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The purpose of this note is to collect some theorems and proofs related to integrality
in commutative algebra. The note is subdivided into four parts.

Part 1 (Integrality over rings) consists of known facts (Theorems 1, 4, 5) and a
generalized exercise from [1] (Corollary 3) with a few minor variations (Theorem 2 and
Corollary 6).

Part 2 (Integrality over ideal semifiltrations) merges integrality over rings (as con-
sidered in Part 1) and integrality over ideals (a less-known but still very useful notion;
the book [2] is devoted to it) into one general notion - that of integrality over ideal
semifiltrations (Definition 9). This notion is very general, yet it can be reduced to the
basic notion of integrality over rings by a suitable change of base ring (Theorem 7).
This reduction allows to extend some standard properties of integrality over rings to
the general case (Theorems 8 and 9).

Part 3 (Generalizing to two ideal semifiltrations) continues Part 2, adding one more
layer of generality. Its main result is a "relative” version of Theorem 7 (Theorem 11)
and a known fact generalized one more time (Theorem 13).

Part 4 (Accelerating ideal semifiltrations) generalizes Theorem 11 (and thus also
Theorem 7) a bit further by considering a generalization of powers of an ideal.

Part 5 (Generalizing a lemma by Lombardi) is about an auxiliary result Lombardi
used in [3] to prove Kronecker’s Theorem'. We extend this auxiliary result here.

This note is supposed to be self-contained (only linear algebra and basic knowledge
about rings, ideals and polynomials is assumed). The proofs are constructive. However,
when writing down the proofs I focussed on maximal detail (to ensure correctness)
rather than on clarity, so the proofs are probably a pain to read. I think of making a
short version of this note with the obvious parts of proofs left out.

This 1s the long version of this paper, with all proofs mazximally detailed. For all
practical purposes, the brief version [4] should be totally enough, and probably better as
it s much easier to read.

Preludium

Definitions and notations:

Definition 1. In the following, "ring” will always mean ”commutative ring with
unity”. We denote the set {0,1,2,...} by N, and the set {1,2,3,...} by N*.

Definition 2. Let A be a ring. Let M be an A-module. If n € N, and if my, ms,
..., my,, are n elements of M, then we define an A-submodule (my,ms,...,m,) , of M by

n
(M1, ma, ...mp) 4 = {Zaimi | (a1,aq,...,a,) EA”}.
i=1

'Kronecker’s Theorem. Let B be a ring ("ring” always means ”commutative ring with unity”
in this paper). Let g and h be two elements of the polynomial ring B [X]. Let g, be any coefficient
of the polynomial g. Let hg be any coeflicient of the polynomial h. Let A be a subring of B which
contains all coeflicients of the polynomial gh. Then, the element g,hg of B is integral over the subring

A.



Also, if S is a finite set, and m, is an element of M for every s € S, then we define an
A-submodule (my | s € S), of M by

(ms | sES}A:{ZasmS | (as)SGSeAS}.

seS

Of course, if my, mo, ..., m,, are n elements of M, then (my, mo, ..., my) , = (ms | s €{1,2,...,n}),.
We notice something almost trivial:

Module inclusion lemma. Let A be a ring. Let M be an A-module. Let
N be an A-submodule of M. If S is a finite set, and my is an element of N
for every s € S, then (m; | s€ S), CN. 2

Definition 3. Let A be a ring, and let n € N. Let M be an A-module. We say
that the A-module M is n-generated if there exist n elements my, ms, ..., m, of M
such that M = (my,ms,...,m,) 4. In other words, the A-module M is n-generated if
and only if there exists a set S and an element m, of M for every s € S such that
|S|]=nand M =(m, | s€S),.

Definition 4. Let A and B be two rings. We say that A C B if and only if

(the set A is a subset of the set B) and (the inclusion map A — B is a ring homomorphism) .

Now assume that A C B. Then, obviously, B is canonically an A-algebra (since A C
B). If uy, us, ..., u, are n elements of B, then we define an A-subalgebra A [uy, ua, ..., u,]
of B by

A[Ul,UQ,...,'LLn]:{P<U1,U2,...,Un) ’ PeA[Xl,XQ,,Xn]}

In particular, if v is an element of B, then the A-subalgebra A [u] of B is defined
by
Alu] ={P(u) | P e A[X]}.

Since A [X]| = {Z ;X" | meNand (ag,a,...,a,) € Am+1}, this becomes

=0

Alu) = {(Z aiXi> (w) | meNand (ag,ai,...,a,) € Am“}

(Where (Z a; X Z) (u) means the polynomial Z a; X" evaluated at X = u)

i=0 i=0
- {Z au' | m € Nand (ag,ai, ..., am) € AmH} (because (Z aiXi) (u) = Z am’) )
i=0 i=0 i=0
Obviously, uA [u] C Alu| (since A [u] is an A-algebra and u € A [u]).

2 Proof. We have

(ms | 5€S>A{2a5ms | (as)seseAS}gN,

ses

since Y asm, € N for every (a;),.q € A% (because m; € N for every s € S, and because N is an
ses
A-module).



1. Integrality over rings

Theorem 1. Let A and B be two rings such that A C B. Obviously, B is
canonically an A-module (since A C B). Let n € N. Let u € B. Then, the
following four assertions A, B, C and D are pairwise equivalent:

Assertion A: There exists a monic polynomial P € A[X] with deg P = n
and P (u) = 0.

Assertion B: There exist a B-module C' and an n-generated A-submodule
U of C such that U C U and such that every v € B satisfying vU = 0
satisfies v = 0. (Here, C' is an A-module, since C' is a B-module and
ACB.)

Assertion C: There exists an n-generated A-submodule U of B such that
1eU and uU CU.

Assertion D: We have A [u] = (u°,u', ..,u™" 1) ,.

Definition 5. Let A and B be two rings such that A C B. Let n € N. Let u € B.
We say that the element u of B is n-integral over A if it satisfies the four equivalent
assertions A, B, C and D of Theorem 1.

Hence, in particular, the element u of B is n-integral over A if and only if it satisfies
the assertion A of Theorem 1. In other words, u is n-integral over A if and only if
there exists a monic polynomial P € A [X] with deg P =n and P (u) = 0.

Proof of Theorem 1. We will prove the implications A = C,C = B, B = A,
A= D and D = C.

Proof of the implication A = C. Assume that Assertion A holds. Then, there
exists a monic polynomial P € A[X] with deg P =n and P (u) = 0. Since P € A[X]
is a monic polynomial with deg P = n, there exist elements ag, a1, ..., a,_1 of A such

n—1 n—1
that P (X) = X"+ > ap X*. Thus, P (u) = u™+ > apuF, so that P (u) = 0 becomes
k=0 k=0

n—1 n—1
u" + Y apuf = 0. Hence, u™ = — > apuk.
k=0 k=0
Let U be the A-submodule (u° u',...;u""'), of B. Then, U is an n-generated
A-module (since u’, u!, ..., u"~! are n elements of U). Besides, 1 = v € U.

Now, u-u* € U for any k € {0,1,....,n — 1} (since k € {0,1,...,n — 1} yields either
0<k<n—lork=n—1butu-u=u"""e @ v . ju" ), =Uif0<k<n—1,
n—1
and u- v =u-u"t=u" = - > qut € (WUl uY) = U if k=n—1, so that
k=0
u-u” € U in both cases). Hence,

ull = u (u’,u', --',U"_1>A =(u-u’u-u L u-u"t), CU

(since u - u* € U for any k € {0,1,...,n — 1}).

Thus, Assertion C holds. Hence, we have proved that A = C.

Proof of the implication C = B. Assume that Assertion C holds. Then, there
exists an n-generated A-submodule U of B such that 1 € U and uU C U. Everyv € B
satisfying vU = 0 satisfies v = 0 (since 1 € U and vU = 0 yield v \1/_/ evlU =0

eU



and thus v -1 = 0, so that v = 0). Set C' = B. Then, C is a B-module, and U is
an n-generated A-submodule of C' (since U is an n-generated A-submodule of B, and
C' = B). Thus, Assertion B holds. Hence, we have proved that C = B.

Proof of the implication B — A. Assume that Assertion B holds. Then, there
exist a B-module C' and an n-generated A-submodule U of C' such that uU C U (where
C' is an A-module, since C' is a B-module and A C B), and such that every v € B
satisfying vU = 0 satisfies v = 0.

Since the A-module U is n-generated, there exist n elements my, mo, ..., m, of U
such that U = (mq, mo, ..., m,) 4. For any k € {1,2,...,n}, we have

umy, € ulU (since my, € U)

g U= <m1am27 "'7mn>Aa

n
so that there exist n elements a1, a2, ..., ag, of A such that umy = > ax;m;.
i=1
We introduce two notations:

e For any matrix 7" and any integers x and y, we denote by 7, the entry of the
matrix 7" in the z-th row and the y-th column.

e For any assertion U, we denote by [U] the Boolean value of the assertion U (that

. 1, if U is true;
is, U] = { 0, if U is false )-

Clearly, the n x n identity matrix I, satisfies (I,).;, = [r =] for every 7 €
{1,2,....,n} and i € {1,2,...,n}.
Note that for every 7 € {1,2,...,n}, we have

n

> () ymi = m, (1)

)

=1
since
n n
Yo ), mi=) [i=Tmi= > [i=71m
i=1 S~ i=1 i€{1,2,...n}

=[r=i|=[i=7]

- Z [i =71] m; + Z [i=1] m,

i€{1,2,....,n} i€{1,2,...,n}

=1, si X =0, si
such that i=7;_ izntlfse such that i#7 ;_ 1:1;:5;98
since i#£T
= E 1m; + E Om,; = g m; + 0
~—~
i€{1,2,..,n} —m, i€{1,2,....,n} i€{1,2,....,n}
such that i=7 such that i#7 such that i=7

=0

B o ‘ since {i € {1,2,....,.n} | i=71}={7},
= Z m; = Z m; < because 7 € {1,2,...,n}

1€{1,2,....,n} ie{r}
such that i=7

=m,.

)



Hence, for every k € {1,2,...,n}, we have

n n n n

Z (u (]n),“ - a;m») m; = Z (u (]n),“ m; — ak,imi) = Z (In)kz m; — Z Ak M

i=1 i=1 i=1 i=1
—_——
(applied to T=k)

n
= umy — E a;m; =0
i=1

n

(since umy = > ag;m;).

=1
Define a matrix S € A"*" by (Sk; = ax; for all k € {1,2,....,.n} and i € {1,2,...,n}).
Define a matrix 7" € B™™ by T = adj (ul, —S) (where S is considered as an
element of B"*" because S € A"*" and A C B).
Let P € A[X] be the characteristic polynomial of the matrix S € A"*". Then, P is
monic, and deg P = n. Besides, P (X) = det (X1, — S), so that P (u) = det (ul, — 5).
Then,

P (u)- I, =det (ul, —S)- I, =adj (ul, = S)-(ul, —S)=T"-(ul, — S).
=T

Now, for every 7 € {1,2,...,n}, we have

P(u)m, = P (u) Z (In),; mi since (1) yields m, = Z (In)ys mz>

=1 =1

= P (L), mi = P -1, ;= T (ul, —9))_,
; () - (In),;m ; _(u) m ;g (uv ),
=(P(u)-In), ; =T-(ulp—S) i i Ly (uln),

_ T\ (ul, — S), T. o
S 0 N
*U(In)k i—Sk,i
= ZTTJ{: Z U ([n) - Sk,i ZTTk Z < ak,i) m; = 0.
k=1 =1
_a,” - J
=0

Thus,

P(u)-U=P(u) (my,mg,..my), = (P(u)-my, P(u) -mo,.. Pu) -m,),
= (0,0,...,0) , (since P (u)-m, =0 for any 7 € {1,2,...,n})
= 0.

This implies P (u) = 0 (since every v € B satisfying vU = 0 satisfies v = 0). Thus,
Assertion A holds. Hence, we have proved that B = A.



Proof of the implication A = D. Assume that Assertion A holds. Then, there
exists a monic polynomial P € A [X] with deg P =n and P (u) = 0. Since P € A[X]

is a monic polynomial with deg P = n, there exist elements ag, a1, ..., a,_1 of A such
n—1 n—1
that P(X) = X"+ > a;, X*. Thus, P (u) = u" + Y apu®, so that P (u) = 0 becomes
k=0 k=0
n—1 n—1
u" + Y apu® = 0. Hence, u" = — > apuk.
k=0 k=0

Let U be the A-submodule (u°, u', ..., u""') , of B. As in the Proof of the implication
A = C, we can show that U is an n-generated A-module, and that 1 € U and uU C U.
Now, we are going to show that

u' e U for any < € N. (2)

Proof of (2). We will prove (2) by induction over i:

Induction base: The assertion (2) holds for i = 0 (since u® € U). This completes
the induction base.

Induction step: Let 7 € N. If the assertion (2) holds for i = 7, then the assertion
(2) holds for i = 7 4+ 1 (because if the assertion (2) holds for i = 7, then u™ € U, so
that ™ = u - € ul CU, so that ™t € U, and thus the assertion (2) holds for

eu
i =7+ 1). This completes the induction step.

Hence, the induction is complete, and (2) is proven.
Thus,

Alu] = {Zami | meNand (ag,a,...,a,) € AmH} cU
i=0

(since > a;u’ € U for any m € N and any (ag, ai, ..., a,,) € A™" because a; € A and
i=0

u' € U for any i € {0,1,....m} (by (2)) and U is an A-module). On the other hand,

U C Alul, since

n—1
U= <u0,u1,...,u”’1>A = {Z aiu’ | (ag, ..., Gp_y) € A"}

1=0

- {Z a;u’ | m €N and (ag,ai,...,an) € Am“} = Aul.

=0

Thus, U = A[u]. In other words, (u® u',...,u") , = A[u]. Thus, Assertion D holds.
Hence, we have proved that A =— D.

Proof of the implication D = C. Assume that Assertion D holds. Then, A[u] =
(WO uty . umty .

Let U be the A-submodule (u°,u',...,u" "), of B. Then, U is an n-generated
A-module (since u°, u', ..., u"~! are n elements of U). Besides, 1 = u" € U.

Also,

wlU =u- {u’,u', ...,u”_1>A =u-Afu] C Al = (u’,u', ut ) =U.

Thus, Assertion C holds. Hence, we have proved that D = C.

6



Now, we have proved the implications A = D, D — (C,C = B and B—= A

above. Thus, all four assertions A, B, C and D are pairwise equivalent, and Theorem
1 is proven.

Theorem 2. Let A and B be two rings such that A C B. Let n € N. Let
v € B. Let ag, ay, ..., a, be n+ 1 elements of A such that > a;v° = 0. Let
i=0

n—k

k€ {0,1,...,n}. Then, > a;;v" is n-integral over A.
i=0

Proof of Theorem 2. Let U be the A-submodule (v° o', ...,v" '), of B. Then,

U is an n-generated A-module (since 0%, v, n-l

., v 1 are n elements of U). Besides,
1="€eU.
n—k .
Let u = > a;44v". Then,
i=0
n k—1 n k—1 n—k
0= Z a; vt = Z a;v* + Z a; v = Z a;v* + Z Qisk Uk
i=0 i=0 i=k i=0 i=0 —iph
(here, we substituted i + k for ¢ in the second sum)
k-1 n—k k—1
= Z a;vt + vF Z i g V" = Z a;vt + vk,
i=0 i=0 i=0
—_——
=u
=1
so that vfu = — >~ a0’
i=0
Now, we are going to show that
w' e U for any t € {0,1,....,n — 1}. (3)

Proof of (8). Since t € {0,1,...,n — 1}, one of the following two cases must hold:
Case 1: We have t € {0,1,....k — 1}.

Case 2: We have t € {k,k+1,...,n —1}.
In Case 1, we have

—yitt =0

n—=k n—k
wt = E i 00! since u = E Qi gV
1+k , i+

i=0
n—=k

_ i+t 0,1 n—1

= E a; V" E <v LU, U >A
i=0

since t € {0,1,....,k — 1} yieldsi+¢ € {0,1,...,n — 1} and thus
vt e {o¥ v, v} for any @ € {0,1,...,n — k}

=U.

In Case 2, we have t € {k,k+1,...,n—1}, thus ¢t — k € {0,1,...,n—k — 1} and



hence

k—1 k—1
wvt = u PR = gtk = — E a; vt vtk since vFu = — a;v’
—— ——
—pkyt—k =0 —pit(t—k) =0

k-1
_ i+(t—k 0,1 n—1
—_E a;v ( )€<v,v,...,v >A
i=0

since t —k € {0,1,....n —k — 1} yields i+ (t — k) € {0,1,....,n — 1} and thus
ViR ¢ L0 ot oY for any i € {0,1,...,k — 1}

=U.
Hence, in both cases, we have uv' € U. Thus, uv® € U always holds, and (3) is
proven.
Now,
ul = u (v°, 0", ...,v"_1>A = (w0’ w', ...,uv”_1>A cu (due to (3)).

Altogether, U is an n-generated A-submodule of B such that 1 € U and wU C U.
Thus, u € B satisfies Assertion C of Theorem 1. Hence, u € B satisfies the four
equivalent assertions A, B, C and D of Theorem 1. Consequently, u is n-integral over

n—k n—~k
A. Since u = Y a;4xv", this means that ) a; 0" is n-integral over A. This proves
i=0 =0

Theorem 2.

Corollary 3. Let A and B be two rings such that A C B. Let a € N and

6 €N. Let u e Band v € B. Let sg, s1, ..., So be a+ 1 elements of A

such that > s;v° = u. Let tg, ty, ..., t3 be 8+ 1 elements of A such that
i=0

B ,

St~ = wvP. Then, u is (o + 3)-integral over A.

i=0

(This Corollary 3 generalizes Exercise 2-5 in [1].)
First proof of Corollary 3. Let k = 3 and n = a+ 3. Then, k € {0, 1,...,n}. Define
n + 1 elements aq, a, ..., a, of A by

tg—i, if 1 < (3;
a; =< to— sg, if i =03 for every i € {0,1,...,n}.
—8i_g, if ¢ > B3;



n atp B-1 B a+p
a;v' = a;v' = a; v+ g a; v+ E a; v
— — — ~~~ ; ~~~ ) ~~
=0 =0 =0 —¢5_; (by the =B =ty—so (by the =Bl =54 (by the
definition of a;, definition of a;, definition of a;,
since i< [3) since i=03) since i>03)
8-1 8 a+p
= E tﬁ ZUZ + g (to - 80 v + E —S;— 5
=0 i= i=B+1
:(tofso)vﬁ a+p .
=tovP —sguvf _71‘:%+1 8;—pv*
6—1 a+f B—1 a+p
= E tg_iv" + tov? — sov® — E Si_pV" = E tg—iv" + tov? — | spv® + E Si—pvV"
=0 i=f+1 =0 i=f+1

T
L

tﬁ_ivi +tovﬁ — sov + Z Z+5 -8V __ vt
=S;

—v vﬁ

~
Il
o

(here, we substituted i + [ for ¢ in the second sum)

B-1 a
=Y tg v+t — (sovﬁ + Z sivivﬁ>
i=0 i=1
B a
= tg—(g—i T + i v — S0 VP + s
;H(’Jl B—0 0,8 ; Z
= =v =v%v =

=t;

(here, we substituted § — i for ¢ in the first sum)

B
— Ztivﬁ*i + tov? 0 — (501) P+ Z s v’vﬁ>
i=1
B a
= Ztivﬁ*2 + tovﬁ’O — | sov¥ + Z st | % = w® —w® = 0.
\Tl:l > ]
s a
=Y t;uB—i=uoh =Z s;vt=u
i=0 =0



n—k
Thus, Theorem 2 yields that > a; 0" is n-integral over A. But
i=0

0

n—k n—0 n—_
Z A 0 = Z ai+pV" = Z i+ v+ Z iy v’
0 P ~— — ~—

=0

:tO._.SO (by the = :_s(i+ﬁ)—ﬁ (by the
definition of a;4 g, definition of a;4 g,
sincg =0 yields since ¢>0 yields
i+6=0) i+6>0)
0 n—_ n-
A 7 0 %
= E (to — so) V' + E —S(i+p)-p | v =lo — sov” + Z (=si)v
i=0 i=1 \_:g_/ i=1
91
=(t0730)’00
:tovo—sovo
:to—so’uo
n—_3 «@
=ty — s90° — § s;08 = tg — sov° — E 50" (since n = a + ( yields n — 3 = «)

i=1 i=1

o
= t() — S(]UO + E SiUZ = to — U.
i=1

sivt=u

Ise

Thus, to — u is n-integral over A. On the other hand, —t, is l-integral over A (by
Theorem 5 (a) below, applied to a = —tg). Thus, (—to) + (to — u) is n - 1-integral over
A (by Theorem 5 (b) below, applied to x = —t, y = to —u and m = 1). In other
words, —u is n-integral over A (since (—tg) + (to —u) = —uw and n -1 = n). On the
other hand, —1 is l-integral over A (by Theorem 5 (a) below, applied to a = —1).
Thus, (—1) - (—u) is n - 1-integral over A (by Theorem 5 (c) below, applied to z = —1,
y = —uand m = 1). In other words, u is (a + ()-integral over A (since (—1)-(—u) =u
and n-1=n = a+ ). This proves Corollary 3.
We will provide a second proof of Corollary 3 in Part 5.

Theorem 4. Let A and B be two rings such that A C B. Let v € B and
u € B. Let m € N and n € N. Assume that v is m-integral over A, and
that u is n-integral over A [v]. Then, u is nm-integral over A.

Proof of Theorem 4. Since v is m-integral over A, we have A [v] = (0%, ', ..., 0™ 1),
(this is the Assertion D of Theorem 1, stated for v and m in lieu of u and n).

Since u is n-integral over A [v], we have (A [v]) [u] = (u°,u!, ..., u"il)AM (this is the
Assertion D of Theorem 1, stated for A [v] in lieu of A).

Let S ={0,1,...,n — 1} x {0,1,....,m — 1}.

Let x € (A[v]) [u]. Then, there exist n elements by, by, ..., b,_1 of A[v] such that x =

n—1
i;() biu' (since z € (A[v]) [u] = (u® u, ...,unﬂ}AM), But for each i € {0,1,...,n — 1},

m—1
there exist m elements a;o, a;1, ..., @;m—1 of A such that b; = > a; ;17 (because
j=0

10



T = b, u'= a; ;v u" = E a; ;v u" = E a; jv’u’
i m—1 =0 j=0 (ivj)e{orl 7777 n_l}X{071 77777 m_l} (7’7])65
i=o

e (viu' | (i,j) € S>A (since a; ; € A for every (i,j) € )

So we have proved that z € (viu' | (i,j) € S), for every x € (A[v])[u]. Thus,

(A[]) [u] € (Wu' | (i,4) € S),. Conversely, (v/u' | (i,5) € ), € (Av])[u] (since

v/ € Av] for every (i,7) € S, and thus v/ u’ € (A[v])[u] for every (i,5) € S, and
cAu]

therefore

(Vu' | (i,5) € S>A = Z a; jv'u’ | (aivj)(i,j)ES € A% % C (A]) [u]
(i,5)€S
—_————

- E(A[v])[u], since
vIut€(Alv])[u] for all (¢,5)€S

( and (A[v])[u] is an A-module )

). Hence, (A[v])[u] = (Wu' | (i,7) € S),. Thus, the A-module (A [v])[u] is nm-
generated (since
S| =1{0,1,....,n—1} x {0,1,....m —1}| = [{0,1,..,n — 1}| - [{0,1,...,m — 1}| = nm

~~ v~
=n =m

).
Let U = (A[v]) [u]. Then, the A-module U = (A [v]) [u] is nm-generated. Besides,
U is an A-submodule of B, and we have 1 = u° € (A[v]) [u] = U and

uwlU =u(A[v]) [u] C (A[v]) [u] (since (A[v])[u] is an A [v]-algebra and u € (A [v]) [u])
=U.

Altogether, we now know that the A-submodule U of B is nm-generated and sat-

isfies 1 € U and uU C U.

Thus, the element u of B satisfies the Assertion C of Theorem 1 with n replaced by
nm. Hence, u € B satisfies the four equivalent assertions A, B, C and D of Theorem
1, all with n replaced by nm. Thus, u is nm-integral over A. This proves Theorem 4.

Theorem 5. Let A and B be two rings such that A C B.
(a) Let a € A. Then, a is 1-integral over A.

(b) Let x € Band y € B. Let m € N and n € N. Assume that z is m-
integral over A, and that y is n-integral over A. Then, x + y is nm-integral
over A.
(c) Let z € Band y € B. Let m € N and n € N. Assume that x is
m-integral over A, and that y is n-integral over A. Then, zy is nm-integral
over A.

11



Proof of Theorem 5. (a) There exists a monic polynomial P € A [X] with deg P =1
and P (a) = 0 (namely, the polynomial P € A[X] defined by P (X) = X — a). Thus,
a is 1-integral over A. This proves Theorem 5 (a).
(b) Since y is n-integral over A, there exists a monic polynomial P € A[X] with
degP = n and P(y) = 0. Since P € A[X] is a monic polynomial with deg P = n,
there exists a polynomial P € A[X] with deg P < n and P (X) = X" + P (X).
Now, define a polynomial @ € (A z]) [X] by @ (X) = P (X — x). Then,
deg Q) = deg P (since shifting the polynomial P by the constant = does not change its degree)

= n’
and @ (X) = P(X —x) yields Q (z +y) = P (¢ +y) —2) = P(y) = 0.
Define a polynomial @ € (A[z]) [X] by Q(X) = (X —2)"—X") + P(X —ux).

Then, deg @ < n (since
deg (ﬁ (X — :U)) = deg (ﬁ (X)>

(since shifting the polynomial P by the constant x does not change its degree)
= degﬁ <n
and

desg (X — )" = X") = deg («X )XY (X X)

k=0

TV _
=deg(—x)=0 k=0 ~ _
<n—1, since
deg((X—x)kX"_l_k)Sn—l

for any k€{0,1,...,n—1}

< gleg((X — ) — X)+deg (n_ (X — x)an—l—k)

<04+ (n—-1)=n—-1<n
yield

deg Q = deg (@ (X)) = deg (((X —2)" = X"+ P(X —x))

< max ¢ deg (X — )" — X™), deg (15 (X — [B)) < max{n,n} =n

s

v~
<n g

). Thus, the polynomial @ is monic (since
QX)=P(X —2)= (X —2)"+P(X —2) (since P(X) :X”+13(X))
= X"+ (X —2)" = X")+ P(X —2) = X"+ Q(X)

and deg Q < n).
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Hence, there exists a monic polynomial @ € (A[z])[X] with deg@ = n and
Q(x+y) = 0. Thus, x + y is n-integral over A[z]. Thus, Theorem 4 (applied to
v =x and u = x + y) yields that = + y is nm-integral over A. This proves Theorem 5
(b).

(c) Since y is n-integral over A, there exists a monic polynomial P € A[X] with
degP = n and P(y) = 0. Since P € A[X] is a monic polynomial with deg P = n,

n—1
there exist elements ag, ai, ..., a,_1 of A such that P(X) = X" + Y a,X*. Thus,
k=0
n—1
Py)=y"+ > ay".
k=0
n—1
Now, define a polynomial Q € (A[z]) [X] by Q@ (X) = X" + > 2" *a; X*. Then,
k=0

n—1 n—1
o n n—k k n, n n—k, .k k
Q (zy) = (2y)" + 2 x ai (zy)” = 2"y" + ; T nx ary
=gnyn = bk =0 =z
Yy =apzty
=zFayy*
n—1 n—1
:x"y"+2x apy” =" |y —|—Zaky =0
k=0 k=0
=P(y)=0

Also, the polynomial @ € (Alz])[X] is monic and deg@ = n (since Q (X) = X" +
n—1
ST 2" *a, X*). Thus, there exists a monic polynomial Q € (A[z]) [X] with deg@Q =n
k=0

and Q@ (ry) = 0. Thus, zy is n-integral over A [z]. Hence, Theorem 4 (applied to v =z
and u = zy) yields that xy is nm-integral over A. This proves Theorem 5 (c).

Corollary 6. Let A and B be two rings such that A C B. Let n € N*
and m € N. Let v € B. Let by, by, ..., b,_1 be n elements of A, and let

n—1

u =Y bw'. Assume that vu is m-integral over A. Then, u is nm-integral
i=0
over A.

Proof of Corollary 6. Define n + 1 elements ag, a4, ..., a, of Alvu| by

a; = { by, ifi>0 for every i € {0,1,...,n}.

Then, ayg = —vu. Let k = 1. Then,

n n n n—1
i 0 Q i—1 A
E avt = ag v + E a; U = —vu-+ g b,_10" v = —vu + E bv'v
% 0 . , VN , 7 [
=0 ——yu =1 =1 —b;_q,=vi"lo i=1 =0
since
>0 =u

(here, we substituted ¢ for ¢ — 1 in the sum)

= —vu+uv = 0.
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Now, A[vu] and B are two rings such that A[vu] C B. The n + 1 elements ayg, a1,
., @y, of Afvu] satisfy > a;v' =0. We have k =1 € {0,1,...,n}.

1=0

n—k
Hence, Theorem 2 (applied to the ring A [vu] in lieu of A) yields that Y a0’ is
i=0
n-integral over A [vu]. But

n—1 n—1
)
E a,+kv—§ i V= biit1) 121—5 bv' = u.
~—~
1=0 —b,. =0
=0(i+1)—1,
since i+1>0

Hence, u is n-integral over A [vu|. But vu is m-integral over A. Thus, Theorem 4
(applied to vu in lieu of v) yields that u is nm-integral over A. This proves Corollary
6.

2. Integrality over ideal semifiltrations

Definitions:
Definition 6. Let A be a ring, and let ([p)pGN be a sequence of ideals of A. Then,
(£p) eny is called an ideal semifiltration of A if and only if it satisfies the two conditions

Iy = A;
L1, C 1, for every a € N and b € N.

Definition 7. Let A and B be two rings such that A C B. Then, we identify
the polynomial ring A [Y] with a subring of the polynomial ring B [Y] (in fact, every
element of A [Y] has the form Y ;Y for some m € N and (ag, ay, ..., a,,) € A™ and

i=0
thus can be seen as an element of B [Y] by regarding a; as an element of B for every

i€{0,1,...,m}).
Definition 8. Let A be a ring, and let (Ip)peN be an ideal semifiltration of A. Con-

sider the polynomial ring A[Y]. Let A [(I p) pen * Y] denote the A-submodule > LY
ieN
of the A-algebra A[Y]. Then,

Al e+ Y| =D 1

1€EN
= {Z a;Y' | (a; € I; for all i € N), and (only finitely many i € N satisfy a; # 0)}
ieN
={P € A[Y] | the i-th coefficient of the polynomial P lies in I; for every ¢ € N}.

Now,1 € A [([p)peN * Y} (becausel = 1 YOe LLY'C S LYi=A [(Ip)peN * Y} ).

CA=I, ieN

14



Also, the A-submodule A [(I p) pen * Y] of A[Y] is closed under multiplication (since

A[(Jp)peN*Y}-A[( ) e * } Sy Ly =Syt Y Ly

ieN ieN ieN jEN
(here we renamed i as j in the second sum)

=3 N YLy =YY" vy’

€N jeN €N jeN CI@+J _Yz+J

since (Ip) ,en
is an ideal
semifiltration

CY D LYy nyh=>"ny’

i€N jeN keN 1€N

(here we renamed k as i in the sum)

= A (L) e * V|

). Hence, A [(I 0) pent * Y] is an A-subalgebra of the A-algebra A [Y]. This A-subalgebra
A [(Ip)peN * Y] is called the Rees algebra of the ideal semifiltration (/,)
Clearly, AC A [(Ip)pEN * Y], since A [(Ip)

pEN”

S LY'D [0 YO —A-1=

Y] =
p €N

_A =1

A.

Definition 9. Let A and B be two rings such that A C B. Let (/,) .y be an ideal
semifiltration of A. Let n € N. Let u € B.

We say that the element u of B is n-integral over (A, (1 p)pGN) if there exists some

(ap,ay, ...,a,) € A" such that

Zakuk =0, ap, =1, and a; € I,_; for every i € {0,1,...,n}.

We start with a theorem which reduces the question of n-integrality over (A, (1 p)p €N>

to that of n-integrality over a ring?®:

Theorem 7. Let A and B be two rings such that A C B. Let (,) oy be
an ideal semifiltration of A. Let n € N. Let u € B.

Consider the polynomial ring A[Y] and its A-subalgebra A [(I )
defined in Definition 8.

Then, the element u of B is n-integral over (A, ([p)pEN) if and only if
the element uY of the polynomial ring B [Y] is n-integral over the ring
A [(Ip)peN * Y] . (Here, A [(Ip)peN * Y} C B[Y] because A [(Ip)peN * Y] C

A[Y] and we consider A[Y] as a subring of B [Y] as explained in Definition
7).

<Y

pEN

3Theorem 7 is inspired by Proposition 5.2.1 in [2].
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Proof of Theorem 7. In order to verify Theorem 7, we have to prove the following
two lemmata:

Lemmoa E: If u is n-integral over (A, (1,) ), then uY is n-integral over A [([p)peN * Y] )

peN

Lemma F: If uY is n-integral over A [(Ip) *Y}, then u is m-integral over

(A1) ).
Proof of Lemma £: Assume that u is n-integral over (A, (Ip)peN>. Then, by Defi-

nition 9, there exists some (ag, a1, ..., a,) € A" such that

peEN

Zakuk =0, a, =1, and a; € I,_; for every i € {0,1,...,n}.
k=0
Note that a; Y% € A [(Ip)peN * Y] for every k € {0,1,...,n} (because a; Y" %€
GInfk'
L Y ® CSYLY: = A [(Ip)pEN *Y]) Thus, we can define a polynomial P €

ieN
(A [(Ip)peN * YD [X] by P(X) = 3 apY"*X*. This polynomial P satisfies deg P <
k=0
n, and its coefficient before X™ is a, Y" " = 1. Hence, this polynomial P is monic
=1 =Y0=1

and satisfies deg P = n. Also, P(X) = 3 a, Y *X* yields
k=0

PuY)=> aY" " y)" => ay" v = ot Y RYVE =y gt = 0.
k=0 k=0 k=0 =Yn k=0

=0

Thus, there exists a monic polynomial P € (A [(Ip)pGN * YD [X] with deg P = n and
P (uY) = 0. Hence, uY is n-integral over A [(IP)pGN * Y] This proves Lemma &.
Proof of Lemma F: Assume that uY is n-integral over A [([ p)pEN * Y} . Then, there
exists a monic polynomial P € (A [([P)pGN *k YD [X] with deg P =n and P (uY) = 0.
Since P € (A [(Ip)peN*YD [X] satisfies deg P = n, there exists (po,p1,...,Pn) €

n+1 n
(A [([p)pGN * YD such that P (X) = > p.X*. Besides, p, = 1, since P is monic
k=0

and deg P = n.

For every k € {0,1,...,n}, we have p, € A [(Ip)peN * Y] = > LY" and thus, there

ieN
exists a sequence (pii);cy € AN such that pp = > pi;Y?, such that py,; € I; for every
iEN

i € N, and such that only finitely many i € N satisfy py.; # 0. Thus, P (X) = Y pp X*
0

n

k
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becomes P (X) = > Y ppiY'X* (since pr = > priY?). Hence,

k=0 i€N ieN
praY" ( uY Z > XYt
k=0 ieN . kyk k=0 ieN —Yitk
_ﬁkuk
_ Zp Yz-l—k kE _ Z Zpk,iyi+kuk
k=0 i€N ke{0,1,..,n} €N
_ 3 priY b = § 3 s Y b
(k,i)€{0,1,...,n} xN LeN (k,)e{0,1,. n}XN; =y
H—k
=2 2 mYW=) Z P
LeN (k,i)e{0,1,...,n} xN; LeN (k,i)e{0,1,...,n} xN;
it k=t i+k=¢
Hence, P (uY) = 0 becomes ) > peiu®Y? = 0. In other words, the
¢EN (k,i)e{0,1,...,n} xN;
z—l—k Z
polynomial > Z Di,iU Y € B[Y] equals 0. Hence, its coefficient before
LEN (1 )e{0,1,...,n} xN;
ith=0 )
B
Y™ equals 0 as well. But its coefficient before Y™ is > priu”. Hence,
(k,i)€{0,1,...,n} xN;
i+k=n
priu” equals 0.
(k,5)€e{0,1,...,n} xN;
i+k=n
Thus,
0= Z pk,iuk = Z Z pk,iuk = Z pk,n—kuk
(k,0)€{0,1,...,n} xN; ke{0,1,...,n} ’LEN ke{0,1,....,n}
i+k=n i+k=
since {i € N | z'—i—k:n}:{zeN | i=n—k}={n—k} (because n — k € N,
since k € {0,1,...,n}) yields > pru*= > pru® = ppnruf
i€N; i€{n—k}
i+k=n
Note that
meYi =Dy, (smce Zp;“ = py, for every k € {0, 1, ,n})
€N ieN
=1=1-Y"
in A[Y], and thus the coefficient of the polynomial > p,;Y" € A[Y] before YV is 1;
ieN
but the coefficient of the polynomial Y p,;Y* € A[Y] before Y is p, o; hence, p, o = 1.

ieN
Define an (n + 1)-tuple (ag, ay, ..., a,) € A" by (ax = prni for every k € {0,1,...,n}).
Then, a, = pnpn—n = pno = 1. Besides,

Zaku = Zpkn put = Z P’ =0,

k=0 ke{0,1,...n}
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Finally, ax = prn—k € Lh—k (since pg; € I; for every ¢ € N) for every k € {0,1,...,n}.
In other words, a; € I,_; for every i € {0,1,...,n}.
Altogether, we now know that

n
Zakuk =0, a, =1, and a; € I,,_; for every i € {0,1,....,n}.
k=0

Thus, by Definition 9, the element u is n-integral over (A, (1,) > . This proves Lemma

F.
Combining Lemmata £ and F, we obtain that u is n-integral over (A, (1 p)p€N> if

peN

and only if uY is n-integral over A [([ 0) pen * Y]. This proves Theorem 7.

The next theorem is an analogue of Theorem 5 for integrality over ideal semifiltra-
tions:

Theorem 8. Let A and B be two rings such that A C B. Let (I, be

an ideal semifiltration of A.

(a) Let uw € A. Then, u is 1-integral over (A, (Ip)p€N> if and only if u € .

)pEN

(b) Let x € Band y € B. Let m € N and n € N. Assume that x is
m-integral over (A, (Ip)peN) , and that y is n-integral over (A, (Ip)pEN)'

Then, x + y is nm-integral over <A, (Ip)p€N>.

(c) Let z € Band y € B. Let m € N and n € N. Assume that x is

m-integral over (A, (Ip)pGN) , and that y is n-integral over A. Then, zy is
nm-integral over (A, (Ip)p€N>'

Proof of Theorem 8. (a) In order to verify Theorem 8 (a), we have to prove the
following two lemmata:

Lemma G: If u is 1-integral over (A, (Ip)peN>, then u € I;.
Lemma H: If uw € I, then u is 1-integral over <A, (IP)pEN>'
Proof of Lemma G: Assume that u is 1-integral over (A, ([p)p€N>. Then, by Defi-

nition 9 (applied to n = 1), there exists some (ag,a;) € A? such that
Zakuk =0, a; =1, and a; € I_; for every i € {0,1}.

Thus, ag € I (since a; € I;_; for every i € {0,1}). Also,
1
O:Zakuk:ao W o+ oap ut =ag+ u,

k=0 =1 =1 =u

sothat u=— ay € I (since I; is an ideal). This proves Lemma G.

eh-o=h

18



Proof of Lemma H: Assume that v € I;. Then, —u € I; (since [; is an ideal).
1

Set ag = —u and a; = 1. Then aput = ag a; uw = —u+u=0. Also
0 1 ,kgo k 0 . 1 +oar u + )
=—u = =1 =u

a; € I,_; for every i € {0,1} (since aqp=—ue€lh =1 ganday=1€ A=1y=1_1).
Altogether, we now know that (ag,a;) € A% and

Zakuk =0, a; =1, and a; € I,_; for every i € {0,1}.

Thus, by Definition 9 (applied to n = 1), the element u is 1-integral over (A, (Ip)pEN)'
This proves Lemma H.

Combining Lemmata G and H, we obtain that u is 1-integral over (A, (Ip)p€N> if
and only if u € I;. This proves Theorem 8 (a).

(b) Consider the polynomial ring A [Y] and its A-subalgebra A [(I p) pen * Y} . The-
orem 7 (applied to = and m instead of u and n) yields that zY is m-integral over

A [(Ip)pEN * Y] (since x is m-integral over (A, ([p>p€N>)' Also, Theorem 7 (applied to
y instead of u) yields that yY is n-integral over A [(I p)peN * Y] (since y is n-integral

over (A, (Ip)p€N>). Hence, Theorem 5 (b) (applied to A [(Ip)pEN * Y] , B[Y], Y and
yY instead of A, B, = and y, respectively) yields that Y + yY is nm-integral over
A [(Ip)pEN * Y]. Since Y +yY = (x +y) Y, this means that (z + y) Y is nm-integral

over A [(Ip)peN * Y} . Hence, Theorem 7 (applied to x 4+ y and nm instead of u and n)

yields that x + y is nm-integral over (A, (1 p)p6N>. This proves Theorem 8 (b).

(c) First, a trivial observation:

Lemma Z: Let A, A" and B’ be three rings such that A C A’ C B’. Let v € B'.
Let n € N. If v is n-integral over A, then v is n-integral over A’.

Proof of Lemma Z: Assume that v is n-integral over A. Then, there exists a monic
polynomial P € A[X] with deg P = n and P (v) = 0. Since A C A, we can identify
the polynomial ring A [X] with a subring of the polynomial ring A’ [X] (as explained
in Definition 7). Thus, P € A[X] yields P € A’[X]. Hence, there exists a monic
polynomial P € A’ [X]| with deg P = n and P (v) = 0. Thus, v is n-integral over A’
This proves Lemma 7.

Now let us prove Theorem 8 (c).

Consider the polynomial ring A[Y] and its A-subalgebra A [(I p) pen * Y]. The-
orem 7 (applied to x and m instead of u and n) yields that zY is m-integral over
A [(Ip)peN >) On the other hand, Lemma

7 (applied to A’ = A [(Ip)

* Y] (since x is m-integral over (A, (Lp) pery

pen * Y}, B’ = B[Y] and v = y) yields that y is n-integral
over A [(Ip)peN * Y] (since y is n-integral over A, and A C A [(Ip)pGN * Y] C B[Y]).
Hence, Theorem 5 (c) (applied to A [([P)pGN * Y} , B[Y] and zY instead of A, B and z,

respectively) yields that zY -y is nm-integral over A [(I o) en ¥ Y} . Since 2Y -y = xyY,

peEN
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this means that xyY is nm-integral over A [(I p) pen

* Y]. Hence, Theorem 7 (applied

to xy and nm instead of u and n) yields that zy is nm-integral over (A, (1 p)p€N>. This
proves Theorem 8 (c).
The next theorem imitates Theorem 4 for integrality over ideal semifiltrations:
Theorem 9. Let A and B be two rings such that A C B. Let (I,) .y be
an ideal semifiltration of A.
Let ve Band u e B. Let m € Nand n € N.
(a) Then, (I,A[v]) oy is
(b) Assume that v is m-integral over A, and that w is n-integral over
(A [v], ([,A [U])p€N>. Then, u is nm-integral over (A, <Ip>p€N>'

an ideal semifiltration of A [v]. *

Proof of Theorem 9. (a) More generally:

Lemma J: Let A and A’ be two rings such that A C A’. Let (I,) . be an ideal
semifiltration of A. Then, (I,A’) .y is an ideal semifiltration of A'.

Proof of Lemma J: Since (I ) pen 18 an ideal semifiltration of A, the set I, is an
ideal of A for every p € N, and we have

]0 = A,
I, C Iy for every a € N and b € N.

Now, the set 1,A’ is an ideal of A’ for every p € N (since [, is an ideal of A). Hence,
(L,A") ,n 18 a sequence of ideals of A". It satisfies

LA = AA = A,
LA - LA =LA C I, ,A" (since I,I, C I,.) for every a € N and b € N.

Thus, by Definition 6 (applied to A" and (1,A4") y instead of A and (I,)
that (I A') c is an ideal semifiltration of A'. ThlS proves Lemma J.

Now let us prove Theorem 9 (a). In fact, Lemma J (applied to A’ = A[v]) yields
that (1,A [v]) oy is an ideal semifiltration of A[ ]. This proves Theorem 9 (a).

(b) First, we will show a simple fact:

Lemma K: Let A, A’ and B’ be three rings such that A C A’ C B'. Let v € B'.
Then, A"- Afv] = A [v].

Proof of Lemma K: We have A" - Afv] C A'[v]- A [v] = A'[v] (since A’ [v]

~

CA'T]  car),

pen)» it follows

since ACA’
is a ring). On the other hand, let x be an element of A’ [ ]. Then, there exists some
n € N and some (ag, a1, ..., a,) € (A)""" such that = = Z ayv®. Thus,
k=0
T = Z a U € Z A Afv] C A-A) (since A"+ A[v] is an additive group).

k=0 EA’ GA[U] k=0

“Here and in the following, whenever A and B are two rings such that A C B, whenever v is
an element of B, and whenever I is an ideal of A, you should read the term I A[v] as I (A[v]), not
as (IA) [v]. For instance, you should read the term I,A[v] (in Theorem 9 (a)) as I, (A [v]), not as
(1, 4) [o].
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Thus, we have proved that © € A"-A [v] for every x € A’ [v]. Therefore, A’ [v] C A" A [v].
Combined with A" - A[v] C A’[v], this yields A" - A[v] = A’[v]. Hence, we have
established Lemma .

Now let us prove Theorem 9 (b). In fact, consider the polynomial ring A[Y]

and its A-subalgebra A [([p)peN * Y]. We have A [([p)pEN * Y} C AlY], and (as ex-
plained in Definition 7) we can identify the polynomial ring A [Y] with a subring of
(A[v]) [Y] (since A C A[v]). Hence, A [( )y *y] C (A[v]) [Y]. On the other hand,

(AL)) [(LAR]) e+ Y] S (ARD Y],
Now, we will show that (A [v]) [(IPA [v])
In fact, Definition 8 yields

(A (LA e # Y| = D LAR]Y =Y 1Y Alo] = A | (L) e * Y | - A0

€N ieN
(since Z LY'=A [(Ip)peN * Y})
ieN

= (AU yex ¥ Y]) o]

(by Lemma K (applied to A’ = A [(Ip)peN * Y] and B’ = (A[v]) [Y])).
Note that (as explained in Definition 7) we can identify the polynomial ring (A [v]) [Y]
with a subring of B[Y] (since A[v] C B). Thus, A [(]p)peN * Y} C (Av]) [Y] yields

A [(Jp)peN * Y] c BIY].

e ¥V | = (A (L) e+ Y] ) 1]

Besides, Lemma Z (applied to A [(Ip>p€N * Y}, BY] and m instead of A’, B’ and
n) yields that v is m-integral over A [(Ip)pEN * Y] (since v is m-integral over A, and
ACA [(Ip)peN x Y] C BIY]).
Now, Theorem 7 (applied to A [v] and (1, A [v]) c instead of A and (,) ) vields
that Y is n-integral over (A [v]) [( Alv]) ey * ] (since u is n-integral over (A ], (I,A [v])p€N> ).
Since (A [v]) [(IPA [v]) en * ] ( [(Ip)pGN D [v], this means that uY is n-integral
over (A [(IP)pGN * YD [v]. Now, Theorem 4 (applied to A [(Ip)peN * Y} , B[Y] and uY
instead of A, B and u) yields that uY" is nm-integral over A [(I p) pen * Y] (since v is m-

integral over A [([ ) on X Y], and uY is n-integral over (A [(IP>p€N * YD [v]). Thus,

P/ peN
Theorem 7 (applied to nm instead of n) yields that u is nm-integral over (A, (1 p)p€N>.
This proves Theorem 9 (b).

3. Generalizing to two ideal semifiltrations

Theorem 10. Let A be a ring.
(a) Then, (A) oy is an ideal semifiltration of A.
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(b) Let (1,) oy and (J,) oy be two ideal semifiltrations of A. Then, (1,.J,)
is an ideal semifiltration of A.

pEN

Proof of Theorem 10. (a) Clearly, (A) pen 18 a sequence of ideals of A. Hence, in
order to prove that (A) pen 1s an ideal semifiltration of A, it is enough to verify that it
satisfies the two conditions

A=A
AACA for every a € N and b € N.

But these two conditions are obviously satisfied. Hence, (A4) .y is an ideal semifiltration
of A (by Definition 6, applied to (A) .y instead of (1)) This proves Theorem 10
(a).

(b) Since (1) .y is an ideal semifiltration of A, it is a sequence of ideals of A, and
it satisfies the two conditions

pGN)'

IO = A7
1.0y, C Iy for every a € Nand b € N

(by Definition 6). Since (.J)  is an ideal semifiltration of A, it is a sequence of ideals
of A, and it satisfies the two conditions

Jb 2214;
Jody € Joip for every a € N and b € N

(by Definition 6, applied to (J,) oy instead of (1,) cx)-

Now, I,J, is an ideal of A for every p € N (since I, and J, are ideals of A for every
p € N, and the product of any two ideals of A is an ideal of A). Hence, (I,J,) o is a
sequence of ideals of A. Thus, in order to prove that (/ pJp)peN is an ideal semifiltration
of A, it is enough to verify that it satisfies the two conditions

I()JO = A,
I,y Lydy € Lovpdars for every a € N and b € N.

But these two conditions are satisfied, since

]0 JO = AA = A,
~
=A =A
1, J, - Iydy = 1.1y Jody C Loapdars for every a € N and b € N.
~— ~—

gla+b gJa+b

Hence, (1,J,) oy is an ideal semifiltration of A (by Definition 6, applied to (I,J,)
instead of (I ). This proves Theorem 10 (b).

P/ peN
Now let us generalize Theorem 7:

pEN

Theorem 11. Let A and B be two rings such that A C B. Let (I,) cy
and (J,) .y be two ideal semifiltrations of A. Let n € N. Let u € B.

We know that (I,J,) . is an ideal semifiltration of A (according to Theo-
rem 10 (b)).
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Consider the polynomial ring A [Y] and its A-subalgebra A [(I p)pGN * Y].

We will abbreviate the ring A [(Ip)peN * Y] by A

By Lemma J (applied to Ajy and (J;), ¢y instead of A" and (1,) ), the
sequence (JTA[I])TGN is an ideal semifiltration of Ay (since A C Ay and

since (Jr), oy = (Jp) o is an ideal semifiltration of A).

Then, the element u of B is n-integral over (A, (1 pJp)pEN) if and only if the
element uY of the polynomial ring B [Y] is n-integral over <A[I]> (JTA[U)TEN> :

(Here, Ay € B[Y] because Ajjp = A [(]p)peN * Y} C A]Y] and we consider
A[Y] as a subring of B[Y] as explained in Definition 7.)

Proof of Theorem 11. First, note that

Z Ly = Z LY’ (here we renamed ¢ as i in the sum)

LeN 1€N

= A (L) e ¥ Y| = Ay

In order to verify Theorem 11, we have to prove the following two lemmata:
Lemma &': If u is n-integral over (A (1,J,) EN), then uY is n-integral over

(A, (J-An) )
Lemma F': If uY is n-integral over (Am, (JTA[U)TGN>’ then wu is n-integral over

(4, (o) et
Proof of Lemma E': Assume that u is n-integral over (A, (]pJp)p€N>. Then, by

Definition 9 (applied to (I,.J,) . instead of () ), there exists some (ag, a1, ..., a,) €
A" such that

Zakuk =0, a, =1, and a; € I,_;J,_; for every i € {0,1,...,n}.

Note that a,Y"™* € Ay for every k € {0,1,...,n} (because ay € ISyt C I
(since I,_y, is an ideal of A) and thus a,Y" % € I, ,Y"* C S LY = Appp). Thus, we
iEN
can define an (n + 1)-tuple (b, b1, ..., b,) € (Am)n+1 by (b, = a Y™ " for every k € {0,1,...,n}).
Then,

b - (uY)" apY" - (uy)F ap Y RuRPY’R = naukY”’kY’“:Y”-nauk:O;
R

=0
N——
=0

by = a, Y" " =1,
——

=1 =Y0=1
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and . A
bi=  ap Y"'€ i LY C I A
— =

el _idn—; QZ IKYZ
=Jn—iln_i £eN
=Amn

for every i € {0,1,...,n}.
Altogether, we now know that (b, b1, ..., b,) € (Am)n+1 and

Z bk-(uY)k =0, b, =1, and by € Jo_i Ay for every i € {0,1,...,n}.

Hence, by Definition 9 (applied to Ay, B[Y], (J-Ay) .y, «Y and (bo, by, .., by)
instead of A, B, (I) .y, v and (ag,as,...,a,)), the element uY is n-integral over

(Am, (‘]TAU])TeN)' This proves Lemma &’

Proof of Lemma F': Assume that uY is n-integral over (Am, (JTA[I])T€N>. Then,

by Definition 9 (applied to Ay, B[Y], (JTAU]) uwY and (pg,p1, ..., Pn) instead of

TEN’

A B, (I )peN, w and (ag, ay, ..., a,)), there exists some (po, p1, ..., Pn) € (A[I])HJrl such
that
Zpk-(uY)k =0, P =1, and pi € Jp_i Ay for every i € {0,1,...,n}.

For every k € {0,1,...,n}, we have

Pk € Jn,kA[]] = Ju_k ZL’YZ’ (since A[[] = Z Iiyi>

ieN i€N
i€N €N

€ AY such that py = > pr;Y?, such that
iEN

Dk,i € LiJn— for every ¢ € N, and such that only finitely many ¢ € N satisfy py; # 0.

Thus,

and thus, there exists a sequence (pg.i),cy

Zpk uY Z Zpk Y. (uY) <since Di = Zpk’iyi)

k=0 ieN 7ukYk ieN
_quk
n
_E E pk,iyz Yok
k=0 €N —Yi+k
n
:E E pk,inJrkUk: E E pk,z’YHkuk
k=0 ieN ke{0,1,...,n} i€N
_ i+k, k __ i+k , k
- § : PriY" E E pri¥ " u
(k,i)€{0,1,...n} xN €eN (k,i)e{0,1,...n}xN; —yt
i+k={
kv
= E E p;“Y ub = E g DY "
LeN (k,1)e{0,1,...,n} xN; LeN (k,i)e{0,1,...,n} xN;
i+k={ i+k=0
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n
Hence, S py - (uY)* = 0 becomes 3 > priu®Y? = 0. In other words, the
k=0 (€N (k,i)€{0,1,....n} XN

i+k=(
polynomial > Z pk7iuk Y* € B[Y] equals 0. Hence, its coefficient before
LEN (1 )e{0,1,....n} xN;
o itk )
B
Y™ equals 0 as well. But its coefficient before Y™ is > priu”. Hence,
(k,i)€{0,1,...,n} xN;
i+k=n
> priu” equals 0.
(k,i)€{0,1,...,n} xN;
i+k=n
Thus,
0= Z pk,iuk = Z Z pk,iuk = Z pk,nfkuk
(k,i)e{0,1,...,n}xN; ke{0,1,....,n} i€N; ke{0,1,....,n}
i+k=n i+k=n

since {i €N | i+k=n}={ieN | i=n—k}={n—k} (because n — k € N,
since k € {0,1,...,n}) yields > pruf= > priu® = ppnruf

i€N; ie{n—k}
i+k=n
Note that
meYi = Dn (since Zpkini = py, for every k € {0, 1, ,n})
ieN ieN
=1=1-Y"
in A[Y], and thus the coefficient of the polynomial > p,;Y* € A[Y] before Y? is 1;
iEN
but the coefficient of the polynomial Y p,;Y* € A[Y] before Y is p, o; hence, p, o = 1.

ieN
Define an (n + 1)-tuple (ag, ay, ..., a,) € A" by (ax = prn_i for every k € {0,1,...,n}).
Then, a, = pnp—n = Pno = 1. Besides,

n n
k k k
E arpu” = E Dkn—kU = E Prn—ku = 0.

ke{0,1,....,n}
Finally, ax = prn—i € In—kJn—r (since py; € I;J,_y for every i € N) for every k €
{0,1,...,n}. In other words, a; € I,,_;J,_; for every i € {0,1,...,n}.
Altogether, we now know that

n

Zakuk =0, an, =1, and a; € I, ;J,_; for every i € {0,1,...,n}.
k=0

Thus, by Definition 9 (applied to (I,J,) ey
integral over (A, (IpJp)peN). This proves Lemma F’.

instead of (/ the element wu is n-

o) pen);

Combining Lemmata £ and F’, we obtain that u is n-integral over <A, (]pJp)peN>

if and only if uY is n-integral over (Am, (JTA[I})T eN). This proves Theorem 11.

For the sake of completeness, we mention the following trivial fact (which shows
why Theorem 11 generalizes Theorem 7):
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Theorem 12. Let A and B be two rings such that A C B. Let n € N.
Let u € B.

We know that (A) ¢y is an ideal semifiltration of A (according to Theorem
10 (a)).
Then, the element u of B is n-integral over (A, (A) peN) if and only if u is

n-integral over A.

Proof of Theorem 12. In order to verify Theorem 12, we have to prove the following
two lemmata:
Lemma L: If u is n-integral over (A, (A)p€N>, then u is n-integral over A.

Lemma M: If u is n-integral over A, then wu is n-integral over (A, (A)p€N>.

Proof of Lemma L: Assume that u is n-integral over <A, (A)peN>. Then, by Defi-

nition 9 (applied to (A) .y instead of (1,) ), there exists some (ag, a1, ..., an) € Artl
such that
Zakuk =0, a, =1, and a; € A for every i € {0,1,....,n}.
k=0

Define a polynomial P € A[X] by P (X) = Y axX*. Then, P(X) = > a;, X* =
k=0 k=0

n—1 n—1
an X"+ 5 ap X* = X"+ a, X*. Hence, the polynomial P is monic, and deg P = n.
~ k=0 k=0

Besides, P (u) = 0 (since P (X) = > a; X* yields P (u) = > apu® = 0). Thus, there
k=0 k=0

exists a monic polynomial P € A[X] with degP = n and P (u) = 0. Hence, u is
n-integral over A. This proves Lemma L.

Proof of Lemma M : Assume that u is n-integral over A. Then, there exists a monic
polynomial P € A[X] with degP = n and P (u) = 0. Since deg P = n, there exists

some (n + 1)-tuple (ag, ay, ...,a,) € A" such that P (X) = > a,X*. Thus, a, = 1
k=0
(since P is monic, and deg P = n). Also, Y a X* = P (X) yields > apu* = P (u) = 0.
k=0 k=0

Altogether, we now know that (ag, ay, ..., a,) € A" and

Zakuk =0, a, =1, and a; € A for every i € {0,1,....,n}.
k=0
Hence, by Definition 9 (applied to (A) .\ instead of (I,) ), the element u is n-integral

over (A, (A) p€N>. This proves Lemma M.

Combining Lemmata £ and M, we obtain that u is n-integral over (A, (A) peN) if

and only if u is n-integral over A. This proves Theorem 12.
Finally, let us generalize Theorem 8 (c):
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Theorem 13. Let A and B be two rings such that A C B. Let (/,)

eN
and (J,) cy be two ideal semifiltrations of A. ’

Let x € Band y € B. Let m € N and n € N. Assume that x is m-integral
over (A, (1,) > , and that y is n-integral over (A, (J,) ) Then, zy is

nm-integral over (A, (IpJp)p€N>.

peN peN

Proof of Theorem 13. First, a trivial observation:
Lemma Z': Let A, A" and B’ be three rings such that A C A’ C B’. Let ({,)

an ideal semifiltration of A. Let v € B’. Let n € N. If v is n-integral over (A, (1,)

be

peN
peN |
then v is n-integral over (A/, (IpA’)p€N>. (Note that (/,A") . is an ideal semifiltration
of A’ according to Lemma 7.)

Proof of Lemma TI': Assume that v is n-integral over <A, (Ip)peN>. Then, by

Definition 9 (applied to B’ and v instead of B and ), there exists some (ag, a1, ..., a,) €
A" such that

n
Zakvk =0, a, =1, and a; € I,,_; for every i € {0,1,....,n}.
k=0

But (ag, ay, ..., a,) € A" yields (ag, ay, ..., a,) € (A)"" (since A C A'), and a; € I,,_;
yields a; € I,,_;A’ (since I,,_; C I, ;A’) for every i € {0,1,...,n}. Thus, (ag,ay,...,a,) €
(A" and

Z av® =0, a, =1, and a; € I, ;A for every i € {0,1,...,n}.
k=0
Hence, by Definition 9 (applied to B', A’, (I,A’) y and v instead of B, A, (,) o and

u), the element v is n-integral over (A’, (IpA’)p€N>. This proves Lemma 7'.

Now let us prove Theorem 13.
We have (J,) .y = (J-),oy. Hence, y is n-integral over (A, (J;)

n-integral over (A, (Jp)p€N> ).
Consider the polynomial ring A [Y] and its A-subalgebra A [(I p) pen * Y]. We will

peN en) (since y is

abbreviate the ring A [(]P)pEN * Y} by Aj. We have Ayp € BY], because A =

A [([ p) pen * Y] C A[Y] and we consider A[Y] as a subring of B[Y] as explained in
Definition 7.
Theorem 7 (applied to z and m instead of u and n) yields that zY is m-integral

over A [([P)pEN * Y] (since z is m-integral over <A, (]p)peN>). In other words, =Y is
m-integral over Ajy (since A [(Ip)peN s Y} = App).

On the other hand, Lemma Z’ (applied to Ay, B[Y], (J;),oy and y instead of
A, B, ([P)pEN and v) yields that y is n-integral over (Am, (JTAU])TGN) (since y is
n-integral over (A, (J;),y), and A C Ay C B[Y])).
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Hence, Theorem 8 (c) (applied to Ay, B[Y], (J-Ap)
of A, B, (I,)

(Am, (JTA[I])T€N> (since y is n-integral over (Am, (‘]TA[I])TEN>’ and Y is m-integral

e Ys Y, m and n instead

e Ts Yy 1 and m respectively) yields that y - Y is mn-integral over

over Ajpj). Since y - Y = xyY and mn = nm, this means that zyY is nm-integral

over <A[I], (JTAU])TGN)‘ Hence, Theorem 11 (applied to xy and nm instead of u and
n) yields that zy is nm-integral over <A, (1 pJp)p€N>' This proves Theorem 13.

4. Accelerating ideal semifiltrations
We start this section with an obvious observation:

Theorem 14. Let A be aring. Let (I,) .y be an ideal semifiltration of A.
Let A € N. Then, (1)) is an ideal semifiltration of A.

Proof of Theorem 14. Since (I, p)peN is an ideal semifiltration of A, it is a sequence
of ideals of A, and it satisfies the two conditions

]0 = A,
1.1, C I, for every a € N and b € N
(by Definition 6).
Now, I,, is an ideal of A for every p € N (since (Ip)peN is a sequence of ideals of

A). Hence, (I,) ¢y is a sequence of ideals of A. Thus, in order to prove that (Iy,)
is an ideal semifiltration of A, it is enough to verify that it satisfies the two conditions

I = A
Dl € Dot for every a € N and b € N.

But these two conditions are satisfied, since

Ivo =1y =4
DIy, C Dvgsns (since (]p)peN is an ideal semifiltration of A)
= I\(a+b) for every a € N and b € N.

Hence, (I),),cy is an ideal semifiltration of A (by Definition 6, applied to (Iy,)
instead of (/,) ). This proves Theorem 14.

I refer to (1)) oy as the A-acceleration of the ideal semifiltration (1,) -

Now, Theorem 11, itself a generalization of Theorem 7, is going to be generalized
once more:

peN

Theorem 15. Let A and B be two rings such that A C B. Let (1)

eN
and (J,) cy be two ideal semifiltrations of A. Let n € N. Let u € B. Let
AeN.
We know that (1)) y is an ideal semifiltration of A (according to Theorem
14).
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Hence, (I),J,) c is an ideal semifiltration of A (according to Theorem 10
(b), applied to (1)) . instead of (1,) cx)-

Consider the polynomial ring A [Y] and its A-subalgebra A [(I 0) pent * Y].

We will abbreviate the ring A [(Ip) * Y] by A

peN

By Lemma J (applied to Ay and (J;), .y instead of A" and (,) ), the
sequence (JTA[I])T oy I8 an ideal semifiltration of Ay (since A C Ajj and
since (J7), ey = (Jp) oy is an ideal semifiltration of A).

Then, the element u of B is n-integral over (A, (I/\pJp)peN> if and only if the
element uY* of the polynomial ring B [Y] is n-integral over (A[ 1, (J- A I])TeN> :

(Here, Ay € B[Y] because Ay = A [(Ip)peN * Y} C A]Y] and we consider
A[Y] as a subring of B[Y] as explained in Definition 7.)

Proof of Theorem 15. First, note that

Z LY! = Z LY? (here we renamed ¢ as i in the sum)

£eN 1€EN

= A (L), + Y] = Ay

In order to verify Theorem 15, we have to prove the following two lemmata:

Lemma E": If u is n-integral over (A, (Irpdy) then uY? is n-integral over

(Ama (‘]TA[I])TEN>'
Lemma F": If uY? is n-integral over (Am, (JTA[I})T€N>, then u is n-integral over

(A, () o)

Proof of Lemma E": Assume that u is n-integral over (A, <I)‘PJP)p€N>' Then, by
Definition 9 (applied to ([/\pJp>peN instead of (Ip)peN), there exists some (ag, ai, ..., a,) €
A" such that
Z apu® =0, a, = 1, and a; € In(n—i)Jn—i for every i € {0,1,...,n}.
k=0

peN )

Note that apY ") ¢ App for every k € {0,1,...,n} (because a € Ingp—g)Jn—k

Ingm—r) (since Iy is an ideal of A) and thus apY M=k ¢ ],\(n_k)Y)‘(”_k) C> LY!
ieN

1M

Ajp). Thus, we can define an (n + 1)-tuple (bo, b1, ..., b,) € (A[I]>n+1 by

(b = arY "% for every k € {0,1, n}).
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- Ak - Mn—k Ak - Mn—k), kv Ak - kv A(n—k)y Ak An - k .
Zbk-(uY ) :ZakY( ). (uY ) :ZakY( kY :Zaku yrn-ky Ak — y -Zaku = 0;
k=0 k=0 v & k=0 k=0 —yMn—Fk)+Ak k=0

:uk(Y)‘) :Ykn
—uky ke =0
by = a, Y o —1
——
—1 =y o=y0=1]
and A ‘
b; = a; YA e g I)\(nfi)Y)\(n_Z) C Ju—iAn
I J,
S n—i)Jn—i '
:JiL(fiI)?(n—i) QZ%IL;Y
=Am
for every i € {0,1,...,n}.
Altogether, we now know that (bg, by, ..., b,) € (Am)n+1 and
Z by, - (uYA)k =0, b, =1, and by € Jo_; Ay for every i € {0,1,...,n}.

k=0
Hence, by Definition 9 (applied to Ay, B[Y], (J-Aq)
instead of A, B, (Ip)peN,
(Am, (‘]TAU])TeN>' This proves Lemma &”.

Proof of Lemma F": Assume that uY? is n-integral over (A[[], (JTA[I])TGN>' Then,
by Definition 9 (applied to Ay, B[Y], (J-Aq)

N uY? and (b, by, ..., b,)
u and (ag,ay, ...,a,)), the element uY? is n-integral over

e uY? and (po, p1, ..., pn) instead of

A, B, (Ip)peN, uw and (ag, ay, ..., a,)), there exists some (pg, p1, ..., Pn) € (A[I])nH such
that
Zpk~ (uY’\)k =0, Pn = 1, and pi € Jn—iApp for every i € {0,1,...,n}.
k=0

For every k € {0,1,...,n}, we have

Pr € Jn_kA[[] =Ju_k ZIIYZ (since A[I] = Z [lYZ>

ieN ieN
= Sk LY =Y LY
i€N ieN

and thus, there exists a sequence (pg;);.y € AN such that pr, = > pr;Y", such that
i€N
Pk,i € LiJn— for every ¢ € N, and such that only finitely many ¢ € N satisfy py; # 0.
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Thus,

zpk W) =3 v () ( pk:zpk,@-w)

k=0 ieN — ieN
,uk(yz\)
—uky Ak
—y Ny k
n
S
k=0 €N —Yi+Ak
n
SN gy = ST ST vy
k=0 ieN k€{0,1,....n} i€N
_ ViR, k yitAk K
S SR S S
(k,3)e{0,1,...,n}xN LeN (k, 1)6{0717 ,n}XN =Yt
=2 > mYu= > Y
LeN (k,i)e{0,1,...,n} xN; LeN (k,i)€{0,1,...,n} xN;
it Ak=( it Ak=0
n
Hence, > pg- (uYA)k = 0 becomes ) > Priu®Y* = 0. In other words, the
i+ k=
polynomial Z pru” Y? € B[Y] equals 0. Hence, its coefficient before
tEN (1 i)efo,1,...n} xN;
i+ A=
B
Y equals 0 as well. But its coefficient before Y is > priu®. Hence,
(kyi)€{0,1,....,n} xN;
i+ k=An
> priu® equals 0.
(k,1)e{0,1,...,n}xN;
i+Ak=An
Thus,
0= >, prat = Y > et = Y pramwu”
(k,i)€{0,1,...,n} xN; ke{0,1,...,n} i€N; ke{0,1,....,n}
P P i+Ak=An

since {i e N | i+ e=Xn}={ieN | i=An— Ak}
={ieN | i=AX(n—Fk)}={A(n—k)} (because A (n — k) € N,
since k € {0,1,...,n} yields n — k € N and we have A € N)

yields Z pk,iuk = Z pk,iuk = pk,)\(n—k)uk
i€N; ie{\(n—k)}
i+Ak=An
Note that
meYi = Dn (since ZpkﬁiYi = py. for every k € {0, 1, ,n})
ieN ieN
=1=1-Y"
in A[Y], and thus the coefficient of the polynomial > p,;Y" € A[Y] before Y? is 1;
iEeN
but the coefficient of the polynomial > p,;Y* € A[Y] before Y is p, o; hence, p, o = 1.
ieN
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Define an (n + 1)-tuple (ao, a1, ..., a,) € A" by (ar = prrm—r) for every k € {0,1,...,n}).
Thena An = PnA(n—n) = PnA0 = Pn,o = L. BeSideS7

n

dowt = pramwut = D pranoput =0.
k=0

k=0 ke{0,1,...,n}

Finally, ar = pram—k) € Iaxm-k)Jn—r (since pp; € I;J,—j for every i € N) for every
k €{0,1,...,n}. In other words, a; € I)(,—i)Jy—; for every i € {0,1,...,n}.

Altogether, we now know that
Z apu® =0, a, =1, and a; € Iy(n—iyJn—i for every ¢ € {0,1,....,n}.
k=0
Thus, by Definition 9 (applied to ([/\p‘]p)peN instead of (I,)

integral over (A, ([,\pJp)peN>. This proves Lemma F”.

pen)» the element u is n-

Combining Lemmata £” and F”, we obtain that u is n-integral over (A, (I,\pJp)peN>

if and only if uY? is n-integral over (A[I], (JTA[I])T GN). This proves Theorem 15.

A particular case of Theorem 15:

Theorem 16. Let A and B be two rings such that A C B. Let (]p)peN be
an ideal semifiltration of A. Let n € N. Let u € B. Let A € N.

We know that (1)) y is an ideal semifiltration of A (according to Theorem
14).

Consider the polynomial ring A[Y] and its A-subalgebra A [(Ip)peN *

defined in Definition 8.
Then, the element u of B is n-integral over (A, (1 Aﬂ)peN> if and only if

V]

the element uY* of the polynomial ring B [Y] is n-integral over the ring
A [(Ip)pEN * Y] . (Here, A [([p)pEN * Y} C B[Y] because A [(Ip)pEN * Y] C
A[Y] and we consider A [Y] as a subring of B [Y] as explained in Definition
7).

Proof of Theorem 16. Theorem 10 (a) states that (A) .y is an ideal semifiltration
of A.
We will abbreviate the ring A [(Ip)peN * Y} by Ay

We have the following five equivalences:

e The element u of B is n-integral over (A, (],\p)peN> it and only if the element u

of B is n-integral over (A, (1xpA) ) (since Iy, = I,,A).

pEN

e The element u of B is n-integral over (A, (1),A) ) it and only if the element

pEN
uY? of the polynomial ring B [Y] is n-integral over (A[I], (AA[I])T GN) (according

to Theorem 15, applied to (A) ¢y instead of (J,) )
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e The element uY ™ of the polynomial ring B [Y] is n-integral over (A[ 1 (AA[ 1])T€N>

if and only if the element uY? of the polynomial ring B [Y] is n-integral over

(A (Ain) o) (since [ Adiy | = (Ai), o = (Ai) )

=4m / e

e The element uY? of the polynomial ring B [Y] is n-integral over (A[[], (A[I])p eN)
if and only if the element uY* of the polynomial ring B [Y] is n-integral over Al
(by Theorem 12, applied to Ay, B [Y] and uY? instead of A, B and u).

e The element uY* of the polynomial ring B [Y] is n-integral over Ay if and only
if the element uY > of the polynomial ring B [Y] is n-integral over A [(I P)peN * Y}

(since Ay = A [(Ip)peN * Y] ).

Combining these five equivalences, we obtain that the element u of B is n-integral
over (A, (I /\P)peN) if and only if the element uY? of the polynomial ring B[Y] is n-

integral over A [(I p) pen * Y] . This proves Theorem 16.

Finally we can generalize even Theorem 2:

Theorem 17. Let A and B be two rings such that A C B. Let (I,)
be an ideal semifiltration of A. Let n € N. Let v € B. Let ag, aq, ...

9

a, be n + 1 elements of A such that > a;v' = 0 and a; € I,,_; for every
i=0

i€ {0,1,...,n}.

Let k € {0,1,...,n}. We know that (I(”—’f)P)peN is an ideal semifiltration of

A (according to Theorem 14, applied to A = n — k).
n—k
Then, > a;4v" is n-integral over <A, (I(n—k)p)peN>'
i=0
Proof of Theorem 17. Consider the polynomial ring A[Y] and its A-subalgebra
A [(Ip)peN * Y] defined in Definition 8. We have A |:<Ip)p€N * Y] C BJ[Y], because

A [(I 0) pen * Y] C A[Y] and we consider A[Y] as a subring of B[Y] as explained in
Definition 7.
As usual, note that

Z Ly = Z LY" (here we renamed ¢ as i in the sum)

teN ieN
—A [(Ip)peN * Y] .
In the ring B[Y], we have

Za,Y" i vY ZaZY" tyt ’—Y"Zav =0.
=Yn

_v'LY/L—YZv'L
=0
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Besides, a;Y" " € A [(Ip) * Y] for every i € {0,1,...,n} (since \aﬁ-/Y”_i cl, ;Y C

peN
EInfi
S LYt=A [(IP)pGN * Y} ). Hence, Theorem 2 (applied to A |:<Ip)pEN * Y] , B[Y],vY
¢eN
n—=k .
and a;Y"" instead of A, B, v and ;) yields that > a; Y™ 0% (vY)’ is n-integral
i=0

over A [(Ip)peN * Y} Since

n—k —k

ZaiJrkyn—(z-i-k) ’UY Zaz+k Yn—(z-i—k Z z+k'U .y k

= _'Ulyl Yigi = =Y (n—(i+k))+i=yn—k =0

n—k
this means that ;) ai kv’ - YK is n-integral over A [( o) pen * Y].
n—k n—k
But Theorem 16 (applied to u = > a;4xv" and A = n — k) yields that > a; 40" is
=0 1=0
n—k
n-integral over <A, (I (”*’f)P)peN> if and only if i;o aip,vt - Yk is n-integral over the
n—k
ring A [([p)pEN * Y} Since we know that Y a; v’ - Y™ is n-integral over the ring
i=0
n—k

A [(Ip)peN * Y], this yields that ;} a; v’ is n-integral over (A, (I(n—k‘)ﬂ)peN>' This

proves Theorem 17.
5. Generalizing a lemma by Lombardi

Now, we are going to generalize Theorem 2 from [3] (which is the main result of
[3])°. First, a very technical lemma:

Lemma 18. Let A and B be two rings such that A C B. Let x € B. Let
m €€ Nandn € N. Let u e B. Let p € N and v € N. Assume that

u" € <u0,u1,...,u"_1>A-<x0,x1,...,x”>A (4)
and that

m,. 0,1 m—1 0o ,.1 ”w 0,1 m 0o ,.1 pn—1
u - x €<u,u,...,u >A'<{L‘7$,...,ZE A—i—u,u,...,u A'<[E,JZ,...,I’ >A'

Then, u is (nu + mv)-integral over A.
Before we prove this lemma, we recall a basic mathematical principle:

Principle of strong induction (form #1). Let 2 (i) be an assertion for
every ¢ € N. If

every I € N satisfying (20 (i) for every ¢ € N such that ¢ < I) satisfies 2(I),

then
every i € N satisfies 20 (7) .

®Caveat: The notion ”integral over (A,J) 7 defined in [3] has nothing to do with our notion
"n-integral over (A, (I,),cn) 7
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By renaming i, [ and 2 as j, J and B, respectively, we can rewrite this principle
as follows:

Principle of strong induction (form #2). Let 9B (j) be an assertion
for every j € N. If

every J € N satisfying (25 (j) for every j € N such that j < J) satisfies B (J),

then
every j € N satisfies B (j) .

Proof of Lemma 18. Let
S={0,1,...,n—1} x{0,1, ..., p —1HU{O, 1, ..com — 1} x {p, u+ 1, ..., p+ v —1}).
Then, (0,0) € S 6. Besides, |S| =nu+mv 7. Also,

j < p+vfor every (i,j) € S (6)
8-
Ssince
(0,0) €{0,1,....,n —1} x {0,1, ..., — 1}
c({o,1,...n—1} x{0,1,...,p—1HU{0,1,..om — 1} x {p,u+1,...,p+v—1}H =S5
"since
({0,1,....,n =1} x {0, 1, .., p —1H N ({0, 1,.ccom =1} x {p,p+1,...,p+v—1})
=({0,1,....n =1} N {0,1,...om —1}) x ({0, 1, .., p = 1} N{p,p+ 1, .., p+v—1})
=2
={0,1,....,n—=1}Nn{0,1,..m—1}) x @ =g
yields
({0,1,....,n =1} x {0,1,....o0 — 1P U0, 1,...com — 1} x {p,u+ 1,...,u+ v —1})|
=[{0,1,....n =1} x {0,1,...,u — 1} + {0, 1, .c.com = 1} X {p,u+ 1,...,n+ v — 1}
=[{0,1,...,n—1}|-[{0,1,...,u—1}| =[{0,1,....m—1}|-[{p,n+1,...,n+v—1}]
=[{0,1,....,n—=1}-[{0,1, ..., p — 1} + {0, 1, ...om =1} - {pp, p + 1, ., p + v — 1}| = nu + mv,
=n =u =m =v
so that
‘S| = |({0,177’I’L - 1} x {0717~--7M - 1}) U ({0,17...7’[71, - 1} X {Mau+ 17 e 1})‘
=nu+ mv
81n fact,

S=140,1,...n—1} x {0,1,...,u—1} JU | {0,1,...om — 1} x {p,u+1,...op+v—1}
(S

c{o,1,...,ptv—1}, C{0,1,...,u+v—1},
since p—1<p+v—1 since pu>0

C ({0,1,....on =1} x{0,1, ..., p+v—=1HU({0,1,...o m — 1} x {0, 1, ..., u + v —1})
=({0,1,...,n—1}U{0,1,....m —1}) x {0,1,..,u+v —1}.
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Let U be the A-submodule (u‘z? | (i,5) € S), of B. Then, U is an (nu + mv)-
generated A-module (since |S| = nu + mv). Besides, clearly,

u'z? € U for every (i,j) € S (7)
(since U = (u'a? | (i,7) € S),). Thus, u’2® € U (by (7), applied to (¢,7) = (0,0)),
since (0,0) € S. Since v’ 2% =1, this becomes 1 € U.
=1 =1
Now, we will show that
every i € N and j € N satisfying j < p + v satisfy u'z? € U. (8)
Proof of (8). For every i € N, define an assertion 2 (i) by
A1) = (everyj € N satisfies (ifj < pi+ v, then u'a’ € U)) )
Let us now show that
every I € N satisfying (20(¢) for every i € N such that ¢ < I) satisfies A (I). (9)
Proof of (9). Let I € N be such that
(A (z) for every i € N such that i < I). (10)

We must prove that 2( (1) holds.
For every j € N, define an assertion B (j) by

B (j) = (if j < p+v, then u'z/ € U).
Let us now show that

every J € N satisfying (8 (j) for every j € N such that j < J) satisfies B (J).

Proof of (11). Let J € N be such that -
(%B (j) for every j € N such that j < J). (12)
We must prove that 9B (J) holds.
Assume that J < p+ v. Then,
u!z? € U for every j € N such that j < J (13)

(since for every j € N such that j < J, the assertion B () holds (due to (12)), i. e.,
the assertion (if j < p+v, then ulad € U ) holds, which yields w27 € U (since j < J
and J < p+ v yield j < p+v)). Now,

(u") - gxo,wl, ...,x*’*}é

(@) | GE{01md—1}) s
=(u), (a7 | je{0,1,..,J—1}), =@ | je{0,1,..,J-1}),

= Z aju'z’ | (aj>j€{0,1 ..... (1—1}614{0’1 """ e, (14)
je{0,1,...,0—1}

Hence, for every (i,7) € S, we have j € {0,1,...,u+v — 1} and thus j < p + v.
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since > ajulzd € U for every (aj>j€{01 so1y € AOLI=1Y (since ulad € U
je{0,1,...,J—1} Loy

for every j € {0,1,...,J — 1} (by (13), since j < J), and since U is an A-module).
Also,

u'z? € U for every i € Nand j € Nsuch that i < I and j < pu+ v (15)

(since for every ¢ € N and j € N such that i < [ and j < p + v, the assertion
(if j < g+ v, then w'a? € U) holds (because (10) and i < I yield 2 (4)), and thus
u'x? € U (since j < p+ v)). Now,

(u’, u', ...,uI_l>A - (a0, 2", ...,x“+”_1>A

(i | $€{0 0, I—1}) 5 =T | JE{O,Lnpitr—1}) 4

=(u' | ief{0,1,.,1=1}), (& | j€{0,1,. ., u+v—1}),

= (u'a? | (i,5) €{0,1,... 1 =1} x{0,1, ..., p+v —1})

— b .. {0717'”71_1}X{Ovlv"'7ﬂ/+l/—1}

= Z a0’ | (i) peqor. . r-1px{otprv-1y € A
(ivj)e{orlw-'vffl}X{Ovlv"'vl‘ﬁi”/*l}

cU, (16)

because > a; ju'z? € U for every <ai7j)(i,j)e{o,l,...,[—l}x{0,1,...,u+u—1} €

(i,§) €40,y =13 x {0, 1, up—1}
AL I=1A0 ot =1} (since u'a? € U for every (i,5) € {0,1,...,1 —1}x{0,1,...,u+v — 1}
(by (15), since i < I (because i € {0,1,....,] —1}) and j < u + v (because j €
{0,1,...,p + v —1})), and since U is an A-module).

Note that J < pu+ v yields J < p+ v — 1 (since J and p + v are integers).
Trivially,

I>m AN J>p) vV U<m ANJ>p) Vv I>2n A J<p) VvV (I<n A J<p)

9. Hence, one of the following four cases must hold:
Case 1: We have [ >m A J > pu.
Case 2: We have I <m A J > p.
Case 3: We have [ >n A J < pu.
Case 4: We have I <n A J < pu.

Isince

I>m AJ>p) vV I<m ATV I>n A J<p) VvV (I<n A J<p)

= (I>m Vv I<m) A (J>p) = (I>n Vv I<n) A (J<p)
(J>p) (since (I>m V I<m) is true) = (J<pu) (since (I>n VvV I<n) is true)

= (}zu) VvV (J<p) = true
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In Case 1, we have I —m > 0 (since I > m) and J — p > 0 (since J > u), thus

uI {[‘J
~~~ ~~~
:uI*mum :gjl»"x‘]fl»"
=yl m um xl
N——
E<u0,u1,...,um*1>A-<x0,x1,...,I“>A+<u0,ul,. ,um>A'<x0,x1,. zh 1>
(by (5))

I—m 0,1 m—1 0o ,.1 o u™ 0o ,.1 pn—1 J—p
cu (<u,u,...,u >A-<a7 T, .. x>A+<u u! >A-<x,$,...,x >A)m
_ I—-m 0,1 m—1 “w J—p
= u <u,u,...,u >A . <.1',£L',...,.1' >Al’

~~ NS ~~ g
:<ul—mu01ul—mulwqul—mum—1>A :<:EO:EJ_”,:E1:E‘]_”,...,:E“l“]_“>A
:<u<17m)+0 wI=m)+1 U(Ifm>+(m71)>A :<x0+(J*u) L1HT=p) xu+(J*u>>
b I b b b b A
:<u1—m wl—m+1l u1—1> :<$J—[,L pJ—pt1 xJ>
K b b A k) PARRS ] A
§<u0,u1,...,u1*1> (since §<x0,x1,...,$“+”*1> (since
{I—m,J—m+1,.... 1-1}C{0,1,... -1}, {J=p, J—p+1,..,J}C{0,1,...,u+v—1},
since I—m>0) since J—p>0 and J<pu+v—1)
I—-m 0,1 m 0 .1 -1 J—
+ u <u,u,...,u >A <x,x,...,x” >Aa: i
NS e v
vV vV
:<u1_mu0,u1_mu1,...,ul_mum>A :<x0:p‘]_“,xli_“,...,x”_lmJ_”>A
:(uU*mHO,uU*m)H,...,u<’*m>+M>A :<x0+(J*u)7zl+(J*u)7,__7a;(u*1>+(1*u)>A
:<uI—m wl—m+1 uI) :<x']—“ o —ptl IJ—1>
b b b A b EARAS) A
§<u0,u1,.‘.,u1>A (since §<$0,zl,...,mJ_1>A (since
{I-m,J—m+1,...,1}C{0,1,....I}, {J—p,J—p+1,...,J—-1}C{0,1,...,J -1},
since I—m>0) since J—u>0)
0,1 I-1 0 .1 +v—1 0,1 I 0 .1 J—-1
C <u JU ey U >A-<a: T, L, xt >A+ <u JU U >A <:v I O >A
NS >y NS g
Vv vV
CU by (16) =0 ul, . ul =1y  +(ul) ,
0 1 I-1 I 0 1 J—1
CU+ (<u JU U >A—|—<u >A)~<:c A >A
TV
:<’U,0,u1,...,UI_1>A‘<CCO,CE17 7xJ_1>A+<uI>A‘<IO7x17"'7'IJ_1>A
_ 0 1 -1 0 J—l I 0 1 J—1
—U+<u,u,...,u >A- <x,x, >A —|—<u>A-<m,:p,...,a: >A
N e
vV
§<x0, it 1>A (since
{01, T )01, b1},

since J—1<J<u+v—1)
cU —|—\<u0’ul7 ,..7u1—1>A . <130,:E17 "'7$#+V_1>Aj+ <UI>A . <ZL’O,J]1, ,,,7;1;J_1>4

CU by (16) CU by (14)
CU+U+UCU (since U is an A-module) .

Thus, we have proved that u/z/ € U holds in Case 1.
In Case 2, we have I € {0,1,....m —1} (since I < m and I € N) and J €
{p,p+1, ..., p+v—1} (since J > p and J < p + v), thus

(I,J)e{0,1,...om—1} x{pyp+1,...,p+v—1}
c{o,1,....on—1} x{0,1,...,u—1H U0, 1,...com—1} x{p,u+1,...,n+v—1}) =S

so that u’xz’ € U (by (7), applied to I and J instead of i and j). Thus, we have proved
that u/z” € U holds in Case 2.
In Case 3, we have I —n > 0 (since I > n) and J +v < p+v — 1 (since J < p
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yields J + v < p+ v, and since J + v and p + v are integers), thus

'U,I .CCJ
~—~
—yl—nyn
=yl u" ! € ul=m <u0,u1,...,u”_1> . <x0,x1,...,x”> z’
~~ N - 4 Q - A~
0,1 -1\ /.0 .1
€<u W u"(b él)<)x L5 xV>A :<u1—”u0,u1—”u1 ..... uI_"u”—1>A :<xoazJ zlzl,., z”mJ>A
Y
_ (I—n)40 , (I—n)+1 (I—n)+(n—1) _ [, 0+J L 14+J v+J
7<u =)+l u >A 7<a: attd x )A
:<u17n7u17n+1 ..... u171>A ={z7 2T+, xJ+V>A
Cl{ulul,..., uI_l> (since g(:po !, x“+”_1> (since
{I-n,J—n+1,...,]-1}C{0,1,...,]—1}, {J,J+1,....J+v}C{0,1,...,u+v—1},
since I—n>0) since J>0 and J+v<p+v—1)
0 1 I-1 0 1 p+rv—1
§<u,u,...,u >A-<x,a7,...,$ >A§U (by (16)).

Thus, we have proved that vz’ € U holds in Case 3.
In Case 4, we have I € {0,1,...,n—1} (since I < n and I € N) and J €
{0,1,...;p0 — 1} (since J < p and J € N), thus

(I,J)€{0,1,...n—1} x{0,1,..., 0 — 1}
C ({0,1,....,n—1} x{0,1,....,p—1H U0, 1,....om =1} x {p,p+1,...,u+v—1}) =S5,

so that u!z? € U (by (7), applied to I and J instead of i and j). Thus, we have proved
that u/2” € U holds in Case 4.

Therefore, we have proved that u/z/ € U holds in each of the four cases 1, 2, 3 and
4. Hence, u'xz? € U always holds.

Hence, we have proved that if J < u + v, then u/2” € U. In other words, we have
proved the assertion B (J) (because B (J) = (if J < p+ v, then v'z” € U)).

Thus, we have proved (11). Hence, the Principle of strong induction (form #2)
yields that

every j € N satisfies B (j) .

In other words,
every 7 € N satisfies (ifj < p+ v, then ula’ € U) :

Thus, the assertion 2 (I) holds (because A (I) = (every j € N satisfies (if j < 1 + v, then u’2? € U))).
Thus, we have proved (9). Hence, the Principle of strong induction (form #1) yields
that
every i € N satisfies 2( (7) .

In other words,
every i € N satisfies (everyj € N satisfies (ifj < i+ v, then u'2’ € U))

(since 2L (i) = (every j € N satisfies (if j < p + v, then u'z? € U))). This is equivalent
to (8). Thus, (8) is proven.
Now, o
u-u'z? € U for every (i,7) € S, (17)
because u - u' 27 = u"'a? € U (by (8) (applied to i + 1 instead of i), since j < p + v

— i+l

(by (6)))-
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Now,

wl =u(u'e! | (i,5)€S), =(u-v'z) | (i,j)€S),

=< D aueue | (ai5)5es €A% P C UL
(i,)€S

because a; u-u'z? € U for every (a; ;). .o € A% (since a;; w-urt €U,
(i,%:es J y ( J)(z,j)GS ( (i%:es J m)
because U is an A-module).

Altogether, U is an (nu + mv)-generated A-submodule of B such that 1 € U and
uU C U. Thus, u € B satisfies Assertion C of Theorem 1 with n replaced by nu 4+ muv.
Hence, u € B satisfies the four equivalent assertions A, B, C and D of Theorem 1 with
n replaced by nu + my. Consequently, w is (npu + mv)-integral over A. This proves
Lemma 18.

We record a weaker variant of Lemma 18:

Lemma 19. Let A and B be two rings such that A C B. Let x € B and
y € B be such that zy € A. Let m € Nand n € N. Let u € B. Let p € N
and v € N. Assume that

u" € <u0,u1, ...,u”_1>A . <x0,x1, ...,$”>

" (18)

and that
u™ e <u0,u1, ...,um_1>A-<yO,y1, ...,y“>A+<uO,u1, ...,um>A-<y1,y2, ...,y“>A.

(19)
Then, u is (nu + mv)-integral over A.

Proof of Lemma 19. For every i € {0,1, ..., u}, we have p > ¢ and thus p —i > 0,
so that

yo ot =yl it = atyt et e <£L‘“_i> (20)
~—~ \ , A
=gh—ig? ()i
since xy€ A
C U ot (21)

(since {u —i} € {0,1,...,u}, because p —i € {0,1,...,u}, since i € {0, 1, ..., u}). Now,

\<y0’y17 ’yll>é ot = <yz | (&S {07 17 .,,,ILL}>A1'M = <y1IM | (S {Oa 17 7M}>A

~~

:<yi I ’L'E{O,l,...,,u}>A

- Z aiy'z" | (@i)icqo1,..0y € ALt 5 C (a0 ot ) 4 (22)
1€{0,1,...,u}
since 5 alat € (2t at) , forevery (ai)icqoy. g € AT (since YD @yt
i€{0,1,...,u} o i€{0,1,...,u} ~~
E<x0,x1,...,x“>A
by (21)
(2% xt, ... xt) ,, because (2%, z!, ... z") , is an A-module).
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Besides, for every i € {1,2, ..., u}, we have
y'zh € <x“_i>A (by (20), since i € {1,2,...,u} yieldsi € {0,1,..., u})
C <x0,x1,...,x“_1>A (23)
(since {u —i} C€{0,1,..., 0 — 1}, because p—i € {0,1,...,u — 1}, since i € {1,2, ..., u}).

Now,

\<y17y27 7y#>A/ rt = <yl | S {1727 ”’JM}>A'I# - <y1xﬂ | (S {1727 7:U’}>A

-~

=(y | i€{1,2,.1}) 4

= Z aiyi:c“ | (ai)ie{l,z...,,u} e At c <:r;0,91:1, '“’xuil>A’ (24)
i€{1,2,..u}
since Y, ay'z* € (2%t ar), for every (@i)icqi,.p € AlL2om} - (since
i€{1,2,....u} T
S y'a” € (2% !, .. a# 1) ,, because (20, 21, ..., 2*71) | is an A-module).
i€{1,2,....u} ~~

O

e(atalont)

by (25)
Now, (19) yields
0

umxt e (<u ,ul, ,um_1> . <y0 yl,. ,y“> + <u0,u1,...,um>A . <y1,y2, ...,y“>A) zt
1

= (u°,u', ™ 1>A <y T ,y > —|—<u0,u1,...,um>A.\<y1,y2,...,y“>A$‘i
C<x0 x $“>A g<$0,$1::a§”*1>
(by (22)) (by (24))
- <u0,u1, ...,um’1>A . <x0,x ,...,x“>A + <u0,u1, ...,um>A . <x0,x1, ...,x“’1>A.

In other words, (5) holds. Also, (4) holds (because (18) holds, and because (4) is the
same as (18)). Thus, Lemma 18 yields that u is (nu + mv)-integral over A. This proves
Lemma 19.

Something trivial now:

Lemma 20. Let A and B be two rings such that A C B. Let z € B. Let
n € N. Let w € B. Assume that u is n-integral over A[x]. Then, there
exists some v € N such that

u" € <u0,u1, ...,u”_1>A . <x0,x1, ...,x”>A.

Proof of Lemma 20. There exists a monic polynomial P € (A [z]) [X] with deg P =
n and P (u) = 0 (since u is n-integral over A[z]). Since P € (Alz]) [X] is a monic
polynomial with deg P = n, there exist elements g, aq, ..., a,—1 of A[z] such that

n—1 n—1
P(X) = X"+ Z a; X% Thus, P(u) = u™ + ;)oziui, so that P (u) = 0 becomes

u—l—Zozu-O Henceu-—Zal
=0
For every i € {0,1,...,n 1} We have a; € Alz], and thus there exist some

v; € N and some (Big,Bi1; - Biy,) € A¥T such that o; = Z B;xx®. Hence, a; €

(2% xt, ... x¥) , for every i € {0,1,...,n — 1}.
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Let v = max {vg, 1, ..., Vy_1}. Then, for every ¢ € {0,1,...,n — 1}, we have v; < v,
hence {0,1,...,v;} C {0,1,...,v}, thus (2% 2%, ..., 2"), C (2% 2!, ...,2"),, and thus

a; € (2% 2t .. "), (since oy € (2% 2%, ..., 2") ;). Therefore,
n—1 n—1
u" = — E U’ = — E u' Q;
- - v ~~~
1=0 =0 e<u07u1,.”7un—1>A E([L’O,l'l,‘..,(E”>A
n—1
0,1 n—1 0o ,.1 v 0 1 n—1 0 1 v
€ — g <u ,U ey U >A-<x /AN >A - <u ,U ey U >A~<x N N >A
i=0

(since (u®,ut, ... w1y - (2% 2t ... x¥) , is an A-module). This proves Lemma 20.

A consequence of Lemmata 19 and 20 is the following theorem:

Theorem 21. Let A and B be two rings such that A C B. Let x € B and
y € B be such that zy € A. Let m € Nand n € N. Let u € B. Assume
that u is n-integral over A [z], and that u is m-integral over A[y|. Then,
there exists some A € N such that u is A-integral over A.

Proof of Theorem 21. Since u is n-integral over A [z], Lemma 20 yields that there
exists some v € N such that

In other words, (18) holds.
Since u is m-integral over A [y], Lemma 20 (with z, n and v replaced by y, m and
) yields that there exists some p € N such that

W e (u0 ul, Y (0 gty
Hence,
e (™Y (0 g (™ (g R )
(because

<u0,u1,...,um_1>A ' <y07y17"'7y'u>14
- < O’u17 ‘“’um—1>A ’ <y07y17 "'>yM>A + <U’O7u17 "'aum>A ’ <y17y27 "'>yM>A

). In other words, (19) holds.

Since both (18) and (19) hold, Lemma 19 yields that u is (nu + mv)-integral over A.
Thus, there exists some A € N such that u is A-integral over A (namely, A = nu+mv).
This proves Theorem 21.

We record a generalization of Theorem 21 (which will turn out to be easily seen
equivalent to Theorem 21):

Theorem 22. Let A and B be two rings such that A C B. Let z € B and
y € B. Let m € Nand n € N. Let u € B. Assume that u is n-integral over
Az, and that u is m-integral over A[y]. Then, there exists some A € N
such that u is A-integral over A [zy].
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Proof of Theorem 22. Obviously, A C A[zy] yields A[z] C (A[zy]) [x] and Aly] C
(A [zy]) [y].

Since u is n-integral over A [z|, Lemma Z (applied to B, (A[zy]) [z], A[z] and u
instead of B’; A’; A and v) yields that u is n-integral over (A [zy]) [z].

Since u is m-integral over A [y|, Lemma Z (applied to B, (A [zy]) [y], A [y], m and
u instead of B’; A, A, n and v) yields that u is m-integral over (A [zy]) [y].

Now, Theorem 21 (applied to A [zy] instead of A) yields that there exists some
A € N such that w is A-integral over A[zy] (because zy € A[xy|, because u is n-
integral over (A [zy])[z], and because u is m-integral over (A [zy])[y]). This proves
Theorem 22.

Theorem 22 has a "relative version”:

Theorem 23. Let A and B be two rings such that A C B. Let (I,) oy be
an ideal semifiltration of A. Let x € B and y € B.

(a) Then, (I,A [z]) oy is an ideal semifiltration of A [z]
is an ideal semifiltration of A [y]. Besides, (1,4 [zy])
tration of A [xy].

Besides, (I,A [y]) en

is an ideal semifil-
peEN

(b) Let m € N and n € N. Let v € B. Assume that u is n-integral over
(A 2], (I,A [x])peN), and that u is m-integral over (A ], (I,A [y])peN).

Then, there exists some A € N such that u is A-integral over (A lzy], (I,A [xy])peN).

Proof of Theorem 23. (&) Since (,) oy is an ideal semifiltration of A, Lemma J
(applied to A [z] instead of A’) yields that (I,A [z]) .y is an ideal semifiltration of A [z].

Since (1) oy is an ideal semifiltration of A, Lemma J (applied to A[y] instead of
A') yields that (I,A[y]) cy is an ideal semifiltration of A [y].

Since (1) o is an ideal semifiltration of A, Lemma 7 (applied to A [zy] instead of
A’) yields that (I,A [zy]) .y is an ideal semifiltration of A [zy].

Thus, Theorem 23 (a) is proven.

(b) We formulate a lemma:

Lemma N: Let A, A’ and B be three rings such that A C A" C B. Let
v € B. Let (I) .y be an ideal semifiltration of A. Consider the polynomial ring

A[Y] and its A-subalgebra A [(]p)peN * Y] We have A [(Ip)pGN * Y} C A[Y], and (as
explained in Definition 7) we can identify the polynomial ring A [Y] with a subring of
(A[u]) [Y] (since A C A[v]). Hence, A [(Ip) * y] C (A[v]) [Y]. On the other hand,
(AL)) [(LAR]) e+ Y] € (ARD Y],

(a) We have

pEN

pEN

(A]) [y A o) e+ Y| = (A [ (1) pers # Y] ) [0].

(b) Let w € B. Let n € N. Then, the element u of B is n-integral over
(A [v], (I,A [v])peN) if and only if the element uY of the polynomial ring B[Y] is
n-integral over the ring (A [(Ip)peN * Y]) [v].

Proof of Lemma N : (a) We have proven Lemma N (a) during the proof of Theorem
9 (b).
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(b) Theorem 7 (applied to A[v] and (I,A [v]) . instead of A and (I,) ) yields
that the element u of B is n-integral over (A ], (1,A [v])peN> if and only if the element

* Y} . In
) if and only if the

uY of the polynomial ring B [Y] is n-integral over the ring (A [v]) [(I,,A [v]) en

other words, the element u of B is n-integral over (A [v], (IpA [v]) ey

element uY of the polynomial ring B [Y] is n-integral over the ring (A [([ p)p on * Y] ) [v]

(because Lemma N (a) yields (A [v]) [(]pA [V]) pen * Y} = (A [(Ip)pGN * YD [v]). This
proves Lemma N (b).
Now, let us prove Theorem 23 (b). In fact, for every v € B, we can consider

the polynomial ring (A [v]) [Y] and its A [v]-subalgebra (A [v]) [(IPA [V]) _ * Y] We

have (A [v]) [(JPA [0]) e * Y} C (A[v]) [Y], and (as explained in Definition 7) we can
identify the polynomial ring (A [v]) [Y] with a subring of B[Y] (since A[v] C B).
Hence, (A [v]) [(1,,A [0]) e * Y} c BIY].

Lemma N (b) (applied to x instead of v) yields that the element w of B is n-
integral over (A [z], (I,A [z])

peEN

peN if and only if the element uY of the polynomial ring

B Y] is n-integral over the ring <A [(Ip)peN * Y]) [z]. But since the element u of B is

n-integral over (A [z], (I,A[z]) this yields that the element uY” of the polynomial

peN )
ring B [Y] is n-integral over the ring (A [(Ip)peN * Y]) [z].

Lemma A (b) (applied to y and m instead of v and n) yields that the element
u of B is m-integral over <A ly], (1,A [y])peN) if and only if the element uY of the

polynomial ring B [Y] is m-integral over the ring (A [(Ip)pEN * Y]) [y]. But since the
element u of B is m-integral over <A ], (I,A [y])p€N>, this yields that the element uY
of the polynomial ring B [Y] is m-integral over the ring (A [(Ip)pEN * Y]) [y].

Since uY is n-integral over the ring (A [(Ip)peN * Y} ) [x], and since uY is m-integral
over the ring (A [(Ip)peN * YD [y], Theorem 22 (applied to A [(Ip)peN * Y], BY] and
uY instead of A, B and u) yields that there exists some A € N such that Y is A-integral
over (A [(Ip) * Y]) [zy].

peN
Lemma N (b) (applied to xy and A instead of v and n) yields that the element u of B

is A-integral over (A [zy], (1,A [xy]) ) if and only if the element ©Y” of the polynomial

peN
ring B[Y] is A-integral over the ring (A [(Ip)peN * YD [xy]. But since the element
uY of the polynomial ring B [Y] is A-integral over the ring (A [(Ip)pGN * YD [zy],
this yields that the element u of B is A-integral over <A lzy], (I,A [xy])peN>. Thus,

Theorem 23 (b) is proven.
We notice that Corollary 3 can be derived from Lemma 18:
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Second proof of Corollary 3. Let n = 1. Let m = 1. We have

n o ,1 n—1 0,1 «
U €<u Uy, U >A-<v , U, >A

10 and

™’ e <u0,u1, ...,um_1>A . <v0,vl, ...,vﬁ>A + <u0,u1, ...,um>A . <v0,v1, ...,vﬁ_1>A

1 Thus, Lemma 18 (applied to v, 8 and « instead of x, u and v) yields that u is
(nf + ma)-integral over A. This means that u is (a + ()-integral over A (because
nfB+ma =15+ la =+ «a = a+ (). This proves Corollary 3 once again.

In how far does this all generalize Theorem 2 from [3]7 Actually, Theorem 2 from
[3] can be easily reduced to the case when J = 0 (by passing from the ring A to its
localization A4 ;), and in this case it easily follows from Lemma 18.
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0hecause

(6%

W=ul =u= E s; V' E <v07v1,...,va>A =A- <v0,v1,...,vo‘>A
=0
=Y ea

= <u0,u1, ...,u"_1>A . <v0,vl, ...,va>A

(since A= (1), = <u0>A = <uo,u1,...,u”_1>A, asn=1)

Hbecause
B . B '
u™ P =u® = Ztivﬁ_’ = Ztg,ivﬁ_(ﬁ_’) (here we substituted 8 — ¢ for ¢ in the sum)
—ul—u i=0 i=0

B
= Ztg_ivi € <vo,v1,...,v’3>A =A- <UO,Ul,...,v’6>A
i~

€A

= <u07u1, ...,um_1>A . <vo,v1, ...,v’B>A

(since A= (1), = (u®) , = (u0,u',...,u™ "), as m = 1) and

A7
<u0,u1, ...7um*1>A . <v0,v1, ...,v’8>A
0

C <u Jut, ...,um_1>A . <UO,’Ul,...,’Uﬁ>A + <u0,u1, ...,um>A . <v0,v1, ...,vﬁ_1>A
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