
Circumscribed quadrilaterals revisited / Darij Grinberg
[corrected and amended version, 7th of July 2021]

The aim of this note is to prove some new properties of circumscribed quadrilaterals
and give new proofs to classical ones.1

We start with some trivialities (Fig. 1).
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Let ABCD be a circumscribed quadrilateral, that is, a quadrilateral that has an
incircle. Let this incircle have the center O and the radius ρ and touch its sides AB,
BC, CD, DA at the points X, Y, Z, W, respectively. Then, for obvious reasons, we
have OX ⊥ AB, OY ⊥ BC, OZ ⊥ CD, OW ⊥ DA and OX = OY = OZ = OW = ρ.
Moreover, AW = AX, BX = BY, CY = CZ, DZ = DW, since the two tangents from
a point to a circle are equal in length. We denote

a = AW = AX; b = BX = BY ; c = CY = CZ; d = DZ = DW.

(Thus, we denote by a, b, c, d not, as usual, the sidelengths of the quadrilateral ABCD,
but the segments AW = AX, BX = BY, CY = CZ, DZ = DW.)

1I am grateful to George Baloglou for correcting a mistake in Theorem 13.
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Then, the sidelengths of quadrilateral ABCD are

AB = AX +BX = a+ b; BC = BY + CY = b+ c;

CD = CZ +DZ = c+ d; DA = DW + AW = d+ a.

Hence,

AB + CD = (a+ b) + (c+ d) = (b+ c) + (d+ a)

= BC +DA (since b+ c = BC and d+ a = DA) .

Thus we have shown the maybe most famous fact about circumscribed quadrilaterals:

Theorem 1. If ABCD is a circumscribed quadrilateral2, then AB+CD =
BC +DA.

In words: In a circumscribed quadrilateral, the sums of the lengths of opposite sides
are equal.

2In the following, we assume in every theorem that ABCD is a circumscribed quadrilateral; and
we use all previously defined notations (for instance, O always stands for the center of the incircle of
ABCD).
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Now, let us get serious and turn to the first nontrivial result about circumscribed
quadrilaterals (Fig. 2):

Theorem 2. The four lines AC, BD, XZ, Y W concur at one point.3

This theorem is still rather well-known; it is problem 105 in [1] and also appears in
[6], [8] and [10]. Here we give two proofs of this theorem.

3As already said, we are using all previously introduced notations. Thus, ABCD is a circumscribed
quadrilateral, and X, Y, Z and W are the points at which its incircle touches its sides AB, BC, CD
and DA.
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First proof of Theorem 2. (See Fig. 3.) Let P be the point of intersection of the
lines AC and YW.
The lines BC andDA touch the incircle of the quadrilateral ABCD at the points Y

andW. Hence, by the tangent-chordal angle theorem, both angles ]CYW and ]DWY
are equal to the chordal angle of the chord YW in the incircle of the quadrilateral
ABCD. Thus, ]CYW = ]DWY. In other words, ]CY P = 180◦ − ]AWP. Thus,
sin]CY P = sin]AWP. But after the sine law in triangle AWP, we have AP = AW ·
sin]AWP

sin]APW , and after the sine law in triangle CY P, we have CP = CY · sin]CY P
sin]CPY .

Thus,

AP

CP
=
AW · sin]AWP

sin]APW
CY · sin]CY P

sin]CPY

=
AW · sin]AWP

sin]APW
CY · sin]AWP

sin]APW

=
AW

CY
=
a

c
.

Now, let P ′ be the point of intersection of the lines AC and XZ. Then, we similarly

find
AP ′

CP ′
=
a

c
. Comparing this with

AP

CP
=
a

c
, we find

AP

CP
=
AP ′

CP ′
. This means that
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the points P and P ′ divide the segment AC in the same ratio; hence, these points P
and P ′ coincide. Since the point P is the point of intersection of the lines AC and YW,
and the point P ′ is the point of intersection of the lines AC and XZ, it thus follows
that the lines AC, XZ and YW concur at one point. Similarly, we can verify that the
lines BD, XZ and YW concur at one point. Hence, all four lines AC, BD, XZ and
YW concur at one point, and Theorem 2 is proven.
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This proof of Theorem 2 has a nice consequence (Fig. 4): The point of intersection of
the four lines AC, BD, XZ, Y W must obviously coincide with the point of intersection
P of the lines AC and YW defined in the above proof of Theorem 2. However, we

have shown that this point P satisfies
AP

CP
=
a

c
. Similarly,

BP

DP
=
b

d
. Thus, we get:

Theorem 3. If P is the point of intersection of the lines AC, BD, XZ,

Y W, then
AP

CP
=
a

c
and

BP

DP
=
b

d
.

Note that this result appeared in [7] and [8].
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Second proof of Theorem 2. We will show that the lines AC, BD and XZ concur.
Then, analogously we can show that the lines AC, BD and YW concur, and thus it
will follow that all four lines AC, BD, XZ and YW concur, thus proving Theorem 2.
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(See Fig. 5.) Now, in order to show that the lines AC, BD and XZ concur, it
appears reasonable to apply the Brianchon theorem in a limiting case. However, one
has to be careful doing this. Here is how one should not proceed:
"Consider the degenerate hexagon AXBCZD (degenerate, since its adjacent sides

AX and XB lie on one line, and its adjacent sides CZ and ZD lie on one line). This
hexagon is obviously circumscribed, since all of its sides AX, XB, BC, CZ, ZD, DA
touch one circle (namely, the incircle of the quadrilateral ABCD). Hence, the main
diagonals AC, XZ and BD of this hexagon concur, and the proof is complete."
The mistake - to be more precise, the gap - in this argumentation becomes clear if

one applies it to the hexagon AX ′BCZD, where X ′ is an arbitrary point on the line
AB. This hexagon, too, appears to be circumscribed, since all of its sides AX ′, X ′B,
BC, CZ, ZD, DA touch one circle (namely, the incircle of the quadrilateral ABCD)
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- if they are extended to lines (but this should not be a problem, since we are talking
about projective theorems, and thus arrangement shouldn’t matter). Thus, by the
Brianchon theorem, it seems to follow that the lines AC, X ′Z and BD concur - but
this is nonsense for every point X ′ different from X.
So where is the mistake? The trick is: A geometrical theorem can be used in

a degenerate case if either its proof still functions in this case, or one can deduce
the degenerate case from the generic case by a limiting argument. Our application
of the Brianchon theorem to the hexagon AX ′BCZD did not match any of these two
conditions; thus, it was not legitimate. Hence, there is no wonder the resulting assertion
was wrong.
However, one can rescue the above proof of Theorem 2. In order to do this, one

must find an argument that shows why the Brianchon theorem can be applied to the
degenerate hexagon AXBCZD, but not to the degenerate hexagon AX ′BCZD with
X ′ 6= X.
In order to find such an argument, let’s recall how the Brianchon theorem is derived

from the Pascal theorem using the polar transformation.
The Pascal theorem states: If six points A1, B1, C1, D1, E1, F1 lie on one circle, then

the points of intersection A1B1 ∩D1E1, B1C1 ∩ E1F1 and C1D1 ∩ F1A1 are collinear;
here, if two "adjacent" points - i. e., for instance, the points A1 and B1 - coincide, then
the line A1B1 has to be interpreted as the tangent to the circle at the point A1, and
not as an arbitrary line through the point A1.
After the polar transformation, this becomes: If six lines a1, b1, c1, d1, e1, f1 touch

a circle, then the lines (a1 ∩ b1) ∗ (d1 ∩ e1) , (b1 ∩ c1) ∗ (e1 ∩ f1) and (c1 ∩ d1) ∗ (f1 ∩ a1)
are concurrent4; here, if two "adjacent" lines - i. e., for instance, the lines a1 and b1
- coincide, then the point of intersection a1 ∩ b1 has to be interpreted as the point of
tangency of the line a1 with the circle, and not as an arbitrary point on the line a1.
In other words: The hexagon formed by the lines a1, b1, c1, d1, e1, f1 may be

degenerated, but if two adjacent sides lie on one line, then the vertex where these sides
meet must be the point of tangency of this line with the circle, and not just an arbitrary
point on this line.
This is fulfilled for the degenerate hexagonAXBCZD 5, but not for the degenerate

hexagon AX ′BCZD with X ′ 6= X. Thus, the above argumentation for the hexagon
AXBCZD is correct - thus Theorem 2 is proven -, but the same argumentation for
the hexagon AX ′BCZD is wrong.

Now, we head over to a less classical result, one noted by myself in 2003 (Fig. 6):

Theorem 4. Let the perpendicular to the line AB at the point A meet the
line BO at a point M. Let the perpendicular to the line AD at the point
A meet the line DO at a point N. Then, MN ⊥ AC.

4Hereby, we use the abbreviation G ∗H for the line joining two points G and H.
5The adjacent sides AX and XB of this hexagon lie on one line - and the vertex where they meet,

namely the vertex X, is indeed the point of tangency of this line with the circle. The same holds for
the adjacent sides CZ and ZD.
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In [4], this theorem appears as Theorem 1 and receives two proofs. Here is a different
proof of Theorem 4:
(See Fig. 7.) Let Lb and Ld be the orthogonal projections of the points B and D on

the line AC. Then, the lines BLb and DLd, both being perpendicular to AC, must be

parallel to each other, and thus Thales yields
BLb
DLd

=
BP

DP
. But according to Theorem

3, we have
BP

DP
=
b

d
. Thus

BLb
DLd

=
b

d
, or, equivalently,

BLb
b
=
DLd
d

.
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(See Fig. 8.) Let R be the orthogonal projection of the point M on the line AC.
Then, ]ARM = 90◦. Compared with ]BLbA = 90◦, this yields ]ARM = ]BLbA. On
the other hand, ]MAB = 90◦, so that ]MAR = ]MAB − ]LbAB = 90◦ − ]LbAB.
But in the right-angled triangle ALbB, we have ]ABLb = 90◦ − ]LbAB. Comparing
these, we find ]MAR = ]ABLb. From ]ARM = ]BLbA and ]MAR = ]ABLb, we
see that the triangles ARM and BLbA are similar; thus,

AR

BLb
=
AM

AB
.

On the other hand, the point M lies on the line BO, and from AM ⊥ AB and

OX ⊥ AB it follows that AM ‖ OX. Hence, by Thales, AM
AB

=
OX

BX
. Thus, we obtain

AR

BLb
=
AM

AB
=
OX

BX
=
ρ

b
, so that AR = BLb ·

ρ

b
= ρ · BLb

b
.

Similarly, we can denote by R′ the orthogonal projection of the point N on the line

AC, and show that AR′ = ρ · DLd
d

. Since
BLb
b
=
DLd
d

, we thus get AR = AR′. Since

the points R and R′ both lie on the segment AC, this yields that these points R and
R′ coincide. Now, since the point R is the orthogonal projection of the point M on
the line AC, we have MR ⊥ AC, so that the point M lies on the perpendicular to the
line AC at the point R. Similarly, the point N lies on the perpendicular to the line
AC at the point R′. But since R = R′, these two perpendiculars coincide, and thus the
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points M and N lie on one and the same perpendicular to the line AC. This means
MN ⊥ AC, and Theorem 4 is proven.
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In [2], Jean-Pierre Ehrmann showed an alternate approach to Theorem 4 with the
help of hyperbola properties. A corollary of this approach is the following fact:

Theorem 5. Denote the distances from the points B and D to the line
MN by m and n, respectively. Then,

m

AB
=

n

AD
.
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Here is an elementary proof of Theorem 5. First, we focus on the points X, Y, Z,
W. We will use directed segments; in the following, the directed distance between two
points P1 and P2 will be denoted by P1P2 (as opposed to the non-directed distance,
which we will continue to write as P1P2). Also, we direct the lines AB, BC, CD, DA
in such a way that the directed segments AB, BC, CD, DA are positive (and thus the
segments BA, CB, DC, AD are negative). Then,

a = AW = AX; b = BX = BY ; c = CY = CZ; d = DZ = DW

becomes

a = WA = AX; b = XB = BY ; c = Y C = CZ; d = ZD = DW.

(See Fig. 10.) Now, let T be the point on the line AC satisfying
AT

TC
= −a

c
. Then,

TC

AT
= − c

a
, what rewrites as

CT

TA
= − c

a
. Hence,

AX

XB
· BY
Y C
· CT
TA

=
a

b
· b
c
·
(
− c
a

)
= −1.
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By the Menelaos theorem, applied to the triangle ABC and the points X, Y, T on its
sides AB, BC, CA, this yields that the points X, Y, T are collinear. In other words,
the point T lies on the line XY. As the definition of the point T is symmetric in B and
D, we can similarly show that this point T lies on the line ZW.
Note that we have thus shown an interesting side-result: Our point T lies on the lines

AC, XY and ZW and divides the segment AC in the ratio
AT

TC
= −a

c
. Comparing this

with6
AP

PC
=
a

c
(this is just the equation

AP

CP
=
a

c
from Theorem 3, rewritten using

directed segments), we see that
AT

TC
= −AP

PC
, so that the point T is the harmonic

conjugate of the point P with respect to the segment AC. Thus, we have shown:

Theorem 6. The lines AC, XY, ZW concur at one point T. This point

T divides the segment AC in the ratio
AT

TC
= −a

c
and is the harmonic

conjugate of the point P with respect to the segment AC.

6Here, P denotes the point of intersection of the four lines AC, BD, XZ and YW (as in Theorem
3).
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(See Fig. 11.) Now, let M ′ be the orthogonal projection of the point B on the line
MN. Then, the distance m from the point B to the line MN equals to the segment
BM ′; so we have m = BM ′.
On the other hand, BM ′ ⊥MN, combined with MN ⊥ AC, yields BM ′ ‖ AC, so

that ]M ′BA = ]XAT.
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Since ]MM ′B = 90◦ and ]MAB = 90◦, the pointsM ′ and A lie on the circle with
diameter MB. Thus, the quadrilateral AM ′BM is cyclic, so that ]BM ′A = 180◦ −
]AMB. On the other hand, in the right-angled triangle AMB, we have ]AMB =
90◦ − ]ABM. But since the point M lies on the line BO, i. e. on the angle bisector
of the angle ABC (since the point O is the incenter of the quadrilateral ABCD), we

have ]ABM =
]ABC
2

. Finally, since BX = BY, the triangle XBY is isosceles, so

that its base angle ]BXY equals

]BXY = 180◦ − ]XBY
2

= 90◦ − ]XBY
2

= 90◦ − ]ABC
2

.
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Thus,

]BM ′A = 180◦ − ]AMB = 180◦ − (90◦ − ]ABM) = 90◦ + ]ABM = 90◦ +
]ABC
2

= 180◦ −
(
90◦ − ]ABC

2

)
= 180◦ − ]BXY = ]AXT.

Since ]M ′BA = ]XAT and ]BM ′A = ]AXT, the triangles BM ′A and AXT

are similar. Thus,
BM ′

AB
=
AX

TA
. Since m = BM ′ and a = AX, we can rewrite this as

m

AB
=

a

TA
. Similarly,

n

AD
=

a

TA
. Comparing these, we find

m

AB
=

n

AD
, which proves

Theorem 5.

In the remainder of the article, we will study some metric identities for the circum-
scribed quadrilateral (Fig. 12).
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The points X and Y, being the points of tangency of the incircle of the quadrilateral
ABCD with its sides AB and BC, are symmetric to each other with respect to the
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angle bisector BO of the angle ABC. Hence, the segment XY is perpendicular to the
line BO and is bisected by this line. So the midpoint B′ of the segment XY lies on
the line BO. Similarly, the midpoint A′ of the segment WX lies on the line AO.
Now, from XY ⊥ BO we see that ]XB′O = 90◦, while from OX ⊥ AB we have

]BXO = 90◦. Thus, ]XB′O = ]BXO. Also, trivially, ]XOB′ = ]BOX. Thus, the
triangles XB′O and BXO are similar, so that

OB′

OX
=

OX

OB
, and thus OB · OB′ =

OX2 = ρ2.

Similarly, OA · OA′ = ρ2. Hence, OB · OB′ = OA · OA′, so that OB
OA

=
OA′

OB′
.

Together with ]BOA = ]A′OB′, this yields the similarity of triangles BOA and
A′OB′. Consequently,

A′B′

AB
=
OA′

OB
, thus A′B′ = AB ·OA

′

OB
= AB ·OA ·OA

′

OA ·OB = AB · ρ2

OA ·OB.

Now, the points A′ and B′ are the midpoints of the sides WX and XY of triangle

WXY ; thus, A′B′ =
YW

2
. Hence, AB · ρ2

OA ·OB =
YW

2
. Consequently,

AB =
YW

2
· OA ·OB

ρ2
.

Similar relations must obviously hold for BC, CD and DA. We summarize:

Theorem 7. We have

AB =
YW

2
· OA ·OB

ρ2
; BC =

XZ

2
· OB ·OC

ρ2
;

CD =
YW

2
· OC ·OD

ρ2
; DA =

XZ

2
· OD ·OA

ρ2
.

(See Fig. 13.)
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These equations can be used for deriving some other formulas. For instance, AB =
YW

2
· OA ·OB

ρ2
transforms into

OA ·OB = ρ2 · AB : YW
2

=
2ρ2 · AB
YW

.

Similarly,

OC ·OD =
2ρ2 · CD
YW

.

Thus,

OA ·OB
OC ·OD =

(
2ρ2 · AB
YW

)
(
2ρ2 · CD
YW

) = AB

CD
.

Similarly,
OB ·OC
OD ·OA =

BC

DA
. So we have shown:
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Theorem 8. We have

AB

CD
=
OA ·OB
OC ·OD ;

BC

DA
=
OB ·OC
OD ·OA.

Proving these equations was a 10th grade problem in the 4th round of the 14th
DeMO (East German mathematical olympiad) 1974/75. We furthermore have

AB ·BC
CD ·DA =

AB

CD
· BC
DA

=
OA ·OB
OC ·OD ·

OB ·OC
OD ·OA (by Theorem 8)

=
OB2

OD2
,

or, equivalently,
OB2

AB ·BC =
OD2

CD ·DA.

Similarly,
OA2

DA · AB =
OC2

BC · CD. Thus we arrive at the following:

Theorem 9. We have

OB2

AB ·BC =
OD2

CD ·DA ;
OA2

DA · AB =
OC2

BC · CD.

This also appears with proof in [5].

Now we show a harder identity given in the China IMO TST 2003 ([8]):

Theorem 10. We have

OA ·OC +OB ·OD =
√
AB ·BC · CD ·DA.

Proof of Theorem 10. (See Fig. 14.) Let X ′ and Z ′ be the antipodes of the
points X and Z on the incircle of the quadrilateral ABCD 7, or, in other words,
the reflections of the points X and Z with respect to the center O of this incircle.
Then, the segment XX ′ is a diameter of the incircle of the quadrilateral ABCD, and
thus ]XYX ′ = 90◦, so that Y X ′ ⊥ XY. On the other hand, XY ⊥ BO. Hence,
Y X ′ ‖ BO, so that ]XX ′Y = ]BOX. Together with ]XYX ′ = ]BXO (since
]XYX ′ = 90◦ and ]BXO = 90◦) this entails that the triangles XX ′Y and BOX are

similar; consequently,
X ′Y

X ′X
=
OX

OB
, so that X ′Y = X ′X · OX

OB
. Now, X ′X = 2 · OX

(since the point X ′ is the reflection of X in O), and thus

X ′Y = 2 ·OX · OX
OB

=
2 ·OX2

OB
=
2ρ2

OB
.

7The antipode of a point P on a circle k is defined as the point P ′ on the circle k such that the
segment PP ′ is a diameter of k.
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Similarly,

Z ′Y =
2ρ2

OC
; Z ′W =

2ρ2

OD
; X ′W =

2ρ2

OA
.

Finally, X ′Z ′ = XZ, since the points X ′ and Z ′ are the reflections of the points X and
Z in the point O, and reflections preserve distances.
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(See Fig. 15.) Now, the pointsX ′, Y, Z ′, W all lie on the incircle of the quadrilateral
ABCD; thus, the quadrilateral X ′Y Z ′W is cyclic, so that, after the Ptolemy theorem,

X ′Y · Z ′W +X ′W · Z ′Y = X ′Z ′ · YW.

According to the above formulas, this becomes

2ρ2

OB
· 2ρ

2

OD
+
2ρ2

OA
· 2ρ

2

OC
= XZ · YW, i. e.

4ρ4 ·
(

1

OB ·OD +
1

OA ·OC

)
= XZ · YW, i. e.

4ρ4 · OA ·OC +OB ·OD
OA ·OB ·OC ·OD = XZ · YW.

Hence,

OA ·OC +OB ·OD =
XZ · YW ·OA ·OB ·OC ·OD

4ρ4
. (1)
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But Theorem 7 yields

AB ·BC · CD ·DA

=

(
YW

2
· OA ·OB

ρ2

)
·
(
XZ

2
· OB ·OC

ρ2

)
·
(
YW

2
· OC ·OD

ρ2

)
·
(
XZ

2
· OD ·OA

ρ2

)
=

(
XZ · YW ·OA ·OB ·OC ·OD

4ρ4

)2
,

so that
XZ · YW ·OA ·OB ·OC ·OD

4ρ4
=
√
AB ·BC · CD ·DA.

Hence, (1) becomes

OA ·OC +OB ·OD =
√
AB ·BC · CD ·DA,

and Theorem 10 is proven.

In the following, we shall denote by |P1P2...Pn| the (non-directed) area of an arbi-
trary polygon P1P2...Pn.
Furthermore, we denote the interior angles of the quadrilateral ABCD by

α = ]DAB; β = ]ABC; γ = ]BCD; δ = ]CDA.

Now, we are going to show the following:

Theorem 11. We have

OA ·OC =
(a+ c) · ρ

sin
α + γ

2

; OB ·OD =
(b+ d) · ρ

sin
β + δ

2

;

OA ·OC
OB ·OD =

a+ c

b+ d
; OA ·OC +OB ·OD =

(a+ b+ c+ d) · ρ

sin
α + γ

2

.
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Proof of Theorem 11. (See Fig. 16.) Let U be the point on the ray XB satisfying
UX = c. Comparing this with c = CZ, we get UX = CZ. Furthermore, ]OXU =
90◦ = ]OZC and OX = OZ. Thus, the triangles OXU and OZC are congruent, so
that OU = OC and ]XOU = ]ZOC.
Since the point O, being the incenter of the quadrilateral ABCD, lies on the angle

bisector of its angle DAB, we have ]XAO = ]DAB
2

=
α

2
; in the right-angled triangle

AXO, we thus obtain ]XOA = 90◦−]XAO = 90◦− α
2
. Similarly, ]ZOC = 90◦− γ

2
;

since ]XOU = ]ZOC, this becomes ]XOU = 90◦ − γ

2
. Hence, ]AOU = ]XOA +

]XOU =
(
90◦ − α

2

)
+
(
90◦ − γ

2

)
= 180◦ − α + γ

2
, so that sin]AOU = sin α + γ

2
.

From AX = a and UX = c, we conclude that AU = AX + UX = a+ c.
Now, the area of a triangle equals half of the product of two of its sides and the

sine of the angle between them; applying this to triangle AOU, we get |AOU | =
1

2
· OA · OU · sin]AOU ; since OU = OC and sin]AOU = sin

α + γ

2
, this becomes

|AOU | = 1

2
·OA ·OC · sin α + γ

2
.
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On the other hand, the area of a triangle equals half of the product of a side with
the respective altitude; applied to the triangle AOU (in which OX is the altitude to

the side AU), this yields |AOU | = 1

2
· AU · OX; since AU = a + c and OX = ρ, this

rewrites as |AOU | = 1

2
· (a+ c) · ρ.

Comparing the equations |AOU | = 1

2
·OA·OC ·sin α + γ

2
and |AOU | = 1

2
·(a+ c)·ρ,

we see that OA ·OC · sin α + γ

2
= (a+ c) · ρ, and thus

OA ·OC = (a+ c) · ρ

sin
α + γ

2

.

Similarly,

OB ·OD =
(b+ d) · ρ

sin
β + δ

2

.

Now, by the sum of angles in the quadrilateral ABCD, we have α+β+γ+δ = 360◦, so

that
α + γ

2
+
β + δ

2
=
α + β + γ + δ

2
=
360◦

2
= 180◦, and thus sin

β + δ

2
= sin

α + γ

2
.

Hence, the equation

OB ·OD =
(b+ d) · ρ

sin
β + δ

2

becomes OB ·OD =
(b+ d) · ρ

sin
α + γ

2

.

Thus,

OA ·OC
OB ·OD =

(a+ c) · ρ

sin
α + γ

2


(b+ d) · ρ

sin
α + γ

2


=
a+ c

b+ d

and

OA ·OC +OB ·OD =
(a+ c) · ρ

sin
α + γ

2

+
(b+ d) · ρ

sin
α + γ

2

=
(a+ b+ c+ d) · ρ

sin
α + γ

2

.

Therefore, Theorem 11 is proven.
Now, Theorem 11 asserts

OA ·OC +OB ·OD =
(a+ b+ c+ d) · ρ

sin
α + γ

2

,

while Theorem 10 states that

OA ·OC +OB ·OD =
√
AB ·BC · CD ·DA.
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Hence,
(a+ b+ c+ d) · ρ

sin
α + γ

2

=
√
AB ·BC · CD ·DA.

Comparing these two equalities, and multiplying by sin
α + γ

2
, we find

(a+ b+ c+ d) · ρ =
√
AB ·BC · CD ·DA · sin α + γ

2
.

(See Fig. 13.) Now, the area of a right-angled triangle equals half of the product of

its two catets; for the right-angled triangle AWO, this yields |AWO| = 1

2
·AW ·OW =

1

2
· a · ρ. Similarly, |AXO| = 1

2
· a · ρ, and thus |AWOX| = |AWO| + |AXO| =

1

2
·a ·ρ+ 1

2
·a ·ρ = a ·ρ. Similarly, |BXOY | = b ·ρ, |CY OZ| = c ·ρ and |DZOW | = d ·ρ.

Hence,

|ABCD| = |AWOX|+ |BXOY |+ |CY OZ|+ |DZOW | = a · ρ+ b · ρ+ c · ρ+ d · ρ

= (a+ b+ c+ d) · ρ =
√
AB ·BC · CD ·DA · sin α + γ

2
.

Thus, we conclude:

Theorem 12. The area |ABCD| of a circumscribed quadrilateral ABCD
equals

|ABCD| =
√
AB ·BC · CD ·DA · sin α + γ

2
.

This is not an unknown formula; however it is usually derived from the generalized
Brahmagupta formula for the area of an arbitrary quadrilateral ([9]), which, in turn, is
proven by a long trigonometric calculation. Instead, we have given a rather long, yet
synthetic proof of Theorem 12.

Next, we are going to prove a result due to A. Zaslavsky, M. Isaev and D. Tsvetov
which was given in the final (fifth) round of the Allrussian Mathematical Olympiad
2005 as problem 7 for class 11 ([11]):

Theorem 13. The incenter O of a circumscribed quadrilateral ABCD
coincides with the centroid of the quadrilateral ABCD if and only if either8

the quadrilateral ABCD is a rhombus or OA · OC = OB · OD. (See Fig.
17.)

Here, the centroid of the quadrilateral ABCD is defined as follows:
Let E, F, G, H be the midpoints of the sides AB, BC, CD, DA of the quadri-

lateral ABCD. Then, according to the Varignon theorem, the quadrilateral EFGH
is a parallelogram, so that its two diagonals EG and FH bisect each other. In other

8The words “either/or”are being used in a non-exclusive meaning here (i.e., the statement “either
A or B”allows for the possibility that both A and B hold).
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words, the segments EG and FH have a common midpoint. This midpoint is called
the centroid of the quadrilateral ABCD.

O

A

B

C

D

E

F

G

H

Fig. 17

Now, let’s prove Theorem 13. In order to do this, we have to verify two assertions:
Assertion 1: If the point O is the centroid of the quadrilateral ABCD, then either

the quadrilateral ABCD is a rhombus or OA ·OC = OB ·OD.
Assertion 2: If either the quadrilateral ABCD is a rhombus or OA·OC = OB ·OD,

then the point O is the centroid of the quadrilateral ABCD.
Before we establish any of these assertions, we start with a few observations holding

for every circumscribed quadrilateral ABCD (Fig. 18):

Since the point E is the midpoint of the segment AB, we have AE =
AB

2
=
a+ b

2
,
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and thus

EX = |AX − AE| =
∣∣∣∣a− a+ b

2

∣∣∣∣ (
since AX = a and AE =

a+ b

2

)
=

∣∣∣∣a− b2
∣∣∣∣ = |a− b|2

.

Similarly, GZ =
|c− d|
2

.

Also, note that the triangles EOX and GOZ are right-angled at their vertices X
and Z, since ]OXE = 90◦ and ]OZG = 90◦.

O

A

B

C

D

X

Z

E

G

Fig. 18

Now, we are going to establish Assertions 1 and 2.
Proof of Assertion 1. We distinguish between two cases:
Case 1: We have a+ c 6= b+ d.
Case 2: We have a+ c = b+ d.
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Let us first consider Case 1. The point O is the centroid of the quadrilateral
ABCD, that is, the midpoint of the segment EG. Thus, OE = OG. Also, OX = OZ.
Hence, the two right-angled triangles EOX and GOZ have the hypotenuse and one
catet in common; thus, they are congruent, and we conclude that EX = GZ. Since

EX =
|a− b|
2

and GZ =
|c− d|
2

, this yields |a− b| = |c− d| . Thus, either a−b = c−d,
or a − b = d − c. Now, a − b = d − c would lead to a + c = b + d, what is impossible
since we have a + c 6= b + d (because we are in Case 1). Hence, it remains only the
possibility a − b = c − d, that is, a + d = b + c. Similarly to a − b = c − d, we can
prove that a− d = c− b, and thus 2a = (a+ d) + (a− d) = (b+ c) + (c− b) = 2c. In
other words, a = c. Similarly, b = d. Hence, opposite sides of the quadrilateral ABCD
are equal; this means that the quadrilateral ABCD is a parallelogram, and since it is
circumscribed, it must be a rhombus (in fact, among all parallelograms, only rhombi
are circumscribed). Thus, we have shown that the quadrilateral ABCD is a rhombus
in Case 1.

Now, let us consider Case 2. In this case, a+c = b+d. As we have
OA ·OC
OB ·OD =

a+ c

b+ d
from Theorem 11, this yields OA ·OC = OB ·OD. Thus, OA ·OC = OB ·OD holds
in Case 2.
Hence, we have shown that the quadrilateral ABCD is a rhombus in Case 1, and

that OA·OC = OB ·OD in Case 2. Since these cases cover all possibilities, we conclude
that either the quadrilateral ABCD is a rhombus or OA · OC = OB · OD. Assertion
1 is proven.
Proof of Assertion 2. Assume that either the quadrilateral ABCD is a rhombus or

OA ·OC = OB ·OD. We can WLOG assume that OA ·OC = OB ·OD (because the
case when the quadrilateral ABCD is a rhombus is trivial for symmetry reasons).

From Theorem 11, we have
OA ·OC
OB ·OD =

a+ c

b+ d
, so that OA · OC = OB · OD

immediately yields a + c = b + d. Hence, a − b = d − c, and thus EX =
|a− b|
2

=

|d− c|
2

=
|c− d|
2

= GZ. Furthermore, OX = OZ. Thus, the two right-angled triangles

EOX and GOZ have the same catets; hence, they are congruent, and it follows that
OE = OG. So the point O lies on the perpendicular bisector of the segment EG.
Similarly, the point O lies on the perpendicular bisector of the segment FH.
Since the circumscribed quadrilateral ABCD is convex, and E, F, G, H are the

midpoints of its sides, the linesEG and FH cannot be parallel. Thus, the perpendicular
bisectors of the segments EG and FH are not parallel as well; therefore, they have
one and only one common point. This common point is obviously the centroid of the
quadrilateral ABCD (since this centroid is the common midpoint of the segments EG
and FH and thus lies on their perpendicular bisectors).
But as we have shown that the point O lies on the perpendicular bisectors of the

segments EG and FH, the point O must be this common point. Hence, the point
O is the centroid of the quadrilateral ABCD. Assertion 2 is shown, and the proof of
Theorem 13 is complete.

Now we return to the case of an arbitrary circumscribed quadrilateral ABCD. We
prove an identity formulated by Pengshi in [12]:
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Theorem 14. The radius ρ of the incircle of the circumscribed quadrilat-
eral ABCD satisfies

ρ2 =
bcd+ cda+ dab+ abc

a+ b+ c+ d
.

Our proof of this theorem will only slightly differ from Anipoh’s in [12]; the key is
the following lemma:

Theorem 15. Let x, y, z, w be four angles such that x+y+ z+w = 180◦.
Then,

tanx+ tan y + tan z + tanw

= tan y · tan z · tanw + tan z · tanw · tanx+ tanw · tanx · tan y + tanx · tan y · tan z.

Proof of Theorem 15. From x + y + z + w = 180◦ it follows that x + y =
180◦ − (z + w) , so that tan (x+ y) = tan (180◦ − (z + w)) = − tan (z + w) and thus
tan (x+ y) + tan (z + w) = 0. But the addition formulas for the tan function yield

tan (x+ y) =
tanx+ tan y

1− tanx tan y and tan (z + w) =
tan z + tanw

1− tan z tanw ; hence, tan (x+ y) +

tan (z + w) = 0 becomes
tanx+ tan y

1− tanx tan y +
tan z + tanw

1− tan z tanw = 0. Multiplication by

(1− tanx tan y) (1− tan z tanw) yields

(tanx+ tan y) (1− tan z tanw) + (tan z + tanw) (1− tanx tan y) = 0,

thus

(tanx+ tan y − tan z tanw tanx− tan y tan z tanw)
+ (tan z + tanw − tanx tan y tan z − tanw tanx tan y) = 0,

thus

tanx+ tan y + tan z + tanw

= tan y tan z tanw + tan z tanw tanx+ tanw tanx tan y + tanx tan y tan z.

This proves Theorem 15.
Now we come to the proof of Theorem 14: With the notations α, β, γ, δ for the

angles of the quadrilateral ABCD, we have

α + β + γ + δ = ]DAB + ]ABC + ]BCD + ]CDA = 360◦

(by the sum of angles in the quadrilateral ABCD). Now set x =
α

2
, y =

β

2
, z =

γ

2
,

w =
δ

2
. Then,

x+ y + z + w =
α

2
+
β

2
+
γ

2
+
δ

2
=
α + β + γ + δ

2
=
360◦

2
= 180◦.
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Thus, Theorem 15 yields

tanx+ tan y + tan z + tanw

= tan y · tan z · tanw + tan z · tanw · tanx+ tanw · tanx · tan y + tanx · tan y · tan z.

(See Fig. 16.) During the proof of Theorem 11, we have shown that ]XAO = α

2
.

SinceOX ⊥ AB, the triangleAXO is right-angled atX.Hence, OX = AX·tan]XAO,
so that ρ = a · tanx (since OX = ρ, AX = a and ]XAO = α

2
= x). Thus, tanx =

ρ

a
;

similarly, tan y =
ρ

b
, tan z =

ρ

c
, and tanw =

ρ

d
. Hence, the equality

tanx+ tan y + tan z + tanw

= tan y · tan z · tanw + tan z · tanw · tanx+ tanw · tanx · tan y + tanx · tan y · tan z

(which was just proved) becomes

ρ

a
+
ρ

b
+
ρ

c
+
ρ

d
=
ρ

b
· ρ
c
· ρ
d
+
ρ

c
· ρ
d
· ρ
a
+
ρ

d
· ρ
a
· ρ
b
+
ρ

a
· ρ
b
· ρ
c
.

Multiplication by abcd yields

ρbcd+ ρcda+ ρdab+ ρabc = ρ3a+ ρ3b+ ρ3c+ ρ3d.

In other words,

ρ (bcd+ cda+ dab+ abc) = ρ3 (a+ b+ c+ d) , so that

ρ2 =
bcd+ cda+ dab+ abc

a+ b+ c+ d
,

which proves Theorem 14.

We now introduce another notation: If P is a point, and g is a line, then we denote
by dist (P ; g) the (undirected) distance from the point P to the line g. We will often
use the following fact:

Area-distance relation: For any three points U, V, W we have

|UVW | = 1

2
· VW · dist (U ; VW ) . (2)

This fact is just a restatement of the fact that the area of a triangle equals

1

2
· sidelength · corresponding altitude

(because in triangle UVW, the altitude from U to VW is dist (U ; VW )).

From now on, we let P be the point of intersection of the four lines AC, BD, XZ
and YW (as in Theorem 3).
Now, we record an easy corollary of Theorem 3 (Fig. 4):
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Theorem 16. We have

|APB|
ab

=
|BPC|
bc

=
|CPD|
cd

=
|DPA|
da

. (3)

Proof of Theorem 16. By the area-distance relation, |BAP | = 1

2
·AP ·dist (B; AP )

and |BCP | = 1

2
· CP · dist (B; CP ) , so that

|APB|
|BPC| =

|BAP |
|BCP | =

1

2
· AP · dist (B; AP )

1

2
· CP · dist (B; CP )

=
AP

CP
· dist (B; AP )
dist (B; CP )

. (4)

Now,
dist (B; AP )

dist (B; CP )
= 1 (since dist (B; AP ) = dist (B; CP ) , because AP and CP are

the same line), and
AP

CP
=
a

c
by Theorem 3. Hence, (4) simplifies to

|APB|
|BPC| =

a

c
· 1 =

a

c
=
ab

bc
, so that

|APB|
ab

=
|BPC|
bc

. Similarly,
|BPC|
bc

=
|CPD|
cd

and
|CPD|
cd

=
|DPA|
da

.

This proves Theorem 16.

Now we shall show a result by A. Zaslavsky from [13] (see also [14]) (Fig. 19):
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Theorem 17. We have

1

dist (P ; AB)
+

1

dist (P ; CD)
=

1

dist (P ; BC)
+

1

dist (P ; DA)
.

Proof of Theorem 17. Due to the equation (3), we can define a number

λ =
|APB|
ab

=
|BPC|
bc

=
|CPD|
cd

=
|DPA|
da

.

Then, |APB| = λab.

By the area-distance relation, |PAB| = 1

2
· AB · dist (P ; AB) , so that

dist (P ; AB) =
2 · |PAB|
AB

=
2 · |APB|
AB

=
2 · λab
a+ b

(as |APB| = λab and AB = a+ b) ,
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and thus

1

dist (P ; AB)
= 1�

2 · λab
a+ b

=
a+ b

2 · λab =
1

2λ
· a+ b

ab
=
1

2λ

(
1

a
+
1

b

)
.

Similarly,
1

dist (P ; CD)
=
1

2λ

(
1

c
+
1

d

)
, so that

1

dist (P ; AB)
+

1

dist (P ; CD)
=
1

2λ

(
1

a
+
1

b

)
+
1

2λ

(
1

c
+
1

d

)
=
1

2λ

(
1

a
+
1

b
+
1

c
+
1

d

)
.

Similarly,
1

dist (P ; BC)
+

1

dist (P ; DA)
=
1

2λ

(
1

a
+
1

b
+
1

c
+
1

d

)
.

Thus,
1

dist (P ; AB)
+

1

dist (P ; CD)
=

1

dist (P ; BC)
+

1

dist (P ; DA)
,

and Theorem 17 is proven.

Next comes a result whose part a) appeared in [15] (with a different proof) (Fig.
20):
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Fig. 20

Theorem 18. LetHX , HY , HZ , HW be the orthocenters of triangles AOB,
BOC, COD, DOA.

a) The points P, HX , HY , HZ , HW are collinear.

b) Using directed segments, we have

−PHX

ab
=
PHY

bc
= −PHZ

cd
=
PHW

da
.
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Proof of Theorem 18. (See Fig. 21.) Let BY be the foot of the altitude of triangle
BOC issuing from B. Then, the lines BBY and OY are two altitudes of triangle BOC
(for BBY , this is clear, and for OY it follows from OY ⊥ BC), and thus intersect at
the orthocenter HY of this triangle. Hence, ]BYHY = 90

◦ and

]Y BHY = ]CBBY = 90◦ − ]BCBY (in the right-angled triangle BBYC)

= 90◦ − ]BCO.

Thus we have shown that ]BYHY = 90
◦ and ]Y BHY = 90

◦ − ]BCO. Similarly,
]DZHZ = 90

◦ and ]ZDHZ = 90
◦ − ]DCO.

The point O, being the incenter of the quadrilateral ABCD, lies on the angle
bisector of the angle BCD. Thus, ]BCO = ]DCO.
From ]BYHY = 90

◦ = ]DZHZ and ]Y BHY = 90
◦ − ]BCO = 90◦ − ]DCO =

]ZDHZ , it follows that triangles BYHY and DZHZ are similar. Therefore,
BHY

DHZ

=

BY

DZ
. Since BY = b and DZ = d, this becomes

BHY

DHZ

=
b

d
.
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The line BHY is the line BBY ; thus, BBY ⊥ CO yields BHY ⊥ CO. Similarly,
DHZ ⊥ CO. Consequently, BHY ‖ DHZ .

O

A

B

C
D Y

Z

b

d

HY

HZ P0

Fig. 22

(See Fig. 22.) Now, denote by P0 the point of intersection of the lines HYHZ and

BD. Since BHY ‖ DHZ , the Thales theorem yields
BP0
DP0

=
BHY

DHZ

. Since
BHY

DHZ

=
b

d
,

this becomes
BP0
DP0

=
b

d
. But Theorem 3 asserts

BP

DP
=
b

d
. Thus,

BP0
DP0

=
BP

DP
. Hence,

the points P0 and P divide the segment BD in the same ratio (both internally, as
one can see by arrangement considerations9). Hence, these points P0 and P must
coincide. Thus, P0 ∈ HYHZ yields P ∈ HYHZ . Hence, the lines PHY and PHZ

coincide. Similarly, the lines PHZ and PHW coincide, and the lines PHW and PHX

coincide. Thus, all four lines PHX , PHY , PHZ , PHW coincide, i. e., the points P,
HX , HY , HZ , HW are collinear. Theorem 18 a) is proven.

Because of BHY ‖ DHZ , the Thales theorem implies
P0HY

P0HZ

=
BHY

DHZ

. As we saw

9One could also avoid arrangement considerations by working consequently with directed segments,
but this would require more theory.
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above, P0 = P, so this becomes
PHY

PHZ

=
BHY

DHZ

. Together with
BHY

DHZ

=
b

d
, this yields

PHY

PHZ

=
b

d
. With directed segments, this transforms into

PHY

PHZ

= − b
d
(as arrange-

ment considerations show that the directed ratio
PHY

PHZ

is negative). Thus, d · PHY =

−b · PHZ , so that
PHY

b
= −PHZ

d
. Dividing by c yields

PHY

bc
= −PHZ

cd
. Similarly,

PHW

da
= −PHZ

cd
and

PHW

da
= −PHX

ab
. Thus, −PHX

ab
=
PHY

bc
= −PHZ

cd
=
PHW

da
,

and Theorem 18 b) is proven. This completes the proof of Theorem 18.

Now, we come to some properties of the incircles of triangles APB, BPC, CPD
and DPA.

A

B

C

D

P

OX

OY

OW

OZ

Fig. 23
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(See Fig. 23.) Let OX , OY , OZ and OW be the incenters10 of triangles APB, BPC,
CPD and DPA. Let ρX , ρY , ρZ and ρW be the inradii11 of triangles APB, BPC, CPD
and DPA.
Since OY is the incenter of triangle BPC, the line POY is the internal angle bisector

of angle BPC, thus the external angle bisector of angle APB.
Since OX is the incenter of triangle APB, the line POX is the internal angle bisector

of angle APB.
Since the internal and external angle bisectors of an angle are always mutually

orthogonal, we thus conclude that POX ⊥ POY . Hence, ]OXPOY = 90◦. Similarly,
]OY POZ = 90◦, ]OZPOW = 90◦ and ]OWPOX = 90◦. Because of ]OXPOZ =
]OXPOY + ]OY POZ = 90◦ + 90◦ = 180◦, the points OX , P and OZ lie on one line.
Furthermore, the points OX and OZ lie on different sides of the point P (since OX ,
being the incenter of triangle APB, lies inside the angle APB, while OZ , being the
incenter of triangle CPD, lies inside the angle CPD; but the angles APB and CPD
are opposite angles). Hence, the point P lies on the segment OXOZ . Similarly, the
point P lies on the segment OYOW . These two segments OXOZ and OYOW thus meet
at P . They furthermore meet at a right angle (since POX ⊥ POY ).
Now, we state two rather surprising results:

10The incenter of a triangle means the center of its incircle.
11The inradius of a triangle means the radius of its incircle.
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Theorem 19. (See Fig. 24.) We have
1

ρX
+
1

ρZ
=
1

ρY
+
1

ρW
.
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Theorem 20. (See Fig. 25.) The points OX , OY , OZ and OW lie on one
circle.

Theorem 19 comes from [17], while Theorem 20 comes from [18]. In order to prove
both theorems, we need a lemma from triangle geometry:

Lemma 21. (See Fig. 26.) Let ABC be a triangle12. Let ρ be the inradius
of triangle ABC. Let |ABC| be the area of triangle ABC.
(a) We have

ρ =
2 · |ABC|

BC + CA+ AB
.

12In this lemma (and its proof), we are working with an “empty slate”; i.e., we forget all notations
that we have previously introduced. Thus, in particular, ρ no longer means the radius of the incircle
of a quadrilateral ABCD.
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(b) Let I be the incenter of triangle ABC. Then,

AI =
ρ

sin]IAC (5)

and
AB + AC −BC = 2ρ cot]IAC. (6)

A

B

C

I

ρ

Fig. 26

Proof of Lemma 21. (See Fig. 27.) Let I be the incenter of triangle ABC. Let X,
Y and Z be the points at which the incircle of triangle ABC touches its sides BC, CA
and AB. 13 Then, clearly IX ⊥ BC, IY ⊥ CA, IZ ⊥ AB and IX = IY = IZ = ρ.
Furthermore, we have AY = AZ, BZ = BX and CX = CY, since the two tangents
from a point to a circle are equal in length.

13Of course, these points X, Y and Z have nothing to do with the points X, Y and Z that were
introduced at the beginning of this article.
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Since IY is the perpendicular from I onto the line CA, we have14 dist (I; CA) =
IY = ρ. Thus, the area-distance relation (2) (applied to the points I, C and A instead
of U , V and W ) yields

|ICA| = 1

2
· CA · dist (I; CA) = 1

2
· CA · ρ

(since dist (I; CA) = ρ). Similarly, |IBC| = 1

2
·BC · ρ and |IAB| = 1

2
· AB · ρ. Since

the point I lies inside of triangle ABC, we now have

|ABC| = |IBC|+ |ICA|+ |IAB|

=
1

2
·BC · ρ+ 1

2
· CA · ρ+ 1

2
· AB · ρ

=
1

2
· (BC + CA+ AB) · ρ.

Solving this for ρ, we find

ρ =
2 · |ABC|

BC + CA+ AB
.

This proves Lemma 21 (a).
On to part (b). Triangle AY I is right-angled at Y (since IY ⊥ CA). Hence,

IY = AI sin]IAY , so that

AI =
IY

sin]IAY =
ρ

sin]IAC (since IY = ρ and ]IAY = ]IAC) .

This proves (5).

14Again, we are using the notation dist (P ; g) for the distance from a point P to a line g.
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In the right-angled triangle AY I, we also have AY = IY cot]IAY = ρ cot]IAC
(since IY = ρ and ]IAY = ]IAC).
Furthermore, BC = BX +CX = BZ +CY (since BX = BZ and CX = CY ) and

AB = AZ +BZ and AC = AY + CY . These three equalities lead to

AB + AC −BC = (AZ +BZ) + (AY + CY )− (BZ + CY )

= AZ + AY = AY + AY (since AZ = AY )

= 2 · AY = 2ρ cot]IAC (since AY = ρ cot]IAC) .

This proves (6), and thus completes the proof of Lemma 21 (b).
Now, we return to our circumscribed quadrilateral ABCD that we have been study-

ing (before Lemma 21). In particular, we shall again use the notations introduced
throughout this article (before Lemma 21). We shall now prove Theorem 19 and The-
orem 20:
Proof of Theorem 19. Because of (3), we can define a number

λ =
|APB|
ab

=
|BPC|
bc

=
|CPD|
cd

=
|DPA|
da

.

Hence, |APB| = λab. Thus, λab = |APB| 6= 0 (since P does not lie on the line AB),
so that λ 6= 0. Therefore, 2λ 6= 0.
Theorem 3 yields

AP

CP
=
a

c
and

BP

DP
=
b

d
.

From
AP

CP
=
a

c
, we obtain AP · c = CP · a, so that AP

a
=
CP

c
. Hence, we can

define a number

µ =
AP

a
=
CP

c
.

Thus, AP = µa and CP = µc.

From
BP

DP
=

b

d
, we obtain BP · d = DP · b, so that BP

b
=
DP

d
. Hence, we can

define a number

ν =
BP

b
=
DP

d
.

Thus, BP = νb and DP = νd.
Applying Lemma 21 (a) to the triangle APB and its inradius ρX (instead of the

triangle ABC and its inradius ρ), we find

ρX =
2 · |APB|

PB +BA+ AP
=

2 · λab
BP + AB + AP

(since |APB| = λab and PB = BP and BA = AB). Consequently,

2λ

ρX
=

2λ(
2 · λab

BP + AB + AP

) = BP + AB + AP

ab
=
νb+ (a+ b) + µa

ab

(since BP = νb and AB = a+ b and AP = µa)

=
ν + 1

a
+
µ+ 1

b
(by simple computation) .
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Similarly,
2λ

ρZ
=
ν + 1

c
+
µ+ 1

d
.

Adding these two equalities, we find

2λ

ρX
+
2λ

ρZ
=
ν + 1

a
+
µ+ 1

b
+
ν + 1

c
+
µ+ 1

d
.

Similarly,

2λ

ρY
+
2λ

ρW
=

µ+ 1

b
+
ν + 1

c
+
µ+ 1

d
+
ν + 1

a

=
ν + 1

a
+
µ+ 1

b
+
ν + 1

c
+
µ+ 1

d
.

Comparing the last two equalities, we find

2λ

ρX
+
2λ

ρZ
=
2λ

ρY
+
2λ

ρW
.

Dividing this equality by 2λ (this is allowed, since 2λ 6= 0), we obtain

1

ρX
+
1

ρZ
=
1

ρY
+
1

ρW
.

This proves Theorem 19.
Proof of Theorem 20. (See Fig. 25.) We know that the point P lies on the segment

OXOZ . Hence, ]OZPD = ]OXPB (as opposite angles). Furthermore, ]OXPB +
]OY PB = ]OXPOY = 90◦ (since POX ⊥ POY ), so that ]OY PB = 90◦ − ]OXPB.
However, the line POY is the internal angle bisector of angle BPC (since OY is the
incircle of triangle BPC); thus, we have ]OY PC = ]OY PB = 90◦−]OXPB. Hence,

cot]OY PC = cot (90◦ − ]OXPB) = tan]OXPB

and
sin]OY PC = sin (90◦ − ]OXPB) = cos]OXPB.

The triangle APB has incenter OX and inradius ρX . In other words, the triangle
PAB has incenter OX and inradius ρX . Hence, we can apply Lemma 21 (b) to the
triangle PAB, its incenter OX and its inradius ρX (instead of the triangle ABC, its
incenter I and its inradius ρ). Thus, we obtain

POX =
ρX

sin]OXPB
(7)

and
PA+ PB − AB = 2ρX cot]OXPB. (8)

Similarly to (8), we obtain

PC + PD − CD = 2ρZ cot]OZPD
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(by applying Lemma 21 (b) to the triangle PCD, its incenter OZ and its inradius ρZ).
Adding this equality to (8), we find

(PA+ PB − AB) + (PC + PD − CD)
= 2ρX cot]OXPB + 2ρZ cot]OZPD
= 2ρX cot]OXPB + 2ρZ cot]OXPB (since ]OZPD = ]OXPB)
= 2 (ρX + ρZ) cot]OXPB. (9)

Similarly (or by cyclic permutation of the vertices A, B, C and D), we find

(PB + PC −BC) + (PD + PA−DA)
= 2 (ρY + ρW ) cot]OY PC
= 2 (ρY + ρW ) tan]OXPB (10)

(since cot]OY PC = tan]OXPB).
From (9), we obtain

2 (ρX + ρZ) cot]OXPB
= (PA+ PB − AB) + (PC + PD − CD)
= PA+ PB + PC + PD − (AB + CD)

= PA+ PB + PC + PD − (BC +DA) (by Theorem 1)

= (PB + PC −BC) + (PD + PA−DA)
= 2 (ρY + ρW ) tan]OXPB (by (10)) .

Hence, (ρX + ρZ) cot]OXPB = (ρY + ρW ) tan]OXPB, so that

ρX + ρZ
ρY + ρW

=
tan]OXPB
cot]OXPB

=

(
sin]OXPB
cos]OXPB

)
(
cos]OXPB
sin]OXPB

)
=

(sin]OXPB)2

(cos]OXPB)2
. (11)

Now, we recall the equality (7); this equality says that

POX =
ρX

sin]OXPB
.

Similarly, we find
POZ =

ρZ
sin]OZPD

(by applying Lemma 21 (b) to the triangle PCD, its incenter OZ and its inradius ρZ).
Since ]OZPD = ]OXPB, we can rewrite this as

POZ =
ρZ

sin]OXPB
. (12)

44



Multiplying the equalities (7) and (12), we find

POX · POZ =
ρX

sin]OXPB
· ρZ
sin]OXPB

=
ρXρZ

(sin]OXPB)2
. (13)

Similarly (or by cyclic permutation of the vertices A, B, C and D), we find

POY · POW =
ρY ρW

(sin]OY PC)2
.

Since sin]OY PC = cos]OXPB, we can rewrite this as

POY · POW =
ρY ρW

(cos]OXPB)2
.

Dividing this equality by the equality (13), we obtain

POY · POW
POX · POZ

=

(
ρY ρW

(cos]OXPB)2
)

(
ρXρZ

(sin]OXPB)2
) =

ρY ρW
ρXρZ

· (sin]OXPB)
2

(cos]OXPB)2
=
ρY ρW
ρXρZ

· ρX + ρZ
ρY + ρW(

since (11) entails
(sin]OXPB)2

(cos]OXPB)2
=
ρX + ρZ
ρY + ρW

)

=
ρX + ρZ
ρXρZ

�
ρY + ρW
ρY ρW

=

(
1

ρX
+
1

ρZ

)
�
(
1

ρY
+
1

ρW

)
(
since

ρX + ρZ
ρXρZ

=
1

ρX
+
1

ρZ
and

ρY + ρW
ρY ρW

=
1

ρY
+
1

ρW

)
= 1

(since Theorem 19 yields
1

ρX
+
1

ρZ
=
1

ρY
+

1

ρW
). Hence, POY · POW = POX · POZ ,

so that
POX · POZ = POY · POW . (14)

Now, we shall use directed segments; in the following, the directed distance between
two points P1 and P2 will be denoted by P1P2 (as opposed to the non-directed distance,
which we will continue to write as P1P2). We direct the lines OXOZ and OYOW
arbitrarily. Then, POX · POZ = −POX · POZ (since the point P lies on the segment
OXOZ) and POY · POW = −POY · POW (similarly). Hence,

POX · POZ = −POX · POZ = −POY · POW (by (14))

= POY · POW .

By the converse of the intersecting chords theorem, we can conclude from this that the
points OX , OY , OZ and OW lie on one circle (since the point P lies on the segments
OXOZ and OYOW ). Theorem 20 is thus proved.
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