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The purpose of this note is to collect some theorems and proofs related to integrality
in commutative algebra. The note is subdivided into four parts.

Part 1 (Integrality over rings) consists of known facts (Theorems 1, 4, 5) and a
generalized exercise from [1] (Corollary 3) with a few minor variations (Theorem 2 and
Corollary 6).

Part 2 (Integrality over ideal semifiltrations) merges integrality over rings (as con-
sidered in Part 1) and integrality over ideals (a less-known but still very useful notion;
the book [2] is devoted to it) into one general notion - that of integrality over ideal
semifiltrations (Definition 9). This notion is very general, yet it can be reduced to the
basic notion of integrality over rings by a suitable change of base ring (Theorem 7).
This reduction allows to extend some standard properties of integrality over rings to
the general case (Theorems 8 and 9).

Part 3 (Generalizing to two ideal semifiltrations) continues Part 2, adding one more
layer of generality. Its main result is a ”relative” version of Theorem 7 (Theorem 11)
and a known fact generalized one more time (Theorem 13).

Part 4 (Accelerating ideal semifiltrations) generalizes Theorem 11 (and thus also
Theorem 7) a bit further by considering a generalization of powers of an ideal.

Part 5 (Generalizing a lemma by Lombardi) is about an auxiliary result Lombardi
used in [3] to prove Kronecker’s Theorem1. We extend this auxiliary result here.

This note is supposed to be self-contained (only linear algebra and basic knowledge
about rings, ideals and polynomials is assumed). The proofs are constructive. However,
when writing down the proofs I focussed on maximal detail (to ensure correctness)
rather than on clarity, so the proofs are probably a pain to read. I think of making a
short version of this note with the obvious parts of proofs left out.

This is the long version of this paper, with all proofs maximally detailed. For all
practical purposes, the brief version [4] should be totally enough, and probably better as
it is much easier to read.

Preludium

Definitions and notations:
Definition 1. In the following, ”ring” will always mean ”commutative ring with

unity”. We denote the set {0, 1, 2, ...} by N, and the set {1, 2, 3, ...} by N+.
Definition 2. Let A be a ring. Let M be an A-module. If n ∈ N, and if m1, m2,

..., mn are n elements of M , then we define an A-submodule 〈m1, m2, ...,mn〉A of M by

〈m1, m2, ...,mn〉A =

{
n∑

i=1

aimi | (a1, a2, ..., an) ∈ An

}
.

1Kronecker’s Theorem. Let B be a ring (”ring” always means ”commutative ring with unity”
in this paper). Let g and h be two elements of the polynomial ring B [X]. Let gα be any coefficient
of the polynomial g. Let hβ be any coefficient of the polynomial h. Let A be a subring of B which
contains all coefficients of the polynomial gh. Then, the element gαhβ of B is integral over the subring
A.
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Also, if S is a finite set, and ms is an element of M for every s ∈ S, then we define an
A-submodule 〈ms | s ∈ S〉A of M by

〈ms | s ∈ S〉A =

{∑
s∈S

asms | (as)s∈S ∈ AS

}
.

Of course, if m1, m2, ..., mn are n elements of M , then 〈m1, m2, ...,mn〉A = 〈ms | s ∈ {1, 2, ..., n}〉A.
We notice something almost trivial:

Module inclusion lemma. Let A be a ring. Let M be an A-module. Let
N be an A-submodule of M . If S is a finite set, and ms is an element of N
for every s ∈ S, then 〈ms | s ∈ S〉A ⊆ N . 2

Definition 3. Let A be a ring, and let n ∈ N. Let M be an A-module. We say
that the A-module M is n-generated if there exist n elements m1, m2, ..., mn of M
such that M = 〈m1, m2, ...,mn〉A. In other words, the A-module M is n-generated if
and only if there exists a set S and an element ms of M for every s ∈ S such that
|S| = n and M = 〈ms | s ∈ S〉A.

Definition 4. Let A and B be two rings. We say that A ⊆ B if and only if

(the set A is a subset of the set B) and (the inclusion map A → B is a ring homomorphism) .

Now assume that A ⊆ B. Then, obviously, B is canonically an A-algebra (since A ⊆
B). If u1, u2, ..., un are n elements of B, then we define an A-subalgebra A [u1, u2, ..., un]
of B by

A [u1, u2, ..., un] = {P (u1, u2, ..., un) | P ∈ A [X1, X2, ..., Xn]} .

In particular, if u is an element of B, then the A-subalgebra A [u] of B is defined
by

A [u] = {P (u) | P ∈ A [X]} .

Since A [X] =

{
m∑

i=0

aiX
i | m ∈ N and (a0, a1, ..., am) ∈ Am+1

}
, this becomes

A [u] =

{(
m∑

i=0

aiX
i

)
(u) | m ∈ N and (a0, a1, ..., am) ∈ Am+1

}
(

where

(
m∑

i=0

aiX
i

)
(u) means the polynomial

m∑
i=0

aiX
i evaluated at X = u

)

=

{
m∑

i=0

aiu
i | m ∈ N and (a0, a1, ..., am) ∈ Am+1

} (
because

(
m∑

i=0

aiX
i

)
(u) =

m∑
i=0

aiu
i

)
.

Obviously, uA [u] ⊆ A [u] (since A [u] is an A-algebra and u ∈ A [u]).

2Proof. We have

〈ms | s ∈ S〉A =

{∑
s∈S

asms | (as)s∈S ∈ AS

}
⊆ N,

since
∑
s∈S

asms ∈ N for every (as)s∈S ∈ AS (because ms ∈ N for every s ∈ S, and because N is an

A-module).
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1. Integrality over rings

Theorem 1. Let A and B be two rings such that A ⊆ B. Obviously, B is
canonically an A-module (since A ⊆ B). Let n ∈ N. Let u ∈ B. Then, the
following four assertions A, B, C and D are pairwise equivalent:

Assertion A: There exists a monic polynomial P ∈ A [X] with deg P = n
and P (u) = 0.

Assertion B: There exist a B-module C and an n-generated A-submodule
U of C such that uU ⊆ U and such that every v ∈ B satisfying vU = 0
satisfies v = 0. (Here, C is an A-module, since C is a B-module and
A ⊆ B.)

Assertion C: There exists an n-generated A-submodule U of B such that
1 ∈ U and uU ⊆ U .

Assertion D: We have A [u] = 〈u0, u1, ..., un−1〉A.

Definition 5. Let A and B be two rings such that A ⊆ B. Let n ∈ N. Let u ∈ B.
We say that the element u of B is n-integral over A if it satisfies the four equivalent
assertions A, B, C and D of Theorem 1.

Hence, in particular, the element u of B is n-integral over A if and only if it satisfies
the assertion A of Theorem 1. In other words, u is n-integral over A if and only if
there exists a monic polynomial P ∈ A [X] with deg P = n and P (u) = 0.

Proof of Theorem 1. We will prove the implications A =⇒ C, C =⇒ B, B =⇒ A,
A =⇒ D and D =⇒ C.

Proof of the implication A =⇒ C. Assume that Assertion A holds. Then, there
exists a monic polynomial P ∈ A [X] with deg P = n and P (u) = 0. Since P ∈ A [X]
is a monic polynomial with deg P = n, there exist elements a0, a1, ..., an−1 of A such

that P (X) = Xn +
n−1∑
k=0

akX
k. Thus, P (u) = un +

n−1∑
k=0

aku
k, so that P (u) = 0 becomes

un +
n−1∑
k=0

aku
k = 0. Hence, un = −

n−1∑
k=0

aku
k.

Let U be the A-submodule 〈u0, u1, ..., un−1〉A of B. Then, U is an n-generated
A-module (since u0, u1, ..., un−1 are n elements of U). Besides, 1 = u0 ∈ U .

Now, u · uk ∈ U for any k ∈ {0, 1, ..., n− 1} (since k ∈ {0, 1, ..., n− 1} yields either
0 ≤ k < n−1 or k = n−1, but u ·uk = uk+1 ∈ 〈u0, u1, ..., un−1〉A = U if 0 ≤ k < n−1,

and u · uk = u · un−1 = un = −
n−1∑
k=0

aku
k ∈ 〈u0, u1, ..., un−1〉A = U if k = n− 1, so that

u · uk ∈ U in both cases). Hence,

uU = u
〈
u0, u1, ..., un−1

〉
A

=
〈
u · u0, u · u1, ..., u · un−1

〉
A
⊆ U

(since u · uk ∈ U for any k ∈ {0, 1, ..., n− 1}).
Thus, Assertion C holds. Hence, we have proved that A =⇒ C.
Proof of the implication C =⇒ B. Assume that Assertion C holds. Then, there

exists an n-generated A-submodule U of B such that 1 ∈ U and uU ⊆ U . Every v ∈ B
satisfying vU = 0 satisfies v = 0 (since 1 ∈ U and vU = 0 yield v · 1︸︷︷︸

∈U

∈ vU = 0
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and thus v · 1 = 0, so that v = 0). Set C = B. Then, C is a B-module, and U is
an n-generated A-submodule of C (since U is an n-generated A-submodule of B, and
C = B). Thus, Assertion B holds. Hence, we have proved that C =⇒ B.

Proof of the implication B =⇒ A. Assume that Assertion B holds. Then, there
exist a B-module C and an n-generated A-submodule U of C such that uU ⊆ U (where
C is an A-module, since C is a B-module and A ⊆ B), and such that every v ∈ B
satisfying vU = 0 satisfies v = 0.

Since the A-module U is n-generated, there exist n elements m1, m2, ..., mn of U
such that U = 〈m1, m2, ...,mn〉A. For any k ∈ {1, 2, ..., n}, we have

umk ∈ uU (since mk ∈ U)

⊆ U = 〈m1, m2, ...,mn〉A ,

so that there exist n elements ak,1, ak,2, ..., ak,n of A such that umk =
n∑

i=1

ak,imi.

We introduce two notations:

• For any matrix T and any integers x and y, we denote by Tx,y the entry of the
matrix T in the x-th row and the y-th column.

• For any assertion U , we denote by [U ] the Boolean value of the assertion U (that

is, [U ] =

{
1, if U is true;
0, if U is false

).

Clearly, the n × n identity matrix In satisfies (In)τ,i = [τ = i] for every τ ∈
{1, 2, ..., n} and i ∈ {1, 2, ..., n}.

Note that for every τ ∈ {1, 2, ..., n}, we have

n∑
i=1

(In)τ,i mi = mτ , (1)

since

n∑
i=1

(In)τ,i︸ ︷︷ ︸
=[τ=i]=[i=τ ]

mi =
n∑

i=1

[i = τ ] mi =
∑

i∈{1,2,...,n}

[i = τ ] mi

=
∑

i∈{1,2,...,n}
such that i=τ

[i = τ ]︸ ︷︷ ︸
=1, since

i=τ is true

mi +
∑

i∈{1,2,...,n}
such that i6=τ

[i = τ ]︸ ︷︷ ︸
=0, since

i=τ is false,
since i6=τ

mi

=
∑

i∈{1,2,...,n}
such that i=τ

1mi︸︷︷︸
=mi

+
∑

i∈{1,2,...,n}
such that i6=τ

0mi

︸ ︷︷ ︸
=0

=
∑

i∈{1,2,...,n}
such that i=τ

mi + 0

=
∑

i∈{1,2,...,n}
such that i=τ

mi =
∑
i∈{τ}

mi

(
since {i ∈ {1, 2, ..., n} | i = τ} = {τ} ,

because τ ∈ {1, 2, ..., n}

)
= mτ .
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Hence, for every k ∈ {1, 2, ..., n}, we have

n∑
i=1

(
u (In)k,i − ak,i

)
mi =

n∑
i=1

(
u (In)k,i mi − ak,imi

)
= u

n∑
i=1

(In)k,i mi︸ ︷︷ ︸
=mk, by (1)

(applied to τ=k)

−
n∑

i=1

ak,imi

= umk −
n∑

i=1

ak,imi = 0

(since umk =
n∑

i=1

ak,imi).

Define a matrix S ∈ An×n by (Sk,i = ak,i for all k ∈ {1, 2, ..., n} and i ∈ {1, 2, ..., n}).
Define a matrix T ∈ Bn×n by T = adj (uIn − S) (where S is considered as an

element of Bn×n, because S ∈ An×n and A ⊆ B).
Let P ∈ A [X] be the characteristic polynomial of the matrix S ∈ An×n. Then, P is

monic, and deg P = n. Besides, P (X) = det (XIn − S), so that P (u) = det (uIn − S).
Then,

P (u) · In = det (uIn − S) · In = adj (uIn − S)︸ ︷︷ ︸
=T

· (uIn − S) = T · (uIn − S) .

Now, for every τ ∈ {1, 2, ..., n}, we have

P (u) mτ = P (u)
n∑

i=1

(In)τ,i mi

(
since (1) yields mτ =

n∑
i=1

(In)τ,i mi

)

=
n∑

i=1

P (u) · (In)τ,i︸ ︷︷ ︸
=(P (u)·In)τ,i

mi =
n∑

i=1

P (u) · In︸ ︷︷ ︸
=T ·(uIn−S)


τ,i

mi =
n∑

i=1

(T · (uIn − S))τ,i︸ ︷︷ ︸
=

nP
k=1

Tτ,k(uIn−S)k,i

mi

=
n∑

i=1

n∑
k=1

Tτ,k (uIn − S)k,i mi =
n∑

k=1

Tτ,k

n∑
i=1

(uIn − S)k,i︸ ︷︷ ︸
=u(In)k,i−Sk,i

mi

=
n∑

k=1

Tτ,k

n∑
i=1

u (In)k,i − Sk,i︸︷︷︸
=ak,i

mi =
n∑

k=1

Tτ,k

n∑
i=1

(
u (In)k,i − ak,i

)
mi︸ ︷︷ ︸

=0

= 0.

Thus,

P (u) · U = P (u) · 〈m1, m2, ...,mn〉A = 〈P (u) ·m1, P (u) ·m2, ..., P (u) ·mn〉A
= 〈0, 0, ..., 0〉A (since P (u) ·mτ = 0 for any τ ∈ {1, 2, ..., n})
= 0.

This implies P (u) = 0 (since every v ∈ B satisfying vU = 0 satisfies v = 0). Thus,
Assertion A holds. Hence, we have proved that B =⇒ A.
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Proof of the implication A =⇒ D. Assume that Assertion A holds. Then, there
exists a monic polynomial P ∈ A [X] with deg P = n and P (u) = 0. Since P ∈ A [X]
is a monic polynomial with deg P = n, there exist elements a0, a1, ..., an−1 of A such

that P (X) = Xn +
n−1∑
k=0

akX
k. Thus, P (u) = un +

n−1∑
k=0

aku
k, so that P (u) = 0 becomes

un +
n−1∑
k=0

aku
k = 0. Hence, un = −

n−1∑
k=0

aku
k.

Let U be the A-submodule 〈u0, u1, ..., un−1〉A of B. As in the Proof of the implication
A =⇒ C, we can show that U is an n-generated A-module, and that 1 ∈ U and uU ⊆ U .

Now, we are going to show that

ui ∈ U for any i ∈ N. (2)

Proof of (2). We will prove (2) by induction over i:
Induction base: The assertion (2) holds for i = 0 (since u0 ∈ U). This completes

the induction base.
Induction step: Let τ ∈ N. If the assertion (2) holds for i = τ , then the assertion

(2) holds for i = τ + 1 (because if the assertion (2) holds for i = τ , then uτ ∈ U , so
that uτ+1 = u · uτ︸︷︷︸

∈U

∈ uU ⊆ U , so that uτ+1 ∈ U , and thus the assertion (2) holds for

i = τ + 1). This completes the induction step.
Hence, the induction is complete, and (2) is proven.
Thus,

A [u] =

{
m∑

i=0

aiu
i | m ∈ N and (a0, a1, ..., am) ∈ Am+1

}
⊆ U

(since
m∑

i=0

aiu
i ∈ U for any m ∈ N and any (a0, a1, ..., am) ∈ Am+1, because ai ∈ A and

ui ∈ U for any i ∈ {0, 1, ...,m} (by (2)) and U is an A-module). On the other hand,
U ⊆ A [u], since

U =
〈
u0, u1, ..., un−1

〉
A

=

{
n−1∑
i=0

aiu
i | (a0, a1, ..., an−1) ∈ An

}

⊆

{
m∑

i=0

aiu
i | m ∈ N and (a0, a1, ..., am) ∈ Am+1

}
= A [u] .

Thus, U = A [u]. In other words, 〈u0, u1, ..., un−1〉A = A [u]. Thus, Assertion D holds.
Hence, we have proved that A =⇒ D.

Proof of the implication D =⇒ C. Assume that Assertion D holds. Then, A [u] =
〈u0, u1, ..., un−1〉A.

Let U be the A-submodule 〈u0, u1, ..., un−1〉A of B. Then, U is an n-generated
A-module (since u0, u1, ..., un−1 are n elements of U). Besides, 1 = u0 ∈ U .

Also,

uU = u ·
〈
u0, u1, ..., un−1

〉
A

= u · A [u] ⊆ A [u] =
〈
u0, u1, ..., un−1

〉
A

= U.

Thus, Assertion C holds. Hence, we have proved that D =⇒ C.
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Now, we have proved the implications A =⇒ D, D =⇒ C, C =⇒ B and B =⇒ A
above. Thus, all four assertions A, B, C and D are pairwise equivalent, and Theorem
1 is proven.

Theorem 2. Let A and B be two rings such that A ⊆ B. Let n ∈ N. Let

v ∈ B. Let a0, a1, ..., an be n + 1 elements of A such that
n∑

i=0

aiv
i = 0. Let

k ∈ {0, 1, ..., n}. Then,
n−k∑
i=0

ai+kv
i is n-integral over A.

Proof of Theorem 2. Let U be the A-submodule 〈v0, v1, ..., vn−1〉A of B. Then,
U is an n-generated A-module (since v0, v1, ..., vn−1 are n elements of U). Besides,
1 = v0 ∈ U .

Let u =
n−k∑
i=0

ai+kv
i. Then,

0 =
n∑

i=0

aiv
i =

k−1∑
i=0

aiv
i +

n∑
i=k

aiv
i =

k−1∑
i=0

aiv
i +

n−k∑
i=0

ai+k vi+k︸︷︷︸
=vivk

(here, we substituted i + k for i in the second sum)

=
k−1∑
i=0

aiv
i + vk

n−k∑
i=0

ai+kv
i

︸ ︷︷ ︸
=u

=
k−1∑
i=0

aiv
i + vku,

so that vku = −
k−1∑
i=0

aiv
i.

Now, we are going to show that

uvt ∈ U for any t ∈ {0, 1, ..., n− 1} . (3)

Proof of (3). Since t ∈ {0, 1, ..., n− 1}, one of the following two cases must hold:
Case 1: We have t ∈ {0, 1, ..., k − 1}.
Case 2: We have t ∈ {k, k + 1, ..., n− 1}.
In Case 1, we have

uvt =
n−k∑
i=0

ai+k vi · vt︸ ︷︷ ︸
=vi+t

(
since u =

n−k∑
i=0

ai+kv
i

)

=
n−k∑
i=0

ai+kv
i+t ∈

〈
v0, v1, ..., vn−1

〉
A(

since t ∈ {0, 1, ..., k − 1} yields i + t ∈ {0, 1, ..., n− 1} and thus
vi+t ∈ {v0, v1, ..., vn−1} for any i ∈ {0, 1, ..., n− k}

)
= U.

In Case 2, we have t ∈ {k, k + 1, ..., n− 1}, thus t − k ∈ {0, 1, ..., n− k − 1} and
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hence

uvt = u vk+(t−k)︸ ︷︷ ︸
=vkvt−k

= vku · vt−k = −
k−1∑
i=0

ai v
i · vt−k︸ ︷︷ ︸

=vi+(t−k)

(
since vku = −

k−1∑
i=0

aiv
i

)

= −
k−1∑
i=0

aiv
i+(t−k) ∈

〈
v0, v1, ..., vn−1

〉
A(

since t− k ∈ {0, 1, ..., n− k − 1} yields i + (t− k) ∈ {0, 1, ..., n− 1} and thus
vi+(t−k) ∈ {v0, v1, ..., vn−1} for any i ∈ {0, 1, ..., k − 1}

)
= U.

Hence, in both cases, we have uvt ∈ U . Thus, uvt ∈ U always holds, and (3) is
proven.

Now,

uU = u
〈
v0, v1, ..., vn−1

〉
A

=
〈
uv0, uv1, ..., uvn−1

〉
A
⊆ U (due to (3)) .

Altogether, U is an n-generated A-submodule of B such that 1 ∈ U and uU ⊆ U .
Thus, u ∈ B satisfies Assertion C of Theorem 1. Hence, u ∈ B satisfies the four
equivalent assertions A, B, C and D of Theorem 1. Consequently, u is n-integral over

A. Since u =
n−k∑
i=0

ai+kv
i, this means that

n−k∑
i=0

ai+kv
i is n-integral over A. This proves

Theorem 2.

Corollary 3. Let A and B be two rings such that A ⊆ B. Let α ∈ N and
β ∈ N. Let u ∈ B and v ∈ B. Let s0, s1, ..., sα be α + 1 elements of A

such that
α∑

i=0

siv
i = u. Let t0, t1, ..., tβ be β + 1 elements of A such that

β∑
i=0

tiv
β−i = uvβ. Then, u is (α + β)-integral over A.

(This Corollary 3 generalizes Exercise 2-5 in [1].)
First proof of Corollary 3. Let k = β and n = α+β. Then, k ∈ {0, 1, ..., n}. Define

n + 1 elements a0, a1, ..., an of A by

ai =


tβ−i, if i < β;

t0 − s0, if i = β;
−si−β, if i > β;

for every i ∈ {0, 1, ..., n} .
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Then,

n∑
i=0

aiv
i =

α+β∑
i=0

aiv
i =

β−1∑
i=0

ai︸︷︷︸
=tβ−i (by the
definition of ai,

since i<β)

vi +

β∑
i=β

ai︸︷︷︸
=t0−s0 (by the
definition of ai,

since i=β)

vi +

α+β∑
i=β+1

ai︸︷︷︸
=−si−β (by the
definition of ai,

since i>β)

vi

=

β−1∑
i=0

tβ−iv
i +

β∑
i=β

(t0 − s0) vi

︸ ︷︷ ︸
=(t0−s0)vβ

=t0vβ−s0vβ

+

α+β∑
i=β+1

(−si−β) vi

︸ ︷︷ ︸
=−

α+βP
i=β+1

si−βvi

=

β−1∑
i=0

tβ−iv
i + t0v

β − s0v
β −

α+β∑
i=β+1

si−βvi =

β−1∑
i=0

tβ−iv
i + t0v

β −

(
s0v

β +

α+β∑
i=β+1

si−βvi

)

=

β−1∑
i=0

tβ−iv
i + t0v

β −

s0v
β +

α∑
i=1

s(i+β)−β︸ ︷︷ ︸
=si

vi+β︸︷︷︸
=vivβ


(here, we substituted i + β for i in the second sum)

=

β−1∑
i=0

tβ−iv
i + t0v

β −

(
s0v

β +
α∑

i=1

siv
ivβ

)

=

β∑
i=1

tβ−(β−i)︸ ︷︷ ︸
=ti

vβ−i + t0 vβ︸︷︷︸
=vβ−0

−

s0 vβ︸︷︷︸
=v0vβ

+
α∑

i=1

siv
ivβ


(here, we substituted β − i for i in the first sum)

=

β∑
i=1

tiv
β−i + t0v

β−0 −

(
s0v

0vβ +
α∑

i=1

siv
ivβ

)

=

β∑
i=1

tiv
β−i + t0v

β−0

︸ ︷︷ ︸
=

βP
i=0

tivβ−i=uvβ

−


s0v

0 +
α∑

i=1

siv
i

︸ ︷︷ ︸
=

αP
i=0

sivi=u


vβ = uvβ − uvβ = 0.
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Thus, Theorem 2 yields that
n−k∑
i=0

ai+kv
i is n-integral over A. But

n−k∑
i=0

ai+kv
i =

n−β∑
i=0

ai+βvi =
0∑

i=0

ai+β︸︷︷︸
=t0−s0 (by the

definition of ai+β ,
since i=0 yields

i+β=β)

vi +

n−β∑
i=1

ai+β︸︷︷︸
=−s(i+β)−β (by the
definition of ai+β ,
since i>0 yields

i+β>β)

vi

=
0∑

i=0

(t0 − s0) vi

︸ ︷︷ ︸
=(t0−s0)v0

=t0v0−s0v0

=t0−s0v0

+

n−β∑
i=1

− s(i+β)−β︸ ︷︷ ︸
=si

 vi = t0 − s0v
0 +

n−β∑
i=1

(−si) vi

= t0 − s0v
0 −

n−β∑
i=1

siv
i = t0 − s0v

0 −
α∑

i=1

siv
i (since n = α + β yields n− β = α)

= t0 −


s0v

0 +
α∑

i=1

siv
i

︸ ︷︷ ︸
=

αP
i=0

sivi=u


= t0 − u.

Thus, t0 − u is n-integral over A. On the other hand, −t0 is 1-integral over A (by
Theorem 5 (a) below, applied to a = −t0). Thus, (−t0) + (t0 − u) is n · 1-integral over
A (by Theorem 5 (b) below, applied to x = −t0, y = t0 − u and m = 1). In other
words, −u is n-integral over A (since (−t0) + (t0 − u) = −u and n · 1 = n). On the
other hand, −1 is 1-integral over A (by Theorem 5 (a) below, applied to a = −1).
Thus, (−1) · (−u) is n · 1-integral over A (by Theorem 5 (c) below, applied to x = −1,
y = −u and m = 1). In other words, u is (α + β)-integral over A (since (−1) ·(−u) = u
and n · 1 = n = α + β). This proves Corollary 3.

We will provide a second proof of Corollary 3 in Part 5.

Theorem 4. Let A and B be two rings such that A ⊆ B. Let v ∈ B and
u ∈ B. Let m ∈ N and n ∈ N. Assume that v is m-integral over A, and
that u is n-integral over A [v]. Then, u is nm-integral over A.

Proof of Theorem 4. Since v is m-integral over A, we have A [v] = 〈v0, v1, ..., vm−1〉A
(this is the Assertion D of Theorem 1, stated for v and m in lieu of u and n).

Since u is n-integral over A [v], we have (A [v]) [u] = 〈u0, u1, ..., un−1〉A[v] (this is the
Assertion D of Theorem 1, stated for A [v] in lieu of A).

Let S = {0, 1, ..., n− 1} × {0, 1, ...,m− 1}.
Let x ∈ (A [v]) [u]. Then, there exist n elements b0, b1, ..., bn−1 of A [v] such that x =

n−1∑
i=0

biu
i (since x ∈ (A [v]) [u] = 〈u0, u1, ..., un−1〉A[v]). But for each i ∈ {0, 1, ..., n− 1},

there exist m elements ai,0, ai,1, ..., ai,m−1 of A such that bi =
m−1∑
j=0

ai,jv
j (because
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bi ∈ A [v] = 〈v0, v1, ..., vm−1〉A). Thus,

x =
n−1∑
i=0

bi︸︷︷︸
=

m−1P
j=0

ai,jvj

ui =
n−1∑
i=0

m−1∑
j=0

ai,jv
jui =

∑
(i,j)∈{0,1,...,n−1}×{0,1,...,m−1}

ai,jv
jui =

∑
(i,j)∈S

ai,jv
jui

∈
〈
vjui | (i, j) ∈ S

〉
A

(since ai,j ∈ A for every (i, j) ∈ S)

So we have proved that x ∈ 〈vjui | (i, j) ∈ S〉A for every x ∈ (A [v]) [u]. Thus,
(A [v]) [u] ⊆ 〈vjui | (i, j) ∈ S〉A. Conversely, 〈vjui | (i, j) ∈ S〉A ⊆ (A [v]) [u] (since
vj ∈ A [v] for every (i, j) ∈ S, and thus vj︸︷︷︸

∈A[v]

ui ∈ (A [v]) [u] for every (i, j) ∈ S, and

therefore

〈
vjui | (i, j) ∈ S

〉
A

=


∑

(i,j)∈S

ai,jv
jui

︸ ︷︷ ︸
∈(A[v])[u], since

vjui∈(A[v])[u] for all (i,j)∈S
and (A[v])[u] is an A-module

| (ai,j)(i,j)∈S ∈ AS


⊆ (A [v]) [u]

). Hence, (A [v]) [u] = 〈vjui | (i, j) ∈ S〉A. Thus, the A-module (A [v]) [u] is nm-
generated (since

|S| = |{0, 1, ..., n− 1} × {0, 1, ...,m− 1}| = |{0, 1, ..., n− 1}|︸ ︷︷ ︸
=n

· |{0, 1, ...,m− 1}|︸ ︷︷ ︸
=m

= nm

).
Let U = (A [v]) [u]. Then, the A-module U = (A [v]) [u] is nm-generated. Besides,

U is an A-submodule of B, and we have 1 = u0 ∈ (A [v]) [u] = U and

uU = u (A [v]) [u] ⊆ (A [v]) [u] (since (A [v]) [u] is an A [v] -algebra and u ∈ (A [v]) [u])

= U.

Altogether, we now know that the A-submodule U of B is nm-generated and sat-
isfies 1 ∈ U and uU ⊆ U .

Thus, the element u of B satisfies the Assertion C of Theorem 1 with n replaced by
nm. Hence, u ∈ B satisfies the four equivalent assertions A, B, C and D of Theorem
1, all with n replaced by nm. Thus, u is nm-integral over A. This proves Theorem 4.

Theorem 5. Let A and B be two rings such that A ⊆ B.

(a) Let a ∈ A. Then, a is 1-integral over A.

(b) Let x ∈ B and y ∈ B. Let m ∈ N and n ∈ N. Assume that x is m-
integral over A, and that y is n-integral over A. Then, x + y is nm-integral
over A.

(c) Let x ∈ B and y ∈ B. Let m ∈ N and n ∈ N. Assume that x is
m-integral over A, and that y is n-integral over A. Then, xy is nm-integral
over A.

11



Proof of Theorem 5. (a) There exists a monic polynomial P ∈ A [X] with deg P = 1
and P (a) = 0 (namely, the polynomial P ∈ A [X] defined by P (X) = X − a). Thus,
a is 1-integral over A. This proves Theorem 5 (a).

(b) Since y is n-integral over A, there exists a monic polynomial P ∈ A [X] with
deg P = n and P (y) = 0. Since P ∈ A [X] is a monic polynomial with deg P = n,

there exists a polynomial P̃ ∈ A [X] with deg P̃ < n and P (X) = Xn + P̃ (X).
Now, define a polynomial Q ∈ (A [x]) [X] by Q (X) = P (X − x). Then,

deg Q = deg P (since shifting the polynomial P by the constant x does not change its degree)

= n,

and Q (X) = P (X − x) yields Q (x + y) = P ((x + y)− x) = P (y) = 0.

Define a polynomial Q̃ ∈ (A [x]) [X] by Q̃ (X) = ((X − x)n −Xn) + P̃ (X − x).

Then, deg Q̃ < n (since

deg
(
P̃ (X − x)

)
= deg

(
P̃ (X)

)
(
since shifting the polynomial P̃ by the constant x does not change its degree

)
= deg P̃ < n

and

deg ((X − x)n −Xn) = deg

(
((X − x)−X) ·

n−1∑
k=0

(X − x)k Xn−1−k

)

≤ deg ((X − x)−X)︸ ︷︷ ︸
=deg(−x)=0

+ deg

(
n−1∑
k=0

(X − x)k Xn−1−k

)
︸ ︷︷ ︸

≤n−1, since

deg((X−x)kXn−1−k)≤n−1

for any k∈{0,1,...,n−1}

≤ 0 + (n− 1) = n− 1 < n

yield

deg Q̃ = deg
(
Q̃ (X)

)
= deg

(
((X − x)n −Xn) + P̃ (X − x)

)
≤ max

deg ((X − x)n −Xn)︸ ︷︷ ︸
<n

, deg
(
P̃ (X − x)

)
︸ ︷︷ ︸

<n

 < max {n, n} = n

). Thus, the polynomial Q is monic (since

Q (X) = P (X − x) = (X − x)n + P̃ (X − x)
(
since P (X) = Xn + P̃ (X)

)
= Xn + ((X − x)n −Xn) + P̃ (X − x)︸ ︷︷ ︸

= eQ(X)

= Xn + Q̃ (X)

and deg Q̃ < n).
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Hence, there exists a monic polynomial Q ∈ (A [x]) [X] with deg Q = n and
Q (x + y) = 0. Thus, x + y is n-integral over A [x]. Thus, Theorem 4 (applied to
v = x and u = x + y) yields that x + y is nm-integral over A. This proves Theorem 5
(b).

(c) Since y is n-integral over A, there exists a monic polynomial P ∈ A [X] with
deg P = n and P (y) = 0. Since P ∈ A [X] is a monic polynomial with deg P = n,

there exist elements a0, a1, ..., an−1 of A such that P (X) = Xn +
n−1∑
k=0

akX
k. Thus,

P (y) = yn +
n−1∑
k=0

aky
k.

Now, define a polynomial Q ∈ (A [x]) [X] by Q (X) = Xn +
n−1∑
k=0

xn−kakX
k. Then,

Q (xy) = (xy)n︸ ︷︷ ︸
=xnyn

+
n−1∑
k=0

xn−k ak (xy)k︸ ︷︷ ︸
=akxkyk

=xkakyk

= xnyn +
n−1∑
k=0

xn−kxk︸ ︷︷ ︸
=xn

aky
k

= xnyn +
n−1∑
k=0

xnaky
k = xn

yn +
n−1∑
k=0

aky
k

︸ ︷︷ ︸
=P (y)=0

 = 0.

Also, the polynomial Q ∈ (A [x]) [X] is monic and deg Q = n (since Q (X) = Xn +
n−1∑
k=0

xn−kakX
k). Thus, there exists a monic polynomial Q ∈ (A [x]) [X] with deg Q = n

and Q (xy) = 0. Thus, xy is n-integral over A [x]. Hence, Theorem 4 (applied to v = x
and u = xy) yields that xy is nm-integral over A. This proves Theorem 5 (c).

Corollary 6. Let A and B be two rings such that A ⊆ B. Let n ∈ N+

and m ∈ N. Let v ∈ B. Let b0, b1, ..., bn−1 be n elements of A, and let

u =
n−1∑
i=0

biv
i. Assume that vu is m-integral over A. Then, u is nm-integral

over A.

Proof of Corollary 6. Define n + 1 elements a0, a1, ..., an of A [vu] by

ai =

{
−vu, if i = 0;
bi−1, if i > 0

for every i ∈ {0, 1, ..., n} .

Then, a0 = −vu. Let k = 1. Then,

n∑
i=0

aiv
i = a0︸︷︷︸

=−vu

v0︸︷︷︸
=1

+
n∑

i=1

ai︸︷︷︸
=bi−1,
since
i>0

vi︸︷︷︸
=vi−1v

= −vu +
n∑

i=1

bi−1v
i−1v = −vu +

n−1∑
i=0

biv
i

︸ ︷︷ ︸
=u

v

(here, we substituted i for i− 1 in the sum)

= −vu + uv = 0.
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Now, A [vu] and B are two rings such that A [vu] ⊆ B. The n + 1 elements a0, a1,

..., an of A [vu] satisfy
n∑

i=0

aiv
i = 0. We have k = 1 ∈ {0, 1, ..., n} .

Hence, Theorem 2 (applied to the ring A [vu] in lieu of A) yields that
n−k∑
i=0

ai+kv
i is

n-integral over A [vu]. But

n−k∑
i=0

ai+kv
i =

n−1∑
i=0

ai+1︸︷︷︸
=b(i+1)−1,
since i+1>0

vi =
n−1∑
i=0

b(i+1)−1v
i =

n−1∑
i=0

biv
i = u.

Hence, u is n-integral over A [vu]. But vu is m-integral over A. Thus, Theorem 4
(applied to vu in lieu of v) yields that u is nm-integral over A. This proves Corollary
6.

2. Integrality over ideal semifiltrations

Definitions:
Definition 6. Let A be a ring, and let (Iρ)ρ∈N be a sequence of ideals of A. Then,

(Iρ)ρ∈N is called an ideal semifiltration of A if and only if it satisfies the two conditions

I0 = A;

IaIb ⊆ Ia+b for every a ∈ N and b ∈ N.

Definition 7. Let A and B be two rings such that A ⊆ B. Then, we identify
the polynomial ring A [Y ] with a subring of the polynomial ring B [Y ] (in fact, every

element of A [Y ] has the form
m∑

i=0

aiY
i for some m ∈ N and (a0, a1, ..., am) ∈ Am+1, and

thus can be seen as an element of B [Y ] by regarding ai as an element of B for every
i ∈ {0, 1, ...,m}).

Definition 8. Let A be a ring, and let (Iρ)ρ∈N be an ideal semifiltration of A. Con-

sider the polynomial ring A [Y ]. Let A
[
(Iρ)ρ∈N ∗ Y

]
denote the A-submodule

∑
i∈N

IiY
i

of the A-algebra A [Y ]. Then,

A
[
(Iρ)ρ∈N ∗ Y

]
=
∑
i∈N

IiY
i

=

{∑
i∈N

aiY
i | (ai ∈ Ii for all i ∈ N) , and (only finitely many i ∈ N satisfy ai 6= 0)

}
= {P ∈ A [Y ] | the i-th coefficient of the polynomial P lies in Ii for every i ∈ N} .

Now, 1 ∈ A
[
(Iρ)ρ∈N ∗ Y

]
(because 1 = 1︸︷︷︸

∈A=I0

·Y 0 ∈ I0Y
0 ⊆

∑
i∈N

IiY
i = A

[
(Iρ)ρ∈N ∗ Y

]
).
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Also, the A-submodule A
[
(Iρ)ρ∈N ∗ Y

]
of A [Y ] is closed under multiplication (since

A
[
(Iρ)ρ∈N ∗ Y

]
· A
[
(Iρ)ρ∈N ∗ Y

]
=
∑
i∈N

IiY
i ·
∑
i∈N

IiY
i =

∑
i∈N

IiY
i ·
∑
j∈N

IjY
j

(here we renamed i as j in the second sum)

=
∑
i∈N

∑
j∈N

IiY
iIjY

j =
∑
i∈N

∑
j∈N

IiIj︸︷︷︸
⊆Ii+j ,

since (Iρ)ρ∈N
is an ideal

semifiltration

Y iY j︸ ︷︷ ︸
=Y i+j

⊆
∑
i∈N

∑
j∈N

Ii+jY
i+j ⊆

∑
k∈N

IkY
k =

∑
i∈N

IiY
i

(here we renamed k as i in the sum)

= A
[
(Iρ)ρ∈N ∗ Y

]
). Hence, A

[
(Iρ)ρ∈N ∗ Y

]
is an A-subalgebra of the A-algebra A [Y ]. This A-subalgebra

A
[
(Iρ)ρ∈N ∗ Y

]
is called the Rees algebra of the ideal semifiltration (Iρ)ρ∈N.

Clearly, A ⊆ A
[
(Iρ)ρ∈N ∗ Y

]
, since A

[
(Iρ)ρ∈N ∗ Y

]
=
∑
i∈N

IiY
i ⊇ I0︸︷︷︸

=A

Y 0︸︷︷︸
=1

= A ·1 =

A.
Definition 9. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N be an ideal

semifiltration of A. Let n ∈ N. Let u ∈ B.
We say that the element u of B is n-integral over

(
A, (Iρ)ρ∈N

)
if there exists some

(a0, a1, ..., an) ∈ An+1 such that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ In−i for every i ∈ {0, 1, ..., n} .

We start with a theorem which reduces the question of n-integrality over
(
A, (Iρ)ρ∈N

)
to that of n-integrality over a ring3:

Theorem 7. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N be
an ideal semifiltration of A. Let n ∈ N. Let u ∈ B.

Consider the polynomial ring A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
defined in Definition 8.

Then, the element u of B is n-integral over
(
A, (Iρ)ρ∈N

)
if and only if

the element uY of the polynomial ring B [Y ] is n-integral over the ring

A
[
(Iρ)ρ∈N ∗ Y

]
. (Here, A

[
(Iρ)ρ∈N ∗ Y

]
⊆ B [Y ] because A

[
(Iρ)ρ∈N ∗ Y

]
⊆

A [Y ] and we consider A [Y ] as a subring of B [Y ] as explained in Definition
7).

3Theorem 7 is inspired by Proposition 5.2.1 in [2].

15



Proof of Theorem 7. In order to verify Theorem 7, we have to prove the following
two lemmata:

Lemma E: If u is n-integral over
(
A, (Iρ)ρ∈N

)
, then uY is n-integral over A

[
(Iρ)ρ∈N ∗ Y

]
.

Lemma F : If uY is n-integral over A
[
(Iρ)ρ∈N ∗ Y

]
, then u is n-integral over(

A, (Iρ)ρ∈N

)
.

Proof of Lemma E: Assume that u is n-integral over
(
A, (Iρ)ρ∈N

)
. Then, by Defi-

nition 9, there exists some (a0, a1, ..., an) ∈ An+1 such that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ In−i for every i ∈ {0, 1, ..., n} .

Note that akY
n−k ∈ A

[
(Iρ)ρ∈N ∗ Y

]
for every k ∈ {0, 1, ..., n} (because ak︸︷︷︸

∈In−k

Y n−k ∈

In−kY
n−k ⊆

∑
i∈N

IiY
i = A

[
(Iρ)ρ∈N ∗ Y

]
). Thus, we can define a polynomial P ∈(

A
[
(Iρ)ρ∈N ∗ Y

])
[X] by P (X) =

n∑
k=0

akY
n−kXk. This polynomial P satisfies deg P ≤

n, and its coefficient before Xn is an︸︷︷︸
=1

Y n−n︸ ︷︷ ︸
=Y 0=1

= 1. Hence, this polynomial P is monic

and satisfies deg P = n. Also, P (X) =
n∑

k=0

akY
n−kXk yields

P (uY ) =
n∑

k=0

akY
n−k (uY )k =

n∑
k=0

akY
n−kukY k =

n∑
k=0

aku
k Y n−kY k︸ ︷︷ ︸

=Y n

= Y n·
n∑

k=0

aku
k

︸ ︷︷ ︸
=0

= 0.

Thus, there exists a monic polynomial P ∈
(
A
[
(Iρ)ρ∈N ∗ Y

])
[X] with deg P = n and

P (uY ) = 0. Hence, uY is n-integral over A
[
(Iρ)ρ∈N ∗ Y

]
. This proves Lemma E .

Proof of Lemma F : Assume that uY is n-integral over A
[
(Iρ)ρ∈N ∗ Y

]
. Then, there

exists a monic polynomial P ∈
(
A
[
(Iρ)ρ∈N ∗ Y

])
[X] with deg P = n and P (uY ) = 0.

Since P ∈
(
A
[
(Iρ)ρ∈N ∗ Y

])
[X] satisfies deg P = n, there exists (p0, p1, ..., pn) ∈(

A
[
(Iρ)ρ∈N ∗ Y

])n+1

such that P (X) =
n∑

k=0

pkX
k. Besides, pn = 1, since P is monic

and deg P = n.

For every k ∈ {0, 1, ..., n}, we have pk ∈ A
[
(Iρ)ρ∈N ∗ Y

]
=
∑
i∈N

IiY
i, and thus, there

exists a sequence (pk,i)i∈N ∈ AN such that pk =
∑
i∈N

pk,iY
i, such that pk,i ∈ Ii for every

i ∈ N, and such that only finitely many i ∈ N satisfy pk,i 6= 0. Thus, P (X) =
n∑

k=0

pkX
k
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becomes P (X) =
n∑

k=0

∑
i∈N

pk,iY
iXk (since pk =

∑
i∈N

pk,iY
i). Hence,

P (uY ) =
n∑

k=0

∑
i∈N

pk,iY
i (uY )k︸ ︷︷ ︸

=ukY k

=Y kuk

=
n∑

k=0

∑
i∈N

pk,i Y
iY k︸ ︷︷ ︸

=Y i+k

uk

=
n∑

k=0

∑
i∈N

pk,iY
i+kuk =

∑
k∈{0,1,...,n}

∑
i∈N

pk,iY
i+kuk

=
∑

(k,i)∈{0,1,...,n}×N

pk,iY
i+kuk =

∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,i Y
i+k︸︷︷︸

=Y `

uk

=
∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iY
`uk =

∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iu
kY `.

Hence, P (uY ) = 0 becomes
∑̀
∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iu
kY ` = 0. In other words, the

polynomial
∑̀
∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iu
k

︸ ︷︷ ︸
∈B

Y ` ∈ B [Y ] equals 0. Hence, its coefficient before

Y n equals 0 as well. But its coefficient before Y n is
∑

(k,i)∈{0,1,...,n}×N;
i+k=n

pk,iu
k. Hence,

∑
(k,i)∈{0,1,...,n}×N;

i+k=n

pk,iu
k equals 0.

Thus,

0 =
∑

(k,i)∈{0,1,...,n}×N;
i+k=n

pk,iu
k =

∑
k∈{0,1,...,n}

∑
i∈N;

i+k=n

pk,iu
k =

∑
k∈{0,1,...,n}

pk,n−ku
k

 since {i ∈ N | i + k = n} = {i ∈ N | i = n− k} = {n− k} (because n− k ∈ N,
since k ∈ {0, 1, ..., n} ) yields

∑
i∈N;

i+k=n

pk,iu
k =

∑
i∈{n−k}

pk,iu
k = pk,n−ku

k

 .

Note that∑
i∈N

pn,iY
i = pn

(
since

∑
i∈N

pk,iY
i = pk for every k ∈ {0, 1, ..., n}

)
= 1 = 1 · Y 0

in A [Y ] , and thus the coefficient of the polynomial
∑
i∈N

pn,iY
i ∈ A [Y ] before Y 0 is 1;

but the coefficient of the polynomial
∑
i∈N

pn,iY
i ∈ A [Y ] before Y 0 is pn,0; hence, pn,0 = 1.

Define an (n + 1)-tuple (a0, a1, ..., an) ∈ An+1 by (ak = pk,n−k for every k ∈ {0, 1, ..., n}) .
Then, an = pn,n−n = pn,0 = 1. Besides,

n∑
k=0

aku
k =

n∑
k=0

pk,n−ku
k =

∑
k∈{0,1,...,n}

pk,n−ku
k = 0.
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Finally, ak = pk,n−k ∈ In−k (since pk,i ∈ Ii for every i ∈ N) for every k ∈ {0, 1, ..., n}.
In other words, ai ∈ In−i for every i ∈ {0, 1, ..., n}.

Altogether, we now know that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ In−i for every i ∈ {0, 1, ..., n} .

Thus, by Definition 9, the element u is n-integral over
(
A, (Iρ)ρ∈N

)
. This proves Lemma

F .
Combining Lemmata E and F , we obtain that u is n-integral over

(
A, (Iρ)ρ∈N

)
if

and only if uY is n-integral over A
[
(Iρ)ρ∈N ∗ Y

]
. This proves Theorem 7.

The next theorem is an analogue of Theorem 5 for integrality over ideal semifiltra-
tions:

Theorem 8. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N be
an ideal semifiltration of A.

(a) Let u ∈ A. Then, u is 1-integral over
(
A, (Iρ)ρ∈N

)
if and only if u ∈ I1.

(b) Let x ∈ B and y ∈ B. Let m ∈ N and n ∈ N. Assume that x is

m-integral over
(
A, (Iρ)ρ∈N

)
, and that y is n-integral over

(
A, (Iρ)ρ∈N

)
.

Then, x + y is nm-integral over
(
A, (Iρ)ρ∈N

)
.

(c) Let x ∈ B and y ∈ B. Let m ∈ N and n ∈ N. Assume that x is

m-integral over
(
A, (Iρ)ρ∈N

)
, and that y is n-integral over A. Then, xy is

nm-integral over
(
A, (Iρ)ρ∈N

)
.

Proof of Theorem 8. (a) In order to verify Theorem 8 (a), we have to prove the
following two lemmata:

Lemma G: If u is 1-integral over
(
A, (Iρ)ρ∈N

)
, then u ∈ I1.

Lemma H: If u ∈ I1, then u is 1-integral over
(
A, (Iρ)ρ∈N

)
.

Proof of Lemma G: Assume that u is 1-integral over
(
A, (Iρ)ρ∈N

)
. Then, by Defi-

nition 9 (applied to n = 1), there exists some (a0, a1) ∈ A2 such that

1∑
k=0

aku
k = 0, a1 = 1, and ai ∈ I1−i for every i ∈ {0, 1} .

Thus, a0 ∈ I1−0 (since ai ∈ I1−i for every i ∈ {0, 1}). Also,

0 =
1∑

k=0

aku
k = a0 u0︸︷︷︸

=1

+ a1︸︷︷︸
=1

u1︸︷︷︸
=u

= a0 + u,

so that u = − a0︸︷︷︸
∈I1−0=I1

∈ I1 (since I1 is an ideal). This proves Lemma G.
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Proof of Lemma H: Assume that u ∈ I1. Then, −u ∈ I1 (since I1 is an ideal).

Set a0 = −u and a1 = 1. Then,
1∑

k=0

aku
k = a0︸︷︷︸

=−u

u0︸︷︷︸
=1

+ a1︸︷︷︸
=1

u1︸︷︷︸
=u

= −u + u = 0. Also,

ai ∈ I1−i for every i ∈ {0, 1} (since a0 = −u ∈ I1 = I1−0 and a1 = 1 ∈ A = I0 = I1−1).
Altogether, we now know that (a0, a1) ∈ A2 and

1∑
k=0

aku
k = 0, a1 = 1, and ai ∈ I1−i for every i ∈ {0, 1} .

Thus, by Definition 9 (applied to n = 1), the element u is 1-integral over
(
A, (Iρ)ρ∈N

)
.

This proves Lemma H.

Combining Lemmata G and H, we obtain that u is 1-integral over
(
A, (Iρ)ρ∈N

)
if

and only if u ∈ I1. This proves Theorem 8 (a).

(b) Consider the polynomial ring A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
. The-

orem 7 (applied to x and m instead of u and n) yields that xY is m-integral over

A
[
(Iρ)ρ∈N ∗ Y

]
(since x is m-integral over

(
A, (Iρ)ρ∈N

)
). Also, Theorem 7 (applied to

y instead of u) yields that yY is n-integral over A
[
(Iρ)ρ∈N ∗ Y

]
(since y is n-integral

over
(
A, (Iρ)ρ∈N

)
). Hence, Theorem 5 (b) (applied to A

[
(Iρ)ρ∈N ∗ Y

]
, B [Y ] , xY and

yY instead of A, B, x and y, respectively) yields that xY + yY is nm-integral over

A
[
(Iρ)ρ∈N ∗ Y

]
. Since xY + yY = (x + y) Y , this means that (x + y) Y is nm-integral

over A
[
(Iρ)ρ∈N ∗ Y

]
. Hence, Theorem 7 (applied to x + y and nm instead of u and n)

yields that x + y is nm-integral over
(
A, (Iρ)ρ∈N

)
. This proves Theorem 8 (b).

(c) First, a trivial observation:
Lemma I: Let A, A′ and B′ be three rings such that A ⊆ A′ ⊆ B′. Let v ∈ B′.

Let n ∈ N. If v is n-integral over A, then v is n-integral over A′.
Proof of Lemma I: Assume that v is n-integral over A. Then, there exists a monic

polynomial P ∈ A [X] with deg P = n and P (v) = 0. Since A ⊆ A′, we can identify
the polynomial ring A [X] with a subring of the polynomial ring A′ [X] (as explained
in Definition 7). Thus, P ∈ A [X] yields P ∈ A′ [X]. Hence, there exists a monic
polynomial P ∈ A′ [X] with deg P = n and P (v) = 0. Thus, v is n-integral over A′.
This proves Lemma I.

Now let us prove Theorem 8 (c).

Consider the polynomial ring A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
. The-

orem 7 (applied to x and m instead of u and n) yields that xY is m-integral over

A
[
(Iρ)ρ∈N ∗ Y

]
(since x is m-integral over

(
A, (Iρ)ρ∈N

)
). On the other hand, Lemma

I (applied to A′ = A
[
(Iρ)ρ∈N ∗ Y

]
, B′ = B [Y ] and v = y) yields that y is n-integral

over A
[
(Iρ)ρ∈N ∗ Y

]
(since y is n-integral over A, and A ⊆ A

[
(Iρ)ρ∈N ∗ Y

]
⊆ B [Y ]).

Hence, Theorem 5 (c) (applied to A
[
(Iρ)ρ∈N ∗ Y

]
, B [Y ] and xY instead of A, B and x,

respectively) yields that xY ·y is nm-integral over A
[
(Iρ)ρ∈N ∗ Y

]
. Since xY ·y = xyY ,
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this means that xyY is nm-integral over A
[
(Iρ)ρ∈N ∗ Y

]
. Hence, Theorem 7 (applied

to xy and nm instead of u and n) yields that xy is nm-integral over
(
A, (Iρ)ρ∈N

)
. This

proves Theorem 8 (c).
The next theorem imitates Theorem 4 for integrality over ideal semifiltrations:

Theorem 9. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N be
an ideal semifiltration of A.

Let v ∈ B and u ∈ B. Let m ∈ N and n ∈ N.

(a) Then, (IρA [v])ρ∈N is an ideal semifiltration of A [v]. 4

(b) Assume that v is m-integral over A, and that u is n-integral over(
A [v] , (IρA [v])ρ∈N

)
. Then, u is nm-integral over

(
A, (Iρ)ρ∈N

)
.

Proof of Theorem 9. (a) More generally:
Lemma J : Let A and A′ be two rings such that A ⊆ A′. Let (Iρ)ρ∈N be an ideal

semifiltration of A. Then, (IρA
′)ρ∈N is an ideal semifiltration of A′.

Proof of Lemma J : Since (Iρ)ρ∈N is an ideal semifiltration of A, the set Iρ is an
ideal of A for every ρ ∈ N, and we have

I0 = A;

IaIb ⊆ Ia+b for every a ∈ N and b ∈ N.

Now, the set IρA
′ is an ideal of A′ for every ρ ∈ N (since Iρ is an ideal of A). Hence,

(IρA
′)ρ∈N is a sequence of ideals of A′. It satisfies

I0A
′ = AA′ = A′;

IaA
′ · IbA

′ = IaIbA
′ ⊆ Ia+bA

′ (since IaIb ⊆ Ia+b) for every a ∈ N and b ∈ N.

Thus, by Definition 6 (applied to A′ and (IρA
′)ρ∈N instead of A and (Iρ)ρ∈N), it follows

that (IρA
′)ρ∈N is an ideal semifiltration of A′. This proves Lemma J .

Now let us prove Theorem 9 (a). In fact, Lemma J (applied to A′ = A [v]) yields
that (IρA [v])ρ∈N is an ideal semifiltration of A [v]. This proves Theorem 9 (a).

(b) First, we will show a simple fact:
Lemma K: Let A, A′ and B′ be three rings such that A ⊆ A′ ⊆ B′. Let v ∈ B′.

Then, A′ · A [v] = A′ [v].
Proof of Lemma K: We have A′︸︷︷︸

⊆A′[v]

· A [v]︸︷︷︸
⊆A′[v],

since A⊆A′

⊆ A′ [v] · A′ [v] = A′ [v] (since A′ [v]

is a ring). On the other hand, let x be an element of A′ [v]. Then, there exists some

n ∈ N and some (a0, a1, ..., an) ∈ (A′)n+1 such that x =
n∑

k=0

akv
k. Thus,

x =
n∑

k=0

ak︸︷︷︸
∈A′

vk︸︷︷︸
∈A[v]

∈
n∑

k=0

A′·A [v] ⊆ A′·A [v] (since A′ · A [v] is an additive group) .

4Here and in the following, whenever A and B are two rings such that A ⊆ B, whenever v is
an element of B, and whenever I is an ideal of A, you should read the term IA [v] as I (A [v]), not
as (IA) [v]. For instance, you should read the term IρA [v] (in Theorem 9 (a)) as Iρ (A [v]), not as
(IρA) [v].
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Thus, we have proved that x ∈ A′·A [v] for every x ∈ A′ [v]. Therefore, A′ [v] ⊆ A′·A [v].
Combined with A′ · A [v] ⊆ A′ [v], this yields A′ · A [v] = A′ [v]. Hence, we have
established Lemma K.

Now let us prove Theorem 9 (b). In fact, consider the polynomial ring A [Y ]

and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
. We have A

[
(Iρ)ρ∈N ∗ Y

]
⊆ A [Y ], and (as ex-

plained in Definition 7) we can identify the polynomial ring A [Y ] with a subring of

(A [v]) [Y ] (since A ⊆ A [v]). Hence, A
[
(Iρ)ρ∈N ∗ Y

]
⊆ (A [v]) [Y ]. On the other hand,

(A [v])
[
(IρA [v])ρ∈N ∗ Y

]
⊆ (A [v]) [Y ].

Now, we will show that (A [v])
[
(IρA [v])ρ∈N ∗ Y

]
=
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v].

In fact, Definition 8 yields

(A [v])
[
(IρA [v])ρ∈N ∗ Y

]
=
∑
i∈N

IiA [v] · Y i =
∑
i∈N

IiY
i · A [v] = A

[
(Iρ)ρ∈N ∗ Y

]
· A [v](

since
∑
i∈N

IiY
i = A

[
(Iρ)ρ∈N ∗ Y

])
=
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v]

(by Lemma K (applied to A′ = A
[
(Iρ)ρ∈N ∗ Y

]
and B′ = (A [v]) [Y ])).

Note that (as explained in Definition 7) we can identify the polynomial ring (A [v]) [Y ]

with a subring of B [Y ] (since A [v] ⊆ B). Thus, A
[
(Iρ)ρ∈N ∗ Y

]
⊆ (A [v]) [Y ] yields

A
[
(Iρ)ρ∈N ∗ Y

]
⊆ B [Y ].

Besides, Lemma I (applied to A
[
(Iρ)ρ∈N ∗ Y

]
, B [Y ] and m instead of A′, B′ and

n) yields that v is m-integral over A
[
(Iρ)ρ∈N ∗ Y

]
(since v is m-integral over A, and

A ⊆ A
[
(Iρ)ρ∈N ∗ Y

]
⊆ B [Y ]).

Now, Theorem 7 (applied to A [v] and (IρA [v])ρ∈N instead of A and (Iρ)ρ∈N) yields

that uY is n-integral over (A [v])
[
(IρA [v])ρ∈N ∗ Y

]
(since u is n-integral over

(
A [v] , (IρA [v])ρ∈N

)
).

Since (A [v])
[
(IρA [v])ρ∈N ∗ Y

]
=
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v], this means that uY is n-integral

over
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v]. Now, Theorem 4 (applied to A

[
(Iρ)ρ∈N ∗ Y

]
, B [Y ] and uY

instead of A, B and u) yields that uY is nm-integral over A
[
(Iρ)ρ∈N ∗ Y

]
(since v is m-

integral over A
[
(Iρ)ρ∈N ∗ Y

]
, and uY is n-integral over

(
A
[
(Iρ)ρ∈N ∗ Y

])
[v]). Thus,

Theorem 7 (applied to nm instead of n) yields that u is nm-integral over
(
A, (Iρ)ρ∈N

)
.

This proves Theorem 9 (b).

3. Generalizing to two ideal semifiltrations

Theorem 10. Let A be a ring.

(a) Then, (A)ρ∈N is an ideal semifiltration of A.
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(b) Let (Iρ)ρ∈N and (Jρ)ρ∈N be two ideal semifiltrations of A. Then, (IρJρ)ρ∈N
is an ideal semifiltration of A.

Proof of Theorem 10. (a) Clearly, (A)ρ∈N is a sequence of ideals of A. Hence, in
order to prove that (A)ρ∈N is an ideal semifiltration of A, it is enough to verify that it
satisfies the two conditions

A = A;

AA ⊆ A for every a ∈ N and b ∈ N.

But these two conditions are obviously satisfied. Hence, (A)ρ∈N is an ideal semifiltration
of A (by Definition 6, applied to (A)ρ∈N instead of (Iρ)ρ∈N). This proves Theorem 10
(a).

(b) Since (Iρ)ρ∈N is an ideal semifiltration of A, it is a sequence of ideals of A, and
it satisfies the two conditions

I0 = A;

IaIb ⊆ Ia+b for every a ∈ N and b ∈ N

(by Definition 6). Since (Jρ)ρ∈N is an ideal semifiltration of A, it is a sequence of ideals
of A, and it satisfies the two conditions

J0 = A;

JaJb ⊆ Ja+b for every a ∈ N and b ∈ N

(by Definition 6, applied to (Jρ)ρ∈N instead of (Iρ)ρ∈N).
Now, IρJρ is an ideal of A for every ρ ∈ N (since Iρ and Jρ are ideals of A for every

ρ ∈ N, and the product of any two ideals of A is an ideal of A). Hence, (IρJρ)ρ∈N is a
sequence of ideals of A. Thus, in order to prove that (IρJρ)ρ∈N is an ideal semifiltration
of A, it is enough to verify that it satisfies the two conditions

I0J0 = A;

IaJa · IbJb ⊆ Ia+bJa+b for every a ∈ N and b ∈ N.

But these two conditions are satisfied, since

I0︸︷︷︸
=A

J0︸︷︷︸
=A

= AA = A;

IaJa · IbJb = IaIb︸︷︷︸
⊆Ia+b

JaJb︸︷︷︸
⊆Ja+b

⊆ Ia+bJa+b for every a ∈ N and b ∈ N.

Hence, (IρJρ)ρ∈N is an ideal semifiltration of A (by Definition 6, applied to (IρJρ)ρ∈N
instead of (Iρ)ρ∈N). This proves Theorem 10 (b).

Now let us generalize Theorem 7:

Theorem 11. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N
and (Jρ)ρ∈N be two ideal semifiltrations of A. Let n ∈ N. Let u ∈ B.

We know that (IρJρ)ρ∈N is an ideal semifiltration of A (according to Theo-
rem 10 (b)).
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Consider the polynomial ring A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
.

We will abbreviate the ring A
[
(Iρ)ρ∈N ∗ Y

]
by A[I].

By Lemma J (applied to A[I] and (Jτ )τ∈N instead of A′ and (Iρ)ρ∈N), the

sequence
(
JτA[I]

)
τ∈N is an ideal semifiltration of A[I] (since A ⊆ A[I] and

since (Jτ )τ∈N = (Jρ)ρ∈N is an ideal semifiltration of A).

Then, the element u of B is n-integral over
(
A, (IρJρ)ρ∈N

)
if and only if the

element uY of the polynomial ring B [Y ] is n-integral over
(
A[I],

(
JτA[I]

)
τ∈N

)
.

(Here, A[I] ⊆ B [Y ] because A[I] = A
[
(Iρ)ρ∈N ∗ Y

]
⊆ A [Y ] and we consider

A [Y ] as a subring of B [Y ] as explained in Definition 7.)

Proof of Theorem 11. First, note that∑
`∈N

I`Y
` =

∑
i∈N

IiY
i (here we renamed ` as i in the sum)

= A
[
(Iρ)ρ∈N ∗ Y

]
= A[I].

In order to verify Theorem 11, we have to prove the following two lemmata:

Lemma E ′: If u is n-integral over
(
A, (IρJρ)ρ∈N

)
, then uY is n-integral over(

A[I],
(
JτA[I]

)
τ∈N

)
.

Lemma F ′: If uY is n-integral over
(
A[I],

(
JτA[I]

)
τ∈N

)
, then u is n-integral over(

A, (IρJρ)ρ∈N

)
.

Proof of Lemma E ′: Assume that u is n-integral over
(
A, (IρJρ)ρ∈N

)
. Then, by

Definition 9 (applied to (IρJρ)ρ∈N instead of (Iρ)ρ∈N), there exists some (a0, a1, ..., an) ∈
An+1 such that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ In−iJn−i for every i ∈ {0, 1, ..., n} .

Note that akY
n−k ∈ A[I] for every k ∈ {0, 1, ..., n} (because ak ∈ In−kJn−k ⊆ In−k

(since In−k is an ideal of A) and thus akY
n−k ∈ In−kY

n−k ⊆
∑
i∈N

IiY
i = A[I]). Thus, we

can define an (n + 1)-tuple (b0, b1, ..., bn) ∈
(
A[I]

)n+1
by
(
bk = akY

n−k for every k ∈ {0, 1, ..., n}
)
.

Then,

n∑
k=0

bk · (uY )k =
n∑

k=0

akY
n−k · (uY )k =

n∑
k=0

akY
n−kukY k =

n∑
k=0

aku
k Y n−kY k︸ ︷︷ ︸

=Y n

= Y n ·
n∑

k=0

aku
k

︸ ︷︷ ︸
=0

= 0;

bn = an︸︷︷︸
=1

Y n−n︸ ︷︷ ︸
=Y 0=1

= 1,
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and
bi = ai︸︷︷︸

∈In−iJn−i
=Jn−iIn−i

Y n−i ∈ Jn−i In−iY
n−i︸ ︷︷ ︸

⊆
P̀
∈N

I`Y
`

=A[I]

⊆ Jn−iA[I]

for every i ∈ {0, 1, ..., n}.
Altogether, we now know that (b0, b1, ..., bn) ∈

(
A[I]

)n+1
and

n∑
k=0

bk ·(uY )k = 0, bn = 1, and bi ∈ Jn−iA[I] for every i ∈ {0, 1, ..., n} .

Hence, by Definition 9 (applied to A[I], B [Y ] ,
(
JτA[I]

)
τ∈N , uY and (b0, b1, ..., bn)

instead of A, B, (Iρ)ρ∈N , u and (a0, a1, ..., an)), the element uY is n-integral over(
A[I],

(
JτA[I]

)
τ∈N

)
. This proves Lemma E ′.

Proof of Lemma F ′: Assume that uY is n-integral over
(
A[I],

(
JτA[I]

)
τ∈N

)
. Then,

by Definition 9 (applied to A[I], B [Y ] ,
(
JτA[I]

)
τ∈N , uY and (p0, p1, ..., pn) instead of

A, B, (Iρ)ρ∈N , u and (a0, a1, ..., an)), there exists some (p0, p1, ..., pn) ∈
(
A[I]

)n+1
such

that
n∑

k=0

pk ·(uY )k = 0, pn = 1, and pi ∈ Jn−iA[I] for every i ∈ {0, 1, ..., n} .

For every k ∈ {0, 1, ..., n}, we have

pk ∈ Jn−kA[I] = Jn−k

∑
i∈N

IiY
i

(
since A[I] =

∑
i∈N

IiY
i

)
=
∑
i∈N

Jn−kIiY
i =

∑
i∈N

IiJn−kY
i,

and thus, there exists a sequence (pk,i)i∈N ∈ AN such that pk =
∑
i∈N

pk,iY
i, such that

pk,i ∈ IiJn−k for every i ∈ N, and such that only finitely many i ∈ N satisfy pk,i 6= 0.
Thus,

n∑
k=0

pk · (uY )k =
n∑

k=0

∑
i∈N

pk,iY
i · (uY )k︸ ︷︷ ︸

=ukY k

=Y kuk

(
since pk =

∑
i∈N

pk,iY
i

)

=
n∑

k=0

∑
i∈N

pk,i Y
i · Y k︸ ︷︷ ︸

=Y i+k

uk

=
n∑

k=0

∑
i∈N

pk,iY
i+kuk =

∑
k∈{0,1,...,n}

∑
i∈N

pk,iY
i+kuk

=
∑

(k,i)∈{0,1,...,n}×N

pk,iY
i+kuk =

∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,i Y
i+k︸︷︷︸

=Y `

uk

=
∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iY
`uk =

∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iu
kY `.
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Hence,
n∑

k=0

pk · (uY )k = 0 becomes
∑̀
∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iu
kY ` = 0. In other words, the

polynomial
∑̀
∈N

∑
(k,i)∈{0,1,...,n}×N;

i+k=`

pk,iu
k

︸ ︷︷ ︸
∈B

Y ` ∈ B [Y ] equals 0. Hence, its coefficient before

Y n equals 0 as well. But its coefficient before Y n is
∑

(k,i)∈{0,1,...,n}×N;
i+k=n

pk,iu
k. Hence,

∑
(k,i)∈{0,1,...,n}×N;

i+k=n

pk,iu
k equals 0.

Thus,

0 =
∑

(k,i)∈{0,1,...,n}×N;
i+k=n

pk,iu
k =

∑
k∈{0,1,...,n}

∑
i∈N;

i+k=n

pk,iu
k =

∑
k∈{0,1,...,n}

pk,n−ku
k

 since {i ∈ N | i + k = n} = {i ∈ N | i = n− k} = {n− k} (because n− k ∈ N,
since k ∈ {0, 1, ..., n} ) yields

∑
i∈N;

i+k=n

pk,iu
k =

∑
i∈{n−k}

pk,iu
k = pk,n−ku

k

 .

Note that∑
i∈N

pn,iY
i = pn

(
since

∑
i∈N

pk,iY
i = pk for every k ∈ {0, 1, ..., n}

)
= 1 = 1 · Y 0

in A [Y ] , and thus the coefficient of the polynomial
∑
i∈N

pn,iY
i ∈ A [Y ] before Y 0 is 1;

but the coefficient of the polynomial
∑
i∈N

pn,iY
i ∈ A [Y ] before Y 0 is pn,0; hence, pn,0 = 1.

Define an (n + 1)-tuple (a0, a1, ..., an) ∈ An+1 by (ak = pk,n−k for every k ∈ {0, 1, ..., n}) .
Then, an = pn,n−n = pn,0 = 1. Besides,

n∑
k=0

aku
k =

n∑
k=0

pk,n−ku
k =

∑
k∈{0,1,...,n}

pk,n−ku
k = 0.

Finally, ak = pk,n−k ∈ In−kJn−k (since pk,i ∈ IiJn−k for every i ∈ N) for every k ∈
{0, 1, ..., n}. In other words, ai ∈ In−iJn−i for every i ∈ {0, 1, ..., n}.

Altogether, we now know that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ In−iJn−i for every i ∈ {0, 1, ..., n} .

Thus, by Definition 9 (applied to (IρJρ)ρ∈N instead of (Iρ)ρ∈N), the element u is n-

integral over
(
A, (IρJρ)ρ∈N

)
. This proves Lemma F ′.

Combining Lemmata E ′ and F ′, we obtain that u is n-integral over
(
A, (IρJρ)ρ∈N

)
if and only if uY is n-integral over

(
A[I],

(
JτA[I]

)
τ∈N

)
. This proves Theorem 11.

For the sake of completeness, we mention the following trivial fact (which shows
why Theorem 11 generalizes Theorem 7):
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Theorem 12. Let A and B be two rings such that A ⊆ B. Let n ∈ N.
Let u ∈ B.

We know that (A)ρ∈N is an ideal semifiltration of A (according to Theorem
10 (a)).

Then, the element u of B is n-integral over
(
A, (A)ρ∈N

)
if and only if u is

n-integral over A.

Proof of Theorem 12. In order to verify Theorem 12, we have to prove the following
two lemmata:

Lemma L: If u is n-integral over
(
A, (A)ρ∈N

)
, then u is n-integral over A.

Lemma M: If u is n-integral over A, then u is n-integral over
(
A, (A)ρ∈N

)
.

Proof of Lemma L: Assume that u is n-integral over
(
A, (A)ρ∈N

)
. Then, by Defi-

nition 9 (applied to (A)ρ∈N instead of (Iρ)ρ∈N), there exists some (a0, a1, ..., an) ∈ An+1

such that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ A for every i ∈ {0, 1, ..., n} .

Define a polynomial P ∈ A [X] by P (X) =
n∑

k=0

akX
k. Then, P (X) =

n∑
k=0

akX
k =

an︸︷︷︸
=1

Xn+
n−1∑
k=0

akX
k = Xn+

n−1∑
k=0

akX
k. Hence, the polynomial P is monic, and deg P = n.

Besides, P (u) = 0 (since P (X) =
n∑

k=0

akX
k yields P (u) =

n∑
k=0

aku
k = 0). Thus, there

exists a monic polynomial P ∈ A [X] with deg P = n and P (u) = 0. Hence, u is
n-integral over A. This proves Lemma L.

Proof of Lemma M: Assume that u is n-integral over A. Then, there exists a monic
polynomial P ∈ A [X] with deg P = n and P (u) = 0. Since deg P = n, there exists

some (n + 1)-tuple (a0, a1, ..., an) ∈ An+1 such that P (X) =
n∑

k=0

akX
k. Thus, an = 1

(since P is monic, and deg P = n). Also,
n∑

k=0

akX
k = P (X) yields

n∑
k=0

aku
k = P (u) = 0.

Altogether, we now know that (a0, a1, ..., an) ∈ An+1 and

n∑
k=0

aku
k = 0, an = 1, and ai ∈ A for every i ∈ {0, 1, ..., n} .

Hence, by Definition 9 (applied to (A)ρ∈N instead of (Iρ)ρ∈N), the element u is n-integral

over
(
A, (A)ρ∈N

)
. This proves Lemma M.

Combining Lemmata L and M, we obtain that u is n-integral over
(
A, (A)ρ∈N

)
if

and only if u is n-integral over A. This proves Theorem 12.
Finally, let us generalize Theorem 8 (c):
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Theorem 13. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N
and (Jρ)ρ∈N be two ideal semifiltrations of A.

Let x ∈ B and y ∈ B. Let m ∈ N and n ∈ N. Assume that x is m-integral

over
(
A, (Iρ)ρ∈N

)
, and that y is n-integral over

(
A, (Jρ)ρ∈N

)
. Then, xy is

nm-integral over
(
A, (IρJρ)ρ∈N

)
.

Proof of Theorem 13. First, a trivial observation:
Lemma I ′: Let A, A′ and B′ be three rings such that A ⊆ A′ ⊆ B′. Let (Iρ)ρ∈N be

an ideal semifiltration of A. Let v ∈ B′. Let n ∈ N. If v is n-integral over
(
A, (Iρ)ρ∈N

)
,

then v is n-integral over
(
A′, (IρA

′)ρ∈N

)
. (Note that (IρA

′)ρ∈N is an ideal semifiltration

of A′, according to Lemma J .)

Proof of Lemma I ′: Assume that v is n-integral over
(
A, (Iρ)ρ∈N

)
. Then, by

Definition 9 (applied to B′ and v instead of B and u), there exists some (a0, a1, ..., an) ∈
An+1 such that

n∑
k=0

akv
k = 0, an = 1, and ai ∈ In−i for every i ∈ {0, 1, ..., n} .

But (a0, a1, ..., an) ∈ An+1 yields (a0, a1, ..., an) ∈ (A′)n+1 (since A ⊆ A′), and ai ∈ In−i

yields ai ∈ In−iA
′ (since In−i ⊆ In−iA

′) for every i ∈ {0, 1, ..., n}. Thus, (a0, a1, ..., an) ∈
(A′)n+1 and

n∑
k=0

akv
k = 0, an = 1, and ai ∈ In−iA

′ for every i ∈ {0, 1, ..., n} .

Hence, by Definition 9 (applied to B′, A′, (IρA
′)ρ∈N and v instead of B, A, (Iρ)ρ∈N and

u), the element v is n-integral over
(
A′, (IρA

′)ρ∈N

)
. This proves Lemma I ′.

Now let us prove Theorem 13.
We have (Jρ)ρ∈N = (Jτ )τ∈N. Hence, y is n-integral over

(
A, (Jτ )τ∈N

)
(since y is

n-integral over
(
A, (Jρ)ρ∈N

)
).

Consider the polynomial ring A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
. We will

abbreviate the ring A
[
(Iρ)ρ∈N ∗ Y

]
by A[I]. We have A[I] ⊆ B [Y ], because A[I] =

A
[
(Iρ)ρ∈N ∗ Y

]
⊆ A [Y ] and we consider A [Y ] as a subring of B [Y ] as explained in

Definition 7.
Theorem 7 (applied to x and m instead of u and n) yields that xY is m-integral

over A
[
(Iρ)ρ∈N ∗ Y

]
(since x is m-integral over

(
A, (Iρ)ρ∈N

)
). In other words, xY is

m-integral over A[I] (since A
[
(Iρ)ρ∈N ∗ Y

]
= A[I]).

On the other hand, Lemma I ′ (applied to A[I], B [Y ], (Jτ )τ∈N and y instead of

A′, B′, (Iρ)ρ∈N and v) yields that y is n-integral over
(
A[I],

(
JτA[I]

)
τ∈N

)
(since y is

n-integral over
(
A, (Jτ )τ∈N

)
, and A ⊆ A[I] ⊆ B [Y ]).
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Hence, Theorem 8 (c) (applied to A[I], B [Y ],
(
JτA[I]

)
τ∈N, y, xY , m and n instead

of A, B, (Iρ)ρ∈N, x, y, n and m respectively) yields that y · xY is mn-integral over(
A[I],

(
JτA[I]

)
τ∈N

)
(since y is n-integral over

(
A[I],

(
JτA[I]

)
τ∈N

)
, and xY is m-integral

over A[I]). Since y · xY = xyY and mn = nm, this means that xyY is nm-integral

over
(
A[I],

(
JτA[I]

)
τ∈N

)
. Hence, Theorem 11 (applied to xy and nm instead of u and

n) yields that xy is nm-integral over
(
A, (IρJρ)ρ∈N

)
. This proves Theorem 13.

4. Accelerating ideal semifiltrations

We start this section with an obvious observation:

Theorem 14. Let A be a ring. Let (Iρ)ρ∈N be an ideal semifiltration of A.
Let λ ∈ N. Then, (Iλρ)ρ∈N is an ideal semifiltration of A.

Proof of Theorem 14. Since (Iρ)ρ∈N is an ideal semifiltration of A, it is a sequence
of ideals of A, and it satisfies the two conditions

I0 = A;

IaIb ⊆ Ia+b for every a ∈ N and b ∈ N

(by Definition 6).
Now, Iλρ is an ideal of A for every ρ ∈ N (since (Iρ)ρ∈N is a sequence of ideals of

A). Hence, (Iλρ)ρ∈N is a sequence of ideals of A. Thus, in order to prove that (Iλρ)ρ∈N
is an ideal semifiltration of A, it is enough to verify that it satisfies the two conditions

Iλ·0 = A;

IλaIλb ⊆ Iλ(a+b) for every a ∈ N and b ∈ N.

But these two conditions are satisfied, since

Iλ·0 = I0 = A;

IλaIλb ⊆ Iλa+λb

(
since (Iρ)ρ∈N is an ideal semifiltration of A

)
= Iλ(a+b) for every a ∈ N and b ∈ N.

Hence, (Iλρ)ρ∈N is an ideal semifiltration of A (by Definition 6, applied to (Iλρ)ρ∈N
instead of (Iρ)ρ∈N). This proves Theorem 14.

I refer to (Iλρ)ρ∈N as the λ-acceleration of the ideal semifiltration (Iρ)ρ∈N.
Now, Theorem 11, itself a generalization of Theorem 7, is going to be generalized

once more:

Theorem 15. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N
and (Jρ)ρ∈N be two ideal semifiltrations of A. Let n ∈ N. Let u ∈ B. Let
λ ∈ N.

We know that (Iλρ)ρ∈N is an ideal semifiltration of A (according to Theorem
14).
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Hence, (IλρJρ)ρ∈N is an ideal semifiltration of A (according to Theorem 10
(b), applied to (Iλρ)ρ∈N instead of (Iρ)ρ∈N).

Consider the polynomial ring A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
.

We will abbreviate the ring A
[
(Iρ)ρ∈N ∗ Y

]
by A[I].

By Lemma J (applied to A[I] and (Jτ )τ∈N instead of A′ and (Iρ)ρ∈N), the

sequence
(
JτA[I]

)
τ∈N is an ideal semifiltration of A[I] (since A ⊆ A[I] and

since (Jτ )τ∈N = (Jρ)ρ∈N is an ideal semifiltration of A).

Then, the element u of B is n-integral over
(
A, (IλρJρ)ρ∈N

)
if and only if the

element uY λ of the polynomial ring B [Y ] is n-integral over
(
A[I],

(
JτA[I]

)
τ∈N

)
.

(Here, A[I] ⊆ B [Y ] because A[I] = A
[
(Iρ)ρ∈N ∗ Y

]
⊆ A [Y ] and we consider

A [Y ] as a subring of B [Y ] as explained in Definition 7.)

Proof of Theorem 15. First, note that∑
`∈N

I`Y
` =

∑
i∈N

IiY
i (here we renamed ` as i in the sum)

= A
[
(Iρ)ρ∈N ∗ Y

]
= A[I].

In order to verify Theorem 15, we have to prove the following two lemmata:

Lemma E ′′: If u is n-integral over
(
A, (IλρJρ)ρ∈N

)
, then uY λ is n-integral over(

A[I],
(
JτA[I]

)
τ∈N

)
.

Lemma F ′′: If uY λ is n-integral over
(
A[I],

(
JτA[I]

)
τ∈N

)
, then u is n-integral over(

A, (IλρJρ)ρ∈N

)
.

Proof of Lemma E ′′: Assume that u is n-integral over
(
A, (IλρJρ)ρ∈N

)
. Then, by

Definition 9 (applied to (IλρJρ)ρ∈N instead of (Iρ)ρ∈N), there exists some (a0, a1, ..., an) ∈
An+1 such that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ Iλ(n−i)Jn−i for every i ∈ {0, 1, ..., n} .

Note that akY
λ(n−k) ∈ A[I] for every k ∈ {0, 1, ..., n} (because ak ∈ Iλ(n−k)Jn−k ⊆

Iλ(n−k) (since Iλ(n−k) is an ideal of A) and thus akY
λ(n−k) ∈ Iλ(n−k)Y

λ(n−k) ⊆
∑
i∈N

IiY
i =

A[I]). Thus, we can define an (n + 1)-tuple (b0, b1, ..., bn) ∈
(
A[I]

)n+1
by(

bk = akY
λ(n−k) for every k ∈ {0, 1, ..., n}

)
.
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Then,

n∑
k=0

bk ·
(
uY λ

)k
=

n∑
k=0

akY
λ(n−k) ·

(
uY λ

)k︸ ︷︷ ︸
=uk(Y λ)

k

=ukY λk

=
n∑

k=0

akY
λ(n−k)ukY λk =

n∑
k=0

aku
k Y λ(n−k)Y λk︸ ︷︷ ︸

=Y λ(n−k)+λk

=Y λn

= Y λn ·
n∑

k=0

aku
k

︸ ︷︷ ︸
=0

= 0;

bn = an︸︷︷︸
=1

Y λ(n−n)︸ ︷︷ ︸
=Y λ·0=Y 0=1

= 1,

and
bi = ai︸︷︷︸

∈Iλ(n−i)Jn−i

=Jn−iIλ(n−i)

Y λ(n−i) ∈ Jn−i Iλ(n−i)Y
λ(n−i)︸ ︷︷ ︸

⊆
P̀
∈N

I`Y
`

=A[I]

⊆ Jn−iA[I]

for every i ∈ {0, 1, ..., n}.
Altogether, we now know that (b0, b1, ..., bn) ∈

(
A[I]

)n+1
and

n∑
k=0

bk ·
(
uY λ

)k
= 0, bn = 1, and bi ∈ Jn−iA[I] for every i ∈ {0, 1, ..., n} .

Hence, by Definition 9 (applied to A[I], B [Y ] ,
(
JτA[I]

)
τ∈N , uY λ and (b0, b1, ..., bn)

instead of A, B, (Iρ)ρ∈N , u and (a0, a1, ..., an)), the element uY λ is n-integral over(
A[I],

(
JτA[I]

)
τ∈N

)
. This proves Lemma E ′′.

Proof of Lemma F ′′: Assume that uY λ is n-integral over
(
A[I],

(
JτA[I]

)
τ∈N

)
. Then,

by Definition 9 (applied to A[I], B [Y ] ,
(
JτA[I]

)
τ∈N , uY λ and (p0, p1, ..., pn) instead of

A, B, (Iρ)ρ∈N , u and (a0, a1, ..., an)), there exists some (p0, p1, ..., pn) ∈
(
A[I]

)n+1
such

that

n∑
k=0

pk ·
(
uY λ

)k
= 0, pn = 1, and pi ∈ Jn−iA[I] for every i ∈ {0, 1, ..., n} .

For every k ∈ {0, 1, ..., n}, we have

pk ∈ Jn−kA[I] = Jn−k

∑
i∈N

IiY
i

(
since A[I] =

∑
i∈N

IiY
i

)
=
∑
i∈N

Jn−kIiY
i =

∑
i∈N

IiJn−kY
i,

and thus, there exists a sequence (pk,i)i∈N ∈ AN such that pk =
∑
i∈N

pk,iY
i, such that

pk,i ∈ IiJn−k for every i ∈ N, and such that only finitely many i ∈ N satisfy pk,i 6= 0.
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Thus,

n∑
k=0

pk ·
(
uY λ

)k
=

n∑
k=0

∑
i∈N

pk,iY
i ·
(
uY λ

)k︸ ︷︷ ︸
=uk(Y λ)

k

=ukY λk

=Y λkuk

(
since pk =

∑
i∈N

pk,iY
i

)

=
n∑

k=0

∑
i∈N

pk,i Y
i · Y λk︸ ︷︷ ︸

=Y i+λk

uk

=
n∑

k=0

∑
i∈N

pk,iY
i+λkuk =

∑
k∈{0,1,...,n}

∑
i∈N

pk,iY
i+λkuk

=
∑

(k,i)∈{0,1,...,n}×N

pk,iY
i+λkuk =

∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+λk=`

pk,i Y
i+λk︸ ︷︷ ︸

=Y `

uk

=
∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+λk=`

pk,iY
`uk =

∑
`∈N

∑
(k,i)∈{0,1,...,n}×N;

i+λk=`

pk,iu
kY `.

Hence,
n∑

k=0

pk ·
(
uY λ

)k
= 0 becomes

∑̀
∈N

∑
(k,i)∈{0,1,...,n}×N;

i+λk=`

pk,iu
kY ` = 0. In other words, the

polynomial
∑̀
∈N

∑
(k,i)∈{0,1,...,n}×N;

i+λk=`

pk,iu
k

︸ ︷︷ ︸
∈B

Y ` ∈ B [Y ] equals 0. Hence, its coefficient before

Y λn equals 0 as well. But its coefficient before Y λn is
∑

(k,i)∈{0,1,...,n}×N;
i+λk=λn

pk,iu
k. Hence,

∑
(k,i)∈{0,1,...,n}×N;

i+λk=λn

pk,iu
k equals 0.

Thus,

0 =
∑

(k,i)∈{0,1,...,n}×N;
i+λk=λn

pk,iu
k =

∑
k∈{0,1,...,n}

∑
i∈N;

i+λk=λn

pk,iu
k =

∑
k∈{0,1,...,n}

pk,λ(n−k)u
k


since {i ∈ N | i + λk = λn} = {i ∈ N | i = λn− λk}

= {i ∈ N | i = λ (n− k)} = {λ (n− k)} (because λ (n− k) ∈ N,
since k ∈ {0, 1, ..., n} yields n− k ∈ N and we have λ ∈ N)

yields
∑
i∈N;

i+λk=λn

pk,iu
k =

∑
i∈{λ(n−k)}

pk,iu
k = pk,λ(n−k)u

k

 .

Note that∑
i∈N

pn,iY
i = pn

(
since

∑
i∈N

pk,iY
i = pk for every k ∈ {0, 1, ..., n}

)
= 1 = 1 · Y 0

in A [Y ] , and thus the coefficient of the polynomial
∑
i∈N

pn,iY
i ∈ A [Y ] before Y 0 is 1;

but the coefficient of the polynomial
∑
i∈N

pn,iY
i ∈ A [Y ] before Y 0 is pn,0; hence, pn,0 = 1.
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Define an (n + 1)-tuple (a0, a1, ..., an) ∈ An+1 by
(
ak = pk,λ(n−k) for every k ∈ {0, 1, ..., n}

)
.

Then, an = pn,λ(n−n) = pn,λ·0 = pn,0 = 1. Besides,

n∑
k=0

aku
k =

n∑
k=0

pk,λ(n−k)u
k =

∑
k∈{0,1,...,n}

pk,λ(n−k)u
k = 0.

Finally, ak = pk,λ(n−k) ∈ Iλ(n−k)Jn−k (since pk,i ∈ IiJn−k for every i ∈ N) for every
k ∈ {0, 1, ..., n}. In other words, ai ∈ Iλ(n−i)Jn−i for every i ∈ {0, 1, ..., n}.

Altogether, we now know that

n∑
k=0

aku
k = 0, an = 1, and ai ∈ Iλ(n−i)Jn−i for every i ∈ {0, 1, ..., n} .

Thus, by Definition 9 (applied to (IλρJρ)ρ∈N instead of (Iρ)ρ∈N), the element u is n-

integral over
(
A, (IλρJρ)ρ∈N

)
. This proves Lemma F ′′.

Combining Lemmata E ′′ and F ′′, we obtain that u is n-integral over
(
A, (IλρJρ)ρ∈N

)
if and only if uY λ is n-integral over

(
A[I],

(
JτA[I]

)
τ∈N

)
. This proves Theorem 15.

A particular case of Theorem 15:

Theorem 16. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N be
an ideal semifiltration of A. Let n ∈ N. Let u ∈ B. Let λ ∈ N.

We know that (Iλρ)ρ∈N is an ideal semifiltration of A (according to Theorem
14).

Consider the polynomial ring A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
defined in Definition 8.

Then, the element u of B is n-integral over
(
A, (Iλρ)ρ∈N

)
if and only if

the element uY λ of the polynomial ring B [Y ] is n-integral over the ring

A
[
(Iρ)ρ∈N ∗ Y

]
. (Here, A

[
(Iρ)ρ∈N ∗ Y

]
⊆ B [Y ] because A

[
(Iρ)ρ∈N ∗ Y

]
⊆

A [Y ] and we consider A [Y ] as a subring of B [Y ] as explained in Definition
7).

Proof of Theorem 16. Theorem 10 (a) states that (A)ρ∈N is an ideal semifiltration
of A.

We will abbreviate the ring A
[
(Iρ)ρ∈N ∗ Y

]
by A[I].

We have the following five equivalences:

• The element u of B is n-integral over
(
A, (Iλρ)ρ∈N

)
if and only if the element u

of B is n-integral over
(
A, (IλρA)ρ∈N

)
(since Iλρ = IλρA).

• The element u of B is n-integral over
(
A, (IλρA)ρ∈N

)
if and only if the element

uY λ of the polynomial ring B [Y ] is n-integral over
(
A[I],

(
AA[I]

)
τ∈N

)
(according

to Theorem 15, applied to (A)ρ∈N instead of (Jρ)ρ∈N).
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• The element uY λ of the polynomial ring B [Y ] is n-integral over
(
A[I],

(
AA[I]

)
τ∈N

)
if and only if the element uY λ of the polynomial ring B [Y ] is n-integral over(
A[I],

(
A[I]

)
ρ∈N

)
(since

AA[I]︸ ︷︷ ︸
=A[I]


τ∈N

=
(
A[I]

)
τ∈N =

(
A[I]

)
ρ∈N).

• The element uY λ of the polynomial ring B [Y ] is n-integral over
(
A[I],

(
A[I]

)
ρ∈N

)
if and only if the element uY λ of the polynomial ring B [Y ] is n-integral over A[I]

(by Theorem 12, applied to A[I], B [Y ] and uY λ instead of A, B and u).

• The element uY λ of the polynomial ring B [Y ] is n-integral over A[I] if and only

if the element uY λ of the polynomial ring B [Y ] is n-integral over A
[
(Iρ)ρ∈N ∗ Y

]
(since A[I] = A

[
(Iρ)ρ∈N ∗ Y

]
).

Combining these five equivalences, we obtain that the element u of B is n-integral

over
(
A, (Iλρ)ρ∈N

)
if and only if the element uY λ of the polynomial ring B [Y ] is n-

integral over A
[
(Iρ)ρ∈N ∗ Y

]
. This proves Theorem 16.

Finally we can generalize even Theorem 2:

Theorem 17. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N
be an ideal semifiltration of A. Let n ∈ N. Let v ∈ B. Let a0, a1, ...,

an be n + 1 elements of A such that
n∑

i=0

aiv
i = 0 and ai ∈ In−i for every

i ∈ {0, 1, ..., n}.
Let k ∈ {0, 1, ..., n}. We know that

(
I(n−k)ρ

)
ρ∈N is an ideal semifiltration of

A (according to Theorem 14, applied to λ = n− k).

Then,
n−k∑
i=0

ai+kv
i is n-integral over

(
A,
(
I(n−k)ρ

)
ρ∈N

)
.

Proof of Theorem 17. Consider the polynomial ring A [Y ] and its A-subalgebra

A
[
(Iρ)ρ∈N ∗ Y

]
defined in Definition 8. We have A

[
(Iρ)ρ∈N ∗ Y

]
⊆ B [Y ], because

A
[
(Iρ)ρ∈N ∗ Y

]
⊆ A [Y ] and we consider A [Y ] as a subring of B [Y ] as explained in

Definition 7.
As usual, note that∑

`∈N

I`Y
` =

∑
i∈N

IiY
i (here we renamed ` as i in the sum)

= A
[
(Iρ)ρ∈N ∗ Y

]
.

In the ring B [Y ], we have

n∑
i=0

aiY
n−i (vY )i︸ ︷︷ ︸

=viY i=Y ivi

=
n∑

i=0

ai Y
n−iY i︸ ︷︷ ︸
=Y n

vi = Y n

n∑
i=0

aiv
i

︸ ︷︷ ︸
=0

= 0.
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Besides, aiY
n−i ∈ A

[
(Iρ)ρ∈N ∗ Y

]
for every i ∈ {0, 1, ..., n} (since ai︸︷︷︸

∈In−i

Y n−i ∈ In−iY
n−i ⊆

∑̀
∈N

I`Y
` = A

[
(Iρ)ρ∈N ∗ Y

]
). Hence, Theorem 2 (applied to A

[
(Iρ)ρ∈N ∗ Y

]
, B [Y ] , vY

and aiY
n−i instead of A, B, v and ai) yields that

n−k∑
i=0

ai+kY
n−(i+k) (vY )i is n-integral

over A
[
(Iρ)ρ∈N ∗ Y

]
. Since

n−k∑
i=0

ai+kY
n−(i+k) (vY )i︸ ︷︷ ︸

=viY i=Y ivi

=
n−k∑
i=0

ai+k Y n−(i+k)Y i︸ ︷︷ ︸
=Y (n−(i+k))+i=Y n−k

vi =
n−k∑
i=0

ai+kv
i · Y n−k,

this means that
n−k∑
i=0

ai+kv
i · Y n−k is n-integral over A

[
(Iρ)ρ∈N ∗ Y

]
.

But Theorem 16 (applied to u =
n−k∑
i=0

ai+kv
i and λ = n− k) yields that

n−k∑
i=0

ai+kv
i is

n-integral over
(
A,
(
I(n−k)ρ

)
ρ∈N

)
if and only if

n−k∑
i=0

ai+kv
i · Y n−k is n-integral over the

ring A
[
(Iρ)ρ∈N ∗ Y

]
. Since we know that

n−k∑
i=0

ai+kv
i · Y n−k is n-integral over the ring

A
[
(Iρ)ρ∈N ∗ Y

]
, this yields that

n−k∑
i=0

ai+kv
i is n-integral over

(
A,
(
I(n−k)ρ

)
ρ∈N

)
. This

proves Theorem 17.

5. Generalizing a lemma by Lombardi

Now, we are going to generalize Theorem 2 from [3] (which is the main result of
[3])5. First, a very technical lemma:

Lemma 18. Let A and B be two rings such that A ⊆ B. Let x ∈ B. Let
m ∈ N and n ∈ N. Let u ∈ B. Let µ ∈ N and ν ∈ N. Assume that

un ∈
〈
u0, u1, ..., un−1

〉
A
·
〈
x0, x1, ..., xν

〉
A

(4)

and that

umxµ ∈
〈
u0, u1, ..., um−1

〉
A
·
〈
x0, x1, ..., xµ

〉
A
+
〈
u0, u1, ..., um

〉
A
·
〈
x0, x1, ..., xµ−1

〉
A

.
(5)

Then, u is (nµ + mν)-integral over A.

Before we prove this lemma, we recall a basic mathematical principle:

Principle of strong induction (form #1). Let A (i) be an assertion for
every i ∈ N. If

every I ∈ N satisfying (A (i) for every i ∈ N such that i < I) satisfies A (I) ,

then
every i ∈ N satisfies A (i) .

5Caveat: The notion ”integral over (A, J) ” defined in [3] has nothing to do with our notion
”n-integral over

(
A, (In)n∈N

)
”.
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By renaming i, I and A as j, J and B, respectively, we can rewrite this principle
as follows:

Principle of strong induction (form #2). Let B (j) be an assertion
for every j ∈ N. If

every J ∈ N satisfying (B (j) for every j ∈ N such that j < J) satisfies B (J) ,

then
every j ∈ N satisfies B (j) .

Proof of Lemma 18. Let

S = ({0, 1, ..., n− 1} × {0, 1, ..., µ− 1})∪({0, 1, ...,m− 1} × {µ, µ + 1, ..., µ + ν − 1}) .

Then, (0, 0) ∈ S 6. Besides, |S| = nµ + mν 7. Also,

j < µ + ν for every (i, j) ∈ S (6)

8.
6since

(0, 0) ∈ {0, 1, ..., n− 1} × {0, 1, ..., µ− 1}
⊆ ({0, 1, ..., n− 1} × {0, 1, ..., µ− 1}) ∪ ({0, 1, ...,m− 1} × {µ, µ + 1, ..., µ + ν − 1}) = S

7since

({0, 1, ..., n− 1} × {0, 1, ..., µ− 1}) ∩ ({0, 1, ...,m− 1} × {µ, µ + 1, ..., µ + ν − 1})
= ({0, 1, ..., n− 1} ∩ {0, 1, ...,m− 1})× ({0, 1, ..., µ− 1} ∩ {µ, µ + 1, ..., µ + ν − 1})︸ ︷︷ ︸

=∅

= ({0, 1, ..., n− 1} ∩ {0, 1, ...,m− 1})×∅ = ∅

yields

|({0, 1, ..., n− 1} × {0, 1, ..., µ− 1}) ∪ ({0, 1, ...,m− 1} × {µ, µ + 1, ..., µ + ν − 1})|
= |{0, 1, ..., n− 1} × {0, 1, ..., µ− 1}|︸ ︷︷ ︸

=|{0,1,...,n−1}|·|{0,1,...,µ−1}|

+ |{0, 1, ...,m− 1} × {µ, µ + 1, ..., µ + ν − 1}|︸ ︷︷ ︸
=|{0,1,...,m−1}|·|{µ,µ+1,...,µ+ν−1}|

= |{0, 1, ..., n− 1}|︸ ︷︷ ︸
=n

· |{0, 1, ..., µ− 1}|︸ ︷︷ ︸
=µ

+ |{0, 1, ...,m− 1}|︸ ︷︷ ︸
=m

· |{µ, µ + 1, ..., µ + ν − 1}|︸ ︷︷ ︸
=ν

= nµ + mν,

so that

|S| = |({0, 1, ..., n− 1} × {0, 1, ..., µ− 1}) ∪ ({0, 1, ...,m− 1} × {µ, µ + 1, ..., µ + ν − 1})|
= nµ + mν

8In fact,

S =

{0, 1, ..., n− 1} × {0, 1, ..., µ− 1}︸ ︷︷ ︸
⊆{0,1,...,µ+ν−1},
since µ−1≤µ+ν−1

 ∪

{0, 1, ...,m− 1} × {µ, µ + 1, ..., µ + ν − 1}︸ ︷︷ ︸
⊆{0,1,...,µ+ν−1},

since µ≥0


⊆ ({0, 1, ..., n− 1} × {0, 1, ..., µ + ν − 1}) ∪ ({0, 1, ...,m− 1} × {0, 1, ..., µ + ν − 1})
= ({0, 1, ..., n− 1} ∪ {0, 1, ...,m− 1})× {0, 1, ..., µ + ν − 1} .
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Let U be the A-submodule 〈uixj | (i, j) ∈ S〉A of B. Then, U is an (nµ + mν)-
generated A-module (since |S| = nµ + mν). Besides, clearly,

uixj ∈ U for every (i, j) ∈ S (7)

(since U = 〈uixj | (i, j) ∈ S〉A). Thus, u0x0 ∈ U (by (7), applied to (i, j) = (0, 0)),
since (0, 0) ∈ S. Since u0︸︷︷︸

=1

x0︸︷︷︸
=1

= 1, this becomes 1 ∈ U .

Now, we will show that

every i ∈ N and j ∈ N satisfying j < µ + ν satisfy uixj ∈ U. (8)

Proof of (8). For every i ∈ N, define an assertion A (i) by

A (i) =
(
every j ∈ N satisfies

(
if j < µ + ν, then uixj ∈ U

))
.

Let us now show that

every I ∈ N satisfying (A (i) for every i ∈ N such that i < I) satisfies A (I) . (9)

Proof of (9). Let I ∈ N be such that

(A (i) for every i ∈ N such that i < I) . (10)

We must prove that A (I) holds.
For every j ∈ N, define an assertion B (j) by

B (j) =
(
if j < µ + ν, then uIxj ∈ U

)
.

Let us now show that

every J ∈ N satisfying (B (j) for every j ∈ N such that j < J) satisfies B (J) .
(11)

Proof of (11). Let J ∈ N be such that

(B (j) for every j ∈ N such that j < J) . (12)

We must prove that B (J) holds.
Assume that J < µ + ν. Then,

uIxj ∈ U for every j ∈ N such that j < J (13)

(since for every j ∈ N such that j < J , the assertion B (j) holds (due to (12)), i. e.,
the assertion

(
if j < µ + ν, then uIxj ∈ U

)
holds, which yields uIxj ∈ U (since j < J

and J < µ + ν yield j < µ + ν)). Now,〈
uI
〉

A
·
〈
x0, x1, ..., xJ−1

〉
A︸ ︷︷ ︸

=〈xj | j∈{0,1,...,J−1}〉A

=
〈
uI
〉

A
·
〈
xj | j ∈ {0, 1, ..., J − 1}

〉
A

=
〈
uIxj | j ∈ {0, 1, ..., J − 1}

〉
A

=

 ∑
j∈{0,1,...,J−1}

aju
Ixj | (aj)j∈{0,1,...,J−1} ∈ A{0,1,...,J−1}

 ⊆ U, (14)

Hence, for every (i, j) ∈ S, we have j ∈ {0, 1, ..., µ + ν − 1} and thus j < µ + ν.

36



since
∑

j∈{0,1,...,J−1}
aju

Ixj ∈ U for every (aj)j∈{0,1,...,J−1} ∈ A{0,1,...,J−1} (since uIxj ∈ U

for every j ∈ {0, 1, ..., J − 1} (by (13), since j < J), and since U is an A-module).
Also,

uixj ∈ U for every i ∈ N and j ∈ N such that i < I and j < µ + ν (15)

(since for every i ∈ N and j ∈ N such that i < I and j < µ + ν, the assertion
(if j < µ + ν, then uixj ∈ U) holds (because (10) and i < I yield A (i)), and thus
uixj ∈ U (since j < µ + ν)). Now,〈

u0, u1, ..., uI−1
〉

A︸ ︷︷ ︸
=〈ui | i∈{0,1,...,I−1}〉A

·
〈
x0, x1, ..., xµ+ν−1

〉
A︸ ︷︷ ︸

=〈xj | j∈{0,1,...,µ+ν−1}〉A

=
〈
ui | i ∈ {0, 1, ..., I − 1}

〉
A
·
〈
xj | j ∈ {0, 1, ..., µ + ν − 1}

〉
A

=
〈
uixj | (i, j) ∈ {0, 1, ..., I − 1} × {0, 1, ..., µ + ν − 1}

〉
A

=

 ∑
(i,j)∈{0,1,...,I−1}×{0,1,...,µ+ν−1}

ai,ju
ixj | (ai,j)(i,j)∈{0,1,...,I−1}×{0,1,...,µ+ν−1} ∈ A{0,1,...,I−1}×{0,1,...,µ+ν−1}


⊆ U, (16)

because
∑

(i,j)∈{0,1,...,I−1}×{0,1,...,µ+ν−1}
ai,ju

ixj ∈ U for every (ai,j)(i,j)∈{0,1,...,I−1}×{0,1,...,µ+ν−1} ∈

A{0,1,...,I−1}×{0,1,...,µ+ν−1} (since uixj ∈ U for every (i, j) ∈ {0, 1, ..., I − 1}×{0, 1, ..., µ + ν − 1}
(by (15), since i < I (because i ∈ {0, 1, ..., I − 1}) and j < µ + ν (because j ∈
{0, 1, ..., µ + ν − 1})), and since U is an A-module).

Note that J < µ + ν yields J ≤ µ + ν − 1 (since J and µ + ν are integers).
Trivially,

(I ≥ m ∧ J ≥ µ) ∨ (I < m ∧ J ≥ µ) ∨ (I ≥ n ∧ J < µ) ∨ (I < n ∧ J < µ)

9. Hence, one of the following four cases must hold:
Case 1: We have I ≥ m ∧ J ≥ µ.
Case 2: We have I < m ∧ J ≥ µ.
Case 3: We have I ≥ n ∧ J < µ.
Case 4: We have I < n ∧ J < µ.

9since

(I ≥ m ∧ J ≥ µ) ∨ (I < m ∧ J ≥ µ)︸ ︷︷ ︸
= (I≥m ∨ I<m) ∧ (J≥µ)

= (J≥µ) (since (I≥m ∨ I<m) is true)

∨ (I ≥ n ∧ J < µ) ∨ (I < n ∧ J < µ)︸ ︷︷ ︸
= (I≥n ∨ I<n) ∧ (J<µ)

= (J<µ) (since (I≥n ∨ I<n) is true)

= (J ≥ µ) ∨ (J < µ) = true
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In Case 1, we have I −m ≥ 0 (since I ≥ m) and J − µ ≥ 0 (since J ≥ µ), thus

uI︸︷︷︸
=uI−mum

xJ︸︷︷︸
=xµxJ−µ

= uI−m umxµ︸ ︷︷ ︸
∈〈u0,u1,...,um−1〉

A
·〈x0,x1,...,xµ〉

A
+〈u0,u1,...,um〉

A
·〈x0,x1,...,xµ−1〉

A
(by (5))

xJ−µ

∈ uI−m
(〈

u0, u1, ..., um−1
〉

A
·
〈
x0, x1, ..., xµ

〉
A

+
〈
u0, u1, ..., um

〉
A
·
〈
x0, x1, ..., xµ−1

〉
A

)
xJ−µ

= uI−m
〈
u0, u1, ..., um−1

〉
A︸ ︷︷ ︸

=〈uI−mu0,uI−mu1,...,uI−mum−1〉
A

=〈u(I−m)+0,u(I−m)+1,...,u(I−m)+(m−1)〉
A

=〈uI−m,uI−m+1,...,uI−1〉
A

⊆〈u0,u1,...,uI−1〉
A

(since

{I−m,I−m+1,...,I−1}⊆{0,1,...,I−1},
since I−m≥0)

·
〈
x0, x1, ..., xµ

〉
A

xJ−µ︸ ︷︷ ︸
=〈x0xJ−µ,x1xJ−µ,...,xµxJ−µ〉

A

=〈x0+(J−µ),x1+(J−µ),...,xµ+(J−µ)〉
A

=〈xJ−µ,xJ−µ+1,...,xJ〉
A

⊆〈x0,x1,...,xµ+ν−1〉
A

(since

{J−µ,J−µ+1,...,J}⊆{0,1,...,µ+ν−1},
since J−µ≥0 and J≤µ+ν−1)

+ uI−m
〈
u0, u1, ..., um

〉
A︸ ︷︷ ︸

=〈uI−mu0,uI−mu1,...,uI−mum〉
A

=〈u(I−m)+0,u(I−m)+1,...,u(I−m)+m〉
A

=〈uI−m,uI−m+1,...,uI〉
A

⊆〈u0,u1,...,uI〉
A

(since

{I−m,I−m+1,...,I}⊆{0,1,...,I},
since I−m≥0)

·
〈
x0, x1, ..., xµ−1

〉
A

xJ−µ︸ ︷︷ ︸
=〈x0xJ−µ,x1xJ−µ,...,xµ−1xJ−µ〉

A

=〈x0+(J−µ),x1+(J−µ),...,x(µ−1)+(J−µ)〉
A

=〈xJ−µ,xJ−µ+1,...,xJ−1〉
A

⊆〈x0,x1,...,xJ−1〉
A

(since

{J−µ,J−µ+1,...,J−1}⊆{0,1,...,J−1},
since J−µ≥0)

⊆
〈
u0, u1, ..., uI−1

〉
A
·
〈
x0, x1, ..., xµ+ν−1

〉
A︸ ︷︷ ︸

⊆U by (16)

+
〈
u0, u1, ..., uI

〉
A︸ ︷︷ ︸

=〈u0,u1,...,uI−1〉A+〈uI〉A

·
〈
x0, x1, ..., xJ−1

〉
A

⊆ U +
(〈

u0, u1, ..., uI−1
〉

A
+
〈
uI
〉

A

)
·
〈
x0, x1, ..., xJ−1

〉
A︸ ︷︷ ︸

=〈u0,u1,...,uI−1〉A·〈x0,x1,...,xJ−1〉A+〈uI〉A·〈x0,x1,...,xJ−1〉A

= U +
〈
u0, u1, ..., uI−1

〉
A
·
〈
x0, x1, ..., xJ−1

〉
A︸ ︷︷ ︸

⊆〈x0,x1,...,xµ+ν−1〉
A

(since

{0,1,...,J−1}⊆{0,1,...,µ+ν−1},
since J−1≤J≤µ+ν−1)

+
〈
uI
〉

A
·
〈
x0, x1, ..., xJ−1

〉
A

⊆ U +
〈
u0, u1, ..., uI−1

〉
A
·
〈
x0, x1, ..., xµ+ν−1

〉
A︸ ︷︷ ︸

⊆U by (16)

+
〈
uI
〉

A
·
〈
x0, x1, ..., xJ−1

〉
A︸ ︷︷ ︸

⊆U by (14)

⊆ U + U + U ⊆ U (since U is an A-module) .

Thus, we have proved that uIxJ ∈ U holds in Case 1.
In Case 2, we have I ∈ {0, 1, ...,m− 1} (since I < m and I ∈ N) and J ∈

{µ, µ + 1, ..., µ + ν − 1} (since J ≥ µ and J < µ + ν), thus

(I, J) ∈ {0, 1, ...,m− 1} × {µ, µ + 1, ..., µ + ν − 1}
⊆ ({0, 1, ..., n− 1} × {0, 1, ..., µ− 1}) ∪ ({0, 1, ...,m− 1} × {µ, µ + 1, ..., µ + ν − 1}) = S,

so that uIxJ ∈ U (by (7), applied to I and J instead of i and j). Thus, we have proved
that uIxJ ∈ U holds in Case 2.

In Case 3, we have I − n ≥ 0 (since I ≥ n) and J + ν ≤ µ + ν − 1 (since J < µ
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yields J + ν < µ + ν, and since J + ν and µ + ν are integers), thus

uI︸︷︷︸
=uI−nun

xJ

= uI−n un︸︷︷︸
∈〈u0,u1,...,un−1〉

A
·〈x0,x1,...,xν〉

A
(by (4))

xJ ∈ uI−n
〈
u0, u1, ..., un−1

〉
A︸ ︷︷ ︸

=〈uI−nu0,uI−nu1,...,uI−nun−1〉
A

=〈u(I−n)+0,u(I−n)+1,...,u(I−n)+(n−1)〉
A

=〈uI−n,uI−n+1,...,uI−1〉
A

⊆〈u0,u1,...,uI−1〉
A

(since

{I−n,I−n+1,...,I−1}⊆{0,1,...,I−1},
since I−n≥0)

·
〈
x0, x1, ..., xν

〉
A

xJ︸ ︷︷ ︸
=〈x0xJ ,x1xJ ,...,xνxJ〉

A

=〈x0+J ,x1+J ,...,xν+J〉
A

=〈xJ ,xJ+1,...,xJ+ν〉
A

⊆〈x0,x1,...,xµ+ν−1〉
A

(since

{J,J+1,...,J+ν}⊆{0,1,...,µ+ν−1},
since J≥0 and J+ν≤µ+ν−1)

⊆
〈
u0, u1, ..., uI−1

〉
A
·
〈
x0, x1, ..., xµ+ν−1

〉
A
⊆ U (by (16)) .

Thus, we have proved that uIxJ ∈ U holds in Case 3.
In Case 4, we have I ∈ {0, 1, ..., n− 1} (since I < n and I ∈ N) and J ∈

{0, 1, ..., µ− 1} (since J < µ and J ∈ N), thus

(I, J) ∈ {0, 1, ..., n− 1} × {0, 1, ..., µ− 1}
⊆ ({0, 1, ..., n− 1} × {0, 1, ..., µ− 1}) ∪ ({0, 1, ...,m− 1} × {µ, µ + 1, ..., µ + ν − 1}) = S,

so that uIxJ ∈ U (by (7), applied to I and J instead of i and j). Thus, we have proved
that uIxJ ∈ U holds in Case 4.

Therefore, we have proved that uIxJ ∈ U holds in each of the four cases 1, 2, 3 and
4. Hence, uIxJ ∈ U always holds.

Hence, we have proved that if J < µ + ν, then uIxJ ∈ U . In other words, we have
proved the assertion B (J) (because B (J) =

(
if J < µ + ν, then uIxJ ∈ U

)
).

Thus, we have proved (11). Hence, the Principle of strong induction (form #2)
yields that

every j ∈ N satisfies B (j) .

In other words,

every j ∈ N satisfies
(
if j < µ + ν, then uIxj ∈ U

)
.

Thus, the assertion A (I) holds (because A (I) =
(
every j ∈ N satisfies

(
if j < µ + ν, then uIxj ∈ U

))
).

Thus, we have proved (9). Hence, the Principle of strong induction (form #1) yields
that

every i ∈ N satisfies A (i) .

In other words,

every i ∈ N satisfies
(
every j ∈ N satisfies

(
if j < µ + ν, then uixj ∈ U

))
(since A (i) = (every j ∈ N satisfies (if j < µ + ν, then uixj ∈ U))). This is equivalent
to (8). Thus, (8) is proven.

Now,
u · uixj ∈ U for every (i, j) ∈ S, (17)

because u · ui︸ ︷︷ ︸
=ui+1

xj = ui+1xj ∈ U (by (8) (applied to i + 1 instead of i), since j < µ + ν

(by (6))).
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Now,

uU = u
〈
uixj | (i, j) ∈ S

〉
A

=
〈
u · uixj | (i, j) ∈ S

〉
A

=

 ∑
(i,j)∈S

ai,ju · uixj | (ai,j)(i,j)∈S ∈ AS

 ⊆ U,

because
∑

(i,j)∈S

ai,ju · uixj ∈ U for every (ai,j)(i,j)∈S ∈ AS (since
∑

(i,j)∈S

ai,j u · uixj︸ ︷︷ ︸
∈U by (17)

∈ U ,

because U is an A-module).
Altogether, U is an (nµ + mν)-generated A-submodule of B such that 1 ∈ U and

uU ⊆ U . Thus, u ∈ B satisfies Assertion C of Theorem 1 with n replaced by nµ + mν.
Hence, u ∈ B satisfies the four equivalent assertions A, B, C and D of Theorem 1 with
n replaced by nµ + mν. Consequently, u is (nµ + mν)-integral over A. This proves
Lemma 18.

We record a weaker variant of Lemma 18:

Lemma 19. Let A and B be two rings such that A ⊆ B. Let x ∈ B and
y ∈ B be such that xy ∈ A. Let m ∈ N and n ∈ N. Let u ∈ B. Let µ ∈ N
and ν ∈ N. Assume that

un ∈
〈
u0, u1, ..., un−1

〉
A
·
〈
x0, x1, ..., xν

〉
A

(18)

and that

um ∈
〈
u0, u1, ..., um−1

〉
A
·
〈
y0, y1, ..., yµ

〉
A
+
〈
u0, u1, ..., um

〉
A
·
〈
y1, y2, ..., yµ

〉
A

.
(19)

Then, u is (nµ + mν)-integral over A.

Proof of Lemma 19. For every i ∈ {0, 1, ..., µ}, we have µ ≥ i and thus µ − i ≥ 0,
so that

yi xµ︸︷︷︸
=xµ−ixi

= yixµ−ixi = xiyi︸︷︷︸
=(xy)i∈A,
since xy∈A

xµ−i ∈
〈
xµ−i

〉
A

(20)

⊆
〈
x0, x1, ..., xµ

〉
A

(21)

(since {µ− i} ⊆ {0, 1, ..., µ}, because µ− i ∈ {0, 1, ..., µ}, since i ∈ {0, 1, ..., µ}). Now,〈
y0, y1, ..., yµ

〉
A︸ ︷︷ ︸

=〈yi | i∈{0,1,...,µ}〉A

xµ =
〈
yi | i ∈ {0, 1, ..., µ}

〉
A

xµ =
〈
yixµ | i ∈ {0, 1, ..., µ}

〉
A

=

 ∑
i∈{0,1,...,µ}

aiy
ixµ | (ai)i∈{0,1,...,µ} ∈ A{0,1,...,µ}

 ⊆
〈
x0, x1, ..., xµ

〉
A

, (22)

since
∑

i∈{0,1,...,µ}
aiy

ixµ ∈ 〈x0, x1, ..., xµ〉A for every (ai)i∈{0,1,...,µ} ∈ A{0,1,...,µ} (since
∑

i∈{0,1,...,µ}
ai yixµ︸︷︷︸

∈〈x0,x1,...,xµ〉
A

by (21)

∈

〈x0, x1, ..., xµ〉A, because 〈x0, x1, ..., xµ〉A is an A-module).
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Besides, for every i ∈ {1, 2, ..., µ}, we have

yixµ ∈
〈
xµ−i

〉
A

(by (20), since i ∈ {1, 2, ..., µ} yields i ∈ {0, 1, ..., µ})
⊆
〈
x0, x1, ..., xµ−1

〉
A

(23)

(since {µ− i} ⊆ {0, 1, ..., µ− 1}, because µ−i ∈ {0, 1, ..., µ− 1}, since i ∈ {1, 2, ..., µ}).
Now,〈

y1, y2, ..., yµ
〉

A︸ ︷︷ ︸
=〈yi | i∈{1,2,...,µ}〉A

xµ =
〈
yi | i ∈ {1, 2, ..., µ}

〉
A

xµ =
〈
yixµ | i ∈ {1, 2, ..., µ}

〉
A

=

 ∑
i∈{1,2,...,µ}

aiy
ixµ | (ai)i∈{1,2,...,µ} ∈ A{1,2,...,µ}

 ⊆
〈
x0, x1, ..., xµ−1

〉
A

, (24)

since
∑

i∈{1,2,...,µ}
aiy

ixµ ∈ 〈x0, x1, ..., xµ−1〉A for every (ai)i∈{1,2,...,µ} ∈ A{1,2,...,µ} (since∑
i∈{1,2,...,µ}

ai yixµ︸︷︷︸
∈〈x0,x1,...,xµ−1〉

A
by (23)

∈ 〈x0, x1, ..., xµ−1〉A, because 〈x0, x1, ..., xµ−1〉A is an A-module).

Now, (19) yields

umxµ ∈
(〈

u0, u1, ..., um−1
〉

A
·
〈
y0, y1, ..., yµ

〉
A

+
〈
u0, u1, ..., um

〉
A
·
〈
y1, y2, ..., yµ

〉
A

)
xµ

=
〈
u0, u1, ..., um−1

〉
A
·
〈
y0, y1, ..., yµ

〉
A

xµ︸ ︷︷ ︸
⊆〈x0,x1,...,xµ〉

A
(by (22))

+
〈
u0, u1, ..., um

〉
A
·
〈
y1, y2, ..., yµ

〉
A

xµ︸ ︷︷ ︸
⊆〈x0,x1,...,xµ−1〉

A
(by (24))

⊆
〈
u0, u1, ..., um−1

〉
A
·
〈
x0, x1, ..., xµ

〉
A

+
〈
u0, u1, ..., um

〉
A
·
〈
x0, x1, ..., xµ−1

〉
A

.

In other words, (5) holds. Also, (4) holds (because (18) holds, and because (4) is the
same as (18)). Thus, Lemma 18 yields that u is (nµ + mν)-integral over A. This proves
Lemma 19.

Something trivial now:

Lemma 20. Let A and B be two rings such that A ⊆ B. Let x ∈ B. Let
n ∈ N. Let u ∈ B. Assume that u is n-integral over A [x]. Then, there
exists some ν ∈ N such that

un ∈
〈
u0, u1, ..., un−1

〉
A
·
〈
x0, x1, ..., xν

〉
A

.

Proof of Lemma 20. There exists a monic polynomial P ∈ (A [x]) [X] with deg P =
n and P (u) = 0 (since u is n-integral over A [x]). Since P ∈ (A [x]) [X] is a monic
polynomial with deg P = n, there exist elements α0, α1, ..., αn−1 of A [x] such that

P (X) = Xn +
n−1∑
i=0

αiX
i. Thus, P (u) = un +

n−1∑
i=0

αiu
i, so that P (u) = 0 becomes

un +
n−1∑
i=0

αiu
i = 0. Hence, un = −

n−1∑
i=0

αiu
i.

For every i ∈ {0, 1, ..., n− 1}, we have αi ∈ A [x], and thus there exist some

νi ∈ N and some (βi,0, βi,1, ..., βi,νi
) ∈ Aνi+1 such that αi =

νi∑
k=0

βi,kx
k. Hence, αi ∈

〈x0, x1, ..., xνi〉A for every i ∈ {0, 1, ..., n− 1}.
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Let ν = max {ν0, ν1, ..., νn−1}. Then, for every i ∈ {0, 1, ..., n− 1}, we have νi ≤ ν,
hence {0, 1, ..., νi} ⊆ {0, 1, ..., ν}, thus 〈x0, x1, ..., xνi〉A ⊆ 〈x0, x1, ..., xν〉A, and thus
αi ∈ 〈x0, x1, ..., xν〉A (since αi ∈ 〈x0, x1, ..., xνi〉A). Therefore,

un = −
n−1∑
i=0

αiu
i = −

n−1∑
i=0

ui︸︷︷︸
∈〈u0,u1,...,un−1〉A

αi︸︷︷︸
∈〈x0,x1,...,xν〉A

∈ −
n−1∑
i=0

〈
u0, u1, ..., un−1

〉
A
·
〈
x0, x1, ..., xν

〉
A
⊆
〈
u0, u1, ..., un−1

〉
A
·
〈
x0, x1, ..., xν

〉
A

(since 〈u0, u1, ..., un−1〉A · 〈x0, x1, ..., xν〉A is an A-module). This proves Lemma 20.
A consequence of Lemmata 19 and 20 is the following theorem:

Theorem 21. Let A and B be two rings such that A ⊆ B. Let x ∈ B and
y ∈ B be such that xy ∈ A. Let m ∈ N and n ∈ N. Let u ∈ B. Assume
that u is n-integral over A [x], and that u is m-integral over A [y]. Then,
there exists some λ ∈ N such that u is λ-integral over A.

Proof of Theorem 21. Since u is n-integral over A [x], Lemma 20 yields that there
exists some ν ∈ N such that

un ∈
〈
u0, u1, ..., un−1

〉
A
·
〈
x0, x1, ..., xν

〉
A

.

In other words, (18) holds.
Since u is m-integral over A [y], Lemma 20 (with x, n and ν replaced by y, m and

µ) yields that there exists some µ ∈ N such that

um ∈
〈
u0, u1, ..., um−1

〉
A
·
〈
y0, y1, ..., yµ

〉
A

.

Hence,

um ∈
〈
u0, u1, ..., um−1

〉
A
·
〈
y0, y1, ..., yµ

〉
A

+
〈
u0, u1, ..., um

〉
A
·
〈
y1, y2, ..., yµ

〉
A

(because〈
u0, u1, ..., um−1

〉
A
·
〈
y0, y1, ..., yµ

〉
A

⊆
〈
u0, u1, ..., um−1

〉
A
·
〈
y0, y1, ..., yµ

〉
A

+
〈
u0, u1, ..., um

〉
A
·
〈
y1, y2, ..., yµ

〉
A

). In other words, (19) holds.
Since both (18) and (19) hold, Lemma 19 yields that u is (nµ + mν)-integral over A.

Thus, there exists some λ ∈ N such that u is λ-integral over A (namely, λ = nµ+mν).
This proves Theorem 21.

We record a generalization of Theorem 21 (which will turn out to be easily seen
equivalent to Theorem 21):

Theorem 22. Let A and B be two rings such that A ⊆ B. Let x ∈ B and
y ∈ B. Let m ∈ N and n ∈ N. Let u ∈ B. Assume that u is n-integral over
A [x], and that u is m-integral over A [y]. Then, there exists some λ ∈ N
such that u is λ-integral over A [xy].
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Proof of Theorem 22. Obviously, A ⊆ A [xy] yields A [x] ⊆ (A [xy]) [x] and A [y] ⊆
(A [xy]) [y].

Since u is n-integral over A [x], Lemma I (applied to B, (A [xy]) [x], A [x] and u
instead of B′, A′, A and v) yields that u is n-integral over (A [xy]) [x].

Since u is m-integral over A [y], Lemma I (applied to B, (A [xy]) [y], A [y], m and
u instead of B′, A′, A, n and v) yields that u is m-integral over (A [xy]) [y].

Now, Theorem 21 (applied to A [xy] instead of A) yields that there exists some
λ ∈ N such that u is λ-integral over A [xy] (because xy ∈ A [xy], because u is n-
integral over (A [xy]) [x], and because u is m-integral over (A [xy]) [y]). This proves
Theorem 22.

Theorem 22 has a ”relative version”:

Theorem 23. Let A and B be two rings such that A ⊆ B. Let (Iρ)ρ∈N be
an ideal semifiltration of A. Let x ∈ B and y ∈ B.

(a) Then, (IρA [x])ρ∈N is an ideal semifiltration of A [x]. Besides, (IρA [y])ρ∈N
is an ideal semifiltration of A [y]. Besides, (IρA [xy])ρ∈N is an ideal semifil-
tration of A [xy].

(b) Let m ∈ N and n ∈ N. Let u ∈ B. Assume that u is n-integral over(
A [x] , (IρA [x])ρ∈N

)
, and that u is m-integral over

(
A [y] , (IρA [y])ρ∈N

)
.

Then, there exists some λ ∈ N such that u is λ-integral over
(
A [xy] , (IρA [xy])ρ∈N

)
.

Proof of Theorem 23. (a) Since (Iρ)ρ∈N is an ideal semifiltration of A, Lemma J
(applied to A [x] instead of A′) yields that (IρA [x])ρ∈N is an ideal semifiltration of A [x].

Since (Iρ)ρ∈N is an ideal semifiltration of A, Lemma J (applied to A [y] instead of
A′) yields that (IρA [y])ρ∈N is an ideal semifiltration of A [y].

Since (Iρ)ρ∈N is an ideal semifiltration of A, Lemma J (applied to A [xy] instead of
A′) yields that (IρA [xy])ρ∈N is an ideal semifiltration of A [xy].

Thus, Theorem 23 (a) is proven.
(b) We formulate a lemma:
Lemma N : Let A, A′ and B be three rings such that A ⊆ A′ ⊆ B. Let

v ∈ B. Let (Iρ)ρ∈N be an ideal semifiltration of A. Consider the polynomial ring

A [Y ] and its A-subalgebra A
[
(Iρ)ρ∈N ∗ Y

]
. We have A

[
(Iρ)ρ∈N ∗ Y

]
⊆ A [Y ], and (as

explained in Definition 7) we can identify the polynomial ring A [Y ] with a subring of

(A [v]) [Y ] (since A ⊆ A [v]). Hence, A
[
(Iρ)ρ∈N ∗ Y

]
⊆ (A [v]) [Y ]. On the other hand,

(A [v])
[
(IρA [v])ρ∈N ∗ Y

]
⊆ (A [v]) [Y ].

(a) We have

(A [v])
[
(IρA [v])ρ∈N ∗ Y

]
=
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v] .

(b) Let u ∈ B. Let n ∈ N. Then, the element u of B is n-integral over(
A [v] , (IρA [v])ρ∈N

)
if and only if the element uY of the polynomial ring B [Y ] is

n-integral over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v].

Proof of Lemma N : (a) We have proven LemmaN (a) during the proof of Theorem
9 (b).
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(b) Theorem 7 (applied to A [v] and (IρA [v])ρ∈N instead of A and (Iρ)ρ∈N) yields

that the element u of B is n-integral over
(
A [v] , (IρA [v])ρ∈N

)
if and only if the element

uY of the polynomial ring B [Y ] is n-integral over the ring (A [v])
[
(IρA [v])ρ∈N ∗ Y

]
. In

other words, the element u of B is n-integral over
(
A [v] , (IρA [v])ρ∈N

)
if and only if the

element uY of the polynomial ring B [Y ] is n-integral over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v]

(because Lemma N (a) yields (A [v])
[
(IρA [v])ρ∈N ∗ Y

]
=
(
A
[
(Iρ)ρ∈N ∗ Y

])
[v]). This

proves Lemma N (b).
Now, let us prove Theorem 23 (b). In fact, for every v ∈ B, we can consider

the polynomial ring (A [v]) [Y ] and its A [v]-subalgebra (A [v])
[
(IρA [v])ρ∈N ∗ Y

]
. We

have (A [v])
[
(IρA [v])ρ∈N ∗ Y

]
⊆ (A [v]) [Y ], and (as explained in Definition 7) we can

identify the polynomial ring (A [v]) [Y ] with a subring of B [Y ] (since A [v] ⊆ B).

Hence, (A [v])
[
(IρA [v])ρ∈N ∗ Y

]
⊆ B [Y ].

Lemma N (b) (applied to x instead of v) yields that the element u of B is n-

integral over
(
A [x] , (IρA [x])ρ∈N

)
if and only if the element uY of the polynomial ring

B [Y ] is n-integral over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[x]. But since the element u of B is

n-integral over
(
A [x] , (IρA [x])ρ∈N

)
, this yields that the element uY of the polynomial

ring B [Y ] is n-integral over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[x].

Lemma N (b) (applied to y and m instead of v and n) yields that the element

u of B is m-integral over
(
A [y] , (IρA [y])ρ∈N

)
if and only if the element uY of the

polynomial ring B [Y ] is m-integral over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[y]. But since the

element u of B is m-integral over
(
A [y] , (IρA [y])ρ∈N

)
, this yields that the element uY

of the polynomial ring B [Y ] is m-integral over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[y].

Since uY is n-integral over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[x], and since uY is m-integral

over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[y], Theorem 22 (applied to A

[
(Iρ)ρ∈N ∗ Y

]
, B [Y ] and

uY instead of A, B and u) yields that there exists some λ ∈ N such that uY is λ-integral

over
(
A
[
(Iρ)ρ∈N ∗ Y

])
[xy].

LemmaN (b) (applied to xy and λ instead of v and n) yields that the element u of B

is λ-integral over
(
A [xy] , (IρA [xy])ρ∈N

)
if and only if the element uY of the polynomial

ring B [Y ] is λ-integral over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[xy]. But since the element

uY of the polynomial ring B [Y ] is λ-integral over the ring
(
A
[
(Iρ)ρ∈N ∗ Y

])
[xy],

this yields that the element u of B is λ-integral over
(
A [xy] , (IρA [xy])ρ∈N

)
. Thus,

Theorem 23 (b) is proven.
We notice that Corollary 3 can be derived from Lemma 18:

44



Second proof of Corollary 3. Let n = 1. Let m = 1. We have

un ∈
〈
u0, u1, ..., un−1

〉
A
·
〈
v0, v1, ..., vα

〉
A

10 and

umvβ ∈
〈
u0, u1, ..., um−1

〉
A
·
〈
v0, v1, ..., vβ

〉
A

+
〈
u0, u1, ..., um

〉
A
·
〈
v0, v1, ..., vβ−1

〉
A

11. Thus, Lemma 18 (applied to v, β and α instead of x, µ and ν) yields that u is
(nβ + mα)-integral over A. This means that u is (α + β)-integral over A (because
nβ + mα = 1β + 1α = β + α = α + β). This proves Corollary 3 once again.

In how far does this all generalize Theorem 2 from [3]? Actually, Theorem 2 from
[3] can be easily reduced to the case when J = 0 (by passing from the ring A to its
localization A1+J), and in this case it easily follows from Lemma 18.
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10because

un = u1 = u =
α∑

i=0

si︸︷︷︸
∈A

vi ∈
〈
v0, v1, ..., vα

〉
A

= A ·
〈
v0, v1, ..., vα

〉
A

=
〈
u0, u1, ..., un−1

〉
A
·
〈
v0, v1, ..., vα

〉
A

(since A = 〈1〉A =
〈
u0
〉

A
=
〈
u0, u1, ..., un−1

〉
A
, as n = 1)

11because

um︸︷︷︸
=u1=u

vβ = uvβ =
β∑

i=0

tiv
β−i =

β∑
i=0

tβ−iv
β−(β−i) (here we substituted β − i for i in the sum)

=
β∑

i=0

tβ−i︸︷︷︸
∈A

vi ∈
〈
v0, v1, ..., vβ

〉
A

= A ·
〈
v0, v1, ..., vβ

〉
A

=
〈
u0, u1, ..., um−1

〉
A
·
〈
v0, v1, ..., vβ

〉
A

(since A = 〈1〉A =
〈
u0
〉

A
=
〈
u0, u1, ..., um−1

〉
A
, as m = 1) and〈

u0, u1, ..., um−1
〉

A
·
〈
v0, v1, ..., vβ

〉
A

⊆
〈
u0, u1, ..., um−1

〉
A
·
〈
v0, v1, ..., vβ

〉
A

+
〈
u0, u1, ..., um

〉
A
·
〈
v0, v1, ..., vβ−1

〉
A
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