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1. The main inequality

In this note we are going to discuss two proofs and some applications of the following
inequality:

Theorem 1.1. Let a1; a2; :::; an; b1; b2; :::; bn be 2n reals. Assume thatP
1�i<j�n

aiaj � 0 or1
P

1�i<j�n
bibj � 0: Then,

 X
1�i6=j�n

aibj

!2
� 4

X
1�i<j�n

aiaj
X

1�i<j�n
bibj: (1.1)

A remark about notation:X
1�i6=j�n

is an abbreviation for
X

1�i�n; 1�j�n; i 6=j

:

An important particular case of Theorem 1.1 is obtained when we set n = 3; a1 = a;
a2 = b; a3 = c; b1 = x; b2 = y; b3 = z:

Theorem 1.2. Let a; b; c; x; y; z be six reals. Assume that bc+ca+ab � 0
or yz + zx+ xy � 0: Then,

(ay + az + bz + bx+ cx+ cy)2 � 4 (bc+ ca+ ab) (yz + zx+ xy) :

We are going to discuss in brief - and without proof - the equality case in Theorem
1.1. Before we can do this, we need to establish a notation:
The notation (a1; a2; :::; an) � (b1; b2; :::; bn) is going to mean that for every two

numbers i and j from the set f1; 2; :::; ng ; we have aibj = biaj: Note that if all numbers
b1; b2; :::; bn are nonzero, then (a1; a2; :::; an) � (b1; b2; :::; bn) is equivalent to

a1
b1
=
a2
b2
=

::: =
an
bn
:

Now, the question when equality holds in Theorem 1.1 can be answered:

Theorem 1.3. Let a1; a2; :::; an; b1; b2; :::; bn be 2n reals. Assume thatP
1�i<j�n

aiaj � 0 or
P

1�i<j�n
bibj � 0: Then, the inequality (1.1) becomes an

equality if and only if (at least) one of the following three cases holds:

Case 1: We have (a1; a2; :::; an) � (b1; b2; :::; bn) :
Case 2: We have

P
1�i6=j�n

aibj = 0 and
P

1�i<j�n
aiaj = 0:

Case 3: We have
P

1�i6=j�n
aibj = 0 and

P
1�i<j�n

bibj = 0:

1Here and in the following, "or" means a logical "or". That is, when we say "A or B", we mean
"at least one of the two assertions A and B holds".
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The proof of Theorem 1.3 is straightforward: Just follow our proofs of Theorem 1.1
and look out for possible equality cases.
Note that the 39th Yugoslav Federal Mathematical Competition 1998 featured a

weaker version of Theorem 1.1 as problem 1 for the 3rd and 4th grades - weaker because
it required the reals a1; a2; :::; an; b1; b2; :::; bn to be nonnegative (while Theorem 1.1
only requires one of the two relations

P
1�i<j�n

aiaj � 0 and
P

1�i<j�n
bibj � 0 to hold).

The n = 3 case of this weaker version was discussed with a number of proofs in [1].
We are not going to focus on these weaker versions here, but rather show Theorem 1.1
in its general case.

2. Two proofs of Theorem 1.1

First proof of Theorem 1.1. The following proof of Theorem 1.1 is inspired by
Sung-yoon Kim�s post #5 in [1]. The crux is the following fact:

Theorem 2.1, the Aczel inequality. If a and b are two reals, and a1;

a2; :::; an; b1; b2; :::; bn are 2n reals such that a2 �
nP
k=1

a2k; then

 
ab�

nX
k=1

akbk

!2
�
 
a2 �

nX
k=1

a2k

! 
b2 �

nX
k=1

b2k

!
: (2.1)

Proof of Theorem 2.1. Since a2 �
nP
k=1

a2k; we have a
2 �

nP
k=1

a2k � 0:

Now, if b2�
nP
k=1

b2k < 0; then
�
a2 �

nP
k=1

a2k

��
b2 �

nP
k=1

b2k

�
� 0 (since a2�

nP
k=1

a2k � 0),

so that (2.1) becomes trivial (since
�
ab�

nP
k=1

akbk

�2
� 0 �

�
a2 �

nP
k=1

a2k

��
b2 �

nP
k=1

b2k

�
).

Thus, Theorem 2.1 is proven in the case when b2�
nP
k=1

b2k < 0: It remains to prove The-

orem 2.1 in the case when b2 �
nP
k=1

b2k � 0:

Consequently, we assume that b2�
nP
k=1

b2k � 0 for the rest of this proof. Then, both

numbers a2 �
nP
k=1

a2k and b
2 �

nP
k=1

b2k are nonnegative, so that they have square roots.

Now, the Cauchy-Schwarz inequality yields

nX
k=1

a2k �
nX
k=1

b2k �
 

nX
k=1

akbk

!2
:

Taking the square root, we obtainvuut nX
k=1

a2k �
nX
k=1

b2k �
�����
nX
k=1

akbk

����� : (2.2)
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Hence,

jabj =
q
(ab)2 =

p
a2b2 =

vuut nX
k=1

a2k +

 
a2 �

nX
k=1

a2k

!! 
nX
k=1

b2k +

 
b2 �

nX
k=1

b2k

!!

�

vuut nX
k=1

a2k �
nX
k=1

b2k +

vuut a2 � nX
k=1

a2k

!
�
 
b2 �

nX
k=1

b2k

!
�
by Cauchy-Schwarz in the form

p
(u+ v) (u0 + v0) �

p
uu0 +

p
vv0;

applied to u =
nX
k=1

a2k; v = a
2 �

nX
k=1

a2k; u
0 =

nX
k=1

b2k; v
0 = b2 �

nX
k=1

b2k;

what is possible because these u; v; u0; v0 are all nonnegative)

�
�����
nX
k=1

akbk

�����+
vuut a2 � nX

k=1

a2k

!
�
 
b2 �

nX
k=1

b2k

!
(by (2.2)) ;

so that

jabj �
�����
nX
k=1

akbk

����� �
vuut a2 � nX

k=1

a2k

!
�
 
b2 �

nX
k=1

b2k

!
:

Since the right hand side of this inequality is � 0 (because it is a square root), the left
hand side must also be � 0 (since it is greater or equal than the right hand side), and
thus we can square this inequality. Upon squaring it, we obtain 

jabj �
�����
nX
k=1

akbk

�����
!2
�
 
a2 �

nX
k=1

a2k

!
�
 
b2 �

nX
k=1

b2k

!
:

Since jx� yj � jjxj � jyjj for any two reals x and y; we have
����ab� nP

k=1

akbk

���� � ����jabj � ���� nP
k=1

akbk

�������� :
Squaring this inequality, we obtain

�
ab�

nP
k=1

akbk

�2
�
�
jabj �

���� nP
k=1

akbk

�����2 : Thus, 
ab�

nX
k=1

akbk

!2
�
 
jabj �

�����
nX
k=1

akbk

�����
!2
�
 
a2 �

nX
k=1

a2k

!
�
 
b2 �

nX
k=1

b2k

!
;

and Theorem 2.1 is proven.
Now on to the proof of Theorem 1.1:
According to the condition of Theorem 1.1, we have

P
1�i<j�n

aiaj � 0 or
P

1�i<j�n
bibj �

0:We canWLOG assume that
P

1�i<j�n
aiaj � 0 holds. Denote a =

nP
k=1

ak and b =
nP
k=1

bk:

Then,

a2 =

 
nX
k=1

ak

!2
=

nX
k=1

a2k + 2
X

1�i<j�n
aiaj| {z }

�0

�
nX
k=1

a2k:
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Hence, we can apply Theorem 2.1 and obtain 
ab�

nX
k=1

akbk

!2
�
 
a2 �

nX
k=1

a2k

! 
b2 �

nX
k=1

b2k

!
: (2.3)

But

ab�
nX
k=1

akbk =
nX
k=1

ak �
nX
k=1

bk�
nX
k=1

akbk =
X

1�i�n; 1�j�n
aibj�

X
1�i=j�n

aibj =
X

1�i6=j�n

aibj;

and also

a2�
nX
k=1

a2k =

 
nX
k=1

ak

!2
�

nX
k=1

a2k =

 
nX
k=1

a2k + 2
X

1�i<j�n
aiaj

!
�

nX
k=1

a2k = 2
X

1�i<j�n
aiaj;

and similarly

b2 �
nX
k=1

b2k = 2
X

1�i<j�n
bibj:

Hence, (2.3) becomes X
1�i6=j�n

aibj

!2
� 2

X
1�i<j�n

aiaj � 2
X

1�i<j�n
bibj:

This is obviously equivalent to (1.1). Thus, (1.1) holds, so that Theorem 1.1 is proven.
Second proof of Theorem 1.1. We start with something trivial:

Lemma 2.2. If u1; u2; :::; un are n reals such that
nP
k=1

uk = 0; thenP
1�i<j�n

uiuj � 0:

Proof of Lemma 2.2. The condition
nP
k=1

uk = 0 yields

nX
k=1

u2k � 0 (since a sum of squares is always � 0)

= 02 =

 
nX
k=1

uk

!2
=

nX
k=1

u2k + 2
X

1�i<j�n
uiuj;

so that 0 � 2
P

1�i<j�n
uiuj and thus

P
1�i<j�n

uiuj � 0: This proves Lemma 2.2.

Now to the proof of Theorem 1.1: According to the condition of Theorem 1.1, we
have

P
1�i<j�n

aiaj � 0 or
P

1�i<j�n
bibj � 0: We WLOG assume that

P
1�i<j�n

aiaj � 0

holds.
If

nP
k=1

ak = 0; then Lemma 2.2 (applied to the reals a1; a2; :::; an as u1; u2; :::; un)

yields
P

1�i<j�n
aiaj � 0; what, together with

P
1�i<j�n

aiaj � 0; leads to
P

1�i<j�n
aiaj = 0;
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so that the inequality (1.1) becomes trivial (because its left hand side,

 P
1�i6=j�n

aibj

!2
;

is � 0 since it is a square, and its right hand side, 4
P

1�i<j�n
aiaj

P
1�i<j�n

bibj; equals 0

because of
P

1�i<j�n
aiaj = 0). Hence, Theorem 1.1 is proven in the case when

nP
k=1

ak = 0:

Therefore, for the rest of our proof of Theorem 1.1, we will assume that
nP
k=1

ak 6= 0:

Then, we can de�ne a real t =

nP
k=1

bk

nP
k=1

ak

; and set ci = bi � tai for every i 2 f1; 2; :::; ng :

Then,

nX
k=1

ck =
nX
k=1

(bk � tak) =
nX
k=1

bk� t
nX
k=1

ak =
nX
k=1

bk�

nP
k=1

bk

nP
k=1

ak

nX
k=1

ak =
nX
k=1

bk�
nX
k=1

bk = 0:

Hence, we can apply Lemma 2.2 to the reals c1; c2; :::; cn as u1; u2; :::; un; and obtainP
1�i<j�n

cicj � 0: Together with
P

1�i<j�n
aiaj � 0; this yields 4

P
1�i<j�n

aiaj
P

1�i<j�n
cicj �

0:

Since

 P
1�i6=j�n

aicj

!2
� 0 (because squares are always � 0), and since subtracting

something nonpositive from something nonnegative yields something nonnegative, we
thus get  X

1�i6=j�n

aicj

!2
� 4

X
1�i<j�n

aiaj
X

1�i<j�n
cicj � 0:
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But X
1�i6=j�n

aicj

!2
� 4

X
1�i<j�n

aiaj
X

1�i<j�n
cicj

=

 X
1�i6=j�n

ai (bj � taj)
!2
� 4

X
1�i<j�n

aiaj
X

1�i<j�n
(bi � tai) (bj � taj)

=

 X
1�i6=j�n

(aibj � taiaj)
!2
� 4

X
1�i<j�n

aiaj
X

1�i<j�n

�
bibj + t

2aiaj � taibj � tajbi
�

=

 X
1�i6=j�n

aibj � t
X

1�i6=j�n

aiaj

!2

� 4
X

1�i<j�n
aiaj

 X
1�i<j�n

bibj + t
2
X

1�i<j�n
aiaj � t

 X
1�i<j�n

aibj +
X

1�i<j�n
ajbi

!!

=

 X
1�i6=j�n

aibj � 2t
X

1�i<j�n
aiaj

!2
� 4

X
1�i<j�n

aiaj

 X
1�i<j�n

bibj + t
2
X

1�i<j�n
aiaj � t

X
1�i6=j�n

aibj

!

=

 X
1�i6=j�n

aibj

!2
� 4t �

X
1�i6=j�n

aibj �
X

1�i<j�n
aiaj + 4t

2 �
 X
1�i<j�n

aiaj

!2

� 4
X

1�i<j�n
aiaj �

X
1�i<j�n

bibj � 4t2 �
 X
1�i<j�n

aiaj

!2
+ 4t �

X
1�i6=j�n

aibj �
X

1�i<j�n
aiaj

=

 X
1�i6=j�n

aibj

!2
� 4

X
1�i<j�n

aiaj �
X

1�i<j�n
bibj:

Hence,  X
1�i6=j�n

aibj

!2
� 4

X
1�i<j�n

aiaj �
X

1�i<j�n
bibj � 0:

This immediately yields (1.1). Theorem 1.1 is therefore proved once again.

3. The �rst applications

The next paragraphs are devoted to various applications of Theorem 1.1. We start
with a very easy one:

Theorem 3.1. Let r � 1 be a real, and let a; b; c be three nonnegative
reals satisfying bc+ca+ab � 3: Then, ar (b+ c)+br (c+ a)+cr (a+ b) � 6:

Note that this theorem is a slightly extended version of [3], problem 5.2.14 and
problem 8.2.21. The original source of this inequality is: Walther Janous and Vasile
Cîrtoaje, CM, 5, 2003.
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Proof of Theorem 3.1. Applying Theorem 1.2 for x = ar; y = br; z = cr (obviously,
bc+ ca+ ab � 0 holds because a; b; c are nonnegative), we get

(abr + acr + bcr + bar + car + cbr)2 � 4 (bc+ ca+ ab) (brcr + crar + arbr) :
This rewrites as

(ar (b+ c) + br (c+ a) + cr (a+ b))2 � 4 (bc+ ca+ ab) ((bc)r + (ca)r + (ab)r) :
After taking the square root, this becomes

ar (b+ c) + br (c+ a) + cr (a+ b) � 2
q
(bc+ ca+ ab) ((bc)r + (ca)r + (ab)r):

Now, bc+ca+ab � 3; and since r � 1; the power mean inequality yields r

r
(bc)r + (ca)r + (ab)r

3
�

bc+ ca+ ab

3
� 3

3
= 1; so

(bc)r + (ca)r + (ab)r

3
� 1r = 1; so that (bc)r+(ca)r+(ab)r �

3: Hence,

ar (b+ c) + br (c+ a) + cr (a+ b) � 2
q
(bc+ ca+ ab) ((bc)r + (ca)r + (ab)r)

� 2
p
3 � 3 = 6;

and Theorem 3.1 is proven.

4. Walther Janous for n variables

Our next application is a generalization of a known inequality by Walther Janous.
First we settle an auxiliary fact:

Theorem 4.1. Let x1; x2; :::; xn be nonnegative real numbers such that
x1 + x2 + :::+ xn = 1; and no n� 1 of these numbers are 0: Then,X

1�i<j�n

xixj
(1� xi) (1� xj)

� n

2 (n� 1) :

This Theorem 4.1 is problem 6.3.12 in [3], where it is proven using the Arithmetic
Compensation Method, and is due to Gabriel Dospinescu (who is also known under
the nickname Harazi).
Proof of Theorem 4.1. First,X

1�i<j�n

xixj
(1� xi) (1� xj)

=
X

1�i<j�n

(xixj)
2

xi (1� xi) � xj (1� xj)
:

By the Cauchy-Schwarz inequality in the Engel form2,

X
1�i<j�n

(xixj)
2

xi (1� xi) � xj (1� xj)
�

 P
1�i<j�n

xixj

!2
P

1�i<j�n
xi (1� xi) � xj (1� xj)

:

2The Cauchy-Schwarz inequality in the Engel form is the inequality
nX
i=1

a2i
bi
� (a1 + a2 + :::+ an)

2

b1 + b2 + :::+ bn
;

which holds for any n reals a1; a2; :::; an and any n positive reals b1; b2; :::; bn:
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Hence, in order to prove thatX
1�i<j�n

xixj
(1� xi) (1� xj)

� n

2 (n� 1) ;

it remains to verify  P
1�i<j�n

xixj

!2
P

1�i<j�n
xi (1� xi) � xj (1� xj)

� n

2 (n� 1) : (4.1)

ButX
1�i<j�n

xixj =
1

2
�
 X
1�i<j�n

xixj +
X

1�i<j�n
xixj

!
=
1

2
�
 X
1�i<j�n

xixj +
X

1�j<i�n
xixj

!

=
1

2
�

X
1�i�n; 1�j�n; i6=j

xixj =
1

2
�

nX
i=1

xi
X

1�j�n; j 6=i

xj

=
1

2
�

nX
i=1

xi ((x1 + x2 + :::+ xn)� xi) =
1

2
�

nX
i=1

xi (1� xi) : (4.2)

But for any n reals u1; u2; :::; un; we have

(u1 + u2 + :::+ un)
2 � 2n

n� 1
X

1�i<j�n
uiuj: (4.3)

This can be veri�ed as follows: We have

(u1 + u2 + :::+ un)
2 =

�
u21 + u

2
2 + :::+ u

2
n

�
+2

X
1�i<j�n

uiuj �
1

n
(u1 + u2 + :::+ un)

2+2
X

1�i<j�n
uiuj

(because of the inequality u21+ u
2
2+ :::+ u

2
n �

1

n
(u1 + u2 + :::+ un)

2 that follows from

QM-AM), so that

(u1 + u2 + :::+ un)
2 � 1

n
(u1 + u2 + :::+ un)

2 � 2
X

1�i<j�n
uiuj; what becomes

n� 1
n

� (u1 + u2 + :::+ un)2 � 2
X

1�i<j�n
uiuj; what becomes

(u1 + u2 + :::+ un)
2 � 2n

n� 1
X

1�i<j�n
uiuj;

and thus (4.3) is proven.
Now, according to (4.2), we have X

1�i<j�n
xixj

!2
=

 
1

2
�

nX
i=1

xi (1� xi)
!2
=
1

4
�
 

nX
i=1

xi (1� xi)
!2

� 1

4
� 2n

n� 1
X

1�i<j�n
xi (1� xi) � xj (1� xj) (where we used (4.3) for ui = xi (1� xi) )

=
n

2 (n� 1) �
X

1�i<j�n
xi (1� xi) � xj (1� xj) ;
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so that  P
1�i<j�n

xixj

!2
P

1�i<j�n
xi (1� xi) � xj (1� xj)

� n

2 (n� 1) ;

and (4.1) is proven. This proves Theorem 4.1.
What I �nd interesting is that Theorem 4.1 can be made stronger - the condition

that x1; x2; :::; xn are nonnegative can be replaced by the weaker condition that xi < 1
for every i 2 f1; 2; :::; ng : The resulting fact is, however, more di¢ cult to prove - see
[4].
Now we come to the main result:

Theorem 4.2. Let a1; a2; :::; an; b1; b2; :::; bn be 2n nonnegative reals.
Then,

nX
i=1

aiP
1�j�n; j 6=i

aj

X
1�j�n; j 6=i

bj �
s

2n

n� 1 �
X

1�i<j�n
bibj �

2n

n� 1 �

P
1�i<j�n

bibj

nP
i=1

bi

:

As a particular case of Theorem 4.2 (for n = 3; a1 = a; a2 = b; a3 = c; b1 = u;
b2 = v; b3 = w), we obtain:

Theorem 4.3. If a; b; c; u; v; w are six nonnegative reals, then

a

b+ c
(v + w)+

b

c+ a
(w + u)+

c

a+ b
(u+ v) �

p
3 (vw + wu+ uv) � 3 (vw + wu+ uv)

u+ v + w
:

This inequality is a strengthening of the celebrated inequality

a

b+ c
(v + w) +

b

c+ a
(w + u) +

c

a+ b
(u+ v) � 3 (vw + wu+ uv)

u+ v + w
;

which was proposed by Walther Janous as Crux Mathematicorum problem #1672, and
discussed in [5] (among other places).
Proof of Theorem 4.2. WLOG assume that a1 + a2 + ::: + an = 1: For every

i 2 f1; 2; :::; ng ; denote

ci =
aiP

1�j�n; j 6=i
aj
=

ai
(a1 + a2 + :::+ an)� ai

=
ai

1� ai
:

Then,
nX
i=1

aiP
1�j�n; j 6=i

aj

X
1�j�n; j 6=i

bj =

nX
i=1

ci
X

1�j�n; j 6=i

bj =
X

1�i6=j�n

cibj: (4.4)

But according to Theorem 1.1, we have X
1�i6=j�n

cibj

!2
� 4

X
1�i<j�n

cicj
X

1�i<j�n
bibj;
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so that, after taking the square root,X
1�i6=j�n

cibj � 2
s X
1�i<j�n

cicj
X

1�i<j�n
bibj: (4.5)

But X
1�i<j�n

cicj =
X

1�i<j�n

ai
1� ai

� aj
1� aj

=
X

1�i<j�n

aiaj
(1� ai) (1� aj)

;

and Theorem 4.1 yields X
1�i<j�n

aiaj
(1� ai) (1� aj)

� n

2 (n� 1) :

Hence, X
1�i<j�n

cicj �
n

2 (n� 1) :

Therefore,

nX
i=1

aiP
1�j�n; j 6=i

aj

X
1�j�n; j 6=i

bj =
X

1�i6=j�n

cibj (by (4.4))

� 2
s X

1�i<j�n
cicj

X
1�i<j�n

bibj (by (4.5))

� 2
s

n

2 (n� 1) �
X

1�i<j�n
bibj =

s
2n

n� 1 �
X

1�i<j�n
bibj:

Hence, it remains only to prove that

s
2n

n� 1 �
X

1�i<j�n
bibj �

2n

n� 1 �

P
1�i<j�n

bibj

nP
i=1

bi

:

Upon squaring, this becomes

2n

n� 1 �
X

1�i<j�n
bibj �

0BB@ 2n

n� 1 �

P
1�i<j�n

bibj

nP
i=1

bi

1CCA
2

;

and simpli�es to  
nX
i=1

bi

!2
� 2n

n� 1 �
X

1�i<j�n
bibj:

But this is the inequality (4.3), applied to u1 = b1; u2 = b2; :::; un = bn:
This completes the proof of Theorem 4.2.

5. Another application
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As another consequence of Theorem 1.1, we can show:

Theorem 5.1. For any three reals a; b; c; we have

((b+ c) bc+ (c+ a) ca+ (a+ b) ab)2 � 4 (bc+ ca+ ab)
�
b2c2 + c2a2 + a2b2

�
:

Proof of Theorem 5.1. Applying Theorem 1.2 for x = a2; y = b2; z = c2 (obviously,
yz + zx+ xy � 0 is satis�ed since yz + zx+ xy = b2c2 + c2a2 + a2b2), we get�

ab2 + ac2 + bc2 + ba2 + ca2 + cb2
�
� 4 (bc+ ca+ ab)

�
b2c2 + c2a2 + a2b2

�
;

what rewrites as

((b+ c) bc+ (c+ a) ca+ (a+ b) ab)2 � 4 (bc+ ca+ ab)
�
b2c2 + c2a2 + a2b2

�
;

and Theorem 5.1 is proven.
Note that the particular case of Theorem 5.1 when the reals a; b; c are nonnegative

was used as Lemma 3 in [6], post #2.
With the help of Theorem 5.1, the following result can be shown:

Theorem 5.2. Let a; b; c be three reals, no two of which are zero. Then,

a2 (b+ c)2

b2 + c2
+
b2 (c+ a)2

c2 + a2
+
c2 (a+ b)2

a2 + b2
� 2 (bc+ ca+ ab) :

Proof of Theorem 5.2. We have

a2 (b+ c)2

b2 + c2
+
b2 (c+ a)2

c2 + a2
+
c2 (a+ b)2

a2 + b2
=
(a2 (b+ c))

2

a2b2 + c2a2
+
(b2 (c+ a))

2

b2c2 + a2b2
+
(c2 (a+ b))

2

c2a2 + b2c2

� (a2 (b+ c) + b2 (c+ a) + c2 (a+ b))
2

(a2b2 + c2a2) + (b2c2 + a2b2) + (c2a2 + b2c2)

by the Cauchy-Schwarz inequality in the Engel form. Thus, it remains to prove that

(a2 (b+ c) + b2 (c+ a) + c2 (a+ b))
2

(a2b2 + c2a2) + (b2c2 + a2b2) + (c2a2 + b2c2)
� 2 (bc+ ca+ ab) :

This rewrites as

((b+ c) bc+ (c+ a) ca+ (a+ b) ab)2

2 (b2c2 + c2a2 + a2b2)
� 2 (bc+ ca+ ab) ;

what simpli�es to

((b+ c) bc+ (c+ a) ca+ (a+ b) ab)2 � 4 (bc+ ca+ ab)
�
b2c2 + c2a2 + a2b2

�
:

But this follows from Theorem 5.1. Thus, Theorem 5.2 is proved.
The particular case of Theorem 5.2 when the reals a; b; c are nonnegative is problem

7.8.1 in [3], where it is proven using the Sum of Squares (SOS) method.

6. An USA TST problem

11



Our �nal application of Theorem 1.1 will be problem 6 from the USA TST 2001,
which has received some di¤erent solutions in [2]:

Theorem 6.1. Let a; b; c be three positive reals such that a+ b+ c � abc:
Then, at least two of the three inequalities

2

a
+
3

b
+
6

c
� 6; 2

b
+
3

c
+
6

a
� 6

and
2

c
+
3

a
+
6

b
� 6 are true.

Proof of Theorem 6.1. Assume the contrary, i. e. assume that at most one of the

three inequalities
2

a
+
3

b
+
6

c
� 6; 2

b
+
3

c
+
6

a
� 6 and 2

c
+
3

a
+
6

b
� 6 is true. Then, we

can WLOG say that
2

b
+
3

c
+
6

a
< 6 and

2

c
+
3

a
+
6

b
< 6: But, applying Theorem 1.2

to the six reals 2; 3; 6;
1

a
;
1

b
;
1

c
(which surely satisfy 3 � 6 + 6 � 2 + 2 � 3 � 0), we obtain

�
2 � 1
b
+ 2 � 1

c
+ 3 � 1

c
+ 3 � 1

a
+ 6 � 1

a
+ 6 � 1

b

�2
� 4 (3 � 6 + 6 � 2 + 2 � 3)

�
1

b
� 1
c
+
1

c
� 1
a
+
1

a
� 1
b

�
:

In other words,��
2

b
+
3

c
+
6

a

�
+

�
2

c
+
3

a
+
6

b

��2
� 4 � 36 � a+ b+ c

abc
:

Since a+ b+ c � abc; we have a+ b+ c
abc

� 1; and thus this entails

��
2

b
+
3

c
+
6

a

�
+

�
2

c
+
3

a
+
6

b

��2
� 4 � 36:

On the other hand,
2

b
+
3

c
+
6

a
< 6 and

2

c
+
3

a
+
6

b
< 6 imply

��
2

b
+
3

c
+
6

a

�
+

�
2

c
+
3

a
+
6

b

��2
< (6 + 6)2 = 4 � 36:

This is a contradiction. Hence, our assumption was wrong, and Theorem 6.1 is proved.
As a sidenote, a di¤erent proof of Theorem 6.1 can be obtained by showing that�
2

b
+
3

c
+
6

a

��
2

c
+
3

a
+
6

b

�
� (3 � 6 + 6 � 2 + 2 � 3)

�
1

b
� 1
c
+
1

c
� 1
a
+
1

a
� 1
b

�
:

This follows from Theorem 10 j) in my note [7], applied to the six nonnegative reals 2;

3; 6;
1

a
;
1

b
;
1

c
(noting that 2; 3; 6 are the squares of the sidelengths of a triangle).
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