## Circumscribed quadrilaterals revisited / Darij Grinberg

[corrected and amended version, 7th of July 2021]
The aim of this note is to prove some new properties of circumscribed quadrilaterals and give new proofs to classical ones. ${ }^{1}$

We start with some trivialities (Fig. 1).


Fig. 1
Let $A B C D$ be a circumscribed quadrilateral, that is, a quadrilateral that has an incircle. Let this incircle have the center $O$ and the radius $\rho$ and touch its sides $A B$, $B C, C D, D A$ at the points $X, Y, Z, W$, respectively. Then, for obvious reasons, we have $O X \perp A B, O Y \perp B C, O Z \perp C D, O W \perp D A$ and $O X=O Y=O Z=O W=\rho$. Moreover, $A W=A X, B X=B Y, C Y=C Z, D Z=D W$, since the two tangents from a point to a circle are equal in length. We denote

$$
a=A W=A X ; \quad b=B X=B Y ; \quad c=C Y=C Z ; \quad d=D Z=D W
$$

(Thus, we denote by $a, b, c, d$ not, as usual, the sidelengths of the quadrilateral $A B C D$, but the segments $A W=A X, B X=B Y, C Y=C Z, D Z=D W$.)

[^0]Then, the sidelengths of quadrilateral $A B C D$ are

$$
\begin{array}{ll}
A B=A X+B X=a+b ; & B C=B Y+C Y=b+c \\
C D=C Z+D Z=c+d ; & D A=D W+A W=d+a .
\end{array}
$$

Hence,

$$
\begin{aligned}
A B+C D & =(a+b)+(c+d)=(b+c)+(d+a) \\
& =B C+D A \quad \text { (since } b+c=B C \text { and } d+a=D A)
\end{aligned}
$$

Thus we have shown the maybe most famous fact about circumscribed quadrilaterals:
Theorem 1. If $A B C D$ is a circumscribed quadrilateral ${ }^{2}$, then $A B+C D=$ $B C+D A$.

In words: In a circumscribed quadrilateral, the sums of the lengths of opposite sides are equal.

[^1]

Fig. 2

Now, let us get serious and turn to the first nontrivial result about circumscribed quadrilaterals (Fig. 2):

Theorem 2. The four lines $A C, B D, X Z, Y W$ concur at one point. ${ }^{3}$
This theorem is still rather well-known; it is problem 105 in [1] and also appears in [6], [8] and [10]. Here we give two proofs of this theorem.

[^2]

Fig. 3
First proof of Theorem 2. (See Fig. 3.) Let $P$ be the point of intersection of the lines $A C$ and $Y W$.

The lines $B C$ and $D A$ touch the incircle of the quadrilateral $A B C D$ at the points $Y$ and $W$. Hence, by the tangent-chordal angle theorem, both angles $\measuredangle C Y W$ and $\measuredangle D W Y$ are equal to the chordal angle of the chord $Y W$ in the incircle of the quadrilateral $A B C D$. Thus, $\measuredangle C Y W=\measuredangle D W Y$. In other words, $\measuredangle C Y P=180^{\circ}-\measuredangle A W P$. Thus, $\sin \measuredangle C Y P=\sin \measuredangle A W P$. But after the sine law in triangle $A W P$, we have $A P=A W$. $\frac{\sin \measuredangle A W P}{\sin \measuredangle A P W}$, and after the sine law in triangle $C Y P$, we have $C P=C Y \cdot \frac{\sin \measuredangle C Y P}{\sin \measuredangle C P Y}$. Thus,

$$
\frac{A P}{C P}=\frac{A W \cdot \frac{\sin \measuredangle A W P}{\sin \measuredangle A P W}}{C Y \cdot \frac{\sin \measuredangle C Y P}{\sin \measuredangle C P Y}}=\frac{A W \cdot \frac{\sin \measuredangle A W P}{\sin \measuredangle A P W}}{C Y \cdot \frac{\sin \measuredangle A W P}{\sin \measuredangle A P W}}=\frac{A W}{C Y}=\frac{a}{c}
$$

Now, let $P^{\prime}$ be the point of intersection of the lines $A C$ and $X Z$. Then, we similarly find $\frac{A P^{\prime}}{C P^{\prime}}=\frac{a}{c}$. Comparing this with $\frac{A P}{C P}=\frac{a}{c}$, we find $\frac{A P}{C P}=\frac{A P^{\prime}}{C P^{\prime}}$. This means that
the points $P$ and $P^{\prime}$ divide the segment $A C$ in the same ratio; hence, these points $P$ and $P^{\prime}$ coincide. Since the point $P$ is the point of intersection of the lines $A C$ and $Y W$, and the point $P^{\prime}$ is the point of intersection of the lines $A C$ and $X Z$, it thus follows that the lines $A C, X Z$ and $Y W$ concur at one point. Similarly, we can verify that the lines $B D, X Z$ and $Y W$ concur at one point. Hence, all four lines $A C, B D, X Z$ and $Y W$ concur at one point, and Theorem 2 is proven.


Fig. 4
This proof of Theorem 2 has a nice consequence (Fig. 4): The point of intersection of the four lines $A C, B D, X Z, Y W$ must obviously coincide with the point of intersection $P$ of the lines $A C$ and $Y W$ defined in the above proof of Theorem 2. However, we have shown that this point $P$ satisfies $\frac{A P}{C P}=\frac{a}{c}$. Similarly, $\frac{B P}{D P}=\frac{b}{d}$. Thus, we get:

Theorem 3. If $P$ is the point of intersection of the lines $A C, B D, X Z$, $Y W$, then $\frac{A P}{C P}=\frac{a}{c}$ and $\frac{B P}{D P}=\frac{b}{d}$.

Note that this result appeared in [7] and [8].

Second proof of Theorem 2. We will show that the lines $A C, B D$ and $X Z$ concur. Then, analogously we can show that the lines $A C, B D$ and $Y W$ concur, and thus it will follow that all four lines $A C, B D, X Z$ and $Y W$ concur, thus proving Theorem 2.


Fig. 5
(See Fig. 5.) Now, in order to show that the lines $A C, B D$ and $X Z$ concur, it appears reasonable to apply the Brianchon theorem in a limiting case. However, one has to be careful doing this. Here is how one should not proceed:
"Consider the degenerate hexagon $A X B C Z D$ (degenerate, since its adjacent sides $A X$ and $X B$ lie on one line, and its adjacent sides $C Z$ and $Z D$ lie on one line). This hexagon is obviously circumscribed, since all of its sides $A X, X B, B C, C Z, Z D, D A$ touch one circle (namely, the incircle of the quadrilateral $A B C D$ ). Hence, the main diagonals $A C, X Z$ and $B D$ of this hexagon concur, and the proof is complete."

The mistake - to be more precise, the gap - in this argumentation becomes clear if one applies it to the hexagon $A X^{\prime} B C Z D$, where $X^{\prime}$ is an arbitrary point on the line $A B$. This hexagon, too, appears to be circumscribed, since all of its sides $A X^{\prime}, X^{\prime} B$, $B C, C Z, Z D, D A$ touch one circle (namely, the incircle of the quadrilateral $A B C D$ )

- if they are extended to lines (but this should not be a problem, since we are talking about projective theorems, and thus arrangement shouldn't matter). Thus, by the Brianchon theorem, it seems to follow that the lines $A C, X^{\prime} Z$ and $B D$ concur - but this is nonsense for every point $X^{\prime}$ different from $X$.

So where is the mistake? The trick is: A geometrical theorem can be used in a degenerate case if either its proof still functions in this case, or one can deduce the degenerate case from the generic case by a limiting argument. Our application of the Brianchon theorem to the hexagon $A X^{\prime} B C Z D$ did not match any of these two conditions; thus, it was not legitimate. Hence, there is no wonder the resulting assertion was wrong.

However, one can rescue the above proof of Theorem 2. In order to do this, one must find an argument that shows why the Brianchon theorem can be applied to the degenerate hexagon $A X B C Z D$, but not to the degenerate hexagon $A X^{\prime} B C Z D$ with $X^{\prime} \neq X$.

In order to find such an argument, let's recall how the Brianchon theorem is derived from the Pascal theorem using the polar transformation.

The Pascal theorem states: If six points $A_{1}, B_{1}, C_{1}, D_{1}, E_{1}, F_{1}$ lie on one circle, then the points of intersection $A_{1} B_{1} \cap D_{1} E_{1}, B_{1} C_{1} \cap E_{1} F_{1}$ and $C_{1} D_{1} \cap F_{1} A_{1}$ are collinear; here, if two "adjacent" points - i. e., for instance, the points $A_{1}$ and $B_{1}$ - coincide, then the line $A_{1} B_{1}$ has to be interpreted as the tangent to the circle at the point $A_{1}$, and not as an arbitrary line through the point $A_{1}$.

After the polar transformation, this becomes: If six lines $a_{1}, b_{1}, c_{1}, d_{1}, e_{1}, f_{1}$ touch a circle, then the lines $\left(a_{1} \cap b_{1}\right) *\left(d_{1} \cap e_{1}\right),\left(b_{1} \cap c_{1}\right) *\left(e_{1} \cap f_{1}\right)$ and $\left(c_{1} \cap d_{1}\right) *\left(f_{1} \cap a_{1}\right)$ are concurrent ${ }^{4}$; here, if two "adjacent" lines - i. e., for instance, the lines $a_{1}$ and $b_{1}$ - coincide, then the point of intersection $a_{1} \cap b_{1}$ has to be interpreted as the point of tangency of the line $a_{1}$ with the circle, and not as an arbitrary point on the line $a_{1}$.

In other words: The hexagon formed by the lines $a_{1}, b_{1}, c_{1}, d_{1}, e_{1}, f_{1}$ may be degenerated, but if two adjacent sides lie on one line, then the vertex where these sides meet must be the point of tangency of this line with the circle, and not just an arbitrary point on this line.

This is fulfilled for the degenerate hexagon $A X B C Z D{ }^{5}$, but not for the degenerate hexagon $A X^{\prime} B C Z D$ with $X^{\prime} \neq X$. Thus, the above argumentation for the hexagon $A X B C Z D$ is correct - thus Theorem 2 is proven -, but the same argumentation for the hexagon $A X^{\prime} B C Z D$ is wrong.

Now, we head over to a less classical result, one noted by myself in 2003 (Fig. 6):
Theorem 4. Let the perpendicular to the line $A B$ at the point $A$ meet the line $B O$ at a point $M$. Let the perpendicular to the line $A D$ at the point $A$ meet the line $D O$ at a point $N$. Then, $M N \perp A C$.

[^3]

Fig. 6
In [4], this theorem appears as Theorem 1 and receives two proofs. Here is a different proof of Theorem 4:
(See Fig. 7.) Let $L_{b}$ and $L_{d}$ be the orthogonal projections of the points $B$ and $D$ on the line $A C$. Then, the lines $B L_{b}$ and $D L_{d}$, both being perpendicular to $A C$, must be parallel to each other, and thus Thales yields $\frac{B L_{b}}{D L_{d}}=\frac{B P}{D P}$. But according to Theorem 3, we have $\frac{B P}{D P}=\frac{b}{d}$. Thus $\frac{B L_{b}}{D L_{d}}=\frac{b}{d}$, or, equivalently, $\frac{B L_{b}}{b}=\frac{D L_{d}}{d}$.


Fig. 7
(See Fig. 8.) Let $R$ be the orthogonal projection of the point $M$ on the line $A C$. Then, $\measuredangle A R M=90^{\circ}$. Compared with $\measuredangle B L_{b} A=90^{\circ}$, this yields $\measuredangle A R M=\measuredangle B L_{b} A$. On the other hand, $\measuredangle M A B=90^{\circ}$, so that $\measuredangle M A R=\measuredangle M A B-\measuredangle L_{b} A B=90^{\circ}-\measuredangle L_{b} A B$. But in the right-angled triangle $A L_{b} B$, we have $\measuredangle A B L_{b}=90^{\circ}-\measuredangle L_{b} A B$. Comparing these, we find $\measuredangle M A R=\measuredangle A B L_{b}$. From $\measuredangle A R M=\measuredangle B L_{b} A$ and $\measuredangle M A R=\measuredangle A B L_{b}$, we see that the triangles $A R M$ and $B L_{b} A$ are similar; thus, $\frac{A R}{B L_{b}}=\frac{A M}{A B}$.

On the other hand, the point $M$ lies on the line $B O$, and from $A M \perp A B$ and $O X \perp A B$ it follows that $A M \| O X$. Hence, by Thales, $\frac{A M}{A B}=\frac{O X}{B X}$. Thus, we obtain

$$
\frac{A R}{B L_{b}}=\frac{A M}{A B}=\frac{O X}{B X}=\frac{\rho}{b}, \quad \text { so that } \quad A R=B L_{b} \cdot \frac{\rho}{b}=\rho \cdot \frac{B L_{b}}{b}
$$

Similarly, we can denote by $R^{\prime}$ the orthogonal projection of the point $N$ on the line $A C$, and show that $A R^{\prime}=\rho \cdot \frac{D L_{d}}{d}$. Since $\frac{B L_{b}}{b}=\frac{D L_{d}}{d}$, we thus get $A R=A R^{\prime}$. Since the points $R$ and $R^{\prime}$ both lie on the segment $A C$, this yields that these points $R$ and $R^{\prime}$ coincide. Now, since the point $R$ is the orthogonal projection of the point $M$ on the line $A C$, we have $M R \perp A C$, so that the point $M$ lies on the perpendicular to the line $A C$ at the point $R$. Similarly, the point $N$ lies on the perpendicular to the line $A C$ at the point $R^{\prime}$. But since $R=R^{\prime}$, these two perpendiculars coincide, and thus the
points $M$ and $N$ lie on one and the same perpendicular to the line $A C$. This means $M N \perp A C$, and Theorem 4 is proven.


Fig. 8
In [2], Jean-Pierre Ehrmann showed an alternate approach to Theorem 4 with the help of hyperbola properties. A corollary of this approach is the following fact:

Theorem 5. Denote the distances from the points $B$ and $D$ to the line $M N$ by $m$ and $n$, respectively. Then, $\frac{m}{A B}=\frac{n}{A D}$.


Fig. 9

Here is an elementary proof of Theorem 5. First, we focus on the points $X, Y, Z$, $W$. We will use directed segments; in the following, the directed distance between two points $P_{1}$ and $P_{2}$ will be denoted by $\overline{P_{1} P_{2}}$ (as opposed to the non-directed distance, which we will continue to write as $P_{1} P_{2}$ ). Also, we direct the lines $A B, B C, C D, D A$ in such a way that the directed segments $\overline{A B}, \overline{B C}, \overline{C D}, \overline{D A}$ are positive (and thus the segments $\overline{B A}, \overline{C B}, \overline{D C}, \overline{A D}$ are negative). Then,
$a=A W=A X ; \quad b=B X=B Y ; \quad c=C Y=C Z ; \quad d=D Z=D W$
becomes
$a=\overline{W A}=\overline{A X} ; \quad b=\overline{X B}=\overline{B Y} ; \quad c=\overline{Y C}=\overline{C Z} ; \quad d=\overline{Z D}=\overline{D W}$.
(See Fig. 10.) Now, let $T$ be the point on the line $A C$ satisfying $\frac{\overline{A T}}{\overline{T C}}=-\frac{a}{c}$. Then, $\frac{\overline{T C}}{\overline{A T}}=-\frac{c}{a}$, what rewrites as $\frac{\overline{C T}}{\overline{T A}}=-\frac{c}{a}$. Hence,

$$
\frac{\overline{A X}}{\overline{X B}} \cdot \frac{\overline{B Y}}{\overline{Y C}} \cdot \frac{\overline{C T}}{\overline{T A}}=\frac{a}{b} \cdot \frac{b}{c} \cdot\left(-\frac{c}{a}\right)=-1 .
$$

By the Menelaos theorem, applied to the triangle $A B C$ and the points $X, Y, T$ on its sides $A B, B C, C A$, this yields that the points $X, Y, T$ are collinear. In other words, the point $T$ lies on the line $X Y$. As the definition of the point $T$ is symmetric in $B$ and $D$, we can similarly show that this point $T$ lies on the line $Z W$.

Note that we have thus shown an interesting side-result: Our point $T$ lies on the lines $A C, X Y$ and $Z W$ and divides the segment $A C$ in the ratio $\frac{\overline{A T}}{\overline{T C}}=-\frac{a}{c}$. Comparing this with $^{6} \frac{\overline{A P}}{\overline{P C}}=\frac{a}{c}$ (this is just the equation $\frac{A P}{C P}=\frac{a}{c}$ from Theorem 3, rewritten using directed segments), we see that $\frac{\overline{A T}}{\overline{T C}}=-\frac{\overline{A P}}{\overline{P C}}$, so that the point $T$ is the harmonic conjugate of the point $P$ with respect to the segment $A C$. Thus, we have shown:

Theorem 6. The lines $A C, X Y, Z W$ concur at one point $T$. This point $T$ divides the segment $A C$ in the ratio $\frac{\overline{A T}}{\overline{T C}}=-\frac{a}{c}$ and is the harmonic conjugate of the point $P$ with respect to the segment $A C$.

[^4]

Fig. 10
(See Fig. 11.) Now, let $M^{\prime}$ be the orthogonal projection of the point $B$ on the line $M N$. Then, the distance $m$ from the point $B$ to the line $M N$ equals to the segment $B M^{\prime}$; so we have $m=B M^{\prime}$.

On the other hand, $B M^{\prime} \perp M N$, combined with $M N \perp A C$, yields $B M^{\prime} \| A C$, so that $\measuredangle M^{\prime} B A=\measuredangle X A T$.


Fig. 11
Since $\measuredangle M M^{\prime} B=90^{\circ}$ and $\measuredangle M A B=90^{\circ}$, the points $M^{\prime}$ and $A$ lie on the circle with diameter $M B$. Thus, the quadrilateral $A M^{\prime} B M$ is cyclic, so that $\measuredangle B M^{\prime} A=180^{\circ}-$ $\measuredangle A M B$. On the other hand, in the right-angled triangle $A M B$, we have $\measuredangle A M B=$ $90^{\circ}-\measuredangle A B M$. But since the point $M$ lies on the line $B O$, i. e. on the angle bisector of the angle $A B C$ (since the point $O$ is the incenter of the quadrilateral $A B C D$ ), we have $\measuredangle A B M=\frac{\measuredangle A B C}{2}$. Finally, since $B X=B Y$, the triangle $X B Y$ is isosceles, so that its base angle $\measuredangle B X Y$ equals

$$
\measuredangle B X Y=\frac{180^{\circ}-\measuredangle X B Y}{2}=90^{\circ}-\frac{\measuredangle X B Y}{2}=90^{\circ}-\frac{\measuredangle A B C}{2}
$$

Thus,

$$
\begin{aligned}
\measuredangle B M^{\prime} A & =180^{\circ}-\measuredangle A M B=180^{\circ}-\left(90^{\circ}-\measuredangle A B M\right)=90^{\circ}+\measuredangle A B M=90^{\circ}+\frac{\measuredangle A B C}{2} \\
& =180^{\circ}-\left(90^{\circ}-\frac{\measuredangle A B C}{2}\right)=180^{\circ}-\measuredangle B X Y=\measuredangle A X T .
\end{aligned}
$$

Since $\measuredangle M^{\prime} B A=\measuredangle X A T$ and $\measuredangle B M^{\prime} A=\measuredangle A X T$, the triangles $B M^{\prime} A$ and $A X T$ are similar. Thus, $\frac{B M^{\prime}}{A B}=\frac{A X}{T A}$. Since $m=B M^{\prime}$ and $a=A X$, we can rewrite this as $\frac{m}{A B}=\frac{a}{T A}$. Similarly, $\frac{n}{A D}=\frac{a}{T A}$. Comparing these, we find $\frac{m}{A B}=\frac{n}{A D}$, which proves Theorem 5.

In the remainder of the article, we will study some metric identities for the circumscribed quadrilateral (Fig. 12).


Fig. 12
The points $X$ and $Y$, being the points of tangency of the incircle of the quadrilateral $A B C D$ with its sides $A B$ and $B C$, are symmetric to each other with respect to the
angle bisector $B O$ of the angle $A B C$. Hence, the segment $X Y$ is perpendicular to the line $B O$ and is bisected by this line. So the midpoint $B^{\prime}$ of the segment $X Y$ lies on the line $B O$. Similarly, the midpoint $A^{\prime}$ of the segment $W X$ lies on the line $A O$.

Now, from $X Y \perp B O$ we see that $\measuredangle X B^{\prime} O=90^{\circ}$, while from $O X \perp A B$ we have $\measuredangle B X O=90^{\circ}$. Thus, $\measuredangle X B^{\prime} O=\measuredangle B X O$. Also, trivially, $\measuredangle X O B^{\prime}=\measuredangle B O X$. Thus, the triangles $X B^{\prime} O$ and $B X O$ are similar, so that $\frac{O B^{\prime}}{O X}=\frac{O X}{O B}$, and thus $O B \cdot O B^{\prime}=$ $O X^{2}=\rho^{2}$.

Similarly, $O A \cdot O A^{\prime}=\rho^{2}$. Hence, $O B \cdot O B^{\prime}=O A \cdot O A^{\prime}$, so that $\frac{O B}{O A}=\frac{O A^{\prime}}{O B^{\prime}}$. Together with $\measuredangle B O A=\measuredangle A^{\prime} O B^{\prime}$, this yields the similarity of triangles $B O A$ and $A^{\prime} O B^{\prime}$. Consequently,
$\frac{A^{\prime} B^{\prime}}{A B}=\frac{O A^{\prime}}{O B}, \quad$ thus $\quad A^{\prime} B^{\prime}=A B \cdot \frac{O A^{\prime}}{O B}=A B \cdot \frac{O A \cdot O A^{\prime}}{O A \cdot O B}=A B \cdot \frac{\rho^{2}}{O A \cdot O B}$.
Now, the points $A^{\prime}$ and $B^{\prime}$ are the midpoints of the sides $W X$ and $X Y$ of triangle $W X Y$; thus, $A^{\prime} B^{\prime}=\frac{Y W}{2}$. Hence, $A B \cdot \frac{\rho^{2}}{O A \cdot O B}=\frac{Y W}{2}$. Consequently,

$$
A B=\frac{Y W}{2} \cdot \frac{O A \cdot O B}{\rho^{2}} .
$$

Similar relations must obviously hold for $B C, C D$ and $D A$. We summarize:
Theorem 7. We have

$$
\begin{aligned}
A B & =\frac{Y W}{2} \cdot \frac{O A \cdot O B}{\rho^{2}} ; & B C=\frac{X Z}{2} \cdot \frac{O B \cdot O C}{\rho^{2}} ; \\
C D & =\frac{Y W}{2} \cdot \frac{O C \cdot O D}{\rho^{2}} ; & D A=\frac{X Z}{2} \cdot \frac{O D \cdot O A}{\rho^{2}}
\end{aligned}
$$

(See Fig. 13.)


Fig. 13
These equations can be used for deriving some other formulas. For instance, $A B=$ $\frac{Y W}{2} \cdot \frac{O A \cdot O B}{\rho^{2}}$ transforms into

$$
O A \cdot O B=\rho^{2} \cdot A B: \frac{Y W}{2}=\frac{2 \rho^{2} \cdot A B}{Y W}
$$

Similarly,

$$
O C \cdot O D=\frac{2 \rho^{2} \cdot C D}{Y W}
$$

Thus,

$$
\frac{O A \cdot O B}{O C \cdot O D}=\frac{\left(\frac{2 \rho^{2} \cdot A B}{Y W}\right)}{\left(\frac{2 \rho^{2} \cdot C D}{Y W}\right)}=\frac{A B}{C D}
$$

Similarly, $\frac{O B \cdot O C}{O D \cdot O A}=\frac{B C}{D A}$. So we have shown:

Theorem 8. We have

$$
\frac{A B}{C D}=\frac{O A \cdot O B}{O C \cdot O D} ; \quad \frac{B C}{D A}=\frac{O B \cdot O C}{O D \cdot O A}
$$

Proving these equations was a 10th grade problem in the 4th round of the 14th DeMO (East German mathematical olympiad) 1974/75. We furthermore have

$$
\begin{align*}
\frac{A B \cdot B C}{C D \cdot D A} & =\frac{A B}{C D} \cdot \frac{B C}{D A}=\frac{O A \cdot O B}{O C \cdot O D} \cdot \frac{O B \cdot O C}{O D \cdot O A}  \tag{byTheorem8}\\
& =\frac{O B^{2}}{O D^{2}}
\end{align*}
$$

or, equivalently,

$$
\frac{O B^{2}}{A B \cdot B C}=\frac{O D^{2}}{C D \cdot D A} .
$$

Similarly, $\frac{O A^{2}}{D A \cdot A B}=\frac{O C^{2}}{B C \cdot C D}$. Thus we arrive at the following:
Theorem 9. We have

$$
\frac{O B^{2}}{A B \cdot B C}=\frac{O D^{2}}{C D \cdot D A} ; \quad \quad \frac{O A^{2}}{D A \cdot A B}=\frac{O C^{2}}{B C \cdot C D}
$$

This also appears with proof in [5].
Now we show a harder identity given in the China IMO TST 2003 ([8]):
Theorem 10. We have

$$
O A \cdot O C+O B \cdot O D=\sqrt{A B \cdot B C \cdot C D \cdot D A}
$$

Proof of Theorem 10. (See Fig. 14.) Let $X^{\prime}$ and $Z^{\prime}$ be the antipodes of the points $X$ and $Z$ on the incircle of the quadrilateral $A B C D \quad{ }^{7}$, or, in other words, the reflections of the points $X$ and $Z$ with respect to the center $O$ of this incircle. Then, the segment $X X^{\prime}$ is a diameter of the incircle of the quadrilateral $A B C D$, and thus $\measuredangle X Y X^{\prime}=90^{\circ}$, so that $Y X^{\prime} \perp X Y$. On the other hand, $X Y \perp B O$. Hence, $Y X^{\prime} \| B O$, so that $\measuredangle X X^{\prime} Y=\measuredangle B O X$. Together with $\measuredangle X Y X^{\prime}=\measuredangle B X O$ (since $\measuredangle X Y X^{\prime}=90^{\circ}$ and $\measuredangle B X O=90^{\circ}$ ) this entails that the triangles $X X^{\prime} Y$ and $B O X$ are similar; consequently, $\frac{X^{\prime} Y}{X^{\prime} X}=\frac{O X}{O B}$, so that $X^{\prime} Y=X^{\prime} X \cdot \frac{O X}{O B}$. Now, $X^{\prime} X=2 \cdot O X$ (since the point $X^{\prime}$ is the reflection of $X$ in $O$ ), and thus

$$
X^{\prime} Y=2 \cdot O X \cdot \frac{O X}{O B}=\frac{2 \cdot O X^{2}}{O B}=\frac{2 \rho^{2}}{O B}
$$

[^5]

Fig. 14
Similarly,

$$
Z^{\prime} Y=\frac{2 \rho^{2}}{O C} ; \quad Z^{\prime} W=\frac{2 \rho^{2}}{O D} ; \quad X^{\prime} W=\frac{2 \rho^{2}}{O A}
$$

Finally, $X^{\prime} Z^{\prime}=X Z$, since the points $X^{\prime}$ and $Z^{\prime}$ are the reflections of the points $X$ and $Z$ in the point $O$, and reflections preserve distances.


Fig. 15
(See Fig. 15.) Now, the points $X^{\prime}, Y, Z^{\prime}, W$ all lie on the incircle of the quadrilateral $A B C D$; thus, the quadrilateral $X^{\prime} Y Z^{\prime} W$ is cyclic, so that, after the Ptolemy theorem,

$$
X^{\prime} Y \cdot Z^{\prime} W+X^{\prime} W \cdot Z^{\prime} Y=X^{\prime} Z^{\prime} \cdot Y W
$$

According to the above formulas, this becomes

$$
\begin{aligned}
\frac{2 \rho^{2}}{O B} \cdot \frac{2 \rho^{2}}{O D}+\frac{2 \rho^{2}}{O A} \cdot \frac{2 \rho^{2}}{O C} & =X Z \cdot Y W, \\
4 \rho^{4} \cdot\left(\frac{1}{O B \cdot O D}+\frac{1}{O A \cdot O C}\right) & =X Z \cdot Y W,
\end{aligned} \quad \text { i. e. } .
$$

Hence,

$$
\begin{equation*}
O A \cdot O C+O B \cdot O D=\frac{X Z \cdot Y W \cdot O A \cdot O B \cdot O C \cdot O D}{4 \rho^{4}} \tag{1}
\end{equation*}
$$

But Theorem 7 yields

$$
\begin{aligned}
& A B \cdot B C \cdot C D \cdot D A \\
= & \left(\frac{Y W}{2} \cdot \frac{O A \cdot O B}{\rho^{2}}\right) \cdot\left(\frac{X Z}{2} \cdot \frac{O B \cdot O C}{\rho^{2}}\right) \cdot\left(\frac{Y W}{2} \cdot \frac{O C \cdot O D}{\rho^{2}}\right) \cdot\left(\frac{X Z}{2} \cdot \frac{O D \cdot O A}{\rho^{2}}\right) \\
= & \left(\frac{X Z \cdot Y W \cdot O A \cdot O B \cdot O C \cdot O D}{4 \rho^{4}}\right)^{2}
\end{aligned}
$$

so that

$$
\frac{X Z \cdot Y W \cdot O A \cdot O B \cdot O C \cdot O D}{4 \rho^{4}}=\sqrt{A B \cdot B C \cdot C D \cdot D A}
$$

Hence, (1) becomes

$$
O A \cdot O C+O B \cdot O D=\sqrt{A B \cdot B C \cdot C D \cdot D A}
$$

and Theorem 10 is proven.
In the following, we shall denote by $\left|P_{1} P_{2} \ldots P_{n}\right|$ the (non-directed) area of an arbitrary polygon $P_{1} P_{2} \ldots P_{n}$.

Furthermore, we denote the interior angles of the quadrilateral $A B C D$ by

$$
\alpha=\measuredangle D A B ; \quad \beta=\measuredangle A B C ; \quad \gamma=\measuredangle B C D ; \quad \delta=\measuredangle C D A
$$

Now, we are going to show the following:
Theorem 11. We have

$$
\begin{aligned}
O A \cdot O C & =\frac{(a+c) \cdot \rho}{\sin \frac{\alpha+\gamma}{2} ;} \quad O B \cdot O D=\frac{(b+d) \cdot \rho}{\sin \frac{\beta+\delta}{2}} ; \\
\frac{O A \cdot O C}{O B \cdot O D}=\frac{a+c}{b+d} ; & O A \cdot O C+O B \cdot O D=\frac{(a+b+c+d) \cdot \rho}{\sin \frac{\alpha+\gamma}{2}}
\end{aligned}
$$



Fig. 16
Proof of Theorem 11. (See Fig. 16.) Let $U$ be the point on the ray $X B$ satisfying $U X=c$. Comparing this with $c=C Z$, we get $U X=C Z$. Furthermore, $\measuredangle O X U=$ $90^{\circ}=\measuredangle O Z C$ and $O X=O Z$. Thus, the triangles $O X U$ and $O Z C$ are congruent, so that $O U=O C$ and $\measuredangle X O U=\measuredangle Z O C$.

Since the point $O$, being the incenter of the quadrilateral $A B C D$, lies on the angle bisector of its angle $D A B$, we have $\measuredangle X A O=\frac{\measuredangle D A B}{2}=\frac{\alpha}{2}$; in the right-angled triangle $A X O$, we thus obtain $\measuredangle X O A=90^{\circ}-\measuredangle X A O=90^{\circ}-\frac{\alpha}{2}$. Similarly, $\measuredangle Z O C=90^{\circ}-\frac{\gamma}{2}$; since $\measuredangle X O U=\measuredangle Z O C$, this becomes $\measuredangle X O U=90^{\circ}-\frac{\gamma}{2}$. Hence, $\measuredangle A O U=\measuredangle X O A+$ $\measuredangle X O U=\left(90^{\circ}-\frac{\alpha}{2}\right)+\left(90^{\circ}-\frac{\gamma}{2}\right)=180^{\circ}-\frac{\alpha+\gamma}{2}$, so that $\sin \measuredangle A O U=\sin \frac{\alpha+\gamma}{2}$.

From $A X=a$ and $U X=c$, we conclude that $A U=A X+U X=a+c$.
Now, the area of a triangle equals half of the product of two of its sides and the sine of the angle between them; applying this to triangle $A O U$, we get $|A O U|=$ $\frac{1}{2} \cdot O A \cdot O U \cdot \sin \measuredangle A O U$; since $O U=O C$ and $\sin \measuredangle A O U=\sin \frac{\alpha+\gamma}{2}$, this becomes $|A O U|=\frac{1}{2} \cdot O A \cdot O C \cdot \sin \frac{\alpha+\gamma}{2}$.

On the other hand, the area of a triangle equals half of the product of a side with the respective altitude; applied to the triangle $A O U$ (in which $O X$ is the altitude to the side $A U$ ), this yields $|A O U|=\frac{1}{2} \cdot A U \cdot O X$; since $A U=a+c$ and $O X=\rho$, this rewrites as $|A O U|=\frac{1}{2} \cdot(a+c) \cdot \rho$.

Comparing the equations $|A O U|=\frac{1}{2} \cdot O A \cdot O C \cdot \sin \frac{\alpha+\gamma}{2}$ and $|A O U|=\frac{1}{2} \cdot(a+c) \cdot \rho$, we see that $O A \cdot O C \cdot \sin \frac{\alpha+\gamma}{2}=(a+c) \cdot \rho$, and thus

$$
O A \cdot O C=\frac{(a+c) \cdot \rho}{\sin \frac{\alpha+\gamma}{2}}
$$

Similarly,

$$
O B \cdot O D=\frac{(b+d) \cdot \rho}{\sin \frac{\beta+\delta}{2}}
$$

Now, by the sum of angles in the quadrilateral $A B C D$, we have $\alpha+\beta+\gamma+\delta=360^{\circ}$, so that $\frac{\alpha+\gamma}{2}+\frac{\beta+\delta}{2}=\frac{\alpha+\beta+\gamma+\delta}{2}=\frac{360^{\circ}}{2}=180^{\circ}$, and thus $\sin \frac{\beta+\delta}{2}=\sin \frac{\alpha+\gamma}{2}$. Hence, the equation

$$
O B \cdot O D=\frac{(b+d) \cdot \rho}{\sin \frac{\beta+\delta}{2}} \quad \text { becomes } \quad O B \cdot O D=\frac{(b+d) \cdot \rho}{\sin \frac{\alpha+\gamma}{2}} .
$$

Thus,

$$
\frac{O A \cdot O C}{O B \cdot O D}=\frac{\left(\frac{(a+c) \cdot \rho}{\sin \frac{\alpha+\gamma}{2}}\right)}{\left(\frac{(b+d) \cdot \rho}{\sin \frac{\alpha+\gamma}{2}}\right)}=\frac{a+c}{b+d}
$$

and

$$
O A \cdot O C+O B \cdot O D=\frac{(a+c) \cdot \rho}{\sin \frac{\alpha+\gamma}{2}}+\frac{(b+d) \cdot \rho}{\sin \frac{\alpha+\gamma}{2}}=\frac{(a+b+c+d) \cdot \rho}{\sin \frac{\alpha+\gamma}{2}}
$$

Therefore, Theorem 11 is proven.
Now, Theorem 11 asserts

$$
O A \cdot O C+O B \cdot O D=\frac{(a+b+c+d) \cdot \rho}{\sin \frac{\alpha+\gamma}{2}}
$$

while Theorem 10 states that

$$
O A \cdot O C+O B \cdot O D=\sqrt{A B \cdot B C \cdot C D \cdot D A}
$$

Hence,

$$
\frac{(a+b+c+d) \cdot \rho}{\sin \frac{\alpha+\gamma}{2}}=\sqrt{A B \cdot B C \cdot C D \cdot D A} .
$$

Comparing these two equalities, and multiplying by $\sin \frac{\alpha+\gamma}{2}$, we find

$$
(a+b+c+d) \cdot \rho=\sqrt{A B \cdot B C \cdot C D \cdot D A} \cdot \sin \frac{\alpha+\gamma}{2}
$$

(See Fig. 13.) Now, the area of a right-angled triangle equals half of the product of its two catets; for the right-angled triangle $A W O$, this yields $|A W O|=\frac{1}{2} \cdot A W \cdot O W=$ $\frac{1}{2} \cdot a \cdot \rho$. Similarly, $|A X O|=\frac{1}{2} \cdot a \cdot \rho$, and thus $|A W O X|=|A W O|+|A X O|=$ $\frac{1}{2} \cdot a \cdot \rho+\frac{1}{2} \cdot a \cdot \rho=a \cdot \rho$. Similarly, $|B X O Y|=b \cdot \rho,|C Y O Z|=c \cdot \rho$ and $|D Z O W|=d \cdot \rho$. Hence,

$$
\begin{aligned}
|A B C D| & =|A W O X|+|B X O Y|+|C Y O Z|+|D Z O W|=a \cdot \rho+b \cdot \rho+c \cdot \rho+d \cdot \rho \\
& =(a+b+c+d) \cdot \rho=\sqrt{A B \cdot B C \cdot C D \cdot D A} \cdot \sin \frac{\alpha+\gamma}{2}
\end{aligned}
$$

Thus, we conclude:
Theorem 12. The area $|A B C D|$ of a circumscribed quadrilateral $A B C D$ equals

$$
|A B C D|=\sqrt{A B \cdot B C \cdot C D \cdot D A} \cdot \sin \frac{\alpha+\gamma}{2}
$$

This is not an unknown formula; however it is usually derived from the generalized Brahmagupta formula for the area of an arbitrary quadrilateral ([9]), which, in turn, is proven by a long trigonometric calculation. Instead, we have given a rather long, yet synthetic proof of Theorem 12.

Next, we are going to prove a result due to A. Zaslavsky, M. Isaev and D. Tsvetov which was given in the final (fifth) round of the Allrussian Mathematical Olympiad 2005 as problem 7 for class 11 ([11]):

Theorem 13. The incenter $O$ of a circumscribed quadrilateral $A B C D$ coincides with the centroid of the quadrilateral $A B C D$ if and only if either ${ }^{8}$ the quadrilateral $A B C D$ is a rhombus or $O A \cdot O C=O B \cdot O D$. (See Fig. 17.)

Here, the centroid of the quadrilateral $A B C D$ is defined as follows:
Let $E, F, G, H$ be the midpoints of the sides $A B, B C, C D, D A$ of the quadrilateral $A B C D$. Then, according to the Varignon theorem, the quadrilateral $E F G H$ is a parallelogram, so that its two diagonals $E G$ and $F H$ bisect each other. In other

[^6]words, the segments $E G$ and $F H$ have a common midpoint. This midpoint is called the centroid of the quadrilateral $A B C D$.


Fig. 17
Now, let's prove Theorem 13. In order to do this, we have to verify two assertions: Assertion 1: If the point $O$ is the centroid of the quadrilateral $A B C D$, then either the quadrilateral $A B C D$ is a rhombus or $O A \cdot O C=O B \cdot O D$.

Assertion 2: If either the quadrilateral $A B C D$ is a rhombus or $O A \cdot O C=O B \cdot O D$, then the point $O$ is the centroid of the quadrilateral $A B C D$.

Before we establish any of these assertions, we start with a few observations holding for every circumscribed quadrilateral $A B C D$ (Fig. 18):

Since the point $E$ is the midpoint of the segment $A B$, we have $A E=\frac{A B}{2}=\frac{a+b}{2}$,
and thus

$$
\begin{aligned}
E X & =|A X-A E|=\left|a-\frac{a+b}{2}\right| \quad\left(\text { since } A X=a \text { and } A E=\frac{a+b}{2}\right) \\
& =\left|\frac{a-b}{2}\right|=\frac{|a-b|}{2} .
\end{aligned}
$$

Similarly, $G Z=\frac{|c-d|}{2}$.
Also, note that the triangles $E O X$ and $G O Z$ are right-angled at their vertices $X$ and $Z$, since $\measuredangle O X E=90^{\circ}$ and $\measuredangle O Z G=90^{\circ}$.


Fig. 18

Now, we are going to establish Assertions 1 and 2.
Proof of Assertion 1. We distinguish between two cases:
Case 1: We have $a+c \neq b+d$.
Case 2: We have $a+c=b+d$.

Let us first consider Case 1. The point $O$ is the centroid of the quadrilateral $A B C D$, that is, the midpoint of the segment $E G$. Thus, $O E=O G$. Also, $O X=O Z$. Hence, the two right-angled triangles $E O X$ and $G O Z$ have the hypotenuse and one catet in common; thus, they are congruent, and we conclude that $E X=G Z$. Since $E X=\frac{|a-b|}{2}$ and $G Z=\frac{|c-d|}{2}$, this yields $|a-b|=|c-d|$. Thus, either $a-b=c-d$, or $a-b=d-c$. Now, $a-b=d-c$ would lead to $a+c=b+d$, what is impossible since we have $a+c \neq b+d$ (because we are in Case 1). Hence, it remains only the possibility $a-b=c-d$, that is, $a+d=b+c$. Similarly to $a-b=c-d$, we can prove that $a-d=c-b$, and thus $2 a=(a+d)+(a-d)=(b+c)+(c-b)=2 c$. In other words, $a=c$. Similarly, $b=d$. Hence, opposite sides of the quadrilateral $A B C D$ are equal; this means that the quadrilateral $A B C D$ is a parallelogram, and since it is circumscribed, it must be a rhombus (in fact, among all parallelograms, only rhombi are circumscribed). Thus, we have shown that the quadrilateral $A B C D$ is a rhombus in Case 1.

Now, let us consider Case 2. In this case, $a+c=b+d$. As we have $\frac{O A \cdot O C}{O B \cdot O D}=\frac{a+c}{b+d}$ from Theorem 11, this yields $O A \cdot O C=O B \cdot O D$. Thus, $O A \cdot O C=O B \cdot O D$ holds in Case 2.

Hence, we have shown that the quadrilateral $A B C D$ is a rhombus in Case 1, and that $O A \cdot O C=O B \cdot O D$ in Case 2. Since these cases cover all possibilities, we conclude that either the quadrilateral $A B C D$ is a rhombus or $O A \cdot O C=O B \cdot O D$. Assertion 1 is proven.

Proof of Assertion 2. Assume that either the quadrilateral $A B C D$ is a rhombus or $O A \cdot O C=O B \cdot O D$. We can WLOG assume that $O A \cdot O C=O B \cdot O D$ (because the case when the quadrilateral $A B C D$ is a rhombus is trivial for symmetry reasons).

From Theorem 11, we have $\frac{O A \cdot O C}{O B \cdot O D}=\frac{a+c}{b+d}$, so that $O A \cdot O C=O B \cdot O D$ immediately yields $a+c=b+d$. Hence, $a-b=d-c$, and thus $E X=\frac{|a-b|}{2}=$ $\frac{|d-c|}{2}=\frac{|c-d|}{2}=G Z$. Furthermore, $O X=O Z$. Thus, the two right-angled triangles $E O X$ and $G O Z$ have the same catets; hence, they are congruent, and it follows that $O E=O G$. So the point $O$ lies on the perpendicular bisector of the segment $E G$. Similarly, the point $O$ lies on the perpendicular bisector of the segment $F H$.

Since the circumscribed quadrilateral $A B C D$ is convex, and $E, F, G, H$ are the midpoints of its sides, the lines $E G$ and $F H$ cannot be parallel. Thus, the perpendicular bisectors of the segments $E G$ and $F H$ are not parallel as well; therefore, they have one and only one common point. This common point is obviously the centroid of the quadrilateral $A B C D$ (since this centroid is the common midpoint of the segments $E G$ and $F H$ and thus lies on their perpendicular bisectors).

But as we have shown that the point $O$ lies on the perpendicular bisectors of the segments $E G$ and $F H$, the point $O$ must be this common point. Hence, the point $O$ is the centroid of the quadrilateral $A B C D$. Assertion 2 is shown, and the proof of Theorem 13 is complete.

Now we return to the case of an arbitrary circumscribed quadrilateral $A B C D$. We prove an identity formulated by Pengshi in [12]:

Theorem 14. The radius $\rho$ of the incircle of the circumscribed quadrilateral $A B C D$ satisfies

$$
\rho^{2}=\frac{b c d+c d a+d a b+a b c}{a+b+c+d} .
$$

Our proof of this theorem will only slightly differ from Anipoh's in [12]; the key is the following lemma:

Theorem 15. Let $x, y, z, w$ be four angles such that $x+y+z+w=180^{\circ}$.
Then,

$$
\begin{aligned}
& \tan x+\tan y+\tan z+\tan w \\
= & \tan y \cdot \tan z \cdot \tan w+\tan z \cdot \tan w \cdot \tan x+\tan w \cdot \tan x \cdot \tan y+\tan x \cdot \tan y \cdot \tan z .
\end{aligned}
$$

Proof of Theorem 15. From $x+y+z+w=180^{\circ}$ it follows that $x+y=$ $180^{\circ}-(z+w)$, so that $\tan (x+y)=\tan \left(180^{\circ}-(z+w)\right)=-\tan (z+w)$ and thus $\tan (x+y)+\tan (z+w)=0$. But the addition formulas for the tan function yield $\tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y}$ and $\tan (z+w)=\frac{\tan z+\tan w}{1-\tan z \tan w}$; hence, $\tan (x+y)+$ $\tan (z+w)=0$ becomes $\frac{\tan x+\tan y}{1-\tan x \tan y}+\frac{\tan z+\tan w}{1-\tan z \tan w}=0$. Multiplication by $(1-\tan x \tan y)(1-\tan z \tan w)$ yields

$$
(\tan x+\tan y)(1-\tan z \tan w)+(\tan z+\tan w)(1-\tan x \tan y)=0
$$

thus

$$
\begin{aligned}
(\tan x+ & \tan y-\tan z \tan w \tan x-\tan y \tan z \tan w) \\
& +(\tan z+\tan w-\tan x \tan y \tan z-\tan w \tan x \tan y)=0,
\end{aligned}
$$

thus

$$
\begin{aligned}
& \tan x+\tan y+\tan z+\tan w \\
= & \tan y \tan z \tan w+\tan z \tan w \tan x+\tan w \tan x \tan y+\tan x \tan y \tan z .
\end{aligned}
$$

This proves Theorem 15.
Now we come to the proof of Theorem 14: With the notations $\alpha, \beta, \gamma, \delta$ for the angles of the quadrilateral $A B C D$, we have

$$
\alpha+\beta+\gamma+\delta=\measuredangle D A B+\measuredangle A B C+\measuredangle B C D+\measuredangle C D A=360^{\circ}
$$

(by the sum of angles in the quadrilateral $A B C D$ ). Now set $x=\frac{\alpha}{2}, y=\frac{\beta}{2}, z=\frac{\gamma}{2}$, $w=\frac{\delta}{2}$. Then,

$$
x+y+z+w=\frac{\alpha}{2}+\frac{\beta}{2}+\frac{\gamma}{2}+\frac{\delta}{2}=\frac{\alpha+\beta+\gamma+\delta}{2}=\frac{360^{\circ}}{2}=180^{\circ} .
$$

Thus, Theorem 15 yields

$$
\begin{aligned}
& \tan x+\tan y+\tan z+\tan w \\
= & \tan y \cdot \tan z \cdot \tan w+\tan z \cdot \tan w \cdot \tan x+\tan w \cdot \tan x \cdot \tan y+\tan x \cdot \tan y \cdot \tan z .
\end{aligned}
$$

(See Fig. 16.) During the proof of Theorem 11, we have shown that $\measuredangle X A O=\frac{\alpha}{2}$. Since $O X \perp A B$, the triangle $A X O$ is right-angled at $X$. Hence, $O X=A X \cdot \tan \measuredangle X A O$, so that $\rho=a \cdot \tan x\left(\right.$ since $O X=\rho, A X=a$ and $\left.\measuredangle X A O=\frac{\alpha}{2}=x\right)$. Thus, $\tan x=\frac{\rho}{a}$; similarly, $\tan y=\frac{\rho}{b}, \tan z=\frac{\rho}{c}$, and $\tan w=\frac{\rho}{d}$. Hence, the equality

$$
\begin{aligned}
& \tan x+\tan y+\tan z+\tan w \\
= & \tan y \cdot \tan z \cdot \tan w+\tan z \cdot \tan w \cdot \tan x+\tan w \cdot \tan x \cdot \tan y+\tan x \cdot \tan y \cdot \tan z
\end{aligned}
$$

(which was just proved) becomes

$$
\frac{\rho}{a}+\frac{\rho}{b}+\frac{\rho}{c}+\frac{\rho}{d}=\frac{\rho}{b} \cdot \frac{\rho}{c} \cdot \frac{\rho}{d}+\frac{\rho}{c} \cdot \frac{\rho}{d} \cdot \frac{\rho}{a}+\frac{\rho}{d} \cdot \frac{\rho}{a} \cdot \frac{\rho}{b}+\frac{\rho}{a} \cdot \frac{\rho}{b} \cdot \frac{\rho}{c} .
$$

Multiplication by abcd yields

$$
\rho b c d+\rho c d a+\rho d a b+\rho a b c=\rho^{3} a+\rho^{3} b+\rho^{3} c+\rho^{3} d .
$$

In other words,

$$
\begin{aligned}
\rho(b c d+c d a+d a b+a b c) & =\rho^{3}(a+b+c+d), \quad \text { so that } \\
\rho^{2} & =\frac{b c d+c d a+d a b+a b c}{a+b+c+d},
\end{aligned}
$$

which proves Theorem 14.
We now introduce another notation: If $P$ is a point, and $g$ is a line, then we denote by dist ( $P ; g$ ) the (undirected) distance from the point $P$ to the line $g$. We will often use the following fact:

Area-distance relation: For any three points $U, V, W$ we have

$$
\begin{equation*}
|U V W|=\frac{1}{2} \cdot V W \cdot \operatorname{dist}(U ; V W) . \tag{2}
\end{equation*}
$$

This fact is just a restatement of the fact that the area of a triangle equals

$$
\frac{1}{2} \cdot \text { sidelength } \cdot \text { corresponding altitude }
$$

(because in triangle $U V W$, the altitude from $U$ to $V W$ is $\operatorname{dist}(U ; V W)$ ).
From now on, we let $P$ be the point of intersection of the four lines $A C, B D, X Z$ and $Y W$ (as in Theorem 3).

Now, we record an easy corollary of Theorem 3 (Fig. 4):

Theorem 16. We have

$$
\begin{equation*}
\frac{|A P B|}{a b}=\frac{|B P C|}{b c}=\frac{|C P D|}{c d}=\frac{|D P A|}{d a} \tag{3}
\end{equation*}
$$

Proof of Theorem 16. By the area-distance relation, $|B A P|=\frac{1}{2} \cdot A P \cdot \operatorname{dist}(B ; A P)$ and $|B C P|=\frac{1}{2} \cdot C P \cdot \operatorname{dist}(B ; C P)$, so that

$$
\begin{equation*}
\frac{|A P B|}{|B P C|}=\frac{|B A P|}{|B C P|}=\frac{\frac{1}{2} \cdot A P \cdot \operatorname{dist}(B ; A P)}{\frac{1}{2} \cdot C P \cdot \operatorname{dist}(B ; C P)}=\frac{A P}{C P} \cdot \frac{\operatorname{dist}(B ; A P)}{\operatorname{dist}(B ; C P)} \tag{4}
\end{equation*}
$$

Now, $\frac{\operatorname{dist}(B ; A P)}{\operatorname{dist}(B ; C P)}=1$ (since $\operatorname{dist}(B ; A P)=\operatorname{dist}(B ; C P)$, because $A P$ and $C P$ are the same line), and $\frac{A P}{C P}=\frac{a}{c}$ by Theorem 3. Hence, (4) simplifies to $\frac{|A P B|}{|B P C|}=\frac{a}{c} \cdot 1=$ $\frac{a}{c}=\frac{a b}{b c}$, so that $\frac{|A P B|}{a b}=\frac{|B P C|}{b c}$. Similarly, $\frac{|B P C|}{b c}=\frac{|C P D|}{c d}$ and $\frac{|C P D|}{c d}=\frac{|D P A|}{d a}$. This proves Theorem 16.

Now we shall show a result by A. Zaslavsky from [13] (see also [14]) (Fig. 19):


Fig. 19

Theorem 17. We have

$$
\frac{1}{\operatorname{dist}(P ; A B)}+\frac{1}{\operatorname{dist}(P ; C D)}=\frac{1}{\operatorname{dist}(P ; B C)}+\frac{1}{\operatorname{dist}(P ; D A)}
$$

Proof of Theorem 17. Due to the equation (3), we can define a number

$$
\lambda=\frac{|A P B|}{a b}=\frac{|B P C|}{b c}=\frac{|C P D|}{c d}=\frac{|D P A|}{d a} .
$$

Then, $|A P B|=\lambda a b$.
By the area-distance relation, $|P A B|=\frac{1}{2} \cdot A B \cdot \operatorname{dist}(P ; A B)$, so that $\operatorname{dist}(P ; A B)=\frac{2 \cdot|P A B|}{A B}=\frac{2 \cdot|A P B|}{A B}=\frac{2 \cdot \lambda a b}{a+b} \quad($ as $|A P B|=\lambda a b$ and $A B=a+b)$,
and thus

$$
\frac{1}{\operatorname{dist}(P ; A B)}=1 / \frac{2 \cdot \lambda a b}{a+b}=\frac{a+b}{2 \cdot \lambda a b}=\frac{1}{2 \lambda} \cdot \frac{a+b}{a b}=\frac{1}{2 \lambda}\left(\frac{1}{a}+\frac{1}{b}\right) .
$$

Similarly, $\frac{1}{\operatorname{dist}(P ; C D)}=\frac{1}{2 \lambda}\left(\frac{1}{c}+\frac{1}{d}\right)$, so that
$\frac{1}{\operatorname{dist}(P ; A B)}+\frac{1}{\operatorname{dist}(P ; C D)}=\frac{1}{2 \lambda}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2 \lambda}\left(\frac{1}{c}+\frac{1}{d}\right)=\frac{1}{2 \lambda}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)$.
Similarly,

$$
\frac{1}{\operatorname{dist}(P ; B C)}+\frac{1}{\operatorname{dist}(P ; D A)}=\frac{1}{2 \lambda}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right) .
$$

Thus,

$$
\frac{1}{\operatorname{dist}(P ; A B)}+\frac{1}{\operatorname{dist}(P ; C D)}=\frac{1}{\operatorname{dist}(P ; B C)}+\frac{1}{\operatorname{dist}(P ; D A)}
$$

and Theorem 17 is proven.
Next comes a result whose part a) appeared in [15] (with a different proof) (Fig. 20):


Fig. 20

Theorem 18. Let $H_{X}, H_{Y}, H_{Z}, H_{W}$ be the orthocenters of triangles $A O B$, $B O C, C O D, D O A$.
a) The points $P, H_{X}, H_{Y}, H_{Z}, H_{W}$ are collinear.
b) Using directed segments, we have

$$
-\frac{\overline{P H_{X}}}{a b}=\frac{\overline{P H_{Y}}}{b c}=-\frac{\overline{P H_{Z}}}{c d}=\frac{\overline{P H_{W}}}{d a}
$$



Fig. 21
Proof of Theorem 18. (See Fig. 21.) Let $B_{Y}$ be the foot of the altitude of triangle $B O C$ issuing from $B$. Then, the lines $B B_{Y}$ and $O Y$ are two altitudes of triangle $B O C$ (for $B B_{Y}$, this is clear, and for $O Y$ it follows from $O Y \perp B C$ ), and thus intersect at the orthocenter $H_{Y}$ of this triangle. Hence, $\measuredangle B Y H_{Y}=90^{\circ}$ and

$$
\begin{aligned}
\measuredangle Y B H_{Y} & =\measuredangle C B B_{Y}=90^{\circ}-\measuredangle B C B_{Y} \quad \text { (in the right-angled triangle } B B_{Y} C \text { ) } \\
& =90^{\circ}-\measuredangle B C O .
\end{aligned}
$$

Thus we have shown that $\measuredangle B Y H_{Y}=90^{\circ}$ and $\measuredangle Y B H_{Y}=90^{\circ}-\measuredangle B C O$. Similarly, $\measuredangle D Z H_{Z}=90^{\circ}$ and $\measuredangle Z D H_{Z}=90^{\circ}-\measuredangle D C O$.

The point $O$, being the incenter of the quadrilateral $A B C D$, lies on the angle bisector of the angle $B C D$. Thus, $\measuredangle B C O=\measuredangle D C O$.

From $\measuredangle B Y H_{Y}=90^{\circ}=\measuredangle D Z H_{Z}$ and $\measuredangle Y B H_{Y}=90^{\circ}-\measuredangle B C O=90^{\circ}-\measuredangle D C O=$ $\measuredangle Z D H_{Z}$, it follows that triangles $B Y H_{Y}$ and $D Z H_{Z}$ are similar. Therefore, $\frac{B H_{Y}}{D H_{Z}}=$ $\frac{B Y}{D Z}$. Since $B Y=b$ and $D Z=d$, this becomes $\frac{B H_{Y}}{D H_{Z}}=\frac{b}{d}$.

The line $B H_{Y}$ is the line $B B_{Y}$; thus, $B B_{Y} \perp C O$ yields $B H_{Y} \perp C O$. Similarly, $D H_{Z} \perp C O$. Consequently, $B H_{Y} \| D H_{Z}$.


Fig. 22
(See Fig. 22.) Now, denote by $P_{0}$ the point of intersection of the lines $H_{Y} H_{Z}$ and $B D$. Since $B H_{Y} \| D H_{Z}$, the Thales theorem yields $\frac{B P_{0}}{D P_{0}}=\frac{B H_{Y}}{D H_{Z}}$. Since $\frac{B H_{Y}}{D H_{Z}}=\frac{b}{d}$, this becomes $\frac{B P_{0}}{D P_{0}}=\frac{b}{d}$. But Theorem 3 asserts $\frac{B P}{D P}=\frac{b}{d}$. Thus, $\frac{B P_{0}}{D P_{0}}=\frac{B P}{D P}$. Hence, the points $P_{0}$ and $P$ divide the segment $B D$ in the same ratio (both internally, as one can see by arrangement considerations ${ }^{9}$ ). Hence, these points $P_{0}$ and $P$ must coincide. Thus, $P_{0} \in H_{Y} H_{Z}$ yields $P \in H_{Y} H_{Z}$. Hence, the lines $P H_{Y}$ and $P H_{Z}$ coincide. Similarly, the lines $P H_{Z}$ and $P H_{W}$ coincide, and the lines $P H_{W}$ and $P H_{X}$ coincide. Thus, all four lines $P H_{X}, P H_{Y}, P H_{Z}, P H_{W}$ coincide, i. e., the points $P$, $H_{X}, H_{Y}, H_{Z}, H_{W}$ are collinear. Theorem $18 \mathbf{a}$ ) is proven.

Because of $B H_{Y} \| D H_{Z}$, the Thales theorem implies $\frac{P_{0} H_{Y}}{P_{0} H_{Z}}=\frac{B H_{Y}}{D H_{Z}}$. As we saw

[^7]above, $P_{0}=P$, so this becomes $\frac{P H_{Y}}{P H_{Z}}=\frac{B H_{Y}}{D H_{Z}}$. Together with $\frac{B H_{Y}}{D H_{Z}}=\frac{b}{d}$, this yields $\frac{P H_{Y}}{P H_{Z}}=\frac{b}{d}$. With directed segments, this transforms into $\frac{\overline{P H_{Y}}}{\overline{P H_{Z}}}=-\frac{b}{d}$ (as arrangement considerations show that the directed ratio $\frac{\overline{P H_{Y}}}{\overline{P H_{Z}}}$ is negative). Thus, $d \cdot \overline{P H_{Y}}=$ $-b \cdot \overline{P H_{Z}}$, so that $\frac{\overline{P H_{Y}}}{b \bar{P}}=-\frac{\overline{P H_{Z}}}{d}$. Dividing by $c$ yields $\frac{\overline{P H_{Y}}}{\overline{b c}}=-\frac{\overline{P H_{Z}}}{\frac{c d}{P H_{Y}}}$. Similarly, $\frac{\overline{P H_{W}}}{d a}=-\frac{\overline{P H_{Z}}}{c d}$ and $\frac{\overline{P H_{W}}}{d a}=-\frac{\overline{P H_{X}}}{a b}$. Thus, $-\frac{\overline{P H_{X}}}{a b}=\frac{\frac{\overline{P H_{Y}}}{b c}}{d c}=-\frac{\overline{P H_{Z}}}{c d}=\frac{\overline{P H_{W}}}{d a}$, and Theorem $18 \mathbf{b}$ ) is proven. This completes the proof of Theorem 18.

Now, we come to some properties of the incircles of triangles $A P B, B P C, C P D$ and $D P A$.


Fig. 23
(See Fig. 23.) Let $O_{X}, O_{Y}, O_{Z}$ and $O_{W}$ be the incenters ${ }^{10}$ of triangles $A P B, B P C$, $C P D$ and $D P A$. Let $\rho_{X}, \rho_{Y}, \rho_{Z}$ and $\rho_{W}$ be the inradii ${ }^{11}$ of triangles $A P B, B P C, C P D$ and $D P A$.

Since $O_{Y}$ is the incenter of triangle $B P C$, the line $P O_{Y}$ is the internal angle bisector of angle $B P C$, thus the external angle bisector of angle $A P B$.

Since $O_{X}$ is the incenter of triangle $A P B$, the line $P O_{X}$ is the internal angle bisector of angle $A P B$.

Since the internal and external angle bisectors of an angle are always mutually orthogonal, we thus conclude that $P O_{X} \perp P O_{Y}$. Hence, $\measuredangle O_{X} P O_{Y}=90^{\circ}$. Similarly, $\measuredangle O_{Y} P O_{Z}=90^{\circ}, \measuredangle O_{Z} P O_{W}=90^{\circ}$ and $\measuredangle O_{W} P O_{X}=90^{\circ}$. Because of $\measuredangle O_{X} P O_{Z}=$ $\measuredangle O_{X} P O_{Y}+\measuredangle O_{Y} P O_{Z}=90^{\circ}+90^{\circ}=180^{\circ}$, the points $O_{X}, P$ and $O_{Z}$ lie on one line. Furthermore, the points $O_{X}$ and $O_{Z}$ lie on different sides of the point $P$ (since $O_{X}$, being the incenter of triangle $A P B$, lies inside the angle $A P B$, while $O_{Z}$, being the incenter of triangle $C P D$, lies inside the angle $C P D$; but the angles $A P B$ and $C P D$ are opposite angles). Hence, the point $P$ lies on the segment $O_{X} O_{Z}$. Similarly, the point $P$ lies on the segment $O_{Y} O_{W}$. These two segments $O_{X} O_{Z}$ and $O_{Y} O_{W}$ thus meet at $P$. They furthermore meet at a right angle (since $P O_{X} \perp P O_{Y}$ ).

Now, we state two rather surprising results:

[^8]

Fig. 24

Theorem 19. (See Fig. 24.) We have $\frac{1}{\rho_{X}}+\frac{1}{\rho_{Z}}=\frac{1}{\rho_{Y}}+\frac{1}{\rho_{W}}$.


Fig. 25

Theorem 20. (See Fig. 25.) The points $O_{X}, O_{Y}, O_{Z}$ and $O_{W}$ lie on one circle.

Theorem 19 comes from [17], while Theorem 20 comes from [18]. In order to prove both theorems, we need a lemma from triangle geometry:

Lemma 21. (See Fig. 26.) Let $A B C$ be a triangle ${ }^{12}$. Let $\rho$ be the inradius of triangle $A B C$. Let $|A B C|$ be the area of triangle $A B C$.
(a) We have

$$
\rho=\frac{2 \cdot|A B C|}{B C+C A+A B} .
$$

[^9](b) Let $I$ be the incenter of triangle $A B C$. Then,
\[

$$
\begin{equation*}
A I=\frac{\rho}{\sin \measuredangle I A C} \tag{5}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
A B+A C-B C=2 \rho \cot \measuredangle I A C \tag{6}
\end{equation*}
$$



Fig. 26
Proof of Lemma 21. (See Fig. 27.) Let $I$ be the incenter of triangle $A B C$. Let $X$, $Y$ and $Z$ be the points at which the incircle of triangle $A B C$ touches its sides $B C, C A$ and $A B .{ }^{13}$ Then, clearly $I X \perp B C, I Y \perp C A, I Z \perp A B$ and $I X=I Y=I Z=\rho$. Furthermore, we have $A Y=A Z, B Z=B X$ and $C X=C Y$, since the two tangents from a point to a circle are equal in length.

[^10]

Fig. 27
Since $I Y$ is the perpendicular from $I$ onto the line $C A$, we have ${ }^{14} \operatorname{dist}(I ; C A)=$ $I Y=\rho$. Thus, the area-distance relation (2) (applied to the points $I, C$ and $A$ instead of $U, V$ and $W$ ) yields

$$
|I C A|=\frac{1}{2} \cdot C A \cdot \operatorname{dist}(I ; C A)=\frac{1}{2} \cdot C A \cdot \rho
$$

(since dist $(I ; C A)=\rho$ ). Similarly, $|I B C|=\frac{1}{2} \cdot B C \cdot \rho$ and $|I A B|=\frac{1}{2} \cdot A B \cdot \rho$. Since the point $I$ lies inside of triangle $A B C$, we now have

$$
\begin{aligned}
|A B C| & =|I B C|+|I C A|+|I A B| \\
& =\frac{1}{2} \cdot B C \cdot \rho+\frac{1}{2} \cdot C A \cdot \rho+\frac{1}{2} \cdot A B \cdot \rho \\
& =\frac{1}{2} \cdot(B C+C A+A B) \cdot \rho
\end{aligned}
$$

Solving this for $\rho$, we find

$$
\rho=\frac{2 \cdot|A B C|}{B C+C A+A B} .
$$

This proves Lemma 21 (a).
On to part (b). Triangle $A Y I$ is right-angled at $Y$ (since $I Y \perp C A$ ). Hence, $I Y=A I \sin \measuredangle I A Y$, so that

$$
\left.A I=\frac{I Y}{\sin \measuredangle I A Y}=\frac{\rho}{\sin \measuredangle I A C} \quad \text { (since } I Y=\rho \text { and } \measuredangle I A Y=\measuredangle I A C\right) .
$$

This proves (5).

[^11]In the right-angled triangle $A Y I$, we also have $A Y=I Y \cot \measuredangle I A Y=\rho \cot \measuredangle I A C$ (since $I Y=\rho$ and $\measuredangle I A Y=\measuredangle I A C$ ).

Furthermore, $B C=B X+C X=B Z+C Y$ (since $B X=B Z$ and $C X=C Y$ ) and $A B=A Z+B Z$ and $A C=A Y+C Y$. These three equalities lead to

$$
\begin{aligned}
A B+A C-B C & =(A Z+B Z)+(A Y+C Y)-(B Z+C Y) \\
& =A Z+A Y=A Y+A Y \quad(\text { since } A Z=A Y) \\
& =2 \cdot A Y=2 \rho \cot \measuredangle I A C \quad \text { (since } A Y=\rho \cot \measuredangle I A C) .
\end{aligned}
$$

This proves (6), and thus completes the proof of Lemma 21 (b).
Now, we return to our circumscribed quadrilateral $A B C D$ that we have been studying (before Lemma 21). In particular, we shall again use the notations introduced throughout this article (before Lemma 21). We shall now prove Theorem 19 and Theorem 20:

Proof of Theorem 19. Because of (3), we can define a number

$$
\lambda=\frac{|A P B|}{a b}=\frac{|B P C|}{b c}=\frac{|C P D|}{c d}=\frac{|D P A|}{d a} .
$$

Hence, $|A P B|=\lambda a b$. Thus, $\lambda a b=|A P B| \neq 0$ (since $P$ does not lie on the line $A B$ ), so that $\lambda \neq 0$. Therefore, $2 \lambda \neq 0$.

Theorem 3 yields $\frac{A P}{C P}=\frac{a}{c}$ and $\frac{B P}{D P}=\frac{b}{d}$.
From $\frac{A P}{C P}=\frac{a}{c}$, we obtain $A P \cdot c=C P \cdot a$, so that $\frac{A P}{a}=\frac{C P}{c}$. Hence, we can define a number

$$
\mu=\frac{A P}{a}=\frac{C P}{c}
$$

Thus, $A P=\mu a$ and $C P=\mu c$.
From $\frac{B P}{D P}=\frac{b}{d}$, we obtain $B P \cdot d=D P \cdot b$, so that $\frac{B P}{b}=\frac{D P}{d}$. Hence, we can define a number

$$
\nu=\frac{B P}{b}=\frac{D P}{d} .
$$

Thus, $B P=\nu b$ and $D P=\nu d$.
Applying Lemma 21 (a) to the triangle $A P B$ and its inradius $\rho_{X}$ (instead of the triangle $A B C$ and its inradius $\rho$ ), we find

$$
\rho_{X}=\frac{2 \cdot|A P B|}{P B+B A+A P}=\frac{2 \cdot \lambda a b}{B P+A B+A P}
$$

(since $|A P B|=\lambda a b$ and $P B=B P$ and $B A=A B$ ). Consequently,

$$
\begin{aligned}
& \frac{2 \lambda}{\rho_{X}}=\frac{2 \lambda}{\left(\frac{2 \cdot \lambda a b}{B P+A B+A P}\right)}=\frac{B P+A B+A P}{a b}=\frac{\nu b+(a+b)+\mu a}{a b} \\
& \quad(\text { since } B P=\nu b \text { and } A B=a+b \text { and } A P=\mu a) \\
&=\frac{\nu+1}{a}+\frac{\mu+1}{b} \quad \text { (by simple computation) } .
\end{aligned}
$$

Similarly,

$$
\frac{2 \lambda}{\rho_{Z}}=\frac{\nu+1}{c}+\frac{\mu+1}{d} .
$$

Adding these two equalities, we find

$$
\frac{2 \lambda}{\rho_{X}}+\frac{2 \lambda}{\rho_{Z}}=\frac{\nu+1}{a}+\frac{\mu+1}{b}+\frac{\nu+1}{c}+\frac{\mu+1}{d} .
$$

Similarly,

$$
\begin{aligned}
\frac{2 \lambda}{\rho_{Y}}+\frac{2 \lambda}{\rho_{W}} & =\frac{\mu+1}{b}+\frac{\nu+1}{c}+\frac{\mu+1}{d}+\frac{\nu+1}{a} \\
& =\frac{\nu+1}{a}+\frac{\mu+1}{b}+\frac{\nu+1}{c}+\frac{\mu+1}{d} .
\end{aligned}
$$

Comparing the last two equalities, we find

$$
\frac{2 \lambda}{\rho_{X}}+\frac{2 \lambda}{\rho_{Z}}=\frac{2 \lambda}{\rho_{Y}}+\frac{2 \lambda}{\rho_{W}}
$$

Dividing this equality by $2 \lambda$ (this is allowed, since $2 \lambda \neq 0$ ), we obtain

$$
\frac{1}{\rho_{X}}+\frac{1}{\rho_{Z}}=\frac{1}{\rho_{Y}}+\frac{1}{\rho_{W}}
$$

This proves Theorem 19.
Proof of Theorem 20. (See Fig. 25.) We know that the point $P$ lies on the segment $O_{X} O_{Z}$. Hence, $\measuredangle O_{Z} P D=\measuredangle O_{X} P B$ (as opposite angles). Furthermore, $\measuredangle O_{X} P B+$ $\measuredangle O_{Y} P B=\measuredangle O_{X} P O_{Y}=90^{\circ}$ (since $P O_{X} \perp P O_{Y}$ ), so that $\measuredangle O_{Y} P B=90^{\circ}-\measuredangle O_{X} P B$. However, the line $P O_{Y}$ is the internal angle bisector of angle $B P C$ (since $O_{Y}$ is the incircle of triangle $B P C$ ); thus, we have $\measuredangle O_{Y} P C=\measuredangle O_{Y} P B=90^{\circ}-\measuredangle O_{X} P B$. Hence,

$$
\cot \measuredangle O_{Y} P C=\cot \left(90^{\circ}-\measuredangle O_{X} P B\right)=\tan \measuredangle O_{X} P B
$$

and

$$
\sin \measuredangle O_{Y} P C=\sin \left(90^{\circ}-\measuredangle O_{X} P B\right)=\cos \measuredangle O_{X} P B
$$

The triangle $A P B$ has incenter $O_{X}$ and inradius $\rho_{X}$. In other words, the triangle $P A B$ has incenter $O_{X}$ and inradius $\rho_{X}$. Hence, we can apply Lemma 21 (b) to the triangle $P A B$, its incenter $O_{X}$ and its inradius $\rho_{X}$ (instead of the triangle $A B C$, its incenter $I$ and its inradius $\rho$ ). Thus, we obtain

$$
\begin{equation*}
P O_{X}=\frac{\rho_{X}}{\sin \measuredangle O_{X} P B} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
P A+P B-A B=2 \rho_{X} \cot \measuredangle O_{X} P B \tag{8}
\end{equation*}
$$

Similarly to (8), we obtain

$$
P C+P D-C D=2 \rho_{Z} \cot \measuredangle O_{Z} P D
$$

(by applying Lemma 21 (b) to the triangle $P C D$, its incenter $O_{Z}$ and its inradius $\rho_{Z}$ ). Adding this equality to (8), we find

$$
\begin{align*}
& (P A+P B-A B)+(P C+P D-C D) \\
= & 2 \rho_{X} \cot \measuredangle O_{X} P B+2 \rho_{Z} \cot \measuredangle O_{Z} P D \\
= & \left.2 \rho_{X} \cot \measuredangle O_{X} P B+2 \rho_{Z} \cot \measuredangle O_{X} P B \quad \text { (since } \measuredangle O_{Z} P D=\measuredangle O_{X} P B\right) \\
= & 2\left(\rho_{X}+\rho_{Z}\right) \cot \measuredangle O_{X} P B . \tag{9}
\end{align*}
$$

Similarly (or by cyclic permutation of the vertices $A, B, C$ and $D$ ), we find

$$
\begin{align*}
& (P B+P C-B C)+(P D+P A-D A) \\
= & 2\left(\rho_{Y}+\rho_{W}\right) \cot \measuredangle O_{Y} P C \\
= & 2\left(\rho_{Y}+\rho_{W}\right) \tan \measuredangle O_{X} P B \tag{10}
\end{align*}
$$

(since $\cot \measuredangle O_{Y} P C=\tan \measuredangle O_{X} P B$ ).
From (9), we obtain

$$
\begin{aligned}
& 2\left(\rho_{X}+\rho_{Z}\right) \cot \measuredangle O_{X} P B \\
= & (P A+P B-A B)+(P C+P D-C D) \\
= & P A+P B+P C+P D-(A B+C D) \\
= & P A+P B+P C+P D-(B C+D A) \quad \text { (by Theorem 1) } \\
= & (P B+P C-B C)+(P D+P A-D A) \\
= & 2\left(\rho_{Y}+\rho_{W}\right) \tan \measuredangle O_{X} P B \quad(\text { by }(10)) .
\end{aligned}
$$

Hence, $\left(\rho_{X}+\rho_{Z}\right) \cot \measuredangle O_{X} P B=\left(\rho_{Y}+\rho_{W}\right) \tan \measuredangle O_{X} P B$, so that

$$
\begin{align*}
\frac{\rho_{X}+\rho_{Z}}{\rho_{Y}+\rho_{W}} & =\frac{\tan \measuredangle O_{X} P B}{\cot \measuredangle O_{X} P B}=\frac{\left(\frac{\sin \measuredangle O_{X} P B}{\cos \measuredangle O_{X} P B}\right)}{\left(\frac{\cos \measuredangle O_{X} P B}{\sin \measuredangle O_{X} P B}\right)} \\
& =\frac{\left(\sin \measuredangle O_{X} P B\right)^{2}}{\left(\cos \measuredangle O_{X} P B\right)^{2}} . \tag{11}
\end{align*}
$$

Now, we recall the equality (7); this equality says that

$$
P O_{X}=\frac{\rho_{X}}{\sin \measuredangle O_{X} P B}
$$

Similarly, we find

$$
P O_{Z}=\frac{\rho_{Z}}{\sin \measuredangle O_{Z} P D}
$$

(by applying Lemma 21 (b) to the triangle $P C D$, its incenter $O_{Z}$ and its inradius $\rho_{Z}$ ). Since $\measuredangle O_{Z} P D=\measuredangle O_{X} P B$, we can rewrite this as

$$
\begin{equation*}
P O_{Z}=\frac{\rho_{Z}}{\sin \measuredangle O_{X} P B} \tag{12}
\end{equation*}
$$

Multiplying the equalities (7) and (12), we find

$$
\begin{align*}
P O_{X} \cdot P O_{Z} & =\frac{\rho_{X}}{\sin \measuredangle O_{X} P B} \cdot \frac{\rho_{Z}}{\sin \measuredangle O_{X} P B} \\
& =\frac{\rho_{X} \rho_{Z}}{\left(\sin \measuredangle O_{X} P B\right)^{2}} . \tag{13}
\end{align*}
$$

Similarly (or by cyclic permutation of the vertices $A, B, C$ and $D$ ), we find

$$
P O_{Y} \cdot P O_{W}=\frac{\rho_{Y} \rho_{W}}{\left(\sin \measuredangle O_{Y} P C\right)^{2}}
$$

Since $\sin \measuredangle O_{Y} P C=\cos \measuredangle O_{X} P B$, we can rewrite this as

$$
P O_{Y} \cdot P O_{W}=\frac{\rho_{Y} \rho_{W}}{\left(\cos \measuredangle O_{X} P B\right)^{2}}
$$

Dividing this equality by the equality (13), we obtain

$$
\begin{aligned}
& \frac{P O_{Y} \cdot P O_{W}}{P O_{X} \cdot P O_{Z}} \\
= & \frac{\left(\frac{\rho_{Y} \rho_{W}}{\left(\cos \measuredangle O_{X} P B\right)^{2}}\right)}{\left(\frac{\rho_{X} \rho_{Z}}{\left(\sin \measuredangle O_{X} P B\right)^{2}}\right)}=\frac{\rho_{Y} \rho_{W}}{\rho_{X} \rho_{Z}} \cdot \frac{\left(\sin \measuredangle O_{X} P B\right)^{2}}{\left(\cos \measuredangle O_{X} P B\right)^{2}}=\frac{\rho_{Y} \rho_{W}}{\rho_{X} \rho_{Z}} \cdot \frac{\rho_{X}+\rho_{Z}}{\rho_{Y}+\rho_{W}} \\
& \left(\text { since }(11) \text { entails } \frac{\left(\sin \measuredangle O_{X} P B\right)^{2}}{\left(\cos \measuredangle O_{X} P B\right)^{2}}=\frac{\rho_{X}+\rho_{Z}}{\rho_{Y}+\rho_{W}}\right) \\
= & \frac{\rho_{X}+\rho_{Z}}{\rho_{X} \rho_{Z}} / \frac{\rho_{Y}+\rho_{W}}{\rho_{Y} \rho_{W}}=\left(\frac{1}{\rho_{X}}+\frac{1}{\rho_{Z}}\right) /\left(\frac{1}{\rho_{Y}}+\frac{1}{\rho_{W}}\right) \\
= & 1
\end{aligned}
$$

(since Theorem 19 yields $\frac{1}{\rho_{X}}+\frac{1}{\rho_{Z}}=\frac{1}{\rho_{Y}}+\frac{1}{\rho_{W}}$ ). Hence, $P O_{Y} \cdot P O_{W}=P O_{X} \cdot P O_{Z}$, so that

$$
\begin{equation*}
P O_{X} \cdot P O_{Z}=P O_{Y} \cdot P O_{W} \tag{14}
\end{equation*}
$$

Now, we shall use directed segments; in the following, the directed distance between two points $P_{1}$ and $P_{2}$ will be denoted by $\overline{P_{1} P_{2}}$ (as opposed to the non-directed distance, which we will continue to write as $P_{1} P_{2}$ ). We direct the lines $O_{X} O_{Z}$ and $O_{Y} O_{W}$ arbitrarily. Then, $\overline{P O_{X}} \cdot \overline{P O_{Z}}=-P O_{X} \cdot P O_{Z}$ (since the point $P$ lies on the segment $O_{X} O_{Z}$ ) and $\overline{P O_{Y}} \cdot \overline{P O_{W}}=-P O_{Y} \cdot P O_{W}$ (similarly). Hence,

$$
\begin{align*}
\overline{P O_{X}} \cdot \overline{P O_{Z}} & =-P O_{X} \cdot P O_{Z}=-P O_{Y} \cdot P O_{W}  \tag{14}\\
& =\overline{P O_{Y}} \cdot \overline{P O_{W}}
\end{align*}
$$

By the converse of the intersecting chords theorem, we can conclude from this that the points $O_{X}, O_{Y}, O_{Z}$ and $O_{W}$ lie on one circle (since the point $P$ lies on the segments $O_{X} O_{Z}$ and $\left.O_{Y} O_{W}\right)$. Theorem 20 is thus proved.

## References

[1] D. O. Shkljarskij, N. N. Chenzov, I. M. Jaglom, Izbrannye zadachi i teoremy elementarnoj matematiki: Chastj 2 (Planimetrija), Moscow 1952.
[2] Jean-Pierre Ehrmann, Hyacinthos message \#6740. http://groups.yahoo.com/group/Hyacinthos/messages/6740?viscount=1\&xm=1\&m=e
[3] Mecrazywong, MathLinks topic \#52681 (circumscribed quadrilateral).
http://www.mathlinks.ro/Forum/viewtopic.php?t=52681
[4] Darij Grinberg, A theorem on circumscribed quadrilaterals. http://www.cip.ifi.lmu.de/~ grinberg/geometry2.html
[5] Darij Grinberg, MathLinks topic \#4748 (Circumscribed quadrilaterals). http://www.mathlinks.ro/Forum/viewtopic.php?t=4748
[6] Alexander Bogomolny, A Property of Circumscribed Quadrilaterals. http://cut-the-knot.com/Curriculum/Geometry/CircumQuadri.shtml
[7] Alexander Bogomolny, Ceva in Circumscribed Quadrilateral.
http://www.cut-the-knot.org/Generalization/BrianchonCeva.shtml
[8] Darij Grinberg, CTK Exchange College Math topic \#419 (Ceva in Circumscribed Quadrilateral).
http://www.cut-the-knot.org/htdocs/dcforum/DCForumID6/419.shtml
[9] Darij Grinberg, MathLinks post \#112006 (The generalized Brahmagupta formula).
http://www.mathlinks.ro/Forum/viewtopic.php?t=15973
[10] Sprmnt21, MathLinks topic \#19549 (Corollary of Brianchon's theorem). http://www.mathlinks.ro/Forum/viewtopic.php?t=19549
[11] Orl, MathLinks post \#220212 (quadrilateral ABCD without parallel sides is circumscribed).
http://www.mathlinks.ro/Forum/viewtopic.php?t=35309
[12] Pengshi, Anipoh, Yetti, MathLinks topic \#28864 (Looks so easy [find inradius of circumscribed quadrilateral]).
http://www.mathlinks.ro/Forum/viewtopic.php?t=28864
[13] A. Zaslavsky, Problem M1887 and solution, Kvant 3/2004, page 19 (in Russian). http://kvant.mirror1.mccme.ru/djvu/2004_03.djvu
[14] MathLinks topic \#173533 (Problem M1887 in russian journal "Kvant" no.6/2003). http://www.mathlinks.ro/viewtopic.php?t=173533
[15] Yetti, MathLinks topic \#121204 (Five points collinear).
http://www.mathlinks.ro/viewtopic.php?t=121204
[16] Pigfly, Yetti, Juancarlos: MathLinks topic \#21758.
http://www.mathlinks.ro/Forum/viewtopic.php?t=21758
[17] I. Vaynshtejn, N. Vasiljev, V. Senderov: Problem M1495 and solution, Kvant 6/1995, pages 27-28 (in Russian).
http://kvant.mccme.ru/1995/06/resheniya_zadachnika_kvanta_ma.htm
[18] I. Vaynshtejn: Problem M1524 and solution, Kvant 3/1996, pages 25-26 (in Russian).
http://kvant.mccme.ru/1996/03/resheniya_zadachnika_kvanta_ma.htm


[^0]:    ${ }^{1}$ I am grateful to George Baloglou for correcting a mistake in Theorem 13.

[^1]:    ${ }^{2}$ In the following, we assume in every theorem that $A B C D$ is a circumscribed quadrilateral; and we use all previously defined notations (for instance, $O$ always stands for the center of the incircle of $A B C D)$.

[^2]:    ${ }^{3}$ As already said, we are using all previously introduced notations. Thus, $A B C D$ is a circumscribed quadrilateral, and $X, Y, Z$ and $W$ are the points at which its incircle touches its sides $A B, B C, C D$ and $D A$.

[^3]:    ${ }^{4}$ Hereby, we use the abbreviation $G * H$ for the line joining two points $G$ and $H$.
    ${ }^{5}$ The adjacent sides $A X$ and $X B$ of this hexagon lie on one line - and the vertex where they meet, namely the vertex $X$, is indeed the point of tangency of this line with the circle. The same holds for the adjacent sides $C Z$ and $Z D$.

[^4]:    ${ }^{6}$ Here, $P$ denotes the point of intersection of the four lines $A C, B D, X Z$ and $Y W$ (as in Theorem $3)$.

[^5]:    ${ }^{7}$ The antipode of a point $P$ on a circle $k$ is defined as the point $P^{\prime}$ on the circle $k$ such that the segment $P P^{\prime}$ is a diameter of $k$.

[^6]:    ${ }^{8}$ The words "either/or" are being used in a non-exclusive meaning here (i.e., the statement "either $\mathcal{A}$ or $\mathcal{B}$ " allows for the possibility that both $\mathcal{A}$ and $\mathcal{B}$ hold).

[^7]:    ${ }^{9}$ One could also avoid arrangement considerations by working consequently with directed segments, but this would require more theory.

[^8]:    ${ }^{10}$ The incenter of a triangle means the center of its incircle.
    ${ }^{11}$ The inradius of a triangle means the radius of its incircle.

[^9]:    ${ }^{12}$ In this lemma (and its proof), we are working with an "empty slate"; i.e., we forget all notations that we have previously introduced. Thus, in particular, $\rho$ no longer means the radius of the incircle of a quadrilateral $A B C D$.

[^10]:    ${ }^{13}$ Of course, these points $X, Y$ and $Z$ have nothing to do with the points $X, Y$ and $Z$ that were introduced at the beginning of this article.

[^11]:    ${ }^{14}$ Again, we are using the notation $\operatorname{dist}(P ; g)$ for the distance from a point $P$ to a line $g$.

