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1. The butter�y theorem(s)

Being one of the most well-known geometric facts beyound the usual school cur-
riculum, the butter�y theorem has received attention of various authors. In [1], 14
proofs of this theorem and a number of generalizations are presented. In this note, we
are going to show two new approaches to the butter�y theorem and incidentally prove
an important fact on cyclic quadrilaterals.
The butter�y theorem is known in two versions, a "strong" and a "weak" one:1
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Theorem 1, the strong butter�y theorem. Let k be a circle with center O;

and let A; B; C; D be four points on this circle k: Let P = AC \BD: Let g be a line
through the point P such that the point P is the orthogonal projection of the point O
on this line g: 2 Let X = g\AB and Z = g\CD: Then, the point P is the midpoint

1In the following, the point of intersection of two lines u and v will be denoted by u \ v:
2In the case when P 6= O; this simply means that the line g is the perpendicular to the line OP at

the point P: In the case P = O; however, g can be any arbitrary line through the point P:
Note that, while we have thus taken care of the case P = O in the formulation of Theorem 1, we
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of the segment XZ: (See Fig. 1.)
Theorem 2, the weak butter�y theorem. Let k be a circle with center O; and

let T1; T2; A; B; C; D be six points on this circle k: Let P = AC\BD: Assume that the
point P is the midpoint of the segment T1T2: Let X = T1T2\AB and Z = T1T2\CD:
Then, the point P is the midpoint of the segment XZ: (See Fig. 2.)
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First a remark on degenerate cases: In the formulations of both theorems, we

didn�t exclude the case when some of the points A; B; C; D coincide. In such cases,
the following convention is to be applied: If two points P1 and P2; which have been
de�ned as two points on a circle k; coincide, then the line P1P2 has to be understood
as the tangent to the circle k at the point P1 (or, what is the same, at the point P2).
Theorems 1 and 2 are called strong and weak butter�y theorem for the reason that

Theorem 2 readily follows from Theorem 1, but not conversely (it is possible to infer
Theorem 1 from Theorem 2 using an algebraic argument, but this is not quite trivial).

won�t always take care of such particular cases in the proofs of our theorems.
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The proof of Theorem 2 using Theorem 1 works out as follows: (See Fig. 3.) Since

T1T2 is a chord of the circle k; while O is the center of this circle k; the point O lies
on the perpendicular bisector of T1T2 (since the perpendicular bisector of a chord of
a circle passes through the center of the circle). Since P is the midpoint of T1T2;
this yields that P is the orthogonal projection of the point O on the line T1T2: Thus,
Theorem 2 follows from Theorem 1 (we just have to apply Theorem 1 to the line T1T2
in the role of the line g).
Most of the literature considers the weak Theorem 2 as "the" butter�y theorem and

disregards Theorem 1 - a pity, for Theorem 1 has numerous applications in geometry
which are harder (if possible at all) to handle with Theorem 2. We are going to forget
about Theorem 2 for the rest of this note and work with Theorem 1 only.
Note that proofs of Theorem 1 are also featured in [14] and [15], and [16] indicates

a proof of Theorem 2 which can be easily extended to a proof of the stronger Theorem
1.
We are going to give two proofs of Theorem 1.

2. The �rst proof
(requirements: Pascal theorem)

First proof of Theorem 1. We show a generalization of Theorem 1:
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Theorem 3, the strong Klamkin butter�y theorem. Let k be a circle with
center O; and let A; B; C; D be four points on this circle k: Let g be an arbitrary
line, and let P be the orthogonal projection of the point O on this line g: The line g
intersects the lines AB; BC; CD; DA; AC; BD at the points X; Y; Z; W; U; V: Then,
the following three assertions are pairwisely equivalent:
Assertion 1: The point P is the midpoint of the segment XZ:
Assertion 2: The point P is the midpoint of the segment YW:
Assertion 3: The point P is the midpoint of the segment UV:
(See Fig. 4.)
A few words about the name of Theorem 3: Murray Klamkin found a weaker

version of Theorem 3 which generalizes the weak butter�y theorem (Theorem 2) in the
same way as Theorem 3 generalizes the strong butter�y theorem (Theorem 1). See [1]
(Remark to Proof 5�) for details on Klamkin�s result. In the form given here, Theorem
3 has been proven by Virgil Nicula in [11], post #2 (P.B.2).
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The following proof of Theorem 3 is apparently new: We start with a property of
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triangles which, at the �rst sight, seems unrelated to our subject, but turns out to be
equivalent to Theorem 3. This property was formulated by a MathLinks user with the
nickname "Bismarck" in [2], post #4:
Theorem 4. Let ABC be a triangle, and g an arbitrary line. The line g intersects

the lines BC; CA; AB at the points X; Y; Z:
Let O be the circumcenter of triangle ABC; and let P be the orthogonal projection

of the point O on the line g: Let X 0; Y 0; Z 0 be the re�ections of the points X; Y; Z in
the point P:
Then, the lines AX 0; BY 0; CZ 0 concur at one point, and this point lies on the

circumcircle of triangle ABC: (See Fig. 5.)
Theorem 4 is related to the Blaikie theorem, which states that the lines AX 0; BY 0;

CZ 0 concur for any point P on the line g - not just for P being the orthogonal projection
of the point O on the line g: The point of concurrence is called the Blaikie point of
the line g and the point P with respect to triangle ABC: In the context of this result,
Theorem 4 shows that, if the point P is the orthogonal projection of the point O on
the line g; then the Blaikie point of the line g and the point P with respect to triangle
ABC lies on the circumcircle of triangle ABC:
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Fig. 5
Proof of Theorem 4. (See Fig. 6.) (In the following, we will often speak of the line

OP: In the case when O = P; the line OP will mean the perpendicular to the line g at
the point O:)
Since X 0 is the re�ection of X in the point P; the point P is the midpoint of

the segment XX 0: Also, g ? OP: Thus, the line OP is perpendicular to the segment
XX 0 and passes through the midpoint P of this segment. Hence, the line OP is the
perpendicular bisector of the segment XX 0: Thus, X 0 is the re�ection of X in the line
OP:
Let A0; B0; C 0 be the re�ections of the points A; B; C in the line OP: Then,

AA0 ? OP and BB0 ? OP: On the other hand, g ? OP: Thus, the lines AA0; BB0 and
g are parallel to each other; therefore, they concur at one point - namely, at an in�nite
point. In other words: The (in�nite) point of intersection AA0 \BB0 lies on the line g:
The re�ection in the line OP maps the circumcircle of triangle ABC to itself (since

the line OP passes through the center O of this circumcircle). Since the points A; B;
C lie on the circumcircle of triangle ABC; it thus follows that their re�ections in the
line OP; i. e. the points A0; B0; C 0; also lie on the circumcircle of triangle ABC:
Now, let S be the point of intersection of the line A0X with the circumcircle of

triangle ABC di¤erent from A0: Then, the hexagon A0SB0BCA has a circumcircle
(namely, the circumcircle of triangle ABC). Therefore, by the Pascal theorem, the
points A0S \ BC; SB0 \ CA and B0B \ AA0 lie on one line. This line must coincide
with the line g; since two points on this line (namely, the point A0S \ BC = X and
the point B0B \ AA0 = AA0 \ BB0) lie on the line g: Hence, the point SB0 \ CA lies
on the line g: Thus, SB0 \ CA = g \ CA: But g \ CA = Y: Hence, SB0 \ CA = Y:
This signi�es that the point S lies on the line B0Y: Similarly, the point S lies on the
line C 0Z:
Altogether, the point S lies on the circumcircle of triangle ABC and on the lines

A0X; B0Y; C 0Z:
Let S 0 be the re�ection of the point S in the line OP: Since the point S lies on the

circumcircle of triangle ABC; its re�ection S 0 in the lineOP also lies on the circumcircle
of triangle ABC (since the re�ection in the line OP maps this circumcircle into itself).
Since A0 is the re�ection of A in the line OP; the point A is the re�ection of A0 in

the line OP: On the other hand, X 0 is the re�ection of X in the line OP: Thus, the
line AX 0 is the re�ection of the line A0X in the line OP: Similarly, the lines BY 0 and
CZ 0 are the re�ections of the lines B0Y and C 0Z in the line OP: Since the point S lies
on the lines A0X; B0Y; C 0Z; its re�ection S 0 in the line OP must lie on the re�ections
of the lines A0X; B0Y; C 0Z in the line OP; i. e. on the lines AX 0; BY 0; CZ 0:
Altogether, the point S 0 lies on the lines AX 0; BY 0; CZ 0 and on the circumcircle of

triangle ABC: This proves Theorem 4.
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Now we are going to derive Theorem 3 from Theorem 4:
(See Fig. 7.) First, we are going to show that Assertion 1 yields Assertion 2. In

order to prove this, we assume Assertion 1 to hold, i. e. we assume that P is the
midpoint of XZ: Then, Z is the re�ection of X in the point P: Let V 0 and W 0 be the
re�ections of U and Y in the point P: Then, we have the following con�guration:
A triangle ABC is given. The line g intersects the lines BC; CA; AB at the points

Y; U; X: The point O is the circumcenter of triangle ABC (in fact, the circumcircle of
triangle ABC is the circle k and thus has center O), and the point P is the orthogonal
projection of the point O on the line g: Finally, W 0; V 0; Z are the re�ections of the
points Y; U; X in the point P:
Hence, Theorem 4 yields that the lines AW 0; BV 0; CZ concur at one point, and

this point lies on the circumcircle of triangle ABC: We denote this point by D0: Thus,
this point D0 is the point of intersection of the line CZ with the circumcircle of triangle
ABC di¤erent from C: But the point of intersection of the line CZ with the circumcircle
of triangle ABC di¤erent from C is the point D (in fact, the circumcircle of triangle
ABC is the circle k and intersects the line CZ at the points C and D). Hence, D0 = D:
As we know that D0 lies on AW 0; we thus conclude that D lies on AW 0: In other words,
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W 0 lies on DA: On the other hand, W 0 lies on the line g (since W 0 is the re�ection
of Y in P; and both points Y and P lie on the line g). Hence, W 0 = DA \ g: But
DA \ g = W: Thus, W 0 = W: Since we have introduced the point W 0 as the re�ection
of Y in the point P; it thus follows that W is the re�ection of Y in the point P: Thus,
P is the midpoint of YW: Hence, Assertion 2 holds.
Thus we have shown that Assertion 1 yields Assertion 2. Similarly we can show

(or conclude from the already shown result by permutation of the points A; B; C; D)
that Assertion 2 yields Assertion 3 and that Assertion 3 yields Assertion 1. Hence, the
Assertions 1, 2 and 3 are pairwisely equivalent. This completes the proof of Theorem
3.
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Fig. 7
Now, after Theorem 3 is veri�ed, we can �nally establish Theorem 1:
Consider the particular case of Theorem 3 when the point P happens to coincide

with the point AC\BD: Then, U = g\AC = P and V = g\BD = P: Hence, Assertion
3 of Theorem 3 is equivalent to the point P being the midpoint of the segment PP: Of
course, this assertion is trivially valid. Since, according to Theorem 3, the Assertions
1, 2 and 3 are pairwisely equivalent, this entails that Assertion 1 of Theorem 3 is also
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valid, i. e. the point P is the midpoint of the segment XZ: Thus we have proven
the following: If the point P in Theorem 3 coincides with the point AC \ BD; then
the point P is the midpoint of the segment XZ: But this is exactly what Theorem 1
asserts. Hence, Theorem 1 is proven.

3. The second proof
(requirements: Ceva AND (Desargues OR (invariance of cross-ratio AND Menelaos))

AND (polarity with respect to circles OR inversion OR radical axes))

Second proof of Theorem 1. This second proof of Theorem 1 is more or less a
variation of Proof 12 in [1] - the idea is exactly that of Proof 12, but the advanced
concepts used will be reduced to a signi�cantly lower amount, and a number of useful
facts will be gathered on the way.
Our �rst lemma is an a¢ ne theorem which has been proposed independently as a

problem in [3]:
Theorem 5. Let A; B; C; D be four points in the plane. Let P = AC \ BD;

Q = AB \ CD and R = BC \ DA: The parallel to the line QR through the point
P intersects the lines AB and CD at the points X and Z: Then, the point P is the
midpoint of the segment XZ: (See Fig. 8.)
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We give two proofs of this fact - one using some basic projective geometry and one

using just the Ceva and Desargues theorems.
First proof of Theorem 5. The following proof of Theorem 5 uses some projective

geometry - namely the basic properties of in�nite points and the invariance of the
cross-ratio.
We work with directed segments. (See Fig. 9.) Let Q0 = QP \BC: Since the lines

QQ0; BD; CA concur (in fact, they concur at the point P ), the Ceva theorem (applied
to triangle QBC and the points Q0; D; A on its sides BC; CQ; QB) yields

BQ0

Q0C
� CD
DQ

� QA
AB

= 1:

Since the points R; D; A are collinear, the Menelaos theorem (applied to triangle QBC
and the points R; D; A on its sides BC; CQ; QB) yields

BR

RC
� CD
DQ

� QA
AB

= �1:
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Comparison of these two equations yields
BR

RC
= �BQ

0

Q0C
; so that

BR

RC
:
BQ0

Q0C
= �1:

Since XZ k QR; the lines XZ and QR intersect at an in�nite point. Denote this
point by T: Then, the four points B; C; R; Q0 lie on the line BC; and the points
X; Z; T; P are the projections of these four points from the point Q onto the line

XZ: Thus, by the invariance of the cross-ratio under central projection, we have
XT

TZ
:

XP

PZ
=
BR

RC
:
BQ0

Q0C
: Since

BR

RC
:
BQ0

Q0C
= �1; this becomes XT

TZ
:
XP

PZ
= �1; so that

XT

TZ
= �XP

PZ
: But since T is the in�nite point of the line XZ; we have

XT

TZ
= �1:

Thus, �1 = �XP
PZ

; so that 1 =
XP

PZ
: Hence, XP = PZ; so that the point P is the

midpoint of XZ: This proves Theorem 5.
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Second proof of Theorem 5. We will use directed segments. Hereby, the parallel

linesXZ andQR are assumed to be directed equally. (See Fig. 10.) Let B0 = BD\QR
and C 0 = AC \QR: Since XZ k QR; Thales yields XP

QB0
=
BP

BB0
and

C 0Q

PZ
=
CC 0

CP
; and
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therefore

XP

PZ
=
XP

QB0
� QB

0

C 0Q
� C

0Q

PZ
=
BP

BB0
� QB

0

C 0Q
� CC

0

CP
=

�
� PB
BB0

�
� B

0Q

QC 0
�
�
�C

0C

CP

�
=
PB

BB0
� B

0Q

QC 0
� C

0C

CP
:

Now, the points B0C 0 \ CB = R; C 0P \ BQ = A and PB0 \ QC = D are collinear.
According to the Desargues theorem (applied to the triangles PB0C 0 and QCB), this
yields that the lines PQ; B0C and C 0B concur. Hence, according to the Ceva theorem
(applied to the triangle PB0C 0 and the points Q; C; B on its sidelines B0C 0; C 0P; PB0),

we have
PB

BB0
� B

0Q

QC 0
� C

0C

CP
= 1: Thus,

XP

PZ
=
PB

BB0
� B

0Q

QC 0
� C

0C

CP
= 1; so that XP = PZ:

Consequently, P is the midpoint of XZ: This proves Theorem 5.
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Our second lemma is an important and known fact from the geometry of cyclic

quadrilaterals. In an equivalent version, it has been discussed, e. g., at [4]. We will
use it in the following form:
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Theorem 6. Let k be a circle with center O; and let A; B; C; D be four points on
this circle k: Let P = AC \ BD; Q = AB \ CD and R = BC \DA: Then, the point
O is the orthocenter of triangle PQR: (See Fig. 11.)
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Fig. 11
We will give two proofs of Theorem 6. The �rst one deduces it from a result in the

theory of poles and polars with respect to a circle, while the second one uses no theory
beyound radical axes or inversion - either of these is enough! - and directed angles
modulo 180�:
First proof of Theorem 6. This proof relies on a fact from the theory of poles and

polars with respect to a circle:
Theorem 7. LetX; Y; Z; W be four points on a circle k1: Then, the pointXY \ZW

lies on the polar of the point XZ \ YW with respect to the circle k1:
This fact appears as Theorem 1 in [5], where it is proven using the Pascal theorem.

Below we will give a di¤erent proof of this fact based on our second proof of Theorem
6.
Assuming Theorem 7 as given, Theorem 6 is easy to verify:
Applying Theorem 7 to the points X = A; Y = B; Z = C; W = D on the circle
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k1 = k; we see that the point AB \ CD lies on the polar of the point AC \ BD with
respect to the circle k: Since AC \ BD = P and AB \ CD = Q; this means that Q
lies on the polar of P with respect to k: Applying Theorem 7 to the points X = B;
Y = C; Z = D; W = A on the circle k1 = k; we obtain that the point BC \DA lies
on the polar of the point BD \ CA with respect to the circle k: Since BC \DA = R
and BD \ CA = P; this means that R lies on the polar of P with respect to k:
Since the two points Q and R both lie on the polar of P with respect to k; this

yields that the line QR is the polar of P with respect to k: Now, since O is the center of
k; and since the polar of a point with respect to a circle is always perpendicular to the
line joining this point with center of the circle, we thus obtain OP ? QR: Similarly,
OQ ? RP and OR ? PQ: Thus, the lines OP; OQ; OR are the altitudes of triangle
PQR: Hence, the orthocenter of triangle PQR is the point of intersection of these lines
OP; OQ; OR; so it must be the point O: This proves Theorem 6.
Second proof of Theorem 6. In the following proof, we are going to use directed

angles modulo 180�:
We commence with a classical result about four lines in a plane:
Theorem 8, the Miquel fourline theorem. Let a; b; c; d be four lines in the

plane. Denote A = b\ c; B = c\ a; C = a\ b; D = a\ d; E = b\ d; F = c\ d: Then,
the circumcircles of triangles EAF; BDF; EDC; BAC have a common point.
This point is called the Miquel point of the four lines a; b; c; d: (See Fig. 12, where

the Miquel point is marked red.)
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Proof of Theorem 8. (See Fig. 13.) Let M be the point of intersection of the

circumcircles of triangles EAF and EDC distinct from E: Then, ]MCD = ]MED
(since M lies on the circumcircle of triangle EDC) and ]MEF = ]MAF (since M
lies on the circumcircle of triangle EAF ). Hence, ]MCB = ]MCD = ]MED =
]MEF = ]MAF = ]MAB: Thus, the points M; B; C; A lie on one circle. Equiva-
lently,M lies on the circumcircle of triangle BAC: Similarly,M lies on the circumcircle
of triangle BDF: Thus, the circumcircles of triangles EAF; BDF; EDC; BAC have a
common point - namely, the point M: This proves Theorem 8.
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Throughout mathematics it can be observed that proving more is usually easier

than proving less. According to this, and also for the sake of completeness, with the
next theorem we are going to prove a whole catalogue of properties of a con�guration,
despite the fact that the only one that we will need in our proof of Theorem 6 is
Theorem 9 h). [Thus, the reader not familiar with inversion can skip Theorem 9 f),
and the reader not familiar with polarity can skip i).] Note that the other properties
are of interest, too: as an exercise, the reader can kill three olympiad problems - [6],
[7], [8] - using Theorem 9. Theorem 9 d) has also been discussed in [9], while Theorem
9 b), d) and f) yield the result of [10].
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Theorem 9. Let k be a circle with center O; and let A; B; C; D be four points

on this circle k: Let M be the Miquel point of the four lines AB; BC; CD; DA: Let
P = AC \BD; Q = AB \ CD and R = BC \DA:
a) The point M lies on the circumcircles of triangles RCD; QAD; RAB; QCB:
b) The point M lies on the line QR: (See Fig. 14.)
c) The point M lies on the circumcircles of triangles AOC and BOD: (See Fig.

15.)
d) The point M lies on the line OP:
e) The line OP bisects the angle AMC and bisects the angle BMD:
f) The point M is the image of the point P under the inversion with respect to the

circle k:
g) The point M is the orthogonal projection of the point P on the line QR: (See

Fig. 16.)
h) We have OP ? QR:
i) The line QR is the polar of the point P with respect to the circle k:
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Proof of Theorem 9. We have BC \ CD = C; CD \ AB = Q; AB \ BC = B;

AB \DA = A; BC \DA = R; CD \DA = D: Thus, due to its de�nition, the Miquel
point M of the four lines AB; BC; CD; DA is the common point of the circumcircles
of triangles RCD; QAD; RAB; QCB: This proves Theorem 9 a).
(See Fig. 17.) SinceM lies on the circumcircle of triangle RAB; we have ]RMB =

]RAB: Since the points A; B; C; D lie on one circle (namely, on the circle k), we have
]DAB = ]DCB: SinceM lies on the circumcircle of triangle QCB; we have ]QCB =
]QMB: Hence, ]RMB = ]RAB = ]DAB = ]DCB = ]QCB = ]QMB: Thus,
the points M; Q; R are collinear, i. e. the point M lies on the line QR: This proves
Theorem 9 b).
Since O is the center of the circle k; while the points B; C; D lie on this circle,

the central angle theorem yields ]BOD = 2 � ]BCD: Now we know that ]RMB =
]RAB; and similarly we can get ]RMD = ]RCD: With the aid of the relation
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]DAB = ]DCB shown above, we thus get

]BMD = ]RMD � ]RMB = ]RCD � ]RAB = ]BCD � ]DAB = ]BCD � ]DCB
= ]BCD � (�]BCD) = 2 � ]BCD = ]BOD:

Thus, the points B; D; M; O lie on one circle, i. e. the pointM lies on the circumcircle
of triangle BOD: Similarly,M also lies on the circumcircle of triangle AOC: This proves
Theorem 9 c).
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Fig. 17
Now we are going to prove Theorem 9 d) and f) in two di¤erent ways - a �rst one

using inversion, and a second one using radical axes:
First proof of Theorem 9 d) and f). (See Fig. 16.) The inversion with respect to

the circle k maps the points A and C to themselves (since these points lie on k). On the
other hand, the inversion with respect to the circle k maps circles through the point O
to lines (since O is the center of the circle k; hence the center of our inversion, and any
inversion maps circles through the center of inversion to lines). Hence, the image of the
circumcircle of triangle AOC under this inversion is a line (since the circumcircle of
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triangle AOC is a circle through the point O), and this line passes through the points
A and C (in fact, this line is the image of the circumcircle of triangle AOC under our
inversion, and thus must pass through the images of the points A and C under this
inversion - but these images are these points A and C themselves). Thus, the image
of the circumcircle of triangle AOC under our inversion is the line AC: Similarly, the
image of the circumcircle of triangle BOD under our inversion is the line BD:
Now, since the point M lies on the circumcircles of triangles AOC and BOD; the

image of this point M under the inversion with respect to the circle k must lie on the
images of these circumcircles, thus on the lines AC and BD: Hence, the image of the
point M under the inversion with respect to k is the point of intersection of the lines
AC and BD: But the point of intersection of the lines AC and BD is the point P:
Hence, the image of the point M under the inversion with respect to k is the point
P: Thus, in turn, the point M is the image of the point P under the inversion with
respect to k: Theorem 9 f) is hence proven.3

The image of a point under the inversion with respect to a circle always lies on the
line through the center of the circle and the point. Since M is the image of the point
P under the inversion with respect to the circle k; we can thus conclude that the point
M lies on the line OP (since O is the center of the circle k). This proves Theorem 9
d).
Second proof of Theorem 9 d) and f). If two circles intersect, then the line joining

the two points of intersection is the radical axis of the two circles. This yields that:

� The line OM is the radical axis of the circumcircles of triangles AOC and BOD
(since the two points of intersection of these circles are O and M).

� The line AC is the radical axis of the circle k and the circumcircle of triangle
AOC (since the two points of intersection of these circles are A and C).

� The line BD is the radical axis of the circle k and the circumcircle of triangle
BOD (since the two points of intersection of these circles are B and D).

Now, the pairwise radical axes of three circles always concur. Applied to the circle
k and the circumcircles of triangles AOC and BOD; this yields that the lines OM;
AC and BD concur. In other words, the line OM passes through the point AC \BD:
Since AC \ BD = P; this is equivalent to saying that the line OM passes through P:
In other words, M lies on the line OP: Hence, Theorem 9 d) is proven.
(See Fig. 18.) Since O is the center of the circle k; while the points B and D lie

on this circle, we have OB = OD: Thus, triangle BOD is isosceles, so that ]OBD =
]BDO: Since M lies on the circumcircle of triangle BOD; we have ]OBD = ]OMD
and ]BDO = ]BMO: Hence, ]OBD = ]BDO becomes ]OMD = ]BMO: This
equation shows that the line OP bisects the angle BMD: Similarly, the line OP bisects
the angle AMC: Thus we have shown Theorem 9 e).
From ]OBD = ]BDO and ]BDO = ]BMO we can conclude that ]OBD =

]BMO; so that ]OBP = �]OMB: Further, obviously ]BOP = �]MOB: Thus,
3This proof was not particularly watertight. In fact, as we are working in the inversive plane, the

lines AC and BD have not just one, but two points of intersection: the usual point of intersection
P and the in�nite point of the inversive plane. But it is readily seen that the image of the point M
under the inversion with respect to k is the "right" point of intersection, i. e. the point P:
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the triangles OBP and OMB are oppositely similar. This entails OP : OB = OB :
OM; or OP � OM = OB2: A more accurate reasoning shows that this equation OP �
OM = OB2 holds even if the segments are considered directed. Since O is the center
and OB is the radius of the circle k; and since the point M lies on the line OP; this
equation yields that the point M is the image of the point P under the inversion with
respect to the circle k: Thus, Theorem 9 f) is established.

A

B

D

C

P

Q

R
O

k

M

Fig. 18
Now, we have shown Theorem 9 a), b) and c), then proved Theorem 9 d) and f)

in two ways, additionally showing Theorem 9 e) in the second proof of Theorem 9 d)
and f). What remains now is to verify Theorem 9 g), h) and i):
SinceM lies on the circumcircle of triangle RAB; we have ]RMB = ]RAB: Since

M lies on the circumcircle of triangle BOD; we have ]BMO = ]BDO: Since O is the
center of the circle k; while the points B; D; A lie on this circle k; the central angle
theorem yields ]BDO = 90� � ]DAB: Thus,
]RMO = ]RMB + ]BMO = ]RAB + ]BDO = ]DAB + (90� � ]DAB) = 90�;
hence OM ? QR: Since the point M lies on OP; this becomes OP ? QR: Thus,
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Theorem 9 h) is proven. The relation OP ? QR; together with the fact that the point
M lies on the lines OP and QR; yields that the point M is the orthogonal projection
of the point P on the line QR: Hence, Theorem 9 g) is proven as well.
The polar of the point P with respect to the circle k is de�ned as the perpendicular

to the line OP through the image of the point P under the inversion with respect to
the circle k (since O is the center of k). Now, the image of the point P under the
inversion with respect to the circle k is the point M: Hence, the polar of the point
P with respect to the circle k is the perpendicular to the line OP through M: This
perpendicular is obviously the line QR (since the line QR passes through M and is
perpendicular to OP ). Hence, the polar of the point P with respect to the circle k is
the line QR: Hence, Theorem 9 i) is proven, what concludes our proof of Theorem 9.
Now, Theorem 9 swiftly implies Theorem 6: Applying Theorem 9 h) directly to

the points A; B; C; D on the circle k; we get OP ? QR: But applying Theorem 9
h) to the points C; B; D; A (in this order) on the circle k; we get OQ ? RP; and
applying Theorem 9 h) to the points B; D; C; A (in this order) on the circle k; we
obtain OR ? PQ:
Since OP ? QR; OQ ? RP and OR ? PQ; the lines OP; OQ; OR must be the

altitudes of the triangle PQR: Thus, the point O; being the point of intersection of
these lines OP; OQ; OR; must be the point of intersection of the altitudes of triangle
PQR; i. e. the orthocenter of triangle PQR: Thus, Theorem 6 is proven.
As we promised, we can also immediately conclude Theorem 7 from Theorem 9: In

the con�guration of Theorem 9, according to Theorem 9 i), the line QR is the polar of
the point P with respect to the circle k: Now, the point Q lies on the line QR; hence,
the point Q lies on the polar of the point P with respect to the circle k: In other words:
The point AB \CD lies on the polar of the point AC \BD with respect to the circle
k: Renaming the points A; B; C; D into X; Y; Z; W and the circle k into k1 in this
assertion, we get Theorem 7.
After Theorem 6 has been proved in two ways, we �nally deduce Theorem 1 from

Theorems 5 and 6:
(See Fig. 19.) Consider the con�guration of Theorem 1. Assume that O 6= P

(in fact, in the case O = P; the lines AC and BD are diameters of the circle k; so
that the quadrilateral ABCD is symmetric with respect to O; and thus Theorem 1
becomes trivial from symmetry). Then, we can speak of the line OP: De�ne two points
Q = AB \ CD and R = BC \DA: Then, according to Theorem 6, the point O is the
orthocenter of triangle PQR: Hence, OP ? QR: Together with OP ? g; this yields
g k QR: Thus, the line g is the parallel to the line QR through the point P: Since this
line g intersects the lines AB and CD at the points X and Z; Theorem 5 now yields
that the point P is the midpoint of the segment XZ: Thus, Theorem 1 is proven.
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4. An application of the �rst proof

We have proven Theorem 1 in two di¤erent ways now. We conclude this note with
an application of Theorem 3 noticed by Virgil Nicula in [12].
We start with a trivial particular case of Theorem 3:
Theorem 10. Let ABC be a triangle with the circumcenter O: Let g be an

arbitrary line, and let P be the orthogonal projection of the point O on this line g: The
line g intersects the lines BC; CA; AB at some points X; Y; Z: Let W be the point of
intersection of the line g with the tangent to the circumcircle of triangle ABC at the
point A: Then, the point P is the midpoint of the segment Y Z if and only if the point
P is the midpoint of the segment XW: (See Fig. 20.)
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Proof of Theorem 10. We consider our con�guration from a slightly di¤erent view-

point:
The circumcircle of triangle ABC has the center O; and A; C; B; A are four points

on this circumcircle. The point P is the orthogonal projection of the point O on the
line g: The line g intersects the lines AC; CB; BA; AA; AB; CA at the points Y; X;
Z; W; Z; Y (hereby, the line AA is considered to mean the tangent to the circumcircle
of triangle ABC at the point A).
Hence we can apply Theorem 3 to the circumcircle of triangle ABC (in the role of

the circle k), the four points A; C; B; A on this circumcircle (in the role of the points
A; B; C; D) and the line g (in the role of the line g), and we conclude that the following
three assertions are pairwisely equivalent:
Assertion 1: The point P is the midpoint of the segment Y Z:
Assertion 2: The point P is the midpoint of the segment XW:
Assertion 3: The point P is the midpoint of the segment ZY:
The equivalence of Assertions 1 and 2 is exactly the statement of Theorem 10.

Thus, Theorem 10 is proven.
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An application of Theorem 10 is the following fact from triangle geometry:
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Theorem 11. Let O be the circumcenter of a triangle ABC: LetN be the re�ection

of the point A in the point O; or, equivalently, the point diametrically opposite to the
point A on the circumcircle of triangle ABC: The tangent to the circumcircle of triangle
ABC at the point N intersects the line BC at a point X: The line OX intersects the
lines CA and AB at the points Y and Z: Then, the point O is the midpoint of the
segment Y Z: (See Fig. 21.)
This theorem has been discussed in [12] and [13] and allows for di¤erent approaches.

It has been given in a slightly more complicated form as problem 6 in the selection
round of the St. Petersburg Mathematical Olympiad 2002 (SPbMO) for the 9th grade.
Here we show two proofs of Theorem 11 - one by Virgil Nicula using Theorem 3 and
one being a slight variation of the proposed solution of the SPbMO problem.
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First proof of Theorem 11 (by Virgil Nicula). (See Fig. 22.) Let W be the point

of intersection of the line OX with the tangent to the circumcircle of triangle ABC at
the point A: We consider our con�guration as follows:
The triangle ABC has the circumcenter O: The point O is the orthogonal projection

of the point O on the line OX (obviously, since it lies on this line). The line OX
intersects the lines BC; CA; AB at the points X; Y; Z: The point W is the point of
intersection of the line OX with the tangent to the circumcircle of triangle ABC at
the point A:
Hence, according to Theorem 10, the point O is the midpoint of the segment Y Z if

and only if the point O is the midpoint of the segment XW: Hence, in order to prove
Theorem 11 (which states that the point O is the midpoint of the segment Y Z), it is
enough to prove that O is the midpoint of the segment XW:
This is rather obvious: Since AW is the tangent to the circumcircle of triangle

ABC at A; while O is the center of this circumcircle, we have AW ? AO: Since
NX is the tangent to the circumcircle of triangle ABC at N; while O is the center
of this circumcircle, we have NX ? NO: This rewrites as NX ? AO: Together with
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AW ? AO; this yields NX k AW: Hence, after the Thales theorem, XO
OW

=
NO

OA
: Now,

NO = OA (since N is the re�ection of A in the point O), and thus
XO

OW
=
NO

OA
=

OA

OA
= 1; so that XO = OW: Thus, the point O is the midpoint of the segment XW:

As we have said, this proves Theorem 11.
Second proof of Theorem 11. As a contrast, here comes a completely elementary

proof of Theorem 11 - actually, more or less a restatement of the proposed solution of
the SPbMO problem. We will use directed angles modulo 180�; but we will use non-
directed segments. (See Fig. 23.) Let M be the midpoint of the segment BC: Being
the circumcenter of triangle ABC; the point O must lie on the perpendicular bisector
of its side BC: Thus, OM ? BC: In other words, ]OMX = 90�: On the other hand,
NX is the tangent to the circumcircle of triangle ABC at N; and thus NX ? NO
(since O is the center of this circumcircle). This yields ]ONX = 90�:
Since ]OMX = 90� and ]ONX = 90�; the points M and N lie on the circle with

diameter OX: Thus, ]XMN = ]XON: On the other hand, ]BCN = ]BAN since
the point N lies on the circumcircle of triangle ABC:
Thus, ]CMN = ]XMN = ]XON = �]AOZ and ]MCN = ]BCN =

]BAN = �]OAZ: Hence, the triangles CMN and AOZ are oppositely similar. This

entails
OZ

AO
=
MN

CM
: Similarly,

OY

AO
=
MN

BM
: Since CM = BM (what is because the

point M is the midpoint of BC), this leads to
OZ

AO
=
MN

CM
=
MN

BM
=
OY

AO
; and thus

OZ = OY: Hence, O is the midpoint of Y Z; and Theorem 11 is proven once again.
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