A few facts on integrality

Darij Grinberg
Version 3 (18 August 2009, a mistake fixed later ${ }^{1}$)
The purpose of this note is to collect some theorems and proofs related to integrality in commutative algebra. The note is subdivided into three parts.

Part 1 (Integrality over rings) consists of known facts (Theorems 1, 4, 5) and a generalized exercise from [1] (Corollary 3) with a few minor variations (Theorem 2 and Corollary 6).

Part 2 (Integrality over ideal semifiltrations) merges integrality over rings (as considered in Part 1) and integrality over ideals (a less-known but still very useful notion; the book [2] is devoted to it) into one general notion - that of integrality over ideal semifiltrations (Definition 9). This notion is very general, yet it can be reduced to the basic notion of integrality over rings by a suitable change of base ring (Theorem 7). This reduction allows to extend some standard properties of integrality over rings to the general case (Theorems 8 and 9).

Part 3 (Generalizing to two ideal semifiltrations) continues Part 2, adding one more layer of generality. Its main result is a "relative" version of Theorem 7 (Theorem 11) and a known fact generalized one more time (Theorem 13).

This note is supposed to be self-contained (only linear algebra and basic knowledge about rings, ideals and polynomials is assumed). The proofs are constructive. However, when writing down the proofs I focussed on maximal detail (to ensure correctness) rather than on clarity, so the proofs are probably a pain to read. I think of making a short version of this note with the obvious parts of proofs left out.

Preludium

Definitions and notations:

Definition 1. In the following, "ring" will always mean "commutative ring with unity". We denote the set $\{0,1,2, \ldots\}$ by \mathbb{N}, and the set $\{1,2,3, \ldots\}$ by \mathbb{N}^{+}.

Definition 2. Let A be a ring, and let $n \in \mathbb{N}$. Let M be an A-module. If m_{1}, m_{2}, \ldots, m_{n} are n elements of M, then we define an A-submodule $\left\langle m_{1}, m_{2}, \ldots, m_{n}\right\rangle_{A}$ of M by

$$
\left\langle m_{1}, m_{2}, \ldots, m_{n}\right\rangle_{A}=\left\{\sum_{i=1}^{n} a_{i} m_{i} \mid\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A^{n}\right\}
$$

Also, if S is a finite set, and m_{s} is an element of M for every $s \in S$, then we define an A-submodule $\left\langle m_{s} \mid s \in S\right\rangle_{A}$ of M by

$$
\left\langle m_{s} \mid s \in S\right\rangle_{A}=\left\{\sum_{s \in S} a_{s} m_{s} \mid\left(a_{s}\right)_{s \in S} \in A^{S}\right\}
$$

Of course, if $m_{1}, m_{2}, \ldots, m_{n}$ are n elements of M, then

$$
\left\langle m_{1}, m_{2}, \ldots, m_{n}\right\rangle_{A}=\left\langle m_{s} \mid s \in\{1,2, \ldots, n\}\right\rangle_{A}
$$

[^0]Definition 3. Let A be a ring, and let $n \in \mathbb{N}$. Let M be an A-module. We say that the A-module M is n-generated if there exist n elements $m_{1}, m_{2}, \ldots, m_{n}$ of M such that $M=\left\langle m_{1}, m_{2}, \ldots, m_{n}\right\rangle_{A}$. In other words, the A-module M is n-generated if and only if there exists a set S and an element m_{s} of M for every $s \in S$ such that $|S|=n$ and $M=\left\langle m_{s} \mid s \in S\right\rangle_{A}$.

Definition 4. Let A and B be two rings. We say that $A \subseteq B$ if and only if
(the set A is a subset of the set B)
and (the inclusion map $A \rightarrow B$ is a ring homomorphism).
Now assume that $A \subseteq B$. Then, obviously, B is canonically an A-algebra (since $A \subseteq$ $B)$. If $u_{1}, u_{2}, \ldots, u_{n}$ are n elements of B, then we define an A-subalgebra $A\left[u_{1}, u_{2}, \ldots, u_{n}\right]$ of B by

$$
A\left[u_{1}, u_{2}, \ldots, u_{n}\right]=\left\{P\left(u_{1}, u_{2}, \ldots, u_{n}\right) \mid P \in A\left[X_{1}, X_{2}, \ldots, X_{n}\right]\right\}
$$

In particular, if u is an element of B, then the A-subalgebra $A[u]$ of B is defined by

$$
A[u]=\{P(u) \mid P \in A[X]\} .
$$

Since $A[X]=\left\{\sum_{i=0}^{m} a_{i} X^{i} \mid m \in \mathbb{N}\right.$ and $\left.\left(a_{0}, a_{1}, \ldots, a_{m}\right) \in A^{m+1}\right\}$, this becomes

$$
\begin{aligned}
A[u]= & \left\{\left(\sum_{i=0}^{m} a_{i} X^{i}\right)(u) \mid m \in \mathbb{N} \text { and }\left(a_{0}, a_{1}, \ldots, a_{m}\right) \in A^{m+1}\right\} \\
& \quad\left(\text { where }\left(\sum_{i=0}^{m} a_{i} X^{i}\right)(u) \text { means the polynomial } \sum_{i=0}^{m} a_{i} X^{i} \text { evaluated at } X=u\right) \\
= & \left\{\sum_{i=0}^{m} a_{i} u^{i} \mid m \in \mathbb{N} \text { and }\left(a_{0}, a_{1}, \ldots, a_{m}\right) \in A^{m+1}\right\} \\
& \left(\text { because }\left(\sum_{i=0}^{m} a_{i} X^{i}\right)(u)=\sum_{i=0}^{m} a_{i} u^{i}\right) .
\end{aligned}
$$

Obviously, $u A[u] \subseteq A[u]$ (since $A[u]$ is an A-algebra and $u \in A[u]$).

1. Integrality over rings

Theorem 1. Let A and B be two rings such that $A \subseteq B$. Obviously, B is canonically an A-module (since $A \subseteq B$). Let $n \in \mathbb{N}$. Let $u \in B$. Then, the following four assertions $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and \mathcal{D} are pairwise equivalent:
Assertion \mathcal{A} : There exists a monic polynomial $P \in A[X]$ with $\operatorname{deg} P=n$ and $P(u)=0$.
Assertion \mathcal{B} : There exists an n-generated A-submodule U of B such that $u U \subseteq U$ and such that $v=0$ for every $v \in B$ satisfying $v U=0$.
Assertion \mathcal{C} : There exists an n-generated A-submodule U of B such that $1 \in U$ and $u U \subseteq U$.
Assertion \mathcal{D} : We have $A[u]=\left\langle u^{0}, u^{1}, \ldots, u^{n-1}\right\rangle_{A}$.

Definition 5. Let A and B be two rings such that $A \subseteq B$. Let $n \in \mathbb{N}$. Let $u \in B$. We say that the element u of B is n-integral over A if it satisfies the four equivalent assertions $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and \mathcal{D} of Theorem 1 .

Hence, u is n-integral over A if and only if there exists a monic polynomial $P \in A[X]$ with $\operatorname{deg} P=n$ and $P(u)=0$.

Proof of Theorem 1. We will prove the implications $\mathcal{A} \Longrightarrow \mathcal{C}, \mathcal{C} \Longrightarrow \mathcal{B}, \mathcal{B} \Longrightarrow \mathcal{A}$, $\mathcal{A} \Longrightarrow \mathcal{D}$ and $\mathcal{D} \Longrightarrow \mathcal{C}$.

Proof of the implication $\mathcal{A} \Longrightarrow \mathcal{C}$. Assume that Assertion \mathcal{A} holds. Then, there exists a monic polynomial $P \in A[X]$ with $\operatorname{deg} P=n$ and $P(u)=0$. Since $P \in A[X]$ is a monic polynomial with $\operatorname{deg} P=n$, there exist elements $a_{0}, a_{1}, \ldots, a_{n-1}$ of A such that $P(X)=X^{n}+\sum_{k=0}^{n-1} a_{k} X^{k}$. Thus, $P(u)=u^{n}+\sum_{k=0}^{n-1} a_{k} u^{k}$, so that $P(u)=0$ becomes $u^{n}+\sum_{k=0}^{n-1} a_{k} u^{k}=0$. Hence, $u^{n}=-\sum_{k=0}^{n-1} a_{k} u^{k}$.

Let U be the A-submodule $\left\langle u^{0}, u^{1}, \ldots, u^{n-1}\right\rangle_{A}$ of B. Then, U is an n-generated A-module (since $u^{0}, u^{1}, \ldots, u^{n-1}$ are n elements of U). Besides, $1=u^{0} \in U$.

Now, $u \cdot u^{k} \in U$ for any $k \in\{0,1, \ldots, n-1\}$ (since $k \in\{0,1, \ldots, n-1\}$ yields either $0 \leq k<n-1$ or $k=n-1$, but $u \cdot u^{k}=u^{k+1} \in\left\langle u^{0}, u^{1}, \ldots, u^{n-1}\right\rangle_{A}=U$ if $0 \leq k<n-1$, and $u \cdot u^{k}=u \cdot u^{n-1}=u^{n}=-\sum_{k=0}^{n-1} a_{k} u^{k} \in\left\langle u^{0}, u^{1}, \ldots, u^{n-1}\right\rangle_{A}=U$ if $k=n-1$, so that $u \cdot u^{k} \in U$ in both cases). Hence,

$$
u U=u\left\langle u^{0}, u^{1}, \ldots, u^{n-1}\right\rangle_{A}=\left\langle u \cdot u^{0}, u \cdot u^{1}, \ldots, u \cdot u^{n-1}\right\rangle_{A} \subseteq U
$$

(since $u \cdot u^{k} \in U$ for any $k \in\{0,1, \ldots, n-1\}$).
Thus, Assertion \mathcal{C} holds. Hence, we have proved that $\mathcal{A} \Longrightarrow \mathcal{C}$.
Proof of the implication $\mathcal{C} \Longrightarrow \mathcal{B}$. Assume that Assertion \mathcal{C} holds. Then, there exists an n-generated A-submodule U of B such that $1 \in U$ and $u U \subseteq U$. We have $v=0$ for every $v \in B$ satisfying $v U=0$ (since $1 \in U$ and $v U=0$ yield $v \cdot \underbrace{1}_{\in U} \in v U=0$ and thus $v \cdot 1=0$, so that $v=0$). Thus, Assertion \mathcal{B} holds. Hence, we have proved that $\mathcal{C} \Longrightarrow \mathcal{B}$.

Proof of the implication $\mathcal{B} \Longrightarrow \mathcal{A}$. Assume that Assertion \mathcal{B} holds. Then, there exists an n-generated A-submodule U of B such that $u U \subseteq U$ and such that $v=0$ for every $v \in B$ satisfying $v U=0$. Since the A-module U is n-generated, there exist n elements $m_{1}, m_{2}, \ldots, m_{n}$ of U such that $U=\left\langle m_{1}, m_{2}, \ldots, m_{n}\right\rangle_{A}$. For any $k \in\{1,2, \ldots, n\}$, we have

$$
\begin{aligned}
u m_{k} & \in u U \quad\left(\text { since } m_{k} \in U\right) \\
& \subseteq U=\left\langle m_{1}, m_{2}, \ldots, m_{n}\right\rangle_{A}
\end{aligned}
$$

so that there exist n elements $a_{k, 1}, a_{k, 2}, \ldots, a_{k, n}$ of A such that $u m_{k}=\sum_{i=1}^{n} a_{k, i} m_{i}$.
Define a vector $v \in B^{n}$ by $v_{i}=m_{i}$ for all $i \in\{1,2, \ldots, n\}$. (Here, for any vector w and any integer x, we denote by w_{x} the entry of the vector w in the x-th row.)

Define a matrix $S \in A^{n \times n}$ by $S_{k, i}=a_{k, i}$ for all $k \in\{1,2, \ldots, n\}$ and $i \in\{1,2, \ldots, n\}$. (Here, for any matrix T and any integers x and y, we denote by $T_{x, y}$ the entry of the matrix T in the x-th row and the y-th column.) Then, for any $k \in\{1,2, \ldots, n\}$, we have
$u \underbrace{m_{k}}_{=v_{k}}=u v_{k}=(u v)_{k}$ and $\sum_{i=1}^{n} \underbrace{a_{k, i}}_{=S_{k, i}} \underbrace{m_{i}}_{=v_{i}}=\sum_{i=1}^{n} S_{k, i} v_{i}=(S v)_{k}$, so that $u m_{k}=\sum_{i=1}^{n} a_{k, i} m_{i}$
becomes $(u v)_{k}=(S v)_{k}$. Since this holds for every $k \in\{1,2, \ldots, n\}$, we conclude that $u v=S v$. Thus,

$$
0=u v-S v=u I_{n} v-S v=\left(u I_{n}-S\right) v
$$

Now, let $P \in A[X]$ be the characteristic polynomial of the matrix $S \in A^{n \times n}$. Then, P is monic, and $\operatorname{deg} P=n$. Besides, $P(X)=\operatorname{det}\left(X I_{n}-S\right)$, so that $P(u)=$ $\operatorname{det}\left(u I_{n}-S\right)$. Thus,

$$
\begin{aligned}
P(u) \cdot v & =\operatorname{det}\left(u I_{n}-S\right) \cdot v=\underbrace{\operatorname{det}\left(u I_{n}-S\right) I_{n}}_{=\operatorname{adj}\left(u I_{n}-S\right) \cdot\left(u I_{n}-S\right)} \cdot v \\
& =\operatorname{adj}\left(u I_{n}-S\right) \cdot \underbrace{\left(u I_{n}-S\right) v}_{=0}=0
\end{aligned}
$$

Hence, for any $k \in\{1,2, \ldots, n\}$, we have

$$
P(u) \cdot \underbrace{m_{k}}_{=v_{k}}=P(u) \cdot v_{k}=(\underbrace{P(u) \cdot v}_{=0})_{k}=0
$$

so that

$$
\begin{array}{rlr}
P(u) \cdot U & =P(u) \cdot\left\langle m_{1}, m_{2}, \ldots, m_{n}\right\rangle_{A}=\left\langle P(u) \cdot m_{1}, P(u) \cdot m_{2}, \ldots, P(u) \cdot m_{n}\right\rangle_{A} \\
& \left.=\langle 0,0, \ldots, 0\rangle_{A} \quad \text { (since } P(u) \cdot m_{k}=0 \text { for any } k \in\{1,2, \ldots, n\}\right) \\
& =0 .
\end{array}
$$

This implies $P(u)=0$ (since $v=0$ for every $v \in B$ satisfying $v U=0$). Thus, Assertion \mathcal{A} holds. Hence, we have proved that $\mathcal{B} \Longrightarrow \mathcal{A}$.

Proof of the implication $\mathcal{A} \Longrightarrow \mathcal{D}$. Assume that Assertion \mathcal{A} holds. Then, there exists a monic polynomial $P \in A[X]$ with $\operatorname{deg} P=n$ and $P(u)=0$. Since $P \in A[X]$ is a monic polynomial with $\operatorname{deg} P=n$, there exist elements $a_{0}, a_{1}, \ldots, a_{n-1}$ of A such that $P(X)=X^{n}+\sum_{k=0}^{n-1} a_{k} X^{k}$. Thus, $P(u)=u^{n}+\sum_{k=0}^{n-1} a_{k} u^{k}$, so that $P(u)=0$ becomes $u^{n}+\sum_{k=0}^{n-1} a_{k} u^{k}=0$. Hence, $u^{n}=-\sum_{k=0}^{n-1} a_{k} u^{k}$.

Let U be the A-submodule $\left\langle u^{0}, u^{1}, \ldots, u^{n-1}\right\rangle_{A}$ of B. As in the Proof of the implication $\mathcal{A} \Longrightarrow \mathcal{C}$, we can show that U is an n-generated A-module, and that $1 \in U$ and $u U \subseteq U$.

Now, we are going to show that

$$
\begin{equation*}
u^{i} \in U \quad \text { for any } i \in \mathbb{N} \tag{1}
\end{equation*}
$$

Proof of (1). We will prove (1) by induction over i :
Induction base: The assertion (1) holds for $i=0$ (since $u^{0} \in U$). This completes the induction base.

Induction step: Let $\tau \in \mathbb{N}$. If the assertion (1) holds for $i=\tau$, then the assertion (11) holds for $i=\tau+1$ (because if the assertion (1) holds for $i=\tau$, then $u^{\tau} \in U$, so
that $u^{\tau+1}=u \cdot \underbrace{u^{\tau}}_{\in U} \in u U \subseteq U$, so that $u^{\tau+1} \in U$, and thus the assertion (1) holds for $i=\tau+1$). This completes the induction step.

Hence, the induction is complete, and (1) is proven.
Thus,

$$
A[u]=\left\{\sum_{i=0}^{m} a_{i} u^{i} \mid m \in \mathbb{N} \text { and }\left(a_{0}, a_{1}, \ldots, a_{m}\right) \in A^{m+1}\right\} \subseteq U
$$

(since $\sum_{i=0}^{m} a_{i} u^{i} \in U$ for any $m \in \mathbb{N}$ and any $\left(a_{0}, a_{1}, \ldots, a_{m}\right) \in A^{m+1}$, because $a_{i} \in A$ and $u^{i} \in U$ for any $i \in\{0,1, \ldots, m\}$ (by (1)) and U is an A-module). On the other hand, $U \subseteq A[u]$, since

$$
\begin{aligned}
U & =\left\langle u^{0}, u^{1}, \ldots, u^{n-1}\right\rangle_{A}=\left\{\sum_{i=0}^{n-1} a_{i} u^{i} \mid\left(a_{0}, a_{1}, \ldots, a_{n-1}\right) \in A^{n}\right\} \\
& \subseteq\left\{\sum_{i=0}^{m} a_{i} u^{i} \mid m \in \mathbb{N} \text { and }\left(a_{0}, a_{1}, \ldots, a_{m}\right) \in A^{m+1}\right\}=A[u]
\end{aligned}
$$

Thus, $U=A[u]$. In other words, $\left\langle u^{0}, u^{1}, \ldots, u^{n-1}\right\rangle_{A}=A[u]$. Thus, Assertion \mathcal{D} holds. Hence, we have proved that $\mathcal{A} \Longrightarrow \mathcal{D}$.

Proof of the implication $\mathcal{D} \Longrightarrow \mathcal{C}$. Assume that Assertion \mathcal{D} holds. Then, $A[u]=$ $\left\langle u^{0}, u^{1}, \ldots, u^{n-1}\right\rangle_{A}$.

Let U be the A-submodule $\left\langle u^{0}, u^{1}, \ldots, u^{n-1}\right\rangle_{A}$ of B. Then, U is an n-generated A-module (since $u^{0}, u^{1}, \ldots, u^{n-1}$ are n elements of U). Besides, $1=u^{0} \in U$.

Also,

$$
u U=u \cdot\left\langle u^{0}, u^{1}, \ldots, u^{n-1}\right\rangle_{A}=u \cdot A[u] \subseteq A[u]=\left\langle u^{0}, u^{1}, \ldots, u^{n-1}\right\rangle_{A}=U
$$

Thus, Assertion \mathcal{C} holds. Hence, we have proved that $\mathcal{D} \Longrightarrow \mathcal{C}$.
Now, we have proved the implications $\mathcal{A} \Longrightarrow \mathcal{D}, \mathcal{D} \Longrightarrow \mathcal{C}, \mathcal{C} \Longrightarrow \mathcal{B}$ and $\mathcal{B} \Longrightarrow \mathcal{A}$ above. Thus, all four assertions $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and \mathcal{D} are pairwise equivalent, and Theorem 1 is proven.

Theorem 2. Let A and B be two rings such that $A \subseteq B$. Let $n \in \mathbb{N}$. Let $v \in B$. Let $a_{0}, a_{1}, \ldots, a_{n}$ be $n+1$ elements of A such that $\sum_{i=0}^{n} a_{i} v^{i}=0$. Let $k \in\{0,1, \ldots, n\}$. Then, $\sum_{i=0}^{n-k} a_{i+k} v^{i}$ is n-integral over A.

Proof of Theorem 2. Let U be the A-submodule $\left\langle v^{0}, v^{1}, \ldots, v^{n-1}\right\rangle_{A}$ of B. Then, U is an n-generated A-module (since $v^{0}, v^{1}, \ldots, v^{n-1}$ are n elements of U). Besides, $1=v^{0} \in U$.

Let $u=\sum_{i=0}^{n-k} a_{i+k} v^{i}$. Then,

$$
0=\sum_{i=0}^{n} a_{i} v^{i}=\sum_{i=0}^{k-1} a_{i} v^{i}+\sum_{i=k}^{n} a_{i} v^{i}=\sum_{i=0}^{k-1} a_{i} v^{i}+\sum_{i=0}^{n-k} a_{i+k} \underbrace{v^{i+k}}_{=v^{i} v^{k}}
$$

(here, we substituted $i+k$ for i in the second sum)

$$
=\sum_{i=0}^{k-1} a_{i} v^{i}+v^{k} \underbrace{\sum_{i=0}^{n-k} a_{i+k} v^{i}}_{=u}=\sum_{i=0}^{k-1} a_{i} v^{i}+v^{k} u
$$

so that $v^{k} u=-\sum_{i=0}^{k-1} a_{i} v^{i}$.
Now, we are going to show that

$$
\begin{equation*}
u v^{t} \in U \quad \text { for any } t \in\{0,1, \ldots, n-1\} \tag{2}
\end{equation*}
$$

Proof of (2). Since $t \in\{0,1, \ldots, n-1\}$, one of the following two cases must hold:
Case 1: We have $t \in\{0,1, \ldots, k-1\}$.
Case 2: We have $t \in\{k, k+1, \ldots, n-1\}$.
In Case 1, we have

$$
\begin{aligned}
u v^{t} & =\sum_{i=0}^{n-k} a_{i+k} \underbrace{v^{i} \cdot v^{t}}_{=v^{i+t}}=\sum_{i=0}^{n-k} a_{i+k} v^{i+t} \in\left\langle v^{0}, v^{1}, \ldots, v^{n-1}\right\rangle_{A} \\
& \binom{\text { since } t \in\{0,1, \ldots, k-1\} \text { yields } i+t \in\{0,1, \ldots, n-1\}}{\text { and thus } v^{i+t} \in\left\{v^{0}, v^{1}, \ldots, v^{n-1}\right\} \text { for any } i \in\{0,1, \ldots, n-k\}} \\
= & U .
\end{aligned}
$$

In Case 2, we have $t \in\{k, k+1, \ldots, n-1\}$, thus $t-k \in\{0,1, \ldots, n-k-1\}$ and hence

$$
\begin{aligned}
u v^{t}= & u \underbrace{v^{k+(t-k)}}_{=v^{k} v^{t-k}}=v^{k} u \cdot v^{t-k}=-\sum_{i=0}^{k-1} a_{i} \underbrace{v^{i} \cdot v^{t-k}}_{=v^{i+(t-k)}} \quad\left(\text { since } v^{k} u=-\sum_{i=0}^{k-1} a_{i} v^{i}\right) \\
= & -\sum_{i=0}^{k-1} a_{i} v^{i+(t-k)} \in\left\langle v^{0}, v^{1}, \ldots, v^{n-1}\right\rangle_{A} \\
& \quad\binom{\text { since } t-k \in\{0,1, \ldots, n-k-1\} \text { yields } i+(t-k) \in\{0,1, \ldots, n-1\}}{\text { and thus } v^{i+(t-k)} \in\left\{v^{0}, v^{1}, \ldots, v^{n-1}\right\} \text { for any } i \in\{0,1, \ldots, k-1\}} \\
= & U .
\end{aligned}
$$

Hence, in both cases, we have $u v^{t} \in U$. Thus, $u v^{t} \in U$ always holds, and (2) is proven.

Now,

$$
\left.u U=u\left\langle v^{0}, v^{1}, \ldots, v^{n-1}\right\rangle_{A}=\left\langle u v^{0}, u v^{1}, \ldots, u v^{n-1}\right\rangle_{A} \subseteq U \quad \text { (due to (2) }\right)
$$

Altogether, U is an n-generated A-submodule of B such that $1 \in U$ and $u U \subseteq U$. Thus, $u \in B$ satisfies Assertion \mathcal{C} of Theorem 1. Hence, $u \in B$ satisfies the four equivalent assertions $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and \mathcal{D} of Theorem 1 . Consequently, u is n-integral over A. Since $u=\sum_{i=0}^{n-k} a_{i+k} v^{i}$, this means that $\sum_{i=0}^{n-k} a_{i+k} v^{i}$ is n-integral over A. This proves Theorem 2.

Corollary 3. Let A and B be two rings such that $A \subseteq B$. Let $\alpha \in \mathbb{N}$ and $\beta \in \mathbb{N}$. Let $u \in B$ and $v \in B$. Let $s_{0}, s_{1}, \ldots, s_{\alpha}$ be $\alpha+1$ elements of A such that $\sum_{i=0}^{\alpha} s_{i} v^{i}=u$. Let $t_{0}, t_{1}, \ldots, t_{\beta}$ be $\beta+1$ elements of A such that $\sum_{i=0}^{\beta} t_{i} v^{\beta-i}=u v^{\beta}$. Then, u is $(\alpha+\beta)$-integral over A.
(This Corollary 3 generalizes Exercise 2-5 in [1].)
Proof of Corollary 3. Let $k=\beta$ and $n=\alpha+\beta$. Then, $k \in\{0,1, \ldots, n\}$. Define $n+1$ elements $a_{0}, a_{1}, \ldots, a_{n}$ of A by

$$
a_{i}=\left\{\begin{array}{r}
t_{\beta-i}, \text { if } i<\beta ; \\
t_{0}-s_{0}, \text { if } i=\beta ; \\
-s_{i-\beta}, \text { if } i>\beta ;
\end{array} \quad \text { for every } i \in\{0,1, \ldots, n\}\right.
$$

Then,

$$
\begin{aligned}
& \sum_{i=0}^{n} a_{i} v^{i}=\sum_{i=0}^{\alpha+\beta} a_{i} v^{i}=\sum_{i=0}^{\beta-1} \underbrace{a_{i}}_{\substack{=t_{\beta-i}, \\
\text { since } \\
i<\beta}} v^{i}+\sum_{i=\beta}^{\beta} \underbrace{a_{i}}_{\substack{=t_{0}-s_{0}, \\
\text { since } \\
i=\beta}} v^{i}+\sum_{i=\beta+1}^{\alpha+\beta} \underbrace{a_{i}}_{\substack{=-s_{i-\beta}, \\
\text { since } \\
i>\beta}} v^{i} \\
& =\sum_{i=0}^{\beta-1} t_{\beta-i} v^{i}+\underbrace{\sum_{i=\beta}^{\beta}\left(t_{0}-s_{0}\right) v^{i}}_{\substack{=\left(t_{0}-s_{0}\right) v^{\beta} \\
=t_{0} v^{\beta}-s_{0} v^{\beta}}}+\underbrace{\sum_{i=\beta+1}^{\alpha+\beta} s_{i-\beta} v^{i}}_{=-} \sum_{i=\beta+1}^{\alpha+\beta}\left(-s_{i-\beta}\right) v^{i}, \\
& =\sum_{i=0}^{\beta-1} t_{\beta-i} v^{i}+t_{0} v^{\beta}-s_{0} v^{\beta}-\sum_{i=\beta+1}^{\alpha+\beta} s_{i-\beta} v^{i}=\sum_{i=0}^{\beta-1} t_{\beta-i} v^{i}+t_{0} v^{\beta}-\left(s_{0} v^{\beta}+\sum_{i=\beta+1}^{\alpha+\beta} s_{i-\beta} v^{i}\right) \\
& =\sum_{i=0}^{\beta-1} t_{\beta-i} v^{i}+t_{0} v^{\beta}-(s_{0} v^{\beta}+\sum_{i=1}^{\alpha} \underbrace{s_{(i+\beta)-\beta}}_{=s_{i}} \underbrace{v^{i+\beta}}_{=v^{i} v^{\beta}})
\end{aligned}
$$

(here, we substituted $i+\beta$ for i in the second sum)

$$
\begin{aligned}
& =\sum_{i=0}^{\beta-1} t_{\beta-i} v^{i}+t_{0} v^{\beta}-\left(s_{0} v^{\beta}+\sum_{i=1}^{\alpha} s_{i} v^{i} v^{\beta}\right) \\
& =\sum_{i=1}^{\beta} \underbrace{t_{\beta-(\beta-i)}}_{=t_{i}} v^{\beta-i}+t_{0} \underbrace{v^{\beta}}_{=v^{\beta-0}}-(s_{0} \underbrace{v^{\beta}}_{=v^{0} v^{\beta}}+\sum_{i=1}^{\alpha} s_{i} v^{i} v^{\beta})
\end{aligned}
$$

(here, we substituted $\beta-i$ for i in the first sum)

$$
\begin{aligned}
& =\sum_{i=1}^{\beta} t_{i} v^{\beta-i}+t_{0} v^{\beta-0}-\left(s_{0} v^{0} v^{\beta}+\sum_{i=1}^{\alpha} s_{i} v^{i} v^{\beta}\right) \\
& =\underbrace{\sum_{i=1}^{\beta} t_{i} v^{\beta-i}+t_{0} v^{\beta-0}}_{=\sum_{i=0}^{\beta} t_{i} v^{\beta-i}=u v^{\beta}}-(\underbrace{s_{0} v^{0}+\sum_{i=1}^{\alpha} s_{i} v^{i}}_{=\sum_{i=0}^{\alpha} s_{i} v^{i}=u}) v^{\beta}=u v^{\beta}-u v^{\beta}=0 .
\end{aligned}
$$

Thus, Theorem 2 yields that $\sum_{i=0}^{n-k} a_{i+k} v^{i}$ is n-integral over A. But

$$
\begin{aligned}
& \sum_{i=0}^{n-k} a_{i+k} v^{i}=\sum_{i=0}^{n-\beta} a_{i+\beta} v^{i}=\sum_{i=0}^{0} \underbrace{a_{i+\beta}}_{\substack{\text { sto } \\
\text { since } \\
\text { sine } \\
\text { yields } \\
i+\beta=\beta}} v^{i}+\sum_{i=1}^{n-\beta} \underbrace{a_{i+\beta}}_{\substack{-s_{(i++)-\beta} \text { since } \\
\text { sel } \\
\text { yields } \\
i+\beta>\beta}} v^{i} \\
& =\underbrace{\sum_{i=0}^{0}\left(t_{0}-s_{0}\right) v^{i}}_{\substack{=\left(t_{0}-s_{0}\right) v^{0} \\
=t_{0} v^{0}-s_{0} v^{0} \\
=t_{0}-s_{0} v^{0}}}+\sum_{i=1}^{n-\beta}(-\underbrace{s_{(i+\beta)-\beta}}_{=s_{i}}) v^{i} \\
& =t_{0}-s_{0} v^{0}+\sum_{i=1}^{n-\beta}\left(-s_{i}\right) v^{i}=t_{0}-s_{0} v^{0}-\sum_{i=1}^{n-\beta} s_{i} v^{i} \\
& =t_{0}-s_{0} v^{0}-\sum_{i=1}^{\alpha} s_{i} v^{i} \quad(\text { since } n=\alpha+\beta \text { yields } n-\beta=\alpha) \\
& =t_{0}-(\underbrace{s_{0} v^{0}+\sum_{i=1}^{\alpha} s_{i} v^{i}}_{=\sum_{i=0}^{\alpha} s_{i} v^{i}=u})=t_{0}-u \text {. }
\end{aligned}
$$

Thus, $t_{0}-u$ is n-integral over A. On the other hand, $-t_{0}$ is 1 -integral over A (by Theorem 5 (a) below, applied to $\left.a=-t_{0}\right)$. Thus, $\left(-t_{0}\right)+\left(t_{0}-u\right)$ is $n \cdot 1$-integral over A (by Theorem 5 (b) below, applied to $x=-t_{0}, y=t_{0}-u$ and $m=1$). In other words, $-u$ is n-integral over A (since $\left(-t_{0}\right)+\left(t_{0}-u\right)=-u$ and $n \cdot 1=n$). On the other hand, -1 is 1 -integral over A (by Theorem 5 (a) below, applied to $a=-1$). Thus, $(-1) \cdot(-u)$ is $n \cdot 1$-integral over A (by Theorem 5 (c) below, applied to $x=-1$, $y=-u$ and $m=1$). In other words, u is $(\alpha+\beta)$-integral over A (since $(-1) \cdot(-u)=u$ and $n \cdot 1=n=\alpha+\beta$). This proves Corollary 3 .

Theorem 4. Let A and B be two rings such that $A \subseteq B$. Let $v \in B$ and $u \in B$. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Assume that v is m-integral over A, and that u is n-integral over $A[v]$. Then, u is $n m$-integral over A.

Proof of Theorem 4. Since v is m-integral over A, we have $A[v]=\left\langle v^{0}, v^{1}, \ldots, v^{m-1}\right\rangle_{A}$ (this is the Assertion \mathcal{D} of Theorem 1, stated for v and m in lieu of u and n).

Since u is n-integral over $A[v]$, we have $(A[v])[u]=\left\langle u^{0}, u^{1}, \ldots, u^{n-1}\right\rangle_{A[v]}$ (this is the Assertion \mathcal{D} of Theorem 1, stated for $A[v]$ in lieu of A).

Let $S=\{0,1, \ldots, n-1\} \times\{0,1, \ldots, m-1\}$.
Let $x \in(A[v])[u]$. Then, there exist n elements $b_{0}, b_{1}, \ldots, b_{n-1}$ of $A[v]$ such that $x=$ $\sum_{i=0}^{n-1} b_{i} u^{i}\left(\right.$ since $\left.x \in(A[v])[u]=\left\langle u^{0}, u^{1}, \ldots, u^{n-1}\right\rangle_{A[v]}\right)$. But for each $i \in\{0,1, \ldots, n-1\}$,
there exist m elements $a_{i, 0}, a_{i, 1}, \ldots, a_{i, m-1}$ of A such that $b_{i}=\sum_{j=0}^{m-1} a_{i, j} v^{j}$ (because $\left.b_{i} \in A[v]=\left\langle v^{0}, v^{1}, \ldots, v^{m-1}\right\rangle_{A}\right)$. Thus,

$$
\begin{aligned}
x & =\sum_{i=0}^{n-1} \underbrace{b_{i}}_{\substack{m-1} \sum_{j=0} a_{i, j} v^{j}} u^{i}=\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} a_{i, j} v^{j} u^{i}=\sum_{(i, j) \in\{0,1, \ldots, n-1\} \times\{0,1, \ldots, m-1\}} a_{i, j} v^{j} u^{i}=\sum_{(i, j) \in S} a_{i, j} v^{j} u^{i} \\
& \left.\in\left\langle v^{j} u^{i} \mid(i, j) \in S\right\rangle_{A} \quad \quad \text { (since } a_{i, j} \in A \text { for every }(i, j) \in S\right)
\end{aligned}
$$

So we have proved that $x \in\left\langle v^{j} u^{i} \mid(i, j) \in S\right\rangle_{A}$ for every $x \in(A[v])[u]$. Thus, $(A[v])[u] \subseteq\left\langle v^{j} u^{i} \mid(i, j) \in S\right\rangle_{A}$. Conversely, $\left\langle v^{j} u^{i} \mid(i, j) \in S\right\rangle_{A} \subseteq(A[v])[u]$ (since $v^{j} \in A[v]$ for every $(i, j) \in S$, and thus $\underbrace{v^{j}}_{\in A[v]} u^{i} \in(A[v])[u]$ for every $(i, j) \in S$, and therefore
). Hence, $(A[v])[u]=\left\langle v^{j} u^{i} \mid(i, j) \in S\right\rangle_{A}$. Thus, the A-module $(A[v])[u]$ is $n m$ generated (since

$$
|S|=|\{0,1, \ldots, n-1\} \times\{0,1, \ldots, m-1\}|=\underbrace{|\{0,1, \ldots, n-1\}|}_{=n} \cdot \underbrace{|\{0,1, \ldots, m-1\}|}_{=m}=n m
$$

).
Let $U=(A[v])[u]$. Then, the A-module U is $n m$-generated. Besides, U is an A-submodule of B, and we have $1=u^{0} \in(A[v])[u]=U$ and $u U=u(A[v])[u] \subseteq(A[v])[u] \quad($ since $(A[v])[u]$ is an $A[v]$-algebra and $u \in(A[v])[u])$ $=U$.

Altogether, we now know that the A-submodule U of B is $n m$-generated and satisfies $1 \in U$ and $u U \subseteq U$.

Thus, the element u of B satisfies the Assertion \mathcal{C} of Theorem 1 with n replaced by $n m$. Hence, $u \in B$ satisfies the four equivalent assertions $\mathcal{A}, \mathcal{B}, \mathcal{C}$ and \mathcal{D} of Theorem 1 , all with n replaced by $n m$. Thus, u is $n m$-integral over A. This proves Theorem 4.

Theorem 5. Let A and B be two rings such that $A \subseteq B$.
(a) Let $a \in A$. Then, a is 1-integral over A.
(b) Let $x \in B$ and $y \in B$. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Assume that x is m integral over A, and that y is n-integral over A. Then, $x+y$ is $n m$-integral over A.
(c) Let $x \in B$ and $y \in B$. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Assume that x is m-integral over A, and that y is n-integral over A. Then, $x y$ is $n m$-integral over A.

Proof of Theorem 5. (a) There exists a monic polynomial $P \in A[X]$ with $\operatorname{deg} P=1$ and $P(a)=0$ (namely, the polynomial $P \in A[X]$ defined by $P(X)=X-a$). Thus, a is 1-integral over A. This proves Theorem 5 (a).
(b) Since y is n-integral over A, there exists a monic polynomial $P \in A[X]$ with $\operatorname{deg} P=n$ and $P(y)=0$. Since $P \in A[X]$ is a monic polynomial with $\operatorname{deg} P=n$, there exists a polynomial $\widetilde{P} \in A[X]$ with $\operatorname{deg} \widetilde{P}<n$ and $P(X)=X^{n}+\widetilde{P}(X)$.

Now, define a polynomial $Q \in(A[x])[X]$ by $Q(X)=P(X-x)$. Then, $\operatorname{deg} Q=\operatorname{deg} P \quad$ (since shifting the polynomial P by the constant x does not change its degree)

$$
=n
$$

and $Q(x+y)=P((x+y)-x)=P(y)=0$.
Define a polynomial $\widetilde{Q} \in(A[x])[X]$ by $\widetilde{Q}(X)=\left((X-x)^{n}-X^{n}\right)+\widetilde{P}(X-x)$.
Then, $\operatorname{deg} \widetilde{Q}<n$ (since

$$
\begin{aligned}
& \operatorname{deg}(\widetilde{P}(X-x))=\operatorname{deg}(\widetilde{P}(X)) \\
& \quad(\text { since shifting the polynomial } \widetilde{P} \text { by the constant } x \text { does not change its degree }) \\
& =\operatorname{deg} \widetilde{P}<n
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{deg}\left((X-x)^{n}-X^{n}\right) & =\operatorname{deg}\left(((X-x)-X) \cdot \sum_{k=0}^{n-1}(X-x)^{k} X^{n-1-k}\right) \\
& \leq \underbrace{\operatorname{deg}((X-x)-X)}_{=\operatorname{deg}(-x) \leq 0}+\underbrace{\operatorname{deg}\left(\sum_{k=0}^{n-1}(X-x)^{k} X^{n-1-k}\right)}_{\substack{\leq n-1, \text { since } \\
\operatorname{deg}\left((X-x)^{k} X^{n-1-k}\right) \leq n-1 \\
\text { for any } k \in\{0,1, \ldots, n-1\}}} \\
& \leq 0+(n-1)=n-1<n
\end{aligned}
$$

yield

$$
\begin{aligned}
\operatorname{deg} \widetilde{Q} & =\operatorname{deg}(\widetilde{Q}(X))=\operatorname{deg}\left(\left((X-x)^{n}-X^{n}\right)+\widetilde{P}(X-x)\right) \\
& \leq \max \{\underbrace{\operatorname{deg}\left((X-x)^{n}-X^{n}\right)}_{<n}, \underbrace{\operatorname{deg}(\widetilde{P}(X-x))}_{<n}\}<\max \{n, n\}=n
\end{aligned}
$$

). Thus, the polynomial Q is monic (since

$$
\begin{aligned}
Q(X) & =P(X-x)=(X-x)^{n}+\widetilde{P}(X-x) \quad\left(\text { since } P(X)=X^{n}+\widetilde{P}(X)\right) \\
& =X^{n}+\underbrace{\left((X-x)^{n}-X^{n}\right)+\widetilde{P}(X-x)}_{=\widetilde{Q}(X)}=X^{n}+\widetilde{Q}(X)
\end{aligned}
$$

and $\operatorname{deg} \widetilde{Q}<n$).
Hence, there exists a monic polynomial $Q \in(A[x])[X]$ with $\operatorname{deg} Q=n$ and $Q(x+y)=0$. Thus, $x+y$ is n-integral over $A[x]$. Thus, Theorem 4 (applied to $v=x$ and $u=x+y$) yields that $x+y$ is $n m$-integral over A. This proves Theorem 5 (b).
(c) Since y is n-integral over A, there exists a monic polynomial $P \in A[X]$ with $\operatorname{deg} P=n$ and $P(y)=0$. Since $P \in A[X]$ is a monic polynomial with $\operatorname{deg} P=n$, there exist elements $a_{0}, a_{1}, \ldots, a_{n-1}$ of A such that $P(X)=X^{n}+\sum_{k=0}^{n-1} a_{k} X^{k}$. Thus, $P(y)=y^{n}+\sum_{k=0}^{n-1} a_{k} y^{k}$.

Now, define a polynomial $Q \in(A[x])[X]$ by $Q(X)=X^{n}+\sum_{k=0}^{n-1} x^{n-k} a_{k} X^{k}$. Then,

$$
\begin{aligned}
Q(x y) & =\underbrace{(x y)^{n}}_{=x^{n} y^{n}}+\sum_{k=0}^{n-1} x^{n-k} \underbrace{a_{k}(x y)^{k}}_{\substack{=a_{k} x^{k} y^{k} \\
=x^{k} a_{k} y^{k}}}=x^{n} y^{n}+\sum_{k=0}^{n-1} \underbrace{x^{n-k} x^{k}}_{=x^{n}} a_{k} y^{k} \\
& =x^{n} y^{n}+\sum_{k=0}^{n-1} x^{n} a_{k} y^{k}=x^{n}(\underbrace{y^{n}+\sum_{k=0}^{n-1} a_{k} y^{k}}_{=P(y)=0})=0 .
\end{aligned}
$$

Also, the polynomial $Q \in(A[x])[X]$ is monic and $\operatorname{deg} Q=n$ (since $Q(X)=X^{n}+$ $\left.\sum_{k=0}^{n-1} x^{n-k} a_{k} X^{k}\right)$. Thus, there exists a monic polynomial $Q \in(A[x])[X]$ with $\operatorname{deg} Q=n$ and $Q(x y)=0$. Thus, $x y$ is n-integral over $A[x]$. Hence, Theorem 4 (applied to $v=x$ and $u=x y$) yields that $x y$ is $n m$-integral over A. This proves Theorem 5 (c).

Corollary 6. Let A and B be two rings such that $A \subseteq B$. Let $n \in \mathbb{N}^{+}$ and $m \in \mathbb{N}$. Let $v \in B$. Let $b_{0}, b_{1}, \ldots, b_{n-1}$ be n elements of A, and let $u=\sum_{i=0}^{n-1} b_{i} v^{i}$. Assume that $v u$ is m-integral over A. Then, u is $n m$-integral over A.

Proof of Corollary 6. Define $n+1$ elements $a_{0}, a_{1}, \ldots, a_{n}$ of $A[v u]$ by

$$
a_{i}=\left\{\begin{aligned}
-v u, & \text { if } i=0 ; \\
b_{i-1}, & \text { if } i>0
\end{aligned} \quad \text { for every } i \in\{0,1, \ldots, n\}\right.
$$

Then, $a_{0}=-v u$. Let $k=1$. Then,

$$
\begin{aligned}
& \sum_{i=0}^{n} a_{i} v^{i}=\underbrace{a_{0}}_{=-v u} \underbrace{v^{0}}_{=1}+\sum_{i=1}^{n} \underbrace{a_{i}}_{\substack{=b_{i-1},=v^{i-1} v \\
\text { since } \\
i>0}} \underbrace{v^{i}}_{i=u}=-v u+\sum_{i=1}^{n} b_{i-1} v^{i-1} v=-v u+\underbrace{\sum_{i=0}^{n-1} b_{i} v^{i} v}_{=u} \\
& \quad \text { (here, we substituted } i \text { for } i-1 \text { in the sum) } \\
&=-v u+u v=0 .
\end{aligned}
$$

Now, $A[v u]$ and B are two rings such that $A[v u] \subseteq B$. The $n+1$ elements a_{0}, a_{1}, \ldots, a_{n} of $A[v u]$ satisfy $\sum_{i=0}^{n} a_{i} v^{i}=0$. We have $k=1 \in\{0,1, \ldots, n\}$.

Hence, Theorem 2 (applied to the ring $A[v u]$ in lieu of A) yields that $\sum_{i=0}^{n-k} a_{i+k} v^{i}$ is n-integral over $A[v u]$. But

$$
\sum_{i=0}^{n-k} a_{i+k} v^{i}=\sum_{i=0}^{n-1} \underbrace{a_{i+1}}_{\substack{=b_{(i+1)-1}, \\ \text { since } i+1>0}} v^{i}=\sum_{i=0}^{n-1} b_{(i+1)-1} v^{i}=\sum_{i=0}^{n-1} b_{i} v^{i}=u
$$

Hence, u is n-integral over $A[v u]$. But $v u$ is m-integral over A. Thus, Theorem 4 (applied to $v u$ in lieu of v) yields that u is $n m$-integral over A. This proves Corollary 6.

2. Integrality over ideal semifiltrations

Definitions:

Definition 6. Let A be a ring, and let $\left(I_{\rho}\right)_{\rho \in \mathbb{N}}$ be a sequence of ideals of A. Then, $\left(I_{\rho}\right)_{\rho \in \mathbb{N}}$ is called an ideal semifiltration of A if and only if it satisfies the two conditions

$$
\begin{aligned}
I_{0} & =A ; \\
I_{a} I_{b} & \subseteq I_{a+b} \quad \text { for every } a \in \mathbb{N} \text { and } b \in \mathbb{N} .
\end{aligned}
$$

Definition 7. Let A and B be two rings such that $A \subseteq B$. Then, we identify the polynomial ring $A[Y]$ with a subring of the polynomial ring $B[Y]$ (in fact, every element of $A[Y]$ has the form $\sum_{i=0}^{m} a_{i} Y^{i}$ for some $m \in \mathbb{N}$ and $\left(a_{0}, a_{1}, \ldots, a_{m}\right) \in A^{m+1}$, and thus can be seen as an element of $B[Y]$ by regarding a_{i} as an element of B for every $i \in\{0,1, \ldots, m\}$).

Definition 8. Let A be a ring, and let $\left(I_{\rho}\right)_{\rho \in \mathbb{N}}$ be an ideal semifiltration of A. Consider the polynomial ring $A[Y]$. Let $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$ denote the A-submodule $\sum_{i \in \mathbb{N}} I_{i} Y^{i}$ of the A-algebra $A[Y]$. Then,
$A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]=\sum_{i \in \mathbb{N}} I_{i} Y^{i}$
$=\left\{\sum_{i \in \mathbb{N}} a_{i} Y^{i} \mid\left(a_{i} \in I_{i}\right.\right.$ for all $i \in \mathbb{N}$), and (only finitely many $i \in \mathbb{N}$ satisfy $\left.\left.a_{i} \neq 0\right)\right\}$ $=\left\{P \in A[Y] \mid\right.$ the i-th coefficient of the polynomial P lies in I_{i} for every $\left.i \in \mathbb{N}\right\}$.

$$
\text { Now, } 1 \in A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right](\text { because } 1=\underbrace{1}_{\in A=I_{0}} \cdot Y^{0} \in I_{0} Y^{0} \subseteq \sum_{i \in \mathbb{N}} I_{i} Y^{i}=A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]) \text {. }
$$

Also, the A-submodule $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$ of $A[Y]$ is closed under multiplication (since

$$
A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right] \cdot A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]=\sum_{i \in \mathbb{N}} I_{i} Y^{i} \cdot \sum_{i \in \mathbb{N}} I_{i} Y^{i}=\sum_{i \in \mathbb{N}} I_{i} Y^{i} \cdot \sum_{j \in \mathbb{N}} I_{j} Y^{j}
$$

(here we renamed i as j in the second sum)

$$
=\sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} I_{i} Y^{i} I_{j} Y^{j}=\sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} \underbrace{I_{i} I_{j}}_{\begin{array}{c}
\subseteq I_{i+j}, \\
\text { since } \\
\text { is an id ideal } \\
\text { sen } \\
\text { semififitration }
\end{array}} \underbrace{Y^{i} Y^{j}}_{=Y^{i+j}}
$$

$$
\subseteq \sum_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} I_{i+j} Y^{i+j} \subseteq \sum_{k \in \mathbb{N}} I_{k} Y^{k}=\sum_{i \in \mathbb{N}} I_{i} Y^{i}
$$

(here we renamed k as i in the sum)

$$
=A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]
$$

). Hence, $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$ is an A-subalgebra of the A-algebra $A[Y]$. This A-subalgebra $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$ is called the Rees algebra of the ideal semifiltration $\left(I_{\rho}\right)_{\rho \in \mathbb{N}}$.

Clearly, $A \subseteq A\left[\left(I_{\rho}\right)_{p \in \mathbb{N}} * Y\right]$, since $A\left[\left(I_{\rho}\right)_{p \in \mathbb{N}} * Y\right]=\sum_{i \in \mathbb{N}} I_{i} Y^{i} \supseteq \underbrace{I_{0}}_{=A} \underbrace{Y^{0}}_{=1}=A \cdot 1=$ A.

Definition 9. Let A and B be two rings such that $A \subseteq B$. Let $\left(I_{\rho}\right)_{\rho \in \mathbb{N}}$ be an ideal semifiltration of A. Let $n \in \mathbb{N}$. Let $u \in B$.

We say that the element u of B is n-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$ if there exists some $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in A^{n+1}$ such that

$$
\sum_{k=0}^{n} a_{k} u^{k}=0, \quad a_{n}=1, \quad \text { and } \quad a_{i} \in I_{n-i} \text { for every } i \in\{0,1, \ldots, n\}
$$

We start with a theorem which reduces the question of n-integrality over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$ to that of n-integrality over a ring ${ }^{2}$:

Theorem 7. Let A and B be two rings such that $A \subseteq B$. Let $\left(I_{\rho}\right)_{\rho \in \mathbb{N}}$ be an ideal semifiltration of A. Let $n \in \mathbb{N}$. Let $u \in B$.
Consider the polynomial ring $A[Y]$ and its A-subalgebra $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$ defined in Definition 8.
Then, the element u of B is n-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$ if and only if the element $u Y$ of the polynomial ring $B[Y]$ is n-integral over the ring $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$. (Here, $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right] \subseteq B[Y]$ because $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right] \subseteq$ $A[Y]$ and we consider $A[Y]$ as a subring of $B[Y]$ as explained in Definition 7).

[^1]Proof of Theorem 7. In order to verify Theorem 7, we have to prove the following two lemmata:

Lemma \mathcal{E} : If u is n-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$, then $u Y$ is n-integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$.
Lemma \mathcal{F} : If $u Y$ is n-integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$, then u is n-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$.

Proof of Lemma \mathcal{E} : Assume that u is n-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$. Then, by Definition 9 , there exists some $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in A^{n+1}$ such that

$$
\sum_{k=0}^{n} a_{k} u^{k}=0, \quad a_{n}=1, \quad \text { and } \quad a_{i} \in I_{n-i} \text { for every } i \in\{0,1, \ldots, n\}
$$

Note that $a_{k} Y^{n-k} \in A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$ for every $k \in\{0,1, \ldots, n\}$ (because $\underbrace{a_{k}}_{\in I_{n-k}} Y^{n-k} \in$ $I_{n-k} Y^{n-k} \subseteq \sum_{i \in \mathbb{N}} I_{i} Y^{i}=A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$). Thus, we can define a polynomial $P \in$ $\left(A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]\right)[X]$ by $P(X)=\sum_{k=0}^{n} a_{k} Y^{n-k} X^{k}$. This polynomial P satisfies $\operatorname{deg} P \leq$ n, and its coefficient before X^{n} is $\underbrace{a_{n}}_{=1} \underbrace{Y^{n-n}}_{=Y^{0}=1}=1$. Hence, this polynomial P is monic and satisfies $\operatorname{deg} P=n$. Also, $P(X)=\sum_{k=0}^{n} a_{k} Y^{n-k} X^{k}$ yields
$P(u Y)=\sum_{k=0}^{n} a_{k} Y^{n-k}(u Y)^{k}=\sum_{k=0}^{n} a_{k} Y^{n-k} u^{k} Y^{k}=\sum_{k=0}^{n} a_{k} u^{k} \underbrace{Y^{n-k} Y^{k}}_{=Y^{n}}=Y^{n} \cdot \underbrace{\sum_{k=0}^{n} a_{k} u^{k}}_{=0}=0$.
Thus, there exists a monic polynomial $P \in\left(A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]\right)[X]$ with $\operatorname{deg} P=n$ and $P(u Y)=0$. Hence, $u Y$ is n-integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$. This proves Lemma \mathcal{E}.

Proof of Lemma \mathcal{F} : Assume that $u Y$ is n-integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$. Then, there exists a monic polynomial $P \in\left(A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]\right)[X]$ with $\operatorname{deg} P=n$ and $P(u Y)=0$. Since $P \in\left(A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]\right)[X]$ satisfies $\operatorname{deg} P=n$, there exists $\left(p_{0}, p_{1}, \ldots, p_{n}\right) \in$ $\left(A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]\right)^{n+1}$ such that $P(X)=\sum_{k=0}^{n} p_{k} X^{k}$. Besides, $p_{n}=1$, since P is monic and $\operatorname{deg} P=n$.

For every $k \in\{0,1, \ldots, n\}$, we have $p_{k} \in A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]=\sum_{i \in \mathbb{N}} I_{i} Y^{i}$, and thus, there exists a sequence $\left(p_{k, i}\right)_{i \in \mathbb{N}} \in A^{\mathbb{N}}$ such that $p_{k}=\sum_{i \in \mathbb{N}} p_{k, i} Y^{i}$, such that $p_{k, i} \in I_{i}$ for every $i \in \mathbb{N}$, and such that only finitely many $i \in \mathbb{N}$ satisfy $p_{k, i} \neq 0$. Thus, $P(X)=\sum_{k=0}^{n} p_{k} X^{k}$
becomes $P(X)=\sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k, i} Y^{i} X^{k}$ (since $\left.p_{k}=\sum_{i \in \mathbb{N}} p_{k, i} Y^{i}\right)$. Hence,

$$
\begin{aligned}
P(u Y) & =\sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k, i} Y^{i} \underbrace{(u Y)^{k}}_{\substack{=u^{k} Y^{k} \\
=Y^{k} u^{k}}}=\sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k, i} \underbrace{Y^{i} Y^{k}}_{=Y^{i+k}} u^{k} \\
& =\sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k, i} Y^{i+k} u^{k}=\sum_{k \in\{0,1, \ldots, n\}} \sum_{i \in \mathbb{N}} p_{k, i} Y^{i+k} u^{k} \\
& =\sum_{(k, i) \in\{0,1, \ldots, n\} \times \mathbb{N}} p_{k, i} Y^{i+k} u^{k}=\sum_{\ell \in \mathbb{N}} \sum_{\substack{(k, i) \in\{0,1, \ldots, n\} \times \mathbb{N} ; \\
i+k=\ell}} p_{k, i} \underbrace{Y^{i+k}}_{=Y^{\ell}} u^{k} \\
& =\sum_{\ell \in \mathbb{N}} \sum_{\substack{(k, i) \in\{0,1, \ldots, n\} \times \mathbb{N} ; \\
i+k=\ell}} p_{k, i} Y^{\ell} u^{k}=\sum_{\ell \in \mathbb{N}} \sum_{\substack{(k, i) \in\{0,1, \ldots, n\} \times \mathbb{N} ; \\
i+k=\ell}} u^{k} Y^{\ell} .
\end{aligned}
$$

Hence, $P(u Y)=0$ becomes $\sum_{\ell \in \mathbb{N}} \sum_{\substack{k, i) \in\{0,1, \ldots, n\} \times \mathbb{N} ; \\ i+k=\ell}} p_{k, i} u^{k} Y^{\ell}=0$. In other words, the polynomial $\sum_{\ell \in \mathbb{N}} \sum_{\substack{(k, i) \in\{0,1, \ldots, n\} \times \mathbb{N} ; \\ i+k=\ell}} p_{k, i} u^{k} Y^{\ell} \in B[Y]$ equals 0 . Hence, its coefficient before $\underbrace{(k, l) \in(\hat{i+k=\ell} \downarrow}_{\in B}$
Y^{n} equals 0 as well. But its coefficient before Y^{n} is $\sum_{\substack{(k, i) \in\{0,1, \ldots, n\} \times \mathbb{N} ; \\ i+k=n}} p_{k, i} u^{k}$. Hence, $\sum_{\substack{(k, i) \in\{0,1, \ldots, n\} \times \mathbb{N} ; \\ i+k=n}} p_{k, i} u^{k}$ equals 0 .

Thus,

$$
\begin{aligned}
0= & \sum_{\substack{(k, i) \in\{0,1, \ldots, n\} \times \mathbb{N} ; \\
i+k=n}} p_{k, i} u^{k}=\sum_{k \in\{0,1, \ldots, n\}} \sum_{\substack{i \in \mathbb{N} ; \\
i+k=n}} p_{k, i} u^{k}=\sum_{k \in\{0,1, \ldots, n\}} p_{k, n-k} u^{k} \\
& \left(\begin{array}{c}
\text { since }\{i \in \mathbb{N} \mid i+k=n\}=\{i \in \mathbb{N} \mid i=n-k\}=\{n-k\} \text { (because } n-k \in \mathbb{N}, \\
\text { since } k \in\{0,1, \ldots, n\}) \text { yields } \\
\sum_{\substack{i \in \mathbb{N} ; \\
i+k=n}} p_{k, i} u^{k}=\sum_{i \in\{n-k\}} p_{k, i} u^{k}=p_{k, n-k} u^{k}
\end{array}\right) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
\sum_{i \in \mathbb{N}} p_{n, i} Y^{i} & =p_{n} \quad\left(\text { since } \sum_{i \in \mathbb{N}} p_{k, i} Y^{i}=p_{k} \text { for every } k \in\{0,1, \ldots, n\}\right) \\
& =1=1 \cdot Y^{0}
\end{aligned}
$$

in $A[Y]$, and thus the coefficient of the polynomial $\sum_{i \in \mathbb{N}} p_{n, i} Y^{i} \in A[Y]$ before Y^{0} is 1 ; but the coefficient of the polynomial $\sum_{i \in \mathbb{N}} p_{n, i} Y^{i} \in A[Y]$ before Y^{0} is $p_{n, 0}$; hence, $p_{n, 0}=1$.

Define an $(n+1)$-tuple $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in A^{n+1}$ by $a_{k}=p_{k, n-k}$ for every $k \in\{0,1, \ldots, n\}$. Then, $a_{n}=p_{n, n-n}=p_{n, 0}=1$. Besides,

$$
\sum_{k=0}^{n} a_{k} u^{k}=\sum_{k=0}^{n} p_{k, n-k} u^{k}=\sum_{k \in\{0,1, \ldots, n\}} p_{k, n-k} u^{k}=0
$$

Finally, $a_{k}=p_{k, n-k} \in I_{n-k}$ (since $p_{k, i} \in I_{i}$ for every $i \in \mathbb{N}$) for every $k \in\{0,1, \ldots, n\}$. In other words, $a_{i} \in I_{n-i}$ for every $i \in\{0,1, \ldots, n\}$.

Altogether, we now know that

$$
\sum_{k=0}^{n} a_{k} u^{k}=0, \quad a_{n}=1, \quad \text { and } \quad a_{i} \in I_{n-i} \text { for every } i \in\{0,1, \ldots, n\}
$$

Thus, by Definition 9 , the element u is n-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$. This proves Lemma \mathcal{F}.

Combining Lemmata \mathcal{E} and \mathcal{F}, we obtain that u is n-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$ if and only if $u Y$ is n-integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$. This proves Theorem 7 .

The next theorem is an analogue of Theorem 5 for integrality over ideal semifiltrations:

Theorem 8. Let A and B be two rings such that $A \subseteq B$. Let $\left(I_{\rho}\right)_{\rho \in \mathbb{N}}$ be an ideal semifiltration of A.
(a) Let $u \in A$. Then, u is 1-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$ if and only if $u \in I_{1}$.
(b) Let $x \in B$ and $y \in B$. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Assume that x is m-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$, and that y is n-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$. Then, $x+y$ is $n m$-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$.
(c) Let $x \in B$ and $y \in B$. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Assume that x is m-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$, and that y is n-integral over A. Then, $x y$ is $n m$-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$.

Proof of Theorem 8. (a) In order to verify Theorem 8 (a), we have to prove the following two lemmata:

Lemma \mathcal{G} : If u is 1-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$, then $u \in I_{1}$.
Lemma \mathcal{H} : If $u \in I_{1}$, then u is 1 -integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$.
Proof of Lemma \mathcal{G} : Assume that u is 1-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$. Then, by Definition 9 (applied to $n=1$), there exists some $\left(a_{0}, a_{1}\right) \in A^{2}$ such that

$$
\sum_{k=0}^{1} a_{k} u^{k}=0, \quad a_{1}=1, \quad \text { and } \quad a_{i} \in I_{1-i} \text { for every } i \in\{0,1\}
$$

Thus, $a_{0} \in I_{1-0}$ (since $a_{i} \in I_{1-i}$ for every $i \in\{0,1\}$). Also,

$$
0=\sum_{k=0}^{1} a_{k} u^{k}=a_{0} \underbrace{u^{0}}_{=1}+\underbrace{a_{1}}_{=1} \underbrace{u^{1}}_{=u}=a_{0}+u
$$

so that $u=-\underbrace{a_{0}}_{\in I_{1-0}=I_{1}} \in I_{1}$ (since I_{1} is an ideal). This proves Lemma \mathcal{G}.

Proof of Lemma \mathcal{H} : Assume that $u \in I_{1}$. Then, $-u \in I_{1}$ (since I_{1} is an ideal). Set $a_{0}=-u$ and $a_{1}=1$. Then, $\sum_{k=0}^{1} a_{k} u^{k}=\underbrace{a_{0}}_{=-u} \underbrace{u^{0}}_{=1}+\underbrace{a_{1}}_{=1} \underbrace{u^{1}}_{=u}=-u+u=0$. Also, $a_{i} \in I_{1-i}$ for every $i \in\{0,1\}$ (since $a_{0}=-u \in I_{1}=I_{1-0}$ and $a_{1}=1 \in A=I_{0}=I_{1-1}$). Altogether, we now know that $\left(a_{0}, a_{1}\right) \in A^{2}$ and

$$
\sum_{k=0}^{1} a_{k} u^{k}=0, \quad a_{1}=1, \quad \text { and } \quad a_{i} \in I_{1-i} \text { for every } i \in\{0,1\}
$$

Thus, by Definition 9 (applied to $n=1$), the element u is 1-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$. This proves Lemma \mathcal{H}.

Combining Lemmata \mathcal{G} and \mathcal{H}, we obtain that u is 1-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$ if and only if $u \in I_{1}$. This proves Theorem 8 (a).
(b) Consider the polynomial ring $A[Y]$ and its A-subalgebra $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$. Theorem 7 (applied to x and m instead of u and n) yields that $x Y$ is m-integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$ (since x is m-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$). Also, Theorem 7 (applied to y instead of u) yields that $y Y$ is n-integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$ (since y is n-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$). Hence, Theorem 5 (b) (applied to $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right], B[Y], x Y$ and $y Y$ instead of A, B, x and y, respectively) yields that $x Y+y Y$ is $n m$-integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$. Since $x Y+y Y=(x+y) Y$, this means that $(x+y) Y$ is $n m$-integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$. Hence, Theorem 7 (applied to $x+y$ and $n m$ instead of u and n) yields that $x+y$ is $n m$-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$. This proves Theorem 8 (b).
(c) First, a trivial observation:

Lemma \mathcal{I} : Let A, A^{\prime} and B^{\prime} be three rings such that $A \subseteq A^{\prime} \subseteq B^{\prime}$. Let $v \in B^{\prime}$. Let $n \in \mathbb{N}$. If v is n-integral over A, then v is n-integral over A^{\prime}.

Proof of Lemma \mathcal{I} : Assume that v is n-integral over A. Then, there exists a monic polynomial $P \in A[X]$ with $\operatorname{deg} P=n$ and $P(v)=0$. Since $A \subseteq A^{\prime}$, we can identify the polynomial ring $A[X]$ with a subring of the polynomial ring $A^{\prime}[X]$ (as explained in Definition 7). Thus, $P \in A[X]$ yields $P \in A^{\prime}[X]$. Hence, there exists a monic polynomial $P \in A^{\prime}[X]$ with $\operatorname{deg} P=n$ and $P(v)=0$. Thus, v is n-integral over A^{\prime}. This proves Lemma \mathcal{I}.

Now let us prove Theorem 8 (c).
Consider the polynomial ring $A[Y]$ and its A-subalgebra $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$. Theorem 7 (applied to x and m instead of u and n) yields that $x Y$ is m-integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$ (since x is m-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$). On the other hand, Lemma \mathcal{I} (applied to $A^{\prime}=A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right], B^{\prime}=B[Y]$ and $v=y$) yields that y is n-integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$ (since y is n-integral over A, and $A \subseteq A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right] \subseteq B[Y]$). Hence, Theorem 5 (c) (applied to $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right], B[Y]$ and $x Y$ instead of A, B and x, respectively) yields that $x Y \cdot y$ is $n m$-integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$. Since $x Y \cdot y=x y Y$,
this means that $x y Y$ is $n m$-integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$. Hence, Theorem 7 (applied to $x y$ and $n m$ instead of u and n) yields that $x y$ is $n m$-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$. This proves Theorem 8 (c).

The next theorem imitates Theorem 4 for integrality over ideal semifiltrations:
Theorem 9. Let A and B be two rings such that $A \subseteq B$. Let $\left(I_{\rho}\right)_{\rho \in \mathbb{N}}$ be an ideal semifiltration of A.

Let $v \in B$ and $u \in B$. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$.
(a) Then, $\left(I_{\rho} A[v]\right)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of $A[v]$.
(b) Assume that v is m-integral over A, and that u is n-integral over $\left(A[v],\left(I_{\rho} A[v]\right)_{\rho \in \mathbb{N}}\right)$. Then, u is $n m$-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$.

Proof of Theorem 9. (a) More generally:
Lemma \mathcal{J} : Let A and A^{\prime} be two rings such that $A \subseteq A^{\prime}$. Let $\left(I_{\rho}\right)_{\rho \in \mathbb{N}}$ be an ideal semifiltration of A. Then, $\left(I_{\rho} A^{\prime}\right)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A^{\prime}.

Proof of Lemma \mathcal{J} : Since $\left(I_{\rho}\right)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A, the set I_{ρ} is an ideal of A for every $\rho \in \mathbb{N}$, and we have

$$
\begin{aligned}
I_{0} & =A ; \\
I_{a} I_{b} & \subseteq I_{a+b} \quad \text { for every } a \in \mathbb{N} \text { and } b \in \mathbb{N} .
\end{aligned}
$$

Now, the set $I_{\rho} A^{\prime}$ is an ideal of A^{\prime} for every $\rho \in \mathbb{N}$ (since I_{ρ} is an ideal of A), and we have

$$
\begin{aligned}
I_{0} A^{\prime} & =A A^{\prime}=A^{\prime} \\
I_{a} A^{\prime} \cdot I_{b} A^{\prime} & =I_{a} I_{b} A^{\prime} \subseteq I_{a+b} A^{\prime} \quad\left(\text { since } I_{a} I_{b} \subseteq I_{a+b}\right) \quad \text { for every } a \in \mathbb{N} \text { and } b \in \mathbb{N} .
\end{aligned}
$$

Thus, $\left(I_{\rho} A^{\prime}\right)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A^{\prime}. This proves Lemma \mathcal{J}.
Now let us prove Theorem 9 (a). In fact, Lemma \mathcal{J} (applied to $A^{\prime}=A[v]$) yields that $\left(I_{\rho} A[v]\right)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of $A[v]$. This proves Theorem 9 (a).
(b) First, we will show a simple fact:

Lemma \mathcal{K} : Let A, A^{\prime} and B^{\prime} be three rings such that $A \subseteq A^{\prime} \subseteq B^{\prime}$. Let $v \in B^{\prime}$. Then, $A^{\prime} \cdot A[v]=A^{\prime}[v]$.

Proof of Lemma \mathcal{K} : We have $\underbrace{A^{\prime}}_{\subseteq A^{\prime}[v]} \cdot \underbrace{A[v]}_{\begin{array}{c}\subseteq A^{\prime}[v], \\ \text { since } A \subseteq A^{\prime}\end{array}} \subseteq A^{\prime}[v] \cdot A^{\prime}[v]=A^{\prime}[v]$ (since $A^{\prime}[v]$ is a ring). On the other hand, let x be an element of $A^{\prime}[v]$. Then, there exists some $n \in \mathbb{N}$ and some $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in\left(A^{\prime}\right)^{n+1}$ such that $x=\sum_{k=0}^{n} a_{k} v^{k}$. Thus, $x=\sum_{k=0}^{n} \underbrace{a_{k}}_{\in A^{\prime}} \underbrace{v^{k}}_{\in A[v]} \in \sum_{k=0}^{n} A^{\prime} \cdot A[v] \subseteq A^{\prime} \cdot A[v] \quad$ (since $A^{\prime} \cdot A[v]$ is an additive group).

Thus, we have proved that $x \in A^{\prime} \cdot A[v]$ for every $x \in A^{\prime}[v]$. Therefore, $A^{\prime}[v] \subseteq A^{\prime} \cdot A[v]$. Combined with $A^{\prime} \cdot A[v] \subseteq A^{\prime}[v]$, this yields $A^{\prime} \cdot A[v]=A^{\prime}[v]$. Hence, we have established Lemma \mathcal{K}.

Now let us prove Theorem 9 (b). In fact, consider the polynomial ring $A[Y]$ and its A-subalgebra $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$. We have $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right] \subseteq A[Y]$, and (as explained in Definition 7) we can identify the polynomial ring $\vec{A}[Y]$ with a subring of $(A[v])[Y]$ (since $A \subseteq A[v])$. Hence, $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right] \subseteq(A[v])[Y]$. On the other hand, $(A[v])\left[\left(I_{\rho} A[v]\right)_{\rho \in \mathbb{N}} * Y\right] \subseteq(A[v])[Y]$.

Now, we will show that $(A[v])\left[\left(I_{\rho} A[v]\right)_{\rho \in \mathbb{N}} * Y\right]=\left(A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]\right)[v]$.
In fact, Definition 8 yields

$$
\begin{aligned}
(A[v])\left[\left(I_{\rho} A[v]\right)_{\rho \in \mathbb{N}} * Y\right]= & \sum_{i \in \mathbb{N}} I_{i} A[v] \cdot Y^{i}=\sum_{i \in \mathbb{N}} I_{i} Y^{i} \cdot A[v]=A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right] \cdot A[v] \\
& \left(\text { since } \sum_{i \in \mathbb{N}} I_{i} Y^{i}=A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]\right) \\
= & \left(A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]\right)[v]
\end{aligned}
$$

(by Lemma \mathcal{K} (applied to $A^{\prime}=A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$ and $\left.B^{\prime}=(A[v])[Y]\right)$).
Note that (as explained in Definition 7) we can identify the polynomial ring $(A[v])[Y]$ with a subring of $B[Y]$ (since $A[v] \subseteq B$). Thus, $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right] \subseteq(A[v])[Y]$ yields $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right] \subseteq B[Y]$.

Besides, Lemma \mathcal{I} (applied to $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right], B[Y]$ and m instead of A^{\prime}, B^{\prime} and n) yields that v is m-integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$ (since v is m-integral over A, and $\left.A \subseteq A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right] \subseteq B[Y]\right)$.

Now, Theorem 7 (applied to $A[v]$ and $\left(I_{\rho} A[v]\right)_{\rho \in \mathbb{N}}$ instead of A and $\left.\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$ yields that $u Y$ is n-integral over $(A[v])\left[\left(I_{\rho} A[v]\right)_{\rho \in \mathbb{N}} * Y\right]\left(\right.$ since u is n-integral over $\left.\left(A[v],\left(I_{\rho} A[v]\right)_{\rho \in \mathbb{N}}\right)\right)$. Since $(A[v])\left[\left(I_{\rho} A[v]\right)_{\rho \in \mathbb{N}} * Y\right]=\left(A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]\right)[v]$, this means that $u Y$ is n-integral over $\left(A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]\right)[v]$. Now, Theorem 4 (applied to $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right], B[Y]$ and $u Y$ instead of A, B and u) yields that $u Y$ is $n m$-integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$ (since v is m integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$, and $u Y$ is n-integral over $\left.\left(A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]\right)[v]\right)$. Thus, Theorem 7 (applied to $n m$ instead of n) yields that u is $n m$-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$. This proves Theorem 9 (b).

3. Generalizing to two ideal semifiltrations

Theorem 10. Let A be a ring.
(a) Then, $(A)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A.
(b) Let $\left(I_{\rho}\right)_{\rho \in \mathbb{N}}$ and $\left(J_{\rho}\right)_{\rho \in \mathbb{N}}$ be two ideal semifiltrations of A. Then, $\left(I_{\rho} J_{\rho}\right)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A.

Proof of Theorem 10. (a) Clearly, $(A)_{\rho \in \mathbb{N}}$ is a sequence of ideals of A. Hence, in order to prove that $(A)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A, it is enough to verify that it satisfies the two conditions

$$
\begin{aligned}
A & =A ; \\
A A & \subseteq A \quad \text { for every } a \in \mathbb{N} \text { and } b \in \mathbb{N} .
\end{aligned}
$$

But these two conditions are obviously satisfied. Hence, $(A)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A. This proves Theorem 10 (a).
(b) Since $\left(I_{\rho}\right)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A, it is a sequence of ideals of A, and it satisfies the two conditions

$$
\begin{aligned}
I_{0} & =A ; \\
I_{a} I_{b} & \subseteq I_{a+b} \quad \text { for every } a \in \mathbb{N} \text { and } b \in \mathbb{N} .
\end{aligned}
$$

Since $\left(J_{\rho}\right)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A, it is a sequence of ideals of A, and it satisfies the two conditions

$$
\begin{aligned}
J_{0} & =A ; \\
J_{a} J_{b} & \subseteq J_{a+b} \quad \text { for every } a \in \mathbb{N} \text { and } b \in \mathbb{N} .
\end{aligned}
$$

Now, $I_{\rho} J_{\rho}$ is an ideal of A for every $\rho \in \mathbb{N}$ (since I_{ρ} and J_{ρ} are ideals of A for every $\rho \in \mathbb{N}$, and the product of any two ideals of A is an ideal of $A)$. Hence, $\left(I_{\rho} J_{\rho}\right)_{\rho \in \mathbb{N}}$ is a sequence of ideals of A. Thus, in order to prove that $\left(I_{\rho} J_{\rho}\right)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A, it is enough to verify that it satisfies the two conditions

$$
\begin{aligned}
I_{0} J_{0} & =A ; \\
I_{a} J_{a} \cdot I_{b} J_{b} \subseteq I_{a+b} J_{a+b} & \text { for every } a \in \mathbb{N} \text { and } b \in \mathbb{N} .
\end{aligned}
$$

But these two conditions are satisfied, since

$$
\begin{aligned}
& \underbrace{I_{0}}_{=A} \underbrace{J_{0}}_{=A}=A A=A \\
& I_{a} J_{a} \cdot I_{b} J_{b}=\underbrace{I_{a} I_{b}}_{\subseteq I_{a+b}} \underbrace{J_{a} J_{b}} \subseteq I_{a+b} J_{a+b} \quad \text { for every } a \in \mathbb{N} \text { and } b \in \mathbb{N} .
\end{aligned}
$$

Hence, $\left(I_{\rho} J_{\rho}\right)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A. This proves Theorem 10 (b).
Now let us generalize Theorem 7:
Theorem 11. Let A and B be two rings such that $A \subseteq B$. Let $\left(I_{\rho}\right)_{\rho \in \mathbb{N}}$ and $\left(J_{\rho}\right)_{\rho \in \mathbb{N}}$ be two ideal semifiltrations of A. Let $n \in \mathbb{N}$. Let $u \in B$.
We know that $\left(I_{\rho} J_{\rho}\right)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A (according to Theorem 10 (b)).
Consider the polynomial ring $A[Y]$ and its A-subalgebra $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$.
We will abbreviate the ring $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$ by $A_{[I]}$.

By Lemma \mathcal{J} (applied to $A_{[I]}$ and $\left(J_{\tau}\right)_{\tau \in \mathbb{N}}$ instead of A^{\prime} and $\left.\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$, the sequence $\left(J_{\tau} A_{[I]}\right)_{\tau \in \mathbb{N}}$ is an ideal semifiltration of $A_{[I]}$ (since $A \subseteq A_{[I]}$ and since $\left(J_{\tau}\right)_{\tau \in \mathbb{N}}=\left(J_{\rho}\right)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of $\left.A\right)$.
Then, the element u of B is n-integral over $\left(A,\left(I_{\rho} J_{\rho}\right)_{\rho \in \mathbb{N}}\right)$ if and only if the element $u Y$ of the polynomial ring $B[Y]$ is n-integral over $\left(A_{[I]},\left(J_{\tau} A_{[I]}\right)_{\tau \in \mathbb{N}}\right)$.
(Here, $A_{[I]} \subseteq B[Y]$ because $A_{[I]}=A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right] \subseteq A[Y]$ and we consider $A[Y]$ as a subring of $B[Y]$ as explained in Definition 7.)

Proof of Theorem 11. First, note that

$$
\begin{aligned}
\sum_{\ell \in \mathbb{N}} I_{\ell} Y^{\ell} & =\sum_{i \in \mathbb{N}} I_{i} Y^{i} \quad \text { (here we renamed } \ell \text { as } i \text { in the sum) } \\
& =A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]=A_{[I] .} .
\end{aligned}
$$

In order to verify Theorem 11, we have to prove the following two lemmata:
Lemma \mathcal{E}^{\prime} : If u is n-integral over $\left(A,\left(I_{\rho} J_{\rho}\right)_{\rho \in \mathbb{N}}\right)$, then $u Y$ is n-integral over $\left(A_{[I]},\left(J_{\tau} A_{[I]}\right)_{\tau \in \mathbb{N}}\right)$.

Lemma \mathcal{F}^{\prime} : If $u Y$ is n-integral over $\left(A_{[I]},\left(J_{\tau} A_{[I]}\right)_{\tau \in \mathbb{N}}\right)$, then u is n-integral over $\left(A,\left(I_{\rho} J_{\rho}\right)_{\rho \in \mathbb{N}}\right)$.

Proof of Lemma \mathcal{E}^{\prime} : Assume that u is n-integral over $\left(A,\left(I_{\rho} J_{\rho}\right)_{\rho \in \mathbb{N}}\right)$. Then, by Definition 9 (applied to $\left(I_{\rho} J_{\rho}\right)_{\rho \in \mathbb{N}}$ instead of $\left.\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$, there exists some $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in$ A^{n+1} such that $\sum_{k=0}^{n} a_{k} u^{k}=0, \quad a_{n}=1, \quad$ and $\quad a_{i} \in I_{n-i} J_{n-i}$ for every $i \in\{0,1, \ldots, n\}$.

Note that $a_{k} Y^{n-k} \in A_{[I]}$ for every $k \in\{0,1, \ldots, n\}$ (because $a_{k} \in I_{n-k} J_{n-k} \subseteq I_{n-k}$ (since I_{n-k} is an ideal of A) and thus $a_{k} Y^{n-k} \in I_{n-k} Y^{n-k} \subseteq \sum_{i \in \mathbb{N}} I_{i} Y^{i}=A_{[I]}$). Thus, we can define an $(n+1)$-tuple $\left(b_{0}, b_{1}, \ldots, b_{n}\right) \in\left(A_{[I]}\right)^{n+1}$ by $b_{k}=a_{k} Y^{n-k}$ for every $k \in\{0,1, \ldots, n\}$. Then,

$$
\begin{aligned}
\sum_{k=0}^{n} b_{k} \cdot(u Y)^{k} & =\sum_{k=0}^{n} a_{k} Y^{n-k} \cdot(u Y)^{k}=\sum_{k=0}^{n} a_{k} Y^{n-k} u^{k} Y^{k}=\sum_{k=0}^{n} a_{k} u^{k} \underbrace{Y^{n-k} Y^{k}}_{=Y^{n}}=Y^{n} \cdot \underbrace{\sum_{k=0}^{n} a_{k} u^{k}}_{=0}=0 \\
b_{n} & =\underbrace{a_{n}}_{=1} \underbrace{Y^{n-n}}_{=Y^{0}=1}=1,
\end{aligned}
$$

and

$$
b_{i}=\underbrace{a_{i}}_{\substack{\in I_{n-i} J_{n-i} \\
=J_{n-i} I_{n-i}}} Y^{n-i} \in J_{n-i} \underbrace{I_{n-i} Y^{n-i}}_{\substack{\begin{subarray}{c}{\ell \in \mathbb{N} \\
\\
=A_{[I]}} }}\end{subarray}} \subseteq J_{n-i} A_{[I]}
$$

for every $i \in\{0,1, \ldots, n\}$.
Altogether, we now know that $\left(b_{0}, b_{1}, \ldots, b_{n}\right) \in\left(A_{[I]}\right)^{n+1}$ and
$\sum_{k=0}^{n} b_{k} \cdot(u Y)^{k}=0, \quad b_{n}=1, \quad$ and $\quad b_{i} \in J_{n-i} A_{[I]}$ for every $i \in\{0,1, \ldots, n\}$.
Hence, by Definition 9 (applied to $A_{[I]}, B[Y],\left(J_{\tau} A_{[I]}\right)_{\tau \in \mathbb{N}}, u Y$ and $\left(b_{0}, b_{1}, \ldots, b_{n}\right)$ instead of $A, B,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}, u$ and $\left.\left(a_{0}, a_{1}, \ldots, a_{n}\right)\right)$, the element $u Y$ is n-integral over $\left(A_{[I]},\left(J_{\tau} A_{[I]}\right)_{\tau \in \mathbb{N}}\right)$. This proves Lemma \mathcal{E}^{\prime}.

Proof of Lemma \mathcal{F}^{\prime} : Assume that $u Y$ is n-integral over $\left(A_{[I]},\left(J_{\tau} A_{[I]}\right)_{\tau \in \mathbb{N}}\right)$. Then, by Definition 9 (applied to $A_{[I]}, B[Y],\left(J_{\tau} A_{[I]}\right)_{\tau \in \mathbb{N}}, u Y$ and $\left(p_{0}, p_{1}, \ldots, p_{n}\right)$ instead of $A, B,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}, u$ and $\left.\left(a_{0}, a_{1}, \ldots, a_{n}\right)\right)$, there exists some $\left(p_{0}, p_{1}, \ldots, p_{n}\right) \in\left(A_{[I]}\right)^{n+1}$ such that
$\sum_{k=0}^{n} p_{k} \cdot(u Y)^{k}=0, \quad p_{n}=1, \quad$ and $\quad p_{i} \in J_{n-i} A_{[I]}$ for every $i \in\{0,1, \ldots, n\}$.
For every $k \in\{0,1, \ldots, n\}$, we have

$$
\begin{aligned}
p_{k} & \in J_{n-k} A_{[I]}=J_{n-k} \sum_{i \in \mathbb{N}} I_{i} Y^{i} \quad\left(\text { since } A_{[I]}=\sum_{i \in \mathbb{N}} I_{i} Y^{i}\right) \\
& =\sum_{i \in \mathbb{N}} J_{n-k} I_{i} Y^{i}=\sum_{i \in \mathbb{N}} I_{i} J_{n-k} Y^{i},
\end{aligned}
$$

and thus, there exists a sequence $\left(p_{k, i}\right)_{i \in \mathbb{N}} \in A^{\mathbb{N}}$ such that $p_{k}=\sum_{i \in \mathbb{N}} p_{k, i} Y^{i}$, such that $p_{k, i} \in I_{i} J_{n-k}$ for every $i \in \mathbb{N}$, and such that only finitely many $i \in \mathbb{N}$ satisfy $p_{k, i} \neq 0$. Thus,

$$
\begin{aligned}
\sum_{k=0}^{n} p_{k} \cdot(u Y)^{k} & =\sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k, i} Y^{i} \cdot \underbrace{(u Y)^{k}}_{\substack{=u^{k} Y^{k} \\
=Y^{k} u^{k}}} \quad\left(\text { since } p_{k}=\sum_{i \in \mathbb{N}} p_{k, i} Y^{i}\right) \\
& =\sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k, i} \underbrace{Y^{i} \cdot Y^{k}}_{=Y^{i+k}} u^{k} \\
& =\sum_{k=0}^{n} \sum_{i \in \mathbb{N}} p_{k, i} Y^{i+k} u^{k}=\sum_{k \in\{0,1, \ldots, n\}} \sum_{i \in \mathbb{N}} p_{k, i} Y^{i+k} u^{k} \\
& =\sum_{(k, i) \in\{0,1, \ldots, n\} \times \mathbb{N}} p_{k, i} Y^{i+k} u^{k}=\sum_{\ell \in \mathbb{N}} \sum_{(k, i) \in\{0,1, \ldots, n\} \times \mathbb{N} ;}^{i+k=\ell} p_{k, i} \underbrace{Y^{i+k}}_{=Y^{\ell}} u^{k} \\
& =\sum_{\ell \in \mathbb{N}} \sum_{\substack{(k, i) \in\{0,1, \ldots, n\} \times \mathbb{N} ; \\
i+k=\ell}} p_{k, i} Y^{\ell} u^{k}=\sum_{\ell \in \mathbb{N}} \sum_{\substack{(k, i) \in\{0,1, \ldots, n\} \times \mathbb{N} ; \\
i+k=\ell}} u^{k} Y^{\ell} .
\end{aligned}
$$

Hence, $\sum_{k=0}^{n} p_{k} \cdot(u Y)^{k}=0$ becomes $\sum_{\ell \in \mathbb{N}} \sum_{\substack{k, i) \in\{0,1, \ldots, n\} \times \mathbb{N} ; \\ i+k=\ell}} p_{k, i} u^{k} Y^{\ell}=0$. In other words, the polynomial $\sum_{\ell \in \mathbb{N}} \underbrace{\sum_{\substack{(k, i) \in\{0,1, \ldots, n\} \times \mathbb{N} ; \\ i+k=\ell}} p_{k, i} u^{k} Y^{\ell} \in B[Y] \text { equals } 0 \text {. Hence, its coefficient before }}$ $\in B$
Y^{n} equals 0 as well. But its coefficient before Y^{n} is $\sum_{\substack{k, i) \in\{0,1, \ldots, n\} \times \mathbb{N} ; \\ i+k=n}} p_{k, i} u^{k}$. Hence, $\sum_{\substack{(k, i) \in\{0,1, \ldots, n\} \times \mathbb{N} ; \\ i+k=n}} p_{k, i} u^{k}$ equals 0.

Thus,

$$
\begin{aligned}
0= & \sum_{\substack{(k, i) \in\{0,1, \ldots, n\} \times \mathbb{N} ; \\
i+k=n}} p_{k, i} u^{k}=\sum_{k \in\{0,1, \ldots, n\}} \sum_{\substack{i \in \mathbb{N} ; \\
i+k=n}} p_{k, i} u^{k}=\sum_{k \in\{0,1, \ldots, n\}} p_{k, n-k} u^{k} \\
& \binom{\text { since }\{i \in \mathbb{N} \mid i+k=n\}=\{i \in \mathbb{N} \mid i=n-k\}=\{n-k\} \text { (because } n-k \in \mathbb{N},}{\text { since } k \in\{0,1, \ldots, n\}) \text { yields } \sum_{\substack{i \in \mathbb{N} ; \\
i+k=n}} p_{k, i} u^{k}=\sum_{i \in\{n-k\}} p_{k, i} u^{k}=p_{k, n-k} u^{k}} .
\end{aligned}
$$

Note that

$$
\begin{aligned}
\sum_{i \in \mathbb{N}} p_{n, i} Y^{i} & =p_{n} \quad\left(\text { since } \sum_{i \in \mathbb{N}} p_{k, i} Y^{i}=p_{k} \text { for every } k \in\{0,1, \ldots, n\}\right) \\
& =1=1 \cdot Y^{0}
\end{aligned}
$$

in $A[Y]$, and thus the coefficient of the polynomial $\sum_{i \in \mathbb{N}} p_{n, i} Y^{i} \in A[Y]$ before Y^{0} is 1 ; but the coefficient of the polynomial $\sum_{i \in \mathbb{N}} p_{n, i} Y^{i} \in A[Y]$ before Y^{0} is $p_{n, 0}$; hence, $p_{n, 0}=1$.

Define an $(n+1)$-tuple $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in A^{n+1}$ by $a_{k}=p_{k, n-k}$ for every $k \in\{0,1, \ldots, n\}$. Then, $a_{n}=p_{n, n-n}=p_{n, 0}=1$. Besides,

$$
\sum_{k=0}^{n} a_{k} u^{k}=\sum_{k=0}^{n} p_{k, n-k} u^{k}=\sum_{k \in\{0,1, \ldots, n\}} p_{k, n-k} u^{k}=0
$$

Finally, $a_{k}=p_{k, n-k} \in I_{n-k} J_{n-k}$ (since $p_{k, i} \in I_{i} J_{n-k}$ for every $i \in \mathbb{N}$) for every $k \in$ $\{0,1, \ldots, n\}$. In other words, $a_{i} \in I_{n-i} J_{n-i}$ for every $i \in\{0,1, \ldots, n\}$.

Altogether, we now know that
$\sum_{k=0}^{n} a_{k} u^{k}=0, \quad a_{n}=1, \quad$ and $\quad a_{i} \in I_{n-i} J_{n-i}$ for every $i \in\{0,1, \ldots, n\}$.
Thus, by Definition 9 (applied to $\left(I_{\rho} J_{\rho}\right)_{\rho \in \mathbb{N}}$ instead of $\left.\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$, the element u is n integral over $\left(A,\left(I_{\rho} J_{\rho}\right)_{\rho \in \mathbb{N}}\right)$. This proves Lemma \mathcal{F}^{\prime}.

Combining Lemmata \mathcal{E}^{\prime} and \mathcal{F}^{\prime}, we obtain that u is n-integral over $\left(A,\left(I_{\rho} J_{\rho}\right)_{\rho \in \mathbb{N}}\right)$ if and only if $u Y$ is n-integral over $\left(A_{[I]},\left(J_{\tau} A_{[I]}\right)_{\tau \in \mathbb{N}}\right)$. This proves Theorem 11.

For the sake of completeness, we mention the following trivial fact (which shows why Theorem 11 generalizes Theorem 7):

Theorem 12. Let A and B be two rings such that $A \subseteq B$. Let $n \in \mathbb{N}$. Let $u \in B$.

We know that $(A)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A (according to Theorem 10 (a)).
Then, the element u of B is n-integral over $\left(A,(A)_{\rho \in \mathbb{N}}\right)$ if and only if u is n-integral over A.

Proof of Theorem 12. In order to verify Theorem 12, we have to prove the following two lemmata:

Lemma \mathcal{L} : If u is n-integral over $\left(A,(A)_{\rho \in \mathbb{N}}\right)$, then u is n-integral over A.
Lemma \mathcal{M} : If u is n-integral over A, then u is n-integral over $\left(A,(A)_{\rho \in \mathbb{N}}\right)$.
Proof of Lemma \mathcal{L} : Assume that u is n-integral over $\left(A,(A)_{\rho \in \mathbb{N}}\right)$. Then, by Definition 9 (applied to $(A)_{\rho \in \mathbb{N}}$ instead of $\left.\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$, there exists some $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in A^{n+1}$ such that

$$
\sum_{k=0}^{n} a_{k} u^{k}=0, \quad a_{n}=1, \quad \text { and } \quad a_{i} \in A \text { for every } i \in\{0,1, \ldots, n\} .
$$

Define a polynomial $P \in A[X]$ by $P(X)=\sum_{k=0}^{n} a_{k} X^{k}$. Then, $P(X)=\sum_{k=0}^{n} a_{k} X^{k}=$ $\underbrace{a_{n}}_{=1} X^{n}+\sum_{k=0}^{n-1} a_{k} X^{k}=X^{n}+\sum_{k=0}^{n-1} a_{k} X^{k}$. Hence, the polynomial P is monic, and $\operatorname{deg} P=n$. Besides, $P(u)=0$ (since $P(X)=\sum_{k=0}^{n} a_{k} X^{k}$ yields $P(u)=\sum_{k=0}^{n} a_{k} u^{k}=0$). Thus, there exists a monic polynomial $P \in A[X]$ with $\operatorname{deg} P=n$ and $P(u)=0$. Hence, u is n-integral over A. This proves Lemma \mathcal{L}.

Proof of Lemma \mathcal{M} : Assume that u is n-integral over A. Then, there exists a monic polynomial $P \in A[X]$ with $\operatorname{deg} P=n$ and $P(u)=0$. Since $\operatorname{deg} P=n$, there exists some $(n+1)$-tuple $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in A^{n+1}$ such that $P(X)=\sum_{k=0}^{n} a_{k} X^{k}$. Thus, $a_{n}=1$ (since P is monic, and $\operatorname{deg} P=n$). Also, $\sum_{k=0}^{n} a_{k} X^{k}=P(X)$ yields $\sum_{k=0}^{n} a_{k} u^{k}=P(u)=0$. Altogether, we now know that $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in A^{n+1}$ and

$$
\sum_{k=0}^{n} a_{k} u^{k}=0, \quad a_{n}=1, \quad \text { and } \quad a_{i} \in A \text { for every } i \in\{0,1, \ldots, n\}
$$

Hence, by Definition 9 (applied to $(A)_{\rho \in \mathbb{N}}$ instead of $\left.\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$, the element u is n-integral over $\left(A,(A)_{\rho \in \mathbb{N}}\right)$. This proves Lemma \mathcal{M}.

Combining Lemmata \mathcal{L} and \mathcal{M}, we obtain that u is n-integral over $\left(A,(A)_{\rho \in \mathbb{N}}\right)$ if and only if u is n-integral over A. This proves Theorem 12 .

Finally, let us generalize Theorem 8 (c):

Theorem 13. Let A and B be two rings such that $A \subseteq B$. Let $\left(I_{\rho}\right)_{\rho \in \mathbb{N}}$ and $\left(J_{\rho}\right)_{\rho \in \mathbb{N}}$ be two ideal semifiltrations of A.
Let $x \in B$ and $y \in B$. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Assume that x is m-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$, and that y is n-integral over $\left(A,\left(J_{\rho}\right)_{\rho \in \mathbb{N}}\right)$. Then, $x y$ is $n m$-integral over $\left(A,\left(I_{\rho} J_{\rho}\right)_{\rho \in \mathbb{N}}\right)$.

Proof of Theorem 13. First, a trivial observation:
Lemma \mathcal{I}^{\prime} : Let A, A^{\prime} and B^{\prime} be three rings such that $A \subseteq A^{\prime} \subseteq B^{\prime}$. Let $\left(I_{\rho}\right)_{\rho \in \mathbb{N}}$ be an ideal semifiltration of A. Let $v \in B^{\prime}$. Let $n \in \mathbb{N}$. If v is n-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$, then v is n-integral over $\left(A^{\prime},\left(I_{\rho} A^{\prime}\right)_{\rho \in \mathbb{N}}\right)$. (Note that $\left(I_{\rho} A^{\prime}\right)_{\rho \in \mathbb{N}}$ is an ideal semifiltration of A^{\prime}, according to Lemma \mathcal{J}.)

Proof of Lemma \mathcal{I}^{\prime} : Assume that v is n-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$. Then, by Definition 9 (applied to B^{\prime} and v instead of B and u), there exists some $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in$ A^{n+1} such that

$$
\sum_{k=0}^{n} a_{k} v^{k}=0, \quad a_{n}=1, \quad \text { and } \quad a_{i} \in I_{n-i} \text { for every } i \in\{0,1, \ldots, n\}
$$

But $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in A^{n+1}$ yields $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in\left(A^{\prime}\right)^{n+1}$ (since $A \subseteq A^{\prime}$), and $a_{i} \in I_{n-i}$ yields $a_{i} \in I_{n-i} A^{\prime}$ (since $I_{n-i} \subseteq I_{n-i} A^{\prime}$) for every $i \in\{0,1, \ldots, n\}$. Thus, $\left(a_{0}, a_{1}, \ldots, a_{n}\right) \in$ $\left(A^{\prime}\right)^{n+1}$ and

$$
\sum_{k=0}^{n} a_{k} v^{k}=0, \quad a_{n}=1, \quad \text { and } \quad a_{i} \in I_{n-i} A^{\prime} \text { for every } i \in\{0,1, \ldots, n\}
$$

Hence, by Definition 9 (applied to $B^{\prime}, A^{\prime},\left(I_{\rho} A^{\prime}\right)_{\rho \in \mathbb{N}}$ and v instead of $B, A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}$ and u), the element v is n-integral over $\left(A^{\prime},\left(I_{\rho} A^{\prime}\right)_{\rho \in \mathbb{N}}\right)$. This proves Lemma \mathcal{I}^{\prime}.

Now let us prove Theorem 13.
We have $\left(J_{\rho}\right)_{\rho \in \mathbb{N}}=\left(J_{\tau}\right)_{\tau \in \mathbb{N}}$. Hence, y is n-integral over $\left(A,\left(J_{\tau}\right)_{\tau \in \mathbb{N}}\right)$ (since y is n-integral over $\left(A,\left(J_{\rho}\right)_{\rho \in \mathbb{N}}\right)$).

Consider the polynomial ring $A[Y]$ and its A-subalgebra $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$. We will abbreviate the ring $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$ by $A_{[I]}$. We have $A_{[I]} \subseteq B[Y]$, because $A_{[I]}=$ $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right] \subseteq A[Y]$ and we consider $A[Y]$ as a subring of $B[Y]$ as explained in Definition 7.

Theorem 7 (applied to x and m instead of u and n) yields that $x Y$ is m-integral over $A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]$ (since x is m-integral over $\left(A,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}\right)$). In other words, $x Y$ is m-integral over $A_{[I]}\left(\right.$ since $\left.A\left[\left(I_{\rho}\right)_{\rho \in \mathbb{N}} * Y\right]=A_{[I]}\right)$.

On the other hand, Lemma \mathcal{I}^{\prime} (applied to $A_{[I]}, B[Y],\left(J_{\tau}\right)_{\tau \in \mathbb{N}}$ and y instead of $A^{\prime}, B^{\prime},\left(I_{\rho}\right)_{\rho \in \mathbb{N}}$ and v) yields that y is n-integral over $\left(A_{[I]},\left(J_{\tau} A_{[I]}\right)_{\tau \in \mathbb{N}}\right)$ (since y is n-integral over $\left(A,\left(J_{\tau}\right)_{\tau \in \mathbb{N}}\right)$, and $\left.A \subseteq A_{[I]} \subseteq B[Y]\right)$.

Hence, Theorem 8 (c) (applied to $A_{[I]}, B[Y],\left(J_{\tau} A_{[I]}\right)_{\tau \in \mathbb{N}}, y, x Y, m$ and n instead of $A, B,\left(I_{\rho}\right)_{\rho \in \mathbb{N}}, x, y, n$ and m respectively) yields that $y \cdot x Y$ is $m n$-integral over $\left(A_{[I]},\left(J_{\tau} A_{[I]}\right)_{\tau \in \mathbb{N}}\right)$ (since y is n-integral over $\left(A_{[I]},\left(J_{\tau} A_{[I]}\right)_{\tau \in \mathbb{N}}\right)$, and $x Y$ is m-integral over $\left.A_{[I]}\right)$. Since $y \cdot x Y=x y Y$ and $m n=n m$, this means that $x y Y$ is $n m$-integral over $\left(A_{[I]},\left(J_{\tau} A_{[I]}\right)_{\tau \in \mathbb{N}}\right)$. Hence, Theorem 11 (applied to $x y$ and $n m$ instead of u and n) yields that $x y$ is $n m$-integral over $\left(A,\left(I_{\rho} J_{\rho}\right)_{\rho \in \mathbb{N}}\right)$. This proves Theorem 13.

References

[1] J. S. Milne, Algebraic Number Theory, version 3.07. https://www.jmilne.org/math/CourseNotes/ant.html
[2] Craig Huneke and Irena Swanson, Integral Closure of Ideals, Rings, and Modules, London Mathematical Society Lecture Note Series, 336. Cambridge University Press, Cambridge, 2006. https://people.reed.edu/~iswanson/book/index.html

[^0]: ${ }^{1}$ Warning: This is a (very) old version of my note "A few facts on integrality". Some minor mistakes have been left uncorrected here!

[^1]: ${ }^{2}$ Theorem 7 is inspired by Proposition 5.2.1 in [2].

