, so that M ≥ 1 (since M is a nonnegative
integer). Now, N︸︷︷︸

≥1

+ M︸︷︷︸
≥1

≥ 1 + 1 = 2 and w = p︸︷︷︸
=tN

q︸︷︷︸
=tM

= tN tM = tN+M . Hence, there exist m ≥ 2 and

u ∈ A∗ satisfying w = um (namely, m = N + M and u = t). This contradicts the fact that there exist no
m ≥ 2 and u ∈ A∗ satisfying w = um. This contradiction shows that our assumption was false. Hence, the
necklace [w] is aperiodic. This proves Claim 1.]

1192Here, we are using the letters N and M for what was called n and m in Proposition 6.1.4 (since the letter n already has

a different meaning in our current situation).
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[Proof of Claim 2: Assume that the necklace [w] is aperiodic. We must prove that the word w is aperiodic.
Let m ≥ 2 and u ∈ A∗ be such that w = um. We shall derive a contradiction.
From w = um, we obtain ` (w) = ` (um) = m` (u), so that m` (u) = ` (w) = n. Hence, ` (u) = n/m (since

m ≥ 2 > 0). Thus, u ∈ An/m. Also, m is a divisor of n (since m` (u) = n with ` (u) ∈ Z), and is positive
(since m ≥ 2 > 0).

Hence, Lemma 13.190.6 (applied to d = m and q = u) yields that the n/m-necklace [u] and the n-necklace
[um] satisfy |[um]| = |[u]| ≤ n/m. From w = um, we obtain |[w]| = |[um]| ≤ n/ m︸︷︷︸

≥2

≤ n/2 < n (since n > 0).

But Lemma 13.190.4 (applied to w instead of u) yields that |[w]| = ` (w) (since the necklace [w] is
aperiodic). Hence, |[w]| = ` (w) = n. But this contradicts |[w]| < n.

Forget that we fixed m and u. We thus have obtained a contradiction for every m ≥ 2 and u ∈ A∗

satisfying w = um. Hence, there exist no m ≥ 2 and u ∈ A∗ satisfying w = um. In other words, the word w
is aperiodic (by the definition of an aperiodic word). This proves Claim 2.]

We have now proved both Claim 1 and Claim 2. Combining these two claims, we conclude that the word
w is aperiodic if and only if the necklace [w] is aperiodic. This proves Proposition 6.6.15. �

Proof of Corollary 6.6.16. The word w is aperiodic and thus nonempty (since any aperiodic word is nonempty).
In other words, ` (w) > 0. Let n = ` (w). Hence, w ∈ An. Thus, c ·w ∈ An, so that ` (c · w) = n > 0. Hence,
the word c · w is nonempty.

Now, [w] is the n-necklace containing w. In other words, [w] is the C-orbit containing w (since the n-
necklaces are exactly the C-orbits on An). In other words, [w] = C · w (where we are using the notation
C · w for the C-orbit {d · w | d ∈ C}). The same argument (applied to c · w instead of w) yields that
[c · w] = C · (c · w). Hence,

[c · w] = C · (c · w) = (Cc)︸︷︷︸
=C

(since C is a group)

·w = C · w = [w] .

But Proposition 6.6.15 shows that the word w is aperiodic if and only if the necklace [w] is aperiodic.
Hence, the necklace [w] is aperiodic (since the word w is aperiodic). In other words, the necklace [c · w] is
aperiodic (since [c · w] = [w]).

However, Proposition 6.6.15 (applied to c ·w instead of w) shows that the word c ·w is aperiodic if and only
if the necklace [c · w] is aperiodic. Hence, the word c ·w is aperiodic (since the necklace [c · w] is aperiodic).
This proves Corollary 6.6.16. �

Proof of Corollary 6.6.17. Let N be an aperiodic necklace. We must prove that N is a set of aperiodic
words. In other words, we must prove that each w ∈ N is an aperiodic word.

So let w ∈ N . We shall prove that w is an aperiodic word.
Indeed, N is a necklace, i.e., an n-necklace for some positive integer n. Consider this n. Lemma 13.190.2

(applied to u = w) shows that N = [w]. Hence, [w] is an aperiodic n-necklace (since N is an aperiodic
n-necklace).

The word w has length n (since [w] is an n-necklace) and thus is nonempty (since n is positive). Moreover,
the necklace [w] is aperiodic. Hence, Proposition 6.6.15 shows that the word w is aperiodic.

Forget that we fixed w. Thus, we have proved that each w ∈ N is an aperiodic word. This completes the
proof of Corollary 6.6.17. �

Proof of Proposition 6.6.19. We shall prove the following four claims:

Claim 1: The relation ≤ω is reflexive.

Claim 2: The relation ≤ω is transitive.

Claim 3: The relation ≤ω is antisymmetric.

Claim 4: The relation ≤ω is total.

[Proof of Claim 1: Each a ∈ Aa satisfies aa ≤ aa. In other words, each a ∈ Aa satisfies a ≤ω a (by the
definition of the relation ≤ω). In other words, the relation ≤ω is reflexive. This proves Claim 1.]

[Proof of Claim 2: Let x, y, z ∈ Aa satisfy x ≤ω y and y ≤ω z. We shall show that x ≤ω z.
We have assumed that x ≤ω y. In other words, xy ≤ yx (by the definition of the relation ≤ω). In other

words, yx ≥ xy.
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We have assumed that y ≤ω z. In other words, yz ≤ zy (by the definition of the relation ≤ω). In other
words, zy ≥ yz.

The word y is aperiodic (since y ∈ Aa) and thus nonempty (since any aperiodic word is nonempty). Hence,
Corollary 6.1.6 (applied to u = z, v = y and w = x) yields zx ≥ xz. In other words, xz ≤ zx. In other
words, x ≤ω z (by the definition of the relation ≤ω).

Now, forget that we fixed x, y, z. We thus have proved that if x, y, z ∈ Aa satisfy x ≤ω y and y ≤ω z,
then x ≤ω z. In other words, the relation ≤ω is transitive. This proves Claim 2.]

[Proof of Claim 3: Let a, b ∈ Aa satisfy a ≤ω b and b ≤ω a. We shall show that a = b.
The word b is aperiodic (since b ∈ Aa). In other words, b is a nonempty word with the property that

(13.190.1) there exist no m ≥ 2 and u ∈ A∗ satisfying b = um

(by the definition of an aperiodic word).
We have assumed that a ≤ω b. In other words, ab ≤ ba (by the definition of the relation ≤ω). Likewise,

ba ≤ ab (since b ≤ω a). Combining these two inequalities, we obtain ab = ba. Hence, Proposition 6.1.4
(applied to u = a and v = b) yields that there exist a t ∈ A∗ and two nonnegative integers n and m such
that a = tn and b = tm. Consider these t, n and m.

From b = tm, we obtain ` (b) = ` (tm) = m` (t), thus m` (t) = ` (b) 6= 0 (since b is nonempty). Hence,
m 6= 0, so that m ≥ 1 (since m is a nonnegative integer). Note that the word t satisfies b = tm; thus,
there exists a word u ∈ A∗ satisfying b = um (namely, u = t). If we had m ≥ 2, then this would violate
(13.190.1). Hence, we cannot have m ≥ 2. Thus, m < 2. Combining this with m ≥ 1, we obtain m = 1.
Now, b = tm = t1 (since m = 1). Likewise, a = t1. Hence, a = t1 = b.

Now, forget that we fixed a, b. We thus have proved that if a, b ∈ Aa satisfy a ≤ω b and b ≤ω a, then
a = b. In other words, the relation ≤ω is antisymmetric. This proves Claim 3.]

[Proof of Claim 4: Let a, b ∈ Aa. We shall prove that we have a ≤ω b or b ≤ω a.
Indeed, the relation ≤ on A∗ is total (since the lexicographic order on words is a total order). Thus, we

have ab ≤ ba or ba ≤ ab. In other words, we have a ≤ω b or b ≤ω a (because the relation a ≤ω b is equivalent
to ab ≤ ba 1193, whereas the relation b ≤ω a is equivalent to ba ≤ ab 1194).

Now, forget that we fixed a, b. We thus have proved that any a, b ∈ Aa satisfy a ≤ω b or b ≤ω a. In other
words, the relation ≤ω is total. This proves Claim 4.]

Now, the relation ≤ω is reflexive (by Claim 1), transitive (by Claim 2) and antisymmetric (by Claim 3).
Hence, it is the smaller-or-equal relation of a partial order. This partial order must furthermore be a total
order, since the relation ≤ω is total (by Claim 4). Thus, the relation ≤ω is the smaller-or-equal relation of
a total order. This proves Proposition 6.6.19. �

Before we prove Proposition 6.6.20, let us show some more basic lemmas:

Lemma 13.190.7. Let u ∈ A∗ be a nonempty word. Let m be a positive integer. Then,
(
ci · u

)m
= ci ·(um)

for each i ∈ N.

Proof of Lemma 13.190.7. Let i ∈ N.
Let n = ` (u) ·m and d = m. We know that m is a positive integer; in other words, d is a positive integer

(since d = m). Also, n = ` (u) · m︸︷︷︸
=d

= ` (u) · d; hence, d is a divisor of n. Finally, ` (u) is a positive integer

(since u is nonempty). Now, both ` (u) and m are positive integers. Hence, the product ` (u) ·m is a positive
integer as well. In other words, n is a positive integer (since n = ` (u) ·m).

Consider the map ∆ : An/d → An defined in Lemma 13.147.5.
We have n = ` (u) ·d, so that ` (u) = n/d (since d 6= 0 (because d is positive)). Hence, u ∈ An/d. Thus, the

definition of ∆ yields ∆ (u) = ud = um (since d = m). Also, the definition of ∆ yields ∆
(
ciu
)

=

 ciu︸︷︷︸
=ci·u

d

=

(
ci · u

)d
=
(
ci · u

)m
(since d = m). But Lemma 13.147.5(b) shows that the map ∆ is C-equivariant; in

other words, we have ∆ (gw) = g · ∆ (w) for every g ∈ C and w ∈ An/d. Applying this to g = ci and

1193by the definition of the relation ≤ω
1194by the definition of the relation ≤ω
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w = u, we obtain ∆
(
ciu
)

= ci · ∆ (u)︸ ︷︷ ︸
=um

= ci · (um). Comparing this with ∆
(
ciu
)

=
(
ci · u

)m
, we obtain(

ci · u
)m

= ci · (um). This proves Lemma 13.190.7. �

Lemma 13.190.8. Let n be a positive integer. Let w ∈ An be a word. Then,
(
ci · w

)
j

= wi+j for each

i ∈ N and each j ∈ {1, 2, . . . , n− i}.

Proof of Lemma 13.190.8. Let i ∈ N, and let j ∈ {1, 2, . . . , n− i}. Then, 1 ≤ j ≤ n− i, so that n− i ≥ 1 ≥ 0
and thus n ≥ i. Hence, i ≤ n, so that i ∈ {0, 1, . . . , n} (since i ∈ N).

Recall that c acts on An by cyclically rotating n-tuples one step to the left (that is, we have c ·
(a1, a2, . . . , an) = (a2, a3, . . . , an, a1) for each (a1, a2, . . . , an) ∈ An). Thus, ci acts on An by cyclically
rotating n-tuples i steps to the left. In other words, for each (a1, a2, . . . , an) ∈ An, we have

ci · (a1, a2, . . . , an) = (ai+1, ai+2, . . . , an, a1, a2, . . . , ai)

(since i ∈ {0, 1, . . . , n}). Applying this to ak = wk, we obtain

ci · (w1, w2, . . . , wn) = (wi+1, wi+2, . . . , wn, w1, w2, . . . , wi) .

But w = (w1, w2, . . . , wn) (since w ∈ An), and thus

ci · w = ci · (w1, w2, . . . , wn) = (wi+1, wi+2, . . . , wn, w1, w2, . . . , wi) .

Hence, the first n− i letters of the word ci ·w are wi+1, wi+2, . . . , wn (in this order). In other words, for each
k ∈ {1, 2, . . . , n− i}, we have (

the k-th letter of ci · w
)

= wi+k.

Applying this to k = j, we obtain (
the j-th letter of ci · w

)
= wi+j

(since j ∈ {1, 2, . . . , n− i}). Hence,(
ci · w

)
j

=
(
the j-th letter of ci · w

)
= wi+j .

This proves Lemma 13.190.8. �

Lemma 13.190.9. Let w ∈ A∗ be a nonempty word. Let m ∈ N. Then,
(
ci · w

)
1

= (wm)i+1 for each

i ∈ {0, 1, . . . ,m` (w)− 1}.

Proof of Lemma 13.190.9. Let n = ` (w); thus, w ∈ An. The word w is nonempty. Hence, ` (w) is a positive
integer. In other words, n is a positive integer (since n = ` (w)).

Let v = ci · w. Then, v ∈ An (since w ∈ An). Thus, ` (v) = n.
Let i ∈ {0, 1, . . . ,m` (w)− 1}. Then, 0 ≤ i < m` (w), so that m` (w) > 0 and thus m` (w) 6= 0. This

entails m 6= 0, so that m > 0 (since m ∈ N). Hence, the word v is a prefix of vm, and thus has the same first
letter as vm (since the word v is nonempty1195, and thus has a first letter). In other words, v1 = (vm)1.

Let N = m` (w). Thus, i ∈ {0, 1, . . . ,m` (w)− 1} = {0, 1, . . . , N − 1} (since m` (w) = N), so that
i+ 1 ∈ {1, 2, . . . , N}. Hence, 1 ≤ i+ 1 ≤ N , so that N ≥ 1. This shows that N is a positive integer. Also,
i+ 1 ≤ N , thus N ≥ i+ 1, hence N − i ≥ 1 and thus 1 ≤ N − i. Hence, 1 ∈ {1, 2, . . . , N − i}.

We have ` (wm) = m` (w) = N (since N = m` (w)), so that wm ∈ AN . Lemma 13.190.8 (applied to
N , wm and 1 instead of n, w and j) thus yields

(
ci · (wm)

)
1

= (wm)i+1. But Lemma 13.190.7 (applied

to u = w) yields
(
ci · w

)m
= ci · (wm). In view of ci · w = v, this rewrites as vm = ci · (wm). Hence,

(vm)1 =
(
ci · (wm)

)
1

= (wm)i+1. Hence, v1 = (vm)1 = (wm)i+1. In view of v = ci · w, this rewrites as(
ci · w

)
1

= (wm)i+1. This proves Lemma 13.190.9. �

Lemma 13.190.10. Let u, v ∈ A∗ be two aperiodic words such that u 6= v and u ≤ω v. Let g, n and m
be three positive integers such that g = n` (v) = m` (u). Then, there exists a k ∈ {1, 2, . . . , g} such that
(um)k < (vn)k, and such that every j ∈ {1, 2, . . . , k − 1} satisfies (um)j = (vn)j .

1195because ` (v) = n > 0
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Proof of Lemma 13.190.10. We have ` (um) = m` (u) = g (since g = m` (u)) and ` (vn) = n` (v) = g (since
g = n` (v)). Hence, ` (um) = g = ` (vn); in other words, the words um and vn have the same length.

Proposition 6.6.19 shows that the relation ≤ω on the set Aa is the smaller-or-equal relation of a total order.
Hence, in particular, this relation ≤ω is antisymmetric. Thus, we don’t have v ≤ω u (because otherwise, we
could combine u ≤ω v with v ≤ω u to obtain u = v, which would contradict u 6= v). In other words, we
don’t have vu ≤ uv (since the relation v ≤ω u means the same as vu ≤ uv). In other words, we don’t have
uv ≥ vu.

From n` (v) = m` (u), we obtain m` (u) = n` (v). Hence, Exercise 6.1.11 (applied to n and m instead of
m and n) shows that uv ≥ vu holds if and only if um ≥ vn holds. Therefore, we don’t have um ≥ vn (since
we don’t have uv ≥ vu). Thus, we have um < vn (since the lexicographic order on A∗ is a total order).
Hence, the word um is not a prefix of vn 1196.

But we have um ≤ vn (since um < vn). In other words,

either there exists an i ∈ {1, 2, . . . ,min {` (um) , ` (vn)}}

such that
(

(um)i < (vn)i , and every j ∈ {1, 2, . . . , i− 1} satisfies (um)j = (vn)j

)
,

or the word um is a prefix of vn

(by the definition of the lexicographic order). Thus, there exists an i ∈ {1, 2, . . . ,min {` (um) , ` (vn)}} such
that (

(um)i < (vn)i , and every j ∈ {1, 2, . . . , i− 1} satisfies (um)j = (vn)j

)
(since the word um is not a prefix of vn). Consider this i.

We have i ∈ {1, 2, . . . ,min {` (um) , ` (vn)}} = {1, 2, . . . , g} (since min

` (um)︸ ︷︷ ︸
=g

, ` (vn)︸ ︷︷ ︸
=g

 = min {g, g} = g)

and (um)i < (vn)i. Moreover, every j ∈ {1, 2, . . . , i− 1} satisfies (um)j = (vn)j . Hence, there exists a

k ∈ {1, 2, . . . , g} such that (um)k < (vn)k, and such that every j ∈ {1, 2, . . . , k − 1} satisfies (um)j = (vn)j
(namely, k = i). This proves Lemma 13.190.10. �

Lemma 13.190.11. Let u, v ∈ A∗ be two aperiodic words such that u 6= v. Let g = ` (u) · ` (v). Then:

(a) There exists some i ∈ {0, 1, . . . , g − 1} satisfying
(
ci · u

)
1
6=
(
ci · v

)
1
.

(b) If u ≤ω v, then the smallest i ∈ {0, 1, . . . , g − 1} satisfying
(
ci · u

)
1
6=
(
ci · v

)
1

satisfies
(
ci · u

)
1
<(

ci · v
)

1
.

(c) If v ≤ω u, then the smallest i ∈ {0, 1, . . . , g − 1} satisfying
(
ci · u

)
1
6=
(
ci · v

)
1

satisfies
(
ci · u

)
1
>(

ci · v
)

1
.

Proof of Lemma 13.190.11. The words u and v are aperiodic and thus nonempty (since any aperiodic word
is nonempty). Let n = ` (u) and m = ` (v). Then, n = ` (u) > 0 (since u is nonempty), so that n is a positive
integer. Likewise, m is a positive integer. Moreover, combining the equalities n︸︷︷︸

=`(u)

` (v) = ` (u) · ` (v) = g

and m︸︷︷︸
=`(v)

` (u) = ` (v) · ` (u) = ` (u) · ` (v) = g, we obtain g = n` (v) = m` (u). Also, g = ` (u)︸︷︷︸
=n

· ` (v)︸︷︷︸
=m

= nm;

this shows that g is a positive integer (since n and m are positive integers). Note also that v 6= u (since
u 6= v) and g = ` (u) · ` (v) = ` (v) · ` (u). Thus, u and v play symmetric roles in our situation.

The words u and v are aperiodic; i.e., we have u, v ∈ Aa (since Aa is the set of all aperiodic words).
We shall now prove the following fact:

Claim 1: Assume that u ≤ω v. Then, there exists some i ∈ {0, 1, . . . , g − 1} satisfying(
ci · u

)
1
6=
(
ci · v

)
1
.

[Proof of Claim 1: Lemma 13.190.10 shows that there exists a k ∈ {1, 2, . . . , g} such that (um)k < (vn)k,
and such that every j ∈ {1, 2, . . . , k − 1} satisfies (um)j = (vn)j . Consider this k. But k ∈ {1, 2, . . . , g}, thus

1196Proof. Assume the contrary. Thus, the word um is a prefix of vn. Hence, um = vn (since the words um and vn have

the same length). This contradicts um < vn. This contradiction shows that our assumption was false, qed.
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k − 1 ∈ {0, 1, . . . , g − 1} = {0, 1, . . . ,m` (u)− 1} (since g = m` (u)). Hence, Lemma 13.190.9 (applied to u
and k − 1 instead of w and i) yields

(
ck−1 · u

)
1

= (um)(k−1)+1 = (um)k (since (k − 1) + 1 = k).

Also, k− 1 ∈ {0, 1, . . . , g − 1} = {0, 1, . . . , n` (v)− 1} (since g = n` (v)). Hence, Lemma 13.190.9 (applied
to v, n and k − 1 instead of w, m and i) yields

(
ck−1 · v

)
1

= (vn)(k−1)+1 = (vn)k (since (k − 1) + 1 = k).

Now, recall that (um)k < (vn)k. In view of
(
ck−1 · u

)
1

= (um)k and
(
ck−1 · v

)
1

= (vn)k, we can rewrite

this as
(
ck−1 · u

)
1
<
(
ck−1 · v

)
1
. Hence,

(
ck−1 · u

)
1
6=
(
ck−1 · v

)
1
. Since k − 1 ∈ {0, 1, . . . , g − 1}, this shows

that there exists some i ∈ {0, 1, . . . , g − 1} satisfying
(
ci · u

)
1
6=
(
ci · v

)
1

(namely, i = k − 1). This proves

Claim 1.]
We can now easily obtain the following counterpart of Claim 1 for the case when v ≤ω u:

Claim 2: Assume that v ≤ω u. Then, there exists some i ∈ {0, 1, . . . , g − 1} satisfying(
ci · u

)
1
6=
(
ci · v

)
1
.

[Proof of Claim 2: We have v 6= u and g = ` (v) · ` (u). Hence, Claim 1 (applied to v and u instead of u
and v) yields that there exists some i ∈ {0, 1, . . . , g − 1} satisfying

(
ci · v

)
1
6=
(
ci · u

)
1
. In other words, there

exists some i ∈ {0, 1, . . . , g − 1} satisfying
(
ci · u

)
1
6=
(
ci · v

)
1
. This proves Claim 2.]

(a) Proposition 6.6.19 shows that the relation ≤ω on the set Aa is the smaller-or-equal relation of a total
order. Thus, we have u ≤ω v or v ≤ω u (since u, v ∈ Aa). In each of these two cases, we can conclude that
there exists some i ∈ {0, 1, . . . , g − 1} satisfying

(
ci · u

)
1
6=
(
ci · v

)
1

(indeed, in the case u ≤ω v, this follows

from Claim 1, while in the case v ≤ω u, this follows from Claim 2). This proves Lemma 13.190.11(a).
(b) Assume that u ≤ω v. Thus, Lemma 13.190.10 shows that there exists a k ∈ {1, 2, . . . , g} such that

(um)k < (vn)k, and such that every j ∈ {1, 2, . . . , k − 1} satisfies (um)j = (vn)j . Consider this k. We have

(um)k < (vn)k. This rewrites as (um)(k−1)+1 < (vn)(k−1)+1 (since (k − 1) + 1 = k).

It is easy to see the following:

Claim 3: The number k−1 is the smallest i ∈ {0, 1, . . . , g − 1} satisfying (um)i+1 6= (vn)i+1.

[Proof of Claim 3: The number k − 1 is an element of {0, 1, . . . , g − 1} (since k ∈ {1, 2, . . . , g}) and
satisfies (um)(k−1)+1 6= (vn)(k−1)+1 (since (um)(k−1)+1 < (vn)(k−1)+1). In other words, the number k − 1 is

an i ∈ {0, 1, . . . , g − 1} satisfying (um)i+1 6= (vn)i+1. It remains to show that k − 1 is the smallest such i.
Indeed, let i ∈ {0, 1, . . . , g − 1} be such that (um)i+1 6= (vn)i+1. We shall show that i ≥ k − 1.
Indeed, assume the contrary. Hence, i < k−1. Thus, i+ 1 < k, so that i+ 1 ≤ k−1 (since i+ 1 and k are

integers). Combining this with i+ 1 > i ≥ 0 (since i ∈ {0, 1, . . . , g − 1}), we obtain i+ 1 ∈ {1, 2, . . . , k − 1}.
But recall that every j ∈ {1, 2, . . . , k − 1} satisfies (um)j = (vn)j . Applying this to j = i + 1, we obtain

(um)i+1 = (vn)i+1 (since i+ 1 ∈ {1, 2, . . . , k − 1}). This contradicts (um)i+1 6= (vn)i+1. This contradiction
shows that our assumption was false. Hence, i ≥ k − 1 is proved.

Now, forget that we fixed i. We thus have shown that i ≥ k − 1 for each i ∈ {0, 1, . . . , g − 1} such that
(um)i+1 6= (vn)i+1. Thus, k − 1 is the smallest i ∈ {0, 1, . . . , g − 1} satisfying (um)i+1 6= (vn)i+1 (since we
already know that k − 1 is such an i). This proves Claim 3.]

From Claim 3, we quickly obtain the following:

Claim 4: The smallest i ∈ {0, 1, . . . , g − 1} satisfying (um)i+1 6= (vn)i+1 satisfies (um)i+1 <
(vn)i+1.

[Proof of Claim 4: We must show that the smallest i ∈ {0, 1, . . . , g − 1} satisfying (um)i+1 6= (vn)i+1

satisfies (um)i+1 < (vn)i+1. But we know (from Claim 3) that this smallest i is k−1. Hence, we need to prove
that i = k−1 satisfies (um)i+1 < (vn)i+1. In other words, we need to prove that (um)(k−1)+1 < (vn)(k−1)+1.

But we have proven this already. Thus, Claim 4 is proved.]
On the other hand, each i ∈ {0, 1, . . . , g − 1} satisfies

(13.190.2) (um)i+1 =
(
ci · u

)
1
.

[Proof of (13.190.2): Let i ∈ {0, 1, . . . , g − 1}. Then, i ∈ {0, 1, . . . , g − 1} = {0, 1, . . . ,m` (u)− 1} (since
g = m` (u)). Hence, Lemma 13.190.9 (applied to w = u) yields

(
ci · u

)
1

= (um)i+1. This proves (13.190.2).]

Furthermore, each i ∈ {0, 1, . . . , g − 1} satisfies

(13.190.3) (vn)i+1 =
(
ci · v

)
1
.

[Proof of (13.190.3): The proof of (13.190.3) proceeds in the same way as the proof of (13.190.2), but
using v and n instead of u and m.]
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Using the equalities (13.190.2) and (13.190.3), we can rewrite Claim 4 as follows:

Claim 5: The smallest i ∈ {0, 1, . . . , g − 1} satisfying
(
ci · u

)
1
6=
(
ci · v

)
1

satisfies
(
ci · u

)
1
<(

ci · v
)

1
.

But Claim 5 is precisely the statement of Lemma 13.190.11(b). Thus, Lemma 13.190.11(b) is proven.
(c) Assume that v ≤ω u. Thus, Lemma 13.190.11(b) (applied to v and u instead of u and v) yields the

following:

Claim 6: The smallest i ∈ {0, 1, . . . , g − 1} satisfying
(
ci · v

)
1
6=
(
ci · u

)
1

satisfies
(
ci · v

)
1
<(

ci · u
)

1
.

In other words, we have the following:

Claim 7: The smallest i ∈ {0, 1, . . . , g − 1} satisfying
(
ci · u

)
1
6=
(
ci · v

)
1

satisfies
(
ci · u

)
1
>(

ci · v
)

1
.

(Indeed, Claim 7 is a restatement of Claim 6, since the statement “
(
ci · u

)
1
6=
(
ci · v

)
1
” is equivalent to

“
(
ci · v

)
1
6=
(
ci · u

)
1
”, whereas the statement “

(
ci · u

)
1
>
(
ci · v

)
1
” is equivalent to “

(
ci · v

)
1
<
(
ci · u

)
1
”.)

But Claim 7 is precisely the statement of Lemma 13.190.11(c). Thus, Lemma 13.190.11(c) is proven. �

Lemma 13.190.12. Let a, b ∈ A be two letters. Let p, q ∈ A∗ be two words such that ` (p) = ` (q). Then,
we have ap ≤ bq if and only if either a < b or (a = b and pa ≤ qb).

Proof of Lemma 13.190.12. Recall that a ∈ A; hence, a is identified with the one-letter word (a). Thus,
` (a) = 1. Similarly, ` (b) = 1. Hence, ` (a) = 1 = ` (b), so that ` (a) ≤ ` (b).

We shall next prove the following:

Claim 1: If ap ≤ bq, then we have either a < b or (a = b and pa ≤ qb).
[Proof of Claim 1: Assume that ap ≤ bq. We must prove that we have either a < b or (a = b and pa ≤ qb).

If a < b, then this is obviously true. Thus, for the rest of this proof of Claim 1, we can WLOG assume that
we don’t have a < b. Assume this.

We don’t have a < b. Hence, we have a ≥ b (since the order on A is a total order).
But Proposition 6.1.2(f) (applied to p, b and q instead of b, c and d) yields a ≤ b (since ap ≤ bq and

` (a) ≤ ` (b)). Combining this with a ≥ b, we obtain a = b. Thus, ap = bp, so that bp = ap ≤ bq. Hence,
Proposition 6.1.2(c) (applied to b, p and q instead of a, c and d) yields p ≤ q. Therefore, Proposition 6.1.2(j)
(applied to p, q and b instead of a, b and c) yields pb ≤ qb (since ` (p) ≥ ` (q) (because ` (p) = ` (q))). But
a = b, so that pa = pb ≤ qb. Hence, we have shown that a = b and pa ≤ qb. Thus, we have either a < b or
(a = b and pa ≤ qb). This proves Claim 1.]

Claim 2: If a < b, then ap ≤ bq.
[Proof of Claim 2: Assume that a < b. If a was a prefix of b, then we would have a = b (since a and b are

one-letter words), which would contradict a < b. Thus, a is not a prefix of b.
But a ≤ b (since a < b). Hence, Proposition 6.1.2(d) (applied to p, b and q instead of b, c and d) yields

that either we have ap ≤ bq or the word a is a prefix of b. Since the word a is not a prefix of b, we thus
conclude that ap ≤ bq. This proves Claim 2.]

Claim 3: If a = b and pa ≤ qb, then ap ≤ bq.
[Proof of Claim 3: Assume that a = b and pa ≤ qb. We must prove that ap ≤ bq.
We have ` (p) ≤ ` (q) (since ` (p) = ` (q)) and pa ≤ qb. Thus, Proposition 6.1.2(f) (applied to p, a, q and

b instead of a, b, c and d) yields p ≤ q. Hence, Proposition 6.1.2(b) (applied to p and q instead of c and d)
yields ap ≤ aq = bq (since a = b). This proves Claim 3.]

Claim 4: If we have either a < b or (a = b and pa ≤ qb), then we have ap ≤ bq.
[Proof of Claim 4: This follows by combining Claim 2 and Claim 3.]
Combining Claim 1 with Claim 4, we conclude that we have ap ≤ bq if and only if either a < b or

(a = b and pa ≤ qb). (Indeed, the “only if” part of this statement follows from Claim 1, whereas the “if”
part follows from Claim 4.) This proves Lemma 13.190.12. �

Proof of Proposition 6.6.20. (b) Assume that u 6= v. Let g = ` (u) · ` (v). Then, Lemma 13.190.11(a)
yields that there exists some i ∈ {0, 1, . . . , g − 1} satisfying

(
ci · u

)
1
6=
(
ci · v

)
1
. This i must satisfy i ∈
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{0, 1, . . . , g − 1} ⊂ N and
(
ci · u

)
1
6=
(
ci · v

)
1
. Hence, there exists some i ∈ N satisfying

(
ci · u

)
1
6=
(
ci · v

)
1
.

This proves Proposition 6.6.20(b).
(d) From n` (u) = m` (v), we obtain m` (v) = n` (u). Hence, Exercise 6.1.11 (applied to n, m, u and v

instead of m, n, v and u) shows that vu ≥ uv holds if and only if vn ≥ um holds. In other words, we have
the logical equivalence (vu ≥ uv) ⇐⇒ (vm ≥ un).

Now, we have the following chain of logical equivalences:

(u ≤ω v) ⇐⇒ (uv ≤ vu) (by the definition of the relation ≤ω)

⇐⇒ (vu ≥ uv) ⇐⇒ (vm ≥ un) ⇐⇒ (un ≤ vm) .

In other words, we have u ≤ω v if and only if un ≤ vm. This proves Proposition 6.6.20(d).
(c) Our proof relies on the following five claims:

Claim 1: If u ≤ω v, then the smallest i ∈ N satisfying
(
ci · u

)
1
6=
(
ci · v

)
1

either does not

exist or satisfies
(
ci · u

)
1
<
(
ci · v

)
1
.

[Proof of Claim 1: Assume that u ≤ω v. We must prove that the smallest i ∈ N satisfying
(
ci · u

)
1
6=(

ci · v
)

1
either does not exist or satisfies

(
ci · u

)
1
<
(
ci · v

)
1
.

If u = v, then this is obvious1197. Hence, for the rest of this proof of Claim 1, we WLOG assume that
u 6= v. Let g = ` (u) · ` (v).

Lemma 13.190.11(a) yields that there exists some i ∈ {0, 1, . . . , g − 1} satisfying
(
ci · u

)
1
6=
(
ci · v

)
1
. Let j

denote the smallest such i. Thus, j ∈ {0, 1, . . . , g − 1} and
(
cj · u

)
1
6=
(
cj · v

)
1
. From j ∈ {0, 1, . . . , g − 1},

we obtain j ≤ g − 1; hence, g − 1 ≥ j.
Furthermore, Lemma 13.190.11(b) yields that the smallest i ∈ {0, 1, . . . , g − 1} satisfying

(
ci · u

)
1
6=(

ci · v
)

1
satisfies

(
ci · u

)
1
<
(
ci · v

)
1
. Since we have denoted this smallest i by j, we can restate this as

follows: The number i = j satisfies
(
ci · u

)
1
<
(
ci · v

)
1
. In other words, we have

(
cj · u

)
1
<
(
cj · v

)
1
.

We have defined j to be the smallest i ∈ {0, 1, . . . , g − 1} satisfying
(
ci · u

)
1
6=
(
ci · v

)
1
. Thus, any

i ∈ {0, 1, . . . , g − 1} satisfying
(
ci · u

)
1
6=
(
ci · v

)
1

is greater or equal to j. In other words, for any i ∈
{0, 1, . . . , g − 1} satisfying

(
ci · u

)
1
6=
(
ci · v

)
1
, we have

(13.190.4) i ≥ j.

Now, recall that j ∈ {0, 1, . . . , g − 1} ⊂ N and
(
cj · u

)
1
6=
(
cj · v

)
1
. In other words, j is an i ∈ N satisfying(

ci · u
)

1
6=
(
ci · v

)
1
. Moreover, j is the smallest such i 1198.

So we know that j is the smallest i ∈ N satisfying
(
ci · u

)
1
6=
(
ci · v

)
1
. Thus, in particular, this smallest i

exists. Moreover, this smallest i satisfies
(
ci · u

)
1
<
(
ci · v

)
1

(because this smallest i is j, but we know that(
cj · u

)
1
<
(
cj · v

)
1
). Thus, we have shown that the smallest i ∈ N satisfying

(
ci · u

)
1
6=
(
ci · v

)
1

satisfies(
ci · u

)
1
<
(
ci · v

)
1
. This proves Claim 1.]

Claim 2: If v ≤ω u, then the smallest i ∈ N satisfying
(
ci · v

)
1
6=
(
ci · u

)
1

either does not

exist or satisfies
(
ci · v

)
1
<
(
ci · u

)
1
.

[Proof of Claim 2: Claim 2 is just Claim 1 with the roles of u and v swapped.]

Claim 3: If v ≤ω u, then the smallest i ∈ N satisfying
(
ci · u

)
1
6=
(
ci · v

)
1

either does not

exist or satisfies
(
ci · u

)
1
>
(
ci · v

)
1
.

1197Indeed, in this case, the smallest i ∈ N satisfying
(
ci · u

)
1
6=
(
ci · v

)
1

does not exist, because

ci · u︸︷︷︸
=v


1

=
(
ci · v

)
1

for each i ∈ N.
1198Proof. We shall show that if i ∈ N satisfies

(
ci · u

)
1
6=
(
ci · v

)
1
, then i ≥ j.

Indeed, let i ∈ N satisfy
(
ci · u

)
1
6=
(
ci · v

)
1
. We must prove that i ≥ j. If i ≥ g − 1, then this is obvious (because in this

case, we have i ≥ g− 1 ≥ j). Hence, for the rest of this proof, we WLOG assume that i < g− 1. Hence, i ≤ g− 1 and therefore
i ∈ {0, 1, . . . , g − 1}. Hence, (13.190.4) yields i ≥ j.

Now, forget that we fixed i. We thus have shown that if i ∈ N satisfies
(
ci · u

)
1
6=
(
ci · v

)
1
, then i ≥ j. In other words,

any i ∈ N satisfying
(
ci · u

)
1
6=
(
ci · v

)
1

must satisfy i ≥ j. Therefore, j is the smallest i ∈ N satisfying
(
ci · u

)
1
6=
(
ci · v

)
1

(because we already know that j is such an i).
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[Proof of Claim 3: Claim 3 is just a restatement of Claim 2, since the statement “
(
ci · u

)
1
6=
(
ci · v

)
1
” is

equivalent to “
(
ci · u

)
1
6=
(
ci · v

)
1
” and since the statement “

(
ci · u

)
1
>
(
ci · v

)
1
” is equivalent to “

(
ci · v

)
1
<(

ci · u
)

1
”.]

Claim 4: If we don’t have u ≤ω v, then the smallest i ∈ N satisfying
(
ci · u

)
1
6=
(
ci · v

)
1

exists but does not satisfy
(
ci · u

)
1
<
(
ci · v

)
1
.

[Proof of Claim 4: Assume that we don’t have u ≤ω v. We must prove that the smallest i ∈ N satisfying(
ci · u

)
1
6=
(
ci · v

)
1

exists but does not satisfy
(
ci · u

)
1
<
(
ci · v

)
1
.

Proposition 6.6.19 shows that the relation ≤ω on the set Aa is the smaller-or-equal relation of a total
order. Hence, if we had u = v, then we would have u ≤ω v, which would contradict our assumption that we
don’t have u ≤ω v. Hence, we must have u 6= v.

Thus, Proposition 6.6.20(b) shows that there exists some i ∈ N satisfying
(
ci · u

)
1
6=
(
ci · v

)
1
. Hence, the

smallest such i exists.
Recall that the relation ≤ω on the set Aa is the smaller-or-equal relation of a total order. Hence, we

must have v ≤ω u (since we don’t have u ≤ω v). Thus, Claim 3 yields that the smallest i ∈ N satisfying(
ci · u

)
1
6=
(
ci · v

)
1

either does not exist or satisfies
(
ci · u

)
1
>
(
ci · v

)
1
. Since we know that this smallest

i exists (indeed, we have proved this in the previous paragraph), we thus conclude that the smallest i ∈ N
satisfying

(
ci · u

)
1
6=
(
ci · v

)
1

satisfies
(
ci · u

)
1
>
(
ci · v

)
1
. Hence, this smallest i does not satisfy

(
ci · u

)
1
<(

ci · v
)

1
(because

(
ci · u

)
1
<
(
ci · v

)
1

would contradict
(
ci · u

)
1
>
(
ci · v

)
1
).

Altogether, we thus have shown that the smallest i ∈ N satisfying
(
ci · u

)
1
6=
(
ci · v

)
1

exists but does not

satisfy
(
ci · u

)
1
<
(
ci · v

)
1
. This proves Claim 4.]

Claim 5: If the smallest i ∈ N satisfying
(
ci · u

)
1
6=
(
ci · v

)
1

either does not exist or satisfies(
ci · u

)
1
<
(
ci · v

)
1
, then we have u ≤ω v.

[Proof of Claim 5: Claim 5 is just the contrapositive of Claim 4, and thus holds (since Claim 4 holds).]
Now, Proposition 6.6.20(c) follows by combining Claim 1 with Claim 5. (Indeed, Claim 1 is the “only if”

part of Proposition 6.6.20(c), whereas Claim 5 is the “if” part.)
(a) The words u and v are aperiodic and thus nonempty (since any aperiodic word is nonempty).
Let n = ` (v) and m = ` (u). Then, n = ` (v) > 0 (since v is nonempty), so that n is a positive integer.

Likewise, m is a positive integer. Hence, m > 0.
Let g = nm. Then, g is a positive integer (since n and m are positive integers). Hence, g ≥ 1, so that

1 ∈ {1, 2, . . . , g}.
Moreover, combining the equalities n ` (u)︸︷︷︸

=m

= nm = g and m` (v)︸︷︷︸
=n

= mn = nm = g, we obtain g = n` (u) =

m` (v). Hence, Proposition 6.6.20(d) shows that we have u ≤ω v if and only if un ≤ vm. In other words, we
have the logical equivalence

(13.190.5) (u ≤ω v) ⇐⇒ (un ≤ vm) .

The word u is aperiodic. Thus, Corollary 6.6.16 (applied to w = u) yields that the word c ·u is aperiodic.
Likewise, the word c · v is aperiodic. Moreover, u ∈ Am (since ` (u) = m), so that c · u ∈ Am and thus
` (c · u) = m. Likewise, ` (c · v) = n (since ` (v) = n). Furthermore, comparing n ` (c · u)︸ ︷︷ ︸

=m

= nm with

m` (c · v)︸ ︷︷ ︸
=n

= mn = nm, we obtain n` (c · u) = m` (c · v). Hence, Proposition 6.6.20(d) (applied to c · u and

c · v instead of u and v) shows that we have c · u ≤ω c · v if and only if (c · u)
n ≤ (c · v)

m
. In other words,

we have the logical equivalence

(13.190.6) (c · u ≤ω c · v) ⇐⇒ ((c · u)
n ≤ (c · v)

m
) .

Lemma 13.190.7 (applied to v and 1 instead of u and i) yields
(
c1 · v

)m
= c1 · (vm). In view of c1 = c, this

rewrites as (c · v)
m

= c·(vm). The same argument (with v and m replaced by u and n) yields (c · u)
n

= c·(un).
The word un has length ` (un) = n` (u) = g, and thus can be written as un = (un)1 (un)2 · · · (un)g. Define

a word p ∈ A∗ by p = (un)2 (un)3 · · · (un)g. Since g ≥ 1, we thus have p ∈ Ag−1 (since (un)2 , (u
n)3 , . . . , (u

n)g
are single letters), so that ` (p) = g− 1. Also, define a letter a ∈ A by a = (un)1. (This is well-defined, since
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1 ∈ {1, 2, . . . , g}.) Thus,

a︸︷︷︸
=(un)1

p︸︷︷︸
=(un)2(un)3···(un)g

= (un)1

(
(un)2 (un)3 · · · (u

n)g

)
= (un)1 (un)2 · · · (u

n)g

= un.(13.190.7)

Lemma 13.147.4 (applied to g, a and p instead of m, u and v) yields c (ap) = pa. In view of ap = un, this
rewrites as c (un) = pa. Hence,

(13.190.8) (c · u)
n

= c · (un) = c (un) = pa.

The word vm has length ` (vm) = m` (v) = g, and thus can be written as vm = (vm)1 (vm)2 · · · (vm)g. De-

fine a word q ∈ A∗ by q = (vm)2 (vm)3 · · · (vm)g. Since g ≥ 1, we thus have q ∈ Ag−1 (since (vm)2 , (v
m)3 , . . . , (v

m)g
are single letters), so that ` (q) = g− 1. Also, define a letter b ∈ A by b = (vm)1. (This is well-defined, since
1 ∈ {1, 2, . . . , g}.) Thus,

b︸︷︷︸
=(vm)1

q︸︷︷︸
=(vm)2(vm)3···(vm)g

= (vm)1

(
(vm)2 (vm)3 · · · (v

m)g

)
= (vm)1 (vm)2 · · · (v

m)g

= vm.(13.190.9)

Lemma 13.147.4 (applied to g, b and q instead of m, u and v) yields c (bq) = qb. In view of bq = vm, this
rewrites as c (vm) = qb. Hence,

(13.190.10) (c · v)
m

= c · (vm) = c (vm) = qb.

Comparing ` (p) = g − 1 with ` (q) = g − 1, we obtain ` (p) = ` (q). Thus, Lemma 13.190.12 yields that
we have ap ≤ bq if and only if either a < b or (a = b and pa ≤ qb). In other words, we have the following
equivalence:

(13.190.11) (ap ≤ bq) ⇐⇒ (either a < b or (a = b and pa ≤ qb)) .
The word un starts with the word u (since n is a positive integer), and thus has the same first letter as

the word u (since the word u is nonempty). In other words, (un)1 = u1. Hence, a = (un)1 = u1. The same
argument (applied to v, m and b instead of u, n and a) yields b = v1.

Now, we have the following chain of logical equivalences:

(u ≤ω v) ⇐⇒

 un︸︷︷︸
=ap

(by (13.190.7))

≤ vm︸︷︷︸
=bq

(by (13.190.9))

 (by (13.190.5))

⇐⇒ (ap ≤ bq)

⇐⇒

either a︸︷︷︸
=u1

< b︸︷︷︸
=v1

or

 a︸︷︷︸
=u1

= b︸︷︷︸
=v1

and pa︸︷︷︸
=(c·u)n

(by (13.190.8))

≤ qb︸︷︷︸
=(c·v)m

(by (13.190.10))




(by (13.190.11))

⇐⇒

either u1 < v1 or

u1 = v1 and (c · u)
n ≤ (c · v)

m︸ ︷︷ ︸
⇐⇒ (c·u≤ωc·v)
(by (13.190.6))




⇐⇒ (either u1 < v1 or (u1 = v1 and c · u ≤ω c · v)) .

In other words, we have u ≤ω v if and only if either u1 < v1 or (u1 = v1 and c · u ≤ω c · v). This proves
Proposition 6.6.20(a). �

Finally, let us prove Proposition 6.6.22:
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Proof of Proposition 6.6.22. We have w = (w1, w2, . . . , wn) (since w ∈ An).
(a) Let h ∈ {1, 2, . . . , n}. Let z be the cycle of τ that contains h. Thus, h ∈ z. Hence, Proposition 6.6.7(a)

yields that [wτ,h] = {wτ,i | i ∈ z}. Moreover, Proposition 6.6.7(d) shows that the set {wτ,i | i ∈ z} is an
aperiodic necklace. In other words, the set [wτ,h] is an aperiodic necklace (since [wτ,h] = {wτ,i | i ∈ z}).

But Proposition 6.6.5(a) shows that the word wτ,h is nonempty and has length ordτ (h). Hence, Proposi-
tion 6.6.15 (applied to wτ,h instead of w) shows that the word wτ,h is aperiodic if and only if the necklace
[wτ,h] is aperiodic. Hence, the word wτ,h is aperiodic (since the necklace [wτ,h] is aperiodic).

Forget that we fixed h. We thus have proved that the word wτ,h is aperiodic for each h ∈ {1, 2, . . . , n}.
In other words, the words wτ,1, wτ,2, . . . , wτ,n are aperiodic. This proves Proposition 6.6.22(a).

(b) Proposition 6.6.22(a) shows that the words wτ,1, wτ,2, . . . , wτ,n are aperiodic. Thus, these words belong
to Aa (since Aa is the set of all aperiodic words). Hence, the chain of inequalities wτ,1 ≤ω wτ,2 ≤ω · · · ≤ω wτ,n
makes sense. It remains to prove that it holds.

Let α and β be two elements of {1, 2, . . . , n} such that α < β. We shall show that wτ,α ≤ω wτ,β .
Indeed, assume the contrary. Thus, it is not true that wτ,α ≤ω wτ,β .
Let us notice that each i ∈ N satisfies

(13.190.12)
(
ci · wτ,α

)
1

= wτ i+1(α)

and

(13.190.13)
(
ci · wτ,β

)
1

= wτ i+1(β)

[Proof of (13.190.12) and (13.190.13): Let i ∈ N. Then, Proposition 6.6.5(b) (applied to h = τ i (α))
yields that the first letter of the word wτ,τ i(α) is wτ(τ i(α)).

But Proposition 6.6.5(e) (applied to h = α) yields wτ,τ i(α) = ci · wτ,α. Hence,
(
wτ,τ i(α)

)
1

=
(
ci · wτ,α

)
1
.

Thus, (
ci · wτ,α

)
1

=
(
wτ,τ i(α)

)
1

=
(
the first letter of the word wτ,τ i(α)

)
= wτ(τ i(α))(

since the first letter of the word wτ,τ i(α) is wτ(τ i(α))

)
= wτ i+1(α)

(
since τ

(
τ i (α)

)
= τ i+1 (α)

)
.

This proves (13.190.12). The same argument (but applied to β instead of α) proves (13.190.13).]
Proposition 6.6.22(a) shows that the words wτ,1, wτ,2, . . . , wτ,n are aperiodic. Hence, in particular, the

words wτ,α and wτ,β are aperiodic. Thus, Proposition 6.6.20(c) (applied to u = wτ,α and v = wτ,β) yields
that we have wτ,α ≤ω wτ,β if and only if the smallest i ∈ N satisfying

(
ci · wτ,α

)
1
6=
(
ci · wτ,β

)
1

either

does not exist or satisfies
(
ci · wτ,α

)
1
<
(
ci · wτ,β

)
1
. Thus, it is not true that the smallest i ∈ N satisfying(

ci · wτ,α
)

1
6=
(
ci · wτ,β

)
1

either does not exist or satisfies
(
ci · wτ,α

)
1
<
(
ci · wτ,β

)
1

(because it is not true

that wτ,α ≤ω wτ,β). In other words, the smallest i ∈ N satisfying
(
ci · wτ,α

)
1
6=
(
ci · wτ,β

)
1

exists but does

not satisfy
(
ci · wτ,α

)
1
<
(
ci · wτ,β

)
1
. In view of (13.190.12) and (13.190.13), we can rewrite this fact as

follows: The smallest i ∈ N satisfying wτ i+1(α) 6= wτ i+1(β) exists but does not satisfy wτ i+1(α) < wτ i+1(β).
Consider this i, and denote it by j. Thus, i = j does not satisfy wτ i+1(α) < wτ i+1(β). In other words, we

do not have wτj+1(α) < wτj+1(β). In other words, we have wτj+1(α) ≥ wτj+1(β).
We have defined j to be the smallest i ∈ N satisfying wτ i+1(α) 6= wτ i+1(β). Hence, j is an i ∈ N satisfying

wτ i+1(α) 6= wτ i+1(β). In other words, j is an element of N and satisfies wτj+1(α) 6= wτj+1(β). Combining
wτj+1(α) ≥ wτj+1(β) with wτj+1(α) 6= wτj+1(β), we obtain

(13.190.14) wτj+1(α) > wτj+1(β).

On the other hand, j is the smallest i ∈ N satisfying wτ i+1(α) 6= wτ i+1(β). Thus, every such i ∈ N is ≥ j.
In other words,

(13.190.15) if i ∈ N satisfies wτ i+1(α) 6= wτ i+1(β), then i ≥ j.
Hence,

(13.190.16) every i ∈ {0, 1, . . . , j − 1} satisfies wτ i+1(α) = wτ i+1(β).

[Proof of (13.190.16): Let i ∈ {0, 1, . . . , j − 1}. Thus, i ≥ 0 and i ≤ j − 1 < j. If we had wτ i+1(α) 6=
wτ i+1(β), then we would have i ≥ j (by (13.190.15)), which would contradict i < j. Thus, we cannot have
wτ i+1(α) 6= wτ i+1(β). Hence, we must have wτ i+1(α) = wτ i+1(β). This proves (13.190.16).]
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Thus, Lemma 6.6.6(h) yields wτj+1(α) ≤ wτj+1(β). This contradicts (13.190.14). This contradiction shows
that our assumption was wrong. Hence, wτ,α ≤ω wτ,β is proven.

Now, forget that we fixed α and β. We thus have shown that if α and β are two elements of {1, 2, . . . , n}
such that α < β, then wτ,α ≤ω wτ,β . In other words, we have wτ,1 ≤ω wτ,2 ≤ω · · · ≤ω wτ,n. This proves
Proposition 6.6.22(b). �

We have now proven Proposition 6.6.15, Corollary 6.6.16, Corollary 6.6.17, Proposition 6.6.19, Proposition
6.6.20 and Proposition 6.6.22. Thus, Exercise 6.6.23 is solved.

13.191. Solution to Exercise 6.6.30. Solution to Exercise 6.6.30. Let us first show a simple lemma about
multisets of necklaces:

Lemma 13.191.1. Let M be a finite multiset of necklaces. Let M ′ =
⊎
N∈M N . (We are here using the

fact that each necklace N ∈M is a set, thus a multiset.)
Let u ∈ A∗ be a nonempty word. Then,

(multiplicity of u in M ′) = (multiplicity of [u] in M) .

Proof of Lemma 13.191.1. We note the following simple fact:

Claim 1: Let N be a necklace. Then, the statement u ∈ N is equivalent to the statement
N = [u].

[Proof of Claim 1: The implication (u ∈ N) =⇒ (N = [u]) follows from Lemma 13.190.2. The converse
implication (N = [u]) =⇒ (u ∈ N) follows from Lemma 13.190.1. Combining these two implications, we
obtain the equivalence (u ∈ N)⇐⇒ (N = [u]). Thus, Claim 1 is proven.]

Let us write the finite multiset M in the form M = {N1, N2, . . . , Nk}multiset, where N1, N2, . . . , Nk are
necklaces. Thus,

(multiplicity of [u] in M)

= (the number of all i ∈ {1, 2, . . . , k} such that Ni = [u])(13.191.1)

and ⊎
N∈M

N = N1 ]N2 ] · · · ]Nk

(where we are using the notation M1 ]M2 ] · · · ]Mk for a multiset union
⊎

s∈{1,2,...,k}
Ms). Hence,

M ′ =
⊎
N∈M

N = N1 ]N2 ] · · · ]Nk,

so that

(multiplicity of u in M ′)

= (multiplicity of u in N1 ]N2 ] · · · ]Nk)

=

k∑
i=1

(multiplicity of u in Ni)︸ ︷︷ ︸
=

1, if u ∈ Ni;
0, if u /∈ Ni

(since Ni is a set (because any necklace is a set))

=

k∑
i=1

{
1, if u ∈ Ni;
0, if u /∈ Ni

= (the number of all i ∈ {1, 2, . . . , k} such that u ∈ Ni)
= (the number of all i ∈ {1, 2, . . . , k} such that Ni = [u])(

because for any i ∈ {1, 2, . . . , k} , the statement u ∈ Ni is equivalent
to the statement Ni = [u] (by Claim 1, applied to N = Ni)

)
= (multiplicity of [u] in M) (by (13.191.1)) .

This proves Lemma 13.191.1. �
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We can now prove one “half” of Theorem 6.6.29:

Lemma 13.191.2. We have RG ◦GR = id.

Proof of Lemma 13.191.2. Let w ∈ A∗. Let n = ` (w); thus, w ∈ An and w = (w1, w2, . . . , wn). Let τ be the

permutation (stdw)
−1 ∈ Sn. Then, the definition of the map GR shows that

GRw = {[w]z | z is a cycle of τ}
multiset

.

Let us denote this multiset GRw by M . Thus,

M = GRw = {[w]z | z is a cycle of τ}
multiset

.

Also, M = GRw ∈ MNa (as we have seen in Definition 6.6.12); in other words, M is a finite multiset of
aperiodic necklaces (since MNa is the set of all finite multisets of aperiodic necklaces).

Next, we shall show the following:

Claim 1: Let u be a nonempty word. Let z be a cycle of τ . Then,

(the number of all i ∈ z such that u = wτ,i) = δ[u],[w]z
.

[Proof of Claim 1: The definition of the aperiodic necklace [w]z yields [w]z = {wτ,i | i ∈ z}. We are in
one of the following two cases:

Case 1: We have [u] = [w]z.
Case 2: We have [u] 6= [w]z.
Let us first consider Case 1. In this case, we have [u] = [w]z. Hence, δ[u],[w]z

= 1.

Lemma 13.190.1 yields u ∈ [u] = [w]z = {wτ,i | i ∈ z}. Proposition 6.6.7(b) shows that any two distinct
elements α and β of z satisfy wτ,α 6= wτ,β . In other words, the words wτ,i for all i ∈ z are distinct. Hence,
there exists at most one i ∈ z such that u = wτ,i. But we also know that there exists at least one such i
(because u ∈ {wτ,i | i ∈ z}).

Combining the results of the previous two sentences, we conclude that there exists exactly one i ∈ z
such that u = wτ,i. In other words,

(the number of all i ∈ z such that u = wτ,i) = 1.

Comparing this with δ[u],[w]z
= 1, we obtain

(the number of all i ∈ z such that u = wτ,i) = δ[u],[w]z
.

Thus, Claim 1 is proved in Case 1.
Let us now consider Case 2. In this case, we have [u] 6= [w]z. Hence, δ[u],[w]z

= 0.

Also, there exists no i ∈ z such that u = wτ,i
1199. In other words,

(the number of all i ∈ z such that u = wτ,i) = 0.

Comparing this with δ[u],[w]z
= 0, we obtain

(the number of all i ∈ z such that u = wτ,i) = δ[u],[w]z
.

Thus, Claim 1 is proved in Case 2.
We have now proved Claim 1 in both Cases 1 and 2. Hence, Claim 1 always holds.]
Let M ′ =

⊎
N∈M N . (We are here using the fact that each necklace N ∈ M is a set, thus a multiset.)

Then, M ′ is a multiset of aperiodic words1200.
Next, we claim that

(13.191.2) M ′ = {wτ,1, wτ,2, . . . , wτ,n}multiset .

[Proof of (13.191.2): Proposition 6.6.22(a) shows that the words wτ,1, wτ,2, . . . , wτ,n are aperiodic. Hence,
{wτ,1, wτ,2, . . . , wτ,n}multiset is a multiset of aperiodic words. Thus, both M ′ and {wτ,1, wτ,2, . . . , wτ,n}multiset
are multisets of aperiodic words.

1199Proof. Assume the contrary. Thus, there exists some i ∈ z such that u = wτ,i. In other words, u ∈ {wτ,i | i ∈ z}. This
rewrites as u ∈ [w]z (since [w]z = {wτ,i | i ∈ z}). Since [w]z is a necklace, we can thus apply Lemma 13.190.2 to N = [w]z .

As a result, we obtain [w]z = [u]. In other words, [u] = [w]z . But this contradicts [u] 6= [w]z . This contradiction shows that

our assumption was false, qed.
1200Indeed, this was shown in Definition 6.6.26.
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Now, let u be an aperiodic word. Hence, u is a nonempty word (since any aperiodic word is nonempty).
Lemma 13.191.1 thus yields that

(multiplicity of u in M ′) =

multiplicity of [u] in M︸︷︷︸
={[w]z | z is a cycle of τ}

multiset


=
(
multiplicity of [u] in {[w]z | z is a cycle of τ}

multiset

)
= (the number of all cycles z of τ such that [u] = [w]z)

(by the definition of the multiset {[w]z | z is a cycle of τ}
multiset

). Comparing this with∑
z is a cycle of τ

δ[u],[w]z
=

∑
z is a cycle of τ ;

[u]=[w]z

δ[u],[w]z︸ ︷︷ ︸
=1

(since [u]=[w]z)

+
∑

z is a cycle of τ ;
[u]6=[w]z

δ[u],[w]z︸ ︷︷ ︸
=0

(since [u] 6=[w]z)(
since each cycle z of τ satisfies

either [u] = [w]z or [u] 6= [w]z (but not both)

)
=

∑
z is a cycle of τ ;

[u]=[w]z

1 +
∑

z is a cycle of τ ;
[u] 6=[w]z

0

︸ ︷︷ ︸
=0

=
∑

z is a cycle of τ ;
[u]=[w]z

1

= (the number of all cycles z of τ such that [u] = [w]z) · 1
= (the number of all cycles z of τ such that [u] = [w]z) ,

we obtain

(13.191.3) (multiplicity of u in M ′) =
∑

z is a cycle of τ

δ[u],[w]z
.

On the other hand, the definition of the multiset {wτ,1, wτ,2, . . . , wτ,n}multiset yields(
multiplicity of u in {wτ,1, wτ,2, . . . , wτ,n}multiset

)
= (the number of all i ∈ {1, 2, . . . , n} such that u = wτ,i)

=
∑

z is a cycle of τ

(the number of all i ∈ z such that u = wτ,i)

(since the cycles of τ are subsets of {1, 2, . . . , n}, and since each i ∈ {1, 2, . . . , n} belongs to exactly one of
these cycles). Hence, (

multiplicity of u in {wτ,1, wτ,2, . . . , wτ,n}multiset

)
=

∑
z is a cycle of τ

(the number of all i ∈ z such that u = wτ,i)︸ ︷︷ ︸
=δ[u],[w]z

(by Claim 1)

=
∑

z is a cycle of τ

δ[u],[w]z
.

Comparing this with (13.191.3), we obtain

(multiplicity of u in M ′) =
(
multiplicity of u in {wτ,1, wτ,2, . . . , wτ,n}multiset

)
.

Now, forget that we fixed u. We thus have proved that

(multiplicity of u in M ′) =
(
multiplicity of u in {wτ,1, wτ,2, . . . , wτ,n}multiset

)
for each aperiodic word u. In other words, each aperiodic word u appears in the multisets M ′ and
{wτ,1, wτ,2, . . . , wτ,n}multiset with equal multiplicity. Since both M ′ and {wτ,1, wτ,2, . . . , wτ,n}multiset are mul-
tisets of aperiodic words, we thus conclude that the multisets M ′ and {wτ,1, wτ,2, . . . , wτ,n}multiset contain the
same elements with equal multiplicities. In other words, these multisets M ′ and {wτ,1, wτ,2, . . . , wτ,n}multiset
are equal. In other words, M ′ = {wτ,1, wτ,2, . . . , wτ,n}multiset. This proves (13.191.2).]



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 1103

Proposition 6.6.22(b) yields wτ,1 ≤ω wτ,2 ≤ω · · · ≤ω wτ,n. From M ′ = {wτ,1, wτ,2, . . . , wτ,n}multiset and
wτ,1 ≤ω wτ,2 ≤ω · · · ≤ω wτ,n, we conclude that (wτ,1, wτ,2, . . . , wτ,n) is the ≤ω-increasing list of M ′. Thus,
the ≤ω-increasing list of M ′ has n elements.

Recall that M ′ =
⊎
N∈M N . Hence, Definition 6.6.26 tells us that RG (M) can be constructed as follows:

Let (m1,m2, . . . ,mn) be the ≤ω-increasing list of M ′. (This is well-defined, since the ≤ω-increasing list of
M ′ has n elements.) For each i ∈ {1, 2, . . . , n}, let `i be the last letter of the nonempty word mi. Then, the
definition of RG yields RG (M) = (`1, `2, . . . , `n).

We shall now use this to show that RG (M) = w.
Indeed, we first observe that (m1,m2, . . . ,mn) = (wτ,1, wτ,2, . . . , wτ,n), since both lists (m1,m2, . . . ,mn)

and (wτ,1, wτ,2, . . . , wτ,n) are the ≤ω-increasing list of M ′.
Now, for each i ∈ {1, 2, . . . , n}, we have

`i =

the last letter of the nonempty word mi︸︷︷︸
=wτ,i

(since (m1,m2,...,mn)=(wτ,1,wτ,2,...,wτ,n))


(since `i was defined to be the last letter of the nonempty word mi)

= (the last letter of the nonempty word wτ,i)

= wi

(
since the last letter of the word wτ,i is wi
(by Proposition 6.6.5(c), applied to h = i)

)
.

In other words, (`1, `2, . . . , `n) = (w1, w2, . . . , wn). Comparing this with w = (w1, w2, . . . , wn), we obtain
(`1, `2, . . . , `n) = w. Now, RG (M) = (`1, `2, . . . , `n) = w.

But GRw = M (since M was defined as GRw). Now,

(RG ◦GR) (w) = RG

GRw︸ ︷︷ ︸
=M

 = RG (M) = w = id (w) .

Forget that we fixed w. We thus have shown that (RG ◦GR) (w) = id (w) for each w ∈ A∗. In other
words, we have RG ◦GR = id. This proves Lemma 13.191.2. �

Now, we shall approach the proof of GR ◦RG = id. As was explained in the Hint, we can now try to
obtain RG ◦GR = id by finding a bijection A∗ →MNa, or, more precisely, a bijection between certain finite
subsets of A∗ and MNa. In order to define these subsets, we first introduce a notation:

Definition 13.191.3. Let M be a finite multiset of finite sets (for example, of necklaces). Then, sumM
shall denote the sum of the sizes of all sets N ∈ M (counted with multiplicities). Formally speaking, this
can be defined as follows: Set

(13.191.4) sumM =
∑

N∈SuppM

(multiplicity of N in M) · |N | .

Equivalently, if M = {N1, N2, . . . , Nk}multiset, then

(13.191.5) sumM = |N1|+ |N2|+ · · ·+ |Nk| .

Example 13.191.4. Applying (13.191.5), we obtain

sum ({{1, 4} , {2, 3} , {1, 2, 5} , {2, 3}}multiset) = |{1, 4}|+ |{2, 3}|+ |{1, 2, 5}|+ |{2, 3}| = 2 + 2 + 3 + 2 = 9.

Definition 13.191.5. Let B be a subset of A.

(a) For any n ∈ N, we have Bn ⊂ B∗ ⊂ A∗ (since B ⊂ A). Thus, elements of Bn are words in A∗.
(b) A B-necklace will mean a necklace that is a subset of B∗ (that is, a necklace consisting of words in

B∗).
(c) For any n ∈ N, we let MNa

B,n denote the set of all finite multisets M of aperiodic B-necklaces
satisfying sumM = n.
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Example 13.191.6. For this example, let A = {1, 2, . . . , 9} and B = {2, 4, 6, 8}. Then, the necklace
[286] = {286, 862, 628} is an aperiodic B-necklace, but the necklace [25] = {25, 52} is not a B-necklace
(since 25 /∈ B∗). The multiset M = {[286] , [24] , [24]}multiset is a finite multiset of aperiodic B-necklaces and
satisfies sumM = |[286]|+ |[24]|+ |[24]| = 3 + 2 + 2 = 7; thus, it belongs to MNa

B,7.

The sets we introduced in Definition 13.191.5 interact nicely with the Gessel-Reutenauer bijection: For
any subset B of A and any n ∈ N, the map GR : A∗ →MNa restricts to a map from Bn to MNa

B,n. More
precisely:

Lemma 13.191.7. Let B be a subset of A. Let n ∈ N. Then, GR (Bn) ⊂MNa
B,n.

Proof of Lemma 13.191.7. Let w ∈ Bn. We shall show that GRw ∈MNa
B,n.

Indeed, w ∈ Bn ⊂ An (since B ⊂ A). Hence, ` (w) = n. Let τ be the permutation (stdw)
−1 ∈ Sn. The

definition of GR yields

(13.191.6) GRw = {[w]z | z is a cycle of τ}multiset .

Now, let z be a cycle of τ . Then, the necklace [w]z is a subset of B∗ 1201. Hence, the necklace [w]z
is a B-necklace, and thus an aperiodic B-necklace (since we have seen in the definition of [w]z that [w]z is
aperiodic).

Forget that we fixed z. We thus have proved that [w]z is an aperiodic B-necklace whenever z is a cycle
of τ . Hence, the multiset {[w]z | z is a cycle of τ}

multiset
is a multiset of aperiodic B-necklaces. In view

of (13.191.6), this rewrites as follows: The multiset GRw is a multiset of aperiodic B-necklaces. Moreover,
this multiset GRw is clearly finite.

Let us now show that sum (GRw) = n. Indeed, the cycles of τ form a set partition of the set {1, 2, . . . , n}
(that is, they are disjoint nonempty sets, and their union is {1, 2, . . . , n}). Hence, the sum of their sizes is
|{1, 2, . . . , n}|. In other words,

∑
z is a cycle of τ |z| = |{1, 2, . . . , n}|.

But let us recall that sum (GRw) was defined to be the sum of the sizes of all sets N ∈ GRw (counted
with multiplicities). Since GRw = {[w]z | z is a cycle of τ}multiset, these sets N ∈ GRw are precisely the
necklaces [w]z where z ranges over all cycles of τ ; hence, the previous sentence says that sum (GRw) is the
sum of the sizes of the latter necklaces. In other words,

sum (GRw) =
∑

z is a cycle of τ

∣∣∣∣∣∣∣∣∣∣
[w]z︸︷︷︸

={wτ,i | i∈z}
(by the definition of [w]z)

∣∣∣∣∣∣∣∣∣∣
=

∑
z is a cycle of τ

|{wτ,i | i ∈ z}|︸ ︷︷ ︸
=|z|

(by Proposition 6.6.7(c))

=
∑

z is a cycle of τ

|z| = |{1, 2, . . . , n}| = n.

Altogether, we now know that the multiset GRw is a finite multiset of aperiodic B-necklaces and satisfies
sum (GRw) = n. In other words, GRw is a finite multiset M of aperiodic B-necklaces satisfying sumM = n.
In other words, GRw ∈MNa

B,n (since MNa
B,n was defined as the set of all finite multisets M of aperiodic

B-necklaces satisfying sumM = n).
Forget that we fixed w. We thus have shown that GRw ∈ MNa

B,n for each w ∈ Bn. In other words,

GR (Bn) ⊂MNa
B,n. This proves Lemma 13.191.7. �

The following fact is almost trivial:

Lemma 13.191.8. Let B be a subset of A. Let u ∈ B∗ be a nonempty word. Then, [u] is a B-necklace.

Proof of Lemma 13.191.8. The word u ∈ B∗ is nonempty. Thus, there exists a positive integer p such that
u ∈ Bp. Consider this p. Hence, u ∈ Bp ⊂ Ap (since B ⊂ A). Therefore, [u] is a well-defined p-necklace
(since p is a positive integer), hence a necklace.

1201This follows in a straightforward way from the definition of [w]z . (In more detail: The definition of [w]z yields [w]z =

{wτ,i | i ∈ z}. But all letters of the word w belong to B (since w ∈ Bn). Hence, for each i ∈ z, the word wτ,i consists

entirely of letters in B (since the definition of wτ,i shows that wτ,i consists of some letters of w, but all letters of w belong to
B), and thus belongs to B∗. In other words, {wτ,i | i ∈ z} is a subset of B∗. In other words, [w]z is a subset of B∗ (since

[w]z = {wτ,i | i ∈ z}). Qed.)
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Lemma 13.190.1 yields that u ∈ [u]. In other words, [u] contains u.
The cyclic group C acts on both Bp and Ap in the same way; thus, the C-set Bp is a subset of the C-set

Ap. Hence, the orbit C · u of u is the same no matter whether we are considering u as an element of Bp or
as an element of the larger C-set Ap. But considering u as an element of Bp, we clearly see that this orbit
C · u is an orbit of the C-set Bp; thus, C · u ⊂ Bp.

The set [u] is a p-necklace. In other words, [u] is an orbit of the C-action on Ap (since this is what
“p-necklace” means). Since [u] contains u, we thus conclude that [u] is the orbit of the C-action on Ap that
contains u. In other words, [u] = C · u. Hence, [u] = C · u ⊂ Bp ⊂ B∗. In other words, [u] is a subset of B∗.

Thus, [u] is a necklace that is a subset of B∗ (since [u] is a necklace). In other words, [u] is a B-necklace
(since a B-necklace is defined to mean a necklace that is a subset of B∗). This proves Lemma 13.191.8. �

We shall now use the CFL factorization (introduced in Definition 6.1.25) to establish a bijection between
Bn and MNa

B,n. We recall that every word has a unique CFL factorization (as we have seen in Theorem
6.1.27); thus, we can speak of “the” CFL factorization of a word.

Proposition 13.191.9. Let B be a subset of A. Let n ∈ N. Let w ∈ Bn. Let (a1, a2, . . . , ak) be the CFL
factorization of the word w. (This factorization exists and is unique, as we proved in Theorem 6.1.27.) Then,
{[a1] , [a2] , . . . , [ak]}multiset is a well-defined element of MNa

B,n.

Proof of Proposition 13.191.9. We have w ∈ Bn ⊂ B∗. Hence, each letter of w belongs to B. Moreover,
from w ∈ Bn, we obtain ` (w) = n.

Recall that (a1, a2, . . . , ak) is the CFL factorization of the word w. According to Definition 6.1.25, this
means that (a1, a2, . . . , ak) is a tuple of Lyndon words satisfying w = a1a2 · · · ak and a1 ≥ a2 ≥ · · · ≥ ak.
Thus, in particular, (a1, a2, . . . , ak) is a tuple of Lyndon words. In other words, a1, a2, . . . , ak are Lyndon
words.

Now, we claim the following:

Claim 1: Let i ∈ {1, 2, . . . , k}. Then:
(a) The set [ai] is a well-defined aperiodic B-necklace.
(b) We have |[ai]| = ` (ai).

[Proof of Claim 1: The word ai is a Lyndon word (since a1, a2, . . . , ak are Lyndon words), and thus
nonempty (since any Lyndon word is nonempty by definition). Thus, the necklace [ai] is well-defined.

From w = a1a2 · · · ak, we conclude that each letter of ai is a letter of w. Thus, each letter of ai belongs to
B (since each letter of w belongs to B). Hence, ai ∈ B∗. Thus, Lemma 13.191.8 (applied to u = ai) shows
that [ai] is a B-necklace.

Lemma 13.190.3 (applied to u = ai) shows that the necklace [ai] is aperiodic (since ai is a Lyndon word).
Thus, [ai] is an aperiodic B-necklace (since we already know that [ai] is a B-necklace). This proves Claim
1 (a).

(b) The word ai is nonempty and the necklace [ai] is aperiodic (as we know); thus, Lemma 13.190.4
(applied to u = ai) yields |[ai]| = ` (ai). This proves Claim 1 (b).]

Now, for each i ∈ {1, 2, . . . , k}, the set [ai] is a well-defined aperiodic B-necklace (by Claim 1 (a)). In
other words, [a1] , [a2] , . . . , [ak] are well-defined aperiodic B-necklaces. Thus, {[a1] , [a2] , . . . , [ak]}multiset is
a finite multiset of aperiodic B-necklaces. Moreover, (13.191.5) (applied to M = {[a1] , [a2] , . . . , [ak]}multiset

and Ni = [ai]) yields

sum ({[a1] , [a2] , . . . , [ak]}multiset) = |[a1]|+ |[a2]|+ · · ·+ |[ak]| =
k∑
i=1

|[ai]|︸︷︷︸
=`(ai)

(by Claim 1 (b))

=

k∑
i=1

` (ai) .

Comparing this with

`

 w︸︷︷︸
=a1a2···ak

 = ` (a1a2 · · · ak) = ` (a1) + ` (a2) + · · ·+ ` (ak) =

k∑
i=1

` (ai) ,

we obtain sum ({[a1] , [a2] , . . . , [ak]}multiset) = ` (w) = n. Hence, {[a1] , [a2] , . . . , [ak]}multiset is a finite multi-
set M of aperiodic B-necklaces satisfying sumM = n (since we already know that {[a1] , [a2] , . . . , [ak]}multiset
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is a finite multiset of aperiodic B-necklaces). In other words, {[a1] , [a2] , . . . , [ak]}multiset ∈ MNa
B,n (since

MNa
B,n was defined as the set of all such multisets M).

Thus, we have showed that {[a1] , [a2] , . . . , [ak]}multiset is a well-defined element of MNa
B,n. This proves

Proposition 13.191.9. �

Definition 13.191.10. Let B be a subset of A. Let n ∈ N. Then, we define a map CFL : Bn →
MNa

B,n as follows: For each w ∈ Bn, we set CFLw = {[a1] , [a2] , . . . , [ak]}multiset, where (a1, a2, . . . , ak)
is the CFL factorization of the word w. (This is well-defined, since Proposition 13.191.9 shows that
{[a1] , [a2] , . . . , [ak]}multiset is a well-defined element of MNa

B,n.)

Example 13.191.11. If B = {2 < 4 < 6 < 8} and n = 9 and w = 262642424, then the map CFL sends the
word w to CFLw = {[26264] , [24] , [24]}multiset, since the CFL factorization of w is (26264, 24, 24).

Recall that L denotes the set of all Lyndon words, whereas Na denotes the set of all aperiodic necklaces.

Definition 13.191.12. We define a map lynd : Na → L as follows:
Let N ∈ Na. Thus, N is an aperiodic necklace. Hence, N is a necklace. In other words, N is an n-necklace

for some positive integer n (by the definition of a “necklace”). Consider this n. Hence, N is an aperiodic
n-necklace. Thus, Exercise 6.1.34(c) shows that N contains exactly one Lyndon word. We define lyndN to
be this Lyndon word. (Thus, lyndN ∈ L; hence, the map lynd : Na → L is well-defined.)

Example 13.191.13. If A = {1 < 2 < 3 < 4 < · · · } and N = [4121312], then lyndN = 1213124.

Lemma 13.191.14. Let N be an aperiodic necklace. Then:

(a) We have ` (lyndN) = |N |.
(b) We have [lyndN ] = N .
(c) If u is a Lyndon word such that u ∈ N , then u = lyndN .
(d) Let B be a subset of A. Assume that N is a B-necklace. Then, lyndN ∈ B∗.

Proof of Lemma 13.191.14. The definition of lyndN yields that lyndN is the unique Lyndon word that N
contains. In other words, lyndN is the unique Lyndon word w such that w ∈ N . Hence, lyndN is a Lyndon
word and satisfies lyndN ∈ N . Hence, Lemma 13.190.2 (applied to u = lyndN) yields N = [lyndN ]. This
proves Lemma 13.191.14(b).

(a) The word lyndN is a Lyndon word, and thus is nonempty (since any Lyndon word is nonempty).
Moreover, the necklace N is aperiodic. Since N = [lyndN ], this rewrites as follows: The necklace [lyndN ]
is aperiodic. Hence, Lemma 13.190.4 (applied to u = lyndN) yields |[lyndN ]| = ` (lyndN). Since N =
[lyndN ], we now have |N | = |[lyndN ]| = ` (lyndN). This proves Lemma 13.191.14(a).

(c) Recall that lyndN is the unique Lyndon word w such that w ∈ N . Thus, lyndN is the only such
Lyndon word w. In other words, if w is a Lyndon word such that w ∈ N , then w = lyndN . Renaming w as
u in this statement, we obtain precisely the claim of Lemma 13.191.14(c).

(d) We know that N is a B-necklace. In other words, N is a necklace that is a subset of B∗ (because this
is what “B-necklace” means). Thus, N is a subset of B∗. In other words, N ⊂ B∗. Thus, lyndN ∈ N ⊂ B∗.
This proves Lemma 13.191.14(d). �

Lemma 13.191.15. Let u be a Lyndon word. Then, lynd [u] = u.

Proof of Lemma 13.191.15. The necklace [u] is aperiodic (by Lemma 13.190.3). Hence, lynd [u] is well-
defined. Moreover, the word u is Lyndon and thus nonempty (since every Lyndon word is nonempty). Thus,
Lemma 13.190.1 yields u ∈ [u]. Hence, Lemma 13.191.14(c) (applied to N = [u]) yields u = lynd [u]. This
proves Lemma 13.191.15. �

The next definition introduces a notation for a simple and very basic concept: the concept of applying a
map f : X → Y to a finite multiset M of elements of X (by applying f to each element of M).

Definition 13.191.16. Let X and Y be two sets, and let f : X → Y be any map. Let M be a finite
multiset of elements of X. Then, f∗M shall denote the finite multiset of elements of Y obtained by applying
f to each element of M . More formally, this multiset f∗M can be defined by the requirement that for any
object y, we have

(multiplicity of y in f∗M) =
∑
x∈X;
f(x)=y

(multiplicity of x in M) .
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More explicitly, f∗M can be described as follows: If M = {m1,m2, . . . ,mk}multiset, then

(13.191.7) f∗M = {f (m1) , f (m2) , . . . , f (mk)}multiset .

Example 13.191.17. LetX = Z and Y = N, and let f : X → Y be the map that sends each x ∈ Z to x2 ∈ N.
Then, (13.191.7) yields f∗ ({−2, 2, 3, 3}multiset) = {f (−2) , f (2) , f (3) , f (3)}multiset = {4, 4, 9, 9}multiset.

Example 13.191.18. Let M be the finite multiset {[13] , [13] , [4252]}multiset of aperiodic necklaces. Then,
(13.191.7) yields

lynd∗M = {lynd [13] , lynd [13] , lynd [4252]}multiset = {13, 13, 2425}multiset .

Lemma 13.191.19. Let M be a finite multiset of aperiodic necklaces. Let M̃ be the multiset lynd∗M .
Then:

(a) The multiset M̃ is a finite multiset of Lyndon words.

Now, let b1, b2, . . . , bk be some Lyndon words such that M̃ = {b1, b2, . . . , bk}multiset. Then:

(b) We have M = {[b1] , [b2] , . . . , [bk]}multiset.
(c) We have sumM = ` (b1) + ` (b2) + · · ·+ ` (bk).

Proof of Lemma 13.191.19. We know that M is a finite multiset of aperiodic necklaces, i.e., a finite multiset
of elements of Na. Hence, lynd∗M is well-defined and is a finite multiset of elements of L (since lynd is a
map from Na to L). In other words, lynd∗M is well-defined and is a finite multiset of elements of Lyndon

words (since the elements of L are the Lyndon words). In other words, M̃ is well-defined and is a finite

multiset of elements of Lyndon words (because M̃ = lynd∗M). This proves Lemma 13.191.19(a).
Write the multisetM in the formM = {N1, N2, . . . , Ni}multiset for some aperiodic necklacesN1, N2, . . . , Ni.

(This can be done, since M is a finite multiset of aperiodic necklaces.)
From M = {N1, N2, . . . , Ni}multiset, we obtain lynd∗M = {lyndN1, lyndN2, . . . , lyndNi}multiset (by

(13.191.7), applied to Na, L, lynd, i and Nj instead of X, Y , f , k and mj). Hence,

(13.191.8) M̃ = lynd∗M = {lyndN1, lyndN2, . . . , lyndNi}multiset .

(b) For each r ∈ {1, 2, . . . , i}, the set Nr is an aperiodic necklace (since N1, N2, . . . , Ni are aperiodic
necklaces) and therefore satisfies [lyndNr] = Nr (by Lemma 13.191.14(b), applied to N = Nr). In other
words,

(13.191.9) ([lyndN1] , [lyndN2] , . . . , [lyndNi]) = (N1, N2, . . . , Ni) .

But comparing (13.191.8) with M̃ = {b1, b2, . . . , bk}multiset, we obtain

{b1, b2, . . . , bk}multiset = {lyndN1, lyndN2, . . . , lyndNi}multiset .

Thus, the k-tuple (b1, b2, . . . , bk) is a permutation of the i-tuple (lyndN1, lyndN2, . . . , lyndNi). Hence,

{[b1] , [b2] , . . . , [bk]}multiset = {[lyndN1] , [lyndN2] , . . . , [lyndNi]}multiset = {N1, N2, . . . , Ni}multiset

(by (13.191.9)). Comparing this withM = {N1, N2, . . . , Ni}multiset, we obtainM = {[b1] , [b2] , . . . , [bk]}multiset.
This proves Lemma 13.191.19(b).

(c) For each r ∈ {1, 2, . . . , i}, the set Nr is an aperiodic necklace (since N1, N2, . . . , Ni are aperiodic
necklaces) and therefore satisfies

(13.191.10) ` (lyndNr) = |Nr|

(by Lemma 13.191.14(a), applied to N = Nr).
In our above proof of Lemma 13.191.19(b), we have showed that the k-tuple (b1, b2, . . . , bk) is a permutation

of the i-tuple (lyndN1, lyndN2, . . . , lyndNi). Hence,

` (b1) + ` (b2) + · · ·+ ` (bk) = ` (lyndN1) + ` (lyndN2) + · · ·+ ` (lyndNi)

=

i∑
r=1

` (lyndNr)︸ ︷︷ ︸
=|Nr|

(by (13.191.10))

=

i∑
r=1

|Nr| = |N1|+ |N2|+ · · ·+ |Ni| .
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But (13.191.5) (applied to i instead of k) yields

sumM = |N1|+ |N2|+ · · ·+ |Ni| (since M = {N1, N2, . . . , Ni}multiset) .

Comparing these two equalities, we find sumM = ` (b1)+` (b2)+· · ·+` (bk). This proves Lemma 13.191.19(c).
�

Proposition 13.191.20. Let B be a subset of A. Let n ∈ N. Let M ∈ MNa
B,n. Then, M is a finite

multiset of aperiodic B-necklaces. Let M̃ be the multiset lynd∗M . This M̃ is a finite multiset of Lyndon

words (by Lemma 13.191.19(a)). Let (b1, b2, . . . , bk) be the ≤-increasing list of M̃ . (Here we are using the
lexicographic order ≤, not the relation ≤ω.)

Then, bkbk−1 · · · b1 ∈ Bn.

Proof of Proposition 13.191.20. We have M ∈ MNa
B,n. In other words, M is a finite multiset of aperiodic

B-necklaces satisfying sumM = n (since MNa
B,n was defined to be the set of all such multisets). Hence, in

particular, M is a finite multiset of aperiodic necklaces (since each B-necklace is a necklace). Thus, lynd∗M
is well-defined.

The list (b1, b2, . . . , bk) is the ≤-increasing list of M̃ (by its definition). Hence, M̃ = {b1, b2, . . . , bk}multiset.

Thus, b1, b2, . . . , bk are elements of M̃ , and therefore are Lyndon words (since M̃ is a multiset of Lyndon
words). Thus, Lemma 13.191.19(b) yields M = {[b1] , [b2] , . . . , [bk]}multiset.

Now, let i ∈ {1, 2, . . . , k}. Then, [bi] is an element of M (since M = {[b1] , [b2] , . . . , [bk]}multiset). Thus, [bi]
is an aperiodic B-necklace (since M is a finite multiset of aperiodic B-necklaces), hence a B-necklace, and
thus a subset of B∗ (by the definition of a B-necklace). In other words, [bi] ⊂ B∗. But bi is a Lyndon word
(since b1, b2, . . . , bk are Lyndon words), and thus a nonempty word (since any Lyndon word is nonempty).
Hence, Lemma 13.190.1 (applied to u = bi) yields bi ∈ [bi] ⊂ B∗.

Forget that we fixed i. We thus have shown that bi ∈ B∗ for each i ∈ {1, 2, . . . , k}. Hence, bkbk−1 · · · b1 ∈
B∗.

But Lemma 13.191.19(c) yields sumM = ` (b1) + ` (b2) + · · · + ` (bk). Comparing this with sumM = n,
we obtain

` (b1) + ` (b2) + · · ·+ ` (bk) = n.

Now, combining bkbk−1 · · · b1 ∈ B∗ with

` (bkbk−1 · · · b1) = ` (bk) + ` (bk−1) + · · ·+ ` (b1) = ` (b1) + ` (b2) + · · ·+ ` (bk) = n,

we obtain bkbk−1 · · · b1 ∈ Bn. This proves Proposition 13.191.20. �

Definition 13.191.21. Let B be a subset of A. Let n ∈ N. Then, we define a map LFC : MNa
B,n → Bn

as follows: Let M ∈MNa
B,n. Then, M is a finite multiset of aperiodic B-necklaces. Let M̃ be the multiset

lynd∗M . This M̃ is a finite multiset of Lyndon words (by Lemma 13.191.19(a)). Let (b1, b2, . . . , bk) be

the ≤-increasing list of M̃ . Then, we set LFC (M) = bkbk−1 · · · b1. (This is well-defined, since Proposition
13.191.20 shows that bkbk−1 · · · b1 ∈ Bn.)

Example 13.191.22. If B = {2 < 4 < 6 < 8} and n = 9 and M = {[26264] , [24] , [24]}multiset, then the

multiset M̃ in Definition 13.191.21 is {26264, 24, 24}multiset, and its ≤-increasing list is (24, 24, 26264), so
that LFC (M) = 262642424.

Proposition 13.191.23. Let B be a subset of A. Let n ∈ N. Then, the maps CFL : Bn → MNa
B,n and

LFC : MNa
B,n → Bn (introduced in Definition 13.191.10 and in Definition 13.191.21) are mutually inverse.

Proof of Proposition 13.191.23. We shall prove two claims:

Claim 1: We have CFL ◦LFC = id.

[Proof of Claim 1: Let M ∈ MNa
B,n. Thus, M is a finite multiset of aperiodic B-necklaces satisfying

sumM = n (since MNa
B,n was defined to be the set of all such multisets). Hence, M is a finite multiset of

elements of Na. Thus, lynd∗M is well-defined.

Let M̃ be the multiset lynd∗M . This M̃ is a finite multiset of Lyndon words (by Lemma 13.191.19(a)).

Let (b1, b2, . . . , bk) be the ≤-increasing list of M̃ . According to the definition of a ≤-increasing list, this

means that M̃ = {b1, b2, . . . , bk}multiset and b1 ≤ b2 ≤ · · · ≤ bk. Now, b1, b2, . . . , bk are Lyndon words (since
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{b1, b2, . . . , bk}multiset = M̃ is a multiset of Lyndon words). Hence, (bk, bk−1, . . . , b1) is a tuple of Lyndon
words.

Define w ∈ B∗ by w = LFC (M). Thus, w = LFC (M) = bkbk−1 · · · b1 (by the definition of the map LFC).
We shall now show that CFLw = M .
Indeed, b1 ≤ b2 ≤ · · · ≤ bk. In other words, bk ≥ bk−1 ≥ · · · ≥ b1. Combining this with the fact that

(bk, bk−1, . . . , b1) is a tuple of Lyndon words, we conclude that (bk, bk−1, . . . , b1) is the CFL factorization of
w (by the definition of the CFL factorization).

On the other hand, M is a finite multiset of aperiodic necklaces. Moreover, b1, b2, . . . , bk are Lyndon words

and satisfy M̃ = {b1, b2, . . . , bk}multiset. Hence, Lemma 13.191.19(b) yields M = {[b1] , [b2] , . . . , [bk]}multiset.
But the definition of the map CFL yields that if (a1, a2, . . . , ak) is the CFL factorization of the word w,

then

CFLw = {[a1] , [a2] , . . . , [ak]}multiset .

Applying this to (a1, a2, . . . , ak) = (bk, bk−1, . . . , b1), we obtain

CFLw = {[bk] , [bk−1] , . . . , [b1]}multiset (since (bk, bk−1, . . . , b1) is the CFL factorization of w)

= {[b1] , [b2] , . . . , [bk]}multiset = M (since M = {[b1] , [b2] , . . . , [bk]}multiset) .

In view of w = LFC (M), this rewrites as CFL (LFC (M)) = M . Thus, (CFL ◦LFC) (M) = CFL (LFC (M)) =
M = id (M).

Forget that we fixed M . We thus have showed that (CFL ◦LFC) (M) = id (M) for each M ∈MNa
B,n. In

other words, CFL ◦LFC = id. Thus, Claim 1 is proven.]

Claim 2: We have LFC ◦CFL = id.

[Proof of Claim 2: Let w ∈ Bn. Let (a1, a2, . . . , ak) be the CFL factorization of the word w. Then, the
definition of CFL yields CFLw = {[a1] , [a2] , . . . , [ak]}multiset.

We know that (a1, a2, . . . , ak) is a CFL factorization of w. In other words, (a1, a2, . . . , ak) is a tuple of
Lyndon words satisfying w = a1a2 · · · ak and a1 ≥ a2 ≥ · · · ≥ ak (because this is how a “CFL factorization
of w” is defined). In particular, a1, a2, . . . , ak are Lyndon words (since (a1, a2, . . . , ak) is a tuple of Lyndon
words).

Hence, for each i ∈ {1, 2, . . . , k}, the word ai is a Lyndon word, and therefore satisfies lynd [ai] = ai (by
Lemma 13.191.15, applied to u = ai). In other words,

(13.191.11) (lynd [a1] , lynd [a2] , . . . , lynd [ak]) = (a1, a2, . . . , ak) .

Let M denote the multiset CFLw ∈MNa
B,n.

Thus, M ∈MNa
B,n. In other words, M is a finite multiset of aperiodic B-necklaces satisfying sumM = n

(since MNa
B,n was defined to be the set of all such multisets). Hence, M is a finite multiset of elements of

Na. Thus, lynd∗M is well-defined.
The definition of M yields M = CFLw = {[a1] , [a2] , . . . , [ak]}multiset. Hence,

lynd∗M = {lynd [a1] , lynd [a2] , . . . , lynd [ak]}multiset

(by (13.191.7), applied to Na, L, lynd and [aj ] instead of X, Y , f and mj).

Let M̃ be the multiset lynd∗M . This M̃ is a finite multiset of Lyndon words (by Lemma 13.191.19(a)),
and satisfies

M̃ = lynd∗M = {lynd [a1] , lynd [a2] , . . . , lynd [ak]}multiset

= {a1, a2, . . . , ak}multiset (by (13.191.11))

= {ak, ak−1, . . . , a1}multiset .

Also, recall that a1 ≥ a2 ≥ · · · ≥ ak. In other words, ak ≤ ak−1 ≤ · · · ≤ a1.

Now, (ak, ak−1, . . . , a1) is the ≤-increasing list of M̃ (because M̃ = {ak, ak−1, . . . , a1}multiset and ak ≤
ak−1 ≤ · · · ≤ a1). But the definition of LFC shows that if (b1, b2, . . . , bk) is the ≤-increasing list of M̃ , then

LFC (M) = bkbk−1 · · · b1.

We can apply this to (b1, b2, . . . , bk) = (ak, ak−1, . . . , a1) (since (ak, ak−1, . . . , a1) is the ≤-increasing list of

M̃); thus, we obtain LFC (M) = a1a2 · · · ak. Comparing this with w = a1a2 · · · ak, we obtain LFC (M) = w.
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In view of M = CFLw, this rewrites as LFC (CFLw) = w. Hence,

(LFC ◦CFL) (w) = LFC (CFLw) = w = id (w) .

Forget that we fixed w. We thus have shown that (LFC ◦CFL) (w) = id (w) for each w ∈ Bn. In other
words, LFC ◦CFL = id. This proves Claim 2.]

We have CFL ◦LFC = id (by Claim 1) and LFC ◦CFL = id (by Claim 2). Combining these two equalities,
we conclude that the maps CFL : Bn →MNa

B,n and LFC : MNa
B,n → Bn are mutually inverse. This proves

Proposition 13.191.23. �

Corollary 13.191.24. Let B be a finite subset of A. Let n ∈ N. Then:

(a) The sets Bn and MNa
B,n are finite and satisfy |Bn| =

∣∣MNa
B,n

∣∣.
(b) Any injective map f : Bn →MNa

B,n is bijective.

Proof of Corollary 13.191.24. The set B is finite. Hence, the set Bn is finite as well.
Proposition 13.191.23 shows that the maps CFL : Bn → MNa

B,n and LFC : MNa
B,n → Bn (defined as

in Proposition 13.191.23) are mutually inverse. Thus, these two maps are bijections. Hence, there exists a
bijection from Bn to MNa

B,n. This entails |Bn| =
∣∣MNa

B,n

∣∣. Since Bn is finite, this shows that MNa
B,n is

finite as well. Thus, Corollary 13.191.24(a) is proven.
(b) Let f : Bn →MNa

B,n be any injective map. We must prove that f is bijective.

Corollary 13.191.24(a) shows that Bn and MNa
B,n are two finite sets of equal sizes. Hence, f is a map

between two finite sets of equal sizes. But it is well-known that any injective map between two finite sets of
equal sizes is bijective1202. Thus, f is bijective. This proves Corollary 13.191.24(b).

�

Now, at last we can prove the following:

Lemma 13.191.25. We have GR ◦RG = id.

Proof of Lemma 13.191.25. Lemma 13.191.2 yields RG ◦GR = id. Thus, the map GR has a left inverse
(namely, RG). Therefore, the map GR is injective.

Let M ∈MNa. We shall show that (GR ◦RG) (M) = M .
We have M ∈ MNa. In other words, M is a finite multiset of aperiodic necklaces (by the definition of

MNa). Thus, each element of M is an aperiodic necklace.
Let n = sumM ; thus, n ∈ N.
Define a subset B of A by

(13.191.12) B =
⋃
N∈M

⋃
w∈N

{all letters of w}

(where the “
⋃
N∈M” symbol should be understood as “

⋃
N∈SuppM”).

Thus, B is a finite union of finite unions of finite sets1203. Thus, the set B is finite. Furthermore, the
definition of B ensures that each N ∈ M is an aperiodic B-necklace1204. Thus, M is a finite multiset of
aperiodic B-necklaces. Hence, M is a finite multiset of aperiodic B-necklaces satisfying sumM = n (since
n = sumM). In other words, M ∈MNa

B,n (by the definition of MNa
B,n).

But Lemma 13.191.7 yields that GR (Bn) ⊂MNa
B,n. In other words, GR (w) ∈MNa

B,n for each w ∈ Bn.
Thus, we can define a map

GR : Bn →MNa
B,n,

w 7→ GR (w) .

1202This is one of the basic facts known as the “pigeonhole principle”.
1203To wit:

• There are only finitely many N ∈M (since M is finite).

• For each N ∈M , there are only finitely many w ∈ N (since N is a necklace, thus a finite set).
• For each N ∈M and each w ∈ N , the set {all letters of w} is finite (since the word w has only finitely many letters).

1204Proof. Let N ∈M . Then, N is an aperiodic necklace (since each element of M is an aperiodic necklace).

But (13.191.12) shows that
⋃
w∈N {all letters of w} ⊂ B (since N ∈ M). In other words, each w ∈ N satisfies

{all letters of w} ⊂ B. In other words, each w ∈ N satisfies w ∈ B∗. In other words, N ⊂ B∗. Hence, N is a B-necklace (since

N is a necklace), hence an aperiodic B-necklace (since N is aperiodic). Qed.
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Consider this map GR. Clearly, this map GR is a restriction of the map GR; hence, this map GR is injective
(since the map GR is injective). Hence, Corollary 13.191.24(b) (applied to f = GR) yields that the map GR
is bijective. Thus, MNa

B,n = GR (Bn).

Now, M ∈ MNa
B,n = GR (Bn). In other words, there exists some w ∈ Bn satisfying M = GR w.

Consider this w. We have M = GR w = GRw (by the definition of GR). Now,

(GR ◦RG)

 M︸︷︷︸
=GRw

 = (GR ◦RG) (GRw) =

GR ◦RG ◦GR︸ ︷︷ ︸
=id

 (w) = GRw = M = id (M) .

Forget that we fixed M . We thus have proved that (GR ◦RG) (M) = id (M) for each M ∈MNa. In other
words, GR ◦RG = id. This proves Lemma 13.191.25. �

Proof of Theorem 6.6.29. We have GR ◦RG = id (by Lemma 13.191.25) and RG ◦GR = id (by Lemma
13.191.2). These two equalities combined yield the claim of Theorem 6.6.29. �

Hence, Exercise 6.6.30 is solved.

13.192. Solution to Exercise 6.6.51. Solution to Exercise 6.6.51. In order to solve Exercise 6.6.51, we
must prove the statements made in Subsection 6.6.2. We shall begin with Proposition 6.6.39. First, let us
show a few simple lemmas about words w ∈ A∗ and the respective monomials xw:

Lemma 13.192.1. Let u and v be two words in A∗. Then, xuv = xuxv.

Proof of Lemma 13.192.1. Write the word u in the form u = (u1, u2, . . . , up). Then, the definition of xu
yields xu = xu1

xu2
· · ·xup .

Write the word v in the form v = (v1, v2, . . . , vq). Then, the definition of xv yields xv = xv1
xv2
· · ·xvq .

From u = (u1, u2, . . . , up) and v = (v1, v2, . . . , vq), we obtain

uv = (u1, u2, . . . , up) (v1, v2, . . . , vq) = (u1, u2, . . . , up, v1, v2, . . . , vq) .

Hence, the definition of xuv yields

xuv = xu1
xu2
· · ·xupxv1

xv2
· · ·xvq .

Comparing this with
xu︸︷︷︸

=xu1xu2 ···xup

xv︸︷︷︸
=xv1xv2 ···xvq

= xu1xu2 · · ·xupxv1xv2 · · ·xvq ,

we obtain xuv = xuxv. This proves Lemma 13.192.1. �

Lemma 13.192.2. Let k ∈ N. Let a1, a2, . . . , ak be words in A∗. Then, xa1a2···ak = xa1
xa2
· · ·xak .

Proof of Lemma 13.192.2. Lemma 13.192.2 follows by induction on k, using Lemma 13.192.1 in the induction
step. �

Lemma 13.192.3. Let n ∈ N. Then,
∑
w∈An xw = pn1 .

Proof of Lemma 13.192.3. The definition of p1 yields

p1 = x1
1 + x1

2 + x1
3 + · · · =

∑
a∈{1,2,3,...}

x1
a︸︷︷︸

=xa

=
∑

a∈{1,2,3,...}

xa =
∑
a∈A

xa

(since {1, 2, 3, . . .} = A). Taking both sides of this equality to the n-th power, we obtain

pn1 =

(∑
a∈A

xa

)n
=

∑
(a1,a2,...,an)∈An

xa1xa2 · · ·xan (by the product rule)

=
∑

(w1,w2,...,wn)∈An
xw1xw2 · · ·xwn(13.192.1)
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(here, we have renamed the summation index (a1, a2, . . . , an) as (w1, w2, . . . , wn)).
Each w ∈ An can be written uniquely in the form w = (w1, w2, . . . , wn). Hence, we can substitute

(w1, w2, . . . , wn) for w in the sum
∑
w∈An xw. We thus obtain∑

w∈An
xw =

∑
(w1,w2,...,wn)∈An

x(w1,w2,...,wn)︸ ︷︷ ︸
=xw1xw2 ···xwn

(by the definition of x(w1,w2,...,wn))

=
∑

(w1,w2,...,wn)∈An
xw1

xw2
· · ·xwn .

Comparing this with (13.192.1), we obtain
∑
w∈An xw = pn1 . This proves Lemma 13.192.3. �

Lemma 13.192.4. We have∑
w∈A∗

xwt
`(w) =

1

1− p1t
in the ring (k [[x]]) [[t]] .

Proof of Lemma 13.192.4. We have∑
w∈A∗︸ ︷︷ ︸

=
∑
n∈N

∑
w∈An

(since A∗=
⊔
n∈N An)

xwt
`(w) =

∑
n∈N

∑
w∈An

xw t`(w)︸︷︷︸
=tn

(since `(w)=n
(since w∈An))

=
∑
n∈N

∑
w∈An

xw︸ ︷︷ ︸
=pn1

(by Lemma 13.192.3)

tn =
∑
n∈N

pn1 t
n︸︷︷︸

=(p1t)
n

=
∑
n∈N

(p1t)
n

=
1

1− p1t
.

This proves Lemma 13.192.4. �

Lemma 13.192.5. We have∏
w∈L

1

1− xwt`(w)
=
∑
w∈A∗

xwt
`(w) in the ring (k [[x]]) [[t]] .

Proof of Lemma 13.192.5. Let M denote the set of all finite multisets of Lyndon words. Define two maps
m : M→ A∗ and n : A∗ →M as in Proposition 13.143.1. Then, Proposition 13.143.1 shows that the maps
m and n are mutually inverse bijections.

Recall that L is the set of all Lyndon words. Thus, the Lyndon words are precisely the elements of L.
But the definition of M says that M is the set of all finite multisets of Lyndon words. In other words, M is
the set of all finite multisets of elements of L (since the Lyndon words are precisely the elements of L).

Let N be the set of all families (kw)w∈L ∈ NL of nonnegative integers (indexed by the Lyndon words)
such that all but finitely many w ∈ L satisfy kw = 0. Thus,

(13.192.2)
∑

(kw)w∈L∈N
L;

all but finitely many w∈L
satisfy kw=0

=
∑

(kw)w∈L∈N

(an equality of summation signs). Proposition 13.143.2 (applied to S = L) shows that the map mult : M→ N
that sends each multiset M ∈M to the family

((multiplicity of w in the multiset M))w∈L ∈ N

is well-defined and is a bijection. Consider this map mult. Since mult : M → N is a bijection, its inverse
mult−1 : N→M is well-defined and also a bijection.

For any w ∈ L, the monomial t`(w) has positive degree1205. Hence, for any w ∈ L, the formal power series
1

1− xwt`(w)
is well-defined and satisfies the equality

1

1− xwt`(w)
=
∑
k∈N

(
xwt

`(w)
)k

1205Proof. Let w ∈ L. Thus, w is a Lyndon word (since L is the set of all Lyndon words), therefore a nonempty word (since

any Lyndon word is nonempty by definition). Hence, ` (w) > 0. Therefore, the monomial t`(w) has positive degree. Qed.
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(since
1

1− q
=
∑
k∈N q

k in the ring k [[q]] of formal power series).

Multiplying these equalities over all w ∈ L, we obtain

∏
w∈L

1

1− xwt`(w)
=
∏
w∈L

∑
k∈N

(
xwt

`(w)
)k

=
∑

(kw)w∈L∈N
L;

all but finitely many w∈L
satisfy kw=0

∏
w∈L

(
xwt

`(w)
)kw

(by the product rule)

=
∑

(kw)w∈L∈N

∏
w∈L

(
xwt

`(w)
)kw

(by (13.192.2)) .(13.192.3)

The composition m ◦ mult−1 : N → A∗ of the bijections m and mult−1 is clearly a bijection. We now
claim the following:

Claim 1: Let (kw)w∈L ∈ N. Then,

x(m◦mult−1)((kw)w∈L)t
`((m◦mult−1)((kw)w∈L)) =

∏
w∈L

(
xwt

`(w)
)kw

.

[Proof of Claim 1: Let M = mult−1
(
(kw)w∈L

)
. Then,

(kw)w∈L = multM = ((multiplicity of w in the multiset M))w∈L

(by the definition of the map mult). In other words, every w ∈ L satisfies

(13.192.4) kw = (multiplicity of w in the multiset M) .

Moreover, M = mult−1
(
(kw)w∈L

)
∈ M. In other words, M is a finite multiset of elements of L (since

M is the set of all finite multisets of elements of L). Let a1, a2, . . . , ak denote the elements of this multiset
M listed in decreasing order. Then, the definition of m yields m (M) = a1a2 · · · ak. Also, a1, a2, . . . , ak
are elements of M (by the definition of a1, a2, . . . , ak), and thus belong to L (since M is a finite multiset of
elements of L). In other words, every ai belongs to L.

We have M = {a1, a2, . . . , ak}multiset (since a1, a2, . . . , ak are the elements of the multiset M listed in
decreasing order). Thus, each w ∈ L satisfies

multiplicity of w in the multiset M︸︷︷︸
={a1,a2,...,ak}multiset


= (multiplicity of w in the multiset {a1, a2, . . . , ak}multiset)

= (the number of i ∈ {1, 2, . . . , k} satisfying ai = w) .

Hence, each w ∈ L satisfies

(the number of i ∈ {1, 2, . . . , k} satisfying ai = w)

= (multiplicity of w in the multiset M)

= kw (by (13.192.4)) .(13.192.5)
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Now,

`

 m (M)︸ ︷︷ ︸
=a1a2···ak

 = ` (a1a2 · · · ak) = ` (a1) + ` (a2) + · · ·+ ` (ak)

=
∑

i∈{1,2,...,k}︸ ︷︷ ︸
=
∑
w∈L

∑
i∈{1,2,...,k};

ai=w
(since every ai belongs to L)

` (ai) =
∑
w∈L

∑
i∈{1,2,...,k};

ai=w

`

 ai︸︷︷︸
=w

(since ai=w)



=
∑
w∈L

∑
i∈{1,2,...,k};

ai=w

` (w)

︸ ︷︷ ︸
=(the number of i∈{1,2,...,k} satisfying ai=w)·`(w)

=
∑
w∈L

(the number of i ∈ {1, 2, . . . , k} satisfying ai = w)︸ ︷︷ ︸
=kw

(by (13.192.5))

·` (w)

=
∑
w∈L

kw · ` (w) .

Hence,

(13.192.6) t`(m(M)) = t

∑
w∈L

kw·`(w)

=
∏
w∈L

tkw·`(w)︸ ︷︷ ︸
=(t`(w))

kw

=
∏
w∈L

(
t`(w)

)kw
.

Moreover, from m (M) = a1a2 · · · ak, we obtain

xm(M) = xa1a2···ak = xa1
xa2
· · ·xak (by Lemma 13.192.2)

=
∏

i∈{1,2,...,k}︸ ︷︷ ︸
=
∏
w∈L

∏
i∈{1,2,...,k};

ai=w
(since every ai belongs to L)

xai =
∏
w∈L

∏
i∈{1,2,...,k};

ai=w

xai︸︷︷︸
=xw

(since ai=w)

=
∏
w∈L

∏
i∈{1,2,...,k};

ai=w

xw

︸ ︷︷ ︸
=x

(the number of i∈{1,2,...,k} satisfying ai=w)
w =xkww

(since (the number of i∈{1,2,...,k} satisfying ai=w)=kw
(by (13.192.5)))

=
∏
w∈L

xkww .

Multiplying this equality by (13.192.6), we obtain

xm(M)t
`(m(M)) =

(∏
w∈L

xkww

) ∏
w∈L

(
t`(w)

)kw
=
∏
w∈L

(
xkww

(
t`(w)

)kw)
︸ ︷︷ ︸

=(xwt`(w))
kw

=
∏
w∈L

(
xwt

`(w)
)kw

.

In view of

m

 M︸︷︷︸
=mult−1((kw)w∈L)

 = m
(
mult−1

(
(kw)w∈L

))
=
(
m ◦mult−1

) (
(kw)w∈L

)
,
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this rewrites as

x(m◦mult−1)((kw)w∈L)t
`((m◦mult−1)((kw)w∈L)) =

∏
w∈L

(
xwt

`(w)
)kw

.

This proves Claim 1.]
Now, in the ring (k [[x]]) [[t]] of formal power series, we have∑

w∈A∗
xwt

`(w) =
∑
k∈N

x(m◦mult−1)(k)t
`((m◦mult−1)(k))

(
here, we have substituted

(
m ◦mult−1

)
(k) for w in the sum,

since the map m ◦mult−1 : N→ A∗ is a bijection

)
=

∑
(kw)w∈L∈N

x(m◦mult−1)((kw)w∈L)t
`((m◦mult−1)((kw)w∈L))︸ ︷︷ ︸

=
∏
w∈L(xwt

`(w))
kw

(by Claim 1)(
here, we have renamed the summation index k as (kw)w∈L ,

since each k ∈ N is a family indexed by elements of L

)
=

∑
(kw)w∈L∈N

∏
w∈L

(
xwt

`(w)
)kw

=
∏
w∈L

1

1− xwt`(w)
(by (13.192.3)) .

This proves Lemma 13.192.5. �

Proof of Proposition 6.6.39. Lemma 13.192.5 yields∏
w∈L

1

1− xwt`(w)
=
∑
w∈A∗

xwt
`(w) =

1

1− p1t

(by Lemma 13.192.4). This proves Proposition 6.6.39. �

Our next step is to show the following lemma (similar to Lemma 13.192.5):

Lemma 13.192.6. In the power series ring k [[x,y]], we have∏
w∈L

1

1− xwp`(w) (y)
=
∑
w∈A∗

xwpCFLtypew (y) .

Proof of Lemma 13.192.6. Let M denote the set of all finite multisets of Lyndon words. Define two maps
m : M→ A∗ and n : A∗ →M as in Proposition 13.143.1. Then, Proposition 13.143.1 shows that the maps
m and n are mutually inverse bijections.

Recall that L is the set of all Lyndon words. Thus, the Lyndon words are precisely the elements of L.
But the definition of M says that M is the set of all finite multisets of Lyndon words. In other words, M is
the set of all finite multisets of elements of L (since the Lyndon words are precisely the elements of L).

Let N be the set of all families (kw)w∈L ∈ NL of nonnegative integers (indexed by the Lyndon words)
such that all but finitely many w ∈ L satisfy kw = 0. Thus,

(13.192.7)
∑

(kw)w∈L∈N
L;

all but finitely many w∈L
satisfy kw=0

=
∑

(kw)w∈L∈N

(an equality of summation signs). Proposition 13.143.2 (applied to S = L) shows that the map mult : M→ N
that sends each multiset M ∈M to the family

((multiplicity of w in the multiset M))w∈L ∈ N

is well-defined and is a bijection. Consider this map mult. Since mult : M → N is a bijection, its inverse
mult−1 : N→M is well-defined and also a bijection.
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For any w ∈ L, the power series xwp`(w) (y) is homogeneous of positive degree1206. Hence, for any w ∈ L,

the formal power series
1

1− xwp`(w) (y)
is well-defined and satisfies the equality

1

1− xwp`(w) (y)
=
∑
k∈N

(
xwp`(w) (y)

)k
(since

1

1− q
=
∑
k∈N q

k in the ring k [[q]] of formal power series).

Multiplying these equalities over all w ∈ L, we obtain∏
w∈L

1

1− xwp`(w) (y)
=
∏
w∈L

∑
k∈N

(
xwp`(w) (y)

)k
=

∑
(kw)w∈L∈N

L;
all but finitely many w∈L

satisfy kw=0

∏
w∈L

(
xwp`(w) (y)

)kw
(by the product rule)

=
∑

(kw)w∈L∈N

∏
w∈L

(
xwp`(w) (y)

)kw
(by (13.192.7)) .(13.192.8)

The composition m ◦ mult−1 : N → A∗ of the bijections m and mult−1 is clearly a bijection. We now
claim the following:

Claim 1: Let w ∈ A∗. For each v ∈ L, let kv ∈ N be such that

(13.192.9) kv = (multiplicity of v in the multiset n (w)) .

Then,

pCFLtypew =
∏
v∈L

pkv`(v).

[Proof of Claim 1: Let (a1, a2, . . . , ak) be the CFL factorization of w. Then, the definition of the map n
yields n (w) = {a1, a2, . . . , ak}multiset. Now, for each v ∈ L, we have

kv = (multiplicity of v in the multiset n (w)) (by (13.192.9))

= (multiplicity of v in the multiset {a1, a2, . . . , ak}multiset)

(since n (w) = {a1, a2, . . . , ak}multiset)

= (the number of all i ∈ {1, 2, . . . , k} such that ai = v) .(13.192.10)

Recall that (a1, a2, . . . , ak) is the CFL factorization of w. In other words, (a1, a2, . . . , ak) is a tuple of
Lyndon words satisfying w = a1a2 · · · ak and a1 ≥ a2 ≥ · · · ≥ ak (by the definition of “CFL factorization”).
Thus, in particular, (a1, a2, . . . , ak) is a tuple of Lyndon words, i.e., a tuple of elements of L (since the
Lyndon words are precisely the elements of L). In other words, ai ∈ L for each i ∈ {1, 2, . . . , k}.

Let us make a general observation about partitions: If b1, b2, . . . , bk are any k positive integers, and if µ
is the partition whose parts are the positive integers b1, b2, . . . , bk (listed in decreasing order), then

(13.192.11) pλ = pb1pb2 · · · pbk .

(Indeed, this follows from the definition of pλ in Definition 2.2.1, since multiplication in Λ is commutative.)

1206Proof. Let w ∈ L. Thus, w is a Lyndon word (since L is the set of all Lyndon words), therefore a nonempty word
(since any Lyndon word is nonempty by definition). In other words, w ∈ An for some positive integer n. Consider this n.

From w ∈ An, we obtain w = (w1, w2, . . . , wn), so that xw = xw1xw2 · · ·xwn (by the definition of xw). Hence, xw is a
monomial of degree n. Hence, the power series xw is homogeneous of degree n. Moreover, w ∈ An entails ` (w) = n. Hence,

p`(w) = pn = xn1 +xn2 +xn3 +· · · (by the definition of pn, since n is a positive integer). Substituting y1, y2, y3, . . . for x1, x2, x3, . . .

in this equality, we find p`(w) (y) = yn1 + yn2 + yn3 + · · · . Thus, the power series p`(w) (y) is homogeneous of degree n.

We now know that the power series xw and p`(w) (y) are both homogeneous of degree n. Hence, their product xwp`(w) (y) is

homogeneous of degree n+ n. Since n+ n = 2n is positive (because n is positive), this shows that xwp`(w) (y) is homogeneous

of positive degree. Qed.
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Now, recall again that (a1, a2, . . . , ak) is the CFL factorization of w. Hence, CFLtypew is the parti-
tion whose parts are the positive integers ` (a1) , ` (a2) , . . . , ` (ak) (listed in decreasing order)1207. Hence,
(13.192.11) (applied to bi = ai and µ = CFLtypew) yields

pCFLtypew = p`(a1)p`(a2) · · · p`(ak) =
∏

i∈{1,2,...,k}︸ ︷︷ ︸
=
∏
v∈L

∏
i∈{1,2,...,k};

ai=v
(since ai∈L for each i∈{1,2,...,k})

p`(ai)

=
∏
v∈L

∏
i∈{1,2,...,k};

ai=v

p`(ai)︸ ︷︷ ︸
=p`(v)

(since ai=v)

=
∏
v∈L

∏
i∈{1,2,...,k};

ai=v

p`(v)

︸ ︷︷ ︸
=p

(the number of all i∈{1,2,...,k} such that ai=v)
`(v)

=pkv
`(v)

(since (the number of all i∈{1,2,...,k} such that ai=v)=kv
(by (13.192.10)))

=
∏
v∈L

pkv`(v).

This proves Claim 1.]

Claim 2: Let (kw)w∈L ∈ N. Then,

x(m◦mult−1)((kw)w∈L)pCFLtype((m◦mult−1)((kw)w∈L)) (y) =
∏
w∈L

(
xwp`(w) (y)

)kw
.

[Proof of Claim 2: Let M = mult−1
(
(kw)w∈L

)
. Then,

(kw)w∈L = multM = ((multiplicity of w in the multiset M))w∈L

(by the definition of the map mult). In other words, every w ∈ L satisfies

kw = (multiplicity of w in the multiset M) .

Renaming w as v in this result, we obtain the following: Every v ∈ L satisfies

(13.192.12) kv = (multiplicity of v in the multiset M) .

Moreover, M = mult−1
(
(kw)w∈L

)
∈ M. In other words, M is a finite multiset of elements of L (since

M is the set of all finite multisets of elements of L). Let a1, a2, . . . , ak denote the elements of this multiset
M listed in decreasing order. Then, the definition of m yields m (M) = a1a2 · · · ak. Also, a1, a2, . . . , ak
are elements of M (by the definition of a1, a2, . . . , ak), and thus belong to L (since M is a finite multiset of
elements of L). In other words, every ai belongs to L.

Each w ∈ L satisfies

(13.192.13) (the number of i ∈ {1, 2, . . . , k} satisfying ai = w) = kw.

(Indeed, this is precisely the equality (13.192.5) from the proof of Claim 1 in the proof of Lemma 13.192.5;
and it can be proved in the exact same way as the latter equality.)

Now, recall that the maps m and n are mutually inverse. Hence, n ◦ m = id. Thus, n (m (M)) =
(n ◦m)︸ ︷︷ ︸

=id

(M) = id (M) = M . In other words, M = n (m (M)). Now, every v ∈ L satisfies

kv =

multiplicity of v in the multiset M︸︷︷︸
=n(m(M))

 (by (13.192.12))

= (multiplicity of v in the multiset n (m (M))) .

Thus, Claim 1 (applied to w = m (M)) yields

pCFLtype(m(M)) =
∏
v∈L

pkv`(v) =
∏
w∈L

pkw`(w)

1207by the definition of CFLtypew
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(here, we have renamed the index v as w in the product). Substituting the variables y = (y1, y2, y3, . . .) for
x = (x1, x2, x3, . . .) on both sides of this equality, we obtain

(13.192.14) pCFLtype(m(M)) (y) =

(∏
w∈L

pkw`(w)

)
(y) =

∏
w∈L

(
p`(w) (y)

)kw
.

Moreover, from m (M) = a1a2 · · · ak, we obtain

xm(M) = xa1a2···ak = xa1
xa2
· · ·xak (by Lemma 13.192.2)

=
∏

i∈{1,2,...,k}︸ ︷︷ ︸
=
∏
w∈L

∏
i∈{1,2,...,k};

ai=w
(since every ai belongs to L)

xai =
∏
w∈L

∏
i∈{1,2,...,k};

ai=w

xai︸︷︷︸
=xw

(since ai=w)

=
∏
w∈L

∏
i∈{1,2,...,k};

ai=w

xw

︸ ︷︷ ︸
=x

(the number of i∈{1,2,...,k} satisfying ai=w)
w =xkww

(since (the number of i∈{1,2,...,k} satisfying ai=w)=kw
(by (13.192.13)))

=
∏
w∈L

xkww .

Multiplying this equality by (13.192.14), we obtain

xm(M)pCFLtype(m(M)) (y) =

(∏
w∈L

xkww

) ∏
w∈L

(
p`(w) (y)

)kw
=
∏
w∈L

(
xkww

(
p`(w) (y)

)kw)︸ ︷︷ ︸
=(xwp`(w)(y))

kw

=
∏
w∈L

(
xwp`(w) (y)

)kw
.

In view of

m

 M︸︷︷︸
=mult−1((kw)w∈L)

 = m
(
mult−1

(
(kw)w∈L

))
=
(
m ◦mult−1

) (
(kw)w∈L

)
,

this rewrites as

x(m◦mult−1)((kw)w∈L)pCFLtype((m◦mult−1)((kw)w∈L)) (y) =
∏
w∈L

(
xwp`(w) (y)

)kw
.

This proves Claim 2.]
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Now, in the ring k [[x,y]] of formal power series, we have∑
w∈A∗

xwpCFLtypew (y) =
∑
k∈N

x(m◦mult−1)(k)pCFLtype((m◦mult−1)(k)) (y)(
here, we have substituted

(
m ◦mult−1

)
(k) for w in the sum,

since the map m ◦mult−1 : N→ A∗ is a bijection

)
=

∑
(kw)w∈L∈N

x(m◦mult−1)((kw)w∈L)pCFLtype((m◦mult−1)((kw)w∈L)) (y)︸ ︷︷ ︸
=
∏
w∈L(xwp`(w)(y))

kw

(by Claim 2)(
here, we have renamed the summation index k as (kw)w∈L ,

since each k ∈ N is a family indexed by elements of L

)
=

∑
(kw)w∈L∈N

∏
w∈L

(
xwp`(w) (y)

)kw
=
∏
w∈L

1

1− xwp`(w) (y)
(by (13.192.8)) .

This proves Lemma 13.192.6. �

The following lemma is a slight restatement of Lemma 13.192.6:

Lemma 13.192.7. Consider the power series ring k [[x,y]]. For each word w = (w1, w2, . . . , wn) ∈ An, we
define a monomial yw in k [[y]] by yw = yw1

yw2
· · · ywn . Then,∏

w∈L

∏
u∈L

1

1− x
`(u)
w y

`(w)
u

=
∑
w∈A∗

xwpCFLtypew (y) .

Proof of Lemma 13.192.7. Lemma 13.192.6 yields

(13.192.15)
∏
w∈L

1

1− xwp`(w) (y)
=
∑
w∈A∗

xwpCFLtypew (y) .

Proposition 6.6.39 yields

(13.192.16)
1

1− p1t
=
∏
w∈L

1

1− xwt`(w)
.

Now, fix v ∈ L. Then, v is a Lyndon word (since L is the set of all Lyndon words), and thus is
nonempty (since any Lyndon word is nonempty). Hence, ` (v) ≥ 1. Thus, the definition of p`(v) yields

p`(v) = x
`(v)
1 + x

`(v)
2 + x

`(v)
3 + · · · . Substituting the variables y = (y1, y2, y3, . . .) for x = (x1, x2, x3, . . .) on

both sides of this equality, we obtain

(13.192.17) p`(v) (y) = y
`(v)
1 + y

`(v)
2 + y

`(v)
3 + · · · .

On the other hand, the definition of p1 yields p1 = x1
1 + x1

2 + x1
3 + · · · = x1 + x2 + x3 + · · · . Substituting

y
`(v)
1 , y

`(v)
2 , y

`(v)
3 , . . . for x1, x2, x3, . . . on both sides of this equality, we obtain

p1

(
y
`(v)
1 , y

`(v)
2 , y

`(v)
3 , . . .

)
= y

`(v)
1 + y

`(v)
2 + y

`(v)
3 + · · · .

Comparing this with (13.192.17), we obtain

(13.192.18) p1

(
y
`(v)
1 , y

`(v)
2 , y

`(v)
3 , . . .

)
= p`(v) (y) .

Every k ∈ N and every word w ∈ A∗ satisfy

(13.192.19) xw
(
yk1 , y

k
2 , y

k
3 , . . .

)
= ykw

(where, of course, xw
(
yk1 , y

k
2 , y

k
3 , . . .

)
denotes the result of substituting yk1 , y

k
2 , y

k
3 , . . . for x1, x2, x3, . . . in the

polynomial xw).
[Proof of (13.192.19): Let k ∈ N. Let w ∈ A∗ be a word. Write the word w in the form w =

(w1, w2, . . . , wn). Then, xw = xw1
xw2
· · ·xwn (by the definition of xw) and yw = yw1

yw2
· · · ywn (by the
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definition of yw), so that yw1yw2 · · · ywn = yw. Now, substituting yk1 , y
k
2 , y

k
3 , . . . for x1, x2, x3, . . . on both

sides of the equality xw = xw1xw2 · · ·xwn , we obtain

xw
(
yk1 , y

k
2 , y

k
3 , . . .

)
= ykw1

ykw2
· · · ykwn =

yw1
yw2
· · · ywn︸ ︷︷ ︸

=yw


k

= ykw.

This proves (13.192.19).]
Furthermore, the monomial xv has positive degree1208.
The equality (13.192.16) is an equality of formal power series in (k [[x]]) [[t]] = k [[x1, x2, x3, . . . , t]]. Sub-

stituting y
`(v)
1 , y

`(v)
2 , y

`(v)
3 , . . . for x1, x2, x3, . . . on both sides of this equality (while keeping t unchanged for

now), we obtain

1

1− p1

(
y
`(v)
1 , y

`(v)
2 , y

`(v)
3 , . . .

)
t

=
∏
w∈L

1

1− xw

(
y
`(v)
1 , y

`(v)
2 , y

`(v)
3 , . . .

)
t`(w)︸ ︷︷ ︸

=
1

1− y
`(v)
w t`(w)

(since xw
(
y
`(v)
1 ,y

`(v)
2 ,y

`(v)
3 ,...

)
=y`(v)

w

(by (13.192.19), applied to k=`(v)))

=
∏
w∈L

1

1− y
`(v)
w t`(w)

=
∏
u∈L

1

1− y
`(v)
u t`(u)

(here, we have renamed the index w as u in the product). In view of (13.192.18), this rewrites as

1

1− p`(v) (y) t
=
∏
u∈L

1

1− y
`(v)
u t`(u)

.

This is an equality of formal power series in (k [[y]]) [[t]]. We can substitute xv for t in this equality (since
the monomial xv has positive degree), and thus obtain the equality

(13.192.20)
1

1− p`(v) (y) xv
=
∏
u∈L

1

1− y
`(v)
u x

`(u)
v

in the ring k [[x,y]].
Now, forget that we fixed v. We thus have proved the equality (13.192.20) for each v ∈ L.
Now, ∏

w∈L

1

1− xwp`(w) (y)︸ ︷︷ ︸
=

1

1− p`(w) (y) xw
(since xwp`(w)(y)=p`(w)(y)xw)

=
∏
w∈L

1

1− p`(w) (y) xw︸ ︷︷ ︸
=
∏
u∈L

1

1− y
`(w)
u x

`(u)
w

(by (13.192.20), applied to v=w)

=
∏
w∈L

∏
u∈L

1

1− y
`(w)
u x

`(u)
w︸ ︷︷ ︸

=
1

1− x
`(u)
w y

`(w)
u

(since y`(w)
u x`(u)

w =x`(u)
w y`(w)

u )

=
∏
w∈L

∏
u∈L

1

1− x
`(u)
w y

`(w)
u

.

Comparing this with (13.192.15), we obtain∏
w∈L

∏
u∈L

1

1− x
`(u)
w y

`(w)
u

=
∑
w∈A∗

xwpCFLtypew (y) .

This proves Lemma 13.192.7. �

1208Proof. Write the word v in the form v = (v1, v2, . . . , vn). Then, n = ` (v) ≥ 1. Hence, n is positive. But the definition
of xv yields xv = xv1xv2 · · ·xvn (since v = (v1, v2, . . . , vn)). Hence, the monomial xv has degree n. Thus, the monomial xv
has positive degree (since n is positive).



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 1121

Now, we can prove Proposition 6.6.38:

Proof of Proposition 6.6.38. Define a monomial yw for each word w as in Proposition 6.6.38(b). We have∑
λ∈Par

GRλ (x)︸ ︷︷ ︸
=

∑
w∈A∗;

CFLtypew=λ

xw

(by the definition of GRλ)

pλ (y) =
∑
λ∈Par

∑
w∈A∗;

CFLtypew=λ

xw pλ (y)︸ ︷︷ ︸
=pCFLtypew(y)

(since λ=CFLtypew)

=
∑
λ∈Par

∑
w∈A∗;

CFLtypew=λ︸ ︷︷ ︸
=
∑
w∈A∗

(since CFLtypew∈Par
for each w∈A∗)

xwpCFLtypew (y)

=
∑
w∈A∗

xwpCFLtypew (y)(13.192.21)

=
∏
w∈L

∏
u∈L

1

1− x
`(u)
w y

`(w)
u

(13.192.22)

(by Lemma 13.192.7).
The same argument (but with the roles of the sets of variables x = (x1, x2, x3, . . .) and y = (y1, y2, y3, . . .)

interchanged) yields ∑
λ∈Par

GRλ (y) pλ (x) =
∏
w∈L

∏
u∈L

1

1− y
`(u)
w x

`(w)
u

.

Hence, ∑
λ∈Par

pλ (x) GRλ (y)︸ ︷︷ ︸
=GRλ(y)pλ(x)

=
∑
λ∈Par

GRλ (y) pλ (x) =
∏
w∈L

∏
u∈L

1

1− y
`(u)
w x

`(w)
u

=
∏
u∈L

∏
w∈L︸ ︷︷ ︸

=
∏
w∈L

∏
u∈L

1

1− y
`(w)
u x

`(u)
w︸ ︷︷ ︸

=
1

1− x
`(u)
w y

`(w)
u

(here, we have renamed the indices w and u as u and w)

=
∏
w∈L

∏
u∈L

1

1− x
`(u)
w y

`(w)
u

.

Combining this with (13.192.21) and (13.192.22), we obtain∑
λ∈Par

GRλ (x) pλ (y) =
∑
w∈A∗

xwpCFLtypew (y) =
∏
w∈L

∏
u∈L

1

1− x
`(u)
w y

`(w)
u

=
∑
λ∈Par

pλ (x) GRλ (y) .

This proves both parts (a) and (b) of Proposition 6.6.38. �

Next, let us prove Proposition 6.6.43:

Proof of Proposition 6.6.43. (a) The set N is a necklace. In other words, N is an n-necklace for some positive
integer n. Consider this n.

Recall that c ∈ C acts on An by cyclically rotating n-tuples one step to the left (that is, it acts by the
formula c · (a1, a2, . . . , an) = (a2, a3, . . . , an, a1)). Thus, the element cn acts on An by cyclically rotating
n-tuples n steps to the left. In other words, the element cn acts trivially on An (since cyclically rotating an
n-tuple n steps to the left does nothing). Hence, the whole subgroup 〈cn〉 of C acts trivially on An.

The words w and w′ belong to the same n-necklace (namely, to N). In other words, the words w and
w′ belong to the same orbit of the C-action on An (since an n-necklace was defined to be an orbit of the
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C-action on An). In other words, C · w = C · w′. Hence, w′ ∈ C · w′ = C · w = {cp · w | p ∈ Z} (since
C = {cp | p ∈ Z}). In other words, there exists some p ∈ Z such that w′ = cp · w. Consider this p.

Recall that n is a positive integer. Hence, we can divide p by n with remainder. Let q and r be the
quotient and the remainder obtained when we divide p by n. Thus, q ∈ Z and r ∈ {0, 1, . . . , n− 1} and
p = qn+ r. We have cqn = (cn)

q ∈ 〈cn〉. Thus, cqn acts trivially on An (since the whole subgroup 〈cn〉 of C
acts trivially on An). Therefore, cqn · w = w.

But p = qn+ r = r + qn, so that cp = cr+qn = crcqn. Now,

w′ = cp︸︷︷︸
=crcqn

·w = (crcqn) · w = cr · (cqn · w)︸ ︷︷ ︸
=w

= cr · w.

Let us write the word w in the form w = (w1, w2, . . . , wn). Recall that c ∈ C acts on An by cyclically
rotating n-tuples one step to the left. Hence, cr acts on An by rotating n-tuples r steps to the left (since
r ∈ {0, 1, . . . , n− 1} ⊂ N). In other words,

(13.192.23) cr · (a1, a2, . . . , an) = (ar+1, ar+2, . . . , an, a1, a2, . . . , ar)

for each (a1, a2, . . . , an) ∈ An (since r ∈ {0, 1, . . . , n− 1}). Now,

w′ = cr · w︸︷︷︸
=(w1,w2,...,wn)

= cr · (w1, w2, . . . , wn)

= (wr+1, wr+2, . . . , wn, w1, w2, . . . , wr) (by (13.192.23), applied to ai = wi) .

Now, the two words (w1, w2, . . . , wr) and (wr+1, wr+2, . . . , wn) satisfy

w = (w1, w2, . . . , wn) = (w1, w2, . . . , wr) (wr+1, wr+2, . . . , wn)

and
w′ = (wr+1, wr+2, . . . , wn, w1, w2, . . . , wr) = (wr+1, wr+2, . . . , wn) (w1, w2, . . . , wr) .

Hence, there exist words u and v such that w = uv and w′ = vu (namely, u = (w1, w2, . . . , wr) and
v = (wr+1, wr+2, . . . , wn)). This proves Proposition 6.6.43(a).

(b) Proposition 6.6.43(a) shows that there exist words u and v such that w = uv and w′ = vu. Consider
these u and v. From w = uv, we obtain xw = xuv = xuxv (by Lemma 13.192.1). From w′ = vu, we obtain
xw′ = xvu = xvxu (by Lemma 13.192.1, applied to v and u instead of u and v). Comparing this with
xw = xuxv = xvxu, we obtain xw = xw′ . Thus, Proposition 6.6.43(b) is proved. �

Next, we shall prove Proposition 6.6.48 using the following two almost trivial lemmas:

Lemma 13.192.8. Let a ∈ A∗ be a nonempty word. Then, x[a] = xa.

Proof of Lemma 13.192.8. Lemma 13.190.1 (applied to u = a) yields a ∈ [a]. In other words, a is an element
of [a].

Now, recall how the monomial xN was defined for a necklace N : It was defined by setting xN = xw,
where w is any element of N . Thus, if N is a necklace, then xN = xw for any element w of N . Applying
this to N = [a] and w = a, we conclude that x[a] = xa (since a is an element of [a]). This proves Lemma
13.192.8. �

Lemma 13.192.9. Let λ be a partition. Let w ∈ A∗ be such that CFLtypew = λ. Then:

(a) We have ` (w) = |λ|.
(b) Let (a1, a2, . . . , ak) be the CFL factorization of w. Then, k = ` (λ).

Proof of Lemma 13.192.9. Let (a1, a2, . . . , ak) be the CFL factorization of w. In other words, (a1, a2, . . . , ak)
is a tuple of Lyndon words satisfying w = a1a2 · · · ak and a1 ≥ a2 ≥ · · · ≥ ak (because this is how a “CFL
factorization of w” is defined). From CFLtypew = λ, we obtain

λ = CFLtypew

= (the partition obtained by listing the numbers ` (a1) , ` (a2) , . . . , ` (ak) in decreasing order)

(by the definition of CFLtypew, since (a1, a2, . . . , ak) is the CFL factorization of w). Hence, the partition λ
is a rearrangement of the k-tuple (` (a1) , ` (a2) , . . . , ` (ak)) (of course, with trailing zeroes appended to it to
form an infinite sequence). Thus,

|λ| = ` (a1) + ` (a2) + · · ·+ ` (ak) .
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Comparing this with
` (a1a2 · · · ak) = ` (a1) + ` (a2) + · · ·+ ` (ak) ,

we obtain ` (a1a2 · · · ak) = |λ|. This rewrites as ` (w) = |λ| (since w = a1a2 · · · ak). Lemma 13.192.9(a) is
now proved.

(b) The words a1, a2, . . . , ak are Lyndon words (since (a1, a2, . . . , ak) is a tuple of Lyndon words) and thus
are nonempty. Hence, their lengths ` (a1) , ` (a2) , . . . , ` (ak) are positive integers.

But recall that the partition λ is a rearrangement of the k-tuple (` (a1) , ` (a2) , . . . , ` (ak)). Since the
numbers ` (a1) , ` (a2) , . . . , ` (ak) are positive integers, we thus conclude that the partition λ has exactly k
parts (i.e., exactly k nonzero entries). In other words, ` (λ) = k. This proves Lemma 13.192.9(b). �

Proof of Proposition 6.6.48. Let us recall Definition 13.191.3 (in which we defined a nonnegative integer
sumM ∈ N for each finite multiset M of finite sets). Let B = A. Then, B is a subset of A. Hence,
Definition 13.191.5 applies.1209 Note that B∗ = A∗ (since B = A).

Let n = |λ|. Then, n ∈ N. Hence, Proposition 13.191.23 yields that the maps CFL : Bn →MNa
B,n and

LFC : MNa
B,n → Bn (introduced in Definition 13.191.10 and in Definition 13.191.21) are mutually inverse.

Thus, these two maps CFL and LFC are invertible, i.e., they are bijections.
We shall now prove a sequence of simple claims:

Claim 1: Let w ∈ Bn. Then, CFLtypew = type (CFLw).

[Proof of Claim 1: We have w ∈ Bn ⊂ B∗ = A∗.
Let (a1, a2, . . . , ak) be the CFL factorization of w. Then, the definition of CFL yields

CFLw = {[a1] , [a2] , . . . , [ak]}multiset .

Hence, the sizes of the necklaces in CFLw are the numbers |[a1]| , |[a2]| , . . . , |[ak]|.
We have |[ai]| = ` (ai) for each i ∈ {1, 2, . . . , k}. 1210

Recall that (a1, a2, . . . , ak) is the CFL factorization of w. Hence, the definition of CFLtypew shows that

CFLtypew

= (the partition obtained by listing the numbers ` (a1) , ` (a2) , . . . , ` (ak) in decreasing order) .

Comparing this with

type (CFLw)

= (the partition obtained by listing the sizes of the necklaces in CFLw in decreasing order)

(by the definition of type (CFLw))

= (the partition obtained by listing the numbers |[a1]| , |[a2]| , . . . , |[ak]| in decreasing order)

(since the sizes of the necklaces in CFLw are the numbers |[a1]| , |[a2]| , . . . , |[ak]|)
= (the partition obtained by listing the numbers ` (a1) , ` (a2) , . . . , ` (ak) in decreasing order)

(because |[ai]| = ` (ai) for each i ∈ {1, 2, . . . , k}) ,

we obtain CFLtypew = type (CFLw). This proves Claim 1.]

Claim 2: We have {w ∈ A∗ | CFLtypew = λ} = {w ∈ Bn | CFLtypew = λ}.
[Proof of Claim 2: Each w ∈ A∗ satisfying CFLtypew = λ must also satisfy w ∈ An (since Lemma

13.192.9(a) yields ` (w) = |λ| = n). Hence,

{w ∈ A∗ | CFLtypew = λ} ⊂ {w ∈ An | CFLtypew = λ} .
On the other hand,

{w ∈ An | CFLtypew = λ} ⊂ {w ∈ A∗ | CFLtypew = λ}
(since An ⊂ A∗). Combining these two inclusions, we obtain

{w ∈ A∗ | CFLtypew = λ} = {w ∈ An | CFLtypew = λ} .

1209This is the reason why we introduced B to begin with – we wanted to apply Definition 13.191.5 (and, later, Proposition

13.191.23).
1210Indeed, this is precisely the statement of Claim 1 (b) in the proof of Proposition 13.191.9. We refer to the latter proof

for a proof of this statement.
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Since B = A, this rewrites as {w ∈ A∗ | CFLtypew = λ} = {w ∈ Bn | CFLtypew = λ}. This proves
Claim 2.]

Claim 3: Let w ∈ Bn. Then, xw = xCFLw.

[Proof of Claim 3: Set M = CFLw. The definition of xM yields

(13.192.24) xM = xN1
xN2
· · ·xNk ,

where M is written in the form M = {N1, N2, . . . , Nk}multiset.
Let (a1, a2, . . . , ak) be the CFL factorization of w. Then, the definition of CFL yields

CFLw = {[a1] , [a2] , . . . , [ak]}multiset. Thus, M = CFLw = {[a1] , [a2] , . . . , [ak]}multiset. Hence, (13.192.24)
(applied to Ni = [ai]) yields

(13.192.25) xM = x[a1]x[a2] · · ·x[ak].

But we know that (a1, a2, . . . , ak) is a CFL factorization of w. In other words, (a1, a2, . . . , ak) is a tuple of
Lyndon words satisfying w = a1a2 · · · ak and a1 ≥ a2 ≥ · · · ≥ ak (because this is how a “CFL factorization
of w” is defined). From w = a1a2 · · · ak, we obtain

(13.192.26) xw = xa1a2···ak = xa1
xa2
· · ·xak (by Lemma 13.192.2) .

On the other hand, each i ∈ {1, 2, . . . , k} satisfies x[ai] = xai
1211. Hence, x[a1]︸︷︷︸

=xa1

x[a2]︸︷︷︸
=xa2

· · ·x[ak]︸︷︷︸
=xak

=

xa1
xa2
· · ·xak . This shows that the right hand sides of the equalities (13.192.25) and (13.192.26) are equal.

Hence, their left hand sides are equal as well. In other words, xM = xw. Hence, xw = xM = xCFLw (since
M = CFLw). This proves Claim 3.]

Claim 4: Let M ∈MNa be such that typeM = λ. Then, sumM = n.

[Proof of Claim 4: We have M ∈ MNa. In other words, M is a finite multiset of aperiodic necklaces.
Let us thus write the multiset M in the form M = {N1, N2, . . . , Nk}multiset for some aperiodic necklaces
N1, N2, . . . , Nk. Hence, the sizes of the necklaces are in M are the numbers |N1| , |N2| , . . . , |Nk|.

But typeM = λ, so that

λ = typeM

= (the partition obtained by listing the sizes of the necklaces in M in decreasing order)

(by the definition of typeM)

= (the partition obtained by listing the numbers |N1| , |N2| , . . . , |Nk| in decreasing order)

(since the sizes of the necklaces in M are the numbers |N1| , |N2| , . . . , |Nk|) .
Hence,

|λ| = |N1|+ |N2|+ · · ·+ |Nk| = sumM (by (13.191.5)) .

Hence, n = |λ| = sumM . This proves Claim 4.]

Claim 5: We have{
M ∈MNa

B,n | typeM = λ
}

= {M ∈MNa | typeM = λ} .

[Proof of Claim 5: First, we observe that B-necklaces and necklaces are the same thing1212. Moreover,
MNa

B,n ⊂MNa (by the definitions of MNa
B,n and MNa, since each B-necklace is a necklace).

Now, if M ∈MNa satisfies typeM = λ, then M ∈MNa
B,n

1213. Hence,

{M ∈MNa | typeM = λ} ⊂
{
M ∈MNa

B,n | typeM = λ
}
.

1211Proof. Let i ∈ {1, 2, . . . , k}. Then, ai is a Lyndon word (since (a1, a2, . . . , ak) is a tuple of Lyndon words), and thus is
nonempty (since any Lyndon word is nonempty). Hence, Lemma 13.192.8 (applied to a = ai) yields x[ai]

= xai . Qed.
1212Proof. Every necklace is a subset of A∗. In other words, every necklace is a subset of B∗ (since A = B). Hence, every

necklace is a B-necklace. Conversely, every B-necklace is a necklace. Combining the previous two sentences, we conclude that

B-necklaces and necklaces are the same thing.
1213Proof. Let M ∈ MNa satisfy typeM = λ. Then, Claim 4 yields sumM = n. Moreover, M ∈ MNa shows that

M is a finite multiset of aperiodic necklaces (by the definition of MNa). In other words, M is a finite multiset of aperiodic
B-necklaces (since B-necklaces and necklaces are the same thing). Since M furthermore satisfies sumM = n, we thus conclude

that M ∈MNa
B,n (by the definition of MNa

B,n). Qed.
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Combining this with M ∈MNa
B,n︸ ︷︷ ︸

⊂MNa

| typeM = λ

 ⊂ {M ∈MNa | typeM = λ} ,

we obtain
{
M ∈MNa

B,n | typeM = λ
}

= {M ∈MNa | typeM = λ}. This proves Claim 5.]
Now, Claim 2 shows that we have the following equality between summation signs:∑

w∈A∗;
CFLtypew=λ

=
∑

w∈Bn;
CFLtypew=λ

=
∑

w∈Bn;
type(CFLw)=λ

(since Claim 1 shows that CFLtypew = type (CFLw) for each w ∈ Bn). But the definition of GRλ yields

GRλ =
∑
w∈A∗;

CFLtypew=λ︸ ︷︷ ︸
=

∑
w∈Bn;

type(CFLw)=λ

xw =
∑

w∈Bn;
type(CFLw)=λ

xw︸︷︷︸
=xCFLw

(by Claim 3)

=
∑

w∈Bn;
type(CFLw)=λ

xCFLw

=
∑

M∈MNa
B,n;

typeM=λ

xM(13.192.27)

(here, we have substituted M for CFLw in the sum, since the map CFL : Bn →MNa
B,n is a bijection). On

the other hand, Claim 5 leads to the following equality between summation signs:∑
M∈MNa

B,n;

typeM=λ

=
∑

M∈MNa;
typeM=λ

.

Using this equality, we can rewrite (13.192.27) as

GRλ =
∑

M∈MNa;
typeM=λ

xM .

This proves Proposition 6.6.48. �

Next, we shall prove Proposition 6.6.49 using the following lemma:

Lemma 13.192.10. Let w ∈ A∗. Then, xGRw = xw.

Proof of Lemma 13.192.10. Let n = ` (w). Thus, w ∈ An, so that w = (w1, w2, . . . , wn). In particular, the
n letters w1, w2, . . . , wn are well-defined. For each i ∈ {1, 2, . . . , n}, we set

(13.192.28) qi := xwi .

(This notation will help us avoid towers of subscripts. For example, we shall soon work with expressions like
qhj ; without this notation, we would have to write xwhj for them.)

We have w = (w1, w2, . . . , wn). Thus, the definition of xw yields

xw = xw1
xw2
· · ·xwn =

∏
i∈{1,2,...,n}

xwi︸︷︷︸
=qi

(by (13.192.28))

=
∏

i∈{1,2,...,n}

qi.(13.192.29)

Recall that w ∈ An. Let τ be the permutation (stdw)
−1 ∈ Sn. Then, the definition of the multiset

GRw ∈MNa shows that

(13.192.30) GRw = {[w]z | z is a cycle of τ}
multiset

.

Let us now show the following two claims:
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Claim 1: Let u ∈ A∗ be a word. Let h1, h2, . . . , hk be some elements of {1, 2, . . . , n} such
that u = (wh1 , wh2 , . . . , whk). Then,

xu = qh1
qh2
· · · qhk .

[Proof of Claim 1: We have u = (wh1 , wh2 , . . . , whk). Thus, the definition of xu yields

xu = xwh1
xwh2

· · ·xwhk =
∏

j∈{1,2,...,k}

xwhj .

Comparing this with

qh1
qh2
· · · qhk =

∏
j∈{1,2,...,k}

qhj︸︷︷︸
=xwhj

(by (13.192.28), applied to i=hj)

=
∏

j∈{1,2,...,k}

xwhj ,

we obtain xu = qh1qh2 · · · qhk . This proves Claim 1.]

Claim 2: Let z be a cycle of τ . Then,

x[w]z
=
∏
i∈z

qi.

[Proof of Claim 2: The definition of [w]z yields [w]z = {wτ,i | i ∈ z}. The set z is a cycle of τ , and thus is
nonempty (since any cycle of τ is nonempty). Hence, there exists some h ∈ z. Consider this h. Proposition
6.6.7(a) yields [wτ,h] = {wτ,i | i ∈ z}. Comparing this with [w]z = {wτ,i | i ∈ z}, we obtain [w]z = [wτ,h].

The definition of wτ,h (given in Definition 6.6.3(b)) yields

(13.192.31) wτ,h = wτ1(h)wτ2(h) · · ·wτk(h), where k = ordτ (h) .

Let k be the size of z. Thus, k = |z| ≥ 1 (since z is nonempty).
For each u ∈ N, we set hu := τu (h). Then, Lemma 13.189.1(e) (applied to p = h and pi = hi and u = 0)

yields h0+k = h0. In other words, hk = h0 (since 0 + k = k). Furthermore, Lemma 13.189.1(c) (applied to
p = h and pi = hi) yields z = {h0, h1, . . . , hk−1}. Also, Lemma 13.189.1(g) (applied to p = h and pi = hi)
yields that the k elements h0, h1, . . . , hk−1 are distinct. Finally, Lemma 13.189.1(i) (applied to p = h and
pi = hi) yields ordτ (h) = k. Thus, k = ordτ (h); hence, from (13.192.31), we obtain

(13.192.32) wτ,h = wτ1(h)wτ2(h) · · ·wτk(h) =
(
wτ1(h), wτ2(h), . . . , wτk(h)

)
(since wτ1(h), wτ2(h), . . . , wτk(h) are single letters). On the other hand, each u ∈ {1, 2, . . . , k} satisfies whu =
wτu(h) (since hu = τu (h) (by the definition of hu)). In other words, we have

(wh1
, wh2

, . . . , whk) =
(
wτ1(h), wτ2(h), . . . , wτk(h)

)
.

Comparing this with (13.192.32), we obtain

wτ,h = (wh1
, wh2

, . . . , whk) .

Hence, Claim 1 (applied to u = wτ,h) yields

xwτ,h = qh1
qh2
· · · qhk =

(
qh1

qh2
· · · qhk−1

)
qhk︸︷︷︸
=qh0

(since hk=h0)

(since k ≥ 1)

=
(
qh1qh2 · · · qhk−1

)
qh0 = qh0

(
qh1qh2 · · · qhk−1

)
= qh0qh1 · · · qhk−1

.(13.192.33)

But the list (h0, h1, . . . , hk−1) is a list of all elements of z without repetitions (since z = {h0, h1, . . . , hk−1}
and because the k elements h0, h1, . . . , hk−1 are distinct). Thus,∏

i∈z
qi = qh0

qh1
· · · qhk−1

.

Comparing this with (13.192.33), we obtain

(13.192.34)
∏
i∈z

qi = xwτ,h .
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The word wτ,h has length k (since wτ,h = (wh1 , wh2 , . . . , whk)), and thus is nonempty (since k ≥ 1 > 0).
Hence, Lemma 13.192.8 (applied to a = wτ,h) yields x[wτ,h] = xwτ,h . In view of [w]z = [wτ,h], this rewrites
as x[w]z

= xwτ,h . Comparing this with (13.192.34), we obtain x[w]z
=
∏
i∈z qi. This proves Claim 2.]

We know that GRw is a finite multiset of necklaces. Thus, the definition of the monomial xGRw shows
that xGRw = xN1

xN2
· · ·xNk , where GRw is written in the form GRw = {N1, N2, . . . , Nk}multiset. In other

words, if N1, N2, . . . , Nk are necklaces such that GRw = {N1, N2, . . . , Nk}multiset, then

(13.192.35) xGRw = xN1
xN2
· · ·xNk .

Recall that τ ∈ Sn. Hence, the cycles of τ are disjoint subsets of {1, 2, . . . , n}, and each element of
{1, 2, . . . , n} lies in exactly one of these cycles.

Let z1, z2, . . . , zk be all the cycles of τ (listed without repetitions). The equality (13.192.30) becomes

GRw = {[w]z | z is a cycle of τ}
multiset

=
{

[w]z1 , [w]z2 , . . . , [w]zk
}

multiset

(since z1, z2, . . . , zk are all the cycles of τ , listed without repetitions).
Hence, (13.192.35) (applied to Ni = [w]zi) yields

xGRw = x[w]z1
x[w]z2

· · ·x[w]zk
=

∏
z is a cycle of τ

x[w]z︸ ︷︷ ︸
=
∏
i∈z qi

(by Claim 2)(
since z1, z2, . . . , zk are all the cycles of τ

(listed without repetitions)

)
=

∏
z is a cycle of τ

∏
i∈z︸ ︷︷ ︸

=
∏
i∈{1,2,...,n}

(since the cycles of τ are subsets of {1,2,...,n},
and since each element of {1,2,...,n} lies in

exactly one of these cycles)

qi =
∏

i∈{1,2,...,n}

qi = xw (by (13.192.29)) .

This proves Lemma 13.192.10. �

Proof of Proposition 6.6.49. Theorem 6.6.29 says that the maps GR : A∗ →MNa and RG : MNa → A∗ are
mutually inverse bijections. But Proposition 6.6.48 yields

GRλ =
∑

M∈MNa;
typeM=λ

xM =
∑
w∈A∗;

type(GRw)=λ

xGRw︸ ︷︷ ︸
=xw

(by Lemma 13.192.10)(
here, we have substituted GRw for M in the sum,

since the map GR : A∗ →MNa is a bijection

)
=

∑
w∈A∗;

type(GRw)=λ

xw.

This proves Proposition 6.6.49. �

In order to prove Proposition 6.6.50, we will need the following two facts:

Proposition 13.192.11. Let n ∈ N. Let τ ∈ Sn. Then, type
(
τ−1

)
= type τ .

Proof of Proposition 13.192.11. It is well-known that the permutations τ and τ−1 have the same cycle
type1214. In other words, type

(
τ−1

)
= type τ (because typeσ denotes the cycle type of a permutation

σ). This proves Proposition 13.192.11. �

Proposition 13.192.12. Let w ∈ A∗. Then, type (GRw) = type (stdw).

1214In fact, they have the same cycles, if we regard the cycles of a permutation as sets.
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Proof of Proposition 13.192.12. Let n = ` (w). Then, w ∈ An. Let τ be the permutation (stdw)
−1 ∈ Sn.

Then, the definition of the multiset GRw ∈MNa shows that

(13.192.36) GRw = {[w]z | z is a cycle of τ}
multiset

.

Let z1, z2, . . . , zk be the cycles of τ , listed in some order (with no repetitions). Thus, (13.192.36) becomes

GRw = {[w]z | z is a cycle of τ}
multiset

=
{

[w]z1 , [w]z2 , . . . , [w]zk
}

multiset
(13.192.37)

(since z1, z2, . . . , zk are the cycles of τ , listed with no repetitions).
Hence, the necklaces in GRw are [w]z1 , [w]z2 , . . . , [w]zk . Therefore, the sizes of the necklaces in GRw are

the numbers
∣∣[w]z1

∣∣ , ∣∣[w]z2

∣∣ , . . . , ∣∣[w]zk

∣∣.
Now, it is easy to see that

(13.192.38)
∣∣[w]zm

∣∣ = |zm| for each m ∈ {1, 2, . . . , k} .

[Proof of (13.192.38): Let m ∈ {1, 2, . . . , k}. Then, zm is a cycle of τ (since z1, z2, . . . , zk are the cycles
of τ). Thus, the definition of [w]zm yields [w]zm = {wτ,i | i ∈ zm}. But Proposition 6.6.7(c) (applied to

z = zm) shows that |{wτ,i | i ∈ zm}| = |zm|. Since [w]zm = {wτ,i | i ∈ zm}, this rewrites as
∣∣[w]zm

∣∣ = |zm|.
This proves (13.192.38).]

But the definition of type (GRw) yields

type (GRw)

= (the partition obtained by listing the sizes of the necklaces in GRw in decreasing order)

=
(
the partition obtained by listing the numbers

∣∣[w]z1

∣∣ , ∣∣[w]z2

∣∣ , . . . , ∣∣[w]zk

∣∣ in decreasing order
)(

since the sizes of the necklaces in GRw are the numbers
∣∣[w]z1

∣∣ , ∣∣[w]z2

∣∣ , . . . , ∣∣[w]zk

∣∣)
= (the partition obtained by listing the numbers |z1| , |z2| , . . . , |zk| in decreasing order)

(by (13.192.38)) .

On the other hand, τ = (stdw)
−1

, so that τ−1 = stdw. But Proposition 13.192.11 yields type
(
τ−1

)
=

type τ , so that type τ = type
(
τ−1

)
= type (stdw) (since τ−1 = stdw).

But type τ is the cycle type of τ . In other words, type τ is the partition obtained by listing the sizes of
the cycles of τ in decreasing order (by the definition of the cycle type of τ). Hence,

type τ

= (the partition obtained by listing the sizes of the cycles of τ in decreasing order)

= (the partition obtained by listing the sizes of z1, z2, . . . , zk in decreasing order)

(since the cycles of τ are z1, z2, . . . , zk (listed with no repetitions))

= (the partition obtained by listing the numbers |z1| , |z2| , . . . , |zk| in decreasing order) .

Comparing this with

type (GRw)

= (the partition obtained by listing the numbers |z1| , |z2| , . . . , |zk| in decreasing order) ,

we obtain type (GRw) = type τ = type (stdw). This proves Proposition 13.192.12. �

Proof of Proposition 6.6.50. Proposition 6.6.49 yields

GRλ =
∑
w∈A∗;

type(GRw)=λ︸ ︷︷ ︸
=

∑
w∈A∗;

type(stdw)=λ

(since Proposition 13.192.12
yields type(GRw)=type(stdw) for each w∈A∗)

xw =
∑
w∈A∗;

type(stdw)=λ

xw.

This proves Proposition 6.6.50. �
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Next, we can easily prove Proposition 6.6.40:

Proof of Proposition 6.6.40. We have the following:

Claim 1: Let w ∈ A∗ satisfy type (stdw) = λ. Then, w ∈ An.

[Proof of Claim 1: Let m = ` (w). Thus, w ∈ Am, so that stdw ∈ Sm. But every permutation τ ∈ Sm

satisfies type τ ∈ Parm (since type τ denotes the cycle type of τ , which is always a partition of m). Applying
this to τ = stdw, we conclude that type (stdw) ∈ Parm. In view of type (stdw) = λ, this rewrites as
λ ∈ Parm. Thus, |λ| = m, so that n = |λ| = m. Hence, m = n. Now, w ∈ Am = An (since m = n). This
proves Claim 1.]

Claim 2: We have {w ∈ A∗ | type (stdw) = λ} = {w ∈ An | type (stdw) = λ}.
[Proof of Claim 2: Each w ∈ A∗ that satisfies type (stdw) = λ must also satisfy w ∈ An (by Claim 1).

Hence,

{w ∈ A∗ | type (stdw) = λ} ⊂ {w ∈ An | type (stdw) = λ} .
Combining this withw ∈ An︸︷︷︸

⊂A∗
| type (stdw) = λ

 ⊂ {w ∈ A∗ | type (stdw) = λ} ,

we obtain {w ∈ A∗ | type (stdw) = λ} = {w ∈ An | type (stdw) = λ}. This proves Claim 2.]
Claim 2 yields the following equality between summation signs:∑

w∈A∗;
type(stdw)=λ

=
∑
w∈An;

type(stdw)=λ

.

But Proposition 6.6.50 yields

GRλ =
∑
w∈A∗;

type(stdw)=λ︸ ︷︷ ︸
=

∑
w∈An;

type(stdw)=λ

xw =
∑
w∈An;

type(stdw)=λ︸ ︷︷ ︸
=

∑
σ∈Sn;

typeσ=λ

∑
w∈An;

stdw=σ
(here, we have split the sum

according to the value of stdw,
because stdw∈Sn for each w∈An)

xw

=
∑
σ∈Sn;

typeσ=λ

∑
w∈An;

stdw=σ

xw =
∑
σ∈Sn;

type(σ−1)=λ︸ ︷︷ ︸
=

∑
σ∈Sn;

typeσ=λ

(since each σ∈Sn satisfies type(σ−1)=typeσ

(by Proposition 13.192.11, applied to τ=σ))

∑
w∈An;

stdw=σ−1

xw

(
here, we have substituted σ−1 for σ in the outer sum,

since the map Sn → Sn, σ 7→ σ−1 is a bijection

)
=

∑
σ∈Sn;

typeσ=λ

∑
w∈An;

stdw=σ−1

xw.

Comparing this with ∑
σ∈Sn;

σ has cycle type λ︸ ︷︷ ︸
=

∑
σ∈Sn;

typeσ=λ
(since typeσ means
the cycle type of σ)

Lγ(σ)︸ ︷︷ ︸
=

∑
w∈An;

stdw=σ−1

xw

(by Lemma 5.3.6)

=
∑
σ∈Sn;

typeσ=λ

∑
w∈An;

stdw=σ−1

xw,
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we obtain

GRλ =
∑
σ∈Sn;

σ has cycle type λ

Lγ(σ).

This proves Proposition 6.6.40. �

Next, we can prove Proposition 6.6.42:

Proof of Proposition 6.6.42. Let n ∈ N. Then, the cycle type of any permutation σ ∈ Sn is a partition of
n. Hence, we can split up the sum ∑

σ∈Sn

Lγ(σ) (x) ptypeσ (y)

according to the cycle type of σ. We thus obtain∑
σ∈Sn

Lγ(σ) (x) ptypeσ (y)

=
∑

λ is a partition of n

∑
σ∈Sn;

σ has cycle type λ

Lγ(σ) (x) ptypeσ (y) .(13.192.39)

But if λ is a partition satisfying |λ| = n, then

GRλ (x) = GRλ =
∑
σ∈Sn;

σ has cycle type λ

Lγ(σ)︸ ︷︷ ︸
=Lγ(σ)(x)

(by Proposition 6.6.40)

=
∑
σ∈Sn;

σ has cycle type λ

Lγ(σ) (x) .(13.192.40)

Hence, (13.192.39) becomes∑
σ∈Sn

Lγ(σ) (x) ptypeσ (y)

=
∑

λ is a partition of n

∑
σ∈Sn;

σ has cycle type λ

Lγ(σ) (x) ptypeσ (y)︸ ︷︷ ︸
=pλ(y)

(since typeσ=λ
(since σ has cycle type λ))

=
∑

λ is a partition of n

∑
σ∈Sn;

σ has cycle type λ

Lγ(σ) (x)

︸ ︷︷ ︸
=GRλ(x)

(by (13.192.40))

pλ (y)

=
∑

λ is a partition of n

GRλ (x) pλ (y) .(13.192.41)

Now, forget that we fixed n. We thus have proved the equality (13.192.41) for each n ∈ N. Now,∑
λ∈Par︸ ︷︷ ︸

=
∑
n∈N

∑
λ is a partition of n

GRλ (x) pλ (y) =
∑
n∈N

∑
λ is a partition of n

GRλ (x) pλ (y)︸ ︷︷ ︸
=
∑
σ∈Sn Lγ(σ)(x)ptype σ(y)

(by (13.192.41))

=
∑
n∈N

∑
σ∈Sn︸ ︷︷ ︸

=
∑

σ∈
⊔
n∈N Sn

=
∑
σ∈S

(since
⊔
n∈N Sn=S)

Lγ(σ) (x) ptypeσ (y) =
∑
σ∈S

Lγ(σ) (x) ptypeσ (y) .
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Combining this with the result of Proposition 6.6.38(a), we obtain∑
λ∈Par

GRλ (x) pλ (y) =
∑
λ∈Par

pλ (x) GRλ (y) =
∑
σ∈S

Lγ(σ) (x) ptypeσ (y) .

This proves Proposition 6.6.42. �

We shall prove Proposition 6.6.37 in two different ways. Both of these proofs will rely on the following
simple lemma:

Lemma 13.192.13. Let λ be a partition. Then, the power series GRλ is homogeneous of degree |λ|.

Proof of Lemma 13.192.13. The definition of GRλ yields

(13.192.42) GRλ =
∑
w∈A∗;

CFLtypew=λ

xw.

Set n = |λ|.
Let w ∈ A∗ be such that CFLtypew = λ. Then, Lemma 13.192.9(a) yields ` (w) = |λ| = n, so that

w ∈ An and thus w = (w1, w2, . . . , wn). Hence, the definition of xw yields xw = xw1
xw2
· · ·xwn . This shows

that xw is a monomial of degree n.
Forget that we fixed w. We thus have showed that xw is a monomial of degree n whenever w ∈ A∗ satisfies

CFLtypew = λ. Hence,
∑

w∈A∗;
CFLtypew=λ

xw is a sum of monomials of degree n. In other words, GRλ is a sum of

monomials of degree n (because of (13.192.42)). Thus, GRλ is a homogeneous formal power series of degree
n. In other words, GRλ is a homogeneous formal power series of degree |λ| (since n = |λ|). This proves
Lemma 13.192.13. �

We can now step to the first proof of Proposition 6.6.37:

First proof of Proposition 6.6.37 (sketched). Lemma 13.192.13 shows that the power series GRλ is homo-
geneous of degree |λ|. Hence, this power series GRλ is of bounded degree (since any homogeneous power
series is of bounded degree). In other words, GRλ ∈ R (x) (since R (x) is the set of all formal power series
of bounded degree).

Recall the finitary symmetric group S(∞) defined in Section 2.1; it acts on the ring R (x). The ring Λ is

the invariant ring
{
f ∈ R (x) : σ (f) = f for all σ ∈ S(∞)

}
of this action.

We shall now prove that σ (f) = f for each σ ∈ S(∞).
Indeed, let σ ∈ S(∞). Thus, σ is a permutation of the set {1, 2, 3, . . .}. In other words, σ is a permutation

of the set A (since A = {1, 2, 3, . . .}). In other words, σ is a bijection A→ A.
For any word w ∈ A∗, we define a new word σword (w) to be the result of applying σ to each letter of

w. That is, if w = (w1, w2, . . . , wn), then σword (w) = (σ (w1) , σ (w2) , . . . , σ (wn)). This defines a map
A∗ → A∗, w 7→ σword (w). This map is a bijection (since σ is a bijection). We shall denote this bijection by
σword.

For any necklace N , we define a new necklace σneck (N) to be the result of applying this bijection σword

to every word in N . That is, σneck (N) = {σword (w) | w ∈ N}. It is straightforward to see that this set
σneck (N) is indeed a necklace1215, and furthermore is aperiodic if and only if N is aperiodic. Thus, we
obtain a map Na → Na, N 7→ σneck (N) (since Na denotes the set of all aperiodic necklaces). This map is
a bijection (since σword is a bijection). We shall denote this bijection by σneck.

Finally, for any finite multiset M of aperiodic necklaces, we define a new finite multiset σmul (M) of
aperiodic necklaces to be the result of applying this bijection σneck to each necklace inM . That is, σmul (M) =
(σneck)∗M , using the notation of Definition 13.191.16. This defines a map MNa → MNa, M 7→ σmul (M)
(since MNa denotes the set of all finite multisets of aperiodic necklaces). Again, this map is a bijection
(since σneck is a bijection). We shall denote this bijection by σmul.

It is easy to describe directly what this bijection σmul does to any given multiset: If M ∈ MNa, then
σmul (M) is obtained from M by applying σ to each letter of each word in each necklace in M . Hence, it is

1215Indeed, the bijection σword commutes with the actions of C on A1,A2,A3, . . ..
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straightforward to see that each M ∈MNa satisfies

(13.192.43) xσmul(M) = σ (xM )

and

(13.192.44) type (σmul (M)) = typeM.

But Proposition 6.6.48 yields

GRλ =
∑

M∈MNa;
typeM=λ

xM =
∑

M∈MNa;
type(σmul(M))=λ︸ ︷︷ ︸

=
∑

M∈MNa;
typeM=λ

(since each M∈MNa satisfies (13.192.44))

xσmul(M)︸ ︷︷ ︸
=σ(xM )

(by (13.192.43))

(
here, we have substituted σmul (M) for M in the sum,

since the map σmul : MNa →MNa is a bijection

)

=
∑

M∈MNa;
typeM=λ

σ (xM ) = σ


∑

M∈MNa;
typeM=λ

xM

︸ ︷︷ ︸
=GRλ

(by Proposition 6.6.48)


= σ (GRλ) .

In other words, σ (GRλ) = GRλ.
Now, forget that we fixed σ. We thus have showed that σ (GRλ) = GRλ for all σ ∈ S(∞). Hence,

GRλ is an f ∈ R (x) that satisfies σ (f) = f for all σ ∈ S(∞) (since we already know that GRλ ∈ R (x)).

In other words, GRλ ∈
{
f ∈ R (x) : σ (f) = f for all σ ∈ S(∞)

}
. In other words, GRλ ∈ Λ (since Λ ={

f ∈ R (x) : σ (f) = f for all σ ∈ S(∞)

}
). This proves Proposition 6.6.37. �

Our next proof of Proposition 6.6.37 will rely on two lemmas:

Lemma 13.192.14. Let λ be a partition. Then, the power series pλ is homogeneous of degree |λ|.

Proof of Lemma 13.192.14. Let ` = ` (λ); thus, λ = (λ1, λ2, . . . , λ`) and pλ = pλ1pλ2 · · · pλ` (by the definition
of pλ). From λ = (λ1, λ2, . . . , λ`), we obtain |λ| = λ1 + λ2 + · · ·+ λ`.

But the power-sum symmetric functions pλ1
, pλ2

, . . . , pλ` are homogeneous of degrees λ1, λ2, . . . , λ`, re-
spectively (since each power-sum symmetric function pn is homogeneous of degree n). Hence, their product
pλ1

pλ2
· · · pλ` is homogeneous of degree λ1 + λ2 + · · · + λ` (since Λ is a graded k-algebra). In view of

pλ = pλ1pλ2 · · · pλ` and |λ| = λ1 + λ2 + · · ·+ λ`, this rewrites as follows:

pλ is homogeneous of degree |λ| .
This proves Lemma 13.192.14. �

Lemma 13.192.15. Let A be a commutative k-algebra. Let (aλ)λ∈Par ∈ (k [[x]])
Par

and (bλ)λ∈Par ∈
(k [[x]])

Par
be two families of power series in k [[x]], and let (uλ)λ∈Par ∈ APar and (vλ)λ∈Par ∈ APar be two

families of elements of A. Assume that the following four conditions are satisfied:

Assumption 1: If λ ∈ Par, then both power series aλ and bλ are homogeneous of degree |λ|.
Assumption 2: The family (uλ)λ∈Par is k-linearly independent.

Assumption 3: We have1216

(13.192.45)
∑
λ∈Par

uλaλ =
∑
λ∈Par

vλbλ

1216The products uλaλ and vλbλ in the following equation are taken in the power series ring A [[x]] = A [[x1, x2, x3, . . .]].
(Indeed, uλ and vλ belong to A and thus to A [[x]] as well, whereas aλ and bλ are elements of k [[x]]. Hence, the products uλaλ
and vλbλ make sense because A [[x]] is canonically a k [[x]]-module.)
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1217 in the power series ring A [[x]] = A [[x1, x2, x3, . . .]].

Assumption 4: We have bλ ∈ Λ for each λ ∈ Par.

Then, aλ ∈ Λ for each λ ∈ Par.

Proof of Lemma 13.192.15. In this proof, the word “monomial” always means a monomial in the indeter-
minates x1, x2, x3, . . .. Any formal power series in k [[x]] is an infinite k-linear combination of monomials,
whereas any formal power series in A [[x]] is an infinite A-linear combination of monomials.

Each monomial m = xr11 x
r2
2 x

r3
3 · · · has a well-defined degree degm, namely degm = r1 + r2 + r3 + · · · .

Recall that a formal power series f ∈ A [[x]] is said to be homogeneous of degree n (for some n ∈ N) if it
is an infinite A-linear combination of monomials that have degree n. Thus, in particular, an element of A
(when regarded as a formal power series in A [[x]]) is always homogeneous of degree 0.

Consider the (unique) k-algebra homomorphism ι : k → A (which comes from the fact that A is a k-
algebra). This homomorphism ι : k→ A is injective1218. Hence, the canonical k [[x]]-algebra homomorphism
ι [[x]] : k [[x]]→ A [[x]] induced by it (which simply applies ι to each coefficient of a power series) must also be
injective. We shall thus identify k [[x]] with a subring of A [[x]] (via the latter k [[x]]-algebra homomorphism
ι [[x]]).

We shall now prove a few auxiliary claims:

Claim 1: Let n ∈ N. Then, ∑
λ∈Parn

uλaλ =
∑

λ∈Parn

vλbλ.

[Proof of Claim 1: Let πn denote the map A [[x]]→ A [[x]] that sends each formal power series f ∈ A [[x]]
to its n-th homogeneous component. Explicitly, this map πn is given by

πn

( ∑
m is a monomial

αmm

)
=

∑
m is a monomial;

deg m=n

αmm

for all
∑

m is a monomial

αmm ∈ A [[x]] (with αm ∈ A).

This map πn is A-linear and continuous (with respect to the topology on A [[x]]); thus, it respects infinite

sums. Moreover, it sends each aλ (with λ ∈ Par) to

{
aλ, if |λ| = n;

0, if |λ| 6= n
(since Assumption 1 shows that aλ is

1217Both sums
∑
λ∈Par uλaλ and

∑
λ∈Par vλbλ converge (with respect to the standard topology on A [[x]]). Here is why:

Fix n ∈ N. For each λ ∈ Par, the power series aλ ∈ k [[x]] is homogeneous of degree |λ| (by Assumption 1), and thus the
power series uλaλ ∈ A [[x]] is also homogeneous of degree |λ| (since the factor uλ belongs to A and therefore does not affect

the degree). Hence, for each λ ∈ Par, the power series uλaλ contains no degree-n monomials unless |λ| = n. Thus, there are

only finitely many λ ∈ Par such that the power series uλaλ contains degree-n monomials (because there are only finitely many
λ ∈ Par such that |λ| = n).

Forget that we fixed n. We thus have shown that, for each n ∈ N, there are only finitely many λ ∈ Par such that the power

series uλaλ contains degree-n monomials. In other words, for each n ∈ N, there are only finitely many addends in the sum∑
λ∈Par uλaλ that contain degree-n monomials. Therefore, this sum

∑
λ∈Par uλaλ converges. Similarly, the sum

∑
λ∈Par vλbλ

converges. Qed.
1218Proof. Let c ∈ Ker ι. Thus, c ∈ k and ι (c) = 0. The definition of ι yields ι (c) = c · 1A. Hence, c · 1A = ι (c) = 0.
Consider the empty partition ∅ ∈ Par. We have u∅ ∈ A and c u∅︸︷︷︸

=1A·u∅

= c · 1A︸ ︷︷ ︸
=0

·u∅ = 0.

The empty partition ∅ satisfies {∅} ⊂ Par. Hence, the family (uλ)λ∈{∅} (which consists of the single element u∅) is a

subfamily of the family (uλ)λ∈Par. Thus, the former family is k-linearly independent (since Assumption 2 says that the latter

family is k-linearly independent). In other words, if (jλ)λ∈{∅} ∈ k{∅} is a family of elements of k such that
∑
λ∈{∅} jλuλ = 0,

then

(jλ = 0 for each λ ∈ {∅}) .
We can apply this to (jλ)λ∈{∅} = (c)λ∈{∅} (since

∑
λ∈{∅} cuλ = cu∅ = 0), and thus conclude that

(c = 0 for each λ ∈ {∅}) .

Applying this to λ = ∅, we obtain c = 0 (since ∅ ∈ {∅}).
Now, forget that we fixed c. We thus have shown that c = 0 for each c ∈ Ker ι. In other words, Ker ι = 0. Thus, ι is injective

(since ι is a ring homomorphism). Qed.
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homogeneous of degree |λ|), and sends each bλ to

{
bλ, if |λ| = n;

0, if |λ| 6= n
(for similar reasons). Thus, applying πn

to both sides of (13.192.45), we obtain ∑
λ∈Parn

uλaλ =
∑

λ∈Parn

vλbλ.

This proves Claim 1.]

Claim 2: Let n ∈ N. Let (cλ)λ∈Parn
∈ (k [[x]])

Parn be a family of elements of k [[x]] such
that

(13.192.46)
∑

λ∈Parn

uλcλ = 0.

Then, cλ = 0 for each λ ∈ Parn.

[Proof of Claim 2: For each λ ∈ Parn, let us write the formal power series cλ ∈ k [[x]] in the form

(13.192.47) cλ =
∑

m is a monomial

cλ,mm for some cλ,m ∈ k.

Now, fix any monomial n. Then, (13.192.46) yields

0 =
∑

λ∈Parn

uλ cλ︸︷︷︸
=

∑
m is a monomial

cλ,mm

(by (13.192.47))

=
∑

λ∈Parn

uλ
∑

m is a monomial

cλ,mm =
∑

m is a monomial

∑
λ∈Parn

cλ,muλm.

Comparing coefficients of n on both sides of this equality, we obtain 0 =
∑
λ∈Parn

cλ,nuλ. In other words,

(13.192.48)
∑

λ∈Parn

cλ,nuλ = 0.

But the family (uλ)λ∈Par is k-linearly independent (by Assumption 2). Hence, its subfamily (uλ)λ∈Parn
is k-linearly independent as well. Thus, from (13.192.48), we conclude that

(13.192.49) cλ,n = 0 for each λ ∈ Parn

(since cλ,n ∈ k for each λ ∈ Parn).
Forget that we fixed n. We thus have proved (13.192.49) for each monomial n. Now, fix λ ∈ Parn. Then,

(13.192.47) yields

cλ =
∑

m is a monomial

cλ,m︸︷︷︸
=0

(by (13.192.49), applied to n=m)

m = 0.

This proves Claim 2.]
Recall the finitary symmetric group S(∞) defined in Section 2.1. It acts on the rings R (x) and k [[x]]

and A [[x]] in the same way (viz., by permuting the variables x1, x2, x3, . . .). The ring Λ is the invariant
ring

{
f ∈ R (x) : σ (f) = f for all σ ∈ S(∞)

}
of its action on R (x). Of course, R (x) is an S(∞)-subset of

k [[x]]. Moreover, the canonical k [[x]]-algebra homomorphism ι [[x]] : k [[x]]→ A [[x]] (which we are using to
identify k [[x]] with a subring of A [[x]]) is S(∞)-equivariant. This ensures that expressions like σ (aλ) (for
σ ∈ S(∞) and λ ∈ Par) are well-defined (i.e., they don’t depend on whether we regard aλ as an element of
k [[x]] or as an element of A [[x]]).

We now claim:

Claim 3: Let n ∈ N. Let λ ∈ Parn. Then, σ (bλ) = bλ for all σ ∈ S(∞).

[Proof of Claim 3: Assumption 4 yields bλ ∈ Λ =
{
f ∈ R (x) : σ (f) = f for all σ ∈ S(∞)

}
. Hence,

σ (bλ) = bλ for all σ ∈ S(∞). This proves Claim 3.]

Claim 4: Let σ ∈ S(∞). Then, σ (aµ) = aµ for each µ ∈ Par.

[Proof of Claim 4: Let µ ∈ Par. Set n = |µ|. Then, µ ∈ Parn (since µ ∈ Par and |µ| = n).
Recall that (uλ)λ∈Par ∈ APar. Hence, uλ ∈ A for each λ ∈ Parn. Likewise, vλ ∈ A for each λ ∈ Parn. Also,

recall that (aλ)λ∈Par ∈ (k [[x]])
Par

. Hence, each λ ∈ Parn satisfies aλ ∈ k [[x]] and thus σ (aλ)− aλ ∈ k [[x]].

In other words, (σ (aλ)− aλ)λ∈Parn
∈ (k [[x]])

Parn .
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Claim 1 yields

(13.192.50)
∑

λ∈Parn

uλaλ =
∑

λ∈Parn

vλbλ.

Note that we can regard the (finite) sum
∑
λ∈Parn

uλaλ as an A-linear combination of the elements

aλ ∈ A [[x]] 1219 with coefficients uλ ∈ A. Likewise, we can regard the (finite) sum
∑
λ∈Parn

vλbλ as an

A-linear combination of the elements bλ ∈ A [[x]] with coefficients vλ ∈ A.
But the group S(∞) acts on A [[x]] by A-linear maps. Thus, the map A [[x]] → A [[x]] , f 7→ σ (f) is

A-linear. Hence, this map respects A-linear combinations. Consequently,

σ

( ∑
λ∈Parn

uλaλ

)
=

∑
λ∈Parn

uλσ (aλ) (since uλ ∈ A for each λ ∈ Parn)

and

σ

( ∑
λ∈Parn

vλbλ

)
=

∑
λ∈Parn

vλ σ (bλ)︸ ︷︷ ︸
=bλ

(by Claim 3)

(since vλ ∈ A for each λ ∈ Parn)

=
∑

λ∈Parn

vλbλ =
∑

λ∈Parn

uλaλ (by (13.192.50)) .

Subtracting these two equalities, we find

σ

( ∑
λ∈Parn

uλaλ

)
− σ

( ∑
λ∈Parn

vλbλ

)
=

∑
λ∈Parn

uλσ (aλ)−
∑

λ∈Parn

uλaλ =
∑

λ∈Parn

uλ (σ (aλ)− aλ) .

Hence,

∑
λ∈Parn

uλ (σ (aλ)− aλ) = σ


∑

λ∈Parn

uλaλ︸ ︷︷ ︸
=
∑
λ∈Parn

vλbλ
(by Claim 1)


− σ

( ∑
λ∈Parn

vλbλ

)

= σ

( ∑
λ∈Parn

vλbλ

)
− σ

( ∑
λ∈Parn

vλbλ

)
= 0.

Hence, Claim 2 (applied to cλ = σ (aλ) − aλ) yields that σ (aλ) − aλ = 0 for each λ ∈ Parn (since

(σ (aλ)− aλ)λ∈Parn
∈ (k [[x]])

Parn). Applying this to λ = µ, we obtain σ (aµ)− aµ = 0 (since µ ∈ Parn). In

other words, σ (aµ) = aµ. This proves Claim 4.]

Claim 5: We have aµ ∈ Λ for each µ ∈ Par.

[Proof of Claim 5: Let µ ∈ Par. Thus, aµ ∈ k [[x]] (since (aλ)λ∈Par ∈ (k [[x]])
Par

). Also, Assumption 1
(applied to λ = µ) shows that the power series aµ is homogeneous of degree |µ|. Hence, this power series aµ
is of bounded degree (since any homogeneous power series is of bounded degree). In other words, aµ ∈ R (x).
Claim 4 yields that σ (aµ) = aµ for all σ ∈ S(∞).

Thus, aµ is an f ∈ R (x) satisfying σ (f) = f for all σ ∈ S(∞). In other words,

aµ ∈
{
f ∈ R (x) : σ (f) = f for all σ ∈ S(∞)

}
.

In view of Λ =
{
f ∈ R (x) : σ (f) = f for all σ ∈ S(∞)

}
, this rewrites as aµ ∈ Λ. This proves Claim 5.]

We have aµ ∈ Λ for each µ ∈ Par (by Claim 5). Renaming the index µ as λ in this statement, we can
rewrite this as follows: We have aλ ∈ Λ for each λ ∈ Par. This proves Lemma 13.192.15. �

1219Here, we are using the fact that the aλ (for λ ∈ Par) are elements of A [[x]]. (This is because they are elements of k [[x]],

but we are identifying k [[x]] with a subring of A [[x]].)
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Second proof of Proposition 6.6.37. We begin with a trick. Recall that there is a canonical ring homomor-
phism ϕ : Z → k. This homomorphism gives rise to a ring homomorphism ϕ [[x]] : Z [[x]] → k [[x]], and
this latter homomorphism ϕ [[x]] sends ΛZ to Λk; that is, we have (ϕ [[x]]) (ΛZ) ⊂ Λk. Moreover, it is clear
that the ring homomorphism ϕ [[x]] sends the element GRλ of Z [[x]] to the element GRλ of k [[x]] (be-
cause the definition of GRλ is functorial in the base ring k). Therefore, if we can prove that the element
GRλ of Z [[x]] belongs to ΛZ, then it will automatically follow that the element GRλ of k [[x]] belongs to
(ϕ [[x]]) (ΛZ) ⊂ Λk; this will complete the proof of Proposition 6.6.37. Hence, in order to prove Proposition
6.6.37, it only remains to prove that the element GRλ of Z [[x]] belongs to ΛZ. In other words, it only
remains to prove Proposition 6.6.37 in the case of k = Z. Hence, in proving Proposition 6.6.37, we can
WLOG assume that k = Z. Assume this.

Forget that we fixed λ. Consider the countable set of indeterminates y = (y1, y2, y3, . . .).

It is easy to see that the family (pλ)λ∈Par ∈ (k [[x]])
Par

is k-linearly independent1220. Hence, the family

(pλ (y))λ∈Par ∈ (k [[y]])
Par

is k-linearly independent1221. If λ ∈ Par, then both power series GRλ and pλ are
homogeneous of degree |λ| (by Lemma 13.192.13 and Lemma 13.192.14).

We identify the power series ring k [[x,y]] = k [[x1, x2, x3, . . . , y1, y2, y3, . . .]] with the power series ring
(k [[y]]) [[x]] = (k [[y1, y2, y3, . . .]]) [[x1, x2, x3, . . .]]. In this power series ring, we have∑

λ∈Par

pλ (y) GRλ︸ ︷︷ ︸
=GRλ(x)

=
∑
λ∈Par

pλ (y) GRλ (x) =
∑
λ∈Par

GRλ (x) pλ (y)

=
∑
λ∈Par

pλ (x) GRλ (y) (by Proposition 6.6.38(a))

=
∑
λ∈Par

GRλ (y) pλ (x)︸ ︷︷ ︸
=pλ

=
∑
λ∈Par

GRλ (y) pλ.(13.192.51)

Hence, we can apply Lemma 13.192.15 to

A = k [[y]] , aλ = GRλ, bλ = pλ, uλ = pλ (y) , and vλ = GRλ (y) .

1222 Thus, we conclude that GRλ ∈ Λ for each λ ∈ Par. In other words, the power series GRλ belongs to
Λ for each partition λ. This proves Proposition 6.6.37. �

Finally, let us prove Proposition 6.6.36:

Proof of Proposition 6.6.36. (a) We proceed by showing some auxiliary claims:

Claim 1: Let w ∈ A∗ satisfy CFLtypew = (n). Then, the word w is Lyndon and satisfies
w ∈ An.

[Proof of Claim 1: Lemma 13.192.9(a) (applied to λ = (n)) yields ` (w) = |(n)| = n. Hence, w ∈ An.
Let (a1, a2, . . . , ak) be the CFL factorization of w. Thus, (a1, a2, . . . , ak) is a tuple of Lyndon words

satisfying w = a1a2 · · · ak and a1 ≥ a2 ≥ · · · ≥ ak (by the definition of “CFL factorization”). But Lemma
13.192.9(b) (applied to λ = (n)) yields k = ` ((n)) = 1 (since n is a positive integer). Hence, a1a2 · · · ak = a1.
Thus, w = a1a2 · · · ak = a1. But a1 is a Lyndon word (since (a1, a2, . . . , ak) is a tuple of Lyndon words). In
other words, w is a Lyndon word (since w = a1). Thus, Claim 1 is proven.]

Claim 2: Let w ∈ An be a Lyndon word. Then, w ∈ A∗ and CFLtypew = (n).

1220Proof. We have Λ = Λk = ΛZ (since k = Z). But ΛZ is clearly a subring of ΛQ (since the ring Z [[x]] is a subring of the
ring Q [[x]], and the finitary symmetric group S(∞) acts in the same way on both of these rings). Furthermore, the symmetric
functions eλ, sλ and pλ are defined in the same way over the ring Z as they are defined over the ring Q.

Now, Proposition 2.2.10 (applied to Q instead of k) shows that the families (eλ)λ∈Par, (sλ)λ∈Par and (pλ)λ∈Par are bases

of the Q-module ΛQ. Hence, in particular, the family (pλ)λ∈Par is a basis of the Q-module ΛQ. Thus, this family is Q-linearly

independent, and therefore Z-linearly independent as well (since Z is a subring of Q). In other words, it is k-linearly independent
(since k = Z). Qed.

1221Indeed, the family (pλ (y))λ∈Par is obtained from the family (pλ)λ∈Par by renaming the indeterminates x1, x2, x3, . . .

as y1, y2, y3, . . .. Thus, the k-linear independence of the latter family implies the k-linear independence of the former.
1222Indeed, Assumption 1 of Lemma 13.192.15 is satisfied (because if λ ∈ Par, then both power series GRλ and pλ

are homogeneous of degree |λ|); Assumption 2 is satisfied as well (since the family (pλ (y))λ∈Par ∈ (k [[y]])Par is k-linearly

independent); Assumption 3 is also satisfied (due to (13.192.51)); finally, Assumption 4 is satisfied (since we have pλ ∈ Λ for

each λ ∈ Par).
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[Proof of Claim 2: We have w ∈ An ⊂ A∗. It remains to prove that CFLtypew = (n).
The word w is Lyndon. Hence, the definition of a “CFL factorization” shows that the 1-tuple (w) is a

CFL factorization of w. We can replace “a CFL factorization” by “the CFL factorization” in this sentence
(since Theorem 6.1.27 shows that the CFL factorization of w is unique). Thus, we conclude that the 1-tuple
(w) is the CFL factorization of w. Hence, the definition of CFLtypew shows that

CFLtypew = (` (w)) = (n) (since ` (w) = n (because w ∈ An)) .

This concludes the proof of Claim 2.]

Claim 3: We have {w ∈ A∗ | CFLtypew = (n)} = {w ∈ An | w is Lyndon}.
[Proof of Claim 3: Claim 1 shows that {w ∈ A∗ | CFLtypew = (n)} ⊂ {w ∈ An | w is Lyndon}. Claim

2 shows that {w ∈ An | w is Lyndon} ⊂ {w ∈ A∗ | CFLtypew = (n)}. Combining these two inclusions,
we obtain precisely the equality claimed in Claim 3.]

The definition of GR(n) yields

GR(n) =
∑
w∈A∗;

CFLtypew=(n)︸ ︷︷ ︸
=

∑
w∈An;

w is Lyndon
(by Claim 3)

xw =
∑
w∈An;

w is Lyndon

xw.

This proves Proposition 6.6.36(a).
(b) Forget that we fixed n. We shall first prove several auxiliary claims:

Claim 4: Let d be a positive integer. Then,

{w ∈ L | ` (w) = d} =
{
w ∈ Ad | w is Lyndon

}
.

[Proof of Claim 4: Since L is the set of all Lyndon words in A∗, we have

{w ∈ L | ` (w) = d} = {w is a Lyndon word in A∗ | ` (w) = d}
= {w ∈ A∗ | w is Lyndon, and ` (w) = d} .

But since Ad is the set of words w ∈ A∗ satisfying ` (w) = d, we have{
w ∈ Ad | w is Lyndon

}
= {w ∈ A∗ satisfying ` (w) = d | w is Lyndon}
= {w ∈ A∗ | w is Lyndon, and ` (w) = d} .

Comparing these two equalities, we obtain {w ∈ L | ` (w) = d} =
{
w ∈ Ad | w is Lyndon

}
. This proves

Claim 4.]

Claim 5: Let w ∈ L. Then, ` (w) ∈ {1, 2, 3, . . .}.
[Proof of Claim 5: From w ∈ L, we conclude that w is a Lyndon word in A∗ (since L is the set of Lyndon

words in A∗). Hence, the word w is Lyndon, and thus nonempty. Therefore, ` (w) ∈ {1, 2, 3, . . .}. This
proves Claim 5.]

The next two claims concern the results of substituting xk1 , x
k
2 , x

k
3 , . . . for x1, x2, x3, . . . in some power

series f ∈ k [[x]] (where k is a given positive integer). Recall that the result of substituting xk1 , x
k
2 , x

k
3 , . . . for

x1, x2, x3, . . . in a power series f ∈ k [[x]] is denoted by f
(
xk1 , x

k
2 , x

k
3 , . . .

)
.

Claim 6: Let k be a positive integer. Let w ∈ A∗. Then,

xw
(
xk1 , x

k
2 , x

k
3 , . . .

)
= xkw

(where, of course, xw
(
xk1 , x

k
2 , x

k
3 , . . .

)
denotes the result of substituting xk1 , x

k
2 , x

k
3 , . . . for

x1, x2, x3, . . . in the polynomial xw).

[Proof of Claim 6: Write the word w in the form w = (w1, w2, . . . , wn) (for some n ∈ N). Then,
xw = xw1

xw2
· · ·xwn (by the definition of xw). Substituting xk1 , x

k
2 , x

k
3 , . . . for x1, x2, x3, . . . on both sides of
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this equality, we obtain

xw
(
xk1 , x

k
2 , x

k
3 , . . .

)
= xkw1

xkw2
· · ·xkwn =

xw1xw2 · · ·xwn︸ ︷︷ ︸
=xw


k

= xkw.

This proves Claim 6.]

Claim 7: Let k and m be positive integers. Then,

pm
(
xk1 , x

k
2 , x

k
3 , . . .

)
= pkm

(where, of course, pm
(
xk1 , x

k
2 , x

k
3 , . . .

)
denotes the result of substituting xk1 , x

k
2 , x

k
3 , . . . for

x1, x2, x3, . . . in the power series pm).

[Proof of Claim 7: The definition of pkm yields pkm = xkm1 + xkm2 + xkm3 + · · · .
On the other hand, the definition of pm yields pm = xm1 + xm2 + xm3 + · · · =

∑
i≥1 x

m
i . Substituting

xk1 , x
k
2 , x

k
3 , . . . for x1, x2, x3, . . . on both sides of this equality, we obtain

pm
(
xk1 , x

k
2 , x

k
3 , . . .

)
=
∑
i≥1

(
xki
)m︸ ︷︷ ︸

=xkmi

=
∑
i≥1

xkmi = xkm1 + xkm2 + xkm3 + · · · = pkm

(since pkm = xkm1 + xkm2 + xkm3 + · · · ). This proves Claim 7.]

Claim 8: Let k and d be positive integers. Then,

(13.192.52) GR(d)

(
xk1 , x

k
2 , x

k
3 , . . .

)
=

∑
w∈L;
`(w)=d

xkw.

[Proof of Claim 8: Because of Claim 4, we have the following equality of summation signs:

(13.192.53)
∑
w∈L;
`(w)=d

=
∑
w∈Ad;

w is Lyndon

.

But Proposition 6.6.36(a) (applied to n = d) yields

GR(d) =
∑
w∈Ad;

w is Lyndon︸ ︷︷ ︸
=

∑
w∈L;
`(w)=d

(by (13.192.53))

xw =
∑
w∈L;
`(w)=d

xw.

Substituting xk1 , x
k
2 , x

k
3 , . . . for x1, x2, x3, . . . on both sides of this equality, we obtain

GR(d)

(
xk1 , x

k
2 , x

k
3 , . . .

)
=

∑
w∈L;
`(w)=d

xw
(
xk1 , x

k
2 , x

k
3 , . . .

)︸ ︷︷ ︸
=xkw

(by Claim 6)

=
∑
w∈L;
`(w)=d

xkw.

This proves Claim 8.]

For each positive integer n, we define a symmetric function G̃Rn ∈ Λ by

G̃Rn =
1

n

∑
d|n

µ (d) p
n/d
d .

Our goal will be to prove that GR(n) = G̃Rn for each positive integer n.
The following two claims are key to our proof:

Claim 9: Every positive integer n satisfies

pn1 =
∑
d|n

d ·GR(d)

(
x
n/d
1 , x

n/d
2 , x

n/d
3 , . . .

)
.
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[Proof of Claim 9: It is well-known that

(13.192.54) − log (1− t) =
∑
k≥1

1

k
tk

in the ring k [[t]]. (Indeed, this is the well-known Mercator series for the logarithm.)
Proposition 6.6.39 yields the equality

1

1− p1t
=
∏
w∈L

1

1− xwt`(w)

in the power series ring (k [[x]]) [[t]]. Taking the logarithm of both sides of this identity, we obtain

log
1

1− p1t
= log

(∏
w∈L

1

1− xwt`(w)

)
=

∑
w∈L︸︷︷︸

=
∑
d≥1

∑
w∈L;
`(w)=d

(since each w∈L satisfies `(w)∈{1,2,3,...}
(by Claim 5))

log

(
1

1− xwt`(w)

)

=
∑
d≥1

∑
w∈L;
`(w)=d

log

(
1

1− xwt`(w)

)
︸ ︷︷ ︸

=log

(
1

1− xwtd

)
(since `(w)=d)

=
∑
d≥1

∑
w∈L;
`(w)=d

log

(
1

1− xwtd

)
︸ ︷︷ ︸

=− log(1−xwt
d)

=
∑
k≥1

1

k
(xwt

d)
k

(by substituting xwt
d for t

in (13.192.54))

=
∑
d≥1

∑
w∈L;
`(w)=d

∑
k≥1︸ ︷︷ ︸

=
∑
k≥1

∑
w∈L;
`(w)=d

1

k

(
xwt

d
)k︸ ︷︷ ︸

=xkwt
kd

=
∑
d≥1

∑
k≥1

∑
w∈L;
`(w)=d

1

k
xkwt

kd =
∑
d≥1

∑
k≥1

1

k

 ∑
w∈L;
`(w)=d

xkw


︸ ︷︷ ︸

=GR(d)(xk1 ,x
k
2 ,x

k
3 ,...)

(by (13.192.52))

tkd

=
∑
d≥1

∑
k≥1

1

k
GR(d)

(
xk1 , x

k
2 , x

k
3 , . . .

)
tkd︸ ︷︷ ︸

=
∑
n≥1;
d|n

1

n/d
GR(d)

(
x
n/d
1 ,x

n/d
2 ,x

n/d
3 ,...

)
t(n/d)d

(here, we have substituted n/d for k in the sum)

=
∑
d≥1

∑
n≥1;
d|n︸ ︷︷ ︸

=
∑
n≥1

∑
d|n

(because the summation sign “
∑
d|n ”

ranges over all positive divisors d of n)

1

n/d
GR(d)

(
x
n/d
1 , x

n/d
2 , x

n/d
3 , . . .

)
t(n/d)d︸ ︷︷ ︸

=tn

=
∑
n≥1

∑
d|n

1

n/d
GR(d)

(
x
n/d
1 , x

n/d
2 , x

n/d
3 , . . .

)
tn.
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Comparing this with

log
1

1− p1t
= − log (1− p1t) =

∑
k≥1

1

k
(p1t)

k︸ ︷︷ ︸
=pk1 t

k

(this follows by substituting p1t for t in (13.192.54))

=
∑
k≥1

1

k
pk1t

k =
∑
n≥1

1

n
pn1 t

n,

we obtain ∑
n≥1

1

n
pn1 t

n =
∑
n≥1

∑
d|n

1

n/d
GR(d)

(
x
n/d
1 , x

n/d
2 , x

n/d
3 , . . .

)
tn.

This is an equality between two formal power series in t. If we compare coefficients on both sides of this
equality, then we obtain

(13.192.55)
1

n
pn1 =

∑
d|n

1

n/d
GR(d)

(
x
n/d
1 , x

n/d
2 , x

n/d
3 , . . .

)
for each n ∈ {1, 2, 3, . . .}.

Now, let n be a positive integer. Thus, n ∈ {1, 2, 3, . . .}. Hence, the equality (13.192.55) holds. Multiplying
both sides of this equality by n, we find

pn1 =
∑
d|n

n · 1

n/d︸ ︷︷ ︸
=d

GR(d)

(
x
n/d
1 , x

n/d
2 , x

n/d
3 , . . .

)
=
∑
d|n

d ·GR(d)

(
x
n/d
1 , x

n/d
2 , x

n/d
3 , . . .

)
.

This proves Claim 9.]

Claim 10: Every positive integer n satisfies

pn1 =
∑
d|n

d · G̃Rd

(
x
n/d
1 , x

n/d
2 , x

n/d
3 , . . .

)
.

[Proof of Claim 10: Let n be a positive integer.

Let f be a positive divisor of n. Thus, n/f is a positive integer. The definition of G̃Rf yields

G̃Rf =
1

f

∑
d|f

µ (d) p
f/d
d .

Substituting x
n/f
1 , x

n/f
2 , x

n/f
3 , . . . for x1, x2, x3, . . . on both sides of this equality, we obtain

G̃Rf

(
x
n/f
1 , x

n/f
2 , x

n/f
3 , . . .

)
=

1

f

∑
d|f

µ (d)

 pd

(
x
n/f
1 , x

n/f
2 , x

n/f
3 , . . .

)
︸ ︷︷ ︸

=p(n/f)d

(by Claim 7, applied to k=n/f and m=d)


f/d

=
1

f

∑
d|f

µ (d) p
f/d
(n/f)d.

Multiplying both sides of this equality by f , we obtain

(13.192.56) f · G̃Rf

(
x
n/f
1 , x

n/f
2 , x

n/f
3 , . . .

)
=
∑
d|f

µ (d) p
f/d
(n/f)d.

Forget that we fixed f . We thus have proved the equality (13.192.56) for each positive divisor f of n.
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Now,

∑
d|n

d · G̃Rd

(
x
n/d
1 , x

n/d
2 , x

n/d
3 , . . .

)
=
∑
f |n

f · G̃Rf

(
x
n/f
1 , x

n/f
2 , x

n/f
3 , . . .

)
︸ ︷︷ ︸

=
∑
d|f µ(d)p

f/d

(n/f)d

(by (13.192.56))

(here, we have renamed the summation index d as f)

=
∑
f |n

∑
d|f︸ ︷︷ ︸

=
∑
d|n

∑
f |n;
d|f

µ (d) p
f/d
(n/f)d =

∑
d|n

∑
f |n;
d|f

µ (d) p
f/d
(n/f)d.(13.192.57)

Now, fix a positive divisor d of n. Then, n/d is a positive integer. Hence, the map

{positive divisors g of n/d} → {positive divisors f of n satisfying d | f} ,
g 7→ dg

is a bijection1223. Thus, we can substitute dg for f in the sum
∑
f |n;
d|f

µ (d) p
f/d
(n/f)d. We thus obtain

(13.192.58)
∑
f |n;
d|f

µ (d) p
f/d
(n/f)d =

∑
g|n/d

µ (d) p
dg/d
(n/(dg))d︸ ︷︷ ︸
=pg

n/g

=
∑
g|n/d

µ (d) pgn/g.

Forget that we fixed d. We thus have proved the equality (13.192.58) for each positive divisor d of n.
Now, (13.192.57) becomes

∑
d|n

d · G̃Rd

(
x
n/d
1 , x

n/d
2 , x

n/d
3 , . . .

)
=
∑
d|n

∑
f |n;
d|f

µ (d) p
f/d
(n/f)d

︸ ︷︷ ︸
=
∑

g|n/d
µ(d)pg

n/g

(by (13.192.58))

=
∑
d|n

∑
g|n/d

µ (d) pgn/g.(13.192.59)

But if d and g are two positive integers, then the statement “d | n and g | n/d” is equivalent to the
statement “g | n and d | n/g” 1224. Hence, we have the following equality of summation signs:

(13.192.60)
∑
d|n

∑
g|n/d

=
∑
g|n

∑
d|n/g

.

1223Its inverse sends each e to e/d.
1224Indeed, it is easy to see that both of these statements are equivalent to “dg | n”.
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Thus, (13.192.59) becomes∑
d|n

d · G̃Rd

(
x
n/d
1 , x

n/d
2 , x

n/d
3 , . . .

)
=

∑
d|n

∑
g|n/d︸ ︷︷ ︸

=
∑
g|n

∑
d|n/g

(by (13.192.60))

µ (d) pgn/g

=
∑
g|n

∑
d|n/g

µ (d)

︸ ︷︷ ︸
=δn/g,1

(by (13.84.3), applied
to n/g instead of n)

pgn/g =
∑
g|n

δn/g,1p
g
n/g

= δn/n,1︸ ︷︷ ︸
=1

(since n/n=1)

pnn/n︸︷︷︸
=pn1

+
∑
g|n;
g 6=n

δn/g,1︸ ︷︷ ︸
=0

(since n/g 6=1
(because g 6=n))

pgn/g

(here, we have split off the addend for g = n from the sum)

= pn1 +
∑
g|n;
g 6=n

0pgn/g

︸ ︷︷ ︸
=0

= pn1 .

This proves Claim 10.]

Claim 11: We have GR(n) = G̃Rn for each positive integer n.

[Proof of Claim 11: We shall prove Claim 11 by strong induction on n:
Induction step: Fix a positive integer m. Assume (as the induction hypothesis) that Claim 11 holds for

all n < m. We must then show that Claim 11 holds for n = m.
As a consequence of our induction hypothesis, we can easily see that

(13.192.61) GR(d) = G̃Rd

whenever d is a positive divisor of m satisfying d 6= m. 1225

Now, Claim 9 (applied to n = m) yields

pm1 =
∑
d|m

d ·GR(d)

(
x
m/d
1 , x

m/d
2 , x

m/d
3 , . . .

)
= m · GR(m)

(
x
m/m
1 , x

m/m
2 , x

m/m
3 , . . .

)
︸ ︷︷ ︸

=GR(m)(x1,x2,x3,...)

(since
(
x
m/m
1 ,x

m/m
2 ,x

m/m
3 ,...

)
=(x1,x2,x3,...)

(because x
m/m
i =x1

i=xi for each i∈{1,2,3,...}))

+
∑
d|m;
d6=m

d · GR(d)︸ ︷︷ ︸
=G̃Rd

(by (13.192.61))

(
x
m/d
1 , x

m/d
2 , x

m/d
3 , . . .

)

(
here, we have split off the addend for d = m from the sum

(since m is a positive divisor of m)

)
= m ·GR(m) (x1, x2, x3, . . .)︸ ︷︷ ︸

=GR(m)

(since f(x1,x2,x3,...)=f
for each f∈k[[x]])

+
∑
d|m;
d 6=m

d · G̃Rd

(
x
m/d
1 , x

m/d
2 , x

m/d
3 , . . .

)

= m ·GR(m) +
∑
d|m;
d6=m

d · G̃Rd

(
x
m/d
1 , x

m/d
2 , x

m/d
3 , . . .

)
.

1225Proof of (13.192.61): Let d be a positive divisor of m satisfying d 6= m. Then, d ≤ m (since d is a positive divisor of
the positive integer m). Combining this with d 6= m, we obtain d < m.

But we have assumed (as the induction hypothesis) that Claim 11 holds for all n < m. Hence, Claim 11 holds for n = d

(since d is a positive integer satisfying d < m). In other words, we have GR(d) = G̃Rd. This proves (13.192.61).
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Meanwhile, Claim 10 (applied to n = m) yields

pm1 =
∑
d|m

d · G̃Rd

(
x
m/d
1 , x

m/d
2 , x

m/d
3 , . . .

)
= m · G̃Rm

(
x
m/m
1 , x

m/m
2 , x

m/m
3 , . . .

)
︸ ︷︷ ︸

=G̃Rm(x1,x2,x3,...)

(since
(
x
m/m
1 ,x

m/m
2 ,x

m/m
3 ,...

)
=(x1,x2,x3,...)

(because x
m/m
i =x1

i=xi for each i∈{1,2,3,...}))

+
∑
d|m;
d6=m

d · G̃Rd

(
x
m/d
1 , x

m/d
2 , x

m/d
3 , . . .

)

(
here, we have split off the addend for d = m from the sum

(since m is a positive divisor of m)

)
= m · G̃Rm (x1, x2, x3, . . .)︸ ︷︷ ︸

=G̃Rm

(since f(x1,x2,x3,...)=f
for each f∈k[[x]])

+
∑
d|m;
d6=m

d · G̃Rd

(
x
m/d
1 , x

m/d
2 , x

m/d
3 , . . .

)

= m · G̃Rm +
∑
d|m;
d6=m

d · G̃Rd

(
x
m/d
1 , x

m/d
2 , x

m/d
3 , . . .

)
.

Comparing these two equalities, we obtain

m ·GR(m) +
∑
d|m;
d6=m

d · G̃Rd

(
x
m/d
1 , x

m/d
2 , x

m/d
3 , . . .

)

= m · G̃Rm +
∑
d|m;
d6=m

d · G̃Rd

(
x
m/d
1 , x

m/d
2 , x

m/d
3 , . . .

)
.

Subtracting
∑
d|m;
d 6=m

d · G̃Rd

(
x
m/d
1 , x

m/d
2 , x

m/d
3 , . . .

)
from both sides of this equality, we find m · GR(m) =

m · G̃Rm.
But m is a positive integer, and thus is invertible in Q. Hence, m is invertible in k as well (since k is a

Q-algebra). Thus, we can divide both sides of the equality m ·GR(m) = m · G̃Rm by m. We thus obtain

GR(m) = G̃Rm. In other words, Claim 11 holds for n = m. This completes the induction step. Hence,
Claim 11 is proved by strong induction.]

Now, fix a positive integer n. Then, Claim 11 yields

GR(n) = G̃Rn =
1

n

∑
d|n

µ (d) p
n/d
d

(
by the definition of G̃Rn

)
.

This proves Proposition 6.6.36(b). �

We have now proved Proposition 6.6.39, Proposition 6.6.38, Proposition 6.6.43, Proposition 6.6.48, Propo-
sition 6.6.49, Proposition 6.6.50, Proposition 6.6.40, Proposition 6.6.42, Proposition 6.6.37 and Proposition
6.6.36. In other words, we have proved all statements made in Subsection 6.6.2. This solves Exercise 6.6.51.

13.193. Solution to Exercise 6.6.53. Solution to Exercise 6.6.53. Let us first forget about Remark
6.6.52(b), and prove some basic lemmas. Our first lemma will be about roots of unity:

Lemma 13.193.1. Let n be a positive integer. Let ω be a primitive n-th root of unity in C (for instance,
exp (2πi/n)). Then:
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(a) If d is a positive divisor of n, then ∑
i∈{1,2,...,n};

d|i

ωi = δn/d,1.

(b) If d is a positive divisor of n, then ∑
i∈{1,2,...,n};
gcd(n,i)=d

ωi = µ (n/d) .

Here, µ denotes the number-theoretical Möbius function (defined as in Exercise 2.9.6).

Proof of Lemma 13.193.1. We have required ω to be a primitive n-th root of unity in C. Thus, ωn = 1, but
if d is a positive integer satisfying d < n, then

(13.193.1) ωd 6= 1.

(a) Let d be a positive divisor of n. Then, the elements i ∈ {1, 2, . . . , n} satisfying d | i are precisely the
n/d distinct elements 1d, 2d, . . . , (n/d) d. Hence,

(13.193.2)
∑

i∈{1,2,...,n};
d|i

ωi = ω1d + ω2d + · · ·+ ω(n/d)d =

n/d∑
j=1

ωjd︸︷︷︸
=(ωd)j

=

n/d∑
j=1

(
ωd
)j
.

Now, we are in one of the following two cases:
Case 1: We have d = n.
Case 2: We have d 6= n.
Let us first consider Case 1. In this case, we have d = n. Hence, ωd = ωn = 1 and n/d = n/n = 1. Thus,

(13.193.2) becomes

∑
i∈{1,2,...,n};

d|i

ωi =

n/d∑
j=1

 ωd︸︷︷︸
=1

j

=

n/d∑
j=1

1j︸︷︷︸
=1

=

n/d∑
j=1

1 = n/d = 1 = δn/d,1.

(since n/d = 1 leads to δn/d,1 = 1). Hence, Lemma 13.193.1(a) is proved in Case 1.
Let us next consider Case 2. In this case, we have d 6= n. But d is a positive divisor of the positive integer

n; hence, d ≤ n. Combining this with d 6= n, we obtain d < n. Hence, (13.193.1) yields ωd 6= 1. Thus,
1− ωd 6= 0. Also, from d 6= n, we obtain n/d 6= 1.

But n/d is a positive integer (since d is a positive divisor of the positive integer n). Now,∑
i∈{1,2,...,n};

d|i

ωi = ω1d + ω2d + · · ·+ ω(n/d)d

=
(
ω1d + ω2d + · · ·+ ω(n/d−1)d

)
+ ω(n/d)d︸ ︷︷ ︸

=ωn=1=ω0d

(since ω0d=ω0=1)

(since n/d is a positive integer)

=
(
ω1d + ω2d + · · ·+ ω(n/d−1)d

)
+ ω0d

= ω0d +
(
ω1d + ω2d + · · ·+ ω(n/d−1)d

)
= ω0d + ω1d + · · ·+ ω(n/d−1)d =

n/d−1∑
j=0

ωjd︸︷︷︸
=(ωd)j

=

n/d−1∑
j=0

(
ωd
)j
.
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Hence,

n/d−1∑
j=0

(
ωd
)j

=
∑

i∈{1,2,...,n};
d|i

ωi =

n/d∑
j=1

(
ωd
)j︸ ︷︷ ︸

=ωd(ωd)j−1

(by (13.193.2))(13.193.3)

= ωd
n/d∑
j=1

(
ωd
)j−1

= ωd
n/d−1∑
j=0

(
ωd
)j

(13.193.4)

(here, we have substituted j for j − 1 in the sum) .

Hence,

(
1− ωd

) n/d−1∑
j=0

(
ωd
)j

=

n/d−1∑
j=0

(
ωd
)j

︸ ︷︷ ︸
=ωd

∑n/d−1
j=0 (ωd)

j

(by (13.193.4))

−ωd
n/d−1∑
j=0

(
ωd
)j

= ωd
n/d−1∑
j=0

(
ωd
)j − ωd n/d−1∑

j=0

(
ωd
)j

= 0.

We can divide both sides of this equality by 1− ωd (since 1− ωd 6= 0), and thus obtain
∑n/d−1
j=0

(
ωd
)j

= 0.

Comparing this with (13.193.3), we obtain
∑n/d
j=1

(
ωd
)j

= 0. Thus, (13.193.2) becomes

∑
i∈{1,2,...,n};

d|i

ωi =

n/d∑
j=1

(
ωd
)j

= 0 = δn/d,1
(
since n/d 6= 1 leads to δn/d,1 = 0

)
.

Hence, Lemma 13.193.1(a) is proved in Case 2.
We have now proved Lemma 13.193.1(a) in both Cases 1 and 2. Thus, Lemma 13.193.1(a) always holds.
(b) For each positive integer m, we have1226∑

d|m

µ (d) = δm,1 (by (13.84.3), applied to m instead of n)

and thus

(13.193.5) δm,1 =
∑
d|m

µ (d) =
∑
f |m

µ (f)

(here, we have renamed the summation index d as f).
Set

(13.193.6) xd =
∑

i∈{1,2,...,n};
gcd(n,i)=d

ωi for each d ∈ Z.

We now claim that

(13.193.7) xd = µ (n/d) for each positive divisor d of n.

[Proof of (13.193.7): If d is a positive divisor of n, then n/d is a positive integer (since n is a positive
integer). Thus, we can prove (13.193.7) by strong induction on n/d. Let us do this:

Induction step: Fix a positive integer m. Assume (as the induction hypothesis) that (13.193.7) holds
whenever n/d < m. We must prove that (13.193.7) holds whenever n/d = m.

If d is a positive divisor of n that satisfies n/d < m, then

(13.193.8) xd = µ (n/e) .

(Indeed, this is just a restatement of our induction hypothesis.)
Now, fix a positive divisor d of n that satisfies n/d = m. We shall prove that xd = µ (n/d).

1226Here and in the following, the summation sign “
∑
d|m” will always be understood to range over all positive divisors d

of m.
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As a consequence of the induction hypothesis, we can easily see the following: If e is a positive divisor of
n satisfying d | e and e 6= d, then

(13.193.9) xe = µ (n/e) .

[Proof of (13.193.9): Let e be a positive divisor of n satisfying d | e and e 6= d. From d | e, we obtain
d ≤ e (since d and e are positive integers). Combining this with d 6= e (which follows from e 6= d), we obtain
d < e. Since n is positive, this entails n/e < n/d = m. Hence, (13.193.8) (applied to e instead of d) yields
xe = µ (n/e). This proves (13.193.9).]

Recall that n is a positive integer, and d is a positive divisor of n. Hence, n/d is a positive integer, and
we have d | n.

For any i ∈ {1, 2, . . . , n}, we have the following chain of logical equivalences:

((gcd (n, i) is a positive divisor of n) ∧ (d | gcd (n, i)))

⇐⇒ (d | gcd (n, i)) (since “ gcd (n, i) is a positive divisor of n” is always true)

⇐⇒ ((d | n) ∧ (d | i))(
because the logical equivalence (x | gcd (y, z)) ⇐⇒ ((x | y) ∧ (x | z))

holds for any three integers x, y and z

)
⇐⇒ (d | i) (since “d | n” is always true) .

Hence, we have the following equality of summation signs:

(13.193.10)
∑

i∈{1,2,...,n};
gcd(n,i) is a positive divisor of n;

d|gcd(n,i)

=
∑

i∈{1,2,...,n};
d|i

.

We have1227 ∑
e|n;
d|e︸︷︷︸

=
∑

e is a positive divisor of n;
d|e

xe︸︷︷︸
=

∑
i∈{1,2,...,n};
gcd(n,i)=e

ωi

(by the definition of xe)

=
∑

e is a positive divisor of n;
d|e

∑
i∈{1,2,...,n};
gcd(n,i)=e︸ ︷︷ ︸

=
∑

i∈{1,2,...,n};
gcd(n,i) is a positive divisor of n;

d|gcd(n,i)

=
∑

i∈{1,2,...,n};
d|i

(by (13.193.10))

ωi

=
∑

i∈{1,2,...,n};
d|i

ωi = δn/d,1

(by Lemma 13.193.1(a)). Hence,

δn/d,1 =
∑
e|n;
d|e

xe = xd +
∑
e|n;
d|e;
e 6=d

xe︸︷︷︸
=µ(n/e)

(by (13.193.9))

(here, we have split off the addend for e = d from the sum)

= xd +
∑
e|n;
d|e;
e 6=d

µ (n/e) .(13.193.11)

On the other hand, recall that n/d is a positive integer. Hence, (13.193.5) (applied to m = n/d) yields

(13.193.12) δn/d,1 =
∑
f |n/d

µ (f) .

1227Recall that the summation sign “
∑
e|n;
d|e

” stands for a sum over all positive divisors e of n satisfying d | e.
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But it is straightforward to see that the map

{positive divisors e of n satisfying d | e} → {positive divisors of n/d} ,
e 7→ n/e

is well-defined and is a bijection1228. Thus, we can substitute n/e for f in the sum
∑
f |n/d

µ (f). We therefore

obtain ∑
f |n/d

µ (f) =
∑
e|n;
d|e

µ (n/e) .

Thus, (13.193.12) becomes

δn/d,1 =
∑
f |n/d

µ (f) =
∑
e|n;
d|e

µ (n/e) = µ (n/d) +
∑
e|n;
d|e;
e 6=d

µ (n/e)

(here, we have split off the addend for e = d from the sum). Comparing this with (13.193.11), we obtain

xd +
∑
e|n;
d|e;
e 6=d

µ (n/e) = µ (n/d) +
∑
e|n;
d|e;
e 6=d

µ (n/e) .

Subtracting
∑
e|n;
d|e;
e 6=d

µ (n/e) from both sides of this equality, we obtain xd = µ (n/d). In other words, (13.193.7)

holds.
Forget that we fixed d. We thus have proved that (13.193.7) holds whenever n/d = m. This completes

the induction step. Thus, the induction proof of (13.193.7) is complete.]
Now, let d be a positive divisor of n. Then, the definition of xd yields xd =

∑
i∈{1,2,...,n};
gcd(n,i)=d

ωi. Hence,

∑
i∈{1,2,...,n};
gcd(n,i)=d

ωi = xd = µ (n/d) (by (13.193.7)) .

This proves Lemma 13.193.1(b). �

Remark 13.193.2. Let n be a positive integer. If d is a positive divisor of n, then the complex numbers ωi for
all i ∈ {1, 2, . . . , n} satisfying gcd (n, i) = d are precisely the primitive (n/d)-th roots of unity in C (this is
not hard to check). Thus, Lemma 13.193.1(b) states that the sum of all primitive (n/d)-th roots of unity in
C is µ (n/d). Hence, Lemma 13.193.1(b) is an equivalent restatement of the following fact: For any positive
integer m, the sum of all primitive m-th roots of unity in C is µ (m).

The next lemma we will need is an elementary fact from the theory of numbers, whose easy proof (e.g.,
using the Bezout theorem or the basic properties of greatest common divisors) we omit:

Lemma 13.193.3. Let x, y and z be three integers such that x 6= 0. Let d = gcd (x, y). Then, we have the
logical equivalence (x | yz) ⇐⇒ (x/d | z).

The next lemma we will need is a mostly trivial property of permutations:

Lemma 13.193.4. Let n be a positive integer. For every permutation σ ∈ Sn, we let typeσ denote the
cycle type of σ.

Let q ∈ Q and σ ∈ Sn. Assume that every cycle of σ has size q. Then, q is a positive divisor of n, and

we have typeσ =

q, q, . . . , q︸ ︷︷ ︸
n/q times

.

1228Its inverse sends each f ∈ {positive divisors of n/d} to n/f .
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Proof of Lemma 13.193.4. Let k be the number of cycles of σ. Thus, σ has exactly k cycles, and each of
these k cycles has size q (because we assumed that every cycle of σ has size q). But the cycles of σ are
disjoint, and their union is the n-element set {1, 2, . . . , n}. Hence, the sum of the sizes of all cycles of σ is n.
Thus,

n = (the sum of the sizes of all cycles of σ) = q + q + · · ·+ q︸ ︷︷ ︸
k times

(since σ has exactly k cycles, and each of these k cycles has size q)

= kq.

Thus, kq = n 6= 0, so that k 6= 0 and q 6= 0. From k 6= 0, we conclude that σ has at least one cycle. The
size of this cycle is q (since we assumed that every cycle of σ has size q); thus, q is the size of a cycle of σ,
and therefore is a nonnegative integer. Combining this with q 6= 0, we conclude that q is a positive integer.
Since n = kq, we conclude that q | n (because k ∈ N), so that q is a positive divisor of n. Furthermore, the
definition of typeσ shows that

typeσ = (the cycle type of σ) =

q, q, . . . , q︸ ︷︷ ︸
k times


(since σ has exactly k cycles, and each of these k cycles has size q)

=

q, q, . . . , q︸ ︷︷ ︸
n/q times

 (since k = n/q (because n = kq)) .

This proves Lemma 13.193.4. �

Let us now step to the analysis of n-cycles in Sn:

Lemma 13.193.5. Let n be a positive integer. For every permutation σ ∈ Sn, we let typeσ denote the
cycle type of σ.

Let z ∈ Sn be an n-cycle. Let m ∈ Z. Let d = gcd (m,n). Then, type (zm) =

n/d, n/d, . . . , n/d︸ ︷︷ ︸
d times

.

Proof of Lemma 13.193.5. Let us consider the cycles of the permutation zm ∈ Sn. We shall show that every
cycle of zm has size n/d.

Indeed, let Z be a cycle of zm (considered as a subset of {1, 2, . . . , n}). Then, Z is a nonempty set; in
other words, there exists some x ∈ Z. Consider this x.

Let g = |Z|. Then, g is a positive integer (since Z is nonempty), and the cycle Z has length g (since
g = |Z|).

Now, Z is the cycle of zm containing x (since Z is a cycle of zm and since x ∈ Z). Thus, the cy-
cle of zm containing x has length g (since we know that the cycle Z has length g). Hence, the sequence

x, zm (x) , (zm)
2

(x) , (zm)
3

(x) , . . . (obtained from x by applying zm again and again) repeats every g ele-
ments, but not more frequently. Thus, for any N ∈ N, we have the following equivalence of statements:

(13.193.13)
(

(zm)
N

(x) = x
)
⇐⇒ (g | N) .

On the other hand, the permutation z is an n-cycle on an n-element set (namely, on {1, 2, . . . , n}); thus,
it has exactly one cycle, which has length n. The cycle of z which contains x must therefore be this unique
cycle, and thus has length n. Hence, the sequence x, z (x) , z2 (x) , z3 (x) , . . . (obtained from x by applying
z again and again) repeats every n elements, but not more frequently. Thus, for any N ∈ N, we have the
following equivalence of statements:

(13.193.14)
(
zN (x) = x

)
⇐⇒ (n | N) .

Note that n 6= 0. Hence, d is a positive integer (since d = gcd (m,n)) and satisfies d = gcd (m,n) =
gcd (n,m) | n. Hence, d is a positive divisor of n. Therefore, n/d is a positive integer (since n is also a
positive integer), so that n/d ∈ N.



HOPF ALGEBRAS IN COMBINATORICS (VERSION CONTAINING SOLUTIONS) 1149

Now, for any N ∈ N, we have the following chain of logical equivalences:

(g | N) ⇐⇒

(zm)
N︸ ︷︷ ︸

=zmN

(x) = x

 (by (13.193.13))

⇐⇒
(
zmN (x) = x

)
⇐⇒ (n | mN) (by (13.193.14), applied to mN instead of N)

⇐⇒ (n/d | N)(13.193.15)

(by Lemma 13.193.3, applied to n, m and N instead of x, y and z).
Applying (13.193.15) to N = n/d, we obtain the equivalence (g | n/d) ⇐⇒ (n/d | n/d) (since n/d ∈ N).

Thus, we have g | n/d (since we clearly have n/d | n/d). Hence, g ≤ n/d (since g and n/d are positive
integers).

Applying (13.193.15) to N = g, we obtain the equivalence (g | g) ⇐⇒ (n/d | g) (since g ∈ N). Thus, we
have n/d | g (since we clearly have g | g). Hence, n/d ≤ g (since n/d and g are positive integers).

Combining g ≤ n/d with n/d ≤ g, we obtain g = n/d. Hence, |Z| = g = n/d. In other words, the set Z
has size n/d.

Now, forget that we fixed Z. We thus have shown that if Z is a cycle of zm (considered as a subset of
{1, 2, . . . , n}), then Z has size n/d. In other words, every cycle of zm has size n/d.

Hence, Lemma 13.193.4 (applied to q = n/d and σ = zm) yields that n/d is a positive divisor of n, and

that type (zm) =

n/d, n/d, . . . , n/d︸ ︷︷ ︸
n/(n/d) times

. Hence,

type (zm) =

n/d, n/d, . . . , n/d︸ ︷︷ ︸
n/(n/d) times

 =

n/d, n/d, . . . , n/d︸ ︷︷ ︸
d times

 (since n/ (n/d) = d) .

This proves Lemma 13.193.5. �

At last, we can now solve Exercise 6.6.53 itself:
Let us use the notations from Remark 6.6.52(b). In particular, let n be a positive integer. We fix some

n-cycle z in Sn, and we fix some generator g of the cyclic group Cn. We embed the cyclic group Cn = Z/nZ
as a subgroup in the symmetric group Sn by identifying g ∈ Cn with z ∈ Sn. (This is legitimate, since
the n-cycle z ∈ Sn is an element of order n.) Let ω be a primitive n-th root of unity in C (for instance,
exp (2πi/n)). Let γ : Cn → C be the character of Cn that sends each gi ∈ Cn to ωi.

We must prove the claim of Remark 6.6.52(b). In other words, we must prove that GR(n) = ch
(

IndSn
Cn

γ
)

.

In the following, µ denotes the number-theoretical Möbius function (defined as in Exercise 2.9.6), and the
summation sign “

∑
d|n” will always be understood to range over all positive divisors d of n.

Extend the map ch : A = A (S)→ Λ to a C-linear map AC → ΛC. We shall call the latter map ch, too.
The cyclic group Cn is abelian; thus, every function from Cn to C is a class function of Cn (because any

function from an abelian group to C is a class function). Hence, γ is a class function of Cn (since γ is a
function from Cn to C). In other words, γ ∈ RC (Cn).

For every permutation σ ∈ Sn, we let typeσ denote the cycle type of σ. Exercise 4.4.5(b) (applied to
H = Cn and f = γ) yields

(13.193.16) ch
(

IndSn
Cn

γ
)

=
1

|Cn|
∑
h∈Cn

γ (h) ptypeh =
1

n

∑
h∈Cn

γ (h) ptypeh

(since |Cn| = n).
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If m and d are integers such that gcd (n,m) = d, then

type (gm) = type (zm) (since g = z (because we are identifying g with z))

=

n/d, n/d, . . . , n/d︸ ︷︷ ︸
d times


(by Lemma 13.193.5 (since d = gcd (n,m) = gcd (m,n) ))

and thus

ptype(gm) = pn/d, n/d, . . . , n/d︸ ︷︷ ︸
d times


= pn/dpn/d · · · pn/d︸ ︷︷ ︸

d times
by the definition of pλ for a partition λ

(since `

n/d, n/d, . . . , n/d︸ ︷︷ ︸
d times

 = d)


= pdn/d.(13.193.17)

But Cn is the cyclic group of size n, and g is a generator of Cn. Hence, the n elements of Cn are
g1, g2, . . . , gn (listed here without repetition). Hence,∑

h∈Cn

γ (h) ptypeh = γ
(
g1
)
ptype(g1) + γ

(
g2
)
ptype(g2) + · · ·+ γ (gn) ptype(gn)

=
∑

m∈{1,2,...,n}︸ ︷︷ ︸
=
∑
d|n

∑
m∈{1,2,...,n};
gcd(n,m)=d

(here, we have split up the sum
according to the value of gcd(n,m),

because gcd(n,m) is a positive divisor of n
for each m∈{1,2,...,n})

γ (gm) ptype(gm)

=
∑
d|n

∑
m∈{1,2,...,n};
gcd(n,m)=d

γ (gm)︸ ︷︷ ︸
=ωm

(by the definition of γ)

ptype(gm)︸ ︷︷ ︸
=pdn/d

(by (13.193.17))

=
∑
d|n

∑
m∈{1,2,...,n};
gcd(n,m)=d

ωm

︸ ︷︷ ︸
=

∑
i∈{1,2,...,n};
gcd(n,i)=d

ωi

(here, we have renamed
the summation index m as i)

pdn/d =
∑
d|n

∑
i∈{1,2,...,n};
gcd(n,i)=d

ωi

︸ ︷︷ ︸
=µ(n/d)

(by Lemma 13.193.1(b))

pdn/d

=
∑
d|n

µ (n/d) pdn/d =
∑
d|n

µ

n/ (n/d)︸ ︷︷ ︸
=d

 p
n/d
n/(n/d)︸ ︷︷ ︸
=p

n/d
d

(since n/(n/d)=d) here, we have substituted n/d for d in the sum, since
the map {positive divisors of n} → {positive divisors of n} , d 7→ n/d

is a bijection


=
∑
d|n

µ (d) p
n/d
d .
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Hence, (13.193.16) becomes

ch
(

IndSn
Cn

γ
)

=
1

n

∑
h∈Cn

γ (h) ptypeh︸ ︷︷ ︸
=
∑
d|n µ(d)p

n/d
d

=
1

n

∑
d|n

µ (d) p
n/d
d .

But Proposition 6.6.36(b) yields

GR(n) =
1

n

∑
d|n

µ (d) p
n/d
d .

Comparing these two equalities, we obtain GR(n) = ch
(

IndSn
Cn

γ
)

. This proves the claim of Remark

6.6.52(b). Thus, Exercise 6.6.53 is solved.

13.194. Solution to Exercise 6.6.55. Solution to Exercise 6.6.55. Before we prove Proposition 6.6.54, let
us prove two simple lemmas:

Lemma 13.194.1. Let n ∈ N. Then:

(a) For any two compositions α, β ∈ Compn, we have the logical equivalence

(α = β) ⇐⇒ (D (α) = D (β)) .

(b) For any permutation σ ∈ Sn and any composition β ∈ Compn, we have the logical equivalence

(β = γ (σ)) ⇐⇒ (Desσ = D (β)) .

(c) For any permutation σ ∈ Sn and any composition β ∈ Compn, we have the logical equivalence

(β refines γ (σ)) ⇐⇒ (Desσ ⊂ D (β)) .

Proof of Lemma 13.194.1. If σ ∈ Sn is any permutation, then γ (σ) is a composition of n and satisfies

(13.194.1) D (γ (σ)) = Desσ

(since γ (σ) was defined to be the unique composition α of n satisfying D (α) = Desσ).
(a) Set [n− 1] := {1, 2, . . . , n− 1}. The map Compn → 2[n−1], α 7→ D (α) is a bijection. Thus, in

particular, this map is injective. Hence, for any two compositions α, β ∈ Compn, we have the logical
equivalence (α = β) ⇐⇒ (D (α) = D (β)). This proves Lemma 13.194.1(a).

(b) Let σ ∈ Sn be a permutation. Let β ∈ Compn be a composition. Note that γ (σ) ∈ Compn (since
σ ∈ Sn). Now, we have the following chain of logical equivalences:

(β = γ (σ)) ⇐⇒ (γ (σ) = β) ⇐⇒ (D (γ (σ)) = D (β))

(by Lemma 13.194.1(a) (applied to α = γ (σ) ))

⇐⇒ (Desσ = D (β)) (by (13.194.1)) .

This proves Lemma 13.194.1(b).
(c) For any two compositions α, β ∈ Compn, we have the logical equivalence

(13.194.2) (α refines β) ⇐⇒ (D (α) ⊃ D (β))

(by the definition of the relation “refines” in Definition 5.1.10).
Let σ ∈ Sn be any permutation. Let β ∈ Compn be a composition. Note that γ (σ) ∈ Compn (since

σ ∈ Sn). Now, we have the following chain of logical equivalences:

(β refines γ (σ)) ⇐⇒ (D (β) ⊃ D (γ (σ)))(
by (13.194.2) (applied to β and γ (σ) instead of α and β),

since β ∈ Compn and γ (σ) ∈ Compn

)
⇐⇒ (D (γ (σ)) ⊂ D (β)) ⇐⇒ (Desσ ⊂ D (β)) (by (13.194.1)) .

This proves Lemma 13.194.1(c). �
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Lemma 13.194.2. Let n ∈ N. Let β = (β1, β2, . . . , βk) ∈ Compn. Let µ be the partition obtained by
sorting the entries of β into decreasing order. Then,

hµ =
∑

α∈Compn;
β refines α

sRib(α).

Proof of Lemma 13.194.2. Consider the algebra homomorphism NSym
π−→ Λ defined in Corollary 5.4.3.

It is easy to see that

(13.194.3) π (Hβ) = hµ.

[Proof of (13.194.3): The definition of µ shows that the nonzero entries of µ are precisely the entries of
β (up to order). Since β = (β1, β2, . . . , βk), we can restate this as follows: The nonzero entries of µ are
precisely β1, β2, . . . , βk (up to order). Hence, the definition of hµ yields

(13.194.4) hµ = hβ1
hβ2
· · ·hβk .

But β1, β2, . . . , βk are positive integers (since (β1, β2, . . . , βk) ∈ Compn ⊂ Comp). Hence, the def-
inition of π yields π (Hβi) = hβi for all i ∈ {1, 2, . . . , k}. Multiplying these k equalities, we obtain
π (Hβ1

)π (Hβ2
) · · ·π (Hβk) = hβ1

hβ2
· · ·hβk .

Recall again that β = (β1, β2, . . . , βk). Hence, (5.4.3) (applied to β and k instead of α and `) yields
Hβ = Hβ1

Hβ2
· · ·Hβk . Applying the map π to both sides of this equality, we find

π (Hβ) = π (Hβ1Hβ2 · · ·Hβk) = π (Hβ1)π (Hβ2) · · ·π (Hβk) (since π is a k-algebra homomorphism)

= hβ1
hβ2
· · ·hβk .

Comparing this with (13.194.4), we find π (Hβ) = hµ. Thus, (13.194.3) is proved.]
Theorem 5.4.10(b) shows that

(13.194.5) π (Rα) = sRib(α)

for each composition α.
The equality (5.4.9) (with the variables α and β renamed as β and α) says that

Hβ =
∑

α coarsens β︸ ︷︷ ︸
=

∑
α∈Compn;
α coarsens β

=
∑

α∈Compn;
β refines α

(since the condition “α coarsens β”
is equivalent to “β refines α”)

Rα =
∑

α∈Compn;
β refines α

Rα.

Applying the map π to both sides of this equality, we obtain

π (Hβ) = π

 ∑
α∈Compn;
β refines α

Rα

 =
∑

α∈Compn;
β refines α

π (Rα)︸ ︷︷ ︸
=sRib(α)

(by (13.194.5))

(since the map π is k-linear)

=
∑

α∈Compn;
β refines α

sRib(α).

Comparing this with (13.194.3), we obtain

hµ =
∑

α∈Compn;
β refines α

sRib(α).

This proves Lemma 13.194.2. �

Proof of Proposition 6.6.54. Proposition 6.6.37 shows that the power series GRλ belongs to Λ. In other
words, GRλ ∈ Λ.

(b) For each permutation σ ∈ Sn, we have the logical equivalence

(β = γ (σ)) ⇐⇒ (Desσ = D (β))
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(by Lemma 13.194.1(b)). Hence,

(the number of permutations σ ∈ Sn satisfying typeσ = λ and β = γ (σ))

= (the number of permutations σ ∈ Sn satisfying typeσ = λ and Desσ = D (β)) .(13.194.6)

The definition of the noncommutative ribbon functions shows that the basis (Rα)α∈Comp of NSym is dual

to the basis (Lα)α∈Comp of QSym (with respect to the dual pairing NSym⊗QSym
(·,·)−→ k). In other words,

(13.194.7) (Rα, Lζ) = δα,ζ for all α, ζ ∈ Comp .

Now, consider the inclusion Λ
i
↪→ QSym and the algebra homomorphism NSym

π−→ Λ defined in Corollary
5.4.3. We have seen in Corollary 5.4.3 that these two maps i and π are adjoint (with respect to the dual

pairing NSym⊗QSym
(·,·)−→ k). In other words,

(13.194.8) (f, i (g)) = (π (f) , g) for any f ∈ NSym and g ∈ Λ.

Theorem 5.4.10(b) shows that π (Rα) = sRib(α) for every composition α. Applying this to α = β, we find
π (Rβ) = sRib(β).

Recall that GRλ ∈ Λ. Thus, (13.194.8) (applied to f = Rβ and g = GRλ) yields

(13.194.9) (Rβ , i (GRλ)) =

π (Rβ)︸ ︷︷ ︸
=sRib(β)

,GRλ

 =
(
sRib(β),GRλ

)
=
(
GRλ, sRib(β)

)

(since the Hall inner product is symmetric).
But i is just an inclusion map. Hence,

i (GRλ) = GRλ =
∑
σ∈Sn;

σ has cycle type λ

Lγ(σ) (by Proposition 6.6.40) .
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Now, (13.194.9) shows that

(
GRλ, sRib(β)

)
=

Rβ , i (GRλ)︸ ︷︷ ︸
=

∑
σ∈Sn;

σ has cycle type λ

Lγ(σ)

 =

Rβ , ∑
σ∈Sn;

σ has cycle type λ

Lγ(σ)


=

∑
σ∈Sn;

σ has cycle type λ︸ ︷︷ ︸
=

∑
σ∈Sn;

typeσ=λ
(since typeσ denotes the cycle type of σ)

(
Rβ , Lγ(σ)

)︸ ︷︷ ︸
=δβ,γ(σ)

(by (13.194.7),
applied to α=β

and ζ=γ(σ))

(
since the dual pairing NSym⊗QSym

(·,·)−→ k is k-bilinear

)
=

∑
σ∈Sn;

typeσ=λ

δβ,γ(σ) =
∑
σ∈Sn;

typeσ=λ;
β=γ(σ)

δβ,γ(σ)︸ ︷︷ ︸
=1

(since β=γ(σ))

+
∑
σ∈Sn;

typeσ=λ;
β 6=γ(σ)

δβ,γ(σ)︸ ︷︷ ︸
=0

(since β 6=γ(σ))(
since every σ ∈ Sn satisfies either β = γ (σ) or β 6= γ (σ)

(but not both at the same time)

)
=

∑
σ∈Sn;

typeσ=λ;
β=γ(σ)

1 +
∑
σ∈Sn;

typeσ=λ;
β 6=γ(σ)

0

︸ ︷︷ ︸
=0

=
∑
σ∈Sn;

typeσ=λ;
β=γ(σ)

1

= (the number of permutations σ ∈ Sn satisfying typeσ = λ and β = γ (σ)) · 1
= (the number of permutations σ ∈ Sn satisfying typeσ = λ and β = γ (σ)) .

Combining this with (13.194.6), we obtain

(the number of permutations σ ∈ Sn satisfying typeσ = λ and β = γ (σ))

= (the number of permutations σ ∈ Sn satisfying typeσ = λ and Desσ = D (β))

=
(
GRλ, sRib(β)

)
.

This proves Proposition 6.6.54(b).
(a) For each permutation σ ∈ Sn, we have the logical equivalence

(β refines γ (σ)) ⇐⇒ (Desσ ⊂ D (β))

(by Lemma 13.194.1(c)). Hence,

(the number of permutations σ ∈ Sn satisfying typeσ = λ such that β refines γ (σ))

= (the number of permutations σ ∈ Sn satisfying typeσ = λ and Desσ ⊂ D (β)) .(13.194.10)

On the other hand, if α ∈ Compn is a composition, then

(the number of permutations σ ∈ Sn satisfying typeσ = λ and γ (σ) = α)

=
(
GRλ, sRib(α)

)
.(13.194.11)

[Proof of (13.194.11): Let α ∈ Compn be a composition. Write α in the form α = (α1, α2, . . . , α`). Thus,
α = (α1, α2, . . . , α`) ∈ Compn. Hence, Proposition 6.6.54(b) (applied to α and ` instead of β and k) yields

(the number of permutations σ ∈ Sn satisfying typeσ = λ and α = γ (σ))

= (the number of permutations σ ∈ Sn satisfying typeσ = λ and Desσ = D (α))

=
(
GRλ, sRib(α)

) (
this is the Hall inner product of GRλ ∈ Λ and sRib(α) ∈ Λ

)
.
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But this immediately yields (13.194.11) (since the condition “γ (σ) = α” is equivalent to “α = γ (σ)”).]
If σ ∈ Sn is any permutation, then γ (σ) ∈ Compn (by the definition of γ (σ)). Hence,

(the number of permutations σ ∈ Sn satisfying typeσ = λ such that β refines γ (σ))

=
∑

α∈Compn;
β refines α

(the number of permutations σ ∈ Sn satisfying typeσ = λ such that γ (σ) = α)︸ ︷︷ ︸
=(GRλ,sRib(α))
(by (13.194.11))

=
∑

α∈Compn;
β refines α

(
GRλ, sRib(α)

)
.

Comparing this with
GRλ, hµ︸︷︷︸

=
∑

α∈Compn;
β refines α

sRib(α)

(by Lemma 13.194.2)


=

GRλ,
∑

α∈Compn;
β refines α

sRib(α)

 =
∑

α∈Compn;
β refines α

(
GRλ, sRib(α)

)

(since the Hall inner product is k-bilinear) ,

we obtain

(the number of permutations σ ∈ Sn satisfying typeσ = λ such that β refines γ (σ))

= (GRλ, hµ) .(13.194.12)

Recall that GRλ ∈ Λ; also, µ is a weak composition (since µ is a partition). Furthermore, µ is a partition;
thus, all the nonzero entries of µ are concentrated at the beginning of µ, and followed by an infinite string
of zeroes. Hence, µ is the partition consisting of the nonzero entries of µ (sorted in decreasing order)1229.
Therefore, Exercise 2.5.25 (applied to GRλ and µ instead of f and β) yields

(13.194.13) (GRλ, hµ) = (hµ,GRλ) = (the coefficient of xµ in GRλ) .

Finally, let δ be the weak composition (β1, β2, . . . , βk, 0, 0, 0, . . .). Then, xδ = xβ1

1 xβ2

2 · · ·x
βk
k . Furthermore,

the nonzero entries of δ are precisely the numbers β1, β2, . . . , βk (since (β1, β2, . . . , βk) ∈ Comp shows that
β1, β2, . . . , βk are positive integers and thus nonzero). In other words, the nonzero entries of δ are precisely
the entries of β (since β = (β1, β2, . . . , βk)). Hence, µ is the partition consisting of the nonzero entries of δ
(sorted in decreasing order)1230. Therefore, Exercise 2.5.25 (applied to GRλ and δ instead of f and δ) yields

(GRλ, hµ) = (hµ,GRλ) =
(
the coefficient of xδ in GRλ

)
.

In view of xδ = xβ1

1 xβ2

2 · · ·x
βk
k , this rewrites as

(GRλ, hµ) = (hµ,GRλ) =
(

the coefficient of xβ1

1 xβ2

2 · · ·x
βk
k in GRλ

)
.

Combining this equality with the equalities (13.194.10), (13.194.12) and (13.194.13), we obtain

(the number of permutations σ ∈ Sn satisfying typeσ = λ such that β refines γ (σ))

= (the number of permutations σ ∈ Sn satisfying typeσ = λ and Desσ ⊂ D (β))

=
(

the coefficient of xβ1

1 xβ2

2 · · ·x
βk
k in GRλ

)
= (the coefficient of xµ in GRλ)

= (GRλ, hµ) (this is the Hall inner product of GRλ ∈ Λ and hµ ∈ Λ) .

This proves Proposition 6.6.54(a). �

1229Indeed, no sorting is required: The partition µ simply consists of the nonzero entries of µ.
1230Indeed, the definition of µ shows that µ is the partition consisting of the entries of β (sorted in decreasing order). But

since the nonzero entries of δ are precisely the entries of β, we can rewrite this as follows: µ is the partition consisting of the

nonzero entries of δ (sorted in decreasing order).
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Thus, Proposition 6.6.54(a) is proved, so that Exercise 6.6.55 is solved.

13.195. Solution to Exercise 7.1.9. Solution to Exercise 7.1.9. Fix m ∈ {0, 1, 2, . . .}. In order to check
that ζ?mQ (f) = ps1(f)(m), it is clearly enough to show that ζ?mQ (Mα) = ps1 (Mα) (m) for all compositions
α. So let α be a composition. Iterated application of Proposition 5.1.7 yields

∆(m−1)Mα =
∑

(β1,β2,...,βm):
β1β2···βm=α

Mβ1
⊗Mβ2

⊗ · · · ⊗Mβm .

An addend on the right hand side of this equality is annihilated by the map ζ⊗mQ : QSym⊗m → k⊗m ∼= k
unless each of the compositions β1, β2, . . . , βm has length ≤ 1; all remaining terms are mapped to 1·1 · · · 1 = 1.
Hence,

ζ⊗mQ

(
∆(m−1)Mα

)
=

∑
(β1,β2,...,βm):
β1β2···βm=α;

each of the compositions β1,β2,...,βm has length ≤1

1 =

(
m

`

)
,

where ` is the length of α. Hence,

ζ?mQ (Mα) = ζ⊗mQ

(
∆(m−1)Mα

)
=

(
m

`

)
= ps1 (Mα) (m)

(by Proposition 7.1.7(i)). This completes the proof.

13.196. Solution to Exercise 7.3.14. Solution to Exercise 7.3.14.

Proof of Proposition 7.3.9. We recall the following fundamental fact (a version of inclusion-exclusion or a
very simple special case of Möbius inversion): If R is a finite set, then

(13.196.1)
∑
T⊂R

(−1)
|T |

= δR,∅.

1231 We can use this to show a slightly more complicated fact: If P and R are two finite sets, then

(13.196.2)
∑
F⊂R;
F⊃P

(−1)
|F\P |

= δP,R.

1231For the sake of completeness, here is a short proof of (13.196.1): Let R be a finite set. We have∑
T⊂R

(−1)|T | =
∑
k∈N

∑
T⊂R;
|T |=k

(−1)|T |︸ ︷︷ ︸
=(−1)k

(since |T |=k)

=
∑
k∈N

∑
T⊂R;
|T |=k

(−1)k

︸ ︷︷ ︸
=|{T⊂R | |T |=k}|(−1)k

=
∑
k∈N

|{T ⊂ R | |T | = k}|︸ ︷︷ ︸
=(the number of all k-element subsets of R)

=

(|R|
k

)
(by the combinatorial interpretation of

binomial coefficients)

(−1)k

=
∑
k∈N

(|R|
k

)
(−1)k =

1 + (−1)︸ ︷︷ ︸
=0


|R|

since (1 + (−1))|R| =
∑
k∈N

(|R|
k

)
(−1)k (by the binomial formula)


= 0|R| = δ|R|,0 = δR,∅ (since |R| = 0 holds if and only if R = ∅) .

This proves (13.196.1).
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1232

(a) Let G = (V,E) be a finite graph. We have∑
H=(V,E′);

E′∩E=∅

[H]
]

=
∑

K=(V,F );
F∩E=∅︸ ︷︷ ︸

=
∑

K=(V,F );
F⊂Ec

(since F∩E=∅ is
equivalent to F⊂Ec)

[K]
]︸︷︷︸

=
∑

H=(V,E′);

E′⊃F c

(−1)|E
′\Fc|[H]

(by the definition of [K]])

(here, we renamed H and E′ as K and F in the sum)

=
∑

K=(V,F );
F⊂Ec

∑
H=(V,E′);

E′⊃F c︸ ︷︷ ︸
=
∑
H=(V,E′)

∑
K=(V,F );
F⊂Ec;
E′⊃F c

(−1)|E
′\F c|︸ ︷︷ ︸

=(−1)|F\(E
′)c|

(since E′\F c=E′∪F=F\(E′)
c
)

[H]

=
∑

H=(V,E′)

∑
K=(V,F );
F⊂Ec;
E′⊃F c︸ ︷︷ ︸

=
∑

F⊂Ec;
E′⊃F c

=
∑

F⊂Ec;
F⊃(E′)

c

(since E′⊃F c is equivalent to F⊃(E′)
c
)

(−1)|F\(E
′)
c| [H]

=
∑

H=(V,E′)

∑
F⊂Ec;
F⊃(E′)

c

(−1)|F\(E
′)
c|

︸ ︷︷ ︸
=δ(E′)c,Ec

(by (13.196.2), applied to

R=Ec and P=(E′)
c
)

[H]

=
∑

H=(V,E′)

δ(E′)c,Ec︸ ︷︷ ︸
=δE′,E

(since (E′)
c
=Ec holds if

and only if E′=E)

[H] =
∑

H=(V,E′)

δE′,E [H] = [(V,E)] = [G] .

1232Proof of (13.196.2): Let P and R be two finite sets.
Let us first assume that P 6⊂ R. Then, there exists no F ⊂ R such that F ⊃ P (because if such a F would exist, then we

would have P ⊂ F ⊂ R, which would contradict P 6⊂ R). Hence, the sum
∑

F⊂R;
F⊃P

(−1)|F\P | is empty, and thus it simplifies to

∑
F⊂R;
F⊃P

(−1)|F\P | = 0. On the other hand, P 6⊂ R, so that P 6= R and thus δP,R = 0. Hence,
∑

F⊂R;
F⊃P

(−1)|F\P | = 0 = δP,R. Thus,

(13.196.2) is proven under the assumption that P 6⊂ R.

Now, let us forget that we have assumed P 6⊂ R. We thus have shown that (13.196.2) holds if P 6⊂ R. Hence, for the rest of
this proof, we can WLOG assume that we don’t have P 6⊂ R. Assume this.

We have P ⊂ R (since we don’t have P 6⊂ R). Hence, there exists a bijection from the set of all F ⊂ R satisfying F ⊃ P to

the set of all T ⊂ R\P ; this bijection sends every F to F \P . Hence, we can substitute T for F \P in the sum
∑

F⊂R;
F⊃P

(−1)|F\P |.

We thus obtain∑
F⊂R;
F⊃P

(−1)|F\P | =
∑

T⊂R\P
(−1)|T | = δR\P,∅ (by (13.196.1), applied to R \ P instead of R)

= δP,R (since R \ P = ∅ if and only if P = R (because P ⊂ R)) .

This proves (13.196.2).
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This proves Proposition 7.3.9(a).
(b) For every finite graph G = (V,E), we define the complement of this graph G to be the graph (V,Ec)

(where Ec is defined as in Definition 7.3.8). We shall denote this complement by c (G).
The complement of the complement of a graph G is G again. In other words,

(13.196.3) c (c (G)) = G for every finite graph G.

Recall that if G is a finite graph, then we denote the isomorphism class of this graph G by [G]. Let GrIs
be the set of all isomorphism classes of finite graphs. For every n ∈ N, let GrIsn be the set of all isomorphism
classes of finite graphs with n vertices. Thus, GrIs =

⊔
n∈N GrIsn.

Fix n ∈ N. The family ([G])[G]∈GrIsn
is a basis of the k-module Gn (by the definition of the grading on

G). We are going to prove that the family
(

[G]
]
)

[G]∈GrIsn
is a basis of the k-module Gn as well.

We define a map cn : GrIsn → GrIsn by setting

(cn [G] = [c (G)] for every [G] ∈ GrIsn) .
1233

We have cn ◦cn = id 1234. Hence, the maps cn and cn are mutually inverse. Thus, the map cn is invert-

ible, i.e., a bijection. Therefore, the family
(

[G]
]
)

[G]∈GrIsn
is a reindexing of the family

(
(cn [G])

]
)

[G]∈GrIsn
.

If G = (V,E) is a finite graph with n vertices, then

(13.196.4) (cn [G])
]

=
∑

H=(V,E′);

E′⊃E

(−1)|E
′\E| [H]

1235.
We define a map e : GrIsn → N by setting

e [(V,E)] = |E| for every [(V,E)] ∈ GrIsn .
1236 Thus, the map e sends the isomorphism class of a graph to the number of edges of this graph.

1233This map cn is well-defined because of the following two simple observations:

• For each [G] ∈ GrIsn, we have [c (G)] ∈ GrIsn (because if the graph G has n vertices, then so does the graph c (G)).

• For each graph G with n vertices, the isomorphism class [c (G)] depends only on the isomorphism class [G], not on
the graph G itself (i.e., if G1 and G2 are two isomorphic graphs with n vertices, then the graphs c (G1) and c (G2)

are also isomorphic).

1234Proof. Let U ∈ GrIsn. Thus, U is an isomorphism class of a finite graph with n vertices (since GrIsn is the set of all

isomorphism classes of finite graphs with n vertices). In other words, there exists a graph G with n vertices such that U = [G].
Consider this G. Now, cn U︸︷︷︸

=[G]

= cn [G] = [c (G)] (by the definition of cn). Now,

(cn ◦ cn)U = cn

 cnU︸︷︷︸
=[c(G)]

 = cn [c (G)] =

 c (c (G))︸ ︷︷ ︸
=G

(by (13.196.3))

 (by the definition of cn)

= [G] = U = idU.

Now, forget that we fixed U . We thus have proven that (cn ◦ cn)U = idU for every U ∈ GrIsn. In other words, cn ◦ cn = id.
Qed.

1235Proof of (13.196.4): Let G = (V,E) be a finite graph with n vertices. Then, c (G) = (V,Ec) (by the definition of c (G)).

Hence, the definition of [c (G)]] yields

[c (G)]] =
∑

H=(V,E′);

E′⊃(Ec)c

(−1)|E
′\(Ec)c| [H] =

∑
H=(V,E′);

E′⊃E

(−1)|E
′\E| [H]

(since (Ec)c = E). Now, the definition of cn yields cn [G] = [c (G)], and therefore (cn [G])] = [c (G)]] =∑
H=(V,E′);

E′⊃E

(−1)|E
′\E| [H]. This proves (13.196.4).

1236This map is well-defined, because for any finite graph (V,E), the number |E| depends only on the isomorphism class

[(V,E)] of (V,E) (and not on (V,E) itself).
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We define a binary relation ≺ on the set GrIsn as follows: For two elements [H] and [G] of GrIsn, we set
[H] ≺ [G] if and only if e [H] > e [G]. It is clear that this binary relation ≺ is transitive, asymmetric and
irreflexive. Thus, there is a partial order on the set GrIsn whose smaller relation is ≺. Consider GrIsn as a
poset, equipped with this partial order.

Now, every finite graph G with n vertices satisfies
(13.196.5)

(cn [G])
]

= [G] + (a k-linear combination of the elements [H] for [H] ∈ GrIsn satisfying [H] ≺ [G])

1237. In other words, the family
(

(cn [G])
]
)

[G]∈GrIsn
expands unitriangularly in the family ([G])[G]∈GrIsn

(by

Remark 11.1.17(c), applied to Gn, GrIsn,
(

(cn [G])
]
)

[G]∈GrIsn
and ([G])[G]∈GrIsn

instead of M , S, (es)s∈S

and (fs)s∈S). Hence, the family
(

(cn [G])
]
)

[G]∈GrIsn
is a basis of the k-module Gn if and only if the family

([G])[G]∈GrIsn
is a basis of the k-module Gn (by Corollary 11.1.19(e), applied to Gn, GrIsn,

(
(cn [G])

]
)

[G]∈GrIsn

and ([G])[G]∈GrIsn
instead of M , S, (es)s∈S and (fs)s∈S). Thus, the family

(
(cn [G])

]
)

[G]∈GrIsn
is a basis

of the k-module Gn (since the family ([G])[G]∈GrIsn
is a basis of the k-module Gn). Therefore, the family(

[G]
]
)

[G]∈GrIsn
also is a basis of the k-module Gn (since the family

(
[G]

]
)

[G]∈GrIsn
is a reindexing of the

family
(

(cn [G])
]
)

[G]∈GrIsn
).

Now, forget that we fixed n. We thus have shown that, for every n ∈ N, the family
(

[G]
]
)

[G]∈GrIsn
is a

basis of the k-module Gn. Therefore, the disjoint union of these families (over all n ∈ N) is a basis of the

1237Proof of (13.196.5): Let G be a finite graph with n vertices. Write G as G = (V,E).

Let H = (V,E′) be any graph satisfying E′ ⊃ E and E′ 6= E. Clearly, the graph H has n vertices (since it has the same
vertex set as G, and since G has n vertices). Thus, [H] ∈ GrIsn. Moreover, E is a proper subset of E′ (since E′ ⊃ E and

E′ 6= E); hence, |E| < |E′|.

The definition of e yields e [(V,E)] = |E| and e [(V,E′)] = |E′|. Now, e

 G︸︷︷︸
=(V,E)

 = e [(V,E)] = |E| < |E′|, so that

|E′| > e [G]. But e

 H︸︷︷︸
=(V,E′)

 = e [(V,E′)] = |E′| > e [G]. In other words, [H] ≺ [G] (by the definition of the relation ≺).

Now, forget that we fixed H. We thus have shown that if H = (V,E′) is any graph satisfying E′ ⊃ E and E′ 6= E, then
[H] ∈ GrIsn and [H] ≺ [G]. Hence,∑

H=(V,E′);

E′⊃E and E′ 6=E

(−1)|E
′\E| [H]

= (a k-linear combination of the elements [H] for [H] ∈ GrIsn satisfying [H] ≺ [G]) .(13.196.6)

But (13.196.4) becomes

(cn [G])]

=
∑

H=(V,E′);

E′⊃E

(−1)|E
′\E| [H]

= (−1)|E\E|︸ ︷︷ ︸
=1

(since |E\E|=|∅|=0)

(V,E)︸ ︷︷ ︸
=G

+
∑

H=(V,E′);

E′⊃E and E′ 6=E

(−1)|E
′\E| [H]

︸ ︷︷ ︸
=(a k-linear combination of the elements [H] for [H]∈GrIsn satisfying [H]≺[G])

(by (13.196.6))(
here, we have split off the addend for E′ = E and H = (V,E) from the sum

)
= [G] + (a k-linear combination of the elements [H] for [H] ∈ GrIsn satisfying [H] ≺ [G]) .

This proves (13.196.5).
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direct sum
⊕

n∈N Gn. Since the former disjoint union is the family
(

[G]
]
)

[G]∈GrIs
, whereas the latter direct

sum is
⊕

n∈N Gn = G, this rewrites as follows: The family
(

[G]
]
)

[G]∈GrIs
is a basis of the k-module G. In

other words, the elements [G]
]
, where [G] ranges over all isomorphism classes of finite graphs, form a basis

of the k-module G (because GrIs is the set of all isomorphism classes of finite graphs). Proposition 7.3.9(b)
is thus proven.

(c) We define a k-linear map ∆′ : G → G ⊗ G by

∆′ [H]
]

=
∑

(V1,V2);
V=V1tV2;

H=H|V1
tH|V2

[H |V1
]
] ⊗ [H |V2

]
]
.

1238 In order to prove Proposition 7.3.9(c), it clearly suffices to show that ∆′ = ∆.
Let G = (V,E) be a finite graph. If T is a set of two-element subsets of V , and if R is a subset of V , then

T |R shall denote the subset {X ∈ T | X ⊂ R} of T . (Thus, if R is a subset of V , then E |R is the set of
edges of the graph G |R.)

1238This is well-defined, since the [G]] form a basis of the k-module G.
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Now, Proposition 7.3.9(a) yields [G] =
∑

H=(V,E′);

E′∩E=∅

[H]
]
. Hence,

∆′ [G] = ∆′
∑

H=(V,E′);

E′∩E=∅

[H]
]

=
∑

H=(V,E′);

E′∩E=∅

∆′ [H]
]︸ ︷︷ ︸

=
∑

(V1,V2);
V=V1tV2;

H=H|V1
tH|V2

[H|V1 ]
]⊗[H|V2 ]

]

=
∑

H=(V,E′);

E′∩E=∅

∑
(V1,V2);
V=V1tV2;

H=H|V1
tH|V2︸ ︷︷ ︸

=
∑

(V1,V2);
V=V1tV2

∑
H=(V,E′);

E′∩E=∅;
H=H|V1

tH|V2

[H |V1
]
] ⊗ [H |V2

]
]

=
∑

(V1,V2);
V=V1tV2

∑
H=(V,E′);

E′∩E=∅;
H=H|V1

tH|V2

[H |V1
]
] ⊗ [H |V2

]
]

︸ ︷︷ ︸
=

∑
H1=(V1,E

′
1);

E′1∩(E|V1)=∅

∑
H2=(V2,E

′
2);

E′2∩(E|V2)=∅

∑
H=(V,E′);

E′∩E=∅;
H=H|V1

tH|V2
;

H|V1
=H1; H|V2

=H2

[H|V1 ]
]⊗[H|V2 ]

]

(because for every H=(V,E′) satisfying E′∩E=∅,

we can write the subgraph H|V1
in the form H1=(V1,E

′
1)

with some E′1 satisfying E′1∩(E|V1)=∅, and we can

write the subgraph H|V2
in the form H2=(V2,E

′
2)

with some E′2 satisfying E′2∩(E|V2)=∅)

=
∑

(V1,V2);
V=V1tV2︸ ︷︷ ︸

=
∑

(V1,V2);
V1tV2=V

∑
H1=(V1,E

′
1);

E′1∩(E|V1)=∅

∑
H2=(V2,E

′
2);

E′2∩(E|V2)=∅

∑
H=(V,E′);

E′∩E=∅;
H=H|V1

tH|V2
;

H|V1
=H1; H|V2

=H2

H |V1︸ ︷︷ ︸
=H1


]

⊗

H |V2︸ ︷︷ ︸
=H2


]

=
∑

(V1,V2);
V1tV2=V

∑
H1=(V1,E

′
1);

E′1∩(E|V1)=∅

∑
H2=(V2,E

′
2);

E′2∩(E|V2)=∅

∑
H=(V,E′);

E′∩E=∅;
H=H|V1

tH|V2
;

H|V1
=H1; H|V2

=H2

[H1]
] ⊗ [H2]

]

︸ ︷︷ ︸
=[H1]]⊗[H2]]

(because this sum has only one addend

(indeed, there exists only one H=(V,E′) satisfying

E′∩E=∅, H=H|V1
tH|V2

, H|V1
=H1 and H|V2

=H2))

=
∑

(V1,V2);
V1tV2=V

∑
H1=(V1,E

′
1);

E′1∩(E|V1)=∅

∑
H2=(V2,E

′
2);

E′2∩(E|V2)=∅

[H1]
] ⊗ [H2]

]
.
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Comparing this with

∆ [G] =
∑

(V1,V2);
V1tV2=V

[G |V1 ]︸ ︷︷ ︸
=

∑
H1=(V1,E

′
1);

E′1∩(E|V1)=∅

[H1]]

(by Proposition 7.3.9(a))

⊗ [G |V2 ]︸ ︷︷ ︸
=

∑
H2=(V2,E

′
2);

E′2∩(E|V2)=∅

[H2]]

(by Proposition 7.3.9(a))

=
∑

(V1,V2);
V1tV2=V

∑
H1=(V1,E

′
1);

E′1∩(E|V1)=∅

∑
H2=(V2,E

′
2);

E′2∩(E|V2)=∅

[H1]
] ⊗ [H2]

]
,

we obtain ∆′ [G] = ∆ [G]. Since this holds for every graph G, we thus obtain ∆′ = ∆. As we know, this
proves Proposition 7.3.9(c).

(d) We define a k-bilinear operation ] : G × G → G (written infix1239) by

[H1]
]
] [H2]

]
=

∑
H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2

[H]
]
.

1240 In order to prove Proposition 7.3.9(d), it clearly suffices to show that this operation ] is identical with
the usual multiplication on G.

Let G1 and G2 be any two finite graphs. We shall show that [G1] ] [G2] = [G1] [G2].

1239This means that we write a]b to denote the image of a pair (a, b) ∈ G × G under this operation ].
1240This is well-defined, since the [G]] form a basis of the k-module G.
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Indeed, write G1 and G2 in the forms G1 = (V1, E1) and G2 = (V2, E2). Then,

[G1]︸︷︷︸
=

∑
H1=(V1,E

′
1);

E′1∩E1=∅

[H1]]

(by Proposition 7.3.9(a))

] [G2]︸︷︷︸
=

∑
H2=(V2,E

′
2);

E′2∩E2=∅

[H2]]

(by Proposition 7.3.9(a))

=

 ∑
H1=(V1,E

′
1);

E′1∩E1=∅

[H1]
]

 ]

 ∑
H2=(V2,E

′
2);

E′2∩E2=∅

[H2]
]

 =
∑

H1=(V1,E
′
1);

E′1∩E1=∅

∑
H2=(V2,E

′
2);

E′2∩E2=∅

[H1]
]
] [H2]

]︸ ︷︷ ︸
=

∑
H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2

[H]]

=
∑

H1=(V1,E
′
1);

E′1∩E1=∅

∑
H2=(V2,E

′
2);

E′2∩E2=∅

∑
H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2︸ ︷︷ ︸

=
∑
H1=(V1,E

′
1)
∑
H2=(V2,E

′
2)

∑
H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2;

E′1∩E1=∅;

E′2∩E2=∅

[H]
]

=
∑

H1=(V1,E′1)

∑
H2=(V2,E′2)

∑
H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2;

E′1∩E1=∅;

E′2∩E2=∅︸ ︷︷ ︸
=

∑
H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2;

(E|V1)∩E1=∅;

(E|V2)∩E2=∅
(because for a graph H=(V1tV2,E)
satisfying H|V1

=H1 and H|V2
=H2,

we have E′1=E|V1
and E′2=E|V2

)

[H]
]

=
∑

H1=(V1,E′1)

∑
H2=(V2,E′2)

∑
H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2;

(E|V1)∩E1=∅;

(E|V2)∩E2=∅︸ ︷︷ ︸
=

∑
H=(V1tV2,E);

(E|V1)∩E1=∅;

(E|V2)∩E2=∅

=
∑

H=(V1tV2,E);
E∩(E1tE2)=∅

(since the statement ((E|V1)∩E1=∅ and (E|V2)∩E2=∅)
is equivalent to E∩(E1tE2)=∅)

[H]
]

=
∑

H=(V1tV2,E);
E∩(E1tE2)=∅

[H]
]
.
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Compared with

[G1] [G2] = [G1 tG2] = [(V1 t V2, E1 t E2)]

=
∑

H=(V1tV2,E);
E∩(E1tE2)=∅

[H]
]

(by Proposition 7.3.9(a)) ,

this yields [G1] ] [G2] = [G1] [G2].
We now forget that we fixed G1 and G2. We have thus shown that [G1] ] [G2] = [G1] [G2] for any two finite

graphs G1 and G2. Thus, the operation ] is identical with the usual multiplication on G. This completes the
proof of Proposition 7.3.9(d). �

Proof of Proposition 7.3.11. Proposition 7.3.9(a) shows that every finite graph G = (V,E) satisfies

(13.196.7) [G] =
∑

H=(V,E′);

E′∩E=∅

[H]
]

=
∑

K=(V,E′);

E′∩E=∅

[K]
]

(here, we renamed the summation index H as K). Let us now show that

(13.196.8) ([G] , [H]) = ([H] , [G])

for any two finite graphs G and H.
Proof of (13.196.8): We shall use the following notation: If V and W are two sets, and if ϕ : V → W is

a map, then ϕ∗ will denote the map from the powerset of V to the powerset of W which sends every T ⊂ V
to ϕ (T ) ⊂W . This map ϕ∗ is a bijection if ϕ is a bijection.

Let G and H be two finite graphs. Let us write G and H in the forms G = (V,E) and H = (W,F ). Now,


[G]︸︷︷︸

=
∑

K=(V,E′);

E′∩E=∅

[K]]

(by (13.196.7))

, [H]


=

 ∑
K=(V,E′);

E′∩E=∅

[K]
]
, [H]

 =
∑

K=(V,E′);

E′∩E=∅

(
[K]

]
, [H]

)
︸ ︷︷ ︸
=|Iso(K,H)|

(by the definition of
the form (·,·))

(since the form (·, ·) is k-bilinear)

=
∑

K=(V,E′);

E′∩E=∅

|Iso (K,H)| .(13.196.9)

However, for every graph K = (V,E′), we have

Iso (K,H) = (the set of all isomorphisms from K to H)

= {ϕ : V →W | ϕ is a bijection and satisfies ϕ∗ (E′) = F}
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(because the isomorphisms from K to H are defined to be the bijections ϕ : V →W such that ϕ∗ (E′) = F ).
Hence,

∑
K=(V,E′);

E′∩E=∅

∣∣∣∣∣∣∣ Iso (K,H)︸ ︷︷ ︸
={ϕ:V→W | ϕ is a bijection and satisfies ϕ∗(E′)=F}

∣∣∣∣∣∣∣

=
∑

K=(V,E′);

E′∩E=∅︸ ︷︷ ︸
=

∑
E′ is a set of

two-element subsets of V ;
E′∩E=∅

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


ϕ : V →W | ϕ is a bijection and satisfies ϕ∗ (E′) = F︸ ︷︷ ︸

this is equivalent to
E′=(ϕ∗)

−1(F )
(since ϕ∗ is a bijection
(since ϕ is a bijection))



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∑
E′ is a set of

two-element subsets of V ;
E′∩E=∅

∣∣∣{ϕ : V →W | ϕ is a bijection and satisfies E′ = (ϕ∗)
−1

(F )
}∣∣∣

=
∣∣∣{ϕ : V →W | ϕ is a bijection and satisfies (ϕ∗)

−1
(F ) ∩ E = ∅

}∣∣∣ .
Now, (13.196.9) becomes

([G] , [H]) =
∑

K=(V,E′);

E′∩E=∅

|Iso (K,H)|

=
∣∣∣{ϕ : V →W | ϕ is a bijection and satisfies (ϕ∗)

−1
(F ) ∩ E = ∅

}∣∣∣ .(13.196.10)

The same argument (applied to H, W , F , G, V and E instead of G, V , E, H, W and F ) yields

(13.196.11) ([H] , [G]) =
∣∣∣{ϕ : W → V | ϕ is a bijection and satisfies (ϕ∗)

−1
(E) ∩ F = ∅

}∣∣∣ .
Now, we define two sets P and Q by

P =
{
ϕ : V →W | ϕ is a bijection and satisfies (ϕ∗)

−1
(F ) ∩ E = ∅

}
and

Q =
{
ϕ : W → V | ϕ is a bijection and satisfies (ϕ∗)

−1
(E) ∩ F = ∅

}
.

Then, (13.196.10) becomes

(13.196.12) ([G] , [H]) =

∣∣∣∣∣∣∣∣
{
ϕ : V →W | ϕ is a bijection and satisfies (ϕ∗)

−1
(F ) ∩ E = ∅

}
︸ ︷︷ ︸

=P

∣∣∣∣∣∣∣∣ = |P| .

Also, (13.196.11) becomes

(13.196.13) ([H] , [G]) =

∣∣∣∣∣∣∣∣
{
ϕ : W → V | ϕ is a bijection and satisfies (ϕ∗)

−1
(E) ∩ F = ∅

}
︸ ︷︷ ︸

=Q

∣∣∣∣∣∣∣∣ = |Q| .
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But every ψ ∈ P satisfies ψ−1 ∈ Q 1241. Hence, we can define a map

A : P→ Q,

ψ 7→ ψ−1.

Similarly, we can define a map

B : Q→ P,

ψ 7→ ψ−1.

Consider these two maps A and B. Clearly, these maps A and B are mutually inverse1242. Hence, A is a
bijection. Thus, there exists a bijection P → Q (namely, A). Consequently, |P| = |Q|. Now, (13.196.12)
becomes ([G] , [H]) = |P| = |Q| = ([H] , [G]) (by (13.196.13)). This proves (13.196.8).

Now, let a and b be two elements of G. We want to show that (a, b) = (b, a). This equality is k-linear in each
of a and b. Therefore, we can WLOG assume that a and b belong to the family ([G])[G] is an isomorphism class of finite graphs

(because this family is a basis of the k-module G). Assume this. Then, a = [G] and b = [H] for two finite
graphs G and H. Consider these G and H. Now, a︸︷︷︸

=[G]

, b︸︷︷︸
=[H]

 = ([G] , [H]) =

 [H]︸︷︷︸
=b

, [G]︸︷︷︸
=a

 (by (13.196.8))

= (b, a) .

We thus have shown (a, b) = (b, a).
Let us now forget that we fixed a and b. We thus have proven that (a, b) = (b, a) for any a ∈ G and b ∈ G.

In other words, the form (·, ·) : G × G → k is symmetric. This proves Proposition 7.3.11. �

1241Proof. Let ψ ∈ P. Then, ψ ∈ P =
{
ϕ : V →W | ϕ is a bijection and satisfies (ϕ∗)

−1 (F ) ∩ E = ∅
}

. Hence, ψ is a

bijection V →W and satisfies (ψ∗)
−1 (F ) ∩ E = ∅.

Let ρ be the map ψ−1 : W → V . This map ρ is well-defined (since ψ is a bijection) and is a bijection itself (since ρ = ψ−1).

But ψ is a bijection. Thus, ψ∗ is a bijection as well, and satisfies (ψ∗)
−1 =

ψ−1︸︷︷︸
=ρ


∗

= ρ∗. Of course, ρ∗ is also a bijection

(since ρ is a bijection).

Now,

ρ∗
(

(ρ∗)
−1 (E) ∩ F

)
= ρ∗

(
(ρ∗)

−1 (E)
)

︸ ︷︷ ︸
=E

(since ρ∗ is a bijection)

∩ ρ∗︸︷︷︸
=(ψ∗)−1

(F ) (since ρ∗ is a bijection)

= E ∩ (ψ∗)
−1 (F ) = (ψ∗)

−1 (F ) ∩ E = ∅.

Thus,

(ρ∗)
−1 (E) ∩ F = ρ∗ (∅) (since ρ∗ is a bijection)

= ∅.

Hence, ρ : W → V is a bijection and satisfies (ρ∗)
−1 (E) ∩ F = 0. In other words,

ρ ∈
{
ϕ : W → V | ϕ is a bijection and satisfies (ϕ∗)

−1 (E) ∩ F = ∅
}

= Q.

Thus, ψ−1 = ρ ∈ Q, qed.
1242Proof. Every ψ ∈ P satisfies

(B ◦A) (ψ) = B


A (ψ)︸ ︷︷ ︸
=ψ−1

(by the definition
of A)


= B

(
ψ−1

)
=
(
ψ−1

)−1
(by the definition of B)

= ψ = id (ψ) .

Hence, B ◦A = id. Similarly, A ◦B = id. Combining this with B ◦A = id, we conclude that the maps A and B are mutually

inverse. Qed.
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Proof of Proposition 7.3.13. In this proof, we shall use all the notations that appeared in Definition 7.3.12.

We shall also use the fact that the family
(

[G]
]
)

[G] is an isomorphism class of finite graphs
is a basis of the k-module

G. (This fact is Proposition 7.3.9(b).)
(a) We first notice that any two finite graphs G and H satisfy

(13.196.14)
(
ψ
(

[G]
]
))

[H] = |Iso (G,H)|

1243. Now, let a ∈ G and b ∈ G. We want to prove the equality (ψ (a)) (b) = (a, b). This equality is k-linear in

each of a and b. Thus, we can WLOG assume that a belongs to the family
(

[G]
]
)

[G] is an isomorphism class of finite graphs

and that b belongs to the family ([G])[G] is an isomorphism class of finite graphs (because both of these families are

bases of the k-module G). Assume this. Then, a = [G]
]

and b = [H] for two finite graphs G and H. Consider
these G and H. Now,ψ

 a︸︷︷︸
=[G]]



 b︸︷︷︸

=[H]

 =
(
ψ
(

[G]
]
))

[H] = |Iso (G,H)| (by (13.196.14))

=

[G]
]︸︷︷︸

=a

, [H]︸︷︷︸
=b

 (
since

(
[G]

]
, [H]

)
= |Iso (G,H)|

)
= (a, b) .

This proves Proposition 7.3.13(a).

1243Proof of (13.196.14): Let G and H be two finite graphs. Then, ψ
(

[G]]
)

︸ ︷︷ ︸
=aut(G)·[G]∗

 [H] = (aut (G) · [G]∗) [H] = aut (G) · [G]∗ [H]︸ ︷︷ ︸
=δ[G],[H]

= aut (G) · δ[G],[H].

We are in one of the following two cases:

Case 1: The graphs G and H are isomorphic.
Case 2: The graphs G and H are not isomorphic.

Let us first consider Case 1. In this case, the graphs G and H are isomorphic. In other words, there exists a graph

isomorphism α from G to H. Consider this α. Then,

Iso (G,G)→ Iso (G,H) ,

ψ 7→ α ◦ ψ

is a bijection (this is very easy to check). Thus, there exists a bijection Iso (G,G)→ Iso (G,H). Hence, |Iso (G,G)| = |Iso (G,H)|.
But the definition of aut (G) yields aut (G) = |Iso (G,G)|. Now,(

ψ
(

[G]]
))

[H] = aut (G) · δ[G],[H]︸ ︷︷ ︸
=1

(since [G]=[H]
(because the graphs G
and H are isomorphic))

= aut (G) = |Iso (G,G)| = |Iso (G,H)| .

Hence, (13.196.14) is proven in Case 1.

Let us now consider Case 2. In this case, the graphs G and H are not isomorphic. Thus, [G] 6= [H], so that δ[G],[H] = 0.
But the graphs G and H are not isomorphic. Hence, the set of all isomorphisms from G to H is empty. In other words,

Iso (G,H) = ∅ (since Iso (G,H) is the set of all isomorphisms from G to H). Hence, |Iso (G,H)| = |∅| = 0. Now,(
ψ
(

[G]]
))

[H] = aut (G) · δ[G],[H]︸ ︷︷ ︸
=0

= 0 = |Iso (G,H)| .

Hence, (13.196.14) is proven in Case 2.

Now, (13.196.14) is proven in both Cases 1 and 2. Hence, (13.196.14) always holds.
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(b) We have ψ (1G) = 1Go
1244. Also, every a ∈ G and b ∈ G satisfy ψ (ab) = ψ (a) · ψ (b) 1245. Hence,

ψ : G → Go is a k-algebra morphism (since ψ (1G) = 1Go).

Next, we notice that the k-linear map ψ is graded (because for any finite graph G, both [G]
]

and [G]
∗

are homogeneous elements having degree |G|). Thus, the k-linear map ψ : G → Go gives rise to an adjoint
k-linear map ψ∗ : (Go)o → Go.

Now, the canonical k-module homomorphism G → (Go)o (which sends every a ∈ G to the map Go →
k, f 7→ f (a)) is a k-module isomorphism (since G is of finite type). We thus identify G with (Go)o along this

1244Proof. Let 0 denote the empty graph.

We have 1Go = εG (by the definition of the k-algebra Go). Thus, for every finite graph G, we have

1Go︸︷︷︸
=εG

([G]) = εG ([G]) = δ[G],[0] (by the definition of εG)

= δ[0],[G] = [0]∗ [G]
(
since [0]∗ [G] = δ[0],[G] (by the definition of [0]∗ )

)
.

Hence, the two maps 1Go and [0]∗ are equal to each other on every element of the basis
([G])[G] is an isomorphism class of finite graphs of G. Since these two maps are k-linear, this yields that these two maps

1Go and [0]∗ are identical. In other words, 1Go = [0]∗.

On the other hand, the definition of [0]] readily yields [0]] = [0] = 1G . But the definition of ψ yields ψ
(

[0]]
)

= aut (0)︸ ︷︷ ︸
=1

· [0]∗ =

[0]∗ = 1Go (since 1Go = [0]∗), so that 1Go = ψ

[0]]︸︷︷︸
=1G

 = ψ (1G), qed.

1245Proof. Let a ∈ G and b ∈ G. We need to prove the equality ψ (ab) = ψ (a) ·ψ (b). Since this equality is k-linear in each of

a and b, we can WLOG assume that a and b are elements of the family
(

[G]]
)

[G] is an isomorphism class of finite graphs
(because

this family is a basis of the k-module G). Assume this.

There exist two finite graphs H1 and H2 such that a = [H1]] and b = [H2]] (since a and b are elements of the family(
[G]]

)
[G] is an isomorphism class of finite graphs

). Consider these H1 and H2. Write the graphs H1 and H2 in the forms H1 =

(V1, E1) and H2 = (V2, E2).

Multiplying the equalities a = [H1]] and b = [H2]], we obtain

ab = [H1]] [H2]] =
∑

H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2

[H]] (by Proposition 7.3.9(d)) .

Now, fix a finite graph G. We shall show that (ψ (ab)) [G] = (ψ (a) · ψ (b)) [G].
Write the graph G in the form G = (V, F ). Then,

ψ (ab)︸︷︷︸
=

∑
H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2

[H]]


[G] =

ψ


∑
H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2

[H]]



 [G] =
∑

H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2

ψ
(

[H]]
)

[G]︸ ︷︷ ︸
=|Iso(H,G)|

(by (13.196.14), applied to
H and G instead of G and H)

=
∑

H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2

|Iso (H,G)| =

∣∣∣∣∣∣∣∣∣∣∣∣
⊔

H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2

Iso (H,G)

∣∣∣∣∣∣∣∣∣∣∣∣
.

On the other hand, Exercise 1.6.1(b) shows that the k-algebra structure defined on G∗ is precisely the one defined on
Hom (G,k) = G∗ according to Definition 1.4.1. Thus, the product of two elements of G∗ is the convolution of these ele-

ments (viewed as maps from G to k). Applying this to the two elements ψ (a) and ψ (b), we obtain ψ (a) ·ψ (b) = ψ (a) ?ψ (b) =
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mk ◦ (ψ (a)⊗ ψ (b)) ◦∆G , so that

(ψ (a) · ψ (b)) [G] = (mk ◦ (ψ (a)⊗ ψ (b)) ◦∆G) ([G])

=

mk ◦

ψ
 a︸︷︷︸

=[H1]]

⊗ ψ
 b︸︷︷︸

=[H2]]






∆G ([G])︸ ︷︷ ︸

=
∑

(V1,V2);
V1tV2=V

[G|V1 ]⊗[G|V2 ]

(by the definition of ∆G)



=
(
mk ◦

(
ψ
(

[H1]]
)
⊗ ψ

(
[H2]]

))) ∑
(V1,V2);
V1tV2=V

[
G |V1

]
⊗
[
G |V2

]

= mk


∑

(V1,V2);
V1tV2=V

(
ψ
(

[H1]]
)
⊗ ψ

(
[H2]]

)) ([
G |V1

]
⊗
[
G |V2

])
︸ ︷︷ ︸

=(ψ([H1]]))[G|V1 ]⊗(ψ([H2]]))[G|V2 ]



= mk

 ∑
(V1,V2);
V1tV2=V

(
ψ
(

[H1]]
)) [

G |V1

]
⊗
(
ψ
(

[H2]]
)) [

G |V2

]
=

∑
(V1,V2);
V1tV2=V

(
ψ
(

[H1]]
)) [

G |V1

]
︸ ︷︷ ︸

=|Iso(H1,G|V1 )|
(by (13.196.14), applied to

H1 and G|V1
instead of G and H)

·
(
ψ
(

[H2]]
)) [

G |V2

]
︸ ︷︷ ︸

=|Iso(H2,G|V2 )|
(by (13.196.14), applied to

H2 and G|V2
instead of G and H)

=
∑

(V1,V2);
V1tV2=V

∣∣Iso (H1, G |V1

)∣∣ · ∣∣Iso (H2, G |V2

)∣∣ =
∑

(W1,W2);
W1tW2=V

∣∣Iso (H1, G |W1

)∣∣ · ∣∣Iso (H2, G |W2

)∣∣

=

∣∣∣∣∣∣∣∣
⊔

(W1,W2);
W1tW2=V

Iso
(
H1, G |W1

)
× Iso

(
H2, G |W2

)∣∣∣∣∣∣∣∣ .
Now, we are going to construct a bijection between the sets⊔

H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2

Iso (H,G) and
⊔

(W1,W2);
W1tW2=V

Iso
(
H1, G |W1

)
× Iso

(
H2, G |W2

)
.

First, let us agree to encode the elements of the set ⊔
H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2

Iso (H,G)

as triples (H,E,ϕ) consisting of a graph H = (V1 t V2, E), its set of edges E, and an isomorphism ϕ ∈ Iso (H,G). Let us also

agree to encode the elements of the set ⊔
(W1,W2);
W1tW2=V

Iso
(
H1, G |W1

)
× Iso

(
H2, G |W2

)

as triples ((W1,W2) , ϕ1, ϕ2) consisting of a pair (W1,W2) of subsets of V (which satisfies W1 tW2 = V ), an isomorphism
ϕ1 ∈ Iso

(
H1, G |W1

)
, and an isomorphism ϕ2 ∈ Iso

(
H2, G |W2

)
.
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isomorphism. Then, (Go)o = G as Hopf algebras1246. Therefore, ψ : (Go)o → Go is a k-algebra morphism
(since ψ : G → Go is a k-algebra morphism). Also, Go is of finite type (since G is of finite type). Thus,
Exercise 1.6.1(f) (applied to C = G, D = Go and f = ψ) yields that ψ : G → Go is a k-coalgebra morphism
if and only if ψ∗ : (Go)o → Go is a k-algebra morphism.

Let us now prove that ψ∗ = ψ (as maps from G to Go). Indeed, let a ∈ G. Then, every b ∈ G satisfies

(ψ∗ (a)) (b) = a (ψ (b))

(
by the definition of the adjoint map ψ∗ : (Go)o → Go,

where a ∈ G is regarded as an element of (Go)o
)

= (ψ (b)) (a)

(
because the k-module homomorphism G → (Go)o which we use to
identify G with (Go)o sends a ∈ G to the map Go → k, f 7→ f (a)

)
= (b, a) (by Proposition 7.3.13(a), applied to b and a instead of a and b)

= (a, b) (since the form (·, ·) : G × G → k is symmetric)

= (ψ (a)) (b) (by Proposition 7.3.13(a)) .

Hence, ψ∗ (a) = ψ (a). Now, let us forget that we fixed a. We thus have shown that ψ∗ (a) = ψ (a) for every
a ∈ G. In other words, ψ∗ = ψ. Hence, ψ∗ : (Go)o → Go is a k-algebra morphism (since ψ : (Go)o → Go is a
k-algebra morphism). Thus, ψ : G → Go is a k-coalgebra morphism (because we know that ψ : G → Go is a
k-coalgebra morphism if and only if ψ∗ : (Go)o → Go is a k-algebra morphism). This yields that ψ : G → Go is
a k-bialgebra morphism (since we already know that ψ : G → Go is a k-algebra morphism). Thus, ψ : G → Go
is a Hopf algebra homomorphism (by Corollary 1.4.27, applied to H1 = G, H2 = Go, S1 = SG , S2 = SGo and
β = ψ). This proves Proposition 7.3.13(b).

Now, we claim that there exists a bijection from the set⊔
H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2

Iso (H,G)

to the set ⊔
(W1,W2);
W1tW2=V

Iso
(
H1, G |W1

)
× Iso

(
H2, G |W2

)
.

Namely, this bijection sends every (H,E,ϕ) (where H = (V1 t V2, E) and ϕ ∈ Iso (H,G)) to ((ϕ (V1) , ϕ (V2)) , ϕ1, ϕ2), where

ϕ1 : V1 → ϕ (V1) is the isomorphism from H1 to G |ϕ(V1) which is obtained by restricting ϕ to V1, and where ϕ2 is the

isomorphism from H2 to G2 |ϕ(V2) which is obtained by restricting ϕ to V2. (The inverse map of this bijection sends every

((W1,W2) , ϕ1, ϕ2) (with W1 tW2 = V and ϕ1 ∈ Iso
(
H1, G |W1

)
and ϕ2 ∈ Iso

(
H2, G |W2

)
) to ((V1 t V2, E) , E, ϕ), where

ϕ : V1 t V2 → V is the map glued together from the maps ϕ1 : V1 →W1 and ϕ2 : V2 →W2, and where E =
(
ϕ−1

)
∗ (F ).) The

existence of this bijection yields∣∣∣∣∣∣∣∣∣∣∣∣
⊔

H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2

Iso (H,G)

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
⊔

(W1,W2);
W1tW2=V

Iso
(
H1, G |W1

)
× Iso

(
H2, G |W2

)∣∣∣∣∣∣∣∣ .

Hence,

(ψ (ab)) [G] =

∣∣∣∣∣∣∣∣∣∣∣∣
⊔

H=(V1tV2,E);
H|V1

=H1;

H|V2
=H2

Iso (H,G)

∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
⊔

(W1,W2);
W1tW2=V

Iso
(
H1, G |W1

)
× Iso

(
H2, G |W2

)∣∣∣∣∣∣∣∣ = (ψ (a) · ψ (b)) [G] .

Let us now forget that we fixed G. We thus have shown that (ψ (ab)) [G] = (ψ (a) · ψ (b)) [G] for any finite graph
G. In other words, the two maps ψ (ab) and ψ (a) · ψ (b) are equal to each other on every element of the basis

([G])[G] is an isomorphism class of finite graphs of G. Since these two maps are k-linear, this yields that these two maps ψ (ab)

and ψ (a) · ψ (b) are identical. In other words, ψ (ab) = ψ (a) · ψ (b). Qed.
1246This is because the Hopf algebra structure on Go was defined by taking adjoints of the structure maps of the Hopf

algebra structure on G (for example, the comultiplication ∆Go on Go is the adjoint of the multiplication mG on G, if (G ⊗ G)o

is identified with Go ⊗ Go), and the Hopf algebra structure on (Go)o was defined by taking adjoints of the structure maps of

the Hopf algebra structure on Go; but the adjoint of the adjoint of a linear map F between two graded k-modules of finite type
is the map F again.
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(c) Assume that Q is a subring of k. Then, aut (G) is invertible for every finite graph G (because aut (G)
is a positive integer). Hence,

(
aut (G) · [G]

∗)
[G] is an isomorphism class of finite graphs

is a basis of the k-module

Go (because
(
[G]
∗)

[G] is an isomorphism class of finite graphs
is a basis of this k-module). The map ψ thus sends

the basis
(

[G]
]
)

[G] is an isomorphism class of finite graphs
of the k-module G to the basis(

aut (G) · [G]
∗)

[G] is an isomorphism class of finite graphs
of the k-module Go (because it satisfies ψ

(
[G]

]
)

= aut (G)·
[G]
∗

for every finite graph G). Hence, the k-linear map ψ sends a basis of its domain to a basis of its
codomain. Therefore, the map ψ is a k-module isomorphism. Combined with the fact that ψ is a Hopf
algebra homomorphism, this yields that ψ is a Hopf algebra isomorphism. Proposition 7.3.13(c) is thus
proven. �

Now, all of Proposition 7.3.9, Proposition 7.3.11 and Proposition 7.3.13 are proven. Therefore, Exercise
7.3.14 is solved.

13.197. Solution to Exercise 7.3.25. Solution to Exercise 7.3.25. Proposition 7.3.9(b) yields that the

elements [G]
]
, where [G] ranges over all isomorphism classes of finite graphs, form a basis of the k-module

G. Hence, we can define a k-linear map Ψ′ : G → k by requiring that

Ψ′
(

[G]
]
)

=
∑

f :V→{1,2,3,...};
eqs f=E

xf for every finite graph G = (V,E)

(because
∑

f :V→{1,2,3,...};
eqs f=E

xf depends only on the isomorphism class [G], but not on the graphG itself). Consider

this map Ψ′. We shall show that Ψ′ = Ψ.

Indeed, let G = (V,E) be any finite graph. Then, Proposition 7.3.9(a) yields [G] =
∑

H=(V,E′);

E′∩E=∅

[H]
]
.

Applying the map Ψ′ to both sides of this equality, we obtain

Ψ′ [G] = Ψ′

 ∑
H=(V,E′);

E′∩E=∅

[H]
]

 =
∑

H=(V,E′);

E′∩E=∅

Ψ′
(

[H]
]
)

︸ ︷︷ ︸
=

∑
f :V→{1,2,3,...};

eqs f=E′

xf

(by the definition of Ψ′)

(since the map Ψ′ is k-linear)

=
∑

H=(V,E′);

E′∩E=∅︸ ︷︷ ︸
=

∑
E′ is a set of two-element

subsets of V ;
E′∩E=∅

∑
f :V→{1,2,3,...};

eqs f=E′

xf =
∑

E′ is a set of two-element
subsets of V ;
E′∩E=∅

∑
f :V→{1,2,3,...};

eqs f=E′︸ ︷︷ ︸
=

∑
f :V→{1,2,3,...};

(eqs f)∩E=∅

xf

=
∑

f :V→{1,2,3,...};
(eqs f)∩E=∅

xf .(13.197.1)

However, if f : V → {1, 2, 3, . . .} is any map, then we have the following logical equivalence:

(13.197.2) ((eqs f) ∩ E = ∅) ⇐⇒ (f is a proper coloring of G) .
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1247 Hence, (13.197.1) becomes

Ψ′ [G] =
∑

f :V→{1,2,3,...};
(eqs f)∩E=∅︸ ︷︷ ︸

=
∑

f :V→{1,2,3,...};
f is a proper
coloring of G

(because of the equivalence (13.197.2))

xf =
∑

f :V→{1,2,3,...};
f is a proper
coloring of G︸ ︷︷ ︸

=
∑

proper colorings
f :V→{1,2,3,...}

xf =
∑

proper colorings
f :V→{1,2,3,...}

xf

= Ψ [G]

since Proposition 7.3.17 yields Ψ [G] =
∑

proper colorings
f :V→{1,2,3,...}

xf

 .

Let us now forget that we fixed [G]. Thus, we have shown that Ψ′ [G] = Ψ [G] for any finite graph
G. In other words, the two maps Ψ′ and Ψ are equal to each other on each element of the family
([G])G is an isomorphism class of finite graphs. Thus, the two maps Ψ′ and Ψ must be identical (because these two

maps are k-linear, and because the family ([G])G is an isomorphism class of finite graphs is a basis of the k-module

G). In other words, Ψ′ = Ψ. Now, every finite graph G = (V,E) satisfies

Ψ︸︷︷︸
=Ψ′

(
[G]

]
)

= Ψ′
(

[G]
]
)

=
∑

f :V→{1,2,3,...};
eqs f=E

xf .

This solves Exercise 7.3.25.

13.198. Solution to Exercise 8.1.10. Solution to Exercise 8.1.10. We begin with some preparations.
We shall regard permutations as words (over the alphabet {1, 2, 3, . . .}), by identifying every permutation

π ∈ Sn with the word (π (1) , π (2) , . . . , π (n)). For every n ∈ N, the lexicographic order on words thus

1247Proof of (13.197.2): Let f : V → {1, 2, 3, . . .} be any map.

Let us first assume that (eqs f) ∩ E = ∅. We shall then show that f is a proper coloring of G.
Indeed, let us assume that there exists an edge e = {v, v′} in E such that f (v) = f (v′). Consider this edge e = {v, v′}. We

are going to derive a contradiction.
The definition of eqs f yields eqs f = {{u, u′} | u ∈ V, u′ ∈ V, u 6= u′ and f (u) = f (u′)}. But v ∈ V and v′ ∈ V and

v 6= v′ (since {v, v′} is an edge of E) and f (v) = f (v′). Hence,{
v, v′

}
∈
{{
u, u′

}
| u ∈ V, u′ ∈ V, u 6= u′ and f (u) = f

(
u′
)}

= eqs f.

Combined with {v, v′} ∈ E, this yields {v, v′} ∈ (eqs f)∩E = ∅. But this is absurd, because the empty set ∅ has no elements.

Hence, we have found a contradiction. Thus, our assumption (that there exists an edge e = {v, v′} in E such that f (v) = f (v′))
was wrong. Hence, no edge e = {v, v′} in E has f (v) = f (v′). In other words, f is a proper coloring of G (according to the
definition of a “proper coloring”).

Let us now forget that we assumed that (eqs f) ∩ E = ∅. We thus have proven the implication

(13.197.3) ((eqs f) ∩ E = ∅) =⇒ (f is a proper coloring of G) .

Let us now assume that f is a proper coloring of G. In other words, no edge e = {v, v′} in E has f (v) = f (v′) (according

to the definition of a “proper coloring”).
Now, let us prove that (eqs f) ∩ E = ∅. Indeed, assume the contrary. Then, (eqs f) ∩ E 6= ∅. Hence, there exists some

g ∈ (eqs f) ∩ E. Consider this g. We have

g ∈ (eqs f) ∩ E ⊂ eqs f =
{{
u, u′

}
| u ∈ V, u′ ∈ V, u 6= u′ and f (u) = f

(
u′
)}
.

Hence, g = {u, u′} for some u ∈ V and u′ ∈ V satisfying u 6= u′ and f (u) = f (u′). Consider these u and u′. We have u 6= u′

and {u, u′} = g ∈ (eqs f)∩E ⊂ E. Hence, {u, u′} is an edge in E. Moreover, f (u) = f (u′). Hence, the edge {u, u′} is an edge
e = {v, v′} in E such that f (v) = f (v′) (namely, for v = u and v′ = u′). This contradicts the fact that no edge e = {v, v′} in

E has f (v) = f (v′). This contradiction proves that our assumption was wrong. Hence, we have shown that (eqs f) ∩ E = ∅.

Let us now forget that we assumed that (f is a proper coloring of G). We thus have proven the implication

(f is a proper coloring of G) =⇒ ((eqs f) ∩ E = ∅) .

Combining this with (13.197.3), we obtain the equivalence

((eqs f) ∩ E = ∅) ⇐⇒ (f is a proper coloring of G) .

This proves (13.197.2).
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defines a total order on Sn; we will be using this order in the following when we make statements like
“σ < τ” for σ and τ being two permutations in Sn.

We denote the empty word by ∅. This empty word is identified with the trivial permutation in S0.
We shall refer to ∅ as the empty permutation. Every permutation other than ∅ will be called a nonempty
permutation.

Let S denote the disjoint union
⊔
n∈N Sn of the posets Sn. While each poset Sn is actually totally ordered

(by the lexicographic order), the disjoint union S is not, since elements of different Sn are incomparable.1248

For every k ∈ N and ` ∈ N and any permutations u ∈ Sk and v ∈ S`, we define a permutation u� v by
u � v = u · v [k] (where “u · v [k]” has to be read as “u · (v [k])” rather than as “(u · v) [k]”). 1249 Thus,
we have defined a binary operation � on the set S. It is easy to see that S becomes a monoid with respect
to this binary operation �; the neutral element of this monoid is ∅ ∈ S0. Hence, products of the form
w1 � w2 � · · ·� wk for k-tuples (w1, w2, . . . , wk) ∈ Sk of permutations are well-defined (without specifying
a bracketing). The monoid (S,�) is left-cancellative1250 and right-cancellative1251.

It is easy to see that

(13.198.1) α� γ > β � γ

for any α ∈ S, β ∈ S and γ ∈ S satisfying α > β 1252.
Recall how we defined a connected permutation. Since we are regarding permutations as words, we can

rewrite this definition as follows: A permutation p ∈ Sn is connected if and only if it is nonempty and
no nonempty proper prefix1253 of p is itself a permutation. Hence, if a nonempty prefix of a connected
permutation p ∈ Sn is itself a permutation, then this prefix must be p.

It is easy to see that a permutation w ∈ Sn is connected if and only if n is a positive integer and there
exist no nonempty permutations u and v satisfying w = u � v. It is furthermore easy to see that for every
permutation w ∈ S, there is a unique way to write w in the form w = w1�w2� · · ·�wk for some k ∈ N and

1248We could define an ordering on all of S by restricting the total order on words defined in Definition 6.1.1; but we prefer
not to.

1249This is indeed a permutation, because the word u · v [k] has each integer from 1 to k + ` appear exactly once in it.
1250A semigroup (M, ·) is said to be left-cancellative if and only if it has the following property: If a, b and c are three

elements of M satisfying a · b = a · c, then b = c.
1251A semigroup (M, ·) is said to be right-cancellative if and only if it has the following property: If a, b and c are three

elements of M satisfying b · a = c · a, then b = c.
1252Proof of (13.198.1): Let α ∈ S, β ∈ S and γ ∈ S satisfy α > β. Notice that the n ∈ N satisfying α ∈ Sn and the n ∈ N

satisfying β ∈ Sn must be identical (because otherwise, α and β would be incomparable in the poset S). In other words, the

words α and β have the same length. Let k be this length. Thus, α ∈ Sk and β ∈ Sk.
Now, the words α and β have the same length and satisfy α > β in the lexicographic order. Hence, every word δ satisfies

α · δ > β · δ (where · denotes concatenation). Applying this to δ = γ [k], we obtain α · γ [k] > β · γ [k]. Now, the definition of

α � γ yields α � γ = α · γ [k] > β · γ [k] = β � γ (by the definition of β � γ), and thus (13.198.1) is proven.
1253A proper prefix of a word w is defined as a word u such that there exists a nonempty word v satisfying w = uv.
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some k-tuple (w1, w2, . . . , wk) ∈ CSk of connected permutations1254. We refer to the tuple (w1, w2, . . . , wk)
as the connected decomposition of w.

For every n ∈ N and w ∈ Sn, define an element F conn
w of FQSym by setting F conn

w = Fw1
Fw2
· · ·Fwk ,

where (w1, w2, . . . , wk) is the connected decomposition of w. It is clear that this F conn
w is an element of

FQSymn. Hence, for every n ∈ N, the family (F conn
w )w∈Sn is a family of elements of FQSymn. We shall

prove that it is a basis of the k-module FQSymn. Once this is proven, the claim of the exercise will quickly
follow (as we will see later).

We need the following easy fact:

Lemma 13.198.1. Let u ∈ S and v ∈ S. Then,

FuFv = Fu�v + (a sum of terms Ft for t ∈ S satisfying t > u� v) .

(The symbol > refers to the partial order on the poset S.)

Proof of Lemma 13.198.1. Let k and ` be the nonnegative integers satisfying u ∈ Sk and v ∈ S`. Write
the words u and v [k] in the forms u = (u1, u2, . . . , uk) and v [k] = (p1, p2, . . . , p`), respectively. Let
(c1, c2, . . . , ck+`) denote the concatenation u · v [k] = (u1, u2, . . . , uk, p1, p2, . . . , p`). By the definition of
u � v [k], we therefore have

(13.198.2) u � v [k] =
{(
cw(1), cw(2), . . . , cw(k+`)

)
: w ∈ Shk,`

}
multiset

.

1255 We also have (c1, c2, . . . , ck+`) = u · v [k] = u� v.

1254Proof. Fix w ∈ S. We need to show that a decomposition of w in the form w = w1 � w2 � · · · � wk with k ∈ N and
(w1, w2, . . . , wk) ∈ CSk exists and is unique.

The existence of such a decomposition w = w1�w2�· · ·�wk is easy to check (just take a decomposition w = w1�w2�· · ·�wk
with k ∈ N and (w1, w2, . . . , wk) ∈ (S \ {∅})k such that k is maximum, and argue that the maximality of k forces each of w1,
w2, . . ., wk to be connected). It remains to prove that such a decomposition is unique. In other words, we need to prove the

following statement:

Statement U : If w ∈ S, k ∈ N, (w1, w2, . . . , wk) ∈ CSk, ` ∈ N and (v1, v2, . . . , v`) ∈ CS` are such that
w = w1 � w2 � · · · � wk and w = v1 � v2 � · · · � v`, then k = ` and (w1, w2, . . . , wk) = (v1, v2, . . . , v`).

Proof of Statement U : Let us prove Statement U by strong induction by the size of w (that is, the number n ∈ N satisfying

w ∈ Sn). So let N ∈ N, and assume (as the induction hypothesis) that Statement U is proven in the case when w ∈ SM for
M < N .

Let w ∈ SN , k ∈ N, (w1, w2, . . . , wk) ∈ CSk, ` ∈ N and (v1, v2, . . . , v`) ∈ CS` be such that w = w1 � w2 � · · · � wk and

w = v1 � v2 � · · · � v`. We need to show that k = ` and (w1, w2, . . . , wk) = (v1, v2, . . . , v`).
All of the permutations w1, w2, . . ., wk and v1, v2, . . ., v` are connected, and thus nonempty.

We assume WLOG that w is nonempty (else, Statement U is obvious). Hence, k > 0 and ` > 0. Thus, w1 and v1 are

well-defined. We shall now prove that w1 = v1.
By the definition of the operation �, it is clear that the word v1 is a prefix of the word v1 � v2 � · · · � v`. In other words,

the word v1 is a prefix of the word w (since w = v1 � v2 � · · · � v`). Similarly, the word w1 is a prefix of the word w as well.

But it is well-known that if α and β are two prefixes of a word γ, then either α is a prefix of β or β is a prefix of α. Applying
this to α = v1, β = w1 and γ = w, we conclude that either v1 is a prefix of w1 or w1 is a prefix of v1. We WLOG assume that

v1 is a prefix of w1.
But recall that if a nonempty prefix of a connected permutation p ∈ Sn is itself a permutation, then this prefix must be p.

Applying this to p = w1 and the nonempty prefix v1 of w1, we conclude that v1 must be w1. That is, v1 = w1.
Let now w′ be the permutation w2 � w3 � · · · � wk. Then,

v1︸︷︷︸
=w1

� w′︸︷︷︸
=w2�w3�···�wk

= w1 � (w2 � w3 � · · · � wk) = w1 � w2 � · · · � wk = w = v1 � v2 � · · · � v` = v1 � (v2 � v3 � · · · � v`) .

Since the monoid (S,�) is left-cancellative, we can cancel v1 from this equality, and obtain w′ = v2 � v3 � · · · � v`.
Now, let M be the length of the word w′. Since w′ is shorter than the word v1 � w′ = w (because v1 is nonempty), this

length M is smaller than the length of w, which is N (since w ∈ SN ). Thus, M < N . Thus, we have w′ ∈ SM with M < N .
Hence, by the induction hypothesis, we can apply Statement U to w′, k− 1, (w2, w3, . . . , wk), `− 1 and (v2, v3, . . . , v`) instead

of w, k, (w1, w2, . . . , wk), ` and (v1, v2, . . . , v`) (since w′ = w2 � w3 � · · ·� wk and v′ = v2 � v3 � · · ·� v`). As a consequence,

we obtain k− 1 = `− 1 and (w2, w3, . . . , wk) = (v2, v3, . . . , v`). From k− 1 = `− 1, we obtain k = `. Combining w1 = v1 with
(w2, w3, . . . , wk) = (v2, v3, . . . , v`), we conclude (w1, w2, . . . , wk) = (v1, v2, . . . , v`). Thus, the induction step is complete, and

Statement U is proven. Hence, the uniqueness of the decomposition is proven, and we are done.
1255See Definition 1.6.2 for the definition of Shk,`.
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From (8.1.1), we have

FuFv =
∑

w∈u� v[k]

Fw

=
∑

w∈Shk,`

F(cw(1),cw(2),...,cw(k+`)) (by (13.198.2))

= F(cid(1),cid(2),...,cid(k+`))︸ ︷︷ ︸
=Fu�v

(since (cid(1),cid(2),...,cid(k+`))
=(c1,c2,...,ck+`)=u�v)

+
∑

w∈Shk,`;
w 6=id

F(cw(1),cw(2),...,cw(k+`))

(here, we have split off the addend for w = id from the sum, since id ∈ Shk,`)

= Fu�v +
∑

w∈Shk,`;
w 6=id

F(cw(1),cw(2),...,cw(k+`)).(13.198.3)

But it is easy to see that

(13.198.4)
(
cw(1), cw(2), . . . , cw(k+`)

)
> u� v for every w ∈ Shk,` satisfying w 6= id .

[Proof of (13.198.4): Let w ∈ Shk,` be such that w 6= id. The map w is a permutation, hence bijective
and thus injective. There exists some i ∈ {1, 2, . . . , k + `} such that w (i) 6= i (since w 6= id). Let j be the
smallest such i. Thus, w (j) 6= j, but

(13.198.5) every i ∈ {1, 2, . . . , k + `} satisfying i < j satisfies w (i) = i.

We have w ∈ Shk,`, and therefore w−1 (1) < w−1 (2) < · · · < w−1 (k) and w−1 (k + 1) < w−1 (k + 2) <
· · · < w−1 (k + `). Thus, the restriction of the map w−1 to the set {1, 2, . . . , k} and the restriction of the
map w−1 to the set {k + 1, k + 2, . . . , k + `} are strictly increasing.

Let us first show that j ≤ k. Indeed, assume the contrary. Then, j > k. Hence, k < j. Therefore, every
i ∈ {1, 2, . . . , k} satisfies i ≤ k < j and thus w (i) = i (by (13.198.5)). Thus, w ({1, 2, . . . , k}) = {1, 2, . . . , k},
so that w−1 ({1, 2, . . . , k}) = {1, 2, . . . , k} (since w is bijective). Notice also that j ∈ {k + 1, k + 2, . . . , k + `}
(since j > k). Now,

w−1

{k + 1, k + 2, . . . , k + `}︸ ︷︷ ︸
={1,2,...,k+`}\{1,2,...,k}

 = w−1 ({1, 2, . . . , k + `} \ {1, 2, . . . , k})

= w−1 ({1, 2, . . . , k + `})︸ ︷︷ ︸
={1,2,...,k+`}

\w−1 ({1, 2, . . . , k})︸ ︷︷ ︸
={1,2,...,k}

(since w is bijective)

= {1, 2, . . . , k + `} \ {1, 2, . . . , k} = {k + 1, k + 2, . . . , k + `} .

Therefore, w−1 restricts to a map from {k + 1, k + 2, . . . , k + `} to {k + 1, k + 2, . . . , k + `}. This latter
map must be strictly increasing (since the restriction of the map w−1 to the set {k + 1, k + 2, . . . , k + `}
is strictly increasing), and therefore is the identity map (because the only strictly increasing map from
{k + 1, k + 2, . . . , k + `} to {k + 1, k + 2, . . . , k + `} is the identity map). In other words, w−1 (i) = id (i) = i
for every i ∈ {k + 1, k + 2, . . . , k + `}. Applied to i = j, this yields w−1 (j) = j (since we know that
j ∈ {k + 1, k + 2, . . . , k + `}), whence w (j) = j. But this contradicts w (j) 6= j. This contradiction proves
that our assumption was wrong. Thus, j ≤ k. Therefore,

cj = uj (since (c1, c2, . . . , ck+`) = (u1, u2, . . . , uk, p1, p2, . . . , p`))

= u (j) ≤ k (since u ∈ Sk) .(13.198.6)

If we had w (j) < j, then we would have w (w (j)) = w (j) (by (13.198.5), applied to i = w (j)), which
would lead to w (j) = j (since w is injective), which would contradict w (j) 6= j. Hence, we cannot have
w (j) < j. Thus, we have w (j) ≥ j, so that w (j) > j (since w (j) 6= j). In other words, j < w (j).
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Let us next prove that w (j) > k. Indeed, assume the contrary. Thus, w (j) ≤ k. Thus, w (j) and j are two
elements of {1, 2, . . . , k} (because w (j) ≤ k and j ≤ k) satisfying j < w (j). Hence, w−1 (j) < w−1 (w (j))
(since w−1 (1) < w−1 (2) < · · · < w−1 (k)). Hence, w−1 (j) < w−1 (w (j)) = j. Therefore, (13.198.5)
(applied to i = w−1 (j)) yields w

(
w−1 (j)

)
= w−1 (j), so that w−1 (j) = w

(
w−1 (j)

)
= j. This contradicts

w−1 (j) < j. This contradiction proves that our assumption was wrong. Hence, w (j) > k is proven.
Now, write v in the form (v1, v2, . . . , v`). Then, v [k] = (k + v1, k + v2, . . . , k + v`) (by the definition of

v [k]). Since w (j) > k, we have

cw(j) = pw(j)−k (since (c1, c2, . . . , ck+`) = (u1, u2, . . . , uk, p1, p2, . . . , p`))

= k + vw(j)−k︸ ︷︷ ︸
>0

(since (p1, p2, . . . , p`) = v [k] = (k + v1, k + v2, . . . , k + v`))

> k ≥ cj (by (13.198.6)) .

So we have cw(j) > cj , but on the other hand, for every i ∈ {1, 2, . . . , k + `} satisfying i < j, we have
cw(i) = ci (because (13.198.5) yields w (i) = i). Thus,(

cw(1), cw(2), . . . , cw(k+`)

)
> (c1, c2, . . . , ck+`) (by the definition of lexicographic order)

= u� v,

and thus (13.198.4) is proven.]
Hence, (13.198.3) becomes

FuFv = Fu�v +
∑

w∈Shk,`;
w 6=id

F(cw(1),cw(2),...,cw(k+`))

︸ ︷︷ ︸
=(a sum of terms Ft for t∈S satisfying t>u�v)

(by (13.198.4))

= Fu�v + (a sum of terms Ft for t ∈ S satisfying t > u� v) .

This proves Lemma 13.198.1. �

Corollary 13.198.2. Every n ∈ N and w ∈ Sn satisfy

F conn
w = Fw + (a sum of terms Ft for t ∈ Sn satisfying t > w) .

Proof of Corollary 13.198.2. We shall first prove that every k ∈ N and every (w1, w2, . . . , wk) ∈ Sk satisfy
(13.198.7)

Fw1Fw2 · · ·Fwk = Fw1�w2�···�wk + (a sum of terms Ft for t ∈ S satisfying t > w1 � w2 � · · ·� wk) .

Proof of (13.198.7): We will prove (13.198.7) by induction over k:
Induction base: For k = 0, the statement of (13.198.7) is obvious. Hence, the induction base is complete.
Induction step: Let K ∈ N. Assume that (13.198.7) holds for k = K. We need to prove that (13.198.7)

holds for k = K + 1.
Let (w1, w2, . . . , wK+1) ∈ SK+1. By the induction hypothesis, we can apply (13.198.7) to k = K, and

thus obtain

Fw1Fw2 · · ·FwK = Fw1�w2�···�wK + (a sum of terms Ft for t ∈ S satisfying t > w1 � w2 � · · ·� wK) .

In other words, there exists a finite family (ti)i∈I of elements t of S satisfying t > w1 �w2 � · · ·�wK such
that

Fw1
Fw2
· · ·FwK = Fw1�w2�···�wK +

∑
i∈I

Fti .

Consider this family (ti)i∈I . We have

(13.198.8) ti � wK+1 > w1 � w2 � · · ·� wK+1 for every i ∈ I.
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1256 Now,

Fw1
Fw2
· · ·FwK+1

= (Fw1Fw2 · · ·FwK )︸ ︷︷ ︸
=Fw1�w2�···�wK+

∑
i∈I Fti

FwK+1

=

(
Fw1�w2�···�wK +

∑
i∈I

Fti

)
FwK+1

= Fw1�w2�···�wKFwK+1︸ ︷︷ ︸
=F(w1�w2�···�wK)�wK+1

+(a sum of terms Ft for t∈S satisfying t>(w1�w2�···�wK)�wK+1)

(by Lemma 13.198.1, applied to u=w1�w2�···�wK and v=wK+1)

+
∑
i∈I

FtiFwK+1︸ ︷︷ ︸
=Fti�wK+1

+(a sum of terms Ft for t∈S satisfying t>ti�wK+1)

(by Lemma 13.198.1, applied to u=ti and v=wK+1)

= F(w1�w2�···�wK)�wK+1
+ (a sum of terms Ft for t ∈ S satisfying t > (w1 � w2 � · · ·� wK)� wK+1)

+
∑
i∈I

(
Fti�wK+1

+ (a sum of terms Ft for t ∈ S satisfying t > ti � wK+1)
)

= Fw1�w2�···�wK+1
+ (a sum of terms Ft for t ∈ S satisfying t > w1 � w2 � · · ·� wK+1)

+
∑
i∈I

(
Fti�wK+1

+ (a sum of terms Ft for t ∈ S satisfying t > ti � wK+1)
)︸ ︷︷ ︸

=(a sum of terms Ft for t∈S satisfying t≥ti�wK+1)

(since (w1 � w2 � · · ·� wK)� wK+1 = w1 � w2 � · · ·� wK+1)

= Fw1�w2�···�wK+1
+ (a sum of terms Ft for t ∈ S satisfying t > w1 � w2 � · · ·� wK+1)

+
∑
i∈I

(a sum of terms Ft for t ∈ S satisfying t ≥ ti � wK+1)︸ ︷︷ ︸
=(a sum of terms Ft for t∈S satisfying t>w1�w2�···�wK+1)

(since every t∈S satisfying t≥ti�wK+1 also satisfies
t≥ti�wK+1>w1�w2�···�wK+1 (by (13.198.8)))

= Fw1�w2�···�wK+1
+ (a sum of terms Ft for t ∈ S satisfying t > w1 � w2 � · · ·� wK+1)

+
∑
i∈I

(a sum of terms Ft for t ∈ S satisfying t > w1 � w2 � · · ·� wK+1)

= Fw1�w2�···�wK+1
+ (a sum of terms Ft for t ∈ S satisfying t > w1 � w2 � · · ·� wK+1) .

In other words, (13.198.7) holds for k = K + 1. This completes the induction step. Hence, (13.198.7) is
proven by induction.

Now, let n ∈ N and w ∈ Sn. Let (w1, w2, . . . , wk) be the connected decomposition of w. Then, F conn
w =

Fw1
Fw2
· · ·Fwk (by the definition of F conn

w ) and w = w1 � w2 � · · · � wk (by the definition of a connected
decomposition). Now,

F conn
w = Fw1

Fw2
· · ·Fwk

= Fw1�w2�···�wk + (a sum of terms Ft for t ∈ S satisfying t > w1 � w2 � · · ·� wk)

(by (13.198.7))

= Fw + (a sum of terms Ft for t ∈ S satisfying t > w) (since w1 � w2 � · · ·� wk = w) .

Since every t ∈ S satisfying t > w must belong to Sn
1257, this rewrites as

F conn
w = Fw + (a sum of terms Ft for t ∈ Sn satisfying t > w) .

1256Proof of (13.198.8): Let i ∈ I. Then, ti is an element t of S satisfying t > w1 � w2 � · · · � wK . Hence, ti >

w1 � w2 � · · · � wK . Thus, (13.198.1) (applied to α = ti, β = w1 � w2 � · · · � wK and γ = wK+1) yields ti � wK+1 >

(w1 � w2 � · · · � wK) � wK+1 = w1 � w2 � · · · � wK+1, qed.
1257Proof. Let t ∈ S be such that t > w. Recall that w ∈ Sn. Therefore, if we had t /∈ Sn, then t and w would be

incomparable in the poset S (because of the construction of the poset S), which would contradict the fact that t > w. Hence,

we cannot have t /∈ Sn. Thus, t ∈ Sn, qed.
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This proves Corollary 13.198.2. �

Now, let us fix n ∈ N. The family (Fw)w∈Sn is a basis of the k-module FQSymn. We regard the set Sn

as a poset whose smaller relation is the relation > inherited from S (yes, you are reading it right: the order
on Sn is opposite to that on S). Then, Corollary 13.198.2 shows that the family (F conn

w )w∈Sn expands

unitriangularly1258 in the family (Fw)w∈Sn (by Remark 11.1.17(c)). Thus, the family (F conn
w )w∈Sn expands

invertibly triangularly in the family (Fw)w∈Sn . Consequently, Corollary 11.1.19(e) (applied to FQSymn,

Sn, (F conn
w )w∈Sn and (Fw)w∈Sn instead of M , S, (es)s∈S and (fs)s∈S) shows that the family (F conn

w )w∈Sn
is a basis of the k-module FQSymn if and only if the family (Fw)w∈Sn is a basis of the k-module FQSymn.

Hence, the family (F conn
w )w∈Sn is a basis of the k-module FQSymn (since the family (Fw)w∈Sn is a basis of

the k-module FQSymn).
Now, let us forget that we fixed n. We thus have proven that the family (F conn

w )w∈Sn is a basis of the

k-module FQSymn for every n ∈ N. Hence, the family (F conn
w )w∈S (being the disjoint union of the families

(F conn
w )w∈Sn for all n ∈ N) is a basis of the k-module

⊕
n∈N FQSymn = FQSym.

Now, it is easy to see that the family (Fw1Fw2 · · ·Fwk)k∈N; (w1,w2,...,wk)∈CSk is a reindexing of the family

(F conn
w )w∈S

1259. Thus, the family (Fw1
Fw2
· · ·Fwk)k∈N; (w1,w2,...,wk)∈CSk is a basis of the k-module

FQSym (since the family (F conn
w )w∈S is a basis of the k-module FQSym). In other words, FQSym is a free

(noncommutative) k-algebra with generators (Fw)w∈CS. This solves Exercise 8.1.10.

13.199. Solution to Exercise 11.1.11. Solution to Exercise 11.1.11. Let us first agree on a convention:
Whenever S is a poset, we let ≤ denote the smaller-or-equal relation of the poset S.

Before we prove Proposition 11.1.10, let us make a definition:

Definition 13.199.1. Let S be a poset.

(a) Let TS denote the set of all triangular S × S-matrices. Clearly, TS ⊂ kS×S .
(b) Let ITS denote the set of all invertibly triangular S × S-matrices.
(c) Let UTS denote the set of all unitriangular S × S-matrices.

Now, we shall state several lemmas (most of them completely trivial, and stated merely for the purpose
of easier reference).

Lemma 13.199.2. Let S and T be two finite sets. Let A = (as,t)(s,t)∈S×T be an S × T -matrix. Let

B = (bs,t)(s,t)∈T×S be a T × S-matrix. Then,

AB =

(∑
k∈T

as,kbk,t

)
(s,t)∈S×S

.

Proof of Lemma 13.199.2. Lemma 13.199.2 is just a restatement of the definition of AB. �

1258See Definition 11.1.16 for the meaning of these words.
1259Proof. For every k ∈ N and (w1, w2, . . . , wk) ∈ CSk, the connected decomposition of the permutation w1�w2� · · ·�wk

is the k-tuple (w1, w2, . . . , wk) (by the definition of a connected decomposition). Hence, for every k ∈ N and (w1, w2, . . . , wk) ∈
CSk, we have

(13.198.9) F conn
w1�w2�···�wk = Fw1Fw2 · · ·Fwk

(by the definition of F conn
w1�w2�···�wk

).

Now, recall that for every permutation w ∈ S, there is a unique way to write w in the form w = w1 � w2 � · · · � wk for
some k ∈ N and some k-tuple (w1, w2, . . . , wk) ∈ CSk of connected permutations. In other words, the map⊔

k∈N
CSk → S,

(w1, w2, . . . , wk) 7→ w1 � w2 � · · · � wk

is a bijection. Hence, the family
(
F conn
w1�w2�···�wk

)
k∈N; (w1,w2,...,wk)∈CSk

is a reindexing of the family (F conn
w )w∈S. Due

to (13.198.9), this rewrites as follows: The family (Fw1Fw2 · · ·Fwk )k∈N; (w1,w2,...,wk)∈CSk is a reindexing of the family

(F conn
w )w∈S. Qed.
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Lemma 13.199.3. Let S be a poset. Let A ∈ TS . Then, A is a triangular S × S-matrix.

Proof of Lemma 13.199.3. Lemma 13.199.3 follows from the definition of TS . �

Lemma 13.199.4. Let S be a poset. Let A = (as,t)(s,t)∈S×S be a triangular S × S-matrix. Then, every

(s, t) ∈ S × S which does not satisfy t ≤ s must satisfy as,t = 0.

Proof of Lemma 13.199.4. Lemma 13.199.4 follows from the definition of “triangular”. �

Lemma 13.199.5. Let S be a poset. Let A = (as,t)(s,t)∈S×S be an S × S-matrix. Assume that every

(s, t) ∈ S × S which does not satisfy t ≤ s must satisfy as,t = 0. Then, A ∈ TS .

Proof of Lemma 13.199.5. Lemma 13.199.5 follows from the definitions of TS and of “triangular”. �

Lemma 13.199.6. Let S be a poset. Let A ∈ ITS . Then, A is an invertibly triangular S × S-matrix.

Proof of Lemma 13.199.6. Lemma 13.199.6 follows from the definition of ITS . �

Lemma 13.199.7. Let S be a poset. Let A be an invertibly triangular S × S-matrix. Then, A ∈ TS .

Proof of Lemma 13.199.7. Lemma 13.199.7 follows from the definition of “invertibly triangular”. �

Lemma 13.199.8. Let S be a poset. Let A = (as,t)(s,t)∈S×S be an invertibly triangular S × S-matrix.

Then, for every s ∈ S, the element as,s of k is invertible.

Proof of Lemma 13.199.8. Lemma 13.199.8 follows from the definition of “invertibly triangular”. �

Lemma 13.199.9. Let S be a poset. Let A = (as,t)(s,t)∈S×S be an S × S-matrix. Assume that A ∈ TS .

Assume that, for every s ∈ S, the element as,s of k is invertible. Then, A ∈ ITS .

Proof of Lemma 13.199.9. Lemma 13.199.9 follows from the definitions of TS , of ITS and of “invertibly
triangular”. �

Lemma 13.199.10. Let S be a poset. We have ITS ⊂ TS .

Proof of Lemma 13.199.10. Lemma 13.199.10 just says that every invertibly triangular S × S-matrix is
triangular; this follows from the definition of “invertibly triangular”. �

Lemma 13.199.11. Let S be a finite poset. Let A = (as,t)(s,t)∈S×S ∈ TS and B = (bs,t)(s,t)∈S×S ∈ TS .

Then, for every s ∈ S, we have ∑
k∈S

as,kbk,s = as,sbs,s.

Proof of Lemma 13.199.11. We have A ∈ TS . Hence, Lemma 13.199.3 shows that A is a triangular S × S-
matrix. Lemma 13.199.4 thus shows that

(13.199.1) every (s, t) ∈ S × S which does not satisfy t ≤ s must satisfy as,t = 0.

The same argument (applied to B and bs,t instead of A and as,t) shows that

(13.199.2) every (s, t) ∈ S × S which does not satisfy t ≤ s must satisfy bs,t = 0.

Let s ∈ S. Every k ∈ S satisfying k 6= s must satisfy

(13.199.3) as,kbk,s = 0
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1260. Now, for every s ∈ S, we have∑
k∈S

as,kbk,s = as,sbs,s +
∑
k∈S;
k 6=s

as,kbk,s︸ ︷︷ ︸
=0

(by (13.199.3))

(here, we have split off the addend for k = s from the sum)

= as,sbs,s +
∑
k∈S;
k 6=s

0

︸ ︷︷ ︸
=0

= as,sbs,s.

This proves Lemma 13.199.11. �

Lemma 13.199.12. Let S be a poset. Let A ∈ UTS . Then, A is a unitriangular S × S-matrix.

Proof of Lemma 13.199.12. Lemma 13.199.12 follows from the definition of UTS . �

Lemma 13.199.13. Let S be a poset. Let A be a unitriangular S × S-matrix. Then, A ∈ TS .

Proof of Lemma 13.199.13. Lemma 13.199.13 follows from the definitions of TS and of “unitriangular”. �

Lemma 13.199.14. Let S be a poset. Let A = (as,t)(s,t)∈S×S be a unitriangular S × S-matrix. Then, for

every s ∈ S, we have as,s = 1.

Proof of Lemma 13.199.14. Lemma 13.199.14 follows from the definition of “unitriangular”. �

Lemma 13.199.15. Let S be a poset. Let A = (as,t)(s,t)∈S×S be an S × S-matrix. Assume that A ∈ TS .

Assume that, for every s ∈ S, we have as,s = 1. Then, A ∈ UTS .

Proof of Lemma 13.199.15. Lemma 13.199.15 follows from the definitions of TS , of UTS and of “unitrian-
gular”. �

Lemma 13.199.16. Let S be a poset. We have UTS ⊂ TS .

Proof of Lemma 13.199.16. Lemma 13.199.16 just says that every unitriangular S × S-matrix is triangular;
this follows from the definition of “unitriangular”. �

Lemma 13.199.17. We have UTS ⊂ ITS .

Proof of Lemma 13.199.17. Lemma 13.199.17 just says that every unitriangular S × S-matrix is invertibly
triangular. In order to prove it, we only need to compare the definitions of “unitriangular” and of “invertibly
triangular”, and observe that the former definition makes a stronger requirement than the latter (indeed, if
as,s = 1, then as,s is invertible). �

Proof of Proposition 11.1.10. We begin with some preparations.
For any (s, t) ∈ S × S, we define a subset [t, s] of S by

[t, s] = {q ∈ S | t ≤ q ≤ s} .
This subset [t, s] is called the interval of S bounded by t and s. (Notice that it can be an empty set, since
we have not required that t ≤ s.) The following facts hold:

1260Proof of (13.199.3): Let k ∈ S be such that k 6= s. We must prove (13.199.3).
We are in one of the following two cases:

Case 1: We have s ≤ k.
Case 2: We do not have s ≤ k.

Let us first consider Case 1. In this case, we have s ≤ k. If we had k ≤ s, then we would have k = s (since k ≤ s ≤ k);
but this would contradict k 6= s. Hence, we cannot have k ≤ s. Thus, (13.199.1) (applied to (s, k) instead of (s, t)) shows that
as,k = 0. Thus, as,k︸︷︷︸

=0

bk,s = 0. Hence, (13.199.3) is proven in Case 1.

Let us now consider Case 2. In this case, we do not have s ≤ k. Hence, (13.199.2) (applied to (k, s) instead of (s, t)) shows
that bk,s = 0. Thus, as,k bk,s︸︷︷︸

=0

= 0. Hence, (13.199.3) is proven in Case 2.

Now, we have proven (13.199.3) in each of the two Cases 1 and 2. Hence, (13.199.3) always holds. Qed.
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• For any (s, t) ∈ S × S, the set [t, s] is finite (since it is a subset of the finite set S). Hence, for any
(s, t) ∈ S × S, the cardinality |[t, s]| is a well-defined nonnegative integer.

• If s, t and u are three elements of S such that s ≤ t < u, then

(13.199.4) [s, t] is a proper subset of [s, u] .

(Indeed, it is straightforward to show that [s, t] is a subset of [s, u]. To prove that this subset is
proper, it suffices to observe that u belongs to [s, u] but not to [s, t].)

• If s, t and u are three elements of S such that s < t ≤ u, then

(13.199.5) [t, u] is a proper subset of [s, u] .

(Indeed, it is straightforward to show that [t, u] is a subset of [s, u]. To prove that this subset is
proper, it suffices to observe that s belongs to [s, u] but not to [t, u].)

Let us now prove Proposition 11.1.10.
(a) Let 0S×S ∈ kS×S be the matrix (0)(s,t)∈S×S . This matrix 0S×S is the zero of the k-algebra kS×S .

We shall now prove the following five claims:

Claim A1: We have 0S×S ∈ TS .

Claim A2: For every A ∈ TS and B ∈ TS , we have A+B ∈ TS .

Claim A3: For every A ∈ TS and u ∈ k, we have uA ∈ TS .

Claim A4: We have IS ∈ TS .

Claim A5: For every A ∈ TS and B ∈ TS , we have AB ∈ TS .

Proof of Claim A1: The definition of 0S×S yields 0S×S = (0)(s,t)∈S×S . Clearly, every (s, t) ∈ S×S which

does not satisfy t ≤ s must satisfy 0 = 0. Thus, Lemma 13.199.5 (applied to 0S×S and 0 instead of A and
as,t) shows that 0S×S ∈ TS . This proves Claim A1.

Proof of Claim A2: Let A ∈ TS and B ∈ TS . Write the S × S-matrix A in the form A = (as,t)(s,t)∈S×S .

Write the S × S-matrix B in the form B = (bs,t)(s,t)∈S×S .

Lemma 13.199.3 shows that A is a triangular S × S-matrix (since A ∈ TS). Lemma 13.199.4 shows that

(13.199.6) every (s, t) ∈ S × S which does not satisfy t ≤ s must satisfy as,t = 0.

The same argument (applied to B and bs,t instead of A and as,t) shows that

(13.199.7) every (s, t) ∈ S × S which does not satisfy t ≤ s must satisfy bs,t = 0.

Adding the equalities A = (as,t)(s,t)∈S×S and B = (bs,t)(s,t)∈S×S , we obtain

A+B = (as,t)(s,t)∈S×S + (bs,t)(s,t)∈S×S = (as,t + bs,t)(s,t)∈S×S

(by the definition of the sum of two S × S-matrices). But every (s, t) ∈ S × S which does not satisfy t ≤ s
must satisfy as,t︸︷︷︸

=0
(by (13.199.6))

+ bs,t︸︷︷︸
=0

(by (13.199.7))

= 0+0 = 0. Hence, Lemma 13.199.5 (applied to A+B and as,t+bs,t

instead of A and as,t) shows that A+B ∈ TS (since A+B = (as,t + bs,t)(s,t)∈S×S). This proves Claim A2.

Proof of Claim A3: The proof of Claim A3 is similar to our proof of Claim A2 above, and is left to the
reader.

Proof of Claim A4: The definition of IS yields IS = (δs,t)(s,t)∈S×S . But every (s, t) ∈ S × S which does

not satisfy t ≤ s must satisfy δs,t = 0 1261. Hence, Lemma 13.199.5 (applied to IS and δs,t instead of A
and as,t) shows that IS ∈ TS . This proves Claim A4.

Proof of Claim A5: Let A ∈ TS and B ∈ TS .
As in the proof of Claim A2, we can see that the statements (13.199.6) and (13.199.7) hold.
Lemma 13.199.2 (applied to T = S) yields

AB =

(∑
k∈S

as,kbk,t

)
(s,t)∈S×S

.

1261Proof. Let (s, t) ∈ S × S be such that we do not have t ≤ s. We must prove that δs,t = 0.
If we had s = t, then we would have t = s ≤ s, which would contradict the fact that we do not have t ≤ s. Hence, we cannot

have s = t. Thus, δs,t = 0, qed.
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But every (s, t) ∈ S × S and every k ∈ S which do not satisfy t ≤ s must satisfy

(13.199.8) as,kbk,t = 0

1262. Thus, every (s, t) ∈ S × S which does not satisfy t ≤ s must satisfy∑
k∈S

as,kbk,t︸ ︷︷ ︸
=0

(by (13.199.8))

=
∑
k∈S

0 = 0.

Hence, Lemma 13.199.5 (applied to AB and
∑
k∈S as,kbk,t instead of A and as,t) shows that AB ∈ TS (since

AB =
(∑

k∈S as,kbk,t
)

(s,t)∈S×S). This proves Claim A5.

Recall that TS is a subset of kS×S . This subset TS is a k-submodule of kS×S (by Claim A1, Claim A2 and
Claim A3), and therefore is a k-subalgebra of kS×S (by Claim A4 and Claim A5). In other words, the set of
all triangular S×S-matrices is a k-subalgebra of kS×S (since TS is the set of all triangular S×S-matrices).
This proves Proposition 11.1.10(a).

(b) We shall first prove the following claims:

Claim B1: We have IS ∈ ITS .

Claim B2: For every A ∈ ITS and B ∈ ITS , we have AB ∈ ITS .

Claim B3: Let A ∈ ITS . Then, A is invertible (as an element of the ring kS×S), and its
inverse A−1 belongs to ITS .

Proof of Claim B1: The definition of IS yields IS = (δs,t)(s,t)∈S×S . Claim A4 in our proof of Proposition

11.1.10(a) yields IS ∈ TS . For every s ∈ S, we have δs,s = 1. Hence, for every s ∈ S, the element δs,s of
k is invertible. Thus, Lemma 13.199.9 (applied to IS and δs,t instead of A and as,t) yields IS ∈ ITS . This
proves Claim B1.

Proof of Claim B2: Let A ∈ ITS and B ∈ ITS .
We know that A is an invertibly triangular S×S-matrix (by Lemma 13.199.6). Hence, A ∈ TS (by Lemma

13.199.7). Hence, Lemma 13.199.3 shows that A is a triangular S × S-matrix. Write the S × S-matrix A in
the form A = (as,t)(s,t)∈S×S . Lemma 13.199.8 yields that

(13.199.9) for every s ∈ S, the element as,s of k is invertible.

We know that B is an invertibly triangular S × S-matrix (by Lemma 13.199.6, applied to B instead of
A). Hence, B ∈ TS (by Lemma 13.199.7, applied to B instead of A). Hence, Lemma 13.199.3 (applied
to B instead of A) shows that B is a triangular S × S-matrix. Write the S × S-matrix B in the form
B = (bs,t)(s,t)∈S×S . Lemma 13.199.8 (applied to B and bs,t instead of A and as,t) yields that

(13.199.10) for every s ∈ S, the element bs,s of k is invertible.

From A ∈ TS and B ∈ TS , we obtain AB ∈ TS (by Claim A5 in our proof of Proposition 11.1.10(a)).
Lemma 13.199.2 (applied to T = S) yields

AB =

(∑
k∈S

as,kbk,t

)
(s,t)∈S×S

.

1262Proof of (13.199.8): Let (s, t) ∈ S × S and k ∈ S be such that we do not have t ≤ s. We must prove the equality

(13.199.8).
We are in one of the following two cases:

Case 1: We have t ≤ k.
Case 2: We do not have t ≤ k.
Let us first consider Case 1. In this case, we have t ≤ k. If we had k ≤ s, then we would have t ≤ k ≤ s; but this would

contradict the fact that we do not have t ≤ s. Hence, we cannot have k ≤ s. Thus, (13.199.6) (applied to (s, k) instead of (s, t))
shows that as,k = 0. Thus, as,k︸︷︷︸

=0

bk,t = 0. Hence, (13.199.8) is proven in Case 1.

Let us now consider Case 2. In this case, we do not have t ≤ k. Hence, (13.199.7) (applied to (k, t) instead of (s, t)) shows
that bk,t = 0. Thus, as,k bk,t︸︷︷︸

=0

= 0. Hence, (13.199.8) is proven in Case 2.

Now, we have proven (13.199.8) in each of the two Cases 1 and 2. This shows that (13.199.8) always holds. Qed.
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Lemma 13.199.11 shows that, for every s ∈ S, we have
∑
k∈S as,kbk,s = as,sbs,s. Hence, for every s ∈ S,

the element
∑
k∈S as,kbk,s of k is invertible1263. Thus, Lemma 13.199.9 (applied to AB and

∑
k∈S as,kbk,t

instead of A and as,t) shows that AB ∈ ITS (since AB =
(∑

k∈S as,kbk,t
)

(s,t)∈S×S and AB ∈ TS). This

proves Claim B2.
Proof of Claim B3: We know that A is an invertibly triangular S×S-matrix (by Lemma 13.199.6). Hence,

A ∈ TS (by Lemma 13.199.7). Hence, Lemma 13.199.3 shows that A is a triangular S × S-matrix. Write
the S × S-matrix A in the form A = (as,t)(s,t)∈S×S . Lemma 13.199.4 shows that

(13.199.11) every (s, t) ∈ S × S which does not satisfy t ≤ s must satisfy as,t = 0.

Lemma 13.199.8 yields that

(13.199.12) for every s ∈ S, the element as,s of k is invertible.

We shall now define an element bs,t for each (s, t) ∈ S×S. In fact, we will define these elements recursively,
by strong induction on |[t, s]| 1264: Let N ∈ N. Assume that

(13.199.13) an element bs,t ∈ k is already defined for each (s, t) ∈ S × S satisfying |[t, s]| < N.

We shall now define an element bs,t ∈ k for each (s, t) ∈ S × S satisfying |[t, s]| = N .
Indeed, let (s, t) ∈ S × S be such that |[t, s]| = N . We must define an element bs,t ∈ k.
For every u ∈ S satisfying t < u ≤ s, the element bs,u is already defined1265. Thus, the sum

∑
u∈S;
t<u≤s

bs,uau,t ∈

k is well-defined. Furthermore, the element at,t of k is invertible (by (13.199.12), applied to t instead of s).

Hence, the element (at,t)
−1

of k is well-defined. Now, we set

(13.199.14) bs,t = (at,t)
−1

δs,t − ∑
u∈S;
t<u≤s

bs,uau,t


(this makes sense since both (at,t)

−1
and

∑
u∈S;
t<u≤s

bs,uau,t are well-defined). Thus, we have defined an element

bs,t ∈ k. This completes the recursive definition of bs,t.
We have now defined an element bs,t ∈ k for each (s, t) ∈ S×S. In other words, we have defined a family

(bs,t)(s,t)∈S×S ∈ kS×S . This family is clearly an S × S-matrix. Denote this S × S-matrix by B. Thus,

B = (bs,t)(s,t)∈S×S ∈ kS×S . We shall now show (in several steps) that BA = IS and that B ∈ ITS .

First, we notice that

(13.199.15) every (s, t) ∈ S × S which does not satisfy t ≤ s must satisfy bs,t = 0

1266. Hence, Lemma 13.199.5 (applied to B and bs,t instead of A and as,t) yields B ∈ TS .

1263Proof. Let s ∈ S. Then, the element as,s of k is invertible (by (13.199.9)). The element bs,s of k is invertible as well (by

(13.199.10)). Thus, the product as,sbs,s of these two elements is also invertible (since the product of two invertible elements is

always invertible). In other words,
∑
k∈S as,kbk,s is invertible (since

∑
k∈S as,kbk,s = as,sbs,s). Qed.

1264Here, we are using the fact that |[t, s]| is a nonnegative integer for every (s, t) ∈ S × S.
1265Proof. Let u ∈ S be such that t < u ≤ s. We have to show that the element bs,u is already defined.

From (13.199.5) (applied to t, u and s instead of s, t and u), we conclude that [u, s] is a proper subset of [t, s]. Hence,

|[u, s]| < |[t, s]| (since [t, s] is a finite set). Thus, |[u, s]| < |[t, s]| = N . Therefore, (13.199.13) (applied to (s, u) instead of (s, t))
shows that an element bs,u is already defined.

1266Proof of (13.199.15): Let (s, t) ∈ S × S be such that we do not have t ≤ s. We must prove that bs,t = 0.
If we had s = t, then we would have t = s ≤ s, which would contradict the fact that we do not have t ≤ s. Hence, we cannot

have s = t. Thus, δs,t = 0.

If there was an u ∈ S satisfying t < u ≤ s, then we would have t ≤ s, which would contradict the fact that we do not
have t ≤ s. Hence, there is no u ∈ S satisfying t < u ≤ s. Thus, the sum

∑
u∈S;
t<u≤s

bs,uau,t is empty. Hence,
∑
u∈S;
t<u≤s

bs,uau,t =

(empty sum) = 0.
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For every (s, t) ∈ S × S, we have

(13.199.16)
∑
k∈S;
t≤k≤s

bs,kak,t = δs,t

1267. Thus, for every (s, t) ∈ S × S, we have

(13.199.17)
∑
k∈S

bs,kak,t = δs,t

Now, the recursive definition of bs,t yields bs,t = (at,t)
−1


δs,t︸︷︷︸
=0

−
∑
u∈S;
t<u≤s

bs,uau,t

︸ ︷︷ ︸
=0


= (at,t)

−1 0 = 0. This proves (13.199.15).

1267Proof of (13.199.16): Let (s, t) ∈ S × S. We must prove the equality (13.199.16).

We are in one of the following two cases:
Case 1: We have t ≤ s.
Case 2: We do not have t ≤ s.
Let us first consider Case 1. In this case, we have t ≤ s. Thus, t is an element of S satisfying t ≤ t ≤ s. Hence, the sum∑

u∈S;
t≤u≤s

bs,uau,t has an addend for u = t. Splitting off this addend, we obtain

∑
u∈S;
t≤u≤s

bs,uau,t =
∑
u∈S;

t≤u≤s and u6=t

bs,uau,t + bs,tat,t.

Now, ∑
k∈S;
t≤k≤s

bs,kak,t =
∑
u∈S;
t≤u≤s

bs,uau,t (here, we have renamed the summation index k as u)

=
∑
u∈S;

t≤u≤s and u6=t︸ ︷︷ ︸
=

∑
u∈S;
t<u≤s

(because for any u∈S, the
condition (t≤u≤s and u6=t)
is equivalent to (t<u≤s))

bs,uau,t + bs,t︸︷︷︸
=(at,t)

−1

δs,t− ∑
u∈S;
t<u≤s

bs,uau,t


(by the recursive definition of bs,t)

at,t

=
∑
u∈S;
t<u≤s

bs,uau,t + (at,t)
−1

δs,t − ∑
u∈S;
t<u≤s

bs,uau,t

 at,t

︸ ︷︷ ︸
=δs,t−

∑
u∈S;
t<u≤s

bs,uau,t

=
∑
u∈S;
t<u≤s

bs,uau,t + δs,t −
∑
u∈S;
t<u≤s

bs,uau,t = δs,t.

Hence, (13.199.16) is proven in Case 1.

Let us now consider Case 2. In this case, we do not have t ≤ s.
If we had s = t, then we would have t = s ≤ s, which would contradict the fact that we do not have t ≤ s. Hence, we do

not have s = t. Therefore, δs,t = 0.
If there was an k ∈ S satisfying t ≤ k ≤ s, then we would have t ≤ s, which would contradict the fact that we do not

have t ≤ s. Hence, there is no k ∈ S satisfying t ≤ k ≤ s. Thus, the sum
∑
k∈S;
t≤k≤s

bs,kak,t is empty. Hence,
∑
k∈S;
t≤k≤s

bs,kak,t =

(empty sum) = 0 = δs,t (since δs,t = 0). Hence, (13.199.16) is proven in Case 2.

We have now proven (13.199.16) in each of the two Cases 1 and 2. Thus, (13.199.16) always holds.
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1268. Hence, BA = IS
1269. Furthermore, for every s ∈ S, we have

(13.199.18) bs,s = (as,s)
−1

1270. Hence,
for every s ∈ S, the element bs,s of k is invertible

(because bs,s is an inverse (namely, bs,s = (as,s)
−1

)). Thus, Lemma 13.199.9 (applied to B and bs,t instead
of A and as,t) shows that B ∈ ITS (since B ∈ TS). In other words, B belongs to ITS .

So far, we do not know that B is the inverse of A; we merely know that B is a left inverse of A (that is,
we know that BA = IS). We shall now construct yet another S × S-matrix C and subsequently show that
AC = IS ; this will easily yield that A is invertible (because an element of a ring that has a left inverse and
a right inverse must be invertible) and its inverse is C = B.

The construction of C will be rather similar to that of B, so that we will be briefer than before.
We shall define an element cs,t for each (s, t) ∈ S × S. In fact, we will define these elements recursively,

by strong induction on |[t, s]|: Let N ∈ N. Assume that

(13.199.20) an element cs,t ∈ k is already defined for each (s, t) ∈ S × S satisfying |[t, s]| < N.

We shall now define an element cs,t ∈ k for each (s, t) ∈ S × S satisfying |[t, s]| = N .
Indeed, let (s, t) ∈ S × S be such that |[t, s]| = N . We must define an element cs,t ∈ k.
For every u ∈ S satisfying t ≤ u < s, the element cu,t is already defined1271. Thus, the sum

∑
u∈S;
t≤u<s

as,ucu,t ∈

k is well-defined. Furthermore, the element as,s of k is invertible (by (13.199.12)). Hence, the element (as,s)
−1

1268Proof of (13.199.17): Let (s, t) ∈ S × S. Then,∑
k∈S

bs,kak,t =
∑
k∈S;
t≤k

bs,kak,t +
∑
k∈S;

not t≤k

bs,k ak,t︸︷︷︸
=0

(by (13.199.11), applied to
(k,t) instead of (s,t))

=
∑
k∈S;
t≤k

bs,kak,t +
∑
k∈S;

not t≤k

bs,k0

︸ ︷︷ ︸
=0

=
∑
k∈S;
t≤k

bs,kak,t =
∑
k∈S;

t≤k and k≤s︸ ︷︷ ︸
=

∑
k∈S;
t≤k≤s

bs,kak,t +
∑
k∈S;

t≤k and not k≤s

bs,k︸︷︷︸
=0

(by (13.199.15), applied to
(s,k) instead of (s,t))

ak,t

=
∑
k∈S;
t≤k≤s

bs,kak,t +
∑
k∈S;

t≤k and not k≤s

0ak,t

︸ ︷︷ ︸
=0

=
∑
k∈S;
t≤k≤s

bs,kak,t = δs,t

(by (13.199.16)). This proves (13.199.17).
1269Proof. Lemma 13.199.2 (applied to S, B, bs,t, A and as,t instead of T , A, as,t, B and bs,t) shows that

BA =


∑
k∈S

bs,kak,t︸ ︷︷ ︸
=δs,t

(by (13.199.17))


(s,t)∈S×S

= (δs,t)(s,t)∈S×S = IS

(since IS = (δs,t)(s,t)∈S×S (by the definition of IS)). Qed.
1270Proof of (13.199.18): Lemma 13.199.11 (applied to B, bs,t, A and as,t instead of A, as,t, B and bs,t) yields that for

every s ∈ S, we have

(13.199.19)
∑
k∈S

bs,kak,s = bs,sas,s.

Let s ∈ S. Then, (13.199.17) (applied to (s, s) instead of (s, t)) yields
∑
k∈S bs,kak,s = δs,s = 1 (since s = s). Comparing

this with (13.199.19), we obtain bs,sas,s = 1. Hence, bs,s = (as,s)
−1. This proves (13.199.18).

1271Proof. Let u ∈ S be such that t ≤ u < s. We have to show that the element cu,t is already defined.
From (13.199.4) (applied to t, u and s instead of s, t and u), we conclude that [t, u] is a proper subset of [t, s]. Hence,

|[t, u]| < |[t, s]| (since [t, s] is a finite set). Thus, |[t, u]| < |[t, s]| = N . Therefore, (13.199.20) (applied to (u, t) instead of (s, t))
shows that an element cu,t is already defined.
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of k is well-defined. Now, we set

(13.199.21) cs,t = (as,s)
−1

δs,t − ∑
u∈S;
t≤u<s

as,ucu,t



(this makes sense since both (as,s)
−1

and
∑
u∈S;
t≤u<s

as,ucu,t are well-defined). Thus, we have defined an element

cs,t ∈ k. This completes the recursive definition of cs,t.
We have now defined an element cs,t ∈ k for each (s, t) ∈ S×S. In other words, we have defined a family

(cs,t)(s,t)∈S×S ∈ kS×S . This family is clearly an S × S-matrix. Denote this S × S-matrix by C. Thus,

C = (cs,t)(s,t)∈S×S ∈ kS×S . We shall now show (in several steps) that AC = IS and that C ∈ ITS .

First, we notice that

(13.199.22) every (s, t) ∈ S × S which does not satisfy t ≤ s must satisfy cs,t = 0

1272. Hence, Lemma 13.199.5 (applied to C and cs,t instead of A and as,t) yields C ∈ TS .
For every (s, t) ∈ S × S, we have

(13.199.23)
∑
k∈S;
t≤k≤s

as,kck,t = δs,t

1273. Thus, for every (s, t) ∈ S × S, we have

(13.199.24)
∑
k∈S

as,kck,t = δs,t

1272Proof of (13.199.22): The statement (13.199.22) is an analogue of (13.199.15), and has an analogous proof.
1273Proof of (13.199.23): The statement (13.199.23) is analogous to (13.199.16) and has an analogous proof. (The main

difference is that we now need to split off the addend for u = s from the sum
∑
u∈S;
t≤u≤s

as,ucu,t, instead of splitting off the addend

for u = t from the sum
∑
u∈S;
t≤u≤s

bs,uau,t.)
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1274. Hence, AC = IS
1275. Now, using the associativity of the k-algebra kS×S , we can make the following

computation:

B = B IS︸︷︷︸
=AC

= BA︸︷︷︸
=IS

C = ISC = C.

Hence, AC = IS rewrites as AB = IS . Combining this with BA = IS , we see that B is an inverse of A
in the ring kS×S . In particular, the element A of kS×S is invertible. Its inverse A−1 is B (as we have just
proven), and therefore belongs to ITS (since we know that B belongs to ITS). This proves Claim B3.

Recall that ITS is a subset of kS×S . Claim B1 and Claim B2 (combined) show that this set ITS is
a submonoid of the multiplicative monoid of kS×S . Claim B3 furthermore proves that this submonoid is
a group. Thus, ITS is a group with respect to multiplication. In other words, the set of all invertibly
triangular S × S-matrices is a group with respect to multiplication (since ITS is the set of all invertibly
triangular S × S-matrices). This proves Proposition 11.1.10(b).

(c) We shall first prove the following claims:

Claim C1: We have IS ∈ UTS .

Claim C2: For every A ∈ UTS and B ∈ UTS , we have AB ∈ UTS .

Claim C3: Let A ∈ UTS . Then, A is invertible (as an element of the ring kS×S), and its
inverse A−1 belongs to UTS .

Proof of Claim C1: The definition of IS yields IS = (δs,t)(s,t)∈S×S . Claim A4 in our proof of Proposition

11.1.10(a) yields IS ∈ TS . For every s ∈ S, we have δs,s = 1. Thus, Lemma 13.199.15 (applied to IS and
δs,t instead of A and as,t) yields IS ∈ UTS . This proves Claim C1.

Proof of Claim C2: Let A ∈ UTS and B ∈ UTS .
Write the S × S-matrix A in the form A = (as,t)(s,t)∈S×S . Write the S × S-matrix B in the form

B = (bs,t)(s,t)∈S×S .

We know that A is unitriangular S × S-matrix (by Lemma 13.199.12). Hence, A ∈ TS (by Lemma
13.199.13). Similarly, B ∈ TS .

Lemma 13.199.14 yields that

(13.199.25) for every s ∈ S, we have as,s = 1.

1274Proof of (13.199.24): Let (s, t) ∈ S × S. Then,∑
k∈S

as,kck,t =
∑
k∈S;
t≤k

as,kck,t +
∑
k∈S;

not t≤k

as,k ck,t︸︷︷︸
=0

(by (13.199.22), applied to
(k,t) instead of (s,t))

=
∑
k∈S;
t≤k

as,kck,t +
∑
k∈S;

not t≤k

as,k0

︸ ︷︷ ︸
=0

=
∑
k∈S;
t≤k

as,kck,t =
∑
k∈S;

t≤k and k≤s︸ ︷︷ ︸
=

∑
k∈S;
t≤k≤s

as,kck,t +
∑
k∈S;

t≤k and not k≤s

as,k︸︷︷︸
=0

(by (13.199.11), applied to
(s,k) instead of (s,t))

ck,t

=
∑
k∈S;
t≤k≤s

as,kck,t +
∑
k∈S;

t≤k and not k≤s

0ck,t

︸ ︷︷ ︸
=0

=
∑
k∈S;
t≤k≤s

as,kck,t = δs,t

(by (13.199.23)). This proves (13.199.24).
1275Proof. Lemma 13.199.2 (applied to S, C and cs,t instead of T , B and bs,t) shows that

AC =


∑
k∈S

as,kck,t︸ ︷︷ ︸
=δs,t

(by (13.199.24))


(s,t)∈S×S

= (δs,t)(s,t)∈S×S = IS

(since IS = (δs,t)(s,t)∈S×S (by the definition of IS)). Qed.
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The same argument (applied to B and bs,t instead of A and as,t) yields that

(13.199.26) for every s ∈ S, we have bs,s = 1.

Claim A5 in our proof of Proposition 11.1.10(a) yields AB ∈ TS . Lemma 13.199.2 (applied to T = S)
yields

AB =

(∑
k∈S

as,kbk,t

)
(s,t)∈S×S

.

Lemma 13.199.11 yields that, for every s ∈ S, we have∑
k∈S

as,kbk,s = as,s︸︷︷︸
=1

(by (13.199.25))

bs,s︸︷︷︸
=1

(by (13.199.26))

= 1.

Hence, Lemma 13.199.15 (applied to AB and
∑
k∈S as,kbk,t instead of A and as,t) shows that AB ∈ UTS

(since AB =
(∑

k∈S as,kbk,t
)

(s,t)∈S×S and AB ∈ TS). This proves Claim C2.

Proof of Claim C3: We know that A is unitriangular S×S-matrix (by Lemma 13.199.12). Hence, A ∈ TS
(by Lemma 13.199.13).

Write the S × S-matrix A in the form A = (as,t)(s,t)∈S×S . Lemma 13.199.14 yields that

(13.199.27) for every s ∈ S, we have as,s = 1.

We have A ∈ UTS ⊂ ITS (by Lemma 13.199.17). Thus, the conditions of Claim B3 (in our proof of
Proposition 11.1.10(b)) are satisfied. Define an S × S-matrix B = (bs,t)(s,t)∈S×S ∈ kS×S as in the proof of

Claim B3 (in our proof of Proposition 11.1.10(b)). Then, we have the following facts (which were shown in
the proof of Claim B3):

• For every s ∈ S, we have

(13.199.28) bs,s = (as,s)
−1
.

• We have B ∈ TS .
• The matrix B is an inverse of A in the ring kS×S .

Now, for every s ∈ S, we have

bs,s =

 as,s︸︷︷︸
=1

(by (13.199.27))


−1

= 1−1 = 1.

Hence, Lemma 13.199.15 (applied to B and bs,t instead of A and as,t) shows that B ∈ UTS (since B =
(bs,t)(s,t)∈S×S and B ∈ TS). In other words, B belongs to UTS .

Now, recall that B is an inverse of A in the ring kS×S . In particular, the element A of kS×S is invertible.
Its inverse A−1 is B (as we have just proven), and therefore belongs to UTS (since we know that B belongs
to UTS). This proves Claim C3.

Recall that UTS is a subset of kS×S . Claim C1 and Claim C2 (combined) show that this set UTS is a
submonoid of the multiplicative monoid of kS×S . Claim C3 furthermore proves that this submonoid is a
group. Thus, UTS is a group with respect to multiplication. In other words, the set of all unitriangular S×S-
matrices is a group with respect to multiplication (since UTS is the set of all unitriangular S ×S-matrices).
This proves Proposition 11.1.10(c).

(d) Let A be an invertibly triangular S × S-matrix. In other words, A ∈ ITS (since ITS is the set of all
invertibly triangular S × S-matrices). Hence, Claim B3 (in our proof of Proposition 11.1.10(b)) shows that
A is invertible, and that its inverse A−1 belongs to ITS . The matrix A−1 is therefore an invertibly triangular
S × S-matrix (by Lemma 13.199.6 (applied to A−1 instead of A)).

Now, forget that we fixed A. We thus have shown that if A is an invertibly triangular S×S-matrix, then
A is invertible, and its inverse A−1 is again invertibly triangular. This proves Proposition 11.1.10(d).

(e) Let A be a unitriangular S × S-matrix. In other words, A ∈ UTS (since UTS is the set of all
unitriangular S × S-matrices). Hence, Claim C3 (in our proof of Proposition 11.1.10(c)) shows that A is
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invertible, and that its inverse A−1 belongs to UTS . The matrix A−1 is therefore a unitriangular S×S-matrix
(by Lemma 13.199.12 (applied to A−1 instead of A)).

Now, forget that we fixed A. We thus have shown that if A is a unitriangular S × S-matrix, then A is
invertible, and its inverse A−1 is again unitriangular. This proves Proposition 11.1.10(e). �

Thus, Exercise 11.1.11 is solved.

13.200. Solution to Exercise 11.1.15. Solution to Exercise 11.1.15. Before we prove Theorem 11.1.14,
let us introduce a notation:

Definition 13.200.1. Let M be a k-module. Let (hp)p∈P be a family of elements of M . Then, we let

〈hp | p ∈ P 〉 denote the k-submodule of M spanned by this family (hp)p∈P .

Proof of Theorem 11.1.14. Write the matrix A in the form A = (as,t)(s,t)∈S×T .

We have assumed that the family (es)s∈S expands in the family (ft)t∈T through the matrix A. In other
words,

(13.200.1) every s ∈ S satisfies es =
∑
t∈T

as,tft

(by the definition of “the family (es)s∈S expands in the family (ft)t∈T through the matrix A”).

Let B be the T × S-matrix A−1. Write the T × S-matrix B as B = (bs,t)(s,t)∈T×S . From B = A−1, we

obtain BA = IT and AB = IS . These two equalities show that the matrix B has an inverse (namely, A);
thus, the matrix B is invertible. In other words, the matrix A−1 is invertible (since B = A−1).

Lemma 13.199.2 (applied to T , S, B, bs,t, A and as,t instead of S, T , A, as,t, B and bs,t) yields

BA =

(∑
k∈S

bs,kak,t

)
(s,t)∈T×T

.

Hence, (∑
k∈S

bs,kak,t

)
(s,t)∈T×T

= BA = IT = (δs,t)(s,t)∈T×T

(by the definition of IT ). In other words,

(13.200.2)
∑
k∈S

bs,kak,t = δs,t for every (s, t) ∈ T × T.

Now,

(13.200.3) every u ∈ T satisfies fu =
∑
k∈S

bu,kek
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1276. Renaming the indices u and k as s and t in this statement, we obtain the following:

(13.200.4) every s ∈ T satisfies fs =
∑
t∈S

bs,tet.

We have (ft)t∈T = (fs)s∈T (here, we renamed the index t as s) and (es)s∈S = (et)t∈S (here, we renamed
the index s as t).

Recall that B = (bs,t)(s,t)∈T×S . Hence, the family (fs)s∈T expands in the family (et)t∈S through the

matrix B if and only if

every s ∈ T satisfies fs =
∑
t∈S

bs,tet

(by the definition of “the family (fs)s∈T expands in the family (et)t∈S through the matrix B”). Thus, we
conclude that the family (fs)s∈T expands in the family (et)t∈S through the matrix B (since every s ∈ T
satisfies fs =

∑
t∈S bs,tet). In other words, the family (ft)t∈T expands in the family (es)s∈S through the

matrix A−1 (since (ft)t∈T = (fs)s∈T and (es)s∈S = (et)t∈S and A−1 = B). This proves Theorem 11.1.14(a).
(b) We shall prove the following two claims:

Claim B1: We have 〈es | s ∈ S〉 ⊂ 〈ft | t ∈ T 〉.
Claim B2: We have 〈ft | t ∈ T 〉 ⊂ 〈es | s ∈ S〉.

Proof of Claim B1: We need to prove that 〈es | s ∈ S〉 ⊂ 〈ft | t ∈ T 〉. Since 〈ft | t ∈ T 〉 is a k-module,
we only need to show that es ∈ 〈ft | t ∈ T 〉 for each s ∈ S. But the latter fact follows from (13.200.1).
Thus, Claim B1 is proven.

Proof of Claim B2: Theorem 11.1.14(a) shows that the family (ft)t∈T expands in the family (es)s∈S
through the matrix A−1. Moreover, we know that the matrix A−1 is invertible. Hence, we can apply Claim
B1 to T , S, (ft)t∈T , (es)s∈S and A−1 instead of S, T , (es)s∈S , (ft)t∈T and A. As a result, we conclude that
〈ft | t ∈ T 〉 ⊂ 〈es | s ∈ S〉. This proves Claim B2.

Combining Claim B1 with Claim B2, we obtain 〈es | s ∈ S〉 = 〈ft | t ∈ T 〉. Now,(
the k-submodule of M spanned by the family (es)s∈S

)
= 〈es | s ∈ S〉 = 〈ft | t ∈ T 〉
=
(
the k-submodule of M spanned by the family (ft)t∈T

)
.(13.200.5)

This proves Theorem 11.1.14(b).

1276Proof of (13.200.3): Let u ∈ T . Then,∑
k∈S

bu,k ek︸︷︷︸
=
∑
t∈T ak,tft

(by (13.200.1), applied to s=k)

=
∑
k∈S

bu,k
∑
t∈T

ak,tft =
∑
k∈S

∑
t∈T︸ ︷︷ ︸

=
∑
t∈T

∑
k∈S

bu,kak,tft

=
∑
t∈T

∑
k∈S

bu,kak,tft =
∑
t∈T

∑
k∈S

bu,kak,t


︸ ︷︷ ︸

=δu,t
(by (13.200.2), applied to

(u,t) instead of (s,t))

ft

=
∑
t∈T

δu,tft = δu,u︸︷︷︸
=1

fu +
∑
t∈T ;
t 6=u

δu,t︸︷︷︸
=0

(since t6=u)

ft

(here, we have split off the addend for t = u from the sum)

= fu +
∑
t∈T ;
t6=u

0ft

︸ ︷︷ ︸
=0

= fu.

This proves (13.200.3).
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(c) We have the following chain of logical equivalences:(
the family (es)s∈S spans the k-module M

)

⇐⇒


(
the k-submodule of M spanned by the family (es)s∈S

)︸ ︷︷ ︸
=(the k-submodule of M spanned by the family (ft)t∈T )

(by (13.200.5))

= M


⇐⇒

((
the k-submodule of M spanned by the family (ft)t∈T

)
= M

)
⇐⇒

(
the family (ft)t∈T spans the k-module M

)
.

In other words, the family (es)s∈S spans the k-module M if and only if the family (ft)t∈T spans the k-module
M . This proves Theorem 11.1.14(c).

(d) We shall show the following two claims:

Claim D1: If the family (ft)t∈T is k-linearly independent, then the family (es)s∈S is k-
linearly independent.

Claim D2: If the family (es)s∈S is k-linearly independent, then the family (ft)t∈T is k-
linearly independent.

Proof of Claim D1: Assume that the family (ft)t∈T is k-linearly independent. In other words, if (µt)t∈T ∈
kT is any family of elements of k satisfying

∑
t∈T µtft = 0, then

(13.200.6) (µt)t∈T = (0)t∈T .

Let (λs)s∈S ∈ kS be a family of elements of S such that
∑
s∈S λses = 0. We shall show that (λs)s∈S =

(0)s∈S .
We have

∑
s∈S λses = 0. Comparing this with

∑
s∈S

λs es︸︷︷︸
=
∑
t∈T as,tft

(by (13.200.1))

=
∑
s∈S

λs

(∑
t∈T

as,tft

)
=

∑
s∈S

∑
t∈T︸ ︷︷ ︸

=
∑
t∈T

∑
s∈S

λsas,tft

=
∑
t∈T

∑
s∈S

λsas,tft =
∑
t∈T

(∑
s∈S

λsas,t

)
ft,

we obtain
∑
t∈T

(∑
s∈S λsas,t

)
ft = 0. Hence, (13.200.6) (applied to µt =

∑
s∈S λsas,t) yields

(∑
s∈S λsas,t

)
t∈T =

(0)t∈T . In other words,

(13.200.7)
∑
s∈S

λsas,t = 0 for every t ∈ T.

But Lemma 13.199.2 yields

AB =

(∑
k∈T

as,kbk,t

)
(s,t)∈S×S

.

Hence, (∑
k∈T

as,kbk,t

)
(s,t)∈S×S

= AB = IS = (δs,t)(s,t)∈S×S

(by the definition of IS). In other words,

(13.200.8)
∑
k∈T

as,kbk,t = δs,t for every (s, t) ∈ S × S.
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Now, fix u ∈ S. Then,∑
s∈S

∑
k∈T

λsas,kbk,u =
∑
s∈S

λs
∑
k∈T

as,kbk,u︸ ︷︷ ︸
=δs,u

(by (13.200.8)
(applied to (s,u) instead of (s,t)))

=
∑
s∈S

λsδs,u

= λu δu,u︸︷︷︸
=1

+
∑
s∈S;
s6=u

λs δs,u︸︷︷︸
=0

(since s6=u)

(here, we have split off the addend for s = u from the sum)

= λu +
∑
s∈S;
s6=u

λs0

︸ ︷︷ ︸
=0

= λu.

Hence,

λu =
∑
s∈S

∑
k∈T︸ ︷︷ ︸

=
∑
k∈T

∑
s∈S

λsas,kbk,u =
∑
k∈T

∑
s∈S

λsas,kbk,u

=
∑
k∈T

(∑
s∈S

λsas,k

)
︸ ︷︷ ︸

=0
(by (13.200.7) (applied to t=k))

bk,u =
∑
k∈T

0bk,u = 0.

Now, forget that we fixed u. We thus have proven that λu = 0 for every u ∈ S. Renaming the index u as s
in this statement, we obtain the following: We have λs = 0 for every s ∈ S. In other words, (λs)s∈S = (0)s∈S .

Now, forget that we fixed (λs)s∈S . We thus have shown that if (λs)s∈S ∈ kS is a family of elements
of S such that

∑
s∈S λses = 0, then (λs)s∈S = (0)s∈S . In other words, the family (es)s∈S is k-linearly

independent. This proves Claim D1.
Proof of Claim D2: Theorem 11.1.14(a) shows that the family (ft)t∈T expands in the family (es)s∈S

through the matrix A−1. Moreover, we know that the matrix A−1 is invertible. Hence, we can apply Claim
D1 to T , S, (ft)t∈T , (es)s∈S and A−1 instead of S, T , (es)s∈S , (ft)t∈T and A. As a result, we conclude that
if the family (es)s∈S is k-linearly independent, then the family (ft)t∈T is k-linearly independent. Claim D2
is thus proven.

Now, Claim D1 and Claim D2 are two mutually converse implications. Combining these two implications,
we obtain an equivalence; this equivalence is precisely Theorem 11.1.14(d).

(e) The family (es)s∈S is a basis of the k-module M if and only if it spans the k-module M and is k-linearly
independent (by the definition of a basis). Thus, we have the following chain of logical equivalences:(

the family (es)s∈S is a basis of the k-module M
)

⇐⇒
(
the family (es)s∈S spans the k-module M and is k-linearly independent

)
⇐⇒

(
the family (es)s∈S spans the k-module M

)︸ ︷︷ ︸
⇐⇒ (the family (ft)t∈T spans the k-module M)

(by Theorem 11.1.14(c))

∧
(
the family (es)s∈S is k-linearly independent

)︸ ︷︷ ︸
⇐⇒ (the family (ft)t∈T is k-linearly independent)

(by Theorem 11.1.14(d))

⇐⇒
(
the family (ft)t∈T spans the k-module M

)
∧
(
the family (ft)t∈T is k-linearly independent

)
.(13.200.9)
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On the other hand, the family (ft)t∈T is a basis of the k-module M if and only if it spans the k-module
M and is k-linearly independent (by the definition of a basis). Thus, we have the following chain of logical
equivalences: (

the family (ft)t∈T is a basis of the k-module M
)

⇐⇒
(
the family (ft)t∈T spans the k-module M and is k-linearly independent

)
⇐⇒

(
the family (ft)t∈T spans the k-module M

)
∧
(
the family (ft)t∈T is k-linearly independent

)
⇐⇒

(
the family (es)s∈S is a basis of the k-module M

)
(by (13.200.9)) .

This proves Theorem 11.1.14(e). �

Thus, Exercise 11.1.15 is solved.

13.201. Solution to Exercise 11.1.20. Solution to Exercise 11.1.20.

Proof of Remark 11.1.17. (a) We shall prove the following two claims:

Claim A1: If the family (es)s∈S expands triangularly in the family (fs)s∈S , then every s ∈ S
satisfies

es = (a k-linear combination of the elements ft for t ∈ S satisfying t ≤ s) .
Claim A2: If every s ∈ S satisfies

es = (a k-linear combination of the elements ft for t ∈ S satisfying t ≤ s) ,
then the family (es)s∈S expands triangularly in the family (fs)s∈S .

Proof of Claim A1: Assume that the family (es)s∈S expands triangularly in the family (fs)s∈S . In other
words, there exists a triangular S × S-matrix A such that the family (es)s∈S expands in the family (fs)s∈S
through the matrix A. Consider this A.

Write the matrix A in the form A = (as,t)(s,t)∈S×S .

The family (es)s∈S expands in the family (fs)s∈S through the matrix A. In other words,

(13.201.1) every s ∈ S satisfies es =
∑
t∈S

as,tft.

Lemma 13.199.4 shows that

(13.201.2) every (s, t) ∈ S × S which does not satisfy t ≤ s must satisfy as,t = 0

(since A = (as,t)(s,t)∈S×S is a triangular S × S-matrix). Hence, every s ∈ S satisfies

es =
∑
t∈S

as,tft (by (13.201.1))

=
∑
t∈S;
t≤s

as,tft +
∑
t∈S;

not t≤s

as,t︸︷︷︸
=0

(by (13.201.2))

ft

=
∑
t∈S;
t≤s

as,tft +
∑
t∈S;

not t≤s

0ft

︸ ︷︷ ︸
=0

=
∑
t∈S;
t≤s

as,tft

= (a k-linear combination of the elements ft for t ∈ S satisfying t ≤ s) .
This proves Claim A1.

Proof of Claim A2: Assume that every s ∈ S satisfies

(13.201.3) es = (a k-linear combination of the elements ft for t ∈ S satisfying t ≤ s) .
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In other words, for every s ∈ S, there exists a family (cs,t)t∈S; t≤s ∈ k{t∈S|t≤s} such that

(13.201.4) es =
∑
t∈S;
t≤s

cs,tft.

Fix such a family for each s ∈ S.
Now, define an S × S-matrix B = (bs,t)(s,t)∈S×S ∈ kS×S by(

bs,t =

{
cs,t, if t ≤ s;
0, otherwise

for every (s, t) ∈ S × S

)
.

Every (s, t) ∈ S × S which does not satisfy t ≤ s must satisfy

(13.201.5) bs,t = 0 (by the definition of bs,t) .

In other words, the S × S-matrix B is triangular (by the definition of “triangular”).
On the other hand, every (s, t) ∈ S × S which satisfies t ≤ s must satisfy

(13.201.6) bs,t = cs,t (by the definition of bs,t) .

Now,

(13.201.7) every s ∈ S satisfies es =
∑
t∈S

bs,tft

1277. In other words, the family (es)s∈S expands in the family (fs)s∈S through the matrix B (since B =
(bs,t)(s,t)∈S×S). Hence, the family (es)s∈S expands triangularly in the family (fs)s∈S (since the matrix B is

triangular). This proves Claim A2.
We have now proven Claim A1 and Claim A2. These two claims are mutually converse implications.

Combining these two implications, we obtain an equivalence, which is precisely the statement of Re-
mark 11.1.17(a). Thus, Remark 11.1.17(a) is proven.

(b) We shall prove the following two claims:

Claim B1: If the family (es)s∈S expands invertibly triangularly in the family (fs)s∈S , then
every s ∈ S satisfies

es = αsfs + (a k-linear combination of the elements ft for t ∈ S satisfying t < s)

for some invertible αs ∈ k.

Claim B2: If every s ∈ S satisfies

es = αsfs + (a k-linear combination of the elements ft for t ∈ S satisfying t < s)

for some invertible αs ∈ k, then the family (es)s∈S expands invertibly triangularly in the
family (fs)s∈S .

Proof of Claim B1: Assume that the family (es)s∈S expands invertibly triangularly in the family (fs)s∈S .
In other words, there exists an invertibly triangular S × S-matrix A such that the family (es)s∈S expands
in the family (fs)s∈S through the matrix A. Consider this A.

Write the matrix A in the form A = (as,t)(s,t)∈S×S .

The family (es)s∈S expands in the family (fs)s∈S through the matrix A. In other words,

(13.201.8) every s ∈ S satisfies es =
∑
t∈S

as,tft.

1277Proof of (13.201.7): Let s ∈ S. Then, every t ∈ S satisfies either t ≤ s or (not t ≤ s). Hence,∑
t∈S

bs,tft =
∑
t∈S;
t≤s

bs,t︸︷︷︸
=cs,t

(by (13.201.6))

ft +
∑
t∈S;

not t≤s

bs,t︸︷︷︸
=0

(by (13.201.5))

ft =
∑
t∈S;
t≤s

cs,tft +
∑
t∈S;

not t≤s

0ft

︸ ︷︷ ︸
=0

=
∑
t∈S;
t≤s

cs,tft = es (by (13.201.4)) .

This proves (13.201.7).
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Lemma 13.199.7 shows that A ∈ TS (since A is an invertibly triangular S × S-matrix). Thus, Lemma
13.199.3 shows that A is a triangular S × S-matrix. Hence, Lemma 13.199.4 shows that

(13.201.9) every (s, t) ∈ S × S which does not satisfy t ≤ s must satisfy as,t = 0

(since A = (as,t)(s,t)∈S×S is a triangular S × S-matrix). Now, it is easy to show that every s ∈ S satisfies

es = αsfs + (a k-linear combination of the elements ft for t ∈ S satisfying t < s)

for some invertible αs ∈ k 1278. Thus, Claim B1 is proven.
Proof of Claim B2: Assume that every s ∈ S satisfies

(13.201.10) es = αsfs + (a k-linear combination of the elements ft for t ∈ S satisfying t < s)

for some invertible αs ∈ k. Consider this αs.
Now, for every s ∈ S, there exists a family (cs,t)t∈S; t<s ∈ k{t∈S|t<s} such that

(13.201.11) es − αsfs =
∑
t∈S;
t<s

cs,tft

1279. Fix such a family for each s ∈ S.
Now, define an S × S-matrix B = (bs,t)(s,t)∈S×S ∈ kS×S by(

bs,t =

{
cs,t, if t < s;

δs,tαs, otherwise
for every (s, t) ∈ S × S

)
.

Every (s, t) ∈ S × S which does not satisfy t ≤ s must satisfy

(13.201.12) bs,t = 0

1280. Hence, Lemma 13.199.5 (applied to B and bs,t instead of A and as,t) shows that B ∈ TS .

1278Proof. Let s ∈ S. Then, Lemma 13.199.8 shows that the element as,s of k is invertible.
But (13.201.8) yields

es =
∑
t∈S

as,tft =
∑
t∈S;
t≤s

as,tft +
∑
t∈S;

not t≤s

as,t︸︷︷︸
=0

(by (13.201.9))

ft

=
∑
t∈S;
t≤s

as,tft +
∑
t∈S;

not t≤s

0ft

︸ ︷︷ ︸
=0

=
∑
t∈S;
t≤s

as,tft = as,sfs +
∑
t∈S;

t≤s and t 6=s︸ ︷︷ ︸
=
∑
t∈S;
t<s

as,tft

(here, we have split off the addend for t = s from the sum)

= as,sfs +
∑
t∈S;
t<s

as,tft

︸ ︷︷ ︸
=(a k-linear combination of the elements ft for t∈S satisfying t<s)

= as,sfs + (a k-linear combination of the elements ft for t ∈ S satisfying t < s) .

Hence,

es = αsfs + (a k-linear combination of the elements ft for t ∈ S satisfying t < s)

for some invertible αs ∈ k (namely, for αs = as,s). Qed.
1279Proof. Let s ∈ S. Subtracting αsfs from both sides of (13.201.10), we obtain

es − αsfs = (a k-linear combination of the elements ft for t ∈ S satisfying t < s) .

In other words, there exists a family (cs,t)t∈S; t<s ∈ k{t∈S|t<s} such that es − αsfs =
∑
t∈S;
t<s

cs,tft.

1280Proof of (13.201.12): Let (s, t) ∈ S × S be such that we do not have t ≤ s.
We do not have t ≤ s. Thus, we do not have s = t (since s = t would imply t ≤ s). Hence, δs,t = 0.
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On the other hand, every (s, t) ∈ S × S which satisfies t < s must satisfy

bs,t =

{
cs,t, if t < s;

δs,tαs, otherwise
(by the definition of bs,t)

= cs,t (since t < s) .(13.201.13)

Moreover, every s ∈ S satisfies

bs,s =

{
cs,s, if s < s;

δs,sαs, otherwise
(by the definition of bs,s)

= δs,s︸︷︷︸
=1

αs (since we do not have s < s)

= αs.(13.201.14)

Now, recall that, for every s ∈ S, the element αs of k is invertible. In other words, for every s ∈ S, the
element bs,s of k is invertible (since bs,s = αs for every s ∈ S). Hence, Lemma 13.199.9 (applied to B and
bs,t instead of A and as,t) shows that B ∈ ITS . Thus, Lemma 13.199.6 (applied to B instead of A) shows
that B is an invertibly triangular S × S-matrix.

Now,

(13.201.15) every s ∈ S satisfies es =
∑
t∈S

bs,tft

1281. In other words, the family (es)s∈S expands in the family (fs)s∈S through the matrix B (since B =
(bs,t)(s,t)∈S×S). Hence, the family (es)s∈S expands invertibly triangularly in the family (fs)s∈S (since the

matrix B is invertibly triangular). This proves Claim B2.
We have now proven Claim B1 and Claim B2. These two claims are mutually converse implications.

Combining these two implications, we obtain an equivalence, which is precisely the statement of Re-
mark 11.1.17(b). Thus, Remark 11.1.17(b) is proven.

If we had t < s, then we would have t ≤ s, which would contradict the fact that we do not have t ≤ s. Hence, we do not

have t < s. Now, the definition of bs,t yields

bs,t =

{
cs,t, if t < s;

δs,tαs, otherwise
= δs,t︸︷︷︸

=0

αs (since we do not have t < s)

= 0.

This proves (13.201.12).
1281Proof of (13.201.15): Let s ∈ S. Then,∑

t∈S
bs,tft =

∑
t∈S;
t≤s

bs,tft +
∑
t∈S;

not t≤s

bs,t︸︷︷︸
=0

(by (13.201.9))

ft =
∑
t∈S;
t≤s

bs,tft +
∑
t∈S;

not t≤s

0ft

︸ ︷︷ ︸
=0

=
∑
t∈S;
t≤s

bs,tft = bs,s︸︷︷︸
=αs

(by (13.201.14))

fs +
∑
t∈S;

t≤s and t6=s︸ ︷︷ ︸
=
∑
t∈S;
t<s

bs,tft

(here, we have split off the addend for t = s from the sum)

= αsfs +
∑
t∈S;
t<s

bs,t︸︷︷︸
=cs,t

(by (13.201.13))

ft

= αsfs +
∑
t∈S;
t<s

cs,tft

︸ ︷︷ ︸
=es−αsfs

(by (13.201.11))

= αsfs + (es − αsfs) = es.

This proves (13.201.15).
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(c) The proof of Remark 11.1.17(c) is analogous to our above proof of Remark 11.1.17(b); the main differ-
ences are that “invertibly triangular” has to be replaced by “unitriangular”, and correspondingly conditions
of the form “as,s is invertible” are replaced by “as,s = 1”, and finally every occurrence of “αs” has to be
replaced by “1”. We leave the details to the reader. �

Proof of Corollary 11.1.19. The family (es)s∈S expands invertibly triangularly in the family (fs)s∈S . In
other words, there exists an invertibly triangular S×S-matrix A such that the family (es)s∈S expands in the
family (fs)s∈S through the matrix A (by the definition of what it means to “expand invertibly triangularly”).
Denote this A by B. Thus, B is an invertibly triangular S × S-matrix such that the family (es)s∈S expands
in the family (fs)s∈S through the matrix B.

Proposition 11.1.10(d) says that any invertibly triangular S × S-matrix is invertible, and that its inverse
is again invertibly triangular. In other words: If A is any invertibly triangular S × S-matrix, then A is
invertible, and its inverse A−1 is again invertibly triangular. We can apply this fact to A = B (since B is
an invertibly triangular S × S-matrix). Thus, we conclude that B is invertible, and that its inverse B−1 is
again invertibly triangular.

Since the matrix B is invertible, we can apply Theorem 11.1.14 to S, (fs)s∈S and B instead of T , (ft)t∈T
and A. Hence, parts (b), (c), (d) and (e) of Corollary 11.1.19 follow immediately from parts (b), (c), (d)
and (e) of Theorem 11.1.14 (applied to S, (fs)s∈S and B instead of T , (ft)t∈T and A). It remains to prove
Corollary 11.1.19(a).

(a) Theorem 11.1.14(a) (applied to S, (fs)s∈S and B instead of T , (ft)t∈T and A) shows that the family

(fs)s∈S expands in the family (es)s∈S through the matrix B−1. Hence, there exists an invertibly triangular
S × S-matrix A such that the family (fs)s∈S expands in the family (es)s∈S through the matrix A (namely,

A = B−1). In other words, the family (fs)s∈S expands invertibly triangularly in the family (es)s∈S (by the
definition of “expands invertibly triangularly”). This proves Corollary 11.1.19(a). As we said, this completes
the proof of Corollary 11.1.19. �

Thus, Exercise 11.1.20 is solved.
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