Generalization of the Feuerbach point

Darij Grinberg

In this note, we are going to use directed angles modulo 180°, also called crosses.
See [2] for three references.

We will abbreviate the circle through three given points P, P, P; to ”circle
PPPy”.

Consider a triangle ABC. The midpoints A’, B’, C' of its sides BC, C A, AB form a
triangle A’B’C” called the medial triangle of triangle ABC. The circumcircle of this
medial triangle is the nine-point circle of triangle ABC. Let U be the circumcenter of
triangle ABC, and P an arbitrary point different from U.

The circumcenter U of AABC is the meet of the perpendicular bisectors of the
sides BC, CA, AB; hence, UA’ L BC, UB L CA, UC'" 1 AB. Since B'C" || BC,
C'A" || CA, A'B' | AB, we also have UA" 1 B'C', UB' L C'A", UC" 1L A'B’, and
hence U lies on the three altitudes of AA’'B'C’. Consequently, U is the orthocenter of
triangle A’B'C’.

According to [1] and [2], if a line that passes through the orthocenter of a triangle is
reflected in the sidelines, the three reflections meet at one point lying on the circumcircle
of the triangle. This point is called the Anti-Steiner point of the line with respect
to the triangle. Applying this to the line PU passing through the orthocenter U of
triangle A’B’C’, we infer that the reflections of PU in the sidelines B'C’, C'A', A'B’
of triangle A’ B’C’ meet at one point lying on the circumcircle of AA’B’C’; this point
is the Anti-Steiner point of PU with respect to AA'B'C".

Now, the circumcircle of AA’B’'C’ is the nine-point circle of AABC’; hence we may
state:

Theorem 1.1: The reflections z, y, z of the line PU in the sidelines B'C’, C'A4’,
A'B’ of the medial triangle A’ B’C’ meet at one point L lying on the nine-point circle of
triangle ABC. This L is the Anti-Steiner point of the line PU with respect to triangle
AB(C.
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The position of this point L depends only on the direction of the line PU, not of
the actual position of the point P on this line.

A first property of L will be (Fig. 2):

Theorem 1.2: The reflections X', Y’, 7’ of L in the sidelines B'C’, C'A’, A’B’ of
triangle A’B’'C’ are the feet of the perpendiculars from A, B, C to the line PU.
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Proof (Fig. 3). The lines PU and z are symmetrically placed with respect to the
line B'C’. Therefore, as L lies on z, its reflection X’ in B’C’ must lie on PU.

For LAB'U = 90° and LAC'U = 90°, the points B’ and C’ lie on the circle
with diameter AU. In other words, the circle AB'C’ is the circle with diameter AU.
The circles A'B'C" and AB'C’ are congruent (being the circumcircles of the congruent
triangles A’ B'C" and AB'C"); hence, these circles are symmetrically placed with respect
to the line B’C’. Since L lies on the nine-point circle of AABC, i. e. on the circle
A'B'C’, its reflection X’ in B'C’" must therefore lie on the circle AB'C’, i. e. on the
circle with diameter AU. Hence, L AX'U = 90° and AX’' L PU. Thus, X’ is the foot
of the perpendicular from A to PU. Parallel reasoning establishes the same for Y’ and
Z' and Theorem 1.2 is proven.
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As a corollary, we find (Fig. 4):

Theorem 1.3: The point L is the orthopole of the line PU with respect to triangle
ABC.

Proof. The orthopole of a line with respect to a triangle is defined as follows: From
the vertices of the triangle, perpendiculars are dropped to the line, and from the feet
of these perpendiculars, we drop perpendiculars to the corresponding sidelines of the
triangle. Then, these new perpendiculars meet at one point, the so-called orthopole
of the line with respect to the triangle.

Now, considering our triangle ABC and the line PU, the points X', Y’, Z' are the
feet of the perpendiculars from the vertices A, B, C to the line PU. But on the other
hand, X’ is the reflection of L in B'C’, hence X'l L B'C’, and X'L. L BC (since
B'C" || BC). This indicates that L lies on the perpendicular from X’ to BC'. Similarly,
L lies on th perpendiculars from Y’ to CA and from Z’ to AB, and thus L is the
orthopole of PU with respect to triangle ABC. This proves Theorem 1.3.

Note. As a consequence of Theorem 1.3, we find a well-known result:

Theorem 1.4: The orthopole of a line passing through the circumcenter of a
triangle always lies on the nine-point circle of the triangle.

In fact, our line PU passing through the circumcenter U of AABC has its orthopole
L on the nine-point circle of AABC.
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Let H,, Hy, H. be the feet of the altitudes of triangle ABC from A, B, C. These
points H,, Hy, H. are known to lie on the nine-point circle of AABC'; this can be
proven as follows: As we know, the circles AB'C’ and A’B’'C’ are symmetrically placed
with respect to the line B’C’. Since A lies on the circle AB'C’, its reflection Hy; in
B'C’ must lie on the circle A’B’C’, i. e. on the nine-point circle. But since H,; is
the reflection of A in B'C’, the segment AH,; is perpendicular to B’C’ and twice as
long as the distance from A to B'C’. Hence, Hy; is the foot of the altitude of triangle
ABC from A. ! Hence, H,, = H,, and consequently, I, lies on the nine-point circle.
Similarly, H, and H, lie on the nine-point circle, ged..

Incidentally, we have just shown that H, is the reflection of A in the line B’C’. On
the other hand, X'’ is the reflection of L in this line, i. e. L is the reflection of X'.
Hence, H,L. = AX', and similarly H,L = BY' and H.L = C'Z'. We record this:

Theorem 1.5: The distances from the feet H,, Hy, H. of the altitudes to the point
L are equal to the distances from the points A, B, C' to the line PU. I. e., H,. = AX’,
H,L =BY' H.L.=CZ'. (See Fig. 5.)

n fact, AH,; L B'C’ yields AH,; L BC (since B'C' || BC), and the segment AH,; is twice as
long as the distance from A to B’C’, i. e. just as long as the distance from A to BC.
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Now, let X, Y, Z be the feet of the perpendiculars from P to the lines BC, C A, AB.
The triangle XY 7 is called the pedal triangle of P with respect to triangle ABC. If
X" is the reflection of X in B'C’, then obviously X X” 1| B’C" and therefore X X" |
BC (since B'C' | BC), so that the points P, X, X" lie on one line perpendicular to
BC. (See Fig. 6.)

The point H, is the reflection of A in B'C’; hence, A is the reflection of H, in B'C’.
The point X” is the reflection of X in B’C’. Hence, the line AX” is the reflection of
the line H,X in B'C’. But since the line H,X (i. e., the line BC') is parallel to B'C’,
its image AX" is parallel to B'C’, too. Hence, also AX" || BC.

Now, since AX” | BC and PX X" 1 BC, it follows that L AX"” P = 90°; thus, the
point X" lies on the circle with diameter AP. This circle also contains the points Y
and Z (since LAY P = 90° and £LAZP = 90°) and the point X’ (since AX' L PU
entails LAX'P = 90°).
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As we know, B’, C’ and X’ lie on the circle with diameter AU, and Y, Z, X’ and X"
lie on the circle with diameter AP. Hence, L AX'C' = LAB'C’ and L ZX'A = LZY A,
and consequently

LZX'C' = LZX'A+LAX'C' = £ZY A+ LAB'C’
= LA"YB + AYBA" = (LA"YB + L{YB'A" + {B'A"Y) - {B'A"Y
= 0°— LB'A"Y
— —ABA"Y =LY A'B = LZA"C’.

Therefore, X' lies on the circle ZA"C’. This entails L A" X'7Z = £ A"C"Z. Furthermore,
L£ZX'X" = £ZPX" follows from the circle with diameter AP. Hence,

LA'X'X" = LA"X'Z + 4ZX'X" = LA"C'Z + LZPX"
= A (B'C'; AB) + 4L (PZ; PX)
= A (B'C'; AB) + 4L (PZ; AB) + £ (AB; BC) + 4 (BC; PX)
£ (B'C'; AB) +90° + £ (AB; BC') + 90°
— L(B'C'; AB) + £ (AB; BC)
£(BC; AB)+ 4 (AB; BC) (for B'C" | BC)
= 0°

We conclude that the points A”, X’ and X" are collinear. But X’ is the reflection
of L in B'C’, X" is the reflection of X, and A” is its own reflection (since A” lies on
B'C’"). Since the points A”, X’ and X" are collinear, their preimages A”, L and X
are collinear, too, i. e. L lies on the line X A”. Similarly, I lies on Y B” and Z(C".
Summarizing:

Theorem 1.6: The point L lies on the lines X A” Y B” ZC". (See Fig. 9.)
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The points Y, Z, X', X" being concyclic (they lie on the circle with diameter AP),
we get AX'- A"X" = A"Y - A”Z. Since X', X" and A" are the reflections of L, X,
A" in B'C’', we have A"X' = A" and A"X" = A"X, thus A"L - A"X = A"X"- A"X".
Hence, A"L - A”X = A"Y - A”Z, and the points L, X, Y, Z are concyclic, i. e. the
point L lies on the circle XY Z. This circle is called the pedal circle of P with respect
to triangle ABC'. We record this fact:

Theorem 1.7: The point L lies on the pedal circle XY 7 of P with respect to
triangle ABC. (See Fig. 10.)

B

C

Fig. 10

Herewith, we have proven the First and the Second Fontene theorem; however, we
won’t stop here, for there are many more properties to discover.

We begin with a reminder. If A; and As are two similar triangles, there is a simil-
itude transformation ¢ mapping A; to Ay. This similitude equally maps any notable
point of triangle A; to the corresponding point of A,. Hereby, the term ”correspond-
ing” makes sense only if the notable point of triangle A; is defined by a certain chain
of construction steps (applied to triangle A;); in this case, we may simply apply this
chain to triangle As and get the corresponding point. But if we arbitrarily pick a point
Py in the plane of triangle A;, we cannot immediately say where the ”corresponding”
point of triangle Ag is. Yet, it suggests itself that we regard the image P» of P, in the
similitude ¢ as the ”corresponding” point of A,. In the following, we will make use of
this definition of corresponding points; similarly, corresponding lines, or segments, or
angles, or any kinds of figures can be defined. We will often say ” corresponding point
of the point P; in triangle As” instead of ”the point of As corresponding to the point
P,”, and similarly for lines.

(Note that this notion makes sense for similar triangles A; and As only. If triangles
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A1 and Ag are not similar, I would advise against using the term ” corresponding point”
at alll)

C Fie 11

Now, we continue considering the feet H,, H,, H, of the altitudes of AABC. The
triangle H,HyH, is called orthic triangle of triangle ABC.

Since £ BH,C = 90° and £ BH.C' = 90°, the points H, and H, lie on the circle with
diameter BC, and thus L{CHyH, = {CBH,, i. e. LAH,H, = ACBA = —£{ABC.
Analogously, L AH . H, = —£ACB, hence {H,H.A = —-{AH H, = LACB = —{BCA.
Therefore, triangles AH,H, and ABC' are inversely similar.

Likewise, triangles H,BH. and ABC' are inversely similar, and triangles H,H,C
and ABC are inversely similar. Let 2/, ¥/, 2’ be the corresponding lines of the line PU
in the triangles AH,H,., H,BH., H, H,C. Then, we have:

Theorem 1.8: The lines 2/, 3/, 2’ pass through L. (See Fig. 12.)

11
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Proof. If H is the orthocenter of triangle ABC, the midpoints G,, G, G, of the
segments AH, BH, C'H lie on the nine-point circle of triangle ABC.

As LAH,H = 90° and L{AH_H = 90°, the points I, and H_ lie on the circle with
diameter AH. In other words, the circumcircle of triangle AH,H,. is the circle with
diameter AH; thus, the circumcenter of triangle AH,H, is the midpoint G, of AH.

Since the line PU passes through the circumcenter U of AABC, its corresponding
line z’ in triangle AH,H, passes through the circumcenter G, of AAH,H.. Similarly,
the lines 3/ and 2’ pass through G, and G..

(See Fig. 13.) Since B’ and C’ are the midpoints of CA and AB, the triangle
AC'B’ is the image of triangle ABC in the homothety with center A and factor %
Hence, the orthocenter of triangle AC’B’ is the image of the orthocenter H of AABC
in this homothety, i. e. the midpoint G, of the segment AH.

After 2], Lemma 1, the reflections of the orthocenter of a triangle in the sidelines
lie on the circumcircle of the triangle. Thus, the reflection U, of the orthocenter GG, of
triangle AC'B’ in the sideline B’C” lies on the circumcircle of triangle AC'B’. But as
the points B’ and C” lie on the circle with diameter AU, this circumcircle is just the
circle with diameter AU. Consequently, U, lies on the circle with diameter AU. As we
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know, X’ lies on this circle, too. Hence, LU, X'U = LU, AU. We have

£(UX"; BC) = £(UX'; PU)+ £(PU; BC) = £U,X'U + £ (PU; BC)
— AU,AU + £ (PU; BC) = £ (AH,; AU)+ £(PU; BC)
= A (AH,; BC)+ £(BC; CA)+ £ (CA; AU)+ £ (PU; BC)
= 90° + LBCA+ £CAU + £ (PU; BC).

Since U is the center of the circle ABC, we have L{C AU = 90° — L ABC, thus

£ (U X'; BC) =

90° + LBCA + (90° — £LABC) + £ (PU; BC)
180° + ({BCA — £ABC) + £ (PU; BC)
{BCA — LABC + £ (PU; BC)

ABCA - £ (AB; BC)+ £(PU; BC)
£KBCA+ £ (PU; AB).

Now, U, and X' are the reflections of G, and L in B'C’; therefore, £ (G,L; B'C') =

—4£ (U, X'; B'C"), and

L(Gol: CA) = 4(Gal; BC')+ £ (B'C’; CA)
= —L(U,X'; BC")+ 4 (B'C'; CA)
= —A(U,X'"; BC)+ £ (BC; CA) (since B'C" || BC)
— —({BCA+ £ (PU; AB)) + £BCA = —£ (PU; AB).

On the other hand, z’ is the corresponding line of PU in triangle AIT,I,. Hence,
the angle between the line 2/ and the sideline AH, of triangle AH,I, is oppositely
equal? to the angle between the line PU and the sideline AB of triangle ABC. This

means:

£(z'; AHy) = —4 (PU; AB),

thus £ (2'; CA) = —£ (PU; AB) = £(G4L; CA). Therefore, the lines 2/ and G,L
are parallel, and, as both of them pass through G,, they must coincide, so that L lies
on z'. Similarly, L lies on ¢/ and 2/, proving Theorem 1.8.

2Oppositely equal because triangles AH,H, and ABC are inversely similar.
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Fig. 13
Theorem 1.9: The orthocenters D, E, F of triangles AYZ, BZX, CXY are
simultaneously the corresponding points of P in triangles AH,H,., H,BH,., H,H,C.
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C  Fig 14
Proof (Fig. 15). If Y, is the foot of the altitude of triangle AY Z from Y, then the
orthocenter D of AAY Z lies on YY,.
The segments Y'Y, and C'H, are parallel (since both are perpendicular to AB);
hence, AH,: HY, = AC : CY.
Being an altitude in triangle AY 7, AD is perpendicular to Y Z; hence

KDAY, = £(AD; AZ)=4(AD; YZ)+ £(YZ; AZ) =90° + £ (Y Z; AZ)
— 90° + LY ZA.

The points Y and Z lie on the circle with diameter AP, entailing {YZA = LY PA,
and thus L DAY, = 90° + Y PA = LAY P + LAY PA. Now, since {AYP + Y PA =
— 4 PAY, we have L DAY, = — £ PAY. Furthermore, obviously £ AY,D = 90° = —90° =
—«£ AY P. Hence, the triangles DAY, and PAY are inversely similar. And since AH., :
H.Y,= AC : CY, the points H. and C are corresponding points on their sidelines AY,
and AY, respectively. Corresponding points in similar triangles produce equal angles;
hence, the angles L{AH,D and £ACP are oppositely equal®>. We have thus shown
£LAH.D = — L ACP; likewise, {AH,D = —{ABP.

30ppositely because triangles DAY, and PAY are inversely similar.

15



C  Fi 15

On the other hand, if D; is the corresponding point of P in triangle AH,H,, we have
£LAH.D1 = —£LACP and L AH,Dy = —£ABP, since corresponding points in similar
triangles produce equal angles. Hence, L AH.D = L AH.D;, and L{AH,D = L AH,D;.
The point D7 must therefore lie on H.D and H, D, what shows that D; = D, i. e. that
D is the corresponding point of P in triangle AH,H,. Analogous reasoning shows the
same for ' and F, and Theorem 1.9 is established.

(See Fig. 16.) Theorem 1.9 entails that the points D, E, F lie on the lines z’; 4/,
2. In fact, since P lies on PU, the corresponding point D of P in triangle AH,H, lies
on the corresponding line ' of PU in this triangle, and equally F lies on ¢ and F' on
Z'. Hence,

LELF =4 (y; 2') =4 (y; BC) - £ (7; BC).

But just as we have shown £ (z'; CA) = —£ (PU; AB) previously, we may find
£L(y; BC)=—4(PU; AB) and £ (2'; BC) = -4 (PU; CA); it follows that

LELF = (=4 (PU; AB)) - (-=£(PU; CA)) = £(PU; CA) — £ (PU; AB)
— L(AB; C4).

On the other hand, since F and F' are the orthocenters of ABZX and ACXY, we get
XE 1 AB and XF 1 CA, thus

AEXF = A(XE; XF)=4(XE; AB)+ £ (AB; CA) + £ (CA; XF)
— 90°+ £ (AB; CA) +90° = 180° 4+ £ (AB; CA) = £ (AB; CA) = {ELF.

Hence, L lies on the circle KX F.
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C  Fig 16

(See Fig. 17.) For the orthocenter F of triangle BZX, we have XF L AB; on
the other hand, PZ 1 AB. Hence, XF || PZ, and similarly ZF | PX, proving the
quadrilateral ZFE X P a parallelogram. We conclude ZFE = PX. Similarly, YE = PX.
If R, is the foot of the perpendlcular from P to AH,, then the quadrilateral PR, H, X
is a rectangle, and R H, = — PX. In other words, the translation by the vector PY
maps the points P, Y, Z, R, to X, F, E/, H,, respectively. Since the points P, Y, Z, R,
all lie on the circle with diameter AP (R, does, since LAR,P = 90°), their images X,
F, E, H, lie on the image of this circle in the translation. But we know that L lies on
the circle F X F'; combining, we obtain:

Theorem 1.10: The points X, E, F, H, and L lie on one circle, and this circle is
the image of the circle with diameter AP in the translation by the vector PX.
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C Fig 17

In addition, we have (Fig. 18):

Theorem 1.11: This circle through X, F, F, H,, L is as well the reflection of the
circle with diameter AP in the line B'C".

Proof. The points X" and X’ are the reflections of X and L in B’C’; conversely, X
and L are the reflections of X’ and X’ in B’C’. Moreover, H, is the reflection of A in
B'C’. Since the points X", X', A lie on the circle with diameter AP, their reflections
X, L, H, are placed on the reflection of this circle in B'C". 1. e., the circle XLH, is
the reflection of this circle with diameter AP in B’C’; but this is just the statement of
Theorem 1.11.
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Fig. 18
Now we leave the unending series of results concerning pedal circles for considering
two prominent special cases (we will get back to the general case at the end of the

paper):

Case 1: P is the orthocenter of AABC

We first consider the case where P is the orthocenter I of triangle ABC'. A special
feature of this case is that the feet X, Y, Z of the perpendiculars from P = H to the
sidelines BC, C A, AB coincide with the feet H,, H,, H. of the altitudes. The line
PU = HU is the well-known Euler line of triangle ABC.

Theorem 1.1 yields (Fig. 19):

Theorem 2.1: The reflections x, y, z of the Euler line HU of triangle ABC' in the
sidelines B'C’, C'A’, A’B’ of the medial triangle A’B'C’ concur at one point L lying
on the nine-point circle of triangle ABC. This L is the Anti-Steiner point of the Euler
line HU of triangle ABC with respect to triangle A’B'C".
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Fig. 19

It is interesting to note that HU is the Euler line of triangle A’ B'C’, too.* Thus, the
lines z, y, z are the reflections of the Euler line of AA’B'C" in the sidelines B'C’, C'A’,
A'B" of AA'B'C’. According to [2], Note 3, their intersection L is the Euler reflection
point of triangle A’B’C’. We record this fact:

Theorem 2.2: The point L is the Euler reflection point of the medial triangle
A'B'C.

Since for any point defined in triangle ABC, the corresponding point of the medial
triangle A’ B'C" is called the complement of this point, we can rewrite Theorem 2.2
as follows:

Theorem 2.3: The point L is the complement of the Euler reflection point of
triangle ABC.

4For the sake of completeness, I give a proof. Triangle A’B’C’ is the medial triangle of triangle
ABC'; hence, it has the same centroid as AABC, and the circumcenter of AABC is the orthocenter
of AA’B’C’. The Euler line of triangle A’B’C’ passes through the orthocenter and the centroid of
AA'B'C’, i. e. through the circumcenter and the centroid of AABC, and thus coincides with the
Euler line HU of AABC.
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Fig. 20

Theorem 1.3 yields:

Theorem 2.4: The point L is the orthopole of the Euler line HU of triangle ABC.
(See Fig. 20.)
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Fig. 21

Now we will apply Theorem 1.5. The segments AX’, BY' CZ' are the distances
from the points A, B, C to the Euler line HU. The Euler line HU passes through the
centroid of AABC.

A theorem states that if a line g passes through the centroid of a triangle ABC,
and the points A4 and C' lie on one side of g and the point B on the other one, then
d(A; 9)+d(C; g) = d(B; g), where the abbreviation d (Py; g1) is used for the distance
of a point P; to a line ¢;. > Applying this to the Euler line ¢ = HU, we obtain
d(A; HU) +d(C; HU) = d(B; HU), i. e. AX'+ CZ" = BY'. Of course, this
holds only for A and C' lying on one side of HU and B on the other side. Flse,
AX'+ BY' =CZ or BY' +CZ' = AX'. Altogether, we can say that the longest of
the three segments AX', BY', C'Z' equals the sum of the other two.

After Theorem 1.5, H,L. = AX', H,L. = BY', H.L. = C'Z'. Hence we get:

Theorem 2.5: The longest of the three segments H, I, H,L, H.L equals the sum
of the other two. (See Fig. 21.)

® Proof. If S is the centroid of triangle ABC, and X', Y’, Z’ are the feet of the perpendiculars
from A, B, C to g, and M, is the midpoint of Z’'X’, then the segment B’M,, is a midparallel in the
trapezium AX'Z'C, hence B'M,, || AX' and B'M, = 1 (AX'+CZ'). But B'M, || AX' || BY’ and
BS : 8B’ =2imply BY': B'M, =2, hence BY' =2-B'M, = AX'+CZ',and d(4; ¢9)+d(C; g) =
d(B; g).

See, e. g., [3] for references.
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Fig. 22

According to Theorem 1.6, we have:

Theorem 2.6: The point L lies on the lines H, A", H,B", H.C”, where A" =
B'C' N HyH,, B" = C'A' 0 H,H,, C" = A'B' N H,I,. (See Fig. 22.)
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Fig. 23

The lines ', 3/, 2’ are the corresponding lines of the Euler line HU in the triangles
AHyH,, H,BH., H,HyC,i. e. simply the Euler lines of these triangles. Hence, Theorem
1.8 yields:

Theorem 2.7: The Euler lines of the triangles AH,H,, H,BH., H,H,C pass
through L. (See Fig. 23.)

Note that Theorem 2.7, together with Theorems 2.5 and 2.1, provides a solution of
the following problem [4] by Victor Thebault: Show that the Euler lines of the triangles
AHyH,, H,BH., H,H,C meet at a point L lying on the nine-point circle of AABC,
such that the longest of the three segments H, L, H,L, H.L equals the sum of the other
two.
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C  Fig u
The points D, F, F' are the orthocenters of triangles AHyH,, HoBH., H,HyC (since
H, =X, Hy=Y, H,. = 7). In accordance with Theorem 1.10, the points X, F, F, H,,
L lie on one circle; but since X and H, coincide, this circle touches BC. We summarize:
Theorem 2.8: The points F, I, H,, L lie on one circle touching the line BC.
Note that this can be proven in a simpler way.

Case 2: P is the incenter of AABC

Now we are going to consider another special case, namely let P be the incenter O
of triangle ABC. The feet X, Y, Z of the perpendiculars from P = O to the lines BC,
CA, AB are the points where the incircle of AABC touches the sides BC, CA, AB.
The triangle XY 7 is called Gergonne triangle of triangle ABC. The pedal circle of
O is the circle XY Z, the incircle of triangle ABC'.

The line PU = OU will be called the diacentral line of triangle ABC. (It is
better known as the ”OI line”, but the term ”diacentral line” has at least two notable
advantages: it is, at first, independent of the notations; also, it is constructed in analogy
to the corresponding line of a bicentric quadrilateral.)
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Fig. 25

Theorem 1.1 yields (Fig. 25):

Theorem 3.1: The reflections z, y, z of the diacentral line QU of triangle ABC' in
the sidelines B'C’, C'A’, A'B’ of the medial triangle A’ B'C’ meet at a point L lying on
the nine-point circle of triangle ABC. This L is the Anti-Steiner point of the diacentral
line OU of triangle ABC with respect to triangle A’B'C".

As a consequence of Theorem 1.7, L lies on the circle XY 7, i. e. on the incircle of
AABC. In fact, more is true:

Theorem 3.2: The incircle and the nine-point circle of triangle ABC' touch each
other internally in L.

We will prove this later. The point L is called Feuerbach point or Feuerbach
tangency point of triangle ABC. Thus, we can restate Theorem 3.1 as follows:

The Anti-Steiner point of the diacentral line of a triangle with respect to the medial
triangle is the Feuerbach point of the original triangle.

We will study some properties of L before proving Theorem 3.2.
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Fig. 26

Application of Theorem 1.3 yields:

Theorem 3.3: The Feuerbach point L is the orthopole of the diacentral line OU
of triangle ABC. (See Fig. 26.)
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Fig. 27

Theorem 1.6 gives:

Theorem 3.4: The Feuerbach point L lies on the lines XA”, YB", ZC”, where
A =BC'NYZ B =C'ANZX,C" = AB N XY. (See Fig. 27.)
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Fig. 28

The lines z’, ¢/, 2’ are the corresponding lines of the diacentral line OU in the
triangles AH,H,., H,BH., H,H,C, thus simply the diacentral lines of these triangles.
Hence, as a consequence of Theorem 1.8, we get:

Theorem 3.5: The diacentral lines of the triangles AH,H., H,BH., H,H,C pass
through the Feuerbach point L of triangle ABC. (See Fig. 28.)
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C  Fig 29
The points D, F, F' are the orthocenters of triangles AY 7, BZX, CXY. The point
P is the incenter of AABC'; hence, the corresponding points of P in triangles AH,H.,,
H,BH., H,H,C are the incenters of these triangles. Hence, Theorem 1.9 yields:
Theorem 3.6: The orthocenters D, E, F of triangles AYZ, BZX, CXY are
simultaneously the incenters of triangles AH,H,., H,BH,, H,H,C. (See Fig. 29.)

C  Fig 30

Finally, we apply Theorem 1.10:

Theorem 3.7: The points X, F, I, H, and the Feuerbach point L lie on one circle.
(See Fig. 30.)

This circle is the image of the circle with diameter AQO in the translation by the
vector OX. If A, is the center of the circle through X, FE, F, H,, L, and A, is the
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center of the circle with diameter AQO, then we conclude that A, is the image of A,, in
the translation by the vector OX. Thus, A, A, || OX and A,, A, = OX, implying that
the quadrilateral A,,A,XO is a parallelogram. Since the diagonals of a parallelogram
bisect each other, the midpoint of X A4,, is simultaneously the midpoint of O A,,. Denote
this midpoint by A,.

(See Fig. 30a.) Now consider the incircle of AABC with center O, the circle
through X, F, F, H,, L. with center A,,, and the circle with diameter X A,, with center
Ay (remember that A, is the midpoint of X A,,). All three circles pass through X. The
first two of these circles also pass through L; we suspect that the third circle passes
through L, too.

In order to prove this, we remember that the common points of two circles are
symmetrically placed with respect to the line joining the centers. Hence, the common
points X and L of the incircle of AABC and the circle through X, E, F, H,, L are
symmetrically placed with respect to the line OA,; i. e., the point L is the reflection of
X in OA,,. But OA, contains the center A, of the circle with diameter X A,, (because
Ag is the midpoint of OA,). Since a circle is symmetric with respect to any line
through its center, the circle with diameter X A,, must be symmetric with respect to
OA,,. Hence, since X lies on this circle, ist reflection L in the line O A,, must lie on this
circle, too.

Fig. 30a
We have just shown that L lies on the circle with diameter X A,,. Hereby, A,, is
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the center of circle with diameter AQ, i. e. the midpoint of the segment AO and the
circumcenter of triangle OY Z (because the circumcircle of AOY Z is the circle with
diameter AQO, as LAY O = 90° and £ AZO = 90° makes the points Y and Z lie on the
circle with diameter AQO).

Similarly, we can introduce the midpoints B,,, C,, of the segments BO, CO and
show that they are the circumcenters of triangles OZ X, OXY, and that L lies on the
circles with diameters Y B, and ZC,,. We sum up:

Theorem 3.7a: The midpoints A,,, By, Cn, of the segments AO, BO, C'O are the
circumcenters of triangles OY Z, OZ X, OXY. The Feuerbach point L of triangle ABC
lies on the circles with diameters X A,,, Y Bp,, ZCp,. (See Fig. 30b.)

This result was communicated to me by Michel Garitte in a somewhat different
form.

Fig. 30b
(See Fig. 30c.) The point L lying on the circles with diameters X A, and Y B,
we get L X LA, =90° and LY LB, = 90°, and thus

LAWLBy, = £AnLX +AXLY +AYLB,,=—4AXLA,, + AXLY + LY LB,
= —90°+4AXLY +90°=£LXLY.
Since L lies on the circle XY Z, we have L X LY = AXZY, and LA, LB, = AXZY =
L (ZX; YZ). But the points Y and Z are symmetrically placed with respect to the
angle bisector AO of the angle CAB; thus, YZ 1 AQO, and likewise, ZX 1 BO.
Herewith,
LAWLBy = £(ZX; YZ)=XL(ZX; BO)+ £(BO; AO) + £ (AO; YZ)
= 90°+ ALBOA+90° =180° + L BOA = LBOA.
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The triangle B,,C’ Ay, is formed by the midpoints of the sides of AAOB and is there-
fore the medial triangle of AAOB. Since any triangle is directly similar to its medial
triangle, triangles AOB and B,,C’A,, are directly similar, and { BOA = £ A,C' B,
so that the equation above becomes £ A,,LB,, = £AnC’'B,,. Hence, the point L lies
on the circle A,,B,,C’. But for A,,, B,,, C’ are the midpoints of the sides of AAOB,
the circle Ay, B, C’ is the nine-point circle of AAOB; hence, L lies on the nine-point
circle of AAOB. Likewise, L lies on the nine-point circles of ABOC and ACOA.

B

A

Fig. 30c

We record this result:

Theorem 3.7b: The Feuerbach point L of a triangle ABC' lies on the nine-point
circles of triangles BOC, COA, AOB, where O is the incenter of triangle ABC. (See
Fig. 30d.)

We note in passing that there are simpler ways to establish this theorem.
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Fig. 30d

We continue with the Proof of Theorem 3.2: As D is the orthocenter of AAY Z,
YD L AB. On the other hand, OZ | AB. Thus, YD || OZ, and similarly ZD || OY,
proving the quadrilateral OY DZ a parallelogram. It is even a rhombus (as OY = OZ);
thus, D is the reflection of O in Y Z. Let z) be the reflection of the line OU in Y Z7;
then, x| passes through D, since OU passes through O.

We also have £ (24; YZ) = =4 (OU; YZ) by the definition of zj.
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Fig. 31
In the proof of Theorem 1.8, we have shown £ (z'; CA) = —£ (PU; AB);
P = O, this becomes £ (z; CA) = —£(OU; AB), and hence

L2, YZ) =4 (af; CA)+ L (CA; YZ) = -4 (OU; AB) + £(CA; YZ).

with

By symmetry, YZ 1 AQO, and since AO is the angle bisector of the angle C'AB, we
have £ (CA; AO) = £ (AO; AB); thus,

L(2; YZ) = —4L(OU; AB)+ £(CA; YZ)
= —A(OU; AB)+ £(CA; AO)+ £ (AO; Y7Z)
— —£(OU: AB) + £ (CA; AO) +90°
— _£(OU: AB) + £ (AO; OB) + 90°
— _£(OU; AB) + £ (AO; AB) + 4 (YZ: AO)
= —AL(OU; YZ)=L(2; YZ)

Hence, the lines 2’ and x| are parallel. But as they both pass through D 9, they
coincide. 1. e., the line 2’ is the reflection of OU in Y Z. Similarly, 3/ and 2’ are the
reflections of OU in ZX and XY. We summarize:

Theorem 3.8: The diacentral lines ', 3/, 2z’ of the triangles AH,H,., H,BH.,,
H,H,C are the reflections of the diacentral line OU of AABC in the sidelines Y 7,
ZX, XY of the Gergonne triangle XY 7. (See Fig. 32.)

6Being the corresponding point of P in triangle AH,H,, D lies on z'.
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Fig. 32

The triangle ABC is the tangential triangle of AXY Z. It is well-known that the
Euler line of a triangle passes through the circumcenter of the tangential triangle;
hence, the Euler line of AXY Z passes through the circumcenter U of AABC. On the
other hand, this Euler line passes through the circumcenter O of AXY 7 and hence
coincides with the line OU. Thus, we have shown:

Theorem 3.9: The diacentral line OU of triangle ABC is the Euler line of the
Gergonne triangle XY 7.

After Theorem 3.8, the lines 2/, /', 2’ are the reflections of the Euler line of triangle
XY Z in its sidelines YZ, ZX, XY'; their meet L is therefore the Euler reflection point
of AXY Z. We emphasize this result:

Theorem 3.10: The Feuerbach point L of triangle ABC is the Fuler reflection
point of the Gergonne triangle XY 7.

But we still haven’t established Theorem 3.2. Regard the Gergonne triangle XY 7
(Fig. 33): The orthocenter H' of AXY Z lies on the Euler line of AXY 7, i. e. on OU.
Consequently, the reflections Q,, Qp, Q. of H' in YZ, ZX, XY lie on the reflections
2,0y, 2 of OU in YZ, ZX, XY. On the other hand, these reflections Q,, Qp, Q. lie
on the incircle of AABC, since the reflections of the orthocenter of a triangle in its
sidelines lie on the circumcircle of the triangle ([2], Lemma 1), and the circumcircle of
AXY Z is the incircle of AABC.

Now, the feet Ty, Ty, T, of the altitudes of AXY Z from X, Y, Z are the midpoints
of the segments H'Q,, H'Qy, H'Q.. As a midparallel in AQ,H'Q,, the line TyT, is
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parallel to Q..
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Fig. 33

Note that AABC' is the tangential triangle of AXY Z, and AT,T,T, is the orthic
triangle of AXY Z. It may be readily shown that the orthic triangle and the tangential
triangle of a triangle are homothetic; hence, AT, T, T, and AABC are homothetic, and
TyT. | BC. Remembering that T,T, || Q»Q., we conclude QpQ. || BC.

We know that the lines z’, ¢/, 2’ also pass through the midpoints Gg, Gy, G of
AH, BH, CH. The circumcircle of AG,G,G, is the nine-point circle of AABC. As a
midparallel in ABHC, the line G,G. is parallel to BC; together with Q,Q. || BC, this
entails GG, || QpQ.. The same reasoning shows GG, | Q.Qq and GGy || Qu@s. Thus,
triangles GoGpG. and Q,(p(). are homothetic, and the homothetic center lies on the
lines GoQq, GpQp, G.Q.. But these lines are simply z’, v/, 2’ and intersect at L, making
L the homothetic center of AG,GpG, and AQ,Qp(Q).. The homothety with center L
transforming AG,GyG. to AQ.QpQ. (the factor of this homothety is positive, as the
figure shows), maps the circumcircle of AG,GyG.. to the circumcircle of AQeQpQe, i
e. the nine-point circle of AABC' to the incircle of AABC. Hence, the homothetic
center I is the external center of similtude of the nine-point circle and the incircle,
and therefore lies on the line joining the centers of these two circles. But L also lies
on the two circles themselves; hence, the two circles must touch each other at L. The
tangency is internal, since L is the external center of similtude. Theorem 3.2 is proven.
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Fig. 34

Mutatis mutandis, any of the three excircles of A ABC touches the nine-point circle,
this time externally. We summarize:

Theorem 3.11: The nine-point circle of triangle ABC' touches the incircle inter-
nally and any of the three excircles externally.

This result is the Feuerbach theorem; a lot of proofs are known, but this one
seems to be new.

Generalization of the Feuerbach theorem

In this last paragraph, we will establish a generalization of the Feuerbach theorem
attributed to V. Ramaswamy Aiyer, the Aiyer theorem. Again it deals with an
arbitrary point P in the plane of AABC, the pedal triangle XY Z of P and the pedal
circle XY 7.

Before stating the theorem I make a little remark: If we speak of an angle between
two circles, we mean the angle between the tangents to the two circles at one of their
common points. This angle is defined except for its sign, since the angles at the two
common points are oppositely equal to each other: If two circles k£ and k' intersect at
P and P', then the (directed) angle between the tangents to k and k" at P is oppositely
equal to the (directed) angle between the tangents to k and k' at P’. But we can also
speak of the angle between the circles k and k' in the common point P; this angle is
uniquely defined as the directed angle between the tangents to k and k' at P.

Now we can state the Aiyer theorem:
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Theorem 4.1: The angle between the nine-point circle of triangle ABC' and the
pedal circle of the point P in their common point L is 90° — LA PBC — A PCA—- LA PAB.

Remark. This expression is obviously asymmetric, meaning that we can show as
well that the angle between the nine-point circle and the pedal circle of P in their
common point L is 90° — L PCB — L PAC — L PBA. However, it can be easily verified
that 90° — L PBC — LPCA — £PAB = 90° — L{PCB — {PAC — {PBA. (See Fig.
35.)

C
Fig. 35
Proof of Theorem 4.1. Let tp, and ¢, be the tangents to the nine-point circle and
to the pedal circle of P in the point L, respectively. We have to prove that

£ (tpe; tpy) = 90° — LPBC — LPCA — {PAB.
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Fig. 36

(See Fig. 36.) We have obviously
£ (tpe; pru) =4 (tpe; A/L) + £ (A/L; XL) + £ (XL; pru) .

According to the theorem about the tangent-chordal angle, we have £ (tp.; A'L) =
£ (LH,; HgyA") in the nine-point circle, and £ (XL; tp,) = £ (X Z; ZL) in the pedal
circle. Therefore,
£ (tre; tru) (LHy; H A+ £ (A'L; XL)+ £ (XZ; ZL)
(LH,; BC)+ £ (A'L; XL)+ £(ZX; ZL)
(LH,; BC)+ (£ (A'L; LH,) + £ (LH,; XL))
(L(ZX; BC)+ £(BC; XL)+ £(XL; ZL))
= A (LH,; BC)+ £A'LH, + £ (LH,; XL)
+LZXB+ £ (BC; XL)+ £XLZ
= (L (LH,; BC)+ £(BC; XL))+ £(LH,; XL)
+LALH, + £ZXB+ £XLZ
= 2-A(LHy; XL)+ £A'LH, + £ZXB+ AXLZ.
Since L lies on the circle XY Z, AXL7Z = A XY Z, and since L lies on the nine-point
circle of AABC, LA LH, = £A'C'H,. Herewith,

L (tpe; tpy) =2+ L (LHy; XL)+ £A'C'H, + LZXB + AXY Z. (1)

£
= 4
£
_l’_
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Fig. 37

(See Fig. 37.) The point H, is the reflection of A in B'C’; i. e., A is the reflection
of H, in B'C’. We also know that X’ and X" are the reflections of L and X in B'C".
Hence, the lines X’ A and X" X’ are the reflections of LH, and X L in B’C’, what yields
£(X'A; B'C") = —&£ (LH,; B'C") and £ (X"X'; B'C") = —&£ (XL; B'C"), therefore

L(X'A; X"X") = L(X'A; B'C') - £L(X"X'; B'C")
= (=4 (LHg; B'C")) - (-£(XL; B'C"))
= L(B'C'; LH,) + £(XL; B'C') = =4 (LHy; XL),

hence
£ (LHg; XL)=—-4 (X’A; X”X’) =L X"X'A.

For the points X’ and X" lying on the circle with diameter AP, we get £ X" X'A =
£X"PA, and

£(LH,; XL) = £X"PA=4(PX; AP) = 4 (PX; BC)+ £ (BC; AP)
= 90°+ £ (BC; AP), thus

2.4 (LHy; XL) = 2-(90°+ £ (BC; AP)) =180°+2- £ (BC; AP)=2-4(BC; AP).

Hence, (1) becomes

A (tpe; tpy) =2+ £ (BC; AP)+ L AC'H, + AZXB+ £ XY Z. (2)
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C  Fie 38
It remains to calculate L A'C"H, (Fig. 38). Since the circumcenter of a right-angled
triangle is the midpoint of the hypotenuse, the midpoint C” of AB is the circumcenter
of the right-angled AAH,B; thus, C'B = C'H,, and the isosceles triangle BC’ H, yields
LC'"H,B = £H,BC". On the other hand, L BC'H,+ £C'H,B+ £ H,BC' = 0°, and we
obtain L BC'H, = —£C'H,B — {H,BC' = -2- {H,BC' = —-2- {CBA =2-£ABC.
Since C'A’ || C A, we have LA'C'B = LC AB. Therewith,

LAC'H, = £AC'B+ £BC'H, = £CAB+2-£ABC
— (LCAB + £ABC + £BCA) + £ABC — {BCA
= 0°+ LABC — £{BCA = £ABC — £BCA.

Substituting in (2),
& (tre; tru) =2 - £ (BC; AP)+ (LABC — ABCA)+ £ZXB+ £XYZ.

Due to £BZP = 90° and {BXP = 90°, the points Z and X lie on the circle with
diameter BP; hence,

£7ZXB=£7ZPB = £ (PZ; BP) = £ (PZ; AB)+ £ (AB; BP) = 90° + £ (AB; BP).

Analogously, L XY C = 90° + £ (BC; CP) and LZY A =90°+ £ (BA; AP), leading
to

AXYZ = AXYC +ALCYZ =LXYC — £ZV A
= (90° + £ (BC; CP)) — (90° + £ (BA; AP))
— £(BC; CP)— £ (BA; AP).
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Thus,

L (tpe; tr) = 2-4(BC; AP)+(LABC — {BCA) + LZXB + £XY 7
2. £ (BC; AP) + ({ABC — £BCA)
+(90° + £ (AB; BP))+ (L (BC; CP)— 4 (BA; AP))
= 2-4(BC; AP)+ £(AB; BC)— £(BC; CA)
+90° + £ (AB; BP)+ £ (BC; CP)— £ (AB; AP)
= (4L (BC; AP)+ £ (AB; BC))+ £ (BC; AP)
+ (£ (BC; CP)— £(BC; CA))
+90° + (L (AB; BP) — £(AB; AP))
— A(AB; AP) + £ (BC; AP)+ £ (CA; CP)+90° + £ (AP; BP)
= A (AB; AP) + (£(BC; AP) + £(AP; BP))+ £(CA; CP)+90°
£ (AB; AP)+ £(BC; BP) + 4 (CA; CP) + 90°
ABAP + LCBP + £LACP + 90°
= 90°— LPBC — LPCA - £PAB,

qed..

Two direct corollaries of Theorem 4.1 should be mentioned. First, the nine-point
circle and the pedal circle are orthogonal if and only if the angle between them is 90°,
i. . 90° —APBC — APCA—-APAB =90°1i. e. £PBC+ APCA+ £PAB =0°. We
record this result:

Theorem 4.2: The nine-point circle and the pedal circle of P are orthogonal if
and only if {PBC + APCA+ APAB = (°.

The nine-point circle touches the pedal circle of P if and only if the angle between
the two circles is 0°, i. e. 90°— A PBC — AL PCA—{PAB =0°i. e. APBC+APCA+
£ PAB = 90°. We record this, too:

Theorem 4.3: The nine-point circle touches the pedal circle of P if and only if
APBC + APCA+ APAB = 90°.

This is a generalization of the Feuerbach theorem. In fact, for the incenter O of
triangle ABC, we have LOBC + LOCA + £OAB = 90°, what can be easily proved:
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C
Fig. 39
If o, B, v are the Euclidean (non-directed) angles of AABC, then LOBC = g,
1 o]
£0CA =1, LOAB = 2, thus LOBC + £0CA+ LOAB =2 o4y 180 g

with Euclidean angles. Now, the arrangement of points (Fig. 39) makes clear that
this equation LOBC + LOCA + LOAB = 90° holds for directed angles modulo 180°,
t00.” According to Theorem 4.3, this indicates that the nine-point circle touches the
pedal circle of O, i. e. the incircle of AABC. Similar reasoning proves the same for
the excircles. This proves Theorem 3.11 again.
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"This equation - signifying that the sum of the angles between the three internal angle bisectors
of the triangle and adjacent triangle sides in cyclic order is 90° - plays a crucial role in the geometry
of directed angles modulo 180°. This equation cannot be shown without the use of Euclidean angles;
in fact, directed angles modulo 180° don’t allow distinguishing between internal and external angle
bisectors, but if we replace one of the internal angle bisectors by an external one, the sum of the angles
will be 0°.
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