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The purpose of this note is to collect some theorems and proofs related to integrality
in commutative algebra. The note is subdivided into three parts.

Part 1 (Integrality over rings) consists of known facts (Theorems 1, 4, 5) and a
generalized exercise from [1] (Corollary 3) with a few minor variations (Theorem 2 and
Corollary 6).

Part 2 (Integrality over ideal semifiltrations) merges integrality over rings (as con-
sidered in Part 1) and integrality over ideals (a less-known but still very useful notion;
the book [2] is devoted to it) into one general notion - that of integrality over ideal
semifiltrations (Definition 9). This notion is very general, yet it can be reduced to the
basic notion of integrality over rings by a suitable change of base ring (Theorem 7).
This reduction allows to extend some standard properties of integrality over rings to
the general case (Theorems 8 and 9).

Part 3 (Generalizing to two ideal semifiltrations) continues Part 2, adding one more
layer of generality. Its main result is a “relative” version of Theorem 7 (Theorem 11)
and a known fact generalized one more time (Theorem 13).

This note is supposed to be self-contained (only linear algebra and basic knowledge
about rings, ideals and polynomials is assumed). The proofs are constructive. However,
when writing down the proofs I focussed on maximal detail (to ensure correctness)
rather than on clarity, so the proofs are probably a pain to read. I think of making a
short version of this note with the obvious parts of proofs left out.

Preludium

Definitions and notations:
Definition 1. In the following, “ring” will always mean “commutative ring with

unity”. We denote the set {0, 1, 2, ...} by N, and the set {1, 2, 3, ...} by N+.
Definition 2. Let A be a ring, and let n ∈ N. Let M be an A-module. If m1, m2,

..., mn are n elements of M , then we define an A-submodule 〈m1,m2, ...,mn〉A of M by

〈m1,m2, ...,mn〉A =

{
n∑
i=1

aimi | (a1, a2, ..., an) ∈ An
}
.

Also, if S is a finite set, and ms is an element of M for every s ∈ S, then we define an
A-submodule 〈ms | s ∈ S〉A of M by

〈ms | s ∈ S〉A =

{∑
s∈S

asms | (as)s∈S ∈ A
S

}
.

Of course, if m1, m2, ..., mn are n elements of M , then

〈m1,m2, ...,mn〉A = 〈ms | s ∈ {1, 2, ..., n}〉A .
1Warning: This is a (very) old version of my note “A few facts on integrality”. Some minor

mistakes have been left uncorrected here!
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Definition 3. Let A be a ring, and let n ∈ N. Let M be an A-module. We say
that the A-module M is n-generated if there exist n elements m1, m2, ..., mn of M
such that M = 〈m1,m2, ...,mn〉A. In other words, the A-module M is n-generated if
and only if there exists a set S and an element ms of M for every s ∈ S such that
|S| = n and M = 〈ms | s ∈ S〉A.

Definition 4. Let A and B be two rings. We say that A ⊆ B if and only if

(the set A is a subset of the set B)

and (the inclusion map A→ B is a ring homomorphism) .

Now assume that A ⊆ B. Then, obviously, B is canonically an A-algebra (since A ⊆
B). If u1, u2, ..., un are n elements of B, then we define an A-subalgebra A [u1, u2, ..., un]
of B by

A [u1, u2, ..., un] = {P (u1, u2, ..., un) | P ∈ A [X1, X2, ..., Xn]} .

In particular, if u is an element of B, then the A-subalgebra A [u] of B is defined
by

A [u] = {P (u) | P ∈ A [X]} .

Since A [X] =

{
m∑
i=0

aiX
i | m ∈ N and (a0, a1, ..., am) ∈ Am+1

}
, this becomes

A [u] =

{(
m∑
i=0

aiX
i

)
(u) | m ∈ N and (a0, a1, ..., am) ∈ Am+1

}
(

where

(
m∑
i=0

aiX
i

)
(u) means the polynomial

m∑
i=0

aiX
i evaluated at X = u

)

=

{
m∑
i=0

aiu
i | m ∈ N and (a0, a1, ..., am) ∈ Am+1

}
(

because

(
m∑
i=0

aiX
i

)
(u) =

m∑
i=0

aiu
i

)
.

Obviously, uA [u] ⊆ A [u] (since A [u] is an A-algebra and u ∈ A [u]).

1. Integrality over rings

Theorem 1. Let A and B be two rings such that A ⊆ B. Obviously, B is
canonically an A-module (since A ⊆ B). Let n ∈ N. Let u ∈ B. Then, the
following four assertions A, B, C and D are pairwise equivalent:

Assertion A: There exists a monic polynomial P ∈ A [X] with degP = n
and P (u) = 0.

Assertion B: There exists an n-generated A-submodule U of B such that
uU ⊆ U and such that v = 0 for every v ∈ B satisfying vU = 0.

Assertion C: There exists an n-generated A-submodule U of B such that
1 ∈ U and uU ⊆ U .

Assertion D: We have A [u] = 〈u0, u1, ..., un−1〉A.
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Definition 5. Let A and B be two rings such that A ⊆ B. Let n ∈ N. Let u ∈ B.
We say that the element u of B is n-integral over A if it satisfies the four equivalent
assertions A, B, C and D of Theorem 1.

Hence, u is n-integral over A if and only if there exists a monic polynomial P ∈ A [X]
with degP = n and P (u) = 0.

Proof of Theorem 1. We will prove the implications A =⇒ C, C =⇒ B, B =⇒ A,
A =⇒ D and D =⇒ C.

Proof of the implication A =⇒ C. Assume that Assertion A holds. Then, there
exists a monic polynomial P ∈ A [X] with degP = n and P (u) = 0. Since P ∈ A [X]
is a monic polynomial with degP = n, there exist elements a0, a1, ..., an−1 of A such

that P (X) = Xn +
n−1∑
k=0

akX
k. Thus, P (u) = un +

n−1∑
k=0

aku
k, so that P (u) = 0 becomes

un +
n−1∑
k=0

aku
k = 0. Hence, un = −

n−1∑
k=0

aku
k.

Let U be the A-submodule 〈u0, u1, ..., un−1〉A of B. Then, U is an n-generated
A-module (since u0, u1, ..., un−1 are n elements of U). Besides, 1 = u0 ∈ U .

Now, u · uk ∈ U for any k ∈ {0, 1, ..., n− 1} (since k ∈ {0, 1, ..., n− 1} yields either
0 ≤ k < n−1 or k = n−1, but u ·uk = uk+1 ∈ 〈u0, u1, ..., un−1〉A = U if 0 ≤ k < n−1,

and u · uk = u · un−1 = un = −
n−1∑
k=0

aku
k ∈ 〈u0, u1, ..., un−1〉A = U if k = n− 1, so that

u · uk ∈ U in both cases). Hence,

uU = u
〈
u0, u1, ..., un−1

〉
A

=
〈
u · u0, u · u1, ..., u · un−1

〉
A
⊆ U

(since u · uk ∈ U for any k ∈ {0, 1, ..., n− 1}).
Thus, Assertion C holds. Hence, we have proved that A =⇒ C.
Proof of the implication C =⇒ B. Assume that Assertion C holds. Then, there

exists an n-generated A-submodule U of B such that 1 ∈ U and uU ⊆ U . We have
v = 0 for every v ∈ B satisfying vU = 0 (since 1 ∈ U and vU = 0 yield v · 1︸︷︷︸

∈U

∈ vU = 0

and thus v · 1 = 0, so that v = 0). Thus, Assertion B holds. Hence, we have proved
that C =⇒ B.

Proof of the implication B =⇒ A. Assume that Assertion B holds. Then, there
exists an n-generated A-submodule U of B such that uU ⊆ U and such that v = 0 for
every v ∈ B satisfying vU = 0. Since the A-module U is n-generated, there exist n
elements m1, m2, ..., mn of U such that U = 〈m1,m2, ...,mn〉A. For any k ∈ {1, 2, ..., n},
we have

umk ∈ uU (since mk ∈ U)

⊆ U = 〈m1,m2, ...,mn〉A ,

so that there exist n elements ak,1, ak,2, ..., ak,n of A such that umk =
n∑
i=1

ak,imi.

Define a vector v ∈ Bn by vi = mi for all i ∈ {1, 2, ..., n}. (Here, for any vector w
and any integer x, we denote by wx the entry of the vector w in the x-th row.)

Define a matrix S ∈ An×n by Sk,i = ak,i for all k ∈ {1, 2, ..., n} and i ∈ {1, 2, ..., n}.
(Here, for any matrix T and any integers x and y, we denote by Tx,y the entry of the
matrix T in the x-th row and the y-th column.) Then, for any k ∈ {1, 2, ..., n}, we have
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u mk︸︷︷︸
=vk

= uvk = (uv)k and
n∑
i=1

ak,i︸︷︷︸
=Sk,i

mi︸︷︷︸
=vi

=
n∑
i=1

Sk,ivi = (Sv)k, so that umk =
n∑
i=1

ak,imi

becomes (uv)k = (Sv)k. Since this holds for every k ∈ {1, 2, ..., n}, we conclude that
uv = Sv. Thus,

0 = uv − Sv = uInv − Sv = (uIn − S) v.

Now, let P ∈ A [X] be the characteristic polynomial of the matrix S ∈ An×n.
Then, P is monic, and degP = n. Besides, P (X) = det (XIn − S), so that P (u) =
det (uIn − S). Thus,

P (u) · v = det (uIn − S) · v = det (uIn − S) In︸ ︷︷ ︸
=adj(uIn−S)·(uIn−S)

·v

= adj (uIn − S) · (uIn − S) v︸ ︷︷ ︸
=0

= 0.

Hence, for any k ∈ {1, 2, ..., n}, we have

P (u) · mk︸︷︷︸
=vk

= P (u) · vk =

P (u) · v︸ ︷︷ ︸
=0


k

= 0,

so that

P (u) · U = P (u) · 〈m1,m2, ...,mn〉A = 〈P (u) ·m1, P (u) ·m2, ..., P (u) ·mn〉A
= 〈0, 0, ..., 0〉A (since P (u) ·mk = 0 for any k ∈ {1, 2, ..., n})
= 0.

This implies P (u) = 0 (since v = 0 for every v ∈ B satisfying vU = 0). Thus, Assertion
A holds. Hence, we have proved that B =⇒ A.

Proof of the implication A =⇒ D. Assume that Assertion A holds. Then, there
exists a monic polynomial P ∈ A [X] with degP = n and P (u) = 0. Since P ∈ A [X]
is a monic polynomial with degP = n, there exist elements a0, a1, ..., an−1 of A such

that P (X) = Xn +
n−1∑
k=0

akX
k. Thus, P (u) = un +

n−1∑
k=0

aku
k, so that P (u) = 0 becomes

un +
n−1∑
k=0

aku
k = 0. Hence, un = −

n−1∑
k=0

aku
k.

Let U be the A-submodule 〈u0, u1, ..., un−1〉A ofB. As in the Proof of the implication
A =⇒ C, we can show that U is an n-generated A-module, and that 1 ∈ U and uU ⊆ U .

Now, we are going to show that

ui ∈ U for any i ∈ N. (1)

Proof of (1). We will prove (1) by induction over i:
Induction base: The assertion (1) holds for i = 0 (since u0 ∈ U). This completes

the induction base.
Induction step: Let τ ∈ N. If the assertion (1) holds for i = τ , then the assertion

(1) holds for i = τ + 1 (because if the assertion (1) holds for i = τ , then uτ ∈ U , so
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that uτ+1 = u · uτ︸︷︷︸
∈U

∈ uU ⊆ U , so that uτ+1 ∈ U , and thus the assertion (1) holds for

i = τ + 1). This completes the induction step.
Hence, the induction is complete, and (1) is proven.
Thus,

A [u] =

{
m∑
i=0

aiu
i | m ∈ N and (a0, a1, ..., am) ∈ Am+1

}
⊆ U

(since
m∑
i=0

aiu
i ∈ U for any m ∈ N and any (a0, a1, ..., am) ∈ Am+1, because ai ∈ A and

ui ∈ U for any i ∈ {0, 1, ...,m} (by (1)) and U is an A-module). On the other hand,
U ⊆ A [u], since

U =
〈
u0, u1, ..., un−1

〉
A

=

{
n−1∑
i=0

aiu
i | (a0, a1, ..., an−1) ∈ An

}

⊆

{
m∑
i=0

aiu
i | m ∈ N and (a0, a1, ..., am) ∈ Am+1

}
= A [u] .

Thus, U = A [u]. In other words, 〈u0, u1, ..., un−1〉A = A [u]. Thus, Assertion D holds.
Hence, we have proved that A =⇒ D.

Proof of the implication D =⇒ C. Assume that Assertion D holds. Then, A [u] =
〈u0, u1, ..., un−1〉A.

Let U be the A-submodule 〈u0, u1, ..., un−1〉A of B. Then, U is an n-generated
A-module (since u0, u1, ..., un−1 are n elements of U). Besides, 1 = u0 ∈ U .

Also,

uU = u ·
〈
u0, u1, ..., un−1

〉
A

= u · A [u] ⊆ A [u] =
〈
u0, u1, ..., un−1

〉
A

= U.

Thus, Assertion C holds. Hence, we have proved that D =⇒ C.
Now, we have proved the implications A =⇒ D, D =⇒ C, C =⇒ B and B =⇒ A

above. Thus, all four assertions A, B, C and D are pairwise equivalent, and Theorem
1 is proven.

Theorem 2. Let A and B be two rings such that A ⊆ B. Let n ∈ N. Let

v ∈ B. Let a0, a1, ..., an be n+ 1 elements of A such that
n∑
i=0

aiv
i = 0. Let

k ∈ {0, 1, ..., n}. Then,
n−k∑
i=0

ai+kv
i is n-integral over A.

Proof of Theorem 2. Let U be the A-submodule 〈v0, v1, ..., vn−1〉A of B. Then,
U is an n-generated A-module (since v0, v1, ..., vn−1 are n elements of U). Besides,
1 = v0 ∈ U .
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Let u =
n−k∑
i=0

ai+kv
i. Then,

0 =
n∑
i=0

aiv
i =

k−1∑
i=0

aiv
i +

n∑
i=k

aiv
i =

k−1∑
i=0

aiv
i +

n−k∑
i=0

ai+k v
i+k︸︷︷︸

=vivk

(here, we substituted i+ k for i in the second sum)

=
k−1∑
i=0

aiv
i + vk

n−k∑
i=0

ai+kv
i

︸ ︷︷ ︸
=u

=
k−1∑
i=0

aiv
i + vku,

so that vku = −
k−1∑
i=0

aiv
i.

Now, we are going to show that

uvt ∈ U for any t ∈ {0, 1, ..., n− 1} . (2)

Proof of (2). Since t ∈ {0, 1, ..., n− 1}, one of the following two cases must hold:
Case 1: We have t ∈ {0, 1, ..., k − 1}.
Case 2: We have t ∈ {k, k + 1, ..., n− 1}.
In Case 1, we have

uvt =
n−k∑
i=0

ai+k v
i · vt︸ ︷︷ ︸

=vi+t

=
n−k∑
i=0

ai+kv
i+t ∈

〈
v0, v1, ..., vn−1

〉
A(

since t ∈ {0, 1, ..., k − 1} yields i+ t ∈ {0, 1, ..., n− 1}
and thus vi+t ∈ {v0, v1, ..., vn−1} for any i ∈ {0, 1, ..., n− k}

)
= U.

In Case 2, we have t ∈ {k, k + 1, ..., n− 1}, thus t − k ∈ {0, 1, ..., n− k − 1} and
hence

uvt = u vk+(t−k)︸ ︷︷ ︸
=vkvt−k

= vku · vt−k = −
k−1∑
i=0

ai v
i · vt−k︸ ︷︷ ︸

=vi+(t−k)

(
since vku = −

k−1∑
i=0

aiv
i

)

= −
k−1∑
i=0

aiv
i+(t−k) ∈

〈
v0, v1, ..., vn−1

〉
A(

since t− k ∈ {0, 1, ..., n− k − 1} yields i+ (t− k) ∈ {0, 1, ..., n− 1}
and thus vi+(t−k) ∈ {v0, v1, ..., vn−1} for any i ∈ {0, 1, ..., k − 1}

)
= U.

Hence, in both cases, we have uvt ∈ U . Thus, uvt ∈ U always holds, and (2) is
proven.

Now,

uU = u
〈
v0, v1, ..., vn−1

〉
A

=
〈
uv0, uv1, ..., uvn−1

〉
A
⊆ U (due to (2)) .

6



Altogether, U is an n-generated A-submodule of B such that 1 ∈ U and uU ⊆ U .
Thus, u ∈ B satisfies Assertion C of Theorem 1. Hence, u ∈ B satisfies the four
equivalent assertions A, B, C and D of Theorem 1. Consequently, u is n-integral over

A. Since u =
n−k∑
i=0

ai+kv
i, this means that

n−k∑
i=0

ai+kv
i is n-integral over A. This proves

Theorem 2.

Corollary 3. Let A and B be two rings such that A ⊆ B. Let α ∈ N and
β ∈ N. Let u ∈ B and v ∈ B. Let s0, s1, ..., sα be α + 1 elements of A

such that
α∑
i=0

siv
i = u. Let t0, t1, ..., tβ be β + 1 elements of A such that

β∑
i=0

tiv
β−i = uvβ. Then, u is (α + β)-integral over A.

(This Corollary 3 generalizes Exercise 2-5 in [1].)
Proof of Corollary 3. Let k = β and n = α + β. Then, k ∈ {0, 1, ..., n}. Define

n+ 1 elements a0, a1, ..., an of A by

ai =


tβ−i, if i < β;
t0 − s0, if i = β;
−si−β, if i > β;

for every i ∈ {0, 1, ..., n} .
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Then,

n∑
i=0

aiv
i =

α+β∑
i=0

aiv
i =

β−1∑
i=0

ai︸︷︷︸
=tβ−i,
since
i<β

vi +

β∑
i=β

ai︸︷︷︸
=t0−s0,

since
i=β

vi +

α+β∑
i=β+1

ai︸︷︷︸
=−si−β ,

since
i>β

vi

=

β−1∑
i=0

tβ−iv
i +

β∑
i=β

(t0 − s0) vi︸ ︷︷ ︸
=(t0−s0)vβ

=t0vβ−s0vβ

+

α+β∑
i=β+1

(−si−β) vi︸ ︷︷ ︸
=−

α+β∑
i=β+1

si−βvi

=

β−1∑
i=0

tβ−iv
i + t0v

β − s0v
β −

α+β∑
i=β+1

si−βv
i =

β−1∑
i=0

tβ−iv
i + t0v

β −

(
s0v

β +

α+β∑
i=β+1

si−βv
i

)

=

β−1∑
i=0

tβ−iv
i + t0v

β −

s0v
β +

α∑
i=1

s(i+β)−β︸ ︷︷ ︸
=si

vi+β︸︷︷︸
=vivβ


(here, we substituted i+ β for i in the second sum)

=

β−1∑
i=0

tβ−iv
i + t0v

β −

(
s0v

β +
α∑
i=1

siv
ivβ

)

=

β∑
i=1

tβ−(β−i)︸ ︷︷ ︸
=ti

vβ−i + t0 vβ︸︷︷︸
=vβ−0

−

s0 vβ︸︷︷︸
=v0vβ

+
α∑
i=1

siv
ivβ


(here, we substituted β − i for i in the first sum)

=

β∑
i=1

tiv
β−i + t0v

β−0 −

(
s0v

0vβ +
α∑
i=1

siv
ivβ

)

=

β∑
i=1

tiv
β−i + t0v

β−0

︸ ︷︷ ︸
=

β∑
i=0

tivβ−i=uvβ

−


s0v

0 +
α∑
i=1

siv
i

︸ ︷︷ ︸
=

α∑
i=0

sivi=u


vβ = uvβ − uvβ = 0.
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Thus, Theorem 2 yields that
n−k∑
i=0

ai+kv
i is n-integral over A. But

n−k∑
i=0

ai+kv
i =

n−β∑
i=0

ai+βv
i =

0∑
i=0

ai+β︸︷︷︸
=t0−s0,

since
i=0 yields
i+β=β

vi +

n−β∑
i=1

ai+β︸︷︷︸
=−s(i+β)−β ,

since
i>0 yields
i+β>β

vi

=
0∑
i=0

(t0 − s0) vi︸ ︷︷ ︸
=(t0−s0)v0

=t0v0−s0v0
=t0−s0v0

+

n−β∑
i=1

− s(i+β)−β︸ ︷︷ ︸
=si

 vi

= t0 − s0v
0 +

n−β∑
i=1

(−si) vi = t0 − s0v
0 −

n−β∑
i=1

siv
i

= t0 − s0v
0 −

α∑
i=1

siv
i (since n = α + β yields n− β = α)

= t0 −


s0v

0 +
α∑
i=1

siv
i

︸ ︷︷ ︸
=

α∑
i=0

sivi=u


= t0 − u.

Thus, t0 − u is n-integral over A. On the other hand, −t0 is 1-integral over A (by
Theorem 5 (a) below, applied to a = −t0). Thus, (−t0) + (t0 − u) is n · 1-integral over
A (by Theorem 5 (b) below, applied to x = −t0, y = t0 − u and m = 1). In other
words, −u is n-integral over A (since (−t0) + (t0 − u) = −u and n · 1 = n). On the
other hand, −1 is 1-integral over A (by Theorem 5 (a) below, applied to a = −1).
Thus, (−1) · (−u) is n · 1-integral over A (by Theorem 5 (c) below, applied to x = −1,
y = −u and m = 1). In other words, u is (α + β)-integral over A (since (−1) ·(−u) = u
and n · 1 = n = α + β). This proves Corollary 3.

Theorem 4. Let A and B be two rings such that A ⊆ B. Let v ∈ B and
u ∈ B. Let m ∈ N and n ∈ N. Assume that v is m-integral over A, and
that u is n-integral over A [v]. Then, u is nm-integral over A.

Proof of Theorem 4. Since v is m-integral over A, we have A [v] = 〈v0, v1, ..., vm−1〉A
(this is the Assertion D of Theorem 1, stated for v and m in lieu of u and n).

Since u is n-integral over A [v], we have (A [v]) [u] = 〈u0, u1, ..., un−1〉A[v] (this is the
Assertion D of Theorem 1, stated for A [v] in lieu of A).

Let S = {0, 1, ..., n− 1} × {0, 1, ...,m− 1}.
Let x ∈ (A [v]) [u]. Then, there exist n elements b0, b1, ..., bn−1 of A [v] such that x =

n−1∑
i=0

biu
i (since x ∈ (A [v]) [u] = 〈u0, u1, ..., un−1〉A[v]). But for each i ∈ {0, 1, ..., n− 1},
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there exist m elements ai,0, ai,1, ..., ai,m−1 of A such that bi =
m−1∑
j=0

ai,jv
j (because

bi ∈ A [v] = 〈v0, v1, ..., vm−1〉A). Thus,

x =
n−1∑
i=0

bi︸︷︷︸
=
m−1∑
j=0

ai,jvj

ui =
n−1∑
i=0

m−1∑
j=0

ai,jv
jui =

∑
(i,j)∈{0,1,...,n−1}×{0,1,...,m−1}

ai,jv
jui =

∑
(i,j)∈S

ai,jv
jui

∈
〈
vjui | (i, j) ∈ S

〉
A

(since ai,j ∈ A for every (i, j) ∈ S)

So we have proved that x ∈ 〈vjui | (i, j) ∈ S〉A for every x ∈ (A [v]) [u]. Thus,
(A [v]) [u] ⊆ 〈vjui | (i, j) ∈ S〉A. Conversely, 〈vjui | (i, j) ∈ S〉A ⊆ (A [v]) [u] (since
vj ∈ A [v] for every (i, j) ∈ S, and thus vj︸︷︷︸

∈A[v]

ui ∈ (A [v]) [u] for every (i, j) ∈ S, and

therefore

〈
vjui | (i, j) ∈ S

〉
A

=


∑

(i,j)∈S

ai,jv
jui︸ ︷︷ ︸

∈(A[v])[u], since
vjui∈(A[v])[u] for all (i,j)∈S
and (A[v])[u] is an A-module

| (ai,j)(i,j)∈S ∈ A
S


⊆ (A [v]) [u]

). Hence, (A [v]) [u] = 〈vjui | (i, j) ∈ S〉A. Thus, the A-module (A [v]) [u] is nm-
generated (since

|S| = |{0, 1, ..., n− 1} × {0, 1, ...,m− 1}| = |{0, 1, ..., n− 1}|︸ ︷︷ ︸
=n

· |{0, 1, ...,m− 1}|︸ ︷︷ ︸
=m

= nm

).
Let U = (A [v]) [u]. Then, the A-module U is nm-generated. Besides, U is an

A-submodule of B, and we have 1 = u0 ∈ (A [v]) [u] = U and

uU = u (A [v]) [u] ⊆ (A [v]) [u] (since (A [v]) [u] is an A [v] -algebra and u ∈ (A [v]) [u])

= U.

Altogether, we now know that the A-submodule U of B is nm-generated and sat-
isfies 1 ∈ U and uU ⊆ U .

Thus, the element u of B satisfies the Assertion C of Theorem 1 with n replaced by
nm. Hence, u ∈ B satisfies the four equivalent assertions A, B, C and D of Theorem
1, all with n replaced by nm. Thus, u is nm-integral over A. This proves Theorem 4.

Theorem 5. Let A and B be two rings such that A ⊆ B.

(a) Let a ∈ A. Then, a is 1-integral over A.

(b) Let x ∈ B and y ∈ B. Let m ∈ N and n ∈ N. Assume that x is m-
integral over A, and that y is n-integral over A. Then, x+ y is nm-integral
over A.
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(c) Let x ∈ B and y ∈ B. Let m ∈ N and n ∈ N. Assume that x is
m-integral over A, and that y is n-integral over A. Then, xy is nm-integral
over A.

Proof of Theorem 5. (a) There exists a monic polynomial P ∈ A [X] with degP = 1
and P (a) = 0 (namely, the polynomial P ∈ A [X] defined by P (X) = X − a). Thus,
a is 1-integral over A. This proves Theorem 5 (a).

(b) Since y is n-integral over A, there exists a monic polynomial P ∈ A [X] with
degP = n and P (y) = 0. Since P ∈ A [X] is a monic polynomial with degP = n,

there exists a polynomial P̃ ∈ A [X] with deg P̃ < n and P (X) = Xn + P̃ (X).
Now, define a polynomial Q ∈ (A [x]) [X] by Q (X) = P (X − x). Then,

degQ = degP (since shifting the polynomial P by the constant x does not change its degree)

= n

and Q (x+ y) = P ((x+ y)− x) = P (y) = 0.

Define a polynomial Q̃ ∈ (A [x]) [X] by Q̃ (X) = ((X − x)n −Xn) + P̃ (X − x).

Then, deg Q̃ < n (since

deg
(
P̃ (X − x)

)
= deg

(
P̃ (X)

)
(

since shifting the polynomial P̃ by the constant x does not change its degree
)

= deg P̃ < n

and

deg ((X − x)n −Xn) = deg

(
((X − x)−X) ·

n−1∑
k=0

(X − x)kXn−1−k

)

≤ deg ((X − x)−X)︸ ︷︷ ︸
=deg(−x)≤0

+ deg

(
n−1∑
k=0

(X − x)kXn−1−k

)
︸ ︷︷ ︸

≤n−1, since

deg((X−x)kXn−1−k)≤n−1

for any k∈{0,1,...,n−1}

≤ 0 + (n− 1) = n− 1 < n

yield

deg Q̃ = deg
(
Q̃ (X)

)
= deg

(
((X − x)n −Xn) + P̃ (X − x)

)
≤ max

deg ((X − x)n −Xn)︸ ︷︷ ︸
<n

, deg
(
P̃ (X − x)

)
︸ ︷︷ ︸

<n

 < max {n, n} = n

). Thus, the polynomial Q is monic (since

Q (X) = P (X − x) = (X − x)n + P̃ (X − x)
(

since P (X) = Xn + P̃ (X)
)

= Xn + ((X − x)n −Xn) + P̃ (X − x)︸ ︷︷ ︸
=Q̃(X)

= Xn + Q̃ (X)
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and deg Q̃ < n).
Hence, there exists a monic polynomial Q ∈ (A [x]) [X] with degQ = n and

Q (x+ y) = 0. Thus, x + y is n-integral over A [x]. Thus, Theorem 4 (applied to
v = x and u = x+ y) yields that x+ y is nm-integral over A. This proves Theorem 5
(b).

(c) Since y is n-integral over A, there exists a monic polynomial P ∈ A [X] with
degP = n and P (y) = 0. Since P ∈ A [X] is a monic polynomial with degP = n,

there exist elements a0, a1, ..., an−1 of A such that P (X) = Xn +
n−1∑
k=0

akX
k. Thus,

P (y) = yn +
n−1∑
k=0

aky
k.

Now, define a polynomial Q ∈ (A [x]) [X] by Q (X) = Xn +
n−1∑
k=0

xn−kakX
k. Then,

Q (xy) = (xy)n︸ ︷︷ ︸
=xnyn

+
n−1∑
k=0

xn−k ak (xy)k︸ ︷︷ ︸
=akx

kyk

=xkaky
k

= xnyn +
n−1∑
k=0

xn−kxk︸ ︷︷ ︸
=xn

aky
k

= xnyn +
n−1∑
k=0

xnaky
k = xn

yn +
n−1∑
k=0

aky
k

︸ ︷︷ ︸
=P (y)=0

 = 0.

Also, the polynomial Q ∈ (A [x]) [X] is monic and degQ = n (since Q (X) = Xn +
n−1∑
k=0

xn−kakX
k). Thus, there exists a monic polynomial Q ∈ (A [x]) [X] with degQ = n

and Q (xy) = 0. Thus, xy is n-integral over A [x]. Hence, Theorem 4 (applied to v = x
and u = xy) yields that xy is nm-integral over A. This proves Theorem 5 (c).

Corollary 6. Let A and B be two rings such that A ⊆ B. Let n ∈ N+

and m ∈ N. Let v ∈ B. Let b0, b1, ..., bn−1 be n elements of A, and let

u =
n−1∑
i=0

biv
i. Assume that vu is m-integral over A. Then, u is nm-integral

over A.

Proof of Corollary 6. Define n+ 1 elements a0, a1, ..., an of A [vu] by

ai =

{
−vu, if i = 0;
bi−1, if i > 0

for every i ∈ {0, 1, ..., n} .

Then, a0 = −vu. Let k = 1. Then,

n∑
i=0

aiv
i = a0︸︷︷︸

=−vu

v0︸︷︷︸
=1

+
n∑
i=1

ai︸︷︷︸
=bi−1,
since
i>0

vi︸︷︷︸
=vi−1v

= −vu+
n∑
i=1

bi−1v
i−1v = −vu+

n−1∑
i=0

biv
i

︸ ︷︷ ︸
=u

v

(here, we substituted i for i− 1 in the sum)

= −vu+ uv = 0.
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Now, A [vu] and B are two rings such that A [vu] ⊆ B. The n+ 1 elements a0, a1,

..., an of A [vu] satisfy
n∑
i=0

aiv
i = 0. We have k = 1 ∈ {0, 1, ..., n} .

Hence, Theorem 2 (applied to the ring A [vu] in lieu of A) yields that
n−k∑
i=0

ai+kv
i is

n-integral over A [vu]. But

n−k∑
i=0

ai+kv
i =

n−1∑
i=0

ai+1︸︷︷︸
=b(i+1)−1,

since i+1>0

vi =
n−1∑
i=0

b(i+1)−1v
i =

n−1∑
i=0

biv
i = u.

Hence, u is n-integral over A [vu]. But vu is m-integral over A. Thus, Theorem 4
(applied to vu in lieu of v) yields that u is nm-integral over A. This proves Corollary
6.

2. Integrality over ideal semifiltrations

Definitions:
Definition 6. Let A be a ring, and let (Iρ)ρ∈N be a sequence of ideals of A. Then,

(Iρ)ρ∈N is called an ideal semifiltration of A if and only if it satisfies the two conditions

I0 = A;

IaIb ⊆ Ia+b for every a ∈ N and b ∈ N.

Definition 7. Let A and B be two rings such that A ⊆ B. Then, we identify
the polynomial ring A [Y ] with a subring of the polynomial ring B [Y ] (in fact, every

element of A [Y ] has the form
m∑
i=0

aiY
i for some m ∈ N and (a0, a1, ..., am) ∈ Am+1, and

thus can be seen as an element of B [Y ] by regarding ai as an element of B for every
i ∈ {0, 1, ...,m}).

Definition 8. Let A be a ring, and let (Iρ)ρ∈N be an ideal semifiltration of A. Con-

sider the polynomial ring A [Y ]. Let A
[
(Iρ)ρ∈N ∗ Y

]
denote the A-submodule

∑
i∈N

IiY
i

of the A-algebra A [Y ]. Then,

A
[
(Iρ)ρ∈N ∗ Y

]
=
∑
i∈N

IiY
i

=

{∑
i∈N

aiY
i | (ai ∈ Ii for all i ∈ N) , and (only finitely many i ∈ N satisfy ai 6= 0)

}
= {P ∈ A [Y ] | the i-th coefficient of the polynomial P lies in Ii for every i ∈ N} .

Now, 1 ∈ A
[
(Iρ)ρ∈N ∗ Y

]
(because 1 = 1︸︷︷︸

∈A=I0

·Y 0 ∈ I0Y
0 ⊆

∑
i∈N

IiY
i = A

[
(Iρ)ρ∈N ∗ Y

]
).
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Also, the A-submodule A
[
(Iρ)ρ∈N ∗ Y

]
of A [Y ] is closed under multiplication (since

A
[
(Iρ)ρ∈N ∗ Y

]
· A
[
(Iρ)ρ∈N ∗ Y

]
=
∑
i∈N

IiY
i ·
∑
i∈N

IiY
i =

∑
i∈N

IiY
i ·
∑
j∈N

IjY
j

(here we renamed i as j in the second sum)

=
∑
i∈N

∑
j∈N

IiY
iIjY

j =
∑
i∈N

∑
j∈N

IiIj︸︷︷︸
⊆Ii+j ,

since (Iρ)ρ∈N
is an ideal

semifiltration

Y iY j︸ ︷︷ ︸
=Y i+j

⊆
∑
i∈N

∑
j∈N

Ii+jY
i+j ⊆

∑
k∈N

IkY
k =

∑
i∈N

IiY
i

(here we renamed k as i in the sum)

= A
[
(Iρ)ρ∈N ∗ Y

]
). Hence, A

[
(Iρ)ρ∈N ∗ Y

]
is an A-subalgebra of the A-algebra A [Y ]. This A-subalgebra

A
[
(Iρ)ρ∈N ∗ Y

]
is called the Rees algebra of the ideal semifiltration (Iρ)ρ∈N.

Clearly, A ⊆ A
[
(Iρ)ρ∈N ∗ Y

]
, since A

[
(Iρ)ρ∈N ∗ Y

]
=
∑
i∈N

IiY
i ⊇ I0︸︷︷︸

=A

Y 0︸︷︷︸
=1

= A ·1 =

A.
Definition 9. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N be an ideal

semifiltration of A. Let n ∈ N. Let u ∈ B.
We say that the element u of B is n-integral over

(
A, (Iρ)ρ∈N

)
if there exists some

(a0, a1, ..., an) ∈ An+1 such that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ In−i for every i ∈ {0, 1, ..., n} .

We start with a theorem which reduces the question of n-integrality over
(
A, (Iρ)ρ∈N

)
to that of n-integrality over a ring2:

Theorem 7. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N be
an ideal semifiltration of A. Let n ∈ N. Let u ∈ B.

Consider the polynomial ring A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
defined in Definition 8.

Then, the element u of B is n-integral over
(
A, (Iρ)ρ∈N

)
if and only if

the element uY of the polynomial ring B [Y ] is n-integral over the ring

A
[
(Iρ)ρ∈N ∗ Y

]
. (Here, A

[
(Iρ)ρ∈N ∗ Y

]
⊆ B [Y ] because A

[
(Iρ)ρ∈N ∗ Y

]
⊆

A [Y ] and we consider A [Y ] as a subring of B [Y ] as explained in Definition
7).

2Theorem 7 is inspired by Proposition 5.2.1 in [2].
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Proof of Theorem 7. In order to verify Theorem 7, we have to prove the following
two lemmata:

Lemma E: If u is n-integral over
(
A, (Iρ)ρ∈N

)
, then uY is n-integral overA

[
(Iρ)ρ∈N ∗ Y

]
.

Lemma F : If uY is n-integral over A
[
(Iρ)ρ∈N ∗ Y

]
, then u is n-integral over(

A, (Iρ)ρ∈N

)
.

Proof of Lemma E: Assume that u is n-integral over
(
A, (Iρ)ρ∈N

)
. Then, by Defi-

nition 9, there exists some (a0, a1, ..., an) ∈ An+1 such that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ In−i for every i ∈ {0, 1, ..., n} .

Note that akY
n−k ∈ A

[
(Iρ)ρ∈N ∗ Y

]
for every k ∈ {0, 1, ..., n} (because ak︸︷︷︸

∈In−k

Y n−k ∈

In−kY
n−k ⊆

∑
i∈N

IiY
i = A

[
(Iρ)ρ∈N ∗ Y

]
). Thus, we can define a polynomial P ∈(

A
[
(Iρ)ρ∈N ∗ Y

])
[X] by P (X) =

n∑
k=0

akY
n−kXk. This polynomial P satisfies degP ≤

n, and its coefficient before Xn is an︸︷︷︸
=1

Y n−n︸ ︷︷ ︸
=Y 0=1

= 1. Hence, this polynomial P is monic

and satisfies degP = n. Also, P (X) =
n∑
k=0

akY
n−kXk yields

P (uY ) =
n∑
k=0

akY
n−k (uY )k =

n∑
k=0

akY
n−kukY k =

n∑
k=0

aku
k Y n−kY k︸ ︷︷ ︸

=Y n

= Y n·
n∑
k=0

aku
k

︸ ︷︷ ︸
=0

= 0.

Thus, there exists a monic polynomial P ∈
(
A
[
(Iρ)ρ∈N ∗ Y

])
[X] with degP = n and

P (uY ) = 0. Hence, uY is n-integral over A
[
(Iρ)ρ∈N ∗ Y

]
. This proves Lemma E .

Proof of Lemma F : Assume that uY is n-integral over A
[
(Iρ)ρ∈N ∗ Y

]
. Then, there

exists a monic polynomial P ∈
(
A
[
(Iρ)ρ∈N ∗ Y

])
[X] with degP = n and P (uY ) = 0.

Since P ∈
(
A
[
(Iρ)ρ∈N ∗ Y

])
[X] satisfies degP = n, there exists (p0, p1, ..., pn) ∈(

A
[
(Iρ)ρ∈N ∗ Y

])n+1

such that P (X) =
n∑
k=0

pkX
k. Besides, pn = 1, since P is monic

and degP = n.

For every k ∈ {0, 1, ..., n}, we have pk ∈ A
[
(Iρ)ρ∈N ∗ Y

]
=
∑
i∈N

IiY
i, and thus, there

exists a sequence (pk,i)i∈N ∈ A
N such that pk =

∑
i∈N

pk,iY
i, such that pk,i ∈ Ii for every

i ∈ N, and such that only finitely many i ∈ N satisfy pk,i 6= 0. Thus, P (X) =
n∑
k=0

pkX
k
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becomes P (X) =
n∑
k=0

∑
i∈N

pk,iY
iXk (since pk =

∑
i∈N

pk,iY
i). Hence,

P (uY ) =
n∑
k=0

∑
i∈N

pk,iY
i (uY )k︸ ︷︷ ︸

=ukY k

=Y kuk

=
n∑
k=0

∑
i∈N

pk,i Y
iY k︸ ︷︷ ︸

=Y i+k

uk

=
n∑
k=0

∑
i∈N

pk,iY
i+kuk =

∑
k∈{0,1,...,n}

∑
i∈N

pk,iY
i+kuk

=
∑

(k,i)∈{0,1,...,n}×N

pk,iY
i+kuk =

∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,i Y
i+k︸︷︷︸

=Y `

uk

=
∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iY
`uk =

∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iu
kY `.

Hence, P (uY ) = 0 becomes
∑̀
∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iu
kY ` = 0. In other words, the

polynomial
∑̀
∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iu
k

︸ ︷︷ ︸
∈B

Y ` ∈ B [Y ] equals 0. Hence, its coefficient before

Y n equals 0 as well. But its coefficient before Y n is
∑

(k,i)∈{0,1,...,n}×N;
i+k=n

pk,iu
k. Hence,

∑
(k,i)∈{0,1,...,n}×N;

i+k=n

pk,iu
k equals 0.

Thus,

0 =
∑

(k,i)∈{0,1,...,n}×N;
i+k=n

pk,iu
k =

∑
k∈{0,1,...,n}

∑
i∈N;
i+k=n

pk,iu
k =

∑
k∈{0,1,...,n}

pk,n−ku
k

 since {i ∈ N | i+ k = n} = {i ∈ N | i = n− k} = {n− k} (because n− k ∈ N,
since k ∈ {0, 1, ..., n} ) yields

∑
i∈N;
i+k=n

pk,iu
k =

∑
i∈{n−k}

pk,iu
k = pk,n−ku

k

 .

Note that∑
i∈N

pn,iY
i = pn

(
since

∑
i∈N

pk,iY
i = pk for every k ∈ {0, 1, ..., n}

)
= 1 = 1 · Y 0

in A [Y ] , and thus the coefficient of the polynomial
∑
i∈N

pn,iY
i ∈ A [Y ] before Y 0 is 1;

but the coefficient of the polynomial
∑
i∈N

pn,iY
i ∈ A [Y ] before Y 0 is pn,0; hence, pn,0 = 1.

Define an (n+ 1)-tuple (a0, a1, ..., an) ∈ An+1 by ak = pk,n−k for every k ∈ {0, 1, ..., n} .
Then, an = pn,n−n = pn,0 = 1. Besides,

n∑
k=0

aku
k =

n∑
k=0

pk,n−ku
k =

∑
k∈{0,1,...,n}

pk,n−ku
k = 0.
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Finally, ak = pk,n−k ∈ In−k (since pk,i ∈ Ii for every i ∈ N) for every k ∈ {0, 1, ..., n}.
In other words, ai ∈ In−i for every i ∈ {0, 1, ..., n}.

Altogether, we now know that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ In−i for every i ∈ {0, 1, ..., n} .

Thus, by Definition 9, the element u is n-integral over
(
A, (Iρ)ρ∈N

)
. This proves Lemma

F .
Combining Lemmata E and F , we obtain that u is n-integral over

(
A, (Iρ)ρ∈N

)
if

and only if uY is n-integral over A
[
(Iρ)ρ∈N ∗ Y

]
. This proves Theorem 7.

The next theorem is an analogue of Theorem 5 for integrality over ideal semifiltra-
tions:

Theorem 8. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N be
an ideal semifiltration of A.

(a) Let u ∈ A. Then, u is 1-integral over
(
A, (Iρ)ρ∈N

)
if and only if u ∈ I1.

(b) Let x ∈ B and y ∈ B. Let m ∈ N and n ∈ N. Assume that x is

m-integral over
(
A, (Iρ)ρ∈N

)
, and that y is n-integral over

(
A, (Iρ)ρ∈N

)
.

Then, x+ y is nm-integral over
(
A, (Iρ)ρ∈N

)
.

(c) Let x ∈ B and y ∈ B. Let m ∈ N and n ∈ N. Assume that x is

m-integral over
(
A, (Iρ)ρ∈N

)
, and that y is n-integral over A. Then, xy is

nm-integral over
(
A, (Iρ)ρ∈N

)
.

Proof of Theorem 8. (a) In order to verify Theorem 8 (a), we have to prove the
following two lemmata:

Lemma G: If u is 1-integral over
(
A, (Iρ)ρ∈N

)
, then u ∈ I1.

Lemma H: If u ∈ I1, then u is 1-integral over
(
A, (Iρ)ρ∈N

)
.

Proof of Lemma G: Assume that u is 1-integral over
(
A, (Iρ)ρ∈N

)
. Then, by Defi-

nition 9 (applied to n = 1), there exists some (a0, a1) ∈ A2 such that

1∑
k=0

aku
k = 0, a1 = 1, and ai ∈ I1−i for every i ∈ {0, 1} .

Thus, a0 ∈ I1−0 (since ai ∈ I1−i for every i ∈ {0, 1}). Also,

0 =
1∑

k=0

aku
k = a0 u0︸︷︷︸

=1

+ a1︸︷︷︸
=1

u1︸︷︷︸
=u

= a0 + u,

so that u = − a0︸︷︷︸
∈I1−0=I1

∈ I1 (since I1 is an ideal). This proves Lemma G.
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Proof of Lemma H: Assume that u ∈ I1. Then, −u ∈ I1 (since I1 is an ideal).

Set a0 = −u and a1 = 1. Then,
1∑

k=0

aku
k = a0︸︷︷︸

=−u

u0︸︷︷︸
=1

+ a1︸︷︷︸
=1

u1︸︷︷︸
=u

= −u + u = 0. Also,

ai ∈ I1−i for every i ∈ {0, 1} (since a0 = −u ∈ I1 = I1−0 and a1 = 1 ∈ A = I0 = I1−1).
Altogether, we now know that (a0, a1) ∈ A2 and

1∑
k=0

aku
k = 0, a1 = 1, and ai ∈ I1−i for every i ∈ {0, 1} .

Thus, by Definition 9 (applied to n = 1), the element u is 1-integral over
(
A, (Iρ)ρ∈N

)
.

This proves Lemma H.

Combining Lemmata G and H, we obtain that u is 1-integral over
(
A, (Iρ)ρ∈N

)
if

and only if u ∈ I1. This proves Theorem 8 (a).

(b) Consider the polynomial ring A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
. The-

orem 7 (applied to x and m instead of u and n) yields that xY is m-integral over

A
[
(Iρ)ρ∈N ∗ Y

]
(since x is m-integral over

(
A, (Iρ)ρ∈N

)
). Also, Theorem 7 (applied to

y instead of u) yields that yY is n-integral over A
[
(Iρ)ρ∈N ∗ Y

]
(since y is n-integral

over
(
A, (Iρ)ρ∈N

)
). Hence, Theorem 5 (b) (applied to A

[
(Iρ)ρ∈N ∗ Y

]
, B [Y ] , xY and

yY instead of A, B, x and y, respectively) yields that xY + yY is nm-integral over

A
[
(Iρ)ρ∈N ∗ Y

]
. Since xY + yY = (x+ y)Y , this means that (x+ y)Y is nm-integral

over A
[
(Iρ)ρ∈N ∗ Y

]
. Hence, Theorem 7 (applied to x+ y and nm instead of u and n)

yields that x+ y is nm-integral over
(
A, (Iρ)ρ∈N

)
. This proves Theorem 8 (b).

(c) First, a trivial observation:
Lemma I: Let A, A′ and B′ be three rings such that A ⊆ A′ ⊆ B′. Let v ∈ B′.

Let n ∈ N. If v is n-integral over A, then v is n-integral over A′.
Proof of Lemma I: Assume that v is n-integral over A. Then, there exists a monic

polynomial P ∈ A [X] with degP = n and P (v) = 0. Since A ⊆ A′, we can identify
the polynomial ring A [X] with a subring of the polynomial ring A′ [X] (as explained
in Definition 7). Thus, P ∈ A [X] yields P ∈ A′ [X]. Hence, there exists a monic
polynomial P ∈ A′ [X] with degP = n and P (v) = 0. Thus, v is n-integral over A′.
This proves Lemma I.

Now let us prove Theorem 8 (c).

Consider the polynomial ring A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
. The-

orem 7 (applied to x and m instead of u and n) yields that xY is m-integral over

A
[
(Iρ)ρ∈N ∗ Y

]
(since x is m-integral over

(
A, (Iρ)ρ∈N

)
). On the other hand, Lemma

I (applied to A′ = A
[
(Iρ)ρ∈N ∗ Y

]
, B′ = B [Y ] and v = y) yields that y is n-integral

over A
[
(Iρ)ρ∈N ∗ Y

]
(since y is n-integral over A, and A ⊆ A

[
(Iρ)ρ∈N ∗ Y

]
⊆ B [Y ]).

Hence, Theorem 5 (c) (applied to A
[
(Iρ)ρ∈N ∗ Y

]
, B [Y ] and xY instead of A, B and x,

respectively) yields that xY ·y is nm-integral over A
[
(Iρ)ρ∈N ∗ Y

]
. Since xY ·y = xyY ,
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this means that xyY is nm-integral over A
[
(Iρ)ρ∈N ∗ Y

]
. Hence, Theorem 7 (applied

to xy and nm instead of u and n) yields that xy is nm-integral over
(
A, (Iρ)ρ∈N

)
. This

proves Theorem 8 (c).
The next theorem imitates Theorem 4 for integrality over ideal semifiltrations:

Theorem 9. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N be
an ideal semifiltration of A.

Let v ∈ B and u ∈ B. Let m ∈ N and n ∈ N.

(a) Then, (IρA [v])ρ∈N is an ideal semifiltration of A [v].

(b) Assume that v is m-integral over A, and that u is n-integral over(
A [v] , (IρA [v])ρ∈N

)
. Then, u is nm-integral over

(
A, (Iρ)ρ∈N

)
.

Proof of Theorem 9. (a) More generally:
Lemma J : Let A and A′ be two rings such that A ⊆ A′. Let (Iρ)ρ∈N be an ideal

semifiltration of A. Then, (IρA
′)ρ∈N is an ideal semifiltration of A′.

Proof of Lemma J : Since (Iρ)ρ∈N is an ideal semifiltration of A, the set Iρ is an
ideal of A for every ρ ∈ N, and we have

I0 = A;

IaIb ⊆ Ia+b for every a ∈ N and b ∈ N.

Now, the set IρA
′ is an ideal of A′ for every ρ ∈ N (since Iρ is an ideal of A), and

we have

I0A
′ = AA′ = A′;

IaA
′ · IbA′ = IaIbA

′ ⊆ Ia+bA
′ (since IaIb ⊆ Ia+b) for every a ∈ N and b ∈ N.

Thus, (IρA
′)ρ∈N is an ideal semifiltration of A′. This proves Lemma J .

Now let us prove Theorem 9 (a). In fact, Lemma J (applied to A′ = A [v]) yields
that (IρA [v])ρ∈N is an ideal semifiltration of A [v]. This proves Theorem 9 (a).

(b) First, we will show a simple fact:
Lemma K: Let A, A′ and B′ be three rings such that A ⊆ A′ ⊆ B′. Let v ∈ B′.

Then, A′ · A [v] = A′ [v].
Proof of Lemma K: We have A′︸︷︷︸

⊆A′[v]

· A [v]︸︷︷︸
⊆A′[v],

since A⊆A′

⊆ A′ [v] · A′ [v] = A′ [v] (since A′ [v]

is a ring). On the other hand, let x be an element of A′ [v]. Then, there exists some

n ∈ N and some (a0, a1, ..., an) ∈ (A′)n+1 such that x =
n∑
k=0

akv
k. Thus,

x =
n∑
k=0

ak︸︷︷︸
∈A′

vk︸︷︷︸
∈A[v]

∈
n∑
k=0

A′·A [v] ⊆ A′·A [v] (since A′ · A [v] is an additive group) .

Thus, we have proved that x ∈ A′·A [v] for every x ∈ A′ [v]. Therefore, A′ [v] ⊆ A′·A [v].
Combined with A′ · A [v] ⊆ A′ [v], this yields A′ · A [v] = A′ [v]. Hence, we have
established Lemma K.
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Now let us prove Theorem 9 (b). In fact, consider the polynomial ring A [Y ]

and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
. We have A

[
(Iρ)ρ∈N ∗ Y

]
⊆ A [Y ], and (as ex-

plained in Definition 7) we can identify the polynomial ring A [Y ] with a subring of

(A [v]) [Y ] (since A ⊆ A [v]). Hence, A
[
(Iρ)ρ∈N ∗ Y

]
⊆ (A [v]) [Y ]. On the other hand,

(A [v])
[
(IρA [v])ρ∈N ∗ Y

]
⊆ (A [v]) [Y ].

Now, we will show that (A [v])
[
(IρA [v])ρ∈N ∗ Y

]
=
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v].

In fact, Definition 8 yields

(A [v])
[
(IρA [v])ρ∈N ∗ Y

]
=
∑
i∈N

IiA [v] · Y i =
∑
i∈N

IiY
i · A [v] = A

[
(Iρ)ρ∈N ∗ Y

]
· A [v](

since
∑
i∈N

IiY
i = A

[
(Iρ)ρ∈N ∗ Y

])
=
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v]

(by Lemma K (applied to A′ = A
[
(Iρ)ρ∈N ∗ Y

]
and B′ = (A [v]) [Y ])).

Note that (as explained in Definition 7) we can identify the polynomial ring (A [v]) [Y ]

with a subring of B [Y ] (since A [v] ⊆ B). Thus, A
[
(Iρ)ρ∈N ∗ Y

]
⊆ (A [v]) [Y ] yields

A
[
(Iρ)ρ∈N ∗ Y

]
⊆ B [Y ].

Besides, Lemma I (applied to A
[
(Iρ)ρ∈N ∗ Y

]
, B [Y ] and m instead of A′, B′ and

n) yields that v is m-integral over A
[
(Iρ)ρ∈N ∗ Y

]
(since v is m-integral over A, and

A ⊆ A
[
(Iρ)ρ∈N ∗ Y

]
⊆ B [Y ]).

Now, Theorem 7 (applied to A [v] and (IρA [v])ρ∈N instead of A and (Iρ)ρ∈N) yields

that uY is n-integral over (A [v])
[
(IρA [v])ρ∈N ∗ Y

]
(since u is n-integral over

(
A [v] , (IρA [v])ρ∈N

)
).

Since (A [v])
[
(IρA [v])ρ∈N ∗ Y

]
=
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v], this means that uY is n-integral

over
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v]. Now, Theorem 4 (applied to A

[
(Iρ)ρ∈N ∗ Y

]
, B [Y ] and uY

instead of A, B and u) yields that uY is nm-integral over A
[
(Iρ)ρ∈N ∗ Y

]
(since v is m-

integral over A
[
(Iρ)ρ∈N ∗ Y

]
, and uY is n-integral over

(
A
[
(Iρ)ρ∈N ∗ Y

])
[v]). Thus,

Theorem 7 (applied to nm instead of n) yields that u is nm-integral over
(
A, (Iρ)ρ∈N

)
.

This proves Theorem 9 (b).

3. Generalizing to two ideal semifiltrations

Theorem 10. Let A be a ring.

(a) Then, (A)ρ∈N is an ideal semifiltration of A.

(b) Let (Iρ)ρ∈N and (Jρ)ρ∈N be two ideal semifiltrations ofA. Then, (IρJρ)ρ∈N
is an ideal semifiltration of A.
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Proof of Theorem 10. (a) Clearly, (A)ρ∈N is a sequence of ideals of A. Hence, in
order to prove that (A)ρ∈N is an ideal semifiltration of A, it is enough to verify that it
satisfies the two conditions

A = A;

AA ⊆ A for every a ∈ N and b ∈ N.

But these two conditions are obviously satisfied. Hence, (A)ρ∈N is an ideal semifiltration
of A. This proves Theorem 10 (a).

(b) Since (Iρ)ρ∈N is an ideal semifiltration of A, it is a sequence of ideals of A, and
it satisfies the two conditions

I0 = A;

IaIb ⊆ Ia+b for every a ∈ N and b ∈ N.

Since (Jρ)ρ∈N is an ideal semifiltration of A, it is a sequence of ideals of A, and it
satisfies the two conditions

J0 = A;

JaJb ⊆ Ja+b for every a ∈ N and b ∈ N.

Now, IρJρ is an ideal of A for every ρ ∈ N (since Iρ and Jρ are ideals of A for every
ρ ∈ N, and the product of any two ideals of A is an ideal of A). Hence, (IρJρ)ρ∈N is a
sequence of ideals of A. Thus, in order to prove that (IρJρ)ρ∈N is an ideal semifiltration
of A, it is enough to verify that it satisfies the two conditions

I0J0 = A;

IaJa · IbJb ⊆ Ia+bJa+b for every a ∈ N and b ∈ N.

But these two conditions are satisfied, since

I0︸︷︷︸
=A

J0︸︷︷︸
=A

= AA = A;

IaJa · IbJb = IaIb︸︷︷︸
⊆Ia+b

JaJb︸︷︷︸
⊆Ja+b

⊆ Ia+bJa+b for every a ∈ N and b ∈ N.

Hence, (IρJρ)ρ∈N is an ideal semifiltration of A. This proves Theorem 10 (b).
Now let us generalize Theorem 7:

Theorem 11. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N
and (Jρ)ρ∈N be two ideal semifiltrations of A. Let n ∈ N. Let u ∈ B.

We know that (IρJρ)ρ∈N is an ideal semifiltration of A (according to Theo-
rem 10 (b)).

Consider the polynomial ring A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
.

We will abbreviate the ring A
[
(Iρ)ρ∈N ∗ Y

]
by A[I].
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By Lemma J (applied to A[I] and (Jτ )τ∈N instead of A′ and (Iρ)ρ∈N), the

sequence
(
JτA[I]

)
τ∈N is an ideal semifiltration of A[I] (since A ⊆ A[I] and

since (Jτ )τ∈N = (Jρ)ρ∈N is an ideal semifiltration of A).

Then, the element u of B is n-integral over
(
A, (IρJρ)ρ∈N

)
if and only if the

element uY of the polynomial ringB [Y ] is n-integral over
(
A[I],

(
JτA[I]

)
τ∈N

)
.

(Here, A[I] ⊆ B [Y ] because A[I] = A
[
(Iρ)ρ∈N ∗ Y

]
⊆ A [Y ] and we consider

A [Y ] as a subring of B [Y ] as explained in Definition 7.)

Proof of Theorem 11. First, note that∑
`∈N

I`Y
` =

∑
i∈N

IiY
i (here we renamed ` as i in the sum)

= A
[
(Iρ)ρ∈N ∗ Y

]
= A[I].

In order to verify Theorem 11, we have to prove the following two lemmata:

Lemma E ′: If u is n-integral over
(
A, (IρJρ)ρ∈N

)
, then uY is n-integral over(

A[I],
(
JτA[I]

)
τ∈N

)
.

Lemma F ′: If uY is n-integral over
(
A[I],

(
JτA[I]

)
τ∈N

)
, then u is n-integral over(

A, (IρJρ)ρ∈N

)
.

Proof of Lemma E ′: Assume that u is n-integral over
(
A, (IρJρ)ρ∈N

)
. Then, by

Definition 9 (applied to (IρJρ)ρ∈N instead of (Iρ)ρ∈N), there exists some (a0, a1, ..., an) ∈
An+1 such that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ In−iJn−i for every i ∈ {0, 1, ..., n} .

Note that akY
n−k ∈ A[I] for every k ∈ {0, 1, ..., n} (because ak ∈ In−kJn−k ⊆ In−k

(since In−k is an ideal of A) and thus akY
n−k ∈ In−kY n−k ⊆

∑
i∈N

IiY
i = A[I]). Thus,

we can define an (n+ 1)-tuple (b0, b1, ..., bn) ∈
(
A[I]

)n+1
by bk = akY

n−k for every
k ∈ {0, 1, ..., n}. Then,

n∑
k=0

bk · (uY )k =
n∑
k=0

akY
n−k · (uY )k =

n∑
k=0

akY
n−kukY k =

n∑
k=0

aku
k Y n−kY k︸ ︷︷ ︸

=Y n

= Y n ·
n∑
k=0

aku
k

︸ ︷︷ ︸
=0

= 0;

bn = an︸︷︷︸
=1

Y n−n︸ ︷︷ ︸
=Y 0=1

= 1,

and
bi = ai︸︷︷︸

∈In−iJn−i
=Jn−iIn−i

Y n−i ∈ Jn−i In−iY n−i︸ ︷︷ ︸
⊆

∑̀
∈N
I`Y

`

=A[I]

⊆ Jn−iA[I]
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for every i ∈ {0, 1, ..., n}.
Altogether, we now know that (b0, b1, ..., bn) ∈

(
A[I]

)n+1
and

n∑
k=0

bk ·(uY )k = 0, bn = 1, and bi ∈ Jn−iA[I] for every i ∈ {0, 1, ..., n} .

Hence, by Definition 9 (applied to A[I], B [Y ] ,
(
JτA[I]

)
τ∈N , uY and (b0, b1, ..., bn)

instead of A, B, (Iρ)ρ∈N , u and (a0, a1, ..., an)), the element uY is n-integral over(
A[I],

(
JτA[I]

)
τ∈N

)
. This proves Lemma E ′.

Proof of Lemma F ′: Assume that uY is n-integral over
(
A[I],

(
JτA[I]

)
τ∈N

)
. Then,

by Definition 9 (applied to A[I], B [Y ] ,
(
JτA[I]

)
τ∈N , uY and (p0, p1, ..., pn) instead of

A, B, (Iρ)ρ∈N , u and (a0, a1, ..., an)), there exists some (p0, p1, ..., pn) ∈
(
A[I]

)n+1
such

that

n∑
k=0

pk ·(uY )k = 0, pn = 1, and pi ∈ Jn−iA[I] for every i ∈ {0, 1, ..., n} .

For every k ∈ {0, 1, ..., n}, we have

pk ∈ Jn−kA[I] = Jn−k
∑
i∈N

IiY
i

(
since A[I] =

∑
i∈N

IiY
i

)
=
∑
i∈N

Jn−kIiY
i =

∑
i∈N

IiJn−kY
i,

and thus, there exists a sequence (pk,i)i∈N ∈ AN such that pk =
∑
i∈N

pk,iY
i, such that

pk,i ∈ IiJn−k for every i ∈ N, and such that only finitely many i ∈ N satisfy pk,i 6= 0.
Thus,

n∑
k=0

pk · (uY )k =
n∑
k=0

∑
i∈N

pk,iY
i · (uY )k︸ ︷︷ ︸

=ukY k

=Y kuk

(
since pk =

∑
i∈N

pk,iY
i

)

=
n∑
k=0

∑
i∈N

pk,i Y
i · Y k︸ ︷︷ ︸

=Y i+k

uk

=
n∑
k=0

∑
i∈N

pk,iY
i+kuk =

∑
k∈{0,1,...,n}

∑
i∈N

pk,iY
i+kuk

=
∑

(k,i)∈{0,1,...,n}×N

pk,iY
i+kuk =

∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,i Y
i+k︸︷︷︸

=Y `

uk

=
∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iY
`uk =

∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iu
kY `.
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Hence,
n∑
k=0

pk · (uY )k = 0 becomes
∑̀
∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iu
kY ` = 0. In other words, the

polynomial
∑̀
∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iu
k

︸ ︷︷ ︸
∈B

Y ` ∈ B [Y ] equals 0. Hence, its coefficient before

Y n equals 0 as well. But its coefficient before Y n is
∑

(k,i)∈{0,1,...,n}×N;
i+k=n

pk,iu
k. Hence,

∑
(k,i)∈{0,1,...,n}×N;

i+k=n

pk,iu
k equals 0.

Thus,

0 =
∑

(k,i)∈{0,1,...,n}×N;
i+k=n

pk,iu
k =

∑
k∈{0,1,...,n}

∑
i∈N;
i+k=n

pk,iu
k =

∑
k∈{0,1,...,n}

pk,n−ku
k

 since {i ∈ N | i+ k = n} = {i ∈ N | i = n− k} = {n− k} (because n− k ∈ N,
since k ∈ {0, 1, ..., n} ) yields

∑
i∈N;
i+k=n

pk,iu
k =

∑
i∈{n−k}

pk,iu
k = pk,n−ku

k

 .

Note that∑
i∈N

pn,iY
i = pn

(
since

∑
i∈N

pk,iY
i = pk for every k ∈ {0, 1, ..., n}

)
= 1 = 1 · Y 0

in A [Y ] , and thus the coefficient of the polynomial
∑
i∈N

pn,iY
i ∈ A [Y ] before Y 0 is 1;

but the coefficient of the polynomial
∑
i∈N

pn,iY
i ∈ A [Y ] before Y 0 is pn,0; hence, pn,0 = 1.

Define an (n+ 1)-tuple (a0, a1, ..., an) ∈ An+1 by ak = pk,n−k for every k ∈ {0, 1, ..., n} .
Then, an = pn,n−n = pn,0 = 1. Besides,

n∑
k=0

aku
k =

n∑
k=0

pk,n−ku
k =

∑
k∈{0,1,...,n}

pk,n−ku
k = 0.

Finally, ak = pk,n−k ∈ In−kJn−k (since pk,i ∈ IiJn−k for every i ∈ N) for every k ∈
{0, 1, ..., n}. In other words, ai ∈ In−iJn−i for every i ∈ {0, 1, ..., n}.

Altogether, we now know that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ In−iJn−i for every i ∈ {0, 1, ..., n} .

Thus, by Definition 9 (applied to (IρJρ)ρ∈N instead of (Iρ)ρ∈N), the element u is n-

integral over
(
A, (IρJρ)ρ∈N

)
. This proves Lemma F ′.

Combining Lemmata E ′ and F ′, we obtain that u is n-integral over
(
A, (IρJρ)ρ∈N

)
if and only if uY is n-integral over

(
A[I],

(
JτA[I]

)
τ∈N

)
. This proves Theorem 11.

For the sake of completeness, we mention the following trivial fact (which shows
why Theorem 11 generalizes Theorem 7):
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Theorem 12. Let A and B be two rings such that A ⊆ B. Let n ∈ N.
Let u ∈ B.

We know that (A)ρ∈N is an ideal semifiltration of A (according to Theorem
10 (a)).

Then, the element u of B is n-integral over
(
A, (A)ρ∈N

)
if and only if u is

n-integral over A.

Proof of Theorem 12. In order to verify Theorem 12, we have to prove the following
two lemmata:

Lemma L: If u is n-integral over
(
A, (A)ρ∈N

)
, then u is n-integral over A.

Lemma M: If u is n-integral over A, then u is n-integral over
(
A, (A)ρ∈N

)
.

Proof of Lemma L: Assume that u is n-integral over
(
A, (A)ρ∈N

)
. Then, by Defi-

nition 9 (applied to (A)ρ∈N instead of (Iρ)ρ∈N), there exists some (a0, a1, ..., an) ∈ An+1

such that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ A for every i ∈ {0, 1, ..., n} .

Define a polynomial P ∈ A [X] by P (X) =
n∑
k=0

akX
k. Then, P (X) =

n∑
k=0

akX
k =

an︸︷︷︸
=1

Xn+
n−1∑
k=0

akX
k = Xn+

n−1∑
k=0

akX
k. Hence, the polynomial P is monic, and degP = n.

Besides, P (u) = 0 (since P (X) =
n∑
k=0

akX
k yields P (u) =

n∑
k=0

aku
k = 0). Thus, there

exists a monic polynomial P ∈ A [X] with degP = n and P (u) = 0. Hence, u is
n-integral over A. This proves Lemma L.

Proof of Lemma M: Assume that u is n-integral over A. Then, there exists a monic
polynomial P ∈ A [X] with degP = n and P (u) = 0. Since degP = n, there exists

some (n+ 1)-tuple (a0, a1, ..., an) ∈ An+1 such that P (X) =
n∑
k=0

akX
k. Thus, an = 1

(since P is monic, and degP = n). Also,
n∑
k=0

akX
k = P (X) yields

n∑
k=0

aku
k = P (u) = 0.

Altogether, we now know that (a0, a1, ..., an) ∈ An+1 and

n∑
k=0

aku
k = 0, an = 1, and ai ∈ A for every i ∈ {0, 1, ..., n} .

Hence, by Definition 9 (applied to (A)ρ∈N instead of (Iρ)ρ∈N), the element u is n-integral

over
(
A, (A)ρ∈N

)
. This proves Lemma M.

Combining Lemmata L and M, we obtain that u is n-integral over
(
A, (A)ρ∈N

)
if

and only if u is n-integral over A. This proves Theorem 12.
Finally, let us generalize Theorem 8 (c):
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Theorem 13. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N
and (Jρ)ρ∈N be two ideal semifiltrations of A.

Let x ∈ B and y ∈ B. Let m ∈ N and n ∈ N. Assume that x is m-integral

over
(
A, (Iρ)ρ∈N

)
, and that y is n-integral over

(
A, (Jρ)ρ∈N

)
. Then, xy is

nm-integral over
(
A, (IρJρ)ρ∈N

)
.

Proof of Theorem 13. First, a trivial observation:
Lemma I ′: Let A, A′ and B′ be three rings such that A ⊆ A′ ⊆ B′. Let (Iρ)ρ∈N be

an ideal semifiltration of A. Let v ∈ B′. Let n ∈ N. If v is n-integral over
(
A, (Iρ)ρ∈N

)
,

then v is n-integral over
(
A′, (IρA

′)ρ∈N

)
. (Note that (IρA

′)ρ∈N is an ideal semifiltration

of A′, according to Lemma J .)

Proof of Lemma I ′: Assume that v is n-integral over
(
A, (Iρ)ρ∈N

)
. Then, by

Definition 9 (applied to B′ and v instead of B and u), there exists some (a0, a1, ..., an) ∈
An+1 such that

n∑
k=0

akv
k = 0, an = 1, and ai ∈ In−i for every i ∈ {0, 1, ..., n} .

But (a0, a1, ..., an) ∈ An+1 yields (a0, a1, ..., an) ∈ (A′)n+1 (since A ⊆ A′), and ai ∈ In−i
yields ai ∈ In−iA′ (since In−i ⊆ In−iA

′) for every i ∈ {0, 1, ..., n}. Thus, (a0, a1, ..., an) ∈
(A′)n+1 and

n∑
k=0

akv
k = 0, an = 1, and ai ∈ In−iA′ for every i ∈ {0, 1, ..., n} .

Hence, by Definition 9 (applied to B′, A′, (IρA
′)ρ∈N and v instead of B, A, (Iρ)ρ∈N and

u), the element v is n-integral over
(
A′, (IρA

′)ρ∈N

)
. This proves Lemma I ′.

Now let us prove Theorem 13.
We have (Jρ)ρ∈N = (Jτ )τ∈N. Hence, y is n-integral over

(
A, (Jτ )τ∈N

)
(since y is

n-integral over
(
A, (Jρ)ρ∈N

)
).

Consider the polynomial ring A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
. We will

abbreviate the ring A
[
(Iρ)ρ∈N ∗ Y

]
by A[I]. We have A[I] ⊆ B [Y ], because A[I] =

A
[
(Iρ)ρ∈N ∗ Y

]
⊆ A [Y ] and we consider A [Y ] as a subring of B [Y ] as explained in

Definition 7.
Theorem 7 (applied to x and m instead of u and n) yields that xY is m-integral

over A
[
(Iρ)ρ∈N ∗ Y

]
(since x is m-integral over

(
A, (Iρ)ρ∈N

)
). In other words, xY is

m-integral over A[I] (since A
[
(Iρ)ρ∈N ∗ Y

]
= A[I]).

On the other hand, Lemma I ′ (applied to A[I], B [Y ], (Jτ )τ∈N and y instead of

A′, B′, (Iρ)ρ∈N and v) yields that y is n-integral over
(
A[I],

(
JτA[I]

)
τ∈N

)
(since y is

n-integral over
(
A, (Jτ )τ∈N

)
, and A ⊆ A[I] ⊆ B [Y ]).
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Hence, Theorem 8 (c) (applied to A[I], B [Y ],
(
JτA[I]

)
τ∈N, y, xY , m and n instead

of A, B, (Iρ)ρ∈N, x, y, n and m respectively) yields that y · xY is mn-integral over(
A[I],

(
JτA[I]

)
τ∈N

)
(since y is n-integral over

(
A[I],

(
JτA[I]

)
τ∈N

)
, and xY is m-integral

over A[I]). Since y · xY = xyY and mn = nm, this means that xyY is nm-integral

over
(
A[I],

(
JτA[I]

)
τ∈N

)
. Hence, Theorem 11 (applied to xy and nm instead of u and

n) yields that xy is nm-integral over
(
A, (IρJρ)ρ∈N

)
. This proves Theorem 13.
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